1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <net/xdp.h> 30 31 #include "disasm.h" 32 33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 35 [_id] = & _name ## _verifier_ops, 36 #define BPF_MAP_TYPE(_id, _ops) 37 #define BPF_LINK_TYPE(_id, _name) 38 #include <linux/bpf_types.h> 39 #undef BPF_PROG_TYPE 40 #undef BPF_MAP_TYPE 41 #undef BPF_LINK_TYPE 42 }; 43 44 /* bpf_check() is a static code analyzer that walks eBPF program 45 * instruction by instruction and updates register/stack state. 46 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 47 * 48 * The first pass is depth-first-search to check that the program is a DAG. 49 * It rejects the following programs: 50 * - larger than BPF_MAXINSNS insns 51 * - if loop is present (detected via back-edge) 52 * - unreachable insns exist (shouldn't be a forest. program = one function) 53 * - out of bounds or malformed jumps 54 * The second pass is all possible path descent from the 1st insn. 55 * Since it's analyzing all paths through the program, the length of the 56 * analysis is limited to 64k insn, which may be hit even if total number of 57 * insn is less then 4K, but there are too many branches that change stack/regs. 58 * Number of 'branches to be analyzed' is limited to 1k 59 * 60 * On entry to each instruction, each register has a type, and the instruction 61 * changes the types of the registers depending on instruction semantics. 62 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 63 * copied to R1. 64 * 65 * All registers are 64-bit. 66 * R0 - return register 67 * R1-R5 argument passing registers 68 * R6-R9 callee saved registers 69 * R10 - frame pointer read-only 70 * 71 * At the start of BPF program the register R1 contains a pointer to bpf_context 72 * and has type PTR_TO_CTX. 73 * 74 * Verifier tracks arithmetic operations on pointers in case: 75 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 76 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 77 * 1st insn copies R10 (which has FRAME_PTR) type into R1 78 * and 2nd arithmetic instruction is pattern matched to recognize 79 * that it wants to construct a pointer to some element within stack. 80 * So after 2nd insn, the register R1 has type PTR_TO_STACK 81 * (and -20 constant is saved for further stack bounds checking). 82 * Meaning that this reg is a pointer to stack plus known immediate constant. 83 * 84 * Most of the time the registers have SCALAR_VALUE type, which 85 * means the register has some value, but it's not a valid pointer. 86 * (like pointer plus pointer becomes SCALAR_VALUE type) 87 * 88 * When verifier sees load or store instructions the type of base register 89 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 90 * four pointer types recognized by check_mem_access() function. 91 * 92 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 93 * and the range of [ptr, ptr + map's value_size) is accessible. 94 * 95 * registers used to pass values to function calls are checked against 96 * function argument constraints. 97 * 98 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 99 * It means that the register type passed to this function must be 100 * PTR_TO_STACK and it will be used inside the function as 101 * 'pointer to map element key' 102 * 103 * For example the argument constraints for bpf_map_lookup_elem(): 104 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 105 * .arg1_type = ARG_CONST_MAP_PTR, 106 * .arg2_type = ARG_PTR_TO_MAP_KEY, 107 * 108 * ret_type says that this function returns 'pointer to map elem value or null' 109 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 110 * 2nd argument should be a pointer to stack, which will be used inside 111 * the helper function as a pointer to map element key. 112 * 113 * On the kernel side the helper function looks like: 114 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 115 * { 116 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 117 * void *key = (void *) (unsigned long) r2; 118 * void *value; 119 * 120 * here kernel can access 'key' and 'map' pointers safely, knowing that 121 * [key, key + map->key_size) bytes are valid and were initialized on 122 * the stack of eBPF program. 123 * } 124 * 125 * Corresponding eBPF program may look like: 126 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 127 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 128 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 129 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 130 * here verifier looks at prototype of map_lookup_elem() and sees: 131 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 132 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 133 * 134 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 135 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 136 * and were initialized prior to this call. 137 * If it's ok, then verifier allows this BPF_CALL insn and looks at 138 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 139 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 140 * returns either pointer to map value or NULL. 141 * 142 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 143 * insn, the register holding that pointer in the true branch changes state to 144 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 145 * branch. See check_cond_jmp_op(). 146 * 147 * After the call R0 is set to return type of the function and registers R1-R5 148 * are set to NOT_INIT to indicate that they are no longer readable. 149 * 150 * The following reference types represent a potential reference to a kernel 151 * resource which, after first being allocated, must be checked and freed by 152 * the BPF program: 153 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 154 * 155 * When the verifier sees a helper call return a reference type, it allocates a 156 * pointer id for the reference and stores it in the current function state. 157 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 158 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 159 * passes through a NULL-check conditional. For the branch wherein the state is 160 * changed to CONST_IMM, the verifier releases the reference. 161 * 162 * For each helper function that allocates a reference, such as 163 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 164 * bpf_sk_release(). When a reference type passes into the release function, 165 * the verifier also releases the reference. If any unchecked or unreleased 166 * reference remains at the end of the program, the verifier rejects it. 167 */ 168 169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 170 struct bpf_verifier_stack_elem { 171 /* verifer state is 'st' 172 * before processing instruction 'insn_idx' 173 * and after processing instruction 'prev_insn_idx' 174 */ 175 struct bpf_verifier_state st; 176 int insn_idx; 177 int prev_insn_idx; 178 struct bpf_verifier_stack_elem *next; 179 /* length of verifier log at the time this state was pushed on stack */ 180 u32 log_pos; 181 }; 182 183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 184 #define BPF_COMPLEXITY_LIMIT_STATES 64 185 186 #define BPF_MAP_KEY_POISON (1ULL << 63) 187 #define BPF_MAP_KEY_SEEN (1ULL << 62) 188 189 #define BPF_MAP_PTR_UNPRIV 1UL 190 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 191 POISON_POINTER_DELTA)) 192 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 193 194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 198 static int ref_set_non_owning(struct bpf_verifier_env *env, 199 struct bpf_reg_state *reg); 200 static void specialize_kfunc(struct bpf_verifier_env *env, 201 u32 func_id, u16 offset, unsigned long *addr); 202 static bool is_trusted_reg(const struct bpf_reg_state *reg); 203 204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 205 { 206 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 207 } 208 209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 210 { 211 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 212 } 213 214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 215 const struct bpf_map *map, bool unpriv) 216 { 217 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 218 unpriv |= bpf_map_ptr_unpriv(aux); 219 aux->map_ptr_state = (unsigned long)map | 220 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 221 } 222 223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 224 { 225 return aux->map_key_state & BPF_MAP_KEY_POISON; 226 } 227 228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 229 { 230 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 231 } 232 233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 234 { 235 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 236 } 237 238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 239 { 240 bool poisoned = bpf_map_key_poisoned(aux); 241 242 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 243 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 244 } 245 246 static bool bpf_helper_call(const struct bpf_insn *insn) 247 { 248 return insn->code == (BPF_JMP | BPF_CALL) && 249 insn->src_reg == 0; 250 } 251 252 static bool bpf_pseudo_call(const struct bpf_insn *insn) 253 { 254 return insn->code == (BPF_JMP | BPF_CALL) && 255 insn->src_reg == BPF_PSEUDO_CALL; 256 } 257 258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 259 { 260 return insn->code == (BPF_JMP | BPF_CALL) && 261 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 262 } 263 264 struct bpf_call_arg_meta { 265 struct bpf_map *map_ptr; 266 bool raw_mode; 267 bool pkt_access; 268 u8 release_regno; 269 int regno; 270 int access_size; 271 int mem_size; 272 u64 msize_max_value; 273 int ref_obj_id; 274 int dynptr_id; 275 int map_uid; 276 int func_id; 277 struct btf *btf; 278 u32 btf_id; 279 struct btf *ret_btf; 280 u32 ret_btf_id; 281 u32 subprogno; 282 struct btf_field *kptr_field; 283 }; 284 285 struct bpf_kfunc_call_arg_meta { 286 /* In parameters */ 287 struct btf *btf; 288 u32 func_id; 289 u32 kfunc_flags; 290 const struct btf_type *func_proto; 291 const char *func_name; 292 /* Out parameters */ 293 u32 ref_obj_id; 294 u8 release_regno; 295 bool r0_rdonly; 296 u32 ret_btf_id; 297 u64 r0_size; 298 u32 subprogno; 299 struct { 300 u64 value; 301 bool found; 302 } arg_constant; 303 304 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 305 * generally to pass info about user-defined local kptr types to later 306 * verification logic 307 * bpf_obj_drop 308 * Record the local kptr type to be drop'd 309 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 310 * Record the local kptr type to be refcount_incr'd and use 311 * arg_owning_ref to determine whether refcount_acquire should be 312 * fallible 313 */ 314 struct btf *arg_btf; 315 u32 arg_btf_id; 316 bool arg_owning_ref; 317 318 struct { 319 struct btf_field *field; 320 } arg_list_head; 321 struct { 322 struct btf_field *field; 323 } arg_rbtree_root; 324 struct { 325 enum bpf_dynptr_type type; 326 u32 id; 327 u32 ref_obj_id; 328 } initialized_dynptr; 329 struct { 330 u8 spi; 331 u8 frameno; 332 } iter; 333 u64 mem_size; 334 }; 335 336 struct btf *btf_vmlinux; 337 338 static DEFINE_MUTEX(bpf_verifier_lock); 339 340 static const struct bpf_line_info * 341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 342 { 343 const struct bpf_line_info *linfo; 344 const struct bpf_prog *prog; 345 u32 i, nr_linfo; 346 347 prog = env->prog; 348 nr_linfo = prog->aux->nr_linfo; 349 350 if (!nr_linfo || insn_off >= prog->len) 351 return NULL; 352 353 linfo = prog->aux->linfo; 354 for (i = 1; i < nr_linfo; i++) 355 if (insn_off < linfo[i].insn_off) 356 break; 357 358 return &linfo[i - 1]; 359 } 360 361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 362 { 363 struct bpf_verifier_env *env = private_data; 364 va_list args; 365 366 if (!bpf_verifier_log_needed(&env->log)) 367 return; 368 369 va_start(args, fmt); 370 bpf_verifier_vlog(&env->log, fmt, args); 371 va_end(args); 372 } 373 374 static const char *ltrim(const char *s) 375 { 376 while (isspace(*s)) 377 s++; 378 379 return s; 380 } 381 382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 383 u32 insn_off, 384 const char *prefix_fmt, ...) 385 { 386 const struct bpf_line_info *linfo; 387 388 if (!bpf_verifier_log_needed(&env->log)) 389 return; 390 391 linfo = find_linfo(env, insn_off); 392 if (!linfo || linfo == env->prev_linfo) 393 return; 394 395 if (prefix_fmt) { 396 va_list args; 397 398 va_start(args, prefix_fmt); 399 bpf_verifier_vlog(&env->log, prefix_fmt, args); 400 va_end(args); 401 } 402 403 verbose(env, "%s\n", 404 ltrim(btf_name_by_offset(env->prog->aux->btf, 405 linfo->line_off))); 406 407 env->prev_linfo = linfo; 408 } 409 410 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 411 struct bpf_reg_state *reg, 412 struct tnum *range, const char *ctx, 413 const char *reg_name) 414 { 415 char tn_buf[48]; 416 417 verbose(env, "At %s the register %s ", ctx, reg_name); 418 if (!tnum_is_unknown(reg->var_off)) { 419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 420 verbose(env, "has value %s", tn_buf); 421 } else { 422 verbose(env, "has unknown scalar value"); 423 } 424 tnum_strn(tn_buf, sizeof(tn_buf), *range); 425 verbose(env, " should have been in %s\n", tn_buf); 426 } 427 428 static bool type_is_pkt_pointer(enum bpf_reg_type type) 429 { 430 type = base_type(type); 431 return type == PTR_TO_PACKET || 432 type == PTR_TO_PACKET_META; 433 } 434 435 static bool type_is_sk_pointer(enum bpf_reg_type type) 436 { 437 return type == PTR_TO_SOCKET || 438 type == PTR_TO_SOCK_COMMON || 439 type == PTR_TO_TCP_SOCK || 440 type == PTR_TO_XDP_SOCK; 441 } 442 443 static bool type_may_be_null(u32 type) 444 { 445 return type & PTR_MAYBE_NULL; 446 } 447 448 static bool reg_not_null(const struct bpf_reg_state *reg) 449 { 450 enum bpf_reg_type type; 451 452 type = reg->type; 453 if (type_may_be_null(type)) 454 return false; 455 456 type = base_type(type); 457 return type == PTR_TO_SOCKET || 458 type == PTR_TO_TCP_SOCK || 459 type == PTR_TO_MAP_VALUE || 460 type == PTR_TO_MAP_KEY || 461 type == PTR_TO_SOCK_COMMON || 462 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 463 type == PTR_TO_MEM; 464 } 465 466 static bool type_is_ptr_alloc_obj(u32 type) 467 { 468 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 469 } 470 471 static bool type_is_non_owning_ref(u32 type) 472 { 473 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 474 } 475 476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 477 { 478 struct btf_record *rec = NULL; 479 struct btf_struct_meta *meta; 480 481 if (reg->type == PTR_TO_MAP_VALUE) { 482 rec = reg->map_ptr->record; 483 } else if (type_is_ptr_alloc_obj(reg->type)) { 484 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 485 if (meta) 486 rec = meta->record; 487 } 488 return rec; 489 } 490 491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 492 { 493 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 494 495 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 496 } 497 498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 499 { 500 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 501 } 502 503 static bool type_is_rdonly_mem(u32 type) 504 { 505 return type & MEM_RDONLY; 506 } 507 508 static bool is_acquire_function(enum bpf_func_id func_id, 509 const struct bpf_map *map) 510 { 511 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 512 513 if (func_id == BPF_FUNC_sk_lookup_tcp || 514 func_id == BPF_FUNC_sk_lookup_udp || 515 func_id == BPF_FUNC_skc_lookup_tcp || 516 func_id == BPF_FUNC_ringbuf_reserve || 517 func_id == BPF_FUNC_kptr_xchg) 518 return true; 519 520 if (func_id == BPF_FUNC_map_lookup_elem && 521 (map_type == BPF_MAP_TYPE_SOCKMAP || 522 map_type == BPF_MAP_TYPE_SOCKHASH)) 523 return true; 524 525 return false; 526 } 527 528 static bool is_ptr_cast_function(enum bpf_func_id func_id) 529 { 530 return func_id == BPF_FUNC_tcp_sock || 531 func_id == BPF_FUNC_sk_fullsock || 532 func_id == BPF_FUNC_skc_to_tcp_sock || 533 func_id == BPF_FUNC_skc_to_tcp6_sock || 534 func_id == BPF_FUNC_skc_to_udp6_sock || 535 func_id == BPF_FUNC_skc_to_mptcp_sock || 536 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 537 func_id == BPF_FUNC_skc_to_tcp_request_sock; 538 } 539 540 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 541 { 542 return func_id == BPF_FUNC_dynptr_data; 543 } 544 545 static bool is_callback_calling_kfunc(u32 btf_id); 546 547 static bool is_callback_calling_function(enum bpf_func_id func_id) 548 { 549 return func_id == BPF_FUNC_for_each_map_elem || 550 func_id == BPF_FUNC_timer_set_callback || 551 func_id == BPF_FUNC_find_vma || 552 func_id == BPF_FUNC_loop || 553 func_id == BPF_FUNC_user_ringbuf_drain; 554 } 555 556 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 557 { 558 return func_id == BPF_FUNC_timer_set_callback; 559 } 560 561 static bool is_storage_get_function(enum bpf_func_id func_id) 562 { 563 return func_id == BPF_FUNC_sk_storage_get || 564 func_id == BPF_FUNC_inode_storage_get || 565 func_id == BPF_FUNC_task_storage_get || 566 func_id == BPF_FUNC_cgrp_storage_get; 567 } 568 569 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 570 const struct bpf_map *map) 571 { 572 int ref_obj_uses = 0; 573 574 if (is_ptr_cast_function(func_id)) 575 ref_obj_uses++; 576 if (is_acquire_function(func_id, map)) 577 ref_obj_uses++; 578 if (is_dynptr_ref_function(func_id)) 579 ref_obj_uses++; 580 581 return ref_obj_uses > 1; 582 } 583 584 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 585 { 586 return BPF_CLASS(insn->code) == BPF_STX && 587 BPF_MODE(insn->code) == BPF_ATOMIC && 588 insn->imm == BPF_CMPXCHG; 589 } 590 591 /* string representation of 'enum bpf_reg_type' 592 * 593 * Note that reg_type_str() can not appear more than once in a single verbose() 594 * statement. 595 */ 596 static const char *reg_type_str(struct bpf_verifier_env *env, 597 enum bpf_reg_type type) 598 { 599 char postfix[16] = {0}, prefix[64] = {0}; 600 static const char * const str[] = { 601 [NOT_INIT] = "?", 602 [SCALAR_VALUE] = "scalar", 603 [PTR_TO_CTX] = "ctx", 604 [CONST_PTR_TO_MAP] = "map_ptr", 605 [PTR_TO_MAP_VALUE] = "map_value", 606 [PTR_TO_STACK] = "fp", 607 [PTR_TO_PACKET] = "pkt", 608 [PTR_TO_PACKET_META] = "pkt_meta", 609 [PTR_TO_PACKET_END] = "pkt_end", 610 [PTR_TO_FLOW_KEYS] = "flow_keys", 611 [PTR_TO_SOCKET] = "sock", 612 [PTR_TO_SOCK_COMMON] = "sock_common", 613 [PTR_TO_TCP_SOCK] = "tcp_sock", 614 [PTR_TO_TP_BUFFER] = "tp_buffer", 615 [PTR_TO_XDP_SOCK] = "xdp_sock", 616 [PTR_TO_BTF_ID] = "ptr_", 617 [PTR_TO_MEM] = "mem", 618 [PTR_TO_BUF] = "buf", 619 [PTR_TO_FUNC] = "func", 620 [PTR_TO_MAP_KEY] = "map_key", 621 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", 622 }; 623 624 if (type & PTR_MAYBE_NULL) { 625 if (base_type(type) == PTR_TO_BTF_ID) 626 strncpy(postfix, "or_null_", 16); 627 else 628 strncpy(postfix, "_or_null", 16); 629 } 630 631 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", 632 type & MEM_RDONLY ? "rdonly_" : "", 633 type & MEM_RINGBUF ? "ringbuf_" : "", 634 type & MEM_USER ? "user_" : "", 635 type & MEM_PERCPU ? "percpu_" : "", 636 type & MEM_RCU ? "rcu_" : "", 637 type & PTR_UNTRUSTED ? "untrusted_" : "", 638 type & PTR_TRUSTED ? "trusted_" : "" 639 ); 640 641 snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s", 642 prefix, str[base_type(type)], postfix); 643 return env->tmp_str_buf; 644 } 645 646 static char slot_type_char[] = { 647 [STACK_INVALID] = '?', 648 [STACK_SPILL] = 'r', 649 [STACK_MISC] = 'm', 650 [STACK_ZERO] = '0', 651 [STACK_DYNPTR] = 'd', 652 [STACK_ITER] = 'i', 653 }; 654 655 static void print_liveness(struct bpf_verifier_env *env, 656 enum bpf_reg_liveness live) 657 { 658 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 659 verbose(env, "_"); 660 if (live & REG_LIVE_READ) 661 verbose(env, "r"); 662 if (live & REG_LIVE_WRITTEN) 663 verbose(env, "w"); 664 if (live & REG_LIVE_DONE) 665 verbose(env, "D"); 666 } 667 668 static int __get_spi(s32 off) 669 { 670 return (-off - 1) / BPF_REG_SIZE; 671 } 672 673 static struct bpf_func_state *func(struct bpf_verifier_env *env, 674 const struct bpf_reg_state *reg) 675 { 676 struct bpf_verifier_state *cur = env->cur_state; 677 678 return cur->frame[reg->frameno]; 679 } 680 681 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 682 { 683 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 684 685 /* We need to check that slots between [spi - nr_slots + 1, spi] are 686 * within [0, allocated_stack). 687 * 688 * Please note that the spi grows downwards. For example, a dynptr 689 * takes the size of two stack slots; the first slot will be at 690 * spi and the second slot will be at spi - 1. 691 */ 692 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 693 } 694 695 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 696 const char *obj_kind, int nr_slots) 697 { 698 int off, spi; 699 700 if (!tnum_is_const(reg->var_off)) { 701 verbose(env, "%s has to be at a constant offset\n", obj_kind); 702 return -EINVAL; 703 } 704 705 off = reg->off + reg->var_off.value; 706 if (off % BPF_REG_SIZE) { 707 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 708 return -EINVAL; 709 } 710 711 spi = __get_spi(off); 712 if (spi + 1 < nr_slots) { 713 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 714 return -EINVAL; 715 } 716 717 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 718 return -ERANGE; 719 return spi; 720 } 721 722 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 723 { 724 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 725 } 726 727 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 728 { 729 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 730 } 731 732 static const char *btf_type_name(const struct btf *btf, u32 id) 733 { 734 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 735 } 736 737 static const char *dynptr_type_str(enum bpf_dynptr_type type) 738 { 739 switch (type) { 740 case BPF_DYNPTR_TYPE_LOCAL: 741 return "local"; 742 case BPF_DYNPTR_TYPE_RINGBUF: 743 return "ringbuf"; 744 case BPF_DYNPTR_TYPE_SKB: 745 return "skb"; 746 case BPF_DYNPTR_TYPE_XDP: 747 return "xdp"; 748 case BPF_DYNPTR_TYPE_INVALID: 749 return "<invalid>"; 750 default: 751 WARN_ONCE(1, "unknown dynptr type %d\n", type); 752 return "<unknown>"; 753 } 754 } 755 756 static const char *iter_type_str(const struct btf *btf, u32 btf_id) 757 { 758 if (!btf || btf_id == 0) 759 return "<invalid>"; 760 761 /* we already validated that type is valid and has conforming name */ 762 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1; 763 } 764 765 static const char *iter_state_str(enum bpf_iter_state state) 766 { 767 switch (state) { 768 case BPF_ITER_STATE_ACTIVE: 769 return "active"; 770 case BPF_ITER_STATE_DRAINED: 771 return "drained"; 772 case BPF_ITER_STATE_INVALID: 773 return "<invalid>"; 774 default: 775 WARN_ONCE(1, "unknown iter state %d\n", state); 776 return "<unknown>"; 777 } 778 } 779 780 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 781 { 782 env->scratched_regs |= 1U << regno; 783 } 784 785 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 786 { 787 env->scratched_stack_slots |= 1ULL << spi; 788 } 789 790 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 791 { 792 return (env->scratched_regs >> regno) & 1; 793 } 794 795 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 796 { 797 return (env->scratched_stack_slots >> regno) & 1; 798 } 799 800 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 801 { 802 return env->scratched_regs || env->scratched_stack_slots; 803 } 804 805 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 806 { 807 env->scratched_regs = 0U; 808 env->scratched_stack_slots = 0ULL; 809 } 810 811 /* Used for printing the entire verifier state. */ 812 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 813 { 814 env->scratched_regs = ~0U; 815 env->scratched_stack_slots = ~0ULL; 816 } 817 818 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 819 { 820 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 821 case DYNPTR_TYPE_LOCAL: 822 return BPF_DYNPTR_TYPE_LOCAL; 823 case DYNPTR_TYPE_RINGBUF: 824 return BPF_DYNPTR_TYPE_RINGBUF; 825 case DYNPTR_TYPE_SKB: 826 return BPF_DYNPTR_TYPE_SKB; 827 case DYNPTR_TYPE_XDP: 828 return BPF_DYNPTR_TYPE_XDP; 829 default: 830 return BPF_DYNPTR_TYPE_INVALID; 831 } 832 } 833 834 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 835 { 836 switch (type) { 837 case BPF_DYNPTR_TYPE_LOCAL: 838 return DYNPTR_TYPE_LOCAL; 839 case BPF_DYNPTR_TYPE_RINGBUF: 840 return DYNPTR_TYPE_RINGBUF; 841 case BPF_DYNPTR_TYPE_SKB: 842 return DYNPTR_TYPE_SKB; 843 case BPF_DYNPTR_TYPE_XDP: 844 return DYNPTR_TYPE_XDP; 845 default: 846 return 0; 847 } 848 } 849 850 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 851 { 852 return type == BPF_DYNPTR_TYPE_RINGBUF; 853 } 854 855 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 856 enum bpf_dynptr_type type, 857 bool first_slot, int dynptr_id); 858 859 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 860 struct bpf_reg_state *reg); 861 862 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 863 struct bpf_reg_state *sreg1, 864 struct bpf_reg_state *sreg2, 865 enum bpf_dynptr_type type) 866 { 867 int id = ++env->id_gen; 868 869 __mark_dynptr_reg(sreg1, type, true, id); 870 __mark_dynptr_reg(sreg2, type, false, id); 871 } 872 873 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 874 struct bpf_reg_state *reg, 875 enum bpf_dynptr_type type) 876 { 877 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 878 } 879 880 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 881 struct bpf_func_state *state, int spi); 882 883 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 884 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 885 { 886 struct bpf_func_state *state = func(env, reg); 887 enum bpf_dynptr_type type; 888 int spi, i, err; 889 890 spi = dynptr_get_spi(env, reg); 891 if (spi < 0) 892 return spi; 893 894 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 895 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 896 * to ensure that for the following example: 897 * [d1][d1][d2][d2] 898 * spi 3 2 1 0 899 * So marking spi = 2 should lead to destruction of both d1 and d2. In 900 * case they do belong to same dynptr, second call won't see slot_type 901 * as STACK_DYNPTR and will simply skip destruction. 902 */ 903 err = destroy_if_dynptr_stack_slot(env, state, spi); 904 if (err) 905 return err; 906 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 907 if (err) 908 return err; 909 910 for (i = 0; i < BPF_REG_SIZE; i++) { 911 state->stack[spi].slot_type[i] = STACK_DYNPTR; 912 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 913 } 914 915 type = arg_to_dynptr_type(arg_type); 916 if (type == BPF_DYNPTR_TYPE_INVALID) 917 return -EINVAL; 918 919 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 920 &state->stack[spi - 1].spilled_ptr, type); 921 922 if (dynptr_type_refcounted(type)) { 923 /* The id is used to track proper releasing */ 924 int id; 925 926 if (clone_ref_obj_id) 927 id = clone_ref_obj_id; 928 else 929 id = acquire_reference_state(env, insn_idx); 930 931 if (id < 0) 932 return id; 933 934 state->stack[spi].spilled_ptr.ref_obj_id = id; 935 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 936 } 937 938 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 939 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 940 941 return 0; 942 } 943 944 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 945 { 946 int i; 947 948 for (i = 0; i < BPF_REG_SIZE; i++) { 949 state->stack[spi].slot_type[i] = STACK_INVALID; 950 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 951 } 952 953 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 954 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 955 956 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 957 * 958 * While we don't allow reading STACK_INVALID, it is still possible to 959 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 960 * helpers or insns can do partial read of that part without failing, 961 * but check_stack_range_initialized, check_stack_read_var_off, and 962 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 963 * the slot conservatively. Hence we need to prevent those liveness 964 * marking walks. 965 * 966 * This was not a problem before because STACK_INVALID is only set by 967 * default (where the default reg state has its reg->parent as NULL), or 968 * in clean_live_states after REG_LIVE_DONE (at which point 969 * mark_reg_read won't walk reg->parent chain), but not randomly during 970 * verifier state exploration (like we did above). Hence, for our case 971 * parentage chain will still be live (i.e. reg->parent may be 972 * non-NULL), while earlier reg->parent was NULL, so we need 973 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 974 * done later on reads or by mark_dynptr_read as well to unnecessary 975 * mark registers in verifier state. 976 */ 977 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 978 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 979 } 980 981 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 982 { 983 struct bpf_func_state *state = func(env, reg); 984 int spi, ref_obj_id, i; 985 986 spi = dynptr_get_spi(env, reg); 987 if (spi < 0) 988 return spi; 989 990 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 991 invalidate_dynptr(env, state, spi); 992 return 0; 993 } 994 995 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 996 997 /* If the dynptr has a ref_obj_id, then we need to invalidate 998 * two things: 999 * 1000 * 1) Any dynptrs with a matching ref_obj_id (clones) 1001 * 2) Any slices derived from this dynptr. 1002 */ 1003 1004 /* Invalidate any slices associated with this dynptr */ 1005 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 1006 1007 /* Invalidate any dynptr clones */ 1008 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1009 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 1010 continue; 1011 1012 /* it should always be the case that if the ref obj id 1013 * matches then the stack slot also belongs to a 1014 * dynptr 1015 */ 1016 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 1017 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 1018 return -EFAULT; 1019 } 1020 if (state->stack[i].spilled_ptr.dynptr.first_slot) 1021 invalidate_dynptr(env, state, i); 1022 } 1023 1024 return 0; 1025 } 1026 1027 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1028 struct bpf_reg_state *reg); 1029 1030 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1031 { 1032 if (!env->allow_ptr_leaks) 1033 __mark_reg_not_init(env, reg); 1034 else 1035 __mark_reg_unknown(env, reg); 1036 } 1037 1038 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 1039 struct bpf_func_state *state, int spi) 1040 { 1041 struct bpf_func_state *fstate; 1042 struct bpf_reg_state *dreg; 1043 int i, dynptr_id; 1044 1045 /* We always ensure that STACK_DYNPTR is never set partially, 1046 * hence just checking for slot_type[0] is enough. This is 1047 * different for STACK_SPILL, where it may be only set for 1048 * 1 byte, so code has to use is_spilled_reg. 1049 */ 1050 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 1051 return 0; 1052 1053 /* Reposition spi to first slot */ 1054 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1055 spi = spi + 1; 1056 1057 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 1058 verbose(env, "cannot overwrite referenced dynptr\n"); 1059 return -EINVAL; 1060 } 1061 1062 mark_stack_slot_scratched(env, spi); 1063 mark_stack_slot_scratched(env, spi - 1); 1064 1065 /* Writing partially to one dynptr stack slot destroys both. */ 1066 for (i = 0; i < BPF_REG_SIZE; i++) { 1067 state->stack[spi].slot_type[i] = STACK_INVALID; 1068 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 1069 } 1070 1071 dynptr_id = state->stack[spi].spilled_ptr.id; 1072 /* Invalidate any slices associated with this dynptr */ 1073 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 1074 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 1075 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 1076 continue; 1077 if (dreg->dynptr_id == dynptr_id) 1078 mark_reg_invalid(env, dreg); 1079 })); 1080 1081 /* Do not release reference state, we are destroying dynptr on stack, 1082 * not using some helper to release it. Just reset register. 1083 */ 1084 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 1085 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 1086 1087 /* Same reason as unmark_stack_slots_dynptr above */ 1088 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1089 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 1090 1091 return 0; 1092 } 1093 1094 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1095 { 1096 int spi; 1097 1098 if (reg->type == CONST_PTR_TO_DYNPTR) 1099 return false; 1100 1101 spi = dynptr_get_spi(env, reg); 1102 1103 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 1104 * error because this just means the stack state hasn't been updated yet. 1105 * We will do check_mem_access to check and update stack bounds later. 1106 */ 1107 if (spi < 0 && spi != -ERANGE) 1108 return false; 1109 1110 /* We don't need to check if the stack slots are marked by previous 1111 * dynptr initializations because we allow overwriting existing unreferenced 1112 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 1113 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 1114 * touching are completely destructed before we reinitialize them for a new 1115 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 1116 * instead of delaying it until the end where the user will get "Unreleased 1117 * reference" error. 1118 */ 1119 return true; 1120 } 1121 1122 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1123 { 1124 struct bpf_func_state *state = func(env, reg); 1125 int i, spi; 1126 1127 /* This already represents first slot of initialized bpf_dynptr. 1128 * 1129 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 1130 * check_func_arg_reg_off's logic, so we don't need to check its 1131 * offset and alignment. 1132 */ 1133 if (reg->type == CONST_PTR_TO_DYNPTR) 1134 return true; 1135 1136 spi = dynptr_get_spi(env, reg); 1137 if (spi < 0) 1138 return false; 1139 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1140 return false; 1141 1142 for (i = 0; i < BPF_REG_SIZE; i++) { 1143 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 1144 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 1145 return false; 1146 } 1147 1148 return true; 1149 } 1150 1151 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1152 enum bpf_arg_type arg_type) 1153 { 1154 struct bpf_func_state *state = func(env, reg); 1155 enum bpf_dynptr_type dynptr_type; 1156 int spi; 1157 1158 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1159 if (arg_type == ARG_PTR_TO_DYNPTR) 1160 return true; 1161 1162 dynptr_type = arg_to_dynptr_type(arg_type); 1163 if (reg->type == CONST_PTR_TO_DYNPTR) { 1164 return reg->dynptr.type == dynptr_type; 1165 } else { 1166 spi = dynptr_get_spi(env, reg); 1167 if (spi < 0) 1168 return false; 1169 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1170 } 1171 } 1172 1173 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1174 1175 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1176 struct bpf_reg_state *reg, int insn_idx, 1177 struct btf *btf, u32 btf_id, int nr_slots) 1178 { 1179 struct bpf_func_state *state = func(env, reg); 1180 int spi, i, j, id; 1181 1182 spi = iter_get_spi(env, reg, nr_slots); 1183 if (spi < 0) 1184 return spi; 1185 1186 id = acquire_reference_state(env, insn_idx); 1187 if (id < 0) 1188 return id; 1189 1190 for (i = 0; i < nr_slots; i++) { 1191 struct bpf_stack_state *slot = &state->stack[spi - i]; 1192 struct bpf_reg_state *st = &slot->spilled_ptr; 1193 1194 __mark_reg_known_zero(st); 1195 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1196 st->live |= REG_LIVE_WRITTEN; 1197 st->ref_obj_id = i == 0 ? id : 0; 1198 st->iter.btf = btf; 1199 st->iter.btf_id = btf_id; 1200 st->iter.state = BPF_ITER_STATE_ACTIVE; 1201 st->iter.depth = 0; 1202 1203 for (j = 0; j < BPF_REG_SIZE; j++) 1204 slot->slot_type[j] = STACK_ITER; 1205 1206 mark_stack_slot_scratched(env, spi - i); 1207 } 1208 1209 return 0; 1210 } 1211 1212 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1213 struct bpf_reg_state *reg, int nr_slots) 1214 { 1215 struct bpf_func_state *state = func(env, reg); 1216 int spi, i, j; 1217 1218 spi = iter_get_spi(env, reg, nr_slots); 1219 if (spi < 0) 1220 return spi; 1221 1222 for (i = 0; i < nr_slots; i++) { 1223 struct bpf_stack_state *slot = &state->stack[spi - i]; 1224 struct bpf_reg_state *st = &slot->spilled_ptr; 1225 1226 if (i == 0) 1227 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1228 1229 __mark_reg_not_init(env, st); 1230 1231 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1232 st->live |= REG_LIVE_WRITTEN; 1233 1234 for (j = 0; j < BPF_REG_SIZE; j++) 1235 slot->slot_type[j] = STACK_INVALID; 1236 1237 mark_stack_slot_scratched(env, spi - i); 1238 } 1239 1240 return 0; 1241 } 1242 1243 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1244 struct bpf_reg_state *reg, int nr_slots) 1245 { 1246 struct bpf_func_state *state = func(env, reg); 1247 int spi, i, j; 1248 1249 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1250 * will do check_mem_access to check and update stack bounds later, so 1251 * return true for that case. 1252 */ 1253 spi = iter_get_spi(env, reg, nr_slots); 1254 if (spi == -ERANGE) 1255 return true; 1256 if (spi < 0) 1257 return false; 1258 1259 for (i = 0; i < nr_slots; i++) { 1260 struct bpf_stack_state *slot = &state->stack[spi - i]; 1261 1262 for (j = 0; j < BPF_REG_SIZE; j++) 1263 if (slot->slot_type[j] == STACK_ITER) 1264 return false; 1265 } 1266 1267 return true; 1268 } 1269 1270 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1271 struct btf *btf, u32 btf_id, int nr_slots) 1272 { 1273 struct bpf_func_state *state = func(env, reg); 1274 int spi, i, j; 1275 1276 spi = iter_get_spi(env, reg, nr_slots); 1277 if (spi < 0) 1278 return false; 1279 1280 for (i = 0; i < nr_slots; i++) { 1281 struct bpf_stack_state *slot = &state->stack[spi - i]; 1282 struct bpf_reg_state *st = &slot->spilled_ptr; 1283 1284 /* only main (first) slot has ref_obj_id set */ 1285 if (i == 0 && !st->ref_obj_id) 1286 return false; 1287 if (i != 0 && st->ref_obj_id) 1288 return false; 1289 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1290 return false; 1291 1292 for (j = 0; j < BPF_REG_SIZE; j++) 1293 if (slot->slot_type[j] != STACK_ITER) 1294 return false; 1295 } 1296 1297 return true; 1298 } 1299 1300 /* Check if given stack slot is "special": 1301 * - spilled register state (STACK_SPILL); 1302 * - dynptr state (STACK_DYNPTR); 1303 * - iter state (STACK_ITER). 1304 */ 1305 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1306 { 1307 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1308 1309 switch (type) { 1310 case STACK_SPILL: 1311 case STACK_DYNPTR: 1312 case STACK_ITER: 1313 return true; 1314 case STACK_INVALID: 1315 case STACK_MISC: 1316 case STACK_ZERO: 1317 return false; 1318 default: 1319 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1320 return true; 1321 } 1322 } 1323 1324 /* The reg state of a pointer or a bounded scalar was saved when 1325 * it was spilled to the stack. 1326 */ 1327 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1328 { 1329 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1330 } 1331 1332 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1333 { 1334 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1335 stack->spilled_ptr.type == SCALAR_VALUE; 1336 } 1337 1338 static void scrub_spilled_slot(u8 *stype) 1339 { 1340 if (*stype != STACK_INVALID) 1341 *stype = STACK_MISC; 1342 } 1343 1344 static void print_verifier_state(struct bpf_verifier_env *env, 1345 const struct bpf_func_state *state, 1346 bool print_all) 1347 { 1348 const struct bpf_reg_state *reg; 1349 enum bpf_reg_type t; 1350 int i; 1351 1352 if (state->frameno) 1353 verbose(env, " frame%d:", state->frameno); 1354 for (i = 0; i < MAX_BPF_REG; i++) { 1355 reg = &state->regs[i]; 1356 t = reg->type; 1357 if (t == NOT_INIT) 1358 continue; 1359 if (!print_all && !reg_scratched(env, i)) 1360 continue; 1361 verbose(env, " R%d", i); 1362 print_liveness(env, reg->live); 1363 verbose(env, "="); 1364 if (t == SCALAR_VALUE && reg->precise) 1365 verbose(env, "P"); 1366 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 1367 tnum_is_const(reg->var_off)) { 1368 /* reg->off should be 0 for SCALAR_VALUE */ 1369 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1370 verbose(env, "%lld", reg->var_off.value + reg->off); 1371 } else { 1372 const char *sep = ""; 1373 1374 verbose(env, "%s", reg_type_str(env, t)); 1375 if (base_type(t) == PTR_TO_BTF_ID) 1376 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id)); 1377 verbose(env, "("); 1378 /* 1379 * _a stands for append, was shortened to avoid multiline statements below. 1380 * This macro is used to output a comma separated list of attributes. 1381 */ 1382 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 1383 1384 if (reg->id) 1385 verbose_a("id=%d", reg->id); 1386 if (reg->ref_obj_id) 1387 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 1388 if (type_is_non_owning_ref(reg->type)) 1389 verbose_a("%s", "non_own_ref"); 1390 if (t != SCALAR_VALUE) 1391 verbose_a("off=%d", reg->off); 1392 if (type_is_pkt_pointer(t)) 1393 verbose_a("r=%d", reg->range); 1394 else if (base_type(t) == CONST_PTR_TO_MAP || 1395 base_type(t) == PTR_TO_MAP_KEY || 1396 base_type(t) == PTR_TO_MAP_VALUE) 1397 verbose_a("ks=%d,vs=%d", 1398 reg->map_ptr->key_size, 1399 reg->map_ptr->value_size); 1400 if (tnum_is_const(reg->var_off)) { 1401 /* Typically an immediate SCALAR_VALUE, but 1402 * could be a pointer whose offset is too big 1403 * for reg->off 1404 */ 1405 verbose_a("imm=%llx", reg->var_off.value); 1406 } else { 1407 if (reg->smin_value != reg->umin_value && 1408 reg->smin_value != S64_MIN) 1409 verbose_a("smin=%lld", (long long)reg->smin_value); 1410 if (reg->smax_value != reg->umax_value && 1411 reg->smax_value != S64_MAX) 1412 verbose_a("smax=%lld", (long long)reg->smax_value); 1413 if (reg->umin_value != 0) 1414 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 1415 if (reg->umax_value != U64_MAX) 1416 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 1417 if (!tnum_is_unknown(reg->var_off)) { 1418 char tn_buf[48]; 1419 1420 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1421 verbose_a("var_off=%s", tn_buf); 1422 } 1423 if (reg->s32_min_value != reg->smin_value && 1424 reg->s32_min_value != S32_MIN) 1425 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 1426 if (reg->s32_max_value != reg->smax_value && 1427 reg->s32_max_value != S32_MAX) 1428 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 1429 if (reg->u32_min_value != reg->umin_value && 1430 reg->u32_min_value != U32_MIN) 1431 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 1432 if (reg->u32_max_value != reg->umax_value && 1433 reg->u32_max_value != U32_MAX) 1434 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 1435 } 1436 #undef verbose_a 1437 1438 verbose(env, ")"); 1439 } 1440 } 1441 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1442 char types_buf[BPF_REG_SIZE + 1]; 1443 bool valid = false; 1444 int j; 1445 1446 for (j = 0; j < BPF_REG_SIZE; j++) { 1447 if (state->stack[i].slot_type[j] != STACK_INVALID) 1448 valid = true; 1449 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1450 } 1451 types_buf[BPF_REG_SIZE] = 0; 1452 if (!valid) 1453 continue; 1454 if (!print_all && !stack_slot_scratched(env, i)) 1455 continue; 1456 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) { 1457 case STACK_SPILL: 1458 reg = &state->stack[i].spilled_ptr; 1459 t = reg->type; 1460 1461 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1462 print_liveness(env, reg->live); 1463 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1464 if (t == SCALAR_VALUE && reg->precise) 1465 verbose(env, "P"); 1466 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 1467 verbose(env, "%lld", reg->var_off.value + reg->off); 1468 break; 1469 case STACK_DYNPTR: 1470 i += BPF_DYNPTR_NR_SLOTS - 1; 1471 reg = &state->stack[i].spilled_ptr; 1472 1473 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1474 print_liveness(env, reg->live); 1475 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type)); 1476 if (reg->ref_obj_id) 1477 verbose(env, "(ref_id=%d)", reg->ref_obj_id); 1478 break; 1479 case STACK_ITER: 1480 /* only main slot has ref_obj_id set; skip others */ 1481 reg = &state->stack[i].spilled_ptr; 1482 if (!reg->ref_obj_id) 1483 continue; 1484 1485 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1486 print_liveness(env, reg->live); 1487 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)", 1488 iter_type_str(reg->iter.btf, reg->iter.btf_id), 1489 reg->ref_obj_id, iter_state_str(reg->iter.state), 1490 reg->iter.depth); 1491 break; 1492 case STACK_MISC: 1493 case STACK_ZERO: 1494 default: 1495 reg = &state->stack[i].spilled_ptr; 1496 1497 for (j = 0; j < BPF_REG_SIZE; j++) 1498 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1499 types_buf[BPF_REG_SIZE] = 0; 1500 1501 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1502 print_liveness(env, reg->live); 1503 verbose(env, "=%s", types_buf); 1504 break; 1505 } 1506 } 1507 if (state->acquired_refs && state->refs[0].id) { 1508 verbose(env, " refs=%d", state->refs[0].id); 1509 for (i = 1; i < state->acquired_refs; i++) 1510 if (state->refs[i].id) 1511 verbose(env, ",%d", state->refs[i].id); 1512 } 1513 if (state->in_callback_fn) 1514 verbose(env, " cb"); 1515 if (state->in_async_callback_fn) 1516 verbose(env, " async_cb"); 1517 verbose(env, "\n"); 1518 if (!print_all) 1519 mark_verifier_state_clean(env); 1520 } 1521 1522 static inline u32 vlog_alignment(u32 pos) 1523 { 1524 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 1525 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 1526 } 1527 1528 static void print_insn_state(struct bpf_verifier_env *env, 1529 const struct bpf_func_state *state) 1530 { 1531 if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) { 1532 /* remove new line character */ 1533 bpf_vlog_reset(&env->log, env->prev_log_pos - 1); 1534 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' '); 1535 } else { 1536 verbose(env, "%d:", env->insn_idx); 1537 } 1538 print_verifier_state(env, state, false); 1539 } 1540 1541 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1542 * small to hold src. This is different from krealloc since we don't want to preserve 1543 * the contents of dst. 1544 * 1545 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1546 * not be allocated. 1547 */ 1548 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1549 { 1550 size_t alloc_bytes; 1551 void *orig = dst; 1552 size_t bytes; 1553 1554 if (ZERO_OR_NULL_PTR(src)) 1555 goto out; 1556 1557 if (unlikely(check_mul_overflow(n, size, &bytes))) 1558 return NULL; 1559 1560 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1561 dst = krealloc(orig, alloc_bytes, flags); 1562 if (!dst) { 1563 kfree(orig); 1564 return NULL; 1565 } 1566 1567 memcpy(dst, src, bytes); 1568 out: 1569 return dst ? dst : ZERO_SIZE_PTR; 1570 } 1571 1572 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1573 * small to hold new_n items. new items are zeroed out if the array grows. 1574 * 1575 * Contrary to krealloc_array, does not free arr if new_n is zero. 1576 */ 1577 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1578 { 1579 size_t alloc_size; 1580 void *new_arr; 1581 1582 if (!new_n || old_n == new_n) 1583 goto out; 1584 1585 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1586 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1587 if (!new_arr) { 1588 kfree(arr); 1589 return NULL; 1590 } 1591 arr = new_arr; 1592 1593 if (new_n > old_n) 1594 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1595 1596 out: 1597 return arr ? arr : ZERO_SIZE_PTR; 1598 } 1599 1600 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1601 { 1602 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1603 sizeof(struct bpf_reference_state), GFP_KERNEL); 1604 if (!dst->refs) 1605 return -ENOMEM; 1606 1607 dst->acquired_refs = src->acquired_refs; 1608 return 0; 1609 } 1610 1611 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1612 { 1613 size_t n = src->allocated_stack / BPF_REG_SIZE; 1614 1615 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1616 GFP_KERNEL); 1617 if (!dst->stack) 1618 return -ENOMEM; 1619 1620 dst->allocated_stack = src->allocated_stack; 1621 return 0; 1622 } 1623 1624 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1625 { 1626 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1627 sizeof(struct bpf_reference_state)); 1628 if (!state->refs) 1629 return -ENOMEM; 1630 1631 state->acquired_refs = n; 1632 return 0; 1633 } 1634 1635 static int grow_stack_state(struct bpf_func_state *state, int size) 1636 { 1637 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1638 1639 if (old_n >= n) 1640 return 0; 1641 1642 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1643 if (!state->stack) 1644 return -ENOMEM; 1645 1646 state->allocated_stack = size; 1647 return 0; 1648 } 1649 1650 /* Acquire a pointer id from the env and update the state->refs to include 1651 * this new pointer reference. 1652 * On success, returns a valid pointer id to associate with the register 1653 * On failure, returns a negative errno. 1654 */ 1655 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1656 { 1657 struct bpf_func_state *state = cur_func(env); 1658 int new_ofs = state->acquired_refs; 1659 int id, err; 1660 1661 err = resize_reference_state(state, state->acquired_refs + 1); 1662 if (err) 1663 return err; 1664 id = ++env->id_gen; 1665 state->refs[new_ofs].id = id; 1666 state->refs[new_ofs].insn_idx = insn_idx; 1667 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1668 1669 return id; 1670 } 1671 1672 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1673 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1674 { 1675 int i, last_idx; 1676 1677 last_idx = state->acquired_refs - 1; 1678 for (i = 0; i < state->acquired_refs; i++) { 1679 if (state->refs[i].id == ptr_id) { 1680 /* Cannot release caller references in callbacks */ 1681 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1682 return -EINVAL; 1683 if (last_idx && i != last_idx) 1684 memcpy(&state->refs[i], &state->refs[last_idx], 1685 sizeof(*state->refs)); 1686 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1687 state->acquired_refs--; 1688 return 0; 1689 } 1690 } 1691 return -EINVAL; 1692 } 1693 1694 static void free_func_state(struct bpf_func_state *state) 1695 { 1696 if (!state) 1697 return; 1698 kfree(state->refs); 1699 kfree(state->stack); 1700 kfree(state); 1701 } 1702 1703 static void clear_jmp_history(struct bpf_verifier_state *state) 1704 { 1705 kfree(state->jmp_history); 1706 state->jmp_history = NULL; 1707 state->jmp_history_cnt = 0; 1708 } 1709 1710 static void free_verifier_state(struct bpf_verifier_state *state, 1711 bool free_self) 1712 { 1713 int i; 1714 1715 for (i = 0; i <= state->curframe; i++) { 1716 free_func_state(state->frame[i]); 1717 state->frame[i] = NULL; 1718 } 1719 clear_jmp_history(state); 1720 if (free_self) 1721 kfree(state); 1722 } 1723 1724 /* copy verifier state from src to dst growing dst stack space 1725 * when necessary to accommodate larger src stack 1726 */ 1727 static int copy_func_state(struct bpf_func_state *dst, 1728 const struct bpf_func_state *src) 1729 { 1730 int err; 1731 1732 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1733 err = copy_reference_state(dst, src); 1734 if (err) 1735 return err; 1736 return copy_stack_state(dst, src); 1737 } 1738 1739 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1740 const struct bpf_verifier_state *src) 1741 { 1742 struct bpf_func_state *dst; 1743 int i, err; 1744 1745 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1746 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1747 GFP_USER); 1748 if (!dst_state->jmp_history) 1749 return -ENOMEM; 1750 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1751 1752 /* if dst has more stack frames then src frame, free them */ 1753 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1754 free_func_state(dst_state->frame[i]); 1755 dst_state->frame[i] = NULL; 1756 } 1757 dst_state->speculative = src->speculative; 1758 dst_state->active_rcu_lock = src->active_rcu_lock; 1759 dst_state->curframe = src->curframe; 1760 dst_state->active_lock.ptr = src->active_lock.ptr; 1761 dst_state->active_lock.id = src->active_lock.id; 1762 dst_state->branches = src->branches; 1763 dst_state->parent = src->parent; 1764 dst_state->first_insn_idx = src->first_insn_idx; 1765 dst_state->last_insn_idx = src->last_insn_idx; 1766 for (i = 0; i <= src->curframe; i++) { 1767 dst = dst_state->frame[i]; 1768 if (!dst) { 1769 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1770 if (!dst) 1771 return -ENOMEM; 1772 dst_state->frame[i] = dst; 1773 } 1774 err = copy_func_state(dst, src->frame[i]); 1775 if (err) 1776 return err; 1777 } 1778 return 0; 1779 } 1780 1781 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1782 { 1783 while (st) { 1784 u32 br = --st->branches; 1785 1786 /* WARN_ON(br > 1) technically makes sense here, 1787 * but see comment in push_stack(), hence: 1788 */ 1789 WARN_ONCE((int)br < 0, 1790 "BUG update_branch_counts:branches_to_explore=%d\n", 1791 br); 1792 if (br) 1793 break; 1794 st = st->parent; 1795 } 1796 } 1797 1798 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1799 int *insn_idx, bool pop_log) 1800 { 1801 struct bpf_verifier_state *cur = env->cur_state; 1802 struct bpf_verifier_stack_elem *elem, *head = env->head; 1803 int err; 1804 1805 if (env->head == NULL) 1806 return -ENOENT; 1807 1808 if (cur) { 1809 err = copy_verifier_state(cur, &head->st); 1810 if (err) 1811 return err; 1812 } 1813 if (pop_log) 1814 bpf_vlog_reset(&env->log, head->log_pos); 1815 if (insn_idx) 1816 *insn_idx = head->insn_idx; 1817 if (prev_insn_idx) 1818 *prev_insn_idx = head->prev_insn_idx; 1819 elem = head->next; 1820 free_verifier_state(&head->st, false); 1821 kfree(head); 1822 env->head = elem; 1823 env->stack_size--; 1824 return 0; 1825 } 1826 1827 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1828 int insn_idx, int prev_insn_idx, 1829 bool speculative) 1830 { 1831 struct bpf_verifier_state *cur = env->cur_state; 1832 struct bpf_verifier_stack_elem *elem; 1833 int err; 1834 1835 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1836 if (!elem) 1837 goto err; 1838 1839 elem->insn_idx = insn_idx; 1840 elem->prev_insn_idx = prev_insn_idx; 1841 elem->next = env->head; 1842 elem->log_pos = env->log.end_pos; 1843 env->head = elem; 1844 env->stack_size++; 1845 err = copy_verifier_state(&elem->st, cur); 1846 if (err) 1847 goto err; 1848 elem->st.speculative |= speculative; 1849 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1850 verbose(env, "The sequence of %d jumps is too complex.\n", 1851 env->stack_size); 1852 goto err; 1853 } 1854 if (elem->st.parent) { 1855 ++elem->st.parent->branches; 1856 /* WARN_ON(branches > 2) technically makes sense here, 1857 * but 1858 * 1. speculative states will bump 'branches' for non-branch 1859 * instructions 1860 * 2. is_state_visited() heuristics may decide not to create 1861 * a new state for a sequence of branches and all such current 1862 * and cloned states will be pointing to a single parent state 1863 * which might have large 'branches' count. 1864 */ 1865 } 1866 return &elem->st; 1867 err: 1868 free_verifier_state(env->cur_state, true); 1869 env->cur_state = NULL; 1870 /* pop all elements and return */ 1871 while (!pop_stack(env, NULL, NULL, false)); 1872 return NULL; 1873 } 1874 1875 #define CALLER_SAVED_REGS 6 1876 static const int caller_saved[CALLER_SAVED_REGS] = { 1877 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1878 }; 1879 1880 /* This helper doesn't clear reg->id */ 1881 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1882 { 1883 reg->var_off = tnum_const(imm); 1884 reg->smin_value = (s64)imm; 1885 reg->smax_value = (s64)imm; 1886 reg->umin_value = imm; 1887 reg->umax_value = imm; 1888 1889 reg->s32_min_value = (s32)imm; 1890 reg->s32_max_value = (s32)imm; 1891 reg->u32_min_value = (u32)imm; 1892 reg->u32_max_value = (u32)imm; 1893 } 1894 1895 /* Mark the unknown part of a register (variable offset or scalar value) as 1896 * known to have the value @imm. 1897 */ 1898 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1899 { 1900 /* Clear off and union(map_ptr, range) */ 1901 memset(((u8 *)reg) + sizeof(reg->type), 0, 1902 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1903 reg->id = 0; 1904 reg->ref_obj_id = 0; 1905 ___mark_reg_known(reg, imm); 1906 } 1907 1908 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1909 { 1910 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1911 reg->s32_min_value = (s32)imm; 1912 reg->s32_max_value = (s32)imm; 1913 reg->u32_min_value = (u32)imm; 1914 reg->u32_max_value = (u32)imm; 1915 } 1916 1917 /* Mark the 'variable offset' part of a register as zero. This should be 1918 * used only on registers holding a pointer type. 1919 */ 1920 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1921 { 1922 __mark_reg_known(reg, 0); 1923 } 1924 1925 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1926 { 1927 __mark_reg_known(reg, 0); 1928 reg->type = SCALAR_VALUE; 1929 } 1930 1931 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1932 struct bpf_reg_state *regs, u32 regno) 1933 { 1934 if (WARN_ON(regno >= MAX_BPF_REG)) { 1935 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1936 /* Something bad happened, let's kill all regs */ 1937 for (regno = 0; regno < MAX_BPF_REG; regno++) 1938 __mark_reg_not_init(env, regs + regno); 1939 return; 1940 } 1941 __mark_reg_known_zero(regs + regno); 1942 } 1943 1944 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1945 bool first_slot, int dynptr_id) 1946 { 1947 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1948 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1949 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1950 */ 1951 __mark_reg_known_zero(reg); 1952 reg->type = CONST_PTR_TO_DYNPTR; 1953 /* Give each dynptr a unique id to uniquely associate slices to it. */ 1954 reg->id = dynptr_id; 1955 reg->dynptr.type = type; 1956 reg->dynptr.first_slot = first_slot; 1957 } 1958 1959 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1960 { 1961 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1962 const struct bpf_map *map = reg->map_ptr; 1963 1964 if (map->inner_map_meta) { 1965 reg->type = CONST_PTR_TO_MAP; 1966 reg->map_ptr = map->inner_map_meta; 1967 /* transfer reg's id which is unique for every map_lookup_elem 1968 * as UID of the inner map. 1969 */ 1970 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1971 reg->map_uid = reg->id; 1972 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1973 reg->type = PTR_TO_XDP_SOCK; 1974 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1975 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1976 reg->type = PTR_TO_SOCKET; 1977 } else { 1978 reg->type = PTR_TO_MAP_VALUE; 1979 } 1980 return; 1981 } 1982 1983 reg->type &= ~PTR_MAYBE_NULL; 1984 } 1985 1986 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 1987 struct btf_field_graph_root *ds_head) 1988 { 1989 __mark_reg_known_zero(®s[regno]); 1990 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 1991 regs[regno].btf = ds_head->btf; 1992 regs[regno].btf_id = ds_head->value_btf_id; 1993 regs[regno].off = ds_head->node_offset; 1994 } 1995 1996 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1997 { 1998 return type_is_pkt_pointer(reg->type); 1999 } 2000 2001 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 2002 { 2003 return reg_is_pkt_pointer(reg) || 2004 reg->type == PTR_TO_PACKET_END; 2005 } 2006 2007 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 2008 { 2009 return base_type(reg->type) == PTR_TO_MEM && 2010 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 2011 } 2012 2013 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 2014 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 2015 enum bpf_reg_type which) 2016 { 2017 /* The register can already have a range from prior markings. 2018 * This is fine as long as it hasn't been advanced from its 2019 * origin. 2020 */ 2021 return reg->type == which && 2022 reg->id == 0 && 2023 reg->off == 0 && 2024 tnum_equals_const(reg->var_off, 0); 2025 } 2026 2027 /* Reset the min/max bounds of a register */ 2028 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 2029 { 2030 reg->smin_value = S64_MIN; 2031 reg->smax_value = S64_MAX; 2032 reg->umin_value = 0; 2033 reg->umax_value = U64_MAX; 2034 2035 reg->s32_min_value = S32_MIN; 2036 reg->s32_max_value = S32_MAX; 2037 reg->u32_min_value = 0; 2038 reg->u32_max_value = U32_MAX; 2039 } 2040 2041 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 2042 { 2043 reg->smin_value = S64_MIN; 2044 reg->smax_value = S64_MAX; 2045 reg->umin_value = 0; 2046 reg->umax_value = U64_MAX; 2047 } 2048 2049 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 2050 { 2051 reg->s32_min_value = S32_MIN; 2052 reg->s32_max_value = S32_MAX; 2053 reg->u32_min_value = 0; 2054 reg->u32_max_value = U32_MAX; 2055 } 2056 2057 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2058 { 2059 struct tnum var32_off = tnum_subreg(reg->var_off); 2060 2061 /* min signed is max(sign bit) | min(other bits) */ 2062 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2063 var32_off.value | (var32_off.mask & S32_MIN)); 2064 /* max signed is min(sign bit) | max(other bits) */ 2065 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2066 var32_off.value | (var32_off.mask & S32_MAX)); 2067 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2068 reg->u32_max_value = min(reg->u32_max_value, 2069 (u32)(var32_off.value | var32_off.mask)); 2070 } 2071 2072 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2073 { 2074 /* min signed is max(sign bit) | min(other bits) */ 2075 reg->smin_value = max_t(s64, reg->smin_value, 2076 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2077 /* max signed is min(sign bit) | max(other bits) */ 2078 reg->smax_value = min_t(s64, reg->smax_value, 2079 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2080 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2081 reg->umax_value = min(reg->umax_value, 2082 reg->var_off.value | reg->var_off.mask); 2083 } 2084 2085 static void __update_reg_bounds(struct bpf_reg_state *reg) 2086 { 2087 __update_reg32_bounds(reg); 2088 __update_reg64_bounds(reg); 2089 } 2090 2091 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2092 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2093 { 2094 /* Learn sign from signed bounds. 2095 * If we cannot cross the sign boundary, then signed and unsigned bounds 2096 * are the same, so combine. This works even in the negative case, e.g. 2097 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2098 */ 2099 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 2100 reg->s32_min_value = reg->u32_min_value = 2101 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2102 reg->s32_max_value = reg->u32_max_value = 2103 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2104 return; 2105 } 2106 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2107 * boundary, so we must be careful. 2108 */ 2109 if ((s32)reg->u32_max_value >= 0) { 2110 /* Positive. We can't learn anything from the smin, but smax 2111 * is positive, hence safe. 2112 */ 2113 reg->s32_min_value = reg->u32_min_value; 2114 reg->s32_max_value = reg->u32_max_value = 2115 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2116 } else if ((s32)reg->u32_min_value < 0) { 2117 /* Negative. We can't learn anything from the smax, but smin 2118 * is negative, hence safe. 2119 */ 2120 reg->s32_min_value = reg->u32_min_value = 2121 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2122 reg->s32_max_value = reg->u32_max_value; 2123 } 2124 } 2125 2126 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2127 { 2128 /* Learn sign from signed bounds. 2129 * If we cannot cross the sign boundary, then signed and unsigned bounds 2130 * are the same, so combine. This works even in the negative case, e.g. 2131 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2132 */ 2133 if (reg->smin_value >= 0 || reg->smax_value < 0) { 2134 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2135 reg->umin_value); 2136 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2137 reg->umax_value); 2138 return; 2139 } 2140 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2141 * boundary, so we must be careful. 2142 */ 2143 if ((s64)reg->umax_value >= 0) { 2144 /* Positive. We can't learn anything from the smin, but smax 2145 * is positive, hence safe. 2146 */ 2147 reg->smin_value = reg->umin_value; 2148 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2149 reg->umax_value); 2150 } else if ((s64)reg->umin_value < 0) { 2151 /* Negative. We can't learn anything from the smax, but smin 2152 * is negative, hence safe. 2153 */ 2154 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2155 reg->umin_value); 2156 reg->smax_value = reg->umax_value; 2157 } 2158 } 2159 2160 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2161 { 2162 __reg32_deduce_bounds(reg); 2163 __reg64_deduce_bounds(reg); 2164 } 2165 2166 /* Attempts to improve var_off based on unsigned min/max information */ 2167 static void __reg_bound_offset(struct bpf_reg_state *reg) 2168 { 2169 struct tnum var64_off = tnum_intersect(reg->var_off, 2170 tnum_range(reg->umin_value, 2171 reg->umax_value)); 2172 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2173 tnum_range(reg->u32_min_value, 2174 reg->u32_max_value)); 2175 2176 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2177 } 2178 2179 static void reg_bounds_sync(struct bpf_reg_state *reg) 2180 { 2181 /* We might have learned new bounds from the var_off. */ 2182 __update_reg_bounds(reg); 2183 /* We might have learned something about the sign bit. */ 2184 __reg_deduce_bounds(reg); 2185 /* We might have learned some bits from the bounds. */ 2186 __reg_bound_offset(reg); 2187 /* Intersecting with the old var_off might have improved our bounds 2188 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2189 * then new var_off is (0; 0x7f...fc) which improves our umax. 2190 */ 2191 __update_reg_bounds(reg); 2192 } 2193 2194 static bool __reg32_bound_s64(s32 a) 2195 { 2196 return a >= 0 && a <= S32_MAX; 2197 } 2198 2199 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2200 { 2201 reg->umin_value = reg->u32_min_value; 2202 reg->umax_value = reg->u32_max_value; 2203 2204 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2205 * be positive otherwise set to worse case bounds and refine later 2206 * from tnum. 2207 */ 2208 if (__reg32_bound_s64(reg->s32_min_value) && 2209 __reg32_bound_s64(reg->s32_max_value)) { 2210 reg->smin_value = reg->s32_min_value; 2211 reg->smax_value = reg->s32_max_value; 2212 } else { 2213 reg->smin_value = 0; 2214 reg->smax_value = U32_MAX; 2215 } 2216 } 2217 2218 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 2219 { 2220 /* special case when 64-bit register has upper 32-bit register 2221 * zeroed. Typically happens after zext or <<32, >>32 sequence 2222 * allowing us to use 32-bit bounds directly, 2223 */ 2224 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 2225 __reg_assign_32_into_64(reg); 2226 } else { 2227 /* Otherwise the best we can do is push lower 32bit known and 2228 * unknown bits into register (var_off set from jmp logic) 2229 * then learn as much as possible from the 64-bit tnum 2230 * known and unknown bits. The previous smin/smax bounds are 2231 * invalid here because of jmp32 compare so mark them unknown 2232 * so they do not impact tnum bounds calculation. 2233 */ 2234 __mark_reg64_unbounded(reg); 2235 } 2236 reg_bounds_sync(reg); 2237 } 2238 2239 static bool __reg64_bound_s32(s64 a) 2240 { 2241 return a >= S32_MIN && a <= S32_MAX; 2242 } 2243 2244 static bool __reg64_bound_u32(u64 a) 2245 { 2246 return a >= U32_MIN && a <= U32_MAX; 2247 } 2248 2249 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 2250 { 2251 __mark_reg32_unbounded(reg); 2252 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 2253 reg->s32_min_value = (s32)reg->smin_value; 2254 reg->s32_max_value = (s32)reg->smax_value; 2255 } 2256 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 2257 reg->u32_min_value = (u32)reg->umin_value; 2258 reg->u32_max_value = (u32)reg->umax_value; 2259 } 2260 reg_bounds_sync(reg); 2261 } 2262 2263 /* Mark a register as having a completely unknown (scalar) value. */ 2264 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2265 struct bpf_reg_state *reg) 2266 { 2267 /* 2268 * Clear type, off, and union(map_ptr, range) and 2269 * padding between 'type' and union 2270 */ 2271 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2272 reg->type = SCALAR_VALUE; 2273 reg->id = 0; 2274 reg->ref_obj_id = 0; 2275 reg->var_off = tnum_unknown; 2276 reg->frameno = 0; 2277 reg->precise = !env->bpf_capable; 2278 __mark_reg_unbounded(reg); 2279 } 2280 2281 static void mark_reg_unknown(struct bpf_verifier_env *env, 2282 struct bpf_reg_state *regs, u32 regno) 2283 { 2284 if (WARN_ON(regno >= MAX_BPF_REG)) { 2285 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2286 /* Something bad happened, let's kill all regs except FP */ 2287 for (regno = 0; regno < BPF_REG_FP; regno++) 2288 __mark_reg_not_init(env, regs + regno); 2289 return; 2290 } 2291 __mark_reg_unknown(env, regs + regno); 2292 } 2293 2294 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2295 struct bpf_reg_state *reg) 2296 { 2297 __mark_reg_unknown(env, reg); 2298 reg->type = NOT_INIT; 2299 } 2300 2301 static void mark_reg_not_init(struct bpf_verifier_env *env, 2302 struct bpf_reg_state *regs, u32 regno) 2303 { 2304 if (WARN_ON(regno >= MAX_BPF_REG)) { 2305 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2306 /* Something bad happened, let's kill all regs except FP */ 2307 for (regno = 0; regno < BPF_REG_FP; regno++) 2308 __mark_reg_not_init(env, regs + regno); 2309 return; 2310 } 2311 __mark_reg_not_init(env, regs + regno); 2312 } 2313 2314 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2315 struct bpf_reg_state *regs, u32 regno, 2316 enum bpf_reg_type reg_type, 2317 struct btf *btf, u32 btf_id, 2318 enum bpf_type_flag flag) 2319 { 2320 if (reg_type == SCALAR_VALUE) { 2321 mark_reg_unknown(env, regs, regno); 2322 return; 2323 } 2324 mark_reg_known_zero(env, regs, regno); 2325 regs[regno].type = PTR_TO_BTF_ID | flag; 2326 regs[regno].btf = btf; 2327 regs[regno].btf_id = btf_id; 2328 } 2329 2330 #define DEF_NOT_SUBREG (0) 2331 static void init_reg_state(struct bpf_verifier_env *env, 2332 struct bpf_func_state *state) 2333 { 2334 struct bpf_reg_state *regs = state->regs; 2335 int i; 2336 2337 for (i = 0; i < MAX_BPF_REG; i++) { 2338 mark_reg_not_init(env, regs, i); 2339 regs[i].live = REG_LIVE_NONE; 2340 regs[i].parent = NULL; 2341 regs[i].subreg_def = DEF_NOT_SUBREG; 2342 } 2343 2344 /* frame pointer */ 2345 regs[BPF_REG_FP].type = PTR_TO_STACK; 2346 mark_reg_known_zero(env, regs, BPF_REG_FP); 2347 regs[BPF_REG_FP].frameno = state->frameno; 2348 } 2349 2350 #define BPF_MAIN_FUNC (-1) 2351 static void init_func_state(struct bpf_verifier_env *env, 2352 struct bpf_func_state *state, 2353 int callsite, int frameno, int subprogno) 2354 { 2355 state->callsite = callsite; 2356 state->frameno = frameno; 2357 state->subprogno = subprogno; 2358 state->callback_ret_range = tnum_range(0, 0); 2359 init_reg_state(env, state); 2360 mark_verifier_state_scratched(env); 2361 } 2362 2363 /* Similar to push_stack(), but for async callbacks */ 2364 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2365 int insn_idx, int prev_insn_idx, 2366 int subprog) 2367 { 2368 struct bpf_verifier_stack_elem *elem; 2369 struct bpf_func_state *frame; 2370 2371 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2372 if (!elem) 2373 goto err; 2374 2375 elem->insn_idx = insn_idx; 2376 elem->prev_insn_idx = prev_insn_idx; 2377 elem->next = env->head; 2378 elem->log_pos = env->log.end_pos; 2379 env->head = elem; 2380 env->stack_size++; 2381 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2382 verbose(env, 2383 "The sequence of %d jumps is too complex for async cb.\n", 2384 env->stack_size); 2385 goto err; 2386 } 2387 /* Unlike push_stack() do not copy_verifier_state(). 2388 * The caller state doesn't matter. 2389 * This is async callback. It starts in a fresh stack. 2390 * Initialize it similar to do_check_common(). 2391 */ 2392 elem->st.branches = 1; 2393 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2394 if (!frame) 2395 goto err; 2396 init_func_state(env, frame, 2397 BPF_MAIN_FUNC /* callsite */, 2398 0 /* frameno within this callchain */, 2399 subprog /* subprog number within this prog */); 2400 elem->st.frame[0] = frame; 2401 return &elem->st; 2402 err: 2403 free_verifier_state(env->cur_state, true); 2404 env->cur_state = NULL; 2405 /* pop all elements and return */ 2406 while (!pop_stack(env, NULL, NULL, false)); 2407 return NULL; 2408 } 2409 2410 2411 enum reg_arg_type { 2412 SRC_OP, /* register is used as source operand */ 2413 DST_OP, /* register is used as destination operand */ 2414 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2415 }; 2416 2417 static int cmp_subprogs(const void *a, const void *b) 2418 { 2419 return ((struct bpf_subprog_info *)a)->start - 2420 ((struct bpf_subprog_info *)b)->start; 2421 } 2422 2423 static int find_subprog(struct bpf_verifier_env *env, int off) 2424 { 2425 struct bpf_subprog_info *p; 2426 2427 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2428 sizeof(env->subprog_info[0]), cmp_subprogs); 2429 if (!p) 2430 return -ENOENT; 2431 return p - env->subprog_info; 2432 2433 } 2434 2435 static int add_subprog(struct bpf_verifier_env *env, int off) 2436 { 2437 int insn_cnt = env->prog->len; 2438 int ret; 2439 2440 if (off >= insn_cnt || off < 0) { 2441 verbose(env, "call to invalid destination\n"); 2442 return -EINVAL; 2443 } 2444 ret = find_subprog(env, off); 2445 if (ret >= 0) 2446 return ret; 2447 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2448 verbose(env, "too many subprograms\n"); 2449 return -E2BIG; 2450 } 2451 /* determine subprog starts. The end is one before the next starts */ 2452 env->subprog_info[env->subprog_cnt++].start = off; 2453 sort(env->subprog_info, env->subprog_cnt, 2454 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2455 return env->subprog_cnt - 1; 2456 } 2457 2458 #define MAX_KFUNC_DESCS 256 2459 #define MAX_KFUNC_BTFS 256 2460 2461 struct bpf_kfunc_desc { 2462 struct btf_func_model func_model; 2463 u32 func_id; 2464 s32 imm; 2465 u16 offset; 2466 unsigned long addr; 2467 }; 2468 2469 struct bpf_kfunc_btf { 2470 struct btf *btf; 2471 struct module *module; 2472 u16 offset; 2473 }; 2474 2475 struct bpf_kfunc_desc_tab { 2476 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2477 * verification. JITs do lookups by bpf_insn, where func_id may not be 2478 * available, therefore at the end of verification do_misc_fixups() 2479 * sorts this by imm and offset. 2480 */ 2481 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2482 u32 nr_descs; 2483 }; 2484 2485 struct bpf_kfunc_btf_tab { 2486 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2487 u32 nr_descs; 2488 }; 2489 2490 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2491 { 2492 const struct bpf_kfunc_desc *d0 = a; 2493 const struct bpf_kfunc_desc *d1 = b; 2494 2495 /* func_id is not greater than BTF_MAX_TYPE */ 2496 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2497 } 2498 2499 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2500 { 2501 const struct bpf_kfunc_btf *d0 = a; 2502 const struct bpf_kfunc_btf *d1 = b; 2503 2504 return d0->offset - d1->offset; 2505 } 2506 2507 static const struct bpf_kfunc_desc * 2508 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2509 { 2510 struct bpf_kfunc_desc desc = { 2511 .func_id = func_id, 2512 .offset = offset, 2513 }; 2514 struct bpf_kfunc_desc_tab *tab; 2515 2516 tab = prog->aux->kfunc_tab; 2517 return bsearch(&desc, tab->descs, tab->nr_descs, 2518 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2519 } 2520 2521 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2522 u16 btf_fd_idx, u8 **func_addr) 2523 { 2524 const struct bpf_kfunc_desc *desc; 2525 2526 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2527 if (!desc) 2528 return -EFAULT; 2529 2530 *func_addr = (u8 *)desc->addr; 2531 return 0; 2532 } 2533 2534 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2535 s16 offset) 2536 { 2537 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2538 struct bpf_kfunc_btf_tab *tab; 2539 struct bpf_kfunc_btf *b; 2540 struct module *mod; 2541 struct btf *btf; 2542 int btf_fd; 2543 2544 tab = env->prog->aux->kfunc_btf_tab; 2545 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2546 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2547 if (!b) { 2548 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2549 verbose(env, "too many different module BTFs\n"); 2550 return ERR_PTR(-E2BIG); 2551 } 2552 2553 if (bpfptr_is_null(env->fd_array)) { 2554 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2555 return ERR_PTR(-EPROTO); 2556 } 2557 2558 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2559 offset * sizeof(btf_fd), 2560 sizeof(btf_fd))) 2561 return ERR_PTR(-EFAULT); 2562 2563 btf = btf_get_by_fd(btf_fd); 2564 if (IS_ERR(btf)) { 2565 verbose(env, "invalid module BTF fd specified\n"); 2566 return btf; 2567 } 2568 2569 if (!btf_is_module(btf)) { 2570 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2571 btf_put(btf); 2572 return ERR_PTR(-EINVAL); 2573 } 2574 2575 mod = btf_try_get_module(btf); 2576 if (!mod) { 2577 btf_put(btf); 2578 return ERR_PTR(-ENXIO); 2579 } 2580 2581 b = &tab->descs[tab->nr_descs++]; 2582 b->btf = btf; 2583 b->module = mod; 2584 b->offset = offset; 2585 2586 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2587 kfunc_btf_cmp_by_off, NULL); 2588 } 2589 return b->btf; 2590 } 2591 2592 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2593 { 2594 if (!tab) 2595 return; 2596 2597 while (tab->nr_descs--) { 2598 module_put(tab->descs[tab->nr_descs].module); 2599 btf_put(tab->descs[tab->nr_descs].btf); 2600 } 2601 kfree(tab); 2602 } 2603 2604 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2605 { 2606 if (offset) { 2607 if (offset < 0) { 2608 /* In the future, this can be allowed to increase limit 2609 * of fd index into fd_array, interpreted as u16. 2610 */ 2611 verbose(env, "negative offset disallowed for kernel module function call\n"); 2612 return ERR_PTR(-EINVAL); 2613 } 2614 2615 return __find_kfunc_desc_btf(env, offset); 2616 } 2617 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2618 } 2619 2620 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2621 { 2622 const struct btf_type *func, *func_proto; 2623 struct bpf_kfunc_btf_tab *btf_tab; 2624 struct bpf_kfunc_desc_tab *tab; 2625 struct bpf_prog_aux *prog_aux; 2626 struct bpf_kfunc_desc *desc; 2627 const char *func_name; 2628 struct btf *desc_btf; 2629 unsigned long call_imm; 2630 unsigned long addr; 2631 int err; 2632 2633 prog_aux = env->prog->aux; 2634 tab = prog_aux->kfunc_tab; 2635 btf_tab = prog_aux->kfunc_btf_tab; 2636 if (!tab) { 2637 if (!btf_vmlinux) { 2638 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2639 return -ENOTSUPP; 2640 } 2641 2642 if (!env->prog->jit_requested) { 2643 verbose(env, "JIT is required for calling kernel function\n"); 2644 return -ENOTSUPP; 2645 } 2646 2647 if (!bpf_jit_supports_kfunc_call()) { 2648 verbose(env, "JIT does not support calling kernel function\n"); 2649 return -ENOTSUPP; 2650 } 2651 2652 if (!env->prog->gpl_compatible) { 2653 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2654 return -EINVAL; 2655 } 2656 2657 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2658 if (!tab) 2659 return -ENOMEM; 2660 prog_aux->kfunc_tab = tab; 2661 } 2662 2663 /* func_id == 0 is always invalid, but instead of returning an error, be 2664 * conservative and wait until the code elimination pass before returning 2665 * error, so that invalid calls that get pruned out can be in BPF programs 2666 * loaded from userspace. It is also required that offset be untouched 2667 * for such calls. 2668 */ 2669 if (!func_id && !offset) 2670 return 0; 2671 2672 if (!btf_tab && offset) { 2673 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2674 if (!btf_tab) 2675 return -ENOMEM; 2676 prog_aux->kfunc_btf_tab = btf_tab; 2677 } 2678 2679 desc_btf = find_kfunc_desc_btf(env, offset); 2680 if (IS_ERR(desc_btf)) { 2681 verbose(env, "failed to find BTF for kernel function\n"); 2682 return PTR_ERR(desc_btf); 2683 } 2684 2685 if (find_kfunc_desc(env->prog, func_id, offset)) 2686 return 0; 2687 2688 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2689 verbose(env, "too many different kernel function calls\n"); 2690 return -E2BIG; 2691 } 2692 2693 func = btf_type_by_id(desc_btf, func_id); 2694 if (!func || !btf_type_is_func(func)) { 2695 verbose(env, "kernel btf_id %u is not a function\n", 2696 func_id); 2697 return -EINVAL; 2698 } 2699 func_proto = btf_type_by_id(desc_btf, func->type); 2700 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2701 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2702 func_id); 2703 return -EINVAL; 2704 } 2705 2706 func_name = btf_name_by_offset(desc_btf, func->name_off); 2707 addr = kallsyms_lookup_name(func_name); 2708 if (!addr) { 2709 verbose(env, "cannot find address for kernel function %s\n", 2710 func_name); 2711 return -EINVAL; 2712 } 2713 specialize_kfunc(env, func_id, offset, &addr); 2714 2715 if (bpf_jit_supports_far_kfunc_call()) { 2716 call_imm = func_id; 2717 } else { 2718 call_imm = BPF_CALL_IMM(addr); 2719 /* Check whether the relative offset overflows desc->imm */ 2720 if ((unsigned long)(s32)call_imm != call_imm) { 2721 verbose(env, "address of kernel function %s is out of range\n", 2722 func_name); 2723 return -EINVAL; 2724 } 2725 } 2726 2727 if (bpf_dev_bound_kfunc_id(func_id)) { 2728 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2729 if (err) 2730 return err; 2731 } 2732 2733 desc = &tab->descs[tab->nr_descs++]; 2734 desc->func_id = func_id; 2735 desc->imm = call_imm; 2736 desc->offset = offset; 2737 desc->addr = addr; 2738 err = btf_distill_func_proto(&env->log, desc_btf, 2739 func_proto, func_name, 2740 &desc->func_model); 2741 if (!err) 2742 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2743 kfunc_desc_cmp_by_id_off, NULL); 2744 return err; 2745 } 2746 2747 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 2748 { 2749 const struct bpf_kfunc_desc *d0 = a; 2750 const struct bpf_kfunc_desc *d1 = b; 2751 2752 if (d0->imm != d1->imm) 2753 return d0->imm < d1->imm ? -1 : 1; 2754 if (d0->offset != d1->offset) 2755 return d0->offset < d1->offset ? -1 : 1; 2756 return 0; 2757 } 2758 2759 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 2760 { 2761 struct bpf_kfunc_desc_tab *tab; 2762 2763 tab = prog->aux->kfunc_tab; 2764 if (!tab) 2765 return; 2766 2767 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2768 kfunc_desc_cmp_by_imm_off, NULL); 2769 } 2770 2771 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2772 { 2773 return !!prog->aux->kfunc_tab; 2774 } 2775 2776 const struct btf_func_model * 2777 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2778 const struct bpf_insn *insn) 2779 { 2780 const struct bpf_kfunc_desc desc = { 2781 .imm = insn->imm, 2782 .offset = insn->off, 2783 }; 2784 const struct bpf_kfunc_desc *res; 2785 struct bpf_kfunc_desc_tab *tab; 2786 2787 tab = prog->aux->kfunc_tab; 2788 res = bsearch(&desc, tab->descs, tab->nr_descs, 2789 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 2790 2791 return res ? &res->func_model : NULL; 2792 } 2793 2794 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2795 { 2796 struct bpf_subprog_info *subprog = env->subprog_info; 2797 struct bpf_insn *insn = env->prog->insnsi; 2798 int i, ret, insn_cnt = env->prog->len; 2799 2800 /* Add entry function. */ 2801 ret = add_subprog(env, 0); 2802 if (ret) 2803 return ret; 2804 2805 for (i = 0; i < insn_cnt; i++, insn++) { 2806 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2807 !bpf_pseudo_kfunc_call(insn)) 2808 continue; 2809 2810 if (!env->bpf_capable) { 2811 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2812 return -EPERM; 2813 } 2814 2815 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2816 ret = add_subprog(env, i + insn->imm + 1); 2817 else 2818 ret = add_kfunc_call(env, insn->imm, insn->off); 2819 2820 if (ret < 0) 2821 return ret; 2822 } 2823 2824 /* Add a fake 'exit' subprog which could simplify subprog iteration 2825 * logic. 'subprog_cnt' should not be increased. 2826 */ 2827 subprog[env->subprog_cnt].start = insn_cnt; 2828 2829 if (env->log.level & BPF_LOG_LEVEL2) 2830 for (i = 0; i < env->subprog_cnt; i++) 2831 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2832 2833 return 0; 2834 } 2835 2836 static int check_subprogs(struct bpf_verifier_env *env) 2837 { 2838 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2839 struct bpf_subprog_info *subprog = env->subprog_info; 2840 struct bpf_insn *insn = env->prog->insnsi; 2841 int insn_cnt = env->prog->len; 2842 2843 /* now check that all jumps are within the same subprog */ 2844 subprog_start = subprog[cur_subprog].start; 2845 subprog_end = subprog[cur_subprog + 1].start; 2846 for (i = 0; i < insn_cnt; i++) { 2847 u8 code = insn[i].code; 2848 2849 if (code == (BPF_JMP | BPF_CALL) && 2850 insn[i].src_reg == 0 && 2851 insn[i].imm == BPF_FUNC_tail_call) 2852 subprog[cur_subprog].has_tail_call = true; 2853 if (BPF_CLASS(code) == BPF_LD && 2854 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2855 subprog[cur_subprog].has_ld_abs = true; 2856 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2857 goto next; 2858 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2859 goto next; 2860 if (code == (BPF_JMP32 | BPF_JA)) 2861 off = i + insn[i].imm + 1; 2862 else 2863 off = i + insn[i].off + 1; 2864 if (off < subprog_start || off >= subprog_end) { 2865 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2866 return -EINVAL; 2867 } 2868 next: 2869 if (i == subprog_end - 1) { 2870 /* to avoid fall-through from one subprog into another 2871 * the last insn of the subprog should be either exit 2872 * or unconditional jump back 2873 */ 2874 if (code != (BPF_JMP | BPF_EXIT) && 2875 code != (BPF_JMP32 | BPF_JA) && 2876 code != (BPF_JMP | BPF_JA)) { 2877 verbose(env, "last insn is not an exit or jmp\n"); 2878 return -EINVAL; 2879 } 2880 subprog_start = subprog_end; 2881 cur_subprog++; 2882 if (cur_subprog < env->subprog_cnt) 2883 subprog_end = subprog[cur_subprog + 1].start; 2884 } 2885 } 2886 return 0; 2887 } 2888 2889 /* Parentage chain of this register (or stack slot) should take care of all 2890 * issues like callee-saved registers, stack slot allocation time, etc. 2891 */ 2892 static int mark_reg_read(struct bpf_verifier_env *env, 2893 const struct bpf_reg_state *state, 2894 struct bpf_reg_state *parent, u8 flag) 2895 { 2896 bool writes = parent == state->parent; /* Observe write marks */ 2897 int cnt = 0; 2898 2899 while (parent) { 2900 /* if read wasn't screened by an earlier write ... */ 2901 if (writes && state->live & REG_LIVE_WRITTEN) 2902 break; 2903 if (parent->live & REG_LIVE_DONE) { 2904 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2905 reg_type_str(env, parent->type), 2906 parent->var_off.value, parent->off); 2907 return -EFAULT; 2908 } 2909 /* The first condition is more likely to be true than the 2910 * second, checked it first. 2911 */ 2912 if ((parent->live & REG_LIVE_READ) == flag || 2913 parent->live & REG_LIVE_READ64) 2914 /* The parentage chain never changes and 2915 * this parent was already marked as LIVE_READ. 2916 * There is no need to keep walking the chain again and 2917 * keep re-marking all parents as LIVE_READ. 2918 * This case happens when the same register is read 2919 * multiple times without writes into it in-between. 2920 * Also, if parent has the stronger REG_LIVE_READ64 set, 2921 * then no need to set the weak REG_LIVE_READ32. 2922 */ 2923 break; 2924 /* ... then we depend on parent's value */ 2925 parent->live |= flag; 2926 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2927 if (flag == REG_LIVE_READ64) 2928 parent->live &= ~REG_LIVE_READ32; 2929 state = parent; 2930 parent = state->parent; 2931 writes = true; 2932 cnt++; 2933 } 2934 2935 if (env->longest_mark_read_walk < cnt) 2936 env->longest_mark_read_walk = cnt; 2937 return 0; 2938 } 2939 2940 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 2941 { 2942 struct bpf_func_state *state = func(env, reg); 2943 int spi, ret; 2944 2945 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 2946 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 2947 * check_kfunc_call. 2948 */ 2949 if (reg->type == CONST_PTR_TO_DYNPTR) 2950 return 0; 2951 spi = dynptr_get_spi(env, reg); 2952 if (spi < 0) 2953 return spi; 2954 /* Caller ensures dynptr is valid and initialized, which means spi is in 2955 * bounds and spi is the first dynptr slot. Simply mark stack slot as 2956 * read. 2957 */ 2958 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 2959 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 2960 if (ret) 2961 return ret; 2962 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 2963 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 2964 } 2965 2966 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 2967 int spi, int nr_slots) 2968 { 2969 struct bpf_func_state *state = func(env, reg); 2970 int err, i; 2971 2972 for (i = 0; i < nr_slots; i++) { 2973 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 2974 2975 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 2976 if (err) 2977 return err; 2978 2979 mark_stack_slot_scratched(env, spi - i); 2980 } 2981 2982 return 0; 2983 } 2984 2985 /* This function is supposed to be used by the following 32-bit optimization 2986 * code only. It returns TRUE if the source or destination register operates 2987 * on 64-bit, otherwise return FALSE. 2988 */ 2989 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2990 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2991 { 2992 u8 code, class, op; 2993 2994 code = insn->code; 2995 class = BPF_CLASS(code); 2996 op = BPF_OP(code); 2997 if (class == BPF_JMP) { 2998 /* BPF_EXIT for "main" will reach here. Return TRUE 2999 * conservatively. 3000 */ 3001 if (op == BPF_EXIT) 3002 return true; 3003 if (op == BPF_CALL) { 3004 /* BPF to BPF call will reach here because of marking 3005 * caller saved clobber with DST_OP_NO_MARK for which we 3006 * don't care the register def because they are anyway 3007 * marked as NOT_INIT already. 3008 */ 3009 if (insn->src_reg == BPF_PSEUDO_CALL) 3010 return false; 3011 /* Helper call will reach here because of arg type 3012 * check, conservatively return TRUE. 3013 */ 3014 if (t == SRC_OP) 3015 return true; 3016 3017 return false; 3018 } 3019 } 3020 3021 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3022 return false; 3023 3024 if (class == BPF_ALU64 || class == BPF_JMP || 3025 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3026 return true; 3027 3028 if (class == BPF_ALU || class == BPF_JMP32) 3029 return false; 3030 3031 if (class == BPF_LDX) { 3032 if (t != SRC_OP) 3033 return BPF_SIZE(code) == BPF_DW; 3034 /* LDX source must be ptr. */ 3035 return true; 3036 } 3037 3038 if (class == BPF_STX) { 3039 /* BPF_STX (including atomic variants) has multiple source 3040 * operands, one of which is a ptr. Check whether the caller is 3041 * asking about it. 3042 */ 3043 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3044 return true; 3045 return BPF_SIZE(code) == BPF_DW; 3046 } 3047 3048 if (class == BPF_LD) { 3049 u8 mode = BPF_MODE(code); 3050 3051 /* LD_IMM64 */ 3052 if (mode == BPF_IMM) 3053 return true; 3054 3055 /* Both LD_IND and LD_ABS return 32-bit data. */ 3056 if (t != SRC_OP) 3057 return false; 3058 3059 /* Implicit ctx ptr. */ 3060 if (regno == BPF_REG_6) 3061 return true; 3062 3063 /* Explicit source could be any width. */ 3064 return true; 3065 } 3066 3067 if (class == BPF_ST) 3068 /* The only source register for BPF_ST is a ptr. */ 3069 return true; 3070 3071 /* Conservatively return true at default. */ 3072 return true; 3073 } 3074 3075 /* Return the regno defined by the insn, or -1. */ 3076 static int insn_def_regno(const struct bpf_insn *insn) 3077 { 3078 switch (BPF_CLASS(insn->code)) { 3079 case BPF_JMP: 3080 case BPF_JMP32: 3081 case BPF_ST: 3082 return -1; 3083 case BPF_STX: 3084 if (BPF_MODE(insn->code) == BPF_ATOMIC && 3085 (insn->imm & BPF_FETCH)) { 3086 if (insn->imm == BPF_CMPXCHG) 3087 return BPF_REG_0; 3088 else 3089 return insn->src_reg; 3090 } else { 3091 return -1; 3092 } 3093 default: 3094 return insn->dst_reg; 3095 } 3096 } 3097 3098 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3099 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3100 { 3101 int dst_reg = insn_def_regno(insn); 3102 3103 if (dst_reg == -1) 3104 return false; 3105 3106 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3107 } 3108 3109 static void mark_insn_zext(struct bpf_verifier_env *env, 3110 struct bpf_reg_state *reg) 3111 { 3112 s32 def_idx = reg->subreg_def; 3113 3114 if (def_idx == DEF_NOT_SUBREG) 3115 return; 3116 3117 env->insn_aux_data[def_idx - 1].zext_dst = true; 3118 /* The dst will be zero extended, so won't be sub-register anymore. */ 3119 reg->subreg_def = DEF_NOT_SUBREG; 3120 } 3121 3122 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3123 enum reg_arg_type t) 3124 { 3125 struct bpf_verifier_state *vstate = env->cur_state; 3126 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3127 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3128 struct bpf_reg_state *reg, *regs = state->regs; 3129 bool rw64; 3130 3131 if (regno >= MAX_BPF_REG) { 3132 verbose(env, "R%d is invalid\n", regno); 3133 return -EINVAL; 3134 } 3135 3136 mark_reg_scratched(env, regno); 3137 3138 reg = ®s[regno]; 3139 rw64 = is_reg64(env, insn, regno, reg, t); 3140 if (t == SRC_OP) { 3141 /* check whether register used as source operand can be read */ 3142 if (reg->type == NOT_INIT) { 3143 verbose(env, "R%d !read_ok\n", regno); 3144 return -EACCES; 3145 } 3146 /* We don't need to worry about FP liveness because it's read-only */ 3147 if (regno == BPF_REG_FP) 3148 return 0; 3149 3150 if (rw64) 3151 mark_insn_zext(env, reg); 3152 3153 return mark_reg_read(env, reg, reg->parent, 3154 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3155 } else { 3156 /* check whether register used as dest operand can be written to */ 3157 if (regno == BPF_REG_FP) { 3158 verbose(env, "frame pointer is read only\n"); 3159 return -EACCES; 3160 } 3161 reg->live |= REG_LIVE_WRITTEN; 3162 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3163 if (t == DST_OP) 3164 mark_reg_unknown(env, regs, regno); 3165 } 3166 return 0; 3167 } 3168 3169 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3170 { 3171 env->insn_aux_data[idx].jmp_point = true; 3172 } 3173 3174 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3175 { 3176 return env->insn_aux_data[insn_idx].jmp_point; 3177 } 3178 3179 /* for any branch, call, exit record the history of jmps in the given state */ 3180 static int push_jmp_history(struct bpf_verifier_env *env, 3181 struct bpf_verifier_state *cur) 3182 { 3183 u32 cnt = cur->jmp_history_cnt; 3184 struct bpf_idx_pair *p; 3185 size_t alloc_size; 3186 3187 if (!is_jmp_point(env, env->insn_idx)) 3188 return 0; 3189 3190 cnt++; 3191 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3192 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 3193 if (!p) 3194 return -ENOMEM; 3195 p[cnt - 1].idx = env->insn_idx; 3196 p[cnt - 1].prev_idx = env->prev_insn_idx; 3197 cur->jmp_history = p; 3198 cur->jmp_history_cnt = cnt; 3199 return 0; 3200 } 3201 3202 /* Backtrack one insn at a time. If idx is not at the top of recorded 3203 * history then previous instruction came from straight line execution. 3204 * Return -ENOENT if we exhausted all instructions within given state. 3205 * 3206 * It's legal to have a bit of a looping with the same starting and ending 3207 * insn index within the same state, e.g.: 3->4->5->3, so just because current 3208 * instruction index is the same as state's first_idx doesn't mean we are 3209 * done. If there is still some jump history left, we should keep going. We 3210 * need to take into account that we might have a jump history between given 3211 * state's parent and itself, due to checkpointing. In this case, we'll have 3212 * history entry recording a jump from last instruction of parent state and 3213 * first instruction of given state. 3214 */ 3215 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3216 u32 *history) 3217 { 3218 u32 cnt = *history; 3219 3220 if (i == st->first_insn_idx) { 3221 if (cnt == 0) 3222 return -ENOENT; 3223 if (cnt == 1 && st->jmp_history[0].idx == i) 3224 return -ENOENT; 3225 } 3226 3227 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3228 i = st->jmp_history[cnt - 1].prev_idx; 3229 (*history)--; 3230 } else { 3231 i--; 3232 } 3233 return i; 3234 } 3235 3236 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3237 { 3238 const struct btf_type *func; 3239 struct btf *desc_btf; 3240 3241 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3242 return NULL; 3243 3244 desc_btf = find_kfunc_desc_btf(data, insn->off); 3245 if (IS_ERR(desc_btf)) 3246 return "<error>"; 3247 3248 func = btf_type_by_id(desc_btf, insn->imm); 3249 return btf_name_by_offset(desc_btf, func->name_off); 3250 } 3251 3252 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3253 { 3254 bt->frame = frame; 3255 } 3256 3257 static inline void bt_reset(struct backtrack_state *bt) 3258 { 3259 struct bpf_verifier_env *env = bt->env; 3260 3261 memset(bt, 0, sizeof(*bt)); 3262 bt->env = env; 3263 } 3264 3265 static inline u32 bt_empty(struct backtrack_state *bt) 3266 { 3267 u64 mask = 0; 3268 int i; 3269 3270 for (i = 0; i <= bt->frame; i++) 3271 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3272 3273 return mask == 0; 3274 } 3275 3276 static inline int bt_subprog_enter(struct backtrack_state *bt) 3277 { 3278 if (bt->frame == MAX_CALL_FRAMES - 1) { 3279 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3280 WARN_ONCE(1, "verifier backtracking bug"); 3281 return -EFAULT; 3282 } 3283 bt->frame++; 3284 return 0; 3285 } 3286 3287 static inline int bt_subprog_exit(struct backtrack_state *bt) 3288 { 3289 if (bt->frame == 0) { 3290 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3291 WARN_ONCE(1, "verifier backtracking bug"); 3292 return -EFAULT; 3293 } 3294 bt->frame--; 3295 return 0; 3296 } 3297 3298 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3299 { 3300 bt->reg_masks[frame] |= 1 << reg; 3301 } 3302 3303 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3304 { 3305 bt->reg_masks[frame] &= ~(1 << reg); 3306 } 3307 3308 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3309 { 3310 bt_set_frame_reg(bt, bt->frame, reg); 3311 } 3312 3313 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3314 { 3315 bt_clear_frame_reg(bt, bt->frame, reg); 3316 } 3317 3318 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3319 { 3320 bt->stack_masks[frame] |= 1ull << slot; 3321 } 3322 3323 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3324 { 3325 bt->stack_masks[frame] &= ~(1ull << slot); 3326 } 3327 3328 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot) 3329 { 3330 bt_set_frame_slot(bt, bt->frame, slot); 3331 } 3332 3333 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot) 3334 { 3335 bt_clear_frame_slot(bt, bt->frame, slot); 3336 } 3337 3338 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3339 { 3340 return bt->reg_masks[frame]; 3341 } 3342 3343 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3344 { 3345 return bt->reg_masks[bt->frame]; 3346 } 3347 3348 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3349 { 3350 return bt->stack_masks[frame]; 3351 } 3352 3353 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3354 { 3355 return bt->stack_masks[bt->frame]; 3356 } 3357 3358 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3359 { 3360 return bt->reg_masks[bt->frame] & (1 << reg); 3361 } 3362 3363 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot) 3364 { 3365 return bt->stack_masks[bt->frame] & (1ull << slot); 3366 } 3367 3368 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3369 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3370 { 3371 DECLARE_BITMAP(mask, 64); 3372 bool first = true; 3373 int i, n; 3374 3375 buf[0] = '\0'; 3376 3377 bitmap_from_u64(mask, reg_mask); 3378 for_each_set_bit(i, mask, 32) { 3379 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3380 first = false; 3381 buf += n; 3382 buf_sz -= n; 3383 if (buf_sz < 0) 3384 break; 3385 } 3386 } 3387 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3388 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3389 { 3390 DECLARE_BITMAP(mask, 64); 3391 bool first = true; 3392 int i, n; 3393 3394 buf[0] = '\0'; 3395 3396 bitmap_from_u64(mask, stack_mask); 3397 for_each_set_bit(i, mask, 64) { 3398 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3399 first = false; 3400 buf += n; 3401 buf_sz -= n; 3402 if (buf_sz < 0) 3403 break; 3404 } 3405 } 3406 3407 /* For given verifier state backtrack_insn() is called from the last insn to 3408 * the first insn. Its purpose is to compute a bitmask of registers and 3409 * stack slots that needs precision in the parent verifier state. 3410 * 3411 * @idx is an index of the instruction we are currently processing; 3412 * @subseq_idx is an index of the subsequent instruction that: 3413 * - *would be* executed next, if jump history is viewed in forward order; 3414 * - *was* processed previously during backtracking. 3415 */ 3416 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 3417 struct backtrack_state *bt) 3418 { 3419 const struct bpf_insn_cbs cbs = { 3420 .cb_call = disasm_kfunc_name, 3421 .cb_print = verbose, 3422 .private_data = env, 3423 }; 3424 struct bpf_insn *insn = env->prog->insnsi + idx; 3425 u8 class = BPF_CLASS(insn->code); 3426 u8 opcode = BPF_OP(insn->code); 3427 u8 mode = BPF_MODE(insn->code); 3428 u32 dreg = insn->dst_reg; 3429 u32 sreg = insn->src_reg; 3430 u32 spi, i; 3431 3432 if (insn->code == 0) 3433 return 0; 3434 if (env->log.level & BPF_LOG_LEVEL2) { 3435 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3436 verbose(env, "mark_precise: frame%d: regs=%s ", 3437 bt->frame, env->tmp_str_buf); 3438 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3439 verbose(env, "stack=%s before ", env->tmp_str_buf); 3440 verbose(env, "%d: ", idx); 3441 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3442 } 3443 3444 if (class == BPF_ALU || class == BPF_ALU64) { 3445 if (!bt_is_reg_set(bt, dreg)) 3446 return 0; 3447 if (opcode == BPF_END || opcode == BPF_NEG) { 3448 /* sreg is reserved and unused 3449 * dreg still need precision before this insn 3450 */ 3451 return 0; 3452 } else if (opcode == BPF_MOV) { 3453 if (BPF_SRC(insn->code) == BPF_X) { 3454 /* dreg = sreg or dreg = (s8, s16, s32)sreg 3455 * dreg needs precision after this insn 3456 * sreg needs precision before this insn 3457 */ 3458 bt_clear_reg(bt, dreg); 3459 bt_set_reg(bt, sreg); 3460 } else { 3461 /* dreg = K 3462 * dreg needs precision after this insn. 3463 * Corresponding register is already marked 3464 * as precise=true in this verifier state. 3465 * No further markings in parent are necessary 3466 */ 3467 bt_clear_reg(bt, dreg); 3468 } 3469 } else { 3470 if (BPF_SRC(insn->code) == BPF_X) { 3471 /* dreg += sreg 3472 * both dreg and sreg need precision 3473 * before this insn 3474 */ 3475 bt_set_reg(bt, sreg); 3476 } /* else dreg += K 3477 * dreg still needs precision before this insn 3478 */ 3479 } 3480 } else if (class == BPF_LDX) { 3481 if (!bt_is_reg_set(bt, dreg)) 3482 return 0; 3483 bt_clear_reg(bt, dreg); 3484 3485 /* scalars can only be spilled into stack w/o losing precision. 3486 * Load from any other memory can be zero extended. 3487 * The desire to keep that precision is already indicated 3488 * by 'precise' mark in corresponding register of this state. 3489 * No further tracking necessary. 3490 */ 3491 if (insn->src_reg != BPF_REG_FP) 3492 return 0; 3493 3494 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3495 * that [fp - off] slot contains scalar that needs to be 3496 * tracked with precision 3497 */ 3498 spi = (-insn->off - 1) / BPF_REG_SIZE; 3499 if (spi >= 64) { 3500 verbose(env, "BUG spi %d\n", spi); 3501 WARN_ONCE(1, "verifier backtracking bug"); 3502 return -EFAULT; 3503 } 3504 bt_set_slot(bt, spi); 3505 } else if (class == BPF_STX || class == BPF_ST) { 3506 if (bt_is_reg_set(bt, dreg)) 3507 /* stx & st shouldn't be using _scalar_ dst_reg 3508 * to access memory. It means backtracking 3509 * encountered a case of pointer subtraction. 3510 */ 3511 return -ENOTSUPP; 3512 /* scalars can only be spilled into stack */ 3513 if (insn->dst_reg != BPF_REG_FP) 3514 return 0; 3515 spi = (-insn->off - 1) / BPF_REG_SIZE; 3516 if (spi >= 64) { 3517 verbose(env, "BUG spi %d\n", spi); 3518 WARN_ONCE(1, "verifier backtracking bug"); 3519 return -EFAULT; 3520 } 3521 if (!bt_is_slot_set(bt, spi)) 3522 return 0; 3523 bt_clear_slot(bt, spi); 3524 if (class == BPF_STX) 3525 bt_set_reg(bt, sreg); 3526 } else if (class == BPF_JMP || class == BPF_JMP32) { 3527 if (bpf_pseudo_call(insn)) { 3528 int subprog_insn_idx, subprog; 3529 3530 subprog_insn_idx = idx + insn->imm + 1; 3531 subprog = find_subprog(env, subprog_insn_idx); 3532 if (subprog < 0) 3533 return -EFAULT; 3534 3535 if (subprog_is_global(env, subprog)) { 3536 /* check that jump history doesn't have any 3537 * extra instructions from subprog; the next 3538 * instruction after call to global subprog 3539 * should be literally next instruction in 3540 * caller program 3541 */ 3542 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 3543 /* r1-r5 are invalidated after subprog call, 3544 * so for global func call it shouldn't be set 3545 * anymore 3546 */ 3547 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3548 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3549 WARN_ONCE(1, "verifier backtracking bug"); 3550 return -EFAULT; 3551 } 3552 /* global subprog always sets R0 */ 3553 bt_clear_reg(bt, BPF_REG_0); 3554 return 0; 3555 } else { 3556 /* static subprog call instruction, which 3557 * means that we are exiting current subprog, 3558 * so only r1-r5 could be still requested as 3559 * precise, r0 and r6-r10 or any stack slot in 3560 * the current frame should be zero by now 3561 */ 3562 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3563 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3564 WARN_ONCE(1, "verifier backtracking bug"); 3565 return -EFAULT; 3566 } 3567 /* we don't track register spills perfectly, 3568 * so fallback to force-precise instead of failing */ 3569 if (bt_stack_mask(bt) != 0) 3570 return -ENOTSUPP; 3571 /* propagate r1-r5 to the caller */ 3572 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 3573 if (bt_is_reg_set(bt, i)) { 3574 bt_clear_reg(bt, i); 3575 bt_set_frame_reg(bt, bt->frame - 1, i); 3576 } 3577 } 3578 if (bt_subprog_exit(bt)) 3579 return -EFAULT; 3580 return 0; 3581 } 3582 } else if ((bpf_helper_call(insn) && 3583 is_callback_calling_function(insn->imm) && 3584 !is_async_callback_calling_function(insn->imm)) || 3585 (bpf_pseudo_kfunc_call(insn) && is_callback_calling_kfunc(insn->imm))) { 3586 /* callback-calling helper or kfunc call, which means 3587 * we are exiting from subprog, but unlike the subprog 3588 * call handling above, we shouldn't propagate 3589 * precision of r1-r5 (if any requested), as they are 3590 * not actually arguments passed directly to callback 3591 * subprogs 3592 */ 3593 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3594 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3595 WARN_ONCE(1, "verifier backtracking bug"); 3596 return -EFAULT; 3597 } 3598 if (bt_stack_mask(bt) != 0) 3599 return -ENOTSUPP; 3600 /* clear r1-r5 in callback subprog's mask */ 3601 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3602 bt_clear_reg(bt, i); 3603 if (bt_subprog_exit(bt)) 3604 return -EFAULT; 3605 return 0; 3606 } else if (opcode == BPF_CALL) { 3607 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 3608 * catch this error later. Make backtracking conservative 3609 * with ENOTSUPP. 3610 */ 3611 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 3612 return -ENOTSUPP; 3613 /* regular helper call sets R0 */ 3614 bt_clear_reg(bt, BPF_REG_0); 3615 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3616 /* if backtracing was looking for registers R1-R5 3617 * they should have been found already. 3618 */ 3619 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3620 WARN_ONCE(1, "verifier backtracking bug"); 3621 return -EFAULT; 3622 } 3623 } else if (opcode == BPF_EXIT) { 3624 bool r0_precise; 3625 3626 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3627 /* if backtracing was looking for registers R1-R5 3628 * they should have been found already. 3629 */ 3630 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3631 WARN_ONCE(1, "verifier backtracking bug"); 3632 return -EFAULT; 3633 } 3634 3635 /* BPF_EXIT in subprog or callback always returns 3636 * right after the call instruction, so by checking 3637 * whether the instruction at subseq_idx-1 is subprog 3638 * call or not we can distinguish actual exit from 3639 * *subprog* from exit from *callback*. In the former 3640 * case, we need to propagate r0 precision, if 3641 * necessary. In the former we never do that. 3642 */ 3643 r0_precise = subseq_idx - 1 >= 0 && 3644 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 3645 bt_is_reg_set(bt, BPF_REG_0); 3646 3647 bt_clear_reg(bt, BPF_REG_0); 3648 if (bt_subprog_enter(bt)) 3649 return -EFAULT; 3650 3651 if (r0_precise) 3652 bt_set_reg(bt, BPF_REG_0); 3653 /* r6-r9 and stack slots will stay set in caller frame 3654 * bitmasks until we return back from callee(s) 3655 */ 3656 return 0; 3657 } else if (BPF_SRC(insn->code) == BPF_X) { 3658 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 3659 return 0; 3660 /* dreg <cond> sreg 3661 * Both dreg and sreg need precision before 3662 * this insn. If only sreg was marked precise 3663 * before it would be equally necessary to 3664 * propagate it to dreg. 3665 */ 3666 bt_set_reg(bt, dreg); 3667 bt_set_reg(bt, sreg); 3668 /* else dreg <cond> K 3669 * Only dreg still needs precision before 3670 * this insn, so for the K-based conditional 3671 * there is nothing new to be marked. 3672 */ 3673 } 3674 } else if (class == BPF_LD) { 3675 if (!bt_is_reg_set(bt, dreg)) 3676 return 0; 3677 bt_clear_reg(bt, dreg); 3678 /* It's ld_imm64 or ld_abs or ld_ind. 3679 * For ld_imm64 no further tracking of precision 3680 * into parent is necessary 3681 */ 3682 if (mode == BPF_IND || mode == BPF_ABS) 3683 /* to be analyzed */ 3684 return -ENOTSUPP; 3685 } 3686 return 0; 3687 } 3688 3689 /* the scalar precision tracking algorithm: 3690 * . at the start all registers have precise=false. 3691 * . scalar ranges are tracked as normal through alu and jmp insns. 3692 * . once precise value of the scalar register is used in: 3693 * . ptr + scalar alu 3694 * . if (scalar cond K|scalar) 3695 * . helper_call(.., scalar, ...) where ARG_CONST is expected 3696 * backtrack through the verifier states and mark all registers and 3697 * stack slots with spilled constants that these scalar regisers 3698 * should be precise. 3699 * . during state pruning two registers (or spilled stack slots) 3700 * are equivalent if both are not precise. 3701 * 3702 * Note the verifier cannot simply walk register parentage chain, 3703 * since many different registers and stack slots could have been 3704 * used to compute single precise scalar. 3705 * 3706 * The approach of starting with precise=true for all registers and then 3707 * backtrack to mark a register as not precise when the verifier detects 3708 * that program doesn't care about specific value (e.g., when helper 3709 * takes register as ARG_ANYTHING parameter) is not safe. 3710 * 3711 * It's ok to walk single parentage chain of the verifier states. 3712 * It's possible that this backtracking will go all the way till 1st insn. 3713 * All other branches will be explored for needing precision later. 3714 * 3715 * The backtracking needs to deal with cases like: 3716 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 3717 * r9 -= r8 3718 * r5 = r9 3719 * if r5 > 0x79f goto pc+7 3720 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 3721 * r5 += 1 3722 * ... 3723 * call bpf_perf_event_output#25 3724 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 3725 * 3726 * and this case: 3727 * r6 = 1 3728 * call foo // uses callee's r6 inside to compute r0 3729 * r0 += r6 3730 * if r0 == 0 goto 3731 * 3732 * to track above reg_mask/stack_mask needs to be independent for each frame. 3733 * 3734 * Also if parent's curframe > frame where backtracking started, 3735 * the verifier need to mark registers in both frames, otherwise callees 3736 * may incorrectly prune callers. This is similar to 3737 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 3738 * 3739 * For now backtracking falls back into conservative marking. 3740 */ 3741 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 3742 struct bpf_verifier_state *st) 3743 { 3744 struct bpf_func_state *func; 3745 struct bpf_reg_state *reg; 3746 int i, j; 3747 3748 if (env->log.level & BPF_LOG_LEVEL2) { 3749 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 3750 st->curframe); 3751 } 3752 3753 /* big hammer: mark all scalars precise in this path. 3754 * pop_stack may still get !precise scalars. 3755 * We also skip current state and go straight to first parent state, 3756 * because precision markings in current non-checkpointed state are 3757 * not needed. See why in the comment in __mark_chain_precision below. 3758 */ 3759 for (st = st->parent; st; st = st->parent) { 3760 for (i = 0; i <= st->curframe; i++) { 3761 func = st->frame[i]; 3762 for (j = 0; j < BPF_REG_FP; j++) { 3763 reg = &func->regs[j]; 3764 if (reg->type != SCALAR_VALUE || reg->precise) 3765 continue; 3766 reg->precise = true; 3767 if (env->log.level & BPF_LOG_LEVEL2) { 3768 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 3769 i, j); 3770 } 3771 } 3772 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3773 if (!is_spilled_reg(&func->stack[j])) 3774 continue; 3775 reg = &func->stack[j].spilled_ptr; 3776 if (reg->type != SCALAR_VALUE || reg->precise) 3777 continue; 3778 reg->precise = true; 3779 if (env->log.level & BPF_LOG_LEVEL2) { 3780 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 3781 i, -(j + 1) * 8); 3782 } 3783 } 3784 } 3785 } 3786 } 3787 3788 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3789 { 3790 struct bpf_func_state *func; 3791 struct bpf_reg_state *reg; 3792 int i, j; 3793 3794 for (i = 0; i <= st->curframe; i++) { 3795 func = st->frame[i]; 3796 for (j = 0; j < BPF_REG_FP; j++) { 3797 reg = &func->regs[j]; 3798 if (reg->type != SCALAR_VALUE) 3799 continue; 3800 reg->precise = false; 3801 } 3802 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3803 if (!is_spilled_reg(&func->stack[j])) 3804 continue; 3805 reg = &func->stack[j].spilled_ptr; 3806 if (reg->type != SCALAR_VALUE) 3807 continue; 3808 reg->precise = false; 3809 } 3810 } 3811 } 3812 3813 static bool idset_contains(struct bpf_idset *s, u32 id) 3814 { 3815 u32 i; 3816 3817 for (i = 0; i < s->count; ++i) 3818 if (s->ids[i] == id) 3819 return true; 3820 3821 return false; 3822 } 3823 3824 static int idset_push(struct bpf_idset *s, u32 id) 3825 { 3826 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids))) 3827 return -EFAULT; 3828 s->ids[s->count++] = id; 3829 return 0; 3830 } 3831 3832 static void idset_reset(struct bpf_idset *s) 3833 { 3834 s->count = 0; 3835 } 3836 3837 /* Collect a set of IDs for all registers currently marked as precise in env->bt. 3838 * Mark all registers with these IDs as precise. 3839 */ 3840 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3841 { 3842 struct bpf_idset *precise_ids = &env->idset_scratch; 3843 struct backtrack_state *bt = &env->bt; 3844 struct bpf_func_state *func; 3845 struct bpf_reg_state *reg; 3846 DECLARE_BITMAP(mask, 64); 3847 int i, fr; 3848 3849 idset_reset(precise_ids); 3850 3851 for (fr = bt->frame; fr >= 0; fr--) { 3852 func = st->frame[fr]; 3853 3854 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 3855 for_each_set_bit(i, mask, 32) { 3856 reg = &func->regs[i]; 3857 if (!reg->id || reg->type != SCALAR_VALUE) 3858 continue; 3859 if (idset_push(precise_ids, reg->id)) 3860 return -EFAULT; 3861 } 3862 3863 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 3864 for_each_set_bit(i, mask, 64) { 3865 if (i >= func->allocated_stack / BPF_REG_SIZE) 3866 break; 3867 if (!is_spilled_scalar_reg(&func->stack[i])) 3868 continue; 3869 reg = &func->stack[i].spilled_ptr; 3870 if (!reg->id) 3871 continue; 3872 if (idset_push(precise_ids, reg->id)) 3873 return -EFAULT; 3874 } 3875 } 3876 3877 for (fr = 0; fr <= st->curframe; ++fr) { 3878 func = st->frame[fr]; 3879 3880 for (i = BPF_REG_0; i < BPF_REG_10; ++i) { 3881 reg = &func->regs[i]; 3882 if (!reg->id) 3883 continue; 3884 if (!idset_contains(precise_ids, reg->id)) 3885 continue; 3886 bt_set_frame_reg(bt, fr, i); 3887 } 3888 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) { 3889 if (!is_spilled_scalar_reg(&func->stack[i])) 3890 continue; 3891 reg = &func->stack[i].spilled_ptr; 3892 if (!reg->id) 3893 continue; 3894 if (!idset_contains(precise_ids, reg->id)) 3895 continue; 3896 bt_set_frame_slot(bt, fr, i); 3897 } 3898 } 3899 3900 return 0; 3901 } 3902 3903 /* 3904 * __mark_chain_precision() backtracks BPF program instruction sequence and 3905 * chain of verifier states making sure that register *regno* (if regno >= 0) 3906 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 3907 * SCALARS, as well as any other registers and slots that contribute to 3908 * a tracked state of given registers/stack slots, depending on specific BPF 3909 * assembly instructions (see backtrack_insns() for exact instruction handling 3910 * logic). This backtracking relies on recorded jmp_history and is able to 3911 * traverse entire chain of parent states. This process ends only when all the 3912 * necessary registers/slots and their transitive dependencies are marked as 3913 * precise. 3914 * 3915 * One important and subtle aspect is that precise marks *do not matter* in 3916 * the currently verified state (current state). It is important to understand 3917 * why this is the case. 3918 * 3919 * First, note that current state is the state that is not yet "checkpointed", 3920 * i.e., it is not yet put into env->explored_states, and it has no children 3921 * states as well. It's ephemeral, and can end up either a) being discarded if 3922 * compatible explored state is found at some point or BPF_EXIT instruction is 3923 * reached or b) checkpointed and put into env->explored_states, branching out 3924 * into one or more children states. 3925 * 3926 * In the former case, precise markings in current state are completely 3927 * ignored by state comparison code (see regsafe() for details). Only 3928 * checkpointed ("old") state precise markings are important, and if old 3929 * state's register/slot is precise, regsafe() assumes current state's 3930 * register/slot as precise and checks value ranges exactly and precisely. If 3931 * states turn out to be compatible, current state's necessary precise 3932 * markings and any required parent states' precise markings are enforced 3933 * after the fact with propagate_precision() logic, after the fact. But it's 3934 * important to realize that in this case, even after marking current state 3935 * registers/slots as precise, we immediately discard current state. So what 3936 * actually matters is any of the precise markings propagated into current 3937 * state's parent states, which are always checkpointed (due to b) case above). 3938 * As such, for scenario a) it doesn't matter if current state has precise 3939 * markings set or not. 3940 * 3941 * Now, for the scenario b), checkpointing and forking into child(ren) 3942 * state(s). Note that before current state gets to checkpointing step, any 3943 * processed instruction always assumes precise SCALAR register/slot 3944 * knowledge: if precise value or range is useful to prune jump branch, BPF 3945 * verifier takes this opportunity enthusiastically. Similarly, when 3946 * register's value is used to calculate offset or memory address, exact 3947 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 3948 * what we mentioned above about state comparison ignoring precise markings 3949 * during state comparison, BPF verifier ignores and also assumes precise 3950 * markings *at will* during instruction verification process. But as verifier 3951 * assumes precision, it also propagates any precision dependencies across 3952 * parent states, which are not yet finalized, so can be further restricted 3953 * based on new knowledge gained from restrictions enforced by their children 3954 * states. This is so that once those parent states are finalized, i.e., when 3955 * they have no more active children state, state comparison logic in 3956 * is_state_visited() would enforce strict and precise SCALAR ranges, if 3957 * required for correctness. 3958 * 3959 * To build a bit more intuition, note also that once a state is checkpointed, 3960 * the path we took to get to that state is not important. This is crucial 3961 * property for state pruning. When state is checkpointed and finalized at 3962 * some instruction index, it can be correctly and safely used to "short 3963 * circuit" any *compatible* state that reaches exactly the same instruction 3964 * index. I.e., if we jumped to that instruction from a completely different 3965 * code path than original finalized state was derived from, it doesn't 3966 * matter, current state can be discarded because from that instruction 3967 * forward having a compatible state will ensure we will safely reach the 3968 * exit. States describe preconditions for further exploration, but completely 3969 * forget the history of how we got here. 3970 * 3971 * This also means that even if we needed precise SCALAR range to get to 3972 * finalized state, but from that point forward *that same* SCALAR register is 3973 * never used in a precise context (i.e., it's precise value is not needed for 3974 * correctness), it's correct and safe to mark such register as "imprecise" 3975 * (i.e., precise marking set to false). This is what we rely on when we do 3976 * not set precise marking in current state. If no child state requires 3977 * precision for any given SCALAR register, it's safe to dictate that it can 3978 * be imprecise. If any child state does require this register to be precise, 3979 * we'll mark it precise later retroactively during precise markings 3980 * propagation from child state to parent states. 3981 * 3982 * Skipping precise marking setting in current state is a mild version of 3983 * relying on the above observation. But we can utilize this property even 3984 * more aggressively by proactively forgetting any precise marking in the 3985 * current state (which we inherited from the parent state), right before we 3986 * checkpoint it and branch off into new child state. This is done by 3987 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 3988 * finalized states which help in short circuiting more future states. 3989 */ 3990 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 3991 { 3992 struct backtrack_state *bt = &env->bt; 3993 struct bpf_verifier_state *st = env->cur_state; 3994 int first_idx = st->first_insn_idx; 3995 int last_idx = env->insn_idx; 3996 int subseq_idx = -1; 3997 struct bpf_func_state *func; 3998 struct bpf_reg_state *reg; 3999 bool skip_first = true; 4000 int i, fr, err; 4001 4002 if (!env->bpf_capable) 4003 return 0; 4004 4005 /* set frame number from which we are starting to backtrack */ 4006 bt_init(bt, env->cur_state->curframe); 4007 4008 /* Do sanity checks against current state of register and/or stack 4009 * slot, but don't set precise flag in current state, as precision 4010 * tracking in the current state is unnecessary. 4011 */ 4012 func = st->frame[bt->frame]; 4013 if (regno >= 0) { 4014 reg = &func->regs[regno]; 4015 if (reg->type != SCALAR_VALUE) { 4016 WARN_ONCE(1, "backtracing misuse"); 4017 return -EFAULT; 4018 } 4019 bt_set_reg(bt, regno); 4020 } 4021 4022 if (bt_empty(bt)) 4023 return 0; 4024 4025 for (;;) { 4026 DECLARE_BITMAP(mask, 64); 4027 u32 history = st->jmp_history_cnt; 4028 4029 if (env->log.level & BPF_LOG_LEVEL2) { 4030 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4031 bt->frame, last_idx, first_idx, subseq_idx); 4032 } 4033 4034 /* If some register with scalar ID is marked as precise, 4035 * make sure that all registers sharing this ID are also precise. 4036 * This is needed to estimate effect of find_equal_scalars(). 4037 * Do this at the last instruction of each state, 4038 * bpf_reg_state::id fields are valid for these instructions. 4039 * 4040 * Allows to track precision in situation like below: 4041 * 4042 * r2 = unknown value 4043 * ... 4044 * --- state #0 --- 4045 * ... 4046 * r1 = r2 // r1 and r2 now share the same ID 4047 * ... 4048 * --- state #1 {r1.id = A, r2.id = A} --- 4049 * ... 4050 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1 4051 * ... 4052 * --- state #2 {r1.id = A, r2.id = A} --- 4053 * r3 = r10 4054 * r3 += r1 // need to mark both r1 and r2 4055 */ 4056 if (mark_precise_scalar_ids(env, st)) 4057 return -EFAULT; 4058 4059 if (last_idx < 0) { 4060 /* we are at the entry into subprog, which 4061 * is expected for global funcs, but only if 4062 * requested precise registers are R1-R5 4063 * (which are global func's input arguments) 4064 */ 4065 if (st->curframe == 0 && 4066 st->frame[0]->subprogno > 0 && 4067 st->frame[0]->callsite == BPF_MAIN_FUNC && 4068 bt_stack_mask(bt) == 0 && 4069 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4070 bitmap_from_u64(mask, bt_reg_mask(bt)); 4071 for_each_set_bit(i, mask, 32) { 4072 reg = &st->frame[0]->regs[i]; 4073 bt_clear_reg(bt, i); 4074 if (reg->type == SCALAR_VALUE) 4075 reg->precise = true; 4076 } 4077 return 0; 4078 } 4079 4080 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 4081 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4082 WARN_ONCE(1, "verifier backtracking bug"); 4083 return -EFAULT; 4084 } 4085 4086 for (i = last_idx;;) { 4087 if (skip_first) { 4088 err = 0; 4089 skip_first = false; 4090 } else { 4091 err = backtrack_insn(env, i, subseq_idx, bt); 4092 } 4093 if (err == -ENOTSUPP) { 4094 mark_all_scalars_precise(env, env->cur_state); 4095 bt_reset(bt); 4096 return 0; 4097 } else if (err) { 4098 return err; 4099 } 4100 if (bt_empty(bt)) 4101 /* Found assignment(s) into tracked register in this state. 4102 * Since this state is already marked, just return. 4103 * Nothing to be tracked further in the parent state. 4104 */ 4105 return 0; 4106 subseq_idx = i; 4107 i = get_prev_insn_idx(st, i, &history); 4108 if (i == -ENOENT) 4109 break; 4110 if (i >= env->prog->len) { 4111 /* This can happen if backtracking reached insn 0 4112 * and there are still reg_mask or stack_mask 4113 * to backtrack. 4114 * It means the backtracking missed the spot where 4115 * particular register was initialized with a constant. 4116 */ 4117 verbose(env, "BUG backtracking idx %d\n", i); 4118 WARN_ONCE(1, "verifier backtracking bug"); 4119 return -EFAULT; 4120 } 4121 } 4122 st = st->parent; 4123 if (!st) 4124 break; 4125 4126 for (fr = bt->frame; fr >= 0; fr--) { 4127 func = st->frame[fr]; 4128 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4129 for_each_set_bit(i, mask, 32) { 4130 reg = &func->regs[i]; 4131 if (reg->type != SCALAR_VALUE) { 4132 bt_clear_frame_reg(bt, fr, i); 4133 continue; 4134 } 4135 if (reg->precise) 4136 bt_clear_frame_reg(bt, fr, i); 4137 else 4138 reg->precise = true; 4139 } 4140 4141 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4142 for_each_set_bit(i, mask, 64) { 4143 if (i >= func->allocated_stack / BPF_REG_SIZE) { 4144 /* the sequence of instructions: 4145 * 2: (bf) r3 = r10 4146 * 3: (7b) *(u64 *)(r3 -8) = r0 4147 * 4: (79) r4 = *(u64 *)(r10 -8) 4148 * doesn't contain jmps. It's backtracked 4149 * as a single block. 4150 * During backtracking insn 3 is not recognized as 4151 * stack access, so at the end of backtracking 4152 * stack slot fp-8 is still marked in stack_mask. 4153 * However the parent state may not have accessed 4154 * fp-8 and it's "unallocated" stack space. 4155 * In such case fallback to conservative. 4156 */ 4157 mark_all_scalars_precise(env, env->cur_state); 4158 bt_reset(bt); 4159 return 0; 4160 } 4161 4162 if (!is_spilled_scalar_reg(&func->stack[i])) { 4163 bt_clear_frame_slot(bt, fr, i); 4164 continue; 4165 } 4166 reg = &func->stack[i].spilled_ptr; 4167 if (reg->precise) 4168 bt_clear_frame_slot(bt, fr, i); 4169 else 4170 reg->precise = true; 4171 } 4172 if (env->log.level & BPF_LOG_LEVEL2) { 4173 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4174 bt_frame_reg_mask(bt, fr)); 4175 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4176 fr, env->tmp_str_buf); 4177 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4178 bt_frame_stack_mask(bt, fr)); 4179 verbose(env, "stack=%s: ", env->tmp_str_buf); 4180 print_verifier_state(env, func, true); 4181 } 4182 } 4183 4184 if (bt_empty(bt)) 4185 return 0; 4186 4187 subseq_idx = first_idx; 4188 last_idx = st->last_insn_idx; 4189 first_idx = st->first_insn_idx; 4190 } 4191 4192 /* if we still have requested precise regs or slots, we missed 4193 * something (e.g., stack access through non-r10 register), so 4194 * fallback to marking all precise 4195 */ 4196 if (!bt_empty(bt)) { 4197 mark_all_scalars_precise(env, env->cur_state); 4198 bt_reset(bt); 4199 } 4200 4201 return 0; 4202 } 4203 4204 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4205 { 4206 return __mark_chain_precision(env, regno); 4207 } 4208 4209 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4210 * desired reg and stack masks across all relevant frames 4211 */ 4212 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4213 { 4214 return __mark_chain_precision(env, -1); 4215 } 4216 4217 static bool is_spillable_regtype(enum bpf_reg_type type) 4218 { 4219 switch (base_type(type)) { 4220 case PTR_TO_MAP_VALUE: 4221 case PTR_TO_STACK: 4222 case PTR_TO_CTX: 4223 case PTR_TO_PACKET: 4224 case PTR_TO_PACKET_META: 4225 case PTR_TO_PACKET_END: 4226 case PTR_TO_FLOW_KEYS: 4227 case CONST_PTR_TO_MAP: 4228 case PTR_TO_SOCKET: 4229 case PTR_TO_SOCK_COMMON: 4230 case PTR_TO_TCP_SOCK: 4231 case PTR_TO_XDP_SOCK: 4232 case PTR_TO_BTF_ID: 4233 case PTR_TO_BUF: 4234 case PTR_TO_MEM: 4235 case PTR_TO_FUNC: 4236 case PTR_TO_MAP_KEY: 4237 return true; 4238 default: 4239 return false; 4240 } 4241 } 4242 4243 /* Does this register contain a constant zero? */ 4244 static bool register_is_null(struct bpf_reg_state *reg) 4245 { 4246 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4247 } 4248 4249 static bool register_is_const(struct bpf_reg_state *reg) 4250 { 4251 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 4252 } 4253 4254 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 4255 { 4256 return tnum_is_unknown(reg->var_off) && 4257 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 4258 reg->umin_value == 0 && reg->umax_value == U64_MAX && 4259 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 4260 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 4261 } 4262 4263 static bool register_is_bounded(struct bpf_reg_state *reg) 4264 { 4265 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 4266 } 4267 4268 static bool __is_pointer_value(bool allow_ptr_leaks, 4269 const struct bpf_reg_state *reg) 4270 { 4271 if (allow_ptr_leaks) 4272 return false; 4273 4274 return reg->type != SCALAR_VALUE; 4275 } 4276 4277 /* Copy src state preserving dst->parent and dst->live fields */ 4278 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4279 { 4280 struct bpf_reg_state *parent = dst->parent; 4281 enum bpf_reg_liveness live = dst->live; 4282 4283 *dst = *src; 4284 dst->parent = parent; 4285 dst->live = live; 4286 } 4287 4288 static void save_register_state(struct bpf_func_state *state, 4289 int spi, struct bpf_reg_state *reg, 4290 int size) 4291 { 4292 int i; 4293 4294 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4295 if (size == BPF_REG_SIZE) 4296 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4297 4298 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4299 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4300 4301 /* size < 8 bytes spill */ 4302 for (; i; i--) 4303 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 4304 } 4305 4306 static bool is_bpf_st_mem(struct bpf_insn *insn) 4307 { 4308 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4309 } 4310 4311 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4312 * stack boundary and alignment are checked in check_mem_access() 4313 */ 4314 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4315 /* stack frame we're writing to */ 4316 struct bpf_func_state *state, 4317 int off, int size, int value_regno, 4318 int insn_idx) 4319 { 4320 struct bpf_func_state *cur; /* state of the current function */ 4321 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4322 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4323 struct bpf_reg_state *reg = NULL; 4324 u32 dst_reg = insn->dst_reg; 4325 4326 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 4327 if (err) 4328 return err; 4329 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4330 * so it's aligned access and [off, off + size) are within stack limits 4331 */ 4332 if (!env->allow_ptr_leaks && 4333 state->stack[spi].slot_type[0] == STACK_SPILL && 4334 size != BPF_REG_SIZE) { 4335 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4336 return -EACCES; 4337 } 4338 4339 cur = env->cur_state->frame[env->cur_state->curframe]; 4340 if (value_regno >= 0) 4341 reg = &cur->regs[value_regno]; 4342 if (!env->bypass_spec_v4) { 4343 bool sanitize = reg && is_spillable_regtype(reg->type); 4344 4345 for (i = 0; i < size; i++) { 4346 u8 type = state->stack[spi].slot_type[i]; 4347 4348 if (type != STACK_MISC && type != STACK_ZERO) { 4349 sanitize = true; 4350 break; 4351 } 4352 } 4353 4354 if (sanitize) 4355 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4356 } 4357 4358 err = destroy_if_dynptr_stack_slot(env, state, spi); 4359 if (err) 4360 return err; 4361 4362 mark_stack_slot_scratched(env, spi); 4363 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 4364 !register_is_null(reg) && env->bpf_capable) { 4365 if (dst_reg != BPF_REG_FP) { 4366 /* The backtracking logic can only recognize explicit 4367 * stack slot address like [fp - 8]. Other spill of 4368 * scalar via different register has to be conservative. 4369 * Backtrack from here and mark all registers as precise 4370 * that contributed into 'reg' being a constant. 4371 */ 4372 err = mark_chain_precision(env, value_regno); 4373 if (err) 4374 return err; 4375 } 4376 save_register_state(state, spi, reg, size); 4377 /* Break the relation on a narrowing spill. */ 4378 if (fls64(reg->umax_value) > BITS_PER_BYTE * size) 4379 state->stack[spi].spilled_ptr.id = 0; 4380 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4381 insn->imm != 0 && env->bpf_capable) { 4382 struct bpf_reg_state fake_reg = {}; 4383 4384 __mark_reg_known(&fake_reg, insn->imm); 4385 fake_reg.type = SCALAR_VALUE; 4386 save_register_state(state, spi, &fake_reg, size); 4387 } else if (reg && is_spillable_regtype(reg->type)) { 4388 /* register containing pointer is being spilled into stack */ 4389 if (size != BPF_REG_SIZE) { 4390 verbose_linfo(env, insn_idx, "; "); 4391 verbose(env, "invalid size of register spill\n"); 4392 return -EACCES; 4393 } 4394 if (state != cur && reg->type == PTR_TO_STACK) { 4395 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4396 return -EINVAL; 4397 } 4398 save_register_state(state, spi, reg, size); 4399 } else { 4400 u8 type = STACK_MISC; 4401 4402 /* regular write of data into stack destroys any spilled ptr */ 4403 state->stack[spi].spilled_ptr.type = NOT_INIT; 4404 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4405 if (is_stack_slot_special(&state->stack[spi])) 4406 for (i = 0; i < BPF_REG_SIZE; i++) 4407 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4408 4409 /* only mark the slot as written if all 8 bytes were written 4410 * otherwise read propagation may incorrectly stop too soon 4411 * when stack slots are partially written. 4412 * This heuristic means that read propagation will be 4413 * conservative, since it will add reg_live_read marks 4414 * to stack slots all the way to first state when programs 4415 * writes+reads less than 8 bytes 4416 */ 4417 if (size == BPF_REG_SIZE) 4418 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4419 4420 /* when we zero initialize stack slots mark them as such */ 4421 if ((reg && register_is_null(reg)) || 4422 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4423 /* backtracking doesn't work for STACK_ZERO yet. */ 4424 err = mark_chain_precision(env, value_regno); 4425 if (err) 4426 return err; 4427 type = STACK_ZERO; 4428 } 4429 4430 /* Mark slots affected by this stack write. */ 4431 for (i = 0; i < size; i++) 4432 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 4433 type; 4434 } 4435 return 0; 4436 } 4437 4438 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4439 * known to contain a variable offset. 4440 * This function checks whether the write is permitted and conservatively 4441 * tracks the effects of the write, considering that each stack slot in the 4442 * dynamic range is potentially written to. 4443 * 4444 * 'off' includes 'regno->off'. 4445 * 'value_regno' can be -1, meaning that an unknown value is being written to 4446 * the stack. 4447 * 4448 * Spilled pointers in range are not marked as written because we don't know 4449 * what's going to be actually written. This means that read propagation for 4450 * future reads cannot be terminated by this write. 4451 * 4452 * For privileged programs, uninitialized stack slots are considered 4453 * initialized by this write (even though we don't know exactly what offsets 4454 * are going to be written to). The idea is that we don't want the verifier to 4455 * reject future reads that access slots written to through variable offsets. 4456 */ 4457 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4458 /* func where register points to */ 4459 struct bpf_func_state *state, 4460 int ptr_regno, int off, int size, 4461 int value_regno, int insn_idx) 4462 { 4463 struct bpf_func_state *cur; /* state of the current function */ 4464 int min_off, max_off; 4465 int i, err; 4466 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4467 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4468 bool writing_zero = false; 4469 /* set if the fact that we're writing a zero is used to let any 4470 * stack slots remain STACK_ZERO 4471 */ 4472 bool zero_used = false; 4473 4474 cur = env->cur_state->frame[env->cur_state->curframe]; 4475 ptr_reg = &cur->regs[ptr_regno]; 4476 min_off = ptr_reg->smin_value + off; 4477 max_off = ptr_reg->smax_value + off + size; 4478 if (value_regno >= 0) 4479 value_reg = &cur->regs[value_regno]; 4480 if ((value_reg && register_is_null(value_reg)) || 4481 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4482 writing_zero = true; 4483 4484 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 4485 if (err) 4486 return err; 4487 4488 for (i = min_off; i < max_off; i++) { 4489 int spi; 4490 4491 spi = __get_spi(i); 4492 err = destroy_if_dynptr_stack_slot(env, state, spi); 4493 if (err) 4494 return err; 4495 } 4496 4497 /* Variable offset writes destroy any spilled pointers in range. */ 4498 for (i = min_off; i < max_off; i++) { 4499 u8 new_type, *stype; 4500 int slot, spi; 4501 4502 slot = -i - 1; 4503 spi = slot / BPF_REG_SIZE; 4504 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4505 mark_stack_slot_scratched(env, spi); 4506 4507 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4508 /* Reject the write if range we may write to has not 4509 * been initialized beforehand. If we didn't reject 4510 * here, the ptr status would be erased below (even 4511 * though not all slots are actually overwritten), 4512 * possibly opening the door to leaks. 4513 * 4514 * We do however catch STACK_INVALID case below, and 4515 * only allow reading possibly uninitialized memory 4516 * later for CAP_PERFMON, as the write may not happen to 4517 * that slot. 4518 */ 4519 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4520 insn_idx, i); 4521 return -EINVAL; 4522 } 4523 4524 /* Erase all spilled pointers. */ 4525 state->stack[spi].spilled_ptr.type = NOT_INIT; 4526 4527 /* Update the slot type. */ 4528 new_type = STACK_MISC; 4529 if (writing_zero && *stype == STACK_ZERO) { 4530 new_type = STACK_ZERO; 4531 zero_used = true; 4532 } 4533 /* If the slot is STACK_INVALID, we check whether it's OK to 4534 * pretend that it will be initialized by this write. The slot 4535 * might not actually be written to, and so if we mark it as 4536 * initialized future reads might leak uninitialized memory. 4537 * For privileged programs, we will accept such reads to slots 4538 * that may or may not be written because, if we're reject 4539 * them, the error would be too confusing. 4540 */ 4541 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4542 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4543 insn_idx, i); 4544 return -EINVAL; 4545 } 4546 *stype = new_type; 4547 } 4548 if (zero_used) { 4549 /* backtracking doesn't work for STACK_ZERO yet. */ 4550 err = mark_chain_precision(env, value_regno); 4551 if (err) 4552 return err; 4553 } 4554 return 0; 4555 } 4556 4557 /* When register 'dst_regno' is assigned some values from stack[min_off, 4558 * max_off), we set the register's type according to the types of the 4559 * respective stack slots. If all the stack values are known to be zeros, then 4560 * so is the destination reg. Otherwise, the register is considered to be 4561 * SCALAR. This function does not deal with register filling; the caller must 4562 * ensure that all spilled registers in the stack range have been marked as 4563 * read. 4564 */ 4565 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4566 /* func where src register points to */ 4567 struct bpf_func_state *ptr_state, 4568 int min_off, int max_off, int dst_regno) 4569 { 4570 struct bpf_verifier_state *vstate = env->cur_state; 4571 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4572 int i, slot, spi; 4573 u8 *stype; 4574 int zeros = 0; 4575 4576 for (i = min_off; i < max_off; i++) { 4577 slot = -i - 1; 4578 spi = slot / BPF_REG_SIZE; 4579 mark_stack_slot_scratched(env, spi); 4580 stype = ptr_state->stack[spi].slot_type; 4581 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4582 break; 4583 zeros++; 4584 } 4585 if (zeros == max_off - min_off) { 4586 /* any access_size read into register is zero extended, 4587 * so the whole register == const_zero 4588 */ 4589 __mark_reg_const_zero(&state->regs[dst_regno]); 4590 /* backtracking doesn't support STACK_ZERO yet, 4591 * so mark it precise here, so that later 4592 * backtracking can stop here. 4593 * Backtracking may not need this if this register 4594 * doesn't participate in pointer adjustment. 4595 * Forward propagation of precise flag is not 4596 * necessary either. This mark is only to stop 4597 * backtracking. Any register that contributed 4598 * to const 0 was marked precise before spill. 4599 */ 4600 state->regs[dst_regno].precise = true; 4601 } else { 4602 /* have read misc data from the stack */ 4603 mark_reg_unknown(env, state->regs, dst_regno); 4604 } 4605 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4606 } 4607 4608 /* Read the stack at 'off' and put the results into the register indicated by 4609 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4610 * spilled reg. 4611 * 4612 * 'dst_regno' can be -1, meaning that the read value is not going to a 4613 * register. 4614 * 4615 * The access is assumed to be within the current stack bounds. 4616 */ 4617 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4618 /* func where src register points to */ 4619 struct bpf_func_state *reg_state, 4620 int off, int size, int dst_regno) 4621 { 4622 struct bpf_verifier_state *vstate = env->cur_state; 4623 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4624 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 4625 struct bpf_reg_state *reg; 4626 u8 *stype, type; 4627 4628 stype = reg_state->stack[spi].slot_type; 4629 reg = ®_state->stack[spi].spilled_ptr; 4630 4631 mark_stack_slot_scratched(env, spi); 4632 4633 if (is_spilled_reg(®_state->stack[spi])) { 4634 u8 spill_size = 1; 4635 4636 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 4637 spill_size++; 4638 4639 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 4640 if (reg->type != SCALAR_VALUE) { 4641 verbose_linfo(env, env->insn_idx, "; "); 4642 verbose(env, "invalid size of register fill\n"); 4643 return -EACCES; 4644 } 4645 4646 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4647 if (dst_regno < 0) 4648 return 0; 4649 4650 if (!(off % BPF_REG_SIZE) && size == spill_size) { 4651 /* The earlier check_reg_arg() has decided the 4652 * subreg_def for this insn. Save it first. 4653 */ 4654 s32 subreg_def = state->regs[dst_regno].subreg_def; 4655 4656 copy_register_state(&state->regs[dst_regno], reg); 4657 state->regs[dst_regno].subreg_def = subreg_def; 4658 } else { 4659 for (i = 0; i < size; i++) { 4660 type = stype[(slot - i) % BPF_REG_SIZE]; 4661 if (type == STACK_SPILL) 4662 continue; 4663 if (type == STACK_MISC) 4664 continue; 4665 if (type == STACK_INVALID && env->allow_uninit_stack) 4666 continue; 4667 verbose(env, "invalid read from stack off %d+%d size %d\n", 4668 off, i, size); 4669 return -EACCES; 4670 } 4671 mark_reg_unknown(env, state->regs, dst_regno); 4672 } 4673 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4674 return 0; 4675 } 4676 4677 if (dst_regno >= 0) { 4678 /* restore register state from stack */ 4679 copy_register_state(&state->regs[dst_regno], reg); 4680 /* mark reg as written since spilled pointer state likely 4681 * has its liveness marks cleared by is_state_visited() 4682 * which resets stack/reg liveness for state transitions 4683 */ 4684 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4685 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 4686 /* If dst_regno==-1, the caller is asking us whether 4687 * it is acceptable to use this value as a SCALAR_VALUE 4688 * (e.g. for XADD). 4689 * We must not allow unprivileged callers to do that 4690 * with spilled pointers. 4691 */ 4692 verbose(env, "leaking pointer from stack off %d\n", 4693 off); 4694 return -EACCES; 4695 } 4696 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4697 } else { 4698 for (i = 0; i < size; i++) { 4699 type = stype[(slot - i) % BPF_REG_SIZE]; 4700 if (type == STACK_MISC) 4701 continue; 4702 if (type == STACK_ZERO) 4703 continue; 4704 if (type == STACK_INVALID && env->allow_uninit_stack) 4705 continue; 4706 verbose(env, "invalid read from stack off %d+%d size %d\n", 4707 off, i, size); 4708 return -EACCES; 4709 } 4710 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4711 if (dst_regno >= 0) 4712 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 4713 } 4714 return 0; 4715 } 4716 4717 enum bpf_access_src { 4718 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 4719 ACCESS_HELPER = 2, /* the access is performed by a helper */ 4720 }; 4721 4722 static int check_stack_range_initialized(struct bpf_verifier_env *env, 4723 int regno, int off, int access_size, 4724 bool zero_size_allowed, 4725 enum bpf_access_src type, 4726 struct bpf_call_arg_meta *meta); 4727 4728 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 4729 { 4730 return cur_regs(env) + regno; 4731 } 4732 4733 /* Read the stack at 'ptr_regno + off' and put the result into the register 4734 * 'dst_regno'. 4735 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 4736 * but not its variable offset. 4737 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 4738 * 4739 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 4740 * filling registers (i.e. reads of spilled register cannot be detected when 4741 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 4742 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 4743 * offset; for a fixed offset check_stack_read_fixed_off should be used 4744 * instead. 4745 */ 4746 static int check_stack_read_var_off(struct bpf_verifier_env *env, 4747 int ptr_regno, int off, int size, int dst_regno) 4748 { 4749 /* The state of the source register. */ 4750 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4751 struct bpf_func_state *ptr_state = func(env, reg); 4752 int err; 4753 int min_off, max_off; 4754 4755 /* Note that we pass a NULL meta, so raw access will not be permitted. 4756 */ 4757 err = check_stack_range_initialized(env, ptr_regno, off, size, 4758 false, ACCESS_DIRECT, NULL); 4759 if (err) 4760 return err; 4761 4762 min_off = reg->smin_value + off; 4763 max_off = reg->smax_value + off; 4764 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 4765 return 0; 4766 } 4767 4768 /* check_stack_read dispatches to check_stack_read_fixed_off or 4769 * check_stack_read_var_off. 4770 * 4771 * The caller must ensure that the offset falls within the allocated stack 4772 * bounds. 4773 * 4774 * 'dst_regno' is a register which will receive the value from the stack. It 4775 * can be -1, meaning that the read value is not going to a register. 4776 */ 4777 static int check_stack_read(struct bpf_verifier_env *env, 4778 int ptr_regno, int off, int size, 4779 int dst_regno) 4780 { 4781 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4782 struct bpf_func_state *state = func(env, reg); 4783 int err; 4784 /* Some accesses are only permitted with a static offset. */ 4785 bool var_off = !tnum_is_const(reg->var_off); 4786 4787 /* The offset is required to be static when reads don't go to a 4788 * register, in order to not leak pointers (see 4789 * check_stack_read_fixed_off). 4790 */ 4791 if (dst_regno < 0 && var_off) { 4792 char tn_buf[48]; 4793 4794 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4795 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 4796 tn_buf, off, size); 4797 return -EACCES; 4798 } 4799 /* Variable offset is prohibited for unprivileged mode for simplicity 4800 * since it requires corresponding support in Spectre masking for stack 4801 * ALU. See also retrieve_ptr_limit(). The check in 4802 * check_stack_access_for_ptr_arithmetic() called by 4803 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 4804 * with variable offsets, therefore no check is required here. Further, 4805 * just checking it here would be insufficient as speculative stack 4806 * writes could still lead to unsafe speculative behaviour. 4807 */ 4808 if (!var_off) { 4809 off += reg->var_off.value; 4810 err = check_stack_read_fixed_off(env, state, off, size, 4811 dst_regno); 4812 } else { 4813 /* Variable offset stack reads need more conservative handling 4814 * than fixed offset ones. Note that dst_regno >= 0 on this 4815 * branch. 4816 */ 4817 err = check_stack_read_var_off(env, ptr_regno, off, size, 4818 dst_regno); 4819 } 4820 return err; 4821 } 4822 4823 4824 /* check_stack_write dispatches to check_stack_write_fixed_off or 4825 * check_stack_write_var_off. 4826 * 4827 * 'ptr_regno' is the register used as a pointer into the stack. 4828 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 4829 * 'value_regno' is the register whose value we're writing to the stack. It can 4830 * be -1, meaning that we're not writing from a register. 4831 * 4832 * The caller must ensure that the offset falls within the maximum stack size. 4833 */ 4834 static int check_stack_write(struct bpf_verifier_env *env, 4835 int ptr_regno, int off, int size, 4836 int value_regno, int insn_idx) 4837 { 4838 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4839 struct bpf_func_state *state = func(env, reg); 4840 int err; 4841 4842 if (tnum_is_const(reg->var_off)) { 4843 off += reg->var_off.value; 4844 err = check_stack_write_fixed_off(env, state, off, size, 4845 value_regno, insn_idx); 4846 } else { 4847 /* Variable offset stack reads need more conservative handling 4848 * than fixed offset ones. 4849 */ 4850 err = check_stack_write_var_off(env, state, 4851 ptr_regno, off, size, 4852 value_regno, insn_idx); 4853 } 4854 return err; 4855 } 4856 4857 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 4858 int off, int size, enum bpf_access_type type) 4859 { 4860 struct bpf_reg_state *regs = cur_regs(env); 4861 struct bpf_map *map = regs[regno].map_ptr; 4862 u32 cap = bpf_map_flags_to_cap(map); 4863 4864 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 4865 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 4866 map->value_size, off, size); 4867 return -EACCES; 4868 } 4869 4870 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 4871 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 4872 map->value_size, off, size); 4873 return -EACCES; 4874 } 4875 4876 return 0; 4877 } 4878 4879 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 4880 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 4881 int off, int size, u32 mem_size, 4882 bool zero_size_allowed) 4883 { 4884 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 4885 struct bpf_reg_state *reg; 4886 4887 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 4888 return 0; 4889 4890 reg = &cur_regs(env)[regno]; 4891 switch (reg->type) { 4892 case PTR_TO_MAP_KEY: 4893 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 4894 mem_size, off, size); 4895 break; 4896 case PTR_TO_MAP_VALUE: 4897 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 4898 mem_size, off, size); 4899 break; 4900 case PTR_TO_PACKET: 4901 case PTR_TO_PACKET_META: 4902 case PTR_TO_PACKET_END: 4903 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 4904 off, size, regno, reg->id, off, mem_size); 4905 break; 4906 case PTR_TO_MEM: 4907 default: 4908 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 4909 mem_size, off, size); 4910 } 4911 4912 return -EACCES; 4913 } 4914 4915 /* check read/write into a memory region with possible variable offset */ 4916 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 4917 int off, int size, u32 mem_size, 4918 bool zero_size_allowed) 4919 { 4920 struct bpf_verifier_state *vstate = env->cur_state; 4921 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4922 struct bpf_reg_state *reg = &state->regs[regno]; 4923 int err; 4924 4925 /* We may have adjusted the register pointing to memory region, so we 4926 * need to try adding each of min_value and max_value to off 4927 * to make sure our theoretical access will be safe. 4928 * 4929 * The minimum value is only important with signed 4930 * comparisons where we can't assume the floor of a 4931 * value is 0. If we are using signed variables for our 4932 * index'es we need to make sure that whatever we use 4933 * will have a set floor within our range. 4934 */ 4935 if (reg->smin_value < 0 && 4936 (reg->smin_value == S64_MIN || 4937 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 4938 reg->smin_value + off < 0)) { 4939 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4940 regno); 4941 return -EACCES; 4942 } 4943 err = __check_mem_access(env, regno, reg->smin_value + off, size, 4944 mem_size, zero_size_allowed); 4945 if (err) { 4946 verbose(env, "R%d min value is outside of the allowed memory range\n", 4947 regno); 4948 return err; 4949 } 4950 4951 /* If we haven't set a max value then we need to bail since we can't be 4952 * sure we won't do bad things. 4953 * If reg->umax_value + off could overflow, treat that as unbounded too. 4954 */ 4955 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 4956 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 4957 regno); 4958 return -EACCES; 4959 } 4960 err = __check_mem_access(env, regno, reg->umax_value + off, size, 4961 mem_size, zero_size_allowed); 4962 if (err) { 4963 verbose(env, "R%d max value is outside of the allowed memory range\n", 4964 regno); 4965 return err; 4966 } 4967 4968 return 0; 4969 } 4970 4971 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 4972 const struct bpf_reg_state *reg, int regno, 4973 bool fixed_off_ok) 4974 { 4975 /* Access to this pointer-typed register or passing it to a helper 4976 * is only allowed in its original, unmodified form. 4977 */ 4978 4979 if (reg->off < 0) { 4980 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 4981 reg_type_str(env, reg->type), regno, reg->off); 4982 return -EACCES; 4983 } 4984 4985 if (!fixed_off_ok && reg->off) { 4986 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 4987 reg_type_str(env, reg->type), regno, reg->off); 4988 return -EACCES; 4989 } 4990 4991 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4992 char tn_buf[48]; 4993 4994 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4995 verbose(env, "variable %s access var_off=%s disallowed\n", 4996 reg_type_str(env, reg->type), tn_buf); 4997 return -EACCES; 4998 } 4999 5000 return 0; 5001 } 5002 5003 int check_ptr_off_reg(struct bpf_verifier_env *env, 5004 const struct bpf_reg_state *reg, int regno) 5005 { 5006 return __check_ptr_off_reg(env, reg, regno, false); 5007 } 5008 5009 static int map_kptr_match_type(struct bpf_verifier_env *env, 5010 struct btf_field *kptr_field, 5011 struct bpf_reg_state *reg, u32 regno) 5012 { 5013 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 5014 int perm_flags; 5015 const char *reg_name = ""; 5016 5017 if (btf_is_kernel(reg->btf)) { 5018 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 5019 5020 /* Only unreferenced case accepts untrusted pointers */ 5021 if (kptr_field->type == BPF_KPTR_UNREF) 5022 perm_flags |= PTR_UNTRUSTED; 5023 } else { 5024 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5025 } 5026 5027 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5028 goto bad_type; 5029 5030 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5031 reg_name = btf_type_name(reg->btf, reg->btf_id); 5032 5033 /* For ref_ptr case, release function check should ensure we get one 5034 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5035 * normal store of unreferenced kptr, we must ensure var_off is zero. 5036 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5037 * reg->off and reg->ref_obj_id are not needed here. 5038 */ 5039 if (__check_ptr_off_reg(env, reg, regno, true)) 5040 return -EACCES; 5041 5042 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5043 * we also need to take into account the reg->off. 5044 * 5045 * We want to support cases like: 5046 * 5047 * struct foo { 5048 * struct bar br; 5049 * struct baz bz; 5050 * }; 5051 * 5052 * struct foo *v; 5053 * v = func(); // PTR_TO_BTF_ID 5054 * val->foo = v; // reg->off is zero, btf and btf_id match type 5055 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5056 * // first member type of struct after comparison fails 5057 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5058 * // to match type 5059 * 5060 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5061 * is zero. We must also ensure that btf_struct_ids_match does not walk 5062 * the struct to match type against first member of struct, i.e. reject 5063 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5064 * strict mode to true for type match. 5065 */ 5066 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5067 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5068 kptr_field->type == BPF_KPTR_REF)) 5069 goto bad_type; 5070 return 0; 5071 bad_type: 5072 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5073 reg_type_str(env, reg->type), reg_name); 5074 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5075 if (kptr_field->type == BPF_KPTR_UNREF) 5076 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5077 targ_name); 5078 else 5079 verbose(env, "\n"); 5080 return -EINVAL; 5081 } 5082 5083 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5084 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5085 */ 5086 static bool in_rcu_cs(struct bpf_verifier_env *env) 5087 { 5088 return env->cur_state->active_rcu_lock || 5089 env->cur_state->active_lock.ptr || 5090 !env->prog->aux->sleepable; 5091 } 5092 5093 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5094 BTF_SET_START(rcu_protected_types) 5095 BTF_ID(struct, prog_test_ref_kfunc) 5096 BTF_ID(struct, cgroup) 5097 BTF_ID(struct, bpf_cpumask) 5098 BTF_ID(struct, task_struct) 5099 BTF_SET_END(rcu_protected_types) 5100 5101 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5102 { 5103 if (!btf_is_kernel(btf)) 5104 return false; 5105 return btf_id_set_contains(&rcu_protected_types, btf_id); 5106 } 5107 5108 static bool rcu_safe_kptr(const struct btf_field *field) 5109 { 5110 const struct btf_field_kptr *kptr = &field->kptr; 5111 5112 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id); 5113 } 5114 5115 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5116 int value_regno, int insn_idx, 5117 struct btf_field *kptr_field) 5118 { 5119 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5120 int class = BPF_CLASS(insn->code); 5121 struct bpf_reg_state *val_reg; 5122 5123 /* Things we already checked for in check_map_access and caller: 5124 * - Reject cases where variable offset may touch kptr 5125 * - size of access (must be BPF_DW) 5126 * - tnum_is_const(reg->var_off) 5127 * - kptr_field->offset == off + reg->var_off.value 5128 */ 5129 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5130 if (BPF_MODE(insn->code) != BPF_MEM) { 5131 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5132 return -EACCES; 5133 } 5134 5135 /* We only allow loading referenced kptr, since it will be marked as 5136 * untrusted, similar to unreferenced kptr. 5137 */ 5138 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) { 5139 verbose(env, "store to referenced kptr disallowed\n"); 5140 return -EACCES; 5141 } 5142 5143 if (class == BPF_LDX) { 5144 val_reg = reg_state(env, value_regno); 5145 /* We can simply mark the value_regno receiving the pointer 5146 * value from map as PTR_TO_BTF_ID, with the correct type. 5147 */ 5148 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5149 kptr_field->kptr.btf_id, 5150 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ? 5151 PTR_MAYBE_NULL | MEM_RCU : 5152 PTR_MAYBE_NULL | PTR_UNTRUSTED); 5153 /* For mark_ptr_or_null_reg */ 5154 val_reg->id = ++env->id_gen; 5155 } else if (class == BPF_STX) { 5156 val_reg = reg_state(env, value_regno); 5157 if (!register_is_null(val_reg) && 5158 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5159 return -EACCES; 5160 } else if (class == BPF_ST) { 5161 if (insn->imm) { 5162 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5163 kptr_field->offset); 5164 return -EACCES; 5165 } 5166 } else { 5167 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5168 return -EACCES; 5169 } 5170 return 0; 5171 } 5172 5173 /* check read/write into a map element with possible variable offset */ 5174 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5175 int off, int size, bool zero_size_allowed, 5176 enum bpf_access_src src) 5177 { 5178 struct bpf_verifier_state *vstate = env->cur_state; 5179 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5180 struct bpf_reg_state *reg = &state->regs[regno]; 5181 struct bpf_map *map = reg->map_ptr; 5182 struct btf_record *rec; 5183 int err, i; 5184 5185 err = check_mem_region_access(env, regno, off, size, map->value_size, 5186 zero_size_allowed); 5187 if (err) 5188 return err; 5189 5190 if (IS_ERR_OR_NULL(map->record)) 5191 return 0; 5192 rec = map->record; 5193 for (i = 0; i < rec->cnt; i++) { 5194 struct btf_field *field = &rec->fields[i]; 5195 u32 p = field->offset; 5196 5197 /* If any part of a field can be touched by load/store, reject 5198 * this program. To check that [x1, x2) overlaps with [y1, y2), 5199 * it is sufficient to check x1 < y2 && y1 < x2. 5200 */ 5201 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 5202 p < reg->umax_value + off + size) { 5203 switch (field->type) { 5204 case BPF_KPTR_UNREF: 5205 case BPF_KPTR_REF: 5206 if (src != ACCESS_DIRECT) { 5207 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 5208 return -EACCES; 5209 } 5210 if (!tnum_is_const(reg->var_off)) { 5211 verbose(env, "kptr access cannot have variable offset\n"); 5212 return -EACCES; 5213 } 5214 if (p != off + reg->var_off.value) { 5215 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 5216 p, off + reg->var_off.value); 5217 return -EACCES; 5218 } 5219 if (size != bpf_size_to_bytes(BPF_DW)) { 5220 verbose(env, "kptr access size must be BPF_DW\n"); 5221 return -EACCES; 5222 } 5223 break; 5224 default: 5225 verbose(env, "%s cannot be accessed directly by load/store\n", 5226 btf_field_type_name(field->type)); 5227 return -EACCES; 5228 } 5229 } 5230 } 5231 return 0; 5232 } 5233 5234 #define MAX_PACKET_OFF 0xffff 5235 5236 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5237 const struct bpf_call_arg_meta *meta, 5238 enum bpf_access_type t) 5239 { 5240 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5241 5242 switch (prog_type) { 5243 /* Program types only with direct read access go here! */ 5244 case BPF_PROG_TYPE_LWT_IN: 5245 case BPF_PROG_TYPE_LWT_OUT: 5246 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5247 case BPF_PROG_TYPE_SK_REUSEPORT: 5248 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5249 case BPF_PROG_TYPE_CGROUP_SKB: 5250 if (t == BPF_WRITE) 5251 return false; 5252 fallthrough; 5253 5254 /* Program types with direct read + write access go here! */ 5255 case BPF_PROG_TYPE_SCHED_CLS: 5256 case BPF_PROG_TYPE_SCHED_ACT: 5257 case BPF_PROG_TYPE_XDP: 5258 case BPF_PROG_TYPE_LWT_XMIT: 5259 case BPF_PROG_TYPE_SK_SKB: 5260 case BPF_PROG_TYPE_SK_MSG: 5261 if (meta) 5262 return meta->pkt_access; 5263 5264 env->seen_direct_write = true; 5265 return true; 5266 5267 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5268 if (t == BPF_WRITE) 5269 env->seen_direct_write = true; 5270 5271 return true; 5272 5273 default: 5274 return false; 5275 } 5276 } 5277 5278 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5279 int size, bool zero_size_allowed) 5280 { 5281 struct bpf_reg_state *regs = cur_regs(env); 5282 struct bpf_reg_state *reg = ®s[regno]; 5283 int err; 5284 5285 /* We may have added a variable offset to the packet pointer; but any 5286 * reg->range we have comes after that. We are only checking the fixed 5287 * offset. 5288 */ 5289 5290 /* We don't allow negative numbers, because we aren't tracking enough 5291 * detail to prove they're safe. 5292 */ 5293 if (reg->smin_value < 0) { 5294 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5295 regno); 5296 return -EACCES; 5297 } 5298 5299 err = reg->range < 0 ? -EINVAL : 5300 __check_mem_access(env, regno, off, size, reg->range, 5301 zero_size_allowed); 5302 if (err) { 5303 verbose(env, "R%d offset is outside of the packet\n", regno); 5304 return err; 5305 } 5306 5307 /* __check_mem_access has made sure "off + size - 1" is within u16. 5308 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5309 * otherwise find_good_pkt_pointers would have refused to set range info 5310 * that __check_mem_access would have rejected this pkt access. 5311 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5312 */ 5313 env->prog->aux->max_pkt_offset = 5314 max_t(u32, env->prog->aux->max_pkt_offset, 5315 off + reg->umax_value + size - 1); 5316 5317 return err; 5318 } 5319 5320 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5321 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5322 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5323 struct btf **btf, u32 *btf_id) 5324 { 5325 struct bpf_insn_access_aux info = { 5326 .reg_type = *reg_type, 5327 .log = &env->log, 5328 }; 5329 5330 if (env->ops->is_valid_access && 5331 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5332 /* A non zero info.ctx_field_size indicates that this field is a 5333 * candidate for later verifier transformation to load the whole 5334 * field and then apply a mask when accessed with a narrower 5335 * access than actual ctx access size. A zero info.ctx_field_size 5336 * will only allow for whole field access and rejects any other 5337 * type of narrower access. 5338 */ 5339 *reg_type = info.reg_type; 5340 5341 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5342 *btf = info.btf; 5343 *btf_id = info.btf_id; 5344 } else { 5345 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5346 } 5347 /* remember the offset of last byte accessed in ctx */ 5348 if (env->prog->aux->max_ctx_offset < off + size) 5349 env->prog->aux->max_ctx_offset = off + size; 5350 return 0; 5351 } 5352 5353 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5354 return -EACCES; 5355 } 5356 5357 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5358 int size) 5359 { 5360 if (size < 0 || off < 0 || 5361 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5362 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5363 off, size); 5364 return -EACCES; 5365 } 5366 return 0; 5367 } 5368 5369 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5370 u32 regno, int off, int size, 5371 enum bpf_access_type t) 5372 { 5373 struct bpf_reg_state *regs = cur_regs(env); 5374 struct bpf_reg_state *reg = ®s[regno]; 5375 struct bpf_insn_access_aux info = {}; 5376 bool valid; 5377 5378 if (reg->smin_value < 0) { 5379 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5380 regno); 5381 return -EACCES; 5382 } 5383 5384 switch (reg->type) { 5385 case PTR_TO_SOCK_COMMON: 5386 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5387 break; 5388 case PTR_TO_SOCKET: 5389 valid = bpf_sock_is_valid_access(off, size, t, &info); 5390 break; 5391 case PTR_TO_TCP_SOCK: 5392 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5393 break; 5394 case PTR_TO_XDP_SOCK: 5395 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5396 break; 5397 default: 5398 valid = false; 5399 } 5400 5401 5402 if (valid) { 5403 env->insn_aux_data[insn_idx].ctx_field_size = 5404 info.ctx_field_size; 5405 return 0; 5406 } 5407 5408 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5409 regno, reg_type_str(env, reg->type), off, size); 5410 5411 return -EACCES; 5412 } 5413 5414 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5415 { 5416 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5417 } 5418 5419 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5420 { 5421 const struct bpf_reg_state *reg = reg_state(env, regno); 5422 5423 return reg->type == PTR_TO_CTX; 5424 } 5425 5426 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5427 { 5428 const struct bpf_reg_state *reg = reg_state(env, regno); 5429 5430 return type_is_sk_pointer(reg->type); 5431 } 5432 5433 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5434 { 5435 const struct bpf_reg_state *reg = reg_state(env, regno); 5436 5437 return type_is_pkt_pointer(reg->type); 5438 } 5439 5440 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5441 { 5442 const struct bpf_reg_state *reg = reg_state(env, regno); 5443 5444 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5445 return reg->type == PTR_TO_FLOW_KEYS; 5446 } 5447 5448 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5449 #ifdef CONFIG_NET 5450 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5451 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5452 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5453 #endif 5454 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 5455 }; 5456 5457 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5458 { 5459 /* A referenced register is always trusted. */ 5460 if (reg->ref_obj_id) 5461 return true; 5462 5463 /* Types listed in the reg2btf_ids are always trusted */ 5464 if (reg2btf_ids[base_type(reg->type)]) 5465 return true; 5466 5467 /* If a register is not referenced, it is trusted if it has the 5468 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5469 * other type modifiers may be safe, but we elect to take an opt-in 5470 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5471 * not. 5472 * 5473 * Eventually, we should make PTR_TRUSTED the single source of truth 5474 * for whether a register is trusted. 5475 */ 5476 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5477 !bpf_type_has_unsafe_modifiers(reg->type); 5478 } 5479 5480 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5481 { 5482 return reg->type & MEM_RCU; 5483 } 5484 5485 static void clear_trusted_flags(enum bpf_type_flag *flag) 5486 { 5487 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5488 } 5489 5490 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5491 const struct bpf_reg_state *reg, 5492 int off, int size, bool strict) 5493 { 5494 struct tnum reg_off; 5495 int ip_align; 5496 5497 /* Byte size accesses are always allowed. */ 5498 if (!strict || size == 1) 5499 return 0; 5500 5501 /* For platforms that do not have a Kconfig enabling 5502 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5503 * NET_IP_ALIGN is universally set to '2'. And on platforms 5504 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5505 * to this code only in strict mode where we want to emulate 5506 * the NET_IP_ALIGN==2 checking. Therefore use an 5507 * unconditional IP align value of '2'. 5508 */ 5509 ip_align = 2; 5510 5511 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 5512 if (!tnum_is_aligned(reg_off, size)) { 5513 char tn_buf[48]; 5514 5515 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5516 verbose(env, 5517 "misaligned packet access off %d+%s+%d+%d size %d\n", 5518 ip_align, tn_buf, reg->off, off, size); 5519 return -EACCES; 5520 } 5521 5522 return 0; 5523 } 5524 5525 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 5526 const struct bpf_reg_state *reg, 5527 const char *pointer_desc, 5528 int off, int size, bool strict) 5529 { 5530 struct tnum reg_off; 5531 5532 /* Byte size accesses are always allowed. */ 5533 if (!strict || size == 1) 5534 return 0; 5535 5536 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 5537 if (!tnum_is_aligned(reg_off, size)) { 5538 char tn_buf[48]; 5539 5540 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5541 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 5542 pointer_desc, tn_buf, reg->off, off, size); 5543 return -EACCES; 5544 } 5545 5546 return 0; 5547 } 5548 5549 static int check_ptr_alignment(struct bpf_verifier_env *env, 5550 const struct bpf_reg_state *reg, int off, 5551 int size, bool strict_alignment_once) 5552 { 5553 bool strict = env->strict_alignment || strict_alignment_once; 5554 const char *pointer_desc = ""; 5555 5556 switch (reg->type) { 5557 case PTR_TO_PACKET: 5558 case PTR_TO_PACKET_META: 5559 /* Special case, because of NET_IP_ALIGN. Given metadata sits 5560 * right in front, treat it the very same way. 5561 */ 5562 return check_pkt_ptr_alignment(env, reg, off, size, strict); 5563 case PTR_TO_FLOW_KEYS: 5564 pointer_desc = "flow keys "; 5565 break; 5566 case PTR_TO_MAP_KEY: 5567 pointer_desc = "key "; 5568 break; 5569 case PTR_TO_MAP_VALUE: 5570 pointer_desc = "value "; 5571 break; 5572 case PTR_TO_CTX: 5573 pointer_desc = "context "; 5574 break; 5575 case PTR_TO_STACK: 5576 pointer_desc = "stack "; 5577 /* The stack spill tracking logic in check_stack_write_fixed_off() 5578 * and check_stack_read_fixed_off() relies on stack accesses being 5579 * aligned. 5580 */ 5581 strict = true; 5582 break; 5583 case PTR_TO_SOCKET: 5584 pointer_desc = "sock "; 5585 break; 5586 case PTR_TO_SOCK_COMMON: 5587 pointer_desc = "sock_common "; 5588 break; 5589 case PTR_TO_TCP_SOCK: 5590 pointer_desc = "tcp_sock "; 5591 break; 5592 case PTR_TO_XDP_SOCK: 5593 pointer_desc = "xdp_sock "; 5594 break; 5595 default: 5596 break; 5597 } 5598 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 5599 strict); 5600 } 5601 5602 static int update_stack_depth(struct bpf_verifier_env *env, 5603 const struct bpf_func_state *func, 5604 int off) 5605 { 5606 u16 stack = env->subprog_info[func->subprogno].stack_depth; 5607 5608 if (stack >= -off) 5609 return 0; 5610 5611 /* update known max for given subprogram */ 5612 env->subprog_info[func->subprogno].stack_depth = -off; 5613 return 0; 5614 } 5615 5616 /* starting from main bpf function walk all instructions of the function 5617 * and recursively walk all callees that given function can call. 5618 * Ignore jump and exit insns. 5619 * Since recursion is prevented by check_cfg() this algorithm 5620 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 5621 */ 5622 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx) 5623 { 5624 struct bpf_subprog_info *subprog = env->subprog_info; 5625 struct bpf_insn *insn = env->prog->insnsi; 5626 int depth = 0, frame = 0, i, subprog_end; 5627 bool tail_call_reachable = false; 5628 int ret_insn[MAX_CALL_FRAMES]; 5629 int ret_prog[MAX_CALL_FRAMES]; 5630 int j; 5631 5632 i = subprog[idx].start; 5633 process_func: 5634 /* protect against potential stack overflow that might happen when 5635 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 5636 * depth for such case down to 256 so that the worst case scenario 5637 * would result in 8k stack size (32 which is tailcall limit * 256 = 5638 * 8k). 5639 * 5640 * To get the idea what might happen, see an example: 5641 * func1 -> sub rsp, 128 5642 * subfunc1 -> sub rsp, 256 5643 * tailcall1 -> add rsp, 256 5644 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 5645 * subfunc2 -> sub rsp, 64 5646 * subfunc22 -> sub rsp, 128 5647 * tailcall2 -> add rsp, 128 5648 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 5649 * 5650 * tailcall will unwind the current stack frame but it will not get rid 5651 * of caller's stack as shown on the example above. 5652 */ 5653 if (idx && subprog[idx].has_tail_call && depth >= 256) { 5654 verbose(env, 5655 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 5656 depth); 5657 return -EACCES; 5658 } 5659 /* round up to 32-bytes, since this is granularity 5660 * of interpreter stack size 5661 */ 5662 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5663 if (depth > MAX_BPF_STACK) { 5664 verbose(env, "combined stack size of %d calls is %d. Too large\n", 5665 frame + 1, depth); 5666 return -EACCES; 5667 } 5668 continue_func: 5669 subprog_end = subprog[idx + 1].start; 5670 for (; i < subprog_end; i++) { 5671 int next_insn, sidx; 5672 5673 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 5674 continue; 5675 /* remember insn and function to return to */ 5676 ret_insn[frame] = i + 1; 5677 ret_prog[frame] = idx; 5678 5679 /* find the callee */ 5680 next_insn = i + insn[i].imm + 1; 5681 sidx = find_subprog(env, next_insn); 5682 if (sidx < 0) { 5683 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5684 next_insn); 5685 return -EFAULT; 5686 } 5687 if (subprog[sidx].is_async_cb) { 5688 if (subprog[sidx].has_tail_call) { 5689 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 5690 return -EFAULT; 5691 } 5692 /* async callbacks don't increase bpf prog stack size unless called directly */ 5693 if (!bpf_pseudo_call(insn + i)) 5694 continue; 5695 } 5696 i = next_insn; 5697 idx = sidx; 5698 5699 if (subprog[idx].has_tail_call) 5700 tail_call_reachable = true; 5701 5702 frame++; 5703 if (frame >= MAX_CALL_FRAMES) { 5704 verbose(env, "the call stack of %d frames is too deep !\n", 5705 frame); 5706 return -E2BIG; 5707 } 5708 goto process_func; 5709 } 5710 /* if tail call got detected across bpf2bpf calls then mark each of the 5711 * currently present subprog frames as tail call reachable subprogs; 5712 * this info will be utilized by JIT so that we will be preserving the 5713 * tail call counter throughout bpf2bpf calls combined with tailcalls 5714 */ 5715 if (tail_call_reachable) 5716 for (j = 0; j < frame; j++) 5717 subprog[ret_prog[j]].tail_call_reachable = true; 5718 if (subprog[0].tail_call_reachable) 5719 env->prog->aux->tail_call_reachable = true; 5720 5721 /* end of for() loop means the last insn of the 'subprog' 5722 * was reached. Doesn't matter whether it was JA or EXIT 5723 */ 5724 if (frame == 0) 5725 return 0; 5726 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5727 frame--; 5728 i = ret_insn[frame]; 5729 idx = ret_prog[frame]; 5730 goto continue_func; 5731 } 5732 5733 static int check_max_stack_depth(struct bpf_verifier_env *env) 5734 { 5735 struct bpf_subprog_info *si = env->subprog_info; 5736 int ret; 5737 5738 for (int i = 0; i < env->subprog_cnt; i++) { 5739 if (!i || si[i].is_async_cb) { 5740 ret = check_max_stack_depth_subprog(env, i); 5741 if (ret < 0) 5742 return ret; 5743 } 5744 continue; 5745 } 5746 return 0; 5747 } 5748 5749 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5750 static int get_callee_stack_depth(struct bpf_verifier_env *env, 5751 const struct bpf_insn *insn, int idx) 5752 { 5753 int start = idx + insn->imm + 1, subprog; 5754 5755 subprog = find_subprog(env, start); 5756 if (subprog < 0) { 5757 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5758 start); 5759 return -EFAULT; 5760 } 5761 return env->subprog_info[subprog].stack_depth; 5762 } 5763 #endif 5764 5765 static int __check_buffer_access(struct bpf_verifier_env *env, 5766 const char *buf_info, 5767 const struct bpf_reg_state *reg, 5768 int regno, int off, int size) 5769 { 5770 if (off < 0) { 5771 verbose(env, 5772 "R%d invalid %s buffer access: off=%d, size=%d\n", 5773 regno, buf_info, off, size); 5774 return -EACCES; 5775 } 5776 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5777 char tn_buf[48]; 5778 5779 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5780 verbose(env, 5781 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 5782 regno, off, tn_buf); 5783 return -EACCES; 5784 } 5785 5786 return 0; 5787 } 5788 5789 static int check_tp_buffer_access(struct bpf_verifier_env *env, 5790 const struct bpf_reg_state *reg, 5791 int regno, int off, int size) 5792 { 5793 int err; 5794 5795 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 5796 if (err) 5797 return err; 5798 5799 if (off + size > env->prog->aux->max_tp_access) 5800 env->prog->aux->max_tp_access = off + size; 5801 5802 return 0; 5803 } 5804 5805 static int check_buffer_access(struct bpf_verifier_env *env, 5806 const struct bpf_reg_state *reg, 5807 int regno, int off, int size, 5808 bool zero_size_allowed, 5809 u32 *max_access) 5810 { 5811 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 5812 int err; 5813 5814 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 5815 if (err) 5816 return err; 5817 5818 if (off + size > *max_access) 5819 *max_access = off + size; 5820 5821 return 0; 5822 } 5823 5824 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 5825 static void zext_32_to_64(struct bpf_reg_state *reg) 5826 { 5827 reg->var_off = tnum_subreg(reg->var_off); 5828 __reg_assign_32_into_64(reg); 5829 } 5830 5831 /* truncate register to smaller size (in bytes) 5832 * must be called with size < BPF_REG_SIZE 5833 */ 5834 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 5835 { 5836 u64 mask; 5837 5838 /* clear high bits in bit representation */ 5839 reg->var_off = tnum_cast(reg->var_off, size); 5840 5841 /* fix arithmetic bounds */ 5842 mask = ((u64)1 << (size * 8)) - 1; 5843 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 5844 reg->umin_value &= mask; 5845 reg->umax_value &= mask; 5846 } else { 5847 reg->umin_value = 0; 5848 reg->umax_value = mask; 5849 } 5850 reg->smin_value = reg->umin_value; 5851 reg->smax_value = reg->umax_value; 5852 5853 /* If size is smaller than 32bit register the 32bit register 5854 * values are also truncated so we push 64-bit bounds into 5855 * 32-bit bounds. Above were truncated < 32-bits already. 5856 */ 5857 if (size >= 4) 5858 return; 5859 __reg_combine_64_into_32(reg); 5860 } 5861 5862 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 5863 { 5864 if (size == 1) { 5865 reg->smin_value = reg->s32_min_value = S8_MIN; 5866 reg->smax_value = reg->s32_max_value = S8_MAX; 5867 } else if (size == 2) { 5868 reg->smin_value = reg->s32_min_value = S16_MIN; 5869 reg->smax_value = reg->s32_max_value = S16_MAX; 5870 } else { 5871 /* size == 4 */ 5872 reg->smin_value = reg->s32_min_value = S32_MIN; 5873 reg->smax_value = reg->s32_max_value = S32_MAX; 5874 } 5875 reg->umin_value = reg->u32_min_value = 0; 5876 reg->umax_value = U64_MAX; 5877 reg->u32_max_value = U32_MAX; 5878 reg->var_off = tnum_unknown; 5879 } 5880 5881 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 5882 { 5883 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 5884 u64 top_smax_value, top_smin_value; 5885 u64 num_bits = size * 8; 5886 5887 if (tnum_is_const(reg->var_off)) { 5888 u64_cval = reg->var_off.value; 5889 if (size == 1) 5890 reg->var_off = tnum_const((s8)u64_cval); 5891 else if (size == 2) 5892 reg->var_off = tnum_const((s16)u64_cval); 5893 else 5894 /* size == 4 */ 5895 reg->var_off = tnum_const((s32)u64_cval); 5896 5897 u64_cval = reg->var_off.value; 5898 reg->smax_value = reg->smin_value = u64_cval; 5899 reg->umax_value = reg->umin_value = u64_cval; 5900 reg->s32_max_value = reg->s32_min_value = u64_cval; 5901 reg->u32_max_value = reg->u32_min_value = u64_cval; 5902 return; 5903 } 5904 5905 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 5906 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 5907 5908 if (top_smax_value != top_smin_value) 5909 goto out; 5910 5911 /* find the s64_min and s64_min after sign extension */ 5912 if (size == 1) { 5913 init_s64_max = (s8)reg->smax_value; 5914 init_s64_min = (s8)reg->smin_value; 5915 } else if (size == 2) { 5916 init_s64_max = (s16)reg->smax_value; 5917 init_s64_min = (s16)reg->smin_value; 5918 } else { 5919 init_s64_max = (s32)reg->smax_value; 5920 init_s64_min = (s32)reg->smin_value; 5921 } 5922 5923 s64_max = max(init_s64_max, init_s64_min); 5924 s64_min = min(init_s64_max, init_s64_min); 5925 5926 /* both of s64_max/s64_min positive or negative */ 5927 if ((s64_max >= 0) == (s64_min >= 0)) { 5928 reg->smin_value = reg->s32_min_value = s64_min; 5929 reg->smax_value = reg->s32_max_value = s64_max; 5930 reg->umin_value = reg->u32_min_value = s64_min; 5931 reg->umax_value = reg->u32_max_value = s64_max; 5932 reg->var_off = tnum_range(s64_min, s64_max); 5933 return; 5934 } 5935 5936 out: 5937 set_sext64_default_val(reg, size); 5938 } 5939 5940 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 5941 { 5942 if (size == 1) { 5943 reg->s32_min_value = S8_MIN; 5944 reg->s32_max_value = S8_MAX; 5945 } else { 5946 /* size == 2 */ 5947 reg->s32_min_value = S16_MIN; 5948 reg->s32_max_value = S16_MAX; 5949 } 5950 reg->u32_min_value = 0; 5951 reg->u32_max_value = U32_MAX; 5952 } 5953 5954 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 5955 { 5956 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 5957 u32 top_smax_value, top_smin_value; 5958 u32 num_bits = size * 8; 5959 5960 if (tnum_is_const(reg->var_off)) { 5961 u32_val = reg->var_off.value; 5962 if (size == 1) 5963 reg->var_off = tnum_const((s8)u32_val); 5964 else 5965 reg->var_off = tnum_const((s16)u32_val); 5966 5967 u32_val = reg->var_off.value; 5968 reg->s32_min_value = reg->s32_max_value = u32_val; 5969 reg->u32_min_value = reg->u32_max_value = u32_val; 5970 return; 5971 } 5972 5973 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 5974 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 5975 5976 if (top_smax_value != top_smin_value) 5977 goto out; 5978 5979 /* find the s32_min and s32_min after sign extension */ 5980 if (size == 1) { 5981 init_s32_max = (s8)reg->s32_max_value; 5982 init_s32_min = (s8)reg->s32_min_value; 5983 } else { 5984 /* size == 2 */ 5985 init_s32_max = (s16)reg->s32_max_value; 5986 init_s32_min = (s16)reg->s32_min_value; 5987 } 5988 s32_max = max(init_s32_max, init_s32_min); 5989 s32_min = min(init_s32_max, init_s32_min); 5990 5991 if ((s32_min >= 0) == (s32_max >= 0)) { 5992 reg->s32_min_value = s32_min; 5993 reg->s32_max_value = s32_max; 5994 reg->u32_min_value = (u32)s32_min; 5995 reg->u32_max_value = (u32)s32_max; 5996 return; 5997 } 5998 5999 out: 6000 set_sext32_default_val(reg, size); 6001 } 6002 6003 static bool bpf_map_is_rdonly(const struct bpf_map *map) 6004 { 6005 /* A map is considered read-only if the following condition are true: 6006 * 6007 * 1) BPF program side cannot change any of the map content. The 6008 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 6009 * and was set at map creation time. 6010 * 2) The map value(s) have been initialized from user space by a 6011 * loader and then "frozen", such that no new map update/delete 6012 * operations from syscall side are possible for the rest of 6013 * the map's lifetime from that point onwards. 6014 * 3) Any parallel/pending map update/delete operations from syscall 6015 * side have been completed. Only after that point, it's safe to 6016 * assume that map value(s) are immutable. 6017 */ 6018 return (map->map_flags & BPF_F_RDONLY_PROG) && 6019 READ_ONCE(map->frozen) && 6020 !bpf_map_write_active(map); 6021 } 6022 6023 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 6024 bool is_ldsx) 6025 { 6026 void *ptr; 6027 u64 addr; 6028 int err; 6029 6030 err = map->ops->map_direct_value_addr(map, &addr, off); 6031 if (err) 6032 return err; 6033 ptr = (void *)(long)addr + off; 6034 6035 switch (size) { 6036 case sizeof(u8): 6037 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6038 break; 6039 case sizeof(u16): 6040 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6041 break; 6042 case sizeof(u32): 6043 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6044 break; 6045 case sizeof(u64): 6046 *val = *(u64 *)ptr; 6047 break; 6048 default: 6049 return -EINVAL; 6050 } 6051 return 0; 6052 } 6053 6054 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 6055 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 6056 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 6057 6058 /* 6059 * Allow list few fields as RCU trusted or full trusted. 6060 * This logic doesn't allow mix tagging and will be removed once GCC supports 6061 * btf_type_tag. 6062 */ 6063 6064 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 6065 BTF_TYPE_SAFE_RCU(struct task_struct) { 6066 const cpumask_t *cpus_ptr; 6067 struct css_set __rcu *cgroups; 6068 struct task_struct __rcu *real_parent; 6069 struct task_struct *group_leader; 6070 }; 6071 6072 BTF_TYPE_SAFE_RCU(struct cgroup) { 6073 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 6074 struct kernfs_node *kn; 6075 }; 6076 6077 BTF_TYPE_SAFE_RCU(struct css_set) { 6078 struct cgroup *dfl_cgrp; 6079 }; 6080 6081 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 6082 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 6083 struct file __rcu *exe_file; 6084 }; 6085 6086 /* skb->sk, req->sk are not RCU protected, but we mark them as such 6087 * because bpf prog accessible sockets are SOCK_RCU_FREE. 6088 */ 6089 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 6090 struct sock *sk; 6091 }; 6092 6093 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 6094 struct sock *sk; 6095 }; 6096 6097 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 6098 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 6099 struct seq_file *seq; 6100 }; 6101 6102 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 6103 struct bpf_iter_meta *meta; 6104 struct task_struct *task; 6105 }; 6106 6107 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 6108 struct file *file; 6109 }; 6110 6111 BTF_TYPE_SAFE_TRUSTED(struct file) { 6112 struct inode *f_inode; 6113 }; 6114 6115 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 6116 /* no negative dentry-s in places where bpf can see it */ 6117 struct inode *d_inode; 6118 }; 6119 6120 BTF_TYPE_SAFE_TRUSTED(struct socket) { 6121 struct sock *sk; 6122 }; 6123 6124 static bool type_is_rcu(struct bpf_verifier_env *env, 6125 struct bpf_reg_state *reg, 6126 const char *field_name, u32 btf_id) 6127 { 6128 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 6129 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 6130 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 6131 6132 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 6133 } 6134 6135 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 6136 struct bpf_reg_state *reg, 6137 const char *field_name, u32 btf_id) 6138 { 6139 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 6140 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 6141 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 6142 6143 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 6144 } 6145 6146 static bool type_is_trusted(struct bpf_verifier_env *env, 6147 struct bpf_reg_state *reg, 6148 const char *field_name, u32 btf_id) 6149 { 6150 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 6151 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 6152 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 6153 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 6154 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 6155 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket)); 6156 6157 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 6158 } 6159 6160 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 6161 struct bpf_reg_state *regs, 6162 int regno, int off, int size, 6163 enum bpf_access_type atype, 6164 int value_regno) 6165 { 6166 struct bpf_reg_state *reg = regs + regno; 6167 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 6168 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 6169 const char *field_name = NULL; 6170 enum bpf_type_flag flag = 0; 6171 u32 btf_id = 0; 6172 int ret; 6173 6174 if (!env->allow_ptr_leaks) { 6175 verbose(env, 6176 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6177 tname); 6178 return -EPERM; 6179 } 6180 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 6181 verbose(env, 6182 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 6183 tname); 6184 return -EINVAL; 6185 } 6186 if (off < 0) { 6187 verbose(env, 6188 "R%d is ptr_%s invalid negative access: off=%d\n", 6189 regno, tname, off); 6190 return -EACCES; 6191 } 6192 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6193 char tn_buf[48]; 6194 6195 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6196 verbose(env, 6197 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 6198 regno, tname, off, tn_buf); 6199 return -EACCES; 6200 } 6201 6202 if (reg->type & MEM_USER) { 6203 verbose(env, 6204 "R%d is ptr_%s access user memory: off=%d\n", 6205 regno, tname, off); 6206 return -EACCES; 6207 } 6208 6209 if (reg->type & MEM_PERCPU) { 6210 verbose(env, 6211 "R%d is ptr_%s access percpu memory: off=%d\n", 6212 regno, tname, off); 6213 return -EACCES; 6214 } 6215 6216 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 6217 if (!btf_is_kernel(reg->btf)) { 6218 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 6219 return -EFAULT; 6220 } 6221 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 6222 } else { 6223 /* Writes are permitted with default btf_struct_access for 6224 * program allocated objects (which always have ref_obj_id > 0), 6225 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 6226 */ 6227 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 6228 verbose(env, "only read is supported\n"); 6229 return -EACCES; 6230 } 6231 6232 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 6233 !reg->ref_obj_id) { 6234 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 6235 return -EFAULT; 6236 } 6237 6238 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 6239 } 6240 6241 if (ret < 0) 6242 return ret; 6243 6244 if (ret != PTR_TO_BTF_ID) { 6245 /* just mark; */ 6246 6247 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 6248 /* If this is an untrusted pointer, all pointers formed by walking it 6249 * also inherit the untrusted flag. 6250 */ 6251 flag = PTR_UNTRUSTED; 6252 6253 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 6254 /* By default any pointer obtained from walking a trusted pointer is no 6255 * longer trusted, unless the field being accessed has explicitly been 6256 * marked as inheriting its parent's state of trust (either full or RCU). 6257 * For example: 6258 * 'cgroups' pointer is untrusted if task->cgroups dereference 6259 * happened in a sleepable program outside of bpf_rcu_read_lock() 6260 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 6261 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 6262 * 6263 * A regular RCU-protected pointer with __rcu tag can also be deemed 6264 * trusted if we are in an RCU CS. Such pointer can be NULL. 6265 */ 6266 if (type_is_trusted(env, reg, field_name, btf_id)) { 6267 flag |= PTR_TRUSTED; 6268 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 6269 if (type_is_rcu(env, reg, field_name, btf_id)) { 6270 /* ignore __rcu tag and mark it MEM_RCU */ 6271 flag |= MEM_RCU; 6272 } else if (flag & MEM_RCU || 6273 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 6274 /* __rcu tagged pointers can be NULL */ 6275 flag |= MEM_RCU | PTR_MAYBE_NULL; 6276 6277 /* We always trust them */ 6278 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 6279 flag & PTR_UNTRUSTED) 6280 flag &= ~PTR_UNTRUSTED; 6281 } else if (flag & (MEM_PERCPU | MEM_USER)) { 6282 /* keep as-is */ 6283 } else { 6284 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 6285 clear_trusted_flags(&flag); 6286 } 6287 } else { 6288 /* 6289 * If not in RCU CS or MEM_RCU pointer can be NULL then 6290 * aggressively mark as untrusted otherwise such 6291 * pointers will be plain PTR_TO_BTF_ID without flags 6292 * and will be allowed to be passed into helpers for 6293 * compat reasons. 6294 */ 6295 flag = PTR_UNTRUSTED; 6296 } 6297 } else { 6298 /* Old compat. Deprecated */ 6299 clear_trusted_flags(&flag); 6300 } 6301 6302 if (atype == BPF_READ && value_regno >= 0) 6303 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 6304 6305 return 0; 6306 } 6307 6308 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 6309 struct bpf_reg_state *regs, 6310 int regno, int off, int size, 6311 enum bpf_access_type atype, 6312 int value_regno) 6313 { 6314 struct bpf_reg_state *reg = regs + regno; 6315 struct bpf_map *map = reg->map_ptr; 6316 struct bpf_reg_state map_reg; 6317 enum bpf_type_flag flag = 0; 6318 const struct btf_type *t; 6319 const char *tname; 6320 u32 btf_id; 6321 int ret; 6322 6323 if (!btf_vmlinux) { 6324 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 6325 return -ENOTSUPP; 6326 } 6327 6328 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 6329 verbose(env, "map_ptr access not supported for map type %d\n", 6330 map->map_type); 6331 return -ENOTSUPP; 6332 } 6333 6334 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 6335 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 6336 6337 if (!env->allow_ptr_leaks) { 6338 verbose(env, 6339 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6340 tname); 6341 return -EPERM; 6342 } 6343 6344 if (off < 0) { 6345 verbose(env, "R%d is %s invalid negative access: off=%d\n", 6346 regno, tname, off); 6347 return -EACCES; 6348 } 6349 6350 if (atype != BPF_READ) { 6351 verbose(env, "only read from %s is supported\n", tname); 6352 return -EACCES; 6353 } 6354 6355 /* Simulate access to a PTR_TO_BTF_ID */ 6356 memset(&map_reg, 0, sizeof(map_reg)); 6357 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 6358 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 6359 if (ret < 0) 6360 return ret; 6361 6362 if (value_regno >= 0) 6363 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 6364 6365 return 0; 6366 } 6367 6368 /* Check that the stack access at the given offset is within bounds. The 6369 * maximum valid offset is -1. 6370 * 6371 * The minimum valid offset is -MAX_BPF_STACK for writes, and 6372 * -state->allocated_stack for reads. 6373 */ 6374 static int check_stack_slot_within_bounds(int off, 6375 struct bpf_func_state *state, 6376 enum bpf_access_type t) 6377 { 6378 int min_valid_off; 6379 6380 if (t == BPF_WRITE) 6381 min_valid_off = -MAX_BPF_STACK; 6382 else 6383 min_valid_off = -state->allocated_stack; 6384 6385 if (off < min_valid_off || off > -1) 6386 return -EACCES; 6387 return 0; 6388 } 6389 6390 /* Check that the stack access at 'regno + off' falls within the maximum stack 6391 * bounds. 6392 * 6393 * 'off' includes `regno->offset`, but not its dynamic part (if any). 6394 */ 6395 static int check_stack_access_within_bounds( 6396 struct bpf_verifier_env *env, 6397 int regno, int off, int access_size, 6398 enum bpf_access_src src, enum bpf_access_type type) 6399 { 6400 struct bpf_reg_state *regs = cur_regs(env); 6401 struct bpf_reg_state *reg = regs + regno; 6402 struct bpf_func_state *state = func(env, reg); 6403 int min_off, max_off; 6404 int err; 6405 char *err_extra; 6406 6407 if (src == ACCESS_HELPER) 6408 /* We don't know if helpers are reading or writing (or both). */ 6409 err_extra = " indirect access to"; 6410 else if (type == BPF_READ) 6411 err_extra = " read from"; 6412 else 6413 err_extra = " write to"; 6414 6415 if (tnum_is_const(reg->var_off)) { 6416 min_off = reg->var_off.value + off; 6417 if (access_size > 0) 6418 max_off = min_off + access_size - 1; 6419 else 6420 max_off = min_off; 6421 } else { 6422 if (reg->smax_value >= BPF_MAX_VAR_OFF || 6423 reg->smin_value <= -BPF_MAX_VAR_OFF) { 6424 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 6425 err_extra, regno); 6426 return -EACCES; 6427 } 6428 min_off = reg->smin_value + off; 6429 if (access_size > 0) 6430 max_off = reg->smax_value + off + access_size - 1; 6431 else 6432 max_off = min_off; 6433 } 6434 6435 err = check_stack_slot_within_bounds(min_off, state, type); 6436 if (!err) 6437 err = check_stack_slot_within_bounds(max_off, state, type); 6438 6439 if (err) { 6440 if (tnum_is_const(reg->var_off)) { 6441 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 6442 err_extra, regno, off, access_size); 6443 } else { 6444 char tn_buf[48]; 6445 6446 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6447 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 6448 err_extra, regno, tn_buf, access_size); 6449 } 6450 } 6451 return err; 6452 } 6453 6454 /* check whether memory at (regno + off) is accessible for t = (read | write) 6455 * if t==write, value_regno is a register which value is stored into memory 6456 * if t==read, value_regno is a register which will receive the value from memory 6457 * if t==write && value_regno==-1, some unknown value is stored into memory 6458 * if t==read && value_regno==-1, don't care what we read from memory 6459 */ 6460 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 6461 int off, int bpf_size, enum bpf_access_type t, 6462 int value_regno, bool strict_alignment_once, bool is_ldsx) 6463 { 6464 struct bpf_reg_state *regs = cur_regs(env); 6465 struct bpf_reg_state *reg = regs + regno; 6466 struct bpf_func_state *state; 6467 int size, err = 0; 6468 6469 size = bpf_size_to_bytes(bpf_size); 6470 if (size < 0) 6471 return size; 6472 6473 /* alignment checks will add in reg->off themselves */ 6474 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 6475 if (err) 6476 return err; 6477 6478 /* for access checks, reg->off is just part of off */ 6479 off += reg->off; 6480 6481 if (reg->type == PTR_TO_MAP_KEY) { 6482 if (t == BPF_WRITE) { 6483 verbose(env, "write to change key R%d not allowed\n", regno); 6484 return -EACCES; 6485 } 6486 6487 err = check_mem_region_access(env, regno, off, size, 6488 reg->map_ptr->key_size, false); 6489 if (err) 6490 return err; 6491 if (value_regno >= 0) 6492 mark_reg_unknown(env, regs, value_regno); 6493 } else if (reg->type == PTR_TO_MAP_VALUE) { 6494 struct btf_field *kptr_field = NULL; 6495 6496 if (t == BPF_WRITE && value_regno >= 0 && 6497 is_pointer_value(env, value_regno)) { 6498 verbose(env, "R%d leaks addr into map\n", value_regno); 6499 return -EACCES; 6500 } 6501 err = check_map_access_type(env, regno, off, size, t); 6502 if (err) 6503 return err; 6504 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 6505 if (err) 6506 return err; 6507 if (tnum_is_const(reg->var_off)) 6508 kptr_field = btf_record_find(reg->map_ptr->record, 6509 off + reg->var_off.value, BPF_KPTR); 6510 if (kptr_field) { 6511 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 6512 } else if (t == BPF_READ && value_regno >= 0) { 6513 struct bpf_map *map = reg->map_ptr; 6514 6515 /* if map is read-only, track its contents as scalars */ 6516 if (tnum_is_const(reg->var_off) && 6517 bpf_map_is_rdonly(map) && 6518 map->ops->map_direct_value_addr) { 6519 int map_off = off + reg->var_off.value; 6520 u64 val = 0; 6521 6522 err = bpf_map_direct_read(map, map_off, size, 6523 &val, is_ldsx); 6524 if (err) 6525 return err; 6526 6527 regs[value_regno].type = SCALAR_VALUE; 6528 __mark_reg_known(®s[value_regno], val); 6529 } else { 6530 mark_reg_unknown(env, regs, value_regno); 6531 } 6532 } 6533 } else if (base_type(reg->type) == PTR_TO_MEM) { 6534 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6535 6536 if (type_may_be_null(reg->type)) { 6537 verbose(env, "R%d invalid mem access '%s'\n", regno, 6538 reg_type_str(env, reg->type)); 6539 return -EACCES; 6540 } 6541 6542 if (t == BPF_WRITE && rdonly_mem) { 6543 verbose(env, "R%d cannot write into %s\n", 6544 regno, reg_type_str(env, reg->type)); 6545 return -EACCES; 6546 } 6547 6548 if (t == BPF_WRITE && value_regno >= 0 && 6549 is_pointer_value(env, value_regno)) { 6550 verbose(env, "R%d leaks addr into mem\n", value_regno); 6551 return -EACCES; 6552 } 6553 6554 err = check_mem_region_access(env, regno, off, size, 6555 reg->mem_size, false); 6556 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 6557 mark_reg_unknown(env, regs, value_regno); 6558 } else if (reg->type == PTR_TO_CTX) { 6559 enum bpf_reg_type reg_type = SCALAR_VALUE; 6560 struct btf *btf = NULL; 6561 u32 btf_id = 0; 6562 6563 if (t == BPF_WRITE && value_regno >= 0 && 6564 is_pointer_value(env, value_regno)) { 6565 verbose(env, "R%d leaks addr into ctx\n", value_regno); 6566 return -EACCES; 6567 } 6568 6569 err = check_ptr_off_reg(env, reg, regno); 6570 if (err < 0) 6571 return err; 6572 6573 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 6574 &btf_id); 6575 if (err) 6576 verbose_linfo(env, insn_idx, "; "); 6577 if (!err && t == BPF_READ && value_regno >= 0) { 6578 /* ctx access returns either a scalar, or a 6579 * PTR_TO_PACKET[_META,_END]. In the latter 6580 * case, we know the offset is zero. 6581 */ 6582 if (reg_type == SCALAR_VALUE) { 6583 mark_reg_unknown(env, regs, value_regno); 6584 } else { 6585 mark_reg_known_zero(env, regs, 6586 value_regno); 6587 if (type_may_be_null(reg_type)) 6588 regs[value_regno].id = ++env->id_gen; 6589 /* A load of ctx field could have different 6590 * actual load size with the one encoded in the 6591 * insn. When the dst is PTR, it is for sure not 6592 * a sub-register. 6593 */ 6594 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 6595 if (base_type(reg_type) == PTR_TO_BTF_ID) { 6596 regs[value_regno].btf = btf; 6597 regs[value_regno].btf_id = btf_id; 6598 } 6599 } 6600 regs[value_regno].type = reg_type; 6601 } 6602 6603 } else if (reg->type == PTR_TO_STACK) { 6604 /* Basic bounds checks. */ 6605 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 6606 if (err) 6607 return err; 6608 6609 state = func(env, reg); 6610 err = update_stack_depth(env, state, off); 6611 if (err) 6612 return err; 6613 6614 if (t == BPF_READ) 6615 err = check_stack_read(env, regno, off, size, 6616 value_regno); 6617 else 6618 err = check_stack_write(env, regno, off, size, 6619 value_regno, insn_idx); 6620 } else if (reg_is_pkt_pointer(reg)) { 6621 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 6622 verbose(env, "cannot write into packet\n"); 6623 return -EACCES; 6624 } 6625 if (t == BPF_WRITE && value_regno >= 0 && 6626 is_pointer_value(env, value_regno)) { 6627 verbose(env, "R%d leaks addr into packet\n", 6628 value_regno); 6629 return -EACCES; 6630 } 6631 err = check_packet_access(env, regno, off, size, false); 6632 if (!err && t == BPF_READ && value_regno >= 0) 6633 mark_reg_unknown(env, regs, value_regno); 6634 } else if (reg->type == PTR_TO_FLOW_KEYS) { 6635 if (t == BPF_WRITE && value_regno >= 0 && 6636 is_pointer_value(env, value_regno)) { 6637 verbose(env, "R%d leaks addr into flow keys\n", 6638 value_regno); 6639 return -EACCES; 6640 } 6641 6642 err = check_flow_keys_access(env, off, size); 6643 if (!err && t == BPF_READ && value_regno >= 0) 6644 mark_reg_unknown(env, regs, value_regno); 6645 } else if (type_is_sk_pointer(reg->type)) { 6646 if (t == BPF_WRITE) { 6647 verbose(env, "R%d cannot write into %s\n", 6648 regno, reg_type_str(env, reg->type)); 6649 return -EACCES; 6650 } 6651 err = check_sock_access(env, insn_idx, regno, off, size, t); 6652 if (!err && value_regno >= 0) 6653 mark_reg_unknown(env, regs, value_regno); 6654 } else if (reg->type == PTR_TO_TP_BUFFER) { 6655 err = check_tp_buffer_access(env, reg, regno, off, size); 6656 if (!err && t == BPF_READ && value_regno >= 0) 6657 mark_reg_unknown(env, regs, value_regno); 6658 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 6659 !type_may_be_null(reg->type)) { 6660 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 6661 value_regno); 6662 } else if (reg->type == CONST_PTR_TO_MAP) { 6663 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 6664 value_regno); 6665 } else if (base_type(reg->type) == PTR_TO_BUF) { 6666 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6667 u32 *max_access; 6668 6669 if (rdonly_mem) { 6670 if (t == BPF_WRITE) { 6671 verbose(env, "R%d cannot write into %s\n", 6672 regno, reg_type_str(env, reg->type)); 6673 return -EACCES; 6674 } 6675 max_access = &env->prog->aux->max_rdonly_access; 6676 } else { 6677 max_access = &env->prog->aux->max_rdwr_access; 6678 } 6679 6680 err = check_buffer_access(env, reg, regno, off, size, false, 6681 max_access); 6682 6683 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 6684 mark_reg_unknown(env, regs, value_regno); 6685 } else { 6686 verbose(env, "R%d invalid mem access '%s'\n", regno, 6687 reg_type_str(env, reg->type)); 6688 return -EACCES; 6689 } 6690 6691 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 6692 regs[value_regno].type == SCALAR_VALUE) { 6693 if (!is_ldsx) 6694 /* b/h/w load zero-extends, mark upper bits as known 0 */ 6695 coerce_reg_to_size(®s[value_regno], size); 6696 else 6697 coerce_reg_to_size_sx(®s[value_regno], size); 6698 } 6699 return err; 6700 } 6701 6702 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 6703 { 6704 int load_reg; 6705 int err; 6706 6707 switch (insn->imm) { 6708 case BPF_ADD: 6709 case BPF_ADD | BPF_FETCH: 6710 case BPF_AND: 6711 case BPF_AND | BPF_FETCH: 6712 case BPF_OR: 6713 case BPF_OR | BPF_FETCH: 6714 case BPF_XOR: 6715 case BPF_XOR | BPF_FETCH: 6716 case BPF_XCHG: 6717 case BPF_CMPXCHG: 6718 break; 6719 default: 6720 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 6721 return -EINVAL; 6722 } 6723 6724 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 6725 verbose(env, "invalid atomic operand size\n"); 6726 return -EINVAL; 6727 } 6728 6729 /* check src1 operand */ 6730 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6731 if (err) 6732 return err; 6733 6734 /* check src2 operand */ 6735 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6736 if (err) 6737 return err; 6738 6739 if (insn->imm == BPF_CMPXCHG) { 6740 /* Check comparison of R0 with memory location */ 6741 const u32 aux_reg = BPF_REG_0; 6742 6743 err = check_reg_arg(env, aux_reg, SRC_OP); 6744 if (err) 6745 return err; 6746 6747 if (is_pointer_value(env, aux_reg)) { 6748 verbose(env, "R%d leaks addr into mem\n", aux_reg); 6749 return -EACCES; 6750 } 6751 } 6752 6753 if (is_pointer_value(env, insn->src_reg)) { 6754 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 6755 return -EACCES; 6756 } 6757 6758 if (is_ctx_reg(env, insn->dst_reg) || 6759 is_pkt_reg(env, insn->dst_reg) || 6760 is_flow_key_reg(env, insn->dst_reg) || 6761 is_sk_reg(env, insn->dst_reg)) { 6762 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 6763 insn->dst_reg, 6764 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 6765 return -EACCES; 6766 } 6767 6768 if (insn->imm & BPF_FETCH) { 6769 if (insn->imm == BPF_CMPXCHG) 6770 load_reg = BPF_REG_0; 6771 else 6772 load_reg = insn->src_reg; 6773 6774 /* check and record load of old value */ 6775 err = check_reg_arg(env, load_reg, DST_OP); 6776 if (err) 6777 return err; 6778 } else { 6779 /* This instruction accesses a memory location but doesn't 6780 * actually load it into a register. 6781 */ 6782 load_reg = -1; 6783 } 6784 6785 /* Check whether we can read the memory, with second call for fetch 6786 * case to simulate the register fill. 6787 */ 6788 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6789 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 6790 if (!err && load_reg >= 0) 6791 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6792 BPF_SIZE(insn->code), BPF_READ, load_reg, 6793 true, false); 6794 if (err) 6795 return err; 6796 6797 /* Check whether we can write into the same memory. */ 6798 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6799 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 6800 if (err) 6801 return err; 6802 6803 return 0; 6804 } 6805 6806 /* When register 'regno' is used to read the stack (either directly or through 6807 * a helper function) make sure that it's within stack boundary and, depending 6808 * on the access type, that all elements of the stack are initialized. 6809 * 6810 * 'off' includes 'regno->off', but not its dynamic part (if any). 6811 * 6812 * All registers that have been spilled on the stack in the slots within the 6813 * read offsets are marked as read. 6814 */ 6815 static int check_stack_range_initialized( 6816 struct bpf_verifier_env *env, int regno, int off, 6817 int access_size, bool zero_size_allowed, 6818 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 6819 { 6820 struct bpf_reg_state *reg = reg_state(env, regno); 6821 struct bpf_func_state *state = func(env, reg); 6822 int err, min_off, max_off, i, j, slot, spi; 6823 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 6824 enum bpf_access_type bounds_check_type; 6825 /* Some accesses can write anything into the stack, others are 6826 * read-only. 6827 */ 6828 bool clobber = false; 6829 6830 if (access_size == 0 && !zero_size_allowed) { 6831 verbose(env, "invalid zero-sized read\n"); 6832 return -EACCES; 6833 } 6834 6835 if (type == ACCESS_HELPER) { 6836 /* The bounds checks for writes are more permissive than for 6837 * reads. However, if raw_mode is not set, we'll do extra 6838 * checks below. 6839 */ 6840 bounds_check_type = BPF_WRITE; 6841 clobber = true; 6842 } else { 6843 bounds_check_type = BPF_READ; 6844 } 6845 err = check_stack_access_within_bounds(env, regno, off, access_size, 6846 type, bounds_check_type); 6847 if (err) 6848 return err; 6849 6850 6851 if (tnum_is_const(reg->var_off)) { 6852 min_off = max_off = reg->var_off.value + off; 6853 } else { 6854 /* Variable offset is prohibited for unprivileged mode for 6855 * simplicity since it requires corresponding support in 6856 * Spectre masking for stack ALU. 6857 * See also retrieve_ptr_limit(). 6858 */ 6859 if (!env->bypass_spec_v1) { 6860 char tn_buf[48]; 6861 6862 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6863 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 6864 regno, err_extra, tn_buf); 6865 return -EACCES; 6866 } 6867 /* Only initialized buffer on stack is allowed to be accessed 6868 * with variable offset. With uninitialized buffer it's hard to 6869 * guarantee that whole memory is marked as initialized on 6870 * helper return since specific bounds are unknown what may 6871 * cause uninitialized stack leaking. 6872 */ 6873 if (meta && meta->raw_mode) 6874 meta = NULL; 6875 6876 min_off = reg->smin_value + off; 6877 max_off = reg->smax_value + off; 6878 } 6879 6880 if (meta && meta->raw_mode) { 6881 /* Ensure we won't be overwriting dynptrs when simulating byte 6882 * by byte access in check_helper_call using meta.access_size. 6883 * This would be a problem if we have a helper in the future 6884 * which takes: 6885 * 6886 * helper(uninit_mem, len, dynptr) 6887 * 6888 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 6889 * may end up writing to dynptr itself when touching memory from 6890 * arg 1. This can be relaxed on a case by case basis for known 6891 * safe cases, but reject due to the possibilitiy of aliasing by 6892 * default. 6893 */ 6894 for (i = min_off; i < max_off + access_size; i++) { 6895 int stack_off = -i - 1; 6896 6897 spi = __get_spi(i); 6898 /* raw_mode may write past allocated_stack */ 6899 if (state->allocated_stack <= stack_off) 6900 continue; 6901 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 6902 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 6903 return -EACCES; 6904 } 6905 } 6906 meta->access_size = access_size; 6907 meta->regno = regno; 6908 return 0; 6909 } 6910 6911 for (i = min_off; i < max_off + access_size; i++) { 6912 u8 *stype; 6913 6914 slot = -i - 1; 6915 spi = slot / BPF_REG_SIZE; 6916 if (state->allocated_stack <= slot) 6917 goto err; 6918 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 6919 if (*stype == STACK_MISC) 6920 goto mark; 6921 if ((*stype == STACK_ZERO) || 6922 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 6923 if (clobber) { 6924 /* helper can write anything into the stack */ 6925 *stype = STACK_MISC; 6926 } 6927 goto mark; 6928 } 6929 6930 if (is_spilled_reg(&state->stack[spi]) && 6931 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 6932 env->allow_ptr_leaks)) { 6933 if (clobber) { 6934 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 6935 for (j = 0; j < BPF_REG_SIZE; j++) 6936 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 6937 } 6938 goto mark; 6939 } 6940 6941 err: 6942 if (tnum_is_const(reg->var_off)) { 6943 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 6944 err_extra, regno, min_off, i - min_off, access_size); 6945 } else { 6946 char tn_buf[48]; 6947 6948 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6949 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 6950 err_extra, regno, tn_buf, i - min_off, access_size); 6951 } 6952 return -EACCES; 6953 mark: 6954 /* reading any byte out of 8-byte 'spill_slot' will cause 6955 * the whole slot to be marked as 'read' 6956 */ 6957 mark_reg_read(env, &state->stack[spi].spilled_ptr, 6958 state->stack[spi].spilled_ptr.parent, 6959 REG_LIVE_READ64); 6960 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 6961 * be sure that whether stack slot is written to or not. Hence, 6962 * we must still conservatively propagate reads upwards even if 6963 * helper may write to the entire memory range. 6964 */ 6965 } 6966 return update_stack_depth(env, state, min_off); 6967 } 6968 6969 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 6970 int access_size, bool zero_size_allowed, 6971 struct bpf_call_arg_meta *meta) 6972 { 6973 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6974 u32 *max_access; 6975 6976 switch (base_type(reg->type)) { 6977 case PTR_TO_PACKET: 6978 case PTR_TO_PACKET_META: 6979 return check_packet_access(env, regno, reg->off, access_size, 6980 zero_size_allowed); 6981 case PTR_TO_MAP_KEY: 6982 if (meta && meta->raw_mode) { 6983 verbose(env, "R%d cannot write into %s\n", regno, 6984 reg_type_str(env, reg->type)); 6985 return -EACCES; 6986 } 6987 return check_mem_region_access(env, regno, reg->off, access_size, 6988 reg->map_ptr->key_size, false); 6989 case PTR_TO_MAP_VALUE: 6990 if (check_map_access_type(env, regno, reg->off, access_size, 6991 meta && meta->raw_mode ? BPF_WRITE : 6992 BPF_READ)) 6993 return -EACCES; 6994 return check_map_access(env, regno, reg->off, access_size, 6995 zero_size_allowed, ACCESS_HELPER); 6996 case PTR_TO_MEM: 6997 if (type_is_rdonly_mem(reg->type)) { 6998 if (meta && meta->raw_mode) { 6999 verbose(env, "R%d cannot write into %s\n", regno, 7000 reg_type_str(env, reg->type)); 7001 return -EACCES; 7002 } 7003 } 7004 return check_mem_region_access(env, regno, reg->off, 7005 access_size, reg->mem_size, 7006 zero_size_allowed); 7007 case PTR_TO_BUF: 7008 if (type_is_rdonly_mem(reg->type)) { 7009 if (meta && meta->raw_mode) { 7010 verbose(env, "R%d cannot write into %s\n", regno, 7011 reg_type_str(env, reg->type)); 7012 return -EACCES; 7013 } 7014 7015 max_access = &env->prog->aux->max_rdonly_access; 7016 } else { 7017 max_access = &env->prog->aux->max_rdwr_access; 7018 } 7019 return check_buffer_access(env, reg, regno, reg->off, 7020 access_size, zero_size_allowed, 7021 max_access); 7022 case PTR_TO_STACK: 7023 return check_stack_range_initialized( 7024 env, 7025 regno, reg->off, access_size, 7026 zero_size_allowed, ACCESS_HELPER, meta); 7027 case PTR_TO_BTF_ID: 7028 return check_ptr_to_btf_access(env, regs, regno, reg->off, 7029 access_size, BPF_READ, -1); 7030 case PTR_TO_CTX: 7031 /* in case the function doesn't know how to access the context, 7032 * (because we are in a program of type SYSCALL for example), we 7033 * can not statically check its size. 7034 * Dynamically check it now. 7035 */ 7036 if (!env->ops->convert_ctx_access) { 7037 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 7038 int offset = access_size - 1; 7039 7040 /* Allow zero-byte read from PTR_TO_CTX */ 7041 if (access_size == 0) 7042 return zero_size_allowed ? 0 : -EACCES; 7043 7044 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 7045 atype, -1, false, false); 7046 } 7047 7048 fallthrough; 7049 default: /* scalar_value or invalid ptr */ 7050 /* Allow zero-byte read from NULL, regardless of pointer type */ 7051 if (zero_size_allowed && access_size == 0 && 7052 register_is_null(reg)) 7053 return 0; 7054 7055 verbose(env, "R%d type=%s ", regno, 7056 reg_type_str(env, reg->type)); 7057 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 7058 return -EACCES; 7059 } 7060 } 7061 7062 static int check_mem_size_reg(struct bpf_verifier_env *env, 7063 struct bpf_reg_state *reg, u32 regno, 7064 bool zero_size_allowed, 7065 struct bpf_call_arg_meta *meta) 7066 { 7067 int err; 7068 7069 /* This is used to refine r0 return value bounds for helpers 7070 * that enforce this value as an upper bound on return values. 7071 * See do_refine_retval_range() for helpers that can refine 7072 * the return value. C type of helper is u32 so we pull register 7073 * bound from umax_value however, if negative verifier errors 7074 * out. Only upper bounds can be learned because retval is an 7075 * int type and negative retvals are allowed. 7076 */ 7077 meta->msize_max_value = reg->umax_value; 7078 7079 /* The register is SCALAR_VALUE; the access check 7080 * happens using its boundaries. 7081 */ 7082 if (!tnum_is_const(reg->var_off)) 7083 /* For unprivileged variable accesses, disable raw 7084 * mode so that the program is required to 7085 * initialize all the memory that the helper could 7086 * just partially fill up. 7087 */ 7088 meta = NULL; 7089 7090 if (reg->smin_value < 0) { 7091 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 7092 regno); 7093 return -EACCES; 7094 } 7095 7096 if (reg->umin_value == 0) { 7097 err = check_helper_mem_access(env, regno - 1, 0, 7098 zero_size_allowed, 7099 meta); 7100 if (err) 7101 return err; 7102 } 7103 7104 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 7105 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 7106 regno); 7107 return -EACCES; 7108 } 7109 err = check_helper_mem_access(env, regno - 1, 7110 reg->umax_value, 7111 zero_size_allowed, meta); 7112 if (!err) 7113 err = mark_chain_precision(env, regno); 7114 return err; 7115 } 7116 7117 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7118 u32 regno, u32 mem_size) 7119 { 7120 bool may_be_null = type_may_be_null(reg->type); 7121 struct bpf_reg_state saved_reg; 7122 struct bpf_call_arg_meta meta; 7123 int err; 7124 7125 if (register_is_null(reg)) 7126 return 0; 7127 7128 memset(&meta, 0, sizeof(meta)); 7129 /* Assuming that the register contains a value check if the memory 7130 * access is safe. Temporarily save and restore the register's state as 7131 * the conversion shouldn't be visible to a caller. 7132 */ 7133 if (may_be_null) { 7134 saved_reg = *reg; 7135 mark_ptr_not_null_reg(reg); 7136 } 7137 7138 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 7139 /* Check access for BPF_WRITE */ 7140 meta.raw_mode = true; 7141 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 7142 7143 if (may_be_null) 7144 *reg = saved_reg; 7145 7146 return err; 7147 } 7148 7149 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7150 u32 regno) 7151 { 7152 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 7153 bool may_be_null = type_may_be_null(mem_reg->type); 7154 struct bpf_reg_state saved_reg; 7155 struct bpf_call_arg_meta meta; 7156 int err; 7157 7158 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 7159 7160 memset(&meta, 0, sizeof(meta)); 7161 7162 if (may_be_null) { 7163 saved_reg = *mem_reg; 7164 mark_ptr_not_null_reg(mem_reg); 7165 } 7166 7167 err = check_mem_size_reg(env, reg, regno, true, &meta); 7168 /* Check access for BPF_WRITE */ 7169 meta.raw_mode = true; 7170 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 7171 7172 if (may_be_null) 7173 *mem_reg = saved_reg; 7174 return err; 7175 } 7176 7177 /* Implementation details: 7178 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 7179 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 7180 * Two bpf_map_lookups (even with the same key) will have different reg->id. 7181 * Two separate bpf_obj_new will also have different reg->id. 7182 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 7183 * clears reg->id after value_or_null->value transition, since the verifier only 7184 * cares about the range of access to valid map value pointer and doesn't care 7185 * about actual address of the map element. 7186 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 7187 * reg->id > 0 after value_or_null->value transition. By doing so 7188 * two bpf_map_lookups will be considered two different pointers that 7189 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 7190 * returned from bpf_obj_new. 7191 * The verifier allows taking only one bpf_spin_lock at a time to avoid 7192 * dead-locks. 7193 * Since only one bpf_spin_lock is allowed the checks are simpler than 7194 * reg_is_refcounted() logic. The verifier needs to remember only 7195 * one spin_lock instead of array of acquired_refs. 7196 * cur_state->active_lock remembers which map value element or allocated 7197 * object got locked and clears it after bpf_spin_unlock. 7198 */ 7199 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 7200 bool is_lock) 7201 { 7202 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7203 struct bpf_verifier_state *cur = env->cur_state; 7204 bool is_const = tnum_is_const(reg->var_off); 7205 u64 val = reg->var_off.value; 7206 struct bpf_map *map = NULL; 7207 struct btf *btf = NULL; 7208 struct btf_record *rec; 7209 7210 if (!is_const) { 7211 verbose(env, 7212 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 7213 regno); 7214 return -EINVAL; 7215 } 7216 if (reg->type == PTR_TO_MAP_VALUE) { 7217 map = reg->map_ptr; 7218 if (!map->btf) { 7219 verbose(env, 7220 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 7221 map->name); 7222 return -EINVAL; 7223 } 7224 } else { 7225 btf = reg->btf; 7226 } 7227 7228 rec = reg_btf_record(reg); 7229 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 7230 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 7231 map ? map->name : "kptr"); 7232 return -EINVAL; 7233 } 7234 if (rec->spin_lock_off != val + reg->off) { 7235 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 7236 val + reg->off, rec->spin_lock_off); 7237 return -EINVAL; 7238 } 7239 if (is_lock) { 7240 if (cur->active_lock.ptr) { 7241 verbose(env, 7242 "Locking two bpf_spin_locks are not allowed\n"); 7243 return -EINVAL; 7244 } 7245 if (map) 7246 cur->active_lock.ptr = map; 7247 else 7248 cur->active_lock.ptr = btf; 7249 cur->active_lock.id = reg->id; 7250 } else { 7251 void *ptr; 7252 7253 if (map) 7254 ptr = map; 7255 else 7256 ptr = btf; 7257 7258 if (!cur->active_lock.ptr) { 7259 verbose(env, "bpf_spin_unlock without taking a lock\n"); 7260 return -EINVAL; 7261 } 7262 if (cur->active_lock.ptr != ptr || 7263 cur->active_lock.id != reg->id) { 7264 verbose(env, "bpf_spin_unlock of different lock\n"); 7265 return -EINVAL; 7266 } 7267 7268 invalidate_non_owning_refs(env); 7269 7270 cur->active_lock.ptr = NULL; 7271 cur->active_lock.id = 0; 7272 } 7273 return 0; 7274 } 7275 7276 static int process_timer_func(struct bpf_verifier_env *env, int regno, 7277 struct bpf_call_arg_meta *meta) 7278 { 7279 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7280 bool is_const = tnum_is_const(reg->var_off); 7281 struct bpf_map *map = reg->map_ptr; 7282 u64 val = reg->var_off.value; 7283 7284 if (!is_const) { 7285 verbose(env, 7286 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 7287 regno); 7288 return -EINVAL; 7289 } 7290 if (!map->btf) { 7291 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 7292 map->name); 7293 return -EINVAL; 7294 } 7295 if (!btf_record_has_field(map->record, BPF_TIMER)) { 7296 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 7297 return -EINVAL; 7298 } 7299 if (map->record->timer_off != val + reg->off) { 7300 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 7301 val + reg->off, map->record->timer_off); 7302 return -EINVAL; 7303 } 7304 if (meta->map_ptr) { 7305 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 7306 return -EFAULT; 7307 } 7308 meta->map_uid = reg->map_uid; 7309 meta->map_ptr = map; 7310 return 0; 7311 } 7312 7313 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 7314 struct bpf_call_arg_meta *meta) 7315 { 7316 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7317 struct bpf_map *map_ptr = reg->map_ptr; 7318 struct btf_field *kptr_field; 7319 u32 kptr_off; 7320 7321 if (!tnum_is_const(reg->var_off)) { 7322 verbose(env, 7323 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 7324 regno); 7325 return -EINVAL; 7326 } 7327 if (!map_ptr->btf) { 7328 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 7329 map_ptr->name); 7330 return -EINVAL; 7331 } 7332 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 7333 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 7334 return -EINVAL; 7335 } 7336 7337 meta->map_ptr = map_ptr; 7338 kptr_off = reg->off + reg->var_off.value; 7339 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 7340 if (!kptr_field) { 7341 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 7342 return -EACCES; 7343 } 7344 if (kptr_field->type != BPF_KPTR_REF) { 7345 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 7346 return -EACCES; 7347 } 7348 meta->kptr_field = kptr_field; 7349 return 0; 7350 } 7351 7352 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 7353 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 7354 * 7355 * In both cases we deal with the first 8 bytes, but need to mark the next 8 7356 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 7357 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 7358 * 7359 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 7360 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 7361 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 7362 * mutate the view of the dynptr and also possibly destroy it. In the latter 7363 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 7364 * memory that dynptr points to. 7365 * 7366 * The verifier will keep track both levels of mutation (bpf_dynptr's in 7367 * reg->type and the memory's in reg->dynptr.type), but there is no support for 7368 * readonly dynptr view yet, hence only the first case is tracked and checked. 7369 * 7370 * This is consistent with how C applies the const modifier to a struct object, 7371 * where the pointer itself inside bpf_dynptr becomes const but not what it 7372 * points to. 7373 * 7374 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 7375 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 7376 */ 7377 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 7378 enum bpf_arg_type arg_type, int clone_ref_obj_id) 7379 { 7380 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7381 int err; 7382 7383 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 7384 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 7385 */ 7386 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 7387 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 7388 return -EFAULT; 7389 } 7390 7391 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 7392 * constructing a mutable bpf_dynptr object. 7393 * 7394 * Currently, this is only possible with PTR_TO_STACK 7395 * pointing to a region of at least 16 bytes which doesn't 7396 * contain an existing bpf_dynptr. 7397 * 7398 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 7399 * mutated or destroyed. However, the memory it points to 7400 * may be mutated. 7401 * 7402 * None - Points to a initialized dynptr that can be mutated and 7403 * destroyed, including mutation of the memory it points 7404 * to. 7405 */ 7406 if (arg_type & MEM_UNINIT) { 7407 int i; 7408 7409 if (!is_dynptr_reg_valid_uninit(env, reg)) { 7410 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 7411 return -EINVAL; 7412 } 7413 7414 /* we write BPF_DW bits (8 bytes) at a time */ 7415 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7416 err = check_mem_access(env, insn_idx, regno, 7417 i, BPF_DW, BPF_WRITE, -1, false, false); 7418 if (err) 7419 return err; 7420 } 7421 7422 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 7423 } else /* MEM_RDONLY and None case from above */ { 7424 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 7425 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 7426 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 7427 return -EINVAL; 7428 } 7429 7430 if (!is_dynptr_reg_valid_init(env, reg)) { 7431 verbose(env, 7432 "Expected an initialized dynptr as arg #%d\n", 7433 regno); 7434 return -EINVAL; 7435 } 7436 7437 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 7438 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 7439 verbose(env, 7440 "Expected a dynptr of type %s as arg #%d\n", 7441 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 7442 return -EINVAL; 7443 } 7444 7445 err = mark_dynptr_read(env, reg); 7446 } 7447 return err; 7448 } 7449 7450 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 7451 { 7452 struct bpf_func_state *state = func(env, reg); 7453 7454 return state->stack[spi].spilled_ptr.ref_obj_id; 7455 } 7456 7457 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7458 { 7459 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7460 } 7461 7462 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7463 { 7464 return meta->kfunc_flags & KF_ITER_NEW; 7465 } 7466 7467 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7468 { 7469 return meta->kfunc_flags & KF_ITER_NEXT; 7470 } 7471 7472 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7473 { 7474 return meta->kfunc_flags & KF_ITER_DESTROY; 7475 } 7476 7477 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg) 7478 { 7479 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 7480 * kfunc is iter state pointer 7481 */ 7482 return arg == 0 && is_iter_kfunc(meta); 7483 } 7484 7485 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 7486 struct bpf_kfunc_call_arg_meta *meta) 7487 { 7488 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7489 const struct btf_type *t; 7490 const struct btf_param *arg; 7491 int spi, err, i, nr_slots; 7492 u32 btf_id; 7493 7494 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */ 7495 arg = &btf_params(meta->func_proto)[0]; 7496 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */ 7497 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */ 7498 nr_slots = t->size / BPF_REG_SIZE; 7499 7500 if (is_iter_new_kfunc(meta)) { 7501 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 7502 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 7503 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 7504 iter_type_str(meta->btf, btf_id), regno); 7505 return -EINVAL; 7506 } 7507 7508 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 7509 err = check_mem_access(env, insn_idx, regno, 7510 i, BPF_DW, BPF_WRITE, -1, false, false); 7511 if (err) 7512 return err; 7513 } 7514 7515 err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots); 7516 if (err) 7517 return err; 7518 } else { 7519 /* iter_next() or iter_destroy() expect initialized iter state*/ 7520 if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) { 7521 verbose(env, "expected an initialized iter_%s as arg #%d\n", 7522 iter_type_str(meta->btf, btf_id), regno); 7523 return -EINVAL; 7524 } 7525 7526 spi = iter_get_spi(env, reg, nr_slots); 7527 if (spi < 0) 7528 return spi; 7529 7530 err = mark_iter_read(env, reg, spi, nr_slots); 7531 if (err) 7532 return err; 7533 7534 /* remember meta->iter info for process_iter_next_call() */ 7535 meta->iter.spi = spi; 7536 meta->iter.frameno = reg->frameno; 7537 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 7538 7539 if (is_iter_destroy_kfunc(meta)) { 7540 err = unmark_stack_slots_iter(env, reg, nr_slots); 7541 if (err) 7542 return err; 7543 } 7544 } 7545 7546 return 0; 7547 } 7548 7549 /* process_iter_next_call() is called when verifier gets to iterator's next 7550 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 7551 * to it as just "iter_next()" in comments below. 7552 * 7553 * BPF verifier relies on a crucial contract for any iter_next() 7554 * implementation: it should *eventually* return NULL, and once that happens 7555 * it should keep returning NULL. That is, once iterator exhausts elements to 7556 * iterate, it should never reset or spuriously return new elements. 7557 * 7558 * With the assumption of such contract, process_iter_next_call() simulates 7559 * a fork in the verifier state to validate loop logic correctness and safety 7560 * without having to simulate infinite amount of iterations. 7561 * 7562 * In current state, we first assume that iter_next() returned NULL and 7563 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 7564 * conditions we should not form an infinite loop and should eventually reach 7565 * exit. 7566 * 7567 * Besides that, we also fork current state and enqueue it for later 7568 * verification. In a forked state we keep iterator state as ACTIVE 7569 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 7570 * also bump iteration depth to prevent erroneous infinite loop detection 7571 * later on (see iter_active_depths_differ() comment for details). In this 7572 * state we assume that we'll eventually loop back to another iter_next() 7573 * calls (it could be in exactly same location or in some other instruction, 7574 * it doesn't matter, we don't make any unnecessary assumptions about this, 7575 * everything revolves around iterator state in a stack slot, not which 7576 * instruction is calling iter_next()). When that happens, we either will come 7577 * to iter_next() with equivalent state and can conclude that next iteration 7578 * will proceed in exactly the same way as we just verified, so it's safe to 7579 * assume that loop converges. If not, we'll go on another iteration 7580 * simulation with a different input state, until all possible starting states 7581 * are validated or we reach maximum number of instructions limit. 7582 * 7583 * This way, we will either exhaustively discover all possible input states 7584 * that iterator loop can start with and eventually will converge, or we'll 7585 * effectively regress into bounded loop simulation logic and either reach 7586 * maximum number of instructions if loop is not provably convergent, or there 7587 * is some statically known limit on number of iterations (e.g., if there is 7588 * an explicit `if n > 100 then break;` statement somewhere in the loop). 7589 * 7590 * One very subtle but very important aspect is that we *always* simulate NULL 7591 * condition first (as the current state) before we simulate non-NULL case. 7592 * This has to do with intricacies of scalar precision tracking. By simulating 7593 * "exit condition" of iter_next() returning NULL first, we make sure all the 7594 * relevant precision marks *that will be set **after** we exit iterator loop* 7595 * are propagated backwards to common parent state of NULL and non-NULL 7596 * branches. Thanks to that, state equivalence checks done later in forked 7597 * state, when reaching iter_next() for ACTIVE iterator, can assume that 7598 * precision marks are finalized and won't change. Because simulating another 7599 * ACTIVE iterator iteration won't change them (because given same input 7600 * states we'll end up with exactly same output states which we are currently 7601 * comparing; and verification after the loop already propagated back what 7602 * needs to be **additionally** tracked as precise). It's subtle, grok 7603 * precision tracking for more intuitive understanding. 7604 */ 7605 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 7606 struct bpf_kfunc_call_arg_meta *meta) 7607 { 7608 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st; 7609 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 7610 struct bpf_reg_state *cur_iter, *queued_iter; 7611 int iter_frameno = meta->iter.frameno; 7612 int iter_spi = meta->iter.spi; 7613 7614 BTF_TYPE_EMIT(struct bpf_iter); 7615 7616 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7617 7618 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 7619 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 7620 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 7621 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 7622 return -EFAULT; 7623 } 7624 7625 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 7626 /* branch out active iter state */ 7627 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 7628 if (!queued_st) 7629 return -ENOMEM; 7630 7631 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7632 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 7633 queued_iter->iter.depth++; 7634 7635 queued_fr = queued_st->frame[queued_st->curframe]; 7636 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 7637 } 7638 7639 /* switch to DRAINED state, but keep the depth unchanged */ 7640 /* mark current iter state as drained and assume returned NULL */ 7641 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 7642 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]); 7643 7644 return 0; 7645 } 7646 7647 static bool arg_type_is_mem_size(enum bpf_arg_type type) 7648 { 7649 return type == ARG_CONST_SIZE || 7650 type == ARG_CONST_SIZE_OR_ZERO; 7651 } 7652 7653 static bool arg_type_is_release(enum bpf_arg_type type) 7654 { 7655 return type & OBJ_RELEASE; 7656 } 7657 7658 static bool arg_type_is_dynptr(enum bpf_arg_type type) 7659 { 7660 return base_type(type) == ARG_PTR_TO_DYNPTR; 7661 } 7662 7663 static int int_ptr_type_to_size(enum bpf_arg_type type) 7664 { 7665 if (type == ARG_PTR_TO_INT) 7666 return sizeof(u32); 7667 else if (type == ARG_PTR_TO_LONG) 7668 return sizeof(u64); 7669 7670 return -EINVAL; 7671 } 7672 7673 static int resolve_map_arg_type(struct bpf_verifier_env *env, 7674 const struct bpf_call_arg_meta *meta, 7675 enum bpf_arg_type *arg_type) 7676 { 7677 if (!meta->map_ptr) { 7678 /* kernel subsystem misconfigured verifier */ 7679 verbose(env, "invalid map_ptr to access map->type\n"); 7680 return -EACCES; 7681 } 7682 7683 switch (meta->map_ptr->map_type) { 7684 case BPF_MAP_TYPE_SOCKMAP: 7685 case BPF_MAP_TYPE_SOCKHASH: 7686 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 7687 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 7688 } else { 7689 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 7690 return -EINVAL; 7691 } 7692 break; 7693 case BPF_MAP_TYPE_BLOOM_FILTER: 7694 if (meta->func_id == BPF_FUNC_map_peek_elem) 7695 *arg_type = ARG_PTR_TO_MAP_VALUE; 7696 break; 7697 default: 7698 break; 7699 } 7700 return 0; 7701 } 7702 7703 struct bpf_reg_types { 7704 const enum bpf_reg_type types[10]; 7705 u32 *btf_id; 7706 }; 7707 7708 static const struct bpf_reg_types sock_types = { 7709 .types = { 7710 PTR_TO_SOCK_COMMON, 7711 PTR_TO_SOCKET, 7712 PTR_TO_TCP_SOCK, 7713 PTR_TO_XDP_SOCK, 7714 }, 7715 }; 7716 7717 #ifdef CONFIG_NET 7718 static const struct bpf_reg_types btf_id_sock_common_types = { 7719 .types = { 7720 PTR_TO_SOCK_COMMON, 7721 PTR_TO_SOCKET, 7722 PTR_TO_TCP_SOCK, 7723 PTR_TO_XDP_SOCK, 7724 PTR_TO_BTF_ID, 7725 PTR_TO_BTF_ID | PTR_TRUSTED, 7726 }, 7727 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 7728 }; 7729 #endif 7730 7731 static const struct bpf_reg_types mem_types = { 7732 .types = { 7733 PTR_TO_STACK, 7734 PTR_TO_PACKET, 7735 PTR_TO_PACKET_META, 7736 PTR_TO_MAP_KEY, 7737 PTR_TO_MAP_VALUE, 7738 PTR_TO_MEM, 7739 PTR_TO_MEM | MEM_RINGBUF, 7740 PTR_TO_BUF, 7741 PTR_TO_BTF_ID | PTR_TRUSTED, 7742 }, 7743 }; 7744 7745 static const struct bpf_reg_types int_ptr_types = { 7746 .types = { 7747 PTR_TO_STACK, 7748 PTR_TO_PACKET, 7749 PTR_TO_PACKET_META, 7750 PTR_TO_MAP_KEY, 7751 PTR_TO_MAP_VALUE, 7752 }, 7753 }; 7754 7755 static const struct bpf_reg_types spin_lock_types = { 7756 .types = { 7757 PTR_TO_MAP_VALUE, 7758 PTR_TO_BTF_ID | MEM_ALLOC, 7759 } 7760 }; 7761 7762 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 7763 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 7764 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 7765 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 7766 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 7767 static const struct bpf_reg_types btf_ptr_types = { 7768 .types = { 7769 PTR_TO_BTF_ID, 7770 PTR_TO_BTF_ID | PTR_TRUSTED, 7771 PTR_TO_BTF_ID | MEM_RCU, 7772 }, 7773 }; 7774 static const struct bpf_reg_types percpu_btf_ptr_types = { 7775 .types = { 7776 PTR_TO_BTF_ID | MEM_PERCPU, 7777 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 7778 } 7779 }; 7780 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 7781 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 7782 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 7783 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 7784 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 7785 static const struct bpf_reg_types dynptr_types = { 7786 .types = { 7787 PTR_TO_STACK, 7788 CONST_PTR_TO_DYNPTR, 7789 } 7790 }; 7791 7792 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 7793 [ARG_PTR_TO_MAP_KEY] = &mem_types, 7794 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 7795 [ARG_CONST_SIZE] = &scalar_types, 7796 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 7797 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 7798 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 7799 [ARG_PTR_TO_CTX] = &context_types, 7800 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 7801 #ifdef CONFIG_NET 7802 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 7803 #endif 7804 [ARG_PTR_TO_SOCKET] = &fullsock_types, 7805 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 7806 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 7807 [ARG_PTR_TO_MEM] = &mem_types, 7808 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 7809 [ARG_PTR_TO_INT] = &int_ptr_types, 7810 [ARG_PTR_TO_LONG] = &int_ptr_types, 7811 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 7812 [ARG_PTR_TO_FUNC] = &func_ptr_types, 7813 [ARG_PTR_TO_STACK] = &stack_ptr_types, 7814 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 7815 [ARG_PTR_TO_TIMER] = &timer_types, 7816 [ARG_PTR_TO_KPTR] = &kptr_types, 7817 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 7818 }; 7819 7820 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 7821 enum bpf_arg_type arg_type, 7822 const u32 *arg_btf_id, 7823 struct bpf_call_arg_meta *meta) 7824 { 7825 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7826 enum bpf_reg_type expected, type = reg->type; 7827 const struct bpf_reg_types *compatible; 7828 int i, j; 7829 7830 compatible = compatible_reg_types[base_type(arg_type)]; 7831 if (!compatible) { 7832 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 7833 return -EFAULT; 7834 } 7835 7836 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 7837 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 7838 * 7839 * Same for MAYBE_NULL: 7840 * 7841 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 7842 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 7843 * 7844 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 7845 * 7846 * Therefore we fold these flags depending on the arg_type before comparison. 7847 */ 7848 if (arg_type & MEM_RDONLY) 7849 type &= ~MEM_RDONLY; 7850 if (arg_type & PTR_MAYBE_NULL) 7851 type &= ~PTR_MAYBE_NULL; 7852 if (base_type(arg_type) == ARG_PTR_TO_MEM) 7853 type &= ~DYNPTR_TYPE_FLAG_MASK; 7854 7855 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) 7856 type &= ~MEM_ALLOC; 7857 7858 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 7859 expected = compatible->types[i]; 7860 if (expected == NOT_INIT) 7861 break; 7862 7863 if (type == expected) 7864 goto found; 7865 } 7866 7867 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 7868 for (j = 0; j + 1 < i; j++) 7869 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 7870 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 7871 return -EACCES; 7872 7873 found: 7874 if (base_type(reg->type) != PTR_TO_BTF_ID) 7875 return 0; 7876 7877 if (compatible == &mem_types) { 7878 if (!(arg_type & MEM_RDONLY)) { 7879 verbose(env, 7880 "%s() may write into memory pointed by R%d type=%s\n", 7881 func_id_name(meta->func_id), 7882 regno, reg_type_str(env, reg->type)); 7883 return -EACCES; 7884 } 7885 return 0; 7886 } 7887 7888 switch ((int)reg->type) { 7889 case PTR_TO_BTF_ID: 7890 case PTR_TO_BTF_ID | PTR_TRUSTED: 7891 case PTR_TO_BTF_ID | MEM_RCU: 7892 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 7893 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 7894 { 7895 /* For bpf_sk_release, it needs to match against first member 7896 * 'struct sock_common', hence make an exception for it. This 7897 * allows bpf_sk_release to work for multiple socket types. 7898 */ 7899 bool strict_type_match = arg_type_is_release(arg_type) && 7900 meta->func_id != BPF_FUNC_sk_release; 7901 7902 if (type_may_be_null(reg->type) && 7903 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 7904 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 7905 return -EACCES; 7906 } 7907 7908 if (!arg_btf_id) { 7909 if (!compatible->btf_id) { 7910 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 7911 return -EFAULT; 7912 } 7913 arg_btf_id = compatible->btf_id; 7914 } 7915 7916 if (meta->func_id == BPF_FUNC_kptr_xchg) { 7917 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 7918 return -EACCES; 7919 } else { 7920 if (arg_btf_id == BPF_PTR_POISON) { 7921 verbose(env, "verifier internal error:"); 7922 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 7923 regno); 7924 return -EACCES; 7925 } 7926 7927 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 7928 btf_vmlinux, *arg_btf_id, 7929 strict_type_match)) { 7930 verbose(env, "R%d is of type %s but %s is expected\n", 7931 regno, btf_type_name(reg->btf, reg->btf_id), 7932 btf_type_name(btf_vmlinux, *arg_btf_id)); 7933 return -EACCES; 7934 } 7935 } 7936 break; 7937 } 7938 case PTR_TO_BTF_ID | MEM_ALLOC: 7939 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 7940 meta->func_id != BPF_FUNC_kptr_xchg) { 7941 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 7942 return -EFAULT; 7943 } 7944 if (meta->func_id == BPF_FUNC_kptr_xchg) { 7945 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 7946 return -EACCES; 7947 } 7948 break; 7949 case PTR_TO_BTF_ID | MEM_PERCPU: 7950 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 7951 /* Handled by helper specific checks */ 7952 break; 7953 default: 7954 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 7955 return -EFAULT; 7956 } 7957 return 0; 7958 } 7959 7960 static struct btf_field * 7961 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 7962 { 7963 struct btf_field *field; 7964 struct btf_record *rec; 7965 7966 rec = reg_btf_record(reg); 7967 if (!rec) 7968 return NULL; 7969 7970 field = btf_record_find(rec, off, fields); 7971 if (!field) 7972 return NULL; 7973 7974 return field; 7975 } 7976 7977 int check_func_arg_reg_off(struct bpf_verifier_env *env, 7978 const struct bpf_reg_state *reg, int regno, 7979 enum bpf_arg_type arg_type) 7980 { 7981 u32 type = reg->type; 7982 7983 /* When referenced register is passed to release function, its fixed 7984 * offset must be 0. 7985 * 7986 * We will check arg_type_is_release reg has ref_obj_id when storing 7987 * meta->release_regno. 7988 */ 7989 if (arg_type_is_release(arg_type)) { 7990 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 7991 * may not directly point to the object being released, but to 7992 * dynptr pointing to such object, which might be at some offset 7993 * on the stack. In that case, we simply to fallback to the 7994 * default handling. 7995 */ 7996 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 7997 return 0; 7998 7999 /* Doing check_ptr_off_reg check for the offset will catch this 8000 * because fixed_off_ok is false, but checking here allows us 8001 * to give the user a better error message. 8002 */ 8003 if (reg->off) { 8004 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 8005 regno); 8006 return -EINVAL; 8007 } 8008 return __check_ptr_off_reg(env, reg, regno, false); 8009 } 8010 8011 switch (type) { 8012 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 8013 case PTR_TO_STACK: 8014 case PTR_TO_PACKET: 8015 case PTR_TO_PACKET_META: 8016 case PTR_TO_MAP_KEY: 8017 case PTR_TO_MAP_VALUE: 8018 case PTR_TO_MEM: 8019 case PTR_TO_MEM | MEM_RDONLY: 8020 case PTR_TO_MEM | MEM_RINGBUF: 8021 case PTR_TO_BUF: 8022 case PTR_TO_BUF | MEM_RDONLY: 8023 case SCALAR_VALUE: 8024 return 0; 8025 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 8026 * fixed offset. 8027 */ 8028 case PTR_TO_BTF_ID: 8029 case PTR_TO_BTF_ID | MEM_ALLOC: 8030 case PTR_TO_BTF_ID | PTR_TRUSTED: 8031 case PTR_TO_BTF_ID | MEM_RCU: 8032 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 8033 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 8034 /* When referenced PTR_TO_BTF_ID is passed to release function, 8035 * its fixed offset must be 0. In the other cases, fixed offset 8036 * can be non-zero. This was already checked above. So pass 8037 * fixed_off_ok as true to allow fixed offset for all other 8038 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 8039 * still need to do checks instead of returning. 8040 */ 8041 return __check_ptr_off_reg(env, reg, regno, true); 8042 default: 8043 return __check_ptr_off_reg(env, reg, regno, false); 8044 } 8045 } 8046 8047 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 8048 const struct bpf_func_proto *fn, 8049 struct bpf_reg_state *regs) 8050 { 8051 struct bpf_reg_state *state = NULL; 8052 int i; 8053 8054 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 8055 if (arg_type_is_dynptr(fn->arg_type[i])) { 8056 if (state) { 8057 verbose(env, "verifier internal error: multiple dynptr args\n"); 8058 return NULL; 8059 } 8060 state = ®s[BPF_REG_1 + i]; 8061 } 8062 8063 if (!state) 8064 verbose(env, "verifier internal error: no dynptr arg found\n"); 8065 8066 return state; 8067 } 8068 8069 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8070 { 8071 struct bpf_func_state *state = func(env, reg); 8072 int spi; 8073 8074 if (reg->type == CONST_PTR_TO_DYNPTR) 8075 return reg->id; 8076 spi = dynptr_get_spi(env, reg); 8077 if (spi < 0) 8078 return spi; 8079 return state->stack[spi].spilled_ptr.id; 8080 } 8081 8082 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8083 { 8084 struct bpf_func_state *state = func(env, reg); 8085 int spi; 8086 8087 if (reg->type == CONST_PTR_TO_DYNPTR) 8088 return reg->ref_obj_id; 8089 spi = dynptr_get_spi(env, reg); 8090 if (spi < 0) 8091 return spi; 8092 return state->stack[spi].spilled_ptr.ref_obj_id; 8093 } 8094 8095 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 8096 struct bpf_reg_state *reg) 8097 { 8098 struct bpf_func_state *state = func(env, reg); 8099 int spi; 8100 8101 if (reg->type == CONST_PTR_TO_DYNPTR) 8102 return reg->dynptr.type; 8103 8104 spi = __get_spi(reg->off); 8105 if (spi < 0) { 8106 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 8107 return BPF_DYNPTR_TYPE_INVALID; 8108 } 8109 8110 return state->stack[spi].spilled_ptr.dynptr.type; 8111 } 8112 8113 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 8114 struct bpf_call_arg_meta *meta, 8115 const struct bpf_func_proto *fn, 8116 int insn_idx) 8117 { 8118 u32 regno = BPF_REG_1 + arg; 8119 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8120 enum bpf_arg_type arg_type = fn->arg_type[arg]; 8121 enum bpf_reg_type type = reg->type; 8122 u32 *arg_btf_id = NULL; 8123 int err = 0; 8124 8125 if (arg_type == ARG_DONTCARE) 8126 return 0; 8127 8128 err = check_reg_arg(env, regno, SRC_OP); 8129 if (err) 8130 return err; 8131 8132 if (arg_type == ARG_ANYTHING) { 8133 if (is_pointer_value(env, regno)) { 8134 verbose(env, "R%d leaks addr into helper function\n", 8135 regno); 8136 return -EACCES; 8137 } 8138 return 0; 8139 } 8140 8141 if (type_is_pkt_pointer(type) && 8142 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 8143 verbose(env, "helper access to the packet is not allowed\n"); 8144 return -EACCES; 8145 } 8146 8147 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 8148 err = resolve_map_arg_type(env, meta, &arg_type); 8149 if (err) 8150 return err; 8151 } 8152 8153 if (register_is_null(reg) && type_may_be_null(arg_type)) 8154 /* A NULL register has a SCALAR_VALUE type, so skip 8155 * type checking. 8156 */ 8157 goto skip_type_check; 8158 8159 /* arg_btf_id and arg_size are in a union. */ 8160 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 8161 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 8162 arg_btf_id = fn->arg_btf_id[arg]; 8163 8164 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 8165 if (err) 8166 return err; 8167 8168 err = check_func_arg_reg_off(env, reg, regno, arg_type); 8169 if (err) 8170 return err; 8171 8172 skip_type_check: 8173 if (arg_type_is_release(arg_type)) { 8174 if (arg_type_is_dynptr(arg_type)) { 8175 struct bpf_func_state *state = func(env, reg); 8176 int spi; 8177 8178 /* Only dynptr created on stack can be released, thus 8179 * the get_spi and stack state checks for spilled_ptr 8180 * should only be done before process_dynptr_func for 8181 * PTR_TO_STACK. 8182 */ 8183 if (reg->type == PTR_TO_STACK) { 8184 spi = dynptr_get_spi(env, reg); 8185 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 8186 verbose(env, "arg %d is an unacquired reference\n", regno); 8187 return -EINVAL; 8188 } 8189 } else { 8190 verbose(env, "cannot release unowned const bpf_dynptr\n"); 8191 return -EINVAL; 8192 } 8193 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 8194 verbose(env, "R%d must be referenced when passed to release function\n", 8195 regno); 8196 return -EINVAL; 8197 } 8198 if (meta->release_regno) { 8199 verbose(env, "verifier internal error: more than one release argument\n"); 8200 return -EFAULT; 8201 } 8202 meta->release_regno = regno; 8203 } 8204 8205 if (reg->ref_obj_id) { 8206 if (meta->ref_obj_id) { 8207 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8208 regno, reg->ref_obj_id, 8209 meta->ref_obj_id); 8210 return -EFAULT; 8211 } 8212 meta->ref_obj_id = reg->ref_obj_id; 8213 } 8214 8215 switch (base_type(arg_type)) { 8216 case ARG_CONST_MAP_PTR: 8217 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 8218 if (meta->map_ptr) { 8219 /* Use map_uid (which is unique id of inner map) to reject: 8220 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 8221 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 8222 * if (inner_map1 && inner_map2) { 8223 * timer = bpf_map_lookup_elem(inner_map1); 8224 * if (timer) 8225 * // mismatch would have been allowed 8226 * bpf_timer_init(timer, inner_map2); 8227 * } 8228 * 8229 * Comparing map_ptr is enough to distinguish normal and outer maps. 8230 */ 8231 if (meta->map_ptr != reg->map_ptr || 8232 meta->map_uid != reg->map_uid) { 8233 verbose(env, 8234 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 8235 meta->map_uid, reg->map_uid); 8236 return -EINVAL; 8237 } 8238 } 8239 meta->map_ptr = reg->map_ptr; 8240 meta->map_uid = reg->map_uid; 8241 break; 8242 case ARG_PTR_TO_MAP_KEY: 8243 /* bpf_map_xxx(..., map_ptr, ..., key) call: 8244 * check that [key, key + map->key_size) are within 8245 * stack limits and initialized 8246 */ 8247 if (!meta->map_ptr) { 8248 /* in function declaration map_ptr must come before 8249 * map_key, so that it's verified and known before 8250 * we have to check map_key here. Otherwise it means 8251 * that kernel subsystem misconfigured verifier 8252 */ 8253 verbose(env, "invalid map_ptr to access map->key\n"); 8254 return -EACCES; 8255 } 8256 err = check_helper_mem_access(env, regno, 8257 meta->map_ptr->key_size, false, 8258 NULL); 8259 break; 8260 case ARG_PTR_TO_MAP_VALUE: 8261 if (type_may_be_null(arg_type) && register_is_null(reg)) 8262 return 0; 8263 8264 /* bpf_map_xxx(..., map_ptr, ..., value) call: 8265 * check [value, value + map->value_size) validity 8266 */ 8267 if (!meta->map_ptr) { 8268 /* kernel subsystem misconfigured verifier */ 8269 verbose(env, "invalid map_ptr to access map->value\n"); 8270 return -EACCES; 8271 } 8272 meta->raw_mode = arg_type & MEM_UNINIT; 8273 err = check_helper_mem_access(env, regno, 8274 meta->map_ptr->value_size, false, 8275 meta); 8276 break; 8277 case ARG_PTR_TO_PERCPU_BTF_ID: 8278 if (!reg->btf_id) { 8279 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 8280 return -EACCES; 8281 } 8282 meta->ret_btf = reg->btf; 8283 meta->ret_btf_id = reg->btf_id; 8284 break; 8285 case ARG_PTR_TO_SPIN_LOCK: 8286 if (in_rbtree_lock_required_cb(env)) { 8287 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 8288 return -EACCES; 8289 } 8290 if (meta->func_id == BPF_FUNC_spin_lock) { 8291 err = process_spin_lock(env, regno, true); 8292 if (err) 8293 return err; 8294 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 8295 err = process_spin_lock(env, regno, false); 8296 if (err) 8297 return err; 8298 } else { 8299 verbose(env, "verifier internal error\n"); 8300 return -EFAULT; 8301 } 8302 break; 8303 case ARG_PTR_TO_TIMER: 8304 err = process_timer_func(env, regno, meta); 8305 if (err) 8306 return err; 8307 break; 8308 case ARG_PTR_TO_FUNC: 8309 meta->subprogno = reg->subprogno; 8310 break; 8311 case ARG_PTR_TO_MEM: 8312 /* The access to this pointer is only checked when we hit the 8313 * next is_mem_size argument below. 8314 */ 8315 meta->raw_mode = arg_type & MEM_UNINIT; 8316 if (arg_type & MEM_FIXED_SIZE) { 8317 err = check_helper_mem_access(env, regno, 8318 fn->arg_size[arg], false, 8319 meta); 8320 } 8321 break; 8322 case ARG_CONST_SIZE: 8323 err = check_mem_size_reg(env, reg, regno, false, meta); 8324 break; 8325 case ARG_CONST_SIZE_OR_ZERO: 8326 err = check_mem_size_reg(env, reg, regno, true, meta); 8327 break; 8328 case ARG_PTR_TO_DYNPTR: 8329 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 8330 if (err) 8331 return err; 8332 break; 8333 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 8334 if (!tnum_is_const(reg->var_off)) { 8335 verbose(env, "R%d is not a known constant'\n", 8336 regno); 8337 return -EACCES; 8338 } 8339 meta->mem_size = reg->var_off.value; 8340 err = mark_chain_precision(env, regno); 8341 if (err) 8342 return err; 8343 break; 8344 case ARG_PTR_TO_INT: 8345 case ARG_PTR_TO_LONG: 8346 { 8347 int size = int_ptr_type_to_size(arg_type); 8348 8349 err = check_helper_mem_access(env, regno, size, false, meta); 8350 if (err) 8351 return err; 8352 err = check_ptr_alignment(env, reg, 0, size, true); 8353 break; 8354 } 8355 case ARG_PTR_TO_CONST_STR: 8356 { 8357 struct bpf_map *map = reg->map_ptr; 8358 int map_off; 8359 u64 map_addr; 8360 char *str_ptr; 8361 8362 if (!bpf_map_is_rdonly(map)) { 8363 verbose(env, "R%d does not point to a readonly map'\n", regno); 8364 return -EACCES; 8365 } 8366 8367 if (!tnum_is_const(reg->var_off)) { 8368 verbose(env, "R%d is not a constant address'\n", regno); 8369 return -EACCES; 8370 } 8371 8372 if (!map->ops->map_direct_value_addr) { 8373 verbose(env, "no direct value access support for this map type\n"); 8374 return -EACCES; 8375 } 8376 8377 err = check_map_access(env, regno, reg->off, 8378 map->value_size - reg->off, false, 8379 ACCESS_HELPER); 8380 if (err) 8381 return err; 8382 8383 map_off = reg->off + reg->var_off.value; 8384 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 8385 if (err) { 8386 verbose(env, "direct value access on string failed\n"); 8387 return err; 8388 } 8389 8390 str_ptr = (char *)(long)(map_addr); 8391 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 8392 verbose(env, "string is not zero-terminated\n"); 8393 return -EINVAL; 8394 } 8395 break; 8396 } 8397 case ARG_PTR_TO_KPTR: 8398 err = process_kptr_func(env, regno, meta); 8399 if (err) 8400 return err; 8401 break; 8402 } 8403 8404 return err; 8405 } 8406 8407 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 8408 { 8409 enum bpf_attach_type eatype = env->prog->expected_attach_type; 8410 enum bpf_prog_type type = resolve_prog_type(env->prog); 8411 8412 if (func_id != BPF_FUNC_map_update_elem) 8413 return false; 8414 8415 /* It's not possible to get access to a locked struct sock in these 8416 * contexts, so updating is safe. 8417 */ 8418 switch (type) { 8419 case BPF_PROG_TYPE_TRACING: 8420 if (eatype == BPF_TRACE_ITER) 8421 return true; 8422 break; 8423 case BPF_PROG_TYPE_SOCKET_FILTER: 8424 case BPF_PROG_TYPE_SCHED_CLS: 8425 case BPF_PROG_TYPE_SCHED_ACT: 8426 case BPF_PROG_TYPE_XDP: 8427 case BPF_PROG_TYPE_SK_REUSEPORT: 8428 case BPF_PROG_TYPE_FLOW_DISSECTOR: 8429 case BPF_PROG_TYPE_SK_LOOKUP: 8430 return true; 8431 default: 8432 break; 8433 } 8434 8435 verbose(env, "cannot update sockmap in this context\n"); 8436 return false; 8437 } 8438 8439 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 8440 { 8441 return env->prog->jit_requested && 8442 bpf_jit_supports_subprog_tailcalls(); 8443 } 8444 8445 static int check_map_func_compatibility(struct bpf_verifier_env *env, 8446 struct bpf_map *map, int func_id) 8447 { 8448 if (!map) 8449 return 0; 8450 8451 /* We need a two way check, first is from map perspective ... */ 8452 switch (map->map_type) { 8453 case BPF_MAP_TYPE_PROG_ARRAY: 8454 if (func_id != BPF_FUNC_tail_call) 8455 goto error; 8456 break; 8457 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 8458 if (func_id != BPF_FUNC_perf_event_read && 8459 func_id != BPF_FUNC_perf_event_output && 8460 func_id != BPF_FUNC_skb_output && 8461 func_id != BPF_FUNC_perf_event_read_value && 8462 func_id != BPF_FUNC_xdp_output) 8463 goto error; 8464 break; 8465 case BPF_MAP_TYPE_RINGBUF: 8466 if (func_id != BPF_FUNC_ringbuf_output && 8467 func_id != BPF_FUNC_ringbuf_reserve && 8468 func_id != BPF_FUNC_ringbuf_query && 8469 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 8470 func_id != BPF_FUNC_ringbuf_submit_dynptr && 8471 func_id != BPF_FUNC_ringbuf_discard_dynptr) 8472 goto error; 8473 break; 8474 case BPF_MAP_TYPE_USER_RINGBUF: 8475 if (func_id != BPF_FUNC_user_ringbuf_drain) 8476 goto error; 8477 break; 8478 case BPF_MAP_TYPE_STACK_TRACE: 8479 if (func_id != BPF_FUNC_get_stackid) 8480 goto error; 8481 break; 8482 case BPF_MAP_TYPE_CGROUP_ARRAY: 8483 if (func_id != BPF_FUNC_skb_under_cgroup && 8484 func_id != BPF_FUNC_current_task_under_cgroup) 8485 goto error; 8486 break; 8487 case BPF_MAP_TYPE_CGROUP_STORAGE: 8488 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 8489 if (func_id != BPF_FUNC_get_local_storage) 8490 goto error; 8491 break; 8492 case BPF_MAP_TYPE_DEVMAP: 8493 case BPF_MAP_TYPE_DEVMAP_HASH: 8494 if (func_id != BPF_FUNC_redirect_map && 8495 func_id != BPF_FUNC_map_lookup_elem) 8496 goto error; 8497 break; 8498 /* Restrict bpf side of cpumap and xskmap, open when use-cases 8499 * appear. 8500 */ 8501 case BPF_MAP_TYPE_CPUMAP: 8502 if (func_id != BPF_FUNC_redirect_map) 8503 goto error; 8504 break; 8505 case BPF_MAP_TYPE_XSKMAP: 8506 if (func_id != BPF_FUNC_redirect_map && 8507 func_id != BPF_FUNC_map_lookup_elem) 8508 goto error; 8509 break; 8510 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 8511 case BPF_MAP_TYPE_HASH_OF_MAPS: 8512 if (func_id != BPF_FUNC_map_lookup_elem) 8513 goto error; 8514 break; 8515 case BPF_MAP_TYPE_SOCKMAP: 8516 if (func_id != BPF_FUNC_sk_redirect_map && 8517 func_id != BPF_FUNC_sock_map_update && 8518 func_id != BPF_FUNC_map_delete_elem && 8519 func_id != BPF_FUNC_msg_redirect_map && 8520 func_id != BPF_FUNC_sk_select_reuseport && 8521 func_id != BPF_FUNC_map_lookup_elem && 8522 !may_update_sockmap(env, func_id)) 8523 goto error; 8524 break; 8525 case BPF_MAP_TYPE_SOCKHASH: 8526 if (func_id != BPF_FUNC_sk_redirect_hash && 8527 func_id != BPF_FUNC_sock_hash_update && 8528 func_id != BPF_FUNC_map_delete_elem && 8529 func_id != BPF_FUNC_msg_redirect_hash && 8530 func_id != BPF_FUNC_sk_select_reuseport && 8531 func_id != BPF_FUNC_map_lookup_elem && 8532 !may_update_sockmap(env, func_id)) 8533 goto error; 8534 break; 8535 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 8536 if (func_id != BPF_FUNC_sk_select_reuseport) 8537 goto error; 8538 break; 8539 case BPF_MAP_TYPE_QUEUE: 8540 case BPF_MAP_TYPE_STACK: 8541 if (func_id != BPF_FUNC_map_peek_elem && 8542 func_id != BPF_FUNC_map_pop_elem && 8543 func_id != BPF_FUNC_map_push_elem) 8544 goto error; 8545 break; 8546 case BPF_MAP_TYPE_SK_STORAGE: 8547 if (func_id != BPF_FUNC_sk_storage_get && 8548 func_id != BPF_FUNC_sk_storage_delete && 8549 func_id != BPF_FUNC_kptr_xchg) 8550 goto error; 8551 break; 8552 case BPF_MAP_TYPE_INODE_STORAGE: 8553 if (func_id != BPF_FUNC_inode_storage_get && 8554 func_id != BPF_FUNC_inode_storage_delete && 8555 func_id != BPF_FUNC_kptr_xchg) 8556 goto error; 8557 break; 8558 case BPF_MAP_TYPE_TASK_STORAGE: 8559 if (func_id != BPF_FUNC_task_storage_get && 8560 func_id != BPF_FUNC_task_storage_delete && 8561 func_id != BPF_FUNC_kptr_xchg) 8562 goto error; 8563 break; 8564 case BPF_MAP_TYPE_CGRP_STORAGE: 8565 if (func_id != BPF_FUNC_cgrp_storage_get && 8566 func_id != BPF_FUNC_cgrp_storage_delete && 8567 func_id != BPF_FUNC_kptr_xchg) 8568 goto error; 8569 break; 8570 case BPF_MAP_TYPE_BLOOM_FILTER: 8571 if (func_id != BPF_FUNC_map_peek_elem && 8572 func_id != BPF_FUNC_map_push_elem) 8573 goto error; 8574 break; 8575 default: 8576 break; 8577 } 8578 8579 /* ... and second from the function itself. */ 8580 switch (func_id) { 8581 case BPF_FUNC_tail_call: 8582 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 8583 goto error; 8584 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 8585 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 8586 return -EINVAL; 8587 } 8588 break; 8589 case BPF_FUNC_perf_event_read: 8590 case BPF_FUNC_perf_event_output: 8591 case BPF_FUNC_perf_event_read_value: 8592 case BPF_FUNC_skb_output: 8593 case BPF_FUNC_xdp_output: 8594 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 8595 goto error; 8596 break; 8597 case BPF_FUNC_ringbuf_output: 8598 case BPF_FUNC_ringbuf_reserve: 8599 case BPF_FUNC_ringbuf_query: 8600 case BPF_FUNC_ringbuf_reserve_dynptr: 8601 case BPF_FUNC_ringbuf_submit_dynptr: 8602 case BPF_FUNC_ringbuf_discard_dynptr: 8603 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 8604 goto error; 8605 break; 8606 case BPF_FUNC_user_ringbuf_drain: 8607 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 8608 goto error; 8609 break; 8610 case BPF_FUNC_get_stackid: 8611 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 8612 goto error; 8613 break; 8614 case BPF_FUNC_current_task_under_cgroup: 8615 case BPF_FUNC_skb_under_cgroup: 8616 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 8617 goto error; 8618 break; 8619 case BPF_FUNC_redirect_map: 8620 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 8621 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 8622 map->map_type != BPF_MAP_TYPE_CPUMAP && 8623 map->map_type != BPF_MAP_TYPE_XSKMAP) 8624 goto error; 8625 break; 8626 case BPF_FUNC_sk_redirect_map: 8627 case BPF_FUNC_msg_redirect_map: 8628 case BPF_FUNC_sock_map_update: 8629 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 8630 goto error; 8631 break; 8632 case BPF_FUNC_sk_redirect_hash: 8633 case BPF_FUNC_msg_redirect_hash: 8634 case BPF_FUNC_sock_hash_update: 8635 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 8636 goto error; 8637 break; 8638 case BPF_FUNC_get_local_storage: 8639 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 8640 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 8641 goto error; 8642 break; 8643 case BPF_FUNC_sk_select_reuseport: 8644 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 8645 map->map_type != BPF_MAP_TYPE_SOCKMAP && 8646 map->map_type != BPF_MAP_TYPE_SOCKHASH) 8647 goto error; 8648 break; 8649 case BPF_FUNC_map_pop_elem: 8650 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8651 map->map_type != BPF_MAP_TYPE_STACK) 8652 goto error; 8653 break; 8654 case BPF_FUNC_map_peek_elem: 8655 case BPF_FUNC_map_push_elem: 8656 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8657 map->map_type != BPF_MAP_TYPE_STACK && 8658 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 8659 goto error; 8660 break; 8661 case BPF_FUNC_map_lookup_percpu_elem: 8662 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 8663 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8664 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 8665 goto error; 8666 break; 8667 case BPF_FUNC_sk_storage_get: 8668 case BPF_FUNC_sk_storage_delete: 8669 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 8670 goto error; 8671 break; 8672 case BPF_FUNC_inode_storage_get: 8673 case BPF_FUNC_inode_storage_delete: 8674 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 8675 goto error; 8676 break; 8677 case BPF_FUNC_task_storage_get: 8678 case BPF_FUNC_task_storage_delete: 8679 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 8680 goto error; 8681 break; 8682 case BPF_FUNC_cgrp_storage_get: 8683 case BPF_FUNC_cgrp_storage_delete: 8684 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 8685 goto error; 8686 break; 8687 default: 8688 break; 8689 } 8690 8691 return 0; 8692 error: 8693 verbose(env, "cannot pass map_type %d into func %s#%d\n", 8694 map->map_type, func_id_name(func_id), func_id); 8695 return -EINVAL; 8696 } 8697 8698 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 8699 { 8700 int count = 0; 8701 8702 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 8703 count++; 8704 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 8705 count++; 8706 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 8707 count++; 8708 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 8709 count++; 8710 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 8711 count++; 8712 8713 /* We only support one arg being in raw mode at the moment, 8714 * which is sufficient for the helper functions we have 8715 * right now. 8716 */ 8717 return count <= 1; 8718 } 8719 8720 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 8721 { 8722 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 8723 bool has_size = fn->arg_size[arg] != 0; 8724 bool is_next_size = false; 8725 8726 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 8727 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 8728 8729 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 8730 return is_next_size; 8731 8732 return has_size == is_next_size || is_next_size == is_fixed; 8733 } 8734 8735 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 8736 { 8737 /* bpf_xxx(..., buf, len) call will access 'len' 8738 * bytes from memory 'buf'. Both arg types need 8739 * to be paired, so make sure there's no buggy 8740 * helper function specification. 8741 */ 8742 if (arg_type_is_mem_size(fn->arg1_type) || 8743 check_args_pair_invalid(fn, 0) || 8744 check_args_pair_invalid(fn, 1) || 8745 check_args_pair_invalid(fn, 2) || 8746 check_args_pair_invalid(fn, 3) || 8747 check_args_pair_invalid(fn, 4)) 8748 return false; 8749 8750 return true; 8751 } 8752 8753 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 8754 { 8755 int i; 8756 8757 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 8758 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 8759 return !!fn->arg_btf_id[i]; 8760 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 8761 return fn->arg_btf_id[i] == BPF_PTR_POISON; 8762 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 8763 /* arg_btf_id and arg_size are in a union. */ 8764 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 8765 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 8766 return false; 8767 } 8768 8769 return true; 8770 } 8771 8772 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 8773 { 8774 return check_raw_mode_ok(fn) && 8775 check_arg_pair_ok(fn) && 8776 check_btf_id_ok(fn) ? 0 : -EINVAL; 8777 } 8778 8779 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 8780 * are now invalid, so turn them into unknown SCALAR_VALUE. 8781 * 8782 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 8783 * since these slices point to packet data. 8784 */ 8785 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 8786 { 8787 struct bpf_func_state *state; 8788 struct bpf_reg_state *reg; 8789 8790 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 8791 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 8792 mark_reg_invalid(env, reg); 8793 })); 8794 } 8795 8796 enum { 8797 AT_PKT_END = -1, 8798 BEYOND_PKT_END = -2, 8799 }; 8800 8801 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 8802 { 8803 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8804 struct bpf_reg_state *reg = &state->regs[regn]; 8805 8806 if (reg->type != PTR_TO_PACKET) 8807 /* PTR_TO_PACKET_META is not supported yet */ 8808 return; 8809 8810 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 8811 * How far beyond pkt_end it goes is unknown. 8812 * if (!range_open) it's the case of pkt >= pkt_end 8813 * if (range_open) it's the case of pkt > pkt_end 8814 * hence this pointer is at least 1 byte bigger than pkt_end 8815 */ 8816 if (range_open) 8817 reg->range = BEYOND_PKT_END; 8818 else 8819 reg->range = AT_PKT_END; 8820 } 8821 8822 /* The pointer with the specified id has released its reference to kernel 8823 * resources. Identify all copies of the same pointer and clear the reference. 8824 */ 8825 static int release_reference(struct bpf_verifier_env *env, 8826 int ref_obj_id) 8827 { 8828 struct bpf_func_state *state; 8829 struct bpf_reg_state *reg; 8830 int err; 8831 8832 err = release_reference_state(cur_func(env), ref_obj_id); 8833 if (err) 8834 return err; 8835 8836 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 8837 if (reg->ref_obj_id == ref_obj_id) 8838 mark_reg_invalid(env, reg); 8839 })); 8840 8841 return 0; 8842 } 8843 8844 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 8845 { 8846 struct bpf_func_state *unused; 8847 struct bpf_reg_state *reg; 8848 8849 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 8850 if (type_is_non_owning_ref(reg->type)) 8851 mark_reg_invalid(env, reg); 8852 })); 8853 } 8854 8855 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 8856 struct bpf_reg_state *regs) 8857 { 8858 int i; 8859 8860 /* after the call registers r0 - r5 were scratched */ 8861 for (i = 0; i < CALLER_SAVED_REGS; i++) { 8862 mark_reg_not_init(env, regs, caller_saved[i]); 8863 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 8864 } 8865 } 8866 8867 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 8868 struct bpf_func_state *caller, 8869 struct bpf_func_state *callee, 8870 int insn_idx); 8871 8872 static int set_callee_state(struct bpf_verifier_env *env, 8873 struct bpf_func_state *caller, 8874 struct bpf_func_state *callee, int insn_idx); 8875 8876 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 8877 int *insn_idx, int subprog, 8878 set_callee_state_fn set_callee_state_cb) 8879 { 8880 struct bpf_verifier_state *state = env->cur_state; 8881 struct bpf_func_state *caller, *callee; 8882 int err; 8883 8884 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 8885 verbose(env, "the call stack of %d frames is too deep\n", 8886 state->curframe + 2); 8887 return -E2BIG; 8888 } 8889 8890 caller = state->frame[state->curframe]; 8891 if (state->frame[state->curframe + 1]) { 8892 verbose(env, "verifier bug. Frame %d already allocated\n", 8893 state->curframe + 1); 8894 return -EFAULT; 8895 } 8896 8897 err = btf_check_subprog_call(env, subprog, caller->regs); 8898 if (err == -EFAULT) 8899 return err; 8900 if (subprog_is_global(env, subprog)) { 8901 if (err) { 8902 verbose(env, "Caller passes invalid args into func#%d\n", 8903 subprog); 8904 return err; 8905 } else { 8906 if (env->log.level & BPF_LOG_LEVEL) 8907 verbose(env, 8908 "Func#%d is global and valid. Skipping.\n", 8909 subprog); 8910 clear_caller_saved_regs(env, caller->regs); 8911 8912 /* All global functions return a 64-bit SCALAR_VALUE */ 8913 mark_reg_unknown(env, caller->regs, BPF_REG_0); 8914 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 8915 8916 /* continue with next insn after call */ 8917 return 0; 8918 } 8919 } 8920 8921 /* set_callee_state is used for direct subprog calls, but we are 8922 * interested in validating only BPF helpers that can call subprogs as 8923 * callbacks 8924 */ 8925 if (set_callee_state_cb != set_callee_state) { 8926 if (bpf_pseudo_kfunc_call(insn) && 8927 !is_callback_calling_kfunc(insn->imm)) { 8928 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 8929 func_id_name(insn->imm), insn->imm); 8930 return -EFAULT; 8931 } else if (!bpf_pseudo_kfunc_call(insn) && 8932 !is_callback_calling_function(insn->imm)) { /* helper */ 8933 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 8934 func_id_name(insn->imm), insn->imm); 8935 return -EFAULT; 8936 } 8937 } 8938 8939 if (insn->code == (BPF_JMP | BPF_CALL) && 8940 insn->src_reg == 0 && 8941 insn->imm == BPF_FUNC_timer_set_callback) { 8942 struct bpf_verifier_state *async_cb; 8943 8944 /* there is no real recursion here. timer callbacks are async */ 8945 env->subprog_info[subprog].is_async_cb = true; 8946 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 8947 *insn_idx, subprog); 8948 if (!async_cb) 8949 return -EFAULT; 8950 callee = async_cb->frame[0]; 8951 callee->async_entry_cnt = caller->async_entry_cnt + 1; 8952 8953 /* Convert bpf_timer_set_callback() args into timer callback args */ 8954 err = set_callee_state_cb(env, caller, callee, *insn_idx); 8955 if (err) 8956 return err; 8957 8958 clear_caller_saved_regs(env, caller->regs); 8959 mark_reg_unknown(env, caller->regs, BPF_REG_0); 8960 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 8961 /* continue with next insn after call */ 8962 return 0; 8963 } 8964 8965 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 8966 if (!callee) 8967 return -ENOMEM; 8968 state->frame[state->curframe + 1] = callee; 8969 8970 /* callee cannot access r0, r6 - r9 for reading and has to write 8971 * into its own stack before reading from it. 8972 * callee can read/write into caller's stack 8973 */ 8974 init_func_state(env, callee, 8975 /* remember the callsite, it will be used by bpf_exit */ 8976 *insn_idx /* callsite */, 8977 state->curframe + 1 /* frameno within this callchain */, 8978 subprog /* subprog number within this prog */); 8979 8980 /* Transfer references to the callee */ 8981 err = copy_reference_state(callee, caller); 8982 if (err) 8983 goto err_out; 8984 8985 err = set_callee_state_cb(env, caller, callee, *insn_idx); 8986 if (err) 8987 goto err_out; 8988 8989 clear_caller_saved_regs(env, caller->regs); 8990 8991 /* only increment it after check_reg_arg() finished */ 8992 state->curframe++; 8993 8994 /* and go analyze first insn of the callee */ 8995 *insn_idx = env->subprog_info[subprog].start - 1; 8996 8997 if (env->log.level & BPF_LOG_LEVEL) { 8998 verbose(env, "caller:\n"); 8999 print_verifier_state(env, caller, true); 9000 verbose(env, "callee:\n"); 9001 print_verifier_state(env, callee, true); 9002 } 9003 return 0; 9004 9005 err_out: 9006 free_func_state(callee); 9007 state->frame[state->curframe + 1] = NULL; 9008 return err; 9009 } 9010 9011 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 9012 struct bpf_func_state *caller, 9013 struct bpf_func_state *callee) 9014 { 9015 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 9016 * void *callback_ctx, u64 flags); 9017 * callback_fn(struct bpf_map *map, void *key, void *value, 9018 * void *callback_ctx); 9019 */ 9020 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9021 9022 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9023 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9024 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9025 9026 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9027 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9028 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9029 9030 /* pointer to stack or null */ 9031 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 9032 9033 /* unused */ 9034 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9035 return 0; 9036 } 9037 9038 static int set_callee_state(struct bpf_verifier_env *env, 9039 struct bpf_func_state *caller, 9040 struct bpf_func_state *callee, int insn_idx) 9041 { 9042 int i; 9043 9044 /* copy r1 - r5 args that callee can access. The copy includes parent 9045 * pointers, which connects us up to the liveness chain 9046 */ 9047 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 9048 callee->regs[i] = caller->regs[i]; 9049 return 0; 9050 } 9051 9052 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9053 int *insn_idx) 9054 { 9055 int subprog, target_insn; 9056 9057 target_insn = *insn_idx + insn->imm + 1; 9058 subprog = find_subprog(env, target_insn); 9059 if (subprog < 0) { 9060 verbose(env, "verifier bug. No program starts at insn %d\n", 9061 target_insn); 9062 return -EFAULT; 9063 } 9064 9065 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 9066 } 9067 9068 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 9069 struct bpf_func_state *caller, 9070 struct bpf_func_state *callee, 9071 int insn_idx) 9072 { 9073 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 9074 struct bpf_map *map; 9075 int err; 9076 9077 if (bpf_map_ptr_poisoned(insn_aux)) { 9078 verbose(env, "tail_call abusing map_ptr\n"); 9079 return -EINVAL; 9080 } 9081 9082 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 9083 if (!map->ops->map_set_for_each_callback_args || 9084 !map->ops->map_for_each_callback) { 9085 verbose(env, "callback function not allowed for map\n"); 9086 return -ENOTSUPP; 9087 } 9088 9089 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 9090 if (err) 9091 return err; 9092 9093 callee->in_callback_fn = true; 9094 callee->callback_ret_range = tnum_range(0, 1); 9095 return 0; 9096 } 9097 9098 static int set_loop_callback_state(struct bpf_verifier_env *env, 9099 struct bpf_func_state *caller, 9100 struct bpf_func_state *callee, 9101 int insn_idx) 9102 { 9103 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 9104 * u64 flags); 9105 * callback_fn(u32 index, void *callback_ctx); 9106 */ 9107 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 9108 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9109 9110 /* unused */ 9111 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9112 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9113 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9114 9115 callee->in_callback_fn = true; 9116 callee->callback_ret_range = tnum_range(0, 1); 9117 return 0; 9118 } 9119 9120 static int set_timer_callback_state(struct bpf_verifier_env *env, 9121 struct bpf_func_state *caller, 9122 struct bpf_func_state *callee, 9123 int insn_idx) 9124 { 9125 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 9126 9127 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 9128 * callback_fn(struct bpf_map *map, void *key, void *value); 9129 */ 9130 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 9131 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 9132 callee->regs[BPF_REG_1].map_ptr = map_ptr; 9133 9134 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9135 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9136 callee->regs[BPF_REG_2].map_ptr = map_ptr; 9137 9138 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9139 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9140 callee->regs[BPF_REG_3].map_ptr = map_ptr; 9141 9142 /* unused */ 9143 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9144 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9145 callee->in_async_callback_fn = true; 9146 callee->callback_ret_range = tnum_range(0, 1); 9147 return 0; 9148 } 9149 9150 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 9151 struct bpf_func_state *caller, 9152 struct bpf_func_state *callee, 9153 int insn_idx) 9154 { 9155 /* bpf_find_vma(struct task_struct *task, u64 addr, 9156 * void *callback_fn, void *callback_ctx, u64 flags) 9157 * (callback_fn)(struct task_struct *task, 9158 * struct vm_area_struct *vma, void *callback_ctx); 9159 */ 9160 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9161 9162 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 9163 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9164 callee->regs[BPF_REG_2].btf = btf_vmlinux; 9165 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 9166 9167 /* pointer to stack or null */ 9168 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 9169 9170 /* unused */ 9171 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9172 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9173 callee->in_callback_fn = true; 9174 callee->callback_ret_range = tnum_range(0, 1); 9175 return 0; 9176 } 9177 9178 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 9179 struct bpf_func_state *caller, 9180 struct bpf_func_state *callee, 9181 int insn_idx) 9182 { 9183 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 9184 * callback_ctx, u64 flags); 9185 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 9186 */ 9187 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 9188 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 9189 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9190 9191 /* unused */ 9192 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9193 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9194 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9195 9196 callee->in_callback_fn = true; 9197 callee->callback_ret_range = tnum_range(0, 1); 9198 return 0; 9199 } 9200 9201 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 9202 struct bpf_func_state *caller, 9203 struct bpf_func_state *callee, 9204 int insn_idx) 9205 { 9206 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 9207 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 9208 * 9209 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 9210 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 9211 * by this point, so look at 'root' 9212 */ 9213 struct btf_field *field; 9214 9215 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 9216 BPF_RB_ROOT); 9217 if (!field || !field->graph_root.value_btf_id) 9218 return -EFAULT; 9219 9220 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 9221 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 9222 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 9223 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 9224 9225 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9226 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9227 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9228 callee->in_callback_fn = true; 9229 callee->callback_ret_range = tnum_range(0, 1); 9230 return 0; 9231 } 9232 9233 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 9234 9235 /* Are we currently verifying the callback for a rbtree helper that must 9236 * be called with lock held? If so, no need to complain about unreleased 9237 * lock 9238 */ 9239 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 9240 { 9241 struct bpf_verifier_state *state = env->cur_state; 9242 struct bpf_insn *insn = env->prog->insnsi; 9243 struct bpf_func_state *callee; 9244 int kfunc_btf_id; 9245 9246 if (!state->curframe) 9247 return false; 9248 9249 callee = state->frame[state->curframe]; 9250 9251 if (!callee->in_callback_fn) 9252 return false; 9253 9254 kfunc_btf_id = insn[callee->callsite].imm; 9255 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 9256 } 9257 9258 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 9259 { 9260 struct bpf_verifier_state *state = env->cur_state; 9261 struct bpf_func_state *caller, *callee; 9262 struct bpf_reg_state *r0; 9263 int err; 9264 9265 callee = state->frame[state->curframe]; 9266 r0 = &callee->regs[BPF_REG_0]; 9267 if (r0->type == PTR_TO_STACK) { 9268 /* technically it's ok to return caller's stack pointer 9269 * (or caller's caller's pointer) back to the caller, 9270 * since these pointers are valid. Only current stack 9271 * pointer will be invalid as soon as function exits, 9272 * but let's be conservative 9273 */ 9274 verbose(env, "cannot return stack pointer to the caller\n"); 9275 return -EINVAL; 9276 } 9277 9278 caller = state->frame[state->curframe - 1]; 9279 if (callee->in_callback_fn) { 9280 /* enforce R0 return value range [0, 1]. */ 9281 struct tnum range = callee->callback_ret_range; 9282 9283 if (r0->type != SCALAR_VALUE) { 9284 verbose(env, "R0 not a scalar value\n"); 9285 return -EACCES; 9286 } 9287 if (!tnum_in(range, r0->var_off)) { 9288 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 9289 return -EINVAL; 9290 } 9291 } else { 9292 /* return to the caller whatever r0 had in the callee */ 9293 caller->regs[BPF_REG_0] = *r0; 9294 } 9295 9296 /* callback_fn frame should have released its own additions to parent's 9297 * reference state at this point, or check_reference_leak would 9298 * complain, hence it must be the same as the caller. There is no need 9299 * to copy it back. 9300 */ 9301 if (!callee->in_callback_fn) { 9302 /* Transfer references to the caller */ 9303 err = copy_reference_state(caller, callee); 9304 if (err) 9305 return err; 9306 } 9307 9308 *insn_idx = callee->callsite + 1; 9309 if (env->log.level & BPF_LOG_LEVEL) { 9310 verbose(env, "returning from callee:\n"); 9311 print_verifier_state(env, callee, true); 9312 verbose(env, "to caller at %d:\n", *insn_idx); 9313 print_verifier_state(env, caller, true); 9314 } 9315 /* clear everything in the callee */ 9316 free_func_state(callee); 9317 state->frame[state->curframe--] = NULL; 9318 return 0; 9319 } 9320 9321 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 9322 int func_id, 9323 struct bpf_call_arg_meta *meta) 9324 { 9325 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 9326 9327 if (ret_type != RET_INTEGER) 9328 return; 9329 9330 switch (func_id) { 9331 case BPF_FUNC_get_stack: 9332 case BPF_FUNC_get_task_stack: 9333 case BPF_FUNC_probe_read_str: 9334 case BPF_FUNC_probe_read_kernel_str: 9335 case BPF_FUNC_probe_read_user_str: 9336 ret_reg->smax_value = meta->msize_max_value; 9337 ret_reg->s32_max_value = meta->msize_max_value; 9338 ret_reg->smin_value = -MAX_ERRNO; 9339 ret_reg->s32_min_value = -MAX_ERRNO; 9340 reg_bounds_sync(ret_reg); 9341 break; 9342 case BPF_FUNC_get_smp_processor_id: 9343 ret_reg->umax_value = nr_cpu_ids - 1; 9344 ret_reg->u32_max_value = nr_cpu_ids - 1; 9345 ret_reg->smax_value = nr_cpu_ids - 1; 9346 ret_reg->s32_max_value = nr_cpu_ids - 1; 9347 ret_reg->umin_value = 0; 9348 ret_reg->u32_min_value = 0; 9349 ret_reg->smin_value = 0; 9350 ret_reg->s32_min_value = 0; 9351 reg_bounds_sync(ret_reg); 9352 break; 9353 } 9354 } 9355 9356 static int 9357 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9358 int func_id, int insn_idx) 9359 { 9360 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9361 struct bpf_map *map = meta->map_ptr; 9362 9363 if (func_id != BPF_FUNC_tail_call && 9364 func_id != BPF_FUNC_map_lookup_elem && 9365 func_id != BPF_FUNC_map_update_elem && 9366 func_id != BPF_FUNC_map_delete_elem && 9367 func_id != BPF_FUNC_map_push_elem && 9368 func_id != BPF_FUNC_map_pop_elem && 9369 func_id != BPF_FUNC_map_peek_elem && 9370 func_id != BPF_FUNC_for_each_map_elem && 9371 func_id != BPF_FUNC_redirect_map && 9372 func_id != BPF_FUNC_map_lookup_percpu_elem) 9373 return 0; 9374 9375 if (map == NULL) { 9376 verbose(env, "kernel subsystem misconfigured verifier\n"); 9377 return -EINVAL; 9378 } 9379 9380 /* In case of read-only, some additional restrictions 9381 * need to be applied in order to prevent altering the 9382 * state of the map from program side. 9383 */ 9384 if ((map->map_flags & BPF_F_RDONLY_PROG) && 9385 (func_id == BPF_FUNC_map_delete_elem || 9386 func_id == BPF_FUNC_map_update_elem || 9387 func_id == BPF_FUNC_map_push_elem || 9388 func_id == BPF_FUNC_map_pop_elem)) { 9389 verbose(env, "write into map forbidden\n"); 9390 return -EACCES; 9391 } 9392 9393 if (!BPF_MAP_PTR(aux->map_ptr_state)) 9394 bpf_map_ptr_store(aux, meta->map_ptr, 9395 !meta->map_ptr->bypass_spec_v1); 9396 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 9397 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 9398 !meta->map_ptr->bypass_spec_v1); 9399 return 0; 9400 } 9401 9402 static int 9403 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9404 int func_id, int insn_idx) 9405 { 9406 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9407 struct bpf_reg_state *regs = cur_regs(env), *reg; 9408 struct bpf_map *map = meta->map_ptr; 9409 u64 val, max; 9410 int err; 9411 9412 if (func_id != BPF_FUNC_tail_call) 9413 return 0; 9414 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 9415 verbose(env, "kernel subsystem misconfigured verifier\n"); 9416 return -EINVAL; 9417 } 9418 9419 reg = ®s[BPF_REG_3]; 9420 val = reg->var_off.value; 9421 max = map->max_entries; 9422 9423 if (!(register_is_const(reg) && val < max)) { 9424 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9425 return 0; 9426 } 9427 9428 err = mark_chain_precision(env, BPF_REG_3); 9429 if (err) 9430 return err; 9431 if (bpf_map_key_unseen(aux)) 9432 bpf_map_key_store(aux, val); 9433 else if (!bpf_map_key_poisoned(aux) && 9434 bpf_map_key_immediate(aux) != val) 9435 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9436 return 0; 9437 } 9438 9439 static int check_reference_leak(struct bpf_verifier_env *env) 9440 { 9441 struct bpf_func_state *state = cur_func(env); 9442 bool refs_lingering = false; 9443 int i; 9444 9445 if (state->frameno && !state->in_callback_fn) 9446 return 0; 9447 9448 for (i = 0; i < state->acquired_refs; i++) { 9449 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 9450 continue; 9451 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 9452 state->refs[i].id, state->refs[i].insn_idx); 9453 refs_lingering = true; 9454 } 9455 return refs_lingering ? -EINVAL : 0; 9456 } 9457 9458 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 9459 struct bpf_reg_state *regs) 9460 { 9461 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 9462 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 9463 struct bpf_map *fmt_map = fmt_reg->map_ptr; 9464 struct bpf_bprintf_data data = {}; 9465 int err, fmt_map_off, num_args; 9466 u64 fmt_addr; 9467 char *fmt; 9468 9469 /* data must be an array of u64 */ 9470 if (data_len_reg->var_off.value % 8) 9471 return -EINVAL; 9472 num_args = data_len_reg->var_off.value / 8; 9473 9474 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 9475 * and map_direct_value_addr is set. 9476 */ 9477 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 9478 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 9479 fmt_map_off); 9480 if (err) { 9481 verbose(env, "verifier bug\n"); 9482 return -EFAULT; 9483 } 9484 fmt = (char *)(long)fmt_addr + fmt_map_off; 9485 9486 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 9487 * can focus on validating the format specifiers. 9488 */ 9489 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 9490 if (err < 0) 9491 verbose(env, "Invalid format string\n"); 9492 9493 return err; 9494 } 9495 9496 static int check_get_func_ip(struct bpf_verifier_env *env) 9497 { 9498 enum bpf_prog_type type = resolve_prog_type(env->prog); 9499 int func_id = BPF_FUNC_get_func_ip; 9500 9501 if (type == BPF_PROG_TYPE_TRACING) { 9502 if (!bpf_prog_has_trampoline(env->prog)) { 9503 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 9504 func_id_name(func_id), func_id); 9505 return -ENOTSUPP; 9506 } 9507 return 0; 9508 } else if (type == BPF_PROG_TYPE_KPROBE) { 9509 return 0; 9510 } 9511 9512 verbose(env, "func %s#%d not supported for program type %d\n", 9513 func_id_name(func_id), func_id, type); 9514 return -ENOTSUPP; 9515 } 9516 9517 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 9518 { 9519 return &env->insn_aux_data[env->insn_idx]; 9520 } 9521 9522 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 9523 { 9524 struct bpf_reg_state *regs = cur_regs(env); 9525 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 9526 bool reg_is_null = register_is_null(reg); 9527 9528 if (reg_is_null) 9529 mark_chain_precision(env, BPF_REG_4); 9530 9531 return reg_is_null; 9532 } 9533 9534 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 9535 { 9536 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 9537 9538 if (!state->initialized) { 9539 state->initialized = 1; 9540 state->fit_for_inline = loop_flag_is_zero(env); 9541 state->callback_subprogno = subprogno; 9542 return; 9543 } 9544 9545 if (!state->fit_for_inline) 9546 return; 9547 9548 state->fit_for_inline = (loop_flag_is_zero(env) && 9549 state->callback_subprogno == subprogno); 9550 } 9551 9552 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9553 int *insn_idx_p) 9554 { 9555 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9556 const struct bpf_func_proto *fn = NULL; 9557 enum bpf_return_type ret_type; 9558 enum bpf_type_flag ret_flag; 9559 struct bpf_reg_state *regs; 9560 struct bpf_call_arg_meta meta; 9561 int insn_idx = *insn_idx_p; 9562 bool changes_data; 9563 int i, err, func_id; 9564 9565 /* find function prototype */ 9566 func_id = insn->imm; 9567 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 9568 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 9569 func_id); 9570 return -EINVAL; 9571 } 9572 9573 if (env->ops->get_func_proto) 9574 fn = env->ops->get_func_proto(func_id, env->prog); 9575 if (!fn) { 9576 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 9577 func_id); 9578 return -EINVAL; 9579 } 9580 9581 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 9582 if (!env->prog->gpl_compatible && fn->gpl_only) { 9583 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 9584 return -EINVAL; 9585 } 9586 9587 if (fn->allowed && !fn->allowed(env->prog)) { 9588 verbose(env, "helper call is not allowed in probe\n"); 9589 return -EINVAL; 9590 } 9591 9592 if (!env->prog->aux->sleepable && fn->might_sleep) { 9593 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 9594 return -EINVAL; 9595 } 9596 9597 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 9598 changes_data = bpf_helper_changes_pkt_data(fn->func); 9599 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 9600 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 9601 func_id_name(func_id), func_id); 9602 return -EINVAL; 9603 } 9604 9605 memset(&meta, 0, sizeof(meta)); 9606 meta.pkt_access = fn->pkt_access; 9607 9608 err = check_func_proto(fn, func_id); 9609 if (err) { 9610 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 9611 func_id_name(func_id), func_id); 9612 return err; 9613 } 9614 9615 if (env->cur_state->active_rcu_lock) { 9616 if (fn->might_sleep) { 9617 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 9618 func_id_name(func_id), func_id); 9619 return -EINVAL; 9620 } 9621 9622 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 9623 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 9624 } 9625 9626 meta.func_id = func_id; 9627 /* check args */ 9628 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 9629 err = check_func_arg(env, i, &meta, fn, insn_idx); 9630 if (err) 9631 return err; 9632 } 9633 9634 err = record_func_map(env, &meta, func_id, insn_idx); 9635 if (err) 9636 return err; 9637 9638 err = record_func_key(env, &meta, func_id, insn_idx); 9639 if (err) 9640 return err; 9641 9642 /* Mark slots with STACK_MISC in case of raw mode, stack offset 9643 * is inferred from register state. 9644 */ 9645 for (i = 0; i < meta.access_size; i++) { 9646 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 9647 BPF_WRITE, -1, false, false); 9648 if (err) 9649 return err; 9650 } 9651 9652 regs = cur_regs(env); 9653 9654 if (meta.release_regno) { 9655 err = -EINVAL; 9656 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 9657 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 9658 * is safe to do directly. 9659 */ 9660 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 9661 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 9662 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 9663 return -EFAULT; 9664 } 9665 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 9666 } else if (meta.ref_obj_id) { 9667 err = release_reference(env, meta.ref_obj_id); 9668 } else if (register_is_null(®s[meta.release_regno])) { 9669 /* meta.ref_obj_id can only be 0 if register that is meant to be 9670 * released is NULL, which must be > R0. 9671 */ 9672 err = 0; 9673 } 9674 if (err) { 9675 verbose(env, "func %s#%d reference has not been acquired before\n", 9676 func_id_name(func_id), func_id); 9677 return err; 9678 } 9679 } 9680 9681 switch (func_id) { 9682 case BPF_FUNC_tail_call: 9683 err = check_reference_leak(env); 9684 if (err) { 9685 verbose(env, "tail_call would lead to reference leak\n"); 9686 return err; 9687 } 9688 break; 9689 case BPF_FUNC_get_local_storage: 9690 /* check that flags argument in get_local_storage(map, flags) is 0, 9691 * this is required because get_local_storage() can't return an error. 9692 */ 9693 if (!register_is_null(®s[BPF_REG_2])) { 9694 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 9695 return -EINVAL; 9696 } 9697 break; 9698 case BPF_FUNC_for_each_map_elem: 9699 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9700 set_map_elem_callback_state); 9701 break; 9702 case BPF_FUNC_timer_set_callback: 9703 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9704 set_timer_callback_state); 9705 break; 9706 case BPF_FUNC_find_vma: 9707 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9708 set_find_vma_callback_state); 9709 break; 9710 case BPF_FUNC_snprintf: 9711 err = check_bpf_snprintf_call(env, regs); 9712 break; 9713 case BPF_FUNC_loop: 9714 update_loop_inline_state(env, meta.subprogno); 9715 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9716 set_loop_callback_state); 9717 break; 9718 case BPF_FUNC_dynptr_from_mem: 9719 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 9720 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 9721 reg_type_str(env, regs[BPF_REG_1].type)); 9722 return -EACCES; 9723 } 9724 break; 9725 case BPF_FUNC_set_retval: 9726 if (prog_type == BPF_PROG_TYPE_LSM && 9727 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 9728 if (!env->prog->aux->attach_func_proto->type) { 9729 /* Make sure programs that attach to void 9730 * hooks don't try to modify return value. 9731 */ 9732 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 9733 return -EINVAL; 9734 } 9735 } 9736 break; 9737 case BPF_FUNC_dynptr_data: 9738 { 9739 struct bpf_reg_state *reg; 9740 int id, ref_obj_id; 9741 9742 reg = get_dynptr_arg_reg(env, fn, regs); 9743 if (!reg) 9744 return -EFAULT; 9745 9746 9747 if (meta.dynptr_id) { 9748 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 9749 return -EFAULT; 9750 } 9751 if (meta.ref_obj_id) { 9752 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 9753 return -EFAULT; 9754 } 9755 9756 id = dynptr_id(env, reg); 9757 if (id < 0) { 9758 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 9759 return id; 9760 } 9761 9762 ref_obj_id = dynptr_ref_obj_id(env, reg); 9763 if (ref_obj_id < 0) { 9764 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 9765 return ref_obj_id; 9766 } 9767 9768 meta.dynptr_id = id; 9769 meta.ref_obj_id = ref_obj_id; 9770 9771 break; 9772 } 9773 case BPF_FUNC_dynptr_write: 9774 { 9775 enum bpf_dynptr_type dynptr_type; 9776 struct bpf_reg_state *reg; 9777 9778 reg = get_dynptr_arg_reg(env, fn, regs); 9779 if (!reg) 9780 return -EFAULT; 9781 9782 dynptr_type = dynptr_get_type(env, reg); 9783 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 9784 return -EFAULT; 9785 9786 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 9787 /* this will trigger clear_all_pkt_pointers(), which will 9788 * invalidate all dynptr slices associated with the skb 9789 */ 9790 changes_data = true; 9791 9792 break; 9793 } 9794 case BPF_FUNC_user_ringbuf_drain: 9795 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9796 set_user_ringbuf_callback_state); 9797 break; 9798 } 9799 9800 if (err) 9801 return err; 9802 9803 /* reset caller saved regs */ 9804 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9805 mark_reg_not_init(env, regs, caller_saved[i]); 9806 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 9807 } 9808 9809 /* helper call returns 64-bit value. */ 9810 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 9811 9812 /* update return register (already marked as written above) */ 9813 ret_type = fn->ret_type; 9814 ret_flag = type_flag(ret_type); 9815 9816 switch (base_type(ret_type)) { 9817 case RET_INTEGER: 9818 /* sets type to SCALAR_VALUE */ 9819 mark_reg_unknown(env, regs, BPF_REG_0); 9820 break; 9821 case RET_VOID: 9822 regs[BPF_REG_0].type = NOT_INIT; 9823 break; 9824 case RET_PTR_TO_MAP_VALUE: 9825 /* There is no offset yet applied, variable or fixed */ 9826 mark_reg_known_zero(env, regs, BPF_REG_0); 9827 /* remember map_ptr, so that check_map_access() 9828 * can check 'value_size' boundary of memory access 9829 * to map element returned from bpf_map_lookup_elem() 9830 */ 9831 if (meta.map_ptr == NULL) { 9832 verbose(env, 9833 "kernel subsystem misconfigured verifier\n"); 9834 return -EINVAL; 9835 } 9836 regs[BPF_REG_0].map_ptr = meta.map_ptr; 9837 regs[BPF_REG_0].map_uid = meta.map_uid; 9838 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 9839 if (!type_may_be_null(ret_type) && 9840 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 9841 regs[BPF_REG_0].id = ++env->id_gen; 9842 } 9843 break; 9844 case RET_PTR_TO_SOCKET: 9845 mark_reg_known_zero(env, regs, BPF_REG_0); 9846 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 9847 break; 9848 case RET_PTR_TO_SOCK_COMMON: 9849 mark_reg_known_zero(env, regs, BPF_REG_0); 9850 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 9851 break; 9852 case RET_PTR_TO_TCP_SOCK: 9853 mark_reg_known_zero(env, regs, BPF_REG_0); 9854 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 9855 break; 9856 case RET_PTR_TO_MEM: 9857 mark_reg_known_zero(env, regs, BPF_REG_0); 9858 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 9859 regs[BPF_REG_0].mem_size = meta.mem_size; 9860 break; 9861 case RET_PTR_TO_MEM_OR_BTF_ID: 9862 { 9863 const struct btf_type *t; 9864 9865 mark_reg_known_zero(env, regs, BPF_REG_0); 9866 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 9867 if (!btf_type_is_struct(t)) { 9868 u32 tsize; 9869 const struct btf_type *ret; 9870 const char *tname; 9871 9872 /* resolve the type size of ksym. */ 9873 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 9874 if (IS_ERR(ret)) { 9875 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 9876 verbose(env, "unable to resolve the size of type '%s': %ld\n", 9877 tname, PTR_ERR(ret)); 9878 return -EINVAL; 9879 } 9880 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 9881 regs[BPF_REG_0].mem_size = tsize; 9882 } else { 9883 /* MEM_RDONLY may be carried from ret_flag, but it 9884 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 9885 * it will confuse the check of PTR_TO_BTF_ID in 9886 * check_mem_access(). 9887 */ 9888 ret_flag &= ~MEM_RDONLY; 9889 9890 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 9891 regs[BPF_REG_0].btf = meta.ret_btf; 9892 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 9893 } 9894 break; 9895 } 9896 case RET_PTR_TO_BTF_ID: 9897 { 9898 struct btf *ret_btf; 9899 int ret_btf_id; 9900 9901 mark_reg_known_zero(env, regs, BPF_REG_0); 9902 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 9903 if (func_id == BPF_FUNC_kptr_xchg) { 9904 ret_btf = meta.kptr_field->kptr.btf; 9905 ret_btf_id = meta.kptr_field->kptr.btf_id; 9906 if (!btf_is_kernel(ret_btf)) 9907 regs[BPF_REG_0].type |= MEM_ALLOC; 9908 } else { 9909 if (fn->ret_btf_id == BPF_PTR_POISON) { 9910 verbose(env, "verifier internal error:"); 9911 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 9912 func_id_name(func_id)); 9913 return -EINVAL; 9914 } 9915 ret_btf = btf_vmlinux; 9916 ret_btf_id = *fn->ret_btf_id; 9917 } 9918 if (ret_btf_id == 0) { 9919 verbose(env, "invalid return type %u of func %s#%d\n", 9920 base_type(ret_type), func_id_name(func_id), 9921 func_id); 9922 return -EINVAL; 9923 } 9924 regs[BPF_REG_0].btf = ret_btf; 9925 regs[BPF_REG_0].btf_id = ret_btf_id; 9926 break; 9927 } 9928 default: 9929 verbose(env, "unknown return type %u of func %s#%d\n", 9930 base_type(ret_type), func_id_name(func_id), func_id); 9931 return -EINVAL; 9932 } 9933 9934 if (type_may_be_null(regs[BPF_REG_0].type)) 9935 regs[BPF_REG_0].id = ++env->id_gen; 9936 9937 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 9938 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 9939 func_id_name(func_id), func_id); 9940 return -EFAULT; 9941 } 9942 9943 if (is_dynptr_ref_function(func_id)) 9944 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 9945 9946 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 9947 /* For release_reference() */ 9948 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 9949 } else if (is_acquire_function(func_id, meta.map_ptr)) { 9950 int id = acquire_reference_state(env, insn_idx); 9951 9952 if (id < 0) 9953 return id; 9954 /* For mark_ptr_or_null_reg() */ 9955 regs[BPF_REG_0].id = id; 9956 /* For release_reference() */ 9957 regs[BPF_REG_0].ref_obj_id = id; 9958 } 9959 9960 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 9961 9962 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 9963 if (err) 9964 return err; 9965 9966 if ((func_id == BPF_FUNC_get_stack || 9967 func_id == BPF_FUNC_get_task_stack) && 9968 !env->prog->has_callchain_buf) { 9969 const char *err_str; 9970 9971 #ifdef CONFIG_PERF_EVENTS 9972 err = get_callchain_buffers(sysctl_perf_event_max_stack); 9973 err_str = "cannot get callchain buffer for func %s#%d\n"; 9974 #else 9975 err = -ENOTSUPP; 9976 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 9977 #endif 9978 if (err) { 9979 verbose(env, err_str, func_id_name(func_id), func_id); 9980 return err; 9981 } 9982 9983 env->prog->has_callchain_buf = true; 9984 } 9985 9986 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 9987 env->prog->call_get_stack = true; 9988 9989 if (func_id == BPF_FUNC_get_func_ip) { 9990 if (check_get_func_ip(env)) 9991 return -ENOTSUPP; 9992 env->prog->call_get_func_ip = true; 9993 } 9994 9995 if (changes_data) 9996 clear_all_pkt_pointers(env); 9997 return 0; 9998 } 9999 10000 /* mark_btf_func_reg_size() is used when the reg size is determined by 10001 * the BTF func_proto's return value size and argument. 10002 */ 10003 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 10004 size_t reg_size) 10005 { 10006 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 10007 10008 if (regno == BPF_REG_0) { 10009 /* Function return value */ 10010 reg->live |= REG_LIVE_WRITTEN; 10011 reg->subreg_def = reg_size == sizeof(u64) ? 10012 DEF_NOT_SUBREG : env->insn_idx + 1; 10013 } else { 10014 /* Function argument */ 10015 if (reg_size == sizeof(u64)) { 10016 mark_insn_zext(env, reg); 10017 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 10018 } else { 10019 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 10020 } 10021 } 10022 } 10023 10024 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 10025 { 10026 return meta->kfunc_flags & KF_ACQUIRE; 10027 } 10028 10029 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 10030 { 10031 return meta->kfunc_flags & KF_RELEASE; 10032 } 10033 10034 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 10035 { 10036 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 10037 } 10038 10039 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 10040 { 10041 return meta->kfunc_flags & KF_SLEEPABLE; 10042 } 10043 10044 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 10045 { 10046 return meta->kfunc_flags & KF_DESTRUCTIVE; 10047 } 10048 10049 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 10050 { 10051 return meta->kfunc_flags & KF_RCU; 10052 } 10053 10054 static bool __kfunc_param_match_suffix(const struct btf *btf, 10055 const struct btf_param *arg, 10056 const char *suffix) 10057 { 10058 int suffix_len = strlen(suffix), len; 10059 const char *param_name; 10060 10061 /* In the future, this can be ported to use BTF tagging */ 10062 param_name = btf_name_by_offset(btf, arg->name_off); 10063 if (str_is_empty(param_name)) 10064 return false; 10065 len = strlen(param_name); 10066 if (len < suffix_len) 10067 return false; 10068 param_name += len - suffix_len; 10069 return !strncmp(param_name, suffix, suffix_len); 10070 } 10071 10072 static bool is_kfunc_arg_mem_size(const struct btf *btf, 10073 const struct btf_param *arg, 10074 const struct bpf_reg_state *reg) 10075 { 10076 const struct btf_type *t; 10077 10078 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10079 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10080 return false; 10081 10082 return __kfunc_param_match_suffix(btf, arg, "__sz"); 10083 } 10084 10085 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 10086 const struct btf_param *arg, 10087 const struct bpf_reg_state *reg) 10088 { 10089 const struct btf_type *t; 10090 10091 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10092 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10093 return false; 10094 10095 return __kfunc_param_match_suffix(btf, arg, "__szk"); 10096 } 10097 10098 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 10099 { 10100 return __kfunc_param_match_suffix(btf, arg, "__opt"); 10101 } 10102 10103 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 10104 { 10105 return __kfunc_param_match_suffix(btf, arg, "__k"); 10106 } 10107 10108 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 10109 { 10110 return __kfunc_param_match_suffix(btf, arg, "__ign"); 10111 } 10112 10113 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 10114 { 10115 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 10116 } 10117 10118 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 10119 { 10120 return __kfunc_param_match_suffix(btf, arg, "__uninit"); 10121 } 10122 10123 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 10124 { 10125 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr"); 10126 } 10127 10128 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 10129 const struct btf_param *arg, 10130 const char *name) 10131 { 10132 int len, target_len = strlen(name); 10133 const char *param_name; 10134 10135 param_name = btf_name_by_offset(btf, arg->name_off); 10136 if (str_is_empty(param_name)) 10137 return false; 10138 len = strlen(param_name); 10139 if (len != target_len) 10140 return false; 10141 if (strcmp(param_name, name)) 10142 return false; 10143 10144 return true; 10145 } 10146 10147 enum { 10148 KF_ARG_DYNPTR_ID, 10149 KF_ARG_LIST_HEAD_ID, 10150 KF_ARG_LIST_NODE_ID, 10151 KF_ARG_RB_ROOT_ID, 10152 KF_ARG_RB_NODE_ID, 10153 }; 10154 10155 BTF_ID_LIST(kf_arg_btf_ids) 10156 BTF_ID(struct, bpf_dynptr_kern) 10157 BTF_ID(struct, bpf_list_head) 10158 BTF_ID(struct, bpf_list_node) 10159 BTF_ID(struct, bpf_rb_root) 10160 BTF_ID(struct, bpf_rb_node) 10161 10162 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 10163 const struct btf_param *arg, int type) 10164 { 10165 const struct btf_type *t; 10166 u32 res_id; 10167 10168 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10169 if (!t) 10170 return false; 10171 if (!btf_type_is_ptr(t)) 10172 return false; 10173 t = btf_type_skip_modifiers(btf, t->type, &res_id); 10174 if (!t) 10175 return false; 10176 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 10177 } 10178 10179 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 10180 { 10181 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 10182 } 10183 10184 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 10185 { 10186 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 10187 } 10188 10189 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 10190 { 10191 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 10192 } 10193 10194 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 10195 { 10196 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 10197 } 10198 10199 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 10200 { 10201 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 10202 } 10203 10204 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 10205 const struct btf_param *arg) 10206 { 10207 const struct btf_type *t; 10208 10209 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 10210 if (!t) 10211 return false; 10212 10213 return true; 10214 } 10215 10216 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 10217 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 10218 const struct btf *btf, 10219 const struct btf_type *t, int rec) 10220 { 10221 const struct btf_type *member_type; 10222 const struct btf_member *member; 10223 u32 i; 10224 10225 if (!btf_type_is_struct(t)) 10226 return false; 10227 10228 for_each_member(i, t, member) { 10229 const struct btf_array *array; 10230 10231 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 10232 if (btf_type_is_struct(member_type)) { 10233 if (rec >= 3) { 10234 verbose(env, "max struct nesting depth exceeded\n"); 10235 return false; 10236 } 10237 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 10238 return false; 10239 continue; 10240 } 10241 if (btf_type_is_array(member_type)) { 10242 array = btf_array(member_type); 10243 if (!array->nelems) 10244 return false; 10245 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 10246 if (!btf_type_is_scalar(member_type)) 10247 return false; 10248 continue; 10249 } 10250 if (!btf_type_is_scalar(member_type)) 10251 return false; 10252 } 10253 return true; 10254 } 10255 10256 enum kfunc_ptr_arg_type { 10257 KF_ARG_PTR_TO_CTX, 10258 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 10259 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 10260 KF_ARG_PTR_TO_DYNPTR, 10261 KF_ARG_PTR_TO_ITER, 10262 KF_ARG_PTR_TO_LIST_HEAD, 10263 KF_ARG_PTR_TO_LIST_NODE, 10264 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 10265 KF_ARG_PTR_TO_MEM, 10266 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 10267 KF_ARG_PTR_TO_CALLBACK, 10268 KF_ARG_PTR_TO_RB_ROOT, 10269 KF_ARG_PTR_TO_RB_NODE, 10270 }; 10271 10272 enum special_kfunc_type { 10273 KF_bpf_obj_new_impl, 10274 KF_bpf_obj_drop_impl, 10275 KF_bpf_refcount_acquire_impl, 10276 KF_bpf_list_push_front_impl, 10277 KF_bpf_list_push_back_impl, 10278 KF_bpf_list_pop_front, 10279 KF_bpf_list_pop_back, 10280 KF_bpf_cast_to_kern_ctx, 10281 KF_bpf_rdonly_cast, 10282 KF_bpf_rcu_read_lock, 10283 KF_bpf_rcu_read_unlock, 10284 KF_bpf_rbtree_remove, 10285 KF_bpf_rbtree_add_impl, 10286 KF_bpf_rbtree_first, 10287 KF_bpf_dynptr_from_skb, 10288 KF_bpf_dynptr_from_xdp, 10289 KF_bpf_dynptr_slice, 10290 KF_bpf_dynptr_slice_rdwr, 10291 KF_bpf_dynptr_clone, 10292 }; 10293 10294 BTF_SET_START(special_kfunc_set) 10295 BTF_ID(func, bpf_obj_new_impl) 10296 BTF_ID(func, bpf_obj_drop_impl) 10297 BTF_ID(func, bpf_refcount_acquire_impl) 10298 BTF_ID(func, bpf_list_push_front_impl) 10299 BTF_ID(func, bpf_list_push_back_impl) 10300 BTF_ID(func, bpf_list_pop_front) 10301 BTF_ID(func, bpf_list_pop_back) 10302 BTF_ID(func, bpf_cast_to_kern_ctx) 10303 BTF_ID(func, bpf_rdonly_cast) 10304 BTF_ID(func, bpf_rbtree_remove) 10305 BTF_ID(func, bpf_rbtree_add_impl) 10306 BTF_ID(func, bpf_rbtree_first) 10307 BTF_ID(func, bpf_dynptr_from_skb) 10308 BTF_ID(func, bpf_dynptr_from_xdp) 10309 BTF_ID(func, bpf_dynptr_slice) 10310 BTF_ID(func, bpf_dynptr_slice_rdwr) 10311 BTF_ID(func, bpf_dynptr_clone) 10312 BTF_SET_END(special_kfunc_set) 10313 10314 BTF_ID_LIST(special_kfunc_list) 10315 BTF_ID(func, bpf_obj_new_impl) 10316 BTF_ID(func, bpf_obj_drop_impl) 10317 BTF_ID(func, bpf_refcount_acquire_impl) 10318 BTF_ID(func, bpf_list_push_front_impl) 10319 BTF_ID(func, bpf_list_push_back_impl) 10320 BTF_ID(func, bpf_list_pop_front) 10321 BTF_ID(func, bpf_list_pop_back) 10322 BTF_ID(func, bpf_cast_to_kern_ctx) 10323 BTF_ID(func, bpf_rdonly_cast) 10324 BTF_ID(func, bpf_rcu_read_lock) 10325 BTF_ID(func, bpf_rcu_read_unlock) 10326 BTF_ID(func, bpf_rbtree_remove) 10327 BTF_ID(func, bpf_rbtree_add_impl) 10328 BTF_ID(func, bpf_rbtree_first) 10329 BTF_ID(func, bpf_dynptr_from_skb) 10330 BTF_ID(func, bpf_dynptr_from_xdp) 10331 BTF_ID(func, bpf_dynptr_slice) 10332 BTF_ID(func, bpf_dynptr_slice_rdwr) 10333 BTF_ID(func, bpf_dynptr_clone) 10334 10335 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 10336 { 10337 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 10338 meta->arg_owning_ref) { 10339 return false; 10340 } 10341 10342 return meta->kfunc_flags & KF_RET_NULL; 10343 } 10344 10345 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 10346 { 10347 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 10348 } 10349 10350 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 10351 { 10352 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 10353 } 10354 10355 static enum kfunc_ptr_arg_type 10356 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 10357 struct bpf_kfunc_call_arg_meta *meta, 10358 const struct btf_type *t, const struct btf_type *ref_t, 10359 const char *ref_tname, const struct btf_param *args, 10360 int argno, int nargs) 10361 { 10362 u32 regno = argno + 1; 10363 struct bpf_reg_state *regs = cur_regs(env); 10364 struct bpf_reg_state *reg = ®s[regno]; 10365 bool arg_mem_size = false; 10366 10367 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 10368 return KF_ARG_PTR_TO_CTX; 10369 10370 /* In this function, we verify the kfunc's BTF as per the argument type, 10371 * leaving the rest of the verification with respect to the register 10372 * type to our caller. When a set of conditions hold in the BTF type of 10373 * arguments, we resolve it to a known kfunc_ptr_arg_type. 10374 */ 10375 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 10376 return KF_ARG_PTR_TO_CTX; 10377 10378 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 10379 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 10380 10381 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 10382 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 10383 10384 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 10385 return KF_ARG_PTR_TO_DYNPTR; 10386 10387 if (is_kfunc_arg_iter(meta, argno)) 10388 return KF_ARG_PTR_TO_ITER; 10389 10390 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 10391 return KF_ARG_PTR_TO_LIST_HEAD; 10392 10393 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 10394 return KF_ARG_PTR_TO_LIST_NODE; 10395 10396 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 10397 return KF_ARG_PTR_TO_RB_ROOT; 10398 10399 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 10400 return KF_ARG_PTR_TO_RB_NODE; 10401 10402 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 10403 if (!btf_type_is_struct(ref_t)) { 10404 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 10405 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 10406 return -EINVAL; 10407 } 10408 return KF_ARG_PTR_TO_BTF_ID; 10409 } 10410 10411 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 10412 return KF_ARG_PTR_TO_CALLBACK; 10413 10414 10415 if (argno + 1 < nargs && 10416 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 10417 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 10418 arg_mem_size = true; 10419 10420 /* This is the catch all argument type of register types supported by 10421 * check_helper_mem_access. However, we only allow when argument type is 10422 * pointer to scalar, or struct composed (recursively) of scalars. When 10423 * arg_mem_size is true, the pointer can be void *. 10424 */ 10425 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 10426 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 10427 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 10428 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 10429 return -EINVAL; 10430 } 10431 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 10432 } 10433 10434 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 10435 struct bpf_reg_state *reg, 10436 const struct btf_type *ref_t, 10437 const char *ref_tname, u32 ref_id, 10438 struct bpf_kfunc_call_arg_meta *meta, 10439 int argno) 10440 { 10441 const struct btf_type *reg_ref_t; 10442 bool strict_type_match = false; 10443 const struct btf *reg_btf; 10444 const char *reg_ref_tname; 10445 u32 reg_ref_id; 10446 10447 if (base_type(reg->type) == PTR_TO_BTF_ID) { 10448 reg_btf = reg->btf; 10449 reg_ref_id = reg->btf_id; 10450 } else { 10451 reg_btf = btf_vmlinux; 10452 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 10453 } 10454 10455 /* Enforce strict type matching for calls to kfuncs that are acquiring 10456 * or releasing a reference, or are no-cast aliases. We do _not_ 10457 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 10458 * as we want to enable BPF programs to pass types that are bitwise 10459 * equivalent without forcing them to explicitly cast with something 10460 * like bpf_cast_to_kern_ctx(). 10461 * 10462 * For example, say we had a type like the following: 10463 * 10464 * struct bpf_cpumask { 10465 * cpumask_t cpumask; 10466 * refcount_t usage; 10467 * }; 10468 * 10469 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 10470 * to a struct cpumask, so it would be safe to pass a struct 10471 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 10472 * 10473 * The philosophy here is similar to how we allow scalars of different 10474 * types to be passed to kfuncs as long as the size is the same. The 10475 * only difference here is that we're simply allowing 10476 * btf_struct_ids_match() to walk the struct at the 0th offset, and 10477 * resolve types. 10478 */ 10479 if (is_kfunc_acquire(meta) || 10480 (is_kfunc_release(meta) && reg->ref_obj_id) || 10481 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 10482 strict_type_match = true; 10483 10484 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 10485 10486 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 10487 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 10488 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 10489 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 10490 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 10491 btf_type_str(reg_ref_t), reg_ref_tname); 10492 return -EINVAL; 10493 } 10494 return 0; 10495 } 10496 10497 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10498 { 10499 struct bpf_verifier_state *state = env->cur_state; 10500 struct btf_record *rec = reg_btf_record(reg); 10501 10502 if (!state->active_lock.ptr) { 10503 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 10504 return -EFAULT; 10505 } 10506 10507 if (type_flag(reg->type) & NON_OWN_REF) { 10508 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 10509 return -EFAULT; 10510 } 10511 10512 reg->type |= NON_OWN_REF; 10513 if (rec->refcount_off >= 0) 10514 reg->type |= MEM_RCU; 10515 10516 return 0; 10517 } 10518 10519 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 10520 { 10521 struct bpf_func_state *state, *unused; 10522 struct bpf_reg_state *reg; 10523 int i; 10524 10525 state = cur_func(env); 10526 10527 if (!ref_obj_id) { 10528 verbose(env, "verifier internal error: ref_obj_id is zero for " 10529 "owning -> non-owning conversion\n"); 10530 return -EFAULT; 10531 } 10532 10533 for (i = 0; i < state->acquired_refs; i++) { 10534 if (state->refs[i].id != ref_obj_id) 10535 continue; 10536 10537 /* Clear ref_obj_id here so release_reference doesn't clobber 10538 * the whole reg 10539 */ 10540 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 10541 if (reg->ref_obj_id == ref_obj_id) { 10542 reg->ref_obj_id = 0; 10543 ref_set_non_owning(env, reg); 10544 } 10545 })); 10546 return 0; 10547 } 10548 10549 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 10550 return -EFAULT; 10551 } 10552 10553 /* Implementation details: 10554 * 10555 * Each register points to some region of memory, which we define as an 10556 * allocation. Each allocation may embed a bpf_spin_lock which protects any 10557 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 10558 * allocation. The lock and the data it protects are colocated in the same 10559 * memory region. 10560 * 10561 * Hence, everytime a register holds a pointer value pointing to such 10562 * allocation, the verifier preserves a unique reg->id for it. 10563 * 10564 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 10565 * bpf_spin_lock is called. 10566 * 10567 * To enable this, lock state in the verifier captures two values: 10568 * active_lock.ptr = Register's type specific pointer 10569 * active_lock.id = A unique ID for each register pointer value 10570 * 10571 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 10572 * supported register types. 10573 * 10574 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 10575 * allocated objects is the reg->btf pointer. 10576 * 10577 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 10578 * can establish the provenance of the map value statically for each distinct 10579 * lookup into such maps. They always contain a single map value hence unique 10580 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 10581 * 10582 * So, in case of global variables, they use array maps with max_entries = 1, 10583 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 10584 * into the same map value as max_entries is 1, as described above). 10585 * 10586 * In case of inner map lookups, the inner map pointer has same map_ptr as the 10587 * outer map pointer (in verifier context), but each lookup into an inner map 10588 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 10589 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 10590 * will get different reg->id assigned to each lookup, hence different 10591 * active_lock.id. 10592 * 10593 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 10594 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 10595 * returned from bpf_obj_new. Each allocation receives a new reg->id. 10596 */ 10597 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10598 { 10599 void *ptr; 10600 u32 id; 10601 10602 switch ((int)reg->type) { 10603 case PTR_TO_MAP_VALUE: 10604 ptr = reg->map_ptr; 10605 break; 10606 case PTR_TO_BTF_ID | MEM_ALLOC: 10607 ptr = reg->btf; 10608 break; 10609 default: 10610 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 10611 return -EFAULT; 10612 } 10613 id = reg->id; 10614 10615 if (!env->cur_state->active_lock.ptr) 10616 return -EINVAL; 10617 if (env->cur_state->active_lock.ptr != ptr || 10618 env->cur_state->active_lock.id != id) { 10619 verbose(env, "held lock and object are not in the same allocation\n"); 10620 return -EINVAL; 10621 } 10622 return 0; 10623 } 10624 10625 static bool is_bpf_list_api_kfunc(u32 btf_id) 10626 { 10627 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 10628 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 10629 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 10630 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 10631 } 10632 10633 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 10634 { 10635 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 10636 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 10637 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 10638 } 10639 10640 static bool is_bpf_graph_api_kfunc(u32 btf_id) 10641 { 10642 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 10643 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 10644 } 10645 10646 static bool is_callback_calling_kfunc(u32 btf_id) 10647 { 10648 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 10649 } 10650 10651 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 10652 { 10653 return is_bpf_rbtree_api_kfunc(btf_id); 10654 } 10655 10656 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 10657 enum btf_field_type head_field_type, 10658 u32 kfunc_btf_id) 10659 { 10660 bool ret; 10661 10662 switch (head_field_type) { 10663 case BPF_LIST_HEAD: 10664 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 10665 break; 10666 case BPF_RB_ROOT: 10667 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 10668 break; 10669 default: 10670 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 10671 btf_field_type_name(head_field_type)); 10672 return false; 10673 } 10674 10675 if (!ret) 10676 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 10677 btf_field_type_name(head_field_type)); 10678 return ret; 10679 } 10680 10681 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 10682 enum btf_field_type node_field_type, 10683 u32 kfunc_btf_id) 10684 { 10685 bool ret; 10686 10687 switch (node_field_type) { 10688 case BPF_LIST_NODE: 10689 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 10690 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 10691 break; 10692 case BPF_RB_NODE: 10693 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 10694 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 10695 break; 10696 default: 10697 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 10698 btf_field_type_name(node_field_type)); 10699 return false; 10700 } 10701 10702 if (!ret) 10703 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 10704 btf_field_type_name(node_field_type)); 10705 return ret; 10706 } 10707 10708 static int 10709 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 10710 struct bpf_reg_state *reg, u32 regno, 10711 struct bpf_kfunc_call_arg_meta *meta, 10712 enum btf_field_type head_field_type, 10713 struct btf_field **head_field) 10714 { 10715 const char *head_type_name; 10716 struct btf_field *field; 10717 struct btf_record *rec; 10718 u32 head_off; 10719 10720 if (meta->btf != btf_vmlinux) { 10721 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 10722 return -EFAULT; 10723 } 10724 10725 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 10726 return -EFAULT; 10727 10728 head_type_name = btf_field_type_name(head_field_type); 10729 if (!tnum_is_const(reg->var_off)) { 10730 verbose(env, 10731 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 10732 regno, head_type_name); 10733 return -EINVAL; 10734 } 10735 10736 rec = reg_btf_record(reg); 10737 head_off = reg->off + reg->var_off.value; 10738 field = btf_record_find(rec, head_off, head_field_type); 10739 if (!field) { 10740 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 10741 return -EINVAL; 10742 } 10743 10744 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 10745 if (check_reg_allocation_locked(env, reg)) { 10746 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 10747 rec->spin_lock_off, head_type_name); 10748 return -EINVAL; 10749 } 10750 10751 if (*head_field) { 10752 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 10753 return -EFAULT; 10754 } 10755 *head_field = field; 10756 return 0; 10757 } 10758 10759 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 10760 struct bpf_reg_state *reg, u32 regno, 10761 struct bpf_kfunc_call_arg_meta *meta) 10762 { 10763 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 10764 &meta->arg_list_head.field); 10765 } 10766 10767 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 10768 struct bpf_reg_state *reg, u32 regno, 10769 struct bpf_kfunc_call_arg_meta *meta) 10770 { 10771 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 10772 &meta->arg_rbtree_root.field); 10773 } 10774 10775 static int 10776 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 10777 struct bpf_reg_state *reg, u32 regno, 10778 struct bpf_kfunc_call_arg_meta *meta, 10779 enum btf_field_type head_field_type, 10780 enum btf_field_type node_field_type, 10781 struct btf_field **node_field) 10782 { 10783 const char *node_type_name; 10784 const struct btf_type *et, *t; 10785 struct btf_field *field; 10786 u32 node_off; 10787 10788 if (meta->btf != btf_vmlinux) { 10789 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 10790 return -EFAULT; 10791 } 10792 10793 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 10794 return -EFAULT; 10795 10796 node_type_name = btf_field_type_name(node_field_type); 10797 if (!tnum_is_const(reg->var_off)) { 10798 verbose(env, 10799 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 10800 regno, node_type_name); 10801 return -EINVAL; 10802 } 10803 10804 node_off = reg->off + reg->var_off.value; 10805 field = reg_find_field_offset(reg, node_off, node_field_type); 10806 if (!field || field->offset != node_off) { 10807 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 10808 return -EINVAL; 10809 } 10810 10811 field = *node_field; 10812 10813 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 10814 t = btf_type_by_id(reg->btf, reg->btf_id); 10815 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 10816 field->graph_root.value_btf_id, true)) { 10817 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 10818 "in struct %s, but arg is at offset=%d in struct %s\n", 10819 btf_field_type_name(head_field_type), 10820 btf_field_type_name(node_field_type), 10821 field->graph_root.node_offset, 10822 btf_name_by_offset(field->graph_root.btf, et->name_off), 10823 node_off, btf_name_by_offset(reg->btf, t->name_off)); 10824 return -EINVAL; 10825 } 10826 meta->arg_btf = reg->btf; 10827 meta->arg_btf_id = reg->btf_id; 10828 10829 if (node_off != field->graph_root.node_offset) { 10830 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 10831 node_off, btf_field_type_name(node_field_type), 10832 field->graph_root.node_offset, 10833 btf_name_by_offset(field->graph_root.btf, et->name_off)); 10834 return -EINVAL; 10835 } 10836 10837 return 0; 10838 } 10839 10840 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 10841 struct bpf_reg_state *reg, u32 regno, 10842 struct bpf_kfunc_call_arg_meta *meta) 10843 { 10844 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 10845 BPF_LIST_HEAD, BPF_LIST_NODE, 10846 &meta->arg_list_head.field); 10847 } 10848 10849 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 10850 struct bpf_reg_state *reg, u32 regno, 10851 struct bpf_kfunc_call_arg_meta *meta) 10852 { 10853 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 10854 BPF_RB_ROOT, BPF_RB_NODE, 10855 &meta->arg_rbtree_root.field); 10856 } 10857 10858 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 10859 int insn_idx) 10860 { 10861 const char *func_name = meta->func_name, *ref_tname; 10862 const struct btf *btf = meta->btf; 10863 const struct btf_param *args; 10864 struct btf_record *rec; 10865 u32 i, nargs; 10866 int ret; 10867 10868 args = (const struct btf_param *)(meta->func_proto + 1); 10869 nargs = btf_type_vlen(meta->func_proto); 10870 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 10871 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 10872 MAX_BPF_FUNC_REG_ARGS); 10873 return -EINVAL; 10874 } 10875 10876 /* Check that BTF function arguments match actual types that the 10877 * verifier sees. 10878 */ 10879 for (i = 0; i < nargs; i++) { 10880 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 10881 const struct btf_type *t, *ref_t, *resolve_ret; 10882 enum bpf_arg_type arg_type = ARG_DONTCARE; 10883 u32 regno = i + 1, ref_id, type_size; 10884 bool is_ret_buf_sz = false; 10885 int kf_arg_type; 10886 10887 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 10888 10889 if (is_kfunc_arg_ignore(btf, &args[i])) 10890 continue; 10891 10892 if (btf_type_is_scalar(t)) { 10893 if (reg->type != SCALAR_VALUE) { 10894 verbose(env, "R%d is not a scalar\n", regno); 10895 return -EINVAL; 10896 } 10897 10898 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 10899 if (meta->arg_constant.found) { 10900 verbose(env, "verifier internal error: only one constant argument permitted\n"); 10901 return -EFAULT; 10902 } 10903 if (!tnum_is_const(reg->var_off)) { 10904 verbose(env, "R%d must be a known constant\n", regno); 10905 return -EINVAL; 10906 } 10907 ret = mark_chain_precision(env, regno); 10908 if (ret < 0) 10909 return ret; 10910 meta->arg_constant.found = true; 10911 meta->arg_constant.value = reg->var_off.value; 10912 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 10913 meta->r0_rdonly = true; 10914 is_ret_buf_sz = true; 10915 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 10916 is_ret_buf_sz = true; 10917 } 10918 10919 if (is_ret_buf_sz) { 10920 if (meta->r0_size) { 10921 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 10922 return -EINVAL; 10923 } 10924 10925 if (!tnum_is_const(reg->var_off)) { 10926 verbose(env, "R%d is not a const\n", regno); 10927 return -EINVAL; 10928 } 10929 10930 meta->r0_size = reg->var_off.value; 10931 ret = mark_chain_precision(env, regno); 10932 if (ret) 10933 return ret; 10934 } 10935 continue; 10936 } 10937 10938 if (!btf_type_is_ptr(t)) { 10939 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 10940 return -EINVAL; 10941 } 10942 10943 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 10944 (register_is_null(reg) || type_may_be_null(reg->type))) { 10945 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 10946 return -EACCES; 10947 } 10948 10949 if (reg->ref_obj_id) { 10950 if (is_kfunc_release(meta) && meta->ref_obj_id) { 10951 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 10952 regno, reg->ref_obj_id, 10953 meta->ref_obj_id); 10954 return -EFAULT; 10955 } 10956 meta->ref_obj_id = reg->ref_obj_id; 10957 if (is_kfunc_release(meta)) 10958 meta->release_regno = regno; 10959 } 10960 10961 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 10962 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 10963 10964 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 10965 if (kf_arg_type < 0) 10966 return kf_arg_type; 10967 10968 switch (kf_arg_type) { 10969 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 10970 case KF_ARG_PTR_TO_BTF_ID: 10971 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 10972 break; 10973 10974 if (!is_trusted_reg(reg)) { 10975 if (!is_kfunc_rcu(meta)) { 10976 verbose(env, "R%d must be referenced or trusted\n", regno); 10977 return -EINVAL; 10978 } 10979 if (!is_rcu_reg(reg)) { 10980 verbose(env, "R%d must be a rcu pointer\n", regno); 10981 return -EINVAL; 10982 } 10983 } 10984 10985 fallthrough; 10986 case KF_ARG_PTR_TO_CTX: 10987 /* Trusted arguments have the same offset checks as release arguments */ 10988 arg_type |= OBJ_RELEASE; 10989 break; 10990 case KF_ARG_PTR_TO_DYNPTR: 10991 case KF_ARG_PTR_TO_ITER: 10992 case KF_ARG_PTR_TO_LIST_HEAD: 10993 case KF_ARG_PTR_TO_LIST_NODE: 10994 case KF_ARG_PTR_TO_RB_ROOT: 10995 case KF_ARG_PTR_TO_RB_NODE: 10996 case KF_ARG_PTR_TO_MEM: 10997 case KF_ARG_PTR_TO_MEM_SIZE: 10998 case KF_ARG_PTR_TO_CALLBACK: 10999 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11000 /* Trusted by default */ 11001 break; 11002 default: 11003 WARN_ON_ONCE(1); 11004 return -EFAULT; 11005 } 11006 11007 if (is_kfunc_release(meta) && reg->ref_obj_id) 11008 arg_type |= OBJ_RELEASE; 11009 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 11010 if (ret < 0) 11011 return ret; 11012 11013 switch (kf_arg_type) { 11014 case KF_ARG_PTR_TO_CTX: 11015 if (reg->type != PTR_TO_CTX) { 11016 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 11017 return -EINVAL; 11018 } 11019 11020 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11021 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 11022 if (ret < 0) 11023 return -EINVAL; 11024 meta->ret_btf_id = ret; 11025 } 11026 break; 11027 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11028 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11029 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11030 return -EINVAL; 11031 } 11032 if (!reg->ref_obj_id) { 11033 verbose(env, "allocated object must be referenced\n"); 11034 return -EINVAL; 11035 } 11036 if (meta->btf == btf_vmlinux && 11037 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 11038 meta->arg_btf = reg->btf; 11039 meta->arg_btf_id = reg->btf_id; 11040 } 11041 break; 11042 case KF_ARG_PTR_TO_DYNPTR: 11043 { 11044 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 11045 int clone_ref_obj_id = 0; 11046 11047 if (reg->type != PTR_TO_STACK && 11048 reg->type != CONST_PTR_TO_DYNPTR) { 11049 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 11050 return -EINVAL; 11051 } 11052 11053 if (reg->type == CONST_PTR_TO_DYNPTR) 11054 dynptr_arg_type |= MEM_RDONLY; 11055 11056 if (is_kfunc_arg_uninit(btf, &args[i])) 11057 dynptr_arg_type |= MEM_UNINIT; 11058 11059 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 11060 dynptr_arg_type |= DYNPTR_TYPE_SKB; 11061 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 11062 dynptr_arg_type |= DYNPTR_TYPE_XDP; 11063 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 11064 (dynptr_arg_type & MEM_UNINIT)) { 11065 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 11066 11067 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 11068 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 11069 return -EFAULT; 11070 } 11071 11072 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 11073 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 11074 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 11075 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 11076 return -EFAULT; 11077 } 11078 } 11079 11080 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 11081 if (ret < 0) 11082 return ret; 11083 11084 if (!(dynptr_arg_type & MEM_UNINIT)) { 11085 int id = dynptr_id(env, reg); 11086 11087 if (id < 0) { 11088 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 11089 return id; 11090 } 11091 meta->initialized_dynptr.id = id; 11092 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 11093 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 11094 } 11095 11096 break; 11097 } 11098 case KF_ARG_PTR_TO_ITER: 11099 ret = process_iter_arg(env, regno, insn_idx, meta); 11100 if (ret < 0) 11101 return ret; 11102 break; 11103 case KF_ARG_PTR_TO_LIST_HEAD: 11104 if (reg->type != PTR_TO_MAP_VALUE && 11105 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11106 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11107 return -EINVAL; 11108 } 11109 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11110 verbose(env, "allocated object must be referenced\n"); 11111 return -EINVAL; 11112 } 11113 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 11114 if (ret < 0) 11115 return ret; 11116 break; 11117 case KF_ARG_PTR_TO_RB_ROOT: 11118 if (reg->type != PTR_TO_MAP_VALUE && 11119 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11120 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11121 return -EINVAL; 11122 } 11123 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11124 verbose(env, "allocated object must be referenced\n"); 11125 return -EINVAL; 11126 } 11127 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 11128 if (ret < 0) 11129 return ret; 11130 break; 11131 case KF_ARG_PTR_TO_LIST_NODE: 11132 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11133 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11134 return -EINVAL; 11135 } 11136 if (!reg->ref_obj_id) { 11137 verbose(env, "allocated object must be referenced\n"); 11138 return -EINVAL; 11139 } 11140 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 11141 if (ret < 0) 11142 return ret; 11143 break; 11144 case KF_ARG_PTR_TO_RB_NODE: 11145 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 11146 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 11147 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 11148 return -EINVAL; 11149 } 11150 if (in_rbtree_lock_required_cb(env)) { 11151 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 11152 return -EINVAL; 11153 } 11154 } else { 11155 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11156 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11157 return -EINVAL; 11158 } 11159 if (!reg->ref_obj_id) { 11160 verbose(env, "allocated object must be referenced\n"); 11161 return -EINVAL; 11162 } 11163 } 11164 11165 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 11166 if (ret < 0) 11167 return ret; 11168 break; 11169 case KF_ARG_PTR_TO_BTF_ID: 11170 /* Only base_type is checked, further checks are done here */ 11171 if ((base_type(reg->type) != PTR_TO_BTF_ID || 11172 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 11173 !reg2btf_ids[base_type(reg->type)]) { 11174 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 11175 verbose(env, "expected %s or socket\n", 11176 reg_type_str(env, base_type(reg->type) | 11177 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 11178 return -EINVAL; 11179 } 11180 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 11181 if (ret < 0) 11182 return ret; 11183 break; 11184 case KF_ARG_PTR_TO_MEM: 11185 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 11186 if (IS_ERR(resolve_ret)) { 11187 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 11188 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 11189 return -EINVAL; 11190 } 11191 ret = check_mem_reg(env, reg, regno, type_size); 11192 if (ret < 0) 11193 return ret; 11194 break; 11195 case KF_ARG_PTR_TO_MEM_SIZE: 11196 { 11197 struct bpf_reg_state *buff_reg = ®s[regno]; 11198 const struct btf_param *buff_arg = &args[i]; 11199 struct bpf_reg_state *size_reg = ®s[regno + 1]; 11200 const struct btf_param *size_arg = &args[i + 1]; 11201 11202 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 11203 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 11204 if (ret < 0) { 11205 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 11206 return ret; 11207 } 11208 } 11209 11210 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 11211 if (meta->arg_constant.found) { 11212 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11213 return -EFAULT; 11214 } 11215 if (!tnum_is_const(size_reg->var_off)) { 11216 verbose(env, "R%d must be a known constant\n", regno + 1); 11217 return -EINVAL; 11218 } 11219 meta->arg_constant.found = true; 11220 meta->arg_constant.value = size_reg->var_off.value; 11221 } 11222 11223 /* Skip next '__sz' or '__szk' argument */ 11224 i++; 11225 break; 11226 } 11227 case KF_ARG_PTR_TO_CALLBACK: 11228 if (reg->type != PTR_TO_FUNC) { 11229 verbose(env, "arg%d expected pointer to func\n", i); 11230 return -EINVAL; 11231 } 11232 meta->subprogno = reg->subprogno; 11233 break; 11234 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11235 if (!type_is_ptr_alloc_obj(reg->type)) { 11236 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 11237 return -EINVAL; 11238 } 11239 if (!type_is_non_owning_ref(reg->type)) 11240 meta->arg_owning_ref = true; 11241 11242 rec = reg_btf_record(reg); 11243 if (!rec) { 11244 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 11245 return -EFAULT; 11246 } 11247 11248 if (rec->refcount_off < 0) { 11249 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 11250 return -EINVAL; 11251 } 11252 11253 meta->arg_btf = reg->btf; 11254 meta->arg_btf_id = reg->btf_id; 11255 break; 11256 } 11257 } 11258 11259 if (is_kfunc_release(meta) && !meta->release_regno) { 11260 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 11261 func_name); 11262 return -EINVAL; 11263 } 11264 11265 return 0; 11266 } 11267 11268 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 11269 struct bpf_insn *insn, 11270 struct bpf_kfunc_call_arg_meta *meta, 11271 const char **kfunc_name) 11272 { 11273 const struct btf_type *func, *func_proto; 11274 u32 func_id, *kfunc_flags; 11275 const char *func_name; 11276 struct btf *desc_btf; 11277 11278 if (kfunc_name) 11279 *kfunc_name = NULL; 11280 11281 if (!insn->imm) 11282 return -EINVAL; 11283 11284 desc_btf = find_kfunc_desc_btf(env, insn->off); 11285 if (IS_ERR(desc_btf)) 11286 return PTR_ERR(desc_btf); 11287 11288 func_id = insn->imm; 11289 func = btf_type_by_id(desc_btf, func_id); 11290 func_name = btf_name_by_offset(desc_btf, func->name_off); 11291 if (kfunc_name) 11292 *kfunc_name = func_name; 11293 func_proto = btf_type_by_id(desc_btf, func->type); 11294 11295 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 11296 if (!kfunc_flags) { 11297 return -EACCES; 11298 } 11299 11300 memset(meta, 0, sizeof(*meta)); 11301 meta->btf = desc_btf; 11302 meta->func_id = func_id; 11303 meta->kfunc_flags = *kfunc_flags; 11304 meta->func_proto = func_proto; 11305 meta->func_name = func_name; 11306 11307 return 0; 11308 } 11309 11310 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 11311 int *insn_idx_p) 11312 { 11313 const struct btf_type *t, *ptr_type; 11314 u32 i, nargs, ptr_type_id, release_ref_obj_id; 11315 struct bpf_reg_state *regs = cur_regs(env); 11316 const char *func_name, *ptr_type_name; 11317 bool sleepable, rcu_lock, rcu_unlock; 11318 struct bpf_kfunc_call_arg_meta meta; 11319 struct bpf_insn_aux_data *insn_aux; 11320 int err, insn_idx = *insn_idx_p; 11321 const struct btf_param *args; 11322 const struct btf_type *ret_t; 11323 struct btf *desc_btf; 11324 11325 /* skip for now, but return error when we find this in fixup_kfunc_call */ 11326 if (!insn->imm) 11327 return 0; 11328 11329 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 11330 if (err == -EACCES && func_name) 11331 verbose(env, "calling kernel function %s is not allowed\n", func_name); 11332 if (err) 11333 return err; 11334 desc_btf = meta.btf; 11335 insn_aux = &env->insn_aux_data[insn_idx]; 11336 11337 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 11338 11339 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 11340 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 11341 return -EACCES; 11342 } 11343 11344 sleepable = is_kfunc_sleepable(&meta); 11345 if (sleepable && !env->prog->aux->sleepable) { 11346 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 11347 return -EACCES; 11348 } 11349 11350 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 11351 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 11352 11353 if (env->cur_state->active_rcu_lock) { 11354 struct bpf_func_state *state; 11355 struct bpf_reg_state *reg; 11356 11357 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 11358 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 11359 return -EACCES; 11360 } 11361 11362 if (rcu_lock) { 11363 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 11364 return -EINVAL; 11365 } else if (rcu_unlock) { 11366 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 11367 if (reg->type & MEM_RCU) { 11368 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 11369 reg->type |= PTR_UNTRUSTED; 11370 } 11371 })); 11372 env->cur_state->active_rcu_lock = false; 11373 } else if (sleepable) { 11374 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 11375 return -EACCES; 11376 } 11377 } else if (rcu_lock) { 11378 env->cur_state->active_rcu_lock = true; 11379 } else if (rcu_unlock) { 11380 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 11381 return -EINVAL; 11382 } 11383 11384 /* Check the arguments */ 11385 err = check_kfunc_args(env, &meta, insn_idx); 11386 if (err < 0) 11387 return err; 11388 /* In case of release function, we get register number of refcounted 11389 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 11390 */ 11391 if (meta.release_regno) { 11392 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 11393 if (err) { 11394 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11395 func_name, meta.func_id); 11396 return err; 11397 } 11398 } 11399 11400 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11401 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11402 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11403 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 11404 insn_aux->insert_off = regs[BPF_REG_2].off; 11405 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 11406 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 11407 if (err) { 11408 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 11409 func_name, meta.func_id); 11410 return err; 11411 } 11412 11413 err = release_reference(env, release_ref_obj_id); 11414 if (err) { 11415 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11416 func_name, meta.func_id); 11417 return err; 11418 } 11419 } 11420 11421 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11422 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 11423 set_rbtree_add_callback_state); 11424 if (err) { 11425 verbose(env, "kfunc %s#%d failed callback verification\n", 11426 func_name, meta.func_id); 11427 return err; 11428 } 11429 } 11430 11431 for (i = 0; i < CALLER_SAVED_REGS; i++) 11432 mark_reg_not_init(env, regs, caller_saved[i]); 11433 11434 /* Check return type */ 11435 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 11436 11437 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 11438 /* Only exception is bpf_obj_new_impl */ 11439 if (meta.btf != btf_vmlinux || 11440 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 11441 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 11442 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 11443 return -EINVAL; 11444 } 11445 } 11446 11447 if (btf_type_is_scalar(t)) { 11448 mark_reg_unknown(env, regs, BPF_REG_0); 11449 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 11450 } else if (btf_type_is_ptr(t)) { 11451 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 11452 11453 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11454 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 11455 struct btf *ret_btf; 11456 u32 ret_btf_id; 11457 11458 if (unlikely(!bpf_global_ma_set)) 11459 return -ENOMEM; 11460 11461 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 11462 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 11463 return -EINVAL; 11464 } 11465 11466 ret_btf = env->prog->aux->btf; 11467 ret_btf_id = meta.arg_constant.value; 11468 11469 /* This may be NULL due to user not supplying a BTF */ 11470 if (!ret_btf) { 11471 verbose(env, "bpf_obj_new requires prog BTF\n"); 11472 return -EINVAL; 11473 } 11474 11475 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 11476 if (!ret_t || !__btf_type_is_struct(ret_t)) { 11477 verbose(env, "bpf_obj_new type ID argument must be of a struct\n"); 11478 return -EINVAL; 11479 } 11480 11481 mark_reg_known_zero(env, regs, BPF_REG_0); 11482 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11483 regs[BPF_REG_0].btf = ret_btf; 11484 regs[BPF_REG_0].btf_id = ret_btf_id; 11485 11486 insn_aux->obj_new_size = ret_t->size; 11487 insn_aux->kptr_struct_meta = 11488 btf_find_struct_meta(ret_btf, ret_btf_id); 11489 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 11490 mark_reg_known_zero(env, regs, BPF_REG_0); 11491 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11492 regs[BPF_REG_0].btf = meta.arg_btf; 11493 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 11494 11495 insn_aux->kptr_struct_meta = 11496 btf_find_struct_meta(meta.arg_btf, 11497 meta.arg_btf_id); 11498 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 11499 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 11500 struct btf_field *field = meta.arg_list_head.field; 11501 11502 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11503 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11504 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11505 struct btf_field *field = meta.arg_rbtree_root.field; 11506 11507 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11508 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11509 mark_reg_known_zero(env, regs, BPF_REG_0); 11510 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 11511 regs[BPF_REG_0].btf = desc_btf; 11512 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11513 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 11514 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 11515 if (!ret_t || !btf_type_is_struct(ret_t)) { 11516 verbose(env, 11517 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 11518 return -EINVAL; 11519 } 11520 11521 mark_reg_known_zero(env, regs, BPF_REG_0); 11522 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 11523 regs[BPF_REG_0].btf = desc_btf; 11524 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 11525 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 11526 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 11527 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 11528 11529 mark_reg_known_zero(env, regs, BPF_REG_0); 11530 11531 if (!meta.arg_constant.found) { 11532 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 11533 return -EFAULT; 11534 } 11535 11536 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 11537 11538 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 11539 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 11540 11541 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 11542 regs[BPF_REG_0].type |= MEM_RDONLY; 11543 } else { 11544 /* this will set env->seen_direct_write to true */ 11545 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 11546 verbose(env, "the prog does not allow writes to packet data\n"); 11547 return -EINVAL; 11548 } 11549 } 11550 11551 if (!meta.initialized_dynptr.id) { 11552 verbose(env, "verifier internal error: no dynptr id\n"); 11553 return -EFAULT; 11554 } 11555 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 11556 11557 /* we don't need to set BPF_REG_0's ref obj id 11558 * because packet slices are not refcounted (see 11559 * dynptr_type_refcounted) 11560 */ 11561 } else { 11562 verbose(env, "kernel function %s unhandled dynamic return type\n", 11563 meta.func_name); 11564 return -EFAULT; 11565 } 11566 } else if (!__btf_type_is_struct(ptr_type)) { 11567 if (!meta.r0_size) { 11568 __u32 sz; 11569 11570 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 11571 meta.r0_size = sz; 11572 meta.r0_rdonly = true; 11573 } 11574 } 11575 if (!meta.r0_size) { 11576 ptr_type_name = btf_name_by_offset(desc_btf, 11577 ptr_type->name_off); 11578 verbose(env, 11579 "kernel function %s returns pointer type %s %s is not supported\n", 11580 func_name, 11581 btf_type_str(ptr_type), 11582 ptr_type_name); 11583 return -EINVAL; 11584 } 11585 11586 mark_reg_known_zero(env, regs, BPF_REG_0); 11587 regs[BPF_REG_0].type = PTR_TO_MEM; 11588 regs[BPF_REG_0].mem_size = meta.r0_size; 11589 11590 if (meta.r0_rdonly) 11591 regs[BPF_REG_0].type |= MEM_RDONLY; 11592 11593 /* Ensures we don't access the memory after a release_reference() */ 11594 if (meta.ref_obj_id) 11595 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 11596 } else { 11597 mark_reg_known_zero(env, regs, BPF_REG_0); 11598 regs[BPF_REG_0].btf = desc_btf; 11599 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 11600 regs[BPF_REG_0].btf_id = ptr_type_id; 11601 } 11602 11603 if (is_kfunc_ret_null(&meta)) { 11604 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 11605 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 11606 regs[BPF_REG_0].id = ++env->id_gen; 11607 } 11608 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 11609 if (is_kfunc_acquire(&meta)) { 11610 int id = acquire_reference_state(env, insn_idx); 11611 11612 if (id < 0) 11613 return id; 11614 if (is_kfunc_ret_null(&meta)) 11615 regs[BPF_REG_0].id = id; 11616 regs[BPF_REG_0].ref_obj_id = id; 11617 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11618 ref_set_non_owning(env, ®s[BPF_REG_0]); 11619 } 11620 11621 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 11622 regs[BPF_REG_0].id = ++env->id_gen; 11623 } else if (btf_type_is_void(t)) { 11624 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11625 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 11626 insn_aux->kptr_struct_meta = 11627 btf_find_struct_meta(meta.arg_btf, 11628 meta.arg_btf_id); 11629 } 11630 } 11631 } 11632 11633 nargs = btf_type_vlen(meta.func_proto); 11634 args = (const struct btf_param *)(meta.func_proto + 1); 11635 for (i = 0; i < nargs; i++) { 11636 u32 regno = i + 1; 11637 11638 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 11639 if (btf_type_is_ptr(t)) 11640 mark_btf_func_reg_size(env, regno, sizeof(void *)); 11641 else 11642 /* scalar. ensured by btf_check_kfunc_arg_match() */ 11643 mark_btf_func_reg_size(env, regno, t->size); 11644 } 11645 11646 if (is_iter_next_kfunc(&meta)) { 11647 err = process_iter_next_call(env, insn_idx, &meta); 11648 if (err) 11649 return err; 11650 } 11651 11652 return 0; 11653 } 11654 11655 static bool signed_add_overflows(s64 a, s64 b) 11656 { 11657 /* Do the add in u64, where overflow is well-defined */ 11658 s64 res = (s64)((u64)a + (u64)b); 11659 11660 if (b < 0) 11661 return res > a; 11662 return res < a; 11663 } 11664 11665 static bool signed_add32_overflows(s32 a, s32 b) 11666 { 11667 /* Do the add in u32, where overflow is well-defined */ 11668 s32 res = (s32)((u32)a + (u32)b); 11669 11670 if (b < 0) 11671 return res > a; 11672 return res < a; 11673 } 11674 11675 static bool signed_sub_overflows(s64 a, s64 b) 11676 { 11677 /* Do the sub in u64, where overflow is well-defined */ 11678 s64 res = (s64)((u64)a - (u64)b); 11679 11680 if (b < 0) 11681 return res < a; 11682 return res > a; 11683 } 11684 11685 static bool signed_sub32_overflows(s32 a, s32 b) 11686 { 11687 /* Do the sub in u32, where overflow is well-defined */ 11688 s32 res = (s32)((u32)a - (u32)b); 11689 11690 if (b < 0) 11691 return res < a; 11692 return res > a; 11693 } 11694 11695 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 11696 const struct bpf_reg_state *reg, 11697 enum bpf_reg_type type) 11698 { 11699 bool known = tnum_is_const(reg->var_off); 11700 s64 val = reg->var_off.value; 11701 s64 smin = reg->smin_value; 11702 11703 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 11704 verbose(env, "math between %s pointer and %lld is not allowed\n", 11705 reg_type_str(env, type), val); 11706 return false; 11707 } 11708 11709 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 11710 verbose(env, "%s pointer offset %d is not allowed\n", 11711 reg_type_str(env, type), reg->off); 11712 return false; 11713 } 11714 11715 if (smin == S64_MIN) { 11716 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 11717 reg_type_str(env, type)); 11718 return false; 11719 } 11720 11721 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 11722 verbose(env, "value %lld makes %s pointer be out of bounds\n", 11723 smin, reg_type_str(env, type)); 11724 return false; 11725 } 11726 11727 return true; 11728 } 11729 11730 enum { 11731 REASON_BOUNDS = -1, 11732 REASON_TYPE = -2, 11733 REASON_PATHS = -3, 11734 REASON_LIMIT = -4, 11735 REASON_STACK = -5, 11736 }; 11737 11738 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 11739 u32 *alu_limit, bool mask_to_left) 11740 { 11741 u32 max = 0, ptr_limit = 0; 11742 11743 switch (ptr_reg->type) { 11744 case PTR_TO_STACK: 11745 /* Offset 0 is out-of-bounds, but acceptable start for the 11746 * left direction, see BPF_REG_FP. Also, unknown scalar 11747 * offset where we would need to deal with min/max bounds is 11748 * currently prohibited for unprivileged. 11749 */ 11750 max = MAX_BPF_STACK + mask_to_left; 11751 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 11752 break; 11753 case PTR_TO_MAP_VALUE: 11754 max = ptr_reg->map_ptr->value_size; 11755 ptr_limit = (mask_to_left ? 11756 ptr_reg->smin_value : 11757 ptr_reg->umax_value) + ptr_reg->off; 11758 break; 11759 default: 11760 return REASON_TYPE; 11761 } 11762 11763 if (ptr_limit >= max) 11764 return REASON_LIMIT; 11765 *alu_limit = ptr_limit; 11766 return 0; 11767 } 11768 11769 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 11770 const struct bpf_insn *insn) 11771 { 11772 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 11773 } 11774 11775 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 11776 u32 alu_state, u32 alu_limit) 11777 { 11778 /* If we arrived here from different branches with different 11779 * state or limits to sanitize, then this won't work. 11780 */ 11781 if (aux->alu_state && 11782 (aux->alu_state != alu_state || 11783 aux->alu_limit != alu_limit)) 11784 return REASON_PATHS; 11785 11786 /* Corresponding fixup done in do_misc_fixups(). */ 11787 aux->alu_state = alu_state; 11788 aux->alu_limit = alu_limit; 11789 return 0; 11790 } 11791 11792 static int sanitize_val_alu(struct bpf_verifier_env *env, 11793 struct bpf_insn *insn) 11794 { 11795 struct bpf_insn_aux_data *aux = cur_aux(env); 11796 11797 if (can_skip_alu_sanitation(env, insn)) 11798 return 0; 11799 11800 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 11801 } 11802 11803 static bool sanitize_needed(u8 opcode) 11804 { 11805 return opcode == BPF_ADD || opcode == BPF_SUB; 11806 } 11807 11808 struct bpf_sanitize_info { 11809 struct bpf_insn_aux_data aux; 11810 bool mask_to_left; 11811 }; 11812 11813 static struct bpf_verifier_state * 11814 sanitize_speculative_path(struct bpf_verifier_env *env, 11815 const struct bpf_insn *insn, 11816 u32 next_idx, u32 curr_idx) 11817 { 11818 struct bpf_verifier_state *branch; 11819 struct bpf_reg_state *regs; 11820 11821 branch = push_stack(env, next_idx, curr_idx, true); 11822 if (branch && insn) { 11823 regs = branch->frame[branch->curframe]->regs; 11824 if (BPF_SRC(insn->code) == BPF_K) { 11825 mark_reg_unknown(env, regs, insn->dst_reg); 11826 } else if (BPF_SRC(insn->code) == BPF_X) { 11827 mark_reg_unknown(env, regs, insn->dst_reg); 11828 mark_reg_unknown(env, regs, insn->src_reg); 11829 } 11830 } 11831 return branch; 11832 } 11833 11834 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 11835 struct bpf_insn *insn, 11836 const struct bpf_reg_state *ptr_reg, 11837 const struct bpf_reg_state *off_reg, 11838 struct bpf_reg_state *dst_reg, 11839 struct bpf_sanitize_info *info, 11840 const bool commit_window) 11841 { 11842 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 11843 struct bpf_verifier_state *vstate = env->cur_state; 11844 bool off_is_imm = tnum_is_const(off_reg->var_off); 11845 bool off_is_neg = off_reg->smin_value < 0; 11846 bool ptr_is_dst_reg = ptr_reg == dst_reg; 11847 u8 opcode = BPF_OP(insn->code); 11848 u32 alu_state, alu_limit; 11849 struct bpf_reg_state tmp; 11850 bool ret; 11851 int err; 11852 11853 if (can_skip_alu_sanitation(env, insn)) 11854 return 0; 11855 11856 /* We already marked aux for masking from non-speculative 11857 * paths, thus we got here in the first place. We only care 11858 * to explore bad access from here. 11859 */ 11860 if (vstate->speculative) 11861 goto do_sim; 11862 11863 if (!commit_window) { 11864 if (!tnum_is_const(off_reg->var_off) && 11865 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 11866 return REASON_BOUNDS; 11867 11868 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 11869 (opcode == BPF_SUB && !off_is_neg); 11870 } 11871 11872 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 11873 if (err < 0) 11874 return err; 11875 11876 if (commit_window) { 11877 /* In commit phase we narrow the masking window based on 11878 * the observed pointer move after the simulated operation. 11879 */ 11880 alu_state = info->aux.alu_state; 11881 alu_limit = abs(info->aux.alu_limit - alu_limit); 11882 } else { 11883 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 11884 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 11885 alu_state |= ptr_is_dst_reg ? 11886 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 11887 11888 /* Limit pruning on unknown scalars to enable deep search for 11889 * potential masking differences from other program paths. 11890 */ 11891 if (!off_is_imm) 11892 env->explore_alu_limits = true; 11893 } 11894 11895 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 11896 if (err < 0) 11897 return err; 11898 do_sim: 11899 /* If we're in commit phase, we're done here given we already 11900 * pushed the truncated dst_reg into the speculative verification 11901 * stack. 11902 * 11903 * Also, when register is a known constant, we rewrite register-based 11904 * operation to immediate-based, and thus do not need masking (and as 11905 * a consequence, do not need to simulate the zero-truncation either). 11906 */ 11907 if (commit_window || off_is_imm) 11908 return 0; 11909 11910 /* Simulate and find potential out-of-bounds access under 11911 * speculative execution from truncation as a result of 11912 * masking when off was not within expected range. If off 11913 * sits in dst, then we temporarily need to move ptr there 11914 * to simulate dst (== 0) +/-= ptr. Needed, for example, 11915 * for cases where we use K-based arithmetic in one direction 11916 * and truncated reg-based in the other in order to explore 11917 * bad access. 11918 */ 11919 if (!ptr_is_dst_reg) { 11920 tmp = *dst_reg; 11921 copy_register_state(dst_reg, ptr_reg); 11922 } 11923 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 11924 env->insn_idx); 11925 if (!ptr_is_dst_reg && ret) 11926 *dst_reg = tmp; 11927 return !ret ? REASON_STACK : 0; 11928 } 11929 11930 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 11931 { 11932 struct bpf_verifier_state *vstate = env->cur_state; 11933 11934 /* If we simulate paths under speculation, we don't update the 11935 * insn as 'seen' such that when we verify unreachable paths in 11936 * the non-speculative domain, sanitize_dead_code() can still 11937 * rewrite/sanitize them. 11938 */ 11939 if (!vstate->speculative) 11940 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 11941 } 11942 11943 static int sanitize_err(struct bpf_verifier_env *env, 11944 const struct bpf_insn *insn, int reason, 11945 const struct bpf_reg_state *off_reg, 11946 const struct bpf_reg_state *dst_reg) 11947 { 11948 static const char *err = "pointer arithmetic with it prohibited for !root"; 11949 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 11950 u32 dst = insn->dst_reg, src = insn->src_reg; 11951 11952 switch (reason) { 11953 case REASON_BOUNDS: 11954 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 11955 off_reg == dst_reg ? dst : src, err); 11956 break; 11957 case REASON_TYPE: 11958 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 11959 off_reg == dst_reg ? src : dst, err); 11960 break; 11961 case REASON_PATHS: 11962 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 11963 dst, op, err); 11964 break; 11965 case REASON_LIMIT: 11966 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 11967 dst, op, err); 11968 break; 11969 case REASON_STACK: 11970 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 11971 dst, err); 11972 break; 11973 default: 11974 verbose(env, "verifier internal error: unknown reason (%d)\n", 11975 reason); 11976 break; 11977 } 11978 11979 return -EACCES; 11980 } 11981 11982 /* check that stack access falls within stack limits and that 'reg' doesn't 11983 * have a variable offset. 11984 * 11985 * Variable offset is prohibited for unprivileged mode for simplicity since it 11986 * requires corresponding support in Spectre masking for stack ALU. See also 11987 * retrieve_ptr_limit(). 11988 * 11989 * 11990 * 'off' includes 'reg->off'. 11991 */ 11992 static int check_stack_access_for_ptr_arithmetic( 11993 struct bpf_verifier_env *env, 11994 int regno, 11995 const struct bpf_reg_state *reg, 11996 int off) 11997 { 11998 if (!tnum_is_const(reg->var_off)) { 11999 char tn_buf[48]; 12000 12001 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 12002 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 12003 regno, tn_buf, off); 12004 return -EACCES; 12005 } 12006 12007 if (off >= 0 || off < -MAX_BPF_STACK) { 12008 verbose(env, "R%d stack pointer arithmetic goes out of range, " 12009 "prohibited for !root; off=%d\n", regno, off); 12010 return -EACCES; 12011 } 12012 12013 return 0; 12014 } 12015 12016 static int sanitize_check_bounds(struct bpf_verifier_env *env, 12017 const struct bpf_insn *insn, 12018 const struct bpf_reg_state *dst_reg) 12019 { 12020 u32 dst = insn->dst_reg; 12021 12022 /* For unprivileged we require that resulting offset must be in bounds 12023 * in order to be able to sanitize access later on. 12024 */ 12025 if (env->bypass_spec_v1) 12026 return 0; 12027 12028 switch (dst_reg->type) { 12029 case PTR_TO_STACK: 12030 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 12031 dst_reg->off + dst_reg->var_off.value)) 12032 return -EACCES; 12033 break; 12034 case PTR_TO_MAP_VALUE: 12035 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 12036 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 12037 "prohibited for !root\n", dst); 12038 return -EACCES; 12039 } 12040 break; 12041 default: 12042 break; 12043 } 12044 12045 return 0; 12046 } 12047 12048 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 12049 * Caller should also handle BPF_MOV case separately. 12050 * If we return -EACCES, caller may want to try again treating pointer as a 12051 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 12052 */ 12053 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 12054 struct bpf_insn *insn, 12055 const struct bpf_reg_state *ptr_reg, 12056 const struct bpf_reg_state *off_reg) 12057 { 12058 struct bpf_verifier_state *vstate = env->cur_state; 12059 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12060 struct bpf_reg_state *regs = state->regs, *dst_reg; 12061 bool known = tnum_is_const(off_reg->var_off); 12062 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 12063 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 12064 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 12065 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 12066 struct bpf_sanitize_info info = {}; 12067 u8 opcode = BPF_OP(insn->code); 12068 u32 dst = insn->dst_reg; 12069 int ret; 12070 12071 dst_reg = ®s[dst]; 12072 12073 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 12074 smin_val > smax_val || umin_val > umax_val) { 12075 /* Taint dst register if offset had invalid bounds derived from 12076 * e.g. dead branches. 12077 */ 12078 __mark_reg_unknown(env, dst_reg); 12079 return 0; 12080 } 12081 12082 if (BPF_CLASS(insn->code) != BPF_ALU64) { 12083 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 12084 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 12085 __mark_reg_unknown(env, dst_reg); 12086 return 0; 12087 } 12088 12089 verbose(env, 12090 "R%d 32-bit pointer arithmetic prohibited\n", 12091 dst); 12092 return -EACCES; 12093 } 12094 12095 if (ptr_reg->type & PTR_MAYBE_NULL) { 12096 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 12097 dst, reg_type_str(env, ptr_reg->type)); 12098 return -EACCES; 12099 } 12100 12101 switch (base_type(ptr_reg->type)) { 12102 case CONST_PTR_TO_MAP: 12103 /* smin_val represents the known value */ 12104 if (known && smin_val == 0 && opcode == BPF_ADD) 12105 break; 12106 fallthrough; 12107 case PTR_TO_PACKET_END: 12108 case PTR_TO_SOCKET: 12109 case PTR_TO_SOCK_COMMON: 12110 case PTR_TO_TCP_SOCK: 12111 case PTR_TO_XDP_SOCK: 12112 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 12113 dst, reg_type_str(env, ptr_reg->type)); 12114 return -EACCES; 12115 default: 12116 break; 12117 } 12118 12119 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 12120 * The id may be overwritten later if we create a new variable offset. 12121 */ 12122 dst_reg->type = ptr_reg->type; 12123 dst_reg->id = ptr_reg->id; 12124 12125 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 12126 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 12127 return -EINVAL; 12128 12129 /* pointer types do not carry 32-bit bounds at the moment. */ 12130 __mark_reg32_unbounded(dst_reg); 12131 12132 if (sanitize_needed(opcode)) { 12133 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 12134 &info, false); 12135 if (ret < 0) 12136 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12137 } 12138 12139 switch (opcode) { 12140 case BPF_ADD: 12141 /* We can take a fixed offset as long as it doesn't overflow 12142 * the s32 'off' field 12143 */ 12144 if (known && (ptr_reg->off + smin_val == 12145 (s64)(s32)(ptr_reg->off + smin_val))) { 12146 /* pointer += K. Accumulate it into fixed offset */ 12147 dst_reg->smin_value = smin_ptr; 12148 dst_reg->smax_value = smax_ptr; 12149 dst_reg->umin_value = umin_ptr; 12150 dst_reg->umax_value = umax_ptr; 12151 dst_reg->var_off = ptr_reg->var_off; 12152 dst_reg->off = ptr_reg->off + smin_val; 12153 dst_reg->raw = ptr_reg->raw; 12154 break; 12155 } 12156 /* A new variable offset is created. Note that off_reg->off 12157 * == 0, since it's a scalar. 12158 * dst_reg gets the pointer type and since some positive 12159 * integer value was added to the pointer, give it a new 'id' 12160 * if it's a PTR_TO_PACKET. 12161 * this creates a new 'base' pointer, off_reg (variable) gets 12162 * added into the variable offset, and we copy the fixed offset 12163 * from ptr_reg. 12164 */ 12165 if (signed_add_overflows(smin_ptr, smin_val) || 12166 signed_add_overflows(smax_ptr, smax_val)) { 12167 dst_reg->smin_value = S64_MIN; 12168 dst_reg->smax_value = S64_MAX; 12169 } else { 12170 dst_reg->smin_value = smin_ptr + smin_val; 12171 dst_reg->smax_value = smax_ptr + smax_val; 12172 } 12173 if (umin_ptr + umin_val < umin_ptr || 12174 umax_ptr + umax_val < umax_ptr) { 12175 dst_reg->umin_value = 0; 12176 dst_reg->umax_value = U64_MAX; 12177 } else { 12178 dst_reg->umin_value = umin_ptr + umin_val; 12179 dst_reg->umax_value = umax_ptr + umax_val; 12180 } 12181 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 12182 dst_reg->off = ptr_reg->off; 12183 dst_reg->raw = ptr_reg->raw; 12184 if (reg_is_pkt_pointer(ptr_reg)) { 12185 dst_reg->id = ++env->id_gen; 12186 /* something was added to pkt_ptr, set range to zero */ 12187 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12188 } 12189 break; 12190 case BPF_SUB: 12191 if (dst_reg == off_reg) { 12192 /* scalar -= pointer. Creates an unknown scalar */ 12193 verbose(env, "R%d tried to subtract pointer from scalar\n", 12194 dst); 12195 return -EACCES; 12196 } 12197 /* We don't allow subtraction from FP, because (according to 12198 * test_verifier.c test "invalid fp arithmetic", JITs might not 12199 * be able to deal with it. 12200 */ 12201 if (ptr_reg->type == PTR_TO_STACK) { 12202 verbose(env, "R%d subtraction from stack pointer prohibited\n", 12203 dst); 12204 return -EACCES; 12205 } 12206 if (known && (ptr_reg->off - smin_val == 12207 (s64)(s32)(ptr_reg->off - smin_val))) { 12208 /* pointer -= K. Subtract it from fixed offset */ 12209 dst_reg->smin_value = smin_ptr; 12210 dst_reg->smax_value = smax_ptr; 12211 dst_reg->umin_value = umin_ptr; 12212 dst_reg->umax_value = umax_ptr; 12213 dst_reg->var_off = ptr_reg->var_off; 12214 dst_reg->id = ptr_reg->id; 12215 dst_reg->off = ptr_reg->off - smin_val; 12216 dst_reg->raw = ptr_reg->raw; 12217 break; 12218 } 12219 /* A new variable offset is created. If the subtrahend is known 12220 * nonnegative, then any reg->range we had before is still good. 12221 */ 12222 if (signed_sub_overflows(smin_ptr, smax_val) || 12223 signed_sub_overflows(smax_ptr, smin_val)) { 12224 /* Overflow possible, we know nothing */ 12225 dst_reg->smin_value = S64_MIN; 12226 dst_reg->smax_value = S64_MAX; 12227 } else { 12228 dst_reg->smin_value = smin_ptr - smax_val; 12229 dst_reg->smax_value = smax_ptr - smin_val; 12230 } 12231 if (umin_ptr < umax_val) { 12232 /* Overflow possible, we know nothing */ 12233 dst_reg->umin_value = 0; 12234 dst_reg->umax_value = U64_MAX; 12235 } else { 12236 /* Cannot overflow (as long as bounds are consistent) */ 12237 dst_reg->umin_value = umin_ptr - umax_val; 12238 dst_reg->umax_value = umax_ptr - umin_val; 12239 } 12240 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 12241 dst_reg->off = ptr_reg->off; 12242 dst_reg->raw = ptr_reg->raw; 12243 if (reg_is_pkt_pointer(ptr_reg)) { 12244 dst_reg->id = ++env->id_gen; 12245 /* something was added to pkt_ptr, set range to zero */ 12246 if (smin_val < 0) 12247 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12248 } 12249 break; 12250 case BPF_AND: 12251 case BPF_OR: 12252 case BPF_XOR: 12253 /* bitwise ops on pointers are troublesome, prohibit. */ 12254 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 12255 dst, bpf_alu_string[opcode >> 4]); 12256 return -EACCES; 12257 default: 12258 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 12259 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 12260 dst, bpf_alu_string[opcode >> 4]); 12261 return -EACCES; 12262 } 12263 12264 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 12265 return -EINVAL; 12266 reg_bounds_sync(dst_reg); 12267 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 12268 return -EACCES; 12269 if (sanitize_needed(opcode)) { 12270 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 12271 &info, true); 12272 if (ret < 0) 12273 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12274 } 12275 12276 return 0; 12277 } 12278 12279 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 12280 struct bpf_reg_state *src_reg) 12281 { 12282 s32 smin_val = src_reg->s32_min_value; 12283 s32 smax_val = src_reg->s32_max_value; 12284 u32 umin_val = src_reg->u32_min_value; 12285 u32 umax_val = src_reg->u32_max_value; 12286 12287 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 12288 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 12289 dst_reg->s32_min_value = S32_MIN; 12290 dst_reg->s32_max_value = S32_MAX; 12291 } else { 12292 dst_reg->s32_min_value += smin_val; 12293 dst_reg->s32_max_value += smax_val; 12294 } 12295 if (dst_reg->u32_min_value + umin_val < umin_val || 12296 dst_reg->u32_max_value + umax_val < umax_val) { 12297 dst_reg->u32_min_value = 0; 12298 dst_reg->u32_max_value = U32_MAX; 12299 } else { 12300 dst_reg->u32_min_value += umin_val; 12301 dst_reg->u32_max_value += umax_val; 12302 } 12303 } 12304 12305 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 12306 struct bpf_reg_state *src_reg) 12307 { 12308 s64 smin_val = src_reg->smin_value; 12309 s64 smax_val = src_reg->smax_value; 12310 u64 umin_val = src_reg->umin_value; 12311 u64 umax_val = src_reg->umax_value; 12312 12313 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 12314 signed_add_overflows(dst_reg->smax_value, smax_val)) { 12315 dst_reg->smin_value = S64_MIN; 12316 dst_reg->smax_value = S64_MAX; 12317 } else { 12318 dst_reg->smin_value += smin_val; 12319 dst_reg->smax_value += smax_val; 12320 } 12321 if (dst_reg->umin_value + umin_val < umin_val || 12322 dst_reg->umax_value + umax_val < umax_val) { 12323 dst_reg->umin_value = 0; 12324 dst_reg->umax_value = U64_MAX; 12325 } else { 12326 dst_reg->umin_value += umin_val; 12327 dst_reg->umax_value += umax_val; 12328 } 12329 } 12330 12331 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 12332 struct bpf_reg_state *src_reg) 12333 { 12334 s32 smin_val = src_reg->s32_min_value; 12335 s32 smax_val = src_reg->s32_max_value; 12336 u32 umin_val = src_reg->u32_min_value; 12337 u32 umax_val = src_reg->u32_max_value; 12338 12339 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 12340 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 12341 /* Overflow possible, we know nothing */ 12342 dst_reg->s32_min_value = S32_MIN; 12343 dst_reg->s32_max_value = S32_MAX; 12344 } else { 12345 dst_reg->s32_min_value -= smax_val; 12346 dst_reg->s32_max_value -= smin_val; 12347 } 12348 if (dst_reg->u32_min_value < umax_val) { 12349 /* Overflow possible, we know nothing */ 12350 dst_reg->u32_min_value = 0; 12351 dst_reg->u32_max_value = U32_MAX; 12352 } else { 12353 /* Cannot overflow (as long as bounds are consistent) */ 12354 dst_reg->u32_min_value -= umax_val; 12355 dst_reg->u32_max_value -= umin_val; 12356 } 12357 } 12358 12359 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 12360 struct bpf_reg_state *src_reg) 12361 { 12362 s64 smin_val = src_reg->smin_value; 12363 s64 smax_val = src_reg->smax_value; 12364 u64 umin_val = src_reg->umin_value; 12365 u64 umax_val = src_reg->umax_value; 12366 12367 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 12368 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 12369 /* Overflow possible, we know nothing */ 12370 dst_reg->smin_value = S64_MIN; 12371 dst_reg->smax_value = S64_MAX; 12372 } else { 12373 dst_reg->smin_value -= smax_val; 12374 dst_reg->smax_value -= smin_val; 12375 } 12376 if (dst_reg->umin_value < umax_val) { 12377 /* Overflow possible, we know nothing */ 12378 dst_reg->umin_value = 0; 12379 dst_reg->umax_value = U64_MAX; 12380 } else { 12381 /* Cannot overflow (as long as bounds are consistent) */ 12382 dst_reg->umin_value -= umax_val; 12383 dst_reg->umax_value -= umin_val; 12384 } 12385 } 12386 12387 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 12388 struct bpf_reg_state *src_reg) 12389 { 12390 s32 smin_val = src_reg->s32_min_value; 12391 u32 umin_val = src_reg->u32_min_value; 12392 u32 umax_val = src_reg->u32_max_value; 12393 12394 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 12395 /* Ain't nobody got time to multiply that sign */ 12396 __mark_reg32_unbounded(dst_reg); 12397 return; 12398 } 12399 /* Both values are positive, so we can work with unsigned and 12400 * copy the result to signed (unless it exceeds S32_MAX). 12401 */ 12402 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 12403 /* Potential overflow, we know nothing */ 12404 __mark_reg32_unbounded(dst_reg); 12405 return; 12406 } 12407 dst_reg->u32_min_value *= umin_val; 12408 dst_reg->u32_max_value *= umax_val; 12409 if (dst_reg->u32_max_value > S32_MAX) { 12410 /* Overflow possible, we know nothing */ 12411 dst_reg->s32_min_value = S32_MIN; 12412 dst_reg->s32_max_value = S32_MAX; 12413 } else { 12414 dst_reg->s32_min_value = dst_reg->u32_min_value; 12415 dst_reg->s32_max_value = dst_reg->u32_max_value; 12416 } 12417 } 12418 12419 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 12420 struct bpf_reg_state *src_reg) 12421 { 12422 s64 smin_val = src_reg->smin_value; 12423 u64 umin_val = src_reg->umin_value; 12424 u64 umax_val = src_reg->umax_value; 12425 12426 if (smin_val < 0 || dst_reg->smin_value < 0) { 12427 /* Ain't nobody got time to multiply that sign */ 12428 __mark_reg64_unbounded(dst_reg); 12429 return; 12430 } 12431 /* Both values are positive, so we can work with unsigned and 12432 * copy the result to signed (unless it exceeds S64_MAX). 12433 */ 12434 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 12435 /* Potential overflow, we know nothing */ 12436 __mark_reg64_unbounded(dst_reg); 12437 return; 12438 } 12439 dst_reg->umin_value *= umin_val; 12440 dst_reg->umax_value *= umax_val; 12441 if (dst_reg->umax_value > S64_MAX) { 12442 /* Overflow possible, we know nothing */ 12443 dst_reg->smin_value = S64_MIN; 12444 dst_reg->smax_value = S64_MAX; 12445 } else { 12446 dst_reg->smin_value = dst_reg->umin_value; 12447 dst_reg->smax_value = dst_reg->umax_value; 12448 } 12449 } 12450 12451 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 12452 struct bpf_reg_state *src_reg) 12453 { 12454 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12455 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12456 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12457 s32 smin_val = src_reg->s32_min_value; 12458 u32 umax_val = src_reg->u32_max_value; 12459 12460 if (src_known && dst_known) { 12461 __mark_reg32_known(dst_reg, var32_off.value); 12462 return; 12463 } 12464 12465 /* We get our minimum from the var_off, since that's inherently 12466 * bitwise. Our maximum is the minimum of the operands' maxima. 12467 */ 12468 dst_reg->u32_min_value = var32_off.value; 12469 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 12470 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12471 /* Lose signed bounds when ANDing negative numbers, 12472 * ain't nobody got time for that. 12473 */ 12474 dst_reg->s32_min_value = S32_MIN; 12475 dst_reg->s32_max_value = S32_MAX; 12476 } else { 12477 /* ANDing two positives gives a positive, so safe to 12478 * cast result into s64. 12479 */ 12480 dst_reg->s32_min_value = dst_reg->u32_min_value; 12481 dst_reg->s32_max_value = dst_reg->u32_max_value; 12482 } 12483 } 12484 12485 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 12486 struct bpf_reg_state *src_reg) 12487 { 12488 bool src_known = tnum_is_const(src_reg->var_off); 12489 bool dst_known = tnum_is_const(dst_reg->var_off); 12490 s64 smin_val = src_reg->smin_value; 12491 u64 umax_val = src_reg->umax_value; 12492 12493 if (src_known && dst_known) { 12494 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12495 return; 12496 } 12497 12498 /* We get our minimum from the var_off, since that's inherently 12499 * bitwise. Our maximum is the minimum of the operands' maxima. 12500 */ 12501 dst_reg->umin_value = dst_reg->var_off.value; 12502 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 12503 if (dst_reg->smin_value < 0 || smin_val < 0) { 12504 /* Lose signed bounds when ANDing negative numbers, 12505 * ain't nobody got time for that. 12506 */ 12507 dst_reg->smin_value = S64_MIN; 12508 dst_reg->smax_value = S64_MAX; 12509 } else { 12510 /* ANDing two positives gives a positive, so safe to 12511 * cast result into s64. 12512 */ 12513 dst_reg->smin_value = dst_reg->umin_value; 12514 dst_reg->smax_value = dst_reg->umax_value; 12515 } 12516 /* We may learn something more from the var_off */ 12517 __update_reg_bounds(dst_reg); 12518 } 12519 12520 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 12521 struct bpf_reg_state *src_reg) 12522 { 12523 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12524 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12525 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12526 s32 smin_val = src_reg->s32_min_value; 12527 u32 umin_val = src_reg->u32_min_value; 12528 12529 if (src_known && dst_known) { 12530 __mark_reg32_known(dst_reg, var32_off.value); 12531 return; 12532 } 12533 12534 /* We get our maximum from the var_off, and our minimum is the 12535 * maximum of the operands' minima 12536 */ 12537 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 12538 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12539 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12540 /* Lose signed bounds when ORing negative numbers, 12541 * ain't nobody got time for that. 12542 */ 12543 dst_reg->s32_min_value = S32_MIN; 12544 dst_reg->s32_max_value = S32_MAX; 12545 } else { 12546 /* ORing two positives gives a positive, so safe to 12547 * cast result into s64. 12548 */ 12549 dst_reg->s32_min_value = dst_reg->u32_min_value; 12550 dst_reg->s32_max_value = dst_reg->u32_max_value; 12551 } 12552 } 12553 12554 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 12555 struct bpf_reg_state *src_reg) 12556 { 12557 bool src_known = tnum_is_const(src_reg->var_off); 12558 bool dst_known = tnum_is_const(dst_reg->var_off); 12559 s64 smin_val = src_reg->smin_value; 12560 u64 umin_val = src_reg->umin_value; 12561 12562 if (src_known && dst_known) { 12563 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12564 return; 12565 } 12566 12567 /* We get our maximum from the var_off, and our minimum is the 12568 * maximum of the operands' minima 12569 */ 12570 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 12571 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12572 if (dst_reg->smin_value < 0 || smin_val < 0) { 12573 /* Lose signed bounds when ORing negative numbers, 12574 * ain't nobody got time for that. 12575 */ 12576 dst_reg->smin_value = S64_MIN; 12577 dst_reg->smax_value = S64_MAX; 12578 } else { 12579 /* ORing two positives gives a positive, so safe to 12580 * cast result into s64. 12581 */ 12582 dst_reg->smin_value = dst_reg->umin_value; 12583 dst_reg->smax_value = dst_reg->umax_value; 12584 } 12585 /* We may learn something more from the var_off */ 12586 __update_reg_bounds(dst_reg); 12587 } 12588 12589 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 12590 struct bpf_reg_state *src_reg) 12591 { 12592 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12593 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12594 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12595 s32 smin_val = src_reg->s32_min_value; 12596 12597 if (src_known && dst_known) { 12598 __mark_reg32_known(dst_reg, var32_off.value); 12599 return; 12600 } 12601 12602 /* We get both minimum and maximum from the var32_off. */ 12603 dst_reg->u32_min_value = var32_off.value; 12604 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12605 12606 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 12607 /* XORing two positive sign numbers gives a positive, 12608 * so safe to cast u32 result into s32. 12609 */ 12610 dst_reg->s32_min_value = dst_reg->u32_min_value; 12611 dst_reg->s32_max_value = dst_reg->u32_max_value; 12612 } else { 12613 dst_reg->s32_min_value = S32_MIN; 12614 dst_reg->s32_max_value = S32_MAX; 12615 } 12616 } 12617 12618 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 12619 struct bpf_reg_state *src_reg) 12620 { 12621 bool src_known = tnum_is_const(src_reg->var_off); 12622 bool dst_known = tnum_is_const(dst_reg->var_off); 12623 s64 smin_val = src_reg->smin_value; 12624 12625 if (src_known && dst_known) { 12626 /* dst_reg->var_off.value has been updated earlier */ 12627 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12628 return; 12629 } 12630 12631 /* We get both minimum and maximum from the var_off. */ 12632 dst_reg->umin_value = dst_reg->var_off.value; 12633 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12634 12635 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 12636 /* XORing two positive sign numbers gives a positive, 12637 * so safe to cast u64 result into s64. 12638 */ 12639 dst_reg->smin_value = dst_reg->umin_value; 12640 dst_reg->smax_value = dst_reg->umax_value; 12641 } else { 12642 dst_reg->smin_value = S64_MIN; 12643 dst_reg->smax_value = S64_MAX; 12644 } 12645 12646 __update_reg_bounds(dst_reg); 12647 } 12648 12649 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 12650 u64 umin_val, u64 umax_val) 12651 { 12652 /* We lose all sign bit information (except what we can pick 12653 * up from var_off) 12654 */ 12655 dst_reg->s32_min_value = S32_MIN; 12656 dst_reg->s32_max_value = S32_MAX; 12657 /* If we might shift our top bit out, then we know nothing */ 12658 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 12659 dst_reg->u32_min_value = 0; 12660 dst_reg->u32_max_value = U32_MAX; 12661 } else { 12662 dst_reg->u32_min_value <<= umin_val; 12663 dst_reg->u32_max_value <<= umax_val; 12664 } 12665 } 12666 12667 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 12668 struct bpf_reg_state *src_reg) 12669 { 12670 u32 umax_val = src_reg->u32_max_value; 12671 u32 umin_val = src_reg->u32_min_value; 12672 /* u32 alu operation will zext upper bits */ 12673 struct tnum subreg = tnum_subreg(dst_reg->var_off); 12674 12675 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 12676 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 12677 /* Not required but being careful mark reg64 bounds as unknown so 12678 * that we are forced to pick them up from tnum and zext later and 12679 * if some path skips this step we are still safe. 12680 */ 12681 __mark_reg64_unbounded(dst_reg); 12682 __update_reg32_bounds(dst_reg); 12683 } 12684 12685 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 12686 u64 umin_val, u64 umax_val) 12687 { 12688 /* Special case <<32 because it is a common compiler pattern to sign 12689 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 12690 * positive we know this shift will also be positive so we can track 12691 * bounds correctly. Otherwise we lose all sign bit information except 12692 * what we can pick up from var_off. Perhaps we can generalize this 12693 * later to shifts of any length. 12694 */ 12695 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 12696 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 12697 else 12698 dst_reg->smax_value = S64_MAX; 12699 12700 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 12701 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 12702 else 12703 dst_reg->smin_value = S64_MIN; 12704 12705 /* If we might shift our top bit out, then we know nothing */ 12706 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 12707 dst_reg->umin_value = 0; 12708 dst_reg->umax_value = U64_MAX; 12709 } else { 12710 dst_reg->umin_value <<= umin_val; 12711 dst_reg->umax_value <<= umax_val; 12712 } 12713 } 12714 12715 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 12716 struct bpf_reg_state *src_reg) 12717 { 12718 u64 umax_val = src_reg->umax_value; 12719 u64 umin_val = src_reg->umin_value; 12720 12721 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 12722 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 12723 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 12724 12725 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 12726 /* We may learn something more from the var_off */ 12727 __update_reg_bounds(dst_reg); 12728 } 12729 12730 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 12731 struct bpf_reg_state *src_reg) 12732 { 12733 struct tnum subreg = tnum_subreg(dst_reg->var_off); 12734 u32 umax_val = src_reg->u32_max_value; 12735 u32 umin_val = src_reg->u32_min_value; 12736 12737 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 12738 * be negative, then either: 12739 * 1) src_reg might be zero, so the sign bit of the result is 12740 * unknown, so we lose our signed bounds 12741 * 2) it's known negative, thus the unsigned bounds capture the 12742 * signed bounds 12743 * 3) the signed bounds cross zero, so they tell us nothing 12744 * about the result 12745 * If the value in dst_reg is known nonnegative, then again the 12746 * unsigned bounds capture the signed bounds. 12747 * Thus, in all cases it suffices to blow away our signed bounds 12748 * and rely on inferring new ones from the unsigned bounds and 12749 * var_off of the result. 12750 */ 12751 dst_reg->s32_min_value = S32_MIN; 12752 dst_reg->s32_max_value = S32_MAX; 12753 12754 dst_reg->var_off = tnum_rshift(subreg, umin_val); 12755 dst_reg->u32_min_value >>= umax_val; 12756 dst_reg->u32_max_value >>= umin_val; 12757 12758 __mark_reg64_unbounded(dst_reg); 12759 __update_reg32_bounds(dst_reg); 12760 } 12761 12762 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 12763 struct bpf_reg_state *src_reg) 12764 { 12765 u64 umax_val = src_reg->umax_value; 12766 u64 umin_val = src_reg->umin_value; 12767 12768 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 12769 * be negative, then either: 12770 * 1) src_reg might be zero, so the sign bit of the result is 12771 * unknown, so we lose our signed bounds 12772 * 2) it's known negative, thus the unsigned bounds capture the 12773 * signed bounds 12774 * 3) the signed bounds cross zero, so they tell us nothing 12775 * about the result 12776 * If the value in dst_reg is known nonnegative, then again the 12777 * unsigned bounds capture the signed bounds. 12778 * Thus, in all cases it suffices to blow away our signed bounds 12779 * and rely on inferring new ones from the unsigned bounds and 12780 * var_off of the result. 12781 */ 12782 dst_reg->smin_value = S64_MIN; 12783 dst_reg->smax_value = S64_MAX; 12784 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 12785 dst_reg->umin_value >>= umax_val; 12786 dst_reg->umax_value >>= umin_val; 12787 12788 /* Its not easy to operate on alu32 bounds here because it depends 12789 * on bits being shifted in. Take easy way out and mark unbounded 12790 * so we can recalculate later from tnum. 12791 */ 12792 __mark_reg32_unbounded(dst_reg); 12793 __update_reg_bounds(dst_reg); 12794 } 12795 12796 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 12797 struct bpf_reg_state *src_reg) 12798 { 12799 u64 umin_val = src_reg->u32_min_value; 12800 12801 /* Upon reaching here, src_known is true and 12802 * umax_val is equal to umin_val. 12803 */ 12804 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 12805 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 12806 12807 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 12808 12809 /* blow away the dst_reg umin_value/umax_value and rely on 12810 * dst_reg var_off to refine the result. 12811 */ 12812 dst_reg->u32_min_value = 0; 12813 dst_reg->u32_max_value = U32_MAX; 12814 12815 __mark_reg64_unbounded(dst_reg); 12816 __update_reg32_bounds(dst_reg); 12817 } 12818 12819 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 12820 struct bpf_reg_state *src_reg) 12821 { 12822 u64 umin_val = src_reg->umin_value; 12823 12824 /* Upon reaching here, src_known is true and umax_val is equal 12825 * to umin_val. 12826 */ 12827 dst_reg->smin_value >>= umin_val; 12828 dst_reg->smax_value >>= umin_val; 12829 12830 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 12831 12832 /* blow away the dst_reg umin_value/umax_value and rely on 12833 * dst_reg var_off to refine the result. 12834 */ 12835 dst_reg->umin_value = 0; 12836 dst_reg->umax_value = U64_MAX; 12837 12838 /* Its not easy to operate on alu32 bounds here because it depends 12839 * on bits being shifted in from upper 32-bits. Take easy way out 12840 * and mark unbounded so we can recalculate later from tnum. 12841 */ 12842 __mark_reg32_unbounded(dst_reg); 12843 __update_reg_bounds(dst_reg); 12844 } 12845 12846 /* WARNING: This function does calculations on 64-bit values, but the actual 12847 * execution may occur on 32-bit values. Therefore, things like bitshifts 12848 * need extra checks in the 32-bit case. 12849 */ 12850 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 12851 struct bpf_insn *insn, 12852 struct bpf_reg_state *dst_reg, 12853 struct bpf_reg_state src_reg) 12854 { 12855 struct bpf_reg_state *regs = cur_regs(env); 12856 u8 opcode = BPF_OP(insn->code); 12857 bool src_known; 12858 s64 smin_val, smax_val; 12859 u64 umin_val, umax_val; 12860 s32 s32_min_val, s32_max_val; 12861 u32 u32_min_val, u32_max_val; 12862 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 12863 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 12864 int ret; 12865 12866 smin_val = src_reg.smin_value; 12867 smax_val = src_reg.smax_value; 12868 umin_val = src_reg.umin_value; 12869 umax_val = src_reg.umax_value; 12870 12871 s32_min_val = src_reg.s32_min_value; 12872 s32_max_val = src_reg.s32_max_value; 12873 u32_min_val = src_reg.u32_min_value; 12874 u32_max_val = src_reg.u32_max_value; 12875 12876 if (alu32) { 12877 src_known = tnum_subreg_is_const(src_reg.var_off); 12878 if ((src_known && 12879 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 12880 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 12881 /* Taint dst register if offset had invalid bounds 12882 * derived from e.g. dead branches. 12883 */ 12884 __mark_reg_unknown(env, dst_reg); 12885 return 0; 12886 } 12887 } else { 12888 src_known = tnum_is_const(src_reg.var_off); 12889 if ((src_known && 12890 (smin_val != smax_val || umin_val != umax_val)) || 12891 smin_val > smax_val || umin_val > umax_val) { 12892 /* Taint dst register if offset had invalid bounds 12893 * derived from e.g. dead branches. 12894 */ 12895 __mark_reg_unknown(env, dst_reg); 12896 return 0; 12897 } 12898 } 12899 12900 if (!src_known && 12901 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 12902 __mark_reg_unknown(env, dst_reg); 12903 return 0; 12904 } 12905 12906 if (sanitize_needed(opcode)) { 12907 ret = sanitize_val_alu(env, insn); 12908 if (ret < 0) 12909 return sanitize_err(env, insn, ret, NULL, NULL); 12910 } 12911 12912 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 12913 * There are two classes of instructions: The first class we track both 12914 * alu32 and alu64 sign/unsigned bounds independently this provides the 12915 * greatest amount of precision when alu operations are mixed with jmp32 12916 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 12917 * and BPF_OR. This is possible because these ops have fairly easy to 12918 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 12919 * See alu32 verifier tests for examples. The second class of 12920 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 12921 * with regards to tracking sign/unsigned bounds because the bits may 12922 * cross subreg boundaries in the alu64 case. When this happens we mark 12923 * the reg unbounded in the subreg bound space and use the resulting 12924 * tnum to calculate an approximation of the sign/unsigned bounds. 12925 */ 12926 switch (opcode) { 12927 case BPF_ADD: 12928 scalar32_min_max_add(dst_reg, &src_reg); 12929 scalar_min_max_add(dst_reg, &src_reg); 12930 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 12931 break; 12932 case BPF_SUB: 12933 scalar32_min_max_sub(dst_reg, &src_reg); 12934 scalar_min_max_sub(dst_reg, &src_reg); 12935 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 12936 break; 12937 case BPF_MUL: 12938 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 12939 scalar32_min_max_mul(dst_reg, &src_reg); 12940 scalar_min_max_mul(dst_reg, &src_reg); 12941 break; 12942 case BPF_AND: 12943 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 12944 scalar32_min_max_and(dst_reg, &src_reg); 12945 scalar_min_max_and(dst_reg, &src_reg); 12946 break; 12947 case BPF_OR: 12948 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 12949 scalar32_min_max_or(dst_reg, &src_reg); 12950 scalar_min_max_or(dst_reg, &src_reg); 12951 break; 12952 case BPF_XOR: 12953 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 12954 scalar32_min_max_xor(dst_reg, &src_reg); 12955 scalar_min_max_xor(dst_reg, &src_reg); 12956 break; 12957 case BPF_LSH: 12958 if (umax_val >= insn_bitness) { 12959 /* Shifts greater than 31 or 63 are undefined. 12960 * This includes shifts by a negative number. 12961 */ 12962 mark_reg_unknown(env, regs, insn->dst_reg); 12963 break; 12964 } 12965 if (alu32) 12966 scalar32_min_max_lsh(dst_reg, &src_reg); 12967 else 12968 scalar_min_max_lsh(dst_reg, &src_reg); 12969 break; 12970 case BPF_RSH: 12971 if (umax_val >= insn_bitness) { 12972 /* Shifts greater than 31 or 63 are undefined. 12973 * This includes shifts by a negative number. 12974 */ 12975 mark_reg_unknown(env, regs, insn->dst_reg); 12976 break; 12977 } 12978 if (alu32) 12979 scalar32_min_max_rsh(dst_reg, &src_reg); 12980 else 12981 scalar_min_max_rsh(dst_reg, &src_reg); 12982 break; 12983 case BPF_ARSH: 12984 if (umax_val >= insn_bitness) { 12985 /* Shifts greater than 31 or 63 are undefined. 12986 * This includes shifts by a negative number. 12987 */ 12988 mark_reg_unknown(env, regs, insn->dst_reg); 12989 break; 12990 } 12991 if (alu32) 12992 scalar32_min_max_arsh(dst_reg, &src_reg); 12993 else 12994 scalar_min_max_arsh(dst_reg, &src_reg); 12995 break; 12996 default: 12997 mark_reg_unknown(env, regs, insn->dst_reg); 12998 break; 12999 } 13000 13001 /* ALU32 ops are zero extended into 64bit register */ 13002 if (alu32) 13003 zext_32_to_64(dst_reg); 13004 reg_bounds_sync(dst_reg); 13005 return 0; 13006 } 13007 13008 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 13009 * and var_off. 13010 */ 13011 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 13012 struct bpf_insn *insn) 13013 { 13014 struct bpf_verifier_state *vstate = env->cur_state; 13015 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13016 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 13017 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 13018 u8 opcode = BPF_OP(insn->code); 13019 int err; 13020 13021 dst_reg = ®s[insn->dst_reg]; 13022 src_reg = NULL; 13023 if (dst_reg->type != SCALAR_VALUE) 13024 ptr_reg = dst_reg; 13025 else 13026 /* Make sure ID is cleared otherwise dst_reg min/max could be 13027 * incorrectly propagated into other registers by find_equal_scalars() 13028 */ 13029 dst_reg->id = 0; 13030 if (BPF_SRC(insn->code) == BPF_X) { 13031 src_reg = ®s[insn->src_reg]; 13032 if (src_reg->type != SCALAR_VALUE) { 13033 if (dst_reg->type != SCALAR_VALUE) { 13034 /* Combining two pointers by any ALU op yields 13035 * an arbitrary scalar. Disallow all math except 13036 * pointer subtraction 13037 */ 13038 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 13039 mark_reg_unknown(env, regs, insn->dst_reg); 13040 return 0; 13041 } 13042 verbose(env, "R%d pointer %s pointer prohibited\n", 13043 insn->dst_reg, 13044 bpf_alu_string[opcode >> 4]); 13045 return -EACCES; 13046 } else { 13047 /* scalar += pointer 13048 * This is legal, but we have to reverse our 13049 * src/dest handling in computing the range 13050 */ 13051 err = mark_chain_precision(env, insn->dst_reg); 13052 if (err) 13053 return err; 13054 return adjust_ptr_min_max_vals(env, insn, 13055 src_reg, dst_reg); 13056 } 13057 } else if (ptr_reg) { 13058 /* pointer += scalar */ 13059 err = mark_chain_precision(env, insn->src_reg); 13060 if (err) 13061 return err; 13062 return adjust_ptr_min_max_vals(env, insn, 13063 dst_reg, src_reg); 13064 } else if (dst_reg->precise) { 13065 /* if dst_reg is precise, src_reg should be precise as well */ 13066 err = mark_chain_precision(env, insn->src_reg); 13067 if (err) 13068 return err; 13069 } 13070 } else { 13071 /* Pretend the src is a reg with a known value, since we only 13072 * need to be able to read from this state. 13073 */ 13074 off_reg.type = SCALAR_VALUE; 13075 __mark_reg_known(&off_reg, insn->imm); 13076 src_reg = &off_reg; 13077 if (ptr_reg) /* pointer += K */ 13078 return adjust_ptr_min_max_vals(env, insn, 13079 ptr_reg, src_reg); 13080 } 13081 13082 /* Got here implies adding two SCALAR_VALUEs */ 13083 if (WARN_ON_ONCE(ptr_reg)) { 13084 print_verifier_state(env, state, true); 13085 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 13086 return -EINVAL; 13087 } 13088 if (WARN_ON(!src_reg)) { 13089 print_verifier_state(env, state, true); 13090 verbose(env, "verifier internal error: no src_reg\n"); 13091 return -EINVAL; 13092 } 13093 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 13094 } 13095 13096 /* check validity of 32-bit and 64-bit arithmetic operations */ 13097 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 13098 { 13099 struct bpf_reg_state *regs = cur_regs(env); 13100 u8 opcode = BPF_OP(insn->code); 13101 int err; 13102 13103 if (opcode == BPF_END || opcode == BPF_NEG) { 13104 if (opcode == BPF_NEG) { 13105 if (BPF_SRC(insn->code) != BPF_K || 13106 insn->src_reg != BPF_REG_0 || 13107 insn->off != 0 || insn->imm != 0) { 13108 verbose(env, "BPF_NEG uses reserved fields\n"); 13109 return -EINVAL; 13110 } 13111 } else { 13112 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 13113 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 13114 (BPF_CLASS(insn->code) == BPF_ALU64 && 13115 BPF_SRC(insn->code) != BPF_TO_LE)) { 13116 verbose(env, "BPF_END uses reserved fields\n"); 13117 return -EINVAL; 13118 } 13119 } 13120 13121 /* check src operand */ 13122 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13123 if (err) 13124 return err; 13125 13126 if (is_pointer_value(env, insn->dst_reg)) { 13127 verbose(env, "R%d pointer arithmetic prohibited\n", 13128 insn->dst_reg); 13129 return -EACCES; 13130 } 13131 13132 /* check dest operand */ 13133 err = check_reg_arg(env, insn->dst_reg, DST_OP); 13134 if (err) 13135 return err; 13136 13137 } else if (opcode == BPF_MOV) { 13138 13139 if (BPF_SRC(insn->code) == BPF_X) { 13140 if (insn->imm != 0) { 13141 verbose(env, "BPF_MOV uses reserved fields\n"); 13142 return -EINVAL; 13143 } 13144 13145 if (BPF_CLASS(insn->code) == BPF_ALU) { 13146 if (insn->off != 0 && insn->off != 8 && insn->off != 16) { 13147 verbose(env, "BPF_MOV uses reserved fields\n"); 13148 return -EINVAL; 13149 } 13150 } else { 13151 if (insn->off != 0 && insn->off != 8 && insn->off != 16 && 13152 insn->off != 32) { 13153 verbose(env, "BPF_MOV uses reserved fields\n"); 13154 return -EINVAL; 13155 } 13156 } 13157 13158 /* check src operand */ 13159 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13160 if (err) 13161 return err; 13162 } else { 13163 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 13164 verbose(env, "BPF_MOV uses reserved fields\n"); 13165 return -EINVAL; 13166 } 13167 } 13168 13169 /* check dest operand, mark as required later */ 13170 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13171 if (err) 13172 return err; 13173 13174 if (BPF_SRC(insn->code) == BPF_X) { 13175 struct bpf_reg_state *src_reg = regs + insn->src_reg; 13176 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 13177 bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id && 13178 !tnum_is_const(src_reg->var_off); 13179 13180 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13181 if (insn->off == 0) { 13182 /* case: R1 = R2 13183 * copy register state to dest reg 13184 */ 13185 if (need_id) 13186 /* Assign src and dst registers the same ID 13187 * that will be used by find_equal_scalars() 13188 * to propagate min/max range. 13189 */ 13190 src_reg->id = ++env->id_gen; 13191 copy_register_state(dst_reg, src_reg); 13192 dst_reg->live |= REG_LIVE_WRITTEN; 13193 dst_reg->subreg_def = DEF_NOT_SUBREG; 13194 } else { 13195 /* case: R1 = (s8, s16 s32)R2 */ 13196 if (is_pointer_value(env, insn->src_reg)) { 13197 verbose(env, 13198 "R%d sign-extension part of pointer\n", 13199 insn->src_reg); 13200 return -EACCES; 13201 } else if (src_reg->type == SCALAR_VALUE) { 13202 bool no_sext; 13203 13204 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13205 if (no_sext && need_id) 13206 src_reg->id = ++env->id_gen; 13207 copy_register_state(dst_reg, src_reg); 13208 if (!no_sext) 13209 dst_reg->id = 0; 13210 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 13211 dst_reg->live |= REG_LIVE_WRITTEN; 13212 dst_reg->subreg_def = DEF_NOT_SUBREG; 13213 } else { 13214 mark_reg_unknown(env, regs, insn->dst_reg); 13215 } 13216 } 13217 } else { 13218 /* R1 = (u32) R2 */ 13219 if (is_pointer_value(env, insn->src_reg)) { 13220 verbose(env, 13221 "R%d partial copy of pointer\n", 13222 insn->src_reg); 13223 return -EACCES; 13224 } else if (src_reg->type == SCALAR_VALUE) { 13225 if (insn->off == 0) { 13226 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX; 13227 13228 if (is_src_reg_u32 && need_id) 13229 src_reg->id = ++env->id_gen; 13230 copy_register_state(dst_reg, src_reg); 13231 /* Make sure ID is cleared if src_reg is not in u32 13232 * range otherwise dst_reg min/max could be incorrectly 13233 * propagated into src_reg by find_equal_scalars() 13234 */ 13235 if (!is_src_reg_u32) 13236 dst_reg->id = 0; 13237 dst_reg->live |= REG_LIVE_WRITTEN; 13238 dst_reg->subreg_def = env->insn_idx + 1; 13239 } else { 13240 /* case: W1 = (s8, s16)W2 */ 13241 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13242 13243 if (no_sext && need_id) 13244 src_reg->id = ++env->id_gen; 13245 copy_register_state(dst_reg, src_reg); 13246 if (!no_sext) 13247 dst_reg->id = 0; 13248 dst_reg->live |= REG_LIVE_WRITTEN; 13249 dst_reg->subreg_def = env->insn_idx + 1; 13250 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 13251 } 13252 } else { 13253 mark_reg_unknown(env, regs, 13254 insn->dst_reg); 13255 } 13256 zext_32_to_64(dst_reg); 13257 reg_bounds_sync(dst_reg); 13258 } 13259 } else { 13260 /* case: R = imm 13261 * remember the value we stored into this reg 13262 */ 13263 /* clear any state __mark_reg_known doesn't set */ 13264 mark_reg_unknown(env, regs, insn->dst_reg); 13265 regs[insn->dst_reg].type = SCALAR_VALUE; 13266 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13267 __mark_reg_known(regs + insn->dst_reg, 13268 insn->imm); 13269 } else { 13270 __mark_reg_known(regs + insn->dst_reg, 13271 (u32)insn->imm); 13272 } 13273 } 13274 13275 } else if (opcode > BPF_END) { 13276 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 13277 return -EINVAL; 13278 13279 } else { /* all other ALU ops: and, sub, xor, add, ... */ 13280 13281 if (BPF_SRC(insn->code) == BPF_X) { 13282 if (insn->imm != 0 || insn->off > 1 || 13283 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 13284 verbose(env, "BPF_ALU uses reserved fields\n"); 13285 return -EINVAL; 13286 } 13287 /* check src1 operand */ 13288 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13289 if (err) 13290 return err; 13291 } else { 13292 if (insn->src_reg != BPF_REG_0 || insn->off > 1 || 13293 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 13294 verbose(env, "BPF_ALU uses reserved fields\n"); 13295 return -EINVAL; 13296 } 13297 } 13298 13299 /* check src2 operand */ 13300 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13301 if (err) 13302 return err; 13303 13304 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 13305 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 13306 verbose(env, "div by zero\n"); 13307 return -EINVAL; 13308 } 13309 13310 if ((opcode == BPF_LSH || opcode == BPF_RSH || 13311 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 13312 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 13313 13314 if (insn->imm < 0 || insn->imm >= size) { 13315 verbose(env, "invalid shift %d\n", insn->imm); 13316 return -EINVAL; 13317 } 13318 } 13319 13320 /* check dest operand */ 13321 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13322 if (err) 13323 return err; 13324 13325 return adjust_reg_min_max_vals(env, insn); 13326 } 13327 13328 return 0; 13329 } 13330 13331 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 13332 struct bpf_reg_state *dst_reg, 13333 enum bpf_reg_type type, 13334 bool range_right_open) 13335 { 13336 struct bpf_func_state *state; 13337 struct bpf_reg_state *reg; 13338 int new_range; 13339 13340 if (dst_reg->off < 0 || 13341 (dst_reg->off == 0 && range_right_open)) 13342 /* This doesn't give us any range */ 13343 return; 13344 13345 if (dst_reg->umax_value > MAX_PACKET_OFF || 13346 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 13347 /* Risk of overflow. For instance, ptr + (1<<63) may be less 13348 * than pkt_end, but that's because it's also less than pkt. 13349 */ 13350 return; 13351 13352 new_range = dst_reg->off; 13353 if (range_right_open) 13354 new_range++; 13355 13356 /* Examples for register markings: 13357 * 13358 * pkt_data in dst register: 13359 * 13360 * r2 = r3; 13361 * r2 += 8; 13362 * if (r2 > pkt_end) goto <handle exception> 13363 * <access okay> 13364 * 13365 * r2 = r3; 13366 * r2 += 8; 13367 * if (r2 < pkt_end) goto <access okay> 13368 * <handle exception> 13369 * 13370 * Where: 13371 * r2 == dst_reg, pkt_end == src_reg 13372 * r2=pkt(id=n,off=8,r=0) 13373 * r3=pkt(id=n,off=0,r=0) 13374 * 13375 * pkt_data in src register: 13376 * 13377 * r2 = r3; 13378 * r2 += 8; 13379 * if (pkt_end >= r2) goto <access okay> 13380 * <handle exception> 13381 * 13382 * r2 = r3; 13383 * r2 += 8; 13384 * if (pkt_end <= r2) goto <handle exception> 13385 * <access okay> 13386 * 13387 * Where: 13388 * pkt_end == dst_reg, r2 == src_reg 13389 * r2=pkt(id=n,off=8,r=0) 13390 * r3=pkt(id=n,off=0,r=0) 13391 * 13392 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 13393 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 13394 * and [r3, r3 + 8-1) respectively is safe to access depending on 13395 * the check. 13396 */ 13397 13398 /* If our ids match, then we must have the same max_value. And we 13399 * don't care about the other reg's fixed offset, since if it's too big 13400 * the range won't allow anything. 13401 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 13402 */ 13403 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13404 if (reg->type == type && reg->id == dst_reg->id) 13405 /* keep the maximum range already checked */ 13406 reg->range = max(reg->range, new_range); 13407 })); 13408 } 13409 13410 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 13411 { 13412 struct tnum subreg = tnum_subreg(reg->var_off); 13413 s32 sval = (s32)val; 13414 13415 switch (opcode) { 13416 case BPF_JEQ: 13417 if (tnum_is_const(subreg)) 13418 return !!tnum_equals_const(subreg, val); 13419 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13420 return 0; 13421 break; 13422 case BPF_JNE: 13423 if (tnum_is_const(subreg)) 13424 return !tnum_equals_const(subreg, val); 13425 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13426 return 1; 13427 break; 13428 case BPF_JSET: 13429 if ((~subreg.mask & subreg.value) & val) 13430 return 1; 13431 if (!((subreg.mask | subreg.value) & val)) 13432 return 0; 13433 break; 13434 case BPF_JGT: 13435 if (reg->u32_min_value > val) 13436 return 1; 13437 else if (reg->u32_max_value <= val) 13438 return 0; 13439 break; 13440 case BPF_JSGT: 13441 if (reg->s32_min_value > sval) 13442 return 1; 13443 else if (reg->s32_max_value <= sval) 13444 return 0; 13445 break; 13446 case BPF_JLT: 13447 if (reg->u32_max_value < val) 13448 return 1; 13449 else if (reg->u32_min_value >= val) 13450 return 0; 13451 break; 13452 case BPF_JSLT: 13453 if (reg->s32_max_value < sval) 13454 return 1; 13455 else if (reg->s32_min_value >= sval) 13456 return 0; 13457 break; 13458 case BPF_JGE: 13459 if (reg->u32_min_value >= val) 13460 return 1; 13461 else if (reg->u32_max_value < val) 13462 return 0; 13463 break; 13464 case BPF_JSGE: 13465 if (reg->s32_min_value >= sval) 13466 return 1; 13467 else if (reg->s32_max_value < sval) 13468 return 0; 13469 break; 13470 case BPF_JLE: 13471 if (reg->u32_max_value <= val) 13472 return 1; 13473 else if (reg->u32_min_value > val) 13474 return 0; 13475 break; 13476 case BPF_JSLE: 13477 if (reg->s32_max_value <= sval) 13478 return 1; 13479 else if (reg->s32_min_value > sval) 13480 return 0; 13481 break; 13482 } 13483 13484 return -1; 13485 } 13486 13487 13488 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 13489 { 13490 s64 sval = (s64)val; 13491 13492 switch (opcode) { 13493 case BPF_JEQ: 13494 if (tnum_is_const(reg->var_off)) 13495 return !!tnum_equals_const(reg->var_off, val); 13496 else if (val < reg->umin_value || val > reg->umax_value) 13497 return 0; 13498 break; 13499 case BPF_JNE: 13500 if (tnum_is_const(reg->var_off)) 13501 return !tnum_equals_const(reg->var_off, val); 13502 else if (val < reg->umin_value || val > reg->umax_value) 13503 return 1; 13504 break; 13505 case BPF_JSET: 13506 if ((~reg->var_off.mask & reg->var_off.value) & val) 13507 return 1; 13508 if (!((reg->var_off.mask | reg->var_off.value) & val)) 13509 return 0; 13510 break; 13511 case BPF_JGT: 13512 if (reg->umin_value > val) 13513 return 1; 13514 else if (reg->umax_value <= val) 13515 return 0; 13516 break; 13517 case BPF_JSGT: 13518 if (reg->smin_value > sval) 13519 return 1; 13520 else if (reg->smax_value <= sval) 13521 return 0; 13522 break; 13523 case BPF_JLT: 13524 if (reg->umax_value < val) 13525 return 1; 13526 else if (reg->umin_value >= val) 13527 return 0; 13528 break; 13529 case BPF_JSLT: 13530 if (reg->smax_value < sval) 13531 return 1; 13532 else if (reg->smin_value >= sval) 13533 return 0; 13534 break; 13535 case BPF_JGE: 13536 if (reg->umin_value >= val) 13537 return 1; 13538 else if (reg->umax_value < val) 13539 return 0; 13540 break; 13541 case BPF_JSGE: 13542 if (reg->smin_value >= sval) 13543 return 1; 13544 else if (reg->smax_value < sval) 13545 return 0; 13546 break; 13547 case BPF_JLE: 13548 if (reg->umax_value <= val) 13549 return 1; 13550 else if (reg->umin_value > val) 13551 return 0; 13552 break; 13553 case BPF_JSLE: 13554 if (reg->smax_value <= sval) 13555 return 1; 13556 else if (reg->smin_value > sval) 13557 return 0; 13558 break; 13559 } 13560 13561 return -1; 13562 } 13563 13564 /* compute branch direction of the expression "if (reg opcode val) goto target;" 13565 * and return: 13566 * 1 - branch will be taken and "goto target" will be executed 13567 * 0 - branch will not be taken and fall-through to next insn 13568 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 13569 * range [0,10] 13570 */ 13571 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 13572 bool is_jmp32) 13573 { 13574 if (__is_pointer_value(false, reg)) { 13575 if (!reg_not_null(reg)) 13576 return -1; 13577 13578 /* If pointer is valid tests against zero will fail so we can 13579 * use this to direct branch taken. 13580 */ 13581 if (val != 0) 13582 return -1; 13583 13584 switch (opcode) { 13585 case BPF_JEQ: 13586 return 0; 13587 case BPF_JNE: 13588 return 1; 13589 default: 13590 return -1; 13591 } 13592 } 13593 13594 if (is_jmp32) 13595 return is_branch32_taken(reg, val, opcode); 13596 return is_branch64_taken(reg, val, opcode); 13597 } 13598 13599 static int flip_opcode(u32 opcode) 13600 { 13601 /* How can we transform "a <op> b" into "b <op> a"? */ 13602 static const u8 opcode_flip[16] = { 13603 /* these stay the same */ 13604 [BPF_JEQ >> 4] = BPF_JEQ, 13605 [BPF_JNE >> 4] = BPF_JNE, 13606 [BPF_JSET >> 4] = BPF_JSET, 13607 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 13608 [BPF_JGE >> 4] = BPF_JLE, 13609 [BPF_JGT >> 4] = BPF_JLT, 13610 [BPF_JLE >> 4] = BPF_JGE, 13611 [BPF_JLT >> 4] = BPF_JGT, 13612 [BPF_JSGE >> 4] = BPF_JSLE, 13613 [BPF_JSGT >> 4] = BPF_JSLT, 13614 [BPF_JSLE >> 4] = BPF_JSGE, 13615 [BPF_JSLT >> 4] = BPF_JSGT 13616 }; 13617 return opcode_flip[opcode >> 4]; 13618 } 13619 13620 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 13621 struct bpf_reg_state *src_reg, 13622 u8 opcode) 13623 { 13624 struct bpf_reg_state *pkt; 13625 13626 if (src_reg->type == PTR_TO_PACKET_END) { 13627 pkt = dst_reg; 13628 } else if (dst_reg->type == PTR_TO_PACKET_END) { 13629 pkt = src_reg; 13630 opcode = flip_opcode(opcode); 13631 } else { 13632 return -1; 13633 } 13634 13635 if (pkt->range >= 0) 13636 return -1; 13637 13638 switch (opcode) { 13639 case BPF_JLE: 13640 /* pkt <= pkt_end */ 13641 fallthrough; 13642 case BPF_JGT: 13643 /* pkt > pkt_end */ 13644 if (pkt->range == BEYOND_PKT_END) 13645 /* pkt has at last one extra byte beyond pkt_end */ 13646 return opcode == BPF_JGT; 13647 break; 13648 case BPF_JLT: 13649 /* pkt < pkt_end */ 13650 fallthrough; 13651 case BPF_JGE: 13652 /* pkt >= pkt_end */ 13653 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 13654 return opcode == BPF_JGE; 13655 break; 13656 } 13657 return -1; 13658 } 13659 13660 /* Adjusts the register min/max values in the case that the dst_reg is the 13661 * variable register that we are working on, and src_reg is a constant or we're 13662 * simply doing a BPF_K check. 13663 * In JEQ/JNE cases we also adjust the var_off values. 13664 */ 13665 static void reg_set_min_max(struct bpf_reg_state *true_reg, 13666 struct bpf_reg_state *false_reg, 13667 u64 val, u32 val32, 13668 u8 opcode, bool is_jmp32) 13669 { 13670 struct tnum false_32off = tnum_subreg(false_reg->var_off); 13671 struct tnum false_64off = false_reg->var_off; 13672 struct tnum true_32off = tnum_subreg(true_reg->var_off); 13673 struct tnum true_64off = true_reg->var_off; 13674 s64 sval = (s64)val; 13675 s32 sval32 = (s32)val32; 13676 13677 /* If the dst_reg is a pointer, we can't learn anything about its 13678 * variable offset from the compare (unless src_reg were a pointer into 13679 * the same object, but we don't bother with that. 13680 * Since false_reg and true_reg have the same type by construction, we 13681 * only need to check one of them for pointerness. 13682 */ 13683 if (__is_pointer_value(false, false_reg)) 13684 return; 13685 13686 switch (opcode) { 13687 /* JEQ/JNE comparison doesn't change the register equivalence. 13688 * 13689 * r1 = r2; 13690 * if (r1 == 42) goto label; 13691 * ... 13692 * label: // here both r1 and r2 are known to be 42. 13693 * 13694 * Hence when marking register as known preserve it's ID. 13695 */ 13696 case BPF_JEQ: 13697 if (is_jmp32) { 13698 __mark_reg32_known(true_reg, val32); 13699 true_32off = tnum_subreg(true_reg->var_off); 13700 } else { 13701 ___mark_reg_known(true_reg, val); 13702 true_64off = true_reg->var_off; 13703 } 13704 break; 13705 case BPF_JNE: 13706 if (is_jmp32) { 13707 __mark_reg32_known(false_reg, val32); 13708 false_32off = tnum_subreg(false_reg->var_off); 13709 } else { 13710 ___mark_reg_known(false_reg, val); 13711 false_64off = false_reg->var_off; 13712 } 13713 break; 13714 case BPF_JSET: 13715 if (is_jmp32) { 13716 false_32off = tnum_and(false_32off, tnum_const(~val32)); 13717 if (is_power_of_2(val32)) 13718 true_32off = tnum_or(true_32off, 13719 tnum_const(val32)); 13720 } else { 13721 false_64off = tnum_and(false_64off, tnum_const(~val)); 13722 if (is_power_of_2(val)) 13723 true_64off = tnum_or(true_64off, 13724 tnum_const(val)); 13725 } 13726 break; 13727 case BPF_JGE: 13728 case BPF_JGT: 13729 { 13730 if (is_jmp32) { 13731 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 13732 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 13733 13734 false_reg->u32_max_value = min(false_reg->u32_max_value, 13735 false_umax); 13736 true_reg->u32_min_value = max(true_reg->u32_min_value, 13737 true_umin); 13738 } else { 13739 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 13740 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 13741 13742 false_reg->umax_value = min(false_reg->umax_value, false_umax); 13743 true_reg->umin_value = max(true_reg->umin_value, true_umin); 13744 } 13745 break; 13746 } 13747 case BPF_JSGE: 13748 case BPF_JSGT: 13749 { 13750 if (is_jmp32) { 13751 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 13752 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 13753 13754 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 13755 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 13756 } else { 13757 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 13758 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 13759 13760 false_reg->smax_value = min(false_reg->smax_value, false_smax); 13761 true_reg->smin_value = max(true_reg->smin_value, true_smin); 13762 } 13763 break; 13764 } 13765 case BPF_JLE: 13766 case BPF_JLT: 13767 { 13768 if (is_jmp32) { 13769 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 13770 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 13771 13772 false_reg->u32_min_value = max(false_reg->u32_min_value, 13773 false_umin); 13774 true_reg->u32_max_value = min(true_reg->u32_max_value, 13775 true_umax); 13776 } else { 13777 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 13778 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 13779 13780 false_reg->umin_value = max(false_reg->umin_value, false_umin); 13781 true_reg->umax_value = min(true_reg->umax_value, true_umax); 13782 } 13783 break; 13784 } 13785 case BPF_JSLE: 13786 case BPF_JSLT: 13787 { 13788 if (is_jmp32) { 13789 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 13790 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 13791 13792 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 13793 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 13794 } else { 13795 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 13796 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 13797 13798 false_reg->smin_value = max(false_reg->smin_value, false_smin); 13799 true_reg->smax_value = min(true_reg->smax_value, true_smax); 13800 } 13801 break; 13802 } 13803 default: 13804 return; 13805 } 13806 13807 if (is_jmp32) { 13808 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 13809 tnum_subreg(false_32off)); 13810 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 13811 tnum_subreg(true_32off)); 13812 __reg_combine_32_into_64(false_reg); 13813 __reg_combine_32_into_64(true_reg); 13814 } else { 13815 false_reg->var_off = false_64off; 13816 true_reg->var_off = true_64off; 13817 __reg_combine_64_into_32(false_reg); 13818 __reg_combine_64_into_32(true_reg); 13819 } 13820 } 13821 13822 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 13823 * the variable reg. 13824 */ 13825 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 13826 struct bpf_reg_state *false_reg, 13827 u64 val, u32 val32, 13828 u8 opcode, bool is_jmp32) 13829 { 13830 opcode = flip_opcode(opcode); 13831 /* This uses zero as "not present in table"; luckily the zero opcode, 13832 * BPF_JA, can't get here. 13833 */ 13834 if (opcode) 13835 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 13836 } 13837 13838 /* Regs are known to be equal, so intersect their min/max/var_off */ 13839 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 13840 struct bpf_reg_state *dst_reg) 13841 { 13842 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 13843 dst_reg->umin_value); 13844 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 13845 dst_reg->umax_value); 13846 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 13847 dst_reg->smin_value); 13848 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 13849 dst_reg->smax_value); 13850 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 13851 dst_reg->var_off); 13852 reg_bounds_sync(src_reg); 13853 reg_bounds_sync(dst_reg); 13854 } 13855 13856 static void reg_combine_min_max(struct bpf_reg_state *true_src, 13857 struct bpf_reg_state *true_dst, 13858 struct bpf_reg_state *false_src, 13859 struct bpf_reg_state *false_dst, 13860 u8 opcode) 13861 { 13862 switch (opcode) { 13863 case BPF_JEQ: 13864 __reg_combine_min_max(true_src, true_dst); 13865 break; 13866 case BPF_JNE: 13867 __reg_combine_min_max(false_src, false_dst); 13868 break; 13869 } 13870 } 13871 13872 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 13873 struct bpf_reg_state *reg, u32 id, 13874 bool is_null) 13875 { 13876 if (type_may_be_null(reg->type) && reg->id == id && 13877 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 13878 /* Old offset (both fixed and variable parts) should have been 13879 * known-zero, because we don't allow pointer arithmetic on 13880 * pointers that might be NULL. If we see this happening, don't 13881 * convert the register. 13882 * 13883 * But in some cases, some helpers that return local kptrs 13884 * advance offset for the returned pointer. In those cases, it 13885 * is fine to expect to see reg->off. 13886 */ 13887 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 13888 return; 13889 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 13890 WARN_ON_ONCE(reg->off)) 13891 return; 13892 13893 if (is_null) { 13894 reg->type = SCALAR_VALUE; 13895 /* We don't need id and ref_obj_id from this point 13896 * onwards anymore, thus we should better reset it, 13897 * so that state pruning has chances to take effect. 13898 */ 13899 reg->id = 0; 13900 reg->ref_obj_id = 0; 13901 13902 return; 13903 } 13904 13905 mark_ptr_not_null_reg(reg); 13906 13907 if (!reg_may_point_to_spin_lock(reg)) { 13908 /* For not-NULL ptr, reg->ref_obj_id will be reset 13909 * in release_reference(). 13910 * 13911 * reg->id is still used by spin_lock ptr. Other 13912 * than spin_lock ptr type, reg->id can be reset. 13913 */ 13914 reg->id = 0; 13915 } 13916 } 13917 } 13918 13919 /* The logic is similar to find_good_pkt_pointers(), both could eventually 13920 * be folded together at some point. 13921 */ 13922 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 13923 bool is_null) 13924 { 13925 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13926 struct bpf_reg_state *regs = state->regs, *reg; 13927 u32 ref_obj_id = regs[regno].ref_obj_id; 13928 u32 id = regs[regno].id; 13929 13930 if (ref_obj_id && ref_obj_id == id && is_null) 13931 /* regs[regno] is in the " == NULL" branch. 13932 * No one could have freed the reference state before 13933 * doing the NULL check. 13934 */ 13935 WARN_ON_ONCE(release_reference_state(state, id)); 13936 13937 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13938 mark_ptr_or_null_reg(state, reg, id, is_null); 13939 })); 13940 } 13941 13942 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 13943 struct bpf_reg_state *dst_reg, 13944 struct bpf_reg_state *src_reg, 13945 struct bpf_verifier_state *this_branch, 13946 struct bpf_verifier_state *other_branch) 13947 { 13948 if (BPF_SRC(insn->code) != BPF_X) 13949 return false; 13950 13951 /* Pointers are always 64-bit. */ 13952 if (BPF_CLASS(insn->code) == BPF_JMP32) 13953 return false; 13954 13955 switch (BPF_OP(insn->code)) { 13956 case BPF_JGT: 13957 if ((dst_reg->type == PTR_TO_PACKET && 13958 src_reg->type == PTR_TO_PACKET_END) || 13959 (dst_reg->type == PTR_TO_PACKET_META && 13960 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13961 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 13962 find_good_pkt_pointers(this_branch, dst_reg, 13963 dst_reg->type, false); 13964 mark_pkt_end(other_branch, insn->dst_reg, true); 13965 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13966 src_reg->type == PTR_TO_PACKET) || 13967 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13968 src_reg->type == PTR_TO_PACKET_META)) { 13969 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 13970 find_good_pkt_pointers(other_branch, src_reg, 13971 src_reg->type, true); 13972 mark_pkt_end(this_branch, insn->src_reg, false); 13973 } else { 13974 return false; 13975 } 13976 break; 13977 case BPF_JLT: 13978 if ((dst_reg->type == PTR_TO_PACKET && 13979 src_reg->type == PTR_TO_PACKET_END) || 13980 (dst_reg->type == PTR_TO_PACKET_META && 13981 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13982 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 13983 find_good_pkt_pointers(other_branch, dst_reg, 13984 dst_reg->type, true); 13985 mark_pkt_end(this_branch, insn->dst_reg, false); 13986 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13987 src_reg->type == PTR_TO_PACKET) || 13988 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13989 src_reg->type == PTR_TO_PACKET_META)) { 13990 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 13991 find_good_pkt_pointers(this_branch, src_reg, 13992 src_reg->type, false); 13993 mark_pkt_end(other_branch, insn->src_reg, true); 13994 } else { 13995 return false; 13996 } 13997 break; 13998 case BPF_JGE: 13999 if ((dst_reg->type == PTR_TO_PACKET && 14000 src_reg->type == PTR_TO_PACKET_END) || 14001 (dst_reg->type == PTR_TO_PACKET_META && 14002 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14003 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 14004 find_good_pkt_pointers(this_branch, dst_reg, 14005 dst_reg->type, true); 14006 mark_pkt_end(other_branch, insn->dst_reg, false); 14007 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14008 src_reg->type == PTR_TO_PACKET) || 14009 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14010 src_reg->type == PTR_TO_PACKET_META)) { 14011 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 14012 find_good_pkt_pointers(other_branch, src_reg, 14013 src_reg->type, false); 14014 mark_pkt_end(this_branch, insn->src_reg, true); 14015 } else { 14016 return false; 14017 } 14018 break; 14019 case BPF_JLE: 14020 if ((dst_reg->type == PTR_TO_PACKET && 14021 src_reg->type == PTR_TO_PACKET_END) || 14022 (dst_reg->type == PTR_TO_PACKET_META && 14023 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14024 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 14025 find_good_pkt_pointers(other_branch, dst_reg, 14026 dst_reg->type, false); 14027 mark_pkt_end(this_branch, insn->dst_reg, true); 14028 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14029 src_reg->type == PTR_TO_PACKET) || 14030 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14031 src_reg->type == PTR_TO_PACKET_META)) { 14032 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 14033 find_good_pkt_pointers(this_branch, src_reg, 14034 src_reg->type, true); 14035 mark_pkt_end(other_branch, insn->src_reg, false); 14036 } else { 14037 return false; 14038 } 14039 break; 14040 default: 14041 return false; 14042 } 14043 14044 return true; 14045 } 14046 14047 static void find_equal_scalars(struct bpf_verifier_state *vstate, 14048 struct bpf_reg_state *known_reg) 14049 { 14050 struct bpf_func_state *state; 14051 struct bpf_reg_state *reg; 14052 14053 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14054 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 14055 copy_register_state(reg, known_reg); 14056 })); 14057 } 14058 14059 static int check_cond_jmp_op(struct bpf_verifier_env *env, 14060 struct bpf_insn *insn, int *insn_idx) 14061 { 14062 struct bpf_verifier_state *this_branch = env->cur_state; 14063 struct bpf_verifier_state *other_branch; 14064 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 14065 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 14066 struct bpf_reg_state *eq_branch_regs; 14067 u8 opcode = BPF_OP(insn->code); 14068 bool is_jmp32; 14069 int pred = -1; 14070 int err; 14071 14072 /* Only conditional jumps are expected to reach here. */ 14073 if (opcode == BPF_JA || opcode > BPF_JSLE) { 14074 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 14075 return -EINVAL; 14076 } 14077 14078 /* check src2 operand */ 14079 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14080 if (err) 14081 return err; 14082 14083 dst_reg = ®s[insn->dst_reg]; 14084 if (BPF_SRC(insn->code) == BPF_X) { 14085 if (insn->imm != 0) { 14086 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14087 return -EINVAL; 14088 } 14089 14090 /* check src1 operand */ 14091 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14092 if (err) 14093 return err; 14094 14095 src_reg = ®s[insn->src_reg]; 14096 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 14097 is_pointer_value(env, insn->src_reg)) { 14098 verbose(env, "R%d pointer comparison prohibited\n", 14099 insn->src_reg); 14100 return -EACCES; 14101 } 14102 } else { 14103 if (insn->src_reg != BPF_REG_0) { 14104 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14105 return -EINVAL; 14106 } 14107 } 14108 14109 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 14110 14111 if (BPF_SRC(insn->code) == BPF_K) { 14112 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 14113 } else if (src_reg->type == SCALAR_VALUE && 14114 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 14115 pred = is_branch_taken(dst_reg, 14116 tnum_subreg(src_reg->var_off).value, 14117 opcode, 14118 is_jmp32); 14119 } else if (src_reg->type == SCALAR_VALUE && 14120 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 14121 pred = is_branch_taken(dst_reg, 14122 src_reg->var_off.value, 14123 opcode, 14124 is_jmp32); 14125 } else if (dst_reg->type == SCALAR_VALUE && 14126 is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) { 14127 pred = is_branch_taken(src_reg, 14128 tnum_subreg(dst_reg->var_off).value, 14129 flip_opcode(opcode), 14130 is_jmp32); 14131 } else if (dst_reg->type == SCALAR_VALUE && 14132 !is_jmp32 && tnum_is_const(dst_reg->var_off)) { 14133 pred = is_branch_taken(src_reg, 14134 dst_reg->var_off.value, 14135 flip_opcode(opcode), 14136 is_jmp32); 14137 } else if (reg_is_pkt_pointer_any(dst_reg) && 14138 reg_is_pkt_pointer_any(src_reg) && 14139 !is_jmp32) { 14140 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 14141 } 14142 14143 if (pred >= 0) { 14144 /* If we get here with a dst_reg pointer type it is because 14145 * above is_branch_taken() special cased the 0 comparison. 14146 */ 14147 if (!__is_pointer_value(false, dst_reg)) 14148 err = mark_chain_precision(env, insn->dst_reg); 14149 if (BPF_SRC(insn->code) == BPF_X && !err && 14150 !__is_pointer_value(false, src_reg)) 14151 err = mark_chain_precision(env, insn->src_reg); 14152 if (err) 14153 return err; 14154 } 14155 14156 if (pred == 1) { 14157 /* Only follow the goto, ignore fall-through. If needed, push 14158 * the fall-through branch for simulation under speculative 14159 * execution. 14160 */ 14161 if (!env->bypass_spec_v1 && 14162 !sanitize_speculative_path(env, insn, *insn_idx + 1, 14163 *insn_idx)) 14164 return -EFAULT; 14165 if (env->log.level & BPF_LOG_LEVEL) 14166 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14167 *insn_idx += insn->off; 14168 return 0; 14169 } else if (pred == 0) { 14170 /* Only follow the fall-through branch, since that's where the 14171 * program will go. If needed, push the goto branch for 14172 * simulation under speculative execution. 14173 */ 14174 if (!env->bypass_spec_v1 && 14175 !sanitize_speculative_path(env, insn, 14176 *insn_idx + insn->off + 1, 14177 *insn_idx)) 14178 return -EFAULT; 14179 if (env->log.level & BPF_LOG_LEVEL) 14180 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14181 return 0; 14182 } 14183 14184 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 14185 false); 14186 if (!other_branch) 14187 return -EFAULT; 14188 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 14189 14190 /* detect if we are comparing against a constant value so we can adjust 14191 * our min/max values for our dst register. 14192 * this is only legit if both are scalars (or pointers to the same 14193 * object, I suppose, see the PTR_MAYBE_NULL related if block below), 14194 * because otherwise the different base pointers mean the offsets aren't 14195 * comparable. 14196 */ 14197 if (BPF_SRC(insn->code) == BPF_X) { 14198 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 14199 14200 if (dst_reg->type == SCALAR_VALUE && 14201 src_reg->type == SCALAR_VALUE) { 14202 if (tnum_is_const(src_reg->var_off) || 14203 (is_jmp32 && 14204 tnum_is_const(tnum_subreg(src_reg->var_off)))) 14205 reg_set_min_max(&other_branch_regs[insn->dst_reg], 14206 dst_reg, 14207 src_reg->var_off.value, 14208 tnum_subreg(src_reg->var_off).value, 14209 opcode, is_jmp32); 14210 else if (tnum_is_const(dst_reg->var_off) || 14211 (is_jmp32 && 14212 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 14213 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 14214 src_reg, 14215 dst_reg->var_off.value, 14216 tnum_subreg(dst_reg->var_off).value, 14217 opcode, is_jmp32); 14218 else if (!is_jmp32 && 14219 (opcode == BPF_JEQ || opcode == BPF_JNE)) 14220 /* Comparing for equality, we can combine knowledge */ 14221 reg_combine_min_max(&other_branch_regs[insn->src_reg], 14222 &other_branch_regs[insn->dst_reg], 14223 src_reg, dst_reg, opcode); 14224 if (src_reg->id && 14225 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 14226 find_equal_scalars(this_branch, src_reg); 14227 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 14228 } 14229 14230 } 14231 } else if (dst_reg->type == SCALAR_VALUE) { 14232 reg_set_min_max(&other_branch_regs[insn->dst_reg], 14233 dst_reg, insn->imm, (u32)insn->imm, 14234 opcode, is_jmp32); 14235 } 14236 14237 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 14238 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 14239 find_equal_scalars(this_branch, dst_reg); 14240 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 14241 } 14242 14243 /* if one pointer register is compared to another pointer 14244 * register check if PTR_MAYBE_NULL could be lifted. 14245 * E.g. register A - maybe null 14246 * register B - not null 14247 * for JNE A, B, ... - A is not null in the false branch; 14248 * for JEQ A, B, ... - A is not null in the true branch. 14249 * 14250 * Since PTR_TO_BTF_ID points to a kernel struct that does 14251 * not need to be null checked by the BPF program, i.e., 14252 * could be null even without PTR_MAYBE_NULL marking, so 14253 * only propagate nullness when neither reg is that type. 14254 */ 14255 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 14256 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 14257 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 14258 base_type(src_reg->type) != PTR_TO_BTF_ID && 14259 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 14260 eq_branch_regs = NULL; 14261 switch (opcode) { 14262 case BPF_JEQ: 14263 eq_branch_regs = other_branch_regs; 14264 break; 14265 case BPF_JNE: 14266 eq_branch_regs = regs; 14267 break; 14268 default: 14269 /* do nothing */ 14270 break; 14271 } 14272 if (eq_branch_regs) { 14273 if (type_may_be_null(src_reg->type)) 14274 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 14275 else 14276 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 14277 } 14278 } 14279 14280 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 14281 * NOTE: these optimizations below are related with pointer comparison 14282 * which will never be JMP32. 14283 */ 14284 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 14285 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 14286 type_may_be_null(dst_reg->type)) { 14287 /* Mark all identical registers in each branch as either 14288 * safe or unknown depending R == 0 or R != 0 conditional. 14289 */ 14290 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 14291 opcode == BPF_JNE); 14292 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 14293 opcode == BPF_JEQ); 14294 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 14295 this_branch, other_branch) && 14296 is_pointer_value(env, insn->dst_reg)) { 14297 verbose(env, "R%d pointer comparison prohibited\n", 14298 insn->dst_reg); 14299 return -EACCES; 14300 } 14301 if (env->log.level & BPF_LOG_LEVEL) 14302 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14303 return 0; 14304 } 14305 14306 /* verify BPF_LD_IMM64 instruction */ 14307 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 14308 { 14309 struct bpf_insn_aux_data *aux = cur_aux(env); 14310 struct bpf_reg_state *regs = cur_regs(env); 14311 struct bpf_reg_state *dst_reg; 14312 struct bpf_map *map; 14313 int err; 14314 14315 if (BPF_SIZE(insn->code) != BPF_DW) { 14316 verbose(env, "invalid BPF_LD_IMM insn\n"); 14317 return -EINVAL; 14318 } 14319 if (insn->off != 0) { 14320 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 14321 return -EINVAL; 14322 } 14323 14324 err = check_reg_arg(env, insn->dst_reg, DST_OP); 14325 if (err) 14326 return err; 14327 14328 dst_reg = ®s[insn->dst_reg]; 14329 if (insn->src_reg == 0) { 14330 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 14331 14332 dst_reg->type = SCALAR_VALUE; 14333 __mark_reg_known(®s[insn->dst_reg], imm); 14334 return 0; 14335 } 14336 14337 /* All special src_reg cases are listed below. From this point onwards 14338 * we either succeed and assign a corresponding dst_reg->type after 14339 * zeroing the offset, or fail and reject the program. 14340 */ 14341 mark_reg_known_zero(env, regs, insn->dst_reg); 14342 14343 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 14344 dst_reg->type = aux->btf_var.reg_type; 14345 switch (base_type(dst_reg->type)) { 14346 case PTR_TO_MEM: 14347 dst_reg->mem_size = aux->btf_var.mem_size; 14348 break; 14349 case PTR_TO_BTF_ID: 14350 dst_reg->btf = aux->btf_var.btf; 14351 dst_reg->btf_id = aux->btf_var.btf_id; 14352 break; 14353 default: 14354 verbose(env, "bpf verifier is misconfigured\n"); 14355 return -EFAULT; 14356 } 14357 return 0; 14358 } 14359 14360 if (insn->src_reg == BPF_PSEUDO_FUNC) { 14361 struct bpf_prog_aux *aux = env->prog->aux; 14362 u32 subprogno = find_subprog(env, 14363 env->insn_idx + insn->imm + 1); 14364 14365 if (!aux->func_info) { 14366 verbose(env, "missing btf func_info\n"); 14367 return -EINVAL; 14368 } 14369 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 14370 verbose(env, "callback function not static\n"); 14371 return -EINVAL; 14372 } 14373 14374 dst_reg->type = PTR_TO_FUNC; 14375 dst_reg->subprogno = subprogno; 14376 return 0; 14377 } 14378 14379 map = env->used_maps[aux->map_index]; 14380 dst_reg->map_ptr = map; 14381 14382 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 14383 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 14384 dst_reg->type = PTR_TO_MAP_VALUE; 14385 dst_reg->off = aux->map_off; 14386 WARN_ON_ONCE(map->max_entries != 1); 14387 /* We want reg->id to be same (0) as map_value is not distinct */ 14388 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 14389 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 14390 dst_reg->type = CONST_PTR_TO_MAP; 14391 } else { 14392 verbose(env, "bpf verifier is misconfigured\n"); 14393 return -EINVAL; 14394 } 14395 14396 return 0; 14397 } 14398 14399 static bool may_access_skb(enum bpf_prog_type type) 14400 { 14401 switch (type) { 14402 case BPF_PROG_TYPE_SOCKET_FILTER: 14403 case BPF_PROG_TYPE_SCHED_CLS: 14404 case BPF_PROG_TYPE_SCHED_ACT: 14405 return true; 14406 default: 14407 return false; 14408 } 14409 } 14410 14411 /* verify safety of LD_ABS|LD_IND instructions: 14412 * - they can only appear in the programs where ctx == skb 14413 * - since they are wrappers of function calls, they scratch R1-R5 registers, 14414 * preserve R6-R9, and store return value into R0 14415 * 14416 * Implicit input: 14417 * ctx == skb == R6 == CTX 14418 * 14419 * Explicit input: 14420 * SRC == any register 14421 * IMM == 32-bit immediate 14422 * 14423 * Output: 14424 * R0 - 8/16/32-bit skb data converted to cpu endianness 14425 */ 14426 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 14427 { 14428 struct bpf_reg_state *regs = cur_regs(env); 14429 static const int ctx_reg = BPF_REG_6; 14430 u8 mode = BPF_MODE(insn->code); 14431 int i, err; 14432 14433 if (!may_access_skb(resolve_prog_type(env->prog))) { 14434 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 14435 return -EINVAL; 14436 } 14437 14438 if (!env->ops->gen_ld_abs) { 14439 verbose(env, "bpf verifier is misconfigured\n"); 14440 return -EINVAL; 14441 } 14442 14443 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 14444 BPF_SIZE(insn->code) == BPF_DW || 14445 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 14446 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 14447 return -EINVAL; 14448 } 14449 14450 /* check whether implicit source operand (register R6) is readable */ 14451 err = check_reg_arg(env, ctx_reg, SRC_OP); 14452 if (err) 14453 return err; 14454 14455 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 14456 * gen_ld_abs() may terminate the program at runtime, leading to 14457 * reference leak. 14458 */ 14459 err = check_reference_leak(env); 14460 if (err) { 14461 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 14462 return err; 14463 } 14464 14465 if (env->cur_state->active_lock.ptr) { 14466 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 14467 return -EINVAL; 14468 } 14469 14470 if (env->cur_state->active_rcu_lock) { 14471 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 14472 return -EINVAL; 14473 } 14474 14475 if (regs[ctx_reg].type != PTR_TO_CTX) { 14476 verbose(env, 14477 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 14478 return -EINVAL; 14479 } 14480 14481 if (mode == BPF_IND) { 14482 /* check explicit source operand */ 14483 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14484 if (err) 14485 return err; 14486 } 14487 14488 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 14489 if (err < 0) 14490 return err; 14491 14492 /* reset caller saved regs to unreadable */ 14493 for (i = 0; i < CALLER_SAVED_REGS; i++) { 14494 mark_reg_not_init(env, regs, caller_saved[i]); 14495 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 14496 } 14497 14498 /* mark destination R0 register as readable, since it contains 14499 * the value fetched from the packet. 14500 * Already marked as written above. 14501 */ 14502 mark_reg_unknown(env, regs, BPF_REG_0); 14503 /* ld_abs load up to 32-bit skb data. */ 14504 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 14505 return 0; 14506 } 14507 14508 static int check_return_code(struct bpf_verifier_env *env) 14509 { 14510 struct tnum enforce_attach_type_range = tnum_unknown; 14511 const struct bpf_prog *prog = env->prog; 14512 struct bpf_reg_state *reg; 14513 struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0); 14514 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 14515 int err; 14516 struct bpf_func_state *frame = env->cur_state->frame[0]; 14517 const bool is_subprog = frame->subprogno; 14518 14519 /* LSM and struct_ops func-ptr's return type could be "void" */ 14520 if (!is_subprog) { 14521 switch (prog_type) { 14522 case BPF_PROG_TYPE_LSM: 14523 if (prog->expected_attach_type == BPF_LSM_CGROUP) 14524 /* See below, can be 0 or 0-1 depending on hook. */ 14525 break; 14526 fallthrough; 14527 case BPF_PROG_TYPE_STRUCT_OPS: 14528 if (!prog->aux->attach_func_proto->type) 14529 return 0; 14530 break; 14531 default: 14532 break; 14533 } 14534 } 14535 14536 /* eBPF calling convention is such that R0 is used 14537 * to return the value from eBPF program. 14538 * Make sure that it's readable at this time 14539 * of bpf_exit, which means that program wrote 14540 * something into it earlier 14541 */ 14542 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 14543 if (err) 14544 return err; 14545 14546 if (is_pointer_value(env, BPF_REG_0)) { 14547 verbose(env, "R0 leaks addr as return value\n"); 14548 return -EACCES; 14549 } 14550 14551 reg = cur_regs(env) + BPF_REG_0; 14552 14553 if (frame->in_async_callback_fn) { 14554 /* enforce return zero from async callbacks like timer */ 14555 if (reg->type != SCALAR_VALUE) { 14556 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 14557 reg_type_str(env, reg->type)); 14558 return -EINVAL; 14559 } 14560 14561 if (!tnum_in(const_0, reg->var_off)) { 14562 verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0"); 14563 return -EINVAL; 14564 } 14565 return 0; 14566 } 14567 14568 if (is_subprog) { 14569 if (reg->type != SCALAR_VALUE) { 14570 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 14571 reg_type_str(env, reg->type)); 14572 return -EINVAL; 14573 } 14574 return 0; 14575 } 14576 14577 switch (prog_type) { 14578 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 14579 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 14580 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 14581 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 14582 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 14583 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 14584 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 14585 range = tnum_range(1, 1); 14586 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 14587 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 14588 range = tnum_range(0, 3); 14589 break; 14590 case BPF_PROG_TYPE_CGROUP_SKB: 14591 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 14592 range = tnum_range(0, 3); 14593 enforce_attach_type_range = tnum_range(2, 3); 14594 } 14595 break; 14596 case BPF_PROG_TYPE_CGROUP_SOCK: 14597 case BPF_PROG_TYPE_SOCK_OPS: 14598 case BPF_PROG_TYPE_CGROUP_DEVICE: 14599 case BPF_PROG_TYPE_CGROUP_SYSCTL: 14600 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 14601 break; 14602 case BPF_PROG_TYPE_RAW_TRACEPOINT: 14603 if (!env->prog->aux->attach_btf_id) 14604 return 0; 14605 range = tnum_const(0); 14606 break; 14607 case BPF_PROG_TYPE_TRACING: 14608 switch (env->prog->expected_attach_type) { 14609 case BPF_TRACE_FENTRY: 14610 case BPF_TRACE_FEXIT: 14611 range = tnum_const(0); 14612 break; 14613 case BPF_TRACE_RAW_TP: 14614 case BPF_MODIFY_RETURN: 14615 return 0; 14616 case BPF_TRACE_ITER: 14617 break; 14618 default: 14619 return -ENOTSUPP; 14620 } 14621 break; 14622 case BPF_PROG_TYPE_SK_LOOKUP: 14623 range = tnum_range(SK_DROP, SK_PASS); 14624 break; 14625 14626 case BPF_PROG_TYPE_LSM: 14627 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 14628 /* Regular BPF_PROG_TYPE_LSM programs can return 14629 * any value. 14630 */ 14631 return 0; 14632 } 14633 if (!env->prog->aux->attach_func_proto->type) { 14634 /* Make sure programs that attach to void 14635 * hooks don't try to modify return value. 14636 */ 14637 range = tnum_range(1, 1); 14638 } 14639 break; 14640 14641 case BPF_PROG_TYPE_NETFILTER: 14642 range = tnum_range(NF_DROP, NF_ACCEPT); 14643 break; 14644 case BPF_PROG_TYPE_EXT: 14645 /* freplace program can return anything as its return value 14646 * depends on the to-be-replaced kernel func or bpf program. 14647 */ 14648 default: 14649 return 0; 14650 } 14651 14652 if (reg->type != SCALAR_VALUE) { 14653 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 14654 reg_type_str(env, reg->type)); 14655 return -EINVAL; 14656 } 14657 14658 if (!tnum_in(range, reg->var_off)) { 14659 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 14660 if (prog->expected_attach_type == BPF_LSM_CGROUP && 14661 prog_type == BPF_PROG_TYPE_LSM && 14662 !prog->aux->attach_func_proto->type) 14663 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 14664 return -EINVAL; 14665 } 14666 14667 if (!tnum_is_unknown(enforce_attach_type_range) && 14668 tnum_in(enforce_attach_type_range, reg->var_off)) 14669 env->prog->enforce_expected_attach_type = 1; 14670 return 0; 14671 } 14672 14673 /* non-recursive DFS pseudo code 14674 * 1 procedure DFS-iterative(G,v): 14675 * 2 label v as discovered 14676 * 3 let S be a stack 14677 * 4 S.push(v) 14678 * 5 while S is not empty 14679 * 6 t <- S.peek() 14680 * 7 if t is what we're looking for: 14681 * 8 return t 14682 * 9 for all edges e in G.adjacentEdges(t) do 14683 * 10 if edge e is already labelled 14684 * 11 continue with the next edge 14685 * 12 w <- G.adjacentVertex(t,e) 14686 * 13 if vertex w is not discovered and not explored 14687 * 14 label e as tree-edge 14688 * 15 label w as discovered 14689 * 16 S.push(w) 14690 * 17 continue at 5 14691 * 18 else if vertex w is discovered 14692 * 19 label e as back-edge 14693 * 20 else 14694 * 21 // vertex w is explored 14695 * 22 label e as forward- or cross-edge 14696 * 23 label t as explored 14697 * 24 S.pop() 14698 * 14699 * convention: 14700 * 0x10 - discovered 14701 * 0x11 - discovered and fall-through edge labelled 14702 * 0x12 - discovered and fall-through and branch edges labelled 14703 * 0x20 - explored 14704 */ 14705 14706 enum { 14707 DISCOVERED = 0x10, 14708 EXPLORED = 0x20, 14709 FALLTHROUGH = 1, 14710 BRANCH = 2, 14711 }; 14712 14713 static u32 state_htab_size(struct bpf_verifier_env *env) 14714 { 14715 return env->prog->len; 14716 } 14717 14718 static struct bpf_verifier_state_list **explored_state( 14719 struct bpf_verifier_env *env, 14720 int idx) 14721 { 14722 struct bpf_verifier_state *cur = env->cur_state; 14723 struct bpf_func_state *state = cur->frame[cur->curframe]; 14724 14725 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 14726 } 14727 14728 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 14729 { 14730 env->insn_aux_data[idx].prune_point = true; 14731 } 14732 14733 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 14734 { 14735 return env->insn_aux_data[insn_idx].prune_point; 14736 } 14737 14738 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 14739 { 14740 env->insn_aux_data[idx].force_checkpoint = true; 14741 } 14742 14743 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 14744 { 14745 return env->insn_aux_data[insn_idx].force_checkpoint; 14746 } 14747 14748 14749 enum { 14750 DONE_EXPLORING = 0, 14751 KEEP_EXPLORING = 1, 14752 }; 14753 14754 /* t, w, e - match pseudo-code above: 14755 * t - index of current instruction 14756 * w - next instruction 14757 * e - edge 14758 */ 14759 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 14760 { 14761 int *insn_stack = env->cfg.insn_stack; 14762 int *insn_state = env->cfg.insn_state; 14763 14764 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 14765 return DONE_EXPLORING; 14766 14767 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 14768 return DONE_EXPLORING; 14769 14770 if (w < 0 || w >= env->prog->len) { 14771 verbose_linfo(env, t, "%d: ", t); 14772 verbose(env, "jump out of range from insn %d to %d\n", t, w); 14773 return -EINVAL; 14774 } 14775 14776 if (e == BRANCH) { 14777 /* mark branch target for state pruning */ 14778 mark_prune_point(env, w); 14779 mark_jmp_point(env, w); 14780 } 14781 14782 if (insn_state[w] == 0) { 14783 /* tree-edge */ 14784 insn_state[t] = DISCOVERED | e; 14785 insn_state[w] = DISCOVERED; 14786 if (env->cfg.cur_stack >= env->prog->len) 14787 return -E2BIG; 14788 insn_stack[env->cfg.cur_stack++] = w; 14789 return KEEP_EXPLORING; 14790 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 14791 if (env->bpf_capable) 14792 return DONE_EXPLORING; 14793 verbose_linfo(env, t, "%d: ", t); 14794 verbose_linfo(env, w, "%d: ", w); 14795 verbose(env, "back-edge from insn %d to %d\n", t, w); 14796 return -EINVAL; 14797 } else if (insn_state[w] == EXPLORED) { 14798 /* forward- or cross-edge */ 14799 insn_state[t] = DISCOVERED | e; 14800 } else { 14801 verbose(env, "insn state internal bug\n"); 14802 return -EFAULT; 14803 } 14804 return DONE_EXPLORING; 14805 } 14806 14807 static int visit_func_call_insn(int t, struct bpf_insn *insns, 14808 struct bpf_verifier_env *env, 14809 bool visit_callee) 14810 { 14811 int ret, insn_sz; 14812 14813 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; 14814 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); 14815 if (ret) 14816 return ret; 14817 14818 mark_prune_point(env, t + insn_sz); 14819 /* when we exit from subprog, we need to record non-linear history */ 14820 mark_jmp_point(env, t + insn_sz); 14821 14822 if (visit_callee) { 14823 mark_prune_point(env, t); 14824 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 14825 } 14826 return ret; 14827 } 14828 14829 /* Visits the instruction at index t and returns one of the following: 14830 * < 0 - an error occurred 14831 * DONE_EXPLORING - the instruction was fully explored 14832 * KEEP_EXPLORING - there is still work to be done before it is fully explored 14833 */ 14834 static int visit_insn(int t, struct bpf_verifier_env *env) 14835 { 14836 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 14837 int ret, off, insn_sz; 14838 14839 if (bpf_pseudo_func(insn)) 14840 return visit_func_call_insn(t, insns, env, true); 14841 14842 /* All non-branch instructions have a single fall-through edge. */ 14843 if (BPF_CLASS(insn->code) != BPF_JMP && 14844 BPF_CLASS(insn->code) != BPF_JMP32) { 14845 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 14846 return push_insn(t, t + insn_sz, FALLTHROUGH, env); 14847 } 14848 14849 switch (BPF_OP(insn->code)) { 14850 case BPF_EXIT: 14851 return DONE_EXPLORING; 14852 14853 case BPF_CALL: 14854 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback) 14855 /* Mark this call insn as a prune point to trigger 14856 * is_state_visited() check before call itself is 14857 * processed by __check_func_call(). Otherwise new 14858 * async state will be pushed for further exploration. 14859 */ 14860 mark_prune_point(env, t); 14861 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 14862 struct bpf_kfunc_call_arg_meta meta; 14863 14864 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 14865 if (ret == 0 && is_iter_next_kfunc(&meta)) { 14866 mark_prune_point(env, t); 14867 /* Checking and saving state checkpoints at iter_next() call 14868 * is crucial for fast convergence of open-coded iterator loop 14869 * logic, so we need to force it. If we don't do that, 14870 * is_state_visited() might skip saving a checkpoint, causing 14871 * unnecessarily long sequence of not checkpointed 14872 * instructions and jumps, leading to exhaustion of jump 14873 * history buffer, and potentially other undesired outcomes. 14874 * It is expected that with correct open-coded iterators 14875 * convergence will happen quickly, so we don't run a risk of 14876 * exhausting memory. 14877 */ 14878 mark_force_checkpoint(env, t); 14879 } 14880 } 14881 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 14882 14883 case BPF_JA: 14884 if (BPF_SRC(insn->code) != BPF_K) 14885 return -EINVAL; 14886 14887 if (BPF_CLASS(insn->code) == BPF_JMP) 14888 off = insn->off; 14889 else 14890 off = insn->imm; 14891 14892 /* unconditional jump with single edge */ 14893 ret = push_insn(t, t + off + 1, FALLTHROUGH, env); 14894 if (ret) 14895 return ret; 14896 14897 mark_prune_point(env, t + off + 1); 14898 mark_jmp_point(env, t + off + 1); 14899 14900 return ret; 14901 14902 default: 14903 /* conditional jump with two edges */ 14904 mark_prune_point(env, t); 14905 14906 ret = push_insn(t, t + 1, FALLTHROUGH, env); 14907 if (ret) 14908 return ret; 14909 14910 return push_insn(t, t + insn->off + 1, BRANCH, env); 14911 } 14912 } 14913 14914 /* non-recursive depth-first-search to detect loops in BPF program 14915 * loop == back-edge in directed graph 14916 */ 14917 static int check_cfg(struct bpf_verifier_env *env) 14918 { 14919 int insn_cnt = env->prog->len; 14920 int *insn_stack, *insn_state; 14921 int ret = 0; 14922 int i; 14923 14924 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 14925 if (!insn_state) 14926 return -ENOMEM; 14927 14928 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 14929 if (!insn_stack) { 14930 kvfree(insn_state); 14931 return -ENOMEM; 14932 } 14933 14934 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 14935 insn_stack[0] = 0; /* 0 is the first instruction */ 14936 env->cfg.cur_stack = 1; 14937 14938 while (env->cfg.cur_stack > 0) { 14939 int t = insn_stack[env->cfg.cur_stack - 1]; 14940 14941 ret = visit_insn(t, env); 14942 switch (ret) { 14943 case DONE_EXPLORING: 14944 insn_state[t] = EXPLORED; 14945 env->cfg.cur_stack--; 14946 break; 14947 case KEEP_EXPLORING: 14948 break; 14949 default: 14950 if (ret > 0) { 14951 verbose(env, "visit_insn internal bug\n"); 14952 ret = -EFAULT; 14953 } 14954 goto err_free; 14955 } 14956 } 14957 14958 if (env->cfg.cur_stack < 0) { 14959 verbose(env, "pop stack internal bug\n"); 14960 ret = -EFAULT; 14961 goto err_free; 14962 } 14963 14964 for (i = 0; i < insn_cnt; i++) { 14965 struct bpf_insn *insn = &env->prog->insnsi[i]; 14966 14967 if (insn_state[i] != EXPLORED) { 14968 verbose(env, "unreachable insn %d\n", i); 14969 ret = -EINVAL; 14970 goto err_free; 14971 } 14972 if (bpf_is_ldimm64(insn)) { 14973 if (insn_state[i + 1] != 0) { 14974 verbose(env, "jump into the middle of ldimm64 insn %d\n", i); 14975 ret = -EINVAL; 14976 goto err_free; 14977 } 14978 i++; /* skip second half of ldimm64 */ 14979 } 14980 } 14981 ret = 0; /* cfg looks good */ 14982 14983 err_free: 14984 kvfree(insn_state); 14985 kvfree(insn_stack); 14986 env->cfg.insn_state = env->cfg.insn_stack = NULL; 14987 return ret; 14988 } 14989 14990 static int check_abnormal_return(struct bpf_verifier_env *env) 14991 { 14992 int i; 14993 14994 for (i = 1; i < env->subprog_cnt; i++) { 14995 if (env->subprog_info[i].has_ld_abs) { 14996 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 14997 return -EINVAL; 14998 } 14999 if (env->subprog_info[i].has_tail_call) { 15000 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 15001 return -EINVAL; 15002 } 15003 } 15004 return 0; 15005 } 15006 15007 /* The minimum supported BTF func info size */ 15008 #define MIN_BPF_FUNCINFO_SIZE 8 15009 #define MAX_FUNCINFO_REC_SIZE 252 15010 15011 static int check_btf_func(struct bpf_verifier_env *env, 15012 const union bpf_attr *attr, 15013 bpfptr_t uattr) 15014 { 15015 const struct btf_type *type, *func_proto, *ret_type; 15016 u32 i, nfuncs, urec_size, min_size; 15017 u32 krec_size = sizeof(struct bpf_func_info); 15018 struct bpf_func_info *krecord; 15019 struct bpf_func_info_aux *info_aux = NULL; 15020 struct bpf_prog *prog; 15021 const struct btf *btf; 15022 bpfptr_t urecord; 15023 u32 prev_offset = 0; 15024 bool scalar_return; 15025 int ret = -ENOMEM; 15026 15027 nfuncs = attr->func_info_cnt; 15028 if (!nfuncs) { 15029 if (check_abnormal_return(env)) 15030 return -EINVAL; 15031 return 0; 15032 } 15033 15034 if (nfuncs != env->subprog_cnt) { 15035 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 15036 return -EINVAL; 15037 } 15038 15039 urec_size = attr->func_info_rec_size; 15040 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 15041 urec_size > MAX_FUNCINFO_REC_SIZE || 15042 urec_size % sizeof(u32)) { 15043 verbose(env, "invalid func info rec size %u\n", urec_size); 15044 return -EINVAL; 15045 } 15046 15047 prog = env->prog; 15048 btf = prog->aux->btf; 15049 15050 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 15051 min_size = min_t(u32, krec_size, urec_size); 15052 15053 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 15054 if (!krecord) 15055 return -ENOMEM; 15056 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 15057 if (!info_aux) 15058 goto err_free; 15059 15060 for (i = 0; i < nfuncs; i++) { 15061 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 15062 if (ret) { 15063 if (ret == -E2BIG) { 15064 verbose(env, "nonzero tailing record in func info"); 15065 /* set the size kernel expects so loader can zero 15066 * out the rest of the record. 15067 */ 15068 if (copy_to_bpfptr_offset(uattr, 15069 offsetof(union bpf_attr, func_info_rec_size), 15070 &min_size, sizeof(min_size))) 15071 ret = -EFAULT; 15072 } 15073 goto err_free; 15074 } 15075 15076 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 15077 ret = -EFAULT; 15078 goto err_free; 15079 } 15080 15081 /* check insn_off */ 15082 ret = -EINVAL; 15083 if (i == 0) { 15084 if (krecord[i].insn_off) { 15085 verbose(env, 15086 "nonzero insn_off %u for the first func info record", 15087 krecord[i].insn_off); 15088 goto err_free; 15089 } 15090 } else if (krecord[i].insn_off <= prev_offset) { 15091 verbose(env, 15092 "same or smaller insn offset (%u) than previous func info record (%u)", 15093 krecord[i].insn_off, prev_offset); 15094 goto err_free; 15095 } 15096 15097 if (env->subprog_info[i].start != krecord[i].insn_off) { 15098 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 15099 goto err_free; 15100 } 15101 15102 /* check type_id */ 15103 type = btf_type_by_id(btf, krecord[i].type_id); 15104 if (!type || !btf_type_is_func(type)) { 15105 verbose(env, "invalid type id %d in func info", 15106 krecord[i].type_id); 15107 goto err_free; 15108 } 15109 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 15110 15111 func_proto = btf_type_by_id(btf, type->type); 15112 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 15113 /* btf_func_check() already verified it during BTF load */ 15114 goto err_free; 15115 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 15116 scalar_return = 15117 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 15118 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 15119 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 15120 goto err_free; 15121 } 15122 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 15123 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 15124 goto err_free; 15125 } 15126 15127 prev_offset = krecord[i].insn_off; 15128 bpfptr_add(&urecord, urec_size); 15129 } 15130 15131 prog->aux->func_info = krecord; 15132 prog->aux->func_info_cnt = nfuncs; 15133 prog->aux->func_info_aux = info_aux; 15134 return 0; 15135 15136 err_free: 15137 kvfree(krecord); 15138 kfree(info_aux); 15139 return ret; 15140 } 15141 15142 static void adjust_btf_func(struct bpf_verifier_env *env) 15143 { 15144 struct bpf_prog_aux *aux = env->prog->aux; 15145 int i; 15146 15147 if (!aux->func_info) 15148 return; 15149 15150 for (i = 0; i < env->subprog_cnt; i++) 15151 aux->func_info[i].insn_off = env->subprog_info[i].start; 15152 } 15153 15154 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 15155 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 15156 15157 static int check_btf_line(struct bpf_verifier_env *env, 15158 const union bpf_attr *attr, 15159 bpfptr_t uattr) 15160 { 15161 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 15162 struct bpf_subprog_info *sub; 15163 struct bpf_line_info *linfo; 15164 struct bpf_prog *prog; 15165 const struct btf *btf; 15166 bpfptr_t ulinfo; 15167 int err; 15168 15169 nr_linfo = attr->line_info_cnt; 15170 if (!nr_linfo) 15171 return 0; 15172 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 15173 return -EINVAL; 15174 15175 rec_size = attr->line_info_rec_size; 15176 if (rec_size < MIN_BPF_LINEINFO_SIZE || 15177 rec_size > MAX_LINEINFO_REC_SIZE || 15178 rec_size & (sizeof(u32) - 1)) 15179 return -EINVAL; 15180 15181 /* Need to zero it in case the userspace may 15182 * pass in a smaller bpf_line_info object. 15183 */ 15184 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 15185 GFP_KERNEL | __GFP_NOWARN); 15186 if (!linfo) 15187 return -ENOMEM; 15188 15189 prog = env->prog; 15190 btf = prog->aux->btf; 15191 15192 s = 0; 15193 sub = env->subprog_info; 15194 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 15195 expected_size = sizeof(struct bpf_line_info); 15196 ncopy = min_t(u32, expected_size, rec_size); 15197 for (i = 0; i < nr_linfo; i++) { 15198 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 15199 if (err) { 15200 if (err == -E2BIG) { 15201 verbose(env, "nonzero tailing record in line_info"); 15202 if (copy_to_bpfptr_offset(uattr, 15203 offsetof(union bpf_attr, line_info_rec_size), 15204 &expected_size, sizeof(expected_size))) 15205 err = -EFAULT; 15206 } 15207 goto err_free; 15208 } 15209 15210 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 15211 err = -EFAULT; 15212 goto err_free; 15213 } 15214 15215 /* 15216 * Check insn_off to ensure 15217 * 1) strictly increasing AND 15218 * 2) bounded by prog->len 15219 * 15220 * The linfo[0].insn_off == 0 check logically falls into 15221 * the later "missing bpf_line_info for func..." case 15222 * because the first linfo[0].insn_off must be the 15223 * first sub also and the first sub must have 15224 * subprog_info[0].start == 0. 15225 */ 15226 if ((i && linfo[i].insn_off <= prev_offset) || 15227 linfo[i].insn_off >= prog->len) { 15228 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 15229 i, linfo[i].insn_off, prev_offset, 15230 prog->len); 15231 err = -EINVAL; 15232 goto err_free; 15233 } 15234 15235 if (!prog->insnsi[linfo[i].insn_off].code) { 15236 verbose(env, 15237 "Invalid insn code at line_info[%u].insn_off\n", 15238 i); 15239 err = -EINVAL; 15240 goto err_free; 15241 } 15242 15243 if (!btf_name_by_offset(btf, linfo[i].line_off) || 15244 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 15245 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 15246 err = -EINVAL; 15247 goto err_free; 15248 } 15249 15250 if (s != env->subprog_cnt) { 15251 if (linfo[i].insn_off == sub[s].start) { 15252 sub[s].linfo_idx = i; 15253 s++; 15254 } else if (sub[s].start < linfo[i].insn_off) { 15255 verbose(env, "missing bpf_line_info for func#%u\n", s); 15256 err = -EINVAL; 15257 goto err_free; 15258 } 15259 } 15260 15261 prev_offset = linfo[i].insn_off; 15262 bpfptr_add(&ulinfo, rec_size); 15263 } 15264 15265 if (s != env->subprog_cnt) { 15266 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 15267 env->subprog_cnt - s, s); 15268 err = -EINVAL; 15269 goto err_free; 15270 } 15271 15272 prog->aux->linfo = linfo; 15273 prog->aux->nr_linfo = nr_linfo; 15274 15275 return 0; 15276 15277 err_free: 15278 kvfree(linfo); 15279 return err; 15280 } 15281 15282 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 15283 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 15284 15285 static int check_core_relo(struct bpf_verifier_env *env, 15286 const union bpf_attr *attr, 15287 bpfptr_t uattr) 15288 { 15289 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 15290 struct bpf_core_relo core_relo = {}; 15291 struct bpf_prog *prog = env->prog; 15292 const struct btf *btf = prog->aux->btf; 15293 struct bpf_core_ctx ctx = { 15294 .log = &env->log, 15295 .btf = btf, 15296 }; 15297 bpfptr_t u_core_relo; 15298 int err; 15299 15300 nr_core_relo = attr->core_relo_cnt; 15301 if (!nr_core_relo) 15302 return 0; 15303 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 15304 return -EINVAL; 15305 15306 rec_size = attr->core_relo_rec_size; 15307 if (rec_size < MIN_CORE_RELO_SIZE || 15308 rec_size > MAX_CORE_RELO_SIZE || 15309 rec_size % sizeof(u32)) 15310 return -EINVAL; 15311 15312 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 15313 expected_size = sizeof(struct bpf_core_relo); 15314 ncopy = min_t(u32, expected_size, rec_size); 15315 15316 /* Unlike func_info and line_info, copy and apply each CO-RE 15317 * relocation record one at a time. 15318 */ 15319 for (i = 0; i < nr_core_relo; i++) { 15320 /* future proofing when sizeof(bpf_core_relo) changes */ 15321 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 15322 if (err) { 15323 if (err == -E2BIG) { 15324 verbose(env, "nonzero tailing record in core_relo"); 15325 if (copy_to_bpfptr_offset(uattr, 15326 offsetof(union bpf_attr, core_relo_rec_size), 15327 &expected_size, sizeof(expected_size))) 15328 err = -EFAULT; 15329 } 15330 break; 15331 } 15332 15333 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 15334 err = -EFAULT; 15335 break; 15336 } 15337 15338 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 15339 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 15340 i, core_relo.insn_off, prog->len); 15341 err = -EINVAL; 15342 break; 15343 } 15344 15345 err = bpf_core_apply(&ctx, &core_relo, i, 15346 &prog->insnsi[core_relo.insn_off / 8]); 15347 if (err) 15348 break; 15349 bpfptr_add(&u_core_relo, rec_size); 15350 } 15351 return err; 15352 } 15353 15354 static int check_btf_info(struct bpf_verifier_env *env, 15355 const union bpf_attr *attr, 15356 bpfptr_t uattr) 15357 { 15358 struct btf *btf; 15359 int err; 15360 15361 if (!attr->func_info_cnt && !attr->line_info_cnt) { 15362 if (check_abnormal_return(env)) 15363 return -EINVAL; 15364 return 0; 15365 } 15366 15367 btf = btf_get_by_fd(attr->prog_btf_fd); 15368 if (IS_ERR(btf)) 15369 return PTR_ERR(btf); 15370 if (btf_is_kernel(btf)) { 15371 btf_put(btf); 15372 return -EACCES; 15373 } 15374 env->prog->aux->btf = btf; 15375 15376 err = check_btf_func(env, attr, uattr); 15377 if (err) 15378 return err; 15379 15380 err = check_btf_line(env, attr, uattr); 15381 if (err) 15382 return err; 15383 15384 err = check_core_relo(env, attr, uattr); 15385 if (err) 15386 return err; 15387 15388 return 0; 15389 } 15390 15391 /* check %cur's range satisfies %old's */ 15392 static bool range_within(struct bpf_reg_state *old, 15393 struct bpf_reg_state *cur) 15394 { 15395 return old->umin_value <= cur->umin_value && 15396 old->umax_value >= cur->umax_value && 15397 old->smin_value <= cur->smin_value && 15398 old->smax_value >= cur->smax_value && 15399 old->u32_min_value <= cur->u32_min_value && 15400 old->u32_max_value >= cur->u32_max_value && 15401 old->s32_min_value <= cur->s32_min_value && 15402 old->s32_max_value >= cur->s32_max_value; 15403 } 15404 15405 /* If in the old state two registers had the same id, then they need to have 15406 * the same id in the new state as well. But that id could be different from 15407 * the old state, so we need to track the mapping from old to new ids. 15408 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 15409 * regs with old id 5 must also have new id 9 for the new state to be safe. But 15410 * regs with a different old id could still have new id 9, we don't care about 15411 * that. 15412 * So we look through our idmap to see if this old id has been seen before. If 15413 * so, we require the new id to match; otherwise, we add the id pair to the map. 15414 */ 15415 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15416 { 15417 struct bpf_id_pair *map = idmap->map; 15418 unsigned int i; 15419 15420 /* either both IDs should be set or both should be zero */ 15421 if (!!old_id != !!cur_id) 15422 return false; 15423 15424 if (old_id == 0) /* cur_id == 0 as well */ 15425 return true; 15426 15427 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 15428 if (!map[i].old) { 15429 /* Reached an empty slot; haven't seen this id before */ 15430 map[i].old = old_id; 15431 map[i].cur = cur_id; 15432 return true; 15433 } 15434 if (map[i].old == old_id) 15435 return map[i].cur == cur_id; 15436 if (map[i].cur == cur_id) 15437 return false; 15438 } 15439 /* We ran out of idmap slots, which should be impossible */ 15440 WARN_ON_ONCE(1); 15441 return false; 15442 } 15443 15444 /* Similar to check_ids(), but allocate a unique temporary ID 15445 * for 'old_id' or 'cur_id' of zero. 15446 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 15447 */ 15448 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15449 { 15450 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 15451 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 15452 15453 return check_ids(old_id, cur_id, idmap); 15454 } 15455 15456 static void clean_func_state(struct bpf_verifier_env *env, 15457 struct bpf_func_state *st) 15458 { 15459 enum bpf_reg_liveness live; 15460 int i, j; 15461 15462 for (i = 0; i < BPF_REG_FP; i++) { 15463 live = st->regs[i].live; 15464 /* liveness must not touch this register anymore */ 15465 st->regs[i].live |= REG_LIVE_DONE; 15466 if (!(live & REG_LIVE_READ)) 15467 /* since the register is unused, clear its state 15468 * to make further comparison simpler 15469 */ 15470 __mark_reg_not_init(env, &st->regs[i]); 15471 } 15472 15473 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 15474 live = st->stack[i].spilled_ptr.live; 15475 /* liveness must not touch this stack slot anymore */ 15476 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 15477 if (!(live & REG_LIVE_READ)) { 15478 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 15479 for (j = 0; j < BPF_REG_SIZE; j++) 15480 st->stack[i].slot_type[j] = STACK_INVALID; 15481 } 15482 } 15483 } 15484 15485 static void clean_verifier_state(struct bpf_verifier_env *env, 15486 struct bpf_verifier_state *st) 15487 { 15488 int i; 15489 15490 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 15491 /* all regs in this state in all frames were already marked */ 15492 return; 15493 15494 for (i = 0; i <= st->curframe; i++) 15495 clean_func_state(env, st->frame[i]); 15496 } 15497 15498 /* the parentage chains form a tree. 15499 * the verifier states are added to state lists at given insn and 15500 * pushed into state stack for future exploration. 15501 * when the verifier reaches bpf_exit insn some of the verifer states 15502 * stored in the state lists have their final liveness state already, 15503 * but a lot of states will get revised from liveness point of view when 15504 * the verifier explores other branches. 15505 * Example: 15506 * 1: r0 = 1 15507 * 2: if r1 == 100 goto pc+1 15508 * 3: r0 = 2 15509 * 4: exit 15510 * when the verifier reaches exit insn the register r0 in the state list of 15511 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 15512 * of insn 2 and goes exploring further. At the insn 4 it will walk the 15513 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 15514 * 15515 * Since the verifier pushes the branch states as it sees them while exploring 15516 * the program the condition of walking the branch instruction for the second 15517 * time means that all states below this branch were already explored and 15518 * their final liveness marks are already propagated. 15519 * Hence when the verifier completes the search of state list in is_state_visited() 15520 * we can call this clean_live_states() function to mark all liveness states 15521 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 15522 * will not be used. 15523 * This function also clears the registers and stack for states that !READ 15524 * to simplify state merging. 15525 * 15526 * Important note here that walking the same branch instruction in the callee 15527 * doesn't meant that the states are DONE. The verifier has to compare 15528 * the callsites 15529 */ 15530 static void clean_live_states(struct bpf_verifier_env *env, int insn, 15531 struct bpf_verifier_state *cur) 15532 { 15533 struct bpf_verifier_state_list *sl; 15534 int i; 15535 15536 sl = *explored_state(env, insn); 15537 while (sl) { 15538 if (sl->state.branches) 15539 goto next; 15540 if (sl->state.insn_idx != insn || 15541 sl->state.curframe != cur->curframe) 15542 goto next; 15543 for (i = 0; i <= cur->curframe; i++) 15544 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 15545 goto next; 15546 clean_verifier_state(env, &sl->state); 15547 next: 15548 sl = sl->next; 15549 } 15550 } 15551 15552 static bool regs_exact(const struct bpf_reg_state *rold, 15553 const struct bpf_reg_state *rcur, 15554 struct bpf_idmap *idmap) 15555 { 15556 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 15557 check_ids(rold->id, rcur->id, idmap) && 15558 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15559 } 15560 15561 /* Returns true if (rold safe implies rcur safe) */ 15562 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 15563 struct bpf_reg_state *rcur, struct bpf_idmap *idmap) 15564 { 15565 if (!(rold->live & REG_LIVE_READ)) 15566 /* explored state didn't use this */ 15567 return true; 15568 if (rold->type == NOT_INIT) 15569 /* explored state can't have used this */ 15570 return true; 15571 if (rcur->type == NOT_INIT) 15572 return false; 15573 15574 /* Enforce that register types have to match exactly, including their 15575 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 15576 * rule. 15577 * 15578 * One can make a point that using a pointer register as unbounded 15579 * SCALAR would be technically acceptable, but this could lead to 15580 * pointer leaks because scalars are allowed to leak while pointers 15581 * are not. We could make this safe in special cases if root is 15582 * calling us, but it's probably not worth the hassle. 15583 * 15584 * Also, register types that are *not* MAYBE_NULL could technically be 15585 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 15586 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 15587 * to the same map). 15588 * However, if the old MAYBE_NULL register then got NULL checked, 15589 * doing so could have affected others with the same id, and we can't 15590 * check for that because we lost the id when we converted to 15591 * a non-MAYBE_NULL variant. 15592 * So, as a general rule we don't allow mixing MAYBE_NULL and 15593 * non-MAYBE_NULL registers as well. 15594 */ 15595 if (rold->type != rcur->type) 15596 return false; 15597 15598 switch (base_type(rold->type)) { 15599 case SCALAR_VALUE: 15600 if (env->explore_alu_limits) { 15601 /* explore_alu_limits disables tnum_in() and range_within() 15602 * logic and requires everything to be strict 15603 */ 15604 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 15605 check_scalar_ids(rold->id, rcur->id, idmap); 15606 } 15607 if (!rold->precise) 15608 return true; 15609 /* Why check_ids() for scalar registers? 15610 * 15611 * Consider the following BPF code: 15612 * 1: r6 = ... unbound scalar, ID=a ... 15613 * 2: r7 = ... unbound scalar, ID=b ... 15614 * 3: if (r6 > r7) goto +1 15615 * 4: r6 = r7 15616 * 5: if (r6 > X) goto ... 15617 * 6: ... memory operation using r7 ... 15618 * 15619 * First verification path is [1-6]: 15620 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 15621 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark 15622 * r7 <= X, because r6 and r7 share same id. 15623 * Next verification path is [1-4, 6]. 15624 * 15625 * Instruction (6) would be reached in two states: 15626 * I. r6{.id=b}, r7{.id=b} via path 1-6; 15627 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 15628 * 15629 * Use check_ids() to distinguish these states. 15630 * --- 15631 * Also verify that new value satisfies old value range knowledge. 15632 */ 15633 return range_within(rold, rcur) && 15634 tnum_in(rold->var_off, rcur->var_off) && 15635 check_scalar_ids(rold->id, rcur->id, idmap); 15636 case PTR_TO_MAP_KEY: 15637 case PTR_TO_MAP_VALUE: 15638 case PTR_TO_MEM: 15639 case PTR_TO_BUF: 15640 case PTR_TO_TP_BUFFER: 15641 /* If the new min/max/var_off satisfy the old ones and 15642 * everything else matches, we are OK. 15643 */ 15644 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 15645 range_within(rold, rcur) && 15646 tnum_in(rold->var_off, rcur->var_off) && 15647 check_ids(rold->id, rcur->id, idmap) && 15648 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15649 case PTR_TO_PACKET_META: 15650 case PTR_TO_PACKET: 15651 /* We must have at least as much range as the old ptr 15652 * did, so that any accesses which were safe before are 15653 * still safe. This is true even if old range < old off, 15654 * since someone could have accessed through (ptr - k), or 15655 * even done ptr -= k in a register, to get a safe access. 15656 */ 15657 if (rold->range > rcur->range) 15658 return false; 15659 /* If the offsets don't match, we can't trust our alignment; 15660 * nor can we be sure that we won't fall out of range. 15661 */ 15662 if (rold->off != rcur->off) 15663 return false; 15664 /* id relations must be preserved */ 15665 if (!check_ids(rold->id, rcur->id, idmap)) 15666 return false; 15667 /* new val must satisfy old val knowledge */ 15668 return range_within(rold, rcur) && 15669 tnum_in(rold->var_off, rcur->var_off); 15670 case PTR_TO_STACK: 15671 /* two stack pointers are equal only if they're pointing to 15672 * the same stack frame, since fp-8 in foo != fp-8 in bar 15673 */ 15674 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 15675 default: 15676 return regs_exact(rold, rcur, idmap); 15677 } 15678 } 15679 15680 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 15681 struct bpf_func_state *cur, struct bpf_idmap *idmap) 15682 { 15683 int i, spi; 15684 15685 /* walk slots of the explored stack and ignore any additional 15686 * slots in the current stack, since explored(safe) state 15687 * didn't use them 15688 */ 15689 for (i = 0; i < old->allocated_stack; i++) { 15690 struct bpf_reg_state *old_reg, *cur_reg; 15691 15692 spi = i / BPF_REG_SIZE; 15693 15694 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 15695 i += BPF_REG_SIZE - 1; 15696 /* explored state didn't use this */ 15697 continue; 15698 } 15699 15700 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 15701 continue; 15702 15703 if (env->allow_uninit_stack && 15704 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 15705 continue; 15706 15707 /* explored stack has more populated slots than current stack 15708 * and these slots were used 15709 */ 15710 if (i >= cur->allocated_stack) 15711 return false; 15712 15713 /* if old state was safe with misc data in the stack 15714 * it will be safe with zero-initialized stack. 15715 * The opposite is not true 15716 */ 15717 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 15718 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 15719 continue; 15720 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 15721 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 15722 /* Ex: old explored (safe) state has STACK_SPILL in 15723 * this stack slot, but current has STACK_MISC -> 15724 * this verifier states are not equivalent, 15725 * return false to continue verification of this path 15726 */ 15727 return false; 15728 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 15729 continue; 15730 /* Both old and cur are having same slot_type */ 15731 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 15732 case STACK_SPILL: 15733 /* when explored and current stack slot are both storing 15734 * spilled registers, check that stored pointers types 15735 * are the same as well. 15736 * Ex: explored safe path could have stored 15737 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 15738 * but current path has stored: 15739 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 15740 * such verifier states are not equivalent. 15741 * return false to continue verification of this path 15742 */ 15743 if (!regsafe(env, &old->stack[spi].spilled_ptr, 15744 &cur->stack[spi].spilled_ptr, idmap)) 15745 return false; 15746 break; 15747 case STACK_DYNPTR: 15748 old_reg = &old->stack[spi].spilled_ptr; 15749 cur_reg = &cur->stack[spi].spilled_ptr; 15750 if (old_reg->dynptr.type != cur_reg->dynptr.type || 15751 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 15752 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 15753 return false; 15754 break; 15755 case STACK_ITER: 15756 old_reg = &old->stack[spi].spilled_ptr; 15757 cur_reg = &cur->stack[spi].spilled_ptr; 15758 /* iter.depth is not compared between states as it 15759 * doesn't matter for correctness and would otherwise 15760 * prevent convergence; we maintain it only to prevent 15761 * infinite loop check triggering, see 15762 * iter_active_depths_differ() 15763 */ 15764 if (old_reg->iter.btf != cur_reg->iter.btf || 15765 old_reg->iter.btf_id != cur_reg->iter.btf_id || 15766 old_reg->iter.state != cur_reg->iter.state || 15767 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 15768 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 15769 return false; 15770 break; 15771 case STACK_MISC: 15772 case STACK_ZERO: 15773 case STACK_INVALID: 15774 continue; 15775 /* Ensure that new unhandled slot types return false by default */ 15776 default: 15777 return false; 15778 } 15779 } 15780 return true; 15781 } 15782 15783 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 15784 struct bpf_idmap *idmap) 15785 { 15786 int i; 15787 15788 if (old->acquired_refs != cur->acquired_refs) 15789 return false; 15790 15791 for (i = 0; i < old->acquired_refs; i++) { 15792 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 15793 return false; 15794 } 15795 15796 return true; 15797 } 15798 15799 /* compare two verifier states 15800 * 15801 * all states stored in state_list are known to be valid, since 15802 * verifier reached 'bpf_exit' instruction through them 15803 * 15804 * this function is called when verifier exploring different branches of 15805 * execution popped from the state stack. If it sees an old state that has 15806 * more strict register state and more strict stack state then this execution 15807 * branch doesn't need to be explored further, since verifier already 15808 * concluded that more strict state leads to valid finish. 15809 * 15810 * Therefore two states are equivalent if register state is more conservative 15811 * and explored stack state is more conservative than the current one. 15812 * Example: 15813 * explored current 15814 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 15815 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 15816 * 15817 * In other words if current stack state (one being explored) has more 15818 * valid slots than old one that already passed validation, it means 15819 * the verifier can stop exploring and conclude that current state is valid too 15820 * 15821 * Similarly with registers. If explored state has register type as invalid 15822 * whereas register type in current state is meaningful, it means that 15823 * the current state will reach 'bpf_exit' instruction safely 15824 */ 15825 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 15826 struct bpf_func_state *cur) 15827 { 15828 int i; 15829 15830 for (i = 0; i < MAX_BPF_REG; i++) 15831 if (!regsafe(env, &old->regs[i], &cur->regs[i], 15832 &env->idmap_scratch)) 15833 return false; 15834 15835 if (!stacksafe(env, old, cur, &env->idmap_scratch)) 15836 return false; 15837 15838 if (!refsafe(old, cur, &env->idmap_scratch)) 15839 return false; 15840 15841 return true; 15842 } 15843 15844 static bool states_equal(struct bpf_verifier_env *env, 15845 struct bpf_verifier_state *old, 15846 struct bpf_verifier_state *cur) 15847 { 15848 int i; 15849 15850 if (old->curframe != cur->curframe) 15851 return false; 15852 15853 env->idmap_scratch.tmp_id_gen = env->id_gen; 15854 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 15855 15856 /* Verification state from speculative execution simulation 15857 * must never prune a non-speculative execution one. 15858 */ 15859 if (old->speculative && !cur->speculative) 15860 return false; 15861 15862 if (old->active_lock.ptr != cur->active_lock.ptr) 15863 return false; 15864 15865 /* Old and cur active_lock's have to be either both present 15866 * or both absent. 15867 */ 15868 if (!!old->active_lock.id != !!cur->active_lock.id) 15869 return false; 15870 15871 if (old->active_lock.id && 15872 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch)) 15873 return false; 15874 15875 if (old->active_rcu_lock != cur->active_rcu_lock) 15876 return false; 15877 15878 /* for states to be equal callsites have to be the same 15879 * and all frame states need to be equivalent 15880 */ 15881 for (i = 0; i <= old->curframe; i++) { 15882 if (old->frame[i]->callsite != cur->frame[i]->callsite) 15883 return false; 15884 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 15885 return false; 15886 } 15887 return true; 15888 } 15889 15890 /* Return 0 if no propagation happened. Return negative error code if error 15891 * happened. Otherwise, return the propagated bit. 15892 */ 15893 static int propagate_liveness_reg(struct bpf_verifier_env *env, 15894 struct bpf_reg_state *reg, 15895 struct bpf_reg_state *parent_reg) 15896 { 15897 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 15898 u8 flag = reg->live & REG_LIVE_READ; 15899 int err; 15900 15901 /* When comes here, read flags of PARENT_REG or REG could be any of 15902 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 15903 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 15904 */ 15905 if (parent_flag == REG_LIVE_READ64 || 15906 /* Or if there is no read flag from REG. */ 15907 !flag || 15908 /* Or if the read flag from REG is the same as PARENT_REG. */ 15909 parent_flag == flag) 15910 return 0; 15911 15912 err = mark_reg_read(env, reg, parent_reg, flag); 15913 if (err) 15914 return err; 15915 15916 return flag; 15917 } 15918 15919 /* A write screens off any subsequent reads; but write marks come from the 15920 * straight-line code between a state and its parent. When we arrive at an 15921 * equivalent state (jump target or such) we didn't arrive by the straight-line 15922 * code, so read marks in the state must propagate to the parent regardless 15923 * of the state's write marks. That's what 'parent == state->parent' comparison 15924 * in mark_reg_read() is for. 15925 */ 15926 static int propagate_liveness(struct bpf_verifier_env *env, 15927 const struct bpf_verifier_state *vstate, 15928 struct bpf_verifier_state *vparent) 15929 { 15930 struct bpf_reg_state *state_reg, *parent_reg; 15931 struct bpf_func_state *state, *parent; 15932 int i, frame, err = 0; 15933 15934 if (vparent->curframe != vstate->curframe) { 15935 WARN(1, "propagate_live: parent frame %d current frame %d\n", 15936 vparent->curframe, vstate->curframe); 15937 return -EFAULT; 15938 } 15939 /* Propagate read liveness of registers... */ 15940 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 15941 for (frame = 0; frame <= vstate->curframe; frame++) { 15942 parent = vparent->frame[frame]; 15943 state = vstate->frame[frame]; 15944 parent_reg = parent->regs; 15945 state_reg = state->regs; 15946 /* We don't need to worry about FP liveness, it's read-only */ 15947 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 15948 err = propagate_liveness_reg(env, &state_reg[i], 15949 &parent_reg[i]); 15950 if (err < 0) 15951 return err; 15952 if (err == REG_LIVE_READ64) 15953 mark_insn_zext(env, &parent_reg[i]); 15954 } 15955 15956 /* Propagate stack slots. */ 15957 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 15958 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 15959 parent_reg = &parent->stack[i].spilled_ptr; 15960 state_reg = &state->stack[i].spilled_ptr; 15961 err = propagate_liveness_reg(env, state_reg, 15962 parent_reg); 15963 if (err < 0) 15964 return err; 15965 } 15966 } 15967 return 0; 15968 } 15969 15970 /* find precise scalars in the previous equivalent state and 15971 * propagate them into the current state 15972 */ 15973 static int propagate_precision(struct bpf_verifier_env *env, 15974 const struct bpf_verifier_state *old) 15975 { 15976 struct bpf_reg_state *state_reg; 15977 struct bpf_func_state *state; 15978 int i, err = 0, fr; 15979 bool first; 15980 15981 for (fr = old->curframe; fr >= 0; fr--) { 15982 state = old->frame[fr]; 15983 state_reg = state->regs; 15984 first = true; 15985 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 15986 if (state_reg->type != SCALAR_VALUE || 15987 !state_reg->precise || 15988 !(state_reg->live & REG_LIVE_READ)) 15989 continue; 15990 if (env->log.level & BPF_LOG_LEVEL2) { 15991 if (first) 15992 verbose(env, "frame %d: propagating r%d", fr, i); 15993 else 15994 verbose(env, ",r%d", i); 15995 } 15996 bt_set_frame_reg(&env->bt, fr, i); 15997 first = false; 15998 } 15999 16000 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 16001 if (!is_spilled_reg(&state->stack[i])) 16002 continue; 16003 state_reg = &state->stack[i].spilled_ptr; 16004 if (state_reg->type != SCALAR_VALUE || 16005 !state_reg->precise || 16006 !(state_reg->live & REG_LIVE_READ)) 16007 continue; 16008 if (env->log.level & BPF_LOG_LEVEL2) { 16009 if (first) 16010 verbose(env, "frame %d: propagating fp%d", 16011 fr, (-i - 1) * BPF_REG_SIZE); 16012 else 16013 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 16014 } 16015 bt_set_frame_slot(&env->bt, fr, i); 16016 first = false; 16017 } 16018 if (!first) 16019 verbose(env, "\n"); 16020 } 16021 16022 err = mark_chain_precision_batch(env); 16023 if (err < 0) 16024 return err; 16025 16026 return 0; 16027 } 16028 16029 static bool states_maybe_looping(struct bpf_verifier_state *old, 16030 struct bpf_verifier_state *cur) 16031 { 16032 struct bpf_func_state *fold, *fcur; 16033 int i, fr = cur->curframe; 16034 16035 if (old->curframe != fr) 16036 return false; 16037 16038 fold = old->frame[fr]; 16039 fcur = cur->frame[fr]; 16040 for (i = 0; i < MAX_BPF_REG; i++) 16041 if (memcmp(&fold->regs[i], &fcur->regs[i], 16042 offsetof(struct bpf_reg_state, parent))) 16043 return false; 16044 return true; 16045 } 16046 16047 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 16048 { 16049 return env->insn_aux_data[insn_idx].is_iter_next; 16050 } 16051 16052 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 16053 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 16054 * states to match, which otherwise would look like an infinite loop. So while 16055 * iter_next() calls are taken care of, we still need to be careful and 16056 * prevent erroneous and too eager declaration of "ininite loop", when 16057 * iterators are involved. 16058 * 16059 * Here's a situation in pseudo-BPF assembly form: 16060 * 16061 * 0: again: ; set up iter_next() call args 16062 * 1: r1 = &it ; <CHECKPOINT HERE> 16063 * 2: call bpf_iter_num_next ; this is iter_next() call 16064 * 3: if r0 == 0 goto done 16065 * 4: ... something useful here ... 16066 * 5: goto again ; another iteration 16067 * 6: done: 16068 * 7: r1 = &it 16069 * 8: call bpf_iter_num_destroy ; clean up iter state 16070 * 9: exit 16071 * 16072 * This is a typical loop. Let's assume that we have a prune point at 1:, 16073 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 16074 * again`, assuming other heuristics don't get in a way). 16075 * 16076 * When we first time come to 1:, let's say we have some state X. We proceed 16077 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 16078 * Now we come back to validate that forked ACTIVE state. We proceed through 16079 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 16080 * are converging. But the problem is that we don't know that yet, as this 16081 * convergence has to happen at iter_next() call site only. So if nothing is 16082 * done, at 1: verifier will use bounded loop logic and declare infinite 16083 * looping (and would be *technically* correct, if not for iterator's 16084 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 16085 * don't want that. So what we do in process_iter_next_call() when we go on 16086 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 16087 * a different iteration. So when we suspect an infinite loop, we additionally 16088 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 16089 * pretend we are not looping and wait for next iter_next() call. 16090 * 16091 * This only applies to ACTIVE state. In DRAINED state we don't expect to 16092 * loop, because that would actually mean infinite loop, as DRAINED state is 16093 * "sticky", and so we'll keep returning into the same instruction with the 16094 * same state (at least in one of possible code paths). 16095 * 16096 * This approach allows to keep infinite loop heuristic even in the face of 16097 * active iterator. E.g., C snippet below is and will be detected as 16098 * inifintely looping: 16099 * 16100 * struct bpf_iter_num it; 16101 * int *p, x; 16102 * 16103 * bpf_iter_num_new(&it, 0, 10); 16104 * while ((p = bpf_iter_num_next(&t))) { 16105 * x = p; 16106 * while (x--) {} // <<-- infinite loop here 16107 * } 16108 * 16109 */ 16110 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 16111 { 16112 struct bpf_reg_state *slot, *cur_slot; 16113 struct bpf_func_state *state; 16114 int i, fr; 16115 16116 for (fr = old->curframe; fr >= 0; fr--) { 16117 state = old->frame[fr]; 16118 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 16119 if (state->stack[i].slot_type[0] != STACK_ITER) 16120 continue; 16121 16122 slot = &state->stack[i].spilled_ptr; 16123 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 16124 continue; 16125 16126 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 16127 if (cur_slot->iter.depth != slot->iter.depth) 16128 return true; 16129 } 16130 } 16131 return false; 16132 } 16133 16134 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 16135 { 16136 struct bpf_verifier_state_list *new_sl; 16137 struct bpf_verifier_state_list *sl, **pprev; 16138 struct bpf_verifier_state *cur = env->cur_state, *new; 16139 int i, j, err, states_cnt = 0; 16140 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); 16141 bool add_new_state = force_new_state; 16142 16143 /* bpf progs typically have pruning point every 4 instructions 16144 * http://vger.kernel.org/bpfconf2019.html#session-1 16145 * Do not add new state for future pruning if the verifier hasn't seen 16146 * at least 2 jumps and at least 8 instructions. 16147 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 16148 * In tests that amounts to up to 50% reduction into total verifier 16149 * memory consumption and 20% verifier time speedup. 16150 */ 16151 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 16152 env->insn_processed - env->prev_insn_processed >= 8) 16153 add_new_state = true; 16154 16155 pprev = explored_state(env, insn_idx); 16156 sl = *pprev; 16157 16158 clean_live_states(env, insn_idx, cur); 16159 16160 while (sl) { 16161 states_cnt++; 16162 if (sl->state.insn_idx != insn_idx) 16163 goto next; 16164 16165 if (sl->state.branches) { 16166 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 16167 16168 if (frame->in_async_callback_fn && 16169 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 16170 /* Different async_entry_cnt means that the verifier is 16171 * processing another entry into async callback. 16172 * Seeing the same state is not an indication of infinite 16173 * loop or infinite recursion. 16174 * But finding the same state doesn't mean that it's safe 16175 * to stop processing the current state. The previous state 16176 * hasn't yet reached bpf_exit, since state.branches > 0. 16177 * Checking in_async_callback_fn alone is not enough either. 16178 * Since the verifier still needs to catch infinite loops 16179 * inside async callbacks. 16180 */ 16181 goto skip_inf_loop_check; 16182 } 16183 /* BPF open-coded iterators loop detection is special. 16184 * states_maybe_looping() logic is too simplistic in detecting 16185 * states that *might* be equivalent, because it doesn't know 16186 * about ID remapping, so don't even perform it. 16187 * See process_iter_next_call() and iter_active_depths_differ() 16188 * for overview of the logic. When current and one of parent 16189 * states are detected as equivalent, it's a good thing: we prove 16190 * convergence and can stop simulating further iterations. 16191 * It's safe to assume that iterator loop will finish, taking into 16192 * account iter_next() contract of eventually returning 16193 * sticky NULL result. 16194 */ 16195 if (is_iter_next_insn(env, insn_idx)) { 16196 if (states_equal(env, &sl->state, cur)) { 16197 struct bpf_func_state *cur_frame; 16198 struct bpf_reg_state *iter_state, *iter_reg; 16199 int spi; 16200 16201 cur_frame = cur->frame[cur->curframe]; 16202 /* btf_check_iter_kfuncs() enforces that 16203 * iter state pointer is always the first arg 16204 */ 16205 iter_reg = &cur_frame->regs[BPF_REG_1]; 16206 /* current state is valid due to states_equal(), 16207 * so we can assume valid iter and reg state, 16208 * no need for extra (re-)validations 16209 */ 16210 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 16211 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 16212 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) 16213 goto hit; 16214 } 16215 goto skip_inf_loop_check; 16216 } 16217 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 16218 if (states_maybe_looping(&sl->state, cur) && 16219 states_equal(env, &sl->state, cur) && 16220 !iter_active_depths_differ(&sl->state, cur)) { 16221 verbose_linfo(env, insn_idx, "; "); 16222 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 16223 return -EINVAL; 16224 } 16225 /* if the verifier is processing a loop, avoid adding new state 16226 * too often, since different loop iterations have distinct 16227 * states and may not help future pruning. 16228 * This threshold shouldn't be too low to make sure that 16229 * a loop with large bound will be rejected quickly. 16230 * The most abusive loop will be: 16231 * r1 += 1 16232 * if r1 < 1000000 goto pc-2 16233 * 1M insn_procssed limit / 100 == 10k peak states. 16234 * This threshold shouldn't be too high either, since states 16235 * at the end of the loop are likely to be useful in pruning. 16236 */ 16237 skip_inf_loop_check: 16238 if (!force_new_state && 16239 env->jmps_processed - env->prev_jmps_processed < 20 && 16240 env->insn_processed - env->prev_insn_processed < 100) 16241 add_new_state = false; 16242 goto miss; 16243 } 16244 if (states_equal(env, &sl->state, cur)) { 16245 hit: 16246 sl->hit_cnt++; 16247 /* reached equivalent register/stack state, 16248 * prune the search. 16249 * Registers read by the continuation are read by us. 16250 * If we have any write marks in env->cur_state, they 16251 * will prevent corresponding reads in the continuation 16252 * from reaching our parent (an explored_state). Our 16253 * own state will get the read marks recorded, but 16254 * they'll be immediately forgotten as we're pruning 16255 * this state and will pop a new one. 16256 */ 16257 err = propagate_liveness(env, &sl->state, cur); 16258 16259 /* if previous state reached the exit with precision and 16260 * current state is equivalent to it (except precsion marks) 16261 * the precision needs to be propagated back in 16262 * the current state. 16263 */ 16264 err = err ? : push_jmp_history(env, cur); 16265 err = err ? : propagate_precision(env, &sl->state); 16266 if (err) 16267 return err; 16268 return 1; 16269 } 16270 miss: 16271 /* when new state is not going to be added do not increase miss count. 16272 * Otherwise several loop iterations will remove the state 16273 * recorded earlier. The goal of these heuristics is to have 16274 * states from some iterations of the loop (some in the beginning 16275 * and some at the end) to help pruning. 16276 */ 16277 if (add_new_state) 16278 sl->miss_cnt++; 16279 /* heuristic to determine whether this state is beneficial 16280 * to keep checking from state equivalence point of view. 16281 * Higher numbers increase max_states_per_insn and verification time, 16282 * but do not meaningfully decrease insn_processed. 16283 */ 16284 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 16285 /* the state is unlikely to be useful. Remove it to 16286 * speed up verification 16287 */ 16288 *pprev = sl->next; 16289 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 16290 u32 br = sl->state.branches; 16291 16292 WARN_ONCE(br, 16293 "BUG live_done but branches_to_explore %d\n", 16294 br); 16295 free_verifier_state(&sl->state, false); 16296 kfree(sl); 16297 env->peak_states--; 16298 } else { 16299 /* cannot free this state, since parentage chain may 16300 * walk it later. Add it for free_list instead to 16301 * be freed at the end of verification 16302 */ 16303 sl->next = env->free_list; 16304 env->free_list = sl; 16305 } 16306 sl = *pprev; 16307 continue; 16308 } 16309 next: 16310 pprev = &sl->next; 16311 sl = *pprev; 16312 } 16313 16314 if (env->max_states_per_insn < states_cnt) 16315 env->max_states_per_insn = states_cnt; 16316 16317 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 16318 return 0; 16319 16320 if (!add_new_state) 16321 return 0; 16322 16323 /* There were no equivalent states, remember the current one. 16324 * Technically the current state is not proven to be safe yet, 16325 * but it will either reach outer most bpf_exit (which means it's safe) 16326 * or it will be rejected. When there are no loops the verifier won't be 16327 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 16328 * again on the way to bpf_exit. 16329 * When looping the sl->state.branches will be > 0 and this state 16330 * will not be considered for equivalence until branches == 0. 16331 */ 16332 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 16333 if (!new_sl) 16334 return -ENOMEM; 16335 env->total_states++; 16336 env->peak_states++; 16337 env->prev_jmps_processed = env->jmps_processed; 16338 env->prev_insn_processed = env->insn_processed; 16339 16340 /* forget precise markings we inherited, see __mark_chain_precision */ 16341 if (env->bpf_capable) 16342 mark_all_scalars_imprecise(env, cur); 16343 16344 /* add new state to the head of linked list */ 16345 new = &new_sl->state; 16346 err = copy_verifier_state(new, cur); 16347 if (err) { 16348 free_verifier_state(new, false); 16349 kfree(new_sl); 16350 return err; 16351 } 16352 new->insn_idx = insn_idx; 16353 WARN_ONCE(new->branches != 1, 16354 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 16355 16356 cur->parent = new; 16357 cur->first_insn_idx = insn_idx; 16358 clear_jmp_history(cur); 16359 new_sl->next = *explored_state(env, insn_idx); 16360 *explored_state(env, insn_idx) = new_sl; 16361 /* connect new state to parentage chain. Current frame needs all 16362 * registers connected. Only r6 - r9 of the callers are alive (pushed 16363 * to the stack implicitly by JITs) so in callers' frames connect just 16364 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 16365 * the state of the call instruction (with WRITTEN set), and r0 comes 16366 * from callee with its full parentage chain, anyway. 16367 */ 16368 /* clear write marks in current state: the writes we did are not writes 16369 * our child did, so they don't screen off its reads from us. 16370 * (There are no read marks in current state, because reads always mark 16371 * their parent and current state never has children yet. Only 16372 * explored_states can get read marks.) 16373 */ 16374 for (j = 0; j <= cur->curframe; j++) { 16375 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 16376 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 16377 for (i = 0; i < BPF_REG_FP; i++) 16378 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 16379 } 16380 16381 /* all stack frames are accessible from callee, clear them all */ 16382 for (j = 0; j <= cur->curframe; j++) { 16383 struct bpf_func_state *frame = cur->frame[j]; 16384 struct bpf_func_state *newframe = new->frame[j]; 16385 16386 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 16387 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 16388 frame->stack[i].spilled_ptr.parent = 16389 &newframe->stack[i].spilled_ptr; 16390 } 16391 } 16392 return 0; 16393 } 16394 16395 /* Return true if it's OK to have the same insn return a different type. */ 16396 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 16397 { 16398 switch (base_type(type)) { 16399 case PTR_TO_CTX: 16400 case PTR_TO_SOCKET: 16401 case PTR_TO_SOCK_COMMON: 16402 case PTR_TO_TCP_SOCK: 16403 case PTR_TO_XDP_SOCK: 16404 case PTR_TO_BTF_ID: 16405 return false; 16406 default: 16407 return true; 16408 } 16409 } 16410 16411 /* If an instruction was previously used with particular pointer types, then we 16412 * need to be careful to avoid cases such as the below, where it may be ok 16413 * for one branch accessing the pointer, but not ok for the other branch: 16414 * 16415 * R1 = sock_ptr 16416 * goto X; 16417 * ... 16418 * R1 = some_other_valid_ptr; 16419 * goto X; 16420 * ... 16421 * R2 = *(u32 *)(R1 + 0); 16422 */ 16423 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 16424 { 16425 return src != prev && (!reg_type_mismatch_ok(src) || 16426 !reg_type_mismatch_ok(prev)); 16427 } 16428 16429 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 16430 bool allow_trust_missmatch) 16431 { 16432 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 16433 16434 if (*prev_type == NOT_INIT) { 16435 /* Saw a valid insn 16436 * dst_reg = *(u32 *)(src_reg + off) 16437 * save type to validate intersecting paths 16438 */ 16439 *prev_type = type; 16440 } else if (reg_type_mismatch(type, *prev_type)) { 16441 /* Abuser program is trying to use the same insn 16442 * dst_reg = *(u32*) (src_reg + off) 16443 * with different pointer types: 16444 * src_reg == ctx in one branch and 16445 * src_reg == stack|map in some other branch. 16446 * Reject it. 16447 */ 16448 if (allow_trust_missmatch && 16449 base_type(type) == PTR_TO_BTF_ID && 16450 base_type(*prev_type) == PTR_TO_BTF_ID) { 16451 /* 16452 * Have to support a use case when one path through 16453 * the program yields TRUSTED pointer while another 16454 * is UNTRUSTED. Fallback to UNTRUSTED to generate 16455 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 16456 */ 16457 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 16458 } else { 16459 verbose(env, "same insn cannot be used with different pointers\n"); 16460 return -EINVAL; 16461 } 16462 } 16463 16464 return 0; 16465 } 16466 16467 static int do_check(struct bpf_verifier_env *env) 16468 { 16469 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 16470 struct bpf_verifier_state *state = env->cur_state; 16471 struct bpf_insn *insns = env->prog->insnsi; 16472 struct bpf_reg_state *regs; 16473 int insn_cnt = env->prog->len; 16474 bool do_print_state = false; 16475 int prev_insn_idx = -1; 16476 16477 for (;;) { 16478 struct bpf_insn *insn; 16479 u8 class; 16480 int err; 16481 16482 env->prev_insn_idx = prev_insn_idx; 16483 if (env->insn_idx >= insn_cnt) { 16484 verbose(env, "invalid insn idx %d insn_cnt %d\n", 16485 env->insn_idx, insn_cnt); 16486 return -EFAULT; 16487 } 16488 16489 insn = &insns[env->insn_idx]; 16490 class = BPF_CLASS(insn->code); 16491 16492 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 16493 verbose(env, 16494 "BPF program is too large. Processed %d insn\n", 16495 env->insn_processed); 16496 return -E2BIG; 16497 } 16498 16499 state->last_insn_idx = env->prev_insn_idx; 16500 16501 if (is_prune_point(env, env->insn_idx)) { 16502 err = is_state_visited(env, env->insn_idx); 16503 if (err < 0) 16504 return err; 16505 if (err == 1) { 16506 /* found equivalent state, can prune the search */ 16507 if (env->log.level & BPF_LOG_LEVEL) { 16508 if (do_print_state) 16509 verbose(env, "\nfrom %d to %d%s: safe\n", 16510 env->prev_insn_idx, env->insn_idx, 16511 env->cur_state->speculative ? 16512 " (speculative execution)" : ""); 16513 else 16514 verbose(env, "%d: safe\n", env->insn_idx); 16515 } 16516 goto process_bpf_exit; 16517 } 16518 } 16519 16520 if (is_jmp_point(env, env->insn_idx)) { 16521 err = push_jmp_history(env, state); 16522 if (err) 16523 return err; 16524 } 16525 16526 if (signal_pending(current)) 16527 return -EAGAIN; 16528 16529 if (need_resched()) 16530 cond_resched(); 16531 16532 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 16533 verbose(env, "\nfrom %d to %d%s:", 16534 env->prev_insn_idx, env->insn_idx, 16535 env->cur_state->speculative ? 16536 " (speculative execution)" : ""); 16537 print_verifier_state(env, state->frame[state->curframe], true); 16538 do_print_state = false; 16539 } 16540 16541 if (env->log.level & BPF_LOG_LEVEL) { 16542 const struct bpf_insn_cbs cbs = { 16543 .cb_call = disasm_kfunc_name, 16544 .cb_print = verbose, 16545 .private_data = env, 16546 }; 16547 16548 if (verifier_state_scratched(env)) 16549 print_insn_state(env, state->frame[state->curframe]); 16550 16551 verbose_linfo(env, env->insn_idx, "; "); 16552 env->prev_log_pos = env->log.end_pos; 16553 verbose(env, "%d: ", env->insn_idx); 16554 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 16555 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 16556 env->prev_log_pos = env->log.end_pos; 16557 } 16558 16559 if (bpf_prog_is_offloaded(env->prog->aux)) { 16560 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 16561 env->prev_insn_idx); 16562 if (err) 16563 return err; 16564 } 16565 16566 regs = cur_regs(env); 16567 sanitize_mark_insn_seen(env); 16568 prev_insn_idx = env->insn_idx; 16569 16570 if (class == BPF_ALU || class == BPF_ALU64) { 16571 err = check_alu_op(env, insn); 16572 if (err) 16573 return err; 16574 16575 } else if (class == BPF_LDX) { 16576 enum bpf_reg_type src_reg_type; 16577 16578 /* check for reserved fields is already done */ 16579 16580 /* check src operand */ 16581 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16582 if (err) 16583 return err; 16584 16585 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 16586 if (err) 16587 return err; 16588 16589 src_reg_type = regs[insn->src_reg].type; 16590 16591 /* check that memory (src_reg + off) is readable, 16592 * the state of dst_reg will be updated by this func 16593 */ 16594 err = check_mem_access(env, env->insn_idx, insn->src_reg, 16595 insn->off, BPF_SIZE(insn->code), 16596 BPF_READ, insn->dst_reg, false, 16597 BPF_MODE(insn->code) == BPF_MEMSX); 16598 if (err) 16599 return err; 16600 16601 err = save_aux_ptr_type(env, src_reg_type, true); 16602 if (err) 16603 return err; 16604 } else if (class == BPF_STX) { 16605 enum bpf_reg_type dst_reg_type; 16606 16607 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 16608 err = check_atomic(env, env->insn_idx, insn); 16609 if (err) 16610 return err; 16611 env->insn_idx++; 16612 continue; 16613 } 16614 16615 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 16616 verbose(env, "BPF_STX uses reserved fields\n"); 16617 return -EINVAL; 16618 } 16619 16620 /* check src1 operand */ 16621 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16622 if (err) 16623 return err; 16624 /* check src2 operand */ 16625 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16626 if (err) 16627 return err; 16628 16629 dst_reg_type = regs[insn->dst_reg].type; 16630 16631 /* check that memory (dst_reg + off) is writeable */ 16632 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 16633 insn->off, BPF_SIZE(insn->code), 16634 BPF_WRITE, insn->src_reg, false, false); 16635 if (err) 16636 return err; 16637 16638 err = save_aux_ptr_type(env, dst_reg_type, false); 16639 if (err) 16640 return err; 16641 } else if (class == BPF_ST) { 16642 enum bpf_reg_type dst_reg_type; 16643 16644 if (BPF_MODE(insn->code) != BPF_MEM || 16645 insn->src_reg != BPF_REG_0) { 16646 verbose(env, "BPF_ST uses reserved fields\n"); 16647 return -EINVAL; 16648 } 16649 /* check src operand */ 16650 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16651 if (err) 16652 return err; 16653 16654 dst_reg_type = regs[insn->dst_reg].type; 16655 16656 /* check that memory (dst_reg + off) is writeable */ 16657 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 16658 insn->off, BPF_SIZE(insn->code), 16659 BPF_WRITE, -1, false, false); 16660 if (err) 16661 return err; 16662 16663 err = save_aux_ptr_type(env, dst_reg_type, false); 16664 if (err) 16665 return err; 16666 } else if (class == BPF_JMP || class == BPF_JMP32) { 16667 u8 opcode = BPF_OP(insn->code); 16668 16669 env->jmps_processed++; 16670 if (opcode == BPF_CALL) { 16671 if (BPF_SRC(insn->code) != BPF_K || 16672 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 16673 && insn->off != 0) || 16674 (insn->src_reg != BPF_REG_0 && 16675 insn->src_reg != BPF_PSEUDO_CALL && 16676 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 16677 insn->dst_reg != BPF_REG_0 || 16678 class == BPF_JMP32) { 16679 verbose(env, "BPF_CALL uses reserved fields\n"); 16680 return -EINVAL; 16681 } 16682 16683 if (env->cur_state->active_lock.ptr) { 16684 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 16685 (insn->src_reg == BPF_PSEUDO_CALL) || 16686 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 16687 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 16688 verbose(env, "function calls are not allowed while holding a lock\n"); 16689 return -EINVAL; 16690 } 16691 } 16692 if (insn->src_reg == BPF_PSEUDO_CALL) 16693 err = check_func_call(env, insn, &env->insn_idx); 16694 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 16695 err = check_kfunc_call(env, insn, &env->insn_idx); 16696 else 16697 err = check_helper_call(env, insn, &env->insn_idx); 16698 if (err) 16699 return err; 16700 16701 mark_reg_scratched(env, BPF_REG_0); 16702 } else if (opcode == BPF_JA) { 16703 if (BPF_SRC(insn->code) != BPF_K || 16704 insn->src_reg != BPF_REG_0 || 16705 insn->dst_reg != BPF_REG_0 || 16706 (class == BPF_JMP && insn->imm != 0) || 16707 (class == BPF_JMP32 && insn->off != 0)) { 16708 verbose(env, "BPF_JA uses reserved fields\n"); 16709 return -EINVAL; 16710 } 16711 16712 if (class == BPF_JMP) 16713 env->insn_idx += insn->off + 1; 16714 else 16715 env->insn_idx += insn->imm + 1; 16716 continue; 16717 16718 } else if (opcode == BPF_EXIT) { 16719 if (BPF_SRC(insn->code) != BPF_K || 16720 insn->imm != 0 || 16721 insn->src_reg != BPF_REG_0 || 16722 insn->dst_reg != BPF_REG_0 || 16723 class == BPF_JMP32) { 16724 verbose(env, "BPF_EXIT uses reserved fields\n"); 16725 return -EINVAL; 16726 } 16727 16728 if (env->cur_state->active_lock.ptr && 16729 !in_rbtree_lock_required_cb(env)) { 16730 verbose(env, "bpf_spin_unlock is missing\n"); 16731 return -EINVAL; 16732 } 16733 16734 if (env->cur_state->active_rcu_lock && 16735 !in_rbtree_lock_required_cb(env)) { 16736 verbose(env, "bpf_rcu_read_unlock is missing\n"); 16737 return -EINVAL; 16738 } 16739 16740 /* We must do check_reference_leak here before 16741 * prepare_func_exit to handle the case when 16742 * state->curframe > 0, it may be a callback 16743 * function, for which reference_state must 16744 * match caller reference state when it exits. 16745 */ 16746 err = check_reference_leak(env); 16747 if (err) 16748 return err; 16749 16750 if (state->curframe) { 16751 /* exit from nested function */ 16752 err = prepare_func_exit(env, &env->insn_idx); 16753 if (err) 16754 return err; 16755 do_print_state = true; 16756 continue; 16757 } 16758 16759 err = check_return_code(env); 16760 if (err) 16761 return err; 16762 process_bpf_exit: 16763 mark_verifier_state_scratched(env); 16764 update_branch_counts(env, env->cur_state); 16765 err = pop_stack(env, &prev_insn_idx, 16766 &env->insn_idx, pop_log); 16767 if (err < 0) { 16768 if (err != -ENOENT) 16769 return err; 16770 break; 16771 } else { 16772 do_print_state = true; 16773 continue; 16774 } 16775 } else { 16776 err = check_cond_jmp_op(env, insn, &env->insn_idx); 16777 if (err) 16778 return err; 16779 } 16780 } else if (class == BPF_LD) { 16781 u8 mode = BPF_MODE(insn->code); 16782 16783 if (mode == BPF_ABS || mode == BPF_IND) { 16784 err = check_ld_abs(env, insn); 16785 if (err) 16786 return err; 16787 16788 } else if (mode == BPF_IMM) { 16789 err = check_ld_imm(env, insn); 16790 if (err) 16791 return err; 16792 16793 env->insn_idx++; 16794 sanitize_mark_insn_seen(env); 16795 } else { 16796 verbose(env, "invalid BPF_LD mode\n"); 16797 return -EINVAL; 16798 } 16799 } else { 16800 verbose(env, "unknown insn class %d\n", class); 16801 return -EINVAL; 16802 } 16803 16804 env->insn_idx++; 16805 } 16806 16807 return 0; 16808 } 16809 16810 static int find_btf_percpu_datasec(struct btf *btf) 16811 { 16812 const struct btf_type *t; 16813 const char *tname; 16814 int i, n; 16815 16816 /* 16817 * Both vmlinux and module each have their own ".data..percpu" 16818 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 16819 * types to look at only module's own BTF types. 16820 */ 16821 n = btf_nr_types(btf); 16822 if (btf_is_module(btf)) 16823 i = btf_nr_types(btf_vmlinux); 16824 else 16825 i = 1; 16826 16827 for(; i < n; i++) { 16828 t = btf_type_by_id(btf, i); 16829 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 16830 continue; 16831 16832 tname = btf_name_by_offset(btf, t->name_off); 16833 if (!strcmp(tname, ".data..percpu")) 16834 return i; 16835 } 16836 16837 return -ENOENT; 16838 } 16839 16840 /* replace pseudo btf_id with kernel symbol address */ 16841 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 16842 struct bpf_insn *insn, 16843 struct bpf_insn_aux_data *aux) 16844 { 16845 const struct btf_var_secinfo *vsi; 16846 const struct btf_type *datasec; 16847 struct btf_mod_pair *btf_mod; 16848 const struct btf_type *t; 16849 const char *sym_name; 16850 bool percpu = false; 16851 u32 type, id = insn->imm; 16852 struct btf *btf; 16853 s32 datasec_id; 16854 u64 addr; 16855 int i, btf_fd, err; 16856 16857 btf_fd = insn[1].imm; 16858 if (btf_fd) { 16859 btf = btf_get_by_fd(btf_fd); 16860 if (IS_ERR(btf)) { 16861 verbose(env, "invalid module BTF object FD specified.\n"); 16862 return -EINVAL; 16863 } 16864 } else { 16865 if (!btf_vmlinux) { 16866 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 16867 return -EINVAL; 16868 } 16869 btf = btf_vmlinux; 16870 btf_get(btf); 16871 } 16872 16873 t = btf_type_by_id(btf, id); 16874 if (!t) { 16875 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 16876 err = -ENOENT; 16877 goto err_put; 16878 } 16879 16880 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 16881 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 16882 err = -EINVAL; 16883 goto err_put; 16884 } 16885 16886 sym_name = btf_name_by_offset(btf, t->name_off); 16887 addr = kallsyms_lookup_name(sym_name); 16888 if (!addr) { 16889 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 16890 sym_name); 16891 err = -ENOENT; 16892 goto err_put; 16893 } 16894 insn[0].imm = (u32)addr; 16895 insn[1].imm = addr >> 32; 16896 16897 if (btf_type_is_func(t)) { 16898 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 16899 aux->btf_var.mem_size = 0; 16900 goto check_btf; 16901 } 16902 16903 datasec_id = find_btf_percpu_datasec(btf); 16904 if (datasec_id > 0) { 16905 datasec = btf_type_by_id(btf, datasec_id); 16906 for_each_vsi(i, datasec, vsi) { 16907 if (vsi->type == id) { 16908 percpu = true; 16909 break; 16910 } 16911 } 16912 } 16913 16914 type = t->type; 16915 t = btf_type_skip_modifiers(btf, type, NULL); 16916 if (percpu) { 16917 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 16918 aux->btf_var.btf = btf; 16919 aux->btf_var.btf_id = type; 16920 } else if (!btf_type_is_struct(t)) { 16921 const struct btf_type *ret; 16922 const char *tname; 16923 u32 tsize; 16924 16925 /* resolve the type size of ksym. */ 16926 ret = btf_resolve_size(btf, t, &tsize); 16927 if (IS_ERR(ret)) { 16928 tname = btf_name_by_offset(btf, t->name_off); 16929 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 16930 tname, PTR_ERR(ret)); 16931 err = -EINVAL; 16932 goto err_put; 16933 } 16934 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 16935 aux->btf_var.mem_size = tsize; 16936 } else { 16937 aux->btf_var.reg_type = PTR_TO_BTF_ID; 16938 aux->btf_var.btf = btf; 16939 aux->btf_var.btf_id = type; 16940 } 16941 check_btf: 16942 /* check whether we recorded this BTF (and maybe module) already */ 16943 for (i = 0; i < env->used_btf_cnt; i++) { 16944 if (env->used_btfs[i].btf == btf) { 16945 btf_put(btf); 16946 return 0; 16947 } 16948 } 16949 16950 if (env->used_btf_cnt >= MAX_USED_BTFS) { 16951 err = -E2BIG; 16952 goto err_put; 16953 } 16954 16955 btf_mod = &env->used_btfs[env->used_btf_cnt]; 16956 btf_mod->btf = btf; 16957 btf_mod->module = NULL; 16958 16959 /* if we reference variables from kernel module, bump its refcount */ 16960 if (btf_is_module(btf)) { 16961 btf_mod->module = btf_try_get_module(btf); 16962 if (!btf_mod->module) { 16963 err = -ENXIO; 16964 goto err_put; 16965 } 16966 } 16967 16968 env->used_btf_cnt++; 16969 16970 return 0; 16971 err_put: 16972 btf_put(btf); 16973 return err; 16974 } 16975 16976 static bool is_tracing_prog_type(enum bpf_prog_type type) 16977 { 16978 switch (type) { 16979 case BPF_PROG_TYPE_KPROBE: 16980 case BPF_PROG_TYPE_TRACEPOINT: 16981 case BPF_PROG_TYPE_PERF_EVENT: 16982 case BPF_PROG_TYPE_RAW_TRACEPOINT: 16983 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 16984 return true; 16985 default: 16986 return false; 16987 } 16988 } 16989 16990 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 16991 struct bpf_map *map, 16992 struct bpf_prog *prog) 16993 16994 { 16995 enum bpf_prog_type prog_type = resolve_prog_type(prog); 16996 16997 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 16998 btf_record_has_field(map->record, BPF_RB_ROOT)) { 16999 if (is_tracing_prog_type(prog_type)) { 17000 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 17001 return -EINVAL; 17002 } 17003 } 17004 17005 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 17006 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 17007 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 17008 return -EINVAL; 17009 } 17010 17011 if (is_tracing_prog_type(prog_type)) { 17012 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 17013 return -EINVAL; 17014 } 17015 } 17016 17017 if (btf_record_has_field(map->record, BPF_TIMER)) { 17018 if (is_tracing_prog_type(prog_type)) { 17019 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 17020 return -EINVAL; 17021 } 17022 } 17023 17024 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 17025 !bpf_offload_prog_map_match(prog, map)) { 17026 verbose(env, "offload device mismatch between prog and map\n"); 17027 return -EINVAL; 17028 } 17029 17030 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 17031 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 17032 return -EINVAL; 17033 } 17034 17035 if (prog->aux->sleepable) 17036 switch (map->map_type) { 17037 case BPF_MAP_TYPE_HASH: 17038 case BPF_MAP_TYPE_LRU_HASH: 17039 case BPF_MAP_TYPE_ARRAY: 17040 case BPF_MAP_TYPE_PERCPU_HASH: 17041 case BPF_MAP_TYPE_PERCPU_ARRAY: 17042 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 17043 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 17044 case BPF_MAP_TYPE_HASH_OF_MAPS: 17045 case BPF_MAP_TYPE_RINGBUF: 17046 case BPF_MAP_TYPE_USER_RINGBUF: 17047 case BPF_MAP_TYPE_INODE_STORAGE: 17048 case BPF_MAP_TYPE_SK_STORAGE: 17049 case BPF_MAP_TYPE_TASK_STORAGE: 17050 case BPF_MAP_TYPE_CGRP_STORAGE: 17051 break; 17052 default: 17053 verbose(env, 17054 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 17055 return -EINVAL; 17056 } 17057 17058 return 0; 17059 } 17060 17061 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 17062 { 17063 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 17064 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 17065 } 17066 17067 /* find and rewrite pseudo imm in ld_imm64 instructions: 17068 * 17069 * 1. if it accesses map FD, replace it with actual map pointer. 17070 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 17071 * 17072 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 17073 */ 17074 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 17075 { 17076 struct bpf_insn *insn = env->prog->insnsi; 17077 int insn_cnt = env->prog->len; 17078 int i, j, err; 17079 17080 err = bpf_prog_calc_tag(env->prog); 17081 if (err) 17082 return err; 17083 17084 for (i = 0; i < insn_cnt; i++, insn++) { 17085 if (BPF_CLASS(insn->code) == BPF_LDX && 17086 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 17087 insn->imm != 0)) { 17088 verbose(env, "BPF_LDX uses reserved fields\n"); 17089 return -EINVAL; 17090 } 17091 17092 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 17093 struct bpf_insn_aux_data *aux; 17094 struct bpf_map *map; 17095 struct fd f; 17096 u64 addr; 17097 u32 fd; 17098 17099 if (i == insn_cnt - 1 || insn[1].code != 0 || 17100 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 17101 insn[1].off != 0) { 17102 verbose(env, "invalid bpf_ld_imm64 insn\n"); 17103 return -EINVAL; 17104 } 17105 17106 if (insn[0].src_reg == 0) 17107 /* valid generic load 64-bit imm */ 17108 goto next_insn; 17109 17110 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 17111 aux = &env->insn_aux_data[i]; 17112 err = check_pseudo_btf_id(env, insn, aux); 17113 if (err) 17114 return err; 17115 goto next_insn; 17116 } 17117 17118 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 17119 aux = &env->insn_aux_data[i]; 17120 aux->ptr_type = PTR_TO_FUNC; 17121 goto next_insn; 17122 } 17123 17124 /* In final convert_pseudo_ld_imm64() step, this is 17125 * converted into regular 64-bit imm load insn. 17126 */ 17127 switch (insn[0].src_reg) { 17128 case BPF_PSEUDO_MAP_VALUE: 17129 case BPF_PSEUDO_MAP_IDX_VALUE: 17130 break; 17131 case BPF_PSEUDO_MAP_FD: 17132 case BPF_PSEUDO_MAP_IDX: 17133 if (insn[1].imm == 0) 17134 break; 17135 fallthrough; 17136 default: 17137 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 17138 return -EINVAL; 17139 } 17140 17141 switch (insn[0].src_reg) { 17142 case BPF_PSEUDO_MAP_IDX_VALUE: 17143 case BPF_PSEUDO_MAP_IDX: 17144 if (bpfptr_is_null(env->fd_array)) { 17145 verbose(env, "fd_idx without fd_array is invalid\n"); 17146 return -EPROTO; 17147 } 17148 if (copy_from_bpfptr_offset(&fd, env->fd_array, 17149 insn[0].imm * sizeof(fd), 17150 sizeof(fd))) 17151 return -EFAULT; 17152 break; 17153 default: 17154 fd = insn[0].imm; 17155 break; 17156 } 17157 17158 f = fdget(fd); 17159 map = __bpf_map_get(f); 17160 if (IS_ERR(map)) { 17161 verbose(env, "fd %d is not pointing to valid bpf_map\n", 17162 insn[0].imm); 17163 return PTR_ERR(map); 17164 } 17165 17166 err = check_map_prog_compatibility(env, map, env->prog); 17167 if (err) { 17168 fdput(f); 17169 return err; 17170 } 17171 17172 aux = &env->insn_aux_data[i]; 17173 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 17174 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 17175 addr = (unsigned long)map; 17176 } else { 17177 u32 off = insn[1].imm; 17178 17179 if (off >= BPF_MAX_VAR_OFF) { 17180 verbose(env, "direct value offset of %u is not allowed\n", off); 17181 fdput(f); 17182 return -EINVAL; 17183 } 17184 17185 if (!map->ops->map_direct_value_addr) { 17186 verbose(env, "no direct value access support for this map type\n"); 17187 fdput(f); 17188 return -EINVAL; 17189 } 17190 17191 err = map->ops->map_direct_value_addr(map, &addr, off); 17192 if (err) { 17193 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 17194 map->value_size, off); 17195 fdput(f); 17196 return err; 17197 } 17198 17199 aux->map_off = off; 17200 addr += off; 17201 } 17202 17203 insn[0].imm = (u32)addr; 17204 insn[1].imm = addr >> 32; 17205 17206 /* check whether we recorded this map already */ 17207 for (j = 0; j < env->used_map_cnt; j++) { 17208 if (env->used_maps[j] == map) { 17209 aux->map_index = j; 17210 fdput(f); 17211 goto next_insn; 17212 } 17213 } 17214 17215 if (env->used_map_cnt >= MAX_USED_MAPS) { 17216 fdput(f); 17217 return -E2BIG; 17218 } 17219 17220 /* hold the map. If the program is rejected by verifier, 17221 * the map will be released by release_maps() or it 17222 * will be used by the valid program until it's unloaded 17223 * and all maps are released in free_used_maps() 17224 */ 17225 bpf_map_inc(map); 17226 17227 aux->map_index = env->used_map_cnt; 17228 env->used_maps[env->used_map_cnt++] = map; 17229 17230 if (bpf_map_is_cgroup_storage(map) && 17231 bpf_cgroup_storage_assign(env->prog->aux, map)) { 17232 verbose(env, "only one cgroup storage of each type is allowed\n"); 17233 fdput(f); 17234 return -EBUSY; 17235 } 17236 17237 fdput(f); 17238 next_insn: 17239 insn++; 17240 i++; 17241 continue; 17242 } 17243 17244 /* Basic sanity check before we invest more work here. */ 17245 if (!bpf_opcode_in_insntable(insn->code)) { 17246 verbose(env, "unknown opcode %02x\n", insn->code); 17247 return -EINVAL; 17248 } 17249 } 17250 17251 /* now all pseudo BPF_LD_IMM64 instructions load valid 17252 * 'struct bpf_map *' into a register instead of user map_fd. 17253 * These pointers will be used later by verifier to validate map access. 17254 */ 17255 return 0; 17256 } 17257 17258 /* drop refcnt of maps used by the rejected program */ 17259 static void release_maps(struct bpf_verifier_env *env) 17260 { 17261 __bpf_free_used_maps(env->prog->aux, env->used_maps, 17262 env->used_map_cnt); 17263 } 17264 17265 /* drop refcnt of maps used by the rejected program */ 17266 static void release_btfs(struct bpf_verifier_env *env) 17267 { 17268 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 17269 env->used_btf_cnt); 17270 } 17271 17272 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 17273 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 17274 { 17275 struct bpf_insn *insn = env->prog->insnsi; 17276 int insn_cnt = env->prog->len; 17277 int i; 17278 17279 for (i = 0; i < insn_cnt; i++, insn++) { 17280 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 17281 continue; 17282 if (insn->src_reg == BPF_PSEUDO_FUNC) 17283 continue; 17284 insn->src_reg = 0; 17285 } 17286 } 17287 17288 /* single env->prog->insni[off] instruction was replaced with the range 17289 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 17290 * [0, off) and [off, end) to new locations, so the patched range stays zero 17291 */ 17292 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 17293 struct bpf_insn_aux_data *new_data, 17294 struct bpf_prog *new_prog, u32 off, u32 cnt) 17295 { 17296 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 17297 struct bpf_insn *insn = new_prog->insnsi; 17298 u32 old_seen = old_data[off].seen; 17299 u32 prog_len; 17300 int i; 17301 17302 /* aux info at OFF always needs adjustment, no matter fast path 17303 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 17304 * original insn at old prog. 17305 */ 17306 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 17307 17308 if (cnt == 1) 17309 return; 17310 prog_len = new_prog->len; 17311 17312 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 17313 memcpy(new_data + off + cnt - 1, old_data + off, 17314 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 17315 for (i = off; i < off + cnt - 1; i++) { 17316 /* Expand insni[off]'s seen count to the patched range. */ 17317 new_data[i].seen = old_seen; 17318 new_data[i].zext_dst = insn_has_def32(env, insn + i); 17319 } 17320 env->insn_aux_data = new_data; 17321 vfree(old_data); 17322 } 17323 17324 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 17325 { 17326 int i; 17327 17328 if (len == 1) 17329 return; 17330 /* NOTE: fake 'exit' subprog should be updated as well. */ 17331 for (i = 0; i <= env->subprog_cnt; i++) { 17332 if (env->subprog_info[i].start <= off) 17333 continue; 17334 env->subprog_info[i].start += len - 1; 17335 } 17336 } 17337 17338 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 17339 { 17340 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 17341 int i, sz = prog->aux->size_poke_tab; 17342 struct bpf_jit_poke_descriptor *desc; 17343 17344 for (i = 0; i < sz; i++) { 17345 desc = &tab[i]; 17346 if (desc->insn_idx <= off) 17347 continue; 17348 desc->insn_idx += len - 1; 17349 } 17350 } 17351 17352 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 17353 const struct bpf_insn *patch, u32 len) 17354 { 17355 struct bpf_prog *new_prog; 17356 struct bpf_insn_aux_data *new_data = NULL; 17357 17358 if (len > 1) { 17359 new_data = vzalloc(array_size(env->prog->len + len - 1, 17360 sizeof(struct bpf_insn_aux_data))); 17361 if (!new_data) 17362 return NULL; 17363 } 17364 17365 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 17366 if (IS_ERR(new_prog)) { 17367 if (PTR_ERR(new_prog) == -ERANGE) 17368 verbose(env, 17369 "insn %d cannot be patched due to 16-bit range\n", 17370 env->insn_aux_data[off].orig_idx); 17371 vfree(new_data); 17372 return NULL; 17373 } 17374 adjust_insn_aux_data(env, new_data, new_prog, off, len); 17375 adjust_subprog_starts(env, off, len); 17376 adjust_poke_descs(new_prog, off, len); 17377 return new_prog; 17378 } 17379 17380 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 17381 u32 off, u32 cnt) 17382 { 17383 int i, j; 17384 17385 /* find first prog starting at or after off (first to remove) */ 17386 for (i = 0; i < env->subprog_cnt; i++) 17387 if (env->subprog_info[i].start >= off) 17388 break; 17389 /* find first prog starting at or after off + cnt (first to stay) */ 17390 for (j = i; j < env->subprog_cnt; j++) 17391 if (env->subprog_info[j].start >= off + cnt) 17392 break; 17393 /* if j doesn't start exactly at off + cnt, we are just removing 17394 * the front of previous prog 17395 */ 17396 if (env->subprog_info[j].start != off + cnt) 17397 j--; 17398 17399 if (j > i) { 17400 struct bpf_prog_aux *aux = env->prog->aux; 17401 int move; 17402 17403 /* move fake 'exit' subprog as well */ 17404 move = env->subprog_cnt + 1 - j; 17405 17406 memmove(env->subprog_info + i, 17407 env->subprog_info + j, 17408 sizeof(*env->subprog_info) * move); 17409 env->subprog_cnt -= j - i; 17410 17411 /* remove func_info */ 17412 if (aux->func_info) { 17413 move = aux->func_info_cnt - j; 17414 17415 memmove(aux->func_info + i, 17416 aux->func_info + j, 17417 sizeof(*aux->func_info) * move); 17418 aux->func_info_cnt -= j - i; 17419 /* func_info->insn_off is set after all code rewrites, 17420 * in adjust_btf_func() - no need to adjust 17421 */ 17422 } 17423 } else { 17424 /* convert i from "first prog to remove" to "first to adjust" */ 17425 if (env->subprog_info[i].start == off) 17426 i++; 17427 } 17428 17429 /* update fake 'exit' subprog as well */ 17430 for (; i <= env->subprog_cnt; i++) 17431 env->subprog_info[i].start -= cnt; 17432 17433 return 0; 17434 } 17435 17436 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 17437 u32 cnt) 17438 { 17439 struct bpf_prog *prog = env->prog; 17440 u32 i, l_off, l_cnt, nr_linfo; 17441 struct bpf_line_info *linfo; 17442 17443 nr_linfo = prog->aux->nr_linfo; 17444 if (!nr_linfo) 17445 return 0; 17446 17447 linfo = prog->aux->linfo; 17448 17449 /* find first line info to remove, count lines to be removed */ 17450 for (i = 0; i < nr_linfo; i++) 17451 if (linfo[i].insn_off >= off) 17452 break; 17453 17454 l_off = i; 17455 l_cnt = 0; 17456 for (; i < nr_linfo; i++) 17457 if (linfo[i].insn_off < off + cnt) 17458 l_cnt++; 17459 else 17460 break; 17461 17462 /* First live insn doesn't match first live linfo, it needs to "inherit" 17463 * last removed linfo. prog is already modified, so prog->len == off 17464 * means no live instructions after (tail of the program was removed). 17465 */ 17466 if (prog->len != off && l_cnt && 17467 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 17468 l_cnt--; 17469 linfo[--i].insn_off = off + cnt; 17470 } 17471 17472 /* remove the line info which refer to the removed instructions */ 17473 if (l_cnt) { 17474 memmove(linfo + l_off, linfo + i, 17475 sizeof(*linfo) * (nr_linfo - i)); 17476 17477 prog->aux->nr_linfo -= l_cnt; 17478 nr_linfo = prog->aux->nr_linfo; 17479 } 17480 17481 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 17482 for (i = l_off; i < nr_linfo; i++) 17483 linfo[i].insn_off -= cnt; 17484 17485 /* fix up all subprogs (incl. 'exit') which start >= off */ 17486 for (i = 0; i <= env->subprog_cnt; i++) 17487 if (env->subprog_info[i].linfo_idx > l_off) { 17488 /* program may have started in the removed region but 17489 * may not be fully removed 17490 */ 17491 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 17492 env->subprog_info[i].linfo_idx -= l_cnt; 17493 else 17494 env->subprog_info[i].linfo_idx = l_off; 17495 } 17496 17497 return 0; 17498 } 17499 17500 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 17501 { 17502 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17503 unsigned int orig_prog_len = env->prog->len; 17504 int err; 17505 17506 if (bpf_prog_is_offloaded(env->prog->aux)) 17507 bpf_prog_offload_remove_insns(env, off, cnt); 17508 17509 err = bpf_remove_insns(env->prog, off, cnt); 17510 if (err) 17511 return err; 17512 17513 err = adjust_subprog_starts_after_remove(env, off, cnt); 17514 if (err) 17515 return err; 17516 17517 err = bpf_adj_linfo_after_remove(env, off, cnt); 17518 if (err) 17519 return err; 17520 17521 memmove(aux_data + off, aux_data + off + cnt, 17522 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 17523 17524 return 0; 17525 } 17526 17527 /* The verifier does more data flow analysis than llvm and will not 17528 * explore branches that are dead at run time. Malicious programs can 17529 * have dead code too. Therefore replace all dead at-run-time code 17530 * with 'ja -1'. 17531 * 17532 * Just nops are not optimal, e.g. if they would sit at the end of the 17533 * program and through another bug we would manage to jump there, then 17534 * we'd execute beyond program memory otherwise. Returning exception 17535 * code also wouldn't work since we can have subprogs where the dead 17536 * code could be located. 17537 */ 17538 static void sanitize_dead_code(struct bpf_verifier_env *env) 17539 { 17540 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17541 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 17542 struct bpf_insn *insn = env->prog->insnsi; 17543 const int insn_cnt = env->prog->len; 17544 int i; 17545 17546 for (i = 0; i < insn_cnt; i++) { 17547 if (aux_data[i].seen) 17548 continue; 17549 memcpy(insn + i, &trap, sizeof(trap)); 17550 aux_data[i].zext_dst = false; 17551 } 17552 } 17553 17554 static bool insn_is_cond_jump(u8 code) 17555 { 17556 u8 op; 17557 17558 op = BPF_OP(code); 17559 if (BPF_CLASS(code) == BPF_JMP32) 17560 return op != BPF_JA; 17561 17562 if (BPF_CLASS(code) != BPF_JMP) 17563 return false; 17564 17565 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 17566 } 17567 17568 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 17569 { 17570 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17571 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 17572 struct bpf_insn *insn = env->prog->insnsi; 17573 const int insn_cnt = env->prog->len; 17574 int i; 17575 17576 for (i = 0; i < insn_cnt; i++, insn++) { 17577 if (!insn_is_cond_jump(insn->code)) 17578 continue; 17579 17580 if (!aux_data[i + 1].seen) 17581 ja.off = insn->off; 17582 else if (!aux_data[i + 1 + insn->off].seen) 17583 ja.off = 0; 17584 else 17585 continue; 17586 17587 if (bpf_prog_is_offloaded(env->prog->aux)) 17588 bpf_prog_offload_replace_insn(env, i, &ja); 17589 17590 memcpy(insn, &ja, sizeof(ja)); 17591 } 17592 } 17593 17594 static int opt_remove_dead_code(struct bpf_verifier_env *env) 17595 { 17596 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17597 int insn_cnt = env->prog->len; 17598 int i, err; 17599 17600 for (i = 0; i < insn_cnt; i++) { 17601 int j; 17602 17603 j = 0; 17604 while (i + j < insn_cnt && !aux_data[i + j].seen) 17605 j++; 17606 if (!j) 17607 continue; 17608 17609 err = verifier_remove_insns(env, i, j); 17610 if (err) 17611 return err; 17612 insn_cnt = env->prog->len; 17613 } 17614 17615 return 0; 17616 } 17617 17618 static int opt_remove_nops(struct bpf_verifier_env *env) 17619 { 17620 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 17621 struct bpf_insn *insn = env->prog->insnsi; 17622 int insn_cnt = env->prog->len; 17623 int i, err; 17624 17625 for (i = 0; i < insn_cnt; i++) { 17626 if (memcmp(&insn[i], &ja, sizeof(ja))) 17627 continue; 17628 17629 err = verifier_remove_insns(env, i, 1); 17630 if (err) 17631 return err; 17632 insn_cnt--; 17633 i--; 17634 } 17635 17636 return 0; 17637 } 17638 17639 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 17640 const union bpf_attr *attr) 17641 { 17642 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 17643 struct bpf_insn_aux_data *aux = env->insn_aux_data; 17644 int i, patch_len, delta = 0, len = env->prog->len; 17645 struct bpf_insn *insns = env->prog->insnsi; 17646 struct bpf_prog *new_prog; 17647 bool rnd_hi32; 17648 17649 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 17650 zext_patch[1] = BPF_ZEXT_REG(0); 17651 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 17652 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 17653 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 17654 for (i = 0; i < len; i++) { 17655 int adj_idx = i + delta; 17656 struct bpf_insn insn; 17657 int load_reg; 17658 17659 insn = insns[adj_idx]; 17660 load_reg = insn_def_regno(&insn); 17661 if (!aux[adj_idx].zext_dst) { 17662 u8 code, class; 17663 u32 imm_rnd; 17664 17665 if (!rnd_hi32) 17666 continue; 17667 17668 code = insn.code; 17669 class = BPF_CLASS(code); 17670 if (load_reg == -1) 17671 continue; 17672 17673 /* NOTE: arg "reg" (the fourth one) is only used for 17674 * BPF_STX + SRC_OP, so it is safe to pass NULL 17675 * here. 17676 */ 17677 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 17678 if (class == BPF_LD && 17679 BPF_MODE(code) == BPF_IMM) 17680 i++; 17681 continue; 17682 } 17683 17684 /* ctx load could be transformed into wider load. */ 17685 if (class == BPF_LDX && 17686 aux[adj_idx].ptr_type == PTR_TO_CTX) 17687 continue; 17688 17689 imm_rnd = get_random_u32(); 17690 rnd_hi32_patch[0] = insn; 17691 rnd_hi32_patch[1].imm = imm_rnd; 17692 rnd_hi32_patch[3].dst_reg = load_reg; 17693 patch = rnd_hi32_patch; 17694 patch_len = 4; 17695 goto apply_patch_buffer; 17696 } 17697 17698 /* Add in an zero-extend instruction if a) the JIT has requested 17699 * it or b) it's a CMPXCHG. 17700 * 17701 * The latter is because: BPF_CMPXCHG always loads a value into 17702 * R0, therefore always zero-extends. However some archs' 17703 * equivalent instruction only does this load when the 17704 * comparison is successful. This detail of CMPXCHG is 17705 * orthogonal to the general zero-extension behaviour of the 17706 * CPU, so it's treated independently of bpf_jit_needs_zext. 17707 */ 17708 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 17709 continue; 17710 17711 /* Zero-extension is done by the caller. */ 17712 if (bpf_pseudo_kfunc_call(&insn)) 17713 continue; 17714 17715 if (WARN_ON(load_reg == -1)) { 17716 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 17717 return -EFAULT; 17718 } 17719 17720 zext_patch[0] = insn; 17721 zext_patch[1].dst_reg = load_reg; 17722 zext_patch[1].src_reg = load_reg; 17723 patch = zext_patch; 17724 patch_len = 2; 17725 apply_patch_buffer: 17726 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 17727 if (!new_prog) 17728 return -ENOMEM; 17729 env->prog = new_prog; 17730 insns = new_prog->insnsi; 17731 aux = env->insn_aux_data; 17732 delta += patch_len - 1; 17733 } 17734 17735 return 0; 17736 } 17737 17738 /* convert load instructions that access fields of a context type into a 17739 * sequence of instructions that access fields of the underlying structure: 17740 * struct __sk_buff -> struct sk_buff 17741 * struct bpf_sock_ops -> struct sock 17742 */ 17743 static int convert_ctx_accesses(struct bpf_verifier_env *env) 17744 { 17745 const struct bpf_verifier_ops *ops = env->ops; 17746 int i, cnt, size, ctx_field_size, delta = 0; 17747 const int insn_cnt = env->prog->len; 17748 struct bpf_insn insn_buf[16], *insn; 17749 u32 target_size, size_default, off; 17750 struct bpf_prog *new_prog; 17751 enum bpf_access_type type; 17752 bool is_narrower_load; 17753 17754 if (ops->gen_prologue || env->seen_direct_write) { 17755 if (!ops->gen_prologue) { 17756 verbose(env, "bpf verifier is misconfigured\n"); 17757 return -EINVAL; 17758 } 17759 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 17760 env->prog); 17761 if (cnt >= ARRAY_SIZE(insn_buf)) { 17762 verbose(env, "bpf verifier is misconfigured\n"); 17763 return -EINVAL; 17764 } else if (cnt) { 17765 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 17766 if (!new_prog) 17767 return -ENOMEM; 17768 17769 env->prog = new_prog; 17770 delta += cnt - 1; 17771 } 17772 } 17773 17774 if (bpf_prog_is_offloaded(env->prog->aux)) 17775 return 0; 17776 17777 insn = env->prog->insnsi + delta; 17778 17779 for (i = 0; i < insn_cnt; i++, insn++) { 17780 bpf_convert_ctx_access_t convert_ctx_access; 17781 u8 mode; 17782 17783 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 17784 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 17785 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 17786 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 17787 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 17788 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 17789 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 17790 type = BPF_READ; 17791 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 17792 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 17793 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 17794 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 17795 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 17796 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 17797 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 17798 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 17799 type = BPF_WRITE; 17800 } else { 17801 continue; 17802 } 17803 17804 if (type == BPF_WRITE && 17805 env->insn_aux_data[i + delta].sanitize_stack_spill) { 17806 struct bpf_insn patch[] = { 17807 *insn, 17808 BPF_ST_NOSPEC(), 17809 }; 17810 17811 cnt = ARRAY_SIZE(patch); 17812 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 17813 if (!new_prog) 17814 return -ENOMEM; 17815 17816 delta += cnt - 1; 17817 env->prog = new_prog; 17818 insn = new_prog->insnsi + i + delta; 17819 continue; 17820 } 17821 17822 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 17823 case PTR_TO_CTX: 17824 if (!ops->convert_ctx_access) 17825 continue; 17826 convert_ctx_access = ops->convert_ctx_access; 17827 break; 17828 case PTR_TO_SOCKET: 17829 case PTR_TO_SOCK_COMMON: 17830 convert_ctx_access = bpf_sock_convert_ctx_access; 17831 break; 17832 case PTR_TO_TCP_SOCK: 17833 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 17834 break; 17835 case PTR_TO_XDP_SOCK: 17836 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 17837 break; 17838 case PTR_TO_BTF_ID: 17839 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 17840 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 17841 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 17842 * be said once it is marked PTR_UNTRUSTED, hence we must handle 17843 * any faults for loads into such types. BPF_WRITE is disallowed 17844 * for this case. 17845 */ 17846 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 17847 if (type == BPF_READ) { 17848 if (BPF_MODE(insn->code) == BPF_MEM) 17849 insn->code = BPF_LDX | BPF_PROBE_MEM | 17850 BPF_SIZE((insn)->code); 17851 else 17852 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 17853 BPF_SIZE((insn)->code); 17854 env->prog->aux->num_exentries++; 17855 } 17856 continue; 17857 default: 17858 continue; 17859 } 17860 17861 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 17862 size = BPF_LDST_BYTES(insn); 17863 mode = BPF_MODE(insn->code); 17864 17865 /* If the read access is a narrower load of the field, 17866 * convert to a 4/8-byte load, to minimum program type specific 17867 * convert_ctx_access changes. If conversion is successful, 17868 * we will apply proper mask to the result. 17869 */ 17870 is_narrower_load = size < ctx_field_size; 17871 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 17872 off = insn->off; 17873 if (is_narrower_load) { 17874 u8 size_code; 17875 17876 if (type == BPF_WRITE) { 17877 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 17878 return -EINVAL; 17879 } 17880 17881 size_code = BPF_H; 17882 if (ctx_field_size == 4) 17883 size_code = BPF_W; 17884 else if (ctx_field_size == 8) 17885 size_code = BPF_DW; 17886 17887 insn->off = off & ~(size_default - 1); 17888 insn->code = BPF_LDX | BPF_MEM | size_code; 17889 } 17890 17891 target_size = 0; 17892 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 17893 &target_size); 17894 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 17895 (ctx_field_size && !target_size)) { 17896 verbose(env, "bpf verifier is misconfigured\n"); 17897 return -EINVAL; 17898 } 17899 17900 if (is_narrower_load && size < target_size) { 17901 u8 shift = bpf_ctx_narrow_access_offset( 17902 off, size, size_default) * 8; 17903 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 17904 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 17905 return -EINVAL; 17906 } 17907 if (ctx_field_size <= 4) { 17908 if (shift) 17909 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 17910 insn->dst_reg, 17911 shift); 17912 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 17913 (1 << size * 8) - 1); 17914 } else { 17915 if (shift) 17916 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 17917 insn->dst_reg, 17918 shift); 17919 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 17920 (1ULL << size * 8) - 1); 17921 } 17922 } 17923 if (mode == BPF_MEMSX) 17924 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 17925 insn->dst_reg, insn->dst_reg, 17926 size * 8, 0); 17927 17928 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 17929 if (!new_prog) 17930 return -ENOMEM; 17931 17932 delta += cnt - 1; 17933 17934 /* keep walking new program and skip insns we just inserted */ 17935 env->prog = new_prog; 17936 insn = new_prog->insnsi + i + delta; 17937 } 17938 17939 return 0; 17940 } 17941 17942 static int jit_subprogs(struct bpf_verifier_env *env) 17943 { 17944 struct bpf_prog *prog = env->prog, **func, *tmp; 17945 int i, j, subprog_start, subprog_end = 0, len, subprog; 17946 struct bpf_map *map_ptr; 17947 struct bpf_insn *insn; 17948 void *old_bpf_func; 17949 int err, num_exentries; 17950 17951 if (env->subprog_cnt <= 1) 17952 return 0; 17953 17954 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 17955 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 17956 continue; 17957 17958 /* Upon error here we cannot fall back to interpreter but 17959 * need a hard reject of the program. Thus -EFAULT is 17960 * propagated in any case. 17961 */ 17962 subprog = find_subprog(env, i + insn->imm + 1); 17963 if (subprog < 0) { 17964 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 17965 i + insn->imm + 1); 17966 return -EFAULT; 17967 } 17968 /* temporarily remember subprog id inside insn instead of 17969 * aux_data, since next loop will split up all insns into funcs 17970 */ 17971 insn->off = subprog; 17972 /* remember original imm in case JIT fails and fallback 17973 * to interpreter will be needed 17974 */ 17975 env->insn_aux_data[i].call_imm = insn->imm; 17976 /* point imm to __bpf_call_base+1 from JITs point of view */ 17977 insn->imm = 1; 17978 if (bpf_pseudo_func(insn)) 17979 /* jit (e.g. x86_64) may emit fewer instructions 17980 * if it learns a u32 imm is the same as a u64 imm. 17981 * Force a non zero here. 17982 */ 17983 insn[1].imm = 1; 17984 } 17985 17986 err = bpf_prog_alloc_jited_linfo(prog); 17987 if (err) 17988 goto out_undo_insn; 17989 17990 err = -ENOMEM; 17991 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 17992 if (!func) 17993 goto out_undo_insn; 17994 17995 for (i = 0; i < env->subprog_cnt; i++) { 17996 subprog_start = subprog_end; 17997 subprog_end = env->subprog_info[i + 1].start; 17998 17999 len = subprog_end - subprog_start; 18000 /* bpf_prog_run() doesn't call subprogs directly, 18001 * hence main prog stats include the runtime of subprogs. 18002 * subprogs don't have IDs and not reachable via prog_get_next_id 18003 * func[i]->stats will never be accessed and stays NULL 18004 */ 18005 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 18006 if (!func[i]) 18007 goto out_free; 18008 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 18009 len * sizeof(struct bpf_insn)); 18010 func[i]->type = prog->type; 18011 func[i]->len = len; 18012 if (bpf_prog_calc_tag(func[i])) 18013 goto out_free; 18014 func[i]->is_func = 1; 18015 func[i]->aux->func_idx = i; 18016 /* Below members will be freed only at prog->aux */ 18017 func[i]->aux->btf = prog->aux->btf; 18018 func[i]->aux->func_info = prog->aux->func_info; 18019 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 18020 func[i]->aux->poke_tab = prog->aux->poke_tab; 18021 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 18022 18023 for (j = 0; j < prog->aux->size_poke_tab; j++) { 18024 struct bpf_jit_poke_descriptor *poke; 18025 18026 poke = &prog->aux->poke_tab[j]; 18027 if (poke->insn_idx < subprog_end && 18028 poke->insn_idx >= subprog_start) 18029 poke->aux = func[i]->aux; 18030 } 18031 18032 func[i]->aux->name[0] = 'F'; 18033 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 18034 func[i]->jit_requested = 1; 18035 func[i]->blinding_requested = prog->blinding_requested; 18036 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 18037 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 18038 func[i]->aux->linfo = prog->aux->linfo; 18039 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 18040 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 18041 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 18042 num_exentries = 0; 18043 insn = func[i]->insnsi; 18044 for (j = 0; j < func[i]->len; j++, insn++) { 18045 if (BPF_CLASS(insn->code) == BPF_LDX && 18046 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 18047 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 18048 num_exentries++; 18049 } 18050 func[i]->aux->num_exentries = num_exentries; 18051 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 18052 func[i] = bpf_int_jit_compile(func[i]); 18053 if (!func[i]->jited) { 18054 err = -ENOTSUPP; 18055 goto out_free; 18056 } 18057 cond_resched(); 18058 } 18059 18060 /* at this point all bpf functions were successfully JITed 18061 * now populate all bpf_calls with correct addresses and 18062 * run last pass of JIT 18063 */ 18064 for (i = 0; i < env->subprog_cnt; i++) { 18065 insn = func[i]->insnsi; 18066 for (j = 0; j < func[i]->len; j++, insn++) { 18067 if (bpf_pseudo_func(insn)) { 18068 subprog = insn->off; 18069 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 18070 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 18071 continue; 18072 } 18073 if (!bpf_pseudo_call(insn)) 18074 continue; 18075 subprog = insn->off; 18076 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 18077 } 18078 18079 /* we use the aux data to keep a list of the start addresses 18080 * of the JITed images for each function in the program 18081 * 18082 * for some architectures, such as powerpc64, the imm field 18083 * might not be large enough to hold the offset of the start 18084 * address of the callee's JITed image from __bpf_call_base 18085 * 18086 * in such cases, we can lookup the start address of a callee 18087 * by using its subprog id, available from the off field of 18088 * the call instruction, as an index for this list 18089 */ 18090 func[i]->aux->func = func; 18091 func[i]->aux->func_cnt = env->subprog_cnt; 18092 } 18093 for (i = 0; i < env->subprog_cnt; i++) { 18094 old_bpf_func = func[i]->bpf_func; 18095 tmp = bpf_int_jit_compile(func[i]); 18096 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 18097 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 18098 err = -ENOTSUPP; 18099 goto out_free; 18100 } 18101 cond_resched(); 18102 } 18103 18104 /* finally lock prog and jit images for all functions and 18105 * populate kallsysm. Begin at the first subprogram, since 18106 * bpf_prog_load will add the kallsyms for the main program. 18107 */ 18108 for (i = 1; i < env->subprog_cnt; i++) { 18109 bpf_prog_lock_ro(func[i]); 18110 bpf_prog_kallsyms_add(func[i]); 18111 } 18112 18113 /* Last step: make now unused interpreter insns from main 18114 * prog consistent for later dump requests, so they can 18115 * later look the same as if they were interpreted only. 18116 */ 18117 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18118 if (bpf_pseudo_func(insn)) { 18119 insn[0].imm = env->insn_aux_data[i].call_imm; 18120 insn[1].imm = insn->off; 18121 insn->off = 0; 18122 continue; 18123 } 18124 if (!bpf_pseudo_call(insn)) 18125 continue; 18126 insn->off = env->insn_aux_data[i].call_imm; 18127 subprog = find_subprog(env, i + insn->off + 1); 18128 insn->imm = subprog; 18129 } 18130 18131 prog->jited = 1; 18132 prog->bpf_func = func[0]->bpf_func; 18133 prog->jited_len = func[0]->jited_len; 18134 prog->aux->extable = func[0]->aux->extable; 18135 prog->aux->num_exentries = func[0]->aux->num_exentries; 18136 prog->aux->func = func; 18137 prog->aux->func_cnt = env->subprog_cnt; 18138 bpf_prog_jit_attempt_done(prog); 18139 return 0; 18140 out_free: 18141 /* We failed JIT'ing, so at this point we need to unregister poke 18142 * descriptors from subprogs, so that kernel is not attempting to 18143 * patch it anymore as we're freeing the subprog JIT memory. 18144 */ 18145 for (i = 0; i < prog->aux->size_poke_tab; i++) { 18146 map_ptr = prog->aux->poke_tab[i].tail_call.map; 18147 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 18148 } 18149 /* At this point we're guaranteed that poke descriptors are not 18150 * live anymore. We can just unlink its descriptor table as it's 18151 * released with the main prog. 18152 */ 18153 for (i = 0; i < env->subprog_cnt; i++) { 18154 if (!func[i]) 18155 continue; 18156 func[i]->aux->poke_tab = NULL; 18157 bpf_jit_free(func[i]); 18158 } 18159 kfree(func); 18160 out_undo_insn: 18161 /* cleanup main prog to be interpreted */ 18162 prog->jit_requested = 0; 18163 prog->blinding_requested = 0; 18164 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18165 if (!bpf_pseudo_call(insn)) 18166 continue; 18167 insn->off = 0; 18168 insn->imm = env->insn_aux_data[i].call_imm; 18169 } 18170 bpf_prog_jit_attempt_done(prog); 18171 return err; 18172 } 18173 18174 static int fixup_call_args(struct bpf_verifier_env *env) 18175 { 18176 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 18177 struct bpf_prog *prog = env->prog; 18178 struct bpf_insn *insn = prog->insnsi; 18179 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 18180 int i, depth; 18181 #endif 18182 int err = 0; 18183 18184 if (env->prog->jit_requested && 18185 !bpf_prog_is_offloaded(env->prog->aux)) { 18186 err = jit_subprogs(env); 18187 if (err == 0) 18188 return 0; 18189 if (err == -EFAULT) 18190 return err; 18191 } 18192 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 18193 if (has_kfunc_call) { 18194 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 18195 return -EINVAL; 18196 } 18197 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 18198 /* When JIT fails the progs with bpf2bpf calls and tail_calls 18199 * have to be rejected, since interpreter doesn't support them yet. 18200 */ 18201 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 18202 return -EINVAL; 18203 } 18204 for (i = 0; i < prog->len; i++, insn++) { 18205 if (bpf_pseudo_func(insn)) { 18206 /* When JIT fails the progs with callback calls 18207 * have to be rejected, since interpreter doesn't support them yet. 18208 */ 18209 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 18210 return -EINVAL; 18211 } 18212 18213 if (!bpf_pseudo_call(insn)) 18214 continue; 18215 depth = get_callee_stack_depth(env, insn, i); 18216 if (depth < 0) 18217 return depth; 18218 bpf_patch_call_args(insn, depth); 18219 } 18220 err = 0; 18221 #endif 18222 return err; 18223 } 18224 18225 /* replace a generic kfunc with a specialized version if necessary */ 18226 static void specialize_kfunc(struct bpf_verifier_env *env, 18227 u32 func_id, u16 offset, unsigned long *addr) 18228 { 18229 struct bpf_prog *prog = env->prog; 18230 bool seen_direct_write; 18231 void *xdp_kfunc; 18232 bool is_rdonly; 18233 18234 if (bpf_dev_bound_kfunc_id(func_id)) { 18235 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 18236 if (xdp_kfunc) { 18237 *addr = (unsigned long)xdp_kfunc; 18238 return; 18239 } 18240 /* fallback to default kfunc when not supported by netdev */ 18241 } 18242 18243 if (offset) 18244 return; 18245 18246 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 18247 seen_direct_write = env->seen_direct_write; 18248 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 18249 18250 if (is_rdonly) 18251 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 18252 18253 /* restore env->seen_direct_write to its original value, since 18254 * may_access_direct_pkt_data mutates it 18255 */ 18256 env->seen_direct_write = seen_direct_write; 18257 } 18258 } 18259 18260 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 18261 u16 struct_meta_reg, 18262 u16 node_offset_reg, 18263 struct bpf_insn *insn, 18264 struct bpf_insn *insn_buf, 18265 int *cnt) 18266 { 18267 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 18268 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 18269 18270 insn_buf[0] = addr[0]; 18271 insn_buf[1] = addr[1]; 18272 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 18273 insn_buf[3] = *insn; 18274 *cnt = 4; 18275 } 18276 18277 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 18278 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 18279 { 18280 const struct bpf_kfunc_desc *desc; 18281 18282 if (!insn->imm) { 18283 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 18284 return -EINVAL; 18285 } 18286 18287 *cnt = 0; 18288 18289 /* insn->imm has the btf func_id. Replace it with an offset relative to 18290 * __bpf_call_base, unless the JIT needs to call functions that are 18291 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 18292 */ 18293 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 18294 if (!desc) { 18295 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 18296 insn->imm); 18297 return -EFAULT; 18298 } 18299 18300 if (!bpf_jit_supports_far_kfunc_call()) 18301 insn->imm = BPF_CALL_IMM(desc->addr); 18302 if (insn->off) 18303 return 0; 18304 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 18305 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18306 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18307 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 18308 18309 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 18310 insn_buf[1] = addr[0]; 18311 insn_buf[2] = addr[1]; 18312 insn_buf[3] = *insn; 18313 *cnt = 4; 18314 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 18315 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 18316 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18317 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18318 18319 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 18320 !kptr_struct_meta) { 18321 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 18322 insn_idx); 18323 return -EFAULT; 18324 } 18325 18326 insn_buf[0] = addr[0]; 18327 insn_buf[1] = addr[1]; 18328 insn_buf[2] = *insn; 18329 *cnt = 3; 18330 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 18331 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 18332 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18333 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18334 int struct_meta_reg = BPF_REG_3; 18335 int node_offset_reg = BPF_REG_4; 18336 18337 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 18338 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18339 struct_meta_reg = BPF_REG_4; 18340 node_offset_reg = BPF_REG_5; 18341 } 18342 18343 if (!kptr_struct_meta) { 18344 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 18345 insn_idx); 18346 return -EFAULT; 18347 } 18348 18349 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 18350 node_offset_reg, insn, insn_buf, cnt); 18351 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 18352 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 18353 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 18354 *cnt = 1; 18355 } 18356 return 0; 18357 } 18358 18359 /* Do various post-verification rewrites in a single program pass. 18360 * These rewrites simplify JIT and interpreter implementations. 18361 */ 18362 static int do_misc_fixups(struct bpf_verifier_env *env) 18363 { 18364 struct bpf_prog *prog = env->prog; 18365 enum bpf_attach_type eatype = prog->expected_attach_type; 18366 enum bpf_prog_type prog_type = resolve_prog_type(prog); 18367 struct bpf_insn *insn = prog->insnsi; 18368 const struct bpf_func_proto *fn; 18369 const int insn_cnt = prog->len; 18370 const struct bpf_map_ops *ops; 18371 struct bpf_insn_aux_data *aux; 18372 struct bpf_insn insn_buf[16]; 18373 struct bpf_prog *new_prog; 18374 struct bpf_map *map_ptr; 18375 int i, ret, cnt, delta = 0; 18376 18377 for (i = 0; i < insn_cnt; i++, insn++) { 18378 /* Make divide-by-zero exceptions impossible. */ 18379 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 18380 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 18381 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 18382 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 18383 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 18384 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 18385 struct bpf_insn *patchlet; 18386 struct bpf_insn chk_and_div[] = { 18387 /* [R,W]x div 0 -> 0 */ 18388 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18389 BPF_JNE | BPF_K, insn->src_reg, 18390 0, 2, 0), 18391 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 18392 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18393 *insn, 18394 }; 18395 struct bpf_insn chk_and_mod[] = { 18396 /* [R,W]x mod 0 -> [R,W]x */ 18397 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18398 BPF_JEQ | BPF_K, insn->src_reg, 18399 0, 1 + (is64 ? 0 : 1), 0), 18400 *insn, 18401 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18402 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 18403 }; 18404 18405 patchlet = isdiv ? chk_and_div : chk_and_mod; 18406 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 18407 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 18408 18409 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 18410 if (!new_prog) 18411 return -ENOMEM; 18412 18413 delta += cnt - 1; 18414 env->prog = prog = new_prog; 18415 insn = new_prog->insnsi + i + delta; 18416 continue; 18417 } 18418 18419 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 18420 if (BPF_CLASS(insn->code) == BPF_LD && 18421 (BPF_MODE(insn->code) == BPF_ABS || 18422 BPF_MODE(insn->code) == BPF_IND)) { 18423 cnt = env->ops->gen_ld_abs(insn, insn_buf); 18424 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 18425 verbose(env, "bpf verifier is misconfigured\n"); 18426 return -EINVAL; 18427 } 18428 18429 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18430 if (!new_prog) 18431 return -ENOMEM; 18432 18433 delta += cnt - 1; 18434 env->prog = prog = new_prog; 18435 insn = new_prog->insnsi + i + delta; 18436 continue; 18437 } 18438 18439 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 18440 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 18441 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 18442 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 18443 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 18444 struct bpf_insn *patch = &insn_buf[0]; 18445 bool issrc, isneg, isimm; 18446 u32 off_reg; 18447 18448 aux = &env->insn_aux_data[i + delta]; 18449 if (!aux->alu_state || 18450 aux->alu_state == BPF_ALU_NON_POINTER) 18451 continue; 18452 18453 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 18454 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 18455 BPF_ALU_SANITIZE_SRC; 18456 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 18457 18458 off_reg = issrc ? insn->src_reg : insn->dst_reg; 18459 if (isimm) { 18460 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18461 } else { 18462 if (isneg) 18463 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18464 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18465 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 18466 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 18467 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 18468 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 18469 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 18470 } 18471 if (!issrc) 18472 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 18473 insn->src_reg = BPF_REG_AX; 18474 if (isneg) 18475 insn->code = insn->code == code_add ? 18476 code_sub : code_add; 18477 *patch++ = *insn; 18478 if (issrc && isneg && !isimm) 18479 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18480 cnt = patch - insn_buf; 18481 18482 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18483 if (!new_prog) 18484 return -ENOMEM; 18485 18486 delta += cnt - 1; 18487 env->prog = prog = new_prog; 18488 insn = new_prog->insnsi + i + delta; 18489 continue; 18490 } 18491 18492 if (insn->code != (BPF_JMP | BPF_CALL)) 18493 continue; 18494 if (insn->src_reg == BPF_PSEUDO_CALL) 18495 continue; 18496 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 18497 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 18498 if (ret) 18499 return ret; 18500 if (cnt == 0) 18501 continue; 18502 18503 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18504 if (!new_prog) 18505 return -ENOMEM; 18506 18507 delta += cnt - 1; 18508 env->prog = prog = new_prog; 18509 insn = new_prog->insnsi + i + delta; 18510 continue; 18511 } 18512 18513 if (insn->imm == BPF_FUNC_get_route_realm) 18514 prog->dst_needed = 1; 18515 if (insn->imm == BPF_FUNC_get_prandom_u32) 18516 bpf_user_rnd_init_once(); 18517 if (insn->imm == BPF_FUNC_override_return) 18518 prog->kprobe_override = 1; 18519 if (insn->imm == BPF_FUNC_tail_call) { 18520 /* If we tail call into other programs, we 18521 * cannot make any assumptions since they can 18522 * be replaced dynamically during runtime in 18523 * the program array. 18524 */ 18525 prog->cb_access = 1; 18526 if (!allow_tail_call_in_subprogs(env)) 18527 prog->aux->stack_depth = MAX_BPF_STACK; 18528 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 18529 18530 /* mark bpf_tail_call as different opcode to avoid 18531 * conditional branch in the interpreter for every normal 18532 * call and to prevent accidental JITing by JIT compiler 18533 * that doesn't support bpf_tail_call yet 18534 */ 18535 insn->imm = 0; 18536 insn->code = BPF_JMP | BPF_TAIL_CALL; 18537 18538 aux = &env->insn_aux_data[i + delta]; 18539 if (env->bpf_capable && !prog->blinding_requested && 18540 prog->jit_requested && 18541 !bpf_map_key_poisoned(aux) && 18542 !bpf_map_ptr_poisoned(aux) && 18543 !bpf_map_ptr_unpriv(aux)) { 18544 struct bpf_jit_poke_descriptor desc = { 18545 .reason = BPF_POKE_REASON_TAIL_CALL, 18546 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 18547 .tail_call.key = bpf_map_key_immediate(aux), 18548 .insn_idx = i + delta, 18549 }; 18550 18551 ret = bpf_jit_add_poke_descriptor(prog, &desc); 18552 if (ret < 0) { 18553 verbose(env, "adding tail call poke descriptor failed\n"); 18554 return ret; 18555 } 18556 18557 insn->imm = ret + 1; 18558 continue; 18559 } 18560 18561 if (!bpf_map_ptr_unpriv(aux)) 18562 continue; 18563 18564 /* instead of changing every JIT dealing with tail_call 18565 * emit two extra insns: 18566 * if (index >= max_entries) goto out; 18567 * index &= array->index_mask; 18568 * to avoid out-of-bounds cpu speculation 18569 */ 18570 if (bpf_map_ptr_poisoned(aux)) { 18571 verbose(env, "tail_call abusing map_ptr\n"); 18572 return -EINVAL; 18573 } 18574 18575 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 18576 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 18577 map_ptr->max_entries, 2); 18578 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 18579 container_of(map_ptr, 18580 struct bpf_array, 18581 map)->index_mask); 18582 insn_buf[2] = *insn; 18583 cnt = 3; 18584 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18585 if (!new_prog) 18586 return -ENOMEM; 18587 18588 delta += cnt - 1; 18589 env->prog = prog = new_prog; 18590 insn = new_prog->insnsi + i + delta; 18591 continue; 18592 } 18593 18594 if (insn->imm == BPF_FUNC_timer_set_callback) { 18595 /* The verifier will process callback_fn as many times as necessary 18596 * with different maps and the register states prepared by 18597 * set_timer_callback_state will be accurate. 18598 * 18599 * The following use case is valid: 18600 * map1 is shared by prog1, prog2, prog3. 18601 * prog1 calls bpf_timer_init for some map1 elements 18602 * prog2 calls bpf_timer_set_callback for some map1 elements. 18603 * Those that were not bpf_timer_init-ed will return -EINVAL. 18604 * prog3 calls bpf_timer_start for some map1 elements. 18605 * Those that were not both bpf_timer_init-ed and 18606 * bpf_timer_set_callback-ed will return -EINVAL. 18607 */ 18608 struct bpf_insn ld_addrs[2] = { 18609 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 18610 }; 18611 18612 insn_buf[0] = ld_addrs[0]; 18613 insn_buf[1] = ld_addrs[1]; 18614 insn_buf[2] = *insn; 18615 cnt = 3; 18616 18617 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18618 if (!new_prog) 18619 return -ENOMEM; 18620 18621 delta += cnt - 1; 18622 env->prog = prog = new_prog; 18623 insn = new_prog->insnsi + i + delta; 18624 goto patch_call_imm; 18625 } 18626 18627 if (is_storage_get_function(insn->imm)) { 18628 if (!env->prog->aux->sleepable || 18629 env->insn_aux_data[i + delta].storage_get_func_atomic) 18630 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 18631 else 18632 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 18633 insn_buf[1] = *insn; 18634 cnt = 2; 18635 18636 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18637 if (!new_prog) 18638 return -ENOMEM; 18639 18640 delta += cnt - 1; 18641 env->prog = prog = new_prog; 18642 insn = new_prog->insnsi + i + delta; 18643 goto patch_call_imm; 18644 } 18645 18646 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 18647 * and other inlining handlers are currently limited to 64 bit 18648 * only. 18649 */ 18650 if (prog->jit_requested && BITS_PER_LONG == 64 && 18651 (insn->imm == BPF_FUNC_map_lookup_elem || 18652 insn->imm == BPF_FUNC_map_update_elem || 18653 insn->imm == BPF_FUNC_map_delete_elem || 18654 insn->imm == BPF_FUNC_map_push_elem || 18655 insn->imm == BPF_FUNC_map_pop_elem || 18656 insn->imm == BPF_FUNC_map_peek_elem || 18657 insn->imm == BPF_FUNC_redirect_map || 18658 insn->imm == BPF_FUNC_for_each_map_elem || 18659 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 18660 aux = &env->insn_aux_data[i + delta]; 18661 if (bpf_map_ptr_poisoned(aux)) 18662 goto patch_call_imm; 18663 18664 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 18665 ops = map_ptr->ops; 18666 if (insn->imm == BPF_FUNC_map_lookup_elem && 18667 ops->map_gen_lookup) { 18668 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 18669 if (cnt == -EOPNOTSUPP) 18670 goto patch_map_ops_generic; 18671 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 18672 verbose(env, "bpf verifier is misconfigured\n"); 18673 return -EINVAL; 18674 } 18675 18676 new_prog = bpf_patch_insn_data(env, i + delta, 18677 insn_buf, cnt); 18678 if (!new_prog) 18679 return -ENOMEM; 18680 18681 delta += cnt - 1; 18682 env->prog = prog = new_prog; 18683 insn = new_prog->insnsi + i + delta; 18684 continue; 18685 } 18686 18687 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 18688 (void *(*)(struct bpf_map *map, void *key))NULL)); 18689 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 18690 (long (*)(struct bpf_map *map, void *key))NULL)); 18691 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 18692 (long (*)(struct bpf_map *map, void *key, void *value, 18693 u64 flags))NULL)); 18694 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 18695 (long (*)(struct bpf_map *map, void *value, 18696 u64 flags))NULL)); 18697 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 18698 (long (*)(struct bpf_map *map, void *value))NULL)); 18699 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 18700 (long (*)(struct bpf_map *map, void *value))NULL)); 18701 BUILD_BUG_ON(!__same_type(ops->map_redirect, 18702 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 18703 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 18704 (long (*)(struct bpf_map *map, 18705 bpf_callback_t callback_fn, 18706 void *callback_ctx, 18707 u64 flags))NULL)); 18708 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 18709 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 18710 18711 patch_map_ops_generic: 18712 switch (insn->imm) { 18713 case BPF_FUNC_map_lookup_elem: 18714 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 18715 continue; 18716 case BPF_FUNC_map_update_elem: 18717 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 18718 continue; 18719 case BPF_FUNC_map_delete_elem: 18720 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 18721 continue; 18722 case BPF_FUNC_map_push_elem: 18723 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 18724 continue; 18725 case BPF_FUNC_map_pop_elem: 18726 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 18727 continue; 18728 case BPF_FUNC_map_peek_elem: 18729 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 18730 continue; 18731 case BPF_FUNC_redirect_map: 18732 insn->imm = BPF_CALL_IMM(ops->map_redirect); 18733 continue; 18734 case BPF_FUNC_for_each_map_elem: 18735 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 18736 continue; 18737 case BPF_FUNC_map_lookup_percpu_elem: 18738 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 18739 continue; 18740 } 18741 18742 goto patch_call_imm; 18743 } 18744 18745 /* Implement bpf_jiffies64 inline. */ 18746 if (prog->jit_requested && BITS_PER_LONG == 64 && 18747 insn->imm == BPF_FUNC_jiffies64) { 18748 struct bpf_insn ld_jiffies_addr[2] = { 18749 BPF_LD_IMM64(BPF_REG_0, 18750 (unsigned long)&jiffies), 18751 }; 18752 18753 insn_buf[0] = ld_jiffies_addr[0]; 18754 insn_buf[1] = ld_jiffies_addr[1]; 18755 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 18756 BPF_REG_0, 0); 18757 cnt = 3; 18758 18759 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 18760 cnt); 18761 if (!new_prog) 18762 return -ENOMEM; 18763 18764 delta += cnt - 1; 18765 env->prog = prog = new_prog; 18766 insn = new_prog->insnsi + i + delta; 18767 continue; 18768 } 18769 18770 /* Implement bpf_get_func_arg inline. */ 18771 if (prog_type == BPF_PROG_TYPE_TRACING && 18772 insn->imm == BPF_FUNC_get_func_arg) { 18773 /* Load nr_args from ctx - 8 */ 18774 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18775 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 18776 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 18777 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 18778 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 18779 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 18780 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 18781 insn_buf[7] = BPF_JMP_A(1); 18782 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 18783 cnt = 9; 18784 18785 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18786 if (!new_prog) 18787 return -ENOMEM; 18788 18789 delta += cnt - 1; 18790 env->prog = prog = new_prog; 18791 insn = new_prog->insnsi + i + delta; 18792 continue; 18793 } 18794 18795 /* Implement bpf_get_func_ret inline. */ 18796 if (prog_type == BPF_PROG_TYPE_TRACING && 18797 insn->imm == BPF_FUNC_get_func_ret) { 18798 if (eatype == BPF_TRACE_FEXIT || 18799 eatype == BPF_MODIFY_RETURN) { 18800 /* Load nr_args from ctx - 8 */ 18801 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18802 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 18803 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 18804 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 18805 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 18806 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 18807 cnt = 6; 18808 } else { 18809 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 18810 cnt = 1; 18811 } 18812 18813 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18814 if (!new_prog) 18815 return -ENOMEM; 18816 18817 delta += cnt - 1; 18818 env->prog = prog = new_prog; 18819 insn = new_prog->insnsi + i + delta; 18820 continue; 18821 } 18822 18823 /* Implement get_func_arg_cnt inline. */ 18824 if (prog_type == BPF_PROG_TYPE_TRACING && 18825 insn->imm == BPF_FUNC_get_func_arg_cnt) { 18826 /* Load nr_args from ctx - 8 */ 18827 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18828 18829 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 18830 if (!new_prog) 18831 return -ENOMEM; 18832 18833 env->prog = prog = new_prog; 18834 insn = new_prog->insnsi + i + delta; 18835 continue; 18836 } 18837 18838 /* Implement bpf_get_func_ip inline. */ 18839 if (prog_type == BPF_PROG_TYPE_TRACING && 18840 insn->imm == BPF_FUNC_get_func_ip) { 18841 /* Load IP address from ctx - 16 */ 18842 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 18843 18844 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 18845 if (!new_prog) 18846 return -ENOMEM; 18847 18848 env->prog = prog = new_prog; 18849 insn = new_prog->insnsi + i + delta; 18850 continue; 18851 } 18852 18853 patch_call_imm: 18854 fn = env->ops->get_func_proto(insn->imm, env->prog); 18855 /* all functions that have prototype and verifier allowed 18856 * programs to call them, must be real in-kernel functions 18857 */ 18858 if (!fn->func) { 18859 verbose(env, 18860 "kernel subsystem misconfigured func %s#%d\n", 18861 func_id_name(insn->imm), insn->imm); 18862 return -EFAULT; 18863 } 18864 insn->imm = fn->func - __bpf_call_base; 18865 } 18866 18867 /* Since poke tab is now finalized, publish aux to tracker. */ 18868 for (i = 0; i < prog->aux->size_poke_tab; i++) { 18869 map_ptr = prog->aux->poke_tab[i].tail_call.map; 18870 if (!map_ptr->ops->map_poke_track || 18871 !map_ptr->ops->map_poke_untrack || 18872 !map_ptr->ops->map_poke_run) { 18873 verbose(env, "bpf verifier is misconfigured\n"); 18874 return -EINVAL; 18875 } 18876 18877 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 18878 if (ret < 0) { 18879 verbose(env, "tracking tail call prog failed\n"); 18880 return ret; 18881 } 18882 } 18883 18884 sort_kfunc_descs_by_imm_off(env->prog); 18885 18886 return 0; 18887 } 18888 18889 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 18890 int position, 18891 s32 stack_base, 18892 u32 callback_subprogno, 18893 u32 *cnt) 18894 { 18895 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 18896 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 18897 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 18898 int reg_loop_max = BPF_REG_6; 18899 int reg_loop_cnt = BPF_REG_7; 18900 int reg_loop_ctx = BPF_REG_8; 18901 18902 struct bpf_prog *new_prog; 18903 u32 callback_start; 18904 u32 call_insn_offset; 18905 s32 callback_offset; 18906 18907 /* This represents an inlined version of bpf_iter.c:bpf_loop, 18908 * be careful to modify this code in sync. 18909 */ 18910 struct bpf_insn insn_buf[] = { 18911 /* Return error and jump to the end of the patch if 18912 * expected number of iterations is too big. 18913 */ 18914 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 18915 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 18916 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 18917 /* spill R6, R7, R8 to use these as loop vars */ 18918 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 18919 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 18920 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 18921 /* initialize loop vars */ 18922 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 18923 BPF_MOV32_IMM(reg_loop_cnt, 0), 18924 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 18925 /* loop header, 18926 * if reg_loop_cnt >= reg_loop_max skip the loop body 18927 */ 18928 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 18929 /* callback call, 18930 * correct callback offset would be set after patching 18931 */ 18932 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 18933 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 18934 BPF_CALL_REL(0), 18935 /* increment loop counter */ 18936 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 18937 /* jump to loop header if callback returned 0 */ 18938 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 18939 /* return value of bpf_loop, 18940 * set R0 to the number of iterations 18941 */ 18942 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 18943 /* restore original values of R6, R7, R8 */ 18944 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 18945 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 18946 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 18947 }; 18948 18949 *cnt = ARRAY_SIZE(insn_buf); 18950 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 18951 if (!new_prog) 18952 return new_prog; 18953 18954 /* callback start is known only after patching */ 18955 callback_start = env->subprog_info[callback_subprogno].start; 18956 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 18957 call_insn_offset = position + 12; 18958 callback_offset = callback_start - call_insn_offset - 1; 18959 new_prog->insnsi[call_insn_offset].imm = callback_offset; 18960 18961 return new_prog; 18962 } 18963 18964 static bool is_bpf_loop_call(struct bpf_insn *insn) 18965 { 18966 return insn->code == (BPF_JMP | BPF_CALL) && 18967 insn->src_reg == 0 && 18968 insn->imm == BPF_FUNC_loop; 18969 } 18970 18971 /* For all sub-programs in the program (including main) check 18972 * insn_aux_data to see if there are bpf_loop calls that require 18973 * inlining. If such calls are found the calls are replaced with a 18974 * sequence of instructions produced by `inline_bpf_loop` function and 18975 * subprog stack_depth is increased by the size of 3 registers. 18976 * This stack space is used to spill values of the R6, R7, R8. These 18977 * registers are used to store the loop bound, counter and context 18978 * variables. 18979 */ 18980 static int optimize_bpf_loop(struct bpf_verifier_env *env) 18981 { 18982 struct bpf_subprog_info *subprogs = env->subprog_info; 18983 int i, cur_subprog = 0, cnt, delta = 0; 18984 struct bpf_insn *insn = env->prog->insnsi; 18985 int insn_cnt = env->prog->len; 18986 u16 stack_depth = subprogs[cur_subprog].stack_depth; 18987 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 18988 u16 stack_depth_extra = 0; 18989 18990 for (i = 0; i < insn_cnt; i++, insn++) { 18991 struct bpf_loop_inline_state *inline_state = 18992 &env->insn_aux_data[i + delta].loop_inline_state; 18993 18994 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 18995 struct bpf_prog *new_prog; 18996 18997 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 18998 new_prog = inline_bpf_loop(env, 18999 i + delta, 19000 -(stack_depth + stack_depth_extra), 19001 inline_state->callback_subprogno, 19002 &cnt); 19003 if (!new_prog) 19004 return -ENOMEM; 19005 19006 delta += cnt - 1; 19007 env->prog = new_prog; 19008 insn = new_prog->insnsi + i + delta; 19009 } 19010 19011 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 19012 subprogs[cur_subprog].stack_depth += stack_depth_extra; 19013 cur_subprog++; 19014 stack_depth = subprogs[cur_subprog].stack_depth; 19015 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 19016 stack_depth_extra = 0; 19017 } 19018 } 19019 19020 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 19021 19022 return 0; 19023 } 19024 19025 static void free_states(struct bpf_verifier_env *env) 19026 { 19027 struct bpf_verifier_state_list *sl, *sln; 19028 int i; 19029 19030 sl = env->free_list; 19031 while (sl) { 19032 sln = sl->next; 19033 free_verifier_state(&sl->state, false); 19034 kfree(sl); 19035 sl = sln; 19036 } 19037 env->free_list = NULL; 19038 19039 if (!env->explored_states) 19040 return; 19041 19042 for (i = 0; i < state_htab_size(env); i++) { 19043 sl = env->explored_states[i]; 19044 19045 while (sl) { 19046 sln = sl->next; 19047 free_verifier_state(&sl->state, false); 19048 kfree(sl); 19049 sl = sln; 19050 } 19051 env->explored_states[i] = NULL; 19052 } 19053 } 19054 19055 static int do_check_common(struct bpf_verifier_env *env, int subprog) 19056 { 19057 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 19058 struct bpf_verifier_state *state; 19059 struct bpf_reg_state *regs; 19060 int ret, i; 19061 19062 env->prev_linfo = NULL; 19063 env->pass_cnt++; 19064 19065 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 19066 if (!state) 19067 return -ENOMEM; 19068 state->curframe = 0; 19069 state->speculative = false; 19070 state->branches = 1; 19071 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 19072 if (!state->frame[0]) { 19073 kfree(state); 19074 return -ENOMEM; 19075 } 19076 env->cur_state = state; 19077 init_func_state(env, state->frame[0], 19078 BPF_MAIN_FUNC /* callsite */, 19079 0 /* frameno */, 19080 subprog); 19081 state->first_insn_idx = env->subprog_info[subprog].start; 19082 state->last_insn_idx = -1; 19083 19084 regs = state->frame[state->curframe]->regs; 19085 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 19086 ret = btf_prepare_func_args(env, subprog, regs); 19087 if (ret) 19088 goto out; 19089 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 19090 if (regs[i].type == PTR_TO_CTX) 19091 mark_reg_known_zero(env, regs, i); 19092 else if (regs[i].type == SCALAR_VALUE) 19093 mark_reg_unknown(env, regs, i); 19094 else if (base_type(regs[i].type) == PTR_TO_MEM) { 19095 const u32 mem_size = regs[i].mem_size; 19096 19097 mark_reg_known_zero(env, regs, i); 19098 regs[i].mem_size = mem_size; 19099 regs[i].id = ++env->id_gen; 19100 } 19101 } 19102 } else { 19103 /* 1st arg to a function */ 19104 regs[BPF_REG_1].type = PTR_TO_CTX; 19105 mark_reg_known_zero(env, regs, BPF_REG_1); 19106 ret = btf_check_subprog_arg_match(env, subprog, regs); 19107 if (ret == -EFAULT) 19108 /* unlikely verifier bug. abort. 19109 * ret == 0 and ret < 0 are sadly acceptable for 19110 * main() function due to backward compatibility. 19111 * Like socket filter program may be written as: 19112 * int bpf_prog(struct pt_regs *ctx) 19113 * and never dereference that ctx in the program. 19114 * 'struct pt_regs' is a type mismatch for socket 19115 * filter that should be using 'struct __sk_buff'. 19116 */ 19117 goto out; 19118 } 19119 19120 ret = do_check(env); 19121 out: 19122 /* check for NULL is necessary, since cur_state can be freed inside 19123 * do_check() under memory pressure. 19124 */ 19125 if (env->cur_state) { 19126 free_verifier_state(env->cur_state, true); 19127 env->cur_state = NULL; 19128 } 19129 while (!pop_stack(env, NULL, NULL, false)); 19130 if (!ret && pop_log) 19131 bpf_vlog_reset(&env->log, 0); 19132 free_states(env); 19133 return ret; 19134 } 19135 19136 /* Verify all global functions in a BPF program one by one based on their BTF. 19137 * All global functions must pass verification. Otherwise the whole program is rejected. 19138 * Consider: 19139 * int bar(int); 19140 * int foo(int f) 19141 * { 19142 * return bar(f); 19143 * } 19144 * int bar(int b) 19145 * { 19146 * ... 19147 * } 19148 * foo() will be verified first for R1=any_scalar_value. During verification it 19149 * will be assumed that bar() already verified successfully and call to bar() 19150 * from foo() will be checked for type match only. Later bar() will be verified 19151 * independently to check that it's safe for R1=any_scalar_value. 19152 */ 19153 static int do_check_subprogs(struct bpf_verifier_env *env) 19154 { 19155 struct bpf_prog_aux *aux = env->prog->aux; 19156 int i, ret; 19157 19158 if (!aux->func_info) 19159 return 0; 19160 19161 for (i = 1; i < env->subprog_cnt; i++) { 19162 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 19163 continue; 19164 env->insn_idx = env->subprog_info[i].start; 19165 WARN_ON_ONCE(env->insn_idx == 0); 19166 ret = do_check_common(env, i); 19167 if (ret) { 19168 return ret; 19169 } else if (env->log.level & BPF_LOG_LEVEL) { 19170 verbose(env, 19171 "Func#%d is safe for any args that match its prototype\n", 19172 i); 19173 } 19174 } 19175 return 0; 19176 } 19177 19178 static int do_check_main(struct bpf_verifier_env *env) 19179 { 19180 int ret; 19181 19182 env->insn_idx = 0; 19183 ret = do_check_common(env, 0); 19184 if (!ret) 19185 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 19186 return ret; 19187 } 19188 19189 19190 static void print_verification_stats(struct bpf_verifier_env *env) 19191 { 19192 int i; 19193 19194 if (env->log.level & BPF_LOG_STATS) { 19195 verbose(env, "verification time %lld usec\n", 19196 div_u64(env->verification_time, 1000)); 19197 verbose(env, "stack depth "); 19198 for (i = 0; i < env->subprog_cnt; i++) { 19199 u32 depth = env->subprog_info[i].stack_depth; 19200 19201 verbose(env, "%d", depth); 19202 if (i + 1 < env->subprog_cnt) 19203 verbose(env, "+"); 19204 } 19205 verbose(env, "\n"); 19206 } 19207 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 19208 "total_states %d peak_states %d mark_read %d\n", 19209 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 19210 env->max_states_per_insn, env->total_states, 19211 env->peak_states, env->longest_mark_read_walk); 19212 } 19213 19214 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 19215 { 19216 const struct btf_type *t, *func_proto; 19217 const struct bpf_struct_ops *st_ops; 19218 const struct btf_member *member; 19219 struct bpf_prog *prog = env->prog; 19220 u32 btf_id, member_idx; 19221 const char *mname; 19222 19223 if (!prog->gpl_compatible) { 19224 verbose(env, "struct ops programs must have a GPL compatible license\n"); 19225 return -EINVAL; 19226 } 19227 19228 btf_id = prog->aux->attach_btf_id; 19229 st_ops = bpf_struct_ops_find(btf_id); 19230 if (!st_ops) { 19231 verbose(env, "attach_btf_id %u is not a supported struct\n", 19232 btf_id); 19233 return -ENOTSUPP; 19234 } 19235 19236 t = st_ops->type; 19237 member_idx = prog->expected_attach_type; 19238 if (member_idx >= btf_type_vlen(t)) { 19239 verbose(env, "attach to invalid member idx %u of struct %s\n", 19240 member_idx, st_ops->name); 19241 return -EINVAL; 19242 } 19243 19244 member = &btf_type_member(t)[member_idx]; 19245 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 19246 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 19247 NULL); 19248 if (!func_proto) { 19249 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 19250 mname, member_idx, st_ops->name); 19251 return -EINVAL; 19252 } 19253 19254 if (st_ops->check_member) { 19255 int err = st_ops->check_member(t, member, prog); 19256 19257 if (err) { 19258 verbose(env, "attach to unsupported member %s of struct %s\n", 19259 mname, st_ops->name); 19260 return err; 19261 } 19262 } 19263 19264 prog->aux->attach_func_proto = func_proto; 19265 prog->aux->attach_func_name = mname; 19266 env->ops = st_ops->verifier_ops; 19267 19268 return 0; 19269 } 19270 #define SECURITY_PREFIX "security_" 19271 19272 static int check_attach_modify_return(unsigned long addr, const char *func_name) 19273 { 19274 if (within_error_injection_list(addr) || 19275 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 19276 return 0; 19277 19278 return -EINVAL; 19279 } 19280 19281 /* list of non-sleepable functions that are otherwise on 19282 * ALLOW_ERROR_INJECTION list 19283 */ 19284 BTF_SET_START(btf_non_sleepable_error_inject) 19285 /* Three functions below can be called from sleepable and non-sleepable context. 19286 * Assume non-sleepable from bpf safety point of view. 19287 */ 19288 BTF_ID(func, __filemap_add_folio) 19289 BTF_ID(func, should_fail_alloc_page) 19290 BTF_ID(func, should_failslab) 19291 BTF_SET_END(btf_non_sleepable_error_inject) 19292 19293 static int check_non_sleepable_error_inject(u32 btf_id) 19294 { 19295 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 19296 } 19297 19298 int bpf_check_attach_target(struct bpf_verifier_log *log, 19299 const struct bpf_prog *prog, 19300 const struct bpf_prog *tgt_prog, 19301 u32 btf_id, 19302 struct bpf_attach_target_info *tgt_info) 19303 { 19304 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 19305 const char prefix[] = "btf_trace_"; 19306 int ret = 0, subprog = -1, i; 19307 const struct btf_type *t; 19308 bool conservative = true; 19309 const char *tname; 19310 struct btf *btf; 19311 long addr = 0; 19312 struct module *mod = NULL; 19313 19314 if (!btf_id) { 19315 bpf_log(log, "Tracing programs must provide btf_id\n"); 19316 return -EINVAL; 19317 } 19318 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 19319 if (!btf) { 19320 bpf_log(log, 19321 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 19322 return -EINVAL; 19323 } 19324 t = btf_type_by_id(btf, btf_id); 19325 if (!t) { 19326 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 19327 return -EINVAL; 19328 } 19329 tname = btf_name_by_offset(btf, t->name_off); 19330 if (!tname) { 19331 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 19332 return -EINVAL; 19333 } 19334 if (tgt_prog) { 19335 struct bpf_prog_aux *aux = tgt_prog->aux; 19336 19337 if (bpf_prog_is_dev_bound(prog->aux) && 19338 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 19339 bpf_log(log, "Target program bound device mismatch"); 19340 return -EINVAL; 19341 } 19342 19343 for (i = 0; i < aux->func_info_cnt; i++) 19344 if (aux->func_info[i].type_id == btf_id) { 19345 subprog = i; 19346 break; 19347 } 19348 if (subprog == -1) { 19349 bpf_log(log, "Subprog %s doesn't exist\n", tname); 19350 return -EINVAL; 19351 } 19352 conservative = aux->func_info_aux[subprog].unreliable; 19353 if (prog_extension) { 19354 if (conservative) { 19355 bpf_log(log, 19356 "Cannot replace static functions\n"); 19357 return -EINVAL; 19358 } 19359 if (!prog->jit_requested) { 19360 bpf_log(log, 19361 "Extension programs should be JITed\n"); 19362 return -EINVAL; 19363 } 19364 } 19365 if (!tgt_prog->jited) { 19366 bpf_log(log, "Can attach to only JITed progs\n"); 19367 return -EINVAL; 19368 } 19369 if (tgt_prog->type == prog->type) { 19370 /* Cannot fentry/fexit another fentry/fexit program. 19371 * Cannot attach program extension to another extension. 19372 * It's ok to attach fentry/fexit to extension program. 19373 */ 19374 bpf_log(log, "Cannot recursively attach\n"); 19375 return -EINVAL; 19376 } 19377 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 19378 prog_extension && 19379 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 19380 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 19381 /* Program extensions can extend all program types 19382 * except fentry/fexit. The reason is the following. 19383 * The fentry/fexit programs are used for performance 19384 * analysis, stats and can be attached to any program 19385 * type except themselves. When extension program is 19386 * replacing XDP function it is necessary to allow 19387 * performance analysis of all functions. Both original 19388 * XDP program and its program extension. Hence 19389 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 19390 * allowed. If extending of fentry/fexit was allowed it 19391 * would be possible to create long call chain 19392 * fentry->extension->fentry->extension beyond 19393 * reasonable stack size. Hence extending fentry is not 19394 * allowed. 19395 */ 19396 bpf_log(log, "Cannot extend fentry/fexit\n"); 19397 return -EINVAL; 19398 } 19399 } else { 19400 if (prog_extension) { 19401 bpf_log(log, "Cannot replace kernel functions\n"); 19402 return -EINVAL; 19403 } 19404 } 19405 19406 switch (prog->expected_attach_type) { 19407 case BPF_TRACE_RAW_TP: 19408 if (tgt_prog) { 19409 bpf_log(log, 19410 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 19411 return -EINVAL; 19412 } 19413 if (!btf_type_is_typedef(t)) { 19414 bpf_log(log, "attach_btf_id %u is not a typedef\n", 19415 btf_id); 19416 return -EINVAL; 19417 } 19418 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 19419 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 19420 btf_id, tname); 19421 return -EINVAL; 19422 } 19423 tname += sizeof(prefix) - 1; 19424 t = btf_type_by_id(btf, t->type); 19425 if (!btf_type_is_ptr(t)) 19426 /* should never happen in valid vmlinux build */ 19427 return -EINVAL; 19428 t = btf_type_by_id(btf, t->type); 19429 if (!btf_type_is_func_proto(t)) 19430 /* should never happen in valid vmlinux build */ 19431 return -EINVAL; 19432 19433 break; 19434 case BPF_TRACE_ITER: 19435 if (!btf_type_is_func(t)) { 19436 bpf_log(log, "attach_btf_id %u is not a function\n", 19437 btf_id); 19438 return -EINVAL; 19439 } 19440 t = btf_type_by_id(btf, t->type); 19441 if (!btf_type_is_func_proto(t)) 19442 return -EINVAL; 19443 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19444 if (ret) 19445 return ret; 19446 break; 19447 default: 19448 if (!prog_extension) 19449 return -EINVAL; 19450 fallthrough; 19451 case BPF_MODIFY_RETURN: 19452 case BPF_LSM_MAC: 19453 case BPF_LSM_CGROUP: 19454 case BPF_TRACE_FENTRY: 19455 case BPF_TRACE_FEXIT: 19456 if (!btf_type_is_func(t)) { 19457 bpf_log(log, "attach_btf_id %u is not a function\n", 19458 btf_id); 19459 return -EINVAL; 19460 } 19461 if (prog_extension && 19462 btf_check_type_match(log, prog, btf, t)) 19463 return -EINVAL; 19464 t = btf_type_by_id(btf, t->type); 19465 if (!btf_type_is_func_proto(t)) 19466 return -EINVAL; 19467 19468 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 19469 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 19470 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 19471 return -EINVAL; 19472 19473 if (tgt_prog && conservative) 19474 t = NULL; 19475 19476 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19477 if (ret < 0) 19478 return ret; 19479 19480 if (tgt_prog) { 19481 if (subprog == 0) 19482 addr = (long) tgt_prog->bpf_func; 19483 else 19484 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 19485 } else { 19486 if (btf_is_module(btf)) { 19487 mod = btf_try_get_module(btf); 19488 if (mod) 19489 addr = find_kallsyms_symbol_value(mod, tname); 19490 else 19491 addr = 0; 19492 } else { 19493 addr = kallsyms_lookup_name(tname); 19494 } 19495 if (!addr) { 19496 module_put(mod); 19497 bpf_log(log, 19498 "The address of function %s cannot be found\n", 19499 tname); 19500 return -ENOENT; 19501 } 19502 } 19503 19504 if (prog->aux->sleepable) { 19505 ret = -EINVAL; 19506 switch (prog->type) { 19507 case BPF_PROG_TYPE_TRACING: 19508 19509 /* fentry/fexit/fmod_ret progs can be sleepable if they are 19510 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 19511 */ 19512 if (!check_non_sleepable_error_inject(btf_id) && 19513 within_error_injection_list(addr)) 19514 ret = 0; 19515 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 19516 * in the fmodret id set with the KF_SLEEPABLE flag. 19517 */ 19518 else { 19519 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 19520 prog); 19521 19522 if (flags && (*flags & KF_SLEEPABLE)) 19523 ret = 0; 19524 } 19525 break; 19526 case BPF_PROG_TYPE_LSM: 19527 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 19528 * Only some of them are sleepable. 19529 */ 19530 if (bpf_lsm_is_sleepable_hook(btf_id)) 19531 ret = 0; 19532 break; 19533 default: 19534 break; 19535 } 19536 if (ret) { 19537 module_put(mod); 19538 bpf_log(log, "%s is not sleepable\n", tname); 19539 return ret; 19540 } 19541 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 19542 if (tgt_prog) { 19543 module_put(mod); 19544 bpf_log(log, "can't modify return codes of BPF programs\n"); 19545 return -EINVAL; 19546 } 19547 ret = -EINVAL; 19548 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 19549 !check_attach_modify_return(addr, tname)) 19550 ret = 0; 19551 if (ret) { 19552 module_put(mod); 19553 bpf_log(log, "%s() is not modifiable\n", tname); 19554 return ret; 19555 } 19556 } 19557 19558 break; 19559 } 19560 tgt_info->tgt_addr = addr; 19561 tgt_info->tgt_name = tname; 19562 tgt_info->tgt_type = t; 19563 tgt_info->tgt_mod = mod; 19564 return 0; 19565 } 19566 19567 BTF_SET_START(btf_id_deny) 19568 BTF_ID_UNUSED 19569 #ifdef CONFIG_SMP 19570 BTF_ID(func, migrate_disable) 19571 BTF_ID(func, migrate_enable) 19572 #endif 19573 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 19574 BTF_ID(func, rcu_read_unlock_strict) 19575 #endif 19576 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 19577 BTF_ID(func, preempt_count_add) 19578 BTF_ID(func, preempt_count_sub) 19579 #endif 19580 #ifdef CONFIG_PREEMPT_RCU 19581 BTF_ID(func, __rcu_read_lock) 19582 BTF_ID(func, __rcu_read_unlock) 19583 #endif 19584 BTF_SET_END(btf_id_deny) 19585 19586 static bool can_be_sleepable(struct bpf_prog *prog) 19587 { 19588 if (prog->type == BPF_PROG_TYPE_TRACING) { 19589 switch (prog->expected_attach_type) { 19590 case BPF_TRACE_FENTRY: 19591 case BPF_TRACE_FEXIT: 19592 case BPF_MODIFY_RETURN: 19593 case BPF_TRACE_ITER: 19594 return true; 19595 default: 19596 return false; 19597 } 19598 } 19599 return prog->type == BPF_PROG_TYPE_LSM || 19600 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 19601 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 19602 } 19603 19604 static int check_attach_btf_id(struct bpf_verifier_env *env) 19605 { 19606 struct bpf_prog *prog = env->prog; 19607 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 19608 struct bpf_attach_target_info tgt_info = {}; 19609 u32 btf_id = prog->aux->attach_btf_id; 19610 struct bpf_trampoline *tr; 19611 int ret; 19612 u64 key; 19613 19614 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 19615 if (prog->aux->sleepable) 19616 /* attach_btf_id checked to be zero already */ 19617 return 0; 19618 verbose(env, "Syscall programs can only be sleepable\n"); 19619 return -EINVAL; 19620 } 19621 19622 if (prog->aux->sleepable && !can_be_sleepable(prog)) { 19623 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 19624 return -EINVAL; 19625 } 19626 19627 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 19628 return check_struct_ops_btf_id(env); 19629 19630 if (prog->type != BPF_PROG_TYPE_TRACING && 19631 prog->type != BPF_PROG_TYPE_LSM && 19632 prog->type != BPF_PROG_TYPE_EXT) 19633 return 0; 19634 19635 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 19636 if (ret) 19637 return ret; 19638 19639 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 19640 /* to make freplace equivalent to their targets, they need to 19641 * inherit env->ops and expected_attach_type for the rest of the 19642 * verification 19643 */ 19644 env->ops = bpf_verifier_ops[tgt_prog->type]; 19645 prog->expected_attach_type = tgt_prog->expected_attach_type; 19646 } 19647 19648 /* store info about the attachment target that will be used later */ 19649 prog->aux->attach_func_proto = tgt_info.tgt_type; 19650 prog->aux->attach_func_name = tgt_info.tgt_name; 19651 prog->aux->mod = tgt_info.tgt_mod; 19652 19653 if (tgt_prog) { 19654 prog->aux->saved_dst_prog_type = tgt_prog->type; 19655 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 19656 } 19657 19658 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 19659 prog->aux->attach_btf_trace = true; 19660 return 0; 19661 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 19662 if (!bpf_iter_prog_supported(prog)) 19663 return -EINVAL; 19664 return 0; 19665 } 19666 19667 if (prog->type == BPF_PROG_TYPE_LSM) { 19668 ret = bpf_lsm_verify_prog(&env->log, prog); 19669 if (ret < 0) 19670 return ret; 19671 } else if (prog->type == BPF_PROG_TYPE_TRACING && 19672 btf_id_set_contains(&btf_id_deny, btf_id)) { 19673 return -EINVAL; 19674 } 19675 19676 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 19677 tr = bpf_trampoline_get(key, &tgt_info); 19678 if (!tr) 19679 return -ENOMEM; 19680 19681 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 19682 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 19683 19684 prog->aux->dst_trampoline = tr; 19685 return 0; 19686 } 19687 19688 struct btf *bpf_get_btf_vmlinux(void) 19689 { 19690 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 19691 mutex_lock(&bpf_verifier_lock); 19692 if (!btf_vmlinux) 19693 btf_vmlinux = btf_parse_vmlinux(); 19694 mutex_unlock(&bpf_verifier_lock); 19695 } 19696 return btf_vmlinux; 19697 } 19698 19699 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 19700 { 19701 u64 start_time = ktime_get_ns(); 19702 struct bpf_verifier_env *env; 19703 int i, len, ret = -EINVAL, err; 19704 u32 log_true_size; 19705 bool is_priv; 19706 19707 /* no program is valid */ 19708 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 19709 return -EINVAL; 19710 19711 /* 'struct bpf_verifier_env' can be global, but since it's not small, 19712 * allocate/free it every time bpf_check() is called 19713 */ 19714 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 19715 if (!env) 19716 return -ENOMEM; 19717 19718 env->bt.env = env; 19719 19720 len = (*prog)->len; 19721 env->insn_aux_data = 19722 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 19723 ret = -ENOMEM; 19724 if (!env->insn_aux_data) 19725 goto err_free_env; 19726 for (i = 0; i < len; i++) 19727 env->insn_aux_data[i].orig_idx = i; 19728 env->prog = *prog; 19729 env->ops = bpf_verifier_ops[env->prog->type]; 19730 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 19731 is_priv = bpf_capable(); 19732 19733 bpf_get_btf_vmlinux(); 19734 19735 /* grab the mutex to protect few globals used by verifier */ 19736 if (!is_priv) 19737 mutex_lock(&bpf_verifier_lock); 19738 19739 /* user could have requested verbose verifier output 19740 * and supplied buffer to store the verification trace 19741 */ 19742 ret = bpf_vlog_init(&env->log, attr->log_level, 19743 (char __user *) (unsigned long) attr->log_buf, 19744 attr->log_size); 19745 if (ret) 19746 goto err_unlock; 19747 19748 mark_verifier_state_clean(env); 19749 19750 if (IS_ERR(btf_vmlinux)) { 19751 /* Either gcc or pahole or kernel are broken. */ 19752 verbose(env, "in-kernel BTF is malformed\n"); 19753 ret = PTR_ERR(btf_vmlinux); 19754 goto skip_full_check; 19755 } 19756 19757 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 19758 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 19759 env->strict_alignment = true; 19760 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 19761 env->strict_alignment = false; 19762 19763 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 19764 env->allow_uninit_stack = bpf_allow_uninit_stack(); 19765 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 19766 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 19767 env->bpf_capable = bpf_capable(); 19768 19769 if (is_priv) 19770 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 19771 19772 env->explored_states = kvcalloc(state_htab_size(env), 19773 sizeof(struct bpf_verifier_state_list *), 19774 GFP_USER); 19775 ret = -ENOMEM; 19776 if (!env->explored_states) 19777 goto skip_full_check; 19778 19779 ret = add_subprog_and_kfunc(env); 19780 if (ret < 0) 19781 goto skip_full_check; 19782 19783 ret = check_subprogs(env); 19784 if (ret < 0) 19785 goto skip_full_check; 19786 19787 ret = check_btf_info(env, attr, uattr); 19788 if (ret < 0) 19789 goto skip_full_check; 19790 19791 ret = check_attach_btf_id(env); 19792 if (ret) 19793 goto skip_full_check; 19794 19795 ret = resolve_pseudo_ldimm64(env); 19796 if (ret < 0) 19797 goto skip_full_check; 19798 19799 if (bpf_prog_is_offloaded(env->prog->aux)) { 19800 ret = bpf_prog_offload_verifier_prep(env->prog); 19801 if (ret) 19802 goto skip_full_check; 19803 } 19804 19805 ret = check_cfg(env); 19806 if (ret < 0) 19807 goto skip_full_check; 19808 19809 ret = do_check_subprogs(env); 19810 ret = ret ?: do_check_main(env); 19811 19812 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 19813 ret = bpf_prog_offload_finalize(env); 19814 19815 skip_full_check: 19816 kvfree(env->explored_states); 19817 19818 if (ret == 0) 19819 ret = check_max_stack_depth(env); 19820 19821 /* instruction rewrites happen after this point */ 19822 if (ret == 0) 19823 ret = optimize_bpf_loop(env); 19824 19825 if (is_priv) { 19826 if (ret == 0) 19827 opt_hard_wire_dead_code_branches(env); 19828 if (ret == 0) 19829 ret = opt_remove_dead_code(env); 19830 if (ret == 0) 19831 ret = opt_remove_nops(env); 19832 } else { 19833 if (ret == 0) 19834 sanitize_dead_code(env); 19835 } 19836 19837 if (ret == 0) 19838 /* program is valid, convert *(u32*)(ctx + off) accesses */ 19839 ret = convert_ctx_accesses(env); 19840 19841 if (ret == 0) 19842 ret = do_misc_fixups(env); 19843 19844 /* do 32-bit optimization after insn patching has done so those patched 19845 * insns could be handled correctly. 19846 */ 19847 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 19848 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 19849 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 19850 : false; 19851 } 19852 19853 if (ret == 0) 19854 ret = fixup_call_args(env); 19855 19856 env->verification_time = ktime_get_ns() - start_time; 19857 print_verification_stats(env); 19858 env->prog->aux->verified_insns = env->insn_processed; 19859 19860 /* preserve original error even if log finalization is successful */ 19861 err = bpf_vlog_finalize(&env->log, &log_true_size); 19862 if (err) 19863 ret = err; 19864 19865 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 19866 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 19867 &log_true_size, sizeof(log_true_size))) { 19868 ret = -EFAULT; 19869 goto err_release_maps; 19870 } 19871 19872 if (ret) 19873 goto err_release_maps; 19874 19875 if (env->used_map_cnt) { 19876 /* if program passed verifier, update used_maps in bpf_prog_info */ 19877 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 19878 sizeof(env->used_maps[0]), 19879 GFP_KERNEL); 19880 19881 if (!env->prog->aux->used_maps) { 19882 ret = -ENOMEM; 19883 goto err_release_maps; 19884 } 19885 19886 memcpy(env->prog->aux->used_maps, env->used_maps, 19887 sizeof(env->used_maps[0]) * env->used_map_cnt); 19888 env->prog->aux->used_map_cnt = env->used_map_cnt; 19889 } 19890 if (env->used_btf_cnt) { 19891 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 19892 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 19893 sizeof(env->used_btfs[0]), 19894 GFP_KERNEL); 19895 if (!env->prog->aux->used_btfs) { 19896 ret = -ENOMEM; 19897 goto err_release_maps; 19898 } 19899 19900 memcpy(env->prog->aux->used_btfs, env->used_btfs, 19901 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 19902 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 19903 } 19904 if (env->used_map_cnt || env->used_btf_cnt) { 19905 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 19906 * bpf_ld_imm64 instructions 19907 */ 19908 convert_pseudo_ld_imm64(env); 19909 } 19910 19911 adjust_btf_func(env); 19912 19913 err_release_maps: 19914 if (!env->prog->aux->used_maps) 19915 /* if we didn't copy map pointers into bpf_prog_info, release 19916 * them now. Otherwise free_used_maps() will release them. 19917 */ 19918 release_maps(env); 19919 if (!env->prog->aux->used_btfs) 19920 release_btfs(env); 19921 19922 /* extension progs temporarily inherit the attach_type of their targets 19923 for verification purposes, so set it back to zero before returning 19924 */ 19925 if (env->prog->type == BPF_PROG_TYPE_EXT) 19926 env->prog->expected_attach_type = 0; 19927 19928 *prog = env->prog; 19929 err_unlock: 19930 if (!is_priv) 19931 mutex_unlock(&bpf_verifier_lock); 19932 vfree(env->insn_aux_data); 19933 err_free_env: 19934 kfree(env); 19935 return ret; 19936 } 19937