1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 #include <linux/kernel.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/bpf.h> 17 #include <linux/bpf_verifier.h> 18 #include <linux/filter.h> 19 #include <net/netlink.h> 20 #include <linux/file.h> 21 #include <linux/vmalloc.h> 22 #include <linux/stringify.h> 23 24 #include "disasm.h" 25 26 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 27 #define BPF_PROG_TYPE(_id, _name) \ 28 [_id] = & _name ## _verifier_ops, 29 #define BPF_MAP_TYPE(_id, _ops) 30 #include <linux/bpf_types.h> 31 #undef BPF_PROG_TYPE 32 #undef BPF_MAP_TYPE 33 }; 34 35 /* bpf_check() is a static code analyzer that walks eBPF program 36 * instruction by instruction and updates register/stack state. 37 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 38 * 39 * The first pass is depth-first-search to check that the program is a DAG. 40 * It rejects the following programs: 41 * - larger than BPF_MAXINSNS insns 42 * - if loop is present (detected via back-edge) 43 * - unreachable insns exist (shouldn't be a forest. program = one function) 44 * - out of bounds or malformed jumps 45 * The second pass is all possible path descent from the 1st insn. 46 * Since it's analyzing all pathes through the program, the length of the 47 * analysis is limited to 64k insn, which may be hit even if total number of 48 * insn is less then 4K, but there are too many branches that change stack/regs. 49 * Number of 'branches to be analyzed' is limited to 1k 50 * 51 * On entry to each instruction, each register has a type, and the instruction 52 * changes the types of the registers depending on instruction semantics. 53 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 54 * copied to R1. 55 * 56 * All registers are 64-bit. 57 * R0 - return register 58 * R1-R5 argument passing registers 59 * R6-R9 callee saved registers 60 * R10 - frame pointer read-only 61 * 62 * At the start of BPF program the register R1 contains a pointer to bpf_context 63 * and has type PTR_TO_CTX. 64 * 65 * Verifier tracks arithmetic operations on pointers in case: 66 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 67 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 68 * 1st insn copies R10 (which has FRAME_PTR) type into R1 69 * and 2nd arithmetic instruction is pattern matched to recognize 70 * that it wants to construct a pointer to some element within stack. 71 * So after 2nd insn, the register R1 has type PTR_TO_STACK 72 * (and -20 constant is saved for further stack bounds checking). 73 * Meaning that this reg is a pointer to stack plus known immediate constant. 74 * 75 * Most of the time the registers have SCALAR_VALUE type, which 76 * means the register has some value, but it's not a valid pointer. 77 * (like pointer plus pointer becomes SCALAR_VALUE type) 78 * 79 * When verifier sees load or store instructions the type of base register 80 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer 81 * types recognized by check_mem_access() function. 82 * 83 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 84 * and the range of [ptr, ptr + map's value_size) is accessible. 85 * 86 * registers used to pass values to function calls are checked against 87 * function argument constraints. 88 * 89 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 90 * It means that the register type passed to this function must be 91 * PTR_TO_STACK and it will be used inside the function as 92 * 'pointer to map element key' 93 * 94 * For example the argument constraints for bpf_map_lookup_elem(): 95 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 96 * .arg1_type = ARG_CONST_MAP_PTR, 97 * .arg2_type = ARG_PTR_TO_MAP_KEY, 98 * 99 * ret_type says that this function returns 'pointer to map elem value or null' 100 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 101 * 2nd argument should be a pointer to stack, which will be used inside 102 * the helper function as a pointer to map element key. 103 * 104 * On the kernel side the helper function looks like: 105 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 106 * { 107 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 108 * void *key = (void *) (unsigned long) r2; 109 * void *value; 110 * 111 * here kernel can access 'key' and 'map' pointers safely, knowing that 112 * [key, key + map->key_size) bytes are valid and were initialized on 113 * the stack of eBPF program. 114 * } 115 * 116 * Corresponding eBPF program may look like: 117 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 118 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 119 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 120 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 121 * here verifier looks at prototype of map_lookup_elem() and sees: 122 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 123 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 124 * 125 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 126 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 127 * and were initialized prior to this call. 128 * If it's ok, then verifier allows this BPF_CALL insn and looks at 129 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 130 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 131 * returns ether pointer to map value or NULL. 132 * 133 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 134 * insn, the register holding that pointer in the true branch changes state to 135 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 136 * branch. See check_cond_jmp_op(). 137 * 138 * After the call R0 is set to return type of the function and registers R1-R5 139 * are set to NOT_INIT to indicate that they are no longer readable. 140 */ 141 142 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 143 struct bpf_verifier_stack_elem { 144 /* verifer state is 'st' 145 * before processing instruction 'insn_idx' 146 * and after processing instruction 'prev_insn_idx' 147 */ 148 struct bpf_verifier_state st; 149 int insn_idx; 150 int prev_insn_idx; 151 struct bpf_verifier_stack_elem *next; 152 }; 153 154 #define BPF_COMPLEXITY_LIMIT_INSNS 131072 155 #define BPF_COMPLEXITY_LIMIT_STACK 1024 156 157 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA) 158 159 struct bpf_call_arg_meta { 160 struct bpf_map *map_ptr; 161 bool raw_mode; 162 bool pkt_access; 163 int regno; 164 int access_size; 165 }; 166 167 static DEFINE_MUTEX(bpf_verifier_lock); 168 169 /* log_level controls verbosity level of eBPF verifier. 170 * verbose() is used to dump the verification trace to the log, so the user 171 * can figure out what's wrong with the program 172 */ 173 static __printf(2, 3) void verbose(struct bpf_verifier_env *env, 174 const char *fmt, ...) 175 { 176 struct bpf_verifer_log *log = &env->log; 177 unsigned int n; 178 va_list args; 179 180 if (!log->level || !log->ubuf || bpf_verifier_log_full(log)) 181 return; 182 183 va_start(args, fmt); 184 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 185 va_end(args); 186 187 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 188 "verifier log line truncated - local buffer too short\n"); 189 190 n = min(log->len_total - log->len_used - 1, n); 191 log->kbuf[n] = '\0'; 192 193 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 194 log->len_used += n; 195 else 196 log->ubuf = NULL; 197 } 198 199 static bool type_is_pkt_pointer(enum bpf_reg_type type) 200 { 201 return type == PTR_TO_PACKET || 202 type == PTR_TO_PACKET_META; 203 } 204 205 /* string representation of 'enum bpf_reg_type' */ 206 static const char * const reg_type_str[] = { 207 [NOT_INIT] = "?", 208 [SCALAR_VALUE] = "inv", 209 [PTR_TO_CTX] = "ctx", 210 [CONST_PTR_TO_MAP] = "map_ptr", 211 [PTR_TO_MAP_VALUE] = "map_value", 212 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 213 [PTR_TO_STACK] = "fp", 214 [PTR_TO_PACKET] = "pkt", 215 [PTR_TO_PACKET_META] = "pkt_meta", 216 [PTR_TO_PACKET_END] = "pkt_end", 217 }; 218 219 static void print_verifier_state(struct bpf_verifier_env *env, 220 struct bpf_verifier_state *state) 221 { 222 struct bpf_reg_state *reg; 223 enum bpf_reg_type t; 224 int i; 225 226 for (i = 0; i < MAX_BPF_REG; i++) { 227 reg = &state->regs[i]; 228 t = reg->type; 229 if (t == NOT_INIT) 230 continue; 231 verbose(env, " R%d=%s", i, reg_type_str[t]); 232 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 233 tnum_is_const(reg->var_off)) { 234 /* reg->off should be 0 for SCALAR_VALUE */ 235 verbose(env, "%lld", reg->var_off.value + reg->off); 236 } else { 237 verbose(env, "(id=%d", reg->id); 238 if (t != SCALAR_VALUE) 239 verbose(env, ",off=%d", reg->off); 240 if (type_is_pkt_pointer(t)) 241 verbose(env, ",r=%d", reg->range); 242 else if (t == CONST_PTR_TO_MAP || 243 t == PTR_TO_MAP_VALUE || 244 t == PTR_TO_MAP_VALUE_OR_NULL) 245 verbose(env, ",ks=%d,vs=%d", 246 reg->map_ptr->key_size, 247 reg->map_ptr->value_size); 248 if (tnum_is_const(reg->var_off)) { 249 /* Typically an immediate SCALAR_VALUE, but 250 * could be a pointer whose offset is too big 251 * for reg->off 252 */ 253 verbose(env, ",imm=%llx", reg->var_off.value); 254 } else { 255 if (reg->smin_value != reg->umin_value && 256 reg->smin_value != S64_MIN) 257 verbose(env, ",smin_value=%lld", 258 (long long)reg->smin_value); 259 if (reg->smax_value != reg->umax_value && 260 reg->smax_value != S64_MAX) 261 verbose(env, ",smax_value=%lld", 262 (long long)reg->smax_value); 263 if (reg->umin_value != 0) 264 verbose(env, ",umin_value=%llu", 265 (unsigned long long)reg->umin_value); 266 if (reg->umax_value != U64_MAX) 267 verbose(env, ",umax_value=%llu", 268 (unsigned long long)reg->umax_value); 269 if (!tnum_is_unknown(reg->var_off)) { 270 char tn_buf[48]; 271 272 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 273 verbose(env, ",var_off=%s", tn_buf); 274 } 275 } 276 verbose(env, ")"); 277 } 278 } 279 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 280 if (state->stack[i].slot_type[0] == STACK_SPILL) 281 verbose(env, " fp%d=%s", 282 -MAX_BPF_STACK + i * BPF_REG_SIZE, 283 reg_type_str[state->stack[i].spilled_ptr.type]); 284 } 285 verbose(env, "\n"); 286 } 287 288 static int copy_stack_state(struct bpf_verifier_state *dst, 289 const struct bpf_verifier_state *src) 290 { 291 if (!src->stack) 292 return 0; 293 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) { 294 /* internal bug, make state invalid to reject the program */ 295 memset(dst, 0, sizeof(*dst)); 296 return -EFAULT; 297 } 298 memcpy(dst->stack, src->stack, 299 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE)); 300 return 0; 301 } 302 303 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 304 * make it consume minimal amount of memory. check_stack_write() access from 305 * the program calls into realloc_verifier_state() to grow the stack size. 306 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 307 * which this function copies over. It points to previous bpf_verifier_state 308 * which is never reallocated 309 */ 310 static int realloc_verifier_state(struct bpf_verifier_state *state, int size, 311 bool copy_old) 312 { 313 u32 old_size = state->allocated_stack; 314 struct bpf_stack_state *new_stack; 315 int slot = size / BPF_REG_SIZE; 316 317 if (size <= old_size || !size) { 318 if (copy_old) 319 return 0; 320 state->allocated_stack = slot * BPF_REG_SIZE; 321 if (!size && old_size) { 322 kfree(state->stack); 323 state->stack = NULL; 324 } 325 return 0; 326 } 327 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state), 328 GFP_KERNEL); 329 if (!new_stack) 330 return -ENOMEM; 331 if (copy_old) { 332 if (state->stack) 333 memcpy(new_stack, state->stack, 334 sizeof(*new_stack) * (old_size / BPF_REG_SIZE)); 335 memset(new_stack + old_size / BPF_REG_SIZE, 0, 336 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE); 337 } 338 state->allocated_stack = slot * BPF_REG_SIZE; 339 kfree(state->stack); 340 state->stack = new_stack; 341 return 0; 342 } 343 344 static void free_verifier_state(struct bpf_verifier_state *state, 345 bool free_self) 346 { 347 kfree(state->stack); 348 if (free_self) 349 kfree(state); 350 } 351 352 /* copy verifier state from src to dst growing dst stack space 353 * when necessary to accommodate larger src stack 354 */ 355 static int copy_verifier_state(struct bpf_verifier_state *dst, 356 const struct bpf_verifier_state *src) 357 { 358 int err; 359 360 err = realloc_verifier_state(dst, src->allocated_stack, false); 361 if (err) 362 return err; 363 memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack)); 364 return copy_stack_state(dst, src); 365 } 366 367 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 368 int *insn_idx) 369 { 370 struct bpf_verifier_state *cur = env->cur_state; 371 struct bpf_verifier_stack_elem *elem, *head = env->head; 372 int err; 373 374 if (env->head == NULL) 375 return -ENOENT; 376 377 if (cur) { 378 err = copy_verifier_state(cur, &head->st); 379 if (err) 380 return err; 381 } 382 if (insn_idx) 383 *insn_idx = head->insn_idx; 384 if (prev_insn_idx) 385 *prev_insn_idx = head->prev_insn_idx; 386 elem = head->next; 387 free_verifier_state(&head->st, false); 388 kfree(head); 389 env->head = elem; 390 env->stack_size--; 391 return 0; 392 } 393 394 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 395 int insn_idx, int prev_insn_idx) 396 { 397 struct bpf_verifier_state *cur = env->cur_state; 398 struct bpf_verifier_stack_elem *elem; 399 int err; 400 401 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 402 if (!elem) 403 goto err; 404 405 elem->insn_idx = insn_idx; 406 elem->prev_insn_idx = prev_insn_idx; 407 elem->next = env->head; 408 env->head = elem; 409 env->stack_size++; 410 err = copy_verifier_state(&elem->st, cur); 411 if (err) 412 goto err; 413 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 414 verbose(env, "BPF program is too complex\n"); 415 goto err; 416 } 417 return &elem->st; 418 err: 419 /* pop all elements and return */ 420 while (!pop_stack(env, NULL, NULL)); 421 return NULL; 422 } 423 424 #define CALLER_SAVED_REGS 6 425 static const int caller_saved[CALLER_SAVED_REGS] = { 426 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 427 }; 428 429 static void __mark_reg_not_init(struct bpf_reg_state *reg); 430 431 /* Mark the unknown part of a register (variable offset or scalar value) as 432 * known to have the value @imm. 433 */ 434 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 435 { 436 reg->id = 0; 437 reg->var_off = tnum_const(imm); 438 reg->smin_value = (s64)imm; 439 reg->smax_value = (s64)imm; 440 reg->umin_value = imm; 441 reg->umax_value = imm; 442 } 443 444 /* Mark the 'variable offset' part of a register as zero. This should be 445 * used only on registers holding a pointer type. 446 */ 447 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 448 { 449 __mark_reg_known(reg, 0); 450 } 451 452 static void mark_reg_known_zero(struct bpf_verifier_env *env, 453 struct bpf_reg_state *regs, u32 regno) 454 { 455 if (WARN_ON(regno >= MAX_BPF_REG)) { 456 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 457 /* Something bad happened, let's kill all regs */ 458 for (regno = 0; regno < MAX_BPF_REG; regno++) 459 __mark_reg_not_init(regs + regno); 460 return; 461 } 462 __mark_reg_known_zero(regs + regno); 463 } 464 465 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 466 { 467 return type_is_pkt_pointer(reg->type); 468 } 469 470 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 471 { 472 return reg_is_pkt_pointer(reg) || 473 reg->type == PTR_TO_PACKET_END; 474 } 475 476 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 477 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 478 enum bpf_reg_type which) 479 { 480 /* The register can already have a range from prior markings. 481 * This is fine as long as it hasn't been advanced from its 482 * origin. 483 */ 484 return reg->type == which && 485 reg->id == 0 && 486 reg->off == 0 && 487 tnum_equals_const(reg->var_off, 0); 488 } 489 490 /* Attempts to improve min/max values based on var_off information */ 491 static void __update_reg_bounds(struct bpf_reg_state *reg) 492 { 493 /* min signed is max(sign bit) | min(other bits) */ 494 reg->smin_value = max_t(s64, reg->smin_value, 495 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 496 /* max signed is min(sign bit) | max(other bits) */ 497 reg->smax_value = min_t(s64, reg->smax_value, 498 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 499 reg->umin_value = max(reg->umin_value, reg->var_off.value); 500 reg->umax_value = min(reg->umax_value, 501 reg->var_off.value | reg->var_off.mask); 502 } 503 504 /* Uses signed min/max values to inform unsigned, and vice-versa */ 505 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 506 { 507 /* Learn sign from signed bounds. 508 * If we cannot cross the sign boundary, then signed and unsigned bounds 509 * are the same, so combine. This works even in the negative case, e.g. 510 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 511 */ 512 if (reg->smin_value >= 0 || reg->smax_value < 0) { 513 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 514 reg->umin_value); 515 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 516 reg->umax_value); 517 return; 518 } 519 /* Learn sign from unsigned bounds. Signed bounds cross the sign 520 * boundary, so we must be careful. 521 */ 522 if ((s64)reg->umax_value >= 0) { 523 /* Positive. We can't learn anything from the smin, but smax 524 * is positive, hence safe. 525 */ 526 reg->smin_value = reg->umin_value; 527 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 528 reg->umax_value); 529 } else if ((s64)reg->umin_value < 0) { 530 /* Negative. We can't learn anything from the smax, but smin 531 * is negative, hence safe. 532 */ 533 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 534 reg->umin_value); 535 reg->smax_value = reg->umax_value; 536 } 537 } 538 539 /* Attempts to improve var_off based on unsigned min/max information */ 540 static void __reg_bound_offset(struct bpf_reg_state *reg) 541 { 542 reg->var_off = tnum_intersect(reg->var_off, 543 tnum_range(reg->umin_value, 544 reg->umax_value)); 545 } 546 547 /* Reset the min/max bounds of a register */ 548 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 549 { 550 reg->smin_value = S64_MIN; 551 reg->smax_value = S64_MAX; 552 reg->umin_value = 0; 553 reg->umax_value = U64_MAX; 554 } 555 556 /* Mark a register as having a completely unknown (scalar) value. */ 557 static void __mark_reg_unknown(struct bpf_reg_state *reg) 558 { 559 reg->type = SCALAR_VALUE; 560 reg->id = 0; 561 reg->off = 0; 562 reg->var_off = tnum_unknown; 563 __mark_reg_unbounded(reg); 564 } 565 566 static void mark_reg_unknown(struct bpf_verifier_env *env, 567 struct bpf_reg_state *regs, u32 regno) 568 { 569 if (WARN_ON(regno >= MAX_BPF_REG)) { 570 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 571 /* Something bad happened, let's kill all regs */ 572 for (regno = 0; regno < MAX_BPF_REG; regno++) 573 __mark_reg_not_init(regs + regno); 574 return; 575 } 576 __mark_reg_unknown(regs + regno); 577 } 578 579 static void __mark_reg_not_init(struct bpf_reg_state *reg) 580 { 581 __mark_reg_unknown(reg); 582 reg->type = NOT_INIT; 583 } 584 585 static void mark_reg_not_init(struct bpf_verifier_env *env, 586 struct bpf_reg_state *regs, u32 regno) 587 { 588 if (WARN_ON(regno >= MAX_BPF_REG)) { 589 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 590 /* Something bad happened, let's kill all regs */ 591 for (regno = 0; regno < MAX_BPF_REG; regno++) 592 __mark_reg_not_init(regs + regno); 593 return; 594 } 595 __mark_reg_not_init(regs + regno); 596 } 597 598 static void init_reg_state(struct bpf_verifier_env *env, 599 struct bpf_reg_state *regs) 600 { 601 int i; 602 603 for (i = 0; i < MAX_BPF_REG; i++) { 604 mark_reg_not_init(env, regs, i); 605 regs[i].live = REG_LIVE_NONE; 606 } 607 608 /* frame pointer */ 609 regs[BPF_REG_FP].type = PTR_TO_STACK; 610 mark_reg_known_zero(env, regs, BPF_REG_FP); 611 612 /* 1st arg to a function */ 613 regs[BPF_REG_1].type = PTR_TO_CTX; 614 mark_reg_known_zero(env, regs, BPF_REG_1); 615 } 616 617 enum reg_arg_type { 618 SRC_OP, /* register is used as source operand */ 619 DST_OP, /* register is used as destination operand */ 620 DST_OP_NO_MARK /* same as above, check only, don't mark */ 621 }; 622 623 static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno) 624 { 625 struct bpf_verifier_state *parent = state->parent; 626 627 if (regno == BPF_REG_FP) 628 /* We don't need to worry about FP liveness because it's read-only */ 629 return; 630 631 while (parent) { 632 /* if read wasn't screened by an earlier write ... */ 633 if (state->regs[regno].live & REG_LIVE_WRITTEN) 634 break; 635 /* ... then we depend on parent's value */ 636 parent->regs[regno].live |= REG_LIVE_READ; 637 state = parent; 638 parent = state->parent; 639 } 640 } 641 642 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 643 enum reg_arg_type t) 644 { 645 struct bpf_reg_state *regs = env->cur_state->regs; 646 647 if (regno >= MAX_BPF_REG) { 648 verbose(env, "R%d is invalid\n", regno); 649 return -EINVAL; 650 } 651 652 if (t == SRC_OP) { 653 /* check whether register used as source operand can be read */ 654 if (regs[regno].type == NOT_INIT) { 655 verbose(env, "R%d !read_ok\n", regno); 656 return -EACCES; 657 } 658 mark_reg_read(env->cur_state, regno); 659 } else { 660 /* check whether register used as dest operand can be written to */ 661 if (regno == BPF_REG_FP) { 662 verbose(env, "frame pointer is read only\n"); 663 return -EACCES; 664 } 665 regs[regno].live |= REG_LIVE_WRITTEN; 666 if (t == DST_OP) 667 mark_reg_unknown(env, regs, regno); 668 } 669 return 0; 670 } 671 672 static bool is_spillable_regtype(enum bpf_reg_type type) 673 { 674 switch (type) { 675 case PTR_TO_MAP_VALUE: 676 case PTR_TO_MAP_VALUE_OR_NULL: 677 case PTR_TO_STACK: 678 case PTR_TO_CTX: 679 case PTR_TO_PACKET: 680 case PTR_TO_PACKET_META: 681 case PTR_TO_PACKET_END: 682 case CONST_PTR_TO_MAP: 683 return true; 684 default: 685 return false; 686 } 687 } 688 689 /* check_stack_read/write functions track spill/fill of registers, 690 * stack boundary and alignment are checked in check_mem_access() 691 */ 692 static int check_stack_write(struct bpf_verifier_env *env, 693 struct bpf_verifier_state *state, int off, 694 int size, int value_regno) 695 { 696 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 697 698 err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE), 699 true); 700 if (err) 701 return err; 702 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 703 * so it's aligned access and [off, off + size) are within stack limits 704 */ 705 if (!env->allow_ptr_leaks && 706 state->stack[spi].slot_type[0] == STACK_SPILL && 707 size != BPF_REG_SIZE) { 708 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 709 return -EACCES; 710 } 711 712 if (value_regno >= 0 && 713 is_spillable_regtype(state->regs[value_regno].type)) { 714 715 /* register containing pointer is being spilled into stack */ 716 if (size != BPF_REG_SIZE) { 717 verbose(env, "invalid size of register spill\n"); 718 return -EACCES; 719 } 720 721 /* save register state */ 722 state->stack[spi].spilled_ptr = state->regs[value_regno]; 723 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 724 725 for (i = 0; i < BPF_REG_SIZE; i++) 726 state->stack[spi].slot_type[i] = STACK_SPILL; 727 } else { 728 /* regular write of data into stack */ 729 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {}; 730 731 for (i = 0; i < size; i++) 732 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 733 STACK_MISC; 734 } 735 return 0; 736 } 737 738 static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot) 739 { 740 struct bpf_verifier_state *parent = state->parent; 741 742 while (parent) { 743 /* if read wasn't screened by an earlier write ... */ 744 if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN) 745 break; 746 /* ... then we depend on parent's value */ 747 parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ; 748 state = parent; 749 parent = state->parent; 750 } 751 } 752 753 static int check_stack_read(struct bpf_verifier_env *env, 754 struct bpf_verifier_state *state, int off, int size, 755 int value_regno) 756 { 757 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 758 u8 *stype; 759 760 if (state->allocated_stack <= slot) { 761 verbose(env, "invalid read from stack off %d+0 size %d\n", 762 off, size); 763 return -EACCES; 764 } 765 stype = state->stack[spi].slot_type; 766 767 if (stype[0] == STACK_SPILL) { 768 if (size != BPF_REG_SIZE) { 769 verbose(env, "invalid size of register spill\n"); 770 return -EACCES; 771 } 772 for (i = 1; i < BPF_REG_SIZE; i++) { 773 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 774 verbose(env, "corrupted spill memory\n"); 775 return -EACCES; 776 } 777 } 778 779 if (value_regno >= 0) { 780 /* restore register state from stack */ 781 state->regs[value_regno] = state->stack[spi].spilled_ptr; 782 mark_stack_slot_read(state, spi); 783 } 784 return 0; 785 } else { 786 for (i = 0; i < size; i++) { 787 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) { 788 verbose(env, "invalid read from stack off %d+%d size %d\n", 789 off, i, size); 790 return -EACCES; 791 } 792 } 793 if (value_regno >= 0) 794 /* have read misc data from the stack */ 795 mark_reg_unknown(env, state->regs, value_regno); 796 return 0; 797 } 798 } 799 800 /* check read/write into map element returned by bpf_map_lookup_elem() */ 801 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 802 int size, bool zero_size_allowed) 803 { 804 struct bpf_reg_state *regs = cur_regs(env); 805 struct bpf_map *map = regs[regno].map_ptr; 806 807 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 808 off + size > map->value_size) { 809 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 810 map->value_size, off, size); 811 return -EACCES; 812 } 813 return 0; 814 } 815 816 /* check read/write into a map element with possible variable offset */ 817 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 818 int off, int size, bool zero_size_allowed) 819 { 820 struct bpf_verifier_state *state = env->cur_state; 821 struct bpf_reg_state *reg = &state->regs[regno]; 822 int err; 823 824 /* We may have adjusted the register to this map value, so we 825 * need to try adding each of min_value and max_value to off 826 * to make sure our theoretical access will be safe. 827 */ 828 if (env->log.level) 829 print_verifier_state(env, state); 830 /* The minimum value is only important with signed 831 * comparisons where we can't assume the floor of a 832 * value is 0. If we are using signed variables for our 833 * index'es we need to make sure that whatever we use 834 * will have a set floor within our range. 835 */ 836 if (reg->smin_value < 0) { 837 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 838 regno); 839 return -EACCES; 840 } 841 err = __check_map_access(env, regno, reg->smin_value + off, size, 842 zero_size_allowed); 843 if (err) { 844 verbose(env, "R%d min value is outside of the array range\n", 845 regno); 846 return err; 847 } 848 849 /* If we haven't set a max value then we need to bail since we can't be 850 * sure we won't do bad things. 851 * If reg->umax_value + off could overflow, treat that as unbounded too. 852 */ 853 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 854 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 855 regno); 856 return -EACCES; 857 } 858 err = __check_map_access(env, regno, reg->umax_value + off, size, 859 zero_size_allowed); 860 if (err) 861 verbose(env, "R%d max value is outside of the array range\n", 862 regno); 863 return err; 864 } 865 866 #define MAX_PACKET_OFF 0xffff 867 868 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 869 const struct bpf_call_arg_meta *meta, 870 enum bpf_access_type t) 871 { 872 switch (env->prog->type) { 873 case BPF_PROG_TYPE_LWT_IN: 874 case BPF_PROG_TYPE_LWT_OUT: 875 /* dst_input() and dst_output() can't write for now */ 876 if (t == BPF_WRITE) 877 return false; 878 /* fallthrough */ 879 case BPF_PROG_TYPE_SCHED_CLS: 880 case BPF_PROG_TYPE_SCHED_ACT: 881 case BPF_PROG_TYPE_XDP: 882 case BPF_PROG_TYPE_LWT_XMIT: 883 case BPF_PROG_TYPE_SK_SKB: 884 if (meta) 885 return meta->pkt_access; 886 887 env->seen_direct_write = true; 888 return true; 889 default: 890 return false; 891 } 892 } 893 894 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 895 int off, int size, bool zero_size_allowed) 896 { 897 struct bpf_reg_state *regs = cur_regs(env); 898 struct bpf_reg_state *reg = ®s[regno]; 899 900 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 901 (u64)off + size > reg->range) { 902 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 903 off, size, regno, reg->id, reg->off, reg->range); 904 return -EACCES; 905 } 906 return 0; 907 } 908 909 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 910 int size, bool zero_size_allowed) 911 { 912 struct bpf_reg_state *regs = cur_regs(env); 913 struct bpf_reg_state *reg = ®s[regno]; 914 int err; 915 916 /* We may have added a variable offset to the packet pointer; but any 917 * reg->range we have comes after that. We are only checking the fixed 918 * offset. 919 */ 920 921 /* We don't allow negative numbers, because we aren't tracking enough 922 * detail to prove they're safe. 923 */ 924 if (reg->smin_value < 0) { 925 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 926 regno); 927 return -EACCES; 928 } 929 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 930 if (err) { 931 verbose(env, "R%d offset is outside of the packet\n", regno); 932 return err; 933 } 934 return err; 935 } 936 937 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 938 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 939 enum bpf_access_type t, enum bpf_reg_type *reg_type) 940 { 941 struct bpf_insn_access_aux info = { 942 .reg_type = *reg_type, 943 }; 944 945 if (env->ops->is_valid_access && 946 env->ops->is_valid_access(off, size, t, &info)) { 947 /* A non zero info.ctx_field_size indicates that this field is a 948 * candidate for later verifier transformation to load the whole 949 * field and then apply a mask when accessed with a narrower 950 * access than actual ctx access size. A zero info.ctx_field_size 951 * will only allow for whole field access and rejects any other 952 * type of narrower access. 953 */ 954 *reg_type = info.reg_type; 955 956 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 957 /* remember the offset of last byte accessed in ctx */ 958 if (env->prog->aux->max_ctx_offset < off + size) 959 env->prog->aux->max_ctx_offset = off + size; 960 return 0; 961 } 962 963 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 964 return -EACCES; 965 } 966 967 static bool __is_pointer_value(bool allow_ptr_leaks, 968 const struct bpf_reg_state *reg) 969 { 970 if (allow_ptr_leaks) 971 return false; 972 973 return reg->type != SCALAR_VALUE; 974 } 975 976 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 977 { 978 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno); 979 } 980 981 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 982 const struct bpf_reg_state *reg, 983 int off, int size, bool strict) 984 { 985 struct tnum reg_off; 986 int ip_align; 987 988 /* Byte size accesses are always allowed. */ 989 if (!strict || size == 1) 990 return 0; 991 992 /* For platforms that do not have a Kconfig enabling 993 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 994 * NET_IP_ALIGN is universally set to '2'. And on platforms 995 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 996 * to this code only in strict mode where we want to emulate 997 * the NET_IP_ALIGN==2 checking. Therefore use an 998 * unconditional IP align value of '2'. 999 */ 1000 ip_align = 2; 1001 1002 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1003 if (!tnum_is_aligned(reg_off, size)) { 1004 char tn_buf[48]; 1005 1006 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1007 verbose(env, 1008 "misaligned packet access off %d+%s+%d+%d size %d\n", 1009 ip_align, tn_buf, reg->off, off, size); 1010 return -EACCES; 1011 } 1012 1013 return 0; 1014 } 1015 1016 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 1017 const struct bpf_reg_state *reg, 1018 const char *pointer_desc, 1019 int off, int size, bool strict) 1020 { 1021 struct tnum reg_off; 1022 1023 /* Byte size accesses are always allowed. */ 1024 if (!strict || size == 1) 1025 return 0; 1026 1027 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1028 if (!tnum_is_aligned(reg_off, size)) { 1029 char tn_buf[48]; 1030 1031 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1032 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 1033 pointer_desc, tn_buf, reg->off, off, size); 1034 return -EACCES; 1035 } 1036 1037 return 0; 1038 } 1039 1040 static int check_ptr_alignment(struct bpf_verifier_env *env, 1041 const struct bpf_reg_state *reg, 1042 int off, int size) 1043 { 1044 bool strict = env->strict_alignment; 1045 const char *pointer_desc = ""; 1046 1047 switch (reg->type) { 1048 case PTR_TO_PACKET: 1049 case PTR_TO_PACKET_META: 1050 /* Special case, because of NET_IP_ALIGN. Given metadata sits 1051 * right in front, treat it the very same way. 1052 */ 1053 return check_pkt_ptr_alignment(env, reg, off, size, strict); 1054 case PTR_TO_MAP_VALUE: 1055 pointer_desc = "value "; 1056 break; 1057 case PTR_TO_CTX: 1058 pointer_desc = "context "; 1059 break; 1060 case PTR_TO_STACK: 1061 pointer_desc = "stack "; 1062 break; 1063 default: 1064 break; 1065 } 1066 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 1067 strict); 1068 } 1069 1070 /* check whether memory at (regno + off) is accessible for t = (read | write) 1071 * if t==write, value_regno is a register which value is stored into memory 1072 * if t==read, value_regno is a register which will receive the value from memory 1073 * if t==write && value_regno==-1, some unknown value is stored into memory 1074 * if t==read && value_regno==-1, don't care what we read from memory 1075 */ 1076 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off, 1077 int bpf_size, enum bpf_access_type t, 1078 int value_regno) 1079 { 1080 struct bpf_verifier_state *state = env->cur_state; 1081 struct bpf_reg_state *regs = cur_regs(env); 1082 struct bpf_reg_state *reg = regs + regno; 1083 int size, err = 0; 1084 1085 size = bpf_size_to_bytes(bpf_size); 1086 if (size < 0) 1087 return size; 1088 1089 /* alignment checks will add in reg->off themselves */ 1090 err = check_ptr_alignment(env, reg, off, size); 1091 if (err) 1092 return err; 1093 1094 /* for access checks, reg->off is just part of off */ 1095 off += reg->off; 1096 1097 if (reg->type == PTR_TO_MAP_VALUE) { 1098 if (t == BPF_WRITE && value_regno >= 0 && 1099 is_pointer_value(env, value_regno)) { 1100 verbose(env, "R%d leaks addr into map\n", value_regno); 1101 return -EACCES; 1102 } 1103 1104 err = check_map_access(env, regno, off, size, false); 1105 if (!err && t == BPF_READ && value_regno >= 0) 1106 mark_reg_unknown(env, regs, value_regno); 1107 1108 } else if (reg->type == PTR_TO_CTX) { 1109 enum bpf_reg_type reg_type = SCALAR_VALUE; 1110 1111 if (t == BPF_WRITE && value_regno >= 0 && 1112 is_pointer_value(env, value_regno)) { 1113 verbose(env, "R%d leaks addr into ctx\n", value_regno); 1114 return -EACCES; 1115 } 1116 /* ctx accesses must be at a fixed offset, so that we can 1117 * determine what type of data were returned. 1118 */ 1119 if (reg->off) { 1120 verbose(env, 1121 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n", 1122 regno, reg->off, off - reg->off); 1123 return -EACCES; 1124 } 1125 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 1126 char tn_buf[48]; 1127 1128 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1129 verbose(env, 1130 "variable ctx access var_off=%s off=%d size=%d", 1131 tn_buf, off, size); 1132 return -EACCES; 1133 } 1134 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 1135 if (!err && t == BPF_READ && value_regno >= 0) { 1136 /* ctx access returns either a scalar, or a 1137 * PTR_TO_PACKET[_META,_END]. In the latter 1138 * case, we know the offset is zero. 1139 */ 1140 if (reg_type == SCALAR_VALUE) 1141 mark_reg_unknown(env, regs, value_regno); 1142 else 1143 mark_reg_known_zero(env, regs, 1144 value_regno); 1145 regs[value_regno].id = 0; 1146 regs[value_regno].off = 0; 1147 regs[value_regno].range = 0; 1148 regs[value_regno].type = reg_type; 1149 } 1150 1151 } else if (reg->type == PTR_TO_STACK) { 1152 /* stack accesses must be at a fixed offset, so that we can 1153 * determine what type of data were returned. 1154 * See check_stack_read(). 1155 */ 1156 if (!tnum_is_const(reg->var_off)) { 1157 char tn_buf[48]; 1158 1159 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1160 verbose(env, "variable stack access var_off=%s off=%d size=%d", 1161 tn_buf, off, size); 1162 return -EACCES; 1163 } 1164 off += reg->var_off.value; 1165 if (off >= 0 || off < -MAX_BPF_STACK) { 1166 verbose(env, "invalid stack off=%d size=%d\n", off, 1167 size); 1168 return -EACCES; 1169 } 1170 1171 if (env->prog->aux->stack_depth < -off) 1172 env->prog->aux->stack_depth = -off; 1173 1174 if (t == BPF_WRITE) 1175 err = check_stack_write(env, state, off, size, 1176 value_regno); 1177 else 1178 err = check_stack_read(env, state, off, size, 1179 value_regno); 1180 } else if (reg_is_pkt_pointer(reg)) { 1181 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 1182 verbose(env, "cannot write into packet\n"); 1183 return -EACCES; 1184 } 1185 if (t == BPF_WRITE && value_regno >= 0 && 1186 is_pointer_value(env, value_regno)) { 1187 verbose(env, "R%d leaks addr into packet\n", 1188 value_regno); 1189 return -EACCES; 1190 } 1191 err = check_packet_access(env, regno, off, size, false); 1192 if (!err && t == BPF_READ && value_regno >= 0) 1193 mark_reg_unknown(env, regs, value_regno); 1194 } else { 1195 verbose(env, "R%d invalid mem access '%s'\n", regno, 1196 reg_type_str[reg->type]); 1197 return -EACCES; 1198 } 1199 1200 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 1201 regs[value_regno].type == SCALAR_VALUE) { 1202 /* b/h/w load zero-extends, mark upper bits as known 0 */ 1203 regs[value_regno].var_off = 1204 tnum_cast(regs[value_regno].var_off, size); 1205 __update_reg_bounds(®s[value_regno]); 1206 } 1207 return err; 1208 } 1209 1210 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 1211 { 1212 int err; 1213 1214 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 1215 insn->imm != 0) { 1216 verbose(env, "BPF_XADD uses reserved fields\n"); 1217 return -EINVAL; 1218 } 1219 1220 /* check src1 operand */ 1221 err = check_reg_arg(env, insn->src_reg, SRC_OP); 1222 if (err) 1223 return err; 1224 1225 /* check src2 operand */ 1226 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 1227 if (err) 1228 return err; 1229 1230 if (is_pointer_value(env, insn->src_reg)) { 1231 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 1232 return -EACCES; 1233 } 1234 1235 /* check whether atomic_add can read the memory */ 1236 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1237 BPF_SIZE(insn->code), BPF_READ, -1); 1238 if (err) 1239 return err; 1240 1241 /* check whether atomic_add can write into the same memory */ 1242 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1243 BPF_SIZE(insn->code), BPF_WRITE, -1); 1244 } 1245 1246 /* Does this register contain a constant zero? */ 1247 static bool register_is_null(struct bpf_reg_state reg) 1248 { 1249 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0); 1250 } 1251 1252 /* when register 'regno' is passed into function that will read 'access_size' 1253 * bytes from that pointer, make sure that it's within stack boundary 1254 * and all elements of stack are initialized. 1255 * Unlike most pointer bounds-checking functions, this one doesn't take an 1256 * 'off' argument, so it has to add in reg->off itself. 1257 */ 1258 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 1259 int access_size, bool zero_size_allowed, 1260 struct bpf_call_arg_meta *meta) 1261 { 1262 struct bpf_verifier_state *state = env->cur_state; 1263 struct bpf_reg_state *regs = state->regs; 1264 int off, i, slot, spi; 1265 1266 if (regs[regno].type != PTR_TO_STACK) { 1267 /* Allow zero-byte read from NULL, regardless of pointer type */ 1268 if (zero_size_allowed && access_size == 0 && 1269 register_is_null(regs[regno])) 1270 return 0; 1271 1272 verbose(env, "R%d type=%s expected=%s\n", regno, 1273 reg_type_str[regs[regno].type], 1274 reg_type_str[PTR_TO_STACK]); 1275 return -EACCES; 1276 } 1277 1278 /* Only allow fixed-offset stack reads */ 1279 if (!tnum_is_const(regs[regno].var_off)) { 1280 char tn_buf[48]; 1281 1282 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off); 1283 verbose(env, "invalid variable stack read R%d var_off=%s\n", 1284 regno, tn_buf); 1285 } 1286 off = regs[regno].off + regs[regno].var_off.value; 1287 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 1288 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 1289 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 1290 regno, off, access_size); 1291 return -EACCES; 1292 } 1293 1294 if (env->prog->aux->stack_depth < -off) 1295 env->prog->aux->stack_depth = -off; 1296 1297 if (meta && meta->raw_mode) { 1298 meta->access_size = access_size; 1299 meta->regno = regno; 1300 return 0; 1301 } 1302 1303 for (i = 0; i < access_size; i++) { 1304 slot = -(off + i) - 1; 1305 spi = slot / BPF_REG_SIZE; 1306 if (state->allocated_stack <= slot || 1307 state->stack[spi].slot_type[slot % BPF_REG_SIZE] != 1308 STACK_MISC) { 1309 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 1310 off, i, access_size); 1311 return -EACCES; 1312 } 1313 } 1314 return 0; 1315 } 1316 1317 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 1318 int access_size, bool zero_size_allowed, 1319 struct bpf_call_arg_meta *meta) 1320 { 1321 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 1322 1323 switch (reg->type) { 1324 case PTR_TO_PACKET: 1325 case PTR_TO_PACKET_META: 1326 return check_packet_access(env, regno, reg->off, access_size, 1327 zero_size_allowed); 1328 case PTR_TO_MAP_VALUE: 1329 return check_map_access(env, regno, reg->off, access_size, 1330 zero_size_allowed); 1331 default: /* scalar_value|ptr_to_stack or invalid ptr */ 1332 return check_stack_boundary(env, regno, access_size, 1333 zero_size_allowed, meta); 1334 } 1335 } 1336 1337 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 1338 enum bpf_arg_type arg_type, 1339 struct bpf_call_arg_meta *meta) 1340 { 1341 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 1342 enum bpf_reg_type expected_type, type = reg->type; 1343 int err = 0; 1344 1345 if (arg_type == ARG_DONTCARE) 1346 return 0; 1347 1348 err = check_reg_arg(env, regno, SRC_OP); 1349 if (err) 1350 return err; 1351 1352 if (arg_type == ARG_ANYTHING) { 1353 if (is_pointer_value(env, regno)) { 1354 verbose(env, "R%d leaks addr into helper function\n", 1355 regno); 1356 return -EACCES; 1357 } 1358 return 0; 1359 } 1360 1361 if (type_is_pkt_pointer(type) && 1362 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 1363 verbose(env, "helper access to the packet is not allowed\n"); 1364 return -EACCES; 1365 } 1366 1367 if (arg_type == ARG_PTR_TO_MAP_KEY || 1368 arg_type == ARG_PTR_TO_MAP_VALUE) { 1369 expected_type = PTR_TO_STACK; 1370 if (!type_is_pkt_pointer(type) && 1371 type != expected_type) 1372 goto err_type; 1373 } else if (arg_type == ARG_CONST_SIZE || 1374 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1375 expected_type = SCALAR_VALUE; 1376 if (type != expected_type) 1377 goto err_type; 1378 } else if (arg_type == ARG_CONST_MAP_PTR) { 1379 expected_type = CONST_PTR_TO_MAP; 1380 if (type != expected_type) 1381 goto err_type; 1382 } else if (arg_type == ARG_PTR_TO_CTX) { 1383 expected_type = PTR_TO_CTX; 1384 if (type != expected_type) 1385 goto err_type; 1386 } else if (arg_type == ARG_PTR_TO_MEM || 1387 arg_type == ARG_PTR_TO_MEM_OR_NULL || 1388 arg_type == ARG_PTR_TO_UNINIT_MEM) { 1389 expected_type = PTR_TO_STACK; 1390 /* One exception here. In case function allows for NULL to be 1391 * passed in as argument, it's a SCALAR_VALUE type. Final test 1392 * happens during stack boundary checking. 1393 */ 1394 if (register_is_null(*reg) && 1395 arg_type == ARG_PTR_TO_MEM_OR_NULL) 1396 /* final test in check_stack_boundary() */; 1397 else if (!type_is_pkt_pointer(type) && 1398 type != PTR_TO_MAP_VALUE && 1399 type != expected_type) 1400 goto err_type; 1401 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 1402 } else { 1403 verbose(env, "unsupported arg_type %d\n", arg_type); 1404 return -EFAULT; 1405 } 1406 1407 if (arg_type == ARG_CONST_MAP_PTR) { 1408 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 1409 meta->map_ptr = reg->map_ptr; 1410 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 1411 /* bpf_map_xxx(..., map_ptr, ..., key) call: 1412 * check that [key, key + map->key_size) are within 1413 * stack limits and initialized 1414 */ 1415 if (!meta->map_ptr) { 1416 /* in function declaration map_ptr must come before 1417 * map_key, so that it's verified and known before 1418 * we have to check map_key here. Otherwise it means 1419 * that kernel subsystem misconfigured verifier 1420 */ 1421 verbose(env, "invalid map_ptr to access map->key\n"); 1422 return -EACCES; 1423 } 1424 if (type_is_pkt_pointer(type)) 1425 err = check_packet_access(env, regno, reg->off, 1426 meta->map_ptr->key_size, 1427 false); 1428 else 1429 err = check_stack_boundary(env, regno, 1430 meta->map_ptr->key_size, 1431 false, NULL); 1432 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) { 1433 /* bpf_map_xxx(..., map_ptr, ..., value) call: 1434 * check [value, value + map->value_size) validity 1435 */ 1436 if (!meta->map_ptr) { 1437 /* kernel subsystem misconfigured verifier */ 1438 verbose(env, "invalid map_ptr to access map->value\n"); 1439 return -EACCES; 1440 } 1441 if (type_is_pkt_pointer(type)) 1442 err = check_packet_access(env, regno, reg->off, 1443 meta->map_ptr->value_size, 1444 false); 1445 else 1446 err = check_stack_boundary(env, regno, 1447 meta->map_ptr->value_size, 1448 false, NULL); 1449 } else if (arg_type == ARG_CONST_SIZE || 1450 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1451 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 1452 1453 /* bpf_xxx(..., buf, len) call will access 'len' bytes 1454 * from stack pointer 'buf'. Check it 1455 * note: regno == len, regno - 1 == buf 1456 */ 1457 if (regno == 0) { 1458 /* kernel subsystem misconfigured verifier */ 1459 verbose(env, 1460 "ARG_CONST_SIZE cannot be first argument\n"); 1461 return -EACCES; 1462 } 1463 1464 /* The register is SCALAR_VALUE; the access check 1465 * happens using its boundaries. 1466 */ 1467 1468 if (!tnum_is_const(reg->var_off)) 1469 /* For unprivileged variable accesses, disable raw 1470 * mode so that the program is required to 1471 * initialize all the memory that the helper could 1472 * just partially fill up. 1473 */ 1474 meta = NULL; 1475 1476 if (reg->smin_value < 0) { 1477 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 1478 regno); 1479 return -EACCES; 1480 } 1481 1482 if (reg->umin_value == 0) { 1483 err = check_helper_mem_access(env, regno - 1, 0, 1484 zero_size_allowed, 1485 meta); 1486 if (err) 1487 return err; 1488 } 1489 1490 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 1491 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 1492 regno); 1493 return -EACCES; 1494 } 1495 err = check_helper_mem_access(env, regno - 1, 1496 reg->umax_value, 1497 zero_size_allowed, meta); 1498 } 1499 1500 return err; 1501 err_type: 1502 verbose(env, "R%d type=%s expected=%s\n", regno, 1503 reg_type_str[type], reg_type_str[expected_type]); 1504 return -EACCES; 1505 } 1506 1507 static int check_map_func_compatibility(struct bpf_verifier_env *env, 1508 struct bpf_map *map, int func_id) 1509 { 1510 if (!map) 1511 return 0; 1512 1513 /* We need a two way check, first is from map perspective ... */ 1514 switch (map->map_type) { 1515 case BPF_MAP_TYPE_PROG_ARRAY: 1516 if (func_id != BPF_FUNC_tail_call) 1517 goto error; 1518 break; 1519 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 1520 if (func_id != BPF_FUNC_perf_event_read && 1521 func_id != BPF_FUNC_perf_event_output && 1522 func_id != BPF_FUNC_perf_event_read_value) 1523 goto error; 1524 break; 1525 case BPF_MAP_TYPE_STACK_TRACE: 1526 if (func_id != BPF_FUNC_get_stackid) 1527 goto error; 1528 break; 1529 case BPF_MAP_TYPE_CGROUP_ARRAY: 1530 if (func_id != BPF_FUNC_skb_under_cgroup && 1531 func_id != BPF_FUNC_current_task_under_cgroup) 1532 goto error; 1533 break; 1534 /* devmap returns a pointer to a live net_device ifindex that we cannot 1535 * allow to be modified from bpf side. So do not allow lookup elements 1536 * for now. 1537 */ 1538 case BPF_MAP_TYPE_DEVMAP: 1539 if (func_id != BPF_FUNC_redirect_map) 1540 goto error; 1541 break; 1542 /* Restrict bpf side of cpumap, open when use-cases appear */ 1543 case BPF_MAP_TYPE_CPUMAP: 1544 if (func_id != BPF_FUNC_redirect_map) 1545 goto error; 1546 break; 1547 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 1548 case BPF_MAP_TYPE_HASH_OF_MAPS: 1549 if (func_id != BPF_FUNC_map_lookup_elem) 1550 goto error; 1551 break; 1552 case BPF_MAP_TYPE_SOCKMAP: 1553 if (func_id != BPF_FUNC_sk_redirect_map && 1554 func_id != BPF_FUNC_sock_map_update && 1555 func_id != BPF_FUNC_map_delete_elem) 1556 goto error; 1557 break; 1558 default: 1559 break; 1560 } 1561 1562 /* ... and second from the function itself. */ 1563 switch (func_id) { 1564 case BPF_FUNC_tail_call: 1565 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 1566 goto error; 1567 break; 1568 case BPF_FUNC_perf_event_read: 1569 case BPF_FUNC_perf_event_output: 1570 case BPF_FUNC_perf_event_read_value: 1571 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 1572 goto error; 1573 break; 1574 case BPF_FUNC_get_stackid: 1575 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 1576 goto error; 1577 break; 1578 case BPF_FUNC_current_task_under_cgroup: 1579 case BPF_FUNC_skb_under_cgroup: 1580 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 1581 goto error; 1582 break; 1583 case BPF_FUNC_redirect_map: 1584 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 1585 map->map_type != BPF_MAP_TYPE_CPUMAP) 1586 goto error; 1587 break; 1588 case BPF_FUNC_sk_redirect_map: 1589 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 1590 goto error; 1591 break; 1592 case BPF_FUNC_sock_map_update: 1593 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 1594 goto error; 1595 break; 1596 default: 1597 break; 1598 } 1599 1600 return 0; 1601 error: 1602 verbose(env, "cannot pass map_type %d into func %s#%d\n", 1603 map->map_type, func_id_name(func_id), func_id); 1604 return -EINVAL; 1605 } 1606 1607 static int check_raw_mode(const struct bpf_func_proto *fn) 1608 { 1609 int count = 0; 1610 1611 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 1612 count++; 1613 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 1614 count++; 1615 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 1616 count++; 1617 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 1618 count++; 1619 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 1620 count++; 1621 1622 return count > 1 ? -EINVAL : 0; 1623 } 1624 1625 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 1626 * are now invalid, so turn them into unknown SCALAR_VALUE. 1627 */ 1628 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 1629 { 1630 struct bpf_verifier_state *state = env->cur_state; 1631 struct bpf_reg_state *regs = state->regs, *reg; 1632 int i; 1633 1634 for (i = 0; i < MAX_BPF_REG; i++) 1635 if (reg_is_pkt_pointer_any(®s[i])) 1636 mark_reg_unknown(env, regs, i); 1637 1638 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1639 if (state->stack[i].slot_type[0] != STACK_SPILL) 1640 continue; 1641 reg = &state->stack[i].spilled_ptr; 1642 if (reg_is_pkt_pointer_any(reg)) 1643 __mark_reg_unknown(reg); 1644 } 1645 } 1646 1647 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 1648 { 1649 const struct bpf_func_proto *fn = NULL; 1650 struct bpf_reg_state *regs; 1651 struct bpf_call_arg_meta meta; 1652 bool changes_data; 1653 int i, err; 1654 1655 /* find function prototype */ 1656 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 1657 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 1658 func_id); 1659 return -EINVAL; 1660 } 1661 1662 if (env->ops->get_func_proto) 1663 fn = env->ops->get_func_proto(func_id); 1664 1665 if (!fn) { 1666 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 1667 func_id); 1668 return -EINVAL; 1669 } 1670 1671 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 1672 if (!env->prog->gpl_compatible && fn->gpl_only) { 1673 verbose(env, "cannot call GPL only function from proprietary program\n"); 1674 return -EINVAL; 1675 } 1676 1677 changes_data = bpf_helper_changes_pkt_data(fn->func); 1678 1679 memset(&meta, 0, sizeof(meta)); 1680 meta.pkt_access = fn->pkt_access; 1681 1682 /* We only support one arg being in raw mode at the moment, which 1683 * is sufficient for the helper functions we have right now. 1684 */ 1685 err = check_raw_mode(fn); 1686 if (err) { 1687 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 1688 func_id_name(func_id), func_id); 1689 return err; 1690 } 1691 1692 /* check args */ 1693 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 1694 if (err) 1695 return err; 1696 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 1697 if (err) 1698 return err; 1699 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 1700 if (err) 1701 return err; 1702 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 1703 if (err) 1704 return err; 1705 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 1706 if (err) 1707 return err; 1708 1709 /* Mark slots with STACK_MISC in case of raw mode, stack offset 1710 * is inferred from register state. 1711 */ 1712 for (i = 0; i < meta.access_size; i++) { 1713 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1); 1714 if (err) 1715 return err; 1716 } 1717 1718 regs = cur_regs(env); 1719 /* reset caller saved regs */ 1720 for (i = 0; i < CALLER_SAVED_REGS; i++) { 1721 mark_reg_not_init(env, regs, caller_saved[i]); 1722 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 1723 } 1724 1725 /* update return register (already marked as written above) */ 1726 if (fn->ret_type == RET_INTEGER) { 1727 /* sets type to SCALAR_VALUE */ 1728 mark_reg_unknown(env, regs, BPF_REG_0); 1729 } else if (fn->ret_type == RET_VOID) { 1730 regs[BPF_REG_0].type = NOT_INIT; 1731 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) { 1732 struct bpf_insn_aux_data *insn_aux; 1733 1734 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 1735 /* There is no offset yet applied, variable or fixed */ 1736 mark_reg_known_zero(env, regs, BPF_REG_0); 1737 regs[BPF_REG_0].off = 0; 1738 /* remember map_ptr, so that check_map_access() 1739 * can check 'value_size' boundary of memory access 1740 * to map element returned from bpf_map_lookup_elem() 1741 */ 1742 if (meta.map_ptr == NULL) { 1743 verbose(env, 1744 "kernel subsystem misconfigured verifier\n"); 1745 return -EINVAL; 1746 } 1747 regs[BPF_REG_0].map_ptr = meta.map_ptr; 1748 regs[BPF_REG_0].id = ++env->id_gen; 1749 insn_aux = &env->insn_aux_data[insn_idx]; 1750 if (!insn_aux->map_ptr) 1751 insn_aux->map_ptr = meta.map_ptr; 1752 else if (insn_aux->map_ptr != meta.map_ptr) 1753 insn_aux->map_ptr = BPF_MAP_PTR_POISON; 1754 } else { 1755 verbose(env, "unknown return type %d of func %s#%d\n", 1756 fn->ret_type, func_id_name(func_id), func_id); 1757 return -EINVAL; 1758 } 1759 1760 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 1761 if (err) 1762 return err; 1763 1764 if (changes_data) 1765 clear_all_pkt_pointers(env); 1766 return 0; 1767 } 1768 1769 static void coerce_reg_to_32(struct bpf_reg_state *reg) 1770 { 1771 /* clear high 32 bits */ 1772 reg->var_off = tnum_cast(reg->var_off, 4); 1773 /* Update bounds */ 1774 __update_reg_bounds(reg); 1775 } 1776 1777 static bool signed_add_overflows(s64 a, s64 b) 1778 { 1779 /* Do the add in u64, where overflow is well-defined */ 1780 s64 res = (s64)((u64)a + (u64)b); 1781 1782 if (b < 0) 1783 return res > a; 1784 return res < a; 1785 } 1786 1787 static bool signed_sub_overflows(s64 a, s64 b) 1788 { 1789 /* Do the sub in u64, where overflow is well-defined */ 1790 s64 res = (s64)((u64)a - (u64)b); 1791 1792 if (b < 0) 1793 return res < a; 1794 return res > a; 1795 } 1796 1797 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 1798 * Caller should also handle BPF_MOV case separately. 1799 * If we return -EACCES, caller may want to try again treating pointer as a 1800 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 1801 */ 1802 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 1803 struct bpf_insn *insn, 1804 const struct bpf_reg_state *ptr_reg, 1805 const struct bpf_reg_state *off_reg) 1806 { 1807 struct bpf_reg_state *regs = cur_regs(env), *dst_reg; 1808 bool known = tnum_is_const(off_reg->var_off); 1809 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 1810 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 1811 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 1812 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 1813 u8 opcode = BPF_OP(insn->code); 1814 u32 dst = insn->dst_reg; 1815 1816 dst_reg = ®s[dst]; 1817 1818 if (WARN_ON_ONCE(known && (smin_val != smax_val))) { 1819 print_verifier_state(env, env->cur_state); 1820 verbose(env, 1821 "verifier internal error: known but bad sbounds\n"); 1822 return -EINVAL; 1823 } 1824 if (WARN_ON_ONCE(known && (umin_val != umax_val))) { 1825 print_verifier_state(env, env->cur_state); 1826 verbose(env, 1827 "verifier internal error: known but bad ubounds\n"); 1828 return -EINVAL; 1829 } 1830 1831 if (BPF_CLASS(insn->code) != BPF_ALU64) { 1832 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 1833 if (!env->allow_ptr_leaks) 1834 verbose(env, 1835 "R%d 32-bit pointer arithmetic prohibited\n", 1836 dst); 1837 return -EACCES; 1838 } 1839 1840 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 1841 if (!env->allow_ptr_leaks) 1842 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n", 1843 dst); 1844 return -EACCES; 1845 } 1846 if (ptr_reg->type == CONST_PTR_TO_MAP) { 1847 if (!env->allow_ptr_leaks) 1848 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n", 1849 dst); 1850 return -EACCES; 1851 } 1852 if (ptr_reg->type == PTR_TO_PACKET_END) { 1853 if (!env->allow_ptr_leaks) 1854 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n", 1855 dst); 1856 return -EACCES; 1857 } 1858 1859 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 1860 * The id may be overwritten later if we create a new variable offset. 1861 */ 1862 dst_reg->type = ptr_reg->type; 1863 dst_reg->id = ptr_reg->id; 1864 1865 switch (opcode) { 1866 case BPF_ADD: 1867 /* We can take a fixed offset as long as it doesn't overflow 1868 * the s32 'off' field 1869 */ 1870 if (known && (ptr_reg->off + smin_val == 1871 (s64)(s32)(ptr_reg->off + smin_val))) { 1872 /* pointer += K. Accumulate it into fixed offset */ 1873 dst_reg->smin_value = smin_ptr; 1874 dst_reg->smax_value = smax_ptr; 1875 dst_reg->umin_value = umin_ptr; 1876 dst_reg->umax_value = umax_ptr; 1877 dst_reg->var_off = ptr_reg->var_off; 1878 dst_reg->off = ptr_reg->off + smin_val; 1879 dst_reg->range = ptr_reg->range; 1880 break; 1881 } 1882 /* A new variable offset is created. Note that off_reg->off 1883 * == 0, since it's a scalar. 1884 * dst_reg gets the pointer type and since some positive 1885 * integer value was added to the pointer, give it a new 'id' 1886 * if it's a PTR_TO_PACKET. 1887 * this creates a new 'base' pointer, off_reg (variable) gets 1888 * added into the variable offset, and we copy the fixed offset 1889 * from ptr_reg. 1890 */ 1891 if (signed_add_overflows(smin_ptr, smin_val) || 1892 signed_add_overflows(smax_ptr, smax_val)) { 1893 dst_reg->smin_value = S64_MIN; 1894 dst_reg->smax_value = S64_MAX; 1895 } else { 1896 dst_reg->smin_value = smin_ptr + smin_val; 1897 dst_reg->smax_value = smax_ptr + smax_val; 1898 } 1899 if (umin_ptr + umin_val < umin_ptr || 1900 umax_ptr + umax_val < umax_ptr) { 1901 dst_reg->umin_value = 0; 1902 dst_reg->umax_value = U64_MAX; 1903 } else { 1904 dst_reg->umin_value = umin_ptr + umin_val; 1905 dst_reg->umax_value = umax_ptr + umax_val; 1906 } 1907 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 1908 dst_reg->off = ptr_reg->off; 1909 if (reg_is_pkt_pointer(ptr_reg)) { 1910 dst_reg->id = ++env->id_gen; 1911 /* something was added to pkt_ptr, set range to zero */ 1912 dst_reg->range = 0; 1913 } 1914 break; 1915 case BPF_SUB: 1916 if (dst_reg == off_reg) { 1917 /* scalar -= pointer. Creates an unknown scalar */ 1918 if (!env->allow_ptr_leaks) 1919 verbose(env, "R%d tried to subtract pointer from scalar\n", 1920 dst); 1921 return -EACCES; 1922 } 1923 /* We don't allow subtraction from FP, because (according to 1924 * test_verifier.c test "invalid fp arithmetic", JITs might not 1925 * be able to deal with it. 1926 */ 1927 if (ptr_reg->type == PTR_TO_STACK) { 1928 if (!env->allow_ptr_leaks) 1929 verbose(env, "R%d subtraction from stack pointer prohibited\n", 1930 dst); 1931 return -EACCES; 1932 } 1933 if (known && (ptr_reg->off - smin_val == 1934 (s64)(s32)(ptr_reg->off - smin_val))) { 1935 /* pointer -= K. Subtract it from fixed offset */ 1936 dst_reg->smin_value = smin_ptr; 1937 dst_reg->smax_value = smax_ptr; 1938 dst_reg->umin_value = umin_ptr; 1939 dst_reg->umax_value = umax_ptr; 1940 dst_reg->var_off = ptr_reg->var_off; 1941 dst_reg->id = ptr_reg->id; 1942 dst_reg->off = ptr_reg->off - smin_val; 1943 dst_reg->range = ptr_reg->range; 1944 break; 1945 } 1946 /* A new variable offset is created. If the subtrahend is known 1947 * nonnegative, then any reg->range we had before is still good. 1948 */ 1949 if (signed_sub_overflows(smin_ptr, smax_val) || 1950 signed_sub_overflows(smax_ptr, smin_val)) { 1951 /* Overflow possible, we know nothing */ 1952 dst_reg->smin_value = S64_MIN; 1953 dst_reg->smax_value = S64_MAX; 1954 } else { 1955 dst_reg->smin_value = smin_ptr - smax_val; 1956 dst_reg->smax_value = smax_ptr - smin_val; 1957 } 1958 if (umin_ptr < umax_val) { 1959 /* Overflow possible, we know nothing */ 1960 dst_reg->umin_value = 0; 1961 dst_reg->umax_value = U64_MAX; 1962 } else { 1963 /* Cannot overflow (as long as bounds are consistent) */ 1964 dst_reg->umin_value = umin_ptr - umax_val; 1965 dst_reg->umax_value = umax_ptr - umin_val; 1966 } 1967 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 1968 dst_reg->off = ptr_reg->off; 1969 if (reg_is_pkt_pointer(ptr_reg)) { 1970 dst_reg->id = ++env->id_gen; 1971 /* something was added to pkt_ptr, set range to zero */ 1972 if (smin_val < 0) 1973 dst_reg->range = 0; 1974 } 1975 break; 1976 case BPF_AND: 1977 case BPF_OR: 1978 case BPF_XOR: 1979 /* bitwise ops on pointers are troublesome, prohibit for now. 1980 * (However, in principle we could allow some cases, e.g. 1981 * ptr &= ~3 which would reduce min_value by 3.) 1982 */ 1983 if (!env->allow_ptr_leaks) 1984 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 1985 dst, bpf_alu_string[opcode >> 4]); 1986 return -EACCES; 1987 default: 1988 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 1989 if (!env->allow_ptr_leaks) 1990 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 1991 dst, bpf_alu_string[opcode >> 4]); 1992 return -EACCES; 1993 } 1994 1995 __update_reg_bounds(dst_reg); 1996 __reg_deduce_bounds(dst_reg); 1997 __reg_bound_offset(dst_reg); 1998 return 0; 1999 } 2000 2001 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 2002 struct bpf_insn *insn, 2003 struct bpf_reg_state *dst_reg, 2004 struct bpf_reg_state src_reg) 2005 { 2006 struct bpf_reg_state *regs = cur_regs(env); 2007 u8 opcode = BPF_OP(insn->code); 2008 bool src_known, dst_known; 2009 s64 smin_val, smax_val; 2010 u64 umin_val, umax_val; 2011 2012 if (BPF_CLASS(insn->code) != BPF_ALU64) { 2013 /* 32-bit ALU ops are (32,32)->64 */ 2014 coerce_reg_to_32(dst_reg); 2015 coerce_reg_to_32(&src_reg); 2016 } 2017 smin_val = src_reg.smin_value; 2018 smax_val = src_reg.smax_value; 2019 umin_val = src_reg.umin_value; 2020 umax_val = src_reg.umax_value; 2021 src_known = tnum_is_const(src_reg.var_off); 2022 dst_known = tnum_is_const(dst_reg->var_off); 2023 2024 switch (opcode) { 2025 case BPF_ADD: 2026 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 2027 signed_add_overflows(dst_reg->smax_value, smax_val)) { 2028 dst_reg->smin_value = S64_MIN; 2029 dst_reg->smax_value = S64_MAX; 2030 } else { 2031 dst_reg->smin_value += smin_val; 2032 dst_reg->smax_value += smax_val; 2033 } 2034 if (dst_reg->umin_value + umin_val < umin_val || 2035 dst_reg->umax_value + umax_val < umax_val) { 2036 dst_reg->umin_value = 0; 2037 dst_reg->umax_value = U64_MAX; 2038 } else { 2039 dst_reg->umin_value += umin_val; 2040 dst_reg->umax_value += umax_val; 2041 } 2042 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 2043 break; 2044 case BPF_SUB: 2045 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 2046 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 2047 /* Overflow possible, we know nothing */ 2048 dst_reg->smin_value = S64_MIN; 2049 dst_reg->smax_value = S64_MAX; 2050 } else { 2051 dst_reg->smin_value -= smax_val; 2052 dst_reg->smax_value -= smin_val; 2053 } 2054 if (dst_reg->umin_value < umax_val) { 2055 /* Overflow possible, we know nothing */ 2056 dst_reg->umin_value = 0; 2057 dst_reg->umax_value = U64_MAX; 2058 } else { 2059 /* Cannot overflow (as long as bounds are consistent) */ 2060 dst_reg->umin_value -= umax_val; 2061 dst_reg->umax_value -= umin_val; 2062 } 2063 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 2064 break; 2065 case BPF_MUL: 2066 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 2067 if (smin_val < 0 || dst_reg->smin_value < 0) { 2068 /* Ain't nobody got time to multiply that sign */ 2069 __mark_reg_unbounded(dst_reg); 2070 __update_reg_bounds(dst_reg); 2071 break; 2072 } 2073 /* Both values are positive, so we can work with unsigned and 2074 * copy the result to signed (unless it exceeds S64_MAX). 2075 */ 2076 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 2077 /* Potential overflow, we know nothing */ 2078 __mark_reg_unbounded(dst_reg); 2079 /* (except what we can learn from the var_off) */ 2080 __update_reg_bounds(dst_reg); 2081 break; 2082 } 2083 dst_reg->umin_value *= umin_val; 2084 dst_reg->umax_value *= umax_val; 2085 if (dst_reg->umax_value > S64_MAX) { 2086 /* Overflow possible, we know nothing */ 2087 dst_reg->smin_value = S64_MIN; 2088 dst_reg->smax_value = S64_MAX; 2089 } else { 2090 dst_reg->smin_value = dst_reg->umin_value; 2091 dst_reg->smax_value = dst_reg->umax_value; 2092 } 2093 break; 2094 case BPF_AND: 2095 if (src_known && dst_known) { 2096 __mark_reg_known(dst_reg, dst_reg->var_off.value & 2097 src_reg.var_off.value); 2098 break; 2099 } 2100 /* We get our minimum from the var_off, since that's inherently 2101 * bitwise. Our maximum is the minimum of the operands' maxima. 2102 */ 2103 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 2104 dst_reg->umin_value = dst_reg->var_off.value; 2105 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 2106 if (dst_reg->smin_value < 0 || smin_val < 0) { 2107 /* Lose signed bounds when ANDing negative numbers, 2108 * ain't nobody got time for that. 2109 */ 2110 dst_reg->smin_value = S64_MIN; 2111 dst_reg->smax_value = S64_MAX; 2112 } else { 2113 /* ANDing two positives gives a positive, so safe to 2114 * cast result into s64. 2115 */ 2116 dst_reg->smin_value = dst_reg->umin_value; 2117 dst_reg->smax_value = dst_reg->umax_value; 2118 } 2119 /* We may learn something more from the var_off */ 2120 __update_reg_bounds(dst_reg); 2121 break; 2122 case BPF_OR: 2123 if (src_known && dst_known) { 2124 __mark_reg_known(dst_reg, dst_reg->var_off.value | 2125 src_reg.var_off.value); 2126 break; 2127 } 2128 /* We get our maximum from the var_off, and our minimum is the 2129 * maximum of the operands' minima 2130 */ 2131 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 2132 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 2133 dst_reg->umax_value = dst_reg->var_off.value | 2134 dst_reg->var_off.mask; 2135 if (dst_reg->smin_value < 0 || smin_val < 0) { 2136 /* Lose signed bounds when ORing negative numbers, 2137 * ain't nobody got time for that. 2138 */ 2139 dst_reg->smin_value = S64_MIN; 2140 dst_reg->smax_value = S64_MAX; 2141 } else { 2142 /* ORing two positives gives a positive, so safe to 2143 * cast result into s64. 2144 */ 2145 dst_reg->smin_value = dst_reg->umin_value; 2146 dst_reg->smax_value = dst_reg->umax_value; 2147 } 2148 /* We may learn something more from the var_off */ 2149 __update_reg_bounds(dst_reg); 2150 break; 2151 case BPF_LSH: 2152 if (umax_val > 63) { 2153 /* Shifts greater than 63 are undefined. This includes 2154 * shifts by a negative number. 2155 */ 2156 mark_reg_unknown(env, regs, insn->dst_reg); 2157 break; 2158 } 2159 /* We lose all sign bit information (except what we can pick 2160 * up from var_off) 2161 */ 2162 dst_reg->smin_value = S64_MIN; 2163 dst_reg->smax_value = S64_MAX; 2164 /* If we might shift our top bit out, then we know nothing */ 2165 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 2166 dst_reg->umin_value = 0; 2167 dst_reg->umax_value = U64_MAX; 2168 } else { 2169 dst_reg->umin_value <<= umin_val; 2170 dst_reg->umax_value <<= umax_val; 2171 } 2172 if (src_known) 2173 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 2174 else 2175 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val); 2176 /* We may learn something more from the var_off */ 2177 __update_reg_bounds(dst_reg); 2178 break; 2179 case BPF_RSH: 2180 if (umax_val > 63) { 2181 /* Shifts greater than 63 are undefined. This includes 2182 * shifts by a negative number. 2183 */ 2184 mark_reg_unknown(env, regs, insn->dst_reg); 2185 break; 2186 } 2187 /* BPF_RSH is an unsigned shift, so make the appropriate casts */ 2188 if (dst_reg->smin_value < 0) { 2189 if (umin_val) { 2190 /* Sign bit will be cleared */ 2191 dst_reg->smin_value = 0; 2192 } else { 2193 /* Lost sign bit information */ 2194 dst_reg->smin_value = S64_MIN; 2195 dst_reg->smax_value = S64_MAX; 2196 } 2197 } else { 2198 dst_reg->smin_value = 2199 (u64)(dst_reg->smin_value) >> umax_val; 2200 } 2201 if (src_known) 2202 dst_reg->var_off = tnum_rshift(dst_reg->var_off, 2203 umin_val); 2204 else 2205 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val); 2206 dst_reg->umin_value >>= umax_val; 2207 dst_reg->umax_value >>= umin_val; 2208 /* We may learn something more from the var_off */ 2209 __update_reg_bounds(dst_reg); 2210 break; 2211 default: 2212 mark_reg_unknown(env, regs, insn->dst_reg); 2213 break; 2214 } 2215 2216 __reg_deduce_bounds(dst_reg); 2217 __reg_bound_offset(dst_reg); 2218 return 0; 2219 } 2220 2221 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 2222 * and var_off. 2223 */ 2224 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 2225 struct bpf_insn *insn) 2226 { 2227 struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg; 2228 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 2229 u8 opcode = BPF_OP(insn->code); 2230 int rc; 2231 2232 dst_reg = ®s[insn->dst_reg]; 2233 src_reg = NULL; 2234 if (dst_reg->type != SCALAR_VALUE) 2235 ptr_reg = dst_reg; 2236 if (BPF_SRC(insn->code) == BPF_X) { 2237 src_reg = ®s[insn->src_reg]; 2238 if (src_reg->type != SCALAR_VALUE) { 2239 if (dst_reg->type != SCALAR_VALUE) { 2240 /* Combining two pointers by any ALU op yields 2241 * an arbitrary scalar. 2242 */ 2243 if (!env->allow_ptr_leaks) { 2244 verbose(env, "R%d pointer %s pointer prohibited\n", 2245 insn->dst_reg, 2246 bpf_alu_string[opcode >> 4]); 2247 return -EACCES; 2248 } 2249 mark_reg_unknown(env, regs, insn->dst_reg); 2250 return 0; 2251 } else { 2252 /* scalar += pointer 2253 * This is legal, but we have to reverse our 2254 * src/dest handling in computing the range 2255 */ 2256 rc = adjust_ptr_min_max_vals(env, insn, 2257 src_reg, dst_reg); 2258 if (rc == -EACCES && env->allow_ptr_leaks) { 2259 /* scalar += unknown scalar */ 2260 __mark_reg_unknown(&off_reg); 2261 return adjust_scalar_min_max_vals( 2262 env, insn, 2263 dst_reg, off_reg); 2264 } 2265 return rc; 2266 } 2267 } else if (ptr_reg) { 2268 /* pointer += scalar */ 2269 rc = adjust_ptr_min_max_vals(env, insn, 2270 dst_reg, src_reg); 2271 if (rc == -EACCES && env->allow_ptr_leaks) { 2272 /* unknown scalar += scalar */ 2273 __mark_reg_unknown(dst_reg); 2274 return adjust_scalar_min_max_vals( 2275 env, insn, dst_reg, *src_reg); 2276 } 2277 return rc; 2278 } 2279 } else { 2280 /* Pretend the src is a reg with a known value, since we only 2281 * need to be able to read from this state. 2282 */ 2283 off_reg.type = SCALAR_VALUE; 2284 __mark_reg_known(&off_reg, insn->imm); 2285 src_reg = &off_reg; 2286 if (ptr_reg) { /* pointer += K */ 2287 rc = adjust_ptr_min_max_vals(env, insn, 2288 ptr_reg, src_reg); 2289 if (rc == -EACCES && env->allow_ptr_leaks) { 2290 /* unknown scalar += K */ 2291 __mark_reg_unknown(dst_reg); 2292 return adjust_scalar_min_max_vals( 2293 env, insn, dst_reg, off_reg); 2294 } 2295 return rc; 2296 } 2297 } 2298 2299 /* Got here implies adding two SCALAR_VALUEs */ 2300 if (WARN_ON_ONCE(ptr_reg)) { 2301 print_verifier_state(env, env->cur_state); 2302 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 2303 return -EINVAL; 2304 } 2305 if (WARN_ON(!src_reg)) { 2306 print_verifier_state(env, env->cur_state); 2307 verbose(env, "verifier internal error: no src_reg\n"); 2308 return -EINVAL; 2309 } 2310 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 2311 } 2312 2313 /* check validity of 32-bit and 64-bit arithmetic operations */ 2314 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 2315 { 2316 struct bpf_reg_state *regs = cur_regs(env); 2317 u8 opcode = BPF_OP(insn->code); 2318 int err; 2319 2320 if (opcode == BPF_END || opcode == BPF_NEG) { 2321 if (opcode == BPF_NEG) { 2322 if (BPF_SRC(insn->code) != 0 || 2323 insn->src_reg != BPF_REG_0 || 2324 insn->off != 0 || insn->imm != 0) { 2325 verbose(env, "BPF_NEG uses reserved fields\n"); 2326 return -EINVAL; 2327 } 2328 } else { 2329 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 2330 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 2331 BPF_CLASS(insn->code) == BPF_ALU64) { 2332 verbose(env, "BPF_END uses reserved fields\n"); 2333 return -EINVAL; 2334 } 2335 } 2336 2337 /* check src operand */ 2338 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2339 if (err) 2340 return err; 2341 2342 if (is_pointer_value(env, insn->dst_reg)) { 2343 verbose(env, "R%d pointer arithmetic prohibited\n", 2344 insn->dst_reg); 2345 return -EACCES; 2346 } 2347 2348 /* check dest operand */ 2349 err = check_reg_arg(env, insn->dst_reg, DST_OP); 2350 if (err) 2351 return err; 2352 2353 } else if (opcode == BPF_MOV) { 2354 2355 if (BPF_SRC(insn->code) == BPF_X) { 2356 if (insn->imm != 0 || insn->off != 0) { 2357 verbose(env, "BPF_MOV uses reserved fields\n"); 2358 return -EINVAL; 2359 } 2360 2361 /* check src operand */ 2362 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2363 if (err) 2364 return err; 2365 } else { 2366 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 2367 verbose(env, "BPF_MOV uses reserved fields\n"); 2368 return -EINVAL; 2369 } 2370 } 2371 2372 /* check dest operand */ 2373 err = check_reg_arg(env, insn->dst_reg, DST_OP); 2374 if (err) 2375 return err; 2376 2377 if (BPF_SRC(insn->code) == BPF_X) { 2378 if (BPF_CLASS(insn->code) == BPF_ALU64) { 2379 /* case: R1 = R2 2380 * copy register state to dest reg 2381 */ 2382 regs[insn->dst_reg] = regs[insn->src_reg]; 2383 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN; 2384 } else { 2385 /* R1 = (u32) R2 */ 2386 if (is_pointer_value(env, insn->src_reg)) { 2387 verbose(env, 2388 "R%d partial copy of pointer\n", 2389 insn->src_reg); 2390 return -EACCES; 2391 } 2392 mark_reg_unknown(env, regs, insn->dst_reg); 2393 /* high 32 bits are known zero. */ 2394 regs[insn->dst_reg].var_off = tnum_cast( 2395 regs[insn->dst_reg].var_off, 4); 2396 __update_reg_bounds(®s[insn->dst_reg]); 2397 } 2398 } else { 2399 /* case: R = imm 2400 * remember the value we stored into this reg 2401 */ 2402 regs[insn->dst_reg].type = SCALAR_VALUE; 2403 __mark_reg_known(regs + insn->dst_reg, insn->imm); 2404 } 2405 2406 } else if (opcode > BPF_END) { 2407 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 2408 return -EINVAL; 2409 2410 } else { /* all other ALU ops: and, sub, xor, add, ... */ 2411 2412 if (BPF_SRC(insn->code) == BPF_X) { 2413 if (insn->imm != 0 || insn->off != 0) { 2414 verbose(env, "BPF_ALU uses reserved fields\n"); 2415 return -EINVAL; 2416 } 2417 /* check src1 operand */ 2418 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2419 if (err) 2420 return err; 2421 } else { 2422 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 2423 verbose(env, "BPF_ALU uses reserved fields\n"); 2424 return -EINVAL; 2425 } 2426 } 2427 2428 /* check src2 operand */ 2429 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2430 if (err) 2431 return err; 2432 2433 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 2434 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 2435 verbose(env, "div by zero\n"); 2436 return -EINVAL; 2437 } 2438 2439 if ((opcode == BPF_LSH || opcode == BPF_RSH || 2440 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 2441 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 2442 2443 if (insn->imm < 0 || insn->imm >= size) { 2444 verbose(env, "invalid shift %d\n", insn->imm); 2445 return -EINVAL; 2446 } 2447 } 2448 2449 /* check dest operand */ 2450 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 2451 if (err) 2452 return err; 2453 2454 return adjust_reg_min_max_vals(env, insn); 2455 } 2456 2457 return 0; 2458 } 2459 2460 static void find_good_pkt_pointers(struct bpf_verifier_state *state, 2461 struct bpf_reg_state *dst_reg, 2462 enum bpf_reg_type type, 2463 bool range_right_open) 2464 { 2465 struct bpf_reg_state *regs = state->regs, *reg; 2466 u16 new_range; 2467 int i; 2468 2469 if (dst_reg->off < 0 || 2470 (dst_reg->off == 0 && range_right_open)) 2471 /* This doesn't give us any range */ 2472 return; 2473 2474 if (dst_reg->umax_value > MAX_PACKET_OFF || 2475 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 2476 /* Risk of overflow. For instance, ptr + (1<<63) may be less 2477 * than pkt_end, but that's because it's also less than pkt. 2478 */ 2479 return; 2480 2481 new_range = dst_reg->off; 2482 if (range_right_open) 2483 new_range--; 2484 2485 /* Examples for register markings: 2486 * 2487 * pkt_data in dst register: 2488 * 2489 * r2 = r3; 2490 * r2 += 8; 2491 * if (r2 > pkt_end) goto <handle exception> 2492 * <access okay> 2493 * 2494 * r2 = r3; 2495 * r2 += 8; 2496 * if (r2 < pkt_end) goto <access okay> 2497 * <handle exception> 2498 * 2499 * Where: 2500 * r2 == dst_reg, pkt_end == src_reg 2501 * r2=pkt(id=n,off=8,r=0) 2502 * r3=pkt(id=n,off=0,r=0) 2503 * 2504 * pkt_data in src register: 2505 * 2506 * r2 = r3; 2507 * r2 += 8; 2508 * if (pkt_end >= r2) goto <access okay> 2509 * <handle exception> 2510 * 2511 * r2 = r3; 2512 * r2 += 8; 2513 * if (pkt_end <= r2) goto <handle exception> 2514 * <access okay> 2515 * 2516 * Where: 2517 * pkt_end == dst_reg, r2 == src_reg 2518 * r2=pkt(id=n,off=8,r=0) 2519 * r3=pkt(id=n,off=0,r=0) 2520 * 2521 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 2522 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 2523 * and [r3, r3 + 8-1) respectively is safe to access depending on 2524 * the check. 2525 */ 2526 2527 /* If our ids match, then we must have the same max_value. And we 2528 * don't care about the other reg's fixed offset, since if it's too big 2529 * the range won't allow anything. 2530 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 2531 */ 2532 for (i = 0; i < MAX_BPF_REG; i++) 2533 if (regs[i].type == type && regs[i].id == dst_reg->id) 2534 /* keep the maximum range already checked */ 2535 regs[i].range = max(regs[i].range, new_range); 2536 2537 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 2538 if (state->stack[i].slot_type[0] != STACK_SPILL) 2539 continue; 2540 reg = &state->stack[i].spilled_ptr; 2541 if (reg->type == type && reg->id == dst_reg->id) 2542 reg->range = max(reg->range, new_range); 2543 } 2544 } 2545 2546 /* Adjusts the register min/max values in the case that the dst_reg is the 2547 * variable register that we are working on, and src_reg is a constant or we're 2548 * simply doing a BPF_K check. 2549 * In JEQ/JNE cases we also adjust the var_off values. 2550 */ 2551 static void reg_set_min_max(struct bpf_reg_state *true_reg, 2552 struct bpf_reg_state *false_reg, u64 val, 2553 u8 opcode) 2554 { 2555 /* If the dst_reg is a pointer, we can't learn anything about its 2556 * variable offset from the compare (unless src_reg were a pointer into 2557 * the same object, but we don't bother with that. 2558 * Since false_reg and true_reg have the same type by construction, we 2559 * only need to check one of them for pointerness. 2560 */ 2561 if (__is_pointer_value(false, false_reg)) 2562 return; 2563 2564 switch (opcode) { 2565 case BPF_JEQ: 2566 /* If this is false then we know nothing Jon Snow, but if it is 2567 * true then we know for sure. 2568 */ 2569 __mark_reg_known(true_reg, val); 2570 break; 2571 case BPF_JNE: 2572 /* If this is true we know nothing Jon Snow, but if it is false 2573 * we know the value for sure; 2574 */ 2575 __mark_reg_known(false_reg, val); 2576 break; 2577 case BPF_JGT: 2578 false_reg->umax_value = min(false_reg->umax_value, val); 2579 true_reg->umin_value = max(true_reg->umin_value, val + 1); 2580 break; 2581 case BPF_JSGT: 2582 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 2583 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 2584 break; 2585 case BPF_JLT: 2586 false_reg->umin_value = max(false_reg->umin_value, val); 2587 true_reg->umax_value = min(true_reg->umax_value, val - 1); 2588 break; 2589 case BPF_JSLT: 2590 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 2591 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 2592 break; 2593 case BPF_JGE: 2594 false_reg->umax_value = min(false_reg->umax_value, val - 1); 2595 true_reg->umin_value = max(true_reg->umin_value, val); 2596 break; 2597 case BPF_JSGE: 2598 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 2599 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 2600 break; 2601 case BPF_JLE: 2602 false_reg->umin_value = max(false_reg->umin_value, val + 1); 2603 true_reg->umax_value = min(true_reg->umax_value, val); 2604 break; 2605 case BPF_JSLE: 2606 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 2607 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 2608 break; 2609 default: 2610 break; 2611 } 2612 2613 __reg_deduce_bounds(false_reg); 2614 __reg_deduce_bounds(true_reg); 2615 /* We might have learned some bits from the bounds. */ 2616 __reg_bound_offset(false_reg); 2617 __reg_bound_offset(true_reg); 2618 /* Intersecting with the old var_off might have improved our bounds 2619 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2620 * then new var_off is (0; 0x7f...fc) which improves our umax. 2621 */ 2622 __update_reg_bounds(false_reg); 2623 __update_reg_bounds(true_reg); 2624 } 2625 2626 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 2627 * the variable reg. 2628 */ 2629 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 2630 struct bpf_reg_state *false_reg, u64 val, 2631 u8 opcode) 2632 { 2633 if (__is_pointer_value(false, false_reg)) 2634 return; 2635 2636 switch (opcode) { 2637 case BPF_JEQ: 2638 /* If this is false then we know nothing Jon Snow, but if it is 2639 * true then we know for sure. 2640 */ 2641 __mark_reg_known(true_reg, val); 2642 break; 2643 case BPF_JNE: 2644 /* If this is true we know nothing Jon Snow, but if it is false 2645 * we know the value for sure; 2646 */ 2647 __mark_reg_known(false_reg, val); 2648 break; 2649 case BPF_JGT: 2650 true_reg->umax_value = min(true_reg->umax_value, val - 1); 2651 false_reg->umin_value = max(false_reg->umin_value, val); 2652 break; 2653 case BPF_JSGT: 2654 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 2655 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 2656 break; 2657 case BPF_JLT: 2658 true_reg->umin_value = max(true_reg->umin_value, val + 1); 2659 false_reg->umax_value = min(false_reg->umax_value, val); 2660 break; 2661 case BPF_JSLT: 2662 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 2663 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 2664 break; 2665 case BPF_JGE: 2666 true_reg->umax_value = min(true_reg->umax_value, val); 2667 false_reg->umin_value = max(false_reg->umin_value, val + 1); 2668 break; 2669 case BPF_JSGE: 2670 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 2671 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 2672 break; 2673 case BPF_JLE: 2674 true_reg->umin_value = max(true_reg->umin_value, val); 2675 false_reg->umax_value = min(false_reg->umax_value, val - 1); 2676 break; 2677 case BPF_JSLE: 2678 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 2679 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 2680 break; 2681 default: 2682 break; 2683 } 2684 2685 __reg_deduce_bounds(false_reg); 2686 __reg_deduce_bounds(true_reg); 2687 /* We might have learned some bits from the bounds. */ 2688 __reg_bound_offset(false_reg); 2689 __reg_bound_offset(true_reg); 2690 /* Intersecting with the old var_off might have improved our bounds 2691 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2692 * then new var_off is (0; 0x7f...fc) which improves our umax. 2693 */ 2694 __update_reg_bounds(false_reg); 2695 __update_reg_bounds(true_reg); 2696 } 2697 2698 /* Regs are known to be equal, so intersect their min/max/var_off */ 2699 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 2700 struct bpf_reg_state *dst_reg) 2701 { 2702 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 2703 dst_reg->umin_value); 2704 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 2705 dst_reg->umax_value); 2706 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 2707 dst_reg->smin_value); 2708 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 2709 dst_reg->smax_value); 2710 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 2711 dst_reg->var_off); 2712 /* We might have learned new bounds from the var_off. */ 2713 __update_reg_bounds(src_reg); 2714 __update_reg_bounds(dst_reg); 2715 /* We might have learned something about the sign bit. */ 2716 __reg_deduce_bounds(src_reg); 2717 __reg_deduce_bounds(dst_reg); 2718 /* We might have learned some bits from the bounds. */ 2719 __reg_bound_offset(src_reg); 2720 __reg_bound_offset(dst_reg); 2721 /* Intersecting with the old var_off might have improved our bounds 2722 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2723 * then new var_off is (0; 0x7f...fc) which improves our umax. 2724 */ 2725 __update_reg_bounds(src_reg); 2726 __update_reg_bounds(dst_reg); 2727 } 2728 2729 static void reg_combine_min_max(struct bpf_reg_state *true_src, 2730 struct bpf_reg_state *true_dst, 2731 struct bpf_reg_state *false_src, 2732 struct bpf_reg_state *false_dst, 2733 u8 opcode) 2734 { 2735 switch (opcode) { 2736 case BPF_JEQ: 2737 __reg_combine_min_max(true_src, true_dst); 2738 break; 2739 case BPF_JNE: 2740 __reg_combine_min_max(false_src, false_dst); 2741 break; 2742 } 2743 } 2744 2745 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id, 2746 bool is_null) 2747 { 2748 struct bpf_reg_state *reg = ®s[regno]; 2749 2750 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) { 2751 /* Old offset (both fixed and variable parts) should 2752 * have been known-zero, because we don't allow pointer 2753 * arithmetic on pointers that might be NULL. 2754 */ 2755 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 2756 !tnum_equals_const(reg->var_off, 0) || 2757 reg->off)) { 2758 __mark_reg_known_zero(reg); 2759 reg->off = 0; 2760 } 2761 if (is_null) { 2762 reg->type = SCALAR_VALUE; 2763 } else if (reg->map_ptr->inner_map_meta) { 2764 reg->type = CONST_PTR_TO_MAP; 2765 reg->map_ptr = reg->map_ptr->inner_map_meta; 2766 } else { 2767 reg->type = PTR_TO_MAP_VALUE; 2768 } 2769 /* We don't need id from this point onwards anymore, thus we 2770 * should better reset it, so that state pruning has chances 2771 * to take effect. 2772 */ 2773 reg->id = 0; 2774 } 2775 } 2776 2777 /* The logic is similar to find_good_pkt_pointers(), both could eventually 2778 * be folded together at some point. 2779 */ 2780 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno, 2781 bool is_null) 2782 { 2783 struct bpf_reg_state *regs = state->regs; 2784 u32 id = regs[regno].id; 2785 int i; 2786 2787 for (i = 0; i < MAX_BPF_REG; i++) 2788 mark_map_reg(regs, i, id, is_null); 2789 2790 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 2791 if (state->stack[i].slot_type[0] != STACK_SPILL) 2792 continue; 2793 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null); 2794 } 2795 } 2796 2797 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 2798 struct bpf_reg_state *dst_reg, 2799 struct bpf_reg_state *src_reg, 2800 struct bpf_verifier_state *this_branch, 2801 struct bpf_verifier_state *other_branch) 2802 { 2803 if (BPF_SRC(insn->code) != BPF_X) 2804 return false; 2805 2806 switch (BPF_OP(insn->code)) { 2807 case BPF_JGT: 2808 if ((dst_reg->type == PTR_TO_PACKET && 2809 src_reg->type == PTR_TO_PACKET_END) || 2810 (dst_reg->type == PTR_TO_PACKET_META && 2811 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 2812 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 2813 find_good_pkt_pointers(this_branch, dst_reg, 2814 dst_reg->type, false); 2815 } else if ((dst_reg->type == PTR_TO_PACKET_END && 2816 src_reg->type == PTR_TO_PACKET) || 2817 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 2818 src_reg->type == PTR_TO_PACKET_META)) { 2819 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 2820 find_good_pkt_pointers(other_branch, src_reg, 2821 src_reg->type, true); 2822 } else { 2823 return false; 2824 } 2825 break; 2826 case BPF_JLT: 2827 if ((dst_reg->type == PTR_TO_PACKET && 2828 src_reg->type == PTR_TO_PACKET_END) || 2829 (dst_reg->type == PTR_TO_PACKET_META && 2830 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 2831 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 2832 find_good_pkt_pointers(other_branch, dst_reg, 2833 dst_reg->type, true); 2834 } else if ((dst_reg->type == PTR_TO_PACKET_END && 2835 src_reg->type == PTR_TO_PACKET) || 2836 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 2837 src_reg->type == PTR_TO_PACKET_META)) { 2838 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 2839 find_good_pkt_pointers(this_branch, src_reg, 2840 src_reg->type, false); 2841 } else { 2842 return false; 2843 } 2844 break; 2845 case BPF_JGE: 2846 if ((dst_reg->type == PTR_TO_PACKET && 2847 src_reg->type == PTR_TO_PACKET_END) || 2848 (dst_reg->type == PTR_TO_PACKET_META && 2849 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 2850 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 2851 find_good_pkt_pointers(this_branch, dst_reg, 2852 dst_reg->type, true); 2853 } else if ((dst_reg->type == PTR_TO_PACKET_END && 2854 src_reg->type == PTR_TO_PACKET) || 2855 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 2856 src_reg->type == PTR_TO_PACKET_META)) { 2857 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 2858 find_good_pkt_pointers(other_branch, src_reg, 2859 src_reg->type, false); 2860 } else { 2861 return false; 2862 } 2863 break; 2864 case BPF_JLE: 2865 if ((dst_reg->type == PTR_TO_PACKET && 2866 src_reg->type == PTR_TO_PACKET_END) || 2867 (dst_reg->type == PTR_TO_PACKET_META && 2868 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 2869 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 2870 find_good_pkt_pointers(other_branch, dst_reg, 2871 dst_reg->type, false); 2872 } else if ((dst_reg->type == PTR_TO_PACKET_END && 2873 src_reg->type == PTR_TO_PACKET) || 2874 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 2875 src_reg->type == PTR_TO_PACKET_META)) { 2876 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 2877 find_good_pkt_pointers(this_branch, src_reg, 2878 src_reg->type, true); 2879 } else { 2880 return false; 2881 } 2882 break; 2883 default: 2884 return false; 2885 } 2886 2887 return true; 2888 } 2889 2890 static int check_cond_jmp_op(struct bpf_verifier_env *env, 2891 struct bpf_insn *insn, int *insn_idx) 2892 { 2893 struct bpf_verifier_state *other_branch, *this_branch = env->cur_state; 2894 struct bpf_reg_state *regs = this_branch->regs, *dst_reg; 2895 u8 opcode = BPF_OP(insn->code); 2896 int err; 2897 2898 if (opcode > BPF_JSLE) { 2899 verbose(env, "invalid BPF_JMP opcode %x\n", opcode); 2900 return -EINVAL; 2901 } 2902 2903 if (BPF_SRC(insn->code) == BPF_X) { 2904 if (insn->imm != 0) { 2905 verbose(env, "BPF_JMP uses reserved fields\n"); 2906 return -EINVAL; 2907 } 2908 2909 /* check src1 operand */ 2910 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2911 if (err) 2912 return err; 2913 2914 if (is_pointer_value(env, insn->src_reg)) { 2915 verbose(env, "R%d pointer comparison prohibited\n", 2916 insn->src_reg); 2917 return -EACCES; 2918 } 2919 } else { 2920 if (insn->src_reg != BPF_REG_0) { 2921 verbose(env, "BPF_JMP uses reserved fields\n"); 2922 return -EINVAL; 2923 } 2924 } 2925 2926 /* check src2 operand */ 2927 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2928 if (err) 2929 return err; 2930 2931 dst_reg = ®s[insn->dst_reg]; 2932 2933 /* detect if R == 0 where R was initialized to zero earlier */ 2934 if (BPF_SRC(insn->code) == BPF_K && 2935 (opcode == BPF_JEQ || opcode == BPF_JNE) && 2936 dst_reg->type == SCALAR_VALUE && 2937 tnum_equals_const(dst_reg->var_off, insn->imm)) { 2938 if (opcode == BPF_JEQ) { 2939 /* if (imm == imm) goto pc+off; 2940 * only follow the goto, ignore fall-through 2941 */ 2942 *insn_idx += insn->off; 2943 return 0; 2944 } else { 2945 /* if (imm != imm) goto pc+off; 2946 * only follow fall-through branch, since 2947 * that's where the program will go 2948 */ 2949 return 0; 2950 } 2951 } 2952 2953 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); 2954 if (!other_branch) 2955 return -EFAULT; 2956 2957 /* detect if we are comparing against a constant value so we can adjust 2958 * our min/max values for our dst register. 2959 * this is only legit if both are scalars (or pointers to the same 2960 * object, I suppose, but we don't support that right now), because 2961 * otherwise the different base pointers mean the offsets aren't 2962 * comparable. 2963 */ 2964 if (BPF_SRC(insn->code) == BPF_X) { 2965 if (dst_reg->type == SCALAR_VALUE && 2966 regs[insn->src_reg].type == SCALAR_VALUE) { 2967 if (tnum_is_const(regs[insn->src_reg].var_off)) 2968 reg_set_min_max(&other_branch->regs[insn->dst_reg], 2969 dst_reg, regs[insn->src_reg].var_off.value, 2970 opcode); 2971 else if (tnum_is_const(dst_reg->var_off)) 2972 reg_set_min_max_inv(&other_branch->regs[insn->src_reg], 2973 ®s[insn->src_reg], 2974 dst_reg->var_off.value, opcode); 2975 else if (opcode == BPF_JEQ || opcode == BPF_JNE) 2976 /* Comparing for equality, we can combine knowledge */ 2977 reg_combine_min_max(&other_branch->regs[insn->src_reg], 2978 &other_branch->regs[insn->dst_reg], 2979 ®s[insn->src_reg], 2980 ®s[insn->dst_reg], opcode); 2981 } 2982 } else if (dst_reg->type == SCALAR_VALUE) { 2983 reg_set_min_max(&other_branch->regs[insn->dst_reg], 2984 dst_reg, insn->imm, opcode); 2985 } 2986 2987 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */ 2988 if (BPF_SRC(insn->code) == BPF_K && 2989 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 2990 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 2991 /* Mark all identical map registers in each branch as either 2992 * safe or unknown depending R == 0 or R != 0 conditional. 2993 */ 2994 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE); 2995 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ); 2996 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 2997 this_branch, other_branch) && 2998 is_pointer_value(env, insn->dst_reg)) { 2999 verbose(env, "R%d pointer comparison prohibited\n", 3000 insn->dst_reg); 3001 return -EACCES; 3002 } 3003 if (env->log.level) 3004 print_verifier_state(env, this_branch); 3005 return 0; 3006 } 3007 3008 /* return the map pointer stored inside BPF_LD_IMM64 instruction */ 3009 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 3010 { 3011 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 3012 3013 return (struct bpf_map *) (unsigned long) imm64; 3014 } 3015 3016 /* verify BPF_LD_IMM64 instruction */ 3017 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 3018 { 3019 struct bpf_reg_state *regs = cur_regs(env); 3020 int err; 3021 3022 if (BPF_SIZE(insn->code) != BPF_DW) { 3023 verbose(env, "invalid BPF_LD_IMM insn\n"); 3024 return -EINVAL; 3025 } 3026 if (insn->off != 0) { 3027 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 3028 return -EINVAL; 3029 } 3030 3031 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3032 if (err) 3033 return err; 3034 3035 if (insn->src_reg == 0) { 3036 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 3037 3038 regs[insn->dst_reg].type = SCALAR_VALUE; 3039 __mark_reg_known(®s[insn->dst_reg], imm); 3040 return 0; 3041 } 3042 3043 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ 3044 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); 3045 3046 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 3047 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); 3048 return 0; 3049 } 3050 3051 static bool may_access_skb(enum bpf_prog_type type) 3052 { 3053 switch (type) { 3054 case BPF_PROG_TYPE_SOCKET_FILTER: 3055 case BPF_PROG_TYPE_SCHED_CLS: 3056 case BPF_PROG_TYPE_SCHED_ACT: 3057 return true; 3058 default: 3059 return false; 3060 } 3061 } 3062 3063 /* verify safety of LD_ABS|LD_IND instructions: 3064 * - they can only appear in the programs where ctx == skb 3065 * - since they are wrappers of function calls, they scratch R1-R5 registers, 3066 * preserve R6-R9, and store return value into R0 3067 * 3068 * Implicit input: 3069 * ctx == skb == R6 == CTX 3070 * 3071 * Explicit input: 3072 * SRC == any register 3073 * IMM == 32-bit immediate 3074 * 3075 * Output: 3076 * R0 - 8/16/32-bit skb data converted to cpu endianness 3077 */ 3078 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 3079 { 3080 struct bpf_reg_state *regs = cur_regs(env); 3081 u8 mode = BPF_MODE(insn->code); 3082 int i, err; 3083 3084 if (!may_access_skb(env->prog->type)) { 3085 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 3086 return -EINVAL; 3087 } 3088 3089 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 3090 BPF_SIZE(insn->code) == BPF_DW || 3091 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 3092 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 3093 return -EINVAL; 3094 } 3095 3096 /* check whether implicit source operand (register R6) is readable */ 3097 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 3098 if (err) 3099 return err; 3100 3101 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 3102 verbose(env, 3103 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 3104 return -EINVAL; 3105 } 3106 3107 if (mode == BPF_IND) { 3108 /* check explicit source operand */ 3109 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3110 if (err) 3111 return err; 3112 } 3113 3114 /* reset caller saved regs to unreadable */ 3115 for (i = 0; i < CALLER_SAVED_REGS; i++) { 3116 mark_reg_not_init(env, regs, caller_saved[i]); 3117 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3118 } 3119 3120 /* mark destination R0 register as readable, since it contains 3121 * the value fetched from the packet. 3122 * Already marked as written above. 3123 */ 3124 mark_reg_unknown(env, regs, BPF_REG_0); 3125 return 0; 3126 } 3127 3128 static int check_return_code(struct bpf_verifier_env *env) 3129 { 3130 struct bpf_reg_state *reg; 3131 struct tnum range = tnum_range(0, 1); 3132 3133 switch (env->prog->type) { 3134 case BPF_PROG_TYPE_CGROUP_SKB: 3135 case BPF_PROG_TYPE_CGROUP_SOCK: 3136 case BPF_PROG_TYPE_SOCK_OPS: 3137 case BPF_PROG_TYPE_CGROUP_DEVICE: 3138 break; 3139 default: 3140 return 0; 3141 } 3142 3143 reg = cur_regs(env) + BPF_REG_0; 3144 if (reg->type != SCALAR_VALUE) { 3145 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 3146 reg_type_str[reg->type]); 3147 return -EINVAL; 3148 } 3149 3150 if (!tnum_in(range, reg->var_off)) { 3151 verbose(env, "At program exit the register R0 "); 3152 if (!tnum_is_unknown(reg->var_off)) { 3153 char tn_buf[48]; 3154 3155 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3156 verbose(env, "has value %s", tn_buf); 3157 } else { 3158 verbose(env, "has unknown scalar value"); 3159 } 3160 verbose(env, " should have been 0 or 1\n"); 3161 return -EINVAL; 3162 } 3163 return 0; 3164 } 3165 3166 /* non-recursive DFS pseudo code 3167 * 1 procedure DFS-iterative(G,v): 3168 * 2 label v as discovered 3169 * 3 let S be a stack 3170 * 4 S.push(v) 3171 * 5 while S is not empty 3172 * 6 t <- S.pop() 3173 * 7 if t is what we're looking for: 3174 * 8 return t 3175 * 9 for all edges e in G.adjacentEdges(t) do 3176 * 10 if edge e is already labelled 3177 * 11 continue with the next edge 3178 * 12 w <- G.adjacentVertex(t,e) 3179 * 13 if vertex w is not discovered and not explored 3180 * 14 label e as tree-edge 3181 * 15 label w as discovered 3182 * 16 S.push(w) 3183 * 17 continue at 5 3184 * 18 else if vertex w is discovered 3185 * 19 label e as back-edge 3186 * 20 else 3187 * 21 // vertex w is explored 3188 * 22 label e as forward- or cross-edge 3189 * 23 label t as explored 3190 * 24 S.pop() 3191 * 3192 * convention: 3193 * 0x10 - discovered 3194 * 0x11 - discovered and fall-through edge labelled 3195 * 0x12 - discovered and fall-through and branch edges labelled 3196 * 0x20 - explored 3197 */ 3198 3199 enum { 3200 DISCOVERED = 0x10, 3201 EXPLORED = 0x20, 3202 FALLTHROUGH = 1, 3203 BRANCH = 2, 3204 }; 3205 3206 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 3207 3208 static int *insn_stack; /* stack of insns to process */ 3209 static int cur_stack; /* current stack index */ 3210 static int *insn_state; 3211 3212 /* t, w, e - match pseudo-code above: 3213 * t - index of current instruction 3214 * w - next instruction 3215 * e - edge 3216 */ 3217 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 3218 { 3219 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 3220 return 0; 3221 3222 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 3223 return 0; 3224 3225 if (w < 0 || w >= env->prog->len) { 3226 verbose(env, "jump out of range from insn %d to %d\n", t, w); 3227 return -EINVAL; 3228 } 3229 3230 if (e == BRANCH) 3231 /* mark branch target for state pruning */ 3232 env->explored_states[w] = STATE_LIST_MARK; 3233 3234 if (insn_state[w] == 0) { 3235 /* tree-edge */ 3236 insn_state[t] = DISCOVERED | e; 3237 insn_state[w] = DISCOVERED; 3238 if (cur_stack >= env->prog->len) 3239 return -E2BIG; 3240 insn_stack[cur_stack++] = w; 3241 return 1; 3242 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 3243 verbose(env, "back-edge from insn %d to %d\n", t, w); 3244 return -EINVAL; 3245 } else if (insn_state[w] == EXPLORED) { 3246 /* forward- or cross-edge */ 3247 insn_state[t] = DISCOVERED | e; 3248 } else { 3249 verbose(env, "insn state internal bug\n"); 3250 return -EFAULT; 3251 } 3252 return 0; 3253 } 3254 3255 /* non-recursive depth-first-search to detect loops in BPF program 3256 * loop == back-edge in directed graph 3257 */ 3258 static int check_cfg(struct bpf_verifier_env *env) 3259 { 3260 struct bpf_insn *insns = env->prog->insnsi; 3261 int insn_cnt = env->prog->len; 3262 int ret = 0; 3263 int i, t; 3264 3265 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 3266 if (!insn_state) 3267 return -ENOMEM; 3268 3269 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 3270 if (!insn_stack) { 3271 kfree(insn_state); 3272 return -ENOMEM; 3273 } 3274 3275 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 3276 insn_stack[0] = 0; /* 0 is the first instruction */ 3277 cur_stack = 1; 3278 3279 peek_stack: 3280 if (cur_stack == 0) 3281 goto check_state; 3282 t = insn_stack[cur_stack - 1]; 3283 3284 if (BPF_CLASS(insns[t].code) == BPF_JMP) { 3285 u8 opcode = BPF_OP(insns[t].code); 3286 3287 if (opcode == BPF_EXIT) { 3288 goto mark_explored; 3289 } else if (opcode == BPF_CALL) { 3290 ret = push_insn(t, t + 1, FALLTHROUGH, env); 3291 if (ret == 1) 3292 goto peek_stack; 3293 else if (ret < 0) 3294 goto err_free; 3295 if (t + 1 < insn_cnt) 3296 env->explored_states[t + 1] = STATE_LIST_MARK; 3297 } else if (opcode == BPF_JA) { 3298 if (BPF_SRC(insns[t].code) != BPF_K) { 3299 ret = -EINVAL; 3300 goto err_free; 3301 } 3302 /* unconditional jump with single edge */ 3303 ret = push_insn(t, t + insns[t].off + 1, 3304 FALLTHROUGH, env); 3305 if (ret == 1) 3306 goto peek_stack; 3307 else if (ret < 0) 3308 goto err_free; 3309 /* tell verifier to check for equivalent states 3310 * after every call and jump 3311 */ 3312 if (t + 1 < insn_cnt) 3313 env->explored_states[t + 1] = STATE_LIST_MARK; 3314 } else { 3315 /* conditional jump with two edges */ 3316 env->explored_states[t] = STATE_LIST_MARK; 3317 ret = push_insn(t, t + 1, FALLTHROUGH, env); 3318 if (ret == 1) 3319 goto peek_stack; 3320 else if (ret < 0) 3321 goto err_free; 3322 3323 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 3324 if (ret == 1) 3325 goto peek_stack; 3326 else if (ret < 0) 3327 goto err_free; 3328 } 3329 } else { 3330 /* all other non-branch instructions with single 3331 * fall-through edge 3332 */ 3333 ret = push_insn(t, t + 1, FALLTHROUGH, env); 3334 if (ret == 1) 3335 goto peek_stack; 3336 else if (ret < 0) 3337 goto err_free; 3338 } 3339 3340 mark_explored: 3341 insn_state[t] = EXPLORED; 3342 if (cur_stack-- <= 0) { 3343 verbose(env, "pop stack internal bug\n"); 3344 ret = -EFAULT; 3345 goto err_free; 3346 } 3347 goto peek_stack; 3348 3349 check_state: 3350 for (i = 0; i < insn_cnt; i++) { 3351 if (insn_state[i] != EXPLORED) { 3352 verbose(env, "unreachable insn %d\n", i); 3353 ret = -EINVAL; 3354 goto err_free; 3355 } 3356 } 3357 ret = 0; /* cfg looks good */ 3358 3359 err_free: 3360 kfree(insn_state); 3361 kfree(insn_stack); 3362 return ret; 3363 } 3364 3365 /* check %cur's range satisfies %old's */ 3366 static bool range_within(struct bpf_reg_state *old, 3367 struct bpf_reg_state *cur) 3368 { 3369 return old->umin_value <= cur->umin_value && 3370 old->umax_value >= cur->umax_value && 3371 old->smin_value <= cur->smin_value && 3372 old->smax_value >= cur->smax_value; 3373 } 3374 3375 /* Maximum number of register states that can exist at once */ 3376 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 3377 struct idpair { 3378 u32 old; 3379 u32 cur; 3380 }; 3381 3382 /* If in the old state two registers had the same id, then they need to have 3383 * the same id in the new state as well. But that id could be different from 3384 * the old state, so we need to track the mapping from old to new ids. 3385 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 3386 * regs with old id 5 must also have new id 9 for the new state to be safe. But 3387 * regs with a different old id could still have new id 9, we don't care about 3388 * that. 3389 * So we look through our idmap to see if this old id has been seen before. If 3390 * so, we require the new id to match; otherwise, we add the id pair to the map. 3391 */ 3392 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 3393 { 3394 unsigned int i; 3395 3396 for (i = 0; i < ID_MAP_SIZE; i++) { 3397 if (!idmap[i].old) { 3398 /* Reached an empty slot; haven't seen this id before */ 3399 idmap[i].old = old_id; 3400 idmap[i].cur = cur_id; 3401 return true; 3402 } 3403 if (idmap[i].old == old_id) 3404 return idmap[i].cur == cur_id; 3405 } 3406 /* We ran out of idmap slots, which should be impossible */ 3407 WARN_ON_ONCE(1); 3408 return false; 3409 } 3410 3411 /* Returns true if (rold safe implies rcur safe) */ 3412 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 3413 struct idpair *idmap) 3414 { 3415 if (!(rold->live & REG_LIVE_READ)) 3416 /* explored state didn't use this */ 3417 return true; 3418 3419 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0) 3420 return true; 3421 3422 if (rold->type == NOT_INIT) 3423 /* explored state can't have used this */ 3424 return true; 3425 if (rcur->type == NOT_INIT) 3426 return false; 3427 switch (rold->type) { 3428 case SCALAR_VALUE: 3429 if (rcur->type == SCALAR_VALUE) { 3430 /* new val must satisfy old val knowledge */ 3431 return range_within(rold, rcur) && 3432 tnum_in(rold->var_off, rcur->var_off); 3433 } else { 3434 /* if we knew anything about the old value, we're not 3435 * equal, because we can't know anything about the 3436 * scalar value of the pointer in the new value. 3437 */ 3438 return rold->umin_value == 0 && 3439 rold->umax_value == U64_MAX && 3440 rold->smin_value == S64_MIN && 3441 rold->smax_value == S64_MAX && 3442 tnum_is_unknown(rold->var_off); 3443 } 3444 case PTR_TO_MAP_VALUE: 3445 /* If the new min/max/var_off satisfy the old ones and 3446 * everything else matches, we are OK. 3447 * We don't care about the 'id' value, because nothing 3448 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL) 3449 */ 3450 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 3451 range_within(rold, rcur) && 3452 tnum_in(rold->var_off, rcur->var_off); 3453 case PTR_TO_MAP_VALUE_OR_NULL: 3454 /* a PTR_TO_MAP_VALUE could be safe to use as a 3455 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 3456 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 3457 * checked, doing so could have affected others with the same 3458 * id, and we can't check for that because we lost the id when 3459 * we converted to a PTR_TO_MAP_VALUE. 3460 */ 3461 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 3462 return false; 3463 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 3464 return false; 3465 /* Check our ids match any regs they're supposed to */ 3466 return check_ids(rold->id, rcur->id, idmap); 3467 case PTR_TO_PACKET_META: 3468 case PTR_TO_PACKET: 3469 if (rcur->type != rold->type) 3470 return false; 3471 /* We must have at least as much range as the old ptr 3472 * did, so that any accesses which were safe before are 3473 * still safe. This is true even if old range < old off, 3474 * since someone could have accessed through (ptr - k), or 3475 * even done ptr -= k in a register, to get a safe access. 3476 */ 3477 if (rold->range > rcur->range) 3478 return false; 3479 /* If the offsets don't match, we can't trust our alignment; 3480 * nor can we be sure that we won't fall out of range. 3481 */ 3482 if (rold->off != rcur->off) 3483 return false; 3484 /* id relations must be preserved */ 3485 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 3486 return false; 3487 /* new val must satisfy old val knowledge */ 3488 return range_within(rold, rcur) && 3489 tnum_in(rold->var_off, rcur->var_off); 3490 case PTR_TO_CTX: 3491 case CONST_PTR_TO_MAP: 3492 case PTR_TO_STACK: 3493 case PTR_TO_PACKET_END: 3494 /* Only valid matches are exact, which memcmp() above 3495 * would have accepted 3496 */ 3497 default: 3498 /* Don't know what's going on, just say it's not safe */ 3499 return false; 3500 } 3501 3502 /* Shouldn't get here; if we do, say it's not safe */ 3503 WARN_ON_ONCE(1); 3504 return false; 3505 } 3506 3507 static bool stacksafe(struct bpf_verifier_state *old, 3508 struct bpf_verifier_state *cur, 3509 struct idpair *idmap) 3510 { 3511 int i, spi; 3512 3513 /* if explored stack has more populated slots than current stack 3514 * such stacks are not equivalent 3515 */ 3516 if (old->allocated_stack > cur->allocated_stack) 3517 return false; 3518 3519 /* walk slots of the explored stack and ignore any additional 3520 * slots in the current stack, since explored(safe) state 3521 * didn't use them 3522 */ 3523 for (i = 0; i < old->allocated_stack; i++) { 3524 spi = i / BPF_REG_SIZE; 3525 3526 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 3527 continue; 3528 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 3529 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 3530 /* Ex: old explored (safe) state has STACK_SPILL in 3531 * this stack slot, but current has has STACK_MISC -> 3532 * this verifier states are not equivalent, 3533 * return false to continue verification of this path 3534 */ 3535 return false; 3536 if (i % BPF_REG_SIZE) 3537 continue; 3538 if (old->stack[spi].slot_type[0] != STACK_SPILL) 3539 continue; 3540 if (!regsafe(&old->stack[spi].spilled_ptr, 3541 &cur->stack[spi].spilled_ptr, 3542 idmap)) 3543 /* when explored and current stack slot are both storing 3544 * spilled registers, check that stored pointers types 3545 * are the same as well. 3546 * Ex: explored safe path could have stored 3547 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 3548 * but current path has stored: 3549 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 3550 * such verifier states are not equivalent. 3551 * return false to continue verification of this path 3552 */ 3553 return false; 3554 } 3555 return true; 3556 } 3557 3558 /* compare two verifier states 3559 * 3560 * all states stored in state_list are known to be valid, since 3561 * verifier reached 'bpf_exit' instruction through them 3562 * 3563 * this function is called when verifier exploring different branches of 3564 * execution popped from the state stack. If it sees an old state that has 3565 * more strict register state and more strict stack state then this execution 3566 * branch doesn't need to be explored further, since verifier already 3567 * concluded that more strict state leads to valid finish. 3568 * 3569 * Therefore two states are equivalent if register state is more conservative 3570 * and explored stack state is more conservative than the current one. 3571 * Example: 3572 * explored current 3573 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 3574 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 3575 * 3576 * In other words if current stack state (one being explored) has more 3577 * valid slots than old one that already passed validation, it means 3578 * the verifier can stop exploring and conclude that current state is valid too 3579 * 3580 * Similarly with registers. If explored state has register type as invalid 3581 * whereas register type in current state is meaningful, it means that 3582 * the current state will reach 'bpf_exit' instruction safely 3583 */ 3584 static bool states_equal(struct bpf_verifier_env *env, 3585 struct bpf_verifier_state *old, 3586 struct bpf_verifier_state *cur) 3587 { 3588 struct idpair *idmap; 3589 bool ret = false; 3590 int i; 3591 3592 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 3593 /* If we failed to allocate the idmap, just say it's not safe */ 3594 if (!idmap) 3595 return false; 3596 3597 for (i = 0; i < MAX_BPF_REG; i++) { 3598 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 3599 goto out_free; 3600 } 3601 3602 if (!stacksafe(old, cur, idmap)) 3603 goto out_free; 3604 ret = true; 3605 out_free: 3606 kfree(idmap); 3607 return ret; 3608 } 3609 3610 /* A write screens off any subsequent reads; but write marks come from the 3611 * straight-line code between a state and its parent. When we arrive at a 3612 * jump target (in the first iteration of the propagate_liveness() loop), 3613 * we didn't arrive by the straight-line code, so read marks in state must 3614 * propagate to parent regardless of state's write marks. 3615 */ 3616 static bool do_propagate_liveness(const struct bpf_verifier_state *state, 3617 struct bpf_verifier_state *parent) 3618 { 3619 bool writes = parent == state->parent; /* Observe write marks */ 3620 bool touched = false; /* any changes made? */ 3621 int i; 3622 3623 if (!parent) 3624 return touched; 3625 /* Propagate read liveness of registers... */ 3626 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 3627 /* We don't need to worry about FP liveness because it's read-only */ 3628 for (i = 0; i < BPF_REG_FP; i++) { 3629 if (parent->regs[i].live & REG_LIVE_READ) 3630 continue; 3631 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN)) 3632 continue; 3633 if (state->regs[i].live & REG_LIVE_READ) { 3634 parent->regs[i].live |= REG_LIVE_READ; 3635 touched = true; 3636 } 3637 } 3638 /* ... and stack slots */ 3639 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 3640 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 3641 if (parent->stack[i].slot_type[0] != STACK_SPILL) 3642 continue; 3643 if (state->stack[i].slot_type[0] != STACK_SPILL) 3644 continue; 3645 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ) 3646 continue; 3647 if (writes && 3648 (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN)) 3649 continue; 3650 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) { 3651 parent->stack[i].spilled_ptr.live |= REG_LIVE_READ; 3652 touched = true; 3653 } 3654 } 3655 return touched; 3656 } 3657 3658 /* "parent" is "a state from which we reach the current state", but initially 3659 * it is not the state->parent (i.e. "the state whose straight-line code leads 3660 * to the current state"), instead it is the state that happened to arrive at 3661 * a (prunable) equivalent of the current state. See comment above 3662 * do_propagate_liveness() for consequences of this. 3663 * This function is just a more efficient way of calling mark_reg_read() or 3664 * mark_stack_slot_read() on each reg in "parent" that is read in "state", 3665 * though it requires that parent != state->parent in the call arguments. 3666 */ 3667 static void propagate_liveness(const struct bpf_verifier_state *state, 3668 struct bpf_verifier_state *parent) 3669 { 3670 while (do_propagate_liveness(state, parent)) { 3671 /* Something changed, so we need to feed those changes onward */ 3672 state = parent; 3673 parent = state->parent; 3674 } 3675 } 3676 3677 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 3678 { 3679 struct bpf_verifier_state_list *new_sl; 3680 struct bpf_verifier_state_list *sl; 3681 struct bpf_verifier_state *cur = env->cur_state; 3682 int i, err; 3683 3684 sl = env->explored_states[insn_idx]; 3685 if (!sl) 3686 /* this 'insn_idx' instruction wasn't marked, so we will not 3687 * be doing state search here 3688 */ 3689 return 0; 3690 3691 while (sl != STATE_LIST_MARK) { 3692 if (states_equal(env, &sl->state, cur)) { 3693 /* reached equivalent register/stack state, 3694 * prune the search. 3695 * Registers read by the continuation are read by us. 3696 * If we have any write marks in env->cur_state, they 3697 * will prevent corresponding reads in the continuation 3698 * from reaching our parent (an explored_state). Our 3699 * own state will get the read marks recorded, but 3700 * they'll be immediately forgotten as we're pruning 3701 * this state and will pop a new one. 3702 */ 3703 propagate_liveness(&sl->state, cur); 3704 return 1; 3705 } 3706 sl = sl->next; 3707 } 3708 3709 /* there were no equivalent states, remember current one. 3710 * technically the current state is not proven to be safe yet, 3711 * but it will either reach bpf_exit (which means it's safe) or 3712 * it will be rejected. Since there are no loops, we won't be 3713 * seeing this 'insn_idx' instruction again on the way to bpf_exit 3714 */ 3715 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 3716 if (!new_sl) 3717 return -ENOMEM; 3718 3719 /* add new state to the head of linked list */ 3720 err = copy_verifier_state(&new_sl->state, cur); 3721 if (err) { 3722 free_verifier_state(&new_sl->state, false); 3723 kfree(new_sl); 3724 return err; 3725 } 3726 new_sl->next = env->explored_states[insn_idx]; 3727 env->explored_states[insn_idx] = new_sl; 3728 /* connect new state to parentage chain */ 3729 cur->parent = &new_sl->state; 3730 /* clear write marks in current state: the writes we did are not writes 3731 * our child did, so they don't screen off its reads from us. 3732 * (There are no read marks in current state, because reads always mark 3733 * their parent and current state never has children yet. Only 3734 * explored_states can get read marks.) 3735 */ 3736 for (i = 0; i < BPF_REG_FP; i++) 3737 cur->regs[i].live = REG_LIVE_NONE; 3738 for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++) 3739 if (cur->stack[i].slot_type[0] == STACK_SPILL) 3740 cur->stack[i].spilled_ptr.live = REG_LIVE_NONE; 3741 return 0; 3742 } 3743 3744 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env, 3745 int insn_idx, int prev_insn_idx) 3746 { 3747 if (env->dev_ops && env->dev_ops->insn_hook) 3748 return env->dev_ops->insn_hook(env, insn_idx, prev_insn_idx); 3749 3750 return 0; 3751 } 3752 3753 static int do_check(struct bpf_verifier_env *env) 3754 { 3755 struct bpf_verifier_state *state; 3756 struct bpf_insn *insns = env->prog->insnsi; 3757 struct bpf_reg_state *regs; 3758 int insn_cnt = env->prog->len; 3759 int insn_idx, prev_insn_idx = 0; 3760 int insn_processed = 0; 3761 bool do_print_state = false; 3762 3763 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 3764 if (!state) 3765 return -ENOMEM; 3766 env->cur_state = state; 3767 init_reg_state(env, state->regs); 3768 state->parent = NULL; 3769 insn_idx = 0; 3770 for (;;) { 3771 struct bpf_insn *insn; 3772 u8 class; 3773 int err; 3774 3775 if (insn_idx >= insn_cnt) { 3776 verbose(env, "invalid insn idx %d insn_cnt %d\n", 3777 insn_idx, insn_cnt); 3778 return -EFAULT; 3779 } 3780 3781 insn = &insns[insn_idx]; 3782 class = BPF_CLASS(insn->code); 3783 3784 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 3785 verbose(env, 3786 "BPF program is too large. Processed %d insn\n", 3787 insn_processed); 3788 return -E2BIG; 3789 } 3790 3791 err = is_state_visited(env, insn_idx); 3792 if (err < 0) 3793 return err; 3794 if (err == 1) { 3795 /* found equivalent state, can prune the search */ 3796 if (env->log.level) { 3797 if (do_print_state) 3798 verbose(env, "\nfrom %d to %d: safe\n", 3799 prev_insn_idx, insn_idx); 3800 else 3801 verbose(env, "%d: safe\n", insn_idx); 3802 } 3803 goto process_bpf_exit; 3804 } 3805 3806 if (need_resched()) 3807 cond_resched(); 3808 3809 if (env->log.level > 1 || (env->log.level && do_print_state)) { 3810 if (env->log.level > 1) 3811 verbose(env, "%d:", insn_idx); 3812 else 3813 verbose(env, "\nfrom %d to %d:", 3814 prev_insn_idx, insn_idx); 3815 print_verifier_state(env, state); 3816 do_print_state = false; 3817 } 3818 3819 if (env->log.level) { 3820 verbose(env, "%d: ", insn_idx); 3821 print_bpf_insn(verbose, env, insn, 3822 env->allow_ptr_leaks); 3823 } 3824 3825 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx); 3826 if (err) 3827 return err; 3828 3829 regs = cur_regs(env); 3830 env->insn_aux_data[insn_idx].seen = true; 3831 if (class == BPF_ALU || class == BPF_ALU64) { 3832 err = check_alu_op(env, insn); 3833 if (err) 3834 return err; 3835 3836 } else if (class == BPF_LDX) { 3837 enum bpf_reg_type *prev_src_type, src_reg_type; 3838 3839 /* check for reserved fields is already done */ 3840 3841 /* check src operand */ 3842 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3843 if (err) 3844 return err; 3845 3846 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3847 if (err) 3848 return err; 3849 3850 src_reg_type = regs[insn->src_reg].type; 3851 3852 /* check that memory (src_reg + off) is readable, 3853 * the state of dst_reg will be updated by this func 3854 */ 3855 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off, 3856 BPF_SIZE(insn->code), BPF_READ, 3857 insn->dst_reg); 3858 if (err) 3859 return err; 3860 3861 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type; 3862 3863 if (*prev_src_type == NOT_INIT) { 3864 /* saw a valid insn 3865 * dst_reg = *(u32 *)(src_reg + off) 3866 * save type to validate intersecting paths 3867 */ 3868 *prev_src_type = src_reg_type; 3869 3870 } else if (src_reg_type != *prev_src_type && 3871 (src_reg_type == PTR_TO_CTX || 3872 *prev_src_type == PTR_TO_CTX)) { 3873 /* ABuser program is trying to use the same insn 3874 * dst_reg = *(u32*) (src_reg + off) 3875 * with different pointer types: 3876 * src_reg == ctx in one branch and 3877 * src_reg == stack|map in some other branch. 3878 * Reject it. 3879 */ 3880 verbose(env, "same insn cannot be used with different pointers\n"); 3881 return -EINVAL; 3882 } 3883 3884 } else if (class == BPF_STX) { 3885 enum bpf_reg_type *prev_dst_type, dst_reg_type; 3886 3887 if (BPF_MODE(insn->code) == BPF_XADD) { 3888 err = check_xadd(env, insn_idx, insn); 3889 if (err) 3890 return err; 3891 insn_idx++; 3892 continue; 3893 } 3894 3895 /* check src1 operand */ 3896 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3897 if (err) 3898 return err; 3899 /* check src2 operand */ 3900 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3901 if (err) 3902 return err; 3903 3904 dst_reg_type = regs[insn->dst_reg].type; 3905 3906 /* check that memory (dst_reg + off) is writeable */ 3907 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3908 BPF_SIZE(insn->code), BPF_WRITE, 3909 insn->src_reg); 3910 if (err) 3911 return err; 3912 3913 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type; 3914 3915 if (*prev_dst_type == NOT_INIT) { 3916 *prev_dst_type = dst_reg_type; 3917 } else if (dst_reg_type != *prev_dst_type && 3918 (dst_reg_type == PTR_TO_CTX || 3919 *prev_dst_type == PTR_TO_CTX)) { 3920 verbose(env, "same insn cannot be used with different pointers\n"); 3921 return -EINVAL; 3922 } 3923 3924 } else if (class == BPF_ST) { 3925 if (BPF_MODE(insn->code) != BPF_MEM || 3926 insn->src_reg != BPF_REG_0) { 3927 verbose(env, "BPF_ST uses reserved fields\n"); 3928 return -EINVAL; 3929 } 3930 /* check src operand */ 3931 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3932 if (err) 3933 return err; 3934 3935 /* check that memory (dst_reg + off) is writeable */ 3936 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3937 BPF_SIZE(insn->code), BPF_WRITE, 3938 -1); 3939 if (err) 3940 return err; 3941 3942 } else if (class == BPF_JMP) { 3943 u8 opcode = BPF_OP(insn->code); 3944 3945 if (opcode == BPF_CALL) { 3946 if (BPF_SRC(insn->code) != BPF_K || 3947 insn->off != 0 || 3948 insn->src_reg != BPF_REG_0 || 3949 insn->dst_reg != BPF_REG_0) { 3950 verbose(env, "BPF_CALL uses reserved fields\n"); 3951 return -EINVAL; 3952 } 3953 3954 err = check_call(env, insn->imm, insn_idx); 3955 if (err) 3956 return err; 3957 3958 } else if (opcode == BPF_JA) { 3959 if (BPF_SRC(insn->code) != BPF_K || 3960 insn->imm != 0 || 3961 insn->src_reg != BPF_REG_0 || 3962 insn->dst_reg != BPF_REG_0) { 3963 verbose(env, "BPF_JA uses reserved fields\n"); 3964 return -EINVAL; 3965 } 3966 3967 insn_idx += insn->off + 1; 3968 continue; 3969 3970 } else if (opcode == BPF_EXIT) { 3971 if (BPF_SRC(insn->code) != BPF_K || 3972 insn->imm != 0 || 3973 insn->src_reg != BPF_REG_0 || 3974 insn->dst_reg != BPF_REG_0) { 3975 verbose(env, "BPF_EXIT uses reserved fields\n"); 3976 return -EINVAL; 3977 } 3978 3979 /* eBPF calling convetion is such that R0 is used 3980 * to return the value from eBPF program. 3981 * Make sure that it's readable at this time 3982 * of bpf_exit, which means that program wrote 3983 * something into it earlier 3984 */ 3985 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 3986 if (err) 3987 return err; 3988 3989 if (is_pointer_value(env, BPF_REG_0)) { 3990 verbose(env, "R0 leaks addr as return value\n"); 3991 return -EACCES; 3992 } 3993 3994 err = check_return_code(env); 3995 if (err) 3996 return err; 3997 process_bpf_exit: 3998 err = pop_stack(env, &prev_insn_idx, &insn_idx); 3999 if (err < 0) { 4000 if (err != -ENOENT) 4001 return err; 4002 break; 4003 } else { 4004 do_print_state = true; 4005 continue; 4006 } 4007 } else { 4008 err = check_cond_jmp_op(env, insn, &insn_idx); 4009 if (err) 4010 return err; 4011 } 4012 } else if (class == BPF_LD) { 4013 u8 mode = BPF_MODE(insn->code); 4014 4015 if (mode == BPF_ABS || mode == BPF_IND) { 4016 err = check_ld_abs(env, insn); 4017 if (err) 4018 return err; 4019 4020 } else if (mode == BPF_IMM) { 4021 err = check_ld_imm(env, insn); 4022 if (err) 4023 return err; 4024 4025 insn_idx++; 4026 env->insn_aux_data[insn_idx].seen = true; 4027 } else { 4028 verbose(env, "invalid BPF_LD mode\n"); 4029 return -EINVAL; 4030 } 4031 } else { 4032 verbose(env, "unknown insn class %d\n", class); 4033 return -EINVAL; 4034 } 4035 4036 insn_idx++; 4037 } 4038 4039 verbose(env, "processed %d insns, stack depth %d\n", insn_processed, 4040 env->prog->aux->stack_depth); 4041 return 0; 4042 } 4043 4044 static int check_map_prealloc(struct bpf_map *map) 4045 { 4046 return (map->map_type != BPF_MAP_TYPE_HASH && 4047 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 4048 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 4049 !(map->map_flags & BPF_F_NO_PREALLOC); 4050 } 4051 4052 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 4053 struct bpf_map *map, 4054 struct bpf_prog *prog) 4055 4056 { 4057 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 4058 * preallocated hash maps, since doing memory allocation 4059 * in overflow_handler can crash depending on where nmi got 4060 * triggered. 4061 */ 4062 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 4063 if (!check_map_prealloc(map)) { 4064 verbose(env, "perf_event programs can only use preallocated hash map\n"); 4065 return -EINVAL; 4066 } 4067 if (map->inner_map_meta && 4068 !check_map_prealloc(map->inner_map_meta)) { 4069 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 4070 return -EINVAL; 4071 } 4072 } 4073 return 0; 4074 } 4075 4076 /* look for pseudo eBPF instructions that access map FDs and 4077 * replace them with actual map pointers 4078 */ 4079 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 4080 { 4081 struct bpf_insn *insn = env->prog->insnsi; 4082 int insn_cnt = env->prog->len; 4083 int i, j, err; 4084 4085 err = bpf_prog_calc_tag(env->prog); 4086 if (err) 4087 return err; 4088 4089 for (i = 0; i < insn_cnt; i++, insn++) { 4090 if (BPF_CLASS(insn->code) == BPF_LDX && 4091 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 4092 verbose(env, "BPF_LDX uses reserved fields\n"); 4093 return -EINVAL; 4094 } 4095 4096 if (BPF_CLASS(insn->code) == BPF_STX && 4097 ((BPF_MODE(insn->code) != BPF_MEM && 4098 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 4099 verbose(env, "BPF_STX uses reserved fields\n"); 4100 return -EINVAL; 4101 } 4102 4103 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 4104 struct bpf_map *map; 4105 struct fd f; 4106 4107 if (i == insn_cnt - 1 || insn[1].code != 0 || 4108 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 4109 insn[1].off != 0) { 4110 verbose(env, "invalid bpf_ld_imm64 insn\n"); 4111 return -EINVAL; 4112 } 4113 4114 if (insn->src_reg == 0) 4115 /* valid generic load 64-bit imm */ 4116 goto next_insn; 4117 4118 if (insn->src_reg != BPF_PSEUDO_MAP_FD) { 4119 verbose(env, 4120 "unrecognized bpf_ld_imm64 insn\n"); 4121 return -EINVAL; 4122 } 4123 4124 f = fdget(insn->imm); 4125 map = __bpf_map_get(f); 4126 if (IS_ERR(map)) { 4127 verbose(env, "fd %d is not pointing to valid bpf_map\n", 4128 insn->imm); 4129 return PTR_ERR(map); 4130 } 4131 4132 err = check_map_prog_compatibility(env, map, env->prog); 4133 if (err) { 4134 fdput(f); 4135 return err; 4136 } 4137 4138 /* store map pointer inside BPF_LD_IMM64 instruction */ 4139 insn[0].imm = (u32) (unsigned long) map; 4140 insn[1].imm = ((u64) (unsigned long) map) >> 32; 4141 4142 /* check whether we recorded this map already */ 4143 for (j = 0; j < env->used_map_cnt; j++) 4144 if (env->used_maps[j] == map) { 4145 fdput(f); 4146 goto next_insn; 4147 } 4148 4149 if (env->used_map_cnt >= MAX_USED_MAPS) { 4150 fdput(f); 4151 return -E2BIG; 4152 } 4153 4154 /* hold the map. If the program is rejected by verifier, 4155 * the map will be released by release_maps() or it 4156 * will be used by the valid program until it's unloaded 4157 * and all maps are released in free_bpf_prog_info() 4158 */ 4159 map = bpf_map_inc(map, false); 4160 if (IS_ERR(map)) { 4161 fdput(f); 4162 return PTR_ERR(map); 4163 } 4164 env->used_maps[env->used_map_cnt++] = map; 4165 4166 fdput(f); 4167 next_insn: 4168 insn++; 4169 i++; 4170 } 4171 } 4172 4173 /* now all pseudo BPF_LD_IMM64 instructions load valid 4174 * 'struct bpf_map *' into a register instead of user map_fd. 4175 * These pointers will be used later by verifier to validate map access. 4176 */ 4177 return 0; 4178 } 4179 4180 /* drop refcnt of maps used by the rejected program */ 4181 static void release_maps(struct bpf_verifier_env *env) 4182 { 4183 int i; 4184 4185 for (i = 0; i < env->used_map_cnt; i++) 4186 bpf_map_put(env->used_maps[i]); 4187 } 4188 4189 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 4190 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 4191 { 4192 struct bpf_insn *insn = env->prog->insnsi; 4193 int insn_cnt = env->prog->len; 4194 int i; 4195 4196 for (i = 0; i < insn_cnt; i++, insn++) 4197 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 4198 insn->src_reg = 0; 4199 } 4200 4201 /* single env->prog->insni[off] instruction was replaced with the range 4202 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 4203 * [0, off) and [off, end) to new locations, so the patched range stays zero 4204 */ 4205 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 4206 u32 off, u32 cnt) 4207 { 4208 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 4209 int i; 4210 4211 if (cnt == 1) 4212 return 0; 4213 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len); 4214 if (!new_data) 4215 return -ENOMEM; 4216 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 4217 memcpy(new_data + off + cnt - 1, old_data + off, 4218 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 4219 for (i = off; i < off + cnt - 1; i++) 4220 new_data[i].seen = true; 4221 env->insn_aux_data = new_data; 4222 vfree(old_data); 4223 return 0; 4224 } 4225 4226 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 4227 const struct bpf_insn *patch, u32 len) 4228 { 4229 struct bpf_prog *new_prog; 4230 4231 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 4232 if (!new_prog) 4233 return NULL; 4234 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 4235 return NULL; 4236 return new_prog; 4237 } 4238 4239 /* The verifier does more data flow analysis than llvm and will not explore 4240 * branches that are dead at run time. Malicious programs can have dead code 4241 * too. Therefore replace all dead at-run-time code with nops. 4242 */ 4243 static void sanitize_dead_code(struct bpf_verifier_env *env) 4244 { 4245 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 4246 struct bpf_insn nop = BPF_MOV64_REG(BPF_REG_0, BPF_REG_0); 4247 struct bpf_insn *insn = env->prog->insnsi; 4248 const int insn_cnt = env->prog->len; 4249 int i; 4250 4251 for (i = 0; i < insn_cnt; i++) { 4252 if (aux_data[i].seen) 4253 continue; 4254 memcpy(insn + i, &nop, sizeof(nop)); 4255 } 4256 } 4257 4258 /* convert load instructions that access fields of 'struct __sk_buff' 4259 * into sequence of instructions that access fields of 'struct sk_buff' 4260 */ 4261 static int convert_ctx_accesses(struct bpf_verifier_env *env) 4262 { 4263 const struct bpf_verifier_ops *ops = env->ops; 4264 int i, cnt, size, ctx_field_size, delta = 0; 4265 const int insn_cnt = env->prog->len; 4266 struct bpf_insn insn_buf[16], *insn; 4267 struct bpf_prog *new_prog; 4268 enum bpf_access_type type; 4269 bool is_narrower_load; 4270 u32 target_size; 4271 4272 if (ops->gen_prologue) { 4273 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 4274 env->prog); 4275 if (cnt >= ARRAY_SIZE(insn_buf)) { 4276 verbose(env, "bpf verifier is misconfigured\n"); 4277 return -EINVAL; 4278 } else if (cnt) { 4279 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 4280 if (!new_prog) 4281 return -ENOMEM; 4282 4283 env->prog = new_prog; 4284 delta += cnt - 1; 4285 } 4286 } 4287 4288 if (!ops->convert_ctx_access) 4289 return 0; 4290 4291 insn = env->prog->insnsi + delta; 4292 4293 for (i = 0; i < insn_cnt; i++, insn++) { 4294 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 4295 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 4296 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 4297 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 4298 type = BPF_READ; 4299 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 4300 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 4301 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 4302 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 4303 type = BPF_WRITE; 4304 else 4305 continue; 4306 4307 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX) 4308 continue; 4309 4310 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 4311 size = BPF_LDST_BYTES(insn); 4312 4313 /* If the read access is a narrower load of the field, 4314 * convert to a 4/8-byte load, to minimum program type specific 4315 * convert_ctx_access changes. If conversion is successful, 4316 * we will apply proper mask to the result. 4317 */ 4318 is_narrower_load = size < ctx_field_size; 4319 if (is_narrower_load) { 4320 u32 off = insn->off; 4321 u8 size_code; 4322 4323 if (type == BPF_WRITE) { 4324 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 4325 return -EINVAL; 4326 } 4327 4328 size_code = BPF_H; 4329 if (ctx_field_size == 4) 4330 size_code = BPF_W; 4331 else if (ctx_field_size == 8) 4332 size_code = BPF_DW; 4333 4334 insn->off = off & ~(ctx_field_size - 1); 4335 insn->code = BPF_LDX | BPF_MEM | size_code; 4336 } 4337 4338 target_size = 0; 4339 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog, 4340 &target_size); 4341 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 4342 (ctx_field_size && !target_size)) { 4343 verbose(env, "bpf verifier is misconfigured\n"); 4344 return -EINVAL; 4345 } 4346 4347 if (is_narrower_load && size < target_size) { 4348 if (ctx_field_size <= 4) 4349 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 4350 (1 << size * 8) - 1); 4351 else 4352 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 4353 (1 << size * 8) - 1); 4354 } 4355 4356 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 4357 if (!new_prog) 4358 return -ENOMEM; 4359 4360 delta += cnt - 1; 4361 4362 /* keep walking new program and skip insns we just inserted */ 4363 env->prog = new_prog; 4364 insn = new_prog->insnsi + i + delta; 4365 } 4366 4367 return 0; 4368 } 4369 4370 /* fixup insn->imm field of bpf_call instructions 4371 * and inline eligible helpers as explicit sequence of BPF instructions 4372 * 4373 * this function is called after eBPF program passed verification 4374 */ 4375 static int fixup_bpf_calls(struct bpf_verifier_env *env) 4376 { 4377 struct bpf_prog *prog = env->prog; 4378 struct bpf_insn *insn = prog->insnsi; 4379 const struct bpf_func_proto *fn; 4380 const int insn_cnt = prog->len; 4381 struct bpf_insn insn_buf[16]; 4382 struct bpf_prog *new_prog; 4383 struct bpf_map *map_ptr; 4384 int i, cnt, delta = 0; 4385 4386 for (i = 0; i < insn_cnt; i++, insn++) { 4387 if (insn->code != (BPF_JMP | BPF_CALL)) 4388 continue; 4389 4390 if (insn->imm == BPF_FUNC_get_route_realm) 4391 prog->dst_needed = 1; 4392 if (insn->imm == BPF_FUNC_get_prandom_u32) 4393 bpf_user_rnd_init_once(); 4394 if (insn->imm == BPF_FUNC_tail_call) { 4395 /* If we tail call into other programs, we 4396 * cannot make any assumptions since they can 4397 * be replaced dynamically during runtime in 4398 * the program array. 4399 */ 4400 prog->cb_access = 1; 4401 env->prog->aux->stack_depth = MAX_BPF_STACK; 4402 4403 /* mark bpf_tail_call as different opcode to avoid 4404 * conditional branch in the interpeter for every normal 4405 * call and to prevent accidental JITing by JIT compiler 4406 * that doesn't support bpf_tail_call yet 4407 */ 4408 insn->imm = 0; 4409 insn->code = BPF_JMP | BPF_TAIL_CALL; 4410 continue; 4411 } 4412 4413 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 4414 * handlers are currently limited to 64 bit only. 4415 */ 4416 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 && 4417 insn->imm == BPF_FUNC_map_lookup_elem) { 4418 map_ptr = env->insn_aux_data[i + delta].map_ptr; 4419 if (map_ptr == BPF_MAP_PTR_POISON || 4420 !map_ptr->ops->map_gen_lookup) 4421 goto patch_call_imm; 4422 4423 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf); 4424 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 4425 verbose(env, "bpf verifier is misconfigured\n"); 4426 return -EINVAL; 4427 } 4428 4429 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 4430 cnt); 4431 if (!new_prog) 4432 return -ENOMEM; 4433 4434 delta += cnt - 1; 4435 4436 /* keep walking new program and skip insns we just inserted */ 4437 env->prog = prog = new_prog; 4438 insn = new_prog->insnsi + i + delta; 4439 continue; 4440 } 4441 4442 if (insn->imm == BPF_FUNC_redirect_map) { 4443 /* Note, we cannot use prog directly as imm as subsequent 4444 * rewrites would still change the prog pointer. The only 4445 * stable address we can use is aux, which also works with 4446 * prog clones during blinding. 4447 */ 4448 u64 addr = (unsigned long)prog->aux; 4449 struct bpf_insn r4_ld[] = { 4450 BPF_LD_IMM64(BPF_REG_4, addr), 4451 *insn, 4452 }; 4453 cnt = ARRAY_SIZE(r4_ld); 4454 4455 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt); 4456 if (!new_prog) 4457 return -ENOMEM; 4458 4459 delta += cnt - 1; 4460 env->prog = prog = new_prog; 4461 insn = new_prog->insnsi + i + delta; 4462 } 4463 patch_call_imm: 4464 fn = env->ops->get_func_proto(insn->imm); 4465 /* all functions that have prototype and verifier allowed 4466 * programs to call them, must be real in-kernel functions 4467 */ 4468 if (!fn->func) { 4469 verbose(env, 4470 "kernel subsystem misconfigured func %s#%d\n", 4471 func_id_name(insn->imm), insn->imm); 4472 return -EFAULT; 4473 } 4474 insn->imm = fn->func - __bpf_call_base; 4475 } 4476 4477 return 0; 4478 } 4479 4480 static void free_states(struct bpf_verifier_env *env) 4481 { 4482 struct bpf_verifier_state_list *sl, *sln; 4483 int i; 4484 4485 if (!env->explored_states) 4486 return; 4487 4488 for (i = 0; i < env->prog->len; i++) { 4489 sl = env->explored_states[i]; 4490 4491 if (sl) 4492 while (sl != STATE_LIST_MARK) { 4493 sln = sl->next; 4494 free_verifier_state(&sl->state, false); 4495 kfree(sl); 4496 sl = sln; 4497 } 4498 } 4499 4500 kfree(env->explored_states); 4501 } 4502 4503 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr) 4504 { 4505 struct bpf_verifier_env *env; 4506 struct bpf_verifer_log *log; 4507 int ret = -EINVAL; 4508 4509 /* no program is valid */ 4510 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 4511 return -EINVAL; 4512 4513 /* 'struct bpf_verifier_env' can be global, but since it's not small, 4514 * allocate/free it every time bpf_check() is called 4515 */ 4516 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 4517 if (!env) 4518 return -ENOMEM; 4519 log = &env->log; 4520 4521 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) * 4522 (*prog)->len); 4523 ret = -ENOMEM; 4524 if (!env->insn_aux_data) 4525 goto err_free_env; 4526 env->prog = *prog; 4527 env->ops = bpf_verifier_ops[env->prog->type]; 4528 4529 /* grab the mutex to protect few globals used by verifier */ 4530 mutex_lock(&bpf_verifier_lock); 4531 4532 if (attr->log_level || attr->log_buf || attr->log_size) { 4533 /* user requested verbose verifier output 4534 * and supplied buffer to store the verification trace 4535 */ 4536 log->level = attr->log_level; 4537 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 4538 log->len_total = attr->log_size; 4539 4540 ret = -EINVAL; 4541 /* log attributes have to be sane */ 4542 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 4543 !log->level || !log->ubuf) 4544 goto err_unlock; 4545 } 4546 4547 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 4548 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 4549 env->strict_alignment = true; 4550 4551 if (env->prog->aux->offload) { 4552 ret = bpf_prog_offload_verifier_prep(env); 4553 if (ret) 4554 goto err_unlock; 4555 } 4556 4557 ret = replace_map_fd_with_map_ptr(env); 4558 if (ret < 0) 4559 goto skip_full_check; 4560 4561 env->explored_states = kcalloc(env->prog->len, 4562 sizeof(struct bpf_verifier_state_list *), 4563 GFP_USER); 4564 ret = -ENOMEM; 4565 if (!env->explored_states) 4566 goto skip_full_check; 4567 4568 ret = check_cfg(env); 4569 if (ret < 0) 4570 goto skip_full_check; 4571 4572 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 4573 4574 ret = do_check(env); 4575 if (env->cur_state) { 4576 free_verifier_state(env->cur_state, true); 4577 env->cur_state = NULL; 4578 } 4579 4580 skip_full_check: 4581 while (!pop_stack(env, NULL, NULL)); 4582 free_states(env); 4583 4584 if (ret == 0) 4585 sanitize_dead_code(env); 4586 4587 if (ret == 0) 4588 /* program is valid, convert *(u32*)(ctx + off) accesses */ 4589 ret = convert_ctx_accesses(env); 4590 4591 if (ret == 0) 4592 ret = fixup_bpf_calls(env); 4593 4594 if (log->level && bpf_verifier_log_full(log)) 4595 ret = -ENOSPC; 4596 if (log->level && !log->ubuf) { 4597 ret = -EFAULT; 4598 goto err_release_maps; 4599 } 4600 4601 if (ret == 0 && env->used_map_cnt) { 4602 /* if program passed verifier, update used_maps in bpf_prog_info */ 4603 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 4604 sizeof(env->used_maps[0]), 4605 GFP_KERNEL); 4606 4607 if (!env->prog->aux->used_maps) { 4608 ret = -ENOMEM; 4609 goto err_release_maps; 4610 } 4611 4612 memcpy(env->prog->aux->used_maps, env->used_maps, 4613 sizeof(env->used_maps[0]) * env->used_map_cnt); 4614 env->prog->aux->used_map_cnt = env->used_map_cnt; 4615 4616 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 4617 * bpf_ld_imm64 instructions 4618 */ 4619 convert_pseudo_ld_imm64(env); 4620 } 4621 4622 err_release_maps: 4623 if (!env->prog->aux->used_maps) 4624 /* if we didn't copy map pointers into bpf_prog_info, release 4625 * them now. Otherwise free_bpf_prog_info() will release them. 4626 */ 4627 release_maps(env); 4628 *prog = env->prog; 4629 err_unlock: 4630 mutex_unlock(&bpf_verifier_lock); 4631 vfree(env->insn_aux_data); 4632 err_free_env: 4633 kfree(env); 4634 return ret; 4635 } 4636