xref: /openbmc/linux/kernel/bpf/verifier.c (revision 62975d27)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 
25 #include "disasm.h"
26 
27 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
28 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
29 	[_id] = & _name ## _verifier_ops,
30 #define BPF_MAP_TYPE(_id, _ops)
31 #define BPF_LINK_TYPE(_id, _name)
32 #include <linux/bpf_types.h>
33 #undef BPF_PROG_TYPE
34 #undef BPF_MAP_TYPE
35 #undef BPF_LINK_TYPE
36 };
37 
38 /* bpf_check() is a static code analyzer that walks eBPF program
39  * instruction by instruction and updates register/stack state.
40  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
41  *
42  * The first pass is depth-first-search to check that the program is a DAG.
43  * It rejects the following programs:
44  * - larger than BPF_MAXINSNS insns
45  * - if loop is present (detected via back-edge)
46  * - unreachable insns exist (shouldn't be a forest. program = one function)
47  * - out of bounds or malformed jumps
48  * The second pass is all possible path descent from the 1st insn.
49  * Since it's analyzing all pathes through the program, the length of the
50  * analysis is limited to 64k insn, which may be hit even if total number of
51  * insn is less then 4K, but there are too many branches that change stack/regs.
52  * Number of 'branches to be analyzed' is limited to 1k
53  *
54  * On entry to each instruction, each register has a type, and the instruction
55  * changes the types of the registers depending on instruction semantics.
56  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
57  * copied to R1.
58  *
59  * All registers are 64-bit.
60  * R0 - return register
61  * R1-R5 argument passing registers
62  * R6-R9 callee saved registers
63  * R10 - frame pointer read-only
64  *
65  * At the start of BPF program the register R1 contains a pointer to bpf_context
66  * and has type PTR_TO_CTX.
67  *
68  * Verifier tracks arithmetic operations on pointers in case:
69  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
70  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
71  * 1st insn copies R10 (which has FRAME_PTR) type into R1
72  * and 2nd arithmetic instruction is pattern matched to recognize
73  * that it wants to construct a pointer to some element within stack.
74  * So after 2nd insn, the register R1 has type PTR_TO_STACK
75  * (and -20 constant is saved for further stack bounds checking).
76  * Meaning that this reg is a pointer to stack plus known immediate constant.
77  *
78  * Most of the time the registers have SCALAR_VALUE type, which
79  * means the register has some value, but it's not a valid pointer.
80  * (like pointer plus pointer becomes SCALAR_VALUE type)
81  *
82  * When verifier sees load or store instructions the type of base register
83  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
84  * four pointer types recognized by check_mem_access() function.
85  *
86  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
87  * and the range of [ptr, ptr + map's value_size) is accessible.
88  *
89  * registers used to pass values to function calls are checked against
90  * function argument constraints.
91  *
92  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
93  * It means that the register type passed to this function must be
94  * PTR_TO_STACK and it will be used inside the function as
95  * 'pointer to map element key'
96  *
97  * For example the argument constraints for bpf_map_lookup_elem():
98  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
99  *   .arg1_type = ARG_CONST_MAP_PTR,
100  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
101  *
102  * ret_type says that this function returns 'pointer to map elem value or null'
103  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
104  * 2nd argument should be a pointer to stack, which will be used inside
105  * the helper function as a pointer to map element key.
106  *
107  * On the kernel side the helper function looks like:
108  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
109  * {
110  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
111  *    void *key = (void *) (unsigned long) r2;
112  *    void *value;
113  *
114  *    here kernel can access 'key' and 'map' pointers safely, knowing that
115  *    [key, key + map->key_size) bytes are valid and were initialized on
116  *    the stack of eBPF program.
117  * }
118  *
119  * Corresponding eBPF program may look like:
120  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
121  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
122  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
123  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
124  * here verifier looks at prototype of map_lookup_elem() and sees:
125  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
126  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
127  *
128  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
129  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
130  * and were initialized prior to this call.
131  * If it's ok, then verifier allows this BPF_CALL insn and looks at
132  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
133  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
134  * returns ether pointer to map value or NULL.
135  *
136  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
137  * insn, the register holding that pointer in the true branch changes state to
138  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
139  * branch. See check_cond_jmp_op().
140  *
141  * After the call R0 is set to return type of the function and registers R1-R5
142  * are set to NOT_INIT to indicate that they are no longer readable.
143  *
144  * The following reference types represent a potential reference to a kernel
145  * resource which, after first being allocated, must be checked and freed by
146  * the BPF program:
147  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
148  *
149  * When the verifier sees a helper call return a reference type, it allocates a
150  * pointer id for the reference and stores it in the current function state.
151  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
152  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
153  * passes through a NULL-check conditional. For the branch wherein the state is
154  * changed to CONST_IMM, the verifier releases the reference.
155  *
156  * For each helper function that allocates a reference, such as
157  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
158  * bpf_sk_release(). When a reference type passes into the release function,
159  * the verifier also releases the reference. If any unchecked or unreleased
160  * reference remains at the end of the program, the verifier rejects it.
161  */
162 
163 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
164 struct bpf_verifier_stack_elem {
165 	/* verifer state is 'st'
166 	 * before processing instruction 'insn_idx'
167 	 * and after processing instruction 'prev_insn_idx'
168 	 */
169 	struct bpf_verifier_state st;
170 	int insn_idx;
171 	int prev_insn_idx;
172 	struct bpf_verifier_stack_elem *next;
173 	/* length of verifier log at the time this state was pushed on stack */
174 	u32 log_pos;
175 };
176 
177 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
178 #define BPF_COMPLEXITY_LIMIT_STATES	64
179 
180 #define BPF_MAP_KEY_POISON	(1ULL << 63)
181 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
182 
183 #define BPF_MAP_PTR_UNPRIV	1UL
184 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
185 					  POISON_POINTER_DELTA))
186 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
187 
188 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
189 {
190 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
191 }
192 
193 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
194 {
195 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
196 }
197 
198 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
199 			      const struct bpf_map *map, bool unpriv)
200 {
201 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
202 	unpriv |= bpf_map_ptr_unpriv(aux);
203 	aux->map_ptr_state = (unsigned long)map |
204 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
205 }
206 
207 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
208 {
209 	return aux->map_key_state & BPF_MAP_KEY_POISON;
210 }
211 
212 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
213 {
214 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
215 }
216 
217 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
218 {
219 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
220 }
221 
222 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
223 {
224 	bool poisoned = bpf_map_key_poisoned(aux);
225 
226 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
227 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
228 }
229 
230 struct bpf_call_arg_meta {
231 	struct bpf_map *map_ptr;
232 	bool raw_mode;
233 	bool pkt_access;
234 	int regno;
235 	int access_size;
236 	int mem_size;
237 	u64 msize_max_value;
238 	int ref_obj_id;
239 	int func_id;
240 	u32 btf_id;
241 };
242 
243 struct btf *btf_vmlinux;
244 
245 static DEFINE_MUTEX(bpf_verifier_lock);
246 
247 static const struct bpf_line_info *
248 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
249 {
250 	const struct bpf_line_info *linfo;
251 	const struct bpf_prog *prog;
252 	u32 i, nr_linfo;
253 
254 	prog = env->prog;
255 	nr_linfo = prog->aux->nr_linfo;
256 
257 	if (!nr_linfo || insn_off >= prog->len)
258 		return NULL;
259 
260 	linfo = prog->aux->linfo;
261 	for (i = 1; i < nr_linfo; i++)
262 		if (insn_off < linfo[i].insn_off)
263 			break;
264 
265 	return &linfo[i - 1];
266 }
267 
268 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
269 		       va_list args)
270 {
271 	unsigned int n;
272 
273 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
274 
275 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
276 		  "verifier log line truncated - local buffer too short\n");
277 
278 	n = min(log->len_total - log->len_used - 1, n);
279 	log->kbuf[n] = '\0';
280 
281 	if (log->level == BPF_LOG_KERNEL) {
282 		pr_err("BPF:%s\n", log->kbuf);
283 		return;
284 	}
285 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
286 		log->len_used += n;
287 	else
288 		log->ubuf = NULL;
289 }
290 
291 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
292 {
293 	char zero = 0;
294 
295 	if (!bpf_verifier_log_needed(log))
296 		return;
297 
298 	log->len_used = new_pos;
299 	if (put_user(zero, log->ubuf + new_pos))
300 		log->ubuf = NULL;
301 }
302 
303 /* log_level controls verbosity level of eBPF verifier.
304  * bpf_verifier_log_write() is used to dump the verification trace to the log,
305  * so the user can figure out what's wrong with the program
306  */
307 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
308 					   const char *fmt, ...)
309 {
310 	va_list args;
311 
312 	if (!bpf_verifier_log_needed(&env->log))
313 		return;
314 
315 	va_start(args, fmt);
316 	bpf_verifier_vlog(&env->log, fmt, args);
317 	va_end(args);
318 }
319 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
320 
321 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
322 {
323 	struct bpf_verifier_env *env = private_data;
324 	va_list args;
325 
326 	if (!bpf_verifier_log_needed(&env->log))
327 		return;
328 
329 	va_start(args, fmt);
330 	bpf_verifier_vlog(&env->log, fmt, args);
331 	va_end(args);
332 }
333 
334 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
335 			    const char *fmt, ...)
336 {
337 	va_list args;
338 
339 	if (!bpf_verifier_log_needed(log))
340 		return;
341 
342 	va_start(args, fmt);
343 	bpf_verifier_vlog(log, fmt, args);
344 	va_end(args);
345 }
346 
347 static const char *ltrim(const char *s)
348 {
349 	while (isspace(*s))
350 		s++;
351 
352 	return s;
353 }
354 
355 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
356 					 u32 insn_off,
357 					 const char *prefix_fmt, ...)
358 {
359 	const struct bpf_line_info *linfo;
360 
361 	if (!bpf_verifier_log_needed(&env->log))
362 		return;
363 
364 	linfo = find_linfo(env, insn_off);
365 	if (!linfo || linfo == env->prev_linfo)
366 		return;
367 
368 	if (prefix_fmt) {
369 		va_list args;
370 
371 		va_start(args, prefix_fmt);
372 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
373 		va_end(args);
374 	}
375 
376 	verbose(env, "%s\n",
377 		ltrim(btf_name_by_offset(env->prog->aux->btf,
378 					 linfo->line_off)));
379 
380 	env->prev_linfo = linfo;
381 }
382 
383 static bool type_is_pkt_pointer(enum bpf_reg_type type)
384 {
385 	return type == PTR_TO_PACKET ||
386 	       type == PTR_TO_PACKET_META;
387 }
388 
389 static bool type_is_sk_pointer(enum bpf_reg_type type)
390 {
391 	return type == PTR_TO_SOCKET ||
392 		type == PTR_TO_SOCK_COMMON ||
393 		type == PTR_TO_TCP_SOCK ||
394 		type == PTR_TO_XDP_SOCK;
395 }
396 
397 static bool reg_type_not_null(enum bpf_reg_type type)
398 {
399 	return type == PTR_TO_SOCKET ||
400 		type == PTR_TO_TCP_SOCK ||
401 		type == PTR_TO_MAP_VALUE ||
402 		type == PTR_TO_SOCK_COMMON;
403 }
404 
405 static bool reg_type_may_be_null(enum bpf_reg_type type)
406 {
407 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
408 	       type == PTR_TO_SOCKET_OR_NULL ||
409 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
410 	       type == PTR_TO_TCP_SOCK_OR_NULL ||
411 	       type == PTR_TO_BTF_ID_OR_NULL ||
412 	       type == PTR_TO_MEM_OR_NULL;
413 }
414 
415 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
416 {
417 	return reg->type == PTR_TO_MAP_VALUE &&
418 		map_value_has_spin_lock(reg->map_ptr);
419 }
420 
421 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
422 {
423 	return type == PTR_TO_SOCKET ||
424 		type == PTR_TO_SOCKET_OR_NULL ||
425 		type == PTR_TO_TCP_SOCK ||
426 		type == PTR_TO_TCP_SOCK_OR_NULL ||
427 		type == PTR_TO_MEM ||
428 		type == PTR_TO_MEM_OR_NULL;
429 }
430 
431 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
432 {
433 	return type == ARG_PTR_TO_SOCK_COMMON;
434 }
435 
436 /* Determine whether the function releases some resources allocated by another
437  * function call. The first reference type argument will be assumed to be
438  * released by release_reference().
439  */
440 static bool is_release_function(enum bpf_func_id func_id)
441 {
442 	return func_id == BPF_FUNC_sk_release ||
443 	       func_id == BPF_FUNC_ringbuf_submit ||
444 	       func_id == BPF_FUNC_ringbuf_discard;
445 }
446 
447 static bool may_be_acquire_function(enum bpf_func_id func_id)
448 {
449 	return func_id == BPF_FUNC_sk_lookup_tcp ||
450 		func_id == BPF_FUNC_sk_lookup_udp ||
451 		func_id == BPF_FUNC_skc_lookup_tcp ||
452 		func_id == BPF_FUNC_map_lookup_elem ||
453 	        func_id == BPF_FUNC_ringbuf_reserve;
454 }
455 
456 static bool is_acquire_function(enum bpf_func_id func_id,
457 				const struct bpf_map *map)
458 {
459 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
460 
461 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
462 	    func_id == BPF_FUNC_sk_lookup_udp ||
463 	    func_id == BPF_FUNC_skc_lookup_tcp ||
464 	    func_id == BPF_FUNC_ringbuf_reserve)
465 		return true;
466 
467 	if (func_id == BPF_FUNC_map_lookup_elem &&
468 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
469 	     map_type == BPF_MAP_TYPE_SOCKHASH))
470 		return true;
471 
472 	return false;
473 }
474 
475 static bool is_ptr_cast_function(enum bpf_func_id func_id)
476 {
477 	return func_id == BPF_FUNC_tcp_sock ||
478 		func_id == BPF_FUNC_sk_fullsock;
479 }
480 
481 /* string representation of 'enum bpf_reg_type' */
482 static const char * const reg_type_str[] = {
483 	[NOT_INIT]		= "?",
484 	[SCALAR_VALUE]		= "inv",
485 	[PTR_TO_CTX]		= "ctx",
486 	[CONST_PTR_TO_MAP]	= "map_ptr",
487 	[PTR_TO_MAP_VALUE]	= "map_value",
488 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
489 	[PTR_TO_STACK]		= "fp",
490 	[PTR_TO_PACKET]		= "pkt",
491 	[PTR_TO_PACKET_META]	= "pkt_meta",
492 	[PTR_TO_PACKET_END]	= "pkt_end",
493 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
494 	[PTR_TO_SOCKET]		= "sock",
495 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
496 	[PTR_TO_SOCK_COMMON]	= "sock_common",
497 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
498 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
499 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
500 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
501 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
502 	[PTR_TO_BTF_ID]		= "ptr_",
503 	[PTR_TO_BTF_ID_OR_NULL]	= "ptr_or_null_",
504 	[PTR_TO_MEM]		= "mem",
505 	[PTR_TO_MEM_OR_NULL]	= "mem_or_null",
506 };
507 
508 static char slot_type_char[] = {
509 	[STACK_INVALID]	= '?',
510 	[STACK_SPILL]	= 'r',
511 	[STACK_MISC]	= 'm',
512 	[STACK_ZERO]	= '0',
513 };
514 
515 static void print_liveness(struct bpf_verifier_env *env,
516 			   enum bpf_reg_liveness live)
517 {
518 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
519 	    verbose(env, "_");
520 	if (live & REG_LIVE_READ)
521 		verbose(env, "r");
522 	if (live & REG_LIVE_WRITTEN)
523 		verbose(env, "w");
524 	if (live & REG_LIVE_DONE)
525 		verbose(env, "D");
526 }
527 
528 static struct bpf_func_state *func(struct bpf_verifier_env *env,
529 				   const struct bpf_reg_state *reg)
530 {
531 	struct bpf_verifier_state *cur = env->cur_state;
532 
533 	return cur->frame[reg->frameno];
534 }
535 
536 const char *kernel_type_name(u32 id)
537 {
538 	return btf_name_by_offset(btf_vmlinux,
539 				  btf_type_by_id(btf_vmlinux, id)->name_off);
540 }
541 
542 static void print_verifier_state(struct bpf_verifier_env *env,
543 				 const struct bpf_func_state *state)
544 {
545 	const struct bpf_reg_state *reg;
546 	enum bpf_reg_type t;
547 	int i;
548 
549 	if (state->frameno)
550 		verbose(env, " frame%d:", state->frameno);
551 	for (i = 0; i < MAX_BPF_REG; i++) {
552 		reg = &state->regs[i];
553 		t = reg->type;
554 		if (t == NOT_INIT)
555 			continue;
556 		verbose(env, " R%d", i);
557 		print_liveness(env, reg->live);
558 		verbose(env, "=%s", reg_type_str[t]);
559 		if (t == SCALAR_VALUE && reg->precise)
560 			verbose(env, "P");
561 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
562 		    tnum_is_const(reg->var_off)) {
563 			/* reg->off should be 0 for SCALAR_VALUE */
564 			verbose(env, "%lld", reg->var_off.value + reg->off);
565 		} else {
566 			if (t == PTR_TO_BTF_ID || t == PTR_TO_BTF_ID_OR_NULL)
567 				verbose(env, "%s", kernel_type_name(reg->btf_id));
568 			verbose(env, "(id=%d", reg->id);
569 			if (reg_type_may_be_refcounted_or_null(t))
570 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
571 			if (t != SCALAR_VALUE)
572 				verbose(env, ",off=%d", reg->off);
573 			if (type_is_pkt_pointer(t))
574 				verbose(env, ",r=%d", reg->range);
575 			else if (t == CONST_PTR_TO_MAP ||
576 				 t == PTR_TO_MAP_VALUE ||
577 				 t == PTR_TO_MAP_VALUE_OR_NULL)
578 				verbose(env, ",ks=%d,vs=%d",
579 					reg->map_ptr->key_size,
580 					reg->map_ptr->value_size);
581 			if (tnum_is_const(reg->var_off)) {
582 				/* Typically an immediate SCALAR_VALUE, but
583 				 * could be a pointer whose offset is too big
584 				 * for reg->off
585 				 */
586 				verbose(env, ",imm=%llx", reg->var_off.value);
587 			} else {
588 				if (reg->smin_value != reg->umin_value &&
589 				    reg->smin_value != S64_MIN)
590 					verbose(env, ",smin_value=%lld",
591 						(long long)reg->smin_value);
592 				if (reg->smax_value != reg->umax_value &&
593 				    reg->smax_value != S64_MAX)
594 					verbose(env, ",smax_value=%lld",
595 						(long long)reg->smax_value);
596 				if (reg->umin_value != 0)
597 					verbose(env, ",umin_value=%llu",
598 						(unsigned long long)reg->umin_value);
599 				if (reg->umax_value != U64_MAX)
600 					verbose(env, ",umax_value=%llu",
601 						(unsigned long long)reg->umax_value);
602 				if (!tnum_is_unknown(reg->var_off)) {
603 					char tn_buf[48];
604 
605 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
606 					verbose(env, ",var_off=%s", tn_buf);
607 				}
608 				if (reg->s32_min_value != reg->smin_value &&
609 				    reg->s32_min_value != S32_MIN)
610 					verbose(env, ",s32_min_value=%d",
611 						(int)(reg->s32_min_value));
612 				if (reg->s32_max_value != reg->smax_value &&
613 				    reg->s32_max_value != S32_MAX)
614 					verbose(env, ",s32_max_value=%d",
615 						(int)(reg->s32_max_value));
616 				if (reg->u32_min_value != reg->umin_value &&
617 				    reg->u32_min_value != U32_MIN)
618 					verbose(env, ",u32_min_value=%d",
619 						(int)(reg->u32_min_value));
620 				if (reg->u32_max_value != reg->umax_value &&
621 				    reg->u32_max_value != U32_MAX)
622 					verbose(env, ",u32_max_value=%d",
623 						(int)(reg->u32_max_value));
624 			}
625 			verbose(env, ")");
626 		}
627 	}
628 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
629 		char types_buf[BPF_REG_SIZE + 1];
630 		bool valid = false;
631 		int j;
632 
633 		for (j = 0; j < BPF_REG_SIZE; j++) {
634 			if (state->stack[i].slot_type[j] != STACK_INVALID)
635 				valid = true;
636 			types_buf[j] = slot_type_char[
637 					state->stack[i].slot_type[j]];
638 		}
639 		types_buf[BPF_REG_SIZE] = 0;
640 		if (!valid)
641 			continue;
642 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
643 		print_liveness(env, state->stack[i].spilled_ptr.live);
644 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
645 			reg = &state->stack[i].spilled_ptr;
646 			t = reg->type;
647 			verbose(env, "=%s", reg_type_str[t]);
648 			if (t == SCALAR_VALUE && reg->precise)
649 				verbose(env, "P");
650 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
651 				verbose(env, "%lld", reg->var_off.value + reg->off);
652 		} else {
653 			verbose(env, "=%s", types_buf);
654 		}
655 	}
656 	if (state->acquired_refs && state->refs[0].id) {
657 		verbose(env, " refs=%d", state->refs[0].id);
658 		for (i = 1; i < state->acquired_refs; i++)
659 			if (state->refs[i].id)
660 				verbose(env, ",%d", state->refs[i].id);
661 	}
662 	verbose(env, "\n");
663 }
664 
665 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
666 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
667 			       const struct bpf_func_state *src)	\
668 {									\
669 	if (!src->FIELD)						\
670 		return 0;						\
671 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
672 		/* internal bug, make state invalid to reject the program */ \
673 		memset(dst, 0, sizeof(*dst));				\
674 		return -EFAULT;						\
675 	}								\
676 	memcpy(dst->FIELD, src->FIELD,					\
677 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
678 	return 0;							\
679 }
680 /* copy_reference_state() */
681 COPY_STATE_FN(reference, acquired_refs, refs, 1)
682 /* copy_stack_state() */
683 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
684 #undef COPY_STATE_FN
685 
686 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
687 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
688 				  bool copy_old)			\
689 {									\
690 	u32 old_size = state->COUNT;					\
691 	struct bpf_##NAME##_state *new_##FIELD;				\
692 	int slot = size / SIZE;						\
693 									\
694 	if (size <= old_size || !size) {				\
695 		if (copy_old)						\
696 			return 0;					\
697 		state->COUNT = slot * SIZE;				\
698 		if (!size && old_size) {				\
699 			kfree(state->FIELD);				\
700 			state->FIELD = NULL;				\
701 		}							\
702 		return 0;						\
703 	}								\
704 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
705 				    GFP_KERNEL);			\
706 	if (!new_##FIELD)						\
707 		return -ENOMEM;						\
708 	if (copy_old) {							\
709 		if (state->FIELD)					\
710 			memcpy(new_##FIELD, state->FIELD,		\
711 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
712 		memset(new_##FIELD + old_size / SIZE, 0,		\
713 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
714 	}								\
715 	state->COUNT = slot * SIZE;					\
716 	kfree(state->FIELD);						\
717 	state->FIELD = new_##FIELD;					\
718 	return 0;							\
719 }
720 /* realloc_reference_state() */
721 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
722 /* realloc_stack_state() */
723 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
724 #undef REALLOC_STATE_FN
725 
726 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
727  * make it consume minimal amount of memory. check_stack_write() access from
728  * the program calls into realloc_func_state() to grow the stack size.
729  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
730  * which realloc_stack_state() copies over. It points to previous
731  * bpf_verifier_state which is never reallocated.
732  */
733 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
734 			      int refs_size, bool copy_old)
735 {
736 	int err = realloc_reference_state(state, refs_size, copy_old);
737 	if (err)
738 		return err;
739 	return realloc_stack_state(state, stack_size, copy_old);
740 }
741 
742 /* Acquire a pointer id from the env and update the state->refs to include
743  * this new pointer reference.
744  * On success, returns a valid pointer id to associate with the register
745  * On failure, returns a negative errno.
746  */
747 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
748 {
749 	struct bpf_func_state *state = cur_func(env);
750 	int new_ofs = state->acquired_refs;
751 	int id, err;
752 
753 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
754 	if (err)
755 		return err;
756 	id = ++env->id_gen;
757 	state->refs[new_ofs].id = id;
758 	state->refs[new_ofs].insn_idx = insn_idx;
759 
760 	return id;
761 }
762 
763 /* release function corresponding to acquire_reference_state(). Idempotent. */
764 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
765 {
766 	int i, last_idx;
767 
768 	last_idx = state->acquired_refs - 1;
769 	for (i = 0; i < state->acquired_refs; i++) {
770 		if (state->refs[i].id == ptr_id) {
771 			if (last_idx && i != last_idx)
772 				memcpy(&state->refs[i], &state->refs[last_idx],
773 				       sizeof(*state->refs));
774 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
775 			state->acquired_refs--;
776 			return 0;
777 		}
778 	}
779 	return -EINVAL;
780 }
781 
782 static int transfer_reference_state(struct bpf_func_state *dst,
783 				    struct bpf_func_state *src)
784 {
785 	int err = realloc_reference_state(dst, src->acquired_refs, false);
786 	if (err)
787 		return err;
788 	err = copy_reference_state(dst, src);
789 	if (err)
790 		return err;
791 	return 0;
792 }
793 
794 static void free_func_state(struct bpf_func_state *state)
795 {
796 	if (!state)
797 		return;
798 	kfree(state->refs);
799 	kfree(state->stack);
800 	kfree(state);
801 }
802 
803 static void clear_jmp_history(struct bpf_verifier_state *state)
804 {
805 	kfree(state->jmp_history);
806 	state->jmp_history = NULL;
807 	state->jmp_history_cnt = 0;
808 }
809 
810 static void free_verifier_state(struct bpf_verifier_state *state,
811 				bool free_self)
812 {
813 	int i;
814 
815 	for (i = 0; i <= state->curframe; i++) {
816 		free_func_state(state->frame[i]);
817 		state->frame[i] = NULL;
818 	}
819 	clear_jmp_history(state);
820 	if (free_self)
821 		kfree(state);
822 }
823 
824 /* copy verifier state from src to dst growing dst stack space
825  * when necessary to accommodate larger src stack
826  */
827 static int copy_func_state(struct bpf_func_state *dst,
828 			   const struct bpf_func_state *src)
829 {
830 	int err;
831 
832 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
833 				 false);
834 	if (err)
835 		return err;
836 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
837 	err = copy_reference_state(dst, src);
838 	if (err)
839 		return err;
840 	return copy_stack_state(dst, src);
841 }
842 
843 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
844 			       const struct bpf_verifier_state *src)
845 {
846 	struct bpf_func_state *dst;
847 	u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
848 	int i, err;
849 
850 	if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
851 		kfree(dst_state->jmp_history);
852 		dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
853 		if (!dst_state->jmp_history)
854 			return -ENOMEM;
855 	}
856 	memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
857 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
858 
859 	/* if dst has more stack frames then src frame, free them */
860 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
861 		free_func_state(dst_state->frame[i]);
862 		dst_state->frame[i] = NULL;
863 	}
864 	dst_state->speculative = src->speculative;
865 	dst_state->curframe = src->curframe;
866 	dst_state->active_spin_lock = src->active_spin_lock;
867 	dst_state->branches = src->branches;
868 	dst_state->parent = src->parent;
869 	dst_state->first_insn_idx = src->first_insn_idx;
870 	dst_state->last_insn_idx = src->last_insn_idx;
871 	for (i = 0; i <= src->curframe; i++) {
872 		dst = dst_state->frame[i];
873 		if (!dst) {
874 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
875 			if (!dst)
876 				return -ENOMEM;
877 			dst_state->frame[i] = dst;
878 		}
879 		err = copy_func_state(dst, src->frame[i]);
880 		if (err)
881 			return err;
882 	}
883 	return 0;
884 }
885 
886 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
887 {
888 	while (st) {
889 		u32 br = --st->branches;
890 
891 		/* WARN_ON(br > 1) technically makes sense here,
892 		 * but see comment in push_stack(), hence:
893 		 */
894 		WARN_ONCE((int)br < 0,
895 			  "BUG update_branch_counts:branches_to_explore=%d\n",
896 			  br);
897 		if (br)
898 			break;
899 		st = st->parent;
900 	}
901 }
902 
903 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
904 		     int *insn_idx, bool pop_log)
905 {
906 	struct bpf_verifier_state *cur = env->cur_state;
907 	struct bpf_verifier_stack_elem *elem, *head = env->head;
908 	int err;
909 
910 	if (env->head == NULL)
911 		return -ENOENT;
912 
913 	if (cur) {
914 		err = copy_verifier_state(cur, &head->st);
915 		if (err)
916 			return err;
917 	}
918 	if (pop_log)
919 		bpf_vlog_reset(&env->log, head->log_pos);
920 	if (insn_idx)
921 		*insn_idx = head->insn_idx;
922 	if (prev_insn_idx)
923 		*prev_insn_idx = head->prev_insn_idx;
924 	elem = head->next;
925 	free_verifier_state(&head->st, false);
926 	kfree(head);
927 	env->head = elem;
928 	env->stack_size--;
929 	return 0;
930 }
931 
932 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
933 					     int insn_idx, int prev_insn_idx,
934 					     bool speculative)
935 {
936 	struct bpf_verifier_state *cur = env->cur_state;
937 	struct bpf_verifier_stack_elem *elem;
938 	int err;
939 
940 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
941 	if (!elem)
942 		goto err;
943 
944 	elem->insn_idx = insn_idx;
945 	elem->prev_insn_idx = prev_insn_idx;
946 	elem->next = env->head;
947 	elem->log_pos = env->log.len_used;
948 	env->head = elem;
949 	env->stack_size++;
950 	err = copy_verifier_state(&elem->st, cur);
951 	if (err)
952 		goto err;
953 	elem->st.speculative |= speculative;
954 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
955 		verbose(env, "The sequence of %d jumps is too complex.\n",
956 			env->stack_size);
957 		goto err;
958 	}
959 	if (elem->st.parent) {
960 		++elem->st.parent->branches;
961 		/* WARN_ON(branches > 2) technically makes sense here,
962 		 * but
963 		 * 1. speculative states will bump 'branches' for non-branch
964 		 * instructions
965 		 * 2. is_state_visited() heuristics may decide not to create
966 		 * a new state for a sequence of branches and all such current
967 		 * and cloned states will be pointing to a single parent state
968 		 * which might have large 'branches' count.
969 		 */
970 	}
971 	return &elem->st;
972 err:
973 	free_verifier_state(env->cur_state, true);
974 	env->cur_state = NULL;
975 	/* pop all elements and return */
976 	while (!pop_stack(env, NULL, NULL, false));
977 	return NULL;
978 }
979 
980 #define CALLER_SAVED_REGS 6
981 static const int caller_saved[CALLER_SAVED_REGS] = {
982 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
983 };
984 
985 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
986 				struct bpf_reg_state *reg);
987 
988 /* Mark the unknown part of a register (variable offset or scalar value) as
989  * known to have the value @imm.
990  */
991 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
992 {
993 	/* Clear id, off, and union(map_ptr, range) */
994 	memset(((u8 *)reg) + sizeof(reg->type), 0,
995 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
996 	reg->var_off = tnum_const(imm);
997 	reg->smin_value = (s64)imm;
998 	reg->smax_value = (s64)imm;
999 	reg->umin_value = imm;
1000 	reg->umax_value = imm;
1001 
1002 	reg->s32_min_value = (s32)imm;
1003 	reg->s32_max_value = (s32)imm;
1004 	reg->u32_min_value = (u32)imm;
1005 	reg->u32_max_value = (u32)imm;
1006 }
1007 
1008 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1009 {
1010 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1011 	reg->s32_min_value = (s32)imm;
1012 	reg->s32_max_value = (s32)imm;
1013 	reg->u32_min_value = (u32)imm;
1014 	reg->u32_max_value = (u32)imm;
1015 }
1016 
1017 /* Mark the 'variable offset' part of a register as zero.  This should be
1018  * used only on registers holding a pointer type.
1019  */
1020 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1021 {
1022 	__mark_reg_known(reg, 0);
1023 }
1024 
1025 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1026 {
1027 	__mark_reg_known(reg, 0);
1028 	reg->type = SCALAR_VALUE;
1029 }
1030 
1031 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1032 				struct bpf_reg_state *regs, u32 regno)
1033 {
1034 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1035 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1036 		/* Something bad happened, let's kill all regs */
1037 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1038 			__mark_reg_not_init(env, regs + regno);
1039 		return;
1040 	}
1041 	__mark_reg_known_zero(regs + regno);
1042 }
1043 
1044 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1045 {
1046 	return type_is_pkt_pointer(reg->type);
1047 }
1048 
1049 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1050 {
1051 	return reg_is_pkt_pointer(reg) ||
1052 	       reg->type == PTR_TO_PACKET_END;
1053 }
1054 
1055 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1056 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1057 				    enum bpf_reg_type which)
1058 {
1059 	/* The register can already have a range from prior markings.
1060 	 * This is fine as long as it hasn't been advanced from its
1061 	 * origin.
1062 	 */
1063 	return reg->type == which &&
1064 	       reg->id == 0 &&
1065 	       reg->off == 0 &&
1066 	       tnum_equals_const(reg->var_off, 0);
1067 }
1068 
1069 /* Reset the min/max bounds of a register */
1070 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1071 {
1072 	reg->smin_value = S64_MIN;
1073 	reg->smax_value = S64_MAX;
1074 	reg->umin_value = 0;
1075 	reg->umax_value = U64_MAX;
1076 
1077 	reg->s32_min_value = S32_MIN;
1078 	reg->s32_max_value = S32_MAX;
1079 	reg->u32_min_value = 0;
1080 	reg->u32_max_value = U32_MAX;
1081 }
1082 
1083 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1084 {
1085 	reg->smin_value = S64_MIN;
1086 	reg->smax_value = S64_MAX;
1087 	reg->umin_value = 0;
1088 	reg->umax_value = U64_MAX;
1089 }
1090 
1091 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1092 {
1093 	reg->s32_min_value = S32_MIN;
1094 	reg->s32_max_value = S32_MAX;
1095 	reg->u32_min_value = 0;
1096 	reg->u32_max_value = U32_MAX;
1097 }
1098 
1099 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1100 {
1101 	struct tnum var32_off = tnum_subreg(reg->var_off);
1102 
1103 	/* min signed is max(sign bit) | min(other bits) */
1104 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1105 			var32_off.value | (var32_off.mask & S32_MIN));
1106 	/* max signed is min(sign bit) | max(other bits) */
1107 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1108 			var32_off.value | (var32_off.mask & S32_MAX));
1109 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1110 	reg->u32_max_value = min(reg->u32_max_value,
1111 				 (u32)(var32_off.value | var32_off.mask));
1112 }
1113 
1114 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1115 {
1116 	/* min signed is max(sign bit) | min(other bits) */
1117 	reg->smin_value = max_t(s64, reg->smin_value,
1118 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1119 	/* max signed is min(sign bit) | max(other bits) */
1120 	reg->smax_value = min_t(s64, reg->smax_value,
1121 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1122 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1123 	reg->umax_value = min(reg->umax_value,
1124 			      reg->var_off.value | reg->var_off.mask);
1125 }
1126 
1127 static void __update_reg_bounds(struct bpf_reg_state *reg)
1128 {
1129 	__update_reg32_bounds(reg);
1130 	__update_reg64_bounds(reg);
1131 }
1132 
1133 /* Uses signed min/max values to inform unsigned, and vice-versa */
1134 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1135 {
1136 	/* Learn sign from signed bounds.
1137 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1138 	 * are the same, so combine.  This works even in the negative case, e.g.
1139 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1140 	 */
1141 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1142 		reg->s32_min_value = reg->u32_min_value =
1143 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1144 		reg->s32_max_value = reg->u32_max_value =
1145 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1146 		return;
1147 	}
1148 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1149 	 * boundary, so we must be careful.
1150 	 */
1151 	if ((s32)reg->u32_max_value >= 0) {
1152 		/* Positive.  We can't learn anything from the smin, but smax
1153 		 * is positive, hence safe.
1154 		 */
1155 		reg->s32_min_value = reg->u32_min_value;
1156 		reg->s32_max_value = reg->u32_max_value =
1157 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1158 	} else if ((s32)reg->u32_min_value < 0) {
1159 		/* Negative.  We can't learn anything from the smax, but smin
1160 		 * is negative, hence safe.
1161 		 */
1162 		reg->s32_min_value = reg->u32_min_value =
1163 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1164 		reg->s32_max_value = reg->u32_max_value;
1165 	}
1166 }
1167 
1168 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1169 {
1170 	/* Learn sign from signed bounds.
1171 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1172 	 * are the same, so combine.  This works even in the negative case, e.g.
1173 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1174 	 */
1175 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1176 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1177 							  reg->umin_value);
1178 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1179 							  reg->umax_value);
1180 		return;
1181 	}
1182 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1183 	 * boundary, so we must be careful.
1184 	 */
1185 	if ((s64)reg->umax_value >= 0) {
1186 		/* Positive.  We can't learn anything from the smin, but smax
1187 		 * is positive, hence safe.
1188 		 */
1189 		reg->smin_value = reg->umin_value;
1190 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1191 							  reg->umax_value);
1192 	} else if ((s64)reg->umin_value < 0) {
1193 		/* Negative.  We can't learn anything from the smax, but smin
1194 		 * is negative, hence safe.
1195 		 */
1196 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1197 							  reg->umin_value);
1198 		reg->smax_value = reg->umax_value;
1199 	}
1200 }
1201 
1202 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1203 {
1204 	__reg32_deduce_bounds(reg);
1205 	__reg64_deduce_bounds(reg);
1206 }
1207 
1208 /* Attempts to improve var_off based on unsigned min/max information */
1209 static void __reg_bound_offset(struct bpf_reg_state *reg)
1210 {
1211 	struct tnum var64_off = tnum_intersect(reg->var_off,
1212 					       tnum_range(reg->umin_value,
1213 							  reg->umax_value));
1214 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1215 						tnum_range(reg->u32_min_value,
1216 							   reg->u32_max_value));
1217 
1218 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1219 }
1220 
1221 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1222 {
1223 	reg->umin_value = reg->u32_min_value;
1224 	reg->umax_value = reg->u32_max_value;
1225 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1226 	 * but must be positive otherwise set to worse case bounds
1227 	 * and refine later from tnum.
1228 	 */
1229 	if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1230 		reg->smax_value = reg->s32_max_value;
1231 	else
1232 		reg->smax_value = U32_MAX;
1233 	if (reg->s32_min_value >= 0)
1234 		reg->smin_value = reg->s32_min_value;
1235 	else
1236 		reg->smin_value = 0;
1237 }
1238 
1239 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1240 {
1241 	/* special case when 64-bit register has upper 32-bit register
1242 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1243 	 * allowing us to use 32-bit bounds directly,
1244 	 */
1245 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1246 		__reg_assign_32_into_64(reg);
1247 	} else {
1248 		/* Otherwise the best we can do is push lower 32bit known and
1249 		 * unknown bits into register (var_off set from jmp logic)
1250 		 * then learn as much as possible from the 64-bit tnum
1251 		 * known and unknown bits. The previous smin/smax bounds are
1252 		 * invalid here because of jmp32 compare so mark them unknown
1253 		 * so they do not impact tnum bounds calculation.
1254 		 */
1255 		__mark_reg64_unbounded(reg);
1256 		__update_reg_bounds(reg);
1257 	}
1258 
1259 	/* Intersecting with the old var_off might have improved our bounds
1260 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1261 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1262 	 */
1263 	__reg_deduce_bounds(reg);
1264 	__reg_bound_offset(reg);
1265 	__update_reg_bounds(reg);
1266 }
1267 
1268 static bool __reg64_bound_s32(s64 a)
1269 {
1270 	if (a > S32_MIN && a < S32_MAX)
1271 		return true;
1272 	return false;
1273 }
1274 
1275 static bool __reg64_bound_u32(u64 a)
1276 {
1277 	if (a > U32_MIN && a < U32_MAX)
1278 		return true;
1279 	return false;
1280 }
1281 
1282 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1283 {
1284 	__mark_reg32_unbounded(reg);
1285 
1286 	if (__reg64_bound_s32(reg->smin_value))
1287 		reg->s32_min_value = (s32)reg->smin_value;
1288 	if (__reg64_bound_s32(reg->smax_value))
1289 		reg->s32_max_value = (s32)reg->smax_value;
1290 	if (__reg64_bound_u32(reg->umin_value))
1291 		reg->u32_min_value = (u32)reg->umin_value;
1292 	if (__reg64_bound_u32(reg->umax_value))
1293 		reg->u32_max_value = (u32)reg->umax_value;
1294 
1295 	/* Intersecting with the old var_off might have improved our bounds
1296 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1297 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1298 	 */
1299 	__reg_deduce_bounds(reg);
1300 	__reg_bound_offset(reg);
1301 	__update_reg_bounds(reg);
1302 }
1303 
1304 /* Mark a register as having a completely unknown (scalar) value. */
1305 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1306 			       struct bpf_reg_state *reg)
1307 {
1308 	/*
1309 	 * Clear type, id, off, and union(map_ptr, range) and
1310 	 * padding between 'type' and union
1311 	 */
1312 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1313 	reg->type = SCALAR_VALUE;
1314 	reg->var_off = tnum_unknown;
1315 	reg->frameno = 0;
1316 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1317 	__mark_reg_unbounded(reg);
1318 }
1319 
1320 static void mark_reg_unknown(struct bpf_verifier_env *env,
1321 			     struct bpf_reg_state *regs, u32 regno)
1322 {
1323 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1324 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1325 		/* Something bad happened, let's kill all regs except FP */
1326 		for (regno = 0; regno < BPF_REG_FP; regno++)
1327 			__mark_reg_not_init(env, regs + regno);
1328 		return;
1329 	}
1330 	__mark_reg_unknown(env, regs + regno);
1331 }
1332 
1333 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1334 				struct bpf_reg_state *reg)
1335 {
1336 	__mark_reg_unknown(env, reg);
1337 	reg->type = NOT_INIT;
1338 }
1339 
1340 static void mark_reg_not_init(struct bpf_verifier_env *env,
1341 			      struct bpf_reg_state *regs, u32 regno)
1342 {
1343 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1344 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1345 		/* Something bad happened, let's kill all regs except FP */
1346 		for (regno = 0; regno < BPF_REG_FP; regno++)
1347 			__mark_reg_not_init(env, regs + regno);
1348 		return;
1349 	}
1350 	__mark_reg_not_init(env, regs + regno);
1351 }
1352 
1353 #define DEF_NOT_SUBREG	(0)
1354 static void init_reg_state(struct bpf_verifier_env *env,
1355 			   struct bpf_func_state *state)
1356 {
1357 	struct bpf_reg_state *regs = state->regs;
1358 	int i;
1359 
1360 	for (i = 0; i < MAX_BPF_REG; i++) {
1361 		mark_reg_not_init(env, regs, i);
1362 		regs[i].live = REG_LIVE_NONE;
1363 		regs[i].parent = NULL;
1364 		regs[i].subreg_def = DEF_NOT_SUBREG;
1365 	}
1366 
1367 	/* frame pointer */
1368 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1369 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1370 	regs[BPF_REG_FP].frameno = state->frameno;
1371 }
1372 
1373 #define BPF_MAIN_FUNC (-1)
1374 static void init_func_state(struct bpf_verifier_env *env,
1375 			    struct bpf_func_state *state,
1376 			    int callsite, int frameno, int subprogno)
1377 {
1378 	state->callsite = callsite;
1379 	state->frameno = frameno;
1380 	state->subprogno = subprogno;
1381 	init_reg_state(env, state);
1382 }
1383 
1384 enum reg_arg_type {
1385 	SRC_OP,		/* register is used as source operand */
1386 	DST_OP,		/* register is used as destination operand */
1387 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1388 };
1389 
1390 static int cmp_subprogs(const void *a, const void *b)
1391 {
1392 	return ((struct bpf_subprog_info *)a)->start -
1393 	       ((struct bpf_subprog_info *)b)->start;
1394 }
1395 
1396 static int find_subprog(struct bpf_verifier_env *env, int off)
1397 {
1398 	struct bpf_subprog_info *p;
1399 
1400 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1401 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1402 	if (!p)
1403 		return -ENOENT;
1404 	return p - env->subprog_info;
1405 
1406 }
1407 
1408 static int add_subprog(struct bpf_verifier_env *env, int off)
1409 {
1410 	int insn_cnt = env->prog->len;
1411 	int ret;
1412 
1413 	if (off >= insn_cnt || off < 0) {
1414 		verbose(env, "call to invalid destination\n");
1415 		return -EINVAL;
1416 	}
1417 	ret = find_subprog(env, off);
1418 	if (ret >= 0)
1419 		return 0;
1420 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1421 		verbose(env, "too many subprograms\n");
1422 		return -E2BIG;
1423 	}
1424 	env->subprog_info[env->subprog_cnt++].start = off;
1425 	sort(env->subprog_info, env->subprog_cnt,
1426 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1427 	return 0;
1428 }
1429 
1430 static int check_subprogs(struct bpf_verifier_env *env)
1431 {
1432 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1433 	struct bpf_subprog_info *subprog = env->subprog_info;
1434 	struct bpf_insn *insn = env->prog->insnsi;
1435 	int insn_cnt = env->prog->len;
1436 
1437 	/* Add entry function. */
1438 	ret = add_subprog(env, 0);
1439 	if (ret < 0)
1440 		return ret;
1441 
1442 	/* determine subprog starts. The end is one before the next starts */
1443 	for (i = 0; i < insn_cnt; i++) {
1444 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1445 			continue;
1446 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1447 			continue;
1448 		if (!env->bpf_capable) {
1449 			verbose(env,
1450 				"function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1451 			return -EPERM;
1452 		}
1453 		ret = add_subprog(env, i + insn[i].imm + 1);
1454 		if (ret < 0)
1455 			return ret;
1456 	}
1457 
1458 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1459 	 * logic. 'subprog_cnt' should not be increased.
1460 	 */
1461 	subprog[env->subprog_cnt].start = insn_cnt;
1462 
1463 	if (env->log.level & BPF_LOG_LEVEL2)
1464 		for (i = 0; i < env->subprog_cnt; i++)
1465 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1466 
1467 	/* now check that all jumps are within the same subprog */
1468 	subprog_start = subprog[cur_subprog].start;
1469 	subprog_end = subprog[cur_subprog + 1].start;
1470 	for (i = 0; i < insn_cnt; i++) {
1471 		u8 code = insn[i].code;
1472 
1473 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1474 			goto next;
1475 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1476 			goto next;
1477 		off = i + insn[i].off + 1;
1478 		if (off < subprog_start || off >= subprog_end) {
1479 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1480 			return -EINVAL;
1481 		}
1482 next:
1483 		if (i == subprog_end - 1) {
1484 			/* to avoid fall-through from one subprog into another
1485 			 * the last insn of the subprog should be either exit
1486 			 * or unconditional jump back
1487 			 */
1488 			if (code != (BPF_JMP | BPF_EXIT) &&
1489 			    code != (BPF_JMP | BPF_JA)) {
1490 				verbose(env, "last insn is not an exit or jmp\n");
1491 				return -EINVAL;
1492 			}
1493 			subprog_start = subprog_end;
1494 			cur_subprog++;
1495 			if (cur_subprog < env->subprog_cnt)
1496 				subprog_end = subprog[cur_subprog + 1].start;
1497 		}
1498 	}
1499 	return 0;
1500 }
1501 
1502 /* Parentage chain of this register (or stack slot) should take care of all
1503  * issues like callee-saved registers, stack slot allocation time, etc.
1504  */
1505 static int mark_reg_read(struct bpf_verifier_env *env,
1506 			 const struct bpf_reg_state *state,
1507 			 struct bpf_reg_state *parent, u8 flag)
1508 {
1509 	bool writes = parent == state->parent; /* Observe write marks */
1510 	int cnt = 0;
1511 
1512 	while (parent) {
1513 		/* if read wasn't screened by an earlier write ... */
1514 		if (writes && state->live & REG_LIVE_WRITTEN)
1515 			break;
1516 		if (parent->live & REG_LIVE_DONE) {
1517 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1518 				reg_type_str[parent->type],
1519 				parent->var_off.value, parent->off);
1520 			return -EFAULT;
1521 		}
1522 		/* The first condition is more likely to be true than the
1523 		 * second, checked it first.
1524 		 */
1525 		if ((parent->live & REG_LIVE_READ) == flag ||
1526 		    parent->live & REG_LIVE_READ64)
1527 			/* The parentage chain never changes and
1528 			 * this parent was already marked as LIVE_READ.
1529 			 * There is no need to keep walking the chain again and
1530 			 * keep re-marking all parents as LIVE_READ.
1531 			 * This case happens when the same register is read
1532 			 * multiple times without writes into it in-between.
1533 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1534 			 * then no need to set the weak REG_LIVE_READ32.
1535 			 */
1536 			break;
1537 		/* ... then we depend on parent's value */
1538 		parent->live |= flag;
1539 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1540 		if (flag == REG_LIVE_READ64)
1541 			parent->live &= ~REG_LIVE_READ32;
1542 		state = parent;
1543 		parent = state->parent;
1544 		writes = true;
1545 		cnt++;
1546 	}
1547 
1548 	if (env->longest_mark_read_walk < cnt)
1549 		env->longest_mark_read_walk = cnt;
1550 	return 0;
1551 }
1552 
1553 /* This function is supposed to be used by the following 32-bit optimization
1554  * code only. It returns TRUE if the source or destination register operates
1555  * on 64-bit, otherwise return FALSE.
1556  */
1557 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1558 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1559 {
1560 	u8 code, class, op;
1561 
1562 	code = insn->code;
1563 	class = BPF_CLASS(code);
1564 	op = BPF_OP(code);
1565 	if (class == BPF_JMP) {
1566 		/* BPF_EXIT for "main" will reach here. Return TRUE
1567 		 * conservatively.
1568 		 */
1569 		if (op == BPF_EXIT)
1570 			return true;
1571 		if (op == BPF_CALL) {
1572 			/* BPF to BPF call will reach here because of marking
1573 			 * caller saved clobber with DST_OP_NO_MARK for which we
1574 			 * don't care the register def because they are anyway
1575 			 * marked as NOT_INIT already.
1576 			 */
1577 			if (insn->src_reg == BPF_PSEUDO_CALL)
1578 				return false;
1579 			/* Helper call will reach here because of arg type
1580 			 * check, conservatively return TRUE.
1581 			 */
1582 			if (t == SRC_OP)
1583 				return true;
1584 
1585 			return false;
1586 		}
1587 	}
1588 
1589 	if (class == BPF_ALU64 || class == BPF_JMP ||
1590 	    /* BPF_END always use BPF_ALU class. */
1591 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1592 		return true;
1593 
1594 	if (class == BPF_ALU || class == BPF_JMP32)
1595 		return false;
1596 
1597 	if (class == BPF_LDX) {
1598 		if (t != SRC_OP)
1599 			return BPF_SIZE(code) == BPF_DW;
1600 		/* LDX source must be ptr. */
1601 		return true;
1602 	}
1603 
1604 	if (class == BPF_STX) {
1605 		if (reg->type != SCALAR_VALUE)
1606 			return true;
1607 		return BPF_SIZE(code) == BPF_DW;
1608 	}
1609 
1610 	if (class == BPF_LD) {
1611 		u8 mode = BPF_MODE(code);
1612 
1613 		/* LD_IMM64 */
1614 		if (mode == BPF_IMM)
1615 			return true;
1616 
1617 		/* Both LD_IND and LD_ABS return 32-bit data. */
1618 		if (t != SRC_OP)
1619 			return  false;
1620 
1621 		/* Implicit ctx ptr. */
1622 		if (regno == BPF_REG_6)
1623 			return true;
1624 
1625 		/* Explicit source could be any width. */
1626 		return true;
1627 	}
1628 
1629 	if (class == BPF_ST)
1630 		/* The only source register for BPF_ST is a ptr. */
1631 		return true;
1632 
1633 	/* Conservatively return true at default. */
1634 	return true;
1635 }
1636 
1637 /* Return TRUE if INSN doesn't have explicit value define. */
1638 static bool insn_no_def(struct bpf_insn *insn)
1639 {
1640 	u8 class = BPF_CLASS(insn->code);
1641 
1642 	return (class == BPF_JMP || class == BPF_JMP32 ||
1643 		class == BPF_STX || class == BPF_ST);
1644 }
1645 
1646 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1647 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1648 {
1649 	if (insn_no_def(insn))
1650 		return false;
1651 
1652 	return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1653 }
1654 
1655 static void mark_insn_zext(struct bpf_verifier_env *env,
1656 			   struct bpf_reg_state *reg)
1657 {
1658 	s32 def_idx = reg->subreg_def;
1659 
1660 	if (def_idx == DEF_NOT_SUBREG)
1661 		return;
1662 
1663 	env->insn_aux_data[def_idx - 1].zext_dst = true;
1664 	/* The dst will be zero extended, so won't be sub-register anymore. */
1665 	reg->subreg_def = DEF_NOT_SUBREG;
1666 }
1667 
1668 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1669 			 enum reg_arg_type t)
1670 {
1671 	struct bpf_verifier_state *vstate = env->cur_state;
1672 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1673 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1674 	struct bpf_reg_state *reg, *regs = state->regs;
1675 	bool rw64;
1676 
1677 	if (regno >= MAX_BPF_REG) {
1678 		verbose(env, "R%d is invalid\n", regno);
1679 		return -EINVAL;
1680 	}
1681 
1682 	reg = &regs[regno];
1683 	rw64 = is_reg64(env, insn, regno, reg, t);
1684 	if (t == SRC_OP) {
1685 		/* check whether register used as source operand can be read */
1686 		if (reg->type == NOT_INIT) {
1687 			verbose(env, "R%d !read_ok\n", regno);
1688 			return -EACCES;
1689 		}
1690 		/* We don't need to worry about FP liveness because it's read-only */
1691 		if (regno == BPF_REG_FP)
1692 			return 0;
1693 
1694 		if (rw64)
1695 			mark_insn_zext(env, reg);
1696 
1697 		return mark_reg_read(env, reg, reg->parent,
1698 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1699 	} else {
1700 		/* check whether register used as dest operand can be written to */
1701 		if (regno == BPF_REG_FP) {
1702 			verbose(env, "frame pointer is read only\n");
1703 			return -EACCES;
1704 		}
1705 		reg->live |= REG_LIVE_WRITTEN;
1706 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1707 		if (t == DST_OP)
1708 			mark_reg_unknown(env, regs, regno);
1709 	}
1710 	return 0;
1711 }
1712 
1713 /* for any branch, call, exit record the history of jmps in the given state */
1714 static int push_jmp_history(struct bpf_verifier_env *env,
1715 			    struct bpf_verifier_state *cur)
1716 {
1717 	u32 cnt = cur->jmp_history_cnt;
1718 	struct bpf_idx_pair *p;
1719 
1720 	cnt++;
1721 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1722 	if (!p)
1723 		return -ENOMEM;
1724 	p[cnt - 1].idx = env->insn_idx;
1725 	p[cnt - 1].prev_idx = env->prev_insn_idx;
1726 	cur->jmp_history = p;
1727 	cur->jmp_history_cnt = cnt;
1728 	return 0;
1729 }
1730 
1731 /* Backtrack one insn at a time. If idx is not at the top of recorded
1732  * history then previous instruction came from straight line execution.
1733  */
1734 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1735 			     u32 *history)
1736 {
1737 	u32 cnt = *history;
1738 
1739 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
1740 		i = st->jmp_history[cnt - 1].prev_idx;
1741 		(*history)--;
1742 	} else {
1743 		i--;
1744 	}
1745 	return i;
1746 }
1747 
1748 /* For given verifier state backtrack_insn() is called from the last insn to
1749  * the first insn. Its purpose is to compute a bitmask of registers and
1750  * stack slots that needs precision in the parent verifier state.
1751  */
1752 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1753 			  u32 *reg_mask, u64 *stack_mask)
1754 {
1755 	const struct bpf_insn_cbs cbs = {
1756 		.cb_print	= verbose,
1757 		.private_data	= env,
1758 	};
1759 	struct bpf_insn *insn = env->prog->insnsi + idx;
1760 	u8 class = BPF_CLASS(insn->code);
1761 	u8 opcode = BPF_OP(insn->code);
1762 	u8 mode = BPF_MODE(insn->code);
1763 	u32 dreg = 1u << insn->dst_reg;
1764 	u32 sreg = 1u << insn->src_reg;
1765 	u32 spi;
1766 
1767 	if (insn->code == 0)
1768 		return 0;
1769 	if (env->log.level & BPF_LOG_LEVEL) {
1770 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1771 		verbose(env, "%d: ", idx);
1772 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1773 	}
1774 
1775 	if (class == BPF_ALU || class == BPF_ALU64) {
1776 		if (!(*reg_mask & dreg))
1777 			return 0;
1778 		if (opcode == BPF_MOV) {
1779 			if (BPF_SRC(insn->code) == BPF_X) {
1780 				/* dreg = sreg
1781 				 * dreg needs precision after this insn
1782 				 * sreg needs precision before this insn
1783 				 */
1784 				*reg_mask &= ~dreg;
1785 				*reg_mask |= sreg;
1786 			} else {
1787 				/* dreg = K
1788 				 * dreg needs precision after this insn.
1789 				 * Corresponding register is already marked
1790 				 * as precise=true in this verifier state.
1791 				 * No further markings in parent are necessary
1792 				 */
1793 				*reg_mask &= ~dreg;
1794 			}
1795 		} else {
1796 			if (BPF_SRC(insn->code) == BPF_X) {
1797 				/* dreg += sreg
1798 				 * both dreg and sreg need precision
1799 				 * before this insn
1800 				 */
1801 				*reg_mask |= sreg;
1802 			} /* else dreg += K
1803 			   * dreg still needs precision before this insn
1804 			   */
1805 		}
1806 	} else if (class == BPF_LDX) {
1807 		if (!(*reg_mask & dreg))
1808 			return 0;
1809 		*reg_mask &= ~dreg;
1810 
1811 		/* scalars can only be spilled into stack w/o losing precision.
1812 		 * Load from any other memory can be zero extended.
1813 		 * The desire to keep that precision is already indicated
1814 		 * by 'precise' mark in corresponding register of this state.
1815 		 * No further tracking necessary.
1816 		 */
1817 		if (insn->src_reg != BPF_REG_FP)
1818 			return 0;
1819 		if (BPF_SIZE(insn->code) != BPF_DW)
1820 			return 0;
1821 
1822 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
1823 		 * that [fp - off] slot contains scalar that needs to be
1824 		 * tracked with precision
1825 		 */
1826 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1827 		if (spi >= 64) {
1828 			verbose(env, "BUG spi %d\n", spi);
1829 			WARN_ONCE(1, "verifier backtracking bug");
1830 			return -EFAULT;
1831 		}
1832 		*stack_mask |= 1ull << spi;
1833 	} else if (class == BPF_STX || class == BPF_ST) {
1834 		if (*reg_mask & dreg)
1835 			/* stx & st shouldn't be using _scalar_ dst_reg
1836 			 * to access memory. It means backtracking
1837 			 * encountered a case of pointer subtraction.
1838 			 */
1839 			return -ENOTSUPP;
1840 		/* scalars can only be spilled into stack */
1841 		if (insn->dst_reg != BPF_REG_FP)
1842 			return 0;
1843 		if (BPF_SIZE(insn->code) != BPF_DW)
1844 			return 0;
1845 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1846 		if (spi >= 64) {
1847 			verbose(env, "BUG spi %d\n", spi);
1848 			WARN_ONCE(1, "verifier backtracking bug");
1849 			return -EFAULT;
1850 		}
1851 		if (!(*stack_mask & (1ull << spi)))
1852 			return 0;
1853 		*stack_mask &= ~(1ull << spi);
1854 		if (class == BPF_STX)
1855 			*reg_mask |= sreg;
1856 	} else if (class == BPF_JMP || class == BPF_JMP32) {
1857 		if (opcode == BPF_CALL) {
1858 			if (insn->src_reg == BPF_PSEUDO_CALL)
1859 				return -ENOTSUPP;
1860 			/* regular helper call sets R0 */
1861 			*reg_mask &= ~1;
1862 			if (*reg_mask & 0x3f) {
1863 				/* if backtracing was looking for registers R1-R5
1864 				 * they should have been found already.
1865 				 */
1866 				verbose(env, "BUG regs %x\n", *reg_mask);
1867 				WARN_ONCE(1, "verifier backtracking bug");
1868 				return -EFAULT;
1869 			}
1870 		} else if (opcode == BPF_EXIT) {
1871 			return -ENOTSUPP;
1872 		}
1873 	} else if (class == BPF_LD) {
1874 		if (!(*reg_mask & dreg))
1875 			return 0;
1876 		*reg_mask &= ~dreg;
1877 		/* It's ld_imm64 or ld_abs or ld_ind.
1878 		 * For ld_imm64 no further tracking of precision
1879 		 * into parent is necessary
1880 		 */
1881 		if (mode == BPF_IND || mode == BPF_ABS)
1882 			/* to be analyzed */
1883 			return -ENOTSUPP;
1884 	}
1885 	return 0;
1886 }
1887 
1888 /* the scalar precision tracking algorithm:
1889  * . at the start all registers have precise=false.
1890  * . scalar ranges are tracked as normal through alu and jmp insns.
1891  * . once precise value of the scalar register is used in:
1892  *   .  ptr + scalar alu
1893  *   . if (scalar cond K|scalar)
1894  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
1895  *   backtrack through the verifier states and mark all registers and
1896  *   stack slots with spilled constants that these scalar regisers
1897  *   should be precise.
1898  * . during state pruning two registers (or spilled stack slots)
1899  *   are equivalent if both are not precise.
1900  *
1901  * Note the verifier cannot simply walk register parentage chain,
1902  * since many different registers and stack slots could have been
1903  * used to compute single precise scalar.
1904  *
1905  * The approach of starting with precise=true for all registers and then
1906  * backtrack to mark a register as not precise when the verifier detects
1907  * that program doesn't care about specific value (e.g., when helper
1908  * takes register as ARG_ANYTHING parameter) is not safe.
1909  *
1910  * It's ok to walk single parentage chain of the verifier states.
1911  * It's possible that this backtracking will go all the way till 1st insn.
1912  * All other branches will be explored for needing precision later.
1913  *
1914  * The backtracking needs to deal with cases like:
1915  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1916  * r9 -= r8
1917  * r5 = r9
1918  * if r5 > 0x79f goto pc+7
1919  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1920  * r5 += 1
1921  * ...
1922  * call bpf_perf_event_output#25
1923  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1924  *
1925  * and this case:
1926  * r6 = 1
1927  * call foo // uses callee's r6 inside to compute r0
1928  * r0 += r6
1929  * if r0 == 0 goto
1930  *
1931  * to track above reg_mask/stack_mask needs to be independent for each frame.
1932  *
1933  * Also if parent's curframe > frame where backtracking started,
1934  * the verifier need to mark registers in both frames, otherwise callees
1935  * may incorrectly prune callers. This is similar to
1936  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1937  *
1938  * For now backtracking falls back into conservative marking.
1939  */
1940 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1941 				     struct bpf_verifier_state *st)
1942 {
1943 	struct bpf_func_state *func;
1944 	struct bpf_reg_state *reg;
1945 	int i, j;
1946 
1947 	/* big hammer: mark all scalars precise in this path.
1948 	 * pop_stack may still get !precise scalars.
1949 	 */
1950 	for (; st; st = st->parent)
1951 		for (i = 0; i <= st->curframe; i++) {
1952 			func = st->frame[i];
1953 			for (j = 0; j < BPF_REG_FP; j++) {
1954 				reg = &func->regs[j];
1955 				if (reg->type != SCALAR_VALUE)
1956 					continue;
1957 				reg->precise = true;
1958 			}
1959 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1960 				if (func->stack[j].slot_type[0] != STACK_SPILL)
1961 					continue;
1962 				reg = &func->stack[j].spilled_ptr;
1963 				if (reg->type != SCALAR_VALUE)
1964 					continue;
1965 				reg->precise = true;
1966 			}
1967 		}
1968 }
1969 
1970 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
1971 				  int spi)
1972 {
1973 	struct bpf_verifier_state *st = env->cur_state;
1974 	int first_idx = st->first_insn_idx;
1975 	int last_idx = env->insn_idx;
1976 	struct bpf_func_state *func;
1977 	struct bpf_reg_state *reg;
1978 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
1979 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
1980 	bool skip_first = true;
1981 	bool new_marks = false;
1982 	int i, err;
1983 
1984 	if (!env->bpf_capable)
1985 		return 0;
1986 
1987 	func = st->frame[st->curframe];
1988 	if (regno >= 0) {
1989 		reg = &func->regs[regno];
1990 		if (reg->type != SCALAR_VALUE) {
1991 			WARN_ONCE(1, "backtracing misuse");
1992 			return -EFAULT;
1993 		}
1994 		if (!reg->precise)
1995 			new_marks = true;
1996 		else
1997 			reg_mask = 0;
1998 		reg->precise = true;
1999 	}
2000 
2001 	while (spi >= 0) {
2002 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2003 			stack_mask = 0;
2004 			break;
2005 		}
2006 		reg = &func->stack[spi].spilled_ptr;
2007 		if (reg->type != SCALAR_VALUE) {
2008 			stack_mask = 0;
2009 			break;
2010 		}
2011 		if (!reg->precise)
2012 			new_marks = true;
2013 		else
2014 			stack_mask = 0;
2015 		reg->precise = true;
2016 		break;
2017 	}
2018 
2019 	if (!new_marks)
2020 		return 0;
2021 	if (!reg_mask && !stack_mask)
2022 		return 0;
2023 	for (;;) {
2024 		DECLARE_BITMAP(mask, 64);
2025 		u32 history = st->jmp_history_cnt;
2026 
2027 		if (env->log.level & BPF_LOG_LEVEL)
2028 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2029 		for (i = last_idx;;) {
2030 			if (skip_first) {
2031 				err = 0;
2032 				skip_first = false;
2033 			} else {
2034 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2035 			}
2036 			if (err == -ENOTSUPP) {
2037 				mark_all_scalars_precise(env, st);
2038 				return 0;
2039 			} else if (err) {
2040 				return err;
2041 			}
2042 			if (!reg_mask && !stack_mask)
2043 				/* Found assignment(s) into tracked register in this state.
2044 				 * Since this state is already marked, just return.
2045 				 * Nothing to be tracked further in the parent state.
2046 				 */
2047 				return 0;
2048 			if (i == first_idx)
2049 				break;
2050 			i = get_prev_insn_idx(st, i, &history);
2051 			if (i >= env->prog->len) {
2052 				/* This can happen if backtracking reached insn 0
2053 				 * and there are still reg_mask or stack_mask
2054 				 * to backtrack.
2055 				 * It means the backtracking missed the spot where
2056 				 * particular register was initialized with a constant.
2057 				 */
2058 				verbose(env, "BUG backtracking idx %d\n", i);
2059 				WARN_ONCE(1, "verifier backtracking bug");
2060 				return -EFAULT;
2061 			}
2062 		}
2063 		st = st->parent;
2064 		if (!st)
2065 			break;
2066 
2067 		new_marks = false;
2068 		func = st->frame[st->curframe];
2069 		bitmap_from_u64(mask, reg_mask);
2070 		for_each_set_bit(i, mask, 32) {
2071 			reg = &func->regs[i];
2072 			if (reg->type != SCALAR_VALUE) {
2073 				reg_mask &= ~(1u << i);
2074 				continue;
2075 			}
2076 			if (!reg->precise)
2077 				new_marks = true;
2078 			reg->precise = true;
2079 		}
2080 
2081 		bitmap_from_u64(mask, stack_mask);
2082 		for_each_set_bit(i, mask, 64) {
2083 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2084 				/* the sequence of instructions:
2085 				 * 2: (bf) r3 = r10
2086 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2087 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2088 				 * doesn't contain jmps. It's backtracked
2089 				 * as a single block.
2090 				 * During backtracking insn 3 is not recognized as
2091 				 * stack access, so at the end of backtracking
2092 				 * stack slot fp-8 is still marked in stack_mask.
2093 				 * However the parent state may not have accessed
2094 				 * fp-8 and it's "unallocated" stack space.
2095 				 * In such case fallback to conservative.
2096 				 */
2097 				mark_all_scalars_precise(env, st);
2098 				return 0;
2099 			}
2100 
2101 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
2102 				stack_mask &= ~(1ull << i);
2103 				continue;
2104 			}
2105 			reg = &func->stack[i].spilled_ptr;
2106 			if (reg->type != SCALAR_VALUE) {
2107 				stack_mask &= ~(1ull << i);
2108 				continue;
2109 			}
2110 			if (!reg->precise)
2111 				new_marks = true;
2112 			reg->precise = true;
2113 		}
2114 		if (env->log.level & BPF_LOG_LEVEL) {
2115 			print_verifier_state(env, func);
2116 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2117 				new_marks ? "didn't have" : "already had",
2118 				reg_mask, stack_mask);
2119 		}
2120 
2121 		if (!reg_mask && !stack_mask)
2122 			break;
2123 		if (!new_marks)
2124 			break;
2125 
2126 		last_idx = st->last_insn_idx;
2127 		first_idx = st->first_insn_idx;
2128 	}
2129 	return 0;
2130 }
2131 
2132 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2133 {
2134 	return __mark_chain_precision(env, regno, -1);
2135 }
2136 
2137 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2138 {
2139 	return __mark_chain_precision(env, -1, spi);
2140 }
2141 
2142 static bool is_spillable_regtype(enum bpf_reg_type type)
2143 {
2144 	switch (type) {
2145 	case PTR_TO_MAP_VALUE:
2146 	case PTR_TO_MAP_VALUE_OR_NULL:
2147 	case PTR_TO_STACK:
2148 	case PTR_TO_CTX:
2149 	case PTR_TO_PACKET:
2150 	case PTR_TO_PACKET_META:
2151 	case PTR_TO_PACKET_END:
2152 	case PTR_TO_FLOW_KEYS:
2153 	case CONST_PTR_TO_MAP:
2154 	case PTR_TO_SOCKET:
2155 	case PTR_TO_SOCKET_OR_NULL:
2156 	case PTR_TO_SOCK_COMMON:
2157 	case PTR_TO_SOCK_COMMON_OR_NULL:
2158 	case PTR_TO_TCP_SOCK:
2159 	case PTR_TO_TCP_SOCK_OR_NULL:
2160 	case PTR_TO_XDP_SOCK:
2161 	case PTR_TO_BTF_ID:
2162 	case PTR_TO_BTF_ID_OR_NULL:
2163 		return true;
2164 	default:
2165 		return false;
2166 	}
2167 }
2168 
2169 /* Does this register contain a constant zero? */
2170 static bool register_is_null(struct bpf_reg_state *reg)
2171 {
2172 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2173 }
2174 
2175 static bool register_is_const(struct bpf_reg_state *reg)
2176 {
2177 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2178 }
2179 
2180 static bool __is_pointer_value(bool allow_ptr_leaks,
2181 			       const struct bpf_reg_state *reg)
2182 {
2183 	if (allow_ptr_leaks)
2184 		return false;
2185 
2186 	return reg->type != SCALAR_VALUE;
2187 }
2188 
2189 static void save_register_state(struct bpf_func_state *state,
2190 				int spi, struct bpf_reg_state *reg)
2191 {
2192 	int i;
2193 
2194 	state->stack[spi].spilled_ptr = *reg;
2195 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2196 
2197 	for (i = 0; i < BPF_REG_SIZE; i++)
2198 		state->stack[spi].slot_type[i] = STACK_SPILL;
2199 }
2200 
2201 /* check_stack_read/write functions track spill/fill of registers,
2202  * stack boundary and alignment are checked in check_mem_access()
2203  */
2204 static int check_stack_write(struct bpf_verifier_env *env,
2205 			     struct bpf_func_state *state, /* func where register points to */
2206 			     int off, int size, int value_regno, int insn_idx)
2207 {
2208 	struct bpf_func_state *cur; /* state of the current function */
2209 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2210 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2211 	struct bpf_reg_state *reg = NULL;
2212 
2213 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2214 				 state->acquired_refs, true);
2215 	if (err)
2216 		return err;
2217 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2218 	 * so it's aligned access and [off, off + size) are within stack limits
2219 	 */
2220 	if (!env->allow_ptr_leaks &&
2221 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2222 	    size != BPF_REG_SIZE) {
2223 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2224 		return -EACCES;
2225 	}
2226 
2227 	cur = env->cur_state->frame[env->cur_state->curframe];
2228 	if (value_regno >= 0)
2229 		reg = &cur->regs[value_regno];
2230 
2231 	if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
2232 	    !register_is_null(reg) && env->bpf_capable) {
2233 		if (dst_reg != BPF_REG_FP) {
2234 			/* The backtracking logic can only recognize explicit
2235 			 * stack slot address like [fp - 8]. Other spill of
2236 			 * scalar via different register has to be conervative.
2237 			 * Backtrack from here and mark all registers as precise
2238 			 * that contributed into 'reg' being a constant.
2239 			 */
2240 			err = mark_chain_precision(env, value_regno);
2241 			if (err)
2242 				return err;
2243 		}
2244 		save_register_state(state, spi, reg);
2245 	} else if (reg && is_spillable_regtype(reg->type)) {
2246 		/* register containing pointer is being spilled into stack */
2247 		if (size != BPF_REG_SIZE) {
2248 			verbose_linfo(env, insn_idx, "; ");
2249 			verbose(env, "invalid size of register spill\n");
2250 			return -EACCES;
2251 		}
2252 
2253 		if (state != cur && reg->type == PTR_TO_STACK) {
2254 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2255 			return -EINVAL;
2256 		}
2257 
2258 		if (!env->bypass_spec_v4) {
2259 			bool sanitize = false;
2260 
2261 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2262 			    register_is_const(&state->stack[spi].spilled_ptr))
2263 				sanitize = true;
2264 			for (i = 0; i < BPF_REG_SIZE; i++)
2265 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
2266 					sanitize = true;
2267 					break;
2268 				}
2269 			if (sanitize) {
2270 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2271 				int soff = (-spi - 1) * BPF_REG_SIZE;
2272 
2273 				/* detected reuse of integer stack slot with a pointer
2274 				 * which means either llvm is reusing stack slot or
2275 				 * an attacker is trying to exploit CVE-2018-3639
2276 				 * (speculative store bypass)
2277 				 * Have to sanitize that slot with preemptive
2278 				 * store of zero.
2279 				 */
2280 				if (*poff && *poff != soff) {
2281 					/* disallow programs where single insn stores
2282 					 * into two different stack slots, since verifier
2283 					 * cannot sanitize them
2284 					 */
2285 					verbose(env,
2286 						"insn %d cannot access two stack slots fp%d and fp%d",
2287 						insn_idx, *poff, soff);
2288 					return -EINVAL;
2289 				}
2290 				*poff = soff;
2291 			}
2292 		}
2293 		save_register_state(state, spi, reg);
2294 	} else {
2295 		u8 type = STACK_MISC;
2296 
2297 		/* regular write of data into stack destroys any spilled ptr */
2298 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2299 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2300 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2301 			for (i = 0; i < BPF_REG_SIZE; i++)
2302 				state->stack[spi].slot_type[i] = STACK_MISC;
2303 
2304 		/* only mark the slot as written if all 8 bytes were written
2305 		 * otherwise read propagation may incorrectly stop too soon
2306 		 * when stack slots are partially written.
2307 		 * This heuristic means that read propagation will be
2308 		 * conservative, since it will add reg_live_read marks
2309 		 * to stack slots all the way to first state when programs
2310 		 * writes+reads less than 8 bytes
2311 		 */
2312 		if (size == BPF_REG_SIZE)
2313 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2314 
2315 		/* when we zero initialize stack slots mark them as such */
2316 		if (reg && register_is_null(reg)) {
2317 			/* backtracking doesn't work for STACK_ZERO yet. */
2318 			err = mark_chain_precision(env, value_regno);
2319 			if (err)
2320 				return err;
2321 			type = STACK_ZERO;
2322 		}
2323 
2324 		/* Mark slots affected by this stack write. */
2325 		for (i = 0; i < size; i++)
2326 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2327 				type;
2328 	}
2329 	return 0;
2330 }
2331 
2332 static int check_stack_read(struct bpf_verifier_env *env,
2333 			    struct bpf_func_state *reg_state /* func where register points to */,
2334 			    int off, int size, int value_regno)
2335 {
2336 	struct bpf_verifier_state *vstate = env->cur_state;
2337 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2338 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2339 	struct bpf_reg_state *reg;
2340 	u8 *stype;
2341 
2342 	if (reg_state->allocated_stack <= slot) {
2343 		verbose(env, "invalid read from stack off %d+0 size %d\n",
2344 			off, size);
2345 		return -EACCES;
2346 	}
2347 	stype = reg_state->stack[spi].slot_type;
2348 	reg = &reg_state->stack[spi].spilled_ptr;
2349 
2350 	if (stype[0] == STACK_SPILL) {
2351 		if (size != BPF_REG_SIZE) {
2352 			if (reg->type != SCALAR_VALUE) {
2353 				verbose_linfo(env, env->insn_idx, "; ");
2354 				verbose(env, "invalid size of register fill\n");
2355 				return -EACCES;
2356 			}
2357 			if (value_regno >= 0) {
2358 				mark_reg_unknown(env, state->regs, value_regno);
2359 				state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2360 			}
2361 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2362 			return 0;
2363 		}
2364 		for (i = 1; i < BPF_REG_SIZE; i++) {
2365 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2366 				verbose(env, "corrupted spill memory\n");
2367 				return -EACCES;
2368 			}
2369 		}
2370 
2371 		if (value_regno >= 0) {
2372 			/* restore register state from stack */
2373 			state->regs[value_regno] = *reg;
2374 			/* mark reg as written since spilled pointer state likely
2375 			 * has its liveness marks cleared by is_state_visited()
2376 			 * which resets stack/reg liveness for state transitions
2377 			 */
2378 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2379 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2380 			/* If value_regno==-1, the caller is asking us whether
2381 			 * it is acceptable to use this value as a SCALAR_VALUE
2382 			 * (e.g. for XADD).
2383 			 * We must not allow unprivileged callers to do that
2384 			 * with spilled pointers.
2385 			 */
2386 			verbose(env, "leaking pointer from stack off %d\n",
2387 				off);
2388 			return -EACCES;
2389 		}
2390 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2391 	} else {
2392 		int zeros = 0;
2393 
2394 		for (i = 0; i < size; i++) {
2395 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2396 				continue;
2397 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2398 				zeros++;
2399 				continue;
2400 			}
2401 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2402 				off, i, size);
2403 			return -EACCES;
2404 		}
2405 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2406 		if (value_regno >= 0) {
2407 			if (zeros == size) {
2408 				/* any size read into register is zero extended,
2409 				 * so the whole register == const_zero
2410 				 */
2411 				__mark_reg_const_zero(&state->regs[value_regno]);
2412 				/* backtracking doesn't support STACK_ZERO yet,
2413 				 * so mark it precise here, so that later
2414 				 * backtracking can stop here.
2415 				 * Backtracking may not need this if this register
2416 				 * doesn't participate in pointer adjustment.
2417 				 * Forward propagation of precise flag is not
2418 				 * necessary either. This mark is only to stop
2419 				 * backtracking. Any register that contributed
2420 				 * to const 0 was marked precise before spill.
2421 				 */
2422 				state->regs[value_regno].precise = true;
2423 			} else {
2424 				/* have read misc data from the stack */
2425 				mark_reg_unknown(env, state->regs, value_regno);
2426 			}
2427 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2428 		}
2429 	}
2430 	return 0;
2431 }
2432 
2433 static int check_stack_access(struct bpf_verifier_env *env,
2434 			      const struct bpf_reg_state *reg,
2435 			      int off, int size)
2436 {
2437 	/* Stack accesses must be at a fixed offset, so that we
2438 	 * can determine what type of data were returned. See
2439 	 * check_stack_read().
2440 	 */
2441 	if (!tnum_is_const(reg->var_off)) {
2442 		char tn_buf[48];
2443 
2444 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2445 		verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
2446 			tn_buf, off, size);
2447 		return -EACCES;
2448 	}
2449 
2450 	if (off >= 0 || off < -MAX_BPF_STACK) {
2451 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
2452 		return -EACCES;
2453 	}
2454 
2455 	return 0;
2456 }
2457 
2458 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2459 				 int off, int size, enum bpf_access_type type)
2460 {
2461 	struct bpf_reg_state *regs = cur_regs(env);
2462 	struct bpf_map *map = regs[regno].map_ptr;
2463 	u32 cap = bpf_map_flags_to_cap(map);
2464 
2465 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2466 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2467 			map->value_size, off, size);
2468 		return -EACCES;
2469 	}
2470 
2471 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2472 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2473 			map->value_size, off, size);
2474 		return -EACCES;
2475 	}
2476 
2477 	return 0;
2478 }
2479 
2480 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
2481 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2482 			      int off, int size, u32 mem_size,
2483 			      bool zero_size_allowed)
2484 {
2485 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2486 	struct bpf_reg_state *reg;
2487 
2488 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2489 		return 0;
2490 
2491 	reg = &cur_regs(env)[regno];
2492 	switch (reg->type) {
2493 	case PTR_TO_MAP_VALUE:
2494 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2495 			mem_size, off, size);
2496 		break;
2497 	case PTR_TO_PACKET:
2498 	case PTR_TO_PACKET_META:
2499 	case PTR_TO_PACKET_END:
2500 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2501 			off, size, regno, reg->id, off, mem_size);
2502 		break;
2503 	case PTR_TO_MEM:
2504 	default:
2505 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2506 			mem_size, off, size);
2507 	}
2508 
2509 	return -EACCES;
2510 }
2511 
2512 /* check read/write into a memory region with possible variable offset */
2513 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2514 				   int off, int size, u32 mem_size,
2515 				   bool zero_size_allowed)
2516 {
2517 	struct bpf_verifier_state *vstate = env->cur_state;
2518 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2519 	struct bpf_reg_state *reg = &state->regs[regno];
2520 	int err;
2521 
2522 	/* We may have adjusted the register pointing to memory region, so we
2523 	 * need to try adding each of min_value and max_value to off
2524 	 * to make sure our theoretical access will be safe.
2525 	 */
2526 	if (env->log.level & BPF_LOG_LEVEL)
2527 		print_verifier_state(env, state);
2528 
2529 	/* The minimum value is only important with signed
2530 	 * comparisons where we can't assume the floor of a
2531 	 * value is 0.  If we are using signed variables for our
2532 	 * index'es we need to make sure that whatever we use
2533 	 * will have a set floor within our range.
2534 	 */
2535 	if (reg->smin_value < 0 &&
2536 	    (reg->smin_value == S64_MIN ||
2537 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2538 	      reg->smin_value + off < 0)) {
2539 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2540 			regno);
2541 		return -EACCES;
2542 	}
2543 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
2544 				 mem_size, zero_size_allowed);
2545 	if (err) {
2546 		verbose(env, "R%d min value is outside of the allowed memory range\n",
2547 			regno);
2548 		return err;
2549 	}
2550 
2551 	/* If we haven't set a max value then we need to bail since we can't be
2552 	 * sure we won't do bad things.
2553 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
2554 	 */
2555 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2556 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
2557 			regno);
2558 		return -EACCES;
2559 	}
2560 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
2561 				 mem_size, zero_size_allowed);
2562 	if (err) {
2563 		verbose(env, "R%d max value is outside of the allowed memory range\n",
2564 			regno);
2565 		return err;
2566 	}
2567 
2568 	return 0;
2569 }
2570 
2571 /* check read/write into a map element with possible variable offset */
2572 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2573 			    int off, int size, bool zero_size_allowed)
2574 {
2575 	struct bpf_verifier_state *vstate = env->cur_state;
2576 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2577 	struct bpf_reg_state *reg = &state->regs[regno];
2578 	struct bpf_map *map = reg->map_ptr;
2579 	int err;
2580 
2581 	err = check_mem_region_access(env, regno, off, size, map->value_size,
2582 				      zero_size_allowed);
2583 	if (err)
2584 		return err;
2585 
2586 	if (map_value_has_spin_lock(map)) {
2587 		u32 lock = map->spin_lock_off;
2588 
2589 		/* if any part of struct bpf_spin_lock can be touched by
2590 		 * load/store reject this program.
2591 		 * To check that [x1, x2) overlaps with [y1, y2)
2592 		 * it is sufficient to check x1 < y2 && y1 < x2.
2593 		 */
2594 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2595 		     lock < reg->umax_value + off + size) {
2596 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2597 			return -EACCES;
2598 		}
2599 	}
2600 	return err;
2601 }
2602 
2603 #define MAX_PACKET_OFF 0xffff
2604 
2605 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2606 				       const struct bpf_call_arg_meta *meta,
2607 				       enum bpf_access_type t)
2608 {
2609 	switch (env->prog->type) {
2610 	/* Program types only with direct read access go here! */
2611 	case BPF_PROG_TYPE_LWT_IN:
2612 	case BPF_PROG_TYPE_LWT_OUT:
2613 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2614 	case BPF_PROG_TYPE_SK_REUSEPORT:
2615 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
2616 	case BPF_PROG_TYPE_CGROUP_SKB:
2617 		if (t == BPF_WRITE)
2618 			return false;
2619 		/* fallthrough */
2620 
2621 	/* Program types with direct read + write access go here! */
2622 	case BPF_PROG_TYPE_SCHED_CLS:
2623 	case BPF_PROG_TYPE_SCHED_ACT:
2624 	case BPF_PROG_TYPE_XDP:
2625 	case BPF_PROG_TYPE_LWT_XMIT:
2626 	case BPF_PROG_TYPE_SK_SKB:
2627 	case BPF_PROG_TYPE_SK_MSG:
2628 		if (meta)
2629 			return meta->pkt_access;
2630 
2631 		env->seen_direct_write = true;
2632 		return true;
2633 
2634 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2635 		if (t == BPF_WRITE)
2636 			env->seen_direct_write = true;
2637 
2638 		return true;
2639 
2640 	default:
2641 		return false;
2642 	}
2643 }
2644 
2645 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2646 			       int size, bool zero_size_allowed)
2647 {
2648 	struct bpf_reg_state *regs = cur_regs(env);
2649 	struct bpf_reg_state *reg = &regs[regno];
2650 	int err;
2651 
2652 	/* We may have added a variable offset to the packet pointer; but any
2653 	 * reg->range we have comes after that.  We are only checking the fixed
2654 	 * offset.
2655 	 */
2656 
2657 	/* We don't allow negative numbers, because we aren't tracking enough
2658 	 * detail to prove they're safe.
2659 	 */
2660 	if (reg->smin_value < 0) {
2661 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2662 			regno);
2663 		return -EACCES;
2664 	}
2665 	err = __check_mem_access(env, regno, off, size, reg->range,
2666 				 zero_size_allowed);
2667 	if (err) {
2668 		verbose(env, "R%d offset is outside of the packet\n", regno);
2669 		return err;
2670 	}
2671 
2672 	/* __check_mem_access has made sure "off + size - 1" is within u16.
2673 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2674 	 * otherwise find_good_pkt_pointers would have refused to set range info
2675 	 * that __check_mem_access would have rejected this pkt access.
2676 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2677 	 */
2678 	env->prog->aux->max_pkt_offset =
2679 		max_t(u32, env->prog->aux->max_pkt_offset,
2680 		      off + reg->umax_value + size - 1);
2681 
2682 	return err;
2683 }
2684 
2685 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
2686 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
2687 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
2688 			    u32 *btf_id)
2689 {
2690 	struct bpf_insn_access_aux info = {
2691 		.reg_type = *reg_type,
2692 		.log = &env->log,
2693 	};
2694 
2695 	if (env->ops->is_valid_access &&
2696 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
2697 		/* A non zero info.ctx_field_size indicates that this field is a
2698 		 * candidate for later verifier transformation to load the whole
2699 		 * field and then apply a mask when accessed with a narrower
2700 		 * access than actual ctx access size. A zero info.ctx_field_size
2701 		 * will only allow for whole field access and rejects any other
2702 		 * type of narrower access.
2703 		 */
2704 		*reg_type = info.reg_type;
2705 
2706 		if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL)
2707 			*btf_id = info.btf_id;
2708 		else
2709 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
2710 		/* remember the offset of last byte accessed in ctx */
2711 		if (env->prog->aux->max_ctx_offset < off + size)
2712 			env->prog->aux->max_ctx_offset = off + size;
2713 		return 0;
2714 	}
2715 
2716 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
2717 	return -EACCES;
2718 }
2719 
2720 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2721 				  int size)
2722 {
2723 	if (size < 0 || off < 0 ||
2724 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
2725 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
2726 			off, size);
2727 		return -EACCES;
2728 	}
2729 	return 0;
2730 }
2731 
2732 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2733 			     u32 regno, int off, int size,
2734 			     enum bpf_access_type t)
2735 {
2736 	struct bpf_reg_state *regs = cur_regs(env);
2737 	struct bpf_reg_state *reg = &regs[regno];
2738 	struct bpf_insn_access_aux info = {};
2739 	bool valid;
2740 
2741 	if (reg->smin_value < 0) {
2742 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2743 			regno);
2744 		return -EACCES;
2745 	}
2746 
2747 	switch (reg->type) {
2748 	case PTR_TO_SOCK_COMMON:
2749 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2750 		break;
2751 	case PTR_TO_SOCKET:
2752 		valid = bpf_sock_is_valid_access(off, size, t, &info);
2753 		break;
2754 	case PTR_TO_TCP_SOCK:
2755 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2756 		break;
2757 	case PTR_TO_XDP_SOCK:
2758 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2759 		break;
2760 	default:
2761 		valid = false;
2762 	}
2763 
2764 
2765 	if (valid) {
2766 		env->insn_aux_data[insn_idx].ctx_field_size =
2767 			info.ctx_field_size;
2768 		return 0;
2769 	}
2770 
2771 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
2772 		regno, reg_type_str[reg->type], off, size);
2773 
2774 	return -EACCES;
2775 }
2776 
2777 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2778 {
2779 	return cur_regs(env) + regno;
2780 }
2781 
2782 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2783 {
2784 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
2785 }
2786 
2787 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2788 {
2789 	const struct bpf_reg_state *reg = reg_state(env, regno);
2790 
2791 	return reg->type == PTR_TO_CTX;
2792 }
2793 
2794 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2795 {
2796 	const struct bpf_reg_state *reg = reg_state(env, regno);
2797 
2798 	return type_is_sk_pointer(reg->type);
2799 }
2800 
2801 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2802 {
2803 	const struct bpf_reg_state *reg = reg_state(env, regno);
2804 
2805 	return type_is_pkt_pointer(reg->type);
2806 }
2807 
2808 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2809 {
2810 	const struct bpf_reg_state *reg = reg_state(env, regno);
2811 
2812 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2813 	return reg->type == PTR_TO_FLOW_KEYS;
2814 }
2815 
2816 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2817 				   const struct bpf_reg_state *reg,
2818 				   int off, int size, bool strict)
2819 {
2820 	struct tnum reg_off;
2821 	int ip_align;
2822 
2823 	/* Byte size accesses are always allowed. */
2824 	if (!strict || size == 1)
2825 		return 0;
2826 
2827 	/* For platforms that do not have a Kconfig enabling
2828 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2829 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
2830 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2831 	 * to this code only in strict mode where we want to emulate
2832 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
2833 	 * unconditional IP align value of '2'.
2834 	 */
2835 	ip_align = 2;
2836 
2837 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2838 	if (!tnum_is_aligned(reg_off, size)) {
2839 		char tn_buf[48];
2840 
2841 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2842 		verbose(env,
2843 			"misaligned packet access off %d+%s+%d+%d size %d\n",
2844 			ip_align, tn_buf, reg->off, off, size);
2845 		return -EACCES;
2846 	}
2847 
2848 	return 0;
2849 }
2850 
2851 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2852 				       const struct bpf_reg_state *reg,
2853 				       const char *pointer_desc,
2854 				       int off, int size, bool strict)
2855 {
2856 	struct tnum reg_off;
2857 
2858 	/* Byte size accesses are always allowed. */
2859 	if (!strict || size == 1)
2860 		return 0;
2861 
2862 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2863 	if (!tnum_is_aligned(reg_off, size)) {
2864 		char tn_buf[48];
2865 
2866 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2867 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
2868 			pointer_desc, tn_buf, reg->off, off, size);
2869 		return -EACCES;
2870 	}
2871 
2872 	return 0;
2873 }
2874 
2875 static int check_ptr_alignment(struct bpf_verifier_env *env,
2876 			       const struct bpf_reg_state *reg, int off,
2877 			       int size, bool strict_alignment_once)
2878 {
2879 	bool strict = env->strict_alignment || strict_alignment_once;
2880 	const char *pointer_desc = "";
2881 
2882 	switch (reg->type) {
2883 	case PTR_TO_PACKET:
2884 	case PTR_TO_PACKET_META:
2885 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
2886 		 * right in front, treat it the very same way.
2887 		 */
2888 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
2889 	case PTR_TO_FLOW_KEYS:
2890 		pointer_desc = "flow keys ";
2891 		break;
2892 	case PTR_TO_MAP_VALUE:
2893 		pointer_desc = "value ";
2894 		break;
2895 	case PTR_TO_CTX:
2896 		pointer_desc = "context ";
2897 		break;
2898 	case PTR_TO_STACK:
2899 		pointer_desc = "stack ";
2900 		/* The stack spill tracking logic in check_stack_write()
2901 		 * and check_stack_read() relies on stack accesses being
2902 		 * aligned.
2903 		 */
2904 		strict = true;
2905 		break;
2906 	case PTR_TO_SOCKET:
2907 		pointer_desc = "sock ";
2908 		break;
2909 	case PTR_TO_SOCK_COMMON:
2910 		pointer_desc = "sock_common ";
2911 		break;
2912 	case PTR_TO_TCP_SOCK:
2913 		pointer_desc = "tcp_sock ";
2914 		break;
2915 	case PTR_TO_XDP_SOCK:
2916 		pointer_desc = "xdp_sock ";
2917 		break;
2918 	default:
2919 		break;
2920 	}
2921 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2922 					   strict);
2923 }
2924 
2925 static int update_stack_depth(struct bpf_verifier_env *env,
2926 			      const struct bpf_func_state *func,
2927 			      int off)
2928 {
2929 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
2930 
2931 	if (stack >= -off)
2932 		return 0;
2933 
2934 	/* update known max for given subprogram */
2935 	env->subprog_info[func->subprogno].stack_depth = -off;
2936 	return 0;
2937 }
2938 
2939 /* starting from main bpf function walk all instructions of the function
2940  * and recursively walk all callees that given function can call.
2941  * Ignore jump and exit insns.
2942  * Since recursion is prevented by check_cfg() this algorithm
2943  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2944  */
2945 static int check_max_stack_depth(struct bpf_verifier_env *env)
2946 {
2947 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2948 	struct bpf_subprog_info *subprog = env->subprog_info;
2949 	struct bpf_insn *insn = env->prog->insnsi;
2950 	int ret_insn[MAX_CALL_FRAMES];
2951 	int ret_prog[MAX_CALL_FRAMES];
2952 
2953 process_func:
2954 	/* round up to 32-bytes, since this is granularity
2955 	 * of interpreter stack size
2956 	 */
2957 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2958 	if (depth > MAX_BPF_STACK) {
2959 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
2960 			frame + 1, depth);
2961 		return -EACCES;
2962 	}
2963 continue_func:
2964 	subprog_end = subprog[idx + 1].start;
2965 	for (; i < subprog_end; i++) {
2966 		if (insn[i].code != (BPF_JMP | BPF_CALL))
2967 			continue;
2968 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
2969 			continue;
2970 		/* remember insn and function to return to */
2971 		ret_insn[frame] = i + 1;
2972 		ret_prog[frame] = idx;
2973 
2974 		/* find the callee */
2975 		i = i + insn[i].imm + 1;
2976 		idx = find_subprog(env, i);
2977 		if (idx < 0) {
2978 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2979 				  i);
2980 			return -EFAULT;
2981 		}
2982 		frame++;
2983 		if (frame >= MAX_CALL_FRAMES) {
2984 			verbose(env, "the call stack of %d frames is too deep !\n",
2985 				frame);
2986 			return -E2BIG;
2987 		}
2988 		goto process_func;
2989 	}
2990 	/* end of for() loop means the last insn of the 'subprog'
2991 	 * was reached. Doesn't matter whether it was JA or EXIT
2992 	 */
2993 	if (frame == 0)
2994 		return 0;
2995 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2996 	frame--;
2997 	i = ret_insn[frame];
2998 	idx = ret_prog[frame];
2999 	goto continue_func;
3000 }
3001 
3002 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3003 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3004 				  const struct bpf_insn *insn, int idx)
3005 {
3006 	int start = idx + insn->imm + 1, subprog;
3007 
3008 	subprog = find_subprog(env, start);
3009 	if (subprog < 0) {
3010 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3011 			  start);
3012 		return -EFAULT;
3013 	}
3014 	return env->subprog_info[subprog].stack_depth;
3015 }
3016 #endif
3017 
3018 int check_ctx_reg(struct bpf_verifier_env *env,
3019 		  const struct bpf_reg_state *reg, int regno)
3020 {
3021 	/* Access to ctx or passing it to a helper is only allowed in
3022 	 * its original, unmodified form.
3023 	 */
3024 
3025 	if (reg->off) {
3026 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3027 			regno, reg->off);
3028 		return -EACCES;
3029 	}
3030 
3031 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3032 		char tn_buf[48];
3033 
3034 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3035 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3036 		return -EACCES;
3037 	}
3038 
3039 	return 0;
3040 }
3041 
3042 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3043 				  const struct bpf_reg_state *reg,
3044 				  int regno, int off, int size)
3045 {
3046 	if (off < 0) {
3047 		verbose(env,
3048 			"R%d invalid tracepoint buffer access: off=%d, size=%d",
3049 			regno, off, size);
3050 		return -EACCES;
3051 	}
3052 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3053 		char tn_buf[48];
3054 
3055 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3056 		verbose(env,
3057 			"R%d invalid variable buffer offset: off=%d, var_off=%s",
3058 			regno, off, tn_buf);
3059 		return -EACCES;
3060 	}
3061 	if (off + size > env->prog->aux->max_tp_access)
3062 		env->prog->aux->max_tp_access = off + size;
3063 
3064 	return 0;
3065 }
3066 
3067 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
3068 static void zext_32_to_64(struct bpf_reg_state *reg)
3069 {
3070 	reg->var_off = tnum_subreg(reg->var_off);
3071 	__reg_assign_32_into_64(reg);
3072 }
3073 
3074 /* truncate register to smaller size (in bytes)
3075  * must be called with size < BPF_REG_SIZE
3076  */
3077 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3078 {
3079 	u64 mask;
3080 
3081 	/* clear high bits in bit representation */
3082 	reg->var_off = tnum_cast(reg->var_off, size);
3083 
3084 	/* fix arithmetic bounds */
3085 	mask = ((u64)1 << (size * 8)) - 1;
3086 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3087 		reg->umin_value &= mask;
3088 		reg->umax_value &= mask;
3089 	} else {
3090 		reg->umin_value = 0;
3091 		reg->umax_value = mask;
3092 	}
3093 	reg->smin_value = reg->umin_value;
3094 	reg->smax_value = reg->umax_value;
3095 
3096 	/* If size is smaller than 32bit register the 32bit register
3097 	 * values are also truncated so we push 64-bit bounds into
3098 	 * 32-bit bounds. Above were truncated < 32-bits already.
3099 	 */
3100 	if (size >= 4)
3101 		return;
3102 	__reg_combine_64_into_32(reg);
3103 }
3104 
3105 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3106 {
3107 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3108 }
3109 
3110 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3111 {
3112 	void *ptr;
3113 	u64 addr;
3114 	int err;
3115 
3116 	err = map->ops->map_direct_value_addr(map, &addr, off);
3117 	if (err)
3118 		return err;
3119 	ptr = (void *)(long)addr + off;
3120 
3121 	switch (size) {
3122 	case sizeof(u8):
3123 		*val = (u64)*(u8 *)ptr;
3124 		break;
3125 	case sizeof(u16):
3126 		*val = (u64)*(u16 *)ptr;
3127 		break;
3128 	case sizeof(u32):
3129 		*val = (u64)*(u32 *)ptr;
3130 		break;
3131 	case sizeof(u64):
3132 		*val = *(u64 *)ptr;
3133 		break;
3134 	default:
3135 		return -EINVAL;
3136 	}
3137 	return 0;
3138 }
3139 
3140 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3141 				   struct bpf_reg_state *regs,
3142 				   int regno, int off, int size,
3143 				   enum bpf_access_type atype,
3144 				   int value_regno)
3145 {
3146 	struct bpf_reg_state *reg = regs + regno;
3147 	const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
3148 	const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3149 	u32 btf_id;
3150 	int ret;
3151 
3152 	if (off < 0) {
3153 		verbose(env,
3154 			"R%d is ptr_%s invalid negative access: off=%d\n",
3155 			regno, tname, off);
3156 		return -EACCES;
3157 	}
3158 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3159 		char tn_buf[48];
3160 
3161 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3162 		verbose(env,
3163 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3164 			regno, tname, off, tn_buf);
3165 		return -EACCES;
3166 	}
3167 
3168 	if (env->ops->btf_struct_access) {
3169 		ret = env->ops->btf_struct_access(&env->log, t, off, size,
3170 						  atype, &btf_id);
3171 	} else {
3172 		if (atype != BPF_READ) {
3173 			verbose(env, "only read is supported\n");
3174 			return -EACCES;
3175 		}
3176 
3177 		ret = btf_struct_access(&env->log, t, off, size, atype,
3178 					&btf_id);
3179 	}
3180 
3181 	if (ret < 0)
3182 		return ret;
3183 
3184 	if (atype == BPF_READ && value_regno >= 0) {
3185 		if (ret == SCALAR_VALUE) {
3186 			mark_reg_unknown(env, regs, value_regno);
3187 			return 0;
3188 		}
3189 		mark_reg_known_zero(env, regs, value_regno);
3190 		regs[value_regno].type = PTR_TO_BTF_ID;
3191 		regs[value_regno].btf_id = btf_id;
3192 	}
3193 
3194 	return 0;
3195 }
3196 
3197 /* check whether memory at (regno + off) is accessible for t = (read | write)
3198  * if t==write, value_regno is a register which value is stored into memory
3199  * if t==read, value_regno is a register which will receive the value from memory
3200  * if t==write && value_regno==-1, some unknown value is stored into memory
3201  * if t==read && value_regno==-1, don't care what we read from memory
3202  */
3203 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3204 			    int off, int bpf_size, enum bpf_access_type t,
3205 			    int value_regno, bool strict_alignment_once)
3206 {
3207 	struct bpf_reg_state *regs = cur_regs(env);
3208 	struct bpf_reg_state *reg = regs + regno;
3209 	struct bpf_func_state *state;
3210 	int size, err = 0;
3211 
3212 	size = bpf_size_to_bytes(bpf_size);
3213 	if (size < 0)
3214 		return size;
3215 
3216 	/* alignment checks will add in reg->off themselves */
3217 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3218 	if (err)
3219 		return err;
3220 
3221 	/* for access checks, reg->off is just part of off */
3222 	off += reg->off;
3223 
3224 	if (reg->type == PTR_TO_MAP_VALUE) {
3225 		if (t == BPF_WRITE && value_regno >= 0 &&
3226 		    is_pointer_value(env, value_regno)) {
3227 			verbose(env, "R%d leaks addr into map\n", value_regno);
3228 			return -EACCES;
3229 		}
3230 		err = check_map_access_type(env, regno, off, size, t);
3231 		if (err)
3232 			return err;
3233 		err = check_map_access(env, regno, off, size, false);
3234 		if (!err && t == BPF_READ && value_regno >= 0) {
3235 			struct bpf_map *map = reg->map_ptr;
3236 
3237 			/* if map is read-only, track its contents as scalars */
3238 			if (tnum_is_const(reg->var_off) &&
3239 			    bpf_map_is_rdonly(map) &&
3240 			    map->ops->map_direct_value_addr) {
3241 				int map_off = off + reg->var_off.value;
3242 				u64 val = 0;
3243 
3244 				err = bpf_map_direct_read(map, map_off, size,
3245 							  &val);
3246 				if (err)
3247 					return err;
3248 
3249 				regs[value_regno].type = SCALAR_VALUE;
3250 				__mark_reg_known(&regs[value_regno], val);
3251 			} else {
3252 				mark_reg_unknown(env, regs, value_regno);
3253 			}
3254 		}
3255 	} else if (reg->type == PTR_TO_MEM) {
3256 		if (t == BPF_WRITE && value_regno >= 0 &&
3257 		    is_pointer_value(env, value_regno)) {
3258 			verbose(env, "R%d leaks addr into mem\n", value_regno);
3259 			return -EACCES;
3260 		}
3261 		err = check_mem_region_access(env, regno, off, size,
3262 					      reg->mem_size, false);
3263 		if (!err && t == BPF_READ && value_regno >= 0)
3264 			mark_reg_unknown(env, regs, value_regno);
3265 	} else if (reg->type == PTR_TO_CTX) {
3266 		enum bpf_reg_type reg_type = SCALAR_VALUE;
3267 		u32 btf_id = 0;
3268 
3269 		if (t == BPF_WRITE && value_regno >= 0 &&
3270 		    is_pointer_value(env, value_regno)) {
3271 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
3272 			return -EACCES;
3273 		}
3274 
3275 		err = check_ctx_reg(env, reg, regno);
3276 		if (err < 0)
3277 			return err;
3278 
3279 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf_id);
3280 		if (err)
3281 			verbose_linfo(env, insn_idx, "; ");
3282 		if (!err && t == BPF_READ && value_regno >= 0) {
3283 			/* ctx access returns either a scalar, or a
3284 			 * PTR_TO_PACKET[_META,_END]. In the latter
3285 			 * case, we know the offset is zero.
3286 			 */
3287 			if (reg_type == SCALAR_VALUE) {
3288 				mark_reg_unknown(env, regs, value_regno);
3289 			} else {
3290 				mark_reg_known_zero(env, regs,
3291 						    value_regno);
3292 				if (reg_type_may_be_null(reg_type))
3293 					regs[value_regno].id = ++env->id_gen;
3294 				/* A load of ctx field could have different
3295 				 * actual load size with the one encoded in the
3296 				 * insn. When the dst is PTR, it is for sure not
3297 				 * a sub-register.
3298 				 */
3299 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
3300 				if (reg_type == PTR_TO_BTF_ID ||
3301 				    reg_type == PTR_TO_BTF_ID_OR_NULL)
3302 					regs[value_regno].btf_id = btf_id;
3303 			}
3304 			regs[value_regno].type = reg_type;
3305 		}
3306 
3307 	} else if (reg->type == PTR_TO_STACK) {
3308 		off += reg->var_off.value;
3309 		err = check_stack_access(env, reg, off, size);
3310 		if (err)
3311 			return err;
3312 
3313 		state = func(env, reg);
3314 		err = update_stack_depth(env, state, off);
3315 		if (err)
3316 			return err;
3317 
3318 		if (t == BPF_WRITE)
3319 			err = check_stack_write(env, state, off, size,
3320 						value_regno, insn_idx);
3321 		else
3322 			err = check_stack_read(env, state, off, size,
3323 					       value_regno);
3324 	} else if (reg_is_pkt_pointer(reg)) {
3325 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3326 			verbose(env, "cannot write into packet\n");
3327 			return -EACCES;
3328 		}
3329 		if (t == BPF_WRITE && value_regno >= 0 &&
3330 		    is_pointer_value(env, value_regno)) {
3331 			verbose(env, "R%d leaks addr into packet\n",
3332 				value_regno);
3333 			return -EACCES;
3334 		}
3335 		err = check_packet_access(env, regno, off, size, false);
3336 		if (!err && t == BPF_READ && value_regno >= 0)
3337 			mark_reg_unknown(env, regs, value_regno);
3338 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
3339 		if (t == BPF_WRITE && value_regno >= 0 &&
3340 		    is_pointer_value(env, value_regno)) {
3341 			verbose(env, "R%d leaks addr into flow keys\n",
3342 				value_regno);
3343 			return -EACCES;
3344 		}
3345 
3346 		err = check_flow_keys_access(env, off, size);
3347 		if (!err && t == BPF_READ && value_regno >= 0)
3348 			mark_reg_unknown(env, regs, value_regno);
3349 	} else if (type_is_sk_pointer(reg->type)) {
3350 		if (t == BPF_WRITE) {
3351 			verbose(env, "R%d cannot write into %s\n",
3352 				regno, reg_type_str[reg->type]);
3353 			return -EACCES;
3354 		}
3355 		err = check_sock_access(env, insn_idx, regno, off, size, t);
3356 		if (!err && value_regno >= 0)
3357 			mark_reg_unknown(env, regs, value_regno);
3358 	} else if (reg->type == PTR_TO_TP_BUFFER) {
3359 		err = check_tp_buffer_access(env, reg, regno, off, size);
3360 		if (!err && t == BPF_READ && value_regno >= 0)
3361 			mark_reg_unknown(env, regs, value_regno);
3362 	} else if (reg->type == PTR_TO_BTF_ID) {
3363 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3364 					      value_regno);
3365 	} else {
3366 		verbose(env, "R%d invalid mem access '%s'\n", regno,
3367 			reg_type_str[reg->type]);
3368 		return -EACCES;
3369 	}
3370 
3371 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
3372 	    regs[value_regno].type == SCALAR_VALUE) {
3373 		/* b/h/w load zero-extends, mark upper bits as known 0 */
3374 		coerce_reg_to_size(&regs[value_regno], size);
3375 	}
3376 	return err;
3377 }
3378 
3379 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
3380 {
3381 	int err;
3382 
3383 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3384 	    insn->imm != 0) {
3385 		verbose(env, "BPF_XADD uses reserved fields\n");
3386 		return -EINVAL;
3387 	}
3388 
3389 	/* check src1 operand */
3390 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
3391 	if (err)
3392 		return err;
3393 
3394 	/* check src2 operand */
3395 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3396 	if (err)
3397 		return err;
3398 
3399 	if (is_pointer_value(env, insn->src_reg)) {
3400 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
3401 		return -EACCES;
3402 	}
3403 
3404 	if (is_ctx_reg(env, insn->dst_reg) ||
3405 	    is_pkt_reg(env, insn->dst_reg) ||
3406 	    is_flow_key_reg(env, insn->dst_reg) ||
3407 	    is_sk_reg(env, insn->dst_reg)) {
3408 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
3409 			insn->dst_reg,
3410 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
3411 		return -EACCES;
3412 	}
3413 
3414 	/* check whether atomic_add can read the memory */
3415 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3416 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
3417 	if (err)
3418 		return err;
3419 
3420 	/* check whether atomic_add can write into the same memory */
3421 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3422 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
3423 }
3424 
3425 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3426 				  int off, int access_size,
3427 				  bool zero_size_allowed)
3428 {
3429 	struct bpf_reg_state *reg = reg_state(env, regno);
3430 
3431 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3432 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3433 		if (tnum_is_const(reg->var_off)) {
3434 			verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3435 				regno, off, access_size);
3436 		} else {
3437 			char tn_buf[48];
3438 
3439 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3440 			verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3441 				regno, tn_buf, access_size);
3442 		}
3443 		return -EACCES;
3444 	}
3445 	return 0;
3446 }
3447 
3448 /* when register 'regno' is passed into function that will read 'access_size'
3449  * bytes from that pointer, make sure that it's within stack boundary
3450  * and all elements of stack are initialized.
3451  * Unlike most pointer bounds-checking functions, this one doesn't take an
3452  * 'off' argument, so it has to add in reg->off itself.
3453  */
3454 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
3455 				int access_size, bool zero_size_allowed,
3456 				struct bpf_call_arg_meta *meta)
3457 {
3458 	struct bpf_reg_state *reg = reg_state(env, regno);
3459 	struct bpf_func_state *state = func(env, reg);
3460 	int err, min_off, max_off, i, j, slot, spi;
3461 
3462 	if (reg->type != PTR_TO_STACK) {
3463 		/* Allow zero-byte read from NULL, regardless of pointer type */
3464 		if (zero_size_allowed && access_size == 0 &&
3465 		    register_is_null(reg))
3466 			return 0;
3467 
3468 		verbose(env, "R%d type=%s expected=%s\n", regno,
3469 			reg_type_str[reg->type],
3470 			reg_type_str[PTR_TO_STACK]);
3471 		return -EACCES;
3472 	}
3473 
3474 	if (tnum_is_const(reg->var_off)) {
3475 		min_off = max_off = reg->var_off.value + reg->off;
3476 		err = __check_stack_boundary(env, regno, min_off, access_size,
3477 					     zero_size_allowed);
3478 		if (err)
3479 			return err;
3480 	} else {
3481 		/* Variable offset is prohibited for unprivileged mode for
3482 		 * simplicity since it requires corresponding support in
3483 		 * Spectre masking for stack ALU.
3484 		 * See also retrieve_ptr_limit().
3485 		 */
3486 		if (!env->bypass_spec_v1) {
3487 			char tn_buf[48];
3488 
3489 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3490 			verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3491 				regno, tn_buf);
3492 			return -EACCES;
3493 		}
3494 		/* Only initialized buffer on stack is allowed to be accessed
3495 		 * with variable offset. With uninitialized buffer it's hard to
3496 		 * guarantee that whole memory is marked as initialized on
3497 		 * helper return since specific bounds are unknown what may
3498 		 * cause uninitialized stack leaking.
3499 		 */
3500 		if (meta && meta->raw_mode)
3501 			meta = NULL;
3502 
3503 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3504 		    reg->smax_value <= -BPF_MAX_VAR_OFF) {
3505 			verbose(env, "R%d unbounded indirect variable offset stack access\n",
3506 				regno);
3507 			return -EACCES;
3508 		}
3509 		min_off = reg->smin_value + reg->off;
3510 		max_off = reg->smax_value + reg->off;
3511 		err = __check_stack_boundary(env, regno, min_off, access_size,
3512 					     zero_size_allowed);
3513 		if (err) {
3514 			verbose(env, "R%d min value is outside of stack bound\n",
3515 				regno);
3516 			return err;
3517 		}
3518 		err = __check_stack_boundary(env, regno, max_off, access_size,
3519 					     zero_size_allowed);
3520 		if (err) {
3521 			verbose(env, "R%d max value is outside of stack bound\n",
3522 				regno);
3523 			return err;
3524 		}
3525 	}
3526 
3527 	if (meta && meta->raw_mode) {
3528 		meta->access_size = access_size;
3529 		meta->regno = regno;
3530 		return 0;
3531 	}
3532 
3533 	for (i = min_off; i < max_off + access_size; i++) {
3534 		u8 *stype;
3535 
3536 		slot = -i - 1;
3537 		spi = slot / BPF_REG_SIZE;
3538 		if (state->allocated_stack <= slot)
3539 			goto err;
3540 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3541 		if (*stype == STACK_MISC)
3542 			goto mark;
3543 		if (*stype == STACK_ZERO) {
3544 			/* helper can write anything into the stack */
3545 			*stype = STACK_MISC;
3546 			goto mark;
3547 		}
3548 
3549 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3550 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
3551 			goto mark;
3552 
3553 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3554 		    state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
3555 			__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
3556 			for (j = 0; j < BPF_REG_SIZE; j++)
3557 				state->stack[spi].slot_type[j] = STACK_MISC;
3558 			goto mark;
3559 		}
3560 
3561 err:
3562 		if (tnum_is_const(reg->var_off)) {
3563 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3564 				min_off, i - min_off, access_size);
3565 		} else {
3566 			char tn_buf[48];
3567 
3568 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3569 			verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3570 				tn_buf, i - min_off, access_size);
3571 		}
3572 		return -EACCES;
3573 mark:
3574 		/* reading any byte out of 8-byte 'spill_slot' will cause
3575 		 * the whole slot to be marked as 'read'
3576 		 */
3577 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
3578 			      state->stack[spi].spilled_ptr.parent,
3579 			      REG_LIVE_READ64);
3580 	}
3581 	return update_stack_depth(env, state, min_off);
3582 }
3583 
3584 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3585 				   int access_size, bool zero_size_allowed,
3586 				   struct bpf_call_arg_meta *meta)
3587 {
3588 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3589 
3590 	switch (reg->type) {
3591 	case PTR_TO_PACKET:
3592 	case PTR_TO_PACKET_META:
3593 		return check_packet_access(env, regno, reg->off, access_size,
3594 					   zero_size_allowed);
3595 	case PTR_TO_MAP_VALUE:
3596 		if (check_map_access_type(env, regno, reg->off, access_size,
3597 					  meta && meta->raw_mode ? BPF_WRITE :
3598 					  BPF_READ))
3599 			return -EACCES;
3600 		return check_map_access(env, regno, reg->off, access_size,
3601 					zero_size_allowed);
3602 	case PTR_TO_MEM:
3603 		return check_mem_region_access(env, regno, reg->off,
3604 					       access_size, reg->mem_size,
3605 					       zero_size_allowed);
3606 	default: /* scalar_value|ptr_to_stack or invalid ptr */
3607 		return check_stack_boundary(env, regno, access_size,
3608 					    zero_size_allowed, meta);
3609 	}
3610 }
3611 
3612 /* Implementation details:
3613  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3614  * Two bpf_map_lookups (even with the same key) will have different reg->id.
3615  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3616  * value_or_null->value transition, since the verifier only cares about
3617  * the range of access to valid map value pointer and doesn't care about actual
3618  * address of the map element.
3619  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3620  * reg->id > 0 after value_or_null->value transition. By doing so
3621  * two bpf_map_lookups will be considered two different pointers that
3622  * point to different bpf_spin_locks.
3623  * The verifier allows taking only one bpf_spin_lock at a time to avoid
3624  * dead-locks.
3625  * Since only one bpf_spin_lock is allowed the checks are simpler than
3626  * reg_is_refcounted() logic. The verifier needs to remember only
3627  * one spin_lock instead of array of acquired_refs.
3628  * cur_state->active_spin_lock remembers which map value element got locked
3629  * and clears it after bpf_spin_unlock.
3630  */
3631 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3632 			     bool is_lock)
3633 {
3634 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3635 	struct bpf_verifier_state *cur = env->cur_state;
3636 	bool is_const = tnum_is_const(reg->var_off);
3637 	struct bpf_map *map = reg->map_ptr;
3638 	u64 val = reg->var_off.value;
3639 
3640 	if (reg->type != PTR_TO_MAP_VALUE) {
3641 		verbose(env, "R%d is not a pointer to map_value\n", regno);
3642 		return -EINVAL;
3643 	}
3644 	if (!is_const) {
3645 		verbose(env,
3646 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3647 			regno);
3648 		return -EINVAL;
3649 	}
3650 	if (!map->btf) {
3651 		verbose(env,
3652 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
3653 			map->name);
3654 		return -EINVAL;
3655 	}
3656 	if (!map_value_has_spin_lock(map)) {
3657 		if (map->spin_lock_off == -E2BIG)
3658 			verbose(env,
3659 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
3660 				map->name);
3661 		else if (map->spin_lock_off == -ENOENT)
3662 			verbose(env,
3663 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
3664 				map->name);
3665 		else
3666 			verbose(env,
3667 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3668 				map->name);
3669 		return -EINVAL;
3670 	}
3671 	if (map->spin_lock_off != val + reg->off) {
3672 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3673 			val + reg->off);
3674 		return -EINVAL;
3675 	}
3676 	if (is_lock) {
3677 		if (cur->active_spin_lock) {
3678 			verbose(env,
3679 				"Locking two bpf_spin_locks are not allowed\n");
3680 			return -EINVAL;
3681 		}
3682 		cur->active_spin_lock = reg->id;
3683 	} else {
3684 		if (!cur->active_spin_lock) {
3685 			verbose(env, "bpf_spin_unlock without taking a lock\n");
3686 			return -EINVAL;
3687 		}
3688 		if (cur->active_spin_lock != reg->id) {
3689 			verbose(env, "bpf_spin_unlock of different lock\n");
3690 			return -EINVAL;
3691 		}
3692 		cur->active_spin_lock = 0;
3693 	}
3694 	return 0;
3695 }
3696 
3697 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3698 {
3699 	return type == ARG_PTR_TO_MEM ||
3700 	       type == ARG_PTR_TO_MEM_OR_NULL ||
3701 	       type == ARG_PTR_TO_UNINIT_MEM;
3702 }
3703 
3704 static bool arg_type_is_mem_size(enum bpf_arg_type type)
3705 {
3706 	return type == ARG_CONST_SIZE ||
3707 	       type == ARG_CONST_SIZE_OR_ZERO;
3708 }
3709 
3710 static bool arg_type_is_alloc_mem_ptr(enum bpf_arg_type type)
3711 {
3712 	return type == ARG_PTR_TO_ALLOC_MEM ||
3713 	       type == ARG_PTR_TO_ALLOC_MEM_OR_NULL;
3714 }
3715 
3716 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
3717 {
3718 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
3719 }
3720 
3721 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3722 {
3723 	return type == ARG_PTR_TO_INT ||
3724 	       type == ARG_PTR_TO_LONG;
3725 }
3726 
3727 static int int_ptr_type_to_size(enum bpf_arg_type type)
3728 {
3729 	if (type == ARG_PTR_TO_INT)
3730 		return sizeof(u32);
3731 	else if (type == ARG_PTR_TO_LONG)
3732 		return sizeof(u64);
3733 
3734 	return -EINVAL;
3735 }
3736 
3737 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
3738 			  enum bpf_arg_type arg_type,
3739 			  struct bpf_call_arg_meta *meta)
3740 {
3741 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3742 	enum bpf_reg_type expected_type, type = reg->type;
3743 	int err = 0;
3744 
3745 	if (arg_type == ARG_DONTCARE)
3746 		return 0;
3747 
3748 	err = check_reg_arg(env, regno, SRC_OP);
3749 	if (err)
3750 		return err;
3751 
3752 	if (arg_type == ARG_ANYTHING) {
3753 		if (is_pointer_value(env, regno)) {
3754 			verbose(env, "R%d leaks addr into helper function\n",
3755 				regno);
3756 			return -EACCES;
3757 		}
3758 		return 0;
3759 	}
3760 
3761 	if (type_is_pkt_pointer(type) &&
3762 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
3763 		verbose(env, "helper access to the packet is not allowed\n");
3764 		return -EACCES;
3765 	}
3766 
3767 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
3768 	    arg_type == ARG_PTR_TO_MAP_VALUE ||
3769 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3770 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
3771 		expected_type = PTR_TO_STACK;
3772 		if (register_is_null(reg) &&
3773 		    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
3774 			/* final test in check_stack_boundary() */;
3775 		else if (!type_is_pkt_pointer(type) &&
3776 			 type != PTR_TO_MAP_VALUE &&
3777 			 type != expected_type)
3778 			goto err_type;
3779 	} else if (arg_type == ARG_CONST_SIZE ||
3780 		   arg_type == ARG_CONST_SIZE_OR_ZERO ||
3781 		   arg_type == ARG_CONST_ALLOC_SIZE_OR_ZERO) {
3782 		expected_type = SCALAR_VALUE;
3783 		if (type != expected_type)
3784 			goto err_type;
3785 	} else if (arg_type == ARG_CONST_MAP_PTR) {
3786 		expected_type = CONST_PTR_TO_MAP;
3787 		if (type != expected_type)
3788 			goto err_type;
3789 	} else if (arg_type == ARG_PTR_TO_CTX ||
3790 		   arg_type == ARG_PTR_TO_CTX_OR_NULL) {
3791 		expected_type = PTR_TO_CTX;
3792 		if (!(register_is_null(reg) &&
3793 		      arg_type == ARG_PTR_TO_CTX_OR_NULL)) {
3794 			if (type != expected_type)
3795 				goto err_type;
3796 			err = check_ctx_reg(env, reg, regno);
3797 			if (err < 0)
3798 				return err;
3799 		}
3800 	} else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
3801 		expected_type = PTR_TO_SOCK_COMMON;
3802 		/* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3803 		if (!type_is_sk_pointer(type))
3804 			goto err_type;
3805 		if (reg->ref_obj_id) {
3806 			if (meta->ref_obj_id) {
3807 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3808 					regno, reg->ref_obj_id,
3809 					meta->ref_obj_id);
3810 				return -EFAULT;
3811 			}
3812 			meta->ref_obj_id = reg->ref_obj_id;
3813 		}
3814 	} else if (arg_type == ARG_PTR_TO_SOCKET) {
3815 		expected_type = PTR_TO_SOCKET;
3816 		if (type != expected_type)
3817 			goto err_type;
3818 	} else if (arg_type == ARG_PTR_TO_BTF_ID) {
3819 		expected_type = PTR_TO_BTF_ID;
3820 		if (type != expected_type)
3821 			goto err_type;
3822 		if (reg->btf_id != meta->btf_id) {
3823 			verbose(env, "Helper has type %s got %s in R%d\n",
3824 				kernel_type_name(meta->btf_id),
3825 				kernel_type_name(reg->btf_id), regno);
3826 
3827 			return -EACCES;
3828 		}
3829 		if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) {
3830 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
3831 				regno);
3832 			return -EACCES;
3833 		}
3834 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
3835 		if (meta->func_id == BPF_FUNC_spin_lock) {
3836 			if (process_spin_lock(env, regno, true))
3837 				return -EACCES;
3838 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
3839 			if (process_spin_lock(env, regno, false))
3840 				return -EACCES;
3841 		} else {
3842 			verbose(env, "verifier internal error\n");
3843 			return -EFAULT;
3844 		}
3845 	} else if (arg_type_is_mem_ptr(arg_type)) {
3846 		expected_type = PTR_TO_STACK;
3847 		/* One exception here. In case function allows for NULL to be
3848 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
3849 		 * happens during stack boundary checking.
3850 		 */
3851 		if (register_is_null(reg) &&
3852 		    (arg_type == ARG_PTR_TO_MEM_OR_NULL ||
3853 		     arg_type == ARG_PTR_TO_ALLOC_MEM_OR_NULL))
3854 			/* final test in check_stack_boundary() */;
3855 		else if (!type_is_pkt_pointer(type) &&
3856 			 type != PTR_TO_MAP_VALUE &&
3857 			 type != PTR_TO_MEM &&
3858 			 type != expected_type)
3859 			goto err_type;
3860 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
3861 	} else if (arg_type_is_alloc_mem_ptr(arg_type)) {
3862 		expected_type = PTR_TO_MEM;
3863 		if (register_is_null(reg) &&
3864 		    arg_type == ARG_PTR_TO_ALLOC_MEM_OR_NULL)
3865 			/* final test in check_stack_boundary() */;
3866 		else if (type != expected_type)
3867 			goto err_type;
3868 		if (meta->ref_obj_id) {
3869 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3870 				regno, reg->ref_obj_id,
3871 				meta->ref_obj_id);
3872 			return -EFAULT;
3873 		}
3874 		meta->ref_obj_id = reg->ref_obj_id;
3875 	} else if (arg_type_is_int_ptr(arg_type)) {
3876 		expected_type = PTR_TO_STACK;
3877 		if (!type_is_pkt_pointer(type) &&
3878 		    type != PTR_TO_MAP_VALUE &&
3879 		    type != expected_type)
3880 			goto err_type;
3881 	} else {
3882 		verbose(env, "unsupported arg_type %d\n", arg_type);
3883 		return -EFAULT;
3884 	}
3885 
3886 	if (arg_type == ARG_CONST_MAP_PTR) {
3887 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3888 		meta->map_ptr = reg->map_ptr;
3889 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
3890 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
3891 		 * check that [key, key + map->key_size) are within
3892 		 * stack limits and initialized
3893 		 */
3894 		if (!meta->map_ptr) {
3895 			/* in function declaration map_ptr must come before
3896 			 * map_key, so that it's verified and known before
3897 			 * we have to check map_key here. Otherwise it means
3898 			 * that kernel subsystem misconfigured verifier
3899 			 */
3900 			verbose(env, "invalid map_ptr to access map->key\n");
3901 			return -EACCES;
3902 		}
3903 		err = check_helper_mem_access(env, regno,
3904 					      meta->map_ptr->key_size, false,
3905 					      NULL);
3906 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
3907 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
3908 		    !register_is_null(reg)) ||
3909 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
3910 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
3911 		 * check [value, value + map->value_size) validity
3912 		 */
3913 		if (!meta->map_ptr) {
3914 			/* kernel subsystem misconfigured verifier */
3915 			verbose(env, "invalid map_ptr to access map->value\n");
3916 			return -EACCES;
3917 		}
3918 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
3919 		err = check_helper_mem_access(env, regno,
3920 					      meta->map_ptr->value_size, false,
3921 					      meta);
3922 	} else if (arg_type_is_mem_size(arg_type)) {
3923 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
3924 
3925 		/* This is used to refine r0 return value bounds for helpers
3926 		 * that enforce this value as an upper bound on return values.
3927 		 * See do_refine_retval_range() for helpers that can refine
3928 		 * the return value. C type of helper is u32 so we pull register
3929 		 * bound from umax_value however, if negative verifier errors
3930 		 * out. Only upper bounds can be learned because retval is an
3931 		 * int type and negative retvals are allowed.
3932 		 */
3933 		meta->msize_max_value = reg->umax_value;
3934 
3935 		/* The register is SCALAR_VALUE; the access check
3936 		 * happens using its boundaries.
3937 		 */
3938 		if (!tnum_is_const(reg->var_off))
3939 			/* For unprivileged variable accesses, disable raw
3940 			 * mode so that the program is required to
3941 			 * initialize all the memory that the helper could
3942 			 * just partially fill up.
3943 			 */
3944 			meta = NULL;
3945 
3946 		if (reg->smin_value < 0) {
3947 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
3948 				regno);
3949 			return -EACCES;
3950 		}
3951 
3952 		if (reg->umin_value == 0) {
3953 			err = check_helper_mem_access(env, regno - 1, 0,
3954 						      zero_size_allowed,
3955 						      meta);
3956 			if (err)
3957 				return err;
3958 		}
3959 
3960 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
3961 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
3962 				regno);
3963 			return -EACCES;
3964 		}
3965 		err = check_helper_mem_access(env, regno - 1,
3966 					      reg->umax_value,
3967 					      zero_size_allowed, meta);
3968 		if (!err)
3969 			err = mark_chain_precision(env, regno);
3970 	} else if (arg_type_is_alloc_size(arg_type)) {
3971 		if (!tnum_is_const(reg->var_off)) {
3972 			verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n",
3973 				regno);
3974 			return -EACCES;
3975 		}
3976 		meta->mem_size = reg->var_off.value;
3977 	} else if (arg_type_is_int_ptr(arg_type)) {
3978 		int size = int_ptr_type_to_size(arg_type);
3979 
3980 		err = check_helper_mem_access(env, regno, size, false, meta);
3981 		if (err)
3982 			return err;
3983 		err = check_ptr_alignment(env, reg, 0, size, true);
3984 	}
3985 
3986 	return err;
3987 err_type:
3988 	verbose(env, "R%d type=%s expected=%s\n", regno,
3989 		reg_type_str[type], reg_type_str[expected_type]);
3990 	return -EACCES;
3991 }
3992 
3993 static int check_map_func_compatibility(struct bpf_verifier_env *env,
3994 					struct bpf_map *map, int func_id)
3995 {
3996 	if (!map)
3997 		return 0;
3998 
3999 	/* We need a two way check, first is from map perspective ... */
4000 	switch (map->map_type) {
4001 	case BPF_MAP_TYPE_PROG_ARRAY:
4002 		if (func_id != BPF_FUNC_tail_call)
4003 			goto error;
4004 		break;
4005 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4006 		if (func_id != BPF_FUNC_perf_event_read &&
4007 		    func_id != BPF_FUNC_perf_event_output &&
4008 		    func_id != BPF_FUNC_skb_output &&
4009 		    func_id != BPF_FUNC_perf_event_read_value &&
4010 		    func_id != BPF_FUNC_xdp_output)
4011 			goto error;
4012 		break;
4013 	case BPF_MAP_TYPE_RINGBUF:
4014 		if (func_id != BPF_FUNC_ringbuf_output &&
4015 		    func_id != BPF_FUNC_ringbuf_reserve &&
4016 		    func_id != BPF_FUNC_ringbuf_submit &&
4017 		    func_id != BPF_FUNC_ringbuf_discard &&
4018 		    func_id != BPF_FUNC_ringbuf_query)
4019 			goto error;
4020 		break;
4021 	case BPF_MAP_TYPE_STACK_TRACE:
4022 		if (func_id != BPF_FUNC_get_stackid)
4023 			goto error;
4024 		break;
4025 	case BPF_MAP_TYPE_CGROUP_ARRAY:
4026 		if (func_id != BPF_FUNC_skb_under_cgroup &&
4027 		    func_id != BPF_FUNC_current_task_under_cgroup)
4028 			goto error;
4029 		break;
4030 	case BPF_MAP_TYPE_CGROUP_STORAGE:
4031 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
4032 		if (func_id != BPF_FUNC_get_local_storage)
4033 			goto error;
4034 		break;
4035 	case BPF_MAP_TYPE_DEVMAP:
4036 	case BPF_MAP_TYPE_DEVMAP_HASH:
4037 		if (func_id != BPF_FUNC_redirect_map &&
4038 		    func_id != BPF_FUNC_map_lookup_elem)
4039 			goto error;
4040 		break;
4041 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
4042 	 * appear.
4043 	 */
4044 	case BPF_MAP_TYPE_CPUMAP:
4045 		if (func_id != BPF_FUNC_redirect_map)
4046 			goto error;
4047 		break;
4048 	case BPF_MAP_TYPE_XSKMAP:
4049 		if (func_id != BPF_FUNC_redirect_map &&
4050 		    func_id != BPF_FUNC_map_lookup_elem)
4051 			goto error;
4052 		break;
4053 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4054 	case BPF_MAP_TYPE_HASH_OF_MAPS:
4055 		if (func_id != BPF_FUNC_map_lookup_elem)
4056 			goto error;
4057 		break;
4058 	case BPF_MAP_TYPE_SOCKMAP:
4059 		if (func_id != BPF_FUNC_sk_redirect_map &&
4060 		    func_id != BPF_FUNC_sock_map_update &&
4061 		    func_id != BPF_FUNC_map_delete_elem &&
4062 		    func_id != BPF_FUNC_msg_redirect_map &&
4063 		    func_id != BPF_FUNC_sk_select_reuseport &&
4064 		    func_id != BPF_FUNC_map_lookup_elem)
4065 			goto error;
4066 		break;
4067 	case BPF_MAP_TYPE_SOCKHASH:
4068 		if (func_id != BPF_FUNC_sk_redirect_hash &&
4069 		    func_id != BPF_FUNC_sock_hash_update &&
4070 		    func_id != BPF_FUNC_map_delete_elem &&
4071 		    func_id != BPF_FUNC_msg_redirect_hash &&
4072 		    func_id != BPF_FUNC_sk_select_reuseport &&
4073 		    func_id != BPF_FUNC_map_lookup_elem)
4074 			goto error;
4075 		break;
4076 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4077 		if (func_id != BPF_FUNC_sk_select_reuseport)
4078 			goto error;
4079 		break;
4080 	case BPF_MAP_TYPE_QUEUE:
4081 	case BPF_MAP_TYPE_STACK:
4082 		if (func_id != BPF_FUNC_map_peek_elem &&
4083 		    func_id != BPF_FUNC_map_pop_elem &&
4084 		    func_id != BPF_FUNC_map_push_elem)
4085 			goto error;
4086 		break;
4087 	case BPF_MAP_TYPE_SK_STORAGE:
4088 		if (func_id != BPF_FUNC_sk_storage_get &&
4089 		    func_id != BPF_FUNC_sk_storage_delete)
4090 			goto error;
4091 		break;
4092 	default:
4093 		break;
4094 	}
4095 
4096 	/* ... and second from the function itself. */
4097 	switch (func_id) {
4098 	case BPF_FUNC_tail_call:
4099 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4100 			goto error;
4101 		if (env->subprog_cnt > 1) {
4102 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
4103 			return -EINVAL;
4104 		}
4105 		break;
4106 	case BPF_FUNC_perf_event_read:
4107 	case BPF_FUNC_perf_event_output:
4108 	case BPF_FUNC_perf_event_read_value:
4109 	case BPF_FUNC_skb_output:
4110 	case BPF_FUNC_xdp_output:
4111 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4112 			goto error;
4113 		break;
4114 	case BPF_FUNC_get_stackid:
4115 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4116 			goto error;
4117 		break;
4118 	case BPF_FUNC_current_task_under_cgroup:
4119 	case BPF_FUNC_skb_under_cgroup:
4120 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4121 			goto error;
4122 		break;
4123 	case BPF_FUNC_redirect_map:
4124 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
4125 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
4126 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
4127 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
4128 			goto error;
4129 		break;
4130 	case BPF_FUNC_sk_redirect_map:
4131 	case BPF_FUNC_msg_redirect_map:
4132 	case BPF_FUNC_sock_map_update:
4133 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
4134 			goto error;
4135 		break;
4136 	case BPF_FUNC_sk_redirect_hash:
4137 	case BPF_FUNC_msg_redirect_hash:
4138 	case BPF_FUNC_sock_hash_update:
4139 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
4140 			goto error;
4141 		break;
4142 	case BPF_FUNC_get_local_storage:
4143 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
4144 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
4145 			goto error;
4146 		break;
4147 	case BPF_FUNC_sk_select_reuseport:
4148 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
4149 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
4150 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
4151 			goto error;
4152 		break;
4153 	case BPF_FUNC_map_peek_elem:
4154 	case BPF_FUNC_map_pop_elem:
4155 	case BPF_FUNC_map_push_elem:
4156 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4157 		    map->map_type != BPF_MAP_TYPE_STACK)
4158 			goto error;
4159 		break;
4160 	case BPF_FUNC_sk_storage_get:
4161 	case BPF_FUNC_sk_storage_delete:
4162 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4163 			goto error;
4164 		break;
4165 	default:
4166 		break;
4167 	}
4168 
4169 	return 0;
4170 error:
4171 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
4172 		map->map_type, func_id_name(func_id), func_id);
4173 	return -EINVAL;
4174 }
4175 
4176 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
4177 {
4178 	int count = 0;
4179 
4180 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
4181 		count++;
4182 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
4183 		count++;
4184 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
4185 		count++;
4186 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
4187 		count++;
4188 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
4189 		count++;
4190 
4191 	/* We only support one arg being in raw mode at the moment,
4192 	 * which is sufficient for the helper functions we have
4193 	 * right now.
4194 	 */
4195 	return count <= 1;
4196 }
4197 
4198 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4199 				    enum bpf_arg_type arg_next)
4200 {
4201 	return (arg_type_is_mem_ptr(arg_curr) &&
4202 	        !arg_type_is_mem_size(arg_next)) ||
4203 	       (!arg_type_is_mem_ptr(arg_curr) &&
4204 		arg_type_is_mem_size(arg_next));
4205 }
4206 
4207 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
4208 {
4209 	/* bpf_xxx(..., buf, len) call will access 'len'
4210 	 * bytes from memory 'buf'. Both arg types need
4211 	 * to be paired, so make sure there's no buggy
4212 	 * helper function specification.
4213 	 */
4214 	if (arg_type_is_mem_size(fn->arg1_type) ||
4215 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
4216 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
4217 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
4218 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
4219 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
4220 		return false;
4221 
4222 	return true;
4223 }
4224 
4225 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
4226 {
4227 	int count = 0;
4228 
4229 	if (arg_type_may_be_refcounted(fn->arg1_type))
4230 		count++;
4231 	if (arg_type_may_be_refcounted(fn->arg2_type))
4232 		count++;
4233 	if (arg_type_may_be_refcounted(fn->arg3_type))
4234 		count++;
4235 	if (arg_type_may_be_refcounted(fn->arg4_type))
4236 		count++;
4237 	if (arg_type_may_be_refcounted(fn->arg5_type))
4238 		count++;
4239 
4240 	/* A reference acquiring function cannot acquire
4241 	 * another refcounted ptr.
4242 	 */
4243 	if (may_be_acquire_function(func_id) && count)
4244 		return false;
4245 
4246 	/* We only support one arg being unreferenced at the moment,
4247 	 * which is sufficient for the helper functions we have right now.
4248 	 */
4249 	return count <= 1;
4250 }
4251 
4252 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
4253 {
4254 	return check_raw_mode_ok(fn) &&
4255 	       check_arg_pair_ok(fn) &&
4256 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
4257 }
4258 
4259 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
4260  * are now invalid, so turn them into unknown SCALAR_VALUE.
4261  */
4262 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
4263 				     struct bpf_func_state *state)
4264 {
4265 	struct bpf_reg_state *regs = state->regs, *reg;
4266 	int i;
4267 
4268 	for (i = 0; i < MAX_BPF_REG; i++)
4269 		if (reg_is_pkt_pointer_any(&regs[i]))
4270 			mark_reg_unknown(env, regs, i);
4271 
4272 	bpf_for_each_spilled_reg(i, state, reg) {
4273 		if (!reg)
4274 			continue;
4275 		if (reg_is_pkt_pointer_any(reg))
4276 			__mark_reg_unknown(env, reg);
4277 	}
4278 }
4279 
4280 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
4281 {
4282 	struct bpf_verifier_state *vstate = env->cur_state;
4283 	int i;
4284 
4285 	for (i = 0; i <= vstate->curframe; i++)
4286 		__clear_all_pkt_pointers(env, vstate->frame[i]);
4287 }
4288 
4289 static void release_reg_references(struct bpf_verifier_env *env,
4290 				   struct bpf_func_state *state,
4291 				   int ref_obj_id)
4292 {
4293 	struct bpf_reg_state *regs = state->regs, *reg;
4294 	int i;
4295 
4296 	for (i = 0; i < MAX_BPF_REG; i++)
4297 		if (regs[i].ref_obj_id == ref_obj_id)
4298 			mark_reg_unknown(env, regs, i);
4299 
4300 	bpf_for_each_spilled_reg(i, state, reg) {
4301 		if (!reg)
4302 			continue;
4303 		if (reg->ref_obj_id == ref_obj_id)
4304 			__mark_reg_unknown(env, reg);
4305 	}
4306 }
4307 
4308 /* The pointer with the specified id has released its reference to kernel
4309  * resources. Identify all copies of the same pointer and clear the reference.
4310  */
4311 static int release_reference(struct bpf_verifier_env *env,
4312 			     int ref_obj_id)
4313 {
4314 	struct bpf_verifier_state *vstate = env->cur_state;
4315 	int err;
4316 	int i;
4317 
4318 	err = release_reference_state(cur_func(env), ref_obj_id);
4319 	if (err)
4320 		return err;
4321 
4322 	for (i = 0; i <= vstate->curframe; i++)
4323 		release_reg_references(env, vstate->frame[i], ref_obj_id);
4324 
4325 	return 0;
4326 }
4327 
4328 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
4329 				    struct bpf_reg_state *regs)
4330 {
4331 	int i;
4332 
4333 	/* after the call registers r0 - r5 were scratched */
4334 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4335 		mark_reg_not_init(env, regs, caller_saved[i]);
4336 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4337 	}
4338 }
4339 
4340 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
4341 			   int *insn_idx)
4342 {
4343 	struct bpf_verifier_state *state = env->cur_state;
4344 	struct bpf_func_info_aux *func_info_aux;
4345 	struct bpf_func_state *caller, *callee;
4346 	int i, err, subprog, target_insn;
4347 	bool is_global = false;
4348 
4349 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
4350 		verbose(env, "the call stack of %d frames is too deep\n",
4351 			state->curframe + 2);
4352 		return -E2BIG;
4353 	}
4354 
4355 	target_insn = *insn_idx + insn->imm;
4356 	subprog = find_subprog(env, target_insn + 1);
4357 	if (subprog < 0) {
4358 		verbose(env, "verifier bug. No program starts at insn %d\n",
4359 			target_insn + 1);
4360 		return -EFAULT;
4361 	}
4362 
4363 	caller = state->frame[state->curframe];
4364 	if (state->frame[state->curframe + 1]) {
4365 		verbose(env, "verifier bug. Frame %d already allocated\n",
4366 			state->curframe + 1);
4367 		return -EFAULT;
4368 	}
4369 
4370 	func_info_aux = env->prog->aux->func_info_aux;
4371 	if (func_info_aux)
4372 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
4373 	err = btf_check_func_arg_match(env, subprog, caller->regs);
4374 	if (err == -EFAULT)
4375 		return err;
4376 	if (is_global) {
4377 		if (err) {
4378 			verbose(env, "Caller passes invalid args into func#%d\n",
4379 				subprog);
4380 			return err;
4381 		} else {
4382 			if (env->log.level & BPF_LOG_LEVEL)
4383 				verbose(env,
4384 					"Func#%d is global and valid. Skipping.\n",
4385 					subprog);
4386 			clear_caller_saved_regs(env, caller->regs);
4387 
4388 			/* All global functions return SCALAR_VALUE */
4389 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
4390 
4391 			/* continue with next insn after call */
4392 			return 0;
4393 		}
4394 	}
4395 
4396 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
4397 	if (!callee)
4398 		return -ENOMEM;
4399 	state->frame[state->curframe + 1] = callee;
4400 
4401 	/* callee cannot access r0, r6 - r9 for reading and has to write
4402 	 * into its own stack before reading from it.
4403 	 * callee can read/write into caller's stack
4404 	 */
4405 	init_func_state(env, callee,
4406 			/* remember the callsite, it will be used by bpf_exit */
4407 			*insn_idx /* callsite */,
4408 			state->curframe + 1 /* frameno within this callchain */,
4409 			subprog /* subprog number within this prog */);
4410 
4411 	/* Transfer references to the callee */
4412 	err = transfer_reference_state(callee, caller);
4413 	if (err)
4414 		return err;
4415 
4416 	/* copy r1 - r5 args that callee can access.  The copy includes parent
4417 	 * pointers, which connects us up to the liveness chain
4418 	 */
4419 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4420 		callee->regs[i] = caller->regs[i];
4421 
4422 	clear_caller_saved_regs(env, caller->regs);
4423 
4424 	/* only increment it after check_reg_arg() finished */
4425 	state->curframe++;
4426 
4427 	/* and go analyze first insn of the callee */
4428 	*insn_idx = target_insn;
4429 
4430 	if (env->log.level & BPF_LOG_LEVEL) {
4431 		verbose(env, "caller:\n");
4432 		print_verifier_state(env, caller);
4433 		verbose(env, "callee:\n");
4434 		print_verifier_state(env, callee);
4435 	}
4436 	return 0;
4437 }
4438 
4439 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4440 {
4441 	struct bpf_verifier_state *state = env->cur_state;
4442 	struct bpf_func_state *caller, *callee;
4443 	struct bpf_reg_state *r0;
4444 	int err;
4445 
4446 	callee = state->frame[state->curframe];
4447 	r0 = &callee->regs[BPF_REG_0];
4448 	if (r0->type == PTR_TO_STACK) {
4449 		/* technically it's ok to return caller's stack pointer
4450 		 * (or caller's caller's pointer) back to the caller,
4451 		 * since these pointers are valid. Only current stack
4452 		 * pointer will be invalid as soon as function exits,
4453 		 * but let's be conservative
4454 		 */
4455 		verbose(env, "cannot return stack pointer to the caller\n");
4456 		return -EINVAL;
4457 	}
4458 
4459 	state->curframe--;
4460 	caller = state->frame[state->curframe];
4461 	/* return to the caller whatever r0 had in the callee */
4462 	caller->regs[BPF_REG_0] = *r0;
4463 
4464 	/* Transfer references to the caller */
4465 	err = transfer_reference_state(caller, callee);
4466 	if (err)
4467 		return err;
4468 
4469 	*insn_idx = callee->callsite + 1;
4470 	if (env->log.level & BPF_LOG_LEVEL) {
4471 		verbose(env, "returning from callee:\n");
4472 		print_verifier_state(env, callee);
4473 		verbose(env, "to caller at %d:\n", *insn_idx);
4474 		print_verifier_state(env, caller);
4475 	}
4476 	/* clear everything in the callee */
4477 	free_func_state(callee);
4478 	state->frame[state->curframe + 1] = NULL;
4479 	return 0;
4480 }
4481 
4482 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4483 				   int func_id,
4484 				   struct bpf_call_arg_meta *meta)
4485 {
4486 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4487 
4488 	if (ret_type != RET_INTEGER ||
4489 	    (func_id != BPF_FUNC_get_stack &&
4490 	     func_id != BPF_FUNC_probe_read_str &&
4491 	     func_id != BPF_FUNC_probe_read_kernel_str &&
4492 	     func_id != BPF_FUNC_probe_read_user_str))
4493 		return;
4494 
4495 	ret_reg->smax_value = meta->msize_max_value;
4496 	ret_reg->s32_max_value = meta->msize_max_value;
4497 	__reg_deduce_bounds(ret_reg);
4498 	__reg_bound_offset(ret_reg);
4499 	__update_reg_bounds(ret_reg);
4500 }
4501 
4502 static int
4503 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4504 		int func_id, int insn_idx)
4505 {
4506 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4507 	struct bpf_map *map = meta->map_ptr;
4508 
4509 	if (func_id != BPF_FUNC_tail_call &&
4510 	    func_id != BPF_FUNC_map_lookup_elem &&
4511 	    func_id != BPF_FUNC_map_update_elem &&
4512 	    func_id != BPF_FUNC_map_delete_elem &&
4513 	    func_id != BPF_FUNC_map_push_elem &&
4514 	    func_id != BPF_FUNC_map_pop_elem &&
4515 	    func_id != BPF_FUNC_map_peek_elem)
4516 		return 0;
4517 
4518 	if (map == NULL) {
4519 		verbose(env, "kernel subsystem misconfigured verifier\n");
4520 		return -EINVAL;
4521 	}
4522 
4523 	/* In case of read-only, some additional restrictions
4524 	 * need to be applied in order to prevent altering the
4525 	 * state of the map from program side.
4526 	 */
4527 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4528 	    (func_id == BPF_FUNC_map_delete_elem ||
4529 	     func_id == BPF_FUNC_map_update_elem ||
4530 	     func_id == BPF_FUNC_map_push_elem ||
4531 	     func_id == BPF_FUNC_map_pop_elem)) {
4532 		verbose(env, "write into map forbidden\n");
4533 		return -EACCES;
4534 	}
4535 
4536 	if (!BPF_MAP_PTR(aux->map_ptr_state))
4537 		bpf_map_ptr_store(aux, meta->map_ptr,
4538 				  !meta->map_ptr->bypass_spec_v1);
4539 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
4540 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
4541 				  !meta->map_ptr->bypass_spec_v1);
4542 	return 0;
4543 }
4544 
4545 static int
4546 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4547 		int func_id, int insn_idx)
4548 {
4549 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4550 	struct bpf_reg_state *regs = cur_regs(env), *reg;
4551 	struct bpf_map *map = meta->map_ptr;
4552 	struct tnum range;
4553 	u64 val;
4554 	int err;
4555 
4556 	if (func_id != BPF_FUNC_tail_call)
4557 		return 0;
4558 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
4559 		verbose(env, "kernel subsystem misconfigured verifier\n");
4560 		return -EINVAL;
4561 	}
4562 
4563 	range = tnum_range(0, map->max_entries - 1);
4564 	reg = &regs[BPF_REG_3];
4565 
4566 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
4567 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4568 		return 0;
4569 	}
4570 
4571 	err = mark_chain_precision(env, BPF_REG_3);
4572 	if (err)
4573 		return err;
4574 
4575 	val = reg->var_off.value;
4576 	if (bpf_map_key_unseen(aux))
4577 		bpf_map_key_store(aux, val);
4578 	else if (!bpf_map_key_poisoned(aux) &&
4579 		  bpf_map_key_immediate(aux) != val)
4580 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4581 	return 0;
4582 }
4583 
4584 static int check_reference_leak(struct bpf_verifier_env *env)
4585 {
4586 	struct bpf_func_state *state = cur_func(env);
4587 	int i;
4588 
4589 	for (i = 0; i < state->acquired_refs; i++) {
4590 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
4591 			state->refs[i].id, state->refs[i].insn_idx);
4592 	}
4593 	return state->acquired_refs ? -EINVAL : 0;
4594 }
4595 
4596 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
4597 {
4598 	const struct bpf_func_proto *fn = NULL;
4599 	struct bpf_reg_state *regs;
4600 	struct bpf_call_arg_meta meta;
4601 	bool changes_data;
4602 	int i, err;
4603 
4604 	/* find function prototype */
4605 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
4606 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
4607 			func_id);
4608 		return -EINVAL;
4609 	}
4610 
4611 	if (env->ops->get_func_proto)
4612 		fn = env->ops->get_func_proto(func_id, env->prog);
4613 	if (!fn) {
4614 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
4615 			func_id);
4616 		return -EINVAL;
4617 	}
4618 
4619 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
4620 	if (!env->prog->gpl_compatible && fn->gpl_only) {
4621 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
4622 		return -EINVAL;
4623 	}
4624 
4625 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
4626 	changes_data = bpf_helper_changes_pkt_data(fn->func);
4627 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
4628 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
4629 			func_id_name(func_id), func_id);
4630 		return -EINVAL;
4631 	}
4632 
4633 	memset(&meta, 0, sizeof(meta));
4634 	meta.pkt_access = fn->pkt_access;
4635 
4636 	err = check_func_proto(fn, func_id);
4637 	if (err) {
4638 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
4639 			func_id_name(func_id), func_id);
4640 		return err;
4641 	}
4642 
4643 	meta.func_id = func_id;
4644 	/* check args */
4645 	for (i = 0; i < 5; i++) {
4646 		err = btf_resolve_helper_id(&env->log, fn, i);
4647 		if (err > 0)
4648 			meta.btf_id = err;
4649 		err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta);
4650 		if (err)
4651 			return err;
4652 	}
4653 
4654 	err = record_func_map(env, &meta, func_id, insn_idx);
4655 	if (err)
4656 		return err;
4657 
4658 	err = record_func_key(env, &meta, func_id, insn_idx);
4659 	if (err)
4660 		return err;
4661 
4662 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
4663 	 * is inferred from register state.
4664 	 */
4665 	for (i = 0; i < meta.access_size; i++) {
4666 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
4667 				       BPF_WRITE, -1, false);
4668 		if (err)
4669 			return err;
4670 	}
4671 
4672 	if (func_id == BPF_FUNC_tail_call) {
4673 		err = check_reference_leak(env);
4674 		if (err) {
4675 			verbose(env, "tail_call would lead to reference leak\n");
4676 			return err;
4677 		}
4678 	} else if (is_release_function(func_id)) {
4679 		err = release_reference(env, meta.ref_obj_id);
4680 		if (err) {
4681 			verbose(env, "func %s#%d reference has not been acquired before\n",
4682 				func_id_name(func_id), func_id);
4683 			return err;
4684 		}
4685 	}
4686 
4687 	regs = cur_regs(env);
4688 
4689 	/* check that flags argument in get_local_storage(map, flags) is 0,
4690 	 * this is required because get_local_storage() can't return an error.
4691 	 */
4692 	if (func_id == BPF_FUNC_get_local_storage &&
4693 	    !register_is_null(&regs[BPF_REG_2])) {
4694 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
4695 		return -EINVAL;
4696 	}
4697 
4698 	/* reset caller saved regs */
4699 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4700 		mark_reg_not_init(env, regs, caller_saved[i]);
4701 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4702 	}
4703 
4704 	/* helper call returns 64-bit value. */
4705 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
4706 
4707 	/* update return register (already marked as written above) */
4708 	if (fn->ret_type == RET_INTEGER) {
4709 		/* sets type to SCALAR_VALUE */
4710 		mark_reg_unknown(env, regs, BPF_REG_0);
4711 	} else if (fn->ret_type == RET_VOID) {
4712 		regs[BPF_REG_0].type = NOT_INIT;
4713 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
4714 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4715 		/* There is no offset yet applied, variable or fixed */
4716 		mark_reg_known_zero(env, regs, BPF_REG_0);
4717 		/* remember map_ptr, so that check_map_access()
4718 		 * can check 'value_size' boundary of memory access
4719 		 * to map element returned from bpf_map_lookup_elem()
4720 		 */
4721 		if (meta.map_ptr == NULL) {
4722 			verbose(env,
4723 				"kernel subsystem misconfigured verifier\n");
4724 			return -EINVAL;
4725 		}
4726 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
4727 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4728 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
4729 			if (map_value_has_spin_lock(meta.map_ptr))
4730 				regs[BPF_REG_0].id = ++env->id_gen;
4731 		} else {
4732 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4733 			regs[BPF_REG_0].id = ++env->id_gen;
4734 		}
4735 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
4736 		mark_reg_known_zero(env, regs, BPF_REG_0);
4737 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
4738 		regs[BPF_REG_0].id = ++env->id_gen;
4739 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
4740 		mark_reg_known_zero(env, regs, BPF_REG_0);
4741 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
4742 		regs[BPF_REG_0].id = ++env->id_gen;
4743 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
4744 		mark_reg_known_zero(env, regs, BPF_REG_0);
4745 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
4746 		regs[BPF_REG_0].id = ++env->id_gen;
4747 	} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
4748 		mark_reg_known_zero(env, regs, BPF_REG_0);
4749 		regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
4750 		regs[BPF_REG_0].id = ++env->id_gen;
4751 		regs[BPF_REG_0].mem_size = meta.mem_size;
4752 	} else {
4753 		verbose(env, "unknown return type %d of func %s#%d\n",
4754 			fn->ret_type, func_id_name(func_id), func_id);
4755 		return -EINVAL;
4756 	}
4757 
4758 	if (is_ptr_cast_function(func_id)) {
4759 		/* For release_reference() */
4760 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
4761 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
4762 		int id = acquire_reference_state(env, insn_idx);
4763 
4764 		if (id < 0)
4765 			return id;
4766 		/* For mark_ptr_or_null_reg() */
4767 		regs[BPF_REG_0].id = id;
4768 		/* For release_reference() */
4769 		regs[BPF_REG_0].ref_obj_id = id;
4770 	}
4771 
4772 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
4773 
4774 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
4775 	if (err)
4776 		return err;
4777 
4778 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
4779 		const char *err_str;
4780 
4781 #ifdef CONFIG_PERF_EVENTS
4782 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
4783 		err_str = "cannot get callchain buffer for func %s#%d\n";
4784 #else
4785 		err = -ENOTSUPP;
4786 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
4787 #endif
4788 		if (err) {
4789 			verbose(env, err_str, func_id_name(func_id), func_id);
4790 			return err;
4791 		}
4792 
4793 		env->prog->has_callchain_buf = true;
4794 	}
4795 
4796 	if (changes_data)
4797 		clear_all_pkt_pointers(env);
4798 	return 0;
4799 }
4800 
4801 static bool signed_add_overflows(s64 a, s64 b)
4802 {
4803 	/* Do the add in u64, where overflow is well-defined */
4804 	s64 res = (s64)((u64)a + (u64)b);
4805 
4806 	if (b < 0)
4807 		return res > a;
4808 	return res < a;
4809 }
4810 
4811 static bool signed_add32_overflows(s64 a, s64 b)
4812 {
4813 	/* Do the add in u32, where overflow is well-defined */
4814 	s32 res = (s32)((u32)a + (u32)b);
4815 
4816 	if (b < 0)
4817 		return res > a;
4818 	return res < a;
4819 }
4820 
4821 static bool signed_sub_overflows(s32 a, s32 b)
4822 {
4823 	/* Do the sub in u64, where overflow is well-defined */
4824 	s64 res = (s64)((u64)a - (u64)b);
4825 
4826 	if (b < 0)
4827 		return res < a;
4828 	return res > a;
4829 }
4830 
4831 static bool signed_sub32_overflows(s32 a, s32 b)
4832 {
4833 	/* Do the sub in u64, where overflow is well-defined */
4834 	s32 res = (s32)((u32)a - (u32)b);
4835 
4836 	if (b < 0)
4837 		return res < a;
4838 	return res > a;
4839 }
4840 
4841 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
4842 				  const struct bpf_reg_state *reg,
4843 				  enum bpf_reg_type type)
4844 {
4845 	bool known = tnum_is_const(reg->var_off);
4846 	s64 val = reg->var_off.value;
4847 	s64 smin = reg->smin_value;
4848 
4849 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
4850 		verbose(env, "math between %s pointer and %lld is not allowed\n",
4851 			reg_type_str[type], val);
4852 		return false;
4853 	}
4854 
4855 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
4856 		verbose(env, "%s pointer offset %d is not allowed\n",
4857 			reg_type_str[type], reg->off);
4858 		return false;
4859 	}
4860 
4861 	if (smin == S64_MIN) {
4862 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
4863 			reg_type_str[type]);
4864 		return false;
4865 	}
4866 
4867 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
4868 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
4869 			smin, reg_type_str[type]);
4870 		return false;
4871 	}
4872 
4873 	return true;
4874 }
4875 
4876 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
4877 {
4878 	return &env->insn_aux_data[env->insn_idx];
4879 }
4880 
4881 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
4882 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
4883 {
4884 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
4885 			    (opcode == BPF_SUB && !off_is_neg);
4886 	u32 off;
4887 
4888 	switch (ptr_reg->type) {
4889 	case PTR_TO_STACK:
4890 		/* Indirect variable offset stack access is prohibited in
4891 		 * unprivileged mode so it's not handled here.
4892 		 */
4893 		off = ptr_reg->off + ptr_reg->var_off.value;
4894 		if (mask_to_left)
4895 			*ptr_limit = MAX_BPF_STACK + off;
4896 		else
4897 			*ptr_limit = -off;
4898 		return 0;
4899 	case PTR_TO_MAP_VALUE:
4900 		if (mask_to_left) {
4901 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
4902 		} else {
4903 			off = ptr_reg->smin_value + ptr_reg->off;
4904 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
4905 		}
4906 		return 0;
4907 	default:
4908 		return -EINVAL;
4909 	}
4910 }
4911 
4912 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
4913 				    const struct bpf_insn *insn)
4914 {
4915 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
4916 }
4917 
4918 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
4919 				       u32 alu_state, u32 alu_limit)
4920 {
4921 	/* If we arrived here from different branches with different
4922 	 * state or limits to sanitize, then this won't work.
4923 	 */
4924 	if (aux->alu_state &&
4925 	    (aux->alu_state != alu_state ||
4926 	     aux->alu_limit != alu_limit))
4927 		return -EACCES;
4928 
4929 	/* Corresponding fixup done in fixup_bpf_calls(). */
4930 	aux->alu_state = alu_state;
4931 	aux->alu_limit = alu_limit;
4932 	return 0;
4933 }
4934 
4935 static int sanitize_val_alu(struct bpf_verifier_env *env,
4936 			    struct bpf_insn *insn)
4937 {
4938 	struct bpf_insn_aux_data *aux = cur_aux(env);
4939 
4940 	if (can_skip_alu_sanitation(env, insn))
4941 		return 0;
4942 
4943 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
4944 }
4945 
4946 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
4947 			    struct bpf_insn *insn,
4948 			    const struct bpf_reg_state *ptr_reg,
4949 			    struct bpf_reg_state *dst_reg,
4950 			    bool off_is_neg)
4951 {
4952 	struct bpf_verifier_state *vstate = env->cur_state;
4953 	struct bpf_insn_aux_data *aux = cur_aux(env);
4954 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
4955 	u8 opcode = BPF_OP(insn->code);
4956 	u32 alu_state, alu_limit;
4957 	struct bpf_reg_state tmp;
4958 	bool ret;
4959 
4960 	if (can_skip_alu_sanitation(env, insn))
4961 		return 0;
4962 
4963 	/* We already marked aux for masking from non-speculative
4964 	 * paths, thus we got here in the first place. We only care
4965 	 * to explore bad access from here.
4966 	 */
4967 	if (vstate->speculative)
4968 		goto do_sim;
4969 
4970 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
4971 	alu_state |= ptr_is_dst_reg ?
4972 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
4973 
4974 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
4975 		return 0;
4976 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
4977 		return -EACCES;
4978 do_sim:
4979 	/* Simulate and find potential out-of-bounds access under
4980 	 * speculative execution from truncation as a result of
4981 	 * masking when off was not within expected range. If off
4982 	 * sits in dst, then we temporarily need to move ptr there
4983 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
4984 	 * for cases where we use K-based arithmetic in one direction
4985 	 * and truncated reg-based in the other in order to explore
4986 	 * bad access.
4987 	 */
4988 	if (!ptr_is_dst_reg) {
4989 		tmp = *dst_reg;
4990 		*dst_reg = *ptr_reg;
4991 	}
4992 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
4993 	if (!ptr_is_dst_reg && ret)
4994 		*dst_reg = tmp;
4995 	return !ret ? -EFAULT : 0;
4996 }
4997 
4998 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
4999  * Caller should also handle BPF_MOV case separately.
5000  * If we return -EACCES, caller may want to try again treating pointer as a
5001  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
5002  */
5003 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
5004 				   struct bpf_insn *insn,
5005 				   const struct bpf_reg_state *ptr_reg,
5006 				   const struct bpf_reg_state *off_reg)
5007 {
5008 	struct bpf_verifier_state *vstate = env->cur_state;
5009 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5010 	struct bpf_reg_state *regs = state->regs, *dst_reg;
5011 	bool known = tnum_is_const(off_reg->var_off);
5012 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
5013 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
5014 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
5015 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
5016 	u32 dst = insn->dst_reg, src = insn->src_reg;
5017 	u8 opcode = BPF_OP(insn->code);
5018 	int ret;
5019 
5020 	dst_reg = &regs[dst];
5021 
5022 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
5023 	    smin_val > smax_val || umin_val > umax_val) {
5024 		/* Taint dst register if offset had invalid bounds derived from
5025 		 * e.g. dead branches.
5026 		 */
5027 		__mark_reg_unknown(env, dst_reg);
5028 		return 0;
5029 	}
5030 
5031 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
5032 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
5033 		verbose(env,
5034 			"R%d 32-bit pointer arithmetic prohibited\n",
5035 			dst);
5036 		return -EACCES;
5037 	}
5038 
5039 	switch (ptr_reg->type) {
5040 	case PTR_TO_MAP_VALUE_OR_NULL:
5041 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
5042 			dst, reg_type_str[ptr_reg->type]);
5043 		return -EACCES;
5044 	case CONST_PTR_TO_MAP:
5045 	case PTR_TO_PACKET_END:
5046 	case PTR_TO_SOCKET:
5047 	case PTR_TO_SOCKET_OR_NULL:
5048 	case PTR_TO_SOCK_COMMON:
5049 	case PTR_TO_SOCK_COMMON_OR_NULL:
5050 	case PTR_TO_TCP_SOCK:
5051 	case PTR_TO_TCP_SOCK_OR_NULL:
5052 	case PTR_TO_XDP_SOCK:
5053 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
5054 			dst, reg_type_str[ptr_reg->type]);
5055 		return -EACCES;
5056 	case PTR_TO_MAP_VALUE:
5057 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
5058 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
5059 				off_reg == dst_reg ? dst : src);
5060 			return -EACCES;
5061 		}
5062 		/* fall-through */
5063 	default:
5064 		break;
5065 	}
5066 
5067 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
5068 	 * The id may be overwritten later if we create a new variable offset.
5069 	 */
5070 	dst_reg->type = ptr_reg->type;
5071 	dst_reg->id = ptr_reg->id;
5072 
5073 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
5074 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
5075 		return -EINVAL;
5076 
5077 	/* pointer types do not carry 32-bit bounds at the moment. */
5078 	__mark_reg32_unbounded(dst_reg);
5079 
5080 	switch (opcode) {
5081 	case BPF_ADD:
5082 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5083 		if (ret < 0) {
5084 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
5085 			return ret;
5086 		}
5087 		/* We can take a fixed offset as long as it doesn't overflow
5088 		 * the s32 'off' field
5089 		 */
5090 		if (known && (ptr_reg->off + smin_val ==
5091 			      (s64)(s32)(ptr_reg->off + smin_val))) {
5092 			/* pointer += K.  Accumulate it into fixed offset */
5093 			dst_reg->smin_value = smin_ptr;
5094 			dst_reg->smax_value = smax_ptr;
5095 			dst_reg->umin_value = umin_ptr;
5096 			dst_reg->umax_value = umax_ptr;
5097 			dst_reg->var_off = ptr_reg->var_off;
5098 			dst_reg->off = ptr_reg->off + smin_val;
5099 			dst_reg->raw = ptr_reg->raw;
5100 			break;
5101 		}
5102 		/* A new variable offset is created.  Note that off_reg->off
5103 		 * == 0, since it's a scalar.
5104 		 * dst_reg gets the pointer type and since some positive
5105 		 * integer value was added to the pointer, give it a new 'id'
5106 		 * if it's a PTR_TO_PACKET.
5107 		 * this creates a new 'base' pointer, off_reg (variable) gets
5108 		 * added into the variable offset, and we copy the fixed offset
5109 		 * from ptr_reg.
5110 		 */
5111 		if (signed_add_overflows(smin_ptr, smin_val) ||
5112 		    signed_add_overflows(smax_ptr, smax_val)) {
5113 			dst_reg->smin_value = S64_MIN;
5114 			dst_reg->smax_value = S64_MAX;
5115 		} else {
5116 			dst_reg->smin_value = smin_ptr + smin_val;
5117 			dst_reg->smax_value = smax_ptr + smax_val;
5118 		}
5119 		if (umin_ptr + umin_val < umin_ptr ||
5120 		    umax_ptr + umax_val < umax_ptr) {
5121 			dst_reg->umin_value = 0;
5122 			dst_reg->umax_value = U64_MAX;
5123 		} else {
5124 			dst_reg->umin_value = umin_ptr + umin_val;
5125 			dst_reg->umax_value = umax_ptr + umax_val;
5126 		}
5127 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
5128 		dst_reg->off = ptr_reg->off;
5129 		dst_reg->raw = ptr_reg->raw;
5130 		if (reg_is_pkt_pointer(ptr_reg)) {
5131 			dst_reg->id = ++env->id_gen;
5132 			/* something was added to pkt_ptr, set range to zero */
5133 			dst_reg->raw = 0;
5134 		}
5135 		break;
5136 	case BPF_SUB:
5137 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5138 		if (ret < 0) {
5139 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
5140 			return ret;
5141 		}
5142 		if (dst_reg == off_reg) {
5143 			/* scalar -= pointer.  Creates an unknown scalar */
5144 			verbose(env, "R%d tried to subtract pointer from scalar\n",
5145 				dst);
5146 			return -EACCES;
5147 		}
5148 		/* We don't allow subtraction from FP, because (according to
5149 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
5150 		 * be able to deal with it.
5151 		 */
5152 		if (ptr_reg->type == PTR_TO_STACK) {
5153 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
5154 				dst);
5155 			return -EACCES;
5156 		}
5157 		if (known && (ptr_reg->off - smin_val ==
5158 			      (s64)(s32)(ptr_reg->off - smin_val))) {
5159 			/* pointer -= K.  Subtract it from fixed offset */
5160 			dst_reg->smin_value = smin_ptr;
5161 			dst_reg->smax_value = smax_ptr;
5162 			dst_reg->umin_value = umin_ptr;
5163 			dst_reg->umax_value = umax_ptr;
5164 			dst_reg->var_off = ptr_reg->var_off;
5165 			dst_reg->id = ptr_reg->id;
5166 			dst_reg->off = ptr_reg->off - smin_val;
5167 			dst_reg->raw = ptr_reg->raw;
5168 			break;
5169 		}
5170 		/* A new variable offset is created.  If the subtrahend is known
5171 		 * nonnegative, then any reg->range we had before is still good.
5172 		 */
5173 		if (signed_sub_overflows(smin_ptr, smax_val) ||
5174 		    signed_sub_overflows(smax_ptr, smin_val)) {
5175 			/* Overflow possible, we know nothing */
5176 			dst_reg->smin_value = S64_MIN;
5177 			dst_reg->smax_value = S64_MAX;
5178 		} else {
5179 			dst_reg->smin_value = smin_ptr - smax_val;
5180 			dst_reg->smax_value = smax_ptr - smin_val;
5181 		}
5182 		if (umin_ptr < umax_val) {
5183 			/* Overflow possible, we know nothing */
5184 			dst_reg->umin_value = 0;
5185 			dst_reg->umax_value = U64_MAX;
5186 		} else {
5187 			/* Cannot overflow (as long as bounds are consistent) */
5188 			dst_reg->umin_value = umin_ptr - umax_val;
5189 			dst_reg->umax_value = umax_ptr - umin_val;
5190 		}
5191 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
5192 		dst_reg->off = ptr_reg->off;
5193 		dst_reg->raw = ptr_reg->raw;
5194 		if (reg_is_pkt_pointer(ptr_reg)) {
5195 			dst_reg->id = ++env->id_gen;
5196 			/* something was added to pkt_ptr, set range to zero */
5197 			if (smin_val < 0)
5198 				dst_reg->raw = 0;
5199 		}
5200 		break;
5201 	case BPF_AND:
5202 	case BPF_OR:
5203 	case BPF_XOR:
5204 		/* bitwise ops on pointers are troublesome, prohibit. */
5205 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
5206 			dst, bpf_alu_string[opcode >> 4]);
5207 		return -EACCES;
5208 	default:
5209 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
5210 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
5211 			dst, bpf_alu_string[opcode >> 4]);
5212 		return -EACCES;
5213 	}
5214 
5215 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
5216 		return -EINVAL;
5217 
5218 	__update_reg_bounds(dst_reg);
5219 	__reg_deduce_bounds(dst_reg);
5220 	__reg_bound_offset(dst_reg);
5221 
5222 	/* For unprivileged we require that resulting offset must be in bounds
5223 	 * in order to be able to sanitize access later on.
5224 	 */
5225 	if (!env->bypass_spec_v1) {
5226 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
5227 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
5228 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
5229 				"prohibited for !root\n", dst);
5230 			return -EACCES;
5231 		} else if (dst_reg->type == PTR_TO_STACK &&
5232 			   check_stack_access(env, dst_reg, dst_reg->off +
5233 					      dst_reg->var_off.value, 1)) {
5234 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
5235 				"prohibited for !root\n", dst);
5236 			return -EACCES;
5237 		}
5238 	}
5239 
5240 	return 0;
5241 }
5242 
5243 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
5244 				 struct bpf_reg_state *src_reg)
5245 {
5246 	s32 smin_val = src_reg->s32_min_value;
5247 	s32 smax_val = src_reg->s32_max_value;
5248 	u32 umin_val = src_reg->u32_min_value;
5249 	u32 umax_val = src_reg->u32_max_value;
5250 
5251 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
5252 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
5253 		dst_reg->s32_min_value = S32_MIN;
5254 		dst_reg->s32_max_value = S32_MAX;
5255 	} else {
5256 		dst_reg->s32_min_value += smin_val;
5257 		dst_reg->s32_max_value += smax_val;
5258 	}
5259 	if (dst_reg->u32_min_value + umin_val < umin_val ||
5260 	    dst_reg->u32_max_value + umax_val < umax_val) {
5261 		dst_reg->u32_min_value = 0;
5262 		dst_reg->u32_max_value = U32_MAX;
5263 	} else {
5264 		dst_reg->u32_min_value += umin_val;
5265 		dst_reg->u32_max_value += umax_val;
5266 	}
5267 }
5268 
5269 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
5270 			       struct bpf_reg_state *src_reg)
5271 {
5272 	s64 smin_val = src_reg->smin_value;
5273 	s64 smax_val = src_reg->smax_value;
5274 	u64 umin_val = src_reg->umin_value;
5275 	u64 umax_val = src_reg->umax_value;
5276 
5277 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
5278 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
5279 		dst_reg->smin_value = S64_MIN;
5280 		dst_reg->smax_value = S64_MAX;
5281 	} else {
5282 		dst_reg->smin_value += smin_val;
5283 		dst_reg->smax_value += smax_val;
5284 	}
5285 	if (dst_reg->umin_value + umin_val < umin_val ||
5286 	    dst_reg->umax_value + umax_val < umax_val) {
5287 		dst_reg->umin_value = 0;
5288 		dst_reg->umax_value = U64_MAX;
5289 	} else {
5290 		dst_reg->umin_value += umin_val;
5291 		dst_reg->umax_value += umax_val;
5292 	}
5293 }
5294 
5295 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
5296 				 struct bpf_reg_state *src_reg)
5297 {
5298 	s32 smin_val = src_reg->s32_min_value;
5299 	s32 smax_val = src_reg->s32_max_value;
5300 	u32 umin_val = src_reg->u32_min_value;
5301 	u32 umax_val = src_reg->u32_max_value;
5302 
5303 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
5304 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
5305 		/* Overflow possible, we know nothing */
5306 		dst_reg->s32_min_value = S32_MIN;
5307 		dst_reg->s32_max_value = S32_MAX;
5308 	} else {
5309 		dst_reg->s32_min_value -= smax_val;
5310 		dst_reg->s32_max_value -= smin_val;
5311 	}
5312 	if (dst_reg->u32_min_value < umax_val) {
5313 		/* Overflow possible, we know nothing */
5314 		dst_reg->u32_min_value = 0;
5315 		dst_reg->u32_max_value = U32_MAX;
5316 	} else {
5317 		/* Cannot overflow (as long as bounds are consistent) */
5318 		dst_reg->u32_min_value -= umax_val;
5319 		dst_reg->u32_max_value -= umin_val;
5320 	}
5321 }
5322 
5323 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
5324 			       struct bpf_reg_state *src_reg)
5325 {
5326 	s64 smin_val = src_reg->smin_value;
5327 	s64 smax_val = src_reg->smax_value;
5328 	u64 umin_val = src_reg->umin_value;
5329 	u64 umax_val = src_reg->umax_value;
5330 
5331 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
5332 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
5333 		/* Overflow possible, we know nothing */
5334 		dst_reg->smin_value = S64_MIN;
5335 		dst_reg->smax_value = S64_MAX;
5336 	} else {
5337 		dst_reg->smin_value -= smax_val;
5338 		dst_reg->smax_value -= smin_val;
5339 	}
5340 	if (dst_reg->umin_value < umax_val) {
5341 		/* Overflow possible, we know nothing */
5342 		dst_reg->umin_value = 0;
5343 		dst_reg->umax_value = U64_MAX;
5344 	} else {
5345 		/* Cannot overflow (as long as bounds are consistent) */
5346 		dst_reg->umin_value -= umax_val;
5347 		dst_reg->umax_value -= umin_val;
5348 	}
5349 }
5350 
5351 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
5352 				 struct bpf_reg_state *src_reg)
5353 {
5354 	s32 smin_val = src_reg->s32_min_value;
5355 	u32 umin_val = src_reg->u32_min_value;
5356 	u32 umax_val = src_reg->u32_max_value;
5357 
5358 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
5359 		/* Ain't nobody got time to multiply that sign */
5360 		__mark_reg32_unbounded(dst_reg);
5361 		return;
5362 	}
5363 	/* Both values are positive, so we can work with unsigned and
5364 	 * copy the result to signed (unless it exceeds S32_MAX).
5365 	 */
5366 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
5367 		/* Potential overflow, we know nothing */
5368 		__mark_reg32_unbounded(dst_reg);
5369 		return;
5370 	}
5371 	dst_reg->u32_min_value *= umin_val;
5372 	dst_reg->u32_max_value *= umax_val;
5373 	if (dst_reg->u32_max_value > S32_MAX) {
5374 		/* Overflow possible, we know nothing */
5375 		dst_reg->s32_min_value = S32_MIN;
5376 		dst_reg->s32_max_value = S32_MAX;
5377 	} else {
5378 		dst_reg->s32_min_value = dst_reg->u32_min_value;
5379 		dst_reg->s32_max_value = dst_reg->u32_max_value;
5380 	}
5381 }
5382 
5383 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
5384 			       struct bpf_reg_state *src_reg)
5385 {
5386 	s64 smin_val = src_reg->smin_value;
5387 	u64 umin_val = src_reg->umin_value;
5388 	u64 umax_val = src_reg->umax_value;
5389 
5390 	if (smin_val < 0 || dst_reg->smin_value < 0) {
5391 		/* Ain't nobody got time to multiply that sign */
5392 		__mark_reg64_unbounded(dst_reg);
5393 		return;
5394 	}
5395 	/* Both values are positive, so we can work with unsigned and
5396 	 * copy the result to signed (unless it exceeds S64_MAX).
5397 	 */
5398 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
5399 		/* Potential overflow, we know nothing */
5400 		__mark_reg64_unbounded(dst_reg);
5401 		return;
5402 	}
5403 	dst_reg->umin_value *= umin_val;
5404 	dst_reg->umax_value *= umax_val;
5405 	if (dst_reg->umax_value > S64_MAX) {
5406 		/* Overflow possible, we know nothing */
5407 		dst_reg->smin_value = S64_MIN;
5408 		dst_reg->smax_value = S64_MAX;
5409 	} else {
5410 		dst_reg->smin_value = dst_reg->umin_value;
5411 		dst_reg->smax_value = dst_reg->umax_value;
5412 	}
5413 }
5414 
5415 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
5416 				 struct bpf_reg_state *src_reg)
5417 {
5418 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
5419 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5420 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5421 	s32 smin_val = src_reg->s32_min_value;
5422 	u32 umax_val = src_reg->u32_max_value;
5423 
5424 	/* Assuming scalar64_min_max_and will be called so its safe
5425 	 * to skip updating register for known 32-bit case.
5426 	 */
5427 	if (src_known && dst_known)
5428 		return;
5429 
5430 	/* We get our minimum from the var_off, since that's inherently
5431 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
5432 	 */
5433 	dst_reg->u32_min_value = var32_off.value;
5434 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
5435 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5436 		/* Lose signed bounds when ANDing negative numbers,
5437 		 * ain't nobody got time for that.
5438 		 */
5439 		dst_reg->s32_min_value = S32_MIN;
5440 		dst_reg->s32_max_value = S32_MAX;
5441 	} else {
5442 		/* ANDing two positives gives a positive, so safe to
5443 		 * cast result into s64.
5444 		 */
5445 		dst_reg->s32_min_value = dst_reg->u32_min_value;
5446 		dst_reg->s32_max_value = dst_reg->u32_max_value;
5447 	}
5448 
5449 }
5450 
5451 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
5452 			       struct bpf_reg_state *src_reg)
5453 {
5454 	bool src_known = tnum_is_const(src_reg->var_off);
5455 	bool dst_known = tnum_is_const(dst_reg->var_off);
5456 	s64 smin_val = src_reg->smin_value;
5457 	u64 umax_val = src_reg->umax_value;
5458 
5459 	if (src_known && dst_known) {
5460 		__mark_reg_known(dst_reg, dst_reg->var_off.value &
5461 					  src_reg->var_off.value);
5462 		return;
5463 	}
5464 
5465 	/* We get our minimum from the var_off, since that's inherently
5466 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
5467 	 */
5468 	dst_reg->umin_value = dst_reg->var_off.value;
5469 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
5470 	if (dst_reg->smin_value < 0 || smin_val < 0) {
5471 		/* Lose signed bounds when ANDing negative numbers,
5472 		 * ain't nobody got time for that.
5473 		 */
5474 		dst_reg->smin_value = S64_MIN;
5475 		dst_reg->smax_value = S64_MAX;
5476 	} else {
5477 		/* ANDing two positives gives a positive, so safe to
5478 		 * cast result into s64.
5479 		 */
5480 		dst_reg->smin_value = dst_reg->umin_value;
5481 		dst_reg->smax_value = dst_reg->umax_value;
5482 	}
5483 	/* We may learn something more from the var_off */
5484 	__update_reg_bounds(dst_reg);
5485 }
5486 
5487 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
5488 				struct bpf_reg_state *src_reg)
5489 {
5490 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
5491 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5492 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5493 	s32 smin_val = src_reg->smin_value;
5494 	u32 umin_val = src_reg->umin_value;
5495 
5496 	/* Assuming scalar64_min_max_or will be called so it is safe
5497 	 * to skip updating register for known case.
5498 	 */
5499 	if (src_known && dst_known)
5500 		return;
5501 
5502 	/* We get our maximum from the var_off, and our minimum is the
5503 	 * maximum of the operands' minima
5504 	 */
5505 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
5506 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
5507 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5508 		/* Lose signed bounds when ORing negative numbers,
5509 		 * ain't nobody got time for that.
5510 		 */
5511 		dst_reg->s32_min_value = S32_MIN;
5512 		dst_reg->s32_max_value = S32_MAX;
5513 	} else {
5514 		/* ORing two positives gives a positive, so safe to
5515 		 * cast result into s64.
5516 		 */
5517 		dst_reg->s32_min_value = dst_reg->umin_value;
5518 		dst_reg->s32_max_value = dst_reg->umax_value;
5519 	}
5520 }
5521 
5522 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
5523 			      struct bpf_reg_state *src_reg)
5524 {
5525 	bool src_known = tnum_is_const(src_reg->var_off);
5526 	bool dst_known = tnum_is_const(dst_reg->var_off);
5527 	s64 smin_val = src_reg->smin_value;
5528 	u64 umin_val = src_reg->umin_value;
5529 
5530 	if (src_known && dst_known) {
5531 		__mark_reg_known(dst_reg, dst_reg->var_off.value |
5532 					  src_reg->var_off.value);
5533 		return;
5534 	}
5535 
5536 	/* We get our maximum from the var_off, and our minimum is the
5537 	 * maximum of the operands' minima
5538 	 */
5539 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
5540 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
5541 	if (dst_reg->smin_value < 0 || smin_val < 0) {
5542 		/* Lose signed bounds when ORing negative numbers,
5543 		 * ain't nobody got time for that.
5544 		 */
5545 		dst_reg->smin_value = S64_MIN;
5546 		dst_reg->smax_value = S64_MAX;
5547 	} else {
5548 		/* ORing two positives gives a positive, so safe to
5549 		 * cast result into s64.
5550 		 */
5551 		dst_reg->smin_value = dst_reg->umin_value;
5552 		dst_reg->smax_value = dst_reg->umax_value;
5553 	}
5554 	/* We may learn something more from the var_off */
5555 	__update_reg_bounds(dst_reg);
5556 }
5557 
5558 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
5559 				   u64 umin_val, u64 umax_val)
5560 {
5561 	/* We lose all sign bit information (except what we can pick
5562 	 * up from var_off)
5563 	 */
5564 	dst_reg->s32_min_value = S32_MIN;
5565 	dst_reg->s32_max_value = S32_MAX;
5566 	/* If we might shift our top bit out, then we know nothing */
5567 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
5568 		dst_reg->u32_min_value = 0;
5569 		dst_reg->u32_max_value = U32_MAX;
5570 	} else {
5571 		dst_reg->u32_min_value <<= umin_val;
5572 		dst_reg->u32_max_value <<= umax_val;
5573 	}
5574 }
5575 
5576 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
5577 				 struct bpf_reg_state *src_reg)
5578 {
5579 	u32 umax_val = src_reg->u32_max_value;
5580 	u32 umin_val = src_reg->u32_min_value;
5581 	/* u32 alu operation will zext upper bits */
5582 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
5583 
5584 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
5585 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
5586 	/* Not required but being careful mark reg64 bounds as unknown so
5587 	 * that we are forced to pick them up from tnum and zext later and
5588 	 * if some path skips this step we are still safe.
5589 	 */
5590 	__mark_reg64_unbounded(dst_reg);
5591 	__update_reg32_bounds(dst_reg);
5592 }
5593 
5594 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
5595 				   u64 umin_val, u64 umax_val)
5596 {
5597 	/* Special case <<32 because it is a common compiler pattern to sign
5598 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
5599 	 * positive we know this shift will also be positive so we can track
5600 	 * bounds correctly. Otherwise we lose all sign bit information except
5601 	 * what we can pick up from var_off. Perhaps we can generalize this
5602 	 * later to shifts of any length.
5603 	 */
5604 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
5605 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
5606 	else
5607 		dst_reg->smax_value = S64_MAX;
5608 
5609 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
5610 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
5611 	else
5612 		dst_reg->smin_value = S64_MIN;
5613 
5614 	/* If we might shift our top bit out, then we know nothing */
5615 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
5616 		dst_reg->umin_value = 0;
5617 		dst_reg->umax_value = U64_MAX;
5618 	} else {
5619 		dst_reg->umin_value <<= umin_val;
5620 		dst_reg->umax_value <<= umax_val;
5621 	}
5622 }
5623 
5624 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
5625 			       struct bpf_reg_state *src_reg)
5626 {
5627 	u64 umax_val = src_reg->umax_value;
5628 	u64 umin_val = src_reg->umin_value;
5629 
5630 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
5631 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
5632 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
5633 
5634 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
5635 	/* We may learn something more from the var_off */
5636 	__update_reg_bounds(dst_reg);
5637 }
5638 
5639 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
5640 				 struct bpf_reg_state *src_reg)
5641 {
5642 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
5643 	u32 umax_val = src_reg->u32_max_value;
5644 	u32 umin_val = src_reg->u32_min_value;
5645 
5646 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
5647 	 * be negative, then either:
5648 	 * 1) src_reg might be zero, so the sign bit of the result is
5649 	 *    unknown, so we lose our signed bounds
5650 	 * 2) it's known negative, thus the unsigned bounds capture the
5651 	 *    signed bounds
5652 	 * 3) the signed bounds cross zero, so they tell us nothing
5653 	 *    about the result
5654 	 * If the value in dst_reg is known nonnegative, then again the
5655 	 * unsigned bounts capture the signed bounds.
5656 	 * Thus, in all cases it suffices to blow away our signed bounds
5657 	 * and rely on inferring new ones from the unsigned bounds and
5658 	 * var_off of the result.
5659 	 */
5660 	dst_reg->s32_min_value = S32_MIN;
5661 	dst_reg->s32_max_value = S32_MAX;
5662 
5663 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
5664 	dst_reg->u32_min_value >>= umax_val;
5665 	dst_reg->u32_max_value >>= umin_val;
5666 
5667 	__mark_reg64_unbounded(dst_reg);
5668 	__update_reg32_bounds(dst_reg);
5669 }
5670 
5671 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
5672 			       struct bpf_reg_state *src_reg)
5673 {
5674 	u64 umax_val = src_reg->umax_value;
5675 	u64 umin_val = src_reg->umin_value;
5676 
5677 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
5678 	 * be negative, then either:
5679 	 * 1) src_reg might be zero, so the sign bit of the result is
5680 	 *    unknown, so we lose our signed bounds
5681 	 * 2) it's known negative, thus the unsigned bounds capture the
5682 	 *    signed bounds
5683 	 * 3) the signed bounds cross zero, so they tell us nothing
5684 	 *    about the result
5685 	 * If the value in dst_reg is known nonnegative, then again the
5686 	 * unsigned bounts capture the signed bounds.
5687 	 * Thus, in all cases it suffices to blow away our signed bounds
5688 	 * and rely on inferring new ones from the unsigned bounds and
5689 	 * var_off of the result.
5690 	 */
5691 	dst_reg->smin_value = S64_MIN;
5692 	dst_reg->smax_value = S64_MAX;
5693 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
5694 	dst_reg->umin_value >>= umax_val;
5695 	dst_reg->umax_value >>= umin_val;
5696 
5697 	/* Its not easy to operate on alu32 bounds here because it depends
5698 	 * on bits being shifted in. Take easy way out and mark unbounded
5699 	 * so we can recalculate later from tnum.
5700 	 */
5701 	__mark_reg32_unbounded(dst_reg);
5702 	__update_reg_bounds(dst_reg);
5703 }
5704 
5705 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
5706 				  struct bpf_reg_state *src_reg)
5707 {
5708 	u64 umin_val = src_reg->u32_min_value;
5709 
5710 	/* Upon reaching here, src_known is true and
5711 	 * umax_val is equal to umin_val.
5712 	 */
5713 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
5714 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
5715 
5716 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
5717 
5718 	/* blow away the dst_reg umin_value/umax_value and rely on
5719 	 * dst_reg var_off to refine the result.
5720 	 */
5721 	dst_reg->u32_min_value = 0;
5722 	dst_reg->u32_max_value = U32_MAX;
5723 
5724 	__mark_reg64_unbounded(dst_reg);
5725 	__update_reg32_bounds(dst_reg);
5726 }
5727 
5728 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
5729 				struct bpf_reg_state *src_reg)
5730 {
5731 	u64 umin_val = src_reg->umin_value;
5732 
5733 	/* Upon reaching here, src_known is true and umax_val is equal
5734 	 * to umin_val.
5735 	 */
5736 	dst_reg->smin_value >>= umin_val;
5737 	dst_reg->smax_value >>= umin_val;
5738 
5739 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
5740 
5741 	/* blow away the dst_reg umin_value/umax_value and rely on
5742 	 * dst_reg var_off to refine the result.
5743 	 */
5744 	dst_reg->umin_value = 0;
5745 	dst_reg->umax_value = U64_MAX;
5746 
5747 	/* Its not easy to operate on alu32 bounds here because it depends
5748 	 * on bits being shifted in from upper 32-bits. Take easy way out
5749 	 * and mark unbounded so we can recalculate later from tnum.
5750 	 */
5751 	__mark_reg32_unbounded(dst_reg);
5752 	__update_reg_bounds(dst_reg);
5753 }
5754 
5755 /* WARNING: This function does calculations on 64-bit values, but the actual
5756  * execution may occur on 32-bit values. Therefore, things like bitshifts
5757  * need extra checks in the 32-bit case.
5758  */
5759 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
5760 				      struct bpf_insn *insn,
5761 				      struct bpf_reg_state *dst_reg,
5762 				      struct bpf_reg_state src_reg)
5763 {
5764 	struct bpf_reg_state *regs = cur_regs(env);
5765 	u8 opcode = BPF_OP(insn->code);
5766 	bool src_known;
5767 	s64 smin_val, smax_val;
5768 	u64 umin_val, umax_val;
5769 	s32 s32_min_val, s32_max_val;
5770 	u32 u32_min_val, u32_max_val;
5771 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
5772 	u32 dst = insn->dst_reg;
5773 	int ret;
5774 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
5775 
5776 	smin_val = src_reg.smin_value;
5777 	smax_val = src_reg.smax_value;
5778 	umin_val = src_reg.umin_value;
5779 	umax_val = src_reg.umax_value;
5780 
5781 	s32_min_val = src_reg.s32_min_value;
5782 	s32_max_val = src_reg.s32_max_value;
5783 	u32_min_val = src_reg.u32_min_value;
5784 	u32_max_val = src_reg.u32_max_value;
5785 
5786 	if (alu32) {
5787 		src_known = tnum_subreg_is_const(src_reg.var_off);
5788 		if ((src_known &&
5789 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
5790 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
5791 			/* Taint dst register if offset had invalid bounds
5792 			 * derived from e.g. dead branches.
5793 			 */
5794 			__mark_reg_unknown(env, dst_reg);
5795 			return 0;
5796 		}
5797 	} else {
5798 		src_known = tnum_is_const(src_reg.var_off);
5799 		if ((src_known &&
5800 		     (smin_val != smax_val || umin_val != umax_val)) ||
5801 		    smin_val > smax_val || umin_val > umax_val) {
5802 			/* Taint dst register if offset had invalid bounds
5803 			 * derived from e.g. dead branches.
5804 			 */
5805 			__mark_reg_unknown(env, dst_reg);
5806 			return 0;
5807 		}
5808 	}
5809 
5810 	if (!src_known &&
5811 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
5812 		__mark_reg_unknown(env, dst_reg);
5813 		return 0;
5814 	}
5815 
5816 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
5817 	 * There are two classes of instructions: The first class we track both
5818 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
5819 	 * greatest amount of precision when alu operations are mixed with jmp32
5820 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
5821 	 * and BPF_OR. This is possible because these ops have fairly easy to
5822 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
5823 	 * See alu32 verifier tests for examples. The second class of
5824 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
5825 	 * with regards to tracking sign/unsigned bounds because the bits may
5826 	 * cross subreg boundaries in the alu64 case. When this happens we mark
5827 	 * the reg unbounded in the subreg bound space and use the resulting
5828 	 * tnum to calculate an approximation of the sign/unsigned bounds.
5829 	 */
5830 	switch (opcode) {
5831 	case BPF_ADD:
5832 		ret = sanitize_val_alu(env, insn);
5833 		if (ret < 0) {
5834 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
5835 			return ret;
5836 		}
5837 		scalar32_min_max_add(dst_reg, &src_reg);
5838 		scalar_min_max_add(dst_reg, &src_reg);
5839 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
5840 		break;
5841 	case BPF_SUB:
5842 		ret = sanitize_val_alu(env, insn);
5843 		if (ret < 0) {
5844 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
5845 			return ret;
5846 		}
5847 		scalar32_min_max_sub(dst_reg, &src_reg);
5848 		scalar_min_max_sub(dst_reg, &src_reg);
5849 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
5850 		break;
5851 	case BPF_MUL:
5852 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
5853 		scalar32_min_max_mul(dst_reg, &src_reg);
5854 		scalar_min_max_mul(dst_reg, &src_reg);
5855 		break;
5856 	case BPF_AND:
5857 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
5858 		scalar32_min_max_and(dst_reg, &src_reg);
5859 		scalar_min_max_and(dst_reg, &src_reg);
5860 		break;
5861 	case BPF_OR:
5862 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
5863 		scalar32_min_max_or(dst_reg, &src_reg);
5864 		scalar_min_max_or(dst_reg, &src_reg);
5865 		break;
5866 	case BPF_LSH:
5867 		if (umax_val >= insn_bitness) {
5868 			/* Shifts greater than 31 or 63 are undefined.
5869 			 * This includes shifts by a negative number.
5870 			 */
5871 			mark_reg_unknown(env, regs, insn->dst_reg);
5872 			break;
5873 		}
5874 		if (alu32)
5875 			scalar32_min_max_lsh(dst_reg, &src_reg);
5876 		else
5877 			scalar_min_max_lsh(dst_reg, &src_reg);
5878 		break;
5879 	case BPF_RSH:
5880 		if (umax_val >= insn_bitness) {
5881 			/* Shifts greater than 31 or 63 are undefined.
5882 			 * This includes shifts by a negative number.
5883 			 */
5884 			mark_reg_unknown(env, regs, insn->dst_reg);
5885 			break;
5886 		}
5887 		if (alu32)
5888 			scalar32_min_max_rsh(dst_reg, &src_reg);
5889 		else
5890 			scalar_min_max_rsh(dst_reg, &src_reg);
5891 		break;
5892 	case BPF_ARSH:
5893 		if (umax_val >= insn_bitness) {
5894 			/* Shifts greater than 31 or 63 are undefined.
5895 			 * This includes shifts by a negative number.
5896 			 */
5897 			mark_reg_unknown(env, regs, insn->dst_reg);
5898 			break;
5899 		}
5900 		if (alu32)
5901 			scalar32_min_max_arsh(dst_reg, &src_reg);
5902 		else
5903 			scalar_min_max_arsh(dst_reg, &src_reg);
5904 		break;
5905 	default:
5906 		mark_reg_unknown(env, regs, insn->dst_reg);
5907 		break;
5908 	}
5909 
5910 	/* ALU32 ops are zero extended into 64bit register */
5911 	if (alu32)
5912 		zext_32_to_64(dst_reg);
5913 
5914 	__update_reg_bounds(dst_reg);
5915 	__reg_deduce_bounds(dst_reg);
5916 	__reg_bound_offset(dst_reg);
5917 	return 0;
5918 }
5919 
5920 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
5921  * and var_off.
5922  */
5923 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
5924 				   struct bpf_insn *insn)
5925 {
5926 	struct bpf_verifier_state *vstate = env->cur_state;
5927 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5928 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
5929 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
5930 	u8 opcode = BPF_OP(insn->code);
5931 	int err;
5932 
5933 	dst_reg = &regs[insn->dst_reg];
5934 	src_reg = NULL;
5935 	if (dst_reg->type != SCALAR_VALUE)
5936 		ptr_reg = dst_reg;
5937 	if (BPF_SRC(insn->code) == BPF_X) {
5938 		src_reg = &regs[insn->src_reg];
5939 		if (src_reg->type != SCALAR_VALUE) {
5940 			if (dst_reg->type != SCALAR_VALUE) {
5941 				/* Combining two pointers by any ALU op yields
5942 				 * an arbitrary scalar. Disallow all math except
5943 				 * pointer subtraction
5944 				 */
5945 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5946 					mark_reg_unknown(env, regs, insn->dst_reg);
5947 					return 0;
5948 				}
5949 				verbose(env, "R%d pointer %s pointer prohibited\n",
5950 					insn->dst_reg,
5951 					bpf_alu_string[opcode >> 4]);
5952 				return -EACCES;
5953 			} else {
5954 				/* scalar += pointer
5955 				 * This is legal, but we have to reverse our
5956 				 * src/dest handling in computing the range
5957 				 */
5958 				err = mark_chain_precision(env, insn->dst_reg);
5959 				if (err)
5960 					return err;
5961 				return adjust_ptr_min_max_vals(env, insn,
5962 							       src_reg, dst_reg);
5963 			}
5964 		} else if (ptr_reg) {
5965 			/* pointer += scalar */
5966 			err = mark_chain_precision(env, insn->src_reg);
5967 			if (err)
5968 				return err;
5969 			return adjust_ptr_min_max_vals(env, insn,
5970 						       dst_reg, src_reg);
5971 		}
5972 	} else {
5973 		/* Pretend the src is a reg with a known value, since we only
5974 		 * need to be able to read from this state.
5975 		 */
5976 		off_reg.type = SCALAR_VALUE;
5977 		__mark_reg_known(&off_reg, insn->imm);
5978 		src_reg = &off_reg;
5979 		if (ptr_reg) /* pointer += K */
5980 			return adjust_ptr_min_max_vals(env, insn,
5981 						       ptr_reg, src_reg);
5982 	}
5983 
5984 	/* Got here implies adding two SCALAR_VALUEs */
5985 	if (WARN_ON_ONCE(ptr_reg)) {
5986 		print_verifier_state(env, state);
5987 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
5988 		return -EINVAL;
5989 	}
5990 	if (WARN_ON(!src_reg)) {
5991 		print_verifier_state(env, state);
5992 		verbose(env, "verifier internal error: no src_reg\n");
5993 		return -EINVAL;
5994 	}
5995 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
5996 }
5997 
5998 /* check validity of 32-bit and 64-bit arithmetic operations */
5999 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
6000 {
6001 	struct bpf_reg_state *regs = cur_regs(env);
6002 	u8 opcode = BPF_OP(insn->code);
6003 	int err;
6004 
6005 	if (opcode == BPF_END || opcode == BPF_NEG) {
6006 		if (opcode == BPF_NEG) {
6007 			if (BPF_SRC(insn->code) != 0 ||
6008 			    insn->src_reg != BPF_REG_0 ||
6009 			    insn->off != 0 || insn->imm != 0) {
6010 				verbose(env, "BPF_NEG uses reserved fields\n");
6011 				return -EINVAL;
6012 			}
6013 		} else {
6014 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
6015 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
6016 			    BPF_CLASS(insn->code) == BPF_ALU64) {
6017 				verbose(env, "BPF_END uses reserved fields\n");
6018 				return -EINVAL;
6019 			}
6020 		}
6021 
6022 		/* check src operand */
6023 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6024 		if (err)
6025 			return err;
6026 
6027 		if (is_pointer_value(env, insn->dst_reg)) {
6028 			verbose(env, "R%d pointer arithmetic prohibited\n",
6029 				insn->dst_reg);
6030 			return -EACCES;
6031 		}
6032 
6033 		/* check dest operand */
6034 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
6035 		if (err)
6036 			return err;
6037 
6038 	} else if (opcode == BPF_MOV) {
6039 
6040 		if (BPF_SRC(insn->code) == BPF_X) {
6041 			if (insn->imm != 0 || insn->off != 0) {
6042 				verbose(env, "BPF_MOV uses reserved fields\n");
6043 				return -EINVAL;
6044 			}
6045 
6046 			/* check src operand */
6047 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6048 			if (err)
6049 				return err;
6050 		} else {
6051 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
6052 				verbose(env, "BPF_MOV uses reserved fields\n");
6053 				return -EINVAL;
6054 			}
6055 		}
6056 
6057 		/* check dest operand, mark as required later */
6058 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6059 		if (err)
6060 			return err;
6061 
6062 		if (BPF_SRC(insn->code) == BPF_X) {
6063 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
6064 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
6065 
6066 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
6067 				/* case: R1 = R2
6068 				 * copy register state to dest reg
6069 				 */
6070 				*dst_reg = *src_reg;
6071 				dst_reg->live |= REG_LIVE_WRITTEN;
6072 				dst_reg->subreg_def = DEF_NOT_SUBREG;
6073 			} else {
6074 				/* R1 = (u32) R2 */
6075 				if (is_pointer_value(env, insn->src_reg)) {
6076 					verbose(env,
6077 						"R%d partial copy of pointer\n",
6078 						insn->src_reg);
6079 					return -EACCES;
6080 				} else if (src_reg->type == SCALAR_VALUE) {
6081 					*dst_reg = *src_reg;
6082 					dst_reg->live |= REG_LIVE_WRITTEN;
6083 					dst_reg->subreg_def = env->insn_idx + 1;
6084 				} else {
6085 					mark_reg_unknown(env, regs,
6086 							 insn->dst_reg);
6087 				}
6088 				zext_32_to_64(dst_reg);
6089 			}
6090 		} else {
6091 			/* case: R = imm
6092 			 * remember the value we stored into this reg
6093 			 */
6094 			/* clear any state __mark_reg_known doesn't set */
6095 			mark_reg_unknown(env, regs, insn->dst_reg);
6096 			regs[insn->dst_reg].type = SCALAR_VALUE;
6097 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
6098 				__mark_reg_known(regs + insn->dst_reg,
6099 						 insn->imm);
6100 			} else {
6101 				__mark_reg_known(regs + insn->dst_reg,
6102 						 (u32)insn->imm);
6103 			}
6104 		}
6105 
6106 	} else if (opcode > BPF_END) {
6107 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
6108 		return -EINVAL;
6109 
6110 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
6111 
6112 		if (BPF_SRC(insn->code) == BPF_X) {
6113 			if (insn->imm != 0 || insn->off != 0) {
6114 				verbose(env, "BPF_ALU uses reserved fields\n");
6115 				return -EINVAL;
6116 			}
6117 			/* check src1 operand */
6118 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6119 			if (err)
6120 				return err;
6121 		} else {
6122 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
6123 				verbose(env, "BPF_ALU uses reserved fields\n");
6124 				return -EINVAL;
6125 			}
6126 		}
6127 
6128 		/* check src2 operand */
6129 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6130 		if (err)
6131 			return err;
6132 
6133 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
6134 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
6135 			verbose(env, "div by zero\n");
6136 			return -EINVAL;
6137 		}
6138 
6139 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
6140 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
6141 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
6142 
6143 			if (insn->imm < 0 || insn->imm >= size) {
6144 				verbose(env, "invalid shift %d\n", insn->imm);
6145 				return -EINVAL;
6146 			}
6147 		}
6148 
6149 		/* check dest operand */
6150 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6151 		if (err)
6152 			return err;
6153 
6154 		return adjust_reg_min_max_vals(env, insn);
6155 	}
6156 
6157 	return 0;
6158 }
6159 
6160 static void __find_good_pkt_pointers(struct bpf_func_state *state,
6161 				     struct bpf_reg_state *dst_reg,
6162 				     enum bpf_reg_type type, u16 new_range)
6163 {
6164 	struct bpf_reg_state *reg;
6165 	int i;
6166 
6167 	for (i = 0; i < MAX_BPF_REG; i++) {
6168 		reg = &state->regs[i];
6169 		if (reg->type == type && reg->id == dst_reg->id)
6170 			/* keep the maximum range already checked */
6171 			reg->range = max(reg->range, new_range);
6172 	}
6173 
6174 	bpf_for_each_spilled_reg(i, state, reg) {
6175 		if (!reg)
6176 			continue;
6177 		if (reg->type == type && reg->id == dst_reg->id)
6178 			reg->range = max(reg->range, new_range);
6179 	}
6180 }
6181 
6182 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
6183 				   struct bpf_reg_state *dst_reg,
6184 				   enum bpf_reg_type type,
6185 				   bool range_right_open)
6186 {
6187 	u16 new_range;
6188 	int i;
6189 
6190 	if (dst_reg->off < 0 ||
6191 	    (dst_reg->off == 0 && range_right_open))
6192 		/* This doesn't give us any range */
6193 		return;
6194 
6195 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
6196 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
6197 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
6198 		 * than pkt_end, but that's because it's also less than pkt.
6199 		 */
6200 		return;
6201 
6202 	new_range = dst_reg->off;
6203 	if (range_right_open)
6204 		new_range--;
6205 
6206 	/* Examples for register markings:
6207 	 *
6208 	 * pkt_data in dst register:
6209 	 *
6210 	 *   r2 = r3;
6211 	 *   r2 += 8;
6212 	 *   if (r2 > pkt_end) goto <handle exception>
6213 	 *   <access okay>
6214 	 *
6215 	 *   r2 = r3;
6216 	 *   r2 += 8;
6217 	 *   if (r2 < pkt_end) goto <access okay>
6218 	 *   <handle exception>
6219 	 *
6220 	 *   Where:
6221 	 *     r2 == dst_reg, pkt_end == src_reg
6222 	 *     r2=pkt(id=n,off=8,r=0)
6223 	 *     r3=pkt(id=n,off=0,r=0)
6224 	 *
6225 	 * pkt_data in src register:
6226 	 *
6227 	 *   r2 = r3;
6228 	 *   r2 += 8;
6229 	 *   if (pkt_end >= r2) goto <access okay>
6230 	 *   <handle exception>
6231 	 *
6232 	 *   r2 = r3;
6233 	 *   r2 += 8;
6234 	 *   if (pkt_end <= r2) goto <handle exception>
6235 	 *   <access okay>
6236 	 *
6237 	 *   Where:
6238 	 *     pkt_end == dst_reg, r2 == src_reg
6239 	 *     r2=pkt(id=n,off=8,r=0)
6240 	 *     r3=pkt(id=n,off=0,r=0)
6241 	 *
6242 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
6243 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
6244 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
6245 	 * the check.
6246 	 */
6247 
6248 	/* If our ids match, then we must have the same max_value.  And we
6249 	 * don't care about the other reg's fixed offset, since if it's too big
6250 	 * the range won't allow anything.
6251 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
6252 	 */
6253 	for (i = 0; i <= vstate->curframe; i++)
6254 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
6255 					 new_range);
6256 }
6257 
6258 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
6259 {
6260 	struct tnum subreg = tnum_subreg(reg->var_off);
6261 	s32 sval = (s32)val;
6262 
6263 	switch (opcode) {
6264 	case BPF_JEQ:
6265 		if (tnum_is_const(subreg))
6266 			return !!tnum_equals_const(subreg, val);
6267 		break;
6268 	case BPF_JNE:
6269 		if (tnum_is_const(subreg))
6270 			return !tnum_equals_const(subreg, val);
6271 		break;
6272 	case BPF_JSET:
6273 		if ((~subreg.mask & subreg.value) & val)
6274 			return 1;
6275 		if (!((subreg.mask | subreg.value) & val))
6276 			return 0;
6277 		break;
6278 	case BPF_JGT:
6279 		if (reg->u32_min_value > val)
6280 			return 1;
6281 		else if (reg->u32_max_value <= val)
6282 			return 0;
6283 		break;
6284 	case BPF_JSGT:
6285 		if (reg->s32_min_value > sval)
6286 			return 1;
6287 		else if (reg->s32_max_value < sval)
6288 			return 0;
6289 		break;
6290 	case BPF_JLT:
6291 		if (reg->u32_max_value < val)
6292 			return 1;
6293 		else if (reg->u32_min_value >= val)
6294 			return 0;
6295 		break;
6296 	case BPF_JSLT:
6297 		if (reg->s32_max_value < sval)
6298 			return 1;
6299 		else if (reg->s32_min_value >= sval)
6300 			return 0;
6301 		break;
6302 	case BPF_JGE:
6303 		if (reg->u32_min_value >= val)
6304 			return 1;
6305 		else if (reg->u32_max_value < val)
6306 			return 0;
6307 		break;
6308 	case BPF_JSGE:
6309 		if (reg->s32_min_value >= sval)
6310 			return 1;
6311 		else if (reg->s32_max_value < sval)
6312 			return 0;
6313 		break;
6314 	case BPF_JLE:
6315 		if (reg->u32_max_value <= val)
6316 			return 1;
6317 		else if (reg->u32_min_value > val)
6318 			return 0;
6319 		break;
6320 	case BPF_JSLE:
6321 		if (reg->s32_max_value <= sval)
6322 			return 1;
6323 		else if (reg->s32_min_value > sval)
6324 			return 0;
6325 		break;
6326 	}
6327 
6328 	return -1;
6329 }
6330 
6331 
6332 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
6333 {
6334 	s64 sval = (s64)val;
6335 
6336 	switch (opcode) {
6337 	case BPF_JEQ:
6338 		if (tnum_is_const(reg->var_off))
6339 			return !!tnum_equals_const(reg->var_off, val);
6340 		break;
6341 	case BPF_JNE:
6342 		if (tnum_is_const(reg->var_off))
6343 			return !tnum_equals_const(reg->var_off, val);
6344 		break;
6345 	case BPF_JSET:
6346 		if ((~reg->var_off.mask & reg->var_off.value) & val)
6347 			return 1;
6348 		if (!((reg->var_off.mask | reg->var_off.value) & val))
6349 			return 0;
6350 		break;
6351 	case BPF_JGT:
6352 		if (reg->umin_value > val)
6353 			return 1;
6354 		else if (reg->umax_value <= val)
6355 			return 0;
6356 		break;
6357 	case BPF_JSGT:
6358 		if (reg->smin_value > sval)
6359 			return 1;
6360 		else if (reg->smax_value < sval)
6361 			return 0;
6362 		break;
6363 	case BPF_JLT:
6364 		if (reg->umax_value < val)
6365 			return 1;
6366 		else if (reg->umin_value >= val)
6367 			return 0;
6368 		break;
6369 	case BPF_JSLT:
6370 		if (reg->smax_value < sval)
6371 			return 1;
6372 		else if (reg->smin_value >= sval)
6373 			return 0;
6374 		break;
6375 	case BPF_JGE:
6376 		if (reg->umin_value >= val)
6377 			return 1;
6378 		else if (reg->umax_value < val)
6379 			return 0;
6380 		break;
6381 	case BPF_JSGE:
6382 		if (reg->smin_value >= sval)
6383 			return 1;
6384 		else if (reg->smax_value < sval)
6385 			return 0;
6386 		break;
6387 	case BPF_JLE:
6388 		if (reg->umax_value <= val)
6389 			return 1;
6390 		else if (reg->umin_value > val)
6391 			return 0;
6392 		break;
6393 	case BPF_JSLE:
6394 		if (reg->smax_value <= sval)
6395 			return 1;
6396 		else if (reg->smin_value > sval)
6397 			return 0;
6398 		break;
6399 	}
6400 
6401 	return -1;
6402 }
6403 
6404 /* compute branch direction of the expression "if (reg opcode val) goto target;"
6405  * and return:
6406  *  1 - branch will be taken and "goto target" will be executed
6407  *  0 - branch will not be taken and fall-through to next insn
6408  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
6409  *      range [0,10]
6410  */
6411 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
6412 			   bool is_jmp32)
6413 {
6414 	if (__is_pointer_value(false, reg)) {
6415 		if (!reg_type_not_null(reg->type))
6416 			return -1;
6417 
6418 		/* If pointer is valid tests against zero will fail so we can
6419 		 * use this to direct branch taken.
6420 		 */
6421 		if (val != 0)
6422 			return -1;
6423 
6424 		switch (opcode) {
6425 		case BPF_JEQ:
6426 			return 0;
6427 		case BPF_JNE:
6428 			return 1;
6429 		default:
6430 			return -1;
6431 		}
6432 	}
6433 
6434 	if (is_jmp32)
6435 		return is_branch32_taken(reg, val, opcode);
6436 	return is_branch64_taken(reg, val, opcode);
6437 }
6438 
6439 /* Adjusts the register min/max values in the case that the dst_reg is the
6440  * variable register that we are working on, and src_reg is a constant or we're
6441  * simply doing a BPF_K check.
6442  * In JEQ/JNE cases we also adjust the var_off values.
6443  */
6444 static void reg_set_min_max(struct bpf_reg_state *true_reg,
6445 			    struct bpf_reg_state *false_reg,
6446 			    u64 val, u32 val32,
6447 			    u8 opcode, bool is_jmp32)
6448 {
6449 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
6450 	struct tnum false_64off = false_reg->var_off;
6451 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
6452 	struct tnum true_64off = true_reg->var_off;
6453 	s64 sval = (s64)val;
6454 	s32 sval32 = (s32)val32;
6455 
6456 	/* If the dst_reg is a pointer, we can't learn anything about its
6457 	 * variable offset from the compare (unless src_reg were a pointer into
6458 	 * the same object, but we don't bother with that.
6459 	 * Since false_reg and true_reg have the same type by construction, we
6460 	 * only need to check one of them for pointerness.
6461 	 */
6462 	if (__is_pointer_value(false, false_reg))
6463 		return;
6464 
6465 	switch (opcode) {
6466 	case BPF_JEQ:
6467 	case BPF_JNE:
6468 	{
6469 		struct bpf_reg_state *reg =
6470 			opcode == BPF_JEQ ? true_reg : false_reg;
6471 
6472 		/* For BPF_JEQ, if this is false we know nothing Jon Snow, but
6473 		 * if it is true we know the value for sure. Likewise for
6474 		 * BPF_JNE.
6475 		 */
6476 		if (is_jmp32)
6477 			__mark_reg32_known(reg, val32);
6478 		else
6479 			__mark_reg_known(reg, val);
6480 		break;
6481 	}
6482 	case BPF_JSET:
6483 		if (is_jmp32) {
6484 			false_32off = tnum_and(false_32off, tnum_const(~val32));
6485 			if (is_power_of_2(val32))
6486 				true_32off = tnum_or(true_32off,
6487 						     tnum_const(val32));
6488 		} else {
6489 			false_64off = tnum_and(false_64off, tnum_const(~val));
6490 			if (is_power_of_2(val))
6491 				true_64off = tnum_or(true_64off,
6492 						     tnum_const(val));
6493 		}
6494 		break;
6495 	case BPF_JGE:
6496 	case BPF_JGT:
6497 	{
6498 		if (is_jmp32) {
6499 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
6500 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
6501 
6502 			false_reg->u32_max_value = min(false_reg->u32_max_value,
6503 						       false_umax);
6504 			true_reg->u32_min_value = max(true_reg->u32_min_value,
6505 						      true_umin);
6506 		} else {
6507 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
6508 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
6509 
6510 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
6511 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
6512 		}
6513 		break;
6514 	}
6515 	case BPF_JSGE:
6516 	case BPF_JSGT:
6517 	{
6518 		if (is_jmp32) {
6519 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
6520 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
6521 
6522 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
6523 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
6524 		} else {
6525 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
6526 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
6527 
6528 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
6529 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
6530 		}
6531 		break;
6532 	}
6533 	case BPF_JLE:
6534 	case BPF_JLT:
6535 	{
6536 		if (is_jmp32) {
6537 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
6538 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
6539 
6540 			false_reg->u32_min_value = max(false_reg->u32_min_value,
6541 						       false_umin);
6542 			true_reg->u32_max_value = min(true_reg->u32_max_value,
6543 						      true_umax);
6544 		} else {
6545 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
6546 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
6547 
6548 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
6549 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
6550 		}
6551 		break;
6552 	}
6553 	case BPF_JSLE:
6554 	case BPF_JSLT:
6555 	{
6556 		if (is_jmp32) {
6557 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
6558 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
6559 
6560 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
6561 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
6562 		} else {
6563 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
6564 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
6565 
6566 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
6567 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
6568 		}
6569 		break;
6570 	}
6571 	default:
6572 		return;
6573 	}
6574 
6575 	if (is_jmp32) {
6576 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
6577 					     tnum_subreg(false_32off));
6578 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
6579 					    tnum_subreg(true_32off));
6580 		__reg_combine_32_into_64(false_reg);
6581 		__reg_combine_32_into_64(true_reg);
6582 	} else {
6583 		false_reg->var_off = false_64off;
6584 		true_reg->var_off = true_64off;
6585 		__reg_combine_64_into_32(false_reg);
6586 		__reg_combine_64_into_32(true_reg);
6587 	}
6588 }
6589 
6590 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
6591  * the variable reg.
6592  */
6593 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
6594 				struct bpf_reg_state *false_reg,
6595 				u64 val, u32 val32,
6596 				u8 opcode, bool is_jmp32)
6597 {
6598 	/* How can we transform "a <op> b" into "b <op> a"? */
6599 	static const u8 opcode_flip[16] = {
6600 		/* these stay the same */
6601 		[BPF_JEQ  >> 4] = BPF_JEQ,
6602 		[BPF_JNE  >> 4] = BPF_JNE,
6603 		[BPF_JSET >> 4] = BPF_JSET,
6604 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
6605 		[BPF_JGE  >> 4] = BPF_JLE,
6606 		[BPF_JGT  >> 4] = BPF_JLT,
6607 		[BPF_JLE  >> 4] = BPF_JGE,
6608 		[BPF_JLT  >> 4] = BPF_JGT,
6609 		[BPF_JSGE >> 4] = BPF_JSLE,
6610 		[BPF_JSGT >> 4] = BPF_JSLT,
6611 		[BPF_JSLE >> 4] = BPF_JSGE,
6612 		[BPF_JSLT >> 4] = BPF_JSGT
6613 	};
6614 	opcode = opcode_flip[opcode >> 4];
6615 	/* This uses zero as "not present in table"; luckily the zero opcode,
6616 	 * BPF_JA, can't get here.
6617 	 */
6618 	if (opcode)
6619 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
6620 }
6621 
6622 /* Regs are known to be equal, so intersect their min/max/var_off */
6623 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
6624 				  struct bpf_reg_state *dst_reg)
6625 {
6626 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
6627 							dst_reg->umin_value);
6628 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
6629 							dst_reg->umax_value);
6630 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
6631 							dst_reg->smin_value);
6632 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
6633 							dst_reg->smax_value);
6634 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
6635 							     dst_reg->var_off);
6636 	/* We might have learned new bounds from the var_off. */
6637 	__update_reg_bounds(src_reg);
6638 	__update_reg_bounds(dst_reg);
6639 	/* We might have learned something about the sign bit. */
6640 	__reg_deduce_bounds(src_reg);
6641 	__reg_deduce_bounds(dst_reg);
6642 	/* We might have learned some bits from the bounds. */
6643 	__reg_bound_offset(src_reg);
6644 	__reg_bound_offset(dst_reg);
6645 	/* Intersecting with the old var_off might have improved our bounds
6646 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
6647 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
6648 	 */
6649 	__update_reg_bounds(src_reg);
6650 	__update_reg_bounds(dst_reg);
6651 }
6652 
6653 static void reg_combine_min_max(struct bpf_reg_state *true_src,
6654 				struct bpf_reg_state *true_dst,
6655 				struct bpf_reg_state *false_src,
6656 				struct bpf_reg_state *false_dst,
6657 				u8 opcode)
6658 {
6659 	switch (opcode) {
6660 	case BPF_JEQ:
6661 		__reg_combine_min_max(true_src, true_dst);
6662 		break;
6663 	case BPF_JNE:
6664 		__reg_combine_min_max(false_src, false_dst);
6665 		break;
6666 	}
6667 }
6668 
6669 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
6670 				 struct bpf_reg_state *reg, u32 id,
6671 				 bool is_null)
6672 {
6673 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
6674 		/* Old offset (both fixed and variable parts) should
6675 		 * have been known-zero, because we don't allow pointer
6676 		 * arithmetic on pointers that might be NULL.
6677 		 */
6678 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
6679 				 !tnum_equals_const(reg->var_off, 0) ||
6680 				 reg->off)) {
6681 			__mark_reg_known_zero(reg);
6682 			reg->off = 0;
6683 		}
6684 		if (is_null) {
6685 			reg->type = SCALAR_VALUE;
6686 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
6687 			const struct bpf_map *map = reg->map_ptr;
6688 
6689 			if (map->inner_map_meta) {
6690 				reg->type = CONST_PTR_TO_MAP;
6691 				reg->map_ptr = map->inner_map_meta;
6692 			} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
6693 				reg->type = PTR_TO_XDP_SOCK;
6694 			} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
6695 				   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
6696 				reg->type = PTR_TO_SOCKET;
6697 			} else {
6698 				reg->type = PTR_TO_MAP_VALUE;
6699 			}
6700 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
6701 			reg->type = PTR_TO_SOCKET;
6702 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
6703 			reg->type = PTR_TO_SOCK_COMMON;
6704 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
6705 			reg->type = PTR_TO_TCP_SOCK;
6706 		} else if (reg->type == PTR_TO_BTF_ID_OR_NULL) {
6707 			reg->type = PTR_TO_BTF_ID;
6708 		} else if (reg->type == PTR_TO_MEM_OR_NULL) {
6709 			reg->type = PTR_TO_MEM;
6710 		}
6711 		if (is_null) {
6712 			/* We don't need id and ref_obj_id from this point
6713 			 * onwards anymore, thus we should better reset it,
6714 			 * so that state pruning has chances to take effect.
6715 			 */
6716 			reg->id = 0;
6717 			reg->ref_obj_id = 0;
6718 		} else if (!reg_may_point_to_spin_lock(reg)) {
6719 			/* For not-NULL ptr, reg->ref_obj_id will be reset
6720 			 * in release_reg_references().
6721 			 *
6722 			 * reg->id is still used by spin_lock ptr. Other
6723 			 * than spin_lock ptr type, reg->id can be reset.
6724 			 */
6725 			reg->id = 0;
6726 		}
6727 	}
6728 }
6729 
6730 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
6731 				    bool is_null)
6732 {
6733 	struct bpf_reg_state *reg;
6734 	int i;
6735 
6736 	for (i = 0; i < MAX_BPF_REG; i++)
6737 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
6738 
6739 	bpf_for_each_spilled_reg(i, state, reg) {
6740 		if (!reg)
6741 			continue;
6742 		mark_ptr_or_null_reg(state, reg, id, is_null);
6743 	}
6744 }
6745 
6746 /* The logic is similar to find_good_pkt_pointers(), both could eventually
6747  * be folded together at some point.
6748  */
6749 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
6750 				  bool is_null)
6751 {
6752 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6753 	struct bpf_reg_state *regs = state->regs;
6754 	u32 ref_obj_id = regs[regno].ref_obj_id;
6755 	u32 id = regs[regno].id;
6756 	int i;
6757 
6758 	if (ref_obj_id && ref_obj_id == id && is_null)
6759 		/* regs[regno] is in the " == NULL" branch.
6760 		 * No one could have freed the reference state before
6761 		 * doing the NULL check.
6762 		 */
6763 		WARN_ON_ONCE(release_reference_state(state, id));
6764 
6765 	for (i = 0; i <= vstate->curframe; i++)
6766 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
6767 }
6768 
6769 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
6770 				   struct bpf_reg_state *dst_reg,
6771 				   struct bpf_reg_state *src_reg,
6772 				   struct bpf_verifier_state *this_branch,
6773 				   struct bpf_verifier_state *other_branch)
6774 {
6775 	if (BPF_SRC(insn->code) != BPF_X)
6776 		return false;
6777 
6778 	/* Pointers are always 64-bit. */
6779 	if (BPF_CLASS(insn->code) == BPF_JMP32)
6780 		return false;
6781 
6782 	switch (BPF_OP(insn->code)) {
6783 	case BPF_JGT:
6784 		if ((dst_reg->type == PTR_TO_PACKET &&
6785 		     src_reg->type == PTR_TO_PACKET_END) ||
6786 		    (dst_reg->type == PTR_TO_PACKET_META &&
6787 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6788 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
6789 			find_good_pkt_pointers(this_branch, dst_reg,
6790 					       dst_reg->type, false);
6791 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6792 			    src_reg->type == PTR_TO_PACKET) ||
6793 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6794 			    src_reg->type == PTR_TO_PACKET_META)) {
6795 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
6796 			find_good_pkt_pointers(other_branch, src_reg,
6797 					       src_reg->type, true);
6798 		} else {
6799 			return false;
6800 		}
6801 		break;
6802 	case BPF_JLT:
6803 		if ((dst_reg->type == PTR_TO_PACKET &&
6804 		     src_reg->type == PTR_TO_PACKET_END) ||
6805 		    (dst_reg->type == PTR_TO_PACKET_META &&
6806 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6807 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
6808 			find_good_pkt_pointers(other_branch, dst_reg,
6809 					       dst_reg->type, true);
6810 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6811 			    src_reg->type == PTR_TO_PACKET) ||
6812 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6813 			    src_reg->type == PTR_TO_PACKET_META)) {
6814 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
6815 			find_good_pkt_pointers(this_branch, src_reg,
6816 					       src_reg->type, false);
6817 		} else {
6818 			return false;
6819 		}
6820 		break;
6821 	case BPF_JGE:
6822 		if ((dst_reg->type == PTR_TO_PACKET &&
6823 		     src_reg->type == PTR_TO_PACKET_END) ||
6824 		    (dst_reg->type == PTR_TO_PACKET_META &&
6825 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6826 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
6827 			find_good_pkt_pointers(this_branch, dst_reg,
6828 					       dst_reg->type, true);
6829 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6830 			    src_reg->type == PTR_TO_PACKET) ||
6831 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6832 			    src_reg->type == PTR_TO_PACKET_META)) {
6833 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
6834 			find_good_pkt_pointers(other_branch, src_reg,
6835 					       src_reg->type, false);
6836 		} else {
6837 			return false;
6838 		}
6839 		break;
6840 	case BPF_JLE:
6841 		if ((dst_reg->type == PTR_TO_PACKET &&
6842 		     src_reg->type == PTR_TO_PACKET_END) ||
6843 		    (dst_reg->type == PTR_TO_PACKET_META &&
6844 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6845 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
6846 			find_good_pkt_pointers(other_branch, dst_reg,
6847 					       dst_reg->type, false);
6848 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6849 			    src_reg->type == PTR_TO_PACKET) ||
6850 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6851 			    src_reg->type == PTR_TO_PACKET_META)) {
6852 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
6853 			find_good_pkt_pointers(this_branch, src_reg,
6854 					       src_reg->type, true);
6855 		} else {
6856 			return false;
6857 		}
6858 		break;
6859 	default:
6860 		return false;
6861 	}
6862 
6863 	return true;
6864 }
6865 
6866 static int check_cond_jmp_op(struct bpf_verifier_env *env,
6867 			     struct bpf_insn *insn, int *insn_idx)
6868 {
6869 	struct bpf_verifier_state *this_branch = env->cur_state;
6870 	struct bpf_verifier_state *other_branch;
6871 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
6872 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
6873 	u8 opcode = BPF_OP(insn->code);
6874 	bool is_jmp32;
6875 	int pred = -1;
6876 	int err;
6877 
6878 	/* Only conditional jumps are expected to reach here. */
6879 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
6880 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
6881 		return -EINVAL;
6882 	}
6883 
6884 	if (BPF_SRC(insn->code) == BPF_X) {
6885 		if (insn->imm != 0) {
6886 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
6887 			return -EINVAL;
6888 		}
6889 
6890 		/* check src1 operand */
6891 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
6892 		if (err)
6893 			return err;
6894 
6895 		if (is_pointer_value(env, insn->src_reg)) {
6896 			verbose(env, "R%d pointer comparison prohibited\n",
6897 				insn->src_reg);
6898 			return -EACCES;
6899 		}
6900 		src_reg = &regs[insn->src_reg];
6901 	} else {
6902 		if (insn->src_reg != BPF_REG_0) {
6903 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
6904 			return -EINVAL;
6905 		}
6906 	}
6907 
6908 	/* check src2 operand */
6909 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6910 	if (err)
6911 		return err;
6912 
6913 	dst_reg = &regs[insn->dst_reg];
6914 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
6915 
6916 	if (BPF_SRC(insn->code) == BPF_K) {
6917 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
6918 	} else if (src_reg->type == SCALAR_VALUE &&
6919 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
6920 		pred = is_branch_taken(dst_reg,
6921 				       tnum_subreg(src_reg->var_off).value,
6922 				       opcode,
6923 				       is_jmp32);
6924 	} else if (src_reg->type == SCALAR_VALUE &&
6925 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
6926 		pred = is_branch_taken(dst_reg,
6927 				       src_reg->var_off.value,
6928 				       opcode,
6929 				       is_jmp32);
6930 	}
6931 
6932 	if (pred >= 0) {
6933 		/* If we get here with a dst_reg pointer type it is because
6934 		 * above is_branch_taken() special cased the 0 comparison.
6935 		 */
6936 		if (!__is_pointer_value(false, dst_reg))
6937 			err = mark_chain_precision(env, insn->dst_reg);
6938 		if (BPF_SRC(insn->code) == BPF_X && !err)
6939 			err = mark_chain_precision(env, insn->src_reg);
6940 		if (err)
6941 			return err;
6942 	}
6943 	if (pred == 1) {
6944 		/* only follow the goto, ignore fall-through */
6945 		*insn_idx += insn->off;
6946 		return 0;
6947 	} else if (pred == 0) {
6948 		/* only follow fall-through branch, since
6949 		 * that's where the program will go
6950 		 */
6951 		return 0;
6952 	}
6953 
6954 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
6955 				  false);
6956 	if (!other_branch)
6957 		return -EFAULT;
6958 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
6959 
6960 	/* detect if we are comparing against a constant value so we can adjust
6961 	 * our min/max values for our dst register.
6962 	 * this is only legit if both are scalars (or pointers to the same
6963 	 * object, I suppose, but we don't support that right now), because
6964 	 * otherwise the different base pointers mean the offsets aren't
6965 	 * comparable.
6966 	 */
6967 	if (BPF_SRC(insn->code) == BPF_X) {
6968 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
6969 
6970 		if (dst_reg->type == SCALAR_VALUE &&
6971 		    src_reg->type == SCALAR_VALUE) {
6972 			if (tnum_is_const(src_reg->var_off) ||
6973 			    (is_jmp32 &&
6974 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
6975 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
6976 						dst_reg,
6977 						src_reg->var_off.value,
6978 						tnum_subreg(src_reg->var_off).value,
6979 						opcode, is_jmp32);
6980 			else if (tnum_is_const(dst_reg->var_off) ||
6981 				 (is_jmp32 &&
6982 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
6983 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
6984 						    src_reg,
6985 						    dst_reg->var_off.value,
6986 						    tnum_subreg(dst_reg->var_off).value,
6987 						    opcode, is_jmp32);
6988 			else if (!is_jmp32 &&
6989 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
6990 				/* Comparing for equality, we can combine knowledge */
6991 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
6992 						    &other_branch_regs[insn->dst_reg],
6993 						    src_reg, dst_reg, opcode);
6994 		}
6995 	} else if (dst_reg->type == SCALAR_VALUE) {
6996 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
6997 					dst_reg, insn->imm, (u32)insn->imm,
6998 					opcode, is_jmp32);
6999 	}
7000 
7001 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
7002 	 * NOTE: these optimizations below are related with pointer comparison
7003 	 *       which will never be JMP32.
7004 	 */
7005 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
7006 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
7007 	    reg_type_may_be_null(dst_reg->type)) {
7008 		/* Mark all identical registers in each branch as either
7009 		 * safe or unknown depending R == 0 or R != 0 conditional.
7010 		 */
7011 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
7012 				      opcode == BPF_JNE);
7013 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
7014 				      opcode == BPF_JEQ);
7015 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
7016 					   this_branch, other_branch) &&
7017 		   is_pointer_value(env, insn->dst_reg)) {
7018 		verbose(env, "R%d pointer comparison prohibited\n",
7019 			insn->dst_reg);
7020 		return -EACCES;
7021 	}
7022 	if (env->log.level & BPF_LOG_LEVEL)
7023 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
7024 	return 0;
7025 }
7026 
7027 /* verify BPF_LD_IMM64 instruction */
7028 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
7029 {
7030 	struct bpf_insn_aux_data *aux = cur_aux(env);
7031 	struct bpf_reg_state *regs = cur_regs(env);
7032 	struct bpf_map *map;
7033 	int err;
7034 
7035 	if (BPF_SIZE(insn->code) != BPF_DW) {
7036 		verbose(env, "invalid BPF_LD_IMM insn\n");
7037 		return -EINVAL;
7038 	}
7039 	if (insn->off != 0) {
7040 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
7041 		return -EINVAL;
7042 	}
7043 
7044 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
7045 	if (err)
7046 		return err;
7047 
7048 	if (insn->src_reg == 0) {
7049 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
7050 
7051 		regs[insn->dst_reg].type = SCALAR_VALUE;
7052 		__mark_reg_known(&regs[insn->dst_reg], imm);
7053 		return 0;
7054 	}
7055 
7056 	map = env->used_maps[aux->map_index];
7057 	mark_reg_known_zero(env, regs, insn->dst_reg);
7058 	regs[insn->dst_reg].map_ptr = map;
7059 
7060 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
7061 		regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
7062 		regs[insn->dst_reg].off = aux->map_off;
7063 		if (map_value_has_spin_lock(map))
7064 			regs[insn->dst_reg].id = ++env->id_gen;
7065 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7066 		regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
7067 	} else {
7068 		verbose(env, "bpf verifier is misconfigured\n");
7069 		return -EINVAL;
7070 	}
7071 
7072 	return 0;
7073 }
7074 
7075 static bool may_access_skb(enum bpf_prog_type type)
7076 {
7077 	switch (type) {
7078 	case BPF_PROG_TYPE_SOCKET_FILTER:
7079 	case BPF_PROG_TYPE_SCHED_CLS:
7080 	case BPF_PROG_TYPE_SCHED_ACT:
7081 		return true;
7082 	default:
7083 		return false;
7084 	}
7085 }
7086 
7087 /* verify safety of LD_ABS|LD_IND instructions:
7088  * - they can only appear in the programs where ctx == skb
7089  * - since they are wrappers of function calls, they scratch R1-R5 registers,
7090  *   preserve R6-R9, and store return value into R0
7091  *
7092  * Implicit input:
7093  *   ctx == skb == R6 == CTX
7094  *
7095  * Explicit input:
7096  *   SRC == any register
7097  *   IMM == 32-bit immediate
7098  *
7099  * Output:
7100  *   R0 - 8/16/32-bit skb data converted to cpu endianness
7101  */
7102 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
7103 {
7104 	struct bpf_reg_state *regs = cur_regs(env);
7105 	static const int ctx_reg = BPF_REG_6;
7106 	u8 mode = BPF_MODE(insn->code);
7107 	int i, err;
7108 
7109 	if (!may_access_skb(env->prog->type)) {
7110 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
7111 		return -EINVAL;
7112 	}
7113 
7114 	if (!env->ops->gen_ld_abs) {
7115 		verbose(env, "bpf verifier is misconfigured\n");
7116 		return -EINVAL;
7117 	}
7118 
7119 	if (env->subprog_cnt > 1) {
7120 		/* when program has LD_ABS insn JITs and interpreter assume
7121 		 * that r1 == ctx == skb which is not the case for callees
7122 		 * that can have arbitrary arguments. It's problematic
7123 		 * for main prog as well since JITs would need to analyze
7124 		 * all functions in order to make proper register save/restore
7125 		 * decisions in the main prog. Hence disallow LD_ABS with calls
7126 		 */
7127 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
7128 		return -EINVAL;
7129 	}
7130 
7131 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
7132 	    BPF_SIZE(insn->code) == BPF_DW ||
7133 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
7134 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
7135 		return -EINVAL;
7136 	}
7137 
7138 	/* check whether implicit source operand (register R6) is readable */
7139 	err = check_reg_arg(env, ctx_reg, SRC_OP);
7140 	if (err)
7141 		return err;
7142 
7143 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
7144 	 * gen_ld_abs() may terminate the program at runtime, leading to
7145 	 * reference leak.
7146 	 */
7147 	err = check_reference_leak(env);
7148 	if (err) {
7149 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
7150 		return err;
7151 	}
7152 
7153 	if (env->cur_state->active_spin_lock) {
7154 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
7155 		return -EINVAL;
7156 	}
7157 
7158 	if (regs[ctx_reg].type != PTR_TO_CTX) {
7159 		verbose(env,
7160 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
7161 		return -EINVAL;
7162 	}
7163 
7164 	if (mode == BPF_IND) {
7165 		/* check explicit source operand */
7166 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
7167 		if (err)
7168 			return err;
7169 	}
7170 
7171 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
7172 	if (err < 0)
7173 		return err;
7174 
7175 	/* reset caller saved regs to unreadable */
7176 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
7177 		mark_reg_not_init(env, regs, caller_saved[i]);
7178 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7179 	}
7180 
7181 	/* mark destination R0 register as readable, since it contains
7182 	 * the value fetched from the packet.
7183 	 * Already marked as written above.
7184 	 */
7185 	mark_reg_unknown(env, regs, BPF_REG_0);
7186 	/* ld_abs load up to 32-bit skb data. */
7187 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
7188 	return 0;
7189 }
7190 
7191 static int check_return_code(struct bpf_verifier_env *env)
7192 {
7193 	struct tnum enforce_attach_type_range = tnum_unknown;
7194 	const struct bpf_prog *prog = env->prog;
7195 	struct bpf_reg_state *reg;
7196 	struct tnum range = tnum_range(0, 1);
7197 	int err;
7198 
7199 	/* LSM and struct_ops func-ptr's return type could be "void" */
7200 	if ((env->prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
7201 	     env->prog->type == BPF_PROG_TYPE_LSM) &&
7202 	    !prog->aux->attach_func_proto->type)
7203 		return 0;
7204 
7205 	/* eBPF calling convetion is such that R0 is used
7206 	 * to return the value from eBPF program.
7207 	 * Make sure that it's readable at this time
7208 	 * of bpf_exit, which means that program wrote
7209 	 * something into it earlier
7210 	 */
7211 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7212 	if (err)
7213 		return err;
7214 
7215 	if (is_pointer_value(env, BPF_REG_0)) {
7216 		verbose(env, "R0 leaks addr as return value\n");
7217 		return -EACCES;
7218 	}
7219 
7220 	switch (env->prog->type) {
7221 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7222 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
7223 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
7224 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
7225 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
7226 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
7227 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
7228 			range = tnum_range(1, 1);
7229 		break;
7230 	case BPF_PROG_TYPE_CGROUP_SKB:
7231 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
7232 			range = tnum_range(0, 3);
7233 			enforce_attach_type_range = tnum_range(2, 3);
7234 		}
7235 		break;
7236 	case BPF_PROG_TYPE_CGROUP_SOCK:
7237 	case BPF_PROG_TYPE_SOCK_OPS:
7238 	case BPF_PROG_TYPE_CGROUP_DEVICE:
7239 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
7240 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
7241 		break;
7242 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
7243 		if (!env->prog->aux->attach_btf_id)
7244 			return 0;
7245 		range = tnum_const(0);
7246 		break;
7247 	case BPF_PROG_TYPE_TRACING:
7248 		switch (env->prog->expected_attach_type) {
7249 		case BPF_TRACE_FENTRY:
7250 		case BPF_TRACE_FEXIT:
7251 			range = tnum_const(0);
7252 			break;
7253 		case BPF_TRACE_RAW_TP:
7254 		case BPF_MODIFY_RETURN:
7255 			return 0;
7256 		case BPF_TRACE_ITER:
7257 			break;
7258 		default:
7259 			return -ENOTSUPP;
7260 		}
7261 		break;
7262 	case BPF_PROG_TYPE_EXT:
7263 		/* freplace program can return anything as its return value
7264 		 * depends on the to-be-replaced kernel func or bpf program.
7265 		 */
7266 	default:
7267 		return 0;
7268 	}
7269 
7270 	reg = cur_regs(env) + BPF_REG_0;
7271 	if (reg->type != SCALAR_VALUE) {
7272 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
7273 			reg_type_str[reg->type]);
7274 		return -EINVAL;
7275 	}
7276 
7277 	if (!tnum_in(range, reg->var_off)) {
7278 		char tn_buf[48];
7279 
7280 		verbose(env, "At program exit the register R0 ");
7281 		if (!tnum_is_unknown(reg->var_off)) {
7282 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7283 			verbose(env, "has value %s", tn_buf);
7284 		} else {
7285 			verbose(env, "has unknown scalar value");
7286 		}
7287 		tnum_strn(tn_buf, sizeof(tn_buf), range);
7288 		verbose(env, " should have been in %s\n", tn_buf);
7289 		return -EINVAL;
7290 	}
7291 
7292 	if (!tnum_is_unknown(enforce_attach_type_range) &&
7293 	    tnum_in(enforce_attach_type_range, reg->var_off))
7294 		env->prog->enforce_expected_attach_type = 1;
7295 	return 0;
7296 }
7297 
7298 /* non-recursive DFS pseudo code
7299  * 1  procedure DFS-iterative(G,v):
7300  * 2      label v as discovered
7301  * 3      let S be a stack
7302  * 4      S.push(v)
7303  * 5      while S is not empty
7304  * 6            t <- S.pop()
7305  * 7            if t is what we're looking for:
7306  * 8                return t
7307  * 9            for all edges e in G.adjacentEdges(t) do
7308  * 10               if edge e is already labelled
7309  * 11                   continue with the next edge
7310  * 12               w <- G.adjacentVertex(t,e)
7311  * 13               if vertex w is not discovered and not explored
7312  * 14                   label e as tree-edge
7313  * 15                   label w as discovered
7314  * 16                   S.push(w)
7315  * 17                   continue at 5
7316  * 18               else if vertex w is discovered
7317  * 19                   label e as back-edge
7318  * 20               else
7319  * 21                   // vertex w is explored
7320  * 22                   label e as forward- or cross-edge
7321  * 23           label t as explored
7322  * 24           S.pop()
7323  *
7324  * convention:
7325  * 0x10 - discovered
7326  * 0x11 - discovered and fall-through edge labelled
7327  * 0x12 - discovered and fall-through and branch edges labelled
7328  * 0x20 - explored
7329  */
7330 
7331 enum {
7332 	DISCOVERED = 0x10,
7333 	EXPLORED = 0x20,
7334 	FALLTHROUGH = 1,
7335 	BRANCH = 2,
7336 };
7337 
7338 static u32 state_htab_size(struct bpf_verifier_env *env)
7339 {
7340 	return env->prog->len;
7341 }
7342 
7343 static struct bpf_verifier_state_list **explored_state(
7344 					struct bpf_verifier_env *env,
7345 					int idx)
7346 {
7347 	struct bpf_verifier_state *cur = env->cur_state;
7348 	struct bpf_func_state *state = cur->frame[cur->curframe];
7349 
7350 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
7351 }
7352 
7353 static void init_explored_state(struct bpf_verifier_env *env, int idx)
7354 {
7355 	env->insn_aux_data[idx].prune_point = true;
7356 }
7357 
7358 /* t, w, e - match pseudo-code above:
7359  * t - index of current instruction
7360  * w - next instruction
7361  * e - edge
7362  */
7363 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
7364 		     bool loop_ok)
7365 {
7366 	int *insn_stack = env->cfg.insn_stack;
7367 	int *insn_state = env->cfg.insn_state;
7368 
7369 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
7370 		return 0;
7371 
7372 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
7373 		return 0;
7374 
7375 	if (w < 0 || w >= env->prog->len) {
7376 		verbose_linfo(env, t, "%d: ", t);
7377 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
7378 		return -EINVAL;
7379 	}
7380 
7381 	if (e == BRANCH)
7382 		/* mark branch target for state pruning */
7383 		init_explored_state(env, w);
7384 
7385 	if (insn_state[w] == 0) {
7386 		/* tree-edge */
7387 		insn_state[t] = DISCOVERED | e;
7388 		insn_state[w] = DISCOVERED;
7389 		if (env->cfg.cur_stack >= env->prog->len)
7390 			return -E2BIG;
7391 		insn_stack[env->cfg.cur_stack++] = w;
7392 		return 1;
7393 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
7394 		if (loop_ok && env->bpf_capable)
7395 			return 0;
7396 		verbose_linfo(env, t, "%d: ", t);
7397 		verbose_linfo(env, w, "%d: ", w);
7398 		verbose(env, "back-edge from insn %d to %d\n", t, w);
7399 		return -EINVAL;
7400 	} else if (insn_state[w] == EXPLORED) {
7401 		/* forward- or cross-edge */
7402 		insn_state[t] = DISCOVERED | e;
7403 	} else {
7404 		verbose(env, "insn state internal bug\n");
7405 		return -EFAULT;
7406 	}
7407 	return 0;
7408 }
7409 
7410 /* non-recursive depth-first-search to detect loops in BPF program
7411  * loop == back-edge in directed graph
7412  */
7413 static int check_cfg(struct bpf_verifier_env *env)
7414 {
7415 	struct bpf_insn *insns = env->prog->insnsi;
7416 	int insn_cnt = env->prog->len;
7417 	int *insn_stack, *insn_state;
7418 	int ret = 0;
7419 	int i, t;
7420 
7421 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
7422 	if (!insn_state)
7423 		return -ENOMEM;
7424 
7425 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
7426 	if (!insn_stack) {
7427 		kvfree(insn_state);
7428 		return -ENOMEM;
7429 	}
7430 
7431 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
7432 	insn_stack[0] = 0; /* 0 is the first instruction */
7433 	env->cfg.cur_stack = 1;
7434 
7435 peek_stack:
7436 	if (env->cfg.cur_stack == 0)
7437 		goto check_state;
7438 	t = insn_stack[env->cfg.cur_stack - 1];
7439 
7440 	if (BPF_CLASS(insns[t].code) == BPF_JMP ||
7441 	    BPF_CLASS(insns[t].code) == BPF_JMP32) {
7442 		u8 opcode = BPF_OP(insns[t].code);
7443 
7444 		if (opcode == BPF_EXIT) {
7445 			goto mark_explored;
7446 		} else if (opcode == BPF_CALL) {
7447 			ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
7448 			if (ret == 1)
7449 				goto peek_stack;
7450 			else if (ret < 0)
7451 				goto err_free;
7452 			if (t + 1 < insn_cnt)
7453 				init_explored_state(env, t + 1);
7454 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
7455 				init_explored_state(env, t);
7456 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
7457 						env, false);
7458 				if (ret == 1)
7459 					goto peek_stack;
7460 				else if (ret < 0)
7461 					goto err_free;
7462 			}
7463 		} else if (opcode == BPF_JA) {
7464 			if (BPF_SRC(insns[t].code) != BPF_K) {
7465 				ret = -EINVAL;
7466 				goto err_free;
7467 			}
7468 			/* unconditional jump with single edge */
7469 			ret = push_insn(t, t + insns[t].off + 1,
7470 					FALLTHROUGH, env, true);
7471 			if (ret == 1)
7472 				goto peek_stack;
7473 			else if (ret < 0)
7474 				goto err_free;
7475 			/* unconditional jmp is not a good pruning point,
7476 			 * but it's marked, since backtracking needs
7477 			 * to record jmp history in is_state_visited().
7478 			 */
7479 			init_explored_state(env, t + insns[t].off + 1);
7480 			/* tell verifier to check for equivalent states
7481 			 * after every call and jump
7482 			 */
7483 			if (t + 1 < insn_cnt)
7484 				init_explored_state(env, t + 1);
7485 		} else {
7486 			/* conditional jump with two edges */
7487 			init_explored_state(env, t);
7488 			ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
7489 			if (ret == 1)
7490 				goto peek_stack;
7491 			else if (ret < 0)
7492 				goto err_free;
7493 
7494 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
7495 			if (ret == 1)
7496 				goto peek_stack;
7497 			else if (ret < 0)
7498 				goto err_free;
7499 		}
7500 	} else {
7501 		/* all other non-branch instructions with single
7502 		 * fall-through edge
7503 		 */
7504 		ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
7505 		if (ret == 1)
7506 			goto peek_stack;
7507 		else if (ret < 0)
7508 			goto err_free;
7509 	}
7510 
7511 mark_explored:
7512 	insn_state[t] = EXPLORED;
7513 	if (env->cfg.cur_stack-- <= 0) {
7514 		verbose(env, "pop stack internal bug\n");
7515 		ret = -EFAULT;
7516 		goto err_free;
7517 	}
7518 	goto peek_stack;
7519 
7520 check_state:
7521 	for (i = 0; i < insn_cnt; i++) {
7522 		if (insn_state[i] != EXPLORED) {
7523 			verbose(env, "unreachable insn %d\n", i);
7524 			ret = -EINVAL;
7525 			goto err_free;
7526 		}
7527 	}
7528 	ret = 0; /* cfg looks good */
7529 
7530 err_free:
7531 	kvfree(insn_state);
7532 	kvfree(insn_stack);
7533 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
7534 	return ret;
7535 }
7536 
7537 /* The minimum supported BTF func info size */
7538 #define MIN_BPF_FUNCINFO_SIZE	8
7539 #define MAX_FUNCINFO_REC_SIZE	252
7540 
7541 static int check_btf_func(struct bpf_verifier_env *env,
7542 			  const union bpf_attr *attr,
7543 			  union bpf_attr __user *uattr)
7544 {
7545 	u32 i, nfuncs, urec_size, min_size;
7546 	u32 krec_size = sizeof(struct bpf_func_info);
7547 	struct bpf_func_info *krecord;
7548 	struct bpf_func_info_aux *info_aux = NULL;
7549 	const struct btf_type *type;
7550 	struct bpf_prog *prog;
7551 	const struct btf *btf;
7552 	void __user *urecord;
7553 	u32 prev_offset = 0;
7554 	int ret = -ENOMEM;
7555 
7556 	nfuncs = attr->func_info_cnt;
7557 	if (!nfuncs)
7558 		return 0;
7559 
7560 	if (nfuncs != env->subprog_cnt) {
7561 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
7562 		return -EINVAL;
7563 	}
7564 
7565 	urec_size = attr->func_info_rec_size;
7566 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
7567 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
7568 	    urec_size % sizeof(u32)) {
7569 		verbose(env, "invalid func info rec size %u\n", urec_size);
7570 		return -EINVAL;
7571 	}
7572 
7573 	prog = env->prog;
7574 	btf = prog->aux->btf;
7575 
7576 	urecord = u64_to_user_ptr(attr->func_info);
7577 	min_size = min_t(u32, krec_size, urec_size);
7578 
7579 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
7580 	if (!krecord)
7581 		return -ENOMEM;
7582 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
7583 	if (!info_aux)
7584 		goto err_free;
7585 
7586 	for (i = 0; i < nfuncs; i++) {
7587 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
7588 		if (ret) {
7589 			if (ret == -E2BIG) {
7590 				verbose(env, "nonzero tailing record in func info");
7591 				/* set the size kernel expects so loader can zero
7592 				 * out the rest of the record.
7593 				 */
7594 				if (put_user(min_size, &uattr->func_info_rec_size))
7595 					ret = -EFAULT;
7596 			}
7597 			goto err_free;
7598 		}
7599 
7600 		if (copy_from_user(&krecord[i], urecord, min_size)) {
7601 			ret = -EFAULT;
7602 			goto err_free;
7603 		}
7604 
7605 		/* check insn_off */
7606 		if (i == 0) {
7607 			if (krecord[i].insn_off) {
7608 				verbose(env,
7609 					"nonzero insn_off %u for the first func info record",
7610 					krecord[i].insn_off);
7611 				ret = -EINVAL;
7612 				goto err_free;
7613 			}
7614 		} else if (krecord[i].insn_off <= prev_offset) {
7615 			verbose(env,
7616 				"same or smaller insn offset (%u) than previous func info record (%u)",
7617 				krecord[i].insn_off, prev_offset);
7618 			ret = -EINVAL;
7619 			goto err_free;
7620 		}
7621 
7622 		if (env->subprog_info[i].start != krecord[i].insn_off) {
7623 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
7624 			ret = -EINVAL;
7625 			goto err_free;
7626 		}
7627 
7628 		/* check type_id */
7629 		type = btf_type_by_id(btf, krecord[i].type_id);
7630 		if (!type || !btf_type_is_func(type)) {
7631 			verbose(env, "invalid type id %d in func info",
7632 				krecord[i].type_id);
7633 			ret = -EINVAL;
7634 			goto err_free;
7635 		}
7636 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
7637 		prev_offset = krecord[i].insn_off;
7638 		urecord += urec_size;
7639 	}
7640 
7641 	prog->aux->func_info = krecord;
7642 	prog->aux->func_info_cnt = nfuncs;
7643 	prog->aux->func_info_aux = info_aux;
7644 	return 0;
7645 
7646 err_free:
7647 	kvfree(krecord);
7648 	kfree(info_aux);
7649 	return ret;
7650 }
7651 
7652 static void adjust_btf_func(struct bpf_verifier_env *env)
7653 {
7654 	struct bpf_prog_aux *aux = env->prog->aux;
7655 	int i;
7656 
7657 	if (!aux->func_info)
7658 		return;
7659 
7660 	for (i = 0; i < env->subprog_cnt; i++)
7661 		aux->func_info[i].insn_off = env->subprog_info[i].start;
7662 }
7663 
7664 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
7665 		sizeof(((struct bpf_line_info *)(0))->line_col))
7666 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
7667 
7668 static int check_btf_line(struct bpf_verifier_env *env,
7669 			  const union bpf_attr *attr,
7670 			  union bpf_attr __user *uattr)
7671 {
7672 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
7673 	struct bpf_subprog_info *sub;
7674 	struct bpf_line_info *linfo;
7675 	struct bpf_prog *prog;
7676 	const struct btf *btf;
7677 	void __user *ulinfo;
7678 	int err;
7679 
7680 	nr_linfo = attr->line_info_cnt;
7681 	if (!nr_linfo)
7682 		return 0;
7683 
7684 	rec_size = attr->line_info_rec_size;
7685 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
7686 	    rec_size > MAX_LINEINFO_REC_SIZE ||
7687 	    rec_size & (sizeof(u32) - 1))
7688 		return -EINVAL;
7689 
7690 	/* Need to zero it in case the userspace may
7691 	 * pass in a smaller bpf_line_info object.
7692 	 */
7693 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
7694 			 GFP_KERNEL | __GFP_NOWARN);
7695 	if (!linfo)
7696 		return -ENOMEM;
7697 
7698 	prog = env->prog;
7699 	btf = prog->aux->btf;
7700 
7701 	s = 0;
7702 	sub = env->subprog_info;
7703 	ulinfo = u64_to_user_ptr(attr->line_info);
7704 	expected_size = sizeof(struct bpf_line_info);
7705 	ncopy = min_t(u32, expected_size, rec_size);
7706 	for (i = 0; i < nr_linfo; i++) {
7707 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
7708 		if (err) {
7709 			if (err == -E2BIG) {
7710 				verbose(env, "nonzero tailing record in line_info");
7711 				if (put_user(expected_size,
7712 					     &uattr->line_info_rec_size))
7713 					err = -EFAULT;
7714 			}
7715 			goto err_free;
7716 		}
7717 
7718 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
7719 			err = -EFAULT;
7720 			goto err_free;
7721 		}
7722 
7723 		/*
7724 		 * Check insn_off to ensure
7725 		 * 1) strictly increasing AND
7726 		 * 2) bounded by prog->len
7727 		 *
7728 		 * The linfo[0].insn_off == 0 check logically falls into
7729 		 * the later "missing bpf_line_info for func..." case
7730 		 * because the first linfo[0].insn_off must be the
7731 		 * first sub also and the first sub must have
7732 		 * subprog_info[0].start == 0.
7733 		 */
7734 		if ((i && linfo[i].insn_off <= prev_offset) ||
7735 		    linfo[i].insn_off >= prog->len) {
7736 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
7737 				i, linfo[i].insn_off, prev_offset,
7738 				prog->len);
7739 			err = -EINVAL;
7740 			goto err_free;
7741 		}
7742 
7743 		if (!prog->insnsi[linfo[i].insn_off].code) {
7744 			verbose(env,
7745 				"Invalid insn code at line_info[%u].insn_off\n",
7746 				i);
7747 			err = -EINVAL;
7748 			goto err_free;
7749 		}
7750 
7751 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
7752 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
7753 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
7754 			err = -EINVAL;
7755 			goto err_free;
7756 		}
7757 
7758 		if (s != env->subprog_cnt) {
7759 			if (linfo[i].insn_off == sub[s].start) {
7760 				sub[s].linfo_idx = i;
7761 				s++;
7762 			} else if (sub[s].start < linfo[i].insn_off) {
7763 				verbose(env, "missing bpf_line_info for func#%u\n", s);
7764 				err = -EINVAL;
7765 				goto err_free;
7766 			}
7767 		}
7768 
7769 		prev_offset = linfo[i].insn_off;
7770 		ulinfo += rec_size;
7771 	}
7772 
7773 	if (s != env->subprog_cnt) {
7774 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
7775 			env->subprog_cnt - s, s);
7776 		err = -EINVAL;
7777 		goto err_free;
7778 	}
7779 
7780 	prog->aux->linfo = linfo;
7781 	prog->aux->nr_linfo = nr_linfo;
7782 
7783 	return 0;
7784 
7785 err_free:
7786 	kvfree(linfo);
7787 	return err;
7788 }
7789 
7790 static int check_btf_info(struct bpf_verifier_env *env,
7791 			  const union bpf_attr *attr,
7792 			  union bpf_attr __user *uattr)
7793 {
7794 	struct btf *btf;
7795 	int err;
7796 
7797 	if (!attr->func_info_cnt && !attr->line_info_cnt)
7798 		return 0;
7799 
7800 	btf = btf_get_by_fd(attr->prog_btf_fd);
7801 	if (IS_ERR(btf))
7802 		return PTR_ERR(btf);
7803 	env->prog->aux->btf = btf;
7804 
7805 	err = check_btf_func(env, attr, uattr);
7806 	if (err)
7807 		return err;
7808 
7809 	err = check_btf_line(env, attr, uattr);
7810 	if (err)
7811 		return err;
7812 
7813 	return 0;
7814 }
7815 
7816 /* check %cur's range satisfies %old's */
7817 static bool range_within(struct bpf_reg_state *old,
7818 			 struct bpf_reg_state *cur)
7819 {
7820 	return old->umin_value <= cur->umin_value &&
7821 	       old->umax_value >= cur->umax_value &&
7822 	       old->smin_value <= cur->smin_value &&
7823 	       old->smax_value >= cur->smax_value;
7824 }
7825 
7826 /* Maximum number of register states that can exist at once */
7827 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
7828 struct idpair {
7829 	u32 old;
7830 	u32 cur;
7831 };
7832 
7833 /* If in the old state two registers had the same id, then they need to have
7834  * the same id in the new state as well.  But that id could be different from
7835  * the old state, so we need to track the mapping from old to new ids.
7836  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
7837  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
7838  * regs with a different old id could still have new id 9, we don't care about
7839  * that.
7840  * So we look through our idmap to see if this old id has been seen before.  If
7841  * so, we require the new id to match; otherwise, we add the id pair to the map.
7842  */
7843 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
7844 {
7845 	unsigned int i;
7846 
7847 	for (i = 0; i < ID_MAP_SIZE; i++) {
7848 		if (!idmap[i].old) {
7849 			/* Reached an empty slot; haven't seen this id before */
7850 			idmap[i].old = old_id;
7851 			idmap[i].cur = cur_id;
7852 			return true;
7853 		}
7854 		if (idmap[i].old == old_id)
7855 			return idmap[i].cur == cur_id;
7856 	}
7857 	/* We ran out of idmap slots, which should be impossible */
7858 	WARN_ON_ONCE(1);
7859 	return false;
7860 }
7861 
7862 static void clean_func_state(struct bpf_verifier_env *env,
7863 			     struct bpf_func_state *st)
7864 {
7865 	enum bpf_reg_liveness live;
7866 	int i, j;
7867 
7868 	for (i = 0; i < BPF_REG_FP; i++) {
7869 		live = st->regs[i].live;
7870 		/* liveness must not touch this register anymore */
7871 		st->regs[i].live |= REG_LIVE_DONE;
7872 		if (!(live & REG_LIVE_READ))
7873 			/* since the register is unused, clear its state
7874 			 * to make further comparison simpler
7875 			 */
7876 			__mark_reg_not_init(env, &st->regs[i]);
7877 	}
7878 
7879 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
7880 		live = st->stack[i].spilled_ptr.live;
7881 		/* liveness must not touch this stack slot anymore */
7882 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
7883 		if (!(live & REG_LIVE_READ)) {
7884 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
7885 			for (j = 0; j < BPF_REG_SIZE; j++)
7886 				st->stack[i].slot_type[j] = STACK_INVALID;
7887 		}
7888 	}
7889 }
7890 
7891 static void clean_verifier_state(struct bpf_verifier_env *env,
7892 				 struct bpf_verifier_state *st)
7893 {
7894 	int i;
7895 
7896 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
7897 		/* all regs in this state in all frames were already marked */
7898 		return;
7899 
7900 	for (i = 0; i <= st->curframe; i++)
7901 		clean_func_state(env, st->frame[i]);
7902 }
7903 
7904 /* the parentage chains form a tree.
7905  * the verifier states are added to state lists at given insn and
7906  * pushed into state stack for future exploration.
7907  * when the verifier reaches bpf_exit insn some of the verifer states
7908  * stored in the state lists have their final liveness state already,
7909  * but a lot of states will get revised from liveness point of view when
7910  * the verifier explores other branches.
7911  * Example:
7912  * 1: r0 = 1
7913  * 2: if r1 == 100 goto pc+1
7914  * 3: r0 = 2
7915  * 4: exit
7916  * when the verifier reaches exit insn the register r0 in the state list of
7917  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
7918  * of insn 2 and goes exploring further. At the insn 4 it will walk the
7919  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
7920  *
7921  * Since the verifier pushes the branch states as it sees them while exploring
7922  * the program the condition of walking the branch instruction for the second
7923  * time means that all states below this branch were already explored and
7924  * their final liveness markes are already propagated.
7925  * Hence when the verifier completes the search of state list in is_state_visited()
7926  * we can call this clean_live_states() function to mark all liveness states
7927  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
7928  * will not be used.
7929  * This function also clears the registers and stack for states that !READ
7930  * to simplify state merging.
7931  *
7932  * Important note here that walking the same branch instruction in the callee
7933  * doesn't meant that the states are DONE. The verifier has to compare
7934  * the callsites
7935  */
7936 static void clean_live_states(struct bpf_verifier_env *env, int insn,
7937 			      struct bpf_verifier_state *cur)
7938 {
7939 	struct bpf_verifier_state_list *sl;
7940 	int i;
7941 
7942 	sl = *explored_state(env, insn);
7943 	while (sl) {
7944 		if (sl->state.branches)
7945 			goto next;
7946 		if (sl->state.insn_idx != insn ||
7947 		    sl->state.curframe != cur->curframe)
7948 			goto next;
7949 		for (i = 0; i <= cur->curframe; i++)
7950 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
7951 				goto next;
7952 		clean_verifier_state(env, &sl->state);
7953 next:
7954 		sl = sl->next;
7955 	}
7956 }
7957 
7958 /* Returns true if (rold safe implies rcur safe) */
7959 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7960 		    struct idpair *idmap)
7961 {
7962 	bool equal;
7963 
7964 	if (!(rold->live & REG_LIVE_READ))
7965 		/* explored state didn't use this */
7966 		return true;
7967 
7968 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
7969 
7970 	if (rold->type == PTR_TO_STACK)
7971 		/* two stack pointers are equal only if they're pointing to
7972 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
7973 		 */
7974 		return equal && rold->frameno == rcur->frameno;
7975 
7976 	if (equal)
7977 		return true;
7978 
7979 	if (rold->type == NOT_INIT)
7980 		/* explored state can't have used this */
7981 		return true;
7982 	if (rcur->type == NOT_INIT)
7983 		return false;
7984 	switch (rold->type) {
7985 	case SCALAR_VALUE:
7986 		if (rcur->type == SCALAR_VALUE) {
7987 			if (!rold->precise && !rcur->precise)
7988 				return true;
7989 			/* new val must satisfy old val knowledge */
7990 			return range_within(rold, rcur) &&
7991 			       tnum_in(rold->var_off, rcur->var_off);
7992 		} else {
7993 			/* We're trying to use a pointer in place of a scalar.
7994 			 * Even if the scalar was unbounded, this could lead to
7995 			 * pointer leaks because scalars are allowed to leak
7996 			 * while pointers are not. We could make this safe in
7997 			 * special cases if root is calling us, but it's
7998 			 * probably not worth the hassle.
7999 			 */
8000 			return false;
8001 		}
8002 	case PTR_TO_MAP_VALUE:
8003 		/* If the new min/max/var_off satisfy the old ones and
8004 		 * everything else matches, we are OK.
8005 		 * 'id' is not compared, since it's only used for maps with
8006 		 * bpf_spin_lock inside map element and in such cases if
8007 		 * the rest of the prog is valid for one map element then
8008 		 * it's valid for all map elements regardless of the key
8009 		 * used in bpf_map_lookup()
8010 		 */
8011 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
8012 		       range_within(rold, rcur) &&
8013 		       tnum_in(rold->var_off, rcur->var_off);
8014 	case PTR_TO_MAP_VALUE_OR_NULL:
8015 		/* a PTR_TO_MAP_VALUE could be safe to use as a
8016 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
8017 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
8018 		 * checked, doing so could have affected others with the same
8019 		 * id, and we can't check for that because we lost the id when
8020 		 * we converted to a PTR_TO_MAP_VALUE.
8021 		 */
8022 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
8023 			return false;
8024 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
8025 			return false;
8026 		/* Check our ids match any regs they're supposed to */
8027 		return check_ids(rold->id, rcur->id, idmap);
8028 	case PTR_TO_PACKET_META:
8029 	case PTR_TO_PACKET:
8030 		if (rcur->type != rold->type)
8031 			return false;
8032 		/* We must have at least as much range as the old ptr
8033 		 * did, so that any accesses which were safe before are
8034 		 * still safe.  This is true even if old range < old off,
8035 		 * since someone could have accessed through (ptr - k), or
8036 		 * even done ptr -= k in a register, to get a safe access.
8037 		 */
8038 		if (rold->range > rcur->range)
8039 			return false;
8040 		/* If the offsets don't match, we can't trust our alignment;
8041 		 * nor can we be sure that we won't fall out of range.
8042 		 */
8043 		if (rold->off != rcur->off)
8044 			return false;
8045 		/* id relations must be preserved */
8046 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
8047 			return false;
8048 		/* new val must satisfy old val knowledge */
8049 		return range_within(rold, rcur) &&
8050 		       tnum_in(rold->var_off, rcur->var_off);
8051 	case PTR_TO_CTX:
8052 	case CONST_PTR_TO_MAP:
8053 	case PTR_TO_PACKET_END:
8054 	case PTR_TO_FLOW_KEYS:
8055 	case PTR_TO_SOCKET:
8056 	case PTR_TO_SOCKET_OR_NULL:
8057 	case PTR_TO_SOCK_COMMON:
8058 	case PTR_TO_SOCK_COMMON_OR_NULL:
8059 	case PTR_TO_TCP_SOCK:
8060 	case PTR_TO_TCP_SOCK_OR_NULL:
8061 	case PTR_TO_XDP_SOCK:
8062 		/* Only valid matches are exact, which memcmp() above
8063 		 * would have accepted
8064 		 */
8065 	default:
8066 		/* Don't know what's going on, just say it's not safe */
8067 		return false;
8068 	}
8069 
8070 	/* Shouldn't get here; if we do, say it's not safe */
8071 	WARN_ON_ONCE(1);
8072 	return false;
8073 }
8074 
8075 static bool stacksafe(struct bpf_func_state *old,
8076 		      struct bpf_func_state *cur,
8077 		      struct idpair *idmap)
8078 {
8079 	int i, spi;
8080 
8081 	/* walk slots of the explored stack and ignore any additional
8082 	 * slots in the current stack, since explored(safe) state
8083 	 * didn't use them
8084 	 */
8085 	for (i = 0; i < old->allocated_stack; i++) {
8086 		spi = i / BPF_REG_SIZE;
8087 
8088 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
8089 			i += BPF_REG_SIZE - 1;
8090 			/* explored state didn't use this */
8091 			continue;
8092 		}
8093 
8094 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
8095 			continue;
8096 
8097 		/* explored stack has more populated slots than current stack
8098 		 * and these slots were used
8099 		 */
8100 		if (i >= cur->allocated_stack)
8101 			return false;
8102 
8103 		/* if old state was safe with misc data in the stack
8104 		 * it will be safe with zero-initialized stack.
8105 		 * The opposite is not true
8106 		 */
8107 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
8108 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
8109 			continue;
8110 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
8111 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
8112 			/* Ex: old explored (safe) state has STACK_SPILL in
8113 			 * this stack slot, but current has has STACK_MISC ->
8114 			 * this verifier states are not equivalent,
8115 			 * return false to continue verification of this path
8116 			 */
8117 			return false;
8118 		if (i % BPF_REG_SIZE)
8119 			continue;
8120 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
8121 			continue;
8122 		if (!regsafe(&old->stack[spi].spilled_ptr,
8123 			     &cur->stack[spi].spilled_ptr,
8124 			     idmap))
8125 			/* when explored and current stack slot are both storing
8126 			 * spilled registers, check that stored pointers types
8127 			 * are the same as well.
8128 			 * Ex: explored safe path could have stored
8129 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
8130 			 * but current path has stored:
8131 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
8132 			 * such verifier states are not equivalent.
8133 			 * return false to continue verification of this path
8134 			 */
8135 			return false;
8136 	}
8137 	return true;
8138 }
8139 
8140 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
8141 {
8142 	if (old->acquired_refs != cur->acquired_refs)
8143 		return false;
8144 	return !memcmp(old->refs, cur->refs,
8145 		       sizeof(*old->refs) * old->acquired_refs);
8146 }
8147 
8148 /* compare two verifier states
8149  *
8150  * all states stored in state_list are known to be valid, since
8151  * verifier reached 'bpf_exit' instruction through them
8152  *
8153  * this function is called when verifier exploring different branches of
8154  * execution popped from the state stack. If it sees an old state that has
8155  * more strict register state and more strict stack state then this execution
8156  * branch doesn't need to be explored further, since verifier already
8157  * concluded that more strict state leads to valid finish.
8158  *
8159  * Therefore two states are equivalent if register state is more conservative
8160  * and explored stack state is more conservative than the current one.
8161  * Example:
8162  *       explored                   current
8163  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
8164  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
8165  *
8166  * In other words if current stack state (one being explored) has more
8167  * valid slots than old one that already passed validation, it means
8168  * the verifier can stop exploring and conclude that current state is valid too
8169  *
8170  * Similarly with registers. If explored state has register type as invalid
8171  * whereas register type in current state is meaningful, it means that
8172  * the current state will reach 'bpf_exit' instruction safely
8173  */
8174 static bool func_states_equal(struct bpf_func_state *old,
8175 			      struct bpf_func_state *cur)
8176 {
8177 	struct idpair *idmap;
8178 	bool ret = false;
8179 	int i;
8180 
8181 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
8182 	/* If we failed to allocate the idmap, just say it's not safe */
8183 	if (!idmap)
8184 		return false;
8185 
8186 	for (i = 0; i < MAX_BPF_REG; i++) {
8187 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
8188 			goto out_free;
8189 	}
8190 
8191 	if (!stacksafe(old, cur, idmap))
8192 		goto out_free;
8193 
8194 	if (!refsafe(old, cur))
8195 		goto out_free;
8196 	ret = true;
8197 out_free:
8198 	kfree(idmap);
8199 	return ret;
8200 }
8201 
8202 static bool states_equal(struct bpf_verifier_env *env,
8203 			 struct bpf_verifier_state *old,
8204 			 struct bpf_verifier_state *cur)
8205 {
8206 	int i;
8207 
8208 	if (old->curframe != cur->curframe)
8209 		return false;
8210 
8211 	/* Verification state from speculative execution simulation
8212 	 * must never prune a non-speculative execution one.
8213 	 */
8214 	if (old->speculative && !cur->speculative)
8215 		return false;
8216 
8217 	if (old->active_spin_lock != cur->active_spin_lock)
8218 		return false;
8219 
8220 	/* for states to be equal callsites have to be the same
8221 	 * and all frame states need to be equivalent
8222 	 */
8223 	for (i = 0; i <= old->curframe; i++) {
8224 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
8225 			return false;
8226 		if (!func_states_equal(old->frame[i], cur->frame[i]))
8227 			return false;
8228 	}
8229 	return true;
8230 }
8231 
8232 /* Return 0 if no propagation happened. Return negative error code if error
8233  * happened. Otherwise, return the propagated bit.
8234  */
8235 static int propagate_liveness_reg(struct bpf_verifier_env *env,
8236 				  struct bpf_reg_state *reg,
8237 				  struct bpf_reg_state *parent_reg)
8238 {
8239 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
8240 	u8 flag = reg->live & REG_LIVE_READ;
8241 	int err;
8242 
8243 	/* When comes here, read flags of PARENT_REG or REG could be any of
8244 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
8245 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
8246 	 */
8247 	if (parent_flag == REG_LIVE_READ64 ||
8248 	    /* Or if there is no read flag from REG. */
8249 	    !flag ||
8250 	    /* Or if the read flag from REG is the same as PARENT_REG. */
8251 	    parent_flag == flag)
8252 		return 0;
8253 
8254 	err = mark_reg_read(env, reg, parent_reg, flag);
8255 	if (err)
8256 		return err;
8257 
8258 	return flag;
8259 }
8260 
8261 /* A write screens off any subsequent reads; but write marks come from the
8262  * straight-line code between a state and its parent.  When we arrive at an
8263  * equivalent state (jump target or such) we didn't arrive by the straight-line
8264  * code, so read marks in the state must propagate to the parent regardless
8265  * of the state's write marks. That's what 'parent == state->parent' comparison
8266  * in mark_reg_read() is for.
8267  */
8268 static int propagate_liveness(struct bpf_verifier_env *env,
8269 			      const struct bpf_verifier_state *vstate,
8270 			      struct bpf_verifier_state *vparent)
8271 {
8272 	struct bpf_reg_state *state_reg, *parent_reg;
8273 	struct bpf_func_state *state, *parent;
8274 	int i, frame, err = 0;
8275 
8276 	if (vparent->curframe != vstate->curframe) {
8277 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
8278 		     vparent->curframe, vstate->curframe);
8279 		return -EFAULT;
8280 	}
8281 	/* Propagate read liveness of registers... */
8282 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
8283 	for (frame = 0; frame <= vstate->curframe; frame++) {
8284 		parent = vparent->frame[frame];
8285 		state = vstate->frame[frame];
8286 		parent_reg = parent->regs;
8287 		state_reg = state->regs;
8288 		/* We don't need to worry about FP liveness, it's read-only */
8289 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
8290 			err = propagate_liveness_reg(env, &state_reg[i],
8291 						     &parent_reg[i]);
8292 			if (err < 0)
8293 				return err;
8294 			if (err == REG_LIVE_READ64)
8295 				mark_insn_zext(env, &parent_reg[i]);
8296 		}
8297 
8298 		/* Propagate stack slots. */
8299 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
8300 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
8301 			parent_reg = &parent->stack[i].spilled_ptr;
8302 			state_reg = &state->stack[i].spilled_ptr;
8303 			err = propagate_liveness_reg(env, state_reg,
8304 						     parent_reg);
8305 			if (err < 0)
8306 				return err;
8307 		}
8308 	}
8309 	return 0;
8310 }
8311 
8312 /* find precise scalars in the previous equivalent state and
8313  * propagate them into the current state
8314  */
8315 static int propagate_precision(struct bpf_verifier_env *env,
8316 			       const struct bpf_verifier_state *old)
8317 {
8318 	struct bpf_reg_state *state_reg;
8319 	struct bpf_func_state *state;
8320 	int i, err = 0;
8321 
8322 	state = old->frame[old->curframe];
8323 	state_reg = state->regs;
8324 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
8325 		if (state_reg->type != SCALAR_VALUE ||
8326 		    !state_reg->precise)
8327 			continue;
8328 		if (env->log.level & BPF_LOG_LEVEL2)
8329 			verbose(env, "propagating r%d\n", i);
8330 		err = mark_chain_precision(env, i);
8331 		if (err < 0)
8332 			return err;
8333 	}
8334 
8335 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8336 		if (state->stack[i].slot_type[0] != STACK_SPILL)
8337 			continue;
8338 		state_reg = &state->stack[i].spilled_ptr;
8339 		if (state_reg->type != SCALAR_VALUE ||
8340 		    !state_reg->precise)
8341 			continue;
8342 		if (env->log.level & BPF_LOG_LEVEL2)
8343 			verbose(env, "propagating fp%d\n",
8344 				(-i - 1) * BPF_REG_SIZE);
8345 		err = mark_chain_precision_stack(env, i);
8346 		if (err < 0)
8347 			return err;
8348 	}
8349 	return 0;
8350 }
8351 
8352 static bool states_maybe_looping(struct bpf_verifier_state *old,
8353 				 struct bpf_verifier_state *cur)
8354 {
8355 	struct bpf_func_state *fold, *fcur;
8356 	int i, fr = cur->curframe;
8357 
8358 	if (old->curframe != fr)
8359 		return false;
8360 
8361 	fold = old->frame[fr];
8362 	fcur = cur->frame[fr];
8363 	for (i = 0; i < MAX_BPF_REG; i++)
8364 		if (memcmp(&fold->regs[i], &fcur->regs[i],
8365 			   offsetof(struct bpf_reg_state, parent)))
8366 			return false;
8367 	return true;
8368 }
8369 
8370 
8371 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
8372 {
8373 	struct bpf_verifier_state_list *new_sl;
8374 	struct bpf_verifier_state_list *sl, **pprev;
8375 	struct bpf_verifier_state *cur = env->cur_state, *new;
8376 	int i, j, err, states_cnt = 0;
8377 	bool add_new_state = env->test_state_freq ? true : false;
8378 
8379 	cur->last_insn_idx = env->prev_insn_idx;
8380 	if (!env->insn_aux_data[insn_idx].prune_point)
8381 		/* this 'insn_idx' instruction wasn't marked, so we will not
8382 		 * be doing state search here
8383 		 */
8384 		return 0;
8385 
8386 	/* bpf progs typically have pruning point every 4 instructions
8387 	 * http://vger.kernel.org/bpfconf2019.html#session-1
8388 	 * Do not add new state for future pruning if the verifier hasn't seen
8389 	 * at least 2 jumps and at least 8 instructions.
8390 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
8391 	 * In tests that amounts to up to 50% reduction into total verifier
8392 	 * memory consumption and 20% verifier time speedup.
8393 	 */
8394 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
8395 	    env->insn_processed - env->prev_insn_processed >= 8)
8396 		add_new_state = true;
8397 
8398 	pprev = explored_state(env, insn_idx);
8399 	sl = *pprev;
8400 
8401 	clean_live_states(env, insn_idx, cur);
8402 
8403 	while (sl) {
8404 		states_cnt++;
8405 		if (sl->state.insn_idx != insn_idx)
8406 			goto next;
8407 		if (sl->state.branches) {
8408 			if (states_maybe_looping(&sl->state, cur) &&
8409 			    states_equal(env, &sl->state, cur)) {
8410 				verbose_linfo(env, insn_idx, "; ");
8411 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
8412 				return -EINVAL;
8413 			}
8414 			/* if the verifier is processing a loop, avoid adding new state
8415 			 * too often, since different loop iterations have distinct
8416 			 * states and may not help future pruning.
8417 			 * This threshold shouldn't be too low to make sure that
8418 			 * a loop with large bound will be rejected quickly.
8419 			 * The most abusive loop will be:
8420 			 * r1 += 1
8421 			 * if r1 < 1000000 goto pc-2
8422 			 * 1M insn_procssed limit / 100 == 10k peak states.
8423 			 * This threshold shouldn't be too high either, since states
8424 			 * at the end of the loop are likely to be useful in pruning.
8425 			 */
8426 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
8427 			    env->insn_processed - env->prev_insn_processed < 100)
8428 				add_new_state = false;
8429 			goto miss;
8430 		}
8431 		if (states_equal(env, &sl->state, cur)) {
8432 			sl->hit_cnt++;
8433 			/* reached equivalent register/stack state,
8434 			 * prune the search.
8435 			 * Registers read by the continuation are read by us.
8436 			 * If we have any write marks in env->cur_state, they
8437 			 * will prevent corresponding reads in the continuation
8438 			 * from reaching our parent (an explored_state).  Our
8439 			 * own state will get the read marks recorded, but
8440 			 * they'll be immediately forgotten as we're pruning
8441 			 * this state and will pop a new one.
8442 			 */
8443 			err = propagate_liveness(env, &sl->state, cur);
8444 
8445 			/* if previous state reached the exit with precision and
8446 			 * current state is equivalent to it (except precsion marks)
8447 			 * the precision needs to be propagated back in
8448 			 * the current state.
8449 			 */
8450 			err = err ? : push_jmp_history(env, cur);
8451 			err = err ? : propagate_precision(env, &sl->state);
8452 			if (err)
8453 				return err;
8454 			return 1;
8455 		}
8456 miss:
8457 		/* when new state is not going to be added do not increase miss count.
8458 		 * Otherwise several loop iterations will remove the state
8459 		 * recorded earlier. The goal of these heuristics is to have
8460 		 * states from some iterations of the loop (some in the beginning
8461 		 * and some at the end) to help pruning.
8462 		 */
8463 		if (add_new_state)
8464 			sl->miss_cnt++;
8465 		/* heuristic to determine whether this state is beneficial
8466 		 * to keep checking from state equivalence point of view.
8467 		 * Higher numbers increase max_states_per_insn and verification time,
8468 		 * but do not meaningfully decrease insn_processed.
8469 		 */
8470 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
8471 			/* the state is unlikely to be useful. Remove it to
8472 			 * speed up verification
8473 			 */
8474 			*pprev = sl->next;
8475 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
8476 				u32 br = sl->state.branches;
8477 
8478 				WARN_ONCE(br,
8479 					  "BUG live_done but branches_to_explore %d\n",
8480 					  br);
8481 				free_verifier_state(&sl->state, false);
8482 				kfree(sl);
8483 				env->peak_states--;
8484 			} else {
8485 				/* cannot free this state, since parentage chain may
8486 				 * walk it later. Add it for free_list instead to
8487 				 * be freed at the end of verification
8488 				 */
8489 				sl->next = env->free_list;
8490 				env->free_list = sl;
8491 			}
8492 			sl = *pprev;
8493 			continue;
8494 		}
8495 next:
8496 		pprev = &sl->next;
8497 		sl = *pprev;
8498 	}
8499 
8500 	if (env->max_states_per_insn < states_cnt)
8501 		env->max_states_per_insn = states_cnt;
8502 
8503 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
8504 		return push_jmp_history(env, cur);
8505 
8506 	if (!add_new_state)
8507 		return push_jmp_history(env, cur);
8508 
8509 	/* There were no equivalent states, remember the current one.
8510 	 * Technically the current state is not proven to be safe yet,
8511 	 * but it will either reach outer most bpf_exit (which means it's safe)
8512 	 * or it will be rejected. When there are no loops the verifier won't be
8513 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
8514 	 * again on the way to bpf_exit.
8515 	 * When looping the sl->state.branches will be > 0 and this state
8516 	 * will not be considered for equivalence until branches == 0.
8517 	 */
8518 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
8519 	if (!new_sl)
8520 		return -ENOMEM;
8521 	env->total_states++;
8522 	env->peak_states++;
8523 	env->prev_jmps_processed = env->jmps_processed;
8524 	env->prev_insn_processed = env->insn_processed;
8525 
8526 	/* add new state to the head of linked list */
8527 	new = &new_sl->state;
8528 	err = copy_verifier_state(new, cur);
8529 	if (err) {
8530 		free_verifier_state(new, false);
8531 		kfree(new_sl);
8532 		return err;
8533 	}
8534 	new->insn_idx = insn_idx;
8535 	WARN_ONCE(new->branches != 1,
8536 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
8537 
8538 	cur->parent = new;
8539 	cur->first_insn_idx = insn_idx;
8540 	clear_jmp_history(cur);
8541 	new_sl->next = *explored_state(env, insn_idx);
8542 	*explored_state(env, insn_idx) = new_sl;
8543 	/* connect new state to parentage chain. Current frame needs all
8544 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
8545 	 * to the stack implicitly by JITs) so in callers' frames connect just
8546 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
8547 	 * the state of the call instruction (with WRITTEN set), and r0 comes
8548 	 * from callee with its full parentage chain, anyway.
8549 	 */
8550 	/* clear write marks in current state: the writes we did are not writes
8551 	 * our child did, so they don't screen off its reads from us.
8552 	 * (There are no read marks in current state, because reads always mark
8553 	 * their parent and current state never has children yet.  Only
8554 	 * explored_states can get read marks.)
8555 	 */
8556 	for (j = 0; j <= cur->curframe; j++) {
8557 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
8558 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
8559 		for (i = 0; i < BPF_REG_FP; i++)
8560 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
8561 	}
8562 
8563 	/* all stack frames are accessible from callee, clear them all */
8564 	for (j = 0; j <= cur->curframe; j++) {
8565 		struct bpf_func_state *frame = cur->frame[j];
8566 		struct bpf_func_state *newframe = new->frame[j];
8567 
8568 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
8569 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
8570 			frame->stack[i].spilled_ptr.parent =
8571 						&newframe->stack[i].spilled_ptr;
8572 		}
8573 	}
8574 	return 0;
8575 }
8576 
8577 /* Return true if it's OK to have the same insn return a different type. */
8578 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
8579 {
8580 	switch (type) {
8581 	case PTR_TO_CTX:
8582 	case PTR_TO_SOCKET:
8583 	case PTR_TO_SOCKET_OR_NULL:
8584 	case PTR_TO_SOCK_COMMON:
8585 	case PTR_TO_SOCK_COMMON_OR_NULL:
8586 	case PTR_TO_TCP_SOCK:
8587 	case PTR_TO_TCP_SOCK_OR_NULL:
8588 	case PTR_TO_XDP_SOCK:
8589 	case PTR_TO_BTF_ID:
8590 	case PTR_TO_BTF_ID_OR_NULL:
8591 		return false;
8592 	default:
8593 		return true;
8594 	}
8595 }
8596 
8597 /* If an instruction was previously used with particular pointer types, then we
8598  * need to be careful to avoid cases such as the below, where it may be ok
8599  * for one branch accessing the pointer, but not ok for the other branch:
8600  *
8601  * R1 = sock_ptr
8602  * goto X;
8603  * ...
8604  * R1 = some_other_valid_ptr;
8605  * goto X;
8606  * ...
8607  * R2 = *(u32 *)(R1 + 0);
8608  */
8609 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
8610 {
8611 	return src != prev && (!reg_type_mismatch_ok(src) ||
8612 			       !reg_type_mismatch_ok(prev));
8613 }
8614 
8615 static int do_check(struct bpf_verifier_env *env)
8616 {
8617 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
8618 	struct bpf_verifier_state *state = env->cur_state;
8619 	struct bpf_insn *insns = env->prog->insnsi;
8620 	struct bpf_reg_state *regs;
8621 	int insn_cnt = env->prog->len;
8622 	bool do_print_state = false;
8623 	int prev_insn_idx = -1;
8624 
8625 	for (;;) {
8626 		struct bpf_insn *insn;
8627 		u8 class;
8628 		int err;
8629 
8630 		env->prev_insn_idx = prev_insn_idx;
8631 		if (env->insn_idx >= insn_cnt) {
8632 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
8633 				env->insn_idx, insn_cnt);
8634 			return -EFAULT;
8635 		}
8636 
8637 		insn = &insns[env->insn_idx];
8638 		class = BPF_CLASS(insn->code);
8639 
8640 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
8641 			verbose(env,
8642 				"BPF program is too large. Processed %d insn\n",
8643 				env->insn_processed);
8644 			return -E2BIG;
8645 		}
8646 
8647 		err = is_state_visited(env, env->insn_idx);
8648 		if (err < 0)
8649 			return err;
8650 		if (err == 1) {
8651 			/* found equivalent state, can prune the search */
8652 			if (env->log.level & BPF_LOG_LEVEL) {
8653 				if (do_print_state)
8654 					verbose(env, "\nfrom %d to %d%s: safe\n",
8655 						env->prev_insn_idx, env->insn_idx,
8656 						env->cur_state->speculative ?
8657 						" (speculative execution)" : "");
8658 				else
8659 					verbose(env, "%d: safe\n", env->insn_idx);
8660 			}
8661 			goto process_bpf_exit;
8662 		}
8663 
8664 		if (signal_pending(current))
8665 			return -EAGAIN;
8666 
8667 		if (need_resched())
8668 			cond_resched();
8669 
8670 		if (env->log.level & BPF_LOG_LEVEL2 ||
8671 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
8672 			if (env->log.level & BPF_LOG_LEVEL2)
8673 				verbose(env, "%d:", env->insn_idx);
8674 			else
8675 				verbose(env, "\nfrom %d to %d%s:",
8676 					env->prev_insn_idx, env->insn_idx,
8677 					env->cur_state->speculative ?
8678 					" (speculative execution)" : "");
8679 			print_verifier_state(env, state->frame[state->curframe]);
8680 			do_print_state = false;
8681 		}
8682 
8683 		if (env->log.level & BPF_LOG_LEVEL) {
8684 			const struct bpf_insn_cbs cbs = {
8685 				.cb_print	= verbose,
8686 				.private_data	= env,
8687 			};
8688 
8689 			verbose_linfo(env, env->insn_idx, "; ");
8690 			verbose(env, "%d: ", env->insn_idx);
8691 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
8692 		}
8693 
8694 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
8695 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
8696 							   env->prev_insn_idx);
8697 			if (err)
8698 				return err;
8699 		}
8700 
8701 		regs = cur_regs(env);
8702 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
8703 		prev_insn_idx = env->insn_idx;
8704 
8705 		if (class == BPF_ALU || class == BPF_ALU64) {
8706 			err = check_alu_op(env, insn);
8707 			if (err)
8708 				return err;
8709 
8710 		} else if (class == BPF_LDX) {
8711 			enum bpf_reg_type *prev_src_type, src_reg_type;
8712 
8713 			/* check for reserved fields is already done */
8714 
8715 			/* check src operand */
8716 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8717 			if (err)
8718 				return err;
8719 
8720 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8721 			if (err)
8722 				return err;
8723 
8724 			src_reg_type = regs[insn->src_reg].type;
8725 
8726 			/* check that memory (src_reg + off) is readable,
8727 			 * the state of dst_reg will be updated by this func
8728 			 */
8729 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
8730 					       insn->off, BPF_SIZE(insn->code),
8731 					       BPF_READ, insn->dst_reg, false);
8732 			if (err)
8733 				return err;
8734 
8735 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
8736 
8737 			if (*prev_src_type == NOT_INIT) {
8738 				/* saw a valid insn
8739 				 * dst_reg = *(u32 *)(src_reg + off)
8740 				 * save type to validate intersecting paths
8741 				 */
8742 				*prev_src_type = src_reg_type;
8743 
8744 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
8745 				/* ABuser program is trying to use the same insn
8746 				 * dst_reg = *(u32*) (src_reg + off)
8747 				 * with different pointer types:
8748 				 * src_reg == ctx in one branch and
8749 				 * src_reg == stack|map in some other branch.
8750 				 * Reject it.
8751 				 */
8752 				verbose(env, "same insn cannot be used with different pointers\n");
8753 				return -EINVAL;
8754 			}
8755 
8756 		} else if (class == BPF_STX) {
8757 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
8758 
8759 			if (BPF_MODE(insn->code) == BPF_XADD) {
8760 				err = check_xadd(env, env->insn_idx, insn);
8761 				if (err)
8762 					return err;
8763 				env->insn_idx++;
8764 				continue;
8765 			}
8766 
8767 			/* check src1 operand */
8768 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8769 			if (err)
8770 				return err;
8771 			/* check src2 operand */
8772 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8773 			if (err)
8774 				return err;
8775 
8776 			dst_reg_type = regs[insn->dst_reg].type;
8777 
8778 			/* check that memory (dst_reg + off) is writeable */
8779 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
8780 					       insn->off, BPF_SIZE(insn->code),
8781 					       BPF_WRITE, insn->src_reg, false);
8782 			if (err)
8783 				return err;
8784 
8785 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
8786 
8787 			if (*prev_dst_type == NOT_INIT) {
8788 				*prev_dst_type = dst_reg_type;
8789 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
8790 				verbose(env, "same insn cannot be used with different pointers\n");
8791 				return -EINVAL;
8792 			}
8793 
8794 		} else if (class == BPF_ST) {
8795 			if (BPF_MODE(insn->code) != BPF_MEM ||
8796 			    insn->src_reg != BPF_REG_0) {
8797 				verbose(env, "BPF_ST uses reserved fields\n");
8798 				return -EINVAL;
8799 			}
8800 			/* check src operand */
8801 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8802 			if (err)
8803 				return err;
8804 
8805 			if (is_ctx_reg(env, insn->dst_reg)) {
8806 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
8807 					insn->dst_reg,
8808 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
8809 				return -EACCES;
8810 			}
8811 
8812 			/* check that memory (dst_reg + off) is writeable */
8813 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
8814 					       insn->off, BPF_SIZE(insn->code),
8815 					       BPF_WRITE, -1, false);
8816 			if (err)
8817 				return err;
8818 
8819 		} else if (class == BPF_JMP || class == BPF_JMP32) {
8820 			u8 opcode = BPF_OP(insn->code);
8821 
8822 			env->jmps_processed++;
8823 			if (opcode == BPF_CALL) {
8824 				if (BPF_SRC(insn->code) != BPF_K ||
8825 				    insn->off != 0 ||
8826 				    (insn->src_reg != BPF_REG_0 &&
8827 				     insn->src_reg != BPF_PSEUDO_CALL) ||
8828 				    insn->dst_reg != BPF_REG_0 ||
8829 				    class == BPF_JMP32) {
8830 					verbose(env, "BPF_CALL uses reserved fields\n");
8831 					return -EINVAL;
8832 				}
8833 
8834 				if (env->cur_state->active_spin_lock &&
8835 				    (insn->src_reg == BPF_PSEUDO_CALL ||
8836 				     insn->imm != BPF_FUNC_spin_unlock)) {
8837 					verbose(env, "function calls are not allowed while holding a lock\n");
8838 					return -EINVAL;
8839 				}
8840 				if (insn->src_reg == BPF_PSEUDO_CALL)
8841 					err = check_func_call(env, insn, &env->insn_idx);
8842 				else
8843 					err = check_helper_call(env, insn->imm, env->insn_idx);
8844 				if (err)
8845 					return err;
8846 
8847 			} else if (opcode == BPF_JA) {
8848 				if (BPF_SRC(insn->code) != BPF_K ||
8849 				    insn->imm != 0 ||
8850 				    insn->src_reg != BPF_REG_0 ||
8851 				    insn->dst_reg != BPF_REG_0 ||
8852 				    class == BPF_JMP32) {
8853 					verbose(env, "BPF_JA uses reserved fields\n");
8854 					return -EINVAL;
8855 				}
8856 
8857 				env->insn_idx += insn->off + 1;
8858 				continue;
8859 
8860 			} else if (opcode == BPF_EXIT) {
8861 				if (BPF_SRC(insn->code) != BPF_K ||
8862 				    insn->imm != 0 ||
8863 				    insn->src_reg != BPF_REG_0 ||
8864 				    insn->dst_reg != BPF_REG_0 ||
8865 				    class == BPF_JMP32) {
8866 					verbose(env, "BPF_EXIT uses reserved fields\n");
8867 					return -EINVAL;
8868 				}
8869 
8870 				if (env->cur_state->active_spin_lock) {
8871 					verbose(env, "bpf_spin_unlock is missing\n");
8872 					return -EINVAL;
8873 				}
8874 
8875 				if (state->curframe) {
8876 					/* exit from nested function */
8877 					err = prepare_func_exit(env, &env->insn_idx);
8878 					if (err)
8879 						return err;
8880 					do_print_state = true;
8881 					continue;
8882 				}
8883 
8884 				err = check_reference_leak(env);
8885 				if (err)
8886 					return err;
8887 
8888 				err = check_return_code(env);
8889 				if (err)
8890 					return err;
8891 process_bpf_exit:
8892 				update_branch_counts(env, env->cur_state);
8893 				err = pop_stack(env, &prev_insn_idx,
8894 						&env->insn_idx, pop_log);
8895 				if (err < 0) {
8896 					if (err != -ENOENT)
8897 						return err;
8898 					break;
8899 				} else {
8900 					do_print_state = true;
8901 					continue;
8902 				}
8903 			} else {
8904 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
8905 				if (err)
8906 					return err;
8907 			}
8908 		} else if (class == BPF_LD) {
8909 			u8 mode = BPF_MODE(insn->code);
8910 
8911 			if (mode == BPF_ABS || mode == BPF_IND) {
8912 				err = check_ld_abs(env, insn);
8913 				if (err)
8914 					return err;
8915 
8916 			} else if (mode == BPF_IMM) {
8917 				err = check_ld_imm(env, insn);
8918 				if (err)
8919 					return err;
8920 
8921 				env->insn_idx++;
8922 				env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
8923 			} else {
8924 				verbose(env, "invalid BPF_LD mode\n");
8925 				return -EINVAL;
8926 			}
8927 		} else {
8928 			verbose(env, "unknown insn class %d\n", class);
8929 			return -EINVAL;
8930 		}
8931 
8932 		env->insn_idx++;
8933 	}
8934 
8935 	return 0;
8936 }
8937 
8938 static int check_map_prealloc(struct bpf_map *map)
8939 {
8940 	return (map->map_type != BPF_MAP_TYPE_HASH &&
8941 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8942 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
8943 		!(map->map_flags & BPF_F_NO_PREALLOC);
8944 }
8945 
8946 static bool is_tracing_prog_type(enum bpf_prog_type type)
8947 {
8948 	switch (type) {
8949 	case BPF_PROG_TYPE_KPROBE:
8950 	case BPF_PROG_TYPE_TRACEPOINT:
8951 	case BPF_PROG_TYPE_PERF_EVENT:
8952 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
8953 		return true;
8954 	default:
8955 		return false;
8956 	}
8957 }
8958 
8959 static bool is_preallocated_map(struct bpf_map *map)
8960 {
8961 	if (!check_map_prealloc(map))
8962 		return false;
8963 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
8964 		return false;
8965 	return true;
8966 }
8967 
8968 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
8969 					struct bpf_map *map,
8970 					struct bpf_prog *prog)
8971 
8972 {
8973 	/*
8974 	 * Validate that trace type programs use preallocated hash maps.
8975 	 *
8976 	 * For programs attached to PERF events this is mandatory as the
8977 	 * perf NMI can hit any arbitrary code sequence.
8978 	 *
8979 	 * All other trace types using preallocated hash maps are unsafe as
8980 	 * well because tracepoint or kprobes can be inside locked regions
8981 	 * of the memory allocator or at a place where a recursion into the
8982 	 * memory allocator would see inconsistent state.
8983 	 *
8984 	 * On RT enabled kernels run-time allocation of all trace type
8985 	 * programs is strictly prohibited due to lock type constraints. On
8986 	 * !RT kernels it is allowed for backwards compatibility reasons for
8987 	 * now, but warnings are emitted so developers are made aware of
8988 	 * the unsafety and can fix their programs before this is enforced.
8989 	 */
8990 	if (is_tracing_prog_type(prog->type) && !is_preallocated_map(map)) {
8991 		if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
8992 			verbose(env, "perf_event programs can only use preallocated hash map\n");
8993 			return -EINVAL;
8994 		}
8995 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
8996 			verbose(env, "trace type programs can only use preallocated hash map\n");
8997 			return -EINVAL;
8998 		}
8999 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
9000 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
9001 	}
9002 
9003 	if ((is_tracing_prog_type(prog->type) ||
9004 	     prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
9005 	    map_value_has_spin_lock(map)) {
9006 		verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
9007 		return -EINVAL;
9008 	}
9009 
9010 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
9011 	    !bpf_offload_prog_map_match(prog, map)) {
9012 		verbose(env, "offload device mismatch between prog and map\n");
9013 		return -EINVAL;
9014 	}
9015 
9016 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
9017 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
9018 		return -EINVAL;
9019 	}
9020 
9021 	return 0;
9022 }
9023 
9024 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
9025 {
9026 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
9027 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
9028 }
9029 
9030 /* look for pseudo eBPF instructions that access map FDs and
9031  * replace them with actual map pointers
9032  */
9033 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
9034 {
9035 	struct bpf_insn *insn = env->prog->insnsi;
9036 	int insn_cnt = env->prog->len;
9037 	int i, j, err;
9038 
9039 	err = bpf_prog_calc_tag(env->prog);
9040 	if (err)
9041 		return err;
9042 
9043 	for (i = 0; i < insn_cnt; i++, insn++) {
9044 		if (BPF_CLASS(insn->code) == BPF_LDX &&
9045 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9046 			verbose(env, "BPF_LDX uses reserved fields\n");
9047 			return -EINVAL;
9048 		}
9049 
9050 		if (BPF_CLASS(insn->code) == BPF_STX &&
9051 		    ((BPF_MODE(insn->code) != BPF_MEM &&
9052 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
9053 			verbose(env, "BPF_STX uses reserved fields\n");
9054 			return -EINVAL;
9055 		}
9056 
9057 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
9058 			struct bpf_insn_aux_data *aux;
9059 			struct bpf_map *map;
9060 			struct fd f;
9061 			u64 addr;
9062 
9063 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
9064 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
9065 			    insn[1].off != 0) {
9066 				verbose(env, "invalid bpf_ld_imm64 insn\n");
9067 				return -EINVAL;
9068 			}
9069 
9070 			if (insn[0].src_reg == 0)
9071 				/* valid generic load 64-bit imm */
9072 				goto next_insn;
9073 
9074 			/* In final convert_pseudo_ld_imm64() step, this is
9075 			 * converted into regular 64-bit imm load insn.
9076 			 */
9077 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
9078 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
9079 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
9080 			     insn[1].imm != 0)) {
9081 				verbose(env,
9082 					"unrecognized bpf_ld_imm64 insn\n");
9083 				return -EINVAL;
9084 			}
9085 
9086 			f = fdget(insn[0].imm);
9087 			map = __bpf_map_get(f);
9088 			if (IS_ERR(map)) {
9089 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
9090 					insn[0].imm);
9091 				return PTR_ERR(map);
9092 			}
9093 
9094 			err = check_map_prog_compatibility(env, map, env->prog);
9095 			if (err) {
9096 				fdput(f);
9097 				return err;
9098 			}
9099 
9100 			aux = &env->insn_aux_data[i];
9101 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
9102 				addr = (unsigned long)map;
9103 			} else {
9104 				u32 off = insn[1].imm;
9105 
9106 				if (off >= BPF_MAX_VAR_OFF) {
9107 					verbose(env, "direct value offset of %u is not allowed\n", off);
9108 					fdput(f);
9109 					return -EINVAL;
9110 				}
9111 
9112 				if (!map->ops->map_direct_value_addr) {
9113 					verbose(env, "no direct value access support for this map type\n");
9114 					fdput(f);
9115 					return -EINVAL;
9116 				}
9117 
9118 				err = map->ops->map_direct_value_addr(map, &addr, off);
9119 				if (err) {
9120 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
9121 						map->value_size, off);
9122 					fdput(f);
9123 					return err;
9124 				}
9125 
9126 				aux->map_off = off;
9127 				addr += off;
9128 			}
9129 
9130 			insn[0].imm = (u32)addr;
9131 			insn[1].imm = addr >> 32;
9132 
9133 			/* check whether we recorded this map already */
9134 			for (j = 0; j < env->used_map_cnt; j++) {
9135 				if (env->used_maps[j] == map) {
9136 					aux->map_index = j;
9137 					fdput(f);
9138 					goto next_insn;
9139 				}
9140 			}
9141 
9142 			if (env->used_map_cnt >= MAX_USED_MAPS) {
9143 				fdput(f);
9144 				return -E2BIG;
9145 			}
9146 
9147 			/* hold the map. If the program is rejected by verifier,
9148 			 * the map will be released by release_maps() or it
9149 			 * will be used by the valid program until it's unloaded
9150 			 * and all maps are released in free_used_maps()
9151 			 */
9152 			bpf_map_inc(map);
9153 
9154 			aux->map_index = env->used_map_cnt;
9155 			env->used_maps[env->used_map_cnt++] = map;
9156 
9157 			if (bpf_map_is_cgroup_storage(map) &&
9158 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
9159 				verbose(env, "only one cgroup storage of each type is allowed\n");
9160 				fdput(f);
9161 				return -EBUSY;
9162 			}
9163 
9164 			fdput(f);
9165 next_insn:
9166 			insn++;
9167 			i++;
9168 			continue;
9169 		}
9170 
9171 		/* Basic sanity check before we invest more work here. */
9172 		if (!bpf_opcode_in_insntable(insn->code)) {
9173 			verbose(env, "unknown opcode %02x\n", insn->code);
9174 			return -EINVAL;
9175 		}
9176 	}
9177 
9178 	/* now all pseudo BPF_LD_IMM64 instructions load valid
9179 	 * 'struct bpf_map *' into a register instead of user map_fd.
9180 	 * These pointers will be used later by verifier to validate map access.
9181 	 */
9182 	return 0;
9183 }
9184 
9185 /* drop refcnt of maps used by the rejected program */
9186 static void release_maps(struct bpf_verifier_env *env)
9187 {
9188 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
9189 			     env->used_map_cnt);
9190 }
9191 
9192 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
9193 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
9194 {
9195 	struct bpf_insn *insn = env->prog->insnsi;
9196 	int insn_cnt = env->prog->len;
9197 	int i;
9198 
9199 	for (i = 0; i < insn_cnt; i++, insn++)
9200 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
9201 			insn->src_reg = 0;
9202 }
9203 
9204 /* single env->prog->insni[off] instruction was replaced with the range
9205  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
9206  * [0, off) and [off, end) to new locations, so the patched range stays zero
9207  */
9208 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
9209 				struct bpf_prog *new_prog, u32 off, u32 cnt)
9210 {
9211 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
9212 	struct bpf_insn *insn = new_prog->insnsi;
9213 	u32 prog_len;
9214 	int i;
9215 
9216 	/* aux info at OFF always needs adjustment, no matter fast path
9217 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
9218 	 * original insn at old prog.
9219 	 */
9220 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
9221 
9222 	if (cnt == 1)
9223 		return 0;
9224 	prog_len = new_prog->len;
9225 	new_data = vzalloc(array_size(prog_len,
9226 				      sizeof(struct bpf_insn_aux_data)));
9227 	if (!new_data)
9228 		return -ENOMEM;
9229 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
9230 	memcpy(new_data + off + cnt - 1, old_data + off,
9231 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
9232 	for (i = off; i < off + cnt - 1; i++) {
9233 		new_data[i].seen = env->pass_cnt;
9234 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
9235 	}
9236 	env->insn_aux_data = new_data;
9237 	vfree(old_data);
9238 	return 0;
9239 }
9240 
9241 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
9242 {
9243 	int i;
9244 
9245 	if (len == 1)
9246 		return;
9247 	/* NOTE: fake 'exit' subprog should be updated as well. */
9248 	for (i = 0; i <= env->subprog_cnt; i++) {
9249 		if (env->subprog_info[i].start <= off)
9250 			continue;
9251 		env->subprog_info[i].start += len - 1;
9252 	}
9253 }
9254 
9255 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
9256 					    const struct bpf_insn *patch, u32 len)
9257 {
9258 	struct bpf_prog *new_prog;
9259 
9260 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
9261 	if (IS_ERR(new_prog)) {
9262 		if (PTR_ERR(new_prog) == -ERANGE)
9263 			verbose(env,
9264 				"insn %d cannot be patched due to 16-bit range\n",
9265 				env->insn_aux_data[off].orig_idx);
9266 		return NULL;
9267 	}
9268 	if (adjust_insn_aux_data(env, new_prog, off, len))
9269 		return NULL;
9270 	adjust_subprog_starts(env, off, len);
9271 	return new_prog;
9272 }
9273 
9274 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
9275 					      u32 off, u32 cnt)
9276 {
9277 	int i, j;
9278 
9279 	/* find first prog starting at or after off (first to remove) */
9280 	for (i = 0; i < env->subprog_cnt; i++)
9281 		if (env->subprog_info[i].start >= off)
9282 			break;
9283 	/* find first prog starting at or after off + cnt (first to stay) */
9284 	for (j = i; j < env->subprog_cnt; j++)
9285 		if (env->subprog_info[j].start >= off + cnt)
9286 			break;
9287 	/* if j doesn't start exactly at off + cnt, we are just removing
9288 	 * the front of previous prog
9289 	 */
9290 	if (env->subprog_info[j].start != off + cnt)
9291 		j--;
9292 
9293 	if (j > i) {
9294 		struct bpf_prog_aux *aux = env->prog->aux;
9295 		int move;
9296 
9297 		/* move fake 'exit' subprog as well */
9298 		move = env->subprog_cnt + 1 - j;
9299 
9300 		memmove(env->subprog_info + i,
9301 			env->subprog_info + j,
9302 			sizeof(*env->subprog_info) * move);
9303 		env->subprog_cnt -= j - i;
9304 
9305 		/* remove func_info */
9306 		if (aux->func_info) {
9307 			move = aux->func_info_cnt - j;
9308 
9309 			memmove(aux->func_info + i,
9310 				aux->func_info + j,
9311 				sizeof(*aux->func_info) * move);
9312 			aux->func_info_cnt -= j - i;
9313 			/* func_info->insn_off is set after all code rewrites,
9314 			 * in adjust_btf_func() - no need to adjust
9315 			 */
9316 		}
9317 	} else {
9318 		/* convert i from "first prog to remove" to "first to adjust" */
9319 		if (env->subprog_info[i].start == off)
9320 			i++;
9321 	}
9322 
9323 	/* update fake 'exit' subprog as well */
9324 	for (; i <= env->subprog_cnt; i++)
9325 		env->subprog_info[i].start -= cnt;
9326 
9327 	return 0;
9328 }
9329 
9330 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
9331 				      u32 cnt)
9332 {
9333 	struct bpf_prog *prog = env->prog;
9334 	u32 i, l_off, l_cnt, nr_linfo;
9335 	struct bpf_line_info *linfo;
9336 
9337 	nr_linfo = prog->aux->nr_linfo;
9338 	if (!nr_linfo)
9339 		return 0;
9340 
9341 	linfo = prog->aux->linfo;
9342 
9343 	/* find first line info to remove, count lines to be removed */
9344 	for (i = 0; i < nr_linfo; i++)
9345 		if (linfo[i].insn_off >= off)
9346 			break;
9347 
9348 	l_off = i;
9349 	l_cnt = 0;
9350 	for (; i < nr_linfo; i++)
9351 		if (linfo[i].insn_off < off + cnt)
9352 			l_cnt++;
9353 		else
9354 			break;
9355 
9356 	/* First live insn doesn't match first live linfo, it needs to "inherit"
9357 	 * last removed linfo.  prog is already modified, so prog->len == off
9358 	 * means no live instructions after (tail of the program was removed).
9359 	 */
9360 	if (prog->len != off && l_cnt &&
9361 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
9362 		l_cnt--;
9363 		linfo[--i].insn_off = off + cnt;
9364 	}
9365 
9366 	/* remove the line info which refer to the removed instructions */
9367 	if (l_cnt) {
9368 		memmove(linfo + l_off, linfo + i,
9369 			sizeof(*linfo) * (nr_linfo - i));
9370 
9371 		prog->aux->nr_linfo -= l_cnt;
9372 		nr_linfo = prog->aux->nr_linfo;
9373 	}
9374 
9375 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
9376 	for (i = l_off; i < nr_linfo; i++)
9377 		linfo[i].insn_off -= cnt;
9378 
9379 	/* fix up all subprogs (incl. 'exit') which start >= off */
9380 	for (i = 0; i <= env->subprog_cnt; i++)
9381 		if (env->subprog_info[i].linfo_idx > l_off) {
9382 			/* program may have started in the removed region but
9383 			 * may not be fully removed
9384 			 */
9385 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
9386 				env->subprog_info[i].linfo_idx -= l_cnt;
9387 			else
9388 				env->subprog_info[i].linfo_idx = l_off;
9389 		}
9390 
9391 	return 0;
9392 }
9393 
9394 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
9395 {
9396 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9397 	unsigned int orig_prog_len = env->prog->len;
9398 	int err;
9399 
9400 	if (bpf_prog_is_dev_bound(env->prog->aux))
9401 		bpf_prog_offload_remove_insns(env, off, cnt);
9402 
9403 	err = bpf_remove_insns(env->prog, off, cnt);
9404 	if (err)
9405 		return err;
9406 
9407 	err = adjust_subprog_starts_after_remove(env, off, cnt);
9408 	if (err)
9409 		return err;
9410 
9411 	err = bpf_adj_linfo_after_remove(env, off, cnt);
9412 	if (err)
9413 		return err;
9414 
9415 	memmove(aux_data + off,	aux_data + off + cnt,
9416 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
9417 
9418 	return 0;
9419 }
9420 
9421 /* The verifier does more data flow analysis than llvm and will not
9422  * explore branches that are dead at run time. Malicious programs can
9423  * have dead code too. Therefore replace all dead at-run-time code
9424  * with 'ja -1'.
9425  *
9426  * Just nops are not optimal, e.g. if they would sit at the end of the
9427  * program and through another bug we would manage to jump there, then
9428  * we'd execute beyond program memory otherwise. Returning exception
9429  * code also wouldn't work since we can have subprogs where the dead
9430  * code could be located.
9431  */
9432 static void sanitize_dead_code(struct bpf_verifier_env *env)
9433 {
9434 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9435 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
9436 	struct bpf_insn *insn = env->prog->insnsi;
9437 	const int insn_cnt = env->prog->len;
9438 	int i;
9439 
9440 	for (i = 0; i < insn_cnt; i++) {
9441 		if (aux_data[i].seen)
9442 			continue;
9443 		memcpy(insn + i, &trap, sizeof(trap));
9444 	}
9445 }
9446 
9447 static bool insn_is_cond_jump(u8 code)
9448 {
9449 	u8 op;
9450 
9451 	if (BPF_CLASS(code) == BPF_JMP32)
9452 		return true;
9453 
9454 	if (BPF_CLASS(code) != BPF_JMP)
9455 		return false;
9456 
9457 	op = BPF_OP(code);
9458 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
9459 }
9460 
9461 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
9462 {
9463 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9464 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
9465 	struct bpf_insn *insn = env->prog->insnsi;
9466 	const int insn_cnt = env->prog->len;
9467 	int i;
9468 
9469 	for (i = 0; i < insn_cnt; i++, insn++) {
9470 		if (!insn_is_cond_jump(insn->code))
9471 			continue;
9472 
9473 		if (!aux_data[i + 1].seen)
9474 			ja.off = insn->off;
9475 		else if (!aux_data[i + 1 + insn->off].seen)
9476 			ja.off = 0;
9477 		else
9478 			continue;
9479 
9480 		if (bpf_prog_is_dev_bound(env->prog->aux))
9481 			bpf_prog_offload_replace_insn(env, i, &ja);
9482 
9483 		memcpy(insn, &ja, sizeof(ja));
9484 	}
9485 }
9486 
9487 static int opt_remove_dead_code(struct bpf_verifier_env *env)
9488 {
9489 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9490 	int insn_cnt = env->prog->len;
9491 	int i, err;
9492 
9493 	for (i = 0; i < insn_cnt; i++) {
9494 		int j;
9495 
9496 		j = 0;
9497 		while (i + j < insn_cnt && !aux_data[i + j].seen)
9498 			j++;
9499 		if (!j)
9500 			continue;
9501 
9502 		err = verifier_remove_insns(env, i, j);
9503 		if (err)
9504 			return err;
9505 		insn_cnt = env->prog->len;
9506 	}
9507 
9508 	return 0;
9509 }
9510 
9511 static int opt_remove_nops(struct bpf_verifier_env *env)
9512 {
9513 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
9514 	struct bpf_insn *insn = env->prog->insnsi;
9515 	int insn_cnt = env->prog->len;
9516 	int i, err;
9517 
9518 	for (i = 0; i < insn_cnt; i++) {
9519 		if (memcmp(&insn[i], &ja, sizeof(ja)))
9520 			continue;
9521 
9522 		err = verifier_remove_insns(env, i, 1);
9523 		if (err)
9524 			return err;
9525 		insn_cnt--;
9526 		i--;
9527 	}
9528 
9529 	return 0;
9530 }
9531 
9532 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
9533 					 const union bpf_attr *attr)
9534 {
9535 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
9536 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
9537 	int i, patch_len, delta = 0, len = env->prog->len;
9538 	struct bpf_insn *insns = env->prog->insnsi;
9539 	struct bpf_prog *new_prog;
9540 	bool rnd_hi32;
9541 
9542 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
9543 	zext_patch[1] = BPF_ZEXT_REG(0);
9544 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
9545 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
9546 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
9547 	for (i = 0; i < len; i++) {
9548 		int adj_idx = i + delta;
9549 		struct bpf_insn insn;
9550 
9551 		insn = insns[adj_idx];
9552 		if (!aux[adj_idx].zext_dst) {
9553 			u8 code, class;
9554 			u32 imm_rnd;
9555 
9556 			if (!rnd_hi32)
9557 				continue;
9558 
9559 			code = insn.code;
9560 			class = BPF_CLASS(code);
9561 			if (insn_no_def(&insn))
9562 				continue;
9563 
9564 			/* NOTE: arg "reg" (the fourth one) is only used for
9565 			 *       BPF_STX which has been ruled out in above
9566 			 *       check, it is safe to pass NULL here.
9567 			 */
9568 			if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
9569 				if (class == BPF_LD &&
9570 				    BPF_MODE(code) == BPF_IMM)
9571 					i++;
9572 				continue;
9573 			}
9574 
9575 			/* ctx load could be transformed into wider load. */
9576 			if (class == BPF_LDX &&
9577 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
9578 				continue;
9579 
9580 			imm_rnd = get_random_int();
9581 			rnd_hi32_patch[0] = insn;
9582 			rnd_hi32_patch[1].imm = imm_rnd;
9583 			rnd_hi32_patch[3].dst_reg = insn.dst_reg;
9584 			patch = rnd_hi32_patch;
9585 			patch_len = 4;
9586 			goto apply_patch_buffer;
9587 		}
9588 
9589 		if (!bpf_jit_needs_zext())
9590 			continue;
9591 
9592 		zext_patch[0] = insn;
9593 		zext_patch[1].dst_reg = insn.dst_reg;
9594 		zext_patch[1].src_reg = insn.dst_reg;
9595 		patch = zext_patch;
9596 		patch_len = 2;
9597 apply_patch_buffer:
9598 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
9599 		if (!new_prog)
9600 			return -ENOMEM;
9601 		env->prog = new_prog;
9602 		insns = new_prog->insnsi;
9603 		aux = env->insn_aux_data;
9604 		delta += patch_len - 1;
9605 	}
9606 
9607 	return 0;
9608 }
9609 
9610 /* convert load instructions that access fields of a context type into a
9611  * sequence of instructions that access fields of the underlying structure:
9612  *     struct __sk_buff    -> struct sk_buff
9613  *     struct bpf_sock_ops -> struct sock
9614  */
9615 static int convert_ctx_accesses(struct bpf_verifier_env *env)
9616 {
9617 	const struct bpf_verifier_ops *ops = env->ops;
9618 	int i, cnt, size, ctx_field_size, delta = 0;
9619 	const int insn_cnt = env->prog->len;
9620 	struct bpf_insn insn_buf[16], *insn;
9621 	u32 target_size, size_default, off;
9622 	struct bpf_prog *new_prog;
9623 	enum bpf_access_type type;
9624 	bool is_narrower_load;
9625 
9626 	if (ops->gen_prologue || env->seen_direct_write) {
9627 		if (!ops->gen_prologue) {
9628 			verbose(env, "bpf verifier is misconfigured\n");
9629 			return -EINVAL;
9630 		}
9631 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
9632 					env->prog);
9633 		if (cnt >= ARRAY_SIZE(insn_buf)) {
9634 			verbose(env, "bpf verifier is misconfigured\n");
9635 			return -EINVAL;
9636 		} else if (cnt) {
9637 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
9638 			if (!new_prog)
9639 				return -ENOMEM;
9640 
9641 			env->prog = new_prog;
9642 			delta += cnt - 1;
9643 		}
9644 	}
9645 
9646 	if (bpf_prog_is_dev_bound(env->prog->aux))
9647 		return 0;
9648 
9649 	insn = env->prog->insnsi + delta;
9650 
9651 	for (i = 0; i < insn_cnt; i++, insn++) {
9652 		bpf_convert_ctx_access_t convert_ctx_access;
9653 
9654 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
9655 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
9656 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
9657 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
9658 			type = BPF_READ;
9659 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
9660 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
9661 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
9662 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
9663 			type = BPF_WRITE;
9664 		else
9665 			continue;
9666 
9667 		if (type == BPF_WRITE &&
9668 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
9669 			struct bpf_insn patch[] = {
9670 				/* Sanitize suspicious stack slot with zero.
9671 				 * There are no memory dependencies for this store,
9672 				 * since it's only using frame pointer and immediate
9673 				 * constant of zero
9674 				 */
9675 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
9676 					   env->insn_aux_data[i + delta].sanitize_stack_off,
9677 					   0),
9678 				/* the original STX instruction will immediately
9679 				 * overwrite the same stack slot with appropriate value
9680 				 */
9681 				*insn,
9682 			};
9683 
9684 			cnt = ARRAY_SIZE(patch);
9685 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
9686 			if (!new_prog)
9687 				return -ENOMEM;
9688 
9689 			delta    += cnt - 1;
9690 			env->prog = new_prog;
9691 			insn      = new_prog->insnsi + i + delta;
9692 			continue;
9693 		}
9694 
9695 		switch (env->insn_aux_data[i + delta].ptr_type) {
9696 		case PTR_TO_CTX:
9697 			if (!ops->convert_ctx_access)
9698 				continue;
9699 			convert_ctx_access = ops->convert_ctx_access;
9700 			break;
9701 		case PTR_TO_SOCKET:
9702 		case PTR_TO_SOCK_COMMON:
9703 			convert_ctx_access = bpf_sock_convert_ctx_access;
9704 			break;
9705 		case PTR_TO_TCP_SOCK:
9706 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
9707 			break;
9708 		case PTR_TO_XDP_SOCK:
9709 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
9710 			break;
9711 		case PTR_TO_BTF_ID:
9712 			if (type == BPF_READ) {
9713 				insn->code = BPF_LDX | BPF_PROBE_MEM |
9714 					BPF_SIZE((insn)->code);
9715 				env->prog->aux->num_exentries++;
9716 			} else if (env->prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9717 				verbose(env, "Writes through BTF pointers are not allowed\n");
9718 				return -EINVAL;
9719 			}
9720 			continue;
9721 		default:
9722 			continue;
9723 		}
9724 
9725 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
9726 		size = BPF_LDST_BYTES(insn);
9727 
9728 		/* If the read access is a narrower load of the field,
9729 		 * convert to a 4/8-byte load, to minimum program type specific
9730 		 * convert_ctx_access changes. If conversion is successful,
9731 		 * we will apply proper mask to the result.
9732 		 */
9733 		is_narrower_load = size < ctx_field_size;
9734 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
9735 		off = insn->off;
9736 		if (is_narrower_load) {
9737 			u8 size_code;
9738 
9739 			if (type == BPF_WRITE) {
9740 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
9741 				return -EINVAL;
9742 			}
9743 
9744 			size_code = BPF_H;
9745 			if (ctx_field_size == 4)
9746 				size_code = BPF_W;
9747 			else if (ctx_field_size == 8)
9748 				size_code = BPF_DW;
9749 
9750 			insn->off = off & ~(size_default - 1);
9751 			insn->code = BPF_LDX | BPF_MEM | size_code;
9752 		}
9753 
9754 		target_size = 0;
9755 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
9756 					 &target_size);
9757 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
9758 		    (ctx_field_size && !target_size)) {
9759 			verbose(env, "bpf verifier is misconfigured\n");
9760 			return -EINVAL;
9761 		}
9762 
9763 		if (is_narrower_load && size < target_size) {
9764 			u8 shift = bpf_ctx_narrow_access_offset(
9765 				off, size, size_default) * 8;
9766 			if (ctx_field_size <= 4) {
9767 				if (shift)
9768 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
9769 									insn->dst_reg,
9770 									shift);
9771 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
9772 								(1 << size * 8) - 1);
9773 			} else {
9774 				if (shift)
9775 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
9776 									insn->dst_reg,
9777 									shift);
9778 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
9779 								(1ULL << size * 8) - 1);
9780 			}
9781 		}
9782 
9783 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9784 		if (!new_prog)
9785 			return -ENOMEM;
9786 
9787 		delta += cnt - 1;
9788 
9789 		/* keep walking new program and skip insns we just inserted */
9790 		env->prog = new_prog;
9791 		insn      = new_prog->insnsi + i + delta;
9792 	}
9793 
9794 	return 0;
9795 }
9796 
9797 static int jit_subprogs(struct bpf_verifier_env *env)
9798 {
9799 	struct bpf_prog *prog = env->prog, **func, *tmp;
9800 	int i, j, subprog_start, subprog_end = 0, len, subprog;
9801 	struct bpf_insn *insn;
9802 	void *old_bpf_func;
9803 	int err, num_exentries;
9804 
9805 	if (env->subprog_cnt <= 1)
9806 		return 0;
9807 
9808 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9809 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9810 		    insn->src_reg != BPF_PSEUDO_CALL)
9811 			continue;
9812 		/* Upon error here we cannot fall back to interpreter but
9813 		 * need a hard reject of the program. Thus -EFAULT is
9814 		 * propagated in any case.
9815 		 */
9816 		subprog = find_subprog(env, i + insn->imm + 1);
9817 		if (subprog < 0) {
9818 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
9819 				  i + insn->imm + 1);
9820 			return -EFAULT;
9821 		}
9822 		/* temporarily remember subprog id inside insn instead of
9823 		 * aux_data, since next loop will split up all insns into funcs
9824 		 */
9825 		insn->off = subprog;
9826 		/* remember original imm in case JIT fails and fallback
9827 		 * to interpreter will be needed
9828 		 */
9829 		env->insn_aux_data[i].call_imm = insn->imm;
9830 		/* point imm to __bpf_call_base+1 from JITs point of view */
9831 		insn->imm = 1;
9832 	}
9833 
9834 	err = bpf_prog_alloc_jited_linfo(prog);
9835 	if (err)
9836 		goto out_undo_insn;
9837 
9838 	err = -ENOMEM;
9839 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
9840 	if (!func)
9841 		goto out_undo_insn;
9842 
9843 	for (i = 0; i < env->subprog_cnt; i++) {
9844 		subprog_start = subprog_end;
9845 		subprog_end = env->subprog_info[i + 1].start;
9846 
9847 		len = subprog_end - subprog_start;
9848 		/* BPF_PROG_RUN doesn't call subprogs directly,
9849 		 * hence main prog stats include the runtime of subprogs.
9850 		 * subprogs don't have IDs and not reachable via prog_get_next_id
9851 		 * func[i]->aux->stats will never be accessed and stays NULL
9852 		 */
9853 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
9854 		if (!func[i])
9855 			goto out_free;
9856 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
9857 		       len * sizeof(struct bpf_insn));
9858 		func[i]->type = prog->type;
9859 		func[i]->len = len;
9860 		if (bpf_prog_calc_tag(func[i]))
9861 			goto out_free;
9862 		func[i]->is_func = 1;
9863 		func[i]->aux->func_idx = i;
9864 		/* the btf and func_info will be freed only at prog->aux */
9865 		func[i]->aux->btf = prog->aux->btf;
9866 		func[i]->aux->func_info = prog->aux->func_info;
9867 
9868 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
9869 		 * Long term would need debug info to populate names
9870 		 */
9871 		func[i]->aux->name[0] = 'F';
9872 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
9873 		func[i]->jit_requested = 1;
9874 		func[i]->aux->linfo = prog->aux->linfo;
9875 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
9876 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
9877 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
9878 		num_exentries = 0;
9879 		insn = func[i]->insnsi;
9880 		for (j = 0; j < func[i]->len; j++, insn++) {
9881 			if (BPF_CLASS(insn->code) == BPF_LDX &&
9882 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
9883 				num_exentries++;
9884 		}
9885 		func[i]->aux->num_exentries = num_exentries;
9886 		func[i] = bpf_int_jit_compile(func[i]);
9887 		if (!func[i]->jited) {
9888 			err = -ENOTSUPP;
9889 			goto out_free;
9890 		}
9891 		cond_resched();
9892 	}
9893 	/* at this point all bpf functions were successfully JITed
9894 	 * now populate all bpf_calls with correct addresses and
9895 	 * run last pass of JIT
9896 	 */
9897 	for (i = 0; i < env->subprog_cnt; i++) {
9898 		insn = func[i]->insnsi;
9899 		for (j = 0; j < func[i]->len; j++, insn++) {
9900 			if (insn->code != (BPF_JMP | BPF_CALL) ||
9901 			    insn->src_reg != BPF_PSEUDO_CALL)
9902 				continue;
9903 			subprog = insn->off;
9904 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
9905 				    __bpf_call_base;
9906 		}
9907 
9908 		/* we use the aux data to keep a list of the start addresses
9909 		 * of the JITed images for each function in the program
9910 		 *
9911 		 * for some architectures, such as powerpc64, the imm field
9912 		 * might not be large enough to hold the offset of the start
9913 		 * address of the callee's JITed image from __bpf_call_base
9914 		 *
9915 		 * in such cases, we can lookup the start address of a callee
9916 		 * by using its subprog id, available from the off field of
9917 		 * the call instruction, as an index for this list
9918 		 */
9919 		func[i]->aux->func = func;
9920 		func[i]->aux->func_cnt = env->subprog_cnt;
9921 	}
9922 	for (i = 0; i < env->subprog_cnt; i++) {
9923 		old_bpf_func = func[i]->bpf_func;
9924 		tmp = bpf_int_jit_compile(func[i]);
9925 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
9926 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
9927 			err = -ENOTSUPP;
9928 			goto out_free;
9929 		}
9930 		cond_resched();
9931 	}
9932 
9933 	/* finally lock prog and jit images for all functions and
9934 	 * populate kallsysm
9935 	 */
9936 	for (i = 0; i < env->subprog_cnt; i++) {
9937 		bpf_prog_lock_ro(func[i]);
9938 		bpf_prog_kallsyms_add(func[i]);
9939 	}
9940 
9941 	/* Last step: make now unused interpreter insns from main
9942 	 * prog consistent for later dump requests, so they can
9943 	 * later look the same as if they were interpreted only.
9944 	 */
9945 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9946 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9947 		    insn->src_reg != BPF_PSEUDO_CALL)
9948 			continue;
9949 		insn->off = env->insn_aux_data[i].call_imm;
9950 		subprog = find_subprog(env, i + insn->off + 1);
9951 		insn->imm = subprog;
9952 	}
9953 
9954 	prog->jited = 1;
9955 	prog->bpf_func = func[0]->bpf_func;
9956 	prog->aux->func = func;
9957 	prog->aux->func_cnt = env->subprog_cnt;
9958 	bpf_prog_free_unused_jited_linfo(prog);
9959 	return 0;
9960 out_free:
9961 	for (i = 0; i < env->subprog_cnt; i++)
9962 		if (func[i])
9963 			bpf_jit_free(func[i]);
9964 	kfree(func);
9965 out_undo_insn:
9966 	/* cleanup main prog to be interpreted */
9967 	prog->jit_requested = 0;
9968 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9969 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9970 		    insn->src_reg != BPF_PSEUDO_CALL)
9971 			continue;
9972 		insn->off = 0;
9973 		insn->imm = env->insn_aux_data[i].call_imm;
9974 	}
9975 	bpf_prog_free_jited_linfo(prog);
9976 	return err;
9977 }
9978 
9979 static int fixup_call_args(struct bpf_verifier_env *env)
9980 {
9981 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
9982 	struct bpf_prog *prog = env->prog;
9983 	struct bpf_insn *insn = prog->insnsi;
9984 	int i, depth;
9985 #endif
9986 	int err = 0;
9987 
9988 	if (env->prog->jit_requested &&
9989 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
9990 		err = jit_subprogs(env);
9991 		if (err == 0)
9992 			return 0;
9993 		if (err == -EFAULT)
9994 			return err;
9995 	}
9996 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
9997 	for (i = 0; i < prog->len; i++, insn++) {
9998 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9999 		    insn->src_reg != BPF_PSEUDO_CALL)
10000 			continue;
10001 		depth = get_callee_stack_depth(env, insn, i);
10002 		if (depth < 0)
10003 			return depth;
10004 		bpf_patch_call_args(insn, depth);
10005 	}
10006 	err = 0;
10007 #endif
10008 	return err;
10009 }
10010 
10011 /* fixup insn->imm field of bpf_call instructions
10012  * and inline eligible helpers as explicit sequence of BPF instructions
10013  *
10014  * this function is called after eBPF program passed verification
10015  */
10016 static int fixup_bpf_calls(struct bpf_verifier_env *env)
10017 {
10018 	struct bpf_prog *prog = env->prog;
10019 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
10020 	struct bpf_insn *insn = prog->insnsi;
10021 	const struct bpf_func_proto *fn;
10022 	const int insn_cnt = prog->len;
10023 	const struct bpf_map_ops *ops;
10024 	struct bpf_insn_aux_data *aux;
10025 	struct bpf_insn insn_buf[16];
10026 	struct bpf_prog *new_prog;
10027 	struct bpf_map *map_ptr;
10028 	int i, ret, cnt, delta = 0;
10029 
10030 	for (i = 0; i < insn_cnt; i++, insn++) {
10031 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
10032 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
10033 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
10034 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
10035 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
10036 			struct bpf_insn mask_and_div[] = {
10037 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
10038 				/* Rx div 0 -> 0 */
10039 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
10040 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
10041 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
10042 				*insn,
10043 			};
10044 			struct bpf_insn mask_and_mod[] = {
10045 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
10046 				/* Rx mod 0 -> Rx */
10047 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
10048 				*insn,
10049 			};
10050 			struct bpf_insn *patchlet;
10051 
10052 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
10053 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
10054 				patchlet = mask_and_div + (is64 ? 1 : 0);
10055 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
10056 			} else {
10057 				patchlet = mask_and_mod + (is64 ? 1 : 0);
10058 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
10059 			}
10060 
10061 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
10062 			if (!new_prog)
10063 				return -ENOMEM;
10064 
10065 			delta    += cnt - 1;
10066 			env->prog = prog = new_prog;
10067 			insn      = new_prog->insnsi + i + delta;
10068 			continue;
10069 		}
10070 
10071 		if (BPF_CLASS(insn->code) == BPF_LD &&
10072 		    (BPF_MODE(insn->code) == BPF_ABS ||
10073 		     BPF_MODE(insn->code) == BPF_IND)) {
10074 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
10075 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
10076 				verbose(env, "bpf verifier is misconfigured\n");
10077 				return -EINVAL;
10078 			}
10079 
10080 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10081 			if (!new_prog)
10082 				return -ENOMEM;
10083 
10084 			delta    += cnt - 1;
10085 			env->prog = prog = new_prog;
10086 			insn      = new_prog->insnsi + i + delta;
10087 			continue;
10088 		}
10089 
10090 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
10091 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
10092 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
10093 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
10094 			struct bpf_insn insn_buf[16];
10095 			struct bpf_insn *patch = &insn_buf[0];
10096 			bool issrc, isneg;
10097 			u32 off_reg;
10098 
10099 			aux = &env->insn_aux_data[i + delta];
10100 			if (!aux->alu_state ||
10101 			    aux->alu_state == BPF_ALU_NON_POINTER)
10102 				continue;
10103 
10104 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
10105 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
10106 				BPF_ALU_SANITIZE_SRC;
10107 
10108 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
10109 			if (isneg)
10110 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
10111 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
10112 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
10113 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
10114 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
10115 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
10116 			if (issrc) {
10117 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
10118 							 off_reg);
10119 				insn->src_reg = BPF_REG_AX;
10120 			} else {
10121 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
10122 							 BPF_REG_AX);
10123 			}
10124 			if (isneg)
10125 				insn->code = insn->code == code_add ?
10126 					     code_sub : code_add;
10127 			*patch++ = *insn;
10128 			if (issrc && isneg)
10129 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
10130 			cnt = patch - insn_buf;
10131 
10132 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10133 			if (!new_prog)
10134 				return -ENOMEM;
10135 
10136 			delta    += cnt - 1;
10137 			env->prog = prog = new_prog;
10138 			insn      = new_prog->insnsi + i + delta;
10139 			continue;
10140 		}
10141 
10142 		if (insn->code != (BPF_JMP | BPF_CALL))
10143 			continue;
10144 		if (insn->src_reg == BPF_PSEUDO_CALL)
10145 			continue;
10146 
10147 		if (insn->imm == BPF_FUNC_get_route_realm)
10148 			prog->dst_needed = 1;
10149 		if (insn->imm == BPF_FUNC_get_prandom_u32)
10150 			bpf_user_rnd_init_once();
10151 		if (insn->imm == BPF_FUNC_override_return)
10152 			prog->kprobe_override = 1;
10153 		if (insn->imm == BPF_FUNC_tail_call) {
10154 			/* If we tail call into other programs, we
10155 			 * cannot make any assumptions since they can
10156 			 * be replaced dynamically during runtime in
10157 			 * the program array.
10158 			 */
10159 			prog->cb_access = 1;
10160 			env->prog->aux->stack_depth = MAX_BPF_STACK;
10161 			env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
10162 
10163 			/* mark bpf_tail_call as different opcode to avoid
10164 			 * conditional branch in the interpeter for every normal
10165 			 * call and to prevent accidental JITing by JIT compiler
10166 			 * that doesn't support bpf_tail_call yet
10167 			 */
10168 			insn->imm = 0;
10169 			insn->code = BPF_JMP | BPF_TAIL_CALL;
10170 
10171 			aux = &env->insn_aux_data[i + delta];
10172 			if (env->bpf_capable && !expect_blinding &&
10173 			    prog->jit_requested &&
10174 			    !bpf_map_key_poisoned(aux) &&
10175 			    !bpf_map_ptr_poisoned(aux) &&
10176 			    !bpf_map_ptr_unpriv(aux)) {
10177 				struct bpf_jit_poke_descriptor desc = {
10178 					.reason = BPF_POKE_REASON_TAIL_CALL,
10179 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
10180 					.tail_call.key = bpf_map_key_immediate(aux),
10181 				};
10182 
10183 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
10184 				if (ret < 0) {
10185 					verbose(env, "adding tail call poke descriptor failed\n");
10186 					return ret;
10187 				}
10188 
10189 				insn->imm = ret + 1;
10190 				continue;
10191 			}
10192 
10193 			if (!bpf_map_ptr_unpriv(aux))
10194 				continue;
10195 
10196 			/* instead of changing every JIT dealing with tail_call
10197 			 * emit two extra insns:
10198 			 * if (index >= max_entries) goto out;
10199 			 * index &= array->index_mask;
10200 			 * to avoid out-of-bounds cpu speculation
10201 			 */
10202 			if (bpf_map_ptr_poisoned(aux)) {
10203 				verbose(env, "tail_call abusing map_ptr\n");
10204 				return -EINVAL;
10205 			}
10206 
10207 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
10208 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
10209 						  map_ptr->max_entries, 2);
10210 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
10211 						    container_of(map_ptr,
10212 								 struct bpf_array,
10213 								 map)->index_mask);
10214 			insn_buf[2] = *insn;
10215 			cnt = 3;
10216 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10217 			if (!new_prog)
10218 				return -ENOMEM;
10219 
10220 			delta    += cnt - 1;
10221 			env->prog = prog = new_prog;
10222 			insn      = new_prog->insnsi + i + delta;
10223 			continue;
10224 		}
10225 
10226 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
10227 		 * and other inlining handlers are currently limited to 64 bit
10228 		 * only.
10229 		 */
10230 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
10231 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
10232 		     insn->imm == BPF_FUNC_map_update_elem ||
10233 		     insn->imm == BPF_FUNC_map_delete_elem ||
10234 		     insn->imm == BPF_FUNC_map_push_elem   ||
10235 		     insn->imm == BPF_FUNC_map_pop_elem    ||
10236 		     insn->imm == BPF_FUNC_map_peek_elem)) {
10237 			aux = &env->insn_aux_data[i + delta];
10238 			if (bpf_map_ptr_poisoned(aux))
10239 				goto patch_call_imm;
10240 
10241 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
10242 			ops = map_ptr->ops;
10243 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
10244 			    ops->map_gen_lookup) {
10245 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
10246 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
10247 					verbose(env, "bpf verifier is misconfigured\n");
10248 					return -EINVAL;
10249 				}
10250 
10251 				new_prog = bpf_patch_insn_data(env, i + delta,
10252 							       insn_buf, cnt);
10253 				if (!new_prog)
10254 					return -ENOMEM;
10255 
10256 				delta    += cnt - 1;
10257 				env->prog = prog = new_prog;
10258 				insn      = new_prog->insnsi + i + delta;
10259 				continue;
10260 			}
10261 
10262 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
10263 				     (void *(*)(struct bpf_map *map, void *key))NULL));
10264 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
10265 				     (int (*)(struct bpf_map *map, void *key))NULL));
10266 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
10267 				     (int (*)(struct bpf_map *map, void *key, void *value,
10268 					      u64 flags))NULL));
10269 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
10270 				     (int (*)(struct bpf_map *map, void *value,
10271 					      u64 flags))NULL));
10272 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
10273 				     (int (*)(struct bpf_map *map, void *value))NULL));
10274 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
10275 				     (int (*)(struct bpf_map *map, void *value))NULL));
10276 
10277 			switch (insn->imm) {
10278 			case BPF_FUNC_map_lookup_elem:
10279 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
10280 					    __bpf_call_base;
10281 				continue;
10282 			case BPF_FUNC_map_update_elem:
10283 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
10284 					    __bpf_call_base;
10285 				continue;
10286 			case BPF_FUNC_map_delete_elem:
10287 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
10288 					    __bpf_call_base;
10289 				continue;
10290 			case BPF_FUNC_map_push_elem:
10291 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
10292 					    __bpf_call_base;
10293 				continue;
10294 			case BPF_FUNC_map_pop_elem:
10295 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
10296 					    __bpf_call_base;
10297 				continue;
10298 			case BPF_FUNC_map_peek_elem:
10299 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
10300 					    __bpf_call_base;
10301 				continue;
10302 			}
10303 
10304 			goto patch_call_imm;
10305 		}
10306 
10307 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
10308 		    insn->imm == BPF_FUNC_jiffies64) {
10309 			struct bpf_insn ld_jiffies_addr[2] = {
10310 				BPF_LD_IMM64(BPF_REG_0,
10311 					     (unsigned long)&jiffies),
10312 			};
10313 
10314 			insn_buf[0] = ld_jiffies_addr[0];
10315 			insn_buf[1] = ld_jiffies_addr[1];
10316 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
10317 						  BPF_REG_0, 0);
10318 			cnt = 3;
10319 
10320 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
10321 						       cnt);
10322 			if (!new_prog)
10323 				return -ENOMEM;
10324 
10325 			delta    += cnt - 1;
10326 			env->prog = prog = new_prog;
10327 			insn      = new_prog->insnsi + i + delta;
10328 			continue;
10329 		}
10330 
10331 patch_call_imm:
10332 		fn = env->ops->get_func_proto(insn->imm, env->prog);
10333 		/* all functions that have prototype and verifier allowed
10334 		 * programs to call them, must be real in-kernel functions
10335 		 */
10336 		if (!fn->func) {
10337 			verbose(env,
10338 				"kernel subsystem misconfigured func %s#%d\n",
10339 				func_id_name(insn->imm), insn->imm);
10340 			return -EFAULT;
10341 		}
10342 		insn->imm = fn->func - __bpf_call_base;
10343 	}
10344 
10345 	/* Since poke tab is now finalized, publish aux to tracker. */
10346 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
10347 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
10348 		if (!map_ptr->ops->map_poke_track ||
10349 		    !map_ptr->ops->map_poke_untrack ||
10350 		    !map_ptr->ops->map_poke_run) {
10351 			verbose(env, "bpf verifier is misconfigured\n");
10352 			return -EINVAL;
10353 		}
10354 
10355 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
10356 		if (ret < 0) {
10357 			verbose(env, "tracking tail call prog failed\n");
10358 			return ret;
10359 		}
10360 	}
10361 
10362 	return 0;
10363 }
10364 
10365 static void free_states(struct bpf_verifier_env *env)
10366 {
10367 	struct bpf_verifier_state_list *sl, *sln;
10368 	int i;
10369 
10370 	sl = env->free_list;
10371 	while (sl) {
10372 		sln = sl->next;
10373 		free_verifier_state(&sl->state, false);
10374 		kfree(sl);
10375 		sl = sln;
10376 	}
10377 	env->free_list = NULL;
10378 
10379 	if (!env->explored_states)
10380 		return;
10381 
10382 	for (i = 0; i < state_htab_size(env); i++) {
10383 		sl = env->explored_states[i];
10384 
10385 		while (sl) {
10386 			sln = sl->next;
10387 			free_verifier_state(&sl->state, false);
10388 			kfree(sl);
10389 			sl = sln;
10390 		}
10391 		env->explored_states[i] = NULL;
10392 	}
10393 }
10394 
10395 /* The verifier is using insn_aux_data[] to store temporary data during
10396  * verification and to store information for passes that run after the
10397  * verification like dead code sanitization. do_check_common() for subprogram N
10398  * may analyze many other subprograms. sanitize_insn_aux_data() clears all
10399  * temporary data after do_check_common() finds that subprogram N cannot be
10400  * verified independently. pass_cnt counts the number of times
10401  * do_check_common() was run and insn->aux->seen tells the pass number
10402  * insn_aux_data was touched. These variables are compared to clear temporary
10403  * data from failed pass. For testing and experiments do_check_common() can be
10404  * run multiple times even when prior attempt to verify is unsuccessful.
10405  */
10406 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
10407 {
10408 	struct bpf_insn *insn = env->prog->insnsi;
10409 	struct bpf_insn_aux_data *aux;
10410 	int i, class;
10411 
10412 	for (i = 0; i < env->prog->len; i++) {
10413 		class = BPF_CLASS(insn[i].code);
10414 		if (class != BPF_LDX && class != BPF_STX)
10415 			continue;
10416 		aux = &env->insn_aux_data[i];
10417 		if (aux->seen != env->pass_cnt)
10418 			continue;
10419 		memset(aux, 0, offsetof(typeof(*aux), orig_idx));
10420 	}
10421 }
10422 
10423 static int do_check_common(struct bpf_verifier_env *env, int subprog)
10424 {
10425 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
10426 	struct bpf_verifier_state *state;
10427 	struct bpf_reg_state *regs;
10428 	int ret, i;
10429 
10430 	env->prev_linfo = NULL;
10431 	env->pass_cnt++;
10432 
10433 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
10434 	if (!state)
10435 		return -ENOMEM;
10436 	state->curframe = 0;
10437 	state->speculative = false;
10438 	state->branches = 1;
10439 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
10440 	if (!state->frame[0]) {
10441 		kfree(state);
10442 		return -ENOMEM;
10443 	}
10444 	env->cur_state = state;
10445 	init_func_state(env, state->frame[0],
10446 			BPF_MAIN_FUNC /* callsite */,
10447 			0 /* frameno */,
10448 			subprog);
10449 
10450 	regs = state->frame[state->curframe]->regs;
10451 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
10452 		ret = btf_prepare_func_args(env, subprog, regs);
10453 		if (ret)
10454 			goto out;
10455 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
10456 			if (regs[i].type == PTR_TO_CTX)
10457 				mark_reg_known_zero(env, regs, i);
10458 			else if (regs[i].type == SCALAR_VALUE)
10459 				mark_reg_unknown(env, regs, i);
10460 		}
10461 	} else {
10462 		/* 1st arg to a function */
10463 		regs[BPF_REG_1].type = PTR_TO_CTX;
10464 		mark_reg_known_zero(env, regs, BPF_REG_1);
10465 		ret = btf_check_func_arg_match(env, subprog, regs);
10466 		if (ret == -EFAULT)
10467 			/* unlikely verifier bug. abort.
10468 			 * ret == 0 and ret < 0 are sadly acceptable for
10469 			 * main() function due to backward compatibility.
10470 			 * Like socket filter program may be written as:
10471 			 * int bpf_prog(struct pt_regs *ctx)
10472 			 * and never dereference that ctx in the program.
10473 			 * 'struct pt_regs' is a type mismatch for socket
10474 			 * filter that should be using 'struct __sk_buff'.
10475 			 */
10476 			goto out;
10477 	}
10478 
10479 	ret = do_check(env);
10480 out:
10481 	/* check for NULL is necessary, since cur_state can be freed inside
10482 	 * do_check() under memory pressure.
10483 	 */
10484 	if (env->cur_state) {
10485 		free_verifier_state(env->cur_state, true);
10486 		env->cur_state = NULL;
10487 	}
10488 	while (!pop_stack(env, NULL, NULL, false));
10489 	if (!ret && pop_log)
10490 		bpf_vlog_reset(&env->log, 0);
10491 	free_states(env);
10492 	if (ret)
10493 		/* clean aux data in case subprog was rejected */
10494 		sanitize_insn_aux_data(env);
10495 	return ret;
10496 }
10497 
10498 /* Verify all global functions in a BPF program one by one based on their BTF.
10499  * All global functions must pass verification. Otherwise the whole program is rejected.
10500  * Consider:
10501  * int bar(int);
10502  * int foo(int f)
10503  * {
10504  *    return bar(f);
10505  * }
10506  * int bar(int b)
10507  * {
10508  *    ...
10509  * }
10510  * foo() will be verified first for R1=any_scalar_value. During verification it
10511  * will be assumed that bar() already verified successfully and call to bar()
10512  * from foo() will be checked for type match only. Later bar() will be verified
10513  * independently to check that it's safe for R1=any_scalar_value.
10514  */
10515 static int do_check_subprogs(struct bpf_verifier_env *env)
10516 {
10517 	struct bpf_prog_aux *aux = env->prog->aux;
10518 	int i, ret;
10519 
10520 	if (!aux->func_info)
10521 		return 0;
10522 
10523 	for (i = 1; i < env->subprog_cnt; i++) {
10524 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
10525 			continue;
10526 		env->insn_idx = env->subprog_info[i].start;
10527 		WARN_ON_ONCE(env->insn_idx == 0);
10528 		ret = do_check_common(env, i);
10529 		if (ret) {
10530 			return ret;
10531 		} else if (env->log.level & BPF_LOG_LEVEL) {
10532 			verbose(env,
10533 				"Func#%d is safe for any args that match its prototype\n",
10534 				i);
10535 		}
10536 	}
10537 	return 0;
10538 }
10539 
10540 static int do_check_main(struct bpf_verifier_env *env)
10541 {
10542 	int ret;
10543 
10544 	env->insn_idx = 0;
10545 	ret = do_check_common(env, 0);
10546 	if (!ret)
10547 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
10548 	return ret;
10549 }
10550 
10551 
10552 static void print_verification_stats(struct bpf_verifier_env *env)
10553 {
10554 	int i;
10555 
10556 	if (env->log.level & BPF_LOG_STATS) {
10557 		verbose(env, "verification time %lld usec\n",
10558 			div_u64(env->verification_time, 1000));
10559 		verbose(env, "stack depth ");
10560 		for (i = 0; i < env->subprog_cnt; i++) {
10561 			u32 depth = env->subprog_info[i].stack_depth;
10562 
10563 			verbose(env, "%d", depth);
10564 			if (i + 1 < env->subprog_cnt)
10565 				verbose(env, "+");
10566 		}
10567 		verbose(env, "\n");
10568 	}
10569 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
10570 		"total_states %d peak_states %d mark_read %d\n",
10571 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
10572 		env->max_states_per_insn, env->total_states,
10573 		env->peak_states, env->longest_mark_read_walk);
10574 }
10575 
10576 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
10577 {
10578 	const struct btf_type *t, *func_proto;
10579 	const struct bpf_struct_ops *st_ops;
10580 	const struct btf_member *member;
10581 	struct bpf_prog *prog = env->prog;
10582 	u32 btf_id, member_idx;
10583 	const char *mname;
10584 
10585 	btf_id = prog->aux->attach_btf_id;
10586 	st_ops = bpf_struct_ops_find(btf_id);
10587 	if (!st_ops) {
10588 		verbose(env, "attach_btf_id %u is not a supported struct\n",
10589 			btf_id);
10590 		return -ENOTSUPP;
10591 	}
10592 
10593 	t = st_ops->type;
10594 	member_idx = prog->expected_attach_type;
10595 	if (member_idx >= btf_type_vlen(t)) {
10596 		verbose(env, "attach to invalid member idx %u of struct %s\n",
10597 			member_idx, st_ops->name);
10598 		return -EINVAL;
10599 	}
10600 
10601 	member = &btf_type_member(t)[member_idx];
10602 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
10603 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
10604 					       NULL);
10605 	if (!func_proto) {
10606 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
10607 			mname, member_idx, st_ops->name);
10608 		return -EINVAL;
10609 	}
10610 
10611 	if (st_ops->check_member) {
10612 		int err = st_ops->check_member(t, member);
10613 
10614 		if (err) {
10615 			verbose(env, "attach to unsupported member %s of struct %s\n",
10616 				mname, st_ops->name);
10617 			return err;
10618 		}
10619 	}
10620 
10621 	prog->aux->attach_func_proto = func_proto;
10622 	prog->aux->attach_func_name = mname;
10623 	env->ops = st_ops->verifier_ops;
10624 
10625 	return 0;
10626 }
10627 #define SECURITY_PREFIX "security_"
10628 
10629 static int check_attach_modify_return(struct bpf_prog *prog, unsigned long addr)
10630 {
10631 	if (within_error_injection_list(addr) ||
10632 	    !strncmp(SECURITY_PREFIX, prog->aux->attach_func_name,
10633 		     sizeof(SECURITY_PREFIX) - 1))
10634 		return 0;
10635 
10636 	return -EINVAL;
10637 }
10638 
10639 static int check_attach_btf_id(struct bpf_verifier_env *env)
10640 {
10641 	struct bpf_prog *prog = env->prog;
10642 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
10643 	struct bpf_prog *tgt_prog = prog->aux->linked_prog;
10644 	u32 btf_id = prog->aux->attach_btf_id;
10645 	const char prefix[] = "btf_trace_";
10646 	struct btf_func_model fmodel;
10647 	int ret = 0, subprog = -1, i;
10648 	struct bpf_trampoline *tr;
10649 	const struct btf_type *t;
10650 	bool conservative = true;
10651 	const char *tname;
10652 	struct btf *btf;
10653 	long addr;
10654 	u64 key;
10655 
10656 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
10657 		return check_struct_ops_btf_id(env);
10658 
10659 	if (prog->type != BPF_PROG_TYPE_TRACING &&
10660 	    prog->type != BPF_PROG_TYPE_LSM &&
10661 	    !prog_extension)
10662 		return 0;
10663 
10664 	if (!btf_id) {
10665 		verbose(env, "Tracing programs must provide btf_id\n");
10666 		return -EINVAL;
10667 	}
10668 	btf = bpf_prog_get_target_btf(prog);
10669 	if (!btf) {
10670 		verbose(env,
10671 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
10672 		return -EINVAL;
10673 	}
10674 	t = btf_type_by_id(btf, btf_id);
10675 	if (!t) {
10676 		verbose(env, "attach_btf_id %u is invalid\n", btf_id);
10677 		return -EINVAL;
10678 	}
10679 	tname = btf_name_by_offset(btf, t->name_off);
10680 	if (!tname) {
10681 		verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id);
10682 		return -EINVAL;
10683 	}
10684 	if (tgt_prog) {
10685 		struct bpf_prog_aux *aux = tgt_prog->aux;
10686 
10687 		for (i = 0; i < aux->func_info_cnt; i++)
10688 			if (aux->func_info[i].type_id == btf_id) {
10689 				subprog = i;
10690 				break;
10691 			}
10692 		if (subprog == -1) {
10693 			verbose(env, "Subprog %s doesn't exist\n", tname);
10694 			return -EINVAL;
10695 		}
10696 		conservative = aux->func_info_aux[subprog].unreliable;
10697 		if (prog_extension) {
10698 			if (conservative) {
10699 				verbose(env,
10700 					"Cannot replace static functions\n");
10701 				return -EINVAL;
10702 			}
10703 			if (!prog->jit_requested) {
10704 				verbose(env,
10705 					"Extension programs should be JITed\n");
10706 				return -EINVAL;
10707 			}
10708 			env->ops = bpf_verifier_ops[tgt_prog->type];
10709 			prog->expected_attach_type = tgt_prog->expected_attach_type;
10710 		}
10711 		if (!tgt_prog->jited) {
10712 			verbose(env, "Can attach to only JITed progs\n");
10713 			return -EINVAL;
10714 		}
10715 		if (tgt_prog->type == prog->type) {
10716 			/* Cannot fentry/fexit another fentry/fexit program.
10717 			 * Cannot attach program extension to another extension.
10718 			 * It's ok to attach fentry/fexit to extension program.
10719 			 */
10720 			verbose(env, "Cannot recursively attach\n");
10721 			return -EINVAL;
10722 		}
10723 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
10724 		    prog_extension &&
10725 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
10726 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
10727 			/* Program extensions can extend all program types
10728 			 * except fentry/fexit. The reason is the following.
10729 			 * The fentry/fexit programs are used for performance
10730 			 * analysis, stats and can be attached to any program
10731 			 * type except themselves. When extension program is
10732 			 * replacing XDP function it is necessary to allow
10733 			 * performance analysis of all functions. Both original
10734 			 * XDP program and its program extension. Hence
10735 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
10736 			 * allowed. If extending of fentry/fexit was allowed it
10737 			 * would be possible to create long call chain
10738 			 * fentry->extension->fentry->extension beyond
10739 			 * reasonable stack size. Hence extending fentry is not
10740 			 * allowed.
10741 			 */
10742 			verbose(env, "Cannot extend fentry/fexit\n");
10743 			return -EINVAL;
10744 		}
10745 		key = ((u64)aux->id) << 32 | btf_id;
10746 	} else {
10747 		if (prog_extension) {
10748 			verbose(env, "Cannot replace kernel functions\n");
10749 			return -EINVAL;
10750 		}
10751 		key = btf_id;
10752 	}
10753 
10754 	switch (prog->expected_attach_type) {
10755 	case BPF_TRACE_RAW_TP:
10756 		if (tgt_prog) {
10757 			verbose(env,
10758 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
10759 			return -EINVAL;
10760 		}
10761 		if (!btf_type_is_typedef(t)) {
10762 			verbose(env, "attach_btf_id %u is not a typedef\n",
10763 				btf_id);
10764 			return -EINVAL;
10765 		}
10766 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
10767 			verbose(env, "attach_btf_id %u points to wrong type name %s\n",
10768 				btf_id, tname);
10769 			return -EINVAL;
10770 		}
10771 		tname += sizeof(prefix) - 1;
10772 		t = btf_type_by_id(btf, t->type);
10773 		if (!btf_type_is_ptr(t))
10774 			/* should never happen in valid vmlinux build */
10775 			return -EINVAL;
10776 		t = btf_type_by_id(btf, t->type);
10777 		if (!btf_type_is_func_proto(t))
10778 			/* should never happen in valid vmlinux build */
10779 			return -EINVAL;
10780 
10781 		/* remember two read only pointers that are valid for
10782 		 * the life time of the kernel
10783 		 */
10784 		prog->aux->attach_func_name = tname;
10785 		prog->aux->attach_func_proto = t;
10786 		prog->aux->attach_btf_trace = true;
10787 		return 0;
10788 	case BPF_TRACE_ITER:
10789 		if (!btf_type_is_func(t)) {
10790 			verbose(env, "attach_btf_id %u is not a function\n",
10791 				btf_id);
10792 			return -EINVAL;
10793 		}
10794 		t = btf_type_by_id(btf, t->type);
10795 		if (!btf_type_is_func_proto(t))
10796 			return -EINVAL;
10797 		prog->aux->attach_func_name = tname;
10798 		prog->aux->attach_func_proto = t;
10799 		if (!bpf_iter_prog_supported(prog))
10800 			return -EINVAL;
10801 		ret = btf_distill_func_proto(&env->log, btf, t,
10802 					     tname, &fmodel);
10803 		return ret;
10804 	default:
10805 		if (!prog_extension)
10806 			return -EINVAL;
10807 		/* fallthrough */
10808 	case BPF_MODIFY_RETURN:
10809 	case BPF_LSM_MAC:
10810 	case BPF_TRACE_FENTRY:
10811 	case BPF_TRACE_FEXIT:
10812 		prog->aux->attach_func_name = tname;
10813 		if (prog->type == BPF_PROG_TYPE_LSM) {
10814 			ret = bpf_lsm_verify_prog(&env->log, prog);
10815 			if (ret < 0)
10816 				return ret;
10817 		}
10818 
10819 		if (!btf_type_is_func(t)) {
10820 			verbose(env, "attach_btf_id %u is not a function\n",
10821 				btf_id);
10822 			return -EINVAL;
10823 		}
10824 		if (prog_extension &&
10825 		    btf_check_type_match(env, prog, btf, t))
10826 			return -EINVAL;
10827 		t = btf_type_by_id(btf, t->type);
10828 		if (!btf_type_is_func_proto(t))
10829 			return -EINVAL;
10830 		tr = bpf_trampoline_lookup(key);
10831 		if (!tr)
10832 			return -ENOMEM;
10833 		/* t is either vmlinux type or another program's type */
10834 		prog->aux->attach_func_proto = t;
10835 		mutex_lock(&tr->mutex);
10836 		if (tr->func.addr) {
10837 			prog->aux->trampoline = tr;
10838 			goto out;
10839 		}
10840 		if (tgt_prog && conservative) {
10841 			prog->aux->attach_func_proto = NULL;
10842 			t = NULL;
10843 		}
10844 		ret = btf_distill_func_proto(&env->log, btf, t,
10845 					     tname, &tr->func.model);
10846 		if (ret < 0)
10847 			goto out;
10848 		if (tgt_prog) {
10849 			if (subprog == 0)
10850 				addr = (long) tgt_prog->bpf_func;
10851 			else
10852 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
10853 		} else {
10854 			addr = kallsyms_lookup_name(tname);
10855 			if (!addr) {
10856 				verbose(env,
10857 					"The address of function %s cannot be found\n",
10858 					tname);
10859 				ret = -ENOENT;
10860 				goto out;
10861 			}
10862 		}
10863 
10864 		if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
10865 			ret = check_attach_modify_return(prog, addr);
10866 			if (ret)
10867 				verbose(env, "%s() is not modifiable\n",
10868 					prog->aux->attach_func_name);
10869 		}
10870 
10871 		if (ret)
10872 			goto out;
10873 		tr->func.addr = (void *)addr;
10874 		prog->aux->trampoline = tr;
10875 out:
10876 		mutex_unlock(&tr->mutex);
10877 		if (ret)
10878 			bpf_trampoline_put(tr);
10879 		return ret;
10880 	}
10881 }
10882 
10883 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
10884 	      union bpf_attr __user *uattr)
10885 {
10886 	u64 start_time = ktime_get_ns();
10887 	struct bpf_verifier_env *env;
10888 	struct bpf_verifier_log *log;
10889 	int i, len, ret = -EINVAL;
10890 	bool is_priv;
10891 
10892 	/* no program is valid */
10893 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
10894 		return -EINVAL;
10895 
10896 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
10897 	 * allocate/free it every time bpf_check() is called
10898 	 */
10899 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
10900 	if (!env)
10901 		return -ENOMEM;
10902 	log = &env->log;
10903 
10904 	len = (*prog)->len;
10905 	env->insn_aux_data =
10906 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
10907 	ret = -ENOMEM;
10908 	if (!env->insn_aux_data)
10909 		goto err_free_env;
10910 	for (i = 0; i < len; i++)
10911 		env->insn_aux_data[i].orig_idx = i;
10912 	env->prog = *prog;
10913 	env->ops = bpf_verifier_ops[env->prog->type];
10914 	is_priv = bpf_capable();
10915 
10916 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
10917 		mutex_lock(&bpf_verifier_lock);
10918 		if (!btf_vmlinux)
10919 			btf_vmlinux = btf_parse_vmlinux();
10920 		mutex_unlock(&bpf_verifier_lock);
10921 	}
10922 
10923 	/* grab the mutex to protect few globals used by verifier */
10924 	if (!is_priv)
10925 		mutex_lock(&bpf_verifier_lock);
10926 
10927 	if (attr->log_level || attr->log_buf || attr->log_size) {
10928 		/* user requested verbose verifier output
10929 		 * and supplied buffer to store the verification trace
10930 		 */
10931 		log->level = attr->log_level;
10932 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
10933 		log->len_total = attr->log_size;
10934 
10935 		ret = -EINVAL;
10936 		/* log attributes have to be sane */
10937 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
10938 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
10939 			goto err_unlock;
10940 	}
10941 
10942 	if (IS_ERR(btf_vmlinux)) {
10943 		/* Either gcc or pahole or kernel are broken. */
10944 		verbose(env, "in-kernel BTF is malformed\n");
10945 		ret = PTR_ERR(btf_vmlinux);
10946 		goto skip_full_check;
10947 	}
10948 
10949 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
10950 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
10951 		env->strict_alignment = true;
10952 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
10953 		env->strict_alignment = false;
10954 
10955 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
10956 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
10957 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
10958 	env->bpf_capable = bpf_capable();
10959 
10960 	if (is_priv)
10961 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
10962 
10963 	ret = replace_map_fd_with_map_ptr(env);
10964 	if (ret < 0)
10965 		goto skip_full_check;
10966 
10967 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
10968 		ret = bpf_prog_offload_verifier_prep(env->prog);
10969 		if (ret)
10970 			goto skip_full_check;
10971 	}
10972 
10973 	env->explored_states = kvcalloc(state_htab_size(env),
10974 				       sizeof(struct bpf_verifier_state_list *),
10975 				       GFP_USER);
10976 	ret = -ENOMEM;
10977 	if (!env->explored_states)
10978 		goto skip_full_check;
10979 
10980 	ret = check_subprogs(env);
10981 	if (ret < 0)
10982 		goto skip_full_check;
10983 
10984 	ret = check_btf_info(env, attr, uattr);
10985 	if (ret < 0)
10986 		goto skip_full_check;
10987 
10988 	ret = check_attach_btf_id(env);
10989 	if (ret)
10990 		goto skip_full_check;
10991 
10992 	ret = check_cfg(env);
10993 	if (ret < 0)
10994 		goto skip_full_check;
10995 
10996 	ret = do_check_subprogs(env);
10997 	ret = ret ?: do_check_main(env);
10998 
10999 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
11000 		ret = bpf_prog_offload_finalize(env);
11001 
11002 skip_full_check:
11003 	kvfree(env->explored_states);
11004 
11005 	if (ret == 0)
11006 		ret = check_max_stack_depth(env);
11007 
11008 	/* instruction rewrites happen after this point */
11009 	if (is_priv) {
11010 		if (ret == 0)
11011 			opt_hard_wire_dead_code_branches(env);
11012 		if (ret == 0)
11013 			ret = opt_remove_dead_code(env);
11014 		if (ret == 0)
11015 			ret = opt_remove_nops(env);
11016 	} else {
11017 		if (ret == 0)
11018 			sanitize_dead_code(env);
11019 	}
11020 
11021 	if (ret == 0)
11022 		/* program is valid, convert *(u32*)(ctx + off) accesses */
11023 		ret = convert_ctx_accesses(env);
11024 
11025 	if (ret == 0)
11026 		ret = fixup_bpf_calls(env);
11027 
11028 	/* do 32-bit optimization after insn patching has done so those patched
11029 	 * insns could be handled correctly.
11030 	 */
11031 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
11032 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
11033 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
11034 								     : false;
11035 	}
11036 
11037 	if (ret == 0)
11038 		ret = fixup_call_args(env);
11039 
11040 	env->verification_time = ktime_get_ns() - start_time;
11041 	print_verification_stats(env);
11042 
11043 	if (log->level && bpf_verifier_log_full(log))
11044 		ret = -ENOSPC;
11045 	if (log->level && !log->ubuf) {
11046 		ret = -EFAULT;
11047 		goto err_release_maps;
11048 	}
11049 
11050 	if (ret == 0 && env->used_map_cnt) {
11051 		/* if program passed verifier, update used_maps in bpf_prog_info */
11052 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
11053 							  sizeof(env->used_maps[0]),
11054 							  GFP_KERNEL);
11055 
11056 		if (!env->prog->aux->used_maps) {
11057 			ret = -ENOMEM;
11058 			goto err_release_maps;
11059 		}
11060 
11061 		memcpy(env->prog->aux->used_maps, env->used_maps,
11062 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
11063 		env->prog->aux->used_map_cnt = env->used_map_cnt;
11064 
11065 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
11066 		 * bpf_ld_imm64 instructions
11067 		 */
11068 		convert_pseudo_ld_imm64(env);
11069 	}
11070 
11071 	if (ret == 0)
11072 		adjust_btf_func(env);
11073 
11074 err_release_maps:
11075 	if (!env->prog->aux->used_maps)
11076 		/* if we didn't copy map pointers into bpf_prog_info, release
11077 		 * them now. Otherwise free_used_maps() will release them.
11078 		 */
11079 		release_maps(env);
11080 
11081 	/* extension progs temporarily inherit the attach_type of their targets
11082 	   for verification purposes, so set it back to zero before returning
11083 	 */
11084 	if (env->prog->type == BPF_PROG_TYPE_EXT)
11085 		env->prog->expected_attach_type = 0;
11086 
11087 	*prog = env->prog;
11088 err_unlock:
11089 	if (!is_priv)
11090 		mutex_unlock(&bpf_verifier_lock);
11091 	vfree(env->insn_aux_data);
11092 err_free_env:
11093 	kfree(env);
11094 	return ret;
11095 }
11096