1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 #include <linux/error-injection.h> 23 #include <linux/bpf_lsm.h> 24 25 #include "disasm.h" 26 27 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 28 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 29 [_id] = & _name ## _verifier_ops, 30 #define BPF_MAP_TYPE(_id, _ops) 31 #define BPF_LINK_TYPE(_id, _name) 32 #include <linux/bpf_types.h> 33 #undef BPF_PROG_TYPE 34 #undef BPF_MAP_TYPE 35 #undef BPF_LINK_TYPE 36 }; 37 38 /* bpf_check() is a static code analyzer that walks eBPF program 39 * instruction by instruction and updates register/stack state. 40 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 41 * 42 * The first pass is depth-first-search to check that the program is a DAG. 43 * It rejects the following programs: 44 * - larger than BPF_MAXINSNS insns 45 * - if loop is present (detected via back-edge) 46 * - unreachable insns exist (shouldn't be a forest. program = one function) 47 * - out of bounds or malformed jumps 48 * The second pass is all possible path descent from the 1st insn. 49 * Since it's analyzing all pathes through the program, the length of the 50 * analysis is limited to 64k insn, which may be hit even if total number of 51 * insn is less then 4K, but there are too many branches that change stack/regs. 52 * Number of 'branches to be analyzed' is limited to 1k 53 * 54 * On entry to each instruction, each register has a type, and the instruction 55 * changes the types of the registers depending on instruction semantics. 56 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 57 * copied to R1. 58 * 59 * All registers are 64-bit. 60 * R0 - return register 61 * R1-R5 argument passing registers 62 * R6-R9 callee saved registers 63 * R10 - frame pointer read-only 64 * 65 * At the start of BPF program the register R1 contains a pointer to bpf_context 66 * and has type PTR_TO_CTX. 67 * 68 * Verifier tracks arithmetic operations on pointers in case: 69 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 70 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 71 * 1st insn copies R10 (which has FRAME_PTR) type into R1 72 * and 2nd arithmetic instruction is pattern matched to recognize 73 * that it wants to construct a pointer to some element within stack. 74 * So after 2nd insn, the register R1 has type PTR_TO_STACK 75 * (and -20 constant is saved for further stack bounds checking). 76 * Meaning that this reg is a pointer to stack plus known immediate constant. 77 * 78 * Most of the time the registers have SCALAR_VALUE type, which 79 * means the register has some value, but it's not a valid pointer. 80 * (like pointer plus pointer becomes SCALAR_VALUE type) 81 * 82 * When verifier sees load or store instructions the type of base register 83 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 84 * four pointer types recognized by check_mem_access() function. 85 * 86 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 87 * and the range of [ptr, ptr + map's value_size) is accessible. 88 * 89 * registers used to pass values to function calls are checked against 90 * function argument constraints. 91 * 92 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 93 * It means that the register type passed to this function must be 94 * PTR_TO_STACK and it will be used inside the function as 95 * 'pointer to map element key' 96 * 97 * For example the argument constraints for bpf_map_lookup_elem(): 98 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 99 * .arg1_type = ARG_CONST_MAP_PTR, 100 * .arg2_type = ARG_PTR_TO_MAP_KEY, 101 * 102 * ret_type says that this function returns 'pointer to map elem value or null' 103 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 104 * 2nd argument should be a pointer to stack, which will be used inside 105 * the helper function as a pointer to map element key. 106 * 107 * On the kernel side the helper function looks like: 108 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 109 * { 110 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 111 * void *key = (void *) (unsigned long) r2; 112 * void *value; 113 * 114 * here kernel can access 'key' and 'map' pointers safely, knowing that 115 * [key, key + map->key_size) bytes are valid and were initialized on 116 * the stack of eBPF program. 117 * } 118 * 119 * Corresponding eBPF program may look like: 120 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 121 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 122 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 123 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 124 * here verifier looks at prototype of map_lookup_elem() and sees: 125 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 126 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 127 * 128 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 129 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 130 * and were initialized prior to this call. 131 * If it's ok, then verifier allows this BPF_CALL insn and looks at 132 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 133 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 134 * returns ether pointer to map value or NULL. 135 * 136 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 137 * insn, the register holding that pointer in the true branch changes state to 138 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 139 * branch. See check_cond_jmp_op(). 140 * 141 * After the call R0 is set to return type of the function and registers R1-R5 142 * are set to NOT_INIT to indicate that they are no longer readable. 143 * 144 * The following reference types represent a potential reference to a kernel 145 * resource which, after first being allocated, must be checked and freed by 146 * the BPF program: 147 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 148 * 149 * When the verifier sees a helper call return a reference type, it allocates a 150 * pointer id for the reference and stores it in the current function state. 151 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 152 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 153 * passes through a NULL-check conditional. For the branch wherein the state is 154 * changed to CONST_IMM, the verifier releases the reference. 155 * 156 * For each helper function that allocates a reference, such as 157 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 158 * bpf_sk_release(). When a reference type passes into the release function, 159 * the verifier also releases the reference. If any unchecked or unreleased 160 * reference remains at the end of the program, the verifier rejects it. 161 */ 162 163 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 164 struct bpf_verifier_stack_elem { 165 /* verifer state is 'st' 166 * before processing instruction 'insn_idx' 167 * and after processing instruction 'prev_insn_idx' 168 */ 169 struct bpf_verifier_state st; 170 int insn_idx; 171 int prev_insn_idx; 172 struct bpf_verifier_stack_elem *next; 173 /* length of verifier log at the time this state was pushed on stack */ 174 u32 log_pos; 175 }; 176 177 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 178 #define BPF_COMPLEXITY_LIMIT_STATES 64 179 180 #define BPF_MAP_KEY_POISON (1ULL << 63) 181 #define BPF_MAP_KEY_SEEN (1ULL << 62) 182 183 #define BPF_MAP_PTR_UNPRIV 1UL 184 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 185 POISON_POINTER_DELTA)) 186 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 187 188 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 189 { 190 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 191 } 192 193 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 194 { 195 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 196 } 197 198 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 199 const struct bpf_map *map, bool unpriv) 200 { 201 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 202 unpriv |= bpf_map_ptr_unpriv(aux); 203 aux->map_ptr_state = (unsigned long)map | 204 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 205 } 206 207 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 208 { 209 return aux->map_key_state & BPF_MAP_KEY_POISON; 210 } 211 212 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 213 { 214 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 215 } 216 217 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 218 { 219 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 220 } 221 222 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 223 { 224 bool poisoned = bpf_map_key_poisoned(aux); 225 226 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 227 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 228 } 229 230 struct bpf_call_arg_meta { 231 struct bpf_map *map_ptr; 232 bool raw_mode; 233 bool pkt_access; 234 int regno; 235 int access_size; 236 int mem_size; 237 u64 msize_max_value; 238 int ref_obj_id; 239 int func_id; 240 u32 btf_id; 241 }; 242 243 struct btf *btf_vmlinux; 244 245 static DEFINE_MUTEX(bpf_verifier_lock); 246 247 static const struct bpf_line_info * 248 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 249 { 250 const struct bpf_line_info *linfo; 251 const struct bpf_prog *prog; 252 u32 i, nr_linfo; 253 254 prog = env->prog; 255 nr_linfo = prog->aux->nr_linfo; 256 257 if (!nr_linfo || insn_off >= prog->len) 258 return NULL; 259 260 linfo = prog->aux->linfo; 261 for (i = 1; i < nr_linfo; i++) 262 if (insn_off < linfo[i].insn_off) 263 break; 264 265 return &linfo[i - 1]; 266 } 267 268 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 269 va_list args) 270 { 271 unsigned int n; 272 273 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 274 275 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 276 "verifier log line truncated - local buffer too short\n"); 277 278 n = min(log->len_total - log->len_used - 1, n); 279 log->kbuf[n] = '\0'; 280 281 if (log->level == BPF_LOG_KERNEL) { 282 pr_err("BPF:%s\n", log->kbuf); 283 return; 284 } 285 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 286 log->len_used += n; 287 else 288 log->ubuf = NULL; 289 } 290 291 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 292 { 293 char zero = 0; 294 295 if (!bpf_verifier_log_needed(log)) 296 return; 297 298 log->len_used = new_pos; 299 if (put_user(zero, log->ubuf + new_pos)) 300 log->ubuf = NULL; 301 } 302 303 /* log_level controls verbosity level of eBPF verifier. 304 * bpf_verifier_log_write() is used to dump the verification trace to the log, 305 * so the user can figure out what's wrong with the program 306 */ 307 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 308 const char *fmt, ...) 309 { 310 va_list args; 311 312 if (!bpf_verifier_log_needed(&env->log)) 313 return; 314 315 va_start(args, fmt); 316 bpf_verifier_vlog(&env->log, fmt, args); 317 va_end(args); 318 } 319 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 320 321 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 322 { 323 struct bpf_verifier_env *env = private_data; 324 va_list args; 325 326 if (!bpf_verifier_log_needed(&env->log)) 327 return; 328 329 va_start(args, fmt); 330 bpf_verifier_vlog(&env->log, fmt, args); 331 va_end(args); 332 } 333 334 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 335 const char *fmt, ...) 336 { 337 va_list args; 338 339 if (!bpf_verifier_log_needed(log)) 340 return; 341 342 va_start(args, fmt); 343 bpf_verifier_vlog(log, fmt, args); 344 va_end(args); 345 } 346 347 static const char *ltrim(const char *s) 348 { 349 while (isspace(*s)) 350 s++; 351 352 return s; 353 } 354 355 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 356 u32 insn_off, 357 const char *prefix_fmt, ...) 358 { 359 const struct bpf_line_info *linfo; 360 361 if (!bpf_verifier_log_needed(&env->log)) 362 return; 363 364 linfo = find_linfo(env, insn_off); 365 if (!linfo || linfo == env->prev_linfo) 366 return; 367 368 if (prefix_fmt) { 369 va_list args; 370 371 va_start(args, prefix_fmt); 372 bpf_verifier_vlog(&env->log, prefix_fmt, args); 373 va_end(args); 374 } 375 376 verbose(env, "%s\n", 377 ltrim(btf_name_by_offset(env->prog->aux->btf, 378 linfo->line_off))); 379 380 env->prev_linfo = linfo; 381 } 382 383 static bool type_is_pkt_pointer(enum bpf_reg_type type) 384 { 385 return type == PTR_TO_PACKET || 386 type == PTR_TO_PACKET_META; 387 } 388 389 static bool type_is_sk_pointer(enum bpf_reg_type type) 390 { 391 return type == PTR_TO_SOCKET || 392 type == PTR_TO_SOCK_COMMON || 393 type == PTR_TO_TCP_SOCK || 394 type == PTR_TO_XDP_SOCK; 395 } 396 397 static bool reg_type_not_null(enum bpf_reg_type type) 398 { 399 return type == PTR_TO_SOCKET || 400 type == PTR_TO_TCP_SOCK || 401 type == PTR_TO_MAP_VALUE || 402 type == PTR_TO_SOCK_COMMON; 403 } 404 405 static bool reg_type_may_be_null(enum bpf_reg_type type) 406 { 407 return type == PTR_TO_MAP_VALUE_OR_NULL || 408 type == PTR_TO_SOCKET_OR_NULL || 409 type == PTR_TO_SOCK_COMMON_OR_NULL || 410 type == PTR_TO_TCP_SOCK_OR_NULL || 411 type == PTR_TO_BTF_ID_OR_NULL || 412 type == PTR_TO_MEM_OR_NULL; 413 } 414 415 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 416 { 417 return reg->type == PTR_TO_MAP_VALUE && 418 map_value_has_spin_lock(reg->map_ptr); 419 } 420 421 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 422 { 423 return type == PTR_TO_SOCKET || 424 type == PTR_TO_SOCKET_OR_NULL || 425 type == PTR_TO_TCP_SOCK || 426 type == PTR_TO_TCP_SOCK_OR_NULL || 427 type == PTR_TO_MEM || 428 type == PTR_TO_MEM_OR_NULL; 429 } 430 431 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 432 { 433 return type == ARG_PTR_TO_SOCK_COMMON; 434 } 435 436 /* Determine whether the function releases some resources allocated by another 437 * function call. The first reference type argument will be assumed to be 438 * released by release_reference(). 439 */ 440 static bool is_release_function(enum bpf_func_id func_id) 441 { 442 return func_id == BPF_FUNC_sk_release || 443 func_id == BPF_FUNC_ringbuf_submit || 444 func_id == BPF_FUNC_ringbuf_discard; 445 } 446 447 static bool may_be_acquire_function(enum bpf_func_id func_id) 448 { 449 return func_id == BPF_FUNC_sk_lookup_tcp || 450 func_id == BPF_FUNC_sk_lookup_udp || 451 func_id == BPF_FUNC_skc_lookup_tcp || 452 func_id == BPF_FUNC_map_lookup_elem || 453 func_id == BPF_FUNC_ringbuf_reserve; 454 } 455 456 static bool is_acquire_function(enum bpf_func_id func_id, 457 const struct bpf_map *map) 458 { 459 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 460 461 if (func_id == BPF_FUNC_sk_lookup_tcp || 462 func_id == BPF_FUNC_sk_lookup_udp || 463 func_id == BPF_FUNC_skc_lookup_tcp || 464 func_id == BPF_FUNC_ringbuf_reserve) 465 return true; 466 467 if (func_id == BPF_FUNC_map_lookup_elem && 468 (map_type == BPF_MAP_TYPE_SOCKMAP || 469 map_type == BPF_MAP_TYPE_SOCKHASH)) 470 return true; 471 472 return false; 473 } 474 475 static bool is_ptr_cast_function(enum bpf_func_id func_id) 476 { 477 return func_id == BPF_FUNC_tcp_sock || 478 func_id == BPF_FUNC_sk_fullsock; 479 } 480 481 /* string representation of 'enum bpf_reg_type' */ 482 static const char * const reg_type_str[] = { 483 [NOT_INIT] = "?", 484 [SCALAR_VALUE] = "inv", 485 [PTR_TO_CTX] = "ctx", 486 [CONST_PTR_TO_MAP] = "map_ptr", 487 [PTR_TO_MAP_VALUE] = "map_value", 488 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 489 [PTR_TO_STACK] = "fp", 490 [PTR_TO_PACKET] = "pkt", 491 [PTR_TO_PACKET_META] = "pkt_meta", 492 [PTR_TO_PACKET_END] = "pkt_end", 493 [PTR_TO_FLOW_KEYS] = "flow_keys", 494 [PTR_TO_SOCKET] = "sock", 495 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 496 [PTR_TO_SOCK_COMMON] = "sock_common", 497 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 498 [PTR_TO_TCP_SOCK] = "tcp_sock", 499 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 500 [PTR_TO_TP_BUFFER] = "tp_buffer", 501 [PTR_TO_XDP_SOCK] = "xdp_sock", 502 [PTR_TO_BTF_ID] = "ptr_", 503 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_", 504 [PTR_TO_MEM] = "mem", 505 [PTR_TO_MEM_OR_NULL] = "mem_or_null", 506 }; 507 508 static char slot_type_char[] = { 509 [STACK_INVALID] = '?', 510 [STACK_SPILL] = 'r', 511 [STACK_MISC] = 'm', 512 [STACK_ZERO] = '0', 513 }; 514 515 static void print_liveness(struct bpf_verifier_env *env, 516 enum bpf_reg_liveness live) 517 { 518 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 519 verbose(env, "_"); 520 if (live & REG_LIVE_READ) 521 verbose(env, "r"); 522 if (live & REG_LIVE_WRITTEN) 523 verbose(env, "w"); 524 if (live & REG_LIVE_DONE) 525 verbose(env, "D"); 526 } 527 528 static struct bpf_func_state *func(struct bpf_verifier_env *env, 529 const struct bpf_reg_state *reg) 530 { 531 struct bpf_verifier_state *cur = env->cur_state; 532 533 return cur->frame[reg->frameno]; 534 } 535 536 const char *kernel_type_name(u32 id) 537 { 538 return btf_name_by_offset(btf_vmlinux, 539 btf_type_by_id(btf_vmlinux, id)->name_off); 540 } 541 542 static void print_verifier_state(struct bpf_verifier_env *env, 543 const struct bpf_func_state *state) 544 { 545 const struct bpf_reg_state *reg; 546 enum bpf_reg_type t; 547 int i; 548 549 if (state->frameno) 550 verbose(env, " frame%d:", state->frameno); 551 for (i = 0; i < MAX_BPF_REG; i++) { 552 reg = &state->regs[i]; 553 t = reg->type; 554 if (t == NOT_INIT) 555 continue; 556 verbose(env, " R%d", i); 557 print_liveness(env, reg->live); 558 verbose(env, "=%s", reg_type_str[t]); 559 if (t == SCALAR_VALUE && reg->precise) 560 verbose(env, "P"); 561 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 562 tnum_is_const(reg->var_off)) { 563 /* reg->off should be 0 for SCALAR_VALUE */ 564 verbose(env, "%lld", reg->var_off.value + reg->off); 565 } else { 566 if (t == PTR_TO_BTF_ID || t == PTR_TO_BTF_ID_OR_NULL) 567 verbose(env, "%s", kernel_type_name(reg->btf_id)); 568 verbose(env, "(id=%d", reg->id); 569 if (reg_type_may_be_refcounted_or_null(t)) 570 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 571 if (t != SCALAR_VALUE) 572 verbose(env, ",off=%d", reg->off); 573 if (type_is_pkt_pointer(t)) 574 verbose(env, ",r=%d", reg->range); 575 else if (t == CONST_PTR_TO_MAP || 576 t == PTR_TO_MAP_VALUE || 577 t == PTR_TO_MAP_VALUE_OR_NULL) 578 verbose(env, ",ks=%d,vs=%d", 579 reg->map_ptr->key_size, 580 reg->map_ptr->value_size); 581 if (tnum_is_const(reg->var_off)) { 582 /* Typically an immediate SCALAR_VALUE, but 583 * could be a pointer whose offset is too big 584 * for reg->off 585 */ 586 verbose(env, ",imm=%llx", reg->var_off.value); 587 } else { 588 if (reg->smin_value != reg->umin_value && 589 reg->smin_value != S64_MIN) 590 verbose(env, ",smin_value=%lld", 591 (long long)reg->smin_value); 592 if (reg->smax_value != reg->umax_value && 593 reg->smax_value != S64_MAX) 594 verbose(env, ",smax_value=%lld", 595 (long long)reg->smax_value); 596 if (reg->umin_value != 0) 597 verbose(env, ",umin_value=%llu", 598 (unsigned long long)reg->umin_value); 599 if (reg->umax_value != U64_MAX) 600 verbose(env, ",umax_value=%llu", 601 (unsigned long long)reg->umax_value); 602 if (!tnum_is_unknown(reg->var_off)) { 603 char tn_buf[48]; 604 605 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 606 verbose(env, ",var_off=%s", tn_buf); 607 } 608 if (reg->s32_min_value != reg->smin_value && 609 reg->s32_min_value != S32_MIN) 610 verbose(env, ",s32_min_value=%d", 611 (int)(reg->s32_min_value)); 612 if (reg->s32_max_value != reg->smax_value && 613 reg->s32_max_value != S32_MAX) 614 verbose(env, ",s32_max_value=%d", 615 (int)(reg->s32_max_value)); 616 if (reg->u32_min_value != reg->umin_value && 617 reg->u32_min_value != U32_MIN) 618 verbose(env, ",u32_min_value=%d", 619 (int)(reg->u32_min_value)); 620 if (reg->u32_max_value != reg->umax_value && 621 reg->u32_max_value != U32_MAX) 622 verbose(env, ",u32_max_value=%d", 623 (int)(reg->u32_max_value)); 624 } 625 verbose(env, ")"); 626 } 627 } 628 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 629 char types_buf[BPF_REG_SIZE + 1]; 630 bool valid = false; 631 int j; 632 633 for (j = 0; j < BPF_REG_SIZE; j++) { 634 if (state->stack[i].slot_type[j] != STACK_INVALID) 635 valid = true; 636 types_buf[j] = slot_type_char[ 637 state->stack[i].slot_type[j]]; 638 } 639 types_buf[BPF_REG_SIZE] = 0; 640 if (!valid) 641 continue; 642 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 643 print_liveness(env, state->stack[i].spilled_ptr.live); 644 if (state->stack[i].slot_type[0] == STACK_SPILL) { 645 reg = &state->stack[i].spilled_ptr; 646 t = reg->type; 647 verbose(env, "=%s", reg_type_str[t]); 648 if (t == SCALAR_VALUE && reg->precise) 649 verbose(env, "P"); 650 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 651 verbose(env, "%lld", reg->var_off.value + reg->off); 652 } else { 653 verbose(env, "=%s", types_buf); 654 } 655 } 656 if (state->acquired_refs && state->refs[0].id) { 657 verbose(env, " refs=%d", state->refs[0].id); 658 for (i = 1; i < state->acquired_refs; i++) 659 if (state->refs[i].id) 660 verbose(env, ",%d", state->refs[i].id); 661 } 662 verbose(env, "\n"); 663 } 664 665 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 666 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 667 const struct bpf_func_state *src) \ 668 { \ 669 if (!src->FIELD) \ 670 return 0; \ 671 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 672 /* internal bug, make state invalid to reject the program */ \ 673 memset(dst, 0, sizeof(*dst)); \ 674 return -EFAULT; \ 675 } \ 676 memcpy(dst->FIELD, src->FIELD, \ 677 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 678 return 0; \ 679 } 680 /* copy_reference_state() */ 681 COPY_STATE_FN(reference, acquired_refs, refs, 1) 682 /* copy_stack_state() */ 683 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 684 #undef COPY_STATE_FN 685 686 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 687 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 688 bool copy_old) \ 689 { \ 690 u32 old_size = state->COUNT; \ 691 struct bpf_##NAME##_state *new_##FIELD; \ 692 int slot = size / SIZE; \ 693 \ 694 if (size <= old_size || !size) { \ 695 if (copy_old) \ 696 return 0; \ 697 state->COUNT = slot * SIZE; \ 698 if (!size && old_size) { \ 699 kfree(state->FIELD); \ 700 state->FIELD = NULL; \ 701 } \ 702 return 0; \ 703 } \ 704 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 705 GFP_KERNEL); \ 706 if (!new_##FIELD) \ 707 return -ENOMEM; \ 708 if (copy_old) { \ 709 if (state->FIELD) \ 710 memcpy(new_##FIELD, state->FIELD, \ 711 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 712 memset(new_##FIELD + old_size / SIZE, 0, \ 713 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 714 } \ 715 state->COUNT = slot * SIZE; \ 716 kfree(state->FIELD); \ 717 state->FIELD = new_##FIELD; \ 718 return 0; \ 719 } 720 /* realloc_reference_state() */ 721 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 722 /* realloc_stack_state() */ 723 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 724 #undef REALLOC_STATE_FN 725 726 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 727 * make it consume minimal amount of memory. check_stack_write() access from 728 * the program calls into realloc_func_state() to grow the stack size. 729 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 730 * which realloc_stack_state() copies over. It points to previous 731 * bpf_verifier_state which is never reallocated. 732 */ 733 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 734 int refs_size, bool copy_old) 735 { 736 int err = realloc_reference_state(state, refs_size, copy_old); 737 if (err) 738 return err; 739 return realloc_stack_state(state, stack_size, copy_old); 740 } 741 742 /* Acquire a pointer id from the env and update the state->refs to include 743 * this new pointer reference. 744 * On success, returns a valid pointer id to associate with the register 745 * On failure, returns a negative errno. 746 */ 747 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 748 { 749 struct bpf_func_state *state = cur_func(env); 750 int new_ofs = state->acquired_refs; 751 int id, err; 752 753 err = realloc_reference_state(state, state->acquired_refs + 1, true); 754 if (err) 755 return err; 756 id = ++env->id_gen; 757 state->refs[new_ofs].id = id; 758 state->refs[new_ofs].insn_idx = insn_idx; 759 760 return id; 761 } 762 763 /* release function corresponding to acquire_reference_state(). Idempotent. */ 764 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 765 { 766 int i, last_idx; 767 768 last_idx = state->acquired_refs - 1; 769 for (i = 0; i < state->acquired_refs; i++) { 770 if (state->refs[i].id == ptr_id) { 771 if (last_idx && i != last_idx) 772 memcpy(&state->refs[i], &state->refs[last_idx], 773 sizeof(*state->refs)); 774 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 775 state->acquired_refs--; 776 return 0; 777 } 778 } 779 return -EINVAL; 780 } 781 782 static int transfer_reference_state(struct bpf_func_state *dst, 783 struct bpf_func_state *src) 784 { 785 int err = realloc_reference_state(dst, src->acquired_refs, false); 786 if (err) 787 return err; 788 err = copy_reference_state(dst, src); 789 if (err) 790 return err; 791 return 0; 792 } 793 794 static void free_func_state(struct bpf_func_state *state) 795 { 796 if (!state) 797 return; 798 kfree(state->refs); 799 kfree(state->stack); 800 kfree(state); 801 } 802 803 static void clear_jmp_history(struct bpf_verifier_state *state) 804 { 805 kfree(state->jmp_history); 806 state->jmp_history = NULL; 807 state->jmp_history_cnt = 0; 808 } 809 810 static void free_verifier_state(struct bpf_verifier_state *state, 811 bool free_self) 812 { 813 int i; 814 815 for (i = 0; i <= state->curframe; i++) { 816 free_func_state(state->frame[i]); 817 state->frame[i] = NULL; 818 } 819 clear_jmp_history(state); 820 if (free_self) 821 kfree(state); 822 } 823 824 /* copy verifier state from src to dst growing dst stack space 825 * when necessary to accommodate larger src stack 826 */ 827 static int copy_func_state(struct bpf_func_state *dst, 828 const struct bpf_func_state *src) 829 { 830 int err; 831 832 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 833 false); 834 if (err) 835 return err; 836 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 837 err = copy_reference_state(dst, src); 838 if (err) 839 return err; 840 return copy_stack_state(dst, src); 841 } 842 843 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 844 const struct bpf_verifier_state *src) 845 { 846 struct bpf_func_state *dst; 847 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 848 int i, err; 849 850 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 851 kfree(dst_state->jmp_history); 852 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 853 if (!dst_state->jmp_history) 854 return -ENOMEM; 855 } 856 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 857 dst_state->jmp_history_cnt = src->jmp_history_cnt; 858 859 /* if dst has more stack frames then src frame, free them */ 860 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 861 free_func_state(dst_state->frame[i]); 862 dst_state->frame[i] = NULL; 863 } 864 dst_state->speculative = src->speculative; 865 dst_state->curframe = src->curframe; 866 dst_state->active_spin_lock = src->active_spin_lock; 867 dst_state->branches = src->branches; 868 dst_state->parent = src->parent; 869 dst_state->first_insn_idx = src->first_insn_idx; 870 dst_state->last_insn_idx = src->last_insn_idx; 871 for (i = 0; i <= src->curframe; i++) { 872 dst = dst_state->frame[i]; 873 if (!dst) { 874 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 875 if (!dst) 876 return -ENOMEM; 877 dst_state->frame[i] = dst; 878 } 879 err = copy_func_state(dst, src->frame[i]); 880 if (err) 881 return err; 882 } 883 return 0; 884 } 885 886 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 887 { 888 while (st) { 889 u32 br = --st->branches; 890 891 /* WARN_ON(br > 1) technically makes sense here, 892 * but see comment in push_stack(), hence: 893 */ 894 WARN_ONCE((int)br < 0, 895 "BUG update_branch_counts:branches_to_explore=%d\n", 896 br); 897 if (br) 898 break; 899 st = st->parent; 900 } 901 } 902 903 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 904 int *insn_idx, bool pop_log) 905 { 906 struct bpf_verifier_state *cur = env->cur_state; 907 struct bpf_verifier_stack_elem *elem, *head = env->head; 908 int err; 909 910 if (env->head == NULL) 911 return -ENOENT; 912 913 if (cur) { 914 err = copy_verifier_state(cur, &head->st); 915 if (err) 916 return err; 917 } 918 if (pop_log) 919 bpf_vlog_reset(&env->log, head->log_pos); 920 if (insn_idx) 921 *insn_idx = head->insn_idx; 922 if (prev_insn_idx) 923 *prev_insn_idx = head->prev_insn_idx; 924 elem = head->next; 925 free_verifier_state(&head->st, false); 926 kfree(head); 927 env->head = elem; 928 env->stack_size--; 929 return 0; 930 } 931 932 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 933 int insn_idx, int prev_insn_idx, 934 bool speculative) 935 { 936 struct bpf_verifier_state *cur = env->cur_state; 937 struct bpf_verifier_stack_elem *elem; 938 int err; 939 940 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 941 if (!elem) 942 goto err; 943 944 elem->insn_idx = insn_idx; 945 elem->prev_insn_idx = prev_insn_idx; 946 elem->next = env->head; 947 elem->log_pos = env->log.len_used; 948 env->head = elem; 949 env->stack_size++; 950 err = copy_verifier_state(&elem->st, cur); 951 if (err) 952 goto err; 953 elem->st.speculative |= speculative; 954 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 955 verbose(env, "The sequence of %d jumps is too complex.\n", 956 env->stack_size); 957 goto err; 958 } 959 if (elem->st.parent) { 960 ++elem->st.parent->branches; 961 /* WARN_ON(branches > 2) technically makes sense here, 962 * but 963 * 1. speculative states will bump 'branches' for non-branch 964 * instructions 965 * 2. is_state_visited() heuristics may decide not to create 966 * a new state for a sequence of branches and all such current 967 * and cloned states will be pointing to a single parent state 968 * which might have large 'branches' count. 969 */ 970 } 971 return &elem->st; 972 err: 973 free_verifier_state(env->cur_state, true); 974 env->cur_state = NULL; 975 /* pop all elements and return */ 976 while (!pop_stack(env, NULL, NULL, false)); 977 return NULL; 978 } 979 980 #define CALLER_SAVED_REGS 6 981 static const int caller_saved[CALLER_SAVED_REGS] = { 982 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 983 }; 984 985 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 986 struct bpf_reg_state *reg); 987 988 /* Mark the unknown part of a register (variable offset or scalar value) as 989 * known to have the value @imm. 990 */ 991 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 992 { 993 /* Clear id, off, and union(map_ptr, range) */ 994 memset(((u8 *)reg) + sizeof(reg->type), 0, 995 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 996 reg->var_off = tnum_const(imm); 997 reg->smin_value = (s64)imm; 998 reg->smax_value = (s64)imm; 999 reg->umin_value = imm; 1000 reg->umax_value = imm; 1001 1002 reg->s32_min_value = (s32)imm; 1003 reg->s32_max_value = (s32)imm; 1004 reg->u32_min_value = (u32)imm; 1005 reg->u32_max_value = (u32)imm; 1006 } 1007 1008 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1009 { 1010 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1011 reg->s32_min_value = (s32)imm; 1012 reg->s32_max_value = (s32)imm; 1013 reg->u32_min_value = (u32)imm; 1014 reg->u32_max_value = (u32)imm; 1015 } 1016 1017 /* Mark the 'variable offset' part of a register as zero. This should be 1018 * used only on registers holding a pointer type. 1019 */ 1020 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1021 { 1022 __mark_reg_known(reg, 0); 1023 } 1024 1025 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1026 { 1027 __mark_reg_known(reg, 0); 1028 reg->type = SCALAR_VALUE; 1029 } 1030 1031 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1032 struct bpf_reg_state *regs, u32 regno) 1033 { 1034 if (WARN_ON(regno >= MAX_BPF_REG)) { 1035 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1036 /* Something bad happened, let's kill all regs */ 1037 for (regno = 0; regno < MAX_BPF_REG; regno++) 1038 __mark_reg_not_init(env, regs + regno); 1039 return; 1040 } 1041 __mark_reg_known_zero(regs + regno); 1042 } 1043 1044 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1045 { 1046 return type_is_pkt_pointer(reg->type); 1047 } 1048 1049 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1050 { 1051 return reg_is_pkt_pointer(reg) || 1052 reg->type == PTR_TO_PACKET_END; 1053 } 1054 1055 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1056 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1057 enum bpf_reg_type which) 1058 { 1059 /* The register can already have a range from prior markings. 1060 * This is fine as long as it hasn't been advanced from its 1061 * origin. 1062 */ 1063 return reg->type == which && 1064 reg->id == 0 && 1065 reg->off == 0 && 1066 tnum_equals_const(reg->var_off, 0); 1067 } 1068 1069 /* Reset the min/max bounds of a register */ 1070 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1071 { 1072 reg->smin_value = S64_MIN; 1073 reg->smax_value = S64_MAX; 1074 reg->umin_value = 0; 1075 reg->umax_value = U64_MAX; 1076 1077 reg->s32_min_value = S32_MIN; 1078 reg->s32_max_value = S32_MAX; 1079 reg->u32_min_value = 0; 1080 reg->u32_max_value = U32_MAX; 1081 } 1082 1083 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1084 { 1085 reg->smin_value = S64_MIN; 1086 reg->smax_value = S64_MAX; 1087 reg->umin_value = 0; 1088 reg->umax_value = U64_MAX; 1089 } 1090 1091 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1092 { 1093 reg->s32_min_value = S32_MIN; 1094 reg->s32_max_value = S32_MAX; 1095 reg->u32_min_value = 0; 1096 reg->u32_max_value = U32_MAX; 1097 } 1098 1099 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1100 { 1101 struct tnum var32_off = tnum_subreg(reg->var_off); 1102 1103 /* min signed is max(sign bit) | min(other bits) */ 1104 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1105 var32_off.value | (var32_off.mask & S32_MIN)); 1106 /* max signed is min(sign bit) | max(other bits) */ 1107 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1108 var32_off.value | (var32_off.mask & S32_MAX)); 1109 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1110 reg->u32_max_value = min(reg->u32_max_value, 1111 (u32)(var32_off.value | var32_off.mask)); 1112 } 1113 1114 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1115 { 1116 /* min signed is max(sign bit) | min(other bits) */ 1117 reg->smin_value = max_t(s64, reg->smin_value, 1118 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1119 /* max signed is min(sign bit) | max(other bits) */ 1120 reg->smax_value = min_t(s64, reg->smax_value, 1121 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1122 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1123 reg->umax_value = min(reg->umax_value, 1124 reg->var_off.value | reg->var_off.mask); 1125 } 1126 1127 static void __update_reg_bounds(struct bpf_reg_state *reg) 1128 { 1129 __update_reg32_bounds(reg); 1130 __update_reg64_bounds(reg); 1131 } 1132 1133 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1134 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1135 { 1136 /* Learn sign from signed bounds. 1137 * If we cannot cross the sign boundary, then signed and unsigned bounds 1138 * are the same, so combine. This works even in the negative case, e.g. 1139 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1140 */ 1141 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1142 reg->s32_min_value = reg->u32_min_value = 1143 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1144 reg->s32_max_value = reg->u32_max_value = 1145 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1146 return; 1147 } 1148 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1149 * boundary, so we must be careful. 1150 */ 1151 if ((s32)reg->u32_max_value >= 0) { 1152 /* Positive. We can't learn anything from the smin, but smax 1153 * is positive, hence safe. 1154 */ 1155 reg->s32_min_value = reg->u32_min_value; 1156 reg->s32_max_value = reg->u32_max_value = 1157 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1158 } else if ((s32)reg->u32_min_value < 0) { 1159 /* Negative. We can't learn anything from the smax, but smin 1160 * is negative, hence safe. 1161 */ 1162 reg->s32_min_value = reg->u32_min_value = 1163 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1164 reg->s32_max_value = reg->u32_max_value; 1165 } 1166 } 1167 1168 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1169 { 1170 /* Learn sign from signed bounds. 1171 * If we cannot cross the sign boundary, then signed and unsigned bounds 1172 * are the same, so combine. This works even in the negative case, e.g. 1173 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1174 */ 1175 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1176 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1177 reg->umin_value); 1178 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1179 reg->umax_value); 1180 return; 1181 } 1182 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1183 * boundary, so we must be careful. 1184 */ 1185 if ((s64)reg->umax_value >= 0) { 1186 /* Positive. We can't learn anything from the smin, but smax 1187 * is positive, hence safe. 1188 */ 1189 reg->smin_value = reg->umin_value; 1190 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1191 reg->umax_value); 1192 } else if ((s64)reg->umin_value < 0) { 1193 /* Negative. We can't learn anything from the smax, but smin 1194 * is negative, hence safe. 1195 */ 1196 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1197 reg->umin_value); 1198 reg->smax_value = reg->umax_value; 1199 } 1200 } 1201 1202 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1203 { 1204 __reg32_deduce_bounds(reg); 1205 __reg64_deduce_bounds(reg); 1206 } 1207 1208 /* Attempts to improve var_off based on unsigned min/max information */ 1209 static void __reg_bound_offset(struct bpf_reg_state *reg) 1210 { 1211 struct tnum var64_off = tnum_intersect(reg->var_off, 1212 tnum_range(reg->umin_value, 1213 reg->umax_value)); 1214 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1215 tnum_range(reg->u32_min_value, 1216 reg->u32_max_value)); 1217 1218 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1219 } 1220 1221 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1222 { 1223 reg->umin_value = reg->u32_min_value; 1224 reg->umax_value = reg->u32_max_value; 1225 /* Attempt to pull 32-bit signed bounds into 64-bit bounds 1226 * but must be positive otherwise set to worse case bounds 1227 * and refine later from tnum. 1228 */ 1229 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0) 1230 reg->smax_value = reg->s32_max_value; 1231 else 1232 reg->smax_value = U32_MAX; 1233 if (reg->s32_min_value >= 0) 1234 reg->smin_value = reg->s32_min_value; 1235 else 1236 reg->smin_value = 0; 1237 } 1238 1239 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1240 { 1241 /* special case when 64-bit register has upper 32-bit register 1242 * zeroed. Typically happens after zext or <<32, >>32 sequence 1243 * allowing us to use 32-bit bounds directly, 1244 */ 1245 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1246 __reg_assign_32_into_64(reg); 1247 } else { 1248 /* Otherwise the best we can do is push lower 32bit known and 1249 * unknown bits into register (var_off set from jmp logic) 1250 * then learn as much as possible from the 64-bit tnum 1251 * known and unknown bits. The previous smin/smax bounds are 1252 * invalid here because of jmp32 compare so mark them unknown 1253 * so they do not impact tnum bounds calculation. 1254 */ 1255 __mark_reg64_unbounded(reg); 1256 __update_reg_bounds(reg); 1257 } 1258 1259 /* Intersecting with the old var_off might have improved our bounds 1260 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1261 * then new var_off is (0; 0x7f...fc) which improves our umax. 1262 */ 1263 __reg_deduce_bounds(reg); 1264 __reg_bound_offset(reg); 1265 __update_reg_bounds(reg); 1266 } 1267 1268 static bool __reg64_bound_s32(s64 a) 1269 { 1270 if (a > S32_MIN && a < S32_MAX) 1271 return true; 1272 return false; 1273 } 1274 1275 static bool __reg64_bound_u32(u64 a) 1276 { 1277 if (a > U32_MIN && a < U32_MAX) 1278 return true; 1279 return false; 1280 } 1281 1282 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1283 { 1284 __mark_reg32_unbounded(reg); 1285 1286 if (__reg64_bound_s32(reg->smin_value)) 1287 reg->s32_min_value = (s32)reg->smin_value; 1288 if (__reg64_bound_s32(reg->smax_value)) 1289 reg->s32_max_value = (s32)reg->smax_value; 1290 if (__reg64_bound_u32(reg->umin_value)) 1291 reg->u32_min_value = (u32)reg->umin_value; 1292 if (__reg64_bound_u32(reg->umax_value)) 1293 reg->u32_max_value = (u32)reg->umax_value; 1294 1295 /* Intersecting with the old var_off might have improved our bounds 1296 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1297 * then new var_off is (0; 0x7f...fc) which improves our umax. 1298 */ 1299 __reg_deduce_bounds(reg); 1300 __reg_bound_offset(reg); 1301 __update_reg_bounds(reg); 1302 } 1303 1304 /* Mark a register as having a completely unknown (scalar) value. */ 1305 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1306 struct bpf_reg_state *reg) 1307 { 1308 /* 1309 * Clear type, id, off, and union(map_ptr, range) and 1310 * padding between 'type' and union 1311 */ 1312 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1313 reg->type = SCALAR_VALUE; 1314 reg->var_off = tnum_unknown; 1315 reg->frameno = 0; 1316 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1317 __mark_reg_unbounded(reg); 1318 } 1319 1320 static void mark_reg_unknown(struct bpf_verifier_env *env, 1321 struct bpf_reg_state *regs, u32 regno) 1322 { 1323 if (WARN_ON(regno >= MAX_BPF_REG)) { 1324 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1325 /* Something bad happened, let's kill all regs except FP */ 1326 for (regno = 0; regno < BPF_REG_FP; regno++) 1327 __mark_reg_not_init(env, regs + regno); 1328 return; 1329 } 1330 __mark_reg_unknown(env, regs + regno); 1331 } 1332 1333 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1334 struct bpf_reg_state *reg) 1335 { 1336 __mark_reg_unknown(env, reg); 1337 reg->type = NOT_INIT; 1338 } 1339 1340 static void mark_reg_not_init(struct bpf_verifier_env *env, 1341 struct bpf_reg_state *regs, u32 regno) 1342 { 1343 if (WARN_ON(regno >= MAX_BPF_REG)) { 1344 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1345 /* Something bad happened, let's kill all regs except FP */ 1346 for (regno = 0; regno < BPF_REG_FP; regno++) 1347 __mark_reg_not_init(env, regs + regno); 1348 return; 1349 } 1350 __mark_reg_not_init(env, regs + regno); 1351 } 1352 1353 #define DEF_NOT_SUBREG (0) 1354 static void init_reg_state(struct bpf_verifier_env *env, 1355 struct bpf_func_state *state) 1356 { 1357 struct bpf_reg_state *regs = state->regs; 1358 int i; 1359 1360 for (i = 0; i < MAX_BPF_REG; i++) { 1361 mark_reg_not_init(env, regs, i); 1362 regs[i].live = REG_LIVE_NONE; 1363 regs[i].parent = NULL; 1364 regs[i].subreg_def = DEF_NOT_SUBREG; 1365 } 1366 1367 /* frame pointer */ 1368 regs[BPF_REG_FP].type = PTR_TO_STACK; 1369 mark_reg_known_zero(env, regs, BPF_REG_FP); 1370 regs[BPF_REG_FP].frameno = state->frameno; 1371 } 1372 1373 #define BPF_MAIN_FUNC (-1) 1374 static void init_func_state(struct bpf_verifier_env *env, 1375 struct bpf_func_state *state, 1376 int callsite, int frameno, int subprogno) 1377 { 1378 state->callsite = callsite; 1379 state->frameno = frameno; 1380 state->subprogno = subprogno; 1381 init_reg_state(env, state); 1382 } 1383 1384 enum reg_arg_type { 1385 SRC_OP, /* register is used as source operand */ 1386 DST_OP, /* register is used as destination operand */ 1387 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1388 }; 1389 1390 static int cmp_subprogs(const void *a, const void *b) 1391 { 1392 return ((struct bpf_subprog_info *)a)->start - 1393 ((struct bpf_subprog_info *)b)->start; 1394 } 1395 1396 static int find_subprog(struct bpf_verifier_env *env, int off) 1397 { 1398 struct bpf_subprog_info *p; 1399 1400 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1401 sizeof(env->subprog_info[0]), cmp_subprogs); 1402 if (!p) 1403 return -ENOENT; 1404 return p - env->subprog_info; 1405 1406 } 1407 1408 static int add_subprog(struct bpf_verifier_env *env, int off) 1409 { 1410 int insn_cnt = env->prog->len; 1411 int ret; 1412 1413 if (off >= insn_cnt || off < 0) { 1414 verbose(env, "call to invalid destination\n"); 1415 return -EINVAL; 1416 } 1417 ret = find_subprog(env, off); 1418 if (ret >= 0) 1419 return 0; 1420 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1421 verbose(env, "too many subprograms\n"); 1422 return -E2BIG; 1423 } 1424 env->subprog_info[env->subprog_cnt++].start = off; 1425 sort(env->subprog_info, env->subprog_cnt, 1426 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1427 return 0; 1428 } 1429 1430 static int check_subprogs(struct bpf_verifier_env *env) 1431 { 1432 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1433 struct bpf_subprog_info *subprog = env->subprog_info; 1434 struct bpf_insn *insn = env->prog->insnsi; 1435 int insn_cnt = env->prog->len; 1436 1437 /* Add entry function. */ 1438 ret = add_subprog(env, 0); 1439 if (ret < 0) 1440 return ret; 1441 1442 /* determine subprog starts. The end is one before the next starts */ 1443 for (i = 0; i < insn_cnt; i++) { 1444 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1445 continue; 1446 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1447 continue; 1448 if (!env->bpf_capable) { 1449 verbose(env, 1450 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 1451 return -EPERM; 1452 } 1453 ret = add_subprog(env, i + insn[i].imm + 1); 1454 if (ret < 0) 1455 return ret; 1456 } 1457 1458 /* Add a fake 'exit' subprog which could simplify subprog iteration 1459 * logic. 'subprog_cnt' should not be increased. 1460 */ 1461 subprog[env->subprog_cnt].start = insn_cnt; 1462 1463 if (env->log.level & BPF_LOG_LEVEL2) 1464 for (i = 0; i < env->subprog_cnt; i++) 1465 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1466 1467 /* now check that all jumps are within the same subprog */ 1468 subprog_start = subprog[cur_subprog].start; 1469 subprog_end = subprog[cur_subprog + 1].start; 1470 for (i = 0; i < insn_cnt; i++) { 1471 u8 code = insn[i].code; 1472 1473 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1474 goto next; 1475 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1476 goto next; 1477 off = i + insn[i].off + 1; 1478 if (off < subprog_start || off >= subprog_end) { 1479 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1480 return -EINVAL; 1481 } 1482 next: 1483 if (i == subprog_end - 1) { 1484 /* to avoid fall-through from one subprog into another 1485 * the last insn of the subprog should be either exit 1486 * or unconditional jump back 1487 */ 1488 if (code != (BPF_JMP | BPF_EXIT) && 1489 code != (BPF_JMP | BPF_JA)) { 1490 verbose(env, "last insn is not an exit or jmp\n"); 1491 return -EINVAL; 1492 } 1493 subprog_start = subprog_end; 1494 cur_subprog++; 1495 if (cur_subprog < env->subprog_cnt) 1496 subprog_end = subprog[cur_subprog + 1].start; 1497 } 1498 } 1499 return 0; 1500 } 1501 1502 /* Parentage chain of this register (or stack slot) should take care of all 1503 * issues like callee-saved registers, stack slot allocation time, etc. 1504 */ 1505 static int mark_reg_read(struct bpf_verifier_env *env, 1506 const struct bpf_reg_state *state, 1507 struct bpf_reg_state *parent, u8 flag) 1508 { 1509 bool writes = parent == state->parent; /* Observe write marks */ 1510 int cnt = 0; 1511 1512 while (parent) { 1513 /* if read wasn't screened by an earlier write ... */ 1514 if (writes && state->live & REG_LIVE_WRITTEN) 1515 break; 1516 if (parent->live & REG_LIVE_DONE) { 1517 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1518 reg_type_str[parent->type], 1519 parent->var_off.value, parent->off); 1520 return -EFAULT; 1521 } 1522 /* The first condition is more likely to be true than the 1523 * second, checked it first. 1524 */ 1525 if ((parent->live & REG_LIVE_READ) == flag || 1526 parent->live & REG_LIVE_READ64) 1527 /* The parentage chain never changes and 1528 * this parent was already marked as LIVE_READ. 1529 * There is no need to keep walking the chain again and 1530 * keep re-marking all parents as LIVE_READ. 1531 * This case happens when the same register is read 1532 * multiple times without writes into it in-between. 1533 * Also, if parent has the stronger REG_LIVE_READ64 set, 1534 * then no need to set the weak REG_LIVE_READ32. 1535 */ 1536 break; 1537 /* ... then we depend on parent's value */ 1538 parent->live |= flag; 1539 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1540 if (flag == REG_LIVE_READ64) 1541 parent->live &= ~REG_LIVE_READ32; 1542 state = parent; 1543 parent = state->parent; 1544 writes = true; 1545 cnt++; 1546 } 1547 1548 if (env->longest_mark_read_walk < cnt) 1549 env->longest_mark_read_walk = cnt; 1550 return 0; 1551 } 1552 1553 /* This function is supposed to be used by the following 32-bit optimization 1554 * code only. It returns TRUE if the source or destination register operates 1555 * on 64-bit, otherwise return FALSE. 1556 */ 1557 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1558 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1559 { 1560 u8 code, class, op; 1561 1562 code = insn->code; 1563 class = BPF_CLASS(code); 1564 op = BPF_OP(code); 1565 if (class == BPF_JMP) { 1566 /* BPF_EXIT for "main" will reach here. Return TRUE 1567 * conservatively. 1568 */ 1569 if (op == BPF_EXIT) 1570 return true; 1571 if (op == BPF_CALL) { 1572 /* BPF to BPF call will reach here because of marking 1573 * caller saved clobber with DST_OP_NO_MARK for which we 1574 * don't care the register def because they are anyway 1575 * marked as NOT_INIT already. 1576 */ 1577 if (insn->src_reg == BPF_PSEUDO_CALL) 1578 return false; 1579 /* Helper call will reach here because of arg type 1580 * check, conservatively return TRUE. 1581 */ 1582 if (t == SRC_OP) 1583 return true; 1584 1585 return false; 1586 } 1587 } 1588 1589 if (class == BPF_ALU64 || class == BPF_JMP || 1590 /* BPF_END always use BPF_ALU class. */ 1591 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1592 return true; 1593 1594 if (class == BPF_ALU || class == BPF_JMP32) 1595 return false; 1596 1597 if (class == BPF_LDX) { 1598 if (t != SRC_OP) 1599 return BPF_SIZE(code) == BPF_DW; 1600 /* LDX source must be ptr. */ 1601 return true; 1602 } 1603 1604 if (class == BPF_STX) { 1605 if (reg->type != SCALAR_VALUE) 1606 return true; 1607 return BPF_SIZE(code) == BPF_DW; 1608 } 1609 1610 if (class == BPF_LD) { 1611 u8 mode = BPF_MODE(code); 1612 1613 /* LD_IMM64 */ 1614 if (mode == BPF_IMM) 1615 return true; 1616 1617 /* Both LD_IND and LD_ABS return 32-bit data. */ 1618 if (t != SRC_OP) 1619 return false; 1620 1621 /* Implicit ctx ptr. */ 1622 if (regno == BPF_REG_6) 1623 return true; 1624 1625 /* Explicit source could be any width. */ 1626 return true; 1627 } 1628 1629 if (class == BPF_ST) 1630 /* The only source register for BPF_ST is a ptr. */ 1631 return true; 1632 1633 /* Conservatively return true at default. */ 1634 return true; 1635 } 1636 1637 /* Return TRUE if INSN doesn't have explicit value define. */ 1638 static bool insn_no_def(struct bpf_insn *insn) 1639 { 1640 u8 class = BPF_CLASS(insn->code); 1641 1642 return (class == BPF_JMP || class == BPF_JMP32 || 1643 class == BPF_STX || class == BPF_ST); 1644 } 1645 1646 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1647 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1648 { 1649 if (insn_no_def(insn)) 1650 return false; 1651 1652 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); 1653 } 1654 1655 static void mark_insn_zext(struct bpf_verifier_env *env, 1656 struct bpf_reg_state *reg) 1657 { 1658 s32 def_idx = reg->subreg_def; 1659 1660 if (def_idx == DEF_NOT_SUBREG) 1661 return; 1662 1663 env->insn_aux_data[def_idx - 1].zext_dst = true; 1664 /* The dst will be zero extended, so won't be sub-register anymore. */ 1665 reg->subreg_def = DEF_NOT_SUBREG; 1666 } 1667 1668 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1669 enum reg_arg_type t) 1670 { 1671 struct bpf_verifier_state *vstate = env->cur_state; 1672 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1673 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1674 struct bpf_reg_state *reg, *regs = state->regs; 1675 bool rw64; 1676 1677 if (regno >= MAX_BPF_REG) { 1678 verbose(env, "R%d is invalid\n", regno); 1679 return -EINVAL; 1680 } 1681 1682 reg = ®s[regno]; 1683 rw64 = is_reg64(env, insn, regno, reg, t); 1684 if (t == SRC_OP) { 1685 /* check whether register used as source operand can be read */ 1686 if (reg->type == NOT_INIT) { 1687 verbose(env, "R%d !read_ok\n", regno); 1688 return -EACCES; 1689 } 1690 /* We don't need to worry about FP liveness because it's read-only */ 1691 if (regno == BPF_REG_FP) 1692 return 0; 1693 1694 if (rw64) 1695 mark_insn_zext(env, reg); 1696 1697 return mark_reg_read(env, reg, reg->parent, 1698 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1699 } else { 1700 /* check whether register used as dest operand can be written to */ 1701 if (regno == BPF_REG_FP) { 1702 verbose(env, "frame pointer is read only\n"); 1703 return -EACCES; 1704 } 1705 reg->live |= REG_LIVE_WRITTEN; 1706 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1707 if (t == DST_OP) 1708 mark_reg_unknown(env, regs, regno); 1709 } 1710 return 0; 1711 } 1712 1713 /* for any branch, call, exit record the history of jmps in the given state */ 1714 static int push_jmp_history(struct bpf_verifier_env *env, 1715 struct bpf_verifier_state *cur) 1716 { 1717 u32 cnt = cur->jmp_history_cnt; 1718 struct bpf_idx_pair *p; 1719 1720 cnt++; 1721 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 1722 if (!p) 1723 return -ENOMEM; 1724 p[cnt - 1].idx = env->insn_idx; 1725 p[cnt - 1].prev_idx = env->prev_insn_idx; 1726 cur->jmp_history = p; 1727 cur->jmp_history_cnt = cnt; 1728 return 0; 1729 } 1730 1731 /* Backtrack one insn at a time. If idx is not at the top of recorded 1732 * history then previous instruction came from straight line execution. 1733 */ 1734 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 1735 u32 *history) 1736 { 1737 u32 cnt = *history; 1738 1739 if (cnt && st->jmp_history[cnt - 1].idx == i) { 1740 i = st->jmp_history[cnt - 1].prev_idx; 1741 (*history)--; 1742 } else { 1743 i--; 1744 } 1745 return i; 1746 } 1747 1748 /* For given verifier state backtrack_insn() is called from the last insn to 1749 * the first insn. Its purpose is to compute a bitmask of registers and 1750 * stack slots that needs precision in the parent verifier state. 1751 */ 1752 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 1753 u32 *reg_mask, u64 *stack_mask) 1754 { 1755 const struct bpf_insn_cbs cbs = { 1756 .cb_print = verbose, 1757 .private_data = env, 1758 }; 1759 struct bpf_insn *insn = env->prog->insnsi + idx; 1760 u8 class = BPF_CLASS(insn->code); 1761 u8 opcode = BPF_OP(insn->code); 1762 u8 mode = BPF_MODE(insn->code); 1763 u32 dreg = 1u << insn->dst_reg; 1764 u32 sreg = 1u << insn->src_reg; 1765 u32 spi; 1766 1767 if (insn->code == 0) 1768 return 0; 1769 if (env->log.level & BPF_LOG_LEVEL) { 1770 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 1771 verbose(env, "%d: ", idx); 1772 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 1773 } 1774 1775 if (class == BPF_ALU || class == BPF_ALU64) { 1776 if (!(*reg_mask & dreg)) 1777 return 0; 1778 if (opcode == BPF_MOV) { 1779 if (BPF_SRC(insn->code) == BPF_X) { 1780 /* dreg = sreg 1781 * dreg needs precision after this insn 1782 * sreg needs precision before this insn 1783 */ 1784 *reg_mask &= ~dreg; 1785 *reg_mask |= sreg; 1786 } else { 1787 /* dreg = K 1788 * dreg needs precision after this insn. 1789 * Corresponding register is already marked 1790 * as precise=true in this verifier state. 1791 * No further markings in parent are necessary 1792 */ 1793 *reg_mask &= ~dreg; 1794 } 1795 } else { 1796 if (BPF_SRC(insn->code) == BPF_X) { 1797 /* dreg += sreg 1798 * both dreg and sreg need precision 1799 * before this insn 1800 */ 1801 *reg_mask |= sreg; 1802 } /* else dreg += K 1803 * dreg still needs precision before this insn 1804 */ 1805 } 1806 } else if (class == BPF_LDX) { 1807 if (!(*reg_mask & dreg)) 1808 return 0; 1809 *reg_mask &= ~dreg; 1810 1811 /* scalars can only be spilled into stack w/o losing precision. 1812 * Load from any other memory can be zero extended. 1813 * The desire to keep that precision is already indicated 1814 * by 'precise' mark in corresponding register of this state. 1815 * No further tracking necessary. 1816 */ 1817 if (insn->src_reg != BPF_REG_FP) 1818 return 0; 1819 if (BPF_SIZE(insn->code) != BPF_DW) 1820 return 0; 1821 1822 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 1823 * that [fp - off] slot contains scalar that needs to be 1824 * tracked with precision 1825 */ 1826 spi = (-insn->off - 1) / BPF_REG_SIZE; 1827 if (spi >= 64) { 1828 verbose(env, "BUG spi %d\n", spi); 1829 WARN_ONCE(1, "verifier backtracking bug"); 1830 return -EFAULT; 1831 } 1832 *stack_mask |= 1ull << spi; 1833 } else if (class == BPF_STX || class == BPF_ST) { 1834 if (*reg_mask & dreg) 1835 /* stx & st shouldn't be using _scalar_ dst_reg 1836 * to access memory. It means backtracking 1837 * encountered a case of pointer subtraction. 1838 */ 1839 return -ENOTSUPP; 1840 /* scalars can only be spilled into stack */ 1841 if (insn->dst_reg != BPF_REG_FP) 1842 return 0; 1843 if (BPF_SIZE(insn->code) != BPF_DW) 1844 return 0; 1845 spi = (-insn->off - 1) / BPF_REG_SIZE; 1846 if (spi >= 64) { 1847 verbose(env, "BUG spi %d\n", spi); 1848 WARN_ONCE(1, "verifier backtracking bug"); 1849 return -EFAULT; 1850 } 1851 if (!(*stack_mask & (1ull << spi))) 1852 return 0; 1853 *stack_mask &= ~(1ull << spi); 1854 if (class == BPF_STX) 1855 *reg_mask |= sreg; 1856 } else if (class == BPF_JMP || class == BPF_JMP32) { 1857 if (opcode == BPF_CALL) { 1858 if (insn->src_reg == BPF_PSEUDO_CALL) 1859 return -ENOTSUPP; 1860 /* regular helper call sets R0 */ 1861 *reg_mask &= ~1; 1862 if (*reg_mask & 0x3f) { 1863 /* if backtracing was looking for registers R1-R5 1864 * they should have been found already. 1865 */ 1866 verbose(env, "BUG regs %x\n", *reg_mask); 1867 WARN_ONCE(1, "verifier backtracking bug"); 1868 return -EFAULT; 1869 } 1870 } else if (opcode == BPF_EXIT) { 1871 return -ENOTSUPP; 1872 } 1873 } else if (class == BPF_LD) { 1874 if (!(*reg_mask & dreg)) 1875 return 0; 1876 *reg_mask &= ~dreg; 1877 /* It's ld_imm64 or ld_abs or ld_ind. 1878 * For ld_imm64 no further tracking of precision 1879 * into parent is necessary 1880 */ 1881 if (mode == BPF_IND || mode == BPF_ABS) 1882 /* to be analyzed */ 1883 return -ENOTSUPP; 1884 } 1885 return 0; 1886 } 1887 1888 /* the scalar precision tracking algorithm: 1889 * . at the start all registers have precise=false. 1890 * . scalar ranges are tracked as normal through alu and jmp insns. 1891 * . once precise value of the scalar register is used in: 1892 * . ptr + scalar alu 1893 * . if (scalar cond K|scalar) 1894 * . helper_call(.., scalar, ...) where ARG_CONST is expected 1895 * backtrack through the verifier states and mark all registers and 1896 * stack slots with spilled constants that these scalar regisers 1897 * should be precise. 1898 * . during state pruning two registers (or spilled stack slots) 1899 * are equivalent if both are not precise. 1900 * 1901 * Note the verifier cannot simply walk register parentage chain, 1902 * since many different registers and stack slots could have been 1903 * used to compute single precise scalar. 1904 * 1905 * The approach of starting with precise=true for all registers and then 1906 * backtrack to mark a register as not precise when the verifier detects 1907 * that program doesn't care about specific value (e.g., when helper 1908 * takes register as ARG_ANYTHING parameter) is not safe. 1909 * 1910 * It's ok to walk single parentage chain of the verifier states. 1911 * It's possible that this backtracking will go all the way till 1st insn. 1912 * All other branches will be explored for needing precision later. 1913 * 1914 * The backtracking needs to deal with cases like: 1915 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 1916 * r9 -= r8 1917 * r5 = r9 1918 * if r5 > 0x79f goto pc+7 1919 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 1920 * r5 += 1 1921 * ... 1922 * call bpf_perf_event_output#25 1923 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 1924 * 1925 * and this case: 1926 * r6 = 1 1927 * call foo // uses callee's r6 inside to compute r0 1928 * r0 += r6 1929 * if r0 == 0 goto 1930 * 1931 * to track above reg_mask/stack_mask needs to be independent for each frame. 1932 * 1933 * Also if parent's curframe > frame where backtracking started, 1934 * the verifier need to mark registers in both frames, otherwise callees 1935 * may incorrectly prune callers. This is similar to 1936 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 1937 * 1938 * For now backtracking falls back into conservative marking. 1939 */ 1940 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 1941 struct bpf_verifier_state *st) 1942 { 1943 struct bpf_func_state *func; 1944 struct bpf_reg_state *reg; 1945 int i, j; 1946 1947 /* big hammer: mark all scalars precise in this path. 1948 * pop_stack may still get !precise scalars. 1949 */ 1950 for (; st; st = st->parent) 1951 for (i = 0; i <= st->curframe; i++) { 1952 func = st->frame[i]; 1953 for (j = 0; j < BPF_REG_FP; j++) { 1954 reg = &func->regs[j]; 1955 if (reg->type != SCALAR_VALUE) 1956 continue; 1957 reg->precise = true; 1958 } 1959 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 1960 if (func->stack[j].slot_type[0] != STACK_SPILL) 1961 continue; 1962 reg = &func->stack[j].spilled_ptr; 1963 if (reg->type != SCALAR_VALUE) 1964 continue; 1965 reg->precise = true; 1966 } 1967 } 1968 } 1969 1970 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 1971 int spi) 1972 { 1973 struct bpf_verifier_state *st = env->cur_state; 1974 int first_idx = st->first_insn_idx; 1975 int last_idx = env->insn_idx; 1976 struct bpf_func_state *func; 1977 struct bpf_reg_state *reg; 1978 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 1979 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 1980 bool skip_first = true; 1981 bool new_marks = false; 1982 int i, err; 1983 1984 if (!env->bpf_capable) 1985 return 0; 1986 1987 func = st->frame[st->curframe]; 1988 if (regno >= 0) { 1989 reg = &func->regs[regno]; 1990 if (reg->type != SCALAR_VALUE) { 1991 WARN_ONCE(1, "backtracing misuse"); 1992 return -EFAULT; 1993 } 1994 if (!reg->precise) 1995 new_marks = true; 1996 else 1997 reg_mask = 0; 1998 reg->precise = true; 1999 } 2000 2001 while (spi >= 0) { 2002 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 2003 stack_mask = 0; 2004 break; 2005 } 2006 reg = &func->stack[spi].spilled_ptr; 2007 if (reg->type != SCALAR_VALUE) { 2008 stack_mask = 0; 2009 break; 2010 } 2011 if (!reg->precise) 2012 new_marks = true; 2013 else 2014 stack_mask = 0; 2015 reg->precise = true; 2016 break; 2017 } 2018 2019 if (!new_marks) 2020 return 0; 2021 if (!reg_mask && !stack_mask) 2022 return 0; 2023 for (;;) { 2024 DECLARE_BITMAP(mask, 64); 2025 u32 history = st->jmp_history_cnt; 2026 2027 if (env->log.level & BPF_LOG_LEVEL) 2028 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2029 for (i = last_idx;;) { 2030 if (skip_first) { 2031 err = 0; 2032 skip_first = false; 2033 } else { 2034 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2035 } 2036 if (err == -ENOTSUPP) { 2037 mark_all_scalars_precise(env, st); 2038 return 0; 2039 } else if (err) { 2040 return err; 2041 } 2042 if (!reg_mask && !stack_mask) 2043 /* Found assignment(s) into tracked register in this state. 2044 * Since this state is already marked, just return. 2045 * Nothing to be tracked further in the parent state. 2046 */ 2047 return 0; 2048 if (i == first_idx) 2049 break; 2050 i = get_prev_insn_idx(st, i, &history); 2051 if (i >= env->prog->len) { 2052 /* This can happen if backtracking reached insn 0 2053 * and there are still reg_mask or stack_mask 2054 * to backtrack. 2055 * It means the backtracking missed the spot where 2056 * particular register was initialized with a constant. 2057 */ 2058 verbose(env, "BUG backtracking idx %d\n", i); 2059 WARN_ONCE(1, "verifier backtracking bug"); 2060 return -EFAULT; 2061 } 2062 } 2063 st = st->parent; 2064 if (!st) 2065 break; 2066 2067 new_marks = false; 2068 func = st->frame[st->curframe]; 2069 bitmap_from_u64(mask, reg_mask); 2070 for_each_set_bit(i, mask, 32) { 2071 reg = &func->regs[i]; 2072 if (reg->type != SCALAR_VALUE) { 2073 reg_mask &= ~(1u << i); 2074 continue; 2075 } 2076 if (!reg->precise) 2077 new_marks = true; 2078 reg->precise = true; 2079 } 2080 2081 bitmap_from_u64(mask, stack_mask); 2082 for_each_set_bit(i, mask, 64) { 2083 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2084 /* the sequence of instructions: 2085 * 2: (bf) r3 = r10 2086 * 3: (7b) *(u64 *)(r3 -8) = r0 2087 * 4: (79) r4 = *(u64 *)(r10 -8) 2088 * doesn't contain jmps. It's backtracked 2089 * as a single block. 2090 * During backtracking insn 3 is not recognized as 2091 * stack access, so at the end of backtracking 2092 * stack slot fp-8 is still marked in stack_mask. 2093 * However the parent state may not have accessed 2094 * fp-8 and it's "unallocated" stack space. 2095 * In such case fallback to conservative. 2096 */ 2097 mark_all_scalars_precise(env, st); 2098 return 0; 2099 } 2100 2101 if (func->stack[i].slot_type[0] != STACK_SPILL) { 2102 stack_mask &= ~(1ull << i); 2103 continue; 2104 } 2105 reg = &func->stack[i].spilled_ptr; 2106 if (reg->type != SCALAR_VALUE) { 2107 stack_mask &= ~(1ull << i); 2108 continue; 2109 } 2110 if (!reg->precise) 2111 new_marks = true; 2112 reg->precise = true; 2113 } 2114 if (env->log.level & BPF_LOG_LEVEL) { 2115 print_verifier_state(env, func); 2116 verbose(env, "parent %s regs=%x stack=%llx marks\n", 2117 new_marks ? "didn't have" : "already had", 2118 reg_mask, stack_mask); 2119 } 2120 2121 if (!reg_mask && !stack_mask) 2122 break; 2123 if (!new_marks) 2124 break; 2125 2126 last_idx = st->last_insn_idx; 2127 first_idx = st->first_insn_idx; 2128 } 2129 return 0; 2130 } 2131 2132 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2133 { 2134 return __mark_chain_precision(env, regno, -1); 2135 } 2136 2137 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2138 { 2139 return __mark_chain_precision(env, -1, spi); 2140 } 2141 2142 static bool is_spillable_regtype(enum bpf_reg_type type) 2143 { 2144 switch (type) { 2145 case PTR_TO_MAP_VALUE: 2146 case PTR_TO_MAP_VALUE_OR_NULL: 2147 case PTR_TO_STACK: 2148 case PTR_TO_CTX: 2149 case PTR_TO_PACKET: 2150 case PTR_TO_PACKET_META: 2151 case PTR_TO_PACKET_END: 2152 case PTR_TO_FLOW_KEYS: 2153 case CONST_PTR_TO_MAP: 2154 case PTR_TO_SOCKET: 2155 case PTR_TO_SOCKET_OR_NULL: 2156 case PTR_TO_SOCK_COMMON: 2157 case PTR_TO_SOCK_COMMON_OR_NULL: 2158 case PTR_TO_TCP_SOCK: 2159 case PTR_TO_TCP_SOCK_OR_NULL: 2160 case PTR_TO_XDP_SOCK: 2161 case PTR_TO_BTF_ID: 2162 case PTR_TO_BTF_ID_OR_NULL: 2163 return true; 2164 default: 2165 return false; 2166 } 2167 } 2168 2169 /* Does this register contain a constant zero? */ 2170 static bool register_is_null(struct bpf_reg_state *reg) 2171 { 2172 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2173 } 2174 2175 static bool register_is_const(struct bpf_reg_state *reg) 2176 { 2177 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2178 } 2179 2180 static bool __is_pointer_value(bool allow_ptr_leaks, 2181 const struct bpf_reg_state *reg) 2182 { 2183 if (allow_ptr_leaks) 2184 return false; 2185 2186 return reg->type != SCALAR_VALUE; 2187 } 2188 2189 static void save_register_state(struct bpf_func_state *state, 2190 int spi, struct bpf_reg_state *reg) 2191 { 2192 int i; 2193 2194 state->stack[spi].spilled_ptr = *reg; 2195 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2196 2197 for (i = 0; i < BPF_REG_SIZE; i++) 2198 state->stack[spi].slot_type[i] = STACK_SPILL; 2199 } 2200 2201 /* check_stack_read/write functions track spill/fill of registers, 2202 * stack boundary and alignment are checked in check_mem_access() 2203 */ 2204 static int check_stack_write(struct bpf_verifier_env *env, 2205 struct bpf_func_state *state, /* func where register points to */ 2206 int off, int size, int value_regno, int insn_idx) 2207 { 2208 struct bpf_func_state *cur; /* state of the current function */ 2209 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2210 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2211 struct bpf_reg_state *reg = NULL; 2212 2213 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 2214 state->acquired_refs, true); 2215 if (err) 2216 return err; 2217 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2218 * so it's aligned access and [off, off + size) are within stack limits 2219 */ 2220 if (!env->allow_ptr_leaks && 2221 state->stack[spi].slot_type[0] == STACK_SPILL && 2222 size != BPF_REG_SIZE) { 2223 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2224 return -EACCES; 2225 } 2226 2227 cur = env->cur_state->frame[env->cur_state->curframe]; 2228 if (value_regno >= 0) 2229 reg = &cur->regs[value_regno]; 2230 2231 if (reg && size == BPF_REG_SIZE && register_is_const(reg) && 2232 !register_is_null(reg) && env->bpf_capable) { 2233 if (dst_reg != BPF_REG_FP) { 2234 /* The backtracking logic can only recognize explicit 2235 * stack slot address like [fp - 8]. Other spill of 2236 * scalar via different register has to be conervative. 2237 * Backtrack from here and mark all registers as precise 2238 * that contributed into 'reg' being a constant. 2239 */ 2240 err = mark_chain_precision(env, value_regno); 2241 if (err) 2242 return err; 2243 } 2244 save_register_state(state, spi, reg); 2245 } else if (reg && is_spillable_regtype(reg->type)) { 2246 /* register containing pointer is being spilled into stack */ 2247 if (size != BPF_REG_SIZE) { 2248 verbose_linfo(env, insn_idx, "; "); 2249 verbose(env, "invalid size of register spill\n"); 2250 return -EACCES; 2251 } 2252 2253 if (state != cur && reg->type == PTR_TO_STACK) { 2254 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2255 return -EINVAL; 2256 } 2257 2258 if (!env->bypass_spec_v4) { 2259 bool sanitize = false; 2260 2261 if (state->stack[spi].slot_type[0] == STACK_SPILL && 2262 register_is_const(&state->stack[spi].spilled_ptr)) 2263 sanitize = true; 2264 for (i = 0; i < BPF_REG_SIZE; i++) 2265 if (state->stack[spi].slot_type[i] == STACK_MISC) { 2266 sanitize = true; 2267 break; 2268 } 2269 if (sanitize) { 2270 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 2271 int soff = (-spi - 1) * BPF_REG_SIZE; 2272 2273 /* detected reuse of integer stack slot with a pointer 2274 * which means either llvm is reusing stack slot or 2275 * an attacker is trying to exploit CVE-2018-3639 2276 * (speculative store bypass) 2277 * Have to sanitize that slot with preemptive 2278 * store of zero. 2279 */ 2280 if (*poff && *poff != soff) { 2281 /* disallow programs where single insn stores 2282 * into two different stack slots, since verifier 2283 * cannot sanitize them 2284 */ 2285 verbose(env, 2286 "insn %d cannot access two stack slots fp%d and fp%d", 2287 insn_idx, *poff, soff); 2288 return -EINVAL; 2289 } 2290 *poff = soff; 2291 } 2292 } 2293 save_register_state(state, spi, reg); 2294 } else { 2295 u8 type = STACK_MISC; 2296 2297 /* regular write of data into stack destroys any spilled ptr */ 2298 state->stack[spi].spilled_ptr.type = NOT_INIT; 2299 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2300 if (state->stack[spi].slot_type[0] == STACK_SPILL) 2301 for (i = 0; i < BPF_REG_SIZE; i++) 2302 state->stack[spi].slot_type[i] = STACK_MISC; 2303 2304 /* only mark the slot as written if all 8 bytes were written 2305 * otherwise read propagation may incorrectly stop too soon 2306 * when stack slots are partially written. 2307 * This heuristic means that read propagation will be 2308 * conservative, since it will add reg_live_read marks 2309 * to stack slots all the way to first state when programs 2310 * writes+reads less than 8 bytes 2311 */ 2312 if (size == BPF_REG_SIZE) 2313 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2314 2315 /* when we zero initialize stack slots mark them as such */ 2316 if (reg && register_is_null(reg)) { 2317 /* backtracking doesn't work for STACK_ZERO yet. */ 2318 err = mark_chain_precision(env, value_regno); 2319 if (err) 2320 return err; 2321 type = STACK_ZERO; 2322 } 2323 2324 /* Mark slots affected by this stack write. */ 2325 for (i = 0; i < size; i++) 2326 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2327 type; 2328 } 2329 return 0; 2330 } 2331 2332 static int check_stack_read(struct bpf_verifier_env *env, 2333 struct bpf_func_state *reg_state /* func where register points to */, 2334 int off, int size, int value_regno) 2335 { 2336 struct bpf_verifier_state *vstate = env->cur_state; 2337 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2338 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2339 struct bpf_reg_state *reg; 2340 u8 *stype; 2341 2342 if (reg_state->allocated_stack <= slot) { 2343 verbose(env, "invalid read from stack off %d+0 size %d\n", 2344 off, size); 2345 return -EACCES; 2346 } 2347 stype = reg_state->stack[spi].slot_type; 2348 reg = ®_state->stack[spi].spilled_ptr; 2349 2350 if (stype[0] == STACK_SPILL) { 2351 if (size != BPF_REG_SIZE) { 2352 if (reg->type != SCALAR_VALUE) { 2353 verbose_linfo(env, env->insn_idx, "; "); 2354 verbose(env, "invalid size of register fill\n"); 2355 return -EACCES; 2356 } 2357 if (value_regno >= 0) { 2358 mark_reg_unknown(env, state->regs, value_regno); 2359 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2360 } 2361 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2362 return 0; 2363 } 2364 for (i = 1; i < BPF_REG_SIZE; i++) { 2365 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2366 verbose(env, "corrupted spill memory\n"); 2367 return -EACCES; 2368 } 2369 } 2370 2371 if (value_regno >= 0) { 2372 /* restore register state from stack */ 2373 state->regs[value_regno] = *reg; 2374 /* mark reg as written since spilled pointer state likely 2375 * has its liveness marks cleared by is_state_visited() 2376 * which resets stack/reg liveness for state transitions 2377 */ 2378 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2379 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 2380 /* If value_regno==-1, the caller is asking us whether 2381 * it is acceptable to use this value as a SCALAR_VALUE 2382 * (e.g. for XADD). 2383 * We must not allow unprivileged callers to do that 2384 * with spilled pointers. 2385 */ 2386 verbose(env, "leaking pointer from stack off %d\n", 2387 off); 2388 return -EACCES; 2389 } 2390 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2391 } else { 2392 int zeros = 0; 2393 2394 for (i = 0; i < size; i++) { 2395 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 2396 continue; 2397 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 2398 zeros++; 2399 continue; 2400 } 2401 verbose(env, "invalid read from stack off %d+%d size %d\n", 2402 off, i, size); 2403 return -EACCES; 2404 } 2405 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2406 if (value_regno >= 0) { 2407 if (zeros == size) { 2408 /* any size read into register is zero extended, 2409 * so the whole register == const_zero 2410 */ 2411 __mark_reg_const_zero(&state->regs[value_regno]); 2412 /* backtracking doesn't support STACK_ZERO yet, 2413 * so mark it precise here, so that later 2414 * backtracking can stop here. 2415 * Backtracking may not need this if this register 2416 * doesn't participate in pointer adjustment. 2417 * Forward propagation of precise flag is not 2418 * necessary either. This mark is only to stop 2419 * backtracking. Any register that contributed 2420 * to const 0 was marked precise before spill. 2421 */ 2422 state->regs[value_regno].precise = true; 2423 } else { 2424 /* have read misc data from the stack */ 2425 mark_reg_unknown(env, state->regs, value_regno); 2426 } 2427 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2428 } 2429 } 2430 return 0; 2431 } 2432 2433 static int check_stack_access(struct bpf_verifier_env *env, 2434 const struct bpf_reg_state *reg, 2435 int off, int size) 2436 { 2437 /* Stack accesses must be at a fixed offset, so that we 2438 * can determine what type of data were returned. See 2439 * check_stack_read(). 2440 */ 2441 if (!tnum_is_const(reg->var_off)) { 2442 char tn_buf[48]; 2443 2444 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2445 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 2446 tn_buf, off, size); 2447 return -EACCES; 2448 } 2449 2450 if (off >= 0 || off < -MAX_BPF_STACK) { 2451 verbose(env, "invalid stack off=%d size=%d\n", off, size); 2452 return -EACCES; 2453 } 2454 2455 return 0; 2456 } 2457 2458 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 2459 int off, int size, enum bpf_access_type type) 2460 { 2461 struct bpf_reg_state *regs = cur_regs(env); 2462 struct bpf_map *map = regs[regno].map_ptr; 2463 u32 cap = bpf_map_flags_to_cap(map); 2464 2465 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 2466 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 2467 map->value_size, off, size); 2468 return -EACCES; 2469 } 2470 2471 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 2472 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 2473 map->value_size, off, size); 2474 return -EACCES; 2475 } 2476 2477 return 0; 2478 } 2479 2480 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 2481 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 2482 int off, int size, u32 mem_size, 2483 bool zero_size_allowed) 2484 { 2485 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 2486 struct bpf_reg_state *reg; 2487 2488 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 2489 return 0; 2490 2491 reg = &cur_regs(env)[regno]; 2492 switch (reg->type) { 2493 case PTR_TO_MAP_VALUE: 2494 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 2495 mem_size, off, size); 2496 break; 2497 case PTR_TO_PACKET: 2498 case PTR_TO_PACKET_META: 2499 case PTR_TO_PACKET_END: 2500 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 2501 off, size, regno, reg->id, off, mem_size); 2502 break; 2503 case PTR_TO_MEM: 2504 default: 2505 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 2506 mem_size, off, size); 2507 } 2508 2509 return -EACCES; 2510 } 2511 2512 /* check read/write into a memory region with possible variable offset */ 2513 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 2514 int off, int size, u32 mem_size, 2515 bool zero_size_allowed) 2516 { 2517 struct bpf_verifier_state *vstate = env->cur_state; 2518 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2519 struct bpf_reg_state *reg = &state->regs[regno]; 2520 int err; 2521 2522 /* We may have adjusted the register pointing to memory region, so we 2523 * need to try adding each of min_value and max_value to off 2524 * to make sure our theoretical access will be safe. 2525 */ 2526 if (env->log.level & BPF_LOG_LEVEL) 2527 print_verifier_state(env, state); 2528 2529 /* The minimum value is only important with signed 2530 * comparisons where we can't assume the floor of a 2531 * value is 0. If we are using signed variables for our 2532 * index'es we need to make sure that whatever we use 2533 * will have a set floor within our range. 2534 */ 2535 if (reg->smin_value < 0 && 2536 (reg->smin_value == S64_MIN || 2537 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 2538 reg->smin_value + off < 0)) { 2539 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2540 regno); 2541 return -EACCES; 2542 } 2543 err = __check_mem_access(env, regno, reg->smin_value + off, size, 2544 mem_size, zero_size_allowed); 2545 if (err) { 2546 verbose(env, "R%d min value is outside of the allowed memory range\n", 2547 regno); 2548 return err; 2549 } 2550 2551 /* If we haven't set a max value then we need to bail since we can't be 2552 * sure we won't do bad things. 2553 * If reg->umax_value + off could overflow, treat that as unbounded too. 2554 */ 2555 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 2556 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 2557 regno); 2558 return -EACCES; 2559 } 2560 err = __check_mem_access(env, regno, reg->umax_value + off, size, 2561 mem_size, zero_size_allowed); 2562 if (err) { 2563 verbose(env, "R%d max value is outside of the allowed memory range\n", 2564 regno); 2565 return err; 2566 } 2567 2568 return 0; 2569 } 2570 2571 /* check read/write into a map element with possible variable offset */ 2572 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 2573 int off, int size, bool zero_size_allowed) 2574 { 2575 struct bpf_verifier_state *vstate = env->cur_state; 2576 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2577 struct bpf_reg_state *reg = &state->regs[regno]; 2578 struct bpf_map *map = reg->map_ptr; 2579 int err; 2580 2581 err = check_mem_region_access(env, regno, off, size, map->value_size, 2582 zero_size_allowed); 2583 if (err) 2584 return err; 2585 2586 if (map_value_has_spin_lock(map)) { 2587 u32 lock = map->spin_lock_off; 2588 2589 /* if any part of struct bpf_spin_lock can be touched by 2590 * load/store reject this program. 2591 * To check that [x1, x2) overlaps with [y1, y2) 2592 * it is sufficient to check x1 < y2 && y1 < x2. 2593 */ 2594 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 2595 lock < reg->umax_value + off + size) { 2596 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 2597 return -EACCES; 2598 } 2599 } 2600 return err; 2601 } 2602 2603 #define MAX_PACKET_OFF 0xffff 2604 2605 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 2606 const struct bpf_call_arg_meta *meta, 2607 enum bpf_access_type t) 2608 { 2609 switch (env->prog->type) { 2610 /* Program types only with direct read access go here! */ 2611 case BPF_PROG_TYPE_LWT_IN: 2612 case BPF_PROG_TYPE_LWT_OUT: 2613 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 2614 case BPF_PROG_TYPE_SK_REUSEPORT: 2615 case BPF_PROG_TYPE_FLOW_DISSECTOR: 2616 case BPF_PROG_TYPE_CGROUP_SKB: 2617 if (t == BPF_WRITE) 2618 return false; 2619 /* fallthrough */ 2620 2621 /* Program types with direct read + write access go here! */ 2622 case BPF_PROG_TYPE_SCHED_CLS: 2623 case BPF_PROG_TYPE_SCHED_ACT: 2624 case BPF_PROG_TYPE_XDP: 2625 case BPF_PROG_TYPE_LWT_XMIT: 2626 case BPF_PROG_TYPE_SK_SKB: 2627 case BPF_PROG_TYPE_SK_MSG: 2628 if (meta) 2629 return meta->pkt_access; 2630 2631 env->seen_direct_write = true; 2632 return true; 2633 2634 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 2635 if (t == BPF_WRITE) 2636 env->seen_direct_write = true; 2637 2638 return true; 2639 2640 default: 2641 return false; 2642 } 2643 } 2644 2645 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 2646 int size, bool zero_size_allowed) 2647 { 2648 struct bpf_reg_state *regs = cur_regs(env); 2649 struct bpf_reg_state *reg = ®s[regno]; 2650 int err; 2651 2652 /* We may have added a variable offset to the packet pointer; but any 2653 * reg->range we have comes after that. We are only checking the fixed 2654 * offset. 2655 */ 2656 2657 /* We don't allow negative numbers, because we aren't tracking enough 2658 * detail to prove they're safe. 2659 */ 2660 if (reg->smin_value < 0) { 2661 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2662 regno); 2663 return -EACCES; 2664 } 2665 err = __check_mem_access(env, regno, off, size, reg->range, 2666 zero_size_allowed); 2667 if (err) { 2668 verbose(env, "R%d offset is outside of the packet\n", regno); 2669 return err; 2670 } 2671 2672 /* __check_mem_access has made sure "off + size - 1" is within u16. 2673 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 2674 * otherwise find_good_pkt_pointers would have refused to set range info 2675 * that __check_mem_access would have rejected this pkt access. 2676 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 2677 */ 2678 env->prog->aux->max_pkt_offset = 2679 max_t(u32, env->prog->aux->max_pkt_offset, 2680 off + reg->umax_value + size - 1); 2681 2682 return err; 2683 } 2684 2685 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 2686 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 2687 enum bpf_access_type t, enum bpf_reg_type *reg_type, 2688 u32 *btf_id) 2689 { 2690 struct bpf_insn_access_aux info = { 2691 .reg_type = *reg_type, 2692 .log = &env->log, 2693 }; 2694 2695 if (env->ops->is_valid_access && 2696 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 2697 /* A non zero info.ctx_field_size indicates that this field is a 2698 * candidate for later verifier transformation to load the whole 2699 * field and then apply a mask when accessed with a narrower 2700 * access than actual ctx access size. A zero info.ctx_field_size 2701 * will only allow for whole field access and rejects any other 2702 * type of narrower access. 2703 */ 2704 *reg_type = info.reg_type; 2705 2706 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) 2707 *btf_id = info.btf_id; 2708 else 2709 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 2710 /* remember the offset of last byte accessed in ctx */ 2711 if (env->prog->aux->max_ctx_offset < off + size) 2712 env->prog->aux->max_ctx_offset = off + size; 2713 return 0; 2714 } 2715 2716 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 2717 return -EACCES; 2718 } 2719 2720 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 2721 int size) 2722 { 2723 if (size < 0 || off < 0 || 2724 (u64)off + size > sizeof(struct bpf_flow_keys)) { 2725 verbose(env, "invalid access to flow keys off=%d size=%d\n", 2726 off, size); 2727 return -EACCES; 2728 } 2729 return 0; 2730 } 2731 2732 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 2733 u32 regno, int off, int size, 2734 enum bpf_access_type t) 2735 { 2736 struct bpf_reg_state *regs = cur_regs(env); 2737 struct bpf_reg_state *reg = ®s[regno]; 2738 struct bpf_insn_access_aux info = {}; 2739 bool valid; 2740 2741 if (reg->smin_value < 0) { 2742 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2743 regno); 2744 return -EACCES; 2745 } 2746 2747 switch (reg->type) { 2748 case PTR_TO_SOCK_COMMON: 2749 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 2750 break; 2751 case PTR_TO_SOCKET: 2752 valid = bpf_sock_is_valid_access(off, size, t, &info); 2753 break; 2754 case PTR_TO_TCP_SOCK: 2755 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 2756 break; 2757 case PTR_TO_XDP_SOCK: 2758 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 2759 break; 2760 default: 2761 valid = false; 2762 } 2763 2764 2765 if (valid) { 2766 env->insn_aux_data[insn_idx].ctx_field_size = 2767 info.ctx_field_size; 2768 return 0; 2769 } 2770 2771 verbose(env, "R%d invalid %s access off=%d size=%d\n", 2772 regno, reg_type_str[reg->type], off, size); 2773 2774 return -EACCES; 2775 } 2776 2777 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2778 { 2779 return cur_regs(env) + regno; 2780 } 2781 2782 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 2783 { 2784 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 2785 } 2786 2787 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 2788 { 2789 const struct bpf_reg_state *reg = reg_state(env, regno); 2790 2791 return reg->type == PTR_TO_CTX; 2792 } 2793 2794 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 2795 { 2796 const struct bpf_reg_state *reg = reg_state(env, regno); 2797 2798 return type_is_sk_pointer(reg->type); 2799 } 2800 2801 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 2802 { 2803 const struct bpf_reg_state *reg = reg_state(env, regno); 2804 2805 return type_is_pkt_pointer(reg->type); 2806 } 2807 2808 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 2809 { 2810 const struct bpf_reg_state *reg = reg_state(env, regno); 2811 2812 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 2813 return reg->type == PTR_TO_FLOW_KEYS; 2814 } 2815 2816 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 2817 const struct bpf_reg_state *reg, 2818 int off, int size, bool strict) 2819 { 2820 struct tnum reg_off; 2821 int ip_align; 2822 2823 /* Byte size accesses are always allowed. */ 2824 if (!strict || size == 1) 2825 return 0; 2826 2827 /* For platforms that do not have a Kconfig enabling 2828 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 2829 * NET_IP_ALIGN is universally set to '2'. And on platforms 2830 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 2831 * to this code only in strict mode where we want to emulate 2832 * the NET_IP_ALIGN==2 checking. Therefore use an 2833 * unconditional IP align value of '2'. 2834 */ 2835 ip_align = 2; 2836 2837 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 2838 if (!tnum_is_aligned(reg_off, size)) { 2839 char tn_buf[48]; 2840 2841 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2842 verbose(env, 2843 "misaligned packet access off %d+%s+%d+%d size %d\n", 2844 ip_align, tn_buf, reg->off, off, size); 2845 return -EACCES; 2846 } 2847 2848 return 0; 2849 } 2850 2851 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 2852 const struct bpf_reg_state *reg, 2853 const char *pointer_desc, 2854 int off, int size, bool strict) 2855 { 2856 struct tnum reg_off; 2857 2858 /* Byte size accesses are always allowed. */ 2859 if (!strict || size == 1) 2860 return 0; 2861 2862 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 2863 if (!tnum_is_aligned(reg_off, size)) { 2864 char tn_buf[48]; 2865 2866 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2867 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 2868 pointer_desc, tn_buf, reg->off, off, size); 2869 return -EACCES; 2870 } 2871 2872 return 0; 2873 } 2874 2875 static int check_ptr_alignment(struct bpf_verifier_env *env, 2876 const struct bpf_reg_state *reg, int off, 2877 int size, bool strict_alignment_once) 2878 { 2879 bool strict = env->strict_alignment || strict_alignment_once; 2880 const char *pointer_desc = ""; 2881 2882 switch (reg->type) { 2883 case PTR_TO_PACKET: 2884 case PTR_TO_PACKET_META: 2885 /* Special case, because of NET_IP_ALIGN. Given metadata sits 2886 * right in front, treat it the very same way. 2887 */ 2888 return check_pkt_ptr_alignment(env, reg, off, size, strict); 2889 case PTR_TO_FLOW_KEYS: 2890 pointer_desc = "flow keys "; 2891 break; 2892 case PTR_TO_MAP_VALUE: 2893 pointer_desc = "value "; 2894 break; 2895 case PTR_TO_CTX: 2896 pointer_desc = "context "; 2897 break; 2898 case PTR_TO_STACK: 2899 pointer_desc = "stack "; 2900 /* The stack spill tracking logic in check_stack_write() 2901 * and check_stack_read() relies on stack accesses being 2902 * aligned. 2903 */ 2904 strict = true; 2905 break; 2906 case PTR_TO_SOCKET: 2907 pointer_desc = "sock "; 2908 break; 2909 case PTR_TO_SOCK_COMMON: 2910 pointer_desc = "sock_common "; 2911 break; 2912 case PTR_TO_TCP_SOCK: 2913 pointer_desc = "tcp_sock "; 2914 break; 2915 case PTR_TO_XDP_SOCK: 2916 pointer_desc = "xdp_sock "; 2917 break; 2918 default: 2919 break; 2920 } 2921 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 2922 strict); 2923 } 2924 2925 static int update_stack_depth(struct bpf_verifier_env *env, 2926 const struct bpf_func_state *func, 2927 int off) 2928 { 2929 u16 stack = env->subprog_info[func->subprogno].stack_depth; 2930 2931 if (stack >= -off) 2932 return 0; 2933 2934 /* update known max for given subprogram */ 2935 env->subprog_info[func->subprogno].stack_depth = -off; 2936 return 0; 2937 } 2938 2939 /* starting from main bpf function walk all instructions of the function 2940 * and recursively walk all callees that given function can call. 2941 * Ignore jump and exit insns. 2942 * Since recursion is prevented by check_cfg() this algorithm 2943 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 2944 */ 2945 static int check_max_stack_depth(struct bpf_verifier_env *env) 2946 { 2947 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 2948 struct bpf_subprog_info *subprog = env->subprog_info; 2949 struct bpf_insn *insn = env->prog->insnsi; 2950 int ret_insn[MAX_CALL_FRAMES]; 2951 int ret_prog[MAX_CALL_FRAMES]; 2952 2953 process_func: 2954 /* round up to 32-bytes, since this is granularity 2955 * of interpreter stack size 2956 */ 2957 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2958 if (depth > MAX_BPF_STACK) { 2959 verbose(env, "combined stack size of %d calls is %d. Too large\n", 2960 frame + 1, depth); 2961 return -EACCES; 2962 } 2963 continue_func: 2964 subprog_end = subprog[idx + 1].start; 2965 for (; i < subprog_end; i++) { 2966 if (insn[i].code != (BPF_JMP | BPF_CALL)) 2967 continue; 2968 if (insn[i].src_reg != BPF_PSEUDO_CALL) 2969 continue; 2970 /* remember insn and function to return to */ 2971 ret_insn[frame] = i + 1; 2972 ret_prog[frame] = idx; 2973 2974 /* find the callee */ 2975 i = i + insn[i].imm + 1; 2976 idx = find_subprog(env, i); 2977 if (idx < 0) { 2978 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2979 i); 2980 return -EFAULT; 2981 } 2982 frame++; 2983 if (frame >= MAX_CALL_FRAMES) { 2984 verbose(env, "the call stack of %d frames is too deep !\n", 2985 frame); 2986 return -E2BIG; 2987 } 2988 goto process_func; 2989 } 2990 /* end of for() loop means the last insn of the 'subprog' 2991 * was reached. Doesn't matter whether it was JA or EXIT 2992 */ 2993 if (frame == 0) 2994 return 0; 2995 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2996 frame--; 2997 i = ret_insn[frame]; 2998 idx = ret_prog[frame]; 2999 goto continue_func; 3000 } 3001 3002 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 3003 static int get_callee_stack_depth(struct bpf_verifier_env *env, 3004 const struct bpf_insn *insn, int idx) 3005 { 3006 int start = idx + insn->imm + 1, subprog; 3007 3008 subprog = find_subprog(env, start); 3009 if (subprog < 0) { 3010 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3011 start); 3012 return -EFAULT; 3013 } 3014 return env->subprog_info[subprog].stack_depth; 3015 } 3016 #endif 3017 3018 int check_ctx_reg(struct bpf_verifier_env *env, 3019 const struct bpf_reg_state *reg, int regno) 3020 { 3021 /* Access to ctx or passing it to a helper is only allowed in 3022 * its original, unmodified form. 3023 */ 3024 3025 if (reg->off) { 3026 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 3027 regno, reg->off); 3028 return -EACCES; 3029 } 3030 3031 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3032 char tn_buf[48]; 3033 3034 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3035 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 3036 return -EACCES; 3037 } 3038 3039 return 0; 3040 } 3041 3042 static int check_tp_buffer_access(struct bpf_verifier_env *env, 3043 const struct bpf_reg_state *reg, 3044 int regno, int off, int size) 3045 { 3046 if (off < 0) { 3047 verbose(env, 3048 "R%d invalid tracepoint buffer access: off=%d, size=%d", 3049 regno, off, size); 3050 return -EACCES; 3051 } 3052 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3053 char tn_buf[48]; 3054 3055 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3056 verbose(env, 3057 "R%d invalid variable buffer offset: off=%d, var_off=%s", 3058 regno, off, tn_buf); 3059 return -EACCES; 3060 } 3061 if (off + size > env->prog->aux->max_tp_access) 3062 env->prog->aux->max_tp_access = off + size; 3063 3064 return 0; 3065 } 3066 3067 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 3068 static void zext_32_to_64(struct bpf_reg_state *reg) 3069 { 3070 reg->var_off = tnum_subreg(reg->var_off); 3071 __reg_assign_32_into_64(reg); 3072 } 3073 3074 /* truncate register to smaller size (in bytes) 3075 * must be called with size < BPF_REG_SIZE 3076 */ 3077 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 3078 { 3079 u64 mask; 3080 3081 /* clear high bits in bit representation */ 3082 reg->var_off = tnum_cast(reg->var_off, size); 3083 3084 /* fix arithmetic bounds */ 3085 mask = ((u64)1 << (size * 8)) - 1; 3086 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 3087 reg->umin_value &= mask; 3088 reg->umax_value &= mask; 3089 } else { 3090 reg->umin_value = 0; 3091 reg->umax_value = mask; 3092 } 3093 reg->smin_value = reg->umin_value; 3094 reg->smax_value = reg->umax_value; 3095 3096 /* If size is smaller than 32bit register the 32bit register 3097 * values are also truncated so we push 64-bit bounds into 3098 * 32-bit bounds. Above were truncated < 32-bits already. 3099 */ 3100 if (size >= 4) 3101 return; 3102 __reg_combine_64_into_32(reg); 3103 } 3104 3105 static bool bpf_map_is_rdonly(const struct bpf_map *map) 3106 { 3107 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 3108 } 3109 3110 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 3111 { 3112 void *ptr; 3113 u64 addr; 3114 int err; 3115 3116 err = map->ops->map_direct_value_addr(map, &addr, off); 3117 if (err) 3118 return err; 3119 ptr = (void *)(long)addr + off; 3120 3121 switch (size) { 3122 case sizeof(u8): 3123 *val = (u64)*(u8 *)ptr; 3124 break; 3125 case sizeof(u16): 3126 *val = (u64)*(u16 *)ptr; 3127 break; 3128 case sizeof(u32): 3129 *val = (u64)*(u32 *)ptr; 3130 break; 3131 case sizeof(u64): 3132 *val = *(u64 *)ptr; 3133 break; 3134 default: 3135 return -EINVAL; 3136 } 3137 return 0; 3138 } 3139 3140 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 3141 struct bpf_reg_state *regs, 3142 int regno, int off, int size, 3143 enum bpf_access_type atype, 3144 int value_regno) 3145 { 3146 struct bpf_reg_state *reg = regs + regno; 3147 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id); 3148 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off); 3149 u32 btf_id; 3150 int ret; 3151 3152 if (off < 0) { 3153 verbose(env, 3154 "R%d is ptr_%s invalid negative access: off=%d\n", 3155 regno, tname, off); 3156 return -EACCES; 3157 } 3158 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3159 char tn_buf[48]; 3160 3161 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3162 verbose(env, 3163 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 3164 regno, tname, off, tn_buf); 3165 return -EACCES; 3166 } 3167 3168 if (env->ops->btf_struct_access) { 3169 ret = env->ops->btf_struct_access(&env->log, t, off, size, 3170 atype, &btf_id); 3171 } else { 3172 if (atype != BPF_READ) { 3173 verbose(env, "only read is supported\n"); 3174 return -EACCES; 3175 } 3176 3177 ret = btf_struct_access(&env->log, t, off, size, atype, 3178 &btf_id); 3179 } 3180 3181 if (ret < 0) 3182 return ret; 3183 3184 if (atype == BPF_READ && value_regno >= 0) { 3185 if (ret == SCALAR_VALUE) { 3186 mark_reg_unknown(env, regs, value_regno); 3187 return 0; 3188 } 3189 mark_reg_known_zero(env, regs, value_regno); 3190 regs[value_regno].type = PTR_TO_BTF_ID; 3191 regs[value_regno].btf_id = btf_id; 3192 } 3193 3194 return 0; 3195 } 3196 3197 /* check whether memory at (regno + off) is accessible for t = (read | write) 3198 * if t==write, value_regno is a register which value is stored into memory 3199 * if t==read, value_regno is a register which will receive the value from memory 3200 * if t==write && value_regno==-1, some unknown value is stored into memory 3201 * if t==read && value_regno==-1, don't care what we read from memory 3202 */ 3203 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 3204 int off, int bpf_size, enum bpf_access_type t, 3205 int value_regno, bool strict_alignment_once) 3206 { 3207 struct bpf_reg_state *regs = cur_regs(env); 3208 struct bpf_reg_state *reg = regs + regno; 3209 struct bpf_func_state *state; 3210 int size, err = 0; 3211 3212 size = bpf_size_to_bytes(bpf_size); 3213 if (size < 0) 3214 return size; 3215 3216 /* alignment checks will add in reg->off themselves */ 3217 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 3218 if (err) 3219 return err; 3220 3221 /* for access checks, reg->off is just part of off */ 3222 off += reg->off; 3223 3224 if (reg->type == PTR_TO_MAP_VALUE) { 3225 if (t == BPF_WRITE && value_regno >= 0 && 3226 is_pointer_value(env, value_regno)) { 3227 verbose(env, "R%d leaks addr into map\n", value_regno); 3228 return -EACCES; 3229 } 3230 err = check_map_access_type(env, regno, off, size, t); 3231 if (err) 3232 return err; 3233 err = check_map_access(env, regno, off, size, false); 3234 if (!err && t == BPF_READ && value_regno >= 0) { 3235 struct bpf_map *map = reg->map_ptr; 3236 3237 /* if map is read-only, track its contents as scalars */ 3238 if (tnum_is_const(reg->var_off) && 3239 bpf_map_is_rdonly(map) && 3240 map->ops->map_direct_value_addr) { 3241 int map_off = off + reg->var_off.value; 3242 u64 val = 0; 3243 3244 err = bpf_map_direct_read(map, map_off, size, 3245 &val); 3246 if (err) 3247 return err; 3248 3249 regs[value_regno].type = SCALAR_VALUE; 3250 __mark_reg_known(®s[value_regno], val); 3251 } else { 3252 mark_reg_unknown(env, regs, value_regno); 3253 } 3254 } 3255 } else if (reg->type == PTR_TO_MEM) { 3256 if (t == BPF_WRITE && value_regno >= 0 && 3257 is_pointer_value(env, value_regno)) { 3258 verbose(env, "R%d leaks addr into mem\n", value_regno); 3259 return -EACCES; 3260 } 3261 err = check_mem_region_access(env, regno, off, size, 3262 reg->mem_size, false); 3263 if (!err && t == BPF_READ && value_regno >= 0) 3264 mark_reg_unknown(env, regs, value_regno); 3265 } else if (reg->type == PTR_TO_CTX) { 3266 enum bpf_reg_type reg_type = SCALAR_VALUE; 3267 u32 btf_id = 0; 3268 3269 if (t == BPF_WRITE && value_regno >= 0 && 3270 is_pointer_value(env, value_regno)) { 3271 verbose(env, "R%d leaks addr into ctx\n", value_regno); 3272 return -EACCES; 3273 } 3274 3275 err = check_ctx_reg(env, reg, regno); 3276 if (err < 0) 3277 return err; 3278 3279 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf_id); 3280 if (err) 3281 verbose_linfo(env, insn_idx, "; "); 3282 if (!err && t == BPF_READ && value_regno >= 0) { 3283 /* ctx access returns either a scalar, or a 3284 * PTR_TO_PACKET[_META,_END]. In the latter 3285 * case, we know the offset is zero. 3286 */ 3287 if (reg_type == SCALAR_VALUE) { 3288 mark_reg_unknown(env, regs, value_regno); 3289 } else { 3290 mark_reg_known_zero(env, regs, 3291 value_regno); 3292 if (reg_type_may_be_null(reg_type)) 3293 regs[value_regno].id = ++env->id_gen; 3294 /* A load of ctx field could have different 3295 * actual load size with the one encoded in the 3296 * insn. When the dst is PTR, it is for sure not 3297 * a sub-register. 3298 */ 3299 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 3300 if (reg_type == PTR_TO_BTF_ID || 3301 reg_type == PTR_TO_BTF_ID_OR_NULL) 3302 regs[value_regno].btf_id = btf_id; 3303 } 3304 regs[value_regno].type = reg_type; 3305 } 3306 3307 } else if (reg->type == PTR_TO_STACK) { 3308 off += reg->var_off.value; 3309 err = check_stack_access(env, reg, off, size); 3310 if (err) 3311 return err; 3312 3313 state = func(env, reg); 3314 err = update_stack_depth(env, state, off); 3315 if (err) 3316 return err; 3317 3318 if (t == BPF_WRITE) 3319 err = check_stack_write(env, state, off, size, 3320 value_regno, insn_idx); 3321 else 3322 err = check_stack_read(env, state, off, size, 3323 value_regno); 3324 } else if (reg_is_pkt_pointer(reg)) { 3325 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 3326 verbose(env, "cannot write into packet\n"); 3327 return -EACCES; 3328 } 3329 if (t == BPF_WRITE && value_regno >= 0 && 3330 is_pointer_value(env, value_regno)) { 3331 verbose(env, "R%d leaks addr into packet\n", 3332 value_regno); 3333 return -EACCES; 3334 } 3335 err = check_packet_access(env, regno, off, size, false); 3336 if (!err && t == BPF_READ && value_regno >= 0) 3337 mark_reg_unknown(env, regs, value_regno); 3338 } else if (reg->type == PTR_TO_FLOW_KEYS) { 3339 if (t == BPF_WRITE && value_regno >= 0 && 3340 is_pointer_value(env, value_regno)) { 3341 verbose(env, "R%d leaks addr into flow keys\n", 3342 value_regno); 3343 return -EACCES; 3344 } 3345 3346 err = check_flow_keys_access(env, off, size); 3347 if (!err && t == BPF_READ && value_regno >= 0) 3348 mark_reg_unknown(env, regs, value_regno); 3349 } else if (type_is_sk_pointer(reg->type)) { 3350 if (t == BPF_WRITE) { 3351 verbose(env, "R%d cannot write into %s\n", 3352 regno, reg_type_str[reg->type]); 3353 return -EACCES; 3354 } 3355 err = check_sock_access(env, insn_idx, regno, off, size, t); 3356 if (!err && value_regno >= 0) 3357 mark_reg_unknown(env, regs, value_regno); 3358 } else if (reg->type == PTR_TO_TP_BUFFER) { 3359 err = check_tp_buffer_access(env, reg, regno, off, size); 3360 if (!err && t == BPF_READ && value_regno >= 0) 3361 mark_reg_unknown(env, regs, value_regno); 3362 } else if (reg->type == PTR_TO_BTF_ID) { 3363 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 3364 value_regno); 3365 } else { 3366 verbose(env, "R%d invalid mem access '%s'\n", regno, 3367 reg_type_str[reg->type]); 3368 return -EACCES; 3369 } 3370 3371 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 3372 regs[value_regno].type == SCALAR_VALUE) { 3373 /* b/h/w load zero-extends, mark upper bits as known 0 */ 3374 coerce_reg_to_size(®s[value_regno], size); 3375 } 3376 return err; 3377 } 3378 3379 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 3380 { 3381 int err; 3382 3383 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 3384 insn->imm != 0) { 3385 verbose(env, "BPF_XADD uses reserved fields\n"); 3386 return -EINVAL; 3387 } 3388 3389 /* check src1 operand */ 3390 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3391 if (err) 3392 return err; 3393 3394 /* check src2 operand */ 3395 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3396 if (err) 3397 return err; 3398 3399 if (is_pointer_value(env, insn->src_reg)) { 3400 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 3401 return -EACCES; 3402 } 3403 3404 if (is_ctx_reg(env, insn->dst_reg) || 3405 is_pkt_reg(env, insn->dst_reg) || 3406 is_flow_key_reg(env, insn->dst_reg) || 3407 is_sk_reg(env, insn->dst_reg)) { 3408 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 3409 insn->dst_reg, 3410 reg_type_str[reg_state(env, insn->dst_reg)->type]); 3411 return -EACCES; 3412 } 3413 3414 /* check whether atomic_add can read the memory */ 3415 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3416 BPF_SIZE(insn->code), BPF_READ, -1, true); 3417 if (err) 3418 return err; 3419 3420 /* check whether atomic_add can write into the same memory */ 3421 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3422 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 3423 } 3424 3425 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 3426 int off, int access_size, 3427 bool zero_size_allowed) 3428 { 3429 struct bpf_reg_state *reg = reg_state(env, regno); 3430 3431 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 3432 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 3433 if (tnum_is_const(reg->var_off)) { 3434 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 3435 regno, off, access_size); 3436 } else { 3437 char tn_buf[48]; 3438 3439 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3440 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 3441 regno, tn_buf, access_size); 3442 } 3443 return -EACCES; 3444 } 3445 return 0; 3446 } 3447 3448 /* when register 'regno' is passed into function that will read 'access_size' 3449 * bytes from that pointer, make sure that it's within stack boundary 3450 * and all elements of stack are initialized. 3451 * Unlike most pointer bounds-checking functions, this one doesn't take an 3452 * 'off' argument, so it has to add in reg->off itself. 3453 */ 3454 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 3455 int access_size, bool zero_size_allowed, 3456 struct bpf_call_arg_meta *meta) 3457 { 3458 struct bpf_reg_state *reg = reg_state(env, regno); 3459 struct bpf_func_state *state = func(env, reg); 3460 int err, min_off, max_off, i, j, slot, spi; 3461 3462 if (reg->type != PTR_TO_STACK) { 3463 /* Allow zero-byte read from NULL, regardless of pointer type */ 3464 if (zero_size_allowed && access_size == 0 && 3465 register_is_null(reg)) 3466 return 0; 3467 3468 verbose(env, "R%d type=%s expected=%s\n", regno, 3469 reg_type_str[reg->type], 3470 reg_type_str[PTR_TO_STACK]); 3471 return -EACCES; 3472 } 3473 3474 if (tnum_is_const(reg->var_off)) { 3475 min_off = max_off = reg->var_off.value + reg->off; 3476 err = __check_stack_boundary(env, regno, min_off, access_size, 3477 zero_size_allowed); 3478 if (err) 3479 return err; 3480 } else { 3481 /* Variable offset is prohibited for unprivileged mode for 3482 * simplicity since it requires corresponding support in 3483 * Spectre masking for stack ALU. 3484 * See also retrieve_ptr_limit(). 3485 */ 3486 if (!env->bypass_spec_v1) { 3487 char tn_buf[48]; 3488 3489 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3490 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 3491 regno, tn_buf); 3492 return -EACCES; 3493 } 3494 /* Only initialized buffer on stack is allowed to be accessed 3495 * with variable offset. With uninitialized buffer it's hard to 3496 * guarantee that whole memory is marked as initialized on 3497 * helper return since specific bounds are unknown what may 3498 * cause uninitialized stack leaking. 3499 */ 3500 if (meta && meta->raw_mode) 3501 meta = NULL; 3502 3503 if (reg->smax_value >= BPF_MAX_VAR_OFF || 3504 reg->smax_value <= -BPF_MAX_VAR_OFF) { 3505 verbose(env, "R%d unbounded indirect variable offset stack access\n", 3506 regno); 3507 return -EACCES; 3508 } 3509 min_off = reg->smin_value + reg->off; 3510 max_off = reg->smax_value + reg->off; 3511 err = __check_stack_boundary(env, regno, min_off, access_size, 3512 zero_size_allowed); 3513 if (err) { 3514 verbose(env, "R%d min value is outside of stack bound\n", 3515 regno); 3516 return err; 3517 } 3518 err = __check_stack_boundary(env, regno, max_off, access_size, 3519 zero_size_allowed); 3520 if (err) { 3521 verbose(env, "R%d max value is outside of stack bound\n", 3522 regno); 3523 return err; 3524 } 3525 } 3526 3527 if (meta && meta->raw_mode) { 3528 meta->access_size = access_size; 3529 meta->regno = regno; 3530 return 0; 3531 } 3532 3533 for (i = min_off; i < max_off + access_size; i++) { 3534 u8 *stype; 3535 3536 slot = -i - 1; 3537 spi = slot / BPF_REG_SIZE; 3538 if (state->allocated_stack <= slot) 3539 goto err; 3540 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3541 if (*stype == STACK_MISC) 3542 goto mark; 3543 if (*stype == STACK_ZERO) { 3544 /* helper can write anything into the stack */ 3545 *stype = STACK_MISC; 3546 goto mark; 3547 } 3548 3549 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3550 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) 3551 goto mark; 3552 3553 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3554 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) { 3555 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 3556 for (j = 0; j < BPF_REG_SIZE; j++) 3557 state->stack[spi].slot_type[j] = STACK_MISC; 3558 goto mark; 3559 } 3560 3561 err: 3562 if (tnum_is_const(reg->var_off)) { 3563 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 3564 min_off, i - min_off, access_size); 3565 } else { 3566 char tn_buf[48]; 3567 3568 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3569 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 3570 tn_buf, i - min_off, access_size); 3571 } 3572 return -EACCES; 3573 mark: 3574 /* reading any byte out of 8-byte 'spill_slot' will cause 3575 * the whole slot to be marked as 'read' 3576 */ 3577 mark_reg_read(env, &state->stack[spi].spilled_ptr, 3578 state->stack[spi].spilled_ptr.parent, 3579 REG_LIVE_READ64); 3580 } 3581 return update_stack_depth(env, state, min_off); 3582 } 3583 3584 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 3585 int access_size, bool zero_size_allowed, 3586 struct bpf_call_arg_meta *meta) 3587 { 3588 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3589 3590 switch (reg->type) { 3591 case PTR_TO_PACKET: 3592 case PTR_TO_PACKET_META: 3593 return check_packet_access(env, regno, reg->off, access_size, 3594 zero_size_allowed); 3595 case PTR_TO_MAP_VALUE: 3596 if (check_map_access_type(env, regno, reg->off, access_size, 3597 meta && meta->raw_mode ? BPF_WRITE : 3598 BPF_READ)) 3599 return -EACCES; 3600 return check_map_access(env, regno, reg->off, access_size, 3601 zero_size_allowed); 3602 case PTR_TO_MEM: 3603 return check_mem_region_access(env, regno, reg->off, 3604 access_size, reg->mem_size, 3605 zero_size_allowed); 3606 default: /* scalar_value|ptr_to_stack or invalid ptr */ 3607 return check_stack_boundary(env, regno, access_size, 3608 zero_size_allowed, meta); 3609 } 3610 } 3611 3612 /* Implementation details: 3613 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 3614 * Two bpf_map_lookups (even with the same key) will have different reg->id. 3615 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 3616 * value_or_null->value transition, since the verifier only cares about 3617 * the range of access to valid map value pointer and doesn't care about actual 3618 * address of the map element. 3619 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 3620 * reg->id > 0 after value_or_null->value transition. By doing so 3621 * two bpf_map_lookups will be considered two different pointers that 3622 * point to different bpf_spin_locks. 3623 * The verifier allows taking only one bpf_spin_lock at a time to avoid 3624 * dead-locks. 3625 * Since only one bpf_spin_lock is allowed the checks are simpler than 3626 * reg_is_refcounted() logic. The verifier needs to remember only 3627 * one spin_lock instead of array of acquired_refs. 3628 * cur_state->active_spin_lock remembers which map value element got locked 3629 * and clears it after bpf_spin_unlock. 3630 */ 3631 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 3632 bool is_lock) 3633 { 3634 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3635 struct bpf_verifier_state *cur = env->cur_state; 3636 bool is_const = tnum_is_const(reg->var_off); 3637 struct bpf_map *map = reg->map_ptr; 3638 u64 val = reg->var_off.value; 3639 3640 if (reg->type != PTR_TO_MAP_VALUE) { 3641 verbose(env, "R%d is not a pointer to map_value\n", regno); 3642 return -EINVAL; 3643 } 3644 if (!is_const) { 3645 verbose(env, 3646 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 3647 regno); 3648 return -EINVAL; 3649 } 3650 if (!map->btf) { 3651 verbose(env, 3652 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 3653 map->name); 3654 return -EINVAL; 3655 } 3656 if (!map_value_has_spin_lock(map)) { 3657 if (map->spin_lock_off == -E2BIG) 3658 verbose(env, 3659 "map '%s' has more than one 'struct bpf_spin_lock'\n", 3660 map->name); 3661 else if (map->spin_lock_off == -ENOENT) 3662 verbose(env, 3663 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 3664 map->name); 3665 else 3666 verbose(env, 3667 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 3668 map->name); 3669 return -EINVAL; 3670 } 3671 if (map->spin_lock_off != val + reg->off) { 3672 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 3673 val + reg->off); 3674 return -EINVAL; 3675 } 3676 if (is_lock) { 3677 if (cur->active_spin_lock) { 3678 verbose(env, 3679 "Locking two bpf_spin_locks are not allowed\n"); 3680 return -EINVAL; 3681 } 3682 cur->active_spin_lock = reg->id; 3683 } else { 3684 if (!cur->active_spin_lock) { 3685 verbose(env, "bpf_spin_unlock without taking a lock\n"); 3686 return -EINVAL; 3687 } 3688 if (cur->active_spin_lock != reg->id) { 3689 verbose(env, "bpf_spin_unlock of different lock\n"); 3690 return -EINVAL; 3691 } 3692 cur->active_spin_lock = 0; 3693 } 3694 return 0; 3695 } 3696 3697 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 3698 { 3699 return type == ARG_PTR_TO_MEM || 3700 type == ARG_PTR_TO_MEM_OR_NULL || 3701 type == ARG_PTR_TO_UNINIT_MEM; 3702 } 3703 3704 static bool arg_type_is_mem_size(enum bpf_arg_type type) 3705 { 3706 return type == ARG_CONST_SIZE || 3707 type == ARG_CONST_SIZE_OR_ZERO; 3708 } 3709 3710 static bool arg_type_is_alloc_mem_ptr(enum bpf_arg_type type) 3711 { 3712 return type == ARG_PTR_TO_ALLOC_MEM || 3713 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL; 3714 } 3715 3716 static bool arg_type_is_alloc_size(enum bpf_arg_type type) 3717 { 3718 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 3719 } 3720 3721 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 3722 { 3723 return type == ARG_PTR_TO_INT || 3724 type == ARG_PTR_TO_LONG; 3725 } 3726 3727 static int int_ptr_type_to_size(enum bpf_arg_type type) 3728 { 3729 if (type == ARG_PTR_TO_INT) 3730 return sizeof(u32); 3731 else if (type == ARG_PTR_TO_LONG) 3732 return sizeof(u64); 3733 3734 return -EINVAL; 3735 } 3736 3737 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 3738 enum bpf_arg_type arg_type, 3739 struct bpf_call_arg_meta *meta) 3740 { 3741 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3742 enum bpf_reg_type expected_type, type = reg->type; 3743 int err = 0; 3744 3745 if (arg_type == ARG_DONTCARE) 3746 return 0; 3747 3748 err = check_reg_arg(env, regno, SRC_OP); 3749 if (err) 3750 return err; 3751 3752 if (arg_type == ARG_ANYTHING) { 3753 if (is_pointer_value(env, regno)) { 3754 verbose(env, "R%d leaks addr into helper function\n", 3755 regno); 3756 return -EACCES; 3757 } 3758 return 0; 3759 } 3760 3761 if (type_is_pkt_pointer(type) && 3762 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 3763 verbose(env, "helper access to the packet is not allowed\n"); 3764 return -EACCES; 3765 } 3766 3767 if (arg_type == ARG_PTR_TO_MAP_KEY || 3768 arg_type == ARG_PTR_TO_MAP_VALUE || 3769 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 3770 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 3771 expected_type = PTR_TO_STACK; 3772 if (register_is_null(reg) && 3773 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) 3774 /* final test in check_stack_boundary() */; 3775 else if (!type_is_pkt_pointer(type) && 3776 type != PTR_TO_MAP_VALUE && 3777 type != expected_type) 3778 goto err_type; 3779 } else if (arg_type == ARG_CONST_SIZE || 3780 arg_type == ARG_CONST_SIZE_OR_ZERO || 3781 arg_type == ARG_CONST_ALLOC_SIZE_OR_ZERO) { 3782 expected_type = SCALAR_VALUE; 3783 if (type != expected_type) 3784 goto err_type; 3785 } else if (arg_type == ARG_CONST_MAP_PTR) { 3786 expected_type = CONST_PTR_TO_MAP; 3787 if (type != expected_type) 3788 goto err_type; 3789 } else if (arg_type == ARG_PTR_TO_CTX || 3790 arg_type == ARG_PTR_TO_CTX_OR_NULL) { 3791 expected_type = PTR_TO_CTX; 3792 if (!(register_is_null(reg) && 3793 arg_type == ARG_PTR_TO_CTX_OR_NULL)) { 3794 if (type != expected_type) 3795 goto err_type; 3796 err = check_ctx_reg(env, reg, regno); 3797 if (err < 0) 3798 return err; 3799 } 3800 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) { 3801 expected_type = PTR_TO_SOCK_COMMON; 3802 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */ 3803 if (!type_is_sk_pointer(type)) 3804 goto err_type; 3805 if (reg->ref_obj_id) { 3806 if (meta->ref_obj_id) { 3807 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 3808 regno, reg->ref_obj_id, 3809 meta->ref_obj_id); 3810 return -EFAULT; 3811 } 3812 meta->ref_obj_id = reg->ref_obj_id; 3813 } 3814 } else if (arg_type == ARG_PTR_TO_SOCKET) { 3815 expected_type = PTR_TO_SOCKET; 3816 if (type != expected_type) 3817 goto err_type; 3818 } else if (arg_type == ARG_PTR_TO_BTF_ID) { 3819 expected_type = PTR_TO_BTF_ID; 3820 if (type != expected_type) 3821 goto err_type; 3822 if (reg->btf_id != meta->btf_id) { 3823 verbose(env, "Helper has type %s got %s in R%d\n", 3824 kernel_type_name(meta->btf_id), 3825 kernel_type_name(reg->btf_id), regno); 3826 3827 return -EACCES; 3828 } 3829 if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) { 3830 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 3831 regno); 3832 return -EACCES; 3833 } 3834 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 3835 if (meta->func_id == BPF_FUNC_spin_lock) { 3836 if (process_spin_lock(env, regno, true)) 3837 return -EACCES; 3838 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 3839 if (process_spin_lock(env, regno, false)) 3840 return -EACCES; 3841 } else { 3842 verbose(env, "verifier internal error\n"); 3843 return -EFAULT; 3844 } 3845 } else if (arg_type_is_mem_ptr(arg_type)) { 3846 expected_type = PTR_TO_STACK; 3847 /* One exception here. In case function allows for NULL to be 3848 * passed in as argument, it's a SCALAR_VALUE type. Final test 3849 * happens during stack boundary checking. 3850 */ 3851 if (register_is_null(reg) && 3852 (arg_type == ARG_PTR_TO_MEM_OR_NULL || 3853 arg_type == ARG_PTR_TO_ALLOC_MEM_OR_NULL)) 3854 /* final test in check_stack_boundary() */; 3855 else if (!type_is_pkt_pointer(type) && 3856 type != PTR_TO_MAP_VALUE && 3857 type != PTR_TO_MEM && 3858 type != expected_type) 3859 goto err_type; 3860 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 3861 } else if (arg_type_is_alloc_mem_ptr(arg_type)) { 3862 expected_type = PTR_TO_MEM; 3863 if (register_is_null(reg) && 3864 arg_type == ARG_PTR_TO_ALLOC_MEM_OR_NULL) 3865 /* final test in check_stack_boundary() */; 3866 else if (type != expected_type) 3867 goto err_type; 3868 if (meta->ref_obj_id) { 3869 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 3870 regno, reg->ref_obj_id, 3871 meta->ref_obj_id); 3872 return -EFAULT; 3873 } 3874 meta->ref_obj_id = reg->ref_obj_id; 3875 } else if (arg_type_is_int_ptr(arg_type)) { 3876 expected_type = PTR_TO_STACK; 3877 if (!type_is_pkt_pointer(type) && 3878 type != PTR_TO_MAP_VALUE && 3879 type != expected_type) 3880 goto err_type; 3881 } else { 3882 verbose(env, "unsupported arg_type %d\n", arg_type); 3883 return -EFAULT; 3884 } 3885 3886 if (arg_type == ARG_CONST_MAP_PTR) { 3887 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 3888 meta->map_ptr = reg->map_ptr; 3889 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 3890 /* bpf_map_xxx(..., map_ptr, ..., key) call: 3891 * check that [key, key + map->key_size) are within 3892 * stack limits and initialized 3893 */ 3894 if (!meta->map_ptr) { 3895 /* in function declaration map_ptr must come before 3896 * map_key, so that it's verified and known before 3897 * we have to check map_key here. Otherwise it means 3898 * that kernel subsystem misconfigured verifier 3899 */ 3900 verbose(env, "invalid map_ptr to access map->key\n"); 3901 return -EACCES; 3902 } 3903 err = check_helper_mem_access(env, regno, 3904 meta->map_ptr->key_size, false, 3905 NULL); 3906 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 3907 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 3908 !register_is_null(reg)) || 3909 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 3910 /* bpf_map_xxx(..., map_ptr, ..., value) call: 3911 * check [value, value + map->value_size) validity 3912 */ 3913 if (!meta->map_ptr) { 3914 /* kernel subsystem misconfigured verifier */ 3915 verbose(env, "invalid map_ptr to access map->value\n"); 3916 return -EACCES; 3917 } 3918 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 3919 err = check_helper_mem_access(env, regno, 3920 meta->map_ptr->value_size, false, 3921 meta); 3922 } else if (arg_type_is_mem_size(arg_type)) { 3923 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 3924 3925 /* This is used to refine r0 return value bounds for helpers 3926 * that enforce this value as an upper bound on return values. 3927 * See do_refine_retval_range() for helpers that can refine 3928 * the return value. C type of helper is u32 so we pull register 3929 * bound from umax_value however, if negative verifier errors 3930 * out. Only upper bounds can be learned because retval is an 3931 * int type and negative retvals are allowed. 3932 */ 3933 meta->msize_max_value = reg->umax_value; 3934 3935 /* The register is SCALAR_VALUE; the access check 3936 * happens using its boundaries. 3937 */ 3938 if (!tnum_is_const(reg->var_off)) 3939 /* For unprivileged variable accesses, disable raw 3940 * mode so that the program is required to 3941 * initialize all the memory that the helper could 3942 * just partially fill up. 3943 */ 3944 meta = NULL; 3945 3946 if (reg->smin_value < 0) { 3947 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 3948 regno); 3949 return -EACCES; 3950 } 3951 3952 if (reg->umin_value == 0) { 3953 err = check_helper_mem_access(env, regno - 1, 0, 3954 zero_size_allowed, 3955 meta); 3956 if (err) 3957 return err; 3958 } 3959 3960 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 3961 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 3962 regno); 3963 return -EACCES; 3964 } 3965 err = check_helper_mem_access(env, regno - 1, 3966 reg->umax_value, 3967 zero_size_allowed, meta); 3968 if (!err) 3969 err = mark_chain_precision(env, regno); 3970 } else if (arg_type_is_alloc_size(arg_type)) { 3971 if (!tnum_is_const(reg->var_off)) { 3972 verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n", 3973 regno); 3974 return -EACCES; 3975 } 3976 meta->mem_size = reg->var_off.value; 3977 } else if (arg_type_is_int_ptr(arg_type)) { 3978 int size = int_ptr_type_to_size(arg_type); 3979 3980 err = check_helper_mem_access(env, regno, size, false, meta); 3981 if (err) 3982 return err; 3983 err = check_ptr_alignment(env, reg, 0, size, true); 3984 } 3985 3986 return err; 3987 err_type: 3988 verbose(env, "R%d type=%s expected=%s\n", regno, 3989 reg_type_str[type], reg_type_str[expected_type]); 3990 return -EACCES; 3991 } 3992 3993 static int check_map_func_compatibility(struct bpf_verifier_env *env, 3994 struct bpf_map *map, int func_id) 3995 { 3996 if (!map) 3997 return 0; 3998 3999 /* We need a two way check, first is from map perspective ... */ 4000 switch (map->map_type) { 4001 case BPF_MAP_TYPE_PROG_ARRAY: 4002 if (func_id != BPF_FUNC_tail_call) 4003 goto error; 4004 break; 4005 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 4006 if (func_id != BPF_FUNC_perf_event_read && 4007 func_id != BPF_FUNC_perf_event_output && 4008 func_id != BPF_FUNC_skb_output && 4009 func_id != BPF_FUNC_perf_event_read_value && 4010 func_id != BPF_FUNC_xdp_output) 4011 goto error; 4012 break; 4013 case BPF_MAP_TYPE_RINGBUF: 4014 if (func_id != BPF_FUNC_ringbuf_output && 4015 func_id != BPF_FUNC_ringbuf_reserve && 4016 func_id != BPF_FUNC_ringbuf_submit && 4017 func_id != BPF_FUNC_ringbuf_discard && 4018 func_id != BPF_FUNC_ringbuf_query) 4019 goto error; 4020 break; 4021 case BPF_MAP_TYPE_STACK_TRACE: 4022 if (func_id != BPF_FUNC_get_stackid) 4023 goto error; 4024 break; 4025 case BPF_MAP_TYPE_CGROUP_ARRAY: 4026 if (func_id != BPF_FUNC_skb_under_cgroup && 4027 func_id != BPF_FUNC_current_task_under_cgroup) 4028 goto error; 4029 break; 4030 case BPF_MAP_TYPE_CGROUP_STORAGE: 4031 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 4032 if (func_id != BPF_FUNC_get_local_storage) 4033 goto error; 4034 break; 4035 case BPF_MAP_TYPE_DEVMAP: 4036 case BPF_MAP_TYPE_DEVMAP_HASH: 4037 if (func_id != BPF_FUNC_redirect_map && 4038 func_id != BPF_FUNC_map_lookup_elem) 4039 goto error; 4040 break; 4041 /* Restrict bpf side of cpumap and xskmap, open when use-cases 4042 * appear. 4043 */ 4044 case BPF_MAP_TYPE_CPUMAP: 4045 if (func_id != BPF_FUNC_redirect_map) 4046 goto error; 4047 break; 4048 case BPF_MAP_TYPE_XSKMAP: 4049 if (func_id != BPF_FUNC_redirect_map && 4050 func_id != BPF_FUNC_map_lookup_elem) 4051 goto error; 4052 break; 4053 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 4054 case BPF_MAP_TYPE_HASH_OF_MAPS: 4055 if (func_id != BPF_FUNC_map_lookup_elem) 4056 goto error; 4057 break; 4058 case BPF_MAP_TYPE_SOCKMAP: 4059 if (func_id != BPF_FUNC_sk_redirect_map && 4060 func_id != BPF_FUNC_sock_map_update && 4061 func_id != BPF_FUNC_map_delete_elem && 4062 func_id != BPF_FUNC_msg_redirect_map && 4063 func_id != BPF_FUNC_sk_select_reuseport && 4064 func_id != BPF_FUNC_map_lookup_elem) 4065 goto error; 4066 break; 4067 case BPF_MAP_TYPE_SOCKHASH: 4068 if (func_id != BPF_FUNC_sk_redirect_hash && 4069 func_id != BPF_FUNC_sock_hash_update && 4070 func_id != BPF_FUNC_map_delete_elem && 4071 func_id != BPF_FUNC_msg_redirect_hash && 4072 func_id != BPF_FUNC_sk_select_reuseport && 4073 func_id != BPF_FUNC_map_lookup_elem) 4074 goto error; 4075 break; 4076 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 4077 if (func_id != BPF_FUNC_sk_select_reuseport) 4078 goto error; 4079 break; 4080 case BPF_MAP_TYPE_QUEUE: 4081 case BPF_MAP_TYPE_STACK: 4082 if (func_id != BPF_FUNC_map_peek_elem && 4083 func_id != BPF_FUNC_map_pop_elem && 4084 func_id != BPF_FUNC_map_push_elem) 4085 goto error; 4086 break; 4087 case BPF_MAP_TYPE_SK_STORAGE: 4088 if (func_id != BPF_FUNC_sk_storage_get && 4089 func_id != BPF_FUNC_sk_storage_delete) 4090 goto error; 4091 break; 4092 default: 4093 break; 4094 } 4095 4096 /* ... and second from the function itself. */ 4097 switch (func_id) { 4098 case BPF_FUNC_tail_call: 4099 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 4100 goto error; 4101 if (env->subprog_cnt > 1) { 4102 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 4103 return -EINVAL; 4104 } 4105 break; 4106 case BPF_FUNC_perf_event_read: 4107 case BPF_FUNC_perf_event_output: 4108 case BPF_FUNC_perf_event_read_value: 4109 case BPF_FUNC_skb_output: 4110 case BPF_FUNC_xdp_output: 4111 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 4112 goto error; 4113 break; 4114 case BPF_FUNC_get_stackid: 4115 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 4116 goto error; 4117 break; 4118 case BPF_FUNC_current_task_under_cgroup: 4119 case BPF_FUNC_skb_under_cgroup: 4120 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 4121 goto error; 4122 break; 4123 case BPF_FUNC_redirect_map: 4124 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 4125 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 4126 map->map_type != BPF_MAP_TYPE_CPUMAP && 4127 map->map_type != BPF_MAP_TYPE_XSKMAP) 4128 goto error; 4129 break; 4130 case BPF_FUNC_sk_redirect_map: 4131 case BPF_FUNC_msg_redirect_map: 4132 case BPF_FUNC_sock_map_update: 4133 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 4134 goto error; 4135 break; 4136 case BPF_FUNC_sk_redirect_hash: 4137 case BPF_FUNC_msg_redirect_hash: 4138 case BPF_FUNC_sock_hash_update: 4139 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 4140 goto error; 4141 break; 4142 case BPF_FUNC_get_local_storage: 4143 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 4144 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 4145 goto error; 4146 break; 4147 case BPF_FUNC_sk_select_reuseport: 4148 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 4149 map->map_type != BPF_MAP_TYPE_SOCKMAP && 4150 map->map_type != BPF_MAP_TYPE_SOCKHASH) 4151 goto error; 4152 break; 4153 case BPF_FUNC_map_peek_elem: 4154 case BPF_FUNC_map_pop_elem: 4155 case BPF_FUNC_map_push_elem: 4156 if (map->map_type != BPF_MAP_TYPE_QUEUE && 4157 map->map_type != BPF_MAP_TYPE_STACK) 4158 goto error; 4159 break; 4160 case BPF_FUNC_sk_storage_get: 4161 case BPF_FUNC_sk_storage_delete: 4162 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 4163 goto error; 4164 break; 4165 default: 4166 break; 4167 } 4168 4169 return 0; 4170 error: 4171 verbose(env, "cannot pass map_type %d into func %s#%d\n", 4172 map->map_type, func_id_name(func_id), func_id); 4173 return -EINVAL; 4174 } 4175 4176 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 4177 { 4178 int count = 0; 4179 4180 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 4181 count++; 4182 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 4183 count++; 4184 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 4185 count++; 4186 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 4187 count++; 4188 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 4189 count++; 4190 4191 /* We only support one arg being in raw mode at the moment, 4192 * which is sufficient for the helper functions we have 4193 * right now. 4194 */ 4195 return count <= 1; 4196 } 4197 4198 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 4199 enum bpf_arg_type arg_next) 4200 { 4201 return (arg_type_is_mem_ptr(arg_curr) && 4202 !arg_type_is_mem_size(arg_next)) || 4203 (!arg_type_is_mem_ptr(arg_curr) && 4204 arg_type_is_mem_size(arg_next)); 4205 } 4206 4207 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 4208 { 4209 /* bpf_xxx(..., buf, len) call will access 'len' 4210 * bytes from memory 'buf'. Both arg types need 4211 * to be paired, so make sure there's no buggy 4212 * helper function specification. 4213 */ 4214 if (arg_type_is_mem_size(fn->arg1_type) || 4215 arg_type_is_mem_ptr(fn->arg5_type) || 4216 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 4217 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 4218 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 4219 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 4220 return false; 4221 4222 return true; 4223 } 4224 4225 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 4226 { 4227 int count = 0; 4228 4229 if (arg_type_may_be_refcounted(fn->arg1_type)) 4230 count++; 4231 if (arg_type_may_be_refcounted(fn->arg2_type)) 4232 count++; 4233 if (arg_type_may_be_refcounted(fn->arg3_type)) 4234 count++; 4235 if (arg_type_may_be_refcounted(fn->arg4_type)) 4236 count++; 4237 if (arg_type_may_be_refcounted(fn->arg5_type)) 4238 count++; 4239 4240 /* A reference acquiring function cannot acquire 4241 * another refcounted ptr. 4242 */ 4243 if (may_be_acquire_function(func_id) && count) 4244 return false; 4245 4246 /* We only support one arg being unreferenced at the moment, 4247 * which is sufficient for the helper functions we have right now. 4248 */ 4249 return count <= 1; 4250 } 4251 4252 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 4253 { 4254 return check_raw_mode_ok(fn) && 4255 check_arg_pair_ok(fn) && 4256 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 4257 } 4258 4259 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 4260 * are now invalid, so turn them into unknown SCALAR_VALUE. 4261 */ 4262 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 4263 struct bpf_func_state *state) 4264 { 4265 struct bpf_reg_state *regs = state->regs, *reg; 4266 int i; 4267 4268 for (i = 0; i < MAX_BPF_REG; i++) 4269 if (reg_is_pkt_pointer_any(®s[i])) 4270 mark_reg_unknown(env, regs, i); 4271 4272 bpf_for_each_spilled_reg(i, state, reg) { 4273 if (!reg) 4274 continue; 4275 if (reg_is_pkt_pointer_any(reg)) 4276 __mark_reg_unknown(env, reg); 4277 } 4278 } 4279 4280 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 4281 { 4282 struct bpf_verifier_state *vstate = env->cur_state; 4283 int i; 4284 4285 for (i = 0; i <= vstate->curframe; i++) 4286 __clear_all_pkt_pointers(env, vstate->frame[i]); 4287 } 4288 4289 static void release_reg_references(struct bpf_verifier_env *env, 4290 struct bpf_func_state *state, 4291 int ref_obj_id) 4292 { 4293 struct bpf_reg_state *regs = state->regs, *reg; 4294 int i; 4295 4296 for (i = 0; i < MAX_BPF_REG; i++) 4297 if (regs[i].ref_obj_id == ref_obj_id) 4298 mark_reg_unknown(env, regs, i); 4299 4300 bpf_for_each_spilled_reg(i, state, reg) { 4301 if (!reg) 4302 continue; 4303 if (reg->ref_obj_id == ref_obj_id) 4304 __mark_reg_unknown(env, reg); 4305 } 4306 } 4307 4308 /* The pointer with the specified id has released its reference to kernel 4309 * resources. Identify all copies of the same pointer and clear the reference. 4310 */ 4311 static int release_reference(struct bpf_verifier_env *env, 4312 int ref_obj_id) 4313 { 4314 struct bpf_verifier_state *vstate = env->cur_state; 4315 int err; 4316 int i; 4317 4318 err = release_reference_state(cur_func(env), ref_obj_id); 4319 if (err) 4320 return err; 4321 4322 for (i = 0; i <= vstate->curframe; i++) 4323 release_reg_references(env, vstate->frame[i], ref_obj_id); 4324 4325 return 0; 4326 } 4327 4328 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 4329 struct bpf_reg_state *regs) 4330 { 4331 int i; 4332 4333 /* after the call registers r0 - r5 were scratched */ 4334 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4335 mark_reg_not_init(env, regs, caller_saved[i]); 4336 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4337 } 4338 } 4339 4340 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 4341 int *insn_idx) 4342 { 4343 struct bpf_verifier_state *state = env->cur_state; 4344 struct bpf_func_info_aux *func_info_aux; 4345 struct bpf_func_state *caller, *callee; 4346 int i, err, subprog, target_insn; 4347 bool is_global = false; 4348 4349 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 4350 verbose(env, "the call stack of %d frames is too deep\n", 4351 state->curframe + 2); 4352 return -E2BIG; 4353 } 4354 4355 target_insn = *insn_idx + insn->imm; 4356 subprog = find_subprog(env, target_insn + 1); 4357 if (subprog < 0) { 4358 verbose(env, "verifier bug. No program starts at insn %d\n", 4359 target_insn + 1); 4360 return -EFAULT; 4361 } 4362 4363 caller = state->frame[state->curframe]; 4364 if (state->frame[state->curframe + 1]) { 4365 verbose(env, "verifier bug. Frame %d already allocated\n", 4366 state->curframe + 1); 4367 return -EFAULT; 4368 } 4369 4370 func_info_aux = env->prog->aux->func_info_aux; 4371 if (func_info_aux) 4372 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 4373 err = btf_check_func_arg_match(env, subprog, caller->regs); 4374 if (err == -EFAULT) 4375 return err; 4376 if (is_global) { 4377 if (err) { 4378 verbose(env, "Caller passes invalid args into func#%d\n", 4379 subprog); 4380 return err; 4381 } else { 4382 if (env->log.level & BPF_LOG_LEVEL) 4383 verbose(env, 4384 "Func#%d is global and valid. Skipping.\n", 4385 subprog); 4386 clear_caller_saved_regs(env, caller->regs); 4387 4388 /* All global functions return SCALAR_VALUE */ 4389 mark_reg_unknown(env, caller->regs, BPF_REG_0); 4390 4391 /* continue with next insn after call */ 4392 return 0; 4393 } 4394 } 4395 4396 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 4397 if (!callee) 4398 return -ENOMEM; 4399 state->frame[state->curframe + 1] = callee; 4400 4401 /* callee cannot access r0, r6 - r9 for reading and has to write 4402 * into its own stack before reading from it. 4403 * callee can read/write into caller's stack 4404 */ 4405 init_func_state(env, callee, 4406 /* remember the callsite, it will be used by bpf_exit */ 4407 *insn_idx /* callsite */, 4408 state->curframe + 1 /* frameno within this callchain */, 4409 subprog /* subprog number within this prog */); 4410 4411 /* Transfer references to the callee */ 4412 err = transfer_reference_state(callee, caller); 4413 if (err) 4414 return err; 4415 4416 /* copy r1 - r5 args that callee can access. The copy includes parent 4417 * pointers, which connects us up to the liveness chain 4418 */ 4419 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4420 callee->regs[i] = caller->regs[i]; 4421 4422 clear_caller_saved_regs(env, caller->regs); 4423 4424 /* only increment it after check_reg_arg() finished */ 4425 state->curframe++; 4426 4427 /* and go analyze first insn of the callee */ 4428 *insn_idx = target_insn; 4429 4430 if (env->log.level & BPF_LOG_LEVEL) { 4431 verbose(env, "caller:\n"); 4432 print_verifier_state(env, caller); 4433 verbose(env, "callee:\n"); 4434 print_verifier_state(env, callee); 4435 } 4436 return 0; 4437 } 4438 4439 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 4440 { 4441 struct bpf_verifier_state *state = env->cur_state; 4442 struct bpf_func_state *caller, *callee; 4443 struct bpf_reg_state *r0; 4444 int err; 4445 4446 callee = state->frame[state->curframe]; 4447 r0 = &callee->regs[BPF_REG_0]; 4448 if (r0->type == PTR_TO_STACK) { 4449 /* technically it's ok to return caller's stack pointer 4450 * (or caller's caller's pointer) back to the caller, 4451 * since these pointers are valid. Only current stack 4452 * pointer will be invalid as soon as function exits, 4453 * but let's be conservative 4454 */ 4455 verbose(env, "cannot return stack pointer to the caller\n"); 4456 return -EINVAL; 4457 } 4458 4459 state->curframe--; 4460 caller = state->frame[state->curframe]; 4461 /* return to the caller whatever r0 had in the callee */ 4462 caller->regs[BPF_REG_0] = *r0; 4463 4464 /* Transfer references to the caller */ 4465 err = transfer_reference_state(caller, callee); 4466 if (err) 4467 return err; 4468 4469 *insn_idx = callee->callsite + 1; 4470 if (env->log.level & BPF_LOG_LEVEL) { 4471 verbose(env, "returning from callee:\n"); 4472 print_verifier_state(env, callee); 4473 verbose(env, "to caller at %d:\n", *insn_idx); 4474 print_verifier_state(env, caller); 4475 } 4476 /* clear everything in the callee */ 4477 free_func_state(callee); 4478 state->frame[state->curframe + 1] = NULL; 4479 return 0; 4480 } 4481 4482 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 4483 int func_id, 4484 struct bpf_call_arg_meta *meta) 4485 { 4486 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 4487 4488 if (ret_type != RET_INTEGER || 4489 (func_id != BPF_FUNC_get_stack && 4490 func_id != BPF_FUNC_probe_read_str && 4491 func_id != BPF_FUNC_probe_read_kernel_str && 4492 func_id != BPF_FUNC_probe_read_user_str)) 4493 return; 4494 4495 ret_reg->smax_value = meta->msize_max_value; 4496 ret_reg->s32_max_value = meta->msize_max_value; 4497 __reg_deduce_bounds(ret_reg); 4498 __reg_bound_offset(ret_reg); 4499 __update_reg_bounds(ret_reg); 4500 } 4501 4502 static int 4503 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4504 int func_id, int insn_idx) 4505 { 4506 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4507 struct bpf_map *map = meta->map_ptr; 4508 4509 if (func_id != BPF_FUNC_tail_call && 4510 func_id != BPF_FUNC_map_lookup_elem && 4511 func_id != BPF_FUNC_map_update_elem && 4512 func_id != BPF_FUNC_map_delete_elem && 4513 func_id != BPF_FUNC_map_push_elem && 4514 func_id != BPF_FUNC_map_pop_elem && 4515 func_id != BPF_FUNC_map_peek_elem) 4516 return 0; 4517 4518 if (map == NULL) { 4519 verbose(env, "kernel subsystem misconfigured verifier\n"); 4520 return -EINVAL; 4521 } 4522 4523 /* In case of read-only, some additional restrictions 4524 * need to be applied in order to prevent altering the 4525 * state of the map from program side. 4526 */ 4527 if ((map->map_flags & BPF_F_RDONLY_PROG) && 4528 (func_id == BPF_FUNC_map_delete_elem || 4529 func_id == BPF_FUNC_map_update_elem || 4530 func_id == BPF_FUNC_map_push_elem || 4531 func_id == BPF_FUNC_map_pop_elem)) { 4532 verbose(env, "write into map forbidden\n"); 4533 return -EACCES; 4534 } 4535 4536 if (!BPF_MAP_PTR(aux->map_ptr_state)) 4537 bpf_map_ptr_store(aux, meta->map_ptr, 4538 !meta->map_ptr->bypass_spec_v1); 4539 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 4540 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 4541 !meta->map_ptr->bypass_spec_v1); 4542 return 0; 4543 } 4544 4545 static int 4546 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4547 int func_id, int insn_idx) 4548 { 4549 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4550 struct bpf_reg_state *regs = cur_regs(env), *reg; 4551 struct bpf_map *map = meta->map_ptr; 4552 struct tnum range; 4553 u64 val; 4554 int err; 4555 4556 if (func_id != BPF_FUNC_tail_call) 4557 return 0; 4558 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 4559 verbose(env, "kernel subsystem misconfigured verifier\n"); 4560 return -EINVAL; 4561 } 4562 4563 range = tnum_range(0, map->max_entries - 1); 4564 reg = ®s[BPF_REG_3]; 4565 4566 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 4567 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4568 return 0; 4569 } 4570 4571 err = mark_chain_precision(env, BPF_REG_3); 4572 if (err) 4573 return err; 4574 4575 val = reg->var_off.value; 4576 if (bpf_map_key_unseen(aux)) 4577 bpf_map_key_store(aux, val); 4578 else if (!bpf_map_key_poisoned(aux) && 4579 bpf_map_key_immediate(aux) != val) 4580 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4581 return 0; 4582 } 4583 4584 static int check_reference_leak(struct bpf_verifier_env *env) 4585 { 4586 struct bpf_func_state *state = cur_func(env); 4587 int i; 4588 4589 for (i = 0; i < state->acquired_refs; i++) { 4590 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 4591 state->refs[i].id, state->refs[i].insn_idx); 4592 } 4593 return state->acquired_refs ? -EINVAL : 0; 4594 } 4595 4596 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 4597 { 4598 const struct bpf_func_proto *fn = NULL; 4599 struct bpf_reg_state *regs; 4600 struct bpf_call_arg_meta meta; 4601 bool changes_data; 4602 int i, err; 4603 4604 /* find function prototype */ 4605 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 4606 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 4607 func_id); 4608 return -EINVAL; 4609 } 4610 4611 if (env->ops->get_func_proto) 4612 fn = env->ops->get_func_proto(func_id, env->prog); 4613 if (!fn) { 4614 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 4615 func_id); 4616 return -EINVAL; 4617 } 4618 4619 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 4620 if (!env->prog->gpl_compatible && fn->gpl_only) { 4621 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 4622 return -EINVAL; 4623 } 4624 4625 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 4626 changes_data = bpf_helper_changes_pkt_data(fn->func); 4627 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 4628 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 4629 func_id_name(func_id), func_id); 4630 return -EINVAL; 4631 } 4632 4633 memset(&meta, 0, sizeof(meta)); 4634 meta.pkt_access = fn->pkt_access; 4635 4636 err = check_func_proto(fn, func_id); 4637 if (err) { 4638 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 4639 func_id_name(func_id), func_id); 4640 return err; 4641 } 4642 4643 meta.func_id = func_id; 4644 /* check args */ 4645 for (i = 0; i < 5; i++) { 4646 err = btf_resolve_helper_id(&env->log, fn, i); 4647 if (err > 0) 4648 meta.btf_id = err; 4649 err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta); 4650 if (err) 4651 return err; 4652 } 4653 4654 err = record_func_map(env, &meta, func_id, insn_idx); 4655 if (err) 4656 return err; 4657 4658 err = record_func_key(env, &meta, func_id, insn_idx); 4659 if (err) 4660 return err; 4661 4662 /* Mark slots with STACK_MISC in case of raw mode, stack offset 4663 * is inferred from register state. 4664 */ 4665 for (i = 0; i < meta.access_size; i++) { 4666 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 4667 BPF_WRITE, -1, false); 4668 if (err) 4669 return err; 4670 } 4671 4672 if (func_id == BPF_FUNC_tail_call) { 4673 err = check_reference_leak(env); 4674 if (err) { 4675 verbose(env, "tail_call would lead to reference leak\n"); 4676 return err; 4677 } 4678 } else if (is_release_function(func_id)) { 4679 err = release_reference(env, meta.ref_obj_id); 4680 if (err) { 4681 verbose(env, "func %s#%d reference has not been acquired before\n", 4682 func_id_name(func_id), func_id); 4683 return err; 4684 } 4685 } 4686 4687 regs = cur_regs(env); 4688 4689 /* check that flags argument in get_local_storage(map, flags) is 0, 4690 * this is required because get_local_storage() can't return an error. 4691 */ 4692 if (func_id == BPF_FUNC_get_local_storage && 4693 !register_is_null(®s[BPF_REG_2])) { 4694 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 4695 return -EINVAL; 4696 } 4697 4698 /* reset caller saved regs */ 4699 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4700 mark_reg_not_init(env, regs, caller_saved[i]); 4701 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4702 } 4703 4704 /* helper call returns 64-bit value. */ 4705 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 4706 4707 /* update return register (already marked as written above) */ 4708 if (fn->ret_type == RET_INTEGER) { 4709 /* sets type to SCALAR_VALUE */ 4710 mark_reg_unknown(env, regs, BPF_REG_0); 4711 } else if (fn->ret_type == RET_VOID) { 4712 regs[BPF_REG_0].type = NOT_INIT; 4713 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 4714 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4715 /* There is no offset yet applied, variable or fixed */ 4716 mark_reg_known_zero(env, regs, BPF_REG_0); 4717 /* remember map_ptr, so that check_map_access() 4718 * can check 'value_size' boundary of memory access 4719 * to map element returned from bpf_map_lookup_elem() 4720 */ 4721 if (meta.map_ptr == NULL) { 4722 verbose(env, 4723 "kernel subsystem misconfigured verifier\n"); 4724 return -EINVAL; 4725 } 4726 regs[BPF_REG_0].map_ptr = meta.map_ptr; 4727 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4728 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 4729 if (map_value_has_spin_lock(meta.map_ptr)) 4730 regs[BPF_REG_0].id = ++env->id_gen; 4731 } else { 4732 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 4733 regs[BPF_REG_0].id = ++env->id_gen; 4734 } 4735 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 4736 mark_reg_known_zero(env, regs, BPF_REG_0); 4737 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 4738 regs[BPF_REG_0].id = ++env->id_gen; 4739 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 4740 mark_reg_known_zero(env, regs, BPF_REG_0); 4741 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 4742 regs[BPF_REG_0].id = ++env->id_gen; 4743 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 4744 mark_reg_known_zero(env, regs, BPF_REG_0); 4745 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 4746 regs[BPF_REG_0].id = ++env->id_gen; 4747 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) { 4748 mark_reg_known_zero(env, regs, BPF_REG_0); 4749 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL; 4750 regs[BPF_REG_0].id = ++env->id_gen; 4751 regs[BPF_REG_0].mem_size = meta.mem_size; 4752 } else { 4753 verbose(env, "unknown return type %d of func %s#%d\n", 4754 fn->ret_type, func_id_name(func_id), func_id); 4755 return -EINVAL; 4756 } 4757 4758 if (is_ptr_cast_function(func_id)) { 4759 /* For release_reference() */ 4760 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 4761 } else if (is_acquire_function(func_id, meta.map_ptr)) { 4762 int id = acquire_reference_state(env, insn_idx); 4763 4764 if (id < 0) 4765 return id; 4766 /* For mark_ptr_or_null_reg() */ 4767 regs[BPF_REG_0].id = id; 4768 /* For release_reference() */ 4769 regs[BPF_REG_0].ref_obj_id = id; 4770 } 4771 4772 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 4773 4774 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 4775 if (err) 4776 return err; 4777 4778 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 4779 const char *err_str; 4780 4781 #ifdef CONFIG_PERF_EVENTS 4782 err = get_callchain_buffers(sysctl_perf_event_max_stack); 4783 err_str = "cannot get callchain buffer for func %s#%d\n"; 4784 #else 4785 err = -ENOTSUPP; 4786 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 4787 #endif 4788 if (err) { 4789 verbose(env, err_str, func_id_name(func_id), func_id); 4790 return err; 4791 } 4792 4793 env->prog->has_callchain_buf = true; 4794 } 4795 4796 if (changes_data) 4797 clear_all_pkt_pointers(env); 4798 return 0; 4799 } 4800 4801 static bool signed_add_overflows(s64 a, s64 b) 4802 { 4803 /* Do the add in u64, where overflow is well-defined */ 4804 s64 res = (s64)((u64)a + (u64)b); 4805 4806 if (b < 0) 4807 return res > a; 4808 return res < a; 4809 } 4810 4811 static bool signed_add32_overflows(s64 a, s64 b) 4812 { 4813 /* Do the add in u32, where overflow is well-defined */ 4814 s32 res = (s32)((u32)a + (u32)b); 4815 4816 if (b < 0) 4817 return res > a; 4818 return res < a; 4819 } 4820 4821 static bool signed_sub_overflows(s32 a, s32 b) 4822 { 4823 /* Do the sub in u64, where overflow is well-defined */ 4824 s64 res = (s64)((u64)a - (u64)b); 4825 4826 if (b < 0) 4827 return res < a; 4828 return res > a; 4829 } 4830 4831 static bool signed_sub32_overflows(s32 a, s32 b) 4832 { 4833 /* Do the sub in u64, where overflow is well-defined */ 4834 s32 res = (s32)((u32)a - (u32)b); 4835 4836 if (b < 0) 4837 return res < a; 4838 return res > a; 4839 } 4840 4841 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 4842 const struct bpf_reg_state *reg, 4843 enum bpf_reg_type type) 4844 { 4845 bool known = tnum_is_const(reg->var_off); 4846 s64 val = reg->var_off.value; 4847 s64 smin = reg->smin_value; 4848 4849 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 4850 verbose(env, "math between %s pointer and %lld is not allowed\n", 4851 reg_type_str[type], val); 4852 return false; 4853 } 4854 4855 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 4856 verbose(env, "%s pointer offset %d is not allowed\n", 4857 reg_type_str[type], reg->off); 4858 return false; 4859 } 4860 4861 if (smin == S64_MIN) { 4862 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 4863 reg_type_str[type]); 4864 return false; 4865 } 4866 4867 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 4868 verbose(env, "value %lld makes %s pointer be out of bounds\n", 4869 smin, reg_type_str[type]); 4870 return false; 4871 } 4872 4873 return true; 4874 } 4875 4876 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 4877 { 4878 return &env->insn_aux_data[env->insn_idx]; 4879 } 4880 4881 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 4882 u32 *ptr_limit, u8 opcode, bool off_is_neg) 4883 { 4884 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 4885 (opcode == BPF_SUB && !off_is_neg); 4886 u32 off; 4887 4888 switch (ptr_reg->type) { 4889 case PTR_TO_STACK: 4890 /* Indirect variable offset stack access is prohibited in 4891 * unprivileged mode so it's not handled here. 4892 */ 4893 off = ptr_reg->off + ptr_reg->var_off.value; 4894 if (mask_to_left) 4895 *ptr_limit = MAX_BPF_STACK + off; 4896 else 4897 *ptr_limit = -off; 4898 return 0; 4899 case PTR_TO_MAP_VALUE: 4900 if (mask_to_left) { 4901 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 4902 } else { 4903 off = ptr_reg->smin_value + ptr_reg->off; 4904 *ptr_limit = ptr_reg->map_ptr->value_size - off; 4905 } 4906 return 0; 4907 default: 4908 return -EINVAL; 4909 } 4910 } 4911 4912 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 4913 const struct bpf_insn *insn) 4914 { 4915 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 4916 } 4917 4918 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 4919 u32 alu_state, u32 alu_limit) 4920 { 4921 /* If we arrived here from different branches with different 4922 * state or limits to sanitize, then this won't work. 4923 */ 4924 if (aux->alu_state && 4925 (aux->alu_state != alu_state || 4926 aux->alu_limit != alu_limit)) 4927 return -EACCES; 4928 4929 /* Corresponding fixup done in fixup_bpf_calls(). */ 4930 aux->alu_state = alu_state; 4931 aux->alu_limit = alu_limit; 4932 return 0; 4933 } 4934 4935 static int sanitize_val_alu(struct bpf_verifier_env *env, 4936 struct bpf_insn *insn) 4937 { 4938 struct bpf_insn_aux_data *aux = cur_aux(env); 4939 4940 if (can_skip_alu_sanitation(env, insn)) 4941 return 0; 4942 4943 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 4944 } 4945 4946 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 4947 struct bpf_insn *insn, 4948 const struct bpf_reg_state *ptr_reg, 4949 struct bpf_reg_state *dst_reg, 4950 bool off_is_neg) 4951 { 4952 struct bpf_verifier_state *vstate = env->cur_state; 4953 struct bpf_insn_aux_data *aux = cur_aux(env); 4954 bool ptr_is_dst_reg = ptr_reg == dst_reg; 4955 u8 opcode = BPF_OP(insn->code); 4956 u32 alu_state, alu_limit; 4957 struct bpf_reg_state tmp; 4958 bool ret; 4959 4960 if (can_skip_alu_sanitation(env, insn)) 4961 return 0; 4962 4963 /* We already marked aux for masking from non-speculative 4964 * paths, thus we got here in the first place. We only care 4965 * to explore bad access from here. 4966 */ 4967 if (vstate->speculative) 4968 goto do_sim; 4969 4970 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 4971 alu_state |= ptr_is_dst_reg ? 4972 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 4973 4974 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 4975 return 0; 4976 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 4977 return -EACCES; 4978 do_sim: 4979 /* Simulate and find potential out-of-bounds access under 4980 * speculative execution from truncation as a result of 4981 * masking when off was not within expected range. If off 4982 * sits in dst, then we temporarily need to move ptr there 4983 * to simulate dst (== 0) +/-= ptr. Needed, for example, 4984 * for cases where we use K-based arithmetic in one direction 4985 * and truncated reg-based in the other in order to explore 4986 * bad access. 4987 */ 4988 if (!ptr_is_dst_reg) { 4989 tmp = *dst_reg; 4990 *dst_reg = *ptr_reg; 4991 } 4992 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 4993 if (!ptr_is_dst_reg && ret) 4994 *dst_reg = tmp; 4995 return !ret ? -EFAULT : 0; 4996 } 4997 4998 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 4999 * Caller should also handle BPF_MOV case separately. 5000 * If we return -EACCES, caller may want to try again treating pointer as a 5001 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 5002 */ 5003 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 5004 struct bpf_insn *insn, 5005 const struct bpf_reg_state *ptr_reg, 5006 const struct bpf_reg_state *off_reg) 5007 { 5008 struct bpf_verifier_state *vstate = env->cur_state; 5009 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5010 struct bpf_reg_state *regs = state->regs, *dst_reg; 5011 bool known = tnum_is_const(off_reg->var_off); 5012 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 5013 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 5014 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 5015 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 5016 u32 dst = insn->dst_reg, src = insn->src_reg; 5017 u8 opcode = BPF_OP(insn->code); 5018 int ret; 5019 5020 dst_reg = ®s[dst]; 5021 5022 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 5023 smin_val > smax_val || umin_val > umax_val) { 5024 /* Taint dst register if offset had invalid bounds derived from 5025 * e.g. dead branches. 5026 */ 5027 __mark_reg_unknown(env, dst_reg); 5028 return 0; 5029 } 5030 5031 if (BPF_CLASS(insn->code) != BPF_ALU64) { 5032 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 5033 verbose(env, 5034 "R%d 32-bit pointer arithmetic prohibited\n", 5035 dst); 5036 return -EACCES; 5037 } 5038 5039 switch (ptr_reg->type) { 5040 case PTR_TO_MAP_VALUE_OR_NULL: 5041 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 5042 dst, reg_type_str[ptr_reg->type]); 5043 return -EACCES; 5044 case CONST_PTR_TO_MAP: 5045 case PTR_TO_PACKET_END: 5046 case PTR_TO_SOCKET: 5047 case PTR_TO_SOCKET_OR_NULL: 5048 case PTR_TO_SOCK_COMMON: 5049 case PTR_TO_SOCK_COMMON_OR_NULL: 5050 case PTR_TO_TCP_SOCK: 5051 case PTR_TO_TCP_SOCK_OR_NULL: 5052 case PTR_TO_XDP_SOCK: 5053 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 5054 dst, reg_type_str[ptr_reg->type]); 5055 return -EACCES; 5056 case PTR_TO_MAP_VALUE: 5057 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 5058 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 5059 off_reg == dst_reg ? dst : src); 5060 return -EACCES; 5061 } 5062 /* fall-through */ 5063 default: 5064 break; 5065 } 5066 5067 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 5068 * The id may be overwritten later if we create a new variable offset. 5069 */ 5070 dst_reg->type = ptr_reg->type; 5071 dst_reg->id = ptr_reg->id; 5072 5073 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 5074 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 5075 return -EINVAL; 5076 5077 /* pointer types do not carry 32-bit bounds at the moment. */ 5078 __mark_reg32_unbounded(dst_reg); 5079 5080 switch (opcode) { 5081 case BPF_ADD: 5082 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 5083 if (ret < 0) { 5084 verbose(env, "R%d tried to add from different maps or paths\n", dst); 5085 return ret; 5086 } 5087 /* We can take a fixed offset as long as it doesn't overflow 5088 * the s32 'off' field 5089 */ 5090 if (known && (ptr_reg->off + smin_val == 5091 (s64)(s32)(ptr_reg->off + smin_val))) { 5092 /* pointer += K. Accumulate it into fixed offset */ 5093 dst_reg->smin_value = smin_ptr; 5094 dst_reg->smax_value = smax_ptr; 5095 dst_reg->umin_value = umin_ptr; 5096 dst_reg->umax_value = umax_ptr; 5097 dst_reg->var_off = ptr_reg->var_off; 5098 dst_reg->off = ptr_reg->off + smin_val; 5099 dst_reg->raw = ptr_reg->raw; 5100 break; 5101 } 5102 /* A new variable offset is created. Note that off_reg->off 5103 * == 0, since it's a scalar. 5104 * dst_reg gets the pointer type and since some positive 5105 * integer value was added to the pointer, give it a new 'id' 5106 * if it's a PTR_TO_PACKET. 5107 * this creates a new 'base' pointer, off_reg (variable) gets 5108 * added into the variable offset, and we copy the fixed offset 5109 * from ptr_reg. 5110 */ 5111 if (signed_add_overflows(smin_ptr, smin_val) || 5112 signed_add_overflows(smax_ptr, smax_val)) { 5113 dst_reg->smin_value = S64_MIN; 5114 dst_reg->smax_value = S64_MAX; 5115 } else { 5116 dst_reg->smin_value = smin_ptr + smin_val; 5117 dst_reg->smax_value = smax_ptr + smax_val; 5118 } 5119 if (umin_ptr + umin_val < umin_ptr || 5120 umax_ptr + umax_val < umax_ptr) { 5121 dst_reg->umin_value = 0; 5122 dst_reg->umax_value = U64_MAX; 5123 } else { 5124 dst_reg->umin_value = umin_ptr + umin_val; 5125 dst_reg->umax_value = umax_ptr + umax_val; 5126 } 5127 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 5128 dst_reg->off = ptr_reg->off; 5129 dst_reg->raw = ptr_reg->raw; 5130 if (reg_is_pkt_pointer(ptr_reg)) { 5131 dst_reg->id = ++env->id_gen; 5132 /* something was added to pkt_ptr, set range to zero */ 5133 dst_reg->raw = 0; 5134 } 5135 break; 5136 case BPF_SUB: 5137 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 5138 if (ret < 0) { 5139 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 5140 return ret; 5141 } 5142 if (dst_reg == off_reg) { 5143 /* scalar -= pointer. Creates an unknown scalar */ 5144 verbose(env, "R%d tried to subtract pointer from scalar\n", 5145 dst); 5146 return -EACCES; 5147 } 5148 /* We don't allow subtraction from FP, because (according to 5149 * test_verifier.c test "invalid fp arithmetic", JITs might not 5150 * be able to deal with it. 5151 */ 5152 if (ptr_reg->type == PTR_TO_STACK) { 5153 verbose(env, "R%d subtraction from stack pointer prohibited\n", 5154 dst); 5155 return -EACCES; 5156 } 5157 if (known && (ptr_reg->off - smin_val == 5158 (s64)(s32)(ptr_reg->off - smin_val))) { 5159 /* pointer -= K. Subtract it from fixed offset */ 5160 dst_reg->smin_value = smin_ptr; 5161 dst_reg->smax_value = smax_ptr; 5162 dst_reg->umin_value = umin_ptr; 5163 dst_reg->umax_value = umax_ptr; 5164 dst_reg->var_off = ptr_reg->var_off; 5165 dst_reg->id = ptr_reg->id; 5166 dst_reg->off = ptr_reg->off - smin_val; 5167 dst_reg->raw = ptr_reg->raw; 5168 break; 5169 } 5170 /* A new variable offset is created. If the subtrahend is known 5171 * nonnegative, then any reg->range we had before is still good. 5172 */ 5173 if (signed_sub_overflows(smin_ptr, smax_val) || 5174 signed_sub_overflows(smax_ptr, smin_val)) { 5175 /* Overflow possible, we know nothing */ 5176 dst_reg->smin_value = S64_MIN; 5177 dst_reg->smax_value = S64_MAX; 5178 } else { 5179 dst_reg->smin_value = smin_ptr - smax_val; 5180 dst_reg->smax_value = smax_ptr - smin_val; 5181 } 5182 if (umin_ptr < umax_val) { 5183 /* Overflow possible, we know nothing */ 5184 dst_reg->umin_value = 0; 5185 dst_reg->umax_value = U64_MAX; 5186 } else { 5187 /* Cannot overflow (as long as bounds are consistent) */ 5188 dst_reg->umin_value = umin_ptr - umax_val; 5189 dst_reg->umax_value = umax_ptr - umin_val; 5190 } 5191 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 5192 dst_reg->off = ptr_reg->off; 5193 dst_reg->raw = ptr_reg->raw; 5194 if (reg_is_pkt_pointer(ptr_reg)) { 5195 dst_reg->id = ++env->id_gen; 5196 /* something was added to pkt_ptr, set range to zero */ 5197 if (smin_val < 0) 5198 dst_reg->raw = 0; 5199 } 5200 break; 5201 case BPF_AND: 5202 case BPF_OR: 5203 case BPF_XOR: 5204 /* bitwise ops on pointers are troublesome, prohibit. */ 5205 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 5206 dst, bpf_alu_string[opcode >> 4]); 5207 return -EACCES; 5208 default: 5209 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 5210 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 5211 dst, bpf_alu_string[opcode >> 4]); 5212 return -EACCES; 5213 } 5214 5215 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 5216 return -EINVAL; 5217 5218 __update_reg_bounds(dst_reg); 5219 __reg_deduce_bounds(dst_reg); 5220 __reg_bound_offset(dst_reg); 5221 5222 /* For unprivileged we require that resulting offset must be in bounds 5223 * in order to be able to sanitize access later on. 5224 */ 5225 if (!env->bypass_spec_v1) { 5226 if (dst_reg->type == PTR_TO_MAP_VALUE && 5227 check_map_access(env, dst, dst_reg->off, 1, false)) { 5228 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 5229 "prohibited for !root\n", dst); 5230 return -EACCES; 5231 } else if (dst_reg->type == PTR_TO_STACK && 5232 check_stack_access(env, dst_reg, dst_reg->off + 5233 dst_reg->var_off.value, 1)) { 5234 verbose(env, "R%d stack pointer arithmetic goes out of range, " 5235 "prohibited for !root\n", dst); 5236 return -EACCES; 5237 } 5238 } 5239 5240 return 0; 5241 } 5242 5243 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 5244 struct bpf_reg_state *src_reg) 5245 { 5246 s32 smin_val = src_reg->s32_min_value; 5247 s32 smax_val = src_reg->s32_max_value; 5248 u32 umin_val = src_reg->u32_min_value; 5249 u32 umax_val = src_reg->u32_max_value; 5250 5251 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 5252 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 5253 dst_reg->s32_min_value = S32_MIN; 5254 dst_reg->s32_max_value = S32_MAX; 5255 } else { 5256 dst_reg->s32_min_value += smin_val; 5257 dst_reg->s32_max_value += smax_val; 5258 } 5259 if (dst_reg->u32_min_value + umin_val < umin_val || 5260 dst_reg->u32_max_value + umax_val < umax_val) { 5261 dst_reg->u32_min_value = 0; 5262 dst_reg->u32_max_value = U32_MAX; 5263 } else { 5264 dst_reg->u32_min_value += umin_val; 5265 dst_reg->u32_max_value += umax_val; 5266 } 5267 } 5268 5269 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 5270 struct bpf_reg_state *src_reg) 5271 { 5272 s64 smin_val = src_reg->smin_value; 5273 s64 smax_val = src_reg->smax_value; 5274 u64 umin_val = src_reg->umin_value; 5275 u64 umax_val = src_reg->umax_value; 5276 5277 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 5278 signed_add_overflows(dst_reg->smax_value, smax_val)) { 5279 dst_reg->smin_value = S64_MIN; 5280 dst_reg->smax_value = S64_MAX; 5281 } else { 5282 dst_reg->smin_value += smin_val; 5283 dst_reg->smax_value += smax_val; 5284 } 5285 if (dst_reg->umin_value + umin_val < umin_val || 5286 dst_reg->umax_value + umax_val < umax_val) { 5287 dst_reg->umin_value = 0; 5288 dst_reg->umax_value = U64_MAX; 5289 } else { 5290 dst_reg->umin_value += umin_val; 5291 dst_reg->umax_value += umax_val; 5292 } 5293 } 5294 5295 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 5296 struct bpf_reg_state *src_reg) 5297 { 5298 s32 smin_val = src_reg->s32_min_value; 5299 s32 smax_val = src_reg->s32_max_value; 5300 u32 umin_val = src_reg->u32_min_value; 5301 u32 umax_val = src_reg->u32_max_value; 5302 5303 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 5304 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 5305 /* Overflow possible, we know nothing */ 5306 dst_reg->s32_min_value = S32_MIN; 5307 dst_reg->s32_max_value = S32_MAX; 5308 } else { 5309 dst_reg->s32_min_value -= smax_val; 5310 dst_reg->s32_max_value -= smin_val; 5311 } 5312 if (dst_reg->u32_min_value < umax_val) { 5313 /* Overflow possible, we know nothing */ 5314 dst_reg->u32_min_value = 0; 5315 dst_reg->u32_max_value = U32_MAX; 5316 } else { 5317 /* Cannot overflow (as long as bounds are consistent) */ 5318 dst_reg->u32_min_value -= umax_val; 5319 dst_reg->u32_max_value -= umin_val; 5320 } 5321 } 5322 5323 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 5324 struct bpf_reg_state *src_reg) 5325 { 5326 s64 smin_val = src_reg->smin_value; 5327 s64 smax_val = src_reg->smax_value; 5328 u64 umin_val = src_reg->umin_value; 5329 u64 umax_val = src_reg->umax_value; 5330 5331 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 5332 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 5333 /* Overflow possible, we know nothing */ 5334 dst_reg->smin_value = S64_MIN; 5335 dst_reg->smax_value = S64_MAX; 5336 } else { 5337 dst_reg->smin_value -= smax_val; 5338 dst_reg->smax_value -= smin_val; 5339 } 5340 if (dst_reg->umin_value < umax_val) { 5341 /* Overflow possible, we know nothing */ 5342 dst_reg->umin_value = 0; 5343 dst_reg->umax_value = U64_MAX; 5344 } else { 5345 /* Cannot overflow (as long as bounds are consistent) */ 5346 dst_reg->umin_value -= umax_val; 5347 dst_reg->umax_value -= umin_val; 5348 } 5349 } 5350 5351 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 5352 struct bpf_reg_state *src_reg) 5353 { 5354 s32 smin_val = src_reg->s32_min_value; 5355 u32 umin_val = src_reg->u32_min_value; 5356 u32 umax_val = src_reg->u32_max_value; 5357 5358 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 5359 /* Ain't nobody got time to multiply that sign */ 5360 __mark_reg32_unbounded(dst_reg); 5361 return; 5362 } 5363 /* Both values are positive, so we can work with unsigned and 5364 * copy the result to signed (unless it exceeds S32_MAX). 5365 */ 5366 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 5367 /* Potential overflow, we know nothing */ 5368 __mark_reg32_unbounded(dst_reg); 5369 return; 5370 } 5371 dst_reg->u32_min_value *= umin_val; 5372 dst_reg->u32_max_value *= umax_val; 5373 if (dst_reg->u32_max_value > S32_MAX) { 5374 /* Overflow possible, we know nothing */ 5375 dst_reg->s32_min_value = S32_MIN; 5376 dst_reg->s32_max_value = S32_MAX; 5377 } else { 5378 dst_reg->s32_min_value = dst_reg->u32_min_value; 5379 dst_reg->s32_max_value = dst_reg->u32_max_value; 5380 } 5381 } 5382 5383 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 5384 struct bpf_reg_state *src_reg) 5385 { 5386 s64 smin_val = src_reg->smin_value; 5387 u64 umin_val = src_reg->umin_value; 5388 u64 umax_val = src_reg->umax_value; 5389 5390 if (smin_val < 0 || dst_reg->smin_value < 0) { 5391 /* Ain't nobody got time to multiply that sign */ 5392 __mark_reg64_unbounded(dst_reg); 5393 return; 5394 } 5395 /* Both values are positive, so we can work with unsigned and 5396 * copy the result to signed (unless it exceeds S64_MAX). 5397 */ 5398 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 5399 /* Potential overflow, we know nothing */ 5400 __mark_reg64_unbounded(dst_reg); 5401 return; 5402 } 5403 dst_reg->umin_value *= umin_val; 5404 dst_reg->umax_value *= umax_val; 5405 if (dst_reg->umax_value > S64_MAX) { 5406 /* Overflow possible, we know nothing */ 5407 dst_reg->smin_value = S64_MIN; 5408 dst_reg->smax_value = S64_MAX; 5409 } else { 5410 dst_reg->smin_value = dst_reg->umin_value; 5411 dst_reg->smax_value = dst_reg->umax_value; 5412 } 5413 } 5414 5415 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 5416 struct bpf_reg_state *src_reg) 5417 { 5418 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5419 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5420 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5421 s32 smin_val = src_reg->s32_min_value; 5422 u32 umax_val = src_reg->u32_max_value; 5423 5424 /* Assuming scalar64_min_max_and will be called so its safe 5425 * to skip updating register for known 32-bit case. 5426 */ 5427 if (src_known && dst_known) 5428 return; 5429 5430 /* We get our minimum from the var_off, since that's inherently 5431 * bitwise. Our maximum is the minimum of the operands' maxima. 5432 */ 5433 dst_reg->u32_min_value = var32_off.value; 5434 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 5435 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 5436 /* Lose signed bounds when ANDing negative numbers, 5437 * ain't nobody got time for that. 5438 */ 5439 dst_reg->s32_min_value = S32_MIN; 5440 dst_reg->s32_max_value = S32_MAX; 5441 } else { 5442 /* ANDing two positives gives a positive, so safe to 5443 * cast result into s64. 5444 */ 5445 dst_reg->s32_min_value = dst_reg->u32_min_value; 5446 dst_reg->s32_max_value = dst_reg->u32_max_value; 5447 } 5448 5449 } 5450 5451 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 5452 struct bpf_reg_state *src_reg) 5453 { 5454 bool src_known = tnum_is_const(src_reg->var_off); 5455 bool dst_known = tnum_is_const(dst_reg->var_off); 5456 s64 smin_val = src_reg->smin_value; 5457 u64 umax_val = src_reg->umax_value; 5458 5459 if (src_known && dst_known) { 5460 __mark_reg_known(dst_reg, dst_reg->var_off.value & 5461 src_reg->var_off.value); 5462 return; 5463 } 5464 5465 /* We get our minimum from the var_off, since that's inherently 5466 * bitwise. Our maximum is the minimum of the operands' maxima. 5467 */ 5468 dst_reg->umin_value = dst_reg->var_off.value; 5469 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 5470 if (dst_reg->smin_value < 0 || smin_val < 0) { 5471 /* Lose signed bounds when ANDing negative numbers, 5472 * ain't nobody got time for that. 5473 */ 5474 dst_reg->smin_value = S64_MIN; 5475 dst_reg->smax_value = S64_MAX; 5476 } else { 5477 /* ANDing two positives gives a positive, so safe to 5478 * cast result into s64. 5479 */ 5480 dst_reg->smin_value = dst_reg->umin_value; 5481 dst_reg->smax_value = dst_reg->umax_value; 5482 } 5483 /* We may learn something more from the var_off */ 5484 __update_reg_bounds(dst_reg); 5485 } 5486 5487 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 5488 struct bpf_reg_state *src_reg) 5489 { 5490 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5491 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5492 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5493 s32 smin_val = src_reg->smin_value; 5494 u32 umin_val = src_reg->umin_value; 5495 5496 /* Assuming scalar64_min_max_or will be called so it is safe 5497 * to skip updating register for known case. 5498 */ 5499 if (src_known && dst_known) 5500 return; 5501 5502 /* We get our maximum from the var_off, and our minimum is the 5503 * maximum of the operands' minima 5504 */ 5505 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 5506 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 5507 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 5508 /* Lose signed bounds when ORing negative numbers, 5509 * ain't nobody got time for that. 5510 */ 5511 dst_reg->s32_min_value = S32_MIN; 5512 dst_reg->s32_max_value = S32_MAX; 5513 } else { 5514 /* ORing two positives gives a positive, so safe to 5515 * cast result into s64. 5516 */ 5517 dst_reg->s32_min_value = dst_reg->umin_value; 5518 dst_reg->s32_max_value = dst_reg->umax_value; 5519 } 5520 } 5521 5522 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 5523 struct bpf_reg_state *src_reg) 5524 { 5525 bool src_known = tnum_is_const(src_reg->var_off); 5526 bool dst_known = tnum_is_const(dst_reg->var_off); 5527 s64 smin_val = src_reg->smin_value; 5528 u64 umin_val = src_reg->umin_value; 5529 5530 if (src_known && dst_known) { 5531 __mark_reg_known(dst_reg, dst_reg->var_off.value | 5532 src_reg->var_off.value); 5533 return; 5534 } 5535 5536 /* We get our maximum from the var_off, and our minimum is the 5537 * maximum of the operands' minima 5538 */ 5539 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 5540 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 5541 if (dst_reg->smin_value < 0 || smin_val < 0) { 5542 /* Lose signed bounds when ORing negative numbers, 5543 * ain't nobody got time for that. 5544 */ 5545 dst_reg->smin_value = S64_MIN; 5546 dst_reg->smax_value = S64_MAX; 5547 } else { 5548 /* ORing two positives gives a positive, so safe to 5549 * cast result into s64. 5550 */ 5551 dst_reg->smin_value = dst_reg->umin_value; 5552 dst_reg->smax_value = dst_reg->umax_value; 5553 } 5554 /* We may learn something more from the var_off */ 5555 __update_reg_bounds(dst_reg); 5556 } 5557 5558 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 5559 u64 umin_val, u64 umax_val) 5560 { 5561 /* We lose all sign bit information (except what we can pick 5562 * up from var_off) 5563 */ 5564 dst_reg->s32_min_value = S32_MIN; 5565 dst_reg->s32_max_value = S32_MAX; 5566 /* If we might shift our top bit out, then we know nothing */ 5567 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 5568 dst_reg->u32_min_value = 0; 5569 dst_reg->u32_max_value = U32_MAX; 5570 } else { 5571 dst_reg->u32_min_value <<= umin_val; 5572 dst_reg->u32_max_value <<= umax_val; 5573 } 5574 } 5575 5576 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 5577 struct bpf_reg_state *src_reg) 5578 { 5579 u32 umax_val = src_reg->u32_max_value; 5580 u32 umin_val = src_reg->u32_min_value; 5581 /* u32 alu operation will zext upper bits */ 5582 struct tnum subreg = tnum_subreg(dst_reg->var_off); 5583 5584 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 5585 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 5586 /* Not required but being careful mark reg64 bounds as unknown so 5587 * that we are forced to pick them up from tnum and zext later and 5588 * if some path skips this step we are still safe. 5589 */ 5590 __mark_reg64_unbounded(dst_reg); 5591 __update_reg32_bounds(dst_reg); 5592 } 5593 5594 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 5595 u64 umin_val, u64 umax_val) 5596 { 5597 /* Special case <<32 because it is a common compiler pattern to sign 5598 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 5599 * positive we know this shift will also be positive so we can track 5600 * bounds correctly. Otherwise we lose all sign bit information except 5601 * what we can pick up from var_off. Perhaps we can generalize this 5602 * later to shifts of any length. 5603 */ 5604 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 5605 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 5606 else 5607 dst_reg->smax_value = S64_MAX; 5608 5609 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 5610 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 5611 else 5612 dst_reg->smin_value = S64_MIN; 5613 5614 /* If we might shift our top bit out, then we know nothing */ 5615 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 5616 dst_reg->umin_value = 0; 5617 dst_reg->umax_value = U64_MAX; 5618 } else { 5619 dst_reg->umin_value <<= umin_val; 5620 dst_reg->umax_value <<= umax_val; 5621 } 5622 } 5623 5624 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 5625 struct bpf_reg_state *src_reg) 5626 { 5627 u64 umax_val = src_reg->umax_value; 5628 u64 umin_val = src_reg->umin_value; 5629 5630 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 5631 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 5632 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 5633 5634 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 5635 /* We may learn something more from the var_off */ 5636 __update_reg_bounds(dst_reg); 5637 } 5638 5639 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 5640 struct bpf_reg_state *src_reg) 5641 { 5642 struct tnum subreg = tnum_subreg(dst_reg->var_off); 5643 u32 umax_val = src_reg->u32_max_value; 5644 u32 umin_val = src_reg->u32_min_value; 5645 5646 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 5647 * be negative, then either: 5648 * 1) src_reg might be zero, so the sign bit of the result is 5649 * unknown, so we lose our signed bounds 5650 * 2) it's known negative, thus the unsigned bounds capture the 5651 * signed bounds 5652 * 3) the signed bounds cross zero, so they tell us nothing 5653 * about the result 5654 * If the value in dst_reg is known nonnegative, then again the 5655 * unsigned bounts capture the signed bounds. 5656 * Thus, in all cases it suffices to blow away our signed bounds 5657 * and rely on inferring new ones from the unsigned bounds and 5658 * var_off of the result. 5659 */ 5660 dst_reg->s32_min_value = S32_MIN; 5661 dst_reg->s32_max_value = S32_MAX; 5662 5663 dst_reg->var_off = tnum_rshift(subreg, umin_val); 5664 dst_reg->u32_min_value >>= umax_val; 5665 dst_reg->u32_max_value >>= umin_val; 5666 5667 __mark_reg64_unbounded(dst_reg); 5668 __update_reg32_bounds(dst_reg); 5669 } 5670 5671 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 5672 struct bpf_reg_state *src_reg) 5673 { 5674 u64 umax_val = src_reg->umax_value; 5675 u64 umin_val = src_reg->umin_value; 5676 5677 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 5678 * be negative, then either: 5679 * 1) src_reg might be zero, so the sign bit of the result is 5680 * unknown, so we lose our signed bounds 5681 * 2) it's known negative, thus the unsigned bounds capture the 5682 * signed bounds 5683 * 3) the signed bounds cross zero, so they tell us nothing 5684 * about the result 5685 * If the value in dst_reg is known nonnegative, then again the 5686 * unsigned bounts capture the signed bounds. 5687 * Thus, in all cases it suffices to blow away our signed bounds 5688 * and rely on inferring new ones from the unsigned bounds and 5689 * var_off of the result. 5690 */ 5691 dst_reg->smin_value = S64_MIN; 5692 dst_reg->smax_value = S64_MAX; 5693 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 5694 dst_reg->umin_value >>= umax_val; 5695 dst_reg->umax_value >>= umin_val; 5696 5697 /* Its not easy to operate on alu32 bounds here because it depends 5698 * on bits being shifted in. Take easy way out and mark unbounded 5699 * so we can recalculate later from tnum. 5700 */ 5701 __mark_reg32_unbounded(dst_reg); 5702 __update_reg_bounds(dst_reg); 5703 } 5704 5705 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 5706 struct bpf_reg_state *src_reg) 5707 { 5708 u64 umin_val = src_reg->u32_min_value; 5709 5710 /* Upon reaching here, src_known is true and 5711 * umax_val is equal to umin_val. 5712 */ 5713 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 5714 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 5715 5716 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 5717 5718 /* blow away the dst_reg umin_value/umax_value and rely on 5719 * dst_reg var_off to refine the result. 5720 */ 5721 dst_reg->u32_min_value = 0; 5722 dst_reg->u32_max_value = U32_MAX; 5723 5724 __mark_reg64_unbounded(dst_reg); 5725 __update_reg32_bounds(dst_reg); 5726 } 5727 5728 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 5729 struct bpf_reg_state *src_reg) 5730 { 5731 u64 umin_val = src_reg->umin_value; 5732 5733 /* Upon reaching here, src_known is true and umax_val is equal 5734 * to umin_val. 5735 */ 5736 dst_reg->smin_value >>= umin_val; 5737 dst_reg->smax_value >>= umin_val; 5738 5739 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 5740 5741 /* blow away the dst_reg umin_value/umax_value and rely on 5742 * dst_reg var_off to refine the result. 5743 */ 5744 dst_reg->umin_value = 0; 5745 dst_reg->umax_value = U64_MAX; 5746 5747 /* Its not easy to operate on alu32 bounds here because it depends 5748 * on bits being shifted in from upper 32-bits. Take easy way out 5749 * and mark unbounded so we can recalculate later from tnum. 5750 */ 5751 __mark_reg32_unbounded(dst_reg); 5752 __update_reg_bounds(dst_reg); 5753 } 5754 5755 /* WARNING: This function does calculations on 64-bit values, but the actual 5756 * execution may occur on 32-bit values. Therefore, things like bitshifts 5757 * need extra checks in the 32-bit case. 5758 */ 5759 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 5760 struct bpf_insn *insn, 5761 struct bpf_reg_state *dst_reg, 5762 struct bpf_reg_state src_reg) 5763 { 5764 struct bpf_reg_state *regs = cur_regs(env); 5765 u8 opcode = BPF_OP(insn->code); 5766 bool src_known; 5767 s64 smin_val, smax_val; 5768 u64 umin_val, umax_val; 5769 s32 s32_min_val, s32_max_val; 5770 u32 u32_min_val, u32_max_val; 5771 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 5772 u32 dst = insn->dst_reg; 5773 int ret; 5774 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 5775 5776 smin_val = src_reg.smin_value; 5777 smax_val = src_reg.smax_value; 5778 umin_val = src_reg.umin_value; 5779 umax_val = src_reg.umax_value; 5780 5781 s32_min_val = src_reg.s32_min_value; 5782 s32_max_val = src_reg.s32_max_value; 5783 u32_min_val = src_reg.u32_min_value; 5784 u32_max_val = src_reg.u32_max_value; 5785 5786 if (alu32) { 5787 src_known = tnum_subreg_is_const(src_reg.var_off); 5788 if ((src_known && 5789 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 5790 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 5791 /* Taint dst register if offset had invalid bounds 5792 * derived from e.g. dead branches. 5793 */ 5794 __mark_reg_unknown(env, dst_reg); 5795 return 0; 5796 } 5797 } else { 5798 src_known = tnum_is_const(src_reg.var_off); 5799 if ((src_known && 5800 (smin_val != smax_val || umin_val != umax_val)) || 5801 smin_val > smax_val || umin_val > umax_val) { 5802 /* Taint dst register if offset had invalid bounds 5803 * derived from e.g. dead branches. 5804 */ 5805 __mark_reg_unknown(env, dst_reg); 5806 return 0; 5807 } 5808 } 5809 5810 if (!src_known && 5811 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 5812 __mark_reg_unknown(env, dst_reg); 5813 return 0; 5814 } 5815 5816 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 5817 * There are two classes of instructions: The first class we track both 5818 * alu32 and alu64 sign/unsigned bounds independently this provides the 5819 * greatest amount of precision when alu operations are mixed with jmp32 5820 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 5821 * and BPF_OR. This is possible because these ops have fairly easy to 5822 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 5823 * See alu32 verifier tests for examples. The second class of 5824 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 5825 * with regards to tracking sign/unsigned bounds because the bits may 5826 * cross subreg boundaries in the alu64 case. When this happens we mark 5827 * the reg unbounded in the subreg bound space and use the resulting 5828 * tnum to calculate an approximation of the sign/unsigned bounds. 5829 */ 5830 switch (opcode) { 5831 case BPF_ADD: 5832 ret = sanitize_val_alu(env, insn); 5833 if (ret < 0) { 5834 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 5835 return ret; 5836 } 5837 scalar32_min_max_add(dst_reg, &src_reg); 5838 scalar_min_max_add(dst_reg, &src_reg); 5839 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 5840 break; 5841 case BPF_SUB: 5842 ret = sanitize_val_alu(env, insn); 5843 if (ret < 0) { 5844 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 5845 return ret; 5846 } 5847 scalar32_min_max_sub(dst_reg, &src_reg); 5848 scalar_min_max_sub(dst_reg, &src_reg); 5849 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 5850 break; 5851 case BPF_MUL: 5852 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 5853 scalar32_min_max_mul(dst_reg, &src_reg); 5854 scalar_min_max_mul(dst_reg, &src_reg); 5855 break; 5856 case BPF_AND: 5857 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 5858 scalar32_min_max_and(dst_reg, &src_reg); 5859 scalar_min_max_and(dst_reg, &src_reg); 5860 break; 5861 case BPF_OR: 5862 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 5863 scalar32_min_max_or(dst_reg, &src_reg); 5864 scalar_min_max_or(dst_reg, &src_reg); 5865 break; 5866 case BPF_LSH: 5867 if (umax_val >= insn_bitness) { 5868 /* Shifts greater than 31 or 63 are undefined. 5869 * This includes shifts by a negative number. 5870 */ 5871 mark_reg_unknown(env, regs, insn->dst_reg); 5872 break; 5873 } 5874 if (alu32) 5875 scalar32_min_max_lsh(dst_reg, &src_reg); 5876 else 5877 scalar_min_max_lsh(dst_reg, &src_reg); 5878 break; 5879 case BPF_RSH: 5880 if (umax_val >= insn_bitness) { 5881 /* Shifts greater than 31 or 63 are undefined. 5882 * This includes shifts by a negative number. 5883 */ 5884 mark_reg_unknown(env, regs, insn->dst_reg); 5885 break; 5886 } 5887 if (alu32) 5888 scalar32_min_max_rsh(dst_reg, &src_reg); 5889 else 5890 scalar_min_max_rsh(dst_reg, &src_reg); 5891 break; 5892 case BPF_ARSH: 5893 if (umax_val >= insn_bitness) { 5894 /* Shifts greater than 31 or 63 are undefined. 5895 * This includes shifts by a negative number. 5896 */ 5897 mark_reg_unknown(env, regs, insn->dst_reg); 5898 break; 5899 } 5900 if (alu32) 5901 scalar32_min_max_arsh(dst_reg, &src_reg); 5902 else 5903 scalar_min_max_arsh(dst_reg, &src_reg); 5904 break; 5905 default: 5906 mark_reg_unknown(env, regs, insn->dst_reg); 5907 break; 5908 } 5909 5910 /* ALU32 ops are zero extended into 64bit register */ 5911 if (alu32) 5912 zext_32_to_64(dst_reg); 5913 5914 __update_reg_bounds(dst_reg); 5915 __reg_deduce_bounds(dst_reg); 5916 __reg_bound_offset(dst_reg); 5917 return 0; 5918 } 5919 5920 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 5921 * and var_off. 5922 */ 5923 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 5924 struct bpf_insn *insn) 5925 { 5926 struct bpf_verifier_state *vstate = env->cur_state; 5927 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5928 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 5929 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 5930 u8 opcode = BPF_OP(insn->code); 5931 int err; 5932 5933 dst_reg = ®s[insn->dst_reg]; 5934 src_reg = NULL; 5935 if (dst_reg->type != SCALAR_VALUE) 5936 ptr_reg = dst_reg; 5937 if (BPF_SRC(insn->code) == BPF_X) { 5938 src_reg = ®s[insn->src_reg]; 5939 if (src_reg->type != SCALAR_VALUE) { 5940 if (dst_reg->type != SCALAR_VALUE) { 5941 /* Combining two pointers by any ALU op yields 5942 * an arbitrary scalar. Disallow all math except 5943 * pointer subtraction 5944 */ 5945 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 5946 mark_reg_unknown(env, regs, insn->dst_reg); 5947 return 0; 5948 } 5949 verbose(env, "R%d pointer %s pointer prohibited\n", 5950 insn->dst_reg, 5951 bpf_alu_string[opcode >> 4]); 5952 return -EACCES; 5953 } else { 5954 /* scalar += pointer 5955 * This is legal, but we have to reverse our 5956 * src/dest handling in computing the range 5957 */ 5958 err = mark_chain_precision(env, insn->dst_reg); 5959 if (err) 5960 return err; 5961 return adjust_ptr_min_max_vals(env, insn, 5962 src_reg, dst_reg); 5963 } 5964 } else if (ptr_reg) { 5965 /* pointer += scalar */ 5966 err = mark_chain_precision(env, insn->src_reg); 5967 if (err) 5968 return err; 5969 return adjust_ptr_min_max_vals(env, insn, 5970 dst_reg, src_reg); 5971 } 5972 } else { 5973 /* Pretend the src is a reg with a known value, since we only 5974 * need to be able to read from this state. 5975 */ 5976 off_reg.type = SCALAR_VALUE; 5977 __mark_reg_known(&off_reg, insn->imm); 5978 src_reg = &off_reg; 5979 if (ptr_reg) /* pointer += K */ 5980 return adjust_ptr_min_max_vals(env, insn, 5981 ptr_reg, src_reg); 5982 } 5983 5984 /* Got here implies adding two SCALAR_VALUEs */ 5985 if (WARN_ON_ONCE(ptr_reg)) { 5986 print_verifier_state(env, state); 5987 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 5988 return -EINVAL; 5989 } 5990 if (WARN_ON(!src_reg)) { 5991 print_verifier_state(env, state); 5992 verbose(env, "verifier internal error: no src_reg\n"); 5993 return -EINVAL; 5994 } 5995 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 5996 } 5997 5998 /* check validity of 32-bit and 64-bit arithmetic operations */ 5999 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 6000 { 6001 struct bpf_reg_state *regs = cur_regs(env); 6002 u8 opcode = BPF_OP(insn->code); 6003 int err; 6004 6005 if (opcode == BPF_END || opcode == BPF_NEG) { 6006 if (opcode == BPF_NEG) { 6007 if (BPF_SRC(insn->code) != 0 || 6008 insn->src_reg != BPF_REG_0 || 6009 insn->off != 0 || insn->imm != 0) { 6010 verbose(env, "BPF_NEG uses reserved fields\n"); 6011 return -EINVAL; 6012 } 6013 } else { 6014 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 6015 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 6016 BPF_CLASS(insn->code) == BPF_ALU64) { 6017 verbose(env, "BPF_END uses reserved fields\n"); 6018 return -EINVAL; 6019 } 6020 } 6021 6022 /* check src operand */ 6023 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6024 if (err) 6025 return err; 6026 6027 if (is_pointer_value(env, insn->dst_reg)) { 6028 verbose(env, "R%d pointer arithmetic prohibited\n", 6029 insn->dst_reg); 6030 return -EACCES; 6031 } 6032 6033 /* check dest operand */ 6034 err = check_reg_arg(env, insn->dst_reg, DST_OP); 6035 if (err) 6036 return err; 6037 6038 } else if (opcode == BPF_MOV) { 6039 6040 if (BPF_SRC(insn->code) == BPF_X) { 6041 if (insn->imm != 0 || insn->off != 0) { 6042 verbose(env, "BPF_MOV uses reserved fields\n"); 6043 return -EINVAL; 6044 } 6045 6046 /* check src operand */ 6047 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6048 if (err) 6049 return err; 6050 } else { 6051 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 6052 verbose(env, "BPF_MOV uses reserved fields\n"); 6053 return -EINVAL; 6054 } 6055 } 6056 6057 /* check dest operand, mark as required later */ 6058 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6059 if (err) 6060 return err; 6061 6062 if (BPF_SRC(insn->code) == BPF_X) { 6063 struct bpf_reg_state *src_reg = regs + insn->src_reg; 6064 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 6065 6066 if (BPF_CLASS(insn->code) == BPF_ALU64) { 6067 /* case: R1 = R2 6068 * copy register state to dest reg 6069 */ 6070 *dst_reg = *src_reg; 6071 dst_reg->live |= REG_LIVE_WRITTEN; 6072 dst_reg->subreg_def = DEF_NOT_SUBREG; 6073 } else { 6074 /* R1 = (u32) R2 */ 6075 if (is_pointer_value(env, insn->src_reg)) { 6076 verbose(env, 6077 "R%d partial copy of pointer\n", 6078 insn->src_reg); 6079 return -EACCES; 6080 } else if (src_reg->type == SCALAR_VALUE) { 6081 *dst_reg = *src_reg; 6082 dst_reg->live |= REG_LIVE_WRITTEN; 6083 dst_reg->subreg_def = env->insn_idx + 1; 6084 } else { 6085 mark_reg_unknown(env, regs, 6086 insn->dst_reg); 6087 } 6088 zext_32_to_64(dst_reg); 6089 } 6090 } else { 6091 /* case: R = imm 6092 * remember the value we stored into this reg 6093 */ 6094 /* clear any state __mark_reg_known doesn't set */ 6095 mark_reg_unknown(env, regs, insn->dst_reg); 6096 regs[insn->dst_reg].type = SCALAR_VALUE; 6097 if (BPF_CLASS(insn->code) == BPF_ALU64) { 6098 __mark_reg_known(regs + insn->dst_reg, 6099 insn->imm); 6100 } else { 6101 __mark_reg_known(regs + insn->dst_reg, 6102 (u32)insn->imm); 6103 } 6104 } 6105 6106 } else if (opcode > BPF_END) { 6107 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 6108 return -EINVAL; 6109 6110 } else { /* all other ALU ops: and, sub, xor, add, ... */ 6111 6112 if (BPF_SRC(insn->code) == BPF_X) { 6113 if (insn->imm != 0 || insn->off != 0) { 6114 verbose(env, "BPF_ALU uses reserved fields\n"); 6115 return -EINVAL; 6116 } 6117 /* check src1 operand */ 6118 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6119 if (err) 6120 return err; 6121 } else { 6122 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 6123 verbose(env, "BPF_ALU uses reserved fields\n"); 6124 return -EINVAL; 6125 } 6126 } 6127 6128 /* check src2 operand */ 6129 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6130 if (err) 6131 return err; 6132 6133 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 6134 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 6135 verbose(env, "div by zero\n"); 6136 return -EINVAL; 6137 } 6138 6139 if ((opcode == BPF_LSH || opcode == BPF_RSH || 6140 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 6141 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 6142 6143 if (insn->imm < 0 || insn->imm >= size) { 6144 verbose(env, "invalid shift %d\n", insn->imm); 6145 return -EINVAL; 6146 } 6147 } 6148 6149 /* check dest operand */ 6150 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6151 if (err) 6152 return err; 6153 6154 return adjust_reg_min_max_vals(env, insn); 6155 } 6156 6157 return 0; 6158 } 6159 6160 static void __find_good_pkt_pointers(struct bpf_func_state *state, 6161 struct bpf_reg_state *dst_reg, 6162 enum bpf_reg_type type, u16 new_range) 6163 { 6164 struct bpf_reg_state *reg; 6165 int i; 6166 6167 for (i = 0; i < MAX_BPF_REG; i++) { 6168 reg = &state->regs[i]; 6169 if (reg->type == type && reg->id == dst_reg->id) 6170 /* keep the maximum range already checked */ 6171 reg->range = max(reg->range, new_range); 6172 } 6173 6174 bpf_for_each_spilled_reg(i, state, reg) { 6175 if (!reg) 6176 continue; 6177 if (reg->type == type && reg->id == dst_reg->id) 6178 reg->range = max(reg->range, new_range); 6179 } 6180 } 6181 6182 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 6183 struct bpf_reg_state *dst_reg, 6184 enum bpf_reg_type type, 6185 bool range_right_open) 6186 { 6187 u16 new_range; 6188 int i; 6189 6190 if (dst_reg->off < 0 || 6191 (dst_reg->off == 0 && range_right_open)) 6192 /* This doesn't give us any range */ 6193 return; 6194 6195 if (dst_reg->umax_value > MAX_PACKET_OFF || 6196 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 6197 /* Risk of overflow. For instance, ptr + (1<<63) may be less 6198 * than pkt_end, but that's because it's also less than pkt. 6199 */ 6200 return; 6201 6202 new_range = dst_reg->off; 6203 if (range_right_open) 6204 new_range--; 6205 6206 /* Examples for register markings: 6207 * 6208 * pkt_data in dst register: 6209 * 6210 * r2 = r3; 6211 * r2 += 8; 6212 * if (r2 > pkt_end) goto <handle exception> 6213 * <access okay> 6214 * 6215 * r2 = r3; 6216 * r2 += 8; 6217 * if (r2 < pkt_end) goto <access okay> 6218 * <handle exception> 6219 * 6220 * Where: 6221 * r2 == dst_reg, pkt_end == src_reg 6222 * r2=pkt(id=n,off=8,r=0) 6223 * r3=pkt(id=n,off=0,r=0) 6224 * 6225 * pkt_data in src register: 6226 * 6227 * r2 = r3; 6228 * r2 += 8; 6229 * if (pkt_end >= r2) goto <access okay> 6230 * <handle exception> 6231 * 6232 * r2 = r3; 6233 * r2 += 8; 6234 * if (pkt_end <= r2) goto <handle exception> 6235 * <access okay> 6236 * 6237 * Where: 6238 * pkt_end == dst_reg, r2 == src_reg 6239 * r2=pkt(id=n,off=8,r=0) 6240 * r3=pkt(id=n,off=0,r=0) 6241 * 6242 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 6243 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 6244 * and [r3, r3 + 8-1) respectively is safe to access depending on 6245 * the check. 6246 */ 6247 6248 /* If our ids match, then we must have the same max_value. And we 6249 * don't care about the other reg's fixed offset, since if it's too big 6250 * the range won't allow anything. 6251 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 6252 */ 6253 for (i = 0; i <= vstate->curframe; i++) 6254 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 6255 new_range); 6256 } 6257 6258 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 6259 { 6260 struct tnum subreg = tnum_subreg(reg->var_off); 6261 s32 sval = (s32)val; 6262 6263 switch (opcode) { 6264 case BPF_JEQ: 6265 if (tnum_is_const(subreg)) 6266 return !!tnum_equals_const(subreg, val); 6267 break; 6268 case BPF_JNE: 6269 if (tnum_is_const(subreg)) 6270 return !tnum_equals_const(subreg, val); 6271 break; 6272 case BPF_JSET: 6273 if ((~subreg.mask & subreg.value) & val) 6274 return 1; 6275 if (!((subreg.mask | subreg.value) & val)) 6276 return 0; 6277 break; 6278 case BPF_JGT: 6279 if (reg->u32_min_value > val) 6280 return 1; 6281 else if (reg->u32_max_value <= val) 6282 return 0; 6283 break; 6284 case BPF_JSGT: 6285 if (reg->s32_min_value > sval) 6286 return 1; 6287 else if (reg->s32_max_value < sval) 6288 return 0; 6289 break; 6290 case BPF_JLT: 6291 if (reg->u32_max_value < val) 6292 return 1; 6293 else if (reg->u32_min_value >= val) 6294 return 0; 6295 break; 6296 case BPF_JSLT: 6297 if (reg->s32_max_value < sval) 6298 return 1; 6299 else if (reg->s32_min_value >= sval) 6300 return 0; 6301 break; 6302 case BPF_JGE: 6303 if (reg->u32_min_value >= val) 6304 return 1; 6305 else if (reg->u32_max_value < val) 6306 return 0; 6307 break; 6308 case BPF_JSGE: 6309 if (reg->s32_min_value >= sval) 6310 return 1; 6311 else if (reg->s32_max_value < sval) 6312 return 0; 6313 break; 6314 case BPF_JLE: 6315 if (reg->u32_max_value <= val) 6316 return 1; 6317 else if (reg->u32_min_value > val) 6318 return 0; 6319 break; 6320 case BPF_JSLE: 6321 if (reg->s32_max_value <= sval) 6322 return 1; 6323 else if (reg->s32_min_value > sval) 6324 return 0; 6325 break; 6326 } 6327 6328 return -1; 6329 } 6330 6331 6332 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 6333 { 6334 s64 sval = (s64)val; 6335 6336 switch (opcode) { 6337 case BPF_JEQ: 6338 if (tnum_is_const(reg->var_off)) 6339 return !!tnum_equals_const(reg->var_off, val); 6340 break; 6341 case BPF_JNE: 6342 if (tnum_is_const(reg->var_off)) 6343 return !tnum_equals_const(reg->var_off, val); 6344 break; 6345 case BPF_JSET: 6346 if ((~reg->var_off.mask & reg->var_off.value) & val) 6347 return 1; 6348 if (!((reg->var_off.mask | reg->var_off.value) & val)) 6349 return 0; 6350 break; 6351 case BPF_JGT: 6352 if (reg->umin_value > val) 6353 return 1; 6354 else if (reg->umax_value <= val) 6355 return 0; 6356 break; 6357 case BPF_JSGT: 6358 if (reg->smin_value > sval) 6359 return 1; 6360 else if (reg->smax_value < sval) 6361 return 0; 6362 break; 6363 case BPF_JLT: 6364 if (reg->umax_value < val) 6365 return 1; 6366 else if (reg->umin_value >= val) 6367 return 0; 6368 break; 6369 case BPF_JSLT: 6370 if (reg->smax_value < sval) 6371 return 1; 6372 else if (reg->smin_value >= sval) 6373 return 0; 6374 break; 6375 case BPF_JGE: 6376 if (reg->umin_value >= val) 6377 return 1; 6378 else if (reg->umax_value < val) 6379 return 0; 6380 break; 6381 case BPF_JSGE: 6382 if (reg->smin_value >= sval) 6383 return 1; 6384 else if (reg->smax_value < sval) 6385 return 0; 6386 break; 6387 case BPF_JLE: 6388 if (reg->umax_value <= val) 6389 return 1; 6390 else if (reg->umin_value > val) 6391 return 0; 6392 break; 6393 case BPF_JSLE: 6394 if (reg->smax_value <= sval) 6395 return 1; 6396 else if (reg->smin_value > sval) 6397 return 0; 6398 break; 6399 } 6400 6401 return -1; 6402 } 6403 6404 /* compute branch direction of the expression "if (reg opcode val) goto target;" 6405 * and return: 6406 * 1 - branch will be taken and "goto target" will be executed 6407 * 0 - branch will not be taken and fall-through to next insn 6408 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 6409 * range [0,10] 6410 */ 6411 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 6412 bool is_jmp32) 6413 { 6414 if (__is_pointer_value(false, reg)) { 6415 if (!reg_type_not_null(reg->type)) 6416 return -1; 6417 6418 /* If pointer is valid tests against zero will fail so we can 6419 * use this to direct branch taken. 6420 */ 6421 if (val != 0) 6422 return -1; 6423 6424 switch (opcode) { 6425 case BPF_JEQ: 6426 return 0; 6427 case BPF_JNE: 6428 return 1; 6429 default: 6430 return -1; 6431 } 6432 } 6433 6434 if (is_jmp32) 6435 return is_branch32_taken(reg, val, opcode); 6436 return is_branch64_taken(reg, val, opcode); 6437 } 6438 6439 /* Adjusts the register min/max values in the case that the dst_reg is the 6440 * variable register that we are working on, and src_reg is a constant or we're 6441 * simply doing a BPF_K check. 6442 * In JEQ/JNE cases we also adjust the var_off values. 6443 */ 6444 static void reg_set_min_max(struct bpf_reg_state *true_reg, 6445 struct bpf_reg_state *false_reg, 6446 u64 val, u32 val32, 6447 u8 opcode, bool is_jmp32) 6448 { 6449 struct tnum false_32off = tnum_subreg(false_reg->var_off); 6450 struct tnum false_64off = false_reg->var_off; 6451 struct tnum true_32off = tnum_subreg(true_reg->var_off); 6452 struct tnum true_64off = true_reg->var_off; 6453 s64 sval = (s64)val; 6454 s32 sval32 = (s32)val32; 6455 6456 /* If the dst_reg is a pointer, we can't learn anything about its 6457 * variable offset from the compare (unless src_reg were a pointer into 6458 * the same object, but we don't bother with that. 6459 * Since false_reg and true_reg have the same type by construction, we 6460 * only need to check one of them for pointerness. 6461 */ 6462 if (__is_pointer_value(false, false_reg)) 6463 return; 6464 6465 switch (opcode) { 6466 case BPF_JEQ: 6467 case BPF_JNE: 6468 { 6469 struct bpf_reg_state *reg = 6470 opcode == BPF_JEQ ? true_reg : false_reg; 6471 6472 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but 6473 * if it is true we know the value for sure. Likewise for 6474 * BPF_JNE. 6475 */ 6476 if (is_jmp32) 6477 __mark_reg32_known(reg, val32); 6478 else 6479 __mark_reg_known(reg, val); 6480 break; 6481 } 6482 case BPF_JSET: 6483 if (is_jmp32) { 6484 false_32off = tnum_and(false_32off, tnum_const(~val32)); 6485 if (is_power_of_2(val32)) 6486 true_32off = tnum_or(true_32off, 6487 tnum_const(val32)); 6488 } else { 6489 false_64off = tnum_and(false_64off, tnum_const(~val)); 6490 if (is_power_of_2(val)) 6491 true_64off = tnum_or(true_64off, 6492 tnum_const(val)); 6493 } 6494 break; 6495 case BPF_JGE: 6496 case BPF_JGT: 6497 { 6498 if (is_jmp32) { 6499 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 6500 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 6501 6502 false_reg->u32_max_value = min(false_reg->u32_max_value, 6503 false_umax); 6504 true_reg->u32_min_value = max(true_reg->u32_min_value, 6505 true_umin); 6506 } else { 6507 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 6508 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 6509 6510 false_reg->umax_value = min(false_reg->umax_value, false_umax); 6511 true_reg->umin_value = max(true_reg->umin_value, true_umin); 6512 } 6513 break; 6514 } 6515 case BPF_JSGE: 6516 case BPF_JSGT: 6517 { 6518 if (is_jmp32) { 6519 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 6520 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 6521 6522 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 6523 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 6524 } else { 6525 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 6526 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 6527 6528 false_reg->smax_value = min(false_reg->smax_value, false_smax); 6529 true_reg->smin_value = max(true_reg->smin_value, true_smin); 6530 } 6531 break; 6532 } 6533 case BPF_JLE: 6534 case BPF_JLT: 6535 { 6536 if (is_jmp32) { 6537 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 6538 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 6539 6540 false_reg->u32_min_value = max(false_reg->u32_min_value, 6541 false_umin); 6542 true_reg->u32_max_value = min(true_reg->u32_max_value, 6543 true_umax); 6544 } else { 6545 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 6546 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 6547 6548 false_reg->umin_value = max(false_reg->umin_value, false_umin); 6549 true_reg->umax_value = min(true_reg->umax_value, true_umax); 6550 } 6551 break; 6552 } 6553 case BPF_JSLE: 6554 case BPF_JSLT: 6555 { 6556 if (is_jmp32) { 6557 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 6558 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 6559 6560 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 6561 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 6562 } else { 6563 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 6564 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 6565 6566 false_reg->smin_value = max(false_reg->smin_value, false_smin); 6567 true_reg->smax_value = min(true_reg->smax_value, true_smax); 6568 } 6569 break; 6570 } 6571 default: 6572 return; 6573 } 6574 6575 if (is_jmp32) { 6576 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 6577 tnum_subreg(false_32off)); 6578 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 6579 tnum_subreg(true_32off)); 6580 __reg_combine_32_into_64(false_reg); 6581 __reg_combine_32_into_64(true_reg); 6582 } else { 6583 false_reg->var_off = false_64off; 6584 true_reg->var_off = true_64off; 6585 __reg_combine_64_into_32(false_reg); 6586 __reg_combine_64_into_32(true_reg); 6587 } 6588 } 6589 6590 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 6591 * the variable reg. 6592 */ 6593 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 6594 struct bpf_reg_state *false_reg, 6595 u64 val, u32 val32, 6596 u8 opcode, bool is_jmp32) 6597 { 6598 /* How can we transform "a <op> b" into "b <op> a"? */ 6599 static const u8 opcode_flip[16] = { 6600 /* these stay the same */ 6601 [BPF_JEQ >> 4] = BPF_JEQ, 6602 [BPF_JNE >> 4] = BPF_JNE, 6603 [BPF_JSET >> 4] = BPF_JSET, 6604 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 6605 [BPF_JGE >> 4] = BPF_JLE, 6606 [BPF_JGT >> 4] = BPF_JLT, 6607 [BPF_JLE >> 4] = BPF_JGE, 6608 [BPF_JLT >> 4] = BPF_JGT, 6609 [BPF_JSGE >> 4] = BPF_JSLE, 6610 [BPF_JSGT >> 4] = BPF_JSLT, 6611 [BPF_JSLE >> 4] = BPF_JSGE, 6612 [BPF_JSLT >> 4] = BPF_JSGT 6613 }; 6614 opcode = opcode_flip[opcode >> 4]; 6615 /* This uses zero as "not present in table"; luckily the zero opcode, 6616 * BPF_JA, can't get here. 6617 */ 6618 if (opcode) 6619 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 6620 } 6621 6622 /* Regs are known to be equal, so intersect their min/max/var_off */ 6623 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 6624 struct bpf_reg_state *dst_reg) 6625 { 6626 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 6627 dst_reg->umin_value); 6628 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 6629 dst_reg->umax_value); 6630 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 6631 dst_reg->smin_value); 6632 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 6633 dst_reg->smax_value); 6634 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 6635 dst_reg->var_off); 6636 /* We might have learned new bounds from the var_off. */ 6637 __update_reg_bounds(src_reg); 6638 __update_reg_bounds(dst_reg); 6639 /* We might have learned something about the sign bit. */ 6640 __reg_deduce_bounds(src_reg); 6641 __reg_deduce_bounds(dst_reg); 6642 /* We might have learned some bits from the bounds. */ 6643 __reg_bound_offset(src_reg); 6644 __reg_bound_offset(dst_reg); 6645 /* Intersecting with the old var_off might have improved our bounds 6646 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 6647 * then new var_off is (0; 0x7f...fc) which improves our umax. 6648 */ 6649 __update_reg_bounds(src_reg); 6650 __update_reg_bounds(dst_reg); 6651 } 6652 6653 static void reg_combine_min_max(struct bpf_reg_state *true_src, 6654 struct bpf_reg_state *true_dst, 6655 struct bpf_reg_state *false_src, 6656 struct bpf_reg_state *false_dst, 6657 u8 opcode) 6658 { 6659 switch (opcode) { 6660 case BPF_JEQ: 6661 __reg_combine_min_max(true_src, true_dst); 6662 break; 6663 case BPF_JNE: 6664 __reg_combine_min_max(false_src, false_dst); 6665 break; 6666 } 6667 } 6668 6669 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 6670 struct bpf_reg_state *reg, u32 id, 6671 bool is_null) 6672 { 6673 if (reg_type_may_be_null(reg->type) && reg->id == id) { 6674 /* Old offset (both fixed and variable parts) should 6675 * have been known-zero, because we don't allow pointer 6676 * arithmetic on pointers that might be NULL. 6677 */ 6678 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 6679 !tnum_equals_const(reg->var_off, 0) || 6680 reg->off)) { 6681 __mark_reg_known_zero(reg); 6682 reg->off = 0; 6683 } 6684 if (is_null) { 6685 reg->type = SCALAR_VALUE; 6686 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 6687 const struct bpf_map *map = reg->map_ptr; 6688 6689 if (map->inner_map_meta) { 6690 reg->type = CONST_PTR_TO_MAP; 6691 reg->map_ptr = map->inner_map_meta; 6692 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 6693 reg->type = PTR_TO_XDP_SOCK; 6694 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 6695 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 6696 reg->type = PTR_TO_SOCKET; 6697 } else { 6698 reg->type = PTR_TO_MAP_VALUE; 6699 } 6700 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 6701 reg->type = PTR_TO_SOCKET; 6702 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 6703 reg->type = PTR_TO_SOCK_COMMON; 6704 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 6705 reg->type = PTR_TO_TCP_SOCK; 6706 } else if (reg->type == PTR_TO_BTF_ID_OR_NULL) { 6707 reg->type = PTR_TO_BTF_ID; 6708 } else if (reg->type == PTR_TO_MEM_OR_NULL) { 6709 reg->type = PTR_TO_MEM; 6710 } 6711 if (is_null) { 6712 /* We don't need id and ref_obj_id from this point 6713 * onwards anymore, thus we should better reset it, 6714 * so that state pruning has chances to take effect. 6715 */ 6716 reg->id = 0; 6717 reg->ref_obj_id = 0; 6718 } else if (!reg_may_point_to_spin_lock(reg)) { 6719 /* For not-NULL ptr, reg->ref_obj_id will be reset 6720 * in release_reg_references(). 6721 * 6722 * reg->id is still used by spin_lock ptr. Other 6723 * than spin_lock ptr type, reg->id can be reset. 6724 */ 6725 reg->id = 0; 6726 } 6727 } 6728 } 6729 6730 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 6731 bool is_null) 6732 { 6733 struct bpf_reg_state *reg; 6734 int i; 6735 6736 for (i = 0; i < MAX_BPF_REG; i++) 6737 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 6738 6739 bpf_for_each_spilled_reg(i, state, reg) { 6740 if (!reg) 6741 continue; 6742 mark_ptr_or_null_reg(state, reg, id, is_null); 6743 } 6744 } 6745 6746 /* The logic is similar to find_good_pkt_pointers(), both could eventually 6747 * be folded together at some point. 6748 */ 6749 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 6750 bool is_null) 6751 { 6752 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6753 struct bpf_reg_state *regs = state->regs; 6754 u32 ref_obj_id = regs[regno].ref_obj_id; 6755 u32 id = regs[regno].id; 6756 int i; 6757 6758 if (ref_obj_id && ref_obj_id == id && is_null) 6759 /* regs[regno] is in the " == NULL" branch. 6760 * No one could have freed the reference state before 6761 * doing the NULL check. 6762 */ 6763 WARN_ON_ONCE(release_reference_state(state, id)); 6764 6765 for (i = 0; i <= vstate->curframe; i++) 6766 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 6767 } 6768 6769 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 6770 struct bpf_reg_state *dst_reg, 6771 struct bpf_reg_state *src_reg, 6772 struct bpf_verifier_state *this_branch, 6773 struct bpf_verifier_state *other_branch) 6774 { 6775 if (BPF_SRC(insn->code) != BPF_X) 6776 return false; 6777 6778 /* Pointers are always 64-bit. */ 6779 if (BPF_CLASS(insn->code) == BPF_JMP32) 6780 return false; 6781 6782 switch (BPF_OP(insn->code)) { 6783 case BPF_JGT: 6784 if ((dst_reg->type == PTR_TO_PACKET && 6785 src_reg->type == PTR_TO_PACKET_END) || 6786 (dst_reg->type == PTR_TO_PACKET_META && 6787 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6788 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 6789 find_good_pkt_pointers(this_branch, dst_reg, 6790 dst_reg->type, false); 6791 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6792 src_reg->type == PTR_TO_PACKET) || 6793 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6794 src_reg->type == PTR_TO_PACKET_META)) { 6795 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 6796 find_good_pkt_pointers(other_branch, src_reg, 6797 src_reg->type, true); 6798 } else { 6799 return false; 6800 } 6801 break; 6802 case BPF_JLT: 6803 if ((dst_reg->type == PTR_TO_PACKET && 6804 src_reg->type == PTR_TO_PACKET_END) || 6805 (dst_reg->type == PTR_TO_PACKET_META && 6806 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6807 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 6808 find_good_pkt_pointers(other_branch, dst_reg, 6809 dst_reg->type, true); 6810 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6811 src_reg->type == PTR_TO_PACKET) || 6812 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6813 src_reg->type == PTR_TO_PACKET_META)) { 6814 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 6815 find_good_pkt_pointers(this_branch, src_reg, 6816 src_reg->type, false); 6817 } else { 6818 return false; 6819 } 6820 break; 6821 case BPF_JGE: 6822 if ((dst_reg->type == PTR_TO_PACKET && 6823 src_reg->type == PTR_TO_PACKET_END) || 6824 (dst_reg->type == PTR_TO_PACKET_META && 6825 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6826 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 6827 find_good_pkt_pointers(this_branch, dst_reg, 6828 dst_reg->type, true); 6829 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6830 src_reg->type == PTR_TO_PACKET) || 6831 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6832 src_reg->type == PTR_TO_PACKET_META)) { 6833 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 6834 find_good_pkt_pointers(other_branch, src_reg, 6835 src_reg->type, false); 6836 } else { 6837 return false; 6838 } 6839 break; 6840 case BPF_JLE: 6841 if ((dst_reg->type == PTR_TO_PACKET && 6842 src_reg->type == PTR_TO_PACKET_END) || 6843 (dst_reg->type == PTR_TO_PACKET_META && 6844 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6845 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 6846 find_good_pkt_pointers(other_branch, dst_reg, 6847 dst_reg->type, false); 6848 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6849 src_reg->type == PTR_TO_PACKET) || 6850 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6851 src_reg->type == PTR_TO_PACKET_META)) { 6852 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 6853 find_good_pkt_pointers(this_branch, src_reg, 6854 src_reg->type, true); 6855 } else { 6856 return false; 6857 } 6858 break; 6859 default: 6860 return false; 6861 } 6862 6863 return true; 6864 } 6865 6866 static int check_cond_jmp_op(struct bpf_verifier_env *env, 6867 struct bpf_insn *insn, int *insn_idx) 6868 { 6869 struct bpf_verifier_state *this_branch = env->cur_state; 6870 struct bpf_verifier_state *other_branch; 6871 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 6872 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 6873 u8 opcode = BPF_OP(insn->code); 6874 bool is_jmp32; 6875 int pred = -1; 6876 int err; 6877 6878 /* Only conditional jumps are expected to reach here. */ 6879 if (opcode == BPF_JA || opcode > BPF_JSLE) { 6880 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 6881 return -EINVAL; 6882 } 6883 6884 if (BPF_SRC(insn->code) == BPF_X) { 6885 if (insn->imm != 0) { 6886 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 6887 return -EINVAL; 6888 } 6889 6890 /* check src1 operand */ 6891 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6892 if (err) 6893 return err; 6894 6895 if (is_pointer_value(env, insn->src_reg)) { 6896 verbose(env, "R%d pointer comparison prohibited\n", 6897 insn->src_reg); 6898 return -EACCES; 6899 } 6900 src_reg = ®s[insn->src_reg]; 6901 } else { 6902 if (insn->src_reg != BPF_REG_0) { 6903 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 6904 return -EINVAL; 6905 } 6906 } 6907 6908 /* check src2 operand */ 6909 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6910 if (err) 6911 return err; 6912 6913 dst_reg = ®s[insn->dst_reg]; 6914 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 6915 6916 if (BPF_SRC(insn->code) == BPF_K) { 6917 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 6918 } else if (src_reg->type == SCALAR_VALUE && 6919 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 6920 pred = is_branch_taken(dst_reg, 6921 tnum_subreg(src_reg->var_off).value, 6922 opcode, 6923 is_jmp32); 6924 } else if (src_reg->type == SCALAR_VALUE && 6925 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 6926 pred = is_branch_taken(dst_reg, 6927 src_reg->var_off.value, 6928 opcode, 6929 is_jmp32); 6930 } 6931 6932 if (pred >= 0) { 6933 /* If we get here with a dst_reg pointer type it is because 6934 * above is_branch_taken() special cased the 0 comparison. 6935 */ 6936 if (!__is_pointer_value(false, dst_reg)) 6937 err = mark_chain_precision(env, insn->dst_reg); 6938 if (BPF_SRC(insn->code) == BPF_X && !err) 6939 err = mark_chain_precision(env, insn->src_reg); 6940 if (err) 6941 return err; 6942 } 6943 if (pred == 1) { 6944 /* only follow the goto, ignore fall-through */ 6945 *insn_idx += insn->off; 6946 return 0; 6947 } else if (pred == 0) { 6948 /* only follow fall-through branch, since 6949 * that's where the program will go 6950 */ 6951 return 0; 6952 } 6953 6954 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 6955 false); 6956 if (!other_branch) 6957 return -EFAULT; 6958 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 6959 6960 /* detect if we are comparing against a constant value so we can adjust 6961 * our min/max values for our dst register. 6962 * this is only legit if both are scalars (or pointers to the same 6963 * object, I suppose, but we don't support that right now), because 6964 * otherwise the different base pointers mean the offsets aren't 6965 * comparable. 6966 */ 6967 if (BPF_SRC(insn->code) == BPF_X) { 6968 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 6969 6970 if (dst_reg->type == SCALAR_VALUE && 6971 src_reg->type == SCALAR_VALUE) { 6972 if (tnum_is_const(src_reg->var_off) || 6973 (is_jmp32 && 6974 tnum_is_const(tnum_subreg(src_reg->var_off)))) 6975 reg_set_min_max(&other_branch_regs[insn->dst_reg], 6976 dst_reg, 6977 src_reg->var_off.value, 6978 tnum_subreg(src_reg->var_off).value, 6979 opcode, is_jmp32); 6980 else if (tnum_is_const(dst_reg->var_off) || 6981 (is_jmp32 && 6982 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 6983 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 6984 src_reg, 6985 dst_reg->var_off.value, 6986 tnum_subreg(dst_reg->var_off).value, 6987 opcode, is_jmp32); 6988 else if (!is_jmp32 && 6989 (opcode == BPF_JEQ || opcode == BPF_JNE)) 6990 /* Comparing for equality, we can combine knowledge */ 6991 reg_combine_min_max(&other_branch_regs[insn->src_reg], 6992 &other_branch_regs[insn->dst_reg], 6993 src_reg, dst_reg, opcode); 6994 } 6995 } else if (dst_reg->type == SCALAR_VALUE) { 6996 reg_set_min_max(&other_branch_regs[insn->dst_reg], 6997 dst_reg, insn->imm, (u32)insn->imm, 6998 opcode, is_jmp32); 6999 } 7000 7001 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 7002 * NOTE: these optimizations below are related with pointer comparison 7003 * which will never be JMP32. 7004 */ 7005 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 7006 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 7007 reg_type_may_be_null(dst_reg->type)) { 7008 /* Mark all identical registers in each branch as either 7009 * safe or unknown depending R == 0 or R != 0 conditional. 7010 */ 7011 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 7012 opcode == BPF_JNE); 7013 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 7014 opcode == BPF_JEQ); 7015 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 7016 this_branch, other_branch) && 7017 is_pointer_value(env, insn->dst_reg)) { 7018 verbose(env, "R%d pointer comparison prohibited\n", 7019 insn->dst_reg); 7020 return -EACCES; 7021 } 7022 if (env->log.level & BPF_LOG_LEVEL) 7023 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 7024 return 0; 7025 } 7026 7027 /* verify BPF_LD_IMM64 instruction */ 7028 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 7029 { 7030 struct bpf_insn_aux_data *aux = cur_aux(env); 7031 struct bpf_reg_state *regs = cur_regs(env); 7032 struct bpf_map *map; 7033 int err; 7034 7035 if (BPF_SIZE(insn->code) != BPF_DW) { 7036 verbose(env, "invalid BPF_LD_IMM insn\n"); 7037 return -EINVAL; 7038 } 7039 if (insn->off != 0) { 7040 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 7041 return -EINVAL; 7042 } 7043 7044 err = check_reg_arg(env, insn->dst_reg, DST_OP); 7045 if (err) 7046 return err; 7047 7048 if (insn->src_reg == 0) { 7049 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 7050 7051 regs[insn->dst_reg].type = SCALAR_VALUE; 7052 __mark_reg_known(®s[insn->dst_reg], imm); 7053 return 0; 7054 } 7055 7056 map = env->used_maps[aux->map_index]; 7057 mark_reg_known_zero(env, regs, insn->dst_reg); 7058 regs[insn->dst_reg].map_ptr = map; 7059 7060 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 7061 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; 7062 regs[insn->dst_reg].off = aux->map_off; 7063 if (map_value_has_spin_lock(map)) 7064 regs[insn->dst_reg].id = ++env->id_gen; 7065 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 7066 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 7067 } else { 7068 verbose(env, "bpf verifier is misconfigured\n"); 7069 return -EINVAL; 7070 } 7071 7072 return 0; 7073 } 7074 7075 static bool may_access_skb(enum bpf_prog_type type) 7076 { 7077 switch (type) { 7078 case BPF_PROG_TYPE_SOCKET_FILTER: 7079 case BPF_PROG_TYPE_SCHED_CLS: 7080 case BPF_PROG_TYPE_SCHED_ACT: 7081 return true; 7082 default: 7083 return false; 7084 } 7085 } 7086 7087 /* verify safety of LD_ABS|LD_IND instructions: 7088 * - they can only appear in the programs where ctx == skb 7089 * - since they are wrappers of function calls, they scratch R1-R5 registers, 7090 * preserve R6-R9, and store return value into R0 7091 * 7092 * Implicit input: 7093 * ctx == skb == R6 == CTX 7094 * 7095 * Explicit input: 7096 * SRC == any register 7097 * IMM == 32-bit immediate 7098 * 7099 * Output: 7100 * R0 - 8/16/32-bit skb data converted to cpu endianness 7101 */ 7102 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 7103 { 7104 struct bpf_reg_state *regs = cur_regs(env); 7105 static const int ctx_reg = BPF_REG_6; 7106 u8 mode = BPF_MODE(insn->code); 7107 int i, err; 7108 7109 if (!may_access_skb(env->prog->type)) { 7110 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 7111 return -EINVAL; 7112 } 7113 7114 if (!env->ops->gen_ld_abs) { 7115 verbose(env, "bpf verifier is misconfigured\n"); 7116 return -EINVAL; 7117 } 7118 7119 if (env->subprog_cnt > 1) { 7120 /* when program has LD_ABS insn JITs and interpreter assume 7121 * that r1 == ctx == skb which is not the case for callees 7122 * that can have arbitrary arguments. It's problematic 7123 * for main prog as well since JITs would need to analyze 7124 * all functions in order to make proper register save/restore 7125 * decisions in the main prog. Hence disallow LD_ABS with calls 7126 */ 7127 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 7128 return -EINVAL; 7129 } 7130 7131 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 7132 BPF_SIZE(insn->code) == BPF_DW || 7133 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 7134 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 7135 return -EINVAL; 7136 } 7137 7138 /* check whether implicit source operand (register R6) is readable */ 7139 err = check_reg_arg(env, ctx_reg, SRC_OP); 7140 if (err) 7141 return err; 7142 7143 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 7144 * gen_ld_abs() may terminate the program at runtime, leading to 7145 * reference leak. 7146 */ 7147 err = check_reference_leak(env); 7148 if (err) { 7149 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 7150 return err; 7151 } 7152 7153 if (env->cur_state->active_spin_lock) { 7154 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 7155 return -EINVAL; 7156 } 7157 7158 if (regs[ctx_reg].type != PTR_TO_CTX) { 7159 verbose(env, 7160 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 7161 return -EINVAL; 7162 } 7163 7164 if (mode == BPF_IND) { 7165 /* check explicit source operand */ 7166 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7167 if (err) 7168 return err; 7169 } 7170 7171 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 7172 if (err < 0) 7173 return err; 7174 7175 /* reset caller saved regs to unreadable */ 7176 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7177 mark_reg_not_init(env, regs, caller_saved[i]); 7178 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7179 } 7180 7181 /* mark destination R0 register as readable, since it contains 7182 * the value fetched from the packet. 7183 * Already marked as written above. 7184 */ 7185 mark_reg_unknown(env, regs, BPF_REG_0); 7186 /* ld_abs load up to 32-bit skb data. */ 7187 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 7188 return 0; 7189 } 7190 7191 static int check_return_code(struct bpf_verifier_env *env) 7192 { 7193 struct tnum enforce_attach_type_range = tnum_unknown; 7194 const struct bpf_prog *prog = env->prog; 7195 struct bpf_reg_state *reg; 7196 struct tnum range = tnum_range(0, 1); 7197 int err; 7198 7199 /* LSM and struct_ops func-ptr's return type could be "void" */ 7200 if ((env->prog->type == BPF_PROG_TYPE_STRUCT_OPS || 7201 env->prog->type == BPF_PROG_TYPE_LSM) && 7202 !prog->aux->attach_func_proto->type) 7203 return 0; 7204 7205 /* eBPF calling convetion is such that R0 is used 7206 * to return the value from eBPF program. 7207 * Make sure that it's readable at this time 7208 * of bpf_exit, which means that program wrote 7209 * something into it earlier 7210 */ 7211 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 7212 if (err) 7213 return err; 7214 7215 if (is_pointer_value(env, BPF_REG_0)) { 7216 verbose(env, "R0 leaks addr as return value\n"); 7217 return -EACCES; 7218 } 7219 7220 switch (env->prog->type) { 7221 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 7222 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 7223 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 7224 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 7225 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 7226 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 7227 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 7228 range = tnum_range(1, 1); 7229 break; 7230 case BPF_PROG_TYPE_CGROUP_SKB: 7231 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 7232 range = tnum_range(0, 3); 7233 enforce_attach_type_range = tnum_range(2, 3); 7234 } 7235 break; 7236 case BPF_PROG_TYPE_CGROUP_SOCK: 7237 case BPF_PROG_TYPE_SOCK_OPS: 7238 case BPF_PROG_TYPE_CGROUP_DEVICE: 7239 case BPF_PROG_TYPE_CGROUP_SYSCTL: 7240 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 7241 break; 7242 case BPF_PROG_TYPE_RAW_TRACEPOINT: 7243 if (!env->prog->aux->attach_btf_id) 7244 return 0; 7245 range = tnum_const(0); 7246 break; 7247 case BPF_PROG_TYPE_TRACING: 7248 switch (env->prog->expected_attach_type) { 7249 case BPF_TRACE_FENTRY: 7250 case BPF_TRACE_FEXIT: 7251 range = tnum_const(0); 7252 break; 7253 case BPF_TRACE_RAW_TP: 7254 case BPF_MODIFY_RETURN: 7255 return 0; 7256 case BPF_TRACE_ITER: 7257 break; 7258 default: 7259 return -ENOTSUPP; 7260 } 7261 break; 7262 case BPF_PROG_TYPE_EXT: 7263 /* freplace program can return anything as its return value 7264 * depends on the to-be-replaced kernel func or bpf program. 7265 */ 7266 default: 7267 return 0; 7268 } 7269 7270 reg = cur_regs(env) + BPF_REG_0; 7271 if (reg->type != SCALAR_VALUE) { 7272 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 7273 reg_type_str[reg->type]); 7274 return -EINVAL; 7275 } 7276 7277 if (!tnum_in(range, reg->var_off)) { 7278 char tn_buf[48]; 7279 7280 verbose(env, "At program exit the register R0 "); 7281 if (!tnum_is_unknown(reg->var_off)) { 7282 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7283 verbose(env, "has value %s", tn_buf); 7284 } else { 7285 verbose(env, "has unknown scalar value"); 7286 } 7287 tnum_strn(tn_buf, sizeof(tn_buf), range); 7288 verbose(env, " should have been in %s\n", tn_buf); 7289 return -EINVAL; 7290 } 7291 7292 if (!tnum_is_unknown(enforce_attach_type_range) && 7293 tnum_in(enforce_attach_type_range, reg->var_off)) 7294 env->prog->enforce_expected_attach_type = 1; 7295 return 0; 7296 } 7297 7298 /* non-recursive DFS pseudo code 7299 * 1 procedure DFS-iterative(G,v): 7300 * 2 label v as discovered 7301 * 3 let S be a stack 7302 * 4 S.push(v) 7303 * 5 while S is not empty 7304 * 6 t <- S.pop() 7305 * 7 if t is what we're looking for: 7306 * 8 return t 7307 * 9 for all edges e in G.adjacentEdges(t) do 7308 * 10 if edge e is already labelled 7309 * 11 continue with the next edge 7310 * 12 w <- G.adjacentVertex(t,e) 7311 * 13 if vertex w is not discovered and not explored 7312 * 14 label e as tree-edge 7313 * 15 label w as discovered 7314 * 16 S.push(w) 7315 * 17 continue at 5 7316 * 18 else if vertex w is discovered 7317 * 19 label e as back-edge 7318 * 20 else 7319 * 21 // vertex w is explored 7320 * 22 label e as forward- or cross-edge 7321 * 23 label t as explored 7322 * 24 S.pop() 7323 * 7324 * convention: 7325 * 0x10 - discovered 7326 * 0x11 - discovered and fall-through edge labelled 7327 * 0x12 - discovered and fall-through and branch edges labelled 7328 * 0x20 - explored 7329 */ 7330 7331 enum { 7332 DISCOVERED = 0x10, 7333 EXPLORED = 0x20, 7334 FALLTHROUGH = 1, 7335 BRANCH = 2, 7336 }; 7337 7338 static u32 state_htab_size(struct bpf_verifier_env *env) 7339 { 7340 return env->prog->len; 7341 } 7342 7343 static struct bpf_verifier_state_list **explored_state( 7344 struct bpf_verifier_env *env, 7345 int idx) 7346 { 7347 struct bpf_verifier_state *cur = env->cur_state; 7348 struct bpf_func_state *state = cur->frame[cur->curframe]; 7349 7350 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 7351 } 7352 7353 static void init_explored_state(struct bpf_verifier_env *env, int idx) 7354 { 7355 env->insn_aux_data[idx].prune_point = true; 7356 } 7357 7358 /* t, w, e - match pseudo-code above: 7359 * t - index of current instruction 7360 * w - next instruction 7361 * e - edge 7362 */ 7363 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 7364 bool loop_ok) 7365 { 7366 int *insn_stack = env->cfg.insn_stack; 7367 int *insn_state = env->cfg.insn_state; 7368 7369 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 7370 return 0; 7371 7372 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 7373 return 0; 7374 7375 if (w < 0 || w >= env->prog->len) { 7376 verbose_linfo(env, t, "%d: ", t); 7377 verbose(env, "jump out of range from insn %d to %d\n", t, w); 7378 return -EINVAL; 7379 } 7380 7381 if (e == BRANCH) 7382 /* mark branch target for state pruning */ 7383 init_explored_state(env, w); 7384 7385 if (insn_state[w] == 0) { 7386 /* tree-edge */ 7387 insn_state[t] = DISCOVERED | e; 7388 insn_state[w] = DISCOVERED; 7389 if (env->cfg.cur_stack >= env->prog->len) 7390 return -E2BIG; 7391 insn_stack[env->cfg.cur_stack++] = w; 7392 return 1; 7393 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 7394 if (loop_ok && env->bpf_capable) 7395 return 0; 7396 verbose_linfo(env, t, "%d: ", t); 7397 verbose_linfo(env, w, "%d: ", w); 7398 verbose(env, "back-edge from insn %d to %d\n", t, w); 7399 return -EINVAL; 7400 } else if (insn_state[w] == EXPLORED) { 7401 /* forward- or cross-edge */ 7402 insn_state[t] = DISCOVERED | e; 7403 } else { 7404 verbose(env, "insn state internal bug\n"); 7405 return -EFAULT; 7406 } 7407 return 0; 7408 } 7409 7410 /* non-recursive depth-first-search to detect loops in BPF program 7411 * loop == back-edge in directed graph 7412 */ 7413 static int check_cfg(struct bpf_verifier_env *env) 7414 { 7415 struct bpf_insn *insns = env->prog->insnsi; 7416 int insn_cnt = env->prog->len; 7417 int *insn_stack, *insn_state; 7418 int ret = 0; 7419 int i, t; 7420 7421 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 7422 if (!insn_state) 7423 return -ENOMEM; 7424 7425 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 7426 if (!insn_stack) { 7427 kvfree(insn_state); 7428 return -ENOMEM; 7429 } 7430 7431 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 7432 insn_stack[0] = 0; /* 0 is the first instruction */ 7433 env->cfg.cur_stack = 1; 7434 7435 peek_stack: 7436 if (env->cfg.cur_stack == 0) 7437 goto check_state; 7438 t = insn_stack[env->cfg.cur_stack - 1]; 7439 7440 if (BPF_CLASS(insns[t].code) == BPF_JMP || 7441 BPF_CLASS(insns[t].code) == BPF_JMP32) { 7442 u8 opcode = BPF_OP(insns[t].code); 7443 7444 if (opcode == BPF_EXIT) { 7445 goto mark_explored; 7446 } else if (opcode == BPF_CALL) { 7447 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 7448 if (ret == 1) 7449 goto peek_stack; 7450 else if (ret < 0) 7451 goto err_free; 7452 if (t + 1 < insn_cnt) 7453 init_explored_state(env, t + 1); 7454 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 7455 init_explored_state(env, t); 7456 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 7457 env, false); 7458 if (ret == 1) 7459 goto peek_stack; 7460 else if (ret < 0) 7461 goto err_free; 7462 } 7463 } else if (opcode == BPF_JA) { 7464 if (BPF_SRC(insns[t].code) != BPF_K) { 7465 ret = -EINVAL; 7466 goto err_free; 7467 } 7468 /* unconditional jump with single edge */ 7469 ret = push_insn(t, t + insns[t].off + 1, 7470 FALLTHROUGH, env, true); 7471 if (ret == 1) 7472 goto peek_stack; 7473 else if (ret < 0) 7474 goto err_free; 7475 /* unconditional jmp is not a good pruning point, 7476 * but it's marked, since backtracking needs 7477 * to record jmp history in is_state_visited(). 7478 */ 7479 init_explored_state(env, t + insns[t].off + 1); 7480 /* tell verifier to check for equivalent states 7481 * after every call and jump 7482 */ 7483 if (t + 1 < insn_cnt) 7484 init_explored_state(env, t + 1); 7485 } else { 7486 /* conditional jump with two edges */ 7487 init_explored_state(env, t); 7488 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 7489 if (ret == 1) 7490 goto peek_stack; 7491 else if (ret < 0) 7492 goto err_free; 7493 7494 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 7495 if (ret == 1) 7496 goto peek_stack; 7497 else if (ret < 0) 7498 goto err_free; 7499 } 7500 } else { 7501 /* all other non-branch instructions with single 7502 * fall-through edge 7503 */ 7504 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 7505 if (ret == 1) 7506 goto peek_stack; 7507 else if (ret < 0) 7508 goto err_free; 7509 } 7510 7511 mark_explored: 7512 insn_state[t] = EXPLORED; 7513 if (env->cfg.cur_stack-- <= 0) { 7514 verbose(env, "pop stack internal bug\n"); 7515 ret = -EFAULT; 7516 goto err_free; 7517 } 7518 goto peek_stack; 7519 7520 check_state: 7521 for (i = 0; i < insn_cnt; i++) { 7522 if (insn_state[i] != EXPLORED) { 7523 verbose(env, "unreachable insn %d\n", i); 7524 ret = -EINVAL; 7525 goto err_free; 7526 } 7527 } 7528 ret = 0; /* cfg looks good */ 7529 7530 err_free: 7531 kvfree(insn_state); 7532 kvfree(insn_stack); 7533 env->cfg.insn_state = env->cfg.insn_stack = NULL; 7534 return ret; 7535 } 7536 7537 /* The minimum supported BTF func info size */ 7538 #define MIN_BPF_FUNCINFO_SIZE 8 7539 #define MAX_FUNCINFO_REC_SIZE 252 7540 7541 static int check_btf_func(struct bpf_verifier_env *env, 7542 const union bpf_attr *attr, 7543 union bpf_attr __user *uattr) 7544 { 7545 u32 i, nfuncs, urec_size, min_size; 7546 u32 krec_size = sizeof(struct bpf_func_info); 7547 struct bpf_func_info *krecord; 7548 struct bpf_func_info_aux *info_aux = NULL; 7549 const struct btf_type *type; 7550 struct bpf_prog *prog; 7551 const struct btf *btf; 7552 void __user *urecord; 7553 u32 prev_offset = 0; 7554 int ret = -ENOMEM; 7555 7556 nfuncs = attr->func_info_cnt; 7557 if (!nfuncs) 7558 return 0; 7559 7560 if (nfuncs != env->subprog_cnt) { 7561 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 7562 return -EINVAL; 7563 } 7564 7565 urec_size = attr->func_info_rec_size; 7566 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 7567 urec_size > MAX_FUNCINFO_REC_SIZE || 7568 urec_size % sizeof(u32)) { 7569 verbose(env, "invalid func info rec size %u\n", urec_size); 7570 return -EINVAL; 7571 } 7572 7573 prog = env->prog; 7574 btf = prog->aux->btf; 7575 7576 urecord = u64_to_user_ptr(attr->func_info); 7577 min_size = min_t(u32, krec_size, urec_size); 7578 7579 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 7580 if (!krecord) 7581 return -ENOMEM; 7582 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 7583 if (!info_aux) 7584 goto err_free; 7585 7586 for (i = 0; i < nfuncs; i++) { 7587 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 7588 if (ret) { 7589 if (ret == -E2BIG) { 7590 verbose(env, "nonzero tailing record in func info"); 7591 /* set the size kernel expects so loader can zero 7592 * out the rest of the record. 7593 */ 7594 if (put_user(min_size, &uattr->func_info_rec_size)) 7595 ret = -EFAULT; 7596 } 7597 goto err_free; 7598 } 7599 7600 if (copy_from_user(&krecord[i], urecord, min_size)) { 7601 ret = -EFAULT; 7602 goto err_free; 7603 } 7604 7605 /* check insn_off */ 7606 if (i == 0) { 7607 if (krecord[i].insn_off) { 7608 verbose(env, 7609 "nonzero insn_off %u for the first func info record", 7610 krecord[i].insn_off); 7611 ret = -EINVAL; 7612 goto err_free; 7613 } 7614 } else if (krecord[i].insn_off <= prev_offset) { 7615 verbose(env, 7616 "same or smaller insn offset (%u) than previous func info record (%u)", 7617 krecord[i].insn_off, prev_offset); 7618 ret = -EINVAL; 7619 goto err_free; 7620 } 7621 7622 if (env->subprog_info[i].start != krecord[i].insn_off) { 7623 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 7624 ret = -EINVAL; 7625 goto err_free; 7626 } 7627 7628 /* check type_id */ 7629 type = btf_type_by_id(btf, krecord[i].type_id); 7630 if (!type || !btf_type_is_func(type)) { 7631 verbose(env, "invalid type id %d in func info", 7632 krecord[i].type_id); 7633 ret = -EINVAL; 7634 goto err_free; 7635 } 7636 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 7637 prev_offset = krecord[i].insn_off; 7638 urecord += urec_size; 7639 } 7640 7641 prog->aux->func_info = krecord; 7642 prog->aux->func_info_cnt = nfuncs; 7643 prog->aux->func_info_aux = info_aux; 7644 return 0; 7645 7646 err_free: 7647 kvfree(krecord); 7648 kfree(info_aux); 7649 return ret; 7650 } 7651 7652 static void adjust_btf_func(struct bpf_verifier_env *env) 7653 { 7654 struct bpf_prog_aux *aux = env->prog->aux; 7655 int i; 7656 7657 if (!aux->func_info) 7658 return; 7659 7660 for (i = 0; i < env->subprog_cnt; i++) 7661 aux->func_info[i].insn_off = env->subprog_info[i].start; 7662 } 7663 7664 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 7665 sizeof(((struct bpf_line_info *)(0))->line_col)) 7666 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 7667 7668 static int check_btf_line(struct bpf_verifier_env *env, 7669 const union bpf_attr *attr, 7670 union bpf_attr __user *uattr) 7671 { 7672 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 7673 struct bpf_subprog_info *sub; 7674 struct bpf_line_info *linfo; 7675 struct bpf_prog *prog; 7676 const struct btf *btf; 7677 void __user *ulinfo; 7678 int err; 7679 7680 nr_linfo = attr->line_info_cnt; 7681 if (!nr_linfo) 7682 return 0; 7683 7684 rec_size = attr->line_info_rec_size; 7685 if (rec_size < MIN_BPF_LINEINFO_SIZE || 7686 rec_size > MAX_LINEINFO_REC_SIZE || 7687 rec_size & (sizeof(u32) - 1)) 7688 return -EINVAL; 7689 7690 /* Need to zero it in case the userspace may 7691 * pass in a smaller bpf_line_info object. 7692 */ 7693 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 7694 GFP_KERNEL | __GFP_NOWARN); 7695 if (!linfo) 7696 return -ENOMEM; 7697 7698 prog = env->prog; 7699 btf = prog->aux->btf; 7700 7701 s = 0; 7702 sub = env->subprog_info; 7703 ulinfo = u64_to_user_ptr(attr->line_info); 7704 expected_size = sizeof(struct bpf_line_info); 7705 ncopy = min_t(u32, expected_size, rec_size); 7706 for (i = 0; i < nr_linfo; i++) { 7707 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 7708 if (err) { 7709 if (err == -E2BIG) { 7710 verbose(env, "nonzero tailing record in line_info"); 7711 if (put_user(expected_size, 7712 &uattr->line_info_rec_size)) 7713 err = -EFAULT; 7714 } 7715 goto err_free; 7716 } 7717 7718 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 7719 err = -EFAULT; 7720 goto err_free; 7721 } 7722 7723 /* 7724 * Check insn_off to ensure 7725 * 1) strictly increasing AND 7726 * 2) bounded by prog->len 7727 * 7728 * The linfo[0].insn_off == 0 check logically falls into 7729 * the later "missing bpf_line_info for func..." case 7730 * because the first linfo[0].insn_off must be the 7731 * first sub also and the first sub must have 7732 * subprog_info[0].start == 0. 7733 */ 7734 if ((i && linfo[i].insn_off <= prev_offset) || 7735 linfo[i].insn_off >= prog->len) { 7736 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 7737 i, linfo[i].insn_off, prev_offset, 7738 prog->len); 7739 err = -EINVAL; 7740 goto err_free; 7741 } 7742 7743 if (!prog->insnsi[linfo[i].insn_off].code) { 7744 verbose(env, 7745 "Invalid insn code at line_info[%u].insn_off\n", 7746 i); 7747 err = -EINVAL; 7748 goto err_free; 7749 } 7750 7751 if (!btf_name_by_offset(btf, linfo[i].line_off) || 7752 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 7753 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 7754 err = -EINVAL; 7755 goto err_free; 7756 } 7757 7758 if (s != env->subprog_cnt) { 7759 if (linfo[i].insn_off == sub[s].start) { 7760 sub[s].linfo_idx = i; 7761 s++; 7762 } else if (sub[s].start < linfo[i].insn_off) { 7763 verbose(env, "missing bpf_line_info for func#%u\n", s); 7764 err = -EINVAL; 7765 goto err_free; 7766 } 7767 } 7768 7769 prev_offset = linfo[i].insn_off; 7770 ulinfo += rec_size; 7771 } 7772 7773 if (s != env->subprog_cnt) { 7774 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 7775 env->subprog_cnt - s, s); 7776 err = -EINVAL; 7777 goto err_free; 7778 } 7779 7780 prog->aux->linfo = linfo; 7781 prog->aux->nr_linfo = nr_linfo; 7782 7783 return 0; 7784 7785 err_free: 7786 kvfree(linfo); 7787 return err; 7788 } 7789 7790 static int check_btf_info(struct bpf_verifier_env *env, 7791 const union bpf_attr *attr, 7792 union bpf_attr __user *uattr) 7793 { 7794 struct btf *btf; 7795 int err; 7796 7797 if (!attr->func_info_cnt && !attr->line_info_cnt) 7798 return 0; 7799 7800 btf = btf_get_by_fd(attr->prog_btf_fd); 7801 if (IS_ERR(btf)) 7802 return PTR_ERR(btf); 7803 env->prog->aux->btf = btf; 7804 7805 err = check_btf_func(env, attr, uattr); 7806 if (err) 7807 return err; 7808 7809 err = check_btf_line(env, attr, uattr); 7810 if (err) 7811 return err; 7812 7813 return 0; 7814 } 7815 7816 /* check %cur's range satisfies %old's */ 7817 static bool range_within(struct bpf_reg_state *old, 7818 struct bpf_reg_state *cur) 7819 { 7820 return old->umin_value <= cur->umin_value && 7821 old->umax_value >= cur->umax_value && 7822 old->smin_value <= cur->smin_value && 7823 old->smax_value >= cur->smax_value; 7824 } 7825 7826 /* Maximum number of register states that can exist at once */ 7827 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 7828 struct idpair { 7829 u32 old; 7830 u32 cur; 7831 }; 7832 7833 /* If in the old state two registers had the same id, then they need to have 7834 * the same id in the new state as well. But that id could be different from 7835 * the old state, so we need to track the mapping from old to new ids. 7836 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 7837 * regs with old id 5 must also have new id 9 for the new state to be safe. But 7838 * regs with a different old id could still have new id 9, we don't care about 7839 * that. 7840 * So we look through our idmap to see if this old id has been seen before. If 7841 * so, we require the new id to match; otherwise, we add the id pair to the map. 7842 */ 7843 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 7844 { 7845 unsigned int i; 7846 7847 for (i = 0; i < ID_MAP_SIZE; i++) { 7848 if (!idmap[i].old) { 7849 /* Reached an empty slot; haven't seen this id before */ 7850 idmap[i].old = old_id; 7851 idmap[i].cur = cur_id; 7852 return true; 7853 } 7854 if (idmap[i].old == old_id) 7855 return idmap[i].cur == cur_id; 7856 } 7857 /* We ran out of idmap slots, which should be impossible */ 7858 WARN_ON_ONCE(1); 7859 return false; 7860 } 7861 7862 static void clean_func_state(struct bpf_verifier_env *env, 7863 struct bpf_func_state *st) 7864 { 7865 enum bpf_reg_liveness live; 7866 int i, j; 7867 7868 for (i = 0; i < BPF_REG_FP; i++) { 7869 live = st->regs[i].live; 7870 /* liveness must not touch this register anymore */ 7871 st->regs[i].live |= REG_LIVE_DONE; 7872 if (!(live & REG_LIVE_READ)) 7873 /* since the register is unused, clear its state 7874 * to make further comparison simpler 7875 */ 7876 __mark_reg_not_init(env, &st->regs[i]); 7877 } 7878 7879 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 7880 live = st->stack[i].spilled_ptr.live; 7881 /* liveness must not touch this stack slot anymore */ 7882 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 7883 if (!(live & REG_LIVE_READ)) { 7884 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 7885 for (j = 0; j < BPF_REG_SIZE; j++) 7886 st->stack[i].slot_type[j] = STACK_INVALID; 7887 } 7888 } 7889 } 7890 7891 static void clean_verifier_state(struct bpf_verifier_env *env, 7892 struct bpf_verifier_state *st) 7893 { 7894 int i; 7895 7896 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 7897 /* all regs in this state in all frames were already marked */ 7898 return; 7899 7900 for (i = 0; i <= st->curframe; i++) 7901 clean_func_state(env, st->frame[i]); 7902 } 7903 7904 /* the parentage chains form a tree. 7905 * the verifier states are added to state lists at given insn and 7906 * pushed into state stack for future exploration. 7907 * when the verifier reaches bpf_exit insn some of the verifer states 7908 * stored in the state lists have their final liveness state already, 7909 * but a lot of states will get revised from liveness point of view when 7910 * the verifier explores other branches. 7911 * Example: 7912 * 1: r0 = 1 7913 * 2: if r1 == 100 goto pc+1 7914 * 3: r0 = 2 7915 * 4: exit 7916 * when the verifier reaches exit insn the register r0 in the state list of 7917 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 7918 * of insn 2 and goes exploring further. At the insn 4 it will walk the 7919 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 7920 * 7921 * Since the verifier pushes the branch states as it sees them while exploring 7922 * the program the condition of walking the branch instruction for the second 7923 * time means that all states below this branch were already explored and 7924 * their final liveness markes are already propagated. 7925 * Hence when the verifier completes the search of state list in is_state_visited() 7926 * we can call this clean_live_states() function to mark all liveness states 7927 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 7928 * will not be used. 7929 * This function also clears the registers and stack for states that !READ 7930 * to simplify state merging. 7931 * 7932 * Important note here that walking the same branch instruction in the callee 7933 * doesn't meant that the states are DONE. The verifier has to compare 7934 * the callsites 7935 */ 7936 static void clean_live_states(struct bpf_verifier_env *env, int insn, 7937 struct bpf_verifier_state *cur) 7938 { 7939 struct bpf_verifier_state_list *sl; 7940 int i; 7941 7942 sl = *explored_state(env, insn); 7943 while (sl) { 7944 if (sl->state.branches) 7945 goto next; 7946 if (sl->state.insn_idx != insn || 7947 sl->state.curframe != cur->curframe) 7948 goto next; 7949 for (i = 0; i <= cur->curframe; i++) 7950 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 7951 goto next; 7952 clean_verifier_state(env, &sl->state); 7953 next: 7954 sl = sl->next; 7955 } 7956 } 7957 7958 /* Returns true if (rold safe implies rcur safe) */ 7959 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 7960 struct idpair *idmap) 7961 { 7962 bool equal; 7963 7964 if (!(rold->live & REG_LIVE_READ)) 7965 /* explored state didn't use this */ 7966 return true; 7967 7968 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 7969 7970 if (rold->type == PTR_TO_STACK) 7971 /* two stack pointers are equal only if they're pointing to 7972 * the same stack frame, since fp-8 in foo != fp-8 in bar 7973 */ 7974 return equal && rold->frameno == rcur->frameno; 7975 7976 if (equal) 7977 return true; 7978 7979 if (rold->type == NOT_INIT) 7980 /* explored state can't have used this */ 7981 return true; 7982 if (rcur->type == NOT_INIT) 7983 return false; 7984 switch (rold->type) { 7985 case SCALAR_VALUE: 7986 if (rcur->type == SCALAR_VALUE) { 7987 if (!rold->precise && !rcur->precise) 7988 return true; 7989 /* new val must satisfy old val knowledge */ 7990 return range_within(rold, rcur) && 7991 tnum_in(rold->var_off, rcur->var_off); 7992 } else { 7993 /* We're trying to use a pointer in place of a scalar. 7994 * Even if the scalar was unbounded, this could lead to 7995 * pointer leaks because scalars are allowed to leak 7996 * while pointers are not. We could make this safe in 7997 * special cases if root is calling us, but it's 7998 * probably not worth the hassle. 7999 */ 8000 return false; 8001 } 8002 case PTR_TO_MAP_VALUE: 8003 /* If the new min/max/var_off satisfy the old ones and 8004 * everything else matches, we are OK. 8005 * 'id' is not compared, since it's only used for maps with 8006 * bpf_spin_lock inside map element and in such cases if 8007 * the rest of the prog is valid for one map element then 8008 * it's valid for all map elements regardless of the key 8009 * used in bpf_map_lookup() 8010 */ 8011 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 8012 range_within(rold, rcur) && 8013 tnum_in(rold->var_off, rcur->var_off); 8014 case PTR_TO_MAP_VALUE_OR_NULL: 8015 /* a PTR_TO_MAP_VALUE could be safe to use as a 8016 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 8017 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 8018 * checked, doing so could have affected others with the same 8019 * id, and we can't check for that because we lost the id when 8020 * we converted to a PTR_TO_MAP_VALUE. 8021 */ 8022 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 8023 return false; 8024 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 8025 return false; 8026 /* Check our ids match any regs they're supposed to */ 8027 return check_ids(rold->id, rcur->id, idmap); 8028 case PTR_TO_PACKET_META: 8029 case PTR_TO_PACKET: 8030 if (rcur->type != rold->type) 8031 return false; 8032 /* We must have at least as much range as the old ptr 8033 * did, so that any accesses which were safe before are 8034 * still safe. This is true even if old range < old off, 8035 * since someone could have accessed through (ptr - k), or 8036 * even done ptr -= k in a register, to get a safe access. 8037 */ 8038 if (rold->range > rcur->range) 8039 return false; 8040 /* If the offsets don't match, we can't trust our alignment; 8041 * nor can we be sure that we won't fall out of range. 8042 */ 8043 if (rold->off != rcur->off) 8044 return false; 8045 /* id relations must be preserved */ 8046 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 8047 return false; 8048 /* new val must satisfy old val knowledge */ 8049 return range_within(rold, rcur) && 8050 tnum_in(rold->var_off, rcur->var_off); 8051 case PTR_TO_CTX: 8052 case CONST_PTR_TO_MAP: 8053 case PTR_TO_PACKET_END: 8054 case PTR_TO_FLOW_KEYS: 8055 case PTR_TO_SOCKET: 8056 case PTR_TO_SOCKET_OR_NULL: 8057 case PTR_TO_SOCK_COMMON: 8058 case PTR_TO_SOCK_COMMON_OR_NULL: 8059 case PTR_TO_TCP_SOCK: 8060 case PTR_TO_TCP_SOCK_OR_NULL: 8061 case PTR_TO_XDP_SOCK: 8062 /* Only valid matches are exact, which memcmp() above 8063 * would have accepted 8064 */ 8065 default: 8066 /* Don't know what's going on, just say it's not safe */ 8067 return false; 8068 } 8069 8070 /* Shouldn't get here; if we do, say it's not safe */ 8071 WARN_ON_ONCE(1); 8072 return false; 8073 } 8074 8075 static bool stacksafe(struct bpf_func_state *old, 8076 struct bpf_func_state *cur, 8077 struct idpair *idmap) 8078 { 8079 int i, spi; 8080 8081 /* walk slots of the explored stack and ignore any additional 8082 * slots in the current stack, since explored(safe) state 8083 * didn't use them 8084 */ 8085 for (i = 0; i < old->allocated_stack; i++) { 8086 spi = i / BPF_REG_SIZE; 8087 8088 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 8089 i += BPF_REG_SIZE - 1; 8090 /* explored state didn't use this */ 8091 continue; 8092 } 8093 8094 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 8095 continue; 8096 8097 /* explored stack has more populated slots than current stack 8098 * and these slots were used 8099 */ 8100 if (i >= cur->allocated_stack) 8101 return false; 8102 8103 /* if old state was safe with misc data in the stack 8104 * it will be safe with zero-initialized stack. 8105 * The opposite is not true 8106 */ 8107 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 8108 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 8109 continue; 8110 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 8111 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 8112 /* Ex: old explored (safe) state has STACK_SPILL in 8113 * this stack slot, but current has has STACK_MISC -> 8114 * this verifier states are not equivalent, 8115 * return false to continue verification of this path 8116 */ 8117 return false; 8118 if (i % BPF_REG_SIZE) 8119 continue; 8120 if (old->stack[spi].slot_type[0] != STACK_SPILL) 8121 continue; 8122 if (!regsafe(&old->stack[spi].spilled_ptr, 8123 &cur->stack[spi].spilled_ptr, 8124 idmap)) 8125 /* when explored and current stack slot are both storing 8126 * spilled registers, check that stored pointers types 8127 * are the same as well. 8128 * Ex: explored safe path could have stored 8129 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 8130 * but current path has stored: 8131 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 8132 * such verifier states are not equivalent. 8133 * return false to continue verification of this path 8134 */ 8135 return false; 8136 } 8137 return true; 8138 } 8139 8140 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 8141 { 8142 if (old->acquired_refs != cur->acquired_refs) 8143 return false; 8144 return !memcmp(old->refs, cur->refs, 8145 sizeof(*old->refs) * old->acquired_refs); 8146 } 8147 8148 /* compare two verifier states 8149 * 8150 * all states stored in state_list are known to be valid, since 8151 * verifier reached 'bpf_exit' instruction through them 8152 * 8153 * this function is called when verifier exploring different branches of 8154 * execution popped from the state stack. If it sees an old state that has 8155 * more strict register state and more strict stack state then this execution 8156 * branch doesn't need to be explored further, since verifier already 8157 * concluded that more strict state leads to valid finish. 8158 * 8159 * Therefore two states are equivalent if register state is more conservative 8160 * and explored stack state is more conservative than the current one. 8161 * Example: 8162 * explored current 8163 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 8164 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 8165 * 8166 * In other words if current stack state (one being explored) has more 8167 * valid slots than old one that already passed validation, it means 8168 * the verifier can stop exploring and conclude that current state is valid too 8169 * 8170 * Similarly with registers. If explored state has register type as invalid 8171 * whereas register type in current state is meaningful, it means that 8172 * the current state will reach 'bpf_exit' instruction safely 8173 */ 8174 static bool func_states_equal(struct bpf_func_state *old, 8175 struct bpf_func_state *cur) 8176 { 8177 struct idpair *idmap; 8178 bool ret = false; 8179 int i; 8180 8181 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 8182 /* If we failed to allocate the idmap, just say it's not safe */ 8183 if (!idmap) 8184 return false; 8185 8186 for (i = 0; i < MAX_BPF_REG; i++) { 8187 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 8188 goto out_free; 8189 } 8190 8191 if (!stacksafe(old, cur, idmap)) 8192 goto out_free; 8193 8194 if (!refsafe(old, cur)) 8195 goto out_free; 8196 ret = true; 8197 out_free: 8198 kfree(idmap); 8199 return ret; 8200 } 8201 8202 static bool states_equal(struct bpf_verifier_env *env, 8203 struct bpf_verifier_state *old, 8204 struct bpf_verifier_state *cur) 8205 { 8206 int i; 8207 8208 if (old->curframe != cur->curframe) 8209 return false; 8210 8211 /* Verification state from speculative execution simulation 8212 * must never prune a non-speculative execution one. 8213 */ 8214 if (old->speculative && !cur->speculative) 8215 return false; 8216 8217 if (old->active_spin_lock != cur->active_spin_lock) 8218 return false; 8219 8220 /* for states to be equal callsites have to be the same 8221 * and all frame states need to be equivalent 8222 */ 8223 for (i = 0; i <= old->curframe; i++) { 8224 if (old->frame[i]->callsite != cur->frame[i]->callsite) 8225 return false; 8226 if (!func_states_equal(old->frame[i], cur->frame[i])) 8227 return false; 8228 } 8229 return true; 8230 } 8231 8232 /* Return 0 if no propagation happened. Return negative error code if error 8233 * happened. Otherwise, return the propagated bit. 8234 */ 8235 static int propagate_liveness_reg(struct bpf_verifier_env *env, 8236 struct bpf_reg_state *reg, 8237 struct bpf_reg_state *parent_reg) 8238 { 8239 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 8240 u8 flag = reg->live & REG_LIVE_READ; 8241 int err; 8242 8243 /* When comes here, read flags of PARENT_REG or REG could be any of 8244 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 8245 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 8246 */ 8247 if (parent_flag == REG_LIVE_READ64 || 8248 /* Or if there is no read flag from REG. */ 8249 !flag || 8250 /* Or if the read flag from REG is the same as PARENT_REG. */ 8251 parent_flag == flag) 8252 return 0; 8253 8254 err = mark_reg_read(env, reg, parent_reg, flag); 8255 if (err) 8256 return err; 8257 8258 return flag; 8259 } 8260 8261 /* A write screens off any subsequent reads; but write marks come from the 8262 * straight-line code between a state and its parent. When we arrive at an 8263 * equivalent state (jump target or such) we didn't arrive by the straight-line 8264 * code, so read marks in the state must propagate to the parent regardless 8265 * of the state's write marks. That's what 'parent == state->parent' comparison 8266 * in mark_reg_read() is for. 8267 */ 8268 static int propagate_liveness(struct bpf_verifier_env *env, 8269 const struct bpf_verifier_state *vstate, 8270 struct bpf_verifier_state *vparent) 8271 { 8272 struct bpf_reg_state *state_reg, *parent_reg; 8273 struct bpf_func_state *state, *parent; 8274 int i, frame, err = 0; 8275 8276 if (vparent->curframe != vstate->curframe) { 8277 WARN(1, "propagate_live: parent frame %d current frame %d\n", 8278 vparent->curframe, vstate->curframe); 8279 return -EFAULT; 8280 } 8281 /* Propagate read liveness of registers... */ 8282 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 8283 for (frame = 0; frame <= vstate->curframe; frame++) { 8284 parent = vparent->frame[frame]; 8285 state = vstate->frame[frame]; 8286 parent_reg = parent->regs; 8287 state_reg = state->regs; 8288 /* We don't need to worry about FP liveness, it's read-only */ 8289 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 8290 err = propagate_liveness_reg(env, &state_reg[i], 8291 &parent_reg[i]); 8292 if (err < 0) 8293 return err; 8294 if (err == REG_LIVE_READ64) 8295 mark_insn_zext(env, &parent_reg[i]); 8296 } 8297 8298 /* Propagate stack slots. */ 8299 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 8300 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 8301 parent_reg = &parent->stack[i].spilled_ptr; 8302 state_reg = &state->stack[i].spilled_ptr; 8303 err = propagate_liveness_reg(env, state_reg, 8304 parent_reg); 8305 if (err < 0) 8306 return err; 8307 } 8308 } 8309 return 0; 8310 } 8311 8312 /* find precise scalars in the previous equivalent state and 8313 * propagate them into the current state 8314 */ 8315 static int propagate_precision(struct bpf_verifier_env *env, 8316 const struct bpf_verifier_state *old) 8317 { 8318 struct bpf_reg_state *state_reg; 8319 struct bpf_func_state *state; 8320 int i, err = 0; 8321 8322 state = old->frame[old->curframe]; 8323 state_reg = state->regs; 8324 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 8325 if (state_reg->type != SCALAR_VALUE || 8326 !state_reg->precise) 8327 continue; 8328 if (env->log.level & BPF_LOG_LEVEL2) 8329 verbose(env, "propagating r%d\n", i); 8330 err = mark_chain_precision(env, i); 8331 if (err < 0) 8332 return err; 8333 } 8334 8335 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 8336 if (state->stack[i].slot_type[0] != STACK_SPILL) 8337 continue; 8338 state_reg = &state->stack[i].spilled_ptr; 8339 if (state_reg->type != SCALAR_VALUE || 8340 !state_reg->precise) 8341 continue; 8342 if (env->log.level & BPF_LOG_LEVEL2) 8343 verbose(env, "propagating fp%d\n", 8344 (-i - 1) * BPF_REG_SIZE); 8345 err = mark_chain_precision_stack(env, i); 8346 if (err < 0) 8347 return err; 8348 } 8349 return 0; 8350 } 8351 8352 static bool states_maybe_looping(struct bpf_verifier_state *old, 8353 struct bpf_verifier_state *cur) 8354 { 8355 struct bpf_func_state *fold, *fcur; 8356 int i, fr = cur->curframe; 8357 8358 if (old->curframe != fr) 8359 return false; 8360 8361 fold = old->frame[fr]; 8362 fcur = cur->frame[fr]; 8363 for (i = 0; i < MAX_BPF_REG; i++) 8364 if (memcmp(&fold->regs[i], &fcur->regs[i], 8365 offsetof(struct bpf_reg_state, parent))) 8366 return false; 8367 return true; 8368 } 8369 8370 8371 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 8372 { 8373 struct bpf_verifier_state_list *new_sl; 8374 struct bpf_verifier_state_list *sl, **pprev; 8375 struct bpf_verifier_state *cur = env->cur_state, *new; 8376 int i, j, err, states_cnt = 0; 8377 bool add_new_state = env->test_state_freq ? true : false; 8378 8379 cur->last_insn_idx = env->prev_insn_idx; 8380 if (!env->insn_aux_data[insn_idx].prune_point) 8381 /* this 'insn_idx' instruction wasn't marked, so we will not 8382 * be doing state search here 8383 */ 8384 return 0; 8385 8386 /* bpf progs typically have pruning point every 4 instructions 8387 * http://vger.kernel.org/bpfconf2019.html#session-1 8388 * Do not add new state for future pruning if the verifier hasn't seen 8389 * at least 2 jumps and at least 8 instructions. 8390 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 8391 * In tests that amounts to up to 50% reduction into total verifier 8392 * memory consumption and 20% verifier time speedup. 8393 */ 8394 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 8395 env->insn_processed - env->prev_insn_processed >= 8) 8396 add_new_state = true; 8397 8398 pprev = explored_state(env, insn_idx); 8399 sl = *pprev; 8400 8401 clean_live_states(env, insn_idx, cur); 8402 8403 while (sl) { 8404 states_cnt++; 8405 if (sl->state.insn_idx != insn_idx) 8406 goto next; 8407 if (sl->state.branches) { 8408 if (states_maybe_looping(&sl->state, cur) && 8409 states_equal(env, &sl->state, cur)) { 8410 verbose_linfo(env, insn_idx, "; "); 8411 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 8412 return -EINVAL; 8413 } 8414 /* if the verifier is processing a loop, avoid adding new state 8415 * too often, since different loop iterations have distinct 8416 * states and may not help future pruning. 8417 * This threshold shouldn't be too low to make sure that 8418 * a loop with large bound will be rejected quickly. 8419 * The most abusive loop will be: 8420 * r1 += 1 8421 * if r1 < 1000000 goto pc-2 8422 * 1M insn_procssed limit / 100 == 10k peak states. 8423 * This threshold shouldn't be too high either, since states 8424 * at the end of the loop are likely to be useful in pruning. 8425 */ 8426 if (env->jmps_processed - env->prev_jmps_processed < 20 && 8427 env->insn_processed - env->prev_insn_processed < 100) 8428 add_new_state = false; 8429 goto miss; 8430 } 8431 if (states_equal(env, &sl->state, cur)) { 8432 sl->hit_cnt++; 8433 /* reached equivalent register/stack state, 8434 * prune the search. 8435 * Registers read by the continuation are read by us. 8436 * If we have any write marks in env->cur_state, they 8437 * will prevent corresponding reads in the continuation 8438 * from reaching our parent (an explored_state). Our 8439 * own state will get the read marks recorded, but 8440 * they'll be immediately forgotten as we're pruning 8441 * this state and will pop a new one. 8442 */ 8443 err = propagate_liveness(env, &sl->state, cur); 8444 8445 /* if previous state reached the exit with precision and 8446 * current state is equivalent to it (except precsion marks) 8447 * the precision needs to be propagated back in 8448 * the current state. 8449 */ 8450 err = err ? : push_jmp_history(env, cur); 8451 err = err ? : propagate_precision(env, &sl->state); 8452 if (err) 8453 return err; 8454 return 1; 8455 } 8456 miss: 8457 /* when new state is not going to be added do not increase miss count. 8458 * Otherwise several loop iterations will remove the state 8459 * recorded earlier. The goal of these heuristics is to have 8460 * states from some iterations of the loop (some in the beginning 8461 * and some at the end) to help pruning. 8462 */ 8463 if (add_new_state) 8464 sl->miss_cnt++; 8465 /* heuristic to determine whether this state is beneficial 8466 * to keep checking from state equivalence point of view. 8467 * Higher numbers increase max_states_per_insn and verification time, 8468 * but do not meaningfully decrease insn_processed. 8469 */ 8470 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 8471 /* the state is unlikely to be useful. Remove it to 8472 * speed up verification 8473 */ 8474 *pprev = sl->next; 8475 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 8476 u32 br = sl->state.branches; 8477 8478 WARN_ONCE(br, 8479 "BUG live_done but branches_to_explore %d\n", 8480 br); 8481 free_verifier_state(&sl->state, false); 8482 kfree(sl); 8483 env->peak_states--; 8484 } else { 8485 /* cannot free this state, since parentage chain may 8486 * walk it later. Add it for free_list instead to 8487 * be freed at the end of verification 8488 */ 8489 sl->next = env->free_list; 8490 env->free_list = sl; 8491 } 8492 sl = *pprev; 8493 continue; 8494 } 8495 next: 8496 pprev = &sl->next; 8497 sl = *pprev; 8498 } 8499 8500 if (env->max_states_per_insn < states_cnt) 8501 env->max_states_per_insn = states_cnt; 8502 8503 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 8504 return push_jmp_history(env, cur); 8505 8506 if (!add_new_state) 8507 return push_jmp_history(env, cur); 8508 8509 /* There were no equivalent states, remember the current one. 8510 * Technically the current state is not proven to be safe yet, 8511 * but it will either reach outer most bpf_exit (which means it's safe) 8512 * or it will be rejected. When there are no loops the verifier won't be 8513 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 8514 * again on the way to bpf_exit. 8515 * When looping the sl->state.branches will be > 0 and this state 8516 * will not be considered for equivalence until branches == 0. 8517 */ 8518 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 8519 if (!new_sl) 8520 return -ENOMEM; 8521 env->total_states++; 8522 env->peak_states++; 8523 env->prev_jmps_processed = env->jmps_processed; 8524 env->prev_insn_processed = env->insn_processed; 8525 8526 /* add new state to the head of linked list */ 8527 new = &new_sl->state; 8528 err = copy_verifier_state(new, cur); 8529 if (err) { 8530 free_verifier_state(new, false); 8531 kfree(new_sl); 8532 return err; 8533 } 8534 new->insn_idx = insn_idx; 8535 WARN_ONCE(new->branches != 1, 8536 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 8537 8538 cur->parent = new; 8539 cur->first_insn_idx = insn_idx; 8540 clear_jmp_history(cur); 8541 new_sl->next = *explored_state(env, insn_idx); 8542 *explored_state(env, insn_idx) = new_sl; 8543 /* connect new state to parentage chain. Current frame needs all 8544 * registers connected. Only r6 - r9 of the callers are alive (pushed 8545 * to the stack implicitly by JITs) so in callers' frames connect just 8546 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 8547 * the state of the call instruction (with WRITTEN set), and r0 comes 8548 * from callee with its full parentage chain, anyway. 8549 */ 8550 /* clear write marks in current state: the writes we did are not writes 8551 * our child did, so they don't screen off its reads from us. 8552 * (There are no read marks in current state, because reads always mark 8553 * their parent and current state never has children yet. Only 8554 * explored_states can get read marks.) 8555 */ 8556 for (j = 0; j <= cur->curframe; j++) { 8557 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 8558 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 8559 for (i = 0; i < BPF_REG_FP; i++) 8560 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 8561 } 8562 8563 /* all stack frames are accessible from callee, clear them all */ 8564 for (j = 0; j <= cur->curframe; j++) { 8565 struct bpf_func_state *frame = cur->frame[j]; 8566 struct bpf_func_state *newframe = new->frame[j]; 8567 8568 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 8569 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 8570 frame->stack[i].spilled_ptr.parent = 8571 &newframe->stack[i].spilled_ptr; 8572 } 8573 } 8574 return 0; 8575 } 8576 8577 /* Return true if it's OK to have the same insn return a different type. */ 8578 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 8579 { 8580 switch (type) { 8581 case PTR_TO_CTX: 8582 case PTR_TO_SOCKET: 8583 case PTR_TO_SOCKET_OR_NULL: 8584 case PTR_TO_SOCK_COMMON: 8585 case PTR_TO_SOCK_COMMON_OR_NULL: 8586 case PTR_TO_TCP_SOCK: 8587 case PTR_TO_TCP_SOCK_OR_NULL: 8588 case PTR_TO_XDP_SOCK: 8589 case PTR_TO_BTF_ID: 8590 case PTR_TO_BTF_ID_OR_NULL: 8591 return false; 8592 default: 8593 return true; 8594 } 8595 } 8596 8597 /* If an instruction was previously used with particular pointer types, then we 8598 * need to be careful to avoid cases such as the below, where it may be ok 8599 * for one branch accessing the pointer, but not ok for the other branch: 8600 * 8601 * R1 = sock_ptr 8602 * goto X; 8603 * ... 8604 * R1 = some_other_valid_ptr; 8605 * goto X; 8606 * ... 8607 * R2 = *(u32 *)(R1 + 0); 8608 */ 8609 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 8610 { 8611 return src != prev && (!reg_type_mismatch_ok(src) || 8612 !reg_type_mismatch_ok(prev)); 8613 } 8614 8615 static int do_check(struct bpf_verifier_env *env) 8616 { 8617 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 8618 struct bpf_verifier_state *state = env->cur_state; 8619 struct bpf_insn *insns = env->prog->insnsi; 8620 struct bpf_reg_state *regs; 8621 int insn_cnt = env->prog->len; 8622 bool do_print_state = false; 8623 int prev_insn_idx = -1; 8624 8625 for (;;) { 8626 struct bpf_insn *insn; 8627 u8 class; 8628 int err; 8629 8630 env->prev_insn_idx = prev_insn_idx; 8631 if (env->insn_idx >= insn_cnt) { 8632 verbose(env, "invalid insn idx %d insn_cnt %d\n", 8633 env->insn_idx, insn_cnt); 8634 return -EFAULT; 8635 } 8636 8637 insn = &insns[env->insn_idx]; 8638 class = BPF_CLASS(insn->code); 8639 8640 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 8641 verbose(env, 8642 "BPF program is too large. Processed %d insn\n", 8643 env->insn_processed); 8644 return -E2BIG; 8645 } 8646 8647 err = is_state_visited(env, env->insn_idx); 8648 if (err < 0) 8649 return err; 8650 if (err == 1) { 8651 /* found equivalent state, can prune the search */ 8652 if (env->log.level & BPF_LOG_LEVEL) { 8653 if (do_print_state) 8654 verbose(env, "\nfrom %d to %d%s: safe\n", 8655 env->prev_insn_idx, env->insn_idx, 8656 env->cur_state->speculative ? 8657 " (speculative execution)" : ""); 8658 else 8659 verbose(env, "%d: safe\n", env->insn_idx); 8660 } 8661 goto process_bpf_exit; 8662 } 8663 8664 if (signal_pending(current)) 8665 return -EAGAIN; 8666 8667 if (need_resched()) 8668 cond_resched(); 8669 8670 if (env->log.level & BPF_LOG_LEVEL2 || 8671 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 8672 if (env->log.level & BPF_LOG_LEVEL2) 8673 verbose(env, "%d:", env->insn_idx); 8674 else 8675 verbose(env, "\nfrom %d to %d%s:", 8676 env->prev_insn_idx, env->insn_idx, 8677 env->cur_state->speculative ? 8678 " (speculative execution)" : ""); 8679 print_verifier_state(env, state->frame[state->curframe]); 8680 do_print_state = false; 8681 } 8682 8683 if (env->log.level & BPF_LOG_LEVEL) { 8684 const struct bpf_insn_cbs cbs = { 8685 .cb_print = verbose, 8686 .private_data = env, 8687 }; 8688 8689 verbose_linfo(env, env->insn_idx, "; "); 8690 verbose(env, "%d: ", env->insn_idx); 8691 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 8692 } 8693 8694 if (bpf_prog_is_dev_bound(env->prog->aux)) { 8695 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 8696 env->prev_insn_idx); 8697 if (err) 8698 return err; 8699 } 8700 8701 regs = cur_regs(env); 8702 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 8703 prev_insn_idx = env->insn_idx; 8704 8705 if (class == BPF_ALU || class == BPF_ALU64) { 8706 err = check_alu_op(env, insn); 8707 if (err) 8708 return err; 8709 8710 } else if (class == BPF_LDX) { 8711 enum bpf_reg_type *prev_src_type, src_reg_type; 8712 8713 /* check for reserved fields is already done */ 8714 8715 /* check src operand */ 8716 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8717 if (err) 8718 return err; 8719 8720 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8721 if (err) 8722 return err; 8723 8724 src_reg_type = regs[insn->src_reg].type; 8725 8726 /* check that memory (src_reg + off) is readable, 8727 * the state of dst_reg will be updated by this func 8728 */ 8729 err = check_mem_access(env, env->insn_idx, insn->src_reg, 8730 insn->off, BPF_SIZE(insn->code), 8731 BPF_READ, insn->dst_reg, false); 8732 if (err) 8733 return err; 8734 8735 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 8736 8737 if (*prev_src_type == NOT_INIT) { 8738 /* saw a valid insn 8739 * dst_reg = *(u32 *)(src_reg + off) 8740 * save type to validate intersecting paths 8741 */ 8742 *prev_src_type = src_reg_type; 8743 8744 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 8745 /* ABuser program is trying to use the same insn 8746 * dst_reg = *(u32*) (src_reg + off) 8747 * with different pointer types: 8748 * src_reg == ctx in one branch and 8749 * src_reg == stack|map in some other branch. 8750 * Reject it. 8751 */ 8752 verbose(env, "same insn cannot be used with different pointers\n"); 8753 return -EINVAL; 8754 } 8755 8756 } else if (class == BPF_STX) { 8757 enum bpf_reg_type *prev_dst_type, dst_reg_type; 8758 8759 if (BPF_MODE(insn->code) == BPF_XADD) { 8760 err = check_xadd(env, env->insn_idx, insn); 8761 if (err) 8762 return err; 8763 env->insn_idx++; 8764 continue; 8765 } 8766 8767 /* check src1 operand */ 8768 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8769 if (err) 8770 return err; 8771 /* check src2 operand */ 8772 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8773 if (err) 8774 return err; 8775 8776 dst_reg_type = regs[insn->dst_reg].type; 8777 8778 /* check that memory (dst_reg + off) is writeable */ 8779 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 8780 insn->off, BPF_SIZE(insn->code), 8781 BPF_WRITE, insn->src_reg, false); 8782 if (err) 8783 return err; 8784 8785 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 8786 8787 if (*prev_dst_type == NOT_INIT) { 8788 *prev_dst_type = dst_reg_type; 8789 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 8790 verbose(env, "same insn cannot be used with different pointers\n"); 8791 return -EINVAL; 8792 } 8793 8794 } else if (class == BPF_ST) { 8795 if (BPF_MODE(insn->code) != BPF_MEM || 8796 insn->src_reg != BPF_REG_0) { 8797 verbose(env, "BPF_ST uses reserved fields\n"); 8798 return -EINVAL; 8799 } 8800 /* check src operand */ 8801 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8802 if (err) 8803 return err; 8804 8805 if (is_ctx_reg(env, insn->dst_reg)) { 8806 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 8807 insn->dst_reg, 8808 reg_type_str[reg_state(env, insn->dst_reg)->type]); 8809 return -EACCES; 8810 } 8811 8812 /* check that memory (dst_reg + off) is writeable */ 8813 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 8814 insn->off, BPF_SIZE(insn->code), 8815 BPF_WRITE, -1, false); 8816 if (err) 8817 return err; 8818 8819 } else if (class == BPF_JMP || class == BPF_JMP32) { 8820 u8 opcode = BPF_OP(insn->code); 8821 8822 env->jmps_processed++; 8823 if (opcode == BPF_CALL) { 8824 if (BPF_SRC(insn->code) != BPF_K || 8825 insn->off != 0 || 8826 (insn->src_reg != BPF_REG_0 && 8827 insn->src_reg != BPF_PSEUDO_CALL) || 8828 insn->dst_reg != BPF_REG_0 || 8829 class == BPF_JMP32) { 8830 verbose(env, "BPF_CALL uses reserved fields\n"); 8831 return -EINVAL; 8832 } 8833 8834 if (env->cur_state->active_spin_lock && 8835 (insn->src_reg == BPF_PSEUDO_CALL || 8836 insn->imm != BPF_FUNC_spin_unlock)) { 8837 verbose(env, "function calls are not allowed while holding a lock\n"); 8838 return -EINVAL; 8839 } 8840 if (insn->src_reg == BPF_PSEUDO_CALL) 8841 err = check_func_call(env, insn, &env->insn_idx); 8842 else 8843 err = check_helper_call(env, insn->imm, env->insn_idx); 8844 if (err) 8845 return err; 8846 8847 } else if (opcode == BPF_JA) { 8848 if (BPF_SRC(insn->code) != BPF_K || 8849 insn->imm != 0 || 8850 insn->src_reg != BPF_REG_0 || 8851 insn->dst_reg != BPF_REG_0 || 8852 class == BPF_JMP32) { 8853 verbose(env, "BPF_JA uses reserved fields\n"); 8854 return -EINVAL; 8855 } 8856 8857 env->insn_idx += insn->off + 1; 8858 continue; 8859 8860 } else if (opcode == BPF_EXIT) { 8861 if (BPF_SRC(insn->code) != BPF_K || 8862 insn->imm != 0 || 8863 insn->src_reg != BPF_REG_0 || 8864 insn->dst_reg != BPF_REG_0 || 8865 class == BPF_JMP32) { 8866 verbose(env, "BPF_EXIT uses reserved fields\n"); 8867 return -EINVAL; 8868 } 8869 8870 if (env->cur_state->active_spin_lock) { 8871 verbose(env, "bpf_spin_unlock is missing\n"); 8872 return -EINVAL; 8873 } 8874 8875 if (state->curframe) { 8876 /* exit from nested function */ 8877 err = prepare_func_exit(env, &env->insn_idx); 8878 if (err) 8879 return err; 8880 do_print_state = true; 8881 continue; 8882 } 8883 8884 err = check_reference_leak(env); 8885 if (err) 8886 return err; 8887 8888 err = check_return_code(env); 8889 if (err) 8890 return err; 8891 process_bpf_exit: 8892 update_branch_counts(env, env->cur_state); 8893 err = pop_stack(env, &prev_insn_idx, 8894 &env->insn_idx, pop_log); 8895 if (err < 0) { 8896 if (err != -ENOENT) 8897 return err; 8898 break; 8899 } else { 8900 do_print_state = true; 8901 continue; 8902 } 8903 } else { 8904 err = check_cond_jmp_op(env, insn, &env->insn_idx); 8905 if (err) 8906 return err; 8907 } 8908 } else if (class == BPF_LD) { 8909 u8 mode = BPF_MODE(insn->code); 8910 8911 if (mode == BPF_ABS || mode == BPF_IND) { 8912 err = check_ld_abs(env, insn); 8913 if (err) 8914 return err; 8915 8916 } else if (mode == BPF_IMM) { 8917 err = check_ld_imm(env, insn); 8918 if (err) 8919 return err; 8920 8921 env->insn_idx++; 8922 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 8923 } else { 8924 verbose(env, "invalid BPF_LD mode\n"); 8925 return -EINVAL; 8926 } 8927 } else { 8928 verbose(env, "unknown insn class %d\n", class); 8929 return -EINVAL; 8930 } 8931 8932 env->insn_idx++; 8933 } 8934 8935 return 0; 8936 } 8937 8938 static int check_map_prealloc(struct bpf_map *map) 8939 { 8940 return (map->map_type != BPF_MAP_TYPE_HASH && 8941 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8942 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 8943 !(map->map_flags & BPF_F_NO_PREALLOC); 8944 } 8945 8946 static bool is_tracing_prog_type(enum bpf_prog_type type) 8947 { 8948 switch (type) { 8949 case BPF_PROG_TYPE_KPROBE: 8950 case BPF_PROG_TYPE_TRACEPOINT: 8951 case BPF_PROG_TYPE_PERF_EVENT: 8952 case BPF_PROG_TYPE_RAW_TRACEPOINT: 8953 return true; 8954 default: 8955 return false; 8956 } 8957 } 8958 8959 static bool is_preallocated_map(struct bpf_map *map) 8960 { 8961 if (!check_map_prealloc(map)) 8962 return false; 8963 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 8964 return false; 8965 return true; 8966 } 8967 8968 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 8969 struct bpf_map *map, 8970 struct bpf_prog *prog) 8971 8972 { 8973 /* 8974 * Validate that trace type programs use preallocated hash maps. 8975 * 8976 * For programs attached to PERF events this is mandatory as the 8977 * perf NMI can hit any arbitrary code sequence. 8978 * 8979 * All other trace types using preallocated hash maps are unsafe as 8980 * well because tracepoint or kprobes can be inside locked regions 8981 * of the memory allocator or at a place where a recursion into the 8982 * memory allocator would see inconsistent state. 8983 * 8984 * On RT enabled kernels run-time allocation of all trace type 8985 * programs is strictly prohibited due to lock type constraints. On 8986 * !RT kernels it is allowed for backwards compatibility reasons for 8987 * now, but warnings are emitted so developers are made aware of 8988 * the unsafety and can fix their programs before this is enforced. 8989 */ 8990 if (is_tracing_prog_type(prog->type) && !is_preallocated_map(map)) { 8991 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 8992 verbose(env, "perf_event programs can only use preallocated hash map\n"); 8993 return -EINVAL; 8994 } 8995 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 8996 verbose(env, "trace type programs can only use preallocated hash map\n"); 8997 return -EINVAL; 8998 } 8999 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 9000 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 9001 } 9002 9003 if ((is_tracing_prog_type(prog->type) || 9004 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) && 9005 map_value_has_spin_lock(map)) { 9006 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 9007 return -EINVAL; 9008 } 9009 9010 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 9011 !bpf_offload_prog_map_match(prog, map)) { 9012 verbose(env, "offload device mismatch between prog and map\n"); 9013 return -EINVAL; 9014 } 9015 9016 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 9017 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 9018 return -EINVAL; 9019 } 9020 9021 return 0; 9022 } 9023 9024 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 9025 { 9026 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 9027 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 9028 } 9029 9030 /* look for pseudo eBPF instructions that access map FDs and 9031 * replace them with actual map pointers 9032 */ 9033 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 9034 { 9035 struct bpf_insn *insn = env->prog->insnsi; 9036 int insn_cnt = env->prog->len; 9037 int i, j, err; 9038 9039 err = bpf_prog_calc_tag(env->prog); 9040 if (err) 9041 return err; 9042 9043 for (i = 0; i < insn_cnt; i++, insn++) { 9044 if (BPF_CLASS(insn->code) == BPF_LDX && 9045 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 9046 verbose(env, "BPF_LDX uses reserved fields\n"); 9047 return -EINVAL; 9048 } 9049 9050 if (BPF_CLASS(insn->code) == BPF_STX && 9051 ((BPF_MODE(insn->code) != BPF_MEM && 9052 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 9053 verbose(env, "BPF_STX uses reserved fields\n"); 9054 return -EINVAL; 9055 } 9056 9057 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 9058 struct bpf_insn_aux_data *aux; 9059 struct bpf_map *map; 9060 struct fd f; 9061 u64 addr; 9062 9063 if (i == insn_cnt - 1 || insn[1].code != 0 || 9064 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 9065 insn[1].off != 0) { 9066 verbose(env, "invalid bpf_ld_imm64 insn\n"); 9067 return -EINVAL; 9068 } 9069 9070 if (insn[0].src_reg == 0) 9071 /* valid generic load 64-bit imm */ 9072 goto next_insn; 9073 9074 /* In final convert_pseudo_ld_imm64() step, this is 9075 * converted into regular 64-bit imm load insn. 9076 */ 9077 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 9078 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 9079 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 9080 insn[1].imm != 0)) { 9081 verbose(env, 9082 "unrecognized bpf_ld_imm64 insn\n"); 9083 return -EINVAL; 9084 } 9085 9086 f = fdget(insn[0].imm); 9087 map = __bpf_map_get(f); 9088 if (IS_ERR(map)) { 9089 verbose(env, "fd %d is not pointing to valid bpf_map\n", 9090 insn[0].imm); 9091 return PTR_ERR(map); 9092 } 9093 9094 err = check_map_prog_compatibility(env, map, env->prog); 9095 if (err) { 9096 fdput(f); 9097 return err; 9098 } 9099 9100 aux = &env->insn_aux_data[i]; 9101 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 9102 addr = (unsigned long)map; 9103 } else { 9104 u32 off = insn[1].imm; 9105 9106 if (off >= BPF_MAX_VAR_OFF) { 9107 verbose(env, "direct value offset of %u is not allowed\n", off); 9108 fdput(f); 9109 return -EINVAL; 9110 } 9111 9112 if (!map->ops->map_direct_value_addr) { 9113 verbose(env, "no direct value access support for this map type\n"); 9114 fdput(f); 9115 return -EINVAL; 9116 } 9117 9118 err = map->ops->map_direct_value_addr(map, &addr, off); 9119 if (err) { 9120 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 9121 map->value_size, off); 9122 fdput(f); 9123 return err; 9124 } 9125 9126 aux->map_off = off; 9127 addr += off; 9128 } 9129 9130 insn[0].imm = (u32)addr; 9131 insn[1].imm = addr >> 32; 9132 9133 /* check whether we recorded this map already */ 9134 for (j = 0; j < env->used_map_cnt; j++) { 9135 if (env->used_maps[j] == map) { 9136 aux->map_index = j; 9137 fdput(f); 9138 goto next_insn; 9139 } 9140 } 9141 9142 if (env->used_map_cnt >= MAX_USED_MAPS) { 9143 fdput(f); 9144 return -E2BIG; 9145 } 9146 9147 /* hold the map. If the program is rejected by verifier, 9148 * the map will be released by release_maps() or it 9149 * will be used by the valid program until it's unloaded 9150 * and all maps are released in free_used_maps() 9151 */ 9152 bpf_map_inc(map); 9153 9154 aux->map_index = env->used_map_cnt; 9155 env->used_maps[env->used_map_cnt++] = map; 9156 9157 if (bpf_map_is_cgroup_storage(map) && 9158 bpf_cgroup_storage_assign(env->prog->aux, map)) { 9159 verbose(env, "only one cgroup storage of each type is allowed\n"); 9160 fdput(f); 9161 return -EBUSY; 9162 } 9163 9164 fdput(f); 9165 next_insn: 9166 insn++; 9167 i++; 9168 continue; 9169 } 9170 9171 /* Basic sanity check before we invest more work here. */ 9172 if (!bpf_opcode_in_insntable(insn->code)) { 9173 verbose(env, "unknown opcode %02x\n", insn->code); 9174 return -EINVAL; 9175 } 9176 } 9177 9178 /* now all pseudo BPF_LD_IMM64 instructions load valid 9179 * 'struct bpf_map *' into a register instead of user map_fd. 9180 * These pointers will be used later by verifier to validate map access. 9181 */ 9182 return 0; 9183 } 9184 9185 /* drop refcnt of maps used by the rejected program */ 9186 static void release_maps(struct bpf_verifier_env *env) 9187 { 9188 __bpf_free_used_maps(env->prog->aux, env->used_maps, 9189 env->used_map_cnt); 9190 } 9191 9192 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 9193 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 9194 { 9195 struct bpf_insn *insn = env->prog->insnsi; 9196 int insn_cnt = env->prog->len; 9197 int i; 9198 9199 for (i = 0; i < insn_cnt; i++, insn++) 9200 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 9201 insn->src_reg = 0; 9202 } 9203 9204 /* single env->prog->insni[off] instruction was replaced with the range 9205 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 9206 * [0, off) and [off, end) to new locations, so the patched range stays zero 9207 */ 9208 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 9209 struct bpf_prog *new_prog, u32 off, u32 cnt) 9210 { 9211 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 9212 struct bpf_insn *insn = new_prog->insnsi; 9213 u32 prog_len; 9214 int i; 9215 9216 /* aux info at OFF always needs adjustment, no matter fast path 9217 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 9218 * original insn at old prog. 9219 */ 9220 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 9221 9222 if (cnt == 1) 9223 return 0; 9224 prog_len = new_prog->len; 9225 new_data = vzalloc(array_size(prog_len, 9226 sizeof(struct bpf_insn_aux_data))); 9227 if (!new_data) 9228 return -ENOMEM; 9229 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 9230 memcpy(new_data + off + cnt - 1, old_data + off, 9231 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 9232 for (i = off; i < off + cnt - 1; i++) { 9233 new_data[i].seen = env->pass_cnt; 9234 new_data[i].zext_dst = insn_has_def32(env, insn + i); 9235 } 9236 env->insn_aux_data = new_data; 9237 vfree(old_data); 9238 return 0; 9239 } 9240 9241 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 9242 { 9243 int i; 9244 9245 if (len == 1) 9246 return; 9247 /* NOTE: fake 'exit' subprog should be updated as well. */ 9248 for (i = 0; i <= env->subprog_cnt; i++) { 9249 if (env->subprog_info[i].start <= off) 9250 continue; 9251 env->subprog_info[i].start += len - 1; 9252 } 9253 } 9254 9255 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 9256 const struct bpf_insn *patch, u32 len) 9257 { 9258 struct bpf_prog *new_prog; 9259 9260 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 9261 if (IS_ERR(new_prog)) { 9262 if (PTR_ERR(new_prog) == -ERANGE) 9263 verbose(env, 9264 "insn %d cannot be patched due to 16-bit range\n", 9265 env->insn_aux_data[off].orig_idx); 9266 return NULL; 9267 } 9268 if (adjust_insn_aux_data(env, new_prog, off, len)) 9269 return NULL; 9270 adjust_subprog_starts(env, off, len); 9271 return new_prog; 9272 } 9273 9274 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 9275 u32 off, u32 cnt) 9276 { 9277 int i, j; 9278 9279 /* find first prog starting at or after off (first to remove) */ 9280 for (i = 0; i < env->subprog_cnt; i++) 9281 if (env->subprog_info[i].start >= off) 9282 break; 9283 /* find first prog starting at or after off + cnt (first to stay) */ 9284 for (j = i; j < env->subprog_cnt; j++) 9285 if (env->subprog_info[j].start >= off + cnt) 9286 break; 9287 /* if j doesn't start exactly at off + cnt, we are just removing 9288 * the front of previous prog 9289 */ 9290 if (env->subprog_info[j].start != off + cnt) 9291 j--; 9292 9293 if (j > i) { 9294 struct bpf_prog_aux *aux = env->prog->aux; 9295 int move; 9296 9297 /* move fake 'exit' subprog as well */ 9298 move = env->subprog_cnt + 1 - j; 9299 9300 memmove(env->subprog_info + i, 9301 env->subprog_info + j, 9302 sizeof(*env->subprog_info) * move); 9303 env->subprog_cnt -= j - i; 9304 9305 /* remove func_info */ 9306 if (aux->func_info) { 9307 move = aux->func_info_cnt - j; 9308 9309 memmove(aux->func_info + i, 9310 aux->func_info + j, 9311 sizeof(*aux->func_info) * move); 9312 aux->func_info_cnt -= j - i; 9313 /* func_info->insn_off is set after all code rewrites, 9314 * in adjust_btf_func() - no need to adjust 9315 */ 9316 } 9317 } else { 9318 /* convert i from "first prog to remove" to "first to adjust" */ 9319 if (env->subprog_info[i].start == off) 9320 i++; 9321 } 9322 9323 /* update fake 'exit' subprog as well */ 9324 for (; i <= env->subprog_cnt; i++) 9325 env->subprog_info[i].start -= cnt; 9326 9327 return 0; 9328 } 9329 9330 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 9331 u32 cnt) 9332 { 9333 struct bpf_prog *prog = env->prog; 9334 u32 i, l_off, l_cnt, nr_linfo; 9335 struct bpf_line_info *linfo; 9336 9337 nr_linfo = prog->aux->nr_linfo; 9338 if (!nr_linfo) 9339 return 0; 9340 9341 linfo = prog->aux->linfo; 9342 9343 /* find first line info to remove, count lines to be removed */ 9344 for (i = 0; i < nr_linfo; i++) 9345 if (linfo[i].insn_off >= off) 9346 break; 9347 9348 l_off = i; 9349 l_cnt = 0; 9350 for (; i < nr_linfo; i++) 9351 if (linfo[i].insn_off < off + cnt) 9352 l_cnt++; 9353 else 9354 break; 9355 9356 /* First live insn doesn't match first live linfo, it needs to "inherit" 9357 * last removed linfo. prog is already modified, so prog->len == off 9358 * means no live instructions after (tail of the program was removed). 9359 */ 9360 if (prog->len != off && l_cnt && 9361 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 9362 l_cnt--; 9363 linfo[--i].insn_off = off + cnt; 9364 } 9365 9366 /* remove the line info which refer to the removed instructions */ 9367 if (l_cnt) { 9368 memmove(linfo + l_off, linfo + i, 9369 sizeof(*linfo) * (nr_linfo - i)); 9370 9371 prog->aux->nr_linfo -= l_cnt; 9372 nr_linfo = prog->aux->nr_linfo; 9373 } 9374 9375 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 9376 for (i = l_off; i < nr_linfo; i++) 9377 linfo[i].insn_off -= cnt; 9378 9379 /* fix up all subprogs (incl. 'exit') which start >= off */ 9380 for (i = 0; i <= env->subprog_cnt; i++) 9381 if (env->subprog_info[i].linfo_idx > l_off) { 9382 /* program may have started in the removed region but 9383 * may not be fully removed 9384 */ 9385 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 9386 env->subprog_info[i].linfo_idx -= l_cnt; 9387 else 9388 env->subprog_info[i].linfo_idx = l_off; 9389 } 9390 9391 return 0; 9392 } 9393 9394 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 9395 { 9396 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9397 unsigned int orig_prog_len = env->prog->len; 9398 int err; 9399 9400 if (bpf_prog_is_dev_bound(env->prog->aux)) 9401 bpf_prog_offload_remove_insns(env, off, cnt); 9402 9403 err = bpf_remove_insns(env->prog, off, cnt); 9404 if (err) 9405 return err; 9406 9407 err = adjust_subprog_starts_after_remove(env, off, cnt); 9408 if (err) 9409 return err; 9410 9411 err = bpf_adj_linfo_after_remove(env, off, cnt); 9412 if (err) 9413 return err; 9414 9415 memmove(aux_data + off, aux_data + off + cnt, 9416 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 9417 9418 return 0; 9419 } 9420 9421 /* The verifier does more data flow analysis than llvm and will not 9422 * explore branches that are dead at run time. Malicious programs can 9423 * have dead code too. Therefore replace all dead at-run-time code 9424 * with 'ja -1'. 9425 * 9426 * Just nops are not optimal, e.g. if they would sit at the end of the 9427 * program and through another bug we would manage to jump there, then 9428 * we'd execute beyond program memory otherwise. Returning exception 9429 * code also wouldn't work since we can have subprogs where the dead 9430 * code could be located. 9431 */ 9432 static void sanitize_dead_code(struct bpf_verifier_env *env) 9433 { 9434 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9435 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 9436 struct bpf_insn *insn = env->prog->insnsi; 9437 const int insn_cnt = env->prog->len; 9438 int i; 9439 9440 for (i = 0; i < insn_cnt; i++) { 9441 if (aux_data[i].seen) 9442 continue; 9443 memcpy(insn + i, &trap, sizeof(trap)); 9444 } 9445 } 9446 9447 static bool insn_is_cond_jump(u8 code) 9448 { 9449 u8 op; 9450 9451 if (BPF_CLASS(code) == BPF_JMP32) 9452 return true; 9453 9454 if (BPF_CLASS(code) != BPF_JMP) 9455 return false; 9456 9457 op = BPF_OP(code); 9458 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 9459 } 9460 9461 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 9462 { 9463 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9464 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 9465 struct bpf_insn *insn = env->prog->insnsi; 9466 const int insn_cnt = env->prog->len; 9467 int i; 9468 9469 for (i = 0; i < insn_cnt; i++, insn++) { 9470 if (!insn_is_cond_jump(insn->code)) 9471 continue; 9472 9473 if (!aux_data[i + 1].seen) 9474 ja.off = insn->off; 9475 else if (!aux_data[i + 1 + insn->off].seen) 9476 ja.off = 0; 9477 else 9478 continue; 9479 9480 if (bpf_prog_is_dev_bound(env->prog->aux)) 9481 bpf_prog_offload_replace_insn(env, i, &ja); 9482 9483 memcpy(insn, &ja, sizeof(ja)); 9484 } 9485 } 9486 9487 static int opt_remove_dead_code(struct bpf_verifier_env *env) 9488 { 9489 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9490 int insn_cnt = env->prog->len; 9491 int i, err; 9492 9493 for (i = 0; i < insn_cnt; i++) { 9494 int j; 9495 9496 j = 0; 9497 while (i + j < insn_cnt && !aux_data[i + j].seen) 9498 j++; 9499 if (!j) 9500 continue; 9501 9502 err = verifier_remove_insns(env, i, j); 9503 if (err) 9504 return err; 9505 insn_cnt = env->prog->len; 9506 } 9507 9508 return 0; 9509 } 9510 9511 static int opt_remove_nops(struct bpf_verifier_env *env) 9512 { 9513 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 9514 struct bpf_insn *insn = env->prog->insnsi; 9515 int insn_cnt = env->prog->len; 9516 int i, err; 9517 9518 for (i = 0; i < insn_cnt; i++) { 9519 if (memcmp(&insn[i], &ja, sizeof(ja))) 9520 continue; 9521 9522 err = verifier_remove_insns(env, i, 1); 9523 if (err) 9524 return err; 9525 insn_cnt--; 9526 i--; 9527 } 9528 9529 return 0; 9530 } 9531 9532 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 9533 const union bpf_attr *attr) 9534 { 9535 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 9536 struct bpf_insn_aux_data *aux = env->insn_aux_data; 9537 int i, patch_len, delta = 0, len = env->prog->len; 9538 struct bpf_insn *insns = env->prog->insnsi; 9539 struct bpf_prog *new_prog; 9540 bool rnd_hi32; 9541 9542 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 9543 zext_patch[1] = BPF_ZEXT_REG(0); 9544 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 9545 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 9546 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 9547 for (i = 0; i < len; i++) { 9548 int adj_idx = i + delta; 9549 struct bpf_insn insn; 9550 9551 insn = insns[adj_idx]; 9552 if (!aux[adj_idx].zext_dst) { 9553 u8 code, class; 9554 u32 imm_rnd; 9555 9556 if (!rnd_hi32) 9557 continue; 9558 9559 code = insn.code; 9560 class = BPF_CLASS(code); 9561 if (insn_no_def(&insn)) 9562 continue; 9563 9564 /* NOTE: arg "reg" (the fourth one) is only used for 9565 * BPF_STX which has been ruled out in above 9566 * check, it is safe to pass NULL here. 9567 */ 9568 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { 9569 if (class == BPF_LD && 9570 BPF_MODE(code) == BPF_IMM) 9571 i++; 9572 continue; 9573 } 9574 9575 /* ctx load could be transformed into wider load. */ 9576 if (class == BPF_LDX && 9577 aux[adj_idx].ptr_type == PTR_TO_CTX) 9578 continue; 9579 9580 imm_rnd = get_random_int(); 9581 rnd_hi32_patch[0] = insn; 9582 rnd_hi32_patch[1].imm = imm_rnd; 9583 rnd_hi32_patch[3].dst_reg = insn.dst_reg; 9584 patch = rnd_hi32_patch; 9585 patch_len = 4; 9586 goto apply_patch_buffer; 9587 } 9588 9589 if (!bpf_jit_needs_zext()) 9590 continue; 9591 9592 zext_patch[0] = insn; 9593 zext_patch[1].dst_reg = insn.dst_reg; 9594 zext_patch[1].src_reg = insn.dst_reg; 9595 patch = zext_patch; 9596 patch_len = 2; 9597 apply_patch_buffer: 9598 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 9599 if (!new_prog) 9600 return -ENOMEM; 9601 env->prog = new_prog; 9602 insns = new_prog->insnsi; 9603 aux = env->insn_aux_data; 9604 delta += patch_len - 1; 9605 } 9606 9607 return 0; 9608 } 9609 9610 /* convert load instructions that access fields of a context type into a 9611 * sequence of instructions that access fields of the underlying structure: 9612 * struct __sk_buff -> struct sk_buff 9613 * struct bpf_sock_ops -> struct sock 9614 */ 9615 static int convert_ctx_accesses(struct bpf_verifier_env *env) 9616 { 9617 const struct bpf_verifier_ops *ops = env->ops; 9618 int i, cnt, size, ctx_field_size, delta = 0; 9619 const int insn_cnt = env->prog->len; 9620 struct bpf_insn insn_buf[16], *insn; 9621 u32 target_size, size_default, off; 9622 struct bpf_prog *new_prog; 9623 enum bpf_access_type type; 9624 bool is_narrower_load; 9625 9626 if (ops->gen_prologue || env->seen_direct_write) { 9627 if (!ops->gen_prologue) { 9628 verbose(env, "bpf verifier is misconfigured\n"); 9629 return -EINVAL; 9630 } 9631 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 9632 env->prog); 9633 if (cnt >= ARRAY_SIZE(insn_buf)) { 9634 verbose(env, "bpf verifier is misconfigured\n"); 9635 return -EINVAL; 9636 } else if (cnt) { 9637 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 9638 if (!new_prog) 9639 return -ENOMEM; 9640 9641 env->prog = new_prog; 9642 delta += cnt - 1; 9643 } 9644 } 9645 9646 if (bpf_prog_is_dev_bound(env->prog->aux)) 9647 return 0; 9648 9649 insn = env->prog->insnsi + delta; 9650 9651 for (i = 0; i < insn_cnt; i++, insn++) { 9652 bpf_convert_ctx_access_t convert_ctx_access; 9653 9654 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 9655 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 9656 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 9657 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 9658 type = BPF_READ; 9659 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 9660 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 9661 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 9662 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 9663 type = BPF_WRITE; 9664 else 9665 continue; 9666 9667 if (type == BPF_WRITE && 9668 env->insn_aux_data[i + delta].sanitize_stack_off) { 9669 struct bpf_insn patch[] = { 9670 /* Sanitize suspicious stack slot with zero. 9671 * There are no memory dependencies for this store, 9672 * since it's only using frame pointer and immediate 9673 * constant of zero 9674 */ 9675 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 9676 env->insn_aux_data[i + delta].sanitize_stack_off, 9677 0), 9678 /* the original STX instruction will immediately 9679 * overwrite the same stack slot with appropriate value 9680 */ 9681 *insn, 9682 }; 9683 9684 cnt = ARRAY_SIZE(patch); 9685 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 9686 if (!new_prog) 9687 return -ENOMEM; 9688 9689 delta += cnt - 1; 9690 env->prog = new_prog; 9691 insn = new_prog->insnsi + i + delta; 9692 continue; 9693 } 9694 9695 switch (env->insn_aux_data[i + delta].ptr_type) { 9696 case PTR_TO_CTX: 9697 if (!ops->convert_ctx_access) 9698 continue; 9699 convert_ctx_access = ops->convert_ctx_access; 9700 break; 9701 case PTR_TO_SOCKET: 9702 case PTR_TO_SOCK_COMMON: 9703 convert_ctx_access = bpf_sock_convert_ctx_access; 9704 break; 9705 case PTR_TO_TCP_SOCK: 9706 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 9707 break; 9708 case PTR_TO_XDP_SOCK: 9709 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 9710 break; 9711 case PTR_TO_BTF_ID: 9712 if (type == BPF_READ) { 9713 insn->code = BPF_LDX | BPF_PROBE_MEM | 9714 BPF_SIZE((insn)->code); 9715 env->prog->aux->num_exentries++; 9716 } else if (env->prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9717 verbose(env, "Writes through BTF pointers are not allowed\n"); 9718 return -EINVAL; 9719 } 9720 continue; 9721 default: 9722 continue; 9723 } 9724 9725 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 9726 size = BPF_LDST_BYTES(insn); 9727 9728 /* If the read access is a narrower load of the field, 9729 * convert to a 4/8-byte load, to minimum program type specific 9730 * convert_ctx_access changes. If conversion is successful, 9731 * we will apply proper mask to the result. 9732 */ 9733 is_narrower_load = size < ctx_field_size; 9734 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 9735 off = insn->off; 9736 if (is_narrower_load) { 9737 u8 size_code; 9738 9739 if (type == BPF_WRITE) { 9740 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 9741 return -EINVAL; 9742 } 9743 9744 size_code = BPF_H; 9745 if (ctx_field_size == 4) 9746 size_code = BPF_W; 9747 else if (ctx_field_size == 8) 9748 size_code = BPF_DW; 9749 9750 insn->off = off & ~(size_default - 1); 9751 insn->code = BPF_LDX | BPF_MEM | size_code; 9752 } 9753 9754 target_size = 0; 9755 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 9756 &target_size); 9757 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 9758 (ctx_field_size && !target_size)) { 9759 verbose(env, "bpf verifier is misconfigured\n"); 9760 return -EINVAL; 9761 } 9762 9763 if (is_narrower_load && size < target_size) { 9764 u8 shift = bpf_ctx_narrow_access_offset( 9765 off, size, size_default) * 8; 9766 if (ctx_field_size <= 4) { 9767 if (shift) 9768 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 9769 insn->dst_reg, 9770 shift); 9771 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 9772 (1 << size * 8) - 1); 9773 } else { 9774 if (shift) 9775 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 9776 insn->dst_reg, 9777 shift); 9778 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 9779 (1ULL << size * 8) - 1); 9780 } 9781 } 9782 9783 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9784 if (!new_prog) 9785 return -ENOMEM; 9786 9787 delta += cnt - 1; 9788 9789 /* keep walking new program and skip insns we just inserted */ 9790 env->prog = new_prog; 9791 insn = new_prog->insnsi + i + delta; 9792 } 9793 9794 return 0; 9795 } 9796 9797 static int jit_subprogs(struct bpf_verifier_env *env) 9798 { 9799 struct bpf_prog *prog = env->prog, **func, *tmp; 9800 int i, j, subprog_start, subprog_end = 0, len, subprog; 9801 struct bpf_insn *insn; 9802 void *old_bpf_func; 9803 int err, num_exentries; 9804 9805 if (env->subprog_cnt <= 1) 9806 return 0; 9807 9808 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9809 if (insn->code != (BPF_JMP | BPF_CALL) || 9810 insn->src_reg != BPF_PSEUDO_CALL) 9811 continue; 9812 /* Upon error here we cannot fall back to interpreter but 9813 * need a hard reject of the program. Thus -EFAULT is 9814 * propagated in any case. 9815 */ 9816 subprog = find_subprog(env, i + insn->imm + 1); 9817 if (subprog < 0) { 9818 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 9819 i + insn->imm + 1); 9820 return -EFAULT; 9821 } 9822 /* temporarily remember subprog id inside insn instead of 9823 * aux_data, since next loop will split up all insns into funcs 9824 */ 9825 insn->off = subprog; 9826 /* remember original imm in case JIT fails and fallback 9827 * to interpreter will be needed 9828 */ 9829 env->insn_aux_data[i].call_imm = insn->imm; 9830 /* point imm to __bpf_call_base+1 from JITs point of view */ 9831 insn->imm = 1; 9832 } 9833 9834 err = bpf_prog_alloc_jited_linfo(prog); 9835 if (err) 9836 goto out_undo_insn; 9837 9838 err = -ENOMEM; 9839 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 9840 if (!func) 9841 goto out_undo_insn; 9842 9843 for (i = 0; i < env->subprog_cnt; i++) { 9844 subprog_start = subprog_end; 9845 subprog_end = env->subprog_info[i + 1].start; 9846 9847 len = subprog_end - subprog_start; 9848 /* BPF_PROG_RUN doesn't call subprogs directly, 9849 * hence main prog stats include the runtime of subprogs. 9850 * subprogs don't have IDs and not reachable via prog_get_next_id 9851 * func[i]->aux->stats will never be accessed and stays NULL 9852 */ 9853 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 9854 if (!func[i]) 9855 goto out_free; 9856 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 9857 len * sizeof(struct bpf_insn)); 9858 func[i]->type = prog->type; 9859 func[i]->len = len; 9860 if (bpf_prog_calc_tag(func[i])) 9861 goto out_free; 9862 func[i]->is_func = 1; 9863 func[i]->aux->func_idx = i; 9864 /* the btf and func_info will be freed only at prog->aux */ 9865 func[i]->aux->btf = prog->aux->btf; 9866 func[i]->aux->func_info = prog->aux->func_info; 9867 9868 /* Use bpf_prog_F_tag to indicate functions in stack traces. 9869 * Long term would need debug info to populate names 9870 */ 9871 func[i]->aux->name[0] = 'F'; 9872 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 9873 func[i]->jit_requested = 1; 9874 func[i]->aux->linfo = prog->aux->linfo; 9875 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 9876 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 9877 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 9878 num_exentries = 0; 9879 insn = func[i]->insnsi; 9880 for (j = 0; j < func[i]->len; j++, insn++) { 9881 if (BPF_CLASS(insn->code) == BPF_LDX && 9882 BPF_MODE(insn->code) == BPF_PROBE_MEM) 9883 num_exentries++; 9884 } 9885 func[i]->aux->num_exentries = num_exentries; 9886 func[i] = bpf_int_jit_compile(func[i]); 9887 if (!func[i]->jited) { 9888 err = -ENOTSUPP; 9889 goto out_free; 9890 } 9891 cond_resched(); 9892 } 9893 /* at this point all bpf functions were successfully JITed 9894 * now populate all bpf_calls with correct addresses and 9895 * run last pass of JIT 9896 */ 9897 for (i = 0; i < env->subprog_cnt; i++) { 9898 insn = func[i]->insnsi; 9899 for (j = 0; j < func[i]->len; j++, insn++) { 9900 if (insn->code != (BPF_JMP | BPF_CALL) || 9901 insn->src_reg != BPF_PSEUDO_CALL) 9902 continue; 9903 subprog = insn->off; 9904 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 9905 __bpf_call_base; 9906 } 9907 9908 /* we use the aux data to keep a list of the start addresses 9909 * of the JITed images for each function in the program 9910 * 9911 * for some architectures, such as powerpc64, the imm field 9912 * might not be large enough to hold the offset of the start 9913 * address of the callee's JITed image from __bpf_call_base 9914 * 9915 * in such cases, we can lookup the start address of a callee 9916 * by using its subprog id, available from the off field of 9917 * the call instruction, as an index for this list 9918 */ 9919 func[i]->aux->func = func; 9920 func[i]->aux->func_cnt = env->subprog_cnt; 9921 } 9922 for (i = 0; i < env->subprog_cnt; i++) { 9923 old_bpf_func = func[i]->bpf_func; 9924 tmp = bpf_int_jit_compile(func[i]); 9925 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 9926 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 9927 err = -ENOTSUPP; 9928 goto out_free; 9929 } 9930 cond_resched(); 9931 } 9932 9933 /* finally lock prog and jit images for all functions and 9934 * populate kallsysm 9935 */ 9936 for (i = 0; i < env->subprog_cnt; i++) { 9937 bpf_prog_lock_ro(func[i]); 9938 bpf_prog_kallsyms_add(func[i]); 9939 } 9940 9941 /* Last step: make now unused interpreter insns from main 9942 * prog consistent for later dump requests, so they can 9943 * later look the same as if they were interpreted only. 9944 */ 9945 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9946 if (insn->code != (BPF_JMP | BPF_CALL) || 9947 insn->src_reg != BPF_PSEUDO_CALL) 9948 continue; 9949 insn->off = env->insn_aux_data[i].call_imm; 9950 subprog = find_subprog(env, i + insn->off + 1); 9951 insn->imm = subprog; 9952 } 9953 9954 prog->jited = 1; 9955 prog->bpf_func = func[0]->bpf_func; 9956 prog->aux->func = func; 9957 prog->aux->func_cnt = env->subprog_cnt; 9958 bpf_prog_free_unused_jited_linfo(prog); 9959 return 0; 9960 out_free: 9961 for (i = 0; i < env->subprog_cnt; i++) 9962 if (func[i]) 9963 bpf_jit_free(func[i]); 9964 kfree(func); 9965 out_undo_insn: 9966 /* cleanup main prog to be interpreted */ 9967 prog->jit_requested = 0; 9968 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9969 if (insn->code != (BPF_JMP | BPF_CALL) || 9970 insn->src_reg != BPF_PSEUDO_CALL) 9971 continue; 9972 insn->off = 0; 9973 insn->imm = env->insn_aux_data[i].call_imm; 9974 } 9975 bpf_prog_free_jited_linfo(prog); 9976 return err; 9977 } 9978 9979 static int fixup_call_args(struct bpf_verifier_env *env) 9980 { 9981 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 9982 struct bpf_prog *prog = env->prog; 9983 struct bpf_insn *insn = prog->insnsi; 9984 int i, depth; 9985 #endif 9986 int err = 0; 9987 9988 if (env->prog->jit_requested && 9989 !bpf_prog_is_dev_bound(env->prog->aux)) { 9990 err = jit_subprogs(env); 9991 if (err == 0) 9992 return 0; 9993 if (err == -EFAULT) 9994 return err; 9995 } 9996 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 9997 for (i = 0; i < prog->len; i++, insn++) { 9998 if (insn->code != (BPF_JMP | BPF_CALL) || 9999 insn->src_reg != BPF_PSEUDO_CALL) 10000 continue; 10001 depth = get_callee_stack_depth(env, insn, i); 10002 if (depth < 0) 10003 return depth; 10004 bpf_patch_call_args(insn, depth); 10005 } 10006 err = 0; 10007 #endif 10008 return err; 10009 } 10010 10011 /* fixup insn->imm field of bpf_call instructions 10012 * and inline eligible helpers as explicit sequence of BPF instructions 10013 * 10014 * this function is called after eBPF program passed verification 10015 */ 10016 static int fixup_bpf_calls(struct bpf_verifier_env *env) 10017 { 10018 struct bpf_prog *prog = env->prog; 10019 bool expect_blinding = bpf_jit_blinding_enabled(prog); 10020 struct bpf_insn *insn = prog->insnsi; 10021 const struct bpf_func_proto *fn; 10022 const int insn_cnt = prog->len; 10023 const struct bpf_map_ops *ops; 10024 struct bpf_insn_aux_data *aux; 10025 struct bpf_insn insn_buf[16]; 10026 struct bpf_prog *new_prog; 10027 struct bpf_map *map_ptr; 10028 int i, ret, cnt, delta = 0; 10029 10030 for (i = 0; i < insn_cnt; i++, insn++) { 10031 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 10032 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 10033 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 10034 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 10035 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 10036 struct bpf_insn mask_and_div[] = { 10037 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 10038 /* Rx div 0 -> 0 */ 10039 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 10040 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 10041 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 10042 *insn, 10043 }; 10044 struct bpf_insn mask_and_mod[] = { 10045 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 10046 /* Rx mod 0 -> Rx */ 10047 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 10048 *insn, 10049 }; 10050 struct bpf_insn *patchlet; 10051 10052 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 10053 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 10054 patchlet = mask_and_div + (is64 ? 1 : 0); 10055 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 10056 } else { 10057 patchlet = mask_and_mod + (is64 ? 1 : 0); 10058 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 10059 } 10060 10061 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 10062 if (!new_prog) 10063 return -ENOMEM; 10064 10065 delta += cnt - 1; 10066 env->prog = prog = new_prog; 10067 insn = new_prog->insnsi + i + delta; 10068 continue; 10069 } 10070 10071 if (BPF_CLASS(insn->code) == BPF_LD && 10072 (BPF_MODE(insn->code) == BPF_ABS || 10073 BPF_MODE(insn->code) == BPF_IND)) { 10074 cnt = env->ops->gen_ld_abs(insn, insn_buf); 10075 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 10076 verbose(env, "bpf verifier is misconfigured\n"); 10077 return -EINVAL; 10078 } 10079 10080 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10081 if (!new_prog) 10082 return -ENOMEM; 10083 10084 delta += cnt - 1; 10085 env->prog = prog = new_prog; 10086 insn = new_prog->insnsi + i + delta; 10087 continue; 10088 } 10089 10090 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 10091 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 10092 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 10093 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 10094 struct bpf_insn insn_buf[16]; 10095 struct bpf_insn *patch = &insn_buf[0]; 10096 bool issrc, isneg; 10097 u32 off_reg; 10098 10099 aux = &env->insn_aux_data[i + delta]; 10100 if (!aux->alu_state || 10101 aux->alu_state == BPF_ALU_NON_POINTER) 10102 continue; 10103 10104 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 10105 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 10106 BPF_ALU_SANITIZE_SRC; 10107 10108 off_reg = issrc ? insn->src_reg : insn->dst_reg; 10109 if (isneg) 10110 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 10111 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 10112 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 10113 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 10114 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 10115 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 10116 if (issrc) { 10117 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 10118 off_reg); 10119 insn->src_reg = BPF_REG_AX; 10120 } else { 10121 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 10122 BPF_REG_AX); 10123 } 10124 if (isneg) 10125 insn->code = insn->code == code_add ? 10126 code_sub : code_add; 10127 *patch++ = *insn; 10128 if (issrc && isneg) 10129 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 10130 cnt = patch - insn_buf; 10131 10132 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10133 if (!new_prog) 10134 return -ENOMEM; 10135 10136 delta += cnt - 1; 10137 env->prog = prog = new_prog; 10138 insn = new_prog->insnsi + i + delta; 10139 continue; 10140 } 10141 10142 if (insn->code != (BPF_JMP | BPF_CALL)) 10143 continue; 10144 if (insn->src_reg == BPF_PSEUDO_CALL) 10145 continue; 10146 10147 if (insn->imm == BPF_FUNC_get_route_realm) 10148 prog->dst_needed = 1; 10149 if (insn->imm == BPF_FUNC_get_prandom_u32) 10150 bpf_user_rnd_init_once(); 10151 if (insn->imm == BPF_FUNC_override_return) 10152 prog->kprobe_override = 1; 10153 if (insn->imm == BPF_FUNC_tail_call) { 10154 /* If we tail call into other programs, we 10155 * cannot make any assumptions since they can 10156 * be replaced dynamically during runtime in 10157 * the program array. 10158 */ 10159 prog->cb_access = 1; 10160 env->prog->aux->stack_depth = MAX_BPF_STACK; 10161 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 10162 10163 /* mark bpf_tail_call as different opcode to avoid 10164 * conditional branch in the interpeter for every normal 10165 * call and to prevent accidental JITing by JIT compiler 10166 * that doesn't support bpf_tail_call yet 10167 */ 10168 insn->imm = 0; 10169 insn->code = BPF_JMP | BPF_TAIL_CALL; 10170 10171 aux = &env->insn_aux_data[i + delta]; 10172 if (env->bpf_capable && !expect_blinding && 10173 prog->jit_requested && 10174 !bpf_map_key_poisoned(aux) && 10175 !bpf_map_ptr_poisoned(aux) && 10176 !bpf_map_ptr_unpriv(aux)) { 10177 struct bpf_jit_poke_descriptor desc = { 10178 .reason = BPF_POKE_REASON_TAIL_CALL, 10179 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 10180 .tail_call.key = bpf_map_key_immediate(aux), 10181 }; 10182 10183 ret = bpf_jit_add_poke_descriptor(prog, &desc); 10184 if (ret < 0) { 10185 verbose(env, "adding tail call poke descriptor failed\n"); 10186 return ret; 10187 } 10188 10189 insn->imm = ret + 1; 10190 continue; 10191 } 10192 10193 if (!bpf_map_ptr_unpriv(aux)) 10194 continue; 10195 10196 /* instead of changing every JIT dealing with tail_call 10197 * emit two extra insns: 10198 * if (index >= max_entries) goto out; 10199 * index &= array->index_mask; 10200 * to avoid out-of-bounds cpu speculation 10201 */ 10202 if (bpf_map_ptr_poisoned(aux)) { 10203 verbose(env, "tail_call abusing map_ptr\n"); 10204 return -EINVAL; 10205 } 10206 10207 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 10208 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 10209 map_ptr->max_entries, 2); 10210 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 10211 container_of(map_ptr, 10212 struct bpf_array, 10213 map)->index_mask); 10214 insn_buf[2] = *insn; 10215 cnt = 3; 10216 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10217 if (!new_prog) 10218 return -ENOMEM; 10219 10220 delta += cnt - 1; 10221 env->prog = prog = new_prog; 10222 insn = new_prog->insnsi + i + delta; 10223 continue; 10224 } 10225 10226 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 10227 * and other inlining handlers are currently limited to 64 bit 10228 * only. 10229 */ 10230 if (prog->jit_requested && BITS_PER_LONG == 64 && 10231 (insn->imm == BPF_FUNC_map_lookup_elem || 10232 insn->imm == BPF_FUNC_map_update_elem || 10233 insn->imm == BPF_FUNC_map_delete_elem || 10234 insn->imm == BPF_FUNC_map_push_elem || 10235 insn->imm == BPF_FUNC_map_pop_elem || 10236 insn->imm == BPF_FUNC_map_peek_elem)) { 10237 aux = &env->insn_aux_data[i + delta]; 10238 if (bpf_map_ptr_poisoned(aux)) 10239 goto patch_call_imm; 10240 10241 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 10242 ops = map_ptr->ops; 10243 if (insn->imm == BPF_FUNC_map_lookup_elem && 10244 ops->map_gen_lookup) { 10245 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 10246 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 10247 verbose(env, "bpf verifier is misconfigured\n"); 10248 return -EINVAL; 10249 } 10250 10251 new_prog = bpf_patch_insn_data(env, i + delta, 10252 insn_buf, cnt); 10253 if (!new_prog) 10254 return -ENOMEM; 10255 10256 delta += cnt - 1; 10257 env->prog = prog = new_prog; 10258 insn = new_prog->insnsi + i + delta; 10259 continue; 10260 } 10261 10262 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 10263 (void *(*)(struct bpf_map *map, void *key))NULL)); 10264 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 10265 (int (*)(struct bpf_map *map, void *key))NULL)); 10266 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 10267 (int (*)(struct bpf_map *map, void *key, void *value, 10268 u64 flags))NULL)); 10269 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 10270 (int (*)(struct bpf_map *map, void *value, 10271 u64 flags))NULL)); 10272 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 10273 (int (*)(struct bpf_map *map, void *value))NULL)); 10274 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 10275 (int (*)(struct bpf_map *map, void *value))NULL)); 10276 10277 switch (insn->imm) { 10278 case BPF_FUNC_map_lookup_elem: 10279 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 10280 __bpf_call_base; 10281 continue; 10282 case BPF_FUNC_map_update_elem: 10283 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 10284 __bpf_call_base; 10285 continue; 10286 case BPF_FUNC_map_delete_elem: 10287 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 10288 __bpf_call_base; 10289 continue; 10290 case BPF_FUNC_map_push_elem: 10291 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 10292 __bpf_call_base; 10293 continue; 10294 case BPF_FUNC_map_pop_elem: 10295 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 10296 __bpf_call_base; 10297 continue; 10298 case BPF_FUNC_map_peek_elem: 10299 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 10300 __bpf_call_base; 10301 continue; 10302 } 10303 10304 goto patch_call_imm; 10305 } 10306 10307 if (prog->jit_requested && BITS_PER_LONG == 64 && 10308 insn->imm == BPF_FUNC_jiffies64) { 10309 struct bpf_insn ld_jiffies_addr[2] = { 10310 BPF_LD_IMM64(BPF_REG_0, 10311 (unsigned long)&jiffies), 10312 }; 10313 10314 insn_buf[0] = ld_jiffies_addr[0]; 10315 insn_buf[1] = ld_jiffies_addr[1]; 10316 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 10317 BPF_REG_0, 0); 10318 cnt = 3; 10319 10320 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 10321 cnt); 10322 if (!new_prog) 10323 return -ENOMEM; 10324 10325 delta += cnt - 1; 10326 env->prog = prog = new_prog; 10327 insn = new_prog->insnsi + i + delta; 10328 continue; 10329 } 10330 10331 patch_call_imm: 10332 fn = env->ops->get_func_proto(insn->imm, env->prog); 10333 /* all functions that have prototype and verifier allowed 10334 * programs to call them, must be real in-kernel functions 10335 */ 10336 if (!fn->func) { 10337 verbose(env, 10338 "kernel subsystem misconfigured func %s#%d\n", 10339 func_id_name(insn->imm), insn->imm); 10340 return -EFAULT; 10341 } 10342 insn->imm = fn->func - __bpf_call_base; 10343 } 10344 10345 /* Since poke tab is now finalized, publish aux to tracker. */ 10346 for (i = 0; i < prog->aux->size_poke_tab; i++) { 10347 map_ptr = prog->aux->poke_tab[i].tail_call.map; 10348 if (!map_ptr->ops->map_poke_track || 10349 !map_ptr->ops->map_poke_untrack || 10350 !map_ptr->ops->map_poke_run) { 10351 verbose(env, "bpf verifier is misconfigured\n"); 10352 return -EINVAL; 10353 } 10354 10355 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 10356 if (ret < 0) { 10357 verbose(env, "tracking tail call prog failed\n"); 10358 return ret; 10359 } 10360 } 10361 10362 return 0; 10363 } 10364 10365 static void free_states(struct bpf_verifier_env *env) 10366 { 10367 struct bpf_verifier_state_list *sl, *sln; 10368 int i; 10369 10370 sl = env->free_list; 10371 while (sl) { 10372 sln = sl->next; 10373 free_verifier_state(&sl->state, false); 10374 kfree(sl); 10375 sl = sln; 10376 } 10377 env->free_list = NULL; 10378 10379 if (!env->explored_states) 10380 return; 10381 10382 for (i = 0; i < state_htab_size(env); i++) { 10383 sl = env->explored_states[i]; 10384 10385 while (sl) { 10386 sln = sl->next; 10387 free_verifier_state(&sl->state, false); 10388 kfree(sl); 10389 sl = sln; 10390 } 10391 env->explored_states[i] = NULL; 10392 } 10393 } 10394 10395 /* The verifier is using insn_aux_data[] to store temporary data during 10396 * verification and to store information for passes that run after the 10397 * verification like dead code sanitization. do_check_common() for subprogram N 10398 * may analyze many other subprograms. sanitize_insn_aux_data() clears all 10399 * temporary data after do_check_common() finds that subprogram N cannot be 10400 * verified independently. pass_cnt counts the number of times 10401 * do_check_common() was run and insn->aux->seen tells the pass number 10402 * insn_aux_data was touched. These variables are compared to clear temporary 10403 * data from failed pass. For testing and experiments do_check_common() can be 10404 * run multiple times even when prior attempt to verify is unsuccessful. 10405 */ 10406 static void sanitize_insn_aux_data(struct bpf_verifier_env *env) 10407 { 10408 struct bpf_insn *insn = env->prog->insnsi; 10409 struct bpf_insn_aux_data *aux; 10410 int i, class; 10411 10412 for (i = 0; i < env->prog->len; i++) { 10413 class = BPF_CLASS(insn[i].code); 10414 if (class != BPF_LDX && class != BPF_STX) 10415 continue; 10416 aux = &env->insn_aux_data[i]; 10417 if (aux->seen != env->pass_cnt) 10418 continue; 10419 memset(aux, 0, offsetof(typeof(*aux), orig_idx)); 10420 } 10421 } 10422 10423 static int do_check_common(struct bpf_verifier_env *env, int subprog) 10424 { 10425 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 10426 struct bpf_verifier_state *state; 10427 struct bpf_reg_state *regs; 10428 int ret, i; 10429 10430 env->prev_linfo = NULL; 10431 env->pass_cnt++; 10432 10433 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 10434 if (!state) 10435 return -ENOMEM; 10436 state->curframe = 0; 10437 state->speculative = false; 10438 state->branches = 1; 10439 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 10440 if (!state->frame[0]) { 10441 kfree(state); 10442 return -ENOMEM; 10443 } 10444 env->cur_state = state; 10445 init_func_state(env, state->frame[0], 10446 BPF_MAIN_FUNC /* callsite */, 10447 0 /* frameno */, 10448 subprog); 10449 10450 regs = state->frame[state->curframe]->regs; 10451 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 10452 ret = btf_prepare_func_args(env, subprog, regs); 10453 if (ret) 10454 goto out; 10455 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 10456 if (regs[i].type == PTR_TO_CTX) 10457 mark_reg_known_zero(env, regs, i); 10458 else if (regs[i].type == SCALAR_VALUE) 10459 mark_reg_unknown(env, regs, i); 10460 } 10461 } else { 10462 /* 1st arg to a function */ 10463 regs[BPF_REG_1].type = PTR_TO_CTX; 10464 mark_reg_known_zero(env, regs, BPF_REG_1); 10465 ret = btf_check_func_arg_match(env, subprog, regs); 10466 if (ret == -EFAULT) 10467 /* unlikely verifier bug. abort. 10468 * ret == 0 and ret < 0 are sadly acceptable for 10469 * main() function due to backward compatibility. 10470 * Like socket filter program may be written as: 10471 * int bpf_prog(struct pt_regs *ctx) 10472 * and never dereference that ctx in the program. 10473 * 'struct pt_regs' is a type mismatch for socket 10474 * filter that should be using 'struct __sk_buff'. 10475 */ 10476 goto out; 10477 } 10478 10479 ret = do_check(env); 10480 out: 10481 /* check for NULL is necessary, since cur_state can be freed inside 10482 * do_check() under memory pressure. 10483 */ 10484 if (env->cur_state) { 10485 free_verifier_state(env->cur_state, true); 10486 env->cur_state = NULL; 10487 } 10488 while (!pop_stack(env, NULL, NULL, false)); 10489 if (!ret && pop_log) 10490 bpf_vlog_reset(&env->log, 0); 10491 free_states(env); 10492 if (ret) 10493 /* clean aux data in case subprog was rejected */ 10494 sanitize_insn_aux_data(env); 10495 return ret; 10496 } 10497 10498 /* Verify all global functions in a BPF program one by one based on their BTF. 10499 * All global functions must pass verification. Otherwise the whole program is rejected. 10500 * Consider: 10501 * int bar(int); 10502 * int foo(int f) 10503 * { 10504 * return bar(f); 10505 * } 10506 * int bar(int b) 10507 * { 10508 * ... 10509 * } 10510 * foo() will be verified first for R1=any_scalar_value. During verification it 10511 * will be assumed that bar() already verified successfully and call to bar() 10512 * from foo() will be checked for type match only. Later bar() will be verified 10513 * independently to check that it's safe for R1=any_scalar_value. 10514 */ 10515 static int do_check_subprogs(struct bpf_verifier_env *env) 10516 { 10517 struct bpf_prog_aux *aux = env->prog->aux; 10518 int i, ret; 10519 10520 if (!aux->func_info) 10521 return 0; 10522 10523 for (i = 1; i < env->subprog_cnt; i++) { 10524 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 10525 continue; 10526 env->insn_idx = env->subprog_info[i].start; 10527 WARN_ON_ONCE(env->insn_idx == 0); 10528 ret = do_check_common(env, i); 10529 if (ret) { 10530 return ret; 10531 } else if (env->log.level & BPF_LOG_LEVEL) { 10532 verbose(env, 10533 "Func#%d is safe for any args that match its prototype\n", 10534 i); 10535 } 10536 } 10537 return 0; 10538 } 10539 10540 static int do_check_main(struct bpf_verifier_env *env) 10541 { 10542 int ret; 10543 10544 env->insn_idx = 0; 10545 ret = do_check_common(env, 0); 10546 if (!ret) 10547 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 10548 return ret; 10549 } 10550 10551 10552 static void print_verification_stats(struct bpf_verifier_env *env) 10553 { 10554 int i; 10555 10556 if (env->log.level & BPF_LOG_STATS) { 10557 verbose(env, "verification time %lld usec\n", 10558 div_u64(env->verification_time, 1000)); 10559 verbose(env, "stack depth "); 10560 for (i = 0; i < env->subprog_cnt; i++) { 10561 u32 depth = env->subprog_info[i].stack_depth; 10562 10563 verbose(env, "%d", depth); 10564 if (i + 1 < env->subprog_cnt) 10565 verbose(env, "+"); 10566 } 10567 verbose(env, "\n"); 10568 } 10569 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 10570 "total_states %d peak_states %d mark_read %d\n", 10571 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 10572 env->max_states_per_insn, env->total_states, 10573 env->peak_states, env->longest_mark_read_walk); 10574 } 10575 10576 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 10577 { 10578 const struct btf_type *t, *func_proto; 10579 const struct bpf_struct_ops *st_ops; 10580 const struct btf_member *member; 10581 struct bpf_prog *prog = env->prog; 10582 u32 btf_id, member_idx; 10583 const char *mname; 10584 10585 btf_id = prog->aux->attach_btf_id; 10586 st_ops = bpf_struct_ops_find(btf_id); 10587 if (!st_ops) { 10588 verbose(env, "attach_btf_id %u is not a supported struct\n", 10589 btf_id); 10590 return -ENOTSUPP; 10591 } 10592 10593 t = st_ops->type; 10594 member_idx = prog->expected_attach_type; 10595 if (member_idx >= btf_type_vlen(t)) { 10596 verbose(env, "attach to invalid member idx %u of struct %s\n", 10597 member_idx, st_ops->name); 10598 return -EINVAL; 10599 } 10600 10601 member = &btf_type_member(t)[member_idx]; 10602 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 10603 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 10604 NULL); 10605 if (!func_proto) { 10606 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 10607 mname, member_idx, st_ops->name); 10608 return -EINVAL; 10609 } 10610 10611 if (st_ops->check_member) { 10612 int err = st_ops->check_member(t, member); 10613 10614 if (err) { 10615 verbose(env, "attach to unsupported member %s of struct %s\n", 10616 mname, st_ops->name); 10617 return err; 10618 } 10619 } 10620 10621 prog->aux->attach_func_proto = func_proto; 10622 prog->aux->attach_func_name = mname; 10623 env->ops = st_ops->verifier_ops; 10624 10625 return 0; 10626 } 10627 #define SECURITY_PREFIX "security_" 10628 10629 static int check_attach_modify_return(struct bpf_prog *prog, unsigned long addr) 10630 { 10631 if (within_error_injection_list(addr) || 10632 !strncmp(SECURITY_PREFIX, prog->aux->attach_func_name, 10633 sizeof(SECURITY_PREFIX) - 1)) 10634 return 0; 10635 10636 return -EINVAL; 10637 } 10638 10639 static int check_attach_btf_id(struct bpf_verifier_env *env) 10640 { 10641 struct bpf_prog *prog = env->prog; 10642 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 10643 struct bpf_prog *tgt_prog = prog->aux->linked_prog; 10644 u32 btf_id = prog->aux->attach_btf_id; 10645 const char prefix[] = "btf_trace_"; 10646 struct btf_func_model fmodel; 10647 int ret = 0, subprog = -1, i; 10648 struct bpf_trampoline *tr; 10649 const struct btf_type *t; 10650 bool conservative = true; 10651 const char *tname; 10652 struct btf *btf; 10653 long addr; 10654 u64 key; 10655 10656 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 10657 return check_struct_ops_btf_id(env); 10658 10659 if (prog->type != BPF_PROG_TYPE_TRACING && 10660 prog->type != BPF_PROG_TYPE_LSM && 10661 !prog_extension) 10662 return 0; 10663 10664 if (!btf_id) { 10665 verbose(env, "Tracing programs must provide btf_id\n"); 10666 return -EINVAL; 10667 } 10668 btf = bpf_prog_get_target_btf(prog); 10669 if (!btf) { 10670 verbose(env, 10671 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 10672 return -EINVAL; 10673 } 10674 t = btf_type_by_id(btf, btf_id); 10675 if (!t) { 10676 verbose(env, "attach_btf_id %u is invalid\n", btf_id); 10677 return -EINVAL; 10678 } 10679 tname = btf_name_by_offset(btf, t->name_off); 10680 if (!tname) { 10681 verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id); 10682 return -EINVAL; 10683 } 10684 if (tgt_prog) { 10685 struct bpf_prog_aux *aux = tgt_prog->aux; 10686 10687 for (i = 0; i < aux->func_info_cnt; i++) 10688 if (aux->func_info[i].type_id == btf_id) { 10689 subprog = i; 10690 break; 10691 } 10692 if (subprog == -1) { 10693 verbose(env, "Subprog %s doesn't exist\n", tname); 10694 return -EINVAL; 10695 } 10696 conservative = aux->func_info_aux[subprog].unreliable; 10697 if (prog_extension) { 10698 if (conservative) { 10699 verbose(env, 10700 "Cannot replace static functions\n"); 10701 return -EINVAL; 10702 } 10703 if (!prog->jit_requested) { 10704 verbose(env, 10705 "Extension programs should be JITed\n"); 10706 return -EINVAL; 10707 } 10708 env->ops = bpf_verifier_ops[tgt_prog->type]; 10709 prog->expected_attach_type = tgt_prog->expected_attach_type; 10710 } 10711 if (!tgt_prog->jited) { 10712 verbose(env, "Can attach to only JITed progs\n"); 10713 return -EINVAL; 10714 } 10715 if (tgt_prog->type == prog->type) { 10716 /* Cannot fentry/fexit another fentry/fexit program. 10717 * Cannot attach program extension to another extension. 10718 * It's ok to attach fentry/fexit to extension program. 10719 */ 10720 verbose(env, "Cannot recursively attach\n"); 10721 return -EINVAL; 10722 } 10723 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 10724 prog_extension && 10725 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 10726 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 10727 /* Program extensions can extend all program types 10728 * except fentry/fexit. The reason is the following. 10729 * The fentry/fexit programs are used for performance 10730 * analysis, stats and can be attached to any program 10731 * type except themselves. When extension program is 10732 * replacing XDP function it is necessary to allow 10733 * performance analysis of all functions. Both original 10734 * XDP program and its program extension. Hence 10735 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 10736 * allowed. If extending of fentry/fexit was allowed it 10737 * would be possible to create long call chain 10738 * fentry->extension->fentry->extension beyond 10739 * reasonable stack size. Hence extending fentry is not 10740 * allowed. 10741 */ 10742 verbose(env, "Cannot extend fentry/fexit\n"); 10743 return -EINVAL; 10744 } 10745 key = ((u64)aux->id) << 32 | btf_id; 10746 } else { 10747 if (prog_extension) { 10748 verbose(env, "Cannot replace kernel functions\n"); 10749 return -EINVAL; 10750 } 10751 key = btf_id; 10752 } 10753 10754 switch (prog->expected_attach_type) { 10755 case BPF_TRACE_RAW_TP: 10756 if (tgt_prog) { 10757 verbose(env, 10758 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 10759 return -EINVAL; 10760 } 10761 if (!btf_type_is_typedef(t)) { 10762 verbose(env, "attach_btf_id %u is not a typedef\n", 10763 btf_id); 10764 return -EINVAL; 10765 } 10766 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 10767 verbose(env, "attach_btf_id %u points to wrong type name %s\n", 10768 btf_id, tname); 10769 return -EINVAL; 10770 } 10771 tname += sizeof(prefix) - 1; 10772 t = btf_type_by_id(btf, t->type); 10773 if (!btf_type_is_ptr(t)) 10774 /* should never happen in valid vmlinux build */ 10775 return -EINVAL; 10776 t = btf_type_by_id(btf, t->type); 10777 if (!btf_type_is_func_proto(t)) 10778 /* should never happen in valid vmlinux build */ 10779 return -EINVAL; 10780 10781 /* remember two read only pointers that are valid for 10782 * the life time of the kernel 10783 */ 10784 prog->aux->attach_func_name = tname; 10785 prog->aux->attach_func_proto = t; 10786 prog->aux->attach_btf_trace = true; 10787 return 0; 10788 case BPF_TRACE_ITER: 10789 if (!btf_type_is_func(t)) { 10790 verbose(env, "attach_btf_id %u is not a function\n", 10791 btf_id); 10792 return -EINVAL; 10793 } 10794 t = btf_type_by_id(btf, t->type); 10795 if (!btf_type_is_func_proto(t)) 10796 return -EINVAL; 10797 prog->aux->attach_func_name = tname; 10798 prog->aux->attach_func_proto = t; 10799 if (!bpf_iter_prog_supported(prog)) 10800 return -EINVAL; 10801 ret = btf_distill_func_proto(&env->log, btf, t, 10802 tname, &fmodel); 10803 return ret; 10804 default: 10805 if (!prog_extension) 10806 return -EINVAL; 10807 /* fallthrough */ 10808 case BPF_MODIFY_RETURN: 10809 case BPF_LSM_MAC: 10810 case BPF_TRACE_FENTRY: 10811 case BPF_TRACE_FEXIT: 10812 prog->aux->attach_func_name = tname; 10813 if (prog->type == BPF_PROG_TYPE_LSM) { 10814 ret = bpf_lsm_verify_prog(&env->log, prog); 10815 if (ret < 0) 10816 return ret; 10817 } 10818 10819 if (!btf_type_is_func(t)) { 10820 verbose(env, "attach_btf_id %u is not a function\n", 10821 btf_id); 10822 return -EINVAL; 10823 } 10824 if (prog_extension && 10825 btf_check_type_match(env, prog, btf, t)) 10826 return -EINVAL; 10827 t = btf_type_by_id(btf, t->type); 10828 if (!btf_type_is_func_proto(t)) 10829 return -EINVAL; 10830 tr = bpf_trampoline_lookup(key); 10831 if (!tr) 10832 return -ENOMEM; 10833 /* t is either vmlinux type or another program's type */ 10834 prog->aux->attach_func_proto = t; 10835 mutex_lock(&tr->mutex); 10836 if (tr->func.addr) { 10837 prog->aux->trampoline = tr; 10838 goto out; 10839 } 10840 if (tgt_prog && conservative) { 10841 prog->aux->attach_func_proto = NULL; 10842 t = NULL; 10843 } 10844 ret = btf_distill_func_proto(&env->log, btf, t, 10845 tname, &tr->func.model); 10846 if (ret < 0) 10847 goto out; 10848 if (tgt_prog) { 10849 if (subprog == 0) 10850 addr = (long) tgt_prog->bpf_func; 10851 else 10852 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 10853 } else { 10854 addr = kallsyms_lookup_name(tname); 10855 if (!addr) { 10856 verbose(env, 10857 "The address of function %s cannot be found\n", 10858 tname); 10859 ret = -ENOENT; 10860 goto out; 10861 } 10862 } 10863 10864 if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 10865 ret = check_attach_modify_return(prog, addr); 10866 if (ret) 10867 verbose(env, "%s() is not modifiable\n", 10868 prog->aux->attach_func_name); 10869 } 10870 10871 if (ret) 10872 goto out; 10873 tr->func.addr = (void *)addr; 10874 prog->aux->trampoline = tr; 10875 out: 10876 mutex_unlock(&tr->mutex); 10877 if (ret) 10878 bpf_trampoline_put(tr); 10879 return ret; 10880 } 10881 } 10882 10883 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 10884 union bpf_attr __user *uattr) 10885 { 10886 u64 start_time = ktime_get_ns(); 10887 struct bpf_verifier_env *env; 10888 struct bpf_verifier_log *log; 10889 int i, len, ret = -EINVAL; 10890 bool is_priv; 10891 10892 /* no program is valid */ 10893 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 10894 return -EINVAL; 10895 10896 /* 'struct bpf_verifier_env' can be global, but since it's not small, 10897 * allocate/free it every time bpf_check() is called 10898 */ 10899 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 10900 if (!env) 10901 return -ENOMEM; 10902 log = &env->log; 10903 10904 len = (*prog)->len; 10905 env->insn_aux_data = 10906 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 10907 ret = -ENOMEM; 10908 if (!env->insn_aux_data) 10909 goto err_free_env; 10910 for (i = 0; i < len; i++) 10911 env->insn_aux_data[i].orig_idx = i; 10912 env->prog = *prog; 10913 env->ops = bpf_verifier_ops[env->prog->type]; 10914 is_priv = bpf_capable(); 10915 10916 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 10917 mutex_lock(&bpf_verifier_lock); 10918 if (!btf_vmlinux) 10919 btf_vmlinux = btf_parse_vmlinux(); 10920 mutex_unlock(&bpf_verifier_lock); 10921 } 10922 10923 /* grab the mutex to protect few globals used by verifier */ 10924 if (!is_priv) 10925 mutex_lock(&bpf_verifier_lock); 10926 10927 if (attr->log_level || attr->log_buf || attr->log_size) { 10928 /* user requested verbose verifier output 10929 * and supplied buffer to store the verification trace 10930 */ 10931 log->level = attr->log_level; 10932 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 10933 log->len_total = attr->log_size; 10934 10935 ret = -EINVAL; 10936 /* log attributes have to be sane */ 10937 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 10938 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 10939 goto err_unlock; 10940 } 10941 10942 if (IS_ERR(btf_vmlinux)) { 10943 /* Either gcc or pahole or kernel are broken. */ 10944 verbose(env, "in-kernel BTF is malformed\n"); 10945 ret = PTR_ERR(btf_vmlinux); 10946 goto skip_full_check; 10947 } 10948 10949 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 10950 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 10951 env->strict_alignment = true; 10952 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 10953 env->strict_alignment = false; 10954 10955 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 10956 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 10957 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 10958 env->bpf_capable = bpf_capable(); 10959 10960 if (is_priv) 10961 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 10962 10963 ret = replace_map_fd_with_map_ptr(env); 10964 if (ret < 0) 10965 goto skip_full_check; 10966 10967 if (bpf_prog_is_dev_bound(env->prog->aux)) { 10968 ret = bpf_prog_offload_verifier_prep(env->prog); 10969 if (ret) 10970 goto skip_full_check; 10971 } 10972 10973 env->explored_states = kvcalloc(state_htab_size(env), 10974 sizeof(struct bpf_verifier_state_list *), 10975 GFP_USER); 10976 ret = -ENOMEM; 10977 if (!env->explored_states) 10978 goto skip_full_check; 10979 10980 ret = check_subprogs(env); 10981 if (ret < 0) 10982 goto skip_full_check; 10983 10984 ret = check_btf_info(env, attr, uattr); 10985 if (ret < 0) 10986 goto skip_full_check; 10987 10988 ret = check_attach_btf_id(env); 10989 if (ret) 10990 goto skip_full_check; 10991 10992 ret = check_cfg(env); 10993 if (ret < 0) 10994 goto skip_full_check; 10995 10996 ret = do_check_subprogs(env); 10997 ret = ret ?: do_check_main(env); 10998 10999 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 11000 ret = bpf_prog_offload_finalize(env); 11001 11002 skip_full_check: 11003 kvfree(env->explored_states); 11004 11005 if (ret == 0) 11006 ret = check_max_stack_depth(env); 11007 11008 /* instruction rewrites happen after this point */ 11009 if (is_priv) { 11010 if (ret == 0) 11011 opt_hard_wire_dead_code_branches(env); 11012 if (ret == 0) 11013 ret = opt_remove_dead_code(env); 11014 if (ret == 0) 11015 ret = opt_remove_nops(env); 11016 } else { 11017 if (ret == 0) 11018 sanitize_dead_code(env); 11019 } 11020 11021 if (ret == 0) 11022 /* program is valid, convert *(u32*)(ctx + off) accesses */ 11023 ret = convert_ctx_accesses(env); 11024 11025 if (ret == 0) 11026 ret = fixup_bpf_calls(env); 11027 11028 /* do 32-bit optimization after insn patching has done so those patched 11029 * insns could be handled correctly. 11030 */ 11031 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 11032 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 11033 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 11034 : false; 11035 } 11036 11037 if (ret == 0) 11038 ret = fixup_call_args(env); 11039 11040 env->verification_time = ktime_get_ns() - start_time; 11041 print_verification_stats(env); 11042 11043 if (log->level && bpf_verifier_log_full(log)) 11044 ret = -ENOSPC; 11045 if (log->level && !log->ubuf) { 11046 ret = -EFAULT; 11047 goto err_release_maps; 11048 } 11049 11050 if (ret == 0 && env->used_map_cnt) { 11051 /* if program passed verifier, update used_maps in bpf_prog_info */ 11052 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 11053 sizeof(env->used_maps[0]), 11054 GFP_KERNEL); 11055 11056 if (!env->prog->aux->used_maps) { 11057 ret = -ENOMEM; 11058 goto err_release_maps; 11059 } 11060 11061 memcpy(env->prog->aux->used_maps, env->used_maps, 11062 sizeof(env->used_maps[0]) * env->used_map_cnt); 11063 env->prog->aux->used_map_cnt = env->used_map_cnt; 11064 11065 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 11066 * bpf_ld_imm64 instructions 11067 */ 11068 convert_pseudo_ld_imm64(env); 11069 } 11070 11071 if (ret == 0) 11072 adjust_btf_func(env); 11073 11074 err_release_maps: 11075 if (!env->prog->aux->used_maps) 11076 /* if we didn't copy map pointers into bpf_prog_info, release 11077 * them now. Otherwise free_used_maps() will release them. 11078 */ 11079 release_maps(env); 11080 11081 /* extension progs temporarily inherit the attach_type of their targets 11082 for verification purposes, so set it back to zero before returning 11083 */ 11084 if (env->prog->type == BPF_PROG_TYPE_EXT) 11085 env->prog->expected_attach_type = 0; 11086 11087 *prog = env->prog; 11088 err_unlock: 11089 if (!is_priv) 11090 mutex_unlock(&bpf_verifier_lock); 11091 vfree(env->insn_aux_data); 11092 err_free_env: 11093 kfree(env); 11094 return ret; 11095 } 11096