1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <net/xdp.h> 30 31 #include "disasm.h" 32 33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 35 [_id] = & _name ## _verifier_ops, 36 #define BPF_MAP_TYPE(_id, _ops) 37 #define BPF_LINK_TYPE(_id, _name) 38 #include <linux/bpf_types.h> 39 #undef BPF_PROG_TYPE 40 #undef BPF_MAP_TYPE 41 #undef BPF_LINK_TYPE 42 }; 43 44 /* bpf_check() is a static code analyzer that walks eBPF program 45 * instruction by instruction and updates register/stack state. 46 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 47 * 48 * The first pass is depth-first-search to check that the program is a DAG. 49 * It rejects the following programs: 50 * - larger than BPF_MAXINSNS insns 51 * - if loop is present (detected via back-edge) 52 * - unreachable insns exist (shouldn't be a forest. program = one function) 53 * - out of bounds or malformed jumps 54 * The second pass is all possible path descent from the 1st insn. 55 * Since it's analyzing all paths through the program, the length of the 56 * analysis is limited to 64k insn, which may be hit even if total number of 57 * insn is less then 4K, but there are too many branches that change stack/regs. 58 * Number of 'branches to be analyzed' is limited to 1k 59 * 60 * On entry to each instruction, each register has a type, and the instruction 61 * changes the types of the registers depending on instruction semantics. 62 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 63 * copied to R1. 64 * 65 * All registers are 64-bit. 66 * R0 - return register 67 * R1-R5 argument passing registers 68 * R6-R9 callee saved registers 69 * R10 - frame pointer read-only 70 * 71 * At the start of BPF program the register R1 contains a pointer to bpf_context 72 * and has type PTR_TO_CTX. 73 * 74 * Verifier tracks arithmetic operations on pointers in case: 75 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 76 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 77 * 1st insn copies R10 (which has FRAME_PTR) type into R1 78 * and 2nd arithmetic instruction is pattern matched to recognize 79 * that it wants to construct a pointer to some element within stack. 80 * So after 2nd insn, the register R1 has type PTR_TO_STACK 81 * (and -20 constant is saved for further stack bounds checking). 82 * Meaning that this reg is a pointer to stack plus known immediate constant. 83 * 84 * Most of the time the registers have SCALAR_VALUE type, which 85 * means the register has some value, but it's not a valid pointer. 86 * (like pointer plus pointer becomes SCALAR_VALUE type) 87 * 88 * When verifier sees load or store instructions the type of base register 89 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 90 * four pointer types recognized by check_mem_access() function. 91 * 92 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 93 * and the range of [ptr, ptr + map's value_size) is accessible. 94 * 95 * registers used to pass values to function calls are checked against 96 * function argument constraints. 97 * 98 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 99 * It means that the register type passed to this function must be 100 * PTR_TO_STACK and it will be used inside the function as 101 * 'pointer to map element key' 102 * 103 * For example the argument constraints for bpf_map_lookup_elem(): 104 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 105 * .arg1_type = ARG_CONST_MAP_PTR, 106 * .arg2_type = ARG_PTR_TO_MAP_KEY, 107 * 108 * ret_type says that this function returns 'pointer to map elem value or null' 109 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 110 * 2nd argument should be a pointer to stack, which will be used inside 111 * the helper function as a pointer to map element key. 112 * 113 * On the kernel side the helper function looks like: 114 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 115 * { 116 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 117 * void *key = (void *) (unsigned long) r2; 118 * void *value; 119 * 120 * here kernel can access 'key' and 'map' pointers safely, knowing that 121 * [key, key + map->key_size) bytes are valid and were initialized on 122 * the stack of eBPF program. 123 * } 124 * 125 * Corresponding eBPF program may look like: 126 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 127 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 128 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 129 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 130 * here verifier looks at prototype of map_lookup_elem() and sees: 131 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 132 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 133 * 134 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 135 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 136 * and were initialized prior to this call. 137 * If it's ok, then verifier allows this BPF_CALL insn and looks at 138 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 139 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 140 * returns either pointer to map value or NULL. 141 * 142 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 143 * insn, the register holding that pointer in the true branch changes state to 144 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 145 * branch. See check_cond_jmp_op(). 146 * 147 * After the call R0 is set to return type of the function and registers R1-R5 148 * are set to NOT_INIT to indicate that they are no longer readable. 149 * 150 * The following reference types represent a potential reference to a kernel 151 * resource which, after first being allocated, must be checked and freed by 152 * the BPF program: 153 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 154 * 155 * When the verifier sees a helper call return a reference type, it allocates a 156 * pointer id for the reference and stores it in the current function state. 157 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 158 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 159 * passes through a NULL-check conditional. For the branch wherein the state is 160 * changed to CONST_IMM, the verifier releases the reference. 161 * 162 * For each helper function that allocates a reference, such as 163 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 164 * bpf_sk_release(). When a reference type passes into the release function, 165 * the verifier also releases the reference. If any unchecked or unreleased 166 * reference remains at the end of the program, the verifier rejects it. 167 */ 168 169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 170 struct bpf_verifier_stack_elem { 171 /* verifer state is 'st' 172 * before processing instruction 'insn_idx' 173 * and after processing instruction 'prev_insn_idx' 174 */ 175 struct bpf_verifier_state st; 176 int insn_idx; 177 int prev_insn_idx; 178 struct bpf_verifier_stack_elem *next; 179 /* length of verifier log at the time this state was pushed on stack */ 180 u32 log_pos; 181 }; 182 183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 184 #define BPF_COMPLEXITY_LIMIT_STATES 64 185 186 #define BPF_MAP_KEY_POISON (1ULL << 63) 187 #define BPF_MAP_KEY_SEEN (1ULL << 62) 188 189 #define BPF_MAP_PTR_UNPRIV 1UL 190 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 191 POISON_POINTER_DELTA)) 192 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 193 194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 198 static int ref_set_non_owning(struct bpf_verifier_env *env, 199 struct bpf_reg_state *reg); 200 static void specialize_kfunc(struct bpf_verifier_env *env, 201 u32 func_id, u16 offset, unsigned long *addr); 202 static bool is_trusted_reg(const struct bpf_reg_state *reg); 203 204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 205 { 206 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 207 } 208 209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 210 { 211 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 212 } 213 214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 215 const struct bpf_map *map, bool unpriv) 216 { 217 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 218 unpriv |= bpf_map_ptr_unpriv(aux); 219 aux->map_ptr_state = (unsigned long)map | 220 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 221 } 222 223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 224 { 225 return aux->map_key_state & BPF_MAP_KEY_POISON; 226 } 227 228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 229 { 230 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 231 } 232 233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 234 { 235 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 236 } 237 238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 239 { 240 bool poisoned = bpf_map_key_poisoned(aux); 241 242 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 243 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 244 } 245 246 static bool bpf_helper_call(const struct bpf_insn *insn) 247 { 248 return insn->code == (BPF_JMP | BPF_CALL) && 249 insn->src_reg == 0; 250 } 251 252 static bool bpf_pseudo_call(const struct bpf_insn *insn) 253 { 254 return insn->code == (BPF_JMP | BPF_CALL) && 255 insn->src_reg == BPF_PSEUDO_CALL; 256 } 257 258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 259 { 260 return insn->code == (BPF_JMP | BPF_CALL) && 261 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 262 } 263 264 struct bpf_call_arg_meta { 265 struct bpf_map *map_ptr; 266 bool raw_mode; 267 bool pkt_access; 268 u8 release_regno; 269 int regno; 270 int access_size; 271 int mem_size; 272 u64 msize_max_value; 273 int ref_obj_id; 274 int dynptr_id; 275 int map_uid; 276 int func_id; 277 struct btf *btf; 278 u32 btf_id; 279 struct btf *ret_btf; 280 u32 ret_btf_id; 281 u32 subprogno; 282 struct btf_field *kptr_field; 283 }; 284 285 struct bpf_kfunc_call_arg_meta { 286 /* In parameters */ 287 struct btf *btf; 288 u32 func_id; 289 u32 kfunc_flags; 290 const struct btf_type *func_proto; 291 const char *func_name; 292 /* Out parameters */ 293 u32 ref_obj_id; 294 u8 release_regno; 295 bool r0_rdonly; 296 u32 ret_btf_id; 297 u64 r0_size; 298 u32 subprogno; 299 struct { 300 u64 value; 301 bool found; 302 } arg_constant; 303 304 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 305 * generally to pass info about user-defined local kptr types to later 306 * verification logic 307 * bpf_obj_drop 308 * Record the local kptr type to be drop'd 309 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 310 * Record the local kptr type to be refcount_incr'd and use 311 * arg_owning_ref to determine whether refcount_acquire should be 312 * fallible 313 */ 314 struct btf *arg_btf; 315 u32 arg_btf_id; 316 bool arg_owning_ref; 317 318 struct { 319 struct btf_field *field; 320 } arg_list_head; 321 struct { 322 struct btf_field *field; 323 } arg_rbtree_root; 324 struct { 325 enum bpf_dynptr_type type; 326 u32 id; 327 u32 ref_obj_id; 328 } initialized_dynptr; 329 struct { 330 u8 spi; 331 u8 frameno; 332 } iter; 333 u64 mem_size; 334 }; 335 336 struct btf *btf_vmlinux; 337 338 static DEFINE_MUTEX(bpf_verifier_lock); 339 340 static const struct bpf_line_info * 341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 342 { 343 const struct bpf_line_info *linfo; 344 const struct bpf_prog *prog; 345 u32 i, nr_linfo; 346 347 prog = env->prog; 348 nr_linfo = prog->aux->nr_linfo; 349 350 if (!nr_linfo || insn_off >= prog->len) 351 return NULL; 352 353 linfo = prog->aux->linfo; 354 for (i = 1; i < nr_linfo; i++) 355 if (insn_off < linfo[i].insn_off) 356 break; 357 358 return &linfo[i - 1]; 359 } 360 361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 362 { 363 struct bpf_verifier_env *env = private_data; 364 va_list args; 365 366 if (!bpf_verifier_log_needed(&env->log)) 367 return; 368 369 va_start(args, fmt); 370 bpf_verifier_vlog(&env->log, fmt, args); 371 va_end(args); 372 } 373 374 static const char *ltrim(const char *s) 375 { 376 while (isspace(*s)) 377 s++; 378 379 return s; 380 } 381 382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 383 u32 insn_off, 384 const char *prefix_fmt, ...) 385 { 386 const struct bpf_line_info *linfo; 387 388 if (!bpf_verifier_log_needed(&env->log)) 389 return; 390 391 linfo = find_linfo(env, insn_off); 392 if (!linfo || linfo == env->prev_linfo) 393 return; 394 395 if (prefix_fmt) { 396 va_list args; 397 398 va_start(args, prefix_fmt); 399 bpf_verifier_vlog(&env->log, prefix_fmt, args); 400 va_end(args); 401 } 402 403 verbose(env, "%s\n", 404 ltrim(btf_name_by_offset(env->prog->aux->btf, 405 linfo->line_off))); 406 407 env->prev_linfo = linfo; 408 } 409 410 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 411 struct bpf_reg_state *reg, 412 struct tnum *range, const char *ctx, 413 const char *reg_name) 414 { 415 char tn_buf[48]; 416 417 verbose(env, "At %s the register %s ", ctx, reg_name); 418 if (!tnum_is_unknown(reg->var_off)) { 419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 420 verbose(env, "has value %s", tn_buf); 421 } else { 422 verbose(env, "has unknown scalar value"); 423 } 424 tnum_strn(tn_buf, sizeof(tn_buf), *range); 425 verbose(env, " should have been in %s\n", tn_buf); 426 } 427 428 static bool type_is_pkt_pointer(enum bpf_reg_type type) 429 { 430 type = base_type(type); 431 return type == PTR_TO_PACKET || 432 type == PTR_TO_PACKET_META; 433 } 434 435 static bool type_is_sk_pointer(enum bpf_reg_type type) 436 { 437 return type == PTR_TO_SOCKET || 438 type == PTR_TO_SOCK_COMMON || 439 type == PTR_TO_TCP_SOCK || 440 type == PTR_TO_XDP_SOCK; 441 } 442 443 static bool type_may_be_null(u32 type) 444 { 445 return type & PTR_MAYBE_NULL; 446 } 447 448 static bool reg_not_null(const struct bpf_reg_state *reg) 449 { 450 enum bpf_reg_type type; 451 452 type = reg->type; 453 if (type_may_be_null(type)) 454 return false; 455 456 type = base_type(type); 457 return type == PTR_TO_SOCKET || 458 type == PTR_TO_TCP_SOCK || 459 type == PTR_TO_MAP_VALUE || 460 type == PTR_TO_MAP_KEY || 461 type == PTR_TO_SOCK_COMMON || 462 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 463 type == PTR_TO_MEM; 464 } 465 466 static bool type_is_ptr_alloc_obj(u32 type) 467 { 468 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 469 } 470 471 static bool type_is_non_owning_ref(u32 type) 472 { 473 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 474 } 475 476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 477 { 478 struct btf_record *rec = NULL; 479 struct btf_struct_meta *meta; 480 481 if (reg->type == PTR_TO_MAP_VALUE) { 482 rec = reg->map_ptr->record; 483 } else if (type_is_ptr_alloc_obj(reg->type)) { 484 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 485 if (meta) 486 rec = meta->record; 487 } 488 return rec; 489 } 490 491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 492 { 493 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 494 495 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 496 } 497 498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 499 { 500 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 501 } 502 503 static bool type_is_rdonly_mem(u32 type) 504 { 505 return type & MEM_RDONLY; 506 } 507 508 static bool is_acquire_function(enum bpf_func_id func_id, 509 const struct bpf_map *map) 510 { 511 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 512 513 if (func_id == BPF_FUNC_sk_lookup_tcp || 514 func_id == BPF_FUNC_sk_lookup_udp || 515 func_id == BPF_FUNC_skc_lookup_tcp || 516 func_id == BPF_FUNC_ringbuf_reserve || 517 func_id == BPF_FUNC_kptr_xchg) 518 return true; 519 520 if (func_id == BPF_FUNC_map_lookup_elem && 521 (map_type == BPF_MAP_TYPE_SOCKMAP || 522 map_type == BPF_MAP_TYPE_SOCKHASH)) 523 return true; 524 525 return false; 526 } 527 528 static bool is_ptr_cast_function(enum bpf_func_id func_id) 529 { 530 return func_id == BPF_FUNC_tcp_sock || 531 func_id == BPF_FUNC_sk_fullsock || 532 func_id == BPF_FUNC_skc_to_tcp_sock || 533 func_id == BPF_FUNC_skc_to_tcp6_sock || 534 func_id == BPF_FUNC_skc_to_udp6_sock || 535 func_id == BPF_FUNC_skc_to_mptcp_sock || 536 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 537 func_id == BPF_FUNC_skc_to_tcp_request_sock; 538 } 539 540 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 541 { 542 return func_id == BPF_FUNC_dynptr_data; 543 } 544 545 static bool is_callback_calling_kfunc(u32 btf_id); 546 547 static bool is_callback_calling_function(enum bpf_func_id func_id) 548 { 549 return func_id == BPF_FUNC_for_each_map_elem || 550 func_id == BPF_FUNC_timer_set_callback || 551 func_id == BPF_FUNC_find_vma || 552 func_id == BPF_FUNC_loop || 553 func_id == BPF_FUNC_user_ringbuf_drain; 554 } 555 556 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 557 { 558 return func_id == BPF_FUNC_timer_set_callback; 559 } 560 561 static bool is_storage_get_function(enum bpf_func_id func_id) 562 { 563 return func_id == BPF_FUNC_sk_storage_get || 564 func_id == BPF_FUNC_inode_storage_get || 565 func_id == BPF_FUNC_task_storage_get || 566 func_id == BPF_FUNC_cgrp_storage_get; 567 } 568 569 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 570 const struct bpf_map *map) 571 { 572 int ref_obj_uses = 0; 573 574 if (is_ptr_cast_function(func_id)) 575 ref_obj_uses++; 576 if (is_acquire_function(func_id, map)) 577 ref_obj_uses++; 578 if (is_dynptr_ref_function(func_id)) 579 ref_obj_uses++; 580 581 return ref_obj_uses > 1; 582 } 583 584 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 585 { 586 return BPF_CLASS(insn->code) == BPF_STX && 587 BPF_MODE(insn->code) == BPF_ATOMIC && 588 insn->imm == BPF_CMPXCHG; 589 } 590 591 /* string representation of 'enum bpf_reg_type' 592 * 593 * Note that reg_type_str() can not appear more than once in a single verbose() 594 * statement. 595 */ 596 static const char *reg_type_str(struct bpf_verifier_env *env, 597 enum bpf_reg_type type) 598 { 599 char postfix[16] = {0}, prefix[64] = {0}; 600 static const char * const str[] = { 601 [NOT_INIT] = "?", 602 [SCALAR_VALUE] = "scalar", 603 [PTR_TO_CTX] = "ctx", 604 [CONST_PTR_TO_MAP] = "map_ptr", 605 [PTR_TO_MAP_VALUE] = "map_value", 606 [PTR_TO_STACK] = "fp", 607 [PTR_TO_PACKET] = "pkt", 608 [PTR_TO_PACKET_META] = "pkt_meta", 609 [PTR_TO_PACKET_END] = "pkt_end", 610 [PTR_TO_FLOW_KEYS] = "flow_keys", 611 [PTR_TO_SOCKET] = "sock", 612 [PTR_TO_SOCK_COMMON] = "sock_common", 613 [PTR_TO_TCP_SOCK] = "tcp_sock", 614 [PTR_TO_TP_BUFFER] = "tp_buffer", 615 [PTR_TO_XDP_SOCK] = "xdp_sock", 616 [PTR_TO_BTF_ID] = "ptr_", 617 [PTR_TO_MEM] = "mem", 618 [PTR_TO_BUF] = "buf", 619 [PTR_TO_FUNC] = "func", 620 [PTR_TO_MAP_KEY] = "map_key", 621 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", 622 }; 623 624 if (type & PTR_MAYBE_NULL) { 625 if (base_type(type) == PTR_TO_BTF_ID) 626 strncpy(postfix, "or_null_", 16); 627 else 628 strncpy(postfix, "_or_null", 16); 629 } 630 631 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", 632 type & MEM_RDONLY ? "rdonly_" : "", 633 type & MEM_RINGBUF ? "ringbuf_" : "", 634 type & MEM_USER ? "user_" : "", 635 type & MEM_PERCPU ? "percpu_" : "", 636 type & MEM_RCU ? "rcu_" : "", 637 type & PTR_UNTRUSTED ? "untrusted_" : "", 638 type & PTR_TRUSTED ? "trusted_" : "" 639 ); 640 641 snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s", 642 prefix, str[base_type(type)], postfix); 643 return env->tmp_str_buf; 644 } 645 646 static char slot_type_char[] = { 647 [STACK_INVALID] = '?', 648 [STACK_SPILL] = 'r', 649 [STACK_MISC] = 'm', 650 [STACK_ZERO] = '0', 651 [STACK_DYNPTR] = 'd', 652 [STACK_ITER] = 'i', 653 }; 654 655 static void print_liveness(struct bpf_verifier_env *env, 656 enum bpf_reg_liveness live) 657 { 658 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 659 verbose(env, "_"); 660 if (live & REG_LIVE_READ) 661 verbose(env, "r"); 662 if (live & REG_LIVE_WRITTEN) 663 verbose(env, "w"); 664 if (live & REG_LIVE_DONE) 665 verbose(env, "D"); 666 } 667 668 static int __get_spi(s32 off) 669 { 670 return (-off - 1) / BPF_REG_SIZE; 671 } 672 673 static struct bpf_func_state *func(struct bpf_verifier_env *env, 674 const struct bpf_reg_state *reg) 675 { 676 struct bpf_verifier_state *cur = env->cur_state; 677 678 return cur->frame[reg->frameno]; 679 } 680 681 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 682 { 683 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 684 685 /* We need to check that slots between [spi - nr_slots + 1, spi] are 686 * within [0, allocated_stack). 687 * 688 * Please note that the spi grows downwards. For example, a dynptr 689 * takes the size of two stack slots; the first slot will be at 690 * spi and the second slot will be at spi - 1. 691 */ 692 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 693 } 694 695 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 696 const char *obj_kind, int nr_slots) 697 { 698 int off, spi; 699 700 if (!tnum_is_const(reg->var_off)) { 701 verbose(env, "%s has to be at a constant offset\n", obj_kind); 702 return -EINVAL; 703 } 704 705 off = reg->off + reg->var_off.value; 706 if (off % BPF_REG_SIZE) { 707 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 708 return -EINVAL; 709 } 710 711 spi = __get_spi(off); 712 if (spi + 1 < nr_slots) { 713 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 714 return -EINVAL; 715 } 716 717 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 718 return -ERANGE; 719 return spi; 720 } 721 722 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 723 { 724 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 725 } 726 727 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 728 { 729 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 730 } 731 732 static const char *btf_type_name(const struct btf *btf, u32 id) 733 { 734 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 735 } 736 737 static const char *dynptr_type_str(enum bpf_dynptr_type type) 738 { 739 switch (type) { 740 case BPF_DYNPTR_TYPE_LOCAL: 741 return "local"; 742 case BPF_DYNPTR_TYPE_RINGBUF: 743 return "ringbuf"; 744 case BPF_DYNPTR_TYPE_SKB: 745 return "skb"; 746 case BPF_DYNPTR_TYPE_XDP: 747 return "xdp"; 748 case BPF_DYNPTR_TYPE_INVALID: 749 return "<invalid>"; 750 default: 751 WARN_ONCE(1, "unknown dynptr type %d\n", type); 752 return "<unknown>"; 753 } 754 } 755 756 static const char *iter_type_str(const struct btf *btf, u32 btf_id) 757 { 758 if (!btf || btf_id == 0) 759 return "<invalid>"; 760 761 /* we already validated that type is valid and has conforming name */ 762 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1; 763 } 764 765 static const char *iter_state_str(enum bpf_iter_state state) 766 { 767 switch (state) { 768 case BPF_ITER_STATE_ACTIVE: 769 return "active"; 770 case BPF_ITER_STATE_DRAINED: 771 return "drained"; 772 case BPF_ITER_STATE_INVALID: 773 return "<invalid>"; 774 default: 775 WARN_ONCE(1, "unknown iter state %d\n", state); 776 return "<unknown>"; 777 } 778 } 779 780 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 781 { 782 env->scratched_regs |= 1U << regno; 783 } 784 785 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 786 { 787 env->scratched_stack_slots |= 1ULL << spi; 788 } 789 790 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 791 { 792 return (env->scratched_regs >> regno) & 1; 793 } 794 795 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 796 { 797 return (env->scratched_stack_slots >> regno) & 1; 798 } 799 800 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 801 { 802 return env->scratched_regs || env->scratched_stack_slots; 803 } 804 805 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 806 { 807 env->scratched_regs = 0U; 808 env->scratched_stack_slots = 0ULL; 809 } 810 811 /* Used for printing the entire verifier state. */ 812 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 813 { 814 env->scratched_regs = ~0U; 815 env->scratched_stack_slots = ~0ULL; 816 } 817 818 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 819 { 820 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 821 case DYNPTR_TYPE_LOCAL: 822 return BPF_DYNPTR_TYPE_LOCAL; 823 case DYNPTR_TYPE_RINGBUF: 824 return BPF_DYNPTR_TYPE_RINGBUF; 825 case DYNPTR_TYPE_SKB: 826 return BPF_DYNPTR_TYPE_SKB; 827 case DYNPTR_TYPE_XDP: 828 return BPF_DYNPTR_TYPE_XDP; 829 default: 830 return BPF_DYNPTR_TYPE_INVALID; 831 } 832 } 833 834 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 835 { 836 switch (type) { 837 case BPF_DYNPTR_TYPE_LOCAL: 838 return DYNPTR_TYPE_LOCAL; 839 case BPF_DYNPTR_TYPE_RINGBUF: 840 return DYNPTR_TYPE_RINGBUF; 841 case BPF_DYNPTR_TYPE_SKB: 842 return DYNPTR_TYPE_SKB; 843 case BPF_DYNPTR_TYPE_XDP: 844 return DYNPTR_TYPE_XDP; 845 default: 846 return 0; 847 } 848 } 849 850 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 851 { 852 return type == BPF_DYNPTR_TYPE_RINGBUF; 853 } 854 855 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 856 enum bpf_dynptr_type type, 857 bool first_slot, int dynptr_id); 858 859 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 860 struct bpf_reg_state *reg); 861 862 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 863 struct bpf_reg_state *sreg1, 864 struct bpf_reg_state *sreg2, 865 enum bpf_dynptr_type type) 866 { 867 int id = ++env->id_gen; 868 869 __mark_dynptr_reg(sreg1, type, true, id); 870 __mark_dynptr_reg(sreg2, type, false, id); 871 } 872 873 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 874 struct bpf_reg_state *reg, 875 enum bpf_dynptr_type type) 876 { 877 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 878 } 879 880 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 881 struct bpf_func_state *state, int spi); 882 883 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 884 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 885 { 886 struct bpf_func_state *state = func(env, reg); 887 enum bpf_dynptr_type type; 888 int spi, i, err; 889 890 spi = dynptr_get_spi(env, reg); 891 if (spi < 0) 892 return spi; 893 894 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 895 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 896 * to ensure that for the following example: 897 * [d1][d1][d2][d2] 898 * spi 3 2 1 0 899 * So marking spi = 2 should lead to destruction of both d1 and d2. In 900 * case they do belong to same dynptr, second call won't see slot_type 901 * as STACK_DYNPTR and will simply skip destruction. 902 */ 903 err = destroy_if_dynptr_stack_slot(env, state, spi); 904 if (err) 905 return err; 906 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 907 if (err) 908 return err; 909 910 for (i = 0; i < BPF_REG_SIZE; i++) { 911 state->stack[spi].slot_type[i] = STACK_DYNPTR; 912 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 913 } 914 915 type = arg_to_dynptr_type(arg_type); 916 if (type == BPF_DYNPTR_TYPE_INVALID) 917 return -EINVAL; 918 919 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 920 &state->stack[spi - 1].spilled_ptr, type); 921 922 if (dynptr_type_refcounted(type)) { 923 /* The id is used to track proper releasing */ 924 int id; 925 926 if (clone_ref_obj_id) 927 id = clone_ref_obj_id; 928 else 929 id = acquire_reference_state(env, insn_idx); 930 931 if (id < 0) 932 return id; 933 934 state->stack[spi].spilled_ptr.ref_obj_id = id; 935 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 936 } 937 938 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 939 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 940 941 return 0; 942 } 943 944 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 945 { 946 int i; 947 948 for (i = 0; i < BPF_REG_SIZE; i++) { 949 state->stack[spi].slot_type[i] = STACK_INVALID; 950 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 951 } 952 953 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 954 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 955 956 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 957 * 958 * While we don't allow reading STACK_INVALID, it is still possible to 959 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 960 * helpers or insns can do partial read of that part without failing, 961 * but check_stack_range_initialized, check_stack_read_var_off, and 962 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 963 * the slot conservatively. Hence we need to prevent those liveness 964 * marking walks. 965 * 966 * This was not a problem before because STACK_INVALID is only set by 967 * default (where the default reg state has its reg->parent as NULL), or 968 * in clean_live_states after REG_LIVE_DONE (at which point 969 * mark_reg_read won't walk reg->parent chain), but not randomly during 970 * verifier state exploration (like we did above). Hence, for our case 971 * parentage chain will still be live (i.e. reg->parent may be 972 * non-NULL), while earlier reg->parent was NULL, so we need 973 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 974 * done later on reads or by mark_dynptr_read as well to unnecessary 975 * mark registers in verifier state. 976 */ 977 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 978 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 979 } 980 981 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 982 { 983 struct bpf_func_state *state = func(env, reg); 984 int spi, ref_obj_id, i; 985 986 spi = dynptr_get_spi(env, reg); 987 if (spi < 0) 988 return spi; 989 990 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 991 invalidate_dynptr(env, state, spi); 992 return 0; 993 } 994 995 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 996 997 /* If the dynptr has a ref_obj_id, then we need to invalidate 998 * two things: 999 * 1000 * 1) Any dynptrs with a matching ref_obj_id (clones) 1001 * 2) Any slices derived from this dynptr. 1002 */ 1003 1004 /* Invalidate any slices associated with this dynptr */ 1005 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 1006 1007 /* Invalidate any dynptr clones */ 1008 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1009 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 1010 continue; 1011 1012 /* it should always be the case that if the ref obj id 1013 * matches then the stack slot also belongs to a 1014 * dynptr 1015 */ 1016 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 1017 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 1018 return -EFAULT; 1019 } 1020 if (state->stack[i].spilled_ptr.dynptr.first_slot) 1021 invalidate_dynptr(env, state, i); 1022 } 1023 1024 return 0; 1025 } 1026 1027 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1028 struct bpf_reg_state *reg); 1029 1030 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1031 { 1032 if (!env->allow_ptr_leaks) 1033 __mark_reg_not_init(env, reg); 1034 else 1035 __mark_reg_unknown(env, reg); 1036 } 1037 1038 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 1039 struct bpf_func_state *state, int spi) 1040 { 1041 struct bpf_func_state *fstate; 1042 struct bpf_reg_state *dreg; 1043 int i, dynptr_id; 1044 1045 /* We always ensure that STACK_DYNPTR is never set partially, 1046 * hence just checking for slot_type[0] is enough. This is 1047 * different for STACK_SPILL, where it may be only set for 1048 * 1 byte, so code has to use is_spilled_reg. 1049 */ 1050 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 1051 return 0; 1052 1053 /* Reposition spi to first slot */ 1054 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1055 spi = spi + 1; 1056 1057 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 1058 verbose(env, "cannot overwrite referenced dynptr\n"); 1059 return -EINVAL; 1060 } 1061 1062 mark_stack_slot_scratched(env, spi); 1063 mark_stack_slot_scratched(env, spi - 1); 1064 1065 /* Writing partially to one dynptr stack slot destroys both. */ 1066 for (i = 0; i < BPF_REG_SIZE; i++) { 1067 state->stack[spi].slot_type[i] = STACK_INVALID; 1068 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 1069 } 1070 1071 dynptr_id = state->stack[spi].spilled_ptr.id; 1072 /* Invalidate any slices associated with this dynptr */ 1073 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 1074 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 1075 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 1076 continue; 1077 if (dreg->dynptr_id == dynptr_id) 1078 mark_reg_invalid(env, dreg); 1079 })); 1080 1081 /* Do not release reference state, we are destroying dynptr on stack, 1082 * not using some helper to release it. Just reset register. 1083 */ 1084 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 1085 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 1086 1087 /* Same reason as unmark_stack_slots_dynptr above */ 1088 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1089 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 1090 1091 return 0; 1092 } 1093 1094 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1095 { 1096 int spi; 1097 1098 if (reg->type == CONST_PTR_TO_DYNPTR) 1099 return false; 1100 1101 spi = dynptr_get_spi(env, reg); 1102 1103 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 1104 * error because this just means the stack state hasn't been updated yet. 1105 * We will do check_mem_access to check and update stack bounds later. 1106 */ 1107 if (spi < 0 && spi != -ERANGE) 1108 return false; 1109 1110 /* We don't need to check if the stack slots are marked by previous 1111 * dynptr initializations because we allow overwriting existing unreferenced 1112 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 1113 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 1114 * touching are completely destructed before we reinitialize them for a new 1115 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 1116 * instead of delaying it until the end where the user will get "Unreleased 1117 * reference" error. 1118 */ 1119 return true; 1120 } 1121 1122 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1123 { 1124 struct bpf_func_state *state = func(env, reg); 1125 int i, spi; 1126 1127 /* This already represents first slot of initialized bpf_dynptr. 1128 * 1129 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 1130 * check_func_arg_reg_off's logic, so we don't need to check its 1131 * offset and alignment. 1132 */ 1133 if (reg->type == CONST_PTR_TO_DYNPTR) 1134 return true; 1135 1136 spi = dynptr_get_spi(env, reg); 1137 if (spi < 0) 1138 return false; 1139 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1140 return false; 1141 1142 for (i = 0; i < BPF_REG_SIZE; i++) { 1143 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 1144 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 1145 return false; 1146 } 1147 1148 return true; 1149 } 1150 1151 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1152 enum bpf_arg_type arg_type) 1153 { 1154 struct bpf_func_state *state = func(env, reg); 1155 enum bpf_dynptr_type dynptr_type; 1156 int spi; 1157 1158 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1159 if (arg_type == ARG_PTR_TO_DYNPTR) 1160 return true; 1161 1162 dynptr_type = arg_to_dynptr_type(arg_type); 1163 if (reg->type == CONST_PTR_TO_DYNPTR) { 1164 return reg->dynptr.type == dynptr_type; 1165 } else { 1166 spi = dynptr_get_spi(env, reg); 1167 if (spi < 0) 1168 return false; 1169 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1170 } 1171 } 1172 1173 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1174 1175 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1176 struct bpf_reg_state *reg, int insn_idx, 1177 struct btf *btf, u32 btf_id, int nr_slots) 1178 { 1179 struct bpf_func_state *state = func(env, reg); 1180 int spi, i, j, id; 1181 1182 spi = iter_get_spi(env, reg, nr_slots); 1183 if (spi < 0) 1184 return spi; 1185 1186 id = acquire_reference_state(env, insn_idx); 1187 if (id < 0) 1188 return id; 1189 1190 for (i = 0; i < nr_slots; i++) { 1191 struct bpf_stack_state *slot = &state->stack[spi - i]; 1192 struct bpf_reg_state *st = &slot->spilled_ptr; 1193 1194 __mark_reg_known_zero(st); 1195 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1196 st->live |= REG_LIVE_WRITTEN; 1197 st->ref_obj_id = i == 0 ? id : 0; 1198 st->iter.btf = btf; 1199 st->iter.btf_id = btf_id; 1200 st->iter.state = BPF_ITER_STATE_ACTIVE; 1201 st->iter.depth = 0; 1202 1203 for (j = 0; j < BPF_REG_SIZE; j++) 1204 slot->slot_type[j] = STACK_ITER; 1205 1206 mark_stack_slot_scratched(env, spi - i); 1207 } 1208 1209 return 0; 1210 } 1211 1212 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1213 struct bpf_reg_state *reg, int nr_slots) 1214 { 1215 struct bpf_func_state *state = func(env, reg); 1216 int spi, i, j; 1217 1218 spi = iter_get_spi(env, reg, nr_slots); 1219 if (spi < 0) 1220 return spi; 1221 1222 for (i = 0; i < nr_slots; i++) { 1223 struct bpf_stack_state *slot = &state->stack[spi - i]; 1224 struct bpf_reg_state *st = &slot->spilled_ptr; 1225 1226 if (i == 0) 1227 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1228 1229 __mark_reg_not_init(env, st); 1230 1231 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1232 st->live |= REG_LIVE_WRITTEN; 1233 1234 for (j = 0; j < BPF_REG_SIZE; j++) 1235 slot->slot_type[j] = STACK_INVALID; 1236 1237 mark_stack_slot_scratched(env, spi - i); 1238 } 1239 1240 return 0; 1241 } 1242 1243 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1244 struct bpf_reg_state *reg, int nr_slots) 1245 { 1246 struct bpf_func_state *state = func(env, reg); 1247 int spi, i, j; 1248 1249 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1250 * will do check_mem_access to check and update stack bounds later, so 1251 * return true for that case. 1252 */ 1253 spi = iter_get_spi(env, reg, nr_slots); 1254 if (spi == -ERANGE) 1255 return true; 1256 if (spi < 0) 1257 return false; 1258 1259 for (i = 0; i < nr_slots; i++) { 1260 struct bpf_stack_state *slot = &state->stack[spi - i]; 1261 1262 for (j = 0; j < BPF_REG_SIZE; j++) 1263 if (slot->slot_type[j] == STACK_ITER) 1264 return false; 1265 } 1266 1267 return true; 1268 } 1269 1270 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1271 struct btf *btf, u32 btf_id, int nr_slots) 1272 { 1273 struct bpf_func_state *state = func(env, reg); 1274 int spi, i, j; 1275 1276 spi = iter_get_spi(env, reg, nr_slots); 1277 if (spi < 0) 1278 return false; 1279 1280 for (i = 0; i < nr_slots; i++) { 1281 struct bpf_stack_state *slot = &state->stack[spi - i]; 1282 struct bpf_reg_state *st = &slot->spilled_ptr; 1283 1284 /* only main (first) slot has ref_obj_id set */ 1285 if (i == 0 && !st->ref_obj_id) 1286 return false; 1287 if (i != 0 && st->ref_obj_id) 1288 return false; 1289 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1290 return false; 1291 1292 for (j = 0; j < BPF_REG_SIZE; j++) 1293 if (slot->slot_type[j] != STACK_ITER) 1294 return false; 1295 } 1296 1297 return true; 1298 } 1299 1300 /* Check if given stack slot is "special": 1301 * - spilled register state (STACK_SPILL); 1302 * - dynptr state (STACK_DYNPTR); 1303 * - iter state (STACK_ITER). 1304 */ 1305 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1306 { 1307 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1308 1309 switch (type) { 1310 case STACK_SPILL: 1311 case STACK_DYNPTR: 1312 case STACK_ITER: 1313 return true; 1314 case STACK_INVALID: 1315 case STACK_MISC: 1316 case STACK_ZERO: 1317 return false; 1318 default: 1319 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1320 return true; 1321 } 1322 } 1323 1324 /* The reg state of a pointer or a bounded scalar was saved when 1325 * it was spilled to the stack. 1326 */ 1327 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1328 { 1329 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1330 } 1331 1332 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1333 { 1334 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1335 stack->spilled_ptr.type == SCALAR_VALUE; 1336 } 1337 1338 static void scrub_spilled_slot(u8 *stype) 1339 { 1340 if (*stype != STACK_INVALID) 1341 *stype = STACK_MISC; 1342 } 1343 1344 static void print_verifier_state(struct bpf_verifier_env *env, 1345 const struct bpf_func_state *state, 1346 bool print_all) 1347 { 1348 const struct bpf_reg_state *reg; 1349 enum bpf_reg_type t; 1350 int i; 1351 1352 if (state->frameno) 1353 verbose(env, " frame%d:", state->frameno); 1354 for (i = 0; i < MAX_BPF_REG; i++) { 1355 reg = &state->regs[i]; 1356 t = reg->type; 1357 if (t == NOT_INIT) 1358 continue; 1359 if (!print_all && !reg_scratched(env, i)) 1360 continue; 1361 verbose(env, " R%d", i); 1362 print_liveness(env, reg->live); 1363 verbose(env, "="); 1364 if (t == SCALAR_VALUE && reg->precise) 1365 verbose(env, "P"); 1366 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 1367 tnum_is_const(reg->var_off)) { 1368 /* reg->off should be 0 for SCALAR_VALUE */ 1369 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1370 verbose(env, "%lld", reg->var_off.value + reg->off); 1371 } else { 1372 const char *sep = ""; 1373 1374 verbose(env, "%s", reg_type_str(env, t)); 1375 if (base_type(t) == PTR_TO_BTF_ID) 1376 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id)); 1377 verbose(env, "("); 1378 /* 1379 * _a stands for append, was shortened to avoid multiline statements below. 1380 * This macro is used to output a comma separated list of attributes. 1381 */ 1382 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 1383 1384 if (reg->id) 1385 verbose_a("id=%d", reg->id); 1386 if (reg->ref_obj_id) 1387 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 1388 if (type_is_non_owning_ref(reg->type)) 1389 verbose_a("%s", "non_own_ref"); 1390 if (t != SCALAR_VALUE) 1391 verbose_a("off=%d", reg->off); 1392 if (type_is_pkt_pointer(t)) 1393 verbose_a("r=%d", reg->range); 1394 else if (base_type(t) == CONST_PTR_TO_MAP || 1395 base_type(t) == PTR_TO_MAP_KEY || 1396 base_type(t) == PTR_TO_MAP_VALUE) 1397 verbose_a("ks=%d,vs=%d", 1398 reg->map_ptr->key_size, 1399 reg->map_ptr->value_size); 1400 if (tnum_is_const(reg->var_off)) { 1401 /* Typically an immediate SCALAR_VALUE, but 1402 * could be a pointer whose offset is too big 1403 * for reg->off 1404 */ 1405 verbose_a("imm=%llx", reg->var_off.value); 1406 } else { 1407 if (reg->smin_value != reg->umin_value && 1408 reg->smin_value != S64_MIN) 1409 verbose_a("smin=%lld", (long long)reg->smin_value); 1410 if (reg->smax_value != reg->umax_value && 1411 reg->smax_value != S64_MAX) 1412 verbose_a("smax=%lld", (long long)reg->smax_value); 1413 if (reg->umin_value != 0) 1414 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 1415 if (reg->umax_value != U64_MAX) 1416 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 1417 if (!tnum_is_unknown(reg->var_off)) { 1418 char tn_buf[48]; 1419 1420 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1421 verbose_a("var_off=%s", tn_buf); 1422 } 1423 if (reg->s32_min_value != reg->smin_value && 1424 reg->s32_min_value != S32_MIN) 1425 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 1426 if (reg->s32_max_value != reg->smax_value && 1427 reg->s32_max_value != S32_MAX) 1428 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 1429 if (reg->u32_min_value != reg->umin_value && 1430 reg->u32_min_value != U32_MIN) 1431 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 1432 if (reg->u32_max_value != reg->umax_value && 1433 reg->u32_max_value != U32_MAX) 1434 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 1435 } 1436 #undef verbose_a 1437 1438 verbose(env, ")"); 1439 } 1440 } 1441 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1442 char types_buf[BPF_REG_SIZE + 1]; 1443 bool valid = false; 1444 int j; 1445 1446 for (j = 0; j < BPF_REG_SIZE; j++) { 1447 if (state->stack[i].slot_type[j] != STACK_INVALID) 1448 valid = true; 1449 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1450 } 1451 types_buf[BPF_REG_SIZE] = 0; 1452 if (!valid) 1453 continue; 1454 if (!print_all && !stack_slot_scratched(env, i)) 1455 continue; 1456 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) { 1457 case STACK_SPILL: 1458 reg = &state->stack[i].spilled_ptr; 1459 t = reg->type; 1460 1461 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1462 print_liveness(env, reg->live); 1463 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1464 if (t == SCALAR_VALUE && reg->precise) 1465 verbose(env, "P"); 1466 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 1467 verbose(env, "%lld", reg->var_off.value + reg->off); 1468 break; 1469 case STACK_DYNPTR: 1470 i += BPF_DYNPTR_NR_SLOTS - 1; 1471 reg = &state->stack[i].spilled_ptr; 1472 1473 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1474 print_liveness(env, reg->live); 1475 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type)); 1476 if (reg->ref_obj_id) 1477 verbose(env, "(ref_id=%d)", reg->ref_obj_id); 1478 break; 1479 case STACK_ITER: 1480 /* only main slot has ref_obj_id set; skip others */ 1481 reg = &state->stack[i].spilled_ptr; 1482 if (!reg->ref_obj_id) 1483 continue; 1484 1485 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1486 print_liveness(env, reg->live); 1487 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)", 1488 iter_type_str(reg->iter.btf, reg->iter.btf_id), 1489 reg->ref_obj_id, iter_state_str(reg->iter.state), 1490 reg->iter.depth); 1491 break; 1492 case STACK_MISC: 1493 case STACK_ZERO: 1494 default: 1495 reg = &state->stack[i].spilled_ptr; 1496 1497 for (j = 0; j < BPF_REG_SIZE; j++) 1498 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1499 types_buf[BPF_REG_SIZE] = 0; 1500 1501 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1502 print_liveness(env, reg->live); 1503 verbose(env, "=%s", types_buf); 1504 break; 1505 } 1506 } 1507 if (state->acquired_refs && state->refs[0].id) { 1508 verbose(env, " refs=%d", state->refs[0].id); 1509 for (i = 1; i < state->acquired_refs; i++) 1510 if (state->refs[i].id) 1511 verbose(env, ",%d", state->refs[i].id); 1512 } 1513 if (state->in_callback_fn) 1514 verbose(env, " cb"); 1515 if (state->in_async_callback_fn) 1516 verbose(env, " async_cb"); 1517 verbose(env, "\n"); 1518 if (!print_all) 1519 mark_verifier_state_clean(env); 1520 } 1521 1522 static inline u32 vlog_alignment(u32 pos) 1523 { 1524 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 1525 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 1526 } 1527 1528 static void print_insn_state(struct bpf_verifier_env *env, 1529 const struct bpf_func_state *state) 1530 { 1531 if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) { 1532 /* remove new line character */ 1533 bpf_vlog_reset(&env->log, env->prev_log_pos - 1); 1534 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' '); 1535 } else { 1536 verbose(env, "%d:", env->insn_idx); 1537 } 1538 print_verifier_state(env, state, false); 1539 } 1540 1541 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1542 * small to hold src. This is different from krealloc since we don't want to preserve 1543 * the contents of dst. 1544 * 1545 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1546 * not be allocated. 1547 */ 1548 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1549 { 1550 size_t alloc_bytes; 1551 void *orig = dst; 1552 size_t bytes; 1553 1554 if (ZERO_OR_NULL_PTR(src)) 1555 goto out; 1556 1557 if (unlikely(check_mul_overflow(n, size, &bytes))) 1558 return NULL; 1559 1560 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1561 dst = krealloc(orig, alloc_bytes, flags); 1562 if (!dst) { 1563 kfree(orig); 1564 return NULL; 1565 } 1566 1567 memcpy(dst, src, bytes); 1568 out: 1569 return dst ? dst : ZERO_SIZE_PTR; 1570 } 1571 1572 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1573 * small to hold new_n items. new items are zeroed out if the array grows. 1574 * 1575 * Contrary to krealloc_array, does not free arr if new_n is zero. 1576 */ 1577 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1578 { 1579 size_t alloc_size; 1580 void *new_arr; 1581 1582 if (!new_n || old_n == new_n) 1583 goto out; 1584 1585 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1586 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1587 if (!new_arr) { 1588 kfree(arr); 1589 return NULL; 1590 } 1591 arr = new_arr; 1592 1593 if (new_n > old_n) 1594 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1595 1596 out: 1597 return arr ? arr : ZERO_SIZE_PTR; 1598 } 1599 1600 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1601 { 1602 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1603 sizeof(struct bpf_reference_state), GFP_KERNEL); 1604 if (!dst->refs) 1605 return -ENOMEM; 1606 1607 dst->acquired_refs = src->acquired_refs; 1608 return 0; 1609 } 1610 1611 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1612 { 1613 size_t n = src->allocated_stack / BPF_REG_SIZE; 1614 1615 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1616 GFP_KERNEL); 1617 if (!dst->stack) 1618 return -ENOMEM; 1619 1620 dst->allocated_stack = src->allocated_stack; 1621 return 0; 1622 } 1623 1624 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1625 { 1626 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1627 sizeof(struct bpf_reference_state)); 1628 if (!state->refs) 1629 return -ENOMEM; 1630 1631 state->acquired_refs = n; 1632 return 0; 1633 } 1634 1635 static int grow_stack_state(struct bpf_func_state *state, int size) 1636 { 1637 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1638 1639 if (old_n >= n) 1640 return 0; 1641 1642 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1643 if (!state->stack) 1644 return -ENOMEM; 1645 1646 state->allocated_stack = size; 1647 return 0; 1648 } 1649 1650 /* Acquire a pointer id from the env and update the state->refs to include 1651 * this new pointer reference. 1652 * On success, returns a valid pointer id to associate with the register 1653 * On failure, returns a negative errno. 1654 */ 1655 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1656 { 1657 struct bpf_func_state *state = cur_func(env); 1658 int new_ofs = state->acquired_refs; 1659 int id, err; 1660 1661 err = resize_reference_state(state, state->acquired_refs + 1); 1662 if (err) 1663 return err; 1664 id = ++env->id_gen; 1665 state->refs[new_ofs].id = id; 1666 state->refs[new_ofs].insn_idx = insn_idx; 1667 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1668 1669 return id; 1670 } 1671 1672 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1673 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1674 { 1675 int i, last_idx; 1676 1677 last_idx = state->acquired_refs - 1; 1678 for (i = 0; i < state->acquired_refs; i++) { 1679 if (state->refs[i].id == ptr_id) { 1680 /* Cannot release caller references in callbacks */ 1681 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1682 return -EINVAL; 1683 if (last_idx && i != last_idx) 1684 memcpy(&state->refs[i], &state->refs[last_idx], 1685 sizeof(*state->refs)); 1686 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1687 state->acquired_refs--; 1688 return 0; 1689 } 1690 } 1691 return -EINVAL; 1692 } 1693 1694 static void free_func_state(struct bpf_func_state *state) 1695 { 1696 if (!state) 1697 return; 1698 kfree(state->refs); 1699 kfree(state->stack); 1700 kfree(state); 1701 } 1702 1703 static void clear_jmp_history(struct bpf_verifier_state *state) 1704 { 1705 kfree(state->jmp_history); 1706 state->jmp_history = NULL; 1707 state->jmp_history_cnt = 0; 1708 } 1709 1710 static void free_verifier_state(struct bpf_verifier_state *state, 1711 bool free_self) 1712 { 1713 int i; 1714 1715 for (i = 0; i <= state->curframe; i++) { 1716 free_func_state(state->frame[i]); 1717 state->frame[i] = NULL; 1718 } 1719 clear_jmp_history(state); 1720 if (free_self) 1721 kfree(state); 1722 } 1723 1724 /* copy verifier state from src to dst growing dst stack space 1725 * when necessary to accommodate larger src stack 1726 */ 1727 static int copy_func_state(struct bpf_func_state *dst, 1728 const struct bpf_func_state *src) 1729 { 1730 int err; 1731 1732 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1733 err = copy_reference_state(dst, src); 1734 if (err) 1735 return err; 1736 return copy_stack_state(dst, src); 1737 } 1738 1739 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1740 const struct bpf_verifier_state *src) 1741 { 1742 struct bpf_func_state *dst; 1743 int i, err; 1744 1745 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1746 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1747 GFP_USER); 1748 if (!dst_state->jmp_history) 1749 return -ENOMEM; 1750 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1751 1752 /* if dst has more stack frames then src frame, free them */ 1753 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1754 free_func_state(dst_state->frame[i]); 1755 dst_state->frame[i] = NULL; 1756 } 1757 dst_state->speculative = src->speculative; 1758 dst_state->active_rcu_lock = src->active_rcu_lock; 1759 dst_state->curframe = src->curframe; 1760 dst_state->active_lock.ptr = src->active_lock.ptr; 1761 dst_state->active_lock.id = src->active_lock.id; 1762 dst_state->branches = src->branches; 1763 dst_state->parent = src->parent; 1764 dst_state->first_insn_idx = src->first_insn_idx; 1765 dst_state->last_insn_idx = src->last_insn_idx; 1766 for (i = 0; i <= src->curframe; i++) { 1767 dst = dst_state->frame[i]; 1768 if (!dst) { 1769 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1770 if (!dst) 1771 return -ENOMEM; 1772 dst_state->frame[i] = dst; 1773 } 1774 err = copy_func_state(dst, src->frame[i]); 1775 if (err) 1776 return err; 1777 } 1778 return 0; 1779 } 1780 1781 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1782 { 1783 while (st) { 1784 u32 br = --st->branches; 1785 1786 /* WARN_ON(br > 1) technically makes sense here, 1787 * but see comment in push_stack(), hence: 1788 */ 1789 WARN_ONCE((int)br < 0, 1790 "BUG update_branch_counts:branches_to_explore=%d\n", 1791 br); 1792 if (br) 1793 break; 1794 st = st->parent; 1795 } 1796 } 1797 1798 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1799 int *insn_idx, bool pop_log) 1800 { 1801 struct bpf_verifier_state *cur = env->cur_state; 1802 struct bpf_verifier_stack_elem *elem, *head = env->head; 1803 int err; 1804 1805 if (env->head == NULL) 1806 return -ENOENT; 1807 1808 if (cur) { 1809 err = copy_verifier_state(cur, &head->st); 1810 if (err) 1811 return err; 1812 } 1813 if (pop_log) 1814 bpf_vlog_reset(&env->log, head->log_pos); 1815 if (insn_idx) 1816 *insn_idx = head->insn_idx; 1817 if (prev_insn_idx) 1818 *prev_insn_idx = head->prev_insn_idx; 1819 elem = head->next; 1820 free_verifier_state(&head->st, false); 1821 kfree(head); 1822 env->head = elem; 1823 env->stack_size--; 1824 return 0; 1825 } 1826 1827 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1828 int insn_idx, int prev_insn_idx, 1829 bool speculative) 1830 { 1831 struct bpf_verifier_state *cur = env->cur_state; 1832 struct bpf_verifier_stack_elem *elem; 1833 int err; 1834 1835 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1836 if (!elem) 1837 goto err; 1838 1839 elem->insn_idx = insn_idx; 1840 elem->prev_insn_idx = prev_insn_idx; 1841 elem->next = env->head; 1842 elem->log_pos = env->log.end_pos; 1843 env->head = elem; 1844 env->stack_size++; 1845 err = copy_verifier_state(&elem->st, cur); 1846 if (err) 1847 goto err; 1848 elem->st.speculative |= speculative; 1849 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1850 verbose(env, "The sequence of %d jumps is too complex.\n", 1851 env->stack_size); 1852 goto err; 1853 } 1854 if (elem->st.parent) { 1855 ++elem->st.parent->branches; 1856 /* WARN_ON(branches > 2) technically makes sense here, 1857 * but 1858 * 1. speculative states will bump 'branches' for non-branch 1859 * instructions 1860 * 2. is_state_visited() heuristics may decide not to create 1861 * a new state for a sequence of branches and all such current 1862 * and cloned states will be pointing to a single parent state 1863 * which might have large 'branches' count. 1864 */ 1865 } 1866 return &elem->st; 1867 err: 1868 free_verifier_state(env->cur_state, true); 1869 env->cur_state = NULL; 1870 /* pop all elements and return */ 1871 while (!pop_stack(env, NULL, NULL, false)); 1872 return NULL; 1873 } 1874 1875 #define CALLER_SAVED_REGS 6 1876 static const int caller_saved[CALLER_SAVED_REGS] = { 1877 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1878 }; 1879 1880 /* This helper doesn't clear reg->id */ 1881 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1882 { 1883 reg->var_off = tnum_const(imm); 1884 reg->smin_value = (s64)imm; 1885 reg->smax_value = (s64)imm; 1886 reg->umin_value = imm; 1887 reg->umax_value = imm; 1888 1889 reg->s32_min_value = (s32)imm; 1890 reg->s32_max_value = (s32)imm; 1891 reg->u32_min_value = (u32)imm; 1892 reg->u32_max_value = (u32)imm; 1893 } 1894 1895 /* Mark the unknown part of a register (variable offset or scalar value) as 1896 * known to have the value @imm. 1897 */ 1898 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1899 { 1900 /* Clear off and union(map_ptr, range) */ 1901 memset(((u8 *)reg) + sizeof(reg->type), 0, 1902 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1903 reg->id = 0; 1904 reg->ref_obj_id = 0; 1905 ___mark_reg_known(reg, imm); 1906 } 1907 1908 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1909 { 1910 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1911 reg->s32_min_value = (s32)imm; 1912 reg->s32_max_value = (s32)imm; 1913 reg->u32_min_value = (u32)imm; 1914 reg->u32_max_value = (u32)imm; 1915 } 1916 1917 /* Mark the 'variable offset' part of a register as zero. This should be 1918 * used only on registers holding a pointer type. 1919 */ 1920 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1921 { 1922 __mark_reg_known(reg, 0); 1923 } 1924 1925 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1926 { 1927 __mark_reg_known(reg, 0); 1928 reg->type = SCALAR_VALUE; 1929 } 1930 1931 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1932 struct bpf_reg_state *regs, u32 regno) 1933 { 1934 if (WARN_ON(regno >= MAX_BPF_REG)) { 1935 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1936 /* Something bad happened, let's kill all regs */ 1937 for (regno = 0; regno < MAX_BPF_REG; regno++) 1938 __mark_reg_not_init(env, regs + regno); 1939 return; 1940 } 1941 __mark_reg_known_zero(regs + regno); 1942 } 1943 1944 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1945 bool first_slot, int dynptr_id) 1946 { 1947 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1948 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1949 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1950 */ 1951 __mark_reg_known_zero(reg); 1952 reg->type = CONST_PTR_TO_DYNPTR; 1953 /* Give each dynptr a unique id to uniquely associate slices to it. */ 1954 reg->id = dynptr_id; 1955 reg->dynptr.type = type; 1956 reg->dynptr.first_slot = first_slot; 1957 } 1958 1959 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1960 { 1961 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1962 const struct bpf_map *map = reg->map_ptr; 1963 1964 if (map->inner_map_meta) { 1965 reg->type = CONST_PTR_TO_MAP; 1966 reg->map_ptr = map->inner_map_meta; 1967 /* transfer reg's id which is unique for every map_lookup_elem 1968 * as UID of the inner map. 1969 */ 1970 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1971 reg->map_uid = reg->id; 1972 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1973 reg->type = PTR_TO_XDP_SOCK; 1974 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1975 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1976 reg->type = PTR_TO_SOCKET; 1977 } else { 1978 reg->type = PTR_TO_MAP_VALUE; 1979 } 1980 return; 1981 } 1982 1983 reg->type &= ~PTR_MAYBE_NULL; 1984 } 1985 1986 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 1987 struct btf_field_graph_root *ds_head) 1988 { 1989 __mark_reg_known_zero(®s[regno]); 1990 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 1991 regs[regno].btf = ds_head->btf; 1992 regs[regno].btf_id = ds_head->value_btf_id; 1993 regs[regno].off = ds_head->node_offset; 1994 } 1995 1996 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1997 { 1998 return type_is_pkt_pointer(reg->type); 1999 } 2000 2001 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 2002 { 2003 return reg_is_pkt_pointer(reg) || 2004 reg->type == PTR_TO_PACKET_END; 2005 } 2006 2007 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 2008 { 2009 return base_type(reg->type) == PTR_TO_MEM && 2010 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 2011 } 2012 2013 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 2014 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 2015 enum bpf_reg_type which) 2016 { 2017 /* The register can already have a range from prior markings. 2018 * This is fine as long as it hasn't been advanced from its 2019 * origin. 2020 */ 2021 return reg->type == which && 2022 reg->id == 0 && 2023 reg->off == 0 && 2024 tnum_equals_const(reg->var_off, 0); 2025 } 2026 2027 /* Reset the min/max bounds of a register */ 2028 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 2029 { 2030 reg->smin_value = S64_MIN; 2031 reg->smax_value = S64_MAX; 2032 reg->umin_value = 0; 2033 reg->umax_value = U64_MAX; 2034 2035 reg->s32_min_value = S32_MIN; 2036 reg->s32_max_value = S32_MAX; 2037 reg->u32_min_value = 0; 2038 reg->u32_max_value = U32_MAX; 2039 } 2040 2041 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 2042 { 2043 reg->smin_value = S64_MIN; 2044 reg->smax_value = S64_MAX; 2045 reg->umin_value = 0; 2046 reg->umax_value = U64_MAX; 2047 } 2048 2049 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 2050 { 2051 reg->s32_min_value = S32_MIN; 2052 reg->s32_max_value = S32_MAX; 2053 reg->u32_min_value = 0; 2054 reg->u32_max_value = U32_MAX; 2055 } 2056 2057 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2058 { 2059 struct tnum var32_off = tnum_subreg(reg->var_off); 2060 2061 /* min signed is max(sign bit) | min(other bits) */ 2062 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2063 var32_off.value | (var32_off.mask & S32_MIN)); 2064 /* max signed is min(sign bit) | max(other bits) */ 2065 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2066 var32_off.value | (var32_off.mask & S32_MAX)); 2067 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2068 reg->u32_max_value = min(reg->u32_max_value, 2069 (u32)(var32_off.value | var32_off.mask)); 2070 } 2071 2072 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2073 { 2074 /* min signed is max(sign bit) | min(other bits) */ 2075 reg->smin_value = max_t(s64, reg->smin_value, 2076 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2077 /* max signed is min(sign bit) | max(other bits) */ 2078 reg->smax_value = min_t(s64, reg->smax_value, 2079 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2080 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2081 reg->umax_value = min(reg->umax_value, 2082 reg->var_off.value | reg->var_off.mask); 2083 } 2084 2085 static void __update_reg_bounds(struct bpf_reg_state *reg) 2086 { 2087 __update_reg32_bounds(reg); 2088 __update_reg64_bounds(reg); 2089 } 2090 2091 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2092 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2093 { 2094 /* Learn sign from signed bounds. 2095 * If we cannot cross the sign boundary, then signed and unsigned bounds 2096 * are the same, so combine. This works even in the negative case, e.g. 2097 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2098 */ 2099 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 2100 reg->s32_min_value = reg->u32_min_value = 2101 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2102 reg->s32_max_value = reg->u32_max_value = 2103 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2104 return; 2105 } 2106 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2107 * boundary, so we must be careful. 2108 */ 2109 if ((s32)reg->u32_max_value >= 0) { 2110 /* Positive. We can't learn anything from the smin, but smax 2111 * is positive, hence safe. 2112 */ 2113 reg->s32_min_value = reg->u32_min_value; 2114 reg->s32_max_value = reg->u32_max_value = 2115 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2116 } else if ((s32)reg->u32_min_value < 0) { 2117 /* Negative. We can't learn anything from the smax, but smin 2118 * is negative, hence safe. 2119 */ 2120 reg->s32_min_value = reg->u32_min_value = 2121 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2122 reg->s32_max_value = reg->u32_max_value; 2123 } 2124 } 2125 2126 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2127 { 2128 /* Learn sign from signed bounds. 2129 * If we cannot cross the sign boundary, then signed and unsigned bounds 2130 * are the same, so combine. This works even in the negative case, e.g. 2131 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2132 */ 2133 if (reg->smin_value >= 0 || reg->smax_value < 0) { 2134 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2135 reg->umin_value); 2136 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2137 reg->umax_value); 2138 return; 2139 } 2140 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2141 * boundary, so we must be careful. 2142 */ 2143 if ((s64)reg->umax_value >= 0) { 2144 /* Positive. We can't learn anything from the smin, but smax 2145 * is positive, hence safe. 2146 */ 2147 reg->smin_value = reg->umin_value; 2148 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2149 reg->umax_value); 2150 } else if ((s64)reg->umin_value < 0) { 2151 /* Negative. We can't learn anything from the smax, but smin 2152 * is negative, hence safe. 2153 */ 2154 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2155 reg->umin_value); 2156 reg->smax_value = reg->umax_value; 2157 } 2158 } 2159 2160 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2161 { 2162 __reg32_deduce_bounds(reg); 2163 __reg64_deduce_bounds(reg); 2164 } 2165 2166 /* Attempts to improve var_off based on unsigned min/max information */ 2167 static void __reg_bound_offset(struct bpf_reg_state *reg) 2168 { 2169 struct tnum var64_off = tnum_intersect(reg->var_off, 2170 tnum_range(reg->umin_value, 2171 reg->umax_value)); 2172 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2173 tnum_range(reg->u32_min_value, 2174 reg->u32_max_value)); 2175 2176 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2177 } 2178 2179 static void reg_bounds_sync(struct bpf_reg_state *reg) 2180 { 2181 /* We might have learned new bounds from the var_off. */ 2182 __update_reg_bounds(reg); 2183 /* We might have learned something about the sign bit. */ 2184 __reg_deduce_bounds(reg); 2185 /* We might have learned some bits from the bounds. */ 2186 __reg_bound_offset(reg); 2187 /* Intersecting with the old var_off might have improved our bounds 2188 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2189 * then new var_off is (0; 0x7f...fc) which improves our umax. 2190 */ 2191 __update_reg_bounds(reg); 2192 } 2193 2194 static bool __reg32_bound_s64(s32 a) 2195 { 2196 return a >= 0 && a <= S32_MAX; 2197 } 2198 2199 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2200 { 2201 reg->umin_value = reg->u32_min_value; 2202 reg->umax_value = reg->u32_max_value; 2203 2204 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2205 * be positive otherwise set to worse case bounds and refine later 2206 * from tnum. 2207 */ 2208 if (__reg32_bound_s64(reg->s32_min_value) && 2209 __reg32_bound_s64(reg->s32_max_value)) { 2210 reg->smin_value = reg->s32_min_value; 2211 reg->smax_value = reg->s32_max_value; 2212 } else { 2213 reg->smin_value = 0; 2214 reg->smax_value = U32_MAX; 2215 } 2216 } 2217 2218 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 2219 { 2220 /* special case when 64-bit register has upper 32-bit register 2221 * zeroed. Typically happens after zext or <<32, >>32 sequence 2222 * allowing us to use 32-bit bounds directly, 2223 */ 2224 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 2225 __reg_assign_32_into_64(reg); 2226 } else { 2227 /* Otherwise the best we can do is push lower 32bit known and 2228 * unknown bits into register (var_off set from jmp logic) 2229 * then learn as much as possible from the 64-bit tnum 2230 * known and unknown bits. The previous smin/smax bounds are 2231 * invalid here because of jmp32 compare so mark them unknown 2232 * so they do not impact tnum bounds calculation. 2233 */ 2234 __mark_reg64_unbounded(reg); 2235 } 2236 reg_bounds_sync(reg); 2237 } 2238 2239 static bool __reg64_bound_s32(s64 a) 2240 { 2241 return a >= S32_MIN && a <= S32_MAX; 2242 } 2243 2244 static bool __reg64_bound_u32(u64 a) 2245 { 2246 return a >= U32_MIN && a <= U32_MAX; 2247 } 2248 2249 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 2250 { 2251 __mark_reg32_unbounded(reg); 2252 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 2253 reg->s32_min_value = (s32)reg->smin_value; 2254 reg->s32_max_value = (s32)reg->smax_value; 2255 } 2256 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 2257 reg->u32_min_value = (u32)reg->umin_value; 2258 reg->u32_max_value = (u32)reg->umax_value; 2259 } 2260 reg_bounds_sync(reg); 2261 } 2262 2263 /* Mark a register as having a completely unknown (scalar) value. */ 2264 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2265 struct bpf_reg_state *reg) 2266 { 2267 /* 2268 * Clear type, off, and union(map_ptr, range) and 2269 * padding between 'type' and union 2270 */ 2271 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2272 reg->type = SCALAR_VALUE; 2273 reg->id = 0; 2274 reg->ref_obj_id = 0; 2275 reg->var_off = tnum_unknown; 2276 reg->frameno = 0; 2277 reg->precise = !env->bpf_capable; 2278 __mark_reg_unbounded(reg); 2279 } 2280 2281 static void mark_reg_unknown(struct bpf_verifier_env *env, 2282 struct bpf_reg_state *regs, u32 regno) 2283 { 2284 if (WARN_ON(regno >= MAX_BPF_REG)) { 2285 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2286 /* Something bad happened, let's kill all regs except FP */ 2287 for (regno = 0; regno < BPF_REG_FP; regno++) 2288 __mark_reg_not_init(env, regs + regno); 2289 return; 2290 } 2291 __mark_reg_unknown(env, regs + regno); 2292 } 2293 2294 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2295 struct bpf_reg_state *reg) 2296 { 2297 __mark_reg_unknown(env, reg); 2298 reg->type = NOT_INIT; 2299 } 2300 2301 static void mark_reg_not_init(struct bpf_verifier_env *env, 2302 struct bpf_reg_state *regs, u32 regno) 2303 { 2304 if (WARN_ON(regno >= MAX_BPF_REG)) { 2305 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2306 /* Something bad happened, let's kill all regs except FP */ 2307 for (regno = 0; regno < BPF_REG_FP; regno++) 2308 __mark_reg_not_init(env, regs + regno); 2309 return; 2310 } 2311 __mark_reg_not_init(env, regs + regno); 2312 } 2313 2314 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2315 struct bpf_reg_state *regs, u32 regno, 2316 enum bpf_reg_type reg_type, 2317 struct btf *btf, u32 btf_id, 2318 enum bpf_type_flag flag) 2319 { 2320 if (reg_type == SCALAR_VALUE) { 2321 mark_reg_unknown(env, regs, regno); 2322 return; 2323 } 2324 mark_reg_known_zero(env, regs, regno); 2325 regs[regno].type = PTR_TO_BTF_ID | flag; 2326 regs[regno].btf = btf; 2327 regs[regno].btf_id = btf_id; 2328 } 2329 2330 #define DEF_NOT_SUBREG (0) 2331 static void init_reg_state(struct bpf_verifier_env *env, 2332 struct bpf_func_state *state) 2333 { 2334 struct bpf_reg_state *regs = state->regs; 2335 int i; 2336 2337 for (i = 0; i < MAX_BPF_REG; i++) { 2338 mark_reg_not_init(env, regs, i); 2339 regs[i].live = REG_LIVE_NONE; 2340 regs[i].parent = NULL; 2341 regs[i].subreg_def = DEF_NOT_SUBREG; 2342 } 2343 2344 /* frame pointer */ 2345 regs[BPF_REG_FP].type = PTR_TO_STACK; 2346 mark_reg_known_zero(env, regs, BPF_REG_FP); 2347 regs[BPF_REG_FP].frameno = state->frameno; 2348 } 2349 2350 #define BPF_MAIN_FUNC (-1) 2351 static void init_func_state(struct bpf_verifier_env *env, 2352 struct bpf_func_state *state, 2353 int callsite, int frameno, int subprogno) 2354 { 2355 state->callsite = callsite; 2356 state->frameno = frameno; 2357 state->subprogno = subprogno; 2358 state->callback_ret_range = tnum_range(0, 0); 2359 init_reg_state(env, state); 2360 mark_verifier_state_scratched(env); 2361 } 2362 2363 /* Similar to push_stack(), but for async callbacks */ 2364 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2365 int insn_idx, int prev_insn_idx, 2366 int subprog) 2367 { 2368 struct bpf_verifier_stack_elem *elem; 2369 struct bpf_func_state *frame; 2370 2371 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2372 if (!elem) 2373 goto err; 2374 2375 elem->insn_idx = insn_idx; 2376 elem->prev_insn_idx = prev_insn_idx; 2377 elem->next = env->head; 2378 elem->log_pos = env->log.end_pos; 2379 env->head = elem; 2380 env->stack_size++; 2381 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2382 verbose(env, 2383 "The sequence of %d jumps is too complex for async cb.\n", 2384 env->stack_size); 2385 goto err; 2386 } 2387 /* Unlike push_stack() do not copy_verifier_state(). 2388 * The caller state doesn't matter. 2389 * This is async callback. It starts in a fresh stack. 2390 * Initialize it similar to do_check_common(). 2391 */ 2392 elem->st.branches = 1; 2393 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2394 if (!frame) 2395 goto err; 2396 init_func_state(env, frame, 2397 BPF_MAIN_FUNC /* callsite */, 2398 0 /* frameno within this callchain */, 2399 subprog /* subprog number within this prog */); 2400 elem->st.frame[0] = frame; 2401 return &elem->st; 2402 err: 2403 free_verifier_state(env->cur_state, true); 2404 env->cur_state = NULL; 2405 /* pop all elements and return */ 2406 while (!pop_stack(env, NULL, NULL, false)); 2407 return NULL; 2408 } 2409 2410 2411 enum reg_arg_type { 2412 SRC_OP, /* register is used as source operand */ 2413 DST_OP, /* register is used as destination operand */ 2414 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2415 }; 2416 2417 static int cmp_subprogs(const void *a, const void *b) 2418 { 2419 return ((struct bpf_subprog_info *)a)->start - 2420 ((struct bpf_subprog_info *)b)->start; 2421 } 2422 2423 static int find_subprog(struct bpf_verifier_env *env, int off) 2424 { 2425 struct bpf_subprog_info *p; 2426 2427 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2428 sizeof(env->subprog_info[0]), cmp_subprogs); 2429 if (!p) 2430 return -ENOENT; 2431 return p - env->subprog_info; 2432 2433 } 2434 2435 static int add_subprog(struct bpf_verifier_env *env, int off) 2436 { 2437 int insn_cnt = env->prog->len; 2438 int ret; 2439 2440 if (off >= insn_cnt || off < 0) { 2441 verbose(env, "call to invalid destination\n"); 2442 return -EINVAL; 2443 } 2444 ret = find_subprog(env, off); 2445 if (ret >= 0) 2446 return ret; 2447 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2448 verbose(env, "too many subprograms\n"); 2449 return -E2BIG; 2450 } 2451 /* determine subprog starts. The end is one before the next starts */ 2452 env->subprog_info[env->subprog_cnt++].start = off; 2453 sort(env->subprog_info, env->subprog_cnt, 2454 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2455 return env->subprog_cnt - 1; 2456 } 2457 2458 #define MAX_KFUNC_DESCS 256 2459 #define MAX_KFUNC_BTFS 256 2460 2461 struct bpf_kfunc_desc { 2462 struct btf_func_model func_model; 2463 u32 func_id; 2464 s32 imm; 2465 u16 offset; 2466 unsigned long addr; 2467 }; 2468 2469 struct bpf_kfunc_btf { 2470 struct btf *btf; 2471 struct module *module; 2472 u16 offset; 2473 }; 2474 2475 struct bpf_kfunc_desc_tab { 2476 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2477 * verification. JITs do lookups by bpf_insn, where func_id may not be 2478 * available, therefore at the end of verification do_misc_fixups() 2479 * sorts this by imm and offset. 2480 */ 2481 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2482 u32 nr_descs; 2483 }; 2484 2485 struct bpf_kfunc_btf_tab { 2486 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2487 u32 nr_descs; 2488 }; 2489 2490 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2491 { 2492 const struct bpf_kfunc_desc *d0 = a; 2493 const struct bpf_kfunc_desc *d1 = b; 2494 2495 /* func_id is not greater than BTF_MAX_TYPE */ 2496 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2497 } 2498 2499 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2500 { 2501 const struct bpf_kfunc_btf *d0 = a; 2502 const struct bpf_kfunc_btf *d1 = b; 2503 2504 return d0->offset - d1->offset; 2505 } 2506 2507 static const struct bpf_kfunc_desc * 2508 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2509 { 2510 struct bpf_kfunc_desc desc = { 2511 .func_id = func_id, 2512 .offset = offset, 2513 }; 2514 struct bpf_kfunc_desc_tab *tab; 2515 2516 tab = prog->aux->kfunc_tab; 2517 return bsearch(&desc, tab->descs, tab->nr_descs, 2518 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2519 } 2520 2521 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2522 u16 btf_fd_idx, u8 **func_addr) 2523 { 2524 const struct bpf_kfunc_desc *desc; 2525 2526 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2527 if (!desc) 2528 return -EFAULT; 2529 2530 *func_addr = (u8 *)desc->addr; 2531 return 0; 2532 } 2533 2534 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2535 s16 offset) 2536 { 2537 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2538 struct bpf_kfunc_btf_tab *tab; 2539 struct bpf_kfunc_btf *b; 2540 struct module *mod; 2541 struct btf *btf; 2542 int btf_fd; 2543 2544 tab = env->prog->aux->kfunc_btf_tab; 2545 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2546 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2547 if (!b) { 2548 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2549 verbose(env, "too many different module BTFs\n"); 2550 return ERR_PTR(-E2BIG); 2551 } 2552 2553 if (bpfptr_is_null(env->fd_array)) { 2554 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2555 return ERR_PTR(-EPROTO); 2556 } 2557 2558 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2559 offset * sizeof(btf_fd), 2560 sizeof(btf_fd))) 2561 return ERR_PTR(-EFAULT); 2562 2563 btf = btf_get_by_fd(btf_fd); 2564 if (IS_ERR(btf)) { 2565 verbose(env, "invalid module BTF fd specified\n"); 2566 return btf; 2567 } 2568 2569 if (!btf_is_module(btf)) { 2570 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2571 btf_put(btf); 2572 return ERR_PTR(-EINVAL); 2573 } 2574 2575 mod = btf_try_get_module(btf); 2576 if (!mod) { 2577 btf_put(btf); 2578 return ERR_PTR(-ENXIO); 2579 } 2580 2581 b = &tab->descs[tab->nr_descs++]; 2582 b->btf = btf; 2583 b->module = mod; 2584 b->offset = offset; 2585 2586 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2587 kfunc_btf_cmp_by_off, NULL); 2588 } 2589 return b->btf; 2590 } 2591 2592 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2593 { 2594 if (!tab) 2595 return; 2596 2597 while (tab->nr_descs--) { 2598 module_put(tab->descs[tab->nr_descs].module); 2599 btf_put(tab->descs[tab->nr_descs].btf); 2600 } 2601 kfree(tab); 2602 } 2603 2604 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2605 { 2606 if (offset) { 2607 if (offset < 0) { 2608 /* In the future, this can be allowed to increase limit 2609 * of fd index into fd_array, interpreted as u16. 2610 */ 2611 verbose(env, "negative offset disallowed for kernel module function call\n"); 2612 return ERR_PTR(-EINVAL); 2613 } 2614 2615 return __find_kfunc_desc_btf(env, offset); 2616 } 2617 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2618 } 2619 2620 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2621 { 2622 const struct btf_type *func, *func_proto; 2623 struct bpf_kfunc_btf_tab *btf_tab; 2624 struct bpf_kfunc_desc_tab *tab; 2625 struct bpf_prog_aux *prog_aux; 2626 struct bpf_kfunc_desc *desc; 2627 const char *func_name; 2628 struct btf *desc_btf; 2629 unsigned long call_imm; 2630 unsigned long addr; 2631 int err; 2632 2633 prog_aux = env->prog->aux; 2634 tab = prog_aux->kfunc_tab; 2635 btf_tab = prog_aux->kfunc_btf_tab; 2636 if (!tab) { 2637 if (!btf_vmlinux) { 2638 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2639 return -ENOTSUPP; 2640 } 2641 2642 if (!env->prog->jit_requested) { 2643 verbose(env, "JIT is required for calling kernel function\n"); 2644 return -ENOTSUPP; 2645 } 2646 2647 if (!bpf_jit_supports_kfunc_call()) { 2648 verbose(env, "JIT does not support calling kernel function\n"); 2649 return -ENOTSUPP; 2650 } 2651 2652 if (!env->prog->gpl_compatible) { 2653 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2654 return -EINVAL; 2655 } 2656 2657 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2658 if (!tab) 2659 return -ENOMEM; 2660 prog_aux->kfunc_tab = tab; 2661 } 2662 2663 /* func_id == 0 is always invalid, but instead of returning an error, be 2664 * conservative and wait until the code elimination pass before returning 2665 * error, so that invalid calls that get pruned out can be in BPF programs 2666 * loaded from userspace. It is also required that offset be untouched 2667 * for such calls. 2668 */ 2669 if (!func_id && !offset) 2670 return 0; 2671 2672 if (!btf_tab && offset) { 2673 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2674 if (!btf_tab) 2675 return -ENOMEM; 2676 prog_aux->kfunc_btf_tab = btf_tab; 2677 } 2678 2679 desc_btf = find_kfunc_desc_btf(env, offset); 2680 if (IS_ERR(desc_btf)) { 2681 verbose(env, "failed to find BTF for kernel function\n"); 2682 return PTR_ERR(desc_btf); 2683 } 2684 2685 if (find_kfunc_desc(env->prog, func_id, offset)) 2686 return 0; 2687 2688 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2689 verbose(env, "too many different kernel function calls\n"); 2690 return -E2BIG; 2691 } 2692 2693 func = btf_type_by_id(desc_btf, func_id); 2694 if (!func || !btf_type_is_func(func)) { 2695 verbose(env, "kernel btf_id %u is not a function\n", 2696 func_id); 2697 return -EINVAL; 2698 } 2699 func_proto = btf_type_by_id(desc_btf, func->type); 2700 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2701 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2702 func_id); 2703 return -EINVAL; 2704 } 2705 2706 func_name = btf_name_by_offset(desc_btf, func->name_off); 2707 addr = kallsyms_lookup_name(func_name); 2708 if (!addr) { 2709 verbose(env, "cannot find address for kernel function %s\n", 2710 func_name); 2711 return -EINVAL; 2712 } 2713 specialize_kfunc(env, func_id, offset, &addr); 2714 2715 if (bpf_jit_supports_far_kfunc_call()) { 2716 call_imm = func_id; 2717 } else { 2718 call_imm = BPF_CALL_IMM(addr); 2719 /* Check whether the relative offset overflows desc->imm */ 2720 if ((unsigned long)(s32)call_imm != call_imm) { 2721 verbose(env, "address of kernel function %s is out of range\n", 2722 func_name); 2723 return -EINVAL; 2724 } 2725 } 2726 2727 if (bpf_dev_bound_kfunc_id(func_id)) { 2728 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2729 if (err) 2730 return err; 2731 } 2732 2733 desc = &tab->descs[tab->nr_descs++]; 2734 desc->func_id = func_id; 2735 desc->imm = call_imm; 2736 desc->offset = offset; 2737 desc->addr = addr; 2738 err = btf_distill_func_proto(&env->log, desc_btf, 2739 func_proto, func_name, 2740 &desc->func_model); 2741 if (!err) 2742 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2743 kfunc_desc_cmp_by_id_off, NULL); 2744 return err; 2745 } 2746 2747 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 2748 { 2749 const struct bpf_kfunc_desc *d0 = a; 2750 const struct bpf_kfunc_desc *d1 = b; 2751 2752 if (d0->imm != d1->imm) 2753 return d0->imm < d1->imm ? -1 : 1; 2754 if (d0->offset != d1->offset) 2755 return d0->offset < d1->offset ? -1 : 1; 2756 return 0; 2757 } 2758 2759 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 2760 { 2761 struct bpf_kfunc_desc_tab *tab; 2762 2763 tab = prog->aux->kfunc_tab; 2764 if (!tab) 2765 return; 2766 2767 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2768 kfunc_desc_cmp_by_imm_off, NULL); 2769 } 2770 2771 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2772 { 2773 return !!prog->aux->kfunc_tab; 2774 } 2775 2776 const struct btf_func_model * 2777 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2778 const struct bpf_insn *insn) 2779 { 2780 const struct bpf_kfunc_desc desc = { 2781 .imm = insn->imm, 2782 .offset = insn->off, 2783 }; 2784 const struct bpf_kfunc_desc *res; 2785 struct bpf_kfunc_desc_tab *tab; 2786 2787 tab = prog->aux->kfunc_tab; 2788 res = bsearch(&desc, tab->descs, tab->nr_descs, 2789 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 2790 2791 return res ? &res->func_model : NULL; 2792 } 2793 2794 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2795 { 2796 struct bpf_subprog_info *subprog = env->subprog_info; 2797 struct bpf_insn *insn = env->prog->insnsi; 2798 int i, ret, insn_cnt = env->prog->len; 2799 2800 /* Add entry function. */ 2801 ret = add_subprog(env, 0); 2802 if (ret) 2803 return ret; 2804 2805 for (i = 0; i < insn_cnt; i++, insn++) { 2806 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2807 !bpf_pseudo_kfunc_call(insn)) 2808 continue; 2809 2810 if (!env->bpf_capable) { 2811 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2812 return -EPERM; 2813 } 2814 2815 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2816 ret = add_subprog(env, i + insn->imm + 1); 2817 else 2818 ret = add_kfunc_call(env, insn->imm, insn->off); 2819 2820 if (ret < 0) 2821 return ret; 2822 } 2823 2824 /* Add a fake 'exit' subprog which could simplify subprog iteration 2825 * logic. 'subprog_cnt' should not be increased. 2826 */ 2827 subprog[env->subprog_cnt].start = insn_cnt; 2828 2829 if (env->log.level & BPF_LOG_LEVEL2) 2830 for (i = 0; i < env->subprog_cnt; i++) 2831 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2832 2833 return 0; 2834 } 2835 2836 static int check_subprogs(struct bpf_verifier_env *env) 2837 { 2838 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2839 struct bpf_subprog_info *subprog = env->subprog_info; 2840 struct bpf_insn *insn = env->prog->insnsi; 2841 int insn_cnt = env->prog->len; 2842 2843 /* now check that all jumps are within the same subprog */ 2844 subprog_start = subprog[cur_subprog].start; 2845 subprog_end = subprog[cur_subprog + 1].start; 2846 for (i = 0; i < insn_cnt; i++) { 2847 u8 code = insn[i].code; 2848 2849 if (code == (BPF_JMP | BPF_CALL) && 2850 insn[i].src_reg == 0 && 2851 insn[i].imm == BPF_FUNC_tail_call) 2852 subprog[cur_subprog].has_tail_call = true; 2853 if (BPF_CLASS(code) == BPF_LD && 2854 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2855 subprog[cur_subprog].has_ld_abs = true; 2856 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2857 goto next; 2858 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2859 goto next; 2860 if (code == (BPF_JMP32 | BPF_JA)) 2861 off = i + insn[i].imm + 1; 2862 else 2863 off = i + insn[i].off + 1; 2864 if (off < subprog_start || off >= subprog_end) { 2865 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2866 return -EINVAL; 2867 } 2868 next: 2869 if (i == subprog_end - 1) { 2870 /* to avoid fall-through from one subprog into another 2871 * the last insn of the subprog should be either exit 2872 * or unconditional jump back 2873 */ 2874 if (code != (BPF_JMP | BPF_EXIT) && 2875 code != (BPF_JMP32 | BPF_JA) && 2876 code != (BPF_JMP | BPF_JA)) { 2877 verbose(env, "last insn is not an exit or jmp\n"); 2878 return -EINVAL; 2879 } 2880 subprog_start = subprog_end; 2881 cur_subprog++; 2882 if (cur_subprog < env->subprog_cnt) 2883 subprog_end = subprog[cur_subprog + 1].start; 2884 } 2885 } 2886 return 0; 2887 } 2888 2889 /* Parentage chain of this register (or stack slot) should take care of all 2890 * issues like callee-saved registers, stack slot allocation time, etc. 2891 */ 2892 static int mark_reg_read(struct bpf_verifier_env *env, 2893 const struct bpf_reg_state *state, 2894 struct bpf_reg_state *parent, u8 flag) 2895 { 2896 bool writes = parent == state->parent; /* Observe write marks */ 2897 int cnt = 0; 2898 2899 while (parent) { 2900 /* if read wasn't screened by an earlier write ... */ 2901 if (writes && state->live & REG_LIVE_WRITTEN) 2902 break; 2903 if (parent->live & REG_LIVE_DONE) { 2904 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2905 reg_type_str(env, parent->type), 2906 parent->var_off.value, parent->off); 2907 return -EFAULT; 2908 } 2909 /* The first condition is more likely to be true than the 2910 * second, checked it first. 2911 */ 2912 if ((parent->live & REG_LIVE_READ) == flag || 2913 parent->live & REG_LIVE_READ64) 2914 /* The parentage chain never changes and 2915 * this parent was already marked as LIVE_READ. 2916 * There is no need to keep walking the chain again and 2917 * keep re-marking all parents as LIVE_READ. 2918 * This case happens when the same register is read 2919 * multiple times without writes into it in-between. 2920 * Also, if parent has the stronger REG_LIVE_READ64 set, 2921 * then no need to set the weak REG_LIVE_READ32. 2922 */ 2923 break; 2924 /* ... then we depend on parent's value */ 2925 parent->live |= flag; 2926 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2927 if (flag == REG_LIVE_READ64) 2928 parent->live &= ~REG_LIVE_READ32; 2929 state = parent; 2930 parent = state->parent; 2931 writes = true; 2932 cnt++; 2933 } 2934 2935 if (env->longest_mark_read_walk < cnt) 2936 env->longest_mark_read_walk = cnt; 2937 return 0; 2938 } 2939 2940 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 2941 { 2942 struct bpf_func_state *state = func(env, reg); 2943 int spi, ret; 2944 2945 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 2946 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 2947 * check_kfunc_call. 2948 */ 2949 if (reg->type == CONST_PTR_TO_DYNPTR) 2950 return 0; 2951 spi = dynptr_get_spi(env, reg); 2952 if (spi < 0) 2953 return spi; 2954 /* Caller ensures dynptr is valid and initialized, which means spi is in 2955 * bounds and spi is the first dynptr slot. Simply mark stack slot as 2956 * read. 2957 */ 2958 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 2959 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 2960 if (ret) 2961 return ret; 2962 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 2963 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 2964 } 2965 2966 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 2967 int spi, int nr_slots) 2968 { 2969 struct bpf_func_state *state = func(env, reg); 2970 int err, i; 2971 2972 for (i = 0; i < nr_slots; i++) { 2973 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 2974 2975 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 2976 if (err) 2977 return err; 2978 2979 mark_stack_slot_scratched(env, spi - i); 2980 } 2981 2982 return 0; 2983 } 2984 2985 /* This function is supposed to be used by the following 32-bit optimization 2986 * code only. It returns TRUE if the source or destination register operates 2987 * on 64-bit, otherwise return FALSE. 2988 */ 2989 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2990 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2991 { 2992 u8 code, class, op; 2993 2994 code = insn->code; 2995 class = BPF_CLASS(code); 2996 op = BPF_OP(code); 2997 if (class == BPF_JMP) { 2998 /* BPF_EXIT for "main" will reach here. Return TRUE 2999 * conservatively. 3000 */ 3001 if (op == BPF_EXIT) 3002 return true; 3003 if (op == BPF_CALL) { 3004 /* BPF to BPF call will reach here because of marking 3005 * caller saved clobber with DST_OP_NO_MARK for which we 3006 * don't care the register def because they are anyway 3007 * marked as NOT_INIT already. 3008 */ 3009 if (insn->src_reg == BPF_PSEUDO_CALL) 3010 return false; 3011 /* Helper call will reach here because of arg type 3012 * check, conservatively return TRUE. 3013 */ 3014 if (t == SRC_OP) 3015 return true; 3016 3017 return false; 3018 } 3019 } 3020 3021 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3022 return false; 3023 3024 if (class == BPF_ALU64 || class == BPF_JMP || 3025 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3026 return true; 3027 3028 if (class == BPF_ALU || class == BPF_JMP32) 3029 return false; 3030 3031 if (class == BPF_LDX) { 3032 if (t != SRC_OP) 3033 return BPF_SIZE(code) == BPF_DW; 3034 /* LDX source must be ptr. */ 3035 return true; 3036 } 3037 3038 if (class == BPF_STX) { 3039 /* BPF_STX (including atomic variants) has multiple source 3040 * operands, one of which is a ptr. Check whether the caller is 3041 * asking about it. 3042 */ 3043 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3044 return true; 3045 return BPF_SIZE(code) == BPF_DW; 3046 } 3047 3048 if (class == BPF_LD) { 3049 u8 mode = BPF_MODE(code); 3050 3051 /* LD_IMM64 */ 3052 if (mode == BPF_IMM) 3053 return true; 3054 3055 /* Both LD_IND and LD_ABS return 32-bit data. */ 3056 if (t != SRC_OP) 3057 return false; 3058 3059 /* Implicit ctx ptr. */ 3060 if (regno == BPF_REG_6) 3061 return true; 3062 3063 /* Explicit source could be any width. */ 3064 return true; 3065 } 3066 3067 if (class == BPF_ST) 3068 /* The only source register for BPF_ST is a ptr. */ 3069 return true; 3070 3071 /* Conservatively return true at default. */ 3072 return true; 3073 } 3074 3075 /* Return the regno defined by the insn, or -1. */ 3076 static int insn_def_regno(const struct bpf_insn *insn) 3077 { 3078 switch (BPF_CLASS(insn->code)) { 3079 case BPF_JMP: 3080 case BPF_JMP32: 3081 case BPF_ST: 3082 return -1; 3083 case BPF_STX: 3084 if (BPF_MODE(insn->code) == BPF_ATOMIC && 3085 (insn->imm & BPF_FETCH)) { 3086 if (insn->imm == BPF_CMPXCHG) 3087 return BPF_REG_0; 3088 else 3089 return insn->src_reg; 3090 } else { 3091 return -1; 3092 } 3093 default: 3094 return insn->dst_reg; 3095 } 3096 } 3097 3098 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3099 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3100 { 3101 int dst_reg = insn_def_regno(insn); 3102 3103 if (dst_reg == -1) 3104 return false; 3105 3106 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3107 } 3108 3109 static void mark_insn_zext(struct bpf_verifier_env *env, 3110 struct bpf_reg_state *reg) 3111 { 3112 s32 def_idx = reg->subreg_def; 3113 3114 if (def_idx == DEF_NOT_SUBREG) 3115 return; 3116 3117 env->insn_aux_data[def_idx - 1].zext_dst = true; 3118 /* The dst will be zero extended, so won't be sub-register anymore. */ 3119 reg->subreg_def = DEF_NOT_SUBREG; 3120 } 3121 3122 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3123 enum reg_arg_type t) 3124 { 3125 struct bpf_verifier_state *vstate = env->cur_state; 3126 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3127 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3128 struct bpf_reg_state *reg, *regs = state->regs; 3129 bool rw64; 3130 3131 if (regno >= MAX_BPF_REG) { 3132 verbose(env, "R%d is invalid\n", regno); 3133 return -EINVAL; 3134 } 3135 3136 mark_reg_scratched(env, regno); 3137 3138 reg = ®s[regno]; 3139 rw64 = is_reg64(env, insn, regno, reg, t); 3140 if (t == SRC_OP) { 3141 /* check whether register used as source operand can be read */ 3142 if (reg->type == NOT_INIT) { 3143 verbose(env, "R%d !read_ok\n", regno); 3144 return -EACCES; 3145 } 3146 /* We don't need to worry about FP liveness because it's read-only */ 3147 if (regno == BPF_REG_FP) 3148 return 0; 3149 3150 if (rw64) 3151 mark_insn_zext(env, reg); 3152 3153 return mark_reg_read(env, reg, reg->parent, 3154 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3155 } else { 3156 /* check whether register used as dest operand can be written to */ 3157 if (regno == BPF_REG_FP) { 3158 verbose(env, "frame pointer is read only\n"); 3159 return -EACCES; 3160 } 3161 reg->live |= REG_LIVE_WRITTEN; 3162 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3163 if (t == DST_OP) 3164 mark_reg_unknown(env, regs, regno); 3165 } 3166 return 0; 3167 } 3168 3169 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3170 { 3171 env->insn_aux_data[idx].jmp_point = true; 3172 } 3173 3174 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3175 { 3176 return env->insn_aux_data[insn_idx].jmp_point; 3177 } 3178 3179 /* for any branch, call, exit record the history of jmps in the given state */ 3180 static int push_jmp_history(struct bpf_verifier_env *env, 3181 struct bpf_verifier_state *cur) 3182 { 3183 u32 cnt = cur->jmp_history_cnt; 3184 struct bpf_idx_pair *p; 3185 size_t alloc_size; 3186 3187 if (!is_jmp_point(env, env->insn_idx)) 3188 return 0; 3189 3190 cnt++; 3191 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3192 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 3193 if (!p) 3194 return -ENOMEM; 3195 p[cnt - 1].idx = env->insn_idx; 3196 p[cnt - 1].prev_idx = env->prev_insn_idx; 3197 cur->jmp_history = p; 3198 cur->jmp_history_cnt = cnt; 3199 return 0; 3200 } 3201 3202 /* Backtrack one insn at a time. If idx is not at the top of recorded 3203 * history then previous instruction came from straight line execution. 3204 * Return -ENOENT if we exhausted all instructions within given state. 3205 * 3206 * It's legal to have a bit of a looping with the same starting and ending 3207 * insn index within the same state, e.g.: 3->4->5->3, so just because current 3208 * instruction index is the same as state's first_idx doesn't mean we are 3209 * done. If there is still some jump history left, we should keep going. We 3210 * need to take into account that we might have a jump history between given 3211 * state's parent and itself, due to checkpointing. In this case, we'll have 3212 * history entry recording a jump from last instruction of parent state and 3213 * first instruction of given state. 3214 */ 3215 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3216 u32 *history) 3217 { 3218 u32 cnt = *history; 3219 3220 if (i == st->first_insn_idx) { 3221 if (cnt == 0) 3222 return -ENOENT; 3223 if (cnt == 1 && st->jmp_history[0].idx == i) 3224 return -ENOENT; 3225 } 3226 3227 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3228 i = st->jmp_history[cnt - 1].prev_idx; 3229 (*history)--; 3230 } else { 3231 i--; 3232 } 3233 return i; 3234 } 3235 3236 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3237 { 3238 const struct btf_type *func; 3239 struct btf *desc_btf; 3240 3241 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3242 return NULL; 3243 3244 desc_btf = find_kfunc_desc_btf(data, insn->off); 3245 if (IS_ERR(desc_btf)) 3246 return "<error>"; 3247 3248 func = btf_type_by_id(desc_btf, insn->imm); 3249 return btf_name_by_offset(desc_btf, func->name_off); 3250 } 3251 3252 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3253 { 3254 bt->frame = frame; 3255 } 3256 3257 static inline void bt_reset(struct backtrack_state *bt) 3258 { 3259 struct bpf_verifier_env *env = bt->env; 3260 3261 memset(bt, 0, sizeof(*bt)); 3262 bt->env = env; 3263 } 3264 3265 static inline u32 bt_empty(struct backtrack_state *bt) 3266 { 3267 u64 mask = 0; 3268 int i; 3269 3270 for (i = 0; i <= bt->frame; i++) 3271 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3272 3273 return mask == 0; 3274 } 3275 3276 static inline int bt_subprog_enter(struct backtrack_state *bt) 3277 { 3278 if (bt->frame == MAX_CALL_FRAMES - 1) { 3279 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3280 WARN_ONCE(1, "verifier backtracking bug"); 3281 return -EFAULT; 3282 } 3283 bt->frame++; 3284 return 0; 3285 } 3286 3287 static inline int bt_subprog_exit(struct backtrack_state *bt) 3288 { 3289 if (bt->frame == 0) { 3290 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3291 WARN_ONCE(1, "verifier backtracking bug"); 3292 return -EFAULT; 3293 } 3294 bt->frame--; 3295 return 0; 3296 } 3297 3298 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3299 { 3300 bt->reg_masks[frame] |= 1 << reg; 3301 } 3302 3303 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3304 { 3305 bt->reg_masks[frame] &= ~(1 << reg); 3306 } 3307 3308 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3309 { 3310 bt_set_frame_reg(bt, bt->frame, reg); 3311 } 3312 3313 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3314 { 3315 bt_clear_frame_reg(bt, bt->frame, reg); 3316 } 3317 3318 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3319 { 3320 bt->stack_masks[frame] |= 1ull << slot; 3321 } 3322 3323 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3324 { 3325 bt->stack_masks[frame] &= ~(1ull << slot); 3326 } 3327 3328 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot) 3329 { 3330 bt_set_frame_slot(bt, bt->frame, slot); 3331 } 3332 3333 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot) 3334 { 3335 bt_clear_frame_slot(bt, bt->frame, slot); 3336 } 3337 3338 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3339 { 3340 return bt->reg_masks[frame]; 3341 } 3342 3343 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3344 { 3345 return bt->reg_masks[bt->frame]; 3346 } 3347 3348 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3349 { 3350 return bt->stack_masks[frame]; 3351 } 3352 3353 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3354 { 3355 return bt->stack_masks[bt->frame]; 3356 } 3357 3358 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3359 { 3360 return bt->reg_masks[bt->frame] & (1 << reg); 3361 } 3362 3363 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot) 3364 { 3365 return bt->stack_masks[bt->frame] & (1ull << slot); 3366 } 3367 3368 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3369 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3370 { 3371 DECLARE_BITMAP(mask, 64); 3372 bool first = true; 3373 int i, n; 3374 3375 buf[0] = '\0'; 3376 3377 bitmap_from_u64(mask, reg_mask); 3378 for_each_set_bit(i, mask, 32) { 3379 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3380 first = false; 3381 buf += n; 3382 buf_sz -= n; 3383 if (buf_sz < 0) 3384 break; 3385 } 3386 } 3387 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3388 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3389 { 3390 DECLARE_BITMAP(mask, 64); 3391 bool first = true; 3392 int i, n; 3393 3394 buf[0] = '\0'; 3395 3396 bitmap_from_u64(mask, stack_mask); 3397 for_each_set_bit(i, mask, 64) { 3398 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3399 first = false; 3400 buf += n; 3401 buf_sz -= n; 3402 if (buf_sz < 0) 3403 break; 3404 } 3405 } 3406 3407 /* For given verifier state backtrack_insn() is called from the last insn to 3408 * the first insn. Its purpose is to compute a bitmask of registers and 3409 * stack slots that needs precision in the parent verifier state. 3410 * 3411 * @idx is an index of the instruction we are currently processing; 3412 * @subseq_idx is an index of the subsequent instruction that: 3413 * - *would be* executed next, if jump history is viewed in forward order; 3414 * - *was* processed previously during backtracking. 3415 */ 3416 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 3417 struct backtrack_state *bt) 3418 { 3419 const struct bpf_insn_cbs cbs = { 3420 .cb_call = disasm_kfunc_name, 3421 .cb_print = verbose, 3422 .private_data = env, 3423 }; 3424 struct bpf_insn *insn = env->prog->insnsi + idx; 3425 u8 class = BPF_CLASS(insn->code); 3426 u8 opcode = BPF_OP(insn->code); 3427 u8 mode = BPF_MODE(insn->code); 3428 u32 dreg = insn->dst_reg; 3429 u32 sreg = insn->src_reg; 3430 u32 spi, i; 3431 3432 if (insn->code == 0) 3433 return 0; 3434 if (env->log.level & BPF_LOG_LEVEL2) { 3435 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3436 verbose(env, "mark_precise: frame%d: regs=%s ", 3437 bt->frame, env->tmp_str_buf); 3438 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3439 verbose(env, "stack=%s before ", env->tmp_str_buf); 3440 verbose(env, "%d: ", idx); 3441 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3442 } 3443 3444 if (class == BPF_ALU || class == BPF_ALU64) { 3445 if (!bt_is_reg_set(bt, dreg)) 3446 return 0; 3447 if (opcode == BPF_MOV) { 3448 if (BPF_SRC(insn->code) == BPF_X) { 3449 /* dreg = sreg or dreg = (s8, s16, s32)sreg 3450 * dreg needs precision after this insn 3451 * sreg needs precision before this insn 3452 */ 3453 bt_clear_reg(bt, dreg); 3454 bt_set_reg(bt, sreg); 3455 } else { 3456 /* dreg = K 3457 * dreg needs precision after this insn. 3458 * Corresponding register is already marked 3459 * as precise=true in this verifier state. 3460 * No further markings in parent are necessary 3461 */ 3462 bt_clear_reg(bt, dreg); 3463 } 3464 } else { 3465 if (BPF_SRC(insn->code) == BPF_X) { 3466 /* dreg += sreg 3467 * both dreg and sreg need precision 3468 * before this insn 3469 */ 3470 bt_set_reg(bt, sreg); 3471 } /* else dreg += K 3472 * dreg still needs precision before this insn 3473 */ 3474 } 3475 } else if (class == BPF_LDX) { 3476 if (!bt_is_reg_set(bt, dreg)) 3477 return 0; 3478 bt_clear_reg(bt, dreg); 3479 3480 /* scalars can only be spilled into stack w/o losing precision. 3481 * Load from any other memory can be zero extended. 3482 * The desire to keep that precision is already indicated 3483 * by 'precise' mark in corresponding register of this state. 3484 * No further tracking necessary. 3485 */ 3486 if (insn->src_reg != BPF_REG_FP) 3487 return 0; 3488 3489 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3490 * that [fp - off] slot contains scalar that needs to be 3491 * tracked with precision 3492 */ 3493 spi = (-insn->off - 1) / BPF_REG_SIZE; 3494 if (spi >= 64) { 3495 verbose(env, "BUG spi %d\n", spi); 3496 WARN_ONCE(1, "verifier backtracking bug"); 3497 return -EFAULT; 3498 } 3499 bt_set_slot(bt, spi); 3500 } else if (class == BPF_STX || class == BPF_ST) { 3501 if (bt_is_reg_set(bt, dreg)) 3502 /* stx & st shouldn't be using _scalar_ dst_reg 3503 * to access memory. It means backtracking 3504 * encountered a case of pointer subtraction. 3505 */ 3506 return -ENOTSUPP; 3507 /* scalars can only be spilled into stack */ 3508 if (insn->dst_reg != BPF_REG_FP) 3509 return 0; 3510 spi = (-insn->off - 1) / BPF_REG_SIZE; 3511 if (spi >= 64) { 3512 verbose(env, "BUG spi %d\n", spi); 3513 WARN_ONCE(1, "verifier backtracking bug"); 3514 return -EFAULT; 3515 } 3516 if (!bt_is_slot_set(bt, spi)) 3517 return 0; 3518 bt_clear_slot(bt, spi); 3519 if (class == BPF_STX) 3520 bt_set_reg(bt, sreg); 3521 } else if (class == BPF_JMP || class == BPF_JMP32) { 3522 if (bpf_pseudo_call(insn)) { 3523 int subprog_insn_idx, subprog; 3524 3525 subprog_insn_idx = idx + insn->imm + 1; 3526 subprog = find_subprog(env, subprog_insn_idx); 3527 if (subprog < 0) 3528 return -EFAULT; 3529 3530 if (subprog_is_global(env, subprog)) { 3531 /* check that jump history doesn't have any 3532 * extra instructions from subprog; the next 3533 * instruction after call to global subprog 3534 * should be literally next instruction in 3535 * caller program 3536 */ 3537 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 3538 /* r1-r5 are invalidated after subprog call, 3539 * so for global func call it shouldn't be set 3540 * anymore 3541 */ 3542 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3543 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3544 WARN_ONCE(1, "verifier backtracking bug"); 3545 return -EFAULT; 3546 } 3547 /* global subprog always sets R0 */ 3548 bt_clear_reg(bt, BPF_REG_0); 3549 return 0; 3550 } else { 3551 /* static subprog call instruction, which 3552 * means that we are exiting current subprog, 3553 * so only r1-r5 could be still requested as 3554 * precise, r0 and r6-r10 or any stack slot in 3555 * the current frame should be zero by now 3556 */ 3557 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3558 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3559 WARN_ONCE(1, "verifier backtracking bug"); 3560 return -EFAULT; 3561 } 3562 /* we don't track register spills perfectly, 3563 * so fallback to force-precise instead of failing */ 3564 if (bt_stack_mask(bt) != 0) 3565 return -ENOTSUPP; 3566 /* propagate r1-r5 to the caller */ 3567 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 3568 if (bt_is_reg_set(bt, i)) { 3569 bt_clear_reg(bt, i); 3570 bt_set_frame_reg(bt, bt->frame - 1, i); 3571 } 3572 } 3573 if (bt_subprog_exit(bt)) 3574 return -EFAULT; 3575 return 0; 3576 } 3577 } else if ((bpf_helper_call(insn) && 3578 is_callback_calling_function(insn->imm) && 3579 !is_async_callback_calling_function(insn->imm)) || 3580 (bpf_pseudo_kfunc_call(insn) && is_callback_calling_kfunc(insn->imm))) { 3581 /* callback-calling helper or kfunc call, which means 3582 * we are exiting from subprog, but unlike the subprog 3583 * call handling above, we shouldn't propagate 3584 * precision of r1-r5 (if any requested), as they are 3585 * not actually arguments passed directly to callback 3586 * subprogs 3587 */ 3588 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3589 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3590 WARN_ONCE(1, "verifier backtracking bug"); 3591 return -EFAULT; 3592 } 3593 if (bt_stack_mask(bt) != 0) 3594 return -ENOTSUPP; 3595 /* clear r1-r5 in callback subprog's mask */ 3596 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3597 bt_clear_reg(bt, i); 3598 if (bt_subprog_exit(bt)) 3599 return -EFAULT; 3600 return 0; 3601 } else if (opcode == BPF_CALL) { 3602 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 3603 * catch this error later. Make backtracking conservative 3604 * with ENOTSUPP. 3605 */ 3606 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 3607 return -ENOTSUPP; 3608 /* regular helper call sets R0 */ 3609 bt_clear_reg(bt, BPF_REG_0); 3610 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3611 /* if backtracing was looking for registers R1-R5 3612 * they should have been found already. 3613 */ 3614 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3615 WARN_ONCE(1, "verifier backtracking bug"); 3616 return -EFAULT; 3617 } 3618 } else if (opcode == BPF_EXIT) { 3619 bool r0_precise; 3620 3621 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3622 /* if backtracing was looking for registers R1-R5 3623 * they should have been found already. 3624 */ 3625 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3626 WARN_ONCE(1, "verifier backtracking bug"); 3627 return -EFAULT; 3628 } 3629 3630 /* BPF_EXIT in subprog or callback always returns 3631 * right after the call instruction, so by checking 3632 * whether the instruction at subseq_idx-1 is subprog 3633 * call or not we can distinguish actual exit from 3634 * *subprog* from exit from *callback*. In the former 3635 * case, we need to propagate r0 precision, if 3636 * necessary. In the former we never do that. 3637 */ 3638 r0_precise = subseq_idx - 1 >= 0 && 3639 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 3640 bt_is_reg_set(bt, BPF_REG_0); 3641 3642 bt_clear_reg(bt, BPF_REG_0); 3643 if (bt_subprog_enter(bt)) 3644 return -EFAULT; 3645 3646 if (r0_precise) 3647 bt_set_reg(bt, BPF_REG_0); 3648 /* r6-r9 and stack slots will stay set in caller frame 3649 * bitmasks until we return back from callee(s) 3650 */ 3651 return 0; 3652 } else if (BPF_SRC(insn->code) == BPF_X) { 3653 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 3654 return 0; 3655 /* dreg <cond> sreg 3656 * Both dreg and sreg need precision before 3657 * this insn. If only sreg was marked precise 3658 * before it would be equally necessary to 3659 * propagate it to dreg. 3660 */ 3661 bt_set_reg(bt, dreg); 3662 bt_set_reg(bt, sreg); 3663 /* else dreg <cond> K 3664 * Only dreg still needs precision before 3665 * this insn, so for the K-based conditional 3666 * there is nothing new to be marked. 3667 */ 3668 } 3669 } else if (class == BPF_LD) { 3670 if (!bt_is_reg_set(bt, dreg)) 3671 return 0; 3672 bt_clear_reg(bt, dreg); 3673 /* It's ld_imm64 or ld_abs or ld_ind. 3674 * For ld_imm64 no further tracking of precision 3675 * into parent is necessary 3676 */ 3677 if (mode == BPF_IND || mode == BPF_ABS) 3678 /* to be analyzed */ 3679 return -ENOTSUPP; 3680 } 3681 return 0; 3682 } 3683 3684 /* the scalar precision tracking algorithm: 3685 * . at the start all registers have precise=false. 3686 * . scalar ranges are tracked as normal through alu and jmp insns. 3687 * . once precise value of the scalar register is used in: 3688 * . ptr + scalar alu 3689 * . if (scalar cond K|scalar) 3690 * . helper_call(.., scalar, ...) where ARG_CONST is expected 3691 * backtrack through the verifier states and mark all registers and 3692 * stack slots with spilled constants that these scalar regisers 3693 * should be precise. 3694 * . during state pruning two registers (or spilled stack slots) 3695 * are equivalent if both are not precise. 3696 * 3697 * Note the verifier cannot simply walk register parentage chain, 3698 * since many different registers and stack slots could have been 3699 * used to compute single precise scalar. 3700 * 3701 * The approach of starting with precise=true for all registers and then 3702 * backtrack to mark a register as not precise when the verifier detects 3703 * that program doesn't care about specific value (e.g., when helper 3704 * takes register as ARG_ANYTHING parameter) is not safe. 3705 * 3706 * It's ok to walk single parentage chain of the verifier states. 3707 * It's possible that this backtracking will go all the way till 1st insn. 3708 * All other branches will be explored for needing precision later. 3709 * 3710 * The backtracking needs to deal with cases like: 3711 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 3712 * r9 -= r8 3713 * r5 = r9 3714 * if r5 > 0x79f goto pc+7 3715 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 3716 * r5 += 1 3717 * ... 3718 * call bpf_perf_event_output#25 3719 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 3720 * 3721 * and this case: 3722 * r6 = 1 3723 * call foo // uses callee's r6 inside to compute r0 3724 * r0 += r6 3725 * if r0 == 0 goto 3726 * 3727 * to track above reg_mask/stack_mask needs to be independent for each frame. 3728 * 3729 * Also if parent's curframe > frame where backtracking started, 3730 * the verifier need to mark registers in both frames, otherwise callees 3731 * may incorrectly prune callers. This is similar to 3732 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 3733 * 3734 * For now backtracking falls back into conservative marking. 3735 */ 3736 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 3737 struct bpf_verifier_state *st) 3738 { 3739 struct bpf_func_state *func; 3740 struct bpf_reg_state *reg; 3741 int i, j; 3742 3743 if (env->log.level & BPF_LOG_LEVEL2) { 3744 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 3745 st->curframe); 3746 } 3747 3748 /* big hammer: mark all scalars precise in this path. 3749 * pop_stack may still get !precise scalars. 3750 * We also skip current state and go straight to first parent state, 3751 * because precision markings in current non-checkpointed state are 3752 * not needed. See why in the comment in __mark_chain_precision below. 3753 */ 3754 for (st = st->parent; st; st = st->parent) { 3755 for (i = 0; i <= st->curframe; i++) { 3756 func = st->frame[i]; 3757 for (j = 0; j < BPF_REG_FP; j++) { 3758 reg = &func->regs[j]; 3759 if (reg->type != SCALAR_VALUE || reg->precise) 3760 continue; 3761 reg->precise = true; 3762 if (env->log.level & BPF_LOG_LEVEL2) { 3763 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 3764 i, j); 3765 } 3766 } 3767 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3768 if (!is_spilled_reg(&func->stack[j])) 3769 continue; 3770 reg = &func->stack[j].spilled_ptr; 3771 if (reg->type != SCALAR_VALUE || reg->precise) 3772 continue; 3773 reg->precise = true; 3774 if (env->log.level & BPF_LOG_LEVEL2) { 3775 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 3776 i, -(j + 1) * 8); 3777 } 3778 } 3779 } 3780 } 3781 } 3782 3783 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3784 { 3785 struct bpf_func_state *func; 3786 struct bpf_reg_state *reg; 3787 int i, j; 3788 3789 for (i = 0; i <= st->curframe; i++) { 3790 func = st->frame[i]; 3791 for (j = 0; j < BPF_REG_FP; j++) { 3792 reg = &func->regs[j]; 3793 if (reg->type != SCALAR_VALUE) 3794 continue; 3795 reg->precise = false; 3796 } 3797 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3798 if (!is_spilled_reg(&func->stack[j])) 3799 continue; 3800 reg = &func->stack[j].spilled_ptr; 3801 if (reg->type != SCALAR_VALUE) 3802 continue; 3803 reg->precise = false; 3804 } 3805 } 3806 } 3807 3808 static bool idset_contains(struct bpf_idset *s, u32 id) 3809 { 3810 u32 i; 3811 3812 for (i = 0; i < s->count; ++i) 3813 if (s->ids[i] == id) 3814 return true; 3815 3816 return false; 3817 } 3818 3819 static int idset_push(struct bpf_idset *s, u32 id) 3820 { 3821 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids))) 3822 return -EFAULT; 3823 s->ids[s->count++] = id; 3824 return 0; 3825 } 3826 3827 static void idset_reset(struct bpf_idset *s) 3828 { 3829 s->count = 0; 3830 } 3831 3832 /* Collect a set of IDs for all registers currently marked as precise in env->bt. 3833 * Mark all registers with these IDs as precise. 3834 */ 3835 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3836 { 3837 struct bpf_idset *precise_ids = &env->idset_scratch; 3838 struct backtrack_state *bt = &env->bt; 3839 struct bpf_func_state *func; 3840 struct bpf_reg_state *reg; 3841 DECLARE_BITMAP(mask, 64); 3842 int i, fr; 3843 3844 idset_reset(precise_ids); 3845 3846 for (fr = bt->frame; fr >= 0; fr--) { 3847 func = st->frame[fr]; 3848 3849 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 3850 for_each_set_bit(i, mask, 32) { 3851 reg = &func->regs[i]; 3852 if (!reg->id || reg->type != SCALAR_VALUE) 3853 continue; 3854 if (idset_push(precise_ids, reg->id)) 3855 return -EFAULT; 3856 } 3857 3858 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 3859 for_each_set_bit(i, mask, 64) { 3860 if (i >= func->allocated_stack / BPF_REG_SIZE) 3861 break; 3862 if (!is_spilled_scalar_reg(&func->stack[i])) 3863 continue; 3864 reg = &func->stack[i].spilled_ptr; 3865 if (!reg->id) 3866 continue; 3867 if (idset_push(precise_ids, reg->id)) 3868 return -EFAULT; 3869 } 3870 } 3871 3872 for (fr = 0; fr <= st->curframe; ++fr) { 3873 func = st->frame[fr]; 3874 3875 for (i = BPF_REG_0; i < BPF_REG_10; ++i) { 3876 reg = &func->regs[i]; 3877 if (!reg->id) 3878 continue; 3879 if (!idset_contains(precise_ids, reg->id)) 3880 continue; 3881 bt_set_frame_reg(bt, fr, i); 3882 } 3883 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) { 3884 if (!is_spilled_scalar_reg(&func->stack[i])) 3885 continue; 3886 reg = &func->stack[i].spilled_ptr; 3887 if (!reg->id) 3888 continue; 3889 if (!idset_contains(precise_ids, reg->id)) 3890 continue; 3891 bt_set_frame_slot(bt, fr, i); 3892 } 3893 } 3894 3895 return 0; 3896 } 3897 3898 /* 3899 * __mark_chain_precision() backtracks BPF program instruction sequence and 3900 * chain of verifier states making sure that register *regno* (if regno >= 0) 3901 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 3902 * SCALARS, as well as any other registers and slots that contribute to 3903 * a tracked state of given registers/stack slots, depending on specific BPF 3904 * assembly instructions (see backtrack_insns() for exact instruction handling 3905 * logic). This backtracking relies on recorded jmp_history and is able to 3906 * traverse entire chain of parent states. This process ends only when all the 3907 * necessary registers/slots and their transitive dependencies are marked as 3908 * precise. 3909 * 3910 * One important and subtle aspect is that precise marks *do not matter* in 3911 * the currently verified state (current state). It is important to understand 3912 * why this is the case. 3913 * 3914 * First, note that current state is the state that is not yet "checkpointed", 3915 * i.e., it is not yet put into env->explored_states, and it has no children 3916 * states as well. It's ephemeral, and can end up either a) being discarded if 3917 * compatible explored state is found at some point or BPF_EXIT instruction is 3918 * reached or b) checkpointed and put into env->explored_states, branching out 3919 * into one or more children states. 3920 * 3921 * In the former case, precise markings in current state are completely 3922 * ignored by state comparison code (see regsafe() for details). Only 3923 * checkpointed ("old") state precise markings are important, and if old 3924 * state's register/slot is precise, regsafe() assumes current state's 3925 * register/slot as precise and checks value ranges exactly and precisely. If 3926 * states turn out to be compatible, current state's necessary precise 3927 * markings and any required parent states' precise markings are enforced 3928 * after the fact with propagate_precision() logic, after the fact. But it's 3929 * important to realize that in this case, even after marking current state 3930 * registers/slots as precise, we immediately discard current state. So what 3931 * actually matters is any of the precise markings propagated into current 3932 * state's parent states, which are always checkpointed (due to b) case above). 3933 * As such, for scenario a) it doesn't matter if current state has precise 3934 * markings set or not. 3935 * 3936 * Now, for the scenario b), checkpointing and forking into child(ren) 3937 * state(s). Note that before current state gets to checkpointing step, any 3938 * processed instruction always assumes precise SCALAR register/slot 3939 * knowledge: if precise value or range is useful to prune jump branch, BPF 3940 * verifier takes this opportunity enthusiastically. Similarly, when 3941 * register's value is used to calculate offset or memory address, exact 3942 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 3943 * what we mentioned above about state comparison ignoring precise markings 3944 * during state comparison, BPF verifier ignores and also assumes precise 3945 * markings *at will* during instruction verification process. But as verifier 3946 * assumes precision, it also propagates any precision dependencies across 3947 * parent states, which are not yet finalized, so can be further restricted 3948 * based on new knowledge gained from restrictions enforced by their children 3949 * states. This is so that once those parent states are finalized, i.e., when 3950 * they have no more active children state, state comparison logic in 3951 * is_state_visited() would enforce strict and precise SCALAR ranges, if 3952 * required for correctness. 3953 * 3954 * To build a bit more intuition, note also that once a state is checkpointed, 3955 * the path we took to get to that state is not important. This is crucial 3956 * property for state pruning. When state is checkpointed and finalized at 3957 * some instruction index, it can be correctly and safely used to "short 3958 * circuit" any *compatible* state that reaches exactly the same instruction 3959 * index. I.e., if we jumped to that instruction from a completely different 3960 * code path than original finalized state was derived from, it doesn't 3961 * matter, current state can be discarded because from that instruction 3962 * forward having a compatible state will ensure we will safely reach the 3963 * exit. States describe preconditions for further exploration, but completely 3964 * forget the history of how we got here. 3965 * 3966 * This also means that even if we needed precise SCALAR range to get to 3967 * finalized state, but from that point forward *that same* SCALAR register is 3968 * never used in a precise context (i.e., it's precise value is not needed for 3969 * correctness), it's correct and safe to mark such register as "imprecise" 3970 * (i.e., precise marking set to false). This is what we rely on when we do 3971 * not set precise marking in current state. If no child state requires 3972 * precision for any given SCALAR register, it's safe to dictate that it can 3973 * be imprecise. If any child state does require this register to be precise, 3974 * we'll mark it precise later retroactively during precise markings 3975 * propagation from child state to parent states. 3976 * 3977 * Skipping precise marking setting in current state is a mild version of 3978 * relying on the above observation. But we can utilize this property even 3979 * more aggressively by proactively forgetting any precise marking in the 3980 * current state (which we inherited from the parent state), right before we 3981 * checkpoint it and branch off into new child state. This is done by 3982 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 3983 * finalized states which help in short circuiting more future states. 3984 */ 3985 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 3986 { 3987 struct backtrack_state *bt = &env->bt; 3988 struct bpf_verifier_state *st = env->cur_state; 3989 int first_idx = st->first_insn_idx; 3990 int last_idx = env->insn_idx; 3991 int subseq_idx = -1; 3992 struct bpf_func_state *func; 3993 struct bpf_reg_state *reg; 3994 bool skip_first = true; 3995 int i, fr, err; 3996 3997 if (!env->bpf_capable) 3998 return 0; 3999 4000 /* set frame number from which we are starting to backtrack */ 4001 bt_init(bt, env->cur_state->curframe); 4002 4003 /* Do sanity checks against current state of register and/or stack 4004 * slot, but don't set precise flag in current state, as precision 4005 * tracking in the current state is unnecessary. 4006 */ 4007 func = st->frame[bt->frame]; 4008 if (regno >= 0) { 4009 reg = &func->regs[regno]; 4010 if (reg->type != SCALAR_VALUE) { 4011 WARN_ONCE(1, "backtracing misuse"); 4012 return -EFAULT; 4013 } 4014 bt_set_reg(bt, regno); 4015 } 4016 4017 if (bt_empty(bt)) 4018 return 0; 4019 4020 for (;;) { 4021 DECLARE_BITMAP(mask, 64); 4022 u32 history = st->jmp_history_cnt; 4023 4024 if (env->log.level & BPF_LOG_LEVEL2) { 4025 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4026 bt->frame, last_idx, first_idx, subseq_idx); 4027 } 4028 4029 /* If some register with scalar ID is marked as precise, 4030 * make sure that all registers sharing this ID are also precise. 4031 * This is needed to estimate effect of find_equal_scalars(). 4032 * Do this at the last instruction of each state, 4033 * bpf_reg_state::id fields are valid for these instructions. 4034 * 4035 * Allows to track precision in situation like below: 4036 * 4037 * r2 = unknown value 4038 * ... 4039 * --- state #0 --- 4040 * ... 4041 * r1 = r2 // r1 and r2 now share the same ID 4042 * ... 4043 * --- state #1 {r1.id = A, r2.id = A} --- 4044 * ... 4045 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1 4046 * ... 4047 * --- state #2 {r1.id = A, r2.id = A} --- 4048 * r3 = r10 4049 * r3 += r1 // need to mark both r1 and r2 4050 */ 4051 if (mark_precise_scalar_ids(env, st)) 4052 return -EFAULT; 4053 4054 if (last_idx < 0) { 4055 /* we are at the entry into subprog, which 4056 * is expected for global funcs, but only if 4057 * requested precise registers are R1-R5 4058 * (which are global func's input arguments) 4059 */ 4060 if (st->curframe == 0 && 4061 st->frame[0]->subprogno > 0 && 4062 st->frame[0]->callsite == BPF_MAIN_FUNC && 4063 bt_stack_mask(bt) == 0 && 4064 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4065 bitmap_from_u64(mask, bt_reg_mask(bt)); 4066 for_each_set_bit(i, mask, 32) { 4067 reg = &st->frame[0]->regs[i]; 4068 bt_clear_reg(bt, i); 4069 if (reg->type == SCALAR_VALUE) 4070 reg->precise = true; 4071 } 4072 return 0; 4073 } 4074 4075 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 4076 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4077 WARN_ONCE(1, "verifier backtracking bug"); 4078 return -EFAULT; 4079 } 4080 4081 for (i = last_idx;;) { 4082 if (skip_first) { 4083 err = 0; 4084 skip_first = false; 4085 } else { 4086 err = backtrack_insn(env, i, subseq_idx, bt); 4087 } 4088 if (err == -ENOTSUPP) { 4089 mark_all_scalars_precise(env, env->cur_state); 4090 bt_reset(bt); 4091 return 0; 4092 } else if (err) { 4093 return err; 4094 } 4095 if (bt_empty(bt)) 4096 /* Found assignment(s) into tracked register in this state. 4097 * Since this state is already marked, just return. 4098 * Nothing to be tracked further in the parent state. 4099 */ 4100 return 0; 4101 subseq_idx = i; 4102 i = get_prev_insn_idx(st, i, &history); 4103 if (i == -ENOENT) 4104 break; 4105 if (i >= env->prog->len) { 4106 /* This can happen if backtracking reached insn 0 4107 * and there are still reg_mask or stack_mask 4108 * to backtrack. 4109 * It means the backtracking missed the spot where 4110 * particular register was initialized with a constant. 4111 */ 4112 verbose(env, "BUG backtracking idx %d\n", i); 4113 WARN_ONCE(1, "verifier backtracking bug"); 4114 return -EFAULT; 4115 } 4116 } 4117 st = st->parent; 4118 if (!st) 4119 break; 4120 4121 for (fr = bt->frame; fr >= 0; fr--) { 4122 func = st->frame[fr]; 4123 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4124 for_each_set_bit(i, mask, 32) { 4125 reg = &func->regs[i]; 4126 if (reg->type != SCALAR_VALUE) { 4127 bt_clear_frame_reg(bt, fr, i); 4128 continue; 4129 } 4130 if (reg->precise) 4131 bt_clear_frame_reg(bt, fr, i); 4132 else 4133 reg->precise = true; 4134 } 4135 4136 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4137 for_each_set_bit(i, mask, 64) { 4138 if (i >= func->allocated_stack / BPF_REG_SIZE) { 4139 /* the sequence of instructions: 4140 * 2: (bf) r3 = r10 4141 * 3: (7b) *(u64 *)(r3 -8) = r0 4142 * 4: (79) r4 = *(u64 *)(r10 -8) 4143 * doesn't contain jmps. It's backtracked 4144 * as a single block. 4145 * During backtracking insn 3 is not recognized as 4146 * stack access, so at the end of backtracking 4147 * stack slot fp-8 is still marked in stack_mask. 4148 * However the parent state may not have accessed 4149 * fp-8 and it's "unallocated" stack space. 4150 * In such case fallback to conservative. 4151 */ 4152 mark_all_scalars_precise(env, env->cur_state); 4153 bt_reset(bt); 4154 return 0; 4155 } 4156 4157 if (!is_spilled_scalar_reg(&func->stack[i])) { 4158 bt_clear_frame_slot(bt, fr, i); 4159 continue; 4160 } 4161 reg = &func->stack[i].spilled_ptr; 4162 if (reg->precise) 4163 bt_clear_frame_slot(bt, fr, i); 4164 else 4165 reg->precise = true; 4166 } 4167 if (env->log.level & BPF_LOG_LEVEL2) { 4168 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4169 bt_frame_reg_mask(bt, fr)); 4170 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4171 fr, env->tmp_str_buf); 4172 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4173 bt_frame_stack_mask(bt, fr)); 4174 verbose(env, "stack=%s: ", env->tmp_str_buf); 4175 print_verifier_state(env, func, true); 4176 } 4177 } 4178 4179 if (bt_empty(bt)) 4180 return 0; 4181 4182 subseq_idx = first_idx; 4183 last_idx = st->last_insn_idx; 4184 first_idx = st->first_insn_idx; 4185 } 4186 4187 /* if we still have requested precise regs or slots, we missed 4188 * something (e.g., stack access through non-r10 register), so 4189 * fallback to marking all precise 4190 */ 4191 if (!bt_empty(bt)) { 4192 mark_all_scalars_precise(env, env->cur_state); 4193 bt_reset(bt); 4194 } 4195 4196 return 0; 4197 } 4198 4199 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4200 { 4201 return __mark_chain_precision(env, regno); 4202 } 4203 4204 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4205 * desired reg and stack masks across all relevant frames 4206 */ 4207 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4208 { 4209 return __mark_chain_precision(env, -1); 4210 } 4211 4212 static bool is_spillable_regtype(enum bpf_reg_type type) 4213 { 4214 switch (base_type(type)) { 4215 case PTR_TO_MAP_VALUE: 4216 case PTR_TO_STACK: 4217 case PTR_TO_CTX: 4218 case PTR_TO_PACKET: 4219 case PTR_TO_PACKET_META: 4220 case PTR_TO_PACKET_END: 4221 case PTR_TO_FLOW_KEYS: 4222 case CONST_PTR_TO_MAP: 4223 case PTR_TO_SOCKET: 4224 case PTR_TO_SOCK_COMMON: 4225 case PTR_TO_TCP_SOCK: 4226 case PTR_TO_XDP_SOCK: 4227 case PTR_TO_BTF_ID: 4228 case PTR_TO_BUF: 4229 case PTR_TO_MEM: 4230 case PTR_TO_FUNC: 4231 case PTR_TO_MAP_KEY: 4232 return true; 4233 default: 4234 return false; 4235 } 4236 } 4237 4238 /* Does this register contain a constant zero? */ 4239 static bool register_is_null(struct bpf_reg_state *reg) 4240 { 4241 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4242 } 4243 4244 static bool register_is_const(struct bpf_reg_state *reg) 4245 { 4246 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 4247 } 4248 4249 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 4250 { 4251 return tnum_is_unknown(reg->var_off) && 4252 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 4253 reg->umin_value == 0 && reg->umax_value == U64_MAX && 4254 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 4255 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 4256 } 4257 4258 static bool register_is_bounded(struct bpf_reg_state *reg) 4259 { 4260 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 4261 } 4262 4263 static bool __is_pointer_value(bool allow_ptr_leaks, 4264 const struct bpf_reg_state *reg) 4265 { 4266 if (allow_ptr_leaks) 4267 return false; 4268 4269 return reg->type != SCALAR_VALUE; 4270 } 4271 4272 /* Copy src state preserving dst->parent and dst->live fields */ 4273 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4274 { 4275 struct bpf_reg_state *parent = dst->parent; 4276 enum bpf_reg_liveness live = dst->live; 4277 4278 *dst = *src; 4279 dst->parent = parent; 4280 dst->live = live; 4281 } 4282 4283 static void save_register_state(struct bpf_func_state *state, 4284 int spi, struct bpf_reg_state *reg, 4285 int size) 4286 { 4287 int i; 4288 4289 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4290 if (size == BPF_REG_SIZE) 4291 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4292 4293 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4294 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4295 4296 /* size < 8 bytes spill */ 4297 for (; i; i--) 4298 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 4299 } 4300 4301 static bool is_bpf_st_mem(struct bpf_insn *insn) 4302 { 4303 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4304 } 4305 4306 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4307 * stack boundary and alignment are checked in check_mem_access() 4308 */ 4309 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4310 /* stack frame we're writing to */ 4311 struct bpf_func_state *state, 4312 int off, int size, int value_regno, 4313 int insn_idx) 4314 { 4315 struct bpf_func_state *cur; /* state of the current function */ 4316 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4317 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4318 struct bpf_reg_state *reg = NULL; 4319 u32 dst_reg = insn->dst_reg; 4320 4321 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 4322 if (err) 4323 return err; 4324 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4325 * so it's aligned access and [off, off + size) are within stack limits 4326 */ 4327 if (!env->allow_ptr_leaks && 4328 state->stack[spi].slot_type[0] == STACK_SPILL && 4329 size != BPF_REG_SIZE) { 4330 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4331 return -EACCES; 4332 } 4333 4334 cur = env->cur_state->frame[env->cur_state->curframe]; 4335 if (value_regno >= 0) 4336 reg = &cur->regs[value_regno]; 4337 if (!env->bypass_spec_v4) { 4338 bool sanitize = reg && is_spillable_regtype(reg->type); 4339 4340 for (i = 0; i < size; i++) { 4341 u8 type = state->stack[spi].slot_type[i]; 4342 4343 if (type != STACK_MISC && type != STACK_ZERO) { 4344 sanitize = true; 4345 break; 4346 } 4347 } 4348 4349 if (sanitize) 4350 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4351 } 4352 4353 err = destroy_if_dynptr_stack_slot(env, state, spi); 4354 if (err) 4355 return err; 4356 4357 mark_stack_slot_scratched(env, spi); 4358 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 4359 !register_is_null(reg) && env->bpf_capable) { 4360 if (dst_reg != BPF_REG_FP) { 4361 /* The backtracking logic can only recognize explicit 4362 * stack slot address like [fp - 8]. Other spill of 4363 * scalar via different register has to be conservative. 4364 * Backtrack from here and mark all registers as precise 4365 * that contributed into 'reg' being a constant. 4366 */ 4367 err = mark_chain_precision(env, value_regno); 4368 if (err) 4369 return err; 4370 } 4371 save_register_state(state, spi, reg, size); 4372 /* Break the relation on a narrowing spill. */ 4373 if (fls64(reg->umax_value) > BITS_PER_BYTE * size) 4374 state->stack[spi].spilled_ptr.id = 0; 4375 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4376 insn->imm != 0 && env->bpf_capable) { 4377 struct bpf_reg_state fake_reg = {}; 4378 4379 __mark_reg_known(&fake_reg, (u32)insn->imm); 4380 fake_reg.type = SCALAR_VALUE; 4381 save_register_state(state, spi, &fake_reg, size); 4382 } else if (reg && is_spillable_regtype(reg->type)) { 4383 /* register containing pointer is being spilled into stack */ 4384 if (size != BPF_REG_SIZE) { 4385 verbose_linfo(env, insn_idx, "; "); 4386 verbose(env, "invalid size of register spill\n"); 4387 return -EACCES; 4388 } 4389 if (state != cur && reg->type == PTR_TO_STACK) { 4390 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4391 return -EINVAL; 4392 } 4393 save_register_state(state, spi, reg, size); 4394 } else { 4395 u8 type = STACK_MISC; 4396 4397 /* regular write of data into stack destroys any spilled ptr */ 4398 state->stack[spi].spilled_ptr.type = NOT_INIT; 4399 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4400 if (is_stack_slot_special(&state->stack[spi])) 4401 for (i = 0; i < BPF_REG_SIZE; i++) 4402 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4403 4404 /* only mark the slot as written if all 8 bytes were written 4405 * otherwise read propagation may incorrectly stop too soon 4406 * when stack slots are partially written. 4407 * This heuristic means that read propagation will be 4408 * conservative, since it will add reg_live_read marks 4409 * to stack slots all the way to first state when programs 4410 * writes+reads less than 8 bytes 4411 */ 4412 if (size == BPF_REG_SIZE) 4413 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4414 4415 /* when we zero initialize stack slots mark them as such */ 4416 if ((reg && register_is_null(reg)) || 4417 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4418 /* backtracking doesn't work for STACK_ZERO yet. */ 4419 err = mark_chain_precision(env, value_regno); 4420 if (err) 4421 return err; 4422 type = STACK_ZERO; 4423 } 4424 4425 /* Mark slots affected by this stack write. */ 4426 for (i = 0; i < size; i++) 4427 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 4428 type; 4429 } 4430 return 0; 4431 } 4432 4433 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4434 * known to contain a variable offset. 4435 * This function checks whether the write is permitted and conservatively 4436 * tracks the effects of the write, considering that each stack slot in the 4437 * dynamic range is potentially written to. 4438 * 4439 * 'off' includes 'regno->off'. 4440 * 'value_regno' can be -1, meaning that an unknown value is being written to 4441 * the stack. 4442 * 4443 * Spilled pointers in range are not marked as written because we don't know 4444 * what's going to be actually written. This means that read propagation for 4445 * future reads cannot be terminated by this write. 4446 * 4447 * For privileged programs, uninitialized stack slots are considered 4448 * initialized by this write (even though we don't know exactly what offsets 4449 * are going to be written to). The idea is that we don't want the verifier to 4450 * reject future reads that access slots written to through variable offsets. 4451 */ 4452 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4453 /* func where register points to */ 4454 struct bpf_func_state *state, 4455 int ptr_regno, int off, int size, 4456 int value_regno, int insn_idx) 4457 { 4458 struct bpf_func_state *cur; /* state of the current function */ 4459 int min_off, max_off; 4460 int i, err; 4461 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4462 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4463 bool writing_zero = false; 4464 /* set if the fact that we're writing a zero is used to let any 4465 * stack slots remain STACK_ZERO 4466 */ 4467 bool zero_used = false; 4468 4469 cur = env->cur_state->frame[env->cur_state->curframe]; 4470 ptr_reg = &cur->regs[ptr_regno]; 4471 min_off = ptr_reg->smin_value + off; 4472 max_off = ptr_reg->smax_value + off + size; 4473 if (value_regno >= 0) 4474 value_reg = &cur->regs[value_regno]; 4475 if ((value_reg && register_is_null(value_reg)) || 4476 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4477 writing_zero = true; 4478 4479 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 4480 if (err) 4481 return err; 4482 4483 for (i = min_off; i < max_off; i++) { 4484 int spi; 4485 4486 spi = __get_spi(i); 4487 err = destroy_if_dynptr_stack_slot(env, state, spi); 4488 if (err) 4489 return err; 4490 } 4491 4492 /* Variable offset writes destroy any spilled pointers in range. */ 4493 for (i = min_off; i < max_off; i++) { 4494 u8 new_type, *stype; 4495 int slot, spi; 4496 4497 slot = -i - 1; 4498 spi = slot / BPF_REG_SIZE; 4499 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4500 mark_stack_slot_scratched(env, spi); 4501 4502 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4503 /* Reject the write if range we may write to has not 4504 * been initialized beforehand. If we didn't reject 4505 * here, the ptr status would be erased below (even 4506 * though not all slots are actually overwritten), 4507 * possibly opening the door to leaks. 4508 * 4509 * We do however catch STACK_INVALID case below, and 4510 * only allow reading possibly uninitialized memory 4511 * later for CAP_PERFMON, as the write may not happen to 4512 * that slot. 4513 */ 4514 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4515 insn_idx, i); 4516 return -EINVAL; 4517 } 4518 4519 /* Erase all spilled pointers. */ 4520 state->stack[spi].spilled_ptr.type = NOT_INIT; 4521 4522 /* Update the slot type. */ 4523 new_type = STACK_MISC; 4524 if (writing_zero && *stype == STACK_ZERO) { 4525 new_type = STACK_ZERO; 4526 zero_used = true; 4527 } 4528 /* If the slot is STACK_INVALID, we check whether it's OK to 4529 * pretend that it will be initialized by this write. The slot 4530 * might not actually be written to, and so if we mark it as 4531 * initialized future reads might leak uninitialized memory. 4532 * For privileged programs, we will accept such reads to slots 4533 * that may or may not be written because, if we're reject 4534 * them, the error would be too confusing. 4535 */ 4536 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4537 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4538 insn_idx, i); 4539 return -EINVAL; 4540 } 4541 *stype = new_type; 4542 } 4543 if (zero_used) { 4544 /* backtracking doesn't work for STACK_ZERO yet. */ 4545 err = mark_chain_precision(env, value_regno); 4546 if (err) 4547 return err; 4548 } 4549 return 0; 4550 } 4551 4552 /* When register 'dst_regno' is assigned some values from stack[min_off, 4553 * max_off), we set the register's type according to the types of the 4554 * respective stack slots. If all the stack values are known to be zeros, then 4555 * so is the destination reg. Otherwise, the register is considered to be 4556 * SCALAR. This function does not deal with register filling; the caller must 4557 * ensure that all spilled registers in the stack range have been marked as 4558 * read. 4559 */ 4560 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4561 /* func where src register points to */ 4562 struct bpf_func_state *ptr_state, 4563 int min_off, int max_off, int dst_regno) 4564 { 4565 struct bpf_verifier_state *vstate = env->cur_state; 4566 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4567 int i, slot, spi; 4568 u8 *stype; 4569 int zeros = 0; 4570 4571 for (i = min_off; i < max_off; i++) { 4572 slot = -i - 1; 4573 spi = slot / BPF_REG_SIZE; 4574 mark_stack_slot_scratched(env, spi); 4575 stype = ptr_state->stack[spi].slot_type; 4576 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4577 break; 4578 zeros++; 4579 } 4580 if (zeros == max_off - min_off) { 4581 /* any access_size read into register is zero extended, 4582 * so the whole register == const_zero 4583 */ 4584 __mark_reg_const_zero(&state->regs[dst_regno]); 4585 /* backtracking doesn't support STACK_ZERO yet, 4586 * so mark it precise here, so that later 4587 * backtracking can stop here. 4588 * Backtracking may not need this if this register 4589 * doesn't participate in pointer adjustment. 4590 * Forward propagation of precise flag is not 4591 * necessary either. This mark is only to stop 4592 * backtracking. Any register that contributed 4593 * to const 0 was marked precise before spill. 4594 */ 4595 state->regs[dst_regno].precise = true; 4596 } else { 4597 /* have read misc data from the stack */ 4598 mark_reg_unknown(env, state->regs, dst_regno); 4599 } 4600 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4601 } 4602 4603 /* Read the stack at 'off' and put the results into the register indicated by 4604 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4605 * spilled reg. 4606 * 4607 * 'dst_regno' can be -1, meaning that the read value is not going to a 4608 * register. 4609 * 4610 * The access is assumed to be within the current stack bounds. 4611 */ 4612 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4613 /* func where src register points to */ 4614 struct bpf_func_state *reg_state, 4615 int off, int size, int dst_regno) 4616 { 4617 struct bpf_verifier_state *vstate = env->cur_state; 4618 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4619 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 4620 struct bpf_reg_state *reg; 4621 u8 *stype, type; 4622 4623 stype = reg_state->stack[spi].slot_type; 4624 reg = ®_state->stack[spi].spilled_ptr; 4625 4626 mark_stack_slot_scratched(env, spi); 4627 4628 if (is_spilled_reg(®_state->stack[spi])) { 4629 u8 spill_size = 1; 4630 4631 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 4632 spill_size++; 4633 4634 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 4635 if (reg->type != SCALAR_VALUE) { 4636 verbose_linfo(env, env->insn_idx, "; "); 4637 verbose(env, "invalid size of register fill\n"); 4638 return -EACCES; 4639 } 4640 4641 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4642 if (dst_regno < 0) 4643 return 0; 4644 4645 if (!(off % BPF_REG_SIZE) && size == spill_size) { 4646 /* The earlier check_reg_arg() has decided the 4647 * subreg_def for this insn. Save it first. 4648 */ 4649 s32 subreg_def = state->regs[dst_regno].subreg_def; 4650 4651 copy_register_state(&state->regs[dst_regno], reg); 4652 state->regs[dst_regno].subreg_def = subreg_def; 4653 } else { 4654 for (i = 0; i < size; i++) { 4655 type = stype[(slot - i) % BPF_REG_SIZE]; 4656 if (type == STACK_SPILL) 4657 continue; 4658 if (type == STACK_MISC) 4659 continue; 4660 if (type == STACK_INVALID && env->allow_uninit_stack) 4661 continue; 4662 verbose(env, "invalid read from stack off %d+%d size %d\n", 4663 off, i, size); 4664 return -EACCES; 4665 } 4666 mark_reg_unknown(env, state->regs, dst_regno); 4667 } 4668 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4669 return 0; 4670 } 4671 4672 if (dst_regno >= 0) { 4673 /* restore register state from stack */ 4674 copy_register_state(&state->regs[dst_regno], reg); 4675 /* mark reg as written since spilled pointer state likely 4676 * has its liveness marks cleared by is_state_visited() 4677 * which resets stack/reg liveness for state transitions 4678 */ 4679 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4680 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 4681 /* If dst_regno==-1, the caller is asking us whether 4682 * it is acceptable to use this value as a SCALAR_VALUE 4683 * (e.g. for XADD). 4684 * We must not allow unprivileged callers to do that 4685 * with spilled pointers. 4686 */ 4687 verbose(env, "leaking pointer from stack off %d\n", 4688 off); 4689 return -EACCES; 4690 } 4691 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4692 } else { 4693 for (i = 0; i < size; i++) { 4694 type = stype[(slot - i) % BPF_REG_SIZE]; 4695 if (type == STACK_MISC) 4696 continue; 4697 if (type == STACK_ZERO) 4698 continue; 4699 if (type == STACK_INVALID && env->allow_uninit_stack) 4700 continue; 4701 verbose(env, "invalid read from stack off %d+%d size %d\n", 4702 off, i, size); 4703 return -EACCES; 4704 } 4705 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4706 if (dst_regno >= 0) 4707 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 4708 } 4709 return 0; 4710 } 4711 4712 enum bpf_access_src { 4713 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 4714 ACCESS_HELPER = 2, /* the access is performed by a helper */ 4715 }; 4716 4717 static int check_stack_range_initialized(struct bpf_verifier_env *env, 4718 int regno, int off, int access_size, 4719 bool zero_size_allowed, 4720 enum bpf_access_src type, 4721 struct bpf_call_arg_meta *meta); 4722 4723 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 4724 { 4725 return cur_regs(env) + regno; 4726 } 4727 4728 /* Read the stack at 'ptr_regno + off' and put the result into the register 4729 * 'dst_regno'. 4730 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 4731 * but not its variable offset. 4732 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 4733 * 4734 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 4735 * filling registers (i.e. reads of spilled register cannot be detected when 4736 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 4737 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 4738 * offset; for a fixed offset check_stack_read_fixed_off should be used 4739 * instead. 4740 */ 4741 static int check_stack_read_var_off(struct bpf_verifier_env *env, 4742 int ptr_regno, int off, int size, int dst_regno) 4743 { 4744 /* The state of the source register. */ 4745 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4746 struct bpf_func_state *ptr_state = func(env, reg); 4747 int err; 4748 int min_off, max_off; 4749 4750 /* Note that we pass a NULL meta, so raw access will not be permitted. 4751 */ 4752 err = check_stack_range_initialized(env, ptr_regno, off, size, 4753 false, ACCESS_DIRECT, NULL); 4754 if (err) 4755 return err; 4756 4757 min_off = reg->smin_value + off; 4758 max_off = reg->smax_value + off; 4759 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 4760 return 0; 4761 } 4762 4763 /* check_stack_read dispatches to check_stack_read_fixed_off or 4764 * check_stack_read_var_off. 4765 * 4766 * The caller must ensure that the offset falls within the allocated stack 4767 * bounds. 4768 * 4769 * 'dst_regno' is a register which will receive the value from the stack. It 4770 * can be -1, meaning that the read value is not going to a register. 4771 */ 4772 static int check_stack_read(struct bpf_verifier_env *env, 4773 int ptr_regno, int off, int size, 4774 int dst_regno) 4775 { 4776 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4777 struct bpf_func_state *state = func(env, reg); 4778 int err; 4779 /* Some accesses are only permitted with a static offset. */ 4780 bool var_off = !tnum_is_const(reg->var_off); 4781 4782 /* The offset is required to be static when reads don't go to a 4783 * register, in order to not leak pointers (see 4784 * check_stack_read_fixed_off). 4785 */ 4786 if (dst_regno < 0 && var_off) { 4787 char tn_buf[48]; 4788 4789 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4790 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 4791 tn_buf, off, size); 4792 return -EACCES; 4793 } 4794 /* Variable offset is prohibited for unprivileged mode for simplicity 4795 * since it requires corresponding support in Spectre masking for stack 4796 * ALU. See also retrieve_ptr_limit(). The check in 4797 * check_stack_access_for_ptr_arithmetic() called by 4798 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 4799 * with variable offsets, therefore no check is required here. Further, 4800 * just checking it here would be insufficient as speculative stack 4801 * writes could still lead to unsafe speculative behaviour. 4802 */ 4803 if (!var_off) { 4804 off += reg->var_off.value; 4805 err = check_stack_read_fixed_off(env, state, off, size, 4806 dst_regno); 4807 } else { 4808 /* Variable offset stack reads need more conservative handling 4809 * than fixed offset ones. Note that dst_regno >= 0 on this 4810 * branch. 4811 */ 4812 err = check_stack_read_var_off(env, ptr_regno, off, size, 4813 dst_regno); 4814 } 4815 return err; 4816 } 4817 4818 4819 /* check_stack_write dispatches to check_stack_write_fixed_off or 4820 * check_stack_write_var_off. 4821 * 4822 * 'ptr_regno' is the register used as a pointer into the stack. 4823 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 4824 * 'value_regno' is the register whose value we're writing to the stack. It can 4825 * be -1, meaning that we're not writing from a register. 4826 * 4827 * The caller must ensure that the offset falls within the maximum stack size. 4828 */ 4829 static int check_stack_write(struct bpf_verifier_env *env, 4830 int ptr_regno, int off, int size, 4831 int value_regno, int insn_idx) 4832 { 4833 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4834 struct bpf_func_state *state = func(env, reg); 4835 int err; 4836 4837 if (tnum_is_const(reg->var_off)) { 4838 off += reg->var_off.value; 4839 err = check_stack_write_fixed_off(env, state, off, size, 4840 value_regno, insn_idx); 4841 } else { 4842 /* Variable offset stack reads need more conservative handling 4843 * than fixed offset ones. 4844 */ 4845 err = check_stack_write_var_off(env, state, 4846 ptr_regno, off, size, 4847 value_regno, insn_idx); 4848 } 4849 return err; 4850 } 4851 4852 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 4853 int off, int size, enum bpf_access_type type) 4854 { 4855 struct bpf_reg_state *regs = cur_regs(env); 4856 struct bpf_map *map = regs[regno].map_ptr; 4857 u32 cap = bpf_map_flags_to_cap(map); 4858 4859 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 4860 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 4861 map->value_size, off, size); 4862 return -EACCES; 4863 } 4864 4865 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 4866 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 4867 map->value_size, off, size); 4868 return -EACCES; 4869 } 4870 4871 return 0; 4872 } 4873 4874 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 4875 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 4876 int off, int size, u32 mem_size, 4877 bool zero_size_allowed) 4878 { 4879 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 4880 struct bpf_reg_state *reg; 4881 4882 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 4883 return 0; 4884 4885 reg = &cur_regs(env)[regno]; 4886 switch (reg->type) { 4887 case PTR_TO_MAP_KEY: 4888 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 4889 mem_size, off, size); 4890 break; 4891 case PTR_TO_MAP_VALUE: 4892 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 4893 mem_size, off, size); 4894 break; 4895 case PTR_TO_PACKET: 4896 case PTR_TO_PACKET_META: 4897 case PTR_TO_PACKET_END: 4898 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 4899 off, size, regno, reg->id, off, mem_size); 4900 break; 4901 case PTR_TO_MEM: 4902 default: 4903 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 4904 mem_size, off, size); 4905 } 4906 4907 return -EACCES; 4908 } 4909 4910 /* check read/write into a memory region with possible variable offset */ 4911 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 4912 int off, int size, u32 mem_size, 4913 bool zero_size_allowed) 4914 { 4915 struct bpf_verifier_state *vstate = env->cur_state; 4916 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4917 struct bpf_reg_state *reg = &state->regs[regno]; 4918 int err; 4919 4920 /* We may have adjusted the register pointing to memory region, so we 4921 * need to try adding each of min_value and max_value to off 4922 * to make sure our theoretical access will be safe. 4923 * 4924 * The minimum value is only important with signed 4925 * comparisons where we can't assume the floor of a 4926 * value is 0. If we are using signed variables for our 4927 * index'es we need to make sure that whatever we use 4928 * will have a set floor within our range. 4929 */ 4930 if (reg->smin_value < 0 && 4931 (reg->smin_value == S64_MIN || 4932 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 4933 reg->smin_value + off < 0)) { 4934 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4935 regno); 4936 return -EACCES; 4937 } 4938 err = __check_mem_access(env, regno, reg->smin_value + off, size, 4939 mem_size, zero_size_allowed); 4940 if (err) { 4941 verbose(env, "R%d min value is outside of the allowed memory range\n", 4942 regno); 4943 return err; 4944 } 4945 4946 /* If we haven't set a max value then we need to bail since we can't be 4947 * sure we won't do bad things. 4948 * If reg->umax_value + off could overflow, treat that as unbounded too. 4949 */ 4950 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 4951 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 4952 regno); 4953 return -EACCES; 4954 } 4955 err = __check_mem_access(env, regno, reg->umax_value + off, size, 4956 mem_size, zero_size_allowed); 4957 if (err) { 4958 verbose(env, "R%d max value is outside of the allowed memory range\n", 4959 regno); 4960 return err; 4961 } 4962 4963 return 0; 4964 } 4965 4966 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 4967 const struct bpf_reg_state *reg, int regno, 4968 bool fixed_off_ok) 4969 { 4970 /* Access to this pointer-typed register or passing it to a helper 4971 * is only allowed in its original, unmodified form. 4972 */ 4973 4974 if (reg->off < 0) { 4975 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 4976 reg_type_str(env, reg->type), regno, reg->off); 4977 return -EACCES; 4978 } 4979 4980 if (!fixed_off_ok && reg->off) { 4981 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 4982 reg_type_str(env, reg->type), regno, reg->off); 4983 return -EACCES; 4984 } 4985 4986 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4987 char tn_buf[48]; 4988 4989 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4990 verbose(env, "variable %s access var_off=%s disallowed\n", 4991 reg_type_str(env, reg->type), tn_buf); 4992 return -EACCES; 4993 } 4994 4995 return 0; 4996 } 4997 4998 int check_ptr_off_reg(struct bpf_verifier_env *env, 4999 const struct bpf_reg_state *reg, int regno) 5000 { 5001 return __check_ptr_off_reg(env, reg, regno, false); 5002 } 5003 5004 static int map_kptr_match_type(struct bpf_verifier_env *env, 5005 struct btf_field *kptr_field, 5006 struct bpf_reg_state *reg, u32 regno) 5007 { 5008 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 5009 int perm_flags; 5010 const char *reg_name = ""; 5011 5012 if (btf_is_kernel(reg->btf)) { 5013 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 5014 5015 /* Only unreferenced case accepts untrusted pointers */ 5016 if (kptr_field->type == BPF_KPTR_UNREF) 5017 perm_flags |= PTR_UNTRUSTED; 5018 } else { 5019 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5020 } 5021 5022 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5023 goto bad_type; 5024 5025 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5026 reg_name = btf_type_name(reg->btf, reg->btf_id); 5027 5028 /* For ref_ptr case, release function check should ensure we get one 5029 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5030 * normal store of unreferenced kptr, we must ensure var_off is zero. 5031 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5032 * reg->off and reg->ref_obj_id are not needed here. 5033 */ 5034 if (__check_ptr_off_reg(env, reg, regno, true)) 5035 return -EACCES; 5036 5037 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5038 * we also need to take into account the reg->off. 5039 * 5040 * We want to support cases like: 5041 * 5042 * struct foo { 5043 * struct bar br; 5044 * struct baz bz; 5045 * }; 5046 * 5047 * struct foo *v; 5048 * v = func(); // PTR_TO_BTF_ID 5049 * val->foo = v; // reg->off is zero, btf and btf_id match type 5050 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5051 * // first member type of struct after comparison fails 5052 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5053 * // to match type 5054 * 5055 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5056 * is zero. We must also ensure that btf_struct_ids_match does not walk 5057 * the struct to match type against first member of struct, i.e. reject 5058 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5059 * strict mode to true for type match. 5060 */ 5061 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5062 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5063 kptr_field->type == BPF_KPTR_REF)) 5064 goto bad_type; 5065 return 0; 5066 bad_type: 5067 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5068 reg_type_str(env, reg->type), reg_name); 5069 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5070 if (kptr_field->type == BPF_KPTR_UNREF) 5071 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5072 targ_name); 5073 else 5074 verbose(env, "\n"); 5075 return -EINVAL; 5076 } 5077 5078 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5079 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5080 */ 5081 static bool in_rcu_cs(struct bpf_verifier_env *env) 5082 { 5083 return env->cur_state->active_rcu_lock || 5084 env->cur_state->active_lock.ptr || 5085 !env->prog->aux->sleepable; 5086 } 5087 5088 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5089 BTF_SET_START(rcu_protected_types) 5090 BTF_ID(struct, prog_test_ref_kfunc) 5091 BTF_ID(struct, cgroup) 5092 BTF_ID(struct, bpf_cpumask) 5093 BTF_ID(struct, task_struct) 5094 BTF_SET_END(rcu_protected_types) 5095 5096 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5097 { 5098 if (!btf_is_kernel(btf)) 5099 return false; 5100 return btf_id_set_contains(&rcu_protected_types, btf_id); 5101 } 5102 5103 static bool rcu_safe_kptr(const struct btf_field *field) 5104 { 5105 const struct btf_field_kptr *kptr = &field->kptr; 5106 5107 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id); 5108 } 5109 5110 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5111 int value_regno, int insn_idx, 5112 struct btf_field *kptr_field) 5113 { 5114 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5115 int class = BPF_CLASS(insn->code); 5116 struct bpf_reg_state *val_reg; 5117 5118 /* Things we already checked for in check_map_access and caller: 5119 * - Reject cases where variable offset may touch kptr 5120 * - size of access (must be BPF_DW) 5121 * - tnum_is_const(reg->var_off) 5122 * - kptr_field->offset == off + reg->var_off.value 5123 */ 5124 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5125 if (BPF_MODE(insn->code) != BPF_MEM) { 5126 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5127 return -EACCES; 5128 } 5129 5130 /* We only allow loading referenced kptr, since it will be marked as 5131 * untrusted, similar to unreferenced kptr. 5132 */ 5133 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) { 5134 verbose(env, "store to referenced kptr disallowed\n"); 5135 return -EACCES; 5136 } 5137 5138 if (class == BPF_LDX) { 5139 val_reg = reg_state(env, value_regno); 5140 /* We can simply mark the value_regno receiving the pointer 5141 * value from map as PTR_TO_BTF_ID, with the correct type. 5142 */ 5143 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5144 kptr_field->kptr.btf_id, 5145 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ? 5146 PTR_MAYBE_NULL | MEM_RCU : 5147 PTR_MAYBE_NULL | PTR_UNTRUSTED); 5148 /* For mark_ptr_or_null_reg */ 5149 val_reg->id = ++env->id_gen; 5150 } else if (class == BPF_STX) { 5151 val_reg = reg_state(env, value_regno); 5152 if (!register_is_null(val_reg) && 5153 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5154 return -EACCES; 5155 } else if (class == BPF_ST) { 5156 if (insn->imm) { 5157 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5158 kptr_field->offset); 5159 return -EACCES; 5160 } 5161 } else { 5162 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5163 return -EACCES; 5164 } 5165 return 0; 5166 } 5167 5168 /* check read/write into a map element with possible variable offset */ 5169 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5170 int off, int size, bool zero_size_allowed, 5171 enum bpf_access_src src) 5172 { 5173 struct bpf_verifier_state *vstate = env->cur_state; 5174 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5175 struct bpf_reg_state *reg = &state->regs[regno]; 5176 struct bpf_map *map = reg->map_ptr; 5177 struct btf_record *rec; 5178 int err, i; 5179 5180 err = check_mem_region_access(env, regno, off, size, map->value_size, 5181 zero_size_allowed); 5182 if (err) 5183 return err; 5184 5185 if (IS_ERR_OR_NULL(map->record)) 5186 return 0; 5187 rec = map->record; 5188 for (i = 0; i < rec->cnt; i++) { 5189 struct btf_field *field = &rec->fields[i]; 5190 u32 p = field->offset; 5191 5192 /* If any part of a field can be touched by load/store, reject 5193 * this program. To check that [x1, x2) overlaps with [y1, y2), 5194 * it is sufficient to check x1 < y2 && y1 < x2. 5195 */ 5196 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 5197 p < reg->umax_value + off + size) { 5198 switch (field->type) { 5199 case BPF_KPTR_UNREF: 5200 case BPF_KPTR_REF: 5201 if (src != ACCESS_DIRECT) { 5202 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 5203 return -EACCES; 5204 } 5205 if (!tnum_is_const(reg->var_off)) { 5206 verbose(env, "kptr access cannot have variable offset\n"); 5207 return -EACCES; 5208 } 5209 if (p != off + reg->var_off.value) { 5210 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 5211 p, off + reg->var_off.value); 5212 return -EACCES; 5213 } 5214 if (size != bpf_size_to_bytes(BPF_DW)) { 5215 verbose(env, "kptr access size must be BPF_DW\n"); 5216 return -EACCES; 5217 } 5218 break; 5219 default: 5220 verbose(env, "%s cannot be accessed directly by load/store\n", 5221 btf_field_type_name(field->type)); 5222 return -EACCES; 5223 } 5224 } 5225 } 5226 return 0; 5227 } 5228 5229 #define MAX_PACKET_OFF 0xffff 5230 5231 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5232 const struct bpf_call_arg_meta *meta, 5233 enum bpf_access_type t) 5234 { 5235 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5236 5237 switch (prog_type) { 5238 /* Program types only with direct read access go here! */ 5239 case BPF_PROG_TYPE_LWT_IN: 5240 case BPF_PROG_TYPE_LWT_OUT: 5241 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5242 case BPF_PROG_TYPE_SK_REUSEPORT: 5243 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5244 case BPF_PROG_TYPE_CGROUP_SKB: 5245 if (t == BPF_WRITE) 5246 return false; 5247 fallthrough; 5248 5249 /* Program types with direct read + write access go here! */ 5250 case BPF_PROG_TYPE_SCHED_CLS: 5251 case BPF_PROG_TYPE_SCHED_ACT: 5252 case BPF_PROG_TYPE_XDP: 5253 case BPF_PROG_TYPE_LWT_XMIT: 5254 case BPF_PROG_TYPE_SK_SKB: 5255 case BPF_PROG_TYPE_SK_MSG: 5256 if (meta) 5257 return meta->pkt_access; 5258 5259 env->seen_direct_write = true; 5260 return true; 5261 5262 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5263 if (t == BPF_WRITE) 5264 env->seen_direct_write = true; 5265 5266 return true; 5267 5268 default: 5269 return false; 5270 } 5271 } 5272 5273 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5274 int size, bool zero_size_allowed) 5275 { 5276 struct bpf_reg_state *regs = cur_regs(env); 5277 struct bpf_reg_state *reg = ®s[regno]; 5278 int err; 5279 5280 /* We may have added a variable offset to the packet pointer; but any 5281 * reg->range we have comes after that. We are only checking the fixed 5282 * offset. 5283 */ 5284 5285 /* We don't allow negative numbers, because we aren't tracking enough 5286 * detail to prove they're safe. 5287 */ 5288 if (reg->smin_value < 0) { 5289 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5290 regno); 5291 return -EACCES; 5292 } 5293 5294 err = reg->range < 0 ? -EINVAL : 5295 __check_mem_access(env, regno, off, size, reg->range, 5296 zero_size_allowed); 5297 if (err) { 5298 verbose(env, "R%d offset is outside of the packet\n", regno); 5299 return err; 5300 } 5301 5302 /* __check_mem_access has made sure "off + size - 1" is within u16. 5303 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5304 * otherwise find_good_pkt_pointers would have refused to set range info 5305 * that __check_mem_access would have rejected this pkt access. 5306 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5307 */ 5308 env->prog->aux->max_pkt_offset = 5309 max_t(u32, env->prog->aux->max_pkt_offset, 5310 off + reg->umax_value + size - 1); 5311 5312 return err; 5313 } 5314 5315 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5316 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5317 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5318 struct btf **btf, u32 *btf_id) 5319 { 5320 struct bpf_insn_access_aux info = { 5321 .reg_type = *reg_type, 5322 .log = &env->log, 5323 }; 5324 5325 if (env->ops->is_valid_access && 5326 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5327 /* A non zero info.ctx_field_size indicates that this field is a 5328 * candidate for later verifier transformation to load the whole 5329 * field and then apply a mask when accessed with a narrower 5330 * access than actual ctx access size. A zero info.ctx_field_size 5331 * will only allow for whole field access and rejects any other 5332 * type of narrower access. 5333 */ 5334 *reg_type = info.reg_type; 5335 5336 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5337 *btf = info.btf; 5338 *btf_id = info.btf_id; 5339 } else { 5340 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5341 } 5342 /* remember the offset of last byte accessed in ctx */ 5343 if (env->prog->aux->max_ctx_offset < off + size) 5344 env->prog->aux->max_ctx_offset = off + size; 5345 return 0; 5346 } 5347 5348 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5349 return -EACCES; 5350 } 5351 5352 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5353 int size) 5354 { 5355 if (size < 0 || off < 0 || 5356 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5357 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5358 off, size); 5359 return -EACCES; 5360 } 5361 return 0; 5362 } 5363 5364 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5365 u32 regno, int off, int size, 5366 enum bpf_access_type t) 5367 { 5368 struct bpf_reg_state *regs = cur_regs(env); 5369 struct bpf_reg_state *reg = ®s[regno]; 5370 struct bpf_insn_access_aux info = {}; 5371 bool valid; 5372 5373 if (reg->smin_value < 0) { 5374 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5375 regno); 5376 return -EACCES; 5377 } 5378 5379 switch (reg->type) { 5380 case PTR_TO_SOCK_COMMON: 5381 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5382 break; 5383 case PTR_TO_SOCKET: 5384 valid = bpf_sock_is_valid_access(off, size, t, &info); 5385 break; 5386 case PTR_TO_TCP_SOCK: 5387 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5388 break; 5389 case PTR_TO_XDP_SOCK: 5390 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5391 break; 5392 default: 5393 valid = false; 5394 } 5395 5396 5397 if (valid) { 5398 env->insn_aux_data[insn_idx].ctx_field_size = 5399 info.ctx_field_size; 5400 return 0; 5401 } 5402 5403 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5404 regno, reg_type_str(env, reg->type), off, size); 5405 5406 return -EACCES; 5407 } 5408 5409 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5410 { 5411 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5412 } 5413 5414 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5415 { 5416 const struct bpf_reg_state *reg = reg_state(env, regno); 5417 5418 return reg->type == PTR_TO_CTX; 5419 } 5420 5421 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5422 { 5423 const struct bpf_reg_state *reg = reg_state(env, regno); 5424 5425 return type_is_sk_pointer(reg->type); 5426 } 5427 5428 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5429 { 5430 const struct bpf_reg_state *reg = reg_state(env, regno); 5431 5432 return type_is_pkt_pointer(reg->type); 5433 } 5434 5435 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5436 { 5437 const struct bpf_reg_state *reg = reg_state(env, regno); 5438 5439 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5440 return reg->type == PTR_TO_FLOW_KEYS; 5441 } 5442 5443 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5444 #ifdef CONFIG_NET 5445 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5446 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5447 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5448 #endif 5449 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 5450 }; 5451 5452 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5453 { 5454 /* A referenced register is always trusted. */ 5455 if (reg->ref_obj_id) 5456 return true; 5457 5458 /* Types listed in the reg2btf_ids are always trusted */ 5459 if (reg2btf_ids[base_type(reg->type)]) 5460 return true; 5461 5462 /* If a register is not referenced, it is trusted if it has the 5463 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5464 * other type modifiers may be safe, but we elect to take an opt-in 5465 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5466 * not. 5467 * 5468 * Eventually, we should make PTR_TRUSTED the single source of truth 5469 * for whether a register is trusted. 5470 */ 5471 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5472 !bpf_type_has_unsafe_modifiers(reg->type); 5473 } 5474 5475 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5476 { 5477 return reg->type & MEM_RCU; 5478 } 5479 5480 static void clear_trusted_flags(enum bpf_type_flag *flag) 5481 { 5482 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5483 } 5484 5485 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5486 const struct bpf_reg_state *reg, 5487 int off, int size, bool strict) 5488 { 5489 struct tnum reg_off; 5490 int ip_align; 5491 5492 /* Byte size accesses are always allowed. */ 5493 if (!strict || size == 1) 5494 return 0; 5495 5496 /* For platforms that do not have a Kconfig enabling 5497 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5498 * NET_IP_ALIGN is universally set to '2'. And on platforms 5499 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5500 * to this code only in strict mode where we want to emulate 5501 * the NET_IP_ALIGN==2 checking. Therefore use an 5502 * unconditional IP align value of '2'. 5503 */ 5504 ip_align = 2; 5505 5506 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 5507 if (!tnum_is_aligned(reg_off, size)) { 5508 char tn_buf[48]; 5509 5510 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5511 verbose(env, 5512 "misaligned packet access off %d+%s+%d+%d size %d\n", 5513 ip_align, tn_buf, reg->off, off, size); 5514 return -EACCES; 5515 } 5516 5517 return 0; 5518 } 5519 5520 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 5521 const struct bpf_reg_state *reg, 5522 const char *pointer_desc, 5523 int off, int size, bool strict) 5524 { 5525 struct tnum reg_off; 5526 5527 /* Byte size accesses are always allowed. */ 5528 if (!strict || size == 1) 5529 return 0; 5530 5531 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 5532 if (!tnum_is_aligned(reg_off, size)) { 5533 char tn_buf[48]; 5534 5535 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5536 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 5537 pointer_desc, tn_buf, reg->off, off, size); 5538 return -EACCES; 5539 } 5540 5541 return 0; 5542 } 5543 5544 static int check_ptr_alignment(struct bpf_verifier_env *env, 5545 const struct bpf_reg_state *reg, int off, 5546 int size, bool strict_alignment_once) 5547 { 5548 bool strict = env->strict_alignment || strict_alignment_once; 5549 const char *pointer_desc = ""; 5550 5551 switch (reg->type) { 5552 case PTR_TO_PACKET: 5553 case PTR_TO_PACKET_META: 5554 /* Special case, because of NET_IP_ALIGN. Given metadata sits 5555 * right in front, treat it the very same way. 5556 */ 5557 return check_pkt_ptr_alignment(env, reg, off, size, strict); 5558 case PTR_TO_FLOW_KEYS: 5559 pointer_desc = "flow keys "; 5560 break; 5561 case PTR_TO_MAP_KEY: 5562 pointer_desc = "key "; 5563 break; 5564 case PTR_TO_MAP_VALUE: 5565 pointer_desc = "value "; 5566 break; 5567 case PTR_TO_CTX: 5568 pointer_desc = "context "; 5569 break; 5570 case PTR_TO_STACK: 5571 pointer_desc = "stack "; 5572 /* The stack spill tracking logic in check_stack_write_fixed_off() 5573 * and check_stack_read_fixed_off() relies on stack accesses being 5574 * aligned. 5575 */ 5576 strict = true; 5577 break; 5578 case PTR_TO_SOCKET: 5579 pointer_desc = "sock "; 5580 break; 5581 case PTR_TO_SOCK_COMMON: 5582 pointer_desc = "sock_common "; 5583 break; 5584 case PTR_TO_TCP_SOCK: 5585 pointer_desc = "tcp_sock "; 5586 break; 5587 case PTR_TO_XDP_SOCK: 5588 pointer_desc = "xdp_sock "; 5589 break; 5590 default: 5591 break; 5592 } 5593 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 5594 strict); 5595 } 5596 5597 static int update_stack_depth(struct bpf_verifier_env *env, 5598 const struct bpf_func_state *func, 5599 int off) 5600 { 5601 u16 stack = env->subprog_info[func->subprogno].stack_depth; 5602 5603 if (stack >= -off) 5604 return 0; 5605 5606 /* update known max for given subprogram */ 5607 env->subprog_info[func->subprogno].stack_depth = -off; 5608 return 0; 5609 } 5610 5611 /* starting from main bpf function walk all instructions of the function 5612 * and recursively walk all callees that given function can call. 5613 * Ignore jump and exit insns. 5614 * Since recursion is prevented by check_cfg() this algorithm 5615 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 5616 */ 5617 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx) 5618 { 5619 struct bpf_subprog_info *subprog = env->subprog_info; 5620 struct bpf_insn *insn = env->prog->insnsi; 5621 int depth = 0, frame = 0, i, subprog_end; 5622 bool tail_call_reachable = false; 5623 int ret_insn[MAX_CALL_FRAMES]; 5624 int ret_prog[MAX_CALL_FRAMES]; 5625 int j; 5626 5627 i = subprog[idx].start; 5628 process_func: 5629 /* protect against potential stack overflow that might happen when 5630 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 5631 * depth for such case down to 256 so that the worst case scenario 5632 * would result in 8k stack size (32 which is tailcall limit * 256 = 5633 * 8k). 5634 * 5635 * To get the idea what might happen, see an example: 5636 * func1 -> sub rsp, 128 5637 * subfunc1 -> sub rsp, 256 5638 * tailcall1 -> add rsp, 256 5639 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 5640 * subfunc2 -> sub rsp, 64 5641 * subfunc22 -> sub rsp, 128 5642 * tailcall2 -> add rsp, 128 5643 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 5644 * 5645 * tailcall will unwind the current stack frame but it will not get rid 5646 * of caller's stack as shown on the example above. 5647 */ 5648 if (idx && subprog[idx].has_tail_call && depth >= 256) { 5649 verbose(env, 5650 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 5651 depth); 5652 return -EACCES; 5653 } 5654 /* round up to 32-bytes, since this is granularity 5655 * of interpreter stack size 5656 */ 5657 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5658 if (depth > MAX_BPF_STACK) { 5659 verbose(env, "combined stack size of %d calls is %d. Too large\n", 5660 frame + 1, depth); 5661 return -EACCES; 5662 } 5663 continue_func: 5664 subprog_end = subprog[idx + 1].start; 5665 for (; i < subprog_end; i++) { 5666 int next_insn, sidx; 5667 5668 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 5669 continue; 5670 /* remember insn and function to return to */ 5671 ret_insn[frame] = i + 1; 5672 ret_prog[frame] = idx; 5673 5674 /* find the callee */ 5675 next_insn = i + insn[i].imm + 1; 5676 sidx = find_subprog(env, next_insn); 5677 if (sidx < 0) { 5678 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5679 next_insn); 5680 return -EFAULT; 5681 } 5682 if (subprog[sidx].is_async_cb) { 5683 if (subprog[sidx].has_tail_call) { 5684 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 5685 return -EFAULT; 5686 } 5687 /* async callbacks don't increase bpf prog stack size unless called directly */ 5688 if (!bpf_pseudo_call(insn + i)) 5689 continue; 5690 } 5691 i = next_insn; 5692 idx = sidx; 5693 5694 if (subprog[idx].has_tail_call) 5695 tail_call_reachable = true; 5696 5697 frame++; 5698 if (frame >= MAX_CALL_FRAMES) { 5699 verbose(env, "the call stack of %d frames is too deep !\n", 5700 frame); 5701 return -E2BIG; 5702 } 5703 goto process_func; 5704 } 5705 /* if tail call got detected across bpf2bpf calls then mark each of the 5706 * currently present subprog frames as tail call reachable subprogs; 5707 * this info will be utilized by JIT so that we will be preserving the 5708 * tail call counter throughout bpf2bpf calls combined with tailcalls 5709 */ 5710 if (tail_call_reachable) 5711 for (j = 0; j < frame; j++) 5712 subprog[ret_prog[j]].tail_call_reachable = true; 5713 if (subprog[0].tail_call_reachable) 5714 env->prog->aux->tail_call_reachable = true; 5715 5716 /* end of for() loop means the last insn of the 'subprog' 5717 * was reached. Doesn't matter whether it was JA or EXIT 5718 */ 5719 if (frame == 0) 5720 return 0; 5721 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5722 frame--; 5723 i = ret_insn[frame]; 5724 idx = ret_prog[frame]; 5725 goto continue_func; 5726 } 5727 5728 static int check_max_stack_depth(struct bpf_verifier_env *env) 5729 { 5730 struct bpf_subprog_info *si = env->subprog_info; 5731 int ret; 5732 5733 for (int i = 0; i < env->subprog_cnt; i++) { 5734 if (!i || si[i].is_async_cb) { 5735 ret = check_max_stack_depth_subprog(env, i); 5736 if (ret < 0) 5737 return ret; 5738 } 5739 continue; 5740 } 5741 return 0; 5742 } 5743 5744 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5745 static int get_callee_stack_depth(struct bpf_verifier_env *env, 5746 const struct bpf_insn *insn, int idx) 5747 { 5748 int start = idx + insn->imm + 1, subprog; 5749 5750 subprog = find_subprog(env, start); 5751 if (subprog < 0) { 5752 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5753 start); 5754 return -EFAULT; 5755 } 5756 return env->subprog_info[subprog].stack_depth; 5757 } 5758 #endif 5759 5760 static int __check_buffer_access(struct bpf_verifier_env *env, 5761 const char *buf_info, 5762 const struct bpf_reg_state *reg, 5763 int regno, int off, int size) 5764 { 5765 if (off < 0) { 5766 verbose(env, 5767 "R%d invalid %s buffer access: off=%d, size=%d\n", 5768 regno, buf_info, off, size); 5769 return -EACCES; 5770 } 5771 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5772 char tn_buf[48]; 5773 5774 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5775 verbose(env, 5776 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 5777 regno, off, tn_buf); 5778 return -EACCES; 5779 } 5780 5781 return 0; 5782 } 5783 5784 static int check_tp_buffer_access(struct bpf_verifier_env *env, 5785 const struct bpf_reg_state *reg, 5786 int regno, int off, int size) 5787 { 5788 int err; 5789 5790 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 5791 if (err) 5792 return err; 5793 5794 if (off + size > env->prog->aux->max_tp_access) 5795 env->prog->aux->max_tp_access = off + size; 5796 5797 return 0; 5798 } 5799 5800 static int check_buffer_access(struct bpf_verifier_env *env, 5801 const struct bpf_reg_state *reg, 5802 int regno, int off, int size, 5803 bool zero_size_allowed, 5804 u32 *max_access) 5805 { 5806 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 5807 int err; 5808 5809 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 5810 if (err) 5811 return err; 5812 5813 if (off + size > *max_access) 5814 *max_access = off + size; 5815 5816 return 0; 5817 } 5818 5819 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 5820 static void zext_32_to_64(struct bpf_reg_state *reg) 5821 { 5822 reg->var_off = tnum_subreg(reg->var_off); 5823 __reg_assign_32_into_64(reg); 5824 } 5825 5826 /* truncate register to smaller size (in bytes) 5827 * must be called with size < BPF_REG_SIZE 5828 */ 5829 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 5830 { 5831 u64 mask; 5832 5833 /* clear high bits in bit representation */ 5834 reg->var_off = tnum_cast(reg->var_off, size); 5835 5836 /* fix arithmetic bounds */ 5837 mask = ((u64)1 << (size * 8)) - 1; 5838 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 5839 reg->umin_value &= mask; 5840 reg->umax_value &= mask; 5841 } else { 5842 reg->umin_value = 0; 5843 reg->umax_value = mask; 5844 } 5845 reg->smin_value = reg->umin_value; 5846 reg->smax_value = reg->umax_value; 5847 5848 /* If size is smaller than 32bit register the 32bit register 5849 * values are also truncated so we push 64-bit bounds into 5850 * 32-bit bounds. Above were truncated < 32-bits already. 5851 */ 5852 if (size >= 4) 5853 return; 5854 __reg_combine_64_into_32(reg); 5855 } 5856 5857 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 5858 { 5859 if (size == 1) { 5860 reg->smin_value = reg->s32_min_value = S8_MIN; 5861 reg->smax_value = reg->s32_max_value = S8_MAX; 5862 } else if (size == 2) { 5863 reg->smin_value = reg->s32_min_value = S16_MIN; 5864 reg->smax_value = reg->s32_max_value = S16_MAX; 5865 } else { 5866 /* size == 4 */ 5867 reg->smin_value = reg->s32_min_value = S32_MIN; 5868 reg->smax_value = reg->s32_max_value = S32_MAX; 5869 } 5870 reg->umin_value = reg->u32_min_value = 0; 5871 reg->umax_value = U64_MAX; 5872 reg->u32_max_value = U32_MAX; 5873 reg->var_off = tnum_unknown; 5874 } 5875 5876 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 5877 { 5878 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 5879 u64 top_smax_value, top_smin_value; 5880 u64 num_bits = size * 8; 5881 5882 if (tnum_is_const(reg->var_off)) { 5883 u64_cval = reg->var_off.value; 5884 if (size == 1) 5885 reg->var_off = tnum_const((s8)u64_cval); 5886 else if (size == 2) 5887 reg->var_off = tnum_const((s16)u64_cval); 5888 else 5889 /* size == 4 */ 5890 reg->var_off = tnum_const((s32)u64_cval); 5891 5892 u64_cval = reg->var_off.value; 5893 reg->smax_value = reg->smin_value = u64_cval; 5894 reg->umax_value = reg->umin_value = u64_cval; 5895 reg->s32_max_value = reg->s32_min_value = u64_cval; 5896 reg->u32_max_value = reg->u32_min_value = u64_cval; 5897 return; 5898 } 5899 5900 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 5901 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 5902 5903 if (top_smax_value != top_smin_value) 5904 goto out; 5905 5906 /* find the s64_min and s64_min after sign extension */ 5907 if (size == 1) { 5908 init_s64_max = (s8)reg->smax_value; 5909 init_s64_min = (s8)reg->smin_value; 5910 } else if (size == 2) { 5911 init_s64_max = (s16)reg->smax_value; 5912 init_s64_min = (s16)reg->smin_value; 5913 } else { 5914 init_s64_max = (s32)reg->smax_value; 5915 init_s64_min = (s32)reg->smin_value; 5916 } 5917 5918 s64_max = max(init_s64_max, init_s64_min); 5919 s64_min = min(init_s64_max, init_s64_min); 5920 5921 /* both of s64_max/s64_min positive or negative */ 5922 if ((s64_max >= 0) == (s64_min >= 0)) { 5923 reg->smin_value = reg->s32_min_value = s64_min; 5924 reg->smax_value = reg->s32_max_value = s64_max; 5925 reg->umin_value = reg->u32_min_value = s64_min; 5926 reg->umax_value = reg->u32_max_value = s64_max; 5927 reg->var_off = tnum_range(s64_min, s64_max); 5928 return; 5929 } 5930 5931 out: 5932 set_sext64_default_val(reg, size); 5933 } 5934 5935 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 5936 { 5937 if (size == 1) { 5938 reg->s32_min_value = S8_MIN; 5939 reg->s32_max_value = S8_MAX; 5940 } else { 5941 /* size == 2 */ 5942 reg->s32_min_value = S16_MIN; 5943 reg->s32_max_value = S16_MAX; 5944 } 5945 reg->u32_min_value = 0; 5946 reg->u32_max_value = U32_MAX; 5947 } 5948 5949 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 5950 { 5951 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 5952 u32 top_smax_value, top_smin_value; 5953 u32 num_bits = size * 8; 5954 5955 if (tnum_is_const(reg->var_off)) { 5956 u32_val = reg->var_off.value; 5957 if (size == 1) 5958 reg->var_off = tnum_const((s8)u32_val); 5959 else 5960 reg->var_off = tnum_const((s16)u32_val); 5961 5962 u32_val = reg->var_off.value; 5963 reg->s32_min_value = reg->s32_max_value = u32_val; 5964 reg->u32_min_value = reg->u32_max_value = u32_val; 5965 return; 5966 } 5967 5968 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 5969 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 5970 5971 if (top_smax_value != top_smin_value) 5972 goto out; 5973 5974 /* find the s32_min and s32_min after sign extension */ 5975 if (size == 1) { 5976 init_s32_max = (s8)reg->s32_max_value; 5977 init_s32_min = (s8)reg->s32_min_value; 5978 } else { 5979 /* size == 2 */ 5980 init_s32_max = (s16)reg->s32_max_value; 5981 init_s32_min = (s16)reg->s32_min_value; 5982 } 5983 s32_max = max(init_s32_max, init_s32_min); 5984 s32_min = min(init_s32_max, init_s32_min); 5985 5986 if ((s32_min >= 0) == (s32_max >= 0)) { 5987 reg->s32_min_value = s32_min; 5988 reg->s32_max_value = s32_max; 5989 reg->u32_min_value = (u32)s32_min; 5990 reg->u32_max_value = (u32)s32_max; 5991 return; 5992 } 5993 5994 out: 5995 set_sext32_default_val(reg, size); 5996 } 5997 5998 static bool bpf_map_is_rdonly(const struct bpf_map *map) 5999 { 6000 /* A map is considered read-only if the following condition are true: 6001 * 6002 * 1) BPF program side cannot change any of the map content. The 6003 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 6004 * and was set at map creation time. 6005 * 2) The map value(s) have been initialized from user space by a 6006 * loader and then "frozen", such that no new map update/delete 6007 * operations from syscall side are possible for the rest of 6008 * the map's lifetime from that point onwards. 6009 * 3) Any parallel/pending map update/delete operations from syscall 6010 * side have been completed. Only after that point, it's safe to 6011 * assume that map value(s) are immutable. 6012 */ 6013 return (map->map_flags & BPF_F_RDONLY_PROG) && 6014 READ_ONCE(map->frozen) && 6015 !bpf_map_write_active(map); 6016 } 6017 6018 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 6019 bool is_ldsx) 6020 { 6021 void *ptr; 6022 u64 addr; 6023 int err; 6024 6025 err = map->ops->map_direct_value_addr(map, &addr, off); 6026 if (err) 6027 return err; 6028 ptr = (void *)(long)addr + off; 6029 6030 switch (size) { 6031 case sizeof(u8): 6032 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6033 break; 6034 case sizeof(u16): 6035 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6036 break; 6037 case sizeof(u32): 6038 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6039 break; 6040 case sizeof(u64): 6041 *val = *(u64 *)ptr; 6042 break; 6043 default: 6044 return -EINVAL; 6045 } 6046 return 0; 6047 } 6048 6049 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 6050 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 6051 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 6052 6053 /* 6054 * Allow list few fields as RCU trusted or full trusted. 6055 * This logic doesn't allow mix tagging and will be removed once GCC supports 6056 * btf_type_tag. 6057 */ 6058 6059 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 6060 BTF_TYPE_SAFE_RCU(struct task_struct) { 6061 const cpumask_t *cpus_ptr; 6062 struct css_set __rcu *cgroups; 6063 struct task_struct __rcu *real_parent; 6064 struct task_struct *group_leader; 6065 }; 6066 6067 BTF_TYPE_SAFE_RCU(struct cgroup) { 6068 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 6069 struct kernfs_node *kn; 6070 }; 6071 6072 BTF_TYPE_SAFE_RCU(struct css_set) { 6073 struct cgroup *dfl_cgrp; 6074 }; 6075 6076 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 6077 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 6078 struct file __rcu *exe_file; 6079 }; 6080 6081 /* skb->sk, req->sk are not RCU protected, but we mark them as such 6082 * because bpf prog accessible sockets are SOCK_RCU_FREE. 6083 */ 6084 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 6085 struct sock *sk; 6086 }; 6087 6088 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 6089 struct sock *sk; 6090 }; 6091 6092 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 6093 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 6094 struct seq_file *seq; 6095 }; 6096 6097 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 6098 struct bpf_iter_meta *meta; 6099 struct task_struct *task; 6100 }; 6101 6102 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 6103 struct file *file; 6104 }; 6105 6106 BTF_TYPE_SAFE_TRUSTED(struct file) { 6107 struct inode *f_inode; 6108 }; 6109 6110 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 6111 /* no negative dentry-s in places where bpf can see it */ 6112 struct inode *d_inode; 6113 }; 6114 6115 BTF_TYPE_SAFE_TRUSTED(struct socket) { 6116 struct sock *sk; 6117 }; 6118 6119 static bool type_is_rcu(struct bpf_verifier_env *env, 6120 struct bpf_reg_state *reg, 6121 const char *field_name, u32 btf_id) 6122 { 6123 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 6124 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 6125 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 6126 6127 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 6128 } 6129 6130 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 6131 struct bpf_reg_state *reg, 6132 const char *field_name, u32 btf_id) 6133 { 6134 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 6135 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 6136 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 6137 6138 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 6139 } 6140 6141 static bool type_is_trusted(struct bpf_verifier_env *env, 6142 struct bpf_reg_state *reg, 6143 const char *field_name, u32 btf_id) 6144 { 6145 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 6146 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 6147 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 6148 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 6149 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 6150 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket)); 6151 6152 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 6153 } 6154 6155 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 6156 struct bpf_reg_state *regs, 6157 int regno, int off, int size, 6158 enum bpf_access_type atype, 6159 int value_regno) 6160 { 6161 struct bpf_reg_state *reg = regs + regno; 6162 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 6163 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 6164 const char *field_name = NULL; 6165 enum bpf_type_flag flag = 0; 6166 u32 btf_id = 0; 6167 int ret; 6168 6169 if (!env->allow_ptr_leaks) { 6170 verbose(env, 6171 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6172 tname); 6173 return -EPERM; 6174 } 6175 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 6176 verbose(env, 6177 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 6178 tname); 6179 return -EINVAL; 6180 } 6181 if (off < 0) { 6182 verbose(env, 6183 "R%d is ptr_%s invalid negative access: off=%d\n", 6184 regno, tname, off); 6185 return -EACCES; 6186 } 6187 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6188 char tn_buf[48]; 6189 6190 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6191 verbose(env, 6192 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 6193 regno, tname, off, tn_buf); 6194 return -EACCES; 6195 } 6196 6197 if (reg->type & MEM_USER) { 6198 verbose(env, 6199 "R%d is ptr_%s access user memory: off=%d\n", 6200 regno, tname, off); 6201 return -EACCES; 6202 } 6203 6204 if (reg->type & MEM_PERCPU) { 6205 verbose(env, 6206 "R%d is ptr_%s access percpu memory: off=%d\n", 6207 regno, tname, off); 6208 return -EACCES; 6209 } 6210 6211 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 6212 if (!btf_is_kernel(reg->btf)) { 6213 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 6214 return -EFAULT; 6215 } 6216 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 6217 } else { 6218 /* Writes are permitted with default btf_struct_access for 6219 * program allocated objects (which always have ref_obj_id > 0), 6220 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 6221 */ 6222 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 6223 verbose(env, "only read is supported\n"); 6224 return -EACCES; 6225 } 6226 6227 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 6228 !reg->ref_obj_id) { 6229 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 6230 return -EFAULT; 6231 } 6232 6233 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 6234 } 6235 6236 if (ret < 0) 6237 return ret; 6238 6239 if (ret != PTR_TO_BTF_ID) { 6240 /* just mark; */ 6241 6242 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 6243 /* If this is an untrusted pointer, all pointers formed by walking it 6244 * also inherit the untrusted flag. 6245 */ 6246 flag = PTR_UNTRUSTED; 6247 6248 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 6249 /* By default any pointer obtained from walking a trusted pointer is no 6250 * longer trusted, unless the field being accessed has explicitly been 6251 * marked as inheriting its parent's state of trust (either full or RCU). 6252 * For example: 6253 * 'cgroups' pointer is untrusted if task->cgroups dereference 6254 * happened in a sleepable program outside of bpf_rcu_read_lock() 6255 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 6256 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 6257 * 6258 * A regular RCU-protected pointer with __rcu tag can also be deemed 6259 * trusted if we are in an RCU CS. Such pointer can be NULL. 6260 */ 6261 if (type_is_trusted(env, reg, field_name, btf_id)) { 6262 flag |= PTR_TRUSTED; 6263 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 6264 if (type_is_rcu(env, reg, field_name, btf_id)) { 6265 /* ignore __rcu tag and mark it MEM_RCU */ 6266 flag |= MEM_RCU; 6267 } else if (flag & MEM_RCU || 6268 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 6269 /* __rcu tagged pointers can be NULL */ 6270 flag |= MEM_RCU | PTR_MAYBE_NULL; 6271 6272 /* We always trust them */ 6273 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 6274 flag & PTR_UNTRUSTED) 6275 flag &= ~PTR_UNTRUSTED; 6276 } else if (flag & (MEM_PERCPU | MEM_USER)) { 6277 /* keep as-is */ 6278 } else { 6279 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 6280 clear_trusted_flags(&flag); 6281 } 6282 } else { 6283 /* 6284 * If not in RCU CS or MEM_RCU pointer can be NULL then 6285 * aggressively mark as untrusted otherwise such 6286 * pointers will be plain PTR_TO_BTF_ID without flags 6287 * and will be allowed to be passed into helpers for 6288 * compat reasons. 6289 */ 6290 flag = PTR_UNTRUSTED; 6291 } 6292 } else { 6293 /* Old compat. Deprecated */ 6294 clear_trusted_flags(&flag); 6295 } 6296 6297 if (atype == BPF_READ && value_regno >= 0) 6298 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 6299 6300 return 0; 6301 } 6302 6303 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 6304 struct bpf_reg_state *regs, 6305 int regno, int off, int size, 6306 enum bpf_access_type atype, 6307 int value_regno) 6308 { 6309 struct bpf_reg_state *reg = regs + regno; 6310 struct bpf_map *map = reg->map_ptr; 6311 struct bpf_reg_state map_reg; 6312 enum bpf_type_flag flag = 0; 6313 const struct btf_type *t; 6314 const char *tname; 6315 u32 btf_id; 6316 int ret; 6317 6318 if (!btf_vmlinux) { 6319 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 6320 return -ENOTSUPP; 6321 } 6322 6323 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 6324 verbose(env, "map_ptr access not supported for map type %d\n", 6325 map->map_type); 6326 return -ENOTSUPP; 6327 } 6328 6329 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 6330 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 6331 6332 if (!env->allow_ptr_leaks) { 6333 verbose(env, 6334 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6335 tname); 6336 return -EPERM; 6337 } 6338 6339 if (off < 0) { 6340 verbose(env, "R%d is %s invalid negative access: off=%d\n", 6341 regno, tname, off); 6342 return -EACCES; 6343 } 6344 6345 if (atype != BPF_READ) { 6346 verbose(env, "only read from %s is supported\n", tname); 6347 return -EACCES; 6348 } 6349 6350 /* Simulate access to a PTR_TO_BTF_ID */ 6351 memset(&map_reg, 0, sizeof(map_reg)); 6352 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 6353 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 6354 if (ret < 0) 6355 return ret; 6356 6357 if (value_regno >= 0) 6358 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 6359 6360 return 0; 6361 } 6362 6363 /* Check that the stack access at the given offset is within bounds. The 6364 * maximum valid offset is -1. 6365 * 6366 * The minimum valid offset is -MAX_BPF_STACK for writes, and 6367 * -state->allocated_stack for reads. 6368 */ 6369 static int check_stack_slot_within_bounds(int off, 6370 struct bpf_func_state *state, 6371 enum bpf_access_type t) 6372 { 6373 int min_valid_off; 6374 6375 if (t == BPF_WRITE) 6376 min_valid_off = -MAX_BPF_STACK; 6377 else 6378 min_valid_off = -state->allocated_stack; 6379 6380 if (off < min_valid_off || off > -1) 6381 return -EACCES; 6382 return 0; 6383 } 6384 6385 /* Check that the stack access at 'regno + off' falls within the maximum stack 6386 * bounds. 6387 * 6388 * 'off' includes `regno->offset`, but not its dynamic part (if any). 6389 */ 6390 static int check_stack_access_within_bounds( 6391 struct bpf_verifier_env *env, 6392 int regno, int off, int access_size, 6393 enum bpf_access_src src, enum bpf_access_type type) 6394 { 6395 struct bpf_reg_state *regs = cur_regs(env); 6396 struct bpf_reg_state *reg = regs + regno; 6397 struct bpf_func_state *state = func(env, reg); 6398 int min_off, max_off; 6399 int err; 6400 char *err_extra; 6401 6402 if (src == ACCESS_HELPER) 6403 /* We don't know if helpers are reading or writing (or both). */ 6404 err_extra = " indirect access to"; 6405 else if (type == BPF_READ) 6406 err_extra = " read from"; 6407 else 6408 err_extra = " write to"; 6409 6410 if (tnum_is_const(reg->var_off)) { 6411 min_off = reg->var_off.value + off; 6412 if (access_size > 0) 6413 max_off = min_off + access_size - 1; 6414 else 6415 max_off = min_off; 6416 } else { 6417 if (reg->smax_value >= BPF_MAX_VAR_OFF || 6418 reg->smin_value <= -BPF_MAX_VAR_OFF) { 6419 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 6420 err_extra, regno); 6421 return -EACCES; 6422 } 6423 min_off = reg->smin_value + off; 6424 if (access_size > 0) 6425 max_off = reg->smax_value + off + access_size - 1; 6426 else 6427 max_off = min_off; 6428 } 6429 6430 err = check_stack_slot_within_bounds(min_off, state, type); 6431 if (!err) 6432 err = check_stack_slot_within_bounds(max_off, state, type); 6433 6434 if (err) { 6435 if (tnum_is_const(reg->var_off)) { 6436 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 6437 err_extra, regno, off, access_size); 6438 } else { 6439 char tn_buf[48]; 6440 6441 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6442 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 6443 err_extra, regno, tn_buf, access_size); 6444 } 6445 } 6446 return err; 6447 } 6448 6449 /* check whether memory at (regno + off) is accessible for t = (read | write) 6450 * if t==write, value_regno is a register which value is stored into memory 6451 * if t==read, value_regno is a register which will receive the value from memory 6452 * if t==write && value_regno==-1, some unknown value is stored into memory 6453 * if t==read && value_regno==-1, don't care what we read from memory 6454 */ 6455 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 6456 int off, int bpf_size, enum bpf_access_type t, 6457 int value_regno, bool strict_alignment_once, bool is_ldsx) 6458 { 6459 struct bpf_reg_state *regs = cur_regs(env); 6460 struct bpf_reg_state *reg = regs + regno; 6461 struct bpf_func_state *state; 6462 int size, err = 0; 6463 6464 size = bpf_size_to_bytes(bpf_size); 6465 if (size < 0) 6466 return size; 6467 6468 /* alignment checks will add in reg->off themselves */ 6469 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 6470 if (err) 6471 return err; 6472 6473 /* for access checks, reg->off is just part of off */ 6474 off += reg->off; 6475 6476 if (reg->type == PTR_TO_MAP_KEY) { 6477 if (t == BPF_WRITE) { 6478 verbose(env, "write to change key R%d not allowed\n", regno); 6479 return -EACCES; 6480 } 6481 6482 err = check_mem_region_access(env, regno, off, size, 6483 reg->map_ptr->key_size, false); 6484 if (err) 6485 return err; 6486 if (value_regno >= 0) 6487 mark_reg_unknown(env, regs, value_regno); 6488 } else if (reg->type == PTR_TO_MAP_VALUE) { 6489 struct btf_field *kptr_field = NULL; 6490 6491 if (t == BPF_WRITE && value_regno >= 0 && 6492 is_pointer_value(env, value_regno)) { 6493 verbose(env, "R%d leaks addr into map\n", value_regno); 6494 return -EACCES; 6495 } 6496 err = check_map_access_type(env, regno, off, size, t); 6497 if (err) 6498 return err; 6499 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 6500 if (err) 6501 return err; 6502 if (tnum_is_const(reg->var_off)) 6503 kptr_field = btf_record_find(reg->map_ptr->record, 6504 off + reg->var_off.value, BPF_KPTR); 6505 if (kptr_field) { 6506 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 6507 } else if (t == BPF_READ && value_regno >= 0) { 6508 struct bpf_map *map = reg->map_ptr; 6509 6510 /* if map is read-only, track its contents as scalars */ 6511 if (tnum_is_const(reg->var_off) && 6512 bpf_map_is_rdonly(map) && 6513 map->ops->map_direct_value_addr) { 6514 int map_off = off + reg->var_off.value; 6515 u64 val = 0; 6516 6517 err = bpf_map_direct_read(map, map_off, size, 6518 &val, is_ldsx); 6519 if (err) 6520 return err; 6521 6522 regs[value_regno].type = SCALAR_VALUE; 6523 __mark_reg_known(®s[value_regno], val); 6524 } else { 6525 mark_reg_unknown(env, regs, value_regno); 6526 } 6527 } 6528 } else if (base_type(reg->type) == PTR_TO_MEM) { 6529 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6530 6531 if (type_may_be_null(reg->type)) { 6532 verbose(env, "R%d invalid mem access '%s'\n", regno, 6533 reg_type_str(env, reg->type)); 6534 return -EACCES; 6535 } 6536 6537 if (t == BPF_WRITE && rdonly_mem) { 6538 verbose(env, "R%d cannot write into %s\n", 6539 regno, reg_type_str(env, reg->type)); 6540 return -EACCES; 6541 } 6542 6543 if (t == BPF_WRITE && value_regno >= 0 && 6544 is_pointer_value(env, value_regno)) { 6545 verbose(env, "R%d leaks addr into mem\n", value_regno); 6546 return -EACCES; 6547 } 6548 6549 err = check_mem_region_access(env, regno, off, size, 6550 reg->mem_size, false); 6551 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 6552 mark_reg_unknown(env, regs, value_regno); 6553 } else if (reg->type == PTR_TO_CTX) { 6554 enum bpf_reg_type reg_type = SCALAR_VALUE; 6555 struct btf *btf = NULL; 6556 u32 btf_id = 0; 6557 6558 if (t == BPF_WRITE && value_regno >= 0 && 6559 is_pointer_value(env, value_regno)) { 6560 verbose(env, "R%d leaks addr into ctx\n", value_regno); 6561 return -EACCES; 6562 } 6563 6564 err = check_ptr_off_reg(env, reg, regno); 6565 if (err < 0) 6566 return err; 6567 6568 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 6569 &btf_id); 6570 if (err) 6571 verbose_linfo(env, insn_idx, "; "); 6572 if (!err && t == BPF_READ && value_regno >= 0) { 6573 /* ctx access returns either a scalar, or a 6574 * PTR_TO_PACKET[_META,_END]. In the latter 6575 * case, we know the offset is zero. 6576 */ 6577 if (reg_type == SCALAR_VALUE) { 6578 mark_reg_unknown(env, regs, value_regno); 6579 } else { 6580 mark_reg_known_zero(env, regs, 6581 value_regno); 6582 if (type_may_be_null(reg_type)) 6583 regs[value_regno].id = ++env->id_gen; 6584 /* A load of ctx field could have different 6585 * actual load size with the one encoded in the 6586 * insn. When the dst is PTR, it is for sure not 6587 * a sub-register. 6588 */ 6589 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 6590 if (base_type(reg_type) == PTR_TO_BTF_ID) { 6591 regs[value_regno].btf = btf; 6592 regs[value_regno].btf_id = btf_id; 6593 } 6594 } 6595 regs[value_regno].type = reg_type; 6596 } 6597 6598 } else if (reg->type == PTR_TO_STACK) { 6599 /* Basic bounds checks. */ 6600 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 6601 if (err) 6602 return err; 6603 6604 state = func(env, reg); 6605 err = update_stack_depth(env, state, off); 6606 if (err) 6607 return err; 6608 6609 if (t == BPF_READ) 6610 err = check_stack_read(env, regno, off, size, 6611 value_regno); 6612 else 6613 err = check_stack_write(env, regno, off, size, 6614 value_regno, insn_idx); 6615 } else if (reg_is_pkt_pointer(reg)) { 6616 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 6617 verbose(env, "cannot write into packet\n"); 6618 return -EACCES; 6619 } 6620 if (t == BPF_WRITE && value_regno >= 0 && 6621 is_pointer_value(env, value_regno)) { 6622 verbose(env, "R%d leaks addr into packet\n", 6623 value_regno); 6624 return -EACCES; 6625 } 6626 err = check_packet_access(env, regno, off, size, false); 6627 if (!err && t == BPF_READ && value_regno >= 0) 6628 mark_reg_unknown(env, regs, value_regno); 6629 } else if (reg->type == PTR_TO_FLOW_KEYS) { 6630 if (t == BPF_WRITE && value_regno >= 0 && 6631 is_pointer_value(env, value_regno)) { 6632 verbose(env, "R%d leaks addr into flow keys\n", 6633 value_regno); 6634 return -EACCES; 6635 } 6636 6637 err = check_flow_keys_access(env, off, size); 6638 if (!err && t == BPF_READ && value_regno >= 0) 6639 mark_reg_unknown(env, regs, value_regno); 6640 } else if (type_is_sk_pointer(reg->type)) { 6641 if (t == BPF_WRITE) { 6642 verbose(env, "R%d cannot write into %s\n", 6643 regno, reg_type_str(env, reg->type)); 6644 return -EACCES; 6645 } 6646 err = check_sock_access(env, insn_idx, regno, off, size, t); 6647 if (!err && value_regno >= 0) 6648 mark_reg_unknown(env, regs, value_regno); 6649 } else if (reg->type == PTR_TO_TP_BUFFER) { 6650 err = check_tp_buffer_access(env, reg, regno, off, size); 6651 if (!err && t == BPF_READ && value_regno >= 0) 6652 mark_reg_unknown(env, regs, value_regno); 6653 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 6654 !type_may_be_null(reg->type)) { 6655 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 6656 value_regno); 6657 } else if (reg->type == CONST_PTR_TO_MAP) { 6658 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 6659 value_regno); 6660 } else if (base_type(reg->type) == PTR_TO_BUF) { 6661 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6662 u32 *max_access; 6663 6664 if (rdonly_mem) { 6665 if (t == BPF_WRITE) { 6666 verbose(env, "R%d cannot write into %s\n", 6667 regno, reg_type_str(env, reg->type)); 6668 return -EACCES; 6669 } 6670 max_access = &env->prog->aux->max_rdonly_access; 6671 } else { 6672 max_access = &env->prog->aux->max_rdwr_access; 6673 } 6674 6675 err = check_buffer_access(env, reg, regno, off, size, false, 6676 max_access); 6677 6678 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 6679 mark_reg_unknown(env, regs, value_regno); 6680 } else { 6681 verbose(env, "R%d invalid mem access '%s'\n", regno, 6682 reg_type_str(env, reg->type)); 6683 return -EACCES; 6684 } 6685 6686 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 6687 regs[value_regno].type == SCALAR_VALUE) { 6688 if (!is_ldsx) 6689 /* b/h/w load zero-extends, mark upper bits as known 0 */ 6690 coerce_reg_to_size(®s[value_regno], size); 6691 else 6692 coerce_reg_to_size_sx(®s[value_regno], size); 6693 } 6694 return err; 6695 } 6696 6697 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 6698 { 6699 int load_reg; 6700 int err; 6701 6702 switch (insn->imm) { 6703 case BPF_ADD: 6704 case BPF_ADD | BPF_FETCH: 6705 case BPF_AND: 6706 case BPF_AND | BPF_FETCH: 6707 case BPF_OR: 6708 case BPF_OR | BPF_FETCH: 6709 case BPF_XOR: 6710 case BPF_XOR | BPF_FETCH: 6711 case BPF_XCHG: 6712 case BPF_CMPXCHG: 6713 break; 6714 default: 6715 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 6716 return -EINVAL; 6717 } 6718 6719 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 6720 verbose(env, "invalid atomic operand size\n"); 6721 return -EINVAL; 6722 } 6723 6724 /* check src1 operand */ 6725 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6726 if (err) 6727 return err; 6728 6729 /* check src2 operand */ 6730 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6731 if (err) 6732 return err; 6733 6734 if (insn->imm == BPF_CMPXCHG) { 6735 /* Check comparison of R0 with memory location */ 6736 const u32 aux_reg = BPF_REG_0; 6737 6738 err = check_reg_arg(env, aux_reg, SRC_OP); 6739 if (err) 6740 return err; 6741 6742 if (is_pointer_value(env, aux_reg)) { 6743 verbose(env, "R%d leaks addr into mem\n", aux_reg); 6744 return -EACCES; 6745 } 6746 } 6747 6748 if (is_pointer_value(env, insn->src_reg)) { 6749 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 6750 return -EACCES; 6751 } 6752 6753 if (is_ctx_reg(env, insn->dst_reg) || 6754 is_pkt_reg(env, insn->dst_reg) || 6755 is_flow_key_reg(env, insn->dst_reg) || 6756 is_sk_reg(env, insn->dst_reg)) { 6757 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 6758 insn->dst_reg, 6759 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 6760 return -EACCES; 6761 } 6762 6763 if (insn->imm & BPF_FETCH) { 6764 if (insn->imm == BPF_CMPXCHG) 6765 load_reg = BPF_REG_0; 6766 else 6767 load_reg = insn->src_reg; 6768 6769 /* check and record load of old value */ 6770 err = check_reg_arg(env, load_reg, DST_OP); 6771 if (err) 6772 return err; 6773 } else { 6774 /* This instruction accesses a memory location but doesn't 6775 * actually load it into a register. 6776 */ 6777 load_reg = -1; 6778 } 6779 6780 /* Check whether we can read the memory, with second call for fetch 6781 * case to simulate the register fill. 6782 */ 6783 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6784 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 6785 if (!err && load_reg >= 0) 6786 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6787 BPF_SIZE(insn->code), BPF_READ, load_reg, 6788 true, false); 6789 if (err) 6790 return err; 6791 6792 /* Check whether we can write into the same memory. */ 6793 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6794 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 6795 if (err) 6796 return err; 6797 6798 return 0; 6799 } 6800 6801 /* When register 'regno' is used to read the stack (either directly or through 6802 * a helper function) make sure that it's within stack boundary and, depending 6803 * on the access type, that all elements of the stack are initialized. 6804 * 6805 * 'off' includes 'regno->off', but not its dynamic part (if any). 6806 * 6807 * All registers that have been spilled on the stack in the slots within the 6808 * read offsets are marked as read. 6809 */ 6810 static int check_stack_range_initialized( 6811 struct bpf_verifier_env *env, int regno, int off, 6812 int access_size, bool zero_size_allowed, 6813 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 6814 { 6815 struct bpf_reg_state *reg = reg_state(env, regno); 6816 struct bpf_func_state *state = func(env, reg); 6817 int err, min_off, max_off, i, j, slot, spi; 6818 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 6819 enum bpf_access_type bounds_check_type; 6820 /* Some accesses can write anything into the stack, others are 6821 * read-only. 6822 */ 6823 bool clobber = false; 6824 6825 if (access_size == 0 && !zero_size_allowed) { 6826 verbose(env, "invalid zero-sized read\n"); 6827 return -EACCES; 6828 } 6829 6830 if (type == ACCESS_HELPER) { 6831 /* The bounds checks for writes are more permissive than for 6832 * reads. However, if raw_mode is not set, we'll do extra 6833 * checks below. 6834 */ 6835 bounds_check_type = BPF_WRITE; 6836 clobber = true; 6837 } else { 6838 bounds_check_type = BPF_READ; 6839 } 6840 err = check_stack_access_within_bounds(env, regno, off, access_size, 6841 type, bounds_check_type); 6842 if (err) 6843 return err; 6844 6845 6846 if (tnum_is_const(reg->var_off)) { 6847 min_off = max_off = reg->var_off.value + off; 6848 } else { 6849 /* Variable offset is prohibited for unprivileged mode for 6850 * simplicity since it requires corresponding support in 6851 * Spectre masking for stack ALU. 6852 * See also retrieve_ptr_limit(). 6853 */ 6854 if (!env->bypass_spec_v1) { 6855 char tn_buf[48]; 6856 6857 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6858 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 6859 regno, err_extra, tn_buf); 6860 return -EACCES; 6861 } 6862 /* Only initialized buffer on stack is allowed to be accessed 6863 * with variable offset. With uninitialized buffer it's hard to 6864 * guarantee that whole memory is marked as initialized on 6865 * helper return since specific bounds are unknown what may 6866 * cause uninitialized stack leaking. 6867 */ 6868 if (meta && meta->raw_mode) 6869 meta = NULL; 6870 6871 min_off = reg->smin_value + off; 6872 max_off = reg->smax_value + off; 6873 } 6874 6875 if (meta && meta->raw_mode) { 6876 /* Ensure we won't be overwriting dynptrs when simulating byte 6877 * by byte access in check_helper_call using meta.access_size. 6878 * This would be a problem if we have a helper in the future 6879 * which takes: 6880 * 6881 * helper(uninit_mem, len, dynptr) 6882 * 6883 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 6884 * may end up writing to dynptr itself when touching memory from 6885 * arg 1. This can be relaxed on a case by case basis for known 6886 * safe cases, but reject due to the possibilitiy of aliasing by 6887 * default. 6888 */ 6889 for (i = min_off; i < max_off + access_size; i++) { 6890 int stack_off = -i - 1; 6891 6892 spi = __get_spi(i); 6893 /* raw_mode may write past allocated_stack */ 6894 if (state->allocated_stack <= stack_off) 6895 continue; 6896 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 6897 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 6898 return -EACCES; 6899 } 6900 } 6901 meta->access_size = access_size; 6902 meta->regno = regno; 6903 return 0; 6904 } 6905 6906 for (i = min_off; i < max_off + access_size; i++) { 6907 u8 *stype; 6908 6909 slot = -i - 1; 6910 spi = slot / BPF_REG_SIZE; 6911 if (state->allocated_stack <= slot) 6912 goto err; 6913 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 6914 if (*stype == STACK_MISC) 6915 goto mark; 6916 if ((*stype == STACK_ZERO) || 6917 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 6918 if (clobber) { 6919 /* helper can write anything into the stack */ 6920 *stype = STACK_MISC; 6921 } 6922 goto mark; 6923 } 6924 6925 if (is_spilled_reg(&state->stack[spi]) && 6926 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 6927 env->allow_ptr_leaks)) { 6928 if (clobber) { 6929 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 6930 for (j = 0; j < BPF_REG_SIZE; j++) 6931 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 6932 } 6933 goto mark; 6934 } 6935 6936 err: 6937 if (tnum_is_const(reg->var_off)) { 6938 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 6939 err_extra, regno, min_off, i - min_off, access_size); 6940 } else { 6941 char tn_buf[48]; 6942 6943 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6944 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 6945 err_extra, regno, tn_buf, i - min_off, access_size); 6946 } 6947 return -EACCES; 6948 mark: 6949 /* reading any byte out of 8-byte 'spill_slot' will cause 6950 * the whole slot to be marked as 'read' 6951 */ 6952 mark_reg_read(env, &state->stack[spi].spilled_ptr, 6953 state->stack[spi].spilled_ptr.parent, 6954 REG_LIVE_READ64); 6955 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 6956 * be sure that whether stack slot is written to or not. Hence, 6957 * we must still conservatively propagate reads upwards even if 6958 * helper may write to the entire memory range. 6959 */ 6960 } 6961 return update_stack_depth(env, state, min_off); 6962 } 6963 6964 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 6965 int access_size, bool zero_size_allowed, 6966 struct bpf_call_arg_meta *meta) 6967 { 6968 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6969 u32 *max_access; 6970 6971 switch (base_type(reg->type)) { 6972 case PTR_TO_PACKET: 6973 case PTR_TO_PACKET_META: 6974 return check_packet_access(env, regno, reg->off, access_size, 6975 zero_size_allowed); 6976 case PTR_TO_MAP_KEY: 6977 if (meta && meta->raw_mode) { 6978 verbose(env, "R%d cannot write into %s\n", regno, 6979 reg_type_str(env, reg->type)); 6980 return -EACCES; 6981 } 6982 return check_mem_region_access(env, regno, reg->off, access_size, 6983 reg->map_ptr->key_size, false); 6984 case PTR_TO_MAP_VALUE: 6985 if (check_map_access_type(env, regno, reg->off, access_size, 6986 meta && meta->raw_mode ? BPF_WRITE : 6987 BPF_READ)) 6988 return -EACCES; 6989 return check_map_access(env, regno, reg->off, access_size, 6990 zero_size_allowed, ACCESS_HELPER); 6991 case PTR_TO_MEM: 6992 if (type_is_rdonly_mem(reg->type)) { 6993 if (meta && meta->raw_mode) { 6994 verbose(env, "R%d cannot write into %s\n", regno, 6995 reg_type_str(env, reg->type)); 6996 return -EACCES; 6997 } 6998 } 6999 return check_mem_region_access(env, regno, reg->off, 7000 access_size, reg->mem_size, 7001 zero_size_allowed); 7002 case PTR_TO_BUF: 7003 if (type_is_rdonly_mem(reg->type)) { 7004 if (meta && meta->raw_mode) { 7005 verbose(env, "R%d cannot write into %s\n", regno, 7006 reg_type_str(env, reg->type)); 7007 return -EACCES; 7008 } 7009 7010 max_access = &env->prog->aux->max_rdonly_access; 7011 } else { 7012 max_access = &env->prog->aux->max_rdwr_access; 7013 } 7014 return check_buffer_access(env, reg, regno, reg->off, 7015 access_size, zero_size_allowed, 7016 max_access); 7017 case PTR_TO_STACK: 7018 return check_stack_range_initialized( 7019 env, 7020 regno, reg->off, access_size, 7021 zero_size_allowed, ACCESS_HELPER, meta); 7022 case PTR_TO_BTF_ID: 7023 return check_ptr_to_btf_access(env, regs, regno, reg->off, 7024 access_size, BPF_READ, -1); 7025 case PTR_TO_CTX: 7026 /* in case the function doesn't know how to access the context, 7027 * (because we are in a program of type SYSCALL for example), we 7028 * can not statically check its size. 7029 * Dynamically check it now. 7030 */ 7031 if (!env->ops->convert_ctx_access) { 7032 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 7033 int offset = access_size - 1; 7034 7035 /* Allow zero-byte read from PTR_TO_CTX */ 7036 if (access_size == 0) 7037 return zero_size_allowed ? 0 : -EACCES; 7038 7039 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 7040 atype, -1, false, false); 7041 } 7042 7043 fallthrough; 7044 default: /* scalar_value or invalid ptr */ 7045 /* Allow zero-byte read from NULL, regardless of pointer type */ 7046 if (zero_size_allowed && access_size == 0 && 7047 register_is_null(reg)) 7048 return 0; 7049 7050 verbose(env, "R%d type=%s ", regno, 7051 reg_type_str(env, reg->type)); 7052 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 7053 return -EACCES; 7054 } 7055 } 7056 7057 static int check_mem_size_reg(struct bpf_verifier_env *env, 7058 struct bpf_reg_state *reg, u32 regno, 7059 bool zero_size_allowed, 7060 struct bpf_call_arg_meta *meta) 7061 { 7062 int err; 7063 7064 /* This is used to refine r0 return value bounds for helpers 7065 * that enforce this value as an upper bound on return values. 7066 * See do_refine_retval_range() for helpers that can refine 7067 * the return value. C type of helper is u32 so we pull register 7068 * bound from umax_value however, if negative verifier errors 7069 * out. Only upper bounds can be learned because retval is an 7070 * int type and negative retvals are allowed. 7071 */ 7072 meta->msize_max_value = reg->umax_value; 7073 7074 /* The register is SCALAR_VALUE; the access check 7075 * happens using its boundaries. 7076 */ 7077 if (!tnum_is_const(reg->var_off)) 7078 /* For unprivileged variable accesses, disable raw 7079 * mode so that the program is required to 7080 * initialize all the memory that the helper could 7081 * just partially fill up. 7082 */ 7083 meta = NULL; 7084 7085 if (reg->smin_value < 0) { 7086 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 7087 regno); 7088 return -EACCES; 7089 } 7090 7091 if (reg->umin_value == 0) { 7092 err = check_helper_mem_access(env, regno - 1, 0, 7093 zero_size_allowed, 7094 meta); 7095 if (err) 7096 return err; 7097 } 7098 7099 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 7100 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 7101 regno); 7102 return -EACCES; 7103 } 7104 err = check_helper_mem_access(env, regno - 1, 7105 reg->umax_value, 7106 zero_size_allowed, meta); 7107 if (!err) 7108 err = mark_chain_precision(env, regno); 7109 return err; 7110 } 7111 7112 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7113 u32 regno, u32 mem_size) 7114 { 7115 bool may_be_null = type_may_be_null(reg->type); 7116 struct bpf_reg_state saved_reg; 7117 struct bpf_call_arg_meta meta; 7118 int err; 7119 7120 if (register_is_null(reg)) 7121 return 0; 7122 7123 memset(&meta, 0, sizeof(meta)); 7124 /* Assuming that the register contains a value check if the memory 7125 * access is safe. Temporarily save and restore the register's state as 7126 * the conversion shouldn't be visible to a caller. 7127 */ 7128 if (may_be_null) { 7129 saved_reg = *reg; 7130 mark_ptr_not_null_reg(reg); 7131 } 7132 7133 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 7134 /* Check access for BPF_WRITE */ 7135 meta.raw_mode = true; 7136 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 7137 7138 if (may_be_null) 7139 *reg = saved_reg; 7140 7141 return err; 7142 } 7143 7144 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7145 u32 regno) 7146 { 7147 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 7148 bool may_be_null = type_may_be_null(mem_reg->type); 7149 struct bpf_reg_state saved_reg; 7150 struct bpf_call_arg_meta meta; 7151 int err; 7152 7153 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 7154 7155 memset(&meta, 0, sizeof(meta)); 7156 7157 if (may_be_null) { 7158 saved_reg = *mem_reg; 7159 mark_ptr_not_null_reg(mem_reg); 7160 } 7161 7162 err = check_mem_size_reg(env, reg, regno, true, &meta); 7163 /* Check access for BPF_WRITE */ 7164 meta.raw_mode = true; 7165 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 7166 7167 if (may_be_null) 7168 *mem_reg = saved_reg; 7169 return err; 7170 } 7171 7172 /* Implementation details: 7173 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 7174 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 7175 * Two bpf_map_lookups (even with the same key) will have different reg->id. 7176 * Two separate bpf_obj_new will also have different reg->id. 7177 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 7178 * clears reg->id after value_or_null->value transition, since the verifier only 7179 * cares about the range of access to valid map value pointer and doesn't care 7180 * about actual address of the map element. 7181 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 7182 * reg->id > 0 after value_or_null->value transition. By doing so 7183 * two bpf_map_lookups will be considered two different pointers that 7184 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 7185 * returned from bpf_obj_new. 7186 * The verifier allows taking only one bpf_spin_lock at a time to avoid 7187 * dead-locks. 7188 * Since only one bpf_spin_lock is allowed the checks are simpler than 7189 * reg_is_refcounted() logic. The verifier needs to remember only 7190 * one spin_lock instead of array of acquired_refs. 7191 * cur_state->active_lock remembers which map value element or allocated 7192 * object got locked and clears it after bpf_spin_unlock. 7193 */ 7194 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 7195 bool is_lock) 7196 { 7197 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7198 struct bpf_verifier_state *cur = env->cur_state; 7199 bool is_const = tnum_is_const(reg->var_off); 7200 u64 val = reg->var_off.value; 7201 struct bpf_map *map = NULL; 7202 struct btf *btf = NULL; 7203 struct btf_record *rec; 7204 7205 if (!is_const) { 7206 verbose(env, 7207 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 7208 regno); 7209 return -EINVAL; 7210 } 7211 if (reg->type == PTR_TO_MAP_VALUE) { 7212 map = reg->map_ptr; 7213 if (!map->btf) { 7214 verbose(env, 7215 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 7216 map->name); 7217 return -EINVAL; 7218 } 7219 } else { 7220 btf = reg->btf; 7221 } 7222 7223 rec = reg_btf_record(reg); 7224 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 7225 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 7226 map ? map->name : "kptr"); 7227 return -EINVAL; 7228 } 7229 if (rec->spin_lock_off != val + reg->off) { 7230 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 7231 val + reg->off, rec->spin_lock_off); 7232 return -EINVAL; 7233 } 7234 if (is_lock) { 7235 if (cur->active_lock.ptr) { 7236 verbose(env, 7237 "Locking two bpf_spin_locks are not allowed\n"); 7238 return -EINVAL; 7239 } 7240 if (map) 7241 cur->active_lock.ptr = map; 7242 else 7243 cur->active_lock.ptr = btf; 7244 cur->active_lock.id = reg->id; 7245 } else { 7246 void *ptr; 7247 7248 if (map) 7249 ptr = map; 7250 else 7251 ptr = btf; 7252 7253 if (!cur->active_lock.ptr) { 7254 verbose(env, "bpf_spin_unlock without taking a lock\n"); 7255 return -EINVAL; 7256 } 7257 if (cur->active_lock.ptr != ptr || 7258 cur->active_lock.id != reg->id) { 7259 verbose(env, "bpf_spin_unlock of different lock\n"); 7260 return -EINVAL; 7261 } 7262 7263 invalidate_non_owning_refs(env); 7264 7265 cur->active_lock.ptr = NULL; 7266 cur->active_lock.id = 0; 7267 } 7268 return 0; 7269 } 7270 7271 static int process_timer_func(struct bpf_verifier_env *env, int regno, 7272 struct bpf_call_arg_meta *meta) 7273 { 7274 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7275 bool is_const = tnum_is_const(reg->var_off); 7276 struct bpf_map *map = reg->map_ptr; 7277 u64 val = reg->var_off.value; 7278 7279 if (!is_const) { 7280 verbose(env, 7281 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 7282 regno); 7283 return -EINVAL; 7284 } 7285 if (!map->btf) { 7286 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 7287 map->name); 7288 return -EINVAL; 7289 } 7290 if (!btf_record_has_field(map->record, BPF_TIMER)) { 7291 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 7292 return -EINVAL; 7293 } 7294 if (map->record->timer_off != val + reg->off) { 7295 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 7296 val + reg->off, map->record->timer_off); 7297 return -EINVAL; 7298 } 7299 if (meta->map_ptr) { 7300 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 7301 return -EFAULT; 7302 } 7303 meta->map_uid = reg->map_uid; 7304 meta->map_ptr = map; 7305 return 0; 7306 } 7307 7308 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 7309 struct bpf_call_arg_meta *meta) 7310 { 7311 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7312 struct bpf_map *map_ptr = reg->map_ptr; 7313 struct btf_field *kptr_field; 7314 u32 kptr_off; 7315 7316 if (!tnum_is_const(reg->var_off)) { 7317 verbose(env, 7318 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 7319 regno); 7320 return -EINVAL; 7321 } 7322 if (!map_ptr->btf) { 7323 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 7324 map_ptr->name); 7325 return -EINVAL; 7326 } 7327 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 7328 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 7329 return -EINVAL; 7330 } 7331 7332 meta->map_ptr = map_ptr; 7333 kptr_off = reg->off + reg->var_off.value; 7334 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 7335 if (!kptr_field) { 7336 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 7337 return -EACCES; 7338 } 7339 if (kptr_field->type != BPF_KPTR_REF) { 7340 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 7341 return -EACCES; 7342 } 7343 meta->kptr_field = kptr_field; 7344 return 0; 7345 } 7346 7347 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 7348 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 7349 * 7350 * In both cases we deal with the first 8 bytes, but need to mark the next 8 7351 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 7352 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 7353 * 7354 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 7355 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 7356 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 7357 * mutate the view of the dynptr and also possibly destroy it. In the latter 7358 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 7359 * memory that dynptr points to. 7360 * 7361 * The verifier will keep track both levels of mutation (bpf_dynptr's in 7362 * reg->type and the memory's in reg->dynptr.type), but there is no support for 7363 * readonly dynptr view yet, hence only the first case is tracked and checked. 7364 * 7365 * This is consistent with how C applies the const modifier to a struct object, 7366 * where the pointer itself inside bpf_dynptr becomes const but not what it 7367 * points to. 7368 * 7369 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 7370 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 7371 */ 7372 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 7373 enum bpf_arg_type arg_type, int clone_ref_obj_id) 7374 { 7375 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7376 int err; 7377 7378 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 7379 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 7380 */ 7381 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 7382 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 7383 return -EFAULT; 7384 } 7385 7386 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 7387 * constructing a mutable bpf_dynptr object. 7388 * 7389 * Currently, this is only possible with PTR_TO_STACK 7390 * pointing to a region of at least 16 bytes which doesn't 7391 * contain an existing bpf_dynptr. 7392 * 7393 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 7394 * mutated or destroyed. However, the memory it points to 7395 * may be mutated. 7396 * 7397 * None - Points to a initialized dynptr that can be mutated and 7398 * destroyed, including mutation of the memory it points 7399 * to. 7400 */ 7401 if (arg_type & MEM_UNINIT) { 7402 int i; 7403 7404 if (!is_dynptr_reg_valid_uninit(env, reg)) { 7405 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 7406 return -EINVAL; 7407 } 7408 7409 /* we write BPF_DW bits (8 bytes) at a time */ 7410 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7411 err = check_mem_access(env, insn_idx, regno, 7412 i, BPF_DW, BPF_WRITE, -1, false, false); 7413 if (err) 7414 return err; 7415 } 7416 7417 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 7418 } else /* MEM_RDONLY and None case from above */ { 7419 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 7420 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 7421 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 7422 return -EINVAL; 7423 } 7424 7425 if (!is_dynptr_reg_valid_init(env, reg)) { 7426 verbose(env, 7427 "Expected an initialized dynptr as arg #%d\n", 7428 regno); 7429 return -EINVAL; 7430 } 7431 7432 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 7433 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 7434 verbose(env, 7435 "Expected a dynptr of type %s as arg #%d\n", 7436 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 7437 return -EINVAL; 7438 } 7439 7440 err = mark_dynptr_read(env, reg); 7441 } 7442 return err; 7443 } 7444 7445 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 7446 { 7447 struct bpf_func_state *state = func(env, reg); 7448 7449 return state->stack[spi].spilled_ptr.ref_obj_id; 7450 } 7451 7452 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7453 { 7454 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7455 } 7456 7457 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7458 { 7459 return meta->kfunc_flags & KF_ITER_NEW; 7460 } 7461 7462 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7463 { 7464 return meta->kfunc_flags & KF_ITER_NEXT; 7465 } 7466 7467 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7468 { 7469 return meta->kfunc_flags & KF_ITER_DESTROY; 7470 } 7471 7472 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg) 7473 { 7474 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 7475 * kfunc is iter state pointer 7476 */ 7477 return arg == 0 && is_iter_kfunc(meta); 7478 } 7479 7480 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 7481 struct bpf_kfunc_call_arg_meta *meta) 7482 { 7483 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7484 const struct btf_type *t; 7485 const struct btf_param *arg; 7486 int spi, err, i, nr_slots; 7487 u32 btf_id; 7488 7489 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */ 7490 arg = &btf_params(meta->func_proto)[0]; 7491 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */ 7492 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */ 7493 nr_slots = t->size / BPF_REG_SIZE; 7494 7495 if (is_iter_new_kfunc(meta)) { 7496 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 7497 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 7498 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 7499 iter_type_str(meta->btf, btf_id), regno); 7500 return -EINVAL; 7501 } 7502 7503 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 7504 err = check_mem_access(env, insn_idx, regno, 7505 i, BPF_DW, BPF_WRITE, -1, false, false); 7506 if (err) 7507 return err; 7508 } 7509 7510 err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots); 7511 if (err) 7512 return err; 7513 } else { 7514 /* iter_next() or iter_destroy() expect initialized iter state*/ 7515 if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) { 7516 verbose(env, "expected an initialized iter_%s as arg #%d\n", 7517 iter_type_str(meta->btf, btf_id), regno); 7518 return -EINVAL; 7519 } 7520 7521 spi = iter_get_spi(env, reg, nr_slots); 7522 if (spi < 0) 7523 return spi; 7524 7525 err = mark_iter_read(env, reg, spi, nr_slots); 7526 if (err) 7527 return err; 7528 7529 /* remember meta->iter info for process_iter_next_call() */ 7530 meta->iter.spi = spi; 7531 meta->iter.frameno = reg->frameno; 7532 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 7533 7534 if (is_iter_destroy_kfunc(meta)) { 7535 err = unmark_stack_slots_iter(env, reg, nr_slots); 7536 if (err) 7537 return err; 7538 } 7539 } 7540 7541 return 0; 7542 } 7543 7544 /* process_iter_next_call() is called when verifier gets to iterator's next 7545 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 7546 * to it as just "iter_next()" in comments below. 7547 * 7548 * BPF verifier relies on a crucial contract for any iter_next() 7549 * implementation: it should *eventually* return NULL, and once that happens 7550 * it should keep returning NULL. That is, once iterator exhausts elements to 7551 * iterate, it should never reset or spuriously return new elements. 7552 * 7553 * With the assumption of such contract, process_iter_next_call() simulates 7554 * a fork in the verifier state to validate loop logic correctness and safety 7555 * without having to simulate infinite amount of iterations. 7556 * 7557 * In current state, we first assume that iter_next() returned NULL and 7558 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 7559 * conditions we should not form an infinite loop and should eventually reach 7560 * exit. 7561 * 7562 * Besides that, we also fork current state and enqueue it for later 7563 * verification. In a forked state we keep iterator state as ACTIVE 7564 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 7565 * also bump iteration depth to prevent erroneous infinite loop detection 7566 * later on (see iter_active_depths_differ() comment for details). In this 7567 * state we assume that we'll eventually loop back to another iter_next() 7568 * calls (it could be in exactly same location or in some other instruction, 7569 * it doesn't matter, we don't make any unnecessary assumptions about this, 7570 * everything revolves around iterator state in a stack slot, not which 7571 * instruction is calling iter_next()). When that happens, we either will come 7572 * to iter_next() with equivalent state and can conclude that next iteration 7573 * will proceed in exactly the same way as we just verified, so it's safe to 7574 * assume that loop converges. If not, we'll go on another iteration 7575 * simulation with a different input state, until all possible starting states 7576 * are validated or we reach maximum number of instructions limit. 7577 * 7578 * This way, we will either exhaustively discover all possible input states 7579 * that iterator loop can start with and eventually will converge, or we'll 7580 * effectively regress into bounded loop simulation logic and either reach 7581 * maximum number of instructions if loop is not provably convergent, or there 7582 * is some statically known limit on number of iterations (e.g., if there is 7583 * an explicit `if n > 100 then break;` statement somewhere in the loop). 7584 * 7585 * One very subtle but very important aspect is that we *always* simulate NULL 7586 * condition first (as the current state) before we simulate non-NULL case. 7587 * This has to do with intricacies of scalar precision tracking. By simulating 7588 * "exit condition" of iter_next() returning NULL first, we make sure all the 7589 * relevant precision marks *that will be set **after** we exit iterator loop* 7590 * are propagated backwards to common parent state of NULL and non-NULL 7591 * branches. Thanks to that, state equivalence checks done later in forked 7592 * state, when reaching iter_next() for ACTIVE iterator, can assume that 7593 * precision marks are finalized and won't change. Because simulating another 7594 * ACTIVE iterator iteration won't change them (because given same input 7595 * states we'll end up with exactly same output states which we are currently 7596 * comparing; and verification after the loop already propagated back what 7597 * needs to be **additionally** tracked as precise). It's subtle, grok 7598 * precision tracking for more intuitive understanding. 7599 */ 7600 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 7601 struct bpf_kfunc_call_arg_meta *meta) 7602 { 7603 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st; 7604 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 7605 struct bpf_reg_state *cur_iter, *queued_iter; 7606 int iter_frameno = meta->iter.frameno; 7607 int iter_spi = meta->iter.spi; 7608 7609 BTF_TYPE_EMIT(struct bpf_iter); 7610 7611 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7612 7613 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 7614 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 7615 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 7616 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 7617 return -EFAULT; 7618 } 7619 7620 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 7621 /* branch out active iter state */ 7622 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 7623 if (!queued_st) 7624 return -ENOMEM; 7625 7626 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7627 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 7628 queued_iter->iter.depth++; 7629 7630 queued_fr = queued_st->frame[queued_st->curframe]; 7631 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 7632 } 7633 7634 /* switch to DRAINED state, but keep the depth unchanged */ 7635 /* mark current iter state as drained and assume returned NULL */ 7636 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 7637 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]); 7638 7639 return 0; 7640 } 7641 7642 static bool arg_type_is_mem_size(enum bpf_arg_type type) 7643 { 7644 return type == ARG_CONST_SIZE || 7645 type == ARG_CONST_SIZE_OR_ZERO; 7646 } 7647 7648 static bool arg_type_is_release(enum bpf_arg_type type) 7649 { 7650 return type & OBJ_RELEASE; 7651 } 7652 7653 static bool arg_type_is_dynptr(enum bpf_arg_type type) 7654 { 7655 return base_type(type) == ARG_PTR_TO_DYNPTR; 7656 } 7657 7658 static int int_ptr_type_to_size(enum bpf_arg_type type) 7659 { 7660 if (type == ARG_PTR_TO_INT) 7661 return sizeof(u32); 7662 else if (type == ARG_PTR_TO_LONG) 7663 return sizeof(u64); 7664 7665 return -EINVAL; 7666 } 7667 7668 static int resolve_map_arg_type(struct bpf_verifier_env *env, 7669 const struct bpf_call_arg_meta *meta, 7670 enum bpf_arg_type *arg_type) 7671 { 7672 if (!meta->map_ptr) { 7673 /* kernel subsystem misconfigured verifier */ 7674 verbose(env, "invalid map_ptr to access map->type\n"); 7675 return -EACCES; 7676 } 7677 7678 switch (meta->map_ptr->map_type) { 7679 case BPF_MAP_TYPE_SOCKMAP: 7680 case BPF_MAP_TYPE_SOCKHASH: 7681 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 7682 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 7683 } else { 7684 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 7685 return -EINVAL; 7686 } 7687 break; 7688 case BPF_MAP_TYPE_BLOOM_FILTER: 7689 if (meta->func_id == BPF_FUNC_map_peek_elem) 7690 *arg_type = ARG_PTR_TO_MAP_VALUE; 7691 break; 7692 default: 7693 break; 7694 } 7695 return 0; 7696 } 7697 7698 struct bpf_reg_types { 7699 const enum bpf_reg_type types[10]; 7700 u32 *btf_id; 7701 }; 7702 7703 static const struct bpf_reg_types sock_types = { 7704 .types = { 7705 PTR_TO_SOCK_COMMON, 7706 PTR_TO_SOCKET, 7707 PTR_TO_TCP_SOCK, 7708 PTR_TO_XDP_SOCK, 7709 }, 7710 }; 7711 7712 #ifdef CONFIG_NET 7713 static const struct bpf_reg_types btf_id_sock_common_types = { 7714 .types = { 7715 PTR_TO_SOCK_COMMON, 7716 PTR_TO_SOCKET, 7717 PTR_TO_TCP_SOCK, 7718 PTR_TO_XDP_SOCK, 7719 PTR_TO_BTF_ID, 7720 PTR_TO_BTF_ID | PTR_TRUSTED, 7721 }, 7722 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 7723 }; 7724 #endif 7725 7726 static const struct bpf_reg_types mem_types = { 7727 .types = { 7728 PTR_TO_STACK, 7729 PTR_TO_PACKET, 7730 PTR_TO_PACKET_META, 7731 PTR_TO_MAP_KEY, 7732 PTR_TO_MAP_VALUE, 7733 PTR_TO_MEM, 7734 PTR_TO_MEM | MEM_RINGBUF, 7735 PTR_TO_BUF, 7736 PTR_TO_BTF_ID | PTR_TRUSTED, 7737 }, 7738 }; 7739 7740 static const struct bpf_reg_types int_ptr_types = { 7741 .types = { 7742 PTR_TO_STACK, 7743 PTR_TO_PACKET, 7744 PTR_TO_PACKET_META, 7745 PTR_TO_MAP_KEY, 7746 PTR_TO_MAP_VALUE, 7747 }, 7748 }; 7749 7750 static const struct bpf_reg_types spin_lock_types = { 7751 .types = { 7752 PTR_TO_MAP_VALUE, 7753 PTR_TO_BTF_ID | MEM_ALLOC, 7754 } 7755 }; 7756 7757 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 7758 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 7759 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 7760 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 7761 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 7762 static const struct bpf_reg_types btf_ptr_types = { 7763 .types = { 7764 PTR_TO_BTF_ID, 7765 PTR_TO_BTF_ID | PTR_TRUSTED, 7766 PTR_TO_BTF_ID | MEM_RCU, 7767 }, 7768 }; 7769 static const struct bpf_reg_types percpu_btf_ptr_types = { 7770 .types = { 7771 PTR_TO_BTF_ID | MEM_PERCPU, 7772 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 7773 } 7774 }; 7775 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 7776 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 7777 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 7778 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 7779 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 7780 static const struct bpf_reg_types dynptr_types = { 7781 .types = { 7782 PTR_TO_STACK, 7783 CONST_PTR_TO_DYNPTR, 7784 } 7785 }; 7786 7787 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 7788 [ARG_PTR_TO_MAP_KEY] = &mem_types, 7789 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 7790 [ARG_CONST_SIZE] = &scalar_types, 7791 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 7792 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 7793 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 7794 [ARG_PTR_TO_CTX] = &context_types, 7795 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 7796 #ifdef CONFIG_NET 7797 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 7798 #endif 7799 [ARG_PTR_TO_SOCKET] = &fullsock_types, 7800 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 7801 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 7802 [ARG_PTR_TO_MEM] = &mem_types, 7803 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 7804 [ARG_PTR_TO_INT] = &int_ptr_types, 7805 [ARG_PTR_TO_LONG] = &int_ptr_types, 7806 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 7807 [ARG_PTR_TO_FUNC] = &func_ptr_types, 7808 [ARG_PTR_TO_STACK] = &stack_ptr_types, 7809 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 7810 [ARG_PTR_TO_TIMER] = &timer_types, 7811 [ARG_PTR_TO_KPTR] = &kptr_types, 7812 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 7813 }; 7814 7815 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 7816 enum bpf_arg_type arg_type, 7817 const u32 *arg_btf_id, 7818 struct bpf_call_arg_meta *meta) 7819 { 7820 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7821 enum bpf_reg_type expected, type = reg->type; 7822 const struct bpf_reg_types *compatible; 7823 int i, j; 7824 7825 compatible = compatible_reg_types[base_type(arg_type)]; 7826 if (!compatible) { 7827 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 7828 return -EFAULT; 7829 } 7830 7831 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 7832 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 7833 * 7834 * Same for MAYBE_NULL: 7835 * 7836 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 7837 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 7838 * 7839 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 7840 * 7841 * Therefore we fold these flags depending on the arg_type before comparison. 7842 */ 7843 if (arg_type & MEM_RDONLY) 7844 type &= ~MEM_RDONLY; 7845 if (arg_type & PTR_MAYBE_NULL) 7846 type &= ~PTR_MAYBE_NULL; 7847 if (base_type(arg_type) == ARG_PTR_TO_MEM) 7848 type &= ~DYNPTR_TYPE_FLAG_MASK; 7849 7850 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) 7851 type &= ~MEM_ALLOC; 7852 7853 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 7854 expected = compatible->types[i]; 7855 if (expected == NOT_INIT) 7856 break; 7857 7858 if (type == expected) 7859 goto found; 7860 } 7861 7862 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 7863 for (j = 0; j + 1 < i; j++) 7864 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 7865 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 7866 return -EACCES; 7867 7868 found: 7869 if (base_type(reg->type) != PTR_TO_BTF_ID) 7870 return 0; 7871 7872 if (compatible == &mem_types) { 7873 if (!(arg_type & MEM_RDONLY)) { 7874 verbose(env, 7875 "%s() may write into memory pointed by R%d type=%s\n", 7876 func_id_name(meta->func_id), 7877 regno, reg_type_str(env, reg->type)); 7878 return -EACCES; 7879 } 7880 return 0; 7881 } 7882 7883 switch ((int)reg->type) { 7884 case PTR_TO_BTF_ID: 7885 case PTR_TO_BTF_ID | PTR_TRUSTED: 7886 case PTR_TO_BTF_ID | MEM_RCU: 7887 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 7888 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 7889 { 7890 /* For bpf_sk_release, it needs to match against first member 7891 * 'struct sock_common', hence make an exception for it. This 7892 * allows bpf_sk_release to work for multiple socket types. 7893 */ 7894 bool strict_type_match = arg_type_is_release(arg_type) && 7895 meta->func_id != BPF_FUNC_sk_release; 7896 7897 if (type_may_be_null(reg->type) && 7898 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 7899 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 7900 return -EACCES; 7901 } 7902 7903 if (!arg_btf_id) { 7904 if (!compatible->btf_id) { 7905 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 7906 return -EFAULT; 7907 } 7908 arg_btf_id = compatible->btf_id; 7909 } 7910 7911 if (meta->func_id == BPF_FUNC_kptr_xchg) { 7912 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 7913 return -EACCES; 7914 } else { 7915 if (arg_btf_id == BPF_PTR_POISON) { 7916 verbose(env, "verifier internal error:"); 7917 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 7918 regno); 7919 return -EACCES; 7920 } 7921 7922 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 7923 btf_vmlinux, *arg_btf_id, 7924 strict_type_match)) { 7925 verbose(env, "R%d is of type %s but %s is expected\n", 7926 regno, btf_type_name(reg->btf, reg->btf_id), 7927 btf_type_name(btf_vmlinux, *arg_btf_id)); 7928 return -EACCES; 7929 } 7930 } 7931 break; 7932 } 7933 case PTR_TO_BTF_ID | MEM_ALLOC: 7934 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 7935 meta->func_id != BPF_FUNC_kptr_xchg) { 7936 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 7937 return -EFAULT; 7938 } 7939 if (meta->func_id == BPF_FUNC_kptr_xchg) { 7940 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 7941 return -EACCES; 7942 } 7943 break; 7944 case PTR_TO_BTF_ID | MEM_PERCPU: 7945 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 7946 /* Handled by helper specific checks */ 7947 break; 7948 default: 7949 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 7950 return -EFAULT; 7951 } 7952 return 0; 7953 } 7954 7955 static struct btf_field * 7956 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 7957 { 7958 struct btf_field *field; 7959 struct btf_record *rec; 7960 7961 rec = reg_btf_record(reg); 7962 if (!rec) 7963 return NULL; 7964 7965 field = btf_record_find(rec, off, fields); 7966 if (!field) 7967 return NULL; 7968 7969 return field; 7970 } 7971 7972 int check_func_arg_reg_off(struct bpf_verifier_env *env, 7973 const struct bpf_reg_state *reg, int regno, 7974 enum bpf_arg_type arg_type) 7975 { 7976 u32 type = reg->type; 7977 7978 /* When referenced register is passed to release function, its fixed 7979 * offset must be 0. 7980 * 7981 * We will check arg_type_is_release reg has ref_obj_id when storing 7982 * meta->release_regno. 7983 */ 7984 if (arg_type_is_release(arg_type)) { 7985 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 7986 * may not directly point to the object being released, but to 7987 * dynptr pointing to such object, which might be at some offset 7988 * on the stack. In that case, we simply to fallback to the 7989 * default handling. 7990 */ 7991 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 7992 return 0; 7993 7994 /* Doing check_ptr_off_reg check for the offset will catch this 7995 * because fixed_off_ok is false, but checking here allows us 7996 * to give the user a better error message. 7997 */ 7998 if (reg->off) { 7999 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 8000 regno); 8001 return -EINVAL; 8002 } 8003 return __check_ptr_off_reg(env, reg, regno, false); 8004 } 8005 8006 switch (type) { 8007 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 8008 case PTR_TO_STACK: 8009 case PTR_TO_PACKET: 8010 case PTR_TO_PACKET_META: 8011 case PTR_TO_MAP_KEY: 8012 case PTR_TO_MAP_VALUE: 8013 case PTR_TO_MEM: 8014 case PTR_TO_MEM | MEM_RDONLY: 8015 case PTR_TO_MEM | MEM_RINGBUF: 8016 case PTR_TO_BUF: 8017 case PTR_TO_BUF | MEM_RDONLY: 8018 case SCALAR_VALUE: 8019 return 0; 8020 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 8021 * fixed offset. 8022 */ 8023 case PTR_TO_BTF_ID: 8024 case PTR_TO_BTF_ID | MEM_ALLOC: 8025 case PTR_TO_BTF_ID | PTR_TRUSTED: 8026 case PTR_TO_BTF_ID | MEM_RCU: 8027 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 8028 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 8029 /* When referenced PTR_TO_BTF_ID is passed to release function, 8030 * its fixed offset must be 0. In the other cases, fixed offset 8031 * can be non-zero. This was already checked above. So pass 8032 * fixed_off_ok as true to allow fixed offset for all other 8033 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 8034 * still need to do checks instead of returning. 8035 */ 8036 return __check_ptr_off_reg(env, reg, regno, true); 8037 default: 8038 return __check_ptr_off_reg(env, reg, regno, false); 8039 } 8040 } 8041 8042 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 8043 const struct bpf_func_proto *fn, 8044 struct bpf_reg_state *regs) 8045 { 8046 struct bpf_reg_state *state = NULL; 8047 int i; 8048 8049 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 8050 if (arg_type_is_dynptr(fn->arg_type[i])) { 8051 if (state) { 8052 verbose(env, "verifier internal error: multiple dynptr args\n"); 8053 return NULL; 8054 } 8055 state = ®s[BPF_REG_1 + i]; 8056 } 8057 8058 if (!state) 8059 verbose(env, "verifier internal error: no dynptr arg found\n"); 8060 8061 return state; 8062 } 8063 8064 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8065 { 8066 struct bpf_func_state *state = func(env, reg); 8067 int spi; 8068 8069 if (reg->type == CONST_PTR_TO_DYNPTR) 8070 return reg->id; 8071 spi = dynptr_get_spi(env, reg); 8072 if (spi < 0) 8073 return spi; 8074 return state->stack[spi].spilled_ptr.id; 8075 } 8076 8077 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8078 { 8079 struct bpf_func_state *state = func(env, reg); 8080 int spi; 8081 8082 if (reg->type == CONST_PTR_TO_DYNPTR) 8083 return reg->ref_obj_id; 8084 spi = dynptr_get_spi(env, reg); 8085 if (spi < 0) 8086 return spi; 8087 return state->stack[spi].spilled_ptr.ref_obj_id; 8088 } 8089 8090 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 8091 struct bpf_reg_state *reg) 8092 { 8093 struct bpf_func_state *state = func(env, reg); 8094 int spi; 8095 8096 if (reg->type == CONST_PTR_TO_DYNPTR) 8097 return reg->dynptr.type; 8098 8099 spi = __get_spi(reg->off); 8100 if (spi < 0) { 8101 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 8102 return BPF_DYNPTR_TYPE_INVALID; 8103 } 8104 8105 return state->stack[spi].spilled_ptr.dynptr.type; 8106 } 8107 8108 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 8109 struct bpf_call_arg_meta *meta, 8110 const struct bpf_func_proto *fn, 8111 int insn_idx) 8112 { 8113 u32 regno = BPF_REG_1 + arg; 8114 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8115 enum bpf_arg_type arg_type = fn->arg_type[arg]; 8116 enum bpf_reg_type type = reg->type; 8117 u32 *arg_btf_id = NULL; 8118 int err = 0; 8119 8120 if (arg_type == ARG_DONTCARE) 8121 return 0; 8122 8123 err = check_reg_arg(env, regno, SRC_OP); 8124 if (err) 8125 return err; 8126 8127 if (arg_type == ARG_ANYTHING) { 8128 if (is_pointer_value(env, regno)) { 8129 verbose(env, "R%d leaks addr into helper function\n", 8130 regno); 8131 return -EACCES; 8132 } 8133 return 0; 8134 } 8135 8136 if (type_is_pkt_pointer(type) && 8137 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 8138 verbose(env, "helper access to the packet is not allowed\n"); 8139 return -EACCES; 8140 } 8141 8142 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 8143 err = resolve_map_arg_type(env, meta, &arg_type); 8144 if (err) 8145 return err; 8146 } 8147 8148 if (register_is_null(reg) && type_may_be_null(arg_type)) 8149 /* A NULL register has a SCALAR_VALUE type, so skip 8150 * type checking. 8151 */ 8152 goto skip_type_check; 8153 8154 /* arg_btf_id and arg_size are in a union. */ 8155 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 8156 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 8157 arg_btf_id = fn->arg_btf_id[arg]; 8158 8159 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 8160 if (err) 8161 return err; 8162 8163 err = check_func_arg_reg_off(env, reg, regno, arg_type); 8164 if (err) 8165 return err; 8166 8167 skip_type_check: 8168 if (arg_type_is_release(arg_type)) { 8169 if (arg_type_is_dynptr(arg_type)) { 8170 struct bpf_func_state *state = func(env, reg); 8171 int spi; 8172 8173 /* Only dynptr created on stack can be released, thus 8174 * the get_spi and stack state checks for spilled_ptr 8175 * should only be done before process_dynptr_func for 8176 * PTR_TO_STACK. 8177 */ 8178 if (reg->type == PTR_TO_STACK) { 8179 spi = dynptr_get_spi(env, reg); 8180 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 8181 verbose(env, "arg %d is an unacquired reference\n", regno); 8182 return -EINVAL; 8183 } 8184 } else { 8185 verbose(env, "cannot release unowned const bpf_dynptr\n"); 8186 return -EINVAL; 8187 } 8188 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 8189 verbose(env, "R%d must be referenced when passed to release function\n", 8190 regno); 8191 return -EINVAL; 8192 } 8193 if (meta->release_regno) { 8194 verbose(env, "verifier internal error: more than one release argument\n"); 8195 return -EFAULT; 8196 } 8197 meta->release_regno = regno; 8198 } 8199 8200 if (reg->ref_obj_id) { 8201 if (meta->ref_obj_id) { 8202 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8203 regno, reg->ref_obj_id, 8204 meta->ref_obj_id); 8205 return -EFAULT; 8206 } 8207 meta->ref_obj_id = reg->ref_obj_id; 8208 } 8209 8210 switch (base_type(arg_type)) { 8211 case ARG_CONST_MAP_PTR: 8212 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 8213 if (meta->map_ptr) { 8214 /* Use map_uid (which is unique id of inner map) to reject: 8215 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 8216 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 8217 * if (inner_map1 && inner_map2) { 8218 * timer = bpf_map_lookup_elem(inner_map1); 8219 * if (timer) 8220 * // mismatch would have been allowed 8221 * bpf_timer_init(timer, inner_map2); 8222 * } 8223 * 8224 * Comparing map_ptr is enough to distinguish normal and outer maps. 8225 */ 8226 if (meta->map_ptr != reg->map_ptr || 8227 meta->map_uid != reg->map_uid) { 8228 verbose(env, 8229 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 8230 meta->map_uid, reg->map_uid); 8231 return -EINVAL; 8232 } 8233 } 8234 meta->map_ptr = reg->map_ptr; 8235 meta->map_uid = reg->map_uid; 8236 break; 8237 case ARG_PTR_TO_MAP_KEY: 8238 /* bpf_map_xxx(..., map_ptr, ..., key) call: 8239 * check that [key, key + map->key_size) are within 8240 * stack limits and initialized 8241 */ 8242 if (!meta->map_ptr) { 8243 /* in function declaration map_ptr must come before 8244 * map_key, so that it's verified and known before 8245 * we have to check map_key here. Otherwise it means 8246 * that kernel subsystem misconfigured verifier 8247 */ 8248 verbose(env, "invalid map_ptr to access map->key\n"); 8249 return -EACCES; 8250 } 8251 err = check_helper_mem_access(env, regno, 8252 meta->map_ptr->key_size, false, 8253 NULL); 8254 break; 8255 case ARG_PTR_TO_MAP_VALUE: 8256 if (type_may_be_null(arg_type) && register_is_null(reg)) 8257 return 0; 8258 8259 /* bpf_map_xxx(..., map_ptr, ..., value) call: 8260 * check [value, value + map->value_size) validity 8261 */ 8262 if (!meta->map_ptr) { 8263 /* kernel subsystem misconfigured verifier */ 8264 verbose(env, "invalid map_ptr to access map->value\n"); 8265 return -EACCES; 8266 } 8267 meta->raw_mode = arg_type & MEM_UNINIT; 8268 err = check_helper_mem_access(env, regno, 8269 meta->map_ptr->value_size, false, 8270 meta); 8271 break; 8272 case ARG_PTR_TO_PERCPU_BTF_ID: 8273 if (!reg->btf_id) { 8274 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 8275 return -EACCES; 8276 } 8277 meta->ret_btf = reg->btf; 8278 meta->ret_btf_id = reg->btf_id; 8279 break; 8280 case ARG_PTR_TO_SPIN_LOCK: 8281 if (in_rbtree_lock_required_cb(env)) { 8282 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 8283 return -EACCES; 8284 } 8285 if (meta->func_id == BPF_FUNC_spin_lock) { 8286 err = process_spin_lock(env, regno, true); 8287 if (err) 8288 return err; 8289 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 8290 err = process_spin_lock(env, regno, false); 8291 if (err) 8292 return err; 8293 } else { 8294 verbose(env, "verifier internal error\n"); 8295 return -EFAULT; 8296 } 8297 break; 8298 case ARG_PTR_TO_TIMER: 8299 err = process_timer_func(env, regno, meta); 8300 if (err) 8301 return err; 8302 break; 8303 case ARG_PTR_TO_FUNC: 8304 meta->subprogno = reg->subprogno; 8305 break; 8306 case ARG_PTR_TO_MEM: 8307 /* The access to this pointer is only checked when we hit the 8308 * next is_mem_size argument below. 8309 */ 8310 meta->raw_mode = arg_type & MEM_UNINIT; 8311 if (arg_type & MEM_FIXED_SIZE) { 8312 err = check_helper_mem_access(env, regno, 8313 fn->arg_size[arg], false, 8314 meta); 8315 } 8316 break; 8317 case ARG_CONST_SIZE: 8318 err = check_mem_size_reg(env, reg, regno, false, meta); 8319 break; 8320 case ARG_CONST_SIZE_OR_ZERO: 8321 err = check_mem_size_reg(env, reg, regno, true, meta); 8322 break; 8323 case ARG_PTR_TO_DYNPTR: 8324 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 8325 if (err) 8326 return err; 8327 break; 8328 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 8329 if (!tnum_is_const(reg->var_off)) { 8330 verbose(env, "R%d is not a known constant'\n", 8331 regno); 8332 return -EACCES; 8333 } 8334 meta->mem_size = reg->var_off.value; 8335 err = mark_chain_precision(env, regno); 8336 if (err) 8337 return err; 8338 break; 8339 case ARG_PTR_TO_INT: 8340 case ARG_PTR_TO_LONG: 8341 { 8342 int size = int_ptr_type_to_size(arg_type); 8343 8344 err = check_helper_mem_access(env, regno, size, false, meta); 8345 if (err) 8346 return err; 8347 err = check_ptr_alignment(env, reg, 0, size, true); 8348 break; 8349 } 8350 case ARG_PTR_TO_CONST_STR: 8351 { 8352 struct bpf_map *map = reg->map_ptr; 8353 int map_off; 8354 u64 map_addr; 8355 char *str_ptr; 8356 8357 if (!bpf_map_is_rdonly(map)) { 8358 verbose(env, "R%d does not point to a readonly map'\n", regno); 8359 return -EACCES; 8360 } 8361 8362 if (!tnum_is_const(reg->var_off)) { 8363 verbose(env, "R%d is not a constant address'\n", regno); 8364 return -EACCES; 8365 } 8366 8367 if (!map->ops->map_direct_value_addr) { 8368 verbose(env, "no direct value access support for this map type\n"); 8369 return -EACCES; 8370 } 8371 8372 err = check_map_access(env, regno, reg->off, 8373 map->value_size - reg->off, false, 8374 ACCESS_HELPER); 8375 if (err) 8376 return err; 8377 8378 map_off = reg->off + reg->var_off.value; 8379 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 8380 if (err) { 8381 verbose(env, "direct value access on string failed\n"); 8382 return err; 8383 } 8384 8385 str_ptr = (char *)(long)(map_addr); 8386 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 8387 verbose(env, "string is not zero-terminated\n"); 8388 return -EINVAL; 8389 } 8390 break; 8391 } 8392 case ARG_PTR_TO_KPTR: 8393 err = process_kptr_func(env, regno, meta); 8394 if (err) 8395 return err; 8396 break; 8397 } 8398 8399 return err; 8400 } 8401 8402 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 8403 { 8404 enum bpf_attach_type eatype = env->prog->expected_attach_type; 8405 enum bpf_prog_type type = resolve_prog_type(env->prog); 8406 8407 if (func_id != BPF_FUNC_map_update_elem) 8408 return false; 8409 8410 /* It's not possible to get access to a locked struct sock in these 8411 * contexts, so updating is safe. 8412 */ 8413 switch (type) { 8414 case BPF_PROG_TYPE_TRACING: 8415 if (eatype == BPF_TRACE_ITER) 8416 return true; 8417 break; 8418 case BPF_PROG_TYPE_SOCKET_FILTER: 8419 case BPF_PROG_TYPE_SCHED_CLS: 8420 case BPF_PROG_TYPE_SCHED_ACT: 8421 case BPF_PROG_TYPE_XDP: 8422 case BPF_PROG_TYPE_SK_REUSEPORT: 8423 case BPF_PROG_TYPE_FLOW_DISSECTOR: 8424 case BPF_PROG_TYPE_SK_LOOKUP: 8425 return true; 8426 default: 8427 break; 8428 } 8429 8430 verbose(env, "cannot update sockmap in this context\n"); 8431 return false; 8432 } 8433 8434 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 8435 { 8436 return env->prog->jit_requested && 8437 bpf_jit_supports_subprog_tailcalls(); 8438 } 8439 8440 static int check_map_func_compatibility(struct bpf_verifier_env *env, 8441 struct bpf_map *map, int func_id) 8442 { 8443 if (!map) 8444 return 0; 8445 8446 /* We need a two way check, first is from map perspective ... */ 8447 switch (map->map_type) { 8448 case BPF_MAP_TYPE_PROG_ARRAY: 8449 if (func_id != BPF_FUNC_tail_call) 8450 goto error; 8451 break; 8452 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 8453 if (func_id != BPF_FUNC_perf_event_read && 8454 func_id != BPF_FUNC_perf_event_output && 8455 func_id != BPF_FUNC_skb_output && 8456 func_id != BPF_FUNC_perf_event_read_value && 8457 func_id != BPF_FUNC_xdp_output) 8458 goto error; 8459 break; 8460 case BPF_MAP_TYPE_RINGBUF: 8461 if (func_id != BPF_FUNC_ringbuf_output && 8462 func_id != BPF_FUNC_ringbuf_reserve && 8463 func_id != BPF_FUNC_ringbuf_query && 8464 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 8465 func_id != BPF_FUNC_ringbuf_submit_dynptr && 8466 func_id != BPF_FUNC_ringbuf_discard_dynptr) 8467 goto error; 8468 break; 8469 case BPF_MAP_TYPE_USER_RINGBUF: 8470 if (func_id != BPF_FUNC_user_ringbuf_drain) 8471 goto error; 8472 break; 8473 case BPF_MAP_TYPE_STACK_TRACE: 8474 if (func_id != BPF_FUNC_get_stackid) 8475 goto error; 8476 break; 8477 case BPF_MAP_TYPE_CGROUP_ARRAY: 8478 if (func_id != BPF_FUNC_skb_under_cgroup && 8479 func_id != BPF_FUNC_current_task_under_cgroup) 8480 goto error; 8481 break; 8482 case BPF_MAP_TYPE_CGROUP_STORAGE: 8483 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 8484 if (func_id != BPF_FUNC_get_local_storage) 8485 goto error; 8486 break; 8487 case BPF_MAP_TYPE_DEVMAP: 8488 case BPF_MAP_TYPE_DEVMAP_HASH: 8489 if (func_id != BPF_FUNC_redirect_map && 8490 func_id != BPF_FUNC_map_lookup_elem) 8491 goto error; 8492 break; 8493 /* Restrict bpf side of cpumap and xskmap, open when use-cases 8494 * appear. 8495 */ 8496 case BPF_MAP_TYPE_CPUMAP: 8497 if (func_id != BPF_FUNC_redirect_map) 8498 goto error; 8499 break; 8500 case BPF_MAP_TYPE_XSKMAP: 8501 if (func_id != BPF_FUNC_redirect_map && 8502 func_id != BPF_FUNC_map_lookup_elem) 8503 goto error; 8504 break; 8505 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 8506 case BPF_MAP_TYPE_HASH_OF_MAPS: 8507 if (func_id != BPF_FUNC_map_lookup_elem) 8508 goto error; 8509 break; 8510 case BPF_MAP_TYPE_SOCKMAP: 8511 if (func_id != BPF_FUNC_sk_redirect_map && 8512 func_id != BPF_FUNC_sock_map_update && 8513 func_id != BPF_FUNC_map_delete_elem && 8514 func_id != BPF_FUNC_msg_redirect_map && 8515 func_id != BPF_FUNC_sk_select_reuseport && 8516 func_id != BPF_FUNC_map_lookup_elem && 8517 !may_update_sockmap(env, func_id)) 8518 goto error; 8519 break; 8520 case BPF_MAP_TYPE_SOCKHASH: 8521 if (func_id != BPF_FUNC_sk_redirect_hash && 8522 func_id != BPF_FUNC_sock_hash_update && 8523 func_id != BPF_FUNC_map_delete_elem && 8524 func_id != BPF_FUNC_msg_redirect_hash && 8525 func_id != BPF_FUNC_sk_select_reuseport && 8526 func_id != BPF_FUNC_map_lookup_elem && 8527 !may_update_sockmap(env, func_id)) 8528 goto error; 8529 break; 8530 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 8531 if (func_id != BPF_FUNC_sk_select_reuseport) 8532 goto error; 8533 break; 8534 case BPF_MAP_TYPE_QUEUE: 8535 case BPF_MAP_TYPE_STACK: 8536 if (func_id != BPF_FUNC_map_peek_elem && 8537 func_id != BPF_FUNC_map_pop_elem && 8538 func_id != BPF_FUNC_map_push_elem) 8539 goto error; 8540 break; 8541 case BPF_MAP_TYPE_SK_STORAGE: 8542 if (func_id != BPF_FUNC_sk_storage_get && 8543 func_id != BPF_FUNC_sk_storage_delete && 8544 func_id != BPF_FUNC_kptr_xchg) 8545 goto error; 8546 break; 8547 case BPF_MAP_TYPE_INODE_STORAGE: 8548 if (func_id != BPF_FUNC_inode_storage_get && 8549 func_id != BPF_FUNC_inode_storage_delete && 8550 func_id != BPF_FUNC_kptr_xchg) 8551 goto error; 8552 break; 8553 case BPF_MAP_TYPE_TASK_STORAGE: 8554 if (func_id != BPF_FUNC_task_storage_get && 8555 func_id != BPF_FUNC_task_storage_delete && 8556 func_id != BPF_FUNC_kptr_xchg) 8557 goto error; 8558 break; 8559 case BPF_MAP_TYPE_CGRP_STORAGE: 8560 if (func_id != BPF_FUNC_cgrp_storage_get && 8561 func_id != BPF_FUNC_cgrp_storage_delete && 8562 func_id != BPF_FUNC_kptr_xchg) 8563 goto error; 8564 break; 8565 case BPF_MAP_TYPE_BLOOM_FILTER: 8566 if (func_id != BPF_FUNC_map_peek_elem && 8567 func_id != BPF_FUNC_map_push_elem) 8568 goto error; 8569 break; 8570 default: 8571 break; 8572 } 8573 8574 /* ... and second from the function itself. */ 8575 switch (func_id) { 8576 case BPF_FUNC_tail_call: 8577 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 8578 goto error; 8579 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 8580 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 8581 return -EINVAL; 8582 } 8583 break; 8584 case BPF_FUNC_perf_event_read: 8585 case BPF_FUNC_perf_event_output: 8586 case BPF_FUNC_perf_event_read_value: 8587 case BPF_FUNC_skb_output: 8588 case BPF_FUNC_xdp_output: 8589 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 8590 goto error; 8591 break; 8592 case BPF_FUNC_ringbuf_output: 8593 case BPF_FUNC_ringbuf_reserve: 8594 case BPF_FUNC_ringbuf_query: 8595 case BPF_FUNC_ringbuf_reserve_dynptr: 8596 case BPF_FUNC_ringbuf_submit_dynptr: 8597 case BPF_FUNC_ringbuf_discard_dynptr: 8598 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 8599 goto error; 8600 break; 8601 case BPF_FUNC_user_ringbuf_drain: 8602 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 8603 goto error; 8604 break; 8605 case BPF_FUNC_get_stackid: 8606 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 8607 goto error; 8608 break; 8609 case BPF_FUNC_current_task_under_cgroup: 8610 case BPF_FUNC_skb_under_cgroup: 8611 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 8612 goto error; 8613 break; 8614 case BPF_FUNC_redirect_map: 8615 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 8616 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 8617 map->map_type != BPF_MAP_TYPE_CPUMAP && 8618 map->map_type != BPF_MAP_TYPE_XSKMAP) 8619 goto error; 8620 break; 8621 case BPF_FUNC_sk_redirect_map: 8622 case BPF_FUNC_msg_redirect_map: 8623 case BPF_FUNC_sock_map_update: 8624 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 8625 goto error; 8626 break; 8627 case BPF_FUNC_sk_redirect_hash: 8628 case BPF_FUNC_msg_redirect_hash: 8629 case BPF_FUNC_sock_hash_update: 8630 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 8631 goto error; 8632 break; 8633 case BPF_FUNC_get_local_storage: 8634 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 8635 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 8636 goto error; 8637 break; 8638 case BPF_FUNC_sk_select_reuseport: 8639 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 8640 map->map_type != BPF_MAP_TYPE_SOCKMAP && 8641 map->map_type != BPF_MAP_TYPE_SOCKHASH) 8642 goto error; 8643 break; 8644 case BPF_FUNC_map_pop_elem: 8645 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8646 map->map_type != BPF_MAP_TYPE_STACK) 8647 goto error; 8648 break; 8649 case BPF_FUNC_map_peek_elem: 8650 case BPF_FUNC_map_push_elem: 8651 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8652 map->map_type != BPF_MAP_TYPE_STACK && 8653 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 8654 goto error; 8655 break; 8656 case BPF_FUNC_map_lookup_percpu_elem: 8657 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 8658 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8659 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 8660 goto error; 8661 break; 8662 case BPF_FUNC_sk_storage_get: 8663 case BPF_FUNC_sk_storage_delete: 8664 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 8665 goto error; 8666 break; 8667 case BPF_FUNC_inode_storage_get: 8668 case BPF_FUNC_inode_storage_delete: 8669 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 8670 goto error; 8671 break; 8672 case BPF_FUNC_task_storage_get: 8673 case BPF_FUNC_task_storage_delete: 8674 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 8675 goto error; 8676 break; 8677 case BPF_FUNC_cgrp_storage_get: 8678 case BPF_FUNC_cgrp_storage_delete: 8679 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 8680 goto error; 8681 break; 8682 default: 8683 break; 8684 } 8685 8686 return 0; 8687 error: 8688 verbose(env, "cannot pass map_type %d into func %s#%d\n", 8689 map->map_type, func_id_name(func_id), func_id); 8690 return -EINVAL; 8691 } 8692 8693 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 8694 { 8695 int count = 0; 8696 8697 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 8698 count++; 8699 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 8700 count++; 8701 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 8702 count++; 8703 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 8704 count++; 8705 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 8706 count++; 8707 8708 /* We only support one arg being in raw mode at the moment, 8709 * which is sufficient for the helper functions we have 8710 * right now. 8711 */ 8712 return count <= 1; 8713 } 8714 8715 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 8716 { 8717 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 8718 bool has_size = fn->arg_size[arg] != 0; 8719 bool is_next_size = false; 8720 8721 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 8722 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 8723 8724 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 8725 return is_next_size; 8726 8727 return has_size == is_next_size || is_next_size == is_fixed; 8728 } 8729 8730 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 8731 { 8732 /* bpf_xxx(..., buf, len) call will access 'len' 8733 * bytes from memory 'buf'. Both arg types need 8734 * to be paired, so make sure there's no buggy 8735 * helper function specification. 8736 */ 8737 if (arg_type_is_mem_size(fn->arg1_type) || 8738 check_args_pair_invalid(fn, 0) || 8739 check_args_pair_invalid(fn, 1) || 8740 check_args_pair_invalid(fn, 2) || 8741 check_args_pair_invalid(fn, 3) || 8742 check_args_pair_invalid(fn, 4)) 8743 return false; 8744 8745 return true; 8746 } 8747 8748 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 8749 { 8750 int i; 8751 8752 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 8753 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 8754 return !!fn->arg_btf_id[i]; 8755 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 8756 return fn->arg_btf_id[i] == BPF_PTR_POISON; 8757 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 8758 /* arg_btf_id and arg_size are in a union. */ 8759 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 8760 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 8761 return false; 8762 } 8763 8764 return true; 8765 } 8766 8767 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 8768 { 8769 return check_raw_mode_ok(fn) && 8770 check_arg_pair_ok(fn) && 8771 check_btf_id_ok(fn) ? 0 : -EINVAL; 8772 } 8773 8774 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 8775 * are now invalid, so turn them into unknown SCALAR_VALUE. 8776 * 8777 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 8778 * since these slices point to packet data. 8779 */ 8780 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 8781 { 8782 struct bpf_func_state *state; 8783 struct bpf_reg_state *reg; 8784 8785 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 8786 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 8787 mark_reg_invalid(env, reg); 8788 })); 8789 } 8790 8791 enum { 8792 AT_PKT_END = -1, 8793 BEYOND_PKT_END = -2, 8794 }; 8795 8796 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 8797 { 8798 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8799 struct bpf_reg_state *reg = &state->regs[regn]; 8800 8801 if (reg->type != PTR_TO_PACKET) 8802 /* PTR_TO_PACKET_META is not supported yet */ 8803 return; 8804 8805 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 8806 * How far beyond pkt_end it goes is unknown. 8807 * if (!range_open) it's the case of pkt >= pkt_end 8808 * if (range_open) it's the case of pkt > pkt_end 8809 * hence this pointer is at least 1 byte bigger than pkt_end 8810 */ 8811 if (range_open) 8812 reg->range = BEYOND_PKT_END; 8813 else 8814 reg->range = AT_PKT_END; 8815 } 8816 8817 /* The pointer with the specified id has released its reference to kernel 8818 * resources. Identify all copies of the same pointer and clear the reference. 8819 */ 8820 static int release_reference(struct bpf_verifier_env *env, 8821 int ref_obj_id) 8822 { 8823 struct bpf_func_state *state; 8824 struct bpf_reg_state *reg; 8825 int err; 8826 8827 err = release_reference_state(cur_func(env), ref_obj_id); 8828 if (err) 8829 return err; 8830 8831 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 8832 if (reg->ref_obj_id == ref_obj_id) 8833 mark_reg_invalid(env, reg); 8834 })); 8835 8836 return 0; 8837 } 8838 8839 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 8840 { 8841 struct bpf_func_state *unused; 8842 struct bpf_reg_state *reg; 8843 8844 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 8845 if (type_is_non_owning_ref(reg->type)) 8846 mark_reg_invalid(env, reg); 8847 })); 8848 } 8849 8850 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 8851 struct bpf_reg_state *regs) 8852 { 8853 int i; 8854 8855 /* after the call registers r0 - r5 were scratched */ 8856 for (i = 0; i < CALLER_SAVED_REGS; i++) { 8857 mark_reg_not_init(env, regs, caller_saved[i]); 8858 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 8859 } 8860 } 8861 8862 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 8863 struct bpf_func_state *caller, 8864 struct bpf_func_state *callee, 8865 int insn_idx); 8866 8867 static int set_callee_state(struct bpf_verifier_env *env, 8868 struct bpf_func_state *caller, 8869 struct bpf_func_state *callee, int insn_idx); 8870 8871 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 8872 int *insn_idx, int subprog, 8873 set_callee_state_fn set_callee_state_cb) 8874 { 8875 struct bpf_verifier_state *state = env->cur_state; 8876 struct bpf_func_state *caller, *callee; 8877 int err; 8878 8879 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 8880 verbose(env, "the call stack of %d frames is too deep\n", 8881 state->curframe + 2); 8882 return -E2BIG; 8883 } 8884 8885 caller = state->frame[state->curframe]; 8886 if (state->frame[state->curframe + 1]) { 8887 verbose(env, "verifier bug. Frame %d already allocated\n", 8888 state->curframe + 1); 8889 return -EFAULT; 8890 } 8891 8892 err = btf_check_subprog_call(env, subprog, caller->regs); 8893 if (err == -EFAULT) 8894 return err; 8895 if (subprog_is_global(env, subprog)) { 8896 if (err) { 8897 verbose(env, "Caller passes invalid args into func#%d\n", 8898 subprog); 8899 return err; 8900 } else { 8901 if (env->log.level & BPF_LOG_LEVEL) 8902 verbose(env, 8903 "Func#%d is global and valid. Skipping.\n", 8904 subprog); 8905 clear_caller_saved_regs(env, caller->regs); 8906 8907 /* All global functions return a 64-bit SCALAR_VALUE */ 8908 mark_reg_unknown(env, caller->regs, BPF_REG_0); 8909 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 8910 8911 /* continue with next insn after call */ 8912 return 0; 8913 } 8914 } 8915 8916 /* set_callee_state is used for direct subprog calls, but we are 8917 * interested in validating only BPF helpers that can call subprogs as 8918 * callbacks 8919 */ 8920 if (set_callee_state_cb != set_callee_state) { 8921 if (bpf_pseudo_kfunc_call(insn) && 8922 !is_callback_calling_kfunc(insn->imm)) { 8923 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 8924 func_id_name(insn->imm), insn->imm); 8925 return -EFAULT; 8926 } else if (!bpf_pseudo_kfunc_call(insn) && 8927 !is_callback_calling_function(insn->imm)) { /* helper */ 8928 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 8929 func_id_name(insn->imm), insn->imm); 8930 return -EFAULT; 8931 } 8932 } 8933 8934 if (insn->code == (BPF_JMP | BPF_CALL) && 8935 insn->src_reg == 0 && 8936 insn->imm == BPF_FUNC_timer_set_callback) { 8937 struct bpf_verifier_state *async_cb; 8938 8939 /* there is no real recursion here. timer callbacks are async */ 8940 env->subprog_info[subprog].is_async_cb = true; 8941 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 8942 *insn_idx, subprog); 8943 if (!async_cb) 8944 return -EFAULT; 8945 callee = async_cb->frame[0]; 8946 callee->async_entry_cnt = caller->async_entry_cnt + 1; 8947 8948 /* Convert bpf_timer_set_callback() args into timer callback args */ 8949 err = set_callee_state_cb(env, caller, callee, *insn_idx); 8950 if (err) 8951 return err; 8952 8953 clear_caller_saved_regs(env, caller->regs); 8954 mark_reg_unknown(env, caller->regs, BPF_REG_0); 8955 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 8956 /* continue with next insn after call */ 8957 return 0; 8958 } 8959 8960 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 8961 if (!callee) 8962 return -ENOMEM; 8963 state->frame[state->curframe + 1] = callee; 8964 8965 /* callee cannot access r0, r6 - r9 for reading and has to write 8966 * into its own stack before reading from it. 8967 * callee can read/write into caller's stack 8968 */ 8969 init_func_state(env, callee, 8970 /* remember the callsite, it will be used by bpf_exit */ 8971 *insn_idx /* callsite */, 8972 state->curframe + 1 /* frameno within this callchain */, 8973 subprog /* subprog number within this prog */); 8974 8975 /* Transfer references to the callee */ 8976 err = copy_reference_state(callee, caller); 8977 if (err) 8978 goto err_out; 8979 8980 err = set_callee_state_cb(env, caller, callee, *insn_idx); 8981 if (err) 8982 goto err_out; 8983 8984 clear_caller_saved_regs(env, caller->regs); 8985 8986 /* only increment it after check_reg_arg() finished */ 8987 state->curframe++; 8988 8989 /* and go analyze first insn of the callee */ 8990 *insn_idx = env->subprog_info[subprog].start - 1; 8991 8992 if (env->log.level & BPF_LOG_LEVEL) { 8993 verbose(env, "caller:\n"); 8994 print_verifier_state(env, caller, true); 8995 verbose(env, "callee:\n"); 8996 print_verifier_state(env, callee, true); 8997 } 8998 return 0; 8999 9000 err_out: 9001 free_func_state(callee); 9002 state->frame[state->curframe + 1] = NULL; 9003 return err; 9004 } 9005 9006 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 9007 struct bpf_func_state *caller, 9008 struct bpf_func_state *callee) 9009 { 9010 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 9011 * void *callback_ctx, u64 flags); 9012 * callback_fn(struct bpf_map *map, void *key, void *value, 9013 * void *callback_ctx); 9014 */ 9015 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9016 9017 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9018 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9019 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9020 9021 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9022 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9023 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9024 9025 /* pointer to stack or null */ 9026 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 9027 9028 /* unused */ 9029 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9030 return 0; 9031 } 9032 9033 static int set_callee_state(struct bpf_verifier_env *env, 9034 struct bpf_func_state *caller, 9035 struct bpf_func_state *callee, int insn_idx) 9036 { 9037 int i; 9038 9039 /* copy r1 - r5 args that callee can access. The copy includes parent 9040 * pointers, which connects us up to the liveness chain 9041 */ 9042 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 9043 callee->regs[i] = caller->regs[i]; 9044 return 0; 9045 } 9046 9047 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9048 int *insn_idx) 9049 { 9050 int subprog, target_insn; 9051 9052 target_insn = *insn_idx + insn->imm + 1; 9053 subprog = find_subprog(env, target_insn); 9054 if (subprog < 0) { 9055 verbose(env, "verifier bug. No program starts at insn %d\n", 9056 target_insn); 9057 return -EFAULT; 9058 } 9059 9060 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 9061 } 9062 9063 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 9064 struct bpf_func_state *caller, 9065 struct bpf_func_state *callee, 9066 int insn_idx) 9067 { 9068 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 9069 struct bpf_map *map; 9070 int err; 9071 9072 if (bpf_map_ptr_poisoned(insn_aux)) { 9073 verbose(env, "tail_call abusing map_ptr\n"); 9074 return -EINVAL; 9075 } 9076 9077 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 9078 if (!map->ops->map_set_for_each_callback_args || 9079 !map->ops->map_for_each_callback) { 9080 verbose(env, "callback function not allowed for map\n"); 9081 return -ENOTSUPP; 9082 } 9083 9084 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 9085 if (err) 9086 return err; 9087 9088 callee->in_callback_fn = true; 9089 callee->callback_ret_range = tnum_range(0, 1); 9090 return 0; 9091 } 9092 9093 static int set_loop_callback_state(struct bpf_verifier_env *env, 9094 struct bpf_func_state *caller, 9095 struct bpf_func_state *callee, 9096 int insn_idx) 9097 { 9098 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 9099 * u64 flags); 9100 * callback_fn(u32 index, void *callback_ctx); 9101 */ 9102 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 9103 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9104 9105 /* unused */ 9106 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9107 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9108 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9109 9110 callee->in_callback_fn = true; 9111 callee->callback_ret_range = tnum_range(0, 1); 9112 return 0; 9113 } 9114 9115 static int set_timer_callback_state(struct bpf_verifier_env *env, 9116 struct bpf_func_state *caller, 9117 struct bpf_func_state *callee, 9118 int insn_idx) 9119 { 9120 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 9121 9122 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 9123 * callback_fn(struct bpf_map *map, void *key, void *value); 9124 */ 9125 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 9126 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 9127 callee->regs[BPF_REG_1].map_ptr = map_ptr; 9128 9129 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9130 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9131 callee->regs[BPF_REG_2].map_ptr = map_ptr; 9132 9133 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9134 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9135 callee->regs[BPF_REG_3].map_ptr = map_ptr; 9136 9137 /* unused */ 9138 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9139 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9140 callee->in_async_callback_fn = true; 9141 callee->callback_ret_range = tnum_range(0, 1); 9142 return 0; 9143 } 9144 9145 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 9146 struct bpf_func_state *caller, 9147 struct bpf_func_state *callee, 9148 int insn_idx) 9149 { 9150 /* bpf_find_vma(struct task_struct *task, u64 addr, 9151 * void *callback_fn, void *callback_ctx, u64 flags) 9152 * (callback_fn)(struct task_struct *task, 9153 * struct vm_area_struct *vma, void *callback_ctx); 9154 */ 9155 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9156 9157 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 9158 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9159 callee->regs[BPF_REG_2].btf = btf_vmlinux; 9160 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 9161 9162 /* pointer to stack or null */ 9163 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 9164 9165 /* unused */ 9166 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9167 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9168 callee->in_callback_fn = true; 9169 callee->callback_ret_range = tnum_range(0, 1); 9170 return 0; 9171 } 9172 9173 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 9174 struct bpf_func_state *caller, 9175 struct bpf_func_state *callee, 9176 int insn_idx) 9177 { 9178 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 9179 * callback_ctx, u64 flags); 9180 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 9181 */ 9182 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 9183 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 9184 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9185 9186 /* unused */ 9187 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9188 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9189 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9190 9191 callee->in_callback_fn = true; 9192 callee->callback_ret_range = tnum_range(0, 1); 9193 return 0; 9194 } 9195 9196 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 9197 struct bpf_func_state *caller, 9198 struct bpf_func_state *callee, 9199 int insn_idx) 9200 { 9201 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 9202 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 9203 * 9204 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 9205 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 9206 * by this point, so look at 'root' 9207 */ 9208 struct btf_field *field; 9209 9210 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 9211 BPF_RB_ROOT); 9212 if (!field || !field->graph_root.value_btf_id) 9213 return -EFAULT; 9214 9215 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 9216 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 9217 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 9218 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 9219 9220 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9221 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9222 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9223 callee->in_callback_fn = true; 9224 callee->callback_ret_range = tnum_range(0, 1); 9225 return 0; 9226 } 9227 9228 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 9229 9230 /* Are we currently verifying the callback for a rbtree helper that must 9231 * be called with lock held? If so, no need to complain about unreleased 9232 * lock 9233 */ 9234 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 9235 { 9236 struct bpf_verifier_state *state = env->cur_state; 9237 struct bpf_insn *insn = env->prog->insnsi; 9238 struct bpf_func_state *callee; 9239 int kfunc_btf_id; 9240 9241 if (!state->curframe) 9242 return false; 9243 9244 callee = state->frame[state->curframe]; 9245 9246 if (!callee->in_callback_fn) 9247 return false; 9248 9249 kfunc_btf_id = insn[callee->callsite].imm; 9250 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 9251 } 9252 9253 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 9254 { 9255 struct bpf_verifier_state *state = env->cur_state; 9256 struct bpf_func_state *caller, *callee; 9257 struct bpf_reg_state *r0; 9258 int err; 9259 9260 callee = state->frame[state->curframe]; 9261 r0 = &callee->regs[BPF_REG_0]; 9262 if (r0->type == PTR_TO_STACK) { 9263 /* technically it's ok to return caller's stack pointer 9264 * (or caller's caller's pointer) back to the caller, 9265 * since these pointers are valid. Only current stack 9266 * pointer will be invalid as soon as function exits, 9267 * but let's be conservative 9268 */ 9269 verbose(env, "cannot return stack pointer to the caller\n"); 9270 return -EINVAL; 9271 } 9272 9273 caller = state->frame[state->curframe - 1]; 9274 if (callee->in_callback_fn) { 9275 /* enforce R0 return value range [0, 1]. */ 9276 struct tnum range = callee->callback_ret_range; 9277 9278 if (r0->type != SCALAR_VALUE) { 9279 verbose(env, "R0 not a scalar value\n"); 9280 return -EACCES; 9281 } 9282 if (!tnum_in(range, r0->var_off)) { 9283 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 9284 return -EINVAL; 9285 } 9286 } else { 9287 /* return to the caller whatever r0 had in the callee */ 9288 caller->regs[BPF_REG_0] = *r0; 9289 } 9290 9291 /* callback_fn frame should have released its own additions to parent's 9292 * reference state at this point, or check_reference_leak would 9293 * complain, hence it must be the same as the caller. There is no need 9294 * to copy it back. 9295 */ 9296 if (!callee->in_callback_fn) { 9297 /* Transfer references to the caller */ 9298 err = copy_reference_state(caller, callee); 9299 if (err) 9300 return err; 9301 } 9302 9303 *insn_idx = callee->callsite + 1; 9304 if (env->log.level & BPF_LOG_LEVEL) { 9305 verbose(env, "returning from callee:\n"); 9306 print_verifier_state(env, callee, true); 9307 verbose(env, "to caller at %d:\n", *insn_idx); 9308 print_verifier_state(env, caller, true); 9309 } 9310 /* clear everything in the callee */ 9311 free_func_state(callee); 9312 state->frame[state->curframe--] = NULL; 9313 return 0; 9314 } 9315 9316 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 9317 int func_id, 9318 struct bpf_call_arg_meta *meta) 9319 { 9320 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 9321 9322 if (ret_type != RET_INTEGER) 9323 return; 9324 9325 switch (func_id) { 9326 case BPF_FUNC_get_stack: 9327 case BPF_FUNC_get_task_stack: 9328 case BPF_FUNC_probe_read_str: 9329 case BPF_FUNC_probe_read_kernel_str: 9330 case BPF_FUNC_probe_read_user_str: 9331 ret_reg->smax_value = meta->msize_max_value; 9332 ret_reg->s32_max_value = meta->msize_max_value; 9333 ret_reg->smin_value = -MAX_ERRNO; 9334 ret_reg->s32_min_value = -MAX_ERRNO; 9335 reg_bounds_sync(ret_reg); 9336 break; 9337 case BPF_FUNC_get_smp_processor_id: 9338 ret_reg->umax_value = nr_cpu_ids - 1; 9339 ret_reg->u32_max_value = nr_cpu_ids - 1; 9340 ret_reg->smax_value = nr_cpu_ids - 1; 9341 ret_reg->s32_max_value = nr_cpu_ids - 1; 9342 ret_reg->umin_value = 0; 9343 ret_reg->u32_min_value = 0; 9344 ret_reg->smin_value = 0; 9345 ret_reg->s32_min_value = 0; 9346 reg_bounds_sync(ret_reg); 9347 break; 9348 } 9349 } 9350 9351 static int 9352 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9353 int func_id, int insn_idx) 9354 { 9355 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9356 struct bpf_map *map = meta->map_ptr; 9357 9358 if (func_id != BPF_FUNC_tail_call && 9359 func_id != BPF_FUNC_map_lookup_elem && 9360 func_id != BPF_FUNC_map_update_elem && 9361 func_id != BPF_FUNC_map_delete_elem && 9362 func_id != BPF_FUNC_map_push_elem && 9363 func_id != BPF_FUNC_map_pop_elem && 9364 func_id != BPF_FUNC_map_peek_elem && 9365 func_id != BPF_FUNC_for_each_map_elem && 9366 func_id != BPF_FUNC_redirect_map && 9367 func_id != BPF_FUNC_map_lookup_percpu_elem) 9368 return 0; 9369 9370 if (map == NULL) { 9371 verbose(env, "kernel subsystem misconfigured verifier\n"); 9372 return -EINVAL; 9373 } 9374 9375 /* In case of read-only, some additional restrictions 9376 * need to be applied in order to prevent altering the 9377 * state of the map from program side. 9378 */ 9379 if ((map->map_flags & BPF_F_RDONLY_PROG) && 9380 (func_id == BPF_FUNC_map_delete_elem || 9381 func_id == BPF_FUNC_map_update_elem || 9382 func_id == BPF_FUNC_map_push_elem || 9383 func_id == BPF_FUNC_map_pop_elem)) { 9384 verbose(env, "write into map forbidden\n"); 9385 return -EACCES; 9386 } 9387 9388 if (!BPF_MAP_PTR(aux->map_ptr_state)) 9389 bpf_map_ptr_store(aux, meta->map_ptr, 9390 !meta->map_ptr->bypass_spec_v1); 9391 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 9392 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 9393 !meta->map_ptr->bypass_spec_v1); 9394 return 0; 9395 } 9396 9397 static int 9398 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9399 int func_id, int insn_idx) 9400 { 9401 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9402 struct bpf_reg_state *regs = cur_regs(env), *reg; 9403 struct bpf_map *map = meta->map_ptr; 9404 u64 val, max; 9405 int err; 9406 9407 if (func_id != BPF_FUNC_tail_call) 9408 return 0; 9409 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 9410 verbose(env, "kernel subsystem misconfigured verifier\n"); 9411 return -EINVAL; 9412 } 9413 9414 reg = ®s[BPF_REG_3]; 9415 val = reg->var_off.value; 9416 max = map->max_entries; 9417 9418 if (!(register_is_const(reg) && val < max)) { 9419 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9420 return 0; 9421 } 9422 9423 err = mark_chain_precision(env, BPF_REG_3); 9424 if (err) 9425 return err; 9426 if (bpf_map_key_unseen(aux)) 9427 bpf_map_key_store(aux, val); 9428 else if (!bpf_map_key_poisoned(aux) && 9429 bpf_map_key_immediate(aux) != val) 9430 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9431 return 0; 9432 } 9433 9434 static int check_reference_leak(struct bpf_verifier_env *env) 9435 { 9436 struct bpf_func_state *state = cur_func(env); 9437 bool refs_lingering = false; 9438 int i; 9439 9440 if (state->frameno && !state->in_callback_fn) 9441 return 0; 9442 9443 for (i = 0; i < state->acquired_refs; i++) { 9444 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 9445 continue; 9446 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 9447 state->refs[i].id, state->refs[i].insn_idx); 9448 refs_lingering = true; 9449 } 9450 return refs_lingering ? -EINVAL : 0; 9451 } 9452 9453 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 9454 struct bpf_reg_state *regs) 9455 { 9456 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 9457 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 9458 struct bpf_map *fmt_map = fmt_reg->map_ptr; 9459 struct bpf_bprintf_data data = {}; 9460 int err, fmt_map_off, num_args; 9461 u64 fmt_addr; 9462 char *fmt; 9463 9464 /* data must be an array of u64 */ 9465 if (data_len_reg->var_off.value % 8) 9466 return -EINVAL; 9467 num_args = data_len_reg->var_off.value / 8; 9468 9469 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 9470 * and map_direct_value_addr is set. 9471 */ 9472 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 9473 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 9474 fmt_map_off); 9475 if (err) { 9476 verbose(env, "verifier bug\n"); 9477 return -EFAULT; 9478 } 9479 fmt = (char *)(long)fmt_addr + fmt_map_off; 9480 9481 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 9482 * can focus on validating the format specifiers. 9483 */ 9484 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 9485 if (err < 0) 9486 verbose(env, "Invalid format string\n"); 9487 9488 return err; 9489 } 9490 9491 static int check_get_func_ip(struct bpf_verifier_env *env) 9492 { 9493 enum bpf_prog_type type = resolve_prog_type(env->prog); 9494 int func_id = BPF_FUNC_get_func_ip; 9495 9496 if (type == BPF_PROG_TYPE_TRACING) { 9497 if (!bpf_prog_has_trampoline(env->prog)) { 9498 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 9499 func_id_name(func_id), func_id); 9500 return -ENOTSUPP; 9501 } 9502 return 0; 9503 } else if (type == BPF_PROG_TYPE_KPROBE) { 9504 return 0; 9505 } 9506 9507 verbose(env, "func %s#%d not supported for program type %d\n", 9508 func_id_name(func_id), func_id, type); 9509 return -ENOTSUPP; 9510 } 9511 9512 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 9513 { 9514 return &env->insn_aux_data[env->insn_idx]; 9515 } 9516 9517 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 9518 { 9519 struct bpf_reg_state *regs = cur_regs(env); 9520 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 9521 bool reg_is_null = register_is_null(reg); 9522 9523 if (reg_is_null) 9524 mark_chain_precision(env, BPF_REG_4); 9525 9526 return reg_is_null; 9527 } 9528 9529 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 9530 { 9531 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 9532 9533 if (!state->initialized) { 9534 state->initialized = 1; 9535 state->fit_for_inline = loop_flag_is_zero(env); 9536 state->callback_subprogno = subprogno; 9537 return; 9538 } 9539 9540 if (!state->fit_for_inline) 9541 return; 9542 9543 state->fit_for_inline = (loop_flag_is_zero(env) && 9544 state->callback_subprogno == subprogno); 9545 } 9546 9547 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9548 int *insn_idx_p) 9549 { 9550 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9551 const struct bpf_func_proto *fn = NULL; 9552 enum bpf_return_type ret_type; 9553 enum bpf_type_flag ret_flag; 9554 struct bpf_reg_state *regs; 9555 struct bpf_call_arg_meta meta; 9556 int insn_idx = *insn_idx_p; 9557 bool changes_data; 9558 int i, err, func_id; 9559 9560 /* find function prototype */ 9561 func_id = insn->imm; 9562 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 9563 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 9564 func_id); 9565 return -EINVAL; 9566 } 9567 9568 if (env->ops->get_func_proto) 9569 fn = env->ops->get_func_proto(func_id, env->prog); 9570 if (!fn) { 9571 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 9572 func_id); 9573 return -EINVAL; 9574 } 9575 9576 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 9577 if (!env->prog->gpl_compatible && fn->gpl_only) { 9578 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 9579 return -EINVAL; 9580 } 9581 9582 if (fn->allowed && !fn->allowed(env->prog)) { 9583 verbose(env, "helper call is not allowed in probe\n"); 9584 return -EINVAL; 9585 } 9586 9587 if (!env->prog->aux->sleepable && fn->might_sleep) { 9588 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 9589 return -EINVAL; 9590 } 9591 9592 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 9593 changes_data = bpf_helper_changes_pkt_data(fn->func); 9594 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 9595 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 9596 func_id_name(func_id), func_id); 9597 return -EINVAL; 9598 } 9599 9600 memset(&meta, 0, sizeof(meta)); 9601 meta.pkt_access = fn->pkt_access; 9602 9603 err = check_func_proto(fn, func_id); 9604 if (err) { 9605 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 9606 func_id_name(func_id), func_id); 9607 return err; 9608 } 9609 9610 if (env->cur_state->active_rcu_lock) { 9611 if (fn->might_sleep) { 9612 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 9613 func_id_name(func_id), func_id); 9614 return -EINVAL; 9615 } 9616 9617 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 9618 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 9619 } 9620 9621 meta.func_id = func_id; 9622 /* check args */ 9623 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 9624 err = check_func_arg(env, i, &meta, fn, insn_idx); 9625 if (err) 9626 return err; 9627 } 9628 9629 err = record_func_map(env, &meta, func_id, insn_idx); 9630 if (err) 9631 return err; 9632 9633 err = record_func_key(env, &meta, func_id, insn_idx); 9634 if (err) 9635 return err; 9636 9637 /* Mark slots with STACK_MISC in case of raw mode, stack offset 9638 * is inferred from register state. 9639 */ 9640 for (i = 0; i < meta.access_size; i++) { 9641 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 9642 BPF_WRITE, -1, false, false); 9643 if (err) 9644 return err; 9645 } 9646 9647 regs = cur_regs(env); 9648 9649 if (meta.release_regno) { 9650 err = -EINVAL; 9651 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 9652 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 9653 * is safe to do directly. 9654 */ 9655 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 9656 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 9657 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 9658 return -EFAULT; 9659 } 9660 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 9661 } else if (meta.ref_obj_id) { 9662 err = release_reference(env, meta.ref_obj_id); 9663 } else if (register_is_null(®s[meta.release_regno])) { 9664 /* meta.ref_obj_id can only be 0 if register that is meant to be 9665 * released is NULL, which must be > R0. 9666 */ 9667 err = 0; 9668 } 9669 if (err) { 9670 verbose(env, "func %s#%d reference has not been acquired before\n", 9671 func_id_name(func_id), func_id); 9672 return err; 9673 } 9674 } 9675 9676 switch (func_id) { 9677 case BPF_FUNC_tail_call: 9678 err = check_reference_leak(env); 9679 if (err) { 9680 verbose(env, "tail_call would lead to reference leak\n"); 9681 return err; 9682 } 9683 break; 9684 case BPF_FUNC_get_local_storage: 9685 /* check that flags argument in get_local_storage(map, flags) is 0, 9686 * this is required because get_local_storage() can't return an error. 9687 */ 9688 if (!register_is_null(®s[BPF_REG_2])) { 9689 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 9690 return -EINVAL; 9691 } 9692 break; 9693 case BPF_FUNC_for_each_map_elem: 9694 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9695 set_map_elem_callback_state); 9696 break; 9697 case BPF_FUNC_timer_set_callback: 9698 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9699 set_timer_callback_state); 9700 break; 9701 case BPF_FUNC_find_vma: 9702 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9703 set_find_vma_callback_state); 9704 break; 9705 case BPF_FUNC_snprintf: 9706 err = check_bpf_snprintf_call(env, regs); 9707 break; 9708 case BPF_FUNC_loop: 9709 update_loop_inline_state(env, meta.subprogno); 9710 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9711 set_loop_callback_state); 9712 break; 9713 case BPF_FUNC_dynptr_from_mem: 9714 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 9715 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 9716 reg_type_str(env, regs[BPF_REG_1].type)); 9717 return -EACCES; 9718 } 9719 break; 9720 case BPF_FUNC_set_retval: 9721 if (prog_type == BPF_PROG_TYPE_LSM && 9722 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 9723 if (!env->prog->aux->attach_func_proto->type) { 9724 /* Make sure programs that attach to void 9725 * hooks don't try to modify return value. 9726 */ 9727 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 9728 return -EINVAL; 9729 } 9730 } 9731 break; 9732 case BPF_FUNC_dynptr_data: 9733 { 9734 struct bpf_reg_state *reg; 9735 int id, ref_obj_id; 9736 9737 reg = get_dynptr_arg_reg(env, fn, regs); 9738 if (!reg) 9739 return -EFAULT; 9740 9741 9742 if (meta.dynptr_id) { 9743 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 9744 return -EFAULT; 9745 } 9746 if (meta.ref_obj_id) { 9747 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 9748 return -EFAULT; 9749 } 9750 9751 id = dynptr_id(env, reg); 9752 if (id < 0) { 9753 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 9754 return id; 9755 } 9756 9757 ref_obj_id = dynptr_ref_obj_id(env, reg); 9758 if (ref_obj_id < 0) { 9759 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 9760 return ref_obj_id; 9761 } 9762 9763 meta.dynptr_id = id; 9764 meta.ref_obj_id = ref_obj_id; 9765 9766 break; 9767 } 9768 case BPF_FUNC_dynptr_write: 9769 { 9770 enum bpf_dynptr_type dynptr_type; 9771 struct bpf_reg_state *reg; 9772 9773 reg = get_dynptr_arg_reg(env, fn, regs); 9774 if (!reg) 9775 return -EFAULT; 9776 9777 dynptr_type = dynptr_get_type(env, reg); 9778 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 9779 return -EFAULT; 9780 9781 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 9782 /* this will trigger clear_all_pkt_pointers(), which will 9783 * invalidate all dynptr slices associated with the skb 9784 */ 9785 changes_data = true; 9786 9787 break; 9788 } 9789 case BPF_FUNC_user_ringbuf_drain: 9790 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9791 set_user_ringbuf_callback_state); 9792 break; 9793 } 9794 9795 if (err) 9796 return err; 9797 9798 /* reset caller saved regs */ 9799 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9800 mark_reg_not_init(env, regs, caller_saved[i]); 9801 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 9802 } 9803 9804 /* helper call returns 64-bit value. */ 9805 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 9806 9807 /* update return register (already marked as written above) */ 9808 ret_type = fn->ret_type; 9809 ret_flag = type_flag(ret_type); 9810 9811 switch (base_type(ret_type)) { 9812 case RET_INTEGER: 9813 /* sets type to SCALAR_VALUE */ 9814 mark_reg_unknown(env, regs, BPF_REG_0); 9815 break; 9816 case RET_VOID: 9817 regs[BPF_REG_0].type = NOT_INIT; 9818 break; 9819 case RET_PTR_TO_MAP_VALUE: 9820 /* There is no offset yet applied, variable or fixed */ 9821 mark_reg_known_zero(env, regs, BPF_REG_0); 9822 /* remember map_ptr, so that check_map_access() 9823 * can check 'value_size' boundary of memory access 9824 * to map element returned from bpf_map_lookup_elem() 9825 */ 9826 if (meta.map_ptr == NULL) { 9827 verbose(env, 9828 "kernel subsystem misconfigured verifier\n"); 9829 return -EINVAL; 9830 } 9831 regs[BPF_REG_0].map_ptr = meta.map_ptr; 9832 regs[BPF_REG_0].map_uid = meta.map_uid; 9833 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 9834 if (!type_may_be_null(ret_type) && 9835 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 9836 regs[BPF_REG_0].id = ++env->id_gen; 9837 } 9838 break; 9839 case RET_PTR_TO_SOCKET: 9840 mark_reg_known_zero(env, regs, BPF_REG_0); 9841 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 9842 break; 9843 case RET_PTR_TO_SOCK_COMMON: 9844 mark_reg_known_zero(env, regs, BPF_REG_0); 9845 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 9846 break; 9847 case RET_PTR_TO_TCP_SOCK: 9848 mark_reg_known_zero(env, regs, BPF_REG_0); 9849 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 9850 break; 9851 case RET_PTR_TO_MEM: 9852 mark_reg_known_zero(env, regs, BPF_REG_0); 9853 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 9854 regs[BPF_REG_0].mem_size = meta.mem_size; 9855 break; 9856 case RET_PTR_TO_MEM_OR_BTF_ID: 9857 { 9858 const struct btf_type *t; 9859 9860 mark_reg_known_zero(env, regs, BPF_REG_0); 9861 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 9862 if (!btf_type_is_struct(t)) { 9863 u32 tsize; 9864 const struct btf_type *ret; 9865 const char *tname; 9866 9867 /* resolve the type size of ksym. */ 9868 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 9869 if (IS_ERR(ret)) { 9870 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 9871 verbose(env, "unable to resolve the size of type '%s': %ld\n", 9872 tname, PTR_ERR(ret)); 9873 return -EINVAL; 9874 } 9875 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 9876 regs[BPF_REG_0].mem_size = tsize; 9877 } else { 9878 /* MEM_RDONLY may be carried from ret_flag, but it 9879 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 9880 * it will confuse the check of PTR_TO_BTF_ID in 9881 * check_mem_access(). 9882 */ 9883 ret_flag &= ~MEM_RDONLY; 9884 9885 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 9886 regs[BPF_REG_0].btf = meta.ret_btf; 9887 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 9888 } 9889 break; 9890 } 9891 case RET_PTR_TO_BTF_ID: 9892 { 9893 struct btf *ret_btf; 9894 int ret_btf_id; 9895 9896 mark_reg_known_zero(env, regs, BPF_REG_0); 9897 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 9898 if (func_id == BPF_FUNC_kptr_xchg) { 9899 ret_btf = meta.kptr_field->kptr.btf; 9900 ret_btf_id = meta.kptr_field->kptr.btf_id; 9901 if (!btf_is_kernel(ret_btf)) 9902 regs[BPF_REG_0].type |= MEM_ALLOC; 9903 } else { 9904 if (fn->ret_btf_id == BPF_PTR_POISON) { 9905 verbose(env, "verifier internal error:"); 9906 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 9907 func_id_name(func_id)); 9908 return -EINVAL; 9909 } 9910 ret_btf = btf_vmlinux; 9911 ret_btf_id = *fn->ret_btf_id; 9912 } 9913 if (ret_btf_id == 0) { 9914 verbose(env, "invalid return type %u of func %s#%d\n", 9915 base_type(ret_type), func_id_name(func_id), 9916 func_id); 9917 return -EINVAL; 9918 } 9919 regs[BPF_REG_0].btf = ret_btf; 9920 regs[BPF_REG_0].btf_id = ret_btf_id; 9921 break; 9922 } 9923 default: 9924 verbose(env, "unknown return type %u of func %s#%d\n", 9925 base_type(ret_type), func_id_name(func_id), func_id); 9926 return -EINVAL; 9927 } 9928 9929 if (type_may_be_null(regs[BPF_REG_0].type)) 9930 regs[BPF_REG_0].id = ++env->id_gen; 9931 9932 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 9933 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 9934 func_id_name(func_id), func_id); 9935 return -EFAULT; 9936 } 9937 9938 if (is_dynptr_ref_function(func_id)) 9939 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 9940 9941 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 9942 /* For release_reference() */ 9943 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 9944 } else if (is_acquire_function(func_id, meta.map_ptr)) { 9945 int id = acquire_reference_state(env, insn_idx); 9946 9947 if (id < 0) 9948 return id; 9949 /* For mark_ptr_or_null_reg() */ 9950 regs[BPF_REG_0].id = id; 9951 /* For release_reference() */ 9952 regs[BPF_REG_0].ref_obj_id = id; 9953 } 9954 9955 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 9956 9957 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 9958 if (err) 9959 return err; 9960 9961 if ((func_id == BPF_FUNC_get_stack || 9962 func_id == BPF_FUNC_get_task_stack) && 9963 !env->prog->has_callchain_buf) { 9964 const char *err_str; 9965 9966 #ifdef CONFIG_PERF_EVENTS 9967 err = get_callchain_buffers(sysctl_perf_event_max_stack); 9968 err_str = "cannot get callchain buffer for func %s#%d\n"; 9969 #else 9970 err = -ENOTSUPP; 9971 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 9972 #endif 9973 if (err) { 9974 verbose(env, err_str, func_id_name(func_id), func_id); 9975 return err; 9976 } 9977 9978 env->prog->has_callchain_buf = true; 9979 } 9980 9981 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 9982 env->prog->call_get_stack = true; 9983 9984 if (func_id == BPF_FUNC_get_func_ip) { 9985 if (check_get_func_ip(env)) 9986 return -ENOTSUPP; 9987 env->prog->call_get_func_ip = true; 9988 } 9989 9990 if (changes_data) 9991 clear_all_pkt_pointers(env); 9992 return 0; 9993 } 9994 9995 /* mark_btf_func_reg_size() is used when the reg size is determined by 9996 * the BTF func_proto's return value size and argument. 9997 */ 9998 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 9999 size_t reg_size) 10000 { 10001 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 10002 10003 if (regno == BPF_REG_0) { 10004 /* Function return value */ 10005 reg->live |= REG_LIVE_WRITTEN; 10006 reg->subreg_def = reg_size == sizeof(u64) ? 10007 DEF_NOT_SUBREG : env->insn_idx + 1; 10008 } else { 10009 /* Function argument */ 10010 if (reg_size == sizeof(u64)) { 10011 mark_insn_zext(env, reg); 10012 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 10013 } else { 10014 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 10015 } 10016 } 10017 } 10018 10019 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 10020 { 10021 return meta->kfunc_flags & KF_ACQUIRE; 10022 } 10023 10024 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 10025 { 10026 return meta->kfunc_flags & KF_RELEASE; 10027 } 10028 10029 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 10030 { 10031 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 10032 } 10033 10034 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 10035 { 10036 return meta->kfunc_flags & KF_SLEEPABLE; 10037 } 10038 10039 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 10040 { 10041 return meta->kfunc_flags & KF_DESTRUCTIVE; 10042 } 10043 10044 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 10045 { 10046 return meta->kfunc_flags & KF_RCU; 10047 } 10048 10049 static bool __kfunc_param_match_suffix(const struct btf *btf, 10050 const struct btf_param *arg, 10051 const char *suffix) 10052 { 10053 int suffix_len = strlen(suffix), len; 10054 const char *param_name; 10055 10056 /* In the future, this can be ported to use BTF tagging */ 10057 param_name = btf_name_by_offset(btf, arg->name_off); 10058 if (str_is_empty(param_name)) 10059 return false; 10060 len = strlen(param_name); 10061 if (len < suffix_len) 10062 return false; 10063 param_name += len - suffix_len; 10064 return !strncmp(param_name, suffix, suffix_len); 10065 } 10066 10067 static bool is_kfunc_arg_mem_size(const struct btf *btf, 10068 const struct btf_param *arg, 10069 const struct bpf_reg_state *reg) 10070 { 10071 const struct btf_type *t; 10072 10073 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10074 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10075 return false; 10076 10077 return __kfunc_param_match_suffix(btf, arg, "__sz"); 10078 } 10079 10080 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 10081 const struct btf_param *arg, 10082 const struct bpf_reg_state *reg) 10083 { 10084 const struct btf_type *t; 10085 10086 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10087 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10088 return false; 10089 10090 return __kfunc_param_match_suffix(btf, arg, "__szk"); 10091 } 10092 10093 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 10094 { 10095 return __kfunc_param_match_suffix(btf, arg, "__opt"); 10096 } 10097 10098 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 10099 { 10100 return __kfunc_param_match_suffix(btf, arg, "__k"); 10101 } 10102 10103 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 10104 { 10105 return __kfunc_param_match_suffix(btf, arg, "__ign"); 10106 } 10107 10108 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 10109 { 10110 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 10111 } 10112 10113 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 10114 { 10115 return __kfunc_param_match_suffix(btf, arg, "__uninit"); 10116 } 10117 10118 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 10119 { 10120 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr"); 10121 } 10122 10123 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 10124 const struct btf_param *arg, 10125 const char *name) 10126 { 10127 int len, target_len = strlen(name); 10128 const char *param_name; 10129 10130 param_name = btf_name_by_offset(btf, arg->name_off); 10131 if (str_is_empty(param_name)) 10132 return false; 10133 len = strlen(param_name); 10134 if (len != target_len) 10135 return false; 10136 if (strcmp(param_name, name)) 10137 return false; 10138 10139 return true; 10140 } 10141 10142 enum { 10143 KF_ARG_DYNPTR_ID, 10144 KF_ARG_LIST_HEAD_ID, 10145 KF_ARG_LIST_NODE_ID, 10146 KF_ARG_RB_ROOT_ID, 10147 KF_ARG_RB_NODE_ID, 10148 }; 10149 10150 BTF_ID_LIST(kf_arg_btf_ids) 10151 BTF_ID(struct, bpf_dynptr_kern) 10152 BTF_ID(struct, bpf_list_head) 10153 BTF_ID(struct, bpf_list_node) 10154 BTF_ID(struct, bpf_rb_root) 10155 BTF_ID(struct, bpf_rb_node) 10156 10157 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 10158 const struct btf_param *arg, int type) 10159 { 10160 const struct btf_type *t; 10161 u32 res_id; 10162 10163 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10164 if (!t) 10165 return false; 10166 if (!btf_type_is_ptr(t)) 10167 return false; 10168 t = btf_type_skip_modifiers(btf, t->type, &res_id); 10169 if (!t) 10170 return false; 10171 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 10172 } 10173 10174 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 10175 { 10176 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 10177 } 10178 10179 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 10180 { 10181 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 10182 } 10183 10184 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 10185 { 10186 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 10187 } 10188 10189 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 10190 { 10191 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 10192 } 10193 10194 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 10195 { 10196 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 10197 } 10198 10199 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 10200 const struct btf_param *arg) 10201 { 10202 const struct btf_type *t; 10203 10204 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 10205 if (!t) 10206 return false; 10207 10208 return true; 10209 } 10210 10211 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 10212 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 10213 const struct btf *btf, 10214 const struct btf_type *t, int rec) 10215 { 10216 const struct btf_type *member_type; 10217 const struct btf_member *member; 10218 u32 i; 10219 10220 if (!btf_type_is_struct(t)) 10221 return false; 10222 10223 for_each_member(i, t, member) { 10224 const struct btf_array *array; 10225 10226 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 10227 if (btf_type_is_struct(member_type)) { 10228 if (rec >= 3) { 10229 verbose(env, "max struct nesting depth exceeded\n"); 10230 return false; 10231 } 10232 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 10233 return false; 10234 continue; 10235 } 10236 if (btf_type_is_array(member_type)) { 10237 array = btf_array(member_type); 10238 if (!array->nelems) 10239 return false; 10240 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 10241 if (!btf_type_is_scalar(member_type)) 10242 return false; 10243 continue; 10244 } 10245 if (!btf_type_is_scalar(member_type)) 10246 return false; 10247 } 10248 return true; 10249 } 10250 10251 enum kfunc_ptr_arg_type { 10252 KF_ARG_PTR_TO_CTX, 10253 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 10254 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 10255 KF_ARG_PTR_TO_DYNPTR, 10256 KF_ARG_PTR_TO_ITER, 10257 KF_ARG_PTR_TO_LIST_HEAD, 10258 KF_ARG_PTR_TO_LIST_NODE, 10259 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 10260 KF_ARG_PTR_TO_MEM, 10261 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 10262 KF_ARG_PTR_TO_CALLBACK, 10263 KF_ARG_PTR_TO_RB_ROOT, 10264 KF_ARG_PTR_TO_RB_NODE, 10265 }; 10266 10267 enum special_kfunc_type { 10268 KF_bpf_obj_new_impl, 10269 KF_bpf_obj_drop_impl, 10270 KF_bpf_refcount_acquire_impl, 10271 KF_bpf_list_push_front_impl, 10272 KF_bpf_list_push_back_impl, 10273 KF_bpf_list_pop_front, 10274 KF_bpf_list_pop_back, 10275 KF_bpf_cast_to_kern_ctx, 10276 KF_bpf_rdonly_cast, 10277 KF_bpf_rcu_read_lock, 10278 KF_bpf_rcu_read_unlock, 10279 KF_bpf_rbtree_remove, 10280 KF_bpf_rbtree_add_impl, 10281 KF_bpf_rbtree_first, 10282 KF_bpf_dynptr_from_skb, 10283 KF_bpf_dynptr_from_xdp, 10284 KF_bpf_dynptr_slice, 10285 KF_bpf_dynptr_slice_rdwr, 10286 KF_bpf_dynptr_clone, 10287 }; 10288 10289 BTF_SET_START(special_kfunc_set) 10290 BTF_ID(func, bpf_obj_new_impl) 10291 BTF_ID(func, bpf_obj_drop_impl) 10292 BTF_ID(func, bpf_refcount_acquire_impl) 10293 BTF_ID(func, bpf_list_push_front_impl) 10294 BTF_ID(func, bpf_list_push_back_impl) 10295 BTF_ID(func, bpf_list_pop_front) 10296 BTF_ID(func, bpf_list_pop_back) 10297 BTF_ID(func, bpf_cast_to_kern_ctx) 10298 BTF_ID(func, bpf_rdonly_cast) 10299 BTF_ID(func, bpf_rbtree_remove) 10300 BTF_ID(func, bpf_rbtree_add_impl) 10301 BTF_ID(func, bpf_rbtree_first) 10302 BTF_ID(func, bpf_dynptr_from_skb) 10303 BTF_ID(func, bpf_dynptr_from_xdp) 10304 BTF_ID(func, bpf_dynptr_slice) 10305 BTF_ID(func, bpf_dynptr_slice_rdwr) 10306 BTF_ID(func, bpf_dynptr_clone) 10307 BTF_SET_END(special_kfunc_set) 10308 10309 BTF_ID_LIST(special_kfunc_list) 10310 BTF_ID(func, bpf_obj_new_impl) 10311 BTF_ID(func, bpf_obj_drop_impl) 10312 BTF_ID(func, bpf_refcount_acquire_impl) 10313 BTF_ID(func, bpf_list_push_front_impl) 10314 BTF_ID(func, bpf_list_push_back_impl) 10315 BTF_ID(func, bpf_list_pop_front) 10316 BTF_ID(func, bpf_list_pop_back) 10317 BTF_ID(func, bpf_cast_to_kern_ctx) 10318 BTF_ID(func, bpf_rdonly_cast) 10319 BTF_ID(func, bpf_rcu_read_lock) 10320 BTF_ID(func, bpf_rcu_read_unlock) 10321 BTF_ID(func, bpf_rbtree_remove) 10322 BTF_ID(func, bpf_rbtree_add_impl) 10323 BTF_ID(func, bpf_rbtree_first) 10324 BTF_ID(func, bpf_dynptr_from_skb) 10325 BTF_ID(func, bpf_dynptr_from_xdp) 10326 BTF_ID(func, bpf_dynptr_slice) 10327 BTF_ID(func, bpf_dynptr_slice_rdwr) 10328 BTF_ID(func, bpf_dynptr_clone) 10329 10330 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 10331 { 10332 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 10333 meta->arg_owning_ref) { 10334 return false; 10335 } 10336 10337 return meta->kfunc_flags & KF_RET_NULL; 10338 } 10339 10340 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 10341 { 10342 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 10343 } 10344 10345 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 10346 { 10347 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 10348 } 10349 10350 static enum kfunc_ptr_arg_type 10351 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 10352 struct bpf_kfunc_call_arg_meta *meta, 10353 const struct btf_type *t, const struct btf_type *ref_t, 10354 const char *ref_tname, const struct btf_param *args, 10355 int argno, int nargs) 10356 { 10357 u32 regno = argno + 1; 10358 struct bpf_reg_state *regs = cur_regs(env); 10359 struct bpf_reg_state *reg = ®s[regno]; 10360 bool arg_mem_size = false; 10361 10362 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 10363 return KF_ARG_PTR_TO_CTX; 10364 10365 /* In this function, we verify the kfunc's BTF as per the argument type, 10366 * leaving the rest of the verification with respect to the register 10367 * type to our caller. When a set of conditions hold in the BTF type of 10368 * arguments, we resolve it to a known kfunc_ptr_arg_type. 10369 */ 10370 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 10371 return KF_ARG_PTR_TO_CTX; 10372 10373 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 10374 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 10375 10376 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 10377 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 10378 10379 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 10380 return KF_ARG_PTR_TO_DYNPTR; 10381 10382 if (is_kfunc_arg_iter(meta, argno)) 10383 return KF_ARG_PTR_TO_ITER; 10384 10385 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 10386 return KF_ARG_PTR_TO_LIST_HEAD; 10387 10388 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 10389 return KF_ARG_PTR_TO_LIST_NODE; 10390 10391 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 10392 return KF_ARG_PTR_TO_RB_ROOT; 10393 10394 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 10395 return KF_ARG_PTR_TO_RB_NODE; 10396 10397 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 10398 if (!btf_type_is_struct(ref_t)) { 10399 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 10400 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 10401 return -EINVAL; 10402 } 10403 return KF_ARG_PTR_TO_BTF_ID; 10404 } 10405 10406 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 10407 return KF_ARG_PTR_TO_CALLBACK; 10408 10409 10410 if (argno + 1 < nargs && 10411 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 10412 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 10413 arg_mem_size = true; 10414 10415 /* This is the catch all argument type of register types supported by 10416 * check_helper_mem_access. However, we only allow when argument type is 10417 * pointer to scalar, or struct composed (recursively) of scalars. When 10418 * arg_mem_size is true, the pointer can be void *. 10419 */ 10420 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 10421 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 10422 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 10423 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 10424 return -EINVAL; 10425 } 10426 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 10427 } 10428 10429 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 10430 struct bpf_reg_state *reg, 10431 const struct btf_type *ref_t, 10432 const char *ref_tname, u32 ref_id, 10433 struct bpf_kfunc_call_arg_meta *meta, 10434 int argno) 10435 { 10436 const struct btf_type *reg_ref_t; 10437 bool strict_type_match = false; 10438 const struct btf *reg_btf; 10439 const char *reg_ref_tname; 10440 u32 reg_ref_id; 10441 10442 if (base_type(reg->type) == PTR_TO_BTF_ID) { 10443 reg_btf = reg->btf; 10444 reg_ref_id = reg->btf_id; 10445 } else { 10446 reg_btf = btf_vmlinux; 10447 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 10448 } 10449 10450 /* Enforce strict type matching for calls to kfuncs that are acquiring 10451 * or releasing a reference, or are no-cast aliases. We do _not_ 10452 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 10453 * as we want to enable BPF programs to pass types that are bitwise 10454 * equivalent without forcing them to explicitly cast with something 10455 * like bpf_cast_to_kern_ctx(). 10456 * 10457 * For example, say we had a type like the following: 10458 * 10459 * struct bpf_cpumask { 10460 * cpumask_t cpumask; 10461 * refcount_t usage; 10462 * }; 10463 * 10464 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 10465 * to a struct cpumask, so it would be safe to pass a struct 10466 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 10467 * 10468 * The philosophy here is similar to how we allow scalars of different 10469 * types to be passed to kfuncs as long as the size is the same. The 10470 * only difference here is that we're simply allowing 10471 * btf_struct_ids_match() to walk the struct at the 0th offset, and 10472 * resolve types. 10473 */ 10474 if (is_kfunc_acquire(meta) || 10475 (is_kfunc_release(meta) && reg->ref_obj_id) || 10476 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 10477 strict_type_match = true; 10478 10479 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 10480 10481 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 10482 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 10483 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 10484 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 10485 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 10486 btf_type_str(reg_ref_t), reg_ref_tname); 10487 return -EINVAL; 10488 } 10489 return 0; 10490 } 10491 10492 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10493 { 10494 struct bpf_verifier_state *state = env->cur_state; 10495 struct btf_record *rec = reg_btf_record(reg); 10496 10497 if (!state->active_lock.ptr) { 10498 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 10499 return -EFAULT; 10500 } 10501 10502 if (type_flag(reg->type) & NON_OWN_REF) { 10503 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 10504 return -EFAULT; 10505 } 10506 10507 reg->type |= NON_OWN_REF; 10508 if (rec->refcount_off >= 0) 10509 reg->type |= MEM_RCU; 10510 10511 return 0; 10512 } 10513 10514 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 10515 { 10516 struct bpf_func_state *state, *unused; 10517 struct bpf_reg_state *reg; 10518 int i; 10519 10520 state = cur_func(env); 10521 10522 if (!ref_obj_id) { 10523 verbose(env, "verifier internal error: ref_obj_id is zero for " 10524 "owning -> non-owning conversion\n"); 10525 return -EFAULT; 10526 } 10527 10528 for (i = 0; i < state->acquired_refs; i++) { 10529 if (state->refs[i].id != ref_obj_id) 10530 continue; 10531 10532 /* Clear ref_obj_id here so release_reference doesn't clobber 10533 * the whole reg 10534 */ 10535 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 10536 if (reg->ref_obj_id == ref_obj_id) { 10537 reg->ref_obj_id = 0; 10538 ref_set_non_owning(env, reg); 10539 } 10540 })); 10541 return 0; 10542 } 10543 10544 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 10545 return -EFAULT; 10546 } 10547 10548 /* Implementation details: 10549 * 10550 * Each register points to some region of memory, which we define as an 10551 * allocation. Each allocation may embed a bpf_spin_lock which protects any 10552 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 10553 * allocation. The lock and the data it protects are colocated in the same 10554 * memory region. 10555 * 10556 * Hence, everytime a register holds a pointer value pointing to such 10557 * allocation, the verifier preserves a unique reg->id for it. 10558 * 10559 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 10560 * bpf_spin_lock is called. 10561 * 10562 * To enable this, lock state in the verifier captures two values: 10563 * active_lock.ptr = Register's type specific pointer 10564 * active_lock.id = A unique ID for each register pointer value 10565 * 10566 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 10567 * supported register types. 10568 * 10569 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 10570 * allocated objects is the reg->btf pointer. 10571 * 10572 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 10573 * can establish the provenance of the map value statically for each distinct 10574 * lookup into such maps. They always contain a single map value hence unique 10575 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 10576 * 10577 * So, in case of global variables, they use array maps with max_entries = 1, 10578 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 10579 * into the same map value as max_entries is 1, as described above). 10580 * 10581 * In case of inner map lookups, the inner map pointer has same map_ptr as the 10582 * outer map pointer (in verifier context), but each lookup into an inner map 10583 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 10584 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 10585 * will get different reg->id assigned to each lookup, hence different 10586 * active_lock.id. 10587 * 10588 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 10589 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 10590 * returned from bpf_obj_new. Each allocation receives a new reg->id. 10591 */ 10592 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10593 { 10594 void *ptr; 10595 u32 id; 10596 10597 switch ((int)reg->type) { 10598 case PTR_TO_MAP_VALUE: 10599 ptr = reg->map_ptr; 10600 break; 10601 case PTR_TO_BTF_ID | MEM_ALLOC: 10602 ptr = reg->btf; 10603 break; 10604 default: 10605 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 10606 return -EFAULT; 10607 } 10608 id = reg->id; 10609 10610 if (!env->cur_state->active_lock.ptr) 10611 return -EINVAL; 10612 if (env->cur_state->active_lock.ptr != ptr || 10613 env->cur_state->active_lock.id != id) { 10614 verbose(env, "held lock and object are not in the same allocation\n"); 10615 return -EINVAL; 10616 } 10617 return 0; 10618 } 10619 10620 static bool is_bpf_list_api_kfunc(u32 btf_id) 10621 { 10622 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 10623 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 10624 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 10625 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 10626 } 10627 10628 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 10629 { 10630 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 10631 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 10632 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 10633 } 10634 10635 static bool is_bpf_graph_api_kfunc(u32 btf_id) 10636 { 10637 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 10638 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 10639 } 10640 10641 static bool is_callback_calling_kfunc(u32 btf_id) 10642 { 10643 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 10644 } 10645 10646 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 10647 { 10648 return is_bpf_rbtree_api_kfunc(btf_id); 10649 } 10650 10651 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 10652 enum btf_field_type head_field_type, 10653 u32 kfunc_btf_id) 10654 { 10655 bool ret; 10656 10657 switch (head_field_type) { 10658 case BPF_LIST_HEAD: 10659 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 10660 break; 10661 case BPF_RB_ROOT: 10662 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 10663 break; 10664 default: 10665 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 10666 btf_field_type_name(head_field_type)); 10667 return false; 10668 } 10669 10670 if (!ret) 10671 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 10672 btf_field_type_name(head_field_type)); 10673 return ret; 10674 } 10675 10676 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 10677 enum btf_field_type node_field_type, 10678 u32 kfunc_btf_id) 10679 { 10680 bool ret; 10681 10682 switch (node_field_type) { 10683 case BPF_LIST_NODE: 10684 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 10685 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 10686 break; 10687 case BPF_RB_NODE: 10688 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 10689 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 10690 break; 10691 default: 10692 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 10693 btf_field_type_name(node_field_type)); 10694 return false; 10695 } 10696 10697 if (!ret) 10698 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 10699 btf_field_type_name(node_field_type)); 10700 return ret; 10701 } 10702 10703 static int 10704 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 10705 struct bpf_reg_state *reg, u32 regno, 10706 struct bpf_kfunc_call_arg_meta *meta, 10707 enum btf_field_type head_field_type, 10708 struct btf_field **head_field) 10709 { 10710 const char *head_type_name; 10711 struct btf_field *field; 10712 struct btf_record *rec; 10713 u32 head_off; 10714 10715 if (meta->btf != btf_vmlinux) { 10716 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 10717 return -EFAULT; 10718 } 10719 10720 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 10721 return -EFAULT; 10722 10723 head_type_name = btf_field_type_name(head_field_type); 10724 if (!tnum_is_const(reg->var_off)) { 10725 verbose(env, 10726 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 10727 regno, head_type_name); 10728 return -EINVAL; 10729 } 10730 10731 rec = reg_btf_record(reg); 10732 head_off = reg->off + reg->var_off.value; 10733 field = btf_record_find(rec, head_off, head_field_type); 10734 if (!field) { 10735 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 10736 return -EINVAL; 10737 } 10738 10739 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 10740 if (check_reg_allocation_locked(env, reg)) { 10741 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 10742 rec->spin_lock_off, head_type_name); 10743 return -EINVAL; 10744 } 10745 10746 if (*head_field) { 10747 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 10748 return -EFAULT; 10749 } 10750 *head_field = field; 10751 return 0; 10752 } 10753 10754 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 10755 struct bpf_reg_state *reg, u32 regno, 10756 struct bpf_kfunc_call_arg_meta *meta) 10757 { 10758 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 10759 &meta->arg_list_head.field); 10760 } 10761 10762 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 10763 struct bpf_reg_state *reg, u32 regno, 10764 struct bpf_kfunc_call_arg_meta *meta) 10765 { 10766 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 10767 &meta->arg_rbtree_root.field); 10768 } 10769 10770 static int 10771 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 10772 struct bpf_reg_state *reg, u32 regno, 10773 struct bpf_kfunc_call_arg_meta *meta, 10774 enum btf_field_type head_field_type, 10775 enum btf_field_type node_field_type, 10776 struct btf_field **node_field) 10777 { 10778 const char *node_type_name; 10779 const struct btf_type *et, *t; 10780 struct btf_field *field; 10781 u32 node_off; 10782 10783 if (meta->btf != btf_vmlinux) { 10784 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 10785 return -EFAULT; 10786 } 10787 10788 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 10789 return -EFAULT; 10790 10791 node_type_name = btf_field_type_name(node_field_type); 10792 if (!tnum_is_const(reg->var_off)) { 10793 verbose(env, 10794 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 10795 regno, node_type_name); 10796 return -EINVAL; 10797 } 10798 10799 node_off = reg->off + reg->var_off.value; 10800 field = reg_find_field_offset(reg, node_off, node_field_type); 10801 if (!field || field->offset != node_off) { 10802 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 10803 return -EINVAL; 10804 } 10805 10806 field = *node_field; 10807 10808 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 10809 t = btf_type_by_id(reg->btf, reg->btf_id); 10810 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 10811 field->graph_root.value_btf_id, true)) { 10812 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 10813 "in struct %s, but arg is at offset=%d in struct %s\n", 10814 btf_field_type_name(head_field_type), 10815 btf_field_type_name(node_field_type), 10816 field->graph_root.node_offset, 10817 btf_name_by_offset(field->graph_root.btf, et->name_off), 10818 node_off, btf_name_by_offset(reg->btf, t->name_off)); 10819 return -EINVAL; 10820 } 10821 meta->arg_btf = reg->btf; 10822 meta->arg_btf_id = reg->btf_id; 10823 10824 if (node_off != field->graph_root.node_offset) { 10825 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 10826 node_off, btf_field_type_name(node_field_type), 10827 field->graph_root.node_offset, 10828 btf_name_by_offset(field->graph_root.btf, et->name_off)); 10829 return -EINVAL; 10830 } 10831 10832 return 0; 10833 } 10834 10835 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 10836 struct bpf_reg_state *reg, u32 regno, 10837 struct bpf_kfunc_call_arg_meta *meta) 10838 { 10839 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 10840 BPF_LIST_HEAD, BPF_LIST_NODE, 10841 &meta->arg_list_head.field); 10842 } 10843 10844 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 10845 struct bpf_reg_state *reg, u32 regno, 10846 struct bpf_kfunc_call_arg_meta *meta) 10847 { 10848 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 10849 BPF_RB_ROOT, BPF_RB_NODE, 10850 &meta->arg_rbtree_root.field); 10851 } 10852 10853 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 10854 int insn_idx) 10855 { 10856 const char *func_name = meta->func_name, *ref_tname; 10857 const struct btf *btf = meta->btf; 10858 const struct btf_param *args; 10859 struct btf_record *rec; 10860 u32 i, nargs; 10861 int ret; 10862 10863 args = (const struct btf_param *)(meta->func_proto + 1); 10864 nargs = btf_type_vlen(meta->func_proto); 10865 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 10866 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 10867 MAX_BPF_FUNC_REG_ARGS); 10868 return -EINVAL; 10869 } 10870 10871 /* Check that BTF function arguments match actual types that the 10872 * verifier sees. 10873 */ 10874 for (i = 0; i < nargs; i++) { 10875 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 10876 const struct btf_type *t, *ref_t, *resolve_ret; 10877 enum bpf_arg_type arg_type = ARG_DONTCARE; 10878 u32 regno = i + 1, ref_id, type_size; 10879 bool is_ret_buf_sz = false; 10880 int kf_arg_type; 10881 10882 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 10883 10884 if (is_kfunc_arg_ignore(btf, &args[i])) 10885 continue; 10886 10887 if (btf_type_is_scalar(t)) { 10888 if (reg->type != SCALAR_VALUE) { 10889 verbose(env, "R%d is not a scalar\n", regno); 10890 return -EINVAL; 10891 } 10892 10893 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 10894 if (meta->arg_constant.found) { 10895 verbose(env, "verifier internal error: only one constant argument permitted\n"); 10896 return -EFAULT; 10897 } 10898 if (!tnum_is_const(reg->var_off)) { 10899 verbose(env, "R%d must be a known constant\n", regno); 10900 return -EINVAL; 10901 } 10902 ret = mark_chain_precision(env, regno); 10903 if (ret < 0) 10904 return ret; 10905 meta->arg_constant.found = true; 10906 meta->arg_constant.value = reg->var_off.value; 10907 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 10908 meta->r0_rdonly = true; 10909 is_ret_buf_sz = true; 10910 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 10911 is_ret_buf_sz = true; 10912 } 10913 10914 if (is_ret_buf_sz) { 10915 if (meta->r0_size) { 10916 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 10917 return -EINVAL; 10918 } 10919 10920 if (!tnum_is_const(reg->var_off)) { 10921 verbose(env, "R%d is not a const\n", regno); 10922 return -EINVAL; 10923 } 10924 10925 meta->r0_size = reg->var_off.value; 10926 ret = mark_chain_precision(env, regno); 10927 if (ret) 10928 return ret; 10929 } 10930 continue; 10931 } 10932 10933 if (!btf_type_is_ptr(t)) { 10934 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 10935 return -EINVAL; 10936 } 10937 10938 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 10939 (register_is_null(reg) || type_may_be_null(reg->type))) { 10940 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 10941 return -EACCES; 10942 } 10943 10944 if (reg->ref_obj_id) { 10945 if (is_kfunc_release(meta) && meta->ref_obj_id) { 10946 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 10947 regno, reg->ref_obj_id, 10948 meta->ref_obj_id); 10949 return -EFAULT; 10950 } 10951 meta->ref_obj_id = reg->ref_obj_id; 10952 if (is_kfunc_release(meta)) 10953 meta->release_regno = regno; 10954 } 10955 10956 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 10957 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 10958 10959 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 10960 if (kf_arg_type < 0) 10961 return kf_arg_type; 10962 10963 switch (kf_arg_type) { 10964 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 10965 case KF_ARG_PTR_TO_BTF_ID: 10966 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 10967 break; 10968 10969 if (!is_trusted_reg(reg)) { 10970 if (!is_kfunc_rcu(meta)) { 10971 verbose(env, "R%d must be referenced or trusted\n", regno); 10972 return -EINVAL; 10973 } 10974 if (!is_rcu_reg(reg)) { 10975 verbose(env, "R%d must be a rcu pointer\n", regno); 10976 return -EINVAL; 10977 } 10978 } 10979 10980 fallthrough; 10981 case KF_ARG_PTR_TO_CTX: 10982 /* Trusted arguments have the same offset checks as release arguments */ 10983 arg_type |= OBJ_RELEASE; 10984 break; 10985 case KF_ARG_PTR_TO_DYNPTR: 10986 case KF_ARG_PTR_TO_ITER: 10987 case KF_ARG_PTR_TO_LIST_HEAD: 10988 case KF_ARG_PTR_TO_LIST_NODE: 10989 case KF_ARG_PTR_TO_RB_ROOT: 10990 case KF_ARG_PTR_TO_RB_NODE: 10991 case KF_ARG_PTR_TO_MEM: 10992 case KF_ARG_PTR_TO_MEM_SIZE: 10993 case KF_ARG_PTR_TO_CALLBACK: 10994 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 10995 /* Trusted by default */ 10996 break; 10997 default: 10998 WARN_ON_ONCE(1); 10999 return -EFAULT; 11000 } 11001 11002 if (is_kfunc_release(meta) && reg->ref_obj_id) 11003 arg_type |= OBJ_RELEASE; 11004 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 11005 if (ret < 0) 11006 return ret; 11007 11008 switch (kf_arg_type) { 11009 case KF_ARG_PTR_TO_CTX: 11010 if (reg->type != PTR_TO_CTX) { 11011 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 11012 return -EINVAL; 11013 } 11014 11015 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11016 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 11017 if (ret < 0) 11018 return -EINVAL; 11019 meta->ret_btf_id = ret; 11020 } 11021 break; 11022 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11023 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11024 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11025 return -EINVAL; 11026 } 11027 if (!reg->ref_obj_id) { 11028 verbose(env, "allocated object must be referenced\n"); 11029 return -EINVAL; 11030 } 11031 if (meta->btf == btf_vmlinux && 11032 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 11033 meta->arg_btf = reg->btf; 11034 meta->arg_btf_id = reg->btf_id; 11035 } 11036 break; 11037 case KF_ARG_PTR_TO_DYNPTR: 11038 { 11039 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 11040 int clone_ref_obj_id = 0; 11041 11042 if (reg->type != PTR_TO_STACK && 11043 reg->type != CONST_PTR_TO_DYNPTR) { 11044 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 11045 return -EINVAL; 11046 } 11047 11048 if (reg->type == CONST_PTR_TO_DYNPTR) 11049 dynptr_arg_type |= MEM_RDONLY; 11050 11051 if (is_kfunc_arg_uninit(btf, &args[i])) 11052 dynptr_arg_type |= MEM_UNINIT; 11053 11054 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 11055 dynptr_arg_type |= DYNPTR_TYPE_SKB; 11056 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 11057 dynptr_arg_type |= DYNPTR_TYPE_XDP; 11058 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 11059 (dynptr_arg_type & MEM_UNINIT)) { 11060 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 11061 11062 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 11063 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 11064 return -EFAULT; 11065 } 11066 11067 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 11068 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 11069 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 11070 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 11071 return -EFAULT; 11072 } 11073 } 11074 11075 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 11076 if (ret < 0) 11077 return ret; 11078 11079 if (!(dynptr_arg_type & MEM_UNINIT)) { 11080 int id = dynptr_id(env, reg); 11081 11082 if (id < 0) { 11083 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 11084 return id; 11085 } 11086 meta->initialized_dynptr.id = id; 11087 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 11088 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 11089 } 11090 11091 break; 11092 } 11093 case KF_ARG_PTR_TO_ITER: 11094 ret = process_iter_arg(env, regno, insn_idx, meta); 11095 if (ret < 0) 11096 return ret; 11097 break; 11098 case KF_ARG_PTR_TO_LIST_HEAD: 11099 if (reg->type != PTR_TO_MAP_VALUE && 11100 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11101 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11102 return -EINVAL; 11103 } 11104 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11105 verbose(env, "allocated object must be referenced\n"); 11106 return -EINVAL; 11107 } 11108 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 11109 if (ret < 0) 11110 return ret; 11111 break; 11112 case KF_ARG_PTR_TO_RB_ROOT: 11113 if (reg->type != PTR_TO_MAP_VALUE && 11114 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11115 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11116 return -EINVAL; 11117 } 11118 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11119 verbose(env, "allocated object must be referenced\n"); 11120 return -EINVAL; 11121 } 11122 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 11123 if (ret < 0) 11124 return ret; 11125 break; 11126 case KF_ARG_PTR_TO_LIST_NODE: 11127 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11128 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11129 return -EINVAL; 11130 } 11131 if (!reg->ref_obj_id) { 11132 verbose(env, "allocated object must be referenced\n"); 11133 return -EINVAL; 11134 } 11135 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 11136 if (ret < 0) 11137 return ret; 11138 break; 11139 case KF_ARG_PTR_TO_RB_NODE: 11140 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 11141 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 11142 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 11143 return -EINVAL; 11144 } 11145 if (in_rbtree_lock_required_cb(env)) { 11146 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 11147 return -EINVAL; 11148 } 11149 } else { 11150 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11151 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11152 return -EINVAL; 11153 } 11154 if (!reg->ref_obj_id) { 11155 verbose(env, "allocated object must be referenced\n"); 11156 return -EINVAL; 11157 } 11158 } 11159 11160 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 11161 if (ret < 0) 11162 return ret; 11163 break; 11164 case KF_ARG_PTR_TO_BTF_ID: 11165 /* Only base_type is checked, further checks are done here */ 11166 if ((base_type(reg->type) != PTR_TO_BTF_ID || 11167 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 11168 !reg2btf_ids[base_type(reg->type)]) { 11169 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 11170 verbose(env, "expected %s or socket\n", 11171 reg_type_str(env, base_type(reg->type) | 11172 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 11173 return -EINVAL; 11174 } 11175 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 11176 if (ret < 0) 11177 return ret; 11178 break; 11179 case KF_ARG_PTR_TO_MEM: 11180 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 11181 if (IS_ERR(resolve_ret)) { 11182 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 11183 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 11184 return -EINVAL; 11185 } 11186 ret = check_mem_reg(env, reg, regno, type_size); 11187 if (ret < 0) 11188 return ret; 11189 break; 11190 case KF_ARG_PTR_TO_MEM_SIZE: 11191 { 11192 struct bpf_reg_state *buff_reg = ®s[regno]; 11193 const struct btf_param *buff_arg = &args[i]; 11194 struct bpf_reg_state *size_reg = ®s[regno + 1]; 11195 const struct btf_param *size_arg = &args[i + 1]; 11196 11197 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 11198 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 11199 if (ret < 0) { 11200 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 11201 return ret; 11202 } 11203 } 11204 11205 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 11206 if (meta->arg_constant.found) { 11207 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11208 return -EFAULT; 11209 } 11210 if (!tnum_is_const(size_reg->var_off)) { 11211 verbose(env, "R%d must be a known constant\n", regno + 1); 11212 return -EINVAL; 11213 } 11214 meta->arg_constant.found = true; 11215 meta->arg_constant.value = size_reg->var_off.value; 11216 } 11217 11218 /* Skip next '__sz' or '__szk' argument */ 11219 i++; 11220 break; 11221 } 11222 case KF_ARG_PTR_TO_CALLBACK: 11223 if (reg->type != PTR_TO_FUNC) { 11224 verbose(env, "arg%d expected pointer to func\n", i); 11225 return -EINVAL; 11226 } 11227 meta->subprogno = reg->subprogno; 11228 break; 11229 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11230 if (!type_is_ptr_alloc_obj(reg->type)) { 11231 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 11232 return -EINVAL; 11233 } 11234 if (!type_is_non_owning_ref(reg->type)) 11235 meta->arg_owning_ref = true; 11236 11237 rec = reg_btf_record(reg); 11238 if (!rec) { 11239 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 11240 return -EFAULT; 11241 } 11242 11243 if (rec->refcount_off < 0) { 11244 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 11245 return -EINVAL; 11246 } 11247 11248 meta->arg_btf = reg->btf; 11249 meta->arg_btf_id = reg->btf_id; 11250 break; 11251 } 11252 } 11253 11254 if (is_kfunc_release(meta) && !meta->release_regno) { 11255 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 11256 func_name); 11257 return -EINVAL; 11258 } 11259 11260 return 0; 11261 } 11262 11263 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 11264 struct bpf_insn *insn, 11265 struct bpf_kfunc_call_arg_meta *meta, 11266 const char **kfunc_name) 11267 { 11268 const struct btf_type *func, *func_proto; 11269 u32 func_id, *kfunc_flags; 11270 const char *func_name; 11271 struct btf *desc_btf; 11272 11273 if (kfunc_name) 11274 *kfunc_name = NULL; 11275 11276 if (!insn->imm) 11277 return -EINVAL; 11278 11279 desc_btf = find_kfunc_desc_btf(env, insn->off); 11280 if (IS_ERR(desc_btf)) 11281 return PTR_ERR(desc_btf); 11282 11283 func_id = insn->imm; 11284 func = btf_type_by_id(desc_btf, func_id); 11285 func_name = btf_name_by_offset(desc_btf, func->name_off); 11286 if (kfunc_name) 11287 *kfunc_name = func_name; 11288 func_proto = btf_type_by_id(desc_btf, func->type); 11289 11290 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 11291 if (!kfunc_flags) { 11292 return -EACCES; 11293 } 11294 11295 memset(meta, 0, sizeof(*meta)); 11296 meta->btf = desc_btf; 11297 meta->func_id = func_id; 11298 meta->kfunc_flags = *kfunc_flags; 11299 meta->func_proto = func_proto; 11300 meta->func_name = func_name; 11301 11302 return 0; 11303 } 11304 11305 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 11306 int *insn_idx_p) 11307 { 11308 const struct btf_type *t, *ptr_type; 11309 u32 i, nargs, ptr_type_id, release_ref_obj_id; 11310 struct bpf_reg_state *regs = cur_regs(env); 11311 const char *func_name, *ptr_type_name; 11312 bool sleepable, rcu_lock, rcu_unlock; 11313 struct bpf_kfunc_call_arg_meta meta; 11314 struct bpf_insn_aux_data *insn_aux; 11315 int err, insn_idx = *insn_idx_p; 11316 const struct btf_param *args; 11317 const struct btf_type *ret_t; 11318 struct btf *desc_btf; 11319 11320 /* skip for now, but return error when we find this in fixup_kfunc_call */ 11321 if (!insn->imm) 11322 return 0; 11323 11324 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 11325 if (err == -EACCES && func_name) 11326 verbose(env, "calling kernel function %s is not allowed\n", func_name); 11327 if (err) 11328 return err; 11329 desc_btf = meta.btf; 11330 insn_aux = &env->insn_aux_data[insn_idx]; 11331 11332 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 11333 11334 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 11335 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 11336 return -EACCES; 11337 } 11338 11339 sleepable = is_kfunc_sleepable(&meta); 11340 if (sleepable && !env->prog->aux->sleepable) { 11341 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 11342 return -EACCES; 11343 } 11344 11345 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 11346 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 11347 11348 if (env->cur_state->active_rcu_lock) { 11349 struct bpf_func_state *state; 11350 struct bpf_reg_state *reg; 11351 11352 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 11353 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 11354 return -EACCES; 11355 } 11356 11357 if (rcu_lock) { 11358 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 11359 return -EINVAL; 11360 } else if (rcu_unlock) { 11361 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 11362 if (reg->type & MEM_RCU) { 11363 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 11364 reg->type |= PTR_UNTRUSTED; 11365 } 11366 })); 11367 env->cur_state->active_rcu_lock = false; 11368 } else if (sleepable) { 11369 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 11370 return -EACCES; 11371 } 11372 } else if (rcu_lock) { 11373 env->cur_state->active_rcu_lock = true; 11374 } else if (rcu_unlock) { 11375 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 11376 return -EINVAL; 11377 } 11378 11379 /* Check the arguments */ 11380 err = check_kfunc_args(env, &meta, insn_idx); 11381 if (err < 0) 11382 return err; 11383 /* In case of release function, we get register number of refcounted 11384 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 11385 */ 11386 if (meta.release_regno) { 11387 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 11388 if (err) { 11389 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11390 func_name, meta.func_id); 11391 return err; 11392 } 11393 } 11394 11395 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11396 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11397 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11398 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 11399 insn_aux->insert_off = regs[BPF_REG_2].off; 11400 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 11401 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 11402 if (err) { 11403 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 11404 func_name, meta.func_id); 11405 return err; 11406 } 11407 11408 err = release_reference(env, release_ref_obj_id); 11409 if (err) { 11410 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11411 func_name, meta.func_id); 11412 return err; 11413 } 11414 } 11415 11416 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11417 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 11418 set_rbtree_add_callback_state); 11419 if (err) { 11420 verbose(env, "kfunc %s#%d failed callback verification\n", 11421 func_name, meta.func_id); 11422 return err; 11423 } 11424 } 11425 11426 for (i = 0; i < CALLER_SAVED_REGS; i++) 11427 mark_reg_not_init(env, regs, caller_saved[i]); 11428 11429 /* Check return type */ 11430 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 11431 11432 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 11433 /* Only exception is bpf_obj_new_impl */ 11434 if (meta.btf != btf_vmlinux || 11435 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 11436 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 11437 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 11438 return -EINVAL; 11439 } 11440 } 11441 11442 if (btf_type_is_scalar(t)) { 11443 mark_reg_unknown(env, regs, BPF_REG_0); 11444 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 11445 } else if (btf_type_is_ptr(t)) { 11446 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 11447 11448 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11449 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 11450 struct btf *ret_btf; 11451 u32 ret_btf_id; 11452 11453 if (unlikely(!bpf_global_ma_set)) 11454 return -ENOMEM; 11455 11456 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 11457 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 11458 return -EINVAL; 11459 } 11460 11461 ret_btf = env->prog->aux->btf; 11462 ret_btf_id = meta.arg_constant.value; 11463 11464 /* This may be NULL due to user not supplying a BTF */ 11465 if (!ret_btf) { 11466 verbose(env, "bpf_obj_new requires prog BTF\n"); 11467 return -EINVAL; 11468 } 11469 11470 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 11471 if (!ret_t || !__btf_type_is_struct(ret_t)) { 11472 verbose(env, "bpf_obj_new type ID argument must be of a struct\n"); 11473 return -EINVAL; 11474 } 11475 11476 mark_reg_known_zero(env, regs, BPF_REG_0); 11477 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11478 regs[BPF_REG_0].btf = ret_btf; 11479 regs[BPF_REG_0].btf_id = ret_btf_id; 11480 11481 insn_aux->obj_new_size = ret_t->size; 11482 insn_aux->kptr_struct_meta = 11483 btf_find_struct_meta(ret_btf, ret_btf_id); 11484 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 11485 mark_reg_known_zero(env, regs, BPF_REG_0); 11486 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11487 regs[BPF_REG_0].btf = meta.arg_btf; 11488 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 11489 11490 insn_aux->kptr_struct_meta = 11491 btf_find_struct_meta(meta.arg_btf, 11492 meta.arg_btf_id); 11493 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 11494 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 11495 struct btf_field *field = meta.arg_list_head.field; 11496 11497 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11498 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11499 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11500 struct btf_field *field = meta.arg_rbtree_root.field; 11501 11502 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11503 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11504 mark_reg_known_zero(env, regs, BPF_REG_0); 11505 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 11506 regs[BPF_REG_0].btf = desc_btf; 11507 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11508 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 11509 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 11510 if (!ret_t || !btf_type_is_struct(ret_t)) { 11511 verbose(env, 11512 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 11513 return -EINVAL; 11514 } 11515 11516 mark_reg_known_zero(env, regs, BPF_REG_0); 11517 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 11518 regs[BPF_REG_0].btf = desc_btf; 11519 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 11520 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 11521 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 11522 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 11523 11524 mark_reg_known_zero(env, regs, BPF_REG_0); 11525 11526 if (!meta.arg_constant.found) { 11527 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 11528 return -EFAULT; 11529 } 11530 11531 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 11532 11533 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 11534 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 11535 11536 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 11537 regs[BPF_REG_0].type |= MEM_RDONLY; 11538 } else { 11539 /* this will set env->seen_direct_write to true */ 11540 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 11541 verbose(env, "the prog does not allow writes to packet data\n"); 11542 return -EINVAL; 11543 } 11544 } 11545 11546 if (!meta.initialized_dynptr.id) { 11547 verbose(env, "verifier internal error: no dynptr id\n"); 11548 return -EFAULT; 11549 } 11550 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 11551 11552 /* we don't need to set BPF_REG_0's ref obj id 11553 * because packet slices are not refcounted (see 11554 * dynptr_type_refcounted) 11555 */ 11556 } else { 11557 verbose(env, "kernel function %s unhandled dynamic return type\n", 11558 meta.func_name); 11559 return -EFAULT; 11560 } 11561 } else if (!__btf_type_is_struct(ptr_type)) { 11562 if (!meta.r0_size) { 11563 __u32 sz; 11564 11565 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 11566 meta.r0_size = sz; 11567 meta.r0_rdonly = true; 11568 } 11569 } 11570 if (!meta.r0_size) { 11571 ptr_type_name = btf_name_by_offset(desc_btf, 11572 ptr_type->name_off); 11573 verbose(env, 11574 "kernel function %s returns pointer type %s %s is not supported\n", 11575 func_name, 11576 btf_type_str(ptr_type), 11577 ptr_type_name); 11578 return -EINVAL; 11579 } 11580 11581 mark_reg_known_zero(env, regs, BPF_REG_0); 11582 regs[BPF_REG_0].type = PTR_TO_MEM; 11583 regs[BPF_REG_0].mem_size = meta.r0_size; 11584 11585 if (meta.r0_rdonly) 11586 regs[BPF_REG_0].type |= MEM_RDONLY; 11587 11588 /* Ensures we don't access the memory after a release_reference() */ 11589 if (meta.ref_obj_id) 11590 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 11591 } else { 11592 mark_reg_known_zero(env, regs, BPF_REG_0); 11593 regs[BPF_REG_0].btf = desc_btf; 11594 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 11595 regs[BPF_REG_0].btf_id = ptr_type_id; 11596 } 11597 11598 if (is_kfunc_ret_null(&meta)) { 11599 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 11600 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 11601 regs[BPF_REG_0].id = ++env->id_gen; 11602 } 11603 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 11604 if (is_kfunc_acquire(&meta)) { 11605 int id = acquire_reference_state(env, insn_idx); 11606 11607 if (id < 0) 11608 return id; 11609 if (is_kfunc_ret_null(&meta)) 11610 regs[BPF_REG_0].id = id; 11611 regs[BPF_REG_0].ref_obj_id = id; 11612 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11613 ref_set_non_owning(env, ®s[BPF_REG_0]); 11614 } 11615 11616 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 11617 regs[BPF_REG_0].id = ++env->id_gen; 11618 } else if (btf_type_is_void(t)) { 11619 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11620 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 11621 insn_aux->kptr_struct_meta = 11622 btf_find_struct_meta(meta.arg_btf, 11623 meta.arg_btf_id); 11624 } 11625 } 11626 } 11627 11628 nargs = btf_type_vlen(meta.func_proto); 11629 args = (const struct btf_param *)(meta.func_proto + 1); 11630 for (i = 0; i < nargs; i++) { 11631 u32 regno = i + 1; 11632 11633 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 11634 if (btf_type_is_ptr(t)) 11635 mark_btf_func_reg_size(env, regno, sizeof(void *)); 11636 else 11637 /* scalar. ensured by btf_check_kfunc_arg_match() */ 11638 mark_btf_func_reg_size(env, regno, t->size); 11639 } 11640 11641 if (is_iter_next_kfunc(&meta)) { 11642 err = process_iter_next_call(env, insn_idx, &meta); 11643 if (err) 11644 return err; 11645 } 11646 11647 return 0; 11648 } 11649 11650 static bool signed_add_overflows(s64 a, s64 b) 11651 { 11652 /* Do the add in u64, where overflow is well-defined */ 11653 s64 res = (s64)((u64)a + (u64)b); 11654 11655 if (b < 0) 11656 return res > a; 11657 return res < a; 11658 } 11659 11660 static bool signed_add32_overflows(s32 a, s32 b) 11661 { 11662 /* Do the add in u32, where overflow is well-defined */ 11663 s32 res = (s32)((u32)a + (u32)b); 11664 11665 if (b < 0) 11666 return res > a; 11667 return res < a; 11668 } 11669 11670 static bool signed_sub_overflows(s64 a, s64 b) 11671 { 11672 /* Do the sub in u64, where overflow is well-defined */ 11673 s64 res = (s64)((u64)a - (u64)b); 11674 11675 if (b < 0) 11676 return res < a; 11677 return res > a; 11678 } 11679 11680 static bool signed_sub32_overflows(s32 a, s32 b) 11681 { 11682 /* Do the sub in u32, where overflow is well-defined */ 11683 s32 res = (s32)((u32)a - (u32)b); 11684 11685 if (b < 0) 11686 return res < a; 11687 return res > a; 11688 } 11689 11690 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 11691 const struct bpf_reg_state *reg, 11692 enum bpf_reg_type type) 11693 { 11694 bool known = tnum_is_const(reg->var_off); 11695 s64 val = reg->var_off.value; 11696 s64 smin = reg->smin_value; 11697 11698 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 11699 verbose(env, "math between %s pointer and %lld is not allowed\n", 11700 reg_type_str(env, type), val); 11701 return false; 11702 } 11703 11704 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 11705 verbose(env, "%s pointer offset %d is not allowed\n", 11706 reg_type_str(env, type), reg->off); 11707 return false; 11708 } 11709 11710 if (smin == S64_MIN) { 11711 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 11712 reg_type_str(env, type)); 11713 return false; 11714 } 11715 11716 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 11717 verbose(env, "value %lld makes %s pointer be out of bounds\n", 11718 smin, reg_type_str(env, type)); 11719 return false; 11720 } 11721 11722 return true; 11723 } 11724 11725 enum { 11726 REASON_BOUNDS = -1, 11727 REASON_TYPE = -2, 11728 REASON_PATHS = -3, 11729 REASON_LIMIT = -4, 11730 REASON_STACK = -5, 11731 }; 11732 11733 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 11734 u32 *alu_limit, bool mask_to_left) 11735 { 11736 u32 max = 0, ptr_limit = 0; 11737 11738 switch (ptr_reg->type) { 11739 case PTR_TO_STACK: 11740 /* Offset 0 is out-of-bounds, but acceptable start for the 11741 * left direction, see BPF_REG_FP. Also, unknown scalar 11742 * offset where we would need to deal with min/max bounds is 11743 * currently prohibited for unprivileged. 11744 */ 11745 max = MAX_BPF_STACK + mask_to_left; 11746 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 11747 break; 11748 case PTR_TO_MAP_VALUE: 11749 max = ptr_reg->map_ptr->value_size; 11750 ptr_limit = (mask_to_left ? 11751 ptr_reg->smin_value : 11752 ptr_reg->umax_value) + ptr_reg->off; 11753 break; 11754 default: 11755 return REASON_TYPE; 11756 } 11757 11758 if (ptr_limit >= max) 11759 return REASON_LIMIT; 11760 *alu_limit = ptr_limit; 11761 return 0; 11762 } 11763 11764 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 11765 const struct bpf_insn *insn) 11766 { 11767 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 11768 } 11769 11770 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 11771 u32 alu_state, u32 alu_limit) 11772 { 11773 /* If we arrived here from different branches with different 11774 * state or limits to sanitize, then this won't work. 11775 */ 11776 if (aux->alu_state && 11777 (aux->alu_state != alu_state || 11778 aux->alu_limit != alu_limit)) 11779 return REASON_PATHS; 11780 11781 /* Corresponding fixup done in do_misc_fixups(). */ 11782 aux->alu_state = alu_state; 11783 aux->alu_limit = alu_limit; 11784 return 0; 11785 } 11786 11787 static int sanitize_val_alu(struct bpf_verifier_env *env, 11788 struct bpf_insn *insn) 11789 { 11790 struct bpf_insn_aux_data *aux = cur_aux(env); 11791 11792 if (can_skip_alu_sanitation(env, insn)) 11793 return 0; 11794 11795 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 11796 } 11797 11798 static bool sanitize_needed(u8 opcode) 11799 { 11800 return opcode == BPF_ADD || opcode == BPF_SUB; 11801 } 11802 11803 struct bpf_sanitize_info { 11804 struct bpf_insn_aux_data aux; 11805 bool mask_to_left; 11806 }; 11807 11808 static struct bpf_verifier_state * 11809 sanitize_speculative_path(struct bpf_verifier_env *env, 11810 const struct bpf_insn *insn, 11811 u32 next_idx, u32 curr_idx) 11812 { 11813 struct bpf_verifier_state *branch; 11814 struct bpf_reg_state *regs; 11815 11816 branch = push_stack(env, next_idx, curr_idx, true); 11817 if (branch && insn) { 11818 regs = branch->frame[branch->curframe]->regs; 11819 if (BPF_SRC(insn->code) == BPF_K) { 11820 mark_reg_unknown(env, regs, insn->dst_reg); 11821 } else if (BPF_SRC(insn->code) == BPF_X) { 11822 mark_reg_unknown(env, regs, insn->dst_reg); 11823 mark_reg_unknown(env, regs, insn->src_reg); 11824 } 11825 } 11826 return branch; 11827 } 11828 11829 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 11830 struct bpf_insn *insn, 11831 const struct bpf_reg_state *ptr_reg, 11832 const struct bpf_reg_state *off_reg, 11833 struct bpf_reg_state *dst_reg, 11834 struct bpf_sanitize_info *info, 11835 const bool commit_window) 11836 { 11837 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 11838 struct bpf_verifier_state *vstate = env->cur_state; 11839 bool off_is_imm = tnum_is_const(off_reg->var_off); 11840 bool off_is_neg = off_reg->smin_value < 0; 11841 bool ptr_is_dst_reg = ptr_reg == dst_reg; 11842 u8 opcode = BPF_OP(insn->code); 11843 u32 alu_state, alu_limit; 11844 struct bpf_reg_state tmp; 11845 bool ret; 11846 int err; 11847 11848 if (can_skip_alu_sanitation(env, insn)) 11849 return 0; 11850 11851 /* We already marked aux for masking from non-speculative 11852 * paths, thus we got here in the first place. We only care 11853 * to explore bad access from here. 11854 */ 11855 if (vstate->speculative) 11856 goto do_sim; 11857 11858 if (!commit_window) { 11859 if (!tnum_is_const(off_reg->var_off) && 11860 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 11861 return REASON_BOUNDS; 11862 11863 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 11864 (opcode == BPF_SUB && !off_is_neg); 11865 } 11866 11867 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 11868 if (err < 0) 11869 return err; 11870 11871 if (commit_window) { 11872 /* In commit phase we narrow the masking window based on 11873 * the observed pointer move after the simulated operation. 11874 */ 11875 alu_state = info->aux.alu_state; 11876 alu_limit = abs(info->aux.alu_limit - alu_limit); 11877 } else { 11878 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 11879 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 11880 alu_state |= ptr_is_dst_reg ? 11881 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 11882 11883 /* Limit pruning on unknown scalars to enable deep search for 11884 * potential masking differences from other program paths. 11885 */ 11886 if (!off_is_imm) 11887 env->explore_alu_limits = true; 11888 } 11889 11890 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 11891 if (err < 0) 11892 return err; 11893 do_sim: 11894 /* If we're in commit phase, we're done here given we already 11895 * pushed the truncated dst_reg into the speculative verification 11896 * stack. 11897 * 11898 * Also, when register is a known constant, we rewrite register-based 11899 * operation to immediate-based, and thus do not need masking (and as 11900 * a consequence, do not need to simulate the zero-truncation either). 11901 */ 11902 if (commit_window || off_is_imm) 11903 return 0; 11904 11905 /* Simulate and find potential out-of-bounds access under 11906 * speculative execution from truncation as a result of 11907 * masking when off was not within expected range. If off 11908 * sits in dst, then we temporarily need to move ptr there 11909 * to simulate dst (== 0) +/-= ptr. Needed, for example, 11910 * for cases where we use K-based arithmetic in one direction 11911 * and truncated reg-based in the other in order to explore 11912 * bad access. 11913 */ 11914 if (!ptr_is_dst_reg) { 11915 tmp = *dst_reg; 11916 copy_register_state(dst_reg, ptr_reg); 11917 } 11918 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 11919 env->insn_idx); 11920 if (!ptr_is_dst_reg && ret) 11921 *dst_reg = tmp; 11922 return !ret ? REASON_STACK : 0; 11923 } 11924 11925 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 11926 { 11927 struct bpf_verifier_state *vstate = env->cur_state; 11928 11929 /* If we simulate paths under speculation, we don't update the 11930 * insn as 'seen' such that when we verify unreachable paths in 11931 * the non-speculative domain, sanitize_dead_code() can still 11932 * rewrite/sanitize them. 11933 */ 11934 if (!vstate->speculative) 11935 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 11936 } 11937 11938 static int sanitize_err(struct bpf_verifier_env *env, 11939 const struct bpf_insn *insn, int reason, 11940 const struct bpf_reg_state *off_reg, 11941 const struct bpf_reg_state *dst_reg) 11942 { 11943 static const char *err = "pointer arithmetic with it prohibited for !root"; 11944 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 11945 u32 dst = insn->dst_reg, src = insn->src_reg; 11946 11947 switch (reason) { 11948 case REASON_BOUNDS: 11949 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 11950 off_reg == dst_reg ? dst : src, err); 11951 break; 11952 case REASON_TYPE: 11953 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 11954 off_reg == dst_reg ? src : dst, err); 11955 break; 11956 case REASON_PATHS: 11957 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 11958 dst, op, err); 11959 break; 11960 case REASON_LIMIT: 11961 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 11962 dst, op, err); 11963 break; 11964 case REASON_STACK: 11965 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 11966 dst, err); 11967 break; 11968 default: 11969 verbose(env, "verifier internal error: unknown reason (%d)\n", 11970 reason); 11971 break; 11972 } 11973 11974 return -EACCES; 11975 } 11976 11977 /* check that stack access falls within stack limits and that 'reg' doesn't 11978 * have a variable offset. 11979 * 11980 * Variable offset is prohibited for unprivileged mode for simplicity since it 11981 * requires corresponding support in Spectre masking for stack ALU. See also 11982 * retrieve_ptr_limit(). 11983 * 11984 * 11985 * 'off' includes 'reg->off'. 11986 */ 11987 static int check_stack_access_for_ptr_arithmetic( 11988 struct bpf_verifier_env *env, 11989 int regno, 11990 const struct bpf_reg_state *reg, 11991 int off) 11992 { 11993 if (!tnum_is_const(reg->var_off)) { 11994 char tn_buf[48]; 11995 11996 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 11997 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 11998 regno, tn_buf, off); 11999 return -EACCES; 12000 } 12001 12002 if (off >= 0 || off < -MAX_BPF_STACK) { 12003 verbose(env, "R%d stack pointer arithmetic goes out of range, " 12004 "prohibited for !root; off=%d\n", regno, off); 12005 return -EACCES; 12006 } 12007 12008 return 0; 12009 } 12010 12011 static int sanitize_check_bounds(struct bpf_verifier_env *env, 12012 const struct bpf_insn *insn, 12013 const struct bpf_reg_state *dst_reg) 12014 { 12015 u32 dst = insn->dst_reg; 12016 12017 /* For unprivileged we require that resulting offset must be in bounds 12018 * in order to be able to sanitize access later on. 12019 */ 12020 if (env->bypass_spec_v1) 12021 return 0; 12022 12023 switch (dst_reg->type) { 12024 case PTR_TO_STACK: 12025 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 12026 dst_reg->off + dst_reg->var_off.value)) 12027 return -EACCES; 12028 break; 12029 case PTR_TO_MAP_VALUE: 12030 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 12031 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 12032 "prohibited for !root\n", dst); 12033 return -EACCES; 12034 } 12035 break; 12036 default: 12037 break; 12038 } 12039 12040 return 0; 12041 } 12042 12043 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 12044 * Caller should also handle BPF_MOV case separately. 12045 * If we return -EACCES, caller may want to try again treating pointer as a 12046 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 12047 */ 12048 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 12049 struct bpf_insn *insn, 12050 const struct bpf_reg_state *ptr_reg, 12051 const struct bpf_reg_state *off_reg) 12052 { 12053 struct bpf_verifier_state *vstate = env->cur_state; 12054 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12055 struct bpf_reg_state *regs = state->regs, *dst_reg; 12056 bool known = tnum_is_const(off_reg->var_off); 12057 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 12058 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 12059 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 12060 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 12061 struct bpf_sanitize_info info = {}; 12062 u8 opcode = BPF_OP(insn->code); 12063 u32 dst = insn->dst_reg; 12064 int ret; 12065 12066 dst_reg = ®s[dst]; 12067 12068 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 12069 smin_val > smax_val || umin_val > umax_val) { 12070 /* Taint dst register if offset had invalid bounds derived from 12071 * e.g. dead branches. 12072 */ 12073 __mark_reg_unknown(env, dst_reg); 12074 return 0; 12075 } 12076 12077 if (BPF_CLASS(insn->code) != BPF_ALU64) { 12078 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 12079 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 12080 __mark_reg_unknown(env, dst_reg); 12081 return 0; 12082 } 12083 12084 verbose(env, 12085 "R%d 32-bit pointer arithmetic prohibited\n", 12086 dst); 12087 return -EACCES; 12088 } 12089 12090 if (ptr_reg->type & PTR_MAYBE_NULL) { 12091 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 12092 dst, reg_type_str(env, ptr_reg->type)); 12093 return -EACCES; 12094 } 12095 12096 switch (base_type(ptr_reg->type)) { 12097 case CONST_PTR_TO_MAP: 12098 /* smin_val represents the known value */ 12099 if (known && smin_val == 0 && opcode == BPF_ADD) 12100 break; 12101 fallthrough; 12102 case PTR_TO_PACKET_END: 12103 case PTR_TO_SOCKET: 12104 case PTR_TO_SOCK_COMMON: 12105 case PTR_TO_TCP_SOCK: 12106 case PTR_TO_XDP_SOCK: 12107 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 12108 dst, reg_type_str(env, ptr_reg->type)); 12109 return -EACCES; 12110 default: 12111 break; 12112 } 12113 12114 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 12115 * The id may be overwritten later if we create a new variable offset. 12116 */ 12117 dst_reg->type = ptr_reg->type; 12118 dst_reg->id = ptr_reg->id; 12119 12120 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 12121 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 12122 return -EINVAL; 12123 12124 /* pointer types do not carry 32-bit bounds at the moment. */ 12125 __mark_reg32_unbounded(dst_reg); 12126 12127 if (sanitize_needed(opcode)) { 12128 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 12129 &info, false); 12130 if (ret < 0) 12131 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12132 } 12133 12134 switch (opcode) { 12135 case BPF_ADD: 12136 /* We can take a fixed offset as long as it doesn't overflow 12137 * the s32 'off' field 12138 */ 12139 if (known && (ptr_reg->off + smin_val == 12140 (s64)(s32)(ptr_reg->off + smin_val))) { 12141 /* pointer += K. Accumulate it into fixed offset */ 12142 dst_reg->smin_value = smin_ptr; 12143 dst_reg->smax_value = smax_ptr; 12144 dst_reg->umin_value = umin_ptr; 12145 dst_reg->umax_value = umax_ptr; 12146 dst_reg->var_off = ptr_reg->var_off; 12147 dst_reg->off = ptr_reg->off + smin_val; 12148 dst_reg->raw = ptr_reg->raw; 12149 break; 12150 } 12151 /* A new variable offset is created. Note that off_reg->off 12152 * == 0, since it's a scalar. 12153 * dst_reg gets the pointer type and since some positive 12154 * integer value was added to the pointer, give it a new 'id' 12155 * if it's a PTR_TO_PACKET. 12156 * this creates a new 'base' pointer, off_reg (variable) gets 12157 * added into the variable offset, and we copy the fixed offset 12158 * from ptr_reg. 12159 */ 12160 if (signed_add_overflows(smin_ptr, smin_val) || 12161 signed_add_overflows(smax_ptr, smax_val)) { 12162 dst_reg->smin_value = S64_MIN; 12163 dst_reg->smax_value = S64_MAX; 12164 } else { 12165 dst_reg->smin_value = smin_ptr + smin_val; 12166 dst_reg->smax_value = smax_ptr + smax_val; 12167 } 12168 if (umin_ptr + umin_val < umin_ptr || 12169 umax_ptr + umax_val < umax_ptr) { 12170 dst_reg->umin_value = 0; 12171 dst_reg->umax_value = U64_MAX; 12172 } else { 12173 dst_reg->umin_value = umin_ptr + umin_val; 12174 dst_reg->umax_value = umax_ptr + umax_val; 12175 } 12176 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 12177 dst_reg->off = ptr_reg->off; 12178 dst_reg->raw = ptr_reg->raw; 12179 if (reg_is_pkt_pointer(ptr_reg)) { 12180 dst_reg->id = ++env->id_gen; 12181 /* something was added to pkt_ptr, set range to zero */ 12182 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12183 } 12184 break; 12185 case BPF_SUB: 12186 if (dst_reg == off_reg) { 12187 /* scalar -= pointer. Creates an unknown scalar */ 12188 verbose(env, "R%d tried to subtract pointer from scalar\n", 12189 dst); 12190 return -EACCES; 12191 } 12192 /* We don't allow subtraction from FP, because (according to 12193 * test_verifier.c test "invalid fp arithmetic", JITs might not 12194 * be able to deal with it. 12195 */ 12196 if (ptr_reg->type == PTR_TO_STACK) { 12197 verbose(env, "R%d subtraction from stack pointer prohibited\n", 12198 dst); 12199 return -EACCES; 12200 } 12201 if (known && (ptr_reg->off - smin_val == 12202 (s64)(s32)(ptr_reg->off - smin_val))) { 12203 /* pointer -= K. Subtract it from fixed offset */ 12204 dst_reg->smin_value = smin_ptr; 12205 dst_reg->smax_value = smax_ptr; 12206 dst_reg->umin_value = umin_ptr; 12207 dst_reg->umax_value = umax_ptr; 12208 dst_reg->var_off = ptr_reg->var_off; 12209 dst_reg->id = ptr_reg->id; 12210 dst_reg->off = ptr_reg->off - smin_val; 12211 dst_reg->raw = ptr_reg->raw; 12212 break; 12213 } 12214 /* A new variable offset is created. If the subtrahend is known 12215 * nonnegative, then any reg->range we had before is still good. 12216 */ 12217 if (signed_sub_overflows(smin_ptr, smax_val) || 12218 signed_sub_overflows(smax_ptr, smin_val)) { 12219 /* Overflow possible, we know nothing */ 12220 dst_reg->smin_value = S64_MIN; 12221 dst_reg->smax_value = S64_MAX; 12222 } else { 12223 dst_reg->smin_value = smin_ptr - smax_val; 12224 dst_reg->smax_value = smax_ptr - smin_val; 12225 } 12226 if (umin_ptr < umax_val) { 12227 /* Overflow possible, we know nothing */ 12228 dst_reg->umin_value = 0; 12229 dst_reg->umax_value = U64_MAX; 12230 } else { 12231 /* Cannot overflow (as long as bounds are consistent) */ 12232 dst_reg->umin_value = umin_ptr - umax_val; 12233 dst_reg->umax_value = umax_ptr - umin_val; 12234 } 12235 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 12236 dst_reg->off = ptr_reg->off; 12237 dst_reg->raw = ptr_reg->raw; 12238 if (reg_is_pkt_pointer(ptr_reg)) { 12239 dst_reg->id = ++env->id_gen; 12240 /* something was added to pkt_ptr, set range to zero */ 12241 if (smin_val < 0) 12242 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12243 } 12244 break; 12245 case BPF_AND: 12246 case BPF_OR: 12247 case BPF_XOR: 12248 /* bitwise ops on pointers are troublesome, prohibit. */ 12249 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 12250 dst, bpf_alu_string[opcode >> 4]); 12251 return -EACCES; 12252 default: 12253 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 12254 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 12255 dst, bpf_alu_string[opcode >> 4]); 12256 return -EACCES; 12257 } 12258 12259 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 12260 return -EINVAL; 12261 reg_bounds_sync(dst_reg); 12262 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 12263 return -EACCES; 12264 if (sanitize_needed(opcode)) { 12265 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 12266 &info, true); 12267 if (ret < 0) 12268 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12269 } 12270 12271 return 0; 12272 } 12273 12274 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 12275 struct bpf_reg_state *src_reg) 12276 { 12277 s32 smin_val = src_reg->s32_min_value; 12278 s32 smax_val = src_reg->s32_max_value; 12279 u32 umin_val = src_reg->u32_min_value; 12280 u32 umax_val = src_reg->u32_max_value; 12281 12282 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 12283 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 12284 dst_reg->s32_min_value = S32_MIN; 12285 dst_reg->s32_max_value = S32_MAX; 12286 } else { 12287 dst_reg->s32_min_value += smin_val; 12288 dst_reg->s32_max_value += smax_val; 12289 } 12290 if (dst_reg->u32_min_value + umin_val < umin_val || 12291 dst_reg->u32_max_value + umax_val < umax_val) { 12292 dst_reg->u32_min_value = 0; 12293 dst_reg->u32_max_value = U32_MAX; 12294 } else { 12295 dst_reg->u32_min_value += umin_val; 12296 dst_reg->u32_max_value += umax_val; 12297 } 12298 } 12299 12300 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 12301 struct bpf_reg_state *src_reg) 12302 { 12303 s64 smin_val = src_reg->smin_value; 12304 s64 smax_val = src_reg->smax_value; 12305 u64 umin_val = src_reg->umin_value; 12306 u64 umax_val = src_reg->umax_value; 12307 12308 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 12309 signed_add_overflows(dst_reg->smax_value, smax_val)) { 12310 dst_reg->smin_value = S64_MIN; 12311 dst_reg->smax_value = S64_MAX; 12312 } else { 12313 dst_reg->smin_value += smin_val; 12314 dst_reg->smax_value += smax_val; 12315 } 12316 if (dst_reg->umin_value + umin_val < umin_val || 12317 dst_reg->umax_value + umax_val < umax_val) { 12318 dst_reg->umin_value = 0; 12319 dst_reg->umax_value = U64_MAX; 12320 } else { 12321 dst_reg->umin_value += umin_val; 12322 dst_reg->umax_value += umax_val; 12323 } 12324 } 12325 12326 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 12327 struct bpf_reg_state *src_reg) 12328 { 12329 s32 smin_val = src_reg->s32_min_value; 12330 s32 smax_val = src_reg->s32_max_value; 12331 u32 umin_val = src_reg->u32_min_value; 12332 u32 umax_val = src_reg->u32_max_value; 12333 12334 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 12335 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 12336 /* Overflow possible, we know nothing */ 12337 dst_reg->s32_min_value = S32_MIN; 12338 dst_reg->s32_max_value = S32_MAX; 12339 } else { 12340 dst_reg->s32_min_value -= smax_val; 12341 dst_reg->s32_max_value -= smin_val; 12342 } 12343 if (dst_reg->u32_min_value < umax_val) { 12344 /* Overflow possible, we know nothing */ 12345 dst_reg->u32_min_value = 0; 12346 dst_reg->u32_max_value = U32_MAX; 12347 } else { 12348 /* Cannot overflow (as long as bounds are consistent) */ 12349 dst_reg->u32_min_value -= umax_val; 12350 dst_reg->u32_max_value -= umin_val; 12351 } 12352 } 12353 12354 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 12355 struct bpf_reg_state *src_reg) 12356 { 12357 s64 smin_val = src_reg->smin_value; 12358 s64 smax_val = src_reg->smax_value; 12359 u64 umin_val = src_reg->umin_value; 12360 u64 umax_val = src_reg->umax_value; 12361 12362 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 12363 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 12364 /* Overflow possible, we know nothing */ 12365 dst_reg->smin_value = S64_MIN; 12366 dst_reg->smax_value = S64_MAX; 12367 } else { 12368 dst_reg->smin_value -= smax_val; 12369 dst_reg->smax_value -= smin_val; 12370 } 12371 if (dst_reg->umin_value < umax_val) { 12372 /* Overflow possible, we know nothing */ 12373 dst_reg->umin_value = 0; 12374 dst_reg->umax_value = U64_MAX; 12375 } else { 12376 /* Cannot overflow (as long as bounds are consistent) */ 12377 dst_reg->umin_value -= umax_val; 12378 dst_reg->umax_value -= umin_val; 12379 } 12380 } 12381 12382 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 12383 struct bpf_reg_state *src_reg) 12384 { 12385 s32 smin_val = src_reg->s32_min_value; 12386 u32 umin_val = src_reg->u32_min_value; 12387 u32 umax_val = src_reg->u32_max_value; 12388 12389 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 12390 /* Ain't nobody got time to multiply that sign */ 12391 __mark_reg32_unbounded(dst_reg); 12392 return; 12393 } 12394 /* Both values are positive, so we can work with unsigned and 12395 * copy the result to signed (unless it exceeds S32_MAX). 12396 */ 12397 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 12398 /* Potential overflow, we know nothing */ 12399 __mark_reg32_unbounded(dst_reg); 12400 return; 12401 } 12402 dst_reg->u32_min_value *= umin_val; 12403 dst_reg->u32_max_value *= umax_val; 12404 if (dst_reg->u32_max_value > S32_MAX) { 12405 /* Overflow possible, we know nothing */ 12406 dst_reg->s32_min_value = S32_MIN; 12407 dst_reg->s32_max_value = S32_MAX; 12408 } else { 12409 dst_reg->s32_min_value = dst_reg->u32_min_value; 12410 dst_reg->s32_max_value = dst_reg->u32_max_value; 12411 } 12412 } 12413 12414 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 12415 struct bpf_reg_state *src_reg) 12416 { 12417 s64 smin_val = src_reg->smin_value; 12418 u64 umin_val = src_reg->umin_value; 12419 u64 umax_val = src_reg->umax_value; 12420 12421 if (smin_val < 0 || dst_reg->smin_value < 0) { 12422 /* Ain't nobody got time to multiply that sign */ 12423 __mark_reg64_unbounded(dst_reg); 12424 return; 12425 } 12426 /* Both values are positive, so we can work with unsigned and 12427 * copy the result to signed (unless it exceeds S64_MAX). 12428 */ 12429 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 12430 /* Potential overflow, we know nothing */ 12431 __mark_reg64_unbounded(dst_reg); 12432 return; 12433 } 12434 dst_reg->umin_value *= umin_val; 12435 dst_reg->umax_value *= umax_val; 12436 if (dst_reg->umax_value > S64_MAX) { 12437 /* Overflow possible, we know nothing */ 12438 dst_reg->smin_value = S64_MIN; 12439 dst_reg->smax_value = S64_MAX; 12440 } else { 12441 dst_reg->smin_value = dst_reg->umin_value; 12442 dst_reg->smax_value = dst_reg->umax_value; 12443 } 12444 } 12445 12446 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 12447 struct bpf_reg_state *src_reg) 12448 { 12449 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12450 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12451 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12452 s32 smin_val = src_reg->s32_min_value; 12453 u32 umax_val = src_reg->u32_max_value; 12454 12455 if (src_known && dst_known) { 12456 __mark_reg32_known(dst_reg, var32_off.value); 12457 return; 12458 } 12459 12460 /* We get our minimum from the var_off, since that's inherently 12461 * bitwise. Our maximum is the minimum of the operands' maxima. 12462 */ 12463 dst_reg->u32_min_value = var32_off.value; 12464 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 12465 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12466 /* Lose signed bounds when ANDing negative numbers, 12467 * ain't nobody got time for that. 12468 */ 12469 dst_reg->s32_min_value = S32_MIN; 12470 dst_reg->s32_max_value = S32_MAX; 12471 } else { 12472 /* ANDing two positives gives a positive, so safe to 12473 * cast result into s64. 12474 */ 12475 dst_reg->s32_min_value = dst_reg->u32_min_value; 12476 dst_reg->s32_max_value = dst_reg->u32_max_value; 12477 } 12478 } 12479 12480 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 12481 struct bpf_reg_state *src_reg) 12482 { 12483 bool src_known = tnum_is_const(src_reg->var_off); 12484 bool dst_known = tnum_is_const(dst_reg->var_off); 12485 s64 smin_val = src_reg->smin_value; 12486 u64 umax_val = src_reg->umax_value; 12487 12488 if (src_known && dst_known) { 12489 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12490 return; 12491 } 12492 12493 /* We get our minimum from the var_off, since that's inherently 12494 * bitwise. Our maximum is the minimum of the operands' maxima. 12495 */ 12496 dst_reg->umin_value = dst_reg->var_off.value; 12497 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 12498 if (dst_reg->smin_value < 0 || smin_val < 0) { 12499 /* Lose signed bounds when ANDing negative numbers, 12500 * ain't nobody got time for that. 12501 */ 12502 dst_reg->smin_value = S64_MIN; 12503 dst_reg->smax_value = S64_MAX; 12504 } else { 12505 /* ANDing two positives gives a positive, so safe to 12506 * cast result into s64. 12507 */ 12508 dst_reg->smin_value = dst_reg->umin_value; 12509 dst_reg->smax_value = dst_reg->umax_value; 12510 } 12511 /* We may learn something more from the var_off */ 12512 __update_reg_bounds(dst_reg); 12513 } 12514 12515 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 12516 struct bpf_reg_state *src_reg) 12517 { 12518 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12519 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12520 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12521 s32 smin_val = src_reg->s32_min_value; 12522 u32 umin_val = src_reg->u32_min_value; 12523 12524 if (src_known && dst_known) { 12525 __mark_reg32_known(dst_reg, var32_off.value); 12526 return; 12527 } 12528 12529 /* We get our maximum from the var_off, and our minimum is the 12530 * maximum of the operands' minima 12531 */ 12532 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 12533 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12534 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12535 /* Lose signed bounds when ORing negative numbers, 12536 * ain't nobody got time for that. 12537 */ 12538 dst_reg->s32_min_value = S32_MIN; 12539 dst_reg->s32_max_value = S32_MAX; 12540 } else { 12541 /* ORing two positives gives a positive, so safe to 12542 * cast result into s64. 12543 */ 12544 dst_reg->s32_min_value = dst_reg->u32_min_value; 12545 dst_reg->s32_max_value = dst_reg->u32_max_value; 12546 } 12547 } 12548 12549 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 12550 struct bpf_reg_state *src_reg) 12551 { 12552 bool src_known = tnum_is_const(src_reg->var_off); 12553 bool dst_known = tnum_is_const(dst_reg->var_off); 12554 s64 smin_val = src_reg->smin_value; 12555 u64 umin_val = src_reg->umin_value; 12556 12557 if (src_known && dst_known) { 12558 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12559 return; 12560 } 12561 12562 /* We get our maximum from the var_off, and our minimum is the 12563 * maximum of the operands' minima 12564 */ 12565 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 12566 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12567 if (dst_reg->smin_value < 0 || smin_val < 0) { 12568 /* Lose signed bounds when ORing negative numbers, 12569 * ain't nobody got time for that. 12570 */ 12571 dst_reg->smin_value = S64_MIN; 12572 dst_reg->smax_value = S64_MAX; 12573 } else { 12574 /* ORing two positives gives a positive, so safe to 12575 * cast result into s64. 12576 */ 12577 dst_reg->smin_value = dst_reg->umin_value; 12578 dst_reg->smax_value = dst_reg->umax_value; 12579 } 12580 /* We may learn something more from the var_off */ 12581 __update_reg_bounds(dst_reg); 12582 } 12583 12584 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 12585 struct bpf_reg_state *src_reg) 12586 { 12587 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12588 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12589 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12590 s32 smin_val = src_reg->s32_min_value; 12591 12592 if (src_known && dst_known) { 12593 __mark_reg32_known(dst_reg, var32_off.value); 12594 return; 12595 } 12596 12597 /* We get both minimum and maximum from the var32_off. */ 12598 dst_reg->u32_min_value = var32_off.value; 12599 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12600 12601 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 12602 /* XORing two positive sign numbers gives a positive, 12603 * so safe to cast u32 result into s32. 12604 */ 12605 dst_reg->s32_min_value = dst_reg->u32_min_value; 12606 dst_reg->s32_max_value = dst_reg->u32_max_value; 12607 } else { 12608 dst_reg->s32_min_value = S32_MIN; 12609 dst_reg->s32_max_value = S32_MAX; 12610 } 12611 } 12612 12613 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 12614 struct bpf_reg_state *src_reg) 12615 { 12616 bool src_known = tnum_is_const(src_reg->var_off); 12617 bool dst_known = tnum_is_const(dst_reg->var_off); 12618 s64 smin_val = src_reg->smin_value; 12619 12620 if (src_known && dst_known) { 12621 /* dst_reg->var_off.value has been updated earlier */ 12622 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12623 return; 12624 } 12625 12626 /* We get both minimum and maximum from the var_off. */ 12627 dst_reg->umin_value = dst_reg->var_off.value; 12628 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12629 12630 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 12631 /* XORing two positive sign numbers gives a positive, 12632 * so safe to cast u64 result into s64. 12633 */ 12634 dst_reg->smin_value = dst_reg->umin_value; 12635 dst_reg->smax_value = dst_reg->umax_value; 12636 } else { 12637 dst_reg->smin_value = S64_MIN; 12638 dst_reg->smax_value = S64_MAX; 12639 } 12640 12641 __update_reg_bounds(dst_reg); 12642 } 12643 12644 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 12645 u64 umin_val, u64 umax_val) 12646 { 12647 /* We lose all sign bit information (except what we can pick 12648 * up from var_off) 12649 */ 12650 dst_reg->s32_min_value = S32_MIN; 12651 dst_reg->s32_max_value = S32_MAX; 12652 /* If we might shift our top bit out, then we know nothing */ 12653 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 12654 dst_reg->u32_min_value = 0; 12655 dst_reg->u32_max_value = U32_MAX; 12656 } else { 12657 dst_reg->u32_min_value <<= umin_val; 12658 dst_reg->u32_max_value <<= umax_val; 12659 } 12660 } 12661 12662 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 12663 struct bpf_reg_state *src_reg) 12664 { 12665 u32 umax_val = src_reg->u32_max_value; 12666 u32 umin_val = src_reg->u32_min_value; 12667 /* u32 alu operation will zext upper bits */ 12668 struct tnum subreg = tnum_subreg(dst_reg->var_off); 12669 12670 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 12671 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 12672 /* Not required but being careful mark reg64 bounds as unknown so 12673 * that we are forced to pick them up from tnum and zext later and 12674 * if some path skips this step we are still safe. 12675 */ 12676 __mark_reg64_unbounded(dst_reg); 12677 __update_reg32_bounds(dst_reg); 12678 } 12679 12680 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 12681 u64 umin_val, u64 umax_val) 12682 { 12683 /* Special case <<32 because it is a common compiler pattern to sign 12684 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 12685 * positive we know this shift will also be positive so we can track 12686 * bounds correctly. Otherwise we lose all sign bit information except 12687 * what we can pick up from var_off. Perhaps we can generalize this 12688 * later to shifts of any length. 12689 */ 12690 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 12691 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 12692 else 12693 dst_reg->smax_value = S64_MAX; 12694 12695 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 12696 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 12697 else 12698 dst_reg->smin_value = S64_MIN; 12699 12700 /* If we might shift our top bit out, then we know nothing */ 12701 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 12702 dst_reg->umin_value = 0; 12703 dst_reg->umax_value = U64_MAX; 12704 } else { 12705 dst_reg->umin_value <<= umin_val; 12706 dst_reg->umax_value <<= umax_val; 12707 } 12708 } 12709 12710 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 12711 struct bpf_reg_state *src_reg) 12712 { 12713 u64 umax_val = src_reg->umax_value; 12714 u64 umin_val = src_reg->umin_value; 12715 12716 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 12717 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 12718 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 12719 12720 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 12721 /* We may learn something more from the var_off */ 12722 __update_reg_bounds(dst_reg); 12723 } 12724 12725 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 12726 struct bpf_reg_state *src_reg) 12727 { 12728 struct tnum subreg = tnum_subreg(dst_reg->var_off); 12729 u32 umax_val = src_reg->u32_max_value; 12730 u32 umin_val = src_reg->u32_min_value; 12731 12732 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 12733 * be negative, then either: 12734 * 1) src_reg might be zero, so the sign bit of the result is 12735 * unknown, so we lose our signed bounds 12736 * 2) it's known negative, thus the unsigned bounds capture the 12737 * signed bounds 12738 * 3) the signed bounds cross zero, so they tell us nothing 12739 * about the result 12740 * If the value in dst_reg is known nonnegative, then again the 12741 * unsigned bounds capture the signed bounds. 12742 * Thus, in all cases it suffices to blow away our signed bounds 12743 * and rely on inferring new ones from the unsigned bounds and 12744 * var_off of the result. 12745 */ 12746 dst_reg->s32_min_value = S32_MIN; 12747 dst_reg->s32_max_value = S32_MAX; 12748 12749 dst_reg->var_off = tnum_rshift(subreg, umin_val); 12750 dst_reg->u32_min_value >>= umax_val; 12751 dst_reg->u32_max_value >>= umin_val; 12752 12753 __mark_reg64_unbounded(dst_reg); 12754 __update_reg32_bounds(dst_reg); 12755 } 12756 12757 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 12758 struct bpf_reg_state *src_reg) 12759 { 12760 u64 umax_val = src_reg->umax_value; 12761 u64 umin_val = src_reg->umin_value; 12762 12763 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 12764 * be negative, then either: 12765 * 1) src_reg might be zero, so the sign bit of the result is 12766 * unknown, so we lose our signed bounds 12767 * 2) it's known negative, thus the unsigned bounds capture the 12768 * signed bounds 12769 * 3) the signed bounds cross zero, so they tell us nothing 12770 * about the result 12771 * If the value in dst_reg is known nonnegative, then again the 12772 * unsigned bounds capture the signed bounds. 12773 * Thus, in all cases it suffices to blow away our signed bounds 12774 * and rely on inferring new ones from the unsigned bounds and 12775 * var_off of the result. 12776 */ 12777 dst_reg->smin_value = S64_MIN; 12778 dst_reg->smax_value = S64_MAX; 12779 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 12780 dst_reg->umin_value >>= umax_val; 12781 dst_reg->umax_value >>= umin_val; 12782 12783 /* Its not easy to operate on alu32 bounds here because it depends 12784 * on bits being shifted in. Take easy way out and mark unbounded 12785 * so we can recalculate later from tnum. 12786 */ 12787 __mark_reg32_unbounded(dst_reg); 12788 __update_reg_bounds(dst_reg); 12789 } 12790 12791 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 12792 struct bpf_reg_state *src_reg) 12793 { 12794 u64 umin_val = src_reg->u32_min_value; 12795 12796 /* Upon reaching here, src_known is true and 12797 * umax_val is equal to umin_val. 12798 */ 12799 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 12800 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 12801 12802 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 12803 12804 /* blow away the dst_reg umin_value/umax_value and rely on 12805 * dst_reg var_off to refine the result. 12806 */ 12807 dst_reg->u32_min_value = 0; 12808 dst_reg->u32_max_value = U32_MAX; 12809 12810 __mark_reg64_unbounded(dst_reg); 12811 __update_reg32_bounds(dst_reg); 12812 } 12813 12814 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 12815 struct bpf_reg_state *src_reg) 12816 { 12817 u64 umin_val = src_reg->umin_value; 12818 12819 /* Upon reaching here, src_known is true and umax_val is equal 12820 * to umin_val. 12821 */ 12822 dst_reg->smin_value >>= umin_val; 12823 dst_reg->smax_value >>= umin_val; 12824 12825 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 12826 12827 /* blow away the dst_reg umin_value/umax_value and rely on 12828 * dst_reg var_off to refine the result. 12829 */ 12830 dst_reg->umin_value = 0; 12831 dst_reg->umax_value = U64_MAX; 12832 12833 /* Its not easy to operate on alu32 bounds here because it depends 12834 * on bits being shifted in from upper 32-bits. Take easy way out 12835 * and mark unbounded so we can recalculate later from tnum. 12836 */ 12837 __mark_reg32_unbounded(dst_reg); 12838 __update_reg_bounds(dst_reg); 12839 } 12840 12841 /* WARNING: This function does calculations on 64-bit values, but the actual 12842 * execution may occur on 32-bit values. Therefore, things like bitshifts 12843 * need extra checks in the 32-bit case. 12844 */ 12845 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 12846 struct bpf_insn *insn, 12847 struct bpf_reg_state *dst_reg, 12848 struct bpf_reg_state src_reg) 12849 { 12850 struct bpf_reg_state *regs = cur_regs(env); 12851 u8 opcode = BPF_OP(insn->code); 12852 bool src_known; 12853 s64 smin_val, smax_val; 12854 u64 umin_val, umax_val; 12855 s32 s32_min_val, s32_max_val; 12856 u32 u32_min_val, u32_max_val; 12857 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 12858 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 12859 int ret; 12860 12861 smin_val = src_reg.smin_value; 12862 smax_val = src_reg.smax_value; 12863 umin_val = src_reg.umin_value; 12864 umax_val = src_reg.umax_value; 12865 12866 s32_min_val = src_reg.s32_min_value; 12867 s32_max_val = src_reg.s32_max_value; 12868 u32_min_val = src_reg.u32_min_value; 12869 u32_max_val = src_reg.u32_max_value; 12870 12871 if (alu32) { 12872 src_known = tnum_subreg_is_const(src_reg.var_off); 12873 if ((src_known && 12874 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 12875 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 12876 /* Taint dst register if offset had invalid bounds 12877 * derived from e.g. dead branches. 12878 */ 12879 __mark_reg_unknown(env, dst_reg); 12880 return 0; 12881 } 12882 } else { 12883 src_known = tnum_is_const(src_reg.var_off); 12884 if ((src_known && 12885 (smin_val != smax_val || umin_val != umax_val)) || 12886 smin_val > smax_val || umin_val > umax_val) { 12887 /* Taint dst register if offset had invalid bounds 12888 * derived from e.g. dead branches. 12889 */ 12890 __mark_reg_unknown(env, dst_reg); 12891 return 0; 12892 } 12893 } 12894 12895 if (!src_known && 12896 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 12897 __mark_reg_unknown(env, dst_reg); 12898 return 0; 12899 } 12900 12901 if (sanitize_needed(opcode)) { 12902 ret = sanitize_val_alu(env, insn); 12903 if (ret < 0) 12904 return sanitize_err(env, insn, ret, NULL, NULL); 12905 } 12906 12907 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 12908 * There are two classes of instructions: The first class we track both 12909 * alu32 and alu64 sign/unsigned bounds independently this provides the 12910 * greatest amount of precision when alu operations are mixed with jmp32 12911 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 12912 * and BPF_OR. This is possible because these ops have fairly easy to 12913 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 12914 * See alu32 verifier tests for examples. The second class of 12915 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 12916 * with regards to tracking sign/unsigned bounds because the bits may 12917 * cross subreg boundaries in the alu64 case. When this happens we mark 12918 * the reg unbounded in the subreg bound space and use the resulting 12919 * tnum to calculate an approximation of the sign/unsigned bounds. 12920 */ 12921 switch (opcode) { 12922 case BPF_ADD: 12923 scalar32_min_max_add(dst_reg, &src_reg); 12924 scalar_min_max_add(dst_reg, &src_reg); 12925 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 12926 break; 12927 case BPF_SUB: 12928 scalar32_min_max_sub(dst_reg, &src_reg); 12929 scalar_min_max_sub(dst_reg, &src_reg); 12930 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 12931 break; 12932 case BPF_MUL: 12933 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 12934 scalar32_min_max_mul(dst_reg, &src_reg); 12935 scalar_min_max_mul(dst_reg, &src_reg); 12936 break; 12937 case BPF_AND: 12938 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 12939 scalar32_min_max_and(dst_reg, &src_reg); 12940 scalar_min_max_and(dst_reg, &src_reg); 12941 break; 12942 case BPF_OR: 12943 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 12944 scalar32_min_max_or(dst_reg, &src_reg); 12945 scalar_min_max_or(dst_reg, &src_reg); 12946 break; 12947 case BPF_XOR: 12948 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 12949 scalar32_min_max_xor(dst_reg, &src_reg); 12950 scalar_min_max_xor(dst_reg, &src_reg); 12951 break; 12952 case BPF_LSH: 12953 if (umax_val >= insn_bitness) { 12954 /* Shifts greater than 31 or 63 are undefined. 12955 * This includes shifts by a negative number. 12956 */ 12957 mark_reg_unknown(env, regs, insn->dst_reg); 12958 break; 12959 } 12960 if (alu32) 12961 scalar32_min_max_lsh(dst_reg, &src_reg); 12962 else 12963 scalar_min_max_lsh(dst_reg, &src_reg); 12964 break; 12965 case BPF_RSH: 12966 if (umax_val >= insn_bitness) { 12967 /* Shifts greater than 31 or 63 are undefined. 12968 * This includes shifts by a negative number. 12969 */ 12970 mark_reg_unknown(env, regs, insn->dst_reg); 12971 break; 12972 } 12973 if (alu32) 12974 scalar32_min_max_rsh(dst_reg, &src_reg); 12975 else 12976 scalar_min_max_rsh(dst_reg, &src_reg); 12977 break; 12978 case BPF_ARSH: 12979 if (umax_val >= insn_bitness) { 12980 /* Shifts greater than 31 or 63 are undefined. 12981 * This includes shifts by a negative number. 12982 */ 12983 mark_reg_unknown(env, regs, insn->dst_reg); 12984 break; 12985 } 12986 if (alu32) 12987 scalar32_min_max_arsh(dst_reg, &src_reg); 12988 else 12989 scalar_min_max_arsh(dst_reg, &src_reg); 12990 break; 12991 default: 12992 mark_reg_unknown(env, regs, insn->dst_reg); 12993 break; 12994 } 12995 12996 /* ALU32 ops are zero extended into 64bit register */ 12997 if (alu32) 12998 zext_32_to_64(dst_reg); 12999 reg_bounds_sync(dst_reg); 13000 return 0; 13001 } 13002 13003 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 13004 * and var_off. 13005 */ 13006 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 13007 struct bpf_insn *insn) 13008 { 13009 struct bpf_verifier_state *vstate = env->cur_state; 13010 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13011 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 13012 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 13013 u8 opcode = BPF_OP(insn->code); 13014 int err; 13015 13016 dst_reg = ®s[insn->dst_reg]; 13017 src_reg = NULL; 13018 if (dst_reg->type != SCALAR_VALUE) 13019 ptr_reg = dst_reg; 13020 else 13021 /* Make sure ID is cleared otherwise dst_reg min/max could be 13022 * incorrectly propagated into other registers by find_equal_scalars() 13023 */ 13024 dst_reg->id = 0; 13025 if (BPF_SRC(insn->code) == BPF_X) { 13026 src_reg = ®s[insn->src_reg]; 13027 if (src_reg->type != SCALAR_VALUE) { 13028 if (dst_reg->type != SCALAR_VALUE) { 13029 /* Combining two pointers by any ALU op yields 13030 * an arbitrary scalar. Disallow all math except 13031 * pointer subtraction 13032 */ 13033 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 13034 mark_reg_unknown(env, regs, insn->dst_reg); 13035 return 0; 13036 } 13037 verbose(env, "R%d pointer %s pointer prohibited\n", 13038 insn->dst_reg, 13039 bpf_alu_string[opcode >> 4]); 13040 return -EACCES; 13041 } else { 13042 /* scalar += pointer 13043 * This is legal, but we have to reverse our 13044 * src/dest handling in computing the range 13045 */ 13046 err = mark_chain_precision(env, insn->dst_reg); 13047 if (err) 13048 return err; 13049 return adjust_ptr_min_max_vals(env, insn, 13050 src_reg, dst_reg); 13051 } 13052 } else if (ptr_reg) { 13053 /* pointer += scalar */ 13054 err = mark_chain_precision(env, insn->src_reg); 13055 if (err) 13056 return err; 13057 return adjust_ptr_min_max_vals(env, insn, 13058 dst_reg, src_reg); 13059 } else if (dst_reg->precise) { 13060 /* if dst_reg is precise, src_reg should be precise as well */ 13061 err = mark_chain_precision(env, insn->src_reg); 13062 if (err) 13063 return err; 13064 } 13065 } else { 13066 /* Pretend the src is a reg with a known value, since we only 13067 * need to be able to read from this state. 13068 */ 13069 off_reg.type = SCALAR_VALUE; 13070 __mark_reg_known(&off_reg, insn->imm); 13071 src_reg = &off_reg; 13072 if (ptr_reg) /* pointer += K */ 13073 return adjust_ptr_min_max_vals(env, insn, 13074 ptr_reg, src_reg); 13075 } 13076 13077 /* Got here implies adding two SCALAR_VALUEs */ 13078 if (WARN_ON_ONCE(ptr_reg)) { 13079 print_verifier_state(env, state, true); 13080 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 13081 return -EINVAL; 13082 } 13083 if (WARN_ON(!src_reg)) { 13084 print_verifier_state(env, state, true); 13085 verbose(env, "verifier internal error: no src_reg\n"); 13086 return -EINVAL; 13087 } 13088 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 13089 } 13090 13091 /* check validity of 32-bit and 64-bit arithmetic operations */ 13092 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 13093 { 13094 struct bpf_reg_state *regs = cur_regs(env); 13095 u8 opcode = BPF_OP(insn->code); 13096 int err; 13097 13098 if (opcode == BPF_END || opcode == BPF_NEG) { 13099 if (opcode == BPF_NEG) { 13100 if (BPF_SRC(insn->code) != BPF_K || 13101 insn->src_reg != BPF_REG_0 || 13102 insn->off != 0 || insn->imm != 0) { 13103 verbose(env, "BPF_NEG uses reserved fields\n"); 13104 return -EINVAL; 13105 } 13106 } else { 13107 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 13108 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 13109 (BPF_CLASS(insn->code) == BPF_ALU64 && 13110 BPF_SRC(insn->code) != BPF_TO_LE)) { 13111 verbose(env, "BPF_END uses reserved fields\n"); 13112 return -EINVAL; 13113 } 13114 } 13115 13116 /* check src operand */ 13117 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13118 if (err) 13119 return err; 13120 13121 if (is_pointer_value(env, insn->dst_reg)) { 13122 verbose(env, "R%d pointer arithmetic prohibited\n", 13123 insn->dst_reg); 13124 return -EACCES; 13125 } 13126 13127 /* check dest operand */ 13128 err = check_reg_arg(env, insn->dst_reg, DST_OP); 13129 if (err) 13130 return err; 13131 13132 } else if (opcode == BPF_MOV) { 13133 13134 if (BPF_SRC(insn->code) == BPF_X) { 13135 if (insn->imm != 0) { 13136 verbose(env, "BPF_MOV uses reserved fields\n"); 13137 return -EINVAL; 13138 } 13139 13140 if (BPF_CLASS(insn->code) == BPF_ALU) { 13141 if (insn->off != 0 && insn->off != 8 && insn->off != 16) { 13142 verbose(env, "BPF_MOV uses reserved fields\n"); 13143 return -EINVAL; 13144 } 13145 } else { 13146 if (insn->off != 0 && insn->off != 8 && insn->off != 16 && 13147 insn->off != 32) { 13148 verbose(env, "BPF_MOV uses reserved fields\n"); 13149 return -EINVAL; 13150 } 13151 } 13152 13153 /* check src operand */ 13154 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13155 if (err) 13156 return err; 13157 } else { 13158 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 13159 verbose(env, "BPF_MOV uses reserved fields\n"); 13160 return -EINVAL; 13161 } 13162 } 13163 13164 /* check dest operand, mark as required later */ 13165 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13166 if (err) 13167 return err; 13168 13169 if (BPF_SRC(insn->code) == BPF_X) { 13170 struct bpf_reg_state *src_reg = regs + insn->src_reg; 13171 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 13172 bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id && 13173 !tnum_is_const(src_reg->var_off); 13174 13175 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13176 if (insn->off == 0) { 13177 /* case: R1 = R2 13178 * copy register state to dest reg 13179 */ 13180 if (need_id) 13181 /* Assign src and dst registers the same ID 13182 * that will be used by find_equal_scalars() 13183 * to propagate min/max range. 13184 */ 13185 src_reg->id = ++env->id_gen; 13186 copy_register_state(dst_reg, src_reg); 13187 dst_reg->live |= REG_LIVE_WRITTEN; 13188 dst_reg->subreg_def = DEF_NOT_SUBREG; 13189 } else { 13190 /* case: R1 = (s8, s16 s32)R2 */ 13191 if (is_pointer_value(env, insn->src_reg)) { 13192 verbose(env, 13193 "R%d sign-extension part of pointer\n", 13194 insn->src_reg); 13195 return -EACCES; 13196 } else if (src_reg->type == SCALAR_VALUE) { 13197 bool no_sext; 13198 13199 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13200 if (no_sext && need_id) 13201 src_reg->id = ++env->id_gen; 13202 copy_register_state(dst_reg, src_reg); 13203 if (!no_sext) 13204 dst_reg->id = 0; 13205 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 13206 dst_reg->live |= REG_LIVE_WRITTEN; 13207 dst_reg->subreg_def = DEF_NOT_SUBREG; 13208 } else { 13209 mark_reg_unknown(env, regs, insn->dst_reg); 13210 } 13211 } 13212 } else { 13213 /* R1 = (u32) R2 */ 13214 if (is_pointer_value(env, insn->src_reg)) { 13215 verbose(env, 13216 "R%d partial copy of pointer\n", 13217 insn->src_reg); 13218 return -EACCES; 13219 } else if (src_reg->type == SCALAR_VALUE) { 13220 if (insn->off == 0) { 13221 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX; 13222 13223 if (is_src_reg_u32 && need_id) 13224 src_reg->id = ++env->id_gen; 13225 copy_register_state(dst_reg, src_reg); 13226 /* Make sure ID is cleared if src_reg is not in u32 13227 * range otherwise dst_reg min/max could be incorrectly 13228 * propagated into src_reg by find_equal_scalars() 13229 */ 13230 if (!is_src_reg_u32) 13231 dst_reg->id = 0; 13232 dst_reg->live |= REG_LIVE_WRITTEN; 13233 dst_reg->subreg_def = env->insn_idx + 1; 13234 } else { 13235 /* case: W1 = (s8, s16)W2 */ 13236 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13237 13238 if (no_sext && need_id) 13239 src_reg->id = ++env->id_gen; 13240 copy_register_state(dst_reg, src_reg); 13241 if (!no_sext) 13242 dst_reg->id = 0; 13243 dst_reg->live |= REG_LIVE_WRITTEN; 13244 dst_reg->subreg_def = env->insn_idx + 1; 13245 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 13246 } 13247 } else { 13248 mark_reg_unknown(env, regs, 13249 insn->dst_reg); 13250 } 13251 zext_32_to_64(dst_reg); 13252 reg_bounds_sync(dst_reg); 13253 } 13254 } else { 13255 /* case: R = imm 13256 * remember the value we stored into this reg 13257 */ 13258 /* clear any state __mark_reg_known doesn't set */ 13259 mark_reg_unknown(env, regs, insn->dst_reg); 13260 regs[insn->dst_reg].type = SCALAR_VALUE; 13261 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13262 __mark_reg_known(regs + insn->dst_reg, 13263 insn->imm); 13264 } else { 13265 __mark_reg_known(regs + insn->dst_reg, 13266 (u32)insn->imm); 13267 } 13268 } 13269 13270 } else if (opcode > BPF_END) { 13271 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 13272 return -EINVAL; 13273 13274 } else { /* all other ALU ops: and, sub, xor, add, ... */ 13275 13276 if (BPF_SRC(insn->code) == BPF_X) { 13277 if (insn->imm != 0 || insn->off > 1 || 13278 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 13279 verbose(env, "BPF_ALU uses reserved fields\n"); 13280 return -EINVAL; 13281 } 13282 /* check src1 operand */ 13283 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13284 if (err) 13285 return err; 13286 } else { 13287 if (insn->src_reg != BPF_REG_0 || insn->off > 1 || 13288 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 13289 verbose(env, "BPF_ALU uses reserved fields\n"); 13290 return -EINVAL; 13291 } 13292 } 13293 13294 /* check src2 operand */ 13295 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13296 if (err) 13297 return err; 13298 13299 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 13300 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 13301 verbose(env, "div by zero\n"); 13302 return -EINVAL; 13303 } 13304 13305 if ((opcode == BPF_LSH || opcode == BPF_RSH || 13306 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 13307 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 13308 13309 if (insn->imm < 0 || insn->imm >= size) { 13310 verbose(env, "invalid shift %d\n", insn->imm); 13311 return -EINVAL; 13312 } 13313 } 13314 13315 /* check dest operand */ 13316 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13317 if (err) 13318 return err; 13319 13320 return adjust_reg_min_max_vals(env, insn); 13321 } 13322 13323 return 0; 13324 } 13325 13326 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 13327 struct bpf_reg_state *dst_reg, 13328 enum bpf_reg_type type, 13329 bool range_right_open) 13330 { 13331 struct bpf_func_state *state; 13332 struct bpf_reg_state *reg; 13333 int new_range; 13334 13335 if (dst_reg->off < 0 || 13336 (dst_reg->off == 0 && range_right_open)) 13337 /* This doesn't give us any range */ 13338 return; 13339 13340 if (dst_reg->umax_value > MAX_PACKET_OFF || 13341 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 13342 /* Risk of overflow. For instance, ptr + (1<<63) may be less 13343 * than pkt_end, but that's because it's also less than pkt. 13344 */ 13345 return; 13346 13347 new_range = dst_reg->off; 13348 if (range_right_open) 13349 new_range++; 13350 13351 /* Examples for register markings: 13352 * 13353 * pkt_data in dst register: 13354 * 13355 * r2 = r3; 13356 * r2 += 8; 13357 * if (r2 > pkt_end) goto <handle exception> 13358 * <access okay> 13359 * 13360 * r2 = r3; 13361 * r2 += 8; 13362 * if (r2 < pkt_end) goto <access okay> 13363 * <handle exception> 13364 * 13365 * Where: 13366 * r2 == dst_reg, pkt_end == src_reg 13367 * r2=pkt(id=n,off=8,r=0) 13368 * r3=pkt(id=n,off=0,r=0) 13369 * 13370 * pkt_data in src register: 13371 * 13372 * r2 = r3; 13373 * r2 += 8; 13374 * if (pkt_end >= r2) goto <access okay> 13375 * <handle exception> 13376 * 13377 * r2 = r3; 13378 * r2 += 8; 13379 * if (pkt_end <= r2) goto <handle exception> 13380 * <access okay> 13381 * 13382 * Where: 13383 * pkt_end == dst_reg, r2 == src_reg 13384 * r2=pkt(id=n,off=8,r=0) 13385 * r3=pkt(id=n,off=0,r=0) 13386 * 13387 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 13388 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 13389 * and [r3, r3 + 8-1) respectively is safe to access depending on 13390 * the check. 13391 */ 13392 13393 /* If our ids match, then we must have the same max_value. And we 13394 * don't care about the other reg's fixed offset, since if it's too big 13395 * the range won't allow anything. 13396 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 13397 */ 13398 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13399 if (reg->type == type && reg->id == dst_reg->id) 13400 /* keep the maximum range already checked */ 13401 reg->range = max(reg->range, new_range); 13402 })); 13403 } 13404 13405 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 13406 { 13407 struct tnum subreg = tnum_subreg(reg->var_off); 13408 s32 sval = (s32)val; 13409 13410 switch (opcode) { 13411 case BPF_JEQ: 13412 if (tnum_is_const(subreg)) 13413 return !!tnum_equals_const(subreg, val); 13414 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13415 return 0; 13416 break; 13417 case BPF_JNE: 13418 if (tnum_is_const(subreg)) 13419 return !tnum_equals_const(subreg, val); 13420 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13421 return 1; 13422 break; 13423 case BPF_JSET: 13424 if ((~subreg.mask & subreg.value) & val) 13425 return 1; 13426 if (!((subreg.mask | subreg.value) & val)) 13427 return 0; 13428 break; 13429 case BPF_JGT: 13430 if (reg->u32_min_value > val) 13431 return 1; 13432 else if (reg->u32_max_value <= val) 13433 return 0; 13434 break; 13435 case BPF_JSGT: 13436 if (reg->s32_min_value > sval) 13437 return 1; 13438 else if (reg->s32_max_value <= sval) 13439 return 0; 13440 break; 13441 case BPF_JLT: 13442 if (reg->u32_max_value < val) 13443 return 1; 13444 else if (reg->u32_min_value >= val) 13445 return 0; 13446 break; 13447 case BPF_JSLT: 13448 if (reg->s32_max_value < sval) 13449 return 1; 13450 else if (reg->s32_min_value >= sval) 13451 return 0; 13452 break; 13453 case BPF_JGE: 13454 if (reg->u32_min_value >= val) 13455 return 1; 13456 else if (reg->u32_max_value < val) 13457 return 0; 13458 break; 13459 case BPF_JSGE: 13460 if (reg->s32_min_value >= sval) 13461 return 1; 13462 else if (reg->s32_max_value < sval) 13463 return 0; 13464 break; 13465 case BPF_JLE: 13466 if (reg->u32_max_value <= val) 13467 return 1; 13468 else if (reg->u32_min_value > val) 13469 return 0; 13470 break; 13471 case BPF_JSLE: 13472 if (reg->s32_max_value <= sval) 13473 return 1; 13474 else if (reg->s32_min_value > sval) 13475 return 0; 13476 break; 13477 } 13478 13479 return -1; 13480 } 13481 13482 13483 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 13484 { 13485 s64 sval = (s64)val; 13486 13487 switch (opcode) { 13488 case BPF_JEQ: 13489 if (tnum_is_const(reg->var_off)) 13490 return !!tnum_equals_const(reg->var_off, val); 13491 else if (val < reg->umin_value || val > reg->umax_value) 13492 return 0; 13493 break; 13494 case BPF_JNE: 13495 if (tnum_is_const(reg->var_off)) 13496 return !tnum_equals_const(reg->var_off, val); 13497 else if (val < reg->umin_value || val > reg->umax_value) 13498 return 1; 13499 break; 13500 case BPF_JSET: 13501 if ((~reg->var_off.mask & reg->var_off.value) & val) 13502 return 1; 13503 if (!((reg->var_off.mask | reg->var_off.value) & val)) 13504 return 0; 13505 break; 13506 case BPF_JGT: 13507 if (reg->umin_value > val) 13508 return 1; 13509 else if (reg->umax_value <= val) 13510 return 0; 13511 break; 13512 case BPF_JSGT: 13513 if (reg->smin_value > sval) 13514 return 1; 13515 else if (reg->smax_value <= sval) 13516 return 0; 13517 break; 13518 case BPF_JLT: 13519 if (reg->umax_value < val) 13520 return 1; 13521 else if (reg->umin_value >= val) 13522 return 0; 13523 break; 13524 case BPF_JSLT: 13525 if (reg->smax_value < sval) 13526 return 1; 13527 else if (reg->smin_value >= sval) 13528 return 0; 13529 break; 13530 case BPF_JGE: 13531 if (reg->umin_value >= val) 13532 return 1; 13533 else if (reg->umax_value < val) 13534 return 0; 13535 break; 13536 case BPF_JSGE: 13537 if (reg->smin_value >= sval) 13538 return 1; 13539 else if (reg->smax_value < sval) 13540 return 0; 13541 break; 13542 case BPF_JLE: 13543 if (reg->umax_value <= val) 13544 return 1; 13545 else if (reg->umin_value > val) 13546 return 0; 13547 break; 13548 case BPF_JSLE: 13549 if (reg->smax_value <= sval) 13550 return 1; 13551 else if (reg->smin_value > sval) 13552 return 0; 13553 break; 13554 } 13555 13556 return -1; 13557 } 13558 13559 /* compute branch direction of the expression "if (reg opcode val) goto target;" 13560 * and return: 13561 * 1 - branch will be taken and "goto target" will be executed 13562 * 0 - branch will not be taken and fall-through to next insn 13563 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 13564 * range [0,10] 13565 */ 13566 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 13567 bool is_jmp32) 13568 { 13569 if (__is_pointer_value(false, reg)) { 13570 if (!reg_not_null(reg)) 13571 return -1; 13572 13573 /* If pointer is valid tests against zero will fail so we can 13574 * use this to direct branch taken. 13575 */ 13576 if (val != 0) 13577 return -1; 13578 13579 switch (opcode) { 13580 case BPF_JEQ: 13581 return 0; 13582 case BPF_JNE: 13583 return 1; 13584 default: 13585 return -1; 13586 } 13587 } 13588 13589 if (is_jmp32) 13590 return is_branch32_taken(reg, val, opcode); 13591 return is_branch64_taken(reg, val, opcode); 13592 } 13593 13594 static int flip_opcode(u32 opcode) 13595 { 13596 /* How can we transform "a <op> b" into "b <op> a"? */ 13597 static const u8 opcode_flip[16] = { 13598 /* these stay the same */ 13599 [BPF_JEQ >> 4] = BPF_JEQ, 13600 [BPF_JNE >> 4] = BPF_JNE, 13601 [BPF_JSET >> 4] = BPF_JSET, 13602 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 13603 [BPF_JGE >> 4] = BPF_JLE, 13604 [BPF_JGT >> 4] = BPF_JLT, 13605 [BPF_JLE >> 4] = BPF_JGE, 13606 [BPF_JLT >> 4] = BPF_JGT, 13607 [BPF_JSGE >> 4] = BPF_JSLE, 13608 [BPF_JSGT >> 4] = BPF_JSLT, 13609 [BPF_JSLE >> 4] = BPF_JSGE, 13610 [BPF_JSLT >> 4] = BPF_JSGT 13611 }; 13612 return opcode_flip[opcode >> 4]; 13613 } 13614 13615 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 13616 struct bpf_reg_state *src_reg, 13617 u8 opcode) 13618 { 13619 struct bpf_reg_state *pkt; 13620 13621 if (src_reg->type == PTR_TO_PACKET_END) { 13622 pkt = dst_reg; 13623 } else if (dst_reg->type == PTR_TO_PACKET_END) { 13624 pkt = src_reg; 13625 opcode = flip_opcode(opcode); 13626 } else { 13627 return -1; 13628 } 13629 13630 if (pkt->range >= 0) 13631 return -1; 13632 13633 switch (opcode) { 13634 case BPF_JLE: 13635 /* pkt <= pkt_end */ 13636 fallthrough; 13637 case BPF_JGT: 13638 /* pkt > pkt_end */ 13639 if (pkt->range == BEYOND_PKT_END) 13640 /* pkt has at last one extra byte beyond pkt_end */ 13641 return opcode == BPF_JGT; 13642 break; 13643 case BPF_JLT: 13644 /* pkt < pkt_end */ 13645 fallthrough; 13646 case BPF_JGE: 13647 /* pkt >= pkt_end */ 13648 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 13649 return opcode == BPF_JGE; 13650 break; 13651 } 13652 return -1; 13653 } 13654 13655 /* Adjusts the register min/max values in the case that the dst_reg is the 13656 * variable register that we are working on, and src_reg is a constant or we're 13657 * simply doing a BPF_K check. 13658 * In JEQ/JNE cases we also adjust the var_off values. 13659 */ 13660 static void reg_set_min_max(struct bpf_reg_state *true_reg, 13661 struct bpf_reg_state *false_reg, 13662 u64 val, u32 val32, 13663 u8 opcode, bool is_jmp32) 13664 { 13665 struct tnum false_32off = tnum_subreg(false_reg->var_off); 13666 struct tnum false_64off = false_reg->var_off; 13667 struct tnum true_32off = tnum_subreg(true_reg->var_off); 13668 struct tnum true_64off = true_reg->var_off; 13669 s64 sval = (s64)val; 13670 s32 sval32 = (s32)val32; 13671 13672 /* If the dst_reg is a pointer, we can't learn anything about its 13673 * variable offset from the compare (unless src_reg were a pointer into 13674 * the same object, but we don't bother with that. 13675 * Since false_reg and true_reg have the same type by construction, we 13676 * only need to check one of them for pointerness. 13677 */ 13678 if (__is_pointer_value(false, false_reg)) 13679 return; 13680 13681 switch (opcode) { 13682 /* JEQ/JNE comparison doesn't change the register equivalence. 13683 * 13684 * r1 = r2; 13685 * if (r1 == 42) goto label; 13686 * ... 13687 * label: // here both r1 and r2 are known to be 42. 13688 * 13689 * Hence when marking register as known preserve it's ID. 13690 */ 13691 case BPF_JEQ: 13692 if (is_jmp32) { 13693 __mark_reg32_known(true_reg, val32); 13694 true_32off = tnum_subreg(true_reg->var_off); 13695 } else { 13696 ___mark_reg_known(true_reg, val); 13697 true_64off = true_reg->var_off; 13698 } 13699 break; 13700 case BPF_JNE: 13701 if (is_jmp32) { 13702 __mark_reg32_known(false_reg, val32); 13703 false_32off = tnum_subreg(false_reg->var_off); 13704 } else { 13705 ___mark_reg_known(false_reg, val); 13706 false_64off = false_reg->var_off; 13707 } 13708 break; 13709 case BPF_JSET: 13710 if (is_jmp32) { 13711 false_32off = tnum_and(false_32off, tnum_const(~val32)); 13712 if (is_power_of_2(val32)) 13713 true_32off = tnum_or(true_32off, 13714 tnum_const(val32)); 13715 } else { 13716 false_64off = tnum_and(false_64off, tnum_const(~val)); 13717 if (is_power_of_2(val)) 13718 true_64off = tnum_or(true_64off, 13719 tnum_const(val)); 13720 } 13721 break; 13722 case BPF_JGE: 13723 case BPF_JGT: 13724 { 13725 if (is_jmp32) { 13726 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 13727 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 13728 13729 false_reg->u32_max_value = min(false_reg->u32_max_value, 13730 false_umax); 13731 true_reg->u32_min_value = max(true_reg->u32_min_value, 13732 true_umin); 13733 } else { 13734 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 13735 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 13736 13737 false_reg->umax_value = min(false_reg->umax_value, false_umax); 13738 true_reg->umin_value = max(true_reg->umin_value, true_umin); 13739 } 13740 break; 13741 } 13742 case BPF_JSGE: 13743 case BPF_JSGT: 13744 { 13745 if (is_jmp32) { 13746 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 13747 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 13748 13749 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 13750 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 13751 } else { 13752 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 13753 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 13754 13755 false_reg->smax_value = min(false_reg->smax_value, false_smax); 13756 true_reg->smin_value = max(true_reg->smin_value, true_smin); 13757 } 13758 break; 13759 } 13760 case BPF_JLE: 13761 case BPF_JLT: 13762 { 13763 if (is_jmp32) { 13764 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 13765 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 13766 13767 false_reg->u32_min_value = max(false_reg->u32_min_value, 13768 false_umin); 13769 true_reg->u32_max_value = min(true_reg->u32_max_value, 13770 true_umax); 13771 } else { 13772 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 13773 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 13774 13775 false_reg->umin_value = max(false_reg->umin_value, false_umin); 13776 true_reg->umax_value = min(true_reg->umax_value, true_umax); 13777 } 13778 break; 13779 } 13780 case BPF_JSLE: 13781 case BPF_JSLT: 13782 { 13783 if (is_jmp32) { 13784 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 13785 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 13786 13787 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 13788 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 13789 } else { 13790 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 13791 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 13792 13793 false_reg->smin_value = max(false_reg->smin_value, false_smin); 13794 true_reg->smax_value = min(true_reg->smax_value, true_smax); 13795 } 13796 break; 13797 } 13798 default: 13799 return; 13800 } 13801 13802 if (is_jmp32) { 13803 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 13804 tnum_subreg(false_32off)); 13805 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 13806 tnum_subreg(true_32off)); 13807 __reg_combine_32_into_64(false_reg); 13808 __reg_combine_32_into_64(true_reg); 13809 } else { 13810 false_reg->var_off = false_64off; 13811 true_reg->var_off = true_64off; 13812 __reg_combine_64_into_32(false_reg); 13813 __reg_combine_64_into_32(true_reg); 13814 } 13815 } 13816 13817 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 13818 * the variable reg. 13819 */ 13820 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 13821 struct bpf_reg_state *false_reg, 13822 u64 val, u32 val32, 13823 u8 opcode, bool is_jmp32) 13824 { 13825 opcode = flip_opcode(opcode); 13826 /* This uses zero as "not present in table"; luckily the zero opcode, 13827 * BPF_JA, can't get here. 13828 */ 13829 if (opcode) 13830 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 13831 } 13832 13833 /* Regs are known to be equal, so intersect their min/max/var_off */ 13834 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 13835 struct bpf_reg_state *dst_reg) 13836 { 13837 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 13838 dst_reg->umin_value); 13839 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 13840 dst_reg->umax_value); 13841 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 13842 dst_reg->smin_value); 13843 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 13844 dst_reg->smax_value); 13845 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 13846 dst_reg->var_off); 13847 reg_bounds_sync(src_reg); 13848 reg_bounds_sync(dst_reg); 13849 } 13850 13851 static void reg_combine_min_max(struct bpf_reg_state *true_src, 13852 struct bpf_reg_state *true_dst, 13853 struct bpf_reg_state *false_src, 13854 struct bpf_reg_state *false_dst, 13855 u8 opcode) 13856 { 13857 switch (opcode) { 13858 case BPF_JEQ: 13859 __reg_combine_min_max(true_src, true_dst); 13860 break; 13861 case BPF_JNE: 13862 __reg_combine_min_max(false_src, false_dst); 13863 break; 13864 } 13865 } 13866 13867 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 13868 struct bpf_reg_state *reg, u32 id, 13869 bool is_null) 13870 { 13871 if (type_may_be_null(reg->type) && reg->id == id && 13872 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 13873 /* Old offset (both fixed and variable parts) should have been 13874 * known-zero, because we don't allow pointer arithmetic on 13875 * pointers that might be NULL. If we see this happening, don't 13876 * convert the register. 13877 * 13878 * But in some cases, some helpers that return local kptrs 13879 * advance offset for the returned pointer. In those cases, it 13880 * is fine to expect to see reg->off. 13881 */ 13882 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 13883 return; 13884 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 13885 WARN_ON_ONCE(reg->off)) 13886 return; 13887 13888 if (is_null) { 13889 reg->type = SCALAR_VALUE; 13890 /* We don't need id and ref_obj_id from this point 13891 * onwards anymore, thus we should better reset it, 13892 * so that state pruning has chances to take effect. 13893 */ 13894 reg->id = 0; 13895 reg->ref_obj_id = 0; 13896 13897 return; 13898 } 13899 13900 mark_ptr_not_null_reg(reg); 13901 13902 if (!reg_may_point_to_spin_lock(reg)) { 13903 /* For not-NULL ptr, reg->ref_obj_id will be reset 13904 * in release_reference(). 13905 * 13906 * reg->id is still used by spin_lock ptr. Other 13907 * than spin_lock ptr type, reg->id can be reset. 13908 */ 13909 reg->id = 0; 13910 } 13911 } 13912 } 13913 13914 /* The logic is similar to find_good_pkt_pointers(), both could eventually 13915 * be folded together at some point. 13916 */ 13917 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 13918 bool is_null) 13919 { 13920 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13921 struct bpf_reg_state *regs = state->regs, *reg; 13922 u32 ref_obj_id = regs[regno].ref_obj_id; 13923 u32 id = regs[regno].id; 13924 13925 if (ref_obj_id && ref_obj_id == id && is_null) 13926 /* regs[regno] is in the " == NULL" branch. 13927 * No one could have freed the reference state before 13928 * doing the NULL check. 13929 */ 13930 WARN_ON_ONCE(release_reference_state(state, id)); 13931 13932 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13933 mark_ptr_or_null_reg(state, reg, id, is_null); 13934 })); 13935 } 13936 13937 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 13938 struct bpf_reg_state *dst_reg, 13939 struct bpf_reg_state *src_reg, 13940 struct bpf_verifier_state *this_branch, 13941 struct bpf_verifier_state *other_branch) 13942 { 13943 if (BPF_SRC(insn->code) != BPF_X) 13944 return false; 13945 13946 /* Pointers are always 64-bit. */ 13947 if (BPF_CLASS(insn->code) == BPF_JMP32) 13948 return false; 13949 13950 switch (BPF_OP(insn->code)) { 13951 case BPF_JGT: 13952 if ((dst_reg->type == PTR_TO_PACKET && 13953 src_reg->type == PTR_TO_PACKET_END) || 13954 (dst_reg->type == PTR_TO_PACKET_META && 13955 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13956 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 13957 find_good_pkt_pointers(this_branch, dst_reg, 13958 dst_reg->type, false); 13959 mark_pkt_end(other_branch, insn->dst_reg, true); 13960 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13961 src_reg->type == PTR_TO_PACKET) || 13962 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13963 src_reg->type == PTR_TO_PACKET_META)) { 13964 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 13965 find_good_pkt_pointers(other_branch, src_reg, 13966 src_reg->type, true); 13967 mark_pkt_end(this_branch, insn->src_reg, false); 13968 } else { 13969 return false; 13970 } 13971 break; 13972 case BPF_JLT: 13973 if ((dst_reg->type == PTR_TO_PACKET && 13974 src_reg->type == PTR_TO_PACKET_END) || 13975 (dst_reg->type == PTR_TO_PACKET_META && 13976 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13977 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 13978 find_good_pkt_pointers(other_branch, dst_reg, 13979 dst_reg->type, true); 13980 mark_pkt_end(this_branch, insn->dst_reg, false); 13981 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13982 src_reg->type == PTR_TO_PACKET) || 13983 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13984 src_reg->type == PTR_TO_PACKET_META)) { 13985 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 13986 find_good_pkt_pointers(this_branch, src_reg, 13987 src_reg->type, false); 13988 mark_pkt_end(other_branch, insn->src_reg, true); 13989 } else { 13990 return false; 13991 } 13992 break; 13993 case BPF_JGE: 13994 if ((dst_reg->type == PTR_TO_PACKET && 13995 src_reg->type == PTR_TO_PACKET_END) || 13996 (dst_reg->type == PTR_TO_PACKET_META && 13997 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13998 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 13999 find_good_pkt_pointers(this_branch, dst_reg, 14000 dst_reg->type, true); 14001 mark_pkt_end(other_branch, insn->dst_reg, false); 14002 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14003 src_reg->type == PTR_TO_PACKET) || 14004 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14005 src_reg->type == PTR_TO_PACKET_META)) { 14006 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 14007 find_good_pkt_pointers(other_branch, src_reg, 14008 src_reg->type, false); 14009 mark_pkt_end(this_branch, insn->src_reg, true); 14010 } else { 14011 return false; 14012 } 14013 break; 14014 case BPF_JLE: 14015 if ((dst_reg->type == PTR_TO_PACKET && 14016 src_reg->type == PTR_TO_PACKET_END) || 14017 (dst_reg->type == PTR_TO_PACKET_META && 14018 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14019 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 14020 find_good_pkt_pointers(other_branch, dst_reg, 14021 dst_reg->type, false); 14022 mark_pkt_end(this_branch, insn->dst_reg, true); 14023 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14024 src_reg->type == PTR_TO_PACKET) || 14025 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14026 src_reg->type == PTR_TO_PACKET_META)) { 14027 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 14028 find_good_pkt_pointers(this_branch, src_reg, 14029 src_reg->type, true); 14030 mark_pkt_end(other_branch, insn->src_reg, false); 14031 } else { 14032 return false; 14033 } 14034 break; 14035 default: 14036 return false; 14037 } 14038 14039 return true; 14040 } 14041 14042 static void find_equal_scalars(struct bpf_verifier_state *vstate, 14043 struct bpf_reg_state *known_reg) 14044 { 14045 struct bpf_func_state *state; 14046 struct bpf_reg_state *reg; 14047 14048 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14049 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 14050 copy_register_state(reg, known_reg); 14051 })); 14052 } 14053 14054 static int check_cond_jmp_op(struct bpf_verifier_env *env, 14055 struct bpf_insn *insn, int *insn_idx) 14056 { 14057 struct bpf_verifier_state *this_branch = env->cur_state; 14058 struct bpf_verifier_state *other_branch; 14059 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 14060 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 14061 struct bpf_reg_state *eq_branch_regs; 14062 u8 opcode = BPF_OP(insn->code); 14063 bool is_jmp32; 14064 int pred = -1; 14065 int err; 14066 14067 /* Only conditional jumps are expected to reach here. */ 14068 if (opcode == BPF_JA || opcode > BPF_JSLE) { 14069 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 14070 return -EINVAL; 14071 } 14072 14073 /* check src2 operand */ 14074 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14075 if (err) 14076 return err; 14077 14078 dst_reg = ®s[insn->dst_reg]; 14079 if (BPF_SRC(insn->code) == BPF_X) { 14080 if (insn->imm != 0) { 14081 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14082 return -EINVAL; 14083 } 14084 14085 /* check src1 operand */ 14086 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14087 if (err) 14088 return err; 14089 14090 src_reg = ®s[insn->src_reg]; 14091 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 14092 is_pointer_value(env, insn->src_reg)) { 14093 verbose(env, "R%d pointer comparison prohibited\n", 14094 insn->src_reg); 14095 return -EACCES; 14096 } 14097 } else { 14098 if (insn->src_reg != BPF_REG_0) { 14099 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14100 return -EINVAL; 14101 } 14102 } 14103 14104 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 14105 14106 if (BPF_SRC(insn->code) == BPF_K) { 14107 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 14108 } else if (src_reg->type == SCALAR_VALUE && 14109 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 14110 pred = is_branch_taken(dst_reg, 14111 tnum_subreg(src_reg->var_off).value, 14112 opcode, 14113 is_jmp32); 14114 } else if (src_reg->type == SCALAR_VALUE && 14115 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 14116 pred = is_branch_taken(dst_reg, 14117 src_reg->var_off.value, 14118 opcode, 14119 is_jmp32); 14120 } else if (dst_reg->type == SCALAR_VALUE && 14121 is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) { 14122 pred = is_branch_taken(src_reg, 14123 tnum_subreg(dst_reg->var_off).value, 14124 flip_opcode(opcode), 14125 is_jmp32); 14126 } else if (dst_reg->type == SCALAR_VALUE && 14127 !is_jmp32 && tnum_is_const(dst_reg->var_off)) { 14128 pred = is_branch_taken(src_reg, 14129 dst_reg->var_off.value, 14130 flip_opcode(opcode), 14131 is_jmp32); 14132 } else if (reg_is_pkt_pointer_any(dst_reg) && 14133 reg_is_pkt_pointer_any(src_reg) && 14134 !is_jmp32) { 14135 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 14136 } 14137 14138 if (pred >= 0) { 14139 /* If we get here with a dst_reg pointer type it is because 14140 * above is_branch_taken() special cased the 0 comparison. 14141 */ 14142 if (!__is_pointer_value(false, dst_reg)) 14143 err = mark_chain_precision(env, insn->dst_reg); 14144 if (BPF_SRC(insn->code) == BPF_X && !err && 14145 !__is_pointer_value(false, src_reg)) 14146 err = mark_chain_precision(env, insn->src_reg); 14147 if (err) 14148 return err; 14149 } 14150 14151 if (pred == 1) { 14152 /* Only follow the goto, ignore fall-through. If needed, push 14153 * the fall-through branch for simulation under speculative 14154 * execution. 14155 */ 14156 if (!env->bypass_spec_v1 && 14157 !sanitize_speculative_path(env, insn, *insn_idx + 1, 14158 *insn_idx)) 14159 return -EFAULT; 14160 if (env->log.level & BPF_LOG_LEVEL) 14161 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14162 *insn_idx += insn->off; 14163 return 0; 14164 } else if (pred == 0) { 14165 /* Only follow the fall-through branch, since that's where the 14166 * program will go. If needed, push the goto branch for 14167 * simulation under speculative execution. 14168 */ 14169 if (!env->bypass_spec_v1 && 14170 !sanitize_speculative_path(env, insn, 14171 *insn_idx + insn->off + 1, 14172 *insn_idx)) 14173 return -EFAULT; 14174 if (env->log.level & BPF_LOG_LEVEL) 14175 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14176 return 0; 14177 } 14178 14179 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 14180 false); 14181 if (!other_branch) 14182 return -EFAULT; 14183 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 14184 14185 /* detect if we are comparing against a constant value so we can adjust 14186 * our min/max values for our dst register. 14187 * this is only legit if both are scalars (or pointers to the same 14188 * object, I suppose, see the PTR_MAYBE_NULL related if block below), 14189 * because otherwise the different base pointers mean the offsets aren't 14190 * comparable. 14191 */ 14192 if (BPF_SRC(insn->code) == BPF_X) { 14193 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 14194 14195 if (dst_reg->type == SCALAR_VALUE && 14196 src_reg->type == SCALAR_VALUE) { 14197 if (tnum_is_const(src_reg->var_off) || 14198 (is_jmp32 && 14199 tnum_is_const(tnum_subreg(src_reg->var_off)))) 14200 reg_set_min_max(&other_branch_regs[insn->dst_reg], 14201 dst_reg, 14202 src_reg->var_off.value, 14203 tnum_subreg(src_reg->var_off).value, 14204 opcode, is_jmp32); 14205 else if (tnum_is_const(dst_reg->var_off) || 14206 (is_jmp32 && 14207 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 14208 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 14209 src_reg, 14210 dst_reg->var_off.value, 14211 tnum_subreg(dst_reg->var_off).value, 14212 opcode, is_jmp32); 14213 else if (!is_jmp32 && 14214 (opcode == BPF_JEQ || opcode == BPF_JNE)) 14215 /* Comparing for equality, we can combine knowledge */ 14216 reg_combine_min_max(&other_branch_regs[insn->src_reg], 14217 &other_branch_regs[insn->dst_reg], 14218 src_reg, dst_reg, opcode); 14219 if (src_reg->id && 14220 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 14221 find_equal_scalars(this_branch, src_reg); 14222 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 14223 } 14224 14225 } 14226 } else if (dst_reg->type == SCALAR_VALUE) { 14227 reg_set_min_max(&other_branch_regs[insn->dst_reg], 14228 dst_reg, insn->imm, (u32)insn->imm, 14229 opcode, is_jmp32); 14230 } 14231 14232 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 14233 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 14234 find_equal_scalars(this_branch, dst_reg); 14235 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 14236 } 14237 14238 /* if one pointer register is compared to another pointer 14239 * register check if PTR_MAYBE_NULL could be lifted. 14240 * E.g. register A - maybe null 14241 * register B - not null 14242 * for JNE A, B, ... - A is not null in the false branch; 14243 * for JEQ A, B, ... - A is not null in the true branch. 14244 * 14245 * Since PTR_TO_BTF_ID points to a kernel struct that does 14246 * not need to be null checked by the BPF program, i.e., 14247 * could be null even without PTR_MAYBE_NULL marking, so 14248 * only propagate nullness when neither reg is that type. 14249 */ 14250 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 14251 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 14252 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 14253 base_type(src_reg->type) != PTR_TO_BTF_ID && 14254 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 14255 eq_branch_regs = NULL; 14256 switch (opcode) { 14257 case BPF_JEQ: 14258 eq_branch_regs = other_branch_regs; 14259 break; 14260 case BPF_JNE: 14261 eq_branch_regs = regs; 14262 break; 14263 default: 14264 /* do nothing */ 14265 break; 14266 } 14267 if (eq_branch_regs) { 14268 if (type_may_be_null(src_reg->type)) 14269 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 14270 else 14271 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 14272 } 14273 } 14274 14275 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 14276 * NOTE: these optimizations below are related with pointer comparison 14277 * which will never be JMP32. 14278 */ 14279 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 14280 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 14281 type_may_be_null(dst_reg->type)) { 14282 /* Mark all identical registers in each branch as either 14283 * safe or unknown depending R == 0 or R != 0 conditional. 14284 */ 14285 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 14286 opcode == BPF_JNE); 14287 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 14288 opcode == BPF_JEQ); 14289 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 14290 this_branch, other_branch) && 14291 is_pointer_value(env, insn->dst_reg)) { 14292 verbose(env, "R%d pointer comparison prohibited\n", 14293 insn->dst_reg); 14294 return -EACCES; 14295 } 14296 if (env->log.level & BPF_LOG_LEVEL) 14297 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14298 return 0; 14299 } 14300 14301 /* verify BPF_LD_IMM64 instruction */ 14302 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 14303 { 14304 struct bpf_insn_aux_data *aux = cur_aux(env); 14305 struct bpf_reg_state *regs = cur_regs(env); 14306 struct bpf_reg_state *dst_reg; 14307 struct bpf_map *map; 14308 int err; 14309 14310 if (BPF_SIZE(insn->code) != BPF_DW) { 14311 verbose(env, "invalid BPF_LD_IMM insn\n"); 14312 return -EINVAL; 14313 } 14314 if (insn->off != 0) { 14315 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 14316 return -EINVAL; 14317 } 14318 14319 err = check_reg_arg(env, insn->dst_reg, DST_OP); 14320 if (err) 14321 return err; 14322 14323 dst_reg = ®s[insn->dst_reg]; 14324 if (insn->src_reg == 0) { 14325 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 14326 14327 dst_reg->type = SCALAR_VALUE; 14328 __mark_reg_known(®s[insn->dst_reg], imm); 14329 return 0; 14330 } 14331 14332 /* All special src_reg cases are listed below. From this point onwards 14333 * we either succeed and assign a corresponding dst_reg->type after 14334 * zeroing the offset, or fail and reject the program. 14335 */ 14336 mark_reg_known_zero(env, regs, insn->dst_reg); 14337 14338 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 14339 dst_reg->type = aux->btf_var.reg_type; 14340 switch (base_type(dst_reg->type)) { 14341 case PTR_TO_MEM: 14342 dst_reg->mem_size = aux->btf_var.mem_size; 14343 break; 14344 case PTR_TO_BTF_ID: 14345 dst_reg->btf = aux->btf_var.btf; 14346 dst_reg->btf_id = aux->btf_var.btf_id; 14347 break; 14348 default: 14349 verbose(env, "bpf verifier is misconfigured\n"); 14350 return -EFAULT; 14351 } 14352 return 0; 14353 } 14354 14355 if (insn->src_reg == BPF_PSEUDO_FUNC) { 14356 struct bpf_prog_aux *aux = env->prog->aux; 14357 u32 subprogno = find_subprog(env, 14358 env->insn_idx + insn->imm + 1); 14359 14360 if (!aux->func_info) { 14361 verbose(env, "missing btf func_info\n"); 14362 return -EINVAL; 14363 } 14364 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 14365 verbose(env, "callback function not static\n"); 14366 return -EINVAL; 14367 } 14368 14369 dst_reg->type = PTR_TO_FUNC; 14370 dst_reg->subprogno = subprogno; 14371 return 0; 14372 } 14373 14374 map = env->used_maps[aux->map_index]; 14375 dst_reg->map_ptr = map; 14376 14377 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 14378 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 14379 dst_reg->type = PTR_TO_MAP_VALUE; 14380 dst_reg->off = aux->map_off; 14381 WARN_ON_ONCE(map->max_entries != 1); 14382 /* We want reg->id to be same (0) as map_value is not distinct */ 14383 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 14384 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 14385 dst_reg->type = CONST_PTR_TO_MAP; 14386 } else { 14387 verbose(env, "bpf verifier is misconfigured\n"); 14388 return -EINVAL; 14389 } 14390 14391 return 0; 14392 } 14393 14394 static bool may_access_skb(enum bpf_prog_type type) 14395 { 14396 switch (type) { 14397 case BPF_PROG_TYPE_SOCKET_FILTER: 14398 case BPF_PROG_TYPE_SCHED_CLS: 14399 case BPF_PROG_TYPE_SCHED_ACT: 14400 return true; 14401 default: 14402 return false; 14403 } 14404 } 14405 14406 /* verify safety of LD_ABS|LD_IND instructions: 14407 * - they can only appear in the programs where ctx == skb 14408 * - since they are wrappers of function calls, they scratch R1-R5 registers, 14409 * preserve R6-R9, and store return value into R0 14410 * 14411 * Implicit input: 14412 * ctx == skb == R6 == CTX 14413 * 14414 * Explicit input: 14415 * SRC == any register 14416 * IMM == 32-bit immediate 14417 * 14418 * Output: 14419 * R0 - 8/16/32-bit skb data converted to cpu endianness 14420 */ 14421 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 14422 { 14423 struct bpf_reg_state *regs = cur_regs(env); 14424 static const int ctx_reg = BPF_REG_6; 14425 u8 mode = BPF_MODE(insn->code); 14426 int i, err; 14427 14428 if (!may_access_skb(resolve_prog_type(env->prog))) { 14429 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 14430 return -EINVAL; 14431 } 14432 14433 if (!env->ops->gen_ld_abs) { 14434 verbose(env, "bpf verifier is misconfigured\n"); 14435 return -EINVAL; 14436 } 14437 14438 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 14439 BPF_SIZE(insn->code) == BPF_DW || 14440 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 14441 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 14442 return -EINVAL; 14443 } 14444 14445 /* check whether implicit source operand (register R6) is readable */ 14446 err = check_reg_arg(env, ctx_reg, SRC_OP); 14447 if (err) 14448 return err; 14449 14450 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 14451 * gen_ld_abs() may terminate the program at runtime, leading to 14452 * reference leak. 14453 */ 14454 err = check_reference_leak(env); 14455 if (err) { 14456 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 14457 return err; 14458 } 14459 14460 if (env->cur_state->active_lock.ptr) { 14461 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 14462 return -EINVAL; 14463 } 14464 14465 if (env->cur_state->active_rcu_lock) { 14466 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 14467 return -EINVAL; 14468 } 14469 14470 if (regs[ctx_reg].type != PTR_TO_CTX) { 14471 verbose(env, 14472 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 14473 return -EINVAL; 14474 } 14475 14476 if (mode == BPF_IND) { 14477 /* check explicit source operand */ 14478 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14479 if (err) 14480 return err; 14481 } 14482 14483 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 14484 if (err < 0) 14485 return err; 14486 14487 /* reset caller saved regs to unreadable */ 14488 for (i = 0; i < CALLER_SAVED_REGS; i++) { 14489 mark_reg_not_init(env, regs, caller_saved[i]); 14490 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 14491 } 14492 14493 /* mark destination R0 register as readable, since it contains 14494 * the value fetched from the packet. 14495 * Already marked as written above. 14496 */ 14497 mark_reg_unknown(env, regs, BPF_REG_0); 14498 /* ld_abs load up to 32-bit skb data. */ 14499 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 14500 return 0; 14501 } 14502 14503 static int check_return_code(struct bpf_verifier_env *env) 14504 { 14505 struct tnum enforce_attach_type_range = tnum_unknown; 14506 const struct bpf_prog *prog = env->prog; 14507 struct bpf_reg_state *reg; 14508 struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0); 14509 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 14510 int err; 14511 struct bpf_func_state *frame = env->cur_state->frame[0]; 14512 const bool is_subprog = frame->subprogno; 14513 14514 /* LSM and struct_ops func-ptr's return type could be "void" */ 14515 if (!is_subprog) { 14516 switch (prog_type) { 14517 case BPF_PROG_TYPE_LSM: 14518 if (prog->expected_attach_type == BPF_LSM_CGROUP) 14519 /* See below, can be 0 or 0-1 depending on hook. */ 14520 break; 14521 fallthrough; 14522 case BPF_PROG_TYPE_STRUCT_OPS: 14523 if (!prog->aux->attach_func_proto->type) 14524 return 0; 14525 break; 14526 default: 14527 break; 14528 } 14529 } 14530 14531 /* eBPF calling convention is such that R0 is used 14532 * to return the value from eBPF program. 14533 * Make sure that it's readable at this time 14534 * of bpf_exit, which means that program wrote 14535 * something into it earlier 14536 */ 14537 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 14538 if (err) 14539 return err; 14540 14541 if (is_pointer_value(env, BPF_REG_0)) { 14542 verbose(env, "R0 leaks addr as return value\n"); 14543 return -EACCES; 14544 } 14545 14546 reg = cur_regs(env) + BPF_REG_0; 14547 14548 if (frame->in_async_callback_fn) { 14549 /* enforce return zero from async callbacks like timer */ 14550 if (reg->type != SCALAR_VALUE) { 14551 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 14552 reg_type_str(env, reg->type)); 14553 return -EINVAL; 14554 } 14555 14556 if (!tnum_in(const_0, reg->var_off)) { 14557 verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0"); 14558 return -EINVAL; 14559 } 14560 return 0; 14561 } 14562 14563 if (is_subprog) { 14564 if (reg->type != SCALAR_VALUE) { 14565 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 14566 reg_type_str(env, reg->type)); 14567 return -EINVAL; 14568 } 14569 return 0; 14570 } 14571 14572 switch (prog_type) { 14573 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 14574 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 14575 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 14576 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 14577 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 14578 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 14579 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 14580 range = tnum_range(1, 1); 14581 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 14582 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 14583 range = tnum_range(0, 3); 14584 break; 14585 case BPF_PROG_TYPE_CGROUP_SKB: 14586 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 14587 range = tnum_range(0, 3); 14588 enforce_attach_type_range = tnum_range(2, 3); 14589 } 14590 break; 14591 case BPF_PROG_TYPE_CGROUP_SOCK: 14592 case BPF_PROG_TYPE_SOCK_OPS: 14593 case BPF_PROG_TYPE_CGROUP_DEVICE: 14594 case BPF_PROG_TYPE_CGROUP_SYSCTL: 14595 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 14596 break; 14597 case BPF_PROG_TYPE_RAW_TRACEPOINT: 14598 if (!env->prog->aux->attach_btf_id) 14599 return 0; 14600 range = tnum_const(0); 14601 break; 14602 case BPF_PROG_TYPE_TRACING: 14603 switch (env->prog->expected_attach_type) { 14604 case BPF_TRACE_FENTRY: 14605 case BPF_TRACE_FEXIT: 14606 range = tnum_const(0); 14607 break; 14608 case BPF_TRACE_RAW_TP: 14609 case BPF_MODIFY_RETURN: 14610 return 0; 14611 case BPF_TRACE_ITER: 14612 break; 14613 default: 14614 return -ENOTSUPP; 14615 } 14616 break; 14617 case BPF_PROG_TYPE_SK_LOOKUP: 14618 range = tnum_range(SK_DROP, SK_PASS); 14619 break; 14620 14621 case BPF_PROG_TYPE_LSM: 14622 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 14623 /* Regular BPF_PROG_TYPE_LSM programs can return 14624 * any value. 14625 */ 14626 return 0; 14627 } 14628 if (!env->prog->aux->attach_func_proto->type) { 14629 /* Make sure programs that attach to void 14630 * hooks don't try to modify return value. 14631 */ 14632 range = tnum_range(1, 1); 14633 } 14634 break; 14635 14636 case BPF_PROG_TYPE_NETFILTER: 14637 range = tnum_range(NF_DROP, NF_ACCEPT); 14638 break; 14639 case BPF_PROG_TYPE_EXT: 14640 /* freplace program can return anything as its return value 14641 * depends on the to-be-replaced kernel func or bpf program. 14642 */ 14643 default: 14644 return 0; 14645 } 14646 14647 if (reg->type != SCALAR_VALUE) { 14648 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 14649 reg_type_str(env, reg->type)); 14650 return -EINVAL; 14651 } 14652 14653 if (!tnum_in(range, reg->var_off)) { 14654 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 14655 if (prog->expected_attach_type == BPF_LSM_CGROUP && 14656 prog_type == BPF_PROG_TYPE_LSM && 14657 !prog->aux->attach_func_proto->type) 14658 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 14659 return -EINVAL; 14660 } 14661 14662 if (!tnum_is_unknown(enforce_attach_type_range) && 14663 tnum_in(enforce_attach_type_range, reg->var_off)) 14664 env->prog->enforce_expected_attach_type = 1; 14665 return 0; 14666 } 14667 14668 /* non-recursive DFS pseudo code 14669 * 1 procedure DFS-iterative(G,v): 14670 * 2 label v as discovered 14671 * 3 let S be a stack 14672 * 4 S.push(v) 14673 * 5 while S is not empty 14674 * 6 t <- S.peek() 14675 * 7 if t is what we're looking for: 14676 * 8 return t 14677 * 9 for all edges e in G.adjacentEdges(t) do 14678 * 10 if edge e is already labelled 14679 * 11 continue with the next edge 14680 * 12 w <- G.adjacentVertex(t,e) 14681 * 13 if vertex w is not discovered and not explored 14682 * 14 label e as tree-edge 14683 * 15 label w as discovered 14684 * 16 S.push(w) 14685 * 17 continue at 5 14686 * 18 else if vertex w is discovered 14687 * 19 label e as back-edge 14688 * 20 else 14689 * 21 // vertex w is explored 14690 * 22 label e as forward- or cross-edge 14691 * 23 label t as explored 14692 * 24 S.pop() 14693 * 14694 * convention: 14695 * 0x10 - discovered 14696 * 0x11 - discovered and fall-through edge labelled 14697 * 0x12 - discovered and fall-through and branch edges labelled 14698 * 0x20 - explored 14699 */ 14700 14701 enum { 14702 DISCOVERED = 0x10, 14703 EXPLORED = 0x20, 14704 FALLTHROUGH = 1, 14705 BRANCH = 2, 14706 }; 14707 14708 static u32 state_htab_size(struct bpf_verifier_env *env) 14709 { 14710 return env->prog->len; 14711 } 14712 14713 static struct bpf_verifier_state_list **explored_state( 14714 struct bpf_verifier_env *env, 14715 int idx) 14716 { 14717 struct bpf_verifier_state *cur = env->cur_state; 14718 struct bpf_func_state *state = cur->frame[cur->curframe]; 14719 14720 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 14721 } 14722 14723 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 14724 { 14725 env->insn_aux_data[idx].prune_point = true; 14726 } 14727 14728 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 14729 { 14730 return env->insn_aux_data[insn_idx].prune_point; 14731 } 14732 14733 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 14734 { 14735 env->insn_aux_data[idx].force_checkpoint = true; 14736 } 14737 14738 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 14739 { 14740 return env->insn_aux_data[insn_idx].force_checkpoint; 14741 } 14742 14743 14744 enum { 14745 DONE_EXPLORING = 0, 14746 KEEP_EXPLORING = 1, 14747 }; 14748 14749 /* t, w, e - match pseudo-code above: 14750 * t - index of current instruction 14751 * w - next instruction 14752 * e - edge 14753 */ 14754 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 14755 { 14756 int *insn_stack = env->cfg.insn_stack; 14757 int *insn_state = env->cfg.insn_state; 14758 14759 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 14760 return DONE_EXPLORING; 14761 14762 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 14763 return DONE_EXPLORING; 14764 14765 if (w < 0 || w >= env->prog->len) { 14766 verbose_linfo(env, t, "%d: ", t); 14767 verbose(env, "jump out of range from insn %d to %d\n", t, w); 14768 return -EINVAL; 14769 } 14770 14771 if (e == BRANCH) { 14772 /* mark branch target for state pruning */ 14773 mark_prune_point(env, w); 14774 mark_jmp_point(env, w); 14775 } 14776 14777 if (insn_state[w] == 0) { 14778 /* tree-edge */ 14779 insn_state[t] = DISCOVERED | e; 14780 insn_state[w] = DISCOVERED; 14781 if (env->cfg.cur_stack >= env->prog->len) 14782 return -E2BIG; 14783 insn_stack[env->cfg.cur_stack++] = w; 14784 return KEEP_EXPLORING; 14785 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 14786 if (env->bpf_capable) 14787 return DONE_EXPLORING; 14788 verbose_linfo(env, t, "%d: ", t); 14789 verbose_linfo(env, w, "%d: ", w); 14790 verbose(env, "back-edge from insn %d to %d\n", t, w); 14791 return -EINVAL; 14792 } else if (insn_state[w] == EXPLORED) { 14793 /* forward- or cross-edge */ 14794 insn_state[t] = DISCOVERED | e; 14795 } else { 14796 verbose(env, "insn state internal bug\n"); 14797 return -EFAULT; 14798 } 14799 return DONE_EXPLORING; 14800 } 14801 14802 static int visit_func_call_insn(int t, struct bpf_insn *insns, 14803 struct bpf_verifier_env *env, 14804 bool visit_callee) 14805 { 14806 int ret, insn_sz; 14807 14808 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; 14809 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); 14810 if (ret) 14811 return ret; 14812 14813 mark_prune_point(env, t + insn_sz); 14814 /* when we exit from subprog, we need to record non-linear history */ 14815 mark_jmp_point(env, t + insn_sz); 14816 14817 if (visit_callee) { 14818 mark_prune_point(env, t); 14819 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 14820 } 14821 return ret; 14822 } 14823 14824 /* Visits the instruction at index t and returns one of the following: 14825 * < 0 - an error occurred 14826 * DONE_EXPLORING - the instruction was fully explored 14827 * KEEP_EXPLORING - there is still work to be done before it is fully explored 14828 */ 14829 static int visit_insn(int t, struct bpf_verifier_env *env) 14830 { 14831 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 14832 int ret, off, insn_sz; 14833 14834 if (bpf_pseudo_func(insn)) 14835 return visit_func_call_insn(t, insns, env, true); 14836 14837 /* All non-branch instructions have a single fall-through edge. */ 14838 if (BPF_CLASS(insn->code) != BPF_JMP && 14839 BPF_CLASS(insn->code) != BPF_JMP32) { 14840 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 14841 return push_insn(t, t + insn_sz, FALLTHROUGH, env); 14842 } 14843 14844 switch (BPF_OP(insn->code)) { 14845 case BPF_EXIT: 14846 return DONE_EXPLORING; 14847 14848 case BPF_CALL: 14849 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback) 14850 /* Mark this call insn as a prune point to trigger 14851 * is_state_visited() check before call itself is 14852 * processed by __check_func_call(). Otherwise new 14853 * async state will be pushed for further exploration. 14854 */ 14855 mark_prune_point(env, t); 14856 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 14857 struct bpf_kfunc_call_arg_meta meta; 14858 14859 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 14860 if (ret == 0 && is_iter_next_kfunc(&meta)) { 14861 mark_prune_point(env, t); 14862 /* Checking and saving state checkpoints at iter_next() call 14863 * is crucial for fast convergence of open-coded iterator loop 14864 * logic, so we need to force it. If we don't do that, 14865 * is_state_visited() might skip saving a checkpoint, causing 14866 * unnecessarily long sequence of not checkpointed 14867 * instructions and jumps, leading to exhaustion of jump 14868 * history buffer, and potentially other undesired outcomes. 14869 * It is expected that with correct open-coded iterators 14870 * convergence will happen quickly, so we don't run a risk of 14871 * exhausting memory. 14872 */ 14873 mark_force_checkpoint(env, t); 14874 } 14875 } 14876 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 14877 14878 case BPF_JA: 14879 if (BPF_SRC(insn->code) != BPF_K) 14880 return -EINVAL; 14881 14882 if (BPF_CLASS(insn->code) == BPF_JMP) 14883 off = insn->off; 14884 else 14885 off = insn->imm; 14886 14887 /* unconditional jump with single edge */ 14888 ret = push_insn(t, t + off + 1, FALLTHROUGH, env); 14889 if (ret) 14890 return ret; 14891 14892 mark_prune_point(env, t + off + 1); 14893 mark_jmp_point(env, t + off + 1); 14894 14895 return ret; 14896 14897 default: 14898 /* conditional jump with two edges */ 14899 mark_prune_point(env, t); 14900 14901 ret = push_insn(t, t + 1, FALLTHROUGH, env); 14902 if (ret) 14903 return ret; 14904 14905 return push_insn(t, t + insn->off + 1, BRANCH, env); 14906 } 14907 } 14908 14909 /* non-recursive depth-first-search to detect loops in BPF program 14910 * loop == back-edge in directed graph 14911 */ 14912 static int check_cfg(struct bpf_verifier_env *env) 14913 { 14914 int insn_cnt = env->prog->len; 14915 int *insn_stack, *insn_state; 14916 int ret = 0; 14917 int i; 14918 14919 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 14920 if (!insn_state) 14921 return -ENOMEM; 14922 14923 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 14924 if (!insn_stack) { 14925 kvfree(insn_state); 14926 return -ENOMEM; 14927 } 14928 14929 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 14930 insn_stack[0] = 0; /* 0 is the first instruction */ 14931 env->cfg.cur_stack = 1; 14932 14933 while (env->cfg.cur_stack > 0) { 14934 int t = insn_stack[env->cfg.cur_stack - 1]; 14935 14936 ret = visit_insn(t, env); 14937 switch (ret) { 14938 case DONE_EXPLORING: 14939 insn_state[t] = EXPLORED; 14940 env->cfg.cur_stack--; 14941 break; 14942 case KEEP_EXPLORING: 14943 break; 14944 default: 14945 if (ret > 0) { 14946 verbose(env, "visit_insn internal bug\n"); 14947 ret = -EFAULT; 14948 } 14949 goto err_free; 14950 } 14951 } 14952 14953 if (env->cfg.cur_stack < 0) { 14954 verbose(env, "pop stack internal bug\n"); 14955 ret = -EFAULT; 14956 goto err_free; 14957 } 14958 14959 for (i = 0; i < insn_cnt; i++) { 14960 struct bpf_insn *insn = &env->prog->insnsi[i]; 14961 14962 if (insn_state[i] != EXPLORED) { 14963 verbose(env, "unreachable insn %d\n", i); 14964 ret = -EINVAL; 14965 goto err_free; 14966 } 14967 if (bpf_is_ldimm64(insn)) { 14968 if (insn_state[i + 1] != 0) { 14969 verbose(env, "jump into the middle of ldimm64 insn %d\n", i); 14970 ret = -EINVAL; 14971 goto err_free; 14972 } 14973 i++; /* skip second half of ldimm64 */ 14974 } 14975 } 14976 ret = 0; /* cfg looks good */ 14977 14978 err_free: 14979 kvfree(insn_state); 14980 kvfree(insn_stack); 14981 env->cfg.insn_state = env->cfg.insn_stack = NULL; 14982 return ret; 14983 } 14984 14985 static int check_abnormal_return(struct bpf_verifier_env *env) 14986 { 14987 int i; 14988 14989 for (i = 1; i < env->subprog_cnt; i++) { 14990 if (env->subprog_info[i].has_ld_abs) { 14991 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 14992 return -EINVAL; 14993 } 14994 if (env->subprog_info[i].has_tail_call) { 14995 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 14996 return -EINVAL; 14997 } 14998 } 14999 return 0; 15000 } 15001 15002 /* The minimum supported BTF func info size */ 15003 #define MIN_BPF_FUNCINFO_SIZE 8 15004 #define MAX_FUNCINFO_REC_SIZE 252 15005 15006 static int check_btf_func(struct bpf_verifier_env *env, 15007 const union bpf_attr *attr, 15008 bpfptr_t uattr) 15009 { 15010 const struct btf_type *type, *func_proto, *ret_type; 15011 u32 i, nfuncs, urec_size, min_size; 15012 u32 krec_size = sizeof(struct bpf_func_info); 15013 struct bpf_func_info *krecord; 15014 struct bpf_func_info_aux *info_aux = NULL; 15015 struct bpf_prog *prog; 15016 const struct btf *btf; 15017 bpfptr_t urecord; 15018 u32 prev_offset = 0; 15019 bool scalar_return; 15020 int ret = -ENOMEM; 15021 15022 nfuncs = attr->func_info_cnt; 15023 if (!nfuncs) { 15024 if (check_abnormal_return(env)) 15025 return -EINVAL; 15026 return 0; 15027 } 15028 15029 if (nfuncs != env->subprog_cnt) { 15030 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 15031 return -EINVAL; 15032 } 15033 15034 urec_size = attr->func_info_rec_size; 15035 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 15036 urec_size > MAX_FUNCINFO_REC_SIZE || 15037 urec_size % sizeof(u32)) { 15038 verbose(env, "invalid func info rec size %u\n", urec_size); 15039 return -EINVAL; 15040 } 15041 15042 prog = env->prog; 15043 btf = prog->aux->btf; 15044 15045 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 15046 min_size = min_t(u32, krec_size, urec_size); 15047 15048 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 15049 if (!krecord) 15050 return -ENOMEM; 15051 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 15052 if (!info_aux) 15053 goto err_free; 15054 15055 for (i = 0; i < nfuncs; i++) { 15056 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 15057 if (ret) { 15058 if (ret == -E2BIG) { 15059 verbose(env, "nonzero tailing record in func info"); 15060 /* set the size kernel expects so loader can zero 15061 * out the rest of the record. 15062 */ 15063 if (copy_to_bpfptr_offset(uattr, 15064 offsetof(union bpf_attr, func_info_rec_size), 15065 &min_size, sizeof(min_size))) 15066 ret = -EFAULT; 15067 } 15068 goto err_free; 15069 } 15070 15071 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 15072 ret = -EFAULT; 15073 goto err_free; 15074 } 15075 15076 /* check insn_off */ 15077 ret = -EINVAL; 15078 if (i == 0) { 15079 if (krecord[i].insn_off) { 15080 verbose(env, 15081 "nonzero insn_off %u for the first func info record", 15082 krecord[i].insn_off); 15083 goto err_free; 15084 } 15085 } else if (krecord[i].insn_off <= prev_offset) { 15086 verbose(env, 15087 "same or smaller insn offset (%u) than previous func info record (%u)", 15088 krecord[i].insn_off, prev_offset); 15089 goto err_free; 15090 } 15091 15092 if (env->subprog_info[i].start != krecord[i].insn_off) { 15093 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 15094 goto err_free; 15095 } 15096 15097 /* check type_id */ 15098 type = btf_type_by_id(btf, krecord[i].type_id); 15099 if (!type || !btf_type_is_func(type)) { 15100 verbose(env, "invalid type id %d in func info", 15101 krecord[i].type_id); 15102 goto err_free; 15103 } 15104 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 15105 15106 func_proto = btf_type_by_id(btf, type->type); 15107 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 15108 /* btf_func_check() already verified it during BTF load */ 15109 goto err_free; 15110 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 15111 scalar_return = 15112 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 15113 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 15114 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 15115 goto err_free; 15116 } 15117 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 15118 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 15119 goto err_free; 15120 } 15121 15122 prev_offset = krecord[i].insn_off; 15123 bpfptr_add(&urecord, urec_size); 15124 } 15125 15126 prog->aux->func_info = krecord; 15127 prog->aux->func_info_cnt = nfuncs; 15128 prog->aux->func_info_aux = info_aux; 15129 return 0; 15130 15131 err_free: 15132 kvfree(krecord); 15133 kfree(info_aux); 15134 return ret; 15135 } 15136 15137 static void adjust_btf_func(struct bpf_verifier_env *env) 15138 { 15139 struct bpf_prog_aux *aux = env->prog->aux; 15140 int i; 15141 15142 if (!aux->func_info) 15143 return; 15144 15145 for (i = 0; i < env->subprog_cnt; i++) 15146 aux->func_info[i].insn_off = env->subprog_info[i].start; 15147 } 15148 15149 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 15150 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 15151 15152 static int check_btf_line(struct bpf_verifier_env *env, 15153 const union bpf_attr *attr, 15154 bpfptr_t uattr) 15155 { 15156 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 15157 struct bpf_subprog_info *sub; 15158 struct bpf_line_info *linfo; 15159 struct bpf_prog *prog; 15160 const struct btf *btf; 15161 bpfptr_t ulinfo; 15162 int err; 15163 15164 nr_linfo = attr->line_info_cnt; 15165 if (!nr_linfo) 15166 return 0; 15167 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 15168 return -EINVAL; 15169 15170 rec_size = attr->line_info_rec_size; 15171 if (rec_size < MIN_BPF_LINEINFO_SIZE || 15172 rec_size > MAX_LINEINFO_REC_SIZE || 15173 rec_size & (sizeof(u32) - 1)) 15174 return -EINVAL; 15175 15176 /* Need to zero it in case the userspace may 15177 * pass in a smaller bpf_line_info object. 15178 */ 15179 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 15180 GFP_KERNEL | __GFP_NOWARN); 15181 if (!linfo) 15182 return -ENOMEM; 15183 15184 prog = env->prog; 15185 btf = prog->aux->btf; 15186 15187 s = 0; 15188 sub = env->subprog_info; 15189 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 15190 expected_size = sizeof(struct bpf_line_info); 15191 ncopy = min_t(u32, expected_size, rec_size); 15192 for (i = 0; i < nr_linfo; i++) { 15193 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 15194 if (err) { 15195 if (err == -E2BIG) { 15196 verbose(env, "nonzero tailing record in line_info"); 15197 if (copy_to_bpfptr_offset(uattr, 15198 offsetof(union bpf_attr, line_info_rec_size), 15199 &expected_size, sizeof(expected_size))) 15200 err = -EFAULT; 15201 } 15202 goto err_free; 15203 } 15204 15205 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 15206 err = -EFAULT; 15207 goto err_free; 15208 } 15209 15210 /* 15211 * Check insn_off to ensure 15212 * 1) strictly increasing AND 15213 * 2) bounded by prog->len 15214 * 15215 * The linfo[0].insn_off == 0 check logically falls into 15216 * the later "missing bpf_line_info for func..." case 15217 * because the first linfo[0].insn_off must be the 15218 * first sub also and the first sub must have 15219 * subprog_info[0].start == 0. 15220 */ 15221 if ((i && linfo[i].insn_off <= prev_offset) || 15222 linfo[i].insn_off >= prog->len) { 15223 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 15224 i, linfo[i].insn_off, prev_offset, 15225 prog->len); 15226 err = -EINVAL; 15227 goto err_free; 15228 } 15229 15230 if (!prog->insnsi[linfo[i].insn_off].code) { 15231 verbose(env, 15232 "Invalid insn code at line_info[%u].insn_off\n", 15233 i); 15234 err = -EINVAL; 15235 goto err_free; 15236 } 15237 15238 if (!btf_name_by_offset(btf, linfo[i].line_off) || 15239 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 15240 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 15241 err = -EINVAL; 15242 goto err_free; 15243 } 15244 15245 if (s != env->subprog_cnt) { 15246 if (linfo[i].insn_off == sub[s].start) { 15247 sub[s].linfo_idx = i; 15248 s++; 15249 } else if (sub[s].start < linfo[i].insn_off) { 15250 verbose(env, "missing bpf_line_info for func#%u\n", s); 15251 err = -EINVAL; 15252 goto err_free; 15253 } 15254 } 15255 15256 prev_offset = linfo[i].insn_off; 15257 bpfptr_add(&ulinfo, rec_size); 15258 } 15259 15260 if (s != env->subprog_cnt) { 15261 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 15262 env->subprog_cnt - s, s); 15263 err = -EINVAL; 15264 goto err_free; 15265 } 15266 15267 prog->aux->linfo = linfo; 15268 prog->aux->nr_linfo = nr_linfo; 15269 15270 return 0; 15271 15272 err_free: 15273 kvfree(linfo); 15274 return err; 15275 } 15276 15277 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 15278 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 15279 15280 static int check_core_relo(struct bpf_verifier_env *env, 15281 const union bpf_attr *attr, 15282 bpfptr_t uattr) 15283 { 15284 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 15285 struct bpf_core_relo core_relo = {}; 15286 struct bpf_prog *prog = env->prog; 15287 const struct btf *btf = prog->aux->btf; 15288 struct bpf_core_ctx ctx = { 15289 .log = &env->log, 15290 .btf = btf, 15291 }; 15292 bpfptr_t u_core_relo; 15293 int err; 15294 15295 nr_core_relo = attr->core_relo_cnt; 15296 if (!nr_core_relo) 15297 return 0; 15298 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 15299 return -EINVAL; 15300 15301 rec_size = attr->core_relo_rec_size; 15302 if (rec_size < MIN_CORE_RELO_SIZE || 15303 rec_size > MAX_CORE_RELO_SIZE || 15304 rec_size % sizeof(u32)) 15305 return -EINVAL; 15306 15307 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 15308 expected_size = sizeof(struct bpf_core_relo); 15309 ncopy = min_t(u32, expected_size, rec_size); 15310 15311 /* Unlike func_info and line_info, copy and apply each CO-RE 15312 * relocation record one at a time. 15313 */ 15314 for (i = 0; i < nr_core_relo; i++) { 15315 /* future proofing when sizeof(bpf_core_relo) changes */ 15316 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 15317 if (err) { 15318 if (err == -E2BIG) { 15319 verbose(env, "nonzero tailing record in core_relo"); 15320 if (copy_to_bpfptr_offset(uattr, 15321 offsetof(union bpf_attr, core_relo_rec_size), 15322 &expected_size, sizeof(expected_size))) 15323 err = -EFAULT; 15324 } 15325 break; 15326 } 15327 15328 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 15329 err = -EFAULT; 15330 break; 15331 } 15332 15333 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 15334 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 15335 i, core_relo.insn_off, prog->len); 15336 err = -EINVAL; 15337 break; 15338 } 15339 15340 err = bpf_core_apply(&ctx, &core_relo, i, 15341 &prog->insnsi[core_relo.insn_off / 8]); 15342 if (err) 15343 break; 15344 bpfptr_add(&u_core_relo, rec_size); 15345 } 15346 return err; 15347 } 15348 15349 static int check_btf_info(struct bpf_verifier_env *env, 15350 const union bpf_attr *attr, 15351 bpfptr_t uattr) 15352 { 15353 struct btf *btf; 15354 int err; 15355 15356 if (!attr->func_info_cnt && !attr->line_info_cnt) { 15357 if (check_abnormal_return(env)) 15358 return -EINVAL; 15359 return 0; 15360 } 15361 15362 btf = btf_get_by_fd(attr->prog_btf_fd); 15363 if (IS_ERR(btf)) 15364 return PTR_ERR(btf); 15365 if (btf_is_kernel(btf)) { 15366 btf_put(btf); 15367 return -EACCES; 15368 } 15369 env->prog->aux->btf = btf; 15370 15371 err = check_btf_func(env, attr, uattr); 15372 if (err) 15373 return err; 15374 15375 err = check_btf_line(env, attr, uattr); 15376 if (err) 15377 return err; 15378 15379 err = check_core_relo(env, attr, uattr); 15380 if (err) 15381 return err; 15382 15383 return 0; 15384 } 15385 15386 /* check %cur's range satisfies %old's */ 15387 static bool range_within(struct bpf_reg_state *old, 15388 struct bpf_reg_state *cur) 15389 { 15390 return old->umin_value <= cur->umin_value && 15391 old->umax_value >= cur->umax_value && 15392 old->smin_value <= cur->smin_value && 15393 old->smax_value >= cur->smax_value && 15394 old->u32_min_value <= cur->u32_min_value && 15395 old->u32_max_value >= cur->u32_max_value && 15396 old->s32_min_value <= cur->s32_min_value && 15397 old->s32_max_value >= cur->s32_max_value; 15398 } 15399 15400 /* If in the old state two registers had the same id, then they need to have 15401 * the same id in the new state as well. But that id could be different from 15402 * the old state, so we need to track the mapping from old to new ids. 15403 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 15404 * regs with old id 5 must also have new id 9 for the new state to be safe. But 15405 * regs with a different old id could still have new id 9, we don't care about 15406 * that. 15407 * So we look through our idmap to see if this old id has been seen before. If 15408 * so, we require the new id to match; otherwise, we add the id pair to the map. 15409 */ 15410 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15411 { 15412 struct bpf_id_pair *map = idmap->map; 15413 unsigned int i; 15414 15415 /* either both IDs should be set or both should be zero */ 15416 if (!!old_id != !!cur_id) 15417 return false; 15418 15419 if (old_id == 0) /* cur_id == 0 as well */ 15420 return true; 15421 15422 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 15423 if (!map[i].old) { 15424 /* Reached an empty slot; haven't seen this id before */ 15425 map[i].old = old_id; 15426 map[i].cur = cur_id; 15427 return true; 15428 } 15429 if (map[i].old == old_id) 15430 return map[i].cur == cur_id; 15431 if (map[i].cur == cur_id) 15432 return false; 15433 } 15434 /* We ran out of idmap slots, which should be impossible */ 15435 WARN_ON_ONCE(1); 15436 return false; 15437 } 15438 15439 /* Similar to check_ids(), but allocate a unique temporary ID 15440 * for 'old_id' or 'cur_id' of zero. 15441 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 15442 */ 15443 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15444 { 15445 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 15446 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 15447 15448 return check_ids(old_id, cur_id, idmap); 15449 } 15450 15451 static void clean_func_state(struct bpf_verifier_env *env, 15452 struct bpf_func_state *st) 15453 { 15454 enum bpf_reg_liveness live; 15455 int i, j; 15456 15457 for (i = 0; i < BPF_REG_FP; i++) { 15458 live = st->regs[i].live; 15459 /* liveness must not touch this register anymore */ 15460 st->regs[i].live |= REG_LIVE_DONE; 15461 if (!(live & REG_LIVE_READ)) 15462 /* since the register is unused, clear its state 15463 * to make further comparison simpler 15464 */ 15465 __mark_reg_not_init(env, &st->regs[i]); 15466 } 15467 15468 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 15469 live = st->stack[i].spilled_ptr.live; 15470 /* liveness must not touch this stack slot anymore */ 15471 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 15472 if (!(live & REG_LIVE_READ)) { 15473 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 15474 for (j = 0; j < BPF_REG_SIZE; j++) 15475 st->stack[i].slot_type[j] = STACK_INVALID; 15476 } 15477 } 15478 } 15479 15480 static void clean_verifier_state(struct bpf_verifier_env *env, 15481 struct bpf_verifier_state *st) 15482 { 15483 int i; 15484 15485 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 15486 /* all regs in this state in all frames were already marked */ 15487 return; 15488 15489 for (i = 0; i <= st->curframe; i++) 15490 clean_func_state(env, st->frame[i]); 15491 } 15492 15493 /* the parentage chains form a tree. 15494 * the verifier states are added to state lists at given insn and 15495 * pushed into state stack for future exploration. 15496 * when the verifier reaches bpf_exit insn some of the verifer states 15497 * stored in the state lists have their final liveness state already, 15498 * but a lot of states will get revised from liveness point of view when 15499 * the verifier explores other branches. 15500 * Example: 15501 * 1: r0 = 1 15502 * 2: if r1 == 100 goto pc+1 15503 * 3: r0 = 2 15504 * 4: exit 15505 * when the verifier reaches exit insn the register r0 in the state list of 15506 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 15507 * of insn 2 and goes exploring further. At the insn 4 it will walk the 15508 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 15509 * 15510 * Since the verifier pushes the branch states as it sees them while exploring 15511 * the program the condition of walking the branch instruction for the second 15512 * time means that all states below this branch were already explored and 15513 * their final liveness marks are already propagated. 15514 * Hence when the verifier completes the search of state list in is_state_visited() 15515 * we can call this clean_live_states() function to mark all liveness states 15516 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 15517 * will not be used. 15518 * This function also clears the registers and stack for states that !READ 15519 * to simplify state merging. 15520 * 15521 * Important note here that walking the same branch instruction in the callee 15522 * doesn't meant that the states are DONE. The verifier has to compare 15523 * the callsites 15524 */ 15525 static void clean_live_states(struct bpf_verifier_env *env, int insn, 15526 struct bpf_verifier_state *cur) 15527 { 15528 struct bpf_verifier_state_list *sl; 15529 int i; 15530 15531 sl = *explored_state(env, insn); 15532 while (sl) { 15533 if (sl->state.branches) 15534 goto next; 15535 if (sl->state.insn_idx != insn || 15536 sl->state.curframe != cur->curframe) 15537 goto next; 15538 for (i = 0; i <= cur->curframe; i++) 15539 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 15540 goto next; 15541 clean_verifier_state(env, &sl->state); 15542 next: 15543 sl = sl->next; 15544 } 15545 } 15546 15547 static bool regs_exact(const struct bpf_reg_state *rold, 15548 const struct bpf_reg_state *rcur, 15549 struct bpf_idmap *idmap) 15550 { 15551 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 15552 check_ids(rold->id, rcur->id, idmap) && 15553 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15554 } 15555 15556 /* Returns true if (rold safe implies rcur safe) */ 15557 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 15558 struct bpf_reg_state *rcur, struct bpf_idmap *idmap) 15559 { 15560 if (!(rold->live & REG_LIVE_READ)) 15561 /* explored state didn't use this */ 15562 return true; 15563 if (rold->type == NOT_INIT) 15564 /* explored state can't have used this */ 15565 return true; 15566 if (rcur->type == NOT_INIT) 15567 return false; 15568 15569 /* Enforce that register types have to match exactly, including their 15570 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 15571 * rule. 15572 * 15573 * One can make a point that using a pointer register as unbounded 15574 * SCALAR would be technically acceptable, but this could lead to 15575 * pointer leaks because scalars are allowed to leak while pointers 15576 * are not. We could make this safe in special cases if root is 15577 * calling us, but it's probably not worth the hassle. 15578 * 15579 * Also, register types that are *not* MAYBE_NULL could technically be 15580 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 15581 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 15582 * to the same map). 15583 * However, if the old MAYBE_NULL register then got NULL checked, 15584 * doing so could have affected others with the same id, and we can't 15585 * check for that because we lost the id when we converted to 15586 * a non-MAYBE_NULL variant. 15587 * So, as a general rule we don't allow mixing MAYBE_NULL and 15588 * non-MAYBE_NULL registers as well. 15589 */ 15590 if (rold->type != rcur->type) 15591 return false; 15592 15593 switch (base_type(rold->type)) { 15594 case SCALAR_VALUE: 15595 if (env->explore_alu_limits) { 15596 /* explore_alu_limits disables tnum_in() and range_within() 15597 * logic and requires everything to be strict 15598 */ 15599 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 15600 check_scalar_ids(rold->id, rcur->id, idmap); 15601 } 15602 if (!rold->precise) 15603 return true; 15604 /* Why check_ids() for scalar registers? 15605 * 15606 * Consider the following BPF code: 15607 * 1: r6 = ... unbound scalar, ID=a ... 15608 * 2: r7 = ... unbound scalar, ID=b ... 15609 * 3: if (r6 > r7) goto +1 15610 * 4: r6 = r7 15611 * 5: if (r6 > X) goto ... 15612 * 6: ... memory operation using r7 ... 15613 * 15614 * First verification path is [1-6]: 15615 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 15616 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark 15617 * r7 <= X, because r6 and r7 share same id. 15618 * Next verification path is [1-4, 6]. 15619 * 15620 * Instruction (6) would be reached in two states: 15621 * I. r6{.id=b}, r7{.id=b} via path 1-6; 15622 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 15623 * 15624 * Use check_ids() to distinguish these states. 15625 * --- 15626 * Also verify that new value satisfies old value range knowledge. 15627 */ 15628 return range_within(rold, rcur) && 15629 tnum_in(rold->var_off, rcur->var_off) && 15630 check_scalar_ids(rold->id, rcur->id, idmap); 15631 case PTR_TO_MAP_KEY: 15632 case PTR_TO_MAP_VALUE: 15633 case PTR_TO_MEM: 15634 case PTR_TO_BUF: 15635 case PTR_TO_TP_BUFFER: 15636 /* If the new min/max/var_off satisfy the old ones and 15637 * everything else matches, we are OK. 15638 */ 15639 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 15640 range_within(rold, rcur) && 15641 tnum_in(rold->var_off, rcur->var_off) && 15642 check_ids(rold->id, rcur->id, idmap) && 15643 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15644 case PTR_TO_PACKET_META: 15645 case PTR_TO_PACKET: 15646 /* We must have at least as much range as the old ptr 15647 * did, so that any accesses which were safe before are 15648 * still safe. This is true even if old range < old off, 15649 * since someone could have accessed through (ptr - k), or 15650 * even done ptr -= k in a register, to get a safe access. 15651 */ 15652 if (rold->range > rcur->range) 15653 return false; 15654 /* If the offsets don't match, we can't trust our alignment; 15655 * nor can we be sure that we won't fall out of range. 15656 */ 15657 if (rold->off != rcur->off) 15658 return false; 15659 /* id relations must be preserved */ 15660 if (!check_ids(rold->id, rcur->id, idmap)) 15661 return false; 15662 /* new val must satisfy old val knowledge */ 15663 return range_within(rold, rcur) && 15664 tnum_in(rold->var_off, rcur->var_off); 15665 case PTR_TO_STACK: 15666 /* two stack pointers are equal only if they're pointing to 15667 * the same stack frame, since fp-8 in foo != fp-8 in bar 15668 */ 15669 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 15670 default: 15671 return regs_exact(rold, rcur, idmap); 15672 } 15673 } 15674 15675 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 15676 struct bpf_func_state *cur, struct bpf_idmap *idmap) 15677 { 15678 int i, spi; 15679 15680 /* walk slots of the explored stack and ignore any additional 15681 * slots in the current stack, since explored(safe) state 15682 * didn't use them 15683 */ 15684 for (i = 0; i < old->allocated_stack; i++) { 15685 struct bpf_reg_state *old_reg, *cur_reg; 15686 15687 spi = i / BPF_REG_SIZE; 15688 15689 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 15690 i += BPF_REG_SIZE - 1; 15691 /* explored state didn't use this */ 15692 continue; 15693 } 15694 15695 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 15696 continue; 15697 15698 if (env->allow_uninit_stack && 15699 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 15700 continue; 15701 15702 /* explored stack has more populated slots than current stack 15703 * and these slots were used 15704 */ 15705 if (i >= cur->allocated_stack) 15706 return false; 15707 15708 /* if old state was safe with misc data in the stack 15709 * it will be safe with zero-initialized stack. 15710 * The opposite is not true 15711 */ 15712 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 15713 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 15714 continue; 15715 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 15716 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 15717 /* Ex: old explored (safe) state has STACK_SPILL in 15718 * this stack slot, but current has STACK_MISC -> 15719 * this verifier states are not equivalent, 15720 * return false to continue verification of this path 15721 */ 15722 return false; 15723 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 15724 continue; 15725 /* Both old and cur are having same slot_type */ 15726 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 15727 case STACK_SPILL: 15728 /* when explored and current stack slot are both storing 15729 * spilled registers, check that stored pointers types 15730 * are the same as well. 15731 * Ex: explored safe path could have stored 15732 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 15733 * but current path has stored: 15734 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 15735 * such verifier states are not equivalent. 15736 * return false to continue verification of this path 15737 */ 15738 if (!regsafe(env, &old->stack[spi].spilled_ptr, 15739 &cur->stack[spi].spilled_ptr, idmap)) 15740 return false; 15741 break; 15742 case STACK_DYNPTR: 15743 old_reg = &old->stack[spi].spilled_ptr; 15744 cur_reg = &cur->stack[spi].spilled_ptr; 15745 if (old_reg->dynptr.type != cur_reg->dynptr.type || 15746 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 15747 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 15748 return false; 15749 break; 15750 case STACK_ITER: 15751 old_reg = &old->stack[spi].spilled_ptr; 15752 cur_reg = &cur->stack[spi].spilled_ptr; 15753 /* iter.depth is not compared between states as it 15754 * doesn't matter for correctness and would otherwise 15755 * prevent convergence; we maintain it only to prevent 15756 * infinite loop check triggering, see 15757 * iter_active_depths_differ() 15758 */ 15759 if (old_reg->iter.btf != cur_reg->iter.btf || 15760 old_reg->iter.btf_id != cur_reg->iter.btf_id || 15761 old_reg->iter.state != cur_reg->iter.state || 15762 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 15763 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 15764 return false; 15765 break; 15766 case STACK_MISC: 15767 case STACK_ZERO: 15768 case STACK_INVALID: 15769 continue; 15770 /* Ensure that new unhandled slot types return false by default */ 15771 default: 15772 return false; 15773 } 15774 } 15775 return true; 15776 } 15777 15778 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 15779 struct bpf_idmap *idmap) 15780 { 15781 int i; 15782 15783 if (old->acquired_refs != cur->acquired_refs) 15784 return false; 15785 15786 for (i = 0; i < old->acquired_refs; i++) { 15787 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 15788 return false; 15789 } 15790 15791 return true; 15792 } 15793 15794 /* compare two verifier states 15795 * 15796 * all states stored in state_list are known to be valid, since 15797 * verifier reached 'bpf_exit' instruction through them 15798 * 15799 * this function is called when verifier exploring different branches of 15800 * execution popped from the state stack. If it sees an old state that has 15801 * more strict register state and more strict stack state then this execution 15802 * branch doesn't need to be explored further, since verifier already 15803 * concluded that more strict state leads to valid finish. 15804 * 15805 * Therefore two states are equivalent if register state is more conservative 15806 * and explored stack state is more conservative than the current one. 15807 * Example: 15808 * explored current 15809 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 15810 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 15811 * 15812 * In other words if current stack state (one being explored) has more 15813 * valid slots than old one that already passed validation, it means 15814 * the verifier can stop exploring and conclude that current state is valid too 15815 * 15816 * Similarly with registers. If explored state has register type as invalid 15817 * whereas register type in current state is meaningful, it means that 15818 * the current state will reach 'bpf_exit' instruction safely 15819 */ 15820 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 15821 struct bpf_func_state *cur) 15822 { 15823 int i; 15824 15825 for (i = 0; i < MAX_BPF_REG; i++) 15826 if (!regsafe(env, &old->regs[i], &cur->regs[i], 15827 &env->idmap_scratch)) 15828 return false; 15829 15830 if (!stacksafe(env, old, cur, &env->idmap_scratch)) 15831 return false; 15832 15833 if (!refsafe(old, cur, &env->idmap_scratch)) 15834 return false; 15835 15836 return true; 15837 } 15838 15839 static bool states_equal(struct bpf_verifier_env *env, 15840 struct bpf_verifier_state *old, 15841 struct bpf_verifier_state *cur) 15842 { 15843 int i; 15844 15845 if (old->curframe != cur->curframe) 15846 return false; 15847 15848 env->idmap_scratch.tmp_id_gen = env->id_gen; 15849 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 15850 15851 /* Verification state from speculative execution simulation 15852 * must never prune a non-speculative execution one. 15853 */ 15854 if (old->speculative && !cur->speculative) 15855 return false; 15856 15857 if (old->active_lock.ptr != cur->active_lock.ptr) 15858 return false; 15859 15860 /* Old and cur active_lock's have to be either both present 15861 * or both absent. 15862 */ 15863 if (!!old->active_lock.id != !!cur->active_lock.id) 15864 return false; 15865 15866 if (old->active_lock.id && 15867 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch)) 15868 return false; 15869 15870 if (old->active_rcu_lock != cur->active_rcu_lock) 15871 return false; 15872 15873 /* for states to be equal callsites have to be the same 15874 * and all frame states need to be equivalent 15875 */ 15876 for (i = 0; i <= old->curframe; i++) { 15877 if (old->frame[i]->callsite != cur->frame[i]->callsite) 15878 return false; 15879 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 15880 return false; 15881 } 15882 return true; 15883 } 15884 15885 /* Return 0 if no propagation happened. Return negative error code if error 15886 * happened. Otherwise, return the propagated bit. 15887 */ 15888 static int propagate_liveness_reg(struct bpf_verifier_env *env, 15889 struct bpf_reg_state *reg, 15890 struct bpf_reg_state *parent_reg) 15891 { 15892 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 15893 u8 flag = reg->live & REG_LIVE_READ; 15894 int err; 15895 15896 /* When comes here, read flags of PARENT_REG or REG could be any of 15897 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 15898 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 15899 */ 15900 if (parent_flag == REG_LIVE_READ64 || 15901 /* Or if there is no read flag from REG. */ 15902 !flag || 15903 /* Or if the read flag from REG is the same as PARENT_REG. */ 15904 parent_flag == flag) 15905 return 0; 15906 15907 err = mark_reg_read(env, reg, parent_reg, flag); 15908 if (err) 15909 return err; 15910 15911 return flag; 15912 } 15913 15914 /* A write screens off any subsequent reads; but write marks come from the 15915 * straight-line code between a state and its parent. When we arrive at an 15916 * equivalent state (jump target or such) we didn't arrive by the straight-line 15917 * code, so read marks in the state must propagate to the parent regardless 15918 * of the state's write marks. That's what 'parent == state->parent' comparison 15919 * in mark_reg_read() is for. 15920 */ 15921 static int propagate_liveness(struct bpf_verifier_env *env, 15922 const struct bpf_verifier_state *vstate, 15923 struct bpf_verifier_state *vparent) 15924 { 15925 struct bpf_reg_state *state_reg, *parent_reg; 15926 struct bpf_func_state *state, *parent; 15927 int i, frame, err = 0; 15928 15929 if (vparent->curframe != vstate->curframe) { 15930 WARN(1, "propagate_live: parent frame %d current frame %d\n", 15931 vparent->curframe, vstate->curframe); 15932 return -EFAULT; 15933 } 15934 /* Propagate read liveness of registers... */ 15935 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 15936 for (frame = 0; frame <= vstate->curframe; frame++) { 15937 parent = vparent->frame[frame]; 15938 state = vstate->frame[frame]; 15939 parent_reg = parent->regs; 15940 state_reg = state->regs; 15941 /* We don't need to worry about FP liveness, it's read-only */ 15942 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 15943 err = propagate_liveness_reg(env, &state_reg[i], 15944 &parent_reg[i]); 15945 if (err < 0) 15946 return err; 15947 if (err == REG_LIVE_READ64) 15948 mark_insn_zext(env, &parent_reg[i]); 15949 } 15950 15951 /* Propagate stack slots. */ 15952 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 15953 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 15954 parent_reg = &parent->stack[i].spilled_ptr; 15955 state_reg = &state->stack[i].spilled_ptr; 15956 err = propagate_liveness_reg(env, state_reg, 15957 parent_reg); 15958 if (err < 0) 15959 return err; 15960 } 15961 } 15962 return 0; 15963 } 15964 15965 /* find precise scalars in the previous equivalent state and 15966 * propagate them into the current state 15967 */ 15968 static int propagate_precision(struct bpf_verifier_env *env, 15969 const struct bpf_verifier_state *old) 15970 { 15971 struct bpf_reg_state *state_reg; 15972 struct bpf_func_state *state; 15973 int i, err = 0, fr; 15974 bool first; 15975 15976 for (fr = old->curframe; fr >= 0; fr--) { 15977 state = old->frame[fr]; 15978 state_reg = state->regs; 15979 first = true; 15980 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 15981 if (state_reg->type != SCALAR_VALUE || 15982 !state_reg->precise || 15983 !(state_reg->live & REG_LIVE_READ)) 15984 continue; 15985 if (env->log.level & BPF_LOG_LEVEL2) { 15986 if (first) 15987 verbose(env, "frame %d: propagating r%d", fr, i); 15988 else 15989 verbose(env, ",r%d", i); 15990 } 15991 bt_set_frame_reg(&env->bt, fr, i); 15992 first = false; 15993 } 15994 15995 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 15996 if (!is_spilled_reg(&state->stack[i])) 15997 continue; 15998 state_reg = &state->stack[i].spilled_ptr; 15999 if (state_reg->type != SCALAR_VALUE || 16000 !state_reg->precise || 16001 !(state_reg->live & REG_LIVE_READ)) 16002 continue; 16003 if (env->log.level & BPF_LOG_LEVEL2) { 16004 if (first) 16005 verbose(env, "frame %d: propagating fp%d", 16006 fr, (-i - 1) * BPF_REG_SIZE); 16007 else 16008 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 16009 } 16010 bt_set_frame_slot(&env->bt, fr, i); 16011 first = false; 16012 } 16013 if (!first) 16014 verbose(env, "\n"); 16015 } 16016 16017 err = mark_chain_precision_batch(env); 16018 if (err < 0) 16019 return err; 16020 16021 return 0; 16022 } 16023 16024 static bool states_maybe_looping(struct bpf_verifier_state *old, 16025 struct bpf_verifier_state *cur) 16026 { 16027 struct bpf_func_state *fold, *fcur; 16028 int i, fr = cur->curframe; 16029 16030 if (old->curframe != fr) 16031 return false; 16032 16033 fold = old->frame[fr]; 16034 fcur = cur->frame[fr]; 16035 for (i = 0; i < MAX_BPF_REG; i++) 16036 if (memcmp(&fold->regs[i], &fcur->regs[i], 16037 offsetof(struct bpf_reg_state, parent))) 16038 return false; 16039 return true; 16040 } 16041 16042 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 16043 { 16044 return env->insn_aux_data[insn_idx].is_iter_next; 16045 } 16046 16047 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 16048 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 16049 * states to match, which otherwise would look like an infinite loop. So while 16050 * iter_next() calls are taken care of, we still need to be careful and 16051 * prevent erroneous and too eager declaration of "ininite loop", when 16052 * iterators are involved. 16053 * 16054 * Here's a situation in pseudo-BPF assembly form: 16055 * 16056 * 0: again: ; set up iter_next() call args 16057 * 1: r1 = &it ; <CHECKPOINT HERE> 16058 * 2: call bpf_iter_num_next ; this is iter_next() call 16059 * 3: if r0 == 0 goto done 16060 * 4: ... something useful here ... 16061 * 5: goto again ; another iteration 16062 * 6: done: 16063 * 7: r1 = &it 16064 * 8: call bpf_iter_num_destroy ; clean up iter state 16065 * 9: exit 16066 * 16067 * This is a typical loop. Let's assume that we have a prune point at 1:, 16068 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 16069 * again`, assuming other heuristics don't get in a way). 16070 * 16071 * When we first time come to 1:, let's say we have some state X. We proceed 16072 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 16073 * Now we come back to validate that forked ACTIVE state. We proceed through 16074 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 16075 * are converging. But the problem is that we don't know that yet, as this 16076 * convergence has to happen at iter_next() call site only. So if nothing is 16077 * done, at 1: verifier will use bounded loop logic and declare infinite 16078 * looping (and would be *technically* correct, if not for iterator's 16079 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 16080 * don't want that. So what we do in process_iter_next_call() when we go on 16081 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 16082 * a different iteration. So when we suspect an infinite loop, we additionally 16083 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 16084 * pretend we are not looping and wait for next iter_next() call. 16085 * 16086 * This only applies to ACTIVE state. In DRAINED state we don't expect to 16087 * loop, because that would actually mean infinite loop, as DRAINED state is 16088 * "sticky", and so we'll keep returning into the same instruction with the 16089 * same state (at least in one of possible code paths). 16090 * 16091 * This approach allows to keep infinite loop heuristic even in the face of 16092 * active iterator. E.g., C snippet below is and will be detected as 16093 * inifintely looping: 16094 * 16095 * struct bpf_iter_num it; 16096 * int *p, x; 16097 * 16098 * bpf_iter_num_new(&it, 0, 10); 16099 * while ((p = bpf_iter_num_next(&t))) { 16100 * x = p; 16101 * while (x--) {} // <<-- infinite loop here 16102 * } 16103 * 16104 */ 16105 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 16106 { 16107 struct bpf_reg_state *slot, *cur_slot; 16108 struct bpf_func_state *state; 16109 int i, fr; 16110 16111 for (fr = old->curframe; fr >= 0; fr--) { 16112 state = old->frame[fr]; 16113 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 16114 if (state->stack[i].slot_type[0] != STACK_ITER) 16115 continue; 16116 16117 slot = &state->stack[i].spilled_ptr; 16118 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 16119 continue; 16120 16121 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 16122 if (cur_slot->iter.depth != slot->iter.depth) 16123 return true; 16124 } 16125 } 16126 return false; 16127 } 16128 16129 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 16130 { 16131 struct bpf_verifier_state_list *new_sl; 16132 struct bpf_verifier_state_list *sl, **pprev; 16133 struct bpf_verifier_state *cur = env->cur_state, *new; 16134 int i, j, err, states_cnt = 0; 16135 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); 16136 bool add_new_state = force_new_state; 16137 16138 /* bpf progs typically have pruning point every 4 instructions 16139 * http://vger.kernel.org/bpfconf2019.html#session-1 16140 * Do not add new state for future pruning if the verifier hasn't seen 16141 * at least 2 jumps and at least 8 instructions. 16142 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 16143 * In tests that amounts to up to 50% reduction into total verifier 16144 * memory consumption and 20% verifier time speedup. 16145 */ 16146 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 16147 env->insn_processed - env->prev_insn_processed >= 8) 16148 add_new_state = true; 16149 16150 pprev = explored_state(env, insn_idx); 16151 sl = *pprev; 16152 16153 clean_live_states(env, insn_idx, cur); 16154 16155 while (sl) { 16156 states_cnt++; 16157 if (sl->state.insn_idx != insn_idx) 16158 goto next; 16159 16160 if (sl->state.branches) { 16161 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 16162 16163 if (frame->in_async_callback_fn && 16164 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 16165 /* Different async_entry_cnt means that the verifier is 16166 * processing another entry into async callback. 16167 * Seeing the same state is not an indication of infinite 16168 * loop or infinite recursion. 16169 * But finding the same state doesn't mean that it's safe 16170 * to stop processing the current state. The previous state 16171 * hasn't yet reached bpf_exit, since state.branches > 0. 16172 * Checking in_async_callback_fn alone is not enough either. 16173 * Since the verifier still needs to catch infinite loops 16174 * inside async callbacks. 16175 */ 16176 goto skip_inf_loop_check; 16177 } 16178 /* BPF open-coded iterators loop detection is special. 16179 * states_maybe_looping() logic is too simplistic in detecting 16180 * states that *might* be equivalent, because it doesn't know 16181 * about ID remapping, so don't even perform it. 16182 * See process_iter_next_call() and iter_active_depths_differ() 16183 * for overview of the logic. When current and one of parent 16184 * states are detected as equivalent, it's a good thing: we prove 16185 * convergence and can stop simulating further iterations. 16186 * It's safe to assume that iterator loop will finish, taking into 16187 * account iter_next() contract of eventually returning 16188 * sticky NULL result. 16189 */ 16190 if (is_iter_next_insn(env, insn_idx)) { 16191 if (states_equal(env, &sl->state, cur)) { 16192 struct bpf_func_state *cur_frame; 16193 struct bpf_reg_state *iter_state, *iter_reg; 16194 int spi; 16195 16196 cur_frame = cur->frame[cur->curframe]; 16197 /* btf_check_iter_kfuncs() enforces that 16198 * iter state pointer is always the first arg 16199 */ 16200 iter_reg = &cur_frame->regs[BPF_REG_1]; 16201 /* current state is valid due to states_equal(), 16202 * so we can assume valid iter and reg state, 16203 * no need for extra (re-)validations 16204 */ 16205 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 16206 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 16207 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) 16208 goto hit; 16209 } 16210 goto skip_inf_loop_check; 16211 } 16212 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 16213 if (states_maybe_looping(&sl->state, cur) && 16214 states_equal(env, &sl->state, cur) && 16215 !iter_active_depths_differ(&sl->state, cur)) { 16216 verbose_linfo(env, insn_idx, "; "); 16217 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 16218 return -EINVAL; 16219 } 16220 /* if the verifier is processing a loop, avoid adding new state 16221 * too often, since different loop iterations have distinct 16222 * states and may not help future pruning. 16223 * This threshold shouldn't be too low to make sure that 16224 * a loop with large bound will be rejected quickly. 16225 * The most abusive loop will be: 16226 * r1 += 1 16227 * if r1 < 1000000 goto pc-2 16228 * 1M insn_procssed limit / 100 == 10k peak states. 16229 * This threshold shouldn't be too high either, since states 16230 * at the end of the loop are likely to be useful in pruning. 16231 */ 16232 skip_inf_loop_check: 16233 if (!force_new_state && 16234 env->jmps_processed - env->prev_jmps_processed < 20 && 16235 env->insn_processed - env->prev_insn_processed < 100) 16236 add_new_state = false; 16237 goto miss; 16238 } 16239 if (states_equal(env, &sl->state, cur)) { 16240 hit: 16241 sl->hit_cnt++; 16242 /* reached equivalent register/stack state, 16243 * prune the search. 16244 * Registers read by the continuation are read by us. 16245 * If we have any write marks in env->cur_state, they 16246 * will prevent corresponding reads in the continuation 16247 * from reaching our parent (an explored_state). Our 16248 * own state will get the read marks recorded, but 16249 * they'll be immediately forgotten as we're pruning 16250 * this state and will pop a new one. 16251 */ 16252 err = propagate_liveness(env, &sl->state, cur); 16253 16254 /* if previous state reached the exit with precision and 16255 * current state is equivalent to it (except precsion marks) 16256 * the precision needs to be propagated back in 16257 * the current state. 16258 */ 16259 err = err ? : push_jmp_history(env, cur); 16260 err = err ? : propagate_precision(env, &sl->state); 16261 if (err) 16262 return err; 16263 return 1; 16264 } 16265 miss: 16266 /* when new state is not going to be added do not increase miss count. 16267 * Otherwise several loop iterations will remove the state 16268 * recorded earlier. The goal of these heuristics is to have 16269 * states from some iterations of the loop (some in the beginning 16270 * and some at the end) to help pruning. 16271 */ 16272 if (add_new_state) 16273 sl->miss_cnt++; 16274 /* heuristic to determine whether this state is beneficial 16275 * to keep checking from state equivalence point of view. 16276 * Higher numbers increase max_states_per_insn and verification time, 16277 * but do not meaningfully decrease insn_processed. 16278 */ 16279 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 16280 /* the state is unlikely to be useful. Remove it to 16281 * speed up verification 16282 */ 16283 *pprev = sl->next; 16284 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 16285 u32 br = sl->state.branches; 16286 16287 WARN_ONCE(br, 16288 "BUG live_done but branches_to_explore %d\n", 16289 br); 16290 free_verifier_state(&sl->state, false); 16291 kfree(sl); 16292 env->peak_states--; 16293 } else { 16294 /* cannot free this state, since parentage chain may 16295 * walk it later. Add it for free_list instead to 16296 * be freed at the end of verification 16297 */ 16298 sl->next = env->free_list; 16299 env->free_list = sl; 16300 } 16301 sl = *pprev; 16302 continue; 16303 } 16304 next: 16305 pprev = &sl->next; 16306 sl = *pprev; 16307 } 16308 16309 if (env->max_states_per_insn < states_cnt) 16310 env->max_states_per_insn = states_cnt; 16311 16312 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 16313 return 0; 16314 16315 if (!add_new_state) 16316 return 0; 16317 16318 /* There were no equivalent states, remember the current one. 16319 * Technically the current state is not proven to be safe yet, 16320 * but it will either reach outer most bpf_exit (which means it's safe) 16321 * or it will be rejected. When there are no loops the verifier won't be 16322 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 16323 * again on the way to bpf_exit. 16324 * When looping the sl->state.branches will be > 0 and this state 16325 * will not be considered for equivalence until branches == 0. 16326 */ 16327 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 16328 if (!new_sl) 16329 return -ENOMEM; 16330 env->total_states++; 16331 env->peak_states++; 16332 env->prev_jmps_processed = env->jmps_processed; 16333 env->prev_insn_processed = env->insn_processed; 16334 16335 /* forget precise markings we inherited, see __mark_chain_precision */ 16336 if (env->bpf_capable) 16337 mark_all_scalars_imprecise(env, cur); 16338 16339 /* add new state to the head of linked list */ 16340 new = &new_sl->state; 16341 err = copy_verifier_state(new, cur); 16342 if (err) { 16343 free_verifier_state(new, false); 16344 kfree(new_sl); 16345 return err; 16346 } 16347 new->insn_idx = insn_idx; 16348 WARN_ONCE(new->branches != 1, 16349 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 16350 16351 cur->parent = new; 16352 cur->first_insn_idx = insn_idx; 16353 clear_jmp_history(cur); 16354 new_sl->next = *explored_state(env, insn_idx); 16355 *explored_state(env, insn_idx) = new_sl; 16356 /* connect new state to parentage chain. Current frame needs all 16357 * registers connected. Only r6 - r9 of the callers are alive (pushed 16358 * to the stack implicitly by JITs) so in callers' frames connect just 16359 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 16360 * the state of the call instruction (with WRITTEN set), and r0 comes 16361 * from callee with its full parentage chain, anyway. 16362 */ 16363 /* clear write marks in current state: the writes we did are not writes 16364 * our child did, so they don't screen off its reads from us. 16365 * (There are no read marks in current state, because reads always mark 16366 * their parent and current state never has children yet. Only 16367 * explored_states can get read marks.) 16368 */ 16369 for (j = 0; j <= cur->curframe; j++) { 16370 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 16371 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 16372 for (i = 0; i < BPF_REG_FP; i++) 16373 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 16374 } 16375 16376 /* all stack frames are accessible from callee, clear them all */ 16377 for (j = 0; j <= cur->curframe; j++) { 16378 struct bpf_func_state *frame = cur->frame[j]; 16379 struct bpf_func_state *newframe = new->frame[j]; 16380 16381 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 16382 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 16383 frame->stack[i].spilled_ptr.parent = 16384 &newframe->stack[i].spilled_ptr; 16385 } 16386 } 16387 return 0; 16388 } 16389 16390 /* Return true if it's OK to have the same insn return a different type. */ 16391 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 16392 { 16393 switch (base_type(type)) { 16394 case PTR_TO_CTX: 16395 case PTR_TO_SOCKET: 16396 case PTR_TO_SOCK_COMMON: 16397 case PTR_TO_TCP_SOCK: 16398 case PTR_TO_XDP_SOCK: 16399 case PTR_TO_BTF_ID: 16400 return false; 16401 default: 16402 return true; 16403 } 16404 } 16405 16406 /* If an instruction was previously used with particular pointer types, then we 16407 * need to be careful to avoid cases such as the below, where it may be ok 16408 * for one branch accessing the pointer, but not ok for the other branch: 16409 * 16410 * R1 = sock_ptr 16411 * goto X; 16412 * ... 16413 * R1 = some_other_valid_ptr; 16414 * goto X; 16415 * ... 16416 * R2 = *(u32 *)(R1 + 0); 16417 */ 16418 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 16419 { 16420 return src != prev && (!reg_type_mismatch_ok(src) || 16421 !reg_type_mismatch_ok(prev)); 16422 } 16423 16424 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 16425 bool allow_trust_missmatch) 16426 { 16427 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 16428 16429 if (*prev_type == NOT_INIT) { 16430 /* Saw a valid insn 16431 * dst_reg = *(u32 *)(src_reg + off) 16432 * save type to validate intersecting paths 16433 */ 16434 *prev_type = type; 16435 } else if (reg_type_mismatch(type, *prev_type)) { 16436 /* Abuser program is trying to use the same insn 16437 * dst_reg = *(u32*) (src_reg + off) 16438 * with different pointer types: 16439 * src_reg == ctx in one branch and 16440 * src_reg == stack|map in some other branch. 16441 * Reject it. 16442 */ 16443 if (allow_trust_missmatch && 16444 base_type(type) == PTR_TO_BTF_ID && 16445 base_type(*prev_type) == PTR_TO_BTF_ID) { 16446 /* 16447 * Have to support a use case when one path through 16448 * the program yields TRUSTED pointer while another 16449 * is UNTRUSTED. Fallback to UNTRUSTED to generate 16450 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 16451 */ 16452 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 16453 } else { 16454 verbose(env, "same insn cannot be used with different pointers\n"); 16455 return -EINVAL; 16456 } 16457 } 16458 16459 return 0; 16460 } 16461 16462 static int do_check(struct bpf_verifier_env *env) 16463 { 16464 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 16465 struct bpf_verifier_state *state = env->cur_state; 16466 struct bpf_insn *insns = env->prog->insnsi; 16467 struct bpf_reg_state *regs; 16468 int insn_cnt = env->prog->len; 16469 bool do_print_state = false; 16470 int prev_insn_idx = -1; 16471 16472 for (;;) { 16473 struct bpf_insn *insn; 16474 u8 class; 16475 int err; 16476 16477 env->prev_insn_idx = prev_insn_idx; 16478 if (env->insn_idx >= insn_cnt) { 16479 verbose(env, "invalid insn idx %d insn_cnt %d\n", 16480 env->insn_idx, insn_cnt); 16481 return -EFAULT; 16482 } 16483 16484 insn = &insns[env->insn_idx]; 16485 class = BPF_CLASS(insn->code); 16486 16487 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 16488 verbose(env, 16489 "BPF program is too large. Processed %d insn\n", 16490 env->insn_processed); 16491 return -E2BIG; 16492 } 16493 16494 state->last_insn_idx = env->prev_insn_idx; 16495 16496 if (is_prune_point(env, env->insn_idx)) { 16497 err = is_state_visited(env, env->insn_idx); 16498 if (err < 0) 16499 return err; 16500 if (err == 1) { 16501 /* found equivalent state, can prune the search */ 16502 if (env->log.level & BPF_LOG_LEVEL) { 16503 if (do_print_state) 16504 verbose(env, "\nfrom %d to %d%s: safe\n", 16505 env->prev_insn_idx, env->insn_idx, 16506 env->cur_state->speculative ? 16507 " (speculative execution)" : ""); 16508 else 16509 verbose(env, "%d: safe\n", env->insn_idx); 16510 } 16511 goto process_bpf_exit; 16512 } 16513 } 16514 16515 if (is_jmp_point(env, env->insn_idx)) { 16516 err = push_jmp_history(env, state); 16517 if (err) 16518 return err; 16519 } 16520 16521 if (signal_pending(current)) 16522 return -EAGAIN; 16523 16524 if (need_resched()) 16525 cond_resched(); 16526 16527 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 16528 verbose(env, "\nfrom %d to %d%s:", 16529 env->prev_insn_idx, env->insn_idx, 16530 env->cur_state->speculative ? 16531 " (speculative execution)" : ""); 16532 print_verifier_state(env, state->frame[state->curframe], true); 16533 do_print_state = false; 16534 } 16535 16536 if (env->log.level & BPF_LOG_LEVEL) { 16537 const struct bpf_insn_cbs cbs = { 16538 .cb_call = disasm_kfunc_name, 16539 .cb_print = verbose, 16540 .private_data = env, 16541 }; 16542 16543 if (verifier_state_scratched(env)) 16544 print_insn_state(env, state->frame[state->curframe]); 16545 16546 verbose_linfo(env, env->insn_idx, "; "); 16547 env->prev_log_pos = env->log.end_pos; 16548 verbose(env, "%d: ", env->insn_idx); 16549 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 16550 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 16551 env->prev_log_pos = env->log.end_pos; 16552 } 16553 16554 if (bpf_prog_is_offloaded(env->prog->aux)) { 16555 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 16556 env->prev_insn_idx); 16557 if (err) 16558 return err; 16559 } 16560 16561 regs = cur_regs(env); 16562 sanitize_mark_insn_seen(env); 16563 prev_insn_idx = env->insn_idx; 16564 16565 if (class == BPF_ALU || class == BPF_ALU64) { 16566 err = check_alu_op(env, insn); 16567 if (err) 16568 return err; 16569 16570 } else if (class == BPF_LDX) { 16571 enum bpf_reg_type src_reg_type; 16572 16573 /* check for reserved fields is already done */ 16574 16575 /* check src operand */ 16576 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16577 if (err) 16578 return err; 16579 16580 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 16581 if (err) 16582 return err; 16583 16584 src_reg_type = regs[insn->src_reg].type; 16585 16586 /* check that memory (src_reg + off) is readable, 16587 * the state of dst_reg will be updated by this func 16588 */ 16589 err = check_mem_access(env, env->insn_idx, insn->src_reg, 16590 insn->off, BPF_SIZE(insn->code), 16591 BPF_READ, insn->dst_reg, false, 16592 BPF_MODE(insn->code) == BPF_MEMSX); 16593 if (err) 16594 return err; 16595 16596 err = save_aux_ptr_type(env, src_reg_type, true); 16597 if (err) 16598 return err; 16599 } else if (class == BPF_STX) { 16600 enum bpf_reg_type dst_reg_type; 16601 16602 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 16603 err = check_atomic(env, env->insn_idx, insn); 16604 if (err) 16605 return err; 16606 env->insn_idx++; 16607 continue; 16608 } 16609 16610 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 16611 verbose(env, "BPF_STX uses reserved fields\n"); 16612 return -EINVAL; 16613 } 16614 16615 /* check src1 operand */ 16616 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16617 if (err) 16618 return err; 16619 /* check src2 operand */ 16620 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16621 if (err) 16622 return err; 16623 16624 dst_reg_type = regs[insn->dst_reg].type; 16625 16626 /* check that memory (dst_reg + off) is writeable */ 16627 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 16628 insn->off, BPF_SIZE(insn->code), 16629 BPF_WRITE, insn->src_reg, false, false); 16630 if (err) 16631 return err; 16632 16633 err = save_aux_ptr_type(env, dst_reg_type, false); 16634 if (err) 16635 return err; 16636 } else if (class == BPF_ST) { 16637 enum bpf_reg_type dst_reg_type; 16638 16639 if (BPF_MODE(insn->code) != BPF_MEM || 16640 insn->src_reg != BPF_REG_0) { 16641 verbose(env, "BPF_ST uses reserved fields\n"); 16642 return -EINVAL; 16643 } 16644 /* check src operand */ 16645 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16646 if (err) 16647 return err; 16648 16649 dst_reg_type = regs[insn->dst_reg].type; 16650 16651 /* check that memory (dst_reg + off) is writeable */ 16652 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 16653 insn->off, BPF_SIZE(insn->code), 16654 BPF_WRITE, -1, false, false); 16655 if (err) 16656 return err; 16657 16658 err = save_aux_ptr_type(env, dst_reg_type, false); 16659 if (err) 16660 return err; 16661 } else if (class == BPF_JMP || class == BPF_JMP32) { 16662 u8 opcode = BPF_OP(insn->code); 16663 16664 env->jmps_processed++; 16665 if (opcode == BPF_CALL) { 16666 if (BPF_SRC(insn->code) != BPF_K || 16667 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 16668 && insn->off != 0) || 16669 (insn->src_reg != BPF_REG_0 && 16670 insn->src_reg != BPF_PSEUDO_CALL && 16671 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 16672 insn->dst_reg != BPF_REG_0 || 16673 class == BPF_JMP32) { 16674 verbose(env, "BPF_CALL uses reserved fields\n"); 16675 return -EINVAL; 16676 } 16677 16678 if (env->cur_state->active_lock.ptr) { 16679 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 16680 (insn->src_reg == BPF_PSEUDO_CALL) || 16681 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 16682 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 16683 verbose(env, "function calls are not allowed while holding a lock\n"); 16684 return -EINVAL; 16685 } 16686 } 16687 if (insn->src_reg == BPF_PSEUDO_CALL) 16688 err = check_func_call(env, insn, &env->insn_idx); 16689 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 16690 err = check_kfunc_call(env, insn, &env->insn_idx); 16691 else 16692 err = check_helper_call(env, insn, &env->insn_idx); 16693 if (err) 16694 return err; 16695 16696 mark_reg_scratched(env, BPF_REG_0); 16697 } else if (opcode == BPF_JA) { 16698 if (BPF_SRC(insn->code) != BPF_K || 16699 insn->src_reg != BPF_REG_0 || 16700 insn->dst_reg != BPF_REG_0 || 16701 (class == BPF_JMP && insn->imm != 0) || 16702 (class == BPF_JMP32 && insn->off != 0)) { 16703 verbose(env, "BPF_JA uses reserved fields\n"); 16704 return -EINVAL; 16705 } 16706 16707 if (class == BPF_JMP) 16708 env->insn_idx += insn->off + 1; 16709 else 16710 env->insn_idx += insn->imm + 1; 16711 continue; 16712 16713 } else if (opcode == BPF_EXIT) { 16714 if (BPF_SRC(insn->code) != BPF_K || 16715 insn->imm != 0 || 16716 insn->src_reg != BPF_REG_0 || 16717 insn->dst_reg != BPF_REG_0 || 16718 class == BPF_JMP32) { 16719 verbose(env, "BPF_EXIT uses reserved fields\n"); 16720 return -EINVAL; 16721 } 16722 16723 if (env->cur_state->active_lock.ptr && 16724 !in_rbtree_lock_required_cb(env)) { 16725 verbose(env, "bpf_spin_unlock is missing\n"); 16726 return -EINVAL; 16727 } 16728 16729 if (env->cur_state->active_rcu_lock && 16730 !in_rbtree_lock_required_cb(env)) { 16731 verbose(env, "bpf_rcu_read_unlock is missing\n"); 16732 return -EINVAL; 16733 } 16734 16735 /* We must do check_reference_leak here before 16736 * prepare_func_exit to handle the case when 16737 * state->curframe > 0, it may be a callback 16738 * function, for which reference_state must 16739 * match caller reference state when it exits. 16740 */ 16741 err = check_reference_leak(env); 16742 if (err) 16743 return err; 16744 16745 if (state->curframe) { 16746 /* exit from nested function */ 16747 err = prepare_func_exit(env, &env->insn_idx); 16748 if (err) 16749 return err; 16750 do_print_state = true; 16751 continue; 16752 } 16753 16754 err = check_return_code(env); 16755 if (err) 16756 return err; 16757 process_bpf_exit: 16758 mark_verifier_state_scratched(env); 16759 update_branch_counts(env, env->cur_state); 16760 err = pop_stack(env, &prev_insn_idx, 16761 &env->insn_idx, pop_log); 16762 if (err < 0) { 16763 if (err != -ENOENT) 16764 return err; 16765 break; 16766 } else { 16767 do_print_state = true; 16768 continue; 16769 } 16770 } else { 16771 err = check_cond_jmp_op(env, insn, &env->insn_idx); 16772 if (err) 16773 return err; 16774 } 16775 } else if (class == BPF_LD) { 16776 u8 mode = BPF_MODE(insn->code); 16777 16778 if (mode == BPF_ABS || mode == BPF_IND) { 16779 err = check_ld_abs(env, insn); 16780 if (err) 16781 return err; 16782 16783 } else if (mode == BPF_IMM) { 16784 err = check_ld_imm(env, insn); 16785 if (err) 16786 return err; 16787 16788 env->insn_idx++; 16789 sanitize_mark_insn_seen(env); 16790 } else { 16791 verbose(env, "invalid BPF_LD mode\n"); 16792 return -EINVAL; 16793 } 16794 } else { 16795 verbose(env, "unknown insn class %d\n", class); 16796 return -EINVAL; 16797 } 16798 16799 env->insn_idx++; 16800 } 16801 16802 return 0; 16803 } 16804 16805 static int find_btf_percpu_datasec(struct btf *btf) 16806 { 16807 const struct btf_type *t; 16808 const char *tname; 16809 int i, n; 16810 16811 /* 16812 * Both vmlinux and module each have their own ".data..percpu" 16813 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 16814 * types to look at only module's own BTF types. 16815 */ 16816 n = btf_nr_types(btf); 16817 if (btf_is_module(btf)) 16818 i = btf_nr_types(btf_vmlinux); 16819 else 16820 i = 1; 16821 16822 for(; i < n; i++) { 16823 t = btf_type_by_id(btf, i); 16824 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 16825 continue; 16826 16827 tname = btf_name_by_offset(btf, t->name_off); 16828 if (!strcmp(tname, ".data..percpu")) 16829 return i; 16830 } 16831 16832 return -ENOENT; 16833 } 16834 16835 /* replace pseudo btf_id with kernel symbol address */ 16836 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 16837 struct bpf_insn *insn, 16838 struct bpf_insn_aux_data *aux) 16839 { 16840 const struct btf_var_secinfo *vsi; 16841 const struct btf_type *datasec; 16842 struct btf_mod_pair *btf_mod; 16843 const struct btf_type *t; 16844 const char *sym_name; 16845 bool percpu = false; 16846 u32 type, id = insn->imm; 16847 struct btf *btf; 16848 s32 datasec_id; 16849 u64 addr; 16850 int i, btf_fd, err; 16851 16852 btf_fd = insn[1].imm; 16853 if (btf_fd) { 16854 btf = btf_get_by_fd(btf_fd); 16855 if (IS_ERR(btf)) { 16856 verbose(env, "invalid module BTF object FD specified.\n"); 16857 return -EINVAL; 16858 } 16859 } else { 16860 if (!btf_vmlinux) { 16861 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 16862 return -EINVAL; 16863 } 16864 btf = btf_vmlinux; 16865 btf_get(btf); 16866 } 16867 16868 t = btf_type_by_id(btf, id); 16869 if (!t) { 16870 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 16871 err = -ENOENT; 16872 goto err_put; 16873 } 16874 16875 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 16876 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 16877 err = -EINVAL; 16878 goto err_put; 16879 } 16880 16881 sym_name = btf_name_by_offset(btf, t->name_off); 16882 addr = kallsyms_lookup_name(sym_name); 16883 if (!addr) { 16884 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 16885 sym_name); 16886 err = -ENOENT; 16887 goto err_put; 16888 } 16889 insn[0].imm = (u32)addr; 16890 insn[1].imm = addr >> 32; 16891 16892 if (btf_type_is_func(t)) { 16893 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 16894 aux->btf_var.mem_size = 0; 16895 goto check_btf; 16896 } 16897 16898 datasec_id = find_btf_percpu_datasec(btf); 16899 if (datasec_id > 0) { 16900 datasec = btf_type_by_id(btf, datasec_id); 16901 for_each_vsi(i, datasec, vsi) { 16902 if (vsi->type == id) { 16903 percpu = true; 16904 break; 16905 } 16906 } 16907 } 16908 16909 type = t->type; 16910 t = btf_type_skip_modifiers(btf, type, NULL); 16911 if (percpu) { 16912 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 16913 aux->btf_var.btf = btf; 16914 aux->btf_var.btf_id = type; 16915 } else if (!btf_type_is_struct(t)) { 16916 const struct btf_type *ret; 16917 const char *tname; 16918 u32 tsize; 16919 16920 /* resolve the type size of ksym. */ 16921 ret = btf_resolve_size(btf, t, &tsize); 16922 if (IS_ERR(ret)) { 16923 tname = btf_name_by_offset(btf, t->name_off); 16924 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 16925 tname, PTR_ERR(ret)); 16926 err = -EINVAL; 16927 goto err_put; 16928 } 16929 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 16930 aux->btf_var.mem_size = tsize; 16931 } else { 16932 aux->btf_var.reg_type = PTR_TO_BTF_ID; 16933 aux->btf_var.btf = btf; 16934 aux->btf_var.btf_id = type; 16935 } 16936 check_btf: 16937 /* check whether we recorded this BTF (and maybe module) already */ 16938 for (i = 0; i < env->used_btf_cnt; i++) { 16939 if (env->used_btfs[i].btf == btf) { 16940 btf_put(btf); 16941 return 0; 16942 } 16943 } 16944 16945 if (env->used_btf_cnt >= MAX_USED_BTFS) { 16946 err = -E2BIG; 16947 goto err_put; 16948 } 16949 16950 btf_mod = &env->used_btfs[env->used_btf_cnt]; 16951 btf_mod->btf = btf; 16952 btf_mod->module = NULL; 16953 16954 /* if we reference variables from kernel module, bump its refcount */ 16955 if (btf_is_module(btf)) { 16956 btf_mod->module = btf_try_get_module(btf); 16957 if (!btf_mod->module) { 16958 err = -ENXIO; 16959 goto err_put; 16960 } 16961 } 16962 16963 env->used_btf_cnt++; 16964 16965 return 0; 16966 err_put: 16967 btf_put(btf); 16968 return err; 16969 } 16970 16971 static bool is_tracing_prog_type(enum bpf_prog_type type) 16972 { 16973 switch (type) { 16974 case BPF_PROG_TYPE_KPROBE: 16975 case BPF_PROG_TYPE_TRACEPOINT: 16976 case BPF_PROG_TYPE_PERF_EVENT: 16977 case BPF_PROG_TYPE_RAW_TRACEPOINT: 16978 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 16979 return true; 16980 default: 16981 return false; 16982 } 16983 } 16984 16985 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 16986 struct bpf_map *map, 16987 struct bpf_prog *prog) 16988 16989 { 16990 enum bpf_prog_type prog_type = resolve_prog_type(prog); 16991 16992 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 16993 btf_record_has_field(map->record, BPF_RB_ROOT)) { 16994 if (is_tracing_prog_type(prog_type)) { 16995 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 16996 return -EINVAL; 16997 } 16998 } 16999 17000 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 17001 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 17002 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 17003 return -EINVAL; 17004 } 17005 17006 if (is_tracing_prog_type(prog_type)) { 17007 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 17008 return -EINVAL; 17009 } 17010 } 17011 17012 if (btf_record_has_field(map->record, BPF_TIMER)) { 17013 if (is_tracing_prog_type(prog_type)) { 17014 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 17015 return -EINVAL; 17016 } 17017 } 17018 17019 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 17020 !bpf_offload_prog_map_match(prog, map)) { 17021 verbose(env, "offload device mismatch between prog and map\n"); 17022 return -EINVAL; 17023 } 17024 17025 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 17026 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 17027 return -EINVAL; 17028 } 17029 17030 if (prog->aux->sleepable) 17031 switch (map->map_type) { 17032 case BPF_MAP_TYPE_HASH: 17033 case BPF_MAP_TYPE_LRU_HASH: 17034 case BPF_MAP_TYPE_ARRAY: 17035 case BPF_MAP_TYPE_PERCPU_HASH: 17036 case BPF_MAP_TYPE_PERCPU_ARRAY: 17037 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 17038 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 17039 case BPF_MAP_TYPE_HASH_OF_MAPS: 17040 case BPF_MAP_TYPE_RINGBUF: 17041 case BPF_MAP_TYPE_USER_RINGBUF: 17042 case BPF_MAP_TYPE_INODE_STORAGE: 17043 case BPF_MAP_TYPE_SK_STORAGE: 17044 case BPF_MAP_TYPE_TASK_STORAGE: 17045 case BPF_MAP_TYPE_CGRP_STORAGE: 17046 break; 17047 default: 17048 verbose(env, 17049 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 17050 return -EINVAL; 17051 } 17052 17053 return 0; 17054 } 17055 17056 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 17057 { 17058 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 17059 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 17060 } 17061 17062 /* find and rewrite pseudo imm in ld_imm64 instructions: 17063 * 17064 * 1. if it accesses map FD, replace it with actual map pointer. 17065 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 17066 * 17067 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 17068 */ 17069 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 17070 { 17071 struct bpf_insn *insn = env->prog->insnsi; 17072 int insn_cnt = env->prog->len; 17073 int i, j, err; 17074 17075 err = bpf_prog_calc_tag(env->prog); 17076 if (err) 17077 return err; 17078 17079 for (i = 0; i < insn_cnt; i++, insn++) { 17080 if (BPF_CLASS(insn->code) == BPF_LDX && 17081 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 17082 insn->imm != 0)) { 17083 verbose(env, "BPF_LDX uses reserved fields\n"); 17084 return -EINVAL; 17085 } 17086 17087 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 17088 struct bpf_insn_aux_data *aux; 17089 struct bpf_map *map; 17090 struct fd f; 17091 u64 addr; 17092 u32 fd; 17093 17094 if (i == insn_cnt - 1 || insn[1].code != 0 || 17095 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 17096 insn[1].off != 0) { 17097 verbose(env, "invalid bpf_ld_imm64 insn\n"); 17098 return -EINVAL; 17099 } 17100 17101 if (insn[0].src_reg == 0) 17102 /* valid generic load 64-bit imm */ 17103 goto next_insn; 17104 17105 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 17106 aux = &env->insn_aux_data[i]; 17107 err = check_pseudo_btf_id(env, insn, aux); 17108 if (err) 17109 return err; 17110 goto next_insn; 17111 } 17112 17113 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 17114 aux = &env->insn_aux_data[i]; 17115 aux->ptr_type = PTR_TO_FUNC; 17116 goto next_insn; 17117 } 17118 17119 /* In final convert_pseudo_ld_imm64() step, this is 17120 * converted into regular 64-bit imm load insn. 17121 */ 17122 switch (insn[0].src_reg) { 17123 case BPF_PSEUDO_MAP_VALUE: 17124 case BPF_PSEUDO_MAP_IDX_VALUE: 17125 break; 17126 case BPF_PSEUDO_MAP_FD: 17127 case BPF_PSEUDO_MAP_IDX: 17128 if (insn[1].imm == 0) 17129 break; 17130 fallthrough; 17131 default: 17132 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 17133 return -EINVAL; 17134 } 17135 17136 switch (insn[0].src_reg) { 17137 case BPF_PSEUDO_MAP_IDX_VALUE: 17138 case BPF_PSEUDO_MAP_IDX: 17139 if (bpfptr_is_null(env->fd_array)) { 17140 verbose(env, "fd_idx without fd_array is invalid\n"); 17141 return -EPROTO; 17142 } 17143 if (copy_from_bpfptr_offset(&fd, env->fd_array, 17144 insn[0].imm * sizeof(fd), 17145 sizeof(fd))) 17146 return -EFAULT; 17147 break; 17148 default: 17149 fd = insn[0].imm; 17150 break; 17151 } 17152 17153 f = fdget(fd); 17154 map = __bpf_map_get(f); 17155 if (IS_ERR(map)) { 17156 verbose(env, "fd %d is not pointing to valid bpf_map\n", 17157 insn[0].imm); 17158 return PTR_ERR(map); 17159 } 17160 17161 err = check_map_prog_compatibility(env, map, env->prog); 17162 if (err) { 17163 fdput(f); 17164 return err; 17165 } 17166 17167 aux = &env->insn_aux_data[i]; 17168 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 17169 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 17170 addr = (unsigned long)map; 17171 } else { 17172 u32 off = insn[1].imm; 17173 17174 if (off >= BPF_MAX_VAR_OFF) { 17175 verbose(env, "direct value offset of %u is not allowed\n", off); 17176 fdput(f); 17177 return -EINVAL; 17178 } 17179 17180 if (!map->ops->map_direct_value_addr) { 17181 verbose(env, "no direct value access support for this map type\n"); 17182 fdput(f); 17183 return -EINVAL; 17184 } 17185 17186 err = map->ops->map_direct_value_addr(map, &addr, off); 17187 if (err) { 17188 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 17189 map->value_size, off); 17190 fdput(f); 17191 return err; 17192 } 17193 17194 aux->map_off = off; 17195 addr += off; 17196 } 17197 17198 insn[0].imm = (u32)addr; 17199 insn[1].imm = addr >> 32; 17200 17201 /* check whether we recorded this map already */ 17202 for (j = 0; j < env->used_map_cnt; j++) { 17203 if (env->used_maps[j] == map) { 17204 aux->map_index = j; 17205 fdput(f); 17206 goto next_insn; 17207 } 17208 } 17209 17210 if (env->used_map_cnt >= MAX_USED_MAPS) { 17211 fdput(f); 17212 return -E2BIG; 17213 } 17214 17215 /* hold the map. If the program is rejected by verifier, 17216 * the map will be released by release_maps() or it 17217 * will be used by the valid program until it's unloaded 17218 * and all maps are released in free_used_maps() 17219 */ 17220 bpf_map_inc(map); 17221 17222 aux->map_index = env->used_map_cnt; 17223 env->used_maps[env->used_map_cnt++] = map; 17224 17225 if (bpf_map_is_cgroup_storage(map) && 17226 bpf_cgroup_storage_assign(env->prog->aux, map)) { 17227 verbose(env, "only one cgroup storage of each type is allowed\n"); 17228 fdput(f); 17229 return -EBUSY; 17230 } 17231 17232 fdput(f); 17233 next_insn: 17234 insn++; 17235 i++; 17236 continue; 17237 } 17238 17239 /* Basic sanity check before we invest more work here. */ 17240 if (!bpf_opcode_in_insntable(insn->code)) { 17241 verbose(env, "unknown opcode %02x\n", insn->code); 17242 return -EINVAL; 17243 } 17244 } 17245 17246 /* now all pseudo BPF_LD_IMM64 instructions load valid 17247 * 'struct bpf_map *' into a register instead of user map_fd. 17248 * These pointers will be used later by verifier to validate map access. 17249 */ 17250 return 0; 17251 } 17252 17253 /* drop refcnt of maps used by the rejected program */ 17254 static void release_maps(struct bpf_verifier_env *env) 17255 { 17256 __bpf_free_used_maps(env->prog->aux, env->used_maps, 17257 env->used_map_cnt); 17258 } 17259 17260 /* drop refcnt of maps used by the rejected program */ 17261 static void release_btfs(struct bpf_verifier_env *env) 17262 { 17263 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 17264 env->used_btf_cnt); 17265 } 17266 17267 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 17268 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 17269 { 17270 struct bpf_insn *insn = env->prog->insnsi; 17271 int insn_cnt = env->prog->len; 17272 int i; 17273 17274 for (i = 0; i < insn_cnt; i++, insn++) { 17275 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 17276 continue; 17277 if (insn->src_reg == BPF_PSEUDO_FUNC) 17278 continue; 17279 insn->src_reg = 0; 17280 } 17281 } 17282 17283 /* single env->prog->insni[off] instruction was replaced with the range 17284 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 17285 * [0, off) and [off, end) to new locations, so the patched range stays zero 17286 */ 17287 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 17288 struct bpf_insn_aux_data *new_data, 17289 struct bpf_prog *new_prog, u32 off, u32 cnt) 17290 { 17291 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 17292 struct bpf_insn *insn = new_prog->insnsi; 17293 u32 old_seen = old_data[off].seen; 17294 u32 prog_len; 17295 int i; 17296 17297 /* aux info at OFF always needs adjustment, no matter fast path 17298 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 17299 * original insn at old prog. 17300 */ 17301 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 17302 17303 if (cnt == 1) 17304 return; 17305 prog_len = new_prog->len; 17306 17307 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 17308 memcpy(new_data + off + cnt - 1, old_data + off, 17309 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 17310 for (i = off; i < off + cnt - 1; i++) { 17311 /* Expand insni[off]'s seen count to the patched range. */ 17312 new_data[i].seen = old_seen; 17313 new_data[i].zext_dst = insn_has_def32(env, insn + i); 17314 } 17315 env->insn_aux_data = new_data; 17316 vfree(old_data); 17317 } 17318 17319 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 17320 { 17321 int i; 17322 17323 if (len == 1) 17324 return; 17325 /* NOTE: fake 'exit' subprog should be updated as well. */ 17326 for (i = 0; i <= env->subprog_cnt; i++) { 17327 if (env->subprog_info[i].start <= off) 17328 continue; 17329 env->subprog_info[i].start += len - 1; 17330 } 17331 } 17332 17333 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 17334 { 17335 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 17336 int i, sz = prog->aux->size_poke_tab; 17337 struct bpf_jit_poke_descriptor *desc; 17338 17339 for (i = 0; i < sz; i++) { 17340 desc = &tab[i]; 17341 if (desc->insn_idx <= off) 17342 continue; 17343 desc->insn_idx += len - 1; 17344 } 17345 } 17346 17347 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 17348 const struct bpf_insn *patch, u32 len) 17349 { 17350 struct bpf_prog *new_prog; 17351 struct bpf_insn_aux_data *new_data = NULL; 17352 17353 if (len > 1) { 17354 new_data = vzalloc(array_size(env->prog->len + len - 1, 17355 sizeof(struct bpf_insn_aux_data))); 17356 if (!new_data) 17357 return NULL; 17358 } 17359 17360 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 17361 if (IS_ERR(new_prog)) { 17362 if (PTR_ERR(new_prog) == -ERANGE) 17363 verbose(env, 17364 "insn %d cannot be patched due to 16-bit range\n", 17365 env->insn_aux_data[off].orig_idx); 17366 vfree(new_data); 17367 return NULL; 17368 } 17369 adjust_insn_aux_data(env, new_data, new_prog, off, len); 17370 adjust_subprog_starts(env, off, len); 17371 adjust_poke_descs(new_prog, off, len); 17372 return new_prog; 17373 } 17374 17375 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 17376 u32 off, u32 cnt) 17377 { 17378 int i, j; 17379 17380 /* find first prog starting at or after off (first to remove) */ 17381 for (i = 0; i < env->subprog_cnt; i++) 17382 if (env->subprog_info[i].start >= off) 17383 break; 17384 /* find first prog starting at or after off + cnt (first to stay) */ 17385 for (j = i; j < env->subprog_cnt; j++) 17386 if (env->subprog_info[j].start >= off + cnt) 17387 break; 17388 /* if j doesn't start exactly at off + cnt, we are just removing 17389 * the front of previous prog 17390 */ 17391 if (env->subprog_info[j].start != off + cnt) 17392 j--; 17393 17394 if (j > i) { 17395 struct bpf_prog_aux *aux = env->prog->aux; 17396 int move; 17397 17398 /* move fake 'exit' subprog as well */ 17399 move = env->subprog_cnt + 1 - j; 17400 17401 memmove(env->subprog_info + i, 17402 env->subprog_info + j, 17403 sizeof(*env->subprog_info) * move); 17404 env->subprog_cnt -= j - i; 17405 17406 /* remove func_info */ 17407 if (aux->func_info) { 17408 move = aux->func_info_cnt - j; 17409 17410 memmove(aux->func_info + i, 17411 aux->func_info + j, 17412 sizeof(*aux->func_info) * move); 17413 aux->func_info_cnt -= j - i; 17414 /* func_info->insn_off is set after all code rewrites, 17415 * in adjust_btf_func() - no need to adjust 17416 */ 17417 } 17418 } else { 17419 /* convert i from "first prog to remove" to "first to adjust" */ 17420 if (env->subprog_info[i].start == off) 17421 i++; 17422 } 17423 17424 /* update fake 'exit' subprog as well */ 17425 for (; i <= env->subprog_cnt; i++) 17426 env->subprog_info[i].start -= cnt; 17427 17428 return 0; 17429 } 17430 17431 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 17432 u32 cnt) 17433 { 17434 struct bpf_prog *prog = env->prog; 17435 u32 i, l_off, l_cnt, nr_linfo; 17436 struct bpf_line_info *linfo; 17437 17438 nr_linfo = prog->aux->nr_linfo; 17439 if (!nr_linfo) 17440 return 0; 17441 17442 linfo = prog->aux->linfo; 17443 17444 /* find first line info to remove, count lines to be removed */ 17445 for (i = 0; i < nr_linfo; i++) 17446 if (linfo[i].insn_off >= off) 17447 break; 17448 17449 l_off = i; 17450 l_cnt = 0; 17451 for (; i < nr_linfo; i++) 17452 if (linfo[i].insn_off < off + cnt) 17453 l_cnt++; 17454 else 17455 break; 17456 17457 /* First live insn doesn't match first live linfo, it needs to "inherit" 17458 * last removed linfo. prog is already modified, so prog->len == off 17459 * means no live instructions after (tail of the program was removed). 17460 */ 17461 if (prog->len != off && l_cnt && 17462 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 17463 l_cnt--; 17464 linfo[--i].insn_off = off + cnt; 17465 } 17466 17467 /* remove the line info which refer to the removed instructions */ 17468 if (l_cnt) { 17469 memmove(linfo + l_off, linfo + i, 17470 sizeof(*linfo) * (nr_linfo - i)); 17471 17472 prog->aux->nr_linfo -= l_cnt; 17473 nr_linfo = prog->aux->nr_linfo; 17474 } 17475 17476 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 17477 for (i = l_off; i < nr_linfo; i++) 17478 linfo[i].insn_off -= cnt; 17479 17480 /* fix up all subprogs (incl. 'exit') which start >= off */ 17481 for (i = 0; i <= env->subprog_cnt; i++) 17482 if (env->subprog_info[i].linfo_idx > l_off) { 17483 /* program may have started in the removed region but 17484 * may not be fully removed 17485 */ 17486 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 17487 env->subprog_info[i].linfo_idx -= l_cnt; 17488 else 17489 env->subprog_info[i].linfo_idx = l_off; 17490 } 17491 17492 return 0; 17493 } 17494 17495 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 17496 { 17497 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17498 unsigned int orig_prog_len = env->prog->len; 17499 int err; 17500 17501 if (bpf_prog_is_offloaded(env->prog->aux)) 17502 bpf_prog_offload_remove_insns(env, off, cnt); 17503 17504 err = bpf_remove_insns(env->prog, off, cnt); 17505 if (err) 17506 return err; 17507 17508 err = adjust_subprog_starts_after_remove(env, off, cnt); 17509 if (err) 17510 return err; 17511 17512 err = bpf_adj_linfo_after_remove(env, off, cnt); 17513 if (err) 17514 return err; 17515 17516 memmove(aux_data + off, aux_data + off + cnt, 17517 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 17518 17519 return 0; 17520 } 17521 17522 /* The verifier does more data flow analysis than llvm and will not 17523 * explore branches that are dead at run time. Malicious programs can 17524 * have dead code too. Therefore replace all dead at-run-time code 17525 * with 'ja -1'. 17526 * 17527 * Just nops are not optimal, e.g. if they would sit at the end of the 17528 * program and through another bug we would manage to jump there, then 17529 * we'd execute beyond program memory otherwise. Returning exception 17530 * code also wouldn't work since we can have subprogs where the dead 17531 * code could be located. 17532 */ 17533 static void sanitize_dead_code(struct bpf_verifier_env *env) 17534 { 17535 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17536 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 17537 struct bpf_insn *insn = env->prog->insnsi; 17538 const int insn_cnt = env->prog->len; 17539 int i; 17540 17541 for (i = 0; i < insn_cnt; i++) { 17542 if (aux_data[i].seen) 17543 continue; 17544 memcpy(insn + i, &trap, sizeof(trap)); 17545 aux_data[i].zext_dst = false; 17546 } 17547 } 17548 17549 static bool insn_is_cond_jump(u8 code) 17550 { 17551 u8 op; 17552 17553 op = BPF_OP(code); 17554 if (BPF_CLASS(code) == BPF_JMP32) 17555 return op != BPF_JA; 17556 17557 if (BPF_CLASS(code) != BPF_JMP) 17558 return false; 17559 17560 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 17561 } 17562 17563 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 17564 { 17565 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17566 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 17567 struct bpf_insn *insn = env->prog->insnsi; 17568 const int insn_cnt = env->prog->len; 17569 int i; 17570 17571 for (i = 0; i < insn_cnt; i++, insn++) { 17572 if (!insn_is_cond_jump(insn->code)) 17573 continue; 17574 17575 if (!aux_data[i + 1].seen) 17576 ja.off = insn->off; 17577 else if (!aux_data[i + 1 + insn->off].seen) 17578 ja.off = 0; 17579 else 17580 continue; 17581 17582 if (bpf_prog_is_offloaded(env->prog->aux)) 17583 bpf_prog_offload_replace_insn(env, i, &ja); 17584 17585 memcpy(insn, &ja, sizeof(ja)); 17586 } 17587 } 17588 17589 static int opt_remove_dead_code(struct bpf_verifier_env *env) 17590 { 17591 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17592 int insn_cnt = env->prog->len; 17593 int i, err; 17594 17595 for (i = 0; i < insn_cnt; i++) { 17596 int j; 17597 17598 j = 0; 17599 while (i + j < insn_cnt && !aux_data[i + j].seen) 17600 j++; 17601 if (!j) 17602 continue; 17603 17604 err = verifier_remove_insns(env, i, j); 17605 if (err) 17606 return err; 17607 insn_cnt = env->prog->len; 17608 } 17609 17610 return 0; 17611 } 17612 17613 static int opt_remove_nops(struct bpf_verifier_env *env) 17614 { 17615 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 17616 struct bpf_insn *insn = env->prog->insnsi; 17617 int insn_cnt = env->prog->len; 17618 int i, err; 17619 17620 for (i = 0; i < insn_cnt; i++) { 17621 if (memcmp(&insn[i], &ja, sizeof(ja))) 17622 continue; 17623 17624 err = verifier_remove_insns(env, i, 1); 17625 if (err) 17626 return err; 17627 insn_cnt--; 17628 i--; 17629 } 17630 17631 return 0; 17632 } 17633 17634 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 17635 const union bpf_attr *attr) 17636 { 17637 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 17638 struct bpf_insn_aux_data *aux = env->insn_aux_data; 17639 int i, patch_len, delta = 0, len = env->prog->len; 17640 struct bpf_insn *insns = env->prog->insnsi; 17641 struct bpf_prog *new_prog; 17642 bool rnd_hi32; 17643 17644 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 17645 zext_patch[1] = BPF_ZEXT_REG(0); 17646 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 17647 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 17648 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 17649 for (i = 0; i < len; i++) { 17650 int adj_idx = i + delta; 17651 struct bpf_insn insn; 17652 int load_reg; 17653 17654 insn = insns[adj_idx]; 17655 load_reg = insn_def_regno(&insn); 17656 if (!aux[adj_idx].zext_dst) { 17657 u8 code, class; 17658 u32 imm_rnd; 17659 17660 if (!rnd_hi32) 17661 continue; 17662 17663 code = insn.code; 17664 class = BPF_CLASS(code); 17665 if (load_reg == -1) 17666 continue; 17667 17668 /* NOTE: arg "reg" (the fourth one) is only used for 17669 * BPF_STX + SRC_OP, so it is safe to pass NULL 17670 * here. 17671 */ 17672 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 17673 if (class == BPF_LD && 17674 BPF_MODE(code) == BPF_IMM) 17675 i++; 17676 continue; 17677 } 17678 17679 /* ctx load could be transformed into wider load. */ 17680 if (class == BPF_LDX && 17681 aux[adj_idx].ptr_type == PTR_TO_CTX) 17682 continue; 17683 17684 imm_rnd = get_random_u32(); 17685 rnd_hi32_patch[0] = insn; 17686 rnd_hi32_patch[1].imm = imm_rnd; 17687 rnd_hi32_patch[3].dst_reg = load_reg; 17688 patch = rnd_hi32_patch; 17689 patch_len = 4; 17690 goto apply_patch_buffer; 17691 } 17692 17693 /* Add in an zero-extend instruction if a) the JIT has requested 17694 * it or b) it's a CMPXCHG. 17695 * 17696 * The latter is because: BPF_CMPXCHG always loads a value into 17697 * R0, therefore always zero-extends. However some archs' 17698 * equivalent instruction only does this load when the 17699 * comparison is successful. This detail of CMPXCHG is 17700 * orthogonal to the general zero-extension behaviour of the 17701 * CPU, so it's treated independently of bpf_jit_needs_zext. 17702 */ 17703 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 17704 continue; 17705 17706 /* Zero-extension is done by the caller. */ 17707 if (bpf_pseudo_kfunc_call(&insn)) 17708 continue; 17709 17710 if (WARN_ON(load_reg == -1)) { 17711 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 17712 return -EFAULT; 17713 } 17714 17715 zext_patch[0] = insn; 17716 zext_patch[1].dst_reg = load_reg; 17717 zext_patch[1].src_reg = load_reg; 17718 patch = zext_patch; 17719 patch_len = 2; 17720 apply_patch_buffer: 17721 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 17722 if (!new_prog) 17723 return -ENOMEM; 17724 env->prog = new_prog; 17725 insns = new_prog->insnsi; 17726 aux = env->insn_aux_data; 17727 delta += patch_len - 1; 17728 } 17729 17730 return 0; 17731 } 17732 17733 /* convert load instructions that access fields of a context type into a 17734 * sequence of instructions that access fields of the underlying structure: 17735 * struct __sk_buff -> struct sk_buff 17736 * struct bpf_sock_ops -> struct sock 17737 */ 17738 static int convert_ctx_accesses(struct bpf_verifier_env *env) 17739 { 17740 const struct bpf_verifier_ops *ops = env->ops; 17741 int i, cnt, size, ctx_field_size, delta = 0; 17742 const int insn_cnt = env->prog->len; 17743 struct bpf_insn insn_buf[16], *insn; 17744 u32 target_size, size_default, off; 17745 struct bpf_prog *new_prog; 17746 enum bpf_access_type type; 17747 bool is_narrower_load; 17748 17749 if (ops->gen_prologue || env->seen_direct_write) { 17750 if (!ops->gen_prologue) { 17751 verbose(env, "bpf verifier is misconfigured\n"); 17752 return -EINVAL; 17753 } 17754 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 17755 env->prog); 17756 if (cnt >= ARRAY_SIZE(insn_buf)) { 17757 verbose(env, "bpf verifier is misconfigured\n"); 17758 return -EINVAL; 17759 } else if (cnt) { 17760 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 17761 if (!new_prog) 17762 return -ENOMEM; 17763 17764 env->prog = new_prog; 17765 delta += cnt - 1; 17766 } 17767 } 17768 17769 if (bpf_prog_is_offloaded(env->prog->aux)) 17770 return 0; 17771 17772 insn = env->prog->insnsi + delta; 17773 17774 for (i = 0; i < insn_cnt; i++, insn++) { 17775 bpf_convert_ctx_access_t convert_ctx_access; 17776 u8 mode; 17777 17778 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 17779 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 17780 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 17781 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 17782 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 17783 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 17784 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 17785 type = BPF_READ; 17786 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 17787 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 17788 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 17789 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 17790 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 17791 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 17792 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 17793 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 17794 type = BPF_WRITE; 17795 } else { 17796 continue; 17797 } 17798 17799 if (type == BPF_WRITE && 17800 env->insn_aux_data[i + delta].sanitize_stack_spill) { 17801 struct bpf_insn patch[] = { 17802 *insn, 17803 BPF_ST_NOSPEC(), 17804 }; 17805 17806 cnt = ARRAY_SIZE(patch); 17807 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 17808 if (!new_prog) 17809 return -ENOMEM; 17810 17811 delta += cnt - 1; 17812 env->prog = new_prog; 17813 insn = new_prog->insnsi + i + delta; 17814 continue; 17815 } 17816 17817 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 17818 case PTR_TO_CTX: 17819 if (!ops->convert_ctx_access) 17820 continue; 17821 convert_ctx_access = ops->convert_ctx_access; 17822 break; 17823 case PTR_TO_SOCKET: 17824 case PTR_TO_SOCK_COMMON: 17825 convert_ctx_access = bpf_sock_convert_ctx_access; 17826 break; 17827 case PTR_TO_TCP_SOCK: 17828 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 17829 break; 17830 case PTR_TO_XDP_SOCK: 17831 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 17832 break; 17833 case PTR_TO_BTF_ID: 17834 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 17835 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 17836 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 17837 * be said once it is marked PTR_UNTRUSTED, hence we must handle 17838 * any faults for loads into such types. BPF_WRITE is disallowed 17839 * for this case. 17840 */ 17841 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 17842 if (type == BPF_READ) { 17843 if (BPF_MODE(insn->code) == BPF_MEM) 17844 insn->code = BPF_LDX | BPF_PROBE_MEM | 17845 BPF_SIZE((insn)->code); 17846 else 17847 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 17848 BPF_SIZE((insn)->code); 17849 env->prog->aux->num_exentries++; 17850 } 17851 continue; 17852 default: 17853 continue; 17854 } 17855 17856 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 17857 size = BPF_LDST_BYTES(insn); 17858 mode = BPF_MODE(insn->code); 17859 17860 /* If the read access is a narrower load of the field, 17861 * convert to a 4/8-byte load, to minimum program type specific 17862 * convert_ctx_access changes. If conversion is successful, 17863 * we will apply proper mask to the result. 17864 */ 17865 is_narrower_load = size < ctx_field_size; 17866 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 17867 off = insn->off; 17868 if (is_narrower_load) { 17869 u8 size_code; 17870 17871 if (type == BPF_WRITE) { 17872 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 17873 return -EINVAL; 17874 } 17875 17876 size_code = BPF_H; 17877 if (ctx_field_size == 4) 17878 size_code = BPF_W; 17879 else if (ctx_field_size == 8) 17880 size_code = BPF_DW; 17881 17882 insn->off = off & ~(size_default - 1); 17883 insn->code = BPF_LDX | BPF_MEM | size_code; 17884 } 17885 17886 target_size = 0; 17887 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 17888 &target_size); 17889 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 17890 (ctx_field_size && !target_size)) { 17891 verbose(env, "bpf verifier is misconfigured\n"); 17892 return -EINVAL; 17893 } 17894 17895 if (is_narrower_load && size < target_size) { 17896 u8 shift = bpf_ctx_narrow_access_offset( 17897 off, size, size_default) * 8; 17898 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 17899 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 17900 return -EINVAL; 17901 } 17902 if (ctx_field_size <= 4) { 17903 if (shift) 17904 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 17905 insn->dst_reg, 17906 shift); 17907 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 17908 (1 << size * 8) - 1); 17909 } else { 17910 if (shift) 17911 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 17912 insn->dst_reg, 17913 shift); 17914 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 17915 (1ULL << size * 8) - 1); 17916 } 17917 } 17918 if (mode == BPF_MEMSX) 17919 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 17920 insn->dst_reg, insn->dst_reg, 17921 size * 8, 0); 17922 17923 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 17924 if (!new_prog) 17925 return -ENOMEM; 17926 17927 delta += cnt - 1; 17928 17929 /* keep walking new program and skip insns we just inserted */ 17930 env->prog = new_prog; 17931 insn = new_prog->insnsi + i + delta; 17932 } 17933 17934 return 0; 17935 } 17936 17937 static int jit_subprogs(struct bpf_verifier_env *env) 17938 { 17939 struct bpf_prog *prog = env->prog, **func, *tmp; 17940 int i, j, subprog_start, subprog_end = 0, len, subprog; 17941 struct bpf_map *map_ptr; 17942 struct bpf_insn *insn; 17943 void *old_bpf_func; 17944 int err, num_exentries; 17945 17946 if (env->subprog_cnt <= 1) 17947 return 0; 17948 17949 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 17950 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 17951 continue; 17952 17953 /* Upon error here we cannot fall back to interpreter but 17954 * need a hard reject of the program. Thus -EFAULT is 17955 * propagated in any case. 17956 */ 17957 subprog = find_subprog(env, i + insn->imm + 1); 17958 if (subprog < 0) { 17959 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 17960 i + insn->imm + 1); 17961 return -EFAULT; 17962 } 17963 /* temporarily remember subprog id inside insn instead of 17964 * aux_data, since next loop will split up all insns into funcs 17965 */ 17966 insn->off = subprog; 17967 /* remember original imm in case JIT fails and fallback 17968 * to interpreter will be needed 17969 */ 17970 env->insn_aux_data[i].call_imm = insn->imm; 17971 /* point imm to __bpf_call_base+1 from JITs point of view */ 17972 insn->imm = 1; 17973 if (bpf_pseudo_func(insn)) 17974 /* jit (e.g. x86_64) may emit fewer instructions 17975 * if it learns a u32 imm is the same as a u64 imm. 17976 * Force a non zero here. 17977 */ 17978 insn[1].imm = 1; 17979 } 17980 17981 err = bpf_prog_alloc_jited_linfo(prog); 17982 if (err) 17983 goto out_undo_insn; 17984 17985 err = -ENOMEM; 17986 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 17987 if (!func) 17988 goto out_undo_insn; 17989 17990 for (i = 0; i < env->subprog_cnt; i++) { 17991 subprog_start = subprog_end; 17992 subprog_end = env->subprog_info[i + 1].start; 17993 17994 len = subprog_end - subprog_start; 17995 /* bpf_prog_run() doesn't call subprogs directly, 17996 * hence main prog stats include the runtime of subprogs. 17997 * subprogs don't have IDs and not reachable via prog_get_next_id 17998 * func[i]->stats will never be accessed and stays NULL 17999 */ 18000 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 18001 if (!func[i]) 18002 goto out_free; 18003 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 18004 len * sizeof(struct bpf_insn)); 18005 func[i]->type = prog->type; 18006 func[i]->len = len; 18007 if (bpf_prog_calc_tag(func[i])) 18008 goto out_free; 18009 func[i]->is_func = 1; 18010 func[i]->aux->func_idx = i; 18011 /* Below members will be freed only at prog->aux */ 18012 func[i]->aux->btf = prog->aux->btf; 18013 func[i]->aux->func_info = prog->aux->func_info; 18014 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 18015 func[i]->aux->poke_tab = prog->aux->poke_tab; 18016 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 18017 18018 for (j = 0; j < prog->aux->size_poke_tab; j++) { 18019 struct bpf_jit_poke_descriptor *poke; 18020 18021 poke = &prog->aux->poke_tab[j]; 18022 if (poke->insn_idx < subprog_end && 18023 poke->insn_idx >= subprog_start) 18024 poke->aux = func[i]->aux; 18025 } 18026 18027 func[i]->aux->name[0] = 'F'; 18028 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 18029 func[i]->jit_requested = 1; 18030 func[i]->blinding_requested = prog->blinding_requested; 18031 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 18032 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 18033 func[i]->aux->linfo = prog->aux->linfo; 18034 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 18035 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 18036 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 18037 num_exentries = 0; 18038 insn = func[i]->insnsi; 18039 for (j = 0; j < func[i]->len; j++, insn++) { 18040 if (BPF_CLASS(insn->code) == BPF_LDX && 18041 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 18042 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 18043 num_exentries++; 18044 } 18045 func[i]->aux->num_exentries = num_exentries; 18046 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 18047 func[i] = bpf_int_jit_compile(func[i]); 18048 if (!func[i]->jited) { 18049 err = -ENOTSUPP; 18050 goto out_free; 18051 } 18052 cond_resched(); 18053 } 18054 18055 /* at this point all bpf functions were successfully JITed 18056 * now populate all bpf_calls with correct addresses and 18057 * run last pass of JIT 18058 */ 18059 for (i = 0; i < env->subprog_cnt; i++) { 18060 insn = func[i]->insnsi; 18061 for (j = 0; j < func[i]->len; j++, insn++) { 18062 if (bpf_pseudo_func(insn)) { 18063 subprog = insn->off; 18064 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 18065 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 18066 continue; 18067 } 18068 if (!bpf_pseudo_call(insn)) 18069 continue; 18070 subprog = insn->off; 18071 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 18072 } 18073 18074 /* we use the aux data to keep a list of the start addresses 18075 * of the JITed images for each function in the program 18076 * 18077 * for some architectures, such as powerpc64, the imm field 18078 * might not be large enough to hold the offset of the start 18079 * address of the callee's JITed image from __bpf_call_base 18080 * 18081 * in such cases, we can lookup the start address of a callee 18082 * by using its subprog id, available from the off field of 18083 * the call instruction, as an index for this list 18084 */ 18085 func[i]->aux->func = func; 18086 func[i]->aux->func_cnt = env->subprog_cnt; 18087 } 18088 for (i = 0; i < env->subprog_cnt; i++) { 18089 old_bpf_func = func[i]->bpf_func; 18090 tmp = bpf_int_jit_compile(func[i]); 18091 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 18092 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 18093 err = -ENOTSUPP; 18094 goto out_free; 18095 } 18096 cond_resched(); 18097 } 18098 18099 /* finally lock prog and jit images for all functions and 18100 * populate kallsysm. Begin at the first subprogram, since 18101 * bpf_prog_load will add the kallsyms for the main program. 18102 */ 18103 for (i = 1; i < env->subprog_cnt; i++) { 18104 bpf_prog_lock_ro(func[i]); 18105 bpf_prog_kallsyms_add(func[i]); 18106 } 18107 18108 /* Last step: make now unused interpreter insns from main 18109 * prog consistent for later dump requests, so they can 18110 * later look the same as if they were interpreted only. 18111 */ 18112 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18113 if (bpf_pseudo_func(insn)) { 18114 insn[0].imm = env->insn_aux_data[i].call_imm; 18115 insn[1].imm = insn->off; 18116 insn->off = 0; 18117 continue; 18118 } 18119 if (!bpf_pseudo_call(insn)) 18120 continue; 18121 insn->off = env->insn_aux_data[i].call_imm; 18122 subprog = find_subprog(env, i + insn->off + 1); 18123 insn->imm = subprog; 18124 } 18125 18126 prog->jited = 1; 18127 prog->bpf_func = func[0]->bpf_func; 18128 prog->jited_len = func[0]->jited_len; 18129 prog->aux->extable = func[0]->aux->extable; 18130 prog->aux->num_exentries = func[0]->aux->num_exentries; 18131 prog->aux->func = func; 18132 prog->aux->func_cnt = env->subprog_cnt; 18133 bpf_prog_jit_attempt_done(prog); 18134 return 0; 18135 out_free: 18136 /* We failed JIT'ing, so at this point we need to unregister poke 18137 * descriptors from subprogs, so that kernel is not attempting to 18138 * patch it anymore as we're freeing the subprog JIT memory. 18139 */ 18140 for (i = 0; i < prog->aux->size_poke_tab; i++) { 18141 map_ptr = prog->aux->poke_tab[i].tail_call.map; 18142 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 18143 } 18144 /* At this point we're guaranteed that poke descriptors are not 18145 * live anymore. We can just unlink its descriptor table as it's 18146 * released with the main prog. 18147 */ 18148 for (i = 0; i < env->subprog_cnt; i++) { 18149 if (!func[i]) 18150 continue; 18151 func[i]->aux->poke_tab = NULL; 18152 bpf_jit_free(func[i]); 18153 } 18154 kfree(func); 18155 out_undo_insn: 18156 /* cleanup main prog to be interpreted */ 18157 prog->jit_requested = 0; 18158 prog->blinding_requested = 0; 18159 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18160 if (!bpf_pseudo_call(insn)) 18161 continue; 18162 insn->off = 0; 18163 insn->imm = env->insn_aux_data[i].call_imm; 18164 } 18165 bpf_prog_jit_attempt_done(prog); 18166 return err; 18167 } 18168 18169 static int fixup_call_args(struct bpf_verifier_env *env) 18170 { 18171 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 18172 struct bpf_prog *prog = env->prog; 18173 struct bpf_insn *insn = prog->insnsi; 18174 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 18175 int i, depth; 18176 #endif 18177 int err = 0; 18178 18179 if (env->prog->jit_requested && 18180 !bpf_prog_is_offloaded(env->prog->aux)) { 18181 err = jit_subprogs(env); 18182 if (err == 0) 18183 return 0; 18184 if (err == -EFAULT) 18185 return err; 18186 } 18187 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 18188 if (has_kfunc_call) { 18189 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 18190 return -EINVAL; 18191 } 18192 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 18193 /* When JIT fails the progs with bpf2bpf calls and tail_calls 18194 * have to be rejected, since interpreter doesn't support them yet. 18195 */ 18196 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 18197 return -EINVAL; 18198 } 18199 for (i = 0; i < prog->len; i++, insn++) { 18200 if (bpf_pseudo_func(insn)) { 18201 /* When JIT fails the progs with callback calls 18202 * have to be rejected, since interpreter doesn't support them yet. 18203 */ 18204 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 18205 return -EINVAL; 18206 } 18207 18208 if (!bpf_pseudo_call(insn)) 18209 continue; 18210 depth = get_callee_stack_depth(env, insn, i); 18211 if (depth < 0) 18212 return depth; 18213 bpf_patch_call_args(insn, depth); 18214 } 18215 err = 0; 18216 #endif 18217 return err; 18218 } 18219 18220 /* replace a generic kfunc with a specialized version if necessary */ 18221 static void specialize_kfunc(struct bpf_verifier_env *env, 18222 u32 func_id, u16 offset, unsigned long *addr) 18223 { 18224 struct bpf_prog *prog = env->prog; 18225 bool seen_direct_write; 18226 void *xdp_kfunc; 18227 bool is_rdonly; 18228 18229 if (bpf_dev_bound_kfunc_id(func_id)) { 18230 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 18231 if (xdp_kfunc) { 18232 *addr = (unsigned long)xdp_kfunc; 18233 return; 18234 } 18235 /* fallback to default kfunc when not supported by netdev */ 18236 } 18237 18238 if (offset) 18239 return; 18240 18241 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 18242 seen_direct_write = env->seen_direct_write; 18243 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 18244 18245 if (is_rdonly) 18246 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 18247 18248 /* restore env->seen_direct_write to its original value, since 18249 * may_access_direct_pkt_data mutates it 18250 */ 18251 env->seen_direct_write = seen_direct_write; 18252 } 18253 } 18254 18255 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 18256 u16 struct_meta_reg, 18257 u16 node_offset_reg, 18258 struct bpf_insn *insn, 18259 struct bpf_insn *insn_buf, 18260 int *cnt) 18261 { 18262 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 18263 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 18264 18265 insn_buf[0] = addr[0]; 18266 insn_buf[1] = addr[1]; 18267 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 18268 insn_buf[3] = *insn; 18269 *cnt = 4; 18270 } 18271 18272 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 18273 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 18274 { 18275 const struct bpf_kfunc_desc *desc; 18276 18277 if (!insn->imm) { 18278 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 18279 return -EINVAL; 18280 } 18281 18282 *cnt = 0; 18283 18284 /* insn->imm has the btf func_id. Replace it with an offset relative to 18285 * __bpf_call_base, unless the JIT needs to call functions that are 18286 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 18287 */ 18288 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 18289 if (!desc) { 18290 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 18291 insn->imm); 18292 return -EFAULT; 18293 } 18294 18295 if (!bpf_jit_supports_far_kfunc_call()) 18296 insn->imm = BPF_CALL_IMM(desc->addr); 18297 if (insn->off) 18298 return 0; 18299 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 18300 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18301 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18302 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 18303 18304 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 18305 insn_buf[1] = addr[0]; 18306 insn_buf[2] = addr[1]; 18307 insn_buf[3] = *insn; 18308 *cnt = 4; 18309 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 18310 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 18311 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18312 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18313 18314 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 18315 !kptr_struct_meta) { 18316 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 18317 insn_idx); 18318 return -EFAULT; 18319 } 18320 18321 insn_buf[0] = addr[0]; 18322 insn_buf[1] = addr[1]; 18323 insn_buf[2] = *insn; 18324 *cnt = 3; 18325 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 18326 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 18327 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18328 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18329 int struct_meta_reg = BPF_REG_3; 18330 int node_offset_reg = BPF_REG_4; 18331 18332 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 18333 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18334 struct_meta_reg = BPF_REG_4; 18335 node_offset_reg = BPF_REG_5; 18336 } 18337 18338 if (!kptr_struct_meta) { 18339 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 18340 insn_idx); 18341 return -EFAULT; 18342 } 18343 18344 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 18345 node_offset_reg, insn, insn_buf, cnt); 18346 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 18347 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 18348 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 18349 *cnt = 1; 18350 } 18351 return 0; 18352 } 18353 18354 /* Do various post-verification rewrites in a single program pass. 18355 * These rewrites simplify JIT and interpreter implementations. 18356 */ 18357 static int do_misc_fixups(struct bpf_verifier_env *env) 18358 { 18359 struct bpf_prog *prog = env->prog; 18360 enum bpf_attach_type eatype = prog->expected_attach_type; 18361 enum bpf_prog_type prog_type = resolve_prog_type(prog); 18362 struct bpf_insn *insn = prog->insnsi; 18363 const struct bpf_func_proto *fn; 18364 const int insn_cnt = prog->len; 18365 const struct bpf_map_ops *ops; 18366 struct bpf_insn_aux_data *aux; 18367 struct bpf_insn insn_buf[16]; 18368 struct bpf_prog *new_prog; 18369 struct bpf_map *map_ptr; 18370 int i, ret, cnt, delta = 0; 18371 18372 for (i = 0; i < insn_cnt; i++, insn++) { 18373 /* Make divide-by-zero exceptions impossible. */ 18374 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 18375 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 18376 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 18377 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 18378 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 18379 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 18380 struct bpf_insn *patchlet; 18381 struct bpf_insn chk_and_div[] = { 18382 /* [R,W]x div 0 -> 0 */ 18383 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18384 BPF_JNE | BPF_K, insn->src_reg, 18385 0, 2, 0), 18386 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 18387 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18388 *insn, 18389 }; 18390 struct bpf_insn chk_and_mod[] = { 18391 /* [R,W]x mod 0 -> [R,W]x */ 18392 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18393 BPF_JEQ | BPF_K, insn->src_reg, 18394 0, 1 + (is64 ? 0 : 1), 0), 18395 *insn, 18396 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18397 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 18398 }; 18399 18400 patchlet = isdiv ? chk_and_div : chk_and_mod; 18401 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 18402 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 18403 18404 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 18405 if (!new_prog) 18406 return -ENOMEM; 18407 18408 delta += cnt - 1; 18409 env->prog = prog = new_prog; 18410 insn = new_prog->insnsi + i + delta; 18411 continue; 18412 } 18413 18414 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 18415 if (BPF_CLASS(insn->code) == BPF_LD && 18416 (BPF_MODE(insn->code) == BPF_ABS || 18417 BPF_MODE(insn->code) == BPF_IND)) { 18418 cnt = env->ops->gen_ld_abs(insn, insn_buf); 18419 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 18420 verbose(env, "bpf verifier is misconfigured\n"); 18421 return -EINVAL; 18422 } 18423 18424 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18425 if (!new_prog) 18426 return -ENOMEM; 18427 18428 delta += cnt - 1; 18429 env->prog = prog = new_prog; 18430 insn = new_prog->insnsi + i + delta; 18431 continue; 18432 } 18433 18434 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 18435 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 18436 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 18437 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 18438 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 18439 struct bpf_insn *patch = &insn_buf[0]; 18440 bool issrc, isneg, isimm; 18441 u32 off_reg; 18442 18443 aux = &env->insn_aux_data[i + delta]; 18444 if (!aux->alu_state || 18445 aux->alu_state == BPF_ALU_NON_POINTER) 18446 continue; 18447 18448 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 18449 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 18450 BPF_ALU_SANITIZE_SRC; 18451 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 18452 18453 off_reg = issrc ? insn->src_reg : insn->dst_reg; 18454 if (isimm) { 18455 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18456 } else { 18457 if (isneg) 18458 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18459 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18460 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 18461 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 18462 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 18463 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 18464 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 18465 } 18466 if (!issrc) 18467 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 18468 insn->src_reg = BPF_REG_AX; 18469 if (isneg) 18470 insn->code = insn->code == code_add ? 18471 code_sub : code_add; 18472 *patch++ = *insn; 18473 if (issrc && isneg && !isimm) 18474 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18475 cnt = patch - insn_buf; 18476 18477 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18478 if (!new_prog) 18479 return -ENOMEM; 18480 18481 delta += cnt - 1; 18482 env->prog = prog = new_prog; 18483 insn = new_prog->insnsi + i + delta; 18484 continue; 18485 } 18486 18487 if (insn->code != (BPF_JMP | BPF_CALL)) 18488 continue; 18489 if (insn->src_reg == BPF_PSEUDO_CALL) 18490 continue; 18491 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 18492 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 18493 if (ret) 18494 return ret; 18495 if (cnt == 0) 18496 continue; 18497 18498 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18499 if (!new_prog) 18500 return -ENOMEM; 18501 18502 delta += cnt - 1; 18503 env->prog = prog = new_prog; 18504 insn = new_prog->insnsi + i + delta; 18505 continue; 18506 } 18507 18508 if (insn->imm == BPF_FUNC_get_route_realm) 18509 prog->dst_needed = 1; 18510 if (insn->imm == BPF_FUNC_get_prandom_u32) 18511 bpf_user_rnd_init_once(); 18512 if (insn->imm == BPF_FUNC_override_return) 18513 prog->kprobe_override = 1; 18514 if (insn->imm == BPF_FUNC_tail_call) { 18515 /* If we tail call into other programs, we 18516 * cannot make any assumptions since they can 18517 * be replaced dynamically during runtime in 18518 * the program array. 18519 */ 18520 prog->cb_access = 1; 18521 if (!allow_tail_call_in_subprogs(env)) 18522 prog->aux->stack_depth = MAX_BPF_STACK; 18523 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 18524 18525 /* mark bpf_tail_call as different opcode to avoid 18526 * conditional branch in the interpreter for every normal 18527 * call and to prevent accidental JITing by JIT compiler 18528 * that doesn't support bpf_tail_call yet 18529 */ 18530 insn->imm = 0; 18531 insn->code = BPF_JMP | BPF_TAIL_CALL; 18532 18533 aux = &env->insn_aux_data[i + delta]; 18534 if (env->bpf_capable && !prog->blinding_requested && 18535 prog->jit_requested && 18536 !bpf_map_key_poisoned(aux) && 18537 !bpf_map_ptr_poisoned(aux) && 18538 !bpf_map_ptr_unpriv(aux)) { 18539 struct bpf_jit_poke_descriptor desc = { 18540 .reason = BPF_POKE_REASON_TAIL_CALL, 18541 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 18542 .tail_call.key = bpf_map_key_immediate(aux), 18543 .insn_idx = i + delta, 18544 }; 18545 18546 ret = bpf_jit_add_poke_descriptor(prog, &desc); 18547 if (ret < 0) { 18548 verbose(env, "adding tail call poke descriptor failed\n"); 18549 return ret; 18550 } 18551 18552 insn->imm = ret + 1; 18553 continue; 18554 } 18555 18556 if (!bpf_map_ptr_unpriv(aux)) 18557 continue; 18558 18559 /* instead of changing every JIT dealing with tail_call 18560 * emit two extra insns: 18561 * if (index >= max_entries) goto out; 18562 * index &= array->index_mask; 18563 * to avoid out-of-bounds cpu speculation 18564 */ 18565 if (bpf_map_ptr_poisoned(aux)) { 18566 verbose(env, "tail_call abusing map_ptr\n"); 18567 return -EINVAL; 18568 } 18569 18570 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 18571 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 18572 map_ptr->max_entries, 2); 18573 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 18574 container_of(map_ptr, 18575 struct bpf_array, 18576 map)->index_mask); 18577 insn_buf[2] = *insn; 18578 cnt = 3; 18579 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18580 if (!new_prog) 18581 return -ENOMEM; 18582 18583 delta += cnt - 1; 18584 env->prog = prog = new_prog; 18585 insn = new_prog->insnsi + i + delta; 18586 continue; 18587 } 18588 18589 if (insn->imm == BPF_FUNC_timer_set_callback) { 18590 /* The verifier will process callback_fn as many times as necessary 18591 * with different maps and the register states prepared by 18592 * set_timer_callback_state will be accurate. 18593 * 18594 * The following use case is valid: 18595 * map1 is shared by prog1, prog2, prog3. 18596 * prog1 calls bpf_timer_init for some map1 elements 18597 * prog2 calls bpf_timer_set_callback for some map1 elements. 18598 * Those that were not bpf_timer_init-ed will return -EINVAL. 18599 * prog3 calls bpf_timer_start for some map1 elements. 18600 * Those that were not both bpf_timer_init-ed and 18601 * bpf_timer_set_callback-ed will return -EINVAL. 18602 */ 18603 struct bpf_insn ld_addrs[2] = { 18604 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 18605 }; 18606 18607 insn_buf[0] = ld_addrs[0]; 18608 insn_buf[1] = ld_addrs[1]; 18609 insn_buf[2] = *insn; 18610 cnt = 3; 18611 18612 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18613 if (!new_prog) 18614 return -ENOMEM; 18615 18616 delta += cnt - 1; 18617 env->prog = prog = new_prog; 18618 insn = new_prog->insnsi + i + delta; 18619 goto patch_call_imm; 18620 } 18621 18622 if (is_storage_get_function(insn->imm)) { 18623 if (!env->prog->aux->sleepable || 18624 env->insn_aux_data[i + delta].storage_get_func_atomic) 18625 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 18626 else 18627 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 18628 insn_buf[1] = *insn; 18629 cnt = 2; 18630 18631 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18632 if (!new_prog) 18633 return -ENOMEM; 18634 18635 delta += cnt - 1; 18636 env->prog = prog = new_prog; 18637 insn = new_prog->insnsi + i + delta; 18638 goto patch_call_imm; 18639 } 18640 18641 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 18642 * and other inlining handlers are currently limited to 64 bit 18643 * only. 18644 */ 18645 if (prog->jit_requested && BITS_PER_LONG == 64 && 18646 (insn->imm == BPF_FUNC_map_lookup_elem || 18647 insn->imm == BPF_FUNC_map_update_elem || 18648 insn->imm == BPF_FUNC_map_delete_elem || 18649 insn->imm == BPF_FUNC_map_push_elem || 18650 insn->imm == BPF_FUNC_map_pop_elem || 18651 insn->imm == BPF_FUNC_map_peek_elem || 18652 insn->imm == BPF_FUNC_redirect_map || 18653 insn->imm == BPF_FUNC_for_each_map_elem || 18654 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 18655 aux = &env->insn_aux_data[i + delta]; 18656 if (bpf_map_ptr_poisoned(aux)) 18657 goto patch_call_imm; 18658 18659 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 18660 ops = map_ptr->ops; 18661 if (insn->imm == BPF_FUNC_map_lookup_elem && 18662 ops->map_gen_lookup) { 18663 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 18664 if (cnt == -EOPNOTSUPP) 18665 goto patch_map_ops_generic; 18666 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 18667 verbose(env, "bpf verifier is misconfigured\n"); 18668 return -EINVAL; 18669 } 18670 18671 new_prog = bpf_patch_insn_data(env, i + delta, 18672 insn_buf, cnt); 18673 if (!new_prog) 18674 return -ENOMEM; 18675 18676 delta += cnt - 1; 18677 env->prog = prog = new_prog; 18678 insn = new_prog->insnsi + i + delta; 18679 continue; 18680 } 18681 18682 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 18683 (void *(*)(struct bpf_map *map, void *key))NULL)); 18684 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 18685 (long (*)(struct bpf_map *map, void *key))NULL)); 18686 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 18687 (long (*)(struct bpf_map *map, void *key, void *value, 18688 u64 flags))NULL)); 18689 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 18690 (long (*)(struct bpf_map *map, void *value, 18691 u64 flags))NULL)); 18692 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 18693 (long (*)(struct bpf_map *map, void *value))NULL)); 18694 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 18695 (long (*)(struct bpf_map *map, void *value))NULL)); 18696 BUILD_BUG_ON(!__same_type(ops->map_redirect, 18697 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 18698 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 18699 (long (*)(struct bpf_map *map, 18700 bpf_callback_t callback_fn, 18701 void *callback_ctx, 18702 u64 flags))NULL)); 18703 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 18704 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 18705 18706 patch_map_ops_generic: 18707 switch (insn->imm) { 18708 case BPF_FUNC_map_lookup_elem: 18709 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 18710 continue; 18711 case BPF_FUNC_map_update_elem: 18712 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 18713 continue; 18714 case BPF_FUNC_map_delete_elem: 18715 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 18716 continue; 18717 case BPF_FUNC_map_push_elem: 18718 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 18719 continue; 18720 case BPF_FUNC_map_pop_elem: 18721 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 18722 continue; 18723 case BPF_FUNC_map_peek_elem: 18724 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 18725 continue; 18726 case BPF_FUNC_redirect_map: 18727 insn->imm = BPF_CALL_IMM(ops->map_redirect); 18728 continue; 18729 case BPF_FUNC_for_each_map_elem: 18730 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 18731 continue; 18732 case BPF_FUNC_map_lookup_percpu_elem: 18733 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 18734 continue; 18735 } 18736 18737 goto patch_call_imm; 18738 } 18739 18740 /* Implement bpf_jiffies64 inline. */ 18741 if (prog->jit_requested && BITS_PER_LONG == 64 && 18742 insn->imm == BPF_FUNC_jiffies64) { 18743 struct bpf_insn ld_jiffies_addr[2] = { 18744 BPF_LD_IMM64(BPF_REG_0, 18745 (unsigned long)&jiffies), 18746 }; 18747 18748 insn_buf[0] = ld_jiffies_addr[0]; 18749 insn_buf[1] = ld_jiffies_addr[1]; 18750 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 18751 BPF_REG_0, 0); 18752 cnt = 3; 18753 18754 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 18755 cnt); 18756 if (!new_prog) 18757 return -ENOMEM; 18758 18759 delta += cnt - 1; 18760 env->prog = prog = new_prog; 18761 insn = new_prog->insnsi + i + delta; 18762 continue; 18763 } 18764 18765 /* Implement bpf_get_func_arg inline. */ 18766 if (prog_type == BPF_PROG_TYPE_TRACING && 18767 insn->imm == BPF_FUNC_get_func_arg) { 18768 /* Load nr_args from ctx - 8 */ 18769 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18770 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 18771 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 18772 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 18773 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 18774 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 18775 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 18776 insn_buf[7] = BPF_JMP_A(1); 18777 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 18778 cnt = 9; 18779 18780 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18781 if (!new_prog) 18782 return -ENOMEM; 18783 18784 delta += cnt - 1; 18785 env->prog = prog = new_prog; 18786 insn = new_prog->insnsi + i + delta; 18787 continue; 18788 } 18789 18790 /* Implement bpf_get_func_ret inline. */ 18791 if (prog_type == BPF_PROG_TYPE_TRACING && 18792 insn->imm == BPF_FUNC_get_func_ret) { 18793 if (eatype == BPF_TRACE_FEXIT || 18794 eatype == BPF_MODIFY_RETURN) { 18795 /* Load nr_args from ctx - 8 */ 18796 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18797 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 18798 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 18799 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 18800 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 18801 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 18802 cnt = 6; 18803 } else { 18804 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 18805 cnt = 1; 18806 } 18807 18808 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18809 if (!new_prog) 18810 return -ENOMEM; 18811 18812 delta += cnt - 1; 18813 env->prog = prog = new_prog; 18814 insn = new_prog->insnsi + i + delta; 18815 continue; 18816 } 18817 18818 /* Implement get_func_arg_cnt inline. */ 18819 if (prog_type == BPF_PROG_TYPE_TRACING && 18820 insn->imm == BPF_FUNC_get_func_arg_cnt) { 18821 /* Load nr_args from ctx - 8 */ 18822 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18823 18824 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 18825 if (!new_prog) 18826 return -ENOMEM; 18827 18828 env->prog = prog = new_prog; 18829 insn = new_prog->insnsi + i + delta; 18830 continue; 18831 } 18832 18833 /* Implement bpf_get_func_ip inline. */ 18834 if (prog_type == BPF_PROG_TYPE_TRACING && 18835 insn->imm == BPF_FUNC_get_func_ip) { 18836 /* Load IP address from ctx - 16 */ 18837 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 18838 18839 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 18840 if (!new_prog) 18841 return -ENOMEM; 18842 18843 env->prog = prog = new_prog; 18844 insn = new_prog->insnsi + i + delta; 18845 continue; 18846 } 18847 18848 patch_call_imm: 18849 fn = env->ops->get_func_proto(insn->imm, env->prog); 18850 /* all functions that have prototype and verifier allowed 18851 * programs to call them, must be real in-kernel functions 18852 */ 18853 if (!fn->func) { 18854 verbose(env, 18855 "kernel subsystem misconfigured func %s#%d\n", 18856 func_id_name(insn->imm), insn->imm); 18857 return -EFAULT; 18858 } 18859 insn->imm = fn->func - __bpf_call_base; 18860 } 18861 18862 /* Since poke tab is now finalized, publish aux to tracker. */ 18863 for (i = 0; i < prog->aux->size_poke_tab; i++) { 18864 map_ptr = prog->aux->poke_tab[i].tail_call.map; 18865 if (!map_ptr->ops->map_poke_track || 18866 !map_ptr->ops->map_poke_untrack || 18867 !map_ptr->ops->map_poke_run) { 18868 verbose(env, "bpf verifier is misconfigured\n"); 18869 return -EINVAL; 18870 } 18871 18872 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 18873 if (ret < 0) { 18874 verbose(env, "tracking tail call prog failed\n"); 18875 return ret; 18876 } 18877 } 18878 18879 sort_kfunc_descs_by_imm_off(env->prog); 18880 18881 return 0; 18882 } 18883 18884 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 18885 int position, 18886 s32 stack_base, 18887 u32 callback_subprogno, 18888 u32 *cnt) 18889 { 18890 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 18891 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 18892 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 18893 int reg_loop_max = BPF_REG_6; 18894 int reg_loop_cnt = BPF_REG_7; 18895 int reg_loop_ctx = BPF_REG_8; 18896 18897 struct bpf_prog *new_prog; 18898 u32 callback_start; 18899 u32 call_insn_offset; 18900 s32 callback_offset; 18901 18902 /* This represents an inlined version of bpf_iter.c:bpf_loop, 18903 * be careful to modify this code in sync. 18904 */ 18905 struct bpf_insn insn_buf[] = { 18906 /* Return error and jump to the end of the patch if 18907 * expected number of iterations is too big. 18908 */ 18909 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 18910 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 18911 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 18912 /* spill R6, R7, R8 to use these as loop vars */ 18913 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 18914 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 18915 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 18916 /* initialize loop vars */ 18917 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 18918 BPF_MOV32_IMM(reg_loop_cnt, 0), 18919 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 18920 /* loop header, 18921 * if reg_loop_cnt >= reg_loop_max skip the loop body 18922 */ 18923 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 18924 /* callback call, 18925 * correct callback offset would be set after patching 18926 */ 18927 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 18928 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 18929 BPF_CALL_REL(0), 18930 /* increment loop counter */ 18931 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 18932 /* jump to loop header if callback returned 0 */ 18933 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 18934 /* return value of bpf_loop, 18935 * set R0 to the number of iterations 18936 */ 18937 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 18938 /* restore original values of R6, R7, R8 */ 18939 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 18940 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 18941 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 18942 }; 18943 18944 *cnt = ARRAY_SIZE(insn_buf); 18945 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 18946 if (!new_prog) 18947 return new_prog; 18948 18949 /* callback start is known only after patching */ 18950 callback_start = env->subprog_info[callback_subprogno].start; 18951 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 18952 call_insn_offset = position + 12; 18953 callback_offset = callback_start - call_insn_offset - 1; 18954 new_prog->insnsi[call_insn_offset].imm = callback_offset; 18955 18956 return new_prog; 18957 } 18958 18959 static bool is_bpf_loop_call(struct bpf_insn *insn) 18960 { 18961 return insn->code == (BPF_JMP | BPF_CALL) && 18962 insn->src_reg == 0 && 18963 insn->imm == BPF_FUNC_loop; 18964 } 18965 18966 /* For all sub-programs in the program (including main) check 18967 * insn_aux_data to see if there are bpf_loop calls that require 18968 * inlining. If such calls are found the calls are replaced with a 18969 * sequence of instructions produced by `inline_bpf_loop` function and 18970 * subprog stack_depth is increased by the size of 3 registers. 18971 * This stack space is used to spill values of the R6, R7, R8. These 18972 * registers are used to store the loop bound, counter and context 18973 * variables. 18974 */ 18975 static int optimize_bpf_loop(struct bpf_verifier_env *env) 18976 { 18977 struct bpf_subprog_info *subprogs = env->subprog_info; 18978 int i, cur_subprog = 0, cnt, delta = 0; 18979 struct bpf_insn *insn = env->prog->insnsi; 18980 int insn_cnt = env->prog->len; 18981 u16 stack_depth = subprogs[cur_subprog].stack_depth; 18982 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 18983 u16 stack_depth_extra = 0; 18984 18985 for (i = 0; i < insn_cnt; i++, insn++) { 18986 struct bpf_loop_inline_state *inline_state = 18987 &env->insn_aux_data[i + delta].loop_inline_state; 18988 18989 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 18990 struct bpf_prog *new_prog; 18991 18992 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 18993 new_prog = inline_bpf_loop(env, 18994 i + delta, 18995 -(stack_depth + stack_depth_extra), 18996 inline_state->callback_subprogno, 18997 &cnt); 18998 if (!new_prog) 18999 return -ENOMEM; 19000 19001 delta += cnt - 1; 19002 env->prog = new_prog; 19003 insn = new_prog->insnsi + i + delta; 19004 } 19005 19006 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 19007 subprogs[cur_subprog].stack_depth += stack_depth_extra; 19008 cur_subprog++; 19009 stack_depth = subprogs[cur_subprog].stack_depth; 19010 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 19011 stack_depth_extra = 0; 19012 } 19013 } 19014 19015 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 19016 19017 return 0; 19018 } 19019 19020 static void free_states(struct bpf_verifier_env *env) 19021 { 19022 struct bpf_verifier_state_list *sl, *sln; 19023 int i; 19024 19025 sl = env->free_list; 19026 while (sl) { 19027 sln = sl->next; 19028 free_verifier_state(&sl->state, false); 19029 kfree(sl); 19030 sl = sln; 19031 } 19032 env->free_list = NULL; 19033 19034 if (!env->explored_states) 19035 return; 19036 19037 for (i = 0; i < state_htab_size(env); i++) { 19038 sl = env->explored_states[i]; 19039 19040 while (sl) { 19041 sln = sl->next; 19042 free_verifier_state(&sl->state, false); 19043 kfree(sl); 19044 sl = sln; 19045 } 19046 env->explored_states[i] = NULL; 19047 } 19048 } 19049 19050 static int do_check_common(struct bpf_verifier_env *env, int subprog) 19051 { 19052 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 19053 struct bpf_verifier_state *state; 19054 struct bpf_reg_state *regs; 19055 int ret, i; 19056 19057 env->prev_linfo = NULL; 19058 env->pass_cnt++; 19059 19060 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 19061 if (!state) 19062 return -ENOMEM; 19063 state->curframe = 0; 19064 state->speculative = false; 19065 state->branches = 1; 19066 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 19067 if (!state->frame[0]) { 19068 kfree(state); 19069 return -ENOMEM; 19070 } 19071 env->cur_state = state; 19072 init_func_state(env, state->frame[0], 19073 BPF_MAIN_FUNC /* callsite */, 19074 0 /* frameno */, 19075 subprog); 19076 state->first_insn_idx = env->subprog_info[subprog].start; 19077 state->last_insn_idx = -1; 19078 19079 regs = state->frame[state->curframe]->regs; 19080 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 19081 ret = btf_prepare_func_args(env, subprog, regs); 19082 if (ret) 19083 goto out; 19084 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 19085 if (regs[i].type == PTR_TO_CTX) 19086 mark_reg_known_zero(env, regs, i); 19087 else if (regs[i].type == SCALAR_VALUE) 19088 mark_reg_unknown(env, regs, i); 19089 else if (base_type(regs[i].type) == PTR_TO_MEM) { 19090 const u32 mem_size = regs[i].mem_size; 19091 19092 mark_reg_known_zero(env, regs, i); 19093 regs[i].mem_size = mem_size; 19094 regs[i].id = ++env->id_gen; 19095 } 19096 } 19097 } else { 19098 /* 1st arg to a function */ 19099 regs[BPF_REG_1].type = PTR_TO_CTX; 19100 mark_reg_known_zero(env, regs, BPF_REG_1); 19101 ret = btf_check_subprog_arg_match(env, subprog, regs); 19102 if (ret == -EFAULT) 19103 /* unlikely verifier bug. abort. 19104 * ret == 0 and ret < 0 are sadly acceptable for 19105 * main() function due to backward compatibility. 19106 * Like socket filter program may be written as: 19107 * int bpf_prog(struct pt_regs *ctx) 19108 * and never dereference that ctx in the program. 19109 * 'struct pt_regs' is a type mismatch for socket 19110 * filter that should be using 'struct __sk_buff'. 19111 */ 19112 goto out; 19113 } 19114 19115 ret = do_check(env); 19116 out: 19117 /* check for NULL is necessary, since cur_state can be freed inside 19118 * do_check() under memory pressure. 19119 */ 19120 if (env->cur_state) { 19121 free_verifier_state(env->cur_state, true); 19122 env->cur_state = NULL; 19123 } 19124 while (!pop_stack(env, NULL, NULL, false)); 19125 if (!ret && pop_log) 19126 bpf_vlog_reset(&env->log, 0); 19127 free_states(env); 19128 return ret; 19129 } 19130 19131 /* Verify all global functions in a BPF program one by one based on their BTF. 19132 * All global functions must pass verification. Otherwise the whole program is rejected. 19133 * Consider: 19134 * int bar(int); 19135 * int foo(int f) 19136 * { 19137 * return bar(f); 19138 * } 19139 * int bar(int b) 19140 * { 19141 * ... 19142 * } 19143 * foo() will be verified first for R1=any_scalar_value. During verification it 19144 * will be assumed that bar() already verified successfully and call to bar() 19145 * from foo() will be checked for type match only. Later bar() will be verified 19146 * independently to check that it's safe for R1=any_scalar_value. 19147 */ 19148 static int do_check_subprogs(struct bpf_verifier_env *env) 19149 { 19150 struct bpf_prog_aux *aux = env->prog->aux; 19151 int i, ret; 19152 19153 if (!aux->func_info) 19154 return 0; 19155 19156 for (i = 1; i < env->subprog_cnt; i++) { 19157 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 19158 continue; 19159 env->insn_idx = env->subprog_info[i].start; 19160 WARN_ON_ONCE(env->insn_idx == 0); 19161 ret = do_check_common(env, i); 19162 if (ret) { 19163 return ret; 19164 } else if (env->log.level & BPF_LOG_LEVEL) { 19165 verbose(env, 19166 "Func#%d is safe for any args that match its prototype\n", 19167 i); 19168 } 19169 } 19170 return 0; 19171 } 19172 19173 static int do_check_main(struct bpf_verifier_env *env) 19174 { 19175 int ret; 19176 19177 env->insn_idx = 0; 19178 ret = do_check_common(env, 0); 19179 if (!ret) 19180 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 19181 return ret; 19182 } 19183 19184 19185 static void print_verification_stats(struct bpf_verifier_env *env) 19186 { 19187 int i; 19188 19189 if (env->log.level & BPF_LOG_STATS) { 19190 verbose(env, "verification time %lld usec\n", 19191 div_u64(env->verification_time, 1000)); 19192 verbose(env, "stack depth "); 19193 for (i = 0; i < env->subprog_cnt; i++) { 19194 u32 depth = env->subprog_info[i].stack_depth; 19195 19196 verbose(env, "%d", depth); 19197 if (i + 1 < env->subprog_cnt) 19198 verbose(env, "+"); 19199 } 19200 verbose(env, "\n"); 19201 } 19202 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 19203 "total_states %d peak_states %d mark_read %d\n", 19204 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 19205 env->max_states_per_insn, env->total_states, 19206 env->peak_states, env->longest_mark_read_walk); 19207 } 19208 19209 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 19210 { 19211 const struct btf_type *t, *func_proto; 19212 const struct bpf_struct_ops *st_ops; 19213 const struct btf_member *member; 19214 struct bpf_prog *prog = env->prog; 19215 u32 btf_id, member_idx; 19216 const char *mname; 19217 19218 if (!prog->gpl_compatible) { 19219 verbose(env, "struct ops programs must have a GPL compatible license\n"); 19220 return -EINVAL; 19221 } 19222 19223 btf_id = prog->aux->attach_btf_id; 19224 st_ops = bpf_struct_ops_find(btf_id); 19225 if (!st_ops) { 19226 verbose(env, "attach_btf_id %u is not a supported struct\n", 19227 btf_id); 19228 return -ENOTSUPP; 19229 } 19230 19231 t = st_ops->type; 19232 member_idx = prog->expected_attach_type; 19233 if (member_idx >= btf_type_vlen(t)) { 19234 verbose(env, "attach to invalid member idx %u of struct %s\n", 19235 member_idx, st_ops->name); 19236 return -EINVAL; 19237 } 19238 19239 member = &btf_type_member(t)[member_idx]; 19240 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 19241 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 19242 NULL); 19243 if (!func_proto) { 19244 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 19245 mname, member_idx, st_ops->name); 19246 return -EINVAL; 19247 } 19248 19249 if (st_ops->check_member) { 19250 int err = st_ops->check_member(t, member, prog); 19251 19252 if (err) { 19253 verbose(env, "attach to unsupported member %s of struct %s\n", 19254 mname, st_ops->name); 19255 return err; 19256 } 19257 } 19258 19259 prog->aux->attach_func_proto = func_proto; 19260 prog->aux->attach_func_name = mname; 19261 env->ops = st_ops->verifier_ops; 19262 19263 return 0; 19264 } 19265 #define SECURITY_PREFIX "security_" 19266 19267 static int check_attach_modify_return(unsigned long addr, const char *func_name) 19268 { 19269 if (within_error_injection_list(addr) || 19270 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 19271 return 0; 19272 19273 return -EINVAL; 19274 } 19275 19276 /* list of non-sleepable functions that are otherwise on 19277 * ALLOW_ERROR_INJECTION list 19278 */ 19279 BTF_SET_START(btf_non_sleepable_error_inject) 19280 /* Three functions below can be called from sleepable and non-sleepable context. 19281 * Assume non-sleepable from bpf safety point of view. 19282 */ 19283 BTF_ID(func, __filemap_add_folio) 19284 BTF_ID(func, should_fail_alloc_page) 19285 BTF_ID(func, should_failslab) 19286 BTF_SET_END(btf_non_sleepable_error_inject) 19287 19288 static int check_non_sleepable_error_inject(u32 btf_id) 19289 { 19290 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 19291 } 19292 19293 int bpf_check_attach_target(struct bpf_verifier_log *log, 19294 const struct bpf_prog *prog, 19295 const struct bpf_prog *tgt_prog, 19296 u32 btf_id, 19297 struct bpf_attach_target_info *tgt_info) 19298 { 19299 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 19300 const char prefix[] = "btf_trace_"; 19301 int ret = 0, subprog = -1, i; 19302 const struct btf_type *t; 19303 bool conservative = true; 19304 const char *tname; 19305 struct btf *btf; 19306 long addr = 0; 19307 struct module *mod = NULL; 19308 19309 if (!btf_id) { 19310 bpf_log(log, "Tracing programs must provide btf_id\n"); 19311 return -EINVAL; 19312 } 19313 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 19314 if (!btf) { 19315 bpf_log(log, 19316 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 19317 return -EINVAL; 19318 } 19319 t = btf_type_by_id(btf, btf_id); 19320 if (!t) { 19321 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 19322 return -EINVAL; 19323 } 19324 tname = btf_name_by_offset(btf, t->name_off); 19325 if (!tname) { 19326 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 19327 return -EINVAL; 19328 } 19329 if (tgt_prog) { 19330 struct bpf_prog_aux *aux = tgt_prog->aux; 19331 19332 if (bpf_prog_is_dev_bound(prog->aux) && 19333 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 19334 bpf_log(log, "Target program bound device mismatch"); 19335 return -EINVAL; 19336 } 19337 19338 for (i = 0; i < aux->func_info_cnt; i++) 19339 if (aux->func_info[i].type_id == btf_id) { 19340 subprog = i; 19341 break; 19342 } 19343 if (subprog == -1) { 19344 bpf_log(log, "Subprog %s doesn't exist\n", tname); 19345 return -EINVAL; 19346 } 19347 conservative = aux->func_info_aux[subprog].unreliable; 19348 if (prog_extension) { 19349 if (conservative) { 19350 bpf_log(log, 19351 "Cannot replace static functions\n"); 19352 return -EINVAL; 19353 } 19354 if (!prog->jit_requested) { 19355 bpf_log(log, 19356 "Extension programs should be JITed\n"); 19357 return -EINVAL; 19358 } 19359 } 19360 if (!tgt_prog->jited) { 19361 bpf_log(log, "Can attach to only JITed progs\n"); 19362 return -EINVAL; 19363 } 19364 if (tgt_prog->type == prog->type) { 19365 /* Cannot fentry/fexit another fentry/fexit program. 19366 * Cannot attach program extension to another extension. 19367 * It's ok to attach fentry/fexit to extension program. 19368 */ 19369 bpf_log(log, "Cannot recursively attach\n"); 19370 return -EINVAL; 19371 } 19372 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 19373 prog_extension && 19374 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 19375 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 19376 /* Program extensions can extend all program types 19377 * except fentry/fexit. The reason is the following. 19378 * The fentry/fexit programs are used for performance 19379 * analysis, stats and can be attached to any program 19380 * type except themselves. When extension program is 19381 * replacing XDP function it is necessary to allow 19382 * performance analysis of all functions. Both original 19383 * XDP program and its program extension. Hence 19384 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 19385 * allowed. If extending of fentry/fexit was allowed it 19386 * would be possible to create long call chain 19387 * fentry->extension->fentry->extension beyond 19388 * reasonable stack size. Hence extending fentry is not 19389 * allowed. 19390 */ 19391 bpf_log(log, "Cannot extend fentry/fexit\n"); 19392 return -EINVAL; 19393 } 19394 } else { 19395 if (prog_extension) { 19396 bpf_log(log, "Cannot replace kernel functions\n"); 19397 return -EINVAL; 19398 } 19399 } 19400 19401 switch (prog->expected_attach_type) { 19402 case BPF_TRACE_RAW_TP: 19403 if (tgt_prog) { 19404 bpf_log(log, 19405 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 19406 return -EINVAL; 19407 } 19408 if (!btf_type_is_typedef(t)) { 19409 bpf_log(log, "attach_btf_id %u is not a typedef\n", 19410 btf_id); 19411 return -EINVAL; 19412 } 19413 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 19414 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 19415 btf_id, tname); 19416 return -EINVAL; 19417 } 19418 tname += sizeof(prefix) - 1; 19419 t = btf_type_by_id(btf, t->type); 19420 if (!btf_type_is_ptr(t)) 19421 /* should never happen in valid vmlinux build */ 19422 return -EINVAL; 19423 t = btf_type_by_id(btf, t->type); 19424 if (!btf_type_is_func_proto(t)) 19425 /* should never happen in valid vmlinux build */ 19426 return -EINVAL; 19427 19428 break; 19429 case BPF_TRACE_ITER: 19430 if (!btf_type_is_func(t)) { 19431 bpf_log(log, "attach_btf_id %u is not a function\n", 19432 btf_id); 19433 return -EINVAL; 19434 } 19435 t = btf_type_by_id(btf, t->type); 19436 if (!btf_type_is_func_proto(t)) 19437 return -EINVAL; 19438 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19439 if (ret) 19440 return ret; 19441 break; 19442 default: 19443 if (!prog_extension) 19444 return -EINVAL; 19445 fallthrough; 19446 case BPF_MODIFY_RETURN: 19447 case BPF_LSM_MAC: 19448 case BPF_LSM_CGROUP: 19449 case BPF_TRACE_FENTRY: 19450 case BPF_TRACE_FEXIT: 19451 if (!btf_type_is_func(t)) { 19452 bpf_log(log, "attach_btf_id %u is not a function\n", 19453 btf_id); 19454 return -EINVAL; 19455 } 19456 if (prog_extension && 19457 btf_check_type_match(log, prog, btf, t)) 19458 return -EINVAL; 19459 t = btf_type_by_id(btf, t->type); 19460 if (!btf_type_is_func_proto(t)) 19461 return -EINVAL; 19462 19463 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 19464 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 19465 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 19466 return -EINVAL; 19467 19468 if (tgt_prog && conservative) 19469 t = NULL; 19470 19471 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19472 if (ret < 0) 19473 return ret; 19474 19475 if (tgt_prog) { 19476 if (subprog == 0) 19477 addr = (long) tgt_prog->bpf_func; 19478 else 19479 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 19480 } else { 19481 if (btf_is_module(btf)) { 19482 mod = btf_try_get_module(btf); 19483 if (mod) 19484 addr = find_kallsyms_symbol_value(mod, tname); 19485 else 19486 addr = 0; 19487 } else { 19488 addr = kallsyms_lookup_name(tname); 19489 } 19490 if (!addr) { 19491 module_put(mod); 19492 bpf_log(log, 19493 "The address of function %s cannot be found\n", 19494 tname); 19495 return -ENOENT; 19496 } 19497 } 19498 19499 if (prog->aux->sleepable) { 19500 ret = -EINVAL; 19501 switch (prog->type) { 19502 case BPF_PROG_TYPE_TRACING: 19503 19504 /* fentry/fexit/fmod_ret progs can be sleepable if they are 19505 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 19506 */ 19507 if (!check_non_sleepable_error_inject(btf_id) && 19508 within_error_injection_list(addr)) 19509 ret = 0; 19510 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 19511 * in the fmodret id set with the KF_SLEEPABLE flag. 19512 */ 19513 else { 19514 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 19515 prog); 19516 19517 if (flags && (*flags & KF_SLEEPABLE)) 19518 ret = 0; 19519 } 19520 break; 19521 case BPF_PROG_TYPE_LSM: 19522 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 19523 * Only some of them are sleepable. 19524 */ 19525 if (bpf_lsm_is_sleepable_hook(btf_id)) 19526 ret = 0; 19527 break; 19528 default: 19529 break; 19530 } 19531 if (ret) { 19532 module_put(mod); 19533 bpf_log(log, "%s is not sleepable\n", tname); 19534 return ret; 19535 } 19536 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 19537 if (tgt_prog) { 19538 module_put(mod); 19539 bpf_log(log, "can't modify return codes of BPF programs\n"); 19540 return -EINVAL; 19541 } 19542 ret = -EINVAL; 19543 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 19544 !check_attach_modify_return(addr, tname)) 19545 ret = 0; 19546 if (ret) { 19547 module_put(mod); 19548 bpf_log(log, "%s() is not modifiable\n", tname); 19549 return ret; 19550 } 19551 } 19552 19553 break; 19554 } 19555 tgt_info->tgt_addr = addr; 19556 tgt_info->tgt_name = tname; 19557 tgt_info->tgt_type = t; 19558 tgt_info->tgt_mod = mod; 19559 return 0; 19560 } 19561 19562 BTF_SET_START(btf_id_deny) 19563 BTF_ID_UNUSED 19564 #ifdef CONFIG_SMP 19565 BTF_ID(func, migrate_disable) 19566 BTF_ID(func, migrate_enable) 19567 #endif 19568 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 19569 BTF_ID(func, rcu_read_unlock_strict) 19570 #endif 19571 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 19572 BTF_ID(func, preempt_count_add) 19573 BTF_ID(func, preempt_count_sub) 19574 #endif 19575 #ifdef CONFIG_PREEMPT_RCU 19576 BTF_ID(func, __rcu_read_lock) 19577 BTF_ID(func, __rcu_read_unlock) 19578 #endif 19579 BTF_SET_END(btf_id_deny) 19580 19581 static bool can_be_sleepable(struct bpf_prog *prog) 19582 { 19583 if (prog->type == BPF_PROG_TYPE_TRACING) { 19584 switch (prog->expected_attach_type) { 19585 case BPF_TRACE_FENTRY: 19586 case BPF_TRACE_FEXIT: 19587 case BPF_MODIFY_RETURN: 19588 case BPF_TRACE_ITER: 19589 return true; 19590 default: 19591 return false; 19592 } 19593 } 19594 return prog->type == BPF_PROG_TYPE_LSM || 19595 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 19596 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 19597 } 19598 19599 static int check_attach_btf_id(struct bpf_verifier_env *env) 19600 { 19601 struct bpf_prog *prog = env->prog; 19602 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 19603 struct bpf_attach_target_info tgt_info = {}; 19604 u32 btf_id = prog->aux->attach_btf_id; 19605 struct bpf_trampoline *tr; 19606 int ret; 19607 u64 key; 19608 19609 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 19610 if (prog->aux->sleepable) 19611 /* attach_btf_id checked to be zero already */ 19612 return 0; 19613 verbose(env, "Syscall programs can only be sleepable\n"); 19614 return -EINVAL; 19615 } 19616 19617 if (prog->aux->sleepable && !can_be_sleepable(prog)) { 19618 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 19619 return -EINVAL; 19620 } 19621 19622 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 19623 return check_struct_ops_btf_id(env); 19624 19625 if (prog->type != BPF_PROG_TYPE_TRACING && 19626 prog->type != BPF_PROG_TYPE_LSM && 19627 prog->type != BPF_PROG_TYPE_EXT) 19628 return 0; 19629 19630 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 19631 if (ret) 19632 return ret; 19633 19634 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 19635 /* to make freplace equivalent to their targets, they need to 19636 * inherit env->ops and expected_attach_type for the rest of the 19637 * verification 19638 */ 19639 env->ops = bpf_verifier_ops[tgt_prog->type]; 19640 prog->expected_attach_type = tgt_prog->expected_attach_type; 19641 } 19642 19643 /* store info about the attachment target that will be used later */ 19644 prog->aux->attach_func_proto = tgt_info.tgt_type; 19645 prog->aux->attach_func_name = tgt_info.tgt_name; 19646 prog->aux->mod = tgt_info.tgt_mod; 19647 19648 if (tgt_prog) { 19649 prog->aux->saved_dst_prog_type = tgt_prog->type; 19650 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 19651 } 19652 19653 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 19654 prog->aux->attach_btf_trace = true; 19655 return 0; 19656 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 19657 if (!bpf_iter_prog_supported(prog)) 19658 return -EINVAL; 19659 return 0; 19660 } 19661 19662 if (prog->type == BPF_PROG_TYPE_LSM) { 19663 ret = bpf_lsm_verify_prog(&env->log, prog); 19664 if (ret < 0) 19665 return ret; 19666 } else if (prog->type == BPF_PROG_TYPE_TRACING && 19667 btf_id_set_contains(&btf_id_deny, btf_id)) { 19668 return -EINVAL; 19669 } 19670 19671 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 19672 tr = bpf_trampoline_get(key, &tgt_info); 19673 if (!tr) 19674 return -ENOMEM; 19675 19676 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 19677 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 19678 19679 prog->aux->dst_trampoline = tr; 19680 return 0; 19681 } 19682 19683 struct btf *bpf_get_btf_vmlinux(void) 19684 { 19685 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 19686 mutex_lock(&bpf_verifier_lock); 19687 if (!btf_vmlinux) 19688 btf_vmlinux = btf_parse_vmlinux(); 19689 mutex_unlock(&bpf_verifier_lock); 19690 } 19691 return btf_vmlinux; 19692 } 19693 19694 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 19695 { 19696 u64 start_time = ktime_get_ns(); 19697 struct bpf_verifier_env *env; 19698 int i, len, ret = -EINVAL, err; 19699 u32 log_true_size; 19700 bool is_priv; 19701 19702 /* no program is valid */ 19703 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 19704 return -EINVAL; 19705 19706 /* 'struct bpf_verifier_env' can be global, but since it's not small, 19707 * allocate/free it every time bpf_check() is called 19708 */ 19709 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 19710 if (!env) 19711 return -ENOMEM; 19712 19713 env->bt.env = env; 19714 19715 len = (*prog)->len; 19716 env->insn_aux_data = 19717 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 19718 ret = -ENOMEM; 19719 if (!env->insn_aux_data) 19720 goto err_free_env; 19721 for (i = 0; i < len; i++) 19722 env->insn_aux_data[i].orig_idx = i; 19723 env->prog = *prog; 19724 env->ops = bpf_verifier_ops[env->prog->type]; 19725 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 19726 is_priv = bpf_capable(); 19727 19728 bpf_get_btf_vmlinux(); 19729 19730 /* grab the mutex to protect few globals used by verifier */ 19731 if (!is_priv) 19732 mutex_lock(&bpf_verifier_lock); 19733 19734 /* user could have requested verbose verifier output 19735 * and supplied buffer to store the verification trace 19736 */ 19737 ret = bpf_vlog_init(&env->log, attr->log_level, 19738 (char __user *) (unsigned long) attr->log_buf, 19739 attr->log_size); 19740 if (ret) 19741 goto err_unlock; 19742 19743 mark_verifier_state_clean(env); 19744 19745 if (IS_ERR(btf_vmlinux)) { 19746 /* Either gcc or pahole or kernel are broken. */ 19747 verbose(env, "in-kernel BTF is malformed\n"); 19748 ret = PTR_ERR(btf_vmlinux); 19749 goto skip_full_check; 19750 } 19751 19752 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 19753 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 19754 env->strict_alignment = true; 19755 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 19756 env->strict_alignment = false; 19757 19758 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 19759 env->allow_uninit_stack = bpf_allow_uninit_stack(); 19760 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 19761 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 19762 env->bpf_capable = bpf_capable(); 19763 19764 if (is_priv) 19765 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 19766 19767 env->explored_states = kvcalloc(state_htab_size(env), 19768 sizeof(struct bpf_verifier_state_list *), 19769 GFP_USER); 19770 ret = -ENOMEM; 19771 if (!env->explored_states) 19772 goto skip_full_check; 19773 19774 ret = add_subprog_and_kfunc(env); 19775 if (ret < 0) 19776 goto skip_full_check; 19777 19778 ret = check_subprogs(env); 19779 if (ret < 0) 19780 goto skip_full_check; 19781 19782 ret = check_btf_info(env, attr, uattr); 19783 if (ret < 0) 19784 goto skip_full_check; 19785 19786 ret = check_attach_btf_id(env); 19787 if (ret) 19788 goto skip_full_check; 19789 19790 ret = resolve_pseudo_ldimm64(env); 19791 if (ret < 0) 19792 goto skip_full_check; 19793 19794 if (bpf_prog_is_offloaded(env->prog->aux)) { 19795 ret = bpf_prog_offload_verifier_prep(env->prog); 19796 if (ret) 19797 goto skip_full_check; 19798 } 19799 19800 ret = check_cfg(env); 19801 if (ret < 0) 19802 goto skip_full_check; 19803 19804 ret = do_check_subprogs(env); 19805 ret = ret ?: do_check_main(env); 19806 19807 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 19808 ret = bpf_prog_offload_finalize(env); 19809 19810 skip_full_check: 19811 kvfree(env->explored_states); 19812 19813 if (ret == 0) 19814 ret = check_max_stack_depth(env); 19815 19816 /* instruction rewrites happen after this point */ 19817 if (ret == 0) 19818 ret = optimize_bpf_loop(env); 19819 19820 if (is_priv) { 19821 if (ret == 0) 19822 opt_hard_wire_dead_code_branches(env); 19823 if (ret == 0) 19824 ret = opt_remove_dead_code(env); 19825 if (ret == 0) 19826 ret = opt_remove_nops(env); 19827 } else { 19828 if (ret == 0) 19829 sanitize_dead_code(env); 19830 } 19831 19832 if (ret == 0) 19833 /* program is valid, convert *(u32*)(ctx + off) accesses */ 19834 ret = convert_ctx_accesses(env); 19835 19836 if (ret == 0) 19837 ret = do_misc_fixups(env); 19838 19839 /* do 32-bit optimization after insn patching has done so those patched 19840 * insns could be handled correctly. 19841 */ 19842 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 19843 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 19844 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 19845 : false; 19846 } 19847 19848 if (ret == 0) 19849 ret = fixup_call_args(env); 19850 19851 env->verification_time = ktime_get_ns() - start_time; 19852 print_verification_stats(env); 19853 env->prog->aux->verified_insns = env->insn_processed; 19854 19855 /* preserve original error even if log finalization is successful */ 19856 err = bpf_vlog_finalize(&env->log, &log_true_size); 19857 if (err) 19858 ret = err; 19859 19860 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 19861 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 19862 &log_true_size, sizeof(log_true_size))) { 19863 ret = -EFAULT; 19864 goto err_release_maps; 19865 } 19866 19867 if (ret) 19868 goto err_release_maps; 19869 19870 if (env->used_map_cnt) { 19871 /* if program passed verifier, update used_maps in bpf_prog_info */ 19872 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 19873 sizeof(env->used_maps[0]), 19874 GFP_KERNEL); 19875 19876 if (!env->prog->aux->used_maps) { 19877 ret = -ENOMEM; 19878 goto err_release_maps; 19879 } 19880 19881 memcpy(env->prog->aux->used_maps, env->used_maps, 19882 sizeof(env->used_maps[0]) * env->used_map_cnt); 19883 env->prog->aux->used_map_cnt = env->used_map_cnt; 19884 } 19885 if (env->used_btf_cnt) { 19886 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 19887 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 19888 sizeof(env->used_btfs[0]), 19889 GFP_KERNEL); 19890 if (!env->prog->aux->used_btfs) { 19891 ret = -ENOMEM; 19892 goto err_release_maps; 19893 } 19894 19895 memcpy(env->prog->aux->used_btfs, env->used_btfs, 19896 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 19897 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 19898 } 19899 if (env->used_map_cnt || env->used_btf_cnt) { 19900 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 19901 * bpf_ld_imm64 instructions 19902 */ 19903 convert_pseudo_ld_imm64(env); 19904 } 19905 19906 adjust_btf_func(env); 19907 19908 err_release_maps: 19909 if (!env->prog->aux->used_maps) 19910 /* if we didn't copy map pointers into bpf_prog_info, release 19911 * them now. Otherwise free_used_maps() will release them. 19912 */ 19913 release_maps(env); 19914 if (!env->prog->aux->used_btfs) 19915 release_btfs(env); 19916 19917 /* extension progs temporarily inherit the attach_type of their targets 19918 for verification purposes, so set it back to zero before returning 19919 */ 19920 if (env->prog->type == BPF_PROG_TYPE_EXT) 19921 env->prog->expected_attach_type = 0; 19922 19923 *prog = env->prog; 19924 err_unlock: 19925 if (!is_priv) 19926 mutex_unlock(&bpf_verifier_lock); 19927 vfree(env->insn_aux_data); 19928 err_free_env: 19929 kfree(env); 19930 return ret; 19931 } 19932