1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 30 #include "disasm.h" 31 32 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 33 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 34 [_id] = & _name ## _verifier_ops, 35 #define BPF_MAP_TYPE(_id, _ops) 36 #define BPF_LINK_TYPE(_id, _name) 37 #include <linux/bpf_types.h> 38 #undef BPF_PROG_TYPE 39 #undef BPF_MAP_TYPE 40 #undef BPF_LINK_TYPE 41 }; 42 43 /* bpf_check() is a static code analyzer that walks eBPF program 44 * instruction by instruction and updates register/stack state. 45 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 46 * 47 * The first pass is depth-first-search to check that the program is a DAG. 48 * It rejects the following programs: 49 * - larger than BPF_MAXINSNS insns 50 * - if loop is present (detected via back-edge) 51 * - unreachable insns exist (shouldn't be a forest. program = one function) 52 * - out of bounds or malformed jumps 53 * The second pass is all possible path descent from the 1st insn. 54 * Since it's analyzing all paths through the program, the length of the 55 * analysis is limited to 64k insn, which may be hit even if total number of 56 * insn is less then 4K, but there are too many branches that change stack/regs. 57 * Number of 'branches to be analyzed' is limited to 1k 58 * 59 * On entry to each instruction, each register has a type, and the instruction 60 * changes the types of the registers depending on instruction semantics. 61 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 62 * copied to R1. 63 * 64 * All registers are 64-bit. 65 * R0 - return register 66 * R1-R5 argument passing registers 67 * R6-R9 callee saved registers 68 * R10 - frame pointer read-only 69 * 70 * At the start of BPF program the register R1 contains a pointer to bpf_context 71 * and has type PTR_TO_CTX. 72 * 73 * Verifier tracks arithmetic operations on pointers in case: 74 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 75 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 76 * 1st insn copies R10 (which has FRAME_PTR) type into R1 77 * and 2nd arithmetic instruction is pattern matched to recognize 78 * that it wants to construct a pointer to some element within stack. 79 * So after 2nd insn, the register R1 has type PTR_TO_STACK 80 * (and -20 constant is saved for further stack bounds checking). 81 * Meaning that this reg is a pointer to stack plus known immediate constant. 82 * 83 * Most of the time the registers have SCALAR_VALUE type, which 84 * means the register has some value, but it's not a valid pointer. 85 * (like pointer plus pointer becomes SCALAR_VALUE type) 86 * 87 * When verifier sees load or store instructions the type of base register 88 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 89 * four pointer types recognized by check_mem_access() function. 90 * 91 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 92 * and the range of [ptr, ptr + map's value_size) is accessible. 93 * 94 * registers used to pass values to function calls are checked against 95 * function argument constraints. 96 * 97 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 98 * It means that the register type passed to this function must be 99 * PTR_TO_STACK and it will be used inside the function as 100 * 'pointer to map element key' 101 * 102 * For example the argument constraints for bpf_map_lookup_elem(): 103 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 104 * .arg1_type = ARG_CONST_MAP_PTR, 105 * .arg2_type = ARG_PTR_TO_MAP_KEY, 106 * 107 * ret_type says that this function returns 'pointer to map elem value or null' 108 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 109 * 2nd argument should be a pointer to stack, which will be used inside 110 * the helper function as a pointer to map element key. 111 * 112 * On the kernel side the helper function looks like: 113 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 114 * { 115 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 116 * void *key = (void *) (unsigned long) r2; 117 * void *value; 118 * 119 * here kernel can access 'key' and 'map' pointers safely, knowing that 120 * [key, key + map->key_size) bytes are valid and were initialized on 121 * the stack of eBPF program. 122 * } 123 * 124 * Corresponding eBPF program may look like: 125 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 126 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 127 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 128 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 129 * here verifier looks at prototype of map_lookup_elem() and sees: 130 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 131 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 132 * 133 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 134 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 135 * and were initialized prior to this call. 136 * If it's ok, then verifier allows this BPF_CALL insn and looks at 137 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 138 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 139 * returns either pointer to map value or NULL. 140 * 141 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 142 * insn, the register holding that pointer in the true branch changes state to 143 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 144 * branch. See check_cond_jmp_op(). 145 * 146 * After the call R0 is set to return type of the function and registers R1-R5 147 * are set to NOT_INIT to indicate that they are no longer readable. 148 * 149 * The following reference types represent a potential reference to a kernel 150 * resource which, after first being allocated, must be checked and freed by 151 * the BPF program: 152 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 153 * 154 * When the verifier sees a helper call return a reference type, it allocates a 155 * pointer id for the reference and stores it in the current function state. 156 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 157 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 158 * passes through a NULL-check conditional. For the branch wherein the state is 159 * changed to CONST_IMM, the verifier releases the reference. 160 * 161 * For each helper function that allocates a reference, such as 162 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 163 * bpf_sk_release(). When a reference type passes into the release function, 164 * the verifier also releases the reference. If any unchecked or unreleased 165 * reference remains at the end of the program, the verifier rejects it. 166 */ 167 168 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 169 struct bpf_verifier_stack_elem { 170 /* verifer state is 'st' 171 * before processing instruction 'insn_idx' 172 * and after processing instruction 'prev_insn_idx' 173 */ 174 struct bpf_verifier_state st; 175 int insn_idx; 176 int prev_insn_idx; 177 struct bpf_verifier_stack_elem *next; 178 /* length of verifier log at the time this state was pushed on stack */ 179 u32 log_pos; 180 }; 181 182 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 183 #define BPF_COMPLEXITY_LIMIT_STATES 64 184 185 #define BPF_MAP_KEY_POISON (1ULL << 63) 186 #define BPF_MAP_KEY_SEEN (1ULL << 62) 187 188 #define BPF_MAP_PTR_UNPRIV 1UL 189 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 190 POISON_POINTER_DELTA)) 191 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 192 193 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 194 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 195 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 196 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 197 static int ref_set_non_owning(struct bpf_verifier_env *env, 198 struct bpf_reg_state *reg); 199 static void specialize_kfunc(struct bpf_verifier_env *env, 200 u32 func_id, u16 offset, unsigned long *addr); 201 static bool is_trusted_reg(const struct bpf_reg_state *reg); 202 203 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 204 { 205 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 206 } 207 208 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 209 { 210 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 211 } 212 213 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 214 const struct bpf_map *map, bool unpriv) 215 { 216 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 217 unpriv |= bpf_map_ptr_unpriv(aux); 218 aux->map_ptr_state = (unsigned long)map | 219 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 220 } 221 222 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 223 { 224 return aux->map_key_state & BPF_MAP_KEY_POISON; 225 } 226 227 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 228 { 229 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 230 } 231 232 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 233 { 234 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 235 } 236 237 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 238 { 239 bool poisoned = bpf_map_key_poisoned(aux); 240 241 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 242 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 243 } 244 245 static bool bpf_helper_call(const struct bpf_insn *insn) 246 { 247 return insn->code == (BPF_JMP | BPF_CALL) && 248 insn->src_reg == 0; 249 } 250 251 static bool bpf_pseudo_call(const struct bpf_insn *insn) 252 { 253 return insn->code == (BPF_JMP | BPF_CALL) && 254 insn->src_reg == BPF_PSEUDO_CALL; 255 } 256 257 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 258 { 259 return insn->code == (BPF_JMP | BPF_CALL) && 260 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 261 } 262 263 struct bpf_call_arg_meta { 264 struct bpf_map *map_ptr; 265 bool raw_mode; 266 bool pkt_access; 267 u8 release_regno; 268 int regno; 269 int access_size; 270 int mem_size; 271 u64 msize_max_value; 272 int ref_obj_id; 273 int dynptr_id; 274 int map_uid; 275 int func_id; 276 struct btf *btf; 277 u32 btf_id; 278 struct btf *ret_btf; 279 u32 ret_btf_id; 280 u32 subprogno; 281 struct btf_field *kptr_field; 282 }; 283 284 struct bpf_kfunc_call_arg_meta { 285 /* In parameters */ 286 struct btf *btf; 287 u32 func_id; 288 u32 kfunc_flags; 289 const struct btf_type *func_proto; 290 const char *func_name; 291 /* Out parameters */ 292 u32 ref_obj_id; 293 u8 release_regno; 294 bool r0_rdonly; 295 u32 ret_btf_id; 296 u64 r0_size; 297 u32 subprogno; 298 struct { 299 u64 value; 300 bool found; 301 } arg_constant; 302 303 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 304 * generally to pass info about user-defined local kptr types to later 305 * verification logic 306 * bpf_obj_drop 307 * Record the local kptr type to be drop'd 308 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 309 * Record the local kptr type to be refcount_incr'd and use 310 * arg_owning_ref to determine whether refcount_acquire should be 311 * fallible 312 */ 313 struct btf *arg_btf; 314 u32 arg_btf_id; 315 bool arg_owning_ref; 316 317 struct { 318 struct btf_field *field; 319 } arg_list_head; 320 struct { 321 struct btf_field *field; 322 } arg_rbtree_root; 323 struct { 324 enum bpf_dynptr_type type; 325 u32 id; 326 u32 ref_obj_id; 327 } initialized_dynptr; 328 struct { 329 u8 spi; 330 u8 frameno; 331 } iter; 332 u64 mem_size; 333 }; 334 335 struct btf *btf_vmlinux; 336 337 static DEFINE_MUTEX(bpf_verifier_lock); 338 339 static const struct bpf_line_info * 340 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 341 { 342 const struct bpf_line_info *linfo; 343 const struct bpf_prog *prog; 344 u32 i, nr_linfo; 345 346 prog = env->prog; 347 nr_linfo = prog->aux->nr_linfo; 348 349 if (!nr_linfo || insn_off >= prog->len) 350 return NULL; 351 352 linfo = prog->aux->linfo; 353 for (i = 1; i < nr_linfo; i++) 354 if (insn_off < linfo[i].insn_off) 355 break; 356 357 return &linfo[i - 1]; 358 } 359 360 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 361 { 362 struct bpf_verifier_env *env = private_data; 363 va_list args; 364 365 if (!bpf_verifier_log_needed(&env->log)) 366 return; 367 368 va_start(args, fmt); 369 bpf_verifier_vlog(&env->log, fmt, args); 370 va_end(args); 371 } 372 373 static const char *ltrim(const char *s) 374 { 375 while (isspace(*s)) 376 s++; 377 378 return s; 379 } 380 381 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 382 u32 insn_off, 383 const char *prefix_fmt, ...) 384 { 385 const struct bpf_line_info *linfo; 386 387 if (!bpf_verifier_log_needed(&env->log)) 388 return; 389 390 linfo = find_linfo(env, insn_off); 391 if (!linfo || linfo == env->prev_linfo) 392 return; 393 394 if (prefix_fmt) { 395 va_list args; 396 397 va_start(args, prefix_fmt); 398 bpf_verifier_vlog(&env->log, prefix_fmt, args); 399 va_end(args); 400 } 401 402 verbose(env, "%s\n", 403 ltrim(btf_name_by_offset(env->prog->aux->btf, 404 linfo->line_off))); 405 406 env->prev_linfo = linfo; 407 } 408 409 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 410 struct bpf_reg_state *reg, 411 struct tnum *range, const char *ctx, 412 const char *reg_name) 413 { 414 char tn_buf[48]; 415 416 verbose(env, "At %s the register %s ", ctx, reg_name); 417 if (!tnum_is_unknown(reg->var_off)) { 418 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 419 verbose(env, "has value %s", tn_buf); 420 } else { 421 verbose(env, "has unknown scalar value"); 422 } 423 tnum_strn(tn_buf, sizeof(tn_buf), *range); 424 verbose(env, " should have been in %s\n", tn_buf); 425 } 426 427 static bool type_is_pkt_pointer(enum bpf_reg_type type) 428 { 429 type = base_type(type); 430 return type == PTR_TO_PACKET || 431 type == PTR_TO_PACKET_META; 432 } 433 434 static bool type_is_sk_pointer(enum bpf_reg_type type) 435 { 436 return type == PTR_TO_SOCKET || 437 type == PTR_TO_SOCK_COMMON || 438 type == PTR_TO_TCP_SOCK || 439 type == PTR_TO_XDP_SOCK; 440 } 441 442 static bool type_may_be_null(u32 type) 443 { 444 return type & PTR_MAYBE_NULL; 445 } 446 447 static bool reg_not_null(const struct bpf_reg_state *reg) 448 { 449 enum bpf_reg_type type; 450 451 type = reg->type; 452 if (type_may_be_null(type)) 453 return false; 454 455 type = base_type(type); 456 return type == PTR_TO_SOCKET || 457 type == PTR_TO_TCP_SOCK || 458 type == PTR_TO_MAP_VALUE || 459 type == PTR_TO_MAP_KEY || 460 type == PTR_TO_SOCK_COMMON || 461 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 462 type == PTR_TO_MEM; 463 } 464 465 static bool type_is_ptr_alloc_obj(u32 type) 466 { 467 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 468 } 469 470 static bool type_is_non_owning_ref(u32 type) 471 { 472 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 473 } 474 475 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 476 { 477 struct btf_record *rec = NULL; 478 struct btf_struct_meta *meta; 479 480 if (reg->type == PTR_TO_MAP_VALUE) { 481 rec = reg->map_ptr->record; 482 } else if (type_is_ptr_alloc_obj(reg->type)) { 483 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 484 if (meta) 485 rec = meta->record; 486 } 487 return rec; 488 } 489 490 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 491 { 492 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 493 494 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 495 } 496 497 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 498 { 499 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 500 } 501 502 static bool type_is_rdonly_mem(u32 type) 503 { 504 return type & MEM_RDONLY; 505 } 506 507 static bool is_acquire_function(enum bpf_func_id func_id, 508 const struct bpf_map *map) 509 { 510 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 511 512 if (func_id == BPF_FUNC_sk_lookup_tcp || 513 func_id == BPF_FUNC_sk_lookup_udp || 514 func_id == BPF_FUNC_skc_lookup_tcp || 515 func_id == BPF_FUNC_ringbuf_reserve || 516 func_id == BPF_FUNC_kptr_xchg) 517 return true; 518 519 if (func_id == BPF_FUNC_map_lookup_elem && 520 (map_type == BPF_MAP_TYPE_SOCKMAP || 521 map_type == BPF_MAP_TYPE_SOCKHASH)) 522 return true; 523 524 return false; 525 } 526 527 static bool is_ptr_cast_function(enum bpf_func_id func_id) 528 { 529 return func_id == BPF_FUNC_tcp_sock || 530 func_id == BPF_FUNC_sk_fullsock || 531 func_id == BPF_FUNC_skc_to_tcp_sock || 532 func_id == BPF_FUNC_skc_to_tcp6_sock || 533 func_id == BPF_FUNC_skc_to_udp6_sock || 534 func_id == BPF_FUNC_skc_to_mptcp_sock || 535 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 536 func_id == BPF_FUNC_skc_to_tcp_request_sock; 537 } 538 539 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 540 { 541 return func_id == BPF_FUNC_dynptr_data; 542 } 543 544 static bool is_callback_calling_kfunc(u32 btf_id); 545 546 static bool is_callback_calling_function(enum bpf_func_id func_id) 547 { 548 return func_id == BPF_FUNC_for_each_map_elem || 549 func_id == BPF_FUNC_timer_set_callback || 550 func_id == BPF_FUNC_find_vma || 551 func_id == BPF_FUNC_loop || 552 func_id == BPF_FUNC_user_ringbuf_drain; 553 } 554 555 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 556 { 557 return func_id == BPF_FUNC_timer_set_callback; 558 } 559 560 static bool is_storage_get_function(enum bpf_func_id func_id) 561 { 562 return func_id == BPF_FUNC_sk_storage_get || 563 func_id == BPF_FUNC_inode_storage_get || 564 func_id == BPF_FUNC_task_storage_get || 565 func_id == BPF_FUNC_cgrp_storage_get; 566 } 567 568 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 569 const struct bpf_map *map) 570 { 571 int ref_obj_uses = 0; 572 573 if (is_ptr_cast_function(func_id)) 574 ref_obj_uses++; 575 if (is_acquire_function(func_id, map)) 576 ref_obj_uses++; 577 if (is_dynptr_ref_function(func_id)) 578 ref_obj_uses++; 579 580 return ref_obj_uses > 1; 581 } 582 583 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 584 { 585 return BPF_CLASS(insn->code) == BPF_STX && 586 BPF_MODE(insn->code) == BPF_ATOMIC && 587 insn->imm == BPF_CMPXCHG; 588 } 589 590 /* string representation of 'enum bpf_reg_type' 591 * 592 * Note that reg_type_str() can not appear more than once in a single verbose() 593 * statement. 594 */ 595 static const char *reg_type_str(struct bpf_verifier_env *env, 596 enum bpf_reg_type type) 597 { 598 char postfix[16] = {0}, prefix[64] = {0}; 599 static const char * const str[] = { 600 [NOT_INIT] = "?", 601 [SCALAR_VALUE] = "scalar", 602 [PTR_TO_CTX] = "ctx", 603 [CONST_PTR_TO_MAP] = "map_ptr", 604 [PTR_TO_MAP_VALUE] = "map_value", 605 [PTR_TO_STACK] = "fp", 606 [PTR_TO_PACKET] = "pkt", 607 [PTR_TO_PACKET_META] = "pkt_meta", 608 [PTR_TO_PACKET_END] = "pkt_end", 609 [PTR_TO_FLOW_KEYS] = "flow_keys", 610 [PTR_TO_SOCKET] = "sock", 611 [PTR_TO_SOCK_COMMON] = "sock_common", 612 [PTR_TO_TCP_SOCK] = "tcp_sock", 613 [PTR_TO_TP_BUFFER] = "tp_buffer", 614 [PTR_TO_XDP_SOCK] = "xdp_sock", 615 [PTR_TO_BTF_ID] = "ptr_", 616 [PTR_TO_MEM] = "mem", 617 [PTR_TO_BUF] = "buf", 618 [PTR_TO_FUNC] = "func", 619 [PTR_TO_MAP_KEY] = "map_key", 620 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", 621 }; 622 623 if (type & PTR_MAYBE_NULL) { 624 if (base_type(type) == PTR_TO_BTF_ID) 625 strncpy(postfix, "or_null_", 16); 626 else 627 strncpy(postfix, "_or_null", 16); 628 } 629 630 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", 631 type & MEM_RDONLY ? "rdonly_" : "", 632 type & MEM_RINGBUF ? "ringbuf_" : "", 633 type & MEM_USER ? "user_" : "", 634 type & MEM_PERCPU ? "percpu_" : "", 635 type & MEM_RCU ? "rcu_" : "", 636 type & PTR_UNTRUSTED ? "untrusted_" : "", 637 type & PTR_TRUSTED ? "trusted_" : "" 638 ); 639 640 snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s", 641 prefix, str[base_type(type)], postfix); 642 return env->tmp_str_buf; 643 } 644 645 static char slot_type_char[] = { 646 [STACK_INVALID] = '?', 647 [STACK_SPILL] = 'r', 648 [STACK_MISC] = 'm', 649 [STACK_ZERO] = '0', 650 [STACK_DYNPTR] = 'd', 651 [STACK_ITER] = 'i', 652 }; 653 654 static void print_liveness(struct bpf_verifier_env *env, 655 enum bpf_reg_liveness live) 656 { 657 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 658 verbose(env, "_"); 659 if (live & REG_LIVE_READ) 660 verbose(env, "r"); 661 if (live & REG_LIVE_WRITTEN) 662 verbose(env, "w"); 663 if (live & REG_LIVE_DONE) 664 verbose(env, "D"); 665 } 666 667 static int __get_spi(s32 off) 668 { 669 return (-off - 1) / BPF_REG_SIZE; 670 } 671 672 static struct bpf_func_state *func(struct bpf_verifier_env *env, 673 const struct bpf_reg_state *reg) 674 { 675 struct bpf_verifier_state *cur = env->cur_state; 676 677 return cur->frame[reg->frameno]; 678 } 679 680 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 681 { 682 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 683 684 /* We need to check that slots between [spi - nr_slots + 1, spi] are 685 * within [0, allocated_stack). 686 * 687 * Please note that the spi grows downwards. For example, a dynptr 688 * takes the size of two stack slots; the first slot will be at 689 * spi and the second slot will be at spi - 1. 690 */ 691 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 692 } 693 694 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 695 const char *obj_kind, int nr_slots) 696 { 697 int off, spi; 698 699 if (!tnum_is_const(reg->var_off)) { 700 verbose(env, "%s has to be at a constant offset\n", obj_kind); 701 return -EINVAL; 702 } 703 704 off = reg->off + reg->var_off.value; 705 if (off % BPF_REG_SIZE) { 706 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 707 return -EINVAL; 708 } 709 710 spi = __get_spi(off); 711 if (spi + 1 < nr_slots) { 712 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 713 return -EINVAL; 714 } 715 716 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 717 return -ERANGE; 718 return spi; 719 } 720 721 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 722 { 723 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 724 } 725 726 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 727 { 728 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 729 } 730 731 static const char *btf_type_name(const struct btf *btf, u32 id) 732 { 733 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 734 } 735 736 static const char *dynptr_type_str(enum bpf_dynptr_type type) 737 { 738 switch (type) { 739 case BPF_DYNPTR_TYPE_LOCAL: 740 return "local"; 741 case BPF_DYNPTR_TYPE_RINGBUF: 742 return "ringbuf"; 743 case BPF_DYNPTR_TYPE_SKB: 744 return "skb"; 745 case BPF_DYNPTR_TYPE_XDP: 746 return "xdp"; 747 case BPF_DYNPTR_TYPE_INVALID: 748 return "<invalid>"; 749 default: 750 WARN_ONCE(1, "unknown dynptr type %d\n", type); 751 return "<unknown>"; 752 } 753 } 754 755 static const char *iter_type_str(const struct btf *btf, u32 btf_id) 756 { 757 if (!btf || btf_id == 0) 758 return "<invalid>"; 759 760 /* we already validated that type is valid and has conforming name */ 761 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1; 762 } 763 764 static const char *iter_state_str(enum bpf_iter_state state) 765 { 766 switch (state) { 767 case BPF_ITER_STATE_ACTIVE: 768 return "active"; 769 case BPF_ITER_STATE_DRAINED: 770 return "drained"; 771 case BPF_ITER_STATE_INVALID: 772 return "<invalid>"; 773 default: 774 WARN_ONCE(1, "unknown iter state %d\n", state); 775 return "<unknown>"; 776 } 777 } 778 779 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 780 { 781 env->scratched_regs |= 1U << regno; 782 } 783 784 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 785 { 786 env->scratched_stack_slots |= 1ULL << spi; 787 } 788 789 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 790 { 791 return (env->scratched_regs >> regno) & 1; 792 } 793 794 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 795 { 796 return (env->scratched_stack_slots >> regno) & 1; 797 } 798 799 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 800 { 801 return env->scratched_regs || env->scratched_stack_slots; 802 } 803 804 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 805 { 806 env->scratched_regs = 0U; 807 env->scratched_stack_slots = 0ULL; 808 } 809 810 /* Used for printing the entire verifier state. */ 811 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 812 { 813 env->scratched_regs = ~0U; 814 env->scratched_stack_slots = ~0ULL; 815 } 816 817 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 818 { 819 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 820 case DYNPTR_TYPE_LOCAL: 821 return BPF_DYNPTR_TYPE_LOCAL; 822 case DYNPTR_TYPE_RINGBUF: 823 return BPF_DYNPTR_TYPE_RINGBUF; 824 case DYNPTR_TYPE_SKB: 825 return BPF_DYNPTR_TYPE_SKB; 826 case DYNPTR_TYPE_XDP: 827 return BPF_DYNPTR_TYPE_XDP; 828 default: 829 return BPF_DYNPTR_TYPE_INVALID; 830 } 831 } 832 833 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 834 { 835 switch (type) { 836 case BPF_DYNPTR_TYPE_LOCAL: 837 return DYNPTR_TYPE_LOCAL; 838 case BPF_DYNPTR_TYPE_RINGBUF: 839 return DYNPTR_TYPE_RINGBUF; 840 case BPF_DYNPTR_TYPE_SKB: 841 return DYNPTR_TYPE_SKB; 842 case BPF_DYNPTR_TYPE_XDP: 843 return DYNPTR_TYPE_XDP; 844 default: 845 return 0; 846 } 847 } 848 849 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 850 { 851 return type == BPF_DYNPTR_TYPE_RINGBUF; 852 } 853 854 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 855 enum bpf_dynptr_type type, 856 bool first_slot, int dynptr_id); 857 858 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 859 struct bpf_reg_state *reg); 860 861 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 862 struct bpf_reg_state *sreg1, 863 struct bpf_reg_state *sreg2, 864 enum bpf_dynptr_type type) 865 { 866 int id = ++env->id_gen; 867 868 __mark_dynptr_reg(sreg1, type, true, id); 869 __mark_dynptr_reg(sreg2, type, false, id); 870 } 871 872 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 873 struct bpf_reg_state *reg, 874 enum bpf_dynptr_type type) 875 { 876 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 877 } 878 879 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 880 struct bpf_func_state *state, int spi); 881 882 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 883 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 884 { 885 struct bpf_func_state *state = func(env, reg); 886 enum bpf_dynptr_type type; 887 int spi, i, err; 888 889 spi = dynptr_get_spi(env, reg); 890 if (spi < 0) 891 return spi; 892 893 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 894 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 895 * to ensure that for the following example: 896 * [d1][d1][d2][d2] 897 * spi 3 2 1 0 898 * So marking spi = 2 should lead to destruction of both d1 and d2. In 899 * case they do belong to same dynptr, second call won't see slot_type 900 * as STACK_DYNPTR and will simply skip destruction. 901 */ 902 err = destroy_if_dynptr_stack_slot(env, state, spi); 903 if (err) 904 return err; 905 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 906 if (err) 907 return err; 908 909 for (i = 0; i < BPF_REG_SIZE; i++) { 910 state->stack[spi].slot_type[i] = STACK_DYNPTR; 911 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 912 } 913 914 type = arg_to_dynptr_type(arg_type); 915 if (type == BPF_DYNPTR_TYPE_INVALID) 916 return -EINVAL; 917 918 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 919 &state->stack[spi - 1].spilled_ptr, type); 920 921 if (dynptr_type_refcounted(type)) { 922 /* The id is used to track proper releasing */ 923 int id; 924 925 if (clone_ref_obj_id) 926 id = clone_ref_obj_id; 927 else 928 id = acquire_reference_state(env, insn_idx); 929 930 if (id < 0) 931 return id; 932 933 state->stack[spi].spilled_ptr.ref_obj_id = id; 934 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 935 } 936 937 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 938 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 939 940 return 0; 941 } 942 943 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 944 { 945 int i; 946 947 for (i = 0; i < BPF_REG_SIZE; i++) { 948 state->stack[spi].slot_type[i] = STACK_INVALID; 949 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 950 } 951 952 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 953 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 954 955 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 956 * 957 * While we don't allow reading STACK_INVALID, it is still possible to 958 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 959 * helpers or insns can do partial read of that part without failing, 960 * but check_stack_range_initialized, check_stack_read_var_off, and 961 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 962 * the slot conservatively. Hence we need to prevent those liveness 963 * marking walks. 964 * 965 * This was not a problem before because STACK_INVALID is only set by 966 * default (where the default reg state has its reg->parent as NULL), or 967 * in clean_live_states after REG_LIVE_DONE (at which point 968 * mark_reg_read won't walk reg->parent chain), but not randomly during 969 * verifier state exploration (like we did above). Hence, for our case 970 * parentage chain will still be live (i.e. reg->parent may be 971 * non-NULL), while earlier reg->parent was NULL, so we need 972 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 973 * done later on reads or by mark_dynptr_read as well to unnecessary 974 * mark registers in verifier state. 975 */ 976 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 977 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 978 } 979 980 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 981 { 982 struct bpf_func_state *state = func(env, reg); 983 int spi, ref_obj_id, i; 984 985 spi = dynptr_get_spi(env, reg); 986 if (spi < 0) 987 return spi; 988 989 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 990 invalidate_dynptr(env, state, spi); 991 return 0; 992 } 993 994 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 995 996 /* If the dynptr has a ref_obj_id, then we need to invalidate 997 * two things: 998 * 999 * 1) Any dynptrs with a matching ref_obj_id (clones) 1000 * 2) Any slices derived from this dynptr. 1001 */ 1002 1003 /* Invalidate any slices associated with this dynptr */ 1004 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 1005 1006 /* Invalidate any dynptr clones */ 1007 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1008 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 1009 continue; 1010 1011 /* it should always be the case that if the ref obj id 1012 * matches then the stack slot also belongs to a 1013 * dynptr 1014 */ 1015 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 1016 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 1017 return -EFAULT; 1018 } 1019 if (state->stack[i].spilled_ptr.dynptr.first_slot) 1020 invalidate_dynptr(env, state, i); 1021 } 1022 1023 return 0; 1024 } 1025 1026 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1027 struct bpf_reg_state *reg); 1028 1029 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1030 { 1031 if (!env->allow_ptr_leaks) 1032 __mark_reg_not_init(env, reg); 1033 else 1034 __mark_reg_unknown(env, reg); 1035 } 1036 1037 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 1038 struct bpf_func_state *state, int spi) 1039 { 1040 struct bpf_func_state *fstate; 1041 struct bpf_reg_state *dreg; 1042 int i, dynptr_id; 1043 1044 /* We always ensure that STACK_DYNPTR is never set partially, 1045 * hence just checking for slot_type[0] is enough. This is 1046 * different for STACK_SPILL, where it may be only set for 1047 * 1 byte, so code has to use is_spilled_reg. 1048 */ 1049 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 1050 return 0; 1051 1052 /* Reposition spi to first slot */ 1053 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1054 spi = spi + 1; 1055 1056 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 1057 verbose(env, "cannot overwrite referenced dynptr\n"); 1058 return -EINVAL; 1059 } 1060 1061 mark_stack_slot_scratched(env, spi); 1062 mark_stack_slot_scratched(env, spi - 1); 1063 1064 /* Writing partially to one dynptr stack slot destroys both. */ 1065 for (i = 0; i < BPF_REG_SIZE; i++) { 1066 state->stack[spi].slot_type[i] = STACK_INVALID; 1067 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 1068 } 1069 1070 dynptr_id = state->stack[spi].spilled_ptr.id; 1071 /* Invalidate any slices associated with this dynptr */ 1072 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 1073 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 1074 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 1075 continue; 1076 if (dreg->dynptr_id == dynptr_id) 1077 mark_reg_invalid(env, dreg); 1078 })); 1079 1080 /* Do not release reference state, we are destroying dynptr on stack, 1081 * not using some helper to release it. Just reset register. 1082 */ 1083 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 1084 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 1085 1086 /* Same reason as unmark_stack_slots_dynptr above */ 1087 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1088 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 1089 1090 return 0; 1091 } 1092 1093 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1094 { 1095 int spi; 1096 1097 if (reg->type == CONST_PTR_TO_DYNPTR) 1098 return false; 1099 1100 spi = dynptr_get_spi(env, reg); 1101 1102 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 1103 * error because this just means the stack state hasn't been updated yet. 1104 * We will do check_mem_access to check and update stack bounds later. 1105 */ 1106 if (spi < 0 && spi != -ERANGE) 1107 return false; 1108 1109 /* We don't need to check if the stack slots are marked by previous 1110 * dynptr initializations because we allow overwriting existing unreferenced 1111 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 1112 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 1113 * touching are completely destructed before we reinitialize them for a new 1114 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 1115 * instead of delaying it until the end where the user will get "Unreleased 1116 * reference" error. 1117 */ 1118 return true; 1119 } 1120 1121 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1122 { 1123 struct bpf_func_state *state = func(env, reg); 1124 int i, spi; 1125 1126 /* This already represents first slot of initialized bpf_dynptr. 1127 * 1128 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 1129 * check_func_arg_reg_off's logic, so we don't need to check its 1130 * offset and alignment. 1131 */ 1132 if (reg->type == CONST_PTR_TO_DYNPTR) 1133 return true; 1134 1135 spi = dynptr_get_spi(env, reg); 1136 if (spi < 0) 1137 return false; 1138 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1139 return false; 1140 1141 for (i = 0; i < BPF_REG_SIZE; i++) { 1142 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 1143 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 1144 return false; 1145 } 1146 1147 return true; 1148 } 1149 1150 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1151 enum bpf_arg_type arg_type) 1152 { 1153 struct bpf_func_state *state = func(env, reg); 1154 enum bpf_dynptr_type dynptr_type; 1155 int spi; 1156 1157 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1158 if (arg_type == ARG_PTR_TO_DYNPTR) 1159 return true; 1160 1161 dynptr_type = arg_to_dynptr_type(arg_type); 1162 if (reg->type == CONST_PTR_TO_DYNPTR) { 1163 return reg->dynptr.type == dynptr_type; 1164 } else { 1165 spi = dynptr_get_spi(env, reg); 1166 if (spi < 0) 1167 return false; 1168 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1169 } 1170 } 1171 1172 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1173 1174 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1175 struct bpf_reg_state *reg, int insn_idx, 1176 struct btf *btf, u32 btf_id, int nr_slots) 1177 { 1178 struct bpf_func_state *state = func(env, reg); 1179 int spi, i, j, id; 1180 1181 spi = iter_get_spi(env, reg, nr_slots); 1182 if (spi < 0) 1183 return spi; 1184 1185 id = acquire_reference_state(env, insn_idx); 1186 if (id < 0) 1187 return id; 1188 1189 for (i = 0; i < nr_slots; i++) { 1190 struct bpf_stack_state *slot = &state->stack[spi - i]; 1191 struct bpf_reg_state *st = &slot->spilled_ptr; 1192 1193 __mark_reg_known_zero(st); 1194 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1195 st->live |= REG_LIVE_WRITTEN; 1196 st->ref_obj_id = i == 0 ? id : 0; 1197 st->iter.btf = btf; 1198 st->iter.btf_id = btf_id; 1199 st->iter.state = BPF_ITER_STATE_ACTIVE; 1200 st->iter.depth = 0; 1201 1202 for (j = 0; j < BPF_REG_SIZE; j++) 1203 slot->slot_type[j] = STACK_ITER; 1204 1205 mark_stack_slot_scratched(env, spi - i); 1206 } 1207 1208 return 0; 1209 } 1210 1211 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1212 struct bpf_reg_state *reg, int nr_slots) 1213 { 1214 struct bpf_func_state *state = func(env, reg); 1215 int spi, i, j; 1216 1217 spi = iter_get_spi(env, reg, nr_slots); 1218 if (spi < 0) 1219 return spi; 1220 1221 for (i = 0; i < nr_slots; i++) { 1222 struct bpf_stack_state *slot = &state->stack[spi - i]; 1223 struct bpf_reg_state *st = &slot->spilled_ptr; 1224 1225 if (i == 0) 1226 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1227 1228 __mark_reg_not_init(env, st); 1229 1230 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1231 st->live |= REG_LIVE_WRITTEN; 1232 1233 for (j = 0; j < BPF_REG_SIZE; j++) 1234 slot->slot_type[j] = STACK_INVALID; 1235 1236 mark_stack_slot_scratched(env, spi - i); 1237 } 1238 1239 return 0; 1240 } 1241 1242 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1243 struct bpf_reg_state *reg, int nr_slots) 1244 { 1245 struct bpf_func_state *state = func(env, reg); 1246 int spi, i, j; 1247 1248 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1249 * will do check_mem_access to check and update stack bounds later, so 1250 * return true for that case. 1251 */ 1252 spi = iter_get_spi(env, reg, nr_slots); 1253 if (spi == -ERANGE) 1254 return true; 1255 if (spi < 0) 1256 return false; 1257 1258 for (i = 0; i < nr_slots; i++) { 1259 struct bpf_stack_state *slot = &state->stack[spi - i]; 1260 1261 for (j = 0; j < BPF_REG_SIZE; j++) 1262 if (slot->slot_type[j] == STACK_ITER) 1263 return false; 1264 } 1265 1266 return true; 1267 } 1268 1269 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1270 struct btf *btf, u32 btf_id, int nr_slots) 1271 { 1272 struct bpf_func_state *state = func(env, reg); 1273 int spi, i, j; 1274 1275 spi = iter_get_spi(env, reg, nr_slots); 1276 if (spi < 0) 1277 return false; 1278 1279 for (i = 0; i < nr_slots; i++) { 1280 struct bpf_stack_state *slot = &state->stack[spi - i]; 1281 struct bpf_reg_state *st = &slot->spilled_ptr; 1282 1283 /* only main (first) slot has ref_obj_id set */ 1284 if (i == 0 && !st->ref_obj_id) 1285 return false; 1286 if (i != 0 && st->ref_obj_id) 1287 return false; 1288 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1289 return false; 1290 1291 for (j = 0; j < BPF_REG_SIZE; j++) 1292 if (slot->slot_type[j] != STACK_ITER) 1293 return false; 1294 } 1295 1296 return true; 1297 } 1298 1299 /* Check if given stack slot is "special": 1300 * - spilled register state (STACK_SPILL); 1301 * - dynptr state (STACK_DYNPTR); 1302 * - iter state (STACK_ITER). 1303 */ 1304 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1305 { 1306 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1307 1308 switch (type) { 1309 case STACK_SPILL: 1310 case STACK_DYNPTR: 1311 case STACK_ITER: 1312 return true; 1313 case STACK_INVALID: 1314 case STACK_MISC: 1315 case STACK_ZERO: 1316 return false; 1317 default: 1318 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1319 return true; 1320 } 1321 } 1322 1323 /* The reg state of a pointer or a bounded scalar was saved when 1324 * it was spilled to the stack. 1325 */ 1326 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1327 { 1328 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1329 } 1330 1331 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1332 { 1333 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1334 stack->spilled_ptr.type == SCALAR_VALUE; 1335 } 1336 1337 static void scrub_spilled_slot(u8 *stype) 1338 { 1339 if (*stype != STACK_INVALID) 1340 *stype = STACK_MISC; 1341 } 1342 1343 static void print_verifier_state(struct bpf_verifier_env *env, 1344 const struct bpf_func_state *state, 1345 bool print_all) 1346 { 1347 const struct bpf_reg_state *reg; 1348 enum bpf_reg_type t; 1349 int i; 1350 1351 if (state->frameno) 1352 verbose(env, " frame%d:", state->frameno); 1353 for (i = 0; i < MAX_BPF_REG; i++) { 1354 reg = &state->regs[i]; 1355 t = reg->type; 1356 if (t == NOT_INIT) 1357 continue; 1358 if (!print_all && !reg_scratched(env, i)) 1359 continue; 1360 verbose(env, " R%d", i); 1361 print_liveness(env, reg->live); 1362 verbose(env, "="); 1363 if (t == SCALAR_VALUE && reg->precise) 1364 verbose(env, "P"); 1365 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 1366 tnum_is_const(reg->var_off)) { 1367 /* reg->off should be 0 for SCALAR_VALUE */ 1368 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1369 verbose(env, "%lld", reg->var_off.value + reg->off); 1370 } else { 1371 const char *sep = ""; 1372 1373 verbose(env, "%s", reg_type_str(env, t)); 1374 if (base_type(t) == PTR_TO_BTF_ID) 1375 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id)); 1376 verbose(env, "("); 1377 /* 1378 * _a stands for append, was shortened to avoid multiline statements below. 1379 * This macro is used to output a comma separated list of attributes. 1380 */ 1381 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 1382 1383 if (reg->id) 1384 verbose_a("id=%d", reg->id); 1385 if (reg->ref_obj_id) 1386 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 1387 if (type_is_non_owning_ref(reg->type)) 1388 verbose_a("%s", "non_own_ref"); 1389 if (t != SCALAR_VALUE) 1390 verbose_a("off=%d", reg->off); 1391 if (type_is_pkt_pointer(t)) 1392 verbose_a("r=%d", reg->range); 1393 else if (base_type(t) == CONST_PTR_TO_MAP || 1394 base_type(t) == PTR_TO_MAP_KEY || 1395 base_type(t) == PTR_TO_MAP_VALUE) 1396 verbose_a("ks=%d,vs=%d", 1397 reg->map_ptr->key_size, 1398 reg->map_ptr->value_size); 1399 if (tnum_is_const(reg->var_off)) { 1400 /* Typically an immediate SCALAR_VALUE, but 1401 * could be a pointer whose offset is too big 1402 * for reg->off 1403 */ 1404 verbose_a("imm=%llx", reg->var_off.value); 1405 } else { 1406 if (reg->smin_value != reg->umin_value && 1407 reg->smin_value != S64_MIN) 1408 verbose_a("smin=%lld", (long long)reg->smin_value); 1409 if (reg->smax_value != reg->umax_value && 1410 reg->smax_value != S64_MAX) 1411 verbose_a("smax=%lld", (long long)reg->smax_value); 1412 if (reg->umin_value != 0) 1413 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 1414 if (reg->umax_value != U64_MAX) 1415 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 1416 if (!tnum_is_unknown(reg->var_off)) { 1417 char tn_buf[48]; 1418 1419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1420 verbose_a("var_off=%s", tn_buf); 1421 } 1422 if (reg->s32_min_value != reg->smin_value && 1423 reg->s32_min_value != S32_MIN) 1424 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 1425 if (reg->s32_max_value != reg->smax_value && 1426 reg->s32_max_value != S32_MAX) 1427 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 1428 if (reg->u32_min_value != reg->umin_value && 1429 reg->u32_min_value != U32_MIN) 1430 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 1431 if (reg->u32_max_value != reg->umax_value && 1432 reg->u32_max_value != U32_MAX) 1433 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 1434 } 1435 #undef verbose_a 1436 1437 verbose(env, ")"); 1438 } 1439 } 1440 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1441 char types_buf[BPF_REG_SIZE + 1]; 1442 bool valid = false; 1443 int j; 1444 1445 for (j = 0; j < BPF_REG_SIZE; j++) { 1446 if (state->stack[i].slot_type[j] != STACK_INVALID) 1447 valid = true; 1448 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1449 } 1450 types_buf[BPF_REG_SIZE] = 0; 1451 if (!valid) 1452 continue; 1453 if (!print_all && !stack_slot_scratched(env, i)) 1454 continue; 1455 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) { 1456 case STACK_SPILL: 1457 reg = &state->stack[i].spilled_ptr; 1458 t = reg->type; 1459 1460 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1461 print_liveness(env, reg->live); 1462 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1463 if (t == SCALAR_VALUE && reg->precise) 1464 verbose(env, "P"); 1465 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 1466 verbose(env, "%lld", reg->var_off.value + reg->off); 1467 break; 1468 case STACK_DYNPTR: 1469 i += BPF_DYNPTR_NR_SLOTS - 1; 1470 reg = &state->stack[i].spilled_ptr; 1471 1472 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1473 print_liveness(env, reg->live); 1474 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type)); 1475 if (reg->ref_obj_id) 1476 verbose(env, "(ref_id=%d)", reg->ref_obj_id); 1477 break; 1478 case STACK_ITER: 1479 /* only main slot has ref_obj_id set; skip others */ 1480 reg = &state->stack[i].spilled_ptr; 1481 if (!reg->ref_obj_id) 1482 continue; 1483 1484 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1485 print_liveness(env, reg->live); 1486 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)", 1487 iter_type_str(reg->iter.btf, reg->iter.btf_id), 1488 reg->ref_obj_id, iter_state_str(reg->iter.state), 1489 reg->iter.depth); 1490 break; 1491 case STACK_MISC: 1492 case STACK_ZERO: 1493 default: 1494 reg = &state->stack[i].spilled_ptr; 1495 1496 for (j = 0; j < BPF_REG_SIZE; j++) 1497 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1498 types_buf[BPF_REG_SIZE] = 0; 1499 1500 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1501 print_liveness(env, reg->live); 1502 verbose(env, "=%s", types_buf); 1503 break; 1504 } 1505 } 1506 if (state->acquired_refs && state->refs[0].id) { 1507 verbose(env, " refs=%d", state->refs[0].id); 1508 for (i = 1; i < state->acquired_refs; i++) 1509 if (state->refs[i].id) 1510 verbose(env, ",%d", state->refs[i].id); 1511 } 1512 if (state->in_callback_fn) 1513 verbose(env, " cb"); 1514 if (state->in_async_callback_fn) 1515 verbose(env, " async_cb"); 1516 verbose(env, "\n"); 1517 mark_verifier_state_clean(env); 1518 } 1519 1520 static inline u32 vlog_alignment(u32 pos) 1521 { 1522 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 1523 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 1524 } 1525 1526 static void print_insn_state(struct bpf_verifier_env *env, 1527 const struct bpf_func_state *state) 1528 { 1529 if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) { 1530 /* remove new line character */ 1531 bpf_vlog_reset(&env->log, env->prev_log_pos - 1); 1532 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' '); 1533 } else { 1534 verbose(env, "%d:", env->insn_idx); 1535 } 1536 print_verifier_state(env, state, false); 1537 } 1538 1539 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1540 * small to hold src. This is different from krealloc since we don't want to preserve 1541 * the contents of dst. 1542 * 1543 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1544 * not be allocated. 1545 */ 1546 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1547 { 1548 size_t alloc_bytes; 1549 void *orig = dst; 1550 size_t bytes; 1551 1552 if (ZERO_OR_NULL_PTR(src)) 1553 goto out; 1554 1555 if (unlikely(check_mul_overflow(n, size, &bytes))) 1556 return NULL; 1557 1558 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1559 dst = krealloc(orig, alloc_bytes, flags); 1560 if (!dst) { 1561 kfree(orig); 1562 return NULL; 1563 } 1564 1565 memcpy(dst, src, bytes); 1566 out: 1567 return dst ? dst : ZERO_SIZE_PTR; 1568 } 1569 1570 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1571 * small to hold new_n items. new items are zeroed out if the array grows. 1572 * 1573 * Contrary to krealloc_array, does not free arr if new_n is zero. 1574 */ 1575 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1576 { 1577 size_t alloc_size; 1578 void *new_arr; 1579 1580 if (!new_n || old_n == new_n) 1581 goto out; 1582 1583 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1584 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1585 if (!new_arr) { 1586 kfree(arr); 1587 return NULL; 1588 } 1589 arr = new_arr; 1590 1591 if (new_n > old_n) 1592 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1593 1594 out: 1595 return arr ? arr : ZERO_SIZE_PTR; 1596 } 1597 1598 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1599 { 1600 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1601 sizeof(struct bpf_reference_state), GFP_KERNEL); 1602 if (!dst->refs) 1603 return -ENOMEM; 1604 1605 dst->acquired_refs = src->acquired_refs; 1606 return 0; 1607 } 1608 1609 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1610 { 1611 size_t n = src->allocated_stack / BPF_REG_SIZE; 1612 1613 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1614 GFP_KERNEL); 1615 if (!dst->stack) 1616 return -ENOMEM; 1617 1618 dst->allocated_stack = src->allocated_stack; 1619 return 0; 1620 } 1621 1622 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1623 { 1624 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1625 sizeof(struct bpf_reference_state)); 1626 if (!state->refs) 1627 return -ENOMEM; 1628 1629 state->acquired_refs = n; 1630 return 0; 1631 } 1632 1633 static int grow_stack_state(struct bpf_func_state *state, int size) 1634 { 1635 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1636 1637 if (old_n >= n) 1638 return 0; 1639 1640 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1641 if (!state->stack) 1642 return -ENOMEM; 1643 1644 state->allocated_stack = size; 1645 return 0; 1646 } 1647 1648 /* Acquire a pointer id from the env and update the state->refs to include 1649 * this new pointer reference. 1650 * On success, returns a valid pointer id to associate with the register 1651 * On failure, returns a negative errno. 1652 */ 1653 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1654 { 1655 struct bpf_func_state *state = cur_func(env); 1656 int new_ofs = state->acquired_refs; 1657 int id, err; 1658 1659 err = resize_reference_state(state, state->acquired_refs + 1); 1660 if (err) 1661 return err; 1662 id = ++env->id_gen; 1663 state->refs[new_ofs].id = id; 1664 state->refs[new_ofs].insn_idx = insn_idx; 1665 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1666 1667 return id; 1668 } 1669 1670 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1671 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1672 { 1673 int i, last_idx; 1674 1675 last_idx = state->acquired_refs - 1; 1676 for (i = 0; i < state->acquired_refs; i++) { 1677 if (state->refs[i].id == ptr_id) { 1678 /* Cannot release caller references in callbacks */ 1679 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1680 return -EINVAL; 1681 if (last_idx && i != last_idx) 1682 memcpy(&state->refs[i], &state->refs[last_idx], 1683 sizeof(*state->refs)); 1684 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1685 state->acquired_refs--; 1686 return 0; 1687 } 1688 } 1689 return -EINVAL; 1690 } 1691 1692 static void free_func_state(struct bpf_func_state *state) 1693 { 1694 if (!state) 1695 return; 1696 kfree(state->refs); 1697 kfree(state->stack); 1698 kfree(state); 1699 } 1700 1701 static void clear_jmp_history(struct bpf_verifier_state *state) 1702 { 1703 kfree(state->jmp_history); 1704 state->jmp_history = NULL; 1705 state->jmp_history_cnt = 0; 1706 } 1707 1708 static void free_verifier_state(struct bpf_verifier_state *state, 1709 bool free_self) 1710 { 1711 int i; 1712 1713 for (i = 0; i <= state->curframe; i++) { 1714 free_func_state(state->frame[i]); 1715 state->frame[i] = NULL; 1716 } 1717 clear_jmp_history(state); 1718 if (free_self) 1719 kfree(state); 1720 } 1721 1722 /* copy verifier state from src to dst growing dst stack space 1723 * when necessary to accommodate larger src stack 1724 */ 1725 static int copy_func_state(struct bpf_func_state *dst, 1726 const struct bpf_func_state *src) 1727 { 1728 int err; 1729 1730 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1731 err = copy_reference_state(dst, src); 1732 if (err) 1733 return err; 1734 return copy_stack_state(dst, src); 1735 } 1736 1737 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1738 const struct bpf_verifier_state *src) 1739 { 1740 struct bpf_func_state *dst; 1741 int i, err; 1742 1743 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1744 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1745 GFP_USER); 1746 if (!dst_state->jmp_history) 1747 return -ENOMEM; 1748 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1749 1750 /* if dst has more stack frames then src frame, free them */ 1751 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1752 free_func_state(dst_state->frame[i]); 1753 dst_state->frame[i] = NULL; 1754 } 1755 dst_state->speculative = src->speculative; 1756 dst_state->active_rcu_lock = src->active_rcu_lock; 1757 dst_state->curframe = src->curframe; 1758 dst_state->active_lock.ptr = src->active_lock.ptr; 1759 dst_state->active_lock.id = src->active_lock.id; 1760 dst_state->branches = src->branches; 1761 dst_state->parent = src->parent; 1762 dst_state->first_insn_idx = src->first_insn_idx; 1763 dst_state->last_insn_idx = src->last_insn_idx; 1764 for (i = 0; i <= src->curframe; i++) { 1765 dst = dst_state->frame[i]; 1766 if (!dst) { 1767 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1768 if (!dst) 1769 return -ENOMEM; 1770 dst_state->frame[i] = dst; 1771 } 1772 err = copy_func_state(dst, src->frame[i]); 1773 if (err) 1774 return err; 1775 } 1776 return 0; 1777 } 1778 1779 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1780 { 1781 while (st) { 1782 u32 br = --st->branches; 1783 1784 /* WARN_ON(br > 1) technically makes sense here, 1785 * but see comment in push_stack(), hence: 1786 */ 1787 WARN_ONCE((int)br < 0, 1788 "BUG update_branch_counts:branches_to_explore=%d\n", 1789 br); 1790 if (br) 1791 break; 1792 st = st->parent; 1793 } 1794 } 1795 1796 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1797 int *insn_idx, bool pop_log) 1798 { 1799 struct bpf_verifier_state *cur = env->cur_state; 1800 struct bpf_verifier_stack_elem *elem, *head = env->head; 1801 int err; 1802 1803 if (env->head == NULL) 1804 return -ENOENT; 1805 1806 if (cur) { 1807 err = copy_verifier_state(cur, &head->st); 1808 if (err) 1809 return err; 1810 } 1811 if (pop_log) 1812 bpf_vlog_reset(&env->log, head->log_pos); 1813 if (insn_idx) 1814 *insn_idx = head->insn_idx; 1815 if (prev_insn_idx) 1816 *prev_insn_idx = head->prev_insn_idx; 1817 elem = head->next; 1818 free_verifier_state(&head->st, false); 1819 kfree(head); 1820 env->head = elem; 1821 env->stack_size--; 1822 return 0; 1823 } 1824 1825 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1826 int insn_idx, int prev_insn_idx, 1827 bool speculative) 1828 { 1829 struct bpf_verifier_state *cur = env->cur_state; 1830 struct bpf_verifier_stack_elem *elem; 1831 int err; 1832 1833 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1834 if (!elem) 1835 goto err; 1836 1837 elem->insn_idx = insn_idx; 1838 elem->prev_insn_idx = prev_insn_idx; 1839 elem->next = env->head; 1840 elem->log_pos = env->log.end_pos; 1841 env->head = elem; 1842 env->stack_size++; 1843 err = copy_verifier_state(&elem->st, cur); 1844 if (err) 1845 goto err; 1846 elem->st.speculative |= speculative; 1847 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1848 verbose(env, "The sequence of %d jumps is too complex.\n", 1849 env->stack_size); 1850 goto err; 1851 } 1852 if (elem->st.parent) { 1853 ++elem->st.parent->branches; 1854 /* WARN_ON(branches > 2) technically makes sense here, 1855 * but 1856 * 1. speculative states will bump 'branches' for non-branch 1857 * instructions 1858 * 2. is_state_visited() heuristics may decide not to create 1859 * a new state for a sequence of branches and all such current 1860 * and cloned states will be pointing to a single parent state 1861 * which might have large 'branches' count. 1862 */ 1863 } 1864 return &elem->st; 1865 err: 1866 free_verifier_state(env->cur_state, true); 1867 env->cur_state = NULL; 1868 /* pop all elements and return */ 1869 while (!pop_stack(env, NULL, NULL, false)); 1870 return NULL; 1871 } 1872 1873 #define CALLER_SAVED_REGS 6 1874 static const int caller_saved[CALLER_SAVED_REGS] = { 1875 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1876 }; 1877 1878 /* This helper doesn't clear reg->id */ 1879 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1880 { 1881 reg->var_off = tnum_const(imm); 1882 reg->smin_value = (s64)imm; 1883 reg->smax_value = (s64)imm; 1884 reg->umin_value = imm; 1885 reg->umax_value = imm; 1886 1887 reg->s32_min_value = (s32)imm; 1888 reg->s32_max_value = (s32)imm; 1889 reg->u32_min_value = (u32)imm; 1890 reg->u32_max_value = (u32)imm; 1891 } 1892 1893 /* Mark the unknown part of a register (variable offset or scalar value) as 1894 * known to have the value @imm. 1895 */ 1896 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1897 { 1898 /* Clear off and union(map_ptr, range) */ 1899 memset(((u8 *)reg) + sizeof(reg->type), 0, 1900 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1901 reg->id = 0; 1902 reg->ref_obj_id = 0; 1903 ___mark_reg_known(reg, imm); 1904 } 1905 1906 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1907 { 1908 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1909 reg->s32_min_value = (s32)imm; 1910 reg->s32_max_value = (s32)imm; 1911 reg->u32_min_value = (u32)imm; 1912 reg->u32_max_value = (u32)imm; 1913 } 1914 1915 /* Mark the 'variable offset' part of a register as zero. This should be 1916 * used only on registers holding a pointer type. 1917 */ 1918 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1919 { 1920 __mark_reg_known(reg, 0); 1921 } 1922 1923 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1924 { 1925 __mark_reg_known(reg, 0); 1926 reg->type = SCALAR_VALUE; 1927 } 1928 1929 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1930 struct bpf_reg_state *regs, u32 regno) 1931 { 1932 if (WARN_ON(regno >= MAX_BPF_REG)) { 1933 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1934 /* Something bad happened, let's kill all regs */ 1935 for (regno = 0; regno < MAX_BPF_REG; regno++) 1936 __mark_reg_not_init(env, regs + regno); 1937 return; 1938 } 1939 __mark_reg_known_zero(regs + regno); 1940 } 1941 1942 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1943 bool first_slot, int dynptr_id) 1944 { 1945 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1946 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1947 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1948 */ 1949 __mark_reg_known_zero(reg); 1950 reg->type = CONST_PTR_TO_DYNPTR; 1951 /* Give each dynptr a unique id to uniquely associate slices to it. */ 1952 reg->id = dynptr_id; 1953 reg->dynptr.type = type; 1954 reg->dynptr.first_slot = first_slot; 1955 } 1956 1957 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1958 { 1959 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1960 const struct bpf_map *map = reg->map_ptr; 1961 1962 if (map->inner_map_meta) { 1963 reg->type = CONST_PTR_TO_MAP; 1964 reg->map_ptr = map->inner_map_meta; 1965 /* transfer reg's id which is unique for every map_lookup_elem 1966 * as UID of the inner map. 1967 */ 1968 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1969 reg->map_uid = reg->id; 1970 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1971 reg->type = PTR_TO_XDP_SOCK; 1972 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1973 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1974 reg->type = PTR_TO_SOCKET; 1975 } else { 1976 reg->type = PTR_TO_MAP_VALUE; 1977 } 1978 return; 1979 } 1980 1981 reg->type &= ~PTR_MAYBE_NULL; 1982 } 1983 1984 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 1985 struct btf_field_graph_root *ds_head) 1986 { 1987 __mark_reg_known_zero(®s[regno]); 1988 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 1989 regs[regno].btf = ds_head->btf; 1990 regs[regno].btf_id = ds_head->value_btf_id; 1991 regs[regno].off = ds_head->node_offset; 1992 } 1993 1994 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1995 { 1996 return type_is_pkt_pointer(reg->type); 1997 } 1998 1999 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 2000 { 2001 return reg_is_pkt_pointer(reg) || 2002 reg->type == PTR_TO_PACKET_END; 2003 } 2004 2005 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 2006 { 2007 return base_type(reg->type) == PTR_TO_MEM && 2008 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 2009 } 2010 2011 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 2012 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 2013 enum bpf_reg_type which) 2014 { 2015 /* The register can already have a range from prior markings. 2016 * This is fine as long as it hasn't been advanced from its 2017 * origin. 2018 */ 2019 return reg->type == which && 2020 reg->id == 0 && 2021 reg->off == 0 && 2022 tnum_equals_const(reg->var_off, 0); 2023 } 2024 2025 /* Reset the min/max bounds of a register */ 2026 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 2027 { 2028 reg->smin_value = S64_MIN; 2029 reg->smax_value = S64_MAX; 2030 reg->umin_value = 0; 2031 reg->umax_value = U64_MAX; 2032 2033 reg->s32_min_value = S32_MIN; 2034 reg->s32_max_value = S32_MAX; 2035 reg->u32_min_value = 0; 2036 reg->u32_max_value = U32_MAX; 2037 } 2038 2039 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 2040 { 2041 reg->smin_value = S64_MIN; 2042 reg->smax_value = S64_MAX; 2043 reg->umin_value = 0; 2044 reg->umax_value = U64_MAX; 2045 } 2046 2047 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 2048 { 2049 reg->s32_min_value = S32_MIN; 2050 reg->s32_max_value = S32_MAX; 2051 reg->u32_min_value = 0; 2052 reg->u32_max_value = U32_MAX; 2053 } 2054 2055 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2056 { 2057 struct tnum var32_off = tnum_subreg(reg->var_off); 2058 2059 /* min signed is max(sign bit) | min(other bits) */ 2060 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2061 var32_off.value | (var32_off.mask & S32_MIN)); 2062 /* max signed is min(sign bit) | max(other bits) */ 2063 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2064 var32_off.value | (var32_off.mask & S32_MAX)); 2065 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2066 reg->u32_max_value = min(reg->u32_max_value, 2067 (u32)(var32_off.value | var32_off.mask)); 2068 } 2069 2070 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2071 { 2072 /* min signed is max(sign bit) | min(other bits) */ 2073 reg->smin_value = max_t(s64, reg->smin_value, 2074 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2075 /* max signed is min(sign bit) | max(other bits) */ 2076 reg->smax_value = min_t(s64, reg->smax_value, 2077 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2078 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2079 reg->umax_value = min(reg->umax_value, 2080 reg->var_off.value | reg->var_off.mask); 2081 } 2082 2083 static void __update_reg_bounds(struct bpf_reg_state *reg) 2084 { 2085 __update_reg32_bounds(reg); 2086 __update_reg64_bounds(reg); 2087 } 2088 2089 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2090 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2091 { 2092 /* Learn sign from signed bounds. 2093 * If we cannot cross the sign boundary, then signed and unsigned bounds 2094 * are the same, so combine. This works even in the negative case, e.g. 2095 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2096 */ 2097 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 2098 reg->s32_min_value = reg->u32_min_value = 2099 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2100 reg->s32_max_value = reg->u32_max_value = 2101 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2102 return; 2103 } 2104 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2105 * boundary, so we must be careful. 2106 */ 2107 if ((s32)reg->u32_max_value >= 0) { 2108 /* Positive. We can't learn anything from the smin, but smax 2109 * is positive, hence safe. 2110 */ 2111 reg->s32_min_value = reg->u32_min_value; 2112 reg->s32_max_value = reg->u32_max_value = 2113 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2114 } else if ((s32)reg->u32_min_value < 0) { 2115 /* Negative. We can't learn anything from the smax, but smin 2116 * is negative, hence safe. 2117 */ 2118 reg->s32_min_value = reg->u32_min_value = 2119 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2120 reg->s32_max_value = reg->u32_max_value; 2121 } 2122 } 2123 2124 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2125 { 2126 /* Learn sign from signed bounds. 2127 * If we cannot cross the sign boundary, then signed and unsigned bounds 2128 * are the same, so combine. This works even in the negative case, e.g. 2129 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2130 */ 2131 if (reg->smin_value >= 0 || reg->smax_value < 0) { 2132 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2133 reg->umin_value); 2134 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2135 reg->umax_value); 2136 return; 2137 } 2138 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2139 * boundary, so we must be careful. 2140 */ 2141 if ((s64)reg->umax_value >= 0) { 2142 /* Positive. We can't learn anything from the smin, but smax 2143 * is positive, hence safe. 2144 */ 2145 reg->smin_value = reg->umin_value; 2146 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2147 reg->umax_value); 2148 } else if ((s64)reg->umin_value < 0) { 2149 /* Negative. We can't learn anything from the smax, but smin 2150 * is negative, hence safe. 2151 */ 2152 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2153 reg->umin_value); 2154 reg->smax_value = reg->umax_value; 2155 } 2156 } 2157 2158 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2159 { 2160 __reg32_deduce_bounds(reg); 2161 __reg64_deduce_bounds(reg); 2162 } 2163 2164 /* Attempts to improve var_off based on unsigned min/max information */ 2165 static void __reg_bound_offset(struct bpf_reg_state *reg) 2166 { 2167 struct tnum var64_off = tnum_intersect(reg->var_off, 2168 tnum_range(reg->umin_value, 2169 reg->umax_value)); 2170 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2171 tnum_range(reg->u32_min_value, 2172 reg->u32_max_value)); 2173 2174 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2175 } 2176 2177 static void reg_bounds_sync(struct bpf_reg_state *reg) 2178 { 2179 /* We might have learned new bounds from the var_off. */ 2180 __update_reg_bounds(reg); 2181 /* We might have learned something about the sign bit. */ 2182 __reg_deduce_bounds(reg); 2183 /* We might have learned some bits from the bounds. */ 2184 __reg_bound_offset(reg); 2185 /* Intersecting with the old var_off might have improved our bounds 2186 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2187 * then new var_off is (0; 0x7f...fc) which improves our umax. 2188 */ 2189 __update_reg_bounds(reg); 2190 } 2191 2192 static bool __reg32_bound_s64(s32 a) 2193 { 2194 return a >= 0 && a <= S32_MAX; 2195 } 2196 2197 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2198 { 2199 reg->umin_value = reg->u32_min_value; 2200 reg->umax_value = reg->u32_max_value; 2201 2202 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2203 * be positive otherwise set to worse case bounds and refine later 2204 * from tnum. 2205 */ 2206 if (__reg32_bound_s64(reg->s32_min_value) && 2207 __reg32_bound_s64(reg->s32_max_value)) { 2208 reg->smin_value = reg->s32_min_value; 2209 reg->smax_value = reg->s32_max_value; 2210 } else { 2211 reg->smin_value = 0; 2212 reg->smax_value = U32_MAX; 2213 } 2214 } 2215 2216 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 2217 { 2218 /* special case when 64-bit register has upper 32-bit register 2219 * zeroed. Typically happens after zext or <<32, >>32 sequence 2220 * allowing us to use 32-bit bounds directly, 2221 */ 2222 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 2223 __reg_assign_32_into_64(reg); 2224 } else { 2225 /* Otherwise the best we can do is push lower 32bit known and 2226 * unknown bits into register (var_off set from jmp logic) 2227 * then learn as much as possible from the 64-bit tnum 2228 * known and unknown bits. The previous smin/smax bounds are 2229 * invalid here because of jmp32 compare so mark them unknown 2230 * so they do not impact tnum bounds calculation. 2231 */ 2232 __mark_reg64_unbounded(reg); 2233 } 2234 reg_bounds_sync(reg); 2235 } 2236 2237 static bool __reg64_bound_s32(s64 a) 2238 { 2239 return a >= S32_MIN && a <= S32_MAX; 2240 } 2241 2242 static bool __reg64_bound_u32(u64 a) 2243 { 2244 return a >= U32_MIN && a <= U32_MAX; 2245 } 2246 2247 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 2248 { 2249 __mark_reg32_unbounded(reg); 2250 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 2251 reg->s32_min_value = (s32)reg->smin_value; 2252 reg->s32_max_value = (s32)reg->smax_value; 2253 } 2254 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 2255 reg->u32_min_value = (u32)reg->umin_value; 2256 reg->u32_max_value = (u32)reg->umax_value; 2257 } 2258 reg_bounds_sync(reg); 2259 } 2260 2261 /* Mark a register as having a completely unknown (scalar) value. */ 2262 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2263 struct bpf_reg_state *reg) 2264 { 2265 /* 2266 * Clear type, off, and union(map_ptr, range) and 2267 * padding between 'type' and union 2268 */ 2269 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2270 reg->type = SCALAR_VALUE; 2271 reg->id = 0; 2272 reg->ref_obj_id = 0; 2273 reg->var_off = tnum_unknown; 2274 reg->frameno = 0; 2275 reg->precise = !env->bpf_capable; 2276 __mark_reg_unbounded(reg); 2277 } 2278 2279 static void mark_reg_unknown(struct bpf_verifier_env *env, 2280 struct bpf_reg_state *regs, u32 regno) 2281 { 2282 if (WARN_ON(regno >= MAX_BPF_REG)) { 2283 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2284 /* Something bad happened, let's kill all regs except FP */ 2285 for (regno = 0; regno < BPF_REG_FP; regno++) 2286 __mark_reg_not_init(env, regs + regno); 2287 return; 2288 } 2289 __mark_reg_unknown(env, regs + regno); 2290 } 2291 2292 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2293 struct bpf_reg_state *reg) 2294 { 2295 __mark_reg_unknown(env, reg); 2296 reg->type = NOT_INIT; 2297 } 2298 2299 static void mark_reg_not_init(struct bpf_verifier_env *env, 2300 struct bpf_reg_state *regs, u32 regno) 2301 { 2302 if (WARN_ON(regno >= MAX_BPF_REG)) { 2303 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2304 /* Something bad happened, let's kill all regs except FP */ 2305 for (regno = 0; regno < BPF_REG_FP; regno++) 2306 __mark_reg_not_init(env, regs + regno); 2307 return; 2308 } 2309 __mark_reg_not_init(env, regs + regno); 2310 } 2311 2312 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2313 struct bpf_reg_state *regs, u32 regno, 2314 enum bpf_reg_type reg_type, 2315 struct btf *btf, u32 btf_id, 2316 enum bpf_type_flag flag) 2317 { 2318 if (reg_type == SCALAR_VALUE) { 2319 mark_reg_unknown(env, regs, regno); 2320 return; 2321 } 2322 mark_reg_known_zero(env, regs, regno); 2323 regs[regno].type = PTR_TO_BTF_ID | flag; 2324 regs[regno].btf = btf; 2325 regs[regno].btf_id = btf_id; 2326 } 2327 2328 #define DEF_NOT_SUBREG (0) 2329 static void init_reg_state(struct bpf_verifier_env *env, 2330 struct bpf_func_state *state) 2331 { 2332 struct bpf_reg_state *regs = state->regs; 2333 int i; 2334 2335 for (i = 0; i < MAX_BPF_REG; i++) { 2336 mark_reg_not_init(env, regs, i); 2337 regs[i].live = REG_LIVE_NONE; 2338 regs[i].parent = NULL; 2339 regs[i].subreg_def = DEF_NOT_SUBREG; 2340 } 2341 2342 /* frame pointer */ 2343 regs[BPF_REG_FP].type = PTR_TO_STACK; 2344 mark_reg_known_zero(env, regs, BPF_REG_FP); 2345 regs[BPF_REG_FP].frameno = state->frameno; 2346 } 2347 2348 #define BPF_MAIN_FUNC (-1) 2349 static void init_func_state(struct bpf_verifier_env *env, 2350 struct bpf_func_state *state, 2351 int callsite, int frameno, int subprogno) 2352 { 2353 state->callsite = callsite; 2354 state->frameno = frameno; 2355 state->subprogno = subprogno; 2356 state->callback_ret_range = tnum_range(0, 0); 2357 init_reg_state(env, state); 2358 mark_verifier_state_scratched(env); 2359 } 2360 2361 /* Similar to push_stack(), but for async callbacks */ 2362 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2363 int insn_idx, int prev_insn_idx, 2364 int subprog) 2365 { 2366 struct bpf_verifier_stack_elem *elem; 2367 struct bpf_func_state *frame; 2368 2369 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2370 if (!elem) 2371 goto err; 2372 2373 elem->insn_idx = insn_idx; 2374 elem->prev_insn_idx = prev_insn_idx; 2375 elem->next = env->head; 2376 elem->log_pos = env->log.end_pos; 2377 env->head = elem; 2378 env->stack_size++; 2379 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2380 verbose(env, 2381 "The sequence of %d jumps is too complex for async cb.\n", 2382 env->stack_size); 2383 goto err; 2384 } 2385 /* Unlike push_stack() do not copy_verifier_state(). 2386 * The caller state doesn't matter. 2387 * This is async callback. It starts in a fresh stack. 2388 * Initialize it similar to do_check_common(). 2389 */ 2390 elem->st.branches = 1; 2391 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2392 if (!frame) 2393 goto err; 2394 init_func_state(env, frame, 2395 BPF_MAIN_FUNC /* callsite */, 2396 0 /* frameno within this callchain */, 2397 subprog /* subprog number within this prog */); 2398 elem->st.frame[0] = frame; 2399 return &elem->st; 2400 err: 2401 free_verifier_state(env->cur_state, true); 2402 env->cur_state = NULL; 2403 /* pop all elements and return */ 2404 while (!pop_stack(env, NULL, NULL, false)); 2405 return NULL; 2406 } 2407 2408 2409 enum reg_arg_type { 2410 SRC_OP, /* register is used as source operand */ 2411 DST_OP, /* register is used as destination operand */ 2412 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2413 }; 2414 2415 static int cmp_subprogs(const void *a, const void *b) 2416 { 2417 return ((struct bpf_subprog_info *)a)->start - 2418 ((struct bpf_subprog_info *)b)->start; 2419 } 2420 2421 static int find_subprog(struct bpf_verifier_env *env, int off) 2422 { 2423 struct bpf_subprog_info *p; 2424 2425 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2426 sizeof(env->subprog_info[0]), cmp_subprogs); 2427 if (!p) 2428 return -ENOENT; 2429 return p - env->subprog_info; 2430 2431 } 2432 2433 static int add_subprog(struct bpf_verifier_env *env, int off) 2434 { 2435 int insn_cnt = env->prog->len; 2436 int ret; 2437 2438 if (off >= insn_cnt || off < 0) { 2439 verbose(env, "call to invalid destination\n"); 2440 return -EINVAL; 2441 } 2442 ret = find_subprog(env, off); 2443 if (ret >= 0) 2444 return ret; 2445 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2446 verbose(env, "too many subprograms\n"); 2447 return -E2BIG; 2448 } 2449 /* determine subprog starts. The end is one before the next starts */ 2450 env->subprog_info[env->subprog_cnt++].start = off; 2451 sort(env->subprog_info, env->subprog_cnt, 2452 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2453 return env->subprog_cnt - 1; 2454 } 2455 2456 #define MAX_KFUNC_DESCS 256 2457 #define MAX_KFUNC_BTFS 256 2458 2459 struct bpf_kfunc_desc { 2460 struct btf_func_model func_model; 2461 u32 func_id; 2462 s32 imm; 2463 u16 offset; 2464 unsigned long addr; 2465 }; 2466 2467 struct bpf_kfunc_btf { 2468 struct btf *btf; 2469 struct module *module; 2470 u16 offset; 2471 }; 2472 2473 struct bpf_kfunc_desc_tab { 2474 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2475 * verification. JITs do lookups by bpf_insn, where func_id may not be 2476 * available, therefore at the end of verification do_misc_fixups() 2477 * sorts this by imm and offset. 2478 */ 2479 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2480 u32 nr_descs; 2481 }; 2482 2483 struct bpf_kfunc_btf_tab { 2484 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2485 u32 nr_descs; 2486 }; 2487 2488 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2489 { 2490 const struct bpf_kfunc_desc *d0 = a; 2491 const struct bpf_kfunc_desc *d1 = b; 2492 2493 /* func_id is not greater than BTF_MAX_TYPE */ 2494 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2495 } 2496 2497 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2498 { 2499 const struct bpf_kfunc_btf *d0 = a; 2500 const struct bpf_kfunc_btf *d1 = b; 2501 2502 return d0->offset - d1->offset; 2503 } 2504 2505 static const struct bpf_kfunc_desc * 2506 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2507 { 2508 struct bpf_kfunc_desc desc = { 2509 .func_id = func_id, 2510 .offset = offset, 2511 }; 2512 struct bpf_kfunc_desc_tab *tab; 2513 2514 tab = prog->aux->kfunc_tab; 2515 return bsearch(&desc, tab->descs, tab->nr_descs, 2516 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2517 } 2518 2519 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2520 u16 btf_fd_idx, u8 **func_addr) 2521 { 2522 const struct bpf_kfunc_desc *desc; 2523 2524 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2525 if (!desc) 2526 return -EFAULT; 2527 2528 *func_addr = (u8 *)desc->addr; 2529 return 0; 2530 } 2531 2532 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2533 s16 offset) 2534 { 2535 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2536 struct bpf_kfunc_btf_tab *tab; 2537 struct bpf_kfunc_btf *b; 2538 struct module *mod; 2539 struct btf *btf; 2540 int btf_fd; 2541 2542 tab = env->prog->aux->kfunc_btf_tab; 2543 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2544 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2545 if (!b) { 2546 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2547 verbose(env, "too many different module BTFs\n"); 2548 return ERR_PTR(-E2BIG); 2549 } 2550 2551 if (bpfptr_is_null(env->fd_array)) { 2552 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2553 return ERR_PTR(-EPROTO); 2554 } 2555 2556 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2557 offset * sizeof(btf_fd), 2558 sizeof(btf_fd))) 2559 return ERR_PTR(-EFAULT); 2560 2561 btf = btf_get_by_fd(btf_fd); 2562 if (IS_ERR(btf)) { 2563 verbose(env, "invalid module BTF fd specified\n"); 2564 return btf; 2565 } 2566 2567 if (!btf_is_module(btf)) { 2568 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2569 btf_put(btf); 2570 return ERR_PTR(-EINVAL); 2571 } 2572 2573 mod = btf_try_get_module(btf); 2574 if (!mod) { 2575 btf_put(btf); 2576 return ERR_PTR(-ENXIO); 2577 } 2578 2579 b = &tab->descs[tab->nr_descs++]; 2580 b->btf = btf; 2581 b->module = mod; 2582 b->offset = offset; 2583 2584 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2585 kfunc_btf_cmp_by_off, NULL); 2586 } 2587 return b->btf; 2588 } 2589 2590 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2591 { 2592 if (!tab) 2593 return; 2594 2595 while (tab->nr_descs--) { 2596 module_put(tab->descs[tab->nr_descs].module); 2597 btf_put(tab->descs[tab->nr_descs].btf); 2598 } 2599 kfree(tab); 2600 } 2601 2602 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2603 { 2604 if (offset) { 2605 if (offset < 0) { 2606 /* In the future, this can be allowed to increase limit 2607 * of fd index into fd_array, interpreted as u16. 2608 */ 2609 verbose(env, "negative offset disallowed for kernel module function call\n"); 2610 return ERR_PTR(-EINVAL); 2611 } 2612 2613 return __find_kfunc_desc_btf(env, offset); 2614 } 2615 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2616 } 2617 2618 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2619 { 2620 const struct btf_type *func, *func_proto; 2621 struct bpf_kfunc_btf_tab *btf_tab; 2622 struct bpf_kfunc_desc_tab *tab; 2623 struct bpf_prog_aux *prog_aux; 2624 struct bpf_kfunc_desc *desc; 2625 const char *func_name; 2626 struct btf *desc_btf; 2627 unsigned long call_imm; 2628 unsigned long addr; 2629 int err; 2630 2631 prog_aux = env->prog->aux; 2632 tab = prog_aux->kfunc_tab; 2633 btf_tab = prog_aux->kfunc_btf_tab; 2634 if (!tab) { 2635 if (!btf_vmlinux) { 2636 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2637 return -ENOTSUPP; 2638 } 2639 2640 if (!env->prog->jit_requested) { 2641 verbose(env, "JIT is required for calling kernel function\n"); 2642 return -ENOTSUPP; 2643 } 2644 2645 if (!bpf_jit_supports_kfunc_call()) { 2646 verbose(env, "JIT does not support calling kernel function\n"); 2647 return -ENOTSUPP; 2648 } 2649 2650 if (!env->prog->gpl_compatible) { 2651 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2652 return -EINVAL; 2653 } 2654 2655 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2656 if (!tab) 2657 return -ENOMEM; 2658 prog_aux->kfunc_tab = tab; 2659 } 2660 2661 /* func_id == 0 is always invalid, but instead of returning an error, be 2662 * conservative and wait until the code elimination pass before returning 2663 * error, so that invalid calls that get pruned out can be in BPF programs 2664 * loaded from userspace. It is also required that offset be untouched 2665 * for such calls. 2666 */ 2667 if (!func_id && !offset) 2668 return 0; 2669 2670 if (!btf_tab && offset) { 2671 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2672 if (!btf_tab) 2673 return -ENOMEM; 2674 prog_aux->kfunc_btf_tab = btf_tab; 2675 } 2676 2677 desc_btf = find_kfunc_desc_btf(env, offset); 2678 if (IS_ERR(desc_btf)) { 2679 verbose(env, "failed to find BTF for kernel function\n"); 2680 return PTR_ERR(desc_btf); 2681 } 2682 2683 if (find_kfunc_desc(env->prog, func_id, offset)) 2684 return 0; 2685 2686 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2687 verbose(env, "too many different kernel function calls\n"); 2688 return -E2BIG; 2689 } 2690 2691 func = btf_type_by_id(desc_btf, func_id); 2692 if (!func || !btf_type_is_func(func)) { 2693 verbose(env, "kernel btf_id %u is not a function\n", 2694 func_id); 2695 return -EINVAL; 2696 } 2697 func_proto = btf_type_by_id(desc_btf, func->type); 2698 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2699 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2700 func_id); 2701 return -EINVAL; 2702 } 2703 2704 func_name = btf_name_by_offset(desc_btf, func->name_off); 2705 addr = kallsyms_lookup_name(func_name); 2706 if (!addr) { 2707 verbose(env, "cannot find address for kernel function %s\n", 2708 func_name); 2709 return -EINVAL; 2710 } 2711 specialize_kfunc(env, func_id, offset, &addr); 2712 2713 if (bpf_jit_supports_far_kfunc_call()) { 2714 call_imm = func_id; 2715 } else { 2716 call_imm = BPF_CALL_IMM(addr); 2717 /* Check whether the relative offset overflows desc->imm */ 2718 if ((unsigned long)(s32)call_imm != call_imm) { 2719 verbose(env, "address of kernel function %s is out of range\n", 2720 func_name); 2721 return -EINVAL; 2722 } 2723 } 2724 2725 if (bpf_dev_bound_kfunc_id(func_id)) { 2726 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2727 if (err) 2728 return err; 2729 } 2730 2731 desc = &tab->descs[tab->nr_descs++]; 2732 desc->func_id = func_id; 2733 desc->imm = call_imm; 2734 desc->offset = offset; 2735 desc->addr = addr; 2736 err = btf_distill_func_proto(&env->log, desc_btf, 2737 func_proto, func_name, 2738 &desc->func_model); 2739 if (!err) 2740 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2741 kfunc_desc_cmp_by_id_off, NULL); 2742 return err; 2743 } 2744 2745 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 2746 { 2747 const struct bpf_kfunc_desc *d0 = a; 2748 const struct bpf_kfunc_desc *d1 = b; 2749 2750 if (d0->imm != d1->imm) 2751 return d0->imm < d1->imm ? -1 : 1; 2752 if (d0->offset != d1->offset) 2753 return d0->offset < d1->offset ? -1 : 1; 2754 return 0; 2755 } 2756 2757 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 2758 { 2759 struct bpf_kfunc_desc_tab *tab; 2760 2761 tab = prog->aux->kfunc_tab; 2762 if (!tab) 2763 return; 2764 2765 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2766 kfunc_desc_cmp_by_imm_off, NULL); 2767 } 2768 2769 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2770 { 2771 return !!prog->aux->kfunc_tab; 2772 } 2773 2774 const struct btf_func_model * 2775 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2776 const struct bpf_insn *insn) 2777 { 2778 const struct bpf_kfunc_desc desc = { 2779 .imm = insn->imm, 2780 .offset = insn->off, 2781 }; 2782 const struct bpf_kfunc_desc *res; 2783 struct bpf_kfunc_desc_tab *tab; 2784 2785 tab = prog->aux->kfunc_tab; 2786 res = bsearch(&desc, tab->descs, tab->nr_descs, 2787 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 2788 2789 return res ? &res->func_model : NULL; 2790 } 2791 2792 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2793 { 2794 struct bpf_subprog_info *subprog = env->subprog_info; 2795 struct bpf_insn *insn = env->prog->insnsi; 2796 int i, ret, insn_cnt = env->prog->len; 2797 2798 /* Add entry function. */ 2799 ret = add_subprog(env, 0); 2800 if (ret) 2801 return ret; 2802 2803 for (i = 0; i < insn_cnt; i++, insn++) { 2804 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2805 !bpf_pseudo_kfunc_call(insn)) 2806 continue; 2807 2808 if (!env->bpf_capable) { 2809 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2810 return -EPERM; 2811 } 2812 2813 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2814 ret = add_subprog(env, i + insn->imm + 1); 2815 else 2816 ret = add_kfunc_call(env, insn->imm, insn->off); 2817 2818 if (ret < 0) 2819 return ret; 2820 } 2821 2822 /* Add a fake 'exit' subprog which could simplify subprog iteration 2823 * logic. 'subprog_cnt' should not be increased. 2824 */ 2825 subprog[env->subprog_cnt].start = insn_cnt; 2826 2827 if (env->log.level & BPF_LOG_LEVEL2) 2828 for (i = 0; i < env->subprog_cnt; i++) 2829 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2830 2831 return 0; 2832 } 2833 2834 static int check_subprogs(struct bpf_verifier_env *env) 2835 { 2836 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2837 struct bpf_subprog_info *subprog = env->subprog_info; 2838 struct bpf_insn *insn = env->prog->insnsi; 2839 int insn_cnt = env->prog->len; 2840 2841 /* now check that all jumps are within the same subprog */ 2842 subprog_start = subprog[cur_subprog].start; 2843 subprog_end = subprog[cur_subprog + 1].start; 2844 for (i = 0; i < insn_cnt; i++) { 2845 u8 code = insn[i].code; 2846 2847 if (code == (BPF_JMP | BPF_CALL) && 2848 insn[i].src_reg == 0 && 2849 insn[i].imm == BPF_FUNC_tail_call) 2850 subprog[cur_subprog].has_tail_call = true; 2851 if (BPF_CLASS(code) == BPF_LD && 2852 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2853 subprog[cur_subprog].has_ld_abs = true; 2854 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2855 goto next; 2856 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2857 goto next; 2858 off = i + insn[i].off + 1; 2859 if (off < subprog_start || off >= subprog_end) { 2860 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2861 return -EINVAL; 2862 } 2863 next: 2864 if (i == subprog_end - 1) { 2865 /* to avoid fall-through from one subprog into another 2866 * the last insn of the subprog should be either exit 2867 * or unconditional jump back 2868 */ 2869 if (code != (BPF_JMP | BPF_EXIT) && 2870 code != (BPF_JMP | BPF_JA)) { 2871 verbose(env, "last insn is not an exit or jmp\n"); 2872 return -EINVAL; 2873 } 2874 subprog_start = subprog_end; 2875 cur_subprog++; 2876 if (cur_subprog < env->subprog_cnt) 2877 subprog_end = subprog[cur_subprog + 1].start; 2878 } 2879 } 2880 return 0; 2881 } 2882 2883 /* Parentage chain of this register (or stack slot) should take care of all 2884 * issues like callee-saved registers, stack slot allocation time, etc. 2885 */ 2886 static int mark_reg_read(struct bpf_verifier_env *env, 2887 const struct bpf_reg_state *state, 2888 struct bpf_reg_state *parent, u8 flag) 2889 { 2890 bool writes = parent == state->parent; /* Observe write marks */ 2891 int cnt = 0; 2892 2893 while (parent) { 2894 /* if read wasn't screened by an earlier write ... */ 2895 if (writes && state->live & REG_LIVE_WRITTEN) 2896 break; 2897 if (parent->live & REG_LIVE_DONE) { 2898 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2899 reg_type_str(env, parent->type), 2900 parent->var_off.value, parent->off); 2901 return -EFAULT; 2902 } 2903 /* The first condition is more likely to be true than the 2904 * second, checked it first. 2905 */ 2906 if ((parent->live & REG_LIVE_READ) == flag || 2907 parent->live & REG_LIVE_READ64) 2908 /* The parentage chain never changes and 2909 * this parent was already marked as LIVE_READ. 2910 * There is no need to keep walking the chain again and 2911 * keep re-marking all parents as LIVE_READ. 2912 * This case happens when the same register is read 2913 * multiple times without writes into it in-between. 2914 * Also, if parent has the stronger REG_LIVE_READ64 set, 2915 * then no need to set the weak REG_LIVE_READ32. 2916 */ 2917 break; 2918 /* ... then we depend on parent's value */ 2919 parent->live |= flag; 2920 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2921 if (flag == REG_LIVE_READ64) 2922 parent->live &= ~REG_LIVE_READ32; 2923 state = parent; 2924 parent = state->parent; 2925 writes = true; 2926 cnt++; 2927 } 2928 2929 if (env->longest_mark_read_walk < cnt) 2930 env->longest_mark_read_walk = cnt; 2931 return 0; 2932 } 2933 2934 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 2935 { 2936 struct bpf_func_state *state = func(env, reg); 2937 int spi, ret; 2938 2939 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 2940 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 2941 * check_kfunc_call. 2942 */ 2943 if (reg->type == CONST_PTR_TO_DYNPTR) 2944 return 0; 2945 spi = dynptr_get_spi(env, reg); 2946 if (spi < 0) 2947 return spi; 2948 /* Caller ensures dynptr is valid and initialized, which means spi is in 2949 * bounds and spi is the first dynptr slot. Simply mark stack slot as 2950 * read. 2951 */ 2952 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 2953 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 2954 if (ret) 2955 return ret; 2956 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 2957 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 2958 } 2959 2960 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 2961 int spi, int nr_slots) 2962 { 2963 struct bpf_func_state *state = func(env, reg); 2964 int err, i; 2965 2966 for (i = 0; i < nr_slots; i++) { 2967 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 2968 2969 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 2970 if (err) 2971 return err; 2972 2973 mark_stack_slot_scratched(env, spi - i); 2974 } 2975 2976 return 0; 2977 } 2978 2979 /* This function is supposed to be used by the following 32-bit optimization 2980 * code only. It returns TRUE if the source or destination register operates 2981 * on 64-bit, otherwise return FALSE. 2982 */ 2983 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2984 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2985 { 2986 u8 code, class, op; 2987 2988 code = insn->code; 2989 class = BPF_CLASS(code); 2990 op = BPF_OP(code); 2991 if (class == BPF_JMP) { 2992 /* BPF_EXIT for "main" will reach here. Return TRUE 2993 * conservatively. 2994 */ 2995 if (op == BPF_EXIT) 2996 return true; 2997 if (op == BPF_CALL) { 2998 /* BPF to BPF call will reach here because of marking 2999 * caller saved clobber with DST_OP_NO_MARK for which we 3000 * don't care the register def because they are anyway 3001 * marked as NOT_INIT already. 3002 */ 3003 if (insn->src_reg == BPF_PSEUDO_CALL) 3004 return false; 3005 /* Helper call will reach here because of arg type 3006 * check, conservatively return TRUE. 3007 */ 3008 if (t == SRC_OP) 3009 return true; 3010 3011 return false; 3012 } 3013 } 3014 3015 if (class == BPF_ALU64 || class == BPF_JMP || 3016 /* BPF_END always use BPF_ALU class. */ 3017 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3018 return true; 3019 3020 if (class == BPF_ALU || class == BPF_JMP32) 3021 return false; 3022 3023 if (class == BPF_LDX) { 3024 if (t != SRC_OP) 3025 return BPF_SIZE(code) == BPF_DW; 3026 /* LDX source must be ptr. */ 3027 return true; 3028 } 3029 3030 if (class == BPF_STX) { 3031 /* BPF_STX (including atomic variants) has multiple source 3032 * operands, one of which is a ptr. Check whether the caller is 3033 * asking about it. 3034 */ 3035 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3036 return true; 3037 return BPF_SIZE(code) == BPF_DW; 3038 } 3039 3040 if (class == BPF_LD) { 3041 u8 mode = BPF_MODE(code); 3042 3043 /* LD_IMM64 */ 3044 if (mode == BPF_IMM) 3045 return true; 3046 3047 /* Both LD_IND and LD_ABS return 32-bit data. */ 3048 if (t != SRC_OP) 3049 return false; 3050 3051 /* Implicit ctx ptr. */ 3052 if (regno == BPF_REG_6) 3053 return true; 3054 3055 /* Explicit source could be any width. */ 3056 return true; 3057 } 3058 3059 if (class == BPF_ST) 3060 /* The only source register for BPF_ST is a ptr. */ 3061 return true; 3062 3063 /* Conservatively return true at default. */ 3064 return true; 3065 } 3066 3067 /* Return the regno defined by the insn, or -1. */ 3068 static int insn_def_regno(const struct bpf_insn *insn) 3069 { 3070 switch (BPF_CLASS(insn->code)) { 3071 case BPF_JMP: 3072 case BPF_JMP32: 3073 case BPF_ST: 3074 return -1; 3075 case BPF_STX: 3076 if (BPF_MODE(insn->code) == BPF_ATOMIC && 3077 (insn->imm & BPF_FETCH)) { 3078 if (insn->imm == BPF_CMPXCHG) 3079 return BPF_REG_0; 3080 else 3081 return insn->src_reg; 3082 } else { 3083 return -1; 3084 } 3085 default: 3086 return insn->dst_reg; 3087 } 3088 } 3089 3090 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3091 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3092 { 3093 int dst_reg = insn_def_regno(insn); 3094 3095 if (dst_reg == -1) 3096 return false; 3097 3098 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3099 } 3100 3101 static void mark_insn_zext(struct bpf_verifier_env *env, 3102 struct bpf_reg_state *reg) 3103 { 3104 s32 def_idx = reg->subreg_def; 3105 3106 if (def_idx == DEF_NOT_SUBREG) 3107 return; 3108 3109 env->insn_aux_data[def_idx - 1].zext_dst = true; 3110 /* The dst will be zero extended, so won't be sub-register anymore. */ 3111 reg->subreg_def = DEF_NOT_SUBREG; 3112 } 3113 3114 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3115 enum reg_arg_type t) 3116 { 3117 struct bpf_verifier_state *vstate = env->cur_state; 3118 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3119 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3120 struct bpf_reg_state *reg, *regs = state->regs; 3121 bool rw64; 3122 3123 if (regno >= MAX_BPF_REG) { 3124 verbose(env, "R%d is invalid\n", regno); 3125 return -EINVAL; 3126 } 3127 3128 mark_reg_scratched(env, regno); 3129 3130 reg = ®s[regno]; 3131 rw64 = is_reg64(env, insn, regno, reg, t); 3132 if (t == SRC_OP) { 3133 /* check whether register used as source operand can be read */ 3134 if (reg->type == NOT_INIT) { 3135 verbose(env, "R%d !read_ok\n", regno); 3136 return -EACCES; 3137 } 3138 /* We don't need to worry about FP liveness because it's read-only */ 3139 if (regno == BPF_REG_FP) 3140 return 0; 3141 3142 if (rw64) 3143 mark_insn_zext(env, reg); 3144 3145 return mark_reg_read(env, reg, reg->parent, 3146 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3147 } else { 3148 /* check whether register used as dest operand can be written to */ 3149 if (regno == BPF_REG_FP) { 3150 verbose(env, "frame pointer is read only\n"); 3151 return -EACCES; 3152 } 3153 reg->live |= REG_LIVE_WRITTEN; 3154 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3155 if (t == DST_OP) 3156 mark_reg_unknown(env, regs, regno); 3157 } 3158 return 0; 3159 } 3160 3161 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3162 { 3163 env->insn_aux_data[idx].jmp_point = true; 3164 } 3165 3166 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3167 { 3168 return env->insn_aux_data[insn_idx].jmp_point; 3169 } 3170 3171 /* for any branch, call, exit record the history of jmps in the given state */ 3172 static int push_jmp_history(struct bpf_verifier_env *env, 3173 struct bpf_verifier_state *cur) 3174 { 3175 u32 cnt = cur->jmp_history_cnt; 3176 struct bpf_idx_pair *p; 3177 size_t alloc_size; 3178 3179 if (!is_jmp_point(env, env->insn_idx)) 3180 return 0; 3181 3182 cnt++; 3183 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3184 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 3185 if (!p) 3186 return -ENOMEM; 3187 p[cnt - 1].idx = env->insn_idx; 3188 p[cnt - 1].prev_idx = env->prev_insn_idx; 3189 cur->jmp_history = p; 3190 cur->jmp_history_cnt = cnt; 3191 return 0; 3192 } 3193 3194 /* Backtrack one insn at a time. If idx is not at the top of recorded 3195 * history then previous instruction came from straight line execution. 3196 */ 3197 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3198 u32 *history) 3199 { 3200 u32 cnt = *history; 3201 3202 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3203 i = st->jmp_history[cnt - 1].prev_idx; 3204 (*history)--; 3205 } else { 3206 i--; 3207 } 3208 return i; 3209 } 3210 3211 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3212 { 3213 const struct btf_type *func; 3214 struct btf *desc_btf; 3215 3216 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3217 return NULL; 3218 3219 desc_btf = find_kfunc_desc_btf(data, insn->off); 3220 if (IS_ERR(desc_btf)) 3221 return "<error>"; 3222 3223 func = btf_type_by_id(desc_btf, insn->imm); 3224 return btf_name_by_offset(desc_btf, func->name_off); 3225 } 3226 3227 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3228 { 3229 bt->frame = frame; 3230 } 3231 3232 static inline void bt_reset(struct backtrack_state *bt) 3233 { 3234 struct bpf_verifier_env *env = bt->env; 3235 3236 memset(bt, 0, sizeof(*bt)); 3237 bt->env = env; 3238 } 3239 3240 static inline u32 bt_empty(struct backtrack_state *bt) 3241 { 3242 u64 mask = 0; 3243 int i; 3244 3245 for (i = 0; i <= bt->frame; i++) 3246 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3247 3248 return mask == 0; 3249 } 3250 3251 static inline int bt_subprog_enter(struct backtrack_state *bt) 3252 { 3253 if (bt->frame == MAX_CALL_FRAMES - 1) { 3254 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3255 WARN_ONCE(1, "verifier backtracking bug"); 3256 return -EFAULT; 3257 } 3258 bt->frame++; 3259 return 0; 3260 } 3261 3262 static inline int bt_subprog_exit(struct backtrack_state *bt) 3263 { 3264 if (bt->frame == 0) { 3265 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3266 WARN_ONCE(1, "verifier backtracking bug"); 3267 return -EFAULT; 3268 } 3269 bt->frame--; 3270 return 0; 3271 } 3272 3273 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3274 { 3275 bt->reg_masks[frame] |= 1 << reg; 3276 } 3277 3278 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3279 { 3280 bt->reg_masks[frame] &= ~(1 << reg); 3281 } 3282 3283 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3284 { 3285 bt_set_frame_reg(bt, bt->frame, reg); 3286 } 3287 3288 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3289 { 3290 bt_clear_frame_reg(bt, bt->frame, reg); 3291 } 3292 3293 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3294 { 3295 bt->stack_masks[frame] |= 1ull << slot; 3296 } 3297 3298 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3299 { 3300 bt->stack_masks[frame] &= ~(1ull << slot); 3301 } 3302 3303 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot) 3304 { 3305 bt_set_frame_slot(bt, bt->frame, slot); 3306 } 3307 3308 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot) 3309 { 3310 bt_clear_frame_slot(bt, bt->frame, slot); 3311 } 3312 3313 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3314 { 3315 return bt->reg_masks[frame]; 3316 } 3317 3318 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3319 { 3320 return bt->reg_masks[bt->frame]; 3321 } 3322 3323 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3324 { 3325 return bt->stack_masks[frame]; 3326 } 3327 3328 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3329 { 3330 return bt->stack_masks[bt->frame]; 3331 } 3332 3333 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3334 { 3335 return bt->reg_masks[bt->frame] & (1 << reg); 3336 } 3337 3338 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot) 3339 { 3340 return bt->stack_masks[bt->frame] & (1ull << slot); 3341 } 3342 3343 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3344 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3345 { 3346 DECLARE_BITMAP(mask, 64); 3347 bool first = true; 3348 int i, n; 3349 3350 buf[0] = '\0'; 3351 3352 bitmap_from_u64(mask, reg_mask); 3353 for_each_set_bit(i, mask, 32) { 3354 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3355 first = false; 3356 buf += n; 3357 buf_sz -= n; 3358 if (buf_sz < 0) 3359 break; 3360 } 3361 } 3362 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3363 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3364 { 3365 DECLARE_BITMAP(mask, 64); 3366 bool first = true; 3367 int i, n; 3368 3369 buf[0] = '\0'; 3370 3371 bitmap_from_u64(mask, stack_mask); 3372 for_each_set_bit(i, mask, 64) { 3373 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3374 first = false; 3375 buf += n; 3376 buf_sz -= n; 3377 if (buf_sz < 0) 3378 break; 3379 } 3380 } 3381 3382 /* For given verifier state backtrack_insn() is called from the last insn to 3383 * the first insn. Its purpose is to compute a bitmask of registers and 3384 * stack slots that needs precision in the parent verifier state. 3385 * 3386 * @idx is an index of the instruction we are currently processing; 3387 * @subseq_idx is an index of the subsequent instruction that: 3388 * - *would be* executed next, if jump history is viewed in forward order; 3389 * - *was* processed previously during backtracking. 3390 */ 3391 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 3392 struct backtrack_state *bt) 3393 { 3394 const struct bpf_insn_cbs cbs = { 3395 .cb_call = disasm_kfunc_name, 3396 .cb_print = verbose, 3397 .private_data = env, 3398 }; 3399 struct bpf_insn *insn = env->prog->insnsi + idx; 3400 u8 class = BPF_CLASS(insn->code); 3401 u8 opcode = BPF_OP(insn->code); 3402 u8 mode = BPF_MODE(insn->code); 3403 u32 dreg = insn->dst_reg; 3404 u32 sreg = insn->src_reg; 3405 u32 spi, i; 3406 3407 if (insn->code == 0) 3408 return 0; 3409 if (env->log.level & BPF_LOG_LEVEL2) { 3410 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3411 verbose(env, "mark_precise: frame%d: regs=%s ", 3412 bt->frame, env->tmp_str_buf); 3413 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3414 verbose(env, "stack=%s before ", env->tmp_str_buf); 3415 verbose(env, "%d: ", idx); 3416 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3417 } 3418 3419 if (class == BPF_ALU || class == BPF_ALU64) { 3420 if (!bt_is_reg_set(bt, dreg)) 3421 return 0; 3422 if (opcode == BPF_MOV) { 3423 if (BPF_SRC(insn->code) == BPF_X) { 3424 /* dreg = sreg 3425 * dreg needs precision after this insn 3426 * sreg needs precision before this insn 3427 */ 3428 bt_clear_reg(bt, dreg); 3429 bt_set_reg(bt, sreg); 3430 } else { 3431 /* dreg = K 3432 * dreg needs precision after this insn. 3433 * Corresponding register is already marked 3434 * as precise=true in this verifier state. 3435 * No further markings in parent are necessary 3436 */ 3437 bt_clear_reg(bt, dreg); 3438 } 3439 } else { 3440 if (BPF_SRC(insn->code) == BPF_X) { 3441 /* dreg += sreg 3442 * both dreg and sreg need precision 3443 * before this insn 3444 */ 3445 bt_set_reg(bt, sreg); 3446 } /* else dreg += K 3447 * dreg still needs precision before this insn 3448 */ 3449 } 3450 } else if (class == BPF_LDX) { 3451 if (!bt_is_reg_set(bt, dreg)) 3452 return 0; 3453 bt_clear_reg(bt, dreg); 3454 3455 /* scalars can only be spilled into stack w/o losing precision. 3456 * Load from any other memory can be zero extended. 3457 * The desire to keep that precision is already indicated 3458 * by 'precise' mark in corresponding register of this state. 3459 * No further tracking necessary. 3460 */ 3461 if (insn->src_reg != BPF_REG_FP) 3462 return 0; 3463 3464 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3465 * that [fp - off] slot contains scalar that needs to be 3466 * tracked with precision 3467 */ 3468 spi = (-insn->off - 1) / BPF_REG_SIZE; 3469 if (spi >= 64) { 3470 verbose(env, "BUG spi %d\n", spi); 3471 WARN_ONCE(1, "verifier backtracking bug"); 3472 return -EFAULT; 3473 } 3474 bt_set_slot(bt, spi); 3475 } else if (class == BPF_STX || class == BPF_ST) { 3476 if (bt_is_reg_set(bt, dreg)) 3477 /* stx & st shouldn't be using _scalar_ dst_reg 3478 * to access memory. It means backtracking 3479 * encountered a case of pointer subtraction. 3480 */ 3481 return -ENOTSUPP; 3482 /* scalars can only be spilled into stack */ 3483 if (insn->dst_reg != BPF_REG_FP) 3484 return 0; 3485 spi = (-insn->off - 1) / BPF_REG_SIZE; 3486 if (spi >= 64) { 3487 verbose(env, "BUG spi %d\n", spi); 3488 WARN_ONCE(1, "verifier backtracking bug"); 3489 return -EFAULT; 3490 } 3491 if (!bt_is_slot_set(bt, spi)) 3492 return 0; 3493 bt_clear_slot(bt, spi); 3494 if (class == BPF_STX) 3495 bt_set_reg(bt, sreg); 3496 } else if (class == BPF_JMP || class == BPF_JMP32) { 3497 if (bpf_pseudo_call(insn)) { 3498 int subprog_insn_idx, subprog; 3499 3500 subprog_insn_idx = idx + insn->imm + 1; 3501 subprog = find_subprog(env, subprog_insn_idx); 3502 if (subprog < 0) 3503 return -EFAULT; 3504 3505 if (subprog_is_global(env, subprog)) { 3506 /* check that jump history doesn't have any 3507 * extra instructions from subprog; the next 3508 * instruction after call to global subprog 3509 * should be literally next instruction in 3510 * caller program 3511 */ 3512 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 3513 /* r1-r5 are invalidated after subprog call, 3514 * so for global func call it shouldn't be set 3515 * anymore 3516 */ 3517 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3518 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3519 WARN_ONCE(1, "verifier backtracking bug"); 3520 return -EFAULT; 3521 } 3522 /* global subprog always sets R0 */ 3523 bt_clear_reg(bt, BPF_REG_0); 3524 return 0; 3525 } else { 3526 /* static subprog call instruction, which 3527 * means that we are exiting current subprog, 3528 * so only r1-r5 could be still requested as 3529 * precise, r0 and r6-r10 or any stack slot in 3530 * the current frame should be zero by now 3531 */ 3532 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3533 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3534 WARN_ONCE(1, "verifier backtracking bug"); 3535 return -EFAULT; 3536 } 3537 /* we don't track register spills perfectly, 3538 * so fallback to force-precise instead of failing */ 3539 if (bt_stack_mask(bt) != 0) 3540 return -ENOTSUPP; 3541 /* propagate r1-r5 to the caller */ 3542 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 3543 if (bt_is_reg_set(bt, i)) { 3544 bt_clear_reg(bt, i); 3545 bt_set_frame_reg(bt, bt->frame - 1, i); 3546 } 3547 } 3548 if (bt_subprog_exit(bt)) 3549 return -EFAULT; 3550 return 0; 3551 } 3552 } else if ((bpf_helper_call(insn) && 3553 is_callback_calling_function(insn->imm) && 3554 !is_async_callback_calling_function(insn->imm)) || 3555 (bpf_pseudo_kfunc_call(insn) && is_callback_calling_kfunc(insn->imm))) { 3556 /* callback-calling helper or kfunc call, which means 3557 * we are exiting from subprog, but unlike the subprog 3558 * call handling above, we shouldn't propagate 3559 * precision of r1-r5 (if any requested), as they are 3560 * not actually arguments passed directly to callback 3561 * subprogs 3562 */ 3563 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3564 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3565 WARN_ONCE(1, "verifier backtracking bug"); 3566 return -EFAULT; 3567 } 3568 if (bt_stack_mask(bt) != 0) 3569 return -ENOTSUPP; 3570 /* clear r1-r5 in callback subprog's mask */ 3571 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3572 bt_clear_reg(bt, i); 3573 if (bt_subprog_exit(bt)) 3574 return -EFAULT; 3575 return 0; 3576 } else if (opcode == BPF_CALL) { 3577 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 3578 * catch this error later. Make backtracking conservative 3579 * with ENOTSUPP. 3580 */ 3581 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 3582 return -ENOTSUPP; 3583 /* regular helper call sets R0 */ 3584 bt_clear_reg(bt, BPF_REG_0); 3585 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3586 /* if backtracing was looking for registers R1-R5 3587 * they should have been found already. 3588 */ 3589 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3590 WARN_ONCE(1, "verifier backtracking bug"); 3591 return -EFAULT; 3592 } 3593 } else if (opcode == BPF_EXIT) { 3594 bool r0_precise; 3595 3596 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3597 /* if backtracing was looking for registers R1-R5 3598 * they should have been found already. 3599 */ 3600 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3601 WARN_ONCE(1, "verifier backtracking bug"); 3602 return -EFAULT; 3603 } 3604 3605 /* BPF_EXIT in subprog or callback always returns 3606 * right after the call instruction, so by checking 3607 * whether the instruction at subseq_idx-1 is subprog 3608 * call or not we can distinguish actual exit from 3609 * *subprog* from exit from *callback*. In the former 3610 * case, we need to propagate r0 precision, if 3611 * necessary. In the former we never do that. 3612 */ 3613 r0_precise = subseq_idx - 1 >= 0 && 3614 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 3615 bt_is_reg_set(bt, BPF_REG_0); 3616 3617 bt_clear_reg(bt, BPF_REG_0); 3618 if (bt_subprog_enter(bt)) 3619 return -EFAULT; 3620 3621 if (r0_precise) 3622 bt_set_reg(bt, BPF_REG_0); 3623 /* r6-r9 and stack slots will stay set in caller frame 3624 * bitmasks until we return back from callee(s) 3625 */ 3626 return 0; 3627 } else if (BPF_SRC(insn->code) == BPF_X) { 3628 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 3629 return 0; 3630 /* dreg <cond> sreg 3631 * Both dreg and sreg need precision before 3632 * this insn. If only sreg was marked precise 3633 * before it would be equally necessary to 3634 * propagate it to dreg. 3635 */ 3636 bt_set_reg(bt, dreg); 3637 bt_set_reg(bt, sreg); 3638 /* else dreg <cond> K 3639 * Only dreg still needs precision before 3640 * this insn, so for the K-based conditional 3641 * there is nothing new to be marked. 3642 */ 3643 } 3644 } else if (class == BPF_LD) { 3645 if (!bt_is_reg_set(bt, dreg)) 3646 return 0; 3647 bt_clear_reg(bt, dreg); 3648 /* It's ld_imm64 or ld_abs or ld_ind. 3649 * For ld_imm64 no further tracking of precision 3650 * into parent is necessary 3651 */ 3652 if (mode == BPF_IND || mode == BPF_ABS) 3653 /* to be analyzed */ 3654 return -ENOTSUPP; 3655 } 3656 return 0; 3657 } 3658 3659 /* the scalar precision tracking algorithm: 3660 * . at the start all registers have precise=false. 3661 * . scalar ranges are tracked as normal through alu and jmp insns. 3662 * . once precise value of the scalar register is used in: 3663 * . ptr + scalar alu 3664 * . if (scalar cond K|scalar) 3665 * . helper_call(.., scalar, ...) where ARG_CONST is expected 3666 * backtrack through the verifier states and mark all registers and 3667 * stack slots with spilled constants that these scalar regisers 3668 * should be precise. 3669 * . during state pruning two registers (or spilled stack slots) 3670 * are equivalent if both are not precise. 3671 * 3672 * Note the verifier cannot simply walk register parentage chain, 3673 * since many different registers and stack slots could have been 3674 * used to compute single precise scalar. 3675 * 3676 * The approach of starting with precise=true for all registers and then 3677 * backtrack to mark a register as not precise when the verifier detects 3678 * that program doesn't care about specific value (e.g., when helper 3679 * takes register as ARG_ANYTHING parameter) is not safe. 3680 * 3681 * It's ok to walk single parentage chain of the verifier states. 3682 * It's possible that this backtracking will go all the way till 1st insn. 3683 * All other branches will be explored for needing precision later. 3684 * 3685 * The backtracking needs to deal with cases like: 3686 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 3687 * r9 -= r8 3688 * r5 = r9 3689 * if r5 > 0x79f goto pc+7 3690 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 3691 * r5 += 1 3692 * ... 3693 * call bpf_perf_event_output#25 3694 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 3695 * 3696 * and this case: 3697 * r6 = 1 3698 * call foo // uses callee's r6 inside to compute r0 3699 * r0 += r6 3700 * if r0 == 0 goto 3701 * 3702 * to track above reg_mask/stack_mask needs to be independent for each frame. 3703 * 3704 * Also if parent's curframe > frame where backtracking started, 3705 * the verifier need to mark registers in both frames, otherwise callees 3706 * may incorrectly prune callers. This is similar to 3707 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 3708 * 3709 * For now backtracking falls back into conservative marking. 3710 */ 3711 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 3712 struct bpf_verifier_state *st) 3713 { 3714 struct bpf_func_state *func; 3715 struct bpf_reg_state *reg; 3716 int i, j; 3717 3718 if (env->log.level & BPF_LOG_LEVEL2) { 3719 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 3720 st->curframe); 3721 } 3722 3723 /* big hammer: mark all scalars precise in this path. 3724 * pop_stack may still get !precise scalars. 3725 * We also skip current state and go straight to first parent state, 3726 * because precision markings in current non-checkpointed state are 3727 * not needed. See why in the comment in __mark_chain_precision below. 3728 */ 3729 for (st = st->parent; st; st = st->parent) { 3730 for (i = 0; i <= st->curframe; i++) { 3731 func = st->frame[i]; 3732 for (j = 0; j < BPF_REG_FP; j++) { 3733 reg = &func->regs[j]; 3734 if (reg->type != SCALAR_VALUE || reg->precise) 3735 continue; 3736 reg->precise = true; 3737 if (env->log.level & BPF_LOG_LEVEL2) { 3738 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 3739 i, j); 3740 } 3741 } 3742 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3743 if (!is_spilled_reg(&func->stack[j])) 3744 continue; 3745 reg = &func->stack[j].spilled_ptr; 3746 if (reg->type != SCALAR_VALUE || reg->precise) 3747 continue; 3748 reg->precise = true; 3749 if (env->log.level & BPF_LOG_LEVEL2) { 3750 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 3751 i, -(j + 1) * 8); 3752 } 3753 } 3754 } 3755 } 3756 } 3757 3758 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3759 { 3760 struct bpf_func_state *func; 3761 struct bpf_reg_state *reg; 3762 int i, j; 3763 3764 for (i = 0; i <= st->curframe; i++) { 3765 func = st->frame[i]; 3766 for (j = 0; j < BPF_REG_FP; j++) { 3767 reg = &func->regs[j]; 3768 if (reg->type != SCALAR_VALUE) 3769 continue; 3770 reg->precise = false; 3771 } 3772 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3773 if (!is_spilled_reg(&func->stack[j])) 3774 continue; 3775 reg = &func->stack[j].spilled_ptr; 3776 if (reg->type != SCALAR_VALUE) 3777 continue; 3778 reg->precise = false; 3779 } 3780 } 3781 } 3782 3783 static bool idset_contains(struct bpf_idset *s, u32 id) 3784 { 3785 u32 i; 3786 3787 for (i = 0; i < s->count; ++i) 3788 if (s->ids[i] == id) 3789 return true; 3790 3791 return false; 3792 } 3793 3794 static int idset_push(struct bpf_idset *s, u32 id) 3795 { 3796 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids))) 3797 return -EFAULT; 3798 s->ids[s->count++] = id; 3799 return 0; 3800 } 3801 3802 static void idset_reset(struct bpf_idset *s) 3803 { 3804 s->count = 0; 3805 } 3806 3807 /* Collect a set of IDs for all registers currently marked as precise in env->bt. 3808 * Mark all registers with these IDs as precise. 3809 */ 3810 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3811 { 3812 struct bpf_idset *precise_ids = &env->idset_scratch; 3813 struct backtrack_state *bt = &env->bt; 3814 struct bpf_func_state *func; 3815 struct bpf_reg_state *reg; 3816 DECLARE_BITMAP(mask, 64); 3817 int i, fr; 3818 3819 idset_reset(precise_ids); 3820 3821 for (fr = bt->frame; fr >= 0; fr--) { 3822 func = st->frame[fr]; 3823 3824 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 3825 for_each_set_bit(i, mask, 32) { 3826 reg = &func->regs[i]; 3827 if (!reg->id || reg->type != SCALAR_VALUE) 3828 continue; 3829 if (idset_push(precise_ids, reg->id)) 3830 return -EFAULT; 3831 } 3832 3833 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 3834 for_each_set_bit(i, mask, 64) { 3835 if (i >= func->allocated_stack / BPF_REG_SIZE) 3836 break; 3837 if (!is_spilled_scalar_reg(&func->stack[i])) 3838 continue; 3839 reg = &func->stack[i].spilled_ptr; 3840 if (!reg->id) 3841 continue; 3842 if (idset_push(precise_ids, reg->id)) 3843 return -EFAULT; 3844 } 3845 } 3846 3847 for (fr = 0; fr <= st->curframe; ++fr) { 3848 func = st->frame[fr]; 3849 3850 for (i = BPF_REG_0; i < BPF_REG_10; ++i) { 3851 reg = &func->regs[i]; 3852 if (!reg->id) 3853 continue; 3854 if (!idset_contains(precise_ids, reg->id)) 3855 continue; 3856 bt_set_frame_reg(bt, fr, i); 3857 } 3858 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) { 3859 if (!is_spilled_scalar_reg(&func->stack[i])) 3860 continue; 3861 reg = &func->stack[i].spilled_ptr; 3862 if (!reg->id) 3863 continue; 3864 if (!idset_contains(precise_ids, reg->id)) 3865 continue; 3866 bt_set_frame_slot(bt, fr, i); 3867 } 3868 } 3869 3870 return 0; 3871 } 3872 3873 /* 3874 * __mark_chain_precision() backtracks BPF program instruction sequence and 3875 * chain of verifier states making sure that register *regno* (if regno >= 0) 3876 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 3877 * SCALARS, as well as any other registers and slots that contribute to 3878 * a tracked state of given registers/stack slots, depending on specific BPF 3879 * assembly instructions (see backtrack_insns() for exact instruction handling 3880 * logic). This backtracking relies on recorded jmp_history and is able to 3881 * traverse entire chain of parent states. This process ends only when all the 3882 * necessary registers/slots and their transitive dependencies are marked as 3883 * precise. 3884 * 3885 * One important and subtle aspect is that precise marks *do not matter* in 3886 * the currently verified state (current state). It is important to understand 3887 * why this is the case. 3888 * 3889 * First, note that current state is the state that is not yet "checkpointed", 3890 * i.e., it is not yet put into env->explored_states, and it has no children 3891 * states as well. It's ephemeral, and can end up either a) being discarded if 3892 * compatible explored state is found at some point or BPF_EXIT instruction is 3893 * reached or b) checkpointed and put into env->explored_states, branching out 3894 * into one or more children states. 3895 * 3896 * In the former case, precise markings in current state are completely 3897 * ignored by state comparison code (see regsafe() for details). Only 3898 * checkpointed ("old") state precise markings are important, and if old 3899 * state's register/slot is precise, regsafe() assumes current state's 3900 * register/slot as precise and checks value ranges exactly and precisely. If 3901 * states turn out to be compatible, current state's necessary precise 3902 * markings and any required parent states' precise markings are enforced 3903 * after the fact with propagate_precision() logic, after the fact. But it's 3904 * important to realize that in this case, even after marking current state 3905 * registers/slots as precise, we immediately discard current state. So what 3906 * actually matters is any of the precise markings propagated into current 3907 * state's parent states, which are always checkpointed (due to b) case above). 3908 * As such, for scenario a) it doesn't matter if current state has precise 3909 * markings set or not. 3910 * 3911 * Now, for the scenario b), checkpointing and forking into child(ren) 3912 * state(s). Note that before current state gets to checkpointing step, any 3913 * processed instruction always assumes precise SCALAR register/slot 3914 * knowledge: if precise value or range is useful to prune jump branch, BPF 3915 * verifier takes this opportunity enthusiastically. Similarly, when 3916 * register's value is used to calculate offset or memory address, exact 3917 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 3918 * what we mentioned above about state comparison ignoring precise markings 3919 * during state comparison, BPF verifier ignores and also assumes precise 3920 * markings *at will* during instruction verification process. But as verifier 3921 * assumes precision, it also propagates any precision dependencies across 3922 * parent states, which are not yet finalized, so can be further restricted 3923 * based on new knowledge gained from restrictions enforced by their children 3924 * states. This is so that once those parent states are finalized, i.e., when 3925 * they have no more active children state, state comparison logic in 3926 * is_state_visited() would enforce strict and precise SCALAR ranges, if 3927 * required for correctness. 3928 * 3929 * To build a bit more intuition, note also that once a state is checkpointed, 3930 * the path we took to get to that state is not important. This is crucial 3931 * property for state pruning. When state is checkpointed and finalized at 3932 * some instruction index, it can be correctly and safely used to "short 3933 * circuit" any *compatible* state that reaches exactly the same instruction 3934 * index. I.e., if we jumped to that instruction from a completely different 3935 * code path than original finalized state was derived from, it doesn't 3936 * matter, current state can be discarded because from that instruction 3937 * forward having a compatible state will ensure we will safely reach the 3938 * exit. States describe preconditions for further exploration, but completely 3939 * forget the history of how we got here. 3940 * 3941 * This also means that even if we needed precise SCALAR range to get to 3942 * finalized state, but from that point forward *that same* SCALAR register is 3943 * never used in a precise context (i.e., it's precise value is not needed for 3944 * correctness), it's correct and safe to mark such register as "imprecise" 3945 * (i.e., precise marking set to false). This is what we rely on when we do 3946 * not set precise marking in current state. If no child state requires 3947 * precision for any given SCALAR register, it's safe to dictate that it can 3948 * be imprecise. If any child state does require this register to be precise, 3949 * we'll mark it precise later retroactively during precise markings 3950 * propagation from child state to parent states. 3951 * 3952 * Skipping precise marking setting in current state is a mild version of 3953 * relying on the above observation. But we can utilize this property even 3954 * more aggressively by proactively forgetting any precise marking in the 3955 * current state (which we inherited from the parent state), right before we 3956 * checkpoint it and branch off into new child state. This is done by 3957 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 3958 * finalized states which help in short circuiting more future states. 3959 */ 3960 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 3961 { 3962 struct backtrack_state *bt = &env->bt; 3963 struct bpf_verifier_state *st = env->cur_state; 3964 int first_idx = st->first_insn_idx; 3965 int last_idx = env->insn_idx; 3966 int subseq_idx = -1; 3967 struct bpf_func_state *func; 3968 struct bpf_reg_state *reg; 3969 bool skip_first = true; 3970 int i, fr, err; 3971 3972 if (!env->bpf_capable) 3973 return 0; 3974 3975 /* set frame number from which we are starting to backtrack */ 3976 bt_init(bt, env->cur_state->curframe); 3977 3978 /* Do sanity checks against current state of register and/or stack 3979 * slot, but don't set precise flag in current state, as precision 3980 * tracking in the current state is unnecessary. 3981 */ 3982 func = st->frame[bt->frame]; 3983 if (regno >= 0) { 3984 reg = &func->regs[regno]; 3985 if (reg->type != SCALAR_VALUE) { 3986 WARN_ONCE(1, "backtracing misuse"); 3987 return -EFAULT; 3988 } 3989 bt_set_reg(bt, regno); 3990 } 3991 3992 if (bt_empty(bt)) 3993 return 0; 3994 3995 for (;;) { 3996 DECLARE_BITMAP(mask, 64); 3997 u32 history = st->jmp_history_cnt; 3998 3999 if (env->log.level & BPF_LOG_LEVEL2) { 4000 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4001 bt->frame, last_idx, first_idx, subseq_idx); 4002 } 4003 4004 /* If some register with scalar ID is marked as precise, 4005 * make sure that all registers sharing this ID are also precise. 4006 * This is needed to estimate effect of find_equal_scalars(). 4007 * Do this at the last instruction of each state, 4008 * bpf_reg_state::id fields are valid for these instructions. 4009 * 4010 * Allows to track precision in situation like below: 4011 * 4012 * r2 = unknown value 4013 * ... 4014 * --- state #0 --- 4015 * ... 4016 * r1 = r2 // r1 and r2 now share the same ID 4017 * ... 4018 * --- state #1 {r1.id = A, r2.id = A} --- 4019 * ... 4020 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1 4021 * ... 4022 * --- state #2 {r1.id = A, r2.id = A} --- 4023 * r3 = r10 4024 * r3 += r1 // need to mark both r1 and r2 4025 */ 4026 if (mark_precise_scalar_ids(env, st)) 4027 return -EFAULT; 4028 4029 if (last_idx < 0) { 4030 /* we are at the entry into subprog, which 4031 * is expected for global funcs, but only if 4032 * requested precise registers are R1-R5 4033 * (which are global func's input arguments) 4034 */ 4035 if (st->curframe == 0 && 4036 st->frame[0]->subprogno > 0 && 4037 st->frame[0]->callsite == BPF_MAIN_FUNC && 4038 bt_stack_mask(bt) == 0 && 4039 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4040 bitmap_from_u64(mask, bt_reg_mask(bt)); 4041 for_each_set_bit(i, mask, 32) { 4042 reg = &st->frame[0]->regs[i]; 4043 if (reg->type != SCALAR_VALUE) { 4044 bt_clear_reg(bt, i); 4045 continue; 4046 } 4047 reg->precise = true; 4048 } 4049 return 0; 4050 } 4051 4052 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 4053 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4054 WARN_ONCE(1, "verifier backtracking bug"); 4055 return -EFAULT; 4056 } 4057 4058 for (i = last_idx;;) { 4059 if (skip_first) { 4060 err = 0; 4061 skip_first = false; 4062 } else { 4063 err = backtrack_insn(env, i, subseq_idx, bt); 4064 } 4065 if (err == -ENOTSUPP) { 4066 mark_all_scalars_precise(env, env->cur_state); 4067 bt_reset(bt); 4068 return 0; 4069 } else if (err) { 4070 return err; 4071 } 4072 if (bt_empty(bt)) 4073 /* Found assignment(s) into tracked register in this state. 4074 * Since this state is already marked, just return. 4075 * Nothing to be tracked further in the parent state. 4076 */ 4077 return 0; 4078 if (i == first_idx) 4079 break; 4080 subseq_idx = i; 4081 i = get_prev_insn_idx(st, i, &history); 4082 if (i >= env->prog->len) { 4083 /* This can happen if backtracking reached insn 0 4084 * and there are still reg_mask or stack_mask 4085 * to backtrack. 4086 * It means the backtracking missed the spot where 4087 * particular register was initialized with a constant. 4088 */ 4089 verbose(env, "BUG backtracking idx %d\n", i); 4090 WARN_ONCE(1, "verifier backtracking bug"); 4091 return -EFAULT; 4092 } 4093 } 4094 st = st->parent; 4095 if (!st) 4096 break; 4097 4098 for (fr = bt->frame; fr >= 0; fr--) { 4099 func = st->frame[fr]; 4100 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4101 for_each_set_bit(i, mask, 32) { 4102 reg = &func->regs[i]; 4103 if (reg->type != SCALAR_VALUE) { 4104 bt_clear_frame_reg(bt, fr, i); 4105 continue; 4106 } 4107 if (reg->precise) 4108 bt_clear_frame_reg(bt, fr, i); 4109 else 4110 reg->precise = true; 4111 } 4112 4113 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4114 for_each_set_bit(i, mask, 64) { 4115 if (i >= func->allocated_stack / BPF_REG_SIZE) { 4116 /* the sequence of instructions: 4117 * 2: (bf) r3 = r10 4118 * 3: (7b) *(u64 *)(r3 -8) = r0 4119 * 4: (79) r4 = *(u64 *)(r10 -8) 4120 * doesn't contain jmps. It's backtracked 4121 * as a single block. 4122 * During backtracking insn 3 is not recognized as 4123 * stack access, so at the end of backtracking 4124 * stack slot fp-8 is still marked in stack_mask. 4125 * However the parent state may not have accessed 4126 * fp-8 and it's "unallocated" stack space. 4127 * In such case fallback to conservative. 4128 */ 4129 mark_all_scalars_precise(env, env->cur_state); 4130 bt_reset(bt); 4131 return 0; 4132 } 4133 4134 if (!is_spilled_scalar_reg(&func->stack[i])) { 4135 bt_clear_frame_slot(bt, fr, i); 4136 continue; 4137 } 4138 reg = &func->stack[i].spilled_ptr; 4139 if (reg->precise) 4140 bt_clear_frame_slot(bt, fr, i); 4141 else 4142 reg->precise = true; 4143 } 4144 if (env->log.level & BPF_LOG_LEVEL2) { 4145 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4146 bt_frame_reg_mask(bt, fr)); 4147 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4148 fr, env->tmp_str_buf); 4149 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4150 bt_frame_stack_mask(bt, fr)); 4151 verbose(env, "stack=%s: ", env->tmp_str_buf); 4152 print_verifier_state(env, func, true); 4153 } 4154 } 4155 4156 if (bt_empty(bt)) 4157 return 0; 4158 4159 subseq_idx = first_idx; 4160 last_idx = st->last_insn_idx; 4161 first_idx = st->first_insn_idx; 4162 } 4163 4164 /* if we still have requested precise regs or slots, we missed 4165 * something (e.g., stack access through non-r10 register), so 4166 * fallback to marking all precise 4167 */ 4168 if (!bt_empty(bt)) { 4169 mark_all_scalars_precise(env, env->cur_state); 4170 bt_reset(bt); 4171 } 4172 4173 return 0; 4174 } 4175 4176 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4177 { 4178 return __mark_chain_precision(env, regno); 4179 } 4180 4181 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4182 * desired reg and stack masks across all relevant frames 4183 */ 4184 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4185 { 4186 return __mark_chain_precision(env, -1); 4187 } 4188 4189 static bool is_spillable_regtype(enum bpf_reg_type type) 4190 { 4191 switch (base_type(type)) { 4192 case PTR_TO_MAP_VALUE: 4193 case PTR_TO_STACK: 4194 case PTR_TO_CTX: 4195 case PTR_TO_PACKET: 4196 case PTR_TO_PACKET_META: 4197 case PTR_TO_PACKET_END: 4198 case PTR_TO_FLOW_KEYS: 4199 case CONST_PTR_TO_MAP: 4200 case PTR_TO_SOCKET: 4201 case PTR_TO_SOCK_COMMON: 4202 case PTR_TO_TCP_SOCK: 4203 case PTR_TO_XDP_SOCK: 4204 case PTR_TO_BTF_ID: 4205 case PTR_TO_BUF: 4206 case PTR_TO_MEM: 4207 case PTR_TO_FUNC: 4208 case PTR_TO_MAP_KEY: 4209 return true; 4210 default: 4211 return false; 4212 } 4213 } 4214 4215 /* Does this register contain a constant zero? */ 4216 static bool register_is_null(struct bpf_reg_state *reg) 4217 { 4218 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4219 } 4220 4221 static bool register_is_const(struct bpf_reg_state *reg) 4222 { 4223 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 4224 } 4225 4226 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 4227 { 4228 return tnum_is_unknown(reg->var_off) && 4229 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 4230 reg->umin_value == 0 && reg->umax_value == U64_MAX && 4231 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 4232 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 4233 } 4234 4235 static bool register_is_bounded(struct bpf_reg_state *reg) 4236 { 4237 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 4238 } 4239 4240 static bool __is_pointer_value(bool allow_ptr_leaks, 4241 const struct bpf_reg_state *reg) 4242 { 4243 if (allow_ptr_leaks) 4244 return false; 4245 4246 return reg->type != SCALAR_VALUE; 4247 } 4248 4249 /* Copy src state preserving dst->parent and dst->live fields */ 4250 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4251 { 4252 struct bpf_reg_state *parent = dst->parent; 4253 enum bpf_reg_liveness live = dst->live; 4254 4255 *dst = *src; 4256 dst->parent = parent; 4257 dst->live = live; 4258 } 4259 4260 static void save_register_state(struct bpf_func_state *state, 4261 int spi, struct bpf_reg_state *reg, 4262 int size) 4263 { 4264 int i; 4265 4266 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4267 if (size == BPF_REG_SIZE) 4268 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4269 4270 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4271 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4272 4273 /* size < 8 bytes spill */ 4274 for (; i; i--) 4275 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 4276 } 4277 4278 static bool is_bpf_st_mem(struct bpf_insn *insn) 4279 { 4280 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4281 } 4282 4283 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4284 * stack boundary and alignment are checked in check_mem_access() 4285 */ 4286 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4287 /* stack frame we're writing to */ 4288 struct bpf_func_state *state, 4289 int off, int size, int value_regno, 4290 int insn_idx) 4291 { 4292 struct bpf_func_state *cur; /* state of the current function */ 4293 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4294 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4295 struct bpf_reg_state *reg = NULL; 4296 u32 dst_reg = insn->dst_reg; 4297 4298 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 4299 if (err) 4300 return err; 4301 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4302 * so it's aligned access and [off, off + size) are within stack limits 4303 */ 4304 if (!env->allow_ptr_leaks && 4305 state->stack[spi].slot_type[0] == STACK_SPILL && 4306 size != BPF_REG_SIZE) { 4307 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4308 return -EACCES; 4309 } 4310 4311 cur = env->cur_state->frame[env->cur_state->curframe]; 4312 if (value_regno >= 0) 4313 reg = &cur->regs[value_regno]; 4314 if (!env->bypass_spec_v4) { 4315 bool sanitize = reg && is_spillable_regtype(reg->type); 4316 4317 for (i = 0; i < size; i++) { 4318 u8 type = state->stack[spi].slot_type[i]; 4319 4320 if (type != STACK_MISC && type != STACK_ZERO) { 4321 sanitize = true; 4322 break; 4323 } 4324 } 4325 4326 if (sanitize) 4327 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4328 } 4329 4330 err = destroy_if_dynptr_stack_slot(env, state, spi); 4331 if (err) 4332 return err; 4333 4334 mark_stack_slot_scratched(env, spi); 4335 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 4336 !register_is_null(reg) && env->bpf_capable) { 4337 if (dst_reg != BPF_REG_FP) { 4338 /* The backtracking logic can only recognize explicit 4339 * stack slot address like [fp - 8]. Other spill of 4340 * scalar via different register has to be conservative. 4341 * Backtrack from here and mark all registers as precise 4342 * that contributed into 'reg' being a constant. 4343 */ 4344 err = mark_chain_precision(env, value_regno); 4345 if (err) 4346 return err; 4347 } 4348 save_register_state(state, spi, reg, size); 4349 /* Break the relation on a narrowing spill. */ 4350 if (fls64(reg->umax_value) > BITS_PER_BYTE * size) 4351 state->stack[spi].spilled_ptr.id = 0; 4352 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4353 insn->imm != 0 && env->bpf_capable) { 4354 struct bpf_reg_state fake_reg = {}; 4355 4356 __mark_reg_known(&fake_reg, (u32)insn->imm); 4357 fake_reg.type = SCALAR_VALUE; 4358 save_register_state(state, spi, &fake_reg, size); 4359 } else if (reg && is_spillable_regtype(reg->type)) { 4360 /* register containing pointer is being spilled into stack */ 4361 if (size != BPF_REG_SIZE) { 4362 verbose_linfo(env, insn_idx, "; "); 4363 verbose(env, "invalid size of register spill\n"); 4364 return -EACCES; 4365 } 4366 if (state != cur && reg->type == PTR_TO_STACK) { 4367 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4368 return -EINVAL; 4369 } 4370 save_register_state(state, spi, reg, size); 4371 } else { 4372 u8 type = STACK_MISC; 4373 4374 /* regular write of data into stack destroys any spilled ptr */ 4375 state->stack[spi].spilled_ptr.type = NOT_INIT; 4376 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4377 if (is_stack_slot_special(&state->stack[spi])) 4378 for (i = 0; i < BPF_REG_SIZE; i++) 4379 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4380 4381 /* only mark the slot as written if all 8 bytes were written 4382 * otherwise read propagation may incorrectly stop too soon 4383 * when stack slots are partially written. 4384 * This heuristic means that read propagation will be 4385 * conservative, since it will add reg_live_read marks 4386 * to stack slots all the way to first state when programs 4387 * writes+reads less than 8 bytes 4388 */ 4389 if (size == BPF_REG_SIZE) 4390 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4391 4392 /* when we zero initialize stack slots mark them as such */ 4393 if ((reg && register_is_null(reg)) || 4394 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4395 /* backtracking doesn't work for STACK_ZERO yet. */ 4396 err = mark_chain_precision(env, value_regno); 4397 if (err) 4398 return err; 4399 type = STACK_ZERO; 4400 } 4401 4402 /* Mark slots affected by this stack write. */ 4403 for (i = 0; i < size; i++) 4404 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 4405 type; 4406 } 4407 return 0; 4408 } 4409 4410 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4411 * known to contain a variable offset. 4412 * This function checks whether the write is permitted and conservatively 4413 * tracks the effects of the write, considering that each stack slot in the 4414 * dynamic range is potentially written to. 4415 * 4416 * 'off' includes 'regno->off'. 4417 * 'value_regno' can be -1, meaning that an unknown value is being written to 4418 * the stack. 4419 * 4420 * Spilled pointers in range are not marked as written because we don't know 4421 * what's going to be actually written. This means that read propagation for 4422 * future reads cannot be terminated by this write. 4423 * 4424 * For privileged programs, uninitialized stack slots are considered 4425 * initialized by this write (even though we don't know exactly what offsets 4426 * are going to be written to). The idea is that we don't want the verifier to 4427 * reject future reads that access slots written to through variable offsets. 4428 */ 4429 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4430 /* func where register points to */ 4431 struct bpf_func_state *state, 4432 int ptr_regno, int off, int size, 4433 int value_regno, int insn_idx) 4434 { 4435 struct bpf_func_state *cur; /* state of the current function */ 4436 int min_off, max_off; 4437 int i, err; 4438 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4439 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4440 bool writing_zero = false; 4441 /* set if the fact that we're writing a zero is used to let any 4442 * stack slots remain STACK_ZERO 4443 */ 4444 bool zero_used = false; 4445 4446 cur = env->cur_state->frame[env->cur_state->curframe]; 4447 ptr_reg = &cur->regs[ptr_regno]; 4448 min_off = ptr_reg->smin_value + off; 4449 max_off = ptr_reg->smax_value + off + size; 4450 if (value_regno >= 0) 4451 value_reg = &cur->regs[value_regno]; 4452 if ((value_reg && register_is_null(value_reg)) || 4453 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4454 writing_zero = true; 4455 4456 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 4457 if (err) 4458 return err; 4459 4460 for (i = min_off; i < max_off; i++) { 4461 int spi; 4462 4463 spi = __get_spi(i); 4464 err = destroy_if_dynptr_stack_slot(env, state, spi); 4465 if (err) 4466 return err; 4467 } 4468 4469 /* Variable offset writes destroy any spilled pointers in range. */ 4470 for (i = min_off; i < max_off; i++) { 4471 u8 new_type, *stype; 4472 int slot, spi; 4473 4474 slot = -i - 1; 4475 spi = slot / BPF_REG_SIZE; 4476 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4477 mark_stack_slot_scratched(env, spi); 4478 4479 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4480 /* Reject the write if range we may write to has not 4481 * been initialized beforehand. If we didn't reject 4482 * here, the ptr status would be erased below (even 4483 * though not all slots are actually overwritten), 4484 * possibly opening the door to leaks. 4485 * 4486 * We do however catch STACK_INVALID case below, and 4487 * only allow reading possibly uninitialized memory 4488 * later for CAP_PERFMON, as the write may not happen to 4489 * that slot. 4490 */ 4491 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4492 insn_idx, i); 4493 return -EINVAL; 4494 } 4495 4496 /* Erase all spilled pointers. */ 4497 state->stack[spi].spilled_ptr.type = NOT_INIT; 4498 4499 /* Update the slot type. */ 4500 new_type = STACK_MISC; 4501 if (writing_zero && *stype == STACK_ZERO) { 4502 new_type = STACK_ZERO; 4503 zero_used = true; 4504 } 4505 /* If the slot is STACK_INVALID, we check whether it's OK to 4506 * pretend that it will be initialized by this write. The slot 4507 * might not actually be written to, and so if we mark it as 4508 * initialized future reads might leak uninitialized memory. 4509 * For privileged programs, we will accept such reads to slots 4510 * that may or may not be written because, if we're reject 4511 * them, the error would be too confusing. 4512 */ 4513 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4514 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4515 insn_idx, i); 4516 return -EINVAL; 4517 } 4518 *stype = new_type; 4519 } 4520 if (zero_used) { 4521 /* backtracking doesn't work for STACK_ZERO yet. */ 4522 err = mark_chain_precision(env, value_regno); 4523 if (err) 4524 return err; 4525 } 4526 return 0; 4527 } 4528 4529 /* When register 'dst_regno' is assigned some values from stack[min_off, 4530 * max_off), we set the register's type according to the types of the 4531 * respective stack slots. If all the stack values are known to be zeros, then 4532 * so is the destination reg. Otherwise, the register is considered to be 4533 * SCALAR. This function does not deal with register filling; the caller must 4534 * ensure that all spilled registers in the stack range have been marked as 4535 * read. 4536 */ 4537 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4538 /* func where src register points to */ 4539 struct bpf_func_state *ptr_state, 4540 int min_off, int max_off, int dst_regno) 4541 { 4542 struct bpf_verifier_state *vstate = env->cur_state; 4543 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4544 int i, slot, spi; 4545 u8 *stype; 4546 int zeros = 0; 4547 4548 for (i = min_off; i < max_off; i++) { 4549 slot = -i - 1; 4550 spi = slot / BPF_REG_SIZE; 4551 mark_stack_slot_scratched(env, spi); 4552 stype = ptr_state->stack[spi].slot_type; 4553 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4554 break; 4555 zeros++; 4556 } 4557 if (zeros == max_off - min_off) { 4558 /* any access_size read into register is zero extended, 4559 * so the whole register == const_zero 4560 */ 4561 __mark_reg_const_zero(&state->regs[dst_regno]); 4562 /* backtracking doesn't support STACK_ZERO yet, 4563 * so mark it precise here, so that later 4564 * backtracking can stop here. 4565 * Backtracking may not need this if this register 4566 * doesn't participate in pointer adjustment. 4567 * Forward propagation of precise flag is not 4568 * necessary either. This mark is only to stop 4569 * backtracking. Any register that contributed 4570 * to const 0 was marked precise before spill. 4571 */ 4572 state->regs[dst_regno].precise = true; 4573 } else { 4574 /* have read misc data from the stack */ 4575 mark_reg_unknown(env, state->regs, dst_regno); 4576 } 4577 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4578 } 4579 4580 /* Read the stack at 'off' and put the results into the register indicated by 4581 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4582 * spilled reg. 4583 * 4584 * 'dst_regno' can be -1, meaning that the read value is not going to a 4585 * register. 4586 * 4587 * The access is assumed to be within the current stack bounds. 4588 */ 4589 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4590 /* func where src register points to */ 4591 struct bpf_func_state *reg_state, 4592 int off, int size, int dst_regno) 4593 { 4594 struct bpf_verifier_state *vstate = env->cur_state; 4595 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4596 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 4597 struct bpf_reg_state *reg; 4598 u8 *stype, type; 4599 4600 stype = reg_state->stack[spi].slot_type; 4601 reg = ®_state->stack[spi].spilled_ptr; 4602 4603 mark_stack_slot_scratched(env, spi); 4604 4605 if (is_spilled_reg(®_state->stack[spi])) { 4606 u8 spill_size = 1; 4607 4608 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 4609 spill_size++; 4610 4611 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 4612 if (reg->type != SCALAR_VALUE) { 4613 verbose_linfo(env, env->insn_idx, "; "); 4614 verbose(env, "invalid size of register fill\n"); 4615 return -EACCES; 4616 } 4617 4618 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4619 if (dst_regno < 0) 4620 return 0; 4621 4622 if (!(off % BPF_REG_SIZE) && size == spill_size) { 4623 /* The earlier check_reg_arg() has decided the 4624 * subreg_def for this insn. Save it first. 4625 */ 4626 s32 subreg_def = state->regs[dst_regno].subreg_def; 4627 4628 copy_register_state(&state->regs[dst_regno], reg); 4629 state->regs[dst_regno].subreg_def = subreg_def; 4630 } else { 4631 for (i = 0; i < size; i++) { 4632 type = stype[(slot - i) % BPF_REG_SIZE]; 4633 if (type == STACK_SPILL) 4634 continue; 4635 if (type == STACK_MISC) 4636 continue; 4637 if (type == STACK_INVALID && env->allow_uninit_stack) 4638 continue; 4639 verbose(env, "invalid read from stack off %d+%d size %d\n", 4640 off, i, size); 4641 return -EACCES; 4642 } 4643 mark_reg_unknown(env, state->regs, dst_regno); 4644 } 4645 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4646 return 0; 4647 } 4648 4649 if (dst_regno >= 0) { 4650 /* restore register state from stack */ 4651 copy_register_state(&state->regs[dst_regno], reg); 4652 /* mark reg as written since spilled pointer state likely 4653 * has its liveness marks cleared by is_state_visited() 4654 * which resets stack/reg liveness for state transitions 4655 */ 4656 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4657 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 4658 /* If dst_regno==-1, the caller is asking us whether 4659 * it is acceptable to use this value as a SCALAR_VALUE 4660 * (e.g. for XADD). 4661 * We must not allow unprivileged callers to do that 4662 * with spilled pointers. 4663 */ 4664 verbose(env, "leaking pointer from stack off %d\n", 4665 off); 4666 return -EACCES; 4667 } 4668 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4669 } else { 4670 for (i = 0; i < size; i++) { 4671 type = stype[(slot - i) % BPF_REG_SIZE]; 4672 if (type == STACK_MISC) 4673 continue; 4674 if (type == STACK_ZERO) 4675 continue; 4676 if (type == STACK_INVALID && env->allow_uninit_stack) 4677 continue; 4678 verbose(env, "invalid read from stack off %d+%d size %d\n", 4679 off, i, size); 4680 return -EACCES; 4681 } 4682 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4683 if (dst_regno >= 0) 4684 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 4685 } 4686 return 0; 4687 } 4688 4689 enum bpf_access_src { 4690 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 4691 ACCESS_HELPER = 2, /* the access is performed by a helper */ 4692 }; 4693 4694 static int check_stack_range_initialized(struct bpf_verifier_env *env, 4695 int regno, int off, int access_size, 4696 bool zero_size_allowed, 4697 enum bpf_access_src type, 4698 struct bpf_call_arg_meta *meta); 4699 4700 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 4701 { 4702 return cur_regs(env) + regno; 4703 } 4704 4705 /* Read the stack at 'ptr_regno + off' and put the result into the register 4706 * 'dst_regno'. 4707 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 4708 * but not its variable offset. 4709 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 4710 * 4711 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 4712 * filling registers (i.e. reads of spilled register cannot be detected when 4713 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 4714 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 4715 * offset; for a fixed offset check_stack_read_fixed_off should be used 4716 * instead. 4717 */ 4718 static int check_stack_read_var_off(struct bpf_verifier_env *env, 4719 int ptr_regno, int off, int size, int dst_regno) 4720 { 4721 /* The state of the source register. */ 4722 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4723 struct bpf_func_state *ptr_state = func(env, reg); 4724 int err; 4725 int min_off, max_off; 4726 4727 /* Note that we pass a NULL meta, so raw access will not be permitted. 4728 */ 4729 err = check_stack_range_initialized(env, ptr_regno, off, size, 4730 false, ACCESS_DIRECT, NULL); 4731 if (err) 4732 return err; 4733 4734 min_off = reg->smin_value + off; 4735 max_off = reg->smax_value + off; 4736 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 4737 return 0; 4738 } 4739 4740 /* check_stack_read dispatches to check_stack_read_fixed_off or 4741 * check_stack_read_var_off. 4742 * 4743 * The caller must ensure that the offset falls within the allocated stack 4744 * bounds. 4745 * 4746 * 'dst_regno' is a register which will receive the value from the stack. It 4747 * can be -1, meaning that the read value is not going to a register. 4748 */ 4749 static int check_stack_read(struct bpf_verifier_env *env, 4750 int ptr_regno, int off, int size, 4751 int dst_regno) 4752 { 4753 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4754 struct bpf_func_state *state = func(env, reg); 4755 int err; 4756 /* Some accesses are only permitted with a static offset. */ 4757 bool var_off = !tnum_is_const(reg->var_off); 4758 4759 /* The offset is required to be static when reads don't go to a 4760 * register, in order to not leak pointers (see 4761 * check_stack_read_fixed_off). 4762 */ 4763 if (dst_regno < 0 && var_off) { 4764 char tn_buf[48]; 4765 4766 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4767 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 4768 tn_buf, off, size); 4769 return -EACCES; 4770 } 4771 /* Variable offset is prohibited for unprivileged mode for simplicity 4772 * since it requires corresponding support in Spectre masking for stack 4773 * ALU. See also retrieve_ptr_limit(). The check in 4774 * check_stack_access_for_ptr_arithmetic() called by 4775 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 4776 * with variable offsets, therefore no check is required here. Further, 4777 * just checking it here would be insufficient as speculative stack 4778 * writes could still lead to unsafe speculative behaviour. 4779 */ 4780 if (!var_off) { 4781 off += reg->var_off.value; 4782 err = check_stack_read_fixed_off(env, state, off, size, 4783 dst_regno); 4784 } else { 4785 /* Variable offset stack reads need more conservative handling 4786 * than fixed offset ones. Note that dst_regno >= 0 on this 4787 * branch. 4788 */ 4789 err = check_stack_read_var_off(env, ptr_regno, off, size, 4790 dst_regno); 4791 } 4792 return err; 4793 } 4794 4795 4796 /* check_stack_write dispatches to check_stack_write_fixed_off or 4797 * check_stack_write_var_off. 4798 * 4799 * 'ptr_regno' is the register used as a pointer into the stack. 4800 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 4801 * 'value_regno' is the register whose value we're writing to the stack. It can 4802 * be -1, meaning that we're not writing from a register. 4803 * 4804 * The caller must ensure that the offset falls within the maximum stack size. 4805 */ 4806 static int check_stack_write(struct bpf_verifier_env *env, 4807 int ptr_regno, int off, int size, 4808 int value_regno, int insn_idx) 4809 { 4810 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4811 struct bpf_func_state *state = func(env, reg); 4812 int err; 4813 4814 if (tnum_is_const(reg->var_off)) { 4815 off += reg->var_off.value; 4816 err = check_stack_write_fixed_off(env, state, off, size, 4817 value_regno, insn_idx); 4818 } else { 4819 /* Variable offset stack reads need more conservative handling 4820 * than fixed offset ones. 4821 */ 4822 err = check_stack_write_var_off(env, state, 4823 ptr_regno, off, size, 4824 value_regno, insn_idx); 4825 } 4826 return err; 4827 } 4828 4829 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 4830 int off, int size, enum bpf_access_type type) 4831 { 4832 struct bpf_reg_state *regs = cur_regs(env); 4833 struct bpf_map *map = regs[regno].map_ptr; 4834 u32 cap = bpf_map_flags_to_cap(map); 4835 4836 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 4837 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 4838 map->value_size, off, size); 4839 return -EACCES; 4840 } 4841 4842 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 4843 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 4844 map->value_size, off, size); 4845 return -EACCES; 4846 } 4847 4848 return 0; 4849 } 4850 4851 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 4852 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 4853 int off, int size, u32 mem_size, 4854 bool zero_size_allowed) 4855 { 4856 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 4857 struct bpf_reg_state *reg; 4858 4859 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 4860 return 0; 4861 4862 reg = &cur_regs(env)[regno]; 4863 switch (reg->type) { 4864 case PTR_TO_MAP_KEY: 4865 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 4866 mem_size, off, size); 4867 break; 4868 case PTR_TO_MAP_VALUE: 4869 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 4870 mem_size, off, size); 4871 break; 4872 case PTR_TO_PACKET: 4873 case PTR_TO_PACKET_META: 4874 case PTR_TO_PACKET_END: 4875 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 4876 off, size, regno, reg->id, off, mem_size); 4877 break; 4878 case PTR_TO_MEM: 4879 default: 4880 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 4881 mem_size, off, size); 4882 } 4883 4884 return -EACCES; 4885 } 4886 4887 /* check read/write into a memory region with possible variable offset */ 4888 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 4889 int off, int size, u32 mem_size, 4890 bool zero_size_allowed) 4891 { 4892 struct bpf_verifier_state *vstate = env->cur_state; 4893 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4894 struct bpf_reg_state *reg = &state->regs[regno]; 4895 int err; 4896 4897 /* We may have adjusted the register pointing to memory region, so we 4898 * need to try adding each of min_value and max_value to off 4899 * to make sure our theoretical access will be safe. 4900 * 4901 * The minimum value is only important with signed 4902 * comparisons where we can't assume the floor of a 4903 * value is 0. If we are using signed variables for our 4904 * index'es we need to make sure that whatever we use 4905 * will have a set floor within our range. 4906 */ 4907 if (reg->smin_value < 0 && 4908 (reg->smin_value == S64_MIN || 4909 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 4910 reg->smin_value + off < 0)) { 4911 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4912 regno); 4913 return -EACCES; 4914 } 4915 err = __check_mem_access(env, regno, reg->smin_value + off, size, 4916 mem_size, zero_size_allowed); 4917 if (err) { 4918 verbose(env, "R%d min value is outside of the allowed memory range\n", 4919 regno); 4920 return err; 4921 } 4922 4923 /* If we haven't set a max value then we need to bail since we can't be 4924 * sure we won't do bad things. 4925 * If reg->umax_value + off could overflow, treat that as unbounded too. 4926 */ 4927 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 4928 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 4929 regno); 4930 return -EACCES; 4931 } 4932 err = __check_mem_access(env, regno, reg->umax_value + off, size, 4933 mem_size, zero_size_allowed); 4934 if (err) { 4935 verbose(env, "R%d max value is outside of the allowed memory range\n", 4936 regno); 4937 return err; 4938 } 4939 4940 return 0; 4941 } 4942 4943 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 4944 const struct bpf_reg_state *reg, int regno, 4945 bool fixed_off_ok) 4946 { 4947 /* Access to this pointer-typed register or passing it to a helper 4948 * is only allowed in its original, unmodified form. 4949 */ 4950 4951 if (reg->off < 0) { 4952 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 4953 reg_type_str(env, reg->type), regno, reg->off); 4954 return -EACCES; 4955 } 4956 4957 if (!fixed_off_ok && reg->off) { 4958 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 4959 reg_type_str(env, reg->type), regno, reg->off); 4960 return -EACCES; 4961 } 4962 4963 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4964 char tn_buf[48]; 4965 4966 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4967 verbose(env, "variable %s access var_off=%s disallowed\n", 4968 reg_type_str(env, reg->type), tn_buf); 4969 return -EACCES; 4970 } 4971 4972 return 0; 4973 } 4974 4975 int check_ptr_off_reg(struct bpf_verifier_env *env, 4976 const struct bpf_reg_state *reg, int regno) 4977 { 4978 return __check_ptr_off_reg(env, reg, regno, false); 4979 } 4980 4981 static int map_kptr_match_type(struct bpf_verifier_env *env, 4982 struct btf_field *kptr_field, 4983 struct bpf_reg_state *reg, u32 regno) 4984 { 4985 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 4986 int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 4987 const char *reg_name = ""; 4988 4989 /* Only unreferenced case accepts untrusted pointers */ 4990 if (kptr_field->type == BPF_KPTR_UNREF) 4991 perm_flags |= PTR_UNTRUSTED; 4992 4993 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 4994 goto bad_type; 4995 4996 if (!btf_is_kernel(reg->btf)) { 4997 verbose(env, "R%d must point to kernel BTF\n", regno); 4998 return -EINVAL; 4999 } 5000 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5001 reg_name = btf_type_name(reg->btf, reg->btf_id); 5002 5003 /* For ref_ptr case, release function check should ensure we get one 5004 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5005 * normal store of unreferenced kptr, we must ensure var_off is zero. 5006 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5007 * reg->off and reg->ref_obj_id are not needed here. 5008 */ 5009 if (__check_ptr_off_reg(env, reg, regno, true)) 5010 return -EACCES; 5011 5012 /* A full type match is needed, as BTF can be vmlinux or module BTF, and 5013 * we also need to take into account the reg->off. 5014 * 5015 * We want to support cases like: 5016 * 5017 * struct foo { 5018 * struct bar br; 5019 * struct baz bz; 5020 * }; 5021 * 5022 * struct foo *v; 5023 * v = func(); // PTR_TO_BTF_ID 5024 * val->foo = v; // reg->off is zero, btf and btf_id match type 5025 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5026 * // first member type of struct after comparison fails 5027 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5028 * // to match type 5029 * 5030 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5031 * is zero. We must also ensure that btf_struct_ids_match does not walk 5032 * the struct to match type against first member of struct, i.e. reject 5033 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5034 * strict mode to true for type match. 5035 */ 5036 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5037 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5038 kptr_field->type == BPF_KPTR_REF)) 5039 goto bad_type; 5040 return 0; 5041 bad_type: 5042 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5043 reg_type_str(env, reg->type), reg_name); 5044 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5045 if (kptr_field->type == BPF_KPTR_UNREF) 5046 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5047 targ_name); 5048 else 5049 verbose(env, "\n"); 5050 return -EINVAL; 5051 } 5052 5053 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5054 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5055 */ 5056 static bool in_rcu_cs(struct bpf_verifier_env *env) 5057 { 5058 return env->cur_state->active_rcu_lock || !env->prog->aux->sleepable; 5059 } 5060 5061 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5062 BTF_SET_START(rcu_protected_types) 5063 BTF_ID(struct, prog_test_ref_kfunc) 5064 BTF_ID(struct, cgroup) 5065 BTF_ID(struct, bpf_cpumask) 5066 BTF_ID(struct, task_struct) 5067 BTF_SET_END(rcu_protected_types) 5068 5069 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5070 { 5071 if (!btf_is_kernel(btf)) 5072 return false; 5073 return btf_id_set_contains(&rcu_protected_types, btf_id); 5074 } 5075 5076 static bool rcu_safe_kptr(const struct btf_field *field) 5077 { 5078 const struct btf_field_kptr *kptr = &field->kptr; 5079 5080 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id); 5081 } 5082 5083 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5084 int value_regno, int insn_idx, 5085 struct btf_field *kptr_field) 5086 { 5087 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5088 int class = BPF_CLASS(insn->code); 5089 struct bpf_reg_state *val_reg; 5090 5091 /* Things we already checked for in check_map_access and caller: 5092 * - Reject cases where variable offset may touch kptr 5093 * - size of access (must be BPF_DW) 5094 * - tnum_is_const(reg->var_off) 5095 * - kptr_field->offset == off + reg->var_off.value 5096 */ 5097 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5098 if (BPF_MODE(insn->code) != BPF_MEM) { 5099 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5100 return -EACCES; 5101 } 5102 5103 /* We only allow loading referenced kptr, since it will be marked as 5104 * untrusted, similar to unreferenced kptr. 5105 */ 5106 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) { 5107 verbose(env, "store to referenced kptr disallowed\n"); 5108 return -EACCES; 5109 } 5110 5111 if (class == BPF_LDX) { 5112 val_reg = reg_state(env, value_regno); 5113 /* We can simply mark the value_regno receiving the pointer 5114 * value from map as PTR_TO_BTF_ID, with the correct type. 5115 */ 5116 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5117 kptr_field->kptr.btf_id, 5118 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ? 5119 PTR_MAYBE_NULL | MEM_RCU : 5120 PTR_MAYBE_NULL | PTR_UNTRUSTED); 5121 /* For mark_ptr_or_null_reg */ 5122 val_reg->id = ++env->id_gen; 5123 } else if (class == BPF_STX) { 5124 val_reg = reg_state(env, value_regno); 5125 if (!register_is_null(val_reg) && 5126 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5127 return -EACCES; 5128 } else if (class == BPF_ST) { 5129 if (insn->imm) { 5130 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5131 kptr_field->offset); 5132 return -EACCES; 5133 } 5134 } else { 5135 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5136 return -EACCES; 5137 } 5138 return 0; 5139 } 5140 5141 /* check read/write into a map element with possible variable offset */ 5142 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5143 int off, int size, bool zero_size_allowed, 5144 enum bpf_access_src src) 5145 { 5146 struct bpf_verifier_state *vstate = env->cur_state; 5147 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5148 struct bpf_reg_state *reg = &state->regs[regno]; 5149 struct bpf_map *map = reg->map_ptr; 5150 struct btf_record *rec; 5151 int err, i; 5152 5153 err = check_mem_region_access(env, regno, off, size, map->value_size, 5154 zero_size_allowed); 5155 if (err) 5156 return err; 5157 5158 if (IS_ERR_OR_NULL(map->record)) 5159 return 0; 5160 rec = map->record; 5161 for (i = 0; i < rec->cnt; i++) { 5162 struct btf_field *field = &rec->fields[i]; 5163 u32 p = field->offset; 5164 5165 /* If any part of a field can be touched by load/store, reject 5166 * this program. To check that [x1, x2) overlaps with [y1, y2), 5167 * it is sufficient to check x1 < y2 && y1 < x2. 5168 */ 5169 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 5170 p < reg->umax_value + off + size) { 5171 switch (field->type) { 5172 case BPF_KPTR_UNREF: 5173 case BPF_KPTR_REF: 5174 if (src != ACCESS_DIRECT) { 5175 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 5176 return -EACCES; 5177 } 5178 if (!tnum_is_const(reg->var_off)) { 5179 verbose(env, "kptr access cannot have variable offset\n"); 5180 return -EACCES; 5181 } 5182 if (p != off + reg->var_off.value) { 5183 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 5184 p, off + reg->var_off.value); 5185 return -EACCES; 5186 } 5187 if (size != bpf_size_to_bytes(BPF_DW)) { 5188 verbose(env, "kptr access size must be BPF_DW\n"); 5189 return -EACCES; 5190 } 5191 break; 5192 default: 5193 verbose(env, "%s cannot be accessed directly by load/store\n", 5194 btf_field_type_name(field->type)); 5195 return -EACCES; 5196 } 5197 } 5198 } 5199 return 0; 5200 } 5201 5202 #define MAX_PACKET_OFF 0xffff 5203 5204 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5205 const struct bpf_call_arg_meta *meta, 5206 enum bpf_access_type t) 5207 { 5208 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5209 5210 switch (prog_type) { 5211 /* Program types only with direct read access go here! */ 5212 case BPF_PROG_TYPE_LWT_IN: 5213 case BPF_PROG_TYPE_LWT_OUT: 5214 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5215 case BPF_PROG_TYPE_SK_REUSEPORT: 5216 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5217 case BPF_PROG_TYPE_CGROUP_SKB: 5218 if (t == BPF_WRITE) 5219 return false; 5220 fallthrough; 5221 5222 /* Program types with direct read + write access go here! */ 5223 case BPF_PROG_TYPE_SCHED_CLS: 5224 case BPF_PROG_TYPE_SCHED_ACT: 5225 case BPF_PROG_TYPE_XDP: 5226 case BPF_PROG_TYPE_LWT_XMIT: 5227 case BPF_PROG_TYPE_SK_SKB: 5228 case BPF_PROG_TYPE_SK_MSG: 5229 if (meta) 5230 return meta->pkt_access; 5231 5232 env->seen_direct_write = true; 5233 return true; 5234 5235 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5236 if (t == BPF_WRITE) 5237 env->seen_direct_write = true; 5238 5239 return true; 5240 5241 default: 5242 return false; 5243 } 5244 } 5245 5246 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5247 int size, bool zero_size_allowed) 5248 { 5249 struct bpf_reg_state *regs = cur_regs(env); 5250 struct bpf_reg_state *reg = ®s[regno]; 5251 int err; 5252 5253 /* We may have added a variable offset to the packet pointer; but any 5254 * reg->range we have comes after that. We are only checking the fixed 5255 * offset. 5256 */ 5257 5258 /* We don't allow negative numbers, because we aren't tracking enough 5259 * detail to prove they're safe. 5260 */ 5261 if (reg->smin_value < 0) { 5262 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5263 regno); 5264 return -EACCES; 5265 } 5266 5267 err = reg->range < 0 ? -EINVAL : 5268 __check_mem_access(env, regno, off, size, reg->range, 5269 zero_size_allowed); 5270 if (err) { 5271 verbose(env, "R%d offset is outside of the packet\n", regno); 5272 return err; 5273 } 5274 5275 /* __check_mem_access has made sure "off + size - 1" is within u16. 5276 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5277 * otherwise find_good_pkt_pointers would have refused to set range info 5278 * that __check_mem_access would have rejected this pkt access. 5279 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5280 */ 5281 env->prog->aux->max_pkt_offset = 5282 max_t(u32, env->prog->aux->max_pkt_offset, 5283 off + reg->umax_value + size - 1); 5284 5285 return err; 5286 } 5287 5288 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5289 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5290 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5291 struct btf **btf, u32 *btf_id) 5292 { 5293 struct bpf_insn_access_aux info = { 5294 .reg_type = *reg_type, 5295 .log = &env->log, 5296 }; 5297 5298 if (env->ops->is_valid_access && 5299 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5300 /* A non zero info.ctx_field_size indicates that this field is a 5301 * candidate for later verifier transformation to load the whole 5302 * field and then apply a mask when accessed with a narrower 5303 * access than actual ctx access size. A zero info.ctx_field_size 5304 * will only allow for whole field access and rejects any other 5305 * type of narrower access. 5306 */ 5307 *reg_type = info.reg_type; 5308 5309 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5310 *btf = info.btf; 5311 *btf_id = info.btf_id; 5312 } else { 5313 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5314 } 5315 /* remember the offset of last byte accessed in ctx */ 5316 if (env->prog->aux->max_ctx_offset < off + size) 5317 env->prog->aux->max_ctx_offset = off + size; 5318 return 0; 5319 } 5320 5321 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5322 return -EACCES; 5323 } 5324 5325 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5326 int size) 5327 { 5328 if (size < 0 || off < 0 || 5329 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5330 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5331 off, size); 5332 return -EACCES; 5333 } 5334 return 0; 5335 } 5336 5337 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5338 u32 regno, int off, int size, 5339 enum bpf_access_type t) 5340 { 5341 struct bpf_reg_state *regs = cur_regs(env); 5342 struct bpf_reg_state *reg = ®s[regno]; 5343 struct bpf_insn_access_aux info = {}; 5344 bool valid; 5345 5346 if (reg->smin_value < 0) { 5347 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5348 regno); 5349 return -EACCES; 5350 } 5351 5352 switch (reg->type) { 5353 case PTR_TO_SOCK_COMMON: 5354 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5355 break; 5356 case PTR_TO_SOCKET: 5357 valid = bpf_sock_is_valid_access(off, size, t, &info); 5358 break; 5359 case PTR_TO_TCP_SOCK: 5360 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5361 break; 5362 case PTR_TO_XDP_SOCK: 5363 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5364 break; 5365 default: 5366 valid = false; 5367 } 5368 5369 5370 if (valid) { 5371 env->insn_aux_data[insn_idx].ctx_field_size = 5372 info.ctx_field_size; 5373 return 0; 5374 } 5375 5376 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5377 regno, reg_type_str(env, reg->type), off, size); 5378 5379 return -EACCES; 5380 } 5381 5382 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5383 { 5384 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5385 } 5386 5387 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5388 { 5389 const struct bpf_reg_state *reg = reg_state(env, regno); 5390 5391 return reg->type == PTR_TO_CTX; 5392 } 5393 5394 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5395 { 5396 const struct bpf_reg_state *reg = reg_state(env, regno); 5397 5398 return type_is_sk_pointer(reg->type); 5399 } 5400 5401 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5402 { 5403 const struct bpf_reg_state *reg = reg_state(env, regno); 5404 5405 return type_is_pkt_pointer(reg->type); 5406 } 5407 5408 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5409 { 5410 const struct bpf_reg_state *reg = reg_state(env, regno); 5411 5412 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5413 return reg->type == PTR_TO_FLOW_KEYS; 5414 } 5415 5416 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5417 #ifdef CONFIG_NET 5418 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5419 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5420 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5421 #endif 5422 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 5423 }; 5424 5425 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5426 { 5427 /* A referenced register is always trusted. */ 5428 if (reg->ref_obj_id) 5429 return true; 5430 5431 /* Types listed in the reg2btf_ids are always trusted */ 5432 if (reg2btf_ids[base_type(reg->type)]) 5433 return true; 5434 5435 /* If a register is not referenced, it is trusted if it has the 5436 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5437 * other type modifiers may be safe, but we elect to take an opt-in 5438 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5439 * not. 5440 * 5441 * Eventually, we should make PTR_TRUSTED the single source of truth 5442 * for whether a register is trusted. 5443 */ 5444 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5445 !bpf_type_has_unsafe_modifiers(reg->type); 5446 } 5447 5448 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5449 { 5450 return reg->type & MEM_RCU; 5451 } 5452 5453 static void clear_trusted_flags(enum bpf_type_flag *flag) 5454 { 5455 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5456 } 5457 5458 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5459 const struct bpf_reg_state *reg, 5460 int off, int size, bool strict) 5461 { 5462 struct tnum reg_off; 5463 int ip_align; 5464 5465 /* Byte size accesses are always allowed. */ 5466 if (!strict || size == 1) 5467 return 0; 5468 5469 /* For platforms that do not have a Kconfig enabling 5470 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5471 * NET_IP_ALIGN is universally set to '2'. And on platforms 5472 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5473 * to this code only in strict mode where we want to emulate 5474 * the NET_IP_ALIGN==2 checking. Therefore use an 5475 * unconditional IP align value of '2'. 5476 */ 5477 ip_align = 2; 5478 5479 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 5480 if (!tnum_is_aligned(reg_off, size)) { 5481 char tn_buf[48]; 5482 5483 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5484 verbose(env, 5485 "misaligned packet access off %d+%s+%d+%d size %d\n", 5486 ip_align, tn_buf, reg->off, off, size); 5487 return -EACCES; 5488 } 5489 5490 return 0; 5491 } 5492 5493 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 5494 const struct bpf_reg_state *reg, 5495 const char *pointer_desc, 5496 int off, int size, bool strict) 5497 { 5498 struct tnum reg_off; 5499 5500 /* Byte size accesses are always allowed. */ 5501 if (!strict || size == 1) 5502 return 0; 5503 5504 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 5505 if (!tnum_is_aligned(reg_off, size)) { 5506 char tn_buf[48]; 5507 5508 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5509 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 5510 pointer_desc, tn_buf, reg->off, off, size); 5511 return -EACCES; 5512 } 5513 5514 return 0; 5515 } 5516 5517 static int check_ptr_alignment(struct bpf_verifier_env *env, 5518 const struct bpf_reg_state *reg, int off, 5519 int size, bool strict_alignment_once) 5520 { 5521 bool strict = env->strict_alignment || strict_alignment_once; 5522 const char *pointer_desc = ""; 5523 5524 switch (reg->type) { 5525 case PTR_TO_PACKET: 5526 case PTR_TO_PACKET_META: 5527 /* Special case, because of NET_IP_ALIGN. Given metadata sits 5528 * right in front, treat it the very same way. 5529 */ 5530 return check_pkt_ptr_alignment(env, reg, off, size, strict); 5531 case PTR_TO_FLOW_KEYS: 5532 pointer_desc = "flow keys "; 5533 break; 5534 case PTR_TO_MAP_KEY: 5535 pointer_desc = "key "; 5536 break; 5537 case PTR_TO_MAP_VALUE: 5538 pointer_desc = "value "; 5539 break; 5540 case PTR_TO_CTX: 5541 pointer_desc = "context "; 5542 break; 5543 case PTR_TO_STACK: 5544 pointer_desc = "stack "; 5545 /* The stack spill tracking logic in check_stack_write_fixed_off() 5546 * and check_stack_read_fixed_off() relies on stack accesses being 5547 * aligned. 5548 */ 5549 strict = true; 5550 break; 5551 case PTR_TO_SOCKET: 5552 pointer_desc = "sock "; 5553 break; 5554 case PTR_TO_SOCK_COMMON: 5555 pointer_desc = "sock_common "; 5556 break; 5557 case PTR_TO_TCP_SOCK: 5558 pointer_desc = "tcp_sock "; 5559 break; 5560 case PTR_TO_XDP_SOCK: 5561 pointer_desc = "xdp_sock "; 5562 break; 5563 default: 5564 break; 5565 } 5566 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 5567 strict); 5568 } 5569 5570 static int update_stack_depth(struct bpf_verifier_env *env, 5571 const struct bpf_func_state *func, 5572 int off) 5573 { 5574 u16 stack = env->subprog_info[func->subprogno].stack_depth; 5575 5576 if (stack >= -off) 5577 return 0; 5578 5579 /* update known max for given subprogram */ 5580 env->subprog_info[func->subprogno].stack_depth = -off; 5581 return 0; 5582 } 5583 5584 /* starting from main bpf function walk all instructions of the function 5585 * and recursively walk all callees that given function can call. 5586 * Ignore jump and exit insns. 5587 * Since recursion is prevented by check_cfg() this algorithm 5588 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 5589 */ 5590 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx) 5591 { 5592 struct bpf_subprog_info *subprog = env->subprog_info; 5593 struct bpf_insn *insn = env->prog->insnsi; 5594 int depth = 0, frame = 0, i, subprog_end; 5595 bool tail_call_reachable = false; 5596 int ret_insn[MAX_CALL_FRAMES]; 5597 int ret_prog[MAX_CALL_FRAMES]; 5598 int j; 5599 5600 i = subprog[idx].start; 5601 process_func: 5602 /* protect against potential stack overflow that might happen when 5603 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 5604 * depth for such case down to 256 so that the worst case scenario 5605 * would result in 8k stack size (32 which is tailcall limit * 256 = 5606 * 8k). 5607 * 5608 * To get the idea what might happen, see an example: 5609 * func1 -> sub rsp, 128 5610 * subfunc1 -> sub rsp, 256 5611 * tailcall1 -> add rsp, 256 5612 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 5613 * subfunc2 -> sub rsp, 64 5614 * subfunc22 -> sub rsp, 128 5615 * tailcall2 -> add rsp, 128 5616 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 5617 * 5618 * tailcall will unwind the current stack frame but it will not get rid 5619 * of caller's stack as shown on the example above. 5620 */ 5621 if (idx && subprog[idx].has_tail_call && depth >= 256) { 5622 verbose(env, 5623 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 5624 depth); 5625 return -EACCES; 5626 } 5627 /* round up to 32-bytes, since this is granularity 5628 * of interpreter stack size 5629 */ 5630 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5631 if (depth > MAX_BPF_STACK) { 5632 verbose(env, "combined stack size of %d calls is %d. Too large\n", 5633 frame + 1, depth); 5634 return -EACCES; 5635 } 5636 continue_func: 5637 subprog_end = subprog[idx + 1].start; 5638 for (; i < subprog_end; i++) { 5639 int next_insn, sidx; 5640 5641 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 5642 continue; 5643 /* remember insn and function to return to */ 5644 ret_insn[frame] = i + 1; 5645 ret_prog[frame] = idx; 5646 5647 /* find the callee */ 5648 next_insn = i + insn[i].imm + 1; 5649 sidx = find_subprog(env, next_insn); 5650 if (sidx < 0) { 5651 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5652 next_insn); 5653 return -EFAULT; 5654 } 5655 if (subprog[sidx].is_async_cb) { 5656 if (subprog[sidx].has_tail_call) { 5657 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 5658 return -EFAULT; 5659 } 5660 /* async callbacks don't increase bpf prog stack size unless called directly */ 5661 if (!bpf_pseudo_call(insn + i)) 5662 continue; 5663 } 5664 i = next_insn; 5665 idx = sidx; 5666 5667 if (subprog[idx].has_tail_call) 5668 tail_call_reachable = true; 5669 5670 frame++; 5671 if (frame >= MAX_CALL_FRAMES) { 5672 verbose(env, "the call stack of %d frames is too deep !\n", 5673 frame); 5674 return -E2BIG; 5675 } 5676 goto process_func; 5677 } 5678 /* if tail call got detected across bpf2bpf calls then mark each of the 5679 * currently present subprog frames as tail call reachable subprogs; 5680 * this info will be utilized by JIT so that we will be preserving the 5681 * tail call counter throughout bpf2bpf calls combined with tailcalls 5682 */ 5683 if (tail_call_reachable) 5684 for (j = 0; j < frame; j++) 5685 subprog[ret_prog[j]].tail_call_reachable = true; 5686 if (subprog[0].tail_call_reachable) 5687 env->prog->aux->tail_call_reachable = true; 5688 5689 /* end of for() loop means the last insn of the 'subprog' 5690 * was reached. Doesn't matter whether it was JA or EXIT 5691 */ 5692 if (frame == 0) 5693 return 0; 5694 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5695 frame--; 5696 i = ret_insn[frame]; 5697 idx = ret_prog[frame]; 5698 goto continue_func; 5699 } 5700 5701 static int check_max_stack_depth(struct bpf_verifier_env *env) 5702 { 5703 struct bpf_subprog_info *si = env->subprog_info; 5704 int ret; 5705 5706 for (int i = 0; i < env->subprog_cnt; i++) { 5707 if (!i || si[i].is_async_cb) { 5708 ret = check_max_stack_depth_subprog(env, i); 5709 if (ret < 0) 5710 return ret; 5711 } 5712 continue; 5713 } 5714 return 0; 5715 } 5716 5717 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5718 static int get_callee_stack_depth(struct bpf_verifier_env *env, 5719 const struct bpf_insn *insn, int idx) 5720 { 5721 int start = idx + insn->imm + 1, subprog; 5722 5723 subprog = find_subprog(env, start); 5724 if (subprog < 0) { 5725 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5726 start); 5727 return -EFAULT; 5728 } 5729 return env->subprog_info[subprog].stack_depth; 5730 } 5731 #endif 5732 5733 static int __check_buffer_access(struct bpf_verifier_env *env, 5734 const char *buf_info, 5735 const struct bpf_reg_state *reg, 5736 int regno, int off, int size) 5737 { 5738 if (off < 0) { 5739 verbose(env, 5740 "R%d invalid %s buffer access: off=%d, size=%d\n", 5741 regno, buf_info, off, size); 5742 return -EACCES; 5743 } 5744 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5745 char tn_buf[48]; 5746 5747 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5748 verbose(env, 5749 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 5750 regno, off, tn_buf); 5751 return -EACCES; 5752 } 5753 5754 return 0; 5755 } 5756 5757 static int check_tp_buffer_access(struct bpf_verifier_env *env, 5758 const struct bpf_reg_state *reg, 5759 int regno, int off, int size) 5760 { 5761 int err; 5762 5763 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 5764 if (err) 5765 return err; 5766 5767 if (off + size > env->prog->aux->max_tp_access) 5768 env->prog->aux->max_tp_access = off + size; 5769 5770 return 0; 5771 } 5772 5773 static int check_buffer_access(struct bpf_verifier_env *env, 5774 const struct bpf_reg_state *reg, 5775 int regno, int off, int size, 5776 bool zero_size_allowed, 5777 u32 *max_access) 5778 { 5779 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 5780 int err; 5781 5782 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 5783 if (err) 5784 return err; 5785 5786 if (off + size > *max_access) 5787 *max_access = off + size; 5788 5789 return 0; 5790 } 5791 5792 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 5793 static void zext_32_to_64(struct bpf_reg_state *reg) 5794 { 5795 reg->var_off = tnum_subreg(reg->var_off); 5796 __reg_assign_32_into_64(reg); 5797 } 5798 5799 /* truncate register to smaller size (in bytes) 5800 * must be called with size < BPF_REG_SIZE 5801 */ 5802 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 5803 { 5804 u64 mask; 5805 5806 /* clear high bits in bit representation */ 5807 reg->var_off = tnum_cast(reg->var_off, size); 5808 5809 /* fix arithmetic bounds */ 5810 mask = ((u64)1 << (size * 8)) - 1; 5811 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 5812 reg->umin_value &= mask; 5813 reg->umax_value &= mask; 5814 } else { 5815 reg->umin_value = 0; 5816 reg->umax_value = mask; 5817 } 5818 reg->smin_value = reg->umin_value; 5819 reg->smax_value = reg->umax_value; 5820 5821 /* If size is smaller than 32bit register the 32bit register 5822 * values are also truncated so we push 64-bit bounds into 5823 * 32-bit bounds. Above were truncated < 32-bits already. 5824 */ 5825 if (size >= 4) 5826 return; 5827 __reg_combine_64_into_32(reg); 5828 } 5829 5830 static bool bpf_map_is_rdonly(const struct bpf_map *map) 5831 { 5832 /* A map is considered read-only if the following condition are true: 5833 * 5834 * 1) BPF program side cannot change any of the map content. The 5835 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 5836 * and was set at map creation time. 5837 * 2) The map value(s) have been initialized from user space by a 5838 * loader and then "frozen", such that no new map update/delete 5839 * operations from syscall side are possible for the rest of 5840 * the map's lifetime from that point onwards. 5841 * 3) Any parallel/pending map update/delete operations from syscall 5842 * side have been completed. Only after that point, it's safe to 5843 * assume that map value(s) are immutable. 5844 */ 5845 return (map->map_flags & BPF_F_RDONLY_PROG) && 5846 READ_ONCE(map->frozen) && 5847 !bpf_map_write_active(map); 5848 } 5849 5850 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 5851 { 5852 void *ptr; 5853 u64 addr; 5854 int err; 5855 5856 err = map->ops->map_direct_value_addr(map, &addr, off); 5857 if (err) 5858 return err; 5859 ptr = (void *)(long)addr + off; 5860 5861 switch (size) { 5862 case sizeof(u8): 5863 *val = (u64)*(u8 *)ptr; 5864 break; 5865 case sizeof(u16): 5866 *val = (u64)*(u16 *)ptr; 5867 break; 5868 case sizeof(u32): 5869 *val = (u64)*(u32 *)ptr; 5870 break; 5871 case sizeof(u64): 5872 *val = *(u64 *)ptr; 5873 break; 5874 default: 5875 return -EINVAL; 5876 } 5877 return 0; 5878 } 5879 5880 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 5881 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 5882 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 5883 5884 /* 5885 * Allow list few fields as RCU trusted or full trusted. 5886 * This logic doesn't allow mix tagging and will be removed once GCC supports 5887 * btf_type_tag. 5888 */ 5889 5890 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 5891 BTF_TYPE_SAFE_RCU(struct task_struct) { 5892 const cpumask_t *cpus_ptr; 5893 struct css_set __rcu *cgroups; 5894 struct task_struct __rcu *real_parent; 5895 struct task_struct *group_leader; 5896 }; 5897 5898 BTF_TYPE_SAFE_RCU(struct cgroup) { 5899 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 5900 struct kernfs_node *kn; 5901 }; 5902 5903 BTF_TYPE_SAFE_RCU(struct css_set) { 5904 struct cgroup *dfl_cgrp; 5905 }; 5906 5907 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 5908 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 5909 struct file __rcu *exe_file; 5910 }; 5911 5912 /* skb->sk, req->sk are not RCU protected, but we mark them as such 5913 * because bpf prog accessible sockets are SOCK_RCU_FREE. 5914 */ 5915 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 5916 struct sock *sk; 5917 }; 5918 5919 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 5920 struct sock *sk; 5921 }; 5922 5923 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 5924 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 5925 struct seq_file *seq; 5926 }; 5927 5928 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 5929 struct bpf_iter_meta *meta; 5930 struct task_struct *task; 5931 }; 5932 5933 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 5934 struct file *file; 5935 }; 5936 5937 BTF_TYPE_SAFE_TRUSTED(struct file) { 5938 struct inode *f_inode; 5939 }; 5940 5941 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 5942 /* no negative dentry-s in places where bpf can see it */ 5943 struct inode *d_inode; 5944 }; 5945 5946 BTF_TYPE_SAFE_TRUSTED(struct socket) { 5947 struct sock *sk; 5948 }; 5949 5950 static bool type_is_rcu(struct bpf_verifier_env *env, 5951 struct bpf_reg_state *reg, 5952 const char *field_name, u32 btf_id) 5953 { 5954 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 5955 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 5956 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 5957 5958 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 5959 } 5960 5961 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 5962 struct bpf_reg_state *reg, 5963 const char *field_name, u32 btf_id) 5964 { 5965 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 5966 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 5967 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 5968 5969 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 5970 } 5971 5972 static bool type_is_trusted(struct bpf_verifier_env *env, 5973 struct bpf_reg_state *reg, 5974 const char *field_name, u32 btf_id) 5975 { 5976 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 5977 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 5978 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 5979 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 5980 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 5981 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket)); 5982 5983 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 5984 } 5985 5986 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 5987 struct bpf_reg_state *regs, 5988 int regno, int off, int size, 5989 enum bpf_access_type atype, 5990 int value_regno) 5991 { 5992 struct bpf_reg_state *reg = regs + regno; 5993 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 5994 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 5995 const char *field_name = NULL; 5996 enum bpf_type_flag flag = 0; 5997 u32 btf_id = 0; 5998 int ret; 5999 6000 if (!env->allow_ptr_leaks) { 6001 verbose(env, 6002 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6003 tname); 6004 return -EPERM; 6005 } 6006 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 6007 verbose(env, 6008 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 6009 tname); 6010 return -EINVAL; 6011 } 6012 if (off < 0) { 6013 verbose(env, 6014 "R%d is ptr_%s invalid negative access: off=%d\n", 6015 regno, tname, off); 6016 return -EACCES; 6017 } 6018 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6019 char tn_buf[48]; 6020 6021 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6022 verbose(env, 6023 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 6024 regno, tname, off, tn_buf); 6025 return -EACCES; 6026 } 6027 6028 if (reg->type & MEM_USER) { 6029 verbose(env, 6030 "R%d is ptr_%s access user memory: off=%d\n", 6031 regno, tname, off); 6032 return -EACCES; 6033 } 6034 6035 if (reg->type & MEM_PERCPU) { 6036 verbose(env, 6037 "R%d is ptr_%s access percpu memory: off=%d\n", 6038 regno, tname, off); 6039 return -EACCES; 6040 } 6041 6042 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 6043 if (!btf_is_kernel(reg->btf)) { 6044 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 6045 return -EFAULT; 6046 } 6047 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 6048 } else { 6049 /* Writes are permitted with default btf_struct_access for 6050 * program allocated objects (which always have ref_obj_id > 0), 6051 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 6052 */ 6053 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 6054 verbose(env, "only read is supported\n"); 6055 return -EACCES; 6056 } 6057 6058 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 6059 !reg->ref_obj_id) { 6060 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 6061 return -EFAULT; 6062 } 6063 6064 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 6065 } 6066 6067 if (ret < 0) 6068 return ret; 6069 6070 if (ret != PTR_TO_BTF_ID) { 6071 /* just mark; */ 6072 6073 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 6074 /* If this is an untrusted pointer, all pointers formed by walking it 6075 * also inherit the untrusted flag. 6076 */ 6077 flag = PTR_UNTRUSTED; 6078 6079 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 6080 /* By default any pointer obtained from walking a trusted pointer is no 6081 * longer trusted, unless the field being accessed has explicitly been 6082 * marked as inheriting its parent's state of trust (either full or RCU). 6083 * For example: 6084 * 'cgroups' pointer is untrusted if task->cgroups dereference 6085 * happened in a sleepable program outside of bpf_rcu_read_lock() 6086 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 6087 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 6088 * 6089 * A regular RCU-protected pointer with __rcu tag can also be deemed 6090 * trusted if we are in an RCU CS. Such pointer can be NULL. 6091 */ 6092 if (type_is_trusted(env, reg, field_name, btf_id)) { 6093 flag |= PTR_TRUSTED; 6094 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 6095 if (type_is_rcu(env, reg, field_name, btf_id)) { 6096 /* ignore __rcu tag and mark it MEM_RCU */ 6097 flag |= MEM_RCU; 6098 } else if (flag & MEM_RCU || 6099 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 6100 /* __rcu tagged pointers can be NULL */ 6101 flag |= MEM_RCU | PTR_MAYBE_NULL; 6102 6103 /* We always trust them */ 6104 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 6105 flag & PTR_UNTRUSTED) 6106 flag &= ~PTR_UNTRUSTED; 6107 } else if (flag & (MEM_PERCPU | MEM_USER)) { 6108 /* keep as-is */ 6109 } else { 6110 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 6111 clear_trusted_flags(&flag); 6112 } 6113 } else { 6114 /* 6115 * If not in RCU CS or MEM_RCU pointer can be NULL then 6116 * aggressively mark as untrusted otherwise such 6117 * pointers will be plain PTR_TO_BTF_ID without flags 6118 * and will be allowed to be passed into helpers for 6119 * compat reasons. 6120 */ 6121 flag = PTR_UNTRUSTED; 6122 } 6123 } else { 6124 /* Old compat. Deprecated */ 6125 clear_trusted_flags(&flag); 6126 } 6127 6128 if (atype == BPF_READ && value_regno >= 0) 6129 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 6130 6131 return 0; 6132 } 6133 6134 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 6135 struct bpf_reg_state *regs, 6136 int regno, int off, int size, 6137 enum bpf_access_type atype, 6138 int value_regno) 6139 { 6140 struct bpf_reg_state *reg = regs + regno; 6141 struct bpf_map *map = reg->map_ptr; 6142 struct bpf_reg_state map_reg; 6143 enum bpf_type_flag flag = 0; 6144 const struct btf_type *t; 6145 const char *tname; 6146 u32 btf_id; 6147 int ret; 6148 6149 if (!btf_vmlinux) { 6150 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 6151 return -ENOTSUPP; 6152 } 6153 6154 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 6155 verbose(env, "map_ptr access not supported for map type %d\n", 6156 map->map_type); 6157 return -ENOTSUPP; 6158 } 6159 6160 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 6161 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 6162 6163 if (!env->allow_ptr_leaks) { 6164 verbose(env, 6165 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6166 tname); 6167 return -EPERM; 6168 } 6169 6170 if (off < 0) { 6171 verbose(env, "R%d is %s invalid negative access: off=%d\n", 6172 regno, tname, off); 6173 return -EACCES; 6174 } 6175 6176 if (atype != BPF_READ) { 6177 verbose(env, "only read from %s is supported\n", tname); 6178 return -EACCES; 6179 } 6180 6181 /* Simulate access to a PTR_TO_BTF_ID */ 6182 memset(&map_reg, 0, sizeof(map_reg)); 6183 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 6184 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 6185 if (ret < 0) 6186 return ret; 6187 6188 if (value_regno >= 0) 6189 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 6190 6191 return 0; 6192 } 6193 6194 /* Check that the stack access at the given offset is within bounds. The 6195 * maximum valid offset is -1. 6196 * 6197 * The minimum valid offset is -MAX_BPF_STACK for writes, and 6198 * -state->allocated_stack for reads. 6199 */ 6200 static int check_stack_slot_within_bounds(int off, 6201 struct bpf_func_state *state, 6202 enum bpf_access_type t) 6203 { 6204 int min_valid_off; 6205 6206 if (t == BPF_WRITE) 6207 min_valid_off = -MAX_BPF_STACK; 6208 else 6209 min_valid_off = -state->allocated_stack; 6210 6211 if (off < min_valid_off || off > -1) 6212 return -EACCES; 6213 return 0; 6214 } 6215 6216 /* Check that the stack access at 'regno + off' falls within the maximum stack 6217 * bounds. 6218 * 6219 * 'off' includes `regno->offset`, but not its dynamic part (if any). 6220 */ 6221 static int check_stack_access_within_bounds( 6222 struct bpf_verifier_env *env, 6223 int regno, int off, int access_size, 6224 enum bpf_access_src src, enum bpf_access_type type) 6225 { 6226 struct bpf_reg_state *regs = cur_regs(env); 6227 struct bpf_reg_state *reg = regs + regno; 6228 struct bpf_func_state *state = func(env, reg); 6229 int min_off, max_off; 6230 int err; 6231 char *err_extra; 6232 6233 if (src == ACCESS_HELPER) 6234 /* We don't know if helpers are reading or writing (or both). */ 6235 err_extra = " indirect access to"; 6236 else if (type == BPF_READ) 6237 err_extra = " read from"; 6238 else 6239 err_extra = " write to"; 6240 6241 if (tnum_is_const(reg->var_off)) { 6242 min_off = reg->var_off.value + off; 6243 if (access_size > 0) 6244 max_off = min_off + access_size - 1; 6245 else 6246 max_off = min_off; 6247 } else { 6248 if (reg->smax_value >= BPF_MAX_VAR_OFF || 6249 reg->smin_value <= -BPF_MAX_VAR_OFF) { 6250 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 6251 err_extra, regno); 6252 return -EACCES; 6253 } 6254 min_off = reg->smin_value + off; 6255 if (access_size > 0) 6256 max_off = reg->smax_value + off + access_size - 1; 6257 else 6258 max_off = min_off; 6259 } 6260 6261 err = check_stack_slot_within_bounds(min_off, state, type); 6262 if (!err) 6263 err = check_stack_slot_within_bounds(max_off, state, type); 6264 6265 if (err) { 6266 if (tnum_is_const(reg->var_off)) { 6267 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 6268 err_extra, regno, off, access_size); 6269 } else { 6270 char tn_buf[48]; 6271 6272 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6273 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 6274 err_extra, regno, tn_buf, access_size); 6275 } 6276 } 6277 return err; 6278 } 6279 6280 /* check whether memory at (regno + off) is accessible for t = (read | write) 6281 * if t==write, value_regno is a register which value is stored into memory 6282 * if t==read, value_regno is a register which will receive the value from memory 6283 * if t==write && value_regno==-1, some unknown value is stored into memory 6284 * if t==read && value_regno==-1, don't care what we read from memory 6285 */ 6286 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 6287 int off, int bpf_size, enum bpf_access_type t, 6288 int value_regno, bool strict_alignment_once) 6289 { 6290 struct bpf_reg_state *regs = cur_regs(env); 6291 struct bpf_reg_state *reg = regs + regno; 6292 struct bpf_func_state *state; 6293 int size, err = 0; 6294 6295 size = bpf_size_to_bytes(bpf_size); 6296 if (size < 0) 6297 return size; 6298 6299 /* alignment checks will add in reg->off themselves */ 6300 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 6301 if (err) 6302 return err; 6303 6304 /* for access checks, reg->off is just part of off */ 6305 off += reg->off; 6306 6307 if (reg->type == PTR_TO_MAP_KEY) { 6308 if (t == BPF_WRITE) { 6309 verbose(env, "write to change key R%d not allowed\n", regno); 6310 return -EACCES; 6311 } 6312 6313 err = check_mem_region_access(env, regno, off, size, 6314 reg->map_ptr->key_size, false); 6315 if (err) 6316 return err; 6317 if (value_regno >= 0) 6318 mark_reg_unknown(env, regs, value_regno); 6319 } else if (reg->type == PTR_TO_MAP_VALUE) { 6320 struct btf_field *kptr_field = NULL; 6321 6322 if (t == BPF_WRITE && value_regno >= 0 && 6323 is_pointer_value(env, value_regno)) { 6324 verbose(env, "R%d leaks addr into map\n", value_regno); 6325 return -EACCES; 6326 } 6327 err = check_map_access_type(env, regno, off, size, t); 6328 if (err) 6329 return err; 6330 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 6331 if (err) 6332 return err; 6333 if (tnum_is_const(reg->var_off)) 6334 kptr_field = btf_record_find(reg->map_ptr->record, 6335 off + reg->var_off.value, BPF_KPTR); 6336 if (kptr_field) { 6337 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 6338 } else if (t == BPF_READ && value_regno >= 0) { 6339 struct bpf_map *map = reg->map_ptr; 6340 6341 /* if map is read-only, track its contents as scalars */ 6342 if (tnum_is_const(reg->var_off) && 6343 bpf_map_is_rdonly(map) && 6344 map->ops->map_direct_value_addr) { 6345 int map_off = off + reg->var_off.value; 6346 u64 val = 0; 6347 6348 err = bpf_map_direct_read(map, map_off, size, 6349 &val); 6350 if (err) 6351 return err; 6352 6353 regs[value_regno].type = SCALAR_VALUE; 6354 __mark_reg_known(®s[value_regno], val); 6355 } else { 6356 mark_reg_unknown(env, regs, value_regno); 6357 } 6358 } 6359 } else if (base_type(reg->type) == PTR_TO_MEM) { 6360 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6361 6362 if (type_may_be_null(reg->type)) { 6363 verbose(env, "R%d invalid mem access '%s'\n", regno, 6364 reg_type_str(env, reg->type)); 6365 return -EACCES; 6366 } 6367 6368 if (t == BPF_WRITE && rdonly_mem) { 6369 verbose(env, "R%d cannot write into %s\n", 6370 regno, reg_type_str(env, reg->type)); 6371 return -EACCES; 6372 } 6373 6374 if (t == BPF_WRITE && value_regno >= 0 && 6375 is_pointer_value(env, value_regno)) { 6376 verbose(env, "R%d leaks addr into mem\n", value_regno); 6377 return -EACCES; 6378 } 6379 6380 err = check_mem_region_access(env, regno, off, size, 6381 reg->mem_size, false); 6382 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 6383 mark_reg_unknown(env, regs, value_regno); 6384 } else if (reg->type == PTR_TO_CTX) { 6385 enum bpf_reg_type reg_type = SCALAR_VALUE; 6386 struct btf *btf = NULL; 6387 u32 btf_id = 0; 6388 6389 if (t == BPF_WRITE && value_regno >= 0 && 6390 is_pointer_value(env, value_regno)) { 6391 verbose(env, "R%d leaks addr into ctx\n", value_regno); 6392 return -EACCES; 6393 } 6394 6395 err = check_ptr_off_reg(env, reg, regno); 6396 if (err < 0) 6397 return err; 6398 6399 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 6400 &btf_id); 6401 if (err) 6402 verbose_linfo(env, insn_idx, "; "); 6403 if (!err && t == BPF_READ && value_regno >= 0) { 6404 /* ctx access returns either a scalar, or a 6405 * PTR_TO_PACKET[_META,_END]. In the latter 6406 * case, we know the offset is zero. 6407 */ 6408 if (reg_type == SCALAR_VALUE) { 6409 mark_reg_unknown(env, regs, value_regno); 6410 } else { 6411 mark_reg_known_zero(env, regs, 6412 value_regno); 6413 if (type_may_be_null(reg_type)) 6414 regs[value_regno].id = ++env->id_gen; 6415 /* A load of ctx field could have different 6416 * actual load size with the one encoded in the 6417 * insn. When the dst is PTR, it is for sure not 6418 * a sub-register. 6419 */ 6420 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 6421 if (base_type(reg_type) == PTR_TO_BTF_ID) { 6422 regs[value_regno].btf = btf; 6423 regs[value_regno].btf_id = btf_id; 6424 } 6425 } 6426 regs[value_regno].type = reg_type; 6427 } 6428 6429 } else if (reg->type == PTR_TO_STACK) { 6430 /* Basic bounds checks. */ 6431 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 6432 if (err) 6433 return err; 6434 6435 state = func(env, reg); 6436 err = update_stack_depth(env, state, off); 6437 if (err) 6438 return err; 6439 6440 if (t == BPF_READ) 6441 err = check_stack_read(env, regno, off, size, 6442 value_regno); 6443 else 6444 err = check_stack_write(env, regno, off, size, 6445 value_regno, insn_idx); 6446 } else if (reg_is_pkt_pointer(reg)) { 6447 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 6448 verbose(env, "cannot write into packet\n"); 6449 return -EACCES; 6450 } 6451 if (t == BPF_WRITE && value_regno >= 0 && 6452 is_pointer_value(env, value_regno)) { 6453 verbose(env, "R%d leaks addr into packet\n", 6454 value_regno); 6455 return -EACCES; 6456 } 6457 err = check_packet_access(env, regno, off, size, false); 6458 if (!err && t == BPF_READ && value_regno >= 0) 6459 mark_reg_unknown(env, regs, value_regno); 6460 } else if (reg->type == PTR_TO_FLOW_KEYS) { 6461 if (t == BPF_WRITE && value_regno >= 0 && 6462 is_pointer_value(env, value_regno)) { 6463 verbose(env, "R%d leaks addr into flow keys\n", 6464 value_regno); 6465 return -EACCES; 6466 } 6467 6468 err = check_flow_keys_access(env, off, size); 6469 if (!err && t == BPF_READ && value_regno >= 0) 6470 mark_reg_unknown(env, regs, value_regno); 6471 } else if (type_is_sk_pointer(reg->type)) { 6472 if (t == BPF_WRITE) { 6473 verbose(env, "R%d cannot write into %s\n", 6474 regno, reg_type_str(env, reg->type)); 6475 return -EACCES; 6476 } 6477 err = check_sock_access(env, insn_idx, regno, off, size, t); 6478 if (!err && value_regno >= 0) 6479 mark_reg_unknown(env, regs, value_regno); 6480 } else if (reg->type == PTR_TO_TP_BUFFER) { 6481 err = check_tp_buffer_access(env, reg, regno, off, size); 6482 if (!err && t == BPF_READ && value_regno >= 0) 6483 mark_reg_unknown(env, regs, value_regno); 6484 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 6485 !type_may_be_null(reg->type)) { 6486 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 6487 value_regno); 6488 } else if (reg->type == CONST_PTR_TO_MAP) { 6489 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 6490 value_regno); 6491 } else if (base_type(reg->type) == PTR_TO_BUF) { 6492 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6493 u32 *max_access; 6494 6495 if (rdonly_mem) { 6496 if (t == BPF_WRITE) { 6497 verbose(env, "R%d cannot write into %s\n", 6498 regno, reg_type_str(env, reg->type)); 6499 return -EACCES; 6500 } 6501 max_access = &env->prog->aux->max_rdonly_access; 6502 } else { 6503 max_access = &env->prog->aux->max_rdwr_access; 6504 } 6505 6506 err = check_buffer_access(env, reg, regno, off, size, false, 6507 max_access); 6508 6509 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 6510 mark_reg_unknown(env, regs, value_regno); 6511 } else { 6512 verbose(env, "R%d invalid mem access '%s'\n", regno, 6513 reg_type_str(env, reg->type)); 6514 return -EACCES; 6515 } 6516 6517 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 6518 regs[value_regno].type == SCALAR_VALUE) { 6519 /* b/h/w load zero-extends, mark upper bits as known 0 */ 6520 coerce_reg_to_size(®s[value_regno], size); 6521 } 6522 return err; 6523 } 6524 6525 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 6526 { 6527 int load_reg; 6528 int err; 6529 6530 switch (insn->imm) { 6531 case BPF_ADD: 6532 case BPF_ADD | BPF_FETCH: 6533 case BPF_AND: 6534 case BPF_AND | BPF_FETCH: 6535 case BPF_OR: 6536 case BPF_OR | BPF_FETCH: 6537 case BPF_XOR: 6538 case BPF_XOR | BPF_FETCH: 6539 case BPF_XCHG: 6540 case BPF_CMPXCHG: 6541 break; 6542 default: 6543 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 6544 return -EINVAL; 6545 } 6546 6547 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 6548 verbose(env, "invalid atomic operand size\n"); 6549 return -EINVAL; 6550 } 6551 6552 /* check src1 operand */ 6553 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6554 if (err) 6555 return err; 6556 6557 /* check src2 operand */ 6558 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6559 if (err) 6560 return err; 6561 6562 if (insn->imm == BPF_CMPXCHG) { 6563 /* Check comparison of R0 with memory location */ 6564 const u32 aux_reg = BPF_REG_0; 6565 6566 err = check_reg_arg(env, aux_reg, SRC_OP); 6567 if (err) 6568 return err; 6569 6570 if (is_pointer_value(env, aux_reg)) { 6571 verbose(env, "R%d leaks addr into mem\n", aux_reg); 6572 return -EACCES; 6573 } 6574 } 6575 6576 if (is_pointer_value(env, insn->src_reg)) { 6577 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 6578 return -EACCES; 6579 } 6580 6581 if (is_ctx_reg(env, insn->dst_reg) || 6582 is_pkt_reg(env, insn->dst_reg) || 6583 is_flow_key_reg(env, insn->dst_reg) || 6584 is_sk_reg(env, insn->dst_reg)) { 6585 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 6586 insn->dst_reg, 6587 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 6588 return -EACCES; 6589 } 6590 6591 if (insn->imm & BPF_FETCH) { 6592 if (insn->imm == BPF_CMPXCHG) 6593 load_reg = BPF_REG_0; 6594 else 6595 load_reg = insn->src_reg; 6596 6597 /* check and record load of old value */ 6598 err = check_reg_arg(env, load_reg, DST_OP); 6599 if (err) 6600 return err; 6601 } else { 6602 /* This instruction accesses a memory location but doesn't 6603 * actually load it into a register. 6604 */ 6605 load_reg = -1; 6606 } 6607 6608 /* Check whether we can read the memory, with second call for fetch 6609 * case to simulate the register fill. 6610 */ 6611 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6612 BPF_SIZE(insn->code), BPF_READ, -1, true); 6613 if (!err && load_reg >= 0) 6614 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6615 BPF_SIZE(insn->code), BPF_READ, load_reg, 6616 true); 6617 if (err) 6618 return err; 6619 6620 /* Check whether we can write into the same memory. */ 6621 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6622 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 6623 if (err) 6624 return err; 6625 6626 return 0; 6627 } 6628 6629 /* When register 'regno' is used to read the stack (either directly or through 6630 * a helper function) make sure that it's within stack boundary and, depending 6631 * on the access type, that all elements of the stack are initialized. 6632 * 6633 * 'off' includes 'regno->off', but not its dynamic part (if any). 6634 * 6635 * All registers that have been spilled on the stack in the slots within the 6636 * read offsets are marked as read. 6637 */ 6638 static int check_stack_range_initialized( 6639 struct bpf_verifier_env *env, int regno, int off, 6640 int access_size, bool zero_size_allowed, 6641 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 6642 { 6643 struct bpf_reg_state *reg = reg_state(env, regno); 6644 struct bpf_func_state *state = func(env, reg); 6645 int err, min_off, max_off, i, j, slot, spi; 6646 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 6647 enum bpf_access_type bounds_check_type; 6648 /* Some accesses can write anything into the stack, others are 6649 * read-only. 6650 */ 6651 bool clobber = false; 6652 6653 if (access_size == 0 && !zero_size_allowed) { 6654 verbose(env, "invalid zero-sized read\n"); 6655 return -EACCES; 6656 } 6657 6658 if (type == ACCESS_HELPER) { 6659 /* The bounds checks for writes are more permissive than for 6660 * reads. However, if raw_mode is not set, we'll do extra 6661 * checks below. 6662 */ 6663 bounds_check_type = BPF_WRITE; 6664 clobber = true; 6665 } else { 6666 bounds_check_type = BPF_READ; 6667 } 6668 err = check_stack_access_within_bounds(env, regno, off, access_size, 6669 type, bounds_check_type); 6670 if (err) 6671 return err; 6672 6673 6674 if (tnum_is_const(reg->var_off)) { 6675 min_off = max_off = reg->var_off.value + off; 6676 } else { 6677 /* Variable offset is prohibited for unprivileged mode for 6678 * simplicity since it requires corresponding support in 6679 * Spectre masking for stack ALU. 6680 * See also retrieve_ptr_limit(). 6681 */ 6682 if (!env->bypass_spec_v1) { 6683 char tn_buf[48]; 6684 6685 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6686 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 6687 regno, err_extra, tn_buf); 6688 return -EACCES; 6689 } 6690 /* Only initialized buffer on stack is allowed to be accessed 6691 * with variable offset. With uninitialized buffer it's hard to 6692 * guarantee that whole memory is marked as initialized on 6693 * helper return since specific bounds are unknown what may 6694 * cause uninitialized stack leaking. 6695 */ 6696 if (meta && meta->raw_mode) 6697 meta = NULL; 6698 6699 min_off = reg->smin_value + off; 6700 max_off = reg->smax_value + off; 6701 } 6702 6703 if (meta && meta->raw_mode) { 6704 /* Ensure we won't be overwriting dynptrs when simulating byte 6705 * by byte access in check_helper_call using meta.access_size. 6706 * This would be a problem if we have a helper in the future 6707 * which takes: 6708 * 6709 * helper(uninit_mem, len, dynptr) 6710 * 6711 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 6712 * may end up writing to dynptr itself when touching memory from 6713 * arg 1. This can be relaxed on a case by case basis for known 6714 * safe cases, but reject due to the possibilitiy of aliasing by 6715 * default. 6716 */ 6717 for (i = min_off; i < max_off + access_size; i++) { 6718 int stack_off = -i - 1; 6719 6720 spi = __get_spi(i); 6721 /* raw_mode may write past allocated_stack */ 6722 if (state->allocated_stack <= stack_off) 6723 continue; 6724 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 6725 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 6726 return -EACCES; 6727 } 6728 } 6729 meta->access_size = access_size; 6730 meta->regno = regno; 6731 return 0; 6732 } 6733 6734 for (i = min_off; i < max_off + access_size; i++) { 6735 u8 *stype; 6736 6737 slot = -i - 1; 6738 spi = slot / BPF_REG_SIZE; 6739 if (state->allocated_stack <= slot) 6740 goto err; 6741 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 6742 if (*stype == STACK_MISC) 6743 goto mark; 6744 if ((*stype == STACK_ZERO) || 6745 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 6746 if (clobber) { 6747 /* helper can write anything into the stack */ 6748 *stype = STACK_MISC; 6749 } 6750 goto mark; 6751 } 6752 6753 if (is_spilled_reg(&state->stack[spi]) && 6754 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 6755 env->allow_ptr_leaks)) { 6756 if (clobber) { 6757 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 6758 for (j = 0; j < BPF_REG_SIZE; j++) 6759 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 6760 } 6761 goto mark; 6762 } 6763 6764 err: 6765 if (tnum_is_const(reg->var_off)) { 6766 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 6767 err_extra, regno, min_off, i - min_off, access_size); 6768 } else { 6769 char tn_buf[48]; 6770 6771 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6772 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 6773 err_extra, regno, tn_buf, i - min_off, access_size); 6774 } 6775 return -EACCES; 6776 mark: 6777 /* reading any byte out of 8-byte 'spill_slot' will cause 6778 * the whole slot to be marked as 'read' 6779 */ 6780 mark_reg_read(env, &state->stack[spi].spilled_ptr, 6781 state->stack[spi].spilled_ptr.parent, 6782 REG_LIVE_READ64); 6783 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 6784 * be sure that whether stack slot is written to or not. Hence, 6785 * we must still conservatively propagate reads upwards even if 6786 * helper may write to the entire memory range. 6787 */ 6788 } 6789 return update_stack_depth(env, state, min_off); 6790 } 6791 6792 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 6793 int access_size, bool zero_size_allowed, 6794 struct bpf_call_arg_meta *meta) 6795 { 6796 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6797 u32 *max_access; 6798 6799 switch (base_type(reg->type)) { 6800 case PTR_TO_PACKET: 6801 case PTR_TO_PACKET_META: 6802 return check_packet_access(env, regno, reg->off, access_size, 6803 zero_size_allowed); 6804 case PTR_TO_MAP_KEY: 6805 if (meta && meta->raw_mode) { 6806 verbose(env, "R%d cannot write into %s\n", regno, 6807 reg_type_str(env, reg->type)); 6808 return -EACCES; 6809 } 6810 return check_mem_region_access(env, regno, reg->off, access_size, 6811 reg->map_ptr->key_size, false); 6812 case PTR_TO_MAP_VALUE: 6813 if (check_map_access_type(env, regno, reg->off, access_size, 6814 meta && meta->raw_mode ? BPF_WRITE : 6815 BPF_READ)) 6816 return -EACCES; 6817 return check_map_access(env, regno, reg->off, access_size, 6818 zero_size_allowed, ACCESS_HELPER); 6819 case PTR_TO_MEM: 6820 if (type_is_rdonly_mem(reg->type)) { 6821 if (meta && meta->raw_mode) { 6822 verbose(env, "R%d cannot write into %s\n", regno, 6823 reg_type_str(env, reg->type)); 6824 return -EACCES; 6825 } 6826 } 6827 return check_mem_region_access(env, regno, reg->off, 6828 access_size, reg->mem_size, 6829 zero_size_allowed); 6830 case PTR_TO_BUF: 6831 if (type_is_rdonly_mem(reg->type)) { 6832 if (meta && meta->raw_mode) { 6833 verbose(env, "R%d cannot write into %s\n", regno, 6834 reg_type_str(env, reg->type)); 6835 return -EACCES; 6836 } 6837 6838 max_access = &env->prog->aux->max_rdonly_access; 6839 } else { 6840 max_access = &env->prog->aux->max_rdwr_access; 6841 } 6842 return check_buffer_access(env, reg, regno, reg->off, 6843 access_size, zero_size_allowed, 6844 max_access); 6845 case PTR_TO_STACK: 6846 return check_stack_range_initialized( 6847 env, 6848 regno, reg->off, access_size, 6849 zero_size_allowed, ACCESS_HELPER, meta); 6850 case PTR_TO_BTF_ID: 6851 return check_ptr_to_btf_access(env, regs, regno, reg->off, 6852 access_size, BPF_READ, -1); 6853 case PTR_TO_CTX: 6854 /* in case the function doesn't know how to access the context, 6855 * (because we are in a program of type SYSCALL for example), we 6856 * can not statically check its size. 6857 * Dynamically check it now. 6858 */ 6859 if (!env->ops->convert_ctx_access) { 6860 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 6861 int offset = access_size - 1; 6862 6863 /* Allow zero-byte read from PTR_TO_CTX */ 6864 if (access_size == 0) 6865 return zero_size_allowed ? 0 : -EACCES; 6866 6867 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 6868 atype, -1, false); 6869 } 6870 6871 fallthrough; 6872 default: /* scalar_value or invalid ptr */ 6873 /* Allow zero-byte read from NULL, regardless of pointer type */ 6874 if (zero_size_allowed && access_size == 0 && 6875 register_is_null(reg)) 6876 return 0; 6877 6878 verbose(env, "R%d type=%s ", regno, 6879 reg_type_str(env, reg->type)); 6880 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 6881 return -EACCES; 6882 } 6883 } 6884 6885 static int check_mem_size_reg(struct bpf_verifier_env *env, 6886 struct bpf_reg_state *reg, u32 regno, 6887 bool zero_size_allowed, 6888 struct bpf_call_arg_meta *meta) 6889 { 6890 int err; 6891 6892 /* This is used to refine r0 return value bounds for helpers 6893 * that enforce this value as an upper bound on return values. 6894 * See do_refine_retval_range() for helpers that can refine 6895 * the return value. C type of helper is u32 so we pull register 6896 * bound from umax_value however, if negative verifier errors 6897 * out. Only upper bounds can be learned because retval is an 6898 * int type and negative retvals are allowed. 6899 */ 6900 meta->msize_max_value = reg->umax_value; 6901 6902 /* The register is SCALAR_VALUE; the access check 6903 * happens using its boundaries. 6904 */ 6905 if (!tnum_is_const(reg->var_off)) 6906 /* For unprivileged variable accesses, disable raw 6907 * mode so that the program is required to 6908 * initialize all the memory that the helper could 6909 * just partially fill up. 6910 */ 6911 meta = NULL; 6912 6913 if (reg->smin_value < 0) { 6914 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 6915 regno); 6916 return -EACCES; 6917 } 6918 6919 if (reg->umin_value == 0) { 6920 err = check_helper_mem_access(env, regno - 1, 0, 6921 zero_size_allowed, 6922 meta); 6923 if (err) 6924 return err; 6925 } 6926 6927 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 6928 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 6929 regno); 6930 return -EACCES; 6931 } 6932 err = check_helper_mem_access(env, regno - 1, 6933 reg->umax_value, 6934 zero_size_allowed, meta); 6935 if (!err) 6936 err = mark_chain_precision(env, regno); 6937 return err; 6938 } 6939 6940 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 6941 u32 regno, u32 mem_size) 6942 { 6943 bool may_be_null = type_may_be_null(reg->type); 6944 struct bpf_reg_state saved_reg; 6945 struct bpf_call_arg_meta meta; 6946 int err; 6947 6948 if (register_is_null(reg)) 6949 return 0; 6950 6951 memset(&meta, 0, sizeof(meta)); 6952 /* Assuming that the register contains a value check if the memory 6953 * access is safe. Temporarily save and restore the register's state as 6954 * the conversion shouldn't be visible to a caller. 6955 */ 6956 if (may_be_null) { 6957 saved_reg = *reg; 6958 mark_ptr_not_null_reg(reg); 6959 } 6960 6961 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 6962 /* Check access for BPF_WRITE */ 6963 meta.raw_mode = true; 6964 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 6965 6966 if (may_be_null) 6967 *reg = saved_reg; 6968 6969 return err; 6970 } 6971 6972 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 6973 u32 regno) 6974 { 6975 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 6976 bool may_be_null = type_may_be_null(mem_reg->type); 6977 struct bpf_reg_state saved_reg; 6978 struct bpf_call_arg_meta meta; 6979 int err; 6980 6981 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 6982 6983 memset(&meta, 0, sizeof(meta)); 6984 6985 if (may_be_null) { 6986 saved_reg = *mem_reg; 6987 mark_ptr_not_null_reg(mem_reg); 6988 } 6989 6990 err = check_mem_size_reg(env, reg, regno, true, &meta); 6991 /* Check access for BPF_WRITE */ 6992 meta.raw_mode = true; 6993 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 6994 6995 if (may_be_null) 6996 *mem_reg = saved_reg; 6997 return err; 6998 } 6999 7000 /* Implementation details: 7001 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 7002 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 7003 * Two bpf_map_lookups (even with the same key) will have different reg->id. 7004 * Two separate bpf_obj_new will also have different reg->id. 7005 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 7006 * clears reg->id after value_or_null->value transition, since the verifier only 7007 * cares about the range of access to valid map value pointer and doesn't care 7008 * about actual address of the map element. 7009 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 7010 * reg->id > 0 after value_or_null->value transition. By doing so 7011 * two bpf_map_lookups will be considered two different pointers that 7012 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 7013 * returned from bpf_obj_new. 7014 * The verifier allows taking only one bpf_spin_lock at a time to avoid 7015 * dead-locks. 7016 * Since only one bpf_spin_lock is allowed the checks are simpler than 7017 * reg_is_refcounted() logic. The verifier needs to remember only 7018 * one spin_lock instead of array of acquired_refs. 7019 * cur_state->active_lock remembers which map value element or allocated 7020 * object got locked and clears it after bpf_spin_unlock. 7021 */ 7022 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 7023 bool is_lock) 7024 { 7025 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7026 struct bpf_verifier_state *cur = env->cur_state; 7027 bool is_const = tnum_is_const(reg->var_off); 7028 u64 val = reg->var_off.value; 7029 struct bpf_map *map = NULL; 7030 struct btf *btf = NULL; 7031 struct btf_record *rec; 7032 7033 if (!is_const) { 7034 verbose(env, 7035 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 7036 regno); 7037 return -EINVAL; 7038 } 7039 if (reg->type == PTR_TO_MAP_VALUE) { 7040 map = reg->map_ptr; 7041 if (!map->btf) { 7042 verbose(env, 7043 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 7044 map->name); 7045 return -EINVAL; 7046 } 7047 } else { 7048 btf = reg->btf; 7049 } 7050 7051 rec = reg_btf_record(reg); 7052 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 7053 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 7054 map ? map->name : "kptr"); 7055 return -EINVAL; 7056 } 7057 if (rec->spin_lock_off != val + reg->off) { 7058 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 7059 val + reg->off, rec->spin_lock_off); 7060 return -EINVAL; 7061 } 7062 if (is_lock) { 7063 if (cur->active_lock.ptr) { 7064 verbose(env, 7065 "Locking two bpf_spin_locks are not allowed\n"); 7066 return -EINVAL; 7067 } 7068 if (map) 7069 cur->active_lock.ptr = map; 7070 else 7071 cur->active_lock.ptr = btf; 7072 cur->active_lock.id = reg->id; 7073 } else { 7074 void *ptr; 7075 7076 if (map) 7077 ptr = map; 7078 else 7079 ptr = btf; 7080 7081 if (!cur->active_lock.ptr) { 7082 verbose(env, "bpf_spin_unlock without taking a lock\n"); 7083 return -EINVAL; 7084 } 7085 if (cur->active_lock.ptr != ptr || 7086 cur->active_lock.id != reg->id) { 7087 verbose(env, "bpf_spin_unlock of different lock\n"); 7088 return -EINVAL; 7089 } 7090 7091 invalidate_non_owning_refs(env); 7092 7093 cur->active_lock.ptr = NULL; 7094 cur->active_lock.id = 0; 7095 } 7096 return 0; 7097 } 7098 7099 static int process_timer_func(struct bpf_verifier_env *env, int regno, 7100 struct bpf_call_arg_meta *meta) 7101 { 7102 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7103 bool is_const = tnum_is_const(reg->var_off); 7104 struct bpf_map *map = reg->map_ptr; 7105 u64 val = reg->var_off.value; 7106 7107 if (!is_const) { 7108 verbose(env, 7109 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 7110 regno); 7111 return -EINVAL; 7112 } 7113 if (!map->btf) { 7114 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 7115 map->name); 7116 return -EINVAL; 7117 } 7118 if (!btf_record_has_field(map->record, BPF_TIMER)) { 7119 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 7120 return -EINVAL; 7121 } 7122 if (map->record->timer_off != val + reg->off) { 7123 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 7124 val + reg->off, map->record->timer_off); 7125 return -EINVAL; 7126 } 7127 if (meta->map_ptr) { 7128 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 7129 return -EFAULT; 7130 } 7131 meta->map_uid = reg->map_uid; 7132 meta->map_ptr = map; 7133 return 0; 7134 } 7135 7136 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 7137 struct bpf_call_arg_meta *meta) 7138 { 7139 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7140 struct bpf_map *map_ptr = reg->map_ptr; 7141 struct btf_field *kptr_field; 7142 u32 kptr_off; 7143 7144 if (!tnum_is_const(reg->var_off)) { 7145 verbose(env, 7146 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 7147 regno); 7148 return -EINVAL; 7149 } 7150 if (!map_ptr->btf) { 7151 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 7152 map_ptr->name); 7153 return -EINVAL; 7154 } 7155 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 7156 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 7157 return -EINVAL; 7158 } 7159 7160 meta->map_ptr = map_ptr; 7161 kptr_off = reg->off + reg->var_off.value; 7162 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 7163 if (!kptr_field) { 7164 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 7165 return -EACCES; 7166 } 7167 if (kptr_field->type != BPF_KPTR_REF) { 7168 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 7169 return -EACCES; 7170 } 7171 meta->kptr_field = kptr_field; 7172 return 0; 7173 } 7174 7175 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 7176 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 7177 * 7178 * In both cases we deal with the first 8 bytes, but need to mark the next 8 7179 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 7180 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 7181 * 7182 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 7183 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 7184 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 7185 * mutate the view of the dynptr and also possibly destroy it. In the latter 7186 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 7187 * memory that dynptr points to. 7188 * 7189 * The verifier will keep track both levels of mutation (bpf_dynptr's in 7190 * reg->type and the memory's in reg->dynptr.type), but there is no support for 7191 * readonly dynptr view yet, hence only the first case is tracked and checked. 7192 * 7193 * This is consistent with how C applies the const modifier to a struct object, 7194 * where the pointer itself inside bpf_dynptr becomes const but not what it 7195 * points to. 7196 * 7197 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 7198 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 7199 */ 7200 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 7201 enum bpf_arg_type arg_type, int clone_ref_obj_id) 7202 { 7203 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7204 int err; 7205 7206 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 7207 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 7208 */ 7209 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 7210 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 7211 return -EFAULT; 7212 } 7213 7214 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 7215 * constructing a mutable bpf_dynptr object. 7216 * 7217 * Currently, this is only possible with PTR_TO_STACK 7218 * pointing to a region of at least 16 bytes which doesn't 7219 * contain an existing bpf_dynptr. 7220 * 7221 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 7222 * mutated or destroyed. However, the memory it points to 7223 * may be mutated. 7224 * 7225 * None - Points to a initialized dynptr that can be mutated and 7226 * destroyed, including mutation of the memory it points 7227 * to. 7228 */ 7229 if (arg_type & MEM_UNINIT) { 7230 int i; 7231 7232 if (!is_dynptr_reg_valid_uninit(env, reg)) { 7233 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 7234 return -EINVAL; 7235 } 7236 7237 /* we write BPF_DW bits (8 bytes) at a time */ 7238 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7239 err = check_mem_access(env, insn_idx, regno, 7240 i, BPF_DW, BPF_WRITE, -1, false); 7241 if (err) 7242 return err; 7243 } 7244 7245 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 7246 } else /* MEM_RDONLY and None case from above */ { 7247 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 7248 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 7249 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 7250 return -EINVAL; 7251 } 7252 7253 if (!is_dynptr_reg_valid_init(env, reg)) { 7254 verbose(env, 7255 "Expected an initialized dynptr as arg #%d\n", 7256 regno); 7257 return -EINVAL; 7258 } 7259 7260 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 7261 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 7262 verbose(env, 7263 "Expected a dynptr of type %s as arg #%d\n", 7264 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 7265 return -EINVAL; 7266 } 7267 7268 err = mark_dynptr_read(env, reg); 7269 } 7270 return err; 7271 } 7272 7273 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 7274 { 7275 struct bpf_func_state *state = func(env, reg); 7276 7277 return state->stack[spi].spilled_ptr.ref_obj_id; 7278 } 7279 7280 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7281 { 7282 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7283 } 7284 7285 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7286 { 7287 return meta->kfunc_flags & KF_ITER_NEW; 7288 } 7289 7290 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7291 { 7292 return meta->kfunc_flags & KF_ITER_NEXT; 7293 } 7294 7295 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7296 { 7297 return meta->kfunc_flags & KF_ITER_DESTROY; 7298 } 7299 7300 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg) 7301 { 7302 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 7303 * kfunc is iter state pointer 7304 */ 7305 return arg == 0 && is_iter_kfunc(meta); 7306 } 7307 7308 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 7309 struct bpf_kfunc_call_arg_meta *meta) 7310 { 7311 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7312 const struct btf_type *t; 7313 const struct btf_param *arg; 7314 int spi, err, i, nr_slots; 7315 u32 btf_id; 7316 7317 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */ 7318 arg = &btf_params(meta->func_proto)[0]; 7319 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */ 7320 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */ 7321 nr_slots = t->size / BPF_REG_SIZE; 7322 7323 if (is_iter_new_kfunc(meta)) { 7324 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 7325 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 7326 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 7327 iter_type_str(meta->btf, btf_id), regno); 7328 return -EINVAL; 7329 } 7330 7331 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 7332 err = check_mem_access(env, insn_idx, regno, 7333 i, BPF_DW, BPF_WRITE, -1, false); 7334 if (err) 7335 return err; 7336 } 7337 7338 err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots); 7339 if (err) 7340 return err; 7341 } else { 7342 /* iter_next() or iter_destroy() expect initialized iter state*/ 7343 if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) { 7344 verbose(env, "expected an initialized iter_%s as arg #%d\n", 7345 iter_type_str(meta->btf, btf_id), regno); 7346 return -EINVAL; 7347 } 7348 7349 spi = iter_get_spi(env, reg, nr_slots); 7350 if (spi < 0) 7351 return spi; 7352 7353 err = mark_iter_read(env, reg, spi, nr_slots); 7354 if (err) 7355 return err; 7356 7357 /* remember meta->iter info for process_iter_next_call() */ 7358 meta->iter.spi = spi; 7359 meta->iter.frameno = reg->frameno; 7360 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 7361 7362 if (is_iter_destroy_kfunc(meta)) { 7363 err = unmark_stack_slots_iter(env, reg, nr_slots); 7364 if (err) 7365 return err; 7366 } 7367 } 7368 7369 return 0; 7370 } 7371 7372 /* process_iter_next_call() is called when verifier gets to iterator's next 7373 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 7374 * to it as just "iter_next()" in comments below. 7375 * 7376 * BPF verifier relies on a crucial contract for any iter_next() 7377 * implementation: it should *eventually* return NULL, and once that happens 7378 * it should keep returning NULL. That is, once iterator exhausts elements to 7379 * iterate, it should never reset or spuriously return new elements. 7380 * 7381 * With the assumption of such contract, process_iter_next_call() simulates 7382 * a fork in the verifier state to validate loop logic correctness and safety 7383 * without having to simulate infinite amount of iterations. 7384 * 7385 * In current state, we first assume that iter_next() returned NULL and 7386 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 7387 * conditions we should not form an infinite loop and should eventually reach 7388 * exit. 7389 * 7390 * Besides that, we also fork current state and enqueue it for later 7391 * verification. In a forked state we keep iterator state as ACTIVE 7392 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 7393 * also bump iteration depth to prevent erroneous infinite loop detection 7394 * later on (see iter_active_depths_differ() comment for details). In this 7395 * state we assume that we'll eventually loop back to another iter_next() 7396 * calls (it could be in exactly same location or in some other instruction, 7397 * it doesn't matter, we don't make any unnecessary assumptions about this, 7398 * everything revolves around iterator state in a stack slot, not which 7399 * instruction is calling iter_next()). When that happens, we either will come 7400 * to iter_next() with equivalent state and can conclude that next iteration 7401 * will proceed in exactly the same way as we just verified, so it's safe to 7402 * assume that loop converges. If not, we'll go on another iteration 7403 * simulation with a different input state, until all possible starting states 7404 * are validated or we reach maximum number of instructions limit. 7405 * 7406 * This way, we will either exhaustively discover all possible input states 7407 * that iterator loop can start with and eventually will converge, or we'll 7408 * effectively regress into bounded loop simulation logic and either reach 7409 * maximum number of instructions if loop is not provably convergent, or there 7410 * is some statically known limit on number of iterations (e.g., if there is 7411 * an explicit `if n > 100 then break;` statement somewhere in the loop). 7412 * 7413 * One very subtle but very important aspect is that we *always* simulate NULL 7414 * condition first (as the current state) before we simulate non-NULL case. 7415 * This has to do with intricacies of scalar precision tracking. By simulating 7416 * "exit condition" of iter_next() returning NULL first, we make sure all the 7417 * relevant precision marks *that will be set **after** we exit iterator loop* 7418 * are propagated backwards to common parent state of NULL and non-NULL 7419 * branches. Thanks to that, state equivalence checks done later in forked 7420 * state, when reaching iter_next() for ACTIVE iterator, can assume that 7421 * precision marks are finalized and won't change. Because simulating another 7422 * ACTIVE iterator iteration won't change them (because given same input 7423 * states we'll end up with exactly same output states which we are currently 7424 * comparing; and verification after the loop already propagated back what 7425 * needs to be **additionally** tracked as precise). It's subtle, grok 7426 * precision tracking for more intuitive understanding. 7427 */ 7428 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 7429 struct bpf_kfunc_call_arg_meta *meta) 7430 { 7431 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st; 7432 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 7433 struct bpf_reg_state *cur_iter, *queued_iter; 7434 int iter_frameno = meta->iter.frameno; 7435 int iter_spi = meta->iter.spi; 7436 7437 BTF_TYPE_EMIT(struct bpf_iter); 7438 7439 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7440 7441 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 7442 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 7443 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 7444 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 7445 return -EFAULT; 7446 } 7447 7448 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 7449 /* branch out active iter state */ 7450 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 7451 if (!queued_st) 7452 return -ENOMEM; 7453 7454 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7455 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 7456 queued_iter->iter.depth++; 7457 7458 queued_fr = queued_st->frame[queued_st->curframe]; 7459 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 7460 } 7461 7462 /* switch to DRAINED state, but keep the depth unchanged */ 7463 /* mark current iter state as drained and assume returned NULL */ 7464 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 7465 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]); 7466 7467 return 0; 7468 } 7469 7470 static bool arg_type_is_mem_size(enum bpf_arg_type type) 7471 { 7472 return type == ARG_CONST_SIZE || 7473 type == ARG_CONST_SIZE_OR_ZERO; 7474 } 7475 7476 static bool arg_type_is_release(enum bpf_arg_type type) 7477 { 7478 return type & OBJ_RELEASE; 7479 } 7480 7481 static bool arg_type_is_dynptr(enum bpf_arg_type type) 7482 { 7483 return base_type(type) == ARG_PTR_TO_DYNPTR; 7484 } 7485 7486 static int int_ptr_type_to_size(enum bpf_arg_type type) 7487 { 7488 if (type == ARG_PTR_TO_INT) 7489 return sizeof(u32); 7490 else if (type == ARG_PTR_TO_LONG) 7491 return sizeof(u64); 7492 7493 return -EINVAL; 7494 } 7495 7496 static int resolve_map_arg_type(struct bpf_verifier_env *env, 7497 const struct bpf_call_arg_meta *meta, 7498 enum bpf_arg_type *arg_type) 7499 { 7500 if (!meta->map_ptr) { 7501 /* kernel subsystem misconfigured verifier */ 7502 verbose(env, "invalid map_ptr to access map->type\n"); 7503 return -EACCES; 7504 } 7505 7506 switch (meta->map_ptr->map_type) { 7507 case BPF_MAP_TYPE_SOCKMAP: 7508 case BPF_MAP_TYPE_SOCKHASH: 7509 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 7510 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 7511 } else { 7512 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 7513 return -EINVAL; 7514 } 7515 break; 7516 case BPF_MAP_TYPE_BLOOM_FILTER: 7517 if (meta->func_id == BPF_FUNC_map_peek_elem) 7518 *arg_type = ARG_PTR_TO_MAP_VALUE; 7519 break; 7520 default: 7521 break; 7522 } 7523 return 0; 7524 } 7525 7526 struct bpf_reg_types { 7527 const enum bpf_reg_type types[10]; 7528 u32 *btf_id; 7529 }; 7530 7531 static const struct bpf_reg_types sock_types = { 7532 .types = { 7533 PTR_TO_SOCK_COMMON, 7534 PTR_TO_SOCKET, 7535 PTR_TO_TCP_SOCK, 7536 PTR_TO_XDP_SOCK, 7537 }, 7538 }; 7539 7540 #ifdef CONFIG_NET 7541 static const struct bpf_reg_types btf_id_sock_common_types = { 7542 .types = { 7543 PTR_TO_SOCK_COMMON, 7544 PTR_TO_SOCKET, 7545 PTR_TO_TCP_SOCK, 7546 PTR_TO_XDP_SOCK, 7547 PTR_TO_BTF_ID, 7548 PTR_TO_BTF_ID | PTR_TRUSTED, 7549 }, 7550 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 7551 }; 7552 #endif 7553 7554 static const struct bpf_reg_types mem_types = { 7555 .types = { 7556 PTR_TO_STACK, 7557 PTR_TO_PACKET, 7558 PTR_TO_PACKET_META, 7559 PTR_TO_MAP_KEY, 7560 PTR_TO_MAP_VALUE, 7561 PTR_TO_MEM, 7562 PTR_TO_MEM | MEM_RINGBUF, 7563 PTR_TO_BUF, 7564 PTR_TO_BTF_ID | PTR_TRUSTED, 7565 }, 7566 }; 7567 7568 static const struct bpf_reg_types int_ptr_types = { 7569 .types = { 7570 PTR_TO_STACK, 7571 PTR_TO_PACKET, 7572 PTR_TO_PACKET_META, 7573 PTR_TO_MAP_KEY, 7574 PTR_TO_MAP_VALUE, 7575 }, 7576 }; 7577 7578 static const struct bpf_reg_types spin_lock_types = { 7579 .types = { 7580 PTR_TO_MAP_VALUE, 7581 PTR_TO_BTF_ID | MEM_ALLOC, 7582 } 7583 }; 7584 7585 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 7586 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 7587 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 7588 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 7589 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 7590 static const struct bpf_reg_types btf_ptr_types = { 7591 .types = { 7592 PTR_TO_BTF_ID, 7593 PTR_TO_BTF_ID | PTR_TRUSTED, 7594 PTR_TO_BTF_ID | MEM_RCU, 7595 }, 7596 }; 7597 static const struct bpf_reg_types percpu_btf_ptr_types = { 7598 .types = { 7599 PTR_TO_BTF_ID | MEM_PERCPU, 7600 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 7601 } 7602 }; 7603 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 7604 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 7605 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 7606 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 7607 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 7608 static const struct bpf_reg_types dynptr_types = { 7609 .types = { 7610 PTR_TO_STACK, 7611 CONST_PTR_TO_DYNPTR, 7612 } 7613 }; 7614 7615 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 7616 [ARG_PTR_TO_MAP_KEY] = &mem_types, 7617 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 7618 [ARG_CONST_SIZE] = &scalar_types, 7619 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 7620 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 7621 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 7622 [ARG_PTR_TO_CTX] = &context_types, 7623 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 7624 #ifdef CONFIG_NET 7625 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 7626 #endif 7627 [ARG_PTR_TO_SOCKET] = &fullsock_types, 7628 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 7629 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 7630 [ARG_PTR_TO_MEM] = &mem_types, 7631 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 7632 [ARG_PTR_TO_INT] = &int_ptr_types, 7633 [ARG_PTR_TO_LONG] = &int_ptr_types, 7634 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 7635 [ARG_PTR_TO_FUNC] = &func_ptr_types, 7636 [ARG_PTR_TO_STACK] = &stack_ptr_types, 7637 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 7638 [ARG_PTR_TO_TIMER] = &timer_types, 7639 [ARG_PTR_TO_KPTR] = &kptr_types, 7640 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 7641 }; 7642 7643 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 7644 enum bpf_arg_type arg_type, 7645 const u32 *arg_btf_id, 7646 struct bpf_call_arg_meta *meta) 7647 { 7648 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7649 enum bpf_reg_type expected, type = reg->type; 7650 const struct bpf_reg_types *compatible; 7651 int i, j; 7652 7653 compatible = compatible_reg_types[base_type(arg_type)]; 7654 if (!compatible) { 7655 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 7656 return -EFAULT; 7657 } 7658 7659 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 7660 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 7661 * 7662 * Same for MAYBE_NULL: 7663 * 7664 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 7665 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 7666 * 7667 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 7668 * 7669 * Therefore we fold these flags depending on the arg_type before comparison. 7670 */ 7671 if (arg_type & MEM_RDONLY) 7672 type &= ~MEM_RDONLY; 7673 if (arg_type & PTR_MAYBE_NULL) 7674 type &= ~PTR_MAYBE_NULL; 7675 if (base_type(arg_type) == ARG_PTR_TO_MEM) 7676 type &= ~DYNPTR_TYPE_FLAG_MASK; 7677 7678 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) 7679 type &= ~MEM_ALLOC; 7680 7681 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 7682 expected = compatible->types[i]; 7683 if (expected == NOT_INIT) 7684 break; 7685 7686 if (type == expected) 7687 goto found; 7688 } 7689 7690 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 7691 for (j = 0; j + 1 < i; j++) 7692 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 7693 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 7694 return -EACCES; 7695 7696 found: 7697 if (base_type(reg->type) != PTR_TO_BTF_ID) 7698 return 0; 7699 7700 if (compatible == &mem_types) { 7701 if (!(arg_type & MEM_RDONLY)) { 7702 verbose(env, 7703 "%s() may write into memory pointed by R%d type=%s\n", 7704 func_id_name(meta->func_id), 7705 regno, reg_type_str(env, reg->type)); 7706 return -EACCES; 7707 } 7708 return 0; 7709 } 7710 7711 switch ((int)reg->type) { 7712 case PTR_TO_BTF_ID: 7713 case PTR_TO_BTF_ID | PTR_TRUSTED: 7714 case PTR_TO_BTF_ID | MEM_RCU: 7715 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 7716 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 7717 { 7718 /* For bpf_sk_release, it needs to match against first member 7719 * 'struct sock_common', hence make an exception for it. This 7720 * allows bpf_sk_release to work for multiple socket types. 7721 */ 7722 bool strict_type_match = arg_type_is_release(arg_type) && 7723 meta->func_id != BPF_FUNC_sk_release; 7724 7725 if (type_may_be_null(reg->type) && 7726 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 7727 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 7728 return -EACCES; 7729 } 7730 7731 if (!arg_btf_id) { 7732 if (!compatible->btf_id) { 7733 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 7734 return -EFAULT; 7735 } 7736 arg_btf_id = compatible->btf_id; 7737 } 7738 7739 if (meta->func_id == BPF_FUNC_kptr_xchg) { 7740 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 7741 return -EACCES; 7742 } else { 7743 if (arg_btf_id == BPF_PTR_POISON) { 7744 verbose(env, "verifier internal error:"); 7745 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 7746 regno); 7747 return -EACCES; 7748 } 7749 7750 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 7751 btf_vmlinux, *arg_btf_id, 7752 strict_type_match)) { 7753 verbose(env, "R%d is of type %s but %s is expected\n", 7754 regno, btf_type_name(reg->btf, reg->btf_id), 7755 btf_type_name(btf_vmlinux, *arg_btf_id)); 7756 return -EACCES; 7757 } 7758 } 7759 break; 7760 } 7761 case PTR_TO_BTF_ID | MEM_ALLOC: 7762 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 7763 meta->func_id != BPF_FUNC_kptr_xchg) { 7764 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 7765 return -EFAULT; 7766 } 7767 /* Handled by helper specific checks */ 7768 break; 7769 case PTR_TO_BTF_ID | MEM_PERCPU: 7770 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 7771 /* Handled by helper specific checks */ 7772 break; 7773 default: 7774 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 7775 return -EFAULT; 7776 } 7777 return 0; 7778 } 7779 7780 static struct btf_field * 7781 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 7782 { 7783 struct btf_field *field; 7784 struct btf_record *rec; 7785 7786 rec = reg_btf_record(reg); 7787 if (!rec) 7788 return NULL; 7789 7790 field = btf_record_find(rec, off, fields); 7791 if (!field) 7792 return NULL; 7793 7794 return field; 7795 } 7796 7797 int check_func_arg_reg_off(struct bpf_verifier_env *env, 7798 const struct bpf_reg_state *reg, int regno, 7799 enum bpf_arg_type arg_type) 7800 { 7801 u32 type = reg->type; 7802 7803 /* When referenced register is passed to release function, its fixed 7804 * offset must be 0. 7805 * 7806 * We will check arg_type_is_release reg has ref_obj_id when storing 7807 * meta->release_regno. 7808 */ 7809 if (arg_type_is_release(arg_type)) { 7810 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 7811 * may not directly point to the object being released, but to 7812 * dynptr pointing to such object, which might be at some offset 7813 * on the stack. In that case, we simply to fallback to the 7814 * default handling. 7815 */ 7816 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 7817 return 0; 7818 7819 if ((type_is_ptr_alloc_obj(type) || type_is_non_owning_ref(type)) && reg->off) { 7820 if (reg_find_field_offset(reg, reg->off, BPF_GRAPH_NODE_OR_ROOT)) 7821 return __check_ptr_off_reg(env, reg, regno, true); 7822 7823 verbose(env, "R%d must have zero offset when passed to release func\n", 7824 regno); 7825 verbose(env, "No graph node or root found at R%d type:%s off:%d\n", regno, 7826 btf_type_name(reg->btf, reg->btf_id), reg->off); 7827 return -EINVAL; 7828 } 7829 7830 /* Doing check_ptr_off_reg check for the offset will catch this 7831 * because fixed_off_ok is false, but checking here allows us 7832 * to give the user a better error message. 7833 */ 7834 if (reg->off) { 7835 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 7836 regno); 7837 return -EINVAL; 7838 } 7839 return __check_ptr_off_reg(env, reg, regno, false); 7840 } 7841 7842 switch (type) { 7843 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 7844 case PTR_TO_STACK: 7845 case PTR_TO_PACKET: 7846 case PTR_TO_PACKET_META: 7847 case PTR_TO_MAP_KEY: 7848 case PTR_TO_MAP_VALUE: 7849 case PTR_TO_MEM: 7850 case PTR_TO_MEM | MEM_RDONLY: 7851 case PTR_TO_MEM | MEM_RINGBUF: 7852 case PTR_TO_BUF: 7853 case PTR_TO_BUF | MEM_RDONLY: 7854 case SCALAR_VALUE: 7855 return 0; 7856 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 7857 * fixed offset. 7858 */ 7859 case PTR_TO_BTF_ID: 7860 case PTR_TO_BTF_ID | MEM_ALLOC: 7861 case PTR_TO_BTF_ID | PTR_TRUSTED: 7862 case PTR_TO_BTF_ID | MEM_RCU: 7863 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 7864 /* When referenced PTR_TO_BTF_ID is passed to release function, 7865 * its fixed offset must be 0. In the other cases, fixed offset 7866 * can be non-zero. This was already checked above. So pass 7867 * fixed_off_ok as true to allow fixed offset for all other 7868 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 7869 * still need to do checks instead of returning. 7870 */ 7871 return __check_ptr_off_reg(env, reg, regno, true); 7872 default: 7873 return __check_ptr_off_reg(env, reg, regno, false); 7874 } 7875 } 7876 7877 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 7878 const struct bpf_func_proto *fn, 7879 struct bpf_reg_state *regs) 7880 { 7881 struct bpf_reg_state *state = NULL; 7882 int i; 7883 7884 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 7885 if (arg_type_is_dynptr(fn->arg_type[i])) { 7886 if (state) { 7887 verbose(env, "verifier internal error: multiple dynptr args\n"); 7888 return NULL; 7889 } 7890 state = ®s[BPF_REG_1 + i]; 7891 } 7892 7893 if (!state) 7894 verbose(env, "verifier internal error: no dynptr arg found\n"); 7895 7896 return state; 7897 } 7898 7899 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 7900 { 7901 struct bpf_func_state *state = func(env, reg); 7902 int spi; 7903 7904 if (reg->type == CONST_PTR_TO_DYNPTR) 7905 return reg->id; 7906 spi = dynptr_get_spi(env, reg); 7907 if (spi < 0) 7908 return spi; 7909 return state->stack[spi].spilled_ptr.id; 7910 } 7911 7912 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 7913 { 7914 struct bpf_func_state *state = func(env, reg); 7915 int spi; 7916 7917 if (reg->type == CONST_PTR_TO_DYNPTR) 7918 return reg->ref_obj_id; 7919 spi = dynptr_get_spi(env, reg); 7920 if (spi < 0) 7921 return spi; 7922 return state->stack[spi].spilled_ptr.ref_obj_id; 7923 } 7924 7925 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 7926 struct bpf_reg_state *reg) 7927 { 7928 struct bpf_func_state *state = func(env, reg); 7929 int spi; 7930 7931 if (reg->type == CONST_PTR_TO_DYNPTR) 7932 return reg->dynptr.type; 7933 7934 spi = __get_spi(reg->off); 7935 if (spi < 0) { 7936 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 7937 return BPF_DYNPTR_TYPE_INVALID; 7938 } 7939 7940 return state->stack[spi].spilled_ptr.dynptr.type; 7941 } 7942 7943 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 7944 struct bpf_call_arg_meta *meta, 7945 const struct bpf_func_proto *fn, 7946 int insn_idx) 7947 { 7948 u32 regno = BPF_REG_1 + arg; 7949 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7950 enum bpf_arg_type arg_type = fn->arg_type[arg]; 7951 enum bpf_reg_type type = reg->type; 7952 u32 *arg_btf_id = NULL; 7953 int err = 0; 7954 7955 if (arg_type == ARG_DONTCARE) 7956 return 0; 7957 7958 err = check_reg_arg(env, regno, SRC_OP); 7959 if (err) 7960 return err; 7961 7962 if (arg_type == ARG_ANYTHING) { 7963 if (is_pointer_value(env, regno)) { 7964 verbose(env, "R%d leaks addr into helper function\n", 7965 regno); 7966 return -EACCES; 7967 } 7968 return 0; 7969 } 7970 7971 if (type_is_pkt_pointer(type) && 7972 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 7973 verbose(env, "helper access to the packet is not allowed\n"); 7974 return -EACCES; 7975 } 7976 7977 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 7978 err = resolve_map_arg_type(env, meta, &arg_type); 7979 if (err) 7980 return err; 7981 } 7982 7983 if (register_is_null(reg) && type_may_be_null(arg_type)) 7984 /* A NULL register has a SCALAR_VALUE type, so skip 7985 * type checking. 7986 */ 7987 goto skip_type_check; 7988 7989 /* arg_btf_id and arg_size are in a union. */ 7990 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 7991 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 7992 arg_btf_id = fn->arg_btf_id[arg]; 7993 7994 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 7995 if (err) 7996 return err; 7997 7998 err = check_func_arg_reg_off(env, reg, regno, arg_type); 7999 if (err) 8000 return err; 8001 8002 skip_type_check: 8003 if (arg_type_is_release(arg_type)) { 8004 if (arg_type_is_dynptr(arg_type)) { 8005 struct bpf_func_state *state = func(env, reg); 8006 int spi; 8007 8008 /* Only dynptr created on stack can be released, thus 8009 * the get_spi and stack state checks for spilled_ptr 8010 * should only be done before process_dynptr_func for 8011 * PTR_TO_STACK. 8012 */ 8013 if (reg->type == PTR_TO_STACK) { 8014 spi = dynptr_get_spi(env, reg); 8015 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 8016 verbose(env, "arg %d is an unacquired reference\n", regno); 8017 return -EINVAL; 8018 } 8019 } else { 8020 verbose(env, "cannot release unowned const bpf_dynptr\n"); 8021 return -EINVAL; 8022 } 8023 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 8024 verbose(env, "R%d must be referenced when passed to release function\n", 8025 regno); 8026 return -EINVAL; 8027 } 8028 if (meta->release_regno) { 8029 verbose(env, "verifier internal error: more than one release argument\n"); 8030 return -EFAULT; 8031 } 8032 meta->release_regno = regno; 8033 } 8034 8035 if (reg->ref_obj_id) { 8036 if (meta->ref_obj_id) { 8037 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8038 regno, reg->ref_obj_id, 8039 meta->ref_obj_id); 8040 return -EFAULT; 8041 } 8042 meta->ref_obj_id = reg->ref_obj_id; 8043 } 8044 8045 switch (base_type(arg_type)) { 8046 case ARG_CONST_MAP_PTR: 8047 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 8048 if (meta->map_ptr) { 8049 /* Use map_uid (which is unique id of inner map) to reject: 8050 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 8051 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 8052 * if (inner_map1 && inner_map2) { 8053 * timer = bpf_map_lookup_elem(inner_map1); 8054 * if (timer) 8055 * // mismatch would have been allowed 8056 * bpf_timer_init(timer, inner_map2); 8057 * } 8058 * 8059 * Comparing map_ptr is enough to distinguish normal and outer maps. 8060 */ 8061 if (meta->map_ptr != reg->map_ptr || 8062 meta->map_uid != reg->map_uid) { 8063 verbose(env, 8064 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 8065 meta->map_uid, reg->map_uid); 8066 return -EINVAL; 8067 } 8068 } 8069 meta->map_ptr = reg->map_ptr; 8070 meta->map_uid = reg->map_uid; 8071 break; 8072 case ARG_PTR_TO_MAP_KEY: 8073 /* bpf_map_xxx(..., map_ptr, ..., key) call: 8074 * check that [key, key + map->key_size) are within 8075 * stack limits and initialized 8076 */ 8077 if (!meta->map_ptr) { 8078 /* in function declaration map_ptr must come before 8079 * map_key, so that it's verified and known before 8080 * we have to check map_key here. Otherwise it means 8081 * that kernel subsystem misconfigured verifier 8082 */ 8083 verbose(env, "invalid map_ptr to access map->key\n"); 8084 return -EACCES; 8085 } 8086 err = check_helper_mem_access(env, regno, 8087 meta->map_ptr->key_size, false, 8088 NULL); 8089 break; 8090 case ARG_PTR_TO_MAP_VALUE: 8091 if (type_may_be_null(arg_type) && register_is_null(reg)) 8092 return 0; 8093 8094 /* bpf_map_xxx(..., map_ptr, ..., value) call: 8095 * check [value, value + map->value_size) validity 8096 */ 8097 if (!meta->map_ptr) { 8098 /* kernel subsystem misconfigured verifier */ 8099 verbose(env, "invalid map_ptr to access map->value\n"); 8100 return -EACCES; 8101 } 8102 meta->raw_mode = arg_type & MEM_UNINIT; 8103 err = check_helper_mem_access(env, regno, 8104 meta->map_ptr->value_size, false, 8105 meta); 8106 break; 8107 case ARG_PTR_TO_PERCPU_BTF_ID: 8108 if (!reg->btf_id) { 8109 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 8110 return -EACCES; 8111 } 8112 meta->ret_btf = reg->btf; 8113 meta->ret_btf_id = reg->btf_id; 8114 break; 8115 case ARG_PTR_TO_SPIN_LOCK: 8116 if (in_rbtree_lock_required_cb(env)) { 8117 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 8118 return -EACCES; 8119 } 8120 if (meta->func_id == BPF_FUNC_spin_lock) { 8121 err = process_spin_lock(env, regno, true); 8122 if (err) 8123 return err; 8124 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 8125 err = process_spin_lock(env, regno, false); 8126 if (err) 8127 return err; 8128 } else { 8129 verbose(env, "verifier internal error\n"); 8130 return -EFAULT; 8131 } 8132 break; 8133 case ARG_PTR_TO_TIMER: 8134 err = process_timer_func(env, regno, meta); 8135 if (err) 8136 return err; 8137 break; 8138 case ARG_PTR_TO_FUNC: 8139 meta->subprogno = reg->subprogno; 8140 break; 8141 case ARG_PTR_TO_MEM: 8142 /* The access to this pointer is only checked when we hit the 8143 * next is_mem_size argument below. 8144 */ 8145 meta->raw_mode = arg_type & MEM_UNINIT; 8146 if (arg_type & MEM_FIXED_SIZE) { 8147 err = check_helper_mem_access(env, regno, 8148 fn->arg_size[arg], false, 8149 meta); 8150 } 8151 break; 8152 case ARG_CONST_SIZE: 8153 err = check_mem_size_reg(env, reg, regno, false, meta); 8154 break; 8155 case ARG_CONST_SIZE_OR_ZERO: 8156 err = check_mem_size_reg(env, reg, regno, true, meta); 8157 break; 8158 case ARG_PTR_TO_DYNPTR: 8159 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 8160 if (err) 8161 return err; 8162 break; 8163 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 8164 if (!tnum_is_const(reg->var_off)) { 8165 verbose(env, "R%d is not a known constant'\n", 8166 regno); 8167 return -EACCES; 8168 } 8169 meta->mem_size = reg->var_off.value; 8170 err = mark_chain_precision(env, regno); 8171 if (err) 8172 return err; 8173 break; 8174 case ARG_PTR_TO_INT: 8175 case ARG_PTR_TO_LONG: 8176 { 8177 int size = int_ptr_type_to_size(arg_type); 8178 8179 err = check_helper_mem_access(env, regno, size, false, meta); 8180 if (err) 8181 return err; 8182 err = check_ptr_alignment(env, reg, 0, size, true); 8183 break; 8184 } 8185 case ARG_PTR_TO_CONST_STR: 8186 { 8187 struct bpf_map *map = reg->map_ptr; 8188 int map_off; 8189 u64 map_addr; 8190 char *str_ptr; 8191 8192 if (!bpf_map_is_rdonly(map)) { 8193 verbose(env, "R%d does not point to a readonly map'\n", regno); 8194 return -EACCES; 8195 } 8196 8197 if (!tnum_is_const(reg->var_off)) { 8198 verbose(env, "R%d is not a constant address'\n", regno); 8199 return -EACCES; 8200 } 8201 8202 if (!map->ops->map_direct_value_addr) { 8203 verbose(env, "no direct value access support for this map type\n"); 8204 return -EACCES; 8205 } 8206 8207 err = check_map_access(env, regno, reg->off, 8208 map->value_size - reg->off, false, 8209 ACCESS_HELPER); 8210 if (err) 8211 return err; 8212 8213 map_off = reg->off + reg->var_off.value; 8214 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 8215 if (err) { 8216 verbose(env, "direct value access on string failed\n"); 8217 return err; 8218 } 8219 8220 str_ptr = (char *)(long)(map_addr); 8221 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 8222 verbose(env, "string is not zero-terminated\n"); 8223 return -EINVAL; 8224 } 8225 break; 8226 } 8227 case ARG_PTR_TO_KPTR: 8228 err = process_kptr_func(env, regno, meta); 8229 if (err) 8230 return err; 8231 break; 8232 } 8233 8234 return err; 8235 } 8236 8237 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 8238 { 8239 enum bpf_attach_type eatype = env->prog->expected_attach_type; 8240 enum bpf_prog_type type = resolve_prog_type(env->prog); 8241 8242 if (func_id != BPF_FUNC_map_update_elem) 8243 return false; 8244 8245 /* It's not possible to get access to a locked struct sock in these 8246 * contexts, so updating is safe. 8247 */ 8248 switch (type) { 8249 case BPF_PROG_TYPE_TRACING: 8250 if (eatype == BPF_TRACE_ITER) 8251 return true; 8252 break; 8253 case BPF_PROG_TYPE_SOCKET_FILTER: 8254 case BPF_PROG_TYPE_SCHED_CLS: 8255 case BPF_PROG_TYPE_SCHED_ACT: 8256 case BPF_PROG_TYPE_XDP: 8257 case BPF_PROG_TYPE_SK_REUSEPORT: 8258 case BPF_PROG_TYPE_FLOW_DISSECTOR: 8259 case BPF_PROG_TYPE_SK_LOOKUP: 8260 return true; 8261 default: 8262 break; 8263 } 8264 8265 verbose(env, "cannot update sockmap in this context\n"); 8266 return false; 8267 } 8268 8269 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 8270 { 8271 return env->prog->jit_requested && 8272 bpf_jit_supports_subprog_tailcalls(); 8273 } 8274 8275 static int check_map_func_compatibility(struct bpf_verifier_env *env, 8276 struct bpf_map *map, int func_id) 8277 { 8278 if (!map) 8279 return 0; 8280 8281 /* We need a two way check, first is from map perspective ... */ 8282 switch (map->map_type) { 8283 case BPF_MAP_TYPE_PROG_ARRAY: 8284 if (func_id != BPF_FUNC_tail_call) 8285 goto error; 8286 break; 8287 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 8288 if (func_id != BPF_FUNC_perf_event_read && 8289 func_id != BPF_FUNC_perf_event_output && 8290 func_id != BPF_FUNC_skb_output && 8291 func_id != BPF_FUNC_perf_event_read_value && 8292 func_id != BPF_FUNC_xdp_output) 8293 goto error; 8294 break; 8295 case BPF_MAP_TYPE_RINGBUF: 8296 if (func_id != BPF_FUNC_ringbuf_output && 8297 func_id != BPF_FUNC_ringbuf_reserve && 8298 func_id != BPF_FUNC_ringbuf_query && 8299 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 8300 func_id != BPF_FUNC_ringbuf_submit_dynptr && 8301 func_id != BPF_FUNC_ringbuf_discard_dynptr) 8302 goto error; 8303 break; 8304 case BPF_MAP_TYPE_USER_RINGBUF: 8305 if (func_id != BPF_FUNC_user_ringbuf_drain) 8306 goto error; 8307 break; 8308 case BPF_MAP_TYPE_STACK_TRACE: 8309 if (func_id != BPF_FUNC_get_stackid) 8310 goto error; 8311 break; 8312 case BPF_MAP_TYPE_CGROUP_ARRAY: 8313 if (func_id != BPF_FUNC_skb_under_cgroup && 8314 func_id != BPF_FUNC_current_task_under_cgroup) 8315 goto error; 8316 break; 8317 case BPF_MAP_TYPE_CGROUP_STORAGE: 8318 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 8319 if (func_id != BPF_FUNC_get_local_storage) 8320 goto error; 8321 break; 8322 case BPF_MAP_TYPE_DEVMAP: 8323 case BPF_MAP_TYPE_DEVMAP_HASH: 8324 if (func_id != BPF_FUNC_redirect_map && 8325 func_id != BPF_FUNC_map_lookup_elem) 8326 goto error; 8327 break; 8328 /* Restrict bpf side of cpumap and xskmap, open when use-cases 8329 * appear. 8330 */ 8331 case BPF_MAP_TYPE_CPUMAP: 8332 if (func_id != BPF_FUNC_redirect_map) 8333 goto error; 8334 break; 8335 case BPF_MAP_TYPE_XSKMAP: 8336 if (func_id != BPF_FUNC_redirect_map && 8337 func_id != BPF_FUNC_map_lookup_elem) 8338 goto error; 8339 break; 8340 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 8341 case BPF_MAP_TYPE_HASH_OF_MAPS: 8342 if (func_id != BPF_FUNC_map_lookup_elem) 8343 goto error; 8344 break; 8345 case BPF_MAP_TYPE_SOCKMAP: 8346 if (func_id != BPF_FUNC_sk_redirect_map && 8347 func_id != BPF_FUNC_sock_map_update && 8348 func_id != BPF_FUNC_map_delete_elem && 8349 func_id != BPF_FUNC_msg_redirect_map && 8350 func_id != BPF_FUNC_sk_select_reuseport && 8351 func_id != BPF_FUNC_map_lookup_elem && 8352 !may_update_sockmap(env, func_id)) 8353 goto error; 8354 break; 8355 case BPF_MAP_TYPE_SOCKHASH: 8356 if (func_id != BPF_FUNC_sk_redirect_hash && 8357 func_id != BPF_FUNC_sock_hash_update && 8358 func_id != BPF_FUNC_map_delete_elem && 8359 func_id != BPF_FUNC_msg_redirect_hash && 8360 func_id != BPF_FUNC_sk_select_reuseport && 8361 func_id != BPF_FUNC_map_lookup_elem && 8362 !may_update_sockmap(env, func_id)) 8363 goto error; 8364 break; 8365 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 8366 if (func_id != BPF_FUNC_sk_select_reuseport) 8367 goto error; 8368 break; 8369 case BPF_MAP_TYPE_QUEUE: 8370 case BPF_MAP_TYPE_STACK: 8371 if (func_id != BPF_FUNC_map_peek_elem && 8372 func_id != BPF_FUNC_map_pop_elem && 8373 func_id != BPF_FUNC_map_push_elem) 8374 goto error; 8375 break; 8376 case BPF_MAP_TYPE_SK_STORAGE: 8377 if (func_id != BPF_FUNC_sk_storage_get && 8378 func_id != BPF_FUNC_sk_storage_delete && 8379 func_id != BPF_FUNC_kptr_xchg) 8380 goto error; 8381 break; 8382 case BPF_MAP_TYPE_INODE_STORAGE: 8383 if (func_id != BPF_FUNC_inode_storage_get && 8384 func_id != BPF_FUNC_inode_storage_delete && 8385 func_id != BPF_FUNC_kptr_xchg) 8386 goto error; 8387 break; 8388 case BPF_MAP_TYPE_TASK_STORAGE: 8389 if (func_id != BPF_FUNC_task_storage_get && 8390 func_id != BPF_FUNC_task_storage_delete && 8391 func_id != BPF_FUNC_kptr_xchg) 8392 goto error; 8393 break; 8394 case BPF_MAP_TYPE_CGRP_STORAGE: 8395 if (func_id != BPF_FUNC_cgrp_storage_get && 8396 func_id != BPF_FUNC_cgrp_storage_delete && 8397 func_id != BPF_FUNC_kptr_xchg) 8398 goto error; 8399 break; 8400 case BPF_MAP_TYPE_BLOOM_FILTER: 8401 if (func_id != BPF_FUNC_map_peek_elem && 8402 func_id != BPF_FUNC_map_push_elem) 8403 goto error; 8404 break; 8405 default: 8406 break; 8407 } 8408 8409 /* ... and second from the function itself. */ 8410 switch (func_id) { 8411 case BPF_FUNC_tail_call: 8412 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 8413 goto error; 8414 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 8415 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 8416 return -EINVAL; 8417 } 8418 break; 8419 case BPF_FUNC_perf_event_read: 8420 case BPF_FUNC_perf_event_output: 8421 case BPF_FUNC_perf_event_read_value: 8422 case BPF_FUNC_skb_output: 8423 case BPF_FUNC_xdp_output: 8424 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 8425 goto error; 8426 break; 8427 case BPF_FUNC_ringbuf_output: 8428 case BPF_FUNC_ringbuf_reserve: 8429 case BPF_FUNC_ringbuf_query: 8430 case BPF_FUNC_ringbuf_reserve_dynptr: 8431 case BPF_FUNC_ringbuf_submit_dynptr: 8432 case BPF_FUNC_ringbuf_discard_dynptr: 8433 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 8434 goto error; 8435 break; 8436 case BPF_FUNC_user_ringbuf_drain: 8437 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 8438 goto error; 8439 break; 8440 case BPF_FUNC_get_stackid: 8441 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 8442 goto error; 8443 break; 8444 case BPF_FUNC_current_task_under_cgroup: 8445 case BPF_FUNC_skb_under_cgroup: 8446 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 8447 goto error; 8448 break; 8449 case BPF_FUNC_redirect_map: 8450 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 8451 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 8452 map->map_type != BPF_MAP_TYPE_CPUMAP && 8453 map->map_type != BPF_MAP_TYPE_XSKMAP) 8454 goto error; 8455 break; 8456 case BPF_FUNC_sk_redirect_map: 8457 case BPF_FUNC_msg_redirect_map: 8458 case BPF_FUNC_sock_map_update: 8459 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 8460 goto error; 8461 break; 8462 case BPF_FUNC_sk_redirect_hash: 8463 case BPF_FUNC_msg_redirect_hash: 8464 case BPF_FUNC_sock_hash_update: 8465 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 8466 goto error; 8467 break; 8468 case BPF_FUNC_get_local_storage: 8469 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 8470 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 8471 goto error; 8472 break; 8473 case BPF_FUNC_sk_select_reuseport: 8474 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 8475 map->map_type != BPF_MAP_TYPE_SOCKMAP && 8476 map->map_type != BPF_MAP_TYPE_SOCKHASH) 8477 goto error; 8478 break; 8479 case BPF_FUNC_map_pop_elem: 8480 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8481 map->map_type != BPF_MAP_TYPE_STACK) 8482 goto error; 8483 break; 8484 case BPF_FUNC_map_peek_elem: 8485 case BPF_FUNC_map_push_elem: 8486 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8487 map->map_type != BPF_MAP_TYPE_STACK && 8488 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 8489 goto error; 8490 break; 8491 case BPF_FUNC_map_lookup_percpu_elem: 8492 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 8493 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8494 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 8495 goto error; 8496 break; 8497 case BPF_FUNC_sk_storage_get: 8498 case BPF_FUNC_sk_storage_delete: 8499 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 8500 goto error; 8501 break; 8502 case BPF_FUNC_inode_storage_get: 8503 case BPF_FUNC_inode_storage_delete: 8504 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 8505 goto error; 8506 break; 8507 case BPF_FUNC_task_storage_get: 8508 case BPF_FUNC_task_storage_delete: 8509 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 8510 goto error; 8511 break; 8512 case BPF_FUNC_cgrp_storage_get: 8513 case BPF_FUNC_cgrp_storage_delete: 8514 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 8515 goto error; 8516 break; 8517 default: 8518 break; 8519 } 8520 8521 return 0; 8522 error: 8523 verbose(env, "cannot pass map_type %d into func %s#%d\n", 8524 map->map_type, func_id_name(func_id), func_id); 8525 return -EINVAL; 8526 } 8527 8528 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 8529 { 8530 int count = 0; 8531 8532 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 8533 count++; 8534 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 8535 count++; 8536 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 8537 count++; 8538 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 8539 count++; 8540 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 8541 count++; 8542 8543 /* We only support one arg being in raw mode at the moment, 8544 * which is sufficient for the helper functions we have 8545 * right now. 8546 */ 8547 return count <= 1; 8548 } 8549 8550 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 8551 { 8552 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 8553 bool has_size = fn->arg_size[arg] != 0; 8554 bool is_next_size = false; 8555 8556 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 8557 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 8558 8559 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 8560 return is_next_size; 8561 8562 return has_size == is_next_size || is_next_size == is_fixed; 8563 } 8564 8565 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 8566 { 8567 /* bpf_xxx(..., buf, len) call will access 'len' 8568 * bytes from memory 'buf'. Both arg types need 8569 * to be paired, so make sure there's no buggy 8570 * helper function specification. 8571 */ 8572 if (arg_type_is_mem_size(fn->arg1_type) || 8573 check_args_pair_invalid(fn, 0) || 8574 check_args_pair_invalid(fn, 1) || 8575 check_args_pair_invalid(fn, 2) || 8576 check_args_pair_invalid(fn, 3) || 8577 check_args_pair_invalid(fn, 4)) 8578 return false; 8579 8580 return true; 8581 } 8582 8583 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 8584 { 8585 int i; 8586 8587 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 8588 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 8589 return !!fn->arg_btf_id[i]; 8590 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 8591 return fn->arg_btf_id[i] == BPF_PTR_POISON; 8592 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 8593 /* arg_btf_id and arg_size are in a union. */ 8594 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 8595 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 8596 return false; 8597 } 8598 8599 return true; 8600 } 8601 8602 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 8603 { 8604 return check_raw_mode_ok(fn) && 8605 check_arg_pair_ok(fn) && 8606 check_btf_id_ok(fn) ? 0 : -EINVAL; 8607 } 8608 8609 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 8610 * are now invalid, so turn them into unknown SCALAR_VALUE. 8611 * 8612 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 8613 * since these slices point to packet data. 8614 */ 8615 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 8616 { 8617 struct bpf_func_state *state; 8618 struct bpf_reg_state *reg; 8619 8620 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 8621 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 8622 mark_reg_invalid(env, reg); 8623 })); 8624 } 8625 8626 enum { 8627 AT_PKT_END = -1, 8628 BEYOND_PKT_END = -2, 8629 }; 8630 8631 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 8632 { 8633 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8634 struct bpf_reg_state *reg = &state->regs[regn]; 8635 8636 if (reg->type != PTR_TO_PACKET) 8637 /* PTR_TO_PACKET_META is not supported yet */ 8638 return; 8639 8640 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 8641 * How far beyond pkt_end it goes is unknown. 8642 * if (!range_open) it's the case of pkt >= pkt_end 8643 * if (range_open) it's the case of pkt > pkt_end 8644 * hence this pointer is at least 1 byte bigger than pkt_end 8645 */ 8646 if (range_open) 8647 reg->range = BEYOND_PKT_END; 8648 else 8649 reg->range = AT_PKT_END; 8650 } 8651 8652 /* The pointer with the specified id has released its reference to kernel 8653 * resources. Identify all copies of the same pointer and clear the reference. 8654 */ 8655 static int release_reference(struct bpf_verifier_env *env, 8656 int ref_obj_id) 8657 { 8658 struct bpf_func_state *state; 8659 struct bpf_reg_state *reg; 8660 int err; 8661 8662 err = release_reference_state(cur_func(env), ref_obj_id); 8663 if (err) 8664 return err; 8665 8666 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 8667 if (reg->ref_obj_id == ref_obj_id) 8668 mark_reg_invalid(env, reg); 8669 })); 8670 8671 return 0; 8672 } 8673 8674 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 8675 { 8676 struct bpf_func_state *unused; 8677 struct bpf_reg_state *reg; 8678 8679 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 8680 if (type_is_non_owning_ref(reg->type)) 8681 mark_reg_invalid(env, reg); 8682 })); 8683 } 8684 8685 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 8686 struct bpf_reg_state *regs) 8687 { 8688 int i; 8689 8690 /* after the call registers r0 - r5 were scratched */ 8691 for (i = 0; i < CALLER_SAVED_REGS; i++) { 8692 mark_reg_not_init(env, regs, caller_saved[i]); 8693 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 8694 } 8695 } 8696 8697 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 8698 struct bpf_func_state *caller, 8699 struct bpf_func_state *callee, 8700 int insn_idx); 8701 8702 static int set_callee_state(struct bpf_verifier_env *env, 8703 struct bpf_func_state *caller, 8704 struct bpf_func_state *callee, int insn_idx); 8705 8706 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 8707 int *insn_idx, int subprog, 8708 set_callee_state_fn set_callee_state_cb) 8709 { 8710 struct bpf_verifier_state *state = env->cur_state; 8711 struct bpf_func_state *caller, *callee; 8712 int err; 8713 8714 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 8715 verbose(env, "the call stack of %d frames is too deep\n", 8716 state->curframe + 2); 8717 return -E2BIG; 8718 } 8719 8720 caller = state->frame[state->curframe]; 8721 if (state->frame[state->curframe + 1]) { 8722 verbose(env, "verifier bug. Frame %d already allocated\n", 8723 state->curframe + 1); 8724 return -EFAULT; 8725 } 8726 8727 err = btf_check_subprog_call(env, subprog, caller->regs); 8728 if (err == -EFAULT) 8729 return err; 8730 if (subprog_is_global(env, subprog)) { 8731 if (err) { 8732 verbose(env, "Caller passes invalid args into func#%d\n", 8733 subprog); 8734 return err; 8735 } else { 8736 if (env->log.level & BPF_LOG_LEVEL) 8737 verbose(env, 8738 "Func#%d is global and valid. Skipping.\n", 8739 subprog); 8740 clear_caller_saved_regs(env, caller->regs); 8741 8742 /* All global functions return a 64-bit SCALAR_VALUE */ 8743 mark_reg_unknown(env, caller->regs, BPF_REG_0); 8744 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 8745 8746 /* continue with next insn after call */ 8747 return 0; 8748 } 8749 } 8750 8751 /* set_callee_state is used for direct subprog calls, but we are 8752 * interested in validating only BPF helpers that can call subprogs as 8753 * callbacks 8754 */ 8755 if (set_callee_state_cb != set_callee_state) { 8756 if (bpf_pseudo_kfunc_call(insn) && 8757 !is_callback_calling_kfunc(insn->imm)) { 8758 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 8759 func_id_name(insn->imm), insn->imm); 8760 return -EFAULT; 8761 } else if (!bpf_pseudo_kfunc_call(insn) && 8762 !is_callback_calling_function(insn->imm)) { /* helper */ 8763 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 8764 func_id_name(insn->imm), insn->imm); 8765 return -EFAULT; 8766 } 8767 } 8768 8769 if (insn->code == (BPF_JMP | BPF_CALL) && 8770 insn->src_reg == 0 && 8771 insn->imm == BPF_FUNC_timer_set_callback) { 8772 struct bpf_verifier_state *async_cb; 8773 8774 /* there is no real recursion here. timer callbacks are async */ 8775 env->subprog_info[subprog].is_async_cb = true; 8776 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 8777 *insn_idx, subprog); 8778 if (!async_cb) 8779 return -EFAULT; 8780 callee = async_cb->frame[0]; 8781 callee->async_entry_cnt = caller->async_entry_cnt + 1; 8782 8783 /* Convert bpf_timer_set_callback() args into timer callback args */ 8784 err = set_callee_state_cb(env, caller, callee, *insn_idx); 8785 if (err) 8786 return err; 8787 8788 clear_caller_saved_regs(env, caller->regs); 8789 mark_reg_unknown(env, caller->regs, BPF_REG_0); 8790 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 8791 /* continue with next insn after call */ 8792 return 0; 8793 } 8794 8795 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 8796 if (!callee) 8797 return -ENOMEM; 8798 state->frame[state->curframe + 1] = callee; 8799 8800 /* callee cannot access r0, r6 - r9 for reading and has to write 8801 * into its own stack before reading from it. 8802 * callee can read/write into caller's stack 8803 */ 8804 init_func_state(env, callee, 8805 /* remember the callsite, it will be used by bpf_exit */ 8806 *insn_idx /* callsite */, 8807 state->curframe + 1 /* frameno within this callchain */, 8808 subprog /* subprog number within this prog */); 8809 8810 /* Transfer references to the callee */ 8811 err = copy_reference_state(callee, caller); 8812 if (err) 8813 goto err_out; 8814 8815 err = set_callee_state_cb(env, caller, callee, *insn_idx); 8816 if (err) 8817 goto err_out; 8818 8819 clear_caller_saved_regs(env, caller->regs); 8820 8821 /* only increment it after check_reg_arg() finished */ 8822 state->curframe++; 8823 8824 /* and go analyze first insn of the callee */ 8825 *insn_idx = env->subprog_info[subprog].start - 1; 8826 8827 if (env->log.level & BPF_LOG_LEVEL) { 8828 verbose(env, "caller:\n"); 8829 print_verifier_state(env, caller, true); 8830 verbose(env, "callee:\n"); 8831 print_verifier_state(env, callee, true); 8832 } 8833 return 0; 8834 8835 err_out: 8836 free_func_state(callee); 8837 state->frame[state->curframe + 1] = NULL; 8838 return err; 8839 } 8840 8841 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 8842 struct bpf_func_state *caller, 8843 struct bpf_func_state *callee) 8844 { 8845 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 8846 * void *callback_ctx, u64 flags); 8847 * callback_fn(struct bpf_map *map, void *key, void *value, 8848 * void *callback_ctx); 8849 */ 8850 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 8851 8852 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 8853 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 8854 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 8855 8856 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 8857 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 8858 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 8859 8860 /* pointer to stack or null */ 8861 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 8862 8863 /* unused */ 8864 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8865 return 0; 8866 } 8867 8868 static int set_callee_state(struct bpf_verifier_env *env, 8869 struct bpf_func_state *caller, 8870 struct bpf_func_state *callee, int insn_idx) 8871 { 8872 int i; 8873 8874 /* copy r1 - r5 args that callee can access. The copy includes parent 8875 * pointers, which connects us up to the liveness chain 8876 */ 8877 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 8878 callee->regs[i] = caller->regs[i]; 8879 return 0; 8880 } 8881 8882 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 8883 int *insn_idx) 8884 { 8885 int subprog, target_insn; 8886 8887 target_insn = *insn_idx + insn->imm + 1; 8888 subprog = find_subprog(env, target_insn); 8889 if (subprog < 0) { 8890 verbose(env, "verifier bug. No program starts at insn %d\n", 8891 target_insn); 8892 return -EFAULT; 8893 } 8894 8895 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 8896 } 8897 8898 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 8899 struct bpf_func_state *caller, 8900 struct bpf_func_state *callee, 8901 int insn_idx) 8902 { 8903 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 8904 struct bpf_map *map; 8905 int err; 8906 8907 if (bpf_map_ptr_poisoned(insn_aux)) { 8908 verbose(env, "tail_call abusing map_ptr\n"); 8909 return -EINVAL; 8910 } 8911 8912 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 8913 if (!map->ops->map_set_for_each_callback_args || 8914 !map->ops->map_for_each_callback) { 8915 verbose(env, "callback function not allowed for map\n"); 8916 return -ENOTSUPP; 8917 } 8918 8919 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 8920 if (err) 8921 return err; 8922 8923 callee->in_callback_fn = true; 8924 callee->callback_ret_range = tnum_range(0, 1); 8925 return 0; 8926 } 8927 8928 static int set_loop_callback_state(struct bpf_verifier_env *env, 8929 struct bpf_func_state *caller, 8930 struct bpf_func_state *callee, 8931 int insn_idx) 8932 { 8933 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 8934 * u64 flags); 8935 * callback_fn(u32 index, void *callback_ctx); 8936 */ 8937 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 8938 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 8939 8940 /* unused */ 8941 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 8942 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 8943 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8944 8945 callee->in_callback_fn = true; 8946 callee->callback_ret_range = tnum_range(0, 1); 8947 return 0; 8948 } 8949 8950 static int set_timer_callback_state(struct bpf_verifier_env *env, 8951 struct bpf_func_state *caller, 8952 struct bpf_func_state *callee, 8953 int insn_idx) 8954 { 8955 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 8956 8957 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 8958 * callback_fn(struct bpf_map *map, void *key, void *value); 8959 */ 8960 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 8961 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 8962 callee->regs[BPF_REG_1].map_ptr = map_ptr; 8963 8964 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 8965 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 8966 callee->regs[BPF_REG_2].map_ptr = map_ptr; 8967 8968 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 8969 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 8970 callee->regs[BPF_REG_3].map_ptr = map_ptr; 8971 8972 /* unused */ 8973 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 8974 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 8975 callee->in_async_callback_fn = true; 8976 callee->callback_ret_range = tnum_range(0, 1); 8977 return 0; 8978 } 8979 8980 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 8981 struct bpf_func_state *caller, 8982 struct bpf_func_state *callee, 8983 int insn_idx) 8984 { 8985 /* bpf_find_vma(struct task_struct *task, u64 addr, 8986 * void *callback_fn, void *callback_ctx, u64 flags) 8987 * (callback_fn)(struct task_struct *task, 8988 * struct vm_area_struct *vma, void *callback_ctx); 8989 */ 8990 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 8991 8992 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 8993 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 8994 callee->regs[BPF_REG_2].btf = btf_vmlinux; 8995 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 8996 8997 /* pointer to stack or null */ 8998 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 8999 9000 /* unused */ 9001 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9002 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9003 callee->in_callback_fn = true; 9004 callee->callback_ret_range = tnum_range(0, 1); 9005 return 0; 9006 } 9007 9008 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 9009 struct bpf_func_state *caller, 9010 struct bpf_func_state *callee, 9011 int insn_idx) 9012 { 9013 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 9014 * callback_ctx, u64 flags); 9015 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 9016 */ 9017 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 9018 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 9019 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9020 9021 /* unused */ 9022 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9023 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9024 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9025 9026 callee->in_callback_fn = true; 9027 callee->callback_ret_range = tnum_range(0, 1); 9028 return 0; 9029 } 9030 9031 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 9032 struct bpf_func_state *caller, 9033 struct bpf_func_state *callee, 9034 int insn_idx) 9035 { 9036 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 9037 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 9038 * 9039 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 9040 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 9041 * by this point, so look at 'root' 9042 */ 9043 struct btf_field *field; 9044 9045 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 9046 BPF_RB_ROOT); 9047 if (!field || !field->graph_root.value_btf_id) 9048 return -EFAULT; 9049 9050 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 9051 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 9052 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 9053 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 9054 9055 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9056 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9057 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9058 callee->in_callback_fn = true; 9059 callee->callback_ret_range = tnum_range(0, 1); 9060 return 0; 9061 } 9062 9063 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 9064 9065 /* Are we currently verifying the callback for a rbtree helper that must 9066 * be called with lock held? If so, no need to complain about unreleased 9067 * lock 9068 */ 9069 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 9070 { 9071 struct bpf_verifier_state *state = env->cur_state; 9072 struct bpf_insn *insn = env->prog->insnsi; 9073 struct bpf_func_state *callee; 9074 int kfunc_btf_id; 9075 9076 if (!state->curframe) 9077 return false; 9078 9079 callee = state->frame[state->curframe]; 9080 9081 if (!callee->in_callback_fn) 9082 return false; 9083 9084 kfunc_btf_id = insn[callee->callsite].imm; 9085 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 9086 } 9087 9088 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 9089 { 9090 struct bpf_verifier_state *state = env->cur_state; 9091 struct bpf_func_state *caller, *callee; 9092 struct bpf_reg_state *r0; 9093 int err; 9094 9095 callee = state->frame[state->curframe]; 9096 r0 = &callee->regs[BPF_REG_0]; 9097 if (r0->type == PTR_TO_STACK) { 9098 /* technically it's ok to return caller's stack pointer 9099 * (or caller's caller's pointer) back to the caller, 9100 * since these pointers are valid. Only current stack 9101 * pointer will be invalid as soon as function exits, 9102 * but let's be conservative 9103 */ 9104 verbose(env, "cannot return stack pointer to the caller\n"); 9105 return -EINVAL; 9106 } 9107 9108 caller = state->frame[state->curframe - 1]; 9109 if (callee->in_callback_fn) { 9110 /* enforce R0 return value range [0, 1]. */ 9111 struct tnum range = callee->callback_ret_range; 9112 9113 if (r0->type != SCALAR_VALUE) { 9114 verbose(env, "R0 not a scalar value\n"); 9115 return -EACCES; 9116 } 9117 if (!tnum_in(range, r0->var_off)) { 9118 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 9119 return -EINVAL; 9120 } 9121 } else { 9122 /* return to the caller whatever r0 had in the callee */ 9123 caller->regs[BPF_REG_0] = *r0; 9124 } 9125 9126 /* callback_fn frame should have released its own additions to parent's 9127 * reference state at this point, or check_reference_leak would 9128 * complain, hence it must be the same as the caller. There is no need 9129 * to copy it back. 9130 */ 9131 if (!callee->in_callback_fn) { 9132 /* Transfer references to the caller */ 9133 err = copy_reference_state(caller, callee); 9134 if (err) 9135 return err; 9136 } 9137 9138 *insn_idx = callee->callsite + 1; 9139 if (env->log.level & BPF_LOG_LEVEL) { 9140 verbose(env, "returning from callee:\n"); 9141 print_verifier_state(env, callee, true); 9142 verbose(env, "to caller at %d:\n", *insn_idx); 9143 print_verifier_state(env, caller, true); 9144 } 9145 /* clear everything in the callee */ 9146 free_func_state(callee); 9147 state->frame[state->curframe--] = NULL; 9148 return 0; 9149 } 9150 9151 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 9152 int func_id, 9153 struct bpf_call_arg_meta *meta) 9154 { 9155 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 9156 9157 if (ret_type != RET_INTEGER) 9158 return; 9159 9160 switch (func_id) { 9161 case BPF_FUNC_get_stack: 9162 case BPF_FUNC_get_task_stack: 9163 case BPF_FUNC_probe_read_str: 9164 case BPF_FUNC_probe_read_kernel_str: 9165 case BPF_FUNC_probe_read_user_str: 9166 ret_reg->smax_value = meta->msize_max_value; 9167 ret_reg->s32_max_value = meta->msize_max_value; 9168 ret_reg->smin_value = -MAX_ERRNO; 9169 ret_reg->s32_min_value = -MAX_ERRNO; 9170 reg_bounds_sync(ret_reg); 9171 break; 9172 case BPF_FUNC_get_smp_processor_id: 9173 ret_reg->umax_value = nr_cpu_ids - 1; 9174 ret_reg->u32_max_value = nr_cpu_ids - 1; 9175 ret_reg->smax_value = nr_cpu_ids - 1; 9176 ret_reg->s32_max_value = nr_cpu_ids - 1; 9177 ret_reg->umin_value = 0; 9178 ret_reg->u32_min_value = 0; 9179 ret_reg->smin_value = 0; 9180 ret_reg->s32_min_value = 0; 9181 reg_bounds_sync(ret_reg); 9182 break; 9183 } 9184 } 9185 9186 static int 9187 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9188 int func_id, int insn_idx) 9189 { 9190 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9191 struct bpf_map *map = meta->map_ptr; 9192 9193 if (func_id != BPF_FUNC_tail_call && 9194 func_id != BPF_FUNC_map_lookup_elem && 9195 func_id != BPF_FUNC_map_update_elem && 9196 func_id != BPF_FUNC_map_delete_elem && 9197 func_id != BPF_FUNC_map_push_elem && 9198 func_id != BPF_FUNC_map_pop_elem && 9199 func_id != BPF_FUNC_map_peek_elem && 9200 func_id != BPF_FUNC_for_each_map_elem && 9201 func_id != BPF_FUNC_redirect_map && 9202 func_id != BPF_FUNC_map_lookup_percpu_elem) 9203 return 0; 9204 9205 if (map == NULL) { 9206 verbose(env, "kernel subsystem misconfigured verifier\n"); 9207 return -EINVAL; 9208 } 9209 9210 /* In case of read-only, some additional restrictions 9211 * need to be applied in order to prevent altering the 9212 * state of the map from program side. 9213 */ 9214 if ((map->map_flags & BPF_F_RDONLY_PROG) && 9215 (func_id == BPF_FUNC_map_delete_elem || 9216 func_id == BPF_FUNC_map_update_elem || 9217 func_id == BPF_FUNC_map_push_elem || 9218 func_id == BPF_FUNC_map_pop_elem)) { 9219 verbose(env, "write into map forbidden\n"); 9220 return -EACCES; 9221 } 9222 9223 if (!BPF_MAP_PTR(aux->map_ptr_state)) 9224 bpf_map_ptr_store(aux, meta->map_ptr, 9225 !meta->map_ptr->bypass_spec_v1); 9226 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 9227 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 9228 !meta->map_ptr->bypass_spec_v1); 9229 return 0; 9230 } 9231 9232 static int 9233 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9234 int func_id, int insn_idx) 9235 { 9236 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9237 struct bpf_reg_state *regs = cur_regs(env), *reg; 9238 struct bpf_map *map = meta->map_ptr; 9239 u64 val, max; 9240 int err; 9241 9242 if (func_id != BPF_FUNC_tail_call) 9243 return 0; 9244 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 9245 verbose(env, "kernel subsystem misconfigured verifier\n"); 9246 return -EINVAL; 9247 } 9248 9249 reg = ®s[BPF_REG_3]; 9250 val = reg->var_off.value; 9251 max = map->max_entries; 9252 9253 if (!(register_is_const(reg) && val < max)) { 9254 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9255 return 0; 9256 } 9257 9258 err = mark_chain_precision(env, BPF_REG_3); 9259 if (err) 9260 return err; 9261 if (bpf_map_key_unseen(aux)) 9262 bpf_map_key_store(aux, val); 9263 else if (!bpf_map_key_poisoned(aux) && 9264 bpf_map_key_immediate(aux) != val) 9265 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9266 return 0; 9267 } 9268 9269 static int check_reference_leak(struct bpf_verifier_env *env) 9270 { 9271 struct bpf_func_state *state = cur_func(env); 9272 bool refs_lingering = false; 9273 int i; 9274 9275 if (state->frameno && !state->in_callback_fn) 9276 return 0; 9277 9278 for (i = 0; i < state->acquired_refs; i++) { 9279 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 9280 continue; 9281 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 9282 state->refs[i].id, state->refs[i].insn_idx); 9283 refs_lingering = true; 9284 } 9285 return refs_lingering ? -EINVAL : 0; 9286 } 9287 9288 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 9289 struct bpf_reg_state *regs) 9290 { 9291 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 9292 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 9293 struct bpf_map *fmt_map = fmt_reg->map_ptr; 9294 struct bpf_bprintf_data data = {}; 9295 int err, fmt_map_off, num_args; 9296 u64 fmt_addr; 9297 char *fmt; 9298 9299 /* data must be an array of u64 */ 9300 if (data_len_reg->var_off.value % 8) 9301 return -EINVAL; 9302 num_args = data_len_reg->var_off.value / 8; 9303 9304 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 9305 * and map_direct_value_addr is set. 9306 */ 9307 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 9308 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 9309 fmt_map_off); 9310 if (err) { 9311 verbose(env, "verifier bug\n"); 9312 return -EFAULT; 9313 } 9314 fmt = (char *)(long)fmt_addr + fmt_map_off; 9315 9316 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 9317 * can focus on validating the format specifiers. 9318 */ 9319 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 9320 if (err < 0) 9321 verbose(env, "Invalid format string\n"); 9322 9323 return err; 9324 } 9325 9326 static int check_get_func_ip(struct bpf_verifier_env *env) 9327 { 9328 enum bpf_prog_type type = resolve_prog_type(env->prog); 9329 int func_id = BPF_FUNC_get_func_ip; 9330 9331 if (type == BPF_PROG_TYPE_TRACING) { 9332 if (!bpf_prog_has_trampoline(env->prog)) { 9333 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 9334 func_id_name(func_id), func_id); 9335 return -ENOTSUPP; 9336 } 9337 return 0; 9338 } else if (type == BPF_PROG_TYPE_KPROBE) { 9339 return 0; 9340 } 9341 9342 verbose(env, "func %s#%d not supported for program type %d\n", 9343 func_id_name(func_id), func_id, type); 9344 return -ENOTSUPP; 9345 } 9346 9347 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 9348 { 9349 return &env->insn_aux_data[env->insn_idx]; 9350 } 9351 9352 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 9353 { 9354 struct bpf_reg_state *regs = cur_regs(env); 9355 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 9356 bool reg_is_null = register_is_null(reg); 9357 9358 if (reg_is_null) 9359 mark_chain_precision(env, BPF_REG_4); 9360 9361 return reg_is_null; 9362 } 9363 9364 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 9365 { 9366 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 9367 9368 if (!state->initialized) { 9369 state->initialized = 1; 9370 state->fit_for_inline = loop_flag_is_zero(env); 9371 state->callback_subprogno = subprogno; 9372 return; 9373 } 9374 9375 if (!state->fit_for_inline) 9376 return; 9377 9378 state->fit_for_inline = (loop_flag_is_zero(env) && 9379 state->callback_subprogno == subprogno); 9380 } 9381 9382 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9383 int *insn_idx_p) 9384 { 9385 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9386 const struct bpf_func_proto *fn = NULL; 9387 enum bpf_return_type ret_type; 9388 enum bpf_type_flag ret_flag; 9389 struct bpf_reg_state *regs; 9390 struct bpf_call_arg_meta meta; 9391 int insn_idx = *insn_idx_p; 9392 bool changes_data; 9393 int i, err, func_id; 9394 9395 /* find function prototype */ 9396 func_id = insn->imm; 9397 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 9398 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 9399 func_id); 9400 return -EINVAL; 9401 } 9402 9403 if (env->ops->get_func_proto) 9404 fn = env->ops->get_func_proto(func_id, env->prog); 9405 if (!fn) { 9406 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 9407 func_id); 9408 return -EINVAL; 9409 } 9410 9411 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 9412 if (!env->prog->gpl_compatible && fn->gpl_only) { 9413 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 9414 return -EINVAL; 9415 } 9416 9417 if (fn->allowed && !fn->allowed(env->prog)) { 9418 verbose(env, "helper call is not allowed in probe\n"); 9419 return -EINVAL; 9420 } 9421 9422 if (!env->prog->aux->sleepable && fn->might_sleep) { 9423 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 9424 return -EINVAL; 9425 } 9426 9427 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 9428 changes_data = bpf_helper_changes_pkt_data(fn->func); 9429 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 9430 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 9431 func_id_name(func_id), func_id); 9432 return -EINVAL; 9433 } 9434 9435 memset(&meta, 0, sizeof(meta)); 9436 meta.pkt_access = fn->pkt_access; 9437 9438 err = check_func_proto(fn, func_id); 9439 if (err) { 9440 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 9441 func_id_name(func_id), func_id); 9442 return err; 9443 } 9444 9445 if (env->cur_state->active_rcu_lock) { 9446 if (fn->might_sleep) { 9447 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 9448 func_id_name(func_id), func_id); 9449 return -EINVAL; 9450 } 9451 9452 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 9453 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 9454 } 9455 9456 meta.func_id = func_id; 9457 /* check args */ 9458 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 9459 err = check_func_arg(env, i, &meta, fn, insn_idx); 9460 if (err) 9461 return err; 9462 } 9463 9464 err = record_func_map(env, &meta, func_id, insn_idx); 9465 if (err) 9466 return err; 9467 9468 err = record_func_key(env, &meta, func_id, insn_idx); 9469 if (err) 9470 return err; 9471 9472 /* Mark slots with STACK_MISC in case of raw mode, stack offset 9473 * is inferred from register state. 9474 */ 9475 for (i = 0; i < meta.access_size; i++) { 9476 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 9477 BPF_WRITE, -1, false); 9478 if (err) 9479 return err; 9480 } 9481 9482 regs = cur_regs(env); 9483 9484 if (meta.release_regno) { 9485 err = -EINVAL; 9486 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 9487 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 9488 * is safe to do directly. 9489 */ 9490 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 9491 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 9492 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 9493 return -EFAULT; 9494 } 9495 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 9496 } else if (meta.ref_obj_id) { 9497 err = release_reference(env, meta.ref_obj_id); 9498 } else if (register_is_null(®s[meta.release_regno])) { 9499 /* meta.ref_obj_id can only be 0 if register that is meant to be 9500 * released is NULL, which must be > R0. 9501 */ 9502 err = 0; 9503 } 9504 if (err) { 9505 verbose(env, "func %s#%d reference has not been acquired before\n", 9506 func_id_name(func_id), func_id); 9507 return err; 9508 } 9509 } 9510 9511 switch (func_id) { 9512 case BPF_FUNC_tail_call: 9513 err = check_reference_leak(env); 9514 if (err) { 9515 verbose(env, "tail_call would lead to reference leak\n"); 9516 return err; 9517 } 9518 break; 9519 case BPF_FUNC_get_local_storage: 9520 /* check that flags argument in get_local_storage(map, flags) is 0, 9521 * this is required because get_local_storage() can't return an error. 9522 */ 9523 if (!register_is_null(®s[BPF_REG_2])) { 9524 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 9525 return -EINVAL; 9526 } 9527 break; 9528 case BPF_FUNC_for_each_map_elem: 9529 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9530 set_map_elem_callback_state); 9531 break; 9532 case BPF_FUNC_timer_set_callback: 9533 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9534 set_timer_callback_state); 9535 break; 9536 case BPF_FUNC_find_vma: 9537 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9538 set_find_vma_callback_state); 9539 break; 9540 case BPF_FUNC_snprintf: 9541 err = check_bpf_snprintf_call(env, regs); 9542 break; 9543 case BPF_FUNC_loop: 9544 update_loop_inline_state(env, meta.subprogno); 9545 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9546 set_loop_callback_state); 9547 break; 9548 case BPF_FUNC_dynptr_from_mem: 9549 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 9550 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 9551 reg_type_str(env, regs[BPF_REG_1].type)); 9552 return -EACCES; 9553 } 9554 break; 9555 case BPF_FUNC_set_retval: 9556 if (prog_type == BPF_PROG_TYPE_LSM && 9557 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 9558 if (!env->prog->aux->attach_func_proto->type) { 9559 /* Make sure programs that attach to void 9560 * hooks don't try to modify return value. 9561 */ 9562 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 9563 return -EINVAL; 9564 } 9565 } 9566 break; 9567 case BPF_FUNC_dynptr_data: 9568 { 9569 struct bpf_reg_state *reg; 9570 int id, ref_obj_id; 9571 9572 reg = get_dynptr_arg_reg(env, fn, regs); 9573 if (!reg) 9574 return -EFAULT; 9575 9576 9577 if (meta.dynptr_id) { 9578 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 9579 return -EFAULT; 9580 } 9581 if (meta.ref_obj_id) { 9582 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 9583 return -EFAULT; 9584 } 9585 9586 id = dynptr_id(env, reg); 9587 if (id < 0) { 9588 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 9589 return id; 9590 } 9591 9592 ref_obj_id = dynptr_ref_obj_id(env, reg); 9593 if (ref_obj_id < 0) { 9594 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 9595 return ref_obj_id; 9596 } 9597 9598 meta.dynptr_id = id; 9599 meta.ref_obj_id = ref_obj_id; 9600 9601 break; 9602 } 9603 case BPF_FUNC_dynptr_write: 9604 { 9605 enum bpf_dynptr_type dynptr_type; 9606 struct bpf_reg_state *reg; 9607 9608 reg = get_dynptr_arg_reg(env, fn, regs); 9609 if (!reg) 9610 return -EFAULT; 9611 9612 dynptr_type = dynptr_get_type(env, reg); 9613 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 9614 return -EFAULT; 9615 9616 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 9617 /* this will trigger clear_all_pkt_pointers(), which will 9618 * invalidate all dynptr slices associated with the skb 9619 */ 9620 changes_data = true; 9621 9622 break; 9623 } 9624 case BPF_FUNC_user_ringbuf_drain: 9625 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9626 set_user_ringbuf_callback_state); 9627 break; 9628 } 9629 9630 if (err) 9631 return err; 9632 9633 /* reset caller saved regs */ 9634 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9635 mark_reg_not_init(env, regs, caller_saved[i]); 9636 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 9637 } 9638 9639 /* helper call returns 64-bit value. */ 9640 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 9641 9642 /* update return register (already marked as written above) */ 9643 ret_type = fn->ret_type; 9644 ret_flag = type_flag(ret_type); 9645 9646 switch (base_type(ret_type)) { 9647 case RET_INTEGER: 9648 /* sets type to SCALAR_VALUE */ 9649 mark_reg_unknown(env, regs, BPF_REG_0); 9650 break; 9651 case RET_VOID: 9652 regs[BPF_REG_0].type = NOT_INIT; 9653 break; 9654 case RET_PTR_TO_MAP_VALUE: 9655 /* There is no offset yet applied, variable or fixed */ 9656 mark_reg_known_zero(env, regs, BPF_REG_0); 9657 /* remember map_ptr, so that check_map_access() 9658 * can check 'value_size' boundary of memory access 9659 * to map element returned from bpf_map_lookup_elem() 9660 */ 9661 if (meta.map_ptr == NULL) { 9662 verbose(env, 9663 "kernel subsystem misconfigured verifier\n"); 9664 return -EINVAL; 9665 } 9666 regs[BPF_REG_0].map_ptr = meta.map_ptr; 9667 regs[BPF_REG_0].map_uid = meta.map_uid; 9668 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 9669 if (!type_may_be_null(ret_type) && 9670 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 9671 regs[BPF_REG_0].id = ++env->id_gen; 9672 } 9673 break; 9674 case RET_PTR_TO_SOCKET: 9675 mark_reg_known_zero(env, regs, BPF_REG_0); 9676 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 9677 break; 9678 case RET_PTR_TO_SOCK_COMMON: 9679 mark_reg_known_zero(env, regs, BPF_REG_0); 9680 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 9681 break; 9682 case RET_PTR_TO_TCP_SOCK: 9683 mark_reg_known_zero(env, regs, BPF_REG_0); 9684 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 9685 break; 9686 case RET_PTR_TO_MEM: 9687 mark_reg_known_zero(env, regs, BPF_REG_0); 9688 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 9689 regs[BPF_REG_0].mem_size = meta.mem_size; 9690 break; 9691 case RET_PTR_TO_MEM_OR_BTF_ID: 9692 { 9693 const struct btf_type *t; 9694 9695 mark_reg_known_zero(env, regs, BPF_REG_0); 9696 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 9697 if (!btf_type_is_struct(t)) { 9698 u32 tsize; 9699 const struct btf_type *ret; 9700 const char *tname; 9701 9702 /* resolve the type size of ksym. */ 9703 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 9704 if (IS_ERR(ret)) { 9705 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 9706 verbose(env, "unable to resolve the size of type '%s': %ld\n", 9707 tname, PTR_ERR(ret)); 9708 return -EINVAL; 9709 } 9710 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 9711 regs[BPF_REG_0].mem_size = tsize; 9712 } else { 9713 /* MEM_RDONLY may be carried from ret_flag, but it 9714 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 9715 * it will confuse the check of PTR_TO_BTF_ID in 9716 * check_mem_access(). 9717 */ 9718 ret_flag &= ~MEM_RDONLY; 9719 9720 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 9721 regs[BPF_REG_0].btf = meta.ret_btf; 9722 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 9723 } 9724 break; 9725 } 9726 case RET_PTR_TO_BTF_ID: 9727 { 9728 struct btf *ret_btf; 9729 int ret_btf_id; 9730 9731 mark_reg_known_zero(env, regs, BPF_REG_0); 9732 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 9733 if (func_id == BPF_FUNC_kptr_xchg) { 9734 ret_btf = meta.kptr_field->kptr.btf; 9735 ret_btf_id = meta.kptr_field->kptr.btf_id; 9736 if (!btf_is_kernel(ret_btf)) 9737 regs[BPF_REG_0].type |= MEM_ALLOC; 9738 } else { 9739 if (fn->ret_btf_id == BPF_PTR_POISON) { 9740 verbose(env, "verifier internal error:"); 9741 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 9742 func_id_name(func_id)); 9743 return -EINVAL; 9744 } 9745 ret_btf = btf_vmlinux; 9746 ret_btf_id = *fn->ret_btf_id; 9747 } 9748 if (ret_btf_id == 0) { 9749 verbose(env, "invalid return type %u of func %s#%d\n", 9750 base_type(ret_type), func_id_name(func_id), 9751 func_id); 9752 return -EINVAL; 9753 } 9754 regs[BPF_REG_0].btf = ret_btf; 9755 regs[BPF_REG_0].btf_id = ret_btf_id; 9756 break; 9757 } 9758 default: 9759 verbose(env, "unknown return type %u of func %s#%d\n", 9760 base_type(ret_type), func_id_name(func_id), func_id); 9761 return -EINVAL; 9762 } 9763 9764 if (type_may_be_null(regs[BPF_REG_0].type)) 9765 regs[BPF_REG_0].id = ++env->id_gen; 9766 9767 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 9768 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 9769 func_id_name(func_id), func_id); 9770 return -EFAULT; 9771 } 9772 9773 if (is_dynptr_ref_function(func_id)) 9774 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 9775 9776 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 9777 /* For release_reference() */ 9778 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 9779 } else if (is_acquire_function(func_id, meta.map_ptr)) { 9780 int id = acquire_reference_state(env, insn_idx); 9781 9782 if (id < 0) 9783 return id; 9784 /* For mark_ptr_or_null_reg() */ 9785 regs[BPF_REG_0].id = id; 9786 /* For release_reference() */ 9787 regs[BPF_REG_0].ref_obj_id = id; 9788 } 9789 9790 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 9791 9792 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 9793 if (err) 9794 return err; 9795 9796 if ((func_id == BPF_FUNC_get_stack || 9797 func_id == BPF_FUNC_get_task_stack) && 9798 !env->prog->has_callchain_buf) { 9799 const char *err_str; 9800 9801 #ifdef CONFIG_PERF_EVENTS 9802 err = get_callchain_buffers(sysctl_perf_event_max_stack); 9803 err_str = "cannot get callchain buffer for func %s#%d\n"; 9804 #else 9805 err = -ENOTSUPP; 9806 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 9807 #endif 9808 if (err) { 9809 verbose(env, err_str, func_id_name(func_id), func_id); 9810 return err; 9811 } 9812 9813 env->prog->has_callchain_buf = true; 9814 } 9815 9816 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 9817 env->prog->call_get_stack = true; 9818 9819 if (func_id == BPF_FUNC_get_func_ip) { 9820 if (check_get_func_ip(env)) 9821 return -ENOTSUPP; 9822 env->prog->call_get_func_ip = true; 9823 } 9824 9825 if (changes_data) 9826 clear_all_pkt_pointers(env); 9827 return 0; 9828 } 9829 9830 /* mark_btf_func_reg_size() is used when the reg size is determined by 9831 * the BTF func_proto's return value size and argument. 9832 */ 9833 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 9834 size_t reg_size) 9835 { 9836 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 9837 9838 if (regno == BPF_REG_0) { 9839 /* Function return value */ 9840 reg->live |= REG_LIVE_WRITTEN; 9841 reg->subreg_def = reg_size == sizeof(u64) ? 9842 DEF_NOT_SUBREG : env->insn_idx + 1; 9843 } else { 9844 /* Function argument */ 9845 if (reg_size == sizeof(u64)) { 9846 mark_insn_zext(env, reg); 9847 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 9848 } else { 9849 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 9850 } 9851 } 9852 } 9853 9854 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 9855 { 9856 return meta->kfunc_flags & KF_ACQUIRE; 9857 } 9858 9859 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 9860 { 9861 return meta->kfunc_flags & KF_RELEASE; 9862 } 9863 9864 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 9865 { 9866 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 9867 } 9868 9869 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 9870 { 9871 return meta->kfunc_flags & KF_SLEEPABLE; 9872 } 9873 9874 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 9875 { 9876 return meta->kfunc_flags & KF_DESTRUCTIVE; 9877 } 9878 9879 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 9880 { 9881 return meta->kfunc_flags & KF_RCU; 9882 } 9883 9884 static bool __kfunc_param_match_suffix(const struct btf *btf, 9885 const struct btf_param *arg, 9886 const char *suffix) 9887 { 9888 int suffix_len = strlen(suffix), len; 9889 const char *param_name; 9890 9891 /* In the future, this can be ported to use BTF tagging */ 9892 param_name = btf_name_by_offset(btf, arg->name_off); 9893 if (str_is_empty(param_name)) 9894 return false; 9895 len = strlen(param_name); 9896 if (len < suffix_len) 9897 return false; 9898 param_name += len - suffix_len; 9899 return !strncmp(param_name, suffix, suffix_len); 9900 } 9901 9902 static bool is_kfunc_arg_mem_size(const struct btf *btf, 9903 const struct btf_param *arg, 9904 const struct bpf_reg_state *reg) 9905 { 9906 const struct btf_type *t; 9907 9908 t = btf_type_skip_modifiers(btf, arg->type, NULL); 9909 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 9910 return false; 9911 9912 return __kfunc_param_match_suffix(btf, arg, "__sz"); 9913 } 9914 9915 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 9916 const struct btf_param *arg, 9917 const struct bpf_reg_state *reg) 9918 { 9919 const struct btf_type *t; 9920 9921 t = btf_type_skip_modifiers(btf, arg->type, NULL); 9922 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 9923 return false; 9924 9925 return __kfunc_param_match_suffix(btf, arg, "__szk"); 9926 } 9927 9928 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 9929 { 9930 return __kfunc_param_match_suffix(btf, arg, "__opt"); 9931 } 9932 9933 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 9934 { 9935 return __kfunc_param_match_suffix(btf, arg, "__k"); 9936 } 9937 9938 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 9939 { 9940 return __kfunc_param_match_suffix(btf, arg, "__ign"); 9941 } 9942 9943 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 9944 { 9945 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 9946 } 9947 9948 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 9949 { 9950 return __kfunc_param_match_suffix(btf, arg, "__uninit"); 9951 } 9952 9953 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 9954 { 9955 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr"); 9956 } 9957 9958 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 9959 const struct btf_param *arg, 9960 const char *name) 9961 { 9962 int len, target_len = strlen(name); 9963 const char *param_name; 9964 9965 param_name = btf_name_by_offset(btf, arg->name_off); 9966 if (str_is_empty(param_name)) 9967 return false; 9968 len = strlen(param_name); 9969 if (len != target_len) 9970 return false; 9971 if (strcmp(param_name, name)) 9972 return false; 9973 9974 return true; 9975 } 9976 9977 enum { 9978 KF_ARG_DYNPTR_ID, 9979 KF_ARG_LIST_HEAD_ID, 9980 KF_ARG_LIST_NODE_ID, 9981 KF_ARG_RB_ROOT_ID, 9982 KF_ARG_RB_NODE_ID, 9983 }; 9984 9985 BTF_ID_LIST(kf_arg_btf_ids) 9986 BTF_ID(struct, bpf_dynptr_kern) 9987 BTF_ID(struct, bpf_list_head) 9988 BTF_ID(struct, bpf_list_node) 9989 BTF_ID(struct, bpf_rb_root) 9990 BTF_ID(struct, bpf_rb_node) 9991 9992 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 9993 const struct btf_param *arg, int type) 9994 { 9995 const struct btf_type *t; 9996 u32 res_id; 9997 9998 t = btf_type_skip_modifiers(btf, arg->type, NULL); 9999 if (!t) 10000 return false; 10001 if (!btf_type_is_ptr(t)) 10002 return false; 10003 t = btf_type_skip_modifiers(btf, t->type, &res_id); 10004 if (!t) 10005 return false; 10006 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 10007 } 10008 10009 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 10010 { 10011 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 10012 } 10013 10014 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 10015 { 10016 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 10017 } 10018 10019 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 10020 { 10021 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 10022 } 10023 10024 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 10025 { 10026 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 10027 } 10028 10029 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 10030 { 10031 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 10032 } 10033 10034 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 10035 const struct btf_param *arg) 10036 { 10037 const struct btf_type *t; 10038 10039 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 10040 if (!t) 10041 return false; 10042 10043 return true; 10044 } 10045 10046 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 10047 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 10048 const struct btf *btf, 10049 const struct btf_type *t, int rec) 10050 { 10051 const struct btf_type *member_type; 10052 const struct btf_member *member; 10053 u32 i; 10054 10055 if (!btf_type_is_struct(t)) 10056 return false; 10057 10058 for_each_member(i, t, member) { 10059 const struct btf_array *array; 10060 10061 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 10062 if (btf_type_is_struct(member_type)) { 10063 if (rec >= 3) { 10064 verbose(env, "max struct nesting depth exceeded\n"); 10065 return false; 10066 } 10067 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 10068 return false; 10069 continue; 10070 } 10071 if (btf_type_is_array(member_type)) { 10072 array = btf_array(member_type); 10073 if (!array->nelems) 10074 return false; 10075 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 10076 if (!btf_type_is_scalar(member_type)) 10077 return false; 10078 continue; 10079 } 10080 if (!btf_type_is_scalar(member_type)) 10081 return false; 10082 } 10083 return true; 10084 } 10085 10086 enum kfunc_ptr_arg_type { 10087 KF_ARG_PTR_TO_CTX, 10088 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 10089 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 10090 KF_ARG_PTR_TO_DYNPTR, 10091 KF_ARG_PTR_TO_ITER, 10092 KF_ARG_PTR_TO_LIST_HEAD, 10093 KF_ARG_PTR_TO_LIST_NODE, 10094 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 10095 KF_ARG_PTR_TO_MEM, 10096 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 10097 KF_ARG_PTR_TO_CALLBACK, 10098 KF_ARG_PTR_TO_RB_ROOT, 10099 KF_ARG_PTR_TO_RB_NODE, 10100 }; 10101 10102 enum special_kfunc_type { 10103 KF_bpf_obj_new_impl, 10104 KF_bpf_obj_drop_impl, 10105 KF_bpf_refcount_acquire_impl, 10106 KF_bpf_list_push_front_impl, 10107 KF_bpf_list_push_back_impl, 10108 KF_bpf_list_pop_front, 10109 KF_bpf_list_pop_back, 10110 KF_bpf_cast_to_kern_ctx, 10111 KF_bpf_rdonly_cast, 10112 KF_bpf_rcu_read_lock, 10113 KF_bpf_rcu_read_unlock, 10114 KF_bpf_rbtree_remove, 10115 KF_bpf_rbtree_add_impl, 10116 KF_bpf_rbtree_first, 10117 KF_bpf_dynptr_from_skb, 10118 KF_bpf_dynptr_from_xdp, 10119 KF_bpf_dynptr_slice, 10120 KF_bpf_dynptr_slice_rdwr, 10121 KF_bpf_dynptr_clone, 10122 }; 10123 10124 BTF_SET_START(special_kfunc_set) 10125 BTF_ID(func, bpf_obj_new_impl) 10126 BTF_ID(func, bpf_obj_drop_impl) 10127 BTF_ID(func, bpf_refcount_acquire_impl) 10128 BTF_ID(func, bpf_list_push_front_impl) 10129 BTF_ID(func, bpf_list_push_back_impl) 10130 BTF_ID(func, bpf_list_pop_front) 10131 BTF_ID(func, bpf_list_pop_back) 10132 BTF_ID(func, bpf_cast_to_kern_ctx) 10133 BTF_ID(func, bpf_rdonly_cast) 10134 BTF_ID(func, bpf_rbtree_remove) 10135 BTF_ID(func, bpf_rbtree_add_impl) 10136 BTF_ID(func, bpf_rbtree_first) 10137 BTF_ID(func, bpf_dynptr_from_skb) 10138 BTF_ID(func, bpf_dynptr_from_xdp) 10139 BTF_ID(func, bpf_dynptr_slice) 10140 BTF_ID(func, bpf_dynptr_slice_rdwr) 10141 BTF_ID(func, bpf_dynptr_clone) 10142 BTF_SET_END(special_kfunc_set) 10143 10144 BTF_ID_LIST(special_kfunc_list) 10145 BTF_ID(func, bpf_obj_new_impl) 10146 BTF_ID(func, bpf_obj_drop_impl) 10147 BTF_ID(func, bpf_refcount_acquire_impl) 10148 BTF_ID(func, bpf_list_push_front_impl) 10149 BTF_ID(func, bpf_list_push_back_impl) 10150 BTF_ID(func, bpf_list_pop_front) 10151 BTF_ID(func, bpf_list_pop_back) 10152 BTF_ID(func, bpf_cast_to_kern_ctx) 10153 BTF_ID(func, bpf_rdonly_cast) 10154 BTF_ID(func, bpf_rcu_read_lock) 10155 BTF_ID(func, bpf_rcu_read_unlock) 10156 BTF_ID(func, bpf_rbtree_remove) 10157 BTF_ID(func, bpf_rbtree_add_impl) 10158 BTF_ID(func, bpf_rbtree_first) 10159 BTF_ID(func, bpf_dynptr_from_skb) 10160 BTF_ID(func, bpf_dynptr_from_xdp) 10161 BTF_ID(func, bpf_dynptr_slice) 10162 BTF_ID(func, bpf_dynptr_slice_rdwr) 10163 BTF_ID(func, bpf_dynptr_clone) 10164 10165 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 10166 { 10167 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 10168 meta->arg_owning_ref) { 10169 return false; 10170 } 10171 10172 return meta->kfunc_flags & KF_RET_NULL; 10173 } 10174 10175 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 10176 { 10177 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 10178 } 10179 10180 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 10181 { 10182 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 10183 } 10184 10185 static enum kfunc_ptr_arg_type 10186 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 10187 struct bpf_kfunc_call_arg_meta *meta, 10188 const struct btf_type *t, const struct btf_type *ref_t, 10189 const char *ref_tname, const struct btf_param *args, 10190 int argno, int nargs) 10191 { 10192 u32 regno = argno + 1; 10193 struct bpf_reg_state *regs = cur_regs(env); 10194 struct bpf_reg_state *reg = ®s[regno]; 10195 bool arg_mem_size = false; 10196 10197 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 10198 return KF_ARG_PTR_TO_CTX; 10199 10200 /* In this function, we verify the kfunc's BTF as per the argument type, 10201 * leaving the rest of the verification with respect to the register 10202 * type to our caller. When a set of conditions hold in the BTF type of 10203 * arguments, we resolve it to a known kfunc_ptr_arg_type. 10204 */ 10205 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 10206 return KF_ARG_PTR_TO_CTX; 10207 10208 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 10209 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 10210 10211 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 10212 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 10213 10214 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 10215 return KF_ARG_PTR_TO_DYNPTR; 10216 10217 if (is_kfunc_arg_iter(meta, argno)) 10218 return KF_ARG_PTR_TO_ITER; 10219 10220 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 10221 return KF_ARG_PTR_TO_LIST_HEAD; 10222 10223 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 10224 return KF_ARG_PTR_TO_LIST_NODE; 10225 10226 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 10227 return KF_ARG_PTR_TO_RB_ROOT; 10228 10229 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 10230 return KF_ARG_PTR_TO_RB_NODE; 10231 10232 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 10233 if (!btf_type_is_struct(ref_t)) { 10234 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 10235 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 10236 return -EINVAL; 10237 } 10238 return KF_ARG_PTR_TO_BTF_ID; 10239 } 10240 10241 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 10242 return KF_ARG_PTR_TO_CALLBACK; 10243 10244 10245 if (argno + 1 < nargs && 10246 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 10247 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 10248 arg_mem_size = true; 10249 10250 /* This is the catch all argument type of register types supported by 10251 * check_helper_mem_access. However, we only allow when argument type is 10252 * pointer to scalar, or struct composed (recursively) of scalars. When 10253 * arg_mem_size is true, the pointer can be void *. 10254 */ 10255 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 10256 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 10257 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 10258 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 10259 return -EINVAL; 10260 } 10261 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 10262 } 10263 10264 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 10265 struct bpf_reg_state *reg, 10266 const struct btf_type *ref_t, 10267 const char *ref_tname, u32 ref_id, 10268 struct bpf_kfunc_call_arg_meta *meta, 10269 int argno) 10270 { 10271 const struct btf_type *reg_ref_t; 10272 bool strict_type_match = false; 10273 const struct btf *reg_btf; 10274 const char *reg_ref_tname; 10275 u32 reg_ref_id; 10276 10277 if (base_type(reg->type) == PTR_TO_BTF_ID) { 10278 reg_btf = reg->btf; 10279 reg_ref_id = reg->btf_id; 10280 } else { 10281 reg_btf = btf_vmlinux; 10282 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 10283 } 10284 10285 /* Enforce strict type matching for calls to kfuncs that are acquiring 10286 * or releasing a reference, or are no-cast aliases. We do _not_ 10287 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 10288 * as we want to enable BPF programs to pass types that are bitwise 10289 * equivalent without forcing them to explicitly cast with something 10290 * like bpf_cast_to_kern_ctx(). 10291 * 10292 * For example, say we had a type like the following: 10293 * 10294 * struct bpf_cpumask { 10295 * cpumask_t cpumask; 10296 * refcount_t usage; 10297 * }; 10298 * 10299 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 10300 * to a struct cpumask, so it would be safe to pass a struct 10301 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 10302 * 10303 * The philosophy here is similar to how we allow scalars of different 10304 * types to be passed to kfuncs as long as the size is the same. The 10305 * only difference here is that we're simply allowing 10306 * btf_struct_ids_match() to walk the struct at the 0th offset, and 10307 * resolve types. 10308 */ 10309 if (is_kfunc_acquire(meta) || 10310 (is_kfunc_release(meta) && reg->ref_obj_id) || 10311 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 10312 strict_type_match = true; 10313 10314 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 10315 10316 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 10317 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 10318 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 10319 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 10320 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 10321 btf_type_str(reg_ref_t), reg_ref_tname); 10322 return -EINVAL; 10323 } 10324 return 0; 10325 } 10326 10327 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10328 { 10329 struct bpf_verifier_state *state = env->cur_state; 10330 10331 if (!state->active_lock.ptr) { 10332 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 10333 return -EFAULT; 10334 } 10335 10336 if (type_flag(reg->type) & NON_OWN_REF) { 10337 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 10338 return -EFAULT; 10339 } 10340 10341 reg->type |= NON_OWN_REF; 10342 return 0; 10343 } 10344 10345 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 10346 { 10347 struct bpf_func_state *state, *unused; 10348 struct bpf_reg_state *reg; 10349 int i; 10350 10351 state = cur_func(env); 10352 10353 if (!ref_obj_id) { 10354 verbose(env, "verifier internal error: ref_obj_id is zero for " 10355 "owning -> non-owning conversion\n"); 10356 return -EFAULT; 10357 } 10358 10359 for (i = 0; i < state->acquired_refs; i++) { 10360 if (state->refs[i].id != ref_obj_id) 10361 continue; 10362 10363 /* Clear ref_obj_id here so release_reference doesn't clobber 10364 * the whole reg 10365 */ 10366 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 10367 if (reg->ref_obj_id == ref_obj_id) { 10368 reg->ref_obj_id = 0; 10369 ref_set_non_owning(env, reg); 10370 } 10371 })); 10372 return 0; 10373 } 10374 10375 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 10376 return -EFAULT; 10377 } 10378 10379 /* Implementation details: 10380 * 10381 * Each register points to some region of memory, which we define as an 10382 * allocation. Each allocation may embed a bpf_spin_lock which protects any 10383 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 10384 * allocation. The lock and the data it protects are colocated in the same 10385 * memory region. 10386 * 10387 * Hence, everytime a register holds a pointer value pointing to such 10388 * allocation, the verifier preserves a unique reg->id for it. 10389 * 10390 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 10391 * bpf_spin_lock is called. 10392 * 10393 * To enable this, lock state in the verifier captures two values: 10394 * active_lock.ptr = Register's type specific pointer 10395 * active_lock.id = A unique ID for each register pointer value 10396 * 10397 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 10398 * supported register types. 10399 * 10400 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 10401 * allocated objects is the reg->btf pointer. 10402 * 10403 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 10404 * can establish the provenance of the map value statically for each distinct 10405 * lookup into such maps. They always contain a single map value hence unique 10406 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 10407 * 10408 * So, in case of global variables, they use array maps with max_entries = 1, 10409 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 10410 * into the same map value as max_entries is 1, as described above). 10411 * 10412 * In case of inner map lookups, the inner map pointer has same map_ptr as the 10413 * outer map pointer (in verifier context), but each lookup into an inner map 10414 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 10415 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 10416 * will get different reg->id assigned to each lookup, hence different 10417 * active_lock.id. 10418 * 10419 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 10420 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 10421 * returned from bpf_obj_new. Each allocation receives a new reg->id. 10422 */ 10423 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10424 { 10425 void *ptr; 10426 u32 id; 10427 10428 switch ((int)reg->type) { 10429 case PTR_TO_MAP_VALUE: 10430 ptr = reg->map_ptr; 10431 break; 10432 case PTR_TO_BTF_ID | MEM_ALLOC: 10433 ptr = reg->btf; 10434 break; 10435 default: 10436 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 10437 return -EFAULT; 10438 } 10439 id = reg->id; 10440 10441 if (!env->cur_state->active_lock.ptr) 10442 return -EINVAL; 10443 if (env->cur_state->active_lock.ptr != ptr || 10444 env->cur_state->active_lock.id != id) { 10445 verbose(env, "held lock and object are not in the same allocation\n"); 10446 return -EINVAL; 10447 } 10448 return 0; 10449 } 10450 10451 static bool is_bpf_list_api_kfunc(u32 btf_id) 10452 { 10453 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 10454 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 10455 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 10456 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 10457 } 10458 10459 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 10460 { 10461 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 10462 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 10463 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 10464 } 10465 10466 static bool is_bpf_graph_api_kfunc(u32 btf_id) 10467 { 10468 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 10469 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 10470 } 10471 10472 static bool is_callback_calling_kfunc(u32 btf_id) 10473 { 10474 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 10475 } 10476 10477 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 10478 { 10479 return is_bpf_rbtree_api_kfunc(btf_id); 10480 } 10481 10482 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 10483 enum btf_field_type head_field_type, 10484 u32 kfunc_btf_id) 10485 { 10486 bool ret; 10487 10488 switch (head_field_type) { 10489 case BPF_LIST_HEAD: 10490 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 10491 break; 10492 case BPF_RB_ROOT: 10493 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 10494 break; 10495 default: 10496 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 10497 btf_field_type_name(head_field_type)); 10498 return false; 10499 } 10500 10501 if (!ret) 10502 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 10503 btf_field_type_name(head_field_type)); 10504 return ret; 10505 } 10506 10507 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 10508 enum btf_field_type node_field_type, 10509 u32 kfunc_btf_id) 10510 { 10511 bool ret; 10512 10513 switch (node_field_type) { 10514 case BPF_LIST_NODE: 10515 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 10516 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 10517 break; 10518 case BPF_RB_NODE: 10519 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 10520 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 10521 break; 10522 default: 10523 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 10524 btf_field_type_name(node_field_type)); 10525 return false; 10526 } 10527 10528 if (!ret) 10529 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 10530 btf_field_type_name(node_field_type)); 10531 return ret; 10532 } 10533 10534 static int 10535 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 10536 struct bpf_reg_state *reg, u32 regno, 10537 struct bpf_kfunc_call_arg_meta *meta, 10538 enum btf_field_type head_field_type, 10539 struct btf_field **head_field) 10540 { 10541 const char *head_type_name; 10542 struct btf_field *field; 10543 struct btf_record *rec; 10544 u32 head_off; 10545 10546 if (meta->btf != btf_vmlinux) { 10547 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 10548 return -EFAULT; 10549 } 10550 10551 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 10552 return -EFAULT; 10553 10554 head_type_name = btf_field_type_name(head_field_type); 10555 if (!tnum_is_const(reg->var_off)) { 10556 verbose(env, 10557 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 10558 regno, head_type_name); 10559 return -EINVAL; 10560 } 10561 10562 rec = reg_btf_record(reg); 10563 head_off = reg->off + reg->var_off.value; 10564 field = btf_record_find(rec, head_off, head_field_type); 10565 if (!field) { 10566 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 10567 return -EINVAL; 10568 } 10569 10570 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 10571 if (check_reg_allocation_locked(env, reg)) { 10572 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 10573 rec->spin_lock_off, head_type_name); 10574 return -EINVAL; 10575 } 10576 10577 if (*head_field) { 10578 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 10579 return -EFAULT; 10580 } 10581 *head_field = field; 10582 return 0; 10583 } 10584 10585 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 10586 struct bpf_reg_state *reg, u32 regno, 10587 struct bpf_kfunc_call_arg_meta *meta) 10588 { 10589 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 10590 &meta->arg_list_head.field); 10591 } 10592 10593 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 10594 struct bpf_reg_state *reg, u32 regno, 10595 struct bpf_kfunc_call_arg_meta *meta) 10596 { 10597 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 10598 &meta->arg_rbtree_root.field); 10599 } 10600 10601 static int 10602 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 10603 struct bpf_reg_state *reg, u32 regno, 10604 struct bpf_kfunc_call_arg_meta *meta, 10605 enum btf_field_type head_field_type, 10606 enum btf_field_type node_field_type, 10607 struct btf_field **node_field) 10608 { 10609 const char *node_type_name; 10610 const struct btf_type *et, *t; 10611 struct btf_field *field; 10612 u32 node_off; 10613 10614 if (meta->btf != btf_vmlinux) { 10615 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 10616 return -EFAULT; 10617 } 10618 10619 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 10620 return -EFAULT; 10621 10622 node_type_name = btf_field_type_name(node_field_type); 10623 if (!tnum_is_const(reg->var_off)) { 10624 verbose(env, 10625 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 10626 regno, node_type_name); 10627 return -EINVAL; 10628 } 10629 10630 node_off = reg->off + reg->var_off.value; 10631 field = reg_find_field_offset(reg, node_off, node_field_type); 10632 if (!field || field->offset != node_off) { 10633 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 10634 return -EINVAL; 10635 } 10636 10637 field = *node_field; 10638 10639 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 10640 t = btf_type_by_id(reg->btf, reg->btf_id); 10641 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 10642 field->graph_root.value_btf_id, true)) { 10643 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 10644 "in struct %s, but arg is at offset=%d in struct %s\n", 10645 btf_field_type_name(head_field_type), 10646 btf_field_type_name(node_field_type), 10647 field->graph_root.node_offset, 10648 btf_name_by_offset(field->graph_root.btf, et->name_off), 10649 node_off, btf_name_by_offset(reg->btf, t->name_off)); 10650 return -EINVAL; 10651 } 10652 meta->arg_btf = reg->btf; 10653 meta->arg_btf_id = reg->btf_id; 10654 10655 if (node_off != field->graph_root.node_offset) { 10656 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 10657 node_off, btf_field_type_name(node_field_type), 10658 field->graph_root.node_offset, 10659 btf_name_by_offset(field->graph_root.btf, et->name_off)); 10660 return -EINVAL; 10661 } 10662 10663 return 0; 10664 } 10665 10666 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 10667 struct bpf_reg_state *reg, u32 regno, 10668 struct bpf_kfunc_call_arg_meta *meta) 10669 { 10670 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 10671 BPF_LIST_HEAD, BPF_LIST_NODE, 10672 &meta->arg_list_head.field); 10673 } 10674 10675 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 10676 struct bpf_reg_state *reg, u32 regno, 10677 struct bpf_kfunc_call_arg_meta *meta) 10678 { 10679 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 10680 BPF_RB_ROOT, BPF_RB_NODE, 10681 &meta->arg_rbtree_root.field); 10682 } 10683 10684 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 10685 int insn_idx) 10686 { 10687 const char *func_name = meta->func_name, *ref_tname; 10688 const struct btf *btf = meta->btf; 10689 const struct btf_param *args; 10690 struct btf_record *rec; 10691 u32 i, nargs; 10692 int ret; 10693 10694 args = (const struct btf_param *)(meta->func_proto + 1); 10695 nargs = btf_type_vlen(meta->func_proto); 10696 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 10697 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 10698 MAX_BPF_FUNC_REG_ARGS); 10699 return -EINVAL; 10700 } 10701 10702 /* Check that BTF function arguments match actual types that the 10703 * verifier sees. 10704 */ 10705 for (i = 0; i < nargs; i++) { 10706 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 10707 const struct btf_type *t, *ref_t, *resolve_ret; 10708 enum bpf_arg_type arg_type = ARG_DONTCARE; 10709 u32 regno = i + 1, ref_id, type_size; 10710 bool is_ret_buf_sz = false; 10711 int kf_arg_type; 10712 10713 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 10714 10715 if (is_kfunc_arg_ignore(btf, &args[i])) 10716 continue; 10717 10718 if (btf_type_is_scalar(t)) { 10719 if (reg->type != SCALAR_VALUE) { 10720 verbose(env, "R%d is not a scalar\n", regno); 10721 return -EINVAL; 10722 } 10723 10724 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 10725 if (meta->arg_constant.found) { 10726 verbose(env, "verifier internal error: only one constant argument permitted\n"); 10727 return -EFAULT; 10728 } 10729 if (!tnum_is_const(reg->var_off)) { 10730 verbose(env, "R%d must be a known constant\n", regno); 10731 return -EINVAL; 10732 } 10733 ret = mark_chain_precision(env, regno); 10734 if (ret < 0) 10735 return ret; 10736 meta->arg_constant.found = true; 10737 meta->arg_constant.value = reg->var_off.value; 10738 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 10739 meta->r0_rdonly = true; 10740 is_ret_buf_sz = true; 10741 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 10742 is_ret_buf_sz = true; 10743 } 10744 10745 if (is_ret_buf_sz) { 10746 if (meta->r0_size) { 10747 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 10748 return -EINVAL; 10749 } 10750 10751 if (!tnum_is_const(reg->var_off)) { 10752 verbose(env, "R%d is not a const\n", regno); 10753 return -EINVAL; 10754 } 10755 10756 meta->r0_size = reg->var_off.value; 10757 ret = mark_chain_precision(env, regno); 10758 if (ret) 10759 return ret; 10760 } 10761 continue; 10762 } 10763 10764 if (!btf_type_is_ptr(t)) { 10765 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 10766 return -EINVAL; 10767 } 10768 10769 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 10770 (register_is_null(reg) || type_may_be_null(reg->type))) { 10771 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 10772 return -EACCES; 10773 } 10774 10775 if (reg->ref_obj_id) { 10776 if (is_kfunc_release(meta) && meta->ref_obj_id) { 10777 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 10778 regno, reg->ref_obj_id, 10779 meta->ref_obj_id); 10780 return -EFAULT; 10781 } 10782 meta->ref_obj_id = reg->ref_obj_id; 10783 if (is_kfunc_release(meta)) 10784 meta->release_regno = regno; 10785 } 10786 10787 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 10788 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 10789 10790 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 10791 if (kf_arg_type < 0) 10792 return kf_arg_type; 10793 10794 switch (kf_arg_type) { 10795 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 10796 case KF_ARG_PTR_TO_BTF_ID: 10797 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 10798 break; 10799 10800 if (!is_trusted_reg(reg)) { 10801 if (!is_kfunc_rcu(meta)) { 10802 verbose(env, "R%d must be referenced or trusted\n", regno); 10803 return -EINVAL; 10804 } 10805 if (!is_rcu_reg(reg)) { 10806 verbose(env, "R%d must be a rcu pointer\n", regno); 10807 return -EINVAL; 10808 } 10809 } 10810 10811 fallthrough; 10812 case KF_ARG_PTR_TO_CTX: 10813 /* Trusted arguments have the same offset checks as release arguments */ 10814 arg_type |= OBJ_RELEASE; 10815 break; 10816 case KF_ARG_PTR_TO_DYNPTR: 10817 case KF_ARG_PTR_TO_ITER: 10818 case KF_ARG_PTR_TO_LIST_HEAD: 10819 case KF_ARG_PTR_TO_LIST_NODE: 10820 case KF_ARG_PTR_TO_RB_ROOT: 10821 case KF_ARG_PTR_TO_RB_NODE: 10822 case KF_ARG_PTR_TO_MEM: 10823 case KF_ARG_PTR_TO_MEM_SIZE: 10824 case KF_ARG_PTR_TO_CALLBACK: 10825 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 10826 /* Trusted by default */ 10827 break; 10828 default: 10829 WARN_ON_ONCE(1); 10830 return -EFAULT; 10831 } 10832 10833 if (is_kfunc_release(meta) && reg->ref_obj_id) 10834 arg_type |= OBJ_RELEASE; 10835 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 10836 if (ret < 0) 10837 return ret; 10838 10839 switch (kf_arg_type) { 10840 case KF_ARG_PTR_TO_CTX: 10841 if (reg->type != PTR_TO_CTX) { 10842 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 10843 return -EINVAL; 10844 } 10845 10846 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 10847 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 10848 if (ret < 0) 10849 return -EINVAL; 10850 meta->ret_btf_id = ret; 10851 } 10852 break; 10853 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 10854 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10855 verbose(env, "arg#%d expected pointer to allocated object\n", i); 10856 return -EINVAL; 10857 } 10858 if (!reg->ref_obj_id) { 10859 verbose(env, "allocated object must be referenced\n"); 10860 return -EINVAL; 10861 } 10862 if (meta->btf == btf_vmlinux && 10863 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 10864 meta->arg_btf = reg->btf; 10865 meta->arg_btf_id = reg->btf_id; 10866 } 10867 break; 10868 case KF_ARG_PTR_TO_DYNPTR: 10869 { 10870 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 10871 int clone_ref_obj_id = 0; 10872 10873 if (reg->type != PTR_TO_STACK && 10874 reg->type != CONST_PTR_TO_DYNPTR) { 10875 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 10876 return -EINVAL; 10877 } 10878 10879 if (reg->type == CONST_PTR_TO_DYNPTR) 10880 dynptr_arg_type |= MEM_RDONLY; 10881 10882 if (is_kfunc_arg_uninit(btf, &args[i])) 10883 dynptr_arg_type |= MEM_UNINIT; 10884 10885 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 10886 dynptr_arg_type |= DYNPTR_TYPE_SKB; 10887 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 10888 dynptr_arg_type |= DYNPTR_TYPE_XDP; 10889 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 10890 (dynptr_arg_type & MEM_UNINIT)) { 10891 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 10892 10893 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 10894 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 10895 return -EFAULT; 10896 } 10897 10898 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 10899 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 10900 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 10901 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 10902 return -EFAULT; 10903 } 10904 } 10905 10906 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 10907 if (ret < 0) 10908 return ret; 10909 10910 if (!(dynptr_arg_type & MEM_UNINIT)) { 10911 int id = dynptr_id(env, reg); 10912 10913 if (id < 0) { 10914 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 10915 return id; 10916 } 10917 meta->initialized_dynptr.id = id; 10918 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 10919 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 10920 } 10921 10922 break; 10923 } 10924 case KF_ARG_PTR_TO_ITER: 10925 ret = process_iter_arg(env, regno, insn_idx, meta); 10926 if (ret < 0) 10927 return ret; 10928 break; 10929 case KF_ARG_PTR_TO_LIST_HEAD: 10930 if (reg->type != PTR_TO_MAP_VALUE && 10931 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10932 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 10933 return -EINVAL; 10934 } 10935 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 10936 verbose(env, "allocated object must be referenced\n"); 10937 return -EINVAL; 10938 } 10939 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 10940 if (ret < 0) 10941 return ret; 10942 break; 10943 case KF_ARG_PTR_TO_RB_ROOT: 10944 if (reg->type != PTR_TO_MAP_VALUE && 10945 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10946 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 10947 return -EINVAL; 10948 } 10949 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 10950 verbose(env, "allocated object must be referenced\n"); 10951 return -EINVAL; 10952 } 10953 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 10954 if (ret < 0) 10955 return ret; 10956 break; 10957 case KF_ARG_PTR_TO_LIST_NODE: 10958 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10959 verbose(env, "arg#%d expected pointer to allocated object\n", i); 10960 return -EINVAL; 10961 } 10962 if (!reg->ref_obj_id) { 10963 verbose(env, "allocated object must be referenced\n"); 10964 return -EINVAL; 10965 } 10966 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 10967 if (ret < 0) 10968 return ret; 10969 break; 10970 case KF_ARG_PTR_TO_RB_NODE: 10971 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 10972 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 10973 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 10974 return -EINVAL; 10975 } 10976 if (in_rbtree_lock_required_cb(env)) { 10977 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 10978 return -EINVAL; 10979 } 10980 } else { 10981 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 10982 verbose(env, "arg#%d expected pointer to allocated object\n", i); 10983 return -EINVAL; 10984 } 10985 if (!reg->ref_obj_id) { 10986 verbose(env, "allocated object must be referenced\n"); 10987 return -EINVAL; 10988 } 10989 } 10990 10991 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 10992 if (ret < 0) 10993 return ret; 10994 break; 10995 case KF_ARG_PTR_TO_BTF_ID: 10996 /* Only base_type is checked, further checks are done here */ 10997 if ((base_type(reg->type) != PTR_TO_BTF_ID || 10998 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 10999 !reg2btf_ids[base_type(reg->type)]) { 11000 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 11001 verbose(env, "expected %s or socket\n", 11002 reg_type_str(env, base_type(reg->type) | 11003 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 11004 return -EINVAL; 11005 } 11006 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 11007 if (ret < 0) 11008 return ret; 11009 break; 11010 case KF_ARG_PTR_TO_MEM: 11011 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 11012 if (IS_ERR(resolve_ret)) { 11013 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 11014 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 11015 return -EINVAL; 11016 } 11017 ret = check_mem_reg(env, reg, regno, type_size); 11018 if (ret < 0) 11019 return ret; 11020 break; 11021 case KF_ARG_PTR_TO_MEM_SIZE: 11022 { 11023 struct bpf_reg_state *buff_reg = ®s[regno]; 11024 const struct btf_param *buff_arg = &args[i]; 11025 struct bpf_reg_state *size_reg = ®s[regno + 1]; 11026 const struct btf_param *size_arg = &args[i + 1]; 11027 11028 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 11029 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 11030 if (ret < 0) { 11031 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 11032 return ret; 11033 } 11034 } 11035 11036 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 11037 if (meta->arg_constant.found) { 11038 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11039 return -EFAULT; 11040 } 11041 if (!tnum_is_const(size_reg->var_off)) { 11042 verbose(env, "R%d must be a known constant\n", regno + 1); 11043 return -EINVAL; 11044 } 11045 meta->arg_constant.found = true; 11046 meta->arg_constant.value = size_reg->var_off.value; 11047 } 11048 11049 /* Skip next '__sz' or '__szk' argument */ 11050 i++; 11051 break; 11052 } 11053 case KF_ARG_PTR_TO_CALLBACK: 11054 meta->subprogno = reg->subprogno; 11055 break; 11056 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11057 if (!type_is_ptr_alloc_obj(reg->type)) { 11058 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 11059 return -EINVAL; 11060 } 11061 if (!type_is_non_owning_ref(reg->type)) 11062 meta->arg_owning_ref = true; 11063 11064 rec = reg_btf_record(reg); 11065 if (!rec) { 11066 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 11067 return -EFAULT; 11068 } 11069 11070 if (rec->refcount_off < 0) { 11071 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 11072 return -EINVAL; 11073 } 11074 if (rec->refcount_off >= 0) { 11075 verbose(env, "bpf_refcount_acquire calls are disabled for now\n"); 11076 return -EINVAL; 11077 } 11078 meta->arg_btf = reg->btf; 11079 meta->arg_btf_id = reg->btf_id; 11080 break; 11081 } 11082 } 11083 11084 if (is_kfunc_release(meta) && !meta->release_regno) { 11085 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 11086 func_name); 11087 return -EINVAL; 11088 } 11089 11090 return 0; 11091 } 11092 11093 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 11094 struct bpf_insn *insn, 11095 struct bpf_kfunc_call_arg_meta *meta, 11096 const char **kfunc_name) 11097 { 11098 const struct btf_type *func, *func_proto; 11099 u32 func_id, *kfunc_flags; 11100 const char *func_name; 11101 struct btf *desc_btf; 11102 11103 if (kfunc_name) 11104 *kfunc_name = NULL; 11105 11106 if (!insn->imm) 11107 return -EINVAL; 11108 11109 desc_btf = find_kfunc_desc_btf(env, insn->off); 11110 if (IS_ERR(desc_btf)) 11111 return PTR_ERR(desc_btf); 11112 11113 func_id = insn->imm; 11114 func = btf_type_by_id(desc_btf, func_id); 11115 func_name = btf_name_by_offset(desc_btf, func->name_off); 11116 if (kfunc_name) 11117 *kfunc_name = func_name; 11118 func_proto = btf_type_by_id(desc_btf, func->type); 11119 11120 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 11121 if (!kfunc_flags) { 11122 return -EACCES; 11123 } 11124 11125 memset(meta, 0, sizeof(*meta)); 11126 meta->btf = desc_btf; 11127 meta->func_id = func_id; 11128 meta->kfunc_flags = *kfunc_flags; 11129 meta->func_proto = func_proto; 11130 meta->func_name = func_name; 11131 11132 return 0; 11133 } 11134 11135 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 11136 int *insn_idx_p) 11137 { 11138 const struct btf_type *t, *ptr_type; 11139 u32 i, nargs, ptr_type_id, release_ref_obj_id; 11140 struct bpf_reg_state *regs = cur_regs(env); 11141 const char *func_name, *ptr_type_name; 11142 bool sleepable, rcu_lock, rcu_unlock; 11143 struct bpf_kfunc_call_arg_meta meta; 11144 struct bpf_insn_aux_data *insn_aux; 11145 int err, insn_idx = *insn_idx_p; 11146 const struct btf_param *args; 11147 const struct btf_type *ret_t; 11148 struct btf *desc_btf; 11149 11150 /* skip for now, but return error when we find this in fixup_kfunc_call */ 11151 if (!insn->imm) 11152 return 0; 11153 11154 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 11155 if (err == -EACCES && func_name) 11156 verbose(env, "calling kernel function %s is not allowed\n", func_name); 11157 if (err) 11158 return err; 11159 desc_btf = meta.btf; 11160 insn_aux = &env->insn_aux_data[insn_idx]; 11161 11162 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 11163 11164 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 11165 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 11166 return -EACCES; 11167 } 11168 11169 sleepable = is_kfunc_sleepable(&meta); 11170 if (sleepable && !env->prog->aux->sleepable) { 11171 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 11172 return -EACCES; 11173 } 11174 11175 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 11176 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 11177 11178 if (env->cur_state->active_rcu_lock) { 11179 struct bpf_func_state *state; 11180 struct bpf_reg_state *reg; 11181 11182 if (rcu_lock) { 11183 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 11184 return -EINVAL; 11185 } else if (rcu_unlock) { 11186 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 11187 if (reg->type & MEM_RCU) { 11188 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 11189 reg->type |= PTR_UNTRUSTED; 11190 } 11191 })); 11192 env->cur_state->active_rcu_lock = false; 11193 } else if (sleepable) { 11194 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 11195 return -EACCES; 11196 } 11197 } else if (rcu_lock) { 11198 env->cur_state->active_rcu_lock = true; 11199 } else if (rcu_unlock) { 11200 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 11201 return -EINVAL; 11202 } 11203 11204 /* Check the arguments */ 11205 err = check_kfunc_args(env, &meta, insn_idx); 11206 if (err < 0) 11207 return err; 11208 /* In case of release function, we get register number of refcounted 11209 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 11210 */ 11211 if (meta.release_regno) { 11212 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 11213 if (err) { 11214 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11215 func_name, meta.func_id); 11216 return err; 11217 } 11218 } 11219 11220 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11221 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11222 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11223 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 11224 insn_aux->insert_off = regs[BPF_REG_2].off; 11225 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 11226 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 11227 if (err) { 11228 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 11229 func_name, meta.func_id); 11230 return err; 11231 } 11232 11233 err = release_reference(env, release_ref_obj_id); 11234 if (err) { 11235 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11236 func_name, meta.func_id); 11237 return err; 11238 } 11239 } 11240 11241 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11242 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 11243 set_rbtree_add_callback_state); 11244 if (err) { 11245 verbose(env, "kfunc %s#%d failed callback verification\n", 11246 func_name, meta.func_id); 11247 return err; 11248 } 11249 } 11250 11251 for (i = 0; i < CALLER_SAVED_REGS; i++) 11252 mark_reg_not_init(env, regs, caller_saved[i]); 11253 11254 /* Check return type */ 11255 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 11256 11257 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 11258 /* Only exception is bpf_obj_new_impl */ 11259 if (meta.btf != btf_vmlinux || 11260 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 11261 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 11262 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 11263 return -EINVAL; 11264 } 11265 } 11266 11267 if (btf_type_is_scalar(t)) { 11268 mark_reg_unknown(env, regs, BPF_REG_0); 11269 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 11270 } else if (btf_type_is_ptr(t)) { 11271 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 11272 11273 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11274 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 11275 struct btf *ret_btf; 11276 u32 ret_btf_id; 11277 11278 if (unlikely(!bpf_global_ma_set)) 11279 return -ENOMEM; 11280 11281 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 11282 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 11283 return -EINVAL; 11284 } 11285 11286 ret_btf = env->prog->aux->btf; 11287 ret_btf_id = meta.arg_constant.value; 11288 11289 /* This may be NULL due to user not supplying a BTF */ 11290 if (!ret_btf) { 11291 verbose(env, "bpf_obj_new requires prog BTF\n"); 11292 return -EINVAL; 11293 } 11294 11295 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 11296 if (!ret_t || !__btf_type_is_struct(ret_t)) { 11297 verbose(env, "bpf_obj_new type ID argument must be of a struct\n"); 11298 return -EINVAL; 11299 } 11300 11301 mark_reg_known_zero(env, regs, BPF_REG_0); 11302 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11303 regs[BPF_REG_0].btf = ret_btf; 11304 regs[BPF_REG_0].btf_id = ret_btf_id; 11305 11306 insn_aux->obj_new_size = ret_t->size; 11307 insn_aux->kptr_struct_meta = 11308 btf_find_struct_meta(ret_btf, ret_btf_id); 11309 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 11310 mark_reg_known_zero(env, regs, BPF_REG_0); 11311 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11312 regs[BPF_REG_0].btf = meta.arg_btf; 11313 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 11314 11315 insn_aux->kptr_struct_meta = 11316 btf_find_struct_meta(meta.arg_btf, 11317 meta.arg_btf_id); 11318 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 11319 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 11320 struct btf_field *field = meta.arg_list_head.field; 11321 11322 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11323 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11324 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11325 struct btf_field *field = meta.arg_rbtree_root.field; 11326 11327 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11328 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11329 mark_reg_known_zero(env, regs, BPF_REG_0); 11330 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 11331 regs[BPF_REG_0].btf = desc_btf; 11332 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11333 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 11334 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 11335 if (!ret_t || !btf_type_is_struct(ret_t)) { 11336 verbose(env, 11337 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 11338 return -EINVAL; 11339 } 11340 11341 mark_reg_known_zero(env, regs, BPF_REG_0); 11342 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 11343 regs[BPF_REG_0].btf = desc_btf; 11344 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 11345 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 11346 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 11347 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 11348 11349 mark_reg_known_zero(env, regs, BPF_REG_0); 11350 11351 if (!meta.arg_constant.found) { 11352 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 11353 return -EFAULT; 11354 } 11355 11356 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 11357 11358 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 11359 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 11360 11361 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 11362 regs[BPF_REG_0].type |= MEM_RDONLY; 11363 } else { 11364 /* this will set env->seen_direct_write to true */ 11365 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 11366 verbose(env, "the prog does not allow writes to packet data\n"); 11367 return -EINVAL; 11368 } 11369 } 11370 11371 if (!meta.initialized_dynptr.id) { 11372 verbose(env, "verifier internal error: no dynptr id\n"); 11373 return -EFAULT; 11374 } 11375 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 11376 11377 /* we don't need to set BPF_REG_0's ref obj id 11378 * because packet slices are not refcounted (see 11379 * dynptr_type_refcounted) 11380 */ 11381 } else { 11382 verbose(env, "kernel function %s unhandled dynamic return type\n", 11383 meta.func_name); 11384 return -EFAULT; 11385 } 11386 } else if (!__btf_type_is_struct(ptr_type)) { 11387 if (!meta.r0_size) { 11388 __u32 sz; 11389 11390 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 11391 meta.r0_size = sz; 11392 meta.r0_rdonly = true; 11393 } 11394 } 11395 if (!meta.r0_size) { 11396 ptr_type_name = btf_name_by_offset(desc_btf, 11397 ptr_type->name_off); 11398 verbose(env, 11399 "kernel function %s returns pointer type %s %s is not supported\n", 11400 func_name, 11401 btf_type_str(ptr_type), 11402 ptr_type_name); 11403 return -EINVAL; 11404 } 11405 11406 mark_reg_known_zero(env, regs, BPF_REG_0); 11407 regs[BPF_REG_0].type = PTR_TO_MEM; 11408 regs[BPF_REG_0].mem_size = meta.r0_size; 11409 11410 if (meta.r0_rdonly) 11411 regs[BPF_REG_0].type |= MEM_RDONLY; 11412 11413 /* Ensures we don't access the memory after a release_reference() */ 11414 if (meta.ref_obj_id) 11415 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 11416 } else { 11417 mark_reg_known_zero(env, regs, BPF_REG_0); 11418 regs[BPF_REG_0].btf = desc_btf; 11419 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 11420 regs[BPF_REG_0].btf_id = ptr_type_id; 11421 } 11422 11423 if (is_kfunc_ret_null(&meta)) { 11424 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 11425 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 11426 regs[BPF_REG_0].id = ++env->id_gen; 11427 } 11428 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 11429 if (is_kfunc_acquire(&meta)) { 11430 int id = acquire_reference_state(env, insn_idx); 11431 11432 if (id < 0) 11433 return id; 11434 if (is_kfunc_ret_null(&meta)) 11435 regs[BPF_REG_0].id = id; 11436 regs[BPF_REG_0].ref_obj_id = id; 11437 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11438 ref_set_non_owning(env, ®s[BPF_REG_0]); 11439 } 11440 11441 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 11442 regs[BPF_REG_0].id = ++env->id_gen; 11443 } else if (btf_type_is_void(t)) { 11444 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11445 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 11446 insn_aux->kptr_struct_meta = 11447 btf_find_struct_meta(meta.arg_btf, 11448 meta.arg_btf_id); 11449 } 11450 } 11451 } 11452 11453 nargs = btf_type_vlen(meta.func_proto); 11454 args = (const struct btf_param *)(meta.func_proto + 1); 11455 for (i = 0; i < nargs; i++) { 11456 u32 regno = i + 1; 11457 11458 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 11459 if (btf_type_is_ptr(t)) 11460 mark_btf_func_reg_size(env, regno, sizeof(void *)); 11461 else 11462 /* scalar. ensured by btf_check_kfunc_arg_match() */ 11463 mark_btf_func_reg_size(env, regno, t->size); 11464 } 11465 11466 if (is_iter_next_kfunc(&meta)) { 11467 err = process_iter_next_call(env, insn_idx, &meta); 11468 if (err) 11469 return err; 11470 } 11471 11472 return 0; 11473 } 11474 11475 static bool signed_add_overflows(s64 a, s64 b) 11476 { 11477 /* Do the add in u64, where overflow is well-defined */ 11478 s64 res = (s64)((u64)a + (u64)b); 11479 11480 if (b < 0) 11481 return res > a; 11482 return res < a; 11483 } 11484 11485 static bool signed_add32_overflows(s32 a, s32 b) 11486 { 11487 /* Do the add in u32, where overflow is well-defined */ 11488 s32 res = (s32)((u32)a + (u32)b); 11489 11490 if (b < 0) 11491 return res > a; 11492 return res < a; 11493 } 11494 11495 static bool signed_sub_overflows(s64 a, s64 b) 11496 { 11497 /* Do the sub in u64, where overflow is well-defined */ 11498 s64 res = (s64)((u64)a - (u64)b); 11499 11500 if (b < 0) 11501 return res < a; 11502 return res > a; 11503 } 11504 11505 static bool signed_sub32_overflows(s32 a, s32 b) 11506 { 11507 /* Do the sub in u32, where overflow is well-defined */ 11508 s32 res = (s32)((u32)a - (u32)b); 11509 11510 if (b < 0) 11511 return res < a; 11512 return res > a; 11513 } 11514 11515 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 11516 const struct bpf_reg_state *reg, 11517 enum bpf_reg_type type) 11518 { 11519 bool known = tnum_is_const(reg->var_off); 11520 s64 val = reg->var_off.value; 11521 s64 smin = reg->smin_value; 11522 11523 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 11524 verbose(env, "math between %s pointer and %lld is not allowed\n", 11525 reg_type_str(env, type), val); 11526 return false; 11527 } 11528 11529 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 11530 verbose(env, "%s pointer offset %d is not allowed\n", 11531 reg_type_str(env, type), reg->off); 11532 return false; 11533 } 11534 11535 if (smin == S64_MIN) { 11536 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 11537 reg_type_str(env, type)); 11538 return false; 11539 } 11540 11541 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 11542 verbose(env, "value %lld makes %s pointer be out of bounds\n", 11543 smin, reg_type_str(env, type)); 11544 return false; 11545 } 11546 11547 return true; 11548 } 11549 11550 enum { 11551 REASON_BOUNDS = -1, 11552 REASON_TYPE = -2, 11553 REASON_PATHS = -3, 11554 REASON_LIMIT = -4, 11555 REASON_STACK = -5, 11556 }; 11557 11558 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 11559 u32 *alu_limit, bool mask_to_left) 11560 { 11561 u32 max = 0, ptr_limit = 0; 11562 11563 switch (ptr_reg->type) { 11564 case PTR_TO_STACK: 11565 /* Offset 0 is out-of-bounds, but acceptable start for the 11566 * left direction, see BPF_REG_FP. Also, unknown scalar 11567 * offset where we would need to deal with min/max bounds is 11568 * currently prohibited for unprivileged. 11569 */ 11570 max = MAX_BPF_STACK + mask_to_left; 11571 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 11572 break; 11573 case PTR_TO_MAP_VALUE: 11574 max = ptr_reg->map_ptr->value_size; 11575 ptr_limit = (mask_to_left ? 11576 ptr_reg->smin_value : 11577 ptr_reg->umax_value) + ptr_reg->off; 11578 break; 11579 default: 11580 return REASON_TYPE; 11581 } 11582 11583 if (ptr_limit >= max) 11584 return REASON_LIMIT; 11585 *alu_limit = ptr_limit; 11586 return 0; 11587 } 11588 11589 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 11590 const struct bpf_insn *insn) 11591 { 11592 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 11593 } 11594 11595 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 11596 u32 alu_state, u32 alu_limit) 11597 { 11598 /* If we arrived here from different branches with different 11599 * state or limits to sanitize, then this won't work. 11600 */ 11601 if (aux->alu_state && 11602 (aux->alu_state != alu_state || 11603 aux->alu_limit != alu_limit)) 11604 return REASON_PATHS; 11605 11606 /* Corresponding fixup done in do_misc_fixups(). */ 11607 aux->alu_state = alu_state; 11608 aux->alu_limit = alu_limit; 11609 return 0; 11610 } 11611 11612 static int sanitize_val_alu(struct bpf_verifier_env *env, 11613 struct bpf_insn *insn) 11614 { 11615 struct bpf_insn_aux_data *aux = cur_aux(env); 11616 11617 if (can_skip_alu_sanitation(env, insn)) 11618 return 0; 11619 11620 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 11621 } 11622 11623 static bool sanitize_needed(u8 opcode) 11624 { 11625 return opcode == BPF_ADD || opcode == BPF_SUB; 11626 } 11627 11628 struct bpf_sanitize_info { 11629 struct bpf_insn_aux_data aux; 11630 bool mask_to_left; 11631 }; 11632 11633 static struct bpf_verifier_state * 11634 sanitize_speculative_path(struct bpf_verifier_env *env, 11635 const struct bpf_insn *insn, 11636 u32 next_idx, u32 curr_idx) 11637 { 11638 struct bpf_verifier_state *branch; 11639 struct bpf_reg_state *regs; 11640 11641 branch = push_stack(env, next_idx, curr_idx, true); 11642 if (branch && insn) { 11643 regs = branch->frame[branch->curframe]->regs; 11644 if (BPF_SRC(insn->code) == BPF_K) { 11645 mark_reg_unknown(env, regs, insn->dst_reg); 11646 } else if (BPF_SRC(insn->code) == BPF_X) { 11647 mark_reg_unknown(env, regs, insn->dst_reg); 11648 mark_reg_unknown(env, regs, insn->src_reg); 11649 } 11650 } 11651 return branch; 11652 } 11653 11654 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 11655 struct bpf_insn *insn, 11656 const struct bpf_reg_state *ptr_reg, 11657 const struct bpf_reg_state *off_reg, 11658 struct bpf_reg_state *dst_reg, 11659 struct bpf_sanitize_info *info, 11660 const bool commit_window) 11661 { 11662 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 11663 struct bpf_verifier_state *vstate = env->cur_state; 11664 bool off_is_imm = tnum_is_const(off_reg->var_off); 11665 bool off_is_neg = off_reg->smin_value < 0; 11666 bool ptr_is_dst_reg = ptr_reg == dst_reg; 11667 u8 opcode = BPF_OP(insn->code); 11668 u32 alu_state, alu_limit; 11669 struct bpf_reg_state tmp; 11670 bool ret; 11671 int err; 11672 11673 if (can_skip_alu_sanitation(env, insn)) 11674 return 0; 11675 11676 /* We already marked aux for masking from non-speculative 11677 * paths, thus we got here in the first place. We only care 11678 * to explore bad access from here. 11679 */ 11680 if (vstate->speculative) 11681 goto do_sim; 11682 11683 if (!commit_window) { 11684 if (!tnum_is_const(off_reg->var_off) && 11685 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 11686 return REASON_BOUNDS; 11687 11688 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 11689 (opcode == BPF_SUB && !off_is_neg); 11690 } 11691 11692 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 11693 if (err < 0) 11694 return err; 11695 11696 if (commit_window) { 11697 /* In commit phase we narrow the masking window based on 11698 * the observed pointer move after the simulated operation. 11699 */ 11700 alu_state = info->aux.alu_state; 11701 alu_limit = abs(info->aux.alu_limit - alu_limit); 11702 } else { 11703 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 11704 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 11705 alu_state |= ptr_is_dst_reg ? 11706 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 11707 11708 /* Limit pruning on unknown scalars to enable deep search for 11709 * potential masking differences from other program paths. 11710 */ 11711 if (!off_is_imm) 11712 env->explore_alu_limits = true; 11713 } 11714 11715 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 11716 if (err < 0) 11717 return err; 11718 do_sim: 11719 /* If we're in commit phase, we're done here given we already 11720 * pushed the truncated dst_reg into the speculative verification 11721 * stack. 11722 * 11723 * Also, when register is a known constant, we rewrite register-based 11724 * operation to immediate-based, and thus do not need masking (and as 11725 * a consequence, do not need to simulate the zero-truncation either). 11726 */ 11727 if (commit_window || off_is_imm) 11728 return 0; 11729 11730 /* Simulate and find potential out-of-bounds access under 11731 * speculative execution from truncation as a result of 11732 * masking when off was not within expected range. If off 11733 * sits in dst, then we temporarily need to move ptr there 11734 * to simulate dst (== 0) +/-= ptr. Needed, for example, 11735 * for cases where we use K-based arithmetic in one direction 11736 * and truncated reg-based in the other in order to explore 11737 * bad access. 11738 */ 11739 if (!ptr_is_dst_reg) { 11740 tmp = *dst_reg; 11741 copy_register_state(dst_reg, ptr_reg); 11742 } 11743 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 11744 env->insn_idx); 11745 if (!ptr_is_dst_reg && ret) 11746 *dst_reg = tmp; 11747 return !ret ? REASON_STACK : 0; 11748 } 11749 11750 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 11751 { 11752 struct bpf_verifier_state *vstate = env->cur_state; 11753 11754 /* If we simulate paths under speculation, we don't update the 11755 * insn as 'seen' such that when we verify unreachable paths in 11756 * the non-speculative domain, sanitize_dead_code() can still 11757 * rewrite/sanitize them. 11758 */ 11759 if (!vstate->speculative) 11760 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 11761 } 11762 11763 static int sanitize_err(struct bpf_verifier_env *env, 11764 const struct bpf_insn *insn, int reason, 11765 const struct bpf_reg_state *off_reg, 11766 const struct bpf_reg_state *dst_reg) 11767 { 11768 static const char *err = "pointer arithmetic with it prohibited for !root"; 11769 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 11770 u32 dst = insn->dst_reg, src = insn->src_reg; 11771 11772 switch (reason) { 11773 case REASON_BOUNDS: 11774 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 11775 off_reg == dst_reg ? dst : src, err); 11776 break; 11777 case REASON_TYPE: 11778 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 11779 off_reg == dst_reg ? src : dst, err); 11780 break; 11781 case REASON_PATHS: 11782 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 11783 dst, op, err); 11784 break; 11785 case REASON_LIMIT: 11786 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 11787 dst, op, err); 11788 break; 11789 case REASON_STACK: 11790 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 11791 dst, err); 11792 break; 11793 default: 11794 verbose(env, "verifier internal error: unknown reason (%d)\n", 11795 reason); 11796 break; 11797 } 11798 11799 return -EACCES; 11800 } 11801 11802 /* check that stack access falls within stack limits and that 'reg' doesn't 11803 * have a variable offset. 11804 * 11805 * Variable offset is prohibited for unprivileged mode for simplicity since it 11806 * requires corresponding support in Spectre masking for stack ALU. See also 11807 * retrieve_ptr_limit(). 11808 * 11809 * 11810 * 'off' includes 'reg->off'. 11811 */ 11812 static int check_stack_access_for_ptr_arithmetic( 11813 struct bpf_verifier_env *env, 11814 int regno, 11815 const struct bpf_reg_state *reg, 11816 int off) 11817 { 11818 if (!tnum_is_const(reg->var_off)) { 11819 char tn_buf[48]; 11820 11821 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 11822 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 11823 regno, tn_buf, off); 11824 return -EACCES; 11825 } 11826 11827 if (off >= 0 || off < -MAX_BPF_STACK) { 11828 verbose(env, "R%d stack pointer arithmetic goes out of range, " 11829 "prohibited for !root; off=%d\n", regno, off); 11830 return -EACCES; 11831 } 11832 11833 return 0; 11834 } 11835 11836 static int sanitize_check_bounds(struct bpf_verifier_env *env, 11837 const struct bpf_insn *insn, 11838 const struct bpf_reg_state *dst_reg) 11839 { 11840 u32 dst = insn->dst_reg; 11841 11842 /* For unprivileged we require that resulting offset must be in bounds 11843 * in order to be able to sanitize access later on. 11844 */ 11845 if (env->bypass_spec_v1) 11846 return 0; 11847 11848 switch (dst_reg->type) { 11849 case PTR_TO_STACK: 11850 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 11851 dst_reg->off + dst_reg->var_off.value)) 11852 return -EACCES; 11853 break; 11854 case PTR_TO_MAP_VALUE: 11855 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 11856 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 11857 "prohibited for !root\n", dst); 11858 return -EACCES; 11859 } 11860 break; 11861 default: 11862 break; 11863 } 11864 11865 return 0; 11866 } 11867 11868 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 11869 * Caller should also handle BPF_MOV case separately. 11870 * If we return -EACCES, caller may want to try again treating pointer as a 11871 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 11872 */ 11873 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 11874 struct bpf_insn *insn, 11875 const struct bpf_reg_state *ptr_reg, 11876 const struct bpf_reg_state *off_reg) 11877 { 11878 struct bpf_verifier_state *vstate = env->cur_state; 11879 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 11880 struct bpf_reg_state *regs = state->regs, *dst_reg; 11881 bool known = tnum_is_const(off_reg->var_off); 11882 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 11883 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 11884 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 11885 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 11886 struct bpf_sanitize_info info = {}; 11887 u8 opcode = BPF_OP(insn->code); 11888 u32 dst = insn->dst_reg; 11889 int ret; 11890 11891 dst_reg = ®s[dst]; 11892 11893 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 11894 smin_val > smax_val || umin_val > umax_val) { 11895 /* Taint dst register if offset had invalid bounds derived from 11896 * e.g. dead branches. 11897 */ 11898 __mark_reg_unknown(env, dst_reg); 11899 return 0; 11900 } 11901 11902 if (BPF_CLASS(insn->code) != BPF_ALU64) { 11903 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 11904 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 11905 __mark_reg_unknown(env, dst_reg); 11906 return 0; 11907 } 11908 11909 verbose(env, 11910 "R%d 32-bit pointer arithmetic prohibited\n", 11911 dst); 11912 return -EACCES; 11913 } 11914 11915 if (ptr_reg->type & PTR_MAYBE_NULL) { 11916 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 11917 dst, reg_type_str(env, ptr_reg->type)); 11918 return -EACCES; 11919 } 11920 11921 switch (base_type(ptr_reg->type)) { 11922 case CONST_PTR_TO_MAP: 11923 /* smin_val represents the known value */ 11924 if (known && smin_val == 0 && opcode == BPF_ADD) 11925 break; 11926 fallthrough; 11927 case PTR_TO_PACKET_END: 11928 case PTR_TO_SOCKET: 11929 case PTR_TO_SOCK_COMMON: 11930 case PTR_TO_TCP_SOCK: 11931 case PTR_TO_XDP_SOCK: 11932 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 11933 dst, reg_type_str(env, ptr_reg->type)); 11934 return -EACCES; 11935 default: 11936 break; 11937 } 11938 11939 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 11940 * The id may be overwritten later if we create a new variable offset. 11941 */ 11942 dst_reg->type = ptr_reg->type; 11943 dst_reg->id = ptr_reg->id; 11944 11945 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 11946 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 11947 return -EINVAL; 11948 11949 /* pointer types do not carry 32-bit bounds at the moment. */ 11950 __mark_reg32_unbounded(dst_reg); 11951 11952 if (sanitize_needed(opcode)) { 11953 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 11954 &info, false); 11955 if (ret < 0) 11956 return sanitize_err(env, insn, ret, off_reg, dst_reg); 11957 } 11958 11959 switch (opcode) { 11960 case BPF_ADD: 11961 /* We can take a fixed offset as long as it doesn't overflow 11962 * the s32 'off' field 11963 */ 11964 if (known && (ptr_reg->off + smin_val == 11965 (s64)(s32)(ptr_reg->off + smin_val))) { 11966 /* pointer += K. Accumulate it into fixed offset */ 11967 dst_reg->smin_value = smin_ptr; 11968 dst_reg->smax_value = smax_ptr; 11969 dst_reg->umin_value = umin_ptr; 11970 dst_reg->umax_value = umax_ptr; 11971 dst_reg->var_off = ptr_reg->var_off; 11972 dst_reg->off = ptr_reg->off + smin_val; 11973 dst_reg->raw = ptr_reg->raw; 11974 break; 11975 } 11976 /* A new variable offset is created. Note that off_reg->off 11977 * == 0, since it's a scalar. 11978 * dst_reg gets the pointer type and since some positive 11979 * integer value was added to the pointer, give it a new 'id' 11980 * if it's a PTR_TO_PACKET. 11981 * this creates a new 'base' pointer, off_reg (variable) gets 11982 * added into the variable offset, and we copy the fixed offset 11983 * from ptr_reg. 11984 */ 11985 if (signed_add_overflows(smin_ptr, smin_val) || 11986 signed_add_overflows(smax_ptr, smax_val)) { 11987 dst_reg->smin_value = S64_MIN; 11988 dst_reg->smax_value = S64_MAX; 11989 } else { 11990 dst_reg->smin_value = smin_ptr + smin_val; 11991 dst_reg->smax_value = smax_ptr + smax_val; 11992 } 11993 if (umin_ptr + umin_val < umin_ptr || 11994 umax_ptr + umax_val < umax_ptr) { 11995 dst_reg->umin_value = 0; 11996 dst_reg->umax_value = U64_MAX; 11997 } else { 11998 dst_reg->umin_value = umin_ptr + umin_val; 11999 dst_reg->umax_value = umax_ptr + umax_val; 12000 } 12001 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 12002 dst_reg->off = ptr_reg->off; 12003 dst_reg->raw = ptr_reg->raw; 12004 if (reg_is_pkt_pointer(ptr_reg)) { 12005 dst_reg->id = ++env->id_gen; 12006 /* something was added to pkt_ptr, set range to zero */ 12007 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12008 } 12009 break; 12010 case BPF_SUB: 12011 if (dst_reg == off_reg) { 12012 /* scalar -= pointer. Creates an unknown scalar */ 12013 verbose(env, "R%d tried to subtract pointer from scalar\n", 12014 dst); 12015 return -EACCES; 12016 } 12017 /* We don't allow subtraction from FP, because (according to 12018 * test_verifier.c test "invalid fp arithmetic", JITs might not 12019 * be able to deal with it. 12020 */ 12021 if (ptr_reg->type == PTR_TO_STACK) { 12022 verbose(env, "R%d subtraction from stack pointer prohibited\n", 12023 dst); 12024 return -EACCES; 12025 } 12026 if (known && (ptr_reg->off - smin_val == 12027 (s64)(s32)(ptr_reg->off - smin_val))) { 12028 /* pointer -= K. Subtract it from fixed offset */ 12029 dst_reg->smin_value = smin_ptr; 12030 dst_reg->smax_value = smax_ptr; 12031 dst_reg->umin_value = umin_ptr; 12032 dst_reg->umax_value = umax_ptr; 12033 dst_reg->var_off = ptr_reg->var_off; 12034 dst_reg->id = ptr_reg->id; 12035 dst_reg->off = ptr_reg->off - smin_val; 12036 dst_reg->raw = ptr_reg->raw; 12037 break; 12038 } 12039 /* A new variable offset is created. If the subtrahend is known 12040 * nonnegative, then any reg->range we had before is still good. 12041 */ 12042 if (signed_sub_overflows(smin_ptr, smax_val) || 12043 signed_sub_overflows(smax_ptr, smin_val)) { 12044 /* Overflow possible, we know nothing */ 12045 dst_reg->smin_value = S64_MIN; 12046 dst_reg->smax_value = S64_MAX; 12047 } else { 12048 dst_reg->smin_value = smin_ptr - smax_val; 12049 dst_reg->smax_value = smax_ptr - smin_val; 12050 } 12051 if (umin_ptr < umax_val) { 12052 /* Overflow possible, we know nothing */ 12053 dst_reg->umin_value = 0; 12054 dst_reg->umax_value = U64_MAX; 12055 } else { 12056 /* Cannot overflow (as long as bounds are consistent) */ 12057 dst_reg->umin_value = umin_ptr - umax_val; 12058 dst_reg->umax_value = umax_ptr - umin_val; 12059 } 12060 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 12061 dst_reg->off = ptr_reg->off; 12062 dst_reg->raw = ptr_reg->raw; 12063 if (reg_is_pkt_pointer(ptr_reg)) { 12064 dst_reg->id = ++env->id_gen; 12065 /* something was added to pkt_ptr, set range to zero */ 12066 if (smin_val < 0) 12067 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12068 } 12069 break; 12070 case BPF_AND: 12071 case BPF_OR: 12072 case BPF_XOR: 12073 /* bitwise ops on pointers are troublesome, prohibit. */ 12074 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 12075 dst, bpf_alu_string[opcode >> 4]); 12076 return -EACCES; 12077 default: 12078 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 12079 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 12080 dst, bpf_alu_string[opcode >> 4]); 12081 return -EACCES; 12082 } 12083 12084 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 12085 return -EINVAL; 12086 reg_bounds_sync(dst_reg); 12087 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 12088 return -EACCES; 12089 if (sanitize_needed(opcode)) { 12090 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 12091 &info, true); 12092 if (ret < 0) 12093 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12094 } 12095 12096 return 0; 12097 } 12098 12099 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 12100 struct bpf_reg_state *src_reg) 12101 { 12102 s32 smin_val = src_reg->s32_min_value; 12103 s32 smax_val = src_reg->s32_max_value; 12104 u32 umin_val = src_reg->u32_min_value; 12105 u32 umax_val = src_reg->u32_max_value; 12106 12107 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 12108 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 12109 dst_reg->s32_min_value = S32_MIN; 12110 dst_reg->s32_max_value = S32_MAX; 12111 } else { 12112 dst_reg->s32_min_value += smin_val; 12113 dst_reg->s32_max_value += smax_val; 12114 } 12115 if (dst_reg->u32_min_value + umin_val < umin_val || 12116 dst_reg->u32_max_value + umax_val < umax_val) { 12117 dst_reg->u32_min_value = 0; 12118 dst_reg->u32_max_value = U32_MAX; 12119 } else { 12120 dst_reg->u32_min_value += umin_val; 12121 dst_reg->u32_max_value += umax_val; 12122 } 12123 } 12124 12125 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 12126 struct bpf_reg_state *src_reg) 12127 { 12128 s64 smin_val = src_reg->smin_value; 12129 s64 smax_val = src_reg->smax_value; 12130 u64 umin_val = src_reg->umin_value; 12131 u64 umax_val = src_reg->umax_value; 12132 12133 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 12134 signed_add_overflows(dst_reg->smax_value, smax_val)) { 12135 dst_reg->smin_value = S64_MIN; 12136 dst_reg->smax_value = S64_MAX; 12137 } else { 12138 dst_reg->smin_value += smin_val; 12139 dst_reg->smax_value += smax_val; 12140 } 12141 if (dst_reg->umin_value + umin_val < umin_val || 12142 dst_reg->umax_value + umax_val < umax_val) { 12143 dst_reg->umin_value = 0; 12144 dst_reg->umax_value = U64_MAX; 12145 } else { 12146 dst_reg->umin_value += umin_val; 12147 dst_reg->umax_value += umax_val; 12148 } 12149 } 12150 12151 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 12152 struct bpf_reg_state *src_reg) 12153 { 12154 s32 smin_val = src_reg->s32_min_value; 12155 s32 smax_val = src_reg->s32_max_value; 12156 u32 umin_val = src_reg->u32_min_value; 12157 u32 umax_val = src_reg->u32_max_value; 12158 12159 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 12160 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 12161 /* Overflow possible, we know nothing */ 12162 dst_reg->s32_min_value = S32_MIN; 12163 dst_reg->s32_max_value = S32_MAX; 12164 } else { 12165 dst_reg->s32_min_value -= smax_val; 12166 dst_reg->s32_max_value -= smin_val; 12167 } 12168 if (dst_reg->u32_min_value < umax_val) { 12169 /* Overflow possible, we know nothing */ 12170 dst_reg->u32_min_value = 0; 12171 dst_reg->u32_max_value = U32_MAX; 12172 } else { 12173 /* Cannot overflow (as long as bounds are consistent) */ 12174 dst_reg->u32_min_value -= umax_val; 12175 dst_reg->u32_max_value -= umin_val; 12176 } 12177 } 12178 12179 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 12180 struct bpf_reg_state *src_reg) 12181 { 12182 s64 smin_val = src_reg->smin_value; 12183 s64 smax_val = src_reg->smax_value; 12184 u64 umin_val = src_reg->umin_value; 12185 u64 umax_val = src_reg->umax_value; 12186 12187 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 12188 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 12189 /* Overflow possible, we know nothing */ 12190 dst_reg->smin_value = S64_MIN; 12191 dst_reg->smax_value = S64_MAX; 12192 } else { 12193 dst_reg->smin_value -= smax_val; 12194 dst_reg->smax_value -= smin_val; 12195 } 12196 if (dst_reg->umin_value < umax_val) { 12197 /* Overflow possible, we know nothing */ 12198 dst_reg->umin_value = 0; 12199 dst_reg->umax_value = U64_MAX; 12200 } else { 12201 /* Cannot overflow (as long as bounds are consistent) */ 12202 dst_reg->umin_value -= umax_val; 12203 dst_reg->umax_value -= umin_val; 12204 } 12205 } 12206 12207 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 12208 struct bpf_reg_state *src_reg) 12209 { 12210 s32 smin_val = src_reg->s32_min_value; 12211 u32 umin_val = src_reg->u32_min_value; 12212 u32 umax_val = src_reg->u32_max_value; 12213 12214 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 12215 /* Ain't nobody got time to multiply that sign */ 12216 __mark_reg32_unbounded(dst_reg); 12217 return; 12218 } 12219 /* Both values are positive, so we can work with unsigned and 12220 * copy the result to signed (unless it exceeds S32_MAX). 12221 */ 12222 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 12223 /* Potential overflow, we know nothing */ 12224 __mark_reg32_unbounded(dst_reg); 12225 return; 12226 } 12227 dst_reg->u32_min_value *= umin_val; 12228 dst_reg->u32_max_value *= umax_val; 12229 if (dst_reg->u32_max_value > S32_MAX) { 12230 /* Overflow possible, we know nothing */ 12231 dst_reg->s32_min_value = S32_MIN; 12232 dst_reg->s32_max_value = S32_MAX; 12233 } else { 12234 dst_reg->s32_min_value = dst_reg->u32_min_value; 12235 dst_reg->s32_max_value = dst_reg->u32_max_value; 12236 } 12237 } 12238 12239 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 12240 struct bpf_reg_state *src_reg) 12241 { 12242 s64 smin_val = src_reg->smin_value; 12243 u64 umin_val = src_reg->umin_value; 12244 u64 umax_val = src_reg->umax_value; 12245 12246 if (smin_val < 0 || dst_reg->smin_value < 0) { 12247 /* Ain't nobody got time to multiply that sign */ 12248 __mark_reg64_unbounded(dst_reg); 12249 return; 12250 } 12251 /* Both values are positive, so we can work with unsigned and 12252 * copy the result to signed (unless it exceeds S64_MAX). 12253 */ 12254 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 12255 /* Potential overflow, we know nothing */ 12256 __mark_reg64_unbounded(dst_reg); 12257 return; 12258 } 12259 dst_reg->umin_value *= umin_val; 12260 dst_reg->umax_value *= umax_val; 12261 if (dst_reg->umax_value > S64_MAX) { 12262 /* Overflow possible, we know nothing */ 12263 dst_reg->smin_value = S64_MIN; 12264 dst_reg->smax_value = S64_MAX; 12265 } else { 12266 dst_reg->smin_value = dst_reg->umin_value; 12267 dst_reg->smax_value = dst_reg->umax_value; 12268 } 12269 } 12270 12271 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 12272 struct bpf_reg_state *src_reg) 12273 { 12274 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12275 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12276 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12277 s32 smin_val = src_reg->s32_min_value; 12278 u32 umax_val = src_reg->u32_max_value; 12279 12280 if (src_known && dst_known) { 12281 __mark_reg32_known(dst_reg, var32_off.value); 12282 return; 12283 } 12284 12285 /* We get our minimum from the var_off, since that's inherently 12286 * bitwise. Our maximum is the minimum of the operands' maxima. 12287 */ 12288 dst_reg->u32_min_value = var32_off.value; 12289 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 12290 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12291 /* Lose signed bounds when ANDing negative numbers, 12292 * ain't nobody got time for that. 12293 */ 12294 dst_reg->s32_min_value = S32_MIN; 12295 dst_reg->s32_max_value = S32_MAX; 12296 } else { 12297 /* ANDing two positives gives a positive, so safe to 12298 * cast result into s64. 12299 */ 12300 dst_reg->s32_min_value = dst_reg->u32_min_value; 12301 dst_reg->s32_max_value = dst_reg->u32_max_value; 12302 } 12303 } 12304 12305 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 12306 struct bpf_reg_state *src_reg) 12307 { 12308 bool src_known = tnum_is_const(src_reg->var_off); 12309 bool dst_known = tnum_is_const(dst_reg->var_off); 12310 s64 smin_val = src_reg->smin_value; 12311 u64 umax_val = src_reg->umax_value; 12312 12313 if (src_known && dst_known) { 12314 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12315 return; 12316 } 12317 12318 /* We get our minimum from the var_off, since that's inherently 12319 * bitwise. Our maximum is the minimum of the operands' maxima. 12320 */ 12321 dst_reg->umin_value = dst_reg->var_off.value; 12322 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 12323 if (dst_reg->smin_value < 0 || smin_val < 0) { 12324 /* Lose signed bounds when ANDing negative numbers, 12325 * ain't nobody got time for that. 12326 */ 12327 dst_reg->smin_value = S64_MIN; 12328 dst_reg->smax_value = S64_MAX; 12329 } else { 12330 /* ANDing two positives gives a positive, so safe to 12331 * cast result into s64. 12332 */ 12333 dst_reg->smin_value = dst_reg->umin_value; 12334 dst_reg->smax_value = dst_reg->umax_value; 12335 } 12336 /* We may learn something more from the var_off */ 12337 __update_reg_bounds(dst_reg); 12338 } 12339 12340 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 12341 struct bpf_reg_state *src_reg) 12342 { 12343 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12344 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12345 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12346 s32 smin_val = src_reg->s32_min_value; 12347 u32 umin_val = src_reg->u32_min_value; 12348 12349 if (src_known && dst_known) { 12350 __mark_reg32_known(dst_reg, var32_off.value); 12351 return; 12352 } 12353 12354 /* We get our maximum from the var_off, and our minimum is the 12355 * maximum of the operands' minima 12356 */ 12357 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 12358 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12359 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12360 /* Lose signed bounds when ORing negative numbers, 12361 * ain't nobody got time for that. 12362 */ 12363 dst_reg->s32_min_value = S32_MIN; 12364 dst_reg->s32_max_value = S32_MAX; 12365 } else { 12366 /* ORing two positives gives a positive, so safe to 12367 * cast result into s64. 12368 */ 12369 dst_reg->s32_min_value = dst_reg->u32_min_value; 12370 dst_reg->s32_max_value = dst_reg->u32_max_value; 12371 } 12372 } 12373 12374 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 12375 struct bpf_reg_state *src_reg) 12376 { 12377 bool src_known = tnum_is_const(src_reg->var_off); 12378 bool dst_known = tnum_is_const(dst_reg->var_off); 12379 s64 smin_val = src_reg->smin_value; 12380 u64 umin_val = src_reg->umin_value; 12381 12382 if (src_known && dst_known) { 12383 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12384 return; 12385 } 12386 12387 /* We get our maximum from the var_off, and our minimum is the 12388 * maximum of the operands' minima 12389 */ 12390 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 12391 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12392 if (dst_reg->smin_value < 0 || smin_val < 0) { 12393 /* Lose signed bounds when ORing negative numbers, 12394 * ain't nobody got time for that. 12395 */ 12396 dst_reg->smin_value = S64_MIN; 12397 dst_reg->smax_value = S64_MAX; 12398 } else { 12399 /* ORing two positives gives a positive, so safe to 12400 * cast result into s64. 12401 */ 12402 dst_reg->smin_value = dst_reg->umin_value; 12403 dst_reg->smax_value = dst_reg->umax_value; 12404 } 12405 /* We may learn something more from the var_off */ 12406 __update_reg_bounds(dst_reg); 12407 } 12408 12409 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 12410 struct bpf_reg_state *src_reg) 12411 { 12412 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12413 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12414 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12415 s32 smin_val = src_reg->s32_min_value; 12416 12417 if (src_known && dst_known) { 12418 __mark_reg32_known(dst_reg, var32_off.value); 12419 return; 12420 } 12421 12422 /* We get both minimum and maximum from the var32_off. */ 12423 dst_reg->u32_min_value = var32_off.value; 12424 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12425 12426 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 12427 /* XORing two positive sign numbers gives a positive, 12428 * so safe to cast u32 result into s32. 12429 */ 12430 dst_reg->s32_min_value = dst_reg->u32_min_value; 12431 dst_reg->s32_max_value = dst_reg->u32_max_value; 12432 } else { 12433 dst_reg->s32_min_value = S32_MIN; 12434 dst_reg->s32_max_value = S32_MAX; 12435 } 12436 } 12437 12438 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 12439 struct bpf_reg_state *src_reg) 12440 { 12441 bool src_known = tnum_is_const(src_reg->var_off); 12442 bool dst_known = tnum_is_const(dst_reg->var_off); 12443 s64 smin_val = src_reg->smin_value; 12444 12445 if (src_known && dst_known) { 12446 /* dst_reg->var_off.value has been updated earlier */ 12447 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12448 return; 12449 } 12450 12451 /* We get both minimum and maximum from the var_off. */ 12452 dst_reg->umin_value = dst_reg->var_off.value; 12453 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12454 12455 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 12456 /* XORing two positive sign numbers gives a positive, 12457 * so safe to cast u64 result into s64. 12458 */ 12459 dst_reg->smin_value = dst_reg->umin_value; 12460 dst_reg->smax_value = dst_reg->umax_value; 12461 } else { 12462 dst_reg->smin_value = S64_MIN; 12463 dst_reg->smax_value = S64_MAX; 12464 } 12465 12466 __update_reg_bounds(dst_reg); 12467 } 12468 12469 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 12470 u64 umin_val, u64 umax_val) 12471 { 12472 /* We lose all sign bit information (except what we can pick 12473 * up from var_off) 12474 */ 12475 dst_reg->s32_min_value = S32_MIN; 12476 dst_reg->s32_max_value = S32_MAX; 12477 /* If we might shift our top bit out, then we know nothing */ 12478 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 12479 dst_reg->u32_min_value = 0; 12480 dst_reg->u32_max_value = U32_MAX; 12481 } else { 12482 dst_reg->u32_min_value <<= umin_val; 12483 dst_reg->u32_max_value <<= umax_val; 12484 } 12485 } 12486 12487 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 12488 struct bpf_reg_state *src_reg) 12489 { 12490 u32 umax_val = src_reg->u32_max_value; 12491 u32 umin_val = src_reg->u32_min_value; 12492 /* u32 alu operation will zext upper bits */ 12493 struct tnum subreg = tnum_subreg(dst_reg->var_off); 12494 12495 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 12496 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 12497 /* Not required but being careful mark reg64 bounds as unknown so 12498 * that we are forced to pick them up from tnum and zext later and 12499 * if some path skips this step we are still safe. 12500 */ 12501 __mark_reg64_unbounded(dst_reg); 12502 __update_reg32_bounds(dst_reg); 12503 } 12504 12505 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 12506 u64 umin_val, u64 umax_val) 12507 { 12508 /* Special case <<32 because it is a common compiler pattern to sign 12509 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 12510 * positive we know this shift will also be positive so we can track 12511 * bounds correctly. Otherwise we lose all sign bit information except 12512 * what we can pick up from var_off. Perhaps we can generalize this 12513 * later to shifts of any length. 12514 */ 12515 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 12516 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 12517 else 12518 dst_reg->smax_value = S64_MAX; 12519 12520 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 12521 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 12522 else 12523 dst_reg->smin_value = S64_MIN; 12524 12525 /* If we might shift our top bit out, then we know nothing */ 12526 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 12527 dst_reg->umin_value = 0; 12528 dst_reg->umax_value = U64_MAX; 12529 } else { 12530 dst_reg->umin_value <<= umin_val; 12531 dst_reg->umax_value <<= umax_val; 12532 } 12533 } 12534 12535 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 12536 struct bpf_reg_state *src_reg) 12537 { 12538 u64 umax_val = src_reg->umax_value; 12539 u64 umin_val = src_reg->umin_value; 12540 12541 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 12542 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 12543 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 12544 12545 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 12546 /* We may learn something more from the var_off */ 12547 __update_reg_bounds(dst_reg); 12548 } 12549 12550 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 12551 struct bpf_reg_state *src_reg) 12552 { 12553 struct tnum subreg = tnum_subreg(dst_reg->var_off); 12554 u32 umax_val = src_reg->u32_max_value; 12555 u32 umin_val = src_reg->u32_min_value; 12556 12557 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 12558 * be negative, then either: 12559 * 1) src_reg might be zero, so the sign bit of the result is 12560 * unknown, so we lose our signed bounds 12561 * 2) it's known negative, thus the unsigned bounds capture the 12562 * signed bounds 12563 * 3) the signed bounds cross zero, so they tell us nothing 12564 * about the result 12565 * If the value in dst_reg is known nonnegative, then again the 12566 * unsigned bounds capture the signed bounds. 12567 * Thus, in all cases it suffices to blow away our signed bounds 12568 * and rely on inferring new ones from the unsigned bounds and 12569 * var_off of the result. 12570 */ 12571 dst_reg->s32_min_value = S32_MIN; 12572 dst_reg->s32_max_value = S32_MAX; 12573 12574 dst_reg->var_off = tnum_rshift(subreg, umin_val); 12575 dst_reg->u32_min_value >>= umax_val; 12576 dst_reg->u32_max_value >>= umin_val; 12577 12578 __mark_reg64_unbounded(dst_reg); 12579 __update_reg32_bounds(dst_reg); 12580 } 12581 12582 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 12583 struct bpf_reg_state *src_reg) 12584 { 12585 u64 umax_val = src_reg->umax_value; 12586 u64 umin_val = src_reg->umin_value; 12587 12588 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 12589 * be negative, then either: 12590 * 1) src_reg might be zero, so the sign bit of the result is 12591 * unknown, so we lose our signed bounds 12592 * 2) it's known negative, thus the unsigned bounds capture the 12593 * signed bounds 12594 * 3) the signed bounds cross zero, so they tell us nothing 12595 * about the result 12596 * If the value in dst_reg is known nonnegative, then again the 12597 * unsigned bounds capture the signed bounds. 12598 * Thus, in all cases it suffices to blow away our signed bounds 12599 * and rely on inferring new ones from the unsigned bounds and 12600 * var_off of the result. 12601 */ 12602 dst_reg->smin_value = S64_MIN; 12603 dst_reg->smax_value = S64_MAX; 12604 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 12605 dst_reg->umin_value >>= umax_val; 12606 dst_reg->umax_value >>= umin_val; 12607 12608 /* Its not easy to operate on alu32 bounds here because it depends 12609 * on bits being shifted in. Take easy way out and mark unbounded 12610 * so we can recalculate later from tnum. 12611 */ 12612 __mark_reg32_unbounded(dst_reg); 12613 __update_reg_bounds(dst_reg); 12614 } 12615 12616 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 12617 struct bpf_reg_state *src_reg) 12618 { 12619 u64 umin_val = src_reg->u32_min_value; 12620 12621 /* Upon reaching here, src_known is true and 12622 * umax_val is equal to umin_val. 12623 */ 12624 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 12625 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 12626 12627 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 12628 12629 /* blow away the dst_reg umin_value/umax_value and rely on 12630 * dst_reg var_off to refine the result. 12631 */ 12632 dst_reg->u32_min_value = 0; 12633 dst_reg->u32_max_value = U32_MAX; 12634 12635 __mark_reg64_unbounded(dst_reg); 12636 __update_reg32_bounds(dst_reg); 12637 } 12638 12639 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 12640 struct bpf_reg_state *src_reg) 12641 { 12642 u64 umin_val = src_reg->umin_value; 12643 12644 /* Upon reaching here, src_known is true and umax_val is equal 12645 * to umin_val. 12646 */ 12647 dst_reg->smin_value >>= umin_val; 12648 dst_reg->smax_value >>= umin_val; 12649 12650 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 12651 12652 /* blow away the dst_reg umin_value/umax_value and rely on 12653 * dst_reg var_off to refine the result. 12654 */ 12655 dst_reg->umin_value = 0; 12656 dst_reg->umax_value = U64_MAX; 12657 12658 /* Its not easy to operate on alu32 bounds here because it depends 12659 * on bits being shifted in from upper 32-bits. Take easy way out 12660 * and mark unbounded so we can recalculate later from tnum. 12661 */ 12662 __mark_reg32_unbounded(dst_reg); 12663 __update_reg_bounds(dst_reg); 12664 } 12665 12666 /* WARNING: This function does calculations on 64-bit values, but the actual 12667 * execution may occur on 32-bit values. Therefore, things like bitshifts 12668 * need extra checks in the 32-bit case. 12669 */ 12670 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 12671 struct bpf_insn *insn, 12672 struct bpf_reg_state *dst_reg, 12673 struct bpf_reg_state src_reg) 12674 { 12675 struct bpf_reg_state *regs = cur_regs(env); 12676 u8 opcode = BPF_OP(insn->code); 12677 bool src_known; 12678 s64 smin_val, smax_val; 12679 u64 umin_val, umax_val; 12680 s32 s32_min_val, s32_max_val; 12681 u32 u32_min_val, u32_max_val; 12682 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 12683 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 12684 int ret; 12685 12686 smin_val = src_reg.smin_value; 12687 smax_val = src_reg.smax_value; 12688 umin_val = src_reg.umin_value; 12689 umax_val = src_reg.umax_value; 12690 12691 s32_min_val = src_reg.s32_min_value; 12692 s32_max_val = src_reg.s32_max_value; 12693 u32_min_val = src_reg.u32_min_value; 12694 u32_max_val = src_reg.u32_max_value; 12695 12696 if (alu32) { 12697 src_known = tnum_subreg_is_const(src_reg.var_off); 12698 if ((src_known && 12699 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 12700 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 12701 /* Taint dst register if offset had invalid bounds 12702 * derived from e.g. dead branches. 12703 */ 12704 __mark_reg_unknown(env, dst_reg); 12705 return 0; 12706 } 12707 } else { 12708 src_known = tnum_is_const(src_reg.var_off); 12709 if ((src_known && 12710 (smin_val != smax_val || umin_val != umax_val)) || 12711 smin_val > smax_val || umin_val > umax_val) { 12712 /* Taint dst register if offset had invalid bounds 12713 * derived from e.g. dead branches. 12714 */ 12715 __mark_reg_unknown(env, dst_reg); 12716 return 0; 12717 } 12718 } 12719 12720 if (!src_known && 12721 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 12722 __mark_reg_unknown(env, dst_reg); 12723 return 0; 12724 } 12725 12726 if (sanitize_needed(opcode)) { 12727 ret = sanitize_val_alu(env, insn); 12728 if (ret < 0) 12729 return sanitize_err(env, insn, ret, NULL, NULL); 12730 } 12731 12732 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 12733 * There are two classes of instructions: The first class we track both 12734 * alu32 and alu64 sign/unsigned bounds independently this provides the 12735 * greatest amount of precision when alu operations are mixed with jmp32 12736 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 12737 * and BPF_OR. This is possible because these ops have fairly easy to 12738 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 12739 * See alu32 verifier tests for examples. The second class of 12740 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 12741 * with regards to tracking sign/unsigned bounds because the bits may 12742 * cross subreg boundaries in the alu64 case. When this happens we mark 12743 * the reg unbounded in the subreg bound space and use the resulting 12744 * tnum to calculate an approximation of the sign/unsigned bounds. 12745 */ 12746 switch (opcode) { 12747 case BPF_ADD: 12748 scalar32_min_max_add(dst_reg, &src_reg); 12749 scalar_min_max_add(dst_reg, &src_reg); 12750 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 12751 break; 12752 case BPF_SUB: 12753 scalar32_min_max_sub(dst_reg, &src_reg); 12754 scalar_min_max_sub(dst_reg, &src_reg); 12755 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 12756 break; 12757 case BPF_MUL: 12758 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 12759 scalar32_min_max_mul(dst_reg, &src_reg); 12760 scalar_min_max_mul(dst_reg, &src_reg); 12761 break; 12762 case BPF_AND: 12763 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 12764 scalar32_min_max_and(dst_reg, &src_reg); 12765 scalar_min_max_and(dst_reg, &src_reg); 12766 break; 12767 case BPF_OR: 12768 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 12769 scalar32_min_max_or(dst_reg, &src_reg); 12770 scalar_min_max_or(dst_reg, &src_reg); 12771 break; 12772 case BPF_XOR: 12773 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 12774 scalar32_min_max_xor(dst_reg, &src_reg); 12775 scalar_min_max_xor(dst_reg, &src_reg); 12776 break; 12777 case BPF_LSH: 12778 if (umax_val >= insn_bitness) { 12779 /* Shifts greater than 31 or 63 are undefined. 12780 * This includes shifts by a negative number. 12781 */ 12782 mark_reg_unknown(env, regs, insn->dst_reg); 12783 break; 12784 } 12785 if (alu32) 12786 scalar32_min_max_lsh(dst_reg, &src_reg); 12787 else 12788 scalar_min_max_lsh(dst_reg, &src_reg); 12789 break; 12790 case BPF_RSH: 12791 if (umax_val >= insn_bitness) { 12792 /* Shifts greater than 31 or 63 are undefined. 12793 * This includes shifts by a negative number. 12794 */ 12795 mark_reg_unknown(env, regs, insn->dst_reg); 12796 break; 12797 } 12798 if (alu32) 12799 scalar32_min_max_rsh(dst_reg, &src_reg); 12800 else 12801 scalar_min_max_rsh(dst_reg, &src_reg); 12802 break; 12803 case BPF_ARSH: 12804 if (umax_val >= insn_bitness) { 12805 /* Shifts greater than 31 or 63 are undefined. 12806 * This includes shifts by a negative number. 12807 */ 12808 mark_reg_unknown(env, regs, insn->dst_reg); 12809 break; 12810 } 12811 if (alu32) 12812 scalar32_min_max_arsh(dst_reg, &src_reg); 12813 else 12814 scalar_min_max_arsh(dst_reg, &src_reg); 12815 break; 12816 default: 12817 mark_reg_unknown(env, regs, insn->dst_reg); 12818 break; 12819 } 12820 12821 /* ALU32 ops are zero extended into 64bit register */ 12822 if (alu32) 12823 zext_32_to_64(dst_reg); 12824 reg_bounds_sync(dst_reg); 12825 return 0; 12826 } 12827 12828 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 12829 * and var_off. 12830 */ 12831 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 12832 struct bpf_insn *insn) 12833 { 12834 struct bpf_verifier_state *vstate = env->cur_state; 12835 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12836 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 12837 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 12838 u8 opcode = BPF_OP(insn->code); 12839 int err; 12840 12841 dst_reg = ®s[insn->dst_reg]; 12842 src_reg = NULL; 12843 if (dst_reg->type != SCALAR_VALUE) 12844 ptr_reg = dst_reg; 12845 else 12846 /* Make sure ID is cleared otherwise dst_reg min/max could be 12847 * incorrectly propagated into other registers by find_equal_scalars() 12848 */ 12849 dst_reg->id = 0; 12850 if (BPF_SRC(insn->code) == BPF_X) { 12851 src_reg = ®s[insn->src_reg]; 12852 if (src_reg->type != SCALAR_VALUE) { 12853 if (dst_reg->type != SCALAR_VALUE) { 12854 /* Combining two pointers by any ALU op yields 12855 * an arbitrary scalar. Disallow all math except 12856 * pointer subtraction 12857 */ 12858 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 12859 mark_reg_unknown(env, regs, insn->dst_reg); 12860 return 0; 12861 } 12862 verbose(env, "R%d pointer %s pointer prohibited\n", 12863 insn->dst_reg, 12864 bpf_alu_string[opcode >> 4]); 12865 return -EACCES; 12866 } else { 12867 /* scalar += pointer 12868 * This is legal, but we have to reverse our 12869 * src/dest handling in computing the range 12870 */ 12871 err = mark_chain_precision(env, insn->dst_reg); 12872 if (err) 12873 return err; 12874 return adjust_ptr_min_max_vals(env, insn, 12875 src_reg, dst_reg); 12876 } 12877 } else if (ptr_reg) { 12878 /* pointer += scalar */ 12879 err = mark_chain_precision(env, insn->src_reg); 12880 if (err) 12881 return err; 12882 return adjust_ptr_min_max_vals(env, insn, 12883 dst_reg, src_reg); 12884 } else if (dst_reg->precise) { 12885 /* if dst_reg is precise, src_reg should be precise as well */ 12886 err = mark_chain_precision(env, insn->src_reg); 12887 if (err) 12888 return err; 12889 } 12890 } else { 12891 /* Pretend the src is a reg with a known value, since we only 12892 * need to be able to read from this state. 12893 */ 12894 off_reg.type = SCALAR_VALUE; 12895 __mark_reg_known(&off_reg, insn->imm); 12896 src_reg = &off_reg; 12897 if (ptr_reg) /* pointer += K */ 12898 return adjust_ptr_min_max_vals(env, insn, 12899 ptr_reg, src_reg); 12900 } 12901 12902 /* Got here implies adding two SCALAR_VALUEs */ 12903 if (WARN_ON_ONCE(ptr_reg)) { 12904 print_verifier_state(env, state, true); 12905 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 12906 return -EINVAL; 12907 } 12908 if (WARN_ON(!src_reg)) { 12909 print_verifier_state(env, state, true); 12910 verbose(env, "verifier internal error: no src_reg\n"); 12911 return -EINVAL; 12912 } 12913 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 12914 } 12915 12916 /* check validity of 32-bit and 64-bit arithmetic operations */ 12917 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 12918 { 12919 struct bpf_reg_state *regs = cur_regs(env); 12920 u8 opcode = BPF_OP(insn->code); 12921 int err; 12922 12923 if (opcode == BPF_END || opcode == BPF_NEG) { 12924 if (opcode == BPF_NEG) { 12925 if (BPF_SRC(insn->code) != BPF_K || 12926 insn->src_reg != BPF_REG_0 || 12927 insn->off != 0 || insn->imm != 0) { 12928 verbose(env, "BPF_NEG uses reserved fields\n"); 12929 return -EINVAL; 12930 } 12931 } else { 12932 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 12933 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 12934 BPF_CLASS(insn->code) == BPF_ALU64) { 12935 verbose(env, "BPF_END uses reserved fields\n"); 12936 return -EINVAL; 12937 } 12938 } 12939 12940 /* check src operand */ 12941 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12942 if (err) 12943 return err; 12944 12945 if (is_pointer_value(env, insn->dst_reg)) { 12946 verbose(env, "R%d pointer arithmetic prohibited\n", 12947 insn->dst_reg); 12948 return -EACCES; 12949 } 12950 12951 /* check dest operand */ 12952 err = check_reg_arg(env, insn->dst_reg, DST_OP); 12953 if (err) 12954 return err; 12955 12956 } else if (opcode == BPF_MOV) { 12957 12958 if (BPF_SRC(insn->code) == BPF_X) { 12959 if (insn->imm != 0 || insn->off != 0) { 12960 verbose(env, "BPF_MOV uses reserved fields\n"); 12961 return -EINVAL; 12962 } 12963 12964 /* check src operand */ 12965 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12966 if (err) 12967 return err; 12968 } else { 12969 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 12970 verbose(env, "BPF_MOV uses reserved fields\n"); 12971 return -EINVAL; 12972 } 12973 } 12974 12975 /* check dest operand, mark as required later */ 12976 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 12977 if (err) 12978 return err; 12979 12980 if (BPF_SRC(insn->code) == BPF_X) { 12981 struct bpf_reg_state *src_reg = regs + insn->src_reg; 12982 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 12983 bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id && 12984 !tnum_is_const(src_reg->var_off); 12985 12986 if (BPF_CLASS(insn->code) == BPF_ALU64) { 12987 /* case: R1 = R2 12988 * copy register state to dest reg 12989 */ 12990 if (need_id) 12991 /* Assign src and dst registers the same ID 12992 * that will be used by find_equal_scalars() 12993 * to propagate min/max range. 12994 */ 12995 src_reg->id = ++env->id_gen; 12996 copy_register_state(dst_reg, src_reg); 12997 dst_reg->live |= REG_LIVE_WRITTEN; 12998 dst_reg->subreg_def = DEF_NOT_SUBREG; 12999 } else { 13000 /* R1 = (u32) R2 */ 13001 if (is_pointer_value(env, insn->src_reg)) { 13002 verbose(env, 13003 "R%d partial copy of pointer\n", 13004 insn->src_reg); 13005 return -EACCES; 13006 } else if (src_reg->type == SCALAR_VALUE) { 13007 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX; 13008 13009 if (is_src_reg_u32 && need_id) 13010 src_reg->id = ++env->id_gen; 13011 copy_register_state(dst_reg, src_reg); 13012 /* Make sure ID is cleared if src_reg is not in u32 range otherwise 13013 * dst_reg min/max could be incorrectly 13014 * propagated into src_reg by find_equal_scalars() 13015 */ 13016 if (!is_src_reg_u32) 13017 dst_reg->id = 0; 13018 dst_reg->live |= REG_LIVE_WRITTEN; 13019 dst_reg->subreg_def = env->insn_idx + 1; 13020 } else { 13021 mark_reg_unknown(env, regs, 13022 insn->dst_reg); 13023 } 13024 zext_32_to_64(dst_reg); 13025 reg_bounds_sync(dst_reg); 13026 } 13027 } else { 13028 /* case: R = imm 13029 * remember the value we stored into this reg 13030 */ 13031 /* clear any state __mark_reg_known doesn't set */ 13032 mark_reg_unknown(env, regs, insn->dst_reg); 13033 regs[insn->dst_reg].type = SCALAR_VALUE; 13034 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13035 __mark_reg_known(regs + insn->dst_reg, 13036 insn->imm); 13037 } else { 13038 __mark_reg_known(regs + insn->dst_reg, 13039 (u32)insn->imm); 13040 } 13041 } 13042 13043 } else if (opcode > BPF_END) { 13044 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 13045 return -EINVAL; 13046 13047 } else { /* all other ALU ops: and, sub, xor, add, ... */ 13048 13049 if (BPF_SRC(insn->code) == BPF_X) { 13050 if (insn->imm != 0 || insn->off != 0) { 13051 verbose(env, "BPF_ALU uses reserved fields\n"); 13052 return -EINVAL; 13053 } 13054 /* check src1 operand */ 13055 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13056 if (err) 13057 return err; 13058 } else { 13059 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 13060 verbose(env, "BPF_ALU uses reserved fields\n"); 13061 return -EINVAL; 13062 } 13063 } 13064 13065 /* check src2 operand */ 13066 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13067 if (err) 13068 return err; 13069 13070 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 13071 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 13072 verbose(env, "div by zero\n"); 13073 return -EINVAL; 13074 } 13075 13076 if ((opcode == BPF_LSH || opcode == BPF_RSH || 13077 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 13078 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 13079 13080 if (insn->imm < 0 || insn->imm >= size) { 13081 verbose(env, "invalid shift %d\n", insn->imm); 13082 return -EINVAL; 13083 } 13084 } 13085 13086 /* check dest operand */ 13087 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13088 if (err) 13089 return err; 13090 13091 return adjust_reg_min_max_vals(env, insn); 13092 } 13093 13094 return 0; 13095 } 13096 13097 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 13098 struct bpf_reg_state *dst_reg, 13099 enum bpf_reg_type type, 13100 bool range_right_open) 13101 { 13102 struct bpf_func_state *state; 13103 struct bpf_reg_state *reg; 13104 int new_range; 13105 13106 if (dst_reg->off < 0 || 13107 (dst_reg->off == 0 && range_right_open)) 13108 /* This doesn't give us any range */ 13109 return; 13110 13111 if (dst_reg->umax_value > MAX_PACKET_OFF || 13112 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 13113 /* Risk of overflow. For instance, ptr + (1<<63) may be less 13114 * than pkt_end, but that's because it's also less than pkt. 13115 */ 13116 return; 13117 13118 new_range = dst_reg->off; 13119 if (range_right_open) 13120 new_range++; 13121 13122 /* Examples for register markings: 13123 * 13124 * pkt_data in dst register: 13125 * 13126 * r2 = r3; 13127 * r2 += 8; 13128 * if (r2 > pkt_end) goto <handle exception> 13129 * <access okay> 13130 * 13131 * r2 = r3; 13132 * r2 += 8; 13133 * if (r2 < pkt_end) goto <access okay> 13134 * <handle exception> 13135 * 13136 * Where: 13137 * r2 == dst_reg, pkt_end == src_reg 13138 * r2=pkt(id=n,off=8,r=0) 13139 * r3=pkt(id=n,off=0,r=0) 13140 * 13141 * pkt_data in src register: 13142 * 13143 * r2 = r3; 13144 * r2 += 8; 13145 * if (pkt_end >= r2) goto <access okay> 13146 * <handle exception> 13147 * 13148 * r2 = r3; 13149 * r2 += 8; 13150 * if (pkt_end <= r2) goto <handle exception> 13151 * <access okay> 13152 * 13153 * Where: 13154 * pkt_end == dst_reg, r2 == src_reg 13155 * r2=pkt(id=n,off=8,r=0) 13156 * r3=pkt(id=n,off=0,r=0) 13157 * 13158 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 13159 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 13160 * and [r3, r3 + 8-1) respectively is safe to access depending on 13161 * the check. 13162 */ 13163 13164 /* If our ids match, then we must have the same max_value. And we 13165 * don't care about the other reg's fixed offset, since if it's too big 13166 * the range won't allow anything. 13167 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 13168 */ 13169 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13170 if (reg->type == type && reg->id == dst_reg->id) 13171 /* keep the maximum range already checked */ 13172 reg->range = max(reg->range, new_range); 13173 })); 13174 } 13175 13176 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 13177 { 13178 struct tnum subreg = tnum_subreg(reg->var_off); 13179 s32 sval = (s32)val; 13180 13181 switch (opcode) { 13182 case BPF_JEQ: 13183 if (tnum_is_const(subreg)) 13184 return !!tnum_equals_const(subreg, val); 13185 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13186 return 0; 13187 break; 13188 case BPF_JNE: 13189 if (tnum_is_const(subreg)) 13190 return !tnum_equals_const(subreg, val); 13191 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13192 return 1; 13193 break; 13194 case BPF_JSET: 13195 if ((~subreg.mask & subreg.value) & val) 13196 return 1; 13197 if (!((subreg.mask | subreg.value) & val)) 13198 return 0; 13199 break; 13200 case BPF_JGT: 13201 if (reg->u32_min_value > val) 13202 return 1; 13203 else if (reg->u32_max_value <= val) 13204 return 0; 13205 break; 13206 case BPF_JSGT: 13207 if (reg->s32_min_value > sval) 13208 return 1; 13209 else if (reg->s32_max_value <= sval) 13210 return 0; 13211 break; 13212 case BPF_JLT: 13213 if (reg->u32_max_value < val) 13214 return 1; 13215 else if (reg->u32_min_value >= val) 13216 return 0; 13217 break; 13218 case BPF_JSLT: 13219 if (reg->s32_max_value < sval) 13220 return 1; 13221 else if (reg->s32_min_value >= sval) 13222 return 0; 13223 break; 13224 case BPF_JGE: 13225 if (reg->u32_min_value >= val) 13226 return 1; 13227 else if (reg->u32_max_value < val) 13228 return 0; 13229 break; 13230 case BPF_JSGE: 13231 if (reg->s32_min_value >= sval) 13232 return 1; 13233 else if (reg->s32_max_value < sval) 13234 return 0; 13235 break; 13236 case BPF_JLE: 13237 if (reg->u32_max_value <= val) 13238 return 1; 13239 else if (reg->u32_min_value > val) 13240 return 0; 13241 break; 13242 case BPF_JSLE: 13243 if (reg->s32_max_value <= sval) 13244 return 1; 13245 else if (reg->s32_min_value > sval) 13246 return 0; 13247 break; 13248 } 13249 13250 return -1; 13251 } 13252 13253 13254 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 13255 { 13256 s64 sval = (s64)val; 13257 13258 switch (opcode) { 13259 case BPF_JEQ: 13260 if (tnum_is_const(reg->var_off)) 13261 return !!tnum_equals_const(reg->var_off, val); 13262 else if (val < reg->umin_value || val > reg->umax_value) 13263 return 0; 13264 break; 13265 case BPF_JNE: 13266 if (tnum_is_const(reg->var_off)) 13267 return !tnum_equals_const(reg->var_off, val); 13268 else if (val < reg->umin_value || val > reg->umax_value) 13269 return 1; 13270 break; 13271 case BPF_JSET: 13272 if ((~reg->var_off.mask & reg->var_off.value) & val) 13273 return 1; 13274 if (!((reg->var_off.mask | reg->var_off.value) & val)) 13275 return 0; 13276 break; 13277 case BPF_JGT: 13278 if (reg->umin_value > val) 13279 return 1; 13280 else if (reg->umax_value <= val) 13281 return 0; 13282 break; 13283 case BPF_JSGT: 13284 if (reg->smin_value > sval) 13285 return 1; 13286 else if (reg->smax_value <= sval) 13287 return 0; 13288 break; 13289 case BPF_JLT: 13290 if (reg->umax_value < val) 13291 return 1; 13292 else if (reg->umin_value >= val) 13293 return 0; 13294 break; 13295 case BPF_JSLT: 13296 if (reg->smax_value < sval) 13297 return 1; 13298 else if (reg->smin_value >= sval) 13299 return 0; 13300 break; 13301 case BPF_JGE: 13302 if (reg->umin_value >= val) 13303 return 1; 13304 else if (reg->umax_value < val) 13305 return 0; 13306 break; 13307 case BPF_JSGE: 13308 if (reg->smin_value >= sval) 13309 return 1; 13310 else if (reg->smax_value < sval) 13311 return 0; 13312 break; 13313 case BPF_JLE: 13314 if (reg->umax_value <= val) 13315 return 1; 13316 else if (reg->umin_value > val) 13317 return 0; 13318 break; 13319 case BPF_JSLE: 13320 if (reg->smax_value <= sval) 13321 return 1; 13322 else if (reg->smin_value > sval) 13323 return 0; 13324 break; 13325 } 13326 13327 return -1; 13328 } 13329 13330 /* compute branch direction of the expression "if (reg opcode val) goto target;" 13331 * and return: 13332 * 1 - branch will be taken and "goto target" will be executed 13333 * 0 - branch will not be taken and fall-through to next insn 13334 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 13335 * range [0,10] 13336 */ 13337 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 13338 bool is_jmp32) 13339 { 13340 if (__is_pointer_value(false, reg)) { 13341 if (!reg_not_null(reg)) 13342 return -1; 13343 13344 /* If pointer is valid tests against zero will fail so we can 13345 * use this to direct branch taken. 13346 */ 13347 if (val != 0) 13348 return -1; 13349 13350 switch (opcode) { 13351 case BPF_JEQ: 13352 return 0; 13353 case BPF_JNE: 13354 return 1; 13355 default: 13356 return -1; 13357 } 13358 } 13359 13360 if (is_jmp32) 13361 return is_branch32_taken(reg, val, opcode); 13362 return is_branch64_taken(reg, val, opcode); 13363 } 13364 13365 static int flip_opcode(u32 opcode) 13366 { 13367 /* How can we transform "a <op> b" into "b <op> a"? */ 13368 static const u8 opcode_flip[16] = { 13369 /* these stay the same */ 13370 [BPF_JEQ >> 4] = BPF_JEQ, 13371 [BPF_JNE >> 4] = BPF_JNE, 13372 [BPF_JSET >> 4] = BPF_JSET, 13373 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 13374 [BPF_JGE >> 4] = BPF_JLE, 13375 [BPF_JGT >> 4] = BPF_JLT, 13376 [BPF_JLE >> 4] = BPF_JGE, 13377 [BPF_JLT >> 4] = BPF_JGT, 13378 [BPF_JSGE >> 4] = BPF_JSLE, 13379 [BPF_JSGT >> 4] = BPF_JSLT, 13380 [BPF_JSLE >> 4] = BPF_JSGE, 13381 [BPF_JSLT >> 4] = BPF_JSGT 13382 }; 13383 return opcode_flip[opcode >> 4]; 13384 } 13385 13386 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 13387 struct bpf_reg_state *src_reg, 13388 u8 opcode) 13389 { 13390 struct bpf_reg_state *pkt; 13391 13392 if (src_reg->type == PTR_TO_PACKET_END) { 13393 pkt = dst_reg; 13394 } else if (dst_reg->type == PTR_TO_PACKET_END) { 13395 pkt = src_reg; 13396 opcode = flip_opcode(opcode); 13397 } else { 13398 return -1; 13399 } 13400 13401 if (pkt->range >= 0) 13402 return -1; 13403 13404 switch (opcode) { 13405 case BPF_JLE: 13406 /* pkt <= pkt_end */ 13407 fallthrough; 13408 case BPF_JGT: 13409 /* pkt > pkt_end */ 13410 if (pkt->range == BEYOND_PKT_END) 13411 /* pkt has at last one extra byte beyond pkt_end */ 13412 return opcode == BPF_JGT; 13413 break; 13414 case BPF_JLT: 13415 /* pkt < pkt_end */ 13416 fallthrough; 13417 case BPF_JGE: 13418 /* pkt >= pkt_end */ 13419 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 13420 return opcode == BPF_JGE; 13421 break; 13422 } 13423 return -1; 13424 } 13425 13426 /* Adjusts the register min/max values in the case that the dst_reg is the 13427 * variable register that we are working on, and src_reg is a constant or we're 13428 * simply doing a BPF_K check. 13429 * In JEQ/JNE cases we also adjust the var_off values. 13430 */ 13431 static void reg_set_min_max(struct bpf_reg_state *true_reg, 13432 struct bpf_reg_state *false_reg, 13433 u64 val, u32 val32, 13434 u8 opcode, bool is_jmp32) 13435 { 13436 struct tnum false_32off = tnum_subreg(false_reg->var_off); 13437 struct tnum false_64off = false_reg->var_off; 13438 struct tnum true_32off = tnum_subreg(true_reg->var_off); 13439 struct tnum true_64off = true_reg->var_off; 13440 s64 sval = (s64)val; 13441 s32 sval32 = (s32)val32; 13442 13443 /* If the dst_reg is a pointer, we can't learn anything about its 13444 * variable offset from the compare (unless src_reg were a pointer into 13445 * the same object, but we don't bother with that. 13446 * Since false_reg and true_reg have the same type by construction, we 13447 * only need to check one of them for pointerness. 13448 */ 13449 if (__is_pointer_value(false, false_reg)) 13450 return; 13451 13452 switch (opcode) { 13453 /* JEQ/JNE comparison doesn't change the register equivalence. 13454 * 13455 * r1 = r2; 13456 * if (r1 == 42) goto label; 13457 * ... 13458 * label: // here both r1 and r2 are known to be 42. 13459 * 13460 * Hence when marking register as known preserve it's ID. 13461 */ 13462 case BPF_JEQ: 13463 if (is_jmp32) { 13464 __mark_reg32_known(true_reg, val32); 13465 true_32off = tnum_subreg(true_reg->var_off); 13466 } else { 13467 ___mark_reg_known(true_reg, val); 13468 true_64off = true_reg->var_off; 13469 } 13470 break; 13471 case BPF_JNE: 13472 if (is_jmp32) { 13473 __mark_reg32_known(false_reg, val32); 13474 false_32off = tnum_subreg(false_reg->var_off); 13475 } else { 13476 ___mark_reg_known(false_reg, val); 13477 false_64off = false_reg->var_off; 13478 } 13479 break; 13480 case BPF_JSET: 13481 if (is_jmp32) { 13482 false_32off = tnum_and(false_32off, tnum_const(~val32)); 13483 if (is_power_of_2(val32)) 13484 true_32off = tnum_or(true_32off, 13485 tnum_const(val32)); 13486 } else { 13487 false_64off = tnum_and(false_64off, tnum_const(~val)); 13488 if (is_power_of_2(val)) 13489 true_64off = tnum_or(true_64off, 13490 tnum_const(val)); 13491 } 13492 break; 13493 case BPF_JGE: 13494 case BPF_JGT: 13495 { 13496 if (is_jmp32) { 13497 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 13498 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 13499 13500 false_reg->u32_max_value = min(false_reg->u32_max_value, 13501 false_umax); 13502 true_reg->u32_min_value = max(true_reg->u32_min_value, 13503 true_umin); 13504 } else { 13505 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 13506 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 13507 13508 false_reg->umax_value = min(false_reg->umax_value, false_umax); 13509 true_reg->umin_value = max(true_reg->umin_value, true_umin); 13510 } 13511 break; 13512 } 13513 case BPF_JSGE: 13514 case BPF_JSGT: 13515 { 13516 if (is_jmp32) { 13517 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 13518 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 13519 13520 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 13521 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 13522 } else { 13523 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 13524 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 13525 13526 false_reg->smax_value = min(false_reg->smax_value, false_smax); 13527 true_reg->smin_value = max(true_reg->smin_value, true_smin); 13528 } 13529 break; 13530 } 13531 case BPF_JLE: 13532 case BPF_JLT: 13533 { 13534 if (is_jmp32) { 13535 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 13536 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 13537 13538 false_reg->u32_min_value = max(false_reg->u32_min_value, 13539 false_umin); 13540 true_reg->u32_max_value = min(true_reg->u32_max_value, 13541 true_umax); 13542 } else { 13543 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 13544 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 13545 13546 false_reg->umin_value = max(false_reg->umin_value, false_umin); 13547 true_reg->umax_value = min(true_reg->umax_value, true_umax); 13548 } 13549 break; 13550 } 13551 case BPF_JSLE: 13552 case BPF_JSLT: 13553 { 13554 if (is_jmp32) { 13555 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 13556 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 13557 13558 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 13559 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 13560 } else { 13561 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 13562 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 13563 13564 false_reg->smin_value = max(false_reg->smin_value, false_smin); 13565 true_reg->smax_value = min(true_reg->smax_value, true_smax); 13566 } 13567 break; 13568 } 13569 default: 13570 return; 13571 } 13572 13573 if (is_jmp32) { 13574 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 13575 tnum_subreg(false_32off)); 13576 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 13577 tnum_subreg(true_32off)); 13578 __reg_combine_32_into_64(false_reg); 13579 __reg_combine_32_into_64(true_reg); 13580 } else { 13581 false_reg->var_off = false_64off; 13582 true_reg->var_off = true_64off; 13583 __reg_combine_64_into_32(false_reg); 13584 __reg_combine_64_into_32(true_reg); 13585 } 13586 } 13587 13588 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 13589 * the variable reg. 13590 */ 13591 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 13592 struct bpf_reg_state *false_reg, 13593 u64 val, u32 val32, 13594 u8 opcode, bool is_jmp32) 13595 { 13596 opcode = flip_opcode(opcode); 13597 /* This uses zero as "not present in table"; luckily the zero opcode, 13598 * BPF_JA, can't get here. 13599 */ 13600 if (opcode) 13601 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 13602 } 13603 13604 /* Regs are known to be equal, so intersect their min/max/var_off */ 13605 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 13606 struct bpf_reg_state *dst_reg) 13607 { 13608 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 13609 dst_reg->umin_value); 13610 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 13611 dst_reg->umax_value); 13612 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 13613 dst_reg->smin_value); 13614 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 13615 dst_reg->smax_value); 13616 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 13617 dst_reg->var_off); 13618 reg_bounds_sync(src_reg); 13619 reg_bounds_sync(dst_reg); 13620 } 13621 13622 static void reg_combine_min_max(struct bpf_reg_state *true_src, 13623 struct bpf_reg_state *true_dst, 13624 struct bpf_reg_state *false_src, 13625 struct bpf_reg_state *false_dst, 13626 u8 opcode) 13627 { 13628 switch (opcode) { 13629 case BPF_JEQ: 13630 __reg_combine_min_max(true_src, true_dst); 13631 break; 13632 case BPF_JNE: 13633 __reg_combine_min_max(false_src, false_dst); 13634 break; 13635 } 13636 } 13637 13638 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 13639 struct bpf_reg_state *reg, u32 id, 13640 bool is_null) 13641 { 13642 if (type_may_be_null(reg->type) && reg->id == id && 13643 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 13644 /* Old offset (both fixed and variable parts) should have been 13645 * known-zero, because we don't allow pointer arithmetic on 13646 * pointers that might be NULL. If we see this happening, don't 13647 * convert the register. 13648 * 13649 * But in some cases, some helpers that return local kptrs 13650 * advance offset for the returned pointer. In those cases, it 13651 * is fine to expect to see reg->off. 13652 */ 13653 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 13654 return; 13655 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 13656 WARN_ON_ONCE(reg->off)) 13657 return; 13658 13659 if (is_null) { 13660 reg->type = SCALAR_VALUE; 13661 /* We don't need id and ref_obj_id from this point 13662 * onwards anymore, thus we should better reset it, 13663 * so that state pruning has chances to take effect. 13664 */ 13665 reg->id = 0; 13666 reg->ref_obj_id = 0; 13667 13668 return; 13669 } 13670 13671 mark_ptr_not_null_reg(reg); 13672 13673 if (!reg_may_point_to_spin_lock(reg)) { 13674 /* For not-NULL ptr, reg->ref_obj_id will be reset 13675 * in release_reference(). 13676 * 13677 * reg->id is still used by spin_lock ptr. Other 13678 * than spin_lock ptr type, reg->id can be reset. 13679 */ 13680 reg->id = 0; 13681 } 13682 } 13683 } 13684 13685 /* The logic is similar to find_good_pkt_pointers(), both could eventually 13686 * be folded together at some point. 13687 */ 13688 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 13689 bool is_null) 13690 { 13691 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13692 struct bpf_reg_state *regs = state->regs, *reg; 13693 u32 ref_obj_id = regs[regno].ref_obj_id; 13694 u32 id = regs[regno].id; 13695 13696 if (ref_obj_id && ref_obj_id == id && is_null) 13697 /* regs[regno] is in the " == NULL" branch. 13698 * No one could have freed the reference state before 13699 * doing the NULL check. 13700 */ 13701 WARN_ON_ONCE(release_reference_state(state, id)); 13702 13703 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13704 mark_ptr_or_null_reg(state, reg, id, is_null); 13705 })); 13706 } 13707 13708 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 13709 struct bpf_reg_state *dst_reg, 13710 struct bpf_reg_state *src_reg, 13711 struct bpf_verifier_state *this_branch, 13712 struct bpf_verifier_state *other_branch) 13713 { 13714 if (BPF_SRC(insn->code) != BPF_X) 13715 return false; 13716 13717 /* Pointers are always 64-bit. */ 13718 if (BPF_CLASS(insn->code) == BPF_JMP32) 13719 return false; 13720 13721 switch (BPF_OP(insn->code)) { 13722 case BPF_JGT: 13723 if ((dst_reg->type == PTR_TO_PACKET && 13724 src_reg->type == PTR_TO_PACKET_END) || 13725 (dst_reg->type == PTR_TO_PACKET_META && 13726 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13727 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 13728 find_good_pkt_pointers(this_branch, dst_reg, 13729 dst_reg->type, false); 13730 mark_pkt_end(other_branch, insn->dst_reg, true); 13731 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13732 src_reg->type == PTR_TO_PACKET) || 13733 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13734 src_reg->type == PTR_TO_PACKET_META)) { 13735 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 13736 find_good_pkt_pointers(other_branch, src_reg, 13737 src_reg->type, true); 13738 mark_pkt_end(this_branch, insn->src_reg, false); 13739 } else { 13740 return false; 13741 } 13742 break; 13743 case BPF_JLT: 13744 if ((dst_reg->type == PTR_TO_PACKET && 13745 src_reg->type == PTR_TO_PACKET_END) || 13746 (dst_reg->type == PTR_TO_PACKET_META && 13747 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13748 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 13749 find_good_pkt_pointers(other_branch, dst_reg, 13750 dst_reg->type, true); 13751 mark_pkt_end(this_branch, insn->dst_reg, false); 13752 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13753 src_reg->type == PTR_TO_PACKET) || 13754 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13755 src_reg->type == PTR_TO_PACKET_META)) { 13756 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 13757 find_good_pkt_pointers(this_branch, src_reg, 13758 src_reg->type, false); 13759 mark_pkt_end(other_branch, insn->src_reg, true); 13760 } else { 13761 return false; 13762 } 13763 break; 13764 case BPF_JGE: 13765 if ((dst_reg->type == PTR_TO_PACKET && 13766 src_reg->type == PTR_TO_PACKET_END) || 13767 (dst_reg->type == PTR_TO_PACKET_META && 13768 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13769 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 13770 find_good_pkt_pointers(this_branch, dst_reg, 13771 dst_reg->type, true); 13772 mark_pkt_end(other_branch, insn->dst_reg, false); 13773 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13774 src_reg->type == PTR_TO_PACKET) || 13775 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13776 src_reg->type == PTR_TO_PACKET_META)) { 13777 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 13778 find_good_pkt_pointers(other_branch, src_reg, 13779 src_reg->type, false); 13780 mark_pkt_end(this_branch, insn->src_reg, true); 13781 } else { 13782 return false; 13783 } 13784 break; 13785 case BPF_JLE: 13786 if ((dst_reg->type == PTR_TO_PACKET && 13787 src_reg->type == PTR_TO_PACKET_END) || 13788 (dst_reg->type == PTR_TO_PACKET_META && 13789 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13790 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 13791 find_good_pkt_pointers(other_branch, dst_reg, 13792 dst_reg->type, false); 13793 mark_pkt_end(this_branch, insn->dst_reg, true); 13794 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13795 src_reg->type == PTR_TO_PACKET) || 13796 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13797 src_reg->type == PTR_TO_PACKET_META)) { 13798 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 13799 find_good_pkt_pointers(this_branch, src_reg, 13800 src_reg->type, true); 13801 mark_pkt_end(other_branch, insn->src_reg, false); 13802 } else { 13803 return false; 13804 } 13805 break; 13806 default: 13807 return false; 13808 } 13809 13810 return true; 13811 } 13812 13813 static void find_equal_scalars(struct bpf_verifier_state *vstate, 13814 struct bpf_reg_state *known_reg) 13815 { 13816 struct bpf_func_state *state; 13817 struct bpf_reg_state *reg; 13818 13819 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13820 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 13821 copy_register_state(reg, known_reg); 13822 })); 13823 } 13824 13825 static int check_cond_jmp_op(struct bpf_verifier_env *env, 13826 struct bpf_insn *insn, int *insn_idx) 13827 { 13828 struct bpf_verifier_state *this_branch = env->cur_state; 13829 struct bpf_verifier_state *other_branch; 13830 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 13831 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 13832 struct bpf_reg_state *eq_branch_regs; 13833 u8 opcode = BPF_OP(insn->code); 13834 bool is_jmp32; 13835 int pred = -1; 13836 int err; 13837 13838 /* Only conditional jumps are expected to reach here. */ 13839 if (opcode == BPF_JA || opcode > BPF_JSLE) { 13840 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 13841 return -EINVAL; 13842 } 13843 13844 if (BPF_SRC(insn->code) == BPF_X) { 13845 if (insn->imm != 0) { 13846 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 13847 return -EINVAL; 13848 } 13849 13850 /* check src1 operand */ 13851 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13852 if (err) 13853 return err; 13854 13855 if (is_pointer_value(env, insn->src_reg)) { 13856 verbose(env, "R%d pointer comparison prohibited\n", 13857 insn->src_reg); 13858 return -EACCES; 13859 } 13860 src_reg = ®s[insn->src_reg]; 13861 } else { 13862 if (insn->src_reg != BPF_REG_0) { 13863 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 13864 return -EINVAL; 13865 } 13866 } 13867 13868 /* check src2 operand */ 13869 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13870 if (err) 13871 return err; 13872 13873 dst_reg = ®s[insn->dst_reg]; 13874 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 13875 13876 if (BPF_SRC(insn->code) == BPF_K) { 13877 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 13878 } else if (src_reg->type == SCALAR_VALUE && 13879 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 13880 pred = is_branch_taken(dst_reg, 13881 tnum_subreg(src_reg->var_off).value, 13882 opcode, 13883 is_jmp32); 13884 } else if (src_reg->type == SCALAR_VALUE && 13885 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 13886 pred = is_branch_taken(dst_reg, 13887 src_reg->var_off.value, 13888 opcode, 13889 is_jmp32); 13890 } else if (dst_reg->type == SCALAR_VALUE && 13891 is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) { 13892 pred = is_branch_taken(src_reg, 13893 tnum_subreg(dst_reg->var_off).value, 13894 flip_opcode(opcode), 13895 is_jmp32); 13896 } else if (dst_reg->type == SCALAR_VALUE && 13897 !is_jmp32 && tnum_is_const(dst_reg->var_off)) { 13898 pred = is_branch_taken(src_reg, 13899 dst_reg->var_off.value, 13900 flip_opcode(opcode), 13901 is_jmp32); 13902 } else if (reg_is_pkt_pointer_any(dst_reg) && 13903 reg_is_pkt_pointer_any(src_reg) && 13904 !is_jmp32) { 13905 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 13906 } 13907 13908 if (pred >= 0) { 13909 /* If we get here with a dst_reg pointer type it is because 13910 * above is_branch_taken() special cased the 0 comparison. 13911 */ 13912 if (!__is_pointer_value(false, dst_reg)) 13913 err = mark_chain_precision(env, insn->dst_reg); 13914 if (BPF_SRC(insn->code) == BPF_X && !err && 13915 !__is_pointer_value(false, src_reg)) 13916 err = mark_chain_precision(env, insn->src_reg); 13917 if (err) 13918 return err; 13919 } 13920 13921 if (pred == 1) { 13922 /* Only follow the goto, ignore fall-through. If needed, push 13923 * the fall-through branch for simulation under speculative 13924 * execution. 13925 */ 13926 if (!env->bypass_spec_v1 && 13927 !sanitize_speculative_path(env, insn, *insn_idx + 1, 13928 *insn_idx)) 13929 return -EFAULT; 13930 *insn_idx += insn->off; 13931 return 0; 13932 } else if (pred == 0) { 13933 /* Only follow the fall-through branch, since that's where the 13934 * program will go. If needed, push the goto branch for 13935 * simulation under speculative execution. 13936 */ 13937 if (!env->bypass_spec_v1 && 13938 !sanitize_speculative_path(env, insn, 13939 *insn_idx + insn->off + 1, 13940 *insn_idx)) 13941 return -EFAULT; 13942 return 0; 13943 } 13944 13945 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 13946 false); 13947 if (!other_branch) 13948 return -EFAULT; 13949 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 13950 13951 /* detect if we are comparing against a constant value so we can adjust 13952 * our min/max values for our dst register. 13953 * this is only legit if both are scalars (or pointers to the same 13954 * object, I suppose, see the PTR_MAYBE_NULL related if block below), 13955 * because otherwise the different base pointers mean the offsets aren't 13956 * comparable. 13957 */ 13958 if (BPF_SRC(insn->code) == BPF_X) { 13959 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 13960 13961 if (dst_reg->type == SCALAR_VALUE && 13962 src_reg->type == SCALAR_VALUE) { 13963 if (tnum_is_const(src_reg->var_off) || 13964 (is_jmp32 && 13965 tnum_is_const(tnum_subreg(src_reg->var_off)))) 13966 reg_set_min_max(&other_branch_regs[insn->dst_reg], 13967 dst_reg, 13968 src_reg->var_off.value, 13969 tnum_subreg(src_reg->var_off).value, 13970 opcode, is_jmp32); 13971 else if (tnum_is_const(dst_reg->var_off) || 13972 (is_jmp32 && 13973 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 13974 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 13975 src_reg, 13976 dst_reg->var_off.value, 13977 tnum_subreg(dst_reg->var_off).value, 13978 opcode, is_jmp32); 13979 else if (!is_jmp32 && 13980 (opcode == BPF_JEQ || opcode == BPF_JNE)) 13981 /* Comparing for equality, we can combine knowledge */ 13982 reg_combine_min_max(&other_branch_regs[insn->src_reg], 13983 &other_branch_regs[insn->dst_reg], 13984 src_reg, dst_reg, opcode); 13985 if (src_reg->id && 13986 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 13987 find_equal_scalars(this_branch, src_reg); 13988 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 13989 } 13990 13991 } 13992 } else if (dst_reg->type == SCALAR_VALUE) { 13993 reg_set_min_max(&other_branch_regs[insn->dst_reg], 13994 dst_reg, insn->imm, (u32)insn->imm, 13995 opcode, is_jmp32); 13996 } 13997 13998 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 13999 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 14000 find_equal_scalars(this_branch, dst_reg); 14001 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 14002 } 14003 14004 /* if one pointer register is compared to another pointer 14005 * register check if PTR_MAYBE_NULL could be lifted. 14006 * E.g. register A - maybe null 14007 * register B - not null 14008 * for JNE A, B, ... - A is not null in the false branch; 14009 * for JEQ A, B, ... - A is not null in the true branch. 14010 * 14011 * Since PTR_TO_BTF_ID points to a kernel struct that does 14012 * not need to be null checked by the BPF program, i.e., 14013 * could be null even without PTR_MAYBE_NULL marking, so 14014 * only propagate nullness when neither reg is that type. 14015 */ 14016 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 14017 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 14018 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 14019 base_type(src_reg->type) != PTR_TO_BTF_ID && 14020 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 14021 eq_branch_regs = NULL; 14022 switch (opcode) { 14023 case BPF_JEQ: 14024 eq_branch_regs = other_branch_regs; 14025 break; 14026 case BPF_JNE: 14027 eq_branch_regs = regs; 14028 break; 14029 default: 14030 /* do nothing */ 14031 break; 14032 } 14033 if (eq_branch_regs) { 14034 if (type_may_be_null(src_reg->type)) 14035 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 14036 else 14037 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 14038 } 14039 } 14040 14041 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 14042 * NOTE: these optimizations below are related with pointer comparison 14043 * which will never be JMP32. 14044 */ 14045 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 14046 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 14047 type_may_be_null(dst_reg->type)) { 14048 /* Mark all identical registers in each branch as either 14049 * safe or unknown depending R == 0 or R != 0 conditional. 14050 */ 14051 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 14052 opcode == BPF_JNE); 14053 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 14054 opcode == BPF_JEQ); 14055 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 14056 this_branch, other_branch) && 14057 is_pointer_value(env, insn->dst_reg)) { 14058 verbose(env, "R%d pointer comparison prohibited\n", 14059 insn->dst_reg); 14060 return -EACCES; 14061 } 14062 if (env->log.level & BPF_LOG_LEVEL) 14063 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14064 return 0; 14065 } 14066 14067 /* verify BPF_LD_IMM64 instruction */ 14068 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 14069 { 14070 struct bpf_insn_aux_data *aux = cur_aux(env); 14071 struct bpf_reg_state *regs = cur_regs(env); 14072 struct bpf_reg_state *dst_reg; 14073 struct bpf_map *map; 14074 int err; 14075 14076 if (BPF_SIZE(insn->code) != BPF_DW) { 14077 verbose(env, "invalid BPF_LD_IMM insn\n"); 14078 return -EINVAL; 14079 } 14080 if (insn->off != 0) { 14081 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 14082 return -EINVAL; 14083 } 14084 14085 err = check_reg_arg(env, insn->dst_reg, DST_OP); 14086 if (err) 14087 return err; 14088 14089 dst_reg = ®s[insn->dst_reg]; 14090 if (insn->src_reg == 0) { 14091 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 14092 14093 dst_reg->type = SCALAR_VALUE; 14094 __mark_reg_known(®s[insn->dst_reg], imm); 14095 return 0; 14096 } 14097 14098 /* All special src_reg cases are listed below. From this point onwards 14099 * we either succeed and assign a corresponding dst_reg->type after 14100 * zeroing the offset, or fail and reject the program. 14101 */ 14102 mark_reg_known_zero(env, regs, insn->dst_reg); 14103 14104 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 14105 dst_reg->type = aux->btf_var.reg_type; 14106 switch (base_type(dst_reg->type)) { 14107 case PTR_TO_MEM: 14108 dst_reg->mem_size = aux->btf_var.mem_size; 14109 break; 14110 case PTR_TO_BTF_ID: 14111 dst_reg->btf = aux->btf_var.btf; 14112 dst_reg->btf_id = aux->btf_var.btf_id; 14113 break; 14114 default: 14115 verbose(env, "bpf verifier is misconfigured\n"); 14116 return -EFAULT; 14117 } 14118 return 0; 14119 } 14120 14121 if (insn->src_reg == BPF_PSEUDO_FUNC) { 14122 struct bpf_prog_aux *aux = env->prog->aux; 14123 u32 subprogno = find_subprog(env, 14124 env->insn_idx + insn->imm + 1); 14125 14126 if (!aux->func_info) { 14127 verbose(env, "missing btf func_info\n"); 14128 return -EINVAL; 14129 } 14130 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 14131 verbose(env, "callback function not static\n"); 14132 return -EINVAL; 14133 } 14134 14135 dst_reg->type = PTR_TO_FUNC; 14136 dst_reg->subprogno = subprogno; 14137 return 0; 14138 } 14139 14140 map = env->used_maps[aux->map_index]; 14141 dst_reg->map_ptr = map; 14142 14143 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 14144 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 14145 dst_reg->type = PTR_TO_MAP_VALUE; 14146 dst_reg->off = aux->map_off; 14147 WARN_ON_ONCE(map->max_entries != 1); 14148 /* We want reg->id to be same (0) as map_value is not distinct */ 14149 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 14150 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 14151 dst_reg->type = CONST_PTR_TO_MAP; 14152 } else { 14153 verbose(env, "bpf verifier is misconfigured\n"); 14154 return -EINVAL; 14155 } 14156 14157 return 0; 14158 } 14159 14160 static bool may_access_skb(enum bpf_prog_type type) 14161 { 14162 switch (type) { 14163 case BPF_PROG_TYPE_SOCKET_FILTER: 14164 case BPF_PROG_TYPE_SCHED_CLS: 14165 case BPF_PROG_TYPE_SCHED_ACT: 14166 return true; 14167 default: 14168 return false; 14169 } 14170 } 14171 14172 /* verify safety of LD_ABS|LD_IND instructions: 14173 * - they can only appear in the programs where ctx == skb 14174 * - since they are wrappers of function calls, they scratch R1-R5 registers, 14175 * preserve R6-R9, and store return value into R0 14176 * 14177 * Implicit input: 14178 * ctx == skb == R6 == CTX 14179 * 14180 * Explicit input: 14181 * SRC == any register 14182 * IMM == 32-bit immediate 14183 * 14184 * Output: 14185 * R0 - 8/16/32-bit skb data converted to cpu endianness 14186 */ 14187 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 14188 { 14189 struct bpf_reg_state *regs = cur_regs(env); 14190 static const int ctx_reg = BPF_REG_6; 14191 u8 mode = BPF_MODE(insn->code); 14192 int i, err; 14193 14194 if (!may_access_skb(resolve_prog_type(env->prog))) { 14195 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 14196 return -EINVAL; 14197 } 14198 14199 if (!env->ops->gen_ld_abs) { 14200 verbose(env, "bpf verifier is misconfigured\n"); 14201 return -EINVAL; 14202 } 14203 14204 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 14205 BPF_SIZE(insn->code) == BPF_DW || 14206 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 14207 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 14208 return -EINVAL; 14209 } 14210 14211 /* check whether implicit source operand (register R6) is readable */ 14212 err = check_reg_arg(env, ctx_reg, SRC_OP); 14213 if (err) 14214 return err; 14215 14216 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 14217 * gen_ld_abs() may terminate the program at runtime, leading to 14218 * reference leak. 14219 */ 14220 err = check_reference_leak(env); 14221 if (err) { 14222 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 14223 return err; 14224 } 14225 14226 if (env->cur_state->active_lock.ptr) { 14227 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 14228 return -EINVAL; 14229 } 14230 14231 if (env->cur_state->active_rcu_lock) { 14232 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 14233 return -EINVAL; 14234 } 14235 14236 if (regs[ctx_reg].type != PTR_TO_CTX) { 14237 verbose(env, 14238 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 14239 return -EINVAL; 14240 } 14241 14242 if (mode == BPF_IND) { 14243 /* check explicit source operand */ 14244 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14245 if (err) 14246 return err; 14247 } 14248 14249 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 14250 if (err < 0) 14251 return err; 14252 14253 /* reset caller saved regs to unreadable */ 14254 for (i = 0; i < CALLER_SAVED_REGS; i++) { 14255 mark_reg_not_init(env, regs, caller_saved[i]); 14256 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 14257 } 14258 14259 /* mark destination R0 register as readable, since it contains 14260 * the value fetched from the packet. 14261 * Already marked as written above. 14262 */ 14263 mark_reg_unknown(env, regs, BPF_REG_0); 14264 /* ld_abs load up to 32-bit skb data. */ 14265 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 14266 return 0; 14267 } 14268 14269 static int check_return_code(struct bpf_verifier_env *env) 14270 { 14271 struct tnum enforce_attach_type_range = tnum_unknown; 14272 const struct bpf_prog *prog = env->prog; 14273 struct bpf_reg_state *reg; 14274 struct tnum range = tnum_range(0, 1); 14275 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 14276 int err; 14277 struct bpf_func_state *frame = env->cur_state->frame[0]; 14278 const bool is_subprog = frame->subprogno; 14279 14280 /* LSM and struct_ops func-ptr's return type could be "void" */ 14281 if (!is_subprog) { 14282 switch (prog_type) { 14283 case BPF_PROG_TYPE_LSM: 14284 if (prog->expected_attach_type == BPF_LSM_CGROUP) 14285 /* See below, can be 0 or 0-1 depending on hook. */ 14286 break; 14287 fallthrough; 14288 case BPF_PROG_TYPE_STRUCT_OPS: 14289 if (!prog->aux->attach_func_proto->type) 14290 return 0; 14291 break; 14292 default: 14293 break; 14294 } 14295 } 14296 14297 /* eBPF calling convention is such that R0 is used 14298 * to return the value from eBPF program. 14299 * Make sure that it's readable at this time 14300 * of bpf_exit, which means that program wrote 14301 * something into it earlier 14302 */ 14303 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 14304 if (err) 14305 return err; 14306 14307 if (is_pointer_value(env, BPF_REG_0)) { 14308 verbose(env, "R0 leaks addr as return value\n"); 14309 return -EACCES; 14310 } 14311 14312 reg = cur_regs(env) + BPF_REG_0; 14313 14314 if (frame->in_async_callback_fn) { 14315 /* enforce return zero from async callbacks like timer */ 14316 if (reg->type != SCALAR_VALUE) { 14317 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 14318 reg_type_str(env, reg->type)); 14319 return -EINVAL; 14320 } 14321 14322 if (!tnum_in(tnum_const(0), reg->var_off)) { 14323 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 14324 return -EINVAL; 14325 } 14326 return 0; 14327 } 14328 14329 if (is_subprog) { 14330 if (reg->type != SCALAR_VALUE) { 14331 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 14332 reg_type_str(env, reg->type)); 14333 return -EINVAL; 14334 } 14335 return 0; 14336 } 14337 14338 switch (prog_type) { 14339 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 14340 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 14341 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 14342 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 14343 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 14344 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 14345 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 14346 range = tnum_range(1, 1); 14347 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 14348 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 14349 range = tnum_range(0, 3); 14350 break; 14351 case BPF_PROG_TYPE_CGROUP_SKB: 14352 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 14353 range = tnum_range(0, 3); 14354 enforce_attach_type_range = tnum_range(2, 3); 14355 } 14356 break; 14357 case BPF_PROG_TYPE_CGROUP_SOCK: 14358 case BPF_PROG_TYPE_SOCK_OPS: 14359 case BPF_PROG_TYPE_CGROUP_DEVICE: 14360 case BPF_PROG_TYPE_CGROUP_SYSCTL: 14361 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 14362 break; 14363 case BPF_PROG_TYPE_RAW_TRACEPOINT: 14364 if (!env->prog->aux->attach_btf_id) 14365 return 0; 14366 range = tnum_const(0); 14367 break; 14368 case BPF_PROG_TYPE_TRACING: 14369 switch (env->prog->expected_attach_type) { 14370 case BPF_TRACE_FENTRY: 14371 case BPF_TRACE_FEXIT: 14372 range = tnum_const(0); 14373 break; 14374 case BPF_TRACE_RAW_TP: 14375 case BPF_MODIFY_RETURN: 14376 return 0; 14377 case BPF_TRACE_ITER: 14378 break; 14379 default: 14380 return -ENOTSUPP; 14381 } 14382 break; 14383 case BPF_PROG_TYPE_SK_LOOKUP: 14384 range = tnum_range(SK_DROP, SK_PASS); 14385 break; 14386 14387 case BPF_PROG_TYPE_LSM: 14388 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 14389 /* Regular BPF_PROG_TYPE_LSM programs can return 14390 * any value. 14391 */ 14392 return 0; 14393 } 14394 if (!env->prog->aux->attach_func_proto->type) { 14395 /* Make sure programs that attach to void 14396 * hooks don't try to modify return value. 14397 */ 14398 range = tnum_range(1, 1); 14399 } 14400 break; 14401 14402 case BPF_PROG_TYPE_NETFILTER: 14403 range = tnum_range(NF_DROP, NF_ACCEPT); 14404 break; 14405 case BPF_PROG_TYPE_EXT: 14406 /* freplace program can return anything as its return value 14407 * depends on the to-be-replaced kernel func or bpf program. 14408 */ 14409 default: 14410 return 0; 14411 } 14412 14413 if (reg->type != SCALAR_VALUE) { 14414 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 14415 reg_type_str(env, reg->type)); 14416 return -EINVAL; 14417 } 14418 14419 if (!tnum_in(range, reg->var_off)) { 14420 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 14421 if (prog->expected_attach_type == BPF_LSM_CGROUP && 14422 prog_type == BPF_PROG_TYPE_LSM && 14423 !prog->aux->attach_func_proto->type) 14424 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 14425 return -EINVAL; 14426 } 14427 14428 if (!tnum_is_unknown(enforce_attach_type_range) && 14429 tnum_in(enforce_attach_type_range, reg->var_off)) 14430 env->prog->enforce_expected_attach_type = 1; 14431 return 0; 14432 } 14433 14434 /* non-recursive DFS pseudo code 14435 * 1 procedure DFS-iterative(G,v): 14436 * 2 label v as discovered 14437 * 3 let S be a stack 14438 * 4 S.push(v) 14439 * 5 while S is not empty 14440 * 6 t <- S.peek() 14441 * 7 if t is what we're looking for: 14442 * 8 return t 14443 * 9 for all edges e in G.adjacentEdges(t) do 14444 * 10 if edge e is already labelled 14445 * 11 continue with the next edge 14446 * 12 w <- G.adjacentVertex(t,e) 14447 * 13 if vertex w is not discovered and not explored 14448 * 14 label e as tree-edge 14449 * 15 label w as discovered 14450 * 16 S.push(w) 14451 * 17 continue at 5 14452 * 18 else if vertex w is discovered 14453 * 19 label e as back-edge 14454 * 20 else 14455 * 21 // vertex w is explored 14456 * 22 label e as forward- or cross-edge 14457 * 23 label t as explored 14458 * 24 S.pop() 14459 * 14460 * convention: 14461 * 0x10 - discovered 14462 * 0x11 - discovered and fall-through edge labelled 14463 * 0x12 - discovered and fall-through and branch edges labelled 14464 * 0x20 - explored 14465 */ 14466 14467 enum { 14468 DISCOVERED = 0x10, 14469 EXPLORED = 0x20, 14470 FALLTHROUGH = 1, 14471 BRANCH = 2, 14472 }; 14473 14474 static u32 state_htab_size(struct bpf_verifier_env *env) 14475 { 14476 return env->prog->len; 14477 } 14478 14479 static struct bpf_verifier_state_list **explored_state( 14480 struct bpf_verifier_env *env, 14481 int idx) 14482 { 14483 struct bpf_verifier_state *cur = env->cur_state; 14484 struct bpf_func_state *state = cur->frame[cur->curframe]; 14485 14486 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 14487 } 14488 14489 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 14490 { 14491 env->insn_aux_data[idx].prune_point = true; 14492 } 14493 14494 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 14495 { 14496 return env->insn_aux_data[insn_idx].prune_point; 14497 } 14498 14499 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 14500 { 14501 env->insn_aux_data[idx].force_checkpoint = true; 14502 } 14503 14504 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 14505 { 14506 return env->insn_aux_data[insn_idx].force_checkpoint; 14507 } 14508 14509 14510 enum { 14511 DONE_EXPLORING = 0, 14512 KEEP_EXPLORING = 1, 14513 }; 14514 14515 /* t, w, e - match pseudo-code above: 14516 * t - index of current instruction 14517 * w - next instruction 14518 * e - edge 14519 */ 14520 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 14521 bool loop_ok) 14522 { 14523 int *insn_stack = env->cfg.insn_stack; 14524 int *insn_state = env->cfg.insn_state; 14525 14526 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 14527 return DONE_EXPLORING; 14528 14529 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 14530 return DONE_EXPLORING; 14531 14532 if (w < 0 || w >= env->prog->len) { 14533 verbose_linfo(env, t, "%d: ", t); 14534 verbose(env, "jump out of range from insn %d to %d\n", t, w); 14535 return -EINVAL; 14536 } 14537 14538 if (e == BRANCH) { 14539 /* mark branch target for state pruning */ 14540 mark_prune_point(env, w); 14541 mark_jmp_point(env, w); 14542 } 14543 14544 if (insn_state[w] == 0) { 14545 /* tree-edge */ 14546 insn_state[t] = DISCOVERED | e; 14547 insn_state[w] = DISCOVERED; 14548 if (env->cfg.cur_stack >= env->prog->len) 14549 return -E2BIG; 14550 insn_stack[env->cfg.cur_stack++] = w; 14551 return KEEP_EXPLORING; 14552 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 14553 if (loop_ok && env->bpf_capable) 14554 return DONE_EXPLORING; 14555 verbose_linfo(env, t, "%d: ", t); 14556 verbose_linfo(env, w, "%d: ", w); 14557 verbose(env, "back-edge from insn %d to %d\n", t, w); 14558 return -EINVAL; 14559 } else if (insn_state[w] == EXPLORED) { 14560 /* forward- or cross-edge */ 14561 insn_state[t] = DISCOVERED | e; 14562 } else { 14563 verbose(env, "insn state internal bug\n"); 14564 return -EFAULT; 14565 } 14566 return DONE_EXPLORING; 14567 } 14568 14569 static int visit_func_call_insn(int t, struct bpf_insn *insns, 14570 struct bpf_verifier_env *env, 14571 bool visit_callee) 14572 { 14573 int ret; 14574 14575 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 14576 if (ret) 14577 return ret; 14578 14579 mark_prune_point(env, t + 1); 14580 /* when we exit from subprog, we need to record non-linear history */ 14581 mark_jmp_point(env, t + 1); 14582 14583 if (visit_callee) { 14584 mark_prune_point(env, t); 14585 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 14586 /* It's ok to allow recursion from CFG point of 14587 * view. __check_func_call() will do the actual 14588 * check. 14589 */ 14590 bpf_pseudo_func(insns + t)); 14591 } 14592 return ret; 14593 } 14594 14595 /* Visits the instruction at index t and returns one of the following: 14596 * < 0 - an error occurred 14597 * DONE_EXPLORING - the instruction was fully explored 14598 * KEEP_EXPLORING - there is still work to be done before it is fully explored 14599 */ 14600 static int visit_insn(int t, struct bpf_verifier_env *env) 14601 { 14602 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 14603 int ret; 14604 14605 if (bpf_pseudo_func(insn)) 14606 return visit_func_call_insn(t, insns, env, true); 14607 14608 /* All non-branch instructions have a single fall-through edge. */ 14609 if (BPF_CLASS(insn->code) != BPF_JMP && 14610 BPF_CLASS(insn->code) != BPF_JMP32) 14611 return push_insn(t, t + 1, FALLTHROUGH, env, false); 14612 14613 switch (BPF_OP(insn->code)) { 14614 case BPF_EXIT: 14615 return DONE_EXPLORING; 14616 14617 case BPF_CALL: 14618 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback) 14619 /* Mark this call insn as a prune point to trigger 14620 * is_state_visited() check before call itself is 14621 * processed by __check_func_call(). Otherwise new 14622 * async state will be pushed for further exploration. 14623 */ 14624 mark_prune_point(env, t); 14625 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 14626 struct bpf_kfunc_call_arg_meta meta; 14627 14628 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 14629 if (ret == 0 && is_iter_next_kfunc(&meta)) { 14630 mark_prune_point(env, t); 14631 /* Checking and saving state checkpoints at iter_next() call 14632 * is crucial for fast convergence of open-coded iterator loop 14633 * logic, so we need to force it. If we don't do that, 14634 * is_state_visited() might skip saving a checkpoint, causing 14635 * unnecessarily long sequence of not checkpointed 14636 * instructions and jumps, leading to exhaustion of jump 14637 * history buffer, and potentially other undesired outcomes. 14638 * It is expected that with correct open-coded iterators 14639 * convergence will happen quickly, so we don't run a risk of 14640 * exhausting memory. 14641 */ 14642 mark_force_checkpoint(env, t); 14643 } 14644 } 14645 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 14646 14647 case BPF_JA: 14648 if (BPF_SRC(insn->code) != BPF_K) 14649 return -EINVAL; 14650 14651 /* unconditional jump with single edge */ 14652 ret = push_insn(t, t + insn->off + 1, FALLTHROUGH, env, 14653 true); 14654 if (ret) 14655 return ret; 14656 14657 mark_prune_point(env, t + insn->off + 1); 14658 mark_jmp_point(env, t + insn->off + 1); 14659 14660 return ret; 14661 14662 default: 14663 /* conditional jump with two edges */ 14664 mark_prune_point(env, t); 14665 14666 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 14667 if (ret) 14668 return ret; 14669 14670 return push_insn(t, t + insn->off + 1, BRANCH, env, true); 14671 } 14672 } 14673 14674 /* non-recursive depth-first-search to detect loops in BPF program 14675 * loop == back-edge in directed graph 14676 */ 14677 static int check_cfg(struct bpf_verifier_env *env) 14678 { 14679 int insn_cnt = env->prog->len; 14680 int *insn_stack, *insn_state; 14681 int ret = 0; 14682 int i; 14683 14684 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 14685 if (!insn_state) 14686 return -ENOMEM; 14687 14688 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 14689 if (!insn_stack) { 14690 kvfree(insn_state); 14691 return -ENOMEM; 14692 } 14693 14694 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 14695 insn_stack[0] = 0; /* 0 is the first instruction */ 14696 env->cfg.cur_stack = 1; 14697 14698 while (env->cfg.cur_stack > 0) { 14699 int t = insn_stack[env->cfg.cur_stack - 1]; 14700 14701 ret = visit_insn(t, env); 14702 switch (ret) { 14703 case DONE_EXPLORING: 14704 insn_state[t] = EXPLORED; 14705 env->cfg.cur_stack--; 14706 break; 14707 case KEEP_EXPLORING: 14708 break; 14709 default: 14710 if (ret > 0) { 14711 verbose(env, "visit_insn internal bug\n"); 14712 ret = -EFAULT; 14713 } 14714 goto err_free; 14715 } 14716 } 14717 14718 if (env->cfg.cur_stack < 0) { 14719 verbose(env, "pop stack internal bug\n"); 14720 ret = -EFAULT; 14721 goto err_free; 14722 } 14723 14724 for (i = 0; i < insn_cnt; i++) { 14725 if (insn_state[i] != EXPLORED) { 14726 verbose(env, "unreachable insn %d\n", i); 14727 ret = -EINVAL; 14728 goto err_free; 14729 } 14730 } 14731 ret = 0; /* cfg looks good */ 14732 14733 err_free: 14734 kvfree(insn_state); 14735 kvfree(insn_stack); 14736 env->cfg.insn_state = env->cfg.insn_stack = NULL; 14737 return ret; 14738 } 14739 14740 static int check_abnormal_return(struct bpf_verifier_env *env) 14741 { 14742 int i; 14743 14744 for (i = 1; i < env->subprog_cnt; i++) { 14745 if (env->subprog_info[i].has_ld_abs) { 14746 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 14747 return -EINVAL; 14748 } 14749 if (env->subprog_info[i].has_tail_call) { 14750 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 14751 return -EINVAL; 14752 } 14753 } 14754 return 0; 14755 } 14756 14757 /* The minimum supported BTF func info size */ 14758 #define MIN_BPF_FUNCINFO_SIZE 8 14759 #define MAX_FUNCINFO_REC_SIZE 252 14760 14761 static int check_btf_func(struct bpf_verifier_env *env, 14762 const union bpf_attr *attr, 14763 bpfptr_t uattr) 14764 { 14765 const struct btf_type *type, *func_proto, *ret_type; 14766 u32 i, nfuncs, urec_size, min_size; 14767 u32 krec_size = sizeof(struct bpf_func_info); 14768 struct bpf_func_info *krecord; 14769 struct bpf_func_info_aux *info_aux = NULL; 14770 struct bpf_prog *prog; 14771 const struct btf *btf; 14772 bpfptr_t urecord; 14773 u32 prev_offset = 0; 14774 bool scalar_return; 14775 int ret = -ENOMEM; 14776 14777 nfuncs = attr->func_info_cnt; 14778 if (!nfuncs) { 14779 if (check_abnormal_return(env)) 14780 return -EINVAL; 14781 return 0; 14782 } 14783 14784 if (nfuncs != env->subprog_cnt) { 14785 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 14786 return -EINVAL; 14787 } 14788 14789 urec_size = attr->func_info_rec_size; 14790 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 14791 urec_size > MAX_FUNCINFO_REC_SIZE || 14792 urec_size % sizeof(u32)) { 14793 verbose(env, "invalid func info rec size %u\n", urec_size); 14794 return -EINVAL; 14795 } 14796 14797 prog = env->prog; 14798 btf = prog->aux->btf; 14799 14800 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 14801 min_size = min_t(u32, krec_size, urec_size); 14802 14803 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 14804 if (!krecord) 14805 return -ENOMEM; 14806 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 14807 if (!info_aux) 14808 goto err_free; 14809 14810 for (i = 0; i < nfuncs; i++) { 14811 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 14812 if (ret) { 14813 if (ret == -E2BIG) { 14814 verbose(env, "nonzero tailing record in func info"); 14815 /* set the size kernel expects so loader can zero 14816 * out the rest of the record. 14817 */ 14818 if (copy_to_bpfptr_offset(uattr, 14819 offsetof(union bpf_attr, func_info_rec_size), 14820 &min_size, sizeof(min_size))) 14821 ret = -EFAULT; 14822 } 14823 goto err_free; 14824 } 14825 14826 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 14827 ret = -EFAULT; 14828 goto err_free; 14829 } 14830 14831 /* check insn_off */ 14832 ret = -EINVAL; 14833 if (i == 0) { 14834 if (krecord[i].insn_off) { 14835 verbose(env, 14836 "nonzero insn_off %u for the first func info record", 14837 krecord[i].insn_off); 14838 goto err_free; 14839 } 14840 } else if (krecord[i].insn_off <= prev_offset) { 14841 verbose(env, 14842 "same or smaller insn offset (%u) than previous func info record (%u)", 14843 krecord[i].insn_off, prev_offset); 14844 goto err_free; 14845 } 14846 14847 if (env->subprog_info[i].start != krecord[i].insn_off) { 14848 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 14849 goto err_free; 14850 } 14851 14852 /* check type_id */ 14853 type = btf_type_by_id(btf, krecord[i].type_id); 14854 if (!type || !btf_type_is_func(type)) { 14855 verbose(env, "invalid type id %d in func info", 14856 krecord[i].type_id); 14857 goto err_free; 14858 } 14859 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 14860 14861 func_proto = btf_type_by_id(btf, type->type); 14862 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 14863 /* btf_func_check() already verified it during BTF load */ 14864 goto err_free; 14865 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 14866 scalar_return = 14867 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 14868 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 14869 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 14870 goto err_free; 14871 } 14872 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 14873 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 14874 goto err_free; 14875 } 14876 14877 prev_offset = krecord[i].insn_off; 14878 bpfptr_add(&urecord, urec_size); 14879 } 14880 14881 prog->aux->func_info = krecord; 14882 prog->aux->func_info_cnt = nfuncs; 14883 prog->aux->func_info_aux = info_aux; 14884 return 0; 14885 14886 err_free: 14887 kvfree(krecord); 14888 kfree(info_aux); 14889 return ret; 14890 } 14891 14892 static void adjust_btf_func(struct bpf_verifier_env *env) 14893 { 14894 struct bpf_prog_aux *aux = env->prog->aux; 14895 int i; 14896 14897 if (!aux->func_info) 14898 return; 14899 14900 for (i = 0; i < env->subprog_cnt; i++) 14901 aux->func_info[i].insn_off = env->subprog_info[i].start; 14902 } 14903 14904 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 14905 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 14906 14907 static int check_btf_line(struct bpf_verifier_env *env, 14908 const union bpf_attr *attr, 14909 bpfptr_t uattr) 14910 { 14911 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 14912 struct bpf_subprog_info *sub; 14913 struct bpf_line_info *linfo; 14914 struct bpf_prog *prog; 14915 const struct btf *btf; 14916 bpfptr_t ulinfo; 14917 int err; 14918 14919 nr_linfo = attr->line_info_cnt; 14920 if (!nr_linfo) 14921 return 0; 14922 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 14923 return -EINVAL; 14924 14925 rec_size = attr->line_info_rec_size; 14926 if (rec_size < MIN_BPF_LINEINFO_SIZE || 14927 rec_size > MAX_LINEINFO_REC_SIZE || 14928 rec_size & (sizeof(u32) - 1)) 14929 return -EINVAL; 14930 14931 /* Need to zero it in case the userspace may 14932 * pass in a smaller bpf_line_info object. 14933 */ 14934 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 14935 GFP_KERNEL | __GFP_NOWARN); 14936 if (!linfo) 14937 return -ENOMEM; 14938 14939 prog = env->prog; 14940 btf = prog->aux->btf; 14941 14942 s = 0; 14943 sub = env->subprog_info; 14944 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 14945 expected_size = sizeof(struct bpf_line_info); 14946 ncopy = min_t(u32, expected_size, rec_size); 14947 for (i = 0; i < nr_linfo; i++) { 14948 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 14949 if (err) { 14950 if (err == -E2BIG) { 14951 verbose(env, "nonzero tailing record in line_info"); 14952 if (copy_to_bpfptr_offset(uattr, 14953 offsetof(union bpf_attr, line_info_rec_size), 14954 &expected_size, sizeof(expected_size))) 14955 err = -EFAULT; 14956 } 14957 goto err_free; 14958 } 14959 14960 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 14961 err = -EFAULT; 14962 goto err_free; 14963 } 14964 14965 /* 14966 * Check insn_off to ensure 14967 * 1) strictly increasing AND 14968 * 2) bounded by prog->len 14969 * 14970 * The linfo[0].insn_off == 0 check logically falls into 14971 * the later "missing bpf_line_info for func..." case 14972 * because the first linfo[0].insn_off must be the 14973 * first sub also and the first sub must have 14974 * subprog_info[0].start == 0. 14975 */ 14976 if ((i && linfo[i].insn_off <= prev_offset) || 14977 linfo[i].insn_off >= prog->len) { 14978 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 14979 i, linfo[i].insn_off, prev_offset, 14980 prog->len); 14981 err = -EINVAL; 14982 goto err_free; 14983 } 14984 14985 if (!prog->insnsi[linfo[i].insn_off].code) { 14986 verbose(env, 14987 "Invalid insn code at line_info[%u].insn_off\n", 14988 i); 14989 err = -EINVAL; 14990 goto err_free; 14991 } 14992 14993 if (!btf_name_by_offset(btf, linfo[i].line_off) || 14994 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 14995 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 14996 err = -EINVAL; 14997 goto err_free; 14998 } 14999 15000 if (s != env->subprog_cnt) { 15001 if (linfo[i].insn_off == sub[s].start) { 15002 sub[s].linfo_idx = i; 15003 s++; 15004 } else if (sub[s].start < linfo[i].insn_off) { 15005 verbose(env, "missing bpf_line_info for func#%u\n", s); 15006 err = -EINVAL; 15007 goto err_free; 15008 } 15009 } 15010 15011 prev_offset = linfo[i].insn_off; 15012 bpfptr_add(&ulinfo, rec_size); 15013 } 15014 15015 if (s != env->subprog_cnt) { 15016 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 15017 env->subprog_cnt - s, s); 15018 err = -EINVAL; 15019 goto err_free; 15020 } 15021 15022 prog->aux->linfo = linfo; 15023 prog->aux->nr_linfo = nr_linfo; 15024 15025 return 0; 15026 15027 err_free: 15028 kvfree(linfo); 15029 return err; 15030 } 15031 15032 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 15033 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 15034 15035 static int check_core_relo(struct bpf_verifier_env *env, 15036 const union bpf_attr *attr, 15037 bpfptr_t uattr) 15038 { 15039 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 15040 struct bpf_core_relo core_relo = {}; 15041 struct bpf_prog *prog = env->prog; 15042 const struct btf *btf = prog->aux->btf; 15043 struct bpf_core_ctx ctx = { 15044 .log = &env->log, 15045 .btf = btf, 15046 }; 15047 bpfptr_t u_core_relo; 15048 int err; 15049 15050 nr_core_relo = attr->core_relo_cnt; 15051 if (!nr_core_relo) 15052 return 0; 15053 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 15054 return -EINVAL; 15055 15056 rec_size = attr->core_relo_rec_size; 15057 if (rec_size < MIN_CORE_RELO_SIZE || 15058 rec_size > MAX_CORE_RELO_SIZE || 15059 rec_size % sizeof(u32)) 15060 return -EINVAL; 15061 15062 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 15063 expected_size = sizeof(struct bpf_core_relo); 15064 ncopy = min_t(u32, expected_size, rec_size); 15065 15066 /* Unlike func_info and line_info, copy and apply each CO-RE 15067 * relocation record one at a time. 15068 */ 15069 for (i = 0; i < nr_core_relo; i++) { 15070 /* future proofing when sizeof(bpf_core_relo) changes */ 15071 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 15072 if (err) { 15073 if (err == -E2BIG) { 15074 verbose(env, "nonzero tailing record in core_relo"); 15075 if (copy_to_bpfptr_offset(uattr, 15076 offsetof(union bpf_attr, core_relo_rec_size), 15077 &expected_size, sizeof(expected_size))) 15078 err = -EFAULT; 15079 } 15080 break; 15081 } 15082 15083 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 15084 err = -EFAULT; 15085 break; 15086 } 15087 15088 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 15089 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 15090 i, core_relo.insn_off, prog->len); 15091 err = -EINVAL; 15092 break; 15093 } 15094 15095 err = bpf_core_apply(&ctx, &core_relo, i, 15096 &prog->insnsi[core_relo.insn_off / 8]); 15097 if (err) 15098 break; 15099 bpfptr_add(&u_core_relo, rec_size); 15100 } 15101 return err; 15102 } 15103 15104 static int check_btf_info(struct bpf_verifier_env *env, 15105 const union bpf_attr *attr, 15106 bpfptr_t uattr) 15107 { 15108 struct btf *btf; 15109 int err; 15110 15111 if (!attr->func_info_cnt && !attr->line_info_cnt) { 15112 if (check_abnormal_return(env)) 15113 return -EINVAL; 15114 return 0; 15115 } 15116 15117 btf = btf_get_by_fd(attr->prog_btf_fd); 15118 if (IS_ERR(btf)) 15119 return PTR_ERR(btf); 15120 if (btf_is_kernel(btf)) { 15121 btf_put(btf); 15122 return -EACCES; 15123 } 15124 env->prog->aux->btf = btf; 15125 15126 err = check_btf_func(env, attr, uattr); 15127 if (err) 15128 return err; 15129 15130 err = check_btf_line(env, attr, uattr); 15131 if (err) 15132 return err; 15133 15134 err = check_core_relo(env, attr, uattr); 15135 if (err) 15136 return err; 15137 15138 return 0; 15139 } 15140 15141 /* check %cur's range satisfies %old's */ 15142 static bool range_within(struct bpf_reg_state *old, 15143 struct bpf_reg_state *cur) 15144 { 15145 return old->umin_value <= cur->umin_value && 15146 old->umax_value >= cur->umax_value && 15147 old->smin_value <= cur->smin_value && 15148 old->smax_value >= cur->smax_value && 15149 old->u32_min_value <= cur->u32_min_value && 15150 old->u32_max_value >= cur->u32_max_value && 15151 old->s32_min_value <= cur->s32_min_value && 15152 old->s32_max_value >= cur->s32_max_value; 15153 } 15154 15155 /* If in the old state two registers had the same id, then they need to have 15156 * the same id in the new state as well. But that id could be different from 15157 * the old state, so we need to track the mapping from old to new ids. 15158 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 15159 * regs with old id 5 must also have new id 9 for the new state to be safe. But 15160 * regs with a different old id could still have new id 9, we don't care about 15161 * that. 15162 * So we look through our idmap to see if this old id has been seen before. If 15163 * so, we require the new id to match; otherwise, we add the id pair to the map. 15164 */ 15165 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15166 { 15167 struct bpf_id_pair *map = idmap->map; 15168 unsigned int i; 15169 15170 /* either both IDs should be set or both should be zero */ 15171 if (!!old_id != !!cur_id) 15172 return false; 15173 15174 if (old_id == 0) /* cur_id == 0 as well */ 15175 return true; 15176 15177 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 15178 if (!map[i].old) { 15179 /* Reached an empty slot; haven't seen this id before */ 15180 map[i].old = old_id; 15181 map[i].cur = cur_id; 15182 return true; 15183 } 15184 if (map[i].old == old_id) 15185 return map[i].cur == cur_id; 15186 if (map[i].cur == cur_id) 15187 return false; 15188 } 15189 /* We ran out of idmap slots, which should be impossible */ 15190 WARN_ON_ONCE(1); 15191 return false; 15192 } 15193 15194 /* Similar to check_ids(), but allocate a unique temporary ID 15195 * for 'old_id' or 'cur_id' of zero. 15196 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 15197 */ 15198 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15199 { 15200 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 15201 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 15202 15203 return check_ids(old_id, cur_id, idmap); 15204 } 15205 15206 static void clean_func_state(struct bpf_verifier_env *env, 15207 struct bpf_func_state *st) 15208 { 15209 enum bpf_reg_liveness live; 15210 int i, j; 15211 15212 for (i = 0; i < BPF_REG_FP; i++) { 15213 live = st->regs[i].live; 15214 /* liveness must not touch this register anymore */ 15215 st->regs[i].live |= REG_LIVE_DONE; 15216 if (!(live & REG_LIVE_READ)) 15217 /* since the register is unused, clear its state 15218 * to make further comparison simpler 15219 */ 15220 __mark_reg_not_init(env, &st->regs[i]); 15221 } 15222 15223 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 15224 live = st->stack[i].spilled_ptr.live; 15225 /* liveness must not touch this stack slot anymore */ 15226 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 15227 if (!(live & REG_LIVE_READ)) { 15228 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 15229 for (j = 0; j < BPF_REG_SIZE; j++) 15230 st->stack[i].slot_type[j] = STACK_INVALID; 15231 } 15232 } 15233 } 15234 15235 static void clean_verifier_state(struct bpf_verifier_env *env, 15236 struct bpf_verifier_state *st) 15237 { 15238 int i; 15239 15240 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 15241 /* all regs in this state in all frames were already marked */ 15242 return; 15243 15244 for (i = 0; i <= st->curframe; i++) 15245 clean_func_state(env, st->frame[i]); 15246 } 15247 15248 /* the parentage chains form a tree. 15249 * the verifier states are added to state lists at given insn and 15250 * pushed into state stack for future exploration. 15251 * when the verifier reaches bpf_exit insn some of the verifer states 15252 * stored in the state lists have their final liveness state already, 15253 * but a lot of states will get revised from liveness point of view when 15254 * the verifier explores other branches. 15255 * Example: 15256 * 1: r0 = 1 15257 * 2: if r1 == 100 goto pc+1 15258 * 3: r0 = 2 15259 * 4: exit 15260 * when the verifier reaches exit insn the register r0 in the state list of 15261 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 15262 * of insn 2 and goes exploring further. At the insn 4 it will walk the 15263 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 15264 * 15265 * Since the verifier pushes the branch states as it sees them while exploring 15266 * the program the condition of walking the branch instruction for the second 15267 * time means that all states below this branch were already explored and 15268 * their final liveness marks are already propagated. 15269 * Hence when the verifier completes the search of state list in is_state_visited() 15270 * we can call this clean_live_states() function to mark all liveness states 15271 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 15272 * will not be used. 15273 * This function also clears the registers and stack for states that !READ 15274 * to simplify state merging. 15275 * 15276 * Important note here that walking the same branch instruction in the callee 15277 * doesn't meant that the states are DONE. The verifier has to compare 15278 * the callsites 15279 */ 15280 static void clean_live_states(struct bpf_verifier_env *env, int insn, 15281 struct bpf_verifier_state *cur) 15282 { 15283 struct bpf_verifier_state_list *sl; 15284 int i; 15285 15286 sl = *explored_state(env, insn); 15287 while (sl) { 15288 if (sl->state.branches) 15289 goto next; 15290 if (sl->state.insn_idx != insn || 15291 sl->state.curframe != cur->curframe) 15292 goto next; 15293 for (i = 0; i <= cur->curframe; i++) 15294 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 15295 goto next; 15296 clean_verifier_state(env, &sl->state); 15297 next: 15298 sl = sl->next; 15299 } 15300 } 15301 15302 static bool regs_exact(const struct bpf_reg_state *rold, 15303 const struct bpf_reg_state *rcur, 15304 struct bpf_idmap *idmap) 15305 { 15306 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 15307 check_ids(rold->id, rcur->id, idmap) && 15308 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15309 } 15310 15311 /* Returns true if (rold safe implies rcur safe) */ 15312 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 15313 struct bpf_reg_state *rcur, struct bpf_idmap *idmap) 15314 { 15315 if (!(rold->live & REG_LIVE_READ)) 15316 /* explored state didn't use this */ 15317 return true; 15318 if (rold->type == NOT_INIT) 15319 /* explored state can't have used this */ 15320 return true; 15321 if (rcur->type == NOT_INIT) 15322 return false; 15323 15324 /* Enforce that register types have to match exactly, including their 15325 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 15326 * rule. 15327 * 15328 * One can make a point that using a pointer register as unbounded 15329 * SCALAR would be technically acceptable, but this could lead to 15330 * pointer leaks because scalars are allowed to leak while pointers 15331 * are not. We could make this safe in special cases if root is 15332 * calling us, but it's probably not worth the hassle. 15333 * 15334 * Also, register types that are *not* MAYBE_NULL could technically be 15335 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 15336 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 15337 * to the same map). 15338 * However, if the old MAYBE_NULL register then got NULL checked, 15339 * doing so could have affected others with the same id, and we can't 15340 * check for that because we lost the id when we converted to 15341 * a non-MAYBE_NULL variant. 15342 * So, as a general rule we don't allow mixing MAYBE_NULL and 15343 * non-MAYBE_NULL registers as well. 15344 */ 15345 if (rold->type != rcur->type) 15346 return false; 15347 15348 switch (base_type(rold->type)) { 15349 case SCALAR_VALUE: 15350 if (env->explore_alu_limits) { 15351 /* explore_alu_limits disables tnum_in() and range_within() 15352 * logic and requires everything to be strict 15353 */ 15354 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 15355 check_scalar_ids(rold->id, rcur->id, idmap); 15356 } 15357 if (!rold->precise) 15358 return true; 15359 /* Why check_ids() for scalar registers? 15360 * 15361 * Consider the following BPF code: 15362 * 1: r6 = ... unbound scalar, ID=a ... 15363 * 2: r7 = ... unbound scalar, ID=b ... 15364 * 3: if (r6 > r7) goto +1 15365 * 4: r6 = r7 15366 * 5: if (r6 > X) goto ... 15367 * 6: ... memory operation using r7 ... 15368 * 15369 * First verification path is [1-6]: 15370 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 15371 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark 15372 * r7 <= X, because r6 and r7 share same id. 15373 * Next verification path is [1-4, 6]. 15374 * 15375 * Instruction (6) would be reached in two states: 15376 * I. r6{.id=b}, r7{.id=b} via path 1-6; 15377 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 15378 * 15379 * Use check_ids() to distinguish these states. 15380 * --- 15381 * Also verify that new value satisfies old value range knowledge. 15382 */ 15383 return range_within(rold, rcur) && 15384 tnum_in(rold->var_off, rcur->var_off) && 15385 check_scalar_ids(rold->id, rcur->id, idmap); 15386 case PTR_TO_MAP_KEY: 15387 case PTR_TO_MAP_VALUE: 15388 case PTR_TO_MEM: 15389 case PTR_TO_BUF: 15390 case PTR_TO_TP_BUFFER: 15391 /* If the new min/max/var_off satisfy the old ones and 15392 * everything else matches, we are OK. 15393 */ 15394 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 15395 range_within(rold, rcur) && 15396 tnum_in(rold->var_off, rcur->var_off) && 15397 check_ids(rold->id, rcur->id, idmap) && 15398 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15399 case PTR_TO_PACKET_META: 15400 case PTR_TO_PACKET: 15401 /* We must have at least as much range as the old ptr 15402 * did, so that any accesses which were safe before are 15403 * still safe. This is true even if old range < old off, 15404 * since someone could have accessed through (ptr - k), or 15405 * even done ptr -= k in a register, to get a safe access. 15406 */ 15407 if (rold->range > rcur->range) 15408 return false; 15409 /* If the offsets don't match, we can't trust our alignment; 15410 * nor can we be sure that we won't fall out of range. 15411 */ 15412 if (rold->off != rcur->off) 15413 return false; 15414 /* id relations must be preserved */ 15415 if (!check_ids(rold->id, rcur->id, idmap)) 15416 return false; 15417 /* new val must satisfy old val knowledge */ 15418 return range_within(rold, rcur) && 15419 tnum_in(rold->var_off, rcur->var_off); 15420 case PTR_TO_STACK: 15421 /* two stack pointers are equal only if they're pointing to 15422 * the same stack frame, since fp-8 in foo != fp-8 in bar 15423 */ 15424 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 15425 default: 15426 return regs_exact(rold, rcur, idmap); 15427 } 15428 } 15429 15430 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 15431 struct bpf_func_state *cur, struct bpf_idmap *idmap) 15432 { 15433 int i, spi; 15434 15435 /* walk slots of the explored stack and ignore any additional 15436 * slots in the current stack, since explored(safe) state 15437 * didn't use them 15438 */ 15439 for (i = 0; i < old->allocated_stack; i++) { 15440 struct bpf_reg_state *old_reg, *cur_reg; 15441 15442 spi = i / BPF_REG_SIZE; 15443 15444 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 15445 i += BPF_REG_SIZE - 1; 15446 /* explored state didn't use this */ 15447 continue; 15448 } 15449 15450 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 15451 continue; 15452 15453 if (env->allow_uninit_stack && 15454 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 15455 continue; 15456 15457 /* explored stack has more populated slots than current stack 15458 * and these slots were used 15459 */ 15460 if (i >= cur->allocated_stack) 15461 return false; 15462 15463 /* if old state was safe with misc data in the stack 15464 * it will be safe with zero-initialized stack. 15465 * The opposite is not true 15466 */ 15467 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 15468 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 15469 continue; 15470 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 15471 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 15472 /* Ex: old explored (safe) state has STACK_SPILL in 15473 * this stack slot, but current has STACK_MISC -> 15474 * this verifier states are not equivalent, 15475 * return false to continue verification of this path 15476 */ 15477 return false; 15478 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 15479 continue; 15480 /* Both old and cur are having same slot_type */ 15481 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 15482 case STACK_SPILL: 15483 /* when explored and current stack slot are both storing 15484 * spilled registers, check that stored pointers types 15485 * are the same as well. 15486 * Ex: explored safe path could have stored 15487 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 15488 * but current path has stored: 15489 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 15490 * such verifier states are not equivalent. 15491 * return false to continue verification of this path 15492 */ 15493 if (!regsafe(env, &old->stack[spi].spilled_ptr, 15494 &cur->stack[spi].spilled_ptr, idmap)) 15495 return false; 15496 break; 15497 case STACK_DYNPTR: 15498 old_reg = &old->stack[spi].spilled_ptr; 15499 cur_reg = &cur->stack[spi].spilled_ptr; 15500 if (old_reg->dynptr.type != cur_reg->dynptr.type || 15501 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 15502 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 15503 return false; 15504 break; 15505 case STACK_ITER: 15506 old_reg = &old->stack[spi].spilled_ptr; 15507 cur_reg = &cur->stack[spi].spilled_ptr; 15508 /* iter.depth is not compared between states as it 15509 * doesn't matter for correctness and would otherwise 15510 * prevent convergence; we maintain it only to prevent 15511 * infinite loop check triggering, see 15512 * iter_active_depths_differ() 15513 */ 15514 if (old_reg->iter.btf != cur_reg->iter.btf || 15515 old_reg->iter.btf_id != cur_reg->iter.btf_id || 15516 old_reg->iter.state != cur_reg->iter.state || 15517 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 15518 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 15519 return false; 15520 break; 15521 case STACK_MISC: 15522 case STACK_ZERO: 15523 case STACK_INVALID: 15524 continue; 15525 /* Ensure that new unhandled slot types return false by default */ 15526 default: 15527 return false; 15528 } 15529 } 15530 return true; 15531 } 15532 15533 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 15534 struct bpf_idmap *idmap) 15535 { 15536 int i; 15537 15538 if (old->acquired_refs != cur->acquired_refs) 15539 return false; 15540 15541 for (i = 0; i < old->acquired_refs; i++) { 15542 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 15543 return false; 15544 } 15545 15546 return true; 15547 } 15548 15549 /* compare two verifier states 15550 * 15551 * all states stored in state_list are known to be valid, since 15552 * verifier reached 'bpf_exit' instruction through them 15553 * 15554 * this function is called when verifier exploring different branches of 15555 * execution popped from the state stack. If it sees an old state that has 15556 * more strict register state and more strict stack state then this execution 15557 * branch doesn't need to be explored further, since verifier already 15558 * concluded that more strict state leads to valid finish. 15559 * 15560 * Therefore two states are equivalent if register state is more conservative 15561 * and explored stack state is more conservative than the current one. 15562 * Example: 15563 * explored current 15564 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 15565 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 15566 * 15567 * In other words if current stack state (one being explored) has more 15568 * valid slots than old one that already passed validation, it means 15569 * the verifier can stop exploring and conclude that current state is valid too 15570 * 15571 * Similarly with registers. If explored state has register type as invalid 15572 * whereas register type in current state is meaningful, it means that 15573 * the current state will reach 'bpf_exit' instruction safely 15574 */ 15575 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 15576 struct bpf_func_state *cur) 15577 { 15578 int i; 15579 15580 for (i = 0; i < MAX_BPF_REG; i++) 15581 if (!regsafe(env, &old->regs[i], &cur->regs[i], 15582 &env->idmap_scratch)) 15583 return false; 15584 15585 if (!stacksafe(env, old, cur, &env->idmap_scratch)) 15586 return false; 15587 15588 if (!refsafe(old, cur, &env->idmap_scratch)) 15589 return false; 15590 15591 return true; 15592 } 15593 15594 static bool states_equal(struct bpf_verifier_env *env, 15595 struct bpf_verifier_state *old, 15596 struct bpf_verifier_state *cur) 15597 { 15598 int i; 15599 15600 if (old->curframe != cur->curframe) 15601 return false; 15602 15603 env->idmap_scratch.tmp_id_gen = env->id_gen; 15604 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 15605 15606 /* Verification state from speculative execution simulation 15607 * must never prune a non-speculative execution one. 15608 */ 15609 if (old->speculative && !cur->speculative) 15610 return false; 15611 15612 if (old->active_lock.ptr != cur->active_lock.ptr) 15613 return false; 15614 15615 /* Old and cur active_lock's have to be either both present 15616 * or both absent. 15617 */ 15618 if (!!old->active_lock.id != !!cur->active_lock.id) 15619 return false; 15620 15621 if (old->active_lock.id && 15622 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch)) 15623 return false; 15624 15625 if (old->active_rcu_lock != cur->active_rcu_lock) 15626 return false; 15627 15628 /* for states to be equal callsites have to be the same 15629 * and all frame states need to be equivalent 15630 */ 15631 for (i = 0; i <= old->curframe; i++) { 15632 if (old->frame[i]->callsite != cur->frame[i]->callsite) 15633 return false; 15634 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 15635 return false; 15636 } 15637 return true; 15638 } 15639 15640 /* Return 0 if no propagation happened. Return negative error code if error 15641 * happened. Otherwise, return the propagated bit. 15642 */ 15643 static int propagate_liveness_reg(struct bpf_verifier_env *env, 15644 struct bpf_reg_state *reg, 15645 struct bpf_reg_state *parent_reg) 15646 { 15647 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 15648 u8 flag = reg->live & REG_LIVE_READ; 15649 int err; 15650 15651 /* When comes here, read flags of PARENT_REG or REG could be any of 15652 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 15653 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 15654 */ 15655 if (parent_flag == REG_LIVE_READ64 || 15656 /* Or if there is no read flag from REG. */ 15657 !flag || 15658 /* Or if the read flag from REG is the same as PARENT_REG. */ 15659 parent_flag == flag) 15660 return 0; 15661 15662 err = mark_reg_read(env, reg, parent_reg, flag); 15663 if (err) 15664 return err; 15665 15666 return flag; 15667 } 15668 15669 /* A write screens off any subsequent reads; but write marks come from the 15670 * straight-line code between a state and its parent. When we arrive at an 15671 * equivalent state (jump target or such) we didn't arrive by the straight-line 15672 * code, so read marks in the state must propagate to the parent regardless 15673 * of the state's write marks. That's what 'parent == state->parent' comparison 15674 * in mark_reg_read() is for. 15675 */ 15676 static int propagate_liveness(struct bpf_verifier_env *env, 15677 const struct bpf_verifier_state *vstate, 15678 struct bpf_verifier_state *vparent) 15679 { 15680 struct bpf_reg_state *state_reg, *parent_reg; 15681 struct bpf_func_state *state, *parent; 15682 int i, frame, err = 0; 15683 15684 if (vparent->curframe != vstate->curframe) { 15685 WARN(1, "propagate_live: parent frame %d current frame %d\n", 15686 vparent->curframe, vstate->curframe); 15687 return -EFAULT; 15688 } 15689 /* Propagate read liveness of registers... */ 15690 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 15691 for (frame = 0; frame <= vstate->curframe; frame++) { 15692 parent = vparent->frame[frame]; 15693 state = vstate->frame[frame]; 15694 parent_reg = parent->regs; 15695 state_reg = state->regs; 15696 /* We don't need to worry about FP liveness, it's read-only */ 15697 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 15698 err = propagate_liveness_reg(env, &state_reg[i], 15699 &parent_reg[i]); 15700 if (err < 0) 15701 return err; 15702 if (err == REG_LIVE_READ64) 15703 mark_insn_zext(env, &parent_reg[i]); 15704 } 15705 15706 /* Propagate stack slots. */ 15707 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 15708 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 15709 parent_reg = &parent->stack[i].spilled_ptr; 15710 state_reg = &state->stack[i].spilled_ptr; 15711 err = propagate_liveness_reg(env, state_reg, 15712 parent_reg); 15713 if (err < 0) 15714 return err; 15715 } 15716 } 15717 return 0; 15718 } 15719 15720 /* find precise scalars in the previous equivalent state and 15721 * propagate them into the current state 15722 */ 15723 static int propagate_precision(struct bpf_verifier_env *env, 15724 const struct bpf_verifier_state *old) 15725 { 15726 struct bpf_reg_state *state_reg; 15727 struct bpf_func_state *state; 15728 int i, err = 0, fr; 15729 bool first; 15730 15731 for (fr = old->curframe; fr >= 0; fr--) { 15732 state = old->frame[fr]; 15733 state_reg = state->regs; 15734 first = true; 15735 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 15736 if (state_reg->type != SCALAR_VALUE || 15737 !state_reg->precise || 15738 !(state_reg->live & REG_LIVE_READ)) 15739 continue; 15740 if (env->log.level & BPF_LOG_LEVEL2) { 15741 if (first) 15742 verbose(env, "frame %d: propagating r%d", fr, i); 15743 else 15744 verbose(env, ",r%d", i); 15745 } 15746 bt_set_frame_reg(&env->bt, fr, i); 15747 first = false; 15748 } 15749 15750 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 15751 if (!is_spilled_reg(&state->stack[i])) 15752 continue; 15753 state_reg = &state->stack[i].spilled_ptr; 15754 if (state_reg->type != SCALAR_VALUE || 15755 !state_reg->precise || 15756 !(state_reg->live & REG_LIVE_READ)) 15757 continue; 15758 if (env->log.level & BPF_LOG_LEVEL2) { 15759 if (first) 15760 verbose(env, "frame %d: propagating fp%d", 15761 fr, (-i - 1) * BPF_REG_SIZE); 15762 else 15763 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 15764 } 15765 bt_set_frame_slot(&env->bt, fr, i); 15766 first = false; 15767 } 15768 if (!first) 15769 verbose(env, "\n"); 15770 } 15771 15772 err = mark_chain_precision_batch(env); 15773 if (err < 0) 15774 return err; 15775 15776 return 0; 15777 } 15778 15779 static bool states_maybe_looping(struct bpf_verifier_state *old, 15780 struct bpf_verifier_state *cur) 15781 { 15782 struct bpf_func_state *fold, *fcur; 15783 int i, fr = cur->curframe; 15784 15785 if (old->curframe != fr) 15786 return false; 15787 15788 fold = old->frame[fr]; 15789 fcur = cur->frame[fr]; 15790 for (i = 0; i < MAX_BPF_REG; i++) 15791 if (memcmp(&fold->regs[i], &fcur->regs[i], 15792 offsetof(struct bpf_reg_state, parent))) 15793 return false; 15794 return true; 15795 } 15796 15797 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 15798 { 15799 return env->insn_aux_data[insn_idx].is_iter_next; 15800 } 15801 15802 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 15803 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 15804 * states to match, which otherwise would look like an infinite loop. So while 15805 * iter_next() calls are taken care of, we still need to be careful and 15806 * prevent erroneous and too eager declaration of "ininite loop", when 15807 * iterators are involved. 15808 * 15809 * Here's a situation in pseudo-BPF assembly form: 15810 * 15811 * 0: again: ; set up iter_next() call args 15812 * 1: r1 = &it ; <CHECKPOINT HERE> 15813 * 2: call bpf_iter_num_next ; this is iter_next() call 15814 * 3: if r0 == 0 goto done 15815 * 4: ... something useful here ... 15816 * 5: goto again ; another iteration 15817 * 6: done: 15818 * 7: r1 = &it 15819 * 8: call bpf_iter_num_destroy ; clean up iter state 15820 * 9: exit 15821 * 15822 * This is a typical loop. Let's assume that we have a prune point at 1:, 15823 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 15824 * again`, assuming other heuristics don't get in a way). 15825 * 15826 * When we first time come to 1:, let's say we have some state X. We proceed 15827 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 15828 * Now we come back to validate that forked ACTIVE state. We proceed through 15829 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 15830 * are converging. But the problem is that we don't know that yet, as this 15831 * convergence has to happen at iter_next() call site only. So if nothing is 15832 * done, at 1: verifier will use bounded loop logic and declare infinite 15833 * looping (and would be *technically* correct, if not for iterator's 15834 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 15835 * don't want that. So what we do in process_iter_next_call() when we go on 15836 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 15837 * a different iteration. So when we suspect an infinite loop, we additionally 15838 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 15839 * pretend we are not looping and wait for next iter_next() call. 15840 * 15841 * This only applies to ACTIVE state. In DRAINED state we don't expect to 15842 * loop, because that would actually mean infinite loop, as DRAINED state is 15843 * "sticky", and so we'll keep returning into the same instruction with the 15844 * same state (at least in one of possible code paths). 15845 * 15846 * This approach allows to keep infinite loop heuristic even in the face of 15847 * active iterator. E.g., C snippet below is and will be detected as 15848 * inifintely looping: 15849 * 15850 * struct bpf_iter_num it; 15851 * int *p, x; 15852 * 15853 * bpf_iter_num_new(&it, 0, 10); 15854 * while ((p = bpf_iter_num_next(&t))) { 15855 * x = p; 15856 * while (x--) {} // <<-- infinite loop here 15857 * } 15858 * 15859 */ 15860 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 15861 { 15862 struct bpf_reg_state *slot, *cur_slot; 15863 struct bpf_func_state *state; 15864 int i, fr; 15865 15866 for (fr = old->curframe; fr >= 0; fr--) { 15867 state = old->frame[fr]; 15868 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 15869 if (state->stack[i].slot_type[0] != STACK_ITER) 15870 continue; 15871 15872 slot = &state->stack[i].spilled_ptr; 15873 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 15874 continue; 15875 15876 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 15877 if (cur_slot->iter.depth != slot->iter.depth) 15878 return true; 15879 } 15880 } 15881 return false; 15882 } 15883 15884 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 15885 { 15886 struct bpf_verifier_state_list *new_sl; 15887 struct bpf_verifier_state_list *sl, **pprev; 15888 struct bpf_verifier_state *cur = env->cur_state, *new; 15889 int i, j, err, states_cnt = 0; 15890 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); 15891 bool add_new_state = force_new_state; 15892 15893 /* bpf progs typically have pruning point every 4 instructions 15894 * http://vger.kernel.org/bpfconf2019.html#session-1 15895 * Do not add new state for future pruning if the verifier hasn't seen 15896 * at least 2 jumps and at least 8 instructions. 15897 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 15898 * In tests that amounts to up to 50% reduction into total verifier 15899 * memory consumption and 20% verifier time speedup. 15900 */ 15901 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 15902 env->insn_processed - env->prev_insn_processed >= 8) 15903 add_new_state = true; 15904 15905 pprev = explored_state(env, insn_idx); 15906 sl = *pprev; 15907 15908 clean_live_states(env, insn_idx, cur); 15909 15910 while (sl) { 15911 states_cnt++; 15912 if (sl->state.insn_idx != insn_idx) 15913 goto next; 15914 15915 if (sl->state.branches) { 15916 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 15917 15918 if (frame->in_async_callback_fn && 15919 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 15920 /* Different async_entry_cnt means that the verifier is 15921 * processing another entry into async callback. 15922 * Seeing the same state is not an indication of infinite 15923 * loop or infinite recursion. 15924 * But finding the same state doesn't mean that it's safe 15925 * to stop processing the current state. The previous state 15926 * hasn't yet reached bpf_exit, since state.branches > 0. 15927 * Checking in_async_callback_fn alone is not enough either. 15928 * Since the verifier still needs to catch infinite loops 15929 * inside async callbacks. 15930 */ 15931 goto skip_inf_loop_check; 15932 } 15933 /* BPF open-coded iterators loop detection is special. 15934 * states_maybe_looping() logic is too simplistic in detecting 15935 * states that *might* be equivalent, because it doesn't know 15936 * about ID remapping, so don't even perform it. 15937 * See process_iter_next_call() and iter_active_depths_differ() 15938 * for overview of the logic. When current and one of parent 15939 * states are detected as equivalent, it's a good thing: we prove 15940 * convergence and can stop simulating further iterations. 15941 * It's safe to assume that iterator loop will finish, taking into 15942 * account iter_next() contract of eventually returning 15943 * sticky NULL result. 15944 */ 15945 if (is_iter_next_insn(env, insn_idx)) { 15946 if (states_equal(env, &sl->state, cur)) { 15947 struct bpf_func_state *cur_frame; 15948 struct bpf_reg_state *iter_state, *iter_reg; 15949 int spi; 15950 15951 cur_frame = cur->frame[cur->curframe]; 15952 /* btf_check_iter_kfuncs() enforces that 15953 * iter state pointer is always the first arg 15954 */ 15955 iter_reg = &cur_frame->regs[BPF_REG_1]; 15956 /* current state is valid due to states_equal(), 15957 * so we can assume valid iter and reg state, 15958 * no need for extra (re-)validations 15959 */ 15960 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 15961 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 15962 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) 15963 goto hit; 15964 } 15965 goto skip_inf_loop_check; 15966 } 15967 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 15968 if (states_maybe_looping(&sl->state, cur) && 15969 states_equal(env, &sl->state, cur) && 15970 !iter_active_depths_differ(&sl->state, cur)) { 15971 verbose_linfo(env, insn_idx, "; "); 15972 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 15973 return -EINVAL; 15974 } 15975 /* if the verifier is processing a loop, avoid adding new state 15976 * too often, since different loop iterations have distinct 15977 * states and may not help future pruning. 15978 * This threshold shouldn't be too low to make sure that 15979 * a loop with large bound will be rejected quickly. 15980 * The most abusive loop will be: 15981 * r1 += 1 15982 * if r1 < 1000000 goto pc-2 15983 * 1M insn_procssed limit / 100 == 10k peak states. 15984 * This threshold shouldn't be too high either, since states 15985 * at the end of the loop are likely to be useful in pruning. 15986 */ 15987 skip_inf_loop_check: 15988 if (!force_new_state && 15989 env->jmps_processed - env->prev_jmps_processed < 20 && 15990 env->insn_processed - env->prev_insn_processed < 100) 15991 add_new_state = false; 15992 goto miss; 15993 } 15994 if (states_equal(env, &sl->state, cur)) { 15995 hit: 15996 sl->hit_cnt++; 15997 /* reached equivalent register/stack state, 15998 * prune the search. 15999 * Registers read by the continuation are read by us. 16000 * If we have any write marks in env->cur_state, they 16001 * will prevent corresponding reads in the continuation 16002 * from reaching our parent (an explored_state). Our 16003 * own state will get the read marks recorded, but 16004 * they'll be immediately forgotten as we're pruning 16005 * this state and will pop a new one. 16006 */ 16007 err = propagate_liveness(env, &sl->state, cur); 16008 16009 /* if previous state reached the exit with precision and 16010 * current state is equivalent to it (except precsion marks) 16011 * the precision needs to be propagated back in 16012 * the current state. 16013 */ 16014 err = err ? : push_jmp_history(env, cur); 16015 err = err ? : propagate_precision(env, &sl->state); 16016 if (err) 16017 return err; 16018 return 1; 16019 } 16020 miss: 16021 /* when new state is not going to be added do not increase miss count. 16022 * Otherwise several loop iterations will remove the state 16023 * recorded earlier. The goal of these heuristics is to have 16024 * states from some iterations of the loop (some in the beginning 16025 * and some at the end) to help pruning. 16026 */ 16027 if (add_new_state) 16028 sl->miss_cnt++; 16029 /* heuristic to determine whether this state is beneficial 16030 * to keep checking from state equivalence point of view. 16031 * Higher numbers increase max_states_per_insn and verification time, 16032 * but do not meaningfully decrease insn_processed. 16033 */ 16034 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 16035 /* the state is unlikely to be useful. Remove it to 16036 * speed up verification 16037 */ 16038 *pprev = sl->next; 16039 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 16040 u32 br = sl->state.branches; 16041 16042 WARN_ONCE(br, 16043 "BUG live_done but branches_to_explore %d\n", 16044 br); 16045 free_verifier_state(&sl->state, false); 16046 kfree(sl); 16047 env->peak_states--; 16048 } else { 16049 /* cannot free this state, since parentage chain may 16050 * walk it later. Add it for free_list instead to 16051 * be freed at the end of verification 16052 */ 16053 sl->next = env->free_list; 16054 env->free_list = sl; 16055 } 16056 sl = *pprev; 16057 continue; 16058 } 16059 next: 16060 pprev = &sl->next; 16061 sl = *pprev; 16062 } 16063 16064 if (env->max_states_per_insn < states_cnt) 16065 env->max_states_per_insn = states_cnt; 16066 16067 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 16068 return 0; 16069 16070 if (!add_new_state) 16071 return 0; 16072 16073 /* There were no equivalent states, remember the current one. 16074 * Technically the current state is not proven to be safe yet, 16075 * but it will either reach outer most bpf_exit (which means it's safe) 16076 * or it will be rejected. When there are no loops the verifier won't be 16077 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 16078 * again on the way to bpf_exit. 16079 * When looping the sl->state.branches will be > 0 and this state 16080 * will not be considered for equivalence until branches == 0. 16081 */ 16082 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 16083 if (!new_sl) 16084 return -ENOMEM; 16085 env->total_states++; 16086 env->peak_states++; 16087 env->prev_jmps_processed = env->jmps_processed; 16088 env->prev_insn_processed = env->insn_processed; 16089 16090 /* forget precise markings we inherited, see __mark_chain_precision */ 16091 if (env->bpf_capable) 16092 mark_all_scalars_imprecise(env, cur); 16093 16094 /* add new state to the head of linked list */ 16095 new = &new_sl->state; 16096 err = copy_verifier_state(new, cur); 16097 if (err) { 16098 free_verifier_state(new, false); 16099 kfree(new_sl); 16100 return err; 16101 } 16102 new->insn_idx = insn_idx; 16103 WARN_ONCE(new->branches != 1, 16104 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 16105 16106 cur->parent = new; 16107 cur->first_insn_idx = insn_idx; 16108 clear_jmp_history(cur); 16109 new_sl->next = *explored_state(env, insn_idx); 16110 *explored_state(env, insn_idx) = new_sl; 16111 /* connect new state to parentage chain. Current frame needs all 16112 * registers connected. Only r6 - r9 of the callers are alive (pushed 16113 * to the stack implicitly by JITs) so in callers' frames connect just 16114 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 16115 * the state of the call instruction (with WRITTEN set), and r0 comes 16116 * from callee with its full parentage chain, anyway. 16117 */ 16118 /* clear write marks in current state: the writes we did are not writes 16119 * our child did, so they don't screen off its reads from us. 16120 * (There are no read marks in current state, because reads always mark 16121 * their parent and current state never has children yet. Only 16122 * explored_states can get read marks.) 16123 */ 16124 for (j = 0; j <= cur->curframe; j++) { 16125 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 16126 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 16127 for (i = 0; i < BPF_REG_FP; i++) 16128 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 16129 } 16130 16131 /* all stack frames are accessible from callee, clear them all */ 16132 for (j = 0; j <= cur->curframe; j++) { 16133 struct bpf_func_state *frame = cur->frame[j]; 16134 struct bpf_func_state *newframe = new->frame[j]; 16135 16136 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 16137 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 16138 frame->stack[i].spilled_ptr.parent = 16139 &newframe->stack[i].spilled_ptr; 16140 } 16141 } 16142 return 0; 16143 } 16144 16145 /* Return true if it's OK to have the same insn return a different type. */ 16146 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 16147 { 16148 switch (base_type(type)) { 16149 case PTR_TO_CTX: 16150 case PTR_TO_SOCKET: 16151 case PTR_TO_SOCK_COMMON: 16152 case PTR_TO_TCP_SOCK: 16153 case PTR_TO_XDP_SOCK: 16154 case PTR_TO_BTF_ID: 16155 return false; 16156 default: 16157 return true; 16158 } 16159 } 16160 16161 /* If an instruction was previously used with particular pointer types, then we 16162 * need to be careful to avoid cases such as the below, where it may be ok 16163 * for one branch accessing the pointer, but not ok for the other branch: 16164 * 16165 * R1 = sock_ptr 16166 * goto X; 16167 * ... 16168 * R1 = some_other_valid_ptr; 16169 * goto X; 16170 * ... 16171 * R2 = *(u32 *)(R1 + 0); 16172 */ 16173 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 16174 { 16175 return src != prev && (!reg_type_mismatch_ok(src) || 16176 !reg_type_mismatch_ok(prev)); 16177 } 16178 16179 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 16180 bool allow_trust_missmatch) 16181 { 16182 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 16183 16184 if (*prev_type == NOT_INIT) { 16185 /* Saw a valid insn 16186 * dst_reg = *(u32 *)(src_reg + off) 16187 * save type to validate intersecting paths 16188 */ 16189 *prev_type = type; 16190 } else if (reg_type_mismatch(type, *prev_type)) { 16191 /* Abuser program is trying to use the same insn 16192 * dst_reg = *(u32*) (src_reg + off) 16193 * with different pointer types: 16194 * src_reg == ctx in one branch and 16195 * src_reg == stack|map in some other branch. 16196 * Reject it. 16197 */ 16198 if (allow_trust_missmatch && 16199 base_type(type) == PTR_TO_BTF_ID && 16200 base_type(*prev_type) == PTR_TO_BTF_ID) { 16201 /* 16202 * Have to support a use case when one path through 16203 * the program yields TRUSTED pointer while another 16204 * is UNTRUSTED. Fallback to UNTRUSTED to generate 16205 * BPF_PROBE_MEM. 16206 */ 16207 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 16208 } else { 16209 verbose(env, "same insn cannot be used with different pointers\n"); 16210 return -EINVAL; 16211 } 16212 } 16213 16214 return 0; 16215 } 16216 16217 static int do_check(struct bpf_verifier_env *env) 16218 { 16219 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 16220 struct bpf_verifier_state *state = env->cur_state; 16221 struct bpf_insn *insns = env->prog->insnsi; 16222 struct bpf_reg_state *regs; 16223 int insn_cnt = env->prog->len; 16224 bool do_print_state = false; 16225 int prev_insn_idx = -1; 16226 16227 for (;;) { 16228 struct bpf_insn *insn; 16229 u8 class; 16230 int err; 16231 16232 env->prev_insn_idx = prev_insn_idx; 16233 if (env->insn_idx >= insn_cnt) { 16234 verbose(env, "invalid insn idx %d insn_cnt %d\n", 16235 env->insn_idx, insn_cnt); 16236 return -EFAULT; 16237 } 16238 16239 insn = &insns[env->insn_idx]; 16240 class = BPF_CLASS(insn->code); 16241 16242 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 16243 verbose(env, 16244 "BPF program is too large. Processed %d insn\n", 16245 env->insn_processed); 16246 return -E2BIG; 16247 } 16248 16249 state->last_insn_idx = env->prev_insn_idx; 16250 16251 if (is_prune_point(env, env->insn_idx)) { 16252 err = is_state_visited(env, env->insn_idx); 16253 if (err < 0) 16254 return err; 16255 if (err == 1) { 16256 /* found equivalent state, can prune the search */ 16257 if (env->log.level & BPF_LOG_LEVEL) { 16258 if (do_print_state) 16259 verbose(env, "\nfrom %d to %d%s: safe\n", 16260 env->prev_insn_idx, env->insn_idx, 16261 env->cur_state->speculative ? 16262 " (speculative execution)" : ""); 16263 else 16264 verbose(env, "%d: safe\n", env->insn_idx); 16265 } 16266 goto process_bpf_exit; 16267 } 16268 } 16269 16270 if (is_jmp_point(env, env->insn_idx)) { 16271 err = push_jmp_history(env, state); 16272 if (err) 16273 return err; 16274 } 16275 16276 if (signal_pending(current)) 16277 return -EAGAIN; 16278 16279 if (need_resched()) 16280 cond_resched(); 16281 16282 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 16283 verbose(env, "\nfrom %d to %d%s:", 16284 env->prev_insn_idx, env->insn_idx, 16285 env->cur_state->speculative ? 16286 " (speculative execution)" : ""); 16287 print_verifier_state(env, state->frame[state->curframe], true); 16288 do_print_state = false; 16289 } 16290 16291 if (env->log.level & BPF_LOG_LEVEL) { 16292 const struct bpf_insn_cbs cbs = { 16293 .cb_call = disasm_kfunc_name, 16294 .cb_print = verbose, 16295 .private_data = env, 16296 }; 16297 16298 if (verifier_state_scratched(env)) 16299 print_insn_state(env, state->frame[state->curframe]); 16300 16301 verbose_linfo(env, env->insn_idx, "; "); 16302 env->prev_log_pos = env->log.end_pos; 16303 verbose(env, "%d: ", env->insn_idx); 16304 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 16305 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 16306 env->prev_log_pos = env->log.end_pos; 16307 } 16308 16309 if (bpf_prog_is_offloaded(env->prog->aux)) { 16310 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 16311 env->prev_insn_idx); 16312 if (err) 16313 return err; 16314 } 16315 16316 regs = cur_regs(env); 16317 sanitize_mark_insn_seen(env); 16318 prev_insn_idx = env->insn_idx; 16319 16320 if (class == BPF_ALU || class == BPF_ALU64) { 16321 err = check_alu_op(env, insn); 16322 if (err) 16323 return err; 16324 16325 } else if (class == BPF_LDX) { 16326 enum bpf_reg_type src_reg_type; 16327 16328 /* check for reserved fields is already done */ 16329 16330 /* check src operand */ 16331 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16332 if (err) 16333 return err; 16334 16335 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 16336 if (err) 16337 return err; 16338 16339 src_reg_type = regs[insn->src_reg].type; 16340 16341 /* check that memory (src_reg + off) is readable, 16342 * the state of dst_reg will be updated by this func 16343 */ 16344 err = check_mem_access(env, env->insn_idx, insn->src_reg, 16345 insn->off, BPF_SIZE(insn->code), 16346 BPF_READ, insn->dst_reg, false); 16347 if (err) 16348 return err; 16349 16350 err = save_aux_ptr_type(env, src_reg_type, true); 16351 if (err) 16352 return err; 16353 } else if (class == BPF_STX) { 16354 enum bpf_reg_type dst_reg_type; 16355 16356 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 16357 err = check_atomic(env, env->insn_idx, insn); 16358 if (err) 16359 return err; 16360 env->insn_idx++; 16361 continue; 16362 } 16363 16364 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 16365 verbose(env, "BPF_STX uses reserved fields\n"); 16366 return -EINVAL; 16367 } 16368 16369 /* check src1 operand */ 16370 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16371 if (err) 16372 return err; 16373 /* check src2 operand */ 16374 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16375 if (err) 16376 return err; 16377 16378 dst_reg_type = regs[insn->dst_reg].type; 16379 16380 /* check that memory (dst_reg + off) is writeable */ 16381 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 16382 insn->off, BPF_SIZE(insn->code), 16383 BPF_WRITE, insn->src_reg, false); 16384 if (err) 16385 return err; 16386 16387 err = save_aux_ptr_type(env, dst_reg_type, false); 16388 if (err) 16389 return err; 16390 } else if (class == BPF_ST) { 16391 enum bpf_reg_type dst_reg_type; 16392 16393 if (BPF_MODE(insn->code) != BPF_MEM || 16394 insn->src_reg != BPF_REG_0) { 16395 verbose(env, "BPF_ST uses reserved fields\n"); 16396 return -EINVAL; 16397 } 16398 /* check src operand */ 16399 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16400 if (err) 16401 return err; 16402 16403 dst_reg_type = regs[insn->dst_reg].type; 16404 16405 /* check that memory (dst_reg + off) is writeable */ 16406 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 16407 insn->off, BPF_SIZE(insn->code), 16408 BPF_WRITE, -1, false); 16409 if (err) 16410 return err; 16411 16412 err = save_aux_ptr_type(env, dst_reg_type, false); 16413 if (err) 16414 return err; 16415 } else if (class == BPF_JMP || class == BPF_JMP32) { 16416 u8 opcode = BPF_OP(insn->code); 16417 16418 env->jmps_processed++; 16419 if (opcode == BPF_CALL) { 16420 if (BPF_SRC(insn->code) != BPF_K || 16421 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 16422 && insn->off != 0) || 16423 (insn->src_reg != BPF_REG_0 && 16424 insn->src_reg != BPF_PSEUDO_CALL && 16425 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 16426 insn->dst_reg != BPF_REG_0 || 16427 class == BPF_JMP32) { 16428 verbose(env, "BPF_CALL uses reserved fields\n"); 16429 return -EINVAL; 16430 } 16431 16432 if (env->cur_state->active_lock.ptr) { 16433 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 16434 (insn->src_reg == BPF_PSEUDO_CALL) || 16435 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 16436 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 16437 verbose(env, "function calls are not allowed while holding a lock\n"); 16438 return -EINVAL; 16439 } 16440 } 16441 if (insn->src_reg == BPF_PSEUDO_CALL) 16442 err = check_func_call(env, insn, &env->insn_idx); 16443 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 16444 err = check_kfunc_call(env, insn, &env->insn_idx); 16445 else 16446 err = check_helper_call(env, insn, &env->insn_idx); 16447 if (err) 16448 return err; 16449 16450 mark_reg_scratched(env, BPF_REG_0); 16451 } else if (opcode == BPF_JA) { 16452 if (BPF_SRC(insn->code) != BPF_K || 16453 insn->imm != 0 || 16454 insn->src_reg != BPF_REG_0 || 16455 insn->dst_reg != BPF_REG_0 || 16456 class == BPF_JMP32) { 16457 verbose(env, "BPF_JA uses reserved fields\n"); 16458 return -EINVAL; 16459 } 16460 16461 env->insn_idx += insn->off + 1; 16462 continue; 16463 16464 } else if (opcode == BPF_EXIT) { 16465 if (BPF_SRC(insn->code) != BPF_K || 16466 insn->imm != 0 || 16467 insn->src_reg != BPF_REG_0 || 16468 insn->dst_reg != BPF_REG_0 || 16469 class == BPF_JMP32) { 16470 verbose(env, "BPF_EXIT uses reserved fields\n"); 16471 return -EINVAL; 16472 } 16473 16474 if (env->cur_state->active_lock.ptr && 16475 !in_rbtree_lock_required_cb(env)) { 16476 verbose(env, "bpf_spin_unlock is missing\n"); 16477 return -EINVAL; 16478 } 16479 16480 if (env->cur_state->active_rcu_lock) { 16481 verbose(env, "bpf_rcu_read_unlock is missing\n"); 16482 return -EINVAL; 16483 } 16484 16485 /* We must do check_reference_leak here before 16486 * prepare_func_exit to handle the case when 16487 * state->curframe > 0, it may be a callback 16488 * function, for which reference_state must 16489 * match caller reference state when it exits. 16490 */ 16491 err = check_reference_leak(env); 16492 if (err) 16493 return err; 16494 16495 if (state->curframe) { 16496 /* exit from nested function */ 16497 err = prepare_func_exit(env, &env->insn_idx); 16498 if (err) 16499 return err; 16500 do_print_state = true; 16501 continue; 16502 } 16503 16504 err = check_return_code(env); 16505 if (err) 16506 return err; 16507 process_bpf_exit: 16508 mark_verifier_state_scratched(env); 16509 update_branch_counts(env, env->cur_state); 16510 err = pop_stack(env, &prev_insn_idx, 16511 &env->insn_idx, pop_log); 16512 if (err < 0) { 16513 if (err != -ENOENT) 16514 return err; 16515 break; 16516 } else { 16517 do_print_state = true; 16518 continue; 16519 } 16520 } else { 16521 err = check_cond_jmp_op(env, insn, &env->insn_idx); 16522 if (err) 16523 return err; 16524 } 16525 } else if (class == BPF_LD) { 16526 u8 mode = BPF_MODE(insn->code); 16527 16528 if (mode == BPF_ABS || mode == BPF_IND) { 16529 err = check_ld_abs(env, insn); 16530 if (err) 16531 return err; 16532 16533 } else if (mode == BPF_IMM) { 16534 err = check_ld_imm(env, insn); 16535 if (err) 16536 return err; 16537 16538 env->insn_idx++; 16539 sanitize_mark_insn_seen(env); 16540 } else { 16541 verbose(env, "invalid BPF_LD mode\n"); 16542 return -EINVAL; 16543 } 16544 } else { 16545 verbose(env, "unknown insn class %d\n", class); 16546 return -EINVAL; 16547 } 16548 16549 env->insn_idx++; 16550 } 16551 16552 return 0; 16553 } 16554 16555 static int find_btf_percpu_datasec(struct btf *btf) 16556 { 16557 const struct btf_type *t; 16558 const char *tname; 16559 int i, n; 16560 16561 /* 16562 * Both vmlinux and module each have their own ".data..percpu" 16563 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 16564 * types to look at only module's own BTF types. 16565 */ 16566 n = btf_nr_types(btf); 16567 if (btf_is_module(btf)) 16568 i = btf_nr_types(btf_vmlinux); 16569 else 16570 i = 1; 16571 16572 for(; i < n; i++) { 16573 t = btf_type_by_id(btf, i); 16574 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 16575 continue; 16576 16577 tname = btf_name_by_offset(btf, t->name_off); 16578 if (!strcmp(tname, ".data..percpu")) 16579 return i; 16580 } 16581 16582 return -ENOENT; 16583 } 16584 16585 /* replace pseudo btf_id with kernel symbol address */ 16586 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 16587 struct bpf_insn *insn, 16588 struct bpf_insn_aux_data *aux) 16589 { 16590 const struct btf_var_secinfo *vsi; 16591 const struct btf_type *datasec; 16592 struct btf_mod_pair *btf_mod; 16593 const struct btf_type *t; 16594 const char *sym_name; 16595 bool percpu = false; 16596 u32 type, id = insn->imm; 16597 struct btf *btf; 16598 s32 datasec_id; 16599 u64 addr; 16600 int i, btf_fd, err; 16601 16602 btf_fd = insn[1].imm; 16603 if (btf_fd) { 16604 btf = btf_get_by_fd(btf_fd); 16605 if (IS_ERR(btf)) { 16606 verbose(env, "invalid module BTF object FD specified.\n"); 16607 return -EINVAL; 16608 } 16609 } else { 16610 if (!btf_vmlinux) { 16611 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 16612 return -EINVAL; 16613 } 16614 btf = btf_vmlinux; 16615 btf_get(btf); 16616 } 16617 16618 t = btf_type_by_id(btf, id); 16619 if (!t) { 16620 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 16621 err = -ENOENT; 16622 goto err_put; 16623 } 16624 16625 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 16626 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 16627 err = -EINVAL; 16628 goto err_put; 16629 } 16630 16631 sym_name = btf_name_by_offset(btf, t->name_off); 16632 addr = kallsyms_lookup_name(sym_name); 16633 if (!addr) { 16634 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 16635 sym_name); 16636 err = -ENOENT; 16637 goto err_put; 16638 } 16639 insn[0].imm = (u32)addr; 16640 insn[1].imm = addr >> 32; 16641 16642 if (btf_type_is_func(t)) { 16643 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 16644 aux->btf_var.mem_size = 0; 16645 goto check_btf; 16646 } 16647 16648 datasec_id = find_btf_percpu_datasec(btf); 16649 if (datasec_id > 0) { 16650 datasec = btf_type_by_id(btf, datasec_id); 16651 for_each_vsi(i, datasec, vsi) { 16652 if (vsi->type == id) { 16653 percpu = true; 16654 break; 16655 } 16656 } 16657 } 16658 16659 type = t->type; 16660 t = btf_type_skip_modifiers(btf, type, NULL); 16661 if (percpu) { 16662 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 16663 aux->btf_var.btf = btf; 16664 aux->btf_var.btf_id = type; 16665 } else if (!btf_type_is_struct(t)) { 16666 const struct btf_type *ret; 16667 const char *tname; 16668 u32 tsize; 16669 16670 /* resolve the type size of ksym. */ 16671 ret = btf_resolve_size(btf, t, &tsize); 16672 if (IS_ERR(ret)) { 16673 tname = btf_name_by_offset(btf, t->name_off); 16674 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 16675 tname, PTR_ERR(ret)); 16676 err = -EINVAL; 16677 goto err_put; 16678 } 16679 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 16680 aux->btf_var.mem_size = tsize; 16681 } else { 16682 aux->btf_var.reg_type = PTR_TO_BTF_ID; 16683 aux->btf_var.btf = btf; 16684 aux->btf_var.btf_id = type; 16685 } 16686 check_btf: 16687 /* check whether we recorded this BTF (and maybe module) already */ 16688 for (i = 0; i < env->used_btf_cnt; i++) { 16689 if (env->used_btfs[i].btf == btf) { 16690 btf_put(btf); 16691 return 0; 16692 } 16693 } 16694 16695 if (env->used_btf_cnt >= MAX_USED_BTFS) { 16696 err = -E2BIG; 16697 goto err_put; 16698 } 16699 16700 btf_mod = &env->used_btfs[env->used_btf_cnt]; 16701 btf_mod->btf = btf; 16702 btf_mod->module = NULL; 16703 16704 /* if we reference variables from kernel module, bump its refcount */ 16705 if (btf_is_module(btf)) { 16706 btf_mod->module = btf_try_get_module(btf); 16707 if (!btf_mod->module) { 16708 err = -ENXIO; 16709 goto err_put; 16710 } 16711 } 16712 16713 env->used_btf_cnt++; 16714 16715 return 0; 16716 err_put: 16717 btf_put(btf); 16718 return err; 16719 } 16720 16721 static bool is_tracing_prog_type(enum bpf_prog_type type) 16722 { 16723 switch (type) { 16724 case BPF_PROG_TYPE_KPROBE: 16725 case BPF_PROG_TYPE_TRACEPOINT: 16726 case BPF_PROG_TYPE_PERF_EVENT: 16727 case BPF_PROG_TYPE_RAW_TRACEPOINT: 16728 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 16729 return true; 16730 default: 16731 return false; 16732 } 16733 } 16734 16735 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 16736 struct bpf_map *map, 16737 struct bpf_prog *prog) 16738 16739 { 16740 enum bpf_prog_type prog_type = resolve_prog_type(prog); 16741 16742 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 16743 btf_record_has_field(map->record, BPF_RB_ROOT)) { 16744 if (is_tracing_prog_type(prog_type)) { 16745 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 16746 return -EINVAL; 16747 } 16748 } 16749 16750 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 16751 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 16752 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 16753 return -EINVAL; 16754 } 16755 16756 if (is_tracing_prog_type(prog_type)) { 16757 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 16758 return -EINVAL; 16759 } 16760 16761 if (prog->aux->sleepable) { 16762 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 16763 return -EINVAL; 16764 } 16765 } 16766 16767 if (btf_record_has_field(map->record, BPF_TIMER)) { 16768 if (is_tracing_prog_type(prog_type)) { 16769 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 16770 return -EINVAL; 16771 } 16772 } 16773 16774 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 16775 !bpf_offload_prog_map_match(prog, map)) { 16776 verbose(env, "offload device mismatch between prog and map\n"); 16777 return -EINVAL; 16778 } 16779 16780 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 16781 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 16782 return -EINVAL; 16783 } 16784 16785 if (prog->aux->sleepable) 16786 switch (map->map_type) { 16787 case BPF_MAP_TYPE_HASH: 16788 case BPF_MAP_TYPE_LRU_HASH: 16789 case BPF_MAP_TYPE_ARRAY: 16790 case BPF_MAP_TYPE_PERCPU_HASH: 16791 case BPF_MAP_TYPE_PERCPU_ARRAY: 16792 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 16793 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 16794 case BPF_MAP_TYPE_HASH_OF_MAPS: 16795 case BPF_MAP_TYPE_RINGBUF: 16796 case BPF_MAP_TYPE_USER_RINGBUF: 16797 case BPF_MAP_TYPE_INODE_STORAGE: 16798 case BPF_MAP_TYPE_SK_STORAGE: 16799 case BPF_MAP_TYPE_TASK_STORAGE: 16800 case BPF_MAP_TYPE_CGRP_STORAGE: 16801 break; 16802 default: 16803 verbose(env, 16804 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 16805 return -EINVAL; 16806 } 16807 16808 return 0; 16809 } 16810 16811 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 16812 { 16813 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 16814 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 16815 } 16816 16817 /* find and rewrite pseudo imm in ld_imm64 instructions: 16818 * 16819 * 1. if it accesses map FD, replace it with actual map pointer. 16820 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 16821 * 16822 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 16823 */ 16824 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 16825 { 16826 struct bpf_insn *insn = env->prog->insnsi; 16827 int insn_cnt = env->prog->len; 16828 int i, j, err; 16829 16830 err = bpf_prog_calc_tag(env->prog); 16831 if (err) 16832 return err; 16833 16834 for (i = 0; i < insn_cnt; i++, insn++) { 16835 if (BPF_CLASS(insn->code) == BPF_LDX && 16836 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 16837 verbose(env, "BPF_LDX uses reserved fields\n"); 16838 return -EINVAL; 16839 } 16840 16841 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 16842 struct bpf_insn_aux_data *aux; 16843 struct bpf_map *map; 16844 struct fd f; 16845 u64 addr; 16846 u32 fd; 16847 16848 if (i == insn_cnt - 1 || insn[1].code != 0 || 16849 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 16850 insn[1].off != 0) { 16851 verbose(env, "invalid bpf_ld_imm64 insn\n"); 16852 return -EINVAL; 16853 } 16854 16855 if (insn[0].src_reg == 0) 16856 /* valid generic load 64-bit imm */ 16857 goto next_insn; 16858 16859 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 16860 aux = &env->insn_aux_data[i]; 16861 err = check_pseudo_btf_id(env, insn, aux); 16862 if (err) 16863 return err; 16864 goto next_insn; 16865 } 16866 16867 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 16868 aux = &env->insn_aux_data[i]; 16869 aux->ptr_type = PTR_TO_FUNC; 16870 goto next_insn; 16871 } 16872 16873 /* In final convert_pseudo_ld_imm64() step, this is 16874 * converted into regular 64-bit imm load insn. 16875 */ 16876 switch (insn[0].src_reg) { 16877 case BPF_PSEUDO_MAP_VALUE: 16878 case BPF_PSEUDO_MAP_IDX_VALUE: 16879 break; 16880 case BPF_PSEUDO_MAP_FD: 16881 case BPF_PSEUDO_MAP_IDX: 16882 if (insn[1].imm == 0) 16883 break; 16884 fallthrough; 16885 default: 16886 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 16887 return -EINVAL; 16888 } 16889 16890 switch (insn[0].src_reg) { 16891 case BPF_PSEUDO_MAP_IDX_VALUE: 16892 case BPF_PSEUDO_MAP_IDX: 16893 if (bpfptr_is_null(env->fd_array)) { 16894 verbose(env, "fd_idx without fd_array is invalid\n"); 16895 return -EPROTO; 16896 } 16897 if (copy_from_bpfptr_offset(&fd, env->fd_array, 16898 insn[0].imm * sizeof(fd), 16899 sizeof(fd))) 16900 return -EFAULT; 16901 break; 16902 default: 16903 fd = insn[0].imm; 16904 break; 16905 } 16906 16907 f = fdget(fd); 16908 map = __bpf_map_get(f); 16909 if (IS_ERR(map)) { 16910 verbose(env, "fd %d is not pointing to valid bpf_map\n", 16911 insn[0].imm); 16912 return PTR_ERR(map); 16913 } 16914 16915 err = check_map_prog_compatibility(env, map, env->prog); 16916 if (err) { 16917 fdput(f); 16918 return err; 16919 } 16920 16921 aux = &env->insn_aux_data[i]; 16922 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 16923 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 16924 addr = (unsigned long)map; 16925 } else { 16926 u32 off = insn[1].imm; 16927 16928 if (off >= BPF_MAX_VAR_OFF) { 16929 verbose(env, "direct value offset of %u is not allowed\n", off); 16930 fdput(f); 16931 return -EINVAL; 16932 } 16933 16934 if (!map->ops->map_direct_value_addr) { 16935 verbose(env, "no direct value access support for this map type\n"); 16936 fdput(f); 16937 return -EINVAL; 16938 } 16939 16940 err = map->ops->map_direct_value_addr(map, &addr, off); 16941 if (err) { 16942 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 16943 map->value_size, off); 16944 fdput(f); 16945 return err; 16946 } 16947 16948 aux->map_off = off; 16949 addr += off; 16950 } 16951 16952 insn[0].imm = (u32)addr; 16953 insn[1].imm = addr >> 32; 16954 16955 /* check whether we recorded this map already */ 16956 for (j = 0; j < env->used_map_cnt; j++) { 16957 if (env->used_maps[j] == map) { 16958 aux->map_index = j; 16959 fdput(f); 16960 goto next_insn; 16961 } 16962 } 16963 16964 if (env->used_map_cnt >= MAX_USED_MAPS) { 16965 fdput(f); 16966 return -E2BIG; 16967 } 16968 16969 /* hold the map. If the program is rejected by verifier, 16970 * the map will be released by release_maps() or it 16971 * will be used by the valid program until it's unloaded 16972 * and all maps are released in free_used_maps() 16973 */ 16974 bpf_map_inc(map); 16975 16976 aux->map_index = env->used_map_cnt; 16977 env->used_maps[env->used_map_cnt++] = map; 16978 16979 if (bpf_map_is_cgroup_storage(map) && 16980 bpf_cgroup_storage_assign(env->prog->aux, map)) { 16981 verbose(env, "only one cgroup storage of each type is allowed\n"); 16982 fdput(f); 16983 return -EBUSY; 16984 } 16985 16986 fdput(f); 16987 next_insn: 16988 insn++; 16989 i++; 16990 continue; 16991 } 16992 16993 /* Basic sanity check before we invest more work here. */ 16994 if (!bpf_opcode_in_insntable(insn->code)) { 16995 verbose(env, "unknown opcode %02x\n", insn->code); 16996 return -EINVAL; 16997 } 16998 } 16999 17000 /* now all pseudo BPF_LD_IMM64 instructions load valid 17001 * 'struct bpf_map *' into a register instead of user map_fd. 17002 * These pointers will be used later by verifier to validate map access. 17003 */ 17004 return 0; 17005 } 17006 17007 /* drop refcnt of maps used by the rejected program */ 17008 static void release_maps(struct bpf_verifier_env *env) 17009 { 17010 __bpf_free_used_maps(env->prog->aux, env->used_maps, 17011 env->used_map_cnt); 17012 } 17013 17014 /* drop refcnt of maps used by the rejected program */ 17015 static void release_btfs(struct bpf_verifier_env *env) 17016 { 17017 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 17018 env->used_btf_cnt); 17019 } 17020 17021 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 17022 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 17023 { 17024 struct bpf_insn *insn = env->prog->insnsi; 17025 int insn_cnt = env->prog->len; 17026 int i; 17027 17028 for (i = 0; i < insn_cnt; i++, insn++) { 17029 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 17030 continue; 17031 if (insn->src_reg == BPF_PSEUDO_FUNC) 17032 continue; 17033 insn->src_reg = 0; 17034 } 17035 } 17036 17037 /* single env->prog->insni[off] instruction was replaced with the range 17038 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 17039 * [0, off) and [off, end) to new locations, so the patched range stays zero 17040 */ 17041 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 17042 struct bpf_insn_aux_data *new_data, 17043 struct bpf_prog *new_prog, u32 off, u32 cnt) 17044 { 17045 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 17046 struct bpf_insn *insn = new_prog->insnsi; 17047 u32 old_seen = old_data[off].seen; 17048 u32 prog_len; 17049 int i; 17050 17051 /* aux info at OFF always needs adjustment, no matter fast path 17052 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 17053 * original insn at old prog. 17054 */ 17055 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 17056 17057 if (cnt == 1) 17058 return; 17059 prog_len = new_prog->len; 17060 17061 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 17062 memcpy(new_data + off + cnt - 1, old_data + off, 17063 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 17064 for (i = off; i < off + cnt - 1; i++) { 17065 /* Expand insni[off]'s seen count to the patched range. */ 17066 new_data[i].seen = old_seen; 17067 new_data[i].zext_dst = insn_has_def32(env, insn + i); 17068 } 17069 env->insn_aux_data = new_data; 17070 vfree(old_data); 17071 } 17072 17073 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 17074 { 17075 int i; 17076 17077 if (len == 1) 17078 return; 17079 /* NOTE: fake 'exit' subprog should be updated as well. */ 17080 for (i = 0; i <= env->subprog_cnt; i++) { 17081 if (env->subprog_info[i].start <= off) 17082 continue; 17083 env->subprog_info[i].start += len - 1; 17084 } 17085 } 17086 17087 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 17088 { 17089 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 17090 int i, sz = prog->aux->size_poke_tab; 17091 struct bpf_jit_poke_descriptor *desc; 17092 17093 for (i = 0; i < sz; i++) { 17094 desc = &tab[i]; 17095 if (desc->insn_idx <= off) 17096 continue; 17097 desc->insn_idx += len - 1; 17098 } 17099 } 17100 17101 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 17102 const struct bpf_insn *patch, u32 len) 17103 { 17104 struct bpf_prog *new_prog; 17105 struct bpf_insn_aux_data *new_data = NULL; 17106 17107 if (len > 1) { 17108 new_data = vzalloc(array_size(env->prog->len + len - 1, 17109 sizeof(struct bpf_insn_aux_data))); 17110 if (!new_data) 17111 return NULL; 17112 } 17113 17114 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 17115 if (IS_ERR(new_prog)) { 17116 if (PTR_ERR(new_prog) == -ERANGE) 17117 verbose(env, 17118 "insn %d cannot be patched due to 16-bit range\n", 17119 env->insn_aux_data[off].orig_idx); 17120 vfree(new_data); 17121 return NULL; 17122 } 17123 adjust_insn_aux_data(env, new_data, new_prog, off, len); 17124 adjust_subprog_starts(env, off, len); 17125 adjust_poke_descs(new_prog, off, len); 17126 return new_prog; 17127 } 17128 17129 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 17130 u32 off, u32 cnt) 17131 { 17132 int i, j; 17133 17134 /* find first prog starting at or after off (first to remove) */ 17135 for (i = 0; i < env->subprog_cnt; i++) 17136 if (env->subprog_info[i].start >= off) 17137 break; 17138 /* find first prog starting at or after off + cnt (first to stay) */ 17139 for (j = i; j < env->subprog_cnt; j++) 17140 if (env->subprog_info[j].start >= off + cnt) 17141 break; 17142 /* if j doesn't start exactly at off + cnt, we are just removing 17143 * the front of previous prog 17144 */ 17145 if (env->subprog_info[j].start != off + cnt) 17146 j--; 17147 17148 if (j > i) { 17149 struct bpf_prog_aux *aux = env->prog->aux; 17150 int move; 17151 17152 /* move fake 'exit' subprog as well */ 17153 move = env->subprog_cnt + 1 - j; 17154 17155 memmove(env->subprog_info + i, 17156 env->subprog_info + j, 17157 sizeof(*env->subprog_info) * move); 17158 env->subprog_cnt -= j - i; 17159 17160 /* remove func_info */ 17161 if (aux->func_info) { 17162 move = aux->func_info_cnt - j; 17163 17164 memmove(aux->func_info + i, 17165 aux->func_info + j, 17166 sizeof(*aux->func_info) * move); 17167 aux->func_info_cnt -= j - i; 17168 /* func_info->insn_off is set after all code rewrites, 17169 * in adjust_btf_func() - no need to adjust 17170 */ 17171 } 17172 } else { 17173 /* convert i from "first prog to remove" to "first to adjust" */ 17174 if (env->subprog_info[i].start == off) 17175 i++; 17176 } 17177 17178 /* update fake 'exit' subprog as well */ 17179 for (; i <= env->subprog_cnt; i++) 17180 env->subprog_info[i].start -= cnt; 17181 17182 return 0; 17183 } 17184 17185 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 17186 u32 cnt) 17187 { 17188 struct bpf_prog *prog = env->prog; 17189 u32 i, l_off, l_cnt, nr_linfo; 17190 struct bpf_line_info *linfo; 17191 17192 nr_linfo = prog->aux->nr_linfo; 17193 if (!nr_linfo) 17194 return 0; 17195 17196 linfo = prog->aux->linfo; 17197 17198 /* find first line info to remove, count lines to be removed */ 17199 for (i = 0; i < nr_linfo; i++) 17200 if (linfo[i].insn_off >= off) 17201 break; 17202 17203 l_off = i; 17204 l_cnt = 0; 17205 for (; i < nr_linfo; i++) 17206 if (linfo[i].insn_off < off + cnt) 17207 l_cnt++; 17208 else 17209 break; 17210 17211 /* First live insn doesn't match first live linfo, it needs to "inherit" 17212 * last removed linfo. prog is already modified, so prog->len == off 17213 * means no live instructions after (tail of the program was removed). 17214 */ 17215 if (prog->len != off && l_cnt && 17216 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 17217 l_cnt--; 17218 linfo[--i].insn_off = off + cnt; 17219 } 17220 17221 /* remove the line info which refer to the removed instructions */ 17222 if (l_cnt) { 17223 memmove(linfo + l_off, linfo + i, 17224 sizeof(*linfo) * (nr_linfo - i)); 17225 17226 prog->aux->nr_linfo -= l_cnt; 17227 nr_linfo = prog->aux->nr_linfo; 17228 } 17229 17230 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 17231 for (i = l_off; i < nr_linfo; i++) 17232 linfo[i].insn_off -= cnt; 17233 17234 /* fix up all subprogs (incl. 'exit') which start >= off */ 17235 for (i = 0; i <= env->subprog_cnt; i++) 17236 if (env->subprog_info[i].linfo_idx > l_off) { 17237 /* program may have started in the removed region but 17238 * may not be fully removed 17239 */ 17240 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 17241 env->subprog_info[i].linfo_idx -= l_cnt; 17242 else 17243 env->subprog_info[i].linfo_idx = l_off; 17244 } 17245 17246 return 0; 17247 } 17248 17249 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 17250 { 17251 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17252 unsigned int orig_prog_len = env->prog->len; 17253 int err; 17254 17255 if (bpf_prog_is_offloaded(env->prog->aux)) 17256 bpf_prog_offload_remove_insns(env, off, cnt); 17257 17258 err = bpf_remove_insns(env->prog, off, cnt); 17259 if (err) 17260 return err; 17261 17262 err = adjust_subprog_starts_after_remove(env, off, cnt); 17263 if (err) 17264 return err; 17265 17266 err = bpf_adj_linfo_after_remove(env, off, cnt); 17267 if (err) 17268 return err; 17269 17270 memmove(aux_data + off, aux_data + off + cnt, 17271 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 17272 17273 return 0; 17274 } 17275 17276 /* The verifier does more data flow analysis than llvm and will not 17277 * explore branches that are dead at run time. Malicious programs can 17278 * have dead code too. Therefore replace all dead at-run-time code 17279 * with 'ja -1'. 17280 * 17281 * Just nops are not optimal, e.g. if they would sit at the end of the 17282 * program and through another bug we would manage to jump there, then 17283 * we'd execute beyond program memory otherwise. Returning exception 17284 * code also wouldn't work since we can have subprogs where the dead 17285 * code could be located. 17286 */ 17287 static void sanitize_dead_code(struct bpf_verifier_env *env) 17288 { 17289 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17290 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 17291 struct bpf_insn *insn = env->prog->insnsi; 17292 const int insn_cnt = env->prog->len; 17293 int i; 17294 17295 for (i = 0; i < insn_cnt; i++) { 17296 if (aux_data[i].seen) 17297 continue; 17298 memcpy(insn + i, &trap, sizeof(trap)); 17299 aux_data[i].zext_dst = false; 17300 } 17301 } 17302 17303 static bool insn_is_cond_jump(u8 code) 17304 { 17305 u8 op; 17306 17307 if (BPF_CLASS(code) == BPF_JMP32) 17308 return true; 17309 17310 if (BPF_CLASS(code) != BPF_JMP) 17311 return false; 17312 17313 op = BPF_OP(code); 17314 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 17315 } 17316 17317 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 17318 { 17319 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17320 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 17321 struct bpf_insn *insn = env->prog->insnsi; 17322 const int insn_cnt = env->prog->len; 17323 int i; 17324 17325 for (i = 0; i < insn_cnt; i++, insn++) { 17326 if (!insn_is_cond_jump(insn->code)) 17327 continue; 17328 17329 if (!aux_data[i + 1].seen) 17330 ja.off = insn->off; 17331 else if (!aux_data[i + 1 + insn->off].seen) 17332 ja.off = 0; 17333 else 17334 continue; 17335 17336 if (bpf_prog_is_offloaded(env->prog->aux)) 17337 bpf_prog_offload_replace_insn(env, i, &ja); 17338 17339 memcpy(insn, &ja, sizeof(ja)); 17340 } 17341 } 17342 17343 static int opt_remove_dead_code(struct bpf_verifier_env *env) 17344 { 17345 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17346 int insn_cnt = env->prog->len; 17347 int i, err; 17348 17349 for (i = 0; i < insn_cnt; i++) { 17350 int j; 17351 17352 j = 0; 17353 while (i + j < insn_cnt && !aux_data[i + j].seen) 17354 j++; 17355 if (!j) 17356 continue; 17357 17358 err = verifier_remove_insns(env, i, j); 17359 if (err) 17360 return err; 17361 insn_cnt = env->prog->len; 17362 } 17363 17364 return 0; 17365 } 17366 17367 static int opt_remove_nops(struct bpf_verifier_env *env) 17368 { 17369 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 17370 struct bpf_insn *insn = env->prog->insnsi; 17371 int insn_cnt = env->prog->len; 17372 int i, err; 17373 17374 for (i = 0; i < insn_cnt; i++) { 17375 if (memcmp(&insn[i], &ja, sizeof(ja))) 17376 continue; 17377 17378 err = verifier_remove_insns(env, i, 1); 17379 if (err) 17380 return err; 17381 insn_cnt--; 17382 i--; 17383 } 17384 17385 return 0; 17386 } 17387 17388 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 17389 const union bpf_attr *attr) 17390 { 17391 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 17392 struct bpf_insn_aux_data *aux = env->insn_aux_data; 17393 int i, patch_len, delta = 0, len = env->prog->len; 17394 struct bpf_insn *insns = env->prog->insnsi; 17395 struct bpf_prog *new_prog; 17396 bool rnd_hi32; 17397 17398 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 17399 zext_patch[1] = BPF_ZEXT_REG(0); 17400 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 17401 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 17402 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 17403 for (i = 0; i < len; i++) { 17404 int adj_idx = i + delta; 17405 struct bpf_insn insn; 17406 int load_reg; 17407 17408 insn = insns[adj_idx]; 17409 load_reg = insn_def_regno(&insn); 17410 if (!aux[adj_idx].zext_dst) { 17411 u8 code, class; 17412 u32 imm_rnd; 17413 17414 if (!rnd_hi32) 17415 continue; 17416 17417 code = insn.code; 17418 class = BPF_CLASS(code); 17419 if (load_reg == -1) 17420 continue; 17421 17422 /* NOTE: arg "reg" (the fourth one) is only used for 17423 * BPF_STX + SRC_OP, so it is safe to pass NULL 17424 * here. 17425 */ 17426 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 17427 if (class == BPF_LD && 17428 BPF_MODE(code) == BPF_IMM) 17429 i++; 17430 continue; 17431 } 17432 17433 /* ctx load could be transformed into wider load. */ 17434 if (class == BPF_LDX && 17435 aux[adj_idx].ptr_type == PTR_TO_CTX) 17436 continue; 17437 17438 imm_rnd = get_random_u32(); 17439 rnd_hi32_patch[0] = insn; 17440 rnd_hi32_patch[1].imm = imm_rnd; 17441 rnd_hi32_patch[3].dst_reg = load_reg; 17442 patch = rnd_hi32_patch; 17443 patch_len = 4; 17444 goto apply_patch_buffer; 17445 } 17446 17447 /* Add in an zero-extend instruction if a) the JIT has requested 17448 * it or b) it's a CMPXCHG. 17449 * 17450 * The latter is because: BPF_CMPXCHG always loads a value into 17451 * R0, therefore always zero-extends. However some archs' 17452 * equivalent instruction only does this load when the 17453 * comparison is successful. This detail of CMPXCHG is 17454 * orthogonal to the general zero-extension behaviour of the 17455 * CPU, so it's treated independently of bpf_jit_needs_zext. 17456 */ 17457 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 17458 continue; 17459 17460 /* Zero-extension is done by the caller. */ 17461 if (bpf_pseudo_kfunc_call(&insn)) 17462 continue; 17463 17464 if (WARN_ON(load_reg == -1)) { 17465 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 17466 return -EFAULT; 17467 } 17468 17469 zext_patch[0] = insn; 17470 zext_patch[1].dst_reg = load_reg; 17471 zext_patch[1].src_reg = load_reg; 17472 patch = zext_patch; 17473 patch_len = 2; 17474 apply_patch_buffer: 17475 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 17476 if (!new_prog) 17477 return -ENOMEM; 17478 env->prog = new_prog; 17479 insns = new_prog->insnsi; 17480 aux = env->insn_aux_data; 17481 delta += patch_len - 1; 17482 } 17483 17484 return 0; 17485 } 17486 17487 /* convert load instructions that access fields of a context type into a 17488 * sequence of instructions that access fields of the underlying structure: 17489 * struct __sk_buff -> struct sk_buff 17490 * struct bpf_sock_ops -> struct sock 17491 */ 17492 static int convert_ctx_accesses(struct bpf_verifier_env *env) 17493 { 17494 const struct bpf_verifier_ops *ops = env->ops; 17495 int i, cnt, size, ctx_field_size, delta = 0; 17496 const int insn_cnt = env->prog->len; 17497 struct bpf_insn insn_buf[16], *insn; 17498 u32 target_size, size_default, off; 17499 struct bpf_prog *new_prog; 17500 enum bpf_access_type type; 17501 bool is_narrower_load; 17502 17503 if (ops->gen_prologue || env->seen_direct_write) { 17504 if (!ops->gen_prologue) { 17505 verbose(env, "bpf verifier is misconfigured\n"); 17506 return -EINVAL; 17507 } 17508 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 17509 env->prog); 17510 if (cnt >= ARRAY_SIZE(insn_buf)) { 17511 verbose(env, "bpf verifier is misconfigured\n"); 17512 return -EINVAL; 17513 } else if (cnt) { 17514 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 17515 if (!new_prog) 17516 return -ENOMEM; 17517 17518 env->prog = new_prog; 17519 delta += cnt - 1; 17520 } 17521 } 17522 17523 if (bpf_prog_is_offloaded(env->prog->aux)) 17524 return 0; 17525 17526 insn = env->prog->insnsi + delta; 17527 17528 for (i = 0; i < insn_cnt; i++, insn++) { 17529 bpf_convert_ctx_access_t convert_ctx_access; 17530 17531 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 17532 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 17533 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 17534 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 17535 type = BPF_READ; 17536 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 17537 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 17538 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 17539 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 17540 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 17541 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 17542 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 17543 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 17544 type = BPF_WRITE; 17545 } else { 17546 continue; 17547 } 17548 17549 if (type == BPF_WRITE && 17550 env->insn_aux_data[i + delta].sanitize_stack_spill) { 17551 struct bpf_insn patch[] = { 17552 *insn, 17553 BPF_ST_NOSPEC(), 17554 }; 17555 17556 cnt = ARRAY_SIZE(patch); 17557 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 17558 if (!new_prog) 17559 return -ENOMEM; 17560 17561 delta += cnt - 1; 17562 env->prog = new_prog; 17563 insn = new_prog->insnsi + i + delta; 17564 continue; 17565 } 17566 17567 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 17568 case PTR_TO_CTX: 17569 if (!ops->convert_ctx_access) 17570 continue; 17571 convert_ctx_access = ops->convert_ctx_access; 17572 break; 17573 case PTR_TO_SOCKET: 17574 case PTR_TO_SOCK_COMMON: 17575 convert_ctx_access = bpf_sock_convert_ctx_access; 17576 break; 17577 case PTR_TO_TCP_SOCK: 17578 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 17579 break; 17580 case PTR_TO_XDP_SOCK: 17581 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 17582 break; 17583 case PTR_TO_BTF_ID: 17584 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 17585 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 17586 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 17587 * be said once it is marked PTR_UNTRUSTED, hence we must handle 17588 * any faults for loads into such types. BPF_WRITE is disallowed 17589 * for this case. 17590 */ 17591 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 17592 if (type == BPF_READ) { 17593 insn->code = BPF_LDX | BPF_PROBE_MEM | 17594 BPF_SIZE((insn)->code); 17595 env->prog->aux->num_exentries++; 17596 } 17597 continue; 17598 default: 17599 continue; 17600 } 17601 17602 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 17603 size = BPF_LDST_BYTES(insn); 17604 17605 /* If the read access is a narrower load of the field, 17606 * convert to a 4/8-byte load, to minimum program type specific 17607 * convert_ctx_access changes. If conversion is successful, 17608 * we will apply proper mask to the result. 17609 */ 17610 is_narrower_load = size < ctx_field_size; 17611 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 17612 off = insn->off; 17613 if (is_narrower_load) { 17614 u8 size_code; 17615 17616 if (type == BPF_WRITE) { 17617 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 17618 return -EINVAL; 17619 } 17620 17621 size_code = BPF_H; 17622 if (ctx_field_size == 4) 17623 size_code = BPF_W; 17624 else if (ctx_field_size == 8) 17625 size_code = BPF_DW; 17626 17627 insn->off = off & ~(size_default - 1); 17628 insn->code = BPF_LDX | BPF_MEM | size_code; 17629 } 17630 17631 target_size = 0; 17632 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 17633 &target_size); 17634 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 17635 (ctx_field_size && !target_size)) { 17636 verbose(env, "bpf verifier is misconfigured\n"); 17637 return -EINVAL; 17638 } 17639 17640 if (is_narrower_load && size < target_size) { 17641 u8 shift = bpf_ctx_narrow_access_offset( 17642 off, size, size_default) * 8; 17643 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 17644 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 17645 return -EINVAL; 17646 } 17647 if (ctx_field_size <= 4) { 17648 if (shift) 17649 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 17650 insn->dst_reg, 17651 shift); 17652 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 17653 (1 << size * 8) - 1); 17654 } else { 17655 if (shift) 17656 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 17657 insn->dst_reg, 17658 shift); 17659 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 17660 (1ULL << size * 8) - 1); 17661 } 17662 } 17663 17664 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 17665 if (!new_prog) 17666 return -ENOMEM; 17667 17668 delta += cnt - 1; 17669 17670 /* keep walking new program and skip insns we just inserted */ 17671 env->prog = new_prog; 17672 insn = new_prog->insnsi + i + delta; 17673 } 17674 17675 return 0; 17676 } 17677 17678 static int jit_subprogs(struct bpf_verifier_env *env) 17679 { 17680 struct bpf_prog *prog = env->prog, **func, *tmp; 17681 int i, j, subprog_start, subprog_end = 0, len, subprog; 17682 struct bpf_map *map_ptr; 17683 struct bpf_insn *insn; 17684 void *old_bpf_func; 17685 int err, num_exentries; 17686 17687 if (env->subprog_cnt <= 1) 17688 return 0; 17689 17690 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 17691 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 17692 continue; 17693 17694 /* Upon error here we cannot fall back to interpreter but 17695 * need a hard reject of the program. Thus -EFAULT is 17696 * propagated in any case. 17697 */ 17698 subprog = find_subprog(env, i + insn->imm + 1); 17699 if (subprog < 0) { 17700 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 17701 i + insn->imm + 1); 17702 return -EFAULT; 17703 } 17704 /* temporarily remember subprog id inside insn instead of 17705 * aux_data, since next loop will split up all insns into funcs 17706 */ 17707 insn->off = subprog; 17708 /* remember original imm in case JIT fails and fallback 17709 * to interpreter will be needed 17710 */ 17711 env->insn_aux_data[i].call_imm = insn->imm; 17712 /* point imm to __bpf_call_base+1 from JITs point of view */ 17713 insn->imm = 1; 17714 if (bpf_pseudo_func(insn)) 17715 /* jit (e.g. x86_64) may emit fewer instructions 17716 * if it learns a u32 imm is the same as a u64 imm. 17717 * Force a non zero here. 17718 */ 17719 insn[1].imm = 1; 17720 } 17721 17722 err = bpf_prog_alloc_jited_linfo(prog); 17723 if (err) 17724 goto out_undo_insn; 17725 17726 err = -ENOMEM; 17727 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 17728 if (!func) 17729 goto out_undo_insn; 17730 17731 for (i = 0; i < env->subprog_cnt; i++) { 17732 subprog_start = subprog_end; 17733 subprog_end = env->subprog_info[i + 1].start; 17734 17735 len = subprog_end - subprog_start; 17736 /* bpf_prog_run() doesn't call subprogs directly, 17737 * hence main prog stats include the runtime of subprogs. 17738 * subprogs don't have IDs and not reachable via prog_get_next_id 17739 * func[i]->stats will never be accessed and stays NULL 17740 */ 17741 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 17742 if (!func[i]) 17743 goto out_free; 17744 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 17745 len * sizeof(struct bpf_insn)); 17746 func[i]->type = prog->type; 17747 func[i]->len = len; 17748 if (bpf_prog_calc_tag(func[i])) 17749 goto out_free; 17750 func[i]->is_func = 1; 17751 func[i]->aux->func_idx = i; 17752 /* Below members will be freed only at prog->aux */ 17753 func[i]->aux->btf = prog->aux->btf; 17754 func[i]->aux->func_info = prog->aux->func_info; 17755 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 17756 func[i]->aux->poke_tab = prog->aux->poke_tab; 17757 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 17758 17759 for (j = 0; j < prog->aux->size_poke_tab; j++) { 17760 struct bpf_jit_poke_descriptor *poke; 17761 17762 poke = &prog->aux->poke_tab[j]; 17763 if (poke->insn_idx < subprog_end && 17764 poke->insn_idx >= subprog_start) 17765 poke->aux = func[i]->aux; 17766 } 17767 17768 func[i]->aux->name[0] = 'F'; 17769 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 17770 func[i]->jit_requested = 1; 17771 func[i]->blinding_requested = prog->blinding_requested; 17772 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 17773 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 17774 func[i]->aux->linfo = prog->aux->linfo; 17775 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 17776 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 17777 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 17778 num_exentries = 0; 17779 insn = func[i]->insnsi; 17780 for (j = 0; j < func[i]->len; j++, insn++) { 17781 if (BPF_CLASS(insn->code) == BPF_LDX && 17782 BPF_MODE(insn->code) == BPF_PROBE_MEM) 17783 num_exentries++; 17784 } 17785 func[i]->aux->num_exentries = num_exentries; 17786 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 17787 func[i] = bpf_int_jit_compile(func[i]); 17788 if (!func[i]->jited) { 17789 err = -ENOTSUPP; 17790 goto out_free; 17791 } 17792 cond_resched(); 17793 } 17794 17795 /* at this point all bpf functions were successfully JITed 17796 * now populate all bpf_calls with correct addresses and 17797 * run last pass of JIT 17798 */ 17799 for (i = 0; i < env->subprog_cnt; i++) { 17800 insn = func[i]->insnsi; 17801 for (j = 0; j < func[i]->len; j++, insn++) { 17802 if (bpf_pseudo_func(insn)) { 17803 subprog = insn->off; 17804 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 17805 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 17806 continue; 17807 } 17808 if (!bpf_pseudo_call(insn)) 17809 continue; 17810 subprog = insn->off; 17811 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 17812 } 17813 17814 /* we use the aux data to keep a list of the start addresses 17815 * of the JITed images for each function in the program 17816 * 17817 * for some architectures, such as powerpc64, the imm field 17818 * might not be large enough to hold the offset of the start 17819 * address of the callee's JITed image from __bpf_call_base 17820 * 17821 * in such cases, we can lookup the start address of a callee 17822 * by using its subprog id, available from the off field of 17823 * the call instruction, as an index for this list 17824 */ 17825 func[i]->aux->func = func; 17826 func[i]->aux->func_cnt = env->subprog_cnt; 17827 } 17828 for (i = 0; i < env->subprog_cnt; i++) { 17829 old_bpf_func = func[i]->bpf_func; 17830 tmp = bpf_int_jit_compile(func[i]); 17831 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 17832 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 17833 err = -ENOTSUPP; 17834 goto out_free; 17835 } 17836 cond_resched(); 17837 } 17838 17839 /* finally lock prog and jit images for all functions and 17840 * populate kallsysm. Begin at the first subprogram, since 17841 * bpf_prog_load will add the kallsyms for the main program. 17842 */ 17843 for (i = 1; i < env->subprog_cnt; i++) { 17844 bpf_prog_lock_ro(func[i]); 17845 bpf_prog_kallsyms_add(func[i]); 17846 } 17847 17848 /* Last step: make now unused interpreter insns from main 17849 * prog consistent for later dump requests, so they can 17850 * later look the same as if they were interpreted only. 17851 */ 17852 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 17853 if (bpf_pseudo_func(insn)) { 17854 insn[0].imm = env->insn_aux_data[i].call_imm; 17855 insn[1].imm = insn->off; 17856 insn->off = 0; 17857 continue; 17858 } 17859 if (!bpf_pseudo_call(insn)) 17860 continue; 17861 insn->off = env->insn_aux_data[i].call_imm; 17862 subprog = find_subprog(env, i + insn->off + 1); 17863 insn->imm = subprog; 17864 } 17865 17866 prog->jited = 1; 17867 prog->bpf_func = func[0]->bpf_func; 17868 prog->jited_len = func[0]->jited_len; 17869 prog->aux->extable = func[0]->aux->extable; 17870 prog->aux->num_exentries = func[0]->aux->num_exentries; 17871 prog->aux->func = func; 17872 prog->aux->func_cnt = env->subprog_cnt; 17873 bpf_prog_jit_attempt_done(prog); 17874 return 0; 17875 out_free: 17876 /* We failed JIT'ing, so at this point we need to unregister poke 17877 * descriptors from subprogs, so that kernel is not attempting to 17878 * patch it anymore as we're freeing the subprog JIT memory. 17879 */ 17880 for (i = 0; i < prog->aux->size_poke_tab; i++) { 17881 map_ptr = prog->aux->poke_tab[i].tail_call.map; 17882 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 17883 } 17884 /* At this point we're guaranteed that poke descriptors are not 17885 * live anymore. We can just unlink its descriptor table as it's 17886 * released with the main prog. 17887 */ 17888 for (i = 0; i < env->subprog_cnt; i++) { 17889 if (!func[i]) 17890 continue; 17891 func[i]->aux->poke_tab = NULL; 17892 bpf_jit_free(func[i]); 17893 } 17894 kfree(func); 17895 out_undo_insn: 17896 /* cleanup main prog to be interpreted */ 17897 prog->jit_requested = 0; 17898 prog->blinding_requested = 0; 17899 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 17900 if (!bpf_pseudo_call(insn)) 17901 continue; 17902 insn->off = 0; 17903 insn->imm = env->insn_aux_data[i].call_imm; 17904 } 17905 bpf_prog_jit_attempt_done(prog); 17906 return err; 17907 } 17908 17909 static int fixup_call_args(struct bpf_verifier_env *env) 17910 { 17911 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 17912 struct bpf_prog *prog = env->prog; 17913 struct bpf_insn *insn = prog->insnsi; 17914 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 17915 int i, depth; 17916 #endif 17917 int err = 0; 17918 17919 if (env->prog->jit_requested && 17920 !bpf_prog_is_offloaded(env->prog->aux)) { 17921 err = jit_subprogs(env); 17922 if (err == 0) 17923 return 0; 17924 if (err == -EFAULT) 17925 return err; 17926 } 17927 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 17928 if (has_kfunc_call) { 17929 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 17930 return -EINVAL; 17931 } 17932 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 17933 /* When JIT fails the progs with bpf2bpf calls and tail_calls 17934 * have to be rejected, since interpreter doesn't support them yet. 17935 */ 17936 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 17937 return -EINVAL; 17938 } 17939 for (i = 0; i < prog->len; i++, insn++) { 17940 if (bpf_pseudo_func(insn)) { 17941 /* When JIT fails the progs with callback calls 17942 * have to be rejected, since interpreter doesn't support them yet. 17943 */ 17944 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 17945 return -EINVAL; 17946 } 17947 17948 if (!bpf_pseudo_call(insn)) 17949 continue; 17950 depth = get_callee_stack_depth(env, insn, i); 17951 if (depth < 0) 17952 return depth; 17953 bpf_patch_call_args(insn, depth); 17954 } 17955 err = 0; 17956 #endif 17957 return err; 17958 } 17959 17960 /* replace a generic kfunc with a specialized version if necessary */ 17961 static void specialize_kfunc(struct bpf_verifier_env *env, 17962 u32 func_id, u16 offset, unsigned long *addr) 17963 { 17964 struct bpf_prog *prog = env->prog; 17965 bool seen_direct_write; 17966 void *xdp_kfunc; 17967 bool is_rdonly; 17968 17969 if (bpf_dev_bound_kfunc_id(func_id)) { 17970 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 17971 if (xdp_kfunc) { 17972 *addr = (unsigned long)xdp_kfunc; 17973 return; 17974 } 17975 /* fallback to default kfunc when not supported by netdev */ 17976 } 17977 17978 if (offset) 17979 return; 17980 17981 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 17982 seen_direct_write = env->seen_direct_write; 17983 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 17984 17985 if (is_rdonly) 17986 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 17987 17988 /* restore env->seen_direct_write to its original value, since 17989 * may_access_direct_pkt_data mutates it 17990 */ 17991 env->seen_direct_write = seen_direct_write; 17992 } 17993 } 17994 17995 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 17996 u16 struct_meta_reg, 17997 u16 node_offset_reg, 17998 struct bpf_insn *insn, 17999 struct bpf_insn *insn_buf, 18000 int *cnt) 18001 { 18002 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 18003 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 18004 18005 insn_buf[0] = addr[0]; 18006 insn_buf[1] = addr[1]; 18007 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 18008 insn_buf[3] = *insn; 18009 *cnt = 4; 18010 } 18011 18012 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 18013 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 18014 { 18015 const struct bpf_kfunc_desc *desc; 18016 18017 if (!insn->imm) { 18018 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 18019 return -EINVAL; 18020 } 18021 18022 *cnt = 0; 18023 18024 /* insn->imm has the btf func_id. Replace it with an offset relative to 18025 * __bpf_call_base, unless the JIT needs to call functions that are 18026 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 18027 */ 18028 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 18029 if (!desc) { 18030 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 18031 insn->imm); 18032 return -EFAULT; 18033 } 18034 18035 if (!bpf_jit_supports_far_kfunc_call()) 18036 insn->imm = BPF_CALL_IMM(desc->addr); 18037 if (insn->off) 18038 return 0; 18039 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 18040 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18041 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18042 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 18043 18044 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 18045 insn_buf[1] = addr[0]; 18046 insn_buf[2] = addr[1]; 18047 insn_buf[3] = *insn; 18048 *cnt = 4; 18049 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 18050 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 18051 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18052 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18053 18054 insn_buf[0] = addr[0]; 18055 insn_buf[1] = addr[1]; 18056 insn_buf[2] = *insn; 18057 *cnt = 3; 18058 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 18059 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 18060 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18061 int struct_meta_reg = BPF_REG_3; 18062 int node_offset_reg = BPF_REG_4; 18063 18064 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 18065 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18066 struct_meta_reg = BPF_REG_4; 18067 node_offset_reg = BPF_REG_5; 18068 } 18069 18070 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 18071 node_offset_reg, insn, insn_buf, cnt); 18072 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 18073 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 18074 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 18075 *cnt = 1; 18076 } 18077 return 0; 18078 } 18079 18080 /* Do various post-verification rewrites in a single program pass. 18081 * These rewrites simplify JIT and interpreter implementations. 18082 */ 18083 static int do_misc_fixups(struct bpf_verifier_env *env) 18084 { 18085 struct bpf_prog *prog = env->prog; 18086 enum bpf_attach_type eatype = prog->expected_attach_type; 18087 enum bpf_prog_type prog_type = resolve_prog_type(prog); 18088 struct bpf_insn *insn = prog->insnsi; 18089 const struct bpf_func_proto *fn; 18090 const int insn_cnt = prog->len; 18091 const struct bpf_map_ops *ops; 18092 struct bpf_insn_aux_data *aux; 18093 struct bpf_insn insn_buf[16]; 18094 struct bpf_prog *new_prog; 18095 struct bpf_map *map_ptr; 18096 int i, ret, cnt, delta = 0; 18097 18098 for (i = 0; i < insn_cnt; i++, insn++) { 18099 /* Make divide-by-zero exceptions impossible. */ 18100 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 18101 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 18102 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 18103 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 18104 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 18105 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 18106 struct bpf_insn *patchlet; 18107 struct bpf_insn chk_and_div[] = { 18108 /* [R,W]x div 0 -> 0 */ 18109 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18110 BPF_JNE | BPF_K, insn->src_reg, 18111 0, 2, 0), 18112 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 18113 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18114 *insn, 18115 }; 18116 struct bpf_insn chk_and_mod[] = { 18117 /* [R,W]x mod 0 -> [R,W]x */ 18118 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18119 BPF_JEQ | BPF_K, insn->src_reg, 18120 0, 1 + (is64 ? 0 : 1), 0), 18121 *insn, 18122 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18123 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 18124 }; 18125 18126 patchlet = isdiv ? chk_and_div : chk_and_mod; 18127 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 18128 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 18129 18130 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 18131 if (!new_prog) 18132 return -ENOMEM; 18133 18134 delta += cnt - 1; 18135 env->prog = prog = new_prog; 18136 insn = new_prog->insnsi + i + delta; 18137 continue; 18138 } 18139 18140 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 18141 if (BPF_CLASS(insn->code) == BPF_LD && 18142 (BPF_MODE(insn->code) == BPF_ABS || 18143 BPF_MODE(insn->code) == BPF_IND)) { 18144 cnt = env->ops->gen_ld_abs(insn, insn_buf); 18145 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 18146 verbose(env, "bpf verifier is misconfigured\n"); 18147 return -EINVAL; 18148 } 18149 18150 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18151 if (!new_prog) 18152 return -ENOMEM; 18153 18154 delta += cnt - 1; 18155 env->prog = prog = new_prog; 18156 insn = new_prog->insnsi + i + delta; 18157 continue; 18158 } 18159 18160 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 18161 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 18162 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 18163 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 18164 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 18165 struct bpf_insn *patch = &insn_buf[0]; 18166 bool issrc, isneg, isimm; 18167 u32 off_reg; 18168 18169 aux = &env->insn_aux_data[i + delta]; 18170 if (!aux->alu_state || 18171 aux->alu_state == BPF_ALU_NON_POINTER) 18172 continue; 18173 18174 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 18175 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 18176 BPF_ALU_SANITIZE_SRC; 18177 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 18178 18179 off_reg = issrc ? insn->src_reg : insn->dst_reg; 18180 if (isimm) { 18181 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18182 } else { 18183 if (isneg) 18184 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18185 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18186 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 18187 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 18188 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 18189 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 18190 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 18191 } 18192 if (!issrc) 18193 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 18194 insn->src_reg = BPF_REG_AX; 18195 if (isneg) 18196 insn->code = insn->code == code_add ? 18197 code_sub : code_add; 18198 *patch++ = *insn; 18199 if (issrc && isneg && !isimm) 18200 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18201 cnt = patch - insn_buf; 18202 18203 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18204 if (!new_prog) 18205 return -ENOMEM; 18206 18207 delta += cnt - 1; 18208 env->prog = prog = new_prog; 18209 insn = new_prog->insnsi + i + delta; 18210 continue; 18211 } 18212 18213 if (insn->code != (BPF_JMP | BPF_CALL)) 18214 continue; 18215 if (insn->src_reg == BPF_PSEUDO_CALL) 18216 continue; 18217 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 18218 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 18219 if (ret) 18220 return ret; 18221 if (cnt == 0) 18222 continue; 18223 18224 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18225 if (!new_prog) 18226 return -ENOMEM; 18227 18228 delta += cnt - 1; 18229 env->prog = prog = new_prog; 18230 insn = new_prog->insnsi + i + delta; 18231 continue; 18232 } 18233 18234 if (insn->imm == BPF_FUNC_get_route_realm) 18235 prog->dst_needed = 1; 18236 if (insn->imm == BPF_FUNC_get_prandom_u32) 18237 bpf_user_rnd_init_once(); 18238 if (insn->imm == BPF_FUNC_override_return) 18239 prog->kprobe_override = 1; 18240 if (insn->imm == BPF_FUNC_tail_call) { 18241 /* If we tail call into other programs, we 18242 * cannot make any assumptions since they can 18243 * be replaced dynamically during runtime in 18244 * the program array. 18245 */ 18246 prog->cb_access = 1; 18247 if (!allow_tail_call_in_subprogs(env)) 18248 prog->aux->stack_depth = MAX_BPF_STACK; 18249 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 18250 18251 /* mark bpf_tail_call as different opcode to avoid 18252 * conditional branch in the interpreter for every normal 18253 * call and to prevent accidental JITing by JIT compiler 18254 * that doesn't support bpf_tail_call yet 18255 */ 18256 insn->imm = 0; 18257 insn->code = BPF_JMP | BPF_TAIL_CALL; 18258 18259 aux = &env->insn_aux_data[i + delta]; 18260 if (env->bpf_capable && !prog->blinding_requested && 18261 prog->jit_requested && 18262 !bpf_map_key_poisoned(aux) && 18263 !bpf_map_ptr_poisoned(aux) && 18264 !bpf_map_ptr_unpriv(aux)) { 18265 struct bpf_jit_poke_descriptor desc = { 18266 .reason = BPF_POKE_REASON_TAIL_CALL, 18267 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 18268 .tail_call.key = bpf_map_key_immediate(aux), 18269 .insn_idx = i + delta, 18270 }; 18271 18272 ret = bpf_jit_add_poke_descriptor(prog, &desc); 18273 if (ret < 0) { 18274 verbose(env, "adding tail call poke descriptor failed\n"); 18275 return ret; 18276 } 18277 18278 insn->imm = ret + 1; 18279 continue; 18280 } 18281 18282 if (!bpf_map_ptr_unpriv(aux)) 18283 continue; 18284 18285 /* instead of changing every JIT dealing with tail_call 18286 * emit two extra insns: 18287 * if (index >= max_entries) goto out; 18288 * index &= array->index_mask; 18289 * to avoid out-of-bounds cpu speculation 18290 */ 18291 if (bpf_map_ptr_poisoned(aux)) { 18292 verbose(env, "tail_call abusing map_ptr\n"); 18293 return -EINVAL; 18294 } 18295 18296 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 18297 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 18298 map_ptr->max_entries, 2); 18299 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 18300 container_of(map_ptr, 18301 struct bpf_array, 18302 map)->index_mask); 18303 insn_buf[2] = *insn; 18304 cnt = 3; 18305 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18306 if (!new_prog) 18307 return -ENOMEM; 18308 18309 delta += cnt - 1; 18310 env->prog = prog = new_prog; 18311 insn = new_prog->insnsi + i + delta; 18312 continue; 18313 } 18314 18315 if (insn->imm == BPF_FUNC_timer_set_callback) { 18316 /* The verifier will process callback_fn as many times as necessary 18317 * with different maps and the register states prepared by 18318 * set_timer_callback_state will be accurate. 18319 * 18320 * The following use case is valid: 18321 * map1 is shared by prog1, prog2, prog3. 18322 * prog1 calls bpf_timer_init for some map1 elements 18323 * prog2 calls bpf_timer_set_callback for some map1 elements. 18324 * Those that were not bpf_timer_init-ed will return -EINVAL. 18325 * prog3 calls bpf_timer_start for some map1 elements. 18326 * Those that were not both bpf_timer_init-ed and 18327 * bpf_timer_set_callback-ed will return -EINVAL. 18328 */ 18329 struct bpf_insn ld_addrs[2] = { 18330 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 18331 }; 18332 18333 insn_buf[0] = ld_addrs[0]; 18334 insn_buf[1] = ld_addrs[1]; 18335 insn_buf[2] = *insn; 18336 cnt = 3; 18337 18338 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18339 if (!new_prog) 18340 return -ENOMEM; 18341 18342 delta += cnt - 1; 18343 env->prog = prog = new_prog; 18344 insn = new_prog->insnsi + i + delta; 18345 goto patch_call_imm; 18346 } 18347 18348 if (is_storage_get_function(insn->imm)) { 18349 if (!env->prog->aux->sleepable || 18350 env->insn_aux_data[i + delta].storage_get_func_atomic) 18351 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 18352 else 18353 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 18354 insn_buf[1] = *insn; 18355 cnt = 2; 18356 18357 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18358 if (!new_prog) 18359 return -ENOMEM; 18360 18361 delta += cnt - 1; 18362 env->prog = prog = new_prog; 18363 insn = new_prog->insnsi + i + delta; 18364 goto patch_call_imm; 18365 } 18366 18367 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 18368 * and other inlining handlers are currently limited to 64 bit 18369 * only. 18370 */ 18371 if (prog->jit_requested && BITS_PER_LONG == 64 && 18372 (insn->imm == BPF_FUNC_map_lookup_elem || 18373 insn->imm == BPF_FUNC_map_update_elem || 18374 insn->imm == BPF_FUNC_map_delete_elem || 18375 insn->imm == BPF_FUNC_map_push_elem || 18376 insn->imm == BPF_FUNC_map_pop_elem || 18377 insn->imm == BPF_FUNC_map_peek_elem || 18378 insn->imm == BPF_FUNC_redirect_map || 18379 insn->imm == BPF_FUNC_for_each_map_elem || 18380 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 18381 aux = &env->insn_aux_data[i + delta]; 18382 if (bpf_map_ptr_poisoned(aux)) 18383 goto patch_call_imm; 18384 18385 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 18386 ops = map_ptr->ops; 18387 if (insn->imm == BPF_FUNC_map_lookup_elem && 18388 ops->map_gen_lookup) { 18389 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 18390 if (cnt == -EOPNOTSUPP) 18391 goto patch_map_ops_generic; 18392 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 18393 verbose(env, "bpf verifier is misconfigured\n"); 18394 return -EINVAL; 18395 } 18396 18397 new_prog = bpf_patch_insn_data(env, i + delta, 18398 insn_buf, cnt); 18399 if (!new_prog) 18400 return -ENOMEM; 18401 18402 delta += cnt - 1; 18403 env->prog = prog = new_prog; 18404 insn = new_prog->insnsi + i + delta; 18405 continue; 18406 } 18407 18408 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 18409 (void *(*)(struct bpf_map *map, void *key))NULL)); 18410 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 18411 (long (*)(struct bpf_map *map, void *key))NULL)); 18412 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 18413 (long (*)(struct bpf_map *map, void *key, void *value, 18414 u64 flags))NULL)); 18415 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 18416 (long (*)(struct bpf_map *map, void *value, 18417 u64 flags))NULL)); 18418 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 18419 (long (*)(struct bpf_map *map, void *value))NULL)); 18420 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 18421 (long (*)(struct bpf_map *map, void *value))NULL)); 18422 BUILD_BUG_ON(!__same_type(ops->map_redirect, 18423 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 18424 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 18425 (long (*)(struct bpf_map *map, 18426 bpf_callback_t callback_fn, 18427 void *callback_ctx, 18428 u64 flags))NULL)); 18429 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 18430 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 18431 18432 patch_map_ops_generic: 18433 switch (insn->imm) { 18434 case BPF_FUNC_map_lookup_elem: 18435 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 18436 continue; 18437 case BPF_FUNC_map_update_elem: 18438 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 18439 continue; 18440 case BPF_FUNC_map_delete_elem: 18441 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 18442 continue; 18443 case BPF_FUNC_map_push_elem: 18444 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 18445 continue; 18446 case BPF_FUNC_map_pop_elem: 18447 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 18448 continue; 18449 case BPF_FUNC_map_peek_elem: 18450 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 18451 continue; 18452 case BPF_FUNC_redirect_map: 18453 insn->imm = BPF_CALL_IMM(ops->map_redirect); 18454 continue; 18455 case BPF_FUNC_for_each_map_elem: 18456 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 18457 continue; 18458 case BPF_FUNC_map_lookup_percpu_elem: 18459 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 18460 continue; 18461 } 18462 18463 goto patch_call_imm; 18464 } 18465 18466 /* Implement bpf_jiffies64 inline. */ 18467 if (prog->jit_requested && BITS_PER_LONG == 64 && 18468 insn->imm == BPF_FUNC_jiffies64) { 18469 struct bpf_insn ld_jiffies_addr[2] = { 18470 BPF_LD_IMM64(BPF_REG_0, 18471 (unsigned long)&jiffies), 18472 }; 18473 18474 insn_buf[0] = ld_jiffies_addr[0]; 18475 insn_buf[1] = ld_jiffies_addr[1]; 18476 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 18477 BPF_REG_0, 0); 18478 cnt = 3; 18479 18480 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 18481 cnt); 18482 if (!new_prog) 18483 return -ENOMEM; 18484 18485 delta += cnt - 1; 18486 env->prog = prog = new_prog; 18487 insn = new_prog->insnsi + i + delta; 18488 continue; 18489 } 18490 18491 /* Implement bpf_get_func_arg inline. */ 18492 if (prog_type == BPF_PROG_TYPE_TRACING && 18493 insn->imm == BPF_FUNC_get_func_arg) { 18494 /* Load nr_args from ctx - 8 */ 18495 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18496 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 18497 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 18498 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 18499 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 18500 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 18501 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 18502 insn_buf[7] = BPF_JMP_A(1); 18503 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 18504 cnt = 9; 18505 18506 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18507 if (!new_prog) 18508 return -ENOMEM; 18509 18510 delta += cnt - 1; 18511 env->prog = prog = new_prog; 18512 insn = new_prog->insnsi + i + delta; 18513 continue; 18514 } 18515 18516 /* Implement bpf_get_func_ret inline. */ 18517 if (prog_type == BPF_PROG_TYPE_TRACING && 18518 insn->imm == BPF_FUNC_get_func_ret) { 18519 if (eatype == BPF_TRACE_FEXIT || 18520 eatype == BPF_MODIFY_RETURN) { 18521 /* Load nr_args from ctx - 8 */ 18522 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18523 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 18524 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 18525 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 18526 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 18527 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 18528 cnt = 6; 18529 } else { 18530 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 18531 cnt = 1; 18532 } 18533 18534 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18535 if (!new_prog) 18536 return -ENOMEM; 18537 18538 delta += cnt - 1; 18539 env->prog = prog = new_prog; 18540 insn = new_prog->insnsi + i + delta; 18541 continue; 18542 } 18543 18544 /* Implement get_func_arg_cnt inline. */ 18545 if (prog_type == BPF_PROG_TYPE_TRACING && 18546 insn->imm == BPF_FUNC_get_func_arg_cnt) { 18547 /* Load nr_args from ctx - 8 */ 18548 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18549 18550 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 18551 if (!new_prog) 18552 return -ENOMEM; 18553 18554 env->prog = prog = new_prog; 18555 insn = new_prog->insnsi + i + delta; 18556 continue; 18557 } 18558 18559 /* Implement bpf_get_func_ip inline. */ 18560 if (prog_type == BPF_PROG_TYPE_TRACING && 18561 insn->imm == BPF_FUNC_get_func_ip) { 18562 /* Load IP address from ctx - 16 */ 18563 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 18564 18565 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 18566 if (!new_prog) 18567 return -ENOMEM; 18568 18569 env->prog = prog = new_prog; 18570 insn = new_prog->insnsi + i + delta; 18571 continue; 18572 } 18573 18574 patch_call_imm: 18575 fn = env->ops->get_func_proto(insn->imm, env->prog); 18576 /* all functions that have prototype and verifier allowed 18577 * programs to call them, must be real in-kernel functions 18578 */ 18579 if (!fn->func) { 18580 verbose(env, 18581 "kernel subsystem misconfigured func %s#%d\n", 18582 func_id_name(insn->imm), insn->imm); 18583 return -EFAULT; 18584 } 18585 insn->imm = fn->func - __bpf_call_base; 18586 } 18587 18588 /* Since poke tab is now finalized, publish aux to tracker. */ 18589 for (i = 0; i < prog->aux->size_poke_tab; i++) { 18590 map_ptr = prog->aux->poke_tab[i].tail_call.map; 18591 if (!map_ptr->ops->map_poke_track || 18592 !map_ptr->ops->map_poke_untrack || 18593 !map_ptr->ops->map_poke_run) { 18594 verbose(env, "bpf verifier is misconfigured\n"); 18595 return -EINVAL; 18596 } 18597 18598 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 18599 if (ret < 0) { 18600 verbose(env, "tracking tail call prog failed\n"); 18601 return ret; 18602 } 18603 } 18604 18605 sort_kfunc_descs_by_imm_off(env->prog); 18606 18607 return 0; 18608 } 18609 18610 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 18611 int position, 18612 s32 stack_base, 18613 u32 callback_subprogno, 18614 u32 *cnt) 18615 { 18616 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 18617 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 18618 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 18619 int reg_loop_max = BPF_REG_6; 18620 int reg_loop_cnt = BPF_REG_7; 18621 int reg_loop_ctx = BPF_REG_8; 18622 18623 struct bpf_prog *new_prog; 18624 u32 callback_start; 18625 u32 call_insn_offset; 18626 s32 callback_offset; 18627 18628 /* This represents an inlined version of bpf_iter.c:bpf_loop, 18629 * be careful to modify this code in sync. 18630 */ 18631 struct bpf_insn insn_buf[] = { 18632 /* Return error and jump to the end of the patch if 18633 * expected number of iterations is too big. 18634 */ 18635 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 18636 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 18637 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 18638 /* spill R6, R7, R8 to use these as loop vars */ 18639 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 18640 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 18641 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 18642 /* initialize loop vars */ 18643 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 18644 BPF_MOV32_IMM(reg_loop_cnt, 0), 18645 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 18646 /* loop header, 18647 * if reg_loop_cnt >= reg_loop_max skip the loop body 18648 */ 18649 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 18650 /* callback call, 18651 * correct callback offset would be set after patching 18652 */ 18653 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 18654 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 18655 BPF_CALL_REL(0), 18656 /* increment loop counter */ 18657 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 18658 /* jump to loop header if callback returned 0 */ 18659 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 18660 /* return value of bpf_loop, 18661 * set R0 to the number of iterations 18662 */ 18663 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 18664 /* restore original values of R6, R7, R8 */ 18665 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 18666 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 18667 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 18668 }; 18669 18670 *cnt = ARRAY_SIZE(insn_buf); 18671 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 18672 if (!new_prog) 18673 return new_prog; 18674 18675 /* callback start is known only after patching */ 18676 callback_start = env->subprog_info[callback_subprogno].start; 18677 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 18678 call_insn_offset = position + 12; 18679 callback_offset = callback_start - call_insn_offset - 1; 18680 new_prog->insnsi[call_insn_offset].imm = callback_offset; 18681 18682 return new_prog; 18683 } 18684 18685 static bool is_bpf_loop_call(struct bpf_insn *insn) 18686 { 18687 return insn->code == (BPF_JMP | BPF_CALL) && 18688 insn->src_reg == 0 && 18689 insn->imm == BPF_FUNC_loop; 18690 } 18691 18692 /* For all sub-programs in the program (including main) check 18693 * insn_aux_data to see if there are bpf_loop calls that require 18694 * inlining. If such calls are found the calls are replaced with a 18695 * sequence of instructions produced by `inline_bpf_loop` function and 18696 * subprog stack_depth is increased by the size of 3 registers. 18697 * This stack space is used to spill values of the R6, R7, R8. These 18698 * registers are used to store the loop bound, counter and context 18699 * variables. 18700 */ 18701 static int optimize_bpf_loop(struct bpf_verifier_env *env) 18702 { 18703 struct bpf_subprog_info *subprogs = env->subprog_info; 18704 int i, cur_subprog = 0, cnt, delta = 0; 18705 struct bpf_insn *insn = env->prog->insnsi; 18706 int insn_cnt = env->prog->len; 18707 u16 stack_depth = subprogs[cur_subprog].stack_depth; 18708 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 18709 u16 stack_depth_extra = 0; 18710 18711 for (i = 0; i < insn_cnt; i++, insn++) { 18712 struct bpf_loop_inline_state *inline_state = 18713 &env->insn_aux_data[i + delta].loop_inline_state; 18714 18715 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 18716 struct bpf_prog *new_prog; 18717 18718 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 18719 new_prog = inline_bpf_loop(env, 18720 i + delta, 18721 -(stack_depth + stack_depth_extra), 18722 inline_state->callback_subprogno, 18723 &cnt); 18724 if (!new_prog) 18725 return -ENOMEM; 18726 18727 delta += cnt - 1; 18728 env->prog = new_prog; 18729 insn = new_prog->insnsi + i + delta; 18730 } 18731 18732 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 18733 subprogs[cur_subprog].stack_depth += stack_depth_extra; 18734 cur_subprog++; 18735 stack_depth = subprogs[cur_subprog].stack_depth; 18736 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 18737 stack_depth_extra = 0; 18738 } 18739 } 18740 18741 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 18742 18743 return 0; 18744 } 18745 18746 static void free_states(struct bpf_verifier_env *env) 18747 { 18748 struct bpf_verifier_state_list *sl, *sln; 18749 int i; 18750 18751 sl = env->free_list; 18752 while (sl) { 18753 sln = sl->next; 18754 free_verifier_state(&sl->state, false); 18755 kfree(sl); 18756 sl = sln; 18757 } 18758 env->free_list = NULL; 18759 18760 if (!env->explored_states) 18761 return; 18762 18763 for (i = 0; i < state_htab_size(env); i++) { 18764 sl = env->explored_states[i]; 18765 18766 while (sl) { 18767 sln = sl->next; 18768 free_verifier_state(&sl->state, false); 18769 kfree(sl); 18770 sl = sln; 18771 } 18772 env->explored_states[i] = NULL; 18773 } 18774 } 18775 18776 static int do_check_common(struct bpf_verifier_env *env, int subprog) 18777 { 18778 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 18779 struct bpf_verifier_state *state; 18780 struct bpf_reg_state *regs; 18781 int ret, i; 18782 18783 env->prev_linfo = NULL; 18784 env->pass_cnt++; 18785 18786 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 18787 if (!state) 18788 return -ENOMEM; 18789 state->curframe = 0; 18790 state->speculative = false; 18791 state->branches = 1; 18792 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 18793 if (!state->frame[0]) { 18794 kfree(state); 18795 return -ENOMEM; 18796 } 18797 env->cur_state = state; 18798 init_func_state(env, state->frame[0], 18799 BPF_MAIN_FUNC /* callsite */, 18800 0 /* frameno */, 18801 subprog); 18802 state->first_insn_idx = env->subprog_info[subprog].start; 18803 state->last_insn_idx = -1; 18804 18805 regs = state->frame[state->curframe]->regs; 18806 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 18807 ret = btf_prepare_func_args(env, subprog, regs); 18808 if (ret) 18809 goto out; 18810 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 18811 if (regs[i].type == PTR_TO_CTX) 18812 mark_reg_known_zero(env, regs, i); 18813 else if (regs[i].type == SCALAR_VALUE) 18814 mark_reg_unknown(env, regs, i); 18815 else if (base_type(regs[i].type) == PTR_TO_MEM) { 18816 const u32 mem_size = regs[i].mem_size; 18817 18818 mark_reg_known_zero(env, regs, i); 18819 regs[i].mem_size = mem_size; 18820 regs[i].id = ++env->id_gen; 18821 } 18822 } 18823 } else { 18824 /* 1st arg to a function */ 18825 regs[BPF_REG_1].type = PTR_TO_CTX; 18826 mark_reg_known_zero(env, regs, BPF_REG_1); 18827 ret = btf_check_subprog_arg_match(env, subprog, regs); 18828 if (ret == -EFAULT) 18829 /* unlikely verifier bug. abort. 18830 * ret == 0 and ret < 0 are sadly acceptable for 18831 * main() function due to backward compatibility. 18832 * Like socket filter program may be written as: 18833 * int bpf_prog(struct pt_regs *ctx) 18834 * and never dereference that ctx in the program. 18835 * 'struct pt_regs' is a type mismatch for socket 18836 * filter that should be using 'struct __sk_buff'. 18837 */ 18838 goto out; 18839 } 18840 18841 ret = do_check(env); 18842 out: 18843 /* check for NULL is necessary, since cur_state can be freed inside 18844 * do_check() under memory pressure. 18845 */ 18846 if (env->cur_state) { 18847 free_verifier_state(env->cur_state, true); 18848 env->cur_state = NULL; 18849 } 18850 while (!pop_stack(env, NULL, NULL, false)); 18851 if (!ret && pop_log) 18852 bpf_vlog_reset(&env->log, 0); 18853 free_states(env); 18854 return ret; 18855 } 18856 18857 /* Verify all global functions in a BPF program one by one based on their BTF. 18858 * All global functions must pass verification. Otherwise the whole program is rejected. 18859 * Consider: 18860 * int bar(int); 18861 * int foo(int f) 18862 * { 18863 * return bar(f); 18864 * } 18865 * int bar(int b) 18866 * { 18867 * ... 18868 * } 18869 * foo() will be verified first for R1=any_scalar_value. During verification it 18870 * will be assumed that bar() already verified successfully and call to bar() 18871 * from foo() will be checked for type match only. Later bar() will be verified 18872 * independently to check that it's safe for R1=any_scalar_value. 18873 */ 18874 static int do_check_subprogs(struct bpf_verifier_env *env) 18875 { 18876 struct bpf_prog_aux *aux = env->prog->aux; 18877 int i, ret; 18878 18879 if (!aux->func_info) 18880 return 0; 18881 18882 for (i = 1; i < env->subprog_cnt; i++) { 18883 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 18884 continue; 18885 env->insn_idx = env->subprog_info[i].start; 18886 WARN_ON_ONCE(env->insn_idx == 0); 18887 ret = do_check_common(env, i); 18888 if (ret) { 18889 return ret; 18890 } else if (env->log.level & BPF_LOG_LEVEL) { 18891 verbose(env, 18892 "Func#%d is safe for any args that match its prototype\n", 18893 i); 18894 } 18895 } 18896 return 0; 18897 } 18898 18899 static int do_check_main(struct bpf_verifier_env *env) 18900 { 18901 int ret; 18902 18903 env->insn_idx = 0; 18904 ret = do_check_common(env, 0); 18905 if (!ret) 18906 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 18907 return ret; 18908 } 18909 18910 18911 static void print_verification_stats(struct bpf_verifier_env *env) 18912 { 18913 int i; 18914 18915 if (env->log.level & BPF_LOG_STATS) { 18916 verbose(env, "verification time %lld usec\n", 18917 div_u64(env->verification_time, 1000)); 18918 verbose(env, "stack depth "); 18919 for (i = 0; i < env->subprog_cnt; i++) { 18920 u32 depth = env->subprog_info[i].stack_depth; 18921 18922 verbose(env, "%d", depth); 18923 if (i + 1 < env->subprog_cnt) 18924 verbose(env, "+"); 18925 } 18926 verbose(env, "\n"); 18927 } 18928 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 18929 "total_states %d peak_states %d mark_read %d\n", 18930 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 18931 env->max_states_per_insn, env->total_states, 18932 env->peak_states, env->longest_mark_read_walk); 18933 } 18934 18935 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 18936 { 18937 const struct btf_type *t, *func_proto; 18938 const struct bpf_struct_ops *st_ops; 18939 const struct btf_member *member; 18940 struct bpf_prog *prog = env->prog; 18941 u32 btf_id, member_idx; 18942 const char *mname; 18943 18944 if (!prog->gpl_compatible) { 18945 verbose(env, "struct ops programs must have a GPL compatible license\n"); 18946 return -EINVAL; 18947 } 18948 18949 btf_id = prog->aux->attach_btf_id; 18950 st_ops = bpf_struct_ops_find(btf_id); 18951 if (!st_ops) { 18952 verbose(env, "attach_btf_id %u is not a supported struct\n", 18953 btf_id); 18954 return -ENOTSUPP; 18955 } 18956 18957 t = st_ops->type; 18958 member_idx = prog->expected_attach_type; 18959 if (member_idx >= btf_type_vlen(t)) { 18960 verbose(env, "attach to invalid member idx %u of struct %s\n", 18961 member_idx, st_ops->name); 18962 return -EINVAL; 18963 } 18964 18965 member = &btf_type_member(t)[member_idx]; 18966 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 18967 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 18968 NULL); 18969 if (!func_proto) { 18970 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 18971 mname, member_idx, st_ops->name); 18972 return -EINVAL; 18973 } 18974 18975 if (st_ops->check_member) { 18976 int err = st_ops->check_member(t, member, prog); 18977 18978 if (err) { 18979 verbose(env, "attach to unsupported member %s of struct %s\n", 18980 mname, st_ops->name); 18981 return err; 18982 } 18983 } 18984 18985 prog->aux->attach_func_proto = func_proto; 18986 prog->aux->attach_func_name = mname; 18987 env->ops = st_ops->verifier_ops; 18988 18989 return 0; 18990 } 18991 #define SECURITY_PREFIX "security_" 18992 18993 static int check_attach_modify_return(unsigned long addr, const char *func_name) 18994 { 18995 if (within_error_injection_list(addr) || 18996 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 18997 return 0; 18998 18999 return -EINVAL; 19000 } 19001 19002 /* list of non-sleepable functions that are otherwise on 19003 * ALLOW_ERROR_INJECTION list 19004 */ 19005 BTF_SET_START(btf_non_sleepable_error_inject) 19006 /* Three functions below can be called from sleepable and non-sleepable context. 19007 * Assume non-sleepable from bpf safety point of view. 19008 */ 19009 BTF_ID(func, __filemap_add_folio) 19010 BTF_ID(func, should_fail_alloc_page) 19011 BTF_ID(func, should_failslab) 19012 BTF_SET_END(btf_non_sleepable_error_inject) 19013 19014 static int check_non_sleepable_error_inject(u32 btf_id) 19015 { 19016 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 19017 } 19018 19019 int bpf_check_attach_target(struct bpf_verifier_log *log, 19020 const struct bpf_prog *prog, 19021 const struct bpf_prog *tgt_prog, 19022 u32 btf_id, 19023 struct bpf_attach_target_info *tgt_info) 19024 { 19025 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 19026 const char prefix[] = "btf_trace_"; 19027 int ret = 0, subprog = -1, i; 19028 const struct btf_type *t; 19029 bool conservative = true; 19030 const char *tname; 19031 struct btf *btf; 19032 long addr = 0; 19033 struct module *mod = NULL; 19034 19035 if (!btf_id) { 19036 bpf_log(log, "Tracing programs must provide btf_id\n"); 19037 return -EINVAL; 19038 } 19039 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 19040 if (!btf) { 19041 bpf_log(log, 19042 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 19043 return -EINVAL; 19044 } 19045 t = btf_type_by_id(btf, btf_id); 19046 if (!t) { 19047 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 19048 return -EINVAL; 19049 } 19050 tname = btf_name_by_offset(btf, t->name_off); 19051 if (!tname) { 19052 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 19053 return -EINVAL; 19054 } 19055 if (tgt_prog) { 19056 struct bpf_prog_aux *aux = tgt_prog->aux; 19057 19058 if (bpf_prog_is_dev_bound(prog->aux) && 19059 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 19060 bpf_log(log, "Target program bound device mismatch"); 19061 return -EINVAL; 19062 } 19063 19064 for (i = 0; i < aux->func_info_cnt; i++) 19065 if (aux->func_info[i].type_id == btf_id) { 19066 subprog = i; 19067 break; 19068 } 19069 if (subprog == -1) { 19070 bpf_log(log, "Subprog %s doesn't exist\n", tname); 19071 return -EINVAL; 19072 } 19073 conservative = aux->func_info_aux[subprog].unreliable; 19074 if (prog_extension) { 19075 if (conservative) { 19076 bpf_log(log, 19077 "Cannot replace static functions\n"); 19078 return -EINVAL; 19079 } 19080 if (!prog->jit_requested) { 19081 bpf_log(log, 19082 "Extension programs should be JITed\n"); 19083 return -EINVAL; 19084 } 19085 } 19086 if (!tgt_prog->jited) { 19087 bpf_log(log, "Can attach to only JITed progs\n"); 19088 return -EINVAL; 19089 } 19090 if (tgt_prog->type == prog->type) { 19091 /* Cannot fentry/fexit another fentry/fexit program. 19092 * Cannot attach program extension to another extension. 19093 * It's ok to attach fentry/fexit to extension program. 19094 */ 19095 bpf_log(log, "Cannot recursively attach\n"); 19096 return -EINVAL; 19097 } 19098 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 19099 prog_extension && 19100 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 19101 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 19102 /* Program extensions can extend all program types 19103 * except fentry/fexit. The reason is the following. 19104 * The fentry/fexit programs are used for performance 19105 * analysis, stats and can be attached to any program 19106 * type except themselves. When extension program is 19107 * replacing XDP function it is necessary to allow 19108 * performance analysis of all functions. Both original 19109 * XDP program and its program extension. Hence 19110 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 19111 * allowed. If extending of fentry/fexit was allowed it 19112 * would be possible to create long call chain 19113 * fentry->extension->fentry->extension beyond 19114 * reasonable stack size. Hence extending fentry is not 19115 * allowed. 19116 */ 19117 bpf_log(log, "Cannot extend fentry/fexit\n"); 19118 return -EINVAL; 19119 } 19120 } else { 19121 if (prog_extension) { 19122 bpf_log(log, "Cannot replace kernel functions\n"); 19123 return -EINVAL; 19124 } 19125 } 19126 19127 switch (prog->expected_attach_type) { 19128 case BPF_TRACE_RAW_TP: 19129 if (tgt_prog) { 19130 bpf_log(log, 19131 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 19132 return -EINVAL; 19133 } 19134 if (!btf_type_is_typedef(t)) { 19135 bpf_log(log, "attach_btf_id %u is not a typedef\n", 19136 btf_id); 19137 return -EINVAL; 19138 } 19139 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 19140 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 19141 btf_id, tname); 19142 return -EINVAL; 19143 } 19144 tname += sizeof(prefix) - 1; 19145 t = btf_type_by_id(btf, t->type); 19146 if (!btf_type_is_ptr(t)) 19147 /* should never happen in valid vmlinux build */ 19148 return -EINVAL; 19149 t = btf_type_by_id(btf, t->type); 19150 if (!btf_type_is_func_proto(t)) 19151 /* should never happen in valid vmlinux build */ 19152 return -EINVAL; 19153 19154 break; 19155 case BPF_TRACE_ITER: 19156 if (!btf_type_is_func(t)) { 19157 bpf_log(log, "attach_btf_id %u is not a function\n", 19158 btf_id); 19159 return -EINVAL; 19160 } 19161 t = btf_type_by_id(btf, t->type); 19162 if (!btf_type_is_func_proto(t)) 19163 return -EINVAL; 19164 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19165 if (ret) 19166 return ret; 19167 break; 19168 default: 19169 if (!prog_extension) 19170 return -EINVAL; 19171 fallthrough; 19172 case BPF_MODIFY_RETURN: 19173 case BPF_LSM_MAC: 19174 case BPF_LSM_CGROUP: 19175 case BPF_TRACE_FENTRY: 19176 case BPF_TRACE_FEXIT: 19177 if (!btf_type_is_func(t)) { 19178 bpf_log(log, "attach_btf_id %u is not a function\n", 19179 btf_id); 19180 return -EINVAL; 19181 } 19182 if (prog_extension && 19183 btf_check_type_match(log, prog, btf, t)) 19184 return -EINVAL; 19185 t = btf_type_by_id(btf, t->type); 19186 if (!btf_type_is_func_proto(t)) 19187 return -EINVAL; 19188 19189 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 19190 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 19191 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 19192 return -EINVAL; 19193 19194 if (tgt_prog && conservative) 19195 t = NULL; 19196 19197 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19198 if (ret < 0) 19199 return ret; 19200 19201 if (tgt_prog) { 19202 if (subprog == 0) 19203 addr = (long) tgt_prog->bpf_func; 19204 else 19205 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 19206 } else { 19207 if (btf_is_module(btf)) { 19208 mod = btf_try_get_module(btf); 19209 if (mod) 19210 addr = find_kallsyms_symbol_value(mod, tname); 19211 else 19212 addr = 0; 19213 } else { 19214 addr = kallsyms_lookup_name(tname); 19215 } 19216 if (!addr) { 19217 module_put(mod); 19218 bpf_log(log, 19219 "The address of function %s cannot be found\n", 19220 tname); 19221 return -ENOENT; 19222 } 19223 } 19224 19225 if (prog->aux->sleepable) { 19226 ret = -EINVAL; 19227 switch (prog->type) { 19228 case BPF_PROG_TYPE_TRACING: 19229 19230 /* fentry/fexit/fmod_ret progs can be sleepable if they are 19231 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 19232 */ 19233 if (!check_non_sleepable_error_inject(btf_id) && 19234 within_error_injection_list(addr)) 19235 ret = 0; 19236 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 19237 * in the fmodret id set with the KF_SLEEPABLE flag. 19238 */ 19239 else { 19240 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 19241 prog); 19242 19243 if (flags && (*flags & KF_SLEEPABLE)) 19244 ret = 0; 19245 } 19246 break; 19247 case BPF_PROG_TYPE_LSM: 19248 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 19249 * Only some of them are sleepable. 19250 */ 19251 if (bpf_lsm_is_sleepable_hook(btf_id)) 19252 ret = 0; 19253 break; 19254 default: 19255 break; 19256 } 19257 if (ret) { 19258 module_put(mod); 19259 bpf_log(log, "%s is not sleepable\n", tname); 19260 return ret; 19261 } 19262 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 19263 if (tgt_prog) { 19264 module_put(mod); 19265 bpf_log(log, "can't modify return codes of BPF programs\n"); 19266 return -EINVAL; 19267 } 19268 ret = -EINVAL; 19269 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 19270 !check_attach_modify_return(addr, tname)) 19271 ret = 0; 19272 if (ret) { 19273 module_put(mod); 19274 bpf_log(log, "%s() is not modifiable\n", tname); 19275 return ret; 19276 } 19277 } 19278 19279 break; 19280 } 19281 tgt_info->tgt_addr = addr; 19282 tgt_info->tgt_name = tname; 19283 tgt_info->tgt_type = t; 19284 tgt_info->tgt_mod = mod; 19285 return 0; 19286 } 19287 19288 BTF_SET_START(btf_id_deny) 19289 BTF_ID_UNUSED 19290 #ifdef CONFIG_SMP 19291 BTF_ID(func, migrate_disable) 19292 BTF_ID(func, migrate_enable) 19293 #endif 19294 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 19295 BTF_ID(func, rcu_read_unlock_strict) 19296 #endif 19297 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 19298 BTF_ID(func, preempt_count_add) 19299 BTF_ID(func, preempt_count_sub) 19300 #endif 19301 #ifdef CONFIG_PREEMPT_RCU 19302 BTF_ID(func, __rcu_read_lock) 19303 BTF_ID(func, __rcu_read_unlock) 19304 #endif 19305 BTF_SET_END(btf_id_deny) 19306 19307 static bool can_be_sleepable(struct bpf_prog *prog) 19308 { 19309 if (prog->type == BPF_PROG_TYPE_TRACING) { 19310 switch (prog->expected_attach_type) { 19311 case BPF_TRACE_FENTRY: 19312 case BPF_TRACE_FEXIT: 19313 case BPF_MODIFY_RETURN: 19314 case BPF_TRACE_ITER: 19315 return true; 19316 default: 19317 return false; 19318 } 19319 } 19320 return prog->type == BPF_PROG_TYPE_LSM || 19321 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 19322 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 19323 } 19324 19325 static int check_attach_btf_id(struct bpf_verifier_env *env) 19326 { 19327 struct bpf_prog *prog = env->prog; 19328 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 19329 struct bpf_attach_target_info tgt_info = {}; 19330 u32 btf_id = prog->aux->attach_btf_id; 19331 struct bpf_trampoline *tr; 19332 int ret; 19333 u64 key; 19334 19335 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 19336 if (prog->aux->sleepable) 19337 /* attach_btf_id checked to be zero already */ 19338 return 0; 19339 verbose(env, "Syscall programs can only be sleepable\n"); 19340 return -EINVAL; 19341 } 19342 19343 if (prog->aux->sleepable && !can_be_sleepable(prog)) { 19344 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 19345 return -EINVAL; 19346 } 19347 19348 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 19349 return check_struct_ops_btf_id(env); 19350 19351 if (prog->type != BPF_PROG_TYPE_TRACING && 19352 prog->type != BPF_PROG_TYPE_LSM && 19353 prog->type != BPF_PROG_TYPE_EXT) 19354 return 0; 19355 19356 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 19357 if (ret) 19358 return ret; 19359 19360 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 19361 /* to make freplace equivalent to their targets, they need to 19362 * inherit env->ops and expected_attach_type for the rest of the 19363 * verification 19364 */ 19365 env->ops = bpf_verifier_ops[tgt_prog->type]; 19366 prog->expected_attach_type = tgt_prog->expected_attach_type; 19367 } 19368 19369 /* store info about the attachment target that will be used later */ 19370 prog->aux->attach_func_proto = tgt_info.tgt_type; 19371 prog->aux->attach_func_name = tgt_info.tgt_name; 19372 prog->aux->mod = tgt_info.tgt_mod; 19373 19374 if (tgt_prog) { 19375 prog->aux->saved_dst_prog_type = tgt_prog->type; 19376 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 19377 } 19378 19379 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 19380 prog->aux->attach_btf_trace = true; 19381 return 0; 19382 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 19383 if (!bpf_iter_prog_supported(prog)) 19384 return -EINVAL; 19385 return 0; 19386 } 19387 19388 if (prog->type == BPF_PROG_TYPE_LSM) { 19389 ret = bpf_lsm_verify_prog(&env->log, prog); 19390 if (ret < 0) 19391 return ret; 19392 } else if (prog->type == BPF_PROG_TYPE_TRACING && 19393 btf_id_set_contains(&btf_id_deny, btf_id)) { 19394 return -EINVAL; 19395 } 19396 19397 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 19398 tr = bpf_trampoline_get(key, &tgt_info); 19399 if (!tr) 19400 return -ENOMEM; 19401 19402 prog->aux->dst_trampoline = tr; 19403 return 0; 19404 } 19405 19406 struct btf *bpf_get_btf_vmlinux(void) 19407 { 19408 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 19409 mutex_lock(&bpf_verifier_lock); 19410 if (!btf_vmlinux) 19411 btf_vmlinux = btf_parse_vmlinux(); 19412 mutex_unlock(&bpf_verifier_lock); 19413 } 19414 return btf_vmlinux; 19415 } 19416 19417 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 19418 { 19419 u64 start_time = ktime_get_ns(); 19420 struct bpf_verifier_env *env; 19421 int i, len, ret = -EINVAL, err; 19422 u32 log_true_size; 19423 bool is_priv; 19424 19425 /* no program is valid */ 19426 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 19427 return -EINVAL; 19428 19429 /* 'struct bpf_verifier_env' can be global, but since it's not small, 19430 * allocate/free it every time bpf_check() is called 19431 */ 19432 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 19433 if (!env) 19434 return -ENOMEM; 19435 19436 env->bt.env = env; 19437 19438 len = (*prog)->len; 19439 env->insn_aux_data = 19440 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 19441 ret = -ENOMEM; 19442 if (!env->insn_aux_data) 19443 goto err_free_env; 19444 for (i = 0; i < len; i++) 19445 env->insn_aux_data[i].orig_idx = i; 19446 env->prog = *prog; 19447 env->ops = bpf_verifier_ops[env->prog->type]; 19448 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 19449 is_priv = bpf_capable(); 19450 19451 bpf_get_btf_vmlinux(); 19452 19453 /* grab the mutex to protect few globals used by verifier */ 19454 if (!is_priv) 19455 mutex_lock(&bpf_verifier_lock); 19456 19457 /* user could have requested verbose verifier output 19458 * and supplied buffer to store the verification trace 19459 */ 19460 ret = bpf_vlog_init(&env->log, attr->log_level, 19461 (char __user *) (unsigned long) attr->log_buf, 19462 attr->log_size); 19463 if (ret) 19464 goto err_unlock; 19465 19466 mark_verifier_state_clean(env); 19467 19468 if (IS_ERR(btf_vmlinux)) { 19469 /* Either gcc or pahole or kernel are broken. */ 19470 verbose(env, "in-kernel BTF is malformed\n"); 19471 ret = PTR_ERR(btf_vmlinux); 19472 goto skip_full_check; 19473 } 19474 19475 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 19476 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 19477 env->strict_alignment = true; 19478 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 19479 env->strict_alignment = false; 19480 19481 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 19482 env->allow_uninit_stack = bpf_allow_uninit_stack(); 19483 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 19484 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 19485 env->bpf_capable = bpf_capable(); 19486 19487 if (is_priv) 19488 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 19489 19490 env->explored_states = kvcalloc(state_htab_size(env), 19491 sizeof(struct bpf_verifier_state_list *), 19492 GFP_USER); 19493 ret = -ENOMEM; 19494 if (!env->explored_states) 19495 goto skip_full_check; 19496 19497 ret = add_subprog_and_kfunc(env); 19498 if (ret < 0) 19499 goto skip_full_check; 19500 19501 ret = check_subprogs(env); 19502 if (ret < 0) 19503 goto skip_full_check; 19504 19505 ret = check_btf_info(env, attr, uattr); 19506 if (ret < 0) 19507 goto skip_full_check; 19508 19509 ret = check_attach_btf_id(env); 19510 if (ret) 19511 goto skip_full_check; 19512 19513 ret = resolve_pseudo_ldimm64(env); 19514 if (ret < 0) 19515 goto skip_full_check; 19516 19517 if (bpf_prog_is_offloaded(env->prog->aux)) { 19518 ret = bpf_prog_offload_verifier_prep(env->prog); 19519 if (ret) 19520 goto skip_full_check; 19521 } 19522 19523 ret = check_cfg(env); 19524 if (ret < 0) 19525 goto skip_full_check; 19526 19527 ret = do_check_subprogs(env); 19528 ret = ret ?: do_check_main(env); 19529 19530 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 19531 ret = bpf_prog_offload_finalize(env); 19532 19533 skip_full_check: 19534 kvfree(env->explored_states); 19535 19536 if (ret == 0) 19537 ret = check_max_stack_depth(env); 19538 19539 /* instruction rewrites happen after this point */ 19540 if (ret == 0) 19541 ret = optimize_bpf_loop(env); 19542 19543 if (is_priv) { 19544 if (ret == 0) 19545 opt_hard_wire_dead_code_branches(env); 19546 if (ret == 0) 19547 ret = opt_remove_dead_code(env); 19548 if (ret == 0) 19549 ret = opt_remove_nops(env); 19550 } else { 19551 if (ret == 0) 19552 sanitize_dead_code(env); 19553 } 19554 19555 if (ret == 0) 19556 /* program is valid, convert *(u32*)(ctx + off) accesses */ 19557 ret = convert_ctx_accesses(env); 19558 19559 if (ret == 0) 19560 ret = do_misc_fixups(env); 19561 19562 /* do 32-bit optimization after insn patching has done so those patched 19563 * insns could be handled correctly. 19564 */ 19565 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 19566 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 19567 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 19568 : false; 19569 } 19570 19571 if (ret == 0) 19572 ret = fixup_call_args(env); 19573 19574 env->verification_time = ktime_get_ns() - start_time; 19575 print_verification_stats(env); 19576 env->prog->aux->verified_insns = env->insn_processed; 19577 19578 /* preserve original error even if log finalization is successful */ 19579 err = bpf_vlog_finalize(&env->log, &log_true_size); 19580 if (err) 19581 ret = err; 19582 19583 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 19584 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 19585 &log_true_size, sizeof(log_true_size))) { 19586 ret = -EFAULT; 19587 goto err_release_maps; 19588 } 19589 19590 if (ret) 19591 goto err_release_maps; 19592 19593 if (env->used_map_cnt) { 19594 /* if program passed verifier, update used_maps in bpf_prog_info */ 19595 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 19596 sizeof(env->used_maps[0]), 19597 GFP_KERNEL); 19598 19599 if (!env->prog->aux->used_maps) { 19600 ret = -ENOMEM; 19601 goto err_release_maps; 19602 } 19603 19604 memcpy(env->prog->aux->used_maps, env->used_maps, 19605 sizeof(env->used_maps[0]) * env->used_map_cnt); 19606 env->prog->aux->used_map_cnt = env->used_map_cnt; 19607 } 19608 if (env->used_btf_cnt) { 19609 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 19610 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 19611 sizeof(env->used_btfs[0]), 19612 GFP_KERNEL); 19613 if (!env->prog->aux->used_btfs) { 19614 ret = -ENOMEM; 19615 goto err_release_maps; 19616 } 19617 19618 memcpy(env->prog->aux->used_btfs, env->used_btfs, 19619 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 19620 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 19621 } 19622 if (env->used_map_cnt || env->used_btf_cnt) { 19623 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 19624 * bpf_ld_imm64 instructions 19625 */ 19626 convert_pseudo_ld_imm64(env); 19627 } 19628 19629 adjust_btf_func(env); 19630 19631 err_release_maps: 19632 if (!env->prog->aux->used_maps) 19633 /* if we didn't copy map pointers into bpf_prog_info, release 19634 * them now. Otherwise free_used_maps() will release them. 19635 */ 19636 release_maps(env); 19637 if (!env->prog->aux->used_btfs) 19638 release_btfs(env); 19639 19640 /* extension progs temporarily inherit the attach_type of their targets 19641 for verification purposes, so set it back to zero before returning 19642 */ 19643 if (env->prog->type == BPF_PROG_TYPE_EXT) 19644 env->prog->expected_attach_type = 0; 19645 19646 *prog = env->prog; 19647 err_unlock: 19648 if (!is_priv) 19649 mutex_unlock(&bpf_verifier_lock); 19650 vfree(env->insn_aux_data); 19651 err_free_env: 19652 kfree(env); 19653 return ret; 19654 } 19655