xref: /openbmc/linux/kernel/bpf/verifier.c (revision 6a551c11)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/filter.h>
18 #include <net/netlink.h>
19 #include <linux/file.h>
20 #include <linux/vmalloc.h>
21 
22 /* bpf_check() is a static code analyzer that walks eBPF program
23  * instruction by instruction and updates register/stack state.
24  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
25  *
26  * The first pass is depth-first-search to check that the program is a DAG.
27  * It rejects the following programs:
28  * - larger than BPF_MAXINSNS insns
29  * - if loop is present (detected via back-edge)
30  * - unreachable insns exist (shouldn't be a forest. program = one function)
31  * - out of bounds or malformed jumps
32  * The second pass is all possible path descent from the 1st insn.
33  * Since it's analyzing all pathes through the program, the length of the
34  * analysis is limited to 32k insn, which may be hit even if total number of
35  * insn is less then 4K, but there are too many branches that change stack/regs.
36  * Number of 'branches to be analyzed' is limited to 1k
37  *
38  * On entry to each instruction, each register has a type, and the instruction
39  * changes the types of the registers depending on instruction semantics.
40  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
41  * copied to R1.
42  *
43  * All registers are 64-bit.
44  * R0 - return register
45  * R1-R5 argument passing registers
46  * R6-R9 callee saved registers
47  * R10 - frame pointer read-only
48  *
49  * At the start of BPF program the register R1 contains a pointer to bpf_context
50  * and has type PTR_TO_CTX.
51  *
52  * Verifier tracks arithmetic operations on pointers in case:
53  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
54  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
55  * 1st insn copies R10 (which has FRAME_PTR) type into R1
56  * and 2nd arithmetic instruction is pattern matched to recognize
57  * that it wants to construct a pointer to some element within stack.
58  * So after 2nd insn, the register R1 has type PTR_TO_STACK
59  * (and -20 constant is saved for further stack bounds checking).
60  * Meaning that this reg is a pointer to stack plus known immediate constant.
61  *
62  * Most of the time the registers have UNKNOWN_VALUE type, which
63  * means the register has some value, but it's not a valid pointer.
64  * (like pointer plus pointer becomes UNKNOWN_VALUE type)
65  *
66  * When verifier sees load or store instructions the type of base register
67  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
68  * types recognized by check_mem_access() function.
69  *
70  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
71  * and the range of [ptr, ptr + map's value_size) is accessible.
72  *
73  * registers used to pass values to function calls are checked against
74  * function argument constraints.
75  *
76  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
77  * It means that the register type passed to this function must be
78  * PTR_TO_STACK and it will be used inside the function as
79  * 'pointer to map element key'
80  *
81  * For example the argument constraints for bpf_map_lookup_elem():
82  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
83  *   .arg1_type = ARG_CONST_MAP_PTR,
84  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
85  *
86  * ret_type says that this function returns 'pointer to map elem value or null'
87  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
88  * 2nd argument should be a pointer to stack, which will be used inside
89  * the helper function as a pointer to map element key.
90  *
91  * On the kernel side the helper function looks like:
92  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
93  * {
94  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
95  *    void *key = (void *) (unsigned long) r2;
96  *    void *value;
97  *
98  *    here kernel can access 'key' and 'map' pointers safely, knowing that
99  *    [key, key + map->key_size) bytes are valid and were initialized on
100  *    the stack of eBPF program.
101  * }
102  *
103  * Corresponding eBPF program may look like:
104  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
105  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
106  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
107  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
108  * here verifier looks at prototype of map_lookup_elem() and sees:
109  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
110  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
111  *
112  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
113  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
114  * and were initialized prior to this call.
115  * If it's ok, then verifier allows this BPF_CALL insn and looks at
116  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
117  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
118  * returns ether pointer to map value or NULL.
119  *
120  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
121  * insn, the register holding that pointer in the true branch changes state to
122  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
123  * branch. See check_cond_jmp_op().
124  *
125  * After the call R0 is set to return type of the function and registers R1-R5
126  * are set to NOT_INIT to indicate that they are no longer readable.
127  */
128 
129 struct reg_state {
130 	enum bpf_reg_type type;
131 	union {
132 		/* valid when type == CONST_IMM | PTR_TO_STACK | UNKNOWN_VALUE */
133 		s64 imm;
134 
135 		/* valid when type == PTR_TO_PACKET* */
136 		struct {
137 			u32 id;
138 			u16 off;
139 			u16 range;
140 		};
141 
142 		/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
143 		 *   PTR_TO_MAP_VALUE_OR_NULL
144 		 */
145 		struct bpf_map *map_ptr;
146 	};
147 };
148 
149 enum bpf_stack_slot_type {
150 	STACK_INVALID,    /* nothing was stored in this stack slot */
151 	STACK_SPILL,      /* register spilled into stack */
152 	STACK_MISC	  /* BPF program wrote some data into this slot */
153 };
154 
155 #define BPF_REG_SIZE 8	/* size of eBPF register in bytes */
156 
157 /* state of the program:
158  * type of all registers and stack info
159  */
160 struct verifier_state {
161 	struct reg_state regs[MAX_BPF_REG];
162 	u8 stack_slot_type[MAX_BPF_STACK];
163 	struct reg_state spilled_regs[MAX_BPF_STACK / BPF_REG_SIZE];
164 };
165 
166 /* linked list of verifier states used to prune search */
167 struct verifier_state_list {
168 	struct verifier_state state;
169 	struct verifier_state_list *next;
170 };
171 
172 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
173 struct verifier_stack_elem {
174 	/* verifer state is 'st'
175 	 * before processing instruction 'insn_idx'
176 	 * and after processing instruction 'prev_insn_idx'
177 	 */
178 	struct verifier_state st;
179 	int insn_idx;
180 	int prev_insn_idx;
181 	struct verifier_stack_elem *next;
182 };
183 
184 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
185 
186 /* single container for all structs
187  * one verifier_env per bpf_check() call
188  */
189 struct verifier_env {
190 	struct bpf_prog *prog;		/* eBPF program being verified */
191 	struct verifier_stack_elem *head; /* stack of verifier states to be processed */
192 	int stack_size;			/* number of states to be processed */
193 	struct verifier_state cur_state; /* current verifier state */
194 	struct verifier_state_list **explored_states; /* search pruning optimization */
195 	struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
196 	u32 used_map_cnt;		/* number of used maps */
197 	bool allow_ptr_leaks;
198 };
199 
200 #define BPF_COMPLEXITY_LIMIT_INSNS	65536
201 #define BPF_COMPLEXITY_LIMIT_STACK	1024
202 
203 struct bpf_call_arg_meta {
204 	struct bpf_map *map_ptr;
205 	bool raw_mode;
206 	int regno;
207 	int access_size;
208 };
209 
210 /* verbose verifier prints what it's seeing
211  * bpf_check() is called under lock, so no race to access these global vars
212  */
213 static u32 log_level, log_size, log_len;
214 static char *log_buf;
215 
216 static DEFINE_MUTEX(bpf_verifier_lock);
217 
218 /* log_level controls verbosity level of eBPF verifier.
219  * verbose() is used to dump the verification trace to the log, so the user
220  * can figure out what's wrong with the program
221  */
222 static __printf(1, 2) void verbose(const char *fmt, ...)
223 {
224 	va_list args;
225 
226 	if (log_level == 0 || log_len >= log_size - 1)
227 		return;
228 
229 	va_start(args, fmt);
230 	log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
231 	va_end(args);
232 }
233 
234 /* string representation of 'enum bpf_reg_type' */
235 static const char * const reg_type_str[] = {
236 	[NOT_INIT]		= "?",
237 	[UNKNOWN_VALUE]		= "inv",
238 	[PTR_TO_CTX]		= "ctx",
239 	[CONST_PTR_TO_MAP]	= "map_ptr",
240 	[PTR_TO_MAP_VALUE]	= "map_value",
241 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
242 	[FRAME_PTR]		= "fp",
243 	[PTR_TO_STACK]		= "fp",
244 	[CONST_IMM]		= "imm",
245 	[PTR_TO_PACKET]		= "pkt",
246 	[PTR_TO_PACKET_END]	= "pkt_end",
247 };
248 
249 static void print_verifier_state(struct verifier_state *state)
250 {
251 	struct reg_state *reg;
252 	enum bpf_reg_type t;
253 	int i;
254 
255 	for (i = 0; i < MAX_BPF_REG; i++) {
256 		reg = &state->regs[i];
257 		t = reg->type;
258 		if (t == NOT_INIT)
259 			continue;
260 		verbose(" R%d=%s", i, reg_type_str[t]);
261 		if (t == CONST_IMM || t == PTR_TO_STACK)
262 			verbose("%lld", reg->imm);
263 		else if (t == PTR_TO_PACKET)
264 			verbose("(id=%d,off=%d,r=%d)",
265 				reg->id, reg->off, reg->range);
266 		else if (t == UNKNOWN_VALUE && reg->imm)
267 			verbose("%lld", reg->imm);
268 		else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
269 			 t == PTR_TO_MAP_VALUE_OR_NULL)
270 			verbose("(ks=%d,vs=%d)",
271 				reg->map_ptr->key_size,
272 				reg->map_ptr->value_size);
273 	}
274 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
275 		if (state->stack_slot_type[i] == STACK_SPILL)
276 			verbose(" fp%d=%s", -MAX_BPF_STACK + i,
277 				reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
278 	}
279 	verbose("\n");
280 }
281 
282 static const char *const bpf_class_string[] = {
283 	[BPF_LD]    = "ld",
284 	[BPF_LDX]   = "ldx",
285 	[BPF_ST]    = "st",
286 	[BPF_STX]   = "stx",
287 	[BPF_ALU]   = "alu",
288 	[BPF_JMP]   = "jmp",
289 	[BPF_RET]   = "BUG",
290 	[BPF_ALU64] = "alu64",
291 };
292 
293 static const char *const bpf_alu_string[16] = {
294 	[BPF_ADD >> 4]  = "+=",
295 	[BPF_SUB >> 4]  = "-=",
296 	[BPF_MUL >> 4]  = "*=",
297 	[BPF_DIV >> 4]  = "/=",
298 	[BPF_OR  >> 4]  = "|=",
299 	[BPF_AND >> 4]  = "&=",
300 	[BPF_LSH >> 4]  = "<<=",
301 	[BPF_RSH >> 4]  = ">>=",
302 	[BPF_NEG >> 4]  = "neg",
303 	[BPF_MOD >> 4]  = "%=",
304 	[BPF_XOR >> 4]  = "^=",
305 	[BPF_MOV >> 4]  = "=",
306 	[BPF_ARSH >> 4] = "s>>=",
307 	[BPF_END >> 4]  = "endian",
308 };
309 
310 static const char *const bpf_ldst_string[] = {
311 	[BPF_W >> 3]  = "u32",
312 	[BPF_H >> 3]  = "u16",
313 	[BPF_B >> 3]  = "u8",
314 	[BPF_DW >> 3] = "u64",
315 };
316 
317 static const char *const bpf_jmp_string[16] = {
318 	[BPF_JA >> 4]   = "jmp",
319 	[BPF_JEQ >> 4]  = "==",
320 	[BPF_JGT >> 4]  = ">",
321 	[BPF_JGE >> 4]  = ">=",
322 	[BPF_JSET >> 4] = "&",
323 	[BPF_JNE >> 4]  = "!=",
324 	[BPF_JSGT >> 4] = "s>",
325 	[BPF_JSGE >> 4] = "s>=",
326 	[BPF_CALL >> 4] = "call",
327 	[BPF_EXIT >> 4] = "exit",
328 };
329 
330 static void print_bpf_insn(struct bpf_insn *insn)
331 {
332 	u8 class = BPF_CLASS(insn->code);
333 
334 	if (class == BPF_ALU || class == BPF_ALU64) {
335 		if (BPF_SRC(insn->code) == BPF_X)
336 			verbose("(%02x) %sr%d %s %sr%d\n",
337 				insn->code, class == BPF_ALU ? "(u32) " : "",
338 				insn->dst_reg,
339 				bpf_alu_string[BPF_OP(insn->code) >> 4],
340 				class == BPF_ALU ? "(u32) " : "",
341 				insn->src_reg);
342 		else
343 			verbose("(%02x) %sr%d %s %s%d\n",
344 				insn->code, class == BPF_ALU ? "(u32) " : "",
345 				insn->dst_reg,
346 				bpf_alu_string[BPF_OP(insn->code) >> 4],
347 				class == BPF_ALU ? "(u32) " : "",
348 				insn->imm);
349 	} else if (class == BPF_STX) {
350 		if (BPF_MODE(insn->code) == BPF_MEM)
351 			verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
352 				insn->code,
353 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
354 				insn->dst_reg,
355 				insn->off, insn->src_reg);
356 		else if (BPF_MODE(insn->code) == BPF_XADD)
357 			verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
358 				insn->code,
359 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
360 				insn->dst_reg, insn->off,
361 				insn->src_reg);
362 		else
363 			verbose("BUG_%02x\n", insn->code);
364 	} else if (class == BPF_ST) {
365 		if (BPF_MODE(insn->code) != BPF_MEM) {
366 			verbose("BUG_st_%02x\n", insn->code);
367 			return;
368 		}
369 		verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
370 			insn->code,
371 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
372 			insn->dst_reg,
373 			insn->off, insn->imm);
374 	} else if (class == BPF_LDX) {
375 		if (BPF_MODE(insn->code) != BPF_MEM) {
376 			verbose("BUG_ldx_%02x\n", insn->code);
377 			return;
378 		}
379 		verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
380 			insn->code, insn->dst_reg,
381 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
382 			insn->src_reg, insn->off);
383 	} else if (class == BPF_LD) {
384 		if (BPF_MODE(insn->code) == BPF_ABS) {
385 			verbose("(%02x) r0 = *(%s *)skb[%d]\n",
386 				insn->code,
387 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
388 				insn->imm);
389 		} else if (BPF_MODE(insn->code) == BPF_IND) {
390 			verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
391 				insn->code,
392 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
393 				insn->src_reg, insn->imm);
394 		} else if (BPF_MODE(insn->code) == BPF_IMM) {
395 			verbose("(%02x) r%d = 0x%x\n",
396 				insn->code, insn->dst_reg, insn->imm);
397 		} else {
398 			verbose("BUG_ld_%02x\n", insn->code);
399 			return;
400 		}
401 	} else if (class == BPF_JMP) {
402 		u8 opcode = BPF_OP(insn->code);
403 
404 		if (opcode == BPF_CALL) {
405 			verbose("(%02x) call %d\n", insn->code, insn->imm);
406 		} else if (insn->code == (BPF_JMP | BPF_JA)) {
407 			verbose("(%02x) goto pc%+d\n",
408 				insn->code, insn->off);
409 		} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
410 			verbose("(%02x) exit\n", insn->code);
411 		} else if (BPF_SRC(insn->code) == BPF_X) {
412 			verbose("(%02x) if r%d %s r%d goto pc%+d\n",
413 				insn->code, insn->dst_reg,
414 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
415 				insn->src_reg, insn->off);
416 		} else {
417 			verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
418 				insn->code, insn->dst_reg,
419 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
420 				insn->imm, insn->off);
421 		}
422 	} else {
423 		verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
424 	}
425 }
426 
427 static int pop_stack(struct verifier_env *env, int *prev_insn_idx)
428 {
429 	struct verifier_stack_elem *elem;
430 	int insn_idx;
431 
432 	if (env->head == NULL)
433 		return -1;
434 
435 	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
436 	insn_idx = env->head->insn_idx;
437 	if (prev_insn_idx)
438 		*prev_insn_idx = env->head->prev_insn_idx;
439 	elem = env->head->next;
440 	kfree(env->head);
441 	env->head = elem;
442 	env->stack_size--;
443 	return insn_idx;
444 }
445 
446 static struct verifier_state *push_stack(struct verifier_env *env, int insn_idx,
447 					 int prev_insn_idx)
448 {
449 	struct verifier_stack_elem *elem;
450 
451 	elem = kmalloc(sizeof(struct verifier_stack_elem), GFP_KERNEL);
452 	if (!elem)
453 		goto err;
454 
455 	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
456 	elem->insn_idx = insn_idx;
457 	elem->prev_insn_idx = prev_insn_idx;
458 	elem->next = env->head;
459 	env->head = elem;
460 	env->stack_size++;
461 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
462 		verbose("BPF program is too complex\n");
463 		goto err;
464 	}
465 	return &elem->st;
466 err:
467 	/* pop all elements and return */
468 	while (pop_stack(env, NULL) >= 0);
469 	return NULL;
470 }
471 
472 #define CALLER_SAVED_REGS 6
473 static const int caller_saved[CALLER_SAVED_REGS] = {
474 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
475 };
476 
477 static void init_reg_state(struct reg_state *regs)
478 {
479 	int i;
480 
481 	for (i = 0; i < MAX_BPF_REG; i++) {
482 		regs[i].type = NOT_INIT;
483 		regs[i].imm = 0;
484 	}
485 
486 	/* frame pointer */
487 	regs[BPF_REG_FP].type = FRAME_PTR;
488 
489 	/* 1st arg to a function */
490 	regs[BPF_REG_1].type = PTR_TO_CTX;
491 }
492 
493 static void mark_reg_unknown_value(struct reg_state *regs, u32 regno)
494 {
495 	BUG_ON(regno >= MAX_BPF_REG);
496 	regs[regno].type = UNKNOWN_VALUE;
497 	regs[regno].imm = 0;
498 }
499 
500 enum reg_arg_type {
501 	SRC_OP,		/* register is used as source operand */
502 	DST_OP,		/* register is used as destination operand */
503 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
504 };
505 
506 static int check_reg_arg(struct reg_state *regs, u32 regno,
507 			 enum reg_arg_type t)
508 {
509 	if (regno >= MAX_BPF_REG) {
510 		verbose("R%d is invalid\n", regno);
511 		return -EINVAL;
512 	}
513 
514 	if (t == SRC_OP) {
515 		/* check whether register used as source operand can be read */
516 		if (regs[regno].type == NOT_INIT) {
517 			verbose("R%d !read_ok\n", regno);
518 			return -EACCES;
519 		}
520 	} else {
521 		/* check whether register used as dest operand can be written to */
522 		if (regno == BPF_REG_FP) {
523 			verbose("frame pointer is read only\n");
524 			return -EACCES;
525 		}
526 		if (t == DST_OP)
527 			mark_reg_unknown_value(regs, regno);
528 	}
529 	return 0;
530 }
531 
532 static int bpf_size_to_bytes(int bpf_size)
533 {
534 	if (bpf_size == BPF_W)
535 		return 4;
536 	else if (bpf_size == BPF_H)
537 		return 2;
538 	else if (bpf_size == BPF_B)
539 		return 1;
540 	else if (bpf_size == BPF_DW)
541 		return 8;
542 	else
543 		return -EINVAL;
544 }
545 
546 static bool is_spillable_regtype(enum bpf_reg_type type)
547 {
548 	switch (type) {
549 	case PTR_TO_MAP_VALUE:
550 	case PTR_TO_MAP_VALUE_OR_NULL:
551 	case PTR_TO_STACK:
552 	case PTR_TO_CTX:
553 	case PTR_TO_PACKET:
554 	case PTR_TO_PACKET_END:
555 	case FRAME_PTR:
556 	case CONST_PTR_TO_MAP:
557 		return true;
558 	default:
559 		return false;
560 	}
561 }
562 
563 /* check_stack_read/write functions track spill/fill of registers,
564  * stack boundary and alignment are checked in check_mem_access()
565  */
566 static int check_stack_write(struct verifier_state *state, int off, int size,
567 			     int value_regno)
568 {
569 	int i;
570 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
571 	 * so it's aligned access and [off, off + size) are within stack limits
572 	 */
573 
574 	if (value_regno >= 0 &&
575 	    is_spillable_regtype(state->regs[value_regno].type)) {
576 
577 		/* register containing pointer is being spilled into stack */
578 		if (size != BPF_REG_SIZE) {
579 			verbose("invalid size of register spill\n");
580 			return -EACCES;
581 		}
582 
583 		/* save register state */
584 		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
585 			state->regs[value_regno];
586 
587 		for (i = 0; i < BPF_REG_SIZE; i++)
588 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
589 	} else {
590 		/* regular write of data into stack */
591 		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
592 			(struct reg_state) {};
593 
594 		for (i = 0; i < size; i++)
595 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
596 	}
597 	return 0;
598 }
599 
600 static int check_stack_read(struct verifier_state *state, int off, int size,
601 			    int value_regno)
602 {
603 	u8 *slot_type;
604 	int i;
605 
606 	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
607 
608 	if (slot_type[0] == STACK_SPILL) {
609 		if (size != BPF_REG_SIZE) {
610 			verbose("invalid size of register spill\n");
611 			return -EACCES;
612 		}
613 		for (i = 1; i < BPF_REG_SIZE; i++) {
614 			if (slot_type[i] != STACK_SPILL) {
615 				verbose("corrupted spill memory\n");
616 				return -EACCES;
617 			}
618 		}
619 
620 		if (value_regno >= 0)
621 			/* restore register state from stack */
622 			state->regs[value_regno] =
623 				state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
624 		return 0;
625 	} else {
626 		for (i = 0; i < size; i++) {
627 			if (slot_type[i] != STACK_MISC) {
628 				verbose("invalid read from stack off %d+%d size %d\n",
629 					off, i, size);
630 				return -EACCES;
631 			}
632 		}
633 		if (value_regno >= 0)
634 			/* have read misc data from the stack */
635 			mark_reg_unknown_value(state->regs, value_regno);
636 		return 0;
637 	}
638 }
639 
640 /* check read/write into map element returned by bpf_map_lookup_elem() */
641 static int check_map_access(struct verifier_env *env, u32 regno, int off,
642 			    int size)
643 {
644 	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
645 
646 	if (off < 0 || off + size > map->value_size) {
647 		verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
648 			map->value_size, off, size);
649 		return -EACCES;
650 	}
651 	return 0;
652 }
653 
654 #define MAX_PACKET_OFF 0xffff
655 
656 static int check_packet_access(struct verifier_env *env, u32 regno, int off,
657 			       int size)
658 {
659 	struct reg_state *regs = env->cur_state.regs;
660 	struct reg_state *reg = &regs[regno];
661 
662 	off += reg->off;
663 	if (off < 0 || off + size > reg->range) {
664 		verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
665 			off, size, regno, reg->id, reg->off, reg->range);
666 		return -EACCES;
667 	}
668 	return 0;
669 }
670 
671 /* check access to 'struct bpf_context' fields */
672 static int check_ctx_access(struct verifier_env *env, int off, int size,
673 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
674 {
675 	if (env->prog->aux->ops->is_valid_access &&
676 	    env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
677 		/* remember the offset of last byte accessed in ctx */
678 		if (env->prog->aux->max_ctx_offset < off + size)
679 			env->prog->aux->max_ctx_offset = off + size;
680 		return 0;
681 	}
682 
683 	verbose("invalid bpf_context access off=%d size=%d\n", off, size);
684 	return -EACCES;
685 }
686 
687 static bool is_pointer_value(struct verifier_env *env, int regno)
688 {
689 	if (env->allow_ptr_leaks)
690 		return false;
691 
692 	switch (env->cur_state.regs[regno].type) {
693 	case UNKNOWN_VALUE:
694 	case CONST_IMM:
695 		return false;
696 	default:
697 		return true;
698 	}
699 }
700 
701 static int check_ptr_alignment(struct verifier_env *env, struct reg_state *reg,
702 			       int off, int size)
703 {
704 	if (reg->type != PTR_TO_PACKET) {
705 		if (off % size != 0) {
706 			verbose("misaligned access off %d size %d\n", off, size);
707 			return -EACCES;
708 		} else {
709 			return 0;
710 		}
711 	}
712 
713 	switch (env->prog->type) {
714 	case BPF_PROG_TYPE_SCHED_CLS:
715 	case BPF_PROG_TYPE_SCHED_ACT:
716 		break;
717 	default:
718 		verbose("verifier is misconfigured\n");
719 		return -EACCES;
720 	}
721 
722 	if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
723 		/* misaligned access to packet is ok on x86,arm,arm64 */
724 		return 0;
725 
726 	if (reg->id && size != 1) {
727 		verbose("Unknown packet alignment. Only byte-sized access allowed\n");
728 		return -EACCES;
729 	}
730 
731 	/* skb->data is NET_IP_ALIGN-ed */
732 	if ((NET_IP_ALIGN + reg->off + off) % size != 0) {
733 		verbose("misaligned packet access off %d+%d+%d size %d\n",
734 			NET_IP_ALIGN, reg->off, off, size);
735 		return -EACCES;
736 	}
737 	return 0;
738 }
739 
740 /* check whether memory at (regno + off) is accessible for t = (read | write)
741  * if t==write, value_regno is a register which value is stored into memory
742  * if t==read, value_regno is a register which will receive the value from memory
743  * if t==write && value_regno==-1, some unknown value is stored into memory
744  * if t==read && value_regno==-1, don't care what we read from memory
745  */
746 static int check_mem_access(struct verifier_env *env, u32 regno, int off,
747 			    int bpf_size, enum bpf_access_type t,
748 			    int value_regno)
749 {
750 	struct verifier_state *state = &env->cur_state;
751 	struct reg_state *reg = &state->regs[regno];
752 	int size, err = 0;
753 
754 	if (reg->type == PTR_TO_STACK)
755 		off += reg->imm;
756 
757 	size = bpf_size_to_bytes(bpf_size);
758 	if (size < 0)
759 		return size;
760 
761 	err = check_ptr_alignment(env, reg, off, size);
762 	if (err)
763 		return err;
764 
765 	if (reg->type == PTR_TO_MAP_VALUE) {
766 		if (t == BPF_WRITE && value_regno >= 0 &&
767 		    is_pointer_value(env, value_regno)) {
768 			verbose("R%d leaks addr into map\n", value_regno);
769 			return -EACCES;
770 		}
771 		err = check_map_access(env, regno, off, size);
772 		if (!err && t == BPF_READ && value_regno >= 0)
773 			mark_reg_unknown_value(state->regs, value_regno);
774 
775 	} else if (reg->type == PTR_TO_CTX) {
776 		enum bpf_reg_type reg_type = UNKNOWN_VALUE;
777 
778 		if (t == BPF_WRITE && value_regno >= 0 &&
779 		    is_pointer_value(env, value_regno)) {
780 			verbose("R%d leaks addr into ctx\n", value_regno);
781 			return -EACCES;
782 		}
783 		err = check_ctx_access(env, off, size, t, &reg_type);
784 		if (!err && t == BPF_READ && value_regno >= 0) {
785 			mark_reg_unknown_value(state->regs, value_regno);
786 			if (env->allow_ptr_leaks)
787 				/* note that reg.[id|off|range] == 0 */
788 				state->regs[value_regno].type = reg_type;
789 		}
790 
791 	} else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
792 		if (off >= 0 || off < -MAX_BPF_STACK) {
793 			verbose("invalid stack off=%d size=%d\n", off, size);
794 			return -EACCES;
795 		}
796 		if (t == BPF_WRITE) {
797 			if (!env->allow_ptr_leaks &&
798 			    state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
799 			    size != BPF_REG_SIZE) {
800 				verbose("attempt to corrupt spilled pointer on stack\n");
801 				return -EACCES;
802 			}
803 			err = check_stack_write(state, off, size, value_regno);
804 		} else {
805 			err = check_stack_read(state, off, size, value_regno);
806 		}
807 	} else if (state->regs[regno].type == PTR_TO_PACKET) {
808 		if (t == BPF_WRITE) {
809 			verbose("cannot write into packet\n");
810 			return -EACCES;
811 		}
812 		err = check_packet_access(env, regno, off, size);
813 		if (!err && t == BPF_READ && value_regno >= 0)
814 			mark_reg_unknown_value(state->regs, value_regno);
815 	} else {
816 		verbose("R%d invalid mem access '%s'\n",
817 			regno, reg_type_str[reg->type]);
818 		return -EACCES;
819 	}
820 
821 	if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
822 	    state->regs[value_regno].type == UNKNOWN_VALUE) {
823 		/* 1 or 2 byte load zero-extends, determine the number of
824 		 * zero upper bits. Not doing it fo 4 byte load, since
825 		 * such values cannot be added to ptr_to_packet anyway.
826 		 */
827 		state->regs[value_regno].imm = 64 - size * 8;
828 	}
829 	return err;
830 }
831 
832 static int check_xadd(struct verifier_env *env, struct bpf_insn *insn)
833 {
834 	struct reg_state *regs = env->cur_state.regs;
835 	int err;
836 
837 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
838 	    insn->imm != 0) {
839 		verbose("BPF_XADD uses reserved fields\n");
840 		return -EINVAL;
841 	}
842 
843 	/* check src1 operand */
844 	err = check_reg_arg(regs, insn->src_reg, SRC_OP);
845 	if (err)
846 		return err;
847 
848 	/* check src2 operand */
849 	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
850 	if (err)
851 		return err;
852 
853 	/* check whether atomic_add can read the memory */
854 	err = check_mem_access(env, insn->dst_reg, insn->off,
855 			       BPF_SIZE(insn->code), BPF_READ, -1);
856 	if (err)
857 		return err;
858 
859 	/* check whether atomic_add can write into the same memory */
860 	return check_mem_access(env, insn->dst_reg, insn->off,
861 				BPF_SIZE(insn->code), BPF_WRITE, -1);
862 }
863 
864 /* when register 'regno' is passed into function that will read 'access_size'
865  * bytes from that pointer, make sure that it's within stack boundary
866  * and all elements of stack are initialized
867  */
868 static int check_stack_boundary(struct verifier_env *env, int regno,
869 				int access_size, bool zero_size_allowed,
870 				struct bpf_call_arg_meta *meta)
871 {
872 	struct verifier_state *state = &env->cur_state;
873 	struct reg_state *regs = state->regs;
874 	int off, i;
875 
876 	if (regs[regno].type != PTR_TO_STACK) {
877 		if (zero_size_allowed && access_size == 0 &&
878 		    regs[regno].type == CONST_IMM &&
879 		    regs[regno].imm  == 0)
880 			return 0;
881 
882 		verbose("R%d type=%s expected=%s\n", regno,
883 			reg_type_str[regs[regno].type],
884 			reg_type_str[PTR_TO_STACK]);
885 		return -EACCES;
886 	}
887 
888 	off = regs[regno].imm;
889 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
890 	    access_size <= 0) {
891 		verbose("invalid stack type R%d off=%d access_size=%d\n",
892 			regno, off, access_size);
893 		return -EACCES;
894 	}
895 
896 	if (meta && meta->raw_mode) {
897 		meta->access_size = access_size;
898 		meta->regno = regno;
899 		return 0;
900 	}
901 
902 	for (i = 0; i < access_size; i++) {
903 		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
904 			verbose("invalid indirect read from stack off %d+%d size %d\n",
905 				off, i, access_size);
906 			return -EACCES;
907 		}
908 	}
909 	return 0;
910 }
911 
912 static int check_func_arg(struct verifier_env *env, u32 regno,
913 			  enum bpf_arg_type arg_type,
914 			  struct bpf_call_arg_meta *meta)
915 {
916 	struct reg_state *reg = env->cur_state.regs + regno;
917 	enum bpf_reg_type expected_type;
918 	int err = 0;
919 
920 	if (arg_type == ARG_DONTCARE)
921 		return 0;
922 
923 	if (reg->type == NOT_INIT) {
924 		verbose("R%d !read_ok\n", regno);
925 		return -EACCES;
926 	}
927 
928 	if (arg_type == ARG_ANYTHING) {
929 		if (is_pointer_value(env, regno)) {
930 			verbose("R%d leaks addr into helper function\n", regno);
931 			return -EACCES;
932 		}
933 		return 0;
934 	}
935 
936 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
937 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
938 		expected_type = PTR_TO_STACK;
939 	} else if (arg_type == ARG_CONST_STACK_SIZE ||
940 		   arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
941 		expected_type = CONST_IMM;
942 	} else if (arg_type == ARG_CONST_MAP_PTR) {
943 		expected_type = CONST_PTR_TO_MAP;
944 	} else if (arg_type == ARG_PTR_TO_CTX) {
945 		expected_type = PTR_TO_CTX;
946 	} else if (arg_type == ARG_PTR_TO_STACK ||
947 		   arg_type == ARG_PTR_TO_RAW_STACK) {
948 		expected_type = PTR_TO_STACK;
949 		/* One exception here. In case function allows for NULL to be
950 		 * passed in as argument, it's a CONST_IMM type. Final test
951 		 * happens during stack boundary checking.
952 		 */
953 		if (reg->type == CONST_IMM && reg->imm == 0)
954 			expected_type = CONST_IMM;
955 		meta->raw_mode = arg_type == ARG_PTR_TO_RAW_STACK;
956 	} else {
957 		verbose("unsupported arg_type %d\n", arg_type);
958 		return -EFAULT;
959 	}
960 
961 	if (reg->type != expected_type) {
962 		verbose("R%d type=%s expected=%s\n", regno,
963 			reg_type_str[reg->type], reg_type_str[expected_type]);
964 		return -EACCES;
965 	}
966 
967 	if (arg_type == ARG_CONST_MAP_PTR) {
968 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
969 		meta->map_ptr = reg->map_ptr;
970 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
971 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
972 		 * check that [key, key + map->key_size) are within
973 		 * stack limits and initialized
974 		 */
975 		if (!meta->map_ptr) {
976 			/* in function declaration map_ptr must come before
977 			 * map_key, so that it's verified and known before
978 			 * we have to check map_key here. Otherwise it means
979 			 * that kernel subsystem misconfigured verifier
980 			 */
981 			verbose("invalid map_ptr to access map->key\n");
982 			return -EACCES;
983 		}
984 		err = check_stack_boundary(env, regno, meta->map_ptr->key_size,
985 					   false, NULL);
986 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
987 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
988 		 * check [value, value + map->value_size) validity
989 		 */
990 		if (!meta->map_ptr) {
991 			/* kernel subsystem misconfigured verifier */
992 			verbose("invalid map_ptr to access map->value\n");
993 			return -EACCES;
994 		}
995 		err = check_stack_boundary(env, regno,
996 					   meta->map_ptr->value_size,
997 					   false, NULL);
998 	} else if (arg_type == ARG_CONST_STACK_SIZE ||
999 		   arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
1000 		bool zero_size_allowed = (arg_type == ARG_CONST_STACK_SIZE_OR_ZERO);
1001 
1002 		/* bpf_xxx(..., buf, len) call will access 'len' bytes
1003 		 * from stack pointer 'buf'. Check it
1004 		 * note: regno == len, regno - 1 == buf
1005 		 */
1006 		if (regno == 0) {
1007 			/* kernel subsystem misconfigured verifier */
1008 			verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
1009 			return -EACCES;
1010 		}
1011 		err = check_stack_boundary(env, regno - 1, reg->imm,
1012 					   zero_size_allowed, meta);
1013 	}
1014 
1015 	return err;
1016 }
1017 
1018 static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1019 {
1020 	if (!map)
1021 		return 0;
1022 
1023 	/* We need a two way check, first is from map perspective ... */
1024 	switch (map->map_type) {
1025 	case BPF_MAP_TYPE_PROG_ARRAY:
1026 		if (func_id != BPF_FUNC_tail_call)
1027 			goto error;
1028 		break;
1029 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1030 		if (func_id != BPF_FUNC_perf_event_read &&
1031 		    func_id != BPF_FUNC_perf_event_output)
1032 			goto error;
1033 		break;
1034 	case BPF_MAP_TYPE_STACK_TRACE:
1035 		if (func_id != BPF_FUNC_get_stackid)
1036 			goto error;
1037 		break;
1038 	default:
1039 		break;
1040 	}
1041 
1042 	/* ... and second from the function itself. */
1043 	switch (func_id) {
1044 	case BPF_FUNC_tail_call:
1045 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1046 			goto error;
1047 		break;
1048 	case BPF_FUNC_perf_event_read:
1049 	case BPF_FUNC_perf_event_output:
1050 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1051 			goto error;
1052 		break;
1053 	case BPF_FUNC_get_stackid:
1054 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1055 			goto error;
1056 		break;
1057 	default:
1058 		break;
1059 	}
1060 
1061 	return 0;
1062 error:
1063 	verbose("cannot pass map_type %d into func %d\n",
1064 		map->map_type, func_id);
1065 	return -EINVAL;
1066 }
1067 
1068 static int check_raw_mode(const struct bpf_func_proto *fn)
1069 {
1070 	int count = 0;
1071 
1072 	if (fn->arg1_type == ARG_PTR_TO_RAW_STACK)
1073 		count++;
1074 	if (fn->arg2_type == ARG_PTR_TO_RAW_STACK)
1075 		count++;
1076 	if (fn->arg3_type == ARG_PTR_TO_RAW_STACK)
1077 		count++;
1078 	if (fn->arg4_type == ARG_PTR_TO_RAW_STACK)
1079 		count++;
1080 	if (fn->arg5_type == ARG_PTR_TO_RAW_STACK)
1081 		count++;
1082 
1083 	return count > 1 ? -EINVAL : 0;
1084 }
1085 
1086 static void clear_all_pkt_pointers(struct verifier_env *env)
1087 {
1088 	struct verifier_state *state = &env->cur_state;
1089 	struct reg_state *regs = state->regs, *reg;
1090 	int i;
1091 
1092 	for (i = 0; i < MAX_BPF_REG; i++)
1093 		if (regs[i].type == PTR_TO_PACKET ||
1094 		    regs[i].type == PTR_TO_PACKET_END)
1095 			mark_reg_unknown_value(regs, i);
1096 
1097 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1098 		if (state->stack_slot_type[i] != STACK_SPILL)
1099 			continue;
1100 		reg = &state->spilled_regs[i / BPF_REG_SIZE];
1101 		if (reg->type != PTR_TO_PACKET &&
1102 		    reg->type != PTR_TO_PACKET_END)
1103 			continue;
1104 		reg->type = UNKNOWN_VALUE;
1105 		reg->imm = 0;
1106 	}
1107 }
1108 
1109 static int check_call(struct verifier_env *env, int func_id)
1110 {
1111 	struct verifier_state *state = &env->cur_state;
1112 	const struct bpf_func_proto *fn = NULL;
1113 	struct reg_state *regs = state->regs;
1114 	struct reg_state *reg;
1115 	struct bpf_call_arg_meta meta;
1116 	bool changes_data;
1117 	int i, err;
1118 
1119 	/* find function prototype */
1120 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1121 		verbose("invalid func %d\n", func_id);
1122 		return -EINVAL;
1123 	}
1124 
1125 	if (env->prog->aux->ops->get_func_proto)
1126 		fn = env->prog->aux->ops->get_func_proto(func_id);
1127 
1128 	if (!fn) {
1129 		verbose("unknown func %d\n", func_id);
1130 		return -EINVAL;
1131 	}
1132 
1133 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1134 	if (!env->prog->gpl_compatible && fn->gpl_only) {
1135 		verbose("cannot call GPL only function from proprietary program\n");
1136 		return -EINVAL;
1137 	}
1138 
1139 	changes_data = bpf_helper_changes_skb_data(fn->func);
1140 
1141 	memset(&meta, 0, sizeof(meta));
1142 
1143 	/* We only support one arg being in raw mode at the moment, which
1144 	 * is sufficient for the helper functions we have right now.
1145 	 */
1146 	err = check_raw_mode(fn);
1147 	if (err) {
1148 		verbose("kernel subsystem misconfigured func %d\n", func_id);
1149 		return err;
1150 	}
1151 
1152 	/* check args */
1153 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1154 	if (err)
1155 		return err;
1156 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1157 	if (err)
1158 		return err;
1159 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1160 	if (err)
1161 		return err;
1162 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1163 	if (err)
1164 		return err;
1165 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1166 	if (err)
1167 		return err;
1168 
1169 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
1170 	 * is inferred from register state.
1171 	 */
1172 	for (i = 0; i < meta.access_size; i++) {
1173 		err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
1174 		if (err)
1175 			return err;
1176 	}
1177 
1178 	/* reset caller saved regs */
1179 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1180 		reg = regs + caller_saved[i];
1181 		reg->type = NOT_INIT;
1182 		reg->imm = 0;
1183 	}
1184 
1185 	/* update return register */
1186 	if (fn->ret_type == RET_INTEGER) {
1187 		regs[BPF_REG_0].type = UNKNOWN_VALUE;
1188 	} else if (fn->ret_type == RET_VOID) {
1189 		regs[BPF_REG_0].type = NOT_INIT;
1190 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1191 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1192 		/* remember map_ptr, so that check_map_access()
1193 		 * can check 'value_size' boundary of memory access
1194 		 * to map element returned from bpf_map_lookup_elem()
1195 		 */
1196 		if (meta.map_ptr == NULL) {
1197 			verbose("kernel subsystem misconfigured verifier\n");
1198 			return -EINVAL;
1199 		}
1200 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1201 	} else {
1202 		verbose("unknown return type %d of func %d\n",
1203 			fn->ret_type, func_id);
1204 		return -EINVAL;
1205 	}
1206 
1207 	err = check_map_func_compatibility(meta.map_ptr, func_id);
1208 	if (err)
1209 		return err;
1210 
1211 	if (changes_data)
1212 		clear_all_pkt_pointers(env);
1213 	return 0;
1214 }
1215 
1216 static int check_packet_ptr_add(struct verifier_env *env, struct bpf_insn *insn)
1217 {
1218 	struct reg_state *regs = env->cur_state.regs;
1219 	struct reg_state *dst_reg = &regs[insn->dst_reg];
1220 	struct reg_state *src_reg = &regs[insn->src_reg];
1221 	struct reg_state tmp_reg;
1222 	s32 imm;
1223 
1224 	if (BPF_SRC(insn->code) == BPF_K) {
1225 		/* pkt_ptr += imm */
1226 		imm = insn->imm;
1227 
1228 add_imm:
1229 		if (imm <= 0) {
1230 			verbose("addition of negative constant to packet pointer is not allowed\n");
1231 			return -EACCES;
1232 		}
1233 		if (imm >= MAX_PACKET_OFF ||
1234 		    imm + dst_reg->off >= MAX_PACKET_OFF) {
1235 			verbose("constant %d is too large to add to packet pointer\n",
1236 				imm);
1237 			return -EACCES;
1238 		}
1239 		/* a constant was added to pkt_ptr.
1240 		 * Remember it while keeping the same 'id'
1241 		 */
1242 		dst_reg->off += imm;
1243 	} else {
1244 		if (src_reg->type == PTR_TO_PACKET) {
1245 			/* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1246 			tmp_reg = *dst_reg;  /* save r7 state */
1247 			*dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1248 			src_reg = &tmp_reg;  /* pretend it's src_reg state */
1249 			/* if the checks below reject it, the copy won't matter,
1250 			 * since we're rejecting the whole program. If all ok,
1251 			 * then imm22 state will be added to r7
1252 			 * and r7 will be pkt(id=0,off=22,r=62) while
1253 			 * r6 will stay as pkt(id=0,off=0,r=62)
1254 			 */
1255 		}
1256 
1257 		if (src_reg->type == CONST_IMM) {
1258 			/* pkt_ptr += reg where reg is known constant */
1259 			imm = src_reg->imm;
1260 			goto add_imm;
1261 		}
1262 		/* disallow pkt_ptr += reg
1263 		 * if reg is not uknown_value with guaranteed zero upper bits
1264 		 * otherwise pkt_ptr may overflow and addition will become
1265 		 * subtraction which is not allowed
1266 		 */
1267 		if (src_reg->type != UNKNOWN_VALUE) {
1268 			verbose("cannot add '%s' to ptr_to_packet\n",
1269 				reg_type_str[src_reg->type]);
1270 			return -EACCES;
1271 		}
1272 		if (src_reg->imm < 48) {
1273 			verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1274 				src_reg->imm);
1275 			return -EACCES;
1276 		}
1277 		/* dst_reg stays as pkt_ptr type and since some positive
1278 		 * integer value was added to the pointer, increment its 'id'
1279 		 */
1280 		dst_reg->id++;
1281 
1282 		/* something was added to pkt_ptr, set range and off to zero */
1283 		dst_reg->off = 0;
1284 		dst_reg->range = 0;
1285 	}
1286 	return 0;
1287 }
1288 
1289 static int evaluate_reg_alu(struct verifier_env *env, struct bpf_insn *insn)
1290 {
1291 	struct reg_state *regs = env->cur_state.regs;
1292 	struct reg_state *dst_reg = &regs[insn->dst_reg];
1293 	u8 opcode = BPF_OP(insn->code);
1294 	s64 imm_log2;
1295 
1296 	/* for type == UNKNOWN_VALUE:
1297 	 * imm > 0 -> number of zero upper bits
1298 	 * imm == 0 -> don't track which is the same as all bits can be non-zero
1299 	 */
1300 
1301 	if (BPF_SRC(insn->code) == BPF_X) {
1302 		struct reg_state *src_reg = &regs[insn->src_reg];
1303 
1304 		if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1305 		    dst_reg->imm && opcode == BPF_ADD) {
1306 			/* dreg += sreg
1307 			 * where both have zero upper bits. Adding them
1308 			 * can only result making one more bit non-zero
1309 			 * in the larger value.
1310 			 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1311 			 *     0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1312 			 */
1313 			dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1314 			dst_reg->imm--;
1315 			return 0;
1316 		}
1317 		if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1318 		    dst_reg->imm && opcode == BPF_ADD) {
1319 			/* dreg += sreg
1320 			 * where dreg has zero upper bits and sreg is const.
1321 			 * Adding them can only result making one more bit
1322 			 * non-zero in the larger value.
1323 			 */
1324 			imm_log2 = __ilog2_u64((long long)src_reg->imm);
1325 			dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1326 			dst_reg->imm--;
1327 			return 0;
1328 		}
1329 		/* all other cases non supported yet, just mark dst_reg */
1330 		dst_reg->imm = 0;
1331 		return 0;
1332 	}
1333 
1334 	/* sign extend 32-bit imm into 64-bit to make sure that
1335 	 * negative values occupy bit 63. Note ilog2() would have
1336 	 * been incorrect, since sizeof(insn->imm) == 4
1337 	 */
1338 	imm_log2 = __ilog2_u64((long long)insn->imm);
1339 
1340 	if (dst_reg->imm && opcode == BPF_LSH) {
1341 		/* reg <<= imm
1342 		 * if reg was a result of 2 byte load, then its imm == 48
1343 		 * which means that upper 48 bits are zero and shifting this reg
1344 		 * left by 4 would mean that upper 44 bits are still zero
1345 		 */
1346 		dst_reg->imm -= insn->imm;
1347 	} else if (dst_reg->imm && opcode == BPF_MUL) {
1348 		/* reg *= imm
1349 		 * if multiplying by 14 subtract 4
1350 		 * This is conservative calculation of upper zero bits.
1351 		 * It's not trying to special case insn->imm == 1 or 0 cases
1352 		 */
1353 		dst_reg->imm -= imm_log2 + 1;
1354 	} else if (opcode == BPF_AND) {
1355 		/* reg &= imm */
1356 		dst_reg->imm = 63 - imm_log2;
1357 	} else if (dst_reg->imm && opcode == BPF_ADD) {
1358 		/* reg += imm */
1359 		dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1360 		dst_reg->imm--;
1361 	} else if (opcode == BPF_RSH) {
1362 		/* reg >>= imm
1363 		 * which means that after right shift, upper bits will be zero
1364 		 * note that verifier already checked that
1365 		 * 0 <= imm < 64 for shift insn
1366 		 */
1367 		dst_reg->imm += insn->imm;
1368 		if (unlikely(dst_reg->imm > 64))
1369 			/* some dumb code did:
1370 			 * r2 = *(u32 *)mem;
1371 			 * r2 >>= 32;
1372 			 * and all bits are zero now */
1373 			dst_reg->imm = 64;
1374 	} else {
1375 		/* all other alu ops, means that we don't know what will
1376 		 * happen to the value, mark it with unknown number of zero bits
1377 		 */
1378 		dst_reg->imm = 0;
1379 	}
1380 
1381 	if (dst_reg->imm < 0) {
1382 		/* all 64 bits of the register can contain non-zero bits
1383 		 * and such value cannot be added to ptr_to_packet, since it
1384 		 * may overflow, mark it as unknown to avoid further eval
1385 		 */
1386 		dst_reg->imm = 0;
1387 	}
1388 	return 0;
1389 }
1390 
1391 static int evaluate_reg_imm_alu(struct verifier_env *env, struct bpf_insn *insn)
1392 {
1393 	struct reg_state *regs = env->cur_state.regs;
1394 	struct reg_state *dst_reg = &regs[insn->dst_reg];
1395 	struct reg_state *src_reg = &regs[insn->src_reg];
1396 	u8 opcode = BPF_OP(insn->code);
1397 
1398 	/* dst_reg->type == CONST_IMM here, simulate execution of 'add' insn.
1399 	 * Don't care about overflow or negative values, just add them
1400 	 */
1401 	if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K)
1402 		dst_reg->imm += insn->imm;
1403 	else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1404 		 src_reg->type == CONST_IMM)
1405 		dst_reg->imm += src_reg->imm;
1406 	else
1407 		mark_reg_unknown_value(regs, insn->dst_reg);
1408 	return 0;
1409 }
1410 
1411 /* check validity of 32-bit and 64-bit arithmetic operations */
1412 static int check_alu_op(struct verifier_env *env, struct bpf_insn *insn)
1413 {
1414 	struct reg_state *regs = env->cur_state.regs, *dst_reg;
1415 	u8 opcode = BPF_OP(insn->code);
1416 	int err;
1417 
1418 	if (opcode == BPF_END || opcode == BPF_NEG) {
1419 		if (opcode == BPF_NEG) {
1420 			if (BPF_SRC(insn->code) != 0 ||
1421 			    insn->src_reg != BPF_REG_0 ||
1422 			    insn->off != 0 || insn->imm != 0) {
1423 				verbose("BPF_NEG uses reserved fields\n");
1424 				return -EINVAL;
1425 			}
1426 		} else {
1427 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1428 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1429 				verbose("BPF_END uses reserved fields\n");
1430 				return -EINVAL;
1431 			}
1432 		}
1433 
1434 		/* check src operand */
1435 		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1436 		if (err)
1437 			return err;
1438 
1439 		if (is_pointer_value(env, insn->dst_reg)) {
1440 			verbose("R%d pointer arithmetic prohibited\n",
1441 				insn->dst_reg);
1442 			return -EACCES;
1443 		}
1444 
1445 		/* check dest operand */
1446 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1447 		if (err)
1448 			return err;
1449 
1450 	} else if (opcode == BPF_MOV) {
1451 
1452 		if (BPF_SRC(insn->code) == BPF_X) {
1453 			if (insn->imm != 0 || insn->off != 0) {
1454 				verbose("BPF_MOV uses reserved fields\n");
1455 				return -EINVAL;
1456 			}
1457 
1458 			/* check src operand */
1459 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1460 			if (err)
1461 				return err;
1462 		} else {
1463 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1464 				verbose("BPF_MOV uses reserved fields\n");
1465 				return -EINVAL;
1466 			}
1467 		}
1468 
1469 		/* check dest operand */
1470 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1471 		if (err)
1472 			return err;
1473 
1474 		if (BPF_SRC(insn->code) == BPF_X) {
1475 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
1476 				/* case: R1 = R2
1477 				 * copy register state to dest reg
1478 				 */
1479 				regs[insn->dst_reg] = regs[insn->src_reg];
1480 			} else {
1481 				if (is_pointer_value(env, insn->src_reg)) {
1482 					verbose("R%d partial copy of pointer\n",
1483 						insn->src_reg);
1484 					return -EACCES;
1485 				}
1486 				regs[insn->dst_reg].type = UNKNOWN_VALUE;
1487 				regs[insn->dst_reg].map_ptr = NULL;
1488 			}
1489 		} else {
1490 			/* case: R = imm
1491 			 * remember the value we stored into this reg
1492 			 */
1493 			regs[insn->dst_reg].type = CONST_IMM;
1494 			regs[insn->dst_reg].imm = insn->imm;
1495 		}
1496 
1497 	} else if (opcode > BPF_END) {
1498 		verbose("invalid BPF_ALU opcode %x\n", opcode);
1499 		return -EINVAL;
1500 
1501 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
1502 
1503 		if (BPF_SRC(insn->code) == BPF_X) {
1504 			if (insn->imm != 0 || insn->off != 0) {
1505 				verbose("BPF_ALU uses reserved fields\n");
1506 				return -EINVAL;
1507 			}
1508 			/* check src1 operand */
1509 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1510 			if (err)
1511 				return err;
1512 		} else {
1513 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1514 				verbose("BPF_ALU uses reserved fields\n");
1515 				return -EINVAL;
1516 			}
1517 		}
1518 
1519 		/* check src2 operand */
1520 		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1521 		if (err)
1522 			return err;
1523 
1524 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1525 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1526 			verbose("div by zero\n");
1527 			return -EINVAL;
1528 		}
1529 
1530 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1531 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1532 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1533 
1534 			if (insn->imm < 0 || insn->imm >= size) {
1535 				verbose("invalid shift %d\n", insn->imm);
1536 				return -EINVAL;
1537 			}
1538 		}
1539 
1540 		/* check dest operand */
1541 		err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1542 		if (err)
1543 			return err;
1544 
1545 		dst_reg = &regs[insn->dst_reg];
1546 
1547 		/* pattern match 'bpf_add Rx, imm' instruction */
1548 		if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1549 		    dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
1550 			dst_reg->type = PTR_TO_STACK;
1551 			dst_reg->imm = insn->imm;
1552 			return 0;
1553 		} else if (opcode == BPF_ADD &&
1554 			   BPF_CLASS(insn->code) == BPF_ALU64 &&
1555 			   (dst_reg->type == PTR_TO_PACKET ||
1556 			    (BPF_SRC(insn->code) == BPF_X &&
1557 			     regs[insn->src_reg].type == PTR_TO_PACKET))) {
1558 			/* ptr_to_packet += K|X */
1559 			return check_packet_ptr_add(env, insn);
1560 		} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1561 			   dst_reg->type == UNKNOWN_VALUE &&
1562 			   env->allow_ptr_leaks) {
1563 			/* unknown += K|X */
1564 			return evaluate_reg_alu(env, insn);
1565 		} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1566 			   dst_reg->type == CONST_IMM &&
1567 			   env->allow_ptr_leaks) {
1568 			/* reg_imm += K|X */
1569 			return evaluate_reg_imm_alu(env, insn);
1570 		} else if (is_pointer_value(env, insn->dst_reg)) {
1571 			verbose("R%d pointer arithmetic prohibited\n",
1572 				insn->dst_reg);
1573 			return -EACCES;
1574 		} else if (BPF_SRC(insn->code) == BPF_X &&
1575 			   is_pointer_value(env, insn->src_reg)) {
1576 			verbose("R%d pointer arithmetic prohibited\n",
1577 				insn->src_reg);
1578 			return -EACCES;
1579 		}
1580 
1581 		/* mark dest operand */
1582 		mark_reg_unknown_value(regs, insn->dst_reg);
1583 	}
1584 
1585 	return 0;
1586 }
1587 
1588 static void find_good_pkt_pointers(struct verifier_env *env,
1589 				   struct reg_state *dst_reg)
1590 {
1591 	struct verifier_state *state = &env->cur_state;
1592 	struct reg_state *regs = state->regs, *reg;
1593 	int i;
1594 	/* r2 = r3;
1595 	 * r2 += 8
1596 	 * if (r2 > pkt_end) goto somewhere
1597 	 * r2 == dst_reg, pkt_end == src_reg,
1598 	 * r2=pkt(id=n,off=8,r=0)
1599 	 * r3=pkt(id=n,off=0,r=0)
1600 	 * find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
1601 	 * so that range of bytes [r3, r3 + 8) is safe to access
1602 	 */
1603 	for (i = 0; i < MAX_BPF_REG; i++)
1604 		if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
1605 			regs[i].range = dst_reg->off;
1606 
1607 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1608 		if (state->stack_slot_type[i] != STACK_SPILL)
1609 			continue;
1610 		reg = &state->spilled_regs[i / BPF_REG_SIZE];
1611 		if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
1612 			reg->range = dst_reg->off;
1613 	}
1614 }
1615 
1616 static int check_cond_jmp_op(struct verifier_env *env,
1617 			     struct bpf_insn *insn, int *insn_idx)
1618 {
1619 	struct reg_state *regs = env->cur_state.regs, *dst_reg;
1620 	struct verifier_state *other_branch;
1621 	u8 opcode = BPF_OP(insn->code);
1622 	int err;
1623 
1624 	if (opcode > BPF_EXIT) {
1625 		verbose("invalid BPF_JMP opcode %x\n", opcode);
1626 		return -EINVAL;
1627 	}
1628 
1629 	if (BPF_SRC(insn->code) == BPF_X) {
1630 		if (insn->imm != 0) {
1631 			verbose("BPF_JMP uses reserved fields\n");
1632 			return -EINVAL;
1633 		}
1634 
1635 		/* check src1 operand */
1636 		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1637 		if (err)
1638 			return err;
1639 
1640 		if (is_pointer_value(env, insn->src_reg)) {
1641 			verbose("R%d pointer comparison prohibited\n",
1642 				insn->src_reg);
1643 			return -EACCES;
1644 		}
1645 	} else {
1646 		if (insn->src_reg != BPF_REG_0) {
1647 			verbose("BPF_JMP uses reserved fields\n");
1648 			return -EINVAL;
1649 		}
1650 	}
1651 
1652 	/* check src2 operand */
1653 	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1654 	if (err)
1655 		return err;
1656 
1657 	dst_reg = &regs[insn->dst_reg];
1658 
1659 	/* detect if R == 0 where R was initialized to zero earlier */
1660 	if (BPF_SRC(insn->code) == BPF_K &&
1661 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1662 	    dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
1663 		if (opcode == BPF_JEQ) {
1664 			/* if (imm == imm) goto pc+off;
1665 			 * only follow the goto, ignore fall-through
1666 			 */
1667 			*insn_idx += insn->off;
1668 			return 0;
1669 		} else {
1670 			/* if (imm != imm) goto pc+off;
1671 			 * only follow fall-through branch, since
1672 			 * that's where the program will go
1673 			 */
1674 			return 0;
1675 		}
1676 	}
1677 
1678 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
1679 	if (!other_branch)
1680 		return -EFAULT;
1681 
1682 	/* detect if R == 0 where R is returned value from bpf_map_lookup_elem() */
1683 	if (BPF_SRC(insn->code) == BPF_K &&
1684 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1685 	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1686 		if (opcode == BPF_JEQ) {
1687 			/* next fallthrough insn can access memory via
1688 			 * this register
1689 			 */
1690 			regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
1691 			/* branch targer cannot access it, since reg == 0 */
1692 			mark_reg_unknown_value(other_branch->regs,
1693 					       insn->dst_reg);
1694 		} else {
1695 			other_branch->regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
1696 			mark_reg_unknown_value(regs, insn->dst_reg);
1697 		}
1698 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
1699 		   dst_reg->type == PTR_TO_PACKET &&
1700 		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
1701 		find_good_pkt_pointers(env, dst_reg);
1702 	} else if (is_pointer_value(env, insn->dst_reg)) {
1703 		verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
1704 		return -EACCES;
1705 	}
1706 	if (log_level)
1707 		print_verifier_state(&env->cur_state);
1708 	return 0;
1709 }
1710 
1711 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
1712 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
1713 {
1714 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
1715 
1716 	return (struct bpf_map *) (unsigned long) imm64;
1717 }
1718 
1719 /* verify BPF_LD_IMM64 instruction */
1720 static int check_ld_imm(struct verifier_env *env, struct bpf_insn *insn)
1721 {
1722 	struct reg_state *regs = env->cur_state.regs;
1723 	int err;
1724 
1725 	if (BPF_SIZE(insn->code) != BPF_DW) {
1726 		verbose("invalid BPF_LD_IMM insn\n");
1727 		return -EINVAL;
1728 	}
1729 	if (insn->off != 0) {
1730 		verbose("BPF_LD_IMM64 uses reserved fields\n");
1731 		return -EINVAL;
1732 	}
1733 
1734 	err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1735 	if (err)
1736 		return err;
1737 
1738 	if (insn->src_reg == 0)
1739 		/* generic move 64-bit immediate into a register */
1740 		return 0;
1741 
1742 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
1743 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
1744 
1745 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
1746 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
1747 	return 0;
1748 }
1749 
1750 static bool may_access_skb(enum bpf_prog_type type)
1751 {
1752 	switch (type) {
1753 	case BPF_PROG_TYPE_SOCKET_FILTER:
1754 	case BPF_PROG_TYPE_SCHED_CLS:
1755 	case BPF_PROG_TYPE_SCHED_ACT:
1756 		return true;
1757 	default:
1758 		return false;
1759 	}
1760 }
1761 
1762 /* verify safety of LD_ABS|LD_IND instructions:
1763  * - they can only appear in the programs where ctx == skb
1764  * - since they are wrappers of function calls, they scratch R1-R5 registers,
1765  *   preserve R6-R9, and store return value into R0
1766  *
1767  * Implicit input:
1768  *   ctx == skb == R6 == CTX
1769  *
1770  * Explicit input:
1771  *   SRC == any register
1772  *   IMM == 32-bit immediate
1773  *
1774  * Output:
1775  *   R0 - 8/16/32-bit skb data converted to cpu endianness
1776  */
1777 static int check_ld_abs(struct verifier_env *env, struct bpf_insn *insn)
1778 {
1779 	struct reg_state *regs = env->cur_state.regs;
1780 	u8 mode = BPF_MODE(insn->code);
1781 	struct reg_state *reg;
1782 	int i, err;
1783 
1784 	if (!may_access_skb(env->prog->type)) {
1785 		verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
1786 		return -EINVAL;
1787 	}
1788 
1789 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
1790 	    BPF_SIZE(insn->code) == BPF_DW ||
1791 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1792 		verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
1793 		return -EINVAL;
1794 	}
1795 
1796 	/* check whether implicit source operand (register R6) is readable */
1797 	err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
1798 	if (err)
1799 		return err;
1800 
1801 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
1802 		verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
1803 		return -EINVAL;
1804 	}
1805 
1806 	if (mode == BPF_IND) {
1807 		/* check explicit source operand */
1808 		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1809 		if (err)
1810 			return err;
1811 	}
1812 
1813 	/* reset caller saved regs to unreadable */
1814 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1815 		reg = regs + caller_saved[i];
1816 		reg->type = NOT_INIT;
1817 		reg->imm = 0;
1818 	}
1819 
1820 	/* mark destination R0 register as readable, since it contains
1821 	 * the value fetched from the packet
1822 	 */
1823 	regs[BPF_REG_0].type = UNKNOWN_VALUE;
1824 	return 0;
1825 }
1826 
1827 /* non-recursive DFS pseudo code
1828  * 1  procedure DFS-iterative(G,v):
1829  * 2      label v as discovered
1830  * 3      let S be a stack
1831  * 4      S.push(v)
1832  * 5      while S is not empty
1833  * 6            t <- S.pop()
1834  * 7            if t is what we're looking for:
1835  * 8                return t
1836  * 9            for all edges e in G.adjacentEdges(t) do
1837  * 10               if edge e is already labelled
1838  * 11                   continue with the next edge
1839  * 12               w <- G.adjacentVertex(t,e)
1840  * 13               if vertex w is not discovered and not explored
1841  * 14                   label e as tree-edge
1842  * 15                   label w as discovered
1843  * 16                   S.push(w)
1844  * 17                   continue at 5
1845  * 18               else if vertex w is discovered
1846  * 19                   label e as back-edge
1847  * 20               else
1848  * 21                   // vertex w is explored
1849  * 22                   label e as forward- or cross-edge
1850  * 23           label t as explored
1851  * 24           S.pop()
1852  *
1853  * convention:
1854  * 0x10 - discovered
1855  * 0x11 - discovered and fall-through edge labelled
1856  * 0x12 - discovered and fall-through and branch edges labelled
1857  * 0x20 - explored
1858  */
1859 
1860 enum {
1861 	DISCOVERED = 0x10,
1862 	EXPLORED = 0x20,
1863 	FALLTHROUGH = 1,
1864 	BRANCH = 2,
1865 };
1866 
1867 #define STATE_LIST_MARK ((struct verifier_state_list *) -1L)
1868 
1869 static int *insn_stack;	/* stack of insns to process */
1870 static int cur_stack;	/* current stack index */
1871 static int *insn_state;
1872 
1873 /* t, w, e - match pseudo-code above:
1874  * t - index of current instruction
1875  * w - next instruction
1876  * e - edge
1877  */
1878 static int push_insn(int t, int w, int e, struct verifier_env *env)
1879 {
1880 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
1881 		return 0;
1882 
1883 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
1884 		return 0;
1885 
1886 	if (w < 0 || w >= env->prog->len) {
1887 		verbose("jump out of range from insn %d to %d\n", t, w);
1888 		return -EINVAL;
1889 	}
1890 
1891 	if (e == BRANCH)
1892 		/* mark branch target for state pruning */
1893 		env->explored_states[w] = STATE_LIST_MARK;
1894 
1895 	if (insn_state[w] == 0) {
1896 		/* tree-edge */
1897 		insn_state[t] = DISCOVERED | e;
1898 		insn_state[w] = DISCOVERED;
1899 		if (cur_stack >= env->prog->len)
1900 			return -E2BIG;
1901 		insn_stack[cur_stack++] = w;
1902 		return 1;
1903 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
1904 		verbose("back-edge from insn %d to %d\n", t, w);
1905 		return -EINVAL;
1906 	} else if (insn_state[w] == EXPLORED) {
1907 		/* forward- or cross-edge */
1908 		insn_state[t] = DISCOVERED | e;
1909 	} else {
1910 		verbose("insn state internal bug\n");
1911 		return -EFAULT;
1912 	}
1913 	return 0;
1914 }
1915 
1916 /* non-recursive depth-first-search to detect loops in BPF program
1917  * loop == back-edge in directed graph
1918  */
1919 static int check_cfg(struct verifier_env *env)
1920 {
1921 	struct bpf_insn *insns = env->prog->insnsi;
1922 	int insn_cnt = env->prog->len;
1923 	int ret = 0;
1924 	int i, t;
1925 
1926 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
1927 	if (!insn_state)
1928 		return -ENOMEM;
1929 
1930 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
1931 	if (!insn_stack) {
1932 		kfree(insn_state);
1933 		return -ENOMEM;
1934 	}
1935 
1936 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
1937 	insn_stack[0] = 0; /* 0 is the first instruction */
1938 	cur_stack = 1;
1939 
1940 peek_stack:
1941 	if (cur_stack == 0)
1942 		goto check_state;
1943 	t = insn_stack[cur_stack - 1];
1944 
1945 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
1946 		u8 opcode = BPF_OP(insns[t].code);
1947 
1948 		if (opcode == BPF_EXIT) {
1949 			goto mark_explored;
1950 		} else if (opcode == BPF_CALL) {
1951 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
1952 			if (ret == 1)
1953 				goto peek_stack;
1954 			else if (ret < 0)
1955 				goto err_free;
1956 			if (t + 1 < insn_cnt)
1957 				env->explored_states[t + 1] = STATE_LIST_MARK;
1958 		} else if (opcode == BPF_JA) {
1959 			if (BPF_SRC(insns[t].code) != BPF_K) {
1960 				ret = -EINVAL;
1961 				goto err_free;
1962 			}
1963 			/* unconditional jump with single edge */
1964 			ret = push_insn(t, t + insns[t].off + 1,
1965 					FALLTHROUGH, env);
1966 			if (ret == 1)
1967 				goto peek_stack;
1968 			else if (ret < 0)
1969 				goto err_free;
1970 			/* tell verifier to check for equivalent states
1971 			 * after every call and jump
1972 			 */
1973 			if (t + 1 < insn_cnt)
1974 				env->explored_states[t + 1] = STATE_LIST_MARK;
1975 		} else {
1976 			/* conditional jump with two edges */
1977 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
1978 			if (ret == 1)
1979 				goto peek_stack;
1980 			else if (ret < 0)
1981 				goto err_free;
1982 
1983 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
1984 			if (ret == 1)
1985 				goto peek_stack;
1986 			else if (ret < 0)
1987 				goto err_free;
1988 		}
1989 	} else {
1990 		/* all other non-branch instructions with single
1991 		 * fall-through edge
1992 		 */
1993 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
1994 		if (ret == 1)
1995 			goto peek_stack;
1996 		else if (ret < 0)
1997 			goto err_free;
1998 	}
1999 
2000 mark_explored:
2001 	insn_state[t] = EXPLORED;
2002 	if (cur_stack-- <= 0) {
2003 		verbose("pop stack internal bug\n");
2004 		ret = -EFAULT;
2005 		goto err_free;
2006 	}
2007 	goto peek_stack;
2008 
2009 check_state:
2010 	for (i = 0; i < insn_cnt; i++) {
2011 		if (insn_state[i] != EXPLORED) {
2012 			verbose("unreachable insn %d\n", i);
2013 			ret = -EINVAL;
2014 			goto err_free;
2015 		}
2016 	}
2017 	ret = 0; /* cfg looks good */
2018 
2019 err_free:
2020 	kfree(insn_state);
2021 	kfree(insn_stack);
2022 	return ret;
2023 }
2024 
2025 /* the following conditions reduce the number of explored insns
2026  * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2027  */
2028 static bool compare_ptrs_to_packet(struct reg_state *old, struct reg_state *cur)
2029 {
2030 	if (old->id != cur->id)
2031 		return false;
2032 
2033 	/* old ptr_to_packet is more conservative, since it allows smaller
2034 	 * range. Ex:
2035 	 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2036 	 * old(off=0,r=10) means that with range=10 the verifier proceeded
2037 	 * further and found no issues with the program. Now we're in the same
2038 	 * spot with cur(off=0,r=20), so we're safe too, since anything further
2039 	 * will only be looking at most 10 bytes after this pointer.
2040 	 */
2041 	if (old->off == cur->off && old->range < cur->range)
2042 		return true;
2043 
2044 	/* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2045 	 * since both cannot be used for packet access and safe(old)
2046 	 * pointer has smaller off that could be used for further
2047 	 * 'if (ptr > data_end)' check
2048 	 * Ex:
2049 	 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2050 	 * that we cannot access the packet.
2051 	 * The safe range is:
2052 	 * [ptr, ptr + range - off)
2053 	 * so whenever off >=range, it means no safe bytes from this pointer.
2054 	 * When comparing old->off <= cur->off, it means that older code
2055 	 * went with smaller offset and that offset was later
2056 	 * used to figure out the safe range after 'if (ptr > data_end)' check
2057 	 * Say, 'old' state was explored like:
2058 	 * ... R3(off=0, r=0)
2059 	 * R4 = R3 + 20
2060 	 * ... now R4(off=20,r=0)  <-- here
2061 	 * if (R4 > data_end)
2062 	 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2063 	 * ... the code further went all the way to bpf_exit.
2064 	 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2065 	 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2066 	 * goes further, such cur_R4 will give larger safe packet range after
2067 	 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2068 	 * so they will be good with r=30 and we can prune the search.
2069 	 */
2070 	if (old->off <= cur->off &&
2071 	    old->off >= old->range && cur->off >= cur->range)
2072 		return true;
2073 
2074 	return false;
2075 }
2076 
2077 /* compare two verifier states
2078  *
2079  * all states stored in state_list are known to be valid, since
2080  * verifier reached 'bpf_exit' instruction through them
2081  *
2082  * this function is called when verifier exploring different branches of
2083  * execution popped from the state stack. If it sees an old state that has
2084  * more strict register state and more strict stack state then this execution
2085  * branch doesn't need to be explored further, since verifier already
2086  * concluded that more strict state leads to valid finish.
2087  *
2088  * Therefore two states are equivalent if register state is more conservative
2089  * and explored stack state is more conservative than the current one.
2090  * Example:
2091  *       explored                   current
2092  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2093  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2094  *
2095  * In other words if current stack state (one being explored) has more
2096  * valid slots than old one that already passed validation, it means
2097  * the verifier can stop exploring and conclude that current state is valid too
2098  *
2099  * Similarly with registers. If explored state has register type as invalid
2100  * whereas register type in current state is meaningful, it means that
2101  * the current state will reach 'bpf_exit' instruction safely
2102  */
2103 static bool states_equal(struct verifier_state *old, struct verifier_state *cur)
2104 {
2105 	struct reg_state *rold, *rcur;
2106 	int i;
2107 
2108 	for (i = 0; i < MAX_BPF_REG; i++) {
2109 		rold = &old->regs[i];
2110 		rcur = &cur->regs[i];
2111 
2112 		if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2113 			continue;
2114 
2115 		if (rold->type == NOT_INIT ||
2116 		    (rold->type == UNKNOWN_VALUE && rcur->type != NOT_INIT))
2117 			continue;
2118 
2119 		if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
2120 		    compare_ptrs_to_packet(rold, rcur))
2121 			continue;
2122 
2123 		return false;
2124 	}
2125 
2126 	for (i = 0; i < MAX_BPF_STACK; i++) {
2127 		if (old->stack_slot_type[i] == STACK_INVALID)
2128 			continue;
2129 		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
2130 			/* Ex: old explored (safe) state has STACK_SPILL in
2131 			 * this stack slot, but current has has STACK_MISC ->
2132 			 * this verifier states are not equivalent,
2133 			 * return false to continue verification of this path
2134 			 */
2135 			return false;
2136 		if (i % BPF_REG_SIZE)
2137 			continue;
2138 		if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
2139 			   &cur->spilled_regs[i / BPF_REG_SIZE],
2140 			   sizeof(old->spilled_regs[0])))
2141 			/* when explored and current stack slot types are
2142 			 * the same, check that stored pointers types
2143 			 * are the same as well.
2144 			 * Ex: explored safe path could have stored
2145 			 * (struct reg_state) {.type = PTR_TO_STACK, .imm = -8}
2146 			 * but current path has stored:
2147 			 * (struct reg_state) {.type = PTR_TO_STACK, .imm = -16}
2148 			 * such verifier states are not equivalent.
2149 			 * return false to continue verification of this path
2150 			 */
2151 			return false;
2152 		else
2153 			continue;
2154 	}
2155 	return true;
2156 }
2157 
2158 static int is_state_visited(struct verifier_env *env, int insn_idx)
2159 {
2160 	struct verifier_state_list *new_sl;
2161 	struct verifier_state_list *sl;
2162 
2163 	sl = env->explored_states[insn_idx];
2164 	if (!sl)
2165 		/* this 'insn_idx' instruction wasn't marked, so we will not
2166 		 * be doing state search here
2167 		 */
2168 		return 0;
2169 
2170 	while (sl != STATE_LIST_MARK) {
2171 		if (states_equal(&sl->state, &env->cur_state))
2172 			/* reached equivalent register/stack state,
2173 			 * prune the search
2174 			 */
2175 			return 1;
2176 		sl = sl->next;
2177 	}
2178 
2179 	/* there were no equivalent states, remember current one.
2180 	 * technically the current state is not proven to be safe yet,
2181 	 * but it will either reach bpf_exit (which means it's safe) or
2182 	 * it will be rejected. Since there are no loops, we won't be
2183 	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
2184 	 */
2185 	new_sl = kmalloc(sizeof(struct verifier_state_list), GFP_USER);
2186 	if (!new_sl)
2187 		return -ENOMEM;
2188 
2189 	/* add new state to the head of linked list */
2190 	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
2191 	new_sl->next = env->explored_states[insn_idx];
2192 	env->explored_states[insn_idx] = new_sl;
2193 	return 0;
2194 }
2195 
2196 static int do_check(struct verifier_env *env)
2197 {
2198 	struct verifier_state *state = &env->cur_state;
2199 	struct bpf_insn *insns = env->prog->insnsi;
2200 	struct reg_state *regs = state->regs;
2201 	int insn_cnt = env->prog->len;
2202 	int insn_idx, prev_insn_idx = 0;
2203 	int insn_processed = 0;
2204 	bool do_print_state = false;
2205 
2206 	init_reg_state(regs);
2207 	insn_idx = 0;
2208 	for (;;) {
2209 		struct bpf_insn *insn;
2210 		u8 class;
2211 		int err;
2212 
2213 		if (insn_idx >= insn_cnt) {
2214 			verbose("invalid insn idx %d insn_cnt %d\n",
2215 				insn_idx, insn_cnt);
2216 			return -EFAULT;
2217 		}
2218 
2219 		insn = &insns[insn_idx];
2220 		class = BPF_CLASS(insn->code);
2221 
2222 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
2223 			verbose("BPF program is too large. Proccessed %d insn\n",
2224 				insn_processed);
2225 			return -E2BIG;
2226 		}
2227 
2228 		err = is_state_visited(env, insn_idx);
2229 		if (err < 0)
2230 			return err;
2231 		if (err == 1) {
2232 			/* found equivalent state, can prune the search */
2233 			if (log_level) {
2234 				if (do_print_state)
2235 					verbose("\nfrom %d to %d: safe\n",
2236 						prev_insn_idx, insn_idx);
2237 				else
2238 					verbose("%d: safe\n", insn_idx);
2239 			}
2240 			goto process_bpf_exit;
2241 		}
2242 
2243 		if (log_level && do_print_state) {
2244 			verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
2245 			print_verifier_state(&env->cur_state);
2246 			do_print_state = false;
2247 		}
2248 
2249 		if (log_level) {
2250 			verbose("%d: ", insn_idx);
2251 			print_bpf_insn(insn);
2252 		}
2253 
2254 		if (class == BPF_ALU || class == BPF_ALU64) {
2255 			err = check_alu_op(env, insn);
2256 			if (err)
2257 				return err;
2258 
2259 		} else if (class == BPF_LDX) {
2260 			enum bpf_reg_type src_reg_type;
2261 
2262 			/* check for reserved fields is already done */
2263 
2264 			/* check src operand */
2265 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2266 			if (err)
2267 				return err;
2268 
2269 			err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2270 			if (err)
2271 				return err;
2272 
2273 			src_reg_type = regs[insn->src_reg].type;
2274 
2275 			/* check that memory (src_reg + off) is readable,
2276 			 * the state of dst_reg will be updated by this func
2277 			 */
2278 			err = check_mem_access(env, insn->src_reg, insn->off,
2279 					       BPF_SIZE(insn->code), BPF_READ,
2280 					       insn->dst_reg);
2281 			if (err)
2282 				return err;
2283 
2284 			if (BPF_SIZE(insn->code) != BPF_W) {
2285 				insn_idx++;
2286 				continue;
2287 			}
2288 
2289 			if (insn->imm == 0) {
2290 				/* saw a valid insn
2291 				 * dst_reg = *(u32 *)(src_reg + off)
2292 				 * use reserved 'imm' field to mark this insn
2293 				 */
2294 				insn->imm = src_reg_type;
2295 
2296 			} else if (src_reg_type != insn->imm &&
2297 				   (src_reg_type == PTR_TO_CTX ||
2298 				    insn->imm == PTR_TO_CTX)) {
2299 				/* ABuser program is trying to use the same insn
2300 				 * dst_reg = *(u32*) (src_reg + off)
2301 				 * with different pointer types:
2302 				 * src_reg == ctx in one branch and
2303 				 * src_reg == stack|map in some other branch.
2304 				 * Reject it.
2305 				 */
2306 				verbose("same insn cannot be used with different pointers\n");
2307 				return -EINVAL;
2308 			}
2309 
2310 		} else if (class == BPF_STX) {
2311 			enum bpf_reg_type dst_reg_type;
2312 
2313 			if (BPF_MODE(insn->code) == BPF_XADD) {
2314 				err = check_xadd(env, insn);
2315 				if (err)
2316 					return err;
2317 				insn_idx++;
2318 				continue;
2319 			}
2320 
2321 			/* check src1 operand */
2322 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2323 			if (err)
2324 				return err;
2325 			/* check src2 operand */
2326 			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2327 			if (err)
2328 				return err;
2329 
2330 			dst_reg_type = regs[insn->dst_reg].type;
2331 
2332 			/* check that memory (dst_reg + off) is writeable */
2333 			err = check_mem_access(env, insn->dst_reg, insn->off,
2334 					       BPF_SIZE(insn->code), BPF_WRITE,
2335 					       insn->src_reg);
2336 			if (err)
2337 				return err;
2338 
2339 			if (insn->imm == 0) {
2340 				insn->imm = dst_reg_type;
2341 			} else if (dst_reg_type != insn->imm &&
2342 				   (dst_reg_type == PTR_TO_CTX ||
2343 				    insn->imm == PTR_TO_CTX)) {
2344 				verbose("same insn cannot be used with different pointers\n");
2345 				return -EINVAL;
2346 			}
2347 
2348 		} else if (class == BPF_ST) {
2349 			if (BPF_MODE(insn->code) != BPF_MEM ||
2350 			    insn->src_reg != BPF_REG_0) {
2351 				verbose("BPF_ST uses reserved fields\n");
2352 				return -EINVAL;
2353 			}
2354 			/* check src operand */
2355 			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2356 			if (err)
2357 				return err;
2358 
2359 			/* check that memory (dst_reg + off) is writeable */
2360 			err = check_mem_access(env, insn->dst_reg, insn->off,
2361 					       BPF_SIZE(insn->code), BPF_WRITE,
2362 					       -1);
2363 			if (err)
2364 				return err;
2365 
2366 		} else if (class == BPF_JMP) {
2367 			u8 opcode = BPF_OP(insn->code);
2368 
2369 			if (opcode == BPF_CALL) {
2370 				if (BPF_SRC(insn->code) != BPF_K ||
2371 				    insn->off != 0 ||
2372 				    insn->src_reg != BPF_REG_0 ||
2373 				    insn->dst_reg != BPF_REG_0) {
2374 					verbose("BPF_CALL uses reserved fields\n");
2375 					return -EINVAL;
2376 				}
2377 
2378 				err = check_call(env, insn->imm);
2379 				if (err)
2380 					return err;
2381 
2382 			} else if (opcode == BPF_JA) {
2383 				if (BPF_SRC(insn->code) != BPF_K ||
2384 				    insn->imm != 0 ||
2385 				    insn->src_reg != BPF_REG_0 ||
2386 				    insn->dst_reg != BPF_REG_0) {
2387 					verbose("BPF_JA uses reserved fields\n");
2388 					return -EINVAL;
2389 				}
2390 
2391 				insn_idx += insn->off + 1;
2392 				continue;
2393 
2394 			} else if (opcode == BPF_EXIT) {
2395 				if (BPF_SRC(insn->code) != BPF_K ||
2396 				    insn->imm != 0 ||
2397 				    insn->src_reg != BPF_REG_0 ||
2398 				    insn->dst_reg != BPF_REG_0) {
2399 					verbose("BPF_EXIT uses reserved fields\n");
2400 					return -EINVAL;
2401 				}
2402 
2403 				/* eBPF calling convetion is such that R0 is used
2404 				 * to return the value from eBPF program.
2405 				 * Make sure that it's readable at this time
2406 				 * of bpf_exit, which means that program wrote
2407 				 * something into it earlier
2408 				 */
2409 				err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
2410 				if (err)
2411 					return err;
2412 
2413 				if (is_pointer_value(env, BPF_REG_0)) {
2414 					verbose("R0 leaks addr as return value\n");
2415 					return -EACCES;
2416 				}
2417 
2418 process_bpf_exit:
2419 				insn_idx = pop_stack(env, &prev_insn_idx);
2420 				if (insn_idx < 0) {
2421 					break;
2422 				} else {
2423 					do_print_state = true;
2424 					continue;
2425 				}
2426 			} else {
2427 				err = check_cond_jmp_op(env, insn, &insn_idx);
2428 				if (err)
2429 					return err;
2430 			}
2431 		} else if (class == BPF_LD) {
2432 			u8 mode = BPF_MODE(insn->code);
2433 
2434 			if (mode == BPF_ABS || mode == BPF_IND) {
2435 				err = check_ld_abs(env, insn);
2436 				if (err)
2437 					return err;
2438 
2439 			} else if (mode == BPF_IMM) {
2440 				err = check_ld_imm(env, insn);
2441 				if (err)
2442 					return err;
2443 
2444 				insn_idx++;
2445 			} else {
2446 				verbose("invalid BPF_LD mode\n");
2447 				return -EINVAL;
2448 			}
2449 		} else {
2450 			verbose("unknown insn class %d\n", class);
2451 			return -EINVAL;
2452 		}
2453 
2454 		insn_idx++;
2455 	}
2456 
2457 	verbose("processed %d insns\n", insn_processed);
2458 	return 0;
2459 }
2460 
2461 /* look for pseudo eBPF instructions that access map FDs and
2462  * replace them with actual map pointers
2463  */
2464 static int replace_map_fd_with_map_ptr(struct verifier_env *env)
2465 {
2466 	struct bpf_insn *insn = env->prog->insnsi;
2467 	int insn_cnt = env->prog->len;
2468 	int i, j;
2469 
2470 	for (i = 0; i < insn_cnt; i++, insn++) {
2471 		if (BPF_CLASS(insn->code) == BPF_LDX &&
2472 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
2473 			verbose("BPF_LDX uses reserved fields\n");
2474 			return -EINVAL;
2475 		}
2476 
2477 		if (BPF_CLASS(insn->code) == BPF_STX &&
2478 		    ((BPF_MODE(insn->code) != BPF_MEM &&
2479 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
2480 			verbose("BPF_STX uses reserved fields\n");
2481 			return -EINVAL;
2482 		}
2483 
2484 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
2485 			struct bpf_map *map;
2486 			struct fd f;
2487 
2488 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
2489 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
2490 			    insn[1].off != 0) {
2491 				verbose("invalid bpf_ld_imm64 insn\n");
2492 				return -EINVAL;
2493 			}
2494 
2495 			if (insn->src_reg == 0)
2496 				/* valid generic load 64-bit imm */
2497 				goto next_insn;
2498 
2499 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
2500 				verbose("unrecognized bpf_ld_imm64 insn\n");
2501 				return -EINVAL;
2502 			}
2503 
2504 			f = fdget(insn->imm);
2505 			map = __bpf_map_get(f);
2506 			if (IS_ERR(map)) {
2507 				verbose("fd %d is not pointing to valid bpf_map\n",
2508 					insn->imm);
2509 				return PTR_ERR(map);
2510 			}
2511 
2512 			/* store map pointer inside BPF_LD_IMM64 instruction */
2513 			insn[0].imm = (u32) (unsigned long) map;
2514 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
2515 
2516 			/* check whether we recorded this map already */
2517 			for (j = 0; j < env->used_map_cnt; j++)
2518 				if (env->used_maps[j] == map) {
2519 					fdput(f);
2520 					goto next_insn;
2521 				}
2522 
2523 			if (env->used_map_cnt >= MAX_USED_MAPS) {
2524 				fdput(f);
2525 				return -E2BIG;
2526 			}
2527 
2528 			/* hold the map. If the program is rejected by verifier,
2529 			 * the map will be released by release_maps() or it
2530 			 * will be used by the valid program until it's unloaded
2531 			 * and all maps are released in free_bpf_prog_info()
2532 			 */
2533 			map = bpf_map_inc(map, false);
2534 			if (IS_ERR(map)) {
2535 				fdput(f);
2536 				return PTR_ERR(map);
2537 			}
2538 			env->used_maps[env->used_map_cnt++] = map;
2539 
2540 			fdput(f);
2541 next_insn:
2542 			insn++;
2543 			i++;
2544 		}
2545 	}
2546 
2547 	/* now all pseudo BPF_LD_IMM64 instructions load valid
2548 	 * 'struct bpf_map *' into a register instead of user map_fd.
2549 	 * These pointers will be used later by verifier to validate map access.
2550 	 */
2551 	return 0;
2552 }
2553 
2554 /* drop refcnt of maps used by the rejected program */
2555 static void release_maps(struct verifier_env *env)
2556 {
2557 	int i;
2558 
2559 	for (i = 0; i < env->used_map_cnt; i++)
2560 		bpf_map_put(env->used_maps[i]);
2561 }
2562 
2563 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
2564 static void convert_pseudo_ld_imm64(struct verifier_env *env)
2565 {
2566 	struct bpf_insn *insn = env->prog->insnsi;
2567 	int insn_cnt = env->prog->len;
2568 	int i;
2569 
2570 	for (i = 0; i < insn_cnt; i++, insn++)
2571 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
2572 			insn->src_reg = 0;
2573 }
2574 
2575 /* convert load instructions that access fields of 'struct __sk_buff'
2576  * into sequence of instructions that access fields of 'struct sk_buff'
2577  */
2578 static int convert_ctx_accesses(struct verifier_env *env)
2579 {
2580 	struct bpf_insn *insn = env->prog->insnsi;
2581 	int insn_cnt = env->prog->len;
2582 	struct bpf_insn insn_buf[16];
2583 	struct bpf_prog *new_prog;
2584 	enum bpf_access_type type;
2585 	int i;
2586 
2587 	if (!env->prog->aux->ops->convert_ctx_access)
2588 		return 0;
2589 
2590 	for (i = 0; i < insn_cnt; i++, insn++) {
2591 		u32 insn_delta, cnt;
2592 
2593 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_W))
2594 			type = BPF_READ;
2595 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_W))
2596 			type = BPF_WRITE;
2597 		else
2598 			continue;
2599 
2600 		if (insn->imm != PTR_TO_CTX) {
2601 			/* clear internal mark */
2602 			insn->imm = 0;
2603 			continue;
2604 		}
2605 
2606 		cnt = env->prog->aux->ops->
2607 			convert_ctx_access(type, insn->dst_reg, insn->src_reg,
2608 					   insn->off, insn_buf, env->prog);
2609 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
2610 			verbose("bpf verifier is misconfigured\n");
2611 			return -EINVAL;
2612 		}
2613 
2614 		new_prog = bpf_patch_insn_single(env->prog, i, insn_buf, cnt);
2615 		if (!new_prog)
2616 			return -ENOMEM;
2617 
2618 		insn_delta = cnt - 1;
2619 
2620 		/* keep walking new program and skip insns we just inserted */
2621 		env->prog = new_prog;
2622 		insn      = new_prog->insnsi + i + insn_delta;
2623 
2624 		insn_cnt += insn_delta;
2625 		i        += insn_delta;
2626 	}
2627 
2628 	return 0;
2629 }
2630 
2631 static void free_states(struct verifier_env *env)
2632 {
2633 	struct verifier_state_list *sl, *sln;
2634 	int i;
2635 
2636 	if (!env->explored_states)
2637 		return;
2638 
2639 	for (i = 0; i < env->prog->len; i++) {
2640 		sl = env->explored_states[i];
2641 
2642 		if (sl)
2643 			while (sl != STATE_LIST_MARK) {
2644 				sln = sl->next;
2645 				kfree(sl);
2646 				sl = sln;
2647 			}
2648 	}
2649 
2650 	kfree(env->explored_states);
2651 }
2652 
2653 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
2654 {
2655 	char __user *log_ubuf = NULL;
2656 	struct verifier_env *env;
2657 	int ret = -EINVAL;
2658 
2659 	if ((*prog)->len <= 0 || (*prog)->len > BPF_MAXINSNS)
2660 		return -E2BIG;
2661 
2662 	/* 'struct verifier_env' can be global, but since it's not small,
2663 	 * allocate/free it every time bpf_check() is called
2664 	 */
2665 	env = kzalloc(sizeof(struct verifier_env), GFP_KERNEL);
2666 	if (!env)
2667 		return -ENOMEM;
2668 
2669 	env->prog = *prog;
2670 
2671 	/* grab the mutex to protect few globals used by verifier */
2672 	mutex_lock(&bpf_verifier_lock);
2673 
2674 	if (attr->log_level || attr->log_buf || attr->log_size) {
2675 		/* user requested verbose verifier output
2676 		 * and supplied buffer to store the verification trace
2677 		 */
2678 		log_level = attr->log_level;
2679 		log_ubuf = (char __user *) (unsigned long) attr->log_buf;
2680 		log_size = attr->log_size;
2681 		log_len = 0;
2682 
2683 		ret = -EINVAL;
2684 		/* log_* values have to be sane */
2685 		if (log_size < 128 || log_size > UINT_MAX >> 8 ||
2686 		    log_level == 0 || log_ubuf == NULL)
2687 			goto free_env;
2688 
2689 		ret = -ENOMEM;
2690 		log_buf = vmalloc(log_size);
2691 		if (!log_buf)
2692 			goto free_env;
2693 	} else {
2694 		log_level = 0;
2695 	}
2696 
2697 	ret = replace_map_fd_with_map_ptr(env);
2698 	if (ret < 0)
2699 		goto skip_full_check;
2700 
2701 	env->explored_states = kcalloc(env->prog->len,
2702 				       sizeof(struct verifier_state_list *),
2703 				       GFP_USER);
2704 	ret = -ENOMEM;
2705 	if (!env->explored_states)
2706 		goto skip_full_check;
2707 
2708 	ret = check_cfg(env);
2709 	if (ret < 0)
2710 		goto skip_full_check;
2711 
2712 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
2713 
2714 	ret = do_check(env);
2715 
2716 skip_full_check:
2717 	while (pop_stack(env, NULL) >= 0);
2718 	free_states(env);
2719 
2720 	if (ret == 0)
2721 		/* program is valid, convert *(u32*)(ctx + off) accesses */
2722 		ret = convert_ctx_accesses(env);
2723 
2724 	if (log_level && log_len >= log_size - 1) {
2725 		BUG_ON(log_len >= log_size);
2726 		/* verifier log exceeded user supplied buffer */
2727 		ret = -ENOSPC;
2728 		/* fall through to return what was recorded */
2729 	}
2730 
2731 	/* copy verifier log back to user space including trailing zero */
2732 	if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
2733 		ret = -EFAULT;
2734 		goto free_log_buf;
2735 	}
2736 
2737 	if (ret == 0 && env->used_map_cnt) {
2738 		/* if program passed verifier, update used_maps in bpf_prog_info */
2739 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
2740 							  sizeof(env->used_maps[0]),
2741 							  GFP_KERNEL);
2742 
2743 		if (!env->prog->aux->used_maps) {
2744 			ret = -ENOMEM;
2745 			goto free_log_buf;
2746 		}
2747 
2748 		memcpy(env->prog->aux->used_maps, env->used_maps,
2749 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
2750 		env->prog->aux->used_map_cnt = env->used_map_cnt;
2751 
2752 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
2753 		 * bpf_ld_imm64 instructions
2754 		 */
2755 		convert_pseudo_ld_imm64(env);
2756 	}
2757 
2758 free_log_buf:
2759 	if (log_level)
2760 		vfree(log_buf);
2761 free_env:
2762 	if (!env->prog->aux->used_maps)
2763 		/* if we didn't copy map pointers into bpf_prog_info, release
2764 		 * them now. Otherwise free_bpf_prog_info() will release them.
2765 		 */
2766 		release_maps(env);
2767 	*prog = env->prog;
2768 	kfree(env);
2769 	mutex_unlock(&bpf_verifier_lock);
2770 	return ret;
2771 }
2772