xref: /openbmc/linux/kernel/bpf/verifier.c (revision 6a143a7c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25 
26 #include "disasm.h"
27 
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 	[_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all pathes through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns ether pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 	/* length of verifier log at the time this state was pushed on stack */
175 	u32 log_pos;
176 };
177 
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
179 #define BPF_COMPLEXITY_LIMIT_STATES	64
180 
181 #define BPF_MAP_KEY_POISON	(1ULL << 63)
182 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
183 
184 #define BPF_MAP_PTR_UNPRIV	1UL
185 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
186 					  POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188 
189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193 
194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198 
199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 			      const struct bpf_map *map, bool unpriv)
201 {
202 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 	unpriv |= bpf_map_ptr_unpriv(aux);
204 	aux->map_ptr_state = (unsigned long)map |
205 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207 
208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 	return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212 
213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217 
218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222 
223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 	bool poisoned = bpf_map_key_poisoned(aux);
226 
227 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230 
231 static bool bpf_pseudo_call(const struct bpf_insn *insn)
232 {
233 	return insn->code == (BPF_JMP | BPF_CALL) &&
234 	       insn->src_reg == BPF_PSEUDO_CALL;
235 }
236 
237 static bool bpf_pseudo_func(const struct bpf_insn *insn)
238 {
239 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW) &&
240 	       insn->src_reg == BPF_PSEUDO_FUNC;
241 }
242 
243 struct bpf_call_arg_meta {
244 	struct bpf_map *map_ptr;
245 	bool raw_mode;
246 	bool pkt_access;
247 	int regno;
248 	int access_size;
249 	int mem_size;
250 	u64 msize_max_value;
251 	int ref_obj_id;
252 	int func_id;
253 	struct btf *btf;
254 	u32 btf_id;
255 	struct btf *ret_btf;
256 	u32 ret_btf_id;
257 	u32 subprogno;
258 };
259 
260 struct btf *btf_vmlinux;
261 
262 static DEFINE_MUTEX(bpf_verifier_lock);
263 
264 static const struct bpf_line_info *
265 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
266 {
267 	const struct bpf_line_info *linfo;
268 	const struct bpf_prog *prog;
269 	u32 i, nr_linfo;
270 
271 	prog = env->prog;
272 	nr_linfo = prog->aux->nr_linfo;
273 
274 	if (!nr_linfo || insn_off >= prog->len)
275 		return NULL;
276 
277 	linfo = prog->aux->linfo;
278 	for (i = 1; i < nr_linfo; i++)
279 		if (insn_off < linfo[i].insn_off)
280 			break;
281 
282 	return &linfo[i - 1];
283 }
284 
285 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
286 		       va_list args)
287 {
288 	unsigned int n;
289 
290 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
291 
292 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
293 		  "verifier log line truncated - local buffer too short\n");
294 
295 	n = min(log->len_total - log->len_used - 1, n);
296 	log->kbuf[n] = '\0';
297 
298 	if (log->level == BPF_LOG_KERNEL) {
299 		pr_err("BPF:%s\n", log->kbuf);
300 		return;
301 	}
302 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
303 		log->len_used += n;
304 	else
305 		log->ubuf = NULL;
306 }
307 
308 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
309 {
310 	char zero = 0;
311 
312 	if (!bpf_verifier_log_needed(log))
313 		return;
314 
315 	log->len_used = new_pos;
316 	if (put_user(zero, log->ubuf + new_pos))
317 		log->ubuf = NULL;
318 }
319 
320 /* log_level controls verbosity level of eBPF verifier.
321  * bpf_verifier_log_write() is used to dump the verification trace to the log,
322  * so the user can figure out what's wrong with the program
323  */
324 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
325 					   const char *fmt, ...)
326 {
327 	va_list args;
328 
329 	if (!bpf_verifier_log_needed(&env->log))
330 		return;
331 
332 	va_start(args, fmt);
333 	bpf_verifier_vlog(&env->log, fmt, args);
334 	va_end(args);
335 }
336 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
337 
338 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
339 {
340 	struct bpf_verifier_env *env = private_data;
341 	va_list args;
342 
343 	if (!bpf_verifier_log_needed(&env->log))
344 		return;
345 
346 	va_start(args, fmt);
347 	bpf_verifier_vlog(&env->log, fmt, args);
348 	va_end(args);
349 }
350 
351 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
352 			    const char *fmt, ...)
353 {
354 	va_list args;
355 
356 	if (!bpf_verifier_log_needed(log))
357 		return;
358 
359 	va_start(args, fmt);
360 	bpf_verifier_vlog(log, fmt, args);
361 	va_end(args);
362 }
363 
364 static const char *ltrim(const char *s)
365 {
366 	while (isspace(*s))
367 		s++;
368 
369 	return s;
370 }
371 
372 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
373 					 u32 insn_off,
374 					 const char *prefix_fmt, ...)
375 {
376 	const struct bpf_line_info *linfo;
377 
378 	if (!bpf_verifier_log_needed(&env->log))
379 		return;
380 
381 	linfo = find_linfo(env, insn_off);
382 	if (!linfo || linfo == env->prev_linfo)
383 		return;
384 
385 	if (prefix_fmt) {
386 		va_list args;
387 
388 		va_start(args, prefix_fmt);
389 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
390 		va_end(args);
391 	}
392 
393 	verbose(env, "%s\n",
394 		ltrim(btf_name_by_offset(env->prog->aux->btf,
395 					 linfo->line_off)));
396 
397 	env->prev_linfo = linfo;
398 }
399 
400 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
401 				   struct bpf_reg_state *reg,
402 				   struct tnum *range, const char *ctx,
403 				   const char *reg_name)
404 {
405 	char tn_buf[48];
406 
407 	verbose(env, "At %s the register %s ", ctx, reg_name);
408 	if (!tnum_is_unknown(reg->var_off)) {
409 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
410 		verbose(env, "has value %s", tn_buf);
411 	} else {
412 		verbose(env, "has unknown scalar value");
413 	}
414 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
415 	verbose(env, " should have been in %s\n", tn_buf);
416 }
417 
418 static bool type_is_pkt_pointer(enum bpf_reg_type type)
419 {
420 	return type == PTR_TO_PACKET ||
421 	       type == PTR_TO_PACKET_META;
422 }
423 
424 static bool type_is_sk_pointer(enum bpf_reg_type type)
425 {
426 	return type == PTR_TO_SOCKET ||
427 		type == PTR_TO_SOCK_COMMON ||
428 		type == PTR_TO_TCP_SOCK ||
429 		type == PTR_TO_XDP_SOCK;
430 }
431 
432 static bool reg_type_not_null(enum bpf_reg_type type)
433 {
434 	return type == PTR_TO_SOCKET ||
435 		type == PTR_TO_TCP_SOCK ||
436 		type == PTR_TO_MAP_VALUE ||
437 		type == PTR_TO_MAP_KEY ||
438 		type == PTR_TO_SOCK_COMMON;
439 }
440 
441 static bool reg_type_may_be_null(enum bpf_reg_type type)
442 {
443 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
444 	       type == PTR_TO_SOCKET_OR_NULL ||
445 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
446 	       type == PTR_TO_TCP_SOCK_OR_NULL ||
447 	       type == PTR_TO_BTF_ID_OR_NULL ||
448 	       type == PTR_TO_MEM_OR_NULL ||
449 	       type == PTR_TO_RDONLY_BUF_OR_NULL ||
450 	       type == PTR_TO_RDWR_BUF_OR_NULL;
451 }
452 
453 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
454 {
455 	return reg->type == PTR_TO_MAP_VALUE &&
456 		map_value_has_spin_lock(reg->map_ptr);
457 }
458 
459 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
460 {
461 	return type == PTR_TO_SOCKET ||
462 		type == PTR_TO_SOCKET_OR_NULL ||
463 		type == PTR_TO_TCP_SOCK ||
464 		type == PTR_TO_TCP_SOCK_OR_NULL ||
465 		type == PTR_TO_MEM ||
466 		type == PTR_TO_MEM_OR_NULL;
467 }
468 
469 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
470 {
471 	return type == ARG_PTR_TO_SOCK_COMMON;
472 }
473 
474 static bool arg_type_may_be_null(enum bpf_arg_type type)
475 {
476 	return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
477 	       type == ARG_PTR_TO_MEM_OR_NULL ||
478 	       type == ARG_PTR_TO_CTX_OR_NULL ||
479 	       type == ARG_PTR_TO_SOCKET_OR_NULL ||
480 	       type == ARG_PTR_TO_ALLOC_MEM_OR_NULL ||
481 	       type == ARG_PTR_TO_STACK_OR_NULL;
482 }
483 
484 /* Determine whether the function releases some resources allocated by another
485  * function call. The first reference type argument will be assumed to be
486  * released by release_reference().
487  */
488 static bool is_release_function(enum bpf_func_id func_id)
489 {
490 	return func_id == BPF_FUNC_sk_release ||
491 	       func_id == BPF_FUNC_ringbuf_submit ||
492 	       func_id == BPF_FUNC_ringbuf_discard;
493 }
494 
495 static bool may_be_acquire_function(enum bpf_func_id func_id)
496 {
497 	return func_id == BPF_FUNC_sk_lookup_tcp ||
498 		func_id == BPF_FUNC_sk_lookup_udp ||
499 		func_id == BPF_FUNC_skc_lookup_tcp ||
500 		func_id == BPF_FUNC_map_lookup_elem ||
501 	        func_id == BPF_FUNC_ringbuf_reserve;
502 }
503 
504 static bool is_acquire_function(enum bpf_func_id func_id,
505 				const struct bpf_map *map)
506 {
507 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
508 
509 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
510 	    func_id == BPF_FUNC_sk_lookup_udp ||
511 	    func_id == BPF_FUNC_skc_lookup_tcp ||
512 	    func_id == BPF_FUNC_ringbuf_reserve)
513 		return true;
514 
515 	if (func_id == BPF_FUNC_map_lookup_elem &&
516 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
517 	     map_type == BPF_MAP_TYPE_SOCKHASH))
518 		return true;
519 
520 	return false;
521 }
522 
523 static bool is_ptr_cast_function(enum bpf_func_id func_id)
524 {
525 	return func_id == BPF_FUNC_tcp_sock ||
526 		func_id == BPF_FUNC_sk_fullsock ||
527 		func_id == BPF_FUNC_skc_to_tcp_sock ||
528 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
529 		func_id == BPF_FUNC_skc_to_udp6_sock ||
530 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
531 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
532 }
533 
534 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
535 {
536 	return BPF_CLASS(insn->code) == BPF_STX &&
537 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
538 	       insn->imm == BPF_CMPXCHG;
539 }
540 
541 /* string representation of 'enum bpf_reg_type' */
542 static const char * const reg_type_str[] = {
543 	[NOT_INIT]		= "?",
544 	[SCALAR_VALUE]		= "inv",
545 	[PTR_TO_CTX]		= "ctx",
546 	[CONST_PTR_TO_MAP]	= "map_ptr",
547 	[PTR_TO_MAP_VALUE]	= "map_value",
548 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
549 	[PTR_TO_STACK]		= "fp",
550 	[PTR_TO_PACKET]		= "pkt",
551 	[PTR_TO_PACKET_META]	= "pkt_meta",
552 	[PTR_TO_PACKET_END]	= "pkt_end",
553 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
554 	[PTR_TO_SOCKET]		= "sock",
555 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
556 	[PTR_TO_SOCK_COMMON]	= "sock_common",
557 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
558 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
559 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
560 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
561 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
562 	[PTR_TO_BTF_ID]		= "ptr_",
563 	[PTR_TO_BTF_ID_OR_NULL]	= "ptr_or_null_",
564 	[PTR_TO_PERCPU_BTF_ID]	= "percpu_ptr_",
565 	[PTR_TO_MEM]		= "mem",
566 	[PTR_TO_MEM_OR_NULL]	= "mem_or_null",
567 	[PTR_TO_RDONLY_BUF]	= "rdonly_buf",
568 	[PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
569 	[PTR_TO_RDWR_BUF]	= "rdwr_buf",
570 	[PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
571 	[PTR_TO_FUNC]		= "func",
572 	[PTR_TO_MAP_KEY]	= "map_key",
573 };
574 
575 static char slot_type_char[] = {
576 	[STACK_INVALID]	= '?',
577 	[STACK_SPILL]	= 'r',
578 	[STACK_MISC]	= 'm',
579 	[STACK_ZERO]	= '0',
580 };
581 
582 static void print_liveness(struct bpf_verifier_env *env,
583 			   enum bpf_reg_liveness live)
584 {
585 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
586 	    verbose(env, "_");
587 	if (live & REG_LIVE_READ)
588 		verbose(env, "r");
589 	if (live & REG_LIVE_WRITTEN)
590 		verbose(env, "w");
591 	if (live & REG_LIVE_DONE)
592 		verbose(env, "D");
593 }
594 
595 static struct bpf_func_state *func(struct bpf_verifier_env *env,
596 				   const struct bpf_reg_state *reg)
597 {
598 	struct bpf_verifier_state *cur = env->cur_state;
599 
600 	return cur->frame[reg->frameno];
601 }
602 
603 static const char *kernel_type_name(const struct btf* btf, u32 id)
604 {
605 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
606 }
607 
608 static void print_verifier_state(struct bpf_verifier_env *env,
609 				 const struct bpf_func_state *state)
610 {
611 	const struct bpf_reg_state *reg;
612 	enum bpf_reg_type t;
613 	int i;
614 
615 	if (state->frameno)
616 		verbose(env, " frame%d:", state->frameno);
617 	for (i = 0; i < MAX_BPF_REG; i++) {
618 		reg = &state->regs[i];
619 		t = reg->type;
620 		if (t == NOT_INIT)
621 			continue;
622 		verbose(env, " R%d", i);
623 		print_liveness(env, reg->live);
624 		verbose(env, "=%s", reg_type_str[t]);
625 		if (t == SCALAR_VALUE && reg->precise)
626 			verbose(env, "P");
627 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
628 		    tnum_is_const(reg->var_off)) {
629 			/* reg->off should be 0 for SCALAR_VALUE */
630 			verbose(env, "%lld", reg->var_off.value + reg->off);
631 		} else {
632 			if (t == PTR_TO_BTF_ID ||
633 			    t == PTR_TO_BTF_ID_OR_NULL ||
634 			    t == PTR_TO_PERCPU_BTF_ID)
635 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
636 			verbose(env, "(id=%d", reg->id);
637 			if (reg_type_may_be_refcounted_or_null(t))
638 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
639 			if (t != SCALAR_VALUE)
640 				verbose(env, ",off=%d", reg->off);
641 			if (type_is_pkt_pointer(t))
642 				verbose(env, ",r=%d", reg->range);
643 			else if (t == CONST_PTR_TO_MAP ||
644 				 t == PTR_TO_MAP_KEY ||
645 				 t == PTR_TO_MAP_VALUE ||
646 				 t == PTR_TO_MAP_VALUE_OR_NULL)
647 				verbose(env, ",ks=%d,vs=%d",
648 					reg->map_ptr->key_size,
649 					reg->map_ptr->value_size);
650 			if (tnum_is_const(reg->var_off)) {
651 				/* Typically an immediate SCALAR_VALUE, but
652 				 * could be a pointer whose offset is too big
653 				 * for reg->off
654 				 */
655 				verbose(env, ",imm=%llx", reg->var_off.value);
656 			} else {
657 				if (reg->smin_value != reg->umin_value &&
658 				    reg->smin_value != S64_MIN)
659 					verbose(env, ",smin_value=%lld",
660 						(long long)reg->smin_value);
661 				if (reg->smax_value != reg->umax_value &&
662 				    reg->smax_value != S64_MAX)
663 					verbose(env, ",smax_value=%lld",
664 						(long long)reg->smax_value);
665 				if (reg->umin_value != 0)
666 					verbose(env, ",umin_value=%llu",
667 						(unsigned long long)reg->umin_value);
668 				if (reg->umax_value != U64_MAX)
669 					verbose(env, ",umax_value=%llu",
670 						(unsigned long long)reg->umax_value);
671 				if (!tnum_is_unknown(reg->var_off)) {
672 					char tn_buf[48];
673 
674 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
675 					verbose(env, ",var_off=%s", tn_buf);
676 				}
677 				if (reg->s32_min_value != reg->smin_value &&
678 				    reg->s32_min_value != S32_MIN)
679 					verbose(env, ",s32_min_value=%d",
680 						(int)(reg->s32_min_value));
681 				if (reg->s32_max_value != reg->smax_value &&
682 				    reg->s32_max_value != S32_MAX)
683 					verbose(env, ",s32_max_value=%d",
684 						(int)(reg->s32_max_value));
685 				if (reg->u32_min_value != reg->umin_value &&
686 				    reg->u32_min_value != U32_MIN)
687 					verbose(env, ",u32_min_value=%d",
688 						(int)(reg->u32_min_value));
689 				if (reg->u32_max_value != reg->umax_value &&
690 				    reg->u32_max_value != U32_MAX)
691 					verbose(env, ",u32_max_value=%d",
692 						(int)(reg->u32_max_value));
693 			}
694 			verbose(env, ")");
695 		}
696 	}
697 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
698 		char types_buf[BPF_REG_SIZE + 1];
699 		bool valid = false;
700 		int j;
701 
702 		for (j = 0; j < BPF_REG_SIZE; j++) {
703 			if (state->stack[i].slot_type[j] != STACK_INVALID)
704 				valid = true;
705 			types_buf[j] = slot_type_char[
706 					state->stack[i].slot_type[j]];
707 		}
708 		types_buf[BPF_REG_SIZE] = 0;
709 		if (!valid)
710 			continue;
711 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
712 		print_liveness(env, state->stack[i].spilled_ptr.live);
713 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
714 			reg = &state->stack[i].spilled_ptr;
715 			t = reg->type;
716 			verbose(env, "=%s", reg_type_str[t]);
717 			if (t == SCALAR_VALUE && reg->precise)
718 				verbose(env, "P");
719 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
720 				verbose(env, "%lld", reg->var_off.value + reg->off);
721 		} else {
722 			verbose(env, "=%s", types_buf);
723 		}
724 	}
725 	if (state->acquired_refs && state->refs[0].id) {
726 		verbose(env, " refs=%d", state->refs[0].id);
727 		for (i = 1; i < state->acquired_refs; i++)
728 			if (state->refs[i].id)
729 				verbose(env, ",%d", state->refs[i].id);
730 	}
731 	verbose(env, "\n");
732 }
733 
734 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
735 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
736 			       const struct bpf_func_state *src)	\
737 {									\
738 	if (!src->FIELD)						\
739 		return 0;						\
740 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
741 		/* internal bug, make state invalid to reject the program */ \
742 		memset(dst, 0, sizeof(*dst));				\
743 		return -EFAULT;						\
744 	}								\
745 	memcpy(dst->FIELD, src->FIELD,					\
746 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
747 	return 0;							\
748 }
749 /* copy_reference_state() */
750 COPY_STATE_FN(reference, acquired_refs, refs, 1)
751 /* copy_stack_state() */
752 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
753 #undef COPY_STATE_FN
754 
755 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
756 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
757 				  bool copy_old)			\
758 {									\
759 	u32 old_size = state->COUNT;					\
760 	struct bpf_##NAME##_state *new_##FIELD;				\
761 	int slot = size / SIZE;						\
762 									\
763 	if (size <= old_size || !size) {				\
764 		if (copy_old)						\
765 			return 0;					\
766 		state->COUNT = slot * SIZE;				\
767 		if (!size && old_size) {				\
768 			kfree(state->FIELD);				\
769 			state->FIELD = NULL;				\
770 		}							\
771 		return 0;						\
772 	}								\
773 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
774 				    GFP_KERNEL);			\
775 	if (!new_##FIELD)						\
776 		return -ENOMEM;						\
777 	if (copy_old) {							\
778 		if (state->FIELD)					\
779 			memcpy(new_##FIELD, state->FIELD,		\
780 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
781 		memset(new_##FIELD + old_size / SIZE, 0,		\
782 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
783 	}								\
784 	state->COUNT = slot * SIZE;					\
785 	kfree(state->FIELD);						\
786 	state->FIELD = new_##FIELD;					\
787 	return 0;							\
788 }
789 /* realloc_reference_state() */
790 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
791 /* realloc_stack_state() */
792 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
793 #undef REALLOC_STATE_FN
794 
795 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
796  * make it consume minimal amount of memory. check_stack_write() access from
797  * the program calls into realloc_func_state() to grow the stack size.
798  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
799  * which realloc_stack_state() copies over. It points to previous
800  * bpf_verifier_state which is never reallocated.
801  */
802 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
803 			      int refs_size, bool copy_old)
804 {
805 	int err = realloc_reference_state(state, refs_size, copy_old);
806 	if (err)
807 		return err;
808 	return realloc_stack_state(state, stack_size, copy_old);
809 }
810 
811 /* Acquire a pointer id from the env and update the state->refs to include
812  * this new pointer reference.
813  * On success, returns a valid pointer id to associate with the register
814  * On failure, returns a negative errno.
815  */
816 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
817 {
818 	struct bpf_func_state *state = cur_func(env);
819 	int new_ofs = state->acquired_refs;
820 	int id, err;
821 
822 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
823 	if (err)
824 		return err;
825 	id = ++env->id_gen;
826 	state->refs[new_ofs].id = id;
827 	state->refs[new_ofs].insn_idx = insn_idx;
828 
829 	return id;
830 }
831 
832 /* release function corresponding to acquire_reference_state(). Idempotent. */
833 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
834 {
835 	int i, last_idx;
836 
837 	last_idx = state->acquired_refs - 1;
838 	for (i = 0; i < state->acquired_refs; i++) {
839 		if (state->refs[i].id == ptr_id) {
840 			if (last_idx && i != last_idx)
841 				memcpy(&state->refs[i], &state->refs[last_idx],
842 				       sizeof(*state->refs));
843 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
844 			state->acquired_refs--;
845 			return 0;
846 		}
847 	}
848 	return -EINVAL;
849 }
850 
851 static int transfer_reference_state(struct bpf_func_state *dst,
852 				    struct bpf_func_state *src)
853 {
854 	int err = realloc_reference_state(dst, src->acquired_refs, false);
855 	if (err)
856 		return err;
857 	err = copy_reference_state(dst, src);
858 	if (err)
859 		return err;
860 	return 0;
861 }
862 
863 static void free_func_state(struct bpf_func_state *state)
864 {
865 	if (!state)
866 		return;
867 	kfree(state->refs);
868 	kfree(state->stack);
869 	kfree(state);
870 }
871 
872 static void clear_jmp_history(struct bpf_verifier_state *state)
873 {
874 	kfree(state->jmp_history);
875 	state->jmp_history = NULL;
876 	state->jmp_history_cnt = 0;
877 }
878 
879 static void free_verifier_state(struct bpf_verifier_state *state,
880 				bool free_self)
881 {
882 	int i;
883 
884 	for (i = 0; i <= state->curframe; i++) {
885 		free_func_state(state->frame[i]);
886 		state->frame[i] = NULL;
887 	}
888 	clear_jmp_history(state);
889 	if (free_self)
890 		kfree(state);
891 }
892 
893 /* copy verifier state from src to dst growing dst stack space
894  * when necessary to accommodate larger src stack
895  */
896 static int copy_func_state(struct bpf_func_state *dst,
897 			   const struct bpf_func_state *src)
898 {
899 	int err;
900 
901 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
902 				 false);
903 	if (err)
904 		return err;
905 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
906 	err = copy_reference_state(dst, src);
907 	if (err)
908 		return err;
909 	return copy_stack_state(dst, src);
910 }
911 
912 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
913 			       const struct bpf_verifier_state *src)
914 {
915 	struct bpf_func_state *dst;
916 	u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
917 	int i, err;
918 
919 	if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
920 		kfree(dst_state->jmp_history);
921 		dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
922 		if (!dst_state->jmp_history)
923 			return -ENOMEM;
924 	}
925 	memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
926 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
927 
928 	/* if dst has more stack frames then src frame, free them */
929 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
930 		free_func_state(dst_state->frame[i]);
931 		dst_state->frame[i] = NULL;
932 	}
933 	dst_state->speculative = src->speculative;
934 	dst_state->curframe = src->curframe;
935 	dst_state->active_spin_lock = src->active_spin_lock;
936 	dst_state->branches = src->branches;
937 	dst_state->parent = src->parent;
938 	dst_state->first_insn_idx = src->first_insn_idx;
939 	dst_state->last_insn_idx = src->last_insn_idx;
940 	for (i = 0; i <= src->curframe; i++) {
941 		dst = dst_state->frame[i];
942 		if (!dst) {
943 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
944 			if (!dst)
945 				return -ENOMEM;
946 			dst_state->frame[i] = dst;
947 		}
948 		err = copy_func_state(dst, src->frame[i]);
949 		if (err)
950 			return err;
951 	}
952 	return 0;
953 }
954 
955 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
956 {
957 	while (st) {
958 		u32 br = --st->branches;
959 
960 		/* WARN_ON(br > 1) technically makes sense here,
961 		 * but see comment in push_stack(), hence:
962 		 */
963 		WARN_ONCE((int)br < 0,
964 			  "BUG update_branch_counts:branches_to_explore=%d\n",
965 			  br);
966 		if (br)
967 			break;
968 		st = st->parent;
969 	}
970 }
971 
972 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
973 		     int *insn_idx, bool pop_log)
974 {
975 	struct bpf_verifier_state *cur = env->cur_state;
976 	struct bpf_verifier_stack_elem *elem, *head = env->head;
977 	int err;
978 
979 	if (env->head == NULL)
980 		return -ENOENT;
981 
982 	if (cur) {
983 		err = copy_verifier_state(cur, &head->st);
984 		if (err)
985 			return err;
986 	}
987 	if (pop_log)
988 		bpf_vlog_reset(&env->log, head->log_pos);
989 	if (insn_idx)
990 		*insn_idx = head->insn_idx;
991 	if (prev_insn_idx)
992 		*prev_insn_idx = head->prev_insn_idx;
993 	elem = head->next;
994 	free_verifier_state(&head->st, false);
995 	kfree(head);
996 	env->head = elem;
997 	env->stack_size--;
998 	return 0;
999 }
1000 
1001 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1002 					     int insn_idx, int prev_insn_idx,
1003 					     bool speculative)
1004 {
1005 	struct bpf_verifier_state *cur = env->cur_state;
1006 	struct bpf_verifier_stack_elem *elem;
1007 	int err;
1008 
1009 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1010 	if (!elem)
1011 		goto err;
1012 
1013 	elem->insn_idx = insn_idx;
1014 	elem->prev_insn_idx = prev_insn_idx;
1015 	elem->next = env->head;
1016 	elem->log_pos = env->log.len_used;
1017 	env->head = elem;
1018 	env->stack_size++;
1019 	err = copy_verifier_state(&elem->st, cur);
1020 	if (err)
1021 		goto err;
1022 	elem->st.speculative |= speculative;
1023 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1024 		verbose(env, "The sequence of %d jumps is too complex.\n",
1025 			env->stack_size);
1026 		goto err;
1027 	}
1028 	if (elem->st.parent) {
1029 		++elem->st.parent->branches;
1030 		/* WARN_ON(branches > 2) technically makes sense here,
1031 		 * but
1032 		 * 1. speculative states will bump 'branches' for non-branch
1033 		 * instructions
1034 		 * 2. is_state_visited() heuristics may decide not to create
1035 		 * a new state for a sequence of branches and all such current
1036 		 * and cloned states will be pointing to a single parent state
1037 		 * which might have large 'branches' count.
1038 		 */
1039 	}
1040 	return &elem->st;
1041 err:
1042 	free_verifier_state(env->cur_state, true);
1043 	env->cur_state = NULL;
1044 	/* pop all elements and return */
1045 	while (!pop_stack(env, NULL, NULL, false));
1046 	return NULL;
1047 }
1048 
1049 #define CALLER_SAVED_REGS 6
1050 static const int caller_saved[CALLER_SAVED_REGS] = {
1051 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1052 };
1053 
1054 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1055 				struct bpf_reg_state *reg);
1056 
1057 /* This helper doesn't clear reg->id */
1058 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1059 {
1060 	reg->var_off = tnum_const(imm);
1061 	reg->smin_value = (s64)imm;
1062 	reg->smax_value = (s64)imm;
1063 	reg->umin_value = imm;
1064 	reg->umax_value = imm;
1065 
1066 	reg->s32_min_value = (s32)imm;
1067 	reg->s32_max_value = (s32)imm;
1068 	reg->u32_min_value = (u32)imm;
1069 	reg->u32_max_value = (u32)imm;
1070 }
1071 
1072 /* Mark the unknown part of a register (variable offset or scalar value) as
1073  * known to have the value @imm.
1074  */
1075 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1076 {
1077 	/* Clear id, off, and union(map_ptr, range) */
1078 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1079 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1080 	___mark_reg_known(reg, imm);
1081 }
1082 
1083 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1084 {
1085 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1086 	reg->s32_min_value = (s32)imm;
1087 	reg->s32_max_value = (s32)imm;
1088 	reg->u32_min_value = (u32)imm;
1089 	reg->u32_max_value = (u32)imm;
1090 }
1091 
1092 /* Mark the 'variable offset' part of a register as zero.  This should be
1093  * used only on registers holding a pointer type.
1094  */
1095 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1096 {
1097 	__mark_reg_known(reg, 0);
1098 }
1099 
1100 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1101 {
1102 	__mark_reg_known(reg, 0);
1103 	reg->type = SCALAR_VALUE;
1104 }
1105 
1106 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1107 				struct bpf_reg_state *regs, u32 regno)
1108 {
1109 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1110 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1111 		/* Something bad happened, let's kill all regs */
1112 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1113 			__mark_reg_not_init(env, regs + regno);
1114 		return;
1115 	}
1116 	__mark_reg_known_zero(regs + regno);
1117 }
1118 
1119 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1120 {
1121 	switch (reg->type) {
1122 	case PTR_TO_MAP_VALUE_OR_NULL: {
1123 		const struct bpf_map *map = reg->map_ptr;
1124 
1125 		if (map->inner_map_meta) {
1126 			reg->type = CONST_PTR_TO_MAP;
1127 			reg->map_ptr = map->inner_map_meta;
1128 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1129 			reg->type = PTR_TO_XDP_SOCK;
1130 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1131 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1132 			reg->type = PTR_TO_SOCKET;
1133 		} else {
1134 			reg->type = PTR_TO_MAP_VALUE;
1135 		}
1136 		break;
1137 	}
1138 	case PTR_TO_SOCKET_OR_NULL:
1139 		reg->type = PTR_TO_SOCKET;
1140 		break;
1141 	case PTR_TO_SOCK_COMMON_OR_NULL:
1142 		reg->type = PTR_TO_SOCK_COMMON;
1143 		break;
1144 	case PTR_TO_TCP_SOCK_OR_NULL:
1145 		reg->type = PTR_TO_TCP_SOCK;
1146 		break;
1147 	case PTR_TO_BTF_ID_OR_NULL:
1148 		reg->type = PTR_TO_BTF_ID;
1149 		break;
1150 	case PTR_TO_MEM_OR_NULL:
1151 		reg->type = PTR_TO_MEM;
1152 		break;
1153 	case PTR_TO_RDONLY_BUF_OR_NULL:
1154 		reg->type = PTR_TO_RDONLY_BUF;
1155 		break;
1156 	case PTR_TO_RDWR_BUF_OR_NULL:
1157 		reg->type = PTR_TO_RDWR_BUF;
1158 		break;
1159 	default:
1160 		WARN_ONCE(1, "unknown nullable register type");
1161 	}
1162 }
1163 
1164 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1165 {
1166 	return type_is_pkt_pointer(reg->type);
1167 }
1168 
1169 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1170 {
1171 	return reg_is_pkt_pointer(reg) ||
1172 	       reg->type == PTR_TO_PACKET_END;
1173 }
1174 
1175 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1176 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1177 				    enum bpf_reg_type which)
1178 {
1179 	/* The register can already have a range from prior markings.
1180 	 * This is fine as long as it hasn't been advanced from its
1181 	 * origin.
1182 	 */
1183 	return reg->type == which &&
1184 	       reg->id == 0 &&
1185 	       reg->off == 0 &&
1186 	       tnum_equals_const(reg->var_off, 0);
1187 }
1188 
1189 /* Reset the min/max bounds of a register */
1190 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1191 {
1192 	reg->smin_value = S64_MIN;
1193 	reg->smax_value = S64_MAX;
1194 	reg->umin_value = 0;
1195 	reg->umax_value = U64_MAX;
1196 
1197 	reg->s32_min_value = S32_MIN;
1198 	reg->s32_max_value = S32_MAX;
1199 	reg->u32_min_value = 0;
1200 	reg->u32_max_value = U32_MAX;
1201 }
1202 
1203 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1204 {
1205 	reg->smin_value = S64_MIN;
1206 	reg->smax_value = S64_MAX;
1207 	reg->umin_value = 0;
1208 	reg->umax_value = U64_MAX;
1209 }
1210 
1211 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1212 {
1213 	reg->s32_min_value = S32_MIN;
1214 	reg->s32_max_value = S32_MAX;
1215 	reg->u32_min_value = 0;
1216 	reg->u32_max_value = U32_MAX;
1217 }
1218 
1219 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1220 {
1221 	struct tnum var32_off = tnum_subreg(reg->var_off);
1222 
1223 	/* min signed is max(sign bit) | min(other bits) */
1224 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1225 			var32_off.value | (var32_off.mask & S32_MIN));
1226 	/* max signed is min(sign bit) | max(other bits) */
1227 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1228 			var32_off.value | (var32_off.mask & S32_MAX));
1229 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1230 	reg->u32_max_value = min(reg->u32_max_value,
1231 				 (u32)(var32_off.value | var32_off.mask));
1232 }
1233 
1234 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1235 {
1236 	/* min signed is max(sign bit) | min(other bits) */
1237 	reg->smin_value = max_t(s64, reg->smin_value,
1238 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1239 	/* max signed is min(sign bit) | max(other bits) */
1240 	reg->smax_value = min_t(s64, reg->smax_value,
1241 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1242 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1243 	reg->umax_value = min(reg->umax_value,
1244 			      reg->var_off.value | reg->var_off.mask);
1245 }
1246 
1247 static void __update_reg_bounds(struct bpf_reg_state *reg)
1248 {
1249 	__update_reg32_bounds(reg);
1250 	__update_reg64_bounds(reg);
1251 }
1252 
1253 /* Uses signed min/max values to inform unsigned, and vice-versa */
1254 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1255 {
1256 	/* Learn sign from signed bounds.
1257 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1258 	 * are the same, so combine.  This works even in the negative case, e.g.
1259 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1260 	 */
1261 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1262 		reg->s32_min_value = reg->u32_min_value =
1263 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1264 		reg->s32_max_value = reg->u32_max_value =
1265 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1266 		return;
1267 	}
1268 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1269 	 * boundary, so we must be careful.
1270 	 */
1271 	if ((s32)reg->u32_max_value >= 0) {
1272 		/* Positive.  We can't learn anything from the smin, but smax
1273 		 * is positive, hence safe.
1274 		 */
1275 		reg->s32_min_value = reg->u32_min_value;
1276 		reg->s32_max_value = reg->u32_max_value =
1277 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1278 	} else if ((s32)reg->u32_min_value < 0) {
1279 		/* Negative.  We can't learn anything from the smax, but smin
1280 		 * is negative, hence safe.
1281 		 */
1282 		reg->s32_min_value = reg->u32_min_value =
1283 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1284 		reg->s32_max_value = reg->u32_max_value;
1285 	}
1286 }
1287 
1288 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1289 {
1290 	/* Learn sign from signed bounds.
1291 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1292 	 * are the same, so combine.  This works even in the negative case, e.g.
1293 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1294 	 */
1295 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1296 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1297 							  reg->umin_value);
1298 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1299 							  reg->umax_value);
1300 		return;
1301 	}
1302 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1303 	 * boundary, so we must be careful.
1304 	 */
1305 	if ((s64)reg->umax_value >= 0) {
1306 		/* Positive.  We can't learn anything from the smin, but smax
1307 		 * is positive, hence safe.
1308 		 */
1309 		reg->smin_value = reg->umin_value;
1310 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1311 							  reg->umax_value);
1312 	} else if ((s64)reg->umin_value < 0) {
1313 		/* Negative.  We can't learn anything from the smax, but smin
1314 		 * is negative, hence safe.
1315 		 */
1316 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1317 							  reg->umin_value);
1318 		reg->smax_value = reg->umax_value;
1319 	}
1320 }
1321 
1322 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1323 {
1324 	__reg32_deduce_bounds(reg);
1325 	__reg64_deduce_bounds(reg);
1326 }
1327 
1328 /* Attempts to improve var_off based on unsigned min/max information */
1329 static void __reg_bound_offset(struct bpf_reg_state *reg)
1330 {
1331 	struct tnum var64_off = tnum_intersect(reg->var_off,
1332 					       tnum_range(reg->umin_value,
1333 							  reg->umax_value));
1334 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1335 						tnum_range(reg->u32_min_value,
1336 							   reg->u32_max_value));
1337 
1338 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1339 }
1340 
1341 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1342 {
1343 	reg->umin_value = reg->u32_min_value;
1344 	reg->umax_value = reg->u32_max_value;
1345 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1346 	 * but must be positive otherwise set to worse case bounds
1347 	 * and refine later from tnum.
1348 	 */
1349 	if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1350 		reg->smax_value = reg->s32_max_value;
1351 	else
1352 		reg->smax_value = U32_MAX;
1353 	if (reg->s32_min_value >= 0)
1354 		reg->smin_value = reg->s32_min_value;
1355 	else
1356 		reg->smin_value = 0;
1357 }
1358 
1359 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1360 {
1361 	/* special case when 64-bit register has upper 32-bit register
1362 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1363 	 * allowing us to use 32-bit bounds directly,
1364 	 */
1365 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1366 		__reg_assign_32_into_64(reg);
1367 	} else {
1368 		/* Otherwise the best we can do is push lower 32bit known and
1369 		 * unknown bits into register (var_off set from jmp logic)
1370 		 * then learn as much as possible from the 64-bit tnum
1371 		 * known and unknown bits. The previous smin/smax bounds are
1372 		 * invalid here because of jmp32 compare so mark them unknown
1373 		 * so they do not impact tnum bounds calculation.
1374 		 */
1375 		__mark_reg64_unbounded(reg);
1376 		__update_reg_bounds(reg);
1377 	}
1378 
1379 	/* Intersecting with the old var_off might have improved our bounds
1380 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1381 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1382 	 */
1383 	__reg_deduce_bounds(reg);
1384 	__reg_bound_offset(reg);
1385 	__update_reg_bounds(reg);
1386 }
1387 
1388 static bool __reg64_bound_s32(s64 a)
1389 {
1390 	return a > S32_MIN && a < S32_MAX;
1391 }
1392 
1393 static bool __reg64_bound_u32(u64 a)
1394 {
1395 	if (a > U32_MIN && a < U32_MAX)
1396 		return true;
1397 	return false;
1398 }
1399 
1400 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1401 {
1402 	__mark_reg32_unbounded(reg);
1403 
1404 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1405 		reg->s32_min_value = (s32)reg->smin_value;
1406 		reg->s32_max_value = (s32)reg->smax_value;
1407 	}
1408 	if (__reg64_bound_u32(reg->umin_value))
1409 		reg->u32_min_value = (u32)reg->umin_value;
1410 	if (__reg64_bound_u32(reg->umax_value))
1411 		reg->u32_max_value = (u32)reg->umax_value;
1412 
1413 	/* Intersecting with the old var_off might have improved our bounds
1414 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1415 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1416 	 */
1417 	__reg_deduce_bounds(reg);
1418 	__reg_bound_offset(reg);
1419 	__update_reg_bounds(reg);
1420 }
1421 
1422 /* Mark a register as having a completely unknown (scalar) value. */
1423 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1424 			       struct bpf_reg_state *reg)
1425 {
1426 	/*
1427 	 * Clear type, id, off, and union(map_ptr, range) and
1428 	 * padding between 'type' and union
1429 	 */
1430 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1431 	reg->type = SCALAR_VALUE;
1432 	reg->var_off = tnum_unknown;
1433 	reg->frameno = 0;
1434 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1435 	__mark_reg_unbounded(reg);
1436 }
1437 
1438 static void mark_reg_unknown(struct bpf_verifier_env *env,
1439 			     struct bpf_reg_state *regs, u32 regno)
1440 {
1441 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1442 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1443 		/* Something bad happened, let's kill all regs except FP */
1444 		for (regno = 0; regno < BPF_REG_FP; regno++)
1445 			__mark_reg_not_init(env, regs + regno);
1446 		return;
1447 	}
1448 	__mark_reg_unknown(env, regs + regno);
1449 }
1450 
1451 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1452 				struct bpf_reg_state *reg)
1453 {
1454 	__mark_reg_unknown(env, reg);
1455 	reg->type = NOT_INIT;
1456 }
1457 
1458 static void mark_reg_not_init(struct bpf_verifier_env *env,
1459 			      struct bpf_reg_state *regs, u32 regno)
1460 {
1461 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1462 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1463 		/* Something bad happened, let's kill all regs except FP */
1464 		for (regno = 0; regno < BPF_REG_FP; regno++)
1465 			__mark_reg_not_init(env, regs + regno);
1466 		return;
1467 	}
1468 	__mark_reg_not_init(env, regs + regno);
1469 }
1470 
1471 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1472 			    struct bpf_reg_state *regs, u32 regno,
1473 			    enum bpf_reg_type reg_type,
1474 			    struct btf *btf, u32 btf_id)
1475 {
1476 	if (reg_type == SCALAR_VALUE) {
1477 		mark_reg_unknown(env, regs, regno);
1478 		return;
1479 	}
1480 	mark_reg_known_zero(env, regs, regno);
1481 	regs[regno].type = PTR_TO_BTF_ID;
1482 	regs[regno].btf = btf;
1483 	regs[regno].btf_id = btf_id;
1484 }
1485 
1486 #define DEF_NOT_SUBREG	(0)
1487 static void init_reg_state(struct bpf_verifier_env *env,
1488 			   struct bpf_func_state *state)
1489 {
1490 	struct bpf_reg_state *regs = state->regs;
1491 	int i;
1492 
1493 	for (i = 0; i < MAX_BPF_REG; i++) {
1494 		mark_reg_not_init(env, regs, i);
1495 		regs[i].live = REG_LIVE_NONE;
1496 		regs[i].parent = NULL;
1497 		regs[i].subreg_def = DEF_NOT_SUBREG;
1498 	}
1499 
1500 	/* frame pointer */
1501 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1502 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1503 	regs[BPF_REG_FP].frameno = state->frameno;
1504 }
1505 
1506 #define BPF_MAIN_FUNC (-1)
1507 static void init_func_state(struct bpf_verifier_env *env,
1508 			    struct bpf_func_state *state,
1509 			    int callsite, int frameno, int subprogno)
1510 {
1511 	state->callsite = callsite;
1512 	state->frameno = frameno;
1513 	state->subprogno = subprogno;
1514 	init_reg_state(env, state);
1515 }
1516 
1517 enum reg_arg_type {
1518 	SRC_OP,		/* register is used as source operand */
1519 	DST_OP,		/* register is used as destination operand */
1520 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1521 };
1522 
1523 static int cmp_subprogs(const void *a, const void *b)
1524 {
1525 	return ((struct bpf_subprog_info *)a)->start -
1526 	       ((struct bpf_subprog_info *)b)->start;
1527 }
1528 
1529 static int find_subprog(struct bpf_verifier_env *env, int off)
1530 {
1531 	struct bpf_subprog_info *p;
1532 
1533 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1534 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1535 	if (!p)
1536 		return -ENOENT;
1537 	return p - env->subprog_info;
1538 
1539 }
1540 
1541 static int add_subprog(struct bpf_verifier_env *env, int off)
1542 {
1543 	int insn_cnt = env->prog->len;
1544 	int ret;
1545 
1546 	if (off >= insn_cnt || off < 0) {
1547 		verbose(env, "call to invalid destination\n");
1548 		return -EINVAL;
1549 	}
1550 	ret = find_subprog(env, off);
1551 	if (ret >= 0)
1552 		return ret;
1553 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1554 		verbose(env, "too many subprograms\n");
1555 		return -E2BIG;
1556 	}
1557 	env->subprog_info[env->subprog_cnt++].start = off;
1558 	sort(env->subprog_info, env->subprog_cnt,
1559 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1560 	return env->subprog_cnt - 1;
1561 }
1562 
1563 static int check_subprogs(struct bpf_verifier_env *env)
1564 {
1565 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1566 	struct bpf_subprog_info *subprog = env->subprog_info;
1567 	struct bpf_insn *insn = env->prog->insnsi;
1568 	int insn_cnt = env->prog->len;
1569 
1570 	/* Add entry function. */
1571 	ret = add_subprog(env, 0);
1572 	if (ret < 0)
1573 		return ret;
1574 
1575 	/* determine subprog starts. The end is one before the next starts */
1576 	for (i = 0; i < insn_cnt; i++) {
1577 		if (bpf_pseudo_func(insn + i)) {
1578 			if (!env->bpf_capable) {
1579 				verbose(env,
1580 					"function pointers are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1581 				return -EPERM;
1582 			}
1583 			ret = add_subprog(env, i + insn[i].imm + 1);
1584 			if (ret < 0)
1585 				return ret;
1586 			/* remember subprog */
1587 			insn[i + 1].imm = ret;
1588 			continue;
1589 		}
1590 		if (!bpf_pseudo_call(insn + i))
1591 			continue;
1592 		if (!env->bpf_capable) {
1593 			verbose(env,
1594 				"function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1595 			return -EPERM;
1596 		}
1597 		ret = add_subprog(env, i + insn[i].imm + 1);
1598 		if (ret < 0)
1599 			return ret;
1600 	}
1601 
1602 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1603 	 * logic. 'subprog_cnt' should not be increased.
1604 	 */
1605 	subprog[env->subprog_cnt].start = insn_cnt;
1606 
1607 	if (env->log.level & BPF_LOG_LEVEL2)
1608 		for (i = 0; i < env->subprog_cnt; i++)
1609 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1610 
1611 	/* now check that all jumps are within the same subprog */
1612 	subprog_start = subprog[cur_subprog].start;
1613 	subprog_end = subprog[cur_subprog + 1].start;
1614 	for (i = 0; i < insn_cnt; i++) {
1615 		u8 code = insn[i].code;
1616 
1617 		if (code == (BPF_JMP | BPF_CALL) &&
1618 		    insn[i].imm == BPF_FUNC_tail_call &&
1619 		    insn[i].src_reg != BPF_PSEUDO_CALL)
1620 			subprog[cur_subprog].has_tail_call = true;
1621 		if (BPF_CLASS(code) == BPF_LD &&
1622 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1623 			subprog[cur_subprog].has_ld_abs = true;
1624 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1625 			goto next;
1626 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1627 			goto next;
1628 		off = i + insn[i].off + 1;
1629 		if (off < subprog_start || off >= subprog_end) {
1630 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1631 			return -EINVAL;
1632 		}
1633 next:
1634 		if (i == subprog_end - 1) {
1635 			/* to avoid fall-through from one subprog into another
1636 			 * the last insn of the subprog should be either exit
1637 			 * or unconditional jump back
1638 			 */
1639 			if (code != (BPF_JMP | BPF_EXIT) &&
1640 			    code != (BPF_JMP | BPF_JA)) {
1641 				verbose(env, "last insn is not an exit or jmp\n");
1642 				return -EINVAL;
1643 			}
1644 			subprog_start = subprog_end;
1645 			cur_subprog++;
1646 			if (cur_subprog < env->subprog_cnt)
1647 				subprog_end = subprog[cur_subprog + 1].start;
1648 		}
1649 	}
1650 	return 0;
1651 }
1652 
1653 /* Parentage chain of this register (or stack slot) should take care of all
1654  * issues like callee-saved registers, stack slot allocation time, etc.
1655  */
1656 static int mark_reg_read(struct bpf_verifier_env *env,
1657 			 const struct bpf_reg_state *state,
1658 			 struct bpf_reg_state *parent, u8 flag)
1659 {
1660 	bool writes = parent == state->parent; /* Observe write marks */
1661 	int cnt = 0;
1662 
1663 	while (parent) {
1664 		/* if read wasn't screened by an earlier write ... */
1665 		if (writes && state->live & REG_LIVE_WRITTEN)
1666 			break;
1667 		if (parent->live & REG_LIVE_DONE) {
1668 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1669 				reg_type_str[parent->type],
1670 				parent->var_off.value, parent->off);
1671 			return -EFAULT;
1672 		}
1673 		/* The first condition is more likely to be true than the
1674 		 * second, checked it first.
1675 		 */
1676 		if ((parent->live & REG_LIVE_READ) == flag ||
1677 		    parent->live & REG_LIVE_READ64)
1678 			/* The parentage chain never changes and
1679 			 * this parent was already marked as LIVE_READ.
1680 			 * There is no need to keep walking the chain again and
1681 			 * keep re-marking all parents as LIVE_READ.
1682 			 * This case happens when the same register is read
1683 			 * multiple times without writes into it in-between.
1684 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1685 			 * then no need to set the weak REG_LIVE_READ32.
1686 			 */
1687 			break;
1688 		/* ... then we depend on parent's value */
1689 		parent->live |= flag;
1690 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1691 		if (flag == REG_LIVE_READ64)
1692 			parent->live &= ~REG_LIVE_READ32;
1693 		state = parent;
1694 		parent = state->parent;
1695 		writes = true;
1696 		cnt++;
1697 	}
1698 
1699 	if (env->longest_mark_read_walk < cnt)
1700 		env->longest_mark_read_walk = cnt;
1701 	return 0;
1702 }
1703 
1704 /* This function is supposed to be used by the following 32-bit optimization
1705  * code only. It returns TRUE if the source or destination register operates
1706  * on 64-bit, otherwise return FALSE.
1707  */
1708 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1709 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1710 {
1711 	u8 code, class, op;
1712 
1713 	code = insn->code;
1714 	class = BPF_CLASS(code);
1715 	op = BPF_OP(code);
1716 	if (class == BPF_JMP) {
1717 		/* BPF_EXIT for "main" will reach here. Return TRUE
1718 		 * conservatively.
1719 		 */
1720 		if (op == BPF_EXIT)
1721 			return true;
1722 		if (op == BPF_CALL) {
1723 			/* BPF to BPF call will reach here because of marking
1724 			 * caller saved clobber with DST_OP_NO_MARK for which we
1725 			 * don't care the register def because they are anyway
1726 			 * marked as NOT_INIT already.
1727 			 */
1728 			if (insn->src_reg == BPF_PSEUDO_CALL)
1729 				return false;
1730 			/* Helper call will reach here because of arg type
1731 			 * check, conservatively return TRUE.
1732 			 */
1733 			if (t == SRC_OP)
1734 				return true;
1735 
1736 			return false;
1737 		}
1738 	}
1739 
1740 	if (class == BPF_ALU64 || class == BPF_JMP ||
1741 	    /* BPF_END always use BPF_ALU class. */
1742 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1743 		return true;
1744 
1745 	if (class == BPF_ALU || class == BPF_JMP32)
1746 		return false;
1747 
1748 	if (class == BPF_LDX) {
1749 		if (t != SRC_OP)
1750 			return BPF_SIZE(code) == BPF_DW;
1751 		/* LDX source must be ptr. */
1752 		return true;
1753 	}
1754 
1755 	if (class == BPF_STX) {
1756 		/* BPF_STX (including atomic variants) has multiple source
1757 		 * operands, one of which is a ptr. Check whether the caller is
1758 		 * asking about it.
1759 		 */
1760 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
1761 			return true;
1762 		return BPF_SIZE(code) == BPF_DW;
1763 	}
1764 
1765 	if (class == BPF_LD) {
1766 		u8 mode = BPF_MODE(code);
1767 
1768 		/* LD_IMM64 */
1769 		if (mode == BPF_IMM)
1770 			return true;
1771 
1772 		/* Both LD_IND and LD_ABS return 32-bit data. */
1773 		if (t != SRC_OP)
1774 			return  false;
1775 
1776 		/* Implicit ctx ptr. */
1777 		if (regno == BPF_REG_6)
1778 			return true;
1779 
1780 		/* Explicit source could be any width. */
1781 		return true;
1782 	}
1783 
1784 	if (class == BPF_ST)
1785 		/* The only source register for BPF_ST is a ptr. */
1786 		return true;
1787 
1788 	/* Conservatively return true at default. */
1789 	return true;
1790 }
1791 
1792 /* Return the regno defined by the insn, or -1. */
1793 static int insn_def_regno(const struct bpf_insn *insn)
1794 {
1795 	switch (BPF_CLASS(insn->code)) {
1796 	case BPF_JMP:
1797 	case BPF_JMP32:
1798 	case BPF_ST:
1799 		return -1;
1800 	case BPF_STX:
1801 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
1802 		    (insn->imm & BPF_FETCH)) {
1803 			if (insn->imm == BPF_CMPXCHG)
1804 				return BPF_REG_0;
1805 			else
1806 				return insn->src_reg;
1807 		} else {
1808 			return -1;
1809 		}
1810 	default:
1811 		return insn->dst_reg;
1812 	}
1813 }
1814 
1815 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1816 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1817 {
1818 	int dst_reg = insn_def_regno(insn);
1819 
1820 	if (dst_reg == -1)
1821 		return false;
1822 
1823 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
1824 }
1825 
1826 static void mark_insn_zext(struct bpf_verifier_env *env,
1827 			   struct bpf_reg_state *reg)
1828 {
1829 	s32 def_idx = reg->subreg_def;
1830 
1831 	if (def_idx == DEF_NOT_SUBREG)
1832 		return;
1833 
1834 	env->insn_aux_data[def_idx - 1].zext_dst = true;
1835 	/* The dst will be zero extended, so won't be sub-register anymore. */
1836 	reg->subreg_def = DEF_NOT_SUBREG;
1837 }
1838 
1839 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1840 			 enum reg_arg_type t)
1841 {
1842 	struct bpf_verifier_state *vstate = env->cur_state;
1843 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1844 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1845 	struct bpf_reg_state *reg, *regs = state->regs;
1846 	bool rw64;
1847 
1848 	if (regno >= MAX_BPF_REG) {
1849 		verbose(env, "R%d is invalid\n", regno);
1850 		return -EINVAL;
1851 	}
1852 
1853 	reg = &regs[regno];
1854 	rw64 = is_reg64(env, insn, regno, reg, t);
1855 	if (t == SRC_OP) {
1856 		/* check whether register used as source operand can be read */
1857 		if (reg->type == NOT_INIT) {
1858 			verbose(env, "R%d !read_ok\n", regno);
1859 			return -EACCES;
1860 		}
1861 		/* We don't need to worry about FP liveness because it's read-only */
1862 		if (regno == BPF_REG_FP)
1863 			return 0;
1864 
1865 		if (rw64)
1866 			mark_insn_zext(env, reg);
1867 
1868 		return mark_reg_read(env, reg, reg->parent,
1869 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1870 	} else {
1871 		/* check whether register used as dest operand can be written to */
1872 		if (regno == BPF_REG_FP) {
1873 			verbose(env, "frame pointer is read only\n");
1874 			return -EACCES;
1875 		}
1876 		reg->live |= REG_LIVE_WRITTEN;
1877 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1878 		if (t == DST_OP)
1879 			mark_reg_unknown(env, regs, regno);
1880 	}
1881 	return 0;
1882 }
1883 
1884 /* for any branch, call, exit record the history of jmps in the given state */
1885 static int push_jmp_history(struct bpf_verifier_env *env,
1886 			    struct bpf_verifier_state *cur)
1887 {
1888 	u32 cnt = cur->jmp_history_cnt;
1889 	struct bpf_idx_pair *p;
1890 
1891 	cnt++;
1892 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1893 	if (!p)
1894 		return -ENOMEM;
1895 	p[cnt - 1].idx = env->insn_idx;
1896 	p[cnt - 1].prev_idx = env->prev_insn_idx;
1897 	cur->jmp_history = p;
1898 	cur->jmp_history_cnt = cnt;
1899 	return 0;
1900 }
1901 
1902 /* Backtrack one insn at a time. If idx is not at the top of recorded
1903  * history then previous instruction came from straight line execution.
1904  */
1905 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1906 			     u32 *history)
1907 {
1908 	u32 cnt = *history;
1909 
1910 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
1911 		i = st->jmp_history[cnt - 1].prev_idx;
1912 		(*history)--;
1913 	} else {
1914 		i--;
1915 	}
1916 	return i;
1917 }
1918 
1919 /* For given verifier state backtrack_insn() is called from the last insn to
1920  * the first insn. Its purpose is to compute a bitmask of registers and
1921  * stack slots that needs precision in the parent verifier state.
1922  */
1923 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1924 			  u32 *reg_mask, u64 *stack_mask)
1925 {
1926 	const struct bpf_insn_cbs cbs = {
1927 		.cb_print	= verbose,
1928 		.private_data	= env,
1929 	};
1930 	struct bpf_insn *insn = env->prog->insnsi + idx;
1931 	u8 class = BPF_CLASS(insn->code);
1932 	u8 opcode = BPF_OP(insn->code);
1933 	u8 mode = BPF_MODE(insn->code);
1934 	u32 dreg = 1u << insn->dst_reg;
1935 	u32 sreg = 1u << insn->src_reg;
1936 	u32 spi;
1937 
1938 	if (insn->code == 0)
1939 		return 0;
1940 	if (env->log.level & BPF_LOG_LEVEL) {
1941 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1942 		verbose(env, "%d: ", idx);
1943 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1944 	}
1945 
1946 	if (class == BPF_ALU || class == BPF_ALU64) {
1947 		if (!(*reg_mask & dreg))
1948 			return 0;
1949 		if (opcode == BPF_MOV) {
1950 			if (BPF_SRC(insn->code) == BPF_X) {
1951 				/* dreg = sreg
1952 				 * dreg needs precision after this insn
1953 				 * sreg needs precision before this insn
1954 				 */
1955 				*reg_mask &= ~dreg;
1956 				*reg_mask |= sreg;
1957 			} else {
1958 				/* dreg = K
1959 				 * dreg needs precision after this insn.
1960 				 * Corresponding register is already marked
1961 				 * as precise=true in this verifier state.
1962 				 * No further markings in parent are necessary
1963 				 */
1964 				*reg_mask &= ~dreg;
1965 			}
1966 		} else {
1967 			if (BPF_SRC(insn->code) == BPF_X) {
1968 				/* dreg += sreg
1969 				 * both dreg and sreg need precision
1970 				 * before this insn
1971 				 */
1972 				*reg_mask |= sreg;
1973 			} /* else dreg += K
1974 			   * dreg still needs precision before this insn
1975 			   */
1976 		}
1977 	} else if (class == BPF_LDX) {
1978 		if (!(*reg_mask & dreg))
1979 			return 0;
1980 		*reg_mask &= ~dreg;
1981 
1982 		/* scalars can only be spilled into stack w/o losing precision.
1983 		 * Load from any other memory can be zero extended.
1984 		 * The desire to keep that precision is already indicated
1985 		 * by 'precise' mark in corresponding register of this state.
1986 		 * No further tracking necessary.
1987 		 */
1988 		if (insn->src_reg != BPF_REG_FP)
1989 			return 0;
1990 		if (BPF_SIZE(insn->code) != BPF_DW)
1991 			return 0;
1992 
1993 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
1994 		 * that [fp - off] slot contains scalar that needs to be
1995 		 * tracked with precision
1996 		 */
1997 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1998 		if (spi >= 64) {
1999 			verbose(env, "BUG spi %d\n", spi);
2000 			WARN_ONCE(1, "verifier backtracking bug");
2001 			return -EFAULT;
2002 		}
2003 		*stack_mask |= 1ull << spi;
2004 	} else if (class == BPF_STX || class == BPF_ST) {
2005 		if (*reg_mask & dreg)
2006 			/* stx & st shouldn't be using _scalar_ dst_reg
2007 			 * to access memory. It means backtracking
2008 			 * encountered a case of pointer subtraction.
2009 			 */
2010 			return -ENOTSUPP;
2011 		/* scalars can only be spilled into stack */
2012 		if (insn->dst_reg != BPF_REG_FP)
2013 			return 0;
2014 		if (BPF_SIZE(insn->code) != BPF_DW)
2015 			return 0;
2016 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2017 		if (spi >= 64) {
2018 			verbose(env, "BUG spi %d\n", spi);
2019 			WARN_ONCE(1, "verifier backtracking bug");
2020 			return -EFAULT;
2021 		}
2022 		if (!(*stack_mask & (1ull << spi)))
2023 			return 0;
2024 		*stack_mask &= ~(1ull << spi);
2025 		if (class == BPF_STX)
2026 			*reg_mask |= sreg;
2027 	} else if (class == BPF_JMP || class == BPF_JMP32) {
2028 		if (opcode == BPF_CALL) {
2029 			if (insn->src_reg == BPF_PSEUDO_CALL)
2030 				return -ENOTSUPP;
2031 			/* regular helper call sets R0 */
2032 			*reg_mask &= ~1;
2033 			if (*reg_mask & 0x3f) {
2034 				/* if backtracing was looking for registers R1-R5
2035 				 * they should have been found already.
2036 				 */
2037 				verbose(env, "BUG regs %x\n", *reg_mask);
2038 				WARN_ONCE(1, "verifier backtracking bug");
2039 				return -EFAULT;
2040 			}
2041 		} else if (opcode == BPF_EXIT) {
2042 			return -ENOTSUPP;
2043 		}
2044 	} else if (class == BPF_LD) {
2045 		if (!(*reg_mask & dreg))
2046 			return 0;
2047 		*reg_mask &= ~dreg;
2048 		/* It's ld_imm64 or ld_abs or ld_ind.
2049 		 * For ld_imm64 no further tracking of precision
2050 		 * into parent is necessary
2051 		 */
2052 		if (mode == BPF_IND || mode == BPF_ABS)
2053 			/* to be analyzed */
2054 			return -ENOTSUPP;
2055 	}
2056 	return 0;
2057 }
2058 
2059 /* the scalar precision tracking algorithm:
2060  * . at the start all registers have precise=false.
2061  * . scalar ranges are tracked as normal through alu and jmp insns.
2062  * . once precise value of the scalar register is used in:
2063  *   .  ptr + scalar alu
2064  *   . if (scalar cond K|scalar)
2065  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2066  *   backtrack through the verifier states and mark all registers and
2067  *   stack slots with spilled constants that these scalar regisers
2068  *   should be precise.
2069  * . during state pruning two registers (or spilled stack slots)
2070  *   are equivalent if both are not precise.
2071  *
2072  * Note the verifier cannot simply walk register parentage chain,
2073  * since many different registers and stack slots could have been
2074  * used to compute single precise scalar.
2075  *
2076  * The approach of starting with precise=true for all registers and then
2077  * backtrack to mark a register as not precise when the verifier detects
2078  * that program doesn't care about specific value (e.g., when helper
2079  * takes register as ARG_ANYTHING parameter) is not safe.
2080  *
2081  * It's ok to walk single parentage chain of the verifier states.
2082  * It's possible that this backtracking will go all the way till 1st insn.
2083  * All other branches will be explored for needing precision later.
2084  *
2085  * The backtracking needs to deal with cases like:
2086  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2087  * r9 -= r8
2088  * r5 = r9
2089  * if r5 > 0x79f goto pc+7
2090  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2091  * r5 += 1
2092  * ...
2093  * call bpf_perf_event_output#25
2094  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2095  *
2096  * and this case:
2097  * r6 = 1
2098  * call foo // uses callee's r6 inside to compute r0
2099  * r0 += r6
2100  * if r0 == 0 goto
2101  *
2102  * to track above reg_mask/stack_mask needs to be independent for each frame.
2103  *
2104  * Also if parent's curframe > frame where backtracking started,
2105  * the verifier need to mark registers in both frames, otherwise callees
2106  * may incorrectly prune callers. This is similar to
2107  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2108  *
2109  * For now backtracking falls back into conservative marking.
2110  */
2111 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2112 				     struct bpf_verifier_state *st)
2113 {
2114 	struct bpf_func_state *func;
2115 	struct bpf_reg_state *reg;
2116 	int i, j;
2117 
2118 	/* big hammer: mark all scalars precise in this path.
2119 	 * pop_stack may still get !precise scalars.
2120 	 */
2121 	for (; st; st = st->parent)
2122 		for (i = 0; i <= st->curframe; i++) {
2123 			func = st->frame[i];
2124 			for (j = 0; j < BPF_REG_FP; j++) {
2125 				reg = &func->regs[j];
2126 				if (reg->type != SCALAR_VALUE)
2127 					continue;
2128 				reg->precise = true;
2129 			}
2130 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2131 				if (func->stack[j].slot_type[0] != STACK_SPILL)
2132 					continue;
2133 				reg = &func->stack[j].spilled_ptr;
2134 				if (reg->type != SCALAR_VALUE)
2135 					continue;
2136 				reg->precise = true;
2137 			}
2138 		}
2139 }
2140 
2141 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2142 				  int spi)
2143 {
2144 	struct bpf_verifier_state *st = env->cur_state;
2145 	int first_idx = st->first_insn_idx;
2146 	int last_idx = env->insn_idx;
2147 	struct bpf_func_state *func;
2148 	struct bpf_reg_state *reg;
2149 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2150 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2151 	bool skip_first = true;
2152 	bool new_marks = false;
2153 	int i, err;
2154 
2155 	if (!env->bpf_capable)
2156 		return 0;
2157 
2158 	func = st->frame[st->curframe];
2159 	if (regno >= 0) {
2160 		reg = &func->regs[regno];
2161 		if (reg->type != SCALAR_VALUE) {
2162 			WARN_ONCE(1, "backtracing misuse");
2163 			return -EFAULT;
2164 		}
2165 		if (!reg->precise)
2166 			new_marks = true;
2167 		else
2168 			reg_mask = 0;
2169 		reg->precise = true;
2170 	}
2171 
2172 	while (spi >= 0) {
2173 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2174 			stack_mask = 0;
2175 			break;
2176 		}
2177 		reg = &func->stack[spi].spilled_ptr;
2178 		if (reg->type != SCALAR_VALUE) {
2179 			stack_mask = 0;
2180 			break;
2181 		}
2182 		if (!reg->precise)
2183 			new_marks = true;
2184 		else
2185 			stack_mask = 0;
2186 		reg->precise = true;
2187 		break;
2188 	}
2189 
2190 	if (!new_marks)
2191 		return 0;
2192 	if (!reg_mask && !stack_mask)
2193 		return 0;
2194 	for (;;) {
2195 		DECLARE_BITMAP(mask, 64);
2196 		u32 history = st->jmp_history_cnt;
2197 
2198 		if (env->log.level & BPF_LOG_LEVEL)
2199 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2200 		for (i = last_idx;;) {
2201 			if (skip_first) {
2202 				err = 0;
2203 				skip_first = false;
2204 			} else {
2205 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2206 			}
2207 			if (err == -ENOTSUPP) {
2208 				mark_all_scalars_precise(env, st);
2209 				return 0;
2210 			} else if (err) {
2211 				return err;
2212 			}
2213 			if (!reg_mask && !stack_mask)
2214 				/* Found assignment(s) into tracked register in this state.
2215 				 * Since this state is already marked, just return.
2216 				 * Nothing to be tracked further in the parent state.
2217 				 */
2218 				return 0;
2219 			if (i == first_idx)
2220 				break;
2221 			i = get_prev_insn_idx(st, i, &history);
2222 			if (i >= env->prog->len) {
2223 				/* This can happen if backtracking reached insn 0
2224 				 * and there are still reg_mask or stack_mask
2225 				 * to backtrack.
2226 				 * It means the backtracking missed the spot where
2227 				 * particular register was initialized with a constant.
2228 				 */
2229 				verbose(env, "BUG backtracking idx %d\n", i);
2230 				WARN_ONCE(1, "verifier backtracking bug");
2231 				return -EFAULT;
2232 			}
2233 		}
2234 		st = st->parent;
2235 		if (!st)
2236 			break;
2237 
2238 		new_marks = false;
2239 		func = st->frame[st->curframe];
2240 		bitmap_from_u64(mask, reg_mask);
2241 		for_each_set_bit(i, mask, 32) {
2242 			reg = &func->regs[i];
2243 			if (reg->type != SCALAR_VALUE) {
2244 				reg_mask &= ~(1u << i);
2245 				continue;
2246 			}
2247 			if (!reg->precise)
2248 				new_marks = true;
2249 			reg->precise = true;
2250 		}
2251 
2252 		bitmap_from_u64(mask, stack_mask);
2253 		for_each_set_bit(i, mask, 64) {
2254 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2255 				/* the sequence of instructions:
2256 				 * 2: (bf) r3 = r10
2257 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2258 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2259 				 * doesn't contain jmps. It's backtracked
2260 				 * as a single block.
2261 				 * During backtracking insn 3 is not recognized as
2262 				 * stack access, so at the end of backtracking
2263 				 * stack slot fp-8 is still marked in stack_mask.
2264 				 * However the parent state may not have accessed
2265 				 * fp-8 and it's "unallocated" stack space.
2266 				 * In such case fallback to conservative.
2267 				 */
2268 				mark_all_scalars_precise(env, st);
2269 				return 0;
2270 			}
2271 
2272 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
2273 				stack_mask &= ~(1ull << i);
2274 				continue;
2275 			}
2276 			reg = &func->stack[i].spilled_ptr;
2277 			if (reg->type != SCALAR_VALUE) {
2278 				stack_mask &= ~(1ull << i);
2279 				continue;
2280 			}
2281 			if (!reg->precise)
2282 				new_marks = true;
2283 			reg->precise = true;
2284 		}
2285 		if (env->log.level & BPF_LOG_LEVEL) {
2286 			print_verifier_state(env, func);
2287 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2288 				new_marks ? "didn't have" : "already had",
2289 				reg_mask, stack_mask);
2290 		}
2291 
2292 		if (!reg_mask && !stack_mask)
2293 			break;
2294 		if (!new_marks)
2295 			break;
2296 
2297 		last_idx = st->last_insn_idx;
2298 		first_idx = st->first_insn_idx;
2299 	}
2300 	return 0;
2301 }
2302 
2303 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2304 {
2305 	return __mark_chain_precision(env, regno, -1);
2306 }
2307 
2308 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2309 {
2310 	return __mark_chain_precision(env, -1, spi);
2311 }
2312 
2313 static bool is_spillable_regtype(enum bpf_reg_type type)
2314 {
2315 	switch (type) {
2316 	case PTR_TO_MAP_VALUE:
2317 	case PTR_TO_MAP_VALUE_OR_NULL:
2318 	case PTR_TO_STACK:
2319 	case PTR_TO_CTX:
2320 	case PTR_TO_PACKET:
2321 	case PTR_TO_PACKET_META:
2322 	case PTR_TO_PACKET_END:
2323 	case PTR_TO_FLOW_KEYS:
2324 	case CONST_PTR_TO_MAP:
2325 	case PTR_TO_SOCKET:
2326 	case PTR_TO_SOCKET_OR_NULL:
2327 	case PTR_TO_SOCK_COMMON:
2328 	case PTR_TO_SOCK_COMMON_OR_NULL:
2329 	case PTR_TO_TCP_SOCK:
2330 	case PTR_TO_TCP_SOCK_OR_NULL:
2331 	case PTR_TO_XDP_SOCK:
2332 	case PTR_TO_BTF_ID:
2333 	case PTR_TO_BTF_ID_OR_NULL:
2334 	case PTR_TO_RDONLY_BUF:
2335 	case PTR_TO_RDONLY_BUF_OR_NULL:
2336 	case PTR_TO_RDWR_BUF:
2337 	case PTR_TO_RDWR_BUF_OR_NULL:
2338 	case PTR_TO_PERCPU_BTF_ID:
2339 	case PTR_TO_MEM:
2340 	case PTR_TO_MEM_OR_NULL:
2341 	case PTR_TO_FUNC:
2342 	case PTR_TO_MAP_KEY:
2343 		return true;
2344 	default:
2345 		return false;
2346 	}
2347 }
2348 
2349 /* Does this register contain a constant zero? */
2350 static bool register_is_null(struct bpf_reg_state *reg)
2351 {
2352 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2353 }
2354 
2355 static bool register_is_const(struct bpf_reg_state *reg)
2356 {
2357 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2358 }
2359 
2360 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2361 {
2362 	return tnum_is_unknown(reg->var_off) &&
2363 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2364 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2365 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2366 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2367 }
2368 
2369 static bool register_is_bounded(struct bpf_reg_state *reg)
2370 {
2371 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2372 }
2373 
2374 static bool __is_pointer_value(bool allow_ptr_leaks,
2375 			       const struct bpf_reg_state *reg)
2376 {
2377 	if (allow_ptr_leaks)
2378 		return false;
2379 
2380 	return reg->type != SCALAR_VALUE;
2381 }
2382 
2383 static void save_register_state(struct bpf_func_state *state,
2384 				int spi, struct bpf_reg_state *reg)
2385 {
2386 	int i;
2387 
2388 	state->stack[spi].spilled_ptr = *reg;
2389 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2390 
2391 	for (i = 0; i < BPF_REG_SIZE; i++)
2392 		state->stack[spi].slot_type[i] = STACK_SPILL;
2393 }
2394 
2395 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2396  * stack boundary and alignment are checked in check_mem_access()
2397  */
2398 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2399 				       /* stack frame we're writing to */
2400 				       struct bpf_func_state *state,
2401 				       int off, int size, int value_regno,
2402 				       int insn_idx)
2403 {
2404 	struct bpf_func_state *cur; /* state of the current function */
2405 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2406 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2407 	struct bpf_reg_state *reg = NULL;
2408 
2409 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2410 				 state->acquired_refs, true);
2411 	if (err)
2412 		return err;
2413 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2414 	 * so it's aligned access and [off, off + size) are within stack limits
2415 	 */
2416 	if (!env->allow_ptr_leaks &&
2417 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2418 	    size != BPF_REG_SIZE) {
2419 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2420 		return -EACCES;
2421 	}
2422 
2423 	cur = env->cur_state->frame[env->cur_state->curframe];
2424 	if (value_regno >= 0)
2425 		reg = &cur->regs[value_regno];
2426 
2427 	if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2428 	    !register_is_null(reg) && env->bpf_capable) {
2429 		if (dst_reg != BPF_REG_FP) {
2430 			/* The backtracking logic can only recognize explicit
2431 			 * stack slot address like [fp - 8]. Other spill of
2432 			 * scalar via different register has to be conervative.
2433 			 * Backtrack from here and mark all registers as precise
2434 			 * that contributed into 'reg' being a constant.
2435 			 */
2436 			err = mark_chain_precision(env, value_regno);
2437 			if (err)
2438 				return err;
2439 		}
2440 		save_register_state(state, spi, reg);
2441 	} else if (reg && is_spillable_regtype(reg->type)) {
2442 		/* register containing pointer is being spilled into stack */
2443 		if (size != BPF_REG_SIZE) {
2444 			verbose_linfo(env, insn_idx, "; ");
2445 			verbose(env, "invalid size of register spill\n");
2446 			return -EACCES;
2447 		}
2448 
2449 		if (state != cur && reg->type == PTR_TO_STACK) {
2450 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2451 			return -EINVAL;
2452 		}
2453 
2454 		if (!env->bypass_spec_v4) {
2455 			bool sanitize = false;
2456 
2457 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2458 			    register_is_const(&state->stack[spi].spilled_ptr))
2459 				sanitize = true;
2460 			for (i = 0; i < BPF_REG_SIZE; i++)
2461 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
2462 					sanitize = true;
2463 					break;
2464 				}
2465 			if (sanitize) {
2466 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2467 				int soff = (-spi - 1) * BPF_REG_SIZE;
2468 
2469 				/* detected reuse of integer stack slot with a pointer
2470 				 * which means either llvm is reusing stack slot or
2471 				 * an attacker is trying to exploit CVE-2018-3639
2472 				 * (speculative store bypass)
2473 				 * Have to sanitize that slot with preemptive
2474 				 * store of zero.
2475 				 */
2476 				if (*poff && *poff != soff) {
2477 					/* disallow programs where single insn stores
2478 					 * into two different stack slots, since verifier
2479 					 * cannot sanitize them
2480 					 */
2481 					verbose(env,
2482 						"insn %d cannot access two stack slots fp%d and fp%d",
2483 						insn_idx, *poff, soff);
2484 					return -EINVAL;
2485 				}
2486 				*poff = soff;
2487 			}
2488 		}
2489 		save_register_state(state, spi, reg);
2490 	} else {
2491 		u8 type = STACK_MISC;
2492 
2493 		/* regular write of data into stack destroys any spilled ptr */
2494 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2495 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2496 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2497 			for (i = 0; i < BPF_REG_SIZE; i++)
2498 				state->stack[spi].slot_type[i] = STACK_MISC;
2499 
2500 		/* only mark the slot as written if all 8 bytes were written
2501 		 * otherwise read propagation may incorrectly stop too soon
2502 		 * when stack slots are partially written.
2503 		 * This heuristic means that read propagation will be
2504 		 * conservative, since it will add reg_live_read marks
2505 		 * to stack slots all the way to first state when programs
2506 		 * writes+reads less than 8 bytes
2507 		 */
2508 		if (size == BPF_REG_SIZE)
2509 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2510 
2511 		/* when we zero initialize stack slots mark them as such */
2512 		if (reg && register_is_null(reg)) {
2513 			/* backtracking doesn't work for STACK_ZERO yet. */
2514 			err = mark_chain_precision(env, value_regno);
2515 			if (err)
2516 				return err;
2517 			type = STACK_ZERO;
2518 		}
2519 
2520 		/* Mark slots affected by this stack write. */
2521 		for (i = 0; i < size; i++)
2522 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2523 				type;
2524 	}
2525 	return 0;
2526 }
2527 
2528 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2529  * known to contain a variable offset.
2530  * This function checks whether the write is permitted and conservatively
2531  * tracks the effects of the write, considering that each stack slot in the
2532  * dynamic range is potentially written to.
2533  *
2534  * 'off' includes 'regno->off'.
2535  * 'value_regno' can be -1, meaning that an unknown value is being written to
2536  * the stack.
2537  *
2538  * Spilled pointers in range are not marked as written because we don't know
2539  * what's going to be actually written. This means that read propagation for
2540  * future reads cannot be terminated by this write.
2541  *
2542  * For privileged programs, uninitialized stack slots are considered
2543  * initialized by this write (even though we don't know exactly what offsets
2544  * are going to be written to). The idea is that we don't want the verifier to
2545  * reject future reads that access slots written to through variable offsets.
2546  */
2547 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2548 				     /* func where register points to */
2549 				     struct bpf_func_state *state,
2550 				     int ptr_regno, int off, int size,
2551 				     int value_regno, int insn_idx)
2552 {
2553 	struct bpf_func_state *cur; /* state of the current function */
2554 	int min_off, max_off;
2555 	int i, err;
2556 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2557 	bool writing_zero = false;
2558 	/* set if the fact that we're writing a zero is used to let any
2559 	 * stack slots remain STACK_ZERO
2560 	 */
2561 	bool zero_used = false;
2562 
2563 	cur = env->cur_state->frame[env->cur_state->curframe];
2564 	ptr_reg = &cur->regs[ptr_regno];
2565 	min_off = ptr_reg->smin_value + off;
2566 	max_off = ptr_reg->smax_value + off + size;
2567 	if (value_regno >= 0)
2568 		value_reg = &cur->regs[value_regno];
2569 	if (value_reg && register_is_null(value_reg))
2570 		writing_zero = true;
2571 
2572 	err = realloc_func_state(state, round_up(-min_off, BPF_REG_SIZE),
2573 				 state->acquired_refs, true);
2574 	if (err)
2575 		return err;
2576 
2577 
2578 	/* Variable offset writes destroy any spilled pointers in range. */
2579 	for (i = min_off; i < max_off; i++) {
2580 		u8 new_type, *stype;
2581 		int slot, spi;
2582 
2583 		slot = -i - 1;
2584 		spi = slot / BPF_REG_SIZE;
2585 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2586 
2587 		if (!env->allow_ptr_leaks
2588 				&& *stype != NOT_INIT
2589 				&& *stype != SCALAR_VALUE) {
2590 			/* Reject the write if there's are spilled pointers in
2591 			 * range. If we didn't reject here, the ptr status
2592 			 * would be erased below (even though not all slots are
2593 			 * actually overwritten), possibly opening the door to
2594 			 * leaks.
2595 			 */
2596 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2597 				insn_idx, i);
2598 			return -EINVAL;
2599 		}
2600 
2601 		/* Erase all spilled pointers. */
2602 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2603 
2604 		/* Update the slot type. */
2605 		new_type = STACK_MISC;
2606 		if (writing_zero && *stype == STACK_ZERO) {
2607 			new_type = STACK_ZERO;
2608 			zero_used = true;
2609 		}
2610 		/* If the slot is STACK_INVALID, we check whether it's OK to
2611 		 * pretend that it will be initialized by this write. The slot
2612 		 * might not actually be written to, and so if we mark it as
2613 		 * initialized future reads might leak uninitialized memory.
2614 		 * For privileged programs, we will accept such reads to slots
2615 		 * that may or may not be written because, if we're reject
2616 		 * them, the error would be too confusing.
2617 		 */
2618 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2619 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2620 					insn_idx, i);
2621 			return -EINVAL;
2622 		}
2623 		*stype = new_type;
2624 	}
2625 	if (zero_used) {
2626 		/* backtracking doesn't work for STACK_ZERO yet. */
2627 		err = mark_chain_precision(env, value_regno);
2628 		if (err)
2629 			return err;
2630 	}
2631 	return 0;
2632 }
2633 
2634 /* When register 'dst_regno' is assigned some values from stack[min_off,
2635  * max_off), we set the register's type according to the types of the
2636  * respective stack slots. If all the stack values are known to be zeros, then
2637  * so is the destination reg. Otherwise, the register is considered to be
2638  * SCALAR. This function does not deal with register filling; the caller must
2639  * ensure that all spilled registers in the stack range have been marked as
2640  * read.
2641  */
2642 static void mark_reg_stack_read(struct bpf_verifier_env *env,
2643 				/* func where src register points to */
2644 				struct bpf_func_state *ptr_state,
2645 				int min_off, int max_off, int dst_regno)
2646 {
2647 	struct bpf_verifier_state *vstate = env->cur_state;
2648 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2649 	int i, slot, spi;
2650 	u8 *stype;
2651 	int zeros = 0;
2652 
2653 	for (i = min_off; i < max_off; i++) {
2654 		slot = -i - 1;
2655 		spi = slot / BPF_REG_SIZE;
2656 		stype = ptr_state->stack[spi].slot_type;
2657 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
2658 			break;
2659 		zeros++;
2660 	}
2661 	if (zeros == max_off - min_off) {
2662 		/* any access_size read into register is zero extended,
2663 		 * so the whole register == const_zero
2664 		 */
2665 		__mark_reg_const_zero(&state->regs[dst_regno]);
2666 		/* backtracking doesn't support STACK_ZERO yet,
2667 		 * so mark it precise here, so that later
2668 		 * backtracking can stop here.
2669 		 * Backtracking may not need this if this register
2670 		 * doesn't participate in pointer adjustment.
2671 		 * Forward propagation of precise flag is not
2672 		 * necessary either. This mark is only to stop
2673 		 * backtracking. Any register that contributed
2674 		 * to const 0 was marked precise before spill.
2675 		 */
2676 		state->regs[dst_regno].precise = true;
2677 	} else {
2678 		/* have read misc data from the stack */
2679 		mark_reg_unknown(env, state->regs, dst_regno);
2680 	}
2681 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2682 }
2683 
2684 /* Read the stack at 'off' and put the results into the register indicated by
2685  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
2686  * spilled reg.
2687  *
2688  * 'dst_regno' can be -1, meaning that the read value is not going to a
2689  * register.
2690  *
2691  * The access is assumed to be within the current stack bounds.
2692  */
2693 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
2694 				      /* func where src register points to */
2695 				      struct bpf_func_state *reg_state,
2696 				      int off, int size, int dst_regno)
2697 {
2698 	struct bpf_verifier_state *vstate = env->cur_state;
2699 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2700 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2701 	struct bpf_reg_state *reg;
2702 	u8 *stype;
2703 
2704 	stype = reg_state->stack[spi].slot_type;
2705 	reg = &reg_state->stack[spi].spilled_ptr;
2706 
2707 	if (stype[0] == STACK_SPILL) {
2708 		if (size != BPF_REG_SIZE) {
2709 			if (reg->type != SCALAR_VALUE) {
2710 				verbose_linfo(env, env->insn_idx, "; ");
2711 				verbose(env, "invalid size of register fill\n");
2712 				return -EACCES;
2713 			}
2714 			if (dst_regno >= 0) {
2715 				mark_reg_unknown(env, state->regs, dst_regno);
2716 				state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2717 			}
2718 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2719 			return 0;
2720 		}
2721 		for (i = 1; i < BPF_REG_SIZE; i++) {
2722 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2723 				verbose(env, "corrupted spill memory\n");
2724 				return -EACCES;
2725 			}
2726 		}
2727 
2728 		if (dst_regno >= 0) {
2729 			/* restore register state from stack */
2730 			state->regs[dst_regno] = *reg;
2731 			/* mark reg as written since spilled pointer state likely
2732 			 * has its liveness marks cleared by is_state_visited()
2733 			 * which resets stack/reg liveness for state transitions
2734 			 */
2735 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2736 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2737 			/* If dst_regno==-1, the caller is asking us whether
2738 			 * it is acceptable to use this value as a SCALAR_VALUE
2739 			 * (e.g. for XADD).
2740 			 * We must not allow unprivileged callers to do that
2741 			 * with spilled pointers.
2742 			 */
2743 			verbose(env, "leaking pointer from stack off %d\n",
2744 				off);
2745 			return -EACCES;
2746 		}
2747 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2748 	} else {
2749 		u8 type;
2750 
2751 		for (i = 0; i < size; i++) {
2752 			type = stype[(slot - i) % BPF_REG_SIZE];
2753 			if (type == STACK_MISC)
2754 				continue;
2755 			if (type == STACK_ZERO)
2756 				continue;
2757 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2758 				off, i, size);
2759 			return -EACCES;
2760 		}
2761 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2762 		if (dst_regno >= 0)
2763 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
2764 	}
2765 	return 0;
2766 }
2767 
2768 enum stack_access_src {
2769 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
2770 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
2771 };
2772 
2773 static int check_stack_range_initialized(struct bpf_verifier_env *env,
2774 					 int regno, int off, int access_size,
2775 					 bool zero_size_allowed,
2776 					 enum stack_access_src type,
2777 					 struct bpf_call_arg_meta *meta);
2778 
2779 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2780 {
2781 	return cur_regs(env) + regno;
2782 }
2783 
2784 /* Read the stack at 'ptr_regno + off' and put the result into the register
2785  * 'dst_regno'.
2786  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
2787  * but not its variable offset.
2788  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
2789  *
2790  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
2791  * filling registers (i.e. reads of spilled register cannot be detected when
2792  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
2793  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
2794  * offset; for a fixed offset check_stack_read_fixed_off should be used
2795  * instead.
2796  */
2797 static int check_stack_read_var_off(struct bpf_verifier_env *env,
2798 				    int ptr_regno, int off, int size, int dst_regno)
2799 {
2800 	/* The state of the source register. */
2801 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2802 	struct bpf_func_state *ptr_state = func(env, reg);
2803 	int err;
2804 	int min_off, max_off;
2805 
2806 	/* Note that we pass a NULL meta, so raw access will not be permitted.
2807 	 */
2808 	err = check_stack_range_initialized(env, ptr_regno, off, size,
2809 					    false, ACCESS_DIRECT, NULL);
2810 	if (err)
2811 		return err;
2812 
2813 	min_off = reg->smin_value + off;
2814 	max_off = reg->smax_value + off;
2815 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
2816 	return 0;
2817 }
2818 
2819 /* check_stack_read dispatches to check_stack_read_fixed_off or
2820  * check_stack_read_var_off.
2821  *
2822  * The caller must ensure that the offset falls within the allocated stack
2823  * bounds.
2824  *
2825  * 'dst_regno' is a register which will receive the value from the stack. It
2826  * can be -1, meaning that the read value is not going to a register.
2827  */
2828 static int check_stack_read(struct bpf_verifier_env *env,
2829 			    int ptr_regno, int off, int size,
2830 			    int dst_regno)
2831 {
2832 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2833 	struct bpf_func_state *state = func(env, reg);
2834 	int err;
2835 	/* Some accesses are only permitted with a static offset. */
2836 	bool var_off = !tnum_is_const(reg->var_off);
2837 
2838 	/* The offset is required to be static when reads don't go to a
2839 	 * register, in order to not leak pointers (see
2840 	 * check_stack_read_fixed_off).
2841 	 */
2842 	if (dst_regno < 0 && var_off) {
2843 		char tn_buf[48];
2844 
2845 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2846 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
2847 			tn_buf, off, size);
2848 		return -EACCES;
2849 	}
2850 	/* Variable offset is prohibited for unprivileged mode for simplicity
2851 	 * since it requires corresponding support in Spectre masking for stack
2852 	 * ALU. See also retrieve_ptr_limit().
2853 	 */
2854 	if (!env->bypass_spec_v1 && var_off) {
2855 		char tn_buf[48];
2856 
2857 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2858 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
2859 				ptr_regno, tn_buf);
2860 		return -EACCES;
2861 	}
2862 
2863 	if (!var_off) {
2864 		off += reg->var_off.value;
2865 		err = check_stack_read_fixed_off(env, state, off, size,
2866 						 dst_regno);
2867 	} else {
2868 		/* Variable offset stack reads need more conservative handling
2869 		 * than fixed offset ones. Note that dst_regno >= 0 on this
2870 		 * branch.
2871 		 */
2872 		err = check_stack_read_var_off(env, ptr_regno, off, size,
2873 					       dst_regno);
2874 	}
2875 	return err;
2876 }
2877 
2878 
2879 /* check_stack_write dispatches to check_stack_write_fixed_off or
2880  * check_stack_write_var_off.
2881  *
2882  * 'ptr_regno' is the register used as a pointer into the stack.
2883  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
2884  * 'value_regno' is the register whose value we're writing to the stack. It can
2885  * be -1, meaning that we're not writing from a register.
2886  *
2887  * The caller must ensure that the offset falls within the maximum stack size.
2888  */
2889 static int check_stack_write(struct bpf_verifier_env *env,
2890 			     int ptr_regno, int off, int size,
2891 			     int value_regno, int insn_idx)
2892 {
2893 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2894 	struct bpf_func_state *state = func(env, reg);
2895 	int err;
2896 
2897 	if (tnum_is_const(reg->var_off)) {
2898 		off += reg->var_off.value;
2899 		err = check_stack_write_fixed_off(env, state, off, size,
2900 						  value_regno, insn_idx);
2901 	} else {
2902 		/* Variable offset stack reads need more conservative handling
2903 		 * than fixed offset ones.
2904 		 */
2905 		err = check_stack_write_var_off(env, state,
2906 						ptr_regno, off, size,
2907 						value_regno, insn_idx);
2908 	}
2909 	return err;
2910 }
2911 
2912 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2913 				 int off, int size, enum bpf_access_type type)
2914 {
2915 	struct bpf_reg_state *regs = cur_regs(env);
2916 	struct bpf_map *map = regs[regno].map_ptr;
2917 	u32 cap = bpf_map_flags_to_cap(map);
2918 
2919 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2920 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2921 			map->value_size, off, size);
2922 		return -EACCES;
2923 	}
2924 
2925 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2926 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2927 			map->value_size, off, size);
2928 		return -EACCES;
2929 	}
2930 
2931 	return 0;
2932 }
2933 
2934 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
2935 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2936 			      int off, int size, u32 mem_size,
2937 			      bool zero_size_allowed)
2938 {
2939 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2940 	struct bpf_reg_state *reg;
2941 
2942 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2943 		return 0;
2944 
2945 	reg = &cur_regs(env)[regno];
2946 	switch (reg->type) {
2947 	case PTR_TO_MAP_KEY:
2948 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
2949 			mem_size, off, size);
2950 		break;
2951 	case PTR_TO_MAP_VALUE:
2952 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2953 			mem_size, off, size);
2954 		break;
2955 	case PTR_TO_PACKET:
2956 	case PTR_TO_PACKET_META:
2957 	case PTR_TO_PACKET_END:
2958 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2959 			off, size, regno, reg->id, off, mem_size);
2960 		break;
2961 	case PTR_TO_MEM:
2962 	default:
2963 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2964 			mem_size, off, size);
2965 	}
2966 
2967 	return -EACCES;
2968 }
2969 
2970 /* check read/write into a memory region with possible variable offset */
2971 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2972 				   int off, int size, u32 mem_size,
2973 				   bool zero_size_allowed)
2974 {
2975 	struct bpf_verifier_state *vstate = env->cur_state;
2976 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2977 	struct bpf_reg_state *reg = &state->regs[regno];
2978 	int err;
2979 
2980 	/* We may have adjusted the register pointing to memory region, so we
2981 	 * need to try adding each of min_value and max_value to off
2982 	 * to make sure our theoretical access will be safe.
2983 	 */
2984 	if (env->log.level & BPF_LOG_LEVEL)
2985 		print_verifier_state(env, state);
2986 
2987 	/* The minimum value is only important with signed
2988 	 * comparisons where we can't assume the floor of a
2989 	 * value is 0.  If we are using signed variables for our
2990 	 * index'es we need to make sure that whatever we use
2991 	 * will have a set floor within our range.
2992 	 */
2993 	if (reg->smin_value < 0 &&
2994 	    (reg->smin_value == S64_MIN ||
2995 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2996 	      reg->smin_value + off < 0)) {
2997 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2998 			regno);
2999 		return -EACCES;
3000 	}
3001 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
3002 				 mem_size, zero_size_allowed);
3003 	if (err) {
3004 		verbose(env, "R%d min value is outside of the allowed memory range\n",
3005 			regno);
3006 		return err;
3007 	}
3008 
3009 	/* If we haven't set a max value then we need to bail since we can't be
3010 	 * sure we won't do bad things.
3011 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
3012 	 */
3013 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3014 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3015 			regno);
3016 		return -EACCES;
3017 	}
3018 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
3019 				 mem_size, zero_size_allowed);
3020 	if (err) {
3021 		verbose(env, "R%d max value is outside of the allowed memory range\n",
3022 			regno);
3023 		return err;
3024 	}
3025 
3026 	return 0;
3027 }
3028 
3029 /* check read/write into a map element with possible variable offset */
3030 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3031 			    int off, int size, bool zero_size_allowed)
3032 {
3033 	struct bpf_verifier_state *vstate = env->cur_state;
3034 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3035 	struct bpf_reg_state *reg = &state->regs[regno];
3036 	struct bpf_map *map = reg->map_ptr;
3037 	int err;
3038 
3039 	err = check_mem_region_access(env, regno, off, size, map->value_size,
3040 				      zero_size_allowed);
3041 	if (err)
3042 		return err;
3043 
3044 	if (map_value_has_spin_lock(map)) {
3045 		u32 lock = map->spin_lock_off;
3046 
3047 		/* if any part of struct bpf_spin_lock can be touched by
3048 		 * load/store reject this program.
3049 		 * To check that [x1, x2) overlaps with [y1, y2)
3050 		 * it is sufficient to check x1 < y2 && y1 < x2.
3051 		 */
3052 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3053 		     lock < reg->umax_value + off + size) {
3054 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3055 			return -EACCES;
3056 		}
3057 	}
3058 	return err;
3059 }
3060 
3061 #define MAX_PACKET_OFF 0xffff
3062 
3063 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3064 {
3065 	return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
3066 }
3067 
3068 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3069 				       const struct bpf_call_arg_meta *meta,
3070 				       enum bpf_access_type t)
3071 {
3072 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3073 
3074 	switch (prog_type) {
3075 	/* Program types only with direct read access go here! */
3076 	case BPF_PROG_TYPE_LWT_IN:
3077 	case BPF_PROG_TYPE_LWT_OUT:
3078 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3079 	case BPF_PROG_TYPE_SK_REUSEPORT:
3080 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
3081 	case BPF_PROG_TYPE_CGROUP_SKB:
3082 		if (t == BPF_WRITE)
3083 			return false;
3084 		fallthrough;
3085 
3086 	/* Program types with direct read + write access go here! */
3087 	case BPF_PROG_TYPE_SCHED_CLS:
3088 	case BPF_PROG_TYPE_SCHED_ACT:
3089 	case BPF_PROG_TYPE_XDP:
3090 	case BPF_PROG_TYPE_LWT_XMIT:
3091 	case BPF_PROG_TYPE_SK_SKB:
3092 	case BPF_PROG_TYPE_SK_MSG:
3093 		if (meta)
3094 			return meta->pkt_access;
3095 
3096 		env->seen_direct_write = true;
3097 		return true;
3098 
3099 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3100 		if (t == BPF_WRITE)
3101 			env->seen_direct_write = true;
3102 
3103 		return true;
3104 
3105 	default:
3106 		return false;
3107 	}
3108 }
3109 
3110 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3111 			       int size, bool zero_size_allowed)
3112 {
3113 	struct bpf_reg_state *regs = cur_regs(env);
3114 	struct bpf_reg_state *reg = &regs[regno];
3115 	int err;
3116 
3117 	/* We may have added a variable offset to the packet pointer; but any
3118 	 * reg->range we have comes after that.  We are only checking the fixed
3119 	 * offset.
3120 	 */
3121 
3122 	/* We don't allow negative numbers, because we aren't tracking enough
3123 	 * detail to prove they're safe.
3124 	 */
3125 	if (reg->smin_value < 0) {
3126 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3127 			regno);
3128 		return -EACCES;
3129 	}
3130 
3131 	err = reg->range < 0 ? -EINVAL :
3132 	      __check_mem_access(env, regno, off, size, reg->range,
3133 				 zero_size_allowed);
3134 	if (err) {
3135 		verbose(env, "R%d offset is outside of the packet\n", regno);
3136 		return err;
3137 	}
3138 
3139 	/* __check_mem_access has made sure "off + size - 1" is within u16.
3140 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3141 	 * otherwise find_good_pkt_pointers would have refused to set range info
3142 	 * that __check_mem_access would have rejected this pkt access.
3143 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3144 	 */
3145 	env->prog->aux->max_pkt_offset =
3146 		max_t(u32, env->prog->aux->max_pkt_offset,
3147 		      off + reg->umax_value + size - 1);
3148 
3149 	return err;
3150 }
3151 
3152 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
3153 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3154 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
3155 			    struct btf **btf, u32 *btf_id)
3156 {
3157 	struct bpf_insn_access_aux info = {
3158 		.reg_type = *reg_type,
3159 		.log = &env->log,
3160 	};
3161 
3162 	if (env->ops->is_valid_access &&
3163 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3164 		/* A non zero info.ctx_field_size indicates that this field is a
3165 		 * candidate for later verifier transformation to load the whole
3166 		 * field and then apply a mask when accessed with a narrower
3167 		 * access than actual ctx access size. A zero info.ctx_field_size
3168 		 * will only allow for whole field access and rejects any other
3169 		 * type of narrower access.
3170 		 */
3171 		*reg_type = info.reg_type;
3172 
3173 		if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3174 			*btf = info.btf;
3175 			*btf_id = info.btf_id;
3176 		} else {
3177 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3178 		}
3179 		/* remember the offset of last byte accessed in ctx */
3180 		if (env->prog->aux->max_ctx_offset < off + size)
3181 			env->prog->aux->max_ctx_offset = off + size;
3182 		return 0;
3183 	}
3184 
3185 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3186 	return -EACCES;
3187 }
3188 
3189 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3190 				  int size)
3191 {
3192 	if (size < 0 || off < 0 ||
3193 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
3194 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
3195 			off, size);
3196 		return -EACCES;
3197 	}
3198 	return 0;
3199 }
3200 
3201 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3202 			     u32 regno, int off, int size,
3203 			     enum bpf_access_type t)
3204 {
3205 	struct bpf_reg_state *regs = cur_regs(env);
3206 	struct bpf_reg_state *reg = &regs[regno];
3207 	struct bpf_insn_access_aux info = {};
3208 	bool valid;
3209 
3210 	if (reg->smin_value < 0) {
3211 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3212 			regno);
3213 		return -EACCES;
3214 	}
3215 
3216 	switch (reg->type) {
3217 	case PTR_TO_SOCK_COMMON:
3218 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3219 		break;
3220 	case PTR_TO_SOCKET:
3221 		valid = bpf_sock_is_valid_access(off, size, t, &info);
3222 		break;
3223 	case PTR_TO_TCP_SOCK:
3224 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3225 		break;
3226 	case PTR_TO_XDP_SOCK:
3227 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3228 		break;
3229 	default:
3230 		valid = false;
3231 	}
3232 
3233 
3234 	if (valid) {
3235 		env->insn_aux_data[insn_idx].ctx_field_size =
3236 			info.ctx_field_size;
3237 		return 0;
3238 	}
3239 
3240 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
3241 		regno, reg_type_str[reg->type], off, size);
3242 
3243 	return -EACCES;
3244 }
3245 
3246 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3247 {
3248 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3249 }
3250 
3251 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3252 {
3253 	const struct bpf_reg_state *reg = reg_state(env, regno);
3254 
3255 	return reg->type == PTR_TO_CTX;
3256 }
3257 
3258 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3259 {
3260 	const struct bpf_reg_state *reg = reg_state(env, regno);
3261 
3262 	return type_is_sk_pointer(reg->type);
3263 }
3264 
3265 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3266 {
3267 	const struct bpf_reg_state *reg = reg_state(env, regno);
3268 
3269 	return type_is_pkt_pointer(reg->type);
3270 }
3271 
3272 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3273 {
3274 	const struct bpf_reg_state *reg = reg_state(env, regno);
3275 
3276 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3277 	return reg->type == PTR_TO_FLOW_KEYS;
3278 }
3279 
3280 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3281 				   const struct bpf_reg_state *reg,
3282 				   int off, int size, bool strict)
3283 {
3284 	struct tnum reg_off;
3285 	int ip_align;
3286 
3287 	/* Byte size accesses are always allowed. */
3288 	if (!strict || size == 1)
3289 		return 0;
3290 
3291 	/* For platforms that do not have a Kconfig enabling
3292 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3293 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
3294 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3295 	 * to this code only in strict mode where we want to emulate
3296 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
3297 	 * unconditional IP align value of '2'.
3298 	 */
3299 	ip_align = 2;
3300 
3301 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3302 	if (!tnum_is_aligned(reg_off, size)) {
3303 		char tn_buf[48];
3304 
3305 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3306 		verbose(env,
3307 			"misaligned packet access off %d+%s+%d+%d size %d\n",
3308 			ip_align, tn_buf, reg->off, off, size);
3309 		return -EACCES;
3310 	}
3311 
3312 	return 0;
3313 }
3314 
3315 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3316 				       const struct bpf_reg_state *reg,
3317 				       const char *pointer_desc,
3318 				       int off, int size, bool strict)
3319 {
3320 	struct tnum reg_off;
3321 
3322 	/* Byte size accesses are always allowed. */
3323 	if (!strict || size == 1)
3324 		return 0;
3325 
3326 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3327 	if (!tnum_is_aligned(reg_off, size)) {
3328 		char tn_buf[48];
3329 
3330 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3331 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3332 			pointer_desc, tn_buf, reg->off, off, size);
3333 		return -EACCES;
3334 	}
3335 
3336 	return 0;
3337 }
3338 
3339 static int check_ptr_alignment(struct bpf_verifier_env *env,
3340 			       const struct bpf_reg_state *reg, int off,
3341 			       int size, bool strict_alignment_once)
3342 {
3343 	bool strict = env->strict_alignment || strict_alignment_once;
3344 	const char *pointer_desc = "";
3345 
3346 	switch (reg->type) {
3347 	case PTR_TO_PACKET:
3348 	case PTR_TO_PACKET_META:
3349 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
3350 		 * right in front, treat it the very same way.
3351 		 */
3352 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
3353 	case PTR_TO_FLOW_KEYS:
3354 		pointer_desc = "flow keys ";
3355 		break;
3356 	case PTR_TO_MAP_KEY:
3357 		pointer_desc = "key ";
3358 		break;
3359 	case PTR_TO_MAP_VALUE:
3360 		pointer_desc = "value ";
3361 		break;
3362 	case PTR_TO_CTX:
3363 		pointer_desc = "context ";
3364 		break;
3365 	case PTR_TO_STACK:
3366 		pointer_desc = "stack ";
3367 		/* The stack spill tracking logic in check_stack_write_fixed_off()
3368 		 * and check_stack_read_fixed_off() relies on stack accesses being
3369 		 * aligned.
3370 		 */
3371 		strict = true;
3372 		break;
3373 	case PTR_TO_SOCKET:
3374 		pointer_desc = "sock ";
3375 		break;
3376 	case PTR_TO_SOCK_COMMON:
3377 		pointer_desc = "sock_common ";
3378 		break;
3379 	case PTR_TO_TCP_SOCK:
3380 		pointer_desc = "tcp_sock ";
3381 		break;
3382 	case PTR_TO_XDP_SOCK:
3383 		pointer_desc = "xdp_sock ";
3384 		break;
3385 	default:
3386 		break;
3387 	}
3388 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3389 					   strict);
3390 }
3391 
3392 static int update_stack_depth(struct bpf_verifier_env *env,
3393 			      const struct bpf_func_state *func,
3394 			      int off)
3395 {
3396 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
3397 
3398 	if (stack >= -off)
3399 		return 0;
3400 
3401 	/* update known max for given subprogram */
3402 	env->subprog_info[func->subprogno].stack_depth = -off;
3403 	return 0;
3404 }
3405 
3406 /* starting from main bpf function walk all instructions of the function
3407  * and recursively walk all callees that given function can call.
3408  * Ignore jump and exit insns.
3409  * Since recursion is prevented by check_cfg() this algorithm
3410  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3411  */
3412 static int check_max_stack_depth(struct bpf_verifier_env *env)
3413 {
3414 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3415 	struct bpf_subprog_info *subprog = env->subprog_info;
3416 	struct bpf_insn *insn = env->prog->insnsi;
3417 	bool tail_call_reachable = false;
3418 	int ret_insn[MAX_CALL_FRAMES];
3419 	int ret_prog[MAX_CALL_FRAMES];
3420 	int j;
3421 
3422 process_func:
3423 	/* protect against potential stack overflow that might happen when
3424 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3425 	 * depth for such case down to 256 so that the worst case scenario
3426 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
3427 	 * 8k).
3428 	 *
3429 	 * To get the idea what might happen, see an example:
3430 	 * func1 -> sub rsp, 128
3431 	 *  subfunc1 -> sub rsp, 256
3432 	 *  tailcall1 -> add rsp, 256
3433 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3434 	 *   subfunc2 -> sub rsp, 64
3435 	 *   subfunc22 -> sub rsp, 128
3436 	 *   tailcall2 -> add rsp, 128
3437 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3438 	 *
3439 	 * tailcall will unwind the current stack frame but it will not get rid
3440 	 * of caller's stack as shown on the example above.
3441 	 */
3442 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
3443 		verbose(env,
3444 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3445 			depth);
3446 		return -EACCES;
3447 	}
3448 	/* round up to 32-bytes, since this is granularity
3449 	 * of interpreter stack size
3450 	 */
3451 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3452 	if (depth > MAX_BPF_STACK) {
3453 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
3454 			frame + 1, depth);
3455 		return -EACCES;
3456 	}
3457 continue_func:
3458 	subprog_end = subprog[idx + 1].start;
3459 	for (; i < subprog_end; i++) {
3460 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
3461 			continue;
3462 		/* remember insn and function to return to */
3463 		ret_insn[frame] = i + 1;
3464 		ret_prog[frame] = idx;
3465 
3466 		/* find the callee */
3467 		i = i + insn[i].imm + 1;
3468 		idx = find_subprog(env, i);
3469 		if (idx < 0) {
3470 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3471 				  i);
3472 			return -EFAULT;
3473 		}
3474 
3475 		if (subprog[idx].has_tail_call)
3476 			tail_call_reachable = true;
3477 
3478 		frame++;
3479 		if (frame >= MAX_CALL_FRAMES) {
3480 			verbose(env, "the call stack of %d frames is too deep !\n",
3481 				frame);
3482 			return -E2BIG;
3483 		}
3484 		goto process_func;
3485 	}
3486 	/* if tail call got detected across bpf2bpf calls then mark each of the
3487 	 * currently present subprog frames as tail call reachable subprogs;
3488 	 * this info will be utilized by JIT so that we will be preserving the
3489 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
3490 	 */
3491 	if (tail_call_reachable)
3492 		for (j = 0; j < frame; j++)
3493 			subprog[ret_prog[j]].tail_call_reachable = true;
3494 
3495 	/* end of for() loop means the last insn of the 'subprog'
3496 	 * was reached. Doesn't matter whether it was JA or EXIT
3497 	 */
3498 	if (frame == 0)
3499 		return 0;
3500 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3501 	frame--;
3502 	i = ret_insn[frame];
3503 	idx = ret_prog[frame];
3504 	goto continue_func;
3505 }
3506 
3507 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3508 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3509 				  const struct bpf_insn *insn, int idx)
3510 {
3511 	int start = idx + insn->imm + 1, subprog;
3512 
3513 	subprog = find_subprog(env, start);
3514 	if (subprog < 0) {
3515 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3516 			  start);
3517 		return -EFAULT;
3518 	}
3519 	return env->subprog_info[subprog].stack_depth;
3520 }
3521 #endif
3522 
3523 int check_ctx_reg(struct bpf_verifier_env *env,
3524 		  const struct bpf_reg_state *reg, int regno)
3525 {
3526 	/* Access to ctx or passing it to a helper is only allowed in
3527 	 * its original, unmodified form.
3528 	 */
3529 
3530 	if (reg->off) {
3531 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3532 			regno, reg->off);
3533 		return -EACCES;
3534 	}
3535 
3536 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3537 		char tn_buf[48];
3538 
3539 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3540 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3541 		return -EACCES;
3542 	}
3543 
3544 	return 0;
3545 }
3546 
3547 static int __check_buffer_access(struct bpf_verifier_env *env,
3548 				 const char *buf_info,
3549 				 const struct bpf_reg_state *reg,
3550 				 int regno, int off, int size)
3551 {
3552 	if (off < 0) {
3553 		verbose(env,
3554 			"R%d invalid %s buffer access: off=%d, size=%d\n",
3555 			regno, buf_info, off, size);
3556 		return -EACCES;
3557 	}
3558 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3559 		char tn_buf[48];
3560 
3561 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3562 		verbose(env,
3563 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3564 			regno, off, tn_buf);
3565 		return -EACCES;
3566 	}
3567 
3568 	return 0;
3569 }
3570 
3571 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3572 				  const struct bpf_reg_state *reg,
3573 				  int regno, int off, int size)
3574 {
3575 	int err;
3576 
3577 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3578 	if (err)
3579 		return err;
3580 
3581 	if (off + size > env->prog->aux->max_tp_access)
3582 		env->prog->aux->max_tp_access = off + size;
3583 
3584 	return 0;
3585 }
3586 
3587 static int check_buffer_access(struct bpf_verifier_env *env,
3588 			       const struct bpf_reg_state *reg,
3589 			       int regno, int off, int size,
3590 			       bool zero_size_allowed,
3591 			       const char *buf_info,
3592 			       u32 *max_access)
3593 {
3594 	int err;
3595 
3596 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3597 	if (err)
3598 		return err;
3599 
3600 	if (off + size > *max_access)
3601 		*max_access = off + size;
3602 
3603 	return 0;
3604 }
3605 
3606 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
3607 static void zext_32_to_64(struct bpf_reg_state *reg)
3608 {
3609 	reg->var_off = tnum_subreg(reg->var_off);
3610 	__reg_assign_32_into_64(reg);
3611 }
3612 
3613 /* truncate register to smaller size (in bytes)
3614  * must be called with size < BPF_REG_SIZE
3615  */
3616 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3617 {
3618 	u64 mask;
3619 
3620 	/* clear high bits in bit representation */
3621 	reg->var_off = tnum_cast(reg->var_off, size);
3622 
3623 	/* fix arithmetic bounds */
3624 	mask = ((u64)1 << (size * 8)) - 1;
3625 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3626 		reg->umin_value &= mask;
3627 		reg->umax_value &= mask;
3628 	} else {
3629 		reg->umin_value = 0;
3630 		reg->umax_value = mask;
3631 	}
3632 	reg->smin_value = reg->umin_value;
3633 	reg->smax_value = reg->umax_value;
3634 
3635 	/* If size is smaller than 32bit register the 32bit register
3636 	 * values are also truncated so we push 64-bit bounds into
3637 	 * 32-bit bounds. Above were truncated < 32-bits already.
3638 	 */
3639 	if (size >= 4)
3640 		return;
3641 	__reg_combine_64_into_32(reg);
3642 }
3643 
3644 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3645 {
3646 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3647 }
3648 
3649 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3650 {
3651 	void *ptr;
3652 	u64 addr;
3653 	int err;
3654 
3655 	err = map->ops->map_direct_value_addr(map, &addr, off);
3656 	if (err)
3657 		return err;
3658 	ptr = (void *)(long)addr + off;
3659 
3660 	switch (size) {
3661 	case sizeof(u8):
3662 		*val = (u64)*(u8 *)ptr;
3663 		break;
3664 	case sizeof(u16):
3665 		*val = (u64)*(u16 *)ptr;
3666 		break;
3667 	case sizeof(u32):
3668 		*val = (u64)*(u32 *)ptr;
3669 		break;
3670 	case sizeof(u64):
3671 		*val = *(u64 *)ptr;
3672 		break;
3673 	default:
3674 		return -EINVAL;
3675 	}
3676 	return 0;
3677 }
3678 
3679 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3680 				   struct bpf_reg_state *regs,
3681 				   int regno, int off, int size,
3682 				   enum bpf_access_type atype,
3683 				   int value_regno)
3684 {
3685 	struct bpf_reg_state *reg = regs + regno;
3686 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
3687 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
3688 	u32 btf_id;
3689 	int ret;
3690 
3691 	if (off < 0) {
3692 		verbose(env,
3693 			"R%d is ptr_%s invalid negative access: off=%d\n",
3694 			regno, tname, off);
3695 		return -EACCES;
3696 	}
3697 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3698 		char tn_buf[48];
3699 
3700 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3701 		verbose(env,
3702 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3703 			regno, tname, off, tn_buf);
3704 		return -EACCES;
3705 	}
3706 
3707 	if (env->ops->btf_struct_access) {
3708 		ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
3709 						  off, size, atype, &btf_id);
3710 	} else {
3711 		if (atype != BPF_READ) {
3712 			verbose(env, "only read is supported\n");
3713 			return -EACCES;
3714 		}
3715 
3716 		ret = btf_struct_access(&env->log, reg->btf, t, off, size,
3717 					atype, &btf_id);
3718 	}
3719 
3720 	if (ret < 0)
3721 		return ret;
3722 
3723 	if (atype == BPF_READ && value_regno >= 0)
3724 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
3725 
3726 	return 0;
3727 }
3728 
3729 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3730 				   struct bpf_reg_state *regs,
3731 				   int regno, int off, int size,
3732 				   enum bpf_access_type atype,
3733 				   int value_regno)
3734 {
3735 	struct bpf_reg_state *reg = regs + regno;
3736 	struct bpf_map *map = reg->map_ptr;
3737 	const struct btf_type *t;
3738 	const char *tname;
3739 	u32 btf_id;
3740 	int ret;
3741 
3742 	if (!btf_vmlinux) {
3743 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3744 		return -ENOTSUPP;
3745 	}
3746 
3747 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3748 		verbose(env, "map_ptr access not supported for map type %d\n",
3749 			map->map_type);
3750 		return -ENOTSUPP;
3751 	}
3752 
3753 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3754 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3755 
3756 	if (!env->allow_ptr_to_map_access) {
3757 		verbose(env,
3758 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3759 			tname);
3760 		return -EPERM;
3761 	}
3762 
3763 	if (off < 0) {
3764 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
3765 			regno, tname, off);
3766 		return -EACCES;
3767 	}
3768 
3769 	if (atype != BPF_READ) {
3770 		verbose(env, "only read from %s is supported\n", tname);
3771 		return -EACCES;
3772 	}
3773 
3774 	ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
3775 	if (ret < 0)
3776 		return ret;
3777 
3778 	if (value_regno >= 0)
3779 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
3780 
3781 	return 0;
3782 }
3783 
3784 /* Check that the stack access at the given offset is within bounds. The
3785  * maximum valid offset is -1.
3786  *
3787  * The minimum valid offset is -MAX_BPF_STACK for writes, and
3788  * -state->allocated_stack for reads.
3789  */
3790 static int check_stack_slot_within_bounds(int off,
3791 					  struct bpf_func_state *state,
3792 					  enum bpf_access_type t)
3793 {
3794 	int min_valid_off;
3795 
3796 	if (t == BPF_WRITE)
3797 		min_valid_off = -MAX_BPF_STACK;
3798 	else
3799 		min_valid_off = -state->allocated_stack;
3800 
3801 	if (off < min_valid_off || off > -1)
3802 		return -EACCES;
3803 	return 0;
3804 }
3805 
3806 /* Check that the stack access at 'regno + off' falls within the maximum stack
3807  * bounds.
3808  *
3809  * 'off' includes `regno->offset`, but not its dynamic part (if any).
3810  */
3811 static int check_stack_access_within_bounds(
3812 		struct bpf_verifier_env *env,
3813 		int regno, int off, int access_size,
3814 		enum stack_access_src src, enum bpf_access_type type)
3815 {
3816 	struct bpf_reg_state *regs = cur_regs(env);
3817 	struct bpf_reg_state *reg = regs + regno;
3818 	struct bpf_func_state *state = func(env, reg);
3819 	int min_off, max_off;
3820 	int err;
3821 	char *err_extra;
3822 
3823 	if (src == ACCESS_HELPER)
3824 		/* We don't know if helpers are reading or writing (or both). */
3825 		err_extra = " indirect access to";
3826 	else if (type == BPF_READ)
3827 		err_extra = " read from";
3828 	else
3829 		err_extra = " write to";
3830 
3831 	if (tnum_is_const(reg->var_off)) {
3832 		min_off = reg->var_off.value + off;
3833 		if (access_size > 0)
3834 			max_off = min_off + access_size - 1;
3835 		else
3836 			max_off = min_off;
3837 	} else {
3838 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3839 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
3840 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
3841 				err_extra, regno);
3842 			return -EACCES;
3843 		}
3844 		min_off = reg->smin_value + off;
3845 		if (access_size > 0)
3846 			max_off = reg->smax_value + off + access_size - 1;
3847 		else
3848 			max_off = min_off;
3849 	}
3850 
3851 	err = check_stack_slot_within_bounds(min_off, state, type);
3852 	if (!err)
3853 		err = check_stack_slot_within_bounds(max_off, state, type);
3854 
3855 	if (err) {
3856 		if (tnum_is_const(reg->var_off)) {
3857 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
3858 				err_extra, regno, off, access_size);
3859 		} else {
3860 			char tn_buf[48];
3861 
3862 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3863 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
3864 				err_extra, regno, tn_buf, access_size);
3865 		}
3866 	}
3867 	return err;
3868 }
3869 
3870 /* check whether memory at (regno + off) is accessible for t = (read | write)
3871  * if t==write, value_regno is a register which value is stored into memory
3872  * if t==read, value_regno is a register which will receive the value from memory
3873  * if t==write && value_regno==-1, some unknown value is stored into memory
3874  * if t==read && value_regno==-1, don't care what we read from memory
3875  */
3876 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3877 			    int off, int bpf_size, enum bpf_access_type t,
3878 			    int value_regno, bool strict_alignment_once)
3879 {
3880 	struct bpf_reg_state *regs = cur_regs(env);
3881 	struct bpf_reg_state *reg = regs + regno;
3882 	struct bpf_func_state *state;
3883 	int size, err = 0;
3884 
3885 	size = bpf_size_to_bytes(bpf_size);
3886 	if (size < 0)
3887 		return size;
3888 
3889 	/* alignment checks will add in reg->off themselves */
3890 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3891 	if (err)
3892 		return err;
3893 
3894 	/* for access checks, reg->off is just part of off */
3895 	off += reg->off;
3896 
3897 	if (reg->type == PTR_TO_MAP_KEY) {
3898 		if (t == BPF_WRITE) {
3899 			verbose(env, "write to change key R%d not allowed\n", regno);
3900 			return -EACCES;
3901 		}
3902 
3903 		err = check_mem_region_access(env, regno, off, size,
3904 					      reg->map_ptr->key_size, false);
3905 		if (err)
3906 			return err;
3907 		if (value_regno >= 0)
3908 			mark_reg_unknown(env, regs, value_regno);
3909 	} else if (reg->type == PTR_TO_MAP_VALUE) {
3910 		if (t == BPF_WRITE && value_regno >= 0 &&
3911 		    is_pointer_value(env, value_regno)) {
3912 			verbose(env, "R%d leaks addr into map\n", value_regno);
3913 			return -EACCES;
3914 		}
3915 		err = check_map_access_type(env, regno, off, size, t);
3916 		if (err)
3917 			return err;
3918 		err = check_map_access(env, regno, off, size, false);
3919 		if (!err && t == BPF_READ && value_regno >= 0) {
3920 			struct bpf_map *map = reg->map_ptr;
3921 
3922 			/* if map is read-only, track its contents as scalars */
3923 			if (tnum_is_const(reg->var_off) &&
3924 			    bpf_map_is_rdonly(map) &&
3925 			    map->ops->map_direct_value_addr) {
3926 				int map_off = off + reg->var_off.value;
3927 				u64 val = 0;
3928 
3929 				err = bpf_map_direct_read(map, map_off, size,
3930 							  &val);
3931 				if (err)
3932 					return err;
3933 
3934 				regs[value_regno].type = SCALAR_VALUE;
3935 				__mark_reg_known(&regs[value_regno], val);
3936 			} else {
3937 				mark_reg_unknown(env, regs, value_regno);
3938 			}
3939 		}
3940 	} else if (reg->type == PTR_TO_MEM) {
3941 		if (t == BPF_WRITE && value_regno >= 0 &&
3942 		    is_pointer_value(env, value_regno)) {
3943 			verbose(env, "R%d leaks addr into mem\n", value_regno);
3944 			return -EACCES;
3945 		}
3946 		err = check_mem_region_access(env, regno, off, size,
3947 					      reg->mem_size, false);
3948 		if (!err && t == BPF_READ && value_regno >= 0)
3949 			mark_reg_unknown(env, regs, value_regno);
3950 	} else if (reg->type == PTR_TO_CTX) {
3951 		enum bpf_reg_type reg_type = SCALAR_VALUE;
3952 		struct btf *btf = NULL;
3953 		u32 btf_id = 0;
3954 
3955 		if (t == BPF_WRITE && value_regno >= 0 &&
3956 		    is_pointer_value(env, value_regno)) {
3957 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
3958 			return -EACCES;
3959 		}
3960 
3961 		err = check_ctx_reg(env, reg, regno);
3962 		if (err < 0)
3963 			return err;
3964 
3965 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
3966 		if (err)
3967 			verbose_linfo(env, insn_idx, "; ");
3968 		if (!err && t == BPF_READ && value_regno >= 0) {
3969 			/* ctx access returns either a scalar, or a
3970 			 * PTR_TO_PACKET[_META,_END]. In the latter
3971 			 * case, we know the offset is zero.
3972 			 */
3973 			if (reg_type == SCALAR_VALUE) {
3974 				mark_reg_unknown(env, regs, value_regno);
3975 			} else {
3976 				mark_reg_known_zero(env, regs,
3977 						    value_regno);
3978 				if (reg_type_may_be_null(reg_type))
3979 					regs[value_regno].id = ++env->id_gen;
3980 				/* A load of ctx field could have different
3981 				 * actual load size with the one encoded in the
3982 				 * insn. When the dst is PTR, it is for sure not
3983 				 * a sub-register.
3984 				 */
3985 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
3986 				if (reg_type == PTR_TO_BTF_ID ||
3987 				    reg_type == PTR_TO_BTF_ID_OR_NULL) {
3988 					regs[value_regno].btf = btf;
3989 					regs[value_regno].btf_id = btf_id;
3990 				}
3991 			}
3992 			regs[value_regno].type = reg_type;
3993 		}
3994 
3995 	} else if (reg->type == PTR_TO_STACK) {
3996 		/* Basic bounds checks. */
3997 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
3998 		if (err)
3999 			return err;
4000 
4001 		state = func(env, reg);
4002 		err = update_stack_depth(env, state, off);
4003 		if (err)
4004 			return err;
4005 
4006 		if (t == BPF_READ)
4007 			err = check_stack_read(env, regno, off, size,
4008 					       value_regno);
4009 		else
4010 			err = check_stack_write(env, regno, off, size,
4011 						value_regno, insn_idx);
4012 	} else if (reg_is_pkt_pointer(reg)) {
4013 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4014 			verbose(env, "cannot write into packet\n");
4015 			return -EACCES;
4016 		}
4017 		if (t == BPF_WRITE && value_regno >= 0 &&
4018 		    is_pointer_value(env, value_regno)) {
4019 			verbose(env, "R%d leaks addr into packet\n",
4020 				value_regno);
4021 			return -EACCES;
4022 		}
4023 		err = check_packet_access(env, regno, off, size, false);
4024 		if (!err && t == BPF_READ && value_regno >= 0)
4025 			mark_reg_unknown(env, regs, value_regno);
4026 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
4027 		if (t == BPF_WRITE && value_regno >= 0 &&
4028 		    is_pointer_value(env, value_regno)) {
4029 			verbose(env, "R%d leaks addr into flow keys\n",
4030 				value_regno);
4031 			return -EACCES;
4032 		}
4033 
4034 		err = check_flow_keys_access(env, off, size);
4035 		if (!err && t == BPF_READ && value_regno >= 0)
4036 			mark_reg_unknown(env, regs, value_regno);
4037 	} else if (type_is_sk_pointer(reg->type)) {
4038 		if (t == BPF_WRITE) {
4039 			verbose(env, "R%d cannot write into %s\n",
4040 				regno, reg_type_str[reg->type]);
4041 			return -EACCES;
4042 		}
4043 		err = check_sock_access(env, insn_idx, regno, off, size, t);
4044 		if (!err && value_regno >= 0)
4045 			mark_reg_unknown(env, regs, value_regno);
4046 	} else if (reg->type == PTR_TO_TP_BUFFER) {
4047 		err = check_tp_buffer_access(env, reg, regno, off, size);
4048 		if (!err && t == BPF_READ && value_regno >= 0)
4049 			mark_reg_unknown(env, regs, value_regno);
4050 	} else if (reg->type == PTR_TO_BTF_ID) {
4051 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4052 					      value_regno);
4053 	} else if (reg->type == CONST_PTR_TO_MAP) {
4054 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4055 					      value_regno);
4056 	} else if (reg->type == PTR_TO_RDONLY_BUF) {
4057 		if (t == BPF_WRITE) {
4058 			verbose(env, "R%d cannot write into %s\n",
4059 				regno, reg_type_str[reg->type]);
4060 			return -EACCES;
4061 		}
4062 		err = check_buffer_access(env, reg, regno, off, size, false,
4063 					  "rdonly",
4064 					  &env->prog->aux->max_rdonly_access);
4065 		if (!err && value_regno >= 0)
4066 			mark_reg_unknown(env, regs, value_regno);
4067 	} else if (reg->type == PTR_TO_RDWR_BUF) {
4068 		err = check_buffer_access(env, reg, regno, off, size, false,
4069 					  "rdwr",
4070 					  &env->prog->aux->max_rdwr_access);
4071 		if (!err && t == BPF_READ && value_regno >= 0)
4072 			mark_reg_unknown(env, regs, value_regno);
4073 	} else {
4074 		verbose(env, "R%d invalid mem access '%s'\n", regno,
4075 			reg_type_str[reg->type]);
4076 		return -EACCES;
4077 	}
4078 
4079 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4080 	    regs[value_regno].type == SCALAR_VALUE) {
4081 		/* b/h/w load zero-extends, mark upper bits as known 0 */
4082 		coerce_reg_to_size(&regs[value_regno], size);
4083 	}
4084 	return err;
4085 }
4086 
4087 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4088 {
4089 	int load_reg;
4090 	int err;
4091 
4092 	switch (insn->imm) {
4093 	case BPF_ADD:
4094 	case BPF_ADD | BPF_FETCH:
4095 	case BPF_AND:
4096 	case BPF_AND | BPF_FETCH:
4097 	case BPF_OR:
4098 	case BPF_OR | BPF_FETCH:
4099 	case BPF_XOR:
4100 	case BPF_XOR | BPF_FETCH:
4101 	case BPF_XCHG:
4102 	case BPF_CMPXCHG:
4103 		break;
4104 	default:
4105 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4106 		return -EINVAL;
4107 	}
4108 
4109 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4110 		verbose(env, "invalid atomic operand size\n");
4111 		return -EINVAL;
4112 	}
4113 
4114 	/* check src1 operand */
4115 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
4116 	if (err)
4117 		return err;
4118 
4119 	/* check src2 operand */
4120 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4121 	if (err)
4122 		return err;
4123 
4124 	if (insn->imm == BPF_CMPXCHG) {
4125 		/* Check comparison of R0 with memory location */
4126 		err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4127 		if (err)
4128 			return err;
4129 	}
4130 
4131 	if (is_pointer_value(env, insn->src_reg)) {
4132 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4133 		return -EACCES;
4134 	}
4135 
4136 	if (is_ctx_reg(env, insn->dst_reg) ||
4137 	    is_pkt_reg(env, insn->dst_reg) ||
4138 	    is_flow_key_reg(env, insn->dst_reg) ||
4139 	    is_sk_reg(env, insn->dst_reg)) {
4140 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4141 			insn->dst_reg,
4142 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
4143 		return -EACCES;
4144 	}
4145 
4146 	if (insn->imm & BPF_FETCH) {
4147 		if (insn->imm == BPF_CMPXCHG)
4148 			load_reg = BPF_REG_0;
4149 		else
4150 			load_reg = insn->src_reg;
4151 
4152 		/* check and record load of old value */
4153 		err = check_reg_arg(env, load_reg, DST_OP);
4154 		if (err)
4155 			return err;
4156 	} else {
4157 		/* This instruction accesses a memory location but doesn't
4158 		 * actually load it into a register.
4159 		 */
4160 		load_reg = -1;
4161 	}
4162 
4163 	/* check whether we can read the memory */
4164 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4165 			       BPF_SIZE(insn->code), BPF_READ, load_reg, true);
4166 	if (err)
4167 		return err;
4168 
4169 	/* check whether we can write into the same memory */
4170 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4171 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4172 	if (err)
4173 		return err;
4174 
4175 	return 0;
4176 }
4177 
4178 /* When register 'regno' is used to read the stack (either directly or through
4179  * a helper function) make sure that it's within stack boundary and, depending
4180  * on the access type, that all elements of the stack are initialized.
4181  *
4182  * 'off' includes 'regno->off', but not its dynamic part (if any).
4183  *
4184  * All registers that have been spilled on the stack in the slots within the
4185  * read offsets are marked as read.
4186  */
4187 static int check_stack_range_initialized(
4188 		struct bpf_verifier_env *env, int regno, int off,
4189 		int access_size, bool zero_size_allowed,
4190 		enum stack_access_src type, struct bpf_call_arg_meta *meta)
4191 {
4192 	struct bpf_reg_state *reg = reg_state(env, regno);
4193 	struct bpf_func_state *state = func(env, reg);
4194 	int err, min_off, max_off, i, j, slot, spi;
4195 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4196 	enum bpf_access_type bounds_check_type;
4197 	/* Some accesses can write anything into the stack, others are
4198 	 * read-only.
4199 	 */
4200 	bool clobber = false;
4201 
4202 	if (access_size == 0 && !zero_size_allowed) {
4203 		verbose(env, "invalid zero-sized read\n");
4204 		return -EACCES;
4205 	}
4206 
4207 	if (type == ACCESS_HELPER) {
4208 		/* The bounds checks for writes are more permissive than for
4209 		 * reads. However, if raw_mode is not set, we'll do extra
4210 		 * checks below.
4211 		 */
4212 		bounds_check_type = BPF_WRITE;
4213 		clobber = true;
4214 	} else {
4215 		bounds_check_type = BPF_READ;
4216 	}
4217 	err = check_stack_access_within_bounds(env, regno, off, access_size,
4218 					       type, bounds_check_type);
4219 	if (err)
4220 		return err;
4221 
4222 
4223 	if (tnum_is_const(reg->var_off)) {
4224 		min_off = max_off = reg->var_off.value + off;
4225 	} else {
4226 		/* Variable offset is prohibited for unprivileged mode for
4227 		 * simplicity since it requires corresponding support in
4228 		 * Spectre masking for stack ALU.
4229 		 * See also retrieve_ptr_limit().
4230 		 */
4231 		if (!env->bypass_spec_v1) {
4232 			char tn_buf[48];
4233 
4234 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4235 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4236 				regno, err_extra, tn_buf);
4237 			return -EACCES;
4238 		}
4239 		/* Only initialized buffer on stack is allowed to be accessed
4240 		 * with variable offset. With uninitialized buffer it's hard to
4241 		 * guarantee that whole memory is marked as initialized on
4242 		 * helper return since specific bounds are unknown what may
4243 		 * cause uninitialized stack leaking.
4244 		 */
4245 		if (meta && meta->raw_mode)
4246 			meta = NULL;
4247 
4248 		min_off = reg->smin_value + off;
4249 		max_off = reg->smax_value + off;
4250 	}
4251 
4252 	if (meta && meta->raw_mode) {
4253 		meta->access_size = access_size;
4254 		meta->regno = regno;
4255 		return 0;
4256 	}
4257 
4258 	for (i = min_off; i < max_off + access_size; i++) {
4259 		u8 *stype;
4260 
4261 		slot = -i - 1;
4262 		spi = slot / BPF_REG_SIZE;
4263 		if (state->allocated_stack <= slot)
4264 			goto err;
4265 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4266 		if (*stype == STACK_MISC)
4267 			goto mark;
4268 		if (*stype == STACK_ZERO) {
4269 			if (clobber) {
4270 				/* helper can write anything into the stack */
4271 				*stype = STACK_MISC;
4272 			}
4273 			goto mark;
4274 		}
4275 
4276 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4277 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4278 			goto mark;
4279 
4280 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4281 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4282 		     env->allow_ptr_leaks)) {
4283 			if (clobber) {
4284 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4285 				for (j = 0; j < BPF_REG_SIZE; j++)
4286 					state->stack[spi].slot_type[j] = STACK_MISC;
4287 			}
4288 			goto mark;
4289 		}
4290 
4291 err:
4292 		if (tnum_is_const(reg->var_off)) {
4293 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4294 				err_extra, regno, min_off, i - min_off, access_size);
4295 		} else {
4296 			char tn_buf[48];
4297 
4298 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4299 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4300 				err_extra, regno, tn_buf, i - min_off, access_size);
4301 		}
4302 		return -EACCES;
4303 mark:
4304 		/* reading any byte out of 8-byte 'spill_slot' will cause
4305 		 * the whole slot to be marked as 'read'
4306 		 */
4307 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
4308 			      state->stack[spi].spilled_ptr.parent,
4309 			      REG_LIVE_READ64);
4310 	}
4311 	return update_stack_depth(env, state, min_off);
4312 }
4313 
4314 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4315 				   int access_size, bool zero_size_allowed,
4316 				   struct bpf_call_arg_meta *meta)
4317 {
4318 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4319 
4320 	switch (reg->type) {
4321 	case PTR_TO_PACKET:
4322 	case PTR_TO_PACKET_META:
4323 		return check_packet_access(env, regno, reg->off, access_size,
4324 					   zero_size_allowed);
4325 	case PTR_TO_MAP_KEY:
4326 		return check_mem_region_access(env, regno, reg->off, access_size,
4327 					       reg->map_ptr->key_size, false);
4328 	case PTR_TO_MAP_VALUE:
4329 		if (check_map_access_type(env, regno, reg->off, access_size,
4330 					  meta && meta->raw_mode ? BPF_WRITE :
4331 					  BPF_READ))
4332 			return -EACCES;
4333 		return check_map_access(env, regno, reg->off, access_size,
4334 					zero_size_allowed);
4335 	case PTR_TO_MEM:
4336 		return check_mem_region_access(env, regno, reg->off,
4337 					       access_size, reg->mem_size,
4338 					       zero_size_allowed);
4339 	case PTR_TO_RDONLY_BUF:
4340 		if (meta && meta->raw_mode)
4341 			return -EACCES;
4342 		return check_buffer_access(env, reg, regno, reg->off,
4343 					   access_size, zero_size_allowed,
4344 					   "rdonly",
4345 					   &env->prog->aux->max_rdonly_access);
4346 	case PTR_TO_RDWR_BUF:
4347 		return check_buffer_access(env, reg, regno, reg->off,
4348 					   access_size, zero_size_allowed,
4349 					   "rdwr",
4350 					   &env->prog->aux->max_rdwr_access);
4351 	case PTR_TO_STACK:
4352 		return check_stack_range_initialized(
4353 				env,
4354 				regno, reg->off, access_size,
4355 				zero_size_allowed, ACCESS_HELPER, meta);
4356 	default: /* scalar_value or invalid ptr */
4357 		/* Allow zero-byte read from NULL, regardless of pointer type */
4358 		if (zero_size_allowed && access_size == 0 &&
4359 		    register_is_null(reg))
4360 			return 0;
4361 
4362 		verbose(env, "R%d type=%s expected=%s\n", regno,
4363 			reg_type_str[reg->type],
4364 			reg_type_str[PTR_TO_STACK]);
4365 		return -EACCES;
4366 	}
4367 }
4368 
4369 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4370 		   u32 regno, u32 mem_size)
4371 {
4372 	if (register_is_null(reg))
4373 		return 0;
4374 
4375 	if (reg_type_may_be_null(reg->type)) {
4376 		/* Assuming that the register contains a value check if the memory
4377 		 * access is safe. Temporarily save and restore the register's state as
4378 		 * the conversion shouldn't be visible to a caller.
4379 		 */
4380 		const struct bpf_reg_state saved_reg = *reg;
4381 		int rv;
4382 
4383 		mark_ptr_not_null_reg(reg);
4384 		rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4385 		*reg = saved_reg;
4386 		return rv;
4387 	}
4388 
4389 	return check_helper_mem_access(env, regno, mem_size, true, NULL);
4390 }
4391 
4392 /* Implementation details:
4393  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4394  * Two bpf_map_lookups (even with the same key) will have different reg->id.
4395  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4396  * value_or_null->value transition, since the verifier only cares about
4397  * the range of access to valid map value pointer and doesn't care about actual
4398  * address of the map element.
4399  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4400  * reg->id > 0 after value_or_null->value transition. By doing so
4401  * two bpf_map_lookups will be considered two different pointers that
4402  * point to different bpf_spin_locks.
4403  * The verifier allows taking only one bpf_spin_lock at a time to avoid
4404  * dead-locks.
4405  * Since only one bpf_spin_lock is allowed the checks are simpler than
4406  * reg_is_refcounted() logic. The verifier needs to remember only
4407  * one spin_lock instead of array of acquired_refs.
4408  * cur_state->active_spin_lock remembers which map value element got locked
4409  * and clears it after bpf_spin_unlock.
4410  */
4411 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4412 			     bool is_lock)
4413 {
4414 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4415 	struct bpf_verifier_state *cur = env->cur_state;
4416 	bool is_const = tnum_is_const(reg->var_off);
4417 	struct bpf_map *map = reg->map_ptr;
4418 	u64 val = reg->var_off.value;
4419 
4420 	if (!is_const) {
4421 		verbose(env,
4422 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4423 			regno);
4424 		return -EINVAL;
4425 	}
4426 	if (!map->btf) {
4427 		verbose(env,
4428 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
4429 			map->name);
4430 		return -EINVAL;
4431 	}
4432 	if (!map_value_has_spin_lock(map)) {
4433 		if (map->spin_lock_off == -E2BIG)
4434 			verbose(env,
4435 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
4436 				map->name);
4437 		else if (map->spin_lock_off == -ENOENT)
4438 			verbose(env,
4439 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
4440 				map->name);
4441 		else
4442 			verbose(env,
4443 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4444 				map->name);
4445 		return -EINVAL;
4446 	}
4447 	if (map->spin_lock_off != val + reg->off) {
4448 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4449 			val + reg->off);
4450 		return -EINVAL;
4451 	}
4452 	if (is_lock) {
4453 		if (cur->active_spin_lock) {
4454 			verbose(env,
4455 				"Locking two bpf_spin_locks are not allowed\n");
4456 			return -EINVAL;
4457 		}
4458 		cur->active_spin_lock = reg->id;
4459 	} else {
4460 		if (!cur->active_spin_lock) {
4461 			verbose(env, "bpf_spin_unlock without taking a lock\n");
4462 			return -EINVAL;
4463 		}
4464 		if (cur->active_spin_lock != reg->id) {
4465 			verbose(env, "bpf_spin_unlock of different lock\n");
4466 			return -EINVAL;
4467 		}
4468 		cur->active_spin_lock = 0;
4469 	}
4470 	return 0;
4471 }
4472 
4473 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4474 {
4475 	return type == ARG_PTR_TO_MEM ||
4476 	       type == ARG_PTR_TO_MEM_OR_NULL ||
4477 	       type == ARG_PTR_TO_UNINIT_MEM;
4478 }
4479 
4480 static bool arg_type_is_mem_size(enum bpf_arg_type type)
4481 {
4482 	return type == ARG_CONST_SIZE ||
4483 	       type == ARG_CONST_SIZE_OR_ZERO;
4484 }
4485 
4486 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4487 {
4488 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4489 }
4490 
4491 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4492 {
4493 	return type == ARG_PTR_TO_INT ||
4494 	       type == ARG_PTR_TO_LONG;
4495 }
4496 
4497 static int int_ptr_type_to_size(enum bpf_arg_type type)
4498 {
4499 	if (type == ARG_PTR_TO_INT)
4500 		return sizeof(u32);
4501 	else if (type == ARG_PTR_TO_LONG)
4502 		return sizeof(u64);
4503 
4504 	return -EINVAL;
4505 }
4506 
4507 static int resolve_map_arg_type(struct bpf_verifier_env *env,
4508 				 const struct bpf_call_arg_meta *meta,
4509 				 enum bpf_arg_type *arg_type)
4510 {
4511 	if (!meta->map_ptr) {
4512 		/* kernel subsystem misconfigured verifier */
4513 		verbose(env, "invalid map_ptr to access map->type\n");
4514 		return -EACCES;
4515 	}
4516 
4517 	switch (meta->map_ptr->map_type) {
4518 	case BPF_MAP_TYPE_SOCKMAP:
4519 	case BPF_MAP_TYPE_SOCKHASH:
4520 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4521 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4522 		} else {
4523 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
4524 			return -EINVAL;
4525 		}
4526 		break;
4527 
4528 	default:
4529 		break;
4530 	}
4531 	return 0;
4532 }
4533 
4534 struct bpf_reg_types {
4535 	const enum bpf_reg_type types[10];
4536 	u32 *btf_id;
4537 };
4538 
4539 static const struct bpf_reg_types map_key_value_types = {
4540 	.types = {
4541 		PTR_TO_STACK,
4542 		PTR_TO_PACKET,
4543 		PTR_TO_PACKET_META,
4544 		PTR_TO_MAP_KEY,
4545 		PTR_TO_MAP_VALUE,
4546 	},
4547 };
4548 
4549 static const struct bpf_reg_types sock_types = {
4550 	.types = {
4551 		PTR_TO_SOCK_COMMON,
4552 		PTR_TO_SOCKET,
4553 		PTR_TO_TCP_SOCK,
4554 		PTR_TO_XDP_SOCK,
4555 	},
4556 };
4557 
4558 #ifdef CONFIG_NET
4559 static const struct bpf_reg_types btf_id_sock_common_types = {
4560 	.types = {
4561 		PTR_TO_SOCK_COMMON,
4562 		PTR_TO_SOCKET,
4563 		PTR_TO_TCP_SOCK,
4564 		PTR_TO_XDP_SOCK,
4565 		PTR_TO_BTF_ID,
4566 	},
4567 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4568 };
4569 #endif
4570 
4571 static const struct bpf_reg_types mem_types = {
4572 	.types = {
4573 		PTR_TO_STACK,
4574 		PTR_TO_PACKET,
4575 		PTR_TO_PACKET_META,
4576 		PTR_TO_MAP_KEY,
4577 		PTR_TO_MAP_VALUE,
4578 		PTR_TO_MEM,
4579 		PTR_TO_RDONLY_BUF,
4580 		PTR_TO_RDWR_BUF,
4581 	},
4582 };
4583 
4584 static const struct bpf_reg_types int_ptr_types = {
4585 	.types = {
4586 		PTR_TO_STACK,
4587 		PTR_TO_PACKET,
4588 		PTR_TO_PACKET_META,
4589 		PTR_TO_MAP_KEY,
4590 		PTR_TO_MAP_VALUE,
4591 	},
4592 };
4593 
4594 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4595 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4596 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4597 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4598 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4599 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4600 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4601 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4602 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
4603 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
4604 
4605 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4606 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
4607 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
4608 	[ARG_PTR_TO_UNINIT_MAP_VALUE]	= &map_key_value_types,
4609 	[ARG_PTR_TO_MAP_VALUE_OR_NULL]	= &map_key_value_types,
4610 	[ARG_CONST_SIZE]		= &scalar_types,
4611 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
4612 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
4613 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
4614 	[ARG_PTR_TO_CTX]		= &context_types,
4615 	[ARG_PTR_TO_CTX_OR_NULL]	= &context_types,
4616 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
4617 #ifdef CONFIG_NET
4618 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
4619 #endif
4620 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
4621 	[ARG_PTR_TO_SOCKET_OR_NULL]	= &fullsock_types,
4622 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
4623 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
4624 	[ARG_PTR_TO_MEM]		= &mem_types,
4625 	[ARG_PTR_TO_MEM_OR_NULL]	= &mem_types,
4626 	[ARG_PTR_TO_UNINIT_MEM]		= &mem_types,
4627 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
4628 	[ARG_PTR_TO_ALLOC_MEM_OR_NULL]	= &alloc_mem_types,
4629 	[ARG_PTR_TO_INT]		= &int_ptr_types,
4630 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
4631 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
4632 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
4633 	[ARG_PTR_TO_STACK_OR_NULL]	= &stack_ptr_types,
4634 };
4635 
4636 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4637 			  enum bpf_arg_type arg_type,
4638 			  const u32 *arg_btf_id)
4639 {
4640 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4641 	enum bpf_reg_type expected, type = reg->type;
4642 	const struct bpf_reg_types *compatible;
4643 	int i, j;
4644 
4645 	compatible = compatible_reg_types[arg_type];
4646 	if (!compatible) {
4647 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4648 		return -EFAULT;
4649 	}
4650 
4651 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4652 		expected = compatible->types[i];
4653 		if (expected == NOT_INIT)
4654 			break;
4655 
4656 		if (type == expected)
4657 			goto found;
4658 	}
4659 
4660 	verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4661 	for (j = 0; j + 1 < i; j++)
4662 		verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4663 	verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4664 	return -EACCES;
4665 
4666 found:
4667 	if (type == PTR_TO_BTF_ID) {
4668 		if (!arg_btf_id) {
4669 			if (!compatible->btf_id) {
4670 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4671 				return -EFAULT;
4672 			}
4673 			arg_btf_id = compatible->btf_id;
4674 		}
4675 
4676 		if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4677 					  btf_vmlinux, *arg_btf_id)) {
4678 			verbose(env, "R%d is of type %s but %s is expected\n",
4679 				regno, kernel_type_name(reg->btf, reg->btf_id),
4680 				kernel_type_name(btf_vmlinux, *arg_btf_id));
4681 			return -EACCES;
4682 		}
4683 
4684 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4685 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4686 				regno);
4687 			return -EACCES;
4688 		}
4689 	}
4690 
4691 	return 0;
4692 }
4693 
4694 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4695 			  struct bpf_call_arg_meta *meta,
4696 			  const struct bpf_func_proto *fn)
4697 {
4698 	u32 regno = BPF_REG_1 + arg;
4699 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4700 	enum bpf_arg_type arg_type = fn->arg_type[arg];
4701 	enum bpf_reg_type type = reg->type;
4702 	int err = 0;
4703 
4704 	if (arg_type == ARG_DONTCARE)
4705 		return 0;
4706 
4707 	err = check_reg_arg(env, regno, SRC_OP);
4708 	if (err)
4709 		return err;
4710 
4711 	if (arg_type == ARG_ANYTHING) {
4712 		if (is_pointer_value(env, regno)) {
4713 			verbose(env, "R%d leaks addr into helper function\n",
4714 				regno);
4715 			return -EACCES;
4716 		}
4717 		return 0;
4718 	}
4719 
4720 	if (type_is_pkt_pointer(type) &&
4721 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4722 		verbose(env, "helper access to the packet is not allowed\n");
4723 		return -EACCES;
4724 	}
4725 
4726 	if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4727 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4728 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4729 		err = resolve_map_arg_type(env, meta, &arg_type);
4730 		if (err)
4731 			return err;
4732 	}
4733 
4734 	if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4735 		/* A NULL register has a SCALAR_VALUE type, so skip
4736 		 * type checking.
4737 		 */
4738 		goto skip_type_check;
4739 
4740 	err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4741 	if (err)
4742 		return err;
4743 
4744 	if (type == PTR_TO_CTX) {
4745 		err = check_ctx_reg(env, reg, regno);
4746 		if (err < 0)
4747 			return err;
4748 	}
4749 
4750 skip_type_check:
4751 	if (reg->ref_obj_id) {
4752 		if (meta->ref_obj_id) {
4753 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4754 				regno, reg->ref_obj_id,
4755 				meta->ref_obj_id);
4756 			return -EFAULT;
4757 		}
4758 		meta->ref_obj_id = reg->ref_obj_id;
4759 	}
4760 
4761 	if (arg_type == ARG_CONST_MAP_PTR) {
4762 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4763 		meta->map_ptr = reg->map_ptr;
4764 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4765 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
4766 		 * check that [key, key + map->key_size) are within
4767 		 * stack limits and initialized
4768 		 */
4769 		if (!meta->map_ptr) {
4770 			/* in function declaration map_ptr must come before
4771 			 * map_key, so that it's verified and known before
4772 			 * we have to check map_key here. Otherwise it means
4773 			 * that kernel subsystem misconfigured verifier
4774 			 */
4775 			verbose(env, "invalid map_ptr to access map->key\n");
4776 			return -EACCES;
4777 		}
4778 		err = check_helper_mem_access(env, regno,
4779 					      meta->map_ptr->key_size, false,
4780 					      NULL);
4781 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4782 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4783 		    !register_is_null(reg)) ||
4784 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4785 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
4786 		 * check [value, value + map->value_size) validity
4787 		 */
4788 		if (!meta->map_ptr) {
4789 			/* kernel subsystem misconfigured verifier */
4790 			verbose(env, "invalid map_ptr to access map->value\n");
4791 			return -EACCES;
4792 		}
4793 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4794 		err = check_helper_mem_access(env, regno,
4795 					      meta->map_ptr->value_size, false,
4796 					      meta);
4797 	} else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4798 		if (!reg->btf_id) {
4799 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4800 			return -EACCES;
4801 		}
4802 		meta->ret_btf = reg->btf;
4803 		meta->ret_btf_id = reg->btf_id;
4804 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4805 		if (meta->func_id == BPF_FUNC_spin_lock) {
4806 			if (process_spin_lock(env, regno, true))
4807 				return -EACCES;
4808 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
4809 			if (process_spin_lock(env, regno, false))
4810 				return -EACCES;
4811 		} else {
4812 			verbose(env, "verifier internal error\n");
4813 			return -EFAULT;
4814 		}
4815 	} else if (arg_type == ARG_PTR_TO_FUNC) {
4816 		meta->subprogno = reg->subprogno;
4817 	} else if (arg_type_is_mem_ptr(arg_type)) {
4818 		/* The access to this pointer is only checked when we hit the
4819 		 * next is_mem_size argument below.
4820 		 */
4821 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
4822 	} else if (arg_type_is_mem_size(arg_type)) {
4823 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
4824 
4825 		/* This is used to refine r0 return value bounds for helpers
4826 		 * that enforce this value as an upper bound on return values.
4827 		 * See do_refine_retval_range() for helpers that can refine
4828 		 * the return value. C type of helper is u32 so we pull register
4829 		 * bound from umax_value however, if negative verifier errors
4830 		 * out. Only upper bounds can be learned because retval is an
4831 		 * int type and negative retvals are allowed.
4832 		 */
4833 		meta->msize_max_value = reg->umax_value;
4834 
4835 		/* The register is SCALAR_VALUE; the access check
4836 		 * happens using its boundaries.
4837 		 */
4838 		if (!tnum_is_const(reg->var_off))
4839 			/* For unprivileged variable accesses, disable raw
4840 			 * mode so that the program is required to
4841 			 * initialize all the memory that the helper could
4842 			 * just partially fill up.
4843 			 */
4844 			meta = NULL;
4845 
4846 		if (reg->smin_value < 0) {
4847 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
4848 				regno);
4849 			return -EACCES;
4850 		}
4851 
4852 		if (reg->umin_value == 0) {
4853 			err = check_helper_mem_access(env, regno - 1, 0,
4854 						      zero_size_allowed,
4855 						      meta);
4856 			if (err)
4857 				return err;
4858 		}
4859 
4860 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
4861 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
4862 				regno);
4863 			return -EACCES;
4864 		}
4865 		err = check_helper_mem_access(env, regno - 1,
4866 					      reg->umax_value,
4867 					      zero_size_allowed, meta);
4868 		if (!err)
4869 			err = mark_chain_precision(env, regno);
4870 	} else if (arg_type_is_alloc_size(arg_type)) {
4871 		if (!tnum_is_const(reg->var_off)) {
4872 			verbose(env, "R%d is not a known constant'\n",
4873 				regno);
4874 			return -EACCES;
4875 		}
4876 		meta->mem_size = reg->var_off.value;
4877 	} else if (arg_type_is_int_ptr(arg_type)) {
4878 		int size = int_ptr_type_to_size(arg_type);
4879 
4880 		err = check_helper_mem_access(env, regno, size, false, meta);
4881 		if (err)
4882 			return err;
4883 		err = check_ptr_alignment(env, reg, 0, size, true);
4884 	}
4885 
4886 	return err;
4887 }
4888 
4889 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4890 {
4891 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
4892 	enum bpf_prog_type type = resolve_prog_type(env->prog);
4893 
4894 	if (func_id != BPF_FUNC_map_update_elem)
4895 		return false;
4896 
4897 	/* It's not possible to get access to a locked struct sock in these
4898 	 * contexts, so updating is safe.
4899 	 */
4900 	switch (type) {
4901 	case BPF_PROG_TYPE_TRACING:
4902 		if (eatype == BPF_TRACE_ITER)
4903 			return true;
4904 		break;
4905 	case BPF_PROG_TYPE_SOCKET_FILTER:
4906 	case BPF_PROG_TYPE_SCHED_CLS:
4907 	case BPF_PROG_TYPE_SCHED_ACT:
4908 	case BPF_PROG_TYPE_XDP:
4909 	case BPF_PROG_TYPE_SK_REUSEPORT:
4910 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
4911 	case BPF_PROG_TYPE_SK_LOOKUP:
4912 		return true;
4913 	default:
4914 		break;
4915 	}
4916 
4917 	verbose(env, "cannot update sockmap in this context\n");
4918 	return false;
4919 }
4920 
4921 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
4922 {
4923 	return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
4924 }
4925 
4926 static int check_map_func_compatibility(struct bpf_verifier_env *env,
4927 					struct bpf_map *map, int func_id)
4928 {
4929 	if (!map)
4930 		return 0;
4931 
4932 	/* We need a two way check, first is from map perspective ... */
4933 	switch (map->map_type) {
4934 	case BPF_MAP_TYPE_PROG_ARRAY:
4935 		if (func_id != BPF_FUNC_tail_call)
4936 			goto error;
4937 		break;
4938 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4939 		if (func_id != BPF_FUNC_perf_event_read &&
4940 		    func_id != BPF_FUNC_perf_event_output &&
4941 		    func_id != BPF_FUNC_skb_output &&
4942 		    func_id != BPF_FUNC_perf_event_read_value &&
4943 		    func_id != BPF_FUNC_xdp_output)
4944 			goto error;
4945 		break;
4946 	case BPF_MAP_TYPE_RINGBUF:
4947 		if (func_id != BPF_FUNC_ringbuf_output &&
4948 		    func_id != BPF_FUNC_ringbuf_reserve &&
4949 		    func_id != BPF_FUNC_ringbuf_submit &&
4950 		    func_id != BPF_FUNC_ringbuf_discard &&
4951 		    func_id != BPF_FUNC_ringbuf_query)
4952 			goto error;
4953 		break;
4954 	case BPF_MAP_TYPE_STACK_TRACE:
4955 		if (func_id != BPF_FUNC_get_stackid)
4956 			goto error;
4957 		break;
4958 	case BPF_MAP_TYPE_CGROUP_ARRAY:
4959 		if (func_id != BPF_FUNC_skb_under_cgroup &&
4960 		    func_id != BPF_FUNC_current_task_under_cgroup)
4961 			goto error;
4962 		break;
4963 	case BPF_MAP_TYPE_CGROUP_STORAGE:
4964 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
4965 		if (func_id != BPF_FUNC_get_local_storage)
4966 			goto error;
4967 		break;
4968 	case BPF_MAP_TYPE_DEVMAP:
4969 	case BPF_MAP_TYPE_DEVMAP_HASH:
4970 		if (func_id != BPF_FUNC_redirect_map &&
4971 		    func_id != BPF_FUNC_map_lookup_elem)
4972 			goto error;
4973 		break;
4974 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
4975 	 * appear.
4976 	 */
4977 	case BPF_MAP_TYPE_CPUMAP:
4978 		if (func_id != BPF_FUNC_redirect_map)
4979 			goto error;
4980 		break;
4981 	case BPF_MAP_TYPE_XSKMAP:
4982 		if (func_id != BPF_FUNC_redirect_map &&
4983 		    func_id != BPF_FUNC_map_lookup_elem)
4984 			goto error;
4985 		break;
4986 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4987 	case BPF_MAP_TYPE_HASH_OF_MAPS:
4988 		if (func_id != BPF_FUNC_map_lookup_elem)
4989 			goto error;
4990 		break;
4991 	case BPF_MAP_TYPE_SOCKMAP:
4992 		if (func_id != BPF_FUNC_sk_redirect_map &&
4993 		    func_id != BPF_FUNC_sock_map_update &&
4994 		    func_id != BPF_FUNC_map_delete_elem &&
4995 		    func_id != BPF_FUNC_msg_redirect_map &&
4996 		    func_id != BPF_FUNC_sk_select_reuseport &&
4997 		    func_id != BPF_FUNC_map_lookup_elem &&
4998 		    !may_update_sockmap(env, func_id))
4999 			goto error;
5000 		break;
5001 	case BPF_MAP_TYPE_SOCKHASH:
5002 		if (func_id != BPF_FUNC_sk_redirect_hash &&
5003 		    func_id != BPF_FUNC_sock_hash_update &&
5004 		    func_id != BPF_FUNC_map_delete_elem &&
5005 		    func_id != BPF_FUNC_msg_redirect_hash &&
5006 		    func_id != BPF_FUNC_sk_select_reuseport &&
5007 		    func_id != BPF_FUNC_map_lookup_elem &&
5008 		    !may_update_sockmap(env, func_id))
5009 			goto error;
5010 		break;
5011 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5012 		if (func_id != BPF_FUNC_sk_select_reuseport)
5013 			goto error;
5014 		break;
5015 	case BPF_MAP_TYPE_QUEUE:
5016 	case BPF_MAP_TYPE_STACK:
5017 		if (func_id != BPF_FUNC_map_peek_elem &&
5018 		    func_id != BPF_FUNC_map_pop_elem &&
5019 		    func_id != BPF_FUNC_map_push_elem)
5020 			goto error;
5021 		break;
5022 	case BPF_MAP_TYPE_SK_STORAGE:
5023 		if (func_id != BPF_FUNC_sk_storage_get &&
5024 		    func_id != BPF_FUNC_sk_storage_delete)
5025 			goto error;
5026 		break;
5027 	case BPF_MAP_TYPE_INODE_STORAGE:
5028 		if (func_id != BPF_FUNC_inode_storage_get &&
5029 		    func_id != BPF_FUNC_inode_storage_delete)
5030 			goto error;
5031 		break;
5032 	case BPF_MAP_TYPE_TASK_STORAGE:
5033 		if (func_id != BPF_FUNC_task_storage_get &&
5034 		    func_id != BPF_FUNC_task_storage_delete)
5035 			goto error;
5036 		break;
5037 	default:
5038 		break;
5039 	}
5040 
5041 	/* ... and second from the function itself. */
5042 	switch (func_id) {
5043 	case BPF_FUNC_tail_call:
5044 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5045 			goto error;
5046 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5047 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
5048 			return -EINVAL;
5049 		}
5050 		break;
5051 	case BPF_FUNC_perf_event_read:
5052 	case BPF_FUNC_perf_event_output:
5053 	case BPF_FUNC_perf_event_read_value:
5054 	case BPF_FUNC_skb_output:
5055 	case BPF_FUNC_xdp_output:
5056 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5057 			goto error;
5058 		break;
5059 	case BPF_FUNC_get_stackid:
5060 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5061 			goto error;
5062 		break;
5063 	case BPF_FUNC_current_task_under_cgroup:
5064 	case BPF_FUNC_skb_under_cgroup:
5065 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5066 			goto error;
5067 		break;
5068 	case BPF_FUNC_redirect_map:
5069 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
5070 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
5071 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
5072 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
5073 			goto error;
5074 		break;
5075 	case BPF_FUNC_sk_redirect_map:
5076 	case BPF_FUNC_msg_redirect_map:
5077 	case BPF_FUNC_sock_map_update:
5078 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5079 			goto error;
5080 		break;
5081 	case BPF_FUNC_sk_redirect_hash:
5082 	case BPF_FUNC_msg_redirect_hash:
5083 	case BPF_FUNC_sock_hash_update:
5084 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
5085 			goto error;
5086 		break;
5087 	case BPF_FUNC_get_local_storage:
5088 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5089 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
5090 			goto error;
5091 		break;
5092 	case BPF_FUNC_sk_select_reuseport:
5093 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5094 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5095 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
5096 			goto error;
5097 		break;
5098 	case BPF_FUNC_map_peek_elem:
5099 	case BPF_FUNC_map_pop_elem:
5100 	case BPF_FUNC_map_push_elem:
5101 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5102 		    map->map_type != BPF_MAP_TYPE_STACK)
5103 			goto error;
5104 		break;
5105 	case BPF_FUNC_sk_storage_get:
5106 	case BPF_FUNC_sk_storage_delete:
5107 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5108 			goto error;
5109 		break;
5110 	case BPF_FUNC_inode_storage_get:
5111 	case BPF_FUNC_inode_storage_delete:
5112 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5113 			goto error;
5114 		break;
5115 	case BPF_FUNC_task_storage_get:
5116 	case BPF_FUNC_task_storage_delete:
5117 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5118 			goto error;
5119 		break;
5120 	default:
5121 		break;
5122 	}
5123 
5124 	return 0;
5125 error:
5126 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
5127 		map->map_type, func_id_name(func_id), func_id);
5128 	return -EINVAL;
5129 }
5130 
5131 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5132 {
5133 	int count = 0;
5134 
5135 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5136 		count++;
5137 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5138 		count++;
5139 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5140 		count++;
5141 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5142 		count++;
5143 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5144 		count++;
5145 
5146 	/* We only support one arg being in raw mode at the moment,
5147 	 * which is sufficient for the helper functions we have
5148 	 * right now.
5149 	 */
5150 	return count <= 1;
5151 }
5152 
5153 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5154 				    enum bpf_arg_type arg_next)
5155 {
5156 	return (arg_type_is_mem_ptr(arg_curr) &&
5157 	        !arg_type_is_mem_size(arg_next)) ||
5158 	       (!arg_type_is_mem_ptr(arg_curr) &&
5159 		arg_type_is_mem_size(arg_next));
5160 }
5161 
5162 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5163 {
5164 	/* bpf_xxx(..., buf, len) call will access 'len'
5165 	 * bytes from memory 'buf'. Both arg types need
5166 	 * to be paired, so make sure there's no buggy
5167 	 * helper function specification.
5168 	 */
5169 	if (arg_type_is_mem_size(fn->arg1_type) ||
5170 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
5171 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5172 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5173 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5174 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5175 		return false;
5176 
5177 	return true;
5178 }
5179 
5180 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5181 {
5182 	int count = 0;
5183 
5184 	if (arg_type_may_be_refcounted(fn->arg1_type))
5185 		count++;
5186 	if (arg_type_may_be_refcounted(fn->arg2_type))
5187 		count++;
5188 	if (arg_type_may_be_refcounted(fn->arg3_type))
5189 		count++;
5190 	if (arg_type_may_be_refcounted(fn->arg4_type))
5191 		count++;
5192 	if (arg_type_may_be_refcounted(fn->arg5_type))
5193 		count++;
5194 
5195 	/* A reference acquiring function cannot acquire
5196 	 * another refcounted ptr.
5197 	 */
5198 	if (may_be_acquire_function(func_id) && count)
5199 		return false;
5200 
5201 	/* We only support one arg being unreferenced at the moment,
5202 	 * which is sufficient for the helper functions we have right now.
5203 	 */
5204 	return count <= 1;
5205 }
5206 
5207 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5208 {
5209 	int i;
5210 
5211 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5212 		if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5213 			return false;
5214 
5215 		if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5216 			return false;
5217 	}
5218 
5219 	return true;
5220 }
5221 
5222 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5223 {
5224 	return check_raw_mode_ok(fn) &&
5225 	       check_arg_pair_ok(fn) &&
5226 	       check_btf_id_ok(fn) &&
5227 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5228 }
5229 
5230 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5231  * are now invalid, so turn them into unknown SCALAR_VALUE.
5232  */
5233 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5234 				     struct bpf_func_state *state)
5235 {
5236 	struct bpf_reg_state *regs = state->regs, *reg;
5237 	int i;
5238 
5239 	for (i = 0; i < MAX_BPF_REG; i++)
5240 		if (reg_is_pkt_pointer_any(&regs[i]))
5241 			mark_reg_unknown(env, regs, i);
5242 
5243 	bpf_for_each_spilled_reg(i, state, reg) {
5244 		if (!reg)
5245 			continue;
5246 		if (reg_is_pkt_pointer_any(reg))
5247 			__mark_reg_unknown(env, reg);
5248 	}
5249 }
5250 
5251 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5252 {
5253 	struct bpf_verifier_state *vstate = env->cur_state;
5254 	int i;
5255 
5256 	for (i = 0; i <= vstate->curframe; i++)
5257 		__clear_all_pkt_pointers(env, vstate->frame[i]);
5258 }
5259 
5260 enum {
5261 	AT_PKT_END = -1,
5262 	BEYOND_PKT_END = -2,
5263 };
5264 
5265 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5266 {
5267 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5268 	struct bpf_reg_state *reg = &state->regs[regn];
5269 
5270 	if (reg->type != PTR_TO_PACKET)
5271 		/* PTR_TO_PACKET_META is not supported yet */
5272 		return;
5273 
5274 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5275 	 * How far beyond pkt_end it goes is unknown.
5276 	 * if (!range_open) it's the case of pkt >= pkt_end
5277 	 * if (range_open) it's the case of pkt > pkt_end
5278 	 * hence this pointer is at least 1 byte bigger than pkt_end
5279 	 */
5280 	if (range_open)
5281 		reg->range = BEYOND_PKT_END;
5282 	else
5283 		reg->range = AT_PKT_END;
5284 }
5285 
5286 static void release_reg_references(struct bpf_verifier_env *env,
5287 				   struct bpf_func_state *state,
5288 				   int ref_obj_id)
5289 {
5290 	struct bpf_reg_state *regs = state->regs, *reg;
5291 	int i;
5292 
5293 	for (i = 0; i < MAX_BPF_REG; i++)
5294 		if (regs[i].ref_obj_id == ref_obj_id)
5295 			mark_reg_unknown(env, regs, i);
5296 
5297 	bpf_for_each_spilled_reg(i, state, reg) {
5298 		if (!reg)
5299 			continue;
5300 		if (reg->ref_obj_id == ref_obj_id)
5301 			__mark_reg_unknown(env, reg);
5302 	}
5303 }
5304 
5305 /* The pointer with the specified id has released its reference to kernel
5306  * resources. Identify all copies of the same pointer and clear the reference.
5307  */
5308 static int release_reference(struct bpf_verifier_env *env,
5309 			     int ref_obj_id)
5310 {
5311 	struct bpf_verifier_state *vstate = env->cur_state;
5312 	int err;
5313 	int i;
5314 
5315 	err = release_reference_state(cur_func(env), ref_obj_id);
5316 	if (err)
5317 		return err;
5318 
5319 	for (i = 0; i <= vstate->curframe; i++)
5320 		release_reg_references(env, vstate->frame[i], ref_obj_id);
5321 
5322 	return 0;
5323 }
5324 
5325 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5326 				    struct bpf_reg_state *regs)
5327 {
5328 	int i;
5329 
5330 	/* after the call registers r0 - r5 were scratched */
5331 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5332 		mark_reg_not_init(env, regs, caller_saved[i]);
5333 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5334 	}
5335 }
5336 
5337 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5338 				   struct bpf_func_state *caller,
5339 				   struct bpf_func_state *callee,
5340 				   int insn_idx);
5341 
5342 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5343 			     int *insn_idx, int subprog,
5344 			     set_callee_state_fn set_callee_state_cb)
5345 {
5346 	struct bpf_verifier_state *state = env->cur_state;
5347 	struct bpf_func_info_aux *func_info_aux;
5348 	struct bpf_func_state *caller, *callee;
5349 	int err;
5350 	bool is_global = false;
5351 
5352 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5353 		verbose(env, "the call stack of %d frames is too deep\n",
5354 			state->curframe + 2);
5355 		return -E2BIG;
5356 	}
5357 
5358 	caller = state->frame[state->curframe];
5359 	if (state->frame[state->curframe + 1]) {
5360 		verbose(env, "verifier bug. Frame %d already allocated\n",
5361 			state->curframe + 1);
5362 		return -EFAULT;
5363 	}
5364 
5365 	func_info_aux = env->prog->aux->func_info_aux;
5366 	if (func_info_aux)
5367 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5368 	err = btf_check_func_arg_match(env, subprog, caller->regs);
5369 	if (err == -EFAULT)
5370 		return err;
5371 	if (is_global) {
5372 		if (err) {
5373 			verbose(env, "Caller passes invalid args into func#%d\n",
5374 				subprog);
5375 			return err;
5376 		} else {
5377 			if (env->log.level & BPF_LOG_LEVEL)
5378 				verbose(env,
5379 					"Func#%d is global and valid. Skipping.\n",
5380 					subprog);
5381 			clear_caller_saved_regs(env, caller->regs);
5382 
5383 			/* All global functions return a 64-bit SCALAR_VALUE */
5384 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
5385 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5386 
5387 			/* continue with next insn after call */
5388 			return 0;
5389 		}
5390 	}
5391 
5392 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5393 	if (!callee)
5394 		return -ENOMEM;
5395 	state->frame[state->curframe + 1] = callee;
5396 
5397 	/* callee cannot access r0, r6 - r9 for reading and has to write
5398 	 * into its own stack before reading from it.
5399 	 * callee can read/write into caller's stack
5400 	 */
5401 	init_func_state(env, callee,
5402 			/* remember the callsite, it will be used by bpf_exit */
5403 			*insn_idx /* callsite */,
5404 			state->curframe + 1 /* frameno within this callchain */,
5405 			subprog /* subprog number within this prog */);
5406 
5407 	/* Transfer references to the callee */
5408 	err = transfer_reference_state(callee, caller);
5409 	if (err)
5410 		return err;
5411 
5412 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
5413 	if (err)
5414 		return err;
5415 
5416 	clear_caller_saved_regs(env, caller->regs);
5417 
5418 	/* only increment it after check_reg_arg() finished */
5419 	state->curframe++;
5420 
5421 	/* and go analyze first insn of the callee */
5422 	*insn_idx = env->subprog_info[subprog].start - 1;
5423 
5424 	if (env->log.level & BPF_LOG_LEVEL) {
5425 		verbose(env, "caller:\n");
5426 		print_verifier_state(env, caller);
5427 		verbose(env, "callee:\n");
5428 		print_verifier_state(env, callee);
5429 	}
5430 	return 0;
5431 }
5432 
5433 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
5434 				   struct bpf_func_state *caller,
5435 				   struct bpf_func_state *callee)
5436 {
5437 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
5438 	 *      void *callback_ctx, u64 flags);
5439 	 * callback_fn(struct bpf_map *map, void *key, void *value,
5440 	 *      void *callback_ctx);
5441 	 */
5442 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
5443 
5444 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
5445 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
5446 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5447 
5448 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
5449 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
5450 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5451 
5452 	/* pointer to stack or null */
5453 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
5454 
5455 	/* unused */
5456 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
5457 	return 0;
5458 }
5459 
5460 static int set_callee_state(struct bpf_verifier_env *env,
5461 			    struct bpf_func_state *caller,
5462 			    struct bpf_func_state *callee, int insn_idx)
5463 {
5464 	int i;
5465 
5466 	/* copy r1 - r5 args that callee can access.  The copy includes parent
5467 	 * pointers, which connects us up to the liveness chain
5468 	 */
5469 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
5470 		callee->regs[i] = caller->regs[i];
5471 	return 0;
5472 }
5473 
5474 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5475 			   int *insn_idx)
5476 {
5477 	int subprog, target_insn;
5478 
5479 	target_insn = *insn_idx + insn->imm + 1;
5480 	subprog = find_subprog(env, target_insn);
5481 	if (subprog < 0) {
5482 		verbose(env, "verifier bug. No program starts at insn %d\n",
5483 			target_insn);
5484 		return -EFAULT;
5485 	}
5486 
5487 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
5488 }
5489 
5490 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
5491 				       struct bpf_func_state *caller,
5492 				       struct bpf_func_state *callee,
5493 				       int insn_idx)
5494 {
5495 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
5496 	struct bpf_map *map;
5497 	int err;
5498 
5499 	if (bpf_map_ptr_poisoned(insn_aux)) {
5500 		verbose(env, "tail_call abusing map_ptr\n");
5501 		return -EINVAL;
5502 	}
5503 
5504 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
5505 	if (!map->ops->map_set_for_each_callback_args ||
5506 	    !map->ops->map_for_each_callback) {
5507 		verbose(env, "callback function not allowed for map\n");
5508 		return -ENOTSUPP;
5509 	}
5510 
5511 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
5512 	if (err)
5513 		return err;
5514 
5515 	callee->in_callback_fn = true;
5516 	return 0;
5517 }
5518 
5519 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
5520 {
5521 	struct bpf_verifier_state *state = env->cur_state;
5522 	struct bpf_func_state *caller, *callee;
5523 	struct bpf_reg_state *r0;
5524 	int err;
5525 
5526 	callee = state->frame[state->curframe];
5527 	r0 = &callee->regs[BPF_REG_0];
5528 	if (r0->type == PTR_TO_STACK) {
5529 		/* technically it's ok to return caller's stack pointer
5530 		 * (or caller's caller's pointer) back to the caller,
5531 		 * since these pointers are valid. Only current stack
5532 		 * pointer will be invalid as soon as function exits,
5533 		 * but let's be conservative
5534 		 */
5535 		verbose(env, "cannot return stack pointer to the caller\n");
5536 		return -EINVAL;
5537 	}
5538 
5539 	state->curframe--;
5540 	caller = state->frame[state->curframe];
5541 	if (callee->in_callback_fn) {
5542 		/* enforce R0 return value range [0, 1]. */
5543 		struct tnum range = tnum_range(0, 1);
5544 
5545 		if (r0->type != SCALAR_VALUE) {
5546 			verbose(env, "R0 not a scalar value\n");
5547 			return -EACCES;
5548 		}
5549 		if (!tnum_in(range, r0->var_off)) {
5550 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
5551 			return -EINVAL;
5552 		}
5553 	} else {
5554 		/* return to the caller whatever r0 had in the callee */
5555 		caller->regs[BPF_REG_0] = *r0;
5556 	}
5557 
5558 	/* Transfer references to the caller */
5559 	err = transfer_reference_state(caller, callee);
5560 	if (err)
5561 		return err;
5562 
5563 	*insn_idx = callee->callsite + 1;
5564 	if (env->log.level & BPF_LOG_LEVEL) {
5565 		verbose(env, "returning from callee:\n");
5566 		print_verifier_state(env, callee);
5567 		verbose(env, "to caller at %d:\n", *insn_idx);
5568 		print_verifier_state(env, caller);
5569 	}
5570 	/* clear everything in the callee */
5571 	free_func_state(callee);
5572 	state->frame[state->curframe + 1] = NULL;
5573 	return 0;
5574 }
5575 
5576 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
5577 				   int func_id,
5578 				   struct bpf_call_arg_meta *meta)
5579 {
5580 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
5581 
5582 	if (ret_type != RET_INTEGER ||
5583 	    (func_id != BPF_FUNC_get_stack &&
5584 	     func_id != BPF_FUNC_probe_read_str &&
5585 	     func_id != BPF_FUNC_probe_read_kernel_str &&
5586 	     func_id != BPF_FUNC_probe_read_user_str))
5587 		return;
5588 
5589 	ret_reg->smax_value = meta->msize_max_value;
5590 	ret_reg->s32_max_value = meta->msize_max_value;
5591 	ret_reg->smin_value = -MAX_ERRNO;
5592 	ret_reg->s32_min_value = -MAX_ERRNO;
5593 	__reg_deduce_bounds(ret_reg);
5594 	__reg_bound_offset(ret_reg);
5595 	__update_reg_bounds(ret_reg);
5596 }
5597 
5598 static int
5599 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5600 		int func_id, int insn_idx)
5601 {
5602 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5603 	struct bpf_map *map = meta->map_ptr;
5604 
5605 	if (func_id != BPF_FUNC_tail_call &&
5606 	    func_id != BPF_FUNC_map_lookup_elem &&
5607 	    func_id != BPF_FUNC_map_update_elem &&
5608 	    func_id != BPF_FUNC_map_delete_elem &&
5609 	    func_id != BPF_FUNC_map_push_elem &&
5610 	    func_id != BPF_FUNC_map_pop_elem &&
5611 	    func_id != BPF_FUNC_map_peek_elem &&
5612 	    func_id != BPF_FUNC_for_each_map_elem &&
5613 	    func_id != BPF_FUNC_redirect_map)
5614 		return 0;
5615 
5616 	if (map == NULL) {
5617 		verbose(env, "kernel subsystem misconfigured verifier\n");
5618 		return -EINVAL;
5619 	}
5620 
5621 	/* In case of read-only, some additional restrictions
5622 	 * need to be applied in order to prevent altering the
5623 	 * state of the map from program side.
5624 	 */
5625 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
5626 	    (func_id == BPF_FUNC_map_delete_elem ||
5627 	     func_id == BPF_FUNC_map_update_elem ||
5628 	     func_id == BPF_FUNC_map_push_elem ||
5629 	     func_id == BPF_FUNC_map_pop_elem)) {
5630 		verbose(env, "write into map forbidden\n");
5631 		return -EACCES;
5632 	}
5633 
5634 	if (!BPF_MAP_PTR(aux->map_ptr_state))
5635 		bpf_map_ptr_store(aux, meta->map_ptr,
5636 				  !meta->map_ptr->bypass_spec_v1);
5637 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
5638 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
5639 				  !meta->map_ptr->bypass_spec_v1);
5640 	return 0;
5641 }
5642 
5643 static int
5644 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5645 		int func_id, int insn_idx)
5646 {
5647 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5648 	struct bpf_reg_state *regs = cur_regs(env), *reg;
5649 	struct bpf_map *map = meta->map_ptr;
5650 	struct tnum range;
5651 	u64 val;
5652 	int err;
5653 
5654 	if (func_id != BPF_FUNC_tail_call)
5655 		return 0;
5656 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5657 		verbose(env, "kernel subsystem misconfigured verifier\n");
5658 		return -EINVAL;
5659 	}
5660 
5661 	range = tnum_range(0, map->max_entries - 1);
5662 	reg = &regs[BPF_REG_3];
5663 
5664 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
5665 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5666 		return 0;
5667 	}
5668 
5669 	err = mark_chain_precision(env, BPF_REG_3);
5670 	if (err)
5671 		return err;
5672 
5673 	val = reg->var_off.value;
5674 	if (bpf_map_key_unseen(aux))
5675 		bpf_map_key_store(aux, val);
5676 	else if (!bpf_map_key_poisoned(aux) &&
5677 		  bpf_map_key_immediate(aux) != val)
5678 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5679 	return 0;
5680 }
5681 
5682 static int check_reference_leak(struct bpf_verifier_env *env)
5683 {
5684 	struct bpf_func_state *state = cur_func(env);
5685 	int i;
5686 
5687 	for (i = 0; i < state->acquired_refs; i++) {
5688 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5689 			state->refs[i].id, state->refs[i].insn_idx);
5690 	}
5691 	return state->acquired_refs ? -EINVAL : 0;
5692 }
5693 
5694 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5695 			     int *insn_idx_p)
5696 {
5697 	const struct bpf_func_proto *fn = NULL;
5698 	struct bpf_reg_state *regs;
5699 	struct bpf_call_arg_meta meta;
5700 	int insn_idx = *insn_idx_p;
5701 	bool changes_data;
5702 	int i, err, func_id;
5703 
5704 	/* find function prototype */
5705 	func_id = insn->imm;
5706 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5707 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5708 			func_id);
5709 		return -EINVAL;
5710 	}
5711 
5712 	if (env->ops->get_func_proto)
5713 		fn = env->ops->get_func_proto(func_id, env->prog);
5714 	if (!fn) {
5715 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5716 			func_id);
5717 		return -EINVAL;
5718 	}
5719 
5720 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
5721 	if (!env->prog->gpl_compatible && fn->gpl_only) {
5722 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5723 		return -EINVAL;
5724 	}
5725 
5726 	if (fn->allowed && !fn->allowed(env->prog)) {
5727 		verbose(env, "helper call is not allowed in probe\n");
5728 		return -EINVAL;
5729 	}
5730 
5731 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
5732 	changes_data = bpf_helper_changes_pkt_data(fn->func);
5733 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5734 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5735 			func_id_name(func_id), func_id);
5736 		return -EINVAL;
5737 	}
5738 
5739 	memset(&meta, 0, sizeof(meta));
5740 	meta.pkt_access = fn->pkt_access;
5741 
5742 	err = check_func_proto(fn, func_id);
5743 	if (err) {
5744 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
5745 			func_id_name(func_id), func_id);
5746 		return err;
5747 	}
5748 
5749 	meta.func_id = func_id;
5750 	/* check args */
5751 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
5752 		err = check_func_arg(env, i, &meta, fn);
5753 		if (err)
5754 			return err;
5755 	}
5756 
5757 	err = record_func_map(env, &meta, func_id, insn_idx);
5758 	if (err)
5759 		return err;
5760 
5761 	err = record_func_key(env, &meta, func_id, insn_idx);
5762 	if (err)
5763 		return err;
5764 
5765 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
5766 	 * is inferred from register state.
5767 	 */
5768 	for (i = 0; i < meta.access_size; i++) {
5769 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
5770 				       BPF_WRITE, -1, false);
5771 		if (err)
5772 			return err;
5773 	}
5774 
5775 	if (func_id == BPF_FUNC_tail_call) {
5776 		err = check_reference_leak(env);
5777 		if (err) {
5778 			verbose(env, "tail_call would lead to reference leak\n");
5779 			return err;
5780 		}
5781 	} else if (is_release_function(func_id)) {
5782 		err = release_reference(env, meta.ref_obj_id);
5783 		if (err) {
5784 			verbose(env, "func %s#%d reference has not been acquired before\n",
5785 				func_id_name(func_id), func_id);
5786 			return err;
5787 		}
5788 	}
5789 
5790 	regs = cur_regs(env);
5791 
5792 	/* check that flags argument in get_local_storage(map, flags) is 0,
5793 	 * this is required because get_local_storage() can't return an error.
5794 	 */
5795 	if (func_id == BPF_FUNC_get_local_storage &&
5796 	    !register_is_null(&regs[BPF_REG_2])) {
5797 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
5798 		return -EINVAL;
5799 	}
5800 
5801 	if (func_id == BPF_FUNC_for_each_map_elem) {
5802 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
5803 					set_map_elem_callback_state);
5804 		if (err < 0)
5805 			return -EINVAL;
5806 	}
5807 
5808 	/* reset caller saved regs */
5809 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5810 		mark_reg_not_init(env, regs, caller_saved[i]);
5811 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5812 	}
5813 
5814 	/* helper call returns 64-bit value. */
5815 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5816 
5817 	/* update return register (already marked as written above) */
5818 	if (fn->ret_type == RET_INTEGER) {
5819 		/* sets type to SCALAR_VALUE */
5820 		mark_reg_unknown(env, regs, BPF_REG_0);
5821 	} else if (fn->ret_type == RET_VOID) {
5822 		regs[BPF_REG_0].type = NOT_INIT;
5823 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
5824 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5825 		/* There is no offset yet applied, variable or fixed */
5826 		mark_reg_known_zero(env, regs, BPF_REG_0);
5827 		/* remember map_ptr, so that check_map_access()
5828 		 * can check 'value_size' boundary of memory access
5829 		 * to map element returned from bpf_map_lookup_elem()
5830 		 */
5831 		if (meta.map_ptr == NULL) {
5832 			verbose(env,
5833 				"kernel subsystem misconfigured verifier\n");
5834 			return -EINVAL;
5835 		}
5836 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
5837 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5838 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
5839 			if (map_value_has_spin_lock(meta.map_ptr))
5840 				regs[BPF_REG_0].id = ++env->id_gen;
5841 		} else {
5842 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
5843 		}
5844 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
5845 		mark_reg_known_zero(env, regs, BPF_REG_0);
5846 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
5847 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
5848 		mark_reg_known_zero(env, regs, BPF_REG_0);
5849 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
5850 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
5851 		mark_reg_known_zero(env, regs, BPF_REG_0);
5852 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
5853 	} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
5854 		mark_reg_known_zero(env, regs, BPF_REG_0);
5855 		regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
5856 		regs[BPF_REG_0].mem_size = meta.mem_size;
5857 	} else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
5858 		   fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
5859 		const struct btf_type *t;
5860 
5861 		mark_reg_known_zero(env, regs, BPF_REG_0);
5862 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
5863 		if (!btf_type_is_struct(t)) {
5864 			u32 tsize;
5865 			const struct btf_type *ret;
5866 			const char *tname;
5867 
5868 			/* resolve the type size of ksym. */
5869 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
5870 			if (IS_ERR(ret)) {
5871 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
5872 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
5873 					tname, PTR_ERR(ret));
5874 				return -EINVAL;
5875 			}
5876 			regs[BPF_REG_0].type =
5877 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5878 				PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
5879 			regs[BPF_REG_0].mem_size = tsize;
5880 		} else {
5881 			regs[BPF_REG_0].type =
5882 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5883 				PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
5884 			regs[BPF_REG_0].btf = meta.ret_btf;
5885 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
5886 		}
5887 	} else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
5888 		   fn->ret_type == RET_PTR_TO_BTF_ID) {
5889 		int ret_btf_id;
5890 
5891 		mark_reg_known_zero(env, regs, BPF_REG_0);
5892 		regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
5893 						     PTR_TO_BTF_ID :
5894 						     PTR_TO_BTF_ID_OR_NULL;
5895 		ret_btf_id = *fn->ret_btf_id;
5896 		if (ret_btf_id == 0) {
5897 			verbose(env, "invalid return type %d of func %s#%d\n",
5898 				fn->ret_type, func_id_name(func_id), func_id);
5899 			return -EINVAL;
5900 		}
5901 		/* current BPF helper definitions are only coming from
5902 		 * built-in code with type IDs from  vmlinux BTF
5903 		 */
5904 		regs[BPF_REG_0].btf = btf_vmlinux;
5905 		regs[BPF_REG_0].btf_id = ret_btf_id;
5906 	} else {
5907 		verbose(env, "unknown return type %d of func %s#%d\n",
5908 			fn->ret_type, func_id_name(func_id), func_id);
5909 		return -EINVAL;
5910 	}
5911 
5912 	if (reg_type_may_be_null(regs[BPF_REG_0].type))
5913 		regs[BPF_REG_0].id = ++env->id_gen;
5914 
5915 	if (is_ptr_cast_function(func_id)) {
5916 		/* For release_reference() */
5917 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
5918 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
5919 		int id = acquire_reference_state(env, insn_idx);
5920 
5921 		if (id < 0)
5922 			return id;
5923 		/* For mark_ptr_or_null_reg() */
5924 		regs[BPF_REG_0].id = id;
5925 		/* For release_reference() */
5926 		regs[BPF_REG_0].ref_obj_id = id;
5927 	}
5928 
5929 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
5930 
5931 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
5932 	if (err)
5933 		return err;
5934 
5935 	if ((func_id == BPF_FUNC_get_stack ||
5936 	     func_id == BPF_FUNC_get_task_stack) &&
5937 	    !env->prog->has_callchain_buf) {
5938 		const char *err_str;
5939 
5940 #ifdef CONFIG_PERF_EVENTS
5941 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
5942 		err_str = "cannot get callchain buffer for func %s#%d\n";
5943 #else
5944 		err = -ENOTSUPP;
5945 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5946 #endif
5947 		if (err) {
5948 			verbose(env, err_str, func_id_name(func_id), func_id);
5949 			return err;
5950 		}
5951 
5952 		env->prog->has_callchain_buf = true;
5953 	}
5954 
5955 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5956 		env->prog->call_get_stack = true;
5957 
5958 	if (changes_data)
5959 		clear_all_pkt_pointers(env);
5960 	return 0;
5961 }
5962 
5963 static bool signed_add_overflows(s64 a, s64 b)
5964 {
5965 	/* Do the add in u64, where overflow is well-defined */
5966 	s64 res = (s64)((u64)a + (u64)b);
5967 
5968 	if (b < 0)
5969 		return res > a;
5970 	return res < a;
5971 }
5972 
5973 static bool signed_add32_overflows(s32 a, s32 b)
5974 {
5975 	/* Do the add in u32, where overflow is well-defined */
5976 	s32 res = (s32)((u32)a + (u32)b);
5977 
5978 	if (b < 0)
5979 		return res > a;
5980 	return res < a;
5981 }
5982 
5983 static bool signed_sub_overflows(s64 a, s64 b)
5984 {
5985 	/* Do the sub in u64, where overflow is well-defined */
5986 	s64 res = (s64)((u64)a - (u64)b);
5987 
5988 	if (b < 0)
5989 		return res < a;
5990 	return res > a;
5991 }
5992 
5993 static bool signed_sub32_overflows(s32 a, s32 b)
5994 {
5995 	/* Do the sub in u32, where overflow is well-defined */
5996 	s32 res = (s32)((u32)a - (u32)b);
5997 
5998 	if (b < 0)
5999 		return res < a;
6000 	return res > a;
6001 }
6002 
6003 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
6004 				  const struct bpf_reg_state *reg,
6005 				  enum bpf_reg_type type)
6006 {
6007 	bool known = tnum_is_const(reg->var_off);
6008 	s64 val = reg->var_off.value;
6009 	s64 smin = reg->smin_value;
6010 
6011 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
6012 		verbose(env, "math between %s pointer and %lld is not allowed\n",
6013 			reg_type_str[type], val);
6014 		return false;
6015 	}
6016 
6017 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
6018 		verbose(env, "%s pointer offset %d is not allowed\n",
6019 			reg_type_str[type], reg->off);
6020 		return false;
6021 	}
6022 
6023 	if (smin == S64_MIN) {
6024 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
6025 			reg_type_str[type]);
6026 		return false;
6027 	}
6028 
6029 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6030 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
6031 			smin, reg_type_str[type]);
6032 		return false;
6033 	}
6034 
6035 	return true;
6036 }
6037 
6038 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6039 {
6040 	return &env->insn_aux_data[env->insn_idx];
6041 }
6042 
6043 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
6044 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
6045 {
6046 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
6047 			    (opcode == BPF_SUB && !off_is_neg);
6048 	u32 off;
6049 
6050 	switch (ptr_reg->type) {
6051 	case PTR_TO_STACK:
6052 		/* Indirect variable offset stack access is prohibited in
6053 		 * unprivileged mode so it's not handled here.
6054 		 */
6055 		off = ptr_reg->off + ptr_reg->var_off.value;
6056 		if (mask_to_left)
6057 			*ptr_limit = MAX_BPF_STACK + off;
6058 		else
6059 			*ptr_limit = -off;
6060 		return 0;
6061 	case PTR_TO_MAP_KEY:
6062 		/* Currently, this code is not exercised as the only use
6063 		 * is bpf_for_each_map_elem() helper which requires
6064 		 * bpf_capble. The code has been tested manually for
6065 		 * future use.
6066 		 */
6067 		if (mask_to_left) {
6068 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
6069 		} else {
6070 			off = ptr_reg->smin_value + ptr_reg->off;
6071 			*ptr_limit = ptr_reg->map_ptr->key_size - off;
6072 		}
6073 		return 0;
6074 	case PTR_TO_MAP_VALUE:
6075 		if (mask_to_left) {
6076 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
6077 		} else {
6078 			off = ptr_reg->smin_value + ptr_reg->off;
6079 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
6080 		}
6081 		return 0;
6082 	default:
6083 		return -EINVAL;
6084 	}
6085 }
6086 
6087 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
6088 				    const struct bpf_insn *insn)
6089 {
6090 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
6091 }
6092 
6093 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
6094 				       u32 alu_state, u32 alu_limit)
6095 {
6096 	/* If we arrived here from different branches with different
6097 	 * state or limits to sanitize, then this won't work.
6098 	 */
6099 	if (aux->alu_state &&
6100 	    (aux->alu_state != alu_state ||
6101 	     aux->alu_limit != alu_limit))
6102 		return -EACCES;
6103 
6104 	/* Corresponding fixup done in do_misc_fixups(). */
6105 	aux->alu_state = alu_state;
6106 	aux->alu_limit = alu_limit;
6107 	return 0;
6108 }
6109 
6110 static int sanitize_val_alu(struct bpf_verifier_env *env,
6111 			    struct bpf_insn *insn)
6112 {
6113 	struct bpf_insn_aux_data *aux = cur_aux(env);
6114 
6115 	if (can_skip_alu_sanitation(env, insn))
6116 		return 0;
6117 
6118 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
6119 }
6120 
6121 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
6122 			    struct bpf_insn *insn,
6123 			    const struct bpf_reg_state *ptr_reg,
6124 			    struct bpf_reg_state *dst_reg,
6125 			    bool off_is_neg)
6126 {
6127 	struct bpf_verifier_state *vstate = env->cur_state;
6128 	struct bpf_insn_aux_data *aux = cur_aux(env);
6129 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
6130 	u8 opcode = BPF_OP(insn->code);
6131 	u32 alu_state, alu_limit;
6132 	struct bpf_reg_state tmp;
6133 	bool ret;
6134 
6135 	if (can_skip_alu_sanitation(env, insn))
6136 		return 0;
6137 
6138 	/* We already marked aux for masking from non-speculative
6139 	 * paths, thus we got here in the first place. We only care
6140 	 * to explore bad access from here.
6141 	 */
6142 	if (vstate->speculative)
6143 		goto do_sim;
6144 
6145 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
6146 	alu_state |= ptr_is_dst_reg ?
6147 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
6148 
6149 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
6150 		return 0;
6151 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
6152 		return -EACCES;
6153 do_sim:
6154 	/* Simulate and find potential out-of-bounds access under
6155 	 * speculative execution from truncation as a result of
6156 	 * masking when off was not within expected range. If off
6157 	 * sits in dst, then we temporarily need to move ptr there
6158 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
6159 	 * for cases where we use K-based arithmetic in one direction
6160 	 * and truncated reg-based in the other in order to explore
6161 	 * bad access.
6162 	 */
6163 	if (!ptr_is_dst_reg) {
6164 		tmp = *dst_reg;
6165 		*dst_reg = *ptr_reg;
6166 	}
6167 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
6168 	if (!ptr_is_dst_reg && ret)
6169 		*dst_reg = tmp;
6170 	return !ret ? -EFAULT : 0;
6171 }
6172 
6173 /* check that stack access falls within stack limits and that 'reg' doesn't
6174  * have a variable offset.
6175  *
6176  * Variable offset is prohibited for unprivileged mode for simplicity since it
6177  * requires corresponding support in Spectre masking for stack ALU.  See also
6178  * retrieve_ptr_limit().
6179  *
6180  *
6181  * 'off' includes 'reg->off'.
6182  */
6183 static int check_stack_access_for_ptr_arithmetic(
6184 				struct bpf_verifier_env *env,
6185 				int regno,
6186 				const struct bpf_reg_state *reg,
6187 				int off)
6188 {
6189 	if (!tnum_is_const(reg->var_off)) {
6190 		char tn_buf[48];
6191 
6192 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6193 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
6194 			regno, tn_buf, off);
6195 		return -EACCES;
6196 	}
6197 
6198 	if (off >= 0 || off < -MAX_BPF_STACK) {
6199 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
6200 			"prohibited for !root; off=%d\n", regno, off);
6201 		return -EACCES;
6202 	}
6203 
6204 	return 0;
6205 }
6206 
6207 
6208 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
6209  * Caller should also handle BPF_MOV case separately.
6210  * If we return -EACCES, caller may want to try again treating pointer as a
6211  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
6212  */
6213 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
6214 				   struct bpf_insn *insn,
6215 				   const struct bpf_reg_state *ptr_reg,
6216 				   const struct bpf_reg_state *off_reg)
6217 {
6218 	struct bpf_verifier_state *vstate = env->cur_state;
6219 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6220 	struct bpf_reg_state *regs = state->regs, *dst_reg;
6221 	bool known = tnum_is_const(off_reg->var_off);
6222 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
6223 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
6224 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
6225 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
6226 	u32 dst = insn->dst_reg, src = insn->src_reg;
6227 	u8 opcode = BPF_OP(insn->code);
6228 	int ret;
6229 
6230 	dst_reg = &regs[dst];
6231 
6232 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
6233 	    smin_val > smax_val || umin_val > umax_val) {
6234 		/* Taint dst register if offset had invalid bounds derived from
6235 		 * e.g. dead branches.
6236 		 */
6237 		__mark_reg_unknown(env, dst_reg);
6238 		return 0;
6239 	}
6240 
6241 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
6242 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
6243 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6244 			__mark_reg_unknown(env, dst_reg);
6245 			return 0;
6246 		}
6247 
6248 		verbose(env,
6249 			"R%d 32-bit pointer arithmetic prohibited\n",
6250 			dst);
6251 		return -EACCES;
6252 	}
6253 
6254 	switch (ptr_reg->type) {
6255 	case PTR_TO_MAP_VALUE_OR_NULL:
6256 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
6257 			dst, reg_type_str[ptr_reg->type]);
6258 		return -EACCES;
6259 	case CONST_PTR_TO_MAP:
6260 		/* smin_val represents the known value */
6261 		if (known && smin_val == 0 && opcode == BPF_ADD)
6262 			break;
6263 		fallthrough;
6264 	case PTR_TO_PACKET_END:
6265 	case PTR_TO_SOCKET:
6266 	case PTR_TO_SOCKET_OR_NULL:
6267 	case PTR_TO_SOCK_COMMON:
6268 	case PTR_TO_SOCK_COMMON_OR_NULL:
6269 	case PTR_TO_TCP_SOCK:
6270 	case PTR_TO_TCP_SOCK_OR_NULL:
6271 	case PTR_TO_XDP_SOCK:
6272 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
6273 			dst, reg_type_str[ptr_reg->type]);
6274 		return -EACCES;
6275 	case PTR_TO_MAP_KEY:
6276 	case PTR_TO_MAP_VALUE:
6277 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
6278 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
6279 				off_reg == dst_reg ? dst : src);
6280 			return -EACCES;
6281 		}
6282 		fallthrough;
6283 	default:
6284 		break;
6285 	}
6286 
6287 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
6288 	 * The id may be overwritten later if we create a new variable offset.
6289 	 */
6290 	dst_reg->type = ptr_reg->type;
6291 	dst_reg->id = ptr_reg->id;
6292 
6293 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
6294 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
6295 		return -EINVAL;
6296 
6297 	/* pointer types do not carry 32-bit bounds at the moment. */
6298 	__mark_reg32_unbounded(dst_reg);
6299 
6300 	switch (opcode) {
6301 	case BPF_ADD:
6302 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
6303 		if (ret < 0) {
6304 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
6305 			return ret;
6306 		}
6307 		/* We can take a fixed offset as long as it doesn't overflow
6308 		 * the s32 'off' field
6309 		 */
6310 		if (known && (ptr_reg->off + smin_val ==
6311 			      (s64)(s32)(ptr_reg->off + smin_val))) {
6312 			/* pointer += K.  Accumulate it into fixed offset */
6313 			dst_reg->smin_value = smin_ptr;
6314 			dst_reg->smax_value = smax_ptr;
6315 			dst_reg->umin_value = umin_ptr;
6316 			dst_reg->umax_value = umax_ptr;
6317 			dst_reg->var_off = ptr_reg->var_off;
6318 			dst_reg->off = ptr_reg->off + smin_val;
6319 			dst_reg->raw = ptr_reg->raw;
6320 			break;
6321 		}
6322 		/* A new variable offset is created.  Note that off_reg->off
6323 		 * == 0, since it's a scalar.
6324 		 * dst_reg gets the pointer type and since some positive
6325 		 * integer value was added to the pointer, give it a new 'id'
6326 		 * if it's a PTR_TO_PACKET.
6327 		 * this creates a new 'base' pointer, off_reg (variable) gets
6328 		 * added into the variable offset, and we copy the fixed offset
6329 		 * from ptr_reg.
6330 		 */
6331 		if (signed_add_overflows(smin_ptr, smin_val) ||
6332 		    signed_add_overflows(smax_ptr, smax_val)) {
6333 			dst_reg->smin_value = S64_MIN;
6334 			dst_reg->smax_value = S64_MAX;
6335 		} else {
6336 			dst_reg->smin_value = smin_ptr + smin_val;
6337 			dst_reg->smax_value = smax_ptr + smax_val;
6338 		}
6339 		if (umin_ptr + umin_val < umin_ptr ||
6340 		    umax_ptr + umax_val < umax_ptr) {
6341 			dst_reg->umin_value = 0;
6342 			dst_reg->umax_value = U64_MAX;
6343 		} else {
6344 			dst_reg->umin_value = umin_ptr + umin_val;
6345 			dst_reg->umax_value = umax_ptr + umax_val;
6346 		}
6347 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
6348 		dst_reg->off = ptr_reg->off;
6349 		dst_reg->raw = ptr_reg->raw;
6350 		if (reg_is_pkt_pointer(ptr_reg)) {
6351 			dst_reg->id = ++env->id_gen;
6352 			/* something was added to pkt_ptr, set range to zero */
6353 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6354 		}
6355 		break;
6356 	case BPF_SUB:
6357 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
6358 		if (ret < 0) {
6359 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
6360 			return ret;
6361 		}
6362 		if (dst_reg == off_reg) {
6363 			/* scalar -= pointer.  Creates an unknown scalar */
6364 			verbose(env, "R%d tried to subtract pointer from scalar\n",
6365 				dst);
6366 			return -EACCES;
6367 		}
6368 		/* We don't allow subtraction from FP, because (according to
6369 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
6370 		 * be able to deal with it.
6371 		 */
6372 		if (ptr_reg->type == PTR_TO_STACK) {
6373 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
6374 				dst);
6375 			return -EACCES;
6376 		}
6377 		if (known && (ptr_reg->off - smin_val ==
6378 			      (s64)(s32)(ptr_reg->off - smin_val))) {
6379 			/* pointer -= K.  Subtract it from fixed offset */
6380 			dst_reg->smin_value = smin_ptr;
6381 			dst_reg->smax_value = smax_ptr;
6382 			dst_reg->umin_value = umin_ptr;
6383 			dst_reg->umax_value = umax_ptr;
6384 			dst_reg->var_off = ptr_reg->var_off;
6385 			dst_reg->id = ptr_reg->id;
6386 			dst_reg->off = ptr_reg->off - smin_val;
6387 			dst_reg->raw = ptr_reg->raw;
6388 			break;
6389 		}
6390 		/* A new variable offset is created.  If the subtrahend is known
6391 		 * nonnegative, then any reg->range we had before is still good.
6392 		 */
6393 		if (signed_sub_overflows(smin_ptr, smax_val) ||
6394 		    signed_sub_overflows(smax_ptr, smin_val)) {
6395 			/* Overflow possible, we know nothing */
6396 			dst_reg->smin_value = S64_MIN;
6397 			dst_reg->smax_value = S64_MAX;
6398 		} else {
6399 			dst_reg->smin_value = smin_ptr - smax_val;
6400 			dst_reg->smax_value = smax_ptr - smin_val;
6401 		}
6402 		if (umin_ptr < umax_val) {
6403 			/* Overflow possible, we know nothing */
6404 			dst_reg->umin_value = 0;
6405 			dst_reg->umax_value = U64_MAX;
6406 		} else {
6407 			/* Cannot overflow (as long as bounds are consistent) */
6408 			dst_reg->umin_value = umin_ptr - umax_val;
6409 			dst_reg->umax_value = umax_ptr - umin_val;
6410 		}
6411 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
6412 		dst_reg->off = ptr_reg->off;
6413 		dst_reg->raw = ptr_reg->raw;
6414 		if (reg_is_pkt_pointer(ptr_reg)) {
6415 			dst_reg->id = ++env->id_gen;
6416 			/* something was added to pkt_ptr, set range to zero */
6417 			if (smin_val < 0)
6418 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6419 		}
6420 		break;
6421 	case BPF_AND:
6422 	case BPF_OR:
6423 	case BPF_XOR:
6424 		/* bitwise ops on pointers are troublesome, prohibit. */
6425 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
6426 			dst, bpf_alu_string[opcode >> 4]);
6427 		return -EACCES;
6428 	default:
6429 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
6430 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
6431 			dst, bpf_alu_string[opcode >> 4]);
6432 		return -EACCES;
6433 	}
6434 
6435 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
6436 		return -EINVAL;
6437 
6438 	__update_reg_bounds(dst_reg);
6439 	__reg_deduce_bounds(dst_reg);
6440 	__reg_bound_offset(dst_reg);
6441 
6442 	/* For unprivileged we require that resulting offset must be in bounds
6443 	 * in order to be able to sanitize access later on.
6444 	 */
6445 	if (!env->bypass_spec_v1) {
6446 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
6447 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
6448 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
6449 				"prohibited for !root\n", dst);
6450 			return -EACCES;
6451 		} else if (dst_reg->type == PTR_TO_STACK &&
6452 			   check_stack_access_for_ptr_arithmetic(
6453 				   env, dst, dst_reg, dst_reg->off +
6454 				   dst_reg->var_off.value)) {
6455 			return -EACCES;
6456 		}
6457 	}
6458 
6459 	return 0;
6460 }
6461 
6462 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
6463 				 struct bpf_reg_state *src_reg)
6464 {
6465 	s32 smin_val = src_reg->s32_min_value;
6466 	s32 smax_val = src_reg->s32_max_value;
6467 	u32 umin_val = src_reg->u32_min_value;
6468 	u32 umax_val = src_reg->u32_max_value;
6469 
6470 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
6471 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
6472 		dst_reg->s32_min_value = S32_MIN;
6473 		dst_reg->s32_max_value = S32_MAX;
6474 	} else {
6475 		dst_reg->s32_min_value += smin_val;
6476 		dst_reg->s32_max_value += smax_val;
6477 	}
6478 	if (dst_reg->u32_min_value + umin_val < umin_val ||
6479 	    dst_reg->u32_max_value + umax_val < umax_val) {
6480 		dst_reg->u32_min_value = 0;
6481 		dst_reg->u32_max_value = U32_MAX;
6482 	} else {
6483 		dst_reg->u32_min_value += umin_val;
6484 		dst_reg->u32_max_value += umax_val;
6485 	}
6486 }
6487 
6488 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
6489 			       struct bpf_reg_state *src_reg)
6490 {
6491 	s64 smin_val = src_reg->smin_value;
6492 	s64 smax_val = src_reg->smax_value;
6493 	u64 umin_val = src_reg->umin_value;
6494 	u64 umax_val = src_reg->umax_value;
6495 
6496 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
6497 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
6498 		dst_reg->smin_value = S64_MIN;
6499 		dst_reg->smax_value = S64_MAX;
6500 	} else {
6501 		dst_reg->smin_value += smin_val;
6502 		dst_reg->smax_value += smax_val;
6503 	}
6504 	if (dst_reg->umin_value + umin_val < umin_val ||
6505 	    dst_reg->umax_value + umax_val < umax_val) {
6506 		dst_reg->umin_value = 0;
6507 		dst_reg->umax_value = U64_MAX;
6508 	} else {
6509 		dst_reg->umin_value += umin_val;
6510 		dst_reg->umax_value += umax_val;
6511 	}
6512 }
6513 
6514 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
6515 				 struct bpf_reg_state *src_reg)
6516 {
6517 	s32 smin_val = src_reg->s32_min_value;
6518 	s32 smax_val = src_reg->s32_max_value;
6519 	u32 umin_val = src_reg->u32_min_value;
6520 	u32 umax_val = src_reg->u32_max_value;
6521 
6522 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
6523 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
6524 		/* Overflow possible, we know nothing */
6525 		dst_reg->s32_min_value = S32_MIN;
6526 		dst_reg->s32_max_value = S32_MAX;
6527 	} else {
6528 		dst_reg->s32_min_value -= smax_val;
6529 		dst_reg->s32_max_value -= smin_val;
6530 	}
6531 	if (dst_reg->u32_min_value < umax_val) {
6532 		/* Overflow possible, we know nothing */
6533 		dst_reg->u32_min_value = 0;
6534 		dst_reg->u32_max_value = U32_MAX;
6535 	} else {
6536 		/* Cannot overflow (as long as bounds are consistent) */
6537 		dst_reg->u32_min_value -= umax_val;
6538 		dst_reg->u32_max_value -= umin_val;
6539 	}
6540 }
6541 
6542 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
6543 			       struct bpf_reg_state *src_reg)
6544 {
6545 	s64 smin_val = src_reg->smin_value;
6546 	s64 smax_val = src_reg->smax_value;
6547 	u64 umin_val = src_reg->umin_value;
6548 	u64 umax_val = src_reg->umax_value;
6549 
6550 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
6551 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
6552 		/* Overflow possible, we know nothing */
6553 		dst_reg->smin_value = S64_MIN;
6554 		dst_reg->smax_value = S64_MAX;
6555 	} else {
6556 		dst_reg->smin_value -= smax_val;
6557 		dst_reg->smax_value -= smin_val;
6558 	}
6559 	if (dst_reg->umin_value < umax_val) {
6560 		/* Overflow possible, we know nothing */
6561 		dst_reg->umin_value = 0;
6562 		dst_reg->umax_value = U64_MAX;
6563 	} else {
6564 		/* Cannot overflow (as long as bounds are consistent) */
6565 		dst_reg->umin_value -= umax_val;
6566 		dst_reg->umax_value -= umin_val;
6567 	}
6568 }
6569 
6570 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
6571 				 struct bpf_reg_state *src_reg)
6572 {
6573 	s32 smin_val = src_reg->s32_min_value;
6574 	u32 umin_val = src_reg->u32_min_value;
6575 	u32 umax_val = src_reg->u32_max_value;
6576 
6577 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
6578 		/* Ain't nobody got time to multiply that sign */
6579 		__mark_reg32_unbounded(dst_reg);
6580 		return;
6581 	}
6582 	/* Both values are positive, so we can work with unsigned and
6583 	 * copy the result to signed (unless it exceeds S32_MAX).
6584 	 */
6585 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
6586 		/* Potential overflow, we know nothing */
6587 		__mark_reg32_unbounded(dst_reg);
6588 		return;
6589 	}
6590 	dst_reg->u32_min_value *= umin_val;
6591 	dst_reg->u32_max_value *= umax_val;
6592 	if (dst_reg->u32_max_value > S32_MAX) {
6593 		/* Overflow possible, we know nothing */
6594 		dst_reg->s32_min_value = S32_MIN;
6595 		dst_reg->s32_max_value = S32_MAX;
6596 	} else {
6597 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6598 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6599 	}
6600 }
6601 
6602 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
6603 			       struct bpf_reg_state *src_reg)
6604 {
6605 	s64 smin_val = src_reg->smin_value;
6606 	u64 umin_val = src_reg->umin_value;
6607 	u64 umax_val = src_reg->umax_value;
6608 
6609 	if (smin_val < 0 || dst_reg->smin_value < 0) {
6610 		/* Ain't nobody got time to multiply that sign */
6611 		__mark_reg64_unbounded(dst_reg);
6612 		return;
6613 	}
6614 	/* Both values are positive, so we can work with unsigned and
6615 	 * copy the result to signed (unless it exceeds S64_MAX).
6616 	 */
6617 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
6618 		/* Potential overflow, we know nothing */
6619 		__mark_reg64_unbounded(dst_reg);
6620 		return;
6621 	}
6622 	dst_reg->umin_value *= umin_val;
6623 	dst_reg->umax_value *= umax_val;
6624 	if (dst_reg->umax_value > S64_MAX) {
6625 		/* Overflow possible, we know nothing */
6626 		dst_reg->smin_value = S64_MIN;
6627 		dst_reg->smax_value = S64_MAX;
6628 	} else {
6629 		dst_reg->smin_value = dst_reg->umin_value;
6630 		dst_reg->smax_value = dst_reg->umax_value;
6631 	}
6632 }
6633 
6634 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
6635 				 struct bpf_reg_state *src_reg)
6636 {
6637 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
6638 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6639 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6640 	s32 smin_val = src_reg->s32_min_value;
6641 	u32 umax_val = src_reg->u32_max_value;
6642 
6643 	/* Assuming scalar64_min_max_and will be called so its safe
6644 	 * to skip updating register for known 32-bit case.
6645 	 */
6646 	if (src_known && dst_known)
6647 		return;
6648 
6649 	/* We get our minimum from the var_off, since that's inherently
6650 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
6651 	 */
6652 	dst_reg->u32_min_value = var32_off.value;
6653 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
6654 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6655 		/* Lose signed bounds when ANDing negative numbers,
6656 		 * ain't nobody got time for that.
6657 		 */
6658 		dst_reg->s32_min_value = S32_MIN;
6659 		dst_reg->s32_max_value = S32_MAX;
6660 	} else {
6661 		/* ANDing two positives gives a positive, so safe to
6662 		 * cast result into s64.
6663 		 */
6664 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6665 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6666 	}
6667 
6668 }
6669 
6670 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
6671 			       struct bpf_reg_state *src_reg)
6672 {
6673 	bool src_known = tnum_is_const(src_reg->var_off);
6674 	bool dst_known = tnum_is_const(dst_reg->var_off);
6675 	s64 smin_val = src_reg->smin_value;
6676 	u64 umax_val = src_reg->umax_value;
6677 
6678 	if (src_known && dst_known) {
6679 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6680 		return;
6681 	}
6682 
6683 	/* We get our minimum from the var_off, since that's inherently
6684 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
6685 	 */
6686 	dst_reg->umin_value = dst_reg->var_off.value;
6687 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
6688 	if (dst_reg->smin_value < 0 || smin_val < 0) {
6689 		/* Lose signed bounds when ANDing negative numbers,
6690 		 * ain't nobody got time for that.
6691 		 */
6692 		dst_reg->smin_value = S64_MIN;
6693 		dst_reg->smax_value = S64_MAX;
6694 	} else {
6695 		/* ANDing two positives gives a positive, so safe to
6696 		 * cast result into s64.
6697 		 */
6698 		dst_reg->smin_value = dst_reg->umin_value;
6699 		dst_reg->smax_value = dst_reg->umax_value;
6700 	}
6701 	/* We may learn something more from the var_off */
6702 	__update_reg_bounds(dst_reg);
6703 }
6704 
6705 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
6706 				struct bpf_reg_state *src_reg)
6707 {
6708 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
6709 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6710 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6711 	s32 smin_val = src_reg->s32_min_value;
6712 	u32 umin_val = src_reg->u32_min_value;
6713 
6714 	/* Assuming scalar64_min_max_or will be called so it is safe
6715 	 * to skip updating register for known case.
6716 	 */
6717 	if (src_known && dst_known)
6718 		return;
6719 
6720 	/* We get our maximum from the var_off, and our minimum is the
6721 	 * maximum of the operands' minima
6722 	 */
6723 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
6724 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6725 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6726 		/* Lose signed bounds when ORing negative numbers,
6727 		 * ain't nobody got time for that.
6728 		 */
6729 		dst_reg->s32_min_value = S32_MIN;
6730 		dst_reg->s32_max_value = S32_MAX;
6731 	} else {
6732 		/* ORing two positives gives a positive, so safe to
6733 		 * cast result into s64.
6734 		 */
6735 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6736 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6737 	}
6738 }
6739 
6740 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
6741 			      struct bpf_reg_state *src_reg)
6742 {
6743 	bool src_known = tnum_is_const(src_reg->var_off);
6744 	bool dst_known = tnum_is_const(dst_reg->var_off);
6745 	s64 smin_val = src_reg->smin_value;
6746 	u64 umin_val = src_reg->umin_value;
6747 
6748 	if (src_known && dst_known) {
6749 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6750 		return;
6751 	}
6752 
6753 	/* We get our maximum from the var_off, and our minimum is the
6754 	 * maximum of the operands' minima
6755 	 */
6756 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
6757 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6758 	if (dst_reg->smin_value < 0 || smin_val < 0) {
6759 		/* Lose signed bounds when ORing negative numbers,
6760 		 * ain't nobody got time for that.
6761 		 */
6762 		dst_reg->smin_value = S64_MIN;
6763 		dst_reg->smax_value = S64_MAX;
6764 	} else {
6765 		/* ORing two positives gives a positive, so safe to
6766 		 * cast result into s64.
6767 		 */
6768 		dst_reg->smin_value = dst_reg->umin_value;
6769 		dst_reg->smax_value = dst_reg->umax_value;
6770 	}
6771 	/* We may learn something more from the var_off */
6772 	__update_reg_bounds(dst_reg);
6773 }
6774 
6775 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
6776 				 struct bpf_reg_state *src_reg)
6777 {
6778 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
6779 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6780 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6781 	s32 smin_val = src_reg->s32_min_value;
6782 
6783 	/* Assuming scalar64_min_max_xor will be called so it is safe
6784 	 * to skip updating register for known case.
6785 	 */
6786 	if (src_known && dst_known)
6787 		return;
6788 
6789 	/* We get both minimum and maximum from the var32_off. */
6790 	dst_reg->u32_min_value = var32_off.value;
6791 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6792 
6793 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
6794 		/* XORing two positive sign numbers gives a positive,
6795 		 * so safe to cast u32 result into s32.
6796 		 */
6797 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6798 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6799 	} else {
6800 		dst_reg->s32_min_value = S32_MIN;
6801 		dst_reg->s32_max_value = S32_MAX;
6802 	}
6803 }
6804 
6805 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
6806 			       struct bpf_reg_state *src_reg)
6807 {
6808 	bool src_known = tnum_is_const(src_reg->var_off);
6809 	bool dst_known = tnum_is_const(dst_reg->var_off);
6810 	s64 smin_val = src_reg->smin_value;
6811 
6812 	if (src_known && dst_known) {
6813 		/* dst_reg->var_off.value has been updated earlier */
6814 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6815 		return;
6816 	}
6817 
6818 	/* We get both minimum and maximum from the var_off. */
6819 	dst_reg->umin_value = dst_reg->var_off.value;
6820 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6821 
6822 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
6823 		/* XORing two positive sign numbers gives a positive,
6824 		 * so safe to cast u64 result into s64.
6825 		 */
6826 		dst_reg->smin_value = dst_reg->umin_value;
6827 		dst_reg->smax_value = dst_reg->umax_value;
6828 	} else {
6829 		dst_reg->smin_value = S64_MIN;
6830 		dst_reg->smax_value = S64_MAX;
6831 	}
6832 
6833 	__update_reg_bounds(dst_reg);
6834 }
6835 
6836 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6837 				   u64 umin_val, u64 umax_val)
6838 {
6839 	/* We lose all sign bit information (except what we can pick
6840 	 * up from var_off)
6841 	 */
6842 	dst_reg->s32_min_value = S32_MIN;
6843 	dst_reg->s32_max_value = S32_MAX;
6844 	/* If we might shift our top bit out, then we know nothing */
6845 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
6846 		dst_reg->u32_min_value = 0;
6847 		dst_reg->u32_max_value = U32_MAX;
6848 	} else {
6849 		dst_reg->u32_min_value <<= umin_val;
6850 		dst_reg->u32_max_value <<= umax_val;
6851 	}
6852 }
6853 
6854 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6855 				 struct bpf_reg_state *src_reg)
6856 {
6857 	u32 umax_val = src_reg->u32_max_value;
6858 	u32 umin_val = src_reg->u32_min_value;
6859 	/* u32 alu operation will zext upper bits */
6860 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
6861 
6862 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6863 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
6864 	/* Not required but being careful mark reg64 bounds as unknown so
6865 	 * that we are forced to pick them up from tnum and zext later and
6866 	 * if some path skips this step we are still safe.
6867 	 */
6868 	__mark_reg64_unbounded(dst_reg);
6869 	__update_reg32_bounds(dst_reg);
6870 }
6871 
6872 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
6873 				   u64 umin_val, u64 umax_val)
6874 {
6875 	/* Special case <<32 because it is a common compiler pattern to sign
6876 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
6877 	 * positive we know this shift will also be positive so we can track
6878 	 * bounds correctly. Otherwise we lose all sign bit information except
6879 	 * what we can pick up from var_off. Perhaps we can generalize this
6880 	 * later to shifts of any length.
6881 	 */
6882 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
6883 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
6884 	else
6885 		dst_reg->smax_value = S64_MAX;
6886 
6887 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
6888 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
6889 	else
6890 		dst_reg->smin_value = S64_MIN;
6891 
6892 	/* If we might shift our top bit out, then we know nothing */
6893 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
6894 		dst_reg->umin_value = 0;
6895 		dst_reg->umax_value = U64_MAX;
6896 	} else {
6897 		dst_reg->umin_value <<= umin_val;
6898 		dst_reg->umax_value <<= umax_val;
6899 	}
6900 }
6901 
6902 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
6903 			       struct bpf_reg_state *src_reg)
6904 {
6905 	u64 umax_val = src_reg->umax_value;
6906 	u64 umin_val = src_reg->umin_value;
6907 
6908 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
6909 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
6910 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6911 
6912 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
6913 	/* We may learn something more from the var_off */
6914 	__update_reg_bounds(dst_reg);
6915 }
6916 
6917 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
6918 				 struct bpf_reg_state *src_reg)
6919 {
6920 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
6921 	u32 umax_val = src_reg->u32_max_value;
6922 	u32 umin_val = src_reg->u32_min_value;
6923 
6924 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
6925 	 * be negative, then either:
6926 	 * 1) src_reg might be zero, so the sign bit of the result is
6927 	 *    unknown, so we lose our signed bounds
6928 	 * 2) it's known negative, thus the unsigned bounds capture the
6929 	 *    signed bounds
6930 	 * 3) the signed bounds cross zero, so they tell us nothing
6931 	 *    about the result
6932 	 * If the value in dst_reg is known nonnegative, then again the
6933 	 * unsigned bounds capture the signed bounds.
6934 	 * Thus, in all cases it suffices to blow away our signed bounds
6935 	 * and rely on inferring new ones from the unsigned bounds and
6936 	 * var_off of the result.
6937 	 */
6938 	dst_reg->s32_min_value = S32_MIN;
6939 	dst_reg->s32_max_value = S32_MAX;
6940 
6941 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
6942 	dst_reg->u32_min_value >>= umax_val;
6943 	dst_reg->u32_max_value >>= umin_val;
6944 
6945 	__mark_reg64_unbounded(dst_reg);
6946 	__update_reg32_bounds(dst_reg);
6947 }
6948 
6949 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6950 			       struct bpf_reg_state *src_reg)
6951 {
6952 	u64 umax_val = src_reg->umax_value;
6953 	u64 umin_val = src_reg->umin_value;
6954 
6955 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
6956 	 * be negative, then either:
6957 	 * 1) src_reg might be zero, so the sign bit of the result is
6958 	 *    unknown, so we lose our signed bounds
6959 	 * 2) it's known negative, thus the unsigned bounds capture the
6960 	 *    signed bounds
6961 	 * 3) the signed bounds cross zero, so they tell us nothing
6962 	 *    about the result
6963 	 * If the value in dst_reg is known nonnegative, then again the
6964 	 * unsigned bounds capture the signed bounds.
6965 	 * Thus, in all cases it suffices to blow away our signed bounds
6966 	 * and rely on inferring new ones from the unsigned bounds and
6967 	 * var_off of the result.
6968 	 */
6969 	dst_reg->smin_value = S64_MIN;
6970 	dst_reg->smax_value = S64_MAX;
6971 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
6972 	dst_reg->umin_value >>= umax_val;
6973 	dst_reg->umax_value >>= umin_val;
6974 
6975 	/* Its not easy to operate on alu32 bounds here because it depends
6976 	 * on bits being shifted in. Take easy way out and mark unbounded
6977 	 * so we can recalculate later from tnum.
6978 	 */
6979 	__mark_reg32_unbounded(dst_reg);
6980 	__update_reg_bounds(dst_reg);
6981 }
6982 
6983 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
6984 				  struct bpf_reg_state *src_reg)
6985 {
6986 	u64 umin_val = src_reg->u32_min_value;
6987 
6988 	/* Upon reaching here, src_known is true and
6989 	 * umax_val is equal to umin_val.
6990 	 */
6991 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
6992 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
6993 
6994 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
6995 
6996 	/* blow away the dst_reg umin_value/umax_value and rely on
6997 	 * dst_reg var_off to refine the result.
6998 	 */
6999 	dst_reg->u32_min_value = 0;
7000 	dst_reg->u32_max_value = U32_MAX;
7001 
7002 	__mark_reg64_unbounded(dst_reg);
7003 	__update_reg32_bounds(dst_reg);
7004 }
7005 
7006 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
7007 				struct bpf_reg_state *src_reg)
7008 {
7009 	u64 umin_val = src_reg->umin_value;
7010 
7011 	/* Upon reaching here, src_known is true and umax_val is equal
7012 	 * to umin_val.
7013 	 */
7014 	dst_reg->smin_value >>= umin_val;
7015 	dst_reg->smax_value >>= umin_val;
7016 
7017 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
7018 
7019 	/* blow away the dst_reg umin_value/umax_value and rely on
7020 	 * dst_reg var_off to refine the result.
7021 	 */
7022 	dst_reg->umin_value = 0;
7023 	dst_reg->umax_value = U64_MAX;
7024 
7025 	/* Its not easy to operate on alu32 bounds here because it depends
7026 	 * on bits being shifted in from upper 32-bits. Take easy way out
7027 	 * and mark unbounded so we can recalculate later from tnum.
7028 	 */
7029 	__mark_reg32_unbounded(dst_reg);
7030 	__update_reg_bounds(dst_reg);
7031 }
7032 
7033 /* WARNING: This function does calculations on 64-bit values, but the actual
7034  * execution may occur on 32-bit values. Therefore, things like bitshifts
7035  * need extra checks in the 32-bit case.
7036  */
7037 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
7038 				      struct bpf_insn *insn,
7039 				      struct bpf_reg_state *dst_reg,
7040 				      struct bpf_reg_state src_reg)
7041 {
7042 	struct bpf_reg_state *regs = cur_regs(env);
7043 	u8 opcode = BPF_OP(insn->code);
7044 	bool src_known;
7045 	s64 smin_val, smax_val;
7046 	u64 umin_val, umax_val;
7047 	s32 s32_min_val, s32_max_val;
7048 	u32 u32_min_val, u32_max_val;
7049 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
7050 	u32 dst = insn->dst_reg;
7051 	int ret;
7052 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
7053 
7054 	smin_val = src_reg.smin_value;
7055 	smax_val = src_reg.smax_value;
7056 	umin_val = src_reg.umin_value;
7057 	umax_val = src_reg.umax_value;
7058 
7059 	s32_min_val = src_reg.s32_min_value;
7060 	s32_max_val = src_reg.s32_max_value;
7061 	u32_min_val = src_reg.u32_min_value;
7062 	u32_max_val = src_reg.u32_max_value;
7063 
7064 	if (alu32) {
7065 		src_known = tnum_subreg_is_const(src_reg.var_off);
7066 		if ((src_known &&
7067 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
7068 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
7069 			/* Taint dst register if offset had invalid bounds
7070 			 * derived from e.g. dead branches.
7071 			 */
7072 			__mark_reg_unknown(env, dst_reg);
7073 			return 0;
7074 		}
7075 	} else {
7076 		src_known = tnum_is_const(src_reg.var_off);
7077 		if ((src_known &&
7078 		     (smin_val != smax_val || umin_val != umax_val)) ||
7079 		    smin_val > smax_val || umin_val > umax_val) {
7080 			/* Taint dst register if offset had invalid bounds
7081 			 * derived from e.g. dead branches.
7082 			 */
7083 			__mark_reg_unknown(env, dst_reg);
7084 			return 0;
7085 		}
7086 	}
7087 
7088 	if (!src_known &&
7089 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
7090 		__mark_reg_unknown(env, dst_reg);
7091 		return 0;
7092 	}
7093 
7094 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
7095 	 * There are two classes of instructions: The first class we track both
7096 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
7097 	 * greatest amount of precision when alu operations are mixed with jmp32
7098 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
7099 	 * and BPF_OR. This is possible because these ops have fairly easy to
7100 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
7101 	 * See alu32 verifier tests for examples. The second class of
7102 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
7103 	 * with regards to tracking sign/unsigned bounds because the bits may
7104 	 * cross subreg boundaries in the alu64 case. When this happens we mark
7105 	 * the reg unbounded in the subreg bound space and use the resulting
7106 	 * tnum to calculate an approximation of the sign/unsigned bounds.
7107 	 */
7108 	switch (opcode) {
7109 	case BPF_ADD:
7110 		ret = sanitize_val_alu(env, insn);
7111 		if (ret < 0) {
7112 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
7113 			return ret;
7114 		}
7115 		scalar32_min_max_add(dst_reg, &src_reg);
7116 		scalar_min_max_add(dst_reg, &src_reg);
7117 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
7118 		break;
7119 	case BPF_SUB:
7120 		ret = sanitize_val_alu(env, insn);
7121 		if (ret < 0) {
7122 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
7123 			return ret;
7124 		}
7125 		scalar32_min_max_sub(dst_reg, &src_reg);
7126 		scalar_min_max_sub(dst_reg, &src_reg);
7127 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
7128 		break;
7129 	case BPF_MUL:
7130 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
7131 		scalar32_min_max_mul(dst_reg, &src_reg);
7132 		scalar_min_max_mul(dst_reg, &src_reg);
7133 		break;
7134 	case BPF_AND:
7135 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
7136 		scalar32_min_max_and(dst_reg, &src_reg);
7137 		scalar_min_max_and(dst_reg, &src_reg);
7138 		break;
7139 	case BPF_OR:
7140 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
7141 		scalar32_min_max_or(dst_reg, &src_reg);
7142 		scalar_min_max_or(dst_reg, &src_reg);
7143 		break;
7144 	case BPF_XOR:
7145 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
7146 		scalar32_min_max_xor(dst_reg, &src_reg);
7147 		scalar_min_max_xor(dst_reg, &src_reg);
7148 		break;
7149 	case BPF_LSH:
7150 		if (umax_val >= insn_bitness) {
7151 			/* Shifts greater than 31 or 63 are undefined.
7152 			 * This includes shifts by a negative number.
7153 			 */
7154 			mark_reg_unknown(env, regs, insn->dst_reg);
7155 			break;
7156 		}
7157 		if (alu32)
7158 			scalar32_min_max_lsh(dst_reg, &src_reg);
7159 		else
7160 			scalar_min_max_lsh(dst_reg, &src_reg);
7161 		break;
7162 	case BPF_RSH:
7163 		if (umax_val >= insn_bitness) {
7164 			/* Shifts greater than 31 or 63 are undefined.
7165 			 * This includes shifts by a negative number.
7166 			 */
7167 			mark_reg_unknown(env, regs, insn->dst_reg);
7168 			break;
7169 		}
7170 		if (alu32)
7171 			scalar32_min_max_rsh(dst_reg, &src_reg);
7172 		else
7173 			scalar_min_max_rsh(dst_reg, &src_reg);
7174 		break;
7175 	case BPF_ARSH:
7176 		if (umax_val >= insn_bitness) {
7177 			/* Shifts greater than 31 or 63 are undefined.
7178 			 * This includes shifts by a negative number.
7179 			 */
7180 			mark_reg_unknown(env, regs, insn->dst_reg);
7181 			break;
7182 		}
7183 		if (alu32)
7184 			scalar32_min_max_arsh(dst_reg, &src_reg);
7185 		else
7186 			scalar_min_max_arsh(dst_reg, &src_reg);
7187 		break;
7188 	default:
7189 		mark_reg_unknown(env, regs, insn->dst_reg);
7190 		break;
7191 	}
7192 
7193 	/* ALU32 ops are zero extended into 64bit register */
7194 	if (alu32)
7195 		zext_32_to_64(dst_reg);
7196 
7197 	__update_reg_bounds(dst_reg);
7198 	__reg_deduce_bounds(dst_reg);
7199 	__reg_bound_offset(dst_reg);
7200 	return 0;
7201 }
7202 
7203 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
7204  * and var_off.
7205  */
7206 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
7207 				   struct bpf_insn *insn)
7208 {
7209 	struct bpf_verifier_state *vstate = env->cur_state;
7210 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7211 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
7212 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
7213 	u8 opcode = BPF_OP(insn->code);
7214 	int err;
7215 
7216 	dst_reg = &regs[insn->dst_reg];
7217 	src_reg = NULL;
7218 	if (dst_reg->type != SCALAR_VALUE)
7219 		ptr_reg = dst_reg;
7220 	else
7221 		/* Make sure ID is cleared otherwise dst_reg min/max could be
7222 		 * incorrectly propagated into other registers by find_equal_scalars()
7223 		 */
7224 		dst_reg->id = 0;
7225 	if (BPF_SRC(insn->code) == BPF_X) {
7226 		src_reg = &regs[insn->src_reg];
7227 		if (src_reg->type != SCALAR_VALUE) {
7228 			if (dst_reg->type != SCALAR_VALUE) {
7229 				/* Combining two pointers by any ALU op yields
7230 				 * an arbitrary scalar. Disallow all math except
7231 				 * pointer subtraction
7232 				 */
7233 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7234 					mark_reg_unknown(env, regs, insn->dst_reg);
7235 					return 0;
7236 				}
7237 				verbose(env, "R%d pointer %s pointer prohibited\n",
7238 					insn->dst_reg,
7239 					bpf_alu_string[opcode >> 4]);
7240 				return -EACCES;
7241 			} else {
7242 				/* scalar += pointer
7243 				 * This is legal, but we have to reverse our
7244 				 * src/dest handling in computing the range
7245 				 */
7246 				err = mark_chain_precision(env, insn->dst_reg);
7247 				if (err)
7248 					return err;
7249 				return adjust_ptr_min_max_vals(env, insn,
7250 							       src_reg, dst_reg);
7251 			}
7252 		} else if (ptr_reg) {
7253 			/* pointer += scalar */
7254 			err = mark_chain_precision(env, insn->src_reg);
7255 			if (err)
7256 				return err;
7257 			return adjust_ptr_min_max_vals(env, insn,
7258 						       dst_reg, src_reg);
7259 		}
7260 	} else {
7261 		/* Pretend the src is a reg with a known value, since we only
7262 		 * need to be able to read from this state.
7263 		 */
7264 		off_reg.type = SCALAR_VALUE;
7265 		__mark_reg_known(&off_reg, insn->imm);
7266 		src_reg = &off_reg;
7267 		if (ptr_reg) /* pointer += K */
7268 			return adjust_ptr_min_max_vals(env, insn,
7269 						       ptr_reg, src_reg);
7270 	}
7271 
7272 	/* Got here implies adding two SCALAR_VALUEs */
7273 	if (WARN_ON_ONCE(ptr_reg)) {
7274 		print_verifier_state(env, state);
7275 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
7276 		return -EINVAL;
7277 	}
7278 	if (WARN_ON(!src_reg)) {
7279 		print_verifier_state(env, state);
7280 		verbose(env, "verifier internal error: no src_reg\n");
7281 		return -EINVAL;
7282 	}
7283 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
7284 }
7285 
7286 /* check validity of 32-bit and 64-bit arithmetic operations */
7287 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
7288 {
7289 	struct bpf_reg_state *regs = cur_regs(env);
7290 	u8 opcode = BPF_OP(insn->code);
7291 	int err;
7292 
7293 	if (opcode == BPF_END || opcode == BPF_NEG) {
7294 		if (opcode == BPF_NEG) {
7295 			if (BPF_SRC(insn->code) != 0 ||
7296 			    insn->src_reg != BPF_REG_0 ||
7297 			    insn->off != 0 || insn->imm != 0) {
7298 				verbose(env, "BPF_NEG uses reserved fields\n");
7299 				return -EINVAL;
7300 			}
7301 		} else {
7302 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
7303 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
7304 			    BPF_CLASS(insn->code) == BPF_ALU64) {
7305 				verbose(env, "BPF_END uses reserved fields\n");
7306 				return -EINVAL;
7307 			}
7308 		}
7309 
7310 		/* check src operand */
7311 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7312 		if (err)
7313 			return err;
7314 
7315 		if (is_pointer_value(env, insn->dst_reg)) {
7316 			verbose(env, "R%d pointer arithmetic prohibited\n",
7317 				insn->dst_reg);
7318 			return -EACCES;
7319 		}
7320 
7321 		/* check dest operand */
7322 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
7323 		if (err)
7324 			return err;
7325 
7326 	} else if (opcode == BPF_MOV) {
7327 
7328 		if (BPF_SRC(insn->code) == BPF_X) {
7329 			if (insn->imm != 0 || insn->off != 0) {
7330 				verbose(env, "BPF_MOV uses reserved fields\n");
7331 				return -EINVAL;
7332 			}
7333 
7334 			/* check src operand */
7335 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7336 			if (err)
7337 				return err;
7338 		} else {
7339 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7340 				verbose(env, "BPF_MOV uses reserved fields\n");
7341 				return -EINVAL;
7342 			}
7343 		}
7344 
7345 		/* check dest operand, mark as required later */
7346 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7347 		if (err)
7348 			return err;
7349 
7350 		if (BPF_SRC(insn->code) == BPF_X) {
7351 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
7352 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
7353 
7354 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
7355 				/* case: R1 = R2
7356 				 * copy register state to dest reg
7357 				 */
7358 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
7359 					/* Assign src and dst registers the same ID
7360 					 * that will be used by find_equal_scalars()
7361 					 * to propagate min/max range.
7362 					 */
7363 					src_reg->id = ++env->id_gen;
7364 				*dst_reg = *src_reg;
7365 				dst_reg->live |= REG_LIVE_WRITTEN;
7366 				dst_reg->subreg_def = DEF_NOT_SUBREG;
7367 			} else {
7368 				/* R1 = (u32) R2 */
7369 				if (is_pointer_value(env, insn->src_reg)) {
7370 					verbose(env,
7371 						"R%d partial copy of pointer\n",
7372 						insn->src_reg);
7373 					return -EACCES;
7374 				} else if (src_reg->type == SCALAR_VALUE) {
7375 					*dst_reg = *src_reg;
7376 					/* Make sure ID is cleared otherwise
7377 					 * dst_reg min/max could be incorrectly
7378 					 * propagated into src_reg by find_equal_scalars()
7379 					 */
7380 					dst_reg->id = 0;
7381 					dst_reg->live |= REG_LIVE_WRITTEN;
7382 					dst_reg->subreg_def = env->insn_idx + 1;
7383 				} else {
7384 					mark_reg_unknown(env, regs,
7385 							 insn->dst_reg);
7386 				}
7387 				zext_32_to_64(dst_reg);
7388 			}
7389 		} else {
7390 			/* case: R = imm
7391 			 * remember the value we stored into this reg
7392 			 */
7393 			/* clear any state __mark_reg_known doesn't set */
7394 			mark_reg_unknown(env, regs, insn->dst_reg);
7395 			regs[insn->dst_reg].type = SCALAR_VALUE;
7396 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
7397 				__mark_reg_known(regs + insn->dst_reg,
7398 						 insn->imm);
7399 			} else {
7400 				__mark_reg_known(regs + insn->dst_reg,
7401 						 (u32)insn->imm);
7402 			}
7403 		}
7404 
7405 	} else if (opcode > BPF_END) {
7406 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
7407 		return -EINVAL;
7408 
7409 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
7410 
7411 		if (BPF_SRC(insn->code) == BPF_X) {
7412 			if (insn->imm != 0 || insn->off != 0) {
7413 				verbose(env, "BPF_ALU uses reserved fields\n");
7414 				return -EINVAL;
7415 			}
7416 			/* check src1 operand */
7417 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7418 			if (err)
7419 				return err;
7420 		} else {
7421 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7422 				verbose(env, "BPF_ALU uses reserved fields\n");
7423 				return -EINVAL;
7424 			}
7425 		}
7426 
7427 		/* check src2 operand */
7428 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7429 		if (err)
7430 			return err;
7431 
7432 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
7433 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
7434 			verbose(env, "div by zero\n");
7435 			return -EINVAL;
7436 		}
7437 
7438 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
7439 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
7440 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
7441 
7442 			if (insn->imm < 0 || insn->imm >= size) {
7443 				verbose(env, "invalid shift %d\n", insn->imm);
7444 				return -EINVAL;
7445 			}
7446 		}
7447 
7448 		/* check dest operand */
7449 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7450 		if (err)
7451 			return err;
7452 
7453 		return adjust_reg_min_max_vals(env, insn);
7454 	}
7455 
7456 	return 0;
7457 }
7458 
7459 static void __find_good_pkt_pointers(struct bpf_func_state *state,
7460 				     struct bpf_reg_state *dst_reg,
7461 				     enum bpf_reg_type type, int new_range)
7462 {
7463 	struct bpf_reg_state *reg;
7464 	int i;
7465 
7466 	for (i = 0; i < MAX_BPF_REG; i++) {
7467 		reg = &state->regs[i];
7468 		if (reg->type == type && reg->id == dst_reg->id)
7469 			/* keep the maximum range already checked */
7470 			reg->range = max(reg->range, new_range);
7471 	}
7472 
7473 	bpf_for_each_spilled_reg(i, state, reg) {
7474 		if (!reg)
7475 			continue;
7476 		if (reg->type == type && reg->id == dst_reg->id)
7477 			reg->range = max(reg->range, new_range);
7478 	}
7479 }
7480 
7481 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
7482 				   struct bpf_reg_state *dst_reg,
7483 				   enum bpf_reg_type type,
7484 				   bool range_right_open)
7485 {
7486 	int new_range, i;
7487 
7488 	if (dst_reg->off < 0 ||
7489 	    (dst_reg->off == 0 && range_right_open))
7490 		/* This doesn't give us any range */
7491 		return;
7492 
7493 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
7494 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
7495 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
7496 		 * than pkt_end, but that's because it's also less than pkt.
7497 		 */
7498 		return;
7499 
7500 	new_range = dst_reg->off;
7501 	if (range_right_open)
7502 		new_range--;
7503 
7504 	/* Examples for register markings:
7505 	 *
7506 	 * pkt_data in dst register:
7507 	 *
7508 	 *   r2 = r3;
7509 	 *   r2 += 8;
7510 	 *   if (r2 > pkt_end) goto <handle exception>
7511 	 *   <access okay>
7512 	 *
7513 	 *   r2 = r3;
7514 	 *   r2 += 8;
7515 	 *   if (r2 < pkt_end) goto <access okay>
7516 	 *   <handle exception>
7517 	 *
7518 	 *   Where:
7519 	 *     r2 == dst_reg, pkt_end == src_reg
7520 	 *     r2=pkt(id=n,off=8,r=0)
7521 	 *     r3=pkt(id=n,off=0,r=0)
7522 	 *
7523 	 * pkt_data in src register:
7524 	 *
7525 	 *   r2 = r3;
7526 	 *   r2 += 8;
7527 	 *   if (pkt_end >= r2) goto <access okay>
7528 	 *   <handle exception>
7529 	 *
7530 	 *   r2 = r3;
7531 	 *   r2 += 8;
7532 	 *   if (pkt_end <= r2) goto <handle exception>
7533 	 *   <access okay>
7534 	 *
7535 	 *   Where:
7536 	 *     pkt_end == dst_reg, r2 == src_reg
7537 	 *     r2=pkt(id=n,off=8,r=0)
7538 	 *     r3=pkt(id=n,off=0,r=0)
7539 	 *
7540 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
7541 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
7542 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
7543 	 * the check.
7544 	 */
7545 
7546 	/* If our ids match, then we must have the same max_value.  And we
7547 	 * don't care about the other reg's fixed offset, since if it's too big
7548 	 * the range won't allow anything.
7549 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
7550 	 */
7551 	for (i = 0; i <= vstate->curframe; i++)
7552 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
7553 					 new_range);
7554 }
7555 
7556 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
7557 {
7558 	struct tnum subreg = tnum_subreg(reg->var_off);
7559 	s32 sval = (s32)val;
7560 
7561 	switch (opcode) {
7562 	case BPF_JEQ:
7563 		if (tnum_is_const(subreg))
7564 			return !!tnum_equals_const(subreg, val);
7565 		break;
7566 	case BPF_JNE:
7567 		if (tnum_is_const(subreg))
7568 			return !tnum_equals_const(subreg, val);
7569 		break;
7570 	case BPF_JSET:
7571 		if ((~subreg.mask & subreg.value) & val)
7572 			return 1;
7573 		if (!((subreg.mask | subreg.value) & val))
7574 			return 0;
7575 		break;
7576 	case BPF_JGT:
7577 		if (reg->u32_min_value > val)
7578 			return 1;
7579 		else if (reg->u32_max_value <= val)
7580 			return 0;
7581 		break;
7582 	case BPF_JSGT:
7583 		if (reg->s32_min_value > sval)
7584 			return 1;
7585 		else if (reg->s32_max_value <= sval)
7586 			return 0;
7587 		break;
7588 	case BPF_JLT:
7589 		if (reg->u32_max_value < val)
7590 			return 1;
7591 		else if (reg->u32_min_value >= val)
7592 			return 0;
7593 		break;
7594 	case BPF_JSLT:
7595 		if (reg->s32_max_value < sval)
7596 			return 1;
7597 		else if (reg->s32_min_value >= sval)
7598 			return 0;
7599 		break;
7600 	case BPF_JGE:
7601 		if (reg->u32_min_value >= val)
7602 			return 1;
7603 		else if (reg->u32_max_value < val)
7604 			return 0;
7605 		break;
7606 	case BPF_JSGE:
7607 		if (reg->s32_min_value >= sval)
7608 			return 1;
7609 		else if (reg->s32_max_value < sval)
7610 			return 0;
7611 		break;
7612 	case BPF_JLE:
7613 		if (reg->u32_max_value <= val)
7614 			return 1;
7615 		else if (reg->u32_min_value > val)
7616 			return 0;
7617 		break;
7618 	case BPF_JSLE:
7619 		if (reg->s32_max_value <= sval)
7620 			return 1;
7621 		else if (reg->s32_min_value > sval)
7622 			return 0;
7623 		break;
7624 	}
7625 
7626 	return -1;
7627 }
7628 
7629 
7630 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
7631 {
7632 	s64 sval = (s64)val;
7633 
7634 	switch (opcode) {
7635 	case BPF_JEQ:
7636 		if (tnum_is_const(reg->var_off))
7637 			return !!tnum_equals_const(reg->var_off, val);
7638 		break;
7639 	case BPF_JNE:
7640 		if (tnum_is_const(reg->var_off))
7641 			return !tnum_equals_const(reg->var_off, val);
7642 		break;
7643 	case BPF_JSET:
7644 		if ((~reg->var_off.mask & reg->var_off.value) & val)
7645 			return 1;
7646 		if (!((reg->var_off.mask | reg->var_off.value) & val))
7647 			return 0;
7648 		break;
7649 	case BPF_JGT:
7650 		if (reg->umin_value > val)
7651 			return 1;
7652 		else if (reg->umax_value <= val)
7653 			return 0;
7654 		break;
7655 	case BPF_JSGT:
7656 		if (reg->smin_value > sval)
7657 			return 1;
7658 		else if (reg->smax_value <= sval)
7659 			return 0;
7660 		break;
7661 	case BPF_JLT:
7662 		if (reg->umax_value < val)
7663 			return 1;
7664 		else if (reg->umin_value >= val)
7665 			return 0;
7666 		break;
7667 	case BPF_JSLT:
7668 		if (reg->smax_value < sval)
7669 			return 1;
7670 		else if (reg->smin_value >= sval)
7671 			return 0;
7672 		break;
7673 	case BPF_JGE:
7674 		if (reg->umin_value >= val)
7675 			return 1;
7676 		else if (reg->umax_value < val)
7677 			return 0;
7678 		break;
7679 	case BPF_JSGE:
7680 		if (reg->smin_value >= sval)
7681 			return 1;
7682 		else if (reg->smax_value < sval)
7683 			return 0;
7684 		break;
7685 	case BPF_JLE:
7686 		if (reg->umax_value <= val)
7687 			return 1;
7688 		else if (reg->umin_value > val)
7689 			return 0;
7690 		break;
7691 	case BPF_JSLE:
7692 		if (reg->smax_value <= sval)
7693 			return 1;
7694 		else if (reg->smin_value > sval)
7695 			return 0;
7696 		break;
7697 	}
7698 
7699 	return -1;
7700 }
7701 
7702 /* compute branch direction of the expression "if (reg opcode val) goto target;"
7703  * and return:
7704  *  1 - branch will be taken and "goto target" will be executed
7705  *  0 - branch will not be taken and fall-through to next insn
7706  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
7707  *      range [0,10]
7708  */
7709 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
7710 			   bool is_jmp32)
7711 {
7712 	if (__is_pointer_value(false, reg)) {
7713 		if (!reg_type_not_null(reg->type))
7714 			return -1;
7715 
7716 		/* If pointer is valid tests against zero will fail so we can
7717 		 * use this to direct branch taken.
7718 		 */
7719 		if (val != 0)
7720 			return -1;
7721 
7722 		switch (opcode) {
7723 		case BPF_JEQ:
7724 			return 0;
7725 		case BPF_JNE:
7726 			return 1;
7727 		default:
7728 			return -1;
7729 		}
7730 	}
7731 
7732 	if (is_jmp32)
7733 		return is_branch32_taken(reg, val, opcode);
7734 	return is_branch64_taken(reg, val, opcode);
7735 }
7736 
7737 static int flip_opcode(u32 opcode)
7738 {
7739 	/* How can we transform "a <op> b" into "b <op> a"? */
7740 	static const u8 opcode_flip[16] = {
7741 		/* these stay the same */
7742 		[BPF_JEQ  >> 4] = BPF_JEQ,
7743 		[BPF_JNE  >> 4] = BPF_JNE,
7744 		[BPF_JSET >> 4] = BPF_JSET,
7745 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
7746 		[BPF_JGE  >> 4] = BPF_JLE,
7747 		[BPF_JGT  >> 4] = BPF_JLT,
7748 		[BPF_JLE  >> 4] = BPF_JGE,
7749 		[BPF_JLT  >> 4] = BPF_JGT,
7750 		[BPF_JSGE >> 4] = BPF_JSLE,
7751 		[BPF_JSGT >> 4] = BPF_JSLT,
7752 		[BPF_JSLE >> 4] = BPF_JSGE,
7753 		[BPF_JSLT >> 4] = BPF_JSGT
7754 	};
7755 	return opcode_flip[opcode >> 4];
7756 }
7757 
7758 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
7759 				   struct bpf_reg_state *src_reg,
7760 				   u8 opcode)
7761 {
7762 	struct bpf_reg_state *pkt;
7763 
7764 	if (src_reg->type == PTR_TO_PACKET_END) {
7765 		pkt = dst_reg;
7766 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
7767 		pkt = src_reg;
7768 		opcode = flip_opcode(opcode);
7769 	} else {
7770 		return -1;
7771 	}
7772 
7773 	if (pkt->range >= 0)
7774 		return -1;
7775 
7776 	switch (opcode) {
7777 	case BPF_JLE:
7778 		/* pkt <= pkt_end */
7779 		fallthrough;
7780 	case BPF_JGT:
7781 		/* pkt > pkt_end */
7782 		if (pkt->range == BEYOND_PKT_END)
7783 			/* pkt has at last one extra byte beyond pkt_end */
7784 			return opcode == BPF_JGT;
7785 		break;
7786 	case BPF_JLT:
7787 		/* pkt < pkt_end */
7788 		fallthrough;
7789 	case BPF_JGE:
7790 		/* pkt >= pkt_end */
7791 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
7792 			return opcode == BPF_JGE;
7793 		break;
7794 	}
7795 	return -1;
7796 }
7797 
7798 /* Adjusts the register min/max values in the case that the dst_reg is the
7799  * variable register that we are working on, and src_reg is a constant or we're
7800  * simply doing a BPF_K check.
7801  * In JEQ/JNE cases we also adjust the var_off values.
7802  */
7803 static void reg_set_min_max(struct bpf_reg_state *true_reg,
7804 			    struct bpf_reg_state *false_reg,
7805 			    u64 val, u32 val32,
7806 			    u8 opcode, bool is_jmp32)
7807 {
7808 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
7809 	struct tnum false_64off = false_reg->var_off;
7810 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
7811 	struct tnum true_64off = true_reg->var_off;
7812 	s64 sval = (s64)val;
7813 	s32 sval32 = (s32)val32;
7814 
7815 	/* If the dst_reg is a pointer, we can't learn anything about its
7816 	 * variable offset from the compare (unless src_reg were a pointer into
7817 	 * the same object, but we don't bother with that.
7818 	 * Since false_reg and true_reg have the same type by construction, we
7819 	 * only need to check one of them for pointerness.
7820 	 */
7821 	if (__is_pointer_value(false, false_reg))
7822 		return;
7823 
7824 	switch (opcode) {
7825 	case BPF_JEQ:
7826 	case BPF_JNE:
7827 	{
7828 		struct bpf_reg_state *reg =
7829 			opcode == BPF_JEQ ? true_reg : false_reg;
7830 
7831 		/* JEQ/JNE comparison doesn't change the register equivalence.
7832 		 * r1 = r2;
7833 		 * if (r1 == 42) goto label;
7834 		 * ...
7835 		 * label: // here both r1 and r2 are known to be 42.
7836 		 *
7837 		 * Hence when marking register as known preserve it's ID.
7838 		 */
7839 		if (is_jmp32)
7840 			__mark_reg32_known(reg, val32);
7841 		else
7842 			___mark_reg_known(reg, val);
7843 		break;
7844 	}
7845 	case BPF_JSET:
7846 		if (is_jmp32) {
7847 			false_32off = tnum_and(false_32off, tnum_const(~val32));
7848 			if (is_power_of_2(val32))
7849 				true_32off = tnum_or(true_32off,
7850 						     tnum_const(val32));
7851 		} else {
7852 			false_64off = tnum_and(false_64off, tnum_const(~val));
7853 			if (is_power_of_2(val))
7854 				true_64off = tnum_or(true_64off,
7855 						     tnum_const(val));
7856 		}
7857 		break;
7858 	case BPF_JGE:
7859 	case BPF_JGT:
7860 	{
7861 		if (is_jmp32) {
7862 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
7863 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
7864 
7865 			false_reg->u32_max_value = min(false_reg->u32_max_value,
7866 						       false_umax);
7867 			true_reg->u32_min_value = max(true_reg->u32_min_value,
7868 						      true_umin);
7869 		} else {
7870 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
7871 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
7872 
7873 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
7874 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
7875 		}
7876 		break;
7877 	}
7878 	case BPF_JSGE:
7879 	case BPF_JSGT:
7880 	{
7881 		if (is_jmp32) {
7882 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
7883 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
7884 
7885 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
7886 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
7887 		} else {
7888 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
7889 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
7890 
7891 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
7892 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
7893 		}
7894 		break;
7895 	}
7896 	case BPF_JLE:
7897 	case BPF_JLT:
7898 	{
7899 		if (is_jmp32) {
7900 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
7901 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
7902 
7903 			false_reg->u32_min_value = max(false_reg->u32_min_value,
7904 						       false_umin);
7905 			true_reg->u32_max_value = min(true_reg->u32_max_value,
7906 						      true_umax);
7907 		} else {
7908 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
7909 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
7910 
7911 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
7912 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
7913 		}
7914 		break;
7915 	}
7916 	case BPF_JSLE:
7917 	case BPF_JSLT:
7918 	{
7919 		if (is_jmp32) {
7920 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
7921 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
7922 
7923 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
7924 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
7925 		} else {
7926 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
7927 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
7928 
7929 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
7930 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
7931 		}
7932 		break;
7933 	}
7934 	default:
7935 		return;
7936 	}
7937 
7938 	if (is_jmp32) {
7939 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
7940 					     tnum_subreg(false_32off));
7941 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
7942 					    tnum_subreg(true_32off));
7943 		__reg_combine_32_into_64(false_reg);
7944 		__reg_combine_32_into_64(true_reg);
7945 	} else {
7946 		false_reg->var_off = false_64off;
7947 		true_reg->var_off = true_64off;
7948 		__reg_combine_64_into_32(false_reg);
7949 		__reg_combine_64_into_32(true_reg);
7950 	}
7951 }
7952 
7953 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
7954  * the variable reg.
7955  */
7956 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
7957 				struct bpf_reg_state *false_reg,
7958 				u64 val, u32 val32,
7959 				u8 opcode, bool is_jmp32)
7960 {
7961 	opcode = flip_opcode(opcode);
7962 	/* This uses zero as "not present in table"; luckily the zero opcode,
7963 	 * BPF_JA, can't get here.
7964 	 */
7965 	if (opcode)
7966 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
7967 }
7968 
7969 /* Regs are known to be equal, so intersect their min/max/var_off */
7970 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
7971 				  struct bpf_reg_state *dst_reg)
7972 {
7973 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
7974 							dst_reg->umin_value);
7975 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
7976 							dst_reg->umax_value);
7977 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
7978 							dst_reg->smin_value);
7979 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
7980 							dst_reg->smax_value);
7981 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
7982 							     dst_reg->var_off);
7983 	/* We might have learned new bounds from the var_off. */
7984 	__update_reg_bounds(src_reg);
7985 	__update_reg_bounds(dst_reg);
7986 	/* We might have learned something about the sign bit. */
7987 	__reg_deduce_bounds(src_reg);
7988 	__reg_deduce_bounds(dst_reg);
7989 	/* We might have learned some bits from the bounds. */
7990 	__reg_bound_offset(src_reg);
7991 	__reg_bound_offset(dst_reg);
7992 	/* Intersecting with the old var_off might have improved our bounds
7993 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
7994 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
7995 	 */
7996 	__update_reg_bounds(src_reg);
7997 	__update_reg_bounds(dst_reg);
7998 }
7999 
8000 static void reg_combine_min_max(struct bpf_reg_state *true_src,
8001 				struct bpf_reg_state *true_dst,
8002 				struct bpf_reg_state *false_src,
8003 				struct bpf_reg_state *false_dst,
8004 				u8 opcode)
8005 {
8006 	switch (opcode) {
8007 	case BPF_JEQ:
8008 		__reg_combine_min_max(true_src, true_dst);
8009 		break;
8010 	case BPF_JNE:
8011 		__reg_combine_min_max(false_src, false_dst);
8012 		break;
8013 	}
8014 }
8015 
8016 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
8017 				 struct bpf_reg_state *reg, u32 id,
8018 				 bool is_null)
8019 {
8020 	if (reg_type_may_be_null(reg->type) && reg->id == id &&
8021 	    !WARN_ON_ONCE(!reg->id)) {
8022 		/* Old offset (both fixed and variable parts) should
8023 		 * have been known-zero, because we don't allow pointer
8024 		 * arithmetic on pointers that might be NULL.
8025 		 */
8026 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
8027 				 !tnum_equals_const(reg->var_off, 0) ||
8028 				 reg->off)) {
8029 			__mark_reg_known_zero(reg);
8030 			reg->off = 0;
8031 		}
8032 		if (is_null) {
8033 			reg->type = SCALAR_VALUE;
8034 			/* We don't need id and ref_obj_id from this point
8035 			 * onwards anymore, thus we should better reset it,
8036 			 * so that state pruning has chances to take effect.
8037 			 */
8038 			reg->id = 0;
8039 			reg->ref_obj_id = 0;
8040 
8041 			return;
8042 		}
8043 
8044 		mark_ptr_not_null_reg(reg);
8045 
8046 		if (!reg_may_point_to_spin_lock(reg)) {
8047 			/* For not-NULL ptr, reg->ref_obj_id will be reset
8048 			 * in release_reg_references().
8049 			 *
8050 			 * reg->id is still used by spin_lock ptr. Other
8051 			 * than spin_lock ptr type, reg->id can be reset.
8052 			 */
8053 			reg->id = 0;
8054 		}
8055 	}
8056 }
8057 
8058 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
8059 				    bool is_null)
8060 {
8061 	struct bpf_reg_state *reg;
8062 	int i;
8063 
8064 	for (i = 0; i < MAX_BPF_REG; i++)
8065 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
8066 
8067 	bpf_for_each_spilled_reg(i, state, reg) {
8068 		if (!reg)
8069 			continue;
8070 		mark_ptr_or_null_reg(state, reg, id, is_null);
8071 	}
8072 }
8073 
8074 /* The logic is similar to find_good_pkt_pointers(), both could eventually
8075  * be folded together at some point.
8076  */
8077 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
8078 				  bool is_null)
8079 {
8080 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8081 	struct bpf_reg_state *regs = state->regs;
8082 	u32 ref_obj_id = regs[regno].ref_obj_id;
8083 	u32 id = regs[regno].id;
8084 	int i;
8085 
8086 	if (ref_obj_id && ref_obj_id == id && is_null)
8087 		/* regs[regno] is in the " == NULL" branch.
8088 		 * No one could have freed the reference state before
8089 		 * doing the NULL check.
8090 		 */
8091 		WARN_ON_ONCE(release_reference_state(state, id));
8092 
8093 	for (i = 0; i <= vstate->curframe; i++)
8094 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
8095 }
8096 
8097 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
8098 				   struct bpf_reg_state *dst_reg,
8099 				   struct bpf_reg_state *src_reg,
8100 				   struct bpf_verifier_state *this_branch,
8101 				   struct bpf_verifier_state *other_branch)
8102 {
8103 	if (BPF_SRC(insn->code) != BPF_X)
8104 		return false;
8105 
8106 	/* Pointers are always 64-bit. */
8107 	if (BPF_CLASS(insn->code) == BPF_JMP32)
8108 		return false;
8109 
8110 	switch (BPF_OP(insn->code)) {
8111 	case BPF_JGT:
8112 		if ((dst_reg->type == PTR_TO_PACKET &&
8113 		     src_reg->type == PTR_TO_PACKET_END) ||
8114 		    (dst_reg->type == PTR_TO_PACKET_META &&
8115 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8116 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
8117 			find_good_pkt_pointers(this_branch, dst_reg,
8118 					       dst_reg->type, false);
8119 			mark_pkt_end(other_branch, insn->dst_reg, true);
8120 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8121 			    src_reg->type == PTR_TO_PACKET) ||
8122 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8123 			    src_reg->type == PTR_TO_PACKET_META)) {
8124 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
8125 			find_good_pkt_pointers(other_branch, src_reg,
8126 					       src_reg->type, true);
8127 			mark_pkt_end(this_branch, insn->src_reg, false);
8128 		} else {
8129 			return false;
8130 		}
8131 		break;
8132 	case BPF_JLT:
8133 		if ((dst_reg->type == PTR_TO_PACKET &&
8134 		     src_reg->type == PTR_TO_PACKET_END) ||
8135 		    (dst_reg->type == PTR_TO_PACKET_META &&
8136 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8137 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
8138 			find_good_pkt_pointers(other_branch, dst_reg,
8139 					       dst_reg->type, true);
8140 			mark_pkt_end(this_branch, insn->dst_reg, false);
8141 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8142 			    src_reg->type == PTR_TO_PACKET) ||
8143 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8144 			    src_reg->type == PTR_TO_PACKET_META)) {
8145 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
8146 			find_good_pkt_pointers(this_branch, src_reg,
8147 					       src_reg->type, false);
8148 			mark_pkt_end(other_branch, insn->src_reg, true);
8149 		} else {
8150 			return false;
8151 		}
8152 		break;
8153 	case BPF_JGE:
8154 		if ((dst_reg->type == PTR_TO_PACKET &&
8155 		     src_reg->type == PTR_TO_PACKET_END) ||
8156 		    (dst_reg->type == PTR_TO_PACKET_META &&
8157 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8158 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
8159 			find_good_pkt_pointers(this_branch, dst_reg,
8160 					       dst_reg->type, true);
8161 			mark_pkt_end(other_branch, insn->dst_reg, false);
8162 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8163 			    src_reg->type == PTR_TO_PACKET) ||
8164 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8165 			    src_reg->type == PTR_TO_PACKET_META)) {
8166 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
8167 			find_good_pkt_pointers(other_branch, src_reg,
8168 					       src_reg->type, false);
8169 			mark_pkt_end(this_branch, insn->src_reg, true);
8170 		} else {
8171 			return false;
8172 		}
8173 		break;
8174 	case BPF_JLE:
8175 		if ((dst_reg->type == PTR_TO_PACKET &&
8176 		     src_reg->type == PTR_TO_PACKET_END) ||
8177 		    (dst_reg->type == PTR_TO_PACKET_META &&
8178 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8179 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
8180 			find_good_pkt_pointers(other_branch, dst_reg,
8181 					       dst_reg->type, false);
8182 			mark_pkt_end(this_branch, insn->dst_reg, true);
8183 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8184 			    src_reg->type == PTR_TO_PACKET) ||
8185 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8186 			    src_reg->type == PTR_TO_PACKET_META)) {
8187 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
8188 			find_good_pkt_pointers(this_branch, src_reg,
8189 					       src_reg->type, true);
8190 			mark_pkt_end(other_branch, insn->src_reg, false);
8191 		} else {
8192 			return false;
8193 		}
8194 		break;
8195 	default:
8196 		return false;
8197 	}
8198 
8199 	return true;
8200 }
8201 
8202 static void find_equal_scalars(struct bpf_verifier_state *vstate,
8203 			       struct bpf_reg_state *known_reg)
8204 {
8205 	struct bpf_func_state *state;
8206 	struct bpf_reg_state *reg;
8207 	int i, j;
8208 
8209 	for (i = 0; i <= vstate->curframe; i++) {
8210 		state = vstate->frame[i];
8211 		for (j = 0; j < MAX_BPF_REG; j++) {
8212 			reg = &state->regs[j];
8213 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8214 				*reg = *known_reg;
8215 		}
8216 
8217 		bpf_for_each_spilled_reg(j, state, reg) {
8218 			if (!reg)
8219 				continue;
8220 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8221 				*reg = *known_reg;
8222 		}
8223 	}
8224 }
8225 
8226 static int check_cond_jmp_op(struct bpf_verifier_env *env,
8227 			     struct bpf_insn *insn, int *insn_idx)
8228 {
8229 	struct bpf_verifier_state *this_branch = env->cur_state;
8230 	struct bpf_verifier_state *other_branch;
8231 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
8232 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
8233 	u8 opcode = BPF_OP(insn->code);
8234 	bool is_jmp32;
8235 	int pred = -1;
8236 	int err;
8237 
8238 	/* Only conditional jumps are expected to reach here. */
8239 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
8240 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
8241 		return -EINVAL;
8242 	}
8243 
8244 	if (BPF_SRC(insn->code) == BPF_X) {
8245 		if (insn->imm != 0) {
8246 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8247 			return -EINVAL;
8248 		}
8249 
8250 		/* check src1 operand */
8251 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
8252 		if (err)
8253 			return err;
8254 
8255 		if (is_pointer_value(env, insn->src_reg)) {
8256 			verbose(env, "R%d pointer comparison prohibited\n",
8257 				insn->src_reg);
8258 			return -EACCES;
8259 		}
8260 		src_reg = &regs[insn->src_reg];
8261 	} else {
8262 		if (insn->src_reg != BPF_REG_0) {
8263 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8264 			return -EINVAL;
8265 		}
8266 	}
8267 
8268 	/* check src2 operand */
8269 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8270 	if (err)
8271 		return err;
8272 
8273 	dst_reg = &regs[insn->dst_reg];
8274 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
8275 
8276 	if (BPF_SRC(insn->code) == BPF_K) {
8277 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
8278 	} else if (src_reg->type == SCALAR_VALUE &&
8279 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
8280 		pred = is_branch_taken(dst_reg,
8281 				       tnum_subreg(src_reg->var_off).value,
8282 				       opcode,
8283 				       is_jmp32);
8284 	} else if (src_reg->type == SCALAR_VALUE &&
8285 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
8286 		pred = is_branch_taken(dst_reg,
8287 				       src_reg->var_off.value,
8288 				       opcode,
8289 				       is_jmp32);
8290 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
8291 		   reg_is_pkt_pointer_any(src_reg) &&
8292 		   !is_jmp32) {
8293 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
8294 	}
8295 
8296 	if (pred >= 0) {
8297 		/* If we get here with a dst_reg pointer type it is because
8298 		 * above is_branch_taken() special cased the 0 comparison.
8299 		 */
8300 		if (!__is_pointer_value(false, dst_reg))
8301 			err = mark_chain_precision(env, insn->dst_reg);
8302 		if (BPF_SRC(insn->code) == BPF_X && !err &&
8303 		    !__is_pointer_value(false, src_reg))
8304 			err = mark_chain_precision(env, insn->src_reg);
8305 		if (err)
8306 			return err;
8307 	}
8308 	if (pred == 1) {
8309 		/* only follow the goto, ignore fall-through */
8310 		*insn_idx += insn->off;
8311 		return 0;
8312 	} else if (pred == 0) {
8313 		/* only follow fall-through branch, since
8314 		 * that's where the program will go
8315 		 */
8316 		return 0;
8317 	}
8318 
8319 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
8320 				  false);
8321 	if (!other_branch)
8322 		return -EFAULT;
8323 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
8324 
8325 	/* detect if we are comparing against a constant value so we can adjust
8326 	 * our min/max values for our dst register.
8327 	 * this is only legit if both are scalars (or pointers to the same
8328 	 * object, I suppose, but we don't support that right now), because
8329 	 * otherwise the different base pointers mean the offsets aren't
8330 	 * comparable.
8331 	 */
8332 	if (BPF_SRC(insn->code) == BPF_X) {
8333 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
8334 
8335 		if (dst_reg->type == SCALAR_VALUE &&
8336 		    src_reg->type == SCALAR_VALUE) {
8337 			if (tnum_is_const(src_reg->var_off) ||
8338 			    (is_jmp32 &&
8339 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
8340 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
8341 						dst_reg,
8342 						src_reg->var_off.value,
8343 						tnum_subreg(src_reg->var_off).value,
8344 						opcode, is_jmp32);
8345 			else if (tnum_is_const(dst_reg->var_off) ||
8346 				 (is_jmp32 &&
8347 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
8348 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
8349 						    src_reg,
8350 						    dst_reg->var_off.value,
8351 						    tnum_subreg(dst_reg->var_off).value,
8352 						    opcode, is_jmp32);
8353 			else if (!is_jmp32 &&
8354 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
8355 				/* Comparing for equality, we can combine knowledge */
8356 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
8357 						    &other_branch_regs[insn->dst_reg],
8358 						    src_reg, dst_reg, opcode);
8359 			if (src_reg->id &&
8360 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
8361 				find_equal_scalars(this_branch, src_reg);
8362 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
8363 			}
8364 
8365 		}
8366 	} else if (dst_reg->type == SCALAR_VALUE) {
8367 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
8368 					dst_reg, insn->imm, (u32)insn->imm,
8369 					opcode, is_jmp32);
8370 	}
8371 
8372 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
8373 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
8374 		find_equal_scalars(this_branch, dst_reg);
8375 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
8376 	}
8377 
8378 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
8379 	 * NOTE: these optimizations below are related with pointer comparison
8380 	 *       which will never be JMP32.
8381 	 */
8382 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
8383 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
8384 	    reg_type_may_be_null(dst_reg->type)) {
8385 		/* Mark all identical registers in each branch as either
8386 		 * safe or unknown depending R == 0 or R != 0 conditional.
8387 		 */
8388 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
8389 				      opcode == BPF_JNE);
8390 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
8391 				      opcode == BPF_JEQ);
8392 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
8393 					   this_branch, other_branch) &&
8394 		   is_pointer_value(env, insn->dst_reg)) {
8395 		verbose(env, "R%d pointer comparison prohibited\n",
8396 			insn->dst_reg);
8397 		return -EACCES;
8398 	}
8399 	if (env->log.level & BPF_LOG_LEVEL)
8400 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
8401 	return 0;
8402 }
8403 
8404 /* verify BPF_LD_IMM64 instruction */
8405 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
8406 {
8407 	struct bpf_insn_aux_data *aux = cur_aux(env);
8408 	struct bpf_reg_state *regs = cur_regs(env);
8409 	struct bpf_reg_state *dst_reg;
8410 	struct bpf_map *map;
8411 	int err;
8412 
8413 	if (BPF_SIZE(insn->code) != BPF_DW) {
8414 		verbose(env, "invalid BPF_LD_IMM insn\n");
8415 		return -EINVAL;
8416 	}
8417 	if (insn->off != 0) {
8418 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
8419 		return -EINVAL;
8420 	}
8421 
8422 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
8423 	if (err)
8424 		return err;
8425 
8426 	dst_reg = &regs[insn->dst_reg];
8427 	if (insn->src_reg == 0) {
8428 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
8429 
8430 		dst_reg->type = SCALAR_VALUE;
8431 		__mark_reg_known(&regs[insn->dst_reg], imm);
8432 		return 0;
8433 	}
8434 
8435 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
8436 		mark_reg_known_zero(env, regs, insn->dst_reg);
8437 
8438 		dst_reg->type = aux->btf_var.reg_type;
8439 		switch (dst_reg->type) {
8440 		case PTR_TO_MEM:
8441 			dst_reg->mem_size = aux->btf_var.mem_size;
8442 			break;
8443 		case PTR_TO_BTF_ID:
8444 		case PTR_TO_PERCPU_BTF_ID:
8445 			dst_reg->btf = aux->btf_var.btf;
8446 			dst_reg->btf_id = aux->btf_var.btf_id;
8447 			break;
8448 		default:
8449 			verbose(env, "bpf verifier is misconfigured\n");
8450 			return -EFAULT;
8451 		}
8452 		return 0;
8453 	}
8454 
8455 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
8456 		struct bpf_prog_aux *aux = env->prog->aux;
8457 		u32 subprogno = insn[1].imm;
8458 
8459 		if (!aux->func_info) {
8460 			verbose(env, "missing btf func_info\n");
8461 			return -EINVAL;
8462 		}
8463 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
8464 			verbose(env, "callback function not static\n");
8465 			return -EINVAL;
8466 		}
8467 
8468 		dst_reg->type = PTR_TO_FUNC;
8469 		dst_reg->subprogno = subprogno;
8470 		return 0;
8471 	}
8472 
8473 	map = env->used_maps[aux->map_index];
8474 	mark_reg_known_zero(env, regs, insn->dst_reg);
8475 	dst_reg->map_ptr = map;
8476 
8477 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
8478 		dst_reg->type = PTR_TO_MAP_VALUE;
8479 		dst_reg->off = aux->map_off;
8480 		if (map_value_has_spin_lock(map))
8481 			dst_reg->id = ++env->id_gen;
8482 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8483 		dst_reg->type = CONST_PTR_TO_MAP;
8484 	} else {
8485 		verbose(env, "bpf verifier is misconfigured\n");
8486 		return -EINVAL;
8487 	}
8488 
8489 	return 0;
8490 }
8491 
8492 static bool may_access_skb(enum bpf_prog_type type)
8493 {
8494 	switch (type) {
8495 	case BPF_PROG_TYPE_SOCKET_FILTER:
8496 	case BPF_PROG_TYPE_SCHED_CLS:
8497 	case BPF_PROG_TYPE_SCHED_ACT:
8498 		return true;
8499 	default:
8500 		return false;
8501 	}
8502 }
8503 
8504 /* verify safety of LD_ABS|LD_IND instructions:
8505  * - they can only appear in the programs where ctx == skb
8506  * - since they are wrappers of function calls, they scratch R1-R5 registers,
8507  *   preserve R6-R9, and store return value into R0
8508  *
8509  * Implicit input:
8510  *   ctx == skb == R6 == CTX
8511  *
8512  * Explicit input:
8513  *   SRC == any register
8514  *   IMM == 32-bit immediate
8515  *
8516  * Output:
8517  *   R0 - 8/16/32-bit skb data converted to cpu endianness
8518  */
8519 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
8520 {
8521 	struct bpf_reg_state *regs = cur_regs(env);
8522 	static const int ctx_reg = BPF_REG_6;
8523 	u8 mode = BPF_MODE(insn->code);
8524 	int i, err;
8525 
8526 	if (!may_access_skb(resolve_prog_type(env->prog))) {
8527 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
8528 		return -EINVAL;
8529 	}
8530 
8531 	if (!env->ops->gen_ld_abs) {
8532 		verbose(env, "bpf verifier is misconfigured\n");
8533 		return -EINVAL;
8534 	}
8535 
8536 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
8537 	    BPF_SIZE(insn->code) == BPF_DW ||
8538 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
8539 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
8540 		return -EINVAL;
8541 	}
8542 
8543 	/* check whether implicit source operand (register R6) is readable */
8544 	err = check_reg_arg(env, ctx_reg, SRC_OP);
8545 	if (err)
8546 		return err;
8547 
8548 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
8549 	 * gen_ld_abs() may terminate the program at runtime, leading to
8550 	 * reference leak.
8551 	 */
8552 	err = check_reference_leak(env);
8553 	if (err) {
8554 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
8555 		return err;
8556 	}
8557 
8558 	if (env->cur_state->active_spin_lock) {
8559 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
8560 		return -EINVAL;
8561 	}
8562 
8563 	if (regs[ctx_reg].type != PTR_TO_CTX) {
8564 		verbose(env,
8565 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
8566 		return -EINVAL;
8567 	}
8568 
8569 	if (mode == BPF_IND) {
8570 		/* check explicit source operand */
8571 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
8572 		if (err)
8573 			return err;
8574 	}
8575 
8576 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
8577 	if (err < 0)
8578 		return err;
8579 
8580 	/* reset caller saved regs to unreadable */
8581 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
8582 		mark_reg_not_init(env, regs, caller_saved[i]);
8583 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8584 	}
8585 
8586 	/* mark destination R0 register as readable, since it contains
8587 	 * the value fetched from the packet.
8588 	 * Already marked as written above.
8589 	 */
8590 	mark_reg_unknown(env, regs, BPF_REG_0);
8591 	/* ld_abs load up to 32-bit skb data. */
8592 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
8593 	return 0;
8594 }
8595 
8596 static int check_return_code(struct bpf_verifier_env *env)
8597 {
8598 	struct tnum enforce_attach_type_range = tnum_unknown;
8599 	const struct bpf_prog *prog = env->prog;
8600 	struct bpf_reg_state *reg;
8601 	struct tnum range = tnum_range(0, 1);
8602 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
8603 	int err;
8604 	const bool is_subprog = env->cur_state->frame[0]->subprogno;
8605 
8606 	/* LSM and struct_ops func-ptr's return type could be "void" */
8607 	if (!is_subprog &&
8608 	    (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
8609 	     prog_type == BPF_PROG_TYPE_LSM) &&
8610 	    !prog->aux->attach_func_proto->type)
8611 		return 0;
8612 
8613 	/* eBPF calling convetion is such that R0 is used
8614 	 * to return the value from eBPF program.
8615 	 * Make sure that it's readable at this time
8616 	 * of bpf_exit, which means that program wrote
8617 	 * something into it earlier
8618 	 */
8619 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
8620 	if (err)
8621 		return err;
8622 
8623 	if (is_pointer_value(env, BPF_REG_0)) {
8624 		verbose(env, "R0 leaks addr as return value\n");
8625 		return -EACCES;
8626 	}
8627 
8628 	reg = cur_regs(env) + BPF_REG_0;
8629 	if (is_subprog) {
8630 		if (reg->type != SCALAR_VALUE) {
8631 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
8632 				reg_type_str[reg->type]);
8633 			return -EINVAL;
8634 		}
8635 		return 0;
8636 	}
8637 
8638 	switch (prog_type) {
8639 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8640 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
8641 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
8642 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
8643 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
8644 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
8645 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
8646 			range = tnum_range(1, 1);
8647 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
8648 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
8649 			range = tnum_range(0, 3);
8650 		break;
8651 	case BPF_PROG_TYPE_CGROUP_SKB:
8652 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
8653 			range = tnum_range(0, 3);
8654 			enforce_attach_type_range = tnum_range(2, 3);
8655 		}
8656 		break;
8657 	case BPF_PROG_TYPE_CGROUP_SOCK:
8658 	case BPF_PROG_TYPE_SOCK_OPS:
8659 	case BPF_PROG_TYPE_CGROUP_DEVICE:
8660 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
8661 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
8662 		break;
8663 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
8664 		if (!env->prog->aux->attach_btf_id)
8665 			return 0;
8666 		range = tnum_const(0);
8667 		break;
8668 	case BPF_PROG_TYPE_TRACING:
8669 		switch (env->prog->expected_attach_type) {
8670 		case BPF_TRACE_FENTRY:
8671 		case BPF_TRACE_FEXIT:
8672 			range = tnum_const(0);
8673 			break;
8674 		case BPF_TRACE_RAW_TP:
8675 		case BPF_MODIFY_RETURN:
8676 			return 0;
8677 		case BPF_TRACE_ITER:
8678 			break;
8679 		default:
8680 			return -ENOTSUPP;
8681 		}
8682 		break;
8683 	case BPF_PROG_TYPE_SK_LOOKUP:
8684 		range = tnum_range(SK_DROP, SK_PASS);
8685 		break;
8686 	case BPF_PROG_TYPE_EXT:
8687 		/* freplace program can return anything as its return value
8688 		 * depends on the to-be-replaced kernel func or bpf program.
8689 		 */
8690 	default:
8691 		return 0;
8692 	}
8693 
8694 	if (reg->type != SCALAR_VALUE) {
8695 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
8696 			reg_type_str[reg->type]);
8697 		return -EINVAL;
8698 	}
8699 
8700 	if (!tnum_in(range, reg->var_off)) {
8701 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
8702 		return -EINVAL;
8703 	}
8704 
8705 	if (!tnum_is_unknown(enforce_attach_type_range) &&
8706 	    tnum_in(enforce_attach_type_range, reg->var_off))
8707 		env->prog->enforce_expected_attach_type = 1;
8708 	return 0;
8709 }
8710 
8711 /* non-recursive DFS pseudo code
8712  * 1  procedure DFS-iterative(G,v):
8713  * 2      label v as discovered
8714  * 3      let S be a stack
8715  * 4      S.push(v)
8716  * 5      while S is not empty
8717  * 6            t <- S.pop()
8718  * 7            if t is what we're looking for:
8719  * 8                return t
8720  * 9            for all edges e in G.adjacentEdges(t) do
8721  * 10               if edge e is already labelled
8722  * 11                   continue with the next edge
8723  * 12               w <- G.adjacentVertex(t,e)
8724  * 13               if vertex w is not discovered and not explored
8725  * 14                   label e as tree-edge
8726  * 15                   label w as discovered
8727  * 16                   S.push(w)
8728  * 17                   continue at 5
8729  * 18               else if vertex w is discovered
8730  * 19                   label e as back-edge
8731  * 20               else
8732  * 21                   // vertex w is explored
8733  * 22                   label e as forward- or cross-edge
8734  * 23           label t as explored
8735  * 24           S.pop()
8736  *
8737  * convention:
8738  * 0x10 - discovered
8739  * 0x11 - discovered and fall-through edge labelled
8740  * 0x12 - discovered and fall-through and branch edges labelled
8741  * 0x20 - explored
8742  */
8743 
8744 enum {
8745 	DISCOVERED = 0x10,
8746 	EXPLORED = 0x20,
8747 	FALLTHROUGH = 1,
8748 	BRANCH = 2,
8749 };
8750 
8751 static u32 state_htab_size(struct bpf_verifier_env *env)
8752 {
8753 	return env->prog->len;
8754 }
8755 
8756 static struct bpf_verifier_state_list **explored_state(
8757 					struct bpf_verifier_env *env,
8758 					int idx)
8759 {
8760 	struct bpf_verifier_state *cur = env->cur_state;
8761 	struct bpf_func_state *state = cur->frame[cur->curframe];
8762 
8763 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
8764 }
8765 
8766 static void init_explored_state(struct bpf_verifier_env *env, int idx)
8767 {
8768 	env->insn_aux_data[idx].prune_point = true;
8769 }
8770 
8771 enum {
8772 	DONE_EXPLORING = 0,
8773 	KEEP_EXPLORING = 1,
8774 };
8775 
8776 /* t, w, e - match pseudo-code above:
8777  * t - index of current instruction
8778  * w - next instruction
8779  * e - edge
8780  */
8781 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
8782 		     bool loop_ok)
8783 {
8784 	int *insn_stack = env->cfg.insn_stack;
8785 	int *insn_state = env->cfg.insn_state;
8786 
8787 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
8788 		return DONE_EXPLORING;
8789 
8790 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
8791 		return DONE_EXPLORING;
8792 
8793 	if (w < 0 || w >= env->prog->len) {
8794 		verbose_linfo(env, t, "%d: ", t);
8795 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
8796 		return -EINVAL;
8797 	}
8798 
8799 	if (e == BRANCH)
8800 		/* mark branch target for state pruning */
8801 		init_explored_state(env, w);
8802 
8803 	if (insn_state[w] == 0) {
8804 		/* tree-edge */
8805 		insn_state[t] = DISCOVERED | e;
8806 		insn_state[w] = DISCOVERED;
8807 		if (env->cfg.cur_stack >= env->prog->len)
8808 			return -E2BIG;
8809 		insn_stack[env->cfg.cur_stack++] = w;
8810 		return KEEP_EXPLORING;
8811 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
8812 		if (loop_ok && env->bpf_capable)
8813 			return DONE_EXPLORING;
8814 		verbose_linfo(env, t, "%d: ", t);
8815 		verbose_linfo(env, w, "%d: ", w);
8816 		verbose(env, "back-edge from insn %d to %d\n", t, w);
8817 		return -EINVAL;
8818 	} else if (insn_state[w] == EXPLORED) {
8819 		/* forward- or cross-edge */
8820 		insn_state[t] = DISCOVERED | e;
8821 	} else {
8822 		verbose(env, "insn state internal bug\n");
8823 		return -EFAULT;
8824 	}
8825 	return DONE_EXPLORING;
8826 }
8827 
8828 static int visit_func_call_insn(int t, int insn_cnt,
8829 				struct bpf_insn *insns,
8830 				struct bpf_verifier_env *env,
8831 				bool visit_callee)
8832 {
8833 	int ret;
8834 
8835 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8836 	if (ret)
8837 		return ret;
8838 
8839 	if (t + 1 < insn_cnt)
8840 		init_explored_state(env, t + 1);
8841 	if (visit_callee) {
8842 		init_explored_state(env, t);
8843 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
8844 				env, false);
8845 	}
8846 	return ret;
8847 }
8848 
8849 /* Visits the instruction at index t and returns one of the following:
8850  *  < 0 - an error occurred
8851  *  DONE_EXPLORING - the instruction was fully explored
8852  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
8853  */
8854 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
8855 {
8856 	struct bpf_insn *insns = env->prog->insnsi;
8857 	int ret;
8858 
8859 	if (bpf_pseudo_func(insns + t))
8860 		return visit_func_call_insn(t, insn_cnt, insns, env, true);
8861 
8862 	/* All non-branch instructions have a single fall-through edge. */
8863 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
8864 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
8865 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
8866 
8867 	switch (BPF_OP(insns[t].code)) {
8868 	case BPF_EXIT:
8869 		return DONE_EXPLORING;
8870 
8871 	case BPF_CALL:
8872 		return visit_func_call_insn(t, insn_cnt, insns, env,
8873 					    insns[t].src_reg == BPF_PSEUDO_CALL);
8874 
8875 	case BPF_JA:
8876 		if (BPF_SRC(insns[t].code) != BPF_K)
8877 			return -EINVAL;
8878 
8879 		/* unconditional jump with single edge */
8880 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
8881 				true);
8882 		if (ret)
8883 			return ret;
8884 
8885 		/* unconditional jmp is not a good pruning point,
8886 		 * but it's marked, since backtracking needs
8887 		 * to record jmp history in is_state_visited().
8888 		 */
8889 		init_explored_state(env, t + insns[t].off + 1);
8890 		/* tell verifier to check for equivalent states
8891 		 * after every call and jump
8892 		 */
8893 		if (t + 1 < insn_cnt)
8894 			init_explored_state(env, t + 1);
8895 
8896 		return ret;
8897 
8898 	default:
8899 		/* conditional jump with two edges */
8900 		init_explored_state(env, t);
8901 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
8902 		if (ret)
8903 			return ret;
8904 
8905 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
8906 	}
8907 }
8908 
8909 /* non-recursive depth-first-search to detect loops in BPF program
8910  * loop == back-edge in directed graph
8911  */
8912 static int check_cfg(struct bpf_verifier_env *env)
8913 {
8914 	int insn_cnt = env->prog->len;
8915 	int *insn_stack, *insn_state;
8916 	int ret = 0;
8917 	int i;
8918 
8919 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8920 	if (!insn_state)
8921 		return -ENOMEM;
8922 
8923 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8924 	if (!insn_stack) {
8925 		kvfree(insn_state);
8926 		return -ENOMEM;
8927 	}
8928 
8929 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
8930 	insn_stack[0] = 0; /* 0 is the first instruction */
8931 	env->cfg.cur_stack = 1;
8932 
8933 	while (env->cfg.cur_stack > 0) {
8934 		int t = insn_stack[env->cfg.cur_stack - 1];
8935 
8936 		ret = visit_insn(t, insn_cnt, env);
8937 		switch (ret) {
8938 		case DONE_EXPLORING:
8939 			insn_state[t] = EXPLORED;
8940 			env->cfg.cur_stack--;
8941 			break;
8942 		case KEEP_EXPLORING:
8943 			break;
8944 		default:
8945 			if (ret > 0) {
8946 				verbose(env, "visit_insn internal bug\n");
8947 				ret = -EFAULT;
8948 			}
8949 			goto err_free;
8950 		}
8951 	}
8952 
8953 	if (env->cfg.cur_stack < 0) {
8954 		verbose(env, "pop stack internal bug\n");
8955 		ret = -EFAULT;
8956 		goto err_free;
8957 	}
8958 
8959 	for (i = 0; i < insn_cnt; i++) {
8960 		if (insn_state[i] != EXPLORED) {
8961 			verbose(env, "unreachable insn %d\n", i);
8962 			ret = -EINVAL;
8963 			goto err_free;
8964 		}
8965 	}
8966 	ret = 0; /* cfg looks good */
8967 
8968 err_free:
8969 	kvfree(insn_state);
8970 	kvfree(insn_stack);
8971 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
8972 	return ret;
8973 }
8974 
8975 static int check_abnormal_return(struct bpf_verifier_env *env)
8976 {
8977 	int i;
8978 
8979 	for (i = 1; i < env->subprog_cnt; i++) {
8980 		if (env->subprog_info[i].has_ld_abs) {
8981 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
8982 			return -EINVAL;
8983 		}
8984 		if (env->subprog_info[i].has_tail_call) {
8985 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
8986 			return -EINVAL;
8987 		}
8988 	}
8989 	return 0;
8990 }
8991 
8992 /* The minimum supported BTF func info size */
8993 #define MIN_BPF_FUNCINFO_SIZE	8
8994 #define MAX_FUNCINFO_REC_SIZE	252
8995 
8996 static int check_btf_func(struct bpf_verifier_env *env,
8997 			  const union bpf_attr *attr,
8998 			  union bpf_attr __user *uattr)
8999 {
9000 	const struct btf_type *type, *func_proto, *ret_type;
9001 	u32 i, nfuncs, urec_size, min_size;
9002 	u32 krec_size = sizeof(struct bpf_func_info);
9003 	struct bpf_func_info *krecord;
9004 	struct bpf_func_info_aux *info_aux = NULL;
9005 	struct bpf_prog *prog;
9006 	const struct btf *btf;
9007 	void __user *urecord;
9008 	u32 prev_offset = 0;
9009 	bool scalar_return;
9010 	int ret = -ENOMEM;
9011 
9012 	nfuncs = attr->func_info_cnt;
9013 	if (!nfuncs) {
9014 		if (check_abnormal_return(env))
9015 			return -EINVAL;
9016 		return 0;
9017 	}
9018 
9019 	if (nfuncs != env->subprog_cnt) {
9020 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
9021 		return -EINVAL;
9022 	}
9023 
9024 	urec_size = attr->func_info_rec_size;
9025 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
9026 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
9027 	    urec_size % sizeof(u32)) {
9028 		verbose(env, "invalid func info rec size %u\n", urec_size);
9029 		return -EINVAL;
9030 	}
9031 
9032 	prog = env->prog;
9033 	btf = prog->aux->btf;
9034 
9035 	urecord = u64_to_user_ptr(attr->func_info);
9036 	min_size = min_t(u32, krec_size, urec_size);
9037 
9038 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
9039 	if (!krecord)
9040 		return -ENOMEM;
9041 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
9042 	if (!info_aux)
9043 		goto err_free;
9044 
9045 	for (i = 0; i < nfuncs; i++) {
9046 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
9047 		if (ret) {
9048 			if (ret == -E2BIG) {
9049 				verbose(env, "nonzero tailing record in func info");
9050 				/* set the size kernel expects so loader can zero
9051 				 * out the rest of the record.
9052 				 */
9053 				if (put_user(min_size, &uattr->func_info_rec_size))
9054 					ret = -EFAULT;
9055 			}
9056 			goto err_free;
9057 		}
9058 
9059 		if (copy_from_user(&krecord[i], urecord, min_size)) {
9060 			ret = -EFAULT;
9061 			goto err_free;
9062 		}
9063 
9064 		/* check insn_off */
9065 		ret = -EINVAL;
9066 		if (i == 0) {
9067 			if (krecord[i].insn_off) {
9068 				verbose(env,
9069 					"nonzero insn_off %u for the first func info record",
9070 					krecord[i].insn_off);
9071 				goto err_free;
9072 			}
9073 		} else if (krecord[i].insn_off <= prev_offset) {
9074 			verbose(env,
9075 				"same or smaller insn offset (%u) than previous func info record (%u)",
9076 				krecord[i].insn_off, prev_offset);
9077 			goto err_free;
9078 		}
9079 
9080 		if (env->subprog_info[i].start != krecord[i].insn_off) {
9081 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
9082 			goto err_free;
9083 		}
9084 
9085 		/* check type_id */
9086 		type = btf_type_by_id(btf, krecord[i].type_id);
9087 		if (!type || !btf_type_is_func(type)) {
9088 			verbose(env, "invalid type id %d in func info",
9089 				krecord[i].type_id);
9090 			goto err_free;
9091 		}
9092 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
9093 
9094 		func_proto = btf_type_by_id(btf, type->type);
9095 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
9096 			/* btf_func_check() already verified it during BTF load */
9097 			goto err_free;
9098 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
9099 		scalar_return =
9100 			btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
9101 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
9102 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
9103 			goto err_free;
9104 		}
9105 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
9106 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
9107 			goto err_free;
9108 		}
9109 
9110 		prev_offset = krecord[i].insn_off;
9111 		urecord += urec_size;
9112 	}
9113 
9114 	prog->aux->func_info = krecord;
9115 	prog->aux->func_info_cnt = nfuncs;
9116 	prog->aux->func_info_aux = info_aux;
9117 	return 0;
9118 
9119 err_free:
9120 	kvfree(krecord);
9121 	kfree(info_aux);
9122 	return ret;
9123 }
9124 
9125 static void adjust_btf_func(struct bpf_verifier_env *env)
9126 {
9127 	struct bpf_prog_aux *aux = env->prog->aux;
9128 	int i;
9129 
9130 	if (!aux->func_info)
9131 		return;
9132 
9133 	for (i = 0; i < env->subprog_cnt; i++)
9134 		aux->func_info[i].insn_off = env->subprog_info[i].start;
9135 }
9136 
9137 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
9138 		sizeof(((struct bpf_line_info *)(0))->line_col))
9139 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
9140 
9141 static int check_btf_line(struct bpf_verifier_env *env,
9142 			  const union bpf_attr *attr,
9143 			  union bpf_attr __user *uattr)
9144 {
9145 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
9146 	struct bpf_subprog_info *sub;
9147 	struct bpf_line_info *linfo;
9148 	struct bpf_prog *prog;
9149 	const struct btf *btf;
9150 	void __user *ulinfo;
9151 	int err;
9152 
9153 	nr_linfo = attr->line_info_cnt;
9154 	if (!nr_linfo)
9155 		return 0;
9156 
9157 	rec_size = attr->line_info_rec_size;
9158 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
9159 	    rec_size > MAX_LINEINFO_REC_SIZE ||
9160 	    rec_size & (sizeof(u32) - 1))
9161 		return -EINVAL;
9162 
9163 	/* Need to zero it in case the userspace may
9164 	 * pass in a smaller bpf_line_info object.
9165 	 */
9166 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
9167 			 GFP_KERNEL | __GFP_NOWARN);
9168 	if (!linfo)
9169 		return -ENOMEM;
9170 
9171 	prog = env->prog;
9172 	btf = prog->aux->btf;
9173 
9174 	s = 0;
9175 	sub = env->subprog_info;
9176 	ulinfo = u64_to_user_ptr(attr->line_info);
9177 	expected_size = sizeof(struct bpf_line_info);
9178 	ncopy = min_t(u32, expected_size, rec_size);
9179 	for (i = 0; i < nr_linfo; i++) {
9180 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
9181 		if (err) {
9182 			if (err == -E2BIG) {
9183 				verbose(env, "nonzero tailing record in line_info");
9184 				if (put_user(expected_size,
9185 					     &uattr->line_info_rec_size))
9186 					err = -EFAULT;
9187 			}
9188 			goto err_free;
9189 		}
9190 
9191 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
9192 			err = -EFAULT;
9193 			goto err_free;
9194 		}
9195 
9196 		/*
9197 		 * Check insn_off to ensure
9198 		 * 1) strictly increasing AND
9199 		 * 2) bounded by prog->len
9200 		 *
9201 		 * The linfo[0].insn_off == 0 check logically falls into
9202 		 * the later "missing bpf_line_info for func..." case
9203 		 * because the first linfo[0].insn_off must be the
9204 		 * first sub also and the first sub must have
9205 		 * subprog_info[0].start == 0.
9206 		 */
9207 		if ((i && linfo[i].insn_off <= prev_offset) ||
9208 		    linfo[i].insn_off >= prog->len) {
9209 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
9210 				i, linfo[i].insn_off, prev_offset,
9211 				prog->len);
9212 			err = -EINVAL;
9213 			goto err_free;
9214 		}
9215 
9216 		if (!prog->insnsi[linfo[i].insn_off].code) {
9217 			verbose(env,
9218 				"Invalid insn code at line_info[%u].insn_off\n",
9219 				i);
9220 			err = -EINVAL;
9221 			goto err_free;
9222 		}
9223 
9224 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
9225 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
9226 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
9227 			err = -EINVAL;
9228 			goto err_free;
9229 		}
9230 
9231 		if (s != env->subprog_cnt) {
9232 			if (linfo[i].insn_off == sub[s].start) {
9233 				sub[s].linfo_idx = i;
9234 				s++;
9235 			} else if (sub[s].start < linfo[i].insn_off) {
9236 				verbose(env, "missing bpf_line_info for func#%u\n", s);
9237 				err = -EINVAL;
9238 				goto err_free;
9239 			}
9240 		}
9241 
9242 		prev_offset = linfo[i].insn_off;
9243 		ulinfo += rec_size;
9244 	}
9245 
9246 	if (s != env->subprog_cnt) {
9247 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
9248 			env->subprog_cnt - s, s);
9249 		err = -EINVAL;
9250 		goto err_free;
9251 	}
9252 
9253 	prog->aux->linfo = linfo;
9254 	prog->aux->nr_linfo = nr_linfo;
9255 
9256 	return 0;
9257 
9258 err_free:
9259 	kvfree(linfo);
9260 	return err;
9261 }
9262 
9263 static int check_btf_info(struct bpf_verifier_env *env,
9264 			  const union bpf_attr *attr,
9265 			  union bpf_attr __user *uattr)
9266 {
9267 	struct btf *btf;
9268 	int err;
9269 
9270 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
9271 		if (check_abnormal_return(env))
9272 			return -EINVAL;
9273 		return 0;
9274 	}
9275 
9276 	btf = btf_get_by_fd(attr->prog_btf_fd);
9277 	if (IS_ERR(btf))
9278 		return PTR_ERR(btf);
9279 	env->prog->aux->btf = btf;
9280 
9281 	err = check_btf_func(env, attr, uattr);
9282 	if (err)
9283 		return err;
9284 
9285 	err = check_btf_line(env, attr, uattr);
9286 	if (err)
9287 		return err;
9288 
9289 	return 0;
9290 }
9291 
9292 /* check %cur's range satisfies %old's */
9293 static bool range_within(struct bpf_reg_state *old,
9294 			 struct bpf_reg_state *cur)
9295 {
9296 	return old->umin_value <= cur->umin_value &&
9297 	       old->umax_value >= cur->umax_value &&
9298 	       old->smin_value <= cur->smin_value &&
9299 	       old->smax_value >= cur->smax_value &&
9300 	       old->u32_min_value <= cur->u32_min_value &&
9301 	       old->u32_max_value >= cur->u32_max_value &&
9302 	       old->s32_min_value <= cur->s32_min_value &&
9303 	       old->s32_max_value >= cur->s32_max_value;
9304 }
9305 
9306 /* Maximum number of register states that can exist at once */
9307 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
9308 struct idpair {
9309 	u32 old;
9310 	u32 cur;
9311 };
9312 
9313 /* If in the old state two registers had the same id, then they need to have
9314  * the same id in the new state as well.  But that id could be different from
9315  * the old state, so we need to track the mapping from old to new ids.
9316  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
9317  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
9318  * regs with a different old id could still have new id 9, we don't care about
9319  * that.
9320  * So we look through our idmap to see if this old id has been seen before.  If
9321  * so, we require the new id to match; otherwise, we add the id pair to the map.
9322  */
9323 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
9324 {
9325 	unsigned int i;
9326 
9327 	for (i = 0; i < ID_MAP_SIZE; i++) {
9328 		if (!idmap[i].old) {
9329 			/* Reached an empty slot; haven't seen this id before */
9330 			idmap[i].old = old_id;
9331 			idmap[i].cur = cur_id;
9332 			return true;
9333 		}
9334 		if (idmap[i].old == old_id)
9335 			return idmap[i].cur == cur_id;
9336 	}
9337 	/* We ran out of idmap slots, which should be impossible */
9338 	WARN_ON_ONCE(1);
9339 	return false;
9340 }
9341 
9342 static void clean_func_state(struct bpf_verifier_env *env,
9343 			     struct bpf_func_state *st)
9344 {
9345 	enum bpf_reg_liveness live;
9346 	int i, j;
9347 
9348 	for (i = 0; i < BPF_REG_FP; i++) {
9349 		live = st->regs[i].live;
9350 		/* liveness must not touch this register anymore */
9351 		st->regs[i].live |= REG_LIVE_DONE;
9352 		if (!(live & REG_LIVE_READ))
9353 			/* since the register is unused, clear its state
9354 			 * to make further comparison simpler
9355 			 */
9356 			__mark_reg_not_init(env, &st->regs[i]);
9357 	}
9358 
9359 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
9360 		live = st->stack[i].spilled_ptr.live;
9361 		/* liveness must not touch this stack slot anymore */
9362 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
9363 		if (!(live & REG_LIVE_READ)) {
9364 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9365 			for (j = 0; j < BPF_REG_SIZE; j++)
9366 				st->stack[i].slot_type[j] = STACK_INVALID;
9367 		}
9368 	}
9369 }
9370 
9371 static void clean_verifier_state(struct bpf_verifier_env *env,
9372 				 struct bpf_verifier_state *st)
9373 {
9374 	int i;
9375 
9376 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
9377 		/* all regs in this state in all frames were already marked */
9378 		return;
9379 
9380 	for (i = 0; i <= st->curframe; i++)
9381 		clean_func_state(env, st->frame[i]);
9382 }
9383 
9384 /* the parentage chains form a tree.
9385  * the verifier states are added to state lists at given insn and
9386  * pushed into state stack for future exploration.
9387  * when the verifier reaches bpf_exit insn some of the verifer states
9388  * stored in the state lists have their final liveness state already,
9389  * but a lot of states will get revised from liveness point of view when
9390  * the verifier explores other branches.
9391  * Example:
9392  * 1: r0 = 1
9393  * 2: if r1 == 100 goto pc+1
9394  * 3: r0 = 2
9395  * 4: exit
9396  * when the verifier reaches exit insn the register r0 in the state list of
9397  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
9398  * of insn 2 and goes exploring further. At the insn 4 it will walk the
9399  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
9400  *
9401  * Since the verifier pushes the branch states as it sees them while exploring
9402  * the program the condition of walking the branch instruction for the second
9403  * time means that all states below this branch were already explored and
9404  * their final liveness markes are already propagated.
9405  * Hence when the verifier completes the search of state list in is_state_visited()
9406  * we can call this clean_live_states() function to mark all liveness states
9407  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
9408  * will not be used.
9409  * This function also clears the registers and stack for states that !READ
9410  * to simplify state merging.
9411  *
9412  * Important note here that walking the same branch instruction in the callee
9413  * doesn't meant that the states are DONE. The verifier has to compare
9414  * the callsites
9415  */
9416 static void clean_live_states(struct bpf_verifier_env *env, int insn,
9417 			      struct bpf_verifier_state *cur)
9418 {
9419 	struct bpf_verifier_state_list *sl;
9420 	int i;
9421 
9422 	sl = *explored_state(env, insn);
9423 	while (sl) {
9424 		if (sl->state.branches)
9425 			goto next;
9426 		if (sl->state.insn_idx != insn ||
9427 		    sl->state.curframe != cur->curframe)
9428 			goto next;
9429 		for (i = 0; i <= cur->curframe; i++)
9430 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
9431 				goto next;
9432 		clean_verifier_state(env, &sl->state);
9433 next:
9434 		sl = sl->next;
9435 	}
9436 }
9437 
9438 /* Returns true if (rold safe implies rcur safe) */
9439 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
9440 		    struct idpair *idmap)
9441 {
9442 	bool equal;
9443 
9444 	if (!(rold->live & REG_LIVE_READ))
9445 		/* explored state didn't use this */
9446 		return true;
9447 
9448 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
9449 
9450 	if (rold->type == PTR_TO_STACK)
9451 		/* two stack pointers are equal only if they're pointing to
9452 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
9453 		 */
9454 		return equal && rold->frameno == rcur->frameno;
9455 
9456 	if (equal)
9457 		return true;
9458 
9459 	if (rold->type == NOT_INIT)
9460 		/* explored state can't have used this */
9461 		return true;
9462 	if (rcur->type == NOT_INIT)
9463 		return false;
9464 	switch (rold->type) {
9465 	case SCALAR_VALUE:
9466 		if (rcur->type == SCALAR_VALUE) {
9467 			if (!rold->precise && !rcur->precise)
9468 				return true;
9469 			/* new val must satisfy old val knowledge */
9470 			return range_within(rold, rcur) &&
9471 			       tnum_in(rold->var_off, rcur->var_off);
9472 		} else {
9473 			/* We're trying to use a pointer in place of a scalar.
9474 			 * Even if the scalar was unbounded, this could lead to
9475 			 * pointer leaks because scalars are allowed to leak
9476 			 * while pointers are not. We could make this safe in
9477 			 * special cases if root is calling us, but it's
9478 			 * probably not worth the hassle.
9479 			 */
9480 			return false;
9481 		}
9482 	case PTR_TO_MAP_KEY:
9483 	case PTR_TO_MAP_VALUE:
9484 		/* If the new min/max/var_off satisfy the old ones and
9485 		 * everything else matches, we are OK.
9486 		 * 'id' is not compared, since it's only used for maps with
9487 		 * bpf_spin_lock inside map element and in such cases if
9488 		 * the rest of the prog is valid for one map element then
9489 		 * it's valid for all map elements regardless of the key
9490 		 * used in bpf_map_lookup()
9491 		 */
9492 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
9493 		       range_within(rold, rcur) &&
9494 		       tnum_in(rold->var_off, rcur->var_off);
9495 	case PTR_TO_MAP_VALUE_OR_NULL:
9496 		/* a PTR_TO_MAP_VALUE could be safe to use as a
9497 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
9498 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
9499 		 * checked, doing so could have affected others with the same
9500 		 * id, and we can't check for that because we lost the id when
9501 		 * we converted to a PTR_TO_MAP_VALUE.
9502 		 */
9503 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
9504 			return false;
9505 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
9506 			return false;
9507 		/* Check our ids match any regs they're supposed to */
9508 		return check_ids(rold->id, rcur->id, idmap);
9509 	case PTR_TO_PACKET_META:
9510 	case PTR_TO_PACKET:
9511 		if (rcur->type != rold->type)
9512 			return false;
9513 		/* We must have at least as much range as the old ptr
9514 		 * did, so that any accesses which were safe before are
9515 		 * still safe.  This is true even if old range < old off,
9516 		 * since someone could have accessed through (ptr - k), or
9517 		 * even done ptr -= k in a register, to get a safe access.
9518 		 */
9519 		if (rold->range > rcur->range)
9520 			return false;
9521 		/* If the offsets don't match, we can't trust our alignment;
9522 		 * nor can we be sure that we won't fall out of range.
9523 		 */
9524 		if (rold->off != rcur->off)
9525 			return false;
9526 		/* id relations must be preserved */
9527 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
9528 			return false;
9529 		/* new val must satisfy old val knowledge */
9530 		return range_within(rold, rcur) &&
9531 		       tnum_in(rold->var_off, rcur->var_off);
9532 	case PTR_TO_CTX:
9533 	case CONST_PTR_TO_MAP:
9534 	case PTR_TO_PACKET_END:
9535 	case PTR_TO_FLOW_KEYS:
9536 	case PTR_TO_SOCKET:
9537 	case PTR_TO_SOCKET_OR_NULL:
9538 	case PTR_TO_SOCK_COMMON:
9539 	case PTR_TO_SOCK_COMMON_OR_NULL:
9540 	case PTR_TO_TCP_SOCK:
9541 	case PTR_TO_TCP_SOCK_OR_NULL:
9542 	case PTR_TO_XDP_SOCK:
9543 		/* Only valid matches are exact, which memcmp() above
9544 		 * would have accepted
9545 		 */
9546 	default:
9547 		/* Don't know what's going on, just say it's not safe */
9548 		return false;
9549 	}
9550 
9551 	/* Shouldn't get here; if we do, say it's not safe */
9552 	WARN_ON_ONCE(1);
9553 	return false;
9554 }
9555 
9556 static bool stacksafe(struct bpf_func_state *old,
9557 		      struct bpf_func_state *cur,
9558 		      struct idpair *idmap)
9559 {
9560 	int i, spi;
9561 
9562 	/* walk slots of the explored stack and ignore any additional
9563 	 * slots in the current stack, since explored(safe) state
9564 	 * didn't use them
9565 	 */
9566 	for (i = 0; i < old->allocated_stack; i++) {
9567 		spi = i / BPF_REG_SIZE;
9568 
9569 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
9570 			i += BPF_REG_SIZE - 1;
9571 			/* explored state didn't use this */
9572 			continue;
9573 		}
9574 
9575 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
9576 			continue;
9577 
9578 		/* explored stack has more populated slots than current stack
9579 		 * and these slots were used
9580 		 */
9581 		if (i >= cur->allocated_stack)
9582 			return false;
9583 
9584 		/* if old state was safe with misc data in the stack
9585 		 * it will be safe with zero-initialized stack.
9586 		 * The opposite is not true
9587 		 */
9588 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
9589 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
9590 			continue;
9591 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
9592 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
9593 			/* Ex: old explored (safe) state has STACK_SPILL in
9594 			 * this stack slot, but current has STACK_MISC ->
9595 			 * this verifier states are not equivalent,
9596 			 * return false to continue verification of this path
9597 			 */
9598 			return false;
9599 		if (i % BPF_REG_SIZE)
9600 			continue;
9601 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
9602 			continue;
9603 		if (!regsafe(&old->stack[spi].spilled_ptr,
9604 			     &cur->stack[spi].spilled_ptr,
9605 			     idmap))
9606 			/* when explored and current stack slot are both storing
9607 			 * spilled registers, check that stored pointers types
9608 			 * are the same as well.
9609 			 * Ex: explored safe path could have stored
9610 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
9611 			 * but current path has stored:
9612 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
9613 			 * such verifier states are not equivalent.
9614 			 * return false to continue verification of this path
9615 			 */
9616 			return false;
9617 	}
9618 	return true;
9619 }
9620 
9621 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
9622 {
9623 	if (old->acquired_refs != cur->acquired_refs)
9624 		return false;
9625 	return !memcmp(old->refs, cur->refs,
9626 		       sizeof(*old->refs) * old->acquired_refs);
9627 }
9628 
9629 /* compare two verifier states
9630  *
9631  * all states stored in state_list are known to be valid, since
9632  * verifier reached 'bpf_exit' instruction through them
9633  *
9634  * this function is called when verifier exploring different branches of
9635  * execution popped from the state stack. If it sees an old state that has
9636  * more strict register state and more strict stack state then this execution
9637  * branch doesn't need to be explored further, since verifier already
9638  * concluded that more strict state leads to valid finish.
9639  *
9640  * Therefore two states are equivalent if register state is more conservative
9641  * and explored stack state is more conservative than the current one.
9642  * Example:
9643  *       explored                   current
9644  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
9645  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
9646  *
9647  * In other words if current stack state (one being explored) has more
9648  * valid slots than old one that already passed validation, it means
9649  * the verifier can stop exploring and conclude that current state is valid too
9650  *
9651  * Similarly with registers. If explored state has register type as invalid
9652  * whereas register type in current state is meaningful, it means that
9653  * the current state will reach 'bpf_exit' instruction safely
9654  */
9655 static bool func_states_equal(struct bpf_func_state *old,
9656 			      struct bpf_func_state *cur)
9657 {
9658 	struct idpair *idmap;
9659 	bool ret = false;
9660 	int i;
9661 
9662 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
9663 	/* If we failed to allocate the idmap, just say it's not safe */
9664 	if (!idmap)
9665 		return false;
9666 
9667 	for (i = 0; i < MAX_BPF_REG; i++) {
9668 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
9669 			goto out_free;
9670 	}
9671 
9672 	if (!stacksafe(old, cur, idmap))
9673 		goto out_free;
9674 
9675 	if (!refsafe(old, cur))
9676 		goto out_free;
9677 	ret = true;
9678 out_free:
9679 	kfree(idmap);
9680 	return ret;
9681 }
9682 
9683 static bool states_equal(struct bpf_verifier_env *env,
9684 			 struct bpf_verifier_state *old,
9685 			 struct bpf_verifier_state *cur)
9686 {
9687 	int i;
9688 
9689 	if (old->curframe != cur->curframe)
9690 		return false;
9691 
9692 	/* Verification state from speculative execution simulation
9693 	 * must never prune a non-speculative execution one.
9694 	 */
9695 	if (old->speculative && !cur->speculative)
9696 		return false;
9697 
9698 	if (old->active_spin_lock != cur->active_spin_lock)
9699 		return false;
9700 
9701 	/* for states to be equal callsites have to be the same
9702 	 * and all frame states need to be equivalent
9703 	 */
9704 	for (i = 0; i <= old->curframe; i++) {
9705 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
9706 			return false;
9707 		if (!func_states_equal(old->frame[i], cur->frame[i]))
9708 			return false;
9709 	}
9710 	return true;
9711 }
9712 
9713 /* Return 0 if no propagation happened. Return negative error code if error
9714  * happened. Otherwise, return the propagated bit.
9715  */
9716 static int propagate_liveness_reg(struct bpf_verifier_env *env,
9717 				  struct bpf_reg_state *reg,
9718 				  struct bpf_reg_state *parent_reg)
9719 {
9720 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
9721 	u8 flag = reg->live & REG_LIVE_READ;
9722 	int err;
9723 
9724 	/* When comes here, read flags of PARENT_REG or REG could be any of
9725 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
9726 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
9727 	 */
9728 	if (parent_flag == REG_LIVE_READ64 ||
9729 	    /* Or if there is no read flag from REG. */
9730 	    !flag ||
9731 	    /* Or if the read flag from REG is the same as PARENT_REG. */
9732 	    parent_flag == flag)
9733 		return 0;
9734 
9735 	err = mark_reg_read(env, reg, parent_reg, flag);
9736 	if (err)
9737 		return err;
9738 
9739 	return flag;
9740 }
9741 
9742 /* A write screens off any subsequent reads; but write marks come from the
9743  * straight-line code between a state and its parent.  When we arrive at an
9744  * equivalent state (jump target or such) we didn't arrive by the straight-line
9745  * code, so read marks in the state must propagate to the parent regardless
9746  * of the state's write marks. That's what 'parent == state->parent' comparison
9747  * in mark_reg_read() is for.
9748  */
9749 static int propagate_liveness(struct bpf_verifier_env *env,
9750 			      const struct bpf_verifier_state *vstate,
9751 			      struct bpf_verifier_state *vparent)
9752 {
9753 	struct bpf_reg_state *state_reg, *parent_reg;
9754 	struct bpf_func_state *state, *parent;
9755 	int i, frame, err = 0;
9756 
9757 	if (vparent->curframe != vstate->curframe) {
9758 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
9759 		     vparent->curframe, vstate->curframe);
9760 		return -EFAULT;
9761 	}
9762 	/* Propagate read liveness of registers... */
9763 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
9764 	for (frame = 0; frame <= vstate->curframe; frame++) {
9765 		parent = vparent->frame[frame];
9766 		state = vstate->frame[frame];
9767 		parent_reg = parent->regs;
9768 		state_reg = state->regs;
9769 		/* We don't need to worry about FP liveness, it's read-only */
9770 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
9771 			err = propagate_liveness_reg(env, &state_reg[i],
9772 						     &parent_reg[i]);
9773 			if (err < 0)
9774 				return err;
9775 			if (err == REG_LIVE_READ64)
9776 				mark_insn_zext(env, &parent_reg[i]);
9777 		}
9778 
9779 		/* Propagate stack slots. */
9780 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
9781 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
9782 			parent_reg = &parent->stack[i].spilled_ptr;
9783 			state_reg = &state->stack[i].spilled_ptr;
9784 			err = propagate_liveness_reg(env, state_reg,
9785 						     parent_reg);
9786 			if (err < 0)
9787 				return err;
9788 		}
9789 	}
9790 	return 0;
9791 }
9792 
9793 /* find precise scalars in the previous equivalent state and
9794  * propagate them into the current state
9795  */
9796 static int propagate_precision(struct bpf_verifier_env *env,
9797 			       const struct bpf_verifier_state *old)
9798 {
9799 	struct bpf_reg_state *state_reg;
9800 	struct bpf_func_state *state;
9801 	int i, err = 0;
9802 
9803 	state = old->frame[old->curframe];
9804 	state_reg = state->regs;
9805 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
9806 		if (state_reg->type != SCALAR_VALUE ||
9807 		    !state_reg->precise)
9808 			continue;
9809 		if (env->log.level & BPF_LOG_LEVEL2)
9810 			verbose(env, "propagating r%d\n", i);
9811 		err = mark_chain_precision(env, i);
9812 		if (err < 0)
9813 			return err;
9814 	}
9815 
9816 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
9817 		if (state->stack[i].slot_type[0] != STACK_SPILL)
9818 			continue;
9819 		state_reg = &state->stack[i].spilled_ptr;
9820 		if (state_reg->type != SCALAR_VALUE ||
9821 		    !state_reg->precise)
9822 			continue;
9823 		if (env->log.level & BPF_LOG_LEVEL2)
9824 			verbose(env, "propagating fp%d\n",
9825 				(-i - 1) * BPF_REG_SIZE);
9826 		err = mark_chain_precision_stack(env, i);
9827 		if (err < 0)
9828 			return err;
9829 	}
9830 	return 0;
9831 }
9832 
9833 static bool states_maybe_looping(struct bpf_verifier_state *old,
9834 				 struct bpf_verifier_state *cur)
9835 {
9836 	struct bpf_func_state *fold, *fcur;
9837 	int i, fr = cur->curframe;
9838 
9839 	if (old->curframe != fr)
9840 		return false;
9841 
9842 	fold = old->frame[fr];
9843 	fcur = cur->frame[fr];
9844 	for (i = 0; i < MAX_BPF_REG; i++)
9845 		if (memcmp(&fold->regs[i], &fcur->regs[i],
9846 			   offsetof(struct bpf_reg_state, parent)))
9847 			return false;
9848 	return true;
9849 }
9850 
9851 
9852 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
9853 {
9854 	struct bpf_verifier_state_list *new_sl;
9855 	struct bpf_verifier_state_list *sl, **pprev;
9856 	struct bpf_verifier_state *cur = env->cur_state, *new;
9857 	int i, j, err, states_cnt = 0;
9858 	bool add_new_state = env->test_state_freq ? true : false;
9859 
9860 	cur->last_insn_idx = env->prev_insn_idx;
9861 	if (!env->insn_aux_data[insn_idx].prune_point)
9862 		/* this 'insn_idx' instruction wasn't marked, so we will not
9863 		 * be doing state search here
9864 		 */
9865 		return 0;
9866 
9867 	/* bpf progs typically have pruning point every 4 instructions
9868 	 * http://vger.kernel.org/bpfconf2019.html#session-1
9869 	 * Do not add new state for future pruning if the verifier hasn't seen
9870 	 * at least 2 jumps and at least 8 instructions.
9871 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
9872 	 * In tests that amounts to up to 50% reduction into total verifier
9873 	 * memory consumption and 20% verifier time speedup.
9874 	 */
9875 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
9876 	    env->insn_processed - env->prev_insn_processed >= 8)
9877 		add_new_state = true;
9878 
9879 	pprev = explored_state(env, insn_idx);
9880 	sl = *pprev;
9881 
9882 	clean_live_states(env, insn_idx, cur);
9883 
9884 	while (sl) {
9885 		states_cnt++;
9886 		if (sl->state.insn_idx != insn_idx)
9887 			goto next;
9888 		if (sl->state.branches) {
9889 			if (states_maybe_looping(&sl->state, cur) &&
9890 			    states_equal(env, &sl->state, cur)) {
9891 				verbose_linfo(env, insn_idx, "; ");
9892 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
9893 				return -EINVAL;
9894 			}
9895 			/* if the verifier is processing a loop, avoid adding new state
9896 			 * too often, since different loop iterations have distinct
9897 			 * states and may not help future pruning.
9898 			 * This threshold shouldn't be too low to make sure that
9899 			 * a loop with large bound will be rejected quickly.
9900 			 * The most abusive loop will be:
9901 			 * r1 += 1
9902 			 * if r1 < 1000000 goto pc-2
9903 			 * 1M insn_procssed limit / 100 == 10k peak states.
9904 			 * This threshold shouldn't be too high either, since states
9905 			 * at the end of the loop are likely to be useful in pruning.
9906 			 */
9907 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
9908 			    env->insn_processed - env->prev_insn_processed < 100)
9909 				add_new_state = false;
9910 			goto miss;
9911 		}
9912 		if (states_equal(env, &sl->state, cur)) {
9913 			sl->hit_cnt++;
9914 			/* reached equivalent register/stack state,
9915 			 * prune the search.
9916 			 * Registers read by the continuation are read by us.
9917 			 * If we have any write marks in env->cur_state, they
9918 			 * will prevent corresponding reads in the continuation
9919 			 * from reaching our parent (an explored_state).  Our
9920 			 * own state will get the read marks recorded, but
9921 			 * they'll be immediately forgotten as we're pruning
9922 			 * this state and will pop a new one.
9923 			 */
9924 			err = propagate_liveness(env, &sl->state, cur);
9925 
9926 			/* if previous state reached the exit with precision and
9927 			 * current state is equivalent to it (except precsion marks)
9928 			 * the precision needs to be propagated back in
9929 			 * the current state.
9930 			 */
9931 			err = err ? : push_jmp_history(env, cur);
9932 			err = err ? : propagate_precision(env, &sl->state);
9933 			if (err)
9934 				return err;
9935 			return 1;
9936 		}
9937 miss:
9938 		/* when new state is not going to be added do not increase miss count.
9939 		 * Otherwise several loop iterations will remove the state
9940 		 * recorded earlier. The goal of these heuristics is to have
9941 		 * states from some iterations of the loop (some in the beginning
9942 		 * and some at the end) to help pruning.
9943 		 */
9944 		if (add_new_state)
9945 			sl->miss_cnt++;
9946 		/* heuristic to determine whether this state is beneficial
9947 		 * to keep checking from state equivalence point of view.
9948 		 * Higher numbers increase max_states_per_insn and verification time,
9949 		 * but do not meaningfully decrease insn_processed.
9950 		 */
9951 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
9952 			/* the state is unlikely to be useful. Remove it to
9953 			 * speed up verification
9954 			 */
9955 			*pprev = sl->next;
9956 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
9957 				u32 br = sl->state.branches;
9958 
9959 				WARN_ONCE(br,
9960 					  "BUG live_done but branches_to_explore %d\n",
9961 					  br);
9962 				free_verifier_state(&sl->state, false);
9963 				kfree(sl);
9964 				env->peak_states--;
9965 			} else {
9966 				/* cannot free this state, since parentage chain may
9967 				 * walk it later. Add it for free_list instead to
9968 				 * be freed at the end of verification
9969 				 */
9970 				sl->next = env->free_list;
9971 				env->free_list = sl;
9972 			}
9973 			sl = *pprev;
9974 			continue;
9975 		}
9976 next:
9977 		pprev = &sl->next;
9978 		sl = *pprev;
9979 	}
9980 
9981 	if (env->max_states_per_insn < states_cnt)
9982 		env->max_states_per_insn = states_cnt;
9983 
9984 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
9985 		return push_jmp_history(env, cur);
9986 
9987 	if (!add_new_state)
9988 		return push_jmp_history(env, cur);
9989 
9990 	/* There were no equivalent states, remember the current one.
9991 	 * Technically the current state is not proven to be safe yet,
9992 	 * but it will either reach outer most bpf_exit (which means it's safe)
9993 	 * or it will be rejected. When there are no loops the verifier won't be
9994 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
9995 	 * again on the way to bpf_exit.
9996 	 * When looping the sl->state.branches will be > 0 and this state
9997 	 * will not be considered for equivalence until branches == 0.
9998 	 */
9999 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
10000 	if (!new_sl)
10001 		return -ENOMEM;
10002 	env->total_states++;
10003 	env->peak_states++;
10004 	env->prev_jmps_processed = env->jmps_processed;
10005 	env->prev_insn_processed = env->insn_processed;
10006 
10007 	/* add new state to the head of linked list */
10008 	new = &new_sl->state;
10009 	err = copy_verifier_state(new, cur);
10010 	if (err) {
10011 		free_verifier_state(new, false);
10012 		kfree(new_sl);
10013 		return err;
10014 	}
10015 	new->insn_idx = insn_idx;
10016 	WARN_ONCE(new->branches != 1,
10017 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
10018 
10019 	cur->parent = new;
10020 	cur->first_insn_idx = insn_idx;
10021 	clear_jmp_history(cur);
10022 	new_sl->next = *explored_state(env, insn_idx);
10023 	*explored_state(env, insn_idx) = new_sl;
10024 	/* connect new state to parentage chain. Current frame needs all
10025 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
10026 	 * to the stack implicitly by JITs) so in callers' frames connect just
10027 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
10028 	 * the state of the call instruction (with WRITTEN set), and r0 comes
10029 	 * from callee with its full parentage chain, anyway.
10030 	 */
10031 	/* clear write marks in current state: the writes we did are not writes
10032 	 * our child did, so they don't screen off its reads from us.
10033 	 * (There are no read marks in current state, because reads always mark
10034 	 * their parent and current state never has children yet.  Only
10035 	 * explored_states can get read marks.)
10036 	 */
10037 	for (j = 0; j <= cur->curframe; j++) {
10038 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
10039 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
10040 		for (i = 0; i < BPF_REG_FP; i++)
10041 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
10042 	}
10043 
10044 	/* all stack frames are accessible from callee, clear them all */
10045 	for (j = 0; j <= cur->curframe; j++) {
10046 		struct bpf_func_state *frame = cur->frame[j];
10047 		struct bpf_func_state *newframe = new->frame[j];
10048 
10049 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
10050 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
10051 			frame->stack[i].spilled_ptr.parent =
10052 						&newframe->stack[i].spilled_ptr;
10053 		}
10054 	}
10055 	return 0;
10056 }
10057 
10058 /* Return true if it's OK to have the same insn return a different type. */
10059 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
10060 {
10061 	switch (type) {
10062 	case PTR_TO_CTX:
10063 	case PTR_TO_SOCKET:
10064 	case PTR_TO_SOCKET_OR_NULL:
10065 	case PTR_TO_SOCK_COMMON:
10066 	case PTR_TO_SOCK_COMMON_OR_NULL:
10067 	case PTR_TO_TCP_SOCK:
10068 	case PTR_TO_TCP_SOCK_OR_NULL:
10069 	case PTR_TO_XDP_SOCK:
10070 	case PTR_TO_BTF_ID:
10071 	case PTR_TO_BTF_ID_OR_NULL:
10072 		return false;
10073 	default:
10074 		return true;
10075 	}
10076 }
10077 
10078 /* If an instruction was previously used with particular pointer types, then we
10079  * need to be careful to avoid cases such as the below, where it may be ok
10080  * for one branch accessing the pointer, but not ok for the other branch:
10081  *
10082  * R1 = sock_ptr
10083  * goto X;
10084  * ...
10085  * R1 = some_other_valid_ptr;
10086  * goto X;
10087  * ...
10088  * R2 = *(u32 *)(R1 + 0);
10089  */
10090 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
10091 {
10092 	return src != prev && (!reg_type_mismatch_ok(src) ||
10093 			       !reg_type_mismatch_ok(prev));
10094 }
10095 
10096 static int do_check(struct bpf_verifier_env *env)
10097 {
10098 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
10099 	struct bpf_verifier_state *state = env->cur_state;
10100 	struct bpf_insn *insns = env->prog->insnsi;
10101 	struct bpf_reg_state *regs;
10102 	int insn_cnt = env->prog->len;
10103 	bool do_print_state = false;
10104 	int prev_insn_idx = -1;
10105 
10106 	for (;;) {
10107 		struct bpf_insn *insn;
10108 		u8 class;
10109 		int err;
10110 
10111 		env->prev_insn_idx = prev_insn_idx;
10112 		if (env->insn_idx >= insn_cnt) {
10113 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
10114 				env->insn_idx, insn_cnt);
10115 			return -EFAULT;
10116 		}
10117 
10118 		insn = &insns[env->insn_idx];
10119 		class = BPF_CLASS(insn->code);
10120 
10121 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
10122 			verbose(env,
10123 				"BPF program is too large. Processed %d insn\n",
10124 				env->insn_processed);
10125 			return -E2BIG;
10126 		}
10127 
10128 		err = is_state_visited(env, env->insn_idx);
10129 		if (err < 0)
10130 			return err;
10131 		if (err == 1) {
10132 			/* found equivalent state, can prune the search */
10133 			if (env->log.level & BPF_LOG_LEVEL) {
10134 				if (do_print_state)
10135 					verbose(env, "\nfrom %d to %d%s: safe\n",
10136 						env->prev_insn_idx, env->insn_idx,
10137 						env->cur_state->speculative ?
10138 						" (speculative execution)" : "");
10139 				else
10140 					verbose(env, "%d: safe\n", env->insn_idx);
10141 			}
10142 			goto process_bpf_exit;
10143 		}
10144 
10145 		if (signal_pending(current))
10146 			return -EAGAIN;
10147 
10148 		if (need_resched())
10149 			cond_resched();
10150 
10151 		if (env->log.level & BPF_LOG_LEVEL2 ||
10152 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
10153 			if (env->log.level & BPF_LOG_LEVEL2)
10154 				verbose(env, "%d:", env->insn_idx);
10155 			else
10156 				verbose(env, "\nfrom %d to %d%s:",
10157 					env->prev_insn_idx, env->insn_idx,
10158 					env->cur_state->speculative ?
10159 					" (speculative execution)" : "");
10160 			print_verifier_state(env, state->frame[state->curframe]);
10161 			do_print_state = false;
10162 		}
10163 
10164 		if (env->log.level & BPF_LOG_LEVEL) {
10165 			const struct bpf_insn_cbs cbs = {
10166 				.cb_print	= verbose,
10167 				.private_data	= env,
10168 			};
10169 
10170 			verbose_linfo(env, env->insn_idx, "; ");
10171 			verbose(env, "%d: ", env->insn_idx);
10172 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
10173 		}
10174 
10175 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
10176 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
10177 							   env->prev_insn_idx);
10178 			if (err)
10179 				return err;
10180 		}
10181 
10182 		regs = cur_regs(env);
10183 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
10184 		prev_insn_idx = env->insn_idx;
10185 
10186 		if (class == BPF_ALU || class == BPF_ALU64) {
10187 			err = check_alu_op(env, insn);
10188 			if (err)
10189 				return err;
10190 
10191 		} else if (class == BPF_LDX) {
10192 			enum bpf_reg_type *prev_src_type, src_reg_type;
10193 
10194 			/* check for reserved fields is already done */
10195 
10196 			/* check src operand */
10197 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10198 			if (err)
10199 				return err;
10200 
10201 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
10202 			if (err)
10203 				return err;
10204 
10205 			src_reg_type = regs[insn->src_reg].type;
10206 
10207 			/* check that memory (src_reg + off) is readable,
10208 			 * the state of dst_reg will be updated by this func
10209 			 */
10210 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
10211 					       insn->off, BPF_SIZE(insn->code),
10212 					       BPF_READ, insn->dst_reg, false);
10213 			if (err)
10214 				return err;
10215 
10216 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10217 
10218 			if (*prev_src_type == NOT_INIT) {
10219 				/* saw a valid insn
10220 				 * dst_reg = *(u32 *)(src_reg + off)
10221 				 * save type to validate intersecting paths
10222 				 */
10223 				*prev_src_type = src_reg_type;
10224 
10225 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
10226 				/* ABuser program is trying to use the same insn
10227 				 * dst_reg = *(u32*) (src_reg + off)
10228 				 * with different pointer types:
10229 				 * src_reg == ctx in one branch and
10230 				 * src_reg == stack|map in some other branch.
10231 				 * Reject it.
10232 				 */
10233 				verbose(env, "same insn cannot be used with different pointers\n");
10234 				return -EINVAL;
10235 			}
10236 
10237 		} else if (class == BPF_STX) {
10238 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
10239 
10240 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
10241 				err = check_atomic(env, env->insn_idx, insn);
10242 				if (err)
10243 					return err;
10244 				env->insn_idx++;
10245 				continue;
10246 			}
10247 
10248 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
10249 				verbose(env, "BPF_STX uses reserved fields\n");
10250 				return -EINVAL;
10251 			}
10252 
10253 			/* check src1 operand */
10254 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10255 			if (err)
10256 				return err;
10257 			/* check src2 operand */
10258 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10259 			if (err)
10260 				return err;
10261 
10262 			dst_reg_type = regs[insn->dst_reg].type;
10263 
10264 			/* check that memory (dst_reg + off) is writeable */
10265 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10266 					       insn->off, BPF_SIZE(insn->code),
10267 					       BPF_WRITE, insn->src_reg, false);
10268 			if (err)
10269 				return err;
10270 
10271 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10272 
10273 			if (*prev_dst_type == NOT_INIT) {
10274 				*prev_dst_type = dst_reg_type;
10275 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
10276 				verbose(env, "same insn cannot be used with different pointers\n");
10277 				return -EINVAL;
10278 			}
10279 
10280 		} else if (class == BPF_ST) {
10281 			if (BPF_MODE(insn->code) != BPF_MEM ||
10282 			    insn->src_reg != BPF_REG_0) {
10283 				verbose(env, "BPF_ST uses reserved fields\n");
10284 				return -EINVAL;
10285 			}
10286 			/* check src operand */
10287 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10288 			if (err)
10289 				return err;
10290 
10291 			if (is_ctx_reg(env, insn->dst_reg)) {
10292 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
10293 					insn->dst_reg,
10294 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
10295 				return -EACCES;
10296 			}
10297 
10298 			/* check that memory (dst_reg + off) is writeable */
10299 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10300 					       insn->off, BPF_SIZE(insn->code),
10301 					       BPF_WRITE, -1, false);
10302 			if (err)
10303 				return err;
10304 
10305 		} else if (class == BPF_JMP || class == BPF_JMP32) {
10306 			u8 opcode = BPF_OP(insn->code);
10307 
10308 			env->jmps_processed++;
10309 			if (opcode == BPF_CALL) {
10310 				if (BPF_SRC(insn->code) != BPF_K ||
10311 				    insn->off != 0 ||
10312 				    (insn->src_reg != BPF_REG_0 &&
10313 				     insn->src_reg != BPF_PSEUDO_CALL) ||
10314 				    insn->dst_reg != BPF_REG_0 ||
10315 				    class == BPF_JMP32) {
10316 					verbose(env, "BPF_CALL uses reserved fields\n");
10317 					return -EINVAL;
10318 				}
10319 
10320 				if (env->cur_state->active_spin_lock &&
10321 				    (insn->src_reg == BPF_PSEUDO_CALL ||
10322 				     insn->imm != BPF_FUNC_spin_unlock)) {
10323 					verbose(env, "function calls are not allowed while holding a lock\n");
10324 					return -EINVAL;
10325 				}
10326 				if (insn->src_reg == BPF_PSEUDO_CALL)
10327 					err = check_func_call(env, insn, &env->insn_idx);
10328 				else
10329 					err = check_helper_call(env, insn, &env->insn_idx);
10330 				if (err)
10331 					return err;
10332 			} else if (opcode == BPF_JA) {
10333 				if (BPF_SRC(insn->code) != BPF_K ||
10334 				    insn->imm != 0 ||
10335 				    insn->src_reg != BPF_REG_0 ||
10336 				    insn->dst_reg != BPF_REG_0 ||
10337 				    class == BPF_JMP32) {
10338 					verbose(env, "BPF_JA uses reserved fields\n");
10339 					return -EINVAL;
10340 				}
10341 
10342 				env->insn_idx += insn->off + 1;
10343 				continue;
10344 
10345 			} else if (opcode == BPF_EXIT) {
10346 				if (BPF_SRC(insn->code) != BPF_K ||
10347 				    insn->imm != 0 ||
10348 				    insn->src_reg != BPF_REG_0 ||
10349 				    insn->dst_reg != BPF_REG_0 ||
10350 				    class == BPF_JMP32) {
10351 					verbose(env, "BPF_EXIT uses reserved fields\n");
10352 					return -EINVAL;
10353 				}
10354 
10355 				if (env->cur_state->active_spin_lock) {
10356 					verbose(env, "bpf_spin_unlock is missing\n");
10357 					return -EINVAL;
10358 				}
10359 
10360 				if (state->curframe) {
10361 					/* exit from nested function */
10362 					err = prepare_func_exit(env, &env->insn_idx);
10363 					if (err)
10364 						return err;
10365 					do_print_state = true;
10366 					continue;
10367 				}
10368 
10369 				err = check_reference_leak(env);
10370 				if (err)
10371 					return err;
10372 
10373 				err = check_return_code(env);
10374 				if (err)
10375 					return err;
10376 process_bpf_exit:
10377 				update_branch_counts(env, env->cur_state);
10378 				err = pop_stack(env, &prev_insn_idx,
10379 						&env->insn_idx, pop_log);
10380 				if (err < 0) {
10381 					if (err != -ENOENT)
10382 						return err;
10383 					break;
10384 				} else {
10385 					do_print_state = true;
10386 					continue;
10387 				}
10388 			} else {
10389 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
10390 				if (err)
10391 					return err;
10392 			}
10393 		} else if (class == BPF_LD) {
10394 			u8 mode = BPF_MODE(insn->code);
10395 
10396 			if (mode == BPF_ABS || mode == BPF_IND) {
10397 				err = check_ld_abs(env, insn);
10398 				if (err)
10399 					return err;
10400 
10401 			} else if (mode == BPF_IMM) {
10402 				err = check_ld_imm(env, insn);
10403 				if (err)
10404 					return err;
10405 
10406 				env->insn_idx++;
10407 				env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
10408 			} else {
10409 				verbose(env, "invalid BPF_LD mode\n");
10410 				return -EINVAL;
10411 			}
10412 		} else {
10413 			verbose(env, "unknown insn class %d\n", class);
10414 			return -EINVAL;
10415 		}
10416 
10417 		env->insn_idx++;
10418 	}
10419 
10420 	return 0;
10421 }
10422 
10423 static int find_btf_percpu_datasec(struct btf *btf)
10424 {
10425 	const struct btf_type *t;
10426 	const char *tname;
10427 	int i, n;
10428 
10429 	/*
10430 	 * Both vmlinux and module each have their own ".data..percpu"
10431 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
10432 	 * types to look at only module's own BTF types.
10433 	 */
10434 	n = btf_nr_types(btf);
10435 	if (btf_is_module(btf))
10436 		i = btf_nr_types(btf_vmlinux);
10437 	else
10438 		i = 1;
10439 
10440 	for(; i < n; i++) {
10441 		t = btf_type_by_id(btf, i);
10442 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
10443 			continue;
10444 
10445 		tname = btf_name_by_offset(btf, t->name_off);
10446 		if (!strcmp(tname, ".data..percpu"))
10447 			return i;
10448 	}
10449 
10450 	return -ENOENT;
10451 }
10452 
10453 /* replace pseudo btf_id with kernel symbol address */
10454 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
10455 			       struct bpf_insn *insn,
10456 			       struct bpf_insn_aux_data *aux)
10457 {
10458 	const struct btf_var_secinfo *vsi;
10459 	const struct btf_type *datasec;
10460 	struct btf_mod_pair *btf_mod;
10461 	const struct btf_type *t;
10462 	const char *sym_name;
10463 	bool percpu = false;
10464 	u32 type, id = insn->imm;
10465 	struct btf *btf;
10466 	s32 datasec_id;
10467 	u64 addr;
10468 	int i, btf_fd, err;
10469 
10470 	btf_fd = insn[1].imm;
10471 	if (btf_fd) {
10472 		btf = btf_get_by_fd(btf_fd);
10473 		if (IS_ERR(btf)) {
10474 			verbose(env, "invalid module BTF object FD specified.\n");
10475 			return -EINVAL;
10476 		}
10477 	} else {
10478 		if (!btf_vmlinux) {
10479 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
10480 			return -EINVAL;
10481 		}
10482 		btf = btf_vmlinux;
10483 		btf_get(btf);
10484 	}
10485 
10486 	t = btf_type_by_id(btf, id);
10487 	if (!t) {
10488 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
10489 		err = -ENOENT;
10490 		goto err_put;
10491 	}
10492 
10493 	if (!btf_type_is_var(t)) {
10494 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
10495 		err = -EINVAL;
10496 		goto err_put;
10497 	}
10498 
10499 	sym_name = btf_name_by_offset(btf, t->name_off);
10500 	addr = kallsyms_lookup_name(sym_name);
10501 	if (!addr) {
10502 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
10503 			sym_name);
10504 		err = -ENOENT;
10505 		goto err_put;
10506 	}
10507 
10508 	datasec_id = find_btf_percpu_datasec(btf);
10509 	if (datasec_id > 0) {
10510 		datasec = btf_type_by_id(btf, datasec_id);
10511 		for_each_vsi(i, datasec, vsi) {
10512 			if (vsi->type == id) {
10513 				percpu = true;
10514 				break;
10515 			}
10516 		}
10517 	}
10518 
10519 	insn[0].imm = (u32)addr;
10520 	insn[1].imm = addr >> 32;
10521 
10522 	type = t->type;
10523 	t = btf_type_skip_modifiers(btf, type, NULL);
10524 	if (percpu) {
10525 		aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
10526 		aux->btf_var.btf = btf;
10527 		aux->btf_var.btf_id = type;
10528 	} else if (!btf_type_is_struct(t)) {
10529 		const struct btf_type *ret;
10530 		const char *tname;
10531 		u32 tsize;
10532 
10533 		/* resolve the type size of ksym. */
10534 		ret = btf_resolve_size(btf, t, &tsize);
10535 		if (IS_ERR(ret)) {
10536 			tname = btf_name_by_offset(btf, t->name_off);
10537 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
10538 				tname, PTR_ERR(ret));
10539 			err = -EINVAL;
10540 			goto err_put;
10541 		}
10542 		aux->btf_var.reg_type = PTR_TO_MEM;
10543 		aux->btf_var.mem_size = tsize;
10544 	} else {
10545 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
10546 		aux->btf_var.btf = btf;
10547 		aux->btf_var.btf_id = type;
10548 	}
10549 
10550 	/* check whether we recorded this BTF (and maybe module) already */
10551 	for (i = 0; i < env->used_btf_cnt; i++) {
10552 		if (env->used_btfs[i].btf == btf) {
10553 			btf_put(btf);
10554 			return 0;
10555 		}
10556 	}
10557 
10558 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
10559 		err = -E2BIG;
10560 		goto err_put;
10561 	}
10562 
10563 	btf_mod = &env->used_btfs[env->used_btf_cnt];
10564 	btf_mod->btf = btf;
10565 	btf_mod->module = NULL;
10566 
10567 	/* if we reference variables from kernel module, bump its refcount */
10568 	if (btf_is_module(btf)) {
10569 		btf_mod->module = btf_try_get_module(btf);
10570 		if (!btf_mod->module) {
10571 			err = -ENXIO;
10572 			goto err_put;
10573 		}
10574 	}
10575 
10576 	env->used_btf_cnt++;
10577 
10578 	return 0;
10579 err_put:
10580 	btf_put(btf);
10581 	return err;
10582 }
10583 
10584 static int check_map_prealloc(struct bpf_map *map)
10585 {
10586 	return (map->map_type != BPF_MAP_TYPE_HASH &&
10587 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
10588 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
10589 		!(map->map_flags & BPF_F_NO_PREALLOC);
10590 }
10591 
10592 static bool is_tracing_prog_type(enum bpf_prog_type type)
10593 {
10594 	switch (type) {
10595 	case BPF_PROG_TYPE_KPROBE:
10596 	case BPF_PROG_TYPE_TRACEPOINT:
10597 	case BPF_PROG_TYPE_PERF_EVENT:
10598 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
10599 		return true;
10600 	default:
10601 		return false;
10602 	}
10603 }
10604 
10605 static bool is_preallocated_map(struct bpf_map *map)
10606 {
10607 	if (!check_map_prealloc(map))
10608 		return false;
10609 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
10610 		return false;
10611 	return true;
10612 }
10613 
10614 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
10615 					struct bpf_map *map,
10616 					struct bpf_prog *prog)
10617 
10618 {
10619 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
10620 	/*
10621 	 * Validate that trace type programs use preallocated hash maps.
10622 	 *
10623 	 * For programs attached to PERF events this is mandatory as the
10624 	 * perf NMI can hit any arbitrary code sequence.
10625 	 *
10626 	 * All other trace types using preallocated hash maps are unsafe as
10627 	 * well because tracepoint or kprobes can be inside locked regions
10628 	 * of the memory allocator or at a place where a recursion into the
10629 	 * memory allocator would see inconsistent state.
10630 	 *
10631 	 * On RT enabled kernels run-time allocation of all trace type
10632 	 * programs is strictly prohibited due to lock type constraints. On
10633 	 * !RT kernels it is allowed for backwards compatibility reasons for
10634 	 * now, but warnings are emitted so developers are made aware of
10635 	 * the unsafety and can fix their programs before this is enforced.
10636 	 */
10637 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
10638 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
10639 			verbose(env, "perf_event programs can only use preallocated hash map\n");
10640 			return -EINVAL;
10641 		}
10642 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
10643 			verbose(env, "trace type programs can only use preallocated hash map\n");
10644 			return -EINVAL;
10645 		}
10646 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
10647 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
10648 	}
10649 
10650 	if (map_value_has_spin_lock(map)) {
10651 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
10652 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
10653 			return -EINVAL;
10654 		}
10655 
10656 		if (is_tracing_prog_type(prog_type)) {
10657 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
10658 			return -EINVAL;
10659 		}
10660 
10661 		if (prog->aux->sleepable) {
10662 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
10663 			return -EINVAL;
10664 		}
10665 	}
10666 
10667 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
10668 	    !bpf_offload_prog_map_match(prog, map)) {
10669 		verbose(env, "offload device mismatch between prog and map\n");
10670 		return -EINVAL;
10671 	}
10672 
10673 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
10674 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
10675 		return -EINVAL;
10676 	}
10677 
10678 	if (prog->aux->sleepable)
10679 		switch (map->map_type) {
10680 		case BPF_MAP_TYPE_HASH:
10681 		case BPF_MAP_TYPE_LRU_HASH:
10682 		case BPF_MAP_TYPE_ARRAY:
10683 		case BPF_MAP_TYPE_PERCPU_HASH:
10684 		case BPF_MAP_TYPE_PERCPU_ARRAY:
10685 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
10686 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
10687 		case BPF_MAP_TYPE_HASH_OF_MAPS:
10688 			if (!is_preallocated_map(map)) {
10689 				verbose(env,
10690 					"Sleepable programs can only use preallocated maps\n");
10691 				return -EINVAL;
10692 			}
10693 			break;
10694 		case BPF_MAP_TYPE_RINGBUF:
10695 			break;
10696 		default:
10697 			verbose(env,
10698 				"Sleepable programs can only use array, hash, and ringbuf maps\n");
10699 			return -EINVAL;
10700 		}
10701 
10702 	return 0;
10703 }
10704 
10705 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
10706 {
10707 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
10708 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
10709 }
10710 
10711 /* find and rewrite pseudo imm in ld_imm64 instructions:
10712  *
10713  * 1. if it accesses map FD, replace it with actual map pointer.
10714  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
10715  *
10716  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
10717  */
10718 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
10719 {
10720 	struct bpf_insn *insn = env->prog->insnsi;
10721 	int insn_cnt = env->prog->len;
10722 	int i, j, err;
10723 
10724 	err = bpf_prog_calc_tag(env->prog);
10725 	if (err)
10726 		return err;
10727 
10728 	for (i = 0; i < insn_cnt; i++, insn++) {
10729 		if (BPF_CLASS(insn->code) == BPF_LDX &&
10730 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
10731 			verbose(env, "BPF_LDX uses reserved fields\n");
10732 			return -EINVAL;
10733 		}
10734 
10735 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
10736 			struct bpf_insn_aux_data *aux;
10737 			struct bpf_map *map;
10738 			struct fd f;
10739 			u64 addr;
10740 
10741 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
10742 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
10743 			    insn[1].off != 0) {
10744 				verbose(env, "invalid bpf_ld_imm64 insn\n");
10745 				return -EINVAL;
10746 			}
10747 
10748 			if (insn[0].src_reg == 0)
10749 				/* valid generic load 64-bit imm */
10750 				goto next_insn;
10751 
10752 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
10753 				aux = &env->insn_aux_data[i];
10754 				err = check_pseudo_btf_id(env, insn, aux);
10755 				if (err)
10756 					return err;
10757 				goto next_insn;
10758 			}
10759 
10760 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
10761 				aux = &env->insn_aux_data[i];
10762 				aux->ptr_type = PTR_TO_FUNC;
10763 				goto next_insn;
10764 			}
10765 
10766 			/* In final convert_pseudo_ld_imm64() step, this is
10767 			 * converted into regular 64-bit imm load insn.
10768 			 */
10769 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
10770 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
10771 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
10772 			     insn[1].imm != 0)) {
10773 				verbose(env,
10774 					"unrecognized bpf_ld_imm64 insn\n");
10775 				return -EINVAL;
10776 			}
10777 
10778 			f = fdget(insn[0].imm);
10779 			map = __bpf_map_get(f);
10780 			if (IS_ERR(map)) {
10781 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
10782 					insn[0].imm);
10783 				return PTR_ERR(map);
10784 			}
10785 
10786 			err = check_map_prog_compatibility(env, map, env->prog);
10787 			if (err) {
10788 				fdput(f);
10789 				return err;
10790 			}
10791 
10792 			aux = &env->insn_aux_data[i];
10793 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
10794 				addr = (unsigned long)map;
10795 			} else {
10796 				u32 off = insn[1].imm;
10797 
10798 				if (off >= BPF_MAX_VAR_OFF) {
10799 					verbose(env, "direct value offset of %u is not allowed\n", off);
10800 					fdput(f);
10801 					return -EINVAL;
10802 				}
10803 
10804 				if (!map->ops->map_direct_value_addr) {
10805 					verbose(env, "no direct value access support for this map type\n");
10806 					fdput(f);
10807 					return -EINVAL;
10808 				}
10809 
10810 				err = map->ops->map_direct_value_addr(map, &addr, off);
10811 				if (err) {
10812 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
10813 						map->value_size, off);
10814 					fdput(f);
10815 					return err;
10816 				}
10817 
10818 				aux->map_off = off;
10819 				addr += off;
10820 			}
10821 
10822 			insn[0].imm = (u32)addr;
10823 			insn[1].imm = addr >> 32;
10824 
10825 			/* check whether we recorded this map already */
10826 			for (j = 0; j < env->used_map_cnt; j++) {
10827 				if (env->used_maps[j] == map) {
10828 					aux->map_index = j;
10829 					fdput(f);
10830 					goto next_insn;
10831 				}
10832 			}
10833 
10834 			if (env->used_map_cnt >= MAX_USED_MAPS) {
10835 				fdput(f);
10836 				return -E2BIG;
10837 			}
10838 
10839 			/* hold the map. If the program is rejected by verifier,
10840 			 * the map will be released by release_maps() or it
10841 			 * will be used by the valid program until it's unloaded
10842 			 * and all maps are released in free_used_maps()
10843 			 */
10844 			bpf_map_inc(map);
10845 
10846 			aux->map_index = env->used_map_cnt;
10847 			env->used_maps[env->used_map_cnt++] = map;
10848 
10849 			if (bpf_map_is_cgroup_storage(map) &&
10850 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
10851 				verbose(env, "only one cgroup storage of each type is allowed\n");
10852 				fdput(f);
10853 				return -EBUSY;
10854 			}
10855 
10856 			fdput(f);
10857 next_insn:
10858 			insn++;
10859 			i++;
10860 			continue;
10861 		}
10862 
10863 		/* Basic sanity check before we invest more work here. */
10864 		if (!bpf_opcode_in_insntable(insn->code)) {
10865 			verbose(env, "unknown opcode %02x\n", insn->code);
10866 			return -EINVAL;
10867 		}
10868 	}
10869 
10870 	/* now all pseudo BPF_LD_IMM64 instructions load valid
10871 	 * 'struct bpf_map *' into a register instead of user map_fd.
10872 	 * These pointers will be used later by verifier to validate map access.
10873 	 */
10874 	return 0;
10875 }
10876 
10877 /* drop refcnt of maps used by the rejected program */
10878 static void release_maps(struct bpf_verifier_env *env)
10879 {
10880 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
10881 			     env->used_map_cnt);
10882 }
10883 
10884 /* drop refcnt of maps used by the rejected program */
10885 static void release_btfs(struct bpf_verifier_env *env)
10886 {
10887 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
10888 			     env->used_btf_cnt);
10889 }
10890 
10891 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
10892 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
10893 {
10894 	struct bpf_insn *insn = env->prog->insnsi;
10895 	int insn_cnt = env->prog->len;
10896 	int i;
10897 
10898 	for (i = 0; i < insn_cnt; i++, insn++) {
10899 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
10900 			continue;
10901 		if (insn->src_reg == BPF_PSEUDO_FUNC)
10902 			continue;
10903 		insn->src_reg = 0;
10904 	}
10905 }
10906 
10907 /* single env->prog->insni[off] instruction was replaced with the range
10908  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
10909  * [0, off) and [off, end) to new locations, so the patched range stays zero
10910  */
10911 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
10912 				struct bpf_prog *new_prog, u32 off, u32 cnt)
10913 {
10914 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
10915 	struct bpf_insn *insn = new_prog->insnsi;
10916 	u32 prog_len;
10917 	int i;
10918 
10919 	/* aux info at OFF always needs adjustment, no matter fast path
10920 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
10921 	 * original insn at old prog.
10922 	 */
10923 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
10924 
10925 	if (cnt == 1)
10926 		return 0;
10927 	prog_len = new_prog->len;
10928 	new_data = vzalloc(array_size(prog_len,
10929 				      sizeof(struct bpf_insn_aux_data)));
10930 	if (!new_data)
10931 		return -ENOMEM;
10932 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
10933 	memcpy(new_data + off + cnt - 1, old_data + off,
10934 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
10935 	for (i = off; i < off + cnt - 1; i++) {
10936 		new_data[i].seen = env->pass_cnt;
10937 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
10938 	}
10939 	env->insn_aux_data = new_data;
10940 	vfree(old_data);
10941 	return 0;
10942 }
10943 
10944 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
10945 {
10946 	int i;
10947 
10948 	if (len == 1)
10949 		return;
10950 	/* NOTE: fake 'exit' subprog should be updated as well. */
10951 	for (i = 0; i <= env->subprog_cnt; i++) {
10952 		if (env->subprog_info[i].start <= off)
10953 			continue;
10954 		env->subprog_info[i].start += len - 1;
10955 	}
10956 }
10957 
10958 static void adjust_poke_descs(struct bpf_prog *prog, u32 len)
10959 {
10960 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
10961 	int i, sz = prog->aux->size_poke_tab;
10962 	struct bpf_jit_poke_descriptor *desc;
10963 
10964 	for (i = 0; i < sz; i++) {
10965 		desc = &tab[i];
10966 		desc->insn_idx += len - 1;
10967 	}
10968 }
10969 
10970 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
10971 					    const struct bpf_insn *patch, u32 len)
10972 {
10973 	struct bpf_prog *new_prog;
10974 
10975 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
10976 	if (IS_ERR(new_prog)) {
10977 		if (PTR_ERR(new_prog) == -ERANGE)
10978 			verbose(env,
10979 				"insn %d cannot be patched due to 16-bit range\n",
10980 				env->insn_aux_data[off].orig_idx);
10981 		return NULL;
10982 	}
10983 	if (adjust_insn_aux_data(env, new_prog, off, len))
10984 		return NULL;
10985 	adjust_subprog_starts(env, off, len);
10986 	adjust_poke_descs(new_prog, len);
10987 	return new_prog;
10988 }
10989 
10990 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
10991 					      u32 off, u32 cnt)
10992 {
10993 	int i, j;
10994 
10995 	/* find first prog starting at or after off (first to remove) */
10996 	for (i = 0; i < env->subprog_cnt; i++)
10997 		if (env->subprog_info[i].start >= off)
10998 			break;
10999 	/* find first prog starting at or after off + cnt (first to stay) */
11000 	for (j = i; j < env->subprog_cnt; j++)
11001 		if (env->subprog_info[j].start >= off + cnt)
11002 			break;
11003 	/* if j doesn't start exactly at off + cnt, we are just removing
11004 	 * the front of previous prog
11005 	 */
11006 	if (env->subprog_info[j].start != off + cnt)
11007 		j--;
11008 
11009 	if (j > i) {
11010 		struct bpf_prog_aux *aux = env->prog->aux;
11011 		int move;
11012 
11013 		/* move fake 'exit' subprog as well */
11014 		move = env->subprog_cnt + 1 - j;
11015 
11016 		memmove(env->subprog_info + i,
11017 			env->subprog_info + j,
11018 			sizeof(*env->subprog_info) * move);
11019 		env->subprog_cnt -= j - i;
11020 
11021 		/* remove func_info */
11022 		if (aux->func_info) {
11023 			move = aux->func_info_cnt - j;
11024 
11025 			memmove(aux->func_info + i,
11026 				aux->func_info + j,
11027 				sizeof(*aux->func_info) * move);
11028 			aux->func_info_cnt -= j - i;
11029 			/* func_info->insn_off is set after all code rewrites,
11030 			 * in adjust_btf_func() - no need to adjust
11031 			 */
11032 		}
11033 	} else {
11034 		/* convert i from "first prog to remove" to "first to adjust" */
11035 		if (env->subprog_info[i].start == off)
11036 			i++;
11037 	}
11038 
11039 	/* update fake 'exit' subprog as well */
11040 	for (; i <= env->subprog_cnt; i++)
11041 		env->subprog_info[i].start -= cnt;
11042 
11043 	return 0;
11044 }
11045 
11046 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
11047 				      u32 cnt)
11048 {
11049 	struct bpf_prog *prog = env->prog;
11050 	u32 i, l_off, l_cnt, nr_linfo;
11051 	struct bpf_line_info *linfo;
11052 
11053 	nr_linfo = prog->aux->nr_linfo;
11054 	if (!nr_linfo)
11055 		return 0;
11056 
11057 	linfo = prog->aux->linfo;
11058 
11059 	/* find first line info to remove, count lines to be removed */
11060 	for (i = 0; i < nr_linfo; i++)
11061 		if (linfo[i].insn_off >= off)
11062 			break;
11063 
11064 	l_off = i;
11065 	l_cnt = 0;
11066 	for (; i < nr_linfo; i++)
11067 		if (linfo[i].insn_off < off + cnt)
11068 			l_cnt++;
11069 		else
11070 			break;
11071 
11072 	/* First live insn doesn't match first live linfo, it needs to "inherit"
11073 	 * last removed linfo.  prog is already modified, so prog->len == off
11074 	 * means no live instructions after (tail of the program was removed).
11075 	 */
11076 	if (prog->len != off && l_cnt &&
11077 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
11078 		l_cnt--;
11079 		linfo[--i].insn_off = off + cnt;
11080 	}
11081 
11082 	/* remove the line info which refer to the removed instructions */
11083 	if (l_cnt) {
11084 		memmove(linfo + l_off, linfo + i,
11085 			sizeof(*linfo) * (nr_linfo - i));
11086 
11087 		prog->aux->nr_linfo -= l_cnt;
11088 		nr_linfo = prog->aux->nr_linfo;
11089 	}
11090 
11091 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
11092 	for (i = l_off; i < nr_linfo; i++)
11093 		linfo[i].insn_off -= cnt;
11094 
11095 	/* fix up all subprogs (incl. 'exit') which start >= off */
11096 	for (i = 0; i <= env->subprog_cnt; i++)
11097 		if (env->subprog_info[i].linfo_idx > l_off) {
11098 			/* program may have started in the removed region but
11099 			 * may not be fully removed
11100 			 */
11101 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
11102 				env->subprog_info[i].linfo_idx -= l_cnt;
11103 			else
11104 				env->subprog_info[i].linfo_idx = l_off;
11105 		}
11106 
11107 	return 0;
11108 }
11109 
11110 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
11111 {
11112 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11113 	unsigned int orig_prog_len = env->prog->len;
11114 	int err;
11115 
11116 	if (bpf_prog_is_dev_bound(env->prog->aux))
11117 		bpf_prog_offload_remove_insns(env, off, cnt);
11118 
11119 	err = bpf_remove_insns(env->prog, off, cnt);
11120 	if (err)
11121 		return err;
11122 
11123 	err = adjust_subprog_starts_after_remove(env, off, cnt);
11124 	if (err)
11125 		return err;
11126 
11127 	err = bpf_adj_linfo_after_remove(env, off, cnt);
11128 	if (err)
11129 		return err;
11130 
11131 	memmove(aux_data + off,	aux_data + off + cnt,
11132 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
11133 
11134 	return 0;
11135 }
11136 
11137 /* The verifier does more data flow analysis than llvm and will not
11138  * explore branches that are dead at run time. Malicious programs can
11139  * have dead code too. Therefore replace all dead at-run-time code
11140  * with 'ja -1'.
11141  *
11142  * Just nops are not optimal, e.g. if they would sit at the end of the
11143  * program and through another bug we would manage to jump there, then
11144  * we'd execute beyond program memory otherwise. Returning exception
11145  * code also wouldn't work since we can have subprogs where the dead
11146  * code could be located.
11147  */
11148 static void sanitize_dead_code(struct bpf_verifier_env *env)
11149 {
11150 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11151 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
11152 	struct bpf_insn *insn = env->prog->insnsi;
11153 	const int insn_cnt = env->prog->len;
11154 	int i;
11155 
11156 	for (i = 0; i < insn_cnt; i++) {
11157 		if (aux_data[i].seen)
11158 			continue;
11159 		memcpy(insn + i, &trap, sizeof(trap));
11160 	}
11161 }
11162 
11163 static bool insn_is_cond_jump(u8 code)
11164 {
11165 	u8 op;
11166 
11167 	if (BPF_CLASS(code) == BPF_JMP32)
11168 		return true;
11169 
11170 	if (BPF_CLASS(code) != BPF_JMP)
11171 		return false;
11172 
11173 	op = BPF_OP(code);
11174 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
11175 }
11176 
11177 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
11178 {
11179 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11180 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11181 	struct bpf_insn *insn = env->prog->insnsi;
11182 	const int insn_cnt = env->prog->len;
11183 	int i;
11184 
11185 	for (i = 0; i < insn_cnt; i++, insn++) {
11186 		if (!insn_is_cond_jump(insn->code))
11187 			continue;
11188 
11189 		if (!aux_data[i + 1].seen)
11190 			ja.off = insn->off;
11191 		else if (!aux_data[i + 1 + insn->off].seen)
11192 			ja.off = 0;
11193 		else
11194 			continue;
11195 
11196 		if (bpf_prog_is_dev_bound(env->prog->aux))
11197 			bpf_prog_offload_replace_insn(env, i, &ja);
11198 
11199 		memcpy(insn, &ja, sizeof(ja));
11200 	}
11201 }
11202 
11203 static int opt_remove_dead_code(struct bpf_verifier_env *env)
11204 {
11205 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11206 	int insn_cnt = env->prog->len;
11207 	int i, err;
11208 
11209 	for (i = 0; i < insn_cnt; i++) {
11210 		int j;
11211 
11212 		j = 0;
11213 		while (i + j < insn_cnt && !aux_data[i + j].seen)
11214 			j++;
11215 		if (!j)
11216 			continue;
11217 
11218 		err = verifier_remove_insns(env, i, j);
11219 		if (err)
11220 			return err;
11221 		insn_cnt = env->prog->len;
11222 	}
11223 
11224 	return 0;
11225 }
11226 
11227 static int opt_remove_nops(struct bpf_verifier_env *env)
11228 {
11229 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11230 	struct bpf_insn *insn = env->prog->insnsi;
11231 	int insn_cnt = env->prog->len;
11232 	int i, err;
11233 
11234 	for (i = 0; i < insn_cnt; i++) {
11235 		if (memcmp(&insn[i], &ja, sizeof(ja)))
11236 			continue;
11237 
11238 		err = verifier_remove_insns(env, i, 1);
11239 		if (err)
11240 			return err;
11241 		insn_cnt--;
11242 		i--;
11243 	}
11244 
11245 	return 0;
11246 }
11247 
11248 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
11249 					 const union bpf_attr *attr)
11250 {
11251 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
11252 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
11253 	int i, patch_len, delta = 0, len = env->prog->len;
11254 	struct bpf_insn *insns = env->prog->insnsi;
11255 	struct bpf_prog *new_prog;
11256 	bool rnd_hi32;
11257 
11258 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
11259 	zext_patch[1] = BPF_ZEXT_REG(0);
11260 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
11261 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
11262 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
11263 	for (i = 0; i < len; i++) {
11264 		int adj_idx = i + delta;
11265 		struct bpf_insn insn;
11266 		int load_reg;
11267 
11268 		insn = insns[adj_idx];
11269 		load_reg = insn_def_regno(&insn);
11270 		if (!aux[adj_idx].zext_dst) {
11271 			u8 code, class;
11272 			u32 imm_rnd;
11273 
11274 			if (!rnd_hi32)
11275 				continue;
11276 
11277 			code = insn.code;
11278 			class = BPF_CLASS(code);
11279 			if (load_reg == -1)
11280 				continue;
11281 
11282 			/* NOTE: arg "reg" (the fourth one) is only used for
11283 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
11284 			 *       here.
11285 			 */
11286 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
11287 				if (class == BPF_LD &&
11288 				    BPF_MODE(code) == BPF_IMM)
11289 					i++;
11290 				continue;
11291 			}
11292 
11293 			/* ctx load could be transformed into wider load. */
11294 			if (class == BPF_LDX &&
11295 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
11296 				continue;
11297 
11298 			imm_rnd = get_random_int();
11299 			rnd_hi32_patch[0] = insn;
11300 			rnd_hi32_patch[1].imm = imm_rnd;
11301 			rnd_hi32_patch[3].dst_reg = load_reg;
11302 			patch = rnd_hi32_patch;
11303 			patch_len = 4;
11304 			goto apply_patch_buffer;
11305 		}
11306 
11307 		/* Add in an zero-extend instruction if a) the JIT has requested
11308 		 * it or b) it's a CMPXCHG.
11309 		 *
11310 		 * The latter is because: BPF_CMPXCHG always loads a value into
11311 		 * R0, therefore always zero-extends. However some archs'
11312 		 * equivalent instruction only does this load when the
11313 		 * comparison is successful. This detail of CMPXCHG is
11314 		 * orthogonal to the general zero-extension behaviour of the
11315 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
11316 		 */
11317 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
11318 			continue;
11319 
11320 		if (WARN_ON(load_reg == -1)) {
11321 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
11322 			return -EFAULT;
11323 		}
11324 
11325 		zext_patch[0] = insn;
11326 		zext_patch[1].dst_reg = load_reg;
11327 		zext_patch[1].src_reg = load_reg;
11328 		patch = zext_patch;
11329 		patch_len = 2;
11330 apply_patch_buffer:
11331 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
11332 		if (!new_prog)
11333 			return -ENOMEM;
11334 		env->prog = new_prog;
11335 		insns = new_prog->insnsi;
11336 		aux = env->insn_aux_data;
11337 		delta += patch_len - 1;
11338 	}
11339 
11340 	return 0;
11341 }
11342 
11343 /* convert load instructions that access fields of a context type into a
11344  * sequence of instructions that access fields of the underlying structure:
11345  *     struct __sk_buff    -> struct sk_buff
11346  *     struct bpf_sock_ops -> struct sock
11347  */
11348 static int convert_ctx_accesses(struct bpf_verifier_env *env)
11349 {
11350 	const struct bpf_verifier_ops *ops = env->ops;
11351 	int i, cnt, size, ctx_field_size, delta = 0;
11352 	const int insn_cnt = env->prog->len;
11353 	struct bpf_insn insn_buf[16], *insn;
11354 	u32 target_size, size_default, off;
11355 	struct bpf_prog *new_prog;
11356 	enum bpf_access_type type;
11357 	bool is_narrower_load;
11358 
11359 	if (ops->gen_prologue || env->seen_direct_write) {
11360 		if (!ops->gen_prologue) {
11361 			verbose(env, "bpf verifier is misconfigured\n");
11362 			return -EINVAL;
11363 		}
11364 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
11365 					env->prog);
11366 		if (cnt >= ARRAY_SIZE(insn_buf)) {
11367 			verbose(env, "bpf verifier is misconfigured\n");
11368 			return -EINVAL;
11369 		} else if (cnt) {
11370 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
11371 			if (!new_prog)
11372 				return -ENOMEM;
11373 
11374 			env->prog = new_prog;
11375 			delta += cnt - 1;
11376 		}
11377 	}
11378 
11379 	if (bpf_prog_is_dev_bound(env->prog->aux))
11380 		return 0;
11381 
11382 	insn = env->prog->insnsi + delta;
11383 
11384 	for (i = 0; i < insn_cnt; i++, insn++) {
11385 		bpf_convert_ctx_access_t convert_ctx_access;
11386 
11387 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
11388 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
11389 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
11390 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
11391 			type = BPF_READ;
11392 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
11393 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
11394 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
11395 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
11396 			type = BPF_WRITE;
11397 		else
11398 			continue;
11399 
11400 		if (type == BPF_WRITE &&
11401 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
11402 			struct bpf_insn patch[] = {
11403 				/* Sanitize suspicious stack slot with zero.
11404 				 * There are no memory dependencies for this store,
11405 				 * since it's only using frame pointer and immediate
11406 				 * constant of zero
11407 				 */
11408 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
11409 					   env->insn_aux_data[i + delta].sanitize_stack_off,
11410 					   0),
11411 				/* the original STX instruction will immediately
11412 				 * overwrite the same stack slot with appropriate value
11413 				 */
11414 				*insn,
11415 			};
11416 
11417 			cnt = ARRAY_SIZE(patch);
11418 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
11419 			if (!new_prog)
11420 				return -ENOMEM;
11421 
11422 			delta    += cnt - 1;
11423 			env->prog = new_prog;
11424 			insn      = new_prog->insnsi + i + delta;
11425 			continue;
11426 		}
11427 
11428 		switch (env->insn_aux_data[i + delta].ptr_type) {
11429 		case PTR_TO_CTX:
11430 			if (!ops->convert_ctx_access)
11431 				continue;
11432 			convert_ctx_access = ops->convert_ctx_access;
11433 			break;
11434 		case PTR_TO_SOCKET:
11435 		case PTR_TO_SOCK_COMMON:
11436 			convert_ctx_access = bpf_sock_convert_ctx_access;
11437 			break;
11438 		case PTR_TO_TCP_SOCK:
11439 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
11440 			break;
11441 		case PTR_TO_XDP_SOCK:
11442 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
11443 			break;
11444 		case PTR_TO_BTF_ID:
11445 			if (type == BPF_READ) {
11446 				insn->code = BPF_LDX | BPF_PROBE_MEM |
11447 					BPF_SIZE((insn)->code);
11448 				env->prog->aux->num_exentries++;
11449 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
11450 				verbose(env, "Writes through BTF pointers are not allowed\n");
11451 				return -EINVAL;
11452 			}
11453 			continue;
11454 		default:
11455 			continue;
11456 		}
11457 
11458 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
11459 		size = BPF_LDST_BYTES(insn);
11460 
11461 		/* If the read access is a narrower load of the field,
11462 		 * convert to a 4/8-byte load, to minimum program type specific
11463 		 * convert_ctx_access changes. If conversion is successful,
11464 		 * we will apply proper mask to the result.
11465 		 */
11466 		is_narrower_load = size < ctx_field_size;
11467 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
11468 		off = insn->off;
11469 		if (is_narrower_load) {
11470 			u8 size_code;
11471 
11472 			if (type == BPF_WRITE) {
11473 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
11474 				return -EINVAL;
11475 			}
11476 
11477 			size_code = BPF_H;
11478 			if (ctx_field_size == 4)
11479 				size_code = BPF_W;
11480 			else if (ctx_field_size == 8)
11481 				size_code = BPF_DW;
11482 
11483 			insn->off = off & ~(size_default - 1);
11484 			insn->code = BPF_LDX | BPF_MEM | size_code;
11485 		}
11486 
11487 		target_size = 0;
11488 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
11489 					 &target_size);
11490 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
11491 		    (ctx_field_size && !target_size)) {
11492 			verbose(env, "bpf verifier is misconfigured\n");
11493 			return -EINVAL;
11494 		}
11495 
11496 		if (is_narrower_load && size < target_size) {
11497 			u8 shift = bpf_ctx_narrow_access_offset(
11498 				off, size, size_default) * 8;
11499 			if (ctx_field_size <= 4) {
11500 				if (shift)
11501 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
11502 									insn->dst_reg,
11503 									shift);
11504 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
11505 								(1 << size * 8) - 1);
11506 			} else {
11507 				if (shift)
11508 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
11509 									insn->dst_reg,
11510 									shift);
11511 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
11512 								(1ULL << size * 8) - 1);
11513 			}
11514 		}
11515 
11516 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11517 		if (!new_prog)
11518 			return -ENOMEM;
11519 
11520 		delta += cnt - 1;
11521 
11522 		/* keep walking new program and skip insns we just inserted */
11523 		env->prog = new_prog;
11524 		insn      = new_prog->insnsi + i + delta;
11525 	}
11526 
11527 	return 0;
11528 }
11529 
11530 static int jit_subprogs(struct bpf_verifier_env *env)
11531 {
11532 	struct bpf_prog *prog = env->prog, **func, *tmp;
11533 	int i, j, subprog_start, subprog_end = 0, len, subprog;
11534 	struct bpf_map *map_ptr;
11535 	struct bpf_insn *insn;
11536 	void *old_bpf_func;
11537 	int err, num_exentries;
11538 
11539 	if (env->subprog_cnt <= 1)
11540 		return 0;
11541 
11542 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11543 		if (bpf_pseudo_func(insn)) {
11544 			env->insn_aux_data[i].call_imm = insn->imm;
11545 			/* subprog is encoded in insn[1].imm */
11546 			continue;
11547 		}
11548 
11549 		if (!bpf_pseudo_call(insn))
11550 			continue;
11551 		/* Upon error here we cannot fall back to interpreter but
11552 		 * need a hard reject of the program. Thus -EFAULT is
11553 		 * propagated in any case.
11554 		 */
11555 		subprog = find_subprog(env, i + insn->imm + 1);
11556 		if (subprog < 0) {
11557 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
11558 				  i + insn->imm + 1);
11559 			return -EFAULT;
11560 		}
11561 		/* temporarily remember subprog id inside insn instead of
11562 		 * aux_data, since next loop will split up all insns into funcs
11563 		 */
11564 		insn->off = subprog;
11565 		/* remember original imm in case JIT fails and fallback
11566 		 * to interpreter will be needed
11567 		 */
11568 		env->insn_aux_data[i].call_imm = insn->imm;
11569 		/* point imm to __bpf_call_base+1 from JITs point of view */
11570 		insn->imm = 1;
11571 	}
11572 
11573 	err = bpf_prog_alloc_jited_linfo(prog);
11574 	if (err)
11575 		goto out_undo_insn;
11576 
11577 	err = -ENOMEM;
11578 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
11579 	if (!func)
11580 		goto out_undo_insn;
11581 
11582 	for (i = 0; i < env->subprog_cnt; i++) {
11583 		subprog_start = subprog_end;
11584 		subprog_end = env->subprog_info[i + 1].start;
11585 
11586 		len = subprog_end - subprog_start;
11587 		/* BPF_PROG_RUN doesn't call subprogs directly,
11588 		 * hence main prog stats include the runtime of subprogs.
11589 		 * subprogs don't have IDs and not reachable via prog_get_next_id
11590 		 * func[i]->stats will never be accessed and stays NULL
11591 		 */
11592 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
11593 		if (!func[i])
11594 			goto out_free;
11595 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
11596 		       len * sizeof(struct bpf_insn));
11597 		func[i]->type = prog->type;
11598 		func[i]->len = len;
11599 		if (bpf_prog_calc_tag(func[i]))
11600 			goto out_free;
11601 		func[i]->is_func = 1;
11602 		func[i]->aux->func_idx = i;
11603 		/* the btf and func_info will be freed only at prog->aux */
11604 		func[i]->aux->btf = prog->aux->btf;
11605 		func[i]->aux->func_info = prog->aux->func_info;
11606 
11607 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
11608 			u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
11609 			int ret;
11610 
11611 			if (!(insn_idx >= subprog_start &&
11612 			      insn_idx <= subprog_end))
11613 				continue;
11614 
11615 			ret = bpf_jit_add_poke_descriptor(func[i],
11616 							  &prog->aux->poke_tab[j]);
11617 			if (ret < 0) {
11618 				verbose(env, "adding tail call poke descriptor failed\n");
11619 				goto out_free;
11620 			}
11621 
11622 			func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
11623 
11624 			map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
11625 			ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
11626 			if (ret < 0) {
11627 				verbose(env, "tracking tail call prog failed\n");
11628 				goto out_free;
11629 			}
11630 		}
11631 
11632 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
11633 		 * Long term would need debug info to populate names
11634 		 */
11635 		func[i]->aux->name[0] = 'F';
11636 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
11637 		func[i]->jit_requested = 1;
11638 		func[i]->aux->linfo = prog->aux->linfo;
11639 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
11640 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
11641 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
11642 		num_exentries = 0;
11643 		insn = func[i]->insnsi;
11644 		for (j = 0; j < func[i]->len; j++, insn++) {
11645 			if (BPF_CLASS(insn->code) == BPF_LDX &&
11646 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
11647 				num_exentries++;
11648 		}
11649 		func[i]->aux->num_exentries = num_exentries;
11650 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
11651 		func[i] = bpf_int_jit_compile(func[i]);
11652 		if (!func[i]->jited) {
11653 			err = -ENOTSUPP;
11654 			goto out_free;
11655 		}
11656 		cond_resched();
11657 	}
11658 
11659 	/* Untrack main program's aux structs so that during map_poke_run()
11660 	 * we will not stumble upon the unfilled poke descriptors; each
11661 	 * of the main program's poke descs got distributed across subprogs
11662 	 * and got tracked onto map, so we are sure that none of them will
11663 	 * be missed after the operation below
11664 	 */
11665 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
11666 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
11667 
11668 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
11669 	}
11670 
11671 	/* at this point all bpf functions were successfully JITed
11672 	 * now populate all bpf_calls with correct addresses and
11673 	 * run last pass of JIT
11674 	 */
11675 	for (i = 0; i < env->subprog_cnt; i++) {
11676 		insn = func[i]->insnsi;
11677 		for (j = 0; j < func[i]->len; j++, insn++) {
11678 			if (bpf_pseudo_func(insn)) {
11679 				subprog = insn[1].imm;
11680 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
11681 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
11682 				continue;
11683 			}
11684 			if (!bpf_pseudo_call(insn))
11685 				continue;
11686 			subprog = insn->off;
11687 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
11688 				    __bpf_call_base;
11689 		}
11690 
11691 		/* we use the aux data to keep a list of the start addresses
11692 		 * of the JITed images for each function in the program
11693 		 *
11694 		 * for some architectures, such as powerpc64, the imm field
11695 		 * might not be large enough to hold the offset of the start
11696 		 * address of the callee's JITed image from __bpf_call_base
11697 		 *
11698 		 * in such cases, we can lookup the start address of a callee
11699 		 * by using its subprog id, available from the off field of
11700 		 * the call instruction, as an index for this list
11701 		 */
11702 		func[i]->aux->func = func;
11703 		func[i]->aux->func_cnt = env->subprog_cnt;
11704 	}
11705 	for (i = 0; i < env->subprog_cnt; i++) {
11706 		old_bpf_func = func[i]->bpf_func;
11707 		tmp = bpf_int_jit_compile(func[i]);
11708 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
11709 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
11710 			err = -ENOTSUPP;
11711 			goto out_free;
11712 		}
11713 		cond_resched();
11714 	}
11715 
11716 	/* finally lock prog and jit images for all functions and
11717 	 * populate kallsysm
11718 	 */
11719 	for (i = 0; i < env->subprog_cnt; i++) {
11720 		bpf_prog_lock_ro(func[i]);
11721 		bpf_prog_kallsyms_add(func[i]);
11722 	}
11723 
11724 	/* Last step: make now unused interpreter insns from main
11725 	 * prog consistent for later dump requests, so they can
11726 	 * later look the same as if they were interpreted only.
11727 	 */
11728 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11729 		if (bpf_pseudo_func(insn)) {
11730 			insn[0].imm = env->insn_aux_data[i].call_imm;
11731 			insn[1].imm = find_subprog(env, i + insn[0].imm + 1);
11732 			continue;
11733 		}
11734 		if (!bpf_pseudo_call(insn))
11735 			continue;
11736 		insn->off = env->insn_aux_data[i].call_imm;
11737 		subprog = find_subprog(env, i + insn->off + 1);
11738 		insn->imm = subprog;
11739 	}
11740 
11741 	prog->jited = 1;
11742 	prog->bpf_func = func[0]->bpf_func;
11743 	prog->aux->func = func;
11744 	prog->aux->func_cnt = env->subprog_cnt;
11745 	bpf_prog_free_unused_jited_linfo(prog);
11746 	return 0;
11747 out_free:
11748 	for (i = 0; i < env->subprog_cnt; i++) {
11749 		if (!func[i])
11750 			continue;
11751 
11752 		for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
11753 			map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
11754 			map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
11755 		}
11756 		bpf_jit_free(func[i]);
11757 	}
11758 	kfree(func);
11759 out_undo_insn:
11760 	/* cleanup main prog to be interpreted */
11761 	prog->jit_requested = 0;
11762 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11763 		if (!bpf_pseudo_call(insn))
11764 			continue;
11765 		insn->off = 0;
11766 		insn->imm = env->insn_aux_data[i].call_imm;
11767 	}
11768 	bpf_prog_free_jited_linfo(prog);
11769 	return err;
11770 }
11771 
11772 static int fixup_call_args(struct bpf_verifier_env *env)
11773 {
11774 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
11775 	struct bpf_prog *prog = env->prog;
11776 	struct bpf_insn *insn = prog->insnsi;
11777 	int i, depth;
11778 #endif
11779 	int err = 0;
11780 
11781 	if (env->prog->jit_requested &&
11782 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
11783 		err = jit_subprogs(env);
11784 		if (err == 0)
11785 			return 0;
11786 		if (err == -EFAULT)
11787 			return err;
11788 	}
11789 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
11790 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
11791 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
11792 		 * have to be rejected, since interpreter doesn't support them yet.
11793 		 */
11794 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
11795 		return -EINVAL;
11796 	}
11797 	for (i = 0; i < prog->len; i++, insn++) {
11798 		if (bpf_pseudo_func(insn)) {
11799 			/* When JIT fails the progs with callback calls
11800 			 * have to be rejected, since interpreter doesn't support them yet.
11801 			 */
11802 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
11803 			return -EINVAL;
11804 		}
11805 
11806 		if (!bpf_pseudo_call(insn))
11807 			continue;
11808 		depth = get_callee_stack_depth(env, insn, i);
11809 		if (depth < 0)
11810 			return depth;
11811 		bpf_patch_call_args(insn, depth);
11812 	}
11813 	err = 0;
11814 #endif
11815 	return err;
11816 }
11817 
11818 /* Do various post-verification rewrites in a single program pass.
11819  * These rewrites simplify JIT and interpreter implementations.
11820  */
11821 static int do_misc_fixups(struct bpf_verifier_env *env)
11822 {
11823 	struct bpf_prog *prog = env->prog;
11824 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
11825 	struct bpf_insn *insn = prog->insnsi;
11826 	const struct bpf_func_proto *fn;
11827 	const int insn_cnt = prog->len;
11828 	const struct bpf_map_ops *ops;
11829 	struct bpf_insn_aux_data *aux;
11830 	struct bpf_insn insn_buf[16];
11831 	struct bpf_prog *new_prog;
11832 	struct bpf_map *map_ptr;
11833 	int i, ret, cnt, delta = 0;
11834 
11835 	for (i = 0; i < insn_cnt; i++, insn++) {
11836 		/* Make divide-by-zero exceptions impossible. */
11837 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
11838 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
11839 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
11840 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
11841 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
11842 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
11843 			struct bpf_insn *patchlet;
11844 			struct bpf_insn chk_and_div[] = {
11845 				/* [R,W]x div 0 -> 0 */
11846 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11847 					     BPF_JNE | BPF_K, insn->src_reg,
11848 					     0, 2, 0),
11849 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
11850 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11851 				*insn,
11852 			};
11853 			struct bpf_insn chk_and_mod[] = {
11854 				/* [R,W]x mod 0 -> [R,W]x */
11855 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11856 					     BPF_JEQ | BPF_K, insn->src_reg,
11857 					     0, 1 + (is64 ? 0 : 1), 0),
11858 				*insn,
11859 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11860 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
11861 			};
11862 
11863 			patchlet = isdiv ? chk_and_div : chk_and_mod;
11864 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
11865 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
11866 
11867 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
11868 			if (!new_prog)
11869 				return -ENOMEM;
11870 
11871 			delta    += cnt - 1;
11872 			env->prog = prog = new_prog;
11873 			insn      = new_prog->insnsi + i + delta;
11874 			continue;
11875 		}
11876 
11877 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
11878 		if (BPF_CLASS(insn->code) == BPF_LD &&
11879 		    (BPF_MODE(insn->code) == BPF_ABS ||
11880 		     BPF_MODE(insn->code) == BPF_IND)) {
11881 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
11882 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11883 				verbose(env, "bpf verifier is misconfigured\n");
11884 				return -EINVAL;
11885 			}
11886 
11887 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11888 			if (!new_prog)
11889 				return -ENOMEM;
11890 
11891 			delta    += cnt - 1;
11892 			env->prog = prog = new_prog;
11893 			insn      = new_prog->insnsi + i + delta;
11894 			continue;
11895 		}
11896 
11897 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
11898 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
11899 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
11900 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
11901 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
11902 			struct bpf_insn insn_buf[16];
11903 			struct bpf_insn *patch = &insn_buf[0];
11904 			bool issrc, isneg;
11905 			u32 off_reg;
11906 
11907 			aux = &env->insn_aux_data[i + delta];
11908 			if (!aux->alu_state ||
11909 			    aux->alu_state == BPF_ALU_NON_POINTER)
11910 				continue;
11911 
11912 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
11913 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
11914 				BPF_ALU_SANITIZE_SRC;
11915 
11916 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
11917 			if (isneg)
11918 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11919 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
11920 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
11921 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
11922 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
11923 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
11924 			if (issrc) {
11925 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
11926 							 off_reg);
11927 				insn->src_reg = BPF_REG_AX;
11928 			} else {
11929 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
11930 							 BPF_REG_AX);
11931 			}
11932 			if (isneg)
11933 				insn->code = insn->code == code_add ?
11934 					     code_sub : code_add;
11935 			*patch++ = *insn;
11936 			if (issrc && isneg)
11937 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11938 			cnt = patch - insn_buf;
11939 
11940 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11941 			if (!new_prog)
11942 				return -ENOMEM;
11943 
11944 			delta    += cnt - 1;
11945 			env->prog = prog = new_prog;
11946 			insn      = new_prog->insnsi + i + delta;
11947 			continue;
11948 		}
11949 
11950 		if (insn->code != (BPF_JMP | BPF_CALL))
11951 			continue;
11952 		if (insn->src_reg == BPF_PSEUDO_CALL)
11953 			continue;
11954 
11955 		if (insn->imm == BPF_FUNC_get_route_realm)
11956 			prog->dst_needed = 1;
11957 		if (insn->imm == BPF_FUNC_get_prandom_u32)
11958 			bpf_user_rnd_init_once();
11959 		if (insn->imm == BPF_FUNC_override_return)
11960 			prog->kprobe_override = 1;
11961 		if (insn->imm == BPF_FUNC_tail_call) {
11962 			/* If we tail call into other programs, we
11963 			 * cannot make any assumptions since they can
11964 			 * be replaced dynamically during runtime in
11965 			 * the program array.
11966 			 */
11967 			prog->cb_access = 1;
11968 			if (!allow_tail_call_in_subprogs(env))
11969 				prog->aux->stack_depth = MAX_BPF_STACK;
11970 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
11971 
11972 			/* mark bpf_tail_call as different opcode to avoid
11973 			 * conditional branch in the interpeter for every normal
11974 			 * call and to prevent accidental JITing by JIT compiler
11975 			 * that doesn't support bpf_tail_call yet
11976 			 */
11977 			insn->imm = 0;
11978 			insn->code = BPF_JMP | BPF_TAIL_CALL;
11979 
11980 			aux = &env->insn_aux_data[i + delta];
11981 			if (env->bpf_capable && !expect_blinding &&
11982 			    prog->jit_requested &&
11983 			    !bpf_map_key_poisoned(aux) &&
11984 			    !bpf_map_ptr_poisoned(aux) &&
11985 			    !bpf_map_ptr_unpriv(aux)) {
11986 				struct bpf_jit_poke_descriptor desc = {
11987 					.reason = BPF_POKE_REASON_TAIL_CALL,
11988 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
11989 					.tail_call.key = bpf_map_key_immediate(aux),
11990 					.insn_idx = i + delta,
11991 				};
11992 
11993 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
11994 				if (ret < 0) {
11995 					verbose(env, "adding tail call poke descriptor failed\n");
11996 					return ret;
11997 				}
11998 
11999 				insn->imm = ret + 1;
12000 				continue;
12001 			}
12002 
12003 			if (!bpf_map_ptr_unpriv(aux))
12004 				continue;
12005 
12006 			/* instead of changing every JIT dealing with tail_call
12007 			 * emit two extra insns:
12008 			 * if (index >= max_entries) goto out;
12009 			 * index &= array->index_mask;
12010 			 * to avoid out-of-bounds cpu speculation
12011 			 */
12012 			if (bpf_map_ptr_poisoned(aux)) {
12013 				verbose(env, "tail_call abusing map_ptr\n");
12014 				return -EINVAL;
12015 			}
12016 
12017 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
12018 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
12019 						  map_ptr->max_entries, 2);
12020 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
12021 						    container_of(map_ptr,
12022 								 struct bpf_array,
12023 								 map)->index_mask);
12024 			insn_buf[2] = *insn;
12025 			cnt = 3;
12026 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12027 			if (!new_prog)
12028 				return -ENOMEM;
12029 
12030 			delta    += cnt - 1;
12031 			env->prog = prog = new_prog;
12032 			insn      = new_prog->insnsi + i + delta;
12033 			continue;
12034 		}
12035 
12036 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
12037 		 * and other inlining handlers are currently limited to 64 bit
12038 		 * only.
12039 		 */
12040 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
12041 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
12042 		     insn->imm == BPF_FUNC_map_update_elem ||
12043 		     insn->imm == BPF_FUNC_map_delete_elem ||
12044 		     insn->imm == BPF_FUNC_map_push_elem   ||
12045 		     insn->imm == BPF_FUNC_map_pop_elem    ||
12046 		     insn->imm == BPF_FUNC_map_peek_elem   ||
12047 		     insn->imm == BPF_FUNC_redirect_map)) {
12048 			aux = &env->insn_aux_data[i + delta];
12049 			if (bpf_map_ptr_poisoned(aux))
12050 				goto patch_call_imm;
12051 
12052 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
12053 			ops = map_ptr->ops;
12054 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
12055 			    ops->map_gen_lookup) {
12056 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
12057 				if (cnt == -EOPNOTSUPP)
12058 					goto patch_map_ops_generic;
12059 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12060 					verbose(env, "bpf verifier is misconfigured\n");
12061 					return -EINVAL;
12062 				}
12063 
12064 				new_prog = bpf_patch_insn_data(env, i + delta,
12065 							       insn_buf, cnt);
12066 				if (!new_prog)
12067 					return -ENOMEM;
12068 
12069 				delta    += cnt - 1;
12070 				env->prog = prog = new_prog;
12071 				insn      = new_prog->insnsi + i + delta;
12072 				continue;
12073 			}
12074 
12075 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
12076 				     (void *(*)(struct bpf_map *map, void *key))NULL));
12077 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
12078 				     (int (*)(struct bpf_map *map, void *key))NULL));
12079 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
12080 				     (int (*)(struct bpf_map *map, void *key, void *value,
12081 					      u64 flags))NULL));
12082 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
12083 				     (int (*)(struct bpf_map *map, void *value,
12084 					      u64 flags))NULL));
12085 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
12086 				     (int (*)(struct bpf_map *map, void *value))NULL));
12087 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
12088 				     (int (*)(struct bpf_map *map, void *value))NULL));
12089 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
12090 				     (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
12091 
12092 patch_map_ops_generic:
12093 			switch (insn->imm) {
12094 			case BPF_FUNC_map_lookup_elem:
12095 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
12096 					    __bpf_call_base;
12097 				continue;
12098 			case BPF_FUNC_map_update_elem:
12099 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
12100 					    __bpf_call_base;
12101 				continue;
12102 			case BPF_FUNC_map_delete_elem:
12103 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
12104 					    __bpf_call_base;
12105 				continue;
12106 			case BPF_FUNC_map_push_elem:
12107 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
12108 					    __bpf_call_base;
12109 				continue;
12110 			case BPF_FUNC_map_pop_elem:
12111 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
12112 					    __bpf_call_base;
12113 				continue;
12114 			case BPF_FUNC_map_peek_elem:
12115 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
12116 					    __bpf_call_base;
12117 				continue;
12118 			case BPF_FUNC_redirect_map:
12119 				insn->imm = BPF_CAST_CALL(ops->map_redirect) -
12120 					    __bpf_call_base;
12121 				continue;
12122 			}
12123 
12124 			goto patch_call_imm;
12125 		}
12126 
12127 		/* Implement bpf_jiffies64 inline. */
12128 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
12129 		    insn->imm == BPF_FUNC_jiffies64) {
12130 			struct bpf_insn ld_jiffies_addr[2] = {
12131 				BPF_LD_IMM64(BPF_REG_0,
12132 					     (unsigned long)&jiffies),
12133 			};
12134 
12135 			insn_buf[0] = ld_jiffies_addr[0];
12136 			insn_buf[1] = ld_jiffies_addr[1];
12137 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
12138 						  BPF_REG_0, 0);
12139 			cnt = 3;
12140 
12141 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
12142 						       cnt);
12143 			if (!new_prog)
12144 				return -ENOMEM;
12145 
12146 			delta    += cnt - 1;
12147 			env->prog = prog = new_prog;
12148 			insn      = new_prog->insnsi + i + delta;
12149 			continue;
12150 		}
12151 
12152 patch_call_imm:
12153 		fn = env->ops->get_func_proto(insn->imm, env->prog);
12154 		/* all functions that have prototype and verifier allowed
12155 		 * programs to call them, must be real in-kernel functions
12156 		 */
12157 		if (!fn->func) {
12158 			verbose(env,
12159 				"kernel subsystem misconfigured func %s#%d\n",
12160 				func_id_name(insn->imm), insn->imm);
12161 			return -EFAULT;
12162 		}
12163 		insn->imm = fn->func - __bpf_call_base;
12164 	}
12165 
12166 	/* Since poke tab is now finalized, publish aux to tracker. */
12167 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
12168 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
12169 		if (!map_ptr->ops->map_poke_track ||
12170 		    !map_ptr->ops->map_poke_untrack ||
12171 		    !map_ptr->ops->map_poke_run) {
12172 			verbose(env, "bpf verifier is misconfigured\n");
12173 			return -EINVAL;
12174 		}
12175 
12176 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
12177 		if (ret < 0) {
12178 			verbose(env, "tracking tail call prog failed\n");
12179 			return ret;
12180 		}
12181 	}
12182 
12183 	return 0;
12184 }
12185 
12186 static void free_states(struct bpf_verifier_env *env)
12187 {
12188 	struct bpf_verifier_state_list *sl, *sln;
12189 	int i;
12190 
12191 	sl = env->free_list;
12192 	while (sl) {
12193 		sln = sl->next;
12194 		free_verifier_state(&sl->state, false);
12195 		kfree(sl);
12196 		sl = sln;
12197 	}
12198 	env->free_list = NULL;
12199 
12200 	if (!env->explored_states)
12201 		return;
12202 
12203 	for (i = 0; i < state_htab_size(env); i++) {
12204 		sl = env->explored_states[i];
12205 
12206 		while (sl) {
12207 			sln = sl->next;
12208 			free_verifier_state(&sl->state, false);
12209 			kfree(sl);
12210 			sl = sln;
12211 		}
12212 		env->explored_states[i] = NULL;
12213 	}
12214 }
12215 
12216 /* The verifier is using insn_aux_data[] to store temporary data during
12217  * verification and to store information for passes that run after the
12218  * verification like dead code sanitization. do_check_common() for subprogram N
12219  * may analyze many other subprograms. sanitize_insn_aux_data() clears all
12220  * temporary data after do_check_common() finds that subprogram N cannot be
12221  * verified independently. pass_cnt counts the number of times
12222  * do_check_common() was run and insn->aux->seen tells the pass number
12223  * insn_aux_data was touched. These variables are compared to clear temporary
12224  * data from failed pass. For testing and experiments do_check_common() can be
12225  * run multiple times even when prior attempt to verify is unsuccessful.
12226  */
12227 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
12228 {
12229 	struct bpf_insn *insn = env->prog->insnsi;
12230 	struct bpf_insn_aux_data *aux;
12231 	int i, class;
12232 
12233 	for (i = 0; i < env->prog->len; i++) {
12234 		class = BPF_CLASS(insn[i].code);
12235 		if (class != BPF_LDX && class != BPF_STX)
12236 			continue;
12237 		aux = &env->insn_aux_data[i];
12238 		if (aux->seen != env->pass_cnt)
12239 			continue;
12240 		memset(aux, 0, offsetof(typeof(*aux), orig_idx));
12241 	}
12242 }
12243 
12244 static int do_check_common(struct bpf_verifier_env *env, int subprog)
12245 {
12246 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
12247 	struct bpf_verifier_state *state;
12248 	struct bpf_reg_state *regs;
12249 	int ret, i;
12250 
12251 	env->prev_linfo = NULL;
12252 	env->pass_cnt++;
12253 
12254 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
12255 	if (!state)
12256 		return -ENOMEM;
12257 	state->curframe = 0;
12258 	state->speculative = false;
12259 	state->branches = 1;
12260 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
12261 	if (!state->frame[0]) {
12262 		kfree(state);
12263 		return -ENOMEM;
12264 	}
12265 	env->cur_state = state;
12266 	init_func_state(env, state->frame[0],
12267 			BPF_MAIN_FUNC /* callsite */,
12268 			0 /* frameno */,
12269 			subprog);
12270 
12271 	regs = state->frame[state->curframe]->regs;
12272 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
12273 		ret = btf_prepare_func_args(env, subprog, regs);
12274 		if (ret)
12275 			goto out;
12276 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
12277 			if (regs[i].type == PTR_TO_CTX)
12278 				mark_reg_known_zero(env, regs, i);
12279 			else if (regs[i].type == SCALAR_VALUE)
12280 				mark_reg_unknown(env, regs, i);
12281 			else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
12282 				const u32 mem_size = regs[i].mem_size;
12283 
12284 				mark_reg_known_zero(env, regs, i);
12285 				regs[i].mem_size = mem_size;
12286 				regs[i].id = ++env->id_gen;
12287 			}
12288 		}
12289 	} else {
12290 		/* 1st arg to a function */
12291 		regs[BPF_REG_1].type = PTR_TO_CTX;
12292 		mark_reg_known_zero(env, regs, BPF_REG_1);
12293 		ret = btf_check_func_arg_match(env, subprog, regs);
12294 		if (ret == -EFAULT)
12295 			/* unlikely verifier bug. abort.
12296 			 * ret == 0 and ret < 0 are sadly acceptable for
12297 			 * main() function due to backward compatibility.
12298 			 * Like socket filter program may be written as:
12299 			 * int bpf_prog(struct pt_regs *ctx)
12300 			 * and never dereference that ctx in the program.
12301 			 * 'struct pt_regs' is a type mismatch for socket
12302 			 * filter that should be using 'struct __sk_buff'.
12303 			 */
12304 			goto out;
12305 	}
12306 
12307 	ret = do_check(env);
12308 out:
12309 	/* check for NULL is necessary, since cur_state can be freed inside
12310 	 * do_check() under memory pressure.
12311 	 */
12312 	if (env->cur_state) {
12313 		free_verifier_state(env->cur_state, true);
12314 		env->cur_state = NULL;
12315 	}
12316 	while (!pop_stack(env, NULL, NULL, false));
12317 	if (!ret && pop_log)
12318 		bpf_vlog_reset(&env->log, 0);
12319 	free_states(env);
12320 	if (ret)
12321 		/* clean aux data in case subprog was rejected */
12322 		sanitize_insn_aux_data(env);
12323 	return ret;
12324 }
12325 
12326 /* Verify all global functions in a BPF program one by one based on their BTF.
12327  * All global functions must pass verification. Otherwise the whole program is rejected.
12328  * Consider:
12329  * int bar(int);
12330  * int foo(int f)
12331  * {
12332  *    return bar(f);
12333  * }
12334  * int bar(int b)
12335  * {
12336  *    ...
12337  * }
12338  * foo() will be verified first for R1=any_scalar_value. During verification it
12339  * will be assumed that bar() already verified successfully and call to bar()
12340  * from foo() will be checked for type match only. Later bar() will be verified
12341  * independently to check that it's safe for R1=any_scalar_value.
12342  */
12343 static int do_check_subprogs(struct bpf_verifier_env *env)
12344 {
12345 	struct bpf_prog_aux *aux = env->prog->aux;
12346 	int i, ret;
12347 
12348 	if (!aux->func_info)
12349 		return 0;
12350 
12351 	for (i = 1; i < env->subprog_cnt; i++) {
12352 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
12353 			continue;
12354 		env->insn_idx = env->subprog_info[i].start;
12355 		WARN_ON_ONCE(env->insn_idx == 0);
12356 		ret = do_check_common(env, i);
12357 		if (ret) {
12358 			return ret;
12359 		} else if (env->log.level & BPF_LOG_LEVEL) {
12360 			verbose(env,
12361 				"Func#%d is safe for any args that match its prototype\n",
12362 				i);
12363 		}
12364 	}
12365 	return 0;
12366 }
12367 
12368 static int do_check_main(struct bpf_verifier_env *env)
12369 {
12370 	int ret;
12371 
12372 	env->insn_idx = 0;
12373 	ret = do_check_common(env, 0);
12374 	if (!ret)
12375 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
12376 	return ret;
12377 }
12378 
12379 
12380 static void print_verification_stats(struct bpf_verifier_env *env)
12381 {
12382 	int i;
12383 
12384 	if (env->log.level & BPF_LOG_STATS) {
12385 		verbose(env, "verification time %lld usec\n",
12386 			div_u64(env->verification_time, 1000));
12387 		verbose(env, "stack depth ");
12388 		for (i = 0; i < env->subprog_cnt; i++) {
12389 			u32 depth = env->subprog_info[i].stack_depth;
12390 
12391 			verbose(env, "%d", depth);
12392 			if (i + 1 < env->subprog_cnt)
12393 				verbose(env, "+");
12394 		}
12395 		verbose(env, "\n");
12396 	}
12397 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
12398 		"total_states %d peak_states %d mark_read %d\n",
12399 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
12400 		env->max_states_per_insn, env->total_states,
12401 		env->peak_states, env->longest_mark_read_walk);
12402 }
12403 
12404 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
12405 {
12406 	const struct btf_type *t, *func_proto;
12407 	const struct bpf_struct_ops *st_ops;
12408 	const struct btf_member *member;
12409 	struct bpf_prog *prog = env->prog;
12410 	u32 btf_id, member_idx;
12411 	const char *mname;
12412 
12413 	btf_id = prog->aux->attach_btf_id;
12414 	st_ops = bpf_struct_ops_find(btf_id);
12415 	if (!st_ops) {
12416 		verbose(env, "attach_btf_id %u is not a supported struct\n",
12417 			btf_id);
12418 		return -ENOTSUPP;
12419 	}
12420 
12421 	t = st_ops->type;
12422 	member_idx = prog->expected_attach_type;
12423 	if (member_idx >= btf_type_vlen(t)) {
12424 		verbose(env, "attach to invalid member idx %u of struct %s\n",
12425 			member_idx, st_ops->name);
12426 		return -EINVAL;
12427 	}
12428 
12429 	member = &btf_type_member(t)[member_idx];
12430 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
12431 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
12432 					       NULL);
12433 	if (!func_proto) {
12434 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
12435 			mname, member_idx, st_ops->name);
12436 		return -EINVAL;
12437 	}
12438 
12439 	if (st_ops->check_member) {
12440 		int err = st_ops->check_member(t, member);
12441 
12442 		if (err) {
12443 			verbose(env, "attach to unsupported member %s of struct %s\n",
12444 				mname, st_ops->name);
12445 			return err;
12446 		}
12447 	}
12448 
12449 	prog->aux->attach_func_proto = func_proto;
12450 	prog->aux->attach_func_name = mname;
12451 	env->ops = st_ops->verifier_ops;
12452 
12453 	return 0;
12454 }
12455 #define SECURITY_PREFIX "security_"
12456 
12457 static int check_attach_modify_return(unsigned long addr, const char *func_name)
12458 {
12459 	if (within_error_injection_list(addr) ||
12460 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
12461 		return 0;
12462 
12463 	return -EINVAL;
12464 }
12465 
12466 /* list of non-sleepable functions that are otherwise on
12467  * ALLOW_ERROR_INJECTION list
12468  */
12469 BTF_SET_START(btf_non_sleepable_error_inject)
12470 /* Three functions below can be called from sleepable and non-sleepable context.
12471  * Assume non-sleepable from bpf safety point of view.
12472  */
12473 BTF_ID(func, __add_to_page_cache_locked)
12474 BTF_ID(func, should_fail_alloc_page)
12475 BTF_ID(func, should_failslab)
12476 BTF_SET_END(btf_non_sleepable_error_inject)
12477 
12478 static int check_non_sleepable_error_inject(u32 btf_id)
12479 {
12480 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
12481 }
12482 
12483 int bpf_check_attach_target(struct bpf_verifier_log *log,
12484 			    const struct bpf_prog *prog,
12485 			    const struct bpf_prog *tgt_prog,
12486 			    u32 btf_id,
12487 			    struct bpf_attach_target_info *tgt_info)
12488 {
12489 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
12490 	const char prefix[] = "btf_trace_";
12491 	int ret = 0, subprog = -1, i;
12492 	const struct btf_type *t;
12493 	bool conservative = true;
12494 	const char *tname;
12495 	struct btf *btf;
12496 	long addr = 0;
12497 
12498 	if (!btf_id) {
12499 		bpf_log(log, "Tracing programs must provide btf_id\n");
12500 		return -EINVAL;
12501 	}
12502 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
12503 	if (!btf) {
12504 		bpf_log(log,
12505 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
12506 		return -EINVAL;
12507 	}
12508 	t = btf_type_by_id(btf, btf_id);
12509 	if (!t) {
12510 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
12511 		return -EINVAL;
12512 	}
12513 	tname = btf_name_by_offset(btf, t->name_off);
12514 	if (!tname) {
12515 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
12516 		return -EINVAL;
12517 	}
12518 	if (tgt_prog) {
12519 		struct bpf_prog_aux *aux = tgt_prog->aux;
12520 
12521 		for (i = 0; i < aux->func_info_cnt; i++)
12522 			if (aux->func_info[i].type_id == btf_id) {
12523 				subprog = i;
12524 				break;
12525 			}
12526 		if (subprog == -1) {
12527 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
12528 			return -EINVAL;
12529 		}
12530 		conservative = aux->func_info_aux[subprog].unreliable;
12531 		if (prog_extension) {
12532 			if (conservative) {
12533 				bpf_log(log,
12534 					"Cannot replace static functions\n");
12535 				return -EINVAL;
12536 			}
12537 			if (!prog->jit_requested) {
12538 				bpf_log(log,
12539 					"Extension programs should be JITed\n");
12540 				return -EINVAL;
12541 			}
12542 		}
12543 		if (!tgt_prog->jited) {
12544 			bpf_log(log, "Can attach to only JITed progs\n");
12545 			return -EINVAL;
12546 		}
12547 		if (tgt_prog->type == prog->type) {
12548 			/* Cannot fentry/fexit another fentry/fexit program.
12549 			 * Cannot attach program extension to another extension.
12550 			 * It's ok to attach fentry/fexit to extension program.
12551 			 */
12552 			bpf_log(log, "Cannot recursively attach\n");
12553 			return -EINVAL;
12554 		}
12555 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
12556 		    prog_extension &&
12557 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
12558 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
12559 			/* Program extensions can extend all program types
12560 			 * except fentry/fexit. The reason is the following.
12561 			 * The fentry/fexit programs are used for performance
12562 			 * analysis, stats and can be attached to any program
12563 			 * type except themselves. When extension program is
12564 			 * replacing XDP function it is necessary to allow
12565 			 * performance analysis of all functions. Both original
12566 			 * XDP program and its program extension. Hence
12567 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
12568 			 * allowed. If extending of fentry/fexit was allowed it
12569 			 * would be possible to create long call chain
12570 			 * fentry->extension->fentry->extension beyond
12571 			 * reasonable stack size. Hence extending fentry is not
12572 			 * allowed.
12573 			 */
12574 			bpf_log(log, "Cannot extend fentry/fexit\n");
12575 			return -EINVAL;
12576 		}
12577 	} else {
12578 		if (prog_extension) {
12579 			bpf_log(log, "Cannot replace kernel functions\n");
12580 			return -EINVAL;
12581 		}
12582 	}
12583 
12584 	switch (prog->expected_attach_type) {
12585 	case BPF_TRACE_RAW_TP:
12586 		if (tgt_prog) {
12587 			bpf_log(log,
12588 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
12589 			return -EINVAL;
12590 		}
12591 		if (!btf_type_is_typedef(t)) {
12592 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
12593 				btf_id);
12594 			return -EINVAL;
12595 		}
12596 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
12597 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
12598 				btf_id, tname);
12599 			return -EINVAL;
12600 		}
12601 		tname += sizeof(prefix) - 1;
12602 		t = btf_type_by_id(btf, t->type);
12603 		if (!btf_type_is_ptr(t))
12604 			/* should never happen in valid vmlinux build */
12605 			return -EINVAL;
12606 		t = btf_type_by_id(btf, t->type);
12607 		if (!btf_type_is_func_proto(t))
12608 			/* should never happen in valid vmlinux build */
12609 			return -EINVAL;
12610 
12611 		break;
12612 	case BPF_TRACE_ITER:
12613 		if (!btf_type_is_func(t)) {
12614 			bpf_log(log, "attach_btf_id %u is not a function\n",
12615 				btf_id);
12616 			return -EINVAL;
12617 		}
12618 		t = btf_type_by_id(btf, t->type);
12619 		if (!btf_type_is_func_proto(t))
12620 			return -EINVAL;
12621 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12622 		if (ret)
12623 			return ret;
12624 		break;
12625 	default:
12626 		if (!prog_extension)
12627 			return -EINVAL;
12628 		fallthrough;
12629 	case BPF_MODIFY_RETURN:
12630 	case BPF_LSM_MAC:
12631 	case BPF_TRACE_FENTRY:
12632 	case BPF_TRACE_FEXIT:
12633 		if (!btf_type_is_func(t)) {
12634 			bpf_log(log, "attach_btf_id %u is not a function\n",
12635 				btf_id);
12636 			return -EINVAL;
12637 		}
12638 		if (prog_extension &&
12639 		    btf_check_type_match(log, prog, btf, t))
12640 			return -EINVAL;
12641 		t = btf_type_by_id(btf, t->type);
12642 		if (!btf_type_is_func_proto(t))
12643 			return -EINVAL;
12644 
12645 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
12646 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
12647 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
12648 			return -EINVAL;
12649 
12650 		if (tgt_prog && conservative)
12651 			t = NULL;
12652 
12653 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12654 		if (ret < 0)
12655 			return ret;
12656 
12657 		if (tgt_prog) {
12658 			if (subprog == 0)
12659 				addr = (long) tgt_prog->bpf_func;
12660 			else
12661 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
12662 		} else {
12663 			addr = kallsyms_lookup_name(tname);
12664 			if (!addr) {
12665 				bpf_log(log,
12666 					"The address of function %s cannot be found\n",
12667 					tname);
12668 				return -ENOENT;
12669 			}
12670 		}
12671 
12672 		if (prog->aux->sleepable) {
12673 			ret = -EINVAL;
12674 			switch (prog->type) {
12675 			case BPF_PROG_TYPE_TRACING:
12676 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
12677 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
12678 				 */
12679 				if (!check_non_sleepable_error_inject(btf_id) &&
12680 				    within_error_injection_list(addr))
12681 					ret = 0;
12682 				break;
12683 			case BPF_PROG_TYPE_LSM:
12684 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
12685 				 * Only some of them are sleepable.
12686 				 */
12687 				if (bpf_lsm_is_sleepable_hook(btf_id))
12688 					ret = 0;
12689 				break;
12690 			default:
12691 				break;
12692 			}
12693 			if (ret) {
12694 				bpf_log(log, "%s is not sleepable\n", tname);
12695 				return ret;
12696 			}
12697 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
12698 			if (tgt_prog) {
12699 				bpf_log(log, "can't modify return codes of BPF programs\n");
12700 				return -EINVAL;
12701 			}
12702 			ret = check_attach_modify_return(addr, tname);
12703 			if (ret) {
12704 				bpf_log(log, "%s() is not modifiable\n", tname);
12705 				return ret;
12706 			}
12707 		}
12708 
12709 		break;
12710 	}
12711 	tgt_info->tgt_addr = addr;
12712 	tgt_info->tgt_name = tname;
12713 	tgt_info->tgt_type = t;
12714 	return 0;
12715 }
12716 
12717 static int check_attach_btf_id(struct bpf_verifier_env *env)
12718 {
12719 	struct bpf_prog *prog = env->prog;
12720 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
12721 	struct bpf_attach_target_info tgt_info = {};
12722 	u32 btf_id = prog->aux->attach_btf_id;
12723 	struct bpf_trampoline *tr;
12724 	int ret;
12725 	u64 key;
12726 
12727 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
12728 	    prog->type != BPF_PROG_TYPE_LSM) {
12729 		verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
12730 		return -EINVAL;
12731 	}
12732 
12733 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
12734 		return check_struct_ops_btf_id(env);
12735 
12736 	if (prog->type != BPF_PROG_TYPE_TRACING &&
12737 	    prog->type != BPF_PROG_TYPE_LSM &&
12738 	    prog->type != BPF_PROG_TYPE_EXT)
12739 		return 0;
12740 
12741 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
12742 	if (ret)
12743 		return ret;
12744 
12745 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
12746 		/* to make freplace equivalent to their targets, they need to
12747 		 * inherit env->ops and expected_attach_type for the rest of the
12748 		 * verification
12749 		 */
12750 		env->ops = bpf_verifier_ops[tgt_prog->type];
12751 		prog->expected_attach_type = tgt_prog->expected_attach_type;
12752 	}
12753 
12754 	/* store info about the attachment target that will be used later */
12755 	prog->aux->attach_func_proto = tgt_info.tgt_type;
12756 	prog->aux->attach_func_name = tgt_info.tgt_name;
12757 
12758 	if (tgt_prog) {
12759 		prog->aux->saved_dst_prog_type = tgt_prog->type;
12760 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
12761 	}
12762 
12763 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
12764 		prog->aux->attach_btf_trace = true;
12765 		return 0;
12766 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
12767 		if (!bpf_iter_prog_supported(prog))
12768 			return -EINVAL;
12769 		return 0;
12770 	}
12771 
12772 	if (prog->type == BPF_PROG_TYPE_LSM) {
12773 		ret = bpf_lsm_verify_prog(&env->log, prog);
12774 		if (ret < 0)
12775 			return ret;
12776 	}
12777 
12778 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
12779 	tr = bpf_trampoline_get(key, &tgt_info);
12780 	if (!tr)
12781 		return -ENOMEM;
12782 
12783 	prog->aux->dst_trampoline = tr;
12784 	return 0;
12785 }
12786 
12787 struct btf *bpf_get_btf_vmlinux(void)
12788 {
12789 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
12790 		mutex_lock(&bpf_verifier_lock);
12791 		if (!btf_vmlinux)
12792 			btf_vmlinux = btf_parse_vmlinux();
12793 		mutex_unlock(&bpf_verifier_lock);
12794 	}
12795 	return btf_vmlinux;
12796 }
12797 
12798 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
12799 	      union bpf_attr __user *uattr)
12800 {
12801 	u64 start_time = ktime_get_ns();
12802 	struct bpf_verifier_env *env;
12803 	struct bpf_verifier_log *log;
12804 	int i, len, ret = -EINVAL;
12805 	bool is_priv;
12806 
12807 	/* no program is valid */
12808 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
12809 		return -EINVAL;
12810 
12811 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
12812 	 * allocate/free it every time bpf_check() is called
12813 	 */
12814 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
12815 	if (!env)
12816 		return -ENOMEM;
12817 	log = &env->log;
12818 
12819 	len = (*prog)->len;
12820 	env->insn_aux_data =
12821 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
12822 	ret = -ENOMEM;
12823 	if (!env->insn_aux_data)
12824 		goto err_free_env;
12825 	for (i = 0; i < len; i++)
12826 		env->insn_aux_data[i].orig_idx = i;
12827 	env->prog = *prog;
12828 	env->ops = bpf_verifier_ops[env->prog->type];
12829 	is_priv = bpf_capable();
12830 
12831 	bpf_get_btf_vmlinux();
12832 
12833 	/* grab the mutex to protect few globals used by verifier */
12834 	if (!is_priv)
12835 		mutex_lock(&bpf_verifier_lock);
12836 
12837 	if (attr->log_level || attr->log_buf || attr->log_size) {
12838 		/* user requested verbose verifier output
12839 		 * and supplied buffer to store the verification trace
12840 		 */
12841 		log->level = attr->log_level;
12842 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
12843 		log->len_total = attr->log_size;
12844 
12845 		ret = -EINVAL;
12846 		/* log attributes have to be sane */
12847 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
12848 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
12849 			goto err_unlock;
12850 	}
12851 
12852 	if (IS_ERR(btf_vmlinux)) {
12853 		/* Either gcc or pahole or kernel are broken. */
12854 		verbose(env, "in-kernel BTF is malformed\n");
12855 		ret = PTR_ERR(btf_vmlinux);
12856 		goto skip_full_check;
12857 	}
12858 
12859 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
12860 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
12861 		env->strict_alignment = true;
12862 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
12863 		env->strict_alignment = false;
12864 
12865 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
12866 	env->allow_uninit_stack = bpf_allow_uninit_stack();
12867 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
12868 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
12869 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
12870 	env->bpf_capable = bpf_capable();
12871 
12872 	if (is_priv)
12873 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
12874 
12875 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
12876 		ret = bpf_prog_offload_verifier_prep(env->prog);
12877 		if (ret)
12878 			goto skip_full_check;
12879 	}
12880 
12881 	env->explored_states = kvcalloc(state_htab_size(env),
12882 				       sizeof(struct bpf_verifier_state_list *),
12883 				       GFP_USER);
12884 	ret = -ENOMEM;
12885 	if (!env->explored_states)
12886 		goto skip_full_check;
12887 
12888 	ret = check_subprogs(env);
12889 	if (ret < 0)
12890 		goto skip_full_check;
12891 
12892 	ret = check_btf_info(env, attr, uattr);
12893 	if (ret < 0)
12894 		goto skip_full_check;
12895 
12896 	ret = check_attach_btf_id(env);
12897 	if (ret)
12898 		goto skip_full_check;
12899 
12900 	ret = resolve_pseudo_ldimm64(env);
12901 	if (ret < 0)
12902 		goto skip_full_check;
12903 
12904 	ret = check_cfg(env);
12905 	if (ret < 0)
12906 		goto skip_full_check;
12907 
12908 	ret = do_check_subprogs(env);
12909 	ret = ret ?: do_check_main(env);
12910 
12911 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
12912 		ret = bpf_prog_offload_finalize(env);
12913 
12914 skip_full_check:
12915 	kvfree(env->explored_states);
12916 
12917 	if (ret == 0)
12918 		ret = check_max_stack_depth(env);
12919 
12920 	/* instruction rewrites happen after this point */
12921 	if (is_priv) {
12922 		if (ret == 0)
12923 			opt_hard_wire_dead_code_branches(env);
12924 		if (ret == 0)
12925 			ret = opt_remove_dead_code(env);
12926 		if (ret == 0)
12927 			ret = opt_remove_nops(env);
12928 	} else {
12929 		if (ret == 0)
12930 			sanitize_dead_code(env);
12931 	}
12932 
12933 	if (ret == 0)
12934 		/* program is valid, convert *(u32*)(ctx + off) accesses */
12935 		ret = convert_ctx_accesses(env);
12936 
12937 	if (ret == 0)
12938 		ret = do_misc_fixups(env);
12939 
12940 	/* do 32-bit optimization after insn patching has done so those patched
12941 	 * insns could be handled correctly.
12942 	 */
12943 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
12944 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
12945 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
12946 								     : false;
12947 	}
12948 
12949 	if (ret == 0)
12950 		ret = fixup_call_args(env);
12951 
12952 	env->verification_time = ktime_get_ns() - start_time;
12953 	print_verification_stats(env);
12954 
12955 	if (log->level && bpf_verifier_log_full(log))
12956 		ret = -ENOSPC;
12957 	if (log->level && !log->ubuf) {
12958 		ret = -EFAULT;
12959 		goto err_release_maps;
12960 	}
12961 
12962 	if (ret)
12963 		goto err_release_maps;
12964 
12965 	if (env->used_map_cnt) {
12966 		/* if program passed verifier, update used_maps in bpf_prog_info */
12967 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
12968 							  sizeof(env->used_maps[0]),
12969 							  GFP_KERNEL);
12970 
12971 		if (!env->prog->aux->used_maps) {
12972 			ret = -ENOMEM;
12973 			goto err_release_maps;
12974 		}
12975 
12976 		memcpy(env->prog->aux->used_maps, env->used_maps,
12977 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
12978 		env->prog->aux->used_map_cnt = env->used_map_cnt;
12979 	}
12980 	if (env->used_btf_cnt) {
12981 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
12982 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
12983 							  sizeof(env->used_btfs[0]),
12984 							  GFP_KERNEL);
12985 		if (!env->prog->aux->used_btfs) {
12986 			ret = -ENOMEM;
12987 			goto err_release_maps;
12988 		}
12989 
12990 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
12991 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
12992 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
12993 	}
12994 	if (env->used_map_cnt || env->used_btf_cnt) {
12995 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
12996 		 * bpf_ld_imm64 instructions
12997 		 */
12998 		convert_pseudo_ld_imm64(env);
12999 	}
13000 
13001 	adjust_btf_func(env);
13002 
13003 err_release_maps:
13004 	if (!env->prog->aux->used_maps)
13005 		/* if we didn't copy map pointers into bpf_prog_info, release
13006 		 * them now. Otherwise free_used_maps() will release them.
13007 		 */
13008 		release_maps(env);
13009 	if (!env->prog->aux->used_btfs)
13010 		release_btfs(env);
13011 
13012 	/* extension progs temporarily inherit the attach_type of their targets
13013 	   for verification purposes, so set it back to zero before returning
13014 	 */
13015 	if (env->prog->type == BPF_PROG_TYPE_EXT)
13016 		env->prog->expected_attach_type = 0;
13017 
13018 	*prog = env->prog;
13019 err_unlock:
13020 	if (!is_priv)
13021 		mutex_unlock(&bpf_verifier_lock);
13022 	vfree(env->insn_aux_data);
13023 err_free_env:
13024 	kfree(env);
13025 	return ret;
13026 }
13027