xref: /openbmc/linux/kernel/bpf/verifier.c (revision 70151949)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <net/xdp.h>
30 
31 #include "disasm.h"
32 
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
35 	[_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #define BPF_LINK_TYPE(_id, _name)
38 #include <linux/bpf_types.h>
39 #undef BPF_PROG_TYPE
40 #undef BPF_MAP_TYPE
41 #undef BPF_LINK_TYPE
42 };
43 
44 /* bpf_check() is a static code analyzer that walks eBPF program
45  * instruction by instruction and updates register/stack state.
46  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
47  *
48  * The first pass is depth-first-search to check that the program is a DAG.
49  * It rejects the following programs:
50  * - larger than BPF_MAXINSNS insns
51  * - if loop is present (detected via back-edge)
52  * - unreachable insns exist (shouldn't be a forest. program = one function)
53  * - out of bounds or malformed jumps
54  * The second pass is all possible path descent from the 1st insn.
55  * Since it's analyzing all paths through the program, the length of the
56  * analysis is limited to 64k insn, which may be hit even if total number of
57  * insn is less then 4K, but there are too many branches that change stack/regs.
58  * Number of 'branches to be analyzed' is limited to 1k
59  *
60  * On entry to each instruction, each register has a type, and the instruction
61  * changes the types of the registers depending on instruction semantics.
62  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
63  * copied to R1.
64  *
65  * All registers are 64-bit.
66  * R0 - return register
67  * R1-R5 argument passing registers
68  * R6-R9 callee saved registers
69  * R10 - frame pointer read-only
70  *
71  * At the start of BPF program the register R1 contains a pointer to bpf_context
72  * and has type PTR_TO_CTX.
73  *
74  * Verifier tracks arithmetic operations on pointers in case:
75  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
76  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
77  * 1st insn copies R10 (which has FRAME_PTR) type into R1
78  * and 2nd arithmetic instruction is pattern matched to recognize
79  * that it wants to construct a pointer to some element within stack.
80  * So after 2nd insn, the register R1 has type PTR_TO_STACK
81  * (and -20 constant is saved for further stack bounds checking).
82  * Meaning that this reg is a pointer to stack plus known immediate constant.
83  *
84  * Most of the time the registers have SCALAR_VALUE type, which
85  * means the register has some value, but it's not a valid pointer.
86  * (like pointer plus pointer becomes SCALAR_VALUE type)
87  *
88  * When verifier sees load or store instructions the type of base register
89  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
90  * four pointer types recognized by check_mem_access() function.
91  *
92  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
93  * and the range of [ptr, ptr + map's value_size) is accessible.
94  *
95  * registers used to pass values to function calls are checked against
96  * function argument constraints.
97  *
98  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
99  * It means that the register type passed to this function must be
100  * PTR_TO_STACK and it will be used inside the function as
101  * 'pointer to map element key'
102  *
103  * For example the argument constraints for bpf_map_lookup_elem():
104  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
105  *   .arg1_type = ARG_CONST_MAP_PTR,
106  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
107  *
108  * ret_type says that this function returns 'pointer to map elem value or null'
109  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
110  * 2nd argument should be a pointer to stack, which will be used inside
111  * the helper function as a pointer to map element key.
112  *
113  * On the kernel side the helper function looks like:
114  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
115  * {
116  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
117  *    void *key = (void *) (unsigned long) r2;
118  *    void *value;
119  *
120  *    here kernel can access 'key' and 'map' pointers safely, knowing that
121  *    [key, key + map->key_size) bytes are valid and were initialized on
122  *    the stack of eBPF program.
123  * }
124  *
125  * Corresponding eBPF program may look like:
126  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
127  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
128  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
129  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
130  * here verifier looks at prototype of map_lookup_elem() and sees:
131  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
132  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
133  *
134  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
135  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
136  * and were initialized prior to this call.
137  * If it's ok, then verifier allows this BPF_CALL insn and looks at
138  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
139  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
140  * returns either pointer to map value or NULL.
141  *
142  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
143  * insn, the register holding that pointer in the true branch changes state to
144  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
145  * branch. See check_cond_jmp_op().
146  *
147  * After the call R0 is set to return type of the function and registers R1-R5
148  * are set to NOT_INIT to indicate that they are no longer readable.
149  *
150  * The following reference types represent a potential reference to a kernel
151  * resource which, after first being allocated, must be checked and freed by
152  * the BPF program:
153  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
154  *
155  * When the verifier sees a helper call return a reference type, it allocates a
156  * pointer id for the reference and stores it in the current function state.
157  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
158  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
159  * passes through a NULL-check conditional. For the branch wherein the state is
160  * changed to CONST_IMM, the verifier releases the reference.
161  *
162  * For each helper function that allocates a reference, such as
163  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
164  * bpf_sk_release(). When a reference type passes into the release function,
165  * the verifier also releases the reference. If any unchecked or unreleased
166  * reference remains at the end of the program, the verifier rejects it.
167  */
168 
169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
170 struct bpf_verifier_stack_elem {
171 	/* verifer state is 'st'
172 	 * before processing instruction 'insn_idx'
173 	 * and after processing instruction 'prev_insn_idx'
174 	 */
175 	struct bpf_verifier_state st;
176 	int insn_idx;
177 	int prev_insn_idx;
178 	struct bpf_verifier_stack_elem *next;
179 	/* length of verifier log at the time this state was pushed on stack */
180 	u32 log_pos;
181 };
182 
183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
184 #define BPF_COMPLEXITY_LIMIT_STATES	64
185 
186 #define BPF_MAP_KEY_POISON	(1ULL << 63)
187 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
188 
189 #define BPF_MAP_PTR_UNPRIV	1UL
190 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
191 					  POISON_POINTER_DELTA))
192 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
193 
194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
198 static int ref_set_non_owning(struct bpf_verifier_env *env,
199 			      struct bpf_reg_state *reg);
200 static void specialize_kfunc(struct bpf_verifier_env *env,
201 			     u32 func_id, u16 offset, unsigned long *addr);
202 static bool is_trusted_reg(const struct bpf_reg_state *reg);
203 
204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
205 {
206 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
207 }
208 
209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
210 {
211 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
212 }
213 
214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
215 			      const struct bpf_map *map, bool unpriv)
216 {
217 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
218 	unpriv |= bpf_map_ptr_unpriv(aux);
219 	aux->map_ptr_state = (unsigned long)map |
220 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
221 }
222 
223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
224 {
225 	return aux->map_key_state & BPF_MAP_KEY_POISON;
226 }
227 
228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
229 {
230 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
231 }
232 
233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
234 {
235 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
236 }
237 
238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
239 {
240 	bool poisoned = bpf_map_key_poisoned(aux);
241 
242 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
243 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
244 }
245 
246 static bool bpf_helper_call(const struct bpf_insn *insn)
247 {
248 	return insn->code == (BPF_JMP | BPF_CALL) &&
249 	       insn->src_reg == 0;
250 }
251 
252 static bool bpf_pseudo_call(const struct bpf_insn *insn)
253 {
254 	return insn->code == (BPF_JMP | BPF_CALL) &&
255 	       insn->src_reg == BPF_PSEUDO_CALL;
256 }
257 
258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
259 {
260 	return insn->code == (BPF_JMP | BPF_CALL) &&
261 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
262 }
263 
264 struct bpf_call_arg_meta {
265 	struct bpf_map *map_ptr;
266 	bool raw_mode;
267 	bool pkt_access;
268 	u8 release_regno;
269 	int regno;
270 	int access_size;
271 	int mem_size;
272 	u64 msize_max_value;
273 	int ref_obj_id;
274 	int dynptr_id;
275 	int map_uid;
276 	int func_id;
277 	struct btf *btf;
278 	u32 btf_id;
279 	struct btf *ret_btf;
280 	u32 ret_btf_id;
281 	u32 subprogno;
282 	struct btf_field *kptr_field;
283 };
284 
285 struct bpf_kfunc_call_arg_meta {
286 	/* In parameters */
287 	struct btf *btf;
288 	u32 func_id;
289 	u32 kfunc_flags;
290 	const struct btf_type *func_proto;
291 	const char *func_name;
292 	/* Out parameters */
293 	u32 ref_obj_id;
294 	u8 release_regno;
295 	bool r0_rdonly;
296 	u32 ret_btf_id;
297 	u64 r0_size;
298 	u32 subprogno;
299 	struct {
300 		u64 value;
301 		bool found;
302 	} arg_constant;
303 
304 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
305 	 * generally to pass info about user-defined local kptr types to later
306 	 * verification logic
307 	 *   bpf_obj_drop
308 	 *     Record the local kptr type to be drop'd
309 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
310 	 *     Record the local kptr type to be refcount_incr'd and use
311 	 *     arg_owning_ref to determine whether refcount_acquire should be
312 	 *     fallible
313 	 */
314 	struct btf *arg_btf;
315 	u32 arg_btf_id;
316 	bool arg_owning_ref;
317 
318 	struct {
319 		struct btf_field *field;
320 	} arg_list_head;
321 	struct {
322 		struct btf_field *field;
323 	} arg_rbtree_root;
324 	struct {
325 		enum bpf_dynptr_type type;
326 		u32 id;
327 		u32 ref_obj_id;
328 	} initialized_dynptr;
329 	struct {
330 		u8 spi;
331 		u8 frameno;
332 	} iter;
333 	u64 mem_size;
334 };
335 
336 struct btf *btf_vmlinux;
337 
338 static DEFINE_MUTEX(bpf_verifier_lock);
339 
340 static const struct bpf_line_info *
341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
342 {
343 	const struct bpf_line_info *linfo;
344 	const struct bpf_prog *prog;
345 	u32 i, nr_linfo;
346 
347 	prog = env->prog;
348 	nr_linfo = prog->aux->nr_linfo;
349 
350 	if (!nr_linfo || insn_off >= prog->len)
351 		return NULL;
352 
353 	linfo = prog->aux->linfo;
354 	for (i = 1; i < nr_linfo; i++)
355 		if (insn_off < linfo[i].insn_off)
356 			break;
357 
358 	return &linfo[i - 1];
359 }
360 
361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
362 {
363 	struct bpf_verifier_env *env = private_data;
364 	va_list args;
365 
366 	if (!bpf_verifier_log_needed(&env->log))
367 		return;
368 
369 	va_start(args, fmt);
370 	bpf_verifier_vlog(&env->log, fmt, args);
371 	va_end(args);
372 }
373 
374 static const char *ltrim(const char *s)
375 {
376 	while (isspace(*s))
377 		s++;
378 
379 	return s;
380 }
381 
382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
383 					 u32 insn_off,
384 					 const char *prefix_fmt, ...)
385 {
386 	const struct bpf_line_info *linfo;
387 
388 	if (!bpf_verifier_log_needed(&env->log))
389 		return;
390 
391 	linfo = find_linfo(env, insn_off);
392 	if (!linfo || linfo == env->prev_linfo)
393 		return;
394 
395 	if (prefix_fmt) {
396 		va_list args;
397 
398 		va_start(args, prefix_fmt);
399 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
400 		va_end(args);
401 	}
402 
403 	verbose(env, "%s\n",
404 		ltrim(btf_name_by_offset(env->prog->aux->btf,
405 					 linfo->line_off)));
406 
407 	env->prev_linfo = linfo;
408 }
409 
410 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
411 				   struct bpf_reg_state *reg,
412 				   struct tnum *range, const char *ctx,
413 				   const char *reg_name)
414 {
415 	char tn_buf[48];
416 
417 	verbose(env, "At %s the register %s ", ctx, reg_name);
418 	if (!tnum_is_unknown(reg->var_off)) {
419 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
420 		verbose(env, "has value %s", tn_buf);
421 	} else {
422 		verbose(env, "has unknown scalar value");
423 	}
424 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
425 	verbose(env, " should have been in %s\n", tn_buf);
426 }
427 
428 static bool type_is_pkt_pointer(enum bpf_reg_type type)
429 {
430 	type = base_type(type);
431 	return type == PTR_TO_PACKET ||
432 	       type == PTR_TO_PACKET_META;
433 }
434 
435 static bool type_is_sk_pointer(enum bpf_reg_type type)
436 {
437 	return type == PTR_TO_SOCKET ||
438 		type == PTR_TO_SOCK_COMMON ||
439 		type == PTR_TO_TCP_SOCK ||
440 		type == PTR_TO_XDP_SOCK;
441 }
442 
443 static bool type_may_be_null(u32 type)
444 {
445 	return type & PTR_MAYBE_NULL;
446 }
447 
448 static bool reg_not_null(const struct bpf_reg_state *reg)
449 {
450 	enum bpf_reg_type type;
451 
452 	type = reg->type;
453 	if (type_may_be_null(type))
454 		return false;
455 
456 	type = base_type(type);
457 	return type == PTR_TO_SOCKET ||
458 		type == PTR_TO_TCP_SOCK ||
459 		type == PTR_TO_MAP_VALUE ||
460 		type == PTR_TO_MAP_KEY ||
461 		type == PTR_TO_SOCK_COMMON ||
462 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
463 		type == PTR_TO_MEM;
464 }
465 
466 static bool type_is_ptr_alloc_obj(u32 type)
467 {
468 	return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
469 }
470 
471 static bool type_is_non_owning_ref(u32 type)
472 {
473 	return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
474 }
475 
476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
477 {
478 	struct btf_record *rec = NULL;
479 	struct btf_struct_meta *meta;
480 
481 	if (reg->type == PTR_TO_MAP_VALUE) {
482 		rec = reg->map_ptr->record;
483 	} else if (type_is_ptr_alloc_obj(reg->type)) {
484 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
485 		if (meta)
486 			rec = meta->record;
487 	}
488 	return rec;
489 }
490 
491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
492 {
493 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
494 
495 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
496 }
497 
498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
499 {
500 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
501 }
502 
503 static bool type_is_rdonly_mem(u32 type)
504 {
505 	return type & MEM_RDONLY;
506 }
507 
508 static bool is_acquire_function(enum bpf_func_id func_id,
509 				const struct bpf_map *map)
510 {
511 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
512 
513 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
514 	    func_id == BPF_FUNC_sk_lookup_udp ||
515 	    func_id == BPF_FUNC_skc_lookup_tcp ||
516 	    func_id == BPF_FUNC_ringbuf_reserve ||
517 	    func_id == BPF_FUNC_kptr_xchg)
518 		return true;
519 
520 	if (func_id == BPF_FUNC_map_lookup_elem &&
521 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
522 	     map_type == BPF_MAP_TYPE_SOCKHASH))
523 		return true;
524 
525 	return false;
526 }
527 
528 static bool is_ptr_cast_function(enum bpf_func_id func_id)
529 {
530 	return func_id == BPF_FUNC_tcp_sock ||
531 		func_id == BPF_FUNC_sk_fullsock ||
532 		func_id == BPF_FUNC_skc_to_tcp_sock ||
533 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
534 		func_id == BPF_FUNC_skc_to_udp6_sock ||
535 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
536 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
538 }
539 
540 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
541 {
542 	return func_id == BPF_FUNC_dynptr_data;
543 }
544 
545 static bool is_callback_calling_kfunc(u32 btf_id);
546 
547 static bool is_callback_calling_function(enum bpf_func_id func_id)
548 {
549 	return func_id == BPF_FUNC_for_each_map_elem ||
550 	       func_id == BPF_FUNC_timer_set_callback ||
551 	       func_id == BPF_FUNC_find_vma ||
552 	       func_id == BPF_FUNC_loop ||
553 	       func_id == BPF_FUNC_user_ringbuf_drain;
554 }
555 
556 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
557 {
558 	return func_id == BPF_FUNC_timer_set_callback;
559 }
560 
561 static bool is_storage_get_function(enum bpf_func_id func_id)
562 {
563 	return func_id == BPF_FUNC_sk_storage_get ||
564 	       func_id == BPF_FUNC_inode_storage_get ||
565 	       func_id == BPF_FUNC_task_storage_get ||
566 	       func_id == BPF_FUNC_cgrp_storage_get;
567 }
568 
569 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
570 					const struct bpf_map *map)
571 {
572 	int ref_obj_uses = 0;
573 
574 	if (is_ptr_cast_function(func_id))
575 		ref_obj_uses++;
576 	if (is_acquire_function(func_id, map))
577 		ref_obj_uses++;
578 	if (is_dynptr_ref_function(func_id))
579 		ref_obj_uses++;
580 
581 	return ref_obj_uses > 1;
582 }
583 
584 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
585 {
586 	return BPF_CLASS(insn->code) == BPF_STX &&
587 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
588 	       insn->imm == BPF_CMPXCHG;
589 }
590 
591 /* string representation of 'enum bpf_reg_type'
592  *
593  * Note that reg_type_str() can not appear more than once in a single verbose()
594  * statement.
595  */
596 static const char *reg_type_str(struct bpf_verifier_env *env,
597 				enum bpf_reg_type type)
598 {
599 	char postfix[16] = {0}, prefix[64] = {0};
600 	static const char * const str[] = {
601 		[NOT_INIT]		= "?",
602 		[SCALAR_VALUE]		= "scalar",
603 		[PTR_TO_CTX]		= "ctx",
604 		[CONST_PTR_TO_MAP]	= "map_ptr",
605 		[PTR_TO_MAP_VALUE]	= "map_value",
606 		[PTR_TO_STACK]		= "fp",
607 		[PTR_TO_PACKET]		= "pkt",
608 		[PTR_TO_PACKET_META]	= "pkt_meta",
609 		[PTR_TO_PACKET_END]	= "pkt_end",
610 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
611 		[PTR_TO_SOCKET]		= "sock",
612 		[PTR_TO_SOCK_COMMON]	= "sock_common",
613 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
614 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
615 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
616 		[PTR_TO_BTF_ID]		= "ptr_",
617 		[PTR_TO_MEM]		= "mem",
618 		[PTR_TO_BUF]		= "buf",
619 		[PTR_TO_FUNC]		= "func",
620 		[PTR_TO_MAP_KEY]	= "map_key",
621 		[CONST_PTR_TO_DYNPTR]	= "dynptr_ptr",
622 	};
623 
624 	if (type & PTR_MAYBE_NULL) {
625 		if (base_type(type) == PTR_TO_BTF_ID)
626 			strncpy(postfix, "or_null_", 16);
627 		else
628 			strncpy(postfix, "_or_null", 16);
629 	}
630 
631 	snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
632 		 type & MEM_RDONLY ? "rdonly_" : "",
633 		 type & MEM_RINGBUF ? "ringbuf_" : "",
634 		 type & MEM_USER ? "user_" : "",
635 		 type & MEM_PERCPU ? "percpu_" : "",
636 		 type & MEM_RCU ? "rcu_" : "",
637 		 type & PTR_UNTRUSTED ? "untrusted_" : "",
638 		 type & PTR_TRUSTED ? "trusted_" : ""
639 	);
640 
641 	snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s",
642 		 prefix, str[base_type(type)], postfix);
643 	return env->tmp_str_buf;
644 }
645 
646 static char slot_type_char[] = {
647 	[STACK_INVALID]	= '?',
648 	[STACK_SPILL]	= 'r',
649 	[STACK_MISC]	= 'm',
650 	[STACK_ZERO]	= '0',
651 	[STACK_DYNPTR]	= 'd',
652 	[STACK_ITER]	= 'i',
653 };
654 
655 static void print_liveness(struct bpf_verifier_env *env,
656 			   enum bpf_reg_liveness live)
657 {
658 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
659 	    verbose(env, "_");
660 	if (live & REG_LIVE_READ)
661 		verbose(env, "r");
662 	if (live & REG_LIVE_WRITTEN)
663 		verbose(env, "w");
664 	if (live & REG_LIVE_DONE)
665 		verbose(env, "D");
666 }
667 
668 static int __get_spi(s32 off)
669 {
670 	return (-off - 1) / BPF_REG_SIZE;
671 }
672 
673 static struct bpf_func_state *func(struct bpf_verifier_env *env,
674 				   const struct bpf_reg_state *reg)
675 {
676 	struct bpf_verifier_state *cur = env->cur_state;
677 
678 	return cur->frame[reg->frameno];
679 }
680 
681 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
682 {
683        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
684 
685        /* We need to check that slots between [spi - nr_slots + 1, spi] are
686 	* within [0, allocated_stack).
687 	*
688 	* Please note that the spi grows downwards. For example, a dynptr
689 	* takes the size of two stack slots; the first slot will be at
690 	* spi and the second slot will be at spi - 1.
691 	*/
692        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
693 }
694 
695 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
696 			          const char *obj_kind, int nr_slots)
697 {
698 	int off, spi;
699 
700 	if (!tnum_is_const(reg->var_off)) {
701 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
702 		return -EINVAL;
703 	}
704 
705 	off = reg->off + reg->var_off.value;
706 	if (off % BPF_REG_SIZE) {
707 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
708 		return -EINVAL;
709 	}
710 
711 	spi = __get_spi(off);
712 	if (spi + 1 < nr_slots) {
713 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
714 		return -EINVAL;
715 	}
716 
717 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
718 		return -ERANGE;
719 	return spi;
720 }
721 
722 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
723 {
724 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
725 }
726 
727 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
728 {
729 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
730 }
731 
732 static const char *btf_type_name(const struct btf *btf, u32 id)
733 {
734 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
735 }
736 
737 static const char *dynptr_type_str(enum bpf_dynptr_type type)
738 {
739 	switch (type) {
740 	case BPF_DYNPTR_TYPE_LOCAL:
741 		return "local";
742 	case BPF_DYNPTR_TYPE_RINGBUF:
743 		return "ringbuf";
744 	case BPF_DYNPTR_TYPE_SKB:
745 		return "skb";
746 	case BPF_DYNPTR_TYPE_XDP:
747 		return "xdp";
748 	case BPF_DYNPTR_TYPE_INVALID:
749 		return "<invalid>";
750 	default:
751 		WARN_ONCE(1, "unknown dynptr type %d\n", type);
752 		return "<unknown>";
753 	}
754 }
755 
756 static const char *iter_type_str(const struct btf *btf, u32 btf_id)
757 {
758 	if (!btf || btf_id == 0)
759 		return "<invalid>";
760 
761 	/* we already validated that type is valid and has conforming name */
762 	return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
763 }
764 
765 static const char *iter_state_str(enum bpf_iter_state state)
766 {
767 	switch (state) {
768 	case BPF_ITER_STATE_ACTIVE:
769 		return "active";
770 	case BPF_ITER_STATE_DRAINED:
771 		return "drained";
772 	case BPF_ITER_STATE_INVALID:
773 		return "<invalid>";
774 	default:
775 		WARN_ONCE(1, "unknown iter state %d\n", state);
776 		return "<unknown>";
777 	}
778 }
779 
780 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
781 {
782 	env->scratched_regs |= 1U << regno;
783 }
784 
785 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
786 {
787 	env->scratched_stack_slots |= 1ULL << spi;
788 }
789 
790 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
791 {
792 	return (env->scratched_regs >> regno) & 1;
793 }
794 
795 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
796 {
797 	return (env->scratched_stack_slots >> regno) & 1;
798 }
799 
800 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
801 {
802 	return env->scratched_regs || env->scratched_stack_slots;
803 }
804 
805 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
806 {
807 	env->scratched_regs = 0U;
808 	env->scratched_stack_slots = 0ULL;
809 }
810 
811 /* Used for printing the entire verifier state. */
812 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
813 {
814 	env->scratched_regs = ~0U;
815 	env->scratched_stack_slots = ~0ULL;
816 }
817 
818 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
819 {
820 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
821 	case DYNPTR_TYPE_LOCAL:
822 		return BPF_DYNPTR_TYPE_LOCAL;
823 	case DYNPTR_TYPE_RINGBUF:
824 		return BPF_DYNPTR_TYPE_RINGBUF;
825 	case DYNPTR_TYPE_SKB:
826 		return BPF_DYNPTR_TYPE_SKB;
827 	case DYNPTR_TYPE_XDP:
828 		return BPF_DYNPTR_TYPE_XDP;
829 	default:
830 		return BPF_DYNPTR_TYPE_INVALID;
831 	}
832 }
833 
834 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
835 {
836 	switch (type) {
837 	case BPF_DYNPTR_TYPE_LOCAL:
838 		return DYNPTR_TYPE_LOCAL;
839 	case BPF_DYNPTR_TYPE_RINGBUF:
840 		return DYNPTR_TYPE_RINGBUF;
841 	case BPF_DYNPTR_TYPE_SKB:
842 		return DYNPTR_TYPE_SKB;
843 	case BPF_DYNPTR_TYPE_XDP:
844 		return DYNPTR_TYPE_XDP;
845 	default:
846 		return 0;
847 	}
848 }
849 
850 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
851 {
852 	return type == BPF_DYNPTR_TYPE_RINGBUF;
853 }
854 
855 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
856 			      enum bpf_dynptr_type type,
857 			      bool first_slot, int dynptr_id);
858 
859 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
860 				struct bpf_reg_state *reg);
861 
862 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
863 				   struct bpf_reg_state *sreg1,
864 				   struct bpf_reg_state *sreg2,
865 				   enum bpf_dynptr_type type)
866 {
867 	int id = ++env->id_gen;
868 
869 	__mark_dynptr_reg(sreg1, type, true, id);
870 	__mark_dynptr_reg(sreg2, type, false, id);
871 }
872 
873 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
874 			       struct bpf_reg_state *reg,
875 			       enum bpf_dynptr_type type)
876 {
877 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
878 }
879 
880 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
881 				        struct bpf_func_state *state, int spi);
882 
883 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
884 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
885 {
886 	struct bpf_func_state *state = func(env, reg);
887 	enum bpf_dynptr_type type;
888 	int spi, i, err;
889 
890 	spi = dynptr_get_spi(env, reg);
891 	if (spi < 0)
892 		return spi;
893 
894 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
895 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
896 	 * to ensure that for the following example:
897 	 *	[d1][d1][d2][d2]
898 	 * spi    3   2   1   0
899 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
900 	 * case they do belong to same dynptr, second call won't see slot_type
901 	 * as STACK_DYNPTR and will simply skip destruction.
902 	 */
903 	err = destroy_if_dynptr_stack_slot(env, state, spi);
904 	if (err)
905 		return err;
906 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
907 	if (err)
908 		return err;
909 
910 	for (i = 0; i < BPF_REG_SIZE; i++) {
911 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
912 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
913 	}
914 
915 	type = arg_to_dynptr_type(arg_type);
916 	if (type == BPF_DYNPTR_TYPE_INVALID)
917 		return -EINVAL;
918 
919 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
920 			       &state->stack[spi - 1].spilled_ptr, type);
921 
922 	if (dynptr_type_refcounted(type)) {
923 		/* The id is used to track proper releasing */
924 		int id;
925 
926 		if (clone_ref_obj_id)
927 			id = clone_ref_obj_id;
928 		else
929 			id = acquire_reference_state(env, insn_idx);
930 
931 		if (id < 0)
932 			return id;
933 
934 		state->stack[spi].spilled_ptr.ref_obj_id = id;
935 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
936 	}
937 
938 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
939 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
940 
941 	return 0;
942 }
943 
944 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
945 {
946 	int i;
947 
948 	for (i = 0; i < BPF_REG_SIZE; i++) {
949 		state->stack[spi].slot_type[i] = STACK_INVALID;
950 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
951 	}
952 
953 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
954 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
955 
956 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
957 	 *
958 	 * While we don't allow reading STACK_INVALID, it is still possible to
959 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
960 	 * helpers or insns can do partial read of that part without failing,
961 	 * but check_stack_range_initialized, check_stack_read_var_off, and
962 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
963 	 * the slot conservatively. Hence we need to prevent those liveness
964 	 * marking walks.
965 	 *
966 	 * This was not a problem before because STACK_INVALID is only set by
967 	 * default (where the default reg state has its reg->parent as NULL), or
968 	 * in clean_live_states after REG_LIVE_DONE (at which point
969 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
970 	 * verifier state exploration (like we did above). Hence, for our case
971 	 * parentage chain will still be live (i.e. reg->parent may be
972 	 * non-NULL), while earlier reg->parent was NULL, so we need
973 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
974 	 * done later on reads or by mark_dynptr_read as well to unnecessary
975 	 * mark registers in verifier state.
976 	 */
977 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
978 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
979 }
980 
981 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
982 {
983 	struct bpf_func_state *state = func(env, reg);
984 	int spi, ref_obj_id, i;
985 
986 	spi = dynptr_get_spi(env, reg);
987 	if (spi < 0)
988 		return spi;
989 
990 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
991 		invalidate_dynptr(env, state, spi);
992 		return 0;
993 	}
994 
995 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
996 
997 	/* If the dynptr has a ref_obj_id, then we need to invalidate
998 	 * two things:
999 	 *
1000 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
1001 	 * 2) Any slices derived from this dynptr.
1002 	 */
1003 
1004 	/* Invalidate any slices associated with this dynptr */
1005 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
1006 
1007 	/* Invalidate any dynptr clones */
1008 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1009 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
1010 			continue;
1011 
1012 		/* it should always be the case that if the ref obj id
1013 		 * matches then the stack slot also belongs to a
1014 		 * dynptr
1015 		 */
1016 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
1017 			verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
1018 			return -EFAULT;
1019 		}
1020 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
1021 			invalidate_dynptr(env, state, i);
1022 	}
1023 
1024 	return 0;
1025 }
1026 
1027 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1028 			       struct bpf_reg_state *reg);
1029 
1030 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1031 {
1032 	if (!env->allow_ptr_leaks)
1033 		__mark_reg_not_init(env, reg);
1034 	else
1035 		__mark_reg_unknown(env, reg);
1036 }
1037 
1038 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
1039 				        struct bpf_func_state *state, int spi)
1040 {
1041 	struct bpf_func_state *fstate;
1042 	struct bpf_reg_state *dreg;
1043 	int i, dynptr_id;
1044 
1045 	/* We always ensure that STACK_DYNPTR is never set partially,
1046 	 * hence just checking for slot_type[0] is enough. This is
1047 	 * different for STACK_SPILL, where it may be only set for
1048 	 * 1 byte, so code has to use is_spilled_reg.
1049 	 */
1050 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
1051 		return 0;
1052 
1053 	/* Reposition spi to first slot */
1054 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1055 		spi = spi + 1;
1056 
1057 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1058 		verbose(env, "cannot overwrite referenced dynptr\n");
1059 		return -EINVAL;
1060 	}
1061 
1062 	mark_stack_slot_scratched(env, spi);
1063 	mark_stack_slot_scratched(env, spi - 1);
1064 
1065 	/* Writing partially to one dynptr stack slot destroys both. */
1066 	for (i = 0; i < BPF_REG_SIZE; i++) {
1067 		state->stack[spi].slot_type[i] = STACK_INVALID;
1068 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
1069 	}
1070 
1071 	dynptr_id = state->stack[spi].spilled_ptr.id;
1072 	/* Invalidate any slices associated with this dynptr */
1073 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
1074 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
1075 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
1076 			continue;
1077 		if (dreg->dynptr_id == dynptr_id)
1078 			mark_reg_invalid(env, dreg);
1079 	}));
1080 
1081 	/* Do not release reference state, we are destroying dynptr on stack,
1082 	 * not using some helper to release it. Just reset register.
1083 	 */
1084 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
1085 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
1086 
1087 	/* Same reason as unmark_stack_slots_dynptr above */
1088 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1089 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1090 
1091 	return 0;
1092 }
1093 
1094 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1095 {
1096 	int spi;
1097 
1098 	if (reg->type == CONST_PTR_TO_DYNPTR)
1099 		return false;
1100 
1101 	spi = dynptr_get_spi(env, reg);
1102 
1103 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
1104 	 * error because this just means the stack state hasn't been updated yet.
1105 	 * We will do check_mem_access to check and update stack bounds later.
1106 	 */
1107 	if (spi < 0 && spi != -ERANGE)
1108 		return false;
1109 
1110 	/* We don't need to check if the stack slots are marked by previous
1111 	 * dynptr initializations because we allow overwriting existing unreferenced
1112 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
1113 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
1114 	 * touching are completely destructed before we reinitialize them for a new
1115 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
1116 	 * instead of delaying it until the end where the user will get "Unreleased
1117 	 * reference" error.
1118 	 */
1119 	return true;
1120 }
1121 
1122 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1123 {
1124 	struct bpf_func_state *state = func(env, reg);
1125 	int i, spi;
1126 
1127 	/* This already represents first slot of initialized bpf_dynptr.
1128 	 *
1129 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
1130 	 * check_func_arg_reg_off's logic, so we don't need to check its
1131 	 * offset and alignment.
1132 	 */
1133 	if (reg->type == CONST_PTR_TO_DYNPTR)
1134 		return true;
1135 
1136 	spi = dynptr_get_spi(env, reg);
1137 	if (spi < 0)
1138 		return false;
1139 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1140 		return false;
1141 
1142 	for (i = 0; i < BPF_REG_SIZE; i++) {
1143 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1144 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1145 			return false;
1146 	}
1147 
1148 	return true;
1149 }
1150 
1151 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1152 				    enum bpf_arg_type arg_type)
1153 {
1154 	struct bpf_func_state *state = func(env, reg);
1155 	enum bpf_dynptr_type dynptr_type;
1156 	int spi;
1157 
1158 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1159 	if (arg_type == ARG_PTR_TO_DYNPTR)
1160 		return true;
1161 
1162 	dynptr_type = arg_to_dynptr_type(arg_type);
1163 	if (reg->type == CONST_PTR_TO_DYNPTR) {
1164 		return reg->dynptr.type == dynptr_type;
1165 	} else {
1166 		spi = dynptr_get_spi(env, reg);
1167 		if (spi < 0)
1168 			return false;
1169 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1170 	}
1171 }
1172 
1173 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1174 
1175 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1176 				 struct bpf_reg_state *reg, int insn_idx,
1177 				 struct btf *btf, u32 btf_id, int nr_slots)
1178 {
1179 	struct bpf_func_state *state = func(env, reg);
1180 	int spi, i, j, id;
1181 
1182 	spi = iter_get_spi(env, reg, nr_slots);
1183 	if (spi < 0)
1184 		return spi;
1185 
1186 	id = acquire_reference_state(env, insn_idx);
1187 	if (id < 0)
1188 		return id;
1189 
1190 	for (i = 0; i < nr_slots; i++) {
1191 		struct bpf_stack_state *slot = &state->stack[spi - i];
1192 		struct bpf_reg_state *st = &slot->spilled_ptr;
1193 
1194 		__mark_reg_known_zero(st);
1195 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1196 		st->live |= REG_LIVE_WRITTEN;
1197 		st->ref_obj_id = i == 0 ? id : 0;
1198 		st->iter.btf = btf;
1199 		st->iter.btf_id = btf_id;
1200 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1201 		st->iter.depth = 0;
1202 
1203 		for (j = 0; j < BPF_REG_SIZE; j++)
1204 			slot->slot_type[j] = STACK_ITER;
1205 
1206 		mark_stack_slot_scratched(env, spi - i);
1207 	}
1208 
1209 	return 0;
1210 }
1211 
1212 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1213 				   struct bpf_reg_state *reg, int nr_slots)
1214 {
1215 	struct bpf_func_state *state = func(env, reg);
1216 	int spi, i, j;
1217 
1218 	spi = iter_get_spi(env, reg, nr_slots);
1219 	if (spi < 0)
1220 		return spi;
1221 
1222 	for (i = 0; i < nr_slots; i++) {
1223 		struct bpf_stack_state *slot = &state->stack[spi - i];
1224 		struct bpf_reg_state *st = &slot->spilled_ptr;
1225 
1226 		if (i == 0)
1227 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1228 
1229 		__mark_reg_not_init(env, st);
1230 
1231 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1232 		st->live |= REG_LIVE_WRITTEN;
1233 
1234 		for (j = 0; j < BPF_REG_SIZE; j++)
1235 			slot->slot_type[j] = STACK_INVALID;
1236 
1237 		mark_stack_slot_scratched(env, spi - i);
1238 	}
1239 
1240 	return 0;
1241 }
1242 
1243 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1244 				     struct bpf_reg_state *reg, int nr_slots)
1245 {
1246 	struct bpf_func_state *state = func(env, reg);
1247 	int spi, i, j;
1248 
1249 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1250 	 * will do check_mem_access to check and update stack bounds later, so
1251 	 * return true for that case.
1252 	 */
1253 	spi = iter_get_spi(env, reg, nr_slots);
1254 	if (spi == -ERANGE)
1255 		return true;
1256 	if (spi < 0)
1257 		return false;
1258 
1259 	for (i = 0; i < nr_slots; i++) {
1260 		struct bpf_stack_state *slot = &state->stack[spi - i];
1261 
1262 		for (j = 0; j < BPF_REG_SIZE; j++)
1263 			if (slot->slot_type[j] == STACK_ITER)
1264 				return false;
1265 	}
1266 
1267 	return true;
1268 }
1269 
1270 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1271 				   struct btf *btf, u32 btf_id, int nr_slots)
1272 {
1273 	struct bpf_func_state *state = func(env, reg);
1274 	int spi, i, j;
1275 
1276 	spi = iter_get_spi(env, reg, nr_slots);
1277 	if (spi < 0)
1278 		return false;
1279 
1280 	for (i = 0; i < nr_slots; i++) {
1281 		struct bpf_stack_state *slot = &state->stack[spi - i];
1282 		struct bpf_reg_state *st = &slot->spilled_ptr;
1283 
1284 		/* only main (first) slot has ref_obj_id set */
1285 		if (i == 0 && !st->ref_obj_id)
1286 			return false;
1287 		if (i != 0 && st->ref_obj_id)
1288 			return false;
1289 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1290 			return false;
1291 
1292 		for (j = 0; j < BPF_REG_SIZE; j++)
1293 			if (slot->slot_type[j] != STACK_ITER)
1294 				return false;
1295 	}
1296 
1297 	return true;
1298 }
1299 
1300 /* Check if given stack slot is "special":
1301  *   - spilled register state (STACK_SPILL);
1302  *   - dynptr state (STACK_DYNPTR);
1303  *   - iter state (STACK_ITER).
1304  */
1305 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1306 {
1307 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1308 
1309 	switch (type) {
1310 	case STACK_SPILL:
1311 	case STACK_DYNPTR:
1312 	case STACK_ITER:
1313 		return true;
1314 	case STACK_INVALID:
1315 	case STACK_MISC:
1316 	case STACK_ZERO:
1317 		return false;
1318 	default:
1319 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1320 		return true;
1321 	}
1322 }
1323 
1324 /* The reg state of a pointer or a bounded scalar was saved when
1325  * it was spilled to the stack.
1326  */
1327 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1328 {
1329 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1330 }
1331 
1332 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1333 {
1334 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1335 	       stack->spilled_ptr.type == SCALAR_VALUE;
1336 }
1337 
1338 static void scrub_spilled_slot(u8 *stype)
1339 {
1340 	if (*stype != STACK_INVALID)
1341 		*stype = STACK_MISC;
1342 }
1343 
1344 static void print_verifier_state(struct bpf_verifier_env *env,
1345 				 const struct bpf_func_state *state,
1346 				 bool print_all)
1347 {
1348 	const struct bpf_reg_state *reg;
1349 	enum bpf_reg_type t;
1350 	int i;
1351 
1352 	if (state->frameno)
1353 		verbose(env, " frame%d:", state->frameno);
1354 	for (i = 0; i < MAX_BPF_REG; i++) {
1355 		reg = &state->regs[i];
1356 		t = reg->type;
1357 		if (t == NOT_INIT)
1358 			continue;
1359 		if (!print_all && !reg_scratched(env, i))
1360 			continue;
1361 		verbose(env, " R%d", i);
1362 		print_liveness(env, reg->live);
1363 		verbose(env, "=");
1364 		if (t == SCALAR_VALUE && reg->precise)
1365 			verbose(env, "P");
1366 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1367 		    tnum_is_const(reg->var_off)) {
1368 			/* reg->off should be 0 for SCALAR_VALUE */
1369 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1370 			verbose(env, "%lld", reg->var_off.value + reg->off);
1371 		} else {
1372 			const char *sep = "";
1373 
1374 			verbose(env, "%s", reg_type_str(env, t));
1375 			if (base_type(t) == PTR_TO_BTF_ID)
1376 				verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
1377 			verbose(env, "(");
1378 /*
1379  * _a stands for append, was shortened to avoid multiline statements below.
1380  * This macro is used to output a comma separated list of attributes.
1381  */
1382 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1383 
1384 			if (reg->id)
1385 				verbose_a("id=%d", reg->id);
1386 			if (reg->ref_obj_id)
1387 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
1388 			if (type_is_non_owning_ref(reg->type))
1389 				verbose_a("%s", "non_own_ref");
1390 			if (t != SCALAR_VALUE)
1391 				verbose_a("off=%d", reg->off);
1392 			if (type_is_pkt_pointer(t))
1393 				verbose_a("r=%d", reg->range);
1394 			else if (base_type(t) == CONST_PTR_TO_MAP ||
1395 				 base_type(t) == PTR_TO_MAP_KEY ||
1396 				 base_type(t) == PTR_TO_MAP_VALUE)
1397 				verbose_a("ks=%d,vs=%d",
1398 					  reg->map_ptr->key_size,
1399 					  reg->map_ptr->value_size);
1400 			if (tnum_is_const(reg->var_off)) {
1401 				/* Typically an immediate SCALAR_VALUE, but
1402 				 * could be a pointer whose offset is too big
1403 				 * for reg->off
1404 				 */
1405 				verbose_a("imm=%llx", reg->var_off.value);
1406 			} else {
1407 				if (reg->smin_value != reg->umin_value &&
1408 				    reg->smin_value != S64_MIN)
1409 					verbose_a("smin=%lld", (long long)reg->smin_value);
1410 				if (reg->smax_value != reg->umax_value &&
1411 				    reg->smax_value != S64_MAX)
1412 					verbose_a("smax=%lld", (long long)reg->smax_value);
1413 				if (reg->umin_value != 0)
1414 					verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
1415 				if (reg->umax_value != U64_MAX)
1416 					verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
1417 				if (!tnum_is_unknown(reg->var_off)) {
1418 					char tn_buf[48];
1419 
1420 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1421 					verbose_a("var_off=%s", tn_buf);
1422 				}
1423 				if (reg->s32_min_value != reg->smin_value &&
1424 				    reg->s32_min_value != S32_MIN)
1425 					verbose_a("s32_min=%d", (int)(reg->s32_min_value));
1426 				if (reg->s32_max_value != reg->smax_value &&
1427 				    reg->s32_max_value != S32_MAX)
1428 					verbose_a("s32_max=%d", (int)(reg->s32_max_value));
1429 				if (reg->u32_min_value != reg->umin_value &&
1430 				    reg->u32_min_value != U32_MIN)
1431 					verbose_a("u32_min=%d", (int)(reg->u32_min_value));
1432 				if (reg->u32_max_value != reg->umax_value &&
1433 				    reg->u32_max_value != U32_MAX)
1434 					verbose_a("u32_max=%d", (int)(reg->u32_max_value));
1435 			}
1436 #undef verbose_a
1437 
1438 			verbose(env, ")");
1439 		}
1440 	}
1441 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1442 		char types_buf[BPF_REG_SIZE + 1];
1443 		bool valid = false;
1444 		int j;
1445 
1446 		for (j = 0; j < BPF_REG_SIZE; j++) {
1447 			if (state->stack[i].slot_type[j] != STACK_INVALID)
1448 				valid = true;
1449 			types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1450 		}
1451 		types_buf[BPF_REG_SIZE] = 0;
1452 		if (!valid)
1453 			continue;
1454 		if (!print_all && !stack_slot_scratched(env, i))
1455 			continue;
1456 		switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
1457 		case STACK_SPILL:
1458 			reg = &state->stack[i].spilled_ptr;
1459 			t = reg->type;
1460 
1461 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1462 			print_liveness(env, reg->live);
1463 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1464 			if (t == SCALAR_VALUE && reg->precise)
1465 				verbose(env, "P");
1466 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1467 				verbose(env, "%lld", reg->var_off.value + reg->off);
1468 			break;
1469 		case STACK_DYNPTR:
1470 			i += BPF_DYNPTR_NR_SLOTS - 1;
1471 			reg = &state->stack[i].spilled_ptr;
1472 
1473 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1474 			print_liveness(env, reg->live);
1475 			verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type));
1476 			if (reg->ref_obj_id)
1477 				verbose(env, "(ref_id=%d)", reg->ref_obj_id);
1478 			break;
1479 		case STACK_ITER:
1480 			/* only main slot has ref_obj_id set; skip others */
1481 			reg = &state->stack[i].spilled_ptr;
1482 			if (!reg->ref_obj_id)
1483 				continue;
1484 
1485 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1486 			print_liveness(env, reg->live);
1487 			verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
1488 				iter_type_str(reg->iter.btf, reg->iter.btf_id),
1489 				reg->ref_obj_id, iter_state_str(reg->iter.state),
1490 				reg->iter.depth);
1491 			break;
1492 		case STACK_MISC:
1493 		case STACK_ZERO:
1494 		default:
1495 			reg = &state->stack[i].spilled_ptr;
1496 
1497 			for (j = 0; j < BPF_REG_SIZE; j++)
1498 				types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1499 			types_buf[BPF_REG_SIZE] = 0;
1500 
1501 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1502 			print_liveness(env, reg->live);
1503 			verbose(env, "=%s", types_buf);
1504 			break;
1505 		}
1506 	}
1507 	if (state->acquired_refs && state->refs[0].id) {
1508 		verbose(env, " refs=%d", state->refs[0].id);
1509 		for (i = 1; i < state->acquired_refs; i++)
1510 			if (state->refs[i].id)
1511 				verbose(env, ",%d", state->refs[i].id);
1512 	}
1513 	if (state->in_callback_fn)
1514 		verbose(env, " cb");
1515 	if (state->in_async_callback_fn)
1516 		verbose(env, " async_cb");
1517 	verbose(env, "\n");
1518 	if (!print_all)
1519 		mark_verifier_state_clean(env);
1520 }
1521 
1522 static inline u32 vlog_alignment(u32 pos)
1523 {
1524 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1525 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1526 }
1527 
1528 static void print_insn_state(struct bpf_verifier_env *env,
1529 			     const struct bpf_func_state *state)
1530 {
1531 	if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
1532 		/* remove new line character */
1533 		bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
1534 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
1535 	} else {
1536 		verbose(env, "%d:", env->insn_idx);
1537 	}
1538 	print_verifier_state(env, state, false);
1539 }
1540 
1541 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1542  * small to hold src. This is different from krealloc since we don't want to preserve
1543  * the contents of dst.
1544  *
1545  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1546  * not be allocated.
1547  */
1548 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1549 {
1550 	size_t alloc_bytes;
1551 	void *orig = dst;
1552 	size_t bytes;
1553 
1554 	if (ZERO_OR_NULL_PTR(src))
1555 		goto out;
1556 
1557 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1558 		return NULL;
1559 
1560 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1561 	dst = krealloc(orig, alloc_bytes, flags);
1562 	if (!dst) {
1563 		kfree(orig);
1564 		return NULL;
1565 	}
1566 
1567 	memcpy(dst, src, bytes);
1568 out:
1569 	return dst ? dst : ZERO_SIZE_PTR;
1570 }
1571 
1572 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1573  * small to hold new_n items. new items are zeroed out if the array grows.
1574  *
1575  * Contrary to krealloc_array, does not free arr if new_n is zero.
1576  */
1577 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1578 {
1579 	size_t alloc_size;
1580 	void *new_arr;
1581 
1582 	if (!new_n || old_n == new_n)
1583 		goto out;
1584 
1585 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1586 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1587 	if (!new_arr) {
1588 		kfree(arr);
1589 		return NULL;
1590 	}
1591 	arr = new_arr;
1592 
1593 	if (new_n > old_n)
1594 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1595 
1596 out:
1597 	return arr ? arr : ZERO_SIZE_PTR;
1598 }
1599 
1600 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1601 {
1602 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1603 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1604 	if (!dst->refs)
1605 		return -ENOMEM;
1606 
1607 	dst->acquired_refs = src->acquired_refs;
1608 	return 0;
1609 }
1610 
1611 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1612 {
1613 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1614 
1615 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1616 				GFP_KERNEL);
1617 	if (!dst->stack)
1618 		return -ENOMEM;
1619 
1620 	dst->allocated_stack = src->allocated_stack;
1621 	return 0;
1622 }
1623 
1624 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1625 {
1626 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1627 				    sizeof(struct bpf_reference_state));
1628 	if (!state->refs)
1629 		return -ENOMEM;
1630 
1631 	state->acquired_refs = n;
1632 	return 0;
1633 }
1634 
1635 static int grow_stack_state(struct bpf_func_state *state, int size)
1636 {
1637 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1638 
1639 	if (old_n >= n)
1640 		return 0;
1641 
1642 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1643 	if (!state->stack)
1644 		return -ENOMEM;
1645 
1646 	state->allocated_stack = size;
1647 	return 0;
1648 }
1649 
1650 /* Acquire a pointer id from the env and update the state->refs to include
1651  * this new pointer reference.
1652  * On success, returns a valid pointer id to associate with the register
1653  * On failure, returns a negative errno.
1654  */
1655 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1656 {
1657 	struct bpf_func_state *state = cur_func(env);
1658 	int new_ofs = state->acquired_refs;
1659 	int id, err;
1660 
1661 	err = resize_reference_state(state, state->acquired_refs + 1);
1662 	if (err)
1663 		return err;
1664 	id = ++env->id_gen;
1665 	state->refs[new_ofs].id = id;
1666 	state->refs[new_ofs].insn_idx = insn_idx;
1667 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1668 
1669 	return id;
1670 }
1671 
1672 /* release function corresponding to acquire_reference_state(). Idempotent. */
1673 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1674 {
1675 	int i, last_idx;
1676 
1677 	last_idx = state->acquired_refs - 1;
1678 	for (i = 0; i < state->acquired_refs; i++) {
1679 		if (state->refs[i].id == ptr_id) {
1680 			/* Cannot release caller references in callbacks */
1681 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1682 				return -EINVAL;
1683 			if (last_idx && i != last_idx)
1684 				memcpy(&state->refs[i], &state->refs[last_idx],
1685 				       sizeof(*state->refs));
1686 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1687 			state->acquired_refs--;
1688 			return 0;
1689 		}
1690 	}
1691 	return -EINVAL;
1692 }
1693 
1694 static void free_func_state(struct bpf_func_state *state)
1695 {
1696 	if (!state)
1697 		return;
1698 	kfree(state->refs);
1699 	kfree(state->stack);
1700 	kfree(state);
1701 }
1702 
1703 static void clear_jmp_history(struct bpf_verifier_state *state)
1704 {
1705 	kfree(state->jmp_history);
1706 	state->jmp_history = NULL;
1707 	state->jmp_history_cnt = 0;
1708 }
1709 
1710 static void free_verifier_state(struct bpf_verifier_state *state,
1711 				bool free_self)
1712 {
1713 	int i;
1714 
1715 	for (i = 0; i <= state->curframe; i++) {
1716 		free_func_state(state->frame[i]);
1717 		state->frame[i] = NULL;
1718 	}
1719 	clear_jmp_history(state);
1720 	if (free_self)
1721 		kfree(state);
1722 }
1723 
1724 /* copy verifier state from src to dst growing dst stack space
1725  * when necessary to accommodate larger src stack
1726  */
1727 static int copy_func_state(struct bpf_func_state *dst,
1728 			   const struct bpf_func_state *src)
1729 {
1730 	int err;
1731 
1732 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1733 	err = copy_reference_state(dst, src);
1734 	if (err)
1735 		return err;
1736 	return copy_stack_state(dst, src);
1737 }
1738 
1739 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1740 			       const struct bpf_verifier_state *src)
1741 {
1742 	struct bpf_func_state *dst;
1743 	int i, err;
1744 
1745 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1746 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1747 					    GFP_USER);
1748 	if (!dst_state->jmp_history)
1749 		return -ENOMEM;
1750 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1751 
1752 	/* if dst has more stack frames then src frame, free them */
1753 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1754 		free_func_state(dst_state->frame[i]);
1755 		dst_state->frame[i] = NULL;
1756 	}
1757 	dst_state->speculative = src->speculative;
1758 	dst_state->active_rcu_lock = src->active_rcu_lock;
1759 	dst_state->curframe = src->curframe;
1760 	dst_state->active_lock.ptr = src->active_lock.ptr;
1761 	dst_state->active_lock.id = src->active_lock.id;
1762 	dst_state->branches = src->branches;
1763 	dst_state->parent = src->parent;
1764 	dst_state->first_insn_idx = src->first_insn_idx;
1765 	dst_state->last_insn_idx = src->last_insn_idx;
1766 	for (i = 0; i <= src->curframe; i++) {
1767 		dst = dst_state->frame[i];
1768 		if (!dst) {
1769 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1770 			if (!dst)
1771 				return -ENOMEM;
1772 			dst_state->frame[i] = dst;
1773 		}
1774 		err = copy_func_state(dst, src->frame[i]);
1775 		if (err)
1776 			return err;
1777 	}
1778 	return 0;
1779 }
1780 
1781 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1782 {
1783 	while (st) {
1784 		u32 br = --st->branches;
1785 
1786 		/* WARN_ON(br > 1) technically makes sense here,
1787 		 * but see comment in push_stack(), hence:
1788 		 */
1789 		WARN_ONCE((int)br < 0,
1790 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1791 			  br);
1792 		if (br)
1793 			break;
1794 		st = st->parent;
1795 	}
1796 }
1797 
1798 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1799 		     int *insn_idx, bool pop_log)
1800 {
1801 	struct bpf_verifier_state *cur = env->cur_state;
1802 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1803 	int err;
1804 
1805 	if (env->head == NULL)
1806 		return -ENOENT;
1807 
1808 	if (cur) {
1809 		err = copy_verifier_state(cur, &head->st);
1810 		if (err)
1811 			return err;
1812 	}
1813 	if (pop_log)
1814 		bpf_vlog_reset(&env->log, head->log_pos);
1815 	if (insn_idx)
1816 		*insn_idx = head->insn_idx;
1817 	if (prev_insn_idx)
1818 		*prev_insn_idx = head->prev_insn_idx;
1819 	elem = head->next;
1820 	free_verifier_state(&head->st, false);
1821 	kfree(head);
1822 	env->head = elem;
1823 	env->stack_size--;
1824 	return 0;
1825 }
1826 
1827 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1828 					     int insn_idx, int prev_insn_idx,
1829 					     bool speculative)
1830 {
1831 	struct bpf_verifier_state *cur = env->cur_state;
1832 	struct bpf_verifier_stack_elem *elem;
1833 	int err;
1834 
1835 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1836 	if (!elem)
1837 		goto err;
1838 
1839 	elem->insn_idx = insn_idx;
1840 	elem->prev_insn_idx = prev_insn_idx;
1841 	elem->next = env->head;
1842 	elem->log_pos = env->log.end_pos;
1843 	env->head = elem;
1844 	env->stack_size++;
1845 	err = copy_verifier_state(&elem->st, cur);
1846 	if (err)
1847 		goto err;
1848 	elem->st.speculative |= speculative;
1849 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1850 		verbose(env, "The sequence of %d jumps is too complex.\n",
1851 			env->stack_size);
1852 		goto err;
1853 	}
1854 	if (elem->st.parent) {
1855 		++elem->st.parent->branches;
1856 		/* WARN_ON(branches > 2) technically makes sense here,
1857 		 * but
1858 		 * 1. speculative states will bump 'branches' for non-branch
1859 		 * instructions
1860 		 * 2. is_state_visited() heuristics may decide not to create
1861 		 * a new state for a sequence of branches and all such current
1862 		 * and cloned states will be pointing to a single parent state
1863 		 * which might have large 'branches' count.
1864 		 */
1865 	}
1866 	return &elem->st;
1867 err:
1868 	free_verifier_state(env->cur_state, true);
1869 	env->cur_state = NULL;
1870 	/* pop all elements and return */
1871 	while (!pop_stack(env, NULL, NULL, false));
1872 	return NULL;
1873 }
1874 
1875 #define CALLER_SAVED_REGS 6
1876 static const int caller_saved[CALLER_SAVED_REGS] = {
1877 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1878 };
1879 
1880 /* This helper doesn't clear reg->id */
1881 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1882 {
1883 	reg->var_off = tnum_const(imm);
1884 	reg->smin_value = (s64)imm;
1885 	reg->smax_value = (s64)imm;
1886 	reg->umin_value = imm;
1887 	reg->umax_value = imm;
1888 
1889 	reg->s32_min_value = (s32)imm;
1890 	reg->s32_max_value = (s32)imm;
1891 	reg->u32_min_value = (u32)imm;
1892 	reg->u32_max_value = (u32)imm;
1893 }
1894 
1895 /* Mark the unknown part of a register (variable offset or scalar value) as
1896  * known to have the value @imm.
1897  */
1898 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1899 {
1900 	/* Clear off and union(map_ptr, range) */
1901 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1902 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1903 	reg->id = 0;
1904 	reg->ref_obj_id = 0;
1905 	___mark_reg_known(reg, imm);
1906 }
1907 
1908 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1909 {
1910 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1911 	reg->s32_min_value = (s32)imm;
1912 	reg->s32_max_value = (s32)imm;
1913 	reg->u32_min_value = (u32)imm;
1914 	reg->u32_max_value = (u32)imm;
1915 }
1916 
1917 /* Mark the 'variable offset' part of a register as zero.  This should be
1918  * used only on registers holding a pointer type.
1919  */
1920 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1921 {
1922 	__mark_reg_known(reg, 0);
1923 }
1924 
1925 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1926 {
1927 	__mark_reg_known(reg, 0);
1928 	reg->type = SCALAR_VALUE;
1929 }
1930 
1931 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1932 				struct bpf_reg_state *regs, u32 regno)
1933 {
1934 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1935 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1936 		/* Something bad happened, let's kill all regs */
1937 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1938 			__mark_reg_not_init(env, regs + regno);
1939 		return;
1940 	}
1941 	__mark_reg_known_zero(regs + regno);
1942 }
1943 
1944 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1945 			      bool first_slot, int dynptr_id)
1946 {
1947 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1948 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1949 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1950 	 */
1951 	__mark_reg_known_zero(reg);
1952 	reg->type = CONST_PTR_TO_DYNPTR;
1953 	/* Give each dynptr a unique id to uniquely associate slices to it. */
1954 	reg->id = dynptr_id;
1955 	reg->dynptr.type = type;
1956 	reg->dynptr.first_slot = first_slot;
1957 }
1958 
1959 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1960 {
1961 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1962 		const struct bpf_map *map = reg->map_ptr;
1963 
1964 		if (map->inner_map_meta) {
1965 			reg->type = CONST_PTR_TO_MAP;
1966 			reg->map_ptr = map->inner_map_meta;
1967 			/* transfer reg's id which is unique for every map_lookup_elem
1968 			 * as UID of the inner map.
1969 			 */
1970 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1971 				reg->map_uid = reg->id;
1972 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1973 			reg->type = PTR_TO_XDP_SOCK;
1974 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1975 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1976 			reg->type = PTR_TO_SOCKET;
1977 		} else {
1978 			reg->type = PTR_TO_MAP_VALUE;
1979 		}
1980 		return;
1981 	}
1982 
1983 	reg->type &= ~PTR_MAYBE_NULL;
1984 }
1985 
1986 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
1987 				struct btf_field_graph_root *ds_head)
1988 {
1989 	__mark_reg_known_zero(&regs[regno]);
1990 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
1991 	regs[regno].btf = ds_head->btf;
1992 	regs[regno].btf_id = ds_head->value_btf_id;
1993 	regs[regno].off = ds_head->node_offset;
1994 }
1995 
1996 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1997 {
1998 	return type_is_pkt_pointer(reg->type);
1999 }
2000 
2001 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
2002 {
2003 	return reg_is_pkt_pointer(reg) ||
2004 	       reg->type == PTR_TO_PACKET_END;
2005 }
2006 
2007 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
2008 {
2009 	return base_type(reg->type) == PTR_TO_MEM &&
2010 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
2011 }
2012 
2013 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
2014 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2015 				    enum bpf_reg_type which)
2016 {
2017 	/* The register can already have a range from prior markings.
2018 	 * This is fine as long as it hasn't been advanced from its
2019 	 * origin.
2020 	 */
2021 	return reg->type == which &&
2022 	       reg->id == 0 &&
2023 	       reg->off == 0 &&
2024 	       tnum_equals_const(reg->var_off, 0);
2025 }
2026 
2027 /* Reset the min/max bounds of a register */
2028 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2029 {
2030 	reg->smin_value = S64_MIN;
2031 	reg->smax_value = S64_MAX;
2032 	reg->umin_value = 0;
2033 	reg->umax_value = U64_MAX;
2034 
2035 	reg->s32_min_value = S32_MIN;
2036 	reg->s32_max_value = S32_MAX;
2037 	reg->u32_min_value = 0;
2038 	reg->u32_max_value = U32_MAX;
2039 }
2040 
2041 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2042 {
2043 	reg->smin_value = S64_MIN;
2044 	reg->smax_value = S64_MAX;
2045 	reg->umin_value = 0;
2046 	reg->umax_value = U64_MAX;
2047 }
2048 
2049 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2050 {
2051 	reg->s32_min_value = S32_MIN;
2052 	reg->s32_max_value = S32_MAX;
2053 	reg->u32_min_value = 0;
2054 	reg->u32_max_value = U32_MAX;
2055 }
2056 
2057 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2058 {
2059 	struct tnum var32_off = tnum_subreg(reg->var_off);
2060 
2061 	/* min signed is max(sign bit) | min(other bits) */
2062 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
2063 			var32_off.value | (var32_off.mask & S32_MIN));
2064 	/* max signed is min(sign bit) | max(other bits) */
2065 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
2066 			var32_off.value | (var32_off.mask & S32_MAX));
2067 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2068 	reg->u32_max_value = min(reg->u32_max_value,
2069 				 (u32)(var32_off.value | var32_off.mask));
2070 }
2071 
2072 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2073 {
2074 	/* min signed is max(sign bit) | min(other bits) */
2075 	reg->smin_value = max_t(s64, reg->smin_value,
2076 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
2077 	/* max signed is min(sign bit) | max(other bits) */
2078 	reg->smax_value = min_t(s64, reg->smax_value,
2079 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
2080 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
2081 	reg->umax_value = min(reg->umax_value,
2082 			      reg->var_off.value | reg->var_off.mask);
2083 }
2084 
2085 static void __update_reg_bounds(struct bpf_reg_state *reg)
2086 {
2087 	__update_reg32_bounds(reg);
2088 	__update_reg64_bounds(reg);
2089 }
2090 
2091 /* Uses signed min/max values to inform unsigned, and vice-versa */
2092 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2093 {
2094 	/* Learn sign from signed bounds.
2095 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2096 	 * are the same, so combine.  This works even in the negative case, e.g.
2097 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2098 	 */
2099 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
2100 		reg->s32_min_value = reg->u32_min_value =
2101 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2102 		reg->s32_max_value = reg->u32_max_value =
2103 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2104 		return;
2105 	}
2106 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2107 	 * boundary, so we must be careful.
2108 	 */
2109 	if ((s32)reg->u32_max_value >= 0) {
2110 		/* Positive.  We can't learn anything from the smin, but smax
2111 		 * is positive, hence safe.
2112 		 */
2113 		reg->s32_min_value = reg->u32_min_value;
2114 		reg->s32_max_value = reg->u32_max_value =
2115 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2116 	} else if ((s32)reg->u32_min_value < 0) {
2117 		/* Negative.  We can't learn anything from the smax, but smin
2118 		 * is negative, hence safe.
2119 		 */
2120 		reg->s32_min_value = reg->u32_min_value =
2121 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2122 		reg->s32_max_value = reg->u32_max_value;
2123 	}
2124 }
2125 
2126 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2127 {
2128 	/* Learn sign from signed bounds.
2129 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2130 	 * are the same, so combine.  This works even in the negative case, e.g.
2131 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2132 	 */
2133 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
2134 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2135 							  reg->umin_value);
2136 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2137 							  reg->umax_value);
2138 		return;
2139 	}
2140 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2141 	 * boundary, so we must be careful.
2142 	 */
2143 	if ((s64)reg->umax_value >= 0) {
2144 		/* Positive.  We can't learn anything from the smin, but smax
2145 		 * is positive, hence safe.
2146 		 */
2147 		reg->smin_value = reg->umin_value;
2148 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2149 							  reg->umax_value);
2150 	} else if ((s64)reg->umin_value < 0) {
2151 		/* Negative.  We can't learn anything from the smax, but smin
2152 		 * is negative, hence safe.
2153 		 */
2154 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2155 							  reg->umin_value);
2156 		reg->smax_value = reg->umax_value;
2157 	}
2158 }
2159 
2160 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2161 {
2162 	__reg32_deduce_bounds(reg);
2163 	__reg64_deduce_bounds(reg);
2164 }
2165 
2166 /* Attempts to improve var_off based on unsigned min/max information */
2167 static void __reg_bound_offset(struct bpf_reg_state *reg)
2168 {
2169 	struct tnum var64_off = tnum_intersect(reg->var_off,
2170 					       tnum_range(reg->umin_value,
2171 							  reg->umax_value));
2172 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2173 					       tnum_range(reg->u32_min_value,
2174 							  reg->u32_max_value));
2175 
2176 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2177 }
2178 
2179 static void reg_bounds_sync(struct bpf_reg_state *reg)
2180 {
2181 	/* We might have learned new bounds from the var_off. */
2182 	__update_reg_bounds(reg);
2183 	/* We might have learned something about the sign bit. */
2184 	__reg_deduce_bounds(reg);
2185 	/* We might have learned some bits from the bounds. */
2186 	__reg_bound_offset(reg);
2187 	/* Intersecting with the old var_off might have improved our bounds
2188 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2189 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2190 	 */
2191 	__update_reg_bounds(reg);
2192 }
2193 
2194 static bool __reg32_bound_s64(s32 a)
2195 {
2196 	return a >= 0 && a <= S32_MAX;
2197 }
2198 
2199 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2200 {
2201 	reg->umin_value = reg->u32_min_value;
2202 	reg->umax_value = reg->u32_max_value;
2203 
2204 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2205 	 * be positive otherwise set to worse case bounds and refine later
2206 	 * from tnum.
2207 	 */
2208 	if (__reg32_bound_s64(reg->s32_min_value) &&
2209 	    __reg32_bound_s64(reg->s32_max_value)) {
2210 		reg->smin_value = reg->s32_min_value;
2211 		reg->smax_value = reg->s32_max_value;
2212 	} else {
2213 		reg->smin_value = 0;
2214 		reg->smax_value = U32_MAX;
2215 	}
2216 }
2217 
2218 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
2219 {
2220 	/* special case when 64-bit register has upper 32-bit register
2221 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
2222 	 * allowing us to use 32-bit bounds directly,
2223 	 */
2224 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
2225 		__reg_assign_32_into_64(reg);
2226 	} else {
2227 		/* Otherwise the best we can do is push lower 32bit known and
2228 		 * unknown bits into register (var_off set from jmp logic)
2229 		 * then learn as much as possible from the 64-bit tnum
2230 		 * known and unknown bits. The previous smin/smax bounds are
2231 		 * invalid here because of jmp32 compare so mark them unknown
2232 		 * so they do not impact tnum bounds calculation.
2233 		 */
2234 		__mark_reg64_unbounded(reg);
2235 	}
2236 	reg_bounds_sync(reg);
2237 }
2238 
2239 static bool __reg64_bound_s32(s64 a)
2240 {
2241 	return a >= S32_MIN && a <= S32_MAX;
2242 }
2243 
2244 static bool __reg64_bound_u32(u64 a)
2245 {
2246 	return a >= U32_MIN && a <= U32_MAX;
2247 }
2248 
2249 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
2250 {
2251 	__mark_reg32_unbounded(reg);
2252 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
2253 		reg->s32_min_value = (s32)reg->smin_value;
2254 		reg->s32_max_value = (s32)reg->smax_value;
2255 	}
2256 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
2257 		reg->u32_min_value = (u32)reg->umin_value;
2258 		reg->u32_max_value = (u32)reg->umax_value;
2259 	}
2260 	reg_bounds_sync(reg);
2261 }
2262 
2263 /* Mark a register as having a completely unknown (scalar) value. */
2264 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2265 			       struct bpf_reg_state *reg)
2266 {
2267 	/*
2268 	 * Clear type, off, and union(map_ptr, range) and
2269 	 * padding between 'type' and union
2270 	 */
2271 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2272 	reg->type = SCALAR_VALUE;
2273 	reg->id = 0;
2274 	reg->ref_obj_id = 0;
2275 	reg->var_off = tnum_unknown;
2276 	reg->frameno = 0;
2277 	reg->precise = !env->bpf_capable;
2278 	__mark_reg_unbounded(reg);
2279 }
2280 
2281 static void mark_reg_unknown(struct bpf_verifier_env *env,
2282 			     struct bpf_reg_state *regs, u32 regno)
2283 {
2284 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2285 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2286 		/* Something bad happened, let's kill all regs except FP */
2287 		for (regno = 0; regno < BPF_REG_FP; regno++)
2288 			__mark_reg_not_init(env, regs + regno);
2289 		return;
2290 	}
2291 	__mark_reg_unknown(env, regs + regno);
2292 }
2293 
2294 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2295 				struct bpf_reg_state *reg)
2296 {
2297 	__mark_reg_unknown(env, reg);
2298 	reg->type = NOT_INIT;
2299 }
2300 
2301 static void mark_reg_not_init(struct bpf_verifier_env *env,
2302 			      struct bpf_reg_state *regs, u32 regno)
2303 {
2304 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2305 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2306 		/* Something bad happened, let's kill all regs except FP */
2307 		for (regno = 0; regno < BPF_REG_FP; regno++)
2308 			__mark_reg_not_init(env, regs + regno);
2309 		return;
2310 	}
2311 	__mark_reg_not_init(env, regs + regno);
2312 }
2313 
2314 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2315 			    struct bpf_reg_state *regs, u32 regno,
2316 			    enum bpf_reg_type reg_type,
2317 			    struct btf *btf, u32 btf_id,
2318 			    enum bpf_type_flag flag)
2319 {
2320 	if (reg_type == SCALAR_VALUE) {
2321 		mark_reg_unknown(env, regs, regno);
2322 		return;
2323 	}
2324 	mark_reg_known_zero(env, regs, regno);
2325 	regs[regno].type = PTR_TO_BTF_ID | flag;
2326 	regs[regno].btf = btf;
2327 	regs[regno].btf_id = btf_id;
2328 }
2329 
2330 #define DEF_NOT_SUBREG	(0)
2331 static void init_reg_state(struct bpf_verifier_env *env,
2332 			   struct bpf_func_state *state)
2333 {
2334 	struct bpf_reg_state *regs = state->regs;
2335 	int i;
2336 
2337 	for (i = 0; i < MAX_BPF_REG; i++) {
2338 		mark_reg_not_init(env, regs, i);
2339 		regs[i].live = REG_LIVE_NONE;
2340 		regs[i].parent = NULL;
2341 		regs[i].subreg_def = DEF_NOT_SUBREG;
2342 	}
2343 
2344 	/* frame pointer */
2345 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2346 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2347 	regs[BPF_REG_FP].frameno = state->frameno;
2348 }
2349 
2350 #define BPF_MAIN_FUNC (-1)
2351 static void init_func_state(struct bpf_verifier_env *env,
2352 			    struct bpf_func_state *state,
2353 			    int callsite, int frameno, int subprogno)
2354 {
2355 	state->callsite = callsite;
2356 	state->frameno = frameno;
2357 	state->subprogno = subprogno;
2358 	state->callback_ret_range = tnum_range(0, 0);
2359 	init_reg_state(env, state);
2360 	mark_verifier_state_scratched(env);
2361 }
2362 
2363 /* Similar to push_stack(), but for async callbacks */
2364 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2365 						int insn_idx, int prev_insn_idx,
2366 						int subprog)
2367 {
2368 	struct bpf_verifier_stack_elem *elem;
2369 	struct bpf_func_state *frame;
2370 
2371 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2372 	if (!elem)
2373 		goto err;
2374 
2375 	elem->insn_idx = insn_idx;
2376 	elem->prev_insn_idx = prev_insn_idx;
2377 	elem->next = env->head;
2378 	elem->log_pos = env->log.end_pos;
2379 	env->head = elem;
2380 	env->stack_size++;
2381 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2382 		verbose(env,
2383 			"The sequence of %d jumps is too complex for async cb.\n",
2384 			env->stack_size);
2385 		goto err;
2386 	}
2387 	/* Unlike push_stack() do not copy_verifier_state().
2388 	 * The caller state doesn't matter.
2389 	 * This is async callback. It starts in a fresh stack.
2390 	 * Initialize it similar to do_check_common().
2391 	 */
2392 	elem->st.branches = 1;
2393 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2394 	if (!frame)
2395 		goto err;
2396 	init_func_state(env, frame,
2397 			BPF_MAIN_FUNC /* callsite */,
2398 			0 /* frameno within this callchain */,
2399 			subprog /* subprog number within this prog */);
2400 	elem->st.frame[0] = frame;
2401 	return &elem->st;
2402 err:
2403 	free_verifier_state(env->cur_state, true);
2404 	env->cur_state = NULL;
2405 	/* pop all elements and return */
2406 	while (!pop_stack(env, NULL, NULL, false));
2407 	return NULL;
2408 }
2409 
2410 
2411 enum reg_arg_type {
2412 	SRC_OP,		/* register is used as source operand */
2413 	DST_OP,		/* register is used as destination operand */
2414 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2415 };
2416 
2417 static int cmp_subprogs(const void *a, const void *b)
2418 {
2419 	return ((struct bpf_subprog_info *)a)->start -
2420 	       ((struct bpf_subprog_info *)b)->start;
2421 }
2422 
2423 static int find_subprog(struct bpf_verifier_env *env, int off)
2424 {
2425 	struct bpf_subprog_info *p;
2426 
2427 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2428 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2429 	if (!p)
2430 		return -ENOENT;
2431 	return p - env->subprog_info;
2432 
2433 }
2434 
2435 static int add_subprog(struct bpf_verifier_env *env, int off)
2436 {
2437 	int insn_cnt = env->prog->len;
2438 	int ret;
2439 
2440 	if (off >= insn_cnt || off < 0) {
2441 		verbose(env, "call to invalid destination\n");
2442 		return -EINVAL;
2443 	}
2444 	ret = find_subprog(env, off);
2445 	if (ret >= 0)
2446 		return ret;
2447 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2448 		verbose(env, "too many subprograms\n");
2449 		return -E2BIG;
2450 	}
2451 	/* determine subprog starts. The end is one before the next starts */
2452 	env->subprog_info[env->subprog_cnt++].start = off;
2453 	sort(env->subprog_info, env->subprog_cnt,
2454 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2455 	return env->subprog_cnt - 1;
2456 }
2457 
2458 #define MAX_KFUNC_DESCS 256
2459 #define MAX_KFUNC_BTFS	256
2460 
2461 struct bpf_kfunc_desc {
2462 	struct btf_func_model func_model;
2463 	u32 func_id;
2464 	s32 imm;
2465 	u16 offset;
2466 	unsigned long addr;
2467 };
2468 
2469 struct bpf_kfunc_btf {
2470 	struct btf *btf;
2471 	struct module *module;
2472 	u16 offset;
2473 };
2474 
2475 struct bpf_kfunc_desc_tab {
2476 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2477 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
2478 	 * available, therefore at the end of verification do_misc_fixups()
2479 	 * sorts this by imm and offset.
2480 	 */
2481 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2482 	u32 nr_descs;
2483 };
2484 
2485 struct bpf_kfunc_btf_tab {
2486 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2487 	u32 nr_descs;
2488 };
2489 
2490 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2491 {
2492 	const struct bpf_kfunc_desc *d0 = a;
2493 	const struct bpf_kfunc_desc *d1 = b;
2494 
2495 	/* func_id is not greater than BTF_MAX_TYPE */
2496 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2497 }
2498 
2499 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2500 {
2501 	const struct bpf_kfunc_btf *d0 = a;
2502 	const struct bpf_kfunc_btf *d1 = b;
2503 
2504 	return d0->offset - d1->offset;
2505 }
2506 
2507 static const struct bpf_kfunc_desc *
2508 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2509 {
2510 	struct bpf_kfunc_desc desc = {
2511 		.func_id = func_id,
2512 		.offset = offset,
2513 	};
2514 	struct bpf_kfunc_desc_tab *tab;
2515 
2516 	tab = prog->aux->kfunc_tab;
2517 	return bsearch(&desc, tab->descs, tab->nr_descs,
2518 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2519 }
2520 
2521 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2522 		       u16 btf_fd_idx, u8 **func_addr)
2523 {
2524 	const struct bpf_kfunc_desc *desc;
2525 
2526 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2527 	if (!desc)
2528 		return -EFAULT;
2529 
2530 	*func_addr = (u8 *)desc->addr;
2531 	return 0;
2532 }
2533 
2534 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2535 					 s16 offset)
2536 {
2537 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2538 	struct bpf_kfunc_btf_tab *tab;
2539 	struct bpf_kfunc_btf *b;
2540 	struct module *mod;
2541 	struct btf *btf;
2542 	int btf_fd;
2543 
2544 	tab = env->prog->aux->kfunc_btf_tab;
2545 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2546 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2547 	if (!b) {
2548 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2549 			verbose(env, "too many different module BTFs\n");
2550 			return ERR_PTR(-E2BIG);
2551 		}
2552 
2553 		if (bpfptr_is_null(env->fd_array)) {
2554 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2555 			return ERR_PTR(-EPROTO);
2556 		}
2557 
2558 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2559 					    offset * sizeof(btf_fd),
2560 					    sizeof(btf_fd)))
2561 			return ERR_PTR(-EFAULT);
2562 
2563 		btf = btf_get_by_fd(btf_fd);
2564 		if (IS_ERR(btf)) {
2565 			verbose(env, "invalid module BTF fd specified\n");
2566 			return btf;
2567 		}
2568 
2569 		if (!btf_is_module(btf)) {
2570 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2571 			btf_put(btf);
2572 			return ERR_PTR(-EINVAL);
2573 		}
2574 
2575 		mod = btf_try_get_module(btf);
2576 		if (!mod) {
2577 			btf_put(btf);
2578 			return ERR_PTR(-ENXIO);
2579 		}
2580 
2581 		b = &tab->descs[tab->nr_descs++];
2582 		b->btf = btf;
2583 		b->module = mod;
2584 		b->offset = offset;
2585 
2586 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2587 		     kfunc_btf_cmp_by_off, NULL);
2588 	}
2589 	return b->btf;
2590 }
2591 
2592 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2593 {
2594 	if (!tab)
2595 		return;
2596 
2597 	while (tab->nr_descs--) {
2598 		module_put(tab->descs[tab->nr_descs].module);
2599 		btf_put(tab->descs[tab->nr_descs].btf);
2600 	}
2601 	kfree(tab);
2602 }
2603 
2604 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2605 {
2606 	if (offset) {
2607 		if (offset < 0) {
2608 			/* In the future, this can be allowed to increase limit
2609 			 * of fd index into fd_array, interpreted as u16.
2610 			 */
2611 			verbose(env, "negative offset disallowed for kernel module function call\n");
2612 			return ERR_PTR(-EINVAL);
2613 		}
2614 
2615 		return __find_kfunc_desc_btf(env, offset);
2616 	}
2617 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2618 }
2619 
2620 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2621 {
2622 	const struct btf_type *func, *func_proto;
2623 	struct bpf_kfunc_btf_tab *btf_tab;
2624 	struct bpf_kfunc_desc_tab *tab;
2625 	struct bpf_prog_aux *prog_aux;
2626 	struct bpf_kfunc_desc *desc;
2627 	const char *func_name;
2628 	struct btf *desc_btf;
2629 	unsigned long call_imm;
2630 	unsigned long addr;
2631 	int err;
2632 
2633 	prog_aux = env->prog->aux;
2634 	tab = prog_aux->kfunc_tab;
2635 	btf_tab = prog_aux->kfunc_btf_tab;
2636 	if (!tab) {
2637 		if (!btf_vmlinux) {
2638 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2639 			return -ENOTSUPP;
2640 		}
2641 
2642 		if (!env->prog->jit_requested) {
2643 			verbose(env, "JIT is required for calling kernel function\n");
2644 			return -ENOTSUPP;
2645 		}
2646 
2647 		if (!bpf_jit_supports_kfunc_call()) {
2648 			verbose(env, "JIT does not support calling kernel function\n");
2649 			return -ENOTSUPP;
2650 		}
2651 
2652 		if (!env->prog->gpl_compatible) {
2653 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2654 			return -EINVAL;
2655 		}
2656 
2657 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2658 		if (!tab)
2659 			return -ENOMEM;
2660 		prog_aux->kfunc_tab = tab;
2661 	}
2662 
2663 	/* func_id == 0 is always invalid, but instead of returning an error, be
2664 	 * conservative and wait until the code elimination pass before returning
2665 	 * error, so that invalid calls that get pruned out can be in BPF programs
2666 	 * loaded from userspace.  It is also required that offset be untouched
2667 	 * for such calls.
2668 	 */
2669 	if (!func_id && !offset)
2670 		return 0;
2671 
2672 	if (!btf_tab && offset) {
2673 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2674 		if (!btf_tab)
2675 			return -ENOMEM;
2676 		prog_aux->kfunc_btf_tab = btf_tab;
2677 	}
2678 
2679 	desc_btf = find_kfunc_desc_btf(env, offset);
2680 	if (IS_ERR(desc_btf)) {
2681 		verbose(env, "failed to find BTF for kernel function\n");
2682 		return PTR_ERR(desc_btf);
2683 	}
2684 
2685 	if (find_kfunc_desc(env->prog, func_id, offset))
2686 		return 0;
2687 
2688 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2689 		verbose(env, "too many different kernel function calls\n");
2690 		return -E2BIG;
2691 	}
2692 
2693 	func = btf_type_by_id(desc_btf, func_id);
2694 	if (!func || !btf_type_is_func(func)) {
2695 		verbose(env, "kernel btf_id %u is not a function\n",
2696 			func_id);
2697 		return -EINVAL;
2698 	}
2699 	func_proto = btf_type_by_id(desc_btf, func->type);
2700 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2701 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2702 			func_id);
2703 		return -EINVAL;
2704 	}
2705 
2706 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2707 	addr = kallsyms_lookup_name(func_name);
2708 	if (!addr) {
2709 		verbose(env, "cannot find address for kernel function %s\n",
2710 			func_name);
2711 		return -EINVAL;
2712 	}
2713 	specialize_kfunc(env, func_id, offset, &addr);
2714 
2715 	if (bpf_jit_supports_far_kfunc_call()) {
2716 		call_imm = func_id;
2717 	} else {
2718 		call_imm = BPF_CALL_IMM(addr);
2719 		/* Check whether the relative offset overflows desc->imm */
2720 		if ((unsigned long)(s32)call_imm != call_imm) {
2721 			verbose(env, "address of kernel function %s is out of range\n",
2722 				func_name);
2723 			return -EINVAL;
2724 		}
2725 	}
2726 
2727 	if (bpf_dev_bound_kfunc_id(func_id)) {
2728 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2729 		if (err)
2730 			return err;
2731 	}
2732 
2733 	desc = &tab->descs[tab->nr_descs++];
2734 	desc->func_id = func_id;
2735 	desc->imm = call_imm;
2736 	desc->offset = offset;
2737 	desc->addr = addr;
2738 	err = btf_distill_func_proto(&env->log, desc_btf,
2739 				     func_proto, func_name,
2740 				     &desc->func_model);
2741 	if (!err)
2742 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2743 		     kfunc_desc_cmp_by_id_off, NULL);
2744 	return err;
2745 }
2746 
2747 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2748 {
2749 	const struct bpf_kfunc_desc *d0 = a;
2750 	const struct bpf_kfunc_desc *d1 = b;
2751 
2752 	if (d0->imm != d1->imm)
2753 		return d0->imm < d1->imm ? -1 : 1;
2754 	if (d0->offset != d1->offset)
2755 		return d0->offset < d1->offset ? -1 : 1;
2756 	return 0;
2757 }
2758 
2759 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
2760 {
2761 	struct bpf_kfunc_desc_tab *tab;
2762 
2763 	tab = prog->aux->kfunc_tab;
2764 	if (!tab)
2765 		return;
2766 
2767 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2768 	     kfunc_desc_cmp_by_imm_off, NULL);
2769 }
2770 
2771 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2772 {
2773 	return !!prog->aux->kfunc_tab;
2774 }
2775 
2776 const struct btf_func_model *
2777 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2778 			 const struct bpf_insn *insn)
2779 {
2780 	const struct bpf_kfunc_desc desc = {
2781 		.imm = insn->imm,
2782 		.offset = insn->off,
2783 	};
2784 	const struct bpf_kfunc_desc *res;
2785 	struct bpf_kfunc_desc_tab *tab;
2786 
2787 	tab = prog->aux->kfunc_tab;
2788 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2789 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
2790 
2791 	return res ? &res->func_model : NULL;
2792 }
2793 
2794 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2795 {
2796 	struct bpf_subprog_info *subprog = env->subprog_info;
2797 	struct bpf_insn *insn = env->prog->insnsi;
2798 	int i, ret, insn_cnt = env->prog->len;
2799 
2800 	/* Add entry function. */
2801 	ret = add_subprog(env, 0);
2802 	if (ret)
2803 		return ret;
2804 
2805 	for (i = 0; i < insn_cnt; i++, insn++) {
2806 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2807 		    !bpf_pseudo_kfunc_call(insn))
2808 			continue;
2809 
2810 		if (!env->bpf_capable) {
2811 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2812 			return -EPERM;
2813 		}
2814 
2815 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2816 			ret = add_subprog(env, i + insn->imm + 1);
2817 		else
2818 			ret = add_kfunc_call(env, insn->imm, insn->off);
2819 
2820 		if (ret < 0)
2821 			return ret;
2822 	}
2823 
2824 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2825 	 * logic. 'subprog_cnt' should not be increased.
2826 	 */
2827 	subprog[env->subprog_cnt].start = insn_cnt;
2828 
2829 	if (env->log.level & BPF_LOG_LEVEL2)
2830 		for (i = 0; i < env->subprog_cnt; i++)
2831 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2832 
2833 	return 0;
2834 }
2835 
2836 static int check_subprogs(struct bpf_verifier_env *env)
2837 {
2838 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2839 	struct bpf_subprog_info *subprog = env->subprog_info;
2840 	struct bpf_insn *insn = env->prog->insnsi;
2841 	int insn_cnt = env->prog->len;
2842 
2843 	/* now check that all jumps are within the same subprog */
2844 	subprog_start = subprog[cur_subprog].start;
2845 	subprog_end = subprog[cur_subprog + 1].start;
2846 	for (i = 0; i < insn_cnt; i++) {
2847 		u8 code = insn[i].code;
2848 
2849 		if (code == (BPF_JMP | BPF_CALL) &&
2850 		    insn[i].src_reg == 0 &&
2851 		    insn[i].imm == BPF_FUNC_tail_call)
2852 			subprog[cur_subprog].has_tail_call = true;
2853 		if (BPF_CLASS(code) == BPF_LD &&
2854 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2855 			subprog[cur_subprog].has_ld_abs = true;
2856 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2857 			goto next;
2858 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2859 			goto next;
2860 		if (code == (BPF_JMP32 | BPF_JA))
2861 			off = i + insn[i].imm + 1;
2862 		else
2863 			off = i + insn[i].off + 1;
2864 		if (off < subprog_start || off >= subprog_end) {
2865 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2866 			return -EINVAL;
2867 		}
2868 next:
2869 		if (i == subprog_end - 1) {
2870 			/* to avoid fall-through from one subprog into another
2871 			 * the last insn of the subprog should be either exit
2872 			 * or unconditional jump back
2873 			 */
2874 			if (code != (BPF_JMP | BPF_EXIT) &&
2875 			    code != (BPF_JMP32 | BPF_JA) &&
2876 			    code != (BPF_JMP | BPF_JA)) {
2877 				verbose(env, "last insn is not an exit or jmp\n");
2878 				return -EINVAL;
2879 			}
2880 			subprog_start = subprog_end;
2881 			cur_subprog++;
2882 			if (cur_subprog < env->subprog_cnt)
2883 				subprog_end = subprog[cur_subprog + 1].start;
2884 		}
2885 	}
2886 	return 0;
2887 }
2888 
2889 /* Parentage chain of this register (or stack slot) should take care of all
2890  * issues like callee-saved registers, stack slot allocation time, etc.
2891  */
2892 static int mark_reg_read(struct bpf_verifier_env *env,
2893 			 const struct bpf_reg_state *state,
2894 			 struct bpf_reg_state *parent, u8 flag)
2895 {
2896 	bool writes = parent == state->parent; /* Observe write marks */
2897 	int cnt = 0;
2898 
2899 	while (parent) {
2900 		/* if read wasn't screened by an earlier write ... */
2901 		if (writes && state->live & REG_LIVE_WRITTEN)
2902 			break;
2903 		if (parent->live & REG_LIVE_DONE) {
2904 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2905 				reg_type_str(env, parent->type),
2906 				parent->var_off.value, parent->off);
2907 			return -EFAULT;
2908 		}
2909 		/* The first condition is more likely to be true than the
2910 		 * second, checked it first.
2911 		 */
2912 		if ((parent->live & REG_LIVE_READ) == flag ||
2913 		    parent->live & REG_LIVE_READ64)
2914 			/* The parentage chain never changes and
2915 			 * this parent was already marked as LIVE_READ.
2916 			 * There is no need to keep walking the chain again and
2917 			 * keep re-marking all parents as LIVE_READ.
2918 			 * This case happens when the same register is read
2919 			 * multiple times without writes into it in-between.
2920 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
2921 			 * then no need to set the weak REG_LIVE_READ32.
2922 			 */
2923 			break;
2924 		/* ... then we depend on parent's value */
2925 		parent->live |= flag;
2926 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2927 		if (flag == REG_LIVE_READ64)
2928 			parent->live &= ~REG_LIVE_READ32;
2929 		state = parent;
2930 		parent = state->parent;
2931 		writes = true;
2932 		cnt++;
2933 	}
2934 
2935 	if (env->longest_mark_read_walk < cnt)
2936 		env->longest_mark_read_walk = cnt;
2937 	return 0;
2938 }
2939 
2940 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
2941 {
2942 	struct bpf_func_state *state = func(env, reg);
2943 	int spi, ret;
2944 
2945 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
2946 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
2947 	 * check_kfunc_call.
2948 	 */
2949 	if (reg->type == CONST_PTR_TO_DYNPTR)
2950 		return 0;
2951 	spi = dynptr_get_spi(env, reg);
2952 	if (spi < 0)
2953 		return spi;
2954 	/* Caller ensures dynptr is valid and initialized, which means spi is in
2955 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
2956 	 * read.
2957 	 */
2958 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
2959 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
2960 	if (ret)
2961 		return ret;
2962 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
2963 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
2964 }
2965 
2966 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
2967 			  int spi, int nr_slots)
2968 {
2969 	struct bpf_func_state *state = func(env, reg);
2970 	int err, i;
2971 
2972 	for (i = 0; i < nr_slots; i++) {
2973 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
2974 
2975 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
2976 		if (err)
2977 			return err;
2978 
2979 		mark_stack_slot_scratched(env, spi - i);
2980 	}
2981 
2982 	return 0;
2983 }
2984 
2985 /* This function is supposed to be used by the following 32-bit optimization
2986  * code only. It returns TRUE if the source or destination register operates
2987  * on 64-bit, otherwise return FALSE.
2988  */
2989 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2990 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2991 {
2992 	u8 code, class, op;
2993 
2994 	code = insn->code;
2995 	class = BPF_CLASS(code);
2996 	op = BPF_OP(code);
2997 	if (class == BPF_JMP) {
2998 		/* BPF_EXIT for "main" will reach here. Return TRUE
2999 		 * conservatively.
3000 		 */
3001 		if (op == BPF_EXIT)
3002 			return true;
3003 		if (op == BPF_CALL) {
3004 			/* BPF to BPF call will reach here because of marking
3005 			 * caller saved clobber with DST_OP_NO_MARK for which we
3006 			 * don't care the register def because they are anyway
3007 			 * marked as NOT_INIT already.
3008 			 */
3009 			if (insn->src_reg == BPF_PSEUDO_CALL)
3010 				return false;
3011 			/* Helper call will reach here because of arg type
3012 			 * check, conservatively return TRUE.
3013 			 */
3014 			if (t == SRC_OP)
3015 				return true;
3016 
3017 			return false;
3018 		}
3019 	}
3020 
3021 	if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3022 		return false;
3023 
3024 	if (class == BPF_ALU64 || class == BPF_JMP ||
3025 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3026 		return true;
3027 
3028 	if (class == BPF_ALU || class == BPF_JMP32)
3029 		return false;
3030 
3031 	if (class == BPF_LDX) {
3032 		if (t != SRC_OP)
3033 			return BPF_SIZE(code) == BPF_DW;
3034 		/* LDX source must be ptr. */
3035 		return true;
3036 	}
3037 
3038 	if (class == BPF_STX) {
3039 		/* BPF_STX (including atomic variants) has multiple source
3040 		 * operands, one of which is a ptr. Check whether the caller is
3041 		 * asking about it.
3042 		 */
3043 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3044 			return true;
3045 		return BPF_SIZE(code) == BPF_DW;
3046 	}
3047 
3048 	if (class == BPF_LD) {
3049 		u8 mode = BPF_MODE(code);
3050 
3051 		/* LD_IMM64 */
3052 		if (mode == BPF_IMM)
3053 			return true;
3054 
3055 		/* Both LD_IND and LD_ABS return 32-bit data. */
3056 		if (t != SRC_OP)
3057 			return  false;
3058 
3059 		/* Implicit ctx ptr. */
3060 		if (regno == BPF_REG_6)
3061 			return true;
3062 
3063 		/* Explicit source could be any width. */
3064 		return true;
3065 	}
3066 
3067 	if (class == BPF_ST)
3068 		/* The only source register for BPF_ST is a ptr. */
3069 		return true;
3070 
3071 	/* Conservatively return true at default. */
3072 	return true;
3073 }
3074 
3075 /* Return the regno defined by the insn, or -1. */
3076 static int insn_def_regno(const struct bpf_insn *insn)
3077 {
3078 	switch (BPF_CLASS(insn->code)) {
3079 	case BPF_JMP:
3080 	case BPF_JMP32:
3081 	case BPF_ST:
3082 		return -1;
3083 	case BPF_STX:
3084 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3085 		    (insn->imm & BPF_FETCH)) {
3086 			if (insn->imm == BPF_CMPXCHG)
3087 				return BPF_REG_0;
3088 			else
3089 				return insn->src_reg;
3090 		} else {
3091 			return -1;
3092 		}
3093 	default:
3094 		return insn->dst_reg;
3095 	}
3096 }
3097 
3098 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3099 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3100 {
3101 	int dst_reg = insn_def_regno(insn);
3102 
3103 	if (dst_reg == -1)
3104 		return false;
3105 
3106 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3107 }
3108 
3109 static void mark_insn_zext(struct bpf_verifier_env *env,
3110 			   struct bpf_reg_state *reg)
3111 {
3112 	s32 def_idx = reg->subreg_def;
3113 
3114 	if (def_idx == DEF_NOT_SUBREG)
3115 		return;
3116 
3117 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3118 	/* The dst will be zero extended, so won't be sub-register anymore. */
3119 	reg->subreg_def = DEF_NOT_SUBREG;
3120 }
3121 
3122 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3123 			 enum reg_arg_type t)
3124 {
3125 	struct bpf_verifier_state *vstate = env->cur_state;
3126 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3127 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3128 	struct bpf_reg_state *reg, *regs = state->regs;
3129 	bool rw64;
3130 
3131 	if (regno >= MAX_BPF_REG) {
3132 		verbose(env, "R%d is invalid\n", regno);
3133 		return -EINVAL;
3134 	}
3135 
3136 	mark_reg_scratched(env, regno);
3137 
3138 	reg = &regs[regno];
3139 	rw64 = is_reg64(env, insn, regno, reg, t);
3140 	if (t == SRC_OP) {
3141 		/* check whether register used as source operand can be read */
3142 		if (reg->type == NOT_INIT) {
3143 			verbose(env, "R%d !read_ok\n", regno);
3144 			return -EACCES;
3145 		}
3146 		/* We don't need to worry about FP liveness because it's read-only */
3147 		if (regno == BPF_REG_FP)
3148 			return 0;
3149 
3150 		if (rw64)
3151 			mark_insn_zext(env, reg);
3152 
3153 		return mark_reg_read(env, reg, reg->parent,
3154 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3155 	} else {
3156 		/* check whether register used as dest operand can be written to */
3157 		if (regno == BPF_REG_FP) {
3158 			verbose(env, "frame pointer is read only\n");
3159 			return -EACCES;
3160 		}
3161 		reg->live |= REG_LIVE_WRITTEN;
3162 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3163 		if (t == DST_OP)
3164 			mark_reg_unknown(env, regs, regno);
3165 	}
3166 	return 0;
3167 }
3168 
3169 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3170 {
3171 	env->insn_aux_data[idx].jmp_point = true;
3172 }
3173 
3174 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3175 {
3176 	return env->insn_aux_data[insn_idx].jmp_point;
3177 }
3178 
3179 /* for any branch, call, exit record the history of jmps in the given state */
3180 static int push_jmp_history(struct bpf_verifier_env *env,
3181 			    struct bpf_verifier_state *cur)
3182 {
3183 	u32 cnt = cur->jmp_history_cnt;
3184 	struct bpf_idx_pair *p;
3185 	size_t alloc_size;
3186 
3187 	if (!is_jmp_point(env, env->insn_idx))
3188 		return 0;
3189 
3190 	cnt++;
3191 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3192 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3193 	if (!p)
3194 		return -ENOMEM;
3195 	p[cnt - 1].idx = env->insn_idx;
3196 	p[cnt - 1].prev_idx = env->prev_insn_idx;
3197 	cur->jmp_history = p;
3198 	cur->jmp_history_cnt = cnt;
3199 	return 0;
3200 }
3201 
3202 /* Backtrack one insn at a time. If idx is not at the top of recorded
3203  * history then previous instruction came from straight line execution.
3204  * Return -ENOENT if we exhausted all instructions within given state.
3205  *
3206  * It's legal to have a bit of a looping with the same starting and ending
3207  * insn index within the same state, e.g.: 3->4->5->3, so just because current
3208  * instruction index is the same as state's first_idx doesn't mean we are
3209  * done. If there is still some jump history left, we should keep going. We
3210  * need to take into account that we might have a jump history between given
3211  * state's parent and itself, due to checkpointing. In this case, we'll have
3212  * history entry recording a jump from last instruction of parent state and
3213  * first instruction of given state.
3214  */
3215 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3216 			     u32 *history)
3217 {
3218 	u32 cnt = *history;
3219 
3220 	if (i == st->first_insn_idx) {
3221 		if (cnt == 0)
3222 			return -ENOENT;
3223 		if (cnt == 1 && st->jmp_history[0].idx == i)
3224 			return -ENOENT;
3225 	}
3226 
3227 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
3228 		i = st->jmp_history[cnt - 1].prev_idx;
3229 		(*history)--;
3230 	} else {
3231 		i--;
3232 	}
3233 	return i;
3234 }
3235 
3236 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3237 {
3238 	const struct btf_type *func;
3239 	struct btf *desc_btf;
3240 
3241 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3242 		return NULL;
3243 
3244 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3245 	if (IS_ERR(desc_btf))
3246 		return "<error>";
3247 
3248 	func = btf_type_by_id(desc_btf, insn->imm);
3249 	return btf_name_by_offset(desc_btf, func->name_off);
3250 }
3251 
3252 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3253 {
3254 	bt->frame = frame;
3255 }
3256 
3257 static inline void bt_reset(struct backtrack_state *bt)
3258 {
3259 	struct bpf_verifier_env *env = bt->env;
3260 
3261 	memset(bt, 0, sizeof(*bt));
3262 	bt->env = env;
3263 }
3264 
3265 static inline u32 bt_empty(struct backtrack_state *bt)
3266 {
3267 	u64 mask = 0;
3268 	int i;
3269 
3270 	for (i = 0; i <= bt->frame; i++)
3271 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
3272 
3273 	return mask == 0;
3274 }
3275 
3276 static inline int bt_subprog_enter(struct backtrack_state *bt)
3277 {
3278 	if (bt->frame == MAX_CALL_FRAMES - 1) {
3279 		verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3280 		WARN_ONCE(1, "verifier backtracking bug");
3281 		return -EFAULT;
3282 	}
3283 	bt->frame++;
3284 	return 0;
3285 }
3286 
3287 static inline int bt_subprog_exit(struct backtrack_state *bt)
3288 {
3289 	if (bt->frame == 0) {
3290 		verbose(bt->env, "BUG subprog exit from frame 0\n");
3291 		WARN_ONCE(1, "verifier backtracking bug");
3292 		return -EFAULT;
3293 	}
3294 	bt->frame--;
3295 	return 0;
3296 }
3297 
3298 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3299 {
3300 	bt->reg_masks[frame] |= 1 << reg;
3301 }
3302 
3303 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3304 {
3305 	bt->reg_masks[frame] &= ~(1 << reg);
3306 }
3307 
3308 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3309 {
3310 	bt_set_frame_reg(bt, bt->frame, reg);
3311 }
3312 
3313 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3314 {
3315 	bt_clear_frame_reg(bt, bt->frame, reg);
3316 }
3317 
3318 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3319 {
3320 	bt->stack_masks[frame] |= 1ull << slot;
3321 }
3322 
3323 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3324 {
3325 	bt->stack_masks[frame] &= ~(1ull << slot);
3326 }
3327 
3328 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot)
3329 {
3330 	bt_set_frame_slot(bt, bt->frame, slot);
3331 }
3332 
3333 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot)
3334 {
3335 	bt_clear_frame_slot(bt, bt->frame, slot);
3336 }
3337 
3338 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3339 {
3340 	return bt->reg_masks[frame];
3341 }
3342 
3343 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3344 {
3345 	return bt->reg_masks[bt->frame];
3346 }
3347 
3348 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3349 {
3350 	return bt->stack_masks[frame];
3351 }
3352 
3353 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3354 {
3355 	return bt->stack_masks[bt->frame];
3356 }
3357 
3358 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3359 {
3360 	return bt->reg_masks[bt->frame] & (1 << reg);
3361 }
3362 
3363 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot)
3364 {
3365 	return bt->stack_masks[bt->frame] & (1ull << slot);
3366 }
3367 
3368 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3369 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3370 {
3371 	DECLARE_BITMAP(mask, 64);
3372 	bool first = true;
3373 	int i, n;
3374 
3375 	buf[0] = '\0';
3376 
3377 	bitmap_from_u64(mask, reg_mask);
3378 	for_each_set_bit(i, mask, 32) {
3379 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3380 		first = false;
3381 		buf += n;
3382 		buf_sz -= n;
3383 		if (buf_sz < 0)
3384 			break;
3385 	}
3386 }
3387 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3388 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3389 {
3390 	DECLARE_BITMAP(mask, 64);
3391 	bool first = true;
3392 	int i, n;
3393 
3394 	buf[0] = '\0';
3395 
3396 	bitmap_from_u64(mask, stack_mask);
3397 	for_each_set_bit(i, mask, 64) {
3398 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3399 		first = false;
3400 		buf += n;
3401 		buf_sz -= n;
3402 		if (buf_sz < 0)
3403 			break;
3404 	}
3405 }
3406 
3407 /* For given verifier state backtrack_insn() is called from the last insn to
3408  * the first insn. Its purpose is to compute a bitmask of registers and
3409  * stack slots that needs precision in the parent verifier state.
3410  *
3411  * @idx is an index of the instruction we are currently processing;
3412  * @subseq_idx is an index of the subsequent instruction that:
3413  *   - *would be* executed next, if jump history is viewed in forward order;
3414  *   - *was* processed previously during backtracking.
3415  */
3416 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3417 			  struct backtrack_state *bt)
3418 {
3419 	const struct bpf_insn_cbs cbs = {
3420 		.cb_call	= disasm_kfunc_name,
3421 		.cb_print	= verbose,
3422 		.private_data	= env,
3423 	};
3424 	struct bpf_insn *insn = env->prog->insnsi + idx;
3425 	u8 class = BPF_CLASS(insn->code);
3426 	u8 opcode = BPF_OP(insn->code);
3427 	u8 mode = BPF_MODE(insn->code);
3428 	u32 dreg = insn->dst_reg;
3429 	u32 sreg = insn->src_reg;
3430 	u32 spi, i;
3431 
3432 	if (insn->code == 0)
3433 		return 0;
3434 	if (env->log.level & BPF_LOG_LEVEL2) {
3435 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3436 		verbose(env, "mark_precise: frame%d: regs=%s ",
3437 			bt->frame, env->tmp_str_buf);
3438 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3439 		verbose(env, "stack=%s before ", env->tmp_str_buf);
3440 		verbose(env, "%d: ", idx);
3441 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3442 	}
3443 
3444 	if (class == BPF_ALU || class == BPF_ALU64) {
3445 		if (!bt_is_reg_set(bt, dreg))
3446 			return 0;
3447 		if (opcode == BPF_MOV) {
3448 			if (BPF_SRC(insn->code) == BPF_X) {
3449 				/* dreg = sreg or dreg = (s8, s16, s32)sreg
3450 				 * dreg needs precision after this insn
3451 				 * sreg needs precision before this insn
3452 				 */
3453 				bt_clear_reg(bt, dreg);
3454 				bt_set_reg(bt, sreg);
3455 			} else {
3456 				/* dreg = K
3457 				 * dreg needs precision after this insn.
3458 				 * Corresponding register is already marked
3459 				 * as precise=true in this verifier state.
3460 				 * No further markings in parent are necessary
3461 				 */
3462 				bt_clear_reg(bt, dreg);
3463 			}
3464 		} else {
3465 			if (BPF_SRC(insn->code) == BPF_X) {
3466 				/* dreg += sreg
3467 				 * both dreg and sreg need precision
3468 				 * before this insn
3469 				 */
3470 				bt_set_reg(bt, sreg);
3471 			} /* else dreg += K
3472 			   * dreg still needs precision before this insn
3473 			   */
3474 		}
3475 	} else if (class == BPF_LDX) {
3476 		if (!bt_is_reg_set(bt, dreg))
3477 			return 0;
3478 		bt_clear_reg(bt, dreg);
3479 
3480 		/* scalars can only be spilled into stack w/o losing precision.
3481 		 * Load from any other memory can be zero extended.
3482 		 * The desire to keep that precision is already indicated
3483 		 * by 'precise' mark in corresponding register of this state.
3484 		 * No further tracking necessary.
3485 		 */
3486 		if (insn->src_reg != BPF_REG_FP)
3487 			return 0;
3488 
3489 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
3490 		 * that [fp - off] slot contains scalar that needs to be
3491 		 * tracked with precision
3492 		 */
3493 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3494 		if (spi >= 64) {
3495 			verbose(env, "BUG spi %d\n", spi);
3496 			WARN_ONCE(1, "verifier backtracking bug");
3497 			return -EFAULT;
3498 		}
3499 		bt_set_slot(bt, spi);
3500 	} else if (class == BPF_STX || class == BPF_ST) {
3501 		if (bt_is_reg_set(bt, dreg))
3502 			/* stx & st shouldn't be using _scalar_ dst_reg
3503 			 * to access memory. It means backtracking
3504 			 * encountered a case of pointer subtraction.
3505 			 */
3506 			return -ENOTSUPP;
3507 		/* scalars can only be spilled into stack */
3508 		if (insn->dst_reg != BPF_REG_FP)
3509 			return 0;
3510 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3511 		if (spi >= 64) {
3512 			verbose(env, "BUG spi %d\n", spi);
3513 			WARN_ONCE(1, "verifier backtracking bug");
3514 			return -EFAULT;
3515 		}
3516 		if (!bt_is_slot_set(bt, spi))
3517 			return 0;
3518 		bt_clear_slot(bt, spi);
3519 		if (class == BPF_STX)
3520 			bt_set_reg(bt, sreg);
3521 	} else if (class == BPF_JMP || class == BPF_JMP32) {
3522 		if (bpf_pseudo_call(insn)) {
3523 			int subprog_insn_idx, subprog;
3524 
3525 			subprog_insn_idx = idx + insn->imm + 1;
3526 			subprog = find_subprog(env, subprog_insn_idx);
3527 			if (subprog < 0)
3528 				return -EFAULT;
3529 
3530 			if (subprog_is_global(env, subprog)) {
3531 				/* check that jump history doesn't have any
3532 				 * extra instructions from subprog; the next
3533 				 * instruction after call to global subprog
3534 				 * should be literally next instruction in
3535 				 * caller program
3536 				 */
3537 				WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3538 				/* r1-r5 are invalidated after subprog call,
3539 				 * so for global func call it shouldn't be set
3540 				 * anymore
3541 				 */
3542 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3543 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3544 					WARN_ONCE(1, "verifier backtracking bug");
3545 					return -EFAULT;
3546 				}
3547 				/* global subprog always sets R0 */
3548 				bt_clear_reg(bt, BPF_REG_0);
3549 				return 0;
3550 			} else {
3551 				/* static subprog call instruction, which
3552 				 * means that we are exiting current subprog,
3553 				 * so only r1-r5 could be still requested as
3554 				 * precise, r0 and r6-r10 or any stack slot in
3555 				 * the current frame should be zero by now
3556 				 */
3557 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3558 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3559 					WARN_ONCE(1, "verifier backtracking bug");
3560 					return -EFAULT;
3561 				}
3562 				/* we don't track register spills perfectly,
3563 				 * so fallback to force-precise instead of failing */
3564 				if (bt_stack_mask(bt) != 0)
3565 					return -ENOTSUPP;
3566 				/* propagate r1-r5 to the caller */
3567 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3568 					if (bt_is_reg_set(bt, i)) {
3569 						bt_clear_reg(bt, i);
3570 						bt_set_frame_reg(bt, bt->frame - 1, i);
3571 					}
3572 				}
3573 				if (bt_subprog_exit(bt))
3574 					return -EFAULT;
3575 				return 0;
3576 			}
3577 		} else if ((bpf_helper_call(insn) &&
3578 			    is_callback_calling_function(insn->imm) &&
3579 			    !is_async_callback_calling_function(insn->imm)) ||
3580 			   (bpf_pseudo_kfunc_call(insn) && is_callback_calling_kfunc(insn->imm))) {
3581 			/* callback-calling helper or kfunc call, which means
3582 			 * we are exiting from subprog, but unlike the subprog
3583 			 * call handling above, we shouldn't propagate
3584 			 * precision of r1-r5 (if any requested), as they are
3585 			 * not actually arguments passed directly to callback
3586 			 * subprogs
3587 			 */
3588 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3589 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3590 				WARN_ONCE(1, "verifier backtracking bug");
3591 				return -EFAULT;
3592 			}
3593 			if (bt_stack_mask(bt) != 0)
3594 				return -ENOTSUPP;
3595 			/* clear r1-r5 in callback subprog's mask */
3596 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3597 				bt_clear_reg(bt, i);
3598 			if (bt_subprog_exit(bt))
3599 				return -EFAULT;
3600 			return 0;
3601 		} else if (opcode == BPF_CALL) {
3602 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
3603 			 * catch this error later. Make backtracking conservative
3604 			 * with ENOTSUPP.
3605 			 */
3606 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3607 				return -ENOTSUPP;
3608 			/* regular helper call sets R0 */
3609 			bt_clear_reg(bt, BPF_REG_0);
3610 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3611 				/* if backtracing was looking for registers R1-R5
3612 				 * they should have been found already.
3613 				 */
3614 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3615 				WARN_ONCE(1, "verifier backtracking bug");
3616 				return -EFAULT;
3617 			}
3618 		} else if (opcode == BPF_EXIT) {
3619 			bool r0_precise;
3620 
3621 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3622 				/* if backtracing was looking for registers R1-R5
3623 				 * they should have been found already.
3624 				 */
3625 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3626 				WARN_ONCE(1, "verifier backtracking bug");
3627 				return -EFAULT;
3628 			}
3629 
3630 			/* BPF_EXIT in subprog or callback always returns
3631 			 * right after the call instruction, so by checking
3632 			 * whether the instruction at subseq_idx-1 is subprog
3633 			 * call or not we can distinguish actual exit from
3634 			 * *subprog* from exit from *callback*. In the former
3635 			 * case, we need to propagate r0 precision, if
3636 			 * necessary. In the former we never do that.
3637 			 */
3638 			r0_precise = subseq_idx - 1 >= 0 &&
3639 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3640 				     bt_is_reg_set(bt, BPF_REG_0);
3641 
3642 			bt_clear_reg(bt, BPF_REG_0);
3643 			if (bt_subprog_enter(bt))
3644 				return -EFAULT;
3645 
3646 			if (r0_precise)
3647 				bt_set_reg(bt, BPF_REG_0);
3648 			/* r6-r9 and stack slots will stay set in caller frame
3649 			 * bitmasks until we return back from callee(s)
3650 			 */
3651 			return 0;
3652 		} else if (BPF_SRC(insn->code) == BPF_X) {
3653 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
3654 				return 0;
3655 			/* dreg <cond> sreg
3656 			 * Both dreg and sreg need precision before
3657 			 * this insn. If only sreg was marked precise
3658 			 * before it would be equally necessary to
3659 			 * propagate it to dreg.
3660 			 */
3661 			bt_set_reg(bt, dreg);
3662 			bt_set_reg(bt, sreg);
3663 			 /* else dreg <cond> K
3664 			  * Only dreg still needs precision before
3665 			  * this insn, so for the K-based conditional
3666 			  * there is nothing new to be marked.
3667 			  */
3668 		}
3669 	} else if (class == BPF_LD) {
3670 		if (!bt_is_reg_set(bt, dreg))
3671 			return 0;
3672 		bt_clear_reg(bt, dreg);
3673 		/* It's ld_imm64 or ld_abs or ld_ind.
3674 		 * For ld_imm64 no further tracking of precision
3675 		 * into parent is necessary
3676 		 */
3677 		if (mode == BPF_IND || mode == BPF_ABS)
3678 			/* to be analyzed */
3679 			return -ENOTSUPP;
3680 	}
3681 	return 0;
3682 }
3683 
3684 /* the scalar precision tracking algorithm:
3685  * . at the start all registers have precise=false.
3686  * . scalar ranges are tracked as normal through alu and jmp insns.
3687  * . once precise value of the scalar register is used in:
3688  *   .  ptr + scalar alu
3689  *   . if (scalar cond K|scalar)
3690  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
3691  *   backtrack through the verifier states and mark all registers and
3692  *   stack slots with spilled constants that these scalar regisers
3693  *   should be precise.
3694  * . during state pruning two registers (or spilled stack slots)
3695  *   are equivalent if both are not precise.
3696  *
3697  * Note the verifier cannot simply walk register parentage chain,
3698  * since many different registers and stack slots could have been
3699  * used to compute single precise scalar.
3700  *
3701  * The approach of starting with precise=true for all registers and then
3702  * backtrack to mark a register as not precise when the verifier detects
3703  * that program doesn't care about specific value (e.g., when helper
3704  * takes register as ARG_ANYTHING parameter) is not safe.
3705  *
3706  * It's ok to walk single parentage chain of the verifier states.
3707  * It's possible that this backtracking will go all the way till 1st insn.
3708  * All other branches will be explored for needing precision later.
3709  *
3710  * The backtracking needs to deal with cases like:
3711  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3712  * r9 -= r8
3713  * r5 = r9
3714  * if r5 > 0x79f goto pc+7
3715  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
3716  * r5 += 1
3717  * ...
3718  * call bpf_perf_event_output#25
3719  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
3720  *
3721  * and this case:
3722  * r6 = 1
3723  * call foo // uses callee's r6 inside to compute r0
3724  * r0 += r6
3725  * if r0 == 0 goto
3726  *
3727  * to track above reg_mask/stack_mask needs to be independent for each frame.
3728  *
3729  * Also if parent's curframe > frame where backtracking started,
3730  * the verifier need to mark registers in both frames, otherwise callees
3731  * may incorrectly prune callers. This is similar to
3732  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3733  *
3734  * For now backtracking falls back into conservative marking.
3735  */
3736 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
3737 				     struct bpf_verifier_state *st)
3738 {
3739 	struct bpf_func_state *func;
3740 	struct bpf_reg_state *reg;
3741 	int i, j;
3742 
3743 	if (env->log.level & BPF_LOG_LEVEL2) {
3744 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
3745 			st->curframe);
3746 	}
3747 
3748 	/* big hammer: mark all scalars precise in this path.
3749 	 * pop_stack may still get !precise scalars.
3750 	 * We also skip current state and go straight to first parent state,
3751 	 * because precision markings in current non-checkpointed state are
3752 	 * not needed. See why in the comment in __mark_chain_precision below.
3753 	 */
3754 	for (st = st->parent; st; st = st->parent) {
3755 		for (i = 0; i <= st->curframe; i++) {
3756 			func = st->frame[i];
3757 			for (j = 0; j < BPF_REG_FP; j++) {
3758 				reg = &func->regs[j];
3759 				if (reg->type != SCALAR_VALUE || reg->precise)
3760 					continue;
3761 				reg->precise = true;
3762 				if (env->log.level & BPF_LOG_LEVEL2) {
3763 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
3764 						i, j);
3765 				}
3766 			}
3767 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3768 				if (!is_spilled_reg(&func->stack[j]))
3769 					continue;
3770 				reg = &func->stack[j].spilled_ptr;
3771 				if (reg->type != SCALAR_VALUE || reg->precise)
3772 					continue;
3773 				reg->precise = true;
3774 				if (env->log.level & BPF_LOG_LEVEL2) {
3775 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
3776 						i, -(j + 1) * 8);
3777 				}
3778 			}
3779 		}
3780 	}
3781 }
3782 
3783 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3784 {
3785 	struct bpf_func_state *func;
3786 	struct bpf_reg_state *reg;
3787 	int i, j;
3788 
3789 	for (i = 0; i <= st->curframe; i++) {
3790 		func = st->frame[i];
3791 		for (j = 0; j < BPF_REG_FP; j++) {
3792 			reg = &func->regs[j];
3793 			if (reg->type != SCALAR_VALUE)
3794 				continue;
3795 			reg->precise = false;
3796 		}
3797 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3798 			if (!is_spilled_reg(&func->stack[j]))
3799 				continue;
3800 			reg = &func->stack[j].spilled_ptr;
3801 			if (reg->type != SCALAR_VALUE)
3802 				continue;
3803 			reg->precise = false;
3804 		}
3805 	}
3806 }
3807 
3808 static bool idset_contains(struct bpf_idset *s, u32 id)
3809 {
3810 	u32 i;
3811 
3812 	for (i = 0; i < s->count; ++i)
3813 		if (s->ids[i] == id)
3814 			return true;
3815 
3816 	return false;
3817 }
3818 
3819 static int idset_push(struct bpf_idset *s, u32 id)
3820 {
3821 	if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
3822 		return -EFAULT;
3823 	s->ids[s->count++] = id;
3824 	return 0;
3825 }
3826 
3827 static void idset_reset(struct bpf_idset *s)
3828 {
3829 	s->count = 0;
3830 }
3831 
3832 /* Collect a set of IDs for all registers currently marked as precise in env->bt.
3833  * Mark all registers with these IDs as precise.
3834  */
3835 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3836 {
3837 	struct bpf_idset *precise_ids = &env->idset_scratch;
3838 	struct backtrack_state *bt = &env->bt;
3839 	struct bpf_func_state *func;
3840 	struct bpf_reg_state *reg;
3841 	DECLARE_BITMAP(mask, 64);
3842 	int i, fr;
3843 
3844 	idset_reset(precise_ids);
3845 
3846 	for (fr = bt->frame; fr >= 0; fr--) {
3847 		func = st->frame[fr];
3848 
3849 		bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
3850 		for_each_set_bit(i, mask, 32) {
3851 			reg = &func->regs[i];
3852 			if (!reg->id || reg->type != SCALAR_VALUE)
3853 				continue;
3854 			if (idset_push(precise_ids, reg->id))
3855 				return -EFAULT;
3856 		}
3857 
3858 		bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
3859 		for_each_set_bit(i, mask, 64) {
3860 			if (i >= func->allocated_stack / BPF_REG_SIZE)
3861 				break;
3862 			if (!is_spilled_scalar_reg(&func->stack[i]))
3863 				continue;
3864 			reg = &func->stack[i].spilled_ptr;
3865 			if (!reg->id)
3866 				continue;
3867 			if (idset_push(precise_ids, reg->id))
3868 				return -EFAULT;
3869 		}
3870 	}
3871 
3872 	for (fr = 0; fr <= st->curframe; ++fr) {
3873 		func = st->frame[fr];
3874 
3875 		for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
3876 			reg = &func->regs[i];
3877 			if (!reg->id)
3878 				continue;
3879 			if (!idset_contains(precise_ids, reg->id))
3880 				continue;
3881 			bt_set_frame_reg(bt, fr, i);
3882 		}
3883 		for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
3884 			if (!is_spilled_scalar_reg(&func->stack[i]))
3885 				continue;
3886 			reg = &func->stack[i].spilled_ptr;
3887 			if (!reg->id)
3888 				continue;
3889 			if (!idset_contains(precise_ids, reg->id))
3890 				continue;
3891 			bt_set_frame_slot(bt, fr, i);
3892 		}
3893 	}
3894 
3895 	return 0;
3896 }
3897 
3898 /*
3899  * __mark_chain_precision() backtracks BPF program instruction sequence and
3900  * chain of verifier states making sure that register *regno* (if regno >= 0)
3901  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
3902  * SCALARS, as well as any other registers and slots that contribute to
3903  * a tracked state of given registers/stack slots, depending on specific BPF
3904  * assembly instructions (see backtrack_insns() for exact instruction handling
3905  * logic). This backtracking relies on recorded jmp_history and is able to
3906  * traverse entire chain of parent states. This process ends only when all the
3907  * necessary registers/slots and their transitive dependencies are marked as
3908  * precise.
3909  *
3910  * One important and subtle aspect is that precise marks *do not matter* in
3911  * the currently verified state (current state). It is important to understand
3912  * why this is the case.
3913  *
3914  * First, note that current state is the state that is not yet "checkpointed",
3915  * i.e., it is not yet put into env->explored_states, and it has no children
3916  * states as well. It's ephemeral, and can end up either a) being discarded if
3917  * compatible explored state is found at some point or BPF_EXIT instruction is
3918  * reached or b) checkpointed and put into env->explored_states, branching out
3919  * into one or more children states.
3920  *
3921  * In the former case, precise markings in current state are completely
3922  * ignored by state comparison code (see regsafe() for details). Only
3923  * checkpointed ("old") state precise markings are important, and if old
3924  * state's register/slot is precise, regsafe() assumes current state's
3925  * register/slot as precise and checks value ranges exactly and precisely. If
3926  * states turn out to be compatible, current state's necessary precise
3927  * markings and any required parent states' precise markings are enforced
3928  * after the fact with propagate_precision() logic, after the fact. But it's
3929  * important to realize that in this case, even after marking current state
3930  * registers/slots as precise, we immediately discard current state. So what
3931  * actually matters is any of the precise markings propagated into current
3932  * state's parent states, which are always checkpointed (due to b) case above).
3933  * As such, for scenario a) it doesn't matter if current state has precise
3934  * markings set or not.
3935  *
3936  * Now, for the scenario b), checkpointing and forking into child(ren)
3937  * state(s). Note that before current state gets to checkpointing step, any
3938  * processed instruction always assumes precise SCALAR register/slot
3939  * knowledge: if precise value or range is useful to prune jump branch, BPF
3940  * verifier takes this opportunity enthusiastically. Similarly, when
3941  * register's value is used to calculate offset or memory address, exact
3942  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
3943  * what we mentioned above about state comparison ignoring precise markings
3944  * during state comparison, BPF verifier ignores and also assumes precise
3945  * markings *at will* during instruction verification process. But as verifier
3946  * assumes precision, it also propagates any precision dependencies across
3947  * parent states, which are not yet finalized, so can be further restricted
3948  * based on new knowledge gained from restrictions enforced by their children
3949  * states. This is so that once those parent states are finalized, i.e., when
3950  * they have no more active children state, state comparison logic in
3951  * is_state_visited() would enforce strict and precise SCALAR ranges, if
3952  * required for correctness.
3953  *
3954  * To build a bit more intuition, note also that once a state is checkpointed,
3955  * the path we took to get to that state is not important. This is crucial
3956  * property for state pruning. When state is checkpointed and finalized at
3957  * some instruction index, it can be correctly and safely used to "short
3958  * circuit" any *compatible* state that reaches exactly the same instruction
3959  * index. I.e., if we jumped to that instruction from a completely different
3960  * code path than original finalized state was derived from, it doesn't
3961  * matter, current state can be discarded because from that instruction
3962  * forward having a compatible state will ensure we will safely reach the
3963  * exit. States describe preconditions for further exploration, but completely
3964  * forget the history of how we got here.
3965  *
3966  * This also means that even if we needed precise SCALAR range to get to
3967  * finalized state, but from that point forward *that same* SCALAR register is
3968  * never used in a precise context (i.e., it's precise value is not needed for
3969  * correctness), it's correct and safe to mark such register as "imprecise"
3970  * (i.e., precise marking set to false). This is what we rely on when we do
3971  * not set precise marking in current state. If no child state requires
3972  * precision for any given SCALAR register, it's safe to dictate that it can
3973  * be imprecise. If any child state does require this register to be precise,
3974  * we'll mark it precise later retroactively during precise markings
3975  * propagation from child state to parent states.
3976  *
3977  * Skipping precise marking setting in current state is a mild version of
3978  * relying on the above observation. But we can utilize this property even
3979  * more aggressively by proactively forgetting any precise marking in the
3980  * current state (which we inherited from the parent state), right before we
3981  * checkpoint it and branch off into new child state. This is done by
3982  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
3983  * finalized states which help in short circuiting more future states.
3984  */
3985 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
3986 {
3987 	struct backtrack_state *bt = &env->bt;
3988 	struct bpf_verifier_state *st = env->cur_state;
3989 	int first_idx = st->first_insn_idx;
3990 	int last_idx = env->insn_idx;
3991 	int subseq_idx = -1;
3992 	struct bpf_func_state *func;
3993 	struct bpf_reg_state *reg;
3994 	bool skip_first = true;
3995 	int i, fr, err;
3996 
3997 	if (!env->bpf_capable)
3998 		return 0;
3999 
4000 	/* set frame number from which we are starting to backtrack */
4001 	bt_init(bt, env->cur_state->curframe);
4002 
4003 	/* Do sanity checks against current state of register and/or stack
4004 	 * slot, but don't set precise flag in current state, as precision
4005 	 * tracking in the current state is unnecessary.
4006 	 */
4007 	func = st->frame[bt->frame];
4008 	if (regno >= 0) {
4009 		reg = &func->regs[regno];
4010 		if (reg->type != SCALAR_VALUE) {
4011 			WARN_ONCE(1, "backtracing misuse");
4012 			return -EFAULT;
4013 		}
4014 		bt_set_reg(bt, regno);
4015 	}
4016 
4017 	if (bt_empty(bt))
4018 		return 0;
4019 
4020 	for (;;) {
4021 		DECLARE_BITMAP(mask, 64);
4022 		u32 history = st->jmp_history_cnt;
4023 
4024 		if (env->log.level & BPF_LOG_LEVEL2) {
4025 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4026 				bt->frame, last_idx, first_idx, subseq_idx);
4027 		}
4028 
4029 		/* If some register with scalar ID is marked as precise,
4030 		 * make sure that all registers sharing this ID are also precise.
4031 		 * This is needed to estimate effect of find_equal_scalars().
4032 		 * Do this at the last instruction of each state,
4033 		 * bpf_reg_state::id fields are valid for these instructions.
4034 		 *
4035 		 * Allows to track precision in situation like below:
4036 		 *
4037 		 *     r2 = unknown value
4038 		 *     ...
4039 		 *   --- state #0 ---
4040 		 *     ...
4041 		 *     r1 = r2                 // r1 and r2 now share the same ID
4042 		 *     ...
4043 		 *   --- state #1 {r1.id = A, r2.id = A} ---
4044 		 *     ...
4045 		 *     if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4046 		 *     ...
4047 		 *   --- state #2 {r1.id = A, r2.id = A} ---
4048 		 *     r3 = r10
4049 		 *     r3 += r1                // need to mark both r1 and r2
4050 		 */
4051 		if (mark_precise_scalar_ids(env, st))
4052 			return -EFAULT;
4053 
4054 		if (last_idx < 0) {
4055 			/* we are at the entry into subprog, which
4056 			 * is expected for global funcs, but only if
4057 			 * requested precise registers are R1-R5
4058 			 * (which are global func's input arguments)
4059 			 */
4060 			if (st->curframe == 0 &&
4061 			    st->frame[0]->subprogno > 0 &&
4062 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4063 			    bt_stack_mask(bt) == 0 &&
4064 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4065 				bitmap_from_u64(mask, bt_reg_mask(bt));
4066 				for_each_set_bit(i, mask, 32) {
4067 					reg = &st->frame[0]->regs[i];
4068 					bt_clear_reg(bt, i);
4069 					if (reg->type == SCALAR_VALUE)
4070 						reg->precise = true;
4071 				}
4072 				return 0;
4073 			}
4074 
4075 			verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4076 				st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4077 			WARN_ONCE(1, "verifier backtracking bug");
4078 			return -EFAULT;
4079 		}
4080 
4081 		for (i = last_idx;;) {
4082 			if (skip_first) {
4083 				err = 0;
4084 				skip_first = false;
4085 			} else {
4086 				err = backtrack_insn(env, i, subseq_idx, bt);
4087 			}
4088 			if (err == -ENOTSUPP) {
4089 				mark_all_scalars_precise(env, env->cur_state);
4090 				bt_reset(bt);
4091 				return 0;
4092 			} else if (err) {
4093 				return err;
4094 			}
4095 			if (bt_empty(bt))
4096 				/* Found assignment(s) into tracked register in this state.
4097 				 * Since this state is already marked, just return.
4098 				 * Nothing to be tracked further in the parent state.
4099 				 */
4100 				return 0;
4101 			subseq_idx = i;
4102 			i = get_prev_insn_idx(st, i, &history);
4103 			if (i == -ENOENT)
4104 				break;
4105 			if (i >= env->prog->len) {
4106 				/* This can happen if backtracking reached insn 0
4107 				 * and there are still reg_mask or stack_mask
4108 				 * to backtrack.
4109 				 * It means the backtracking missed the spot where
4110 				 * particular register was initialized with a constant.
4111 				 */
4112 				verbose(env, "BUG backtracking idx %d\n", i);
4113 				WARN_ONCE(1, "verifier backtracking bug");
4114 				return -EFAULT;
4115 			}
4116 		}
4117 		st = st->parent;
4118 		if (!st)
4119 			break;
4120 
4121 		for (fr = bt->frame; fr >= 0; fr--) {
4122 			func = st->frame[fr];
4123 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4124 			for_each_set_bit(i, mask, 32) {
4125 				reg = &func->regs[i];
4126 				if (reg->type != SCALAR_VALUE) {
4127 					bt_clear_frame_reg(bt, fr, i);
4128 					continue;
4129 				}
4130 				if (reg->precise)
4131 					bt_clear_frame_reg(bt, fr, i);
4132 				else
4133 					reg->precise = true;
4134 			}
4135 
4136 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4137 			for_each_set_bit(i, mask, 64) {
4138 				if (i >= func->allocated_stack / BPF_REG_SIZE) {
4139 					/* the sequence of instructions:
4140 					 * 2: (bf) r3 = r10
4141 					 * 3: (7b) *(u64 *)(r3 -8) = r0
4142 					 * 4: (79) r4 = *(u64 *)(r10 -8)
4143 					 * doesn't contain jmps. It's backtracked
4144 					 * as a single block.
4145 					 * During backtracking insn 3 is not recognized as
4146 					 * stack access, so at the end of backtracking
4147 					 * stack slot fp-8 is still marked in stack_mask.
4148 					 * However the parent state may not have accessed
4149 					 * fp-8 and it's "unallocated" stack space.
4150 					 * In such case fallback to conservative.
4151 					 */
4152 					mark_all_scalars_precise(env, env->cur_state);
4153 					bt_reset(bt);
4154 					return 0;
4155 				}
4156 
4157 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4158 					bt_clear_frame_slot(bt, fr, i);
4159 					continue;
4160 				}
4161 				reg = &func->stack[i].spilled_ptr;
4162 				if (reg->precise)
4163 					bt_clear_frame_slot(bt, fr, i);
4164 				else
4165 					reg->precise = true;
4166 			}
4167 			if (env->log.level & BPF_LOG_LEVEL2) {
4168 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4169 					     bt_frame_reg_mask(bt, fr));
4170 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4171 					fr, env->tmp_str_buf);
4172 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4173 					       bt_frame_stack_mask(bt, fr));
4174 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4175 				print_verifier_state(env, func, true);
4176 			}
4177 		}
4178 
4179 		if (bt_empty(bt))
4180 			return 0;
4181 
4182 		subseq_idx = first_idx;
4183 		last_idx = st->last_insn_idx;
4184 		first_idx = st->first_insn_idx;
4185 	}
4186 
4187 	/* if we still have requested precise regs or slots, we missed
4188 	 * something (e.g., stack access through non-r10 register), so
4189 	 * fallback to marking all precise
4190 	 */
4191 	if (!bt_empty(bt)) {
4192 		mark_all_scalars_precise(env, env->cur_state);
4193 		bt_reset(bt);
4194 	}
4195 
4196 	return 0;
4197 }
4198 
4199 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4200 {
4201 	return __mark_chain_precision(env, regno);
4202 }
4203 
4204 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4205  * desired reg and stack masks across all relevant frames
4206  */
4207 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4208 {
4209 	return __mark_chain_precision(env, -1);
4210 }
4211 
4212 static bool is_spillable_regtype(enum bpf_reg_type type)
4213 {
4214 	switch (base_type(type)) {
4215 	case PTR_TO_MAP_VALUE:
4216 	case PTR_TO_STACK:
4217 	case PTR_TO_CTX:
4218 	case PTR_TO_PACKET:
4219 	case PTR_TO_PACKET_META:
4220 	case PTR_TO_PACKET_END:
4221 	case PTR_TO_FLOW_KEYS:
4222 	case CONST_PTR_TO_MAP:
4223 	case PTR_TO_SOCKET:
4224 	case PTR_TO_SOCK_COMMON:
4225 	case PTR_TO_TCP_SOCK:
4226 	case PTR_TO_XDP_SOCK:
4227 	case PTR_TO_BTF_ID:
4228 	case PTR_TO_BUF:
4229 	case PTR_TO_MEM:
4230 	case PTR_TO_FUNC:
4231 	case PTR_TO_MAP_KEY:
4232 		return true;
4233 	default:
4234 		return false;
4235 	}
4236 }
4237 
4238 /* Does this register contain a constant zero? */
4239 static bool register_is_null(struct bpf_reg_state *reg)
4240 {
4241 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4242 }
4243 
4244 static bool register_is_const(struct bpf_reg_state *reg)
4245 {
4246 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
4247 }
4248 
4249 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
4250 {
4251 	return tnum_is_unknown(reg->var_off) &&
4252 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
4253 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
4254 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
4255 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
4256 }
4257 
4258 static bool register_is_bounded(struct bpf_reg_state *reg)
4259 {
4260 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
4261 }
4262 
4263 static bool __is_pointer_value(bool allow_ptr_leaks,
4264 			       const struct bpf_reg_state *reg)
4265 {
4266 	if (allow_ptr_leaks)
4267 		return false;
4268 
4269 	return reg->type != SCALAR_VALUE;
4270 }
4271 
4272 /* Copy src state preserving dst->parent and dst->live fields */
4273 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4274 {
4275 	struct bpf_reg_state *parent = dst->parent;
4276 	enum bpf_reg_liveness live = dst->live;
4277 
4278 	*dst = *src;
4279 	dst->parent = parent;
4280 	dst->live = live;
4281 }
4282 
4283 static void save_register_state(struct bpf_func_state *state,
4284 				int spi, struct bpf_reg_state *reg,
4285 				int size)
4286 {
4287 	int i;
4288 
4289 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
4290 	if (size == BPF_REG_SIZE)
4291 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4292 
4293 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4294 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4295 
4296 	/* size < 8 bytes spill */
4297 	for (; i; i--)
4298 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
4299 }
4300 
4301 static bool is_bpf_st_mem(struct bpf_insn *insn)
4302 {
4303 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4304 }
4305 
4306 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4307  * stack boundary and alignment are checked in check_mem_access()
4308  */
4309 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4310 				       /* stack frame we're writing to */
4311 				       struct bpf_func_state *state,
4312 				       int off, int size, int value_regno,
4313 				       int insn_idx)
4314 {
4315 	struct bpf_func_state *cur; /* state of the current function */
4316 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4317 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4318 	struct bpf_reg_state *reg = NULL;
4319 	u32 dst_reg = insn->dst_reg;
4320 
4321 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
4322 	if (err)
4323 		return err;
4324 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4325 	 * so it's aligned access and [off, off + size) are within stack limits
4326 	 */
4327 	if (!env->allow_ptr_leaks &&
4328 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
4329 	    size != BPF_REG_SIZE) {
4330 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
4331 		return -EACCES;
4332 	}
4333 
4334 	cur = env->cur_state->frame[env->cur_state->curframe];
4335 	if (value_regno >= 0)
4336 		reg = &cur->regs[value_regno];
4337 	if (!env->bypass_spec_v4) {
4338 		bool sanitize = reg && is_spillable_regtype(reg->type);
4339 
4340 		for (i = 0; i < size; i++) {
4341 			u8 type = state->stack[spi].slot_type[i];
4342 
4343 			if (type != STACK_MISC && type != STACK_ZERO) {
4344 				sanitize = true;
4345 				break;
4346 			}
4347 		}
4348 
4349 		if (sanitize)
4350 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4351 	}
4352 
4353 	err = destroy_if_dynptr_stack_slot(env, state, spi);
4354 	if (err)
4355 		return err;
4356 
4357 	mark_stack_slot_scratched(env, spi);
4358 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
4359 	    !register_is_null(reg) && env->bpf_capable) {
4360 		if (dst_reg != BPF_REG_FP) {
4361 			/* The backtracking logic can only recognize explicit
4362 			 * stack slot address like [fp - 8]. Other spill of
4363 			 * scalar via different register has to be conservative.
4364 			 * Backtrack from here and mark all registers as precise
4365 			 * that contributed into 'reg' being a constant.
4366 			 */
4367 			err = mark_chain_precision(env, value_regno);
4368 			if (err)
4369 				return err;
4370 		}
4371 		save_register_state(state, spi, reg, size);
4372 		/* Break the relation on a narrowing spill. */
4373 		if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
4374 			state->stack[spi].spilled_ptr.id = 0;
4375 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4376 		   insn->imm != 0 && env->bpf_capable) {
4377 		struct bpf_reg_state fake_reg = {};
4378 
4379 		__mark_reg_known(&fake_reg, (u32)insn->imm);
4380 		fake_reg.type = SCALAR_VALUE;
4381 		save_register_state(state, spi, &fake_reg, size);
4382 	} else if (reg && is_spillable_regtype(reg->type)) {
4383 		/* register containing pointer is being spilled into stack */
4384 		if (size != BPF_REG_SIZE) {
4385 			verbose_linfo(env, insn_idx, "; ");
4386 			verbose(env, "invalid size of register spill\n");
4387 			return -EACCES;
4388 		}
4389 		if (state != cur && reg->type == PTR_TO_STACK) {
4390 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4391 			return -EINVAL;
4392 		}
4393 		save_register_state(state, spi, reg, size);
4394 	} else {
4395 		u8 type = STACK_MISC;
4396 
4397 		/* regular write of data into stack destroys any spilled ptr */
4398 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4399 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4400 		if (is_stack_slot_special(&state->stack[spi]))
4401 			for (i = 0; i < BPF_REG_SIZE; i++)
4402 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4403 
4404 		/* only mark the slot as written if all 8 bytes were written
4405 		 * otherwise read propagation may incorrectly stop too soon
4406 		 * when stack slots are partially written.
4407 		 * This heuristic means that read propagation will be
4408 		 * conservative, since it will add reg_live_read marks
4409 		 * to stack slots all the way to first state when programs
4410 		 * writes+reads less than 8 bytes
4411 		 */
4412 		if (size == BPF_REG_SIZE)
4413 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4414 
4415 		/* when we zero initialize stack slots mark them as such */
4416 		if ((reg && register_is_null(reg)) ||
4417 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4418 			/* backtracking doesn't work for STACK_ZERO yet. */
4419 			err = mark_chain_precision(env, value_regno);
4420 			if (err)
4421 				return err;
4422 			type = STACK_ZERO;
4423 		}
4424 
4425 		/* Mark slots affected by this stack write. */
4426 		for (i = 0; i < size; i++)
4427 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
4428 				type;
4429 	}
4430 	return 0;
4431 }
4432 
4433 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4434  * known to contain a variable offset.
4435  * This function checks whether the write is permitted and conservatively
4436  * tracks the effects of the write, considering that each stack slot in the
4437  * dynamic range is potentially written to.
4438  *
4439  * 'off' includes 'regno->off'.
4440  * 'value_regno' can be -1, meaning that an unknown value is being written to
4441  * the stack.
4442  *
4443  * Spilled pointers in range are not marked as written because we don't know
4444  * what's going to be actually written. This means that read propagation for
4445  * future reads cannot be terminated by this write.
4446  *
4447  * For privileged programs, uninitialized stack slots are considered
4448  * initialized by this write (even though we don't know exactly what offsets
4449  * are going to be written to). The idea is that we don't want the verifier to
4450  * reject future reads that access slots written to through variable offsets.
4451  */
4452 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4453 				     /* func where register points to */
4454 				     struct bpf_func_state *state,
4455 				     int ptr_regno, int off, int size,
4456 				     int value_regno, int insn_idx)
4457 {
4458 	struct bpf_func_state *cur; /* state of the current function */
4459 	int min_off, max_off;
4460 	int i, err;
4461 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4462 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4463 	bool writing_zero = false;
4464 	/* set if the fact that we're writing a zero is used to let any
4465 	 * stack slots remain STACK_ZERO
4466 	 */
4467 	bool zero_used = false;
4468 
4469 	cur = env->cur_state->frame[env->cur_state->curframe];
4470 	ptr_reg = &cur->regs[ptr_regno];
4471 	min_off = ptr_reg->smin_value + off;
4472 	max_off = ptr_reg->smax_value + off + size;
4473 	if (value_regno >= 0)
4474 		value_reg = &cur->regs[value_regno];
4475 	if ((value_reg && register_is_null(value_reg)) ||
4476 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4477 		writing_zero = true;
4478 
4479 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
4480 	if (err)
4481 		return err;
4482 
4483 	for (i = min_off; i < max_off; i++) {
4484 		int spi;
4485 
4486 		spi = __get_spi(i);
4487 		err = destroy_if_dynptr_stack_slot(env, state, spi);
4488 		if (err)
4489 			return err;
4490 	}
4491 
4492 	/* Variable offset writes destroy any spilled pointers in range. */
4493 	for (i = min_off; i < max_off; i++) {
4494 		u8 new_type, *stype;
4495 		int slot, spi;
4496 
4497 		slot = -i - 1;
4498 		spi = slot / BPF_REG_SIZE;
4499 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4500 		mark_stack_slot_scratched(env, spi);
4501 
4502 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4503 			/* Reject the write if range we may write to has not
4504 			 * been initialized beforehand. If we didn't reject
4505 			 * here, the ptr status would be erased below (even
4506 			 * though not all slots are actually overwritten),
4507 			 * possibly opening the door to leaks.
4508 			 *
4509 			 * We do however catch STACK_INVALID case below, and
4510 			 * only allow reading possibly uninitialized memory
4511 			 * later for CAP_PERFMON, as the write may not happen to
4512 			 * that slot.
4513 			 */
4514 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4515 				insn_idx, i);
4516 			return -EINVAL;
4517 		}
4518 
4519 		/* Erase all spilled pointers. */
4520 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4521 
4522 		/* Update the slot type. */
4523 		new_type = STACK_MISC;
4524 		if (writing_zero && *stype == STACK_ZERO) {
4525 			new_type = STACK_ZERO;
4526 			zero_used = true;
4527 		}
4528 		/* If the slot is STACK_INVALID, we check whether it's OK to
4529 		 * pretend that it will be initialized by this write. The slot
4530 		 * might not actually be written to, and so if we mark it as
4531 		 * initialized future reads might leak uninitialized memory.
4532 		 * For privileged programs, we will accept such reads to slots
4533 		 * that may or may not be written because, if we're reject
4534 		 * them, the error would be too confusing.
4535 		 */
4536 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4537 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4538 					insn_idx, i);
4539 			return -EINVAL;
4540 		}
4541 		*stype = new_type;
4542 	}
4543 	if (zero_used) {
4544 		/* backtracking doesn't work for STACK_ZERO yet. */
4545 		err = mark_chain_precision(env, value_regno);
4546 		if (err)
4547 			return err;
4548 	}
4549 	return 0;
4550 }
4551 
4552 /* When register 'dst_regno' is assigned some values from stack[min_off,
4553  * max_off), we set the register's type according to the types of the
4554  * respective stack slots. If all the stack values are known to be zeros, then
4555  * so is the destination reg. Otherwise, the register is considered to be
4556  * SCALAR. This function does not deal with register filling; the caller must
4557  * ensure that all spilled registers in the stack range have been marked as
4558  * read.
4559  */
4560 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4561 				/* func where src register points to */
4562 				struct bpf_func_state *ptr_state,
4563 				int min_off, int max_off, int dst_regno)
4564 {
4565 	struct bpf_verifier_state *vstate = env->cur_state;
4566 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4567 	int i, slot, spi;
4568 	u8 *stype;
4569 	int zeros = 0;
4570 
4571 	for (i = min_off; i < max_off; i++) {
4572 		slot = -i - 1;
4573 		spi = slot / BPF_REG_SIZE;
4574 		mark_stack_slot_scratched(env, spi);
4575 		stype = ptr_state->stack[spi].slot_type;
4576 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4577 			break;
4578 		zeros++;
4579 	}
4580 	if (zeros == max_off - min_off) {
4581 		/* any access_size read into register is zero extended,
4582 		 * so the whole register == const_zero
4583 		 */
4584 		__mark_reg_const_zero(&state->regs[dst_regno]);
4585 		/* backtracking doesn't support STACK_ZERO yet,
4586 		 * so mark it precise here, so that later
4587 		 * backtracking can stop here.
4588 		 * Backtracking may not need this if this register
4589 		 * doesn't participate in pointer adjustment.
4590 		 * Forward propagation of precise flag is not
4591 		 * necessary either. This mark is only to stop
4592 		 * backtracking. Any register that contributed
4593 		 * to const 0 was marked precise before spill.
4594 		 */
4595 		state->regs[dst_regno].precise = true;
4596 	} else {
4597 		/* have read misc data from the stack */
4598 		mark_reg_unknown(env, state->regs, dst_regno);
4599 	}
4600 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4601 }
4602 
4603 /* Read the stack at 'off' and put the results into the register indicated by
4604  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4605  * spilled reg.
4606  *
4607  * 'dst_regno' can be -1, meaning that the read value is not going to a
4608  * register.
4609  *
4610  * The access is assumed to be within the current stack bounds.
4611  */
4612 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4613 				      /* func where src register points to */
4614 				      struct bpf_func_state *reg_state,
4615 				      int off, int size, int dst_regno)
4616 {
4617 	struct bpf_verifier_state *vstate = env->cur_state;
4618 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4619 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4620 	struct bpf_reg_state *reg;
4621 	u8 *stype, type;
4622 
4623 	stype = reg_state->stack[spi].slot_type;
4624 	reg = &reg_state->stack[spi].spilled_ptr;
4625 
4626 	mark_stack_slot_scratched(env, spi);
4627 
4628 	if (is_spilled_reg(&reg_state->stack[spi])) {
4629 		u8 spill_size = 1;
4630 
4631 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4632 			spill_size++;
4633 
4634 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4635 			if (reg->type != SCALAR_VALUE) {
4636 				verbose_linfo(env, env->insn_idx, "; ");
4637 				verbose(env, "invalid size of register fill\n");
4638 				return -EACCES;
4639 			}
4640 
4641 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4642 			if (dst_regno < 0)
4643 				return 0;
4644 
4645 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
4646 				/* The earlier check_reg_arg() has decided the
4647 				 * subreg_def for this insn.  Save it first.
4648 				 */
4649 				s32 subreg_def = state->regs[dst_regno].subreg_def;
4650 
4651 				copy_register_state(&state->regs[dst_regno], reg);
4652 				state->regs[dst_regno].subreg_def = subreg_def;
4653 			} else {
4654 				for (i = 0; i < size; i++) {
4655 					type = stype[(slot - i) % BPF_REG_SIZE];
4656 					if (type == STACK_SPILL)
4657 						continue;
4658 					if (type == STACK_MISC)
4659 						continue;
4660 					if (type == STACK_INVALID && env->allow_uninit_stack)
4661 						continue;
4662 					verbose(env, "invalid read from stack off %d+%d size %d\n",
4663 						off, i, size);
4664 					return -EACCES;
4665 				}
4666 				mark_reg_unknown(env, state->regs, dst_regno);
4667 			}
4668 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4669 			return 0;
4670 		}
4671 
4672 		if (dst_regno >= 0) {
4673 			/* restore register state from stack */
4674 			copy_register_state(&state->regs[dst_regno], reg);
4675 			/* mark reg as written since spilled pointer state likely
4676 			 * has its liveness marks cleared by is_state_visited()
4677 			 * which resets stack/reg liveness for state transitions
4678 			 */
4679 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4680 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4681 			/* If dst_regno==-1, the caller is asking us whether
4682 			 * it is acceptable to use this value as a SCALAR_VALUE
4683 			 * (e.g. for XADD).
4684 			 * We must not allow unprivileged callers to do that
4685 			 * with spilled pointers.
4686 			 */
4687 			verbose(env, "leaking pointer from stack off %d\n",
4688 				off);
4689 			return -EACCES;
4690 		}
4691 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4692 	} else {
4693 		for (i = 0; i < size; i++) {
4694 			type = stype[(slot - i) % BPF_REG_SIZE];
4695 			if (type == STACK_MISC)
4696 				continue;
4697 			if (type == STACK_ZERO)
4698 				continue;
4699 			if (type == STACK_INVALID && env->allow_uninit_stack)
4700 				continue;
4701 			verbose(env, "invalid read from stack off %d+%d size %d\n",
4702 				off, i, size);
4703 			return -EACCES;
4704 		}
4705 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4706 		if (dst_regno >= 0)
4707 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
4708 	}
4709 	return 0;
4710 }
4711 
4712 enum bpf_access_src {
4713 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
4714 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
4715 };
4716 
4717 static int check_stack_range_initialized(struct bpf_verifier_env *env,
4718 					 int regno, int off, int access_size,
4719 					 bool zero_size_allowed,
4720 					 enum bpf_access_src type,
4721 					 struct bpf_call_arg_meta *meta);
4722 
4723 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4724 {
4725 	return cur_regs(env) + regno;
4726 }
4727 
4728 /* Read the stack at 'ptr_regno + off' and put the result into the register
4729  * 'dst_regno'.
4730  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4731  * but not its variable offset.
4732  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4733  *
4734  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
4735  * filling registers (i.e. reads of spilled register cannot be detected when
4736  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
4737  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
4738  * offset; for a fixed offset check_stack_read_fixed_off should be used
4739  * instead.
4740  */
4741 static int check_stack_read_var_off(struct bpf_verifier_env *env,
4742 				    int ptr_regno, int off, int size, int dst_regno)
4743 {
4744 	/* The state of the source register. */
4745 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4746 	struct bpf_func_state *ptr_state = func(env, reg);
4747 	int err;
4748 	int min_off, max_off;
4749 
4750 	/* Note that we pass a NULL meta, so raw access will not be permitted.
4751 	 */
4752 	err = check_stack_range_initialized(env, ptr_regno, off, size,
4753 					    false, ACCESS_DIRECT, NULL);
4754 	if (err)
4755 		return err;
4756 
4757 	min_off = reg->smin_value + off;
4758 	max_off = reg->smax_value + off;
4759 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
4760 	return 0;
4761 }
4762 
4763 /* check_stack_read dispatches to check_stack_read_fixed_off or
4764  * check_stack_read_var_off.
4765  *
4766  * The caller must ensure that the offset falls within the allocated stack
4767  * bounds.
4768  *
4769  * 'dst_regno' is a register which will receive the value from the stack. It
4770  * can be -1, meaning that the read value is not going to a register.
4771  */
4772 static int check_stack_read(struct bpf_verifier_env *env,
4773 			    int ptr_regno, int off, int size,
4774 			    int dst_regno)
4775 {
4776 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4777 	struct bpf_func_state *state = func(env, reg);
4778 	int err;
4779 	/* Some accesses are only permitted with a static offset. */
4780 	bool var_off = !tnum_is_const(reg->var_off);
4781 
4782 	/* The offset is required to be static when reads don't go to a
4783 	 * register, in order to not leak pointers (see
4784 	 * check_stack_read_fixed_off).
4785 	 */
4786 	if (dst_regno < 0 && var_off) {
4787 		char tn_buf[48];
4788 
4789 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4790 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
4791 			tn_buf, off, size);
4792 		return -EACCES;
4793 	}
4794 	/* Variable offset is prohibited for unprivileged mode for simplicity
4795 	 * since it requires corresponding support in Spectre masking for stack
4796 	 * ALU. See also retrieve_ptr_limit(). The check in
4797 	 * check_stack_access_for_ptr_arithmetic() called by
4798 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
4799 	 * with variable offsets, therefore no check is required here. Further,
4800 	 * just checking it here would be insufficient as speculative stack
4801 	 * writes could still lead to unsafe speculative behaviour.
4802 	 */
4803 	if (!var_off) {
4804 		off += reg->var_off.value;
4805 		err = check_stack_read_fixed_off(env, state, off, size,
4806 						 dst_regno);
4807 	} else {
4808 		/* Variable offset stack reads need more conservative handling
4809 		 * than fixed offset ones. Note that dst_regno >= 0 on this
4810 		 * branch.
4811 		 */
4812 		err = check_stack_read_var_off(env, ptr_regno, off, size,
4813 					       dst_regno);
4814 	}
4815 	return err;
4816 }
4817 
4818 
4819 /* check_stack_write dispatches to check_stack_write_fixed_off or
4820  * check_stack_write_var_off.
4821  *
4822  * 'ptr_regno' is the register used as a pointer into the stack.
4823  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
4824  * 'value_regno' is the register whose value we're writing to the stack. It can
4825  * be -1, meaning that we're not writing from a register.
4826  *
4827  * The caller must ensure that the offset falls within the maximum stack size.
4828  */
4829 static int check_stack_write(struct bpf_verifier_env *env,
4830 			     int ptr_regno, int off, int size,
4831 			     int value_regno, int insn_idx)
4832 {
4833 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4834 	struct bpf_func_state *state = func(env, reg);
4835 	int err;
4836 
4837 	if (tnum_is_const(reg->var_off)) {
4838 		off += reg->var_off.value;
4839 		err = check_stack_write_fixed_off(env, state, off, size,
4840 						  value_regno, insn_idx);
4841 	} else {
4842 		/* Variable offset stack reads need more conservative handling
4843 		 * than fixed offset ones.
4844 		 */
4845 		err = check_stack_write_var_off(env, state,
4846 						ptr_regno, off, size,
4847 						value_regno, insn_idx);
4848 	}
4849 	return err;
4850 }
4851 
4852 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
4853 				 int off, int size, enum bpf_access_type type)
4854 {
4855 	struct bpf_reg_state *regs = cur_regs(env);
4856 	struct bpf_map *map = regs[regno].map_ptr;
4857 	u32 cap = bpf_map_flags_to_cap(map);
4858 
4859 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
4860 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
4861 			map->value_size, off, size);
4862 		return -EACCES;
4863 	}
4864 
4865 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
4866 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
4867 			map->value_size, off, size);
4868 		return -EACCES;
4869 	}
4870 
4871 	return 0;
4872 }
4873 
4874 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
4875 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
4876 			      int off, int size, u32 mem_size,
4877 			      bool zero_size_allowed)
4878 {
4879 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
4880 	struct bpf_reg_state *reg;
4881 
4882 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
4883 		return 0;
4884 
4885 	reg = &cur_regs(env)[regno];
4886 	switch (reg->type) {
4887 	case PTR_TO_MAP_KEY:
4888 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
4889 			mem_size, off, size);
4890 		break;
4891 	case PTR_TO_MAP_VALUE:
4892 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
4893 			mem_size, off, size);
4894 		break;
4895 	case PTR_TO_PACKET:
4896 	case PTR_TO_PACKET_META:
4897 	case PTR_TO_PACKET_END:
4898 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
4899 			off, size, regno, reg->id, off, mem_size);
4900 		break;
4901 	case PTR_TO_MEM:
4902 	default:
4903 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
4904 			mem_size, off, size);
4905 	}
4906 
4907 	return -EACCES;
4908 }
4909 
4910 /* check read/write into a memory region with possible variable offset */
4911 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
4912 				   int off, int size, u32 mem_size,
4913 				   bool zero_size_allowed)
4914 {
4915 	struct bpf_verifier_state *vstate = env->cur_state;
4916 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4917 	struct bpf_reg_state *reg = &state->regs[regno];
4918 	int err;
4919 
4920 	/* We may have adjusted the register pointing to memory region, so we
4921 	 * need to try adding each of min_value and max_value to off
4922 	 * to make sure our theoretical access will be safe.
4923 	 *
4924 	 * The minimum value is only important with signed
4925 	 * comparisons where we can't assume the floor of a
4926 	 * value is 0.  If we are using signed variables for our
4927 	 * index'es we need to make sure that whatever we use
4928 	 * will have a set floor within our range.
4929 	 */
4930 	if (reg->smin_value < 0 &&
4931 	    (reg->smin_value == S64_MIN ||
4932 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
4933 	      reg->smin_value + off < 0)) {
4934 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4935 			regno);
4936 		return -EACCES;
4937 	}
4938 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
4939 				 mem_size, zero_size_allowed);
4940 	if (err) {
4941 		verbose(env, "R%d min value is outside of the allowed memory range\n",
4942 			regno);
4943 		return err;
4944 	}
4945 
4946 	/* If we haven't set a max value then we need to bail since we can't be
4947 	 * sure we won't do bad things.
4948 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
4949 	 */
4950 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
4951 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
4952 			regno);
4953 		return -EACCES;
4954 	}
4955 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
4956 				 mem_size, zero_size_allowed);
4957 	if (err) {
4958 		verbose(env, "R%d max value is outside of the allowed memory range\n",
4959 			regno);
4960 		return err;
4961 	}
4962 
4963 	return 0;
4964 }
4965 
4966 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
4967 			       const struct bpf_reg_state *reg, int regno,
4968 			       bool fixed_off_ok)
4969 {
4970 	/* Access to this pointer-typed register or passing it to a helper
4971 	 * is only allowed in its original, unmodified form.
4972 	 */
4973 
4974 	if (reg->off < 0) {
4975 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
4976 			reg_type_str(env, reg->type), regno, reg->off);
4977 		return -EACCES;
4978 	}
4979 
4980 	if (!fixed_off_ok && reg->off) {
4981 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
4982 			reg_type_str(env, reg->type), regno, reg->off);
4983 		return -EACCES;
4984 	}
4985 
4986 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4987 		char tn_buf[48];
4988 
4989 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4990 		verbose(env, "variable %s access var_off=%s disallowed\n",
4991 			reg_type_str(env, reg->type), tn_buf);
4992 		return -EACCES;
4993 	}
4994 
4995 	return 0;
4996 }
4997 
4998 int check_ptr_off_reg(struct bpf_verifier_env *env,
4999 		      const struct bpf_reg_state *reg, int regno)
5000 {
5001 	return __check_ptr_off_reg(env, reg, regno, false);
5002 }
5003 
5004 static int map_kptr_match_type(struct bpf_verifier_env *env,
5005 			       struct btf_field *kptr_field,
5006 			       struct bpf_reg_state *reg, u32 regno)
5007 {
5008 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5009 	int perm_flags;
5010 	const char *reg_name = "";
5011 
5012 	if (btf_is_kernel(reg->btf)) {
5013 		perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5014 
5015 		/* Only unreferenced case accepts untrusted pointers */
5016 		if (kptr_field->type == BPF_KPTR_UNREF)
5017 			perm_flags |= PTR_UNTRUSTED;
5018 	} else {
5019 		perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5020 	}
5021 
5022 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5023 		goto bad_type;
5024 
5025 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5026 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5027 
5028 	/* For ref_ptr case, release function check should ensure we get one
5029 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5030 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5031 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5032 	 * reg->off and reg->ref_obj_id are not needed here.
5033 	 */
5034 	if (__check_ptr_off_reg(env, reg, regno, true))
5035 		return -EACCES;
5036 
5037 	/* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5038 	 * we also need to take into account the reg->off.
5039 	 *
5040 	 * We want to support cases like:
5041 	 *
5042 	 * struct foo {
5043 	 *         struct bar br;
5044 	 *         struct baz bz;
5045 	 * };
5046 	 *
5047 	 * struct foo *v;
5048 	 * v = func();	      // PTR_TO_BTF_ID
5049 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5050 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5051 	 *                    // first member type of struct after comparison fails
5052 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5053 	 *                    // to match type
5054 	 *
5055 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5056 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5057 	 * the struct to match type against first member of struct, i.e. reject
5058 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5059 	 * strict mode to true for type match.
5060 	 */
5061 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5062 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5063 				  kptr_field->type == BPF_KPTR_REF))
5064 		goto bad_type;
5065 	return 0;
5066 bad_type:
5067 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5068 		reg_type_str(env, reg->type), reg_name);
5069 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5070 	if (kptr_field->type == BPF_KPTR_UNREF)
5071 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5072 			targ_name);
5073 	else
5074 		verbose(env, "\n");
5075 	return -EINVAL;
5076 }
5077 
5078 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5079  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5080  */
5081 static bool in_rcu_cs(struct bpf_verifier_env *env)
5082 {
5083 	return env->cur_state->active_rcu_lock ||
5084 	       env->cur_state->active_lock.ptr ||
5085 	       !env->prog->aux->sleepable;
5086 }
5087 
5088 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5089 BTF_SET_START(rcu_protected_types)
5090 BTF_ID(struct, prog_test_ref_kfunc)
5091 BTF_ID(struct, cgroup)
5092 BTF_ID(struct, bpf_cpumask)
5093 BTF_ID(struct, task_struct)
5094 BTF_SET_END(rcu_protected_types)
5095 
5096 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5097 {
5098 	if (!btf_is_kernel(btf))
5099 		return false;
5100 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5101 }
5102 
5103 static bool rcu_safe_kptr(const struct btf_field *field)
5104 {
5105 	const struct btf_field_kptr *kptr = &field->kptr;
5106 
5107 	return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id);
5108 }
5109 
5110 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5111 				 int value_regno, int insn_idx,
5112 				 struct btf_field *kptr_field)
5113 {
5114 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5115 	int class = BPF_CLASS(insn->code);
5116 	struct bpf_reg_state *val_reg;
5117 
5118 	/* Things we already checked for in check_map_access and caller:
5119 	 *  - Reject cases where variable offset may touch kptr
5120 	 *  - size of access (must be BPF_DW)
5121 	 *  - tnum_is_const(reg->var_off)
5122 	 *  - kptr_field->offset == off + reg->var_off.value
5123 	 */
5124 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5125 	if (BPF_MODE(insn->code) != BPF_MEM) {
5126 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5127 		return -EACCES;
5128 	}
5129 
5130 	/* We only allow loading referenced kptr, since it will be marked as
5131 	 * untrusted, similar to unreferenced kptr.
5132 	 */
5133 	if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
5134 		verbose(env, "store to referenced kptr disallowed\n");
5135 		return -EACCES;
5136 	}
5137 
5138 	if (class == BPF_LDX) {
5139 		val_reg = reg_state(env, value_regno);
5140 		/* We can simply mark the value_regno receiving the pointer
5141 		 * value from map as PTR_TO_BTF_ID, with the correct type.
5142 		 */
5143 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5144 				kptr_field->kptr.btf_id,
5145 				rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ?
5146 				PTR_MAYBE_NULL | MEM_RCU :
5147 				PTR_MAYBE_NULL | PTR_UNTRUSTED);
5148 		/* For mark_ptr_or_null_reg */
5149 		val_reg->id = ++env->id_gen;
5150 	} else if (class == BPF_STX) {
5151 		val_reg = reg_state(env, value_regno);
5152 		if (!register_is_null(val_reg) &&
5153 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5154 			return -EACCES;
5155 	} else if (class == BPF_ST) {
5156 		if (insn->imm) {
5157 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5158 				kptr_field->offset);
5159 			return -EACCES;
5160 		}
5161 	} else {
5162 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5163 		return -EACCES;
5164 	}
5165 	return 0;
5166 }
5167 
5168 /* check read/write into a map element with possible variable offset */
5169 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5170 			    int off, int size, bool zero_size_allowed,
5171 			    enum bpf_access_src src)
5172 {
5173 	struct bpf_verifier_state *vstate = env->cur_state;
5174 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5175 	struct bpf_reg_state *reg = &state->regs[regno];
5176 	struct bpf_map *map = reg->map_ptr;
5177 	struct btf_record *rec;
5178 	int err, i;
5179 
5180 	err = check_mem_region_access(env, regno, off, size, map->value_size,
5181 				      zero_size_allowed);
5182 	if (err)
5183 		return err;
5184 
5185 	if (IS_ERR_OR_NULL(map->record))
5186 		return 0;
5187 	rec = map->record;
5188 	for (i = 0; i < rec->cnt; i++) {
5189 		struct btf_field *field = &rec->fields[i];
5190 		u32 p = field->offset;
5191 
5192 		/* If any part of a field  can be touched by load/store, reject
5193 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
5194 		 * it is sufficient to check x1 < y2 && y1 < x2.
5195 		 */
5196 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5197 		    p < reg->umax_value + off + size) {
5198 			switch (field->type) {
5199 			case BPF_KPTR_UNREF:
5200 			case BPF_KPTR_REF:
5201 				if (src != ACCESS_DIRECT) {
5202 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
5203 					return -EACCES;
5204 				}
5205 				if (!tnum_is_const(reg->var_off)) {
5206 					verbose(env, "kptr access cannot have variable offset\n");
5207 					return -EACCES;
5208 				}
5209 				if (p != off + reg->var_off.value) {
5210 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5211 						p, off + reg->var_off.value);
5212 					return -EACCES;
5213 				}
5214 				if (size != bpf_size_to_bytes(BPF_DW)) {
5215 					verbose(env, "kptr access size must be BPF_DW\n");
5216 					return -EACCES;
5217 				}
5218 				break;
5219 			default:
5220 				verbose(env, "%s cannot be accessed directly by load/store\n",
5221 					btf_field_type_name(field->type));
5222 				return -EACCES;
5223 			}
5224 		}
5225 	}
5226 	return 0;
5227 }
5228 
5229 #define MAX_PACKET_OFF 0xffff
5230 
5231 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5232 				       const struct bpf_call_arg_meta *meta,
5233 				       enum bpf_access_type t)
5234 {
5235 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5236 
5237 	switch (prog_type) {
5238 	/* Program types only with direct read access go here! */
5239 	case BPF_PROG_TYPE_LWT_IN:
5240 	case BPF_PROG_TYPE_LWT_OUT:
5241 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5242 	case BPF_PROG_TYPE_SK_REUSEPORT:
5243 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5244 	case BPF_PROG_TYPE_CGROUP_SKB:
5245 		if (t == BPF_WRITE)
5246 			return false;
5247 		fallthrough;
5248 
5249 	/* Program types with direct read + write access go here! */
5250 	case BPF_PROG_TYPE_SCHED_CLS:
5251 	case BPF_PROG_TYPE_SCHED_ACT:
5252 	case BPF_PROG_TYPE_XDP:
5253 	case BPF_PROG_TYPE_LWT_XMIT:
5254 	case BPF_PROG_TYPE_SK_SKB:
5255 	case BPF_PROG_TYPE_SK_MSG:
5256 		if (meta)
5257 			return meta->pkt_access;
5258 
5259 		env->seen_direct_write = true;
5260 		return true;
5261 
5262 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5263 		if (t == BPF_WRITE)
5264 			env->seen_direct_write = true;
5265 
5266 		return true;
5267 
5268 	default:
5269 		return false;
5270 	}
5271 }
5272 
5273 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5274 			       int size, bool zero_size_allowed)
5275 {
5276 	struct bpf_reg_state *regs = cur_regs(env);
5277 	struct bpf_reg_state *reg = &regs[regno];
5278 	int err;
5279 
5280 	/* We may have added a variable offset to the packet pointer; but any
5281 	 * reg->range we have comes after that.  We are only checking the fixed
5282 	 * offset.
5283 	 */
5284 
5285 	/* We don't allow negative numbers, because we aren't tracking enough
5286 	 * detail to prove they're safe.
5287 	 */
5288 	if (reg->smin_value < 0) {
5289 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5290 			regno);
5291 		return -EACCES;
5292 	}
5293 
5294 	err = reg->range < 0 ? -EINVAL :
5295 	      __check_mem_access(env, regno, off, size, reg->range,
5296 				 zero_size_allowed);
5297 	if (err) {
5298 		verbose(env, "R%d offset is outside of the packet\n", regno);
5299 		return err;
5300 	}
5301 
5302 	/* __check_mem_access has made sure "off + size - 1" is within u16.
5303 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5304 	 * otherwise find_good_pkt_pointers would have refused to set range info
5305 	 * that __check_mem_access would have rejected this pkt access.
5306 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5307 	 */
5308 	env->prog->aux->max_pkt_offset =
5309 		max_t(u32, env->prog->aux->max_pkt_offset,
5310 		      off + reg->umax_value + size - 1);
5311 
5312 	return err;
5313 }
5314 
5315 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
5316 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5317 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
5318 			    struct btf **btf, u32 *btf_id)
5319 {
5320 	struct bpf_insn_access_aux info = {
5321 		.reg_type = *reg_type,
5322 		.log = &env->log,
5323 	};
5324 
5325 	if (env->ops->is_valid_access &&
5326 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5327 		/* A non zero info.ctx_field_size indicates that this field is a
5328 		 * candidate for later verifier transformation to load the whole
5329 		 * field and then apply a mask when accessed with a narrower
5330 		 * access than actual ctx access size. A zero info.ctx_field_size
5331 		 * will only allow for whole field access and rejects any other
5332 		 * type of narrower access.
5333 		 */
5334 		*reg_type = info.reg_type;
5335 
5336 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5337 			*btf = info.btf;
5338 			*btf_id = info.btf_id;
5339 		} else {
5340 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5341 		}
5342 		/* remember the offset of last byte accessed in ctx */
5343 		if (env->prog->aux->max_ctx_offset < off + size)
5344 			env->prog->aux->max_ctx_offset = off + size;
5345 		return 0;
5346 	}
5347 
5348 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5349 	return -EACCES;
5350 }
5351 
5352 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5353 				  int size)
5354 {
5355 	if (size < 0 || off < 0 ||
5356 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
5357 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
5358 			off, size);
5359 		return -EACCES;
5360 	}
5361 	return 0;
5362 }
5363 
5364 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5365 			     u32 regno, int off, int size,
5366 			     enum bpf_access_type t)
5367 {
5368 	struct bpf_reg_state *regs = cur_regs(env);
5369 	struct bpf_reg_state *reg = &regs[regno];
5370 	struct bpf_insn_access_aux info = {};
5371 	bool valid;
5372 
5373 	if (reg->smin_value < 0) {
5374 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5375 			regno);
5376 		return -EACCES;
5377 	}
5378 
5379 	switch (reg->type) {
5380 	case PTR_TO_SOCK_COMMON:
5381 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5382 		break;
5383 	case PTR_TO_SOCKET:
5384 		valid = bpf_sock_is_valid_access(off, size, t, &info);
5385 		break;
5386 	case PTR_TO_TCP_SOCK:
5387 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5388 		break;
5389 	case PTR_TO_XDP_SOCK:
5390 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5391 		break;
5392 	default:
5393 		valid = false;
5394 	}
5395 
5396 
5397 	if (valid) {
5398 		env->insn_aux_data[insn_idx].ctx_field_size =
5399 			info.ctx_field_size;
5400 		return 0;
5401 	}
5402 
5403 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
5404 		regno, reg_type_str(env, reg->type), off, size);
5405 
5406 	return -EACCES;
5407 }
5408 
5409 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5410 {
5411 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5412 }
5413 
5414 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5415 {
5416 	const struct bpf_reg_state *reg = reg_state(env, regno);
5417 
5418 	return reg->type == PTR_TO_CTX;
5419 }
5420 
5421 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5422 {
5423 	const struct bpf_reg_state *reg = reg_state(env, regno);
5424 
5425 	return type_is_sk_pointer(reg->type);
5426 }
5427 
5428 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5429 {
5430 	const struct bpf_reg_state *reg = reg_state(env, regno);
5431 
5432 	return type_is_pkt_pointer(reg->type);
5433 }
5434 
5435 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5436 {
5437 	const struct bpf_reg_state *reg = reg_state(env, regno);
5438 
5439 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5440 	return reg->type == PTR_TO_FLOW_KEYS;
5441 }
5442 
5443 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5444 #ifdef CONFIG_NET
5445 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5446 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5447 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5448 #endif
5449 	[CONST_PTR_TO_MAP] = btf_bpf_map_id,
5450 };
5451 
5452 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5453 {
5454 	/* A referenced register is always trusted. */
5455 	if (reg->ref_obj_id)
5456 		return true;
5457 
5458 	/* Types listed in the reg2btf_ids are always trusted */
5459 	if (reg2btf_ids[base_type(reg->type)])
5460 		return true;
5461 
5462 	/* If a register is not referenced, it is trusted if it has the
5463 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5464 	 * other type modifiers may be safe, but we elect to take an opt-in
5465 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5466 	 * not.
5467 	 *
5468 	 * Eventually, we should make PTR_TRUSTED the single source of truth
5469 	 * for whether a register is trusted.
5470 	 */
5471 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5472 	       !bpf_type_has_unsafe_modifiers(reg->type);
5473 }
5474 
5475 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5476 {
5477 	return reg->type & MEM_RCU;
5478 }
5479 
5480 static void clear_trusted_flags(enum bpf_type_flag *flag)
5481 {
5482 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5483 }
5484 
5485 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5486 				   const struct bpf_reg_state *reg,
5487 				   int off, int size, bool strict)
5488 {
5489 	struct tnum reg_off;
5490 	int ip_align;
5491 
5492 	/* Byte size accesses are always allowed. */
5493 	if (!strict || size == 1)
5494 		return 0;
5495 
5496 	/* For platforms that do not have a Kconfig enabling
5497 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5498 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
5499 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5500 	 * to this code only in strict mode where we want to emulate
5501 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
5502 	 * unconditional IP align value of '2'.
5503 	 */
5504 	ip_align = 2;
5505 
5506 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5507 	if (!tnum_is_aligned(reg_off, size)) {
5508 		char tn_buf[48];
5509 
5510 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5511 		verbose(env,
5512 			"misaligned packet access off %d+%s+%d+%d size %d\n",
5513 			ip_align, tn_buf, reg->off, off, size);
5514 		return -EACCES;
5515 	}
5516 
5517 	return 0;
5518 }
5519 
5520 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5521 				       const struct bpf_reg_state *reg,
5522 				       const char *pointer_desc,
5523 				       int off, int size, bool strict)
5524 {
5525 	struct tnum reg_off;
5526 
5527 	/* Byte size accesses are always allowed. */
5528 	if (!strict || size == 1)
5529 		return 0;
5530 
5531 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5532 	if (!tnum_is_aligned(reg_off, size)) {
5533 		char tn_buf[48];
5534 
5535 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5536 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5537 			pointer_desc, tn_buf, reg->off, off, size);
5538 		return -EACCES;
5539 	}
5540 
5541 	return 0;
5542 }
5543 
5544 static int check_ptr_alignment(struct bpf_verifier_env *env,
5545 			       const struct bpf_reg_state *reg, int off,
5546 			       int size, bool strict_alignment_once)
5547 {
5548 	bool strict = env->strict_alignment || strict_alignment_once;
5549 	const char *pointer_desc = "";
5550 
5551 	switch (reg->type) {
5552 	case PTR_TO_PACKET:
5553 	case PTR_TO_PACKET_META:
5554 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
5555 		 * right in front, treat it the very same way.
5556 		 */
5557 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
5558 	case PTR_TO_FLOW_KEYS:
5559 		pointer_desc = "flow keys ";
5560 		break;
5561 	case PTR_TO_MAP_KEY:
5562 		pointer_desc = "key ";
5563 		break;
5564 	case PTR_TO_MAP_VALUE:
5565 		pointer_desc = "value ";
5566 		break;
5567 	case PTR_TO_CTX:
5568 		pointer_desc = "context ";
5569 		break;
5570 	case PTR_TO_STACK:
5571 		pointer_desc = "stack ";
5572 		/* The stack spill tracking logic in check_stack_write_fixed_off()
5573 		 * and check_stack_read_fixed_off() relies on stack accesses being
5574 		 * aligned.
5575 		 */
5576 		strict = true;
5577 		break;
5578 	case PTR_TO_SOCKET:
5579 		pointer_desc = "sock ";
5580 		break;
5581 	case PTR_TO_SOCK_COMMON:
5582 		pointer_desc = "sock_common ";
5583 		break;
5584 	case PTR_TO_TCP_SOCK:
5585 		pointer_desc = "tcp_sock ";
5586 		break;
5587 	case PTR_TO_XDP_SOCK:
5588 		pointer_desc = "xdp_sock ";
5589 		break;
5590 	default:
5591 		break;
5592 	}
5593 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5594 					   strict);
5595 }
5596 
5597 static int update_stack_depth(struct bpf_verifier_env *env,
5598 			      const struct bpf_func_state *func,
5599 			      int off)
5600 {
5601 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
5602 
5603 	if (stack >= -off)
5604 		return 0;
5605 
5606 	/* update known max for given subprogram */
5607 	env->subprog_info[func->subprogno].stack_depth = -off;
5608 	return 0;
5609 }
5610 
5611 /* starting from main bpf function walk all instructions of the function
5612  * and recursively walk all callees that given function can call.
5613  * Ignore jump and exit insns.
5614  * Since recursion is prevented by check_cfg() this algorithm
5615  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5616  */
5617 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
5618 {
5619 	struct bpf_subprog_info *subprog = env->subprog_info;
5620 	struct bpf_insn *insn = env->prog->insnsi;
5621 	int depth = 0, frame = 0, i, subprog_end;
5622 	bool tail_call_reachable = false;
5623 	int ret_insn[MAX_CALL_FRAMES];
5624 	int ret_prog[MAX_CALL_FRAMES];
5625 	int j;
5626 
5627 	i = subprog[idx].start;
5628 process_func:
5629 	/* protect against potential stack overflow that might happen when
5630 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5631 	 * depth for such case down to 256 so that the worst case scenario
5632 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
5633 	 * 8k).
5634 	 *
5635 	 * To get the idea what might happen, see an example:
5636 	 * func1 -> sub rsp, 128
5637 	 *  subfunc1 -> sub rsp, 256
5638 	 *  tailcall1 -> add rsp, 256
5639 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5640 	 *   subfunc2 -> sub rsp, 64
5641 	 *   subfunc22 -> sub rsp, 128
5642 	 *   tailcall2 -> add rsp, 128
5643 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5644 	 *
5645 	 * tailcall will unwind the current stack frame but it will not get rid
5646 	 * of caller's stack as shown on the example above.
5647 	 */
5648 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
5649 		verbose(env,
5650 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5651 			depth);
5652 		return -EACCES;
5653 	}
5654 	/* round up to 32-bytes, since this is granularity
5655 	 * of interpreter stack size
5656 	 */
5657 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5658 	if (depth > MAX_BPF_STACK) {
5659 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
5660 			frame + 1, depth);
5661 		return -EACCES;
5662 	}
5663 continue_func:
5664 	subprog_end = subprog[idx + 1].start;
5665 	for (; i < subprog_end; i++) {
5666 		int next_insn, sidx;
5667 
5668 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
5669 			continue;
5670 		/* remember insn and function to return to */
5671 		ret_insn[frame] = i + 1;
5672 		ret_prog[frame] = idx;
5673 
5674 		/* find the callee */
5675 		next_insn = i + insn[i].imm + 1;
5676 		sidx = find_subprog(env, next_insn);
5677 		if (sidx < 0) {
5678 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5679 				  next_insn);
5680 			return -EFAULT;
5681 		}
5682 		if (subprog[sidx].is_async_cb) {
5683 			if (subprog[sidx].has_tail_call) {
5684 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5685 				return -EFAULT;
5686 			}
5687 			/* async callbacks don't increase bpf prog stack size unless called directly */
5688 			if (!bpf_pseudo_call(insn + i))
5689 				continue;
5690 		}
5691 		i = next_insn;
5692 		idx = sidx;
5693 
5694 		if (subprog[idx].has_tail_call)
5695 			tail_call_reachable = true;
5696 
5697 		frame++;
5698 		if (frame >= MAX_CALL_FRAMES) {
5699 			verbose(env, "the call stack of %d frames is too deep !\n",
5700 				frame);
5701 			return -E2BIG;
5702 		}
5703 		goto process_func;
5704 	}
5705 	/* if tail call got detected across bpf2bpf calls then mark each of the
5706 	 * currently present subprog frames as tail call reachable subprogs;
5707 	 * this info will be utilized by JIT so that we will be preserving the
5708 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
5709 	 */
5710 	if (tail_call_reachable)
5711 		for (j = 0; j < frame; j++)
5712 			subprog[ret_prog[j]].tail_call_reachable = true;
5713 	if (subprog[0].tail_call_reachable)
5714 		env->prog->aux->tail_call_reachable = true;
5715 
5716 	/* end of for() loop means the last insn of the 'subprog'
5717 	 * was reached. Doesn't matter whether it was JA or EXIT
5718 	 */
5719 	if (frame == 0)
5720 		return 0;
5721 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5722 	frame--;
5723 	i = ret_insn[frame];
5724 	idx = ret_prog[frame];
5725 	goto continue_func;
5726 }
5727 
5728 static int check_max_stack_depth(struct bpf_verifier_env *env)
5729 {
5730 	struct bpf_subprog_info *si = env->subprog_info;
5731 	int ret;
5732 
5733 	for (int i = 0; i < env->subprog_cnt; i++) {
5734 		if (!i || si[i].is_async_cb) {
5735 			ret = check_max_stack_depth_subprog(env, i);
5736 			if (ret < 0)
5737 				return ret;
5738 		}
5739 		continue;
5740 	}
5741 	return 0;
5742 }
5743 
5744 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5745 static int get_callee_stack_depth(struct bpf_verifier_env *env,
5746 				  const struct bpf_insn *insn, int idx)
5747 {
5748 	int start = idx + insn->imm + 1, subprog;
5749 
5750 	subprog = find_subprog(env, start);
5751 	if (subprog < 0) {
5752 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5753 			  start);
5754 		return -EFAULT;
5755 	}
5756 	return env->subprog_info[subprog].stack_depth;
5757 }
5758 #endif
5759 
5760 static int __check_buffer_access(struct bpf_verifier_env *env,
5761 				 const char *buf_info,
5762 				 const struct bpf_reg_state *reg,
5763 				 int regno, int off, int size)
5764 {
5765 	if (off < 0) {
5766 		verbose(env,
5767 			"R%d invalid %s buffer access: off=%d, size=%d\n",
5768 			regno, buf_info, off, size);
5769 		return -EACCES;
5770 	}
5771 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5772 		char tn_buf[48];
5773 
5774 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5775 		verbose(env,
5776 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
5777 			regno, off, tn_buf);
5778 		return -EACCES;
5779 	}
5780 
5781 	return 0;
5782 }
5783 
5784 static int check_tp_buffer_access(struct bpf_verifier_env *env,
5785 				  const struct bpf_reg_state *reg,
5786 				  int regno, int off, int size)
5787 {
5788 	int err;
5789 
5790 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
5791 	if (err)
5792 		return err;
5793 
5794 	if (off + size > env->prog->aux->max_tp_access)
5795 		env->prog->aux->max_tp_access = off + size;
5796 
5797 	return 0;
5798 }
5799 
5800 static int check_buffer_access(struct bpf_verifier_env *env,
5801 			       const struct bpf_reg_state *reg,
5802 			       int regno, int off, int size,
5803 			       bool zero_size_allowed,
5804 			       u32 *max_access)
5805 {
5806 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
5807 	int err;
5808 
5809 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
5810 	if (err)
5811 		return err;
5812 
5813 	if (off + size > *max_access)
5814 		*max_access = off + size;
5815 
5816 	return 0;
5817 }
5818 
5819 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
5820 static void zext_32_to_64(struct bpf_reg_state *reg)
5821 {
5822 	reg->var_off = tnum_subreg(reg->var_off);
5823 	__reg_assign_32_into_64(reg);
5824 }
5825 
5826 /* truncate register to smaller size (in bytes)
5827  * must be called with size < BPF_REG_SIZE
5828  */
5829 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
5830 {
5831 	u64 mask;
5832 
5833 	/* clear high bits in bit representation */
5834 	reg->var_off = tnum_cast(reg->var_off, size);
5835 
5836 	/* fix arithmetic bounds */
5837 	mask = ((u64)1 << (size * 8)) - 1;
5838 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
5839 		reg->umin_value &= mask;
5840 		reg->umax_value &= mask;
5841 	} else {
5842 		reg->umin_value = 0;
5843 		reg->umax_value = mask;
5844 	}
5845 	reg->smin_value = reg->umin_value;
5846 	reg->smax_value = reg->umax_value;
5847 
5848 	/* If size is smaller than 32bit register the 32bit register
5849 	 * values are also truncated so we push 64-bit bounds into
5850 	 * 32-bit bounds. Above were truncated < 32-bits already.
5851 	 */
5852 	if (size >= 4)
5853 		return;
5854 	__reg_combine_64_into_32(reg);
5855 }
5856 
5857 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
5858 {
5859 	if (size == 1) {
5860 		reg->smin_value = reg->s32_min_value = S8_MIN;
5861 		reg->smax_value = reg->s32_max_value = S8_MAX;
5862 	} else if (size == 2) {
5863 		reg->smin_value = reg->s32_min_value = S16_MIN;
5864 		reg->smax_value = reg->s32_max_value = S16_MAX;
5865 	} else {
5866 		/* size == 4 */
5867 		reg->smin_value = reg->s32_min_value = S32_MIN;
5868 		reg->smax_value = reg->s32_max_value = S32_MAX;
5869 	}
5870 	reg->umin_value = reg->u32_min_value = 0;
5871 	reg->umax_value = U64_MAX;
5872 	reg->u32_max_value = U32_MAX;
5873 	reg->var_off = tnum_unknown;
5874 }
5875 
5876 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
5877 {
5878 	s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
5879 	u64 top_smax_value, top_smin_value;
5880 	u64 num_bits = size * 8;
5881 
5882 	if (tnum_is_const(reg->var_off)) {
5883 		u64_cval = reg->var_off.value;
5884 		if (size == 1)
5885 			reg->var_off = tnum_const((s8)u64_cval);
5886 		else if (size == 2)
5887 			reg->var_off = tnum_const((s16)u64_cval);
5888 		else
5889 			/* size == 4 */
5890 			reg->var_off = tnum_const((s32)u64_cval);
5891 
5892 		u64_cval = reg->var_off.value;
5893 		reg->smax_value = reg->smin_value = u64_cval;
5894 		reg->umax_value = reg->umin_value = u64_cval;
5895 		reg->s32_max_value = reg->s32_min_value = u64_cval;
5896 		reg->u32_max_value = reg->u32_min_value = u64_cval;
5897 		return;
5898 	}
5899 
5900 	top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
5901 	top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
5902 
5903 	if (top_smax_value != top_smin_value)
5904 		goto out;
5905 
5906 	/* find the s64_min and s64_min after sign extension */
5907 	if (size == 1) {
5908 		init_s64_max = (s8)reg->smax_value;
5909 		init_s64_min = (s8)reg->smin_value;
5910 	} else if (size == 2) {
5911 		init_s64_max = (s16)reg->smax_value;
5912 		init_s64_min = (s16)reg->smin_value;
5913 	} else {
5914 		init_s64_max = (s32)reg->smax_value;
5915 		init_s64_min = (s32)reg->smin_value;
5916 	}
5917 
5918 	s64_max = max(init_s64_max, init_s64_min);
5919 	s64_min = min(init_s64_max, init_s64_min);
5920 
5921 	/* both of s64_max/s64_min positive or negative */
5922 	if ((s64_max >= 0) == (s64_min >= 0)) {
5923 		reg->smin_value = reg->s32_min_value = s64_min;
5924 		reg->smax_value = reg->s32_max_value = s64_max;
5925 		reg->umin_value = reg->u32_min_value = s64_min;
5926 		reg->umax_value = reg->u32_max_value = s64_max;
5927 		reg->var_off = tnum_range(s64_min, s64_max);
5928 		return;
5929 	}
5930 
5931 out:
5932 	set_sext64_default_val(reg, size);
5933 }
5934 
5935 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
5936 {
5937 	if (size == 1) {
5938 		reg->s32_min_value = S8_MIN;
5939 		reg->s32_max_value = S8_MAX;
5940 	} else {
5941 		/* size == 2 */
5942 		reg->s32_min_value = S16_MIN;
5943 		reg->s32_max_value = S16_MAX;
5944 	}
5945 	reg->u32_min_value = 0;
5946 	reg->u32_max_value = U32_MAX;
5947 }
5948 
5949 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
5950 {
5951 	s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
5952 	u32 top_smax_value, top_smin_value;
5953 	u32 num_bits = size * 8;
5954 
5955 	if (tnum_is_const(reg->var_off)) {
5956 		u32_val = reg->var_off.value;
5957 		if (size == 1)
5958 			reg->var_off = tnum_const((s8)u32_val);
5959 		else
5960 			reg->var_off = tnum_const((s16)u32_val);
5961 
5962 		u32_val = reg->var_off.value;
5963 		reg->s32_min_value = reg->s32_max_value = u32_val;
5964 		reg->u32_min_value = reg->u32_max_value = u32_val;
5965 		return;
5966 	}
5967 
5968 	top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
5969 	top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
5970 
5971 	if (top_smax_value != top_smin_value)
5972 		goto out;
5973 
5974 	/* find the s32_min and s32_min after sign extension */
5975 	if (size == 1) {
5976 		init_s32_max = (s8)reg->s32_max_value;
5977 		init_s32_min = (s8)reg->s32_min_value;
5978 	} else {
5979 		/* size == 2 */
5980 		init_s32_max = (s16)reg->s32_max_value;
5981 		init_s32_min = (s16)reg->s32_min_value;
5982 	}
5983 	s32_max = max(init_s32_max, init_s32_min);
5984 	s32_min = min(init_s32_max, init_s32_min);
5985 
5986 	if ((s32_min >= 0) == (s32_max >= 0)) {
5987 		reg->s32_min_value = s32_min;
5988 		reg->s32_max_value = s32_max;
5989 		reg->u32_min_value = (u32)s32_min;
5990 		reg->u32_max_value = (u32)s32_max;
5991 		return;
5992 	}
5993 
5994 out:
5995 	set_sext32_default_val(reg, size);
5996 }
5997 
5998 static bool bpf_map_is_rdonly(const struct bpf_map *map)
5999 {
6000 	/* A map is considered read-only if the following condition are true:
6001 	 *
6002 	 * 1) BPF program side cannot change any of the map content. The
6003 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6004 	 *    and was set at map creation time.
6005 	 * 2) The map value(s) have been initialized from user space by a
6006 	 *    loader and then "frozen", such that no new map update/delete
6007 	 *    operations from syscall side are possible for the rest of
6008 	 *    the map's lifetime from that point onwards.
6009 	 * 3) Any parallel/pending map update/delete operations from syscall
6010 	 *    side have been completed. Only after that point, it's safe to
6011 	 *    assume that map value(s) are immutable.
6012 	 */
6013 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
6014 	       READ_ONCE(map->frozen) &&
6015 	       !bpf_map_write_active(map);
6016 }
6017 
6018 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6019 			       bool is_ldsx)
6020 {
6021 	void *ptr;
6022 	u64 addr;
6023 	int err;
6024 
6025 	err = map->ops->map_direct_value_addr(map, &addr, off);
6026 	if (err)
6027 		return err;
6028 	ptr = (void *)(long)addr + off;
6029 
6030 	switch (size) {
6031 	case sizeof(u8):
6032 		*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6033 		break;
6034 	case sizeof(u16):
6035 		*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6036 		break;
6037 	case sizeof(u32):
6038 		*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6039 		break;
6040 	case sizeof(u64):
6041 		*val = *(u64 *)ptr;
6042 		break;
6043 	default:
6044 		return -EINVAL;
6045 	}
6046 	return 0;
6047 }
6048 
6049 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
6050 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
6051 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
6052 
6053 /*
6054  * Allow list few fields as RCU trusted or full trusted.
6055  * This logic doesn't allow mix tagging and will be removed once GCC supports
6056  * btf_type_tag.
6057  */
6058 
6059 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
6060 BTF_TYPE_SAFE_RCU(struct task_struct) {
6061 	const cpumask_t *cpus_ptr;
6062 	struct css_set __rcu *cgroups;
6063 	struct task_struct __rcu *real_parent;
6064 	struct task_struct *group_leader;
6065 };
6066 
6067 BTF_TYPE_SAFE_RCU(struct cgroup) {
6068 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6069 	struct kernfs_node *kn;
6070 };
6071 
6072 BTF_TYPE_SAFE_RCU(struct css_set) {
6073 	struct cgroup *dfl_cgrp;
6074 };
6075 
6076 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
6077 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6078 	struct file __rcu *exe_file;
6079 };
6080 
6081 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6082  * because bpf prog accessible sockets are SOCK_RCU_FREE.
6083  */
6084 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6085 	struct sock *sk;
6086 };
6087 
6088 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6089 	struct sock *sk;
6090 };
6091 
6092 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
6093 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6094 	struct seq_file *seq;
6095 };
6096 
6097 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6098 	struct bpf_iter_meta *meta;
6099 	struct task_struct *task;
6100 };
6101 
6102 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6103 	struct file *file;
6104 };
6105 
6106 BTF_TYPE_SAFE_TRUSTED(struct file) {
6107 	struct inode *f_inode;
6108 };
6109 
6110 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6111 	/* no negative dentry-s in places where bpf can see it */
6112 	struct inode *d_inode;
6113 };
6114 
6115 BTF_TYPE_SAFE_TRUSTED(struct socket) {
6116 	struct sock *sk;
6117 };
6118 
6119 static bool type_is_rcu(struct bpf_verifier_env *env,
6120 			struct bpf_reg_state *reg,
6121 			const char *field_name, u32 btf_id)
6122 {
6123 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6124 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6125 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6126 
6127 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6128 }
6129 
6130 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6131 				struct bpf_reg_state *reg,
6132 				const char *field_name, u32 btf_id)
6133 {
6134 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6135 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6136 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6137 
6138 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6139 }
6140 
6141 static bool type_is_trusted(struct bpf_verifier_env *env,
6142 			    struct bpf_reg_state *reg,
6143 			    const char *field_name, u32 btf_id)
6144 {
6145 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6146 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6147 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6148 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6149 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6150 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
6151 
6152 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6153 }
6154 
6155 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6156 				   struct bpf_reg_state *regs,
6157 				   int regno, int off, int size,
6158 				   enum bpf_access_type atype,
6159 				   int value_regno)
6160 {
6161 	struct bpf_reg_state *reg = regs + regno;
6162 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6163 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6164 	const char *field_name = NULL;
6165 	enum bpf_type_flag flag = 0;
6166 	u32 btf_id = 0;
6167 	int ret;
6168 
6169 	if (!env->allow_ptr_leaks) {
6170 		verbose(env,
6171 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6172 			tname);
6173 		return -EPERM;
6174 	}
6175 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6176 		verbose(env,
6177 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6178 			tname);
6179 		return -EINVAL;
6180 	}
6181 	if (off < 0) {
6182 		verbose(env,
6183 			"R%d is ptr_%s invalid negative access: off=%d\n",
6184 			regno, tname, off);
6185 		return -EACCES;
6186 	}
6187 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6188 		char tn_buf[48];
6189 
6190 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6191 		verbose(env,
6192 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6193 			regno, tname, off, tn_buf);
6194 		return -EACCES;
6195 	}
6196 
6197 	if (reg->type & MEM_USER) {
6198 		verbose(env,
6199 			"R%d is ptr_%s access user memory: off=%d\n",
6200 			regno, tname, off);
6201 		return -EACCES;
6202 	}
6203 
6204 	if (reg->type & MEM_PERCPU) {
6205 		verbose(env,
6206 			"R%d is ptr_%s access percpu memory: off=%d\n",
6207 			regno, tname, off);
6208 		return -EACCES;
6209 	}
6210 
6211 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6212 		if (!btf_is_kernel(reg->btf)) {
6213 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6214 			return -EFAULT;
6215 		}
6216 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6217 	} else {
6218 		/* Writes are permitted with default btf_struct_access for
6219 		 * program allocated objects (which always have ref_obj_id > 0),
6220 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6221 		 */
6222 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6223 			verbose(env, "only read is supported\n");
6224 			return -EACCES;
6225 		}
6226 
6227 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6228 		    !reg->ref_obj_id) {
6229 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6230 			return -EFAULT;
6231 		}
6232 
6233 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6234 	}
6235 
6236 	if (ret < 0)
6237 		return ret;
6238 
6239 	if (ret != PTR_TO_BTF_ID) {
6240 		/* just mark; */
6241 
6242 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6243 		/* If this is an untrusted pointer, all pointers formed by walking it
6244 		 * also inherit the untrusted flag.
6245 		 */
6246 		flag = PTR_UNTRUSTED;
6247 
6248 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6249 		/* By default any pointer obtained from walking a trusted pointer is no
6250 		 * longer trusted, unless the field being accessed has explicitly been
6251 		 * marked as inheriting its parent's state of trust (either full or RCU).
6252 		 * For example:
6253 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
6254 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
6255 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6256 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6257 		 *
6258 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
6259 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
6260 		 */
6261 		if (type_is_trusted(env, reg, field_name, btf_id)) {
6262 			flag |= PTR_TRUSTED;
6263 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6264 			if (type_is_rcu(env, reg, field_name, btf_id)) {
6265 				/* ignore __rcu tag and mark it MEM_RCU */
6266 				flag |= MEM_RCU;
6267 			} else if (flag & MEM_RCU ||
6268 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6269 				/* __rcu tagged pointers can be NULL */
6270 				flag |= MEM_RCU | PTR_MAYBE_NULL;
6271 
6272 				/* We always trust them */
6273 				if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6274 				    flag & PTR_UNTRUSTED)
6275 					flag &= ~PTR_UNTRUSTED;
6276 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
6277 				/* keep as-is */
6278 			} else {
6279 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6280 				clear_trusted_flags(&flag);
6281 			}
6282 		} else {
6283 			/*
6284 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
6285 			 * aggressively mark as untrusted otherwise such
6286 			 * pointers will be plain PTR_TO_BTF_ID without flags
6287 			 * and will be allowed to be passed into helpers for
6288 			 * compat reasons.
6289 			 */
6290 			flag = PTR_UNTRUSTED;
6291 		}
6292 	} else {
6293 		/* Old compat. Deprecated */
6294 		clear_trusted_flags(&flag);
6295 	}
6296 
6297 	if (atype == BPF_READ && value_regno >= 0)
6298 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6299 
6300 	return 0;
6301 }
6302 
6303 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6304 				   struct bpf_reg_state *regs,
6305 				   int regno, int off, int size,
6306 				   enum bpf_access_type atype,
6307 				   int value_regno)
6308 {
6309 	struct bpf_reg_state *reg = regs + regno;
6310 	struct bpf_map *map = reg->map_ptr;
6311 	struct bpf_reg_state map_reg;
6312 	enum bpf_type_flag flag = 0;
6313 	const struct btf_type *t;
6314 	const char *tname;
6315 	u32 btf_id;
6316 	int ret;
6317 
6318 	if (!btf_vmlinux) {
6319 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6320 		return -ENOTSUPP;
6321 	}
6322 
6323 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6324 		verbose(env, "map_ptr access not supported for map type %d\n",
6325 			map->map_type);
6326 		return -ENOTSUPP;
6327 	}
6328 
6329 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6330 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6331 
6332 	if (!env->allow_ptr_leaks) {
6333 		verbose(env,
6334 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6335 			tname);
6336 		return -EPERM;
6337 	}
6338 
6339 	if (off < 0) {
6340 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
6341 			regno, tname, off);
6342 		return -EACCES;
6343 	}
6344 
6345 	if (atype != BPF_READ) {
6346 		verbose(env, "only read from %s is supported\n", tname);
6347 		return -EACCES;
6348 	}
6349 
6350 	/* Simulate access to a PTR_TO_BTF_ID */
6351 	memset(&map_reg, 0, sizeof(map_reg));
6352 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6353 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6354 	if (ret < 0)
6355 		return ret;
6356 
6357 	if (value_regno >= 0)
6358 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6359 
6360 	return 0;
6361 }
6362 
6363 /* Check that the stack access at the given offset is within bounds. The
6364  * maximum valid offset is -1.
6365  *
6366  * The minimum valid offset is -MAX_BPF_STACK for writes, and
6367  * -state->allocated_stack for reads.
6368  */
6369 static int check_stack_slot_within_bounds(int off,
6370 					  struct bpf_func_state *state,
6371 					  enum bpf_access_type t)
6372 {
6373 	int min_valid_off;
6374 
6375 	if (t == BPF_WRITE)
6376 		min_valid_off = -MAX_BPF_STACK;
6377 	else
6378 		min_valid_off = -state->allocated_stack;
6379 
6380 	if (off < min_valid_off || off > -1)
6381 		return -EACCES;
6382 	return 0;
6383 }
6384 
6385 /* Check that the stack access at 'regno + off' falls within the maximum stack
6386  * bounds.
6387  *
6388  * 'off' includes `regno->offset`, but not its dynamic part (if any).
6389  */
6390 static int check_stack_access_within_bounds(
6391 		struct bpf_verifier_env *env,
6392 		int regno, int off, int access_size,
6393 		enum bpf_access_src src, enum bpf_access_type type)
6394 {
6395 	struct bpf_reg_state *regs = cur_regs(env);
6396 	struct bpf_reg_state *reg = regs + regno;
6397 	struct bpf_func_state *state = func(env, reg);
6398 	int min_off, max_off;
6399 	int err;
6400 	char *err_extra;
6401 
6402 	if (src == ACCESS_HELPER)
6403 		/* We don't know if helpers are reading or writing (or both). */
6404 		err_extra = " indirect access to";
6405 	else if (type == BPF_READ)
6406 		err_extra = " read from";
6407 	else
6408 		err_extra = " write to";
6409 
6410 	if (tnum_is_const(reg->var_off)) {
6411 		min_off = reg->var_off.value + off;
6412 		if (access_size > 0)
6413 			max_off = min_off + access_size - 1;
6414 		else
6415 			max_off = min_off;
6416 	} else {
6417 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6418 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
6419 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6420 				err_extra, regno);
6421 			return -EACCES;
6422 		}
6423 		min_off = reg->smin_value + off;
6424 		if (access_size > 0)
6425 			max_off = reg->smax_value + off + access_size - 1;
6426 		else
6427 			max_off = min_off;
6428 	}
6429 
6430 	err = check_stack_slot_within_bounds(min_off, state, type);
6431 	if (!err)
6432 		err = check_stack_slot_within_bounds(max_off, state, type);
6433 
6434 	if (err) {
6435 		if (tnum_is_const(reg->var_off)) {
6436 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6437 				err_extra, regno, off, access_size);
6438 		} else {
6439 			char tn_buf[48];
6440 
6441 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6442 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
6443 				err_extra, regno, tn_buf, access_size);
6444 		}
6445 	}
6446 	return err;
6447 }
6448 
6449 /* check whether memory at (regno + off) is accessible for t = (read | write)
6450  * if t==write, value_regno is a register which value is stored into memory
6451  * if t==read, value_regno is a register which will receive the value from memory
6452  * if t==write && value_regno==-1, some unknown value is stored into memory
6453  * if t==read && value_regno==-1, don't care what we read from memory
6454  */
6455 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6456 			    int off, int bpf_size, enum bpf_access_type t,
6457 			    int value_regno, bool strict_alignment_once, bool is_ldsx)
6458 {
6459 	struct bpf_reg_state *regs = cur_regs(env);
6460 	struct bpf_reg_state *reg = regs + regno;
6461 	struct bpf_func_state *state;
6462 	int size, err = 0;
6463 
6464 	size = bpf_size_to_bytes(bpf_size);
6465 	if (size < 0)
6466 		return size;
6467 
6468 	/* alignment checks will add in reg->off themselves */
6469 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6470 	if (err)
6471 		return err;
6472 
6473 	/* for access checks, reg->off is just part of off */
6474 	off += reg->off;
6475 
6476 	if (reg->type == PTR_TO_MAP_KEY) {
6477 		if (t == BPF_WRITE) {
6478 			verbose(env, "write to change key R%d not allowed\n", regno);
6479 			return -EACCES;
6480 		}
6481 
6482 		err = check_mem_region_access(env, regno, off, size,
6483 					      reg->map_ptr->key_size, false);
6484 		if (err)
6485 			return err;
6486 		if (value_regno >= 0)
6487 			mark_reg_unknown(env, regs, value_regno);
6488 	} else if (reg->type == PTR_TO_MAP_VALUE) {
6489 		struct btf_field *kptr_field = NULL;
6490 
6491 		if (t == BPF_WRITE && value_regno >= 0 &&
6492 		    is_pointer_value(env, value_regno)) {
6493 			verbose(env, "R%d leaks addr into map\n", value_regno);
6494 			return -EACCES;
6495 		}
6496 		err = check_map_access_type(env, regno, off, size, t);
6497 		if (err)
6498 			return err;
6499 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6500 		if (err)
6501 			return err;
6502 		if (tnum_is_const(reg->var_off))
6503 			kptr_field = btf_record_find(reg->map_ptr->record,
6504 						     off + reg->var_off.value, BPF_KPTR);
6505 		if (kptr_field) {
6506 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6507 		} else if (t == BPF_READ && value_regno >= 0) {
6508 			struct bpf_map *map = reg->map_ptr;
6509 
6510 			/* if map is read-only, track its contents as scalars */
6511 			if (tnum_is_const(reg->var_off) &&
6512 			    bpf_map_is_rdonly(map) &&
6513 			    map->ops->map_direct_value_addr) {
6514 				int map_off = off + reg->var_off.value;
6515 				u64 val = 0;
6516 
6517 				err = bpf_map_direct_read(map, map_off, size,
6518 							  &val, is_ldsx);
6519 				if (err)
6520 					return err;
6521 
6522 				regs[value_regno].type = SCALAR_VALUE;
6523 				__mark_reg_known(&regs[value_regno], val);
6524 			} else {
6525 				mark_reg_unknown(env, regs, value_regno);
6526 			}
6527 		}
6528 	} else if (base_type(reg->type) == PTR_TO_MEM) {
6529 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6530 
6531 		if (type_may_be_null(reg->type)) {
6532 			verbose(env, "R%d invalid mem access '%s'\n", regno,
6533 				reg_type_str(env, reg->type));
6534 			return -EACCES;
6535 		}
6536 
6537 		if (t == BPF_WRITE && rdonly_mem) {
6538 			verbose(env, "R%d cannot write into %s\n",
6539 				regno, reg_type_str(env, reg->type));
6540 			return -EACCES;
6541 		}
6542 
6543 		if (t == BPF_WRITE && value_regno >= 0 &&
6544 		    is_pointer_value(env, value_regno)) {
6545 			verbose(env, "R%d leaks addr into mem\n", value_regno);
6546 			return -EACCES;
6547 		}
6548 
6549 		err = check_mem_region_access(env, regno, off, size,
6550 					      reg->mem_size, false);
6551 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6552 			mark_reg_unknown(env, regs, value_regno);
6553 	} else if (reg->type == PTR_TO_CTX) {
6554 		enum bpf_reg_type reg_type = SCALAR_VALUE;
6555 		struct btf *btf = NULL;
6556 		u32 btf_id = 0;
6557 
6558 		if (t == BPF_WRITE && value_regno >= 0 &&
6559 		    is_pointer_value(env, value_regno)) {
6560 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
6561 			return -EACCES;
6562 		}
6563 
6564 		err = check_ptr_off_reg(env, reg, regno);
6565 		if (err < 0)
6566 			return err;
6567 
6568 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
6569 				       &btf_id);
6570 		if (err)
6571 			verbose_linfo(env, insn_idx, "; ");
6572 		if (!err && t == BPF_READ && value_regno >= 0) {
6573 			/* ctx access returns either a scalar, or a
6574 			 * PTR_TO_PACKET[_META,_END]. In the latter
6575 			 * case, we know the offset is zero.
6576 			 */
6577 			if (reg_type == SCALAR_VALUE) {
6578 				mark_reg_unknown(env, regs, value_regno);
6579 			} else {
6580 				mark_reg_known_zero(env, regs,
6581 						    value_regno);
6582 				if (type_may_be_null(reg_type))
6583 					regs[value_regno].id = ++env->id_gen;
6584 				/* A load of ctx field could have different
6585 				 * actual load size with the one encoded in the
6586 				 * insn. When the dst is PTR, it is for sure not
6587 				 * a sub-register.
6588 				 */
6589 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6590 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
6591 					regs[value_regno].btf = btf;
6592 					regs[value_regno].btf_id = btf_id;
6593 				}
6594 			}
6595 			regs[value_regno].type = reg_type;
6596 		}
6597 
6598 	} else if (reg->type == PTR_TO_STACK) {
6599 		/* Basic bounds checks. */
6600 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6601 		if (err)
6602 			return err;
6603 
6604 		state = func(env, reg);
6605 		err = update_stack_depth(env, state, off);
6606 		if (err)
6607 			return err;
6608 
6609 		if (t == BPF_READ)
6610 			err = check_stack_read(env, regno, off, size,
6611 					       value_regno);
6612 		else
6613 			err = check_stack_write(env, regno, off, size,
6614 						value_regno, insn_idx);
6615 	} else if (reg_is_pkt_pointer(reg)) {
6616 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
6617 			verbose(env, "cannot write into packet\n");
6618 			return -EACCES;
6619 		}
6620 		if (t == BPF_WRITE && value_regno >= 0 &&
6621 		    is_pointer_value(env, value_regno)) {
6622 			verbose(env, "R%d leaks addr into packet\n",
6623 				value_regno);
6624 			return -EACCES;
6625 		}
6626 		err = check_packet_access(env, regno, off, size, false);
6627 		if (!err && t == BPF_READ && value_regno >= 0)
6628 			mark_reg_unknown(env, regs, value_regno);
6629 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
6630 		if (t == BPF_WRITE && value_regno >= 0 &&
6631 		    is_pointer_value(env, value_regno)) {
6632 			verbose(env, "R%d leaks addr into flow keys\n",
6633 				value_regno);
6634 			return -EACCES;
6635 		}
6636 
6637 		err = check_flow_keys_access(env, off, size);
6638 		if (!err && t == BPF_READ && value_regno >= 0)
6639 			mark_reg_unknown(env, regs, value_regno);
6640 	} else if (type_is_sk_pointer(reg->type)) {
6641 		if (t == BPF_WRITE) {
6642 			verbose(env, "R%d cannot write into %s\n",
6643 				regno, reg_type_str(env, reg->type));
6644 			return -EACCES;
6645 		}
6646 		err = check_sock_access(env, insn_idx, regno, off, size, t);
6647 		if (!err && value_regno >= 0)
6648 			mark_reg_unknown(env, regs, value_regno);
6649 	} else if (reg->type == PTR_TO_TP_BUFFER) {
6650 		err = check_tp_buffer_access(env, reg, regno, off, size);
6651 		if (!err && t == BPF_READ && value_regno >= 0)
6652 			mark_reg_unknown(env, regs, value_regno);
6653 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
6654 		   !type_may_be_null(reg->type)) {
6655 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
6656 					      value_regno);
6657 	} else if (reg->type == CONST_PTR_TO_MAP) {
6658 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
6659 					      value_regno);
6660 	} else if (base_type(reg->type) == PTR_TO_BUF) {
6661 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6662 		u32 *max_access;
6663 
6664 		if (rdonly_mem) {
6665 			if (t == BPF_WRITE) {
6666 				verbose(env, "R%d cannot write into %s\n",
6667 					regno, reg_type_str(env, reg->type));
6668 				return -EACCES;
6669 			}
6670 			max_access = &env->prog->aux->max_rdonly_access;
6671 		} else {
6672 			max_access = &env->prog->aux->max_rdwr_access;
6673 		}
6674 
6675 		err = check_buffer_access(env, reg, regno, off, size, false,
6676 					  max_access);
6677 
6678 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
6679 			mark_reg_unknown(env, regs, value_regno);
6680 	} else {
6681 		verbose(env, "R%d invalid mem access '%s'\n", regno,
6682 			reg_type_str(env, reg->type));
6683 		return -EACCES;
6684 	}
6685 
6686 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
6687 	    regs[value_regno].type == SCALAR_VALUE) {
6688 		if (!is_ldsx)
6689 			/* b/h/w load zero-extends, mark upper bits as known 0 */
6690 			coerce_reg_to_size(&regs[value_regno], size);
6691 		else
6692 			coerce_reg_to_size_sx(&regs[value_regno], size);
6693 	}
6694 	return err;
6695 }
6696 
6697 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
6698 {
6699 	int load_reg;
6700 	int err;
6701 
6702 	switch (insn->imm) {
6703 	case BPF_ADD:
6704 	case BPF_ADD | BPF_FETCH:
6705 	case BPF_AND:
6706 	case BPF_AND | BPF_FETCH:
6707 	case BPF_OR:
6708 	case BPF_OR | BPF_FETCH:
6709 	case BPF_XOR:
6710 	case BPF_XOR | BPF_FETCH:
6711 	case BPF_XCHG:
6712 	case BPF_CMPXCHG:
6713 		break;
6714 	default:
6715 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
6716 		return -EINVAL;
6717 	}
6718 
6719 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
6720 		verbose(env, "invalid atomic operand size\n");
6721 		return -EINVAL;
6722 	}
6723 
6724 	/* check src1 operand */
6725 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
6726 	if (err)
6727 		return err;
6728 
6729 	/* check src2 operand */
6730 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6731 	if (err)
6732 		return err;
6733 
6734 	if (insn->imm == BPF_CMPXCHG) {
6735 		/* Check comparison of R0 with memory location */
6736 		const u32 aux_reg = BPF_REG_0;
6737 
6738 		err = check_reg_arg(env, aux_reg, SRC_OP);
6739 		if (err)
6740 			return err;
6741 
6742 		if (is_pointer_value(env, aux_reg)) {
6743 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
6744 			return -EACCES;
6745 		}
6746 	}
6747 
6748 	if (is_pointer_value(env, insn->src_reg)) {
6749 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6750 		return -EACCES;
6751 	}
6752 
6753 	if (is_ctx_reg(env, insn->dst_reg) ||
6754 	    is_pkt_reg(env, insn->dst_reg) ||
6755 	    is_flow_key_reg(env, insn->dst_reg) ||
6756 	    is_sk_reg(env, insn->dst_reg)) {
6757 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
6758 			insn->dst_reg,
6759 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
6760 		return -EACCES;
6761 	}
6762 
6763 	if (insn->imm & BPF_FETCH) {
6764 		if (insn->imm == BPF_CMPXCHG)
6765 			load_reg = BPF_REG_0;
6766 		else
6767 			load_reg = insn->src_reg;
6768 
6769 		/* check and record load of old value */
6770 		err = check_reg_arg(env, load_reg, DST_OP);
6771 		if (err)
6772 			return err;
6773 	} else {
6774 		/* This instruction accesses a memory location but doesn't
6775 		 * actually load it into a register.
6776 		 */
6777 		load_reg = -1;
6778 	}
6779 
6780 	/* Check whether we can read the memory, with second call for fetch
6781 	 * case to simulate the register fill.
6782 	 */
6783 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6784 			       BPF_SIZE(insn->code), BPF_READ, -1, true, false);
6785 	if (!err && load_reg >= 0)
6786 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6787 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
6788 				       true, false);
6789 	if (err)
6790 		return err;
6791 
6792 	/* Check whether we can write into the same memory. */
6793 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6794 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
6795 	if (err)
6796 		return err;
6797 
6798 	return 0;
6799 }
6800 
6801 /* When register 'regno' is used to read the stack (either directly or through
6802  * a helper function) make sure that it's within stack boundary and, depending
6803  * on the access type, that all elements of the stack are initialized.
6804  *
6805  * 'off' includes 'regno->off', but not its dynamic part (if any).
6806  *
6807  * All registers that have been spilled on the stack in the slots within the
6808  * read offsets are marked as read.
6809  */
6810 static int check_stack_range_initialized(
6811 		struct bpf_verifier_env *env, int regno, int off,
6812 		int access_size, bool zero_size_allowed,
6813 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
6814 {
6815 	struct bpf_reg_state *reg = reg_state(env, regno);
6816 	struct bpf_func_state *state = func(env, reg);
6817 	int err, min_off, max_off, i, j, slot, spi;
6818 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
6819 	enum bpf_access_type bounds_check_type;
6820 	/* Some accesses can write anything into the stack, others are
6821 	 * read-only.
6822 	 */
6823 	bool clobber = false;
6824 
6825 	if (access_size == 0 && !zero_size_allowed) {
6826 		verbose(env, "invalid zero-sized read\n");
6827 		return -EACCES;
6828 	}
6829 
6830 	if (type == ACCESS_HELPER) {
6831 		/* The bounds checks for writes are more permissive than for
6832 		 * reads. However, if raw_mode is not set, we'll do extra
6833 		 * checks below.
6834 		 */
6835 		bounds_check_type = BPF_WRITE;
6836 		clobber = true;
6837 	} else {
6838 		bounds_check_type = BPF_READ;
6839 	}
6840 	err = check_stack_access_within_bounds(env, regno, off, access_size,
6841 					       type, bounds_check_type);
6842 	if (err)
6843 		return err;
6844 
6845 
6846 	if (tnum_is_const(reg->var_off)) {
6847 		min_off = max_off = reg->var_off.value + off;
6848 	} else {
6849 		/* Variable offset is prohibited for unprivileged mode for
6850 		 * simplicity since it requires corresponding support in
6851 		 * Spectre masking for stack ALU.
6852 		 * See also retrieve_ptr_limit().
6853 		 */
6854 		if (!env->bypass_spec_v1) {
6855 			char tn_buf[48];
6856 
6857 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6858 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
6859 				regno, err_extra, tn_buf);
6860 			return -EACCES;
6861 		}
6862 		/* Only initialized buffer on stack is allowed to be accessed
6863 		 * with variable offset. With uninitialized buffer it's hard to
6864 		 * guarantee that whole memory is marked as initialized on
6865 		 * helper return since specific bounds are unknown what may
6866 		 * cause uninitialized stack leaking.
6867 		 */
6868 		if (meta && meta->raw_mode)
6869 			meta = NULL;
6870 
6871 		min_off = reg->smin_value + off;
6872 		max_off = reg->smax_value + off;
6873 	}
6874 
6875 	if (meta && meta->raw_mode) {
6876 		/* Ensure we won't be overwriting dynptrs when simulating byte
6877 		 * by byte access in check_helper_call using meta.access_size.
6878 		 * This would be a problem if we have a helper in the future
6879 		 * which takes:
6880 		 *
6881 		 *	helper(uninit_mem, len, dynptr)
6882 		 *
6883 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
6884 		 * may end up writing to dynptr itself when touching memory from
6885 		 * arg 1. This can be relaxed on a case by case basis for known
6886 		 * safe cases, but reject due to the possibilitiy of aliasing by
6887 		 * default.
6888 		 */
6889 		for (i = min_off; i < max_off + access_size; i++) {
6890 			int stack_off = -i - 1;
6891 
6892 			spi = __get_spi(i);
6893 			/* raw_mode may write past allocated_stack */
6894 			if (state->allocated_stack <= stack_off)
6895 				continue;
6896 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
6897 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
6898 				return -EACCES;
6899 			}
6900 		}
6901 		meta->access_size = access_size;
6902 		meta->regno = regno;
6903 		return 0;
6904 	}
6905 
6906 	for (i = min_off; i < max_off + access_size; i++) {
6907 		u8 *stype;
6908 
6909 		slot = -i - 1;
6910 		spi = slot / BPF_REG_SIZE;
6911 		if (state->allocated_stack <= slot)
6912 			goto err;
6913 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
6914 		if (*stype == STACK_MISC)
6915 			goto mark;
6916 		if ((*stype == STACK_ZERO) ||
6917 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
6918 			if (clobber) {
6919 				/* helper can write anything into the stack */
6920 				*stype = STACK_MISC;
6921 			}
6922 			goto mark;
6923 		}
6924 
6925 		if (is_spilled_reg(&state->stack[spi]) &&
6926 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
6927 		     env->allow_ptr_leaks)) {
6928 			if (clobber) {
6929 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
6930 				for (j = 0; j < BPF_REG_SIZE; j++)
6931 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
6932 			}
6933 			goto mark;
6934 		}
6935 
6936 err:
6937 		if (tnum_is_const(reg->var_off)) {
6938 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
6939 				err_extra, regno, min_off, i - min_off, access_size);
6940 		} else {
6941 			char tn_buf[48];
6942 
6943 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6944 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
6945 				err_extra, regno, tn_buf, i - min_off, access_size);
6946 		}
6947 		return -EACCES;
6948 mark:
6949 		/* reading any byte out of 8-byte 'spill_slot' will cause
6950 		 * the whole slot to be marked as 'read'
6951 		 */
6952 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
6953 			      state->stack[spi].spilled_ptr.parent,
6954 			      REG_LIVE_READ64);
6955 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
6956 		 * be sure that whether stack slot is written to or not. Hence,
6957 		 * we must still conservatively propagate reads upwards even if
6958 		 * helper may write to the entire memory range.
6959 		 */
6960 	}
6961 	return update_stack_depth(env, state, min_off);
6962 }
6963 
6964 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
6965 				   int access_size, bool zero_size_allowed,
6966 				   struct bpf_call_arg_meta *meta)
6967 {
6968 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6969 	u32 *max_access;
6970 
6971 	switch (base_type(reg->type)) {
6972 	case PTR_TO_PACKET:
6973 	case PTR_TO_PACKET_META:
6974 		return check_packet_access(env, regno, reg->off, access_size,
6975 					   zero_size_allowed);
6976 	case PTR_TO_MAP_KEY:
6977 		if (meta && meta->raw_mode) {
6978 			verbose(env, "R%d cannot write into %s\n", regno,
6979 				reg_type_str(env, reg->type));
6980 			return -EACCES;
6981 		}
6982 		return check_mem_region_access(env, regno, reg->off, access_size,
6983 					       reg->map_ptr->key_size, false);
6984 	case PTR_TO_MAP_VALUE:
6985 		if (check_map_access_type(env, regno, reg->off, access_size,
6986 					  meta && meta->raw_mode ? BPF_WRITE :
6987 					  BPF_READ))
6988 			return -EACCES;
6989 		return check_map_access(env, regno, reg->off, access_size,
6990 					zero_size_allowed, ACCESS_HELPER);
6991 	case PTR_TO_MEM:
6992 		if (type_is_rdonly_mem(reg->type)) {
6993 			if (meta && meta->raw_mode) {
6994 				verbose(env, "R%d cannot write into %s\n", regno,
6995 					reg_type_str(env, reg->type));
6996 				return -EACCES;
6997 			}
6998 		}
6999 		return check_mem_region_access(env, regno, reg->off,
7000 					       access_size, reg->mem_size,
7001 					       zero_size_allowed);
7002 	case PTR_TO_BUF:
7003 		if (type_is_rdonly_mem(reg->type)) {
7004 			if (meta && meta->raw_mode) {
7005 				verbose(env, "R%d cannot write into %s\n", regno,
7006 					reg_type_str(env, reg->type));
7007 				return -EACCES;
7008 			}
7009 
7010 			max_access = &env->prog->aux->max_rdonly_access;
7011 		} else {
7012 			max_access = &env->prog->aux->max_rdwr_access;
7013 		}
7014 		return check_buffer_access(env, reg, regno, reg->off,
7015 					   access_size, zero_size_allowed,
7016 					   max_access);
7017 	case PTR_TO_STACK:
7018 		return check_stack_range_initialized(
7019 				env,
7020 				regno, reg->off, access_size,
7021 				zero_size_allowed, ACCESS_HELPER, meta);
7022 	case PTR_TO_BTF_ID:
7023 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
7024 					       access_size, BPF_READ, -1);
7025 	case PTR_TO_CTX:
7026 		/* in case the function doesn't know how to access the context,
7027 		 * (because we are in a program of type SYSCALL for example), we
7028 		 * can not statically check its size.
7029 		 * Dynamically check it now.
7030 		 */
7031 		if (!env->ops->convert_ctx_access) {
7032 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
7033 			int offset = access_size - 1;
7034 
7035 			/* Allow zero-byte read from PTR_TO_CTX */
7036 			if (access_size == 0)
7037 				return zero_size_allowed ? 0 : -EACCES;
7038 
7039 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7040 						atype, -1, false, false);
7041 		}
7042 
7043 		fallthrough;
7044 	default: /* scalar_value or invalid ptr */
7045 		/* Allow zero-byte read from NULL, regardless of pointer type */
7046 		if (zero_size_allowed && access_size == 0 &&
7047 		    register_is_null(reg))
7048 			return 0;
7049 
7050 		verbose(env, "R%d type=%s ", regno,
7051 			reg_type_str(env, reg->type));
7052 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7053 		return -EACCES;
7054 	}
7055 }
7056 
7057 static int check_mem_size_reg(struct bpf_verifier_env *env,
7058 			      struct bpf_reg_state *reg, u32 regno,
7059 			      bool zero_size_allowed,
7060 			      struct bpf_call_arg_meta *meta)
7061 {
7062 	int err;
7063 
7064 	/* This is used to refine r0 return value bounds for helpers
7065 	 * that enforce this value as an upper bound on return values.
7066 	 * See do_refine_retval_range() for helpers that can refine
7067 	 * the return value. C type of helper is u32 so we pull register
7068 	 * bound from umax_value however, if negative verifier errors
7069 	 * out. Only upper bounds can be learned because retval is an
7070 	 * int type and negative retvals are allowed.
7071 	 */
7072 	meta->msize_max_value = reg->umax_value;
7073 
7074 	/* The register is SCALAR_VALUE; the access check
7075 	 * happens using its boundaries.
7076 	 */
7077 	if (!tnum_is_const(reg->var_off))
7078 		/* For unprivileged variable accesses, disable raw
7079 		 * mode so that the program is required to
7080 		 * initialize all the memory that the helper could
7081 		 * just partially fill up.
7082 		 */
7083 		meta = NULL;
7084 
7085 	if (reg->smin_value < 0) {
7086 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7087 			regno);
7088 		return -EACCES;
7089 	}
7090 
7091 	if (reg->umin_value == 0) {
7092 		err = check_helper_mem_access(env, regno - 1, 0,
7093 					      zero_size_allowed,
7094 					      meta);
7095 		if (err)
7096 			return err;
7097 	}
7098 
7099 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7100 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7101 			regno);
7102 		return -EACCES;
7103 	}
7104 	err = check_helper_mem_access(env, regno - 1,
7105 				      reg->umax_value,
7106 				      zero_size_allowed, meta);
7107 	if (!err)
7108 		err = mark_chain_precision(env, regno);
7109 	return err;
7110 }
7111 
7112 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7113 		   u32 regno, u32 mem_size)
7114 {
7115 	bool may_be_null = type_may_be_null(reg->type);
7116 	struct bpf_reg_state saved_reg;
7117 	struct bpf_call_arg_meta meta;
7118 	int err;
7119 
7120 	if (register_is_null(reg))
7121 		return 0;
7122 
7123 	memset(&meta, 0, sizeof(meta));
7124 	/* Assuming that the register contains a value check if the memory
7125 	 * access is safe. Temporarily save and restore the register's state as
7126 	 * the conversion shouldn't be visible to a caller.
7127 	 */
7128 	if (may_be_null) {
7129 		saved_reg = *reg;
7130 		mark_ptr_not_null_reg(reg);
7131 	}
7132 
7133 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
7134 	/* Check access for BPF_WRITE */
7135 	meta.raw_mode = true;
7136 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
7137 
7138 	if (may_be_null)
7139 		*reg = saved_reg;
7140 
7141 	return err;
7142 }
7143 
7144 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7145 				    u32 regno)
7146 {
7147 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7148 	bool may_be_null = type_may_be_null(mem_reg->type);
7149 	struct bpf_reg_state saved_reg;
7150 	struct bpf_call_arg_meta meta;
7151 	int err;
7152 
7153 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7154 
7155 	memset(&meta, 0, sizeof(meta));
7156 
7157 	if (may_be_null) {
7158 		saved_reg = *mem_reg;
7159 		mark_ptr_not_null_reg(mem_reg);
7160 	}
7161 
7162 	err = check_mem_size_reg(env, reg, regno, true, &meta);
7163 	/* Check access for BPF_WRITE */
7164 	meta.raw_mode = true;
7165 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
7166 
7167 	if (may_be_null)
7168 		*mem_reg = saved_reg;
7169 	return err;
7170 }
7171 
7172 /* Implementation details:
7173  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7174  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7175  * Two bpf_map_lookups (even with the same key) will have different reg->id.
7176  * Two separate bpf_obj_new will also have different reg->id.
7177  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7178  * clears reg->id after value_or_null->value transition, since the verifier only
7179  * cares about the range of access to valid map value pointer and doesn't care
7180  * about actual address of the map element.
7181  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7182  * reg->id > 0 after value_or_null->value transition. By doing so
7183  * two bpf_map_lookups will be considered two different pointers that
7184  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7185  * returned from bpf_obj_new.
7186  * The verifier allows taking only one bpf_spin_lock at a time to avoid
7187  * dead-locks.
7188  * Since only one bpf_spin_lock is allowed the checks are simpler than
7189  * reg_is_refcounted() logic. The verifier needs to remember only
7190  * one spin_lock instead of array of acquired_refs.
7191  * cur_state->active_lock remembers which map value element or allocated
7192  * object got locked and clears it after bpf_spin_unlock.
7193  */
7194 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7195 			     bool is_lock)
7196 {
7197 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7198 	struct bpf_verifier_state *cur = env->cur_state;
7199 	bool is_const = tnum_is_const(reg->var_off);
7200 	u64 val = reg->var_off.value;
7201 	struct bpf_map *map = NULL;
7202 	struct btf *btf = NULL;
7203 	struct btf_record *rec;
7204 
7205 	if (!is_const) {
7206 		verbose(env,
7207 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7208 			regno);
7209 		return -EINVAL;
7210 	}
7211 	if (reg->type == PTR_TO_MAP_VALUE) {
7212 		map = reg->map_ptr;
7213 		if (!map->btf) {
7214 			verbose(env,
7215 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
7216 				map->name);
7217 			return -EINVAL;
7218 		}
7219 	} else {
7220 		btf = reg->btf;
7221 	}
7222 
7223 	rec = reg_btf_record(reg);
7224 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7225 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7226 			map ? map->name : "kptr");
7227 		return -EINVAL;
7228 	}
7229 	if (rec->spin_lock_off != val + reg->off) {
7230 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7231 			val + reg->off, rec->spin_lock_off);
7232 		return -EINVAL;
7233 	}
7234 	if (is_lock) {
7235 		if (cur->active_lock.ptr) {
7236 			verbose(env,
7237 				"Locking two bpf_spin_locks are not allowed\n");
7238 			return -EINVAL;
7239 		}
7240 		if (map)
7241 			cur->active_lock.ptr = map;
7242 		else
7243 			cur->active_lock.ptr = btf;
7244 		cur->active_lock.id = reg->id;
7245 	} else {
7246 		void *ptr;
7247 
7248 		if (map)
7249 			ptr = map;
7250 		else
7251 			ptr = btf;
7252 
7253 		if (!cur->active_lock.ptr) {
7254 			verbose(env, "bpf_spin_unlock without taking a lock\n");
7255 			return -EINVAL;
7256 		}
7257 		if (cur->active_lock.ptr != ptr ||
7258 		    cur->active_lock.id != reg->id) {
7259 			verbose(env, "bpf_spin_unlock of different lock\n");
7260 			return -EINVAL;
7261 		}
7262 
7263 		invalidate_non_owning_refs(env);
7264 
7265 		cur->active_lock.ptr = NULL;
7266 		cur->active_lock.id = 0;
7267 	}
7268 	return 0;
7269 }
7270 
7271 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7272 			      struct bpf_call_arg_meta *meta)
7273 {
7274 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7275 	bool is_const = tnum_is_const(reg->var_off);
7276 	struct bpf_map *map = reg->map_ptr;
7277 	u64 val = reg->var_off.value;
7278 
7279 	if (!is_const) {
7280 		verbose(env,
7281 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7282 			regno);
7283 		return -EINVAL;
7284 	}
7285 	if (!map->btf) {
7286 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7287 			map->name);
7288 		return -EINVAL;
7289 	}
7290 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
7291 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7292 		return -EINVAL;
7293 	}
7294 	if (map->record->timer_off != val + reg->off) {
7295 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7296 			val + reg->off, map->record->timer_off);
7297 		return -EINVAL;
7298 	}
7299 	if (meta->map_ptr) {
7300 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7301 		return -EFAULT;
7302 	}
7303 	meta->map_uid = reg->map_uid;
7304 	meta->map_ptr = map;
7305 	return 0;
7306 }
7307 
7308 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7309 			     struct bpf_call_arg_meta *meta)
7310 {
7311 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7312 	struct bpf_map *map_ptr = reg->map_ptr;
7313 	struct btf_field *kptr_field;
7314 	u32 kptr_off;
7315 
7316 	if (!tnum_is_const(reg->var_off)) {
7317 		verbose(env,
7318 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7319 			regno);
7320 		return -EINVAL;
7321 	}
7322 	if (!map_ptr->btf) {
7323 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7324 			map_ptr->name);
7325 		return -EINVAL;
7326 	}
7327 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7328 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
7329 		return -EINVAL;
7330 	}
7331 
7332 	meta->map_ptr = map_ptr;
7333 	kptr_off = reg->off + reg->var_off.value;
7334 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7335 	if (!kptr_field) {
7336 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7337 		return -EACCES;
7338 	}
7339 	if (kptr_field->type != BPF_KPTR_REF) {
7340 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7341 		return -EACCES;
7342 	}
7343 	meta->kptr_field = kptr_field;
7344 	return 0;
7345 }
7346 
7347 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7348  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7349  *
7350  * In both cases we deal with the first 8 bytes, but need to mark the next 8
7351  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7352  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7353  *
7354  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7355  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7356  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7357  * mutate the view of the dynptr and also possibly destroy it. In the latter
7358  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7359  * memory that dynptr points to.
7360  *
7361  * The verifier will keep track both levels of mutation (bpf_dynptr's in
7362  * reg->type and the memory's in reg->dynptr.type), but there is no support for
7363  * readonly dynptr view yet, hence only the first case is tracked and checked.
7364  *
7365  * This is consistent with how C applies the const modifier to a struct object,
7366  * where the pointer itself inside bpf_dynptr becomes const but not what it
7367  * points to.
7368  *
7369  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7370  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7371  */
7372 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7373 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
7374 {
7375 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7376 	int err;
7377 
7378 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7379 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7380 	 */
7381 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7382 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7383 		return -EFAULT;
7384 	}
7385 
7386 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
7387 	 *		 constructing a mutable bpf_dynptr object.
7388 	 *
7389 	 *		 Currently, this is only possible with PTR_TO_STACK
7390 	 *		 pointing to a region of at least 16 bytes which doesn't
7391 	 *		 contain an existing bpf_dynptr.
7392 	 *
7393 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7394 	 *		 mutated or destroyed. However, the memory it points to
7395 	 *		 may be mutated.
7396 	 *
7397 	 *  None       - Points to a initialized dynptr that can be mutated and
7398 	 *		 destroyed, including mutation of the memory it points
7399 	 *		 to.
7400 	 */
7401 	if (arg_type & MEM_UNINIT) {
7402 		int i;
7403 
7404 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
7405 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7406 			return -EINVAL;
7407 		}
7408 
7409 		/* we write BPF_DW bits (8 bytes) at a time */
7410 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7411 			err = check_mem_access(env, insn_idx, regno,
7412 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7413 			if (err)
7414 				return err;
7415 		}
7416 
7417 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7418 	} else /* MEM_RDONLY and None case from above */ {
7419 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7420 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7421 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7422 			return -EINVAL;
7423 		}
7424 
7425 		if (!is_dynptr_reg_valid_init(env, reg)) {
7426 			verbose(env,
7427 				"Expected an initialized dynptr as arg #%d\n",
7428 				regno);
7429 			return -EINVAL;
7430 		}
7431 
7432 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7433 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7434 			verbose(env,
7435 				"Expected a dynptr of type %s as arg #%d\n",
7436 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7437 			return -EINVAL;
7438 		}
7439 
7440 		err = mark_dynptr_read(env, reg);
7441 	}
7442 	return err;
7443 }
7444 
7445 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7446 {
7447 	struct bpf_func_state *state = func(env, reg);
7448 
7449 	return state->stack[spi].spilled_ptr.ref_obj_id;
7450 }
7451 
7452 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7453 {
7454 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7455 }
7456 
7457 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7458 {
7459 	return meta->kfunc_flags & KF_ITER_NEW;
7460 }
7461 
7462 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7463 {
7464 	return meta->kfunc_flags & KF_ITER_NEXT;
7465 }
7466 
7467 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7468 {
7469 	return meta->kfunc_flags & KF_ITER_DESTROY;
7470 }
7471 
7472 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7473 {
7474 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
7475 	 * kfunc is iter state pointer
7476 	 */
7477 	return arg == 0 && is_iter_kfunc(meta);
7478 }
7479 
7480 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7481 			    struct bpf_kfunc_call_arg_meta *meta)
7482 {
7483 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7484 	const struct btf_type *t;
7485 	const struct btf_param *arg;
7486 	int spi, err, i, nr_slots;
7487 	u32 btf_id;
7488 
7489 	/* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7490 	arg = &btf_params(meta->func_proto)[0];
7491 	t = btf_type_skip_modifiers(meta->btf, arg->type, NULL);	/* PTR */
7492 	t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id);	/* STRUCT */
7493 	nr_slots = t->size / BPF_REG_SIZE;
7494 
7495 	if (is_iter_new_kfunc(meta)) {
7496 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
7497 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7498 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7499 				iter_type_str(meta->btf, btf_id), regno);
7500 			return -EINVAL;
7501 		}
7502 
7503 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7504 			err = check_mem_access(env, insn_idx, regno,
7505 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7506 			if (err)
7507 				return err;
7508 		}
7509 
7510 		err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots);
7511 		if (err)
7512 			return err;
7513 	} else {
7514 		/* iter_next() or iter_destroy() expect initialized iter state*/
7515 		if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) {
7516 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
7517 				iter_type_str(meta->btf, btf_id), regno);
7518 			return -EINVAL;
7519 		}
7520 
7521 		spi = iter_get_spi(env, reg, nr_slots);
7522 		if (spi < 0)
7523 			return spi;
7524 
7525 		err = mark_iter_read(env, reg, spi, nr_slots);
7526 		if (err)
7527 			return err;
7528 
7529 		/* remember meta->iter info for process_iter_next_call() */
7530 		meta->iter.spi = spi;
7531 		meta->iter.frameno = reg->frameno;
7532 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7533 
7534 		if (is_iter_destroy_kfunc(meta)) {
7535 			err = unmark_stack_slots_iter(env, reg, nr_slots);
7536 			if (err)
7537 				return err;
7538 		}
7539 	}
7540 
7541 	return 0;
7542 }
7543 
7544 /* process_iter_next_call() is called when verifier gets to iterator's next
7545  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7546  * to it as just "iter_next()" in comments below.
7547  *
7548  * BPF verifier relies on a crucial contract for any iter_next()
7549  * implementation: it should *eventually* return NULL, and once that happens
7550  * it should keep returning NULL. That is, once iterator exhausts elements to
7551  * iterate, it should never reset or spuriously return new elements.
7552  *
7553  * With the assumption of such contract, process_iter_next_call() simulates
7554  * a fork in the verifier state to validate loop logic correctness and safety
7555  * without having to simulate infinite amount of iterations.
7556  *
7557  * In current state, we first assume that iter_next() returned NULL and
7558  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
7559  * conditions we should not form an infinite loop and should eventually reach
7560  * exit.
7561  *
7562  * Besides that, we also fork current state and enqueue it for later
7563  * verification. In a forked state we keep iterator state as ACTIVE
7564  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
7565  * also bump iteration depth to prevent erroneous infinite loop detection
7566  * later on (see iter_active_depths_differ() comment for details). In this
7567  * state we assume that we'll eventually loop back to another iter_next()
7568  * calls (it could be in exactly same location or in some other instruction,
7569  * it doesn't matter, we don't make any unnecessary assumptions about this,
7570  * everything revolves around iterator state in a stack slot, not which
7571  * instruction is calling iter_next()). When that happens, we either will come
7572  * to iter_next() with equivalent state and can conclude that next iteration
7573  * will proceed in exactly the same way as we just verified, so it's safe to
7574  * assume that loop converges. If not, we'll go on another iteration
7575  * simulation with a different input state, until all possible starting states
7576  * are validated or we reach maximum number of instructions limit.
7577  *
7578  * This way, we will either exhaustively discover all possible input states
7579  * that iterator loop can start with and eventually will converge, or we'll
7580  * effectively regress into bounded loop simulation logic and either reach
7581  * maximum number of instructions if loop is not provably convergent, or there
7582  * is some statically known limit on number of iterations (e.g., if there is
7583  * an explicit `if n > 100 then break;` statement somewhere in the loop).
7584  *
7585  * One very subtle but very important aspect is that we *always* simulate NULL
7586  * condition first (as the current state) before we simulate non-NULL case.
7587  * This has to do with intricacies of scalar precision tracking. By simulating
7588  * "exit condition" of iter_next() returning NULL first, we make sure all the
7589  * relevant precision marks *that will be set **after** we exit iterator loop*
7590  * are propagated backwards to common parent state of NULL and non-NULL
7591  * branches. Thanks to that, state equivalence checks done later in forked
7592  * state, when reaching iter_next() for ACTIVE iterator, can assume that
7593  * precision marks are finalized and won't change. Because simulating another
7594  * ACTIVE iterator iteration won't change them (because given same input
7595  * states we'll end up with exactly same output states which we are currently
7596  * comparing; and verification after the loop already propagated back what
7597  * needs to be **additionally** tracked as precise). It's subtle, grok
7598  * precision tracking for more intuitive understanding.
7599  */
7600 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
7601 				  struct bpf_kfunc_call_arg_meta *meta)
7602 {
7603 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st;
7604 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
7605 	struct bpf_reg_state *cur_iter, *queued_iter;
7606 	int iter_frameno = meta->iter.frameno;
7607 	int iter_spi = meta->iter.spi;
7608 
7609 	BTF_TYPE_EMIT(struct bpf_iter);
7610 
7611 	cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7612 
7613 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
7614 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
7615 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
7616 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
7617 		return -EFAULT;
7618 	}
7619 
7620 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
7621 		/* branch out active iter state */
7622 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
7623 		if (!queued_st)
7624 			return -ENOMEM;
7625 
7626 		queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7627 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
7628 		queued_iter->iter.depth++;
7629 
7630 		queued_fr = queued_st->frame[queued_st->curframe];
7631 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
7632 	}
7633 
7634 	/* switch to DRAINED state, but keep the depth unchanged */
7635 	/* mark current iter state as drained and assume returned NULL */
7636 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
7637 	__mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
7638 
7639 	return 0;
7640 }
7641 
7642 static bool arg_type_is_mem_size(enum bpf_arg_type type)
7643 {
7644 	return type == ARG_CONST_SIZE ||
7645 	       type == ARG_CONST_SIZE_OR_ZERO;
7646 }
7647 
7648 static bool arg_type_is_release(enum bpf_arg_type type)
7649 {
7650 	return type & OBJ_RELEASE;
7651 }
7652 
7653 static bool arg_type_is_dynptr(enum bpf_arg_type type)
7654 {
7655 	return base_type(type) == ARG_PTR_TO_DYNPTR;
7656 }
7657 
7658 static int int_ptr_type_to_size(enum bpf_arg_type type)
7659 {
7660 	if (type == ARG_PTR_TO_INT)
7661 		return sizeof(u32);
7662 	else if (type == ARG_PTR_TO_LONG)
7663 		return sizeof(u64);
7664 
7665 	return -EINVAL;
7666 }
7667 
7668 static int resolve_map_arg_type(struct bpf_verifier_env *env,
7669 				 const struct bpf_call_arg_meta *meta,
7670 				 enum bpf_arg_type *arg_type)
7671 {
7672 	if (!meta->map_ptr) {
7673 		/* kernel subsystem misconfigured verifier */
7674 		verbose(env, "invalid map_ptr to access map->type\n");
7675 		return -EACCES;
7676 	}
7677 
7678 	switch (meta->map_ptr->map_type) {
7679 	case BPF_MAP_TYPE_SOCKMAP:
7680 	case BPF_MAP_TYPE_SOCKHASH:
7681 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
7682 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
7683 		} else {
7684 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
7685 			return -EINVAL;
7686 		}
7687 		break;
7688 	case BPF_MAP_TYPE_BLOOM_FILTER:
7689 		if (meta->func_id == BPF_FUNC_map_peek_elem)
7690 			*arg_type = ARG_PTR_TO_MAP_VALUE;
7691 		break;
7692 	default:
7693 		break;
7694 	}
7695 	return 0;
7696 }
7697 
7698 struct bpf_reg_types {
7699 	const enum bpf_reg_type types[10];
7700 	u32 *btf_id;
7701 };
7702 
7703 static const struct bpf_reg_types sock_types = {
7704 	.types = {
7705 		PTR_TO_SOCK_COMMON,
7706 		PTR_TO_SOCKET,
7707 		PTR_TO_TCP_SOCK,
7708 		PTR_TO_XDP_SOCK,
7709 	},
7710 };
7711 
7712 #ifdef CONFIG_NET
7713 static const struct bpf_reg_types btf_id_sock_common_types = {
7714 	.types = {
7715 		PTR_TO_SOCK_COMMON,
7716 		PTR_TO_SOCKET,
7717 		PTR_TO_TCP_SOCK,
7718 		PTR_TO_XDP_SOCK,
7719 		PTR_TO_BTF_ID,
7720 		PTR_TO_BTF_ID | PTR_TRUSTED,
7721 	},
7722 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
7723 };
7724 #endif
7725 
7726 static const struct bpf_reg_types mem_types = {
7727 	.types = {
7728 		PTR_TO_STACK,
7729 		PTR_TO_PACKET,
7730 		PTR_TO_PACKET_META,
7731 		PTR_TO_MAP_KEY,
7732 		PTR_TO_MAP_VALUE,
7733 		PTR_TO_MEM,
7734 		PTR_TO_MEM | MEM_RINGBUF,
7735 		PTR_TO_BUF,
7736 		PTR_TO_BTF_ID | PTR_TRUSTED,
7737 	},
7738 };
7739 
7740 static const struct bpf_reg_types int_ptr_types = {
7741 	.types = {
7742 		PTR_TO_STACK,
7743 		PTR_TO_PACKET,
7744 		PTR_TO_PACKET_META,
7745 		PTR_TO_MAP_KEY,
7746 		PTR_TO_MAP_VALUE,
7747 	},
7748 };
7749 
7750 static const struct bpf_reg_types spin_lock_types = {
7751 	.types = {
7752 		PTR_TO_MAP_VALUE,
7753 		PTR_TO_BTF_ID | MEM_ALLOC,
7754 	}
7755 };
7756 
7757 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
7758 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
7759 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
7760 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
7761 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
7762 static const struct bpf_reg_types btf_ptr_types = {
7763 	.types = {
7764 		PTR_TO_BTF_ID,
7765 		PTR_TO_BTF_ID | PTR_TRUSTED,
7766 		PTR_TO_BTF_ID | MEM_RCU,
7767 	},
7768 };
7769 static const struct bpf_reg_types percpu_btf_ptr_types = {
7770 	.types = {
7771 		PTR_TO_BTF_ID | MEM_PERCPU,
7772 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
7773 	}
7774 };
7775 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
7776 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
7777 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
7778 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
7779 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
7780 static const struct bpf_reg_types dynptr_types = {
7781 	.types = {
7782 		PTR_TO_STACK,
7783 		CONST_PTR_TO_DYNPTR,
7784 	}
7785 };
7786 
7787 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
7788 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
7789 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
7790 	[ARG_CONST_SIZE]		= &scalar_types,
7791 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
7792 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
7793 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
7794 	[ARG_PTR_TO_CTX]		= &context_types,
7795 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
7796 #ifdef CONFIG_NET
7797 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
7798 #endif
7799 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
7800 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
7801 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
7802 	[ARG_PTR_TO_MEM]		= &mem_types,
7803 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
7804 	[ARG_PTR_TO_INT]		= &int_ptr_types,
7805 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
7806 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
7807 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
7808 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
7809 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
7810 	[ARG_PTR_TO_TIMER]		= &timer_types,
7811 	[ARG_PTR_TO_KPTR]		= &kptr_types,
7812 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
7813 };
7814 
7815 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
7816 			  enum bpf_arg_type arg_type,
7817 			  const u32 *arg_btf_id,
7818 			  struct bpf_call_arg_meta *meta)
7819 {
7820 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7821 	enum bpf_reg_type expected, type = reg->type;
7822 	const struct bpf_reg_types *compatible;
7823 	int i, j;
7824 
7825 	compatible = compatible_reg_types[base_type(arg_type)];
7826 	if (!compatible) {
7827 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
7828 		return -EFAULT;
7829 	}
7830 
7831 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
7832 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
7833 	 *
7834 	 * Same for MAYBE_NULL:
7835 	 *
7836 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
7837 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
7838 	 *
7839 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
7840 	 *
7841 	 * Therefore we fold these flags depending on the arg_type before comparison.
7842 	 */
7843 	if (arg_type & MEM_RDONLY)
7844 		type &= ~MEM_RDONLY;
7845 	if (arg_type & PTR_MAYBE_NULL)
7846 		type &= ~PTR_MAYBE_NULL;
7847 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
7848 		type &= ~DYNPTR_TYPE_FLAG_MASK;
7849 
7850 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type))
7851 		type &= ~MEM_ALLOC;
7852 
7853 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
7854 		expected = compatible->types[i];
7855 		if (expected == NOT_INIT)
7856 			break;
7857 
7858 		if (type == expected)
7859 			goto found;
7860 	}
7861 
7862 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
7863 	for (j = 0; j + 1 < i; j++)
7864 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
7865 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
7866 	return -EACCES;
7867 
7868 found:
7869 	if (base_type(reg->type) != PTR_TO_BTF_ID)
7870 		return 0;
7871 
7872 	if (compatible == &mem_types) {
7873 		if (!(arg_type & MEM_RDONLY)) {
7874 			verbose(env,
7875 				"%s() may write into memory pointed by R%d type=%s\n",
7876 				func_id_name(meta->func_id),
7877 				regno, reg_type_str(env, reg->type));
7878 			return -EACCES;
7879 		}
7880 		return 0;
7881 	}
7882 
7883 	switch ((int)reg->type) {
7884 	case PTR_TO_BTF_ID:
7885 	case PTR_TO_BTF_ID | PTR_TRUSTED:
7886 	case PTR_TO_BTF_ID | MEM_RCU:
7887 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
7888 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
7889 	{
7890 		/* For bpf_sk_release, it needs to match against first member
7891 		 * 'struct sock_common', hence make an exception for it. This
7892 		 * allows bpf_sk_release to work for multiple socket types.
7893 		 */
7894 		bool strict_type_match = arg_type_is_release(arg_type) &&
7895 					 meta->func_id != BPF_FUNC_sk_release;
7896 
7897 		if (type_may_be_null(reg->type) &&
7898 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
7899 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
7900 			return -EACCES;
7901 		}
7902 
7903 		if (!arg_btf_id) {
7904 			if (!compatible->btf_id) {
7905 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
7906 				return -EFAULT;
7907 			}
7908 			arg_btf_id = compatible->btf_id;
7909 		}
7910 
7911 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
7912 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
7913 				return -EACCES;
7914 		} else {
7915 			if (arg_btf_id == BPF_PTR_POISON) {
7916 				verbose(env, "verifier internal error:");
7917 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
7918 					regno);
7919 				return -EACCES;
7920 			}
7921 
7922 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
7923 						  btf_vmlinux, *arg_btf_id,
7924 						  strict_type_match)) {
7925 				verbose(env, "R%d is of type %s but %s is expected\n",
7926 					regno, btf_type_name(reg->btf, reg->btf_id),
7927 					btf_type_name(btf_vmlinux, *arg_btf_id));
7928 				return -EACCES;
7929 			}
7930 		}
7931 		break;
7932 	}
7933 	case PTR_TO_BTF_ID | MEM_ALLOC:
7934 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
7935 		    meta->func_id != BPF_FUNC_kptr_xchg) {
7936 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
7937 			return -EFAULT;
7938 		}
7939 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
7940 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
7941 				return -EACCES;
7942 		}
7943 		break;
7944 	case PTR_TO_BTF_ID | MEM_PERCPU:
7945 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
7946 		/* Handled by helper specific checks */
7947 		break;
7948 	default:
7949 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
7950 		return -EFAULT;
7951 	}
7952 	return 0;
7953 }
7954 
7955 static struct btf_field *
7956 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
7957 {
7958 	struct btf_field *field;
7959 	struct btf_record *rec;
7960 
7961 	rec = reg_btf_record(reg);
7962 	if (!rec)
7963 		return NULL;
7964 
7965 	field = btf_record_find(rec, off, fields);
7966 	if (!field)
7967 		return NULL;
7968 
7969 	return field;
7970 }
7971 
7972 int check_func_arg_reg_off(struct bpf_verifier_env *env,
7973 			   const struct bpf_reg_state *reg, int regno,
7974 			   enum bpf_arg_type arg_type)
7975 {
7976 	u32 type = reg->type;
7977 
7978 	/* When referenced register is passed to release function, its fixed
7979 	 * offset must be 0.
7980 	 *
7981 	 * We will check arg_type_is_release reg has ref_obj_id when storing
7982 	 * meta->release_regno.
7983 	 */
7984 	if (arg_type_is_release(arg_type)) {
7985 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
7986 		 * may not directly point to the object being released, but to
7987 		 * dynptr pointing to such object, which might be at some offset
7988 		 * on the stack. In that case, we simply to fallback to the
7989 		 * default handling.
7990 		 */
7991 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
7992 			return 0;
7993 
7994 		/* Doing check_ptr_off_reg check for the offset will catch this
7995 		 * because fixed_off_ok is false, but checking here allows us
7996 		 * to give the user a better error message.
7997 		 */
7998 		if (reg->off) {
7999 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
8000 				regno);
8001 			return -EINVAL;
8002 		}
8003 		return __check_ptr_off_reg(env, reg, regno, false);
8004 	}
8005 
8006 	switch (type) {
8007 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
8008 	case PTR_TO_STACK:
8009 	case PTR_TO_PACKET:
8010 	case PTR_TO_PACKET_META:
8011 	case PTR_TO_MAP_KEY:
8012 	case PTR_TO_MAP_VALUE:
8013 	case PTR_TO_MEM:
8014 	case PTR_TO_MEM | MEM_RDONLY:
8015 	case PTR_TO_MEM | MEM_RINGBUF:
8016 	case PTR_TO_BUF:
8017 	case PTR_TO_BUF | MEM_RDONLY:
8018 	case SCALAR_VALUE:
8019 		return 0;
8020 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8021 	 * fixed offset.
8022 	 */
8023 	case PTR_TO_BTF_ID:
8024 	case PTR_TO_BTF_ID | MEM_ALLOC:
8025 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8026 	case PTR_TO_BTF_ID | MEM_RCU:
8027 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8028 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8029 		/* When referenced PTR_TO_BTF_ID is passed to release function,
8030 		 * its fixed offset must be 0. In the other cases, fixed offset
8031 		 * can be non-zero. This was already checked above. So pass
8032 		 * fixed_off_ok as true to allow fixed offset for all other
8033 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8034 		 * still need to do checks instead of returning.
8035 		 */
8036 		return __check_ptr_off_reg(env, reg, regno, true);
8037 	default:
8038 		return __check_ptr_off_reg(env, reg, regno, false);
8039 	}
8040 }
8041 
8042 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8043 						const struct bpf_func_proto *fn,
8044 						struct bpf_reg_state *regs)
8045 {
8046 	struct bpf_reg_state *state = NULL;
8047 	int i;
8048 
8049 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8050 		if (arg_type_is_dynptr(fn->arg_type[i])) {
8051 			if (state) {
8052 				verbose(env, "verifier internal error: multiple dynptr args\n");
8053 				return NULL;
8054 			}
8055 			state = &regs[BPF_REG_1 + i];
8056 		}
8057 
8058 	if (!state)
8059 		verbose(env, "verifier internal error: no dynptr arg found\n");
8060 
8061 	return state;
8062 }
8063 
8064 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8065 {
8066 	struct bpf_func_state *state = func(env, reg);
8067 	int spi;
8068 
8069 	if (reg->type == CONST_PTR_TO_DYNPTR)
8070 		return reg->id;
8071 	spi = dynptr_get_spi(env, reg);
8072 	if (spi < 0)
8073 		return spi;
8074 	return state->stack[spi].spilled_ptr.id;
8075 }
8076 
8077 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8078 {
8079 	struct bpf_func_state *state = func(env, reg);
8080 	int spi;
8081 
8082 	if (reg->type == CONST_PTR_TO_DYNPTR)
8083 		return reg->ref_obj_id;
8084 	spi = dynptr_get_spi(env, reg);
8085 	if (spi < 0)
8086 		return spi;
8087 	return state->stack[spi].spilled_ptr.ref_obj_id;
8088 }
8089 
8090 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8091 					    struct bpf_reg_state *reg)
8092 {
8093 	struct bpf_func_state *state = func(env, reg);
8094 	int spi;
8095 
8096 	if (reg->type == CONST_PTR_TO_DYNPTR)
8097 		return reg->dynptr.type;
8098 
8099 	spi = __get_spi(reg->off);
8100 	if (spi < 0) {
8101 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8102 		return BPF_DYNPTR_TYPE_INVALID;
8103 	}
8104 
8105 	return state->stack[spi].spilled_ptr.dynptr.type;
8106 }
8107 
8108 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8109 			  struct bpf_call_arg_meta *meta,
8110 			  const struct bpf_func_proto *fn,
8111 			  int insn_idx)
8112 {
8113 	u32 regno = BPF_REG_1 + arg;
8114 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8115 	enum bpf_arg_type arg_type = fn->arg_type[arg];
8116 	enum bpf_reg_type type = reg->type;
8117 	u32 *arg_btf_id = NULL;
8118 	int err = 0;
8119 
8120 	if (arg_type == ARG_DONTCARE)
8121 		return 0;
8122 
8123 	err = check_reg_arg(env, regno, SRC_OP);
8124 	if (err)
8125 		return err;
8126 
8127 	if (arg_type == ARG_ANYTHING) {
8128 		if (is_pointer_value(env, regno)) {
8129 			verbose(env, "R%d leaks addr into helper function\n",
8130 				regno);
8131 			return -EACCES;
8132 		}
8133 		return 0;
8134 	}
8135 
8136 	if (type_is_pkt_pointer(type) &&
8137 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8138 		verbose(env, "helper access to the packet is not allowed\n");
8139 		return -EACCES;
8140 	}
8141 
8142 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8143 		err = resolve_map_arg_type(env, meta, &arg_type);
8144 		if (err)
8145 			return err;
8146 	}
8147 
8148 	if (register_is_null(reg) && type_may_be_null(arg_type))
8149 		/* A NULL register has a SCALAR_VALUE type, so skip
8150 		 * type checking.
8151 		 */
8152 		goto skip_type_check;
8153 
8154 	/* arg_btf_id and arg_size are in a union. */
8155 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8156 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8157 		arg_btf_id = fn->arg_btf_id[arg];
8158 
8159 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8160 	if (err)
8161 		return err;
8162 
8163 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
8164 	if (err)
8165 		return err;
8166 
8167 skip_type_check:
8168 	if (arg_type_is_release(arg_type)) {
8169 		if (arg_type_is_dynptr(arg_type)) {
8170 			struct bpf_func_state *state = func(env, reg);
8171 			int spi;
8172 
8173 			/* Only dynptr created on stack can be released, thus
8174 			 * the get_spi and stack state checks for spilled_ptr
8175 			 * should only be done before process_dynptr_func for
8176 			 * PTR_TO_STACK.
8177 			 */
8178 			if (reg->type == PTR_TO_STACK) {
8179 				spi = dynptr_get_spi(env, reg);
8180 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8181 					verbose(env, "arg %d is an unacquired reference\n", regno);
8182 					return -EINVAL;
8183 				}
8184 			} else {
8185 				verbose(env, "cannot release unowned const bpf_dynptr\n");
8186 				return -EINVAL;
8187 			}
8188 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
8189 			verbose(env, "R%d must be referenced when passed to release function\n",
8190 				regno);
8191 			return -EINVAL;
8192 		}
8193 		if (meta->release_regno) {
8194 			verbose(env, "verifier internal error: more than one release argument\n");
8195 			return -EFAULT;
8196 		}
8197 		meta->release_regno = regno;
8198 	}
8199 
8200 	if (reg->ref_obj_id) {
8201 		if (meta->ref_obj_id) {
8202 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8203 				regno, reg->ref_obj_id,
8204 				meta->ref_obj_id);
8205 			return -EFAULT;
8206 		}
8207 		meta->ref_obj_id = reg->ref_obj_id;
8208 	}
8209 
8210 	switch (base_type(arg_type)) {
8211 	case ARG_CONST_MAP_PTR:
8212 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8213 		if (meta->map_ptr) {
8214 			/* Use map_uid (which is unique id of inner map) to reject:
8215 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8216 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8217 			 * if (inner_map1 && inner_map2) {
8218 			 *     timer = bpf_map_lookup_elem(inner_map1);
8219 			 *     if (timer)
8220 			 *         // mismatch would have been allowed
8221 			 *         bpf_timer_init(timer, inner_map2);
8222 			 * }
8223 			 *
8224 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
8225 			 */
8226 			if (meta->map_ptr != reg->map_ptr ||
8227 			    meta->map_uid != reg->map_uid) {
8228 				verbose(env,
8229 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8230 					meta->map_uid, reg->map_uid);
8231 				return -EINVAL;
8232 			}
8233 		}
8234 		meta->map_ptr = reg->map_ptr;
8235 		meta->map_uid = reg->map_uid;
8236 		break;
8237 	case ARG_PTR_TO_MAP_KEY:
8238 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
8239 		 * check that [key, key + map->key_size) are within
8240 		 * stack limits and initialized
8241 		 */
8242 		if (!meta->map_ptr) {
8243 			/* in function declaration map_ptr must come before
8244 			 * map_key, so that it's verified and known before
8245 			 * we have to check map_key here. Otherwise it means
8246 			 * that kernel subsystem misconfigured verifier
8247 			 */
8248 			verbose(env, "invalid map_ptr to access map->key\n");
8249 			return -EACCES;
8250 		}
8251 		err = check_helper_mem_access(env, regno,
8252 					      meta->map_ptr->key_size, false,
8253 					      NULL);
8254 		break;
8255 	case ARG_PTR_TO_MAP_VALUE:
8256 		if (type_may_be_null(arg_type) && register_is_null(reg))
8257 			return 0;
8258 
8259 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
8260 		 * check [value, value + map->value_size) validity
8261 		 */
8262 		if (!meta->map_ptr) {
8263 			/* kernel subsystem misconfigured verifier */
8264 			verbose(env, "invalid map_ptr to access map->value\n");
8265 			return -EACCES;
8266 		}
8267 		meta->raw_mode = arg_type & MEM_UNINIT;
8268 		err = check_helper_mem_access(env, regno,
8269 					      meta->map_ptr->value_size, false,
8270 					      meta);
8271 		break;
8272 	case ARG_PTR_TO_PERCPU_BTF_ID:
8273 		if (!reg->btf_id) {
8274 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8275 			return -EACCES;
8276 		}
8277 		meta->ret_btf = reg->btf;
8278 		meta->ret_btf_id = reg->btf_id;
8279 		break;
8280 	case ARG_PTR_TO_SPIN_LOCK:
8281 		if (in_rbtree_lock_required_cb(env)) {
8282 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8283 			return -EACCES;
8284 		}
8285 		if (meta->func_id == BPF_FUNC_spin_lock) {
8286 			err = process_spin_lock(env, regno, true);
8287 			if (err)
8288 				return err;
8289 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
8290 			err = process_spin_lock(env, regno, false);
8291 			if (err)
8292 				return err;
8293 		} else {
8294 			verbose(env, "verifier internal error\n");
8295 			return -EFAULT;
8296 		}
8297 		break;
8298 	case ARG_PTR_TO_TIMER:
8299 		err = process_timer_func(env, regno, meta);
8300 		if (err)
8301 			return err;
8302 		break;
8303 	case ARG_PTR_TO_FUNC:
8304 		meta->subprogno = reg->subprogno;
8305 		break;
8306 	case ARG_PTR_TO_MEM:
8307 		/* The access to this pointer is only checked when we hit the
8308 		 * next is_mem_size argument below.
8309 		 */
8310 		meta->raw_mode = arg_type & MEM_UNINIT;
8311 		if (arg_type & MEM_FIXED_SIZE) {
8312 			err = check_helper_mem_access(env, regno,
8313 						      fn->arg_size[arg], false,
8314 						      meta);
8315 		}
8316 		break;
8317 	case ARG_CONST_SIZE:
8318 		err = check_mem_size_reg(env, reg, regno, false, meta);
8319 		break;
8320 	case ARG_CONST_SIZE_OR_ZERO:
8321 		err = check_mem_size_reg(env, reg, regno, true, meta);
8322 		break;
8323 	case ARG_PTR_TO_DYNPTR:
8324 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
8325 		if (err)
8326 			return err;
8327 		break;
8328 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
8329 		if (!tnum_is_const(reg->var_off)) {
8330 			verbose(env, "R%d is not a known constant'\n",
8331 				regno);
8332 			return -EACCES;
8333 		}
8334 		meta->mem_size = reg->var_off.value;
8335 		err = mark_chain_precision(env, regno);
8336 		if (err)
8337 			return err;
8338 		break;
8339 	case ARG_PTR_TO_INT:
8340 	case ARG_PTR_TO_LONG:
8341 	{
8342 		int size = int_ptr_type_to_size(arg_type);
8343 
8344 		err = check_helper_mem_access(env, regno, size, false, meta);
8345 		if (err)
8346 			return err;
8347 		err = check_ptr_alignment(env, reg, 0, size, true);
8348 		break;
8349 	}
8350 	case ARG_PTR_TO_CONST_STR:
8351 	{
8352 		struct bpf_map *map = reg->map_ptr;
8353 		int map_off;
8354 		u64 map_addr;
8355 		char *str_ptr;
8356 
8357 		if (!bpf_map_is_rdonly(map)) {
8358 			verbose(env, "R%d does not point to a readonly map'\n", regno);
8359 			return -EACCES;
8360 		}
8361 
8362 		if (!tnum_is_const(reg->var_off)) {
8363 			verbose(env, "R%d is not a constant address'\n", regno);
8364 			return -EACCES;
8365 		}
8366 
8367 		if (!map->ops->map_direct_value_addr) {
8368 			verbose(env, "no direct value access support for this map type\n");
8369 			return -EACCES;
8370 		}
8371 
8372 		err = check_map_access(env, regno, reg->off,
8373 				       map->value_size - reg->off, false,
8374 				       ACCESS_HELPER);
8375 		if (err)
8376 			return err;
8377 
8378 		map_off = reg->off + reg->var_off.value;
8379 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8380 		if (err) {
8381 			verbose(env, "direct value access on string failed\n");
8382 			return err;
8383 		}
8384 
8385 		str_ptr = (char *)(long)(map_addr);
8386 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8387 			verbose(env, "string is not zero-terminated\n");
8388 			return -EINVAL;
8389 		}
8390 		break;
8391 	}
8392 	case ARG_PTR_TO_KPTR:
8393 		err = process_kptr_func(env, regno, meta);
8394 		if (err)
8395 			return err;
8396 		break;
8397 	}
8398 
8399 	return err;
8400 }
8401 
8402 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8403 {
8404 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
8405 	enum bpf_prog_type type = resolve_prog_type(env->prog);
8406 
8407 	if (func_id != BPF_FUNC_map_update_elem)
8408 		return false;
8409 
8410 	/* It's not possible to get access to a locked struct sock in these
8411 	 * contexts, so updating is safe.
8412 	 */
8413 	switch (type) {
8414 	case BPF_PROG_TYPE_TRACING:
8415 		if (eatype == BPF_TRACE_ITER)
8416 			return true;
8417 		break;
8418 	case BPF_PROG_TYPE_SOCKET_FILTER:
8419 	case BPF_PROG_TYPE_SCHED_CLS:
8420 	case BPF_PROG_TYPE_SCHED_ACT:
8421 	case BPF_PROG_TYPE_XDP:
8422 	case BPF_PROG_TYPE_SK_REUSEPORT:
8423 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
8424 	case BPF_PROG_TYPE_SK_LOOKUP:
8425 		return true;
8426 	default:
8427 		break;
8428 	}
8429 
8430 	verbose(env, "cannot update sockmap in this context\n");
8431 	return false;
8432 }
8433 
8434 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8435 {
8436 	return env->prog->jit_requested &&
8437 	       bpf_jit_supports_subprog_tailcalls();
8438 }
8439 
8440 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8441 					struct bpf_map *map, int func_id)
8442 {
8443 	if (!map)
8444 		return 0;
8445 
8446 	/* We need a two way check, first is from map perspective ... */
8447 	switch (map->map_type) {
8448 	case BPF_MAP_TYPE_PROG_ARRAY:
8449 		if (func_id != BPF_FUNC_tail_call)
8450 			goto error;
8451 		break;
8452 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8453 		if (func_id != BPF_FUNC_perf_event_read &&
8454 		    func_id != BPF_FUNC_perf_event_output &&
8455 		    func_id != BPF_FUNC_skb_output &&
8456 		    func_id != BPF_FUNC_perf_event_read_value &&
8457 		    func_id != BPF_FUNC_xdp_output)
8458 			goto error;
8459 		break;
8460 	case BPF_MAP_TYPE_RINGBUF:
8461 		if (func_id != BPF_FUNC_ringbuf_output &&
8462 		    func_id != BPF_FUNC_ringbuf_reserve &&
8463 		    func_id != BPF_FUNC_ringbuf_query &&
8464 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8465 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8466 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
8467 			goto error;
8468 		break;
8469 	case BPF_MAP_TYPE_USER_RINGBUF:
8470 		if (func_id != BPF_FUNC_user_ringbuf_drain)
8471 			goto error;
8472 		break;
8473 	case BPF_MAP_TYPE_STACK_TRACE:
8474 		if (func_id != BPF_FUNC_get_stackid)
8475 			goto error;
8476 		break;
8477 	case BPF_MAP_TYPE_CGROUP_ARRAY:
8478 		if (func_id != BPF_FUNC_skb_under_cgroup &&
8479 		    func_id != BPF_FUNC_current_task_under_cgroup)
8480 			goto error;
8481 		break;
8482 	case BPF_MAP_TYPE_CGROUP_STORAGE:
8483 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
8484 		if (func_id != BPF_FUNC_get_local_storage)
8485 			goto error;
8486 		break;
8487 	case BPF_MAP_TYPE_DEVMAP:
8488 	case BPF_MAP_TYPE_DEVMAP_HASH:
8489 		if (func_id != BPF_FUNC_redirect_map &&
8490 		    func_id != BPF_FUNC_map_lookup_elem)
8491 			goto error;
8492 		break;
8493 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
8494 	 * appear.
8495 	 */
8496 	case BPF_MAP_TYPE_CPUMAP:
8497 		if (func_id != BPF_FUNC_redirect_map)
8498 			goto error;
8499 		break;
8500 	case BPF_MAP_TYPE_XSKMAP:
8501 		if (func_id != BPF_FUNC_redirect_map &&
8502 		    func_id != BPF_FUNC_map_lookup_elem)
8503 			goto error;
8504 		break;
8505 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
8506 	case BPF_MAP_TYPE_HASH_OF_MAPS:
8507 		if (func_id != BPF_FUNC_map_lookup_elem)
8508 			goto error;
8509 		break;
8510 	case BPF_MAP_TYPE_SOCKMAP:
8511 		if (func_id != BPF_FUNC_sk_redirect_map &&
8512 		    func_id != BPF_FUNC_sock_map_update &&
8513 		    func_id != BPF_FUNC_map_delete_elem &&
8514 		    func_id != BPF_FUNC_msg_redirect_map &&
8515 		    func_id != BPF_FUNC_sk_select_reuseport &&
8516 		    func_id != BPF_FUNC_map_lookup_elem &&
8517 		    !may_update_sockmap(env, func_id))
8518 			goto error;
8519 		break;
8520 	case BPF_MAP_TYPE_SOCKHASH:
8521 		if (func_id != BPF_FUNC_sk_redirect_hash &&
8522 		    func_id != BPF_FUNC_sock_hash_update &&
8523 		    func_id != BPF_FUNC_map_delete_elem &&
8524 		    func_id != BPF_FUNC_msg_redirect_hash &&
8525 		    func_id != BPF_FUNC_sk_select_reuseport &&
8526 		    func_id != BPF_FUNC_map_lookup_elem &&
8527 		    !may_update_sockmap(env, func_id))
8528 			goto error;
8529 		break;
8530 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
8531 		if (func_id != BPF_FUNC_sk_select_reuseport)
8532 			goto error;
8533 		break;
8534 	case BPF_MAP_TYPE_QUEUE:
8535 	case BPF_MAP_TYPE_STACK:
8536 		if (func_id != BPF_FUNC_map_peek_elem &&
8537 		    func_id != BPF_FUNC_map_pop_elem &&
8538 		    func_id != BPF_FUNC_map_push_elem)
8539 			goto error;
8540 		break;
8541 	case BPF_MAP_TYPE_SK_STORAGE:
8542 		if (func_id != BPF_FUNC_sk_storage_get &&
8543 		    func_id != BPF_FUNC_sk_storage_delete &&
8544 		    func_id != BPF_FUNC_kptr_xchg)
8545 			goto error;
8546 		break;
8547 	case BPF_MAP_TYPE_INODE_STORAGE:
8548 		if (func_id != BPF_FUNC_inode_storage_get &&
8549 		    func_id != BPF_FUNC_inode_storage_delete &&
8550 		    func_id != BPF_FUNC_kptr_xchg)
8551 			goto error;
8552 		break;
8553 	case BPF_MAP_TYPE_TASK_STORAGE:
8554 		if (func_id != BPF_FUNC_task_storage_get &&
8555 		    func_id != BPF_FUNC_task_storage_delete &&
8556 		    func_id != BPF_FUNC_kptr_xchg)
8557 			goto error;
8558 		break;
8559 	case BPF_MAP_TYPE_CGRP_STORAGE:
8560 		if (func_id != BPF_FUNC_cgrp_storage_get &&
8561 		    func_id != BPF_FUNC_cgrp_storage_delete &&
8562 		    func_id != BPF_FUNC_kptr_xchg)
8563 			goto error;
8564 		break;
8565 	case BPF_MAP_TYPE_BLOOM_FILTER:
8566 		if (func_id != BPF_FUNC_map_peek_elem &&
8567 		    func_id != BPF_FUNC_map_push_elem)
8568 			goto error;
8569 		break;
8570 	default:
8571 		break;
8572 	}
8573 
8574 	/* ... and second from the function itself. */
8575 	switch (func_id) {
8576 	case BPF_FUNC_tail_call:
8577 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
8578 			goto error;
8579 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
8580 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
8581 			return -EINVAL;
8582 		}
8583 		break;
8584 	case BPF_FUNC_perf_event_read:
8585 	case BPF_FUNC_perf_event_output:
8586 	case BPF_FUNC_perf_event_read_value:
8587 	case BPF_FUNC_skb_output:
8588 	case BPF_FUNC_xdp_output:
8589 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
8590 			goto error;
8591 		break;
8592 	case BPF_FUNC_ringbuf_output:
8593 	case BPF_FUNC_ringbuf_reserve:
8594 	case BPF_FUNC_ringbuf_query:
8595 	case BPF_FUNC_ringbuf_reserve_dynptr:
8596 	case BPF_FUNC_ringbuf_submit_dynptr:
8597 	case BPF_FUNC_ringbuf_discard_dynptr:
8598 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
8599 			goto error;
8600 		break;
8601 	case BPF_FUNC_user_ringbuf_drain:
8602 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
8603 			goto error;
8604 		break;
8605 	case BPF_FUNC_get_stackid:
8606 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
8607 			goto error;
8608 		break;
8609 	case BPF_FUNC_current_task_under_cgroup:
8610 	case BPF_FUNC_skb_under_cgroup:
8611 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
8612 			goto error;
8613 		break;
8614 	case BPF_FUNC_redirect_map:
8615 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
8616 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
8617 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
8618 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
8619 			goto error;
8620 		break;
8621 	case BPF_FUNC_sk_redirect_map:
8622 	case BPF_FUNC_msg_redirect_map:
8623 	case BPF_FUNC_sock_map_update:
8624 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
8625 			goto error;
8626 		break;
8627 	case BPF_FUNC_sk_redirect_hash:
8628 	case BPF_FUNC_msg_redirect_hash:
8629 	case BPF_FUNC_sock_hash_update:
8630 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
8631 			goto error;
8632 		break;
8633 	case BPF_FUNC_get_local_storage:
8634 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
8635 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
8636 			goto error;
8637 		break;
8638 	case BPF_FUNC_sk_select_reuseport:
8639 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
8640 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
8641 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
8642 			goto error;
8643 		break;
8644 	case BPF_FUNC_map_pop_elem:
8645 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8646 		    map->map_type != BPF_MAP_TYPE_STACK)
8647 			goto error;
8648 		break;
8649 	case BPF_FUNC_map_peek_elem:
8650 	case BPF_FUNC_map_push_elem:
8651 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8652 		    map->map_type != BPF_MAP_TYPE_STACK &&
8653 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
8654 			goto error;
8655 		break;
8656 	case BPF_FUNC_map_lookup_percpu_elem:
8657 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
8658 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8659 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
8660 			goto error;
8661 		break;
8662 	case BPF_FUNC_sk_storage_get:
8663 	case BPF_FUNC_sk_storage_delete:
8664 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
8665 			goto error;
8666 		break;
8667 	case BPF_FUNC_inode_storage_get:
8668 	case BPF_FUNC_inode_storage_delete:
8669 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
8670 			goto error;
8671 		break;
8672 	case BPF_FUNC_task_storage_get:
8673 	case BPF_FUNC_task_storage_delete:
8674 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
8675 			goto error;
8676 		break;
8677 	case BPF_FUNC_cgrp_storage_get:
8678 	case BPF_FUNC_cgrp_storage_delete:
8679 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
8680 			goto error;
8681 		break;
8682 	default:
8683 		break;
8684 	}
8685 
8686 	return 0;
8687 error:
8688 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
8689 		map->map_type, func_id_name(func_id), func_id);
8690 	return -EINVAL;
8691 }
8692 
8693 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
8694 {
8695 	int count = 0;
8696 
8697 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
8698 		count++;
8699 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
8700 		count++;
8701 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
8702 		count++;
8703 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
8704 		count++;
8705 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
8706 		count++;
8707 
8708 	/* We only support one arg being in raw mode at the moment,
8709 	 * which is sufficient for the helper functions we have
8710 	 * right now.
8711 	 */
8712 	return count <= 1;
8713 }
8714 
8715 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
8716 {
8717 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
8718 	bool has_size = fn->arg_size[arg] != 0;
8719 	bool is_next_size = false;
8720 
8721 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
8722 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
8723 
8724 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
8725 		return is_next_size;
8726 
8727 	return has_size == is_next_size || is_next_size == is_fixed;
8728 }
8729 
8730 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
8731 {
8732 	/* bpf_xxx(..., buf, len) call will access 'len'
8733 	 * bytes from memory 'buf'. Both arg types need
8734 	 * to be paired, so make sure there's no buggy
8735 	 * helper function specification.
8736 	 */
8737 	if (arg_type_is_mem_size(fn->arg1_type) ||
8738 	    check_args_pair_invalid(fn, 0) ||
8739 	    check_args_pair_invalid(fn, 1) ||
8740 	    check_args_pair_invalid(fn, 2) ||
8741 	    check_args_pair_invalid(fn, 3) ||
8742 	    check_args_pair_invalid(fn, 4))
8743 		return false;
8744 
8745 	return true;
8746 }
8747 
8748 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
8749 {
8750 	int i;
8751 
8752 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
8753 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
8754 			return !!fn->arg_btf_id[i];
8755 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
8756 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
8757 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
8758 		    /* arg_btf_id and arg_size are in a union. */
8759 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
8760 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
8761 			return false;
8762 	}
8763 
8764 	return true;
8765 }
8766 
8767 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
8768 {
8769 	return check_raw_mode_ok(fn) &&
8770 	       check_arg_pair_ok(fn) &&
8771 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
8772 }
8773 
8774 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
8775  * are now invalid, so turn them into unknown SCALAR_VALUE.
8776  *
8777  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
8778  * since these slices point to packet data.
8779  */
8780 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
8781 {
8782 	struct bpf_func_state *state;
8783 	struct bpf_reg_state *reg;
8784 
8785 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8786 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
8787 			mark_reg_invalid(env, reg);
8788 	}));
8789 }
8790 
8791 enum {
8792 	AT_PKT_END = -1,
8793 	BEYOND_PKT_END = -2,
8794 };
8795 
8796 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
8797 {
8798 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8799 	struct bpf_reg_state *reg = &state->regs[regn];
8800 
8801 	if (reg->type != PTR_TO_PACKET)
8802 		/* PTR_TO_PACKET_META is not supported yet */
8803 		return;
8804 
8805 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
8806 	 * How far beyond pkt_end it goes is unknown.
8807 	 * if (!range_open) it's the case of pkt >= pkt_end
8808 	 * if (range_open) it's the case of pkt > pkt_end
8809 	 * hence this pointer is at least 1 byte bigger than pkt_end
8810 	 */
8811 	if (range_open)
8812 		reg->range = BEYOND_PKT_END;
8813 	else
8814 		reg->range = AT_PKT_END;
8815 }
8816 
8817 /* The pointer with the specified id has released its reference to kernel
8818  * resources. Identify all copies of the same pointer and clear the reference.
8819  */
8820 static int release_reference(struct bpf_verifier_env *env,
8821 			     int ref_obj_id)
8822 {
8823 	struct bpf_func_state *state;
8824 	struct bpf_reg_state *reg;
8825 	int err;
8826 
8827 	err = release_reference_state(cur_func(env), ref_obj_id);
8828 	if (err)
8829 		return err;
8830 
8831 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8832 		if (reg->ref_obj_id == ref_obj_id)
8833 			mark_reg_invalid(env, reg);
8834 	}));
8835 
8836 	return 0;
8837 }
8838 
8839 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
8840 {
8841 	struct bpf_func_state *unused;
8842 	struct bpf_reg_state *reg;
8843 
8844 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
8845 		if (type_is_non_owning_ref(reg->type))
8846 			mark_reg_invalid(env, reg);
8847 	}));
8848 }
8849 
8850 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
8851 				    struct bpf_reg_state *regs)
8852 {
8853 	int i;
8854 
8855 	/* after the call registers r0 - r5 were scratched */
8856 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
8857 		mark_reg_not_init(env, regs, caller_saved[i]);
8858 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8859 	}
8860 }
8861 
8862 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
8863 				   struct bpf_func_state *caller,
8864 				   struct bpf_func_state *callee,
8865 				   int insn_idx);
8866 
8867 static int set_callee_state(struct bpf_verifier_env *env,
8868 			    struct bpf_func_state *caller,
8869 			    struct bpf_func_state *callee, int insn_idx);
8870 
8871 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8872 			     int *insn_idx, int subprog,
8873 			     set_callee_state_fn set_callee_state_cb)
8874 {
8875 	struct bpf_verifier_state *state = env->cur_state;
8876 	struct bpf_func_state *caller, *callee;
8877 	int err;
8878 
8879 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
8880 		verbose(env, "the call stack of %d frames is too deep\n",
8881 			state->curframe + 2);
8882 		return -E2BIG;
8883 	}
8884 
8885 	caller = state->frame[state->curframe];
8886 	if (state->frame[state->curframe + 1]) {
8887 		verbose(env, "verifier bug. Frame %d already allocated\n",
8888 			state->curframe + 1);
8889 		return -EFAULT;
8890 	}
8891 
8892 	err = btf_check_subprog_call(env, subprog, caller->regs);
8893 	if (err == -EFAULT)
8894 		return err;
8895 	if (subprog_is_global(env, subprog)) {
8896 		if (err) {
8897 			verbose(env, "Caller passes invalid args into func#%d\n",
8898 				subprog);
8899 			return err;
8900 		} else {
8901 			if (env->log.level & BPF_LOG_LEVEL)
8902 				verbose(env,
8903 					"Func#%d is global and valid. Skipping.\n",
8904 					subprog);
8905 			clear_caller_saved_regs(env, caller->regs);
8906 
8907 			/* All global functions return a 64-bit SCALAR_VALUE */
8908 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
8909 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
8910 
8911 			/* continue with next insn after call */
8912 			return 0;
8913 		}
8914 	}
8915 
8916 	/* set_callee_state is used for direct subprog calls, but we are
8917 	 * interested in validating only BPF helpers that can call subprogs as
8918 	 * callbacks
8919 	 */
8920 	if (set_callee_state_cb != set_callee_state) {
8921 		if (bpf_pseudo_kfunc_call(insn) &&
8922 		    !is_callback_calling_kfunc(insn->imm)) {
8923 			verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
8924 				func_id_name(insn->imm), insn->imm);
8925 			return -EFAULT;
8926 		} else if (!bpf_pseudo_kfunc_call(insn) &&
8927 			   !is_callback_calling_function(insn->imm)) { /* helper */
8928 			verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
8929 				func_id_name(insn->imm), insn->imm);
8930 			return -EFAULT;
8931 		}
8932 	}
8933 
8934 	if (insn->code == (BPF_JMP | BPF_CALL) &&
8935 	    insn->src_reg == 0 &&
8936 	    insn->imm == BPF_FUNC_timer_set_callback) {
8937 		struct bpf_verifier_state *async_cb;
8938 
8939 		/* there is no real recursion here. timer callbacks are async */
8940 		env->subprog_info[subprog].is_async_cb = true;
8941 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
8942 					 *insn_idx, subprog);
8943 		if (!async_cb)
8944 			return -EFAULT;
8945 		callee = async_cb->frame[0];
8946 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
8947 
8948 		/* Convert bpf_timer_set_callback() args into timer callback args */
8949 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
8950 		if (err)
8951 			return err;
8952 
8953 		clear_caller_saved_regs(env, caller->regs);
8954 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
8955 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
8956 		/* continue with next insn after call */
8957 		return 0;
8958 	}
8959 
8960 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
8961 	if (!callee)
8962 		return -ENOMEM;
8963 	state->frame[state->curframe + 1] = callee;
8964 
8965 	/* callee cannot access r0, r6 - r9 for reading and has to write
8966 	 * into its own stack before reading from it.
8967 	 * callee can read/write into caller's stack
8968 	 */
8969 	init_func_state(env, callee,
8970 			/* remember the callsite, it will be used by bpf_exit */
8971 			*insn_idx /* callsite */,
8972 			state->curframe + 1 /* frameno within this callchain */,
8973 			subprog /* subprog number within this prog */);
8974 
8975 	/* Transfer references to the callee */
8976 	err = copy_reference_state(callee, caller);
8977 	if (err)
8978 		goto err_out;
8979 
8980 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
8981 	if (err)
8982 		goto err_out;
8983 
8984 	clear_caller_saved_regs(env, caller->regs);
8985 
8986 	/* only increment it after check_reg_arg() finished */
8987 	state->curframe++;
8988 
8989 	/* and go analyze first insn of the callee */
8990 	*insn_idx = env->subprog_info[subprog].start - 1;
8991 
8992 	if (env->log.level & BPF_LOG_LEVEL) {
8993 		verbose(env, "caller:\n");
8994 		print_verifier_state(env, caller, true);
8995 		verbose(env, "callee:\n");
8996 		print_verifier_state(env, callee, true);
8997 	}
8998 	return 0;
8999 
9000 err_out:
9001 	free_func_state(callee);
9002 	state->frame[state->curframe + 1] = NULL;
9003 	return err;
9004 }
9005 
9006 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
9007 				   struct bpf_func_state *caller,
9008 				   struct bpf_func_state *callee)
9009 {
9010 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
9011 	 *      void *callback_ctx, u64 flags);
9012 	 * callback_fn(struct bpf_map *map, void *key, void *value,
9013 	 *      void *callback_ctx);
9014 	 */
9015 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9016 
9017 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9018 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9019 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9020 
9021 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9022 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9023 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9024 
9025 	/* pointer to stack or null */
9026 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9027 
9028 	/* unused */
9029 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9030 	return 0;
9031 }
9032 
9033 static int set_callee_state(struct bpf_verifier_env *env,
9034 			    struct bpf_func_state *caller,
9035 			    struct bpf_func_state *callee, int insn_idx)
9036 {
9037 	int i;
9038 
9039 	/* copy r1 - r5 args that callee can access.  The copy includes parent
9040 	 * pointers, which connects us up to the liveness chain
9041 	 */
9042 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9043 		callee->regs[i] = caller->regs[i];
9044 	return 0;
9045 }
9046 
9047 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9048 			   int *insn_idx)
9049 {
9050 	int subprog, target_insn;
9051 
9052 	target_insn = *insn_idx + insn->imm + 1;
9053 	subprog = find_subprog(env, target_insn);
9054 	if (subprog < 0) {
9055 		verbose(env, "verifier bug. No program starts at insn %d\n",
9056 			target_insn);
9057 		return -EFAULT;
9058 	}
9059 
9060 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
9061 }
9062 
9063 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9064 				       struct bpf_func_state *caller,
9065 				       struct bpf_func_state *callee,
9066 				       int insn_idx)
9067 {
9068 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9069 	struct bpf_map *map;
9070 	int err;
9071 
9072 	if (bpf_map_ptr_poisoned(insn_aux)) {
9073 		verbose(env, "tail_call abusing map_ptr\n");
9074 		return -EINVAL;
9075 	}
9076 
9077 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
9078 	if (!map->ops->map_set_for_each_callback_args ||
9079 	    !map->ops->map_for_each_callback) {
9080 		verbose(env, "callback function not allowed for map\n");
9081 		return -ENOTSUPP;
9082 	}
9083 
9084 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9085 	if (err)
9086 		return err;
9087 
9088 	callee->in_callback_fn = true;
9089 	callee->callback_ret_range = tnum_range(0, 1);
9090 	return 0;
9091 }
9092 
9093 static int set_loop_callback_state(struct bpf_verifier_env *env,
9094 				   struct bpf_func_state *caller,
9095 				   struct bpf_func_state *callee,
9096 				   int insn_idx)
9097 {
9098 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9099 	 *	    u64 flags);
9100 	 * callback_fn(u32 index, void *callback_ctx);
9101 	 */
9102 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9103 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9104 
9105 	/* unused */
9106 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9107 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9108 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9109 
9110 	callee->in_callback_fn = true;
9111 	callee->callback_ret_range = tnum_range(0, 1);
9112 	return 0;
9113 }
9114 
9115 static int set_timer_callback_state(struct bpf_verifier_env *env,
9116 				    struct bpf_func_state *caller,
9117 				    struct bpf_func_state *callee,
9118 				    int insn_idx)
9119 {
9120 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9121 
9122 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9123 	 * callback_fn(struct bpf_map *map, void *key, void *value);
9124 	 */
9125 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9126 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9127 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
9128 
9129 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9130 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9131 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
9132 
9133 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9134 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9135 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
9136 
9137 	/* unused */
9138 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9139 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9140 	callee->in_async_callback_fn = true;
9141 	callee->callback_ret_range = tnum_range(0, 1);
9142 	return 0;
9143 }
9144 
9145 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9146 				       struct bpf_func_state *caller,
9147 				       struct bpf_func_state *callee,
9148 				       int insn_idx)
9149 {
9150 	/* bpf_find_vma(struct task_struct *task, u64 addr,
9151 	 *               void *callback_fn, void *callback_ctx, u64 flags)
9152 	 * (callback_fn)(struct task_struct *task,
9153 	 *               struct vm_area_struct *vma, void *callback_ctx);
9154 	 */
9155 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9156 
9157 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9158 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9159 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
9160 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
9161 
9162 	/* pointer to stack or null */
9163 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9164 
9165 	/* unused */
9166 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9167 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9168 	callee->in_callback_fn = true;
9169 	callee->callback_ret_range = tnum_range(0, 1);
9170 	return 0;
9171 }
9172 
9173 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9174 					   struct bpf_func_state *caller,
9175 					   struct bpf_func_state *callee,
9176 					   int insn_idx)
9177 {
9178 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9179 	 *			  callback_ctx, u64 flags);
9180 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
9181 	 */
9182 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
9183 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9184 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9185 
9186 	/* unused */
9187 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9188 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9189 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9190 
9191 	callee->in_callback_fn = true;
9192 	callee->callback_ret_range = tnum_range(0, 1);
9193 	return 0;
9194 }
9195 
9196 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9197 					 struct bpf_func_state *caller,
9198 					 struct bpf_func_state *callee,
9199 					 int insn_idx)
9200 {
9201 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
9202 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9203 	 *
9204 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
9205 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9206 	 * by this point, so look at 'root'
9207 	 */
9208 	struct btf_field *field;
9209 
9210 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9211 				      BPF_RB_ROOT);
9212 	if (!field || !field->graph_root.value_btf_id)
9213 		return -EFAULT;
9214 
9215 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9216 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9217 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9218 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9219 
9220 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9221 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9222 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9223 	callee->in_callback_fn = true;
9224 	callee->callback_ret_range = tnum_range(0, 1);
9225 	return 0;
9226 }
9227 
9228 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9229 
9230 /* Are we currently verifying the callback for a rbtree helper that must
9231  * be called with lock held? If so, no need to complain about unreleased
9232  * lock
9233  */
9234 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9235 {
9236 	struct bpf_verifier_state *state = env->cur_state;
9237 	struct bpf_insn *insn = env->prog->insnsi;
9238 	struct bpf_func_state *callee;
9239 	int kfunc_btf_id;
9240 
9241 	if (!state->curframe)
9242 		return false;
9243 
9244 	callee = state->frame[state->curframe];
9245 
9246 	if (!callee->in_callback_fn)
9247 		return false;
9248 
9249 	kfunc_btf_id = insn[callee->callsite].imm;
9250 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9251 }
9252 
9253 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9254 {
9255 	struct bpf_verifier_state *state = env->cur_state;
9256 	struct bpf_func_state *caller, *callee;
9257 	struct bpf_reg_state *r0;
9258 	int err;
9259 
9260 	callee = state->frame[state->curframe];
9261 	r0 = &callee->regs[BPF_REG_0];
9262 	if (r0->type == PTR_TO_STACK) {
9263 		/* technically it's ok to return caller's stack pointer
9264 		 * (or caller's caller's pointer) back to the caller,
9265 		 * since these pointers are valid. Only current stack
9266 		 * pointer will be invalid as soon as function exits,
9267 		 * but let's be conservative
9268 		 */
9269 		verbose(env, "cannot return stack pointer to the caller\n");
9270 		return -EINVAL;
9271 	}
9272 
9273 	caller = state->frame[state->curframe - 1];
9274 	if (callee->in_callback_fn) {
9275 		/* enforce R0 return value range [0, 1]. */
9276 		struct tnum range = callee->callback_ret_range;
9277 
9278 		if (r0->type != SCALAR_VALUE) {
9279 			verbose(env, "R0 not a scalar value\n");
9280 			return -EACCES;
9281 		}
9282 		if (!tnum_in(range, r0->var_off)) {
9283 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
9284 			return -EINVAL;
9285 		}
9286 	} else {
9287 		/* return to the caller whatever r0 had in the callee */
9288 		caller->regs[BPF_REG_0] = *r0;
9289 	}
9290 
9291 	/* callback_fn frame should have released its own additions to parent's
9292 	 * reference state at this point, or check_reference_leak would
9293 	 * complain, hence it must be the same as the caller. There is no need
9294 	 * to copy it back.
9295 	 */
9296 	if (!callee->in_callback_fn) {
9297 		/* Transfer references to the caller */
9298 		err = copy_reference_state(caller, callee);
9299 		if (err)
9300 			return err;
9301 	}
9302 
9303 	*insn_idx = callee->callsite + 1;
9304 	if (env->log.level & BPF_LOG_LEVEL) {
9305 		verbose(env, "returning from callee:\n");
9306 		print_verifier_state(env, callee, true);
9307 		verbose(env, "to caller at %d:\n", *insn_idx);
9308 		print_verifier_state(env, caller, true);
9309 	}
9310 	/* clear everything in the callee */
9311 	free_func_state(callee);
9312 	state->frame[state->curframe--] = NULL;
9313 	return 0;
9314 }
9315 
9316 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
9317 				   int func_id,
9318 				   struct bpf_call_arg_meta *meta)
9319 {
9320 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
9321 
9322 	if (ret_type != RET_INTEGER)
9323 		return;
9324 
9325 	switch (func_id) {
9326 	case BPF_FUNC_get_stack:
9327 	case BPF_FUNC_get_task_stack:
9328 	case BPF_FUNC_probe_read_str:
9329 	case BPF_FUNC_probe_read_kernel_str:
9330 	case BPF_FUNC_probe_read_user_str:
9331 		ret_reg->smax_value = meta->msize_max_value;
9332 		ret_reg->s32_max_value = meta->msize_max_value;
9333 		ret_reg->smin_value = -MAX_ERRNO;
9334 		ret_reg->s32_min_value = -MAX_ERRNO;
9335 		reg_bounds_sync(ret_reg);
9336 		break;
9337 	case BPF_FUNC_get_smp_processor_id:
9338 		ret_reg->umax_value = nr_cpu_ids - 1;
9339 		ret_reg->u32_max_value = nr_cpu_ids - 1;
9340 		ret_reg->smax_value = nr_cpu_ids - 1;
9341 		ret_reg->s32_max_value = nr_cpu_ids - 1;
9342 		ret_reg->umin_value = 0;
9343 		ret_reg->u32_min_value = 0;
9344 		ret_reg->smin_value = 0;
9345 		ret_reg->s32_min_value = 0;
9346 		reg_bounds_sync(ret_reg);
9347 		break;
9348 	}
9349 }
9350 
9351 static int
9352 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9353 		int func_id, int insn_idx)
9354 {
9355 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9356 	struct bpf_map *map = meta->map_ptr;
9357 
9358 	if (func_id != BPF_FUNC_tail_call &&
9359 	    func_id != BPF_FUNC_map_lookup_elem &&
9360 	    func_id != BPF_FUNC_map_update_elem &&
9361 	    func_id != BPF_FUNC_map_delete_elem &&
9362 	    func_id != BPF_FUNC_map_push_elem &&
9363 	    func_id != BPF_FUNC_map_pop_elem &&
9364 	    func_id != BPF_FUNC_map_peek_elem &&
9365 	    func_id != BPF_FUNC_for_each_map_elem &&
9366 	    func_id != BPF_FUNC_redirect_map &&
9367 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
9368 		return 0;
9369 
9370 	if (map == NULL) {
9371 		verbose(env, "kernel subsystem misconfigured verifier\n");
9372 		return -EINVAL;
9373 	}
9374 
9375 	/* In case of read-only, some additional restrictions
9376 	 * need to be applied in order to prevent altering the
9377 	 * state of the map from program side.
9378 	 */
9379 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
9380 	    (func_id == BPF_FUNC_map_delete_elem ||
9381 	     func_id == BPF_FUNC_map_update_elem ||
9382 	     func_id == BPF_FUNC_map_push_elem ||
9383 	     func_id == BPF_FUNC_map_pop_elem)) {
9384 		verbose(env, "write into map forbidden\n");
9385 		return -EACCES;
9386 	}
9387 
9388 	if (!BPF_MAP_PTR(aux->map_ptr_state))
9389 		bpf_map_ptr_store(aux, meta->map_ptr,
9390 				  !meta->map_ptr->bypass_spec_v1);
9391 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
9392 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
9393 				  !meta->map_ptr->bypass_spec_v1);
9394 	return 0;
9395 }
9396 
9397 static int
9398 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9399 		int func_id, int insn_idx)
9400 {
9401 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9402 	struct bpf_reg_state *regs = cur_regs(env), *reg;
9403 	struct bpf_map *map = meta->map_ptr;
9404 	u64 val, max;
9405 	int err;
9406 
9407 	if (func_id != BPF_FUNC_tail_call)
9408 		return 0;
9409 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
9410 		verbose(env, "kernel subsystem misconfigured verifier\n");
9411 		return -EINVAL;
9412 	}
9413 
9414 	reg = &regs[BPF_REG_3];
9415 	val = reg->var_off.value;
9416 	max = map->max_entries;
9417 
9418 	if (!(register_is_const(reg) && val < max)) {
9419 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9420 		return 0;
9421 	}
9422 
9423 	err = mark_chain_precision(env, BPF_REG_3);
9424 	if (err)
9425 		return err;
9426 	if (bpf_map_key_unseen(aux))
9427 		bpf_map_key_store(aux, val);
9428 	else if (!bpf_map_key_poisoned(aux) &&
9429 		  bpf_map_key_immediate(aux) != val)
9430 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9431 	return 0;
9432 }
9433 
9434 static int check_reference_leak(struct bpf_verifier_env *env)
9435 {
9436 	struct bpf_func_state *state = cur_func(env);
9437 	bool refs_lingering = false;
9438 	int i;
9439 
9440 	if (state->frameno && !state->in_callback_fn)
9441 		return 0;
9442 
9443 	for (i = 0; i < state->acquired_refs; i++) {
9444 		if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
9445 			continue;
9446 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
9447 			state->refs[i].id, state->refs[i].insn_idx);
9448 		refs_lingering = true;
9449 	}
9450 	return refs_lingering ? -EINVAL : 0;
9451 }
9452 
9453 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
9454 				   struct bpf_reg_state *regs)
9455 {
9456 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
9457 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
9458 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
9459 	struct bpf_bprintf_data data = {};
9460 	int err, fmt_map_off, num_args;
9461 	u64 fmt_addr;
9462 	char *fmt;
9463 
9464 	/* data must be an array of u64 */
9465 	if (data_len_reg->var_off.value % 8)
9466 		return -EINVAL;
9467 	num_args = data_len_reg->var_off.value / 8;
9468 
9469 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
9470 	 * and map_direct_value_addr is set.
9471 	 */
9472 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
9473 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
9474 						  fmt_map_off);
9475 	if (err) {
9476 		verbose(env, "verifier bug\n");
9477 		return -EFAULT;
9478 	}
9479 	fmt = (char *)(long)fmt_addr + fmt_map_off;
9480 
9481 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
9482 	 * can focus on validating the format specifiers.
9483 	 */
9484 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
9485 	if (err < 0)
9486 		verbose(env, "Invalid format string\n");
9487 
9488 	return err;
9489 }
9490 
9491 static int check_get_func_ip(struct bpf_verifier_env *env)
9492 {
9493 	enum bpf_prog_type type = resolve_prog_type(env->prog);
9494 	int func_id = BPF_FUNC_get_func_ip;
9495 
9496 	if (type == BPF_PROG_TYPE_TRACING) {
9497 		if (!bpf_prog_has_trampoline(env->prog)) {
9498 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
9499 				func_id_name(func_id), func_id);
9500 			return -ENOTSUPP;
9501 		}
9502 		return 0;
9503 	} else if (type == BPF_PROG_TYPE_KPROBE) {
9504 		return 0;
9505 	}
9506 
9507 	verbose(env, "func %s#%d not supported for program type %d\n",
9508 		func_id_name(func_id), func_id, type);
9509 	return -ENOTSUPP;
9510 }
9511 
9512 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
9513 {
9514 	return &env->insn_aux_data[env->insn_idx];
9515 }
9516 
9517 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
9518 {
9519 	struct bpf_reg_state *regs = cur_regs(env);
9520 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
9521 	bool reg_is_null = register_is_null(reg);
9522 
9523 	if (reg_is_null)
9524 		mark_chain_precision(env, BPF_REG_4);
9525 
9526 	return reg_is_null;
9527 }
9528 
9529 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
9530 {
9531 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
9532 
9533 	if (!state->initialized) {
9534 		state->initialized = 1;
9535 		state->fit_for_inline = loop_flag_is_zero(env);
9536 		state->callback_subprogno = subprogno;
9537 		return;
9538 	}
9539 
9540 	if (!state->fit_for_inline)
9541 		return;
9542 
9543 	state->fit_for_inline = (loop_flag_is_zero(env) &&
9544 				 state->callback_subprogno == subprogno);
9545 }
9546 
9547 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9548 			     int *insn_idx_p)
9549 {
9550 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9551 	const struct bpf_func_proto *fn = NULL;
9552 	enum bpf_return_type ret_type;
9553 	enum bpf_type_flag ret_flag;
9554 	struct bpf_reg_state *regs;
9555 	struct bpf_call_arg_meta meta;
9556 	int insn_idx = *insn_idx_p;
9557 	bool changes_data;
9558 	int i, err, func_id;
9559 
9560 	/* find function prototype */
9561 	func_id = insn->imm;
9562 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
9563 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
9564 			func_id);
9565 		return -EINVAL;
9566 	}
9567 
9568 	if (env->ops->get_func_proto)
9569 		fn = env->ops->get_func_proto(func_id, env->prog);
9570 	if (!fn) {
9571 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
9572 			func_id);
9573 		return -EINVAL;
9574 	}
9575 
9576 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
9577 	if (!env->prog->gpl_compatible && fn->gpl_only) {
9578 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
9579 		return -EINVAL;
9580 	}
9581 
9582 	if (fn->allowed && !fn->allowed(env->prog)) {
9583 		verbose(env, "helper call is not allowed in probe\n");
9584 		return -EINVAL;
9585 	}
9586 
9587 	if (!env->prog->aux->sleepable && fn->might_sleep) {
9588 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
9589 		return -EINVAL;
9590 	}
9591 
9592 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
9593 	changes_data = bpf_helper_changes_pkt_data(fn->func);
9594 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
9595 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
9596 			func_id_name(func_id), func_id);
9597 		return -EINVAL;
9598 	}
9599 
9600 	memset(&meta, 0, sizeof(meta));
9601 	meta.pkt_access = fn->pkt_access;
9602 
9603 	err = check_func_proto(fn, func_id);
9604 	if (err) {
9605 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
9606 			func_id_name(func_id), func_id);
9607 		return err;
9608 	}
9609 
9610 	if (env->cur_state->active_rcu_lock) {
9611 		if (fn->might_sleep) {
9612 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
9613 				func_id_name(func_id), func_id);
9614 			return -EINVAL;
9615 		}
9616 
9617 		if (env->prog->aux->sleepable && is_storage_get_function(func_id))
9618 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
9619 	}
9620 
9621 	meta.func_id = func_id;
9622 	/* check args */
9623 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
9624 		err = check_func_arg(env, i, &meta, fn, insn_idx);
9625 		if (err)
9626 			return err;
9627 	}
9628 
9629 	err = record_func_map(env, &meta, func_id, insn_idx);
9630 	if (err)
9631 		return err;
9632 
9633 	err = record_func_key(env, &meta, func_id, insn_idx);
9634 	if (err)
9635 		return err;
9636 
9637 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
9638 	 * is inferred from register state.
9639 	 */
9640 	for (i = 0; i < meta.access_size; i++) {
9641 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
9642 				       BPF_WRITE, -1, false, false);
9643 		if (err)
9644 			return err;
9645 	}
9646 
9647 	regs = cur_regs(env);
9648 
9649 	if (meta.release_regno) {
9650 		err = -EINVAL;
9651 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
9652 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
9653 		 * is safe to do directly.
9654 		 */
9655 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
9656 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
9657 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
9658 				return -EFAULT;
9659 			}
9660 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
9661 		} else if (meta.ref_obj_id) {
9662 			err = release_reference(env, meta.ref_obj_id);
9663 		} else if (register_is_null(&regs[meta.release_regno])) {
9664 			/* meta.ref_obj_id can only be 0 if register that is meant to be
9665 			 * released is NULL, which must be > R0.
9666 			 */
9667 			err = 0;
9668 		}
9669 		if (err) {
9670 			verbose(env, "func %s#%d reference has not been acquired before\n",
9671 				func_id_name(func_id), func_id);
9672 			return err;
9673 		}
9674 	}
9675 
9676 	switch (func_id) {
9677 	case BPF_FUNC_tail_call:
9678 		err = check_reference_leak(env);
9679 		if (err) {
9680 			verbose(env, "tail_call would lead to reference leak\n");
9681 			return err;
9682 		}
9683 		break;
9684 	case BPF_FUNC_get_local_storage:
9685 		/* check that flags argument in get_local_storage(map, flags) is 0,
9686 		 * this is required because get_local_storage() can't return an error.
9687 		 */
9688 		if (!register_is_null(&regs[BPF_REG_2])) {
9689 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
9690 			return -EINVAL;
9691 		}
9692 		break;
9693 	case BPF_FUNC_for_each_map_elem:
9694 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9695 					set_map_elem_callback_state);
9696 		break;
9697 	case BPF_FUNC_timer_set_callback:
9698 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9699 					set_timer_callback_state);
9700 		break;
9701 	case BPF_FUNC_find_vma:
9702 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9703 					set_find_vma_callback_state);
9704 		break;
9705 	case BPF_FUNC_snprintf:
9706 		err = check_bpf_snprintf_call(env, regs);
9707 		break;
9708 	case BPF_FUNC_loop:
9709 		update_loop_inline_state(env, meta.subprogno);
9710 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9711 					set_loop_callback_state);
9712 		break;
9713 	case BPF_FUNC_dynptr_from_mem:
9714 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
9715 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
9716 				reg_type_str(env, regs[BPF_REG_1].type));
9717 			return -EACCES;
9718 		}
9719 		break;
9720 	case BPF_FUNC_set_retval:
9721 		if (prog_type == BPF_PROG_TYPE_LSM &&
9722 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
9723 			if (!env->prog->aux->attach_func_proto->type) {
9724 				/* Make sure programs that attach to void
9725 				 * hooks don't try to modify return value.
9726 				 */
9727 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
9728 				return -EINVAL;
9729 			}
9730 		}
9731 		break;
9732 	case BPF_FUNC_dynptr_data:
9733 	{
9734 		struct bpf_reg_state *reg;
9735 		int id, ref_obj_id;
9736 
9737 		reg = get_dynptr_arg_reg(env, fn, regs);
9738 		if (!reg)
9739 			return -EFAULT;
9740 
9741 
9742 		if (meta.dynptr_id) {
9743 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
9744 			return -EFAULT;
9745 		}
9746 		if (meta.ref_obj_id) {
9747 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
9748 			return -EFAULT;
9749 		}
9750 
9751 		id = dynptr_id(env, reg);
9752 		if (id < 0) {
9753 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
9754 			return id;
9755 		}
9756 
9757 		ref_obj_id = dynptr_ref_obj_id(env, reg);
9758 		if (ref_obj_id < 0) {
9759 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
9760 			return ref_obj_id;
9761 		}
9762 
9763 		meta.dynptr_id = id;
9764 		meta.ref_obj_id = ref_obj_id;
9765 
9766 		break;
9767 	}
9768 	case BPF_FUNC_dynptr_write:
9769 	{
9770 		enum bpf_dynptr_type dynptr_type;
9771 		struct bpf_reg_state *reg;
9772 
9773 		reg = get_dynptr_arg_reg(env, fn, regs);
9774 		if (!reg)
9775 			return -EFAULT;
9776 
9777 		dynptr_type = dynptr_get_type(env, reg);
9778 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
9779 			return -EFAULT;
9780 
9781 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
9782 			/* this will trigger clear_all_pkt_pointers(), which will
9783 			 * invalidate all dynptr slices associated with the skb
9784 			 */
9785 			changes_data = true;
9786 
9787 		break;
9788 	}
9789 	case BPF_FUNC_user_ringbuf_drain:
9790 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9791 					set_user_ringbuf_callback_state);
9792 		break;
9793 	}
9794 
9795 	if (err)
9796 		return err;
9797 
9798 	/* reset caller saved regs */
9799 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9800 		mark_reg_not_init(env, regs, caller_saved[i]);
9801 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9802 	}
9803 
9804 	/* helper call returns 64-bit value. */
9805 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9806 
9807 	/* update return register (already marked as written above) */
9808 	ret_type = fn->ret_type;
9809 	ret_flag = type_flag(ret_type);
9810 
9811 	switch (base_type(ret_type)) {
9812 	case RET_INTEGER:
9813 		/* sets type to SCALAR_VALUE */
9814 		mark_reg_unknown(env, regs, BPF_REG_0);
9815 		break;
9816 	case RET_VOID:
9817 		regs[BPF_REG_0].type = NOT_INIT;
9818 		break;
9819 	case RET_PTR_TO_MAP_VALUE:
9820 		/* There is no offset yet applied, variable or fixed */
9821 		mark_reg_known_zero(env, regs, BPF_REG_0);
9822 		/* remember map_ptr, so that check_map_access()
9823 		 * can check 'value_size' boundary of memory access
9824 		 * to map element returned from bpf_map_lookup_elem()
9825 		 */
9826 		if (meta.map_ptr == NULL) {
9827 			verbose(env,
9828 				"kernel subsystem misconfigured verifier\n");
9829 			return -EINVAL;
9830 		}
9831 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
9832 		regs[BPF_REG_0].map_uid = meta.map_uid;
9833 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
9834 		if (!type_may_be_null(ret_type) &&
9835 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
9836 			regs[BPF_REG_0].id = ++env->id_gen;
9837 		}
9838 		break;
9839 	case RET_PTR_TO_SOCKET:
9840 		mark_reg_known_zero(env, regs, BPF_REG_0);
9841 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
9842 		break;
9843 	case RET_PTR_TO_SOCK_COMMON:
9844 		mark_reg_known_zero(env, regs, BPF_REG_0);
9845 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
9846 		break;
9847 	case RET_PTR_TO_TCP_SOCK:
9848 		mark_reg_known_zero(env, regs, BPF_REG_0);
9849 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
9850 		break;
9851 	case RET_PTR_TO_MEM:
9852 		mark_reg_known_zero(env, regs, BPF_REG_0);
9853 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
9854 		regs[BPF_REG_0].mem_size = meta.mem_size;
9855 		break;
9856 	case RET_PTR_TO_MEM_OR_BTF_ID:
9857 	{
9858 		const struct btf_type *t;
9859 
9860 		mark_reg_known_zero(env, regs, BPF_REG_0);
9861 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
9862 		if (!btf_type_is_struct(t)) {
9863 			u32 tsize;
9864 			const struct btf_type *ret;
9865 			const char *tname;
9866 
9867 			/* resolve the type size of ksym. */
9868 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
9869 			if (IS_ERR(ret)) {
9870 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
9871 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
9872 					tname, PTR_ERR(ret));
9873 				return -EINVAL;
9874 			}
9875 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
9876 			regs[BPF_REG_0].mem_size = tsize;
9877 		} else {
9878 			/* MEM_RDONLY may be carried from ret_flag, but it
9879 			 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
9880 			 * it will confuse the check of PTR_TO_BTF_ID in
9881 			 * check_mem_access().
9882 			 */
9883 			ret_flag &= ~MEM_RDONLY;
9884 
9885 			regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
9886 			regs[BPF_REG_0].btf = meta.ret_btf;
9887 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
9888 		}
9889 		break;
9890 	}
9891 	case RET_PTR_TO_BTF_ID:
9892 	{
9893 		struct btf *ret_btf;
9894 		int ret_btf_id;
9895 
9896 		mark_reg_known_zero(env, regs, BPF_REG_0);
9897 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
9898 		if (func_id == BPF_FUNC_kptr_xchg) {
9899 			ret_btf = meta.kptr_field->kptr.btf;
9900 			ret_btf_id = meta.kptr_field->kptr.btf_id;
9901 			if (!btf_is_kernel(ret_btf))
9902 				regs[BPF_REG_0].type |= MEM_ALLOC;
9903 		} else {
9904 			if (fn->ret_btf_id == BPF_PTR_POISON) {
9905 				verbose(env, "verifier internal error:");
9906 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
9907 					func_id_name(func_id));
9908 				return -EINVAL;
9909 			}
9910 			ret_btf = btf_vmlinux;
9911 			ret_btf_id = *fn->ret_btf_id;
9912 		}
9913 		if (ret_btf_id == 0) {
9914 			verbose(env, "invalid return type %u of func %s#%d\n",
9915 				base_type(ret_type), func_id_name(func_id),
9916 				func_id);
9917 			return -EINVAL;
9918 		}
9919 		regs[BPF_REG_0].btf = ret_btf;
9920 		regs[BPF_REG_0].btf_id = ret_btf_id;
9921 		break;
9922 	}
9923 	default:
9924 		verbose(env, "unknown return type %u of func %s#%d\n",
9925 			base_type(ret_type), func_id_name(func_id), func_id);
9926 		return -EINVAL;
9927 	}
9928 
9929 	if (type_may_be_null(regs[BPF_REG_0].type))
9930 		regs[BPF_REG_0].id = ++env->id_gen;
9931 
9932 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
9933 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
9934 			func_id_name(func_id), func_id);
9935 		return -EFAULT;
9936 	}
9937 
9938 	if (is_dynptr_ref_function(func_id))
9939 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
9940 
9941 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
9942 		/* For release_reference() */
9943 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
9944 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
9945 		int id = acquire_reference_state(env, insn_idx);
9946 
9947 		if (id < 0)
9948 			return id;
9949 		/* For mark_ptr_or_null_reg() */
9950 		regs[BPF_REG_0].id = id;
9951 		/* For release_reference() */
9952 		regs[BPF_REG_0].ref_obj_id = id;
9953 	}
9954 
9955 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
9956 
9957 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
9958 	if (err)
9959 		return err;
9960 
9961 	if ((func_id == BPF_FUNC_get_stack ||
9962 	     func_id == BPF_FUNC_get_task_stack) &&
9963 	    !env->prog->has_callchain_buf) {
9964 		const char *err_str;
9965 
9966 #ifdef CONFIG_PERF_EVENTS
9967 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
9968 		err_str = "cannot get callchain buffer for func %s#%d\n";
9969 #else
9970 		err = -ENOTSUPP;
9971 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
9972 #endif
9973 		if (err) {
9974 			verbose(env, err_str, func_id_name(func_id), func_id);
9975 			return err;
9976 		}
9977 
9978 		env->prog->has_callchain_buf = true;
9979 	}
9980 
9981 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
9982 		env->prog->call_get_stack = true;
9983 
9984 	if (func_id == BPF_FUNC_get_func_ip) {
9985 		if (check_get_func_ip(env))
9986 			return -ENOTSUPP;
9987 		env->prog->call_get_func_ip = true;
9988 	}
9989 
9990 	if (changes_data)
9991 		clear_all_pkt_pointers(env);
9992 	return 0;
9993 }
9994 
9995 /* mark_btf_func_reg_size() is used when the reg size is determined by
9996  * the BTF func_proto's return value size and argument.
9997  */
9998 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
9999 				   size_t reg_size)
10000 {
10001 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
10002 
10003 	if (regno == BPF_REG_0) {
10004 		/* Function return value */
10005 		reg->live |= REG_LIVE_WRITTEN;
10006 		reg->subreg_def = reg_size == sizeof(u64) ?
10007 			DEF_NOT_SUBREG : env->insn_idx + 1;
10008 	} else {
10009 		/* Function argument */
10010 		if (reg_size == sizeof(u64)) {
10011 			mark_insn_zext(env, reg);
10012 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
10013 		} else {
10014 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10015 		}
10016 	}
10017 }
10018 
10019 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10020 {
10021 	return meta->kfunc_flags & KF_ACQUIRE;
10022 }
10023 
10024 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10025 {
10026 	return meta->kfunc_flags & KF_RELEASE;
10027 }
10028 
10029 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10030 {
10031 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10032 }
10033 
10034 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10035 {
10036 	return meta->kfunc_flags & KF_SLEEPABLE;
10037 }
10038 
10039 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10040 {
10041 	return meta->kfunc_flags & KF_DESTRUCTIVE;
10042 }
10043 
10044 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10045 {
10046 	return meta->kfunc_flags & KF_RCU;
10047 }
10048 
10049 static bool __kfunc_param_match_suffix(const struct btf *btf,
10050 				       const struct btf_param *arg,
10051 				       const char *suffix)
10052 {
10053 	int suffix_len = strlen(suffix), len;
10054 	const char *param_name;
10055 
10056 	/* In the future, this can be ported to use BTF tagging */
10057 	param_name = btf_name_by_offset(btf, arg->name_off);
10058 	if (str_is_empty(param_name))
10059 		return false;
10060 	len = strlen(param_name);
10061 	if (len < suffix_len)
10062 		return false;
10063 	param_name += len - suffix_len;
10064 	return !strncmp(param_name, suffix, suffix_len);
10065 }
10066 
10067 static bool is_kfunc_arg_mem_size(const struct btf *btf,
10068 				  const struct btf_param *arg,
10069 				  const struct bpf_reg_state *reg)
10070 {
10071 	const struct btf_type *t;
10072 
10073 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10074 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10075 		return false;
10076 
10077 	return __kfunc_param_match_suffix(btf, arg, "__sz");
10078 }
10079 
10080 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
10081 					const struct btf_param *arg,
10082 					const struct bpf_reg_state *reg)
10083 {
10084 	const struct btf_type *t;
10085 
10086 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10087 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10088 		return false;
10089 
10090 	return __kfunc_param_match_suffix(btf, arg, "__szk");
10091 }
10092 
10093 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
10094 {
10095 	return __kfunc_param_match_suffix(btf, arg, "__opt");
10096 }
10097 
10098 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
10099 {
10100 	return __kfunc_param_match_suffix(btf, arg, "__k");
10101 }
10102 
10103 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
10104 {
10105 	return __kfunc_param_match_suffix(btf, arg, "__ign");
10106 }
10107 
10108 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
10109 {
10110 	return __kfunc_param_match_suffix(btf, arg, "__alloc");
10111 }
10112 
10113 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
10114 {
10115 	return __kfunc_param_match_suffix(btf, arg, "__uninit");
10116 }
10117 
10118 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
10119 {
10120 	return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
10121 }
10122 
10123 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
10124 					  const struct btf_param *arg,
10125 					  const char *name)
10126 {
10127 	int len, target_len = strlen(name);
10128 	const char *param_name;
10129 
10130 	param_name = btf_name_by_offset(btf, arg->name_off);
10131 	if (str_is_empty(param_name))
10132 		return false;
10133 	len = strlen(param_name);
10134 	if (len != target_len)
10135 		return false;
10136 	if (strcmp(param_name, name))
10137 		return false;
10138 
10139 	return true;
10140 }
10141 
10142 enum {
10143 	KF_ARG_DYNPTR_ID,
10144 	KF_ARG_LIST_HEAD_ID,
10145 	KF_ARG_LIST_NODE_ID,
10146 	KF_ARG_RB_ROOT_ID,
10147 	KF_ARG_RB_NODE_ID,
10148 };
10149 
10150 BTF_ID_LIST(kf_arg_btf_ids)
10151 BTF_ID(struct, bpf_dynptr_kern)
10152 BTF_ID(struct, bpf_list_head)
10153 BTF_ID(struct, bpf_list_node)
10154 BTF_ID(struct, bpf_rb_root)
10155 BTF_ID(struct, bpf_rb_node)
10156 
10157 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
10158 				    const struct btf_param *arg, int type)
10159 {
10160 	const struct btf_type *t;
10161 	u32 res_id;
10162 
10163 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10164 	if (!t)
10165 		return false;
10166 	if (!btf_type_is_ptr(t))
10167 		return false;
10168 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
10169 	if (!t)
10170 		return false;
10171 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
10172 }
10173 
10174 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
10175 {
10176 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
10177 }
10178 
10179 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
10180 {
10181 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
10182 }
10183 
10184 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
10185 {
10186 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
10187 }
10188 
10189 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
10190 {
10191 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
10192 }
10193 
10194 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
10195 {
10196 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
10197 }
10198 
10199 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10200 				  const struct btf_param *arg)
10201 {
10202 	const struct btf_type *t;
10203 
10204 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10205 	if (!t)
10206 		return false;
10207 
10208 	return true;
10209 }
10210 
10211 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
10212 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10213 					const struct btf *btf,
10214 					const struct btf_type *t, int rec)
10215 {
10216 	const struct btf_type *member_type;
10217 	const struct btf_member *member;
10218 	u32 i;
10219 
10220 	if (!btf_type_is_struct(t))
10221 		return false;
10222 
10223 	for_each_member(i, t, member) {
10224 		const struct btf_array *array;
10225 
10226 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
10227 		if (btf_type_is_struct(member_type)) {
10228 			if (rec >= 3) {
10229 				verbose(env, "max struct nesting depth exceeded\n");
10230 				return false;
10231 			}
10232 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
10233 				return false;
10234 			continue;
10235 		}
10236 		if (btf_type_is_array(member_type)) {
10237 			array = btf_array(member_type);
10238 			if (!array->nelems)
10239 				return false;
10240 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
10241 			if (!btf_type_is_scalar(member_type))
10242 				return false;
10243 			continue;
10244 		}
10245 		if (!btf_type_is_scalar(member_type))
10246 			return false;
10247 	}
10248 	return true;
10249 }
10250 
10251 enum kfunc_ptr_arg_type {
10252 	KF_ARG_PTR_TO_CTX,
10253 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
10254 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
10255 	KF_ARG_PTR_TO_DYNPTR,
10256 	KF_ARG_PTR_TO_ITER,
10257 	KF_ARG_PTR_TO_LIST_HEAD,
10258 	KF_ARG_PTR_TO_LIST_NODE,
10259 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
10260 	KF_ARG_PTR_TO_MEM,
10261 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
10262 	KF_ARG_PTR_TO_CALLBACK,
10263 	KF_ARG_PTR_TO_RB_ROOT,
10264 	KF_ARG_PTR_TO_RB_NODE,
10265 };
10266 
10267 enum special_kfunc_type {
10268 	KF_bpf_obj_new_impl,
10269 	KF_bpf_obj_drop_impl,
10270 	KF_bpf_refcount_acquire_impl,
10271 	KF_bpf_list_push_front_impl,
10272 	KF_bpf_list_push_back_impl,
10273 	KF_bpf_list_pop_front,
10274 	KF_bpf_list_pop_back,
10275 	KF_bpf_cast_to_kern_ctx,
10276 	KF_bpf_rdonly_cast,
10277 	KF_bpf_rcu_read_lock,
10278 	KF_bpf_rcu_read_unlock,
10279 	KF_bpf_rbtree_remove,
10280 	KF_bpf_rbtree_add_impl,
10281 	KF_bpf_rbtree_first,
10282 	KF_bpf_dynptr_from_skb,
10283 	KF_bpf_dynptr_from_xdp,
10284 	KF_bpf_dynptr_slice,
10285 	KF_bpf_dynptr_slice_rdwr,
10286 	KF_bpf_dynptr_clone,
10287 };
10288 
10289 BTF_SET_START(special_kfunc_set)
10290 BTF_ID(func, bpf_obj_new_impl)
10291 BTF_ID(func, bpf_obj_drop_impl)
10292 BTF_ID(func, bpf_refcount_acquire_impl)
10293 BTF_ID(func, bpf_list_push_front_impl)
10294 BTF_ID(func, bpf_list_push_back_impl)
10295 BTF_ID(func, bpf_list_pop_front)
10296 BTF_ID(func, bpf_list_pop_back)
10297 BTF_ID(func, bpf_cast_to_kern_ctx)
10298 BTF_ID(func, bpf_rdonly_cast)
10299 BTF_ID(func, bpf_rbtree_remove)
10300 BTF_ID(func, bpf_rbtree_add_impl)
10301 BTF_ID(func, bpf_rbtree_first)
10302 BTF_ID(func, bpf_dynptr_from_skb)
10303 BTF_ID(func, bpf_dynptr_from_xdp)
10304 BTF_ID(func, bpf_dynptr_slice)
10305 BTF_ID(func, bpf_dynptr_slice_rdwr)
10306 BTF_ID(func, bpf_dynptr_clone)
10307 BTF_SET_END(special_kfunc_set)
10308 
10309 BTF_ID_LIST(special_kfunc_list)
10310 BTF_ID(func, bpf_obj_new_impl)
10311 BTF_ID(func, bpf_obj_drop_impl)
10312 BTF_ID(func, bpf_refcount_acquire_impl)
10313 BTF_ID(func, bpf_list_push_front_impl)
10314 BTF_ID(func, bpf_list_push_back_impl)
10315 BTF_ID(func, bpf_list_pop_front)
10316 BTF_ID(func, bpf_list_pop_back)
10317 BTF_ID(func, bpf_cast_to_kern_ctx)
10318 BTF_ID(func, bpf_rdonly_cast)
10319 BTF_ID(func, bpf_rcu_read_lock)
10320 BTF_ID(func, bpf_rcu_read_unlock)
10321 BTF_ID(func, bpf_rbtree_remove)
10322 BTF_ID(func, bpf_rbtree_add_impl)
10323 BTF_ID(func, bpf_rbtree_first)
10324 BTF_ID(func, bpf_dynptr_from_skb)
10325 BTF_ID(func, bpf_dynptr_from_xdp)
10326 BTF_ID(func, bpf_dynptr_slice)
10327 BTF_ID(func, bpf_dynptr_slice_rdwr)
10328 BTF_ID(func, bpf_dynptr_clone)
10329 
10330 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
10331 {
10332 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
10333 	    meta->arg_owning_ref) {
10334 		return false;
10335 	}
10336 
10337 	return meta->kfunc_flags & KF_RET_NULL;
10338 }
10339 
10340 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
10341 {
10342 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
10343 }
10344 
10345 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
10346 {
10347 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
10348 }
10349 
10350 static enum kfunc_ptr_arg_type
10351 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
10352 		       struct bpf_kfunc_call_arg_meta *meta,
10353 		       const struct btf_type *t, const struct btf_type *ref_t,
10354 		       const char *ref_tname, const struct btf_param *args,
10355 		       int argno, int nargs)
10356 {
10357 	u32 regno = argno + 1;
10358 	struct bpf_reg_state *regs = cur_regs(env);
10359 	struct bpf_reg_state *reg = &regs[regno];
10360 	bool arg_mem_size = false;
10361 
10362 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
10363 		return KF_ARG_PTR_TO_CTX;
10364 
10365 	/* In this function, we verify the kfunc's BTF as per the argument type,
10366 	 * leaving the rest of the verification with respect to the register
10367 	 * type to our caller. When a set of conditions hold in the BTF type of
10368 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
10369 	 */
10370 	if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
10371 		return KF_ARG_PTR_TO_CTX;
10372 
10373 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
10374 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
10375 
10376 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
10377 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
10378 
10379 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
10380 		return KF_ARG_PTR_TO_DYNPTR;
10381 
10382 	if (is_kfunc_arg_iter(meta, argno))
10383 		return KF_ARG_PTR_TO_ITER;
10384 
10385 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
10386 		return KF_ARG_PTR_TO_LIST_HEAD;
10387 
10388 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
10389 		return KF_ARG_PTR_TO_LIST_NODE;
10390 
10391 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
10392 		return KF_ARG_PTR_TO_RB_ROOT;
10393 
10394 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
10395 		return KF_ARG_PTR_TO_RB_NODE;
10396 
10397 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
10398 		if (!btf_type_is_struct(ref_t)) {
10399 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
10400 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
10401 			return -EINVAL;
10402 		}
10403 		return KF_ARG_PTR_TO_BTF_ID;
10404 	}
10405 
10406 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
10407 		return KF_ARG_PTR_TO_CALLBACK;
10408 
10409 
10410 	if (argno + 1 < nargs &&
10411 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
10412 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
10413 		arg_mem_size = true;
10414 
10415 	/* This is the catch all argument type of register types supported by
10416 	 * check_helper_mem_access. However, we only allow when argument type is
10417 	 * pointer to scalar, or struct composed (recursively) of scalars. When
10418 	 * arg_mem_size is true, the pointer can be void *.
10419 	 */
10420 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
10421 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
10422 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
10423 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
10424 		return -EINVAL;
10425 	}
10426 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
10427 }
10428 
10429 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
10430 					struct bpf_reg_state *reg,
10431 					const struct btf_type *ref_t,
10432 					const char *ref_tname, u32 ref_id,
10433 					struct bpf_kfunc_call_arg_meta *meta,
10434 					int argno)
10435 {
10436 	const struct btf_type *reg_ref_t;
10437 	bool strict_type_match = false;
10438 	const struct btf *reg_btf;
10439 	const char *reg_ref_tname;
10440 	u32 reg_ref_id;
10441 
10442 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
10443 		reg_btf = reg->btf;
10444 		reg_ref_id = reg->btf_id;
10445 	} else {
10446 		reg_btf = btf_vmlinux;
10447 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
10448 	}
10449 
10450 	/* Enforce strict type matching for calls to kfuncs that are acquiring
10451 	 * or releasing a reference, or are no-cast aliases. We do _not_
10452 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
10453 	 * as we want to enable BPF programs to pass types that are bitwise
10454 	 * equivalent without forcing them to explicitly cast with something
10455 	 * like bpf_cast_to_kern_ctx().
10456 	 *
10457 	 * For example, say we had a type like the following:
10458 	 *
10459 	 * struct bpf_cpumask {
10460 	 *	cpumask_t cpumask;
10461 	 *	refcount_t usage;
10462 	 * };
10463 	 *
10464 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
10465 	 * to a struct cpumask, so it would be safe to pass a struct
10466 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
10467 	 *
10468 	 * The philosophy here is similar to how we allow scalars of different
10469 	 * types to be passed to kfuncs as long as the size is the same. The
10470 	 * only difference here is that we're simply allowing
10471 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
10472 	 * resolve types.
10473 	 */
10474 	if (is_kfunc_acquire(meta) ||
10475 	    (is_kfunc_release(meta) && reg->ref_obj_id) ||
10476 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
10477 		strict_type_match = true;
10478 
10479 	WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
10480 
10481 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
10482 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
10483 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
10484 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
10485 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
10486 			btf_type_str(reg_ref_t), reg_ref_tname);
10487 		return -EINVAL;
10488 	}
10489 	return 0;
10490 }
10491 
10492 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10493 {
10494 	struct bpf_verifier_state *state = env->cur_state;
10495 	struct btf_record *rec = reg_btf_record(reg);
10496 
10497 	if (!state->active_lock.ptr) {
10498 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
10499 		return -EFAULT;
10500 	}
10501 
10502 	if (type_flag(reg->type) & NON_OWN_REF) {
10503 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
10504 		return -EFAULT;
10505 	}
10506 
10507 	reg->type |= NON_OWN_REF;
10508 	if (rec->refcount_off >= 0)
10509 		reg->type |= MEM_RCU;
10510 
10511 	return 0;
10512 }
10513 
10514 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
10515 {
10516 	struct bpf_func_state *state, *unused;
10517 	struct bpf_reg_state *reg;
10518 	int i;
10519 
10520 	state = cur_func(env);
10521 
10522 	if (!ref_obj_id) {
10523 		verbose(env, "verifier internal error: ref_obj_id is zero for "
10524 			     "owning -> non-owning conversion\n");
10525 		return -EFAULT;
10526 	}
10527 
10528 	for (i = 0; i < state->acquired_refs; i++) {
10529 		if (state->refs[i].id != ref_obj_id)
10530 			continue;
10531 
10532 		/* Clear ref_obj_id here so release_reference doesn't clobber
10533 		 * the whole reg
10534 		 */
10535 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
10536 			if (reg->ref_obj_id == ref_obj_id) {
10537 				reg->ref_obj_id = 0;
10538 				ref_set_non_owning(env, reg);
10539 			}
10540 		}));
10541 		return 0;
10542 	}
10543 
10544 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
10545 	return -EFAULT;
10546 }
10547 
10548 /* Implementation details:
10549  *
10550  * Each register points to some region of memory, which we define as an
10551  * allocation. Each allocation may embed a bpf_spin_lock which protects any
10552  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
10553  * allocation. The lock and the data it protects are colocated in the same
10554  * memory region.
10555  *
10556  * Hence, everytime a register holds a pointer value pointing to such
10557  * allocation, the verifier preserves a unique reg->id for it.
10558  *
10559  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
10560  * bpf_spin_lock is called.
10561  *
10562  * To enable this, lock state in the verifier captures two values:
10563  *	active_lock.ptr = Register's type specific pointer
10564  *	active_lock.id  = A unique ID for each register pointer value
10565  *
10566  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
10567  * supported register types.
10568  *
10569  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
10570  * allocated objects is the reg->btf pointer.
10571  *
10572  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
10573  * can establish the provenance of the map value statically for each distinct
10574  * lookup into such maps. They always contain a single map value hence unique
10575  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
10576  *
10577  * So, in case of global variables, they use array maps with max_entries = 1,
10578  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
10579  * into the same map value as max_entries is 1, as described above).
10580  *
10581  * In case of inner map lookups, the inner map pointer has same map_ptr as the
10582  * outer map pointer (in verifier context), but each lookup into an inner map
10583  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
10584  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
10585  * will get different reg->id assigned to each lookup, hence different
10586  * active_lock.id.
10587  *
10588  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
10589  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
10590  * returned from bpf_obj_new. Each allocation receives a new reg->id.
10591  */
10592 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10593 {
10594 	void *ptr;
10595 	u32 id;
10596 
10597 	switch ((int)reg->type) {
10598 	case PTR_TO_MAP_VALUE:
10599 		ptr = reg->map_ptr;
10600 		break;
10601 	case PTR_TO_BTF_ID | MEM_ALLOC:
10602 		ptr = reg->btf;
10603 		break;
10604 	default:
10605 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
10606 		return -EFAULT;
10607 	}
10608 	id = reg->id;
10609 
10610 	if (!env->cur_state->active_lock.ptr)
10611 		return -EINVAL;
10612 	if (env->cur_state->active_lock.ptr != ptr ||
10613 	    env->cur_state->active_lock.id != id) {
10614 		verbose(env, "held lock and object are not in the same allocation\n");
10615 		return -EINVAL;
10616 	}
10617 	return 0;
10618 }
10619 
10620 static bool is_bpf_list_api_kfunc(u32 btf_id)
10621 {
10622 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
10623 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
10624 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
10625 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
10626 }
10627 
10628 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
10629 {
10630 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
10631 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10632 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first];
10633 }
10634 
10635 static bool is_bpf_graph_api_kfunc(u32 btf_id)
10636 {
10637 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
10638 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
10639 }
10640 
10641 static bool is_callback_calling_kfunc(u32 btf_id)
10642 {
10643 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
10644 }
10645 
10646 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
10647 {
10648 	return is_bpf_rbtree_api_kfunc(btf_id);
10649 }
10650 
10651 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
10652 					  enum btf_field_type head_field_type,
10653 					  u32 kfunc_btf_id)
10654 {
10655 	bool ret;
10656 
10657 	switch (head_field_type) {
10658 	case BPF_LIST_HEAD:
10659 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
10660 		break;
10661 	case BPF_RB_ROOT:
10662 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
10663 		break;
10664 	default:
10665 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
10666 			btf_field_type_name(head_field_type));
10667 		return false;
10668 	}
10669 
10670 	if (!ret)
10671 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
10672 			btf_field_type_name(head_field_type));
10673 	return ret;
10674 }
10675 
10676 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
10677 					  enum btf_field_type node_field_type,
10678 					  u32 kfunc_btf_id)
10679 {
10680 	bool ret;
10681 
10682 	switch (node_field_type) {
10683 	case BPF_LIST_NODE:
10684 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
10685 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
10686 		break;
10687 	case BPF_RB_NODE:
10688 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10689 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
10690 		break;
10691 	default:
10692 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
10693 			btf_field_type_name(node_field_type));
10694 		return false;
10695 	}
10696 
10697 	if (!ret)
10698 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
10699 			btf_field_type_name(node_field_type));
10700 	return ret;
10701 }
10702 
10703 static int
10704 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
10705 				   struct bpf_reg_state *reg, u32 regno,
10706 				   struct bpf_kfunc_call_arg_meta *meta,
10707 				   enum btf_field_type head_field_type,
10708 				   struct btf_field **head_field)
10709 {
10710 	const char *head_type_name;
10711 	struct btf_field *field;
10712 	struct btf_record *rec;
10713 	u32 head_off;
10714 
10715 	if (meta->btf != btf_vmlinux) {
10716 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
10717 		return -EFAULT;
10718 	}
10719 
10720 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
10721 		return -EFAULT;
10722 
10723 	head_type_name = btf_field_type_name(head_field_type);
10724 	if (!tnum_is_const(reg->var_off)) {
10725 		verbose(env,
10726 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
10727 			regno, head_type_name);
10728 		return -EINVAL;
10729 	}
10730 
10731 	rec = reg_btf_record(reg);
10732 	head_off = reg->off + reg->var_off.value;
10733 	field = btf_record_find(rec, head_off, head_field_type);
10734 	if (!field) {
10735 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
10736 		return -EINVAL;
10737 	}
10738 
10739 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
10740 	if (check_reg_allocation_locked(env, reg)) {
10741 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
10742 			rec->spin_lock_off, head_type_name);
10743 		return -EINVAL;
10744 	}
10745 
10746 	if (*head_field) {
10747 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
10748 		return -EFAULT;
10749 	}
10750 	*head_field = field;
10751 	return 0;
10752 }
10753 
10754 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
10755 					   struct bpf_reg_state *reg, u32 regno,
10756 					   struct bpf_kfunc_call_arg_meta *meta)
10757 {
10758 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
10759 							  &meta->arg_list_head.field);
10760 }
10761 
10762 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
10763 					     struct bpf_reg_state *reg, u32 regno,
10764 					     struct bpf_kfunc_call_arg_meta *meta)
10765 {
10766 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
10767 							  &meta->arg_rbtree_root.field);
10768 }
10769 
10770 static int
10771 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
10772 				   struct bpf_reg_state *reg, u32 regno,
10773 				   struct bpf_kfunc_call_arg_meta *meta,
10774 				   enum btf_field_type head_field_type,
10775 				   enum btf_field_type node_field_type,
10776 				   struct btf_field **node_field)
10777 {
10778 	const char *node_type_name;
10779 	const struct btf_type *et, *t;
10780 	struct btf_field *field;
10781 	u32 node_off;
10782 
10783 	if (meta->btf != btf_vmlinux) {
10784 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
10785 		return -EFAULT;
10786 	}
10787 
10788 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
10789 		return -EFAULT;
10790 
10791 	node_type_name = btf_field_type_name(node_field_type);
10792 	if (!tnum_is_const(reg->var_off)) {
10793 		verbose(env,
10794 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
10795 			regno, node_type_name);
10796 		return -EINVAL;
10797 	}
10798 
10799 	node_off = reg->off + reg->var_off.value;
10800 	field = reg_find_field_offset(reg, node_off, node_field_type);
10801 	if (!field || field->offset != node_off) {
10802 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
10803 		return -EINVAL;
10804 	}
10805 
10806 	field = *node_field;
10807 
10808 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
10809 	t = btf_type_by_id(reg->btf, reg->btf_id);
10810 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
10811 				  field->graph_root.value_btf_id, true)) {
10812 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
10813 			"in struct %s, but arg is at offset=%d in struct %s\n",
10814 			btf_field_type_name(head_field_type),
10815 			btf_field_type_name(node_field_type),
10816 			field->graph_root.node_offset,
10817 			btf_name_by_offset(field->graph_root.btf, et->name_off),
10818 			node_off, btf_name_by_offset(reg->btf, t->name_off));
10819 		return -EINVAL;
10820 	}
10821 	meta->arg_btf = reg->btf;
10822 	meta->arg_btf_id = reg->btf_id;
10823 
10824 	if (node_off != field->graph_root.node_offset) {
10825 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
10826 			node_off, btf_field_type_name(node_field_type),
10827 			field->graph_root.node_offset,
10828 			btf_name_by_offset(field->graph_root.btf, et->name_off));
10829 		return -EINVAL;
10830 	}
10831 
10832 	return 0;
10833 }
10834 
10835 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
10836 					   struct bpf_reg_state *reg, u32 regno,
10837 					   struct bpf_kfunc_call_arg_meta *meta)
10838 {
10839 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10840 						  BPF_LIST_HEAD, BPF_LIST_NODE,
10841 						  &meta->arg_list_head.field);
10842 }
10843 
10844 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
10845 					     struct bpf_reg_state *reg, u32 regno,
10846 					     struct bpf_kfunc_call_arg_meta *meta)
10847 {
10848 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10849 						  BPF_RB_ROOT, BPF_RB_NODE,
10850 						  &meta->arg_rbtree_root.field);
10851 }
10852 
10853 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
10854 			    int insn_idx)
10855 {
10856 	const char *func_name = meta->func_name, *ref_tname;
10857 	const struct btf *btf = meta->btf;
10858 	const struct btf_param *args;
10859 	struct btf_record *rec;
10860 	u32 i, nargs;
10861 	int ret;
10862 
10863 	args = (const struct btf_param *)(meta->func_proto + 1);
10864 	nargs = btf_type_vlen(meta->func_proto);
10865 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
10866 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
10867 			MAX_BPF_FUNC_REG_ARGS);
10868 		return -EINVAL;
10869 	}
10870 
10871 	/* Check that BTF function arguments match actual types that the
10872 	 * verifier sees.
10873 	 */
10874 	for (i = 0; i < nargs; i++) {
10875 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
10876 		const struct btf_type *t, *ref_t, *resolve_ret;
10877 		enum bpf_arg_type arg_type = ARG_DONTCARE;
10878 		u32 regno = i + 1, ref_id, type_size;
10879 		bool is_ret_buf_sz = false;
10880 		int kf_arg_type;
10881 
10882 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
10883 
10884 		if (is_kfunc_arg_ignore(btf, &args[i]))
10885 			continue;
10886 
10887 		if (btf_type_is_scalar(t)) {
10888 			if (reg->type != SCALAR_VALUE) {
10889 				verbose(env, "R%d is not a scalar\n", regno);
10890 				return -EINVAL;
10891 			}
10892 
10893 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
10894 				if (meta->arg_constant.found) {
10895 					verbose(env, "verifier internal error: only one constant argument permitted\n");
10896 					return -EFAULT;
10897 				}
10898 				if (!tnum_is_const(reg->var_off)) {
10899 					verbose(env, "R%d must be a known constant\n", regno);
10900 					return -EINVAL;
10901 				}
10902 				ret = mark_chain_precision(env, regno);
10903 				if (ret < 0)
10904 					return ret;
10905 				meta->arg_constant.found = true;
10906 				meta->arg_constant.value = reg->var_off.value;
10907 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
10908 				meta->r0_rdonly = true;
10909 				is_ret_buf_sz = true;
10910 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
10911 				is_ret_buf_sz = true;
10912 			}
10913 
10914 			if (is_ret_buf_sz) {
10915 				if (meta->r0_size) {
10916 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
10917 					return -EINVAL;
10918 				}
10919 
10920 				if (!tnum_is_const(reg->var_off)) {
10921 					verbose(env, "R%d is not a const\n", regno);
10922 					return -EINVAL;
10923 				}
10924 
10925 				meta->r0_size = reg->var_off.value;
10926 				ret = mark_chain_precision(env, regno);
10927 				if (ret)
10928 					return ret;
10929 			}
10930 			continue;
10931 		}
10932 
10933 		if (!btf_type_is_ptr(t)) {
10934 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
10935 			return -EINVAL;
10936 		}
10937 
10938 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
10939 		    (register_is_null(reg) || type_may_be_null(reg->type))) {
10940 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
10941 			return -EACCES;
10942 		}
10943 
10944 		if (reg->ref_obj_id) {
10945 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
10946 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
10947 					regno, reg->ref_obj_id,
10948 					meta->ref_obj_id);
10949 				return -EFAULT;
10950 			}
10951 			meta->ref_obj_id = reg->ref_obj_id;
10952 			if (is_kfunc_release(meta))
10953 				meta->release_regno = regno;
10954 		}
10955 
10956 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
10957 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
10958 
10959 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
10960 		if (kf_arg_type < 0)
10961 			return kf_arg_type;
10962 
10963 		switch (kf_arg_type) {
10964 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
10965 		case KF_ARG_PTR_TO_BTF_ID:
10966 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
10967 				break;
10968 
10969 			if (!is_trusted_reg(reg)) {
10970 				if (!is_kfunc_rcu(meta)) {
10971 					verbose(env, "R%d must be referenced or trusted\n", regno);
10972 					return -EINVAL;
10973 				}
10974 				if (!is_rcu_reg(reg)) {
10975 					verbose(env, "R%d must be a rcu pointer\n", regno);
10976 					return -EINVAL;
10977 				}
10978 			}
10979 
10980 			fallthrough;
10981 		case KF_ARG_PTR_TO_CTX:
10982 			/* Trusted arguments have the same offset checks as release arguments */
10983 			arg_type |= OBJ_RELEASE;
10984 			break;
10985 		case KF_ARG_PTR_TO_DYNPTR:
10986 		case KF_ARG_PTR_TO_ITER:
10987 		case KF_ARG_PTR_TO_LIST_HEAD:
10988 		case KF_ARG_PTR_TO_LIST_NODE:
10989 		case KF_ARG_PTR_TO_RB_ROOT:
10990 		case KF_ARG_PTR_TO_RB_NODE:
10991 		case KF_ARG_PTR_TO_MEM:
10992 		case KF_ARG_PTR_TO_MEM_SIZE:
10993 		case KF_ARG_PTR_TO_CALLBACK:
10994 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
10995 			/* Trusted by default */
10996 			break;
10997 		default:
10998 			WARN_ON_ONCE(1);
10999 			return -EFAULT;
11000 		}
11001 
11002 		if (is_kfunc_release(meta) && reg->ref_obj_id)
11003 			arg_type |= OBJ_RELEASE;
11004 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
11005 		if (ret < 0)
11006 			return ret;
11007 
11008 		switch (kf_arg_type) {
11009 		case KF_ARG_PTR_TO_CTX:
11010 			if (reg->type != PTR_TO_CTX) {
11011 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
11012 				return -EINVAL;
11013 			}
11014 
11015 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11016 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
11017 				if (ret < 0)
11018 					return -EINVAL;
11019 				meta->ret_btf_id  = ret;
11020 			}
11021 			break;
11022 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11023 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11024 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11025 				return -EINVAL;
11026 			}
11027 			if (!reg->ref_obj_id) {
11028 				verbose(env, "allocated object must be referenced\n");
11029 				return -EINVAL;
11030 			}
11031 			if (meta->btf == btf_vmlinux &&
11032 			    meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
11033 				meta->arg_btf = reg->btf;
11034 				meta->arg_btf_id = reg->btf_id;
11035 			}
11036 			break;
11037 		case KF_ARG_PTR_TO_DYNPTR:
11038 		{
11039 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
11040 			int clone_ref_obj_id = 0;
11041 
11042 			if (reg->type != PTR_TO_STACK &&
11043 			    reg->type != CONST_PTR_TO_DYNPTR) {
11044 				verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
11045 				return -EINVAL;
11046 			}
11047 
11048 			if (reg->type == CONST_PTR_TO_DYNPTR)
11049 				dynptr_arg_type |= MEM_RDONLY;
11050 
11051 			if (is_kfunc_arg_uninit(btf, &args[i]))
11052 				dynptr_arg_type |= MEM_UNINIT;
11053 
11054 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
11055 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
11056 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
11057 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
11058 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
11059 				   (dynptr_arg_type & MEM_UNINIT)) {
11060 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
11061 
11062 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
11063 					verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
11064 					return -EFAULT;
11065 				}
11066 
11067 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
11068 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
11069 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
11070 					verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
11071 					return -EFAULT;
11072 				}
11073 			}
11074 
11075 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
11076 			if (ret < 0)
11077 				return ret;
11078 
11079 			if (!(dynptr_arg_type & MEM_UNINIT)) {
11080 				int id = dynptr_id(env, reg);
11081 
11082 				if (id < 0) {
11083 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
11084 					return id;
11085 				}
11086 				meta->initialized_dynptr.id = id;
11087 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
11088 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
11089 			}
11090 
11091 			break;
11092 		}
11093 		case KF_ARG_PTR_TO_ITER:
11094 			ret = process_iter_arg(env, regno, insn_idx, meta);
11095 			if (ret < 0)
11096 				return ret;
11097 			break;
11098 		case KF_ARG_PTR_TO_LIST_HEAD:
11099 			if (reg->type != PTR_TO_MAP_VALUE &&
11100 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11101 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11102 				return -EINVAL;
11103 			}
11104 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11105 				verbose(env, "allocated object must be referenced\n");
11106 				return -EINVAL;
11107 			}
11108 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
11109 			if (ret < 0)
11110 				return ret;
11111 			break;
11112 		case KF_ARG_PTR_TO_RB_ROOT:
11113 			if (reg->type != PTR_TO_MAP_VALUE &&
11114 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11115 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11116 				return -EINVAL;
11117 			}
11118 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11119 				verbose(env, "allocated object must be referenced\n");
11120 				return -EINVAL;
11121 			}
11122 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
11123 			if (ret < 0)
11124 				return ret;
11125 			break;
11126 		case KF_ARG_PTR_TO_LIST_NODE:
11127 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11128 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11129 				return -EINVAL;
11130 			}
11131 			if (!reg->ref_obj_id) {
11132 				verbose(env, "allocated object must be referenced\n");
11133 				return -EINVAL;
11134 			}
11135 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
11136 			if (ret < 0)
11137 				return ret;
11138 			break;
11139 		case KF_ARG_PTR_TO_RB_NODE:
11140 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
11141 				if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
11142 					verbose(env, "rbtree_remove node input must be non-owning ref\n");
11143 					return -EINVAL;
11144 				}
11145 				if (in_rbtree_lock_required_cb(env)) {
11146 					verbose(env, "rbtree_remove not allowed in rbtree cb\n");
11147 					return -EINVAL;
11148 				}
11149 			} else {
11150 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11151 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
11152 					return -EINVAL;
11153 				}
11154 				if (!reg->ref_obj_id) {
11155 					verbose(env, "allocated object must be referenced\n");
11156 					return -EINVAL;
11157 				}
11158 			}
11159 
11160 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
11161 			if (ret < 0)
11162 				return ret;
11163 			break;
11164 		case KF_ARG_PTR_TO_BTF_ID:
11165 			/* Only base_type is checked, further checks are done here */
11166 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
11167 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
11168 			    !reg2btf_ids[base_type(reg->type)]) {
11169 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
11170 				verbose(env, "expected %s or socket\n",
11171 					reg_type_str(env, base_type(reg->type) |
11172 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
11173 				return -EINVAL;
11174 			}
11175 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
11176 			if (ret < 0)
11177 				return ret;
11178 			break;
11179 		case KF_ARG_PTR_TO_MEM:
11180 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
11181 			if (IS_ERR(resolve_ret)) {
11182 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
11183 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
11184 				return -EINVAL;
11185 			}
11186 			ret = check_mem_reg(env, reg, regno, type_size);
11187 			if (ret < 0)
11188 				return ret;
11189 			break;
11190 		case KF_ARG_PTR_TO_MEM_SIZE:
11191 		{
11192 			struct bpf_reg_state *buff_reg = &regs[regno];
11193 			const struct btf_param *buff_arg = &args[i];
11194 			struct bpf_reg_state *size_reg = &regs[regno + 1];
11195 			const struct btf_param *size_arg = &args[i + 1];
11196 
11197 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
11198 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
11199 				if (ret < 0) {
11200 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
11201 					return ret;
11202 				}
11203 			}
11204 
11205 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
11206 				if (meta->arg_constant.found) {
11207 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11208 					return -EFAULT;
11209 				}
11210 				if (!tnum_is_const(size_reg->var_off)) {
11211 					verbose(env, "R%d must be a known constant\n", regno + 1);
11212 					return -EINVAL;
11213 				}
11214 				meta->arg_constant.found = true;
11215 				meta->arg_constant.value = size_reg->var_off.value;
11216 			}
11217 
11218 			/* Skip next '__sz' or '__szk' argument */
11219 			i++;
11220 			break;
11221 		}
11222 		case KF_ARG_PTR_TO_CALLBACK:
11223 			if (reg->type != PTR_TO_FUNC) {
11224 				verbose(env, "arg%d expected pointer to func\n", i);
11225 				return -EINVAL;
11226 			}
11227 			meta->subprogno = reg->subprogno;
11228 			break;
11229 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11230 			if (!type_is_ptr_alloc_obj(reg->type)) {
11231 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
11232 				return -EINVAL;
11233 			}
11234 			if (!type_is_non_owning_ref(reg->type))
11235 				meta->arg_owning_ref = true;
11236 
11237 			rec = reg_btf_record(reg);
11238 			if (!rec) {
11239 				verbose(env, "verifier internal error: Couldn't find btf_record\n");
11240 				return -EFAULT;
11241 			}
11242 
11243 			if (rec->refcount_off < 0) {
11244 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
11245 				return -EINVAL;
11246 			}
11247 
11248 			meta->arg_btf = reg->btf;
11249 			meta->arg_btf_id = reg->btf_id;
11250 			break;
11251 		}
11252 	}
11253 
11254 	if (is_kfunc_release(meta) && !meta->release_regno) {
11255 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
11256 			func_name);
11257 		return -EINVAL;
11258 	}
11259 
11260 	return 0;
11261 }
11262 
11263 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
11264 			    struct bpf_insn *insn,
11265 			    struct bpf_kfunc_call_arg_meta *meta,
11266 			    const char **kfunc_name)
11267 {
11268 	const struct btf_type *func, *func_proto;
11269 	u32 func_id, *kfunc_flags;
11270 	const char *func_name;
11271 	struct btf *desc_btf;
11272 
11273 	if (kfunc_name)
11274 		*kfunc_name = NULL;
11275 
11276 	if (!insn->imm)
11277 		return -EINVAL;
11278 
11279 	desc_btf = find_kfunc_desc_btf(env, insn->off);
11280 	if (IS_ERR(desc_btf))
11281 		return PTR_ERR(desc_btf);
11282 
11283 	func_id = insn->imm;
11284 	func = btf_type_by_id(desc_btf, func_id);
11285 	func_name = btf_name_by_offset(desc_btf, func->name_off);
11286 	if (kfunc_name)
11287 		*kfunc_name = func_name;
11288 	func_proto = btf_type_by_id(desc_btf, func->type);
11289 
11290 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
11291 	if (!kfunc_flags) {
11292 		return -EACCES;
11293 	}
11294 
11295 	memset(meta, 0, sizeof(*meta));
11296 	meta->btf = desc_btf;
11297 	meta->func_id = func_id;
11298 	meta->kfunc_flags = *kfunc_flags;
11299 	meta->func_proto = func_proto;
11300 	meta->func_name = func_name;
11301 
11302 	return 0;
11303 }
11304 
11305 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11306 			    int *insn_idx_p)
11307 {
11308 	const struct btf_type *t, *ptr_type;
11309 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
11310 	struct bpf_reg_state *regs = cur_regs(env);
11311 	const char *func_name, *ptr_type_name;
11312 	bool sleepable, rcu_lock, rcu_unlock;
11313 	struct bpf_kfunc_call_arg_meta meta;
11314 	struct bpf_insn_aux_data *insn_aux;
11315 	int err, insn_idx = *insn_idx_p;
11316 	const struct btf_param *args;
11317 	const struct btf_type *ret_t;
11318 	struct btf *desc_btf;
11319 
11320 	/* skip for now, but return error when we find this in fixup_kfunc_call */
11321 	if (!insn->imm)
11322 		return 0;
11323 
11324 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
11325 	if (err == -EACCES && func_name)
11326 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
11327 	if (err)
11328 		return err;
11329 	desc_btf = meta.btf;
11330 	insn_aux = &env->insn_aux_data[insn_idx];
11331 
11332 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
11333 
11334 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
11335 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
11336 		return -EACCES;
11337 	}
11338 
11339 	sleepable = is_kfunc_sleepable(&meta);
11340 	if (sleepable && !env->prog->aux->sleepable) {
11341 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
11342 		return -EACCES;
11343 	}
11344 
11345 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
11346 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
11347 
11348 	if (env->cur_state->active_rcu_lock) {
11349 		struct bpf_func_state *state;
11350 		struct bpf_reg_state *reg;
11351 
11352 		if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
11353 			verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
11354 			return -EACCES;
11355 		}
11356 
11357 		if (rcu_lock) {
11358 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
11359 			return -EINVAL;
11360 		} else if (rcu_unlock) {
11361 			bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
11362 				if (reg->type & MEM_RCU) {
11363 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
11364 					reg->type |= PTR_UNTRUSTED;
11365 				}
11366 			}));
11367 			env->cur_state->active_rcu_lock = false;
11368 		} else if (sleepable) {
11369 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
11370 			return -EACCES;
11371 		}
11372 	} else if (rcu_lock) {
11373 		env->cur_state->active_rcu_lock = true;
11374 	} else if (rcu_unlock) {
11375 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
11376 		return -EINVAL;
11377 	}
11378 
11379 	/* Check the arguments */
11380 	err = check_kfunc_args(env, &meta, insn_idx);
11381 	if (err < 0)
11382 		return err;
11383 	/* In case of release function, we get register number of refcounted
11384 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
11385 	 */
11386 	if (meta.release_regno) {
11387 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
11388 		if (err) {
11389 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11390 				func_name, meta.func_id);
11391 			return err;
11392 		}
11393 	}
11394 
11395 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11396 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11397 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11398 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
11399 		insn_aux->insert_off = regs[BPF_REG_2].off;
11400 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
11401 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
11402 		if (err) {
11403 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
11404 				func_name, meta.func_id);
11405 			return err;
11406 		}
11407 
11408 		err = release_reference(env, release_ref_obj_id);
11409 		if (err) {
11410 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11411 				func_name, meta.func_id);
11412 			return err;
11413 		}
11414 	}
11415 
11416 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11417 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
11418 					set_rbtree_add_callback_state);
11419 		if (err) {
11420 			verbose(env, "kfunc %s#%d failed callback verification\n",
11421 				func_name, meta.func_id);
11422 			return err;
11423 		}
11424 	}
11425 
11426 	for (i = 0; i < CALLER_SAVED_REGS; i++)
11427 		mark_reg_not_init(env, regs, caller_saved[i]);
11428 
11429 	/* Check return type */
11430 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
11431 
11432 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
11433 		/* Only exception is bpf_obj_new_impl */
11434 		if (meta.btf != btf_vmlinux ||
11435 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
11436 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
11437 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
11438 			return -EINVAL;
11439 		}
11440 	}
11441 
11442 	if (btf_type_is_scalar(t)) {
11443 		mark_reg_unknown(env, regs, BPF_REG_0);
11444 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
11445 	} else if (btf_type_is_ptr(t)) {
11446 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
11447 
11448 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11449 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
11450 				struct btf *ret_btf;
11451 				u32 ret_btf_id;
11452 
11453 				if (unlikely(!bpf_global_ma_set))
11454 					return -ENOMEM;
11455 
11456 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
11457 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
11458 					return -EINVAL;
11459 				}
11460 
11461 				ret_btf = env->prog->aux->btf;
11462 				ret_btf_id = meta.arg_constant.value;
11463 
11464 				/* This may be NULL due to user not supplying a BTF */
11465 				if (!ret_btf) {
11466 					verbose(env, "bpf_obj_new requires prog BTF\n");
11467 					return -EINVAL;
11468 				}
11469 
11470 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
11471 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
11472 					verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
11473 					return -EINVAL;
11474 				}
11475 
11476 				mark_reg_known_zero(env, regs, BPF_REG_0);
11477 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11478 				regs[BPF_REG_0].btf = ret_btf;
11479 				regs[BPF_REG_0].btf_id = ret_btf_id;
11480 
11481 				insn_aux->obj_new_size = ret_t->size;
11482 				insn_aux->kptr_struct_meta =
11483 					btf_find_struct_meta(ret_btf, ret_btf_id);
11484 			} else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
11485 				mark_reg_known_zero(env, regs, BPF_REG_0);
11486 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11487 				regs[BPF_REG_0].btf = meta.arg_btf;
11488 				regs[BPF_REG_0].btf_id = meta.arg_btf_id;
11489 
11490 				insn_aux->kptr_struct_meta =
11491 					btf_find_struct_meta(meta.arg_btf,
11492 							     meta.arg_btf_id);
11493 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11494 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
11495 				struct btf_field *field = meta.arg_list_head.field;
11496 
11497 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11498 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11499 				   meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11500 				struct btf_field *field = meta.arg_rbtree_root.field;
11501 
11502 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11503 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11504 				mark_reg_known_zero(env, regs, BPF_REG_0);
11505 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
11506 				regs[BPF_REG_0].btf = desc_btf;
11507 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
11508 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
11509 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
11510 				if (!ret_t || !btf_type_is_struct(ret_t)) {
11511 					verbose(env,
11512 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
11513 					return -EINVAL;
11514 				}
11515 
11516 				mark_reg_known_zero(env, regs, BPF_REG_0);
11517 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
11518 				regs[BPF_REG_0].btf = desc_btf;
11519 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
11520 			} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
11521 				   meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
11522 				enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
11523 
11524 				mark_reg_known_zero(env, regs, BPF_REG_0);
11525 
11526 				if (!meta.arg_constant.found) {
11527 					verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
11528 					return -EFAULT;
11529 				}
11530 
11531 				regs[BPF_REG_0].mem_size = meta.arg_constant.value;
11532 
11533 				/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
11534 				regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
11535 
11536 				if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
11537 					regs[BPF_REG_0].type |= MEM_RDONLY;
11538 				} else {
11539 					/* this will set env->seen_direct_write to true */
11540 					if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
11541 						verbose(env, "the prog does not allow writes to packet data\n");
11542 						return -EINVAL;
11543 					}
11544 				}
11545 
11546 				if (!meta.initialized_dynptr.id) {
11547 					verbose(env, "verifier internal error: no dynptr id\n");
11548 					return -EFAULT;
11549 				}
11550 				regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
11551 
11552 				/* we don't need to set BPF_REG_0's ref obj id
11553 				 * because packet slices are not refcounted (see
11554 				 * dynptr_type_refcounted)
11555 				 */
11556 			} else {
11557 				verbose(env, "kernel function %s unhandled dynamic return type\n",
11558 					meta.func_name);
11559 				return -EFAULT;
11560 			}
11561 		} else if (!__btf_type_is_struct(ptr_type)) {
11562 			if (!meta.r0_size) {
11563 				__u32 sz;
11564 
11565 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
11566 					meta.r0_size = sz;
11567 					meta.r0_rdonly = true;
11568 				}
11569 			}
11570 			if (!meta.r0_size) {
11571 				ptr_type_name = btf_name_by_offset(desc_btf,
11572 								   ptr_type->name_off);
11573 				verbose(env,
11574 					"kernel function %s returns pointer type %s %s is not supported\n",
11575 					func_name,
11576 					btf_type_str(ptr_type),
11577 					ptr_type_name);
11578 				return -EINVAL;
11579 			}
11580 
11581 			mark_reg_known_zero(env, regs, BPF_REG_0);
11582 			regs[BPF_REG_0].type = PTR_TO_MEM;
11583 			regs[BPF_REG_0].mem_size = meta.r0_size;
11584 
11585 			if (meta.r0_rdonly)
11586 				regs[BPF_REG_0].type |= MEM_RDONLY;
11587 
11588 			/* Ensures we don't access the memory after a release_reference() */
11589 			if (meta.ref_obj_id)
11590 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
11591 		} else {
11592 			mark_reg_known_zero(env, regs, BPF_REG_0);
11593 			regs[BPF_REG_0].btf = desc_btf;
11594 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
11595 			regs[BPF_REG_0].btf_id = ptr_type_id;
11596 		}
11597 
11598 		if (is_kfunc_ret_null(&meta)) {
11599 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
11600 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
11601 			regs[BPF_REG_0].id = ++env->id_gen;
11602 		}
11603 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
11604 		if (is_kfunc_acquire(&meta)) {
11605 			int id = acquire_reference_state(env, insn_idx);
11606 
11607 			if (id < 0)
11608 				return id;
11609 			if (is_kfunc_ret_null(&meta))
11610 				regs[BPF_REG_0].id = id;
11611 			regs[BPF_REG_0].ref_obj_id = id;
11612 		} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11613 			ref_set_non_owning(env, &regs[BPF_REG_0]);
11614 		}
11615 
11616 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
11617 			regs[BPF_REG_0].id = ++env->id_gen;
11618 	} else if (btf_type_is_void(t)) {
11619 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11620 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
11621 				insn_aux->kptr_struct_meta =
11622 					btf_find_struct_meta(meta.arg_btf,
11623 							     meta.arg_btf_id);
11624 			}
11625 		}
11626 	}
11627 
11628 	nargs = btf_type_vlen(meta.func_proto);
11629 	args = (const struct btf_param *)(meta.func_proto + 1);
11630 	for (i = 0; i < nargs; i++) {
11631 		u32 regno = i + 1;
11632 
11633 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
11634 		if (btf_type_is_ptr(t))
11635 			mark_btf_func_reg_size(env, regno, sizeof(void *));
11636 		else
11637 			/* scalar. ensured by btf_check_kfunc_arg_match() */
11638 			mark_btf_func_reg_size(env, regno, t->size);
11639 	}
11640 
11641 	if (is_iter_next_kfunc(&meta)) {
11642 		err = process_iter_next_call(env, insn_idx, &meta);
11643 		if (err)
11644 			return err;
11645 	}
11646 
11647 	return 0;
11648 }
11649 
11650 static bool signed_add_overflows(s64 a, s64 b)
11651 {
11652 	/* Do the add in u64, where overflow is well-defined */
11653 	s64 res = (s64)((u64)a + (u64)b);
11654 
11655 	if (b < 0)
11656 		return res > a;
11657 	return res < a;
11658 }
11659 
11660 static bool signed_add32_overflows(s32 a, s32 b)
11661 {
11662 	/* Do the add in u32, where overflow is well-defined */
11663 	s32 res = (s32)((u32)a + (u32)b);
11664 
11665 	if (b < 0)
11666 		return res > a;
11667 	return res < a;
11668 }
11669 
11670 static bool signed_sub_overflows(s64 a, s64 b)
11671 {
11672 	/* Do the sub in u64, where overflow is well-defined */
11673 	s64 res = (s64)((u64)a - (u64)b);
11674 
11675 	if (b < 0)
11676 		return res < a;
11677 	return res > a;
11678 }
11679 
11680 static bool signed_sub32_overflows(s32 a, s32 b)
11681 {
11682 	/* Do the sub in u32, where overflow is well-defined */
11683 	s32 res = (s32)((u32)a - (u32)b);
11684 
11685 	if (b < 0)
11686 		return res < a;
11687 	return res > a;
11688 }
11689 
11690 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
11691 				  const struct bpf_reg_state *reg,
11692 				  enum bpf_reg_type type)
11693 {
11694 	bool known = tnum_is_const(reg->var_off);
11695 	s64 val = reg->var_off.value;
11696 	s64 smin = reg->smin_value;
11697 
11698 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
11699 		verbose(env, "math between %s pointer and %lld is not allowed\n",
11700 			reg_type_str(env, type), val);
11701 		return false;
11702 	}
11703 
11704 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
11705 		verbose(env, "%s pointer offset %d is not allowed\n",
11706 			reg_type_str(env, type), reg->off);
11707 		return false;
11708 	}
11709 
11710 	if (smin == S64_MIN) {
11711 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
11712 			reg_type_str(env, type));
11713 		return false;
11714 	}
11715 
11716 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
11717 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
11718 			smin, reg_type_str(env, type));
11719 		return false;
11720 	}
11721 
11722 	return true;
11723 }
11724 
11725 enum {
11726 	REASON_BOUNDS	= -1,
11727 	REASON_TYPE	= -2,
11728 	REASON_PATHS	= -3,
11729 	REASON_LIMIT	= -4,
11730 	REASON_STACK	= -5,
11731 };
11732 
11733 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
11734 			      u32 *alu_limit, bool mask_to_left)
11735 {
11736 	u32 max = 0, ptr_limit = 0;
11737 
11738 	switch (ptr_reg->type) {
11739 	case PTR_TO_STACK:
11740 		/* Offset 0 is out-of-bounds, but acceptable start for the
11741 		 * left direction, see BPF_REG_FP. Also, unknown scalar
11742 		 * offset where we would need to deal with min/max bounds is
11743 		 * currently prohibited for unprivileged.
11744 		 */
11745 		max = MAX_BPF_STACK + mask_to_left;
11746 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
11747 		break;
11748 	case PTR_TO_MAP_VALUE:
11749 		max = ptr_reg->map_ptr->value_size;
11750 		ptr_limit = (mask_to_left ?
11751 			     ptr_reg->smin_value :
11752 			     ptr_reg->umax_value) + ptr_reg->off;
11753 		break;
11754 	default:
11755 		return REASON_TYPE;
11756 	}
11757 
11758 	if (ptr_limit >= max)
11759 		return REASON_LIMIT;
11760 	*alu_limit = ptr_limit;
11761 	return 0;
11762 }
11763 
11764 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
11765 				    const struct bpf_insn *insn)
11766 {
11767 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
11768 }
11769 
11770 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
11771 				       u32 alu_state, u32 alu_limit)
11772 {
11773 	/* If we arrived here from different branches with different
11774 	 * state or limits to sanitize, then this won't work.
11775 	 */
11776 	if (aux->alu_state &&
11777 	    (aux->alu_state != alu_state ||
11778 	     aux->alu_limit != alu_limit))
11779 		return REASON_PATHS;
11780 
11781 	/* Corresponding fixup done in do_misc_fixups(). */
11782 	aux->alu_state = alu_state;
11783 	aux->alu_limit = alu_limit;
11784 	return 0;
11785 }
11786 
11787 static int sanitize_val_alu(struct bpf_verifier_env *env,
11788 			    struct bpf_insn *insn)
11789 {
11790 	struct bpf_insn_aux_data *aux = cur_aux(env);
11791 
11792 	if (can_skip_alu_sanitation(env, insn))
11793 		return 0;
11794 
11795 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
11796 }
11797 
11798 static bool sanitize_needed(u8 opcode)
11799 {
11800 	return opcode == BPF_ADD || opcode == BPF_SUB;
11801 }
11802 
11803 struct bpf_sanitize_info {
11804 	struct bpf_insn_aux_data aux;
11805 	bool mask_to_left;
11806 };
11807 
11808 static struct bpf_verifier_state *
11809 sanitize_speculative_path(struct bpf_verifier_env *env,
11810 			  const struct bpf_insn *insn,
11811 			  u32 next_idx, u32 curr_idx)
11812 {
11813 	struct bpf_verifier_state *branch;
11814 	struct bpf_reg_state *regs;
11815 
11816 	branch = push_stack(env, next_idx, curr_idx, true);
11817 	if (branch && insn) {
11818 		regs = branch->frame[branch->curframe]->regs;
11819 		if (BPF_SRC(insn->code) == BPF_K) {
11820 			mark_reg_unknown(env, regs, insn->dst_reg);
11821 		} else if (BPF_SRC(insn->code) == BPF_X) {
11822 			mark_reg_unknown(env, regs, insn->dst_reg);
11823 			mark_reg_unknown(env, regs, insn->src_reg);
11824 		}
11825 	}
11826 	return branch;
11827 }
11828 
11829 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
11830 			    struct bpf_insn *insn,
11831 			    const struct bpf_reg_state *ptr_reg,
11832 			    const struct bpf_reg_state *off_reg,
11833 			    struct bpf_reg_state *dst_reg,
11834 			    struct bpf_sanitize_info *info,
11835 			    const bool commit_window)
11836 {
11837 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
11838 	struct bpf_verifier_state *vstate = env->cur_state;
11839 	bool off_is_imm = tnum_is_const(off_reg->var_off);
11840 	bool off_is_neg = off_reg->smin_value < 0;
11841 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
11842 	u8 opcode = BPF_OP(insn->code);
11843 	u32 alu_state, alu_limit;
11844 	struct bpf_reg_state tmp;
11845 	bool ret;
11846 	int err;
11847 
11848 	if (can_skip_alu_sanitation(env, insn))
11849 		return 0;
11850 
11851 	/* We already marked aux for masking from non-speculative
11852 	 * paths, thus we got here in the first place. We only care
11853 	 * to explore bad access from here.
11854 	 */
11855 	if (vstate->speculative)
11856 		goto do_sim;
11857 
11858 	if (!commit_window) {
11859 		if (!tnum_is_const(off_reg->var_off) &&
11860 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
11861 			return REASON_BOUNDS;
11862 
11863 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
11864 				     (opcode == BPF_SUB && !off_is_neg);
11865 	}
11866 
11867 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
11868 	if (err < 0)
11869 		return err;
11870 
11871 	if (commit_window) {
11872 		/* In commit phase we narrow the masking window based on
11873 		 * the observed pointer move after the simulated operation.
11874 		 */
11875 		alu_state = info->aux.alu_state;
11876 		alu_limit = abs(info->aux.alu_limit - alu_limit);
11877 	} else {
11878 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
11879 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
11880 		alu_state |= ptr_is_dst_reg ?
11881 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
11882 
11883 		/* Limit pruning on unknown scalars to enable deep search for
11884 		 * potential masking differences from other program paths.
11885 		 */
11886 		if (!off_is_imm)
11887 			env->explore_alu_limits = true;
11888 	}
11889 
11890 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
11891 	if (err < 0)
11892 		return err;
11893 do_sim:
11894 	/* If we're in commit phase, we're done here given we already
11895 	 * pushed the truncated dst_reg into the speculative verification
11896 	 * stack.
11897 	 *
11898 	 * Also, when register is a known constant, we rewrite register-based
11899 	 * operation to immediate-based, and thus do not need masking (and as
11900 	 * a consequence, do not need to simulate the zero-truncation either).
11901 	 */
11902 	if (commit_window || off_is_imm)
11903 		return 0;
11904 
11905 	/* Simulate and find potential out-of-bounds access under
11906 	 * speculative execution from truncation as a result of
11907 	 * masking when off was not within expected range. If off
11908 	 * sits in dst, then we temporarily need to move ptr there
11909 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
11910 	 * for cases where we use K-based arithmetic in one direction
11911 	 * and truncated reg-based in the other in order to explore
11912 	 * bad access.
11913 	 */
11914 	if (!ptr_is_dst_reg) {
11915 		tmp = *dst_reg;
11916 		copy_register_state(dst_reg, ptr_reg);
11917 	}
11918 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
11919 					env->insn_idx);
11920 	if (!ptr_is_dst_reg && ret)
11921 		*dst_reg = tmp;
11922 	return !ret ? REASON_STACK : 0;
11923 }
11924 
11925 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
11926 {
11927 	struct bpf_verifier_state *vstate = env->cur_state;
11928 
11929 	/* If we simulate paths under speculation, we don't update the
11930 	 * insn as 'seen' such that when we verify unreachable paths in
11931 	 * the non-speculative domain, sanitize_dead_code() can still
11932 	 * rewrite/sanitize them.
11933 	 */
11934 	if (!vstate->speculative)
11935 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
11936 }
11937 
11938 static int sanitize_err(struct bpf_verifier_env *env,
11939 			const struct bpf_insn *insn, int reason,
11940 			const struct bpf_reg_state *off_reg,
11941 			const struct bpf_reg_state *dst_reg)
11942 {
11943 	static const char *err = "pointer arithmetic with it prohibited for !root";
11944 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
11945 	u32 dst = insn->dst_reg, src = insn->src_reg;
11946 
11947 	switch (reason) {
11948 	case REASON_BOUNDS:
11949 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
11950 			off_reg == dst_reg ? dst : src, err);
11951 		break;
11952 	case REASON_TYPE:
11953 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
11954 			off_reg == dst_reg ? src : dst, err);
11955 		break;
11956 	case REASON_PATHS:
11957 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
11958 			dst, op, err);
11959 		break;
11960 	case REASON_LIMIT:
11961 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
11962 			dst, op, err);
11963 		break;
11964 	case REASON_STACK:
11965 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
11966 			dst, err);
11967 		break;
11968 	default:
11969 		verbose(env, "verifier internal error: unknown reason (%d)\n",
11970 			reason);
11971 		break;
11972 	}
11973 
11974 	return -EACCES;
11975 }
11976 
11977 /* check that stack access falls within stack limits and that 'reg' doesn't
11978  * have a variable offset.
11979  *
11980  * Variable offset is prohibited for unprivileged mode for simplicity since it
11981  * requires corresponding support in Spectre masking for stack ALU.  See also
11982  * retrieve_ptr_limit().
11983  *
11984  *
11985  * 'off' includes 'reg->off'.
11986  */
11987 static int check_stack_access_for_ptr_arithmetic(
11988 				struct bpf_verifier_env *env,
11989 				int regno,
11990 				const struct bpf_reg_state *reg,
11991 				int off)
11992 {
11993 	if (!tnum_is_const(reg->var_off)) {
11994 		char tn_buf[48];
11995 
11996 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
11997 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
11998 			regno, tn_buf, off);
11999 		return -EACCES;
12000 	}
12001 
12002 	if (off >= 0 || off < -MAX_BPF_STACK) {
12003 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
12004 			"prohibited for !root; off=%d\n", regno, off);
12005 		return -EACCES;
12006 	}
12007 
12008 	return 0;
12009 }
12010 
12011 static int sanitize_check_bounds(struct bpf_verifier_env *env,
12012 				 const struct bpf_insn *insn,
12013 				 const struct bpf_reg_state *dst_reg)
12014 {
12015 	u32 dst = insn->dst_reg;
12016 
12017 	/* For unprivileged we require that resulting offset must be in bounds
12018 	 * in order to be able to sanitize access later on.
12019 	 */
12020 	if (env->bypass_spec_v1)
12021 		return 0;
12022 
12023 	switch (dst_reg->type) {
12024 	case PTR_TO_STACK:
12025 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
12026 					dst_reg->off + dst_reg->var_off.value))
12027 			return -EACCES;
12028 		break;
12029 	case PTR_TO_MAP_VALUE:
12030 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
12031 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
12032 				"prohibited for !root\n", dst);
12033 			return -EACCES;
12034 		}
12035 		break;
12036 	default:
12037 		break;
12038 	}
12039 
12040 	return 0;
12041 }
12042 
12043 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
12044  * Caller should also handle BPF_MOV case separately.
12045  * If we return -EACCES, caller may want to try again treating pointer as a
12046  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
12047  */
12048 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
12049 				   struct bpf_insn *insn,
12050 				   const struct bpf_reg_state *ptr_reg,
12051 				   const struct bpf_reg_state *off_reg)
12052 {
12053 	struct bpf_verifier_state *vstate = env->cur_state;
12054 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
12055 	struct bpf_reg_state *regs = state->regs, *dst_reg;
12056 	bool known = tnum_is_const(off_reg->var_off);
12057 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
12058 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
12059 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
12060 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
12061 	struct bpf_sanitize_info info = {};
12062 	u8 opcode = BPF_OP(insn->code);
12063 	u32 dst = insn->dst_reg;
12064 	int ret;
12065 
12066 	dst_reg = &regs[dst];
12067 
12068 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
12069 	    smin_val > smax_val || umin_val > umax_val) {
12070 		/* Taint dst register if offset had invalid bounds derived from
12071 		 * e.g. dead branches.
12072 		 */
12073 		__mark_reg_unknown(env, dst_reg);
12074 		return 0;
12075 	}
12076 
12077 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
12078 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
12079 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12080 			__mark_reg_unknown(env, dst_reg);
12081 			return 0;
12082 		}
12083 
12084 		verbose(env,
12085 			"R%d 32-bit pointer arithmetic prohibited\n",
12086 			dst);
12087 		return -EACCES;
12088 	}
12089 
12090 	if (ptr_reg->type & PTR_MAYBE_NULL) {
12091 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
12092 			dst, reg_type_str(env, ptr_reg->type));
12093 		return -EACCES;
12094 	}
12095 
12096 	switch (base_type(ptr_reg->type)) {
12097 	case CONST_PTR_TO_MAP:
12098 		/* smin_val represents the known value */
12099 		if (known && smin_val == 0 && opcode == BPF_ADD)
12100 			break;
12101 		fallthrough;
12102 	case PTR_TO_PACKET_END:
12103 	case PTR_TO_SOCKET:
12104 	case PTR_TO_SOCK_COMMON:
12105 	case PTR_TO_TCP_SOCK:
12106 	case PTR_TO_XDP_SOCK:
12107 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
12108 			dst, reg_type_str(env, ptr_reg->type));
12109 		return -EACCES;
12110 	default:
12111 		break;
12112 	}
12113 
12114 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
12115 	 * The id may be overwritten later if we create a new variable offset.
12116 	 */
12117 	dst_reg->type = ptr_reg->type;
12118 	dst_reg->id = ptr_reg->id;
12119 
12120 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
12121 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
12122 		return -EINVAL;
12123 
12124 	/* pointer types do not carry 32-bit bounds at the moment. */
12125 	__mark_reg32_unbounded(dst_reg);
12126 
12127 	if (sanitize_needed(opcode)) {
12128 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
12129 				       &info, false);
12130 		if (ret < 0)
12131 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12132 	}
12133 
12134 	switch (opcode) {
12135 	case BPF_ADD:
12136 		/* We can take a fixed offset as long as it doesn't overflow
12137 		 * the s32 'off' field
12138 		 */
12139 		if (known && (ptr_reg->off + smin_val ==
12140 			      (s64)(s32)(ptr_reg->off + smin_val))) {
12141 			/* pointer += K.  Accumulate it into fixed offset */
12142 			dst_reg->smin_value = smin_ptr;
12143 			dst_reg->smax_value = smax_ptr;
12144 			dst_reg->umin_value = umin_ptr;
12145 			dst_reg->umax_value = umax_ptr;
12146 			dst_reg->var_off = ptr_reg->var_off;
12147 			dst_reg->off = ptr_reg->off + smin_val;
12148 			dst_reg->raw = ptr_reg->raw;
12149 			break;
12150 		}
12151 		/* A new variable offset is created.  Note that off_reg->off
12152 		 * == 0, since it's a scalar.
12153 		 * dst_reg gets the pointer type and since some positive
12154 		 * integer value was added to the pointer, give it a new 'id'
12155 		 * if it's a PTR_TO_PACKET.
12156 		 * this creates a new 'base' pointer, off_reg (variable) gets
12157 		 * added into the variable offset, and we copy the fixed offset
12158 		 * from ptr_reg.
12159 		 */
12160 		if (signed_add_overflows(smin_ptr, smin_val) ||
12161 		    signed_add_overflows(smax_ptr, smax_val)) {
12162 			dst_reg->smin_value = S64_MIN;
12163 			dst_reg->smax_value = S64_MAX;
12164 		} else {
12165 			dst_reg->smin_value = smin_ptr + smin_val;
12166 			dst_reg->smax_value = smax_ptr + smax_val;
12167 		}
12168 		if (umin_ptr + umin_val < umin_ptr ||
12169 		    umax_ptr + umax_val < umax_ptr) {
12170 			dst_reg->umin_value = 0;
12171 			dst_reg->umax_value = U64_MAX;
12172 		} else {
12173 			dst_reg->umin_value = umin_ptr + umin_val;
12174 			dst_reg->umax_value = umax_ptr + umax_val;
12175 		}
12176 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
12177 		dst_reg->off = ptr_reg->off;
12178 		dst_reg->raw = ptr_reg->raw;
12179 		if (reg_is_pkt_pointer(ptr_reg)) {
12180 			dst_reg->id = ++env->id_gen;
12181 			/* something was added to pkt_ptr, set range to zero */
12182 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12183 		}
12184 		break;
12185 	case BPF_SUB:
12186 		if (dst_reg == off_reg) {
12187 			/* scalar -= pointer.  Creates an unknown scalar */
12188 			verbose(env, "R%d tried to subtract pointer from scalar\n",
12189 				dst);
12190 			return -EACCES;
12191 		}
12192 		/* We don't allow subtraction from FP, because (according to
12193 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
12194 		 * be able to deal with it.
12195 		 */
12196 		if (ptr_reg->type == PTR_TO_STACK) {
12197 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
12198 				dst);
12199 			return -EACCES;
12200 		}
12201 		if (known && (ptr_reg->off - smin_val ==
12202 			      (s64)(s32)(ptr_reg->off - smin_val))) {
12203 			/* pointer -= K.  Subtract it from fixed offset */
12204 			dst_reg->smin_value = smin_ptr;
12205 			dst_reg->smax_value = smax_ptr;
12206 			dst_reg->umin_value = umin_ptr;
12207 			dst_reg->umax_value = umax_ptr;
12208 			dst_reg->var_off = ptr_reg->var_off;
12209 			dst_reg->id = ptr_reg->id;
12210 			dst_reg->off = ptr_reg->off - smin_val;
12211 			dst_reg->raw = ptr_reg->raw;
12212 			break;
12213 		}
12214 		/* A new variable offset is created.  If the subtrahend is known
12215 		 * nonnegative, then any reg->range we had before is still good.
12216 		 */
12217 		if (signed_sub_overflows(smin_ptr, smax_val) ||
12218 		    signed_sub_overflows(smax_ptr, smin_val)) {
12219 			/* Overflow possible, we know nothing */
12220 			dst_reg->smin_value = S64_MIN;
12221 			dst_reg->smax_value = S64_MAX;
12222 		} else {
12223 			dst_reg->smin_value = smin_ptr - smax_val;
12224 			dst_reg->smax_value = smax_ptr - smin_val;
12225 		}
12226 		if (umin_ptr < umax_val) {
12227 			/* Overflow possible, we know nothing */
12228 			dst_reg->umin_value = 0;
12229 			dst_reg->umax_value = U64_MAX;
12230 		} else {
12231 			/* Cannot overflow (as long as bounds are consistent) */
12232 			dst_reg->umin_value = umin_ptr - umax_val;
12233 			dst_reg->umax_value = umax_ptr - umin_val;
12234 		}
12235 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
12236 		dst_reg->off = ptr_reg->off;
12237 		dst_reg->raw = ptr_reg->raw;
12238 		if (reg_is_pkt_pointer(ptr_reg)) {
12239 			dst_reg->id = ++env->id_gen;
12240 			/* something was added to pkt_ptr, set range to zero */
12241 			if (smin_val < 0)
12242 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12243 		}
12244 		break;
12245 	case BPF_AND:
12246 	case BPF_OR:
12247 	case BPF_XOR:
12248 		/* bitwise ops on pointers are troublesome, prohibit. */
12249 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
12250 			dst, bpf_alu_string[opcode >> 4]);
12251 		return -EACCES;
12252 	default:
12253 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
12254 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
12255 			dst, bpf_alu_string[opcode >> 4]);
12256 		return -EACCES;
12257 	}
12258 
12259 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
12260 		return -EINVAL;
12261 	reg_bounds_sync(dst_reg);
12262 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
12263 		return -EACCES;
12264 	if (sanitize_needed(opcode)) {
12265 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
12266 				       &info, true);
12267 		if (ret < 0)
12268 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12269 	}
12270 
12271 	return 0;
12272 }
12273 
12274 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
12275 				 struct bpf_reg_state *src_reg)
12276 {
12277 	s32 smin_val = src_reg->s32_min_value;
12278 	s32 smax_val = src_reg->s32_max_value;
12279 	u32 umin_val = src_reg->u32_min_value;
12280 	u32 umax_val = src_reg->u32_max_value;
12281 
12282 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
12283 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
12284 		dst_reg->s32_min_value = S32_MIN;
12285 		dst_reg->s32_max_value = S32_MAX;
12286 	} else {
12287 		dst_reg->s32_min_value += smin_val;
12288 		dst_reg->s32_max_value += smax_val;
12289 	}
12290 	if (dst_reg->u32_min_value + umin_val < umin_val ||
12291 	    dst_reg->u32_max_value + umax_val < umax_val) {
12292 		dst_reg->u32_min_value = 0;
12293 		dst_reg->u32_max_value = U32_MAX;
12294 	} else {
12295 		dst_reg->u32_min_value += umin_val;
12296 		dst_reg->u32_max_value += umax_val;
12297 	}
12298 }
12299 
12300 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
12301 			       struct bpf_reg_state *src_reg)
12302 {
12303 	s64 smin_val = src_reg->smin_value;
12304 	s64 smax_val = src_reg->smax_value;
12305 	u64 umin_val = src_reg->umin_value;
12306 	u64 umax_val = src_reg->umax_value;
12307 
12308 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
12309 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
12310 		dst_reg->smin_value = S64_MIN;
12311 		dst_reg->smax_value = S64_MAX;
12312 	} else {
12313 		dst_reg->smin_value += smin_val;
12314 		dst_reg->smax_value += smax_val;
12315 	}
12316 	if (dst_reg->umin_value + umin_val < umin_val ||
12317 	    dst_reg->umax_value + umax_val < umax_val) {
12318 		dst_reg->umin_value = 0;
12319 		dst_reg->umax_value = U64_MAX;
12320 	} else {
12321 		dst_reg->umin_value += umin_val;
12322 		dst_reg->umax_value += umax_val;
12323 	}
12324 }
12325 
12326 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
12327 				 struct bpf_reg_state *src_reg)
12328 {
12329 	s32 smin_val = src_reg->s32_min_value;
12330 	s32 smax_val = src_reg->s32_max_value;
12331 	u32 umin_val = src_reg->u32_min_value;
12332 	u32 umax_val = src_reg->u32_max_value;
12333 
12334 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
12335 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
12336 		/* Overflow possible, we know nothing */
12337 		dst_reg->s32_min_value = S32_MIN;
12338 		dst_reg->s32_max_value = S32_MAX;
12339 	} else {
12340 		dst_reg->s32_min_value -= smax_val;
12341 		dst_reg->s32_max_value -= smin_val;
12342 	}
12343 	if (dst_reg->u32_min_value < umax_val) {
12344 		/* Overflow possible, we know nothing */
12345 		dst_reg->u32_min_value = 0;
12346 		dst_reg->u32_max_value = U32_MAX;
12347 	} else {
12348 		/* Cannot overflow (as long as bounds are consistent) */
12349 		dst_reg->u32_min_value -= umax_val;
12350 		dst_reg->u32_max_value -= umin_val;
12351 	}
12352 }
12353 
12354 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
12355 			       struct bpf_reg_state *src_reg)
12356 {
12357 	s64 smin_val = src_reg->smin_value;
12358 	s64 smax_val = src_reg->smax_value;
12359 	u64 umin_val = src_reg->umin_value;
12360 	u64 umax_val = src_reg->umax_value;
12361 
12362 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
12363 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
12364 		/* Overflow possible, we know nothing */
12365 		dst_reg->smin_value = S64_MIN;
12366 		dst_reg->smax_value = S64_MAX;
12367 	} else {
12368 		dst_reg->smin_value -= smax_val;
12369 		dst_reg->smax_value -= smin_val;
12370 	}
12371 	if (dst_reg->umin_value < umax_val) {
12372 		/* Overflow possible, we know nothing */
12373 		dst_reg->umin_value = 0;
12374 		dst_reg->umax_value = U64_MAX;
12375 	} else {
12376 		/* Cannot overflow (as long as bounds are consistent) */
12377 		dst_reg->umin_value -= umax_val;
12378 		dst_reg->umax_value -= umin_val;
12379 	}
12380 }
12381 
12382 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
12383 				 struct bpf_reg_state *src_reg)
12384 {
12385 	s32 smin_val = src_reg->s32_min_value;
12386 	u32 umin_val = src_reg->u32_min_value;
12387 	u32 umax_val = src_reg->u32_max_value;
12388 
12389 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
12390 		/* Ain't nobody got time to multiply that sign */
12391 		__mark_reg32_unbounded(dst_reg);
12392 		return;
12393 	}
12394 	/* Both values are positive, so we can work with unsigned and
12395 	 * copy the result to signed (unless it exceeds S32_MAX).
12396 	 */
12397 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
12398 		/* Potential overflow, we know nothing */
12399 		__mark_reg32_unbounded(dst_reg);
12400 		return;
12401 	}
12402 	dst_reg->u32_min_value *= umin_val;
12403 	dst_reg->u32_max_value *= umax_val;
12404 	if (dst_reg->u32_max_value > S32_MAX) {
12405 		/* Overflow possible, we know nothing */
12406 		dst_reg->s32_min_value = S32_MIN;
12407 		dst_reg->s32_max_value = S32_MAX;
12408 	} else {
12409 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12410 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12411 	}
12412 }
12413 
12414 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
12415 			       struct bpf_reg_state *src_reg)
12416 {
12417 	s64 smin_val = src_reg->smin_value;
12418 	u64 umin_val = src_reg->umin_value;
12419 	u64 umax_val = src_reg->umax_value;
12420 
12421 	if (smin_val < 0 || dst_reg->smin_value < 0) {
12422 		/* Ain't nobody got time to multiply that sign */
12423 		__mark_reg64_unbounded(dst_reg);
12424 		return;
12425 	}
12426 	/* Both values are positive, so we can work with unsigned and
12427 	 * copy the result to signed (unless it exceeds S64_MAX).
12428 	 */
12429 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
12430 		/* Potential overflow, we know nothing */
12431 		__mark_reg64_unbounded(dst_reg);
12432 		return;
12433 	}
12434 	dst_reg->umin_value *= umin_val;
12435 	dst_reg->umax_value *= umax_val;
12436 	if (dst_reg->umax_value > S64_MAX) {
12437 		/* Overflow possible, we know nothing */
12438 		dst_reg->smin_value = S64_MIN;
12439 		dst_reg->smax_value = S64_MAX;
12440 	} else {
12441 		dst_reg->smin_value = dst_reg->umin_value;
12442 		dst_reg->smax_value = dst_reg->umax_value;
12443 	}
12444 }
12445 
12446 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
12447 				 struct bpf_reg_state *src_reg)
12448 {
12449 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12450 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12451 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12452 	s32 smin_val = src_reg->s32_min_value;
12453 	u32 umax_val = src_reg->u32_max_value;
12454 
12455 	if (src_known && dst_known) {
12456 		__mark_reg32_known(dst_reg, var32_off.value);
12457 		return;
12458 	}
12459 
12460 	/* We get our minimum from the var_off, since that's inherently
12461 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
12462 	 */
12463 	dst_reg->u32_min_value = var32_off.value;
12464 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
12465 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12466 		/* Lose signed bounds when ANDing negative numbers,
12467 		 * ain't nobody got time for that.
12468 		 */
12469 		dst_reg->s32_min_value = S32_MIN;
12470 		dst_reg->s32_max_value = S32_MAX;
12471 	} else {
12472 		/* ANDing two positives gives a positive, so safe to
12473 		 * cast result into s64.
12474 		 */
12475 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12476 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12477 	}
12478 }
12479 
12480 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
12481 			       struct bpf_reg_state *src_reg)
12482 {
12483 	bool src_known = tnum_is_const(src_reg->var_off);
12484 	bool dst_known = tnum_is_const(dst_reg->var_off);
12485 	s64 smin_val = src_reg->smin_value;
12486 	u64 umax_val = src_reg->umax_value;
12487 
12488 	if (src_known && dst_known) {
12489 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12490 		return;
12491 	}
12492 
12493 	/* We get our minimum from the var_off, since that's inherently
12494 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
12495 	 */
12496 	dst_reg->umin_value = dst_reg->var_off.value;
12497 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
12498 	if (dst_reg->smin_value < 0 || smin_val < 0) {
12499 		/* Lose signed bounds when ANDing negative numbers,
12500 		 * ain't nobody got time for that.
12501 		 */
12502 		dst_reg->smin_value = S64_MIN;
12503 		dst_reg->smax_value = S64_MAX;
12504 	} else {
12505 		/* ANDing two positives gives a positive, so safe to
12506 		 * cast result into s64.
12507 		 */
12508 		dst_reg->smin_value = dst_reg->umin_value;
12509 		dst_reg->smax_value = dst_reg->umax_value;
12510 	}
12511 	/* We may learn something more from the var_off */
12512 	__update_reg_bounds(dst_reg);
12513 }
12514 
12515 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
12516 				struct bpf_reg_state *src_reg)
12517 {
12518 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12519 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12520 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12521 	s32 smin_val = src_reg->s32_min_value;
12522 	u32 umin_val = src_reg->u32_min_value;
12523 
12524 	if (src_known && dst_known) {
12525 		__mark_reg32_known(dst_reg, var32_off.value);
12526 		return;
12527 	}
12528 
12529 	/* We get our maximum from the var_off, and our minimum is the
12530 	 * maximum of the operands' minima
12531 	 */
12532 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
12533 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12534 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12535 		/* Lose signed bounds when ORing negative numbers,
12536 		 * ain't nobody got time for that.
12537 		 */
12538 		dst_reg->s32_min_value = S32_MIN;
12539 		dst_reg->s32_max_value = S32_MAX;
12540 	} else {
12541 		/* ORing two positives gives a positive, so safe to
12542 		 * cast result into s64.
12543 		 */
12544 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12545 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12546 	}
12547 }
12548 
12549 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
12550 			      struct bpf_reg_state *src_reg)
12551 {
12552 	bool src_known = tnum_is_const(src_reg->var_off);
12553 	bool dst_known = tnum_is_const(dst_reg->var_off);
12554 	s64 smin_val = src_reg->smin_value;
12555 	u64 umin_val = src_reg->umin_value;
12556 
12557 	if (src_known && dst_known) {
12558 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12559 		return;
12560 	}
12561 
12562 	/* We get our maximum from the var_off, and our minimum is the
12563 	 * maximum of the operands' minima
12564 	 */
12565 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
12566 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
12567 	if (dst_reg->smin_value < 0 || smin_val < 0) {
12568 		/* Lose signed bounds when ORing negative numbers,
12569 		 * ain't nobody got time for that.
12570 		 */
12571 		dst_reg->smin_value = S64_MIN;
12572 		dst_reg->smax_value = S64_MAX;
12573 	} else {
12574 		/* ORing two positives gives a positive, so safe to
12575 		 * cast result into s64.
12576 		 */
12577 		dst_reg->smin_value = dst_reg->umin_value;
12578 		dst_reg->smax_value = dst_reg->umax_value;
12579 	}
12580 	/* We may learn something more from the var_off */
12581 	__update_reg_bounds(dst_reg);
12582 }
12583 
12584 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
12585 				 struct bpf_reg_state *src_reg)
12586 {
12587 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12588 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12589 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12590 	s32 smin_val = src_reg->s32_min_value;
12591 
12592 	if (src_known && dst_known) {
12593 		__mark_reg32_known(dst_reg, var32_off.value);
12594 		return;
12595 	}
12596 
12597 	/* We get both minimum and maximum from the var32_off. */
12598 	dst_reg->u32_min_value = var32_off.value;
12599 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12600 
12601 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
12602 		/* XORing two positive sign numbers gives a positive,
12603 		 * so safe to cast u32 result into s32.
12604 		 */
12605 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12606 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12607 	} else {
12608 		dst_reg->s32_min_value = S32_MIN;
12609 		dst_reg->s32_max_value = S32_MAX;
12610 	}
12611 }
12612 
12613 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
12614 			       struct bpf_reg_state *src_reg)
12615 {
12616 	bool src_known = tnum_is_const(src_reg->var_off);
12617 	bool dst_known = tnum_is_const(dst_reg->var_off);
12618 	s64 smin_val = src_reg->smin_value;
12619 
12620 	if (src_known && dst_known) {
12621 		/* dst_reg->var_off.value has been updated earlier */
12622 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12623 		return;
12624 	}
12625 
12626 	/* We get both minimum and maximum from the var_off. */
12627 	dst_reg->umin_value = dst_reg->var_off.value;
12628 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
12629 
12630 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
12631 		/* XORing two positive sign numbers gives a positive,
12632 		 * so safe to cast u64 result into s64.
12633 		 */
12634 		dst_reg->smin_value = dst_reg->umin_value;
12635 		dst_reg->smax_value = dst_reg->umax_value;
12636 	} else {
12637 		dst_reg->smin_value = S64_MIN;
12638 		dst_reg->smax_value = S64_MAX;
12639 	}
12640 
12641 	__update_reg_bounds(dst_reg);
12642 }
12643 
12644 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
12645 				   u64 umin_val, u64 umax_val)
12646 {
12647 	/* We lose all sign bit information (except what we can pick
12648 	 * up from var_off)
12649 	 */
12650 	dst_reg->s32_min_value = S32_MIN;
12651 	dst_reg->s32_max_value = S32_MAX;
12652 	/* If we might shift our top bit out, then we know nothing */
12653 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
12654 		dst_reg->u32_min_value = 0;
12655 		dst_reg->u32_max_value = U32_MAX;
12656 	} else {
12657 		dst_reg->u32_min_value <<= umin_val;
12658 		dst_reg->u32_max_value <<= umax_val;
12659 	}
12660 }
12661 
12662 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
12663 				 struct bpf_reg_state *src_reg)
12664 {
12665 	u32 umax_val = src_reg->u32_max_value;
12666 	u32 umin_val = src_reg->u32_min_value;
12667 	/* u32 alu operation will zext upper bits */
12668 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
12669 
12670 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
12671 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
12672 	/* Not required but being careful mark reg64 bounds as unknown so
12673 	 * that we are forced to pick them up from tnum and zext later and
12674 	 * if some path skips this step we are still safe.
12675 	 */
12676 	__mark_reg64_unbounded(dst_reg);
12677 	__update_reg32_bounds(dst_reg);
12678 }
12679 
12680 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
12681 				   u64 umin_val, u64 umax_val)
12682 {
12683 	/* Special case <<32 because it is a common compiler pattern to sign
12684 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
12685 	 * positive we know this shift will also be positive so we can track
12686 	 * bounds correctly. Otherwise we lose all sign bit information except
12687 	 * what we can pick up from var_off. Perhaps we can generalize this
12688 	 * later to shifts of any length.
12689 	 */
12690 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
12691 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
12692 	else
12693 		dst_reg->smax_value = S64_MAX;
12694 
12695 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
12696 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
12697 	else
12698 		dst_reg->smin_value = S64_MIN;
12699 
12700 	/* If we might shift our top bit out, then we know nothing */
12701 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
12702 		dst_reg->umin_value = 0;
12703 		dst_reg->umax_value = U64_MAX;
12704 	} else {
12705 		dst_reg->umin_value <<= umin_val;
12706 		dst_reg->umax_value <<= umax_val;
12707 	}
12708 }
12709 
12710 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
12711 			       struct bpf_reg_state *src_reg)
12712 {
12713 	u64 umax_val = src_reg->umax_value;
12714 	u64 umin_val = src_reg->umin_value;
12715 
12716 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
12717 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
12718 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
12719 
12720 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
12721 	/* We may learn something more from the var_off */
12722 	__update_reg_bounds(dst_reg);
12723 }
12724 
12725 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
12726 				 struct bpf_reg_state *src_reg)
12727 {
12728 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
12729 	u32 umax_val = src_reg->u32_max_value;
12730 	u32 umin_val = src_reg->u32_min_value;
12731 
12732 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
12733 	 * be negative, then either:
12734 	 * 1) src_reg might be zero, so the sign bit of the result is
12735 	 *    unknown, so we lose our signed bounds
12736 	 * 2) it's known negative, thus the unsigned bounds capture the
12737 	 *    signed bounds
12738 	 * 3) the signed bounds cross zero, so they tell us nothing
12739 	 *    about the result
12740 	 * If the value in dst_reg is known nonnegative, then again the
12741 	 * unsigned bounds capture the signed bounds.
12742 	 * Thus, in all cases it suffices to blow away our signed bounds
12743 	 * and rely on inferring new ones from the unsigned bounds and
12744 	 * var_off of the result.
12745 	 */
12746 	dst_reg->s32_min_value = S32_MIN;
12747 	dst_reg->s32_max_value = S32_MAX;
12748 
12749 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
12750 	dst_reg->u32_min_value >>= umax_val;
12751 	dst_reg->u32_max_value >>= umin_val;
12752 
12753 	__mark_reg64_unbounded(dst_reg);
12754 	__update_reg32_bounds(dst_reg);
12755 }
12756 
12757 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
12758 			       struct bpf_reg_state *src_reg)
12759 {
12760 	u64 umax_val = src_reg->umax_value;
12761 	u64 umin_val = src_reg->umin_value;
12762 
12763 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
12764 	 * be negative, then either:
12765 	 * 1) src_reg might be zero, so the sign bit of the result is
12766 	 *    unknown, so we lose our signed bounds
12767 	 * 2) it's known negative, thus the unsigned bounds capture the
12768 	 *    signed bounds
12769 	 * 3) the signed bounds cross zero, so they tell us nothing
12770 	 *    about the result
12771 	 * If the value in dst_reg is known nonnegative, then again the
12772 	 * unsigned bounds capture the signed bounds.
12773 	 * Thus, in all cases it suffices to blow away our signed bounds
12774 	 * and rely on inferring new ones from the unsigned bounds and
12775 	 * var_off of the result.
12776 	 */
12777 	dst_reg->smin_value = S64_MIN;
12778 	dst_reg->smax_value = S64_MAX;
12779 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
12780 	dst_reg->umin_value >>= umax_val;
12781 	dst_reg->umax_value >>= umin_val;
12782 
12783 	/* Its not easy to operate on alu32 bounds here because it depends
12784 	 * on bits being shifted in. Take easy way out and mark unbounded
12785 	 * so we can recalculate later from tnum.
12786 	 */
12787 	__mark_reg32_unbounded(dst_reg);
12788 	__update_reg_bounds(dst_reg);
12789 }
12790 
12791 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
12792 				  struct bpf_reg_state *src_reg)
12793 {
12794 	u64 umin_val = src_reg->u32_min_value;
12795 
12796 	/* Upon reaching here, src_known is true and
12797 	 * umax_val is equal to umin_val.
12798 	 */
12799 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
12800 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
12801 
12802 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
12803 
12804 	/* blow away the dst_reg umin_value/umax_value and rely on
12805 	 * dst_reg var_off to refine the result.
12806 	 */
12807 	dst_reg->u32_min_value = 0;
12808 	dst_reg->u32_max_value = U32_MAX;
12809 
12810 	__mark_reg64_unbounded(dst_reg);
12811 	__update_reg32_bounds(dst_reg);
12812 }
12813 
12814 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
12815 				struct bpf_reg_state *src_reg)
12816 {
12817 	u64 umin_val = src_reg->umin_value;
12818 
12819 	/* Upon reaching here, src_known is true and umax_val is equal
12820 	 * to umin_val.
12821 	 */
12822 	dst_reg->smin_value >>= umin_val;
12823 	dst_reg->smax_value >>= umin_val;
12824 
12825 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
12826 
12827 	/* blow away the dst_reg umin_value/umax_value and rely on
12828 	 * dst_reg var_off to refine the result.
12829 	 */
12830 	dst_reg->umin_value = 0;
12831 	dst_reg->umax_value = U64_MAX;
12832 
12833 	/* Its not easy to operate on alu32 bounds here because it depends
12834 	 * on bits being shifted in from upper 32-bits. Take easy way out
12835 	 * and mark unbounded so we can recalculate later from tnum.
12836 	 */
12837 	__mark_reg32_unbounded(dst_reg);
12838 	__update_reg_bounds(dst_reg);
12839 }
12840 
12841 /* WARNING: This function does calculations on 64-bit values, but the actual
12842  * execution may occur on 32-bit values. Therefore, things like bitshifts
12843  * need extra checks in the 32-bit case.
12844  */
12845 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
12846 				      struct bpf_insn *insn,
12847 				      struct bpf_reg_state *dst_reg,
12848 				      struct bpf_reg_state src_reg)
12849 {
12850 	struct bpf_reg_state *regs = cur_regs(env);
12851 	u8 opcode = BPF_OP(insn->code);
12852 	bool src_known;
12853 	s64 smin_val, smax_val;
12854 	u64 umin_val, umax_val;
12855 	s32 s32_min_val, s32_max_val;
12856 	u32 u32_min_val, u32_max_val;
12857 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
12858 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
12859 	int ret;
12860 
12861 	smin_val = src_reg.smin_value;
12862 	smax_val = src_reg.smax_value;
12863 	umin_val = src_reg.umin_value;
12864 	umax_val = src_reg.umax_value;
12865 
12866 	s32_min_val = src_reg.s32_min_value;
12867 	s32_max_val = src_reg.s32_max_value;
12868 	u32_min_val = src_reg.u32_min_value;
12869 	u32_max_val = src_reg.u32_max_value;
12870 
12871 	if (alu32) {
12872 		src_known = tnum_subreg_is_const(src_reg.var_off);
12873 		if ((src_known &&
12874 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
12875 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
12876 			/* Taint dst register if offset had invalid bounds
12877 			 * derived from e.g. dead branches.
12878 			 */
12879 			__mark_reg_unknown(env, dst_reg);
12880 			return 0;
12881 		}
12882 	} else {
12883 		src_known = tnum_is_const(src_reg.var_off);
12884 		if ((src_known &&
12885 		     (smin_val != smax_val || umin_val != umax_val)) ||
12886 		    smin_val > smax_val || umin_val > umax_val) {
12887 			/* Taint dst register if offset had invalid bounds
12888 			 * derived from e.g. dead branches.
12889 			 */
12890 			__mark_reg_unknown(env, dst_reg);
12891 			return 0;
12892 		}
12893 	}
12894 
12895 	if (!src_known &&
12896 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
12897 		__mark_reg_unknown(env, dst_reg);
12898 		return 0;
12899 	}
12900 
12901 	if (sanitize_needed(opcode)) {
12902 		ret = sanitize_val_alu(env, insn);
12903 		if (ret < 0)
12904 			return sanitize_err(env, insn, ret, NULL, NULL);
12905 	}
12906 
12907 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
12908 	 * There are two classes of instructions: The first class we track both
12909 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
12910 	 * greatest amount of precision when alu operations are mixed with jmp32
12911 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
12912 	 * and BPF_OR. This is possible because these ops have fairly easy to
12913 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
12914 	 * See alu32 verifier tests for examples. The second class of
12915 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
12916 	 * with regards to tracking sign/unsigned bounds because the bits may
12917 	 * cross subreg boundaries in the alu64 case. When this happens we mark
12918 	 * the reg unbounded in the subreg bound space and use the resulting
12919 	 * tnum to calculate an approximation of the sign/unsigned bounds.
12920 	 */
12921 	switch (opcode) {
12922 	case BPF_ADD:
12923 		scalar32_min_max_add(dst_reg, &src_reg);
12924 		scalar_min_max_add(dst_reg, &src_reg);
12925 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
12926 		break;
12927 	case BPF_SUB:
12928 		scalar32_min_max_sub(dst_reg, &src_reg);
12929 		scalar_min_max_sub(dst_reg, &src_reg);
12930 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
12931 		break;
12932 	case BPF_MUL:
12933 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
12934 		scalar32_min_max_mul(dst_reg, &src_reg);
12935 		scalar_min_max_mul(dst_reg, &src_reg);
12936 		break;
12937 	case BPF_AND:
12938 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
12939 		scalar32_min_max_and(dst_reg, &src_reg);
12940 		scalar_min_max_and(dst_reg, &src_reg);
12941 		break;
12942 	case BPF_OR:
12943 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
12944 		scalar32_min_max_or(dst_reg, &src_reg);
12945 		scalar_min_max_or(dst_reg, &src_reg);
12946 		break;
12947 	case BPF_XOR:
12948 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
12949 		scalar32_min_max_xor(dst_reg, &src_reg);
12950 		scalar_min_max_xor(dst_reg, &src_reg);
12951 		break;
12952 	case BPF_LSH:
12953 		if (umax_val >= insn_bitness) {
12954 			/* Shifts greater than 31 or 63 are undefined.
12955 			 * This includes shifts by a negative number.
12956 			 */
12957 			mark_reg_unknown(env, regs, insn->dst_reg);
12958 			break;
12959 		}
12960 		if (alu32)
12961 			scalar32_min_max_lsh(dst_reg, &src_reg);
12962 		else
12963 			scalar_min_max_lsh(dst_reg, &src_reg);
12964 		break;
12965 	case BPF_RSH:
12966 		if (umax_val >= insn_bitness) {
12967 			/* Shifts greater than 31 or 63 are undefined.
12968 			 * This includes shifts by a negative number.
12969 			 */
12970 			mark_reg_unknown(env, regs, insn->dst_reg);
12971 			break;
12972 		}
12973 		if (alu32)
12974 			scalar32_min_max_rsh(dst_reg, &src_reg);
12975 		else
12976 			scalar_min_max_rsh(dst_reg, &src_reg);
12977 		break;
12978 	case BPF_ARSH:
12979 		if (umax_val >= insn_bitness) {
12980 			/* Shifts greater than 31 or 63 are undefined.
12981 			 * This includes shifts by a negative number.
12982 			 */
12983 			mark_reg_unknown(env, regs, insn->dst_reg);
12984 			break;
12985 		}
12986 		if (alu32)
12987 			scalar32_min_max_arsh(dst_reg, &src_reg);
12988 		else
12989 			scalar_min_max_arsh(dst_reg, &src_reg);
12990 		break;
12991 	default:
12992 		mark_reg_unknown(env, regs, insn->dst_reg);
12993 		break;
12994 	}
12995 
12996 	/* ALU32 ops are zero extended into 64bit register */
12997 	if (alu32)
12998 		zext_32_to_64(dst_reg);
12999 	reg_bounds_sync(dst_reg);
13000 	return 0;
13001 }
13002 
13003 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
13004  * and var_off.
13005  */
13006 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
13007 				   struct bpf_insn *insn)
13008 {
13009 	struct bpf_verifier_state *vstate = env->cur_state;
13010 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13011 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
13012 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
13013 	u8 opcode = BPF_OP(insn->code);
13014 	int err;
13015 
13016 	dst_reg = &regs[insn->dst_reg];
13017 	src_reg = NULL;
13018 	if (dst_reg->type != SCALAR_VALUE)
13019 		ptr_reg = dst_reg;
13020 	else
13021 		/* Make sure ID is cleared otherwise dst_reg min/max could be
13022 		 * incorrectly propagated into other registers by find_equal_scalars()
13023 		 */
13024 		dst_reg->id = 0;
13025 	if (BPF_SRC(insn->code) == BPF_X) {
13026 		src_reg = &regs[insn->src_reg];
13027 		if (src_reg->type != SCALAR_VALUE) {
13028 			if (dst_reg->type != SCALAR_VALUE) {
13029 				/* Combining two pointers by any ALU op yields
13030 				 * an arbitrary scalar. Disallow all math except
13031 				 * pointer subtraction
13032 				 */
13033 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13034 					mark_reg_unknown(env, regs, insn->dst_reg);
13035 					return 0;
13036 				}
13037 				verbose(env, "R%d pointer %s pointer prohibited\n",
13038 					insn->dst_reg,
13039 					bpf_alu_string[opcode >> 4]);
13040 				return -EACCES;
13041 			} else {
13042 				/* scalar += pointer
13043 				 * This is legal, but we have to reverse our
13044 				 * src/dest handling in computing the range
13045 				 */
13046 				err = mark_chain_precision(env, insn->dst_reg);
13047 				if (err)
13048 					return err;
13049 				return adjust_ptr_min_max_vals(env, insn,
13050 							       src_reg, dst_reg);
13051 			}
13052 		} else if (ptr_reg) {
13053 			/* pointer += scalar */
13054 			err = mark_chain_precision(env, insn->src_reg);
13055 			if (err)
13056 				return err;
13057 			return adjust_ptr_min_max_vals(env, insn,
13058 						       dst_reg, src_reg);
13059 		} else if (dst_reg->precise) {
13060 			/* if dst_reg is precise, src_reg should be precise as well */
13061 			err = mark_chain_precision(env, insn->src_reg);
13062 			if (err)
13063 				return err;
13064 		}
13065 	} else {
13066 		/* Pretend the src is a reg with a known value, since we only
13067 		 * need to be able to read from this state.
13068 		 */
13069 		off_reg.type = SCALAR_VALUE;
13070 		__mark_reg_known(&off_reg, insn->imm);
13071 		src_reg = &off_reg;
13072 		if (ptr_reg) /* pointer += K */
13073 			return adjust_ptr_min_max_vals(env, insn,
13074 						       ptr_reg, src_reg);
13075 	}
13076 
13077 	/* Got here implies adding two SCALAR_VALUEs */
13078 	if (WARN_ON_ONCE(ptr_reg)) {
13079 		print_verifier_state(env, state, true);
13080 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
13081 		return -EINVAL;
13082 	}
13083 	if (WARN_ON(!src_reg)) {
13084 		print_verifier_state(env, state, true);
13085 		verbose(env, "verifier internal error: no src_reg\n");
13086 		return -EINVAL;
13087 	}
13088 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
13089 }
13090 
13091 /* check validity of 32-bit and 64-bit arithmetic operations */
13092 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
13093 {
13094 	struct bpf_reg_state *regs = cur_regs(env);
13095 	u8 opcode = BPF_OP(insn->code);
13096 	int err;
13097 
13098 	if (opcode == BPF_END || opcode == BPF_NEG) {
13099 		if (opcode == BPF_NEG) {
13100 			if (BPF_SRC(insn->code) != BPF_K ||
13101 			    insn->src_reg != BPF_REG_0 ||
13102 			    insn->off != 0 || insn->imm != 0) {
13103 				verbose(env, "BPF_NEG uses reserved fields\n");
13104 				return -EINVAL;
13105 			}
13106 		} else {
13107 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
13108 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
13109 			    (BPF_CLASS(insn->code) == BPF_ALU64 &&
13110 			     BPF_SRC(insn->code) != BPF_TO_LE)) {
13111 				verbose(env, "BPF_END uses reserved fields\n");
13112 				return -EINVAL;
13113 			}
13114 		}
13115 
13116 		/* check src operand */
13117 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13118 		if (err)
13119 			return err;
13120 
13121 		if (is_pointer_value(env, insn->dst_reg)) {
13122 			verbose(env, "R%d pointer arithmetic prohibited\n",
13123 				insn->dst_reg);
13124 			return -EACCES;
13125 		}
13126 
13127 		/* check dest operand */
13128 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
13129 		if (err)
13130 			return err;
13131 
13132 	} else if (opcode == BPF_MOV) {
13133 
13134 		if (BPF_SRC(insn->code) == BPF_X) {
13135 			if (insn->imm != 0) {
13136 				verbose(env, "BPF_MOV uses reserved fields\n");
13137 				return -EINVAL;
13138 			}
13139 
13140 			if (BPF_CLASS(insn->code) == BPF_ALU) {
13141 				if (insn->off != 0 && insn->off != 8 && insn->off != 16) {
13142 					verbose(env, "BPF_MOV uses reserved fields\n");
13143 					return -EINVAL;
13144 				}
13145 			} else {
13146 				if (insn->off != 0 && insn->off != 8 && insn->off != 16 &&
13147 				    insn->off != 32) {
13148 					verbose(env, "BPF_MOV uses reserved fields\n");
13149 					return -EINVAL;
13150 				}
13151 			}
13152 
13153 			/* check src operand */
13154 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13155 			if (err)
13156 				return err;
13157 		} else {
13158 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
13159 				verbose(env, "BPF_MOV uses reserved fields\n");
13160 				return -EINVAL;
13161 			}
13162 		}
13163 
13164 		/* check dest operand, mark as required later */
13165 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13166 		if (err)
13167 			return err;
13168 
13169 		if (BPF_SRC(insn->code) == BPF_X) {
13170 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
13171 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
13172 			bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id &&
13173 				       !tnum_is_const(src_reg->var_off);
13174 
13175 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13176 				if (insn->off == 0) {
13177 					/* case: R1 = R2
13178 					 * copy register state to dest reg
13179 					 */
13180 					if (need_id)
13181 						/* Assign src and dst registers the same ID
13182 						 * that will be used by find_equal_scalars()
13183 						 * to propagate min/max range.
13184 						 */
13185 						src_reg->id = ++env->id_gen;
13186 					copy_register_state(dst_reg, src_reg);
13187 					dst_reg->live |= REG_LIVE_WRITTEN;
13188 					dst_reg->subreg_def = DEF_NOT_SUBREG;
13189 				} else {
13190 					/* case: R1 = (s8, s16 s32)R2 */
13191 					if (is_pointer_value(env, insn->src_reg)) {
13192 						verbose(env,
13193 							"R%d sign-extension part of pointer\n",
13194 							insn->src_reg);
13195 						return -EACCES;
13196 					} else if (src_reg->type == SCALAR_VALUE) {
13197 						bool no_sext;
13198 
13199 						no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13200 						if (no_sext && need_id)
13201 							src_reg->id = ++env->id_gen;
13202 						copy_register_state(dst_reg, src_reg);
13203 						if (!no_sext)
13204 							dst_reg->id = 0;
13205 						coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
13206 						dst_reg->live |= REG_LIVE_WRITTEN;
13207 						dst_reg->subreg_def = DEF_NOT_SUBREG;
13208 					} else {
13209 						mark_reg_unknown(env, regs, insn->dst_reg);
13210 					}
13211 				}
13212 			} else {
13213 				/* R1 = (u32) R2 */
13214 				if (is_pointer_value(env, insn->src_reg)) {
13215 					verbose(env,
13216 						"R%d partial copy of pointer\n",
13217 						insn->src_reg);
13218 					return -EACCES;
13219 				} else if (src_reg->type == SCALAR_VALUE) {
13220 					if (insn->off == 0) {
13221 						bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
13222 
13223 						if (is_src_reg_u32 && need_id)
13224 							src_reg->id = ++env->id_gen;
13225 						copy_register_state(dst_reg, src_reg);
13226 						/* Make sure ID is cleared if src_reg is not in u32
13227 						 * range otherwise dst_reg min/max could be incorrectly
13228 						 * propagated into src_reg by find_equal_scalars()
13229 						 */
13230 						if (!is_src_reg_u32)
13231 							dst_reg->id = 0;
13232 						dst_reg->live |= REG_LIVE_WRITTEN;
13233 						dst_reg->subreg_def = env->insn_idx + 1;
13234 					} else {
13235 						/* case: W1 = (s8, s16)W2 */
13236 						bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13237 
13238 						if (no_sext && need_id)
13239 							src_reg->id = ++env->id_gen;
13240 						copy_register_state(dst_reg, src_reg);
13241 						if (!no_sext)
13242 							dst_reg->id = 0;
13243 						dst_reg->live |= REG_LIVE_WRITTEN;
13244 						dst_reg->subreg_def = env->insn_idx + 1;
13245 						coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
13246 					}
13247 				} else {
13248 					mark_reg_unknown(env, regs,
13249 							 insn->dst_reg);
13250 				}
13251 				zext_32_to_64(dst_reg);
13252 				reg_bounds_sync(dst_reg);
13253 			}
13254 		} else {
13255 			/* case: R = imm
13256 			 * remember the value we stored into this reg
13257 			 */
13258 			/* clear any state __mark_reg_known doesn't set */
13259 			mark_reg_unknown(env, regs, insn->dst_reg);
13260 			regs[insn->dst_reg].type = SCALAR_VALUE;
13261 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13262 				__mark_reg_known(regs + insn->dst_reg,
13263 						 insn->imm);
13264 			} else {
13265 				__mark_reg_known(regs + insn->dst_reg,
13266 						 (u32)insn->imm);
13267 			}
13268 		}
13269 
13270 	} else if (opcode > BPF_END) {
13271 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
13272 		return -EINVAL;
13273 
13274 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
13275 
13276 		if (BPF_SRC(insn->code) == BPF_X) {
13277 			if (insn->imm != 0 || insn->off > 1 ||
13278 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13279 				verbose(env, "BPF_ALU uses reserved fields\n");
13280 				return -EINVAL;
13281 			}
13282 			/* check src1 operand */
13283 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13284 			if (err)
13285 				return err;
13286 		} else {
13287 			if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
13288 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13289 				verbose(env, "BPF_ALU uses reserved fields\n");
13290 				return -EINVAL;
13291 			}
13292 		}
13293 
13294 		/* check src2 operand */
13295 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13296 		if (err)
13297 			return err;
13298 
13299 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
13300 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
13301 			verbose(env, "div by zero\n");
13302 			return -EINVAL;
13303 		}
13304 
13305 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
13306 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
13307 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
13308 
13309 			if (insn->imm < 0 || insn->imm >= size) {
13310 				verbose(env, "invalid shift %d\n", insn->imm);
13311 				return -EINVAL;
13312 			}
13313 		}
13314 
13315 		/* check dest operand */
13316 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13317 		if (err)
13318 			return err;
13319 
13320 		return adjust_reg_min_max_vals(env, insn);
13321 	}
13322 
13323 	return 0;
13324 }
13325 
13326 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
13327 				   struct bpf_reg_state *dst_reg,
13328 				   enum bpf_reg_type type,
13329 				   bool range_right_open)
13330 {
13331 	struct bpf_func_state *state;
13332 	struct bpf_reg_state *reg;
13333 	int new_range;
13334 
13335 	if (dst_reg->off < 0 ||
13336 	    (dst_reg->off == 0 && range_right_open))
13337 		/* This doesn't give us any range */
13338 		return;
13339 
13340 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
13341 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
13342 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
13343 		 * than pkt_end, but that's because it's also less than pkt.
13344 		 */
13345 		return;
13346 
13347 	new_range = dst_reg->off;
13348 	if (range_right_open)
13349 		new_range++;
13350 
13351 	/* Examples for register markings:
13352 	 *
13353 	 * pkt_data in dst register:
13354 	 *
13355 	 *   r2 = r3;
13356 	 *   r2 += 8;
13357 	 *   if (r2 > pkt_end) goto <handle exception>
13358 	 *   <access okay>
13359 	 *
13360 	 *   r2 = r3;
13361 	 *   r2 += 8;
13362 	 *   if (r2 < pkt_end) goto <access okay>
13363 	 *   <handle exception>
13364 	 *
13365 	 *   Where:
13366 	 *     r2 == dst_reg, pkt_end == src_reg
13367 	 *     r2=pkt(id=n,off=8,r=0)
13368 	 *     r3=pkt(id=n,off=0,r=0)
13369 	 *
13370 	 * pkt_data in src register:
13371 	 *
13372 	 *   r2 = r3;
13373 	 *   r2 += 8;
13374 	 *   if (pkt_end >= r2) goto <access okay>
13375 	 *   <handle exception>
13376 	 *
13377 	 *   r2 = r3;
13378 	 *   r2 += 8;
13379 	 *   if (pkt_end <= r2) goto <handle exception>
13380 	 *   <access okay>
13381 	 *
13382 	 *   Where:
13383 	 *     pkt_end == dst_reg, r2 == src_reg
13384 	 *     r2=pkt(id=n,off=8,r=0)
13385 	 *     r3=pkt(id=n,off=0,r=0)
13386 	 *
13387 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
13388 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
13389 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
13390 	 * the check.
13391 	 */
13392 
13393 	/* If our ids match, then we must have the same max_value.  And we
13394 	 * don't care about the other reg's fixed offset, since if it's too big
13395 	 * the range won't allow anything.
13396 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
13397 	 */
13398 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13399 		if (reg->type == type && reg->id == dst_reg->id)
13400 			/* keep the maximum range already checked */
13401 			reg->range = max(reg->range, new_range);
13402 	}));
13403 }
13404 
13405 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
13406 {
13407 	struct tnum subreg = tnum_subreg(reg->var_off);
13408 	s32 sval = (s32)val;
13409 
13410 	switch (opcode) {
13411 	case BPF_JEQ:
13412 		if (tnum_is_const(subreg))
13413 			return !!tnum_equals_const(subreg, val);
13414 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
13415 			return 0;
13416 		break;
13417 	case BPF_JNE:
13418 		if (tnum_is_const(subreg))
13419 			return !tnum_equals_const(subreg, val);
13420 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
13421 			return 1;
13422 		break;
13423 	case BPF_JSET:
13424 		if ((~subreg.mask & subreg.value) & val)
13425 			return 1;
13426 		if (!((subreg.mask | subreg.value) & val))
13427 			return 0;
13428 		break;
13429 	case BPF_JGT:
13430 		if (reg->u32_min_value > val)
13431 			return 1;
13432 		else if (reg->u32_max_value <= val)
13433 			return 0;
13434 		break;
13435 	case BPF_JSGT:
13436 		if (reg->s32_min_value > sval)
13437 			return 1;
13438 		else if (reg->s32_max_value <= sval)
13439 			return 0;
13440 		break;
13441 	case BPF_JLT:
13442 		if (reg->u32_max_value < val)
13443 			return 1;
13444 		else if (reg->u32_min_value >= val)
13445 			return 0;
13446 		break;
13447 	case BPF_JSLT:
13448 		if (reg->s32_max_value < sval)
13449 			return 1;
13450 		else if (reg->s32_min_value >= sval)
13451 			return 0;
13452 		break;
13453 	case BPF_JGE:
13454 		if (reg->u32_min_value >= val)
13455 			return 1;
13456 		else if (reg->u32_max_value < val)
13457 			return 0;
13458 		break;
13459 	case BPF_JSGE:
13460 		if (reg->s32_min_value >= sval)
13461 			return 1;
13462 		else if (reg->s32_max_value < sval)
13463 			return 0;
13464 		break;
13465 	case BPF_JLE:
13466 		if (reg->u32_max_value <= val)
13467 			return 1;
13468 		else if (reg->u32_min_value > val)
13469 			return 0;
13470 		break;
13471 	case BPF_JSLE:
13472 		if (reg->s32_max_value <= sval)
13473 			return 1;
13474 		else if (reg->s32_min_value > sval)
13475 			return 0;
13476 		break;
13477 	}
13478 
13479 	return -1;
13480 }
13481 
13482 
13483 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
13484 {
13485 	s64 sval = (s64)val;
13486 
13487 	switch (opcode) {
13488 	case BPF_JEQ:
13489 		if (tnum_is_const(reg->var_off))
13490 			return !!tnum_equals_const(reg->var_off, val);
13491 		else if (val < reg->umin_value || val > reg->umax_value)
13492 			return 0;
13493 		break;
13494 	case BPF_JNE:
13495 		if (tnum_is_const(reg->var_off))
13496 			return !tnum_equals_const(reg->var_off, val);
13497 		else if (val < reg->umin_value || val > reg->umax_value)
13498 			return 1;
13499 		break;
13500 	case BPF_JSET:
13501 		if ((~reg->var_off.mask & reg->var_off.value) & val)
13502 			return 1;
13503 		if (!((reg->var_off.mask | reg->var_off.value) & val))
13504 			return 0;
13505 		break;
13506 	case BPF_JGT:
13507 		if (reg->umin_value > val)
13508 			return 1;
13509 		else if (reg->umax_value <= val)
13510 			return 0;
13511 		break;
13512 	case BPF_JSGT:
13513 		if (reg->smin_value > sval)
13514 			return 1;
13515 		else if (reg->smax_value <= sval)
13516 			return 0;
13517 		break;
13518 	case BPF_JLT:
13519 		if (reg->umax_value < val)
13520 			return 1;
13521 		else if (reg->umin_value >= val)
13522 			return 0;
13523 		break;
13524 	case BPF_JSLT:
13525 		if (reg->smax_value < sval)
13526 			return 1;
13527 		else if (reg->smin_value >= sval)
13528 			return 0;
13529 		break;
13530 	case BPF_JGE:
13531 		if (reg->umin_value >= val)
13532 			return 1;
13533 		else if (reg->umax_value < val)
13534 			return 0;
13535 		break;
13536 	case BPF_JSGE:
13537 		if (reg->smin_value >= sval)
13538 			return 1;
13539 		else if (reg->smax_value < sval)
13540 			return 0;
13541 		break;
13542 	case BPF_JLE:
13543 		if (reg->umax_value <= val)
13544 			return 1;
13545 		else if (reg->umin_value > val)
13546 			return 0;
13547 		break;
13548 	case BPF_JSLE:
13549 		if (reg->smax_value <= sval)
13550 			return 1;
13551 		else if (reg->smin_value > sval)
13552 			return 0;
13553 		break;
13554 	}
13555 
13556 	return -1;
13557 }
13558 
13559 /* compute branch direction of the expression "if (reg opcode val) goto target;"
13560  * and return:
13561  *  1 - branch will be taken and "goto target" will be executed
13562  *  0 - branch will not be taken and fall-through to next insn
13563  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
13564  *      range [0,10]
13565  */
13566 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
13567 			   bool is_jmp32)
13568 {
13569 	if (__is_pointer_value(false, reg)) {
13570 		if (!reg_not_null(reg))
13571 			return -1;
13572 
13573 		/* If pointer is valid tests against zero will fail so we can
13574 		 * use this to direct branch taken.
13575 		 */
13576 		if (val != 0)
13577 			return -1;
13578 
13579 		switch (opcode) {
13580 		case BPF_JEQ:
13581 			return 0;
13582 		case BPF_JNE:
13583 			return 1;
13584 		default:
13585 			return -1;
13586 		}
13587 	}
13588 
13589 	if (is_jmp32)
13590 		return is_branch32_taken(reg, val, opcode);
13591 	return is_branch64_taken(reg, val, opcode);
13592 }
13593 
13594 static int flip_opcode(u32 opcode)
13595 {
13596 	/* How can we transform "a <op> b" into "b <op> a"? */
13597 	static const u8 opcode_flip[16] = {
13598 		/* these stay the same */
13599 		[BPF_JEQ  >> 4] = BPF_JEQ,
13600 		[BPF_JNE  >> 4] = BPF_JNE,
13601 		[BPF_JSET >> 4] = BPF_JSET,
13602 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
13603 		[BPF_JGE  >> 4] = BPF_JLE,
13604 		[BPF_JGT  >> 4] = BPF_JLT,
13605 		[BPF_JLE  >> 4] = BPF_JGE,
13606 		[BPF_JLT  >> 4] = BPF_JGT,
13607 		[BPF_JSGE >> 4] = BPF_JSLE,
13608 		[BPF_JSGT >> 4] = BPF_JSLT,
13609 		[BPF_JSLE >> 4] = BPF_JSGE,
13610 		[BPF_JSLT >> 4] = BPF_JSGT
13611 	};
13612 	return opcode_flip[opcode >> 4];
13613 }
13614 
13615 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
13616 				   struct bpf_reg_state *src_reg,
13617 				   u8 opcode)
13618 {
13619 	struct bpf_reg_state *pkt;
13620 
13621 	if (src_reg->type == PTR_TO_PACKET_END) {
13622 		pkt = dst_reg;
13623 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
13624 		pkt = src_reg;
13625 		opcode = flip_opcode(opcode);
13626 	} else {
13627 		return -1;
13628 	}
13629 
13630 	if (pkt->range >= 0)
13631 		return -1;
13632 
13633 	switch (opcode) {
13634 	case BPF_JLE:
13635 		/* pkt <= pkt_end */
13636 		fallthrough;
13637 	case BPF_JGT:
13638 		/* pkt > pkt_end */
13639 		if (pkt->range == BEYOND_PKT_END)
13640 			/* pkt has at last one extra byte beyond pkt_end */
13641 			return opcode == BPF_JGT;
13642 		break;
13643 	case BPF_JLT:
13644 		/* pkt < pkt_end */
13645 		fallthrough;
13646 	case BPF_JGE:
13647 		/* pkt >= pkt_end */
13648 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
13649 			return opcode == BPF_JGE;
13650 		break;
13651 	}
13652 	return -1;
13653 }
13654 
13655 /* Adjusts the register min/max values in the case that the dst_reg is the
13656  * variable register that we are working on, and src_reg is a constant or we're
13657  * simply doing a BPF_K check.
13658  * In JEQ/JNE cases we also adjust the var_off values.
13659  */
13660 static void reg_set_min_max(struct bpf_reg_state *true_reg,
13661 			    struct bpf_reg_state *false_reg,
13662 			    u64 val, u32 val32,
13663 			    u8 opcode, bool is_jmp32)
13664 {
13665 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
13666 	struct tnum false_64off = false_reg->var_off;
13667 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
13668 	struct tnum true_64off = true_reg->var_off;
13669 	s64 sval = (s64)val;
13670 	s32 sval32 = (s32)val32;
13671 
13672 	/* If the dst_reg is a pointer, we can't learn anything about its
13673 	 * variable offset from the compare (unless src_reg were a pointer into
13674 	 * the same object, but we don't bother with that.
13675 	 * Since false_reg and true_reg have the same type by construction, we
13676 	 * only need to check one of them for pointerness.
13677 	 */
13678 	if (__is_pointer_value(false, false_reg))
13679 		return;
13680 
13681 	switch (opcode) {
13682 	/* JEQ/JNE comparison doesn't change the register equivalence.
13683 	 *
13684 	 * r1 = r2;
13685 	 * if (r1 == 42) goto label;
13686 	 * ...
13687 	 * label: // here both r1 and r2 are known to be 42.
13688 	 *
13689 	 * Hence when marking register as known preserve it's ID.
13690 	 */
13691 	case BPF_JEQ:
13692 		if (is_jmp32) {
13693 			__mark_reg32_known(true_reg, val32);
13694 			true_32off = tnum_subreg(true_reg->var_off);
13695 		} else {
13696 			___mark_reg_known(true_reg, val);
13697 			true_64off = true_reg->var_off;
13698 		}
13699 		break;
13700 	case BPF_JNE:
13701 		if (is_jmp32) {
13702 			__mark_reg32_known(false_reg, val32);
13703 			false_32off = tnum_subreg(false_reg->var_off);
13704 		} else {
13705 			___mark_reg_known(false_reg, val);
13706 			false_64off = false_reg->var_off;
13707 		}
13708 		break;
13709 	case BPF_JSET:
13710 		if (is_jmp32) {
13711 			false_32off = tnum_and(false_32off, tnum_const(~val32));
13712 			if (is_power_of_2(val32))
13713 				true_32off = tnum_or(true_32off,
13714 						     tnum_const(val32));
13715 		} else {
13716 			false_64off = tnum_and(false_64off, tnum_const(~val));
13717 			if (is_power_of_2(val))
13718 				true_64off = tnum_or(true_64off,
13719 						     tnum_const(val));
13720 		}
13721 		break;
13722 	case BPF_JGE:
13723 	case BPF_JGT:
13724 	{
13725 		if (is_jmp32) {
13726 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
13727 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
13728 
13729 			false_reg->u32_max_value = min(false_reg->u32_max_value,
13730 						       false_umax);
13731 			true_reg->u32_min_value = max(true_reg->u32_min_value,
13732 						      true_umin);
13733 		} else {
13734 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
13735 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
13736 
13737 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
13738 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
13739 		}
13740 		break;
13741 	}
13742 	case BPF_JSGE:
13743 	case BPF_JSGT:
13744 	{
13745 		if (is_jmp32) {
13746 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
13747 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
13748 
13749 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
13750 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
13751 		} else {
13752 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
13753 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
13754 
13755 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
13756 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
13757 		}
13758 		break;
13759 	}
13760 	case BPF_JLE:
13761 	case BPF_JLT:
13762 	{
13763 		if (is_jmp32) {
13764 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
13765 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
13766 
13767 			false_reg->u32_min_value = max(false_reg->u32_min_value,
13768 						       false_umin);
13769 			true_reg->u32_max_value = min(true_reg->u32_max_value,
13770 						      true_umax);
13771 		} else {
13772 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
13773 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
13774 
13775 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
13776 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
13777 		}
13778 		break;
13779 	}
13780 	case BPF_JSLE:
13781 	case BPF_JSLT:
13782 	{
13783 		if (is_jmp32) {
13784 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
13785 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
13786 
13787 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
13788 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
13789 		} else {
13790 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
13791 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
13792 
13793 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
13794 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
13795 		}
13796 		break;
13797 	}
13798 	default:
13799 		return;
13800 	}
13801 
13802 	if (is_jmp32) {
13803 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
13804 					     tnum_subreg(false_32off));
13805 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
13806 					    tnum_subreg(true_32off));
13807 		__reg_combine_32_into_64(false_reg);
13808 		__reg_combine_32_into_64(true_reg);
13809 	} else {
13810 		false_reg->var_off = false_64off;
13811 		true_reg->var_off = true_64off;
13812 		__reg_combine_64_into_32(false_reg);
13813 		__reg_combine_64_into_32(true_reg);
13814 	}
13815 }
13816 
13817 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
13818  * the variable reg.
13819  */
13820 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
13821 				struct bpf_reg_state *false_reg,
13822 				u64 val, u32 val32,
13823 				u8 opcode, bool is_jmp32)
13824 {
13825 	opcode = flip_opcode(opcode);
13826 	/* This uses zero as "not present in table"; luckily the zero opcode,
13827 	 * BPF_JA, can't get here.
13828 	 */
13829 	if (opcode)
13830 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
13831 }
13832 
13833 /* Regs are known to be equal, so intersect their min/max/var_off */
13834 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
13835 				  struct bpf_reg_state *dst_reg)
13836 {
13837 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
13838 							dst_reg->umin_value);
13839 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
13840 							dst_reg->umax_value);
13841 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
13842 							dst_reg->smin_value);
13843 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
13844 							dst_reg->smax_value);
13845 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
13846 							     dst_reg->var_off);
13847 	reg_bounds_sync(src_reg);
13848 	reg_bounds_sync(dst_reg);
13849 }
13850 
13851 static void reg_combine_min_max(struct bpf_reg_state *true_src,
13852 				struct bpf_reg_state *true_dst,
13853 				struct bpf_reg_state *false_src,
13854 				struct bpf_reg_state *false_dst,
13855 				u8 opcode)
13856 {
13857 	switch (opcode) {
13858 	case BPF_JEQ:
13859 		__reg_combine_min_max(true_src, true_dst);
13860 		break;
13861 	case BPF_JNE:
13862 		__reg_combine_min_max(false_src, false_dst);
13863 		break;
13864 	}
13865 }
13866 
13867 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
13868 				 struct bpf_reg_state *reg, u32 id,
13869 				 bool is_null)
13870 {
13871 	if (type_may_be_null(reg->type) && reg->id == id &&
13872 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
13873 		/* Old offset (both fixed and variable parts) should have been
13874 		 * known-zero, because we don't allow pointer arithmetic on
13875 		 * pointers that might be NULL. If we see this happening, don't
13876 		 * convert the register.
13877 		 *
13878 		 * But in some cases, some helpers that return local kptrs
13879 		 * advance offset for the returned pointer. In those cases, it
13880 		 * is fine to expect to see reg->off.
13881 		 */
13882 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
13883 			return;
13884 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
13885 		    WARN_ON_ONCE(reg->off))
13886 			return;
13887 
13888 		if (is_null) {
13889 			reg->type = SCALAR_VALUE;
13890 			/* We don't need id and ref_obj_id from this point
13891 			 * onwards anymore, thus we should better reset it,
13892 			 * so that state pruning has chances to take effect.
13893 			 */
13894 			reg->id = 0;
13895 			reg->ref_obj_id = 0;
13896 
13897 			return;
13898 		}
13899 
13900 		mark_ptr_not_null_reg(reg);
13901 
13902 		if (!reg_may_point_to_spin_lock(reg)) {
13903 			/* For not-NULL ptr, reg->ref_obj_id will be reset
13904 			 * in release_reference().
13905 			 *
13906 			 * reg->id is still used by spin_lock ptr. Other
13907 			 * than spin_lock ptr type, reg->id can be reset.
13908 			 */
13909 			reg->id = 0;
13910 		}
13911 	}
13912 }
13913 
13914 /* The logic is similar to find_good_pkt_pointers(), both could eventually
13915  * be folded together at some point.
13916  */
13917 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
13918 				  bool is_null)
13919 {
13920 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13921 	struct bpf_reg_state *regs = state->regs, *reg;
13922 	u32 ref_obj_id = regs[regno].ref_obj_id;
13923 	u32 id = regs[regno].id;
13924 
13925 	if (ref_obj_id && ref_obj_id == id && is_null)
13926 		/* regs[regno] is in the " == NULL" branch.
13927 		 * No one could have freed the reference state before
13928 		 * doing the NULL check.
13929 		 */
13930 		WARN_ON_ONCE(release_reference_state(state, id));
13931 
13932 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13933 		mark_ptr_or_null_reg(state, reg, id, is_null);
13934 	}));
13935 }
13936 
13937 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
13938 				   struct bpf_reg_state *dst_reg,
13939 				   struct bpf_reg_state *src_reg,
13940 				   struct bpf_verifier_state *this_branch,
13941 				   struct bpf_verifier_state *other_branch)
13942 {
13943 	if (BPF_SRC(insn->code) != BPF_X)
13944 		return false;
13945 
13946 	/* Pointers are always 64-bit. */
13947 	if (BPF_CLASS(insn->code) == BPF_JMP32)
13948 		return false;
13949 
13950 	switch (BPF_OP(insn->code)) {
13951 	case BPF_JGT:
13952 		if ((dst_reg->type == PTR_TO_PACKET &&
13953 		     src_reg->type == PTR_TO_PACKET_END) ||
13954 		    (dst_reg->type == PTR_TO_PACKET_META &&
13955 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13956 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
13957 			find_good_pkt_pointers(this_branch, dst_reg,
13958 					       dst_reg->type, false);
13959 			mark_pkt_end(other_branch, insn->dst_reg, true);
13960 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
13961 			    src_reg->type == PTR_TO_PACKET) ||
13962 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13963 			    src_reg->type == PTR_TO_PACKET_META)) {
13964 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
13965 			find_good_pkt_pointers(other_branch, src_reg,
13966 					       src_reg->type, true);
13967 			mark_pkt_end(this_branch, insn->src_reg, false);
13968 		} else {
13969 			return false;
13970 		}
13971 		break;
13972 	case BPF_JLT:
13973 		if ((dst_reg->type == PTR_TO_PACKET &&
13974 		     src_reg->type == PTR_TO_PACKET_END) ||
13975 		    (dst_reg->type == PTR_TO_PACKET_META &&
13976 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13977 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
13978 			find_good_pkt_pointers(other_branch, dst_reg,
13979 					       dst_reg->type, true);
13980 			mark_pkt_end(this_branch, insn->dst_reg, false);
13981 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
13982 			    src_reg->type == PTR_TO_PACKET) ||
13983 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13984 			    src_reg->type == PTR_TO_PACKET_META)) {
13985 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
13986 			find_good_pkt_pointers(this_branch, src_reg,
13987 					       src_reg->type, false);
13988 			mark_pkt_end(other_branch, insn->src_reg, true);
13989 		} else {
13990 			return false;
13991 		}
13992 		break;
13993 	case BPF_JGE:
13994 		if ((dst_reg->type == PTR_TO_PACKET &&
13995 		     src_reg->type == PTR_TO_PACKET_END) ||
13996 		    (dst_reg->type == PTR_TO_PACKET_META &&
13997 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13998 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
13999 			find_good_pkt_pointers(this_branch, dst_reg,
14000 					       dst_reg->type, true);
14001 			mark_pkt_end(other_branch, insn->dst_reg, false);
14002 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14003 			    src_reg->type == PTR_TO_PACKET) ||
14004 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14005 			    src_reg->type == PTR_TO_PACKET_META)) {
14006 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
14007 			find_good_pkt_pointers(other_branch, src_reg,
14008 					       src_reg->type, false);
14009 			mark_pkt_end(this_branch, insn->src_reg, true);
14010 		} else {
14011 			return false;
14012 		}
14013 		break;
14014 	case BPF_JLE:
14015 		if ((dst_reg->type == PTR_TO_PACKET &&
14016 		     src_reg->type == PTR_TO_PACKET_END) ||
14017 		    (dst_reg->type == PTR_TO_PACKET_META &&
14018 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14019 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
14020 			find_good_pkt_pointers(other_branch, dst_reg,
14021 					       dst_reg->type, false);
14022 			mark_pkt_end(this_branch, insn->dst_reg, true);
14023 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14024 			    src_reg->type == PTR_TO_PACKET) ||
14025 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14026 			    src_reg->type == PTR_TO_PACKET_META)) {
14027 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
14028 			find_good_pkt_pointers(this_branch, src_reg,
14029 					       src_reg->type, true);
14030 			mark_pkt_end(other_branch, insn->src_reg, false);
14031 		} else {
14032 			return false;
14033 		}
14034 		break;
14035 	default:
14036 		return false;
14037 	}
14038 
14039 	return true;
14040 }
14041 
14042 static void find_equal_scalars(struct bpf_verifier_state *vstate,
14043 			       struct bpf_reg_state *known_reg)
14044 {
14045 	struct bpf_func_state *state;
14046 	struct bpf_reg_state *reg;
14047 
14048 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14049 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
14050 			copy_register_state(reg, known_reg);
14051 	}));
14052 }
14053 
14054 static int check_cond_jmp_op(struct bpf_verifier_env *env,
14055 			     struct bpf_insn *insn, int *insn_idx)
14056 {
14057 	struct bpf_verifier_state *this_branch = env->cur_state;
14058 	struct bpf_verifier_state *other_branch;
14059 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
14060 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
14061 	struct bpf_reg_state *eq_branch_regs;
14062 	u8 opcode = BPF_OP(insn->code);
14063 	bool is_jmp32;
14064 	int pred = -1;
14065 	int err;
14066 
14067 	/* Only conditional jumps are expected to reach here. */
14068 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
14069 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
14070 		return -EINVAL;
14071 	}
14072 
14073 	/* check src2 operand */
14074 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14075 	if (err)
14076 		return err;
14077 
14078 	dst_reg = &regs[insn->dst_reg];
14079 	if (BPF_SRC(insn->code) == BPF_X) {
14080 		if (insn->imm != 0) {
14081 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14082 			return -EINVAL;
14083 		}
14084 
14085 		/* check src1 operand */
14086 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14087 		if (err)
14088 			return err;
14089 
14090 		src_reg = &regs[insn->src_reg];
14091 		if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
14092 		    is_pointer_value(env, insn->src_reg)) {
14093 			verbose(env, "R%d pointer comparison prohibited\n",
14094 				insn->src_reg);
14095 			return -EACCES;
14096 		}
14097 	} else {
14098 		if (insn->src_reg != BPF_REG_0) {
14099 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14100 			return -EINVAL;
14101 		}
14102 	}
14103 
14104 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
14105 
14106 	if (BPF_SRC(insn->code) == BPF_K) {
14107 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
14108 	} else if (src_reg->type == SCALAR_VALUE &&
14109 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
14110 		pred = is_branch_taken(dst_reg,
14111 				       tnum_subreg(src_reg->var_off).value,
14112 				       opcode,
14113 				       is_jmp32);
14114 	} else if (src_reg->type == SCALAR_VALUE &&
14115 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
14116 		pred = is_branch_taken(dst_reg,
14117 				       src_reg->var_off.value,
14118 				       opcode,
14119 				       is_jmp32);
14120 	} else if (dst_reg->type == SCALAR_VALUE &&
14121 		   is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) {
14122 		pred = is_branch_taken(src_reg,
14123 				       tnum_subreg(dst_reg->var_off).value,
14124 				       flip_opcode(opcode),
14125 				       is_jmp32);
14126 	} else if (dst_reg->type == SCALAR_VALUE &&
14127 		   !is_jmp32 && tnum_is_const(dst_reg->var_off)) {
14128 		pred = is_branch_taken(src_reg,
14129 				       dst_reg->var_off.value,
14130 				       flip_opcode(opcode),
14131 				       is_jmp32);
14132 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
14133 		   reg_is_pkt_pointer_any(src_reg) &&
14134 		   !is_jmp32) {
14135 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
14136 	}
14137 
14138 	if (pred >= 0) {
14139 		/* If we get here with a dst_reg pointer type it is because
14140 		 * above is_branch_taken() special cased the 0 comparison.
14141 		 */
14142 		if (!__is_pointer_value(false, dst_reg))
14143 			err = mark_chain_precision(env, insn->dst_reg);
14144 		if (BPF_SRC(insn->code) == BPF_X && !err &&
14145 		    !__is_pointer_value(false, src_reg))
14146 			err = mark_chain_precision(env, insn->src_reg);
14147 		if (err)
14148 			return err;
14149 	}
14150 
14151 	if (pred == 1) {
14152 		/* Only follow the goto, ignore fall-through. If needed, push
14153 		 * the fall-through branch for simulation under speculative
14154 		 * execution.
14155 		 */
14156 		if (!env->bypass_spec_v1 &&
14157 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
14158 					       *insn_idx))
14159 			return -EFAULT;
14160 		if (env->log.level & BPF_LOG_LEVEL)
14161 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14162 		*insn_idx += insn->off;
14163 		return 0;
14164 	} else if (pred == 0) {
14165 		/* Only follow the fall-through branch, since that's where the
14166 		 * program will go. If needed, push the goto branch for
14167 		 * simulation under speculative execution.
14168 		 */
14169 		if (!env->bypass_spec_v1 &&
14170 		    !sanitize_speculative_path(env, insn,
14171 					       *insn_idx + insn->off + 1,
14172 					       *insn_idx))
14173 			return -EFAULT;
14174 		if (env->log.level & BPF_LOG_LEVEL)
14175 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14176 		return 0;
14177 	}
14178 
14179 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
14180 				  false);
14181 	if (!other_branch)
14182 		return -EFAULT;
14183 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
14184 
14185 	/* detect if we are comparing against a constant value so we can adjust
14186 	 * our min/max values for our dst register.
14187 	 * this is only legit if both are scalars (or pointers to the same
14188 	 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
14189 	 * because otherwise the different base pointers mean the offsets aren't
14190 	 * comparable.
14191 	 */
14192 	if (BPF_SRC(insn->code) == BPF_X) {
14193 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
14194 
14195 		if (dst_reg->type == SCALAR_VALUE &&
14196 		    src_reg->type == SCALAR_VALUE) {
14197 			if (tnum_is_const(src_reg->var_off) ||
14198 			    (is_jmp32 &&
14199 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
14200 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
14201 						dst_reg,
14202 						src_reg->var_off.value,
14203 						tnum_subreg(src_reg->var_off).value,
14204 						opcode, is_jmp32);
14205 			else if (tnum_is_const(dst_reg->var_off) ||
14206 				 (is_jmp32 &&
14207 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
14208 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
14209 						    src_reg,
14210 						    dst_reg->var_off.value,
14211 						    tnum_subreg(dst_reg->var_off).value,
14212 						    opcode, is_jmp32);
14213 			else if (!is_jmp32 &&
14214 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
14215 				/* Comparing for equality, we can combine knowledge */
14216 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
14217 						    &other_branch_regs[insn->dst_reg],
14218 						    src_reg, dst_reg, opcode);
14219 			if (src_reg->id &&
14220 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
14221 				find_equal_scalars(this_branch, src_reg);
14222 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
14223 			}
14224 
14225 		}
14226 	} else if (dst_reg->type == SCALAR_VALUE) {
14227 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
14228 					dst_reg, insn->imm, (u32)insn->imm,
14229 					opcode, is_jmp32);
14230 	}
14231 
14232 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
14233 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
14234 		find_equal_scalars(this_branch, dst_reg);
14235 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
14236 	}
14237 
14238 	/* if one pointer register is compared to another pointer
14239 	 * register check if PTR_MAYBE_NULL could be lifted.
14240 	 * E.g. register A - maybe null
14241 	 *      register B - not null
14242 	 * for JNE A, B, ... - A is not null in the false branch;
14243 	 * for JEQ A, B, ... - A is not null in the true branch.
14244 	 *
14245 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
14246 	 * not need to be null checked by the BPF program, i.e.,
14247 	 * could be null even without PTR_MAYBE_NULL marking, so
14248 	 * only propagate nullness when neither reg is that type.
14249 	 */
14250 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
14251 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
14252 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
14253 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
14254 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
14255 		eq_branch_regs = NULL;
14256 		switch (opcode) {
14257 		case BPF_JEQ:
14258 			eq_branch_regs = other_branch_regs;
14259 			break;
14260 		case BPF_JNE:
14261 			eq_branch_regs = regs;
14262 			break;
14263 		default:
14264 			/* do nothing */
14265 			break;
14266 		}
14267 		if (eq_branch_regs) {
14268 			if (type_may_be_null(src_reg->type))
14269 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
14270 			else
14271 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
14272 		}
14273 	}
14274 
14275 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
14276 	 * NOTE: these optimizations below are related with pointer comparison
14277 	 *       which will never be JMP32.
14278 	 */
14279 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
14280 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
14281 	    type_may_be_null(dst_reg->type)) {
14282 		/* Mark all identical registers in each branch as either
14283 		 * safe or unknown depending R == 0 or R != 0 conditional.
14284 		 */
14285 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
14286 				      opcode == BPF_JNE);
14287 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
14288 				      opcode == BPF_JEQ);
14289 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
14290 					   this_branch, other_branch) &&
14291 		   is_pointer_value(env, insn->dst_reg)) {
14292 		verbose(env, "R%d pointer comparison prohibited\n",
14293 			insn->dst_reg);
14294 		return -EACCES;
14295 	}
14296 	if (env->log.level & BPF_LOG_LEVEL)
14297 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
14298 	return 0;
14299 }
14300 
14301 /* verify BPF_LD_IMM64 instruction */
14302 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
14303 {
14304 	struct bpf_insn_aux_data *aux = cur_aux(env);
14305 	struct bpf_reg_state *regs = cur_regs(env);
14306 	struct bpf_reg_state *dst_reg;
14307 	struct bpf_map *map;
14308 	int err;
14309 
14310 	if (BPF_SIZE(insn->code) != BPF_DW) {
14311 		verbose(env, "invalid BPF_LD_IMM insn\n");
14312 		return -EINVAL;
14313 	}
14314 	if (insn->off != 0) {
14315 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
14316 		return -EINVAL;
14317 	}
14318 
14319 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
14320 	if (err)
14321 		return err;
14322 
14323 	dst_reg = &regs[insn->dst_reg];
14324 	if (insn->src_reg == 0) {
14325 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
14326 
14327 		dst_reg->type = SCALAR_VALUE;
14328 		__mark_reg_known(&regs[insn->dst_reg], imm);
14329 		return 0;
14330 	}
14331 
14332 	/* All special src_reg cases are listed below. From this point onwards
14333 	 * we either succeed and assign a corresponding dst_reg->type after
14334 	 * zeroing the offset, or fail and reject the program.
14335 	 */
14336 	mark_reg_known_zero(env, regs, insn->dst_reg);
14337 
14338 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
14339 		dst_reg->type = aux->btf_var.reg_type;
14340 		switch (base_type(dst_reg->type)) {
14341 		case PTR_TO_MEM:
14342 			dst_reg->mem_size = aux->btf_var.mem_size;
14343 			break;
14344 		case PTR_TO_BTF_ID:
14345 			dst_reg->btf = aux->btf_var.btf;
14346 			dst_reg->btf_id = aux->btf_var.btf_id;
14347 			break;
14348 		default:
14349 			verbose(env, "bpf verifier is misconfigured\n");
14350 			return -EFAULT;
14351 		}
14352 		return 0;
14353 	}
14354 
14355 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
14356 		struct bpf_prog_aux *aux = env->prog->aux;
14357 		u32 subprogno = find_subprog(env,
14358 					     env->insn_idx + insn->imm + 1);
14359 
14360 		if (!aux->func_info) {
14361 			verbose(env, "missing btf func_info\n");
14362 			return -EINVAL;
14363 		}
14364 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
14365 			verbose(env, "callback function not static\n");
14366 			return -EINVAL;
14367 		}
14368 
14369 		dst_reg->type = PTR_TO_FUNC;
14370 		dst_reg->subprogno = subprogno;
14371 		return 0;
14372 	}
14373 
14374 	map = env->used_maps[aux->map_index];
14375 	dst_reg->map_ptr = map;
14376 
14377 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
14378 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
14379 		dst_reg->type = PTR_TO_MAP_VALUE;
14380 		dst_reg->off = aux->map_off;
14381 		WARN_ON_ONCE(map->max_entries != 1);
14382 		/* We want reg->id to be same (0) as map_value is not distinct */
14383 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
14384 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
14385 		dst_reg->type = CONST_PTR_TO_MAP;
14386 	} else {
14387 		verbose(env, "bpf verifier is misconfigured\n");
14388 		return -EINVAL;
14389 	}
14390 
14391 	return 0;
14392 }
14393 
14394 static bool may_access_skb(enum bpf_prog_type type)
14395 {
14396 	switch (type) {
14397 	case BPF_PROG_TYPE_SOCKET_FILTER:
14398 	case BPF_PROG_TYPE_SCHED_CLS:
14399 	case BPF_PROG_TYPE_SCHED_ACT:
14400 		return true;
14401 	default:
14402 		return false;
14403 	}
14404 }
14405 
14406 /* verify safety of LD_ABS|LD_IND instructions:
14407  * - they can only appear in the programs where ctx == skb
14408  * - since they are wrappers of function calls, they scratch R1-R5 registers,
14409  *   preserve R6-R9, and store return value into R0
14410  *
14411  * Implicit input:
14412  *   ctx == skb == R6 == CTX
14413  *
14414  * Explicit input:
14415  *   SRC == any register
14416  *   IMM == 32-bit immediate
14417  *
14418  * Output:
14419  *   R0 - 8/16/32-bit skb data converted to cpu endianness
14420  */
14421 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
14422 {
14423 	struct bpf_reg_state *regs = cur_regs(env);
14424 	static const int ctx_reg = BPF_REG_6;
14425 	u8 mode = BPF_MODE(insn->code);
14426 	int i, err;
14427 
14428 	if (!may_access_skb(resolve_prog_type(env->prog))) {
14429 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
14430 		return -EINVAL;
14431 	}
14432 
14433 	if (!env->ops->gen_ld_abs) {
14434 		verbose(env, "bpf verifier is misconfigured\n");
14435 		return -EINVAL;
14436 	}
14437 
14438 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
14439 	    BPF_SIZE(insn->code) == BPF_DW ||
14440 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
14441 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
14442 		return -EINVAL;
14443 	}
14444 
14445 	/* check whether implicit source operand (register R6) is readable */
14446 	err = check_reg_arg(env, ctx_reg, SRC_OP);
14447 	if (err)
14448 		return err;
14449 
14450 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
14451 	 * gen_ld_abs() may terminate the program at runtime, leading to
14452 	 * reference leak.
14453 	 */
14454 	err = check_reference_leak(env);
14455 	if (err) {
14456 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
14457 		return err;
14458 	}
14459 
14460 	if (env->cur_state->active_lock.ptr) {
14461 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
14462 		return -EINVAL;
14463 	}
14464 
14465 	if (env->cur_state->active_rcu_lock) {
14466 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
14467 		return -EINVAL;
14468 	}
14469 
14470 	if (regs[ctx_reg].type != PTR_TO_CTX) {
14471 		verbose(env,
14472 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
14473 		return -EINVAL;
14474 	}
14475 
14476 	if (mode == BPF_IND) {
14477 		/* check explicit source operand */
14478 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14479 		if (err)
14480 			return err;
14481 	}
14482 
14483 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
14484 	if (err < 0)
14485 		return err;
14486 
14487 	/* reset caller saved regs to unreadable */
14488 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
14489 		mark_reg_not_init(env, regs, caller_saved[i]);
14490 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
14491 	}
14492 
14493 	/* mark destination R0 register as readable, since it contains
14494 	 * the value fetched from the packet.
14495 	 * Already marked as written above.
14496 	 */
14497 	mark_reg_unknown(env, regs, BPF_REG_0);
14498 	/* ld_abs load up to 32-bit skb data. */
14499 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
14500 	return 0;
14501 }
14502 
14503 static int check_return_code(struct bpf_verifier_env *env)
14504 {
14505 	struct tnum enforce_attach_type_range = tnum_unknown;
14506 	const struct bpf_prog *prog = env->prog;
14507 	struct bpf_reg_state *reg;
14508 	struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0);
14509 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
14510 	int err;
14511 	struct bpf_func_state *frame = env->cur_state->frame[0];
14512 	const bool is_subprog = frame->subprogno;
14513 
14514 	/* LSM and struct_ops func-ptr's return type could be "void" */
14515 	if (!is_subprog) {
14516 		switch (prog_type) {
14517 		case BPF_PROG_TYPE_LSM:
14518 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
14519 				/* See below, can be 0 or 0-1 depending on hook. */
14520 				break;
14521 			fallthrough;
14522 		case BPF_PROG_TYPE_STRUCT_OPS:
14523 			if (!prog->aux->attach_func_proto->type)
14524 				return 0;
14525 			break;
14526 		default:
14527 			break;
14528 		}
14529 	}
14530 
14531 	/* eBPF calling convention is such that R0 is used
14532 	 * to return the value from eBPF program.
14533 	 * Make sure that it's readable at this time
14534 	 * of bpf_exit, which means that program wrote
14535 	 * something into it earlier
14536 	 */
14537 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
14538 	if (err)
14539 		return err;
14540 
14541 	if (is_pointer_value(env, BPF_REG_0)) {
14542 		verbose(env, "R0 leaks addr as return value\n");
14543 		return -EACCES;
14544 	}
14545 
14546 	reg = cur_regs(env) + BPF_REG_0;
14547 
14548 	if (frame->in_async_callback_fn) {
14549 		/* enforce return zero from async callbacks like timer */
14550 		if (reg->type != SCALAR_VALUE) {
14551 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
14552 				reg_type_str(env, reg->type));
14553 			return -EINVAL;
14554 		}
14555 
14556 		if (!tnum_in(const_0, reg->var_off)) {
14557 			verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0");
14558 			return -EINVAL;
14559 		}
14560 		return 0;
14561 	}
14562 
14563 	if (is_subprog) {
14564 		if (reg->type != SCALAR_VALUE) {
14565 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
14566 				reg_type_str(env, reg->type));
14567 			return -EINVAL;
14568 		}
14569 		return 0;
14570 	}
14571 
14572 	switch (prog_type) {
14573 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
14574 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
14575 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
14576 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
14577 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
14578 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
14579 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
14580 			range = tnum_range(1, 1);
14581 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
14582 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
14583 			range = tnum_range(0, 3);
14584 		break;
14585 	case BPF_PROG_TYPE_CGROUP_SKB:
14586 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
14587 			range = tnum_range(0, 3);
14588 			enforce_attach_type_range = tnum_range(2, 3);
14589 		}
14590 		break;
14591 	case BPF_PROG_TYPE_CGROUP_SOCK:
14592 	case BPF_PROG_TYPE_SOCK_OPS:
14593 	case BPF_PROG_TYPE_CGROUP_DEVICE:
14594 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
14595 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
14596 		break;
14597 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
14598 		if (!env->prog->aux->attach_btf_id)
14599 			return 0;
14600 		range = tnum_const(0);
14601 		break;
14602 	case BPF_PROG_TYPE_TRACING:
14603 		switch (env->prog->expected_attach_type) {
14604 		case BPF_TRACE_FENTRY:
14605 		case BPF_TRACE_FEXIT:
14606 			range = tnum_const(0);
14607 			break;
14608 		case BPF_TRACE_RAW_TP:
14609 		case BPF_MODIFY_RETURN:
14610 			return 0;
14611 		case BPF_TRACE_ITER:
14612 			break;
14613 		default:
14614 			return -ENOTSUPP;
14615 		}
14616 		break;
14617 	case BPF_PROG_TYPE_SK_LOOKUP:
14618 		range = tnum_range(SK_DROP, SK_PASS);
14619 		break;
14620 
14621 	case BPF_PROG_TYPE_LSM:
14622 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
14623 			/* Regular BPF_PROG_TYPE_LSM programs can return
14624 			 * any value.
14625 			 */
14626 			return 0;
14627 		}
14628 		if (!env->prog->aux->attach_func_proto->type) {
14629 			/* Make sure programs that attach to void
14630 			 * hooks don't try to modify return value.
14631 			 */
14632 			range = tnum_range(1, 1);
14633 		}
14634 		break;
14635 
14636 	case BPF_PROG_TYPE_NETFILTER:
14637 		range = tnum_range(NF_DROP, NF_ACCEPT);
14638 		break;
14639 	case BPF_PROG_TYPE_EXT:
14640 		/* freplace program can return anything as its return value
14641 		 * depends on the to-be-replaced kernel func or bpf program.
14642 		 */
14643 	default:
14644 		return 0;
14645 	}
14646 
14647 	if (reg->type != SCALAR_VALUE) {
14648 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
14649 			reg_type_str(env, reg->type));
14650 		return -EINVAL;
14651 	}
14652 
14653 	if (!tnum_in(range, reg->var_off)) {
14654 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
14655 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
14656 		    prog_type == BPF_PROG_TYPE_LSM &&
14657 		    !prog->aux->attach_func_proto->type)
14658 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
14659 		return -EINVAL;
14660 	}
14661 
14662 	if (!tnum_is_unknown(enforce_attach_type_range) &&
14663 	    tnum_in(enforce_attach_type_range, reg->var_off))
14664 		env->prog->enforce_expected_attach_type = 1;
14665 	return 0;
14666 }
14667 
14668 /* non-recursive DFS pseudo code
14669  * 1  procedure DFS-iterative(G,v):
14670  * 2      label v as discovered
14671  * 3      let S be a stack
14672  * 4      S.push(v)
14673  * 5      while S is not empty
14674  * 6            t <- S.peek()
14675  * 7            if t is what we're looking for:
14676  * 8                return t
14677  * 9            for all edges e in G.adjacentEdges(t) do
14678  * 10               if edge e is already labelled
14679  * 11                   continue with the next edge
14680  * 12               w <- G.adjacentVertex(t,e)
14681  * 13               if vertex w is not discovered and not explored
14682  * 14                   label e as tree-edge
14683  * 15                   label w as discovered
14684  * 16                   S.push(w)
14685  * 17                   continue at 5
14686  * 18               else if vertex w is discovered
14687  * 19                   label e as back-edge
14688  * 20               else
14689  * 21                   // vertex w is explored
14690  * 22                   label e as forward- or cross-edge
14691  * 23           label t as explored
14692  * 24           S.pop()
14693  *
14694  * convention:
14695  * 0x10 - discovered
14696  * 0x11 - discovered and fall-through edge labelled
14697  * 0x12 - discovered and fall-through and branch edges labelled
14698  * 0x20 - explored
14699  */
14700 
14701 enum {
14702 	DISCOVERED = 0x10,
14703 	EXPLORED = 0x20,
14704 	FALLTHROUGH = 1,
14705 	BRANCH = 2,
14706 };
14707 
14708 static u32 state_htab_size(struct bpf_verifier_env *env)
14709 {
14710 	return env->prog->len;
14711 }
14712 
14713 static struct bpf_verifier_state_list **explored_state(
14714 					struct bpf_verifier_env *env,
14715 					int idx)
14716 {
14717 	struct bpf_verifier_state *cur = env->cur_state;
14718 	struct bpf_func_state *state = cur->frame[cur->curframe];
14719 
14720 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
14721 }
14722 
14723 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
14724 {
14725 	env->insn_aux_data[idx].prune_point = true;
14726 }
14727 
14728 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
14729 {
14730 	return env->insn_aux_data[insn_idx].prune_point;
14731 }
14732 
14733 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
14734 {
14735 	env->insn_aux_data[idx].force_checkpoint = true;
14736 }
14737 
14738 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
14739 {
14740 	return env->insn_aux_data[insn_idx].force_checkpoint;
14741 }
14742 
14743 
14744 enum {
14745 	DONE_EXPLORING = 0,
14746 	KEEP_EXPLORING = 1,
14747 };
14748 
14749 /* t, w, e - match pseudo-code above:
14750  * t - index of current instruction
14751  * w - next instruction
14752  * e - edge
14753  */
14754 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
14755 {
14756 	int *insn_stack = env->cfg.insn_stack;
14757 	int *insn_state = env->cfg.insn_state;
14758 
14759 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
14760 		return DONE_EXPLORING;
14761 
14762 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
14763 		return DONE_EXPLORING;
14764 
14765 	if (w < 0 || w >= env->prog->len) {
14766 		verbose_linfo(env, t, "%d: ", t);
14767 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
14768 		return -EINVAL;
14769 	}
14770 
14771 	if (e == BRANCH) {
14772 		/* mark branch target for state pruning */
14773 		mark_prune_point(env, w);
14774 		mark_jmp_point(env, w);
14775 	}
14776 
14777 	if (insn_state[w] == 0) {
14778 		/* tree-edge */
14779 		insn_state[t] = DISCOVERED | e;
14780 		insn_state[w] = DISCOVERED;
14781 		if (env->cfg.cur_stack >= env->prog->len)
14782 			return -E2BIG;
14783 		insn_stack[env->cfg.cur_stack++] = w;
14784 		return KEEP_EXPLORING;
14785 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
14786 		if (env->bpf_capable)
14787 			return DONE_EXPLORING;
14788 		verbose_linfo(env, t, "%d: ", t);
14789 		verbose_linfo(env, w, "%d: ", w);
14790 		verbose(env, "back-edge from insn %d to %d\n", t, w);
14791 		return -EINVAL;
14792 	} else if (insn_state[w] == EXPLORED) {
14793 		/* forward- or cross-edge */
14794 		insn_state[t] = DISCOVERED | e;
14795 	} else {
14796 		verbose(env, "insn state internal bug\n");
14797 		return -EFAULT;
14798 	}
14799 	return DONE_EXPLORING;
14800 }
14801 
14802 static int visit_func_call_insn(int t, struct bpf_insn *insns,
14803 				struct bpf_verifier_env *env,
14804 				bool visit_callee)
14805 {
14806 	int ret, insn_sz;
14807 
14808 	insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
14809 	ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
14810 	if (ret)
14811 		return ret;
14812 
14813 	mark_prune_point(env, t + insn_sz);
14814 	/* when we exit from subprog, we need to record non-linear history */
14815 	mark_jmp_point(env, t + insn_sz);
14816 
14817 	if (visit_callee) {
14818 		mark_prune_point(env, t);
14819 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
14820 	}
14821 	return ret;
14822 }
14823 
14824 /* Visits the instruction at index t and returns one of the following:
14825  *  < 0 - an error occurred
14826  *  DONE_EXPLORING - the instruction was fully explored
14827  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
14828  */
14829 static int visit_insn(int t, struct bpf_verifier_env *env)
14830 {
14831 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
14832 	int ret, off, insn_sz;
14833 
14834 	if (bpf_pseudo_func(insn))
14835 		return visit_func_call_insn(t, insns, env, true);
14836 
14837 	/* All non-branch instructions have a single fall-through edge. */
14838 	if (BPF_CLASS(insn->code) != BPF_JMP &&
14839 	    BPF_CLASS(insn->code) != BPF_JMP32) {
14840 		insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
14841 		return push_insn(t, t + insn_sz, FALLTHROUGH, env);
14842 	}
14843 
14844 	switch (BPF_OP(insn->code)) {
14845 	case BPF_EXIT:
14846 		return DONE_EXPLORING;
14847 
14848 	case BPF_CALL:
14849 		if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
14850 			/* Mark this call insn as a prune point to trigger
14851 			 * is_state_visited() check before call itself is
14852 			 * processed by __check_func_call(). Otherwise new
14853 			 * async state will be pushed for further exploration.
14854 			 */
14855 			mark_prune_point(env, t);
14856 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
14857 			struct bpf_kfunc_call_arg_meta meta;
14858 
14859 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
14860 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
14861 				mark_prune_point(env, t);
14862 				/* Checking and saving state checkpoints at iter_next() call
14863 				 * is crucial for fast convergence of open-coded iterator loop
14864 				 * logic, so we need to force it. If we don't do that,
14865 				 * is_state_visited() might skip saving a checkpoint, causing
14866 				 * unnecessarily long sequence of not checkpointed
14867 				 * instructions and jumps, leading to exhaustion of jump
14868 				 * history buffer, and potentially other undesired outcomes.
14869 				 * It is expected that with correct open-coded iterators
14870 				 * convergence will happen quickly, so we don't run a risk of
14871 				 * exhausting memory.
14872 				 */
14873 				mark_force_checkpoint(env, t);
14874 			}
14875 		}
14876 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
14877 
14878 	case BPF_JA:
14879 		if (BPF_SRC(insn->code) != BPF_K)
14880 			return -EINVAL;
14881 
14882 		if (BPF_CLASS(insn->code) == BPF_JMP)
14883 			off = insn->off;
14884 		else
14885 			off = insn->imm;
14886 
14887 		/* unconditional jump with single edge */
14888 		ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
14889 		if (ret)
14890 			return ret;
14891 
14892 		mark_prune_point(env, t + off + 1);
14893 		mark_jmp_point(env, t + off + 1);
14894 
14895 		return ret;
14896 
14897 	default:
14898 		/* conditional jump with two edges */
14899 		mark_prune_point(env, t);
14900 
14901 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
14902 		if (ret)
14903 			return ret;
14904 
14905 		return push_insn(t, t + insn->off + 1, BRANCH, env);
14906 	}
14907 }
14908 
14909 /* non-recursive depth-first-search to detect loops in BPF program
14910  * loop == back-edge in directed graph
14911  */
14912 static int check_cfg(struct bpf_verifier_env *env)
14913 {
14914 	int insn_cnt = env->prog->len;
14915 	int *insn_stack, *insn_state;
14916 	int ret = 0;
14917 	int i;
14918 
14919 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
14920 	if (!insn_state)
14921 		return -ENOMEM;
14922 
14923 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
14924 	if (!insn_stack) {
14925 		kvfree(insn_state);
14926 		return -ENOMEM;
14927 	}
14928 
14929 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
14930 	insn_stack[0] = 0; /* 0 is the first instruction */
14931 	env->cfg.cur_stack = 1;
14932 
14933 	while (env->cfg.cur_stack > 0) {
14934 		int t = insn_stack[env->cfg.cur_stack - 1];
14935 
14936 		ret = visit_insn(t, env);
14937 		switch (ret) {
14938 		case DONE_EXPLORING:
14939 			insn_state[t] = EXPLORED;
14940 			env->cfg.cur_stack--;
14941 			break;
14942 		case KEEP_EXPLORING:
14943 			break;
14944 		default:
14945 			if (ret > 0) {
14946 				verbose(env, "visit_insn internal bug\n");
14947 				ret = -EFAULT;
14948 			}
14949 			goto err_free;
14950 		}
14951 	}
14952 
14953 	if (env->cfg.cur_stack < 0) {
14954 		verbose(env, "pop stack internal bug\n");
14955 		ret = -EFAULT;
14956 		goto err_free;
14957 	}
14958 
14959 	for (i = 0; i < insn_cnt; i++) {
14960 		struct bpf_insn *insn = &env->prog->insnsi[i];
14961 
14962 		if (insn_state[i] != EXPLORED) {
14963 			verbose(env, "unreachable insn %d\n", i);
14964 			ret = -EINVAL;
14965 			goto err_free;
14966 		}
14967 		if (bpf_is_ldimm64(insn)) {
14968 			if (insn_state[i + 1] != 0) {
14969 				verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
14970 				ret = -EINVAL;
14971 				goto err_free;
14972 			}
14973 			i++; /* skip second half of ldimm64 */
14974 		}
14975 	}
14976 	ret = 0; /* cfg looks good */
14977 
14978 err_free:
14979 	kvfree(insn_state);
14980 	kvfree(insn_stack);
14981 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
14982 	return ret;
14983 }
14984 
14985 static int check_abnormal_return(struct bpf_verifier_env *env)
14986 {
14987 	int i;
14988 
14989 	for (i = 1; i < env->subprog_cnt; i++) {
14990 		if (env->subprog_info[i].has_ld_abs) {
14991 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
14992 			return -EINVAL;
14993 		}
14994 		if (env->subprog_info[i].has_tail_call) {
14995 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
14996 			return -EINVAL;
14997 		}
14998 	}
14999 	return 0;
15000 }
15001 
15002 /* The minimum supported BTF func info size */
15003 #define MIN_BPF_FUNCINFO_SIZE	8
15004 #define MAX_FUNCINFO_REC_SIZE	252
15005 
15006 static int check_btf_func(struct bpf_verifier_env *env,
15007 			  const union bpf_attr *attr,
15008 			  bpfptr_t uattr)
15009 {
15010 	const struct btf_type *type, *func_proto, *ret_type;
15011 	u32 i, nfuncs, urec_size, min_size;
15012 	u32 krec_size = sizeof(struct bpf_func_info);
15013 	struct bpf_func_info *krecord;
15014 	struct bpf_func_info_aux *info_aux = NULL;
15015 	struct bpf_prog *prog;
15016 	const struct btf *btf;
15017 	bpfptr_t urecord;
15018 	u32 prev_offset = 0;
15019 	bool scalar_return;
15020 	int ret = -ENOMEM;
15021 
15022 	nfuncs = attr->func_info_cnt;
15023 	if (!nfuncs) {
15024 		if (check_abnormal_return(env))
15025 			return -EINVAL;
15026 		return 0;
15027 	}
15028 
15029 	if (nfuncs != env->subprog_cnt) {
15030 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
15031 		return -EINVAL;
15032 	}
15033 
15034 	urec_size = attr->func_info_rec_size;
15035 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
15036 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
15037 	    urec_size % sizeof(u32)) {
15038 		verbose(env, "invalid func info rec size %u\n", urec_size);
15039 		return -EINVAL;
15040 	}
15041 
15042 	prog = env->prog;
15043 	btf = prog->aux->btf;
15044 
15045 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15046 	min_size = min_t(u32, krec_size, urec_size);
15047 
15048 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
15049 	if (!krecord)
15050 		return -ENOMEM;
15051 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
15052 	if (!info_aux)
15053 		goto err_free;
15054 
15055 	for (i = 0; i < nfuncs; i++) {
15056 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
15057 		if (ret) {
15058 			if (ret == -E2BIG) {
15059 				verbose(env, "nonzero tailing record in func info");
15060 				/* set the size kernel expects so loader can zero
15061 				 * out the rest of the record.
15062 				 */
15063 				if (copy_to_bpfptr_offset(uattr,
15064 							  offsetof(union bpf_attr, func_info_rec_size),
15065 							  &min_size, sizeof(min_size)))
15066 					ret = -EFAULT;
15067 			}
15068 			goto err_free;
15069 		}
15070 
15071 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
15072 			ret = -EFAULT;
15073 			goto err_free;
15074 		}
15075 
15076 		/* check insn_off */
15077 		ret = -EINVAL;
15078 		if (i == 0) {
15079 			if (krecord[i].insn_off) {
15080 				verbose(env,
15081 					"nonzero insn_off %u for the first func info record",
15082 					krecord[i].insn_off);
15083 				goto err_free;
15084 			}
15085 		} else if (krecord[i].insn_off <= prev_offset) {
15086 			verbose(env,
15087 				"same or smaller insn offset (%u) than previous func info record (%u)",
15088 				krecord[i].insn_off, prev_offset);
15089 			goto err_free;
15090 		}
15091 
15092 		if (env->subprog_info[i].start != krecord[i].insn_off) {
15093 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
15094 			goto err_free;
15095 		}
15096 
15097 		/* check type_id */
15098 		type = btf_type_by_id(btf, krecord[i].type_id);
15099 		if (!type || !btf_type_is_func(type)) {
15100 			verbose(env, "invalid type id %d in func info",
15101 				krecord[i].type_id);
15102 			goto err_free;
15103 		}
15104 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
15105 
15106 		func_proto = btf_type_by_id(btf, type->type);
15107 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
15108 			/* btf_func_check() already verified it during BTF load */
15109 			goto err_free;
15110 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
15111 		scalar_return =
15112 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
15113 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
15114 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
15115 			goto err_free;
15116 		}
15117 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
15118 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
15119 			goto err_free;
15120 		}
15121 
15122 		prev_offset = krecord[i].insn_off;
15123 		bpfptr_add(&urecord, urec_size);
15124 	}
15125 
15126 	prog->aux->func_info = krecord;
15127 	prog->aux->func_info_cnt = nfuncs;
15128 	prog->aux->func_info_aux = info_aux;
15129 	return 0;
15130 
15131 err_free:
15132 	kvfree(krecord);
15133 	kfree(info_aux);
15134 	return ret;
15135 }
15136 
15137 static void adjust_btf_func(struct bpf_verifier_env *env)
15138 {
15139 	struct bpf_prog_aux *aux = env->prog->aux;
15140 	int i;
15141 
15142 	if (!aux->func_info)
15143 		return;
15144 
15145 	for (i = 0; i < env->subprog_cnt; i++)
15146 		aux->func_info[i].insn_off = env->subprog_info[i].start;
15147 }
15148 
15149 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
15150 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
15151 
15152 static int check_btf_line(struct bpf_verifier_env *env,
15153 			  const union bpf_attr *attr,
15154 			  bpfptr_t uattr)
15155 {
15156 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
15157 	struct bpf_subprog_info *sub;
15158 	struct bpf_line_info *linfo;
15159 	struct bpf_prog *prog;
15160 	const struct btf *btf;
15161 	bpfptr_t ulinfo;
15162 	int err;
15163 
15164 	nr_linfo = attr->line_info_cnt;
15165 	if (!nr_linfo)
15166 		return 0;
15167 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
15168 		return -EINVAL;
15169 
15170 	rec_size = attr->line_info_rec_size;
15171 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
15172 	    rec_size > MAX_LINEINFO_REC_SIZE ||
15173 	    rec_size & (sizeof(u32) - 1))
15174 		return -EINVAL;
15175 
15176 	/* Need to zero it in case the userspace may
15177 	 * pass in a smaller bpf_line_info object.
15178 	 */
15179 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
15180 			 GFP_KERNEL | __GFP_NOWARN);
15181 	if (!linfo)
15182 		return -ENOMEM;
15183 
15184 	prog = env->prog;
15185 	btf = prog->aux->btf;
15186 
15187 	s = 0;
15188 	sub = env->subprog_info;
15189 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
15190 	expected_size = sizeof(struct bpf_line_info);
15191 	ncopy = min_t(u32, expected_size, rec_size);
15192 	for (i = 0; i < nr_linfo; i++) {
15193 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
15194 		if (err) {
15195 			if (err == -E2BIG) {
15196 				verbose(env, "nonzero tailing record in line_info");
15197 				if (copy_to_bpfptr_offset(uattr,
15198 							  offsetof(union bpf_attr, line_info_rec_size),
15199 							  &expected_size, sizeof(expected_size)))
15200 					err = -EFAULT;
15201 			}
15202 			goto err_free;
15203 		}
15204 
15205 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
15206 			err = -EFAULT;
15207 			goto err_free;
15208 		}
15209 
15210 		/*
15211 		 * Check insn_off to ensure
15212 		 * 1) strictly increasing AND
15213 		 * 2) bounded by prog->len
15214 		 *
15215 		 * The linfo[0].insn_off == 0 check logically falls into
15216 		 * the later "missing bpf_line_info for func..." case
15217 		 * because the first linfo[0].insn_off must be the
15218 		 * first sub also and the first sub must have
15219 		 * subprog_info[0].start == 0.
15220 		 */
15221 		if ((i && linfo[i].insn_off <= prev_offset) ||
15222 		    linfo[i].insn_off >= prog->len) {
15223 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
15224 				i, linfo[i].insn_off, prev_offset,
15225 				prog->len);
15226 			err = -EINVAL;
15227 			goto err_free;
15228 		}
15229 
15230 		if (!prog->insnsi[linfo[i].insn_off].code) {
15231 			verbose(env,
15232 				"Invalid insn code at line_info[%u].insn_off\n",
15233 				i);
15234 			err = -EINVAL;
15235 			goto err_free;
15236 		}
15237 
15238 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
15239 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
15240 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
15241 			err = -EINVAL;
15242 			goto err_free;
15243 		}
15244 
15245 		if (s != env->subprog_cnt) {
15246 			if (linfo[i].insn_off == sub[s].start) {
15247 				sub[s].linfo_idx = i;
15248 				s++;
15249 			} else if (sub[s].start < linfo[i].insn_off) {
15250 				verbose(env, "missing bpf_line_info for func#%u\n", s);
15251 				err = -EINVAL;
15252 				goto err_free;
15253 			}
15254 		}
15255 
15256 		prev_offset = linfo[i].insn_off;
15257 		bpfptr_add(&ulinfo, rec_size);
15258 	}
15259 
15260 	if (s != env->subprog_cnt) {
15261 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
15262 			env->subprog_cnt - s, s);
15263 		err = -EINVAL;
15264 		goto err_free;
15265 	}
15266 
15267 	prog->aux->linfo = linfo;
15268 	prog->aux->nr_linfo = nr_linfo;
15269 
15270 	return 0;
15271 
15272 err_free:
15273 	kvfree(linfo);
15274 	return err;
15275 }
15276 
15277 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
15278 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
15279 
15280 static int check_core_relo(struct bpf_verifier_env *env,
15281 			   const union bpf_attr *attr,
15282 			   bpfptr_t uattr)
15283 {
15284 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
15285 	struct bpf_core_relo core_relo = {};
15286 	struct bpf_prog *prog = env->prog;
15287 	const struct btf *btf = prog->aux->btf;
15288 	struct bpf_core_ctx ctx = {
15289 		.log = &env->log,
15290 		.btf = btf,
15291 	};
15292 	bpfptr_t u_core_relo;
15293 	int err;
15294 
15295 	nr_core_relo = attr->core_relo_cnt;
15296 	if (!nr_core_relo)
15297 		return 0;
15298 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
15299 		return -EINVAL;
15300 
15301 	rec_size = attr->core_relo_rec_size;
15302 	if (rec_size < MIN_CORE_RELO_SIZE ||
15303 	    rec_size > MAX_CORE_RELO_SIZE ||
15304 	    rec_size % sizeof(u32))
15305 		return -EINVAL;
15306 
15307 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
15308 	expected_size = sizeof(struct bpf_core_relo);
15309 	ncopy = min_t(u32, expected_size, rec_size);
15310 
15311 	/* Unlike func_info and line_info, copy and apply each CO-RE
15312 	 * relocation record one at a time.
15313 	 */
15314 	for (i = 0; i < nr_core_relo; i++) {
15315 		/* future proofing when sizeof(bpf_core_relo) changes */
15316 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
15317 		if (err) {
15318 			if (err == -E2BIG) {
15319 				verbose(env, "nonzero tailing record in core_relo");
15320 				if (copy_to_bpfptr_offset(uattr,
15321 							  offsetof(union bpf_attr, core_relo_rec_size),
15322 							  &expected_size, sizeof(expected_size)))
15323 					err = -EFAULT;
15324 			}
15325 			break;
15326 		}
15327 
15328 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
15329 			err = -EFAULT;
15330 			break;
15331 		}
15332 
15333 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
15334 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
15335 				i, core_relo.insn_off, prog->len);
15336 			err = -EINVAL;
15337 			break;
15338 		}
15339 
15340 		err = bpf_core_apply(&ctx, &core_relo, i,
15341 				     &prog->insnsi[core_relo.insn_off / 8]);
15342 		if (err)
15343 			break;
15344 		bpfptr_add(&u_core_relo, rec_size);
15345 	}
15346 	return err;
15347 }
15348 
15349 static int check_btf_info(struct bpf_verifier_env *env,
15350 			  const union bpf_attr *attr,
15351 			  bpfptr_t uattr)
15352 {
15353 	struct btf *btf;
15354 	int err;
15355 
15356 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
15357 		if (check_abnormal_return(env))
15358 			return -EINVAL;
15359 		return 0;
15360 	}
15361 
15362 	btf = btf_get_by_fd(attr->prog_btf_fd);
15363 	if (IS_ERR(btf))
15364 		return PTR_ERR(btf);
15365 	if (btf_is_kernel(btf)) {
15366 		btf_put(btf);
15367 		return -EACCES;
15368 	}
15369 	env->prog->aux->btf = btf;
15370 
15371 	err = check_btf_func(env, attr, uattr);
15372 	if (err)
15373 		return err;
15374 
15375 	err = check_btf_line(env, attr, uattr);
15376 	if (err)
15377 		return err;
15378 
15379 	err = check_core_relo(env, attr, uattr);
15380 	if (err)
15381 		return err;
15382 
15383 	return 0;
15384 }
15385 
15386 /* check %cur's range satisfies %old's */
15387 static bool range_within(struct bpf_reg_state *old,
15388 			 struct bpf_reg_state *cur)
15389 {
15390 	return old->umin_value <= cur->umin_value &&
15391 	       old->umax_value >= cur->umax_value &&
15392 	       old->smin_value <= cur->smin_value &&
15393 	       old->smax_value >= cur->smax_value &&
15394 	       old->u32_min_value <= cur->u32_min_value &&
15395 	       old->u32_max_value >= cur->u32_max_value &&
15396 	       old->s32_min_value <= cur->s32_min_value &&
15397 	       old->s32_max_value >= cur->s32_max_value;
15398 }
15399 
15400 /* If in the old state two registers had the same id, then they need to have
15401  * the same id in the new state as well.  But that id could be different from
15402  * the old state, so we need to track the mapping from old to new ids.
15403  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
15404  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
15405  * regs with a different old id could still have new id 9, we don't care about
15406  * that.
15407  * So we look through our idmap to see if this old id has been seen before.  If
15408  * so, we require the new id to match; otherwise, we add the id pair to the map.
15409  */
15410 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15411 {
15412 	struct bpf_id_pair *map = idmap->map;
15413 	unsigned int i;
15414 
15415 	/* either both IDs should be set or both should be zero */
15416 	if (!!old_id != !!cur_id)
15417 		return false;
15418 
15419 	if (old_id == 0) /* cur_id == 0 as well */
15420 		return true;
15421 
15422 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
15423 		if (!map[i].old) {
15424 			/* Reached an empty slot; haven't seen this id before */
15425 			map[i].old = old_id;
15426 			map[i].cur = cur_id;
15427 			return true;
15428 		}
15429 		if (map[i].old == old_id)
15430 			return map[i].cur == cur_id;
15431 		if (map[i].cur == cur_id)
15432 			return false;
15433 	}
15434 	/* We ran out of idmap slots, which should be impossible */
15435 	WARN_ON_ONCE(1);
15436 	return false;
15437 }
15438 
15439 /* Similar to check_ids(), but allocate a unique temporary ID
15440  * for 'old_id' or 'cur_id' of zero.
15441  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
15442  */
15443 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15444 {
15445 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
15446 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
15447 
15448 	return check_ids(old_id, cur_id, idmap);
15449 }
15450 
15451 static void clean_func_state(struct bpf_verifier_env *env,
15452 			     struct bpf_func_state *st)
15453 {
15454 	enum bpf_reg_liveness live;
15455 	int i, j;
15456 
15457 	for (i = 0; i < BPF_REG_FP; i++) {
15458 		live = st->regs[i].live;
15459 		/* liveness must not touch this register anymore */
15460 		st->regs[i].live |= REG_LIVE_DONE;
15461 		if (!(live & REG_LIVE_READ))
15462 			/* since the register is unused, clear its state
15463 			 * to make further comparison simpler
15464 			 */
15465 			__mark_reg_not_init(env, &st->regs[i]);
15466 	}
15467 
15468 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
15469 		live = st->stack[i].spilled_ptr.live;
15470 		/* liveness must not touch this stack slot anymore */
15471 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
15472 		if (!(live & REG_LIVE_READ)) {
15473 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
15474 			for (j = 0; j < BPF_REG_SIZE; j++)
15475 				st->stack[i].slot_type[j] = STACK_INVALID;
15476 		}
15477 	}
15478 }
15479 
15480 static void clean_verifier_state(struct bpf_verifier_env *env,
15481 				 struct bpf_verifier_state *st)
15482 {
15483 	int i;
15484 
15485 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
15486 		/* all regs in this state in all frames were already marked */
15487 		return;
15488 
15489 	for (i = 0; i <= st->curframe; i++)
15490 		clean_func_state(env, st->frame[i]);
15491 }
15492 
15493 /* the parentage chains form a tree.
15494  * the verifier states are added to state lists at given insn and
15495  * pushed into state stack for future exploration.
15496  * when the verifier reaches bpf_exit insn some of the verifer states
15497  * stored in the state lists have their final liveness state already,
15498  * but a lot of states will get revised from liveness point of view when
15499  * the verifier explores other branches.
15500  * Example:
15501  * 1: r0 = 1
15502  * 2: if r1 == 100 goto pc+1
15503  * 3: r0 = 2
15504  * 4: exit
15505  * when the verifier reaches exit insn the register r0 in the state list of
15506  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
15507  * of insn 2 and goes exploring further. At the insn 4 it will walk the
15508  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
15509  *
15510  * Since the verifier pushes the branch states as it sees them while exploring
15511  * the program the condition of walking the branch instruction for the second
15512  * time means that all states below this branch were already explored and
15513  * their final liveness marks are already propagated.
15514  * Hence when the verifier completes the search of state list in is_state_visited()
15515  * we can call this clean_live_states() function to mark all liveness states
15516  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
15517  * will not be used.
15518  * This function also clears the registers and stack for states that !READ
15519  * to simplify state merging.
15520  *
15521  * Important note here that walking the same branch instruction in the callee
15522  * doesn't meant that the states are DONE. The verifier has to compare
15523  * the callsites
15524  */
15525 static void clean_live_states(struct bpf_verifier_env *env, int insn,
15526 			      struct bpf_verifier_state *cur)
15527 {
15528 	struct bpf_verifier_state_list *sl;
15529 	int i;
15530 
15531 	sl = *explored_state(env, insn);
15532 	while (sl) {
15533 		if (sl->state.branches)
15534 			goto next;
15535 		if (sl->state.insn_idx != insn ||
15536 		    sl->state.curframe != cur->curframe)
15537 			goto next;
15538 		for (i = 0; i <= cur->curframe; i++)
15539 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
15540 				goto next;
15541 		clean_verifier_state(env, &sl->state);
15542 next:
15543 		sl = sl->next;
15544 	}
15545 }
15546 
15547 static bool regs_exact(const struct bpf_reg_state *rold,
15548 		       const struct bpf_reg_state *rcur,
15549 		       struct bpf_idmap *idmap)
15550 {
15551 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
15552 	       check_ids(rold->id, rcur->id, idmap) &&
15553 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
15554 }
15555 
15556 /* Returns true if (rold safe implies rcur safe) */
15557 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
15558 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap)
15559 {
15560 	if (!(rold->live & REG_LIVE_READ))
15561 		/* explored state didn't use this */
15562 		return true;
15563 	if (rold->type == NOT_INIT)
15564 		/* explored state can't have used this */
15565 		return true;
15566 	if (rcur->type == NOT_INIT)
15567 		return false;
15568 
15569 	/* Enforce that register types have to match exactly, including their
15570 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
15571 	 * rule.
15572 	 *
15573 	 * One can make a point that using a pointer register as unbounded
15574 	 * SCALAR would be technically acceptable, but this could lead to
15575 	 * pointer leaks because scalars are allowed to leak while pointers
15576 	 * are not. We could make this safe in special cases if root is
15577 	 * calling us, but it's probably not worth the hassle.
15578 	 *
15579 	 * Also, register types that are *not* MAYBE_NULL could technically be
15580 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
15581 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
15582 	 * to the same map).
15583 	 * However, if the old MAYBE_NULL register then got NULL checked,
15584 	 * doing so could have affected others with the same id, and we can't
15585 	 * check for that because we lost the id when we converted to
15586 	 * a non-MAYBE_NULL variant.
15587 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
15588 	 * non-MAYBE_NULL registers as well.
15589 	 */
15590 	if (rold->type != rcur->type)
15591 		return false;
15592 
15593 	switch (base_type(rold->type)) {
15594 	case SCALAR_VALUE:
15595 		if (env->explore_alu_limits) {
15596 			/* explore_alu_limits disables tnum_in() and range_within()
15597 			 * logic and requires everything to be strict
15598 			 */
15599 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
15600 			       check_scalar_ids(rold->id, rcur->id, idmap);
15601 		}
15602 		if (!rold->precise)
15603 			return true;
15604 		/* Why check_ids() for scalar registers?
15605 		 *
15606 		 * Consider the following BPF code:
15607 		 *   1: r6 = ... unbound scalar, ID=a ...
15608 		 *   2: r7 = ... unbound scalar, ID=b ...
15609 		 *   3: if (r6 > r7) goto +1
15610 		 *   4: r6 = r7
15611 		 *   5: if (r6 > X) goto ...
15612 		 *   6: ... memory operation using r7 ...
15613 		 *
15614 		 * First verification path is [1-6]:
15615 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
15616 		 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
15617 		 *   r7 <= X, because r6 and r7 share same id.
15618 		 * Next verification path is [1-4, 6].
15619 		 *
15620 		 * Instruction (6) would be reached in two states:
15621 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
15622 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
15623 		 *
15624 		 * Use check_ids() to distinguish these states.
15625 		 * ---
15626 		 * Also verify that new value satisfies old value range knowledge.
15627 		 */
15628 		return range_within(rold, rcur) &&
15629 		       tnum_in(rold->var_off, rcur->var_off) &&
15630 		       check_scalar_ids(rold->id, rcur->id, idmap);
15631 	case PTR_TO_MAP_KEY:
15632 	case PTR_TO_MAP_VALUE:
15633 	case PTR_TO_MEM:
15634 	case PTR_TO_BUF:
15635 	case PTR_TO_TP_BUFFER:
15636 		/* If the new min/max/var_off satisfy the old ones and
15637 		 * everything else matches, we are OK.
15638 		 */
15639 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
15640 		       range_within(rold, rcur) &&
15641 		       tnum_in(rold->var_off, rcur->var_off) &&
15642 		       check_ids(rold->id, rcur->id, idmap) &&
15643 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
15644 	case PTR_TO_PACKET_META:
15645 	case PTR_TO_PACKET:
15646 		/* We must have at least as much range as the old ptr
15647 		 * did, so that any accesses which were safe before are
15648 		 * still safe.  This is true even if old range < old off,
15649 		 * since someone could have accessed through (ptr - k), or
15650 		 * even done ptr -= k in a register, to get a safe access.
15651 		 */
15652 		if (rold->range > rcur->range)
15653 			return false;
15654 		/* If the offsets don't match, we can't trust our alignment;
15655 		 * nor can we be sure that we won't fall out of range.
15656 		 */
15657 		if (rold->off != rcur->off)
15658 			return false;
15659 		/* id relations must be preserved */
15660 		if (!check_ids(rold->id, rcur->id, idmap))
15661 			return false;
15662 		/* new val must satisfy old val knowledge */
15663 		return range_within(rold, rcur) &&
15664 		       tnum_in(rold->var_off, rcur->var_off);
15665 	case PTR_TO_STACK:
15666 		/* two stack pointers are equal only if they're pointing to
15667 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
15668 		 */
15669 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
15670 	default:
15671 		return regs_exact(rold, rcur, idmap);
15672 	}
15673 }
15674 
15675 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
15676 		      struct bpf_func_state *cur, struct bpf_idmap *idmap)
15677 {
15678 	int i, spi;
15679 
15680 	/* walk slots of the explored stack and ignore any additional
15681 	 * slots in the current stack, since explored(safe) state
15682 	 * didn't use them
15683 	 */
15684 	for (i = 0; i < old->allocated_stack; i++) {
15685 		struct bpf_reg_state *old_reg, *cur_reg;
15686 
15687 		spi = i / BPF_REG_SIZE;
15688 
15689 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
15690 			i += BPF_REG_SIZE - 1;
15691 			/* explored state didn't use this */
15692 			continue;
15693 		}
15694 
15695 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
15696 			continue;
15697 
15698 		if (env->allow_uninit_stack &&
15699 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
15700 			continue;
15701 
15702 		/* explored stack has more populated slots than current stack
15703 		 * and these slots were used
15704 		 */
15705 		if (i >= cur->allocated_stack)
15706 			return false;
15707 
15708 		/* if old state was safe with misc data in the stack
15709 		 * it will be safe with zero-initialized stack.
15710 		 * The opposite is not true
15711 		 */
15712 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
15713 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
15714 			continue;
15715 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
15716 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
15717 			/* Ex: old explored (safe) state has STACK_SPILL in
15718 			 * this stack slot, but current has STACK_MISC ->
15719 			 * this verifier states are not equivalent,
15720 			 * return false to continue verification of this path
15721 			 */
15722 			return false;
15723 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
15724 			continue;
15725 		/* Both old and cur are having same slot_type */
15726 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
15727 		case STACK_SPILL:
15728 			/* when explored and current stack slot are both storing
15729 			 * spilled registers, check that stored pointers types
15730 			 * are the same as well.
15731 			 * Ex: explored safe path could have stored
15732 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
15733 			 * but current path has stored:
15734 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
15735 			 * such verifier states are not equivalent.
15736 			 * return false to continue verification of this path
15737 			 */
15738 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
15739 				     &cur->stack[spi].spilled_ptr, idmap))
15740 				return false;
15741 			break;
15742 		case STACK_DYNPTR:
15743 			old_reg = &old->stack[spi].spilled_ptr;
15744 			cur_reg = &cur->stack[spi].spilled_ptr;
15745 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
15746 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
15747 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
15748 				return false;
15749 			break;
15750 		case STACK_ITER:
15751 			old_reg = &old->stack[spi].spilled_ptr;
15752 			cur_reg = &cur->stack[spi].spilled_ptr;
15753 			/* iter.depth is not compared between states as it
15754 			 * doesn't matter for correctness and would otherwise
15755 			 * prevent convergence; we maintain it only to prevent
15756 			 * infinite loop check triggering, see
15757 			 * iter_active_depths_differ()
15758 			 */
15759 			if (old_reg->iter.btf != cur_reg->iter.btf ||
15760 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
15761 			    old_reg->iter.state != cur_reg->iter.state ||
15762 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
15763 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
15764 				return false;
15765 			break;
15766 		case STACK_MISC:
15767 		case STACK_ZERO:
15768 		case STACK_INVALID:
15769 			continue;
15770 		/* Ensure that new unhandled slot types return false by default */
15771 		default:
15772 			return false;
15773 		}
15774 	}
15775 	return true;
15776 }
15777 
15778 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
15779 		    struct bpf_idmap *idmap)
15780 {
15781 	int i;
15782 
15783 	if (old->acquired_refs != cur->acquired_refs)
15784 		return false;
15785 
15786 	for (i = 0; i < old->acquired_refs; i++) {
15787 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
15788 			return false;
15789 	}
15790 
15791 	return true;
15792 }
15793 
15794 /* compare two verifier states
15795  *
15796  * all states stored in state_list are known to be valid, since
15797  * verifier reached 'bpf_exit' instruction through them
15798  *
15799  * this function is called when verifier exploring different branches of
15800  * execution popped from the state stack. If it sees an old state that has
15801  * more strict register state and more strict stack state then this execution
15802  * branch doesn't need to be explored further, since verifier already
15803  * concluded that more strict state leads to valid finish.
15804  *
15805  * Therefore two states are equivalent if register state is more conservative
15806  * and explored stack state is more conservative than the current one.
15807  * Example:
15808  *       explored                   current
15809  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
15810  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
15811  *
15812  * In other words if current stack state (one being explored) has more
15813  * valid slots than old one that already passed validation, it means
15814  * the verifier can stop exploring and conclude that current state is valid too
15815  *
15816  * Similarly with registers. If explored state has register type as invalid
15817  * whereas register type in current state is meaningful, it means that
15818  * the current state will reach 'bpf_exit' instruction safely
15819  */
15820 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
15821 			      struct bpf_func_state *cur)
15822 {
15823 	int i;
15824 
15825 	for (i = 0; i < MAX_BPF_REG; i++)
15826 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
15827 			     &env->idmap_scratch))
15828 			return false;
15829 
15830 	if (!stacksafe(env, old, cur, &env->idmap_scratch))
15831 		return false;
15832 
15833 	if (!refsafe(old, cur, &env->idmap_scratch))
15834 		return false;
15835 
15836 	return true;
15837 }
15838 
15839 static bool states_equal(struct bpf_verifier_env *env,
15840 			 struct bpf_verifier_state *old,
15841 			 struct bpf_verifier_state *cur)
15842 {
15843 	int i;
15844 
15845 	if (old->curframe != cur->curframe)
15846 		return false;
15847 
15848 	env->idmap_scratch.tmp_id_gen = env->id_gen;
15849 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
15850 
15851 	/* Verification state from speculative execution simulation
15852 	 * must never prune a non-speculative execution one.
15853 	 */
15854 	if (old->speculative && !cur->speculative)
15855 		return false;
15856 
15857 	if (old->active_lock.ptr != cur->active_lock.ptr)
15858 		return false;
15859 
15860 	/* Old and cur active_lock's have to be either both present
15861 	 * or both absent.
15862 	 */
15863 	if (!!old->active_lock.id != !!cur->active_lock.id)
15864 		return false;
15865 
15866 	if (old->active_lock.id &&
15867 	    !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
15868 		return false;
15869 
15870 	if (old->active_rcu_lock != cur->active_rcu_lock)
15871 		return false;
15872 
15873 	/* for states to be equal callsites have to be the same
15874 	 * and all frame states need to be equivalent
15875 	 */
15876 	for (i = 0; i <= old->curframe; i++) {
15877 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
15878 			return false;
15879 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
15880 			return false;
15881 	}
15882 	return true;
15883 }
15884 
15885 /* Return 0 if no propagation happened. Return negative error code if error
15886  * happened. Otherwise, return the propagated bit.
15887  */
15888 static int propagate_liveness_reg(struct bpf_verifier_env *env,
15889 				  struct bpf_reg_state *reg,
15890 				  struct bpf_reg_state *parent_reg)
15891 {
15892 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
15893 	u8 flag = reg->live & REG_LIVE_READ;
15894 	int err;
15895 
15896 	/* When comes here, read flags of PARENT_REG or REG could be any of
15897 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
15898 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
15899 	 */
15900 	if (parent_flag == REG_LIVE_READ64 ||
15901 	    /* Or if there is no read flag from REG. */
15902 	    !flag ||
15903 	    /* Or if the read flag from REG is the same as PARENT_REG. */
15904 	    parent_flag == flag)
15905 		return 0;
15906 
15907 	err = mark_reg_read(env, reg, parent_reg, flag);
15908 	if (err)
15909 		return err;
15910 
15911 	return flag;
15912 }
15913 
15914 /* A write screens off any subsequent reads; but write marks come from the
15915  * straight-line code between a state and its parent.  When we arrive at an
15916  * equivalent state (jump target or such) we didn't arrive by the straight-line
15917  * code, so read marks in the state must propagate to the parent regardless
15918  * of the state's write marks. That's what 'parent == state->parent' comparison
15919  * in mark_reg_read() is for.
15920  */
15921 static int propagate_liveness(struct bpf_verifier_env *env,
15922 			      const struct bpf_verifier_state *vstate,
15923 			      struct bpf_verifier_state *vparent)
15924 {
15925 	struct bpf_reg_state *state_reg, *parent_reg;
15926 	struct bpf_func_state *state, *parent;
15927 	int i, frame, err = 0;
15928 
15929 	if (vparent->curframe != vstate->curframe) {
15930 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
15931 		     vparent->curframe, vstate->curframe);
15932 		return -EFAULT;
15933 	}
15934 	/* Propagate read liveness of registers... */
15935 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
15936 	for (frame = 0; frame <= vstate->curframe; frame++) {
15937 		parent = vparent->frame[frame];
15938 		state = vstate->frame[frame];
15939 		parent_reg = parent->regs;
15940 		state_reg = state->regs;
15941 		/* We don't need to worry about FP liveness, it's read-only */
15942 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
15943 			err = propagate_liveness_reg(env, &state_reg[i],
15944 						     &parent_reg[i]);
15945 			if (err < 0)
15946 				return err;
15947 			if (err == REG_LIVE_READ64)
15948 				mark_insn_zext(env, &parent_reg[i]);
15949 		}
15950 
15951 		/* Propagate stack slots. */
15952 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
15953 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
15954 			parent_reg = &parent->stack[i].spilled_ptr;
15955 			state_reg = &state->stack[i].spilled_ptr;
15956 			err = propagate_liveness_reg(env, state_reg,
15957 						     parent_reg);
15958 			if (err < 0)
15959 				return err;
15960 		}
15961 	}
15962 	return 0;
15963 }
15964 
15965 /* find precise scalars in the previous equivalent state and
15966  * propagate them into the current state
15967  */
15968 static int propagate_precision(struct bpf_verifier_env *env,
15969 			       const struct bpf_verifier_state *old)
15970 {
15971 	struct bpf_reg_state *state_reg;
15972 	struct bpf_func_state *state;
15973 	int i, err = 0, fr;
15974 	bool first;
15975 
15976 	for (fr = old->curframe; fr >= 0; fr--) {
15977 		state = old->frame[fr];
15978 		state_reg = state->regs;
15979 		first = true;
15980 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
15981 			if (state_reg->type != SCALAR_VALUE ||
15982 			    !state_reg->precise ||
15983 			    !(state_reg->live & REG_LIVE_READ))
15984 				continue;
15985 			if (env->log.level & BPF_LOG_LEVEL2) {
15986 				if (first)
15987 					verbose(env, "frame %d: propagating r%d", fr, i);
15988 				else
15989 					verbose(env, ",r%d", i);
15990 			}
15991 			bt_set_frame_reg(&env->bt, fr, i);
15992 			first = false;
15993 		}
15994 
15995 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
15996 			if (!is_spilled_reg(&state->stack[i]))
15997 				continue;
15998 			state_reg = &state->stack[i].spilled_ptr;
15999 			if (state_reg->type != SCALAR_VALUE ||
16000 			    !state_reg->precise ||
16001 			    !(state_reg->live & REG_LIVE_READ))
16002 				continue;
16003 			if (env->log.level & BPF_LOG_LEVEL2) {
16004 				if (first)
16005 					verbose(env, "frame %d: propagating fp%d",
16006 						fr, (-i - 1) * BPF_REG_SIZE);
16007 				else
16008 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
16009 			}
16010 			bt_set_frame_slot(&env->bt, fr, i);
16011 			first = false;
16012 		}
16013 		if (!first)
16014 			verbose(env, "\n");
16015 	}
16016 
16017 	err = mark_chain_precision_batch(env);
16018 	if (err < 0)
16019 		return err;
16020 
16021 	return 0;
16022 }
16023 
16024 static bool states_maybe_looping(struct bpf_verifier_state *old,
16025 				 struct bpf_verifier_state *cur)
16026 {
16027 	struct bpf_func_state *fold, *fcur;
16028 	int i, fr = cur->curframe;
16029 
16030 	if (old->curframe != fr)
16031 		return false;
16032 
16033 	fold = old->frame[fr];
16034 	fcur = cur->frame[fr];
16035 	for (i = 0; i < MAX_BPF_REG; i++)
16036 		if (memcmp(&fold->regs[i], &fcur->regs[i],
16037 			   offsetof(struct bpf_reg_state, parent)))
16038 			return false;
16039 	return true;
16040 }
16041 
16042 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
16043 {
16044 	return env->insn_aux_data[insn_idx].is_iter_next;
16045 }
16046 
16047 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
16048  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
16049  * states to match, which otherwise would look like an infinite loop. So while
16050  * iter_next() calls are taken care of, we still need to be careful and
16051  * prevent erroneous and too eager declaration of "ininite loop", when
16052  * iterators are involved.
16053  *
16054  * Here's a situation in pseudo-BPF assembly form:
16055  *
16056  *   0: again:                          ; set up iter_next() call args
16057  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
16058  *   2:   call bpf_iter_num_next        ; this is iter_next() call
16059  *   3:   if r0 == 0 goto done
16060  *   4:   ... something useful here ...
16061  *   5:   goto again                    ; another iteration
16062  *   6: done:
16063  *   7:   r1 = &it
16064  *   8:   call bpf_iter_num_destroy     ; clean up iter state
16065  *   9:   exit
16066  *
16067  * This is a typical loop. Let's assume that we have a prune point at 1:,
16068  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
16069  * again`, assuming other heuristics don't get in a way).
16070  *
16071  * When we first time come to 1:, let's say we have some state X. We proceed
16072  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
16073  * Now we come back to validate that forked ACTIVE state. We proceed through
16074  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
16075  * are converging. But the problem is that we don't know that yet, as this
16076  * convergence has to happen at iter_next() call site only. So if nothing is
16077  * done, at 1: verifier will use bounded loop logic and declare infinite
16078  * looping (and would be *technically* correct, if not for iterator's
16079  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
16080  * don't want that. So what we do in process_iter_next_call() when we go on
16081  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
16082  * a different iteration. So when we suspect an infinite loop, we additionally
16083  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
16084  * pretend we are not looping and wait for next iter_next() call.
16085  *
16086  * This only applies to ACTIVE state. In DRAINED state we don't expect to
16087  * loop, because that would actually mean infinite loop, as DRAINED state is
16088  * "sticky", and so we'll keep returning into the same instruction with the
16089  * same state (at least in one of possible code paths).
16090  *
16091  * This approach allows to keep infinite loop heuristic even in the face of
16092  * active iterator. E.g., C snippet below is and will be detected as
16093  * inifintely looping:
16094  *
16095  *   struct bpf_iter_num it;
16096  *   int *p, x;
16097  *
16098  *   bpf_iter_num_new(&it, 0, 10);
16099  *   while ((p = bpf_iter_num_next(&t))) {
16100  *       x = p;
16101  *       while (x--) {} // <<-- infinite loop here
16102  *   }
16103  *
16104  */
16105 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
16106 {
16107 	struct bpf_reg_state *slot, *cur_slot;
16108 	struct bpf_func_state *state;
16109 	int i, fr;
16110 
16111 	for (fr = old->curframe; fr >= 0; fr--) {
16112 		state = old->frame[fr];
16113 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16114 			if (state->stack[i].slot_type[0] != STACK_ITER)
16115 				continue;
16116 
16117 			slot = &state->stack[i].spilled_ptr;
16118 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
16119 				continue;
16120 
16121 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
16122 			if (cur_slot->iter.depth != slot->iter.depth)
16123 				return true;
16124 		}
16125 	}
16126 	return false;
16127 }
16128 
16129 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
16130 {
16131 	struct bpf_verifier_state_list *new_sl;
16132 	struct bpf_verifier_state_list *sl, **pprev;
16133 	struct bpf_verifier_state *cur = env->cur_state, *new;
16134 	int i, j, err, states_cnt = 0;
16135 	bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
16136 	bool add_new_state = force_new_state;
16137 
16138 	/* bpf progs typically have pruning point every 4 instructions
16139 	 * http://vger.kernel.org/bpfconf2019.html#session-1
16140 	 * Do not add new state for future pruning if the verifier hasn't seen
16141 	 * at least 2 jumps and at least 8 instructions.
16142 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
16143 	 * In tests that amounts to up to 50% reduction into total verifier
16144 	 * memory consumption and 20% verifier time speedup.
16145 	 */
16146 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
16147 	    env->insn_processed - env->prev_insn_processed >= 8)
16148 		add_new_state = true;
16149 
16150 	pprev = explored_state(env, insn_idx);
16151 	sl = *pprev;
16152 
16153 	clean_live_states(env, insn_idx, cur);
16154 
16155 	while (sl) {
16156 		states_cnt++;
16157 		if (sl->state.insn_idx != insn_idx)
16158 			goto next;
16159 
16160 		if (sl->state.branches) {
16161 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
16162 
16163 			if (frame->in_async_callback_fn &&
16164 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
16165 				/* Different async_entry_cnt means that the verifier is
16166 				 * processing another entry into async callback.
16167 				 * Seeing the same state is not an indication of infinite
16168 				 * loop or infinite recursion.
16169 				 * But finding the same state doesn't mean that it's safe
16170 				 * to stop processing the current state. The previous state
16171 				 * hasn't yet reached bpf_exit, since state.branches > 0.
16172 				 * Checking in_async_callback_fn alone is not enough either.
16173 				 * Since the verifier still needs to catch infinite loops
16174 				 * inside async callbacks.
16175 				 */
16176 				goto skip_inf_loop_check;
16177 			}
16178 			/* BPF open-coded iterators loop detection is special.
16179 			 * states_maybe_looping() logic is too simplistic in detecting
16180 			 * states that *might* be equivalent, because it doesn't know
16181 			 * about ID remapping, so don't even perform it.
16182 			 * See process_iter_next_call() and iter_active_depths_differ()
16183 			 * for overview of the logic. When current and one of parent
16184 			 * states are detected as equivalent, it's a good thing: we prove
16185 			 * convergence and can stop simulating further iterations.
16186 			 * It's safe to assume that iterator loop will finish, taking into
16187 			 * account iter_next() contract of eventually returning
16188 			 * sticky NULL result.
16189 			 */
16190 			if (is_iter_next_insn(env, insn_idx)) {
16191 				if (states_equal(env, &sl->state, cur)) {
16192 					struct bpf_func_state *cur_frame;
16193 					struct bpf_reg_state *iter_state, *iter_reg;
16194 					int spi;
16195 
16196 					cur_frame = cur->frame[cur->curframe];
16197 					/* btf_check_iter_kfuncs() enforces that
16198 					 * iter state pointer is always the first arg
16199 					 */
16200 					iter_reg = &cur_frame->regs[BPF_REG_1];
16201 					/* current state is valid due to states_equal(),
16202 					 * so we can assume valid iter and reg state,
16203 					 * no need for extra (re-)validations
16204 					 */
16205 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
16206 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
16207 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE)
16208 						goto hit;
16209 				}
16210 				goto skip_inf_loop_check;
16211 			}
16212 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
16213 			if (states_maybe_looping(&sl->state, cur) &&
16214 			    states_equal(env, &sl->state, cur) &&
16215 			    !iter_active_depths_differ(&sl->state, cur)) {
16216 				verbose_linfo(env, insn_idx, "; ");
16217 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
16218 				return -EINVAL;
16219 			}
16220 			/* if the verifier is processing a loop, avoid adding new state
16221 			 * too often, since different loop iterations have distinct
16222 			 * states and may not help future pruning.
16223 			 * This threshold shouldn't be too low to make sure that
16224 			 * a loop with large bound will be rejected quickly.
16225 			 * The most abusive loop will be:
16226 			 * r1 += 1
16227 			 * if r1 < 1000000 goto pc-2
16228 			 * 1M insn_procssed limit / 100 == 10k peak states.
16229 			 * This threshold shouldn't be too high either, since states
16230 			 * at the end of the loop are likely to be useful in pruning.
16231 			 */
16232 skip_inf_loop_check:
16233 			if (!force_new_state &&
16234 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
16235 			    env->insn_processed - env->prev_insn_processed < 100)
16236 				add_new_state = false;
16237 			goto miss;
16238 		}
16239 		if (states_equal(env, &sl->state, cur)) {
16240 hit:
16241 			sl->hit_cnt++;
16242 			/* reached equivalent register/stack state,
16243 			 * prune the search.
16244 			 * Registers read by the continuation are read by us.
16245 			 * If we have any write marks in env->cur_state, they
16246 			 * will prevent corresponding reads in the continuation
16247 			 * from reaching our parent (an explored_state).  Our
16248 			 * own state will get the read marks recorded, but
16249 			 * they'll be immediately forgotten as we're pruning
16250 			 * this state and will pop a new one.
16251 			 */
16252 			err = propagate_liveness(env, &sl->state, cur);
16253 
16254 			/* if previous state reached the exit with precision and
16255 			 * current state is equivalent to it (except precsion marks)
16256 			 * the precision needs to be propagated back in
16257 			 * the current state.
16258 			 */
16259 			err = err ? : push_jmp_history(env, cur);
16260 			err = err ? : propagate_precision(env, &sl->state);
16261 			if (err)
16262 				return err;
16263 			return 1;
16264 		}
16265 miss:
16266 		/* when new state is not going to be added do not increase miss count.
16267 		 * Otherwise several loop iterations will remove the state
16268 		 * recorded earlier. The goal of these heuristics is to have
16269 		 * states from some iterations of the loop (some in the beginning
16270 		 * and some at the end) to help pruning.
16271 		 */
16272 		if (add_new_state)
16273 			sl->miss_cnt++;
16274 		/* heuristic to determine whether this state is beneficial
16275 		 * to keep checking from state equivalence point of view.
16276 		 * Higher numbers increase max_states_per_insn and verification time,
16277 		 * but do not meaningfully decrease insn_processed.
16278 		 */
16279 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
16280 			/* the state is unlikely to be useful. Remove it to
16281 			 * speed up verification
16282 			 */
16283 			*pprev = sl->next;
16284 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
16285 				u32 br = sl->state.branches;
16286 
16287 				WARN_ONCE(br,
16288 					  "BUG live_done but branches_to_explore %d\n",
16289 					  br);
16290 				free_verifier_state(&sl->state, false);
16291 				kfree(sl);
16292 				env->peak_states--;
16293 			} else {
16294 				/* cannot free this state, since parentage chain may
16295 				 * walk it later. Add it for free_list instead to
16296 				 * be freed at the end of verification
16297 				 */
16298 				sl->next = env->free_list;
16299 				env->free_list = sl;
16300 			}
16301 			sl = *pprev;
16302 			continue;
16303 		}
16304 next:
16305 		pprev = &sl->next;
16306 		sl = *pprev;
16307 	}
16308 
16309 	if (env->max_states_per_insn < states_cnt)
16310 		env->max_states_per_insn = states_cnt;
16311 
16312 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
16313 		return 0;
16314 
16315 	if (!add_new_state)
16316 		return 0;
16317 
16318 	/* There were no equivalent states, remember the current one.
16319 	 * Technically the current state is not proven to be safe yet,
16320 	 * but it will either reach outer most bpf_exit (which means it's safe)
16321 	 * or it will be rejected. When there are no loops the verifier won't be
16322 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
16323 	 * again on the way to bpf_exit.
16324 	 * When looping the sl->state.branches will be > 0 and this state
16325 	 * will not be considered for equivalence until branches == 0.
16326 	 */
16327 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
16328 	if (!new_sl)
16329 		return -ENOMEM;
16330 	env->total_states++;
16331 	env->peak_states++;
16332 	env->prev_jmps_processed = env->jmps_processed;
16333 	env->prev_insn_processed = env->insn_processed;
16334 
16335 	/* forget precise markings we inherited, see __mark_chain_precision */
16336 	if (env->bpf_capable)
16337 		mark_all_scalars_imprecise(env, cur);
16338 
16339 	/* add new state to the head of linked list */
16340 	new = &new_sl->state;
16341 	err = copy_verifier_state(new, cur);
16342 	if (err) {
16343 		free_verifier_state(new, false);
16344 		kfree(new_sl);
16345 		return err;
16346 	}
16347 	new->insn_idx = insn_idx;
16348 	WARN_ONCE(new->branches != 1,
16349 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
16350 
16351 	cur->parent = new;
16352 	cur->first_insn_idx = insn_idx;
16353 	clear_jmp_history(cur);
16354 	new_sl->next = *explored_state(env, insn_idx);
16355 	*explored_state(env, insn_idx) = new_sl;
16356 	/* connect new state to parentage chain. Current frame needs all
16357 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
16358 	 * to the stack implicitly by JITs) so in callers' frames connect just
16359 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
16360 	 * the state of the call instruction (with WRITTEN set), and r0 comes
16361 	 * from callee with its full parentage chain, anyway.
16362 	 */
16363 	/* clear write marks in current state: the writes we did are not writes
16364 	 * our child did, so they don't screen off its reads from us.
16365 	 * (There are no read marks in current state, because reads always mark
16366 	 * their parent and current state never has children yet.  Only
16367 	 * explored_states can get read marks.)
16368 	 */
16369 	for (j = 0; j <= cur->curframe; j++) {
16370 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
16371 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
16372 		for (i = 0; i < BPF_REG_FP; i++)
16373 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
16374 	}
16375 
16376 	/* all stack frames are accessible from callee, clear them all */
16377 	for (j = 0; j <= cur->curframe; j++) {
16378 		struct bpf_func_state *frame = cur->frame[j];
16379 		struct bpf_func_state *newframe = new->frame[j];
16380 
16381 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
16382 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
16383 			frame->stack[i].spilled_ptr.parent =
16384 						&newframe->stack[i].spilled_ptr;
16385 		}
16386 	}
16387 	return 0;
16388 }
16389 
16390 /* Return true if it's OK to have the same insn return a different type. */
16391 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
16392 {
16393 	switch (base_type(type)) {
16394 	case PTR_TO_CTX:
16395 	case PTR_TO_SOCKET:
16396 	case PTR_TO_SOCK_COMMON:
16397 	case PTR_TO_TCP_SOCK:
16398 	case PTR_TO_XDP_SOCK:
16399 	case PTR_TO_BTF_ID:
16400 		return false;
16401 	default:
16402 		return true;
16403 	}
16404 }
16405 
16406 /* If an instruction was previously used with particular pointer types, then we
16407  * need to be careful to avoid cases such as the below, where it may be ok
16408  * for one branch accessing the pointer, but not ok for the other branch:
16409  *
16410  * R1 = sock_ptr
16411  * goto X;
16412  * ...
16413  * R1 = some_other_valid_ptr;
16414  * goto X;
16415  * ...
16416  * R2 = *(u32 *)(R1 + 0);
16417  */
16418 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
16419 {
16420 	return src != prev && (!reg_type_mismatch_ok(src) ||
16421 			       !reg_type_mismatch_ok(prev));
16422 }
16423 
16424 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
16425 			     bool allow_trust_missmatch)
16426 {
16427 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
16428 
16429 	if (*prev_type == NOT_INIT) {
16430 		/* Saw a valid insn
16431 		 * dst_reg = *(u32 *)(src_reg + off)
16432 		 * save type to validate intersecting paths
16433 		 */
16434 		*prev_type = type;
16435 	} else if (reg_type_mismatch(type, *prev_type)) {
16436 		/* Abuser program is trying to use the same insn
16437 		 * dst_reg = *(u32*) (src_reg + off)
16438 		 * with different pointer types:
16439 		 * src_reg == ctx in one branch and
16440 		 * src_reg == stack|map in some other branch.
16441 		 * Reject it.
16442 		 */
16443 		if (allow_trust_missmatch &&
16444 		    base_type(type) == PTR_TO_BTF_ID &&
16445 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
16446 			/*
16447 			 * Have to support a use case when one path through
16448 			 * the program yields TRUSTED pointer while another
16449 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
16450 			 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
16451 			 */
16452 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
16453 		} else {
16454 			verbose(env, "same insn cannot be used with different pointers\n");
16455 			return -EINVAL;
16456 		}
16457 	}
16458 
16459 	return 0;
16460 }
16461 
16462 static int do_check(struct bpf_verifier_env *env)
16463 {
16464 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
16465 	struct bpf_verifier_state *state = env->cur_state;
16466 	struct bpf_insn *insns = env->prog->insnsi;
16467 	struct bpf_reg_state *regs;
16468 	int insn_cnt = env->prog->len;
16469 	bool do_print_state = false;
16470 	int prev_insn_idx = -1;
16471 
16472 	for (;;) {
16473 		struct bpf_insn *insn;
16474 		u8 class;
16475 		int err;
16476 
16477 		env->prev_insn_idx = prev_insn_idx;
16478 		if (env->insn_idx >= insn_cnt) {
16479 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
16480 				env->insn_idx, insn_cnt);
16481 			return -EFAULT;
16482 		}
16483 
16484 		insn = &insns[env->insn_idx];
16485 		class = BPF_CLASS(insn->code);
16486 
16487 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
16488 			verbose(env,
16489 				"BPF program is too large. Processed %d insn\n",
16490 				env->insn_processed);
16491 			return -E2BIG;
16492 		}
16493 
16494 		state->last_insn_idx = env->prev_insn_idx;
16495 
16496 		if (is_prune_point(env, env->insn_idx)) {
16497 			err = is_state_visited(env, env->insn_idx);
16498 			if (err < 0)
16499 				return err;
16500 			if (err == 1) {
16501 				/* found equivalent state, can prune the search */
16502 				if (env->log.level & BPF_LOG_LEVEL) {
16503 					if (do_print_state)
16504 						verbose(env, "\nfrom %d to %d%s: safe\n",
16505 							env->prev_insn_idx, env->insn_idx,
16506 							env->cur_state->speculative ?
16507 							" (speculative execution)" : "");
16508 					else
16509 						verbose(env, "%d: safe\n", env->insn_idx);
16510 				}
16511 				goto process_bpf_exit;
16512 			}
16513 		}
16514 
16515 		if (is_jmp_point(env, env->insn_idx)) {
16516 			err = push_jmp_history(env, state);
16517 			if (err)
16518 				return err;
16519 		}
16520 
16521 		if (signal_pending(current))
16522 			return -EAGAIN;
16523 
16524 		if (need_resched())
16525 			cond_resched();
16526 
16527 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
16528 			verbose(env, "\nfrom %d to %d%s:",
16529 				env->prev_insn_idx, env->insn_idx,
16530 				env->cur_state->speculative ?
16531 				" (speculative execution)" : "");
16532 			print_verifier_state(env, state->frame[state->curframe], true);
16533 			do_print_state = false;
16534 		}
16535 
16536 		if (env->log.level & BPF_LOG_LEVEL) {
16537 			const struct bpf_insn_cbs cbs = {
16538 				.cb_call	= disasm_kfunc_name,
16539 				.cb_print	= verbose,
16540 				.private_data	= env,
16541 			};
16542 
16543 			if (verifier_state_scratched(env))
16544 				print_insn_state(env, state->frame[state->curframe]);
16545 
16546 			verbose_linfo(env, env->insn_idx, "; ");
16547 			env->prev_log_pos = env->log.end_pos;
16548 			verbose(env, "%d: ", env->insn_idx);
16549 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
16550 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
16551 			env->prev_log_pos = env->log.end_pos;
16552 		}
16553 
16554 		if (bpf_prog_is_offloaded(env->prog->aux)) {
16555 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
16556 							   env->prev_insn_idx);
16557 			if (err)
16558 				return err;
16559 		}
16560 
16561 		regs = cur_regs(env);
16562 		sanitize_mark_insn_seen(env);
16563 		prev_insn_idx = env->insn_idx;
16564 
16565 		if (class == BPF_ALU || class == BPF_ALU64) {
16566 			err = check_alu_op(env, insn);
16567 			if (err)
16568 				return err;
16569 
16570 		} else if (class == BPF_LDX) {
16571 			enum bpf_reg_type src_reg_type;
16572 
16573 			/* check for reserved fields is already done */
16574 
16575 			/* check src operand */
16576 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
16577 			if (err)
16578 				return err;
16579 
16580 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
16581 			if (err)
16582 				return err;
16583 
16584 			src_reg_type = regs[insn->src_reg].type;
16585 
16586 			/* check that memory (src_reg + off) is readable,
16587 			 * the state of dst_reg will be updated by this func
16588 			 */
16589 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
16590 					       insn->off, BPF_SIZE(insn->code),
16591 					       BPF_READ, insn->dst_reg, false,
16592 					       BPF_MODE(insn->code) == BPF_MEMSX);
16593 			if (err)
16594 				return err;
16595 
16596 			err = save_aux_ptr_type(env, src_reg_type, true);
16597 			if (err)
16598 				return err;
16599 		} else if (class == BPF_STX) {
16600 			enum bpf_reg_type dst_reg_type;
16601 
16602 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
16603 				err = check_atomic(env, env->insn_idx, insn);
16604 				if (err)
16605 					return err;
16606 				env->insn_idx++;
16607 				continue;
16608 			}
16609 
16610 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
16611 				verbose(env, "BPF_STX uses reserved fields\n");
16612 				return -EINVAL;
16613 			}
16614 
16615 			/* check src1 operand */
16616 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
16617 			if (err)
16618 				return err;
16619 			/* check src2 operand */
16620 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
16621 			if (err)
16622 				return err;
16623 
16624 			dst_reg_type = regs[insn->dst_reg].type;
16625 
16626 			/* check that memory (dst_reg + off) is writeable */
16627 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
16628 					       insn->off, BPF_SIZE(insn->code),
16629 					       BPF_WRITE, insn->src_reg, false, false);
16630 			if (err)
16631 				return err;
16632 
16633 			err = save_aux_ptr_type(env, dst_reg_type, false);
16634 			if (err)
16635 				return err;
16636 		} else if (class == BPF_ST) {
16637 			enum bpf_reg_type dst_reg_type;
16638 
16639 			if (BPF_MODE(insn->code) != BPF_MEM ||
16640 			    insn->src_reg != BPF_REG_0) {
16641 				verbose(env, "BPF_ST uses reserved fields\n");
16642 				return -EINVAL;
16643 			}
16644 			/* check src operand */
16645 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
16646 			if (err)
16647 				return err;
16648 
16649 			dst_reg_type = regs[insn->dst_reg].type;
16650 
16651 			/* check that memory (dst_reg + off) is writeable */
16652 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
16653 					       insn->off, BPF_SIZE(insn->code),
16654 					       BPF_WRITE, -1, false, false);
16655 			if (err)
16656 				return err;
16657 
16658 			err = save_aux_ptr_type(env, dst_reg_type, false);
16659 			if (err)
16660 				return err;
16661 		} else if (class == BPF_JMP || class == BPF_JMP32) {
16662 			u8 opcode = BPF_OP(insn->code);
16663 
16664 			env->jmps_processed++;
16665 			if (opcode == BPF_CALL) {
16666 				if (BPF_SRC(insn->code) != BPF_K ||
16667 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
16668 				     && insn->off != 0) ||
16669 				    (insn->src_reg != BPF_REG_0 &&
16670 				     insn->src_reg != BPF_PSEUDO_CALL &&
16671 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
16672 				    insn->dst_reg != BPF_REG_0 ||
16673 				    class == BPF_JMP32) {
16674 					verbose(env, "BPF_CALL uses reserved fields\n");
16675 					return -EINVAL;
16676 				}
16677 
16678 				if (env->cur_state->active_lock.ptr) {
16679 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
16680 					    (insn->src_reg == BPF_PSEUDO_CALL) ||
16681 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
16682 					     (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
16683 						verbose(env, "function calls are not allowed while holding a lock\n");
16684 						return -EINVAL;
16685 					}
16686 				}
16687 				if (insn->src_reg == BPF_PSEUDO_CALL)
16688 					err = check_func_call(env, insn, &env->insn_idx);
16689 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
16690 					err = check_kfunc_call(env, insn, &env->insn_idx);
16691 				else
16692 					err = check_helper_call(env, insn, &env->insn_idx);
16693 				if (err)
16694 					return err;
16695 
16696 				mark_reg_scratched(env, BPF_REG_0);
16697 			} else if (opcode == BPF_JA) {
16698 				if (BPF_SRC(insn->code) != BPF_K ||
16699 				    insn->src_reg != BPF_REG_0 ||
16700 				    insn->dst_reg != BPF_REG_0 ||
16701 				    (class == BPF_JMP && insn->imm != 0) ||
16702 				    (class == BPF_JMP32 && insn->off != 0)) {
16703 					verbose(env, "BPF_JA uses reserved fields\n");
16704 					return -EINVAL;
16705 				}
16706 
16707 				if (class == BPF_JMP)
16708 					env->insn_idx += insn->off + 1;
16709 				else
16710 					env->insn_idx += insn->imm + 1;
16711 				continue;
16712 
16713 			} else if (opcode == BPF_EXIT) {
16714 				if (BPF_SRC(insn->code) != BPF_K ||
16715 				    insn->imm != 0 ||
16716 				    insn->src_reg != BPF_REG_0 ||
16717 				    insn->dst_reg != BPF_REG_0 ||
16718 				    class == BPF_JMP32) {
16719 					verbose(env, "BPF_EXIT uses reserved fields\n");
16720 					return -EINVAL;
16721 				}
16722 
16723 				if (env->cur_state->active_lock.ptr &&
16724 				    !in_rbtree_lock_required_cb(env)) {
16725 					verbose(env, "bpf_spin_unlock is missing\n");
16726 					return -EINVAL;
16727 				}
16728 
16729 				if (env->cur_state->active_rcu_lock &&
16730 				    !in_rbtree_lock_required_cb(env)) {
16731 					verbose(env, "bpf_rcu_read_unlock is missing\n");
16732 					return -EINVAL;
16733 				}
16734 
16735 				/* We must do check_reference_leak here before
16736 				 * prepare_func_exit to handle the case when
16737 				 * state->curframe > 0, it may be a callback
16738 				 * function, for which reference_state must
16739 				 * match caller reference state when it exits.
16740 				 */
16741 				err = check_reference_leak(env);
16742 				if (err)
16743 					return err;
16744 
16745 				if (state->curframe) {
16746 					/* exit from nested function */
16747 					err = prepare_func_exit(env, &env->insn_idx);
16748 					if (err)
16749 						return err;
16750 					do_print_state = true;
16751 					continue;
16752 				}
16753 
16754 				err = check_return_code(env);
16755 				if (err)
16756 					return err;
16757 process_bpf_exit:
16758 				mark_verifier_state_scratched(env);
16759 				update_branch_counts(env, env->cur_state);
16760 				err = pop_stack(env, &prev_insn_idx,
16761 						&env->insn_idx, pop_log);
16762 				if (err < 0) {
16763 					if (err != -ENOENT)
16764 						return err;
16765 					break;
16766 				} else {
16767 					do_print_state = true;
16768 					continue;
16769 				}
16770 			} else {
16771 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
16772 				if (err)
16773 					return err;
16774 			}
16775 		} else if (class == BPF_LD) {
16776 			u8 mode = BPF_MODE(insn->code);
16777 
16778 			if (mode == BPF_ABS || mode == BPF_IND) {
16779 				err = check_ld_abs(env, insn);
16780 				if (err)
16781 					return err;
16782 
16783 			} else if (mode == BPF_IMM) {
16784 				err = check_ld_imm(env, insn);
16785 				if (err)
16786 					return err;
16787 
16788 				env->insn_idx++;
16789 				sanitize_mark_insn_seen(env);
16790 			} else {
16791 				verbose(env, "invalid BPF_LD mode\n");
16792 				return -EINVAL;
16793 			}
16794 		} else {
16795 			verbose(env, "unknown insn class %d\n", class);
16796 			return -EINVAL;
16797 		}
16798 
16799 		env->insn_idx++;
16800 	}
16801 
16802 	return 0;
16803 }
16804 
16805 static int find_btf_percpu_datasec(struct btf *btf)
16806 {
16807 	const struct btf_type *t;
16808 	const char *tname;
16809 	int i, n;
16810 
16811 	/*
16812 	 * Both vmlinux and module each have their own ".data..percpu"
16813 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
16814 	 * types to look at only module's own BTF types.
16815 	 */
16816 	n = btf_nr_types(btf);
16817 	if (btf_is_module(btf))
16818 		i = btf_nr_types(btf_vmlinux);
16819 	else
16820 		i = 1;
16821 
16822 	for(; i < n; i++) {
16823 		t = btf_type_by_id(btf, i);
16824 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
16825 			continue;
16826 
16827 		tname = btf_name_by_offset(btf, t->name_off);
16828 		if (!strcmp(tname, ".data..percpu"))
16829 			return i;
16830 	}
16831 
16832 	return -ENOENT;
16833 }
16834 
16835 /* replace pseudo btf_id with kernel symbol address */
16836 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
16837 			       struct bpf_insn *insn,
16838 			       struct bpf_insn_aux_data *aux)
16839 {
16840 	const struct btf_var_secinfo *vsi;
16841 	const struct btf_type *datasec;
16842 	struct btf_mod_pair *btf_mod;
16843 	const struct btf_type *t;
16844 	const char *sym_name;
16845 	bool percpu = false;
16846 	u32 type, id = insn->imm;
16847 	struct btf *btf;
16848 	s32 datasec_id;
16849 	u64 addr;
16850 	int i, btf_fd, err;
16851 
16852 	btf_fd = insn[1].imm;
16853 	if (btf_fd) {
16854 		btf = btf_get_by_fd(btf_fd);
16855 		if (IS_ERR(btf)) {
16856 			verbose(env, "invalid module BTF object FD specified.\n");
16857 			return -EINVAL;
16858 		}
16859 	} else {
16860 		if (!btf_vmlinux) {
16861 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
16862 			return -EINVAL;
16863 		}
16864 		btf = btf_vmlinux;
16865 		btf_get(btf);
16866 	}
16867 
16868 	t = btf_type_by_id(btf, id);
16869 	if (!t) {
16870 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
16871 		err = -ENOENT;
16872 		goto err_put;
16873 	}
16874 
16875 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
16876 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
16877 		err = -EINVAL;
16878 		goto err_put;
16879 	}
16880 
16881 	sym_name = btf_name_by_offset(btf, t->name_off);
16882 	addr = kallsyms_lookup_name(sym_name);
16883 	if (!addr) {
16884 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
16885 			sym_name);
16886 		err = -ENOENT;
16887 		goto err_put;
16888 	}
16889 	insn[0].imm = (u32)addr;
16890 	insn[1].imm = addr >> 32;
16891 
16892 	if (btf_type_is_func(t)) {
16893 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
16894 		aux->btf_var.mem_size = 0;
16895 		goto check_btf;
16896 	}
16897 
16898 	datasec_id = find_btf_percpu_datasec(btf);
16899 	if (datasec_id > 0) {
16900 		datasec = btf_type_by_id(btf, datasec_id);
16901 		for_each_vsi(i, datasec, vsi) {
16902 			if (vsi->type == id) {
16903 				percpu = true;
16904 				break;
16905 			}
16906 		}
16907 	}
16908 
16909 	type = t->type;
16910 	t = btf_type_skip_modifiers(btf, type, NULL);
16911 	if (percpu) {
16912 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
16913 		aux->btf_var.btf = btf;
16914 		aux->btf_var.btf_id = type;
16915 	} else if (!btf_type_is_struct(t)) {
16916 		const struct btf_type *ret;
16917 		const char *tname;
16918 		u32 tsize;
16919 
16920 		/* resolve the type size of ksym. */
16921 		ret = btf_resolve_size(btf, t, &tsize);
16922 		if (IS_ERR(ret)) {
16923 			tname = btf_name_by_offset(btf, t->name_off);
16924 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
16925 				tname, PTR_ERR(ret));
16926 			err = -EINVAL;
16927 			goto err_put;
16928 		}
16929 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
16930 		aux->btf_var.mem_size = tsize;
16931 	} else {
16932 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
16933 		aux->btf_var.btf = btf;
16934 		aux->btf_var.btf_id = type;
16935 	}
16936 check_btf:
16937 	/* check whether we recorded this BTF (and maybe module) already */
16938 	for (i = 0; i < env->used_btf_cnt; i++) {
16939 		if (env->used_btfs[i].btf == btf) {
16940 			btf_put(btf);
16941 			return 0;
16942 		}
16943 	}
16944 
16945 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
16946 		err = -E2BIG;
16947 		goto err_put;
16948 	}
16949 
16950 	btf_mod = &env->used_btfs[env->used_btf_cnt];
16951 	btf_mod->btf = btf;
16952 	btf_mod->module = NULL;
16953 
16954 	/* if we reference variables from kernel module, bump its refcount */
16955 	if (btf_is_module(btf)) {
16956 		btf_mod->module = btf_try_get_module(btf);
16957 		if (!btf_mod->module) {
16958 			err = -ENXIO;
16959 			goto err_put;
16960 		}
16961 	}
16962 
16963 	env->used_btf_cnt++;
16964 
16965 	return 0;
16966 err_put:
16967 	btf_put(btf);
16968 	return err;
16969 }
16970 
16971 static bool is_tracing_prog_type(enum bpf_prog_type type)
16972 {
16973 	switch (type) {
16974 	case BPF_PROG_TYPE_KPROBE:
16975 	case BPF_PROG_TYPE_TRACEPOINT:
16976 	case BPF_PROG_TYPE_PERF_EVENT:
16977 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
16978 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
16979 		return true;
16980 	default:
16981 		return false;
16982 	}
16983 }
16984 
16985 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
16986 					struct bpf_map *map,
16987 					struct bpf_prog *prog)
16988 
16989 {
16990 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
16991 
16992 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
16993 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
16994 		if (is_tracing_prog_type(prog_type)) {
16995 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
16996 			return -EINVAL;
16997 		}
16998 	}
16999 
17000 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
17001 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
17002 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
17003 			return -EINVAL;
17004 		}
17005 
17006 		if (is_tracing_prog_type(prog_type)) {
17007 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
17008 			return -EINVAL;
17009 		}
17010 	}
17011 
17012 	if (btf_record_has_field(map->record, BPF_TIMER)) {
17013 		if (is_tracing_prog_type(prog_type)) {
17014 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
17015 			return -EINVAL;
17016 		}
17017 	}
17018 
17019 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
17020 	    !bpf_offload_prog_map_match(prog, map)) {
17021 		verbose(env, "offload device mismatch between prog and map\n");
17022 		return -EINVAL;
17023 	}
17024 
17025 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
17026 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
17027 		return -EINVAL;
17028 	}
17029 
17030 	if (prog->aux->sleepable)
17031 		switch (map->map_type) {
17032 		case BPF_MAP_TYPE_HASH:
17033 		case BPF_MAP_TYPE_LRU_HASH:
17034 		case BPF_MAP_TYPE_ARRAY:
17035 		case BPF_MAP_TYPE_PERCPU_HASH:
17036 		case BPF_MAP_TYPE_PERCPU_ARRAY:
17037 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
17038 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
17039 		case BPF_MAP_TYPE_HASH_OF_MAPS:
17040 		case BPF_MAP_TYPE_RINGBUF:
17041 		case BPF_MAP_TYPE_USER_RINGBUF:
17042 		case BPF_MAP_TYPE_INODE_STORAGE:
17043 		case BPF_MAP_TYPE_SK_STORAGE:
17044 		case BPF_MAP_TYPE_TASK_STORAGE:
17045 		case BPF_MAP_TYPE_CGRP_STORAGE:
17046 			break;
17047 		default:
17048 			verbose(env,
17049 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
17050 			return -EINVAL;
17051 		}
17052 
17053 	return 0;
17054 }
17055 
17056 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
17057 {
17058 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
17059 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
17060 }
17061 
17062 /* find and rewrite pseudo imm in ld_imm64 instructions:
17063  *
17064  * 1. if it accesses map FD, replace it with actual map pointer.
17065  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
17066  *
17067  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
17068  */
17069 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
17070 {
17071 	struct bpf_insn *insn = env->prog->insnsi;
17072 	int insn_cnt = env->prog->len;
17073 	int i, j, err;
17074 
17075 	err = bpf_prog_calc_tag(env->prog);
17076 	if (err)
17077 		return err;
17078 
17079 	for (i = 0; i < insn_cnt; i++, insn++) {
17080 		if (BPF_CLASS(insn->code) == BPF_LDX &&
17081 		    ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
17082 		    insn->imm != 0)) {
17083 			verbose(env, "BPF_LDX uses reserved fields\n");
17084 			return -EINVAL;
17085 		}
17086 
17087 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
17088 			struct bpf_insn_aux_data *aux;
17089 			struct bpf_map *map;
17090 			struct fd f;
17091 			u64 addr;
17092 			u32 fd;
17093 
17094 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
17095 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
17096 			    insn[1].off != 0) {
17097 				verbose(env, "invalid bpf_ld_imm64 insn\n");
17098 				return -EINVAL;
17099 			}
17100 
17101 			if (insn[0].src_reg == 0)
17102 				/* valid generic load 64-bit imm */
17103 				goto next_insn;
17104 
17105 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
17106 				aux = &env->insn_aux_data[i];
17107 				err = check_pseudo_btf_id(env, insn, aux);
17108 				if (err)
17109 					return err;
17110 				goto next_insn;
17111 			}
17112 
17113 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
17114 				aux = &env->insn_aux_data[i];
17115 				aux->ptr_type = PTR_TO_FUNC;
17116 				goto next_insn;
17117 			}
17118 
17119 			/* In final convert_pseudo_ld_imm64() step, this is
17120 			 * converted into regular 64-bit imm load insn.
17121 			 */
17122 			switch (insn[0].src_reg) {
17123 			case BPF_PSEUDO_MAP_VALUE:
17124 			case BPF_PSEUDO_MAP_IDX_VALUE:
17125 				break;
17126 			case BPF_PSEUDO_MAP_FD:
17127 			case BPF_PSEUDO_MAP_IDX:
17128 				if (insn[1].imm == 0)
17129 					break;
17130 				fallthrough;
17131 			default:
17132 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
17133 				return -EINVAL;
17134 			}
17135 
17136 			switch (insn[0].src_reg) {
17137 			case BPF_PSEUDO_MAP_IDX_VALUE:
17138 			case BPF_PSEUDO_MAP_IDX:
17139 				if (bpfptr_is_null(env->fd_array)) {
17140 					verbose(env, "fd_idx without fd_array is invalid\n");
17141 					return -EPROTO;
17142 				}
17143 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
17144 							    insn[0].imm * sizeof(fd),
17145 							    sizeof(fd)))
17146 					return -EFAULT;
17147 				break;
17148 			default:
17149 				fd = insn[0].imm;
17150 				break;
17151 			}
17152 
17153 			f = fdget(fd);
17154 			map = __bpf_map_get(f);
17155 			if (IS_ERR(map)) {
17156 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
17157 					insn[0].imm);
17158 				return PTR_ERR(map);
17159 			}
17160 
17161 			err = check_map_prog_compatibility(env, map, env->prog);
17162 			if (err) {
17163 				fdput(f);
17164 				return err;
17165 			}
17166 
17167 			aux = &env->insn_aux_data[i];
17168 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
17169 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
17170 				addr = (unsigned long)map;
17171 			} else {
17172 				u32 off = insn[1].imm;
17173 
17174 				if (off >= BPF_MAX_VAR_OFF) {
17175 					verbose(env, "direct value offset of %u is not allowed\n", off);
17176 					fdput(f);
17177 					return -EINVAL;
17178 				}
17179 
17180 				if (!map->ops->map_direct_value_addr) {
17181 					verbose(env, "no direct value access support for this map type\n");
17182 					fdput(f);
17183 					return -EINVAL;
17184 				}
17185 
17186 				err = map->ops->map_direct_value_addr(map, &addr, off);
17187 				if (err) {
17188 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
17189 						map->value_size, off);
17190 					fdput(f);
17191 					return err;
17192 				}
17193 
17194 				aux->map_off = off;
17195 				addr += off;
17196 			}
17197 
17198 			insn[0].imm = (u32)addr;
17199 			insn[1].imm = addr >> 32;
17200 
17201 			/* check whether we recorded this map already */
17202 			for (j = 0; j < env->used_map_cnt; j++) {
17203 				if (env->used_maps[j] == map) {
17204 					aux->map_index = j;
17205 					fdput(f);
17206 					goto next_insn;
17207 				}
17208 			}
17209 
17210 			if (env->used_map_cnt >= MAX_USED_MAPS) {
17211 				fdput(f);
17212 				return -E2BIG;
17213 			}
17214 
17215 			/* hold the map. If the program is rejected by verifier,
17216 			 * the map will be released by release_maps() or it
17217 			 * will be used by the valid program until it's unloaded
17218 			 * and all maps are released in free_used_maps()
17219 			 */
17220 			bpf_map_inc(map);
17221 
17222 			aux->map_index = env->used_map_cnt;
17223 			env->used_maps[env->used_map_cnt++] = map;
17224 
17225 			if (bpf_map_is_cgroup_storage(map) &&
17226 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
17227 				verbose(env, "only one cgroup storage of each type is allowed\n");
17228 				fdput(f);
17229 				return -EBUSY;
17230 			}
17231 
17232 			fdput(f);
17233 next_insn:
17234 			insn++;
17235 			i++;
17236 			continue;
17237 		}
17238 
17239 		/* Basic sanity check before we invest more work here. */
17240 		if (!bpf_opcode_in_insntable(insn->code)) {
17241 			verbose(env, "unknown opcode %02x\n", insn->code);
17242 			return -EINVAL;
17243 		}
17244 	}
17245 
17246 	/* now all pseudo BPF_LD_IMM64 instructions load valid
17247 	 * 'struct bpf_map *' into a register instead of user map_fd.
17248 	 * These pointers will be used later by verifier to validate map access.
17249 	 */
17250 	return 0;
17251 }
17252 
17253 /* drop refcnt of maps used by the rejected program */
17254 static void release_maps(struct bpf_verifier_env *env)
17255 {
17256 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
17257 			     env->used_map_cnt);
17258 }
17259 
17260 /* drop refcnt of maps used by the rejected program */
17261 static void release_btfs(struct bpf_verifier_env *env)
17262 {
17263 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
17264 			     env->used_btf_cnt);
17265 }
17266 
17267 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
17268 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
17269 {
17270 	struct bpf_insn *insn = env->prog->insnsi;
17271 	int insn_cnt = env->prog->len;
17272 	int i;
17273 
17274 	for (i = 0; i < insn_cnt; i++, insn++) {
17275 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
17276 			continue;
17277 		if (insn->src_reg == BPF_PSEUDO_FUNC)
17278 			continue;
17279 		insn->src_reg = 0;
17280 	}
17281 }
17282 
17283 /* single env->prog->insni[off] instruction was replaced with the range
17284  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
17285  * [0, off) and [off, end) to new locations, so the patched range stays zero
17286  */
17287 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
17288 				 struct bpf_insn_aux_data *new_data,
17289 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
17290 {
17291 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
17292 	struct bpf_insn *insn = new_prog->insnsi;
17293 	u32 old_seen = old_data[off].seen;
17294 	u32 prog_len;
17295 	int i;
17296 
17297 	/* aux info at OFF always needs adjustment, no matter fast path
17298 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
17299 	 * original insn at old prog.
17300 	 */
17301 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
17302 
17303 	if (cnt == 1)
17304 		return;
17305 	prog_len = new_prog->len;
17306 
17307 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
17308 	memcpy(new_data + off + cnt - 1, old_data + off,
17309 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
17310 	for (i = off; i < off + cnt - 1; i++) {
17311 		/* Expand insni[off]'s seen count to the patched range. */
17312 		new_data[i].seen = old_seen;
17313 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
17314 	}
17315 	env->insn_aux_data = new_data;
17316 	vfree(old_data);
17317 }
17318 
17319 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
17320 {
17321 	int i;
17322 
17323 	if (len == 1)
17324 		return;
17325 	/* NOTE: fake 'exit' subprog should be updated as well. */
17326 	for (i = 0; i <= env->subprog_cnt; i++) {
17327 		if (env->subprog_info[i].start <= off)
17328 			continue;
17329 		env->subprog_info[i].start += len - 1;
17330 	}
17331 }
17332 
17333 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
17334 {
17335 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
17336 	int i, sz = prog->aux->size_poke_tab;
17337 	struct bpf_jit_poke_descriptor *desc;
17338 
17339 	for (i = 0; i < sz; i++) {
17340 		desc = &tab[i];
17341 		if (desc->insn_idx <= off)
17342 			continue;
17343 		desc->insn_idx += len - 1;
17344 	}
17345 }
17346 
17347 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
17348 					    const struct bpf_insn *patch, u32 len)
17349 {
17350 	struct bpf_prog *new_prog;
17351 	struct bpf_insn_aux_data *new_data = NULL;
17352 
17353 	if (len > 1) {
17354 		new_data = vzalloc(array_size(env->prog->len + len - 1,
17355 					      sizeof(struct bpf_insn_aux_data)));
17356 		if (!new_data)
17357 			return NULL;
17358 	}
17359 
17360 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
17361 	if (IS_ERR(new_prog)) {
17362 		if (PTR_ERR(new_prog) == -ERANGE)
17363 			verbose(env,
17364 				"insn %d cannot be patched due to 16-bit range\n",
17365 				env->insn_aux_data[off].orig_idx);
17366 		vfree(new_data);
17367 		return NULL;
17368 	}
17369 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
17370 	adjust_subprog_starts(env, off, len);
17371 	adjust_poke_descs(new_prog, off, len);
17372 	return new_prog;
17373 }
17374 
17375 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
17376 					      u32 off, u32 cnt)
17377 {
17378 	int i, j;
17379 
17380 	/* find first prog starting at or after off (first to remove) */
17381 	for (i = 0; i < env->subprog_cnt; i++)
17382 		if (env->subprog_info[i].start >= off)
17383 			break;
17384 	/* find first prog starting at or after off + cnt (first to stay) */
17385 	for (j = i; j < env->subprog_cnt; j++)
17386 		if (env->subprog_info[j].start >= off + cnt)
17387 			break;
17388 	/* if j doesn't start exactly at off + cnt, we are just removing
17389 	 * the front of previous prog
17390 	 */
17391 	if (env->subprog_info[j].start != off + cnt)
17392 		j--;
17393 
17394 	if (j > i) {
17395 		struct bpf_prog_aux *aux = env->prog->aux;
17396 		int move;
17397 
17398 		/* move fake 'exit' subprog as well */
17399 		move = env->subprog_cnt + 1 - j;
17400 
17401 		memmove(env->subprog_info + i,
17402 			env->subprog_info + j,
17403 			sizeof(*env->subprog_info) * move);
17404 		env->subprog_cnt -= j - i;
17405 
17406 		/* remove func_info */
17407 		if (aux->func_info) {
17408 			move = aux->func_info_cnt - j;
17409 
17410 			memmove(aux->func_info + i,
17411 				aux->func_info + j,
17412 				sizeof(*aux->func_info) * move);
17413 			aux->func_info_cnt -= j - i;
17414 			/* func_info->insn_off is set after all code rewrites,
17415 			 * in adjust_btf_func() - no need to adjust
17416 			 */
17417 		}
17418 	} else {
17419 		/* convert i from "first prog to remove" to "first to adjust" */
17420 		if (env->subprog_info[i].start == off)
17421 			i++;
17422 	}
17423 
17424 	/* update fake 'exit' subprog as well */
17425 	for (; i <= env->subprog_cnt; i++)
17426 		env->subprog_info[i].start -= cnt;
17427 
17428 	return 0;
17429 }
17430 
17431 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
17432 				      u32 cnt)
17433 {
17434 	struct bpf_prog *prog = env->prog;
17435 	u32 i, l_off, l_cnt, nr_linfo;
17436 	struct bpf_line_info *linfo;
17437 
17438 	nr_linfo = prog->aux->nr_linfo;
17439 	if (!nr_linfo)
17440 		return 0;
17441 
17442 	linfo = prog->aux->linfo;
17443 
17444 	/* find first line info to remove, count lines to be removed */
17445 	for (i = 0; i < nr_linfo; i++)
17446 		if (linfo[i].insn_off >= off)
17447 			break;
17448 
17449 	l_off = i;
17450 	l_cnt = 0;
17451 	for (; i < nr_linfo; i++)
17452 		if (linfo[i].insn_off < off + cnt)
17453 			l_cnt++;
17454 		else
17455 			break;
17456 
17457 	/* First live insn doesn't match first live linfo, it needs to "inherit"
17458 	 * last removed linfo.  prog is already modified, so prog->len == off
17459 	 * means no live instructions after (tail of the program was removed).
17460 	 */
17461 	if (prog->len != off && l_cnt &&
17462 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
17463 		l_cnt--;
17464 		linfo[--i].insn_off = off + cnt;
17465 	}
17466 
17467 	/* remove the line info which refer to the removed instructions */
17468 	if (l_cnt) {
17469 		memmove(linfo + l_off, linfo + i,
17470 			sizeof(*linfo) * (nr_linfo - i));
17471 
17472 		prog->aux->nr_linfo -= l_cnt;
17473 		nr_linfo = prog->aux->nr_linfo;
17474 	}
17475 
17476 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
17477 	for (i = l_off; i < nr_linfo; i++)
17478 		linfo[i].insn_off -= cnt;
17479 
17480 	/* fix up all subprogs (incl. 'exit') which start >= off */
17481 	for (i = 0; i <= env->subprog_cnt; i++)
17482 		if (env->subprog_info[i].linfo_idx > l_off) {
17483 			/* program may have started in the removed region but
17484 			 * may not be fully removed
17485 			 */
17486 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
17487 				env->subprog_info[i].linfo_idx -= l_cnt;
17488 			else
17489 				env->subprog_info[i].linfo_idx = l_off;
17490 		}
17491 
17492 	return 0;
17493 }
17494 
17495 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
17496 {
17497 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17498 	unsigned int orig_prog_len = env->prog->len;
17499 	int err;
17500 
17501 	if (bpf_prog_is_offloaded(env->prog->aux))
17502 		bpf_prog_offload_remove_insns(env, off, cnt);
17503 
17504 	err = bpf_remove_insns(env->prog, off, cnt);
17505 	if (err)
17506 		return err;
17507 
17508 	err = adjust_subprog_starts_after_remove(env, off, cnt);
17509 	if (err)
17510 		return err;
17511 
17512 	err = bpf_adj_linfo_after_remove(env, off, cnt);
17513 	if (err)
17514 		return err;
17515 
17516 	memmove(aux_data + off,	aux_data + off + cnt,
17517 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
17518 
17519 	return 0;
17520 }
17521 
17522 /* The verifier does more data flow analysis than llvm and will not
17523  * explore branches that are dead at run time. Malicious programs can
17524  * have dead code too. Therefore replace all dead at-run-time code
17525  * with 'ja -1'.
17526  *
17527  * Just nops are not optimal, e.g. if they would sit at the end of the
17528  * program and through another bug we would manage to jump there, then
17529  * we'd execute beyond program memory otherwise. Returning exception
17530  * code also wouldn't work since we can have subprogs where the dead
17531  * code could be located.
17532  */
17533 static void sanitize_dead_code(struct bpf_verifier_env *env)
17534 {
17535 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17536 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
17537 	struct bpf_insn *insn = env->prog->insnsi;
17538 	const int insn_cnt = env->prog->len;
17539 	int i;
17540 
17541 	for (i = 0; i < insn_cnt; i++) {
17542 		if (aux_data[i].seen)
17543 			continue;
17544 		memcpy(insn + i, &trap, sizeof(trap));
17545 		aux_data[i].zext_dst = false;
17546 	}
17547 }
17548 
17549 static bool insn_is_cond_jump(u8 code)
17550 {
17551 	u8 op;
17552 
17553 	op = BPF_OP(code);
17554 	if (BPF_CLASS(code) == BPF_JMP32)
17555 		return op != BPF_JA;
17556 
17557 	if (BPF_CLASS(code) != BPF_JMP)
17558 		return false;
17559 
17560 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
17561 }
17562 
17563 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
17564 {
17565 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17566 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
17567 	struct bpf_insn *insn = env->prog->insnsi;
17568 	const int insn_cnt = env->prog->len;
17569 	int i;
17570 
17571 	for (i = 0; i < insn_cnt; i++, insn++) {
17572 		if (!insn_is_cond_jump(insn->code))
17573 			continue;
17574 
17575 		if (!aux_data[i + 1].seen)
17576 			ja.off = insn->off;
17577 		else if (!aux_data[i + 1 + insn->off].seen)
17578 			ja.off = 0;
17579 		else
17580 			continue;
17581 
17582 		if (bpf_prog_is_offloaded(env->prog->aux))
17583 			bpf_prog_offload_replace_insn(env, i, &ja);
17584 
17585 		memcpy(insn, &ja, sizeof(ja));
17586 	}
17587 }
17588 
17589 static int opt_remove_dead_code(struct bpf_verifier_env *env)
17590 {
17591 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17592 	int insn_cnt = env->prog->len;
17593 	int i, err;
17594 
17595 	for (i = 0; i < insn_cnt; i++) {
17596 		int j;
17597 
17598 		j = 0;
17599 		while (i + j < insn_cnt && !aux_data[i + j].seen)
17600 			j++;
17601 		if (!j)
17602 			continue;
17603 
17604 		err = verifier_remove_insns(env, i, j);
17605 		if (err)
17606 			return err;
17607 		insn_cnt = env->prog->len;
17608 	}
17609 
17610 	return 0;
17611 }
17612 
17613 static int opt_remove_nops(struct bpf_verifier_env *env)
17614 {
17615 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
17616 	struct bpf_insn *insn = env->prog->insnsi;
17617 	int insn_cnt = env->prog->len;
17618 	int i, err;
17619 
17620 	for (i = 0; i < insn_cnt; i++) {
17621 		if (memcmp(&insn[i], &ja, sizeof(ja)))
17622 			continue;
17623 
17624 		err = verifier_remove_insns(env, i, 1);
17625 		if (err)
17626 			return err;
17627 		insn_cnt--;
17628 		i--;
17629 	}
17630 
17631 	return 0;
17632 }
17633 
17634 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
17635 					 const union bpf_attr *attr)
17636 {
17637 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
17638 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
17639 	int i, patch_len, delta = 0, len = env->prog->len;
17640 	struct bpf_insn *insns = env->prog->insnsi;
17641 	struct bpf_prog *new_prog;
17642 	bool rnd_hi32;
17643 
17644 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
17645 	zext_patch[1] = BPF_ZEXT_REG(0);
17646 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
17647 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
17648 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
17649 	for (i = 0; i < len; i++) {
17650 		int adj_idx = i + delta;
17651 		struct bpf_insn insn;
17652 		int load_reg;
17653 
17654 		insn = insns[adj_idx];
17655 		load_reg = insn_def_regno(&insn);
17656 		if (!aux[adj_idx].zext_dst) {
17657 			u8 code, class;
17658 			u32 imm_rnd;
17659 
17660 			if (!rnd_hi32)
17661 				continue;
17662 
17663 			code = insn.code;
17664 			class = BPF_CLASS(code);
17665 			if (load_reg == -1)
17666 				continue;
17667 
17668 			/* NOTE: arg "reg" (the fourth one) is only used for
17669 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
17670 			 *       here.
17671 			 */
17672 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
17673 				if (class == BPF_LD &&
17674 				    BPF_MODE(code) == BPF_IMM)
17675 					i++;
17676 				continue;
17677 			}
17678 
17679 			/* ctx load could be transformed into wider load. */
17680 			if (class == BPF_LDX &&
17681 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
17682 				continue;
17683 
17684 			imm_rnd = get_random_u32();
17685 			rnd_hi32_patch[0] = insn;
17686 			rnd_hi32_patch[1].imm = imm_rnd;
17687 			rnd_hi32_patch[3].dst_reg = load_reg;
17688 			patch = rnd_hi32_patch;
17689 			patch_len = 4;
17690 			goto apply_patch_buffer;
17691 		}
17692 
17693 		/* Add in an zero-extend instruction if a) the JIT has requested
17694 		 * it or b) it's a CMPXCHG.
17695 		 *
17696 		 * The latter is because: BPF_CMPXCHG always loads a value into
17697 		 * R0, therefore always zero-extends. However some archs'
17698 		 * equivalent instruction only does this load when the
17699 		 * comparison is successful. This detail of CMPXCHG is
17700 		 * orthogonal to the general zero-extension behaviour of the
17701 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
17702 		 */
17703 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
17704 			continue;
17705 
17706 		/* Zero-extension is done by the caller. */
17707 		if (bpf_pseudo_kfunc_call(&insn))
17708 			continue;
17709 
17710 		if (WARN_ON(load_reg == -1)) {
17711 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
17712 			return -EFAULT;
17713 		}
17714 
17715 		zext_patch[0] = insn;
17716 		zext_patch[1].dst_reg = load_reg;
17717 		zext_patch[1].src_reg = load_reg;
17718 		patch = zext_patch;
17719 		patch_len = 2;
17720 apply_patch_buffer:
17721 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
17722 		if (!new_prog)
17723 			return -ENOMEM;
17724 		env->prog = new_prog;
17725 		insns = new_prog->insnsi;
17726 		aux = env->insn_aux_data;
17727 		delta += patch_len - 1;
17728 	}
17729 
17730 	return 0;
17731 }
17732 
17733 /* convert load instructions that access fields of a context type into a
17734  * sequence of instructions that access fields of the underlying structure:
17735  *     struct __sk_buff    -> struct sk_buff
17736  *     struct bpf_sock_ops -> struct sock
17737  */
17738 static int convert_ctx_accesses(struct bpf_verifier_env *env)
17739 {
17740 	const struct bpf_verifier_ops *ops = env->ops;
17741 	int i, cnt, size, ctx_field_size, delta = 0;
17742 	const int insn_cnt = env->prog->len;
17743 	struct bpf_insn insn_buf[16], *insn;
17744 	u32 target_size, size_default, off;
17745 	struct bpf_prog *new_prog;
17746 	enum bpf_access_type type;
17747 	bool is_narrower_load;
17748 
17749 	if (ops->gen_prologue || env->seen_direct_write) {
17750 		if (!ops->gen_prologue) {
17751 			verbose(env, "bpf verifier is misconfigured\n");
17752 			return -EINVAL;
17753 		}
17754 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
17755 					env->prog);
17756 		if (cnt >= ARRAY_SIZE(insn_buf)) {
17757 			verbose(env, "bpf verifier is misconfigured\n");
17758 			return -EINVAL;
17759 		} else if (cnt) {
17760 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
17761 			if (!new_prog)
17762 				return -ENOMEM;
17763 
17764 			env->prog = new_prog;
17765 			delta += cnt - 1;
17766 		}
17767 	}
17768 
17769 	if (bpf_prog_is_offloaded(env->prog->aux))
17770 		return 0;
17771 
17772 	insn = env->prog->insnsi + delta;
17773 
17774 	for (i = 0; i < insn_cnt; i++, insn++) {
17775 		bpf_convert_ctx_access_t convert_ctx_access;
17776 		u8 mode;
17777 
17778 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
17779 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
17780 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
17781 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
17782 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
17783 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
17784 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
17785 			type = BPF_READ;
17786 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
17787 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
17788 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
17789 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
17790 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
17791 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
17792 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
17793 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
17794 			type = BPF_WRITE;
17795 		} else {
17796 			continue;
17797 		}
17798 
17799 		if (type == BPF_WRITE &&
17800 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
17801 			struct bpf_insn patch[] = {
17802 				*insn,
17803 				BPF_ST_NOSPEC(),
17804 			};
17805 
17806 			cnt = ARRAY_SIZE(patch);
17807 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
17808 			if (!new_prog)
17809 				return -ENOMEM;
17810 
17811 			delta    += cnt - 1;
17812 			env->prog = new_prog;
17813 			insn      = new_prog->insnsi + i + delta;
17814 			continue;
17815 		}
17816 
17817 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
17818 		case PTR_TO_CTX:
17819 			if (!ops->convert_ctx_access)
17820 				continue;
17821 			convert_ctx_access = ops->convert_ctx_access;
17822 			break;
17823 		case PTR_TO_SOCKET:
17824 		case PTR_TO_SOCK_COMMON:
17825 			convert_ctx_access = bpf_sock_convert_ctx_access;
17826 			break;
17827 		case PTR_TO_TCP_SOCK:
17828 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
17829 			break;
17830 		case PTR_TO_XDP_SOCK:
17831 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
17832 			break;
17833 		case PTR_TO_BTF_ID:
17834 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
17835 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
17836 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
17837 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
17838 		 * any faults for loads into such types. BPF_WRITE is disallowed
17839 		 * for this case.
17840 		 */
17841 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
17842 			if (type == BPF_READ) {
17843 				if (BPF_MODE(insn->code) == BPF_MEM)
17844 					insn->code = BPF_LDX | BPF_PROBE_MEM |
17845 						     BPF_SIZE((insn)->code);
17846 				else
17847 					insn->code = BPF_LDX | BPF_PROBE_MEMSX |
17848 						     BPF_SIZE((insn)->code);
17849 				env->prog->aux->num_exentries++;
17850 			}
17851 			continue;
17852 		default:
17853 			continue;
17854 		}
17855 
17856 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
17857 		size = BPF_LDST_BYTES(insn);
17858 		mode = BPF_MODE(insn->code);
17859 
17860 		/* If the read access is a narrower load of the field,
17861 		 * convert to a 4/8-byte load, to minimum program type specific
17862 		 * convert_ctx_access changes. If conversion is successful,
17863 		 * we will apply proper mask to the result.
17864 		 */
17865 		is_narrower_load = size < ctx_field_size;
17866 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
17867 		off = insn->off;
17868 		if (is_narrower_load) {
17869 			u8 size_code;
17870 
17871 			if (type == BPF_WRITE) {
17872 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
17873 				return -EINVAL;
17874 			}
17875 
17876 			size_code = BPF_H;
17877 			if (ctx_field_size == 4)
17878 				size_code = BPF_W;
17879 			else if (ctx_field_size == 8)
17880 				size_code = BPF_DW;
17881 
17882 			insn->off = off & ~(size_default - 1);
17883 			insn->code = BPF_LDX | BPF_MEM | size_code;
17884 		}
17885 
17886 		target_size = 0;
17887 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
17888 					 &target_size);
17889 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
17890 		    (ctx_field_size && !target_size)) {
17891 			verbose(env, "bpf verifier is misconfigured\n");
17892 			return -EINVAL;
17893 		}
17894 
17895 		if (is_narrower_load && size < target_size) {
17896 			u8 shift = bpf_ctx_narrow_access_offset(
17897 				off, size, size_default) * 8;
17898 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
17899 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
17900 				return -EINVAL;
17901 			}
17902 			if (ctx_field_size <= 4) {
17903 				if (shift)
17904 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
17905 									insn->dst_reg,
17906 									shift);
17907 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
17908 								(1 << size * 8) - 1);
17909 			} else {
17910 				if (shift)
17911 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
17912 									insn->dst_reg,
17913 									shift);
17914 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
17915 								(1ULL << size * 8) - 1);
17916 			}
17917 		}
17918 		if (mode == BPF_MEMSX)
17919 			insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
17920 						       insn->dst_reg, insn->dst_reg,
17921 						       size * 8, 0);
17922 
17923 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17924 		if (!new_prog)
17925 			return -ENOMEM;
17926 
17927 		delta += cnt - 1;
17928 
17929 		/* keep walking new program and skip insns we just inserted */
17930 		env->prog = new_prog;
17931 		insn      = new_prog->insnsi + i + delta;
17932 	}
17933 
17934 	return 0;
17935 }
17936 
17937 static int jit_subprogs(struct bpf_verifier_env *env)
17938 {
17939 	struct bpf_prog *prog = env->prog, **func, *tmp;
17940 	int i, j, subprog_start, subprog_end = 0, len, subprog;
17941 	struct bpf_map *map_ptr;
17942 	struct bpf_insn *insn;
17943 	void *old_bpf_func;
17944 	int err, num_exentries;
17945 
17946 	if (env->subprog_cnt <= 1)
17947 		return 0;
17948 
17949 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
17950 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
17951 			continue;
17952 
17953 		/* Upon error here we cannot fall back to interpreter but
17954 		 * need a hard reject of the program. Thus -EFAULT is
17955 		 * propagated in any case.
17956 		 */
17957 		subprog = find_subprog(env, i + insn->imm + 1);
17958 		if (subprog < 0) {
17959 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
17960 				  i + insn->imm + 1);
17961 			return -EFAULT;
17962 		}
17963 		/* temporarily remember subprog id inside insn instead of
17964 		 * aux_data, since next loop will split up all insns into funcs
17965 		 */
17966 		insn->off = subprog;
17967 		/* remember original imm in case JIT fails and fallback
17968 		 * to interpreter will be needed
17969 		 */
17970 		env->insn_aux_data[i].call_imm = insn->imm;
17971 		/* point imm to __bpf_call_base+1 from JITs point of view */
17972 		insn->imm = 1;
17973 		if (bpf_pseudo_func(insn))
17974 			/* jit (e.g. x86_64) may emit fewer instructions
17975 			 * if it learns a u32 imm is the same as a u64 imm.
17976 			 * Force a non zero here.
17977 			 */
17978 			insn[1].imm = 1;
17979 	}
17980 
17981 	err = bpf_prog_alloc_jited_linfo(prog);
17982 	if (err)
17983 		goto out_undo_insn;
17984 
17985 	err = -ENOMEM;
17986 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
17987 	if (!func)
17988 		goto out_undo_insn;
17989 
17990 	for (i = 0; i < env->subprog_cnt; i++) {
17991 		subprog_start = subprog_end;
17992 		subprog_end = env->subprog_info[i + 1].start;
17993 
17994 		len = subprog_end - subprog_start;
17995 		/* bpf_prog_run() doesn't call subprogs directly,
17996 		 * hence main prog stats include the runtime of subprogs.
17997 		 * subprogs don't have IDs and not reachable via prog_get_next_id
17998 		 * func[i]->stats will never be accessed and stays NULL
17999 		 */
18000 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
18001 		if (!func[i])
18002 			goto out_free;
18003 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
18004 		       len * sizeof(struct bpf_insn));
18005 		func[i]->type = prog->type;
18006 		func[i]->len = len;
18007 		if (bpf_prog_calc_tag(func[i]))
18008 			goto out_free;
18009 		func[i]->is_func = 1;
18010 		func[i]->aux->func_idx = i;
18011 		/* Below members will be freed only at prog->aux */
18012 		func[i]->aux->btf = prog->aux->btf;
18013 		func[i]->aux->func_info = prog->aux->func_info;
18014 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
18015 		func[i]->aux->poke_tab = prog->aux->poke_tab;
18016 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
18017 
18018 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
18019 			struct bpf_jit_poke_descriptor *poke;
18020 
18021 			poke = &prog->aux->poke_tab[j];
18022 			if (poke->insn_idx < subprog_end &&
18023 			    poke->insn_idx >= subprog_start)
18024 				poke->aux = func[i]->aux;
18025 		}
18026 
18027 		func[i]->aux->name[0] = 'F';
18028 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
18029 		func[i]->jit_requested = 1;
18030 		func[i]->blinding_requested = prog->blinding_requested;
18031 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
18032 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
18033 		func[i]->aux->linfo = prog->aux->linfo;
18034 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
18035 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
18036 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
18037 		num_exentries = 0;
18038 		insn = func[i]->insnsi;
18039 		for (j = 0; j < func[i]->len; j++, insn++) {
18040 			if (BPF_CLASS(insn->code) == BPF_LDX &&
18041 			    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
18042 			     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
18043 				num_exentries++;
18044 		}
18045 		func[i]->aux->num_exentries = num_exentries;
18046 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
18047 		func[i] = bpf_int_jit_compile(func[i]);
18048 		if (!func[i]->jited) {
18049 			err = -ENOTSUPP;
18050 			goto out_free;
18051 		}
18052 		cond_resched();
18053 	}
18054 
18055 	/* at this point all bpf functions were successfully JITed
18056 	 * now populate all bpf_calls with correct addresses and
18057 	 * run last pass of JIT
18058 	 */
18059 	for (i = 0; i < env->subprog_cnt; i++) {
18060 		insn = func[i]->insnsi;
18061 		for (j = 0; j < func[i]->len; j++, insn++) {
18062 			if (bpf_pseudo_func(insn)) {
18063 				subprog = insn->off;
18064 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
18065 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
18066 				continue;
18067 			}
18068 			if (!bpf_pseudo_call(insn))
18069 				continue;
18070 			subprog = insn->off;
18071 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
18072 		}
18073 
18074 		/* we use the aux data to keep a list of the start addresses
18075 		 * of the JITed images for each function in the program
18076 		 *
18077 		 * for some architectures, such as powerpc64, the imm field
18078 		 * might not be large enough to hold the offset of the start
18079 		 * address of the callee's JITed image from __bpf_call_base
18080 		 *
18081 		 * in such cases, we can lookup the start address of a callee
18082 		 * by using its subprog id, available from the off field of
18083 		 * the call instruction, as an index for this list
18084 		 */
18085 		func[i]->aux->func = func;
18086 		func[i]->aux->func_cnt = env->subprog_cnt;
18087 	}
18088 	for (i = 0; i < env->subprog_cnt; i++) {
18089 		old_bpf_func = func[i]->bpf_func;
18090 		tmp = bpf_int_jit_compile(func[i]);
18091 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
18092 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
18093 			err = -ENOTSUPP;
18094 			goto out_free;
18095 		}
18096 		cond_resched();
18097 	}
18098 
18099 	/* finally lock prog and jit images for all functions and
18100 	 * populate kallsysm. Begin at the first subprogram, since
18101 	 * bpf_prog_load will add the kallsyms for the main program.
18102 	 */
18103 	for (i = 1; i < env->subprog_cnt; i++) {
18104 		bpf_prog_lock_ro(func[i]);
18105 		bpf_prog_kallsyms_add(func[i]);
18106 	}
18107 
18108 	/* Last step: make now unused interpreter insns from main
18109 	 * prog consistent for later dump requests, so they can
18110 	 * later look the same as if they were interpreted only.
18111 	 */
18112 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18113 		if (bpf_pseudo_func(insn)) {
18114 			insn[0].imm = env->insn_aux_data[i].call_imm;
18115 			insn[1].imm = insn->off;
18116 			insn->off = 0;
18117 			continue;
18118 		}
18119 		if (!bpf_pseudo_call(insn))
18120 			continue;
18121 		insn->off = env->insn_aux_data[i].call_imm;
18122 		subprog = find_subprog(env, i + insn->off + 1);
18123 		insn->imm = subprog;
18124 	}
18125 
18126 	prog->jited = 1;
18127 	prog->bpf_func = func[0]->bpf_func;
18128 	prog->jited_len = func[0]->jited_len;
18129 	prog->aux->extable = func[0]->aux->extable;
18130 	prog->aux->num_exentries = func[0]->aux->num_exentries;
18131 	prog->aux->func = func;
18132 	prog->aux->func_cnt = env->subprog_cnt;
18133 	bpf_prog_jit_attempt_done(prog);
18134 	return 0;
18135 out_free:
18136 	/* We failed JIT'ing, so at this point we need to unregister poke
18137 	 * descriptors from subprogs, so that kernel is not attempting to
18138 	 * patch it anymore as we're freeing the subprog JIT memory.
18139 	 */
18140 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
18141 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
18142 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
18143 	}
18144 	/* At this point we're guaranteed that poke descriptors are not
18145 	 * live anymore. We can just unlink its descriptor table as it's
18146 	 * released with the main prog.
18147 	 */
18148 	for (i = 0; i < env->subprog_cnt; i++) {
18149 		if (!func[i])
18150 			continue;
18151 		func[i]->aux->poke_tab = NULL;
18152 		bpf_jit_free(func[i]);
18153 	}
18154 	kfree(func);
18155 out_undo_insn:
18156 	/* cleanup main prog to be interpreted */
18157 	prog->jit_requested = 0;
18158 	prog->blinding_requested = 0;
18159 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18160 		if (!bpf_pseudo_call(insn))
18161 			continue;
18162 		insn->off = 0;
18163 		insn->imm = env->insn_aux_data[i].call_imm;
18164 	}
18165 	bpf_prog_jit_attempt_done(prog);
18166 	return err;
18167 }
18168 
18169 static int fixup_call_args(struct bpf_verifier_env *env)
18170 {
18171 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18172 	struct bpf_prog *prog = env->prog;
18173 	struct bpf_insn *insn = prog->insnsi;
18174 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
18175 	int i, depth;
18176 #endif
18177 	int err = 0;
18178 
18179 	if (env->prog->jit_requested &&
18180 	    !bpf_prog_is_offloaded(env->prog->aux)) {
18181 		err = jit_subprogs(env);
18182 		if (err == 0)
18183 			return 0;
18184 		if (err == -EFAULT)
18185 			return err;
18186 	}
18187 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18188 	if (has_kfunc_call) {
18189 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
18190 		return -EINVAL;
18191 	}
18192 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
18193 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
18194 		 * have to be rejected, since interpreter doesn't support them yet.
18195 		 */
18196 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
18197 		return -EINVAL;
18198 	}
18199 	for (i = 0; i < prog->len; i++, insn++) {
18200 		if (bpf_pseudo_func(insn)) {
18201 			/* When JIT fails the progs with callback calls
18202 			 * have to be rejected, since interpreter doesn't support them yet.
18203 			 */
18204 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
18205 			return -EINVAL;
18206 		}
18207 
18208 		if (!bpf_pseudo_call(insn))
18209 			continue;
18210 		depth = get_callee_stack_depth(env, insn, i);
18211 		if (depth < 0)
18212 			return depth;
18213 		bpf_patch_call_args(insn, depth);
18214 	}
18215 	err = 0;
18216 #endif
18217 	return err;
18218 }
18219 
18220 /* replace a generic kfunc with a specialized version if necessary */
18221 static void specialize_kfunc(struct bpf_verifier_env *env,
18222 			     u32 func_id, u16 offset, unsigned long *addr)
18223 {
18224 	struct bpf_prog *prog = env->prog;
18225 	bool seen_direct_write;
18226 	void *xdp_kfunc;
18227 	bool is_rdonly;
18228 
18229 	if (bpf_dev_bound_kfunc_id(func_id)) {
18230 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
18231 		if (xdp_kfunc) {
18232 			*addr = (unsigned long)xdp_kfunc;
18233 			return;
18234 		}
18235 		/* fallback to default kfunc when not supported by netdev */
18236 	}
18237 
18238 	if (offset)
18239 		return;
18240 
18241 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
18242 		seen_direct_write = env->seen_direct_write;
18243 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
18244 
18245 		if (is_rdonly)
18246 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
18247 
18248 		/* restore env->seen_direct_write to its original value, since
18249 		 * may_access_direct_pkt_data mutates it
18250 		 */
18251 		env->seen_direct_write = seen_direct_write;
18252 	}
18253 }
18254 
18255 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
18256 					    u16 struct_meta_reg,
18257 					    u16 node_offset_reg,
18258 					    struct bpf_insn *insn,
18259 					    struct bpf_insn *insn_buf,
18260 					    int *cnt)
18261 {
18262 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
18263 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
18264 
18265 	insn_buf[0] = addr[0];
18266 	insn_buf[1] = addr[1];
18267 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
18268 	insn_buf[3] = *insn;
18269 	*cnt = 4;
18270 }
18271 
18272 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
18273 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
18274 {
18275 	const struct bpf_kfunc_desc *desc;
18276 
18277 	if (!insn->imm) {
18278 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
18279 		return -EINVAL;
18280 	}
18281 
18282 	*cnt = 0;
18283 
18284 	/* insn->imm has the btf func_id. Replace it with an offset relative to
18285 	 * __bpf_call_base, unless the JIT needs to call functions that are
18286 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
18287 	 */
18288 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
18289 	if (!desc) {
18290 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
18291 			insn->imm);
18292 		return -EFAULT;
18293 	}
18294 
18295 	if (!bpf_jit_supports_far_kfunc_call())
18296 		insn->imm = BPF_CALL_IMM(desc->addr);
18297 	if (insn->off)
18298 		return 0;
18299 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
18300 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18301 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18302 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
18303 
18304 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
18305 		insn_buf[1] = addr[0];
18306 		insn_buf[2] = addr[1];
18307 		insn_buf[3] = *insn;
18308 		*cnt = 4;
18309 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
18310 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
18311 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18312 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18313 
18314 		if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
18315 		    !kptr_struct_meta) {
18316 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18317 				insn_idx);
18318 			return -EFAULT;
18319 		}
18320 
18321 		insn_buf[0] = addr[0];
18322 		insn_buf[1] = addr[1];
18323 		insn_buf[2] = *insn;
18324 		*cnt = 3;
18325 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
18326 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
18327 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18328 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18329 		int struct_meta_reg = BPF_REG_3;
18330 		int node_offset_reg = BPF_REG_4;
18331 
18332 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
18333 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18334 			struct_meta_reg = BPF_REG_4;
18335 			node_offset_reg = BPF_REG_5;
18336 		}
18337 
18338 		if (!kptr_struct_meta) {
18339 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18340 				insn_idx);
18341 			return -EFAULT;
18342 		}
18343 
18344 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
18345 						node_offset_reg, insn, insn_buf, cnt);
18346 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
18347 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
18348 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
18349 		*cnt = 1;
18350 	}
18351 	return 0;
18352 }
18353 
18354 /* Do various post-verification rewrites in a single program pass.
18355  * These rewrites simplify JIT and interpreter implementations.
18356  */
18357 static int do_misc_fixups(struct bpf_verifier_env *env)
18358 {
18359 	struct bpf_prog *prog = env->prog;
18360 	enum bpf_attach_type eatype = prog->expected_attach_type;
18361 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
18362 	struct bpf_insn *insn = prog->insnsi;
18363 	const struct bpf_func_proto *fn;
18364 	const int insn_cnt = prog->len;
18365 	const struct bpf_map_ops *ops;
18366 	struct bpf_insn_aux_data *aux;
18367 	struct bpf_insn insn_buf[16];
18368 	struct bpf_prog *new_prog;
18369 	struct bpf_map *map_ptr;
18370 	int i, ret, cnt, delta = 0;
18371 
18372 	for (i = 0; i < insn_cnt; i++, insn++) {
18373 		/* Make divide-by-zero exceptions impossible. */
18374 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
18375 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
18376 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
18377 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
18378 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
18379 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
18380 			struct bpf_insn *patchlet;
18381 			struct bpf_insn chk_and_div[] = {
18382 				/* [R,W]x div 0 -> 0 */
18383 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18384 					     BPF_JNE | BPF_K, insn->src_reg,
18385 					     0, 2, 0),
18386 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
18387 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18388 				*insn,
18389 			};
18390 			struct bpf_insn chk_and_mod[] = {
18391 				/* [R,W]x mod 0 -> [R,W]x */
18392 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18393 					     BPF_JEQ | BPF_K, insn->src_reg,
18394 					     0, 1 + (is64 ? 0 : 1), 0),
18395 				*insn,
18396 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18397 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
18398 			};
18399 
18400 			patchlet = isdiv ? chk_and_div : chk_and_mod;
18401 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
18402 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
18403 
18404 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
18405 			if (!new_prog)
18406 				return -ENOMEM;
18407 
18408 			delta    += cnt - 1;
18409 			env->prog = prog = new_prog;
18410 			insn      = new_prog->insnsi + i + delta;
18411 			continue;
18412 		}
18413 
18414 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
18415 		if (BPF_CLASS(insn->code) == BPF_LD &&
18416 		    (BPF_MODE(insn->code) == BPF_ABS ||
18417 		     BPF_MODE(insn->code) == BPF_IND)) {
18418 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
18419 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
18420 				verbose(env, "bpf verifier is misconfigured\n");
18421 				return -EINVAL;
18422 			}
18423 
18424 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18425 			if (!new_prog)
18426 				return -ENOMEM;
18427 
18428 			delta    += cnt - 1;
18429 			env->prog = prog = new_prog;
18430 			insn      = new_prog->insnsi + i + delta;
18431 			continue;
18432 		}
18433 
18434 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
18435 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
18436 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
18437 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
18438 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
18439 			struct bpf_insn *patch = &insn_buf[0];
18440 			bool issrc, isneg, isimm;
18441 			u32 off_reg;
18442 
18443 			aux = &env->insn_aux_data[i + delta];
18444 			if (!aux->alu_state ||
18445 			    aux->alu_state == BPF_ALU_NON_POINTER)
18446 				continue;
18447 
18448 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
18449 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
18450 				BPF_ALU_SANITIZE_SRC;
18451 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
18452 
18453 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
18454 			if (isimm) {
18455 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
18456 			} else {
18457 				if (isneg)
18458 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
18459 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
18460 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
18461 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
18462 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
18463 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
18464 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
18465 			}
18466 			if (!issrc)
18467 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
18468 			insn->src_reg = BPF_REG_AX;
18469 			if (isneg)
18470 				insn->code = insn->code == code_add ?
18471 					     code_sub : code_add;
18472 			*patch++ = *insn;
18473 			if (issrc && isneg && !isimm)
18474 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
18475 			cnt = patch - insn_buf;
18476 
18477 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18478 			if (!new_prog)
18479 				return -ENOMEM;
18480 
18481 			delta    += cnt - 1;
18482 			env->prog = prog = new_prog;
18483 			insn      = new_prog->insnsi + i + delta;
18484 			continue;
18485 		}
18486 
18487 		if (insn->code != (BPF_JMP | BPF_CALL))
18488 			continue;
18489 		if (insn->src_reg == BPF_PSEUDO_CALL)
18490 			continue;
18491 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
18492 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
18493 			if (ret)
18494 				return ret;
18495 			if (cnt == 0)
18496 				continue;
18497 
18498 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18499 			if (!new_prog)
18500 				return -ENOMEM;
18501 
18502 			delta	 += cnt - 1;
18503 			env->prog = prog = new_prog;
18504 			insn	  = new_prog->insnsi + i + delta;
18505 			continue;
18506 		}
18507 
18508 		if (insn->imm == BPF_FUNC_get_route_realm)
18509 			prog->dst_needed = 1;
18510 		if (insn->imm == BPF_FUNC_get_prandom_u32)
18511 			bpf_user_rnd_init_once();
18512 		if (insn->imm == BPF_FUNC_override_return)
18513 			prog->kprobe_override = 1;
18514 		if (insn->imm == BPF_FUNC_tail_call) {
18515 			/* If we tail call into other programs, we
18516 			 * cannot make any assumptions since they can
18517 			 * be replaced dynamically during runtime in
18518 			 * the program array.
18519 			 */
18520 			prog->cb_access = 1;
18521 			if (!allow_tail_call_in_subprogs(env))
18522 				prog->aux->stack_depth = MAX_BPF_STACK;
18523 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
18524 
18525 			/* mark bpf_tail_call as different opcode to avoid
18526 			 * conditional branch in the interpreter for every normal
18527 			 * call and to prevent accidental JITing by JIT compiler
18528 			 * that doesn't support bpf_tail_call yet
18529 			 */
18530 			insn->imm = 0;
18531 			insn->code = BPF_JMP | BPF_TAIL_CALL;
18532 
18533 			aux = &env->insn_aux_data[i + delta];
18534 			if (env->bpf_capable && !prog->blinding_requested &&
18535 			    prog->jit_requested &&
18536 			    !bpf_map_key_poisoned(aux) &&
18537 			    !bpf_map_ptr_poisoned(aux) &&
18538 			    !bpf_map_ptr_unpriv(aux)) {
18539 				struct bpf_jit_poke_descriptor desc = {
18540 					.reason = BPF_POKE_REASON_TAIL_CALL,
18541 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
18542 					.tail_call.key = bpf_map_key_immediate(aux),
18543 					.insn_idx = i + delta,
18544 				};
18545 
18546 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
18547 				if (ret < 0) {
18548 					verbose(env, "adding tail call poke descriptor failed\n");
18549 					return ret;
18550 				}
18551 
18552 				insn->imm = ret + 1;
18553 				continue;
18554 			}
18555 
18556 			if (!bpf_map_ptr_unpriv(aux))
18557 				continue;
18558 
18559 			/* instead of changing every JIT dealing with tail_call
18560 			 * emit two extra insns:
18561 			 * if (index >= max_entries) goto out;
18562 			 * index &= array->index_mask;
18563 			 * to avoid out-of-bounds cpu speculation
18564 			 */
18565 			if (bpf_map_ptr_poisoned(aux)) {
18566 				verbose(env, "tail_call abusing map_ptr\n");
18567 				return -EINVAL;
18568 			}
18569 
18570 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
18571 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
18572 						  map_ptr->max_entries, 2);
18573 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
18574 						    container_of(map_ptr,
18575 								 struct bpf_array,
18576 								 map)->index_mask);
18577 			insn_buf[2] = *insn;
18578 			cnt = 3;
18579 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18580 			if (!new_prog)
18581 				return -ENOMEM;
18582 
18583 			delta    += cnt - 1;
18584 			env->prog = prog = new_prog;
18585 			insn      = new_prog->insnsi + i + delta;
18586 			continue;
18587 		}
18588 
18589 		if (insn->imm == BPF_FUNC_timer_set_callback) {
18590 			/* The verifier will process callback_fn as many times as necessary
18591 			 * with different maps and the register states prepared by
18592 			 * set_timer_callback_state will be accurate.
18593 			 *
18594 			 * The following use case is valid:
18595 			 *   map1 is shared by prog1, prog2, prog3.
18596 			 *   prog1 calls bpf_timer_init for some map1 elements
18597 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
18598 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
18599 			 *   prog3 calls bpf_timer_start for some map1 elements.
18600 			 *     Those that were not both bpf_timer_init-ed and
18601 			 *     bpf_timer_set_callback-ed will return -EINVAL.
18602 			 */
18603 			struct bpf_insn ld_addrs[2] = {
18604 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
18605 			};
18606 
18607 			insn_buf[0] = ld_addrs[0];
18608 			insn_buf[1] = ld_addrs[1];
18609 			insn_buf[2] = *insn;
18610 			cnt = 3;
18611 
18612 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18613 			if (!new_prog)
18614 				return -ENOMEM;
18615 
18616 			delta    += cnt - 1;
18617 			env->prog = prog = new_prog;
18618 			insn      = new_prog->insnsi + i + delta;
18619 			goto patch_call_imm;
18620 		}
18621 
18622 		if (is_storage_get_function(insn->imm)) {
18623 			if (!env->prog->aux->sleepable ||
18624 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
18625 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
18626 			else
18627 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
18628 			insn_buf[1] = *insn;
18629 			cnt = 2;
18630 
18631 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18632 			if (!new_prog)
18633 				return -ENOMEM;
18634 
18635 			delta += cnt - 1;
18636 			env->prog = prog = new_prog;
18637 			insn = new_prog->insnsi + i + delta;
18638 			goto patch_call_imm;
18639 		}
18640 
18641 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
18642 		 * and other inlining handlers are currently limited to 64 bit
18643 		 * only.
18644 		 */
18645 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
18646 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
18647 		     insn->imm == BPF_FUNC_map_update_elem ||
18648 		     insn->imm == BPF_FUNC_map_delete_elem ||
18649 		     insn->imm == BPF_FUNC_map_push_elem   ||
18650 		     insn->imm == BPF_FUNC_map_pop_elem    ||
18651 		     insn->imm == BPF_FUNC_map_peek_elem   ||
18652 		     insn->imm == BPF_FUNC_redirect_map    ||
18653 		     insn->imm == BPF_FUNC_for_each_map_elem ||
18654 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
18655 			aux = &env->insn_aux_data[i + delta];
18656 			if (bpf_map_ptr_poisoned(aux))
18657 				goto patch_call_imm;
18658 
18659 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
18660 			ops = map_ptr->ops;
18661 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
18662 			    ops->map_gen_lookup) {
18663 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
18664 				if (cnt == -EOPNOTSUPP)
18665 					goto patch_map_ops_generic;
18666 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
18667 					verbose(env, "bpf verifier is misconfigured\n");
18668 					return -EINVAL;
18669 				}
18670 
18671 				new_prog = bpf_patch_insn_data(env, i + delta,
18672 							       insn_buf, cnt);
18673 				if (!new_prog)
18674 					return -ENOMEM;
18675 
18676 				delta    += cnt - 1;
18677 				env->prog = prog = new_prog;
18678 				insn      = new_prog->insnsi + i + delta;
18679 				continue;
18680 			}
18681 
18682 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
18683 				     (void *(*)(struct bpf_map *map, void *key))NULL));
18684 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
18685 				     (long (*)(struct bpf_map *map, void *key))NULL));
18686 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
18687 				     (long (*)(struct bpf_map *map, void *key, void *value,
18688 					      u64 flags))NULL));
18689 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
18690 				     (long (*)(struct bpf_map *map, void *value,
18691 					      u64 flags))NULL));
18692 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
18693 				     (long (*)(struct bpf_map *map, void *value))NULL));
18694 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
18695 				     (long (*)(struct bpf_map *map, void *value))NULL));
18696 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
18697 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
18698 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
18699 				     (long (*)(struct bpf_map *map,
18700 					      bpf_callback_t callback_fn,
18701 					      void *callback_ctx,
18702 					      u64 flags))NULL));
18703 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
18704 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
18705 
18706 patch_map_ops_generic:
18707 			switch (insn->imm) {
18708 			case BPF_FUNC_map_lookup_elem:
18709 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
18710 				continue;
18711 			case BPF_FUNC_map_update_elem:
18712 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
18713 				continue;
18714 			case BPF_FUNC_map_delete_elem:
18715 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
18716 				continue;
18717 			case BPF_FUNC_map_push_elem:
18718 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
18719 				continue;
18720 			case BPF_FUNC_map_pop_elem:
18721 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
18722 				continue;
18723 			case BPF_FUNC_map_peek_elem:
18724 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
18725 				continue;
18726 			case BPF_FUNC_redirect_map:
18727 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
18728 				continue;
18729 			case BPF_FUNC_for_each_map_elem:
18730 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
18731 				continue;
18732 			case BPF_FUNC_map_lookup_percpu_elem:
18733 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
18734 				continue;
18735 			}
18736 
18737 			goto patch_call_imm;
18738 		}
18739 
18740 		/* Implement bpf_jiffies64 inline. */
18741 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
18742 		    insn->imm == BPF_FUNC_jiffies64) {
18743 			struct bpf_insn ld_jiffies_addr[2] = {
18744 				BPF_LD_IMM64(BPF_REG_0,
18745 					     (unsigned long)&jiffies),
18746 			};
18747 
18748 			insn_buf[0] = ld_jiffies_addr[0];
18749 			insn_buf[1] = ld_jiffies_addr[1];
18750 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
18751 						  BPF_REG_0, 0);
18752 			cnt = 3;
18753 
18754 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
18755 						       cnt);
18756 			if (!new_prog)
18757 				return -ENOMEM;
18758 
18759 			delta    += cnt - 1;
18760 			env->prog = prog = new_prog;
18761 			insn      = new_prog->insnsi + i + delta;
18762 			continue;
18763 		}
18764 
18765 		/* Implement bpf_get_func_arg inline. */
18766 		if (prog_type == BPF_PROG_TYPE_TRACING &&
18767 		    insn->imm == BPF_FUNC_get_func_arg) {
18768 			/* Load nr_args from ctx - 8 */
18769 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18770 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
18771 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
18772 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
18773 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
18774 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
18775 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
18776 			insn_buf[7] = BPF_JMP_A(1);
18777 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
18778 			cnt = 9;
18779 
18780 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18781 			if (!new_prog)
18782 				return -ENOMEM;
18783 
18784 			delta    += cnt - 1;
18785 			env->prog = prog = new_prog;
18786 			insn      = new_prog->insnsi + i + delta;
18787 			continue;
18788 		}
18789 
18790 		/* Implement bpf_get_func_ret inline. */
18791 		if (prog_type == BPF_PROG_TYPE_TRACING &&
18792 		    insn->imm == BPF_FUNC_get_func_ret) {
18793 			if (eatype == BPF_TRACE_FEXIT ||
18794 			    eatype == BPF_MODIFY_RETURN) {
18795 				/* Load nr_args from ctx - 8 */
18796 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18797 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
18798 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
18799 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
18800 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
18801 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
18802 				cnt = 6;
18803 			} else {
18804 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
18805 				cnt = 1;
18806 			}
18807 
18808 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18809 			if (!new_prog)
18810 				return -ENOMEM;
18811 
18812 			delta    += cnt - 1;
18813 			env->prog = prog = new_prog;
18814 			insn      = new_prog->insnsi + i + delta;
18815 			continue;
18816 		}
18817 
18818 		/* Implement get_func_arg_cnt inline. */
18819 		if (prog_type == BPF_PROG_TYPE_TRACING &&
18820 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
18821 			/* Load nr_args from ctx - 8 */
18822 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18823 
18824 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
18825 			if (!new_prog)
18826 				return -ENOMEM;
18827 
18828 			env->prog = prog = new_prog;
18829 			insn      = new_prog->insnsi + i + delta;
18830 			continue;
18831 		}
18832 
18833 		/* Implement bpf_get_func_ip inline. */
18834 		if (prog_type == BPF_PROG_TYPE_TRACING &&
18835 		    insn->imm == BPF_FUNC_get_func_ip) {
18836 			/* Load IP address from ctx - 16 */
18837 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
18838 
18839 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
18840 			if (!new_prog)
18841 				return -ENOMEM;
18842 
18843 			env->prog = prog = new_prog;
18844 			insn      = new_prog->insnsi + i + delta;
18845 			continue;
18846 		}
18847 
18848 patch_call_imm:
18849 		fn = env->ops->get_func_proto(insn->imm, env->prog);
18850 		/* all functions that have prototype and verifier allowed
18851 		 * programs to call them, must be real in-kernel functions
18852 		 */
18853 		if (!fn->func) {
18854 			verbose(env,
18855 				"kernel subsystem misconfigured func %s#%d\n",
18856 				func_id_name(insn->imm), insn->imm);
18857 			return -EFAULT;
18858 		}
18859 		insn->imm = fn->func - __bpf_call_base;
18860 	}
18861 
18862 	/* Since poke tab is now finalized, publish aux to tracker. */
18863 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
18864 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
18865 		if (!map_ptr->ops->map_poke_track ||
18866 		    !map_ptr->ops->map_poke_untrack ||
18867 		    !map_ptr->ops->map_poke_run) {
18868 			verbose(env, "bpf verifier is misconfigured\n");
18869 			return -EINVAL;
18870 		}
18871 
18872 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
18873 		if (ret < 0) {
18874 			verbose(env, "tracking tail call prog failed\n");
18875 			return ret;
18876 		}
18877 	}
18878 
18879 	sort_kfunc_descs_by_imm_off(env->prog);
18880 
18881 	return 0;
18882 }
18883 
18884 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
18885 					int position,
18886 					s32 stack_base,
18887 					u32 callback_subprogno,
18888 					u32 *cnt)
18889 {
18890 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
18891 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
18892 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
18893 	int reg_loop_max = BPF_REG_6;
18894 	int reg_loop_cnt = BPF_REG_7;
18895 	int reg_loop_ctx = BPF_REG_8;
18896 
18897 	struct bpf_prog *new_prog;
18898 	u32 callback_start;
18899 	u32 call_insn_offset;
18900 	s32 callback_offset;
18901 
18902 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
18903 	 * be careful to modify this code in sync.
18904 	 */
18905 	struct bpf_insn insn_buf[] = {
18906 		/* Return error and jump to the end of the patch if
18907 		 * expected number of iterations is too big.
18908 		 */
18909 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
18910 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
18911 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
18912 		/* spill R6, R7, R8 to use these as loop vars */
18913 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
18914 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
18915 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
18916 		/* initialize loop vars */
18917 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
18918 		BPF_MOV32_IMM(reg_loop_cnt, 0),
18919 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
18920 		/* loop header,
18921 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
18922 		 */
18923 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
18924 		/* callback call,
18925 		 * correct callback offset would be set after patching
18926 		 */
18927 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
18928 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
18929 		BPF_CALL_REL(0),
18930 		/* increment loop counter */
18931 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
18932 		/* jump to loop header if callback returned 0 */
18933 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
18934 		/* return value of bpf_loop,
18935 		 * set R0 to the number of iterations
18936 		 */
18937 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
18938 		/* restore original values of R6, R7, R8 */
18939 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
18940 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
18941 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
18942 	};
18943 
18944 	*cnt = ARRAY_SIZE(insn_buf);
18945 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
18946 	if (!new_prog)
18947 		return new_prog;
18948 
18949 	/* callback start is known only after patching */
18950 	callback_start = env->subprog_info[callback_subprogno].start;
18951 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
18952 	call_insn_offset = position + 12;
18953 	callback_offset = callback_start - call_insn_offset - 1;
18954 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
18955 
18956 	return new_prog;
18957 }
18958 
18959 static bool is_bpf_loop_call(struct bpf_insn *insn)
18960 {
18961 	return insn->code == (BPF_JMP | BPF_CALL) &&
18962 		insn->src_reg == 0 &&
18963 		insn->imm == BPF_FUNC_loop;
18964 }
18965 
18966 /* For all sub-programs in the program (including main) check
18967  * insn_aux_data to see if there are bpf_loop calls that require
18968  * inlining. If such calls are found the calls are replaced with a
18969  * sequence of instructions produced by `inline_bpf_loop` function and
18970  * subprog stack_depth is increased by the size of 3 registers.
18971  * This stack space is used to spill values of the R6, R7, R8.  These
18972  * registers are used to store the loop bound, counter and context
18973  * variables.
18974  */
18975 static int optimize_bpf_loop(struct bpf_verifier_env *env)
18976 {
18977 	struct bpf_subprog_info *subprogs = env->subprog_info;
18978 	int i, cur_subprog = 0, cnt, delta = 0;
18979 	struct bpf_insn *insn = env->prog->insnsi;
18980 	int insn_cnt = env->prog->len;
18981 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
18982 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
18983 	u16 stack_depth_extra = 0;
18984 
18985 	for (i = 0; i < insn_cnt; i++, insn++) {
18986 		struct bpf_loop_inline_state *inline_state =
18987 			&env->insn_aux_data[i + delta].loop_inline_state;
18988 
18989 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
18990 			struct bpf_prog *new_prog;
18991 
18992 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
18993 			new_prog = inline_bpf_loop(env,
18994 						   i + delta,
18995 						   -(stack_depth + stack_depth_extra),
18996 						   inline_state->callback_subprogno,
18997 						   &cnt);
18998 			if (!new_prog)
18999 				return -ENOMEM;
19000 
19001 			delta     += cnt - 1;
19002 			env->prog  = new_prog;
19003 			insn       = new_prog->insnsi + i + delta;
19004 		}
19005 
19006 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
19007 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
19008 			cur_subprog++;
19009 			stack_depth = subprogs[cur_subprog].stack_depth;
19010 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19011 			stack_depth_extra = 0;
19012 		}
19013 	}
19014 
19015 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19016 
19017 	return 0;
19018 }
19019 
19020 static void free_states(struct bpf_verifier_env *env)
19021 {
19022 	struct bpf_verifier_state_list *sl, *sln;
19023 	int i;
19024 
19025 	sl = env->free_list;
19026 	while (sl) {
19027 		sln = sl->next;
19028 		free_verifier_state(&sl->state, false);
19029 		kfree(sl);
19030 		sl = sln;
19031 	}
19032 	env->free_list = NULL;
19033 
19034 	if (!env->explored_states)
19035 		return;
19036 
19037 	for (i = 0; i < state_htab_size(env); i++) {
19038 		sl = env->explored_states[i];
19039 
19040 		while (sl) {
19041 			sln = sl->next;
19042 			free_verifier_state(&sl->state, false);
19043 			kfree(sl);
19044 			sl = sln;
19045 		}
19046 		env->explored_states[i] = NULL;
19047 	}
19048 }
19049 
19050 static int do_check_common(struct bpf_verifier_env *env, int subprog)
19051 {
19052 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
19053 	struct bpf_verifier_state *state;
19054 	struct bpf_reg_state *regs;
19055 	int ret, i;
19056 
19057 	env->prev_linfo = NULL;
19058 	env->pass_cnt++;
19059 
19060 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
19061 	if (!state)
19062 		return -ENOMEM;
19063 	state->curframe = 0;
19064 	state->speculative = false;
19065 	state->branches = 1;
19066 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
19067 	if (!state->frame[0]) {
19068 		kfree(state);
19069 		return -ENOMEM;
19070 	}
19071 	env->cur_state = state;
19072 	init_func_state(env, state->frame[0],
19073 			BPF_MAIN_FUNC /* callsite */,
19074 			0 /* frameno */,
19075 			subprog);
19076 	state->first_insn_idx = env->subprog_info[subprog].start;
19077 	state->last_insn_idx = -1;
19078 
19079 	regs = state->frame[state->curframe]->regs;
19080 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
19081 		ret = btf_prepare_func_args(env, subprog, regs);
19082 		if (ret)
19083 			goto out;
19084 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
19085 			if (regs[i].type == PTR_TO_CTX)
19086 				mark_reg_known_zero(env, regs, i);
19087 			else if (regs[i].type == SCALAR_VALUE)
19088 				mark_reg_unknown(env, regs, i);
19089 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
19090 				const u32 mem_size = regs[i].mem_size;
19091 
19092 				mark_reg_known_zero(env, regs, i);
19093 				regs[i].mem_size = mem_size;
19094 				regs[i].id = ++env->id_gen;
19095 			}
19096 		}
19097 	} else {
19098 		/* 1st arg to a function */
19099 		regs[BPF_REG_1].type = PTR_TO_CTX;
19100 		mark_reg_known_zero(env, regs, BPF_REG_1);
19101 		ret = btf_check_subprog_arg_match(env, subprog, regs);
19102 		if (ret == -EFAULT)
19103 			/* unlikely verifier bug. abort.
19104 			 * ret == 0 and ret < 0 are sadly acceptable for
19105 			 * main() function due to backward compatibility.
19106 			 * Like socket filter program may be written as:
19107 			 * int bpf_prog(struct pt_regs *ctx)
19108 			 * and never dereference that ctx in the program.
19109 			 * 'struct pt_regs' is a type mismatch for socket
19110 			 * filter that should be using 'struct __sk_buff'.
19111 			 */
19112 			goto out;
19113 	}
19114 
19115 	ret = do_check(env);
19116 out:
19117 	/* check for NULL is necessary, since cur_state can be freed inside
19118 	 * do_check() under memory pressure.
19119 	 */
19120 	if (env->cur_state) {
19121 		free_verifier_state(env->cur_state, true);
19122 		env->cur_state = NULL;
19123 	}
19124 	while (!pop_stack(env, NULL, NULL, false));
19125 	if (!ret && pop_log)
19126 		bpf_vlog_reset(&env->log, 0);
19127 	free_states(env);
19128 	return ret;
19129 }
19130 
19131 /* Verify all global functions in a BPF program one by one based on their BTF.
19132  * All global functions must pass verification. Otherwise the whole program is rejected.
19133  * Consider:
19134  * int bar(int);
19135  * int foo(int f)
19136  * {
19137  *    return bar(f);
19138  * }
19139  * int bar(int b)
19140  * {
19141  *    ...
19142  * }
19143  * foo() will be verified first for R1=any_scalar_value. During verification it
19144  * will be assumed that bar() already verified successfully and call to bar()
19145  * from foo() will be checked for type match only. Later bar() will be verified
19146  * independently to check that it's safe for R1=any_scalar_value.
19147  */
19148 static int do_check_subprogs(struct bpf_verifier_env *env)
19149 {
19150 	struct bpf_prog_aux *aux = env->prog->aux;
19151 	int i, ret;
19152 
19153 	if (!aux->func_info)
19154 		return 0;
19155 
19156 	for (i = 1; i < env->subprog_cnt; i++) {
19157 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
19158 			continue;
19159 		env->insn_idx = env->subprog_info[i].start;
19160 		WARN_ON_ONCE(env->insn_idx == 0);
19161 		ret = do_check_common(env, i);
19162 		if (ret) {
19163 			return ret;
19164 		} else if (env->log.level & BPF_LOG_LEVEL) {
19165 			verbose(env,
19166 				"Func#%d is safe for any args that match its prototype\n",
19167 				i);
19168 		}
19169 	}
19170 	return 0;
19171 }
19172 
19173 static int do_check_main(struct bpf_verifier_env *env)
19174 {
19175 	int ret;
19176 
19177 	env->insn_idx = 0;
19178 	ret = do_check_common(env, 0);
19179 	if (!ret)
19180 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19181 	return ret;
19182 }
19183 
19184 
19185 static void print_verification_stats(struct bpf_verifier_env *env)
19186 {
19187 	int i;
19188 
19189 	if (env->log.level & BPF_LOG_STATS) {
19190 		verbose(env, "verification time %lld usec\n",
19191 			div_u64(env->verification_time, 1000));
19192 		verbose(env, "stack depth ");
19193 		for (i = 0; i < env->subprog_cnt; i++) {
19194 			u32 depth = env->subprog_info[i].stack_depth;
19195 
19196 			verbose(env, "%d", depth);
19197 			if (i + 1 < env->subprog_cnt)
19198 				verbose(env, "+");
19199 		}
19200 		verbose(env, "\n");
19201 	}
19202 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
19203 		"total_states %d peak_states %d mark_read %d\n",
19204 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
19205 		env->max_states_per_insn, env->total_states,
19206 		env->peak_states, env->longest_mark_read_walk);
19207 }
19208 
19209 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
19210 {
19211 	const struct btf_type *t, *func_proto;
19212 	const struct bpf_struct_ops *st_ops;
19213 	const struct btf_member *member;
19214 	struct bpf_prog *prog = env->prog;
19215 	u32 btf_id, member_idx;
19216 	const char *mname;
19217 
19218 	if (!prog->gpl_compatible) {
19219 		verbose(env, "struct ops programs must have a GPL compatible license\n");
19220 		return -EINVAL;
19221 	}
19222 
19223 	btf_id = prog->aux->attach_btf_id;
19224 	st_ops = bpf_struct_ops_find(btf_id);
19225 	if (!st_ops) {
19226 		verbose(env, "attach_btf_id %u is not a supported struct\n",
19227 			btf_id);
19228 		return -ENOTSUPP;
19229 	}
19230 
19231 	t = st_ops->type;
19232 	member_idx = prog->expected_attach_type;
19233 	if (member_idx >= btf_type_vlen(t)) {
19234 		verbose(env, "attach to invalid member idx %u of struct %s\n",
19235 			member_idx, st_ops->name);
19236 		return -EINVAL;
19237 	}
19238 
19239 	member = &btf_type_member(t)[member_idx];
19240 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
19241 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
19242 					       NULL);
19243 	if (!func_proto) {
19244 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
19245 			mname, member_idx, st_ops->name);
19246 		return -EINVAL;
19247 	}
19248 
19249 	if (st_ops->check_member) {
19250 		int err = st_ops->check_member(t, member, prog);
19251 
19252 		if (err) {
19253 			verbose(env, "attach to unsupported member %s of struct %s\n",
19254 				mname, st_ops->name);
19255 			return err;
19256 		}
19257 	}
19258 
19259 	prog->aux->attach_func_proto = func_proto;
19260 	prog->aux->attach_func_name = mname;
19261 	env->ops = st_ops->verifier_ops;
19262 
19263 	return 0;
19264 }
19265 #define SECURITY_PREFIX "security_"
19266 
19267 static int check_attach_modify_return(unsigned long addr, const char *func_name)
19268 {
19269 	if (within_error_injection_list(addr) ||
19270 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
19271 		return 0;
19272 
19273 	return -EINVAL;
19274 }
19275 
19276 /* list of non-sleepable functions that are otherwise on
19277  * ALLOW_ERROR_INJECTION list
19278  */
19279 BTF_SET_START(btf_non_sleepable_error_inject)
19280 /* Three functions below can be called from sleepable and non-sleepable context.
19281  * Assume non-sleepable from bpf safety point of view.
19282  */
19283 BTF_ID(func, __filemap_add_folio)
19284 BTF_ID(func, should_fail_alloc_page)
19285 BTF_ID(func, should_failslab)
19286 BTF_SET_END(btf_non_sleepable_error_inject)
19287 
19288 static int check_non_sleepable_error_inject(u32 btf_id)
19289 {
19290 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
19291 }
19292 
19293 int bpf_check_attach_target(struct bpf_verifier_log *log,
19294 			    const struct bpf_prog *prog,
19295 			    const struct bpf_prog *tgt_prog,
19296 			    u32 btf_id,
19297 			    struct bpf_attach_target_info *tgt_info)
19298 {
19299 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
19300 	const char prefix[] = "btf_trace_";
19301 	int ret = 0, subprog = -1, i;
19302 	const struct btf_type *t;
19303 	bool conservative = true;
19304 	const char *tname;
19305 	struct btf *btf;
19306 	long addr = 0;
19307 	struct module *mod = NULL;
19308 
19309 	if (!btf_id) {
19310 		bpf_log(log, "Tracing programs must provide btf_id\n");
19311 		return -EINVAL;
19312 	}
19313 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
19314 	if (!btf) {
19315 		bpf_log(log,
19316 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
19317 		return -EINVAL;
19318 	}
19319 	t = btf_type_by_id(btf, btf_id);
19320 	if (!t) {
19321 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
19322 		return -EINVAL;
19323 	}
19324 	tname = btf_name_by_offset(btf, t->name_off);
19325 	if (!tname) {
19326 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
19327 		return -EINVAL;
19328 	}
19329 	if (tgt_prog) {
19330 		struct bpf_prog_aux *aux = tgt_prog->aux;
19331 
19332 		if (bpf_prog_is_dev_bound(prog->aux) &&
19333 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
19334 			bpf_log(log, "Target program bound device mismatch");
19335 			return -EINVAL;
19336 		}
19337 
19338 		for (i = 0; i < aux->func_info_cnt; i++)
19339 			if (aux->func_info[i].type_id == btf_id) {
19340 				subprog = i;
19341 				break;
19342 			}
19343 		if (subprog == -1) {
19344 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
19345 			return -EINVAL;
19346 		}
19347 		conservative = aux->func_info_aux[subprog].unreliable;
19348 		if (prog_extension) {
19349 			if (conservative) {
19350 				bpf_log(log,
19351 					"Cannot replace static functions\n");
19352 				return -EINVAL;
19353 			}
19354 			if (!prog->jit_requested) {
19355 				bpf_log(log,
19356 					"Extension programs should be JITed\n");
19357 				return -EINVAL;
19358 			}
19359 		}
19360 		if (!tgt_prog->jited) {
19361 			bpf_log(log, "Can attach to only JITed progs\n");
19362 			return -EINVAL;
19363 		}
19364 		if (tgt_prog->type == prog->type) {
19365 			/* Cannot fentry/fexit another fentry/fexit program.
19366 			 * Cannot attach program extension to another extension.
19367 			 * It's ok to attach fentry/fexit to extension program.
19368 			 */
19369 			bpf_log(log, "Cannot recursively attach\n");
19370 			return -EINVAL;
19371 		}
19372 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
19373 		    prog_extension &&
19374 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
19375 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
19376 			/* Program extensions can extend all program types
19377 			 * except fentry/fexit. The reason is the following.
19378 			 * The fentry/fexit programs are used for performance
19379 			 * analysis, stats and can be attached to any program
19380 			 * type except themselves. When extension program is
19381 			 * replacing XDP function it is necessary to allow
19382 			 * performance analysis of all functions. Both original
19383 			 * XDP program and its program extension. Hence
19384 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
19385 			 * allowed. If extending of fentry/fexit was allowed it
19386 			 * would be possible to create long call chain
19387 			 * fentry->extension->fentry->extension beyond
19388 			 * reasonable stack size. Hence extending fentry is not
19389 			 * allowed.
19390 			 */
19391 			bpf_log(log, "Cannot extend fentry/fexit\n");
19392 			return -EINVAL;
19393 		}
19394 	} else {
19395 		if (prog_extension) {
19396 			bpf_log(log, "Cannot replace kernel functions\n");
19397 			return -EINVAL;
19398 		}
19399 	}
19400 
19401 	switch (prog->expected_attach_type) {
19402 	case BPF_TRACE_RAW_TP:
19403 		if (tgt_prog) {
19404 			bpf_log(log,
19405 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
19406 			return -EINVAL;
19407 		}
19408 		if (!btf_type_is_typedef(t)) {
19409 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
19410 				btf_id);
19411 			return -EINVAL;
19412 		}
19413 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
19414 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
19415 				btf_id, tname);
19416 			return -EINVAL;
19417 		}
19418 		tname += sizeof(prefix) - 1;
19419 		t = btf_type_by_id(btf, t->type);
19420 		if (!btf_type_is_ptr(t))
19421 			/* should never happen in valid vmlinux build */
19422 			return -EINVAL;
19423 		t = btf_type_by_id(btf, t->type);
19424 		if (!btf_type_is_func_proto(t))
19425 			/* should never happen in valid vmlinux build */
19426 			return -EINVAL;
19427 
19428 		break;
19429 	case BPF_TRACE_ITER:
19430 		if (!btf_type_is_func(t)) {
19431 			bpf_log(log, "attach_btf_id %u is not a function\n",
19432 				btf_id);
19433 			return -EINVAL;
19434 		}
19435 		t = btf_type_by_id(btf, t->type);
19436 		if (!btf_type_is_func_proto(t))
19437 			return -EINVAL;
19438 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
19439 		if (ret)
19440 			return ret;
19441 		break;
19442 	default:
19443 		if (!prog_extension)
19444 			return -EINVAL;
19445 		fallthrough;
19446 	case BPF_MODIFY_RETURN:
19447 	case BPF_LSM_MAC:
19448 	case BPF_LSM_CGROUP:
19449 	case BPF_TRACE_FENTRY:
19450 	case BPF_TRACE_FEXIT:
19451 		if (!btf_type_is_func(t)) {
19452 			bpf_log(log, "attach_btf_id %u is not a function\n",
19453 				btf_id);
19454 			return -EINVAL;
19455 		}
19456 		if (prog_extension &&
19457 		    btf_check_type_match(log, prog, btf, t))
19458 			return -EINVAL;
19459 		t = btf_type_by_id(btf, t->type);
19460 		if (!btf_type_is_func_proto(t))
19461 			return -EINVAL;
19462 
19463 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
19464 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
19465 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
19466 			return -EINVAL;
19467 
19468 		if (tgt_prog && conservative)
19469 			t = NULL;
19470 
19471 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
19472 		if (ret < 0)
19473 			return ret;
19474 
19475 		if (tgt_prog) {
19476 			if (subprog == 0)
19477 				addr = (long) tgt_prog->bpf_func;
19478 			else
19479 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
19480 		} else {
19481 			if (btf_is_module(btf)) {
19482 				mod = btf_try_get_module(btf);
19483 				if (mod)
19484 					addr = find_kallsyms_symbol_value(mod, tname);
19485 				else
19486 					addr = 0;
19487 			} else {
19488 				addr = kallsyms_lookup_name(tname);
19489 			}
19490 			if (!addr) {
19491 				module_put(mod);
19492 				bpf_log(log,
19493 					"The address of function %s cannot be found\n",
19494 					tname);
19495 				return -ENOENT;
19496 			}
19497 		}
19498 
19499 		if (prog->aux->sleepable) {
19500 			ret = -EINVAL;
19501 			switch (prog->type) {
19502 			case BPF_PROG_TYPE_TRACING:
19503 
19504 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
19505 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
19506 				 */
19507 				if (!check_non_sleepable_error_inject(btf_id) &&
19508 				    within_error_injection_list(addr))
19509 					ret = 0;
19510 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
19511 				 * in the fmodret id set with the KF_SLEEPABLE flag.
19512 				 */
19513 				else {
19514 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
19515 										prog);
19516 
19517 					if (flags && (*flags & KF_SLEEPABLE))
19518 						ret = 0;
19519 				}
19520 				break;
19521 			case BPF_PROG_TYPE_LSM:
19522 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
19523 				 * Only some of them are sleepable.
19524 				 */
19525 				if (bpf_lsm_is_sleepable_hook(btf_id))
19526 					ret = 0;
19527 				break;
19528 			default:
19529 				break;
19530 			}
19531 			if (ret) {
19532 				module_put(mod);
19533 				bpf_log(log, "%s is not sleepable\n", tname);
19534 				return ret;
19535 			}
19536 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
19537 			if (tgt_prog) {
19538 				module_put(mod);
19539 				bpf_log(log, "can't modify return codes of BPF programs\n");
19540 				return -EINVAL;
19541 			}
19542 			ret = -EINVAL;
19543 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
19544 			    !check_attach_modify_return(addr, tname))
19545 				ret = 0;
19546 			if (ret) {
19547 				module_put(mod);
19548 				bpf_log(log, "%s() is not modifiable\n", tname);
19549 				return ret;
19550 			}
19551 		}
19552 
19553 		break;
19554 	}
19555 	tgt_info->tgt_addr = addr;
19556 	tgt_info->tgt_name = tname;
19557 	tgt_info->tgt_type = t;
19558 	tgt_info->tgt_mod = mod;
19559 	return 0;
19560 }
19561 
19562 BTF_SET_START(btf_id_deny)
19563 BTF_ID_UNUSED
19564 #ifdef CONFIG_SMP
19565 BTF_ID(func, migrate_disable)
19566 BTF_ID(func, migrate_enable)
19567 #endif
19568 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
19569 BTF_ID(func, rcu_read_unlock_strict)
19570 #endif
19571 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
19572 BTF_ID(func, preempt_count_add)
19573 BTF_ID(func, preempt_count_sub)
19574 #endif
19575 #ifdef CONFIG_PREEMPT_RCU
19576 BTF_ID(func, __rcu_read_lock)
19577 BTF_ID(func, __rcu_read_unlock)
19578 #endif
19579 BTF_SET_END(btf_id_deny)
19580 
19581 static bool can_be_sleepable(struct bpf_prog *prog)
19582 {
19583 	if (prog->type == BPF_PROG_TYPE_TRACING) {
19584 		switch (prog->expected_attach_type) {
19585 		case BPF_TRACE_FENTRY:
19586 		case BPF_TRACE_FEXIT:
19587 		case BPF_MODIFY_RETURN:
19588 		case BPF_TRACE_ITER:
19589 			return true;
19590 		default:
19591 			return false;
19592 		}
19593 	}
19594 	return prog->type == BPF_PROG_TYPE_LSM ||
19595 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
19596 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
19597 }
19598 
19599 static int check_attach_btf_id(struct bpf_verifier_env *env)
19600 {
19601 	struct bpf_prog *prog = env->prog;
19602 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
19603 	struct bpf_attach_target_info tgt_info = {};
19604 	u32 btf_id = prog->aux->attach_btf_id;
19605 	struct bpf_trampoline *tr;
19606 	int ret;
19607 	u64 key;
19608 
19609 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
19610 		if (prog->aux->sleepable)
19611 			/* attach_btf_id checked to be zero already */
19612 			return 0;
19613 		verbose(env, "Syscall programs can only be sleepable\n");
19614 		return -EINVAL;
19615 	}
19616 
19617 	if (prog->aux->sleepable && !can_be_sleepable(prog)) {
19618 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
19619 		return -EINVAL;
19620 	}
19621 
19622 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
19623 		return check_struct_ops_btf_id(env);
19624 
19625 	if (prog->type != BPF_PROG_TYPE_TRACING &&
19626 	    prog->type != BPF_PROG_TYPE_LSM &&
19627 	    prog->type != BPF_PROG_TYPE_EXT)
19628 		return 0;
19629 
19630 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
19631 	if (ret)
19632 		return ret;
19633 
19634 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
19635 		/* to make freplace equivalent to their targets, they need to
19636 		 * inherit env->ops and expected_attach_type for the rest of the
19637 		 * verification
19638 		 */
19639 		env->ops = bpf_verifier_ops[tgt_prog->type];
19640 		prog->expected_attach_type = tgt_prog->expected_attach_type;
19641 	}
19642 
19643 	/* store info about the attachment target that will be used later */
19644 	prog->aux->attach_func_proto = tgt_info.tgt_type;
19645 	prog->aux->attach_func_name = tgt_info.tgt_name;
19646 	prog->aux->mod = tgt_info.tgt_mod;
19647 
19648 	if (tgt_prog) {
19649 		prog->aux->saved_dst_prog_type = tgt_prog->type;
19650 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
19651 	}
19652 
19653 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
19654 		prog->aux->attach_btf_trace = true;
19655 		return 0;
19656 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
19657 		if (!bpf_iter_prog_supported(prog))
19658 			return -EINVAL;
19659 		return 0;
19660 	}
19661 
19662 	if (prog->type == BPF_PROG_TYPE_LSM) {
19663 		ret = bpf_lsm_verify_prog(&env->log, prog);
19664 		if (ret < 0)
19665 			return ret;
19666 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
19667 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
19668 		return -EINVAL;
19669 	}
19670 
19671 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
19672 	tr = bpf_trampoline_get(key, &tgt_info);
19673 	if (!tr)
19674 		return -ENOMEM;
19675 
19676 	if (tgt_prog && tgt_prog->aux->tail_call_reachable)
19677 		tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
19678 
19679 	prog->aux->dst_trampoline = tr;
19680 	return 0;
19681 }
19682 
19683 struct btf *bpf_get_btf_vmlinux(void)
19684 {
19685 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
19686 		mutex_lock(&bpf_verifier_lock);
19687 		if (!btf_vmlinux)
19688 			btf_vmlinux = btf_parse_vmlinux();
19689 		mutex_unlock(&bpf_verifier_lock);
19690 	}
19691 	return btf_vmlinux;
19692 }
19693 
19694 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
19695 {
19696 	u64 start_time = ktime_get_ns();
19697 	struct bpf_verifier_env *env;
19698 	int i, len, ret = -EINVAL, err;
19699 	u32 log_true_size;
19700 	bool is_priv;
19701 
19702 	/* no program is valid */
19703 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
19704 		return -EINVAL;
19705 
19706 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
19707 	 * allocate/free it every time bpf_check() is called
19708 	 */
19709 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
19710 	if (!env)
19711 		return -ENOMEM;
19712 
19713 	env->bt.env = env;
19714 
19715 	len = (*prog)->len;
19716 	env->insn_aux_data =
19717 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
19718 	ret = -ENOMEM;
19719 	if (!env->insn_aux_data)
19720 		goto err_free_env;
19721 	for (i = 0; i < len; i++)
19722 		env->insn_aux_data[i].orig_idx = i;
19723 	env->prog = *prog;
19724 	env->ops = bpf_verifier_ops[env->prog->type];
19725 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
19726 	is_priv = bpf_capable();
19727 
19728 	bpf_get_btf_vmlinux();
19729 
19730 	/* grab the mutex to protect few globals used by verifier */
19731 	if (!is_priv)
19732 		mutex_lock(&bpf_verifier_lock);
19733 
19734 	/* user could have requested verbose verifier output
19735 	 * and supplied buffer to store the verification trace
19736 	 */
19737 	ret = bpf_vlog_init(&env->log, attr->log_level,
19738 			    (char __user *) (unsigned long) attr->log_buf,
19739 			    attr->log_size);
19740 	if (ret)
19741 		goto err_unlock;
19742 
19743 	mark_verifier_state_clean(env);
19744 
19745 	if (IS_ERR(btf_vmlinux)) {
19746 		/* Either gcc or pahole or kernel are broken. */
19747 		verbose(env, "in-kernel BTF is malformed\n");
19748 		ret = PTR_ERR(btf_vmlinux);
19749 		goto skip_full_check;
19750 	}
19751 
19752 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
19753 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
19754 		env->strict_alignment = true;
19755 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
19756 		env->strict_alignment = false;
19757 
19758 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
19759 	env->allow_uninit_stack = bpf_allow_uninit_stack();
19760 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
19761 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
19762 	env->bpf_capable = bpf_capable();
19763 
19764 	if (is_priv)
19765 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
19766 
19767 	env->explored_states = kvcalloc(state_htab_size(env),
19768 				       sizeof(struct bpf_verifier_state_list *),
19769 				       GFP_USER);
19770 	ret = -ENOMEM;
19771 	if (!env->explored_states)
19772 		goto skip_full_check;
19773 
19774 	ret = add_subprog_and_kfunc(env);
19775 	if (ret < 0)
19776 		goto skip_full_check;
19777 
19778 	ret = check_subprogs(env);
19779 	if (ret < 0)
19780 		goto skip_full_check;
19781 
19782 	ret = check_btf_info(env, attr, uattr);
19783 	if (ret < 0)
19784 		goto skip_full_check;
19785 
19786 	ret = check_attach_btf_id(env);
19787 	if (ret)
19788 		goto skip_full_check;
19789 
19790 	ret = resolve_pseudo_ldimm64(env);
19791 	if (ret < 0)
19792 		goto skip_full_check;
19793 
19794 	if (bpf_prog_is_offloaded(env->prog->aux)) {
19795 		ret = bpf_prog_offload_verifier_prep(env->prog);
19796 		if (ret)
19797 			goto skip_full_check;
19798 	}
19799 
19800 	ret = check_cfg(env);
19801 	if (ret < 0)
19802 		goto skip_full_check;
19803 
19804 	ret = do_check_subprogs(env);
19805 	ret = ret ?: do_check_main(env);
19806 
19807 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
19808 		ret = bpf_prog_offload_finalize(env);
19809 
19810 skip_full_check:
19811 	kvfree(env->explored_states);
19812 
19813 	if (ret == 0)
19814 		ret = check_max_stack_depth(env);
19815 
19816 	/* instruction rewrites happen after this point */
19817 	if (ret == 0)
19818 		ret = optimize_bpf_loop(env);
19819 
19820 	if (is_priv) {
19821 		if (ret == 0)
19822 			opt_hard_wire_dead_code_branches(env);
19823 		if (ret == 0)
19824 			ret = opt_remove_dead_code(env);
19825 		if (ret == 0)
19826 			ret = opt_remove_nops(env);
19827 	} else {
19828 		if (ret == 0)
19829 			sanitize_dead_code(env);
19830 	}
19831 
19832 	if (ret == 0)
19833 		/* program is valid, convert *(u32*)(ctx + off) accesses */
19834 		ret = convert_ctx_accesses(env);
19835 
19836 	if (ret == 0)
19837 		ret = do_misc_fixups(env);
19838 
19839 	/* do 32-bit optimization after insn patching has done so those patched
19840 	 * insns could be handled correctly.
19841 	 */
19842 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
19843 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
19844 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
19845 								     : false;
19846 	}
19847 
19848 	if (ret == 0)
19849 		ret = fixup_call_args(env);
19850 
19851 	env->verification_time = ktime_get_ns() - start_time;
19852 	print_verification_stats(env);
19853 	env->prog->aux->verified_insns = env->insn_processed;
19854 
19855 	/* preserve original error even if log finalization is successful */
19856 	err = bpf_vlog_finalize(&env->log, &log_true_size);
19857 	if (err)
19858 		ret = err;
19859 
19860 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
19861 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
19862 				  &log_true_size, sizeof(log_true_size))) {
19863 		ret = -EFAULT;
19864 		goto err_release_maps;
19865 	}
19866 
19867 	if (ret)
19868 		goto err_release_maps;
19869 
19870 	if (env->used_map_cnt) {
19871 		/* if program passed verifier, update used_maps in bpf_prog_info */
19872 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
19873 							  sizeof(env->used_maps[0]),
19874 							  GFP_KERNEL);
19875 
19876 		if (!env->prog->aux->used_maps) {
19877 			ret = -ENOMEM;
19878 			goto err_release_maps;
19879 		}
19880 
19881 		memcpy(env->prog->aux->used_maps, env->used_maps,
19882 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
19883 		env->prog->aux->used_map_cnt = env->used_map_cnt;
19884 	}
19885 	if (env->used_btf_cnt) {
19886 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
19887 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
19888 							  sizeof(env->used_btfs[0]),
19889 							  GFP_KERNEL);
19890 		if (!env->prog->aux->used_btfs) {
19891 			ret = -ENOMEM;
19892 			goto err_release_maps;
19893 		}
19894 
19895 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
19896 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
19897 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
19898 	}
19899 	if (env->used_map_cnt || env->used_btf_cnt) {
19900 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
19901 		 * bpf_ld_imm64 instructions
19902 		 */
19903 		convert_pseudo_ld_imm64(env);
19904 	}
19905 
19906 	adjust_btf_func(env);
19907 
19908 err_release_maps:
19909 	if (!env->prog->aux->used_maps)
19910 		/* if we didn't copy map pointers into bpf_prog_info, release
19911 		 * them now. Otherwise free_used_maps() will release them.
19912 		 */
19913 		release_maps(env);
19914 	if (!env->prog->aux->used_btfs)
19915 		release_btfs(env);
19916 
19917 	/* extension progs temporarily inherit the attach_type of their targets
19918 	   for verification purposes, so set it back to zero before returning
19919 	 */
19920 	if (env->prog->type == BPF_PROG_TYPE_EXT)
19921 		env->prog->expected_attach_type = 0;
19922 
19923 	*prog = env->prog;
19924 err_unlock:
19925 	if (!is_priv)
19926 		mutex_unlock(&bpf_verifier_lock);
19927 	vfree(env->insn_aux_data);
19928 err_free_env:
19929 	kfree(env);
19930 	return ret;
19931 }
19932