xref: /openbmc/linux/kernel/bpf/verifier.c (revision 61ae993c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <net/xdp.h>
30 
31 #include "disasm.h"
32 
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
35 	[_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #define BPF_LINK_TYPE(_id, _name)
38 #include <linux/bpf_types.h>
39 #undef BPF_PROG_TYPE
40 #undef BPF_MAP_TYPE
41 #undef BPF_LINK_TYPE
42 };
43 
44 /* bpf_check() is a static code analyzer that walks eBPF program
45  * instruction by instruction and updates register/stack state.
46  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
47  *
48  * The first pass is depth-first-search to check that the program is a DAG.
49  * It rejects the following programs:
50  * - larger than BPF_MAXINSNS insns
51  * - if loop is present (detected via back-edge)
52  * - unreachable insns exist (shouldn't be a forest. program = one function)
53  * - out of bounds or malformed jumps
54  * The second pass is all possible path descent from the 1st insn.
55  * Since it's analyzing all paths through the program, the length of the
56  * analysis is limited to 64k insn, which may be hit even if total number of
57  * insn is less then 4K, but there are too many branches that change stack/regs.
58  * Number of 'branches to be analyzed' is limited to 1k
59  *
60  * On entry to each instruction, each register has a type, and the instruction
61  * changes the types of the registers depending on instruction semantics.
62  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
63  * copied to R1.
64  *
65  * All registers are 64-bit.
66  * R0 - return register
67  * R1-R5 argument passing registers
68  * R6-R9 callee saved registers
69  * R10 - frame pointer read-only
70  *
71  * At the start of BPF program the register R1 contains a pointer to bpf_context
72  * and has type PTR_TO_CTX.
73  *
74  * Verifier tracks arithmetic operations on pointers in case:
75  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
76  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
77  * 1st insn copies R10 (which has FRAME_PTR) type into R1
78  * and 2nd arithmetic instruction is pattern matched to recognize
79  * that it wants to construct a pointer to some element within stack.
80  * So after 2nd insn, the register R1 has type PTR_TO_STACK
81  * (and -20 constant is saved for further stack bounds checking).
82  * Meaning that this reg is a pointer to stack plus known immediate constant.
83  *
84  * Most of the time the registers have SCALAR_VALUE type, which
85  * means the register has some value, but it's not a valid pointer.
86  * (like pointer plus pointer becomes SCALAR_VALUE type)
87  *
88  * When verifier sees load or store instructions the type of base register
89  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
90  * four pointer types recognized by check_mem_access() function.
91  *
92  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
93  * and the range of [ptr, ptr + map's value_size) is accessible.
94  *
95  * registers used to pass values to function calls are checked against
96  * function argument constraints.
97  *
98  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
99  * It means that the register type passed to this function must be
100  * PTR_TO_STACK and it will be used inside the function as
101  * 'pointer to map element key'
102  *
103  * For example the argument constraints for bpf_map_lookup_elem():
104  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
105  *   .arg1_type = ARG_CONST_MAP_PTR,
106  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
107  *
108  * ret_type says that this function returns 'pointer to map elem value or null'
109  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
110  * 2nd argument should be a pointer to stack, which will be used inside
111  * the helper function as a pointer to map element key.
112  *
113  * On the kernel side the helper function looks like:
114  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
115  * {
116  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
117  *    void *key = (void *) (unsigned long) r2;
118  *    void *value;
119  *
120  *    here kernel can access 'key' and 'map' pointers safely, knowing that
121  *    [key, key + map->key_size) bytes are valid and were initialized on
122  *    the stack of eBPF program.
123  * }
124  *
125  * Corresponding eBPF program may look like:
126  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
127  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
128  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
129  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
130  * here verifier looks at prototype of map_lookup_elem() and sees:
131  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
132  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
133  *
134  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
135  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
136  * and were initialized prior to this call.
137  * If it's ok, then verifier allows this BPF_CALL insn and looks at
138  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
139  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
140  * returns either pointer to map value or NULL.
141  *
142  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
143  * insn, the register holding that pointer in the true branch changes state to
144  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
145  * branch. See check_cond_jmp_op().
146  *
147  * After the call R0 is set to return type of the function and registers R1-R5
148  * are set to NOT_INIT to indicate that they are no longer readable.
149  *
150  * The following reference types represent a potential reference to a kernel
151  * resource which, after first being allocated, must be checked and freed by
152  * the BPF program:
153  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
154  *
155  * When the verifier sees a helper call return a reference type, it allocates a
156  * pointer id for the reference and stores it in the current function state.
157  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
158  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
159  * passes through a NULL-check conditional. For the branch wherein the state is
160  * changed to CONST_IMM, the verifier releases the reference.
161  *
162  * For each helper function that allocates a reference, such as
163  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
164  * bpf_sk_release(). When a reference type passes into the release function,
165  * the verifier also releases the reference. If any unchecked or unreleased
166  * reference remains at the end of the program, the verifier rejects it.
167  */
168 
169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
170 struct bpf_verifier_stack_elem {
171 	/* verifer state is 'st'
172 	 * before processing instruction 'insn_idx'
173 	 * and after processing instruction 'prev_insn_idx'
174 	 */
175 	struct bpf_verifier_state st;
176 	int insn_idx;
177 	int prev_insn_idx;
178 	struct bpf_verifier_stack_elem *next;
179 	/* length of verifier log at the time this state was pushed on stack */
180 	u32 log_pos;
181 };
182 
183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
184 #define BPF_COMPLEXITY_LIMIT_STATES	64
185 
186 #define BPF_MAP_KEY_POISON	(1ULL << 63)
187 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
188 
189 #define BPF_MAP_PTR_UNPRIV	1UL
190 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
191 					  POISON_POINTER_DELTA))
192 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
193 
194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
198 static int ref_set_non_owning(struct bpf_verifier_env *env,
199 			      struct bpf_reg_state *reg);
200 static void specialize_kfunc(struct bpf_verifier_env *env,
201 			     u32 func_id, u16 offset, unsigned long *addr);
202 static bool is_trusted_reg(const struct bpf_reg_state *reg);
203 
204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
205 {
206 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
207 }
208 
209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
210 {
211 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
212 }
213 
214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
215 			      const struct bpf_map *map, bool unpriv)
216 {
217 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
218 	unpriv |= bpf_map_ptr_unpriv(aux);
219 	aux->map_ptr_state = (unsigned long)map |
220 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
221 }
222 
223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
224 {
225 	return aux->map_key_state & BPF_MAP_KEY_POISON;
226 }
227 
228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
229 {
230 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
231 }
232 
233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
234 {
235 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
236 }
237 
238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
239 {
240 	bool poisoned = bpf_map_key_poisoned(aux);
241 
242 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
243 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
244 }
245 
246 static bool bpf_helper_call(const struct bpf_insn *insn)
247 {
248 	return insn->code == (BPF_JMP | BPF_CALL) &&
249 	       insn->src_reg == 0;
250 }
251 
252 static bool bpf_pseudo_call(const struct bpf_insn *insn)
253 {
254 	return insn->code == (BPF_JMP | BPF_CALL) &&
255 	       insn->src_reg == BPF_PSEUDO_CALL;
256 }
257 
258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
259 {
260 	return insn->code == (BPF_JMP | BPF_CALL) &&
261 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
262 }
263 
264 struct bpf_call_arg_meta {
265 	struct bpf_map *map_ptr;
266 	bool raw_mode;
267 	bool pkt_access;
268 	u8 release_regno;
269 	int regno;
270 	int access_size;
271 	int mem_size;
272 	u64 msize_max_value;
273 	int ref_obj_id;
274 	int dynptr_id;
275 	int map_uid;
276 	int func_id;
277 	struct btf *btf;
278 	u32 btf_id;
279 	struct btf *ret_btf;
280 	u32 ret_btf_id;
281 	u32 subprogno;
282 	struct btf_field *kptr_field;
283 };
284 
285 struct bpf_kfunc_call_arg_meta {
286 	/* In parameters */
287 	struct btf *btf;
288 	u32 func_id;
289 	u32 kfunc_flags;
290 	const struct btf_type *func_proto;
291 	const char *func_name;
292 	/* Out parameters */
293 	u32 ref_obj_id;
294 	u8 release_regno;
295 	bool r0_rdonly;
296 	u32 ret_btf_id;
297 	u64 r0_size;
298 	u32 subprogno;
299 	struct {
300 		u64 value;
301 		bool found;
302 	} arg_constant;
303 
304 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
305 	 * generally to pass info about user-defined local kptr types to later
306 	 * verification logic
307 	 *   bpf_obj_drop
308 	 *     Record the local kptr type to be drop'd
309 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
310 	 *     Record the local kptr type to be refcount_incr'd and use
311 	 *     arg_owning_ref to determine whether refcount_acquire should be
312 	 *     fallible
313 	 */
314 	struct btf *arg_btf;
315 	u32 arg_btf_id;
316 	bool arg_owning_ref;
317 
318 	struct {
319 		struct btf_field *field;
320 	} arg_list_head;
321 	struct {
322 		struct btf_field *field;
323 	} arg_rbtree_root;
324 	struct {
325 		enum bpf_dynptr_type type;
326 		u32 id;
327 		u32 ref_obj_id;
328 	} initialized_dynptr;
329 	struct {
330 		u8 spi;
331 		u8 frameno;
332 	} iter;
333 	u64 mem_size;
334 };
335 
336 struct btf *btf_vmlinux;
337 
338 static DEFINE_MUTEX(bpf_verifier_lock);
339 
340 static const struct bpf_line_info *
341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
342 {
343 	const struct bpf_line_info *linfo;
344 	const struct bpf_prog *prog;
345 	u32 i, nr_linfo;
346 
347 	prog = env->prog;
348 	nr_linfo = prog->aux->nr_linfo;
349 
350 	if (!nr_linfo || insn_off >= prog->len)
351 		return NULL;
352 
353 	linfo = prog->aux->linfo;
354 	for (i = 1; i < nr_linfo; i++)
355 		if (insn_off < linfo[i].insn_off)
356 			break;
357 
358 	return &linfo[i - 1];
359 }
360 
361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
362 {
363 	struct bpf_verifier_env *env = private_data;
364 	va_list args;
365 
366 	if (!bpf_verifier_log_needed(&env->log))
367 		return;
368 
369 	va_start(args, fmt);
370 	bpf_verifier_vlog(&env->log, fmt, args);
371 	va_end(args);
372 }
373 
374 static const char *ltrim(const char *s)
375 {
376 	while (isspace(*s))
377 		s++;
378 
379 	return s;
380 }
381 
382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
383 					 u32 insn_off,
384 					 const char *prefix_fmt, ...)
385 {
386 	const struct bpf_line_info *linfo;
387 
388 	if (!bpf_verifier_log_needed(&env->log))
389 		return;
390 
391 	linfo = find_linfo(env, insn_off);
392 	if (!linfo || linfo == env->prev_linfo)
393 		return;
394 
395 	if (prefix_fmt) {
396 		va_list args;
397 
398 		va_start(args, prefix_fmt);
399 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
400 		va_end(args);
401 	}
402 
403 	verbose(env, "%s\n",
404 		ltrim(btf_name_by_offset(env->prog->aux->btf,
405 					 linfo->line_off)));
406 
407 	env->prev_linfo = linfo;
408 }
409 
410 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
411 				   struct bpf_reg_state *reg,
412 				   struct tnum *range, const char *ctx,
413 				   const char *reg_name)
414 {
415 	char tn_buf[48];
416 
417 	verbose(env, "At %s the register %s ", ctx, reg_name);
418 	if (!tnum_is_unknown(reg->var_off)) {
419 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
420 		verbose(env, "has value %s", tn_buf);
421 	} else {
422 		verbose(env, "has unknown scalar value");
423 	}
424 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
425 	verbose(env, " should have been in %s\n", tn_buf);
426 }
427 
428 static bool type_is_pkt_pointer(enum bpf_reg_type type)
429 {
430 	type = base_type(type);
431 	return type == PTR_TO_PACKET ||
432 	       type == PTR_TO_PACKET_META;
433 }
434 
435 static bool type_is_sk_pointer(enum bpf_reg_type type)
436 {
437 	return type == PTR_TO_SOCKET ||
438 		type == PTR_TO_SOCK_COMMON ||
439 		type == PTR_TO_TCP_SOCK ||
440 		type == PTR_TO_XDP_SOCK;
441 }
442 
443 static bool type_may_be_null(u32 type)
444 {
445 	return type & PTR_MAYBE_NULL;
446 }
447 
448 static bool reg_not_null(const struct bpf_reg_state *reg)
449 {
450 	enum bpf_reg_type type;
451 
452 	type = reg->type;
453 	if (type_may_be_null(type))
454 		return false;
455 
456 	type = base_type(type);
457 	return type == PTR_TO_SOCKET ||
458 		type == PTR_TO_TCP_SOCK ||
459 		type == PTR_TO_MAP_VALUE ||
460 		type == PTR_TO_MAP_KEY ||
461 		type == PTR_TO_SOCK_COMMON ||
462 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
463 		type == PTR_TO_MEM;
464 }
465 
466 static bool type_is_ptr_alloc_obj(u32 type)
467 {
468 	return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
469 }
470 
471 static bool type_is_non_owning_ref(u32 type)
472 {
473 	return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
474 }
475 
476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
477 {
478 	struct btf_record *rec = NULL;
479 	struct btf_struct_meta *meta;
480 
481 	if (reg->type == PTR_TO_MAP_VALUE) {
482 		rec = reg->map_ptr->record;
483 	} else if (type_is_ptr_alloc_obj(reg->type)) {
484 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
485 		if (meta)
486 			rec = meta->record;
487 	}
488 	return rec;
489 }
490 
491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
492 {
493 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
494 
495 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
496 }
497 
498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
499 {
500 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
501 }
502 
503 static bool type_is_rdonly_mem(u32 type)
504 {
505 	return type & MEM_RDONLY;
506 }
507 
508 static bool is_acquire_function(enum bpf_func_id func_id,
509 				const struct bpf_map *map)
510 {
511 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
512 
513 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
514 	    func_id == BPF_FUNC_sk_lookup_udp ||
515 	    func_id == BPF_FUNC_skc_lookup_tcp ||
516 	    func_id == BPF_FUNC_ringbuf_reserve ||
517 	    func_id == BPF_FUNC_kptr_xchg)
518 		return true;
519 
520 	if (func_id == BPF_FUNC_map_lookup_elem &&
521 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
522 	     map_type == BPF_MAP_TYPE_SOCKHASH))
523 		return true;
524 
525 	return false;
526 }
527 
528 static bool is_ptr_cast_function(enum bpf_func_id func_id)
529 {
530 	return func_id == BPF_FUNC_tcp_sock ||
531 		func_id == BPF_FUNC_sk_fullsock ||
532 		func_id == BPF_FUNC_skc_to_tcp_sock ||
533 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
534 		func_id == BPF_FUNC_skc_to_udp6_sock ||
535 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
536 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
538 }
539 
540 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
541 {
542 	return func_id == BPF_FUNC_dynptr_data;
543 }
544 
545 static bool is_callback_calling_kfunc(u32 btf_id);
546 
547 static bool is_callback_calling_function(enum bpf_func_id func_id)
548 {
549 	return func_id == BPF_FUNC_for_each_map_elem ||
550 	       func_id == BPF_FUNC_timer_set_callback ||
551 	       func_id == BPF_FUNC_find_vma ||
552 	       func_id == BPF_FUNC_loop ||
553 	       func_id == BPF_FUNC_user_ringbuf_drain;
554 }
555 
556 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
557 {
558 	return func_id == BPF_FUNC_timer_set_callback;
559 }
560 
561 static bool is_storage_get_function(enum bpf_func_id func_id)
562 {
563 	return func_id == BPF_FUNC_sk_storage_get ||
564 	       func_id == BPF_FUNC_inode_storage_get ||
565 	       func_id == BPF_FUNC_task_storage_get ||
566 	       func_id == BPF_FUNC_cgrp_storage_get;
567 }
568 
569 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
570 					const struct bpf_map *map)
571 {
572 	int ref_obj_uses = 0;
573 
574 	if (is_ptr_cast_function(func_id))
575 		ref_obj_uses++;
576 	if (is_acquire_function(func_id, map))
577 		ref_obj_uses++;
578 	if (is_dynptr_ref_function(func_id))
579 		ref_obj_uses++;
580 
581 	return ref_obj_uses > 1;
582 }
583 
584 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
585 {
586 	return BPF_CLASS(insn->code) == BPF_STX &&
587 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
588 	       insn->imm == BPF_CMPXCHG;
589 }
590 
591 /* string representation of 'enum bpf_reg_type'
592  *
593  * Note that reg_type_str() can not appear more than once in a single verbose()
594  * statement.
595  */
596 static const char *reg_type_str(struct bpf_verifier_env *env,
597 				enum bpf_reg_type type)
598 {
599 	char postfix[16] = {0}, prefix[64] = {0};
600 	static const char * const str[] = {
601 		[NOT_INIT]		= "?",
602 		[SCALAR_VALUE]		= "scalar",
603 		[PTR_TO_CTX]		= "ctx",
604 		[CONST_PTR_TO_MAP]	= "map_ptr",
605 		[PTR_TO_MAP_VALUE]	= "map_value",
606 		[PTR_TO_STACK]		= "fp",
607 		[PTR_TO_PACKET]		= "pkt",
608 		[PTR_TO_PACKET_META]	= "pkt_meta",
609 		[PTR_TO_PACKET_END]	= "pkt_end",
610 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
611 		[PTR_TO_SOCKET]		= "sock",
612 		[PTR_TO_SOCK_COMMON]	= "sock_common",
613 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
614 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
615 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
616 		[PTR_TO_BTF_ID]		= "ptr_",
617 		[PTR_TO_MEM]		= "mem",
618 		[PTR_TO_BUF]		= "buf",
619 		[PTR_TO_FUNC]		= "func",
620 		[PTR_TO_MAP_KEY]	= "map_key",
621 		[CONST_PTR_TO_DYNPTR]	= "dynptr_ptr",
622 	};
623 
624 	if (type & PTR_MAYBE_NULL) {
625 		if (base_type(type) == PTR_TO_BTF_ID)
626 			strncpy(postfix, "or_null_", 16);
627 		else
628 			strncpy(postfix, "_or_null", 16);
629 	}
630 
631 	snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
632 		 type & MEM_RDONLY ? "rdonly_" : "",
633 		 type & MEM_RINGBUF ? "ringbuf_" : "",
634 		 type & MEM_USER ? "user_" : "",
635 		 type & MEM_PERCPU ? "percpu_" : "",
636 		 type & MEM_RCU ? "rcu_" : "",
637 		 type & PTR_UNTRUSTED ? "untrusted_" : "",
638 		 type & PTR_TRUSTED ? "trusted_" : ""
639 	);
640 
641 	snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s",
642 		 prefix, str[base_type(type)], postfix);
643 	return env->tmp_str_buf;
644 }
645 
646 static char slot_type_char[] = {
647 	[STACK_INVALID]	= '?',
648 	[STACK_SPILL]	= 'r',
649 	[STACK_MISC]	= 'm',
650 	[STACK_ZERO]	= '0',
651 	[STACK_DYNPTR]	= 'd',
652 	[STACK_ITER]	= 'i',
653 };
654 
655 static void print_liveness(struct bpf_verifier_env *env,
656 			   enum bpf_reg_liveness live)
657 {
658 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
659 	    verbose(env, "_");
660 	if (live & REG_LIVE_READ)
661 		verbose(env, "r");
662 	if (live & REG_LIVE_WRITTEN)
663 		verbose(env, "w");
664 	if (live & REG_LIVE_DONE)
665 		verbose(env, "D");
666 }
667 
668 static int __get_spi(s32 off)
669 {
670 	return (-off - 1) / BPF_REG_SIZE;
671 }
672 
673 static struct bpf_func_state *func(struct bpf_verifier_env *env,
674 				   const struct bpf_reg_state *reg)
675 {
676 	struct bpf_verifier_state *cur = env->cur_state;
677 
678 	return cur->frame[reg->frameno];
679 }
680 
681 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
682 {
683        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
684 
685        /* We need to check that slots between [spi - nr_slots + 1, spi] are
686 	* within [0, allocated_stack).
687 	*
688 	* Please note that the spi grows downwards. For example, a dynptr
689 	* takes the size of two stack slots; the first slot will be at
690 	* spi and the second slot will be at spi - 1.
691 	*/
692        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
693 }
694 
695 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
696 			          const char *obj_kind, int nr_slots)
697 {
698 	int off, spi;
699 
700 	if (!tnum_is_const(reg->var_off)) {
701 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
702 		return -EINVAL;
703 	}
704 
705 	off = reg->off + reg->var_off.value;
706 	if (off % BPF_REG_SIZE) {
707 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
708 		return -EINVAL;
709 	}
710 
711 	spi = __get_spi(off);
712 	if (spi + 1 < nr_slots) {
713 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
714 		return -EINVAL;
715 	}
716 
717 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
718 		return -ERANGE;
719 	return spi;
720 }
721 
722 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
723 {
724 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
725 }
726 
727 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
728 {
729 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
730 }
731 
732 static const char *btf_type_name(const struct btf *btf, u32 id)
733 {
734 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
735 }
736 
737 static const char *dynptr_type_str(enum bpf_dynptr_type type)
738 {
739 	switch (type) {
740 	case BPF_DYNPTR_TYPE_LOCAL:
741 		return "local";
742 	case BPF_DYNPTR_TYPE_RINGBUF:
743 		return "ringbuf";
744 	case BPF_DYNPTR_TYPE_SKB:
745 		return "skb";
746 	case BPF_DYNPTR_TYPE_XDP:
747 		return "xdp";
748 	case BPF_DYNPTR_TYPE_INVALID:
749 		return "<invalid>";
750 	default:
751 		WARN_ONCE(1, "unknown dynptr type %d\n", type);
752 		return "<unknown>";
753 	}
754 }
755 
756 static const char *iter_type_str(const struct btf *btf, u32 btf_id)
757 {
758 	if (!btf || btf_id == 0)
759 		return "<invalid>";
760 
761 	/* we already validated that type is valid and has conforming name */
762 	return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
763 }
764 
765 static const char *iter_state_str(enum bpf_iter_state state)
766 {
767 	switch (state) {
768 	case BPF_ITER_STATE_ACTIVE:
769 		return "active";
770 	case BPF_ITER_STATE_DRAINED:
771 		return "drained";
772 	case BPF_ITER_STATE_INVALID:
773 		return "<invalid>";
774 	default:
775 		WARN_ONCE(1, "unknown iter state %d\n", state);
776 		return "<unknown>";
777 	}
778 }
779 
780 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
781 {
782 	env->scratched_regs |= 1U << regno;
783 }
784 
785 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
786 {
787 	env->scratched_stack_slots |= 1ULL << spi;
788 }
789 
790 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
791 {
792 	return (env->scratched_regs >> regno) & 1;
793 }
794 
795 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
796 {
797 	return (env->scratched_stack_slots >> regno) & 1;
798 }
799 
800 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
801 {
802 	return env->scratched_regs || env->scratched_stack_slots;
803 }
804 
805 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
806 {
807 	env->scratched_regs = 0U;
808 	env->scratched_stack_slots = 0ULL;
809 }
810 
811 /* Used for printing the entire verifier state. */
812 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
813 {
814 	env->scratched_regs = ~0U;
815 	env->scratched_stack_slots = ~0ULL;
816 }
817 
818 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
819 {
820 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
821 	case DYNPTR_TYPE_LOCAL:
822 		return BPF_DYNPTR_TYPE_LOCAL;
823 	case DYNPTR_TYPE_RINGBUF:
824 		return BPF_DYNPTR_TYPE_RINGBUF;
825 	case DYNPTR_TYPE_SKB:
826 		return BPF_DYNPTR_TYPE_SKB;
827 	case DYNPTR_TYPE_XDP:
828 		return BPF_DYNPTR_TYPE_XDP;
829 	default:
830 		return BPF_DYNPTR_TYPE_INVALID;
831 	}
832 }
833 
834 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
835 {
836 	switch (type) {
837 	case BPF_DYNPTR_TYPE_LOCAL:
838 		return DYNPTR_TYPE_LOCAL;
839 	case BPF_DYNPTR_TYPE_RINGBUF:
840 		return DYNPTR_TYPE_RINGBUF;
841 	case BPF_DYNPTR_TYPE_SKB:
842 		return DYNPTR_TYPE_SKB;
843 	case BPF_DYNPTR_TYPE_XDP:
844 		return DYNPTR_TYPE_XDP;
845 	default:
846 		return 0;
847 	}
848 }
849 
850 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
851 {
852 	return type == BPF_DYNPTR_TYPE_RINGBUF;
853 }
854 
855 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
856 			      enum bpf_dynptr_type type,
857 			      bool first_slot, int dynptr_id);
858 
859 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
860 				struct bpf_reg_state *reg);
861 
862 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
863 				   struct bpf_reg_state *sreg1,
864 				   struct bpf_reg_state *sreg2,
865 				   enum bpf_dynptr_type type)
866 {
867 	int id = ++env->id_gen;
868 
869 	__mark_dynptr_reg(sreg1, type, true, id);
870 	__mark_dynptr_reg(sreg2, type, false, id);
871 }
872 
873 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
874 			       struct bpf_reg_state *reg,
875 			       enum bpf_dynptr_type type)
876 {
877 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
878 }
879 
880 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
881 				        struct bpf_func_state *state, int spi);
882 
883 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
884 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
885 {
886 	struct bpf_func_state *state = func(env, reg);
887 	enum bpf_dynptr_type type;
888 	int spi, i, err;
889 
890 	spi = dynptr_get_spi(env, reg);
891 	if (spi < 0)
892 		return spi;
893 
894 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
895 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
896 	 * to ensure that for the following example:
897 	 *	[d1][d1][d2][d2]
898 	 * spi    3   2   1   0
899 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
900 	 * case they do belong to same dynptr, second call won't see slot_type
901 	 * as STACK_DYNPTR and will simply skip destruction.
902 	 */
903 	err = destroy_if_dynptr_stack_slot(env, state, spi);
904 	if (err)
905 		return err;
906 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
907 	if (err)
908 		return err;
909 
910 	for (i = 0; i < BPF_REG_SIZE; i++) {
911 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
912 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
913 	}
914 
915 	type = arg_to_dynptr_type(arg_type);
916 	if (type == BPF_DYNPTR_TYPE_INVALID)
917 		return -EINVAL;
918 
919 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
920 			       &state->stack[spi - 1].spilled_ptr, type);
921 
922 	if (dynptr_type_refcounted(type)) {
923 		/* The id is used to track proper releasing */
924 		int id;
925 
926 		if (clone_ref_obj_id)
927 			id = clone_ref_obj_id;
928 		else
929 			id = acquire_reference_state(env, insn_idx);
930 
931 		if (id < 0)
932 			return id;
933 
934 		state->stack[spi].spilled_ptr.ref_obj_id = id;
935 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
936 	}
937 
938 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
939 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
940 
941 	return 0;
942 }
943 
944 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
945 {
946 	int i;
947 
948 	for (i = 0; i < BPF_REG_SIZE; i++) {
949 		state->stack[spi].slot_type[i] = STACK_INVALID;
950 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
951 	}
952 
953 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
954 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
955 
956 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
957 	 *
958 	 * While we don't allow reading STACK_INVALID, it is still possible to
959 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
960 	 * helpers or insns can do partial read of that part without failing,
961 	 * but check_stack_range_initialized, check_stack_read_var_off, and
962 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
963 	 * the slot conservatively. Hence we need to prevent those liveness
964 	 * marking walks.
965 	 *
966 	 * This was not a problem before because STACK_INVALID is only set by
967 	 * default (where the default reg state has its reg->parent as NULL), or
968 	 * in clean_live_states after REG_LIVE_DONE (at which point
969 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
970 	 * verifier state exploration (like we did above). Hence, for our case
971 	 * parentage chain will still be live (i.e. reg->parent may be
972 	 * non-NULL), while earlier reg->parent was NULL, so we need
973 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
974 	 * done later on reads or by mark_dynptr_read as well to unnecessary
975 	 * mark registers in verifier state.
976 	 */
977 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
978 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
979 }
980 
981 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
982 {
983 	struct bpf_func_state *state = func(env, reg);
984 	int spi, ref_obj_id, i;
985 
986 	spi = dynptr_get_spi(env, reg);
987 	if (spi < 0)
988 		return spi;
989 
990 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
991 		invalidate_dynptr(env, state, spi);
992 		return 0;
993 	}
994 
995 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
996 
997 	/* If the dynptr has a ref_obj_id, then we need to invalidate
998 	 * two things:
999 	 *
1000 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
1001 	 * 2) Any slices derived from this dynptr.
1002 	 */
1003 
1004 	/* Invalidate any slices associated with this dynptr */
1005 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
1006 
1007 	/* Invalidate any dynptr clones */
1008 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1009 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
1010 			continue;
1011 
1012 		/* it should always be the case that if the ref obj id
1013 		 * matches then the stack slot also belongs to a
1014 		 * dynptr
1015 		 */
1016 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
1017 			verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
1018 			return -EFAULT;
1019 		}
1020 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
1021 			invalidate_dynptr(env, state, i);
1022 	}
1023 
1024 	return 0;
1025 }
1026 
1027 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1028 			       struct bpf_reg_state *reg);
1029 
1030 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1031 {
1032 	if (!env->allow_ptr_leaks)
1033 		__mark_reg_not_init(env, reg);
1034 	else
1035 		__mark_reg_unknown(env, reg);
1036 }
1037 
1038 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
1039 				        struct bpf_func_state *state, int spi)
1040 {
1041 	struct bpf_func_state *fstate;
1042 	struct bpf_reg_state *dreg;
1043 	int i, dynptr_id;
1044 
1045 	/* We always ensure that STACK_DYNPTR is never set partially,
1046 	 * hence just checking for slot_type[0] is enough. This is
1047 	 * different for STACK_SPILL, where it may be only set for
1048 	 * 1 byte, so code has to use is_spilled_reg.
1049 	 */
1050 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
1051 		return 0;
1052 
1053 	/* Reposition spi to first slot */
1054 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1055 		spi = spi + 1;
1056 
1057 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1058 		verbose(env, "cannot overwrite referenced dynptr\n");
1059 		return -EINVAL;
1060 	}
1061 
1062 	mark_stack_slot_scratched(env, spi);
1063 	mark_stack_slot_scratched(env, spi - 1);
1064 
1065 	/* Writing partially to one dynptr stack slot destroys both. */
1066 	for (i = 0; i < BPF_REG_SIZE; i++) {
1067 		state->stack[spi].slot_type[i] = STACK_INVALID;
1068 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
1069 	}
1070 
1071 	dynptr_id = state->stack[spi].spilled_ptr.id;
1072 	/* Invalidate any slices associated with this dynptr */
1073 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
1074 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
1075 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
1076 			continue;
1077 		if (dreg->dynptr_id == dynptr_id)
1078 			mark_reg_invalid(env, dreg);
1079 	}));
1080 
1081 	/* Do not release reference state, we are destroying dynptr on stack,
1082 	 * not using some helper to release it. Just reset register.
1083 	 */
1084 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
1085 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
1086 
1087 	/* Same reason as unmark_stack_slots_dynptr above */
1088 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1089 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1090 
1091 	return 0;
1092 }
1093 
1094 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1095 {
1096 	int spi;
1097 
1098 	if (reg->type == CONST_PTR_TO_DYNPTR)
1099 		return false;
1100 
1101 	spi = dynptr_get_spi(env, reg);
1102 
1103 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
1104 	 * error because this just means the stack state hasn't been updated yet.
1105 	 * We will do check_mem_access to check and update stack bounds later.
1106 	 */
1107 	if (spi < 0 && spi != -ERANGE)
1108 		return false;
1109 
1110 	/* We don't need to check if the stack slots are marked by previous
1111 	 * dynptr initializations because we allow overwriting existing unreferenced
1112 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
1113 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
1114 	 * touching are completely destructed before we reinitialize them for a new
1115 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
1116 	 * instead of delaying it until the end where the user will get "Unreleased
1117 	 * reference" error.
1118 	 */
1119 	return true;
1120 }
1121 
1122 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1123 {
1124 	struct bpf_func_state *state = func(env, reg);
1125 	int i, spi;
1126 
1127 	/* This already represents first slot of initialized bpf_dynptr.
1128 	 *
1129 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
1130 	 * check_func_arg_reg_off's logic, so we don't need to check its
1131 	 * offset and alignment.
1132 	 */
1133 	if (reg->type == CONST_PTR_TO_DYNPTR)
1134 		return true;
1135 
1136 	spi = dynptr_get_spi(env, reg);
1137 	if (spi < 0)
1138 		return false;
1139 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1140 		return false;
1141 
1142 	for (i = 0; i < BPF_REG_SIZE; i++) {
1143 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1144 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1145 			return false;
1146 	}
1147 
1148 	return true;
1149 }
1150 
1151 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1152 				    enum bpf_arg_type arg_type)
1153 {
1154 	struct bpf_func_state *state = func(env, reg);
1155 	enum bpf_dynptr_type dynptr_type;
1156 	int spi;
1157 
1158 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1159 	if (arg_type == ARG_PTR_TO_DYNPTR)
1160 		return true;
1161 
1162 	dynptr_type = arg_to_dynptr_type(arg_type);
1163 	if (reg->type == CONST_PTR_TO_DYNPTR) {
1164 		return reg->dynptr.type == dynptr_type;
1165 	} else {
1166 		spi = dynptr_get_spi(env, reg);
1167 		if (spi < 0)
1168 			return false;
1169 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1170 	}
1171 }
1172 
1173 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1174 
1175 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1176 				 struct bpf_reg_state *reg, int insn_idx,
1177 				 struct btf *btf, u32 btf_id, int nr_slots)
1178 {
1179 	struct bpf_func_state *state = func(env, reg);
1180 	int spi, i, j, id;
1181 
1182 	spi = iter_get_spi(env, reg, nr_slots);
1183 	if (spi < 0)
1184 		return spi;
1185 
1186 	id = acquire_reference_state(env, insn_idx);
1187 	if (id < 0)
1188 		return id;
1189 
1190 	for (i = 0; i < nr_slots; i++) {
1191 		struct bpf_stack_state *slot = &state->stack[spi - i];
1192 		struct bpf_reg_state *st = &slot->spilled_ptr;
1193 
1194 		__mark_reg_known_zero(st);
1195 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1196 		st->live |= REG_LIVE_WRITTEN;
1197 		st->ref_obj_id = i == 0 ? id : 0;
1198 		st->iter.btf = btf;
1199 		st->iter.btf_id = btf_id;
1200 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1201 		st->iter.depth = 0;
1202 
1203 		for (j = 0; j < BPF_REG_SIZE; j++)
1204 			slot->slot_type[j] = STACK_ITER;
1205 
1206 		mark_stack_slot_scratched(env, spi - i);
1207 	}
1208 
1209 	return 0;
1210 }
1211 
1212 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1213 				   struct bpf_reg_state *reg, int nr_slots)
1214 {
1215 	struct bpf_func_state *state = func(env, reg);
1216 	int spi, i, j;
1217 
1218 	spi = iter_get_spi(env, reg, nr_slots);
1219 	if (spi < 0)
1220 		return spi;
1221 
1222 	for (i = 0; i < nr_slots; i++) {
1223 		struct bpf_stack_state *slot = &state->stack[spi - i];
1224 		struct bpf_reg_state *st = &slot->spilled_ptr;
1225 
1226 		if (i == 0)
1227 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1228 
1229 		__mark_reg_not_init(env, st);
1230 
1231 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1232 		st->live |= REG_LIVE_WRITTEN;
1233 
1234 		for (j = 0; j < BPF_REG_SIZE; j++)
1235 			slot->slot_type[j] = STACK_INVALID;
1236 
1237 		mark_stack_slot_scratched(env, spi - i);
1238 	}
1239 
1240 	return 0;
1241 }
1242 
1243 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1244 				     struct bpf_reg_state *reg, int nr_slots)
1245 {
1246 	struct bpf_func_state *state = func(env, reg);
1247 	int spi, i, j;
1248 
1249 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1250 	 * will do check_mem_access to check and update stack bounds later, so
1251 	 * return true for that case.
1252 	 */
1253 	spi = iter_get_spi(env, reg, nr_slots);
1254 	if (spi == -ERANGE)
1255 		return true;
1256 	if (spi < 0)
1257 		return false;
1258 
1259 	for (i = 0; i < nr_slots; i++) {
1260 		struct bpf_stack_state *slot = &state->stack[spi - i];
1261 
1262 		for (j = 0; j < BPF_REG_SIZE; j++)
1263 			if (slot->slot_type[j] == STACK_ITER)
1264 				return false;
1265 	}
1266 
1267 	return true;
1268 }
1269 
1270 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1271 				   struct btf *btf, u32 btf_id, int nr_slots)
1272 {
1273 	struct bpf_func_state *state = func(env, reg);
1274 	int spi, i, j;
1275 
1276 	spi = iter_get_spi(env, reg, nr_slots);
1277 	if (spi < 0)
1278 		return false;
1279 
1280 	for (i = 0; i < nr_slots; i++) {
1281 		struct bpf_stack_state *slot = &state->stack[spi - i];
1282 		struct bpf_reg_state *st = &slot->spilled_ptr;
1283 
1284 		/* only main (first) slot has ref_obj_id set */
1285 		if (i == 0 && !st->ref_obj_id)
1286 			return false;
1287 		if (i != 0 && st->ref_obj_id)
1288 			return false;
1289 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1290 			return false;
1291 
1292 		for (j = 0; j < BPF_REG_SIZE; j++)
1293 			if (slot->slot_type[j] != STACK_ITER)
1294 				return false;
1295 	}
1296 
1297 	return true;
1298 }
1299 
1300 /* Check if given stack slot is "special":
1301  *   - spilled register state (STACK_SPILL);
1302  *   - dynptr state (STACK_DYNPTR);
1303  *   - iter state (STACK_ITER).
1304  */
1305 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1306 {
1307 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1308 
1309 	switch (type) {
1310 	case STACK_SPILL:
1311 	case STACK_DYNPTR:
1312 	case STACK_ITER:
1313 		return true;
1314 	case STACK_INVALID:
1315 	case STACK_MISC:
1316 	case STACK_ZERO:
1317 		return false;
1318 	default:
1319 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1320 		return true;
1321 	}
1322 }
1323 
1324 /* The reg state of a pointer or a bounded scalar was saved when
1325  * it was spilled to the stack.
1326  */
1327 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1328 {
1329 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1330 }
1331 
1332 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1333 {
1334 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1335 	       stack->spilled_ptr.type == SCALAR_VALUE;
1336 }
1337 
1338 static void scrub_spilled_slot(u8 *stype)
1339 {
1340 	if (*stype != STACK_INVALID)
1341 		*stype = STACK_MISC;
1342 }
1343 
1344 static void print_verifier_state(struct bpf_verifier_env *env,
1345 				 const struct bpf_func_state *state,
1346 				 bool print_all)
1347 {
1348 	const struct bpf_reg_state *reg;
1349 	enum bpf_reg_type t;
1350 	int i;
1351 
1352 	if (state->frameno)
1353 		verbose(env, " frame%d:", state->frameno);
1354 	for (i = 0; i < MAX_BPF_REG; i++) {
1355 		reg = &state->regs[i];
1356 		t = reg->type;
1357 		if (t == NOT_INIT)
1358 			continue;
1359 		if (!print_all && !reg_scratched(env, i))
1360 			continue;
1361 		verbose(env, " R%d", i);
1362 		print_liveness(env, reg->live);
1363 		verbose(env, "=");
1364 		if (t == SCALAR_VALUE && reg->precise)
1365 			verbose(env, "P");
1366 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1367 		    tnum_is_const(reg->var_off)) {
1368 			/* reg->off should be 0 for SCALAR_VALUE */
1369 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1370 			verbose(env, "%lld", reg->var_off.value + reg->off);
1371 		} else {
1372 			const char *sep = "";
1373 
1374 			verbose(env, "%s", reg_type_str(env, t));
1375 			if (base_type(t) == PTR_TO_BTF_ID)
1376 				verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
1377 			verbose(env, "(");
1378 /*
1379  * _a stands for append, was shortened to avoid multiline statements below.
1380  * This macro is used to output a comma separated list of attributes.
1381  */
1382 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1383 
1384 			if (reg->id)
1385 				verbose_a("id=%d", reg->id);
1386 			if (reg->ref_obj_id)
1387 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
1388 			if (type_is_non_owning_ref(reg->type))
1389 				verbose_a("%s", "non_own_ref");
1390 			if (t != SCALAR_VALUE)
1391 				verbose_a("off=%d", reg->off);
1392 			if (type_is_pkt_pointer(t))
1393 				verbose_a("r=%d", reg->range);
1394 			else if (base_type(t) == CONST_PTR_TO_MAP ||
1395 				 base_type(t) == PTR_TO_MAP_KEY ||
1396 				 base_type(t) == PTR_TO_MAP_VALUE)
1397 				verbose_a("ks=%d,vs=%d",
1398 					  reg->map_ptr->key_size,
1399 					  reg->map_ptr->value_size);
1400 			if (tnum_is_const(reg->var_off)) {
1401 				/* Typically an immediate SCALAR_VALUE, but
1402 				 * could be a pointer whose offset is too big
1403 				 * for reg->off
1404 				 */
1405 				verbose_a("imm=%llx", reg->var_off.value);
1406 			} else {
1407 				if (reg->smin_value != reg->umin_value &&
1408 				    reg->smin_value != S64_MIN)
1409 					verbose_a("smin=%lld", (long long)reg->smin_value);
1410 				if (reg->smax_value != reg->umax_value &&
1411 				    reg->smax_value != S64_MAX)
1412 					verbose_a("smax=%lld", (long long)reg->smax_value);
1413 				if (reg->umin_value != 0)
1414 					verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
1415 				if (reg->umax_value != U64_MAX)
1416 					verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
1417 				if (!tnum_is_unknown(reg->var_off)) {
1418 					char tn_buf[48];
1419 
1420 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1421 					verbose_a("var_off=%s", tn_buf);
1422 				}
1423 				if (reg->s32_min_value != reg->smin_value &&
1424 				    reg->s32_min_value != S32_MIN)
1425 					verbose_a("s32_min=%d", (int)(reg->s32_min_value));
1426 				if (reg->s32_max_value != reg->smax_value &&
1427 				    reg->s32_max_value != S32_MAX)
1428 					verbose_a("s32_max=%d", (int)(reg->s32_max_value));
1429 				if (reg->u32_min_value != reg->umin_value &&
1430 				    reg->u32_min_value != U32_MIN)
1431 					verbose_a("u32_min=%d", (int)(reg->u32_min_value));
1432 				if (reg->u32_max_value != reg->umax_value &&
1433 				    reg->u32_max_value != U32_MAX)
1434 					verbose_a("u32_max=%d", (int)(reg->u32_max_value));
1435 			}
1436 #undef verbose_a
1437 
1438 			verbose(env, ")");
1439 		}
1440 	}
1441 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1442 		char types_buf[BPF_REG_SIZE + 1];
1443 		bool valid = false;
1444 		int j;
1445 
1446 		for (j = 0; j < BPF_REG_SIZE; j++) {
1447 			if (state->stack[i].slot_type[j] != STACK_INVALID)
1448 				valid = true;
1449 			types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1450 		}
1451 		types_buf[BPF_REG_SIZE] = 0;
1452 		if (!valid)
1453 			continue;
1454 		if (!print_all && !stack_slot_scratched(env, i))
1455 			continue;
1456 		switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
1457 		case STACK_SPILL:
1458 			reg = &state->stack[i].spilled_ptr;
1459 			t = reg->type;
1460 
1461 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1462 			print_liveness(env, reg->live);
1463 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1464 			if (t == SCALAR_VALUE && reg->precise)
1465 				verbose(env, "P");
1466 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1467 				verbose(env, "%lld", reg->var_off.value + reg->off);
1468 			break;
1469 		case STACK_DYNPTR:
1470 			i += BPF_DYNPTR_NR_SLOTS - 1;
1471 			reg = &state->stack[i].spilled_ptr;
1472 
1473 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1474 			print_liveness(env, reg->live);
1475 			verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type));
1476 			if (reg->ref_obj_id)
1477 				verbose(env, "(ref_id=%d)", reg->ref_obj_id);
1478 			break;
1479 		case STACK_ITER:
1480 			/* only main slot has ref_obj_id set; skip others */
1481 			reg = &state->stack[i].spilled_ptr;
1482 			if (!reg->ref_obj_id)
1483 				continue;
1484 
1485 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1486 			print_liveness(env, reg->live);
1487 			verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
1488 				iter_type_str(reg->iter.btf, reg->iter.btf_id),
1489 				reg->ref_obj_id, iter_state_str(reg->iter.state),
1490 				reg->iter.depth);
1491 			break;
1492 		case STACK_MISC:
1493 		case STACK_ZERO:
1494 		default:
1495 			reg = &state->stack[i].spilled_ptr;
1496 
1497 			for (j = 0; j < BPF_REG_SIZE; j++)
1498 				types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1499 			types_buf[BPF_REG_SIZE] = 0;
1500 
1501 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1502 			print_liveness(env, reg->live);
1503 			verbose(env, "=%s", types_buf);
1504 			break;
1505 		}
1506 	}
1507 	if (state->acquired_refs && state->refs[0].id) {
1508 		verbose(env, " refs=%d", state->refs[0].id);
1509 		for (i = 1; i < state->acquired_refs; i++)
1510 			if (state->refs[i].id)
1511 				verbose(env, ",%d", state->refs[i].id);
1512 	}
1513 	if (state->in_callback_fn)
1514 		verbose(env, " cb");
1515 	if (state->in_async_callback_fn)
1516 		verbose(env, " async_cb");
1517 	verbose(env, "\n");
1518 	if (!print_all)
1519 		mark_verifier_state_clean(env);
1520 }
1521 
1522 static inline u32 vlog_alignment(u32 pos)
1523 {
1524 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1525 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1526 }
1527 
1528 static void print_insn_state(struct bpf_verifier_env *env,
1529 			     const struct bpf_func_state *state)
1530 {
1531 	if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
1532 		/* remove new line character */
1533 		bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
1534 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
1535 	} else {
1536 		verbose(env, "%d:", env->insn_idx);
1537 	}
1538 	print_verifier_state(env, state, false);
1539 }
1540 
1541 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1542  * small to hold src. This is different from krealloc since we don't want to preserve
1543  * the contents of dst.
1544  *
1545  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1546  * not be allocated.
1547  */
1548 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1549 {
1550 	size_t alloc_bytes;
1551 	void *orig = dst;
1552 	size_t bytes;
1553 
1554 	if (ZERO_OR_NULL_PTR(src))
1555 		goto out;
1556 
1557 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1558 		return NULL;
1559 
1560 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1561 	dst = krealloc(orig, alloc_bytes, flags);
1562 	if (!dst) {
1563 		kfree(orig);
1564 		return NULL;
1565 	}
1566 
1567 	memcpy(dst, src, bytes);
1568 out:
1569 	return dst ? dst : ZERO_SIZE_PTR;
1570 }
1571 
1572 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1573  * small to hold new_n items. new items are zeroed out if the array grows.
1574  *
1575  * Contrary to krealloc_array, does not free arr if new_n is zero.
1576  */
1577 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1578 {
1579 	size_t alloc_size;
1580 	void *new_arr;
1581 
1582 	if (!new_n || old_n == new_n)
1583 		goto out;
1584 
1585 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1586 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1587 	if (!new_arr) {
1588 		kfree(arr);
1589 		return NULL;
1590 	}
1591 	arr = new_arr;
1592 
1593 	if (new_n > old_n)
1594 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1595 
1596 out:
1597 	return arr ? arr : ZERO_SIZE_PTR;
1598 }
1599 
1600 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1601 {
1602 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1603 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1604 	if (!dst->refs)
1605 		return -ENOMEM;
1606 
1607 	dst->acquired_refs = src->acquired_refs;
1608 	return 0;
1609 }
1610 
1611 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1612 {
1613 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1614 
1615 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1616 				GFP_KERNEL);
1617 	if (!dst->stack)
1618 		return -ENOMEM;
1619 
1620 	dst->allocated_stack = src->allocated_stack;
1621 	return 0;
1622 }
1623 
1624 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1625 {
1626 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1627 				    sizeof(struct bpf_reference_state));
1628 	if (!state->refs)
1629 		return -ENOMEM;
1630 
1631 	state->acquired_refs = n;
1632 	return 0;
1633 }
1634 
1635 static int grow_stack_state(struct bpf_func_state *state, int size)
1636 {
1637 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1638 
1639 	if (old_n >= n)
1640 		return 0;
1641 
1642 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1643 	if (!state->stack)
1644 		return -ENOMEM;
1645 
1646 	state->allocated_stack = size;
1647 	return 0;
1648 }
1649 
1650 /* Acquire a pointer id from the env and update the state->refs to include
1651  * this new pointer reference.
1652  * On success, returns a valid pointer id to associate with the register
1653  * On failure, returns a negative errno.
1654  */
1655 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1656 {
1657 	struct bpf_func_state *state = cur_func(env);
1658 	int new_ofs = state->acquired_refs;
1659 	int id, err;
1660 
1661 	err = resize_reference_state(state, state->acquired_refs + 1);
1662 	if (err)
1663 		return err;
1664 	id = ++env->id_gen;
1665 	state->refs[new_ofs].id = id;
1666 	state->refs[new_ofs].insn_idx = insn_idx;
1667 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1668 
1669 	return id;
1670 }
1671 
1672 /* release function corresponding to acquire_reference_state(). Idempotent. */
1673 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1674 {
1675 	int i, last_idx;
1676 
1677 	last_idx = state->acquired_refs - 1;
1678 	for (i = 0; i < state->acquired_refs; i++) {
1679 		if (state->refs[i].id == ptr_id) {
1680 			/* Cannot release caller references in callbacks */
1681 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1682 				return -EINVAL;
1683 			if (last_idx && i != last_idx)
1684 				memcpy(&state->refs[i], &state->refs[last_idx],
1685 				       sizeof(*state->refs));
1686 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1687 			state->acquired_refs--;
1688 			return 0;
1689 		}
1690 	}
1691 	return -EINVAL;
1692 }
1693 
1694 static void free_func_state(struct bpf_func_state *state)
1695 {
1696 	if (!state)
1697 		return;
1698 	kfree(state->refs);
1699 	kfree(state->stack);
1700 	kfree(state);
1701 }
1702 
1703 static void clear_jmp_history(struct bpf_verifier_state *state)
1704 {
1705 	kfree(state->jmp_history);
1706 	state->jmp_history = NULL;
1707 	state->jmp_history_cnt = 0;
1708 }
1709 
1710 static void free_verifier_state(struct bpf_verifier_state *state,
1711 				bool free_self)
1712 {
1713 	int i;
1714 
1715 	for (i = 0; i <= state->curframe; i++) {
1716 		free_func_state(state->frame[i]);
1717 		state->frame[i] = NULL;
1718 	}
1719 	clear_jmp_history(state);
1720 	if (free_self)
1721 		kfree(state);
1722 }
1723 
1724 /* copy verifier state from src to dst growing dst stack space
1725  * when necessary to accommodate larger src stack
1726  */
1727 static int copy_func_state(struct bpf_func_state *dst,
1728 			   const struct bpf_func_state *src)
1729 {
1730 	int err;
1731 
1732 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1733 	err = copy_reference_state(dst, src);
1734 	if (err)
1735 		return err;
1736 	return copy_stack_state(dst, src);
1737 }
1738 
1739 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1740 			       const struct bpf_verifier_state *src)
1741 {
1742 	struct bpf_func_state *dst;
1743 	int i, err;
1744 
1745 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1746 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1747 					    GFP_USER);
1748 	if (!dst_state->jmp_history)
1749 		return -ENOMEM;
1750 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1751 
1752 	/* if dst has more stack frames then src frame, free them */
1753 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1754 		free_func_state(dst_state->frame[i]);
1755 		dst_state->frame[i] = NULL;
1756 	}
1757 	dst_state->speculative = src->speculative;
1758 	dst_state->active_rcu_lock = src->active_rcu_lock;
1759 	dst_state->curframe = src->curframe;
1760 	dst_state->active_lock.ptr = src->active_lock.ptr;
1761 	dst_state->active_lock.id = src->active_lock.id;
1762 	dst_state->branches = src->branches;
1763 	dst_state->parent = src->parent;
1764 	dst_state->first_insn_idx = src->first_insn_idx;
1765 	dst_state->last_insn_idx = src->last_insn_idx;
1766 	for (i = 0; i <= src->curframe; i++) {
1767 		dst = dst_state->frame[i];
1768 		if (!dst) {
1769 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1770 			if (!dst)
1771 				return -ENOMEM;
1772 			dst_state->frame[i] = dst;
1773 		}
1774 		err = copy_func_state(dst, src->frame[i]);
1775 		if (err)
1776 			return err;
1777 	}
1778 	return 0;
1779 }
1780 
1781 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1782 {
1783 	while (st) {
1784 		u32 br = --st->branches;
1785 
1786 		/* WARN_ON(br > 1) technically makes sense here,
1787 		 * but see comment in push_stack(), hence:
1788 		 */
1789 		WARN_ONCE((int)br < 0,
1790 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1791 			  br);
1792 		if (br)
1793 			break;
1794 		st = st->parent;
1795 	}
1796 }
1797 
1798 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1799 		     int *insn_idx, bool pop_log)
1800 {
1801 	struct bpf_verifier_state *cur = env->cur_state;
1802 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1803 	int err;
1804 
1805 	if (env->head == NULL)
1806 		return -ENOENT;
1807 
1808 	if (cur) {
1809 		err = copy_verifier_state(cur, &head->st);
1810 		if (err)
1811 			return err;
1812 	}
1813 	if (pop_log)
1814 		bpf_vlog_reset(&env->log, head->log_pos);
1815 	if (insn_idx)
1816 		*insn_idx = head->insn_idx;
1817 	if (prev_insn_idx)
1818 		*prev_insn_idx = head->prev_insn_idx;
1819 	elem = head->next;
1820 	free_verifier_state(&head->st, false);
1821 	kfree(head);
1822 	env->head = elem;
1823 	env->stack_size--;
1824 	return 0;
1825 }
1826 
1827 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1828 					     int insn_idx, int prev_insn_idx,
1829 					     bool speculative)
1830 {
1831 	struct bpf_verifier_state *cur = env->cur_state;
1832 	struct bpf_verifier_stack_elem *elem;
1833 	int err;
1834 
1835 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1836 	if (!elem)
1837 		goto err;
1838 
1839 	elem->insn_idx = insn_idx;
1840 	elem->prev_insn_idx = prev_insn_idx;
1841 	elem->next = env->head;
1842 	elem->log_pos = env->log.end_pos;
1843 	env->head = elem;
1844 	env->stack_size++;
1845 	err = copy_verifier_state(&elem->st, cur);
1846 	if (err)
1847 		goto err;
1848 	elem->st.speculative |= speculative;
1849 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1850 		verbose(env, "The sequence of %d jumps is too complex.\n",
1851 			env->stack_size);
1852 		goto err;
1853 	}
1854 	if (elem->st.parent) {
1855 		++elem->st.parent->branches;
1856 		/* WARN_ON(branches > 2) technically makes sense here,
1857 		 * but
1858 		 * 1. speculative states will bump 'branches' for non-branch
1859 		 * instructions
1860 		 * 2. is_state_visited() heuristics may decide not to create
1861 		 * a new state for a sequence of branches and all such current
1862 		 * and cloned states will be pointing to a single parent state
1863 		 * which might have large 'branches' count.
1864 		 */
1865 	}
1866 	return &elem->st;
1867 err:
1868 	free_verifier_state(env->cur_state, true);
1869 	env->cur_state = NULL;
1870 	/* pop all elements and return */
1871 	while (!pop_stack(env, NULL, NULL, false));
1872 	return NULL;
1873 }
1874 
1875 #define CALLER_SAVED_REGS 6
1876 static const int caller_saved[CALLER_SAVED_REGS] = {
1877 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1878 };
1879 
1880 /* This helper doesn't clear reg->id */
1881 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1882 {
1883 	reg->var_off = tnum_const(imm);
1884 	reg->smin_value = (s64)imm;
1885 	reg->smax_value = (s64)imm;
1886 	reg->umin_value = imm;
1887 	reg->umax_value = imm;
1888 
1889 	reg->s32_min_value = (s32)imm;
1890 	reg->s32_max_value = (s32)imm;
1891 	reg->u32_min_value = (u32)imm;
1892 	reg->u32_max_value = (u32)imm;
1893 }
1894 
1895 /* Mark the unknown part of a register (variable offset or scalar value) as
1896  * known to have the value @imm.
1897  */
1898 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1899 {
1900 	/* Clear off and union(map_ptr, range) */
1901 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1902 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1903 	reg->id = 0;
1904 	reg->ref_obj_id = 0;
1905 	___mark_reg_known(reg, imm);
1906 }
1907 
1908 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1909 {
1910 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1911 	reg->s32_min_value = (s32)imm;
1912 	reg->s32_max_value = (s32)imm;
1913 	reg->u32_min_value = (u32)imm;
1914 	reg->u32_max_value = (u32)imm;
1915 }
1916 
1917 /* Mark the 'variable offset' part of a register as zero.  This should be
1918  * used only on registers holding a pointer type.
1919  */
1920 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1921 {
1922 	__mark_reg_known(reg, 0);
1923 }
1924 
1925 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1926 {
1927 	__mark_reg_known(reg, 0);
1928 	reg->type = SCALAR_VALUE;
1929 }
1930 
1931 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1932 				struct bpf_reg_state *regs, u32 regno)
1933 {
1934 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1935 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1936 		/* Something bad happened, let's kill all regs */
1937 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1938 			__mark_reg_not_init(env, regs + regno);
1939 		return;
1940 	}
1941 	__mark_reg_known_zero(regs + regno);
1942 }
1943 
1944 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1945 			      bool first_slot, int dynptr_id)
1946 {
1947 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1948 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1949 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1950 	 */
1951 	__mark_reg_known_zero(reg);
1952 	reg->type = CONST_PTR_TO_DYNPTR;
1953 	/* Give each dynptr a unique id to uniquely associate slices to it. */
1954 	reg->id = dynptr_id;
1955 	reg->dynptr.type = type;
1956 	reg->dynptr.first_slot = first_slot;
1957 }
1958 
1959 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1960 {
1961 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1962 		const struct bpf_map *map = reg->map_ptr;
1963 
1964 		if (map->inner_map_meta) {
1965 			reg->type = CONST_PTR_TO_MAP;
1966 			reg->map_ptr = map->inner_map_meta;
1967 			/* transfer reg's id which is unique for every map_lookup_elem
1968 			 * as UID of the inner map.
1969 			 */
1970 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1971 				reg->map_uid = reg->id;
1972 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1973 			reg->type = PTR_TO_XDP_SOCK;
1974 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1975 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1976 			reg->type = PTR_TO_SOCKET;
1977 		} else {
1978 			reg->type = PTR_TO_MAP_VALUE;
1979 		}
1980 		return;
1981 	}
1982 
1983 	reg->type &= ~PTR_MAYBE_NULL;
1984 }
1985 
1986 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
1987 				struct btf_field_graph_root *ds_head)
1988 {
1989 	__mark_reg_known_zero(&regs[regno]);
1990 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
1991 	regs[regno].btf = ds_head->btf;
1992 	regs[regno].btf_id = ds_head->value_btf_id;
1993 	regs[regno].off = ds_head->node_offset;
1994 }
1995 
1996 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1997 {
1998 	return type_is_pkt_pointer(reg->type);
1999 }
2000 
2001 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
2002 {
2003 	return reg_is_pkt_pointer(reg) ||
2004 	       reg->type == PTR_TO_PACKET_END;
2005 }
2006 
2007 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
2008 {
2009 	return base_type(reg->type) == PTR_TO_MEM &&
2010 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
2011 }
2012 
2013 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
2014 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2015 				    enum bpf_reg_type which)
2016 {
2017 	/* The register can already have a range from prior markings.
2018 	 * This is fine as long as it hasn't been advanced from its
2019 	 * origin.
2020 	 */
2021 	return reg->type == which &&
2022 	       reg->id == 0 &&
2023 	       reg->off == 0 &&
2024 	       tnum_equals_const(reg->var_off, 0);
2025 }
2026 
2027 /* Reset the min/max bounds of a register */
2028 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2029 {
2030 	reg->smin_value = S64_MIN;
2031 	reg->smax_value = S64_MAX;
2032 	reg->umin_value = 0;
2033 	reg->umax_value = U64_MAX;
2034 
2035 	reg->s32_min_value = S32_MIN;
2036 	reg->s32_max_value = S32_MAX;
2037 	reg->u32_min_value = 0;
2038 	reg->u32_max_value = U32_MAX;
2039 }
2040 
2041 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2042 {
2043 	reg->smin_value = S64_MIN;
2044 	reg->smax_value = S64_MAX;
2045 	reg->umin_value = 0;
2046 	reg->umax_value = U64_MAX;
2047 }
2048 
2049 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2050 {
2051 	reg->s32_min_value = S32_MIN;
2052 	reg->s32_max_value = S32_MAX;
2053 	reg->u32_min_value = 0;
2054 	reg->u32_max_value = U32_MAX;
2055 }
2056 
2057 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2058 {
2059 	struct tnum var32_off = tnum_subreg(reg->var_off);
2060 
2061 	/* min signed is max(sign bit) | min(other bits) */
2062 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
2063 			var32_off.value | (var32_off.mask & S32_MIN));
2064 	/* max signed is min(sign bit) | max(other bits) */
2065 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
2066 			var32_off.value | (var32_off.mask & S32_MAX));
2067 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2068 	reg->u32_max_value = min(reg->u32_max_value,
2069 				 (u32)(var32_off.value | var32_off.mask));
2070 }
2071 
2072 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2073 {
2074 	/* min signed is max(sign bit) | min(other bits) */
2075 	reg->smin_value = max_t(s64, reg->smin_value,
2076 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
2077 	/* max signed is min(sign bit) | max(other bits) */
2078 	reg->smax_value = min_t(s64, reg->smax_value,
2079 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
2080 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
2081 	reg->umax_value = min(reg->umax_value,
2082 			      reg->var_off.value | reg->var_off.mask);
2083 }
2084 
2085 static void __update_reg_bounds(struct bpf_reg_state *reg)
2086 {
2087 	__update_reg32_bounds(reg);
2088 	__update_reg64_bounds(reg);
2089 }
2090 
2091 /* Uses signed min/max values to inform unsigned, and vice-versa */
2092 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2093 {
2094 	/* Learn sign from signed bounds.
2095 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2096 	 * are the same, so combine.  This works even in the negative case, e.g.
2097 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2098 	 */
2099 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
2100 		reg->s32_min_value = reg->u32_min_value =
2101 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2102 		reg->s32_max_value = reg->u32_max_value =
2103 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2104 		return;
2105 	}
2106 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2107 	 * boundary, so we must be careful.
2108 	 */
2109 	if ((s32)reg->u32_max_value >= 0) {
2110 		/* Positive.  We can't learn anything from the smin, but smax
2111 		 * is positive, hence safe.
2112 		 */
2113 		reg->s32_min_value = reg->u32_min_value;
2114 		reg->s32_max_value = reg->u32_max_value =
2115 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2116 	} else if ((s32)reg->u32_min_value < 0) {
2117 		/* Negative.  We can't learn anything from the smax, but smin
2118 		 * is negative, hence safe.
2119 		 */
2120 		reg->s32_min_value = reg->u32_min_value =
2121 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2122 		reg->s32_max_value = reg->u32_max_value;
2123 	}
2124 }
2125 
2126 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2127 {
2128 	/* Learn sign from signed bounds.
2129 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2130 	 * are the same, so combine.  This works even in the negative case, e.g.
2131 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2132 	 */
2133 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
2134 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2135 							  reg->umin_value);
2136 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2137 							  reg->umax_value);
2138 		return;
2139 	}
2140 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2141 	 * boundary, so we must be careful.
2142 	 */
2143 	if ((s64)reg->umax_value >= 0) {
2144 		/* Positive.  We can't learn anything from the smin, but smax
2145 		 * is positive, hence safe.
2146 		 */
2147 		reg->smin_value = reg->umin_value;
2148 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2149 							  reg->umax_value);
2150 	} else if ((s64)reg->umin_value < 0) {
2151 		/* Negative.  We can't learn anything from the smax, but smin
2152 		 * is negative, hence safe.
2153 		 */
2154 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2155 							  reg->umin_value);
2156 		reg->smax_value = reg->umax_value;
2157 	}
2158 }
2159 
2160 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2161 {
2162 	__reg32_deduce_bounds(reg);
2163 	__reg64_deduce_bounds(reg);
2164 }
2165 
2166 /* Attempts to improve var_off based on unsigned min/max information */
2167 static void __reg_bound_offset(struct bpf_reg_state *reg)
2168 {
2169 	struct tnum var64_off = tnum_intersect(reg->var_off,
2170 					       tnum_range(reg->umin_value,
2171 							  reg->umax_value));
2172 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2173 					       tnum_range(reg->u32_min_value,
2174 							  reg->u32_max_value));
2175 
2176 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2177 }
2178 
2179 static void reg_bounds_sync(struct bpf_reg_state *reg)
2180 {
2181 	/* We might have learned new bounds from the var_off. */
2182 	__update_reg_bounds(reg);
2183 	/* We might have learned something about the sign bit. */
2184 	__reg_deduce_bounds(reg);
2185 	/* We might have learned some bits from the bounds. */
2186 	__reg_bound_offset(reg);
2187 	/* Intersecting with the old var_off might have improved our bounds
2188 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2189 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2190 	 */
2191 	__update_reg_bounds(reg);
2192 }
2193 
2194 static bool __reg32_bound_s64(s32 a)
2195 {
2196 	return a >= 0 && a <= S32_MAX;
2197 }
2198 
2199 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2200 {
2201 	reg->umin_value = reg->u32_min_value;
2202 	reg->umax_value = reg->u32_max_value;
2203 
2204 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2205 	 * be positive otherwise set to worse case bounds and refine later
2206 	 * from tnum.
2207 	 */
2208 	if (__reg32_bound_s64(reg->s32_min_value) &&
2209 	    __reg32_bound_s64(reg->s32_max_value)) {
2210 		reg->smin_value = reg->s32_min_value;
2211 		reg->smax_value = reg->s32_max_value;
2212 	} else {
2213 		reg->smin_value = 0;
2214 		reg->smax_value = U32_MAX;
2215 	}
2216 }
2217 
2218 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
2219 {
2220 	/* special case when 64-bit register has upper 32-bit register
2221 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
2222 	 * allowing us to use 32-bit bounds directly,
2223 	 */
2224 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
2225 		__reg_assign_32_into_64(reg);
2226 	} else {
2227 		/* Otherwise the best we can do is push lower 32bit known and
2228 		 * unknown bits into register (var_off set from jmp logic)
2229 		 * then learn as much as possible from the 64-bit tnum
2230 		 * known and unknown bits. The previous smin/smax bounds are
2231 		 * invalid here because of jmp32 compare so mark them unknown
2232 		 * so they do not impact tnum bounds calculation.
2233 		 */
2234 		__mark_reg64_unbounded(reg);
2235 	}
2236 	reg_bounds_sync(reg);
2237 }
2238 
2239 static bool __reg64_bound_s32(s64 a)
2240 {
2241 	return a >= S32_MIN && a <= S32_MAX;
2242 }
2243 
2244 static bool __reg64_bound_u32(u64 a)
2245 {
2246 	return a >= U32_MIN && a <= U32_MAX;
2247 }
2248 
2249 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
2250 {
2251 	__mark_reg32_unbounded(reg);
2252 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
2253 		reg->s32_min_value = (s32)reg->smin_value;
2254 		reg->s32_max_value = (s32)reg->smax_value;
2255 	}
2256 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
2257 		reg->u32_min_value = (u32)reg->umin_value;
2258 		reg->u32_max_value = (u32)reg->umax_value;
2259 	}
2260 	reg_bounds_sync(reg);
2261 }
2262 
2263 /* Mark a register as having a completely unknown (scalar) value. */
2264 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2265 			       struct bpf_reg_state *reg)
2266 {
2267 	/*
2268 	 * Clear type, off, and union(map_ptr, range) and
2269 	 * padding between 'type' and union
2270 	 */
2271 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2272 	reg->type = SCALAR_VALUE;
2273 	reg->id = 0;
2274 	reg->ref_obj_id = 0;
2275 	reg->var_off = tnum_unknown;
2276 	reg->frameno = 0;
2277 	reg->precise = !env->bpf_capable;
2278 	__mark_reg_unbounded(reg);
2279 }
2280 
2281 static void mark_reg_unknown(struct bpf_verifier_env *env,
2282 			     struct bpf_reg_state *regs, u32 regno)
2283 {
2284 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2285 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2286 		/* Something bad happened, let's kill all regs except FP */
2287 		for (regno = 0; regno < BPF_REG_FP; regno++)
2288 			__mark_reg_not_init(env, regs + regno);
2289 		return;
2290 	}
2291 	__mark_reg_unknown(env, regs + regno);
2292 }
2293 
2294 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2295 				struct bpf_reg_state *reg)
2296 {
2297 	__mark_reg_unknown(env, reg);
2298 	reg->type = NOT_INIT;
2299 }
2300 
2301 static void mark_reg_not_init(struct bpf_verifier_env *env,
2302 			      struct bpf_reg_state *regs, u32 regno)
2303 {
2304 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2305 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2306 		/* Something bad happened, let's kill all regs except FP */
2307 		for (regno = 0; regno < BPF_REG_FP; regno++)
2308 			__mark_reg_not_init(env, regs + regno);
2309 		return;
2310 	}
2311 	__mark_reg_not_init(env, regs + regno);
2312 }
2313 
2314 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2315 			    struct bpf_reg_state *regs, u32 regno,
2316 			    enum bpf_reg_type reg_type,
2317 			    struct btf *btf, u32 btf_id,
2318 			    enum bpf_type_flag flag)
2319 {
2320 	if (reg_type == SCALAR_VALUE) {
2321 		mark_reg_unknown(env, regs, regno);
2322 		return;
2323 	}
2324 	mark_reg_known_zero(env, regs, regno);
2325 	regs[regno].type = PTR_TO_BTF_ID | flag;
2326 	regs[regno].btf = btf;
2327 	regs[regno].btf_id = btf_id;
2328 }
2329 
2330 #define DEF_NOT_SUBREG	(0)
2331 static void init_reg_state(struct bpf_verifier_env *env,
2332 			   struct bpf_func_state *state)
2333 {
2334 	struct bpf_reg_state *regs = state->regs;
2335 	int i;
2336 
2337 	for (i = 0; i < MAX_BPF_REG; i++) {
2338 		mark_reg_not_init(env, regs, i);
2339 		regs[i].live = REG_LIVE_NONE;
2340 		regs[i].parent = NULL;
2341 		regs[i].subreg_def = DEF_NOT_SUBREG;
2342 	}
2343 
2344 	/* frame pointer */
2345 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2346 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2347 	regs[BPF_REG_FP].frameno = state->frameno;
2348 }
2349 
2350 #define BPF_MAIN_FUNC (-1)
2351 static void init_func_state(struct bpf_verifier_env *env,
2352 			    struct bpf_func_state *state,
2353 			    int callsite, int frameno, int subprogno)
2354 {
2355 	state->callsite = callsite;
2356 	state->frameno = frameno;
2357 	state->subprogno = subprogno;
2358 	state->callback_ret_range = tnum_range(0, 0);
2359 	init_reg_state(env, state);
2360 	mark_verifier_state_scratched(env);
2361 }
2362 
2363 /* Similar to push_stack(), but for async callbacks */
2364 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2365 						int insn_idx, int prev_insn_idx,
2366 						int subprog)
2367 {
2368 	struct bpf_verifier_stack_elem *elem;
2369 	struct bpf_func_state *frame;
2370 
2371 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2372 	if (!elem)
2373 		goto err;
2374 
2375 	elem->insn_idx = insn_idx;
2376 	elem->prev_insn_idx = prev_insn_idx;
2377 	elem->next = env->head;
2378 	elem->log_pos = env->log.end_pos;
2379 	env->head = elem;
2380 	env->stack_size++;
2381 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2382 		verbose(env,
2383 			"The sequence of %d jumps is too complex for async cb.\n",
2384 			env->stack_size);
2385 		goto err;
2386 	}
2387 	/* Unlike push_stack() do not copy_verifier_state().
2388 	 * The caller state doesn't matter.
2389 	 * This is async callback. It starts in a fresh stack.
2390 	 * Initialize it similar to do_check_common().
2391 	 */
2392 	elem->st.branches = 1;
2393 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2394 	if (!frame)
2395 		goto err;
2396 	init_func_state(env, frame,
2397 			BPF_MAIN_FUNC /* callsite */,
2398 			0 /* frameno within this callchain */,
2399 			subprog /* subprog number within this prog */);
2400 	elem->st.frame[0] = frame;
2401 	return &elem->st;
2402 err:
2403 	free_verifier_state(env->cur_state, true);
2404 	env->cur_state = NULL;
2405 	/* pop all elements and return */
2406 	while (!pop_stack(env, NULL, NULL, false));
2407 	return NULL;
2408 }
2409 
2410 
2411 enum reg_arg_type {
2412 	SRC_OP,		/* register is used as source operand */
2413 	DST_OP,		/* register is used as destination operand */
2414 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2415 };
2416 
2417 static int cmp_subprogs(const void *a, const void *b)
2418 {
2419 	return ((struct bpf_subprog_info *)a)->start -
2420 	       ((struct bpf_subprog_info *)b)->start;
2421 }
2422 
2423 static int find_subprog(struct bpf_verifier_env *env, int off)
2424 {
2425 	struct bpf_subprog_info *p;
2426 
2427 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2428 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2429 	if (!p)
2430 		return -ENOENT;
2431 	return p - env->subprog_info;
2432 
2433 }
2434 
2435 static int add_subprog(struct bpf_verifier_env *env, int off)
2436 {
2437 	int insn_cnt = env->prog->len;
2438 	int ret;
2439 
2440 	if (off >= insn_cnt || off < 0) {
2441 		verbose(env, "call to invalid destination\n");
2442 		return -EINVAL;
2443 	}
2444 	ret = find_subprog(env, off);
2445 	if (ret >= 0)
2446 		return ret;
2447 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2448 		verbose(env, "too many subprograms\n");
2449 		return -E2BIG;
2450 	}
2451 	/* determine subprog starts. The end is one before the next starts */
2452 	env->subprog_info[env->subprog_cnt++].start = off;
2453 	sort(env->subprog_info, env->subprog_cnt,
2454 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2455 	return env->subprog_cnt - 1;
2456 }
2457 
2458 #define MAX_KFUNC_DESCS 256
2459 #define MAX_KFUNC_BTFS	256
2460 
2461 struct bpf_kfunc_desc {
2462 	struct btf_func_model func_model;
2463 	u32 func_id;
2464 	s32 imm;
2465 	u16 offset;
2466 	unsigned long addr;
2467 };
2468 
2469 struct bpf_kfunc_btf {
2470 	struct btf *btf;
2471 	struct module *module;
2472 	u16 offset;
2473 };
2474 
2475 struct bpf_kfunc_desc_tab {
2476 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2477 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
2478 	 * available, therefore at the end of verification do_misc_fixups()
2479 	 * sorts this by imm and offset.
2480 	 */
2481 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2482 	u32 nr_descs;
2483 };
2484 
2485 struct bpf_kfunc_btf_tab {
2486 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2487 	u32 nr_descs;
2488 };
2489 
2490 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2491 {
2492 	const struct bpf_kfunc_desc *d0 = a;
2493 	const struct bpf_kfunc_desc *d1 = b;
2494 
2495 	/* func_id is not greater than BTF_MAX_TYPE */
2496 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2497 }
2498 
2499 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2500 {
2501 	const struct bpf_kfunc_btf *d0 = a;
2502 	const struct bpf_kfunc_btf *d1 = b;
2503 
2504 	return d0->offset - d1->offset;
2505 }
2506 
2507 static const struct bpf_kfunc_desc *
2508 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2509 {
2510 	struct bpf_kfunc_desc desc = {
2511 		.func_id = func_id,
2512 		.offset = offset,
2513 	};
2514 	struct bpf_kfunc_desc_tab *tab;
2515 
2516 	tab = prog->aux->kfunc_tab;
2517 	return bsearch(&desc, tab->descs, tab->nr_descs,
2518 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2519 }
2520 
2521 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2522 		       u16 btf_fd_idx, u8 **func_addr)
2523 {
2524 	const struct bpf_kfunc_desc *desc;
2525 
2526 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2527 	if (!desc)
2528 		return -EFAULT;
2529 
2530 	*func_addr = (u8 *)desc->addr;
2531 	return 0;
2532 }
2533 
2534 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2535 					 s16 offset)
2536 {
2537 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2538 	struct bpf_kfunc_btf_tab *tab;
2539 	struct bpf_kfunc_btf *b;
2540 	struct module *mod;
2541 	struct btf *btf;
2542 	int btf_fd;
2543 
2544 	tab = env->prog->aux->kfunc_btf_tab;
2545 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2546 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2547 	if (!b) {
2548 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2549 			verbose(env, "too many different module BTFs\n");
2550 			return ERR_PTR(-E2BIG);
2551 		}
2552 
2553 		if (bpfptr_is_null(env->fd_array)) {
2554 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2555 			return ERR_PTR(-EPROTO);
2556 		}
2557 
2558 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2559 					    offset * sizeof(btf_fd),
2560 					    sizeof(btf_fd)))
2561 			return ERR_PTR(-EFAULT);
2562 
2563 		btf = btf_get_by_fd(btf_fd);
2564 		if (IS_ERR(btf)) {
2565 			verbose(env, "invalid module BTF fd specified\n");
2566 			return btf;
2567 		}
2568 
2569 		if (!btf_is_module(btf)) {
2570 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2571 			btf_put(btf);
2572 			return ERR_PTR(-EINVAL);
2573 		}
2574 
2575 		mod = btf_try_get_module(btf);
2576 		if (!mod) {
2577 			btf_put(btf);
2578 			return ERR_PTR(-ENXIO);
2579 		}
2580 
2581 		b = &tab->descs[tab->nr_descs++];
2582 		b->btf = btf;
2583 		b->module = mod;
2584 		b->offset = offset;
2585 
2586 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2587 		     kfunc_btf_cmp_by_off, NULL);
2588 	}
2589 	return b->btf;
2590 }
2591 
2592 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2593 {
2594 	if (!tab)
2595 		return;
2596 
2597 	while (tab->nr_descs--) {
2598 		module_put(tab->descs[tab->nr_descs].module);
2599 		btf_put(tab->descs[tab->nr_descs].btf);
2600 	}
2601 	kfree(tab);
2602 }
2603 
2604 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2605 {
2606 	if (offset) {
2607 		if (offset < 0) {
2608 			/* In the future, this can be allowed to increase limit
2609 			 * of fd index into fd_array, interpreted as u16.
2610 			 */
2611 			verbose(env, "negative offset disallowed for kernel module function call\n");
2612 			return ERR_PTR(-EINVAL);
2613 		}
2614 
2615 		return __find_kfunc_desc_btf(env, offset);
2616 	}
2617 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2618 }
2619 
2620 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2621 {
2622 	const struct btf_type *func, *func_proto;
2623 	struct bpf_kfunc_btf_tab *btf_tab;
2624 	struct bpf_kfunc_desc_tab *tab;
2625 	struct bpf_prog_aux *prog_aux;
2626 	struct bpf_kfunc_desc *desc;
2627 	const char *func_name;
2628 	struct btf *desc_btf;
2629 	unsigned long call_imm;
2630 	unsigned long addr;
2631 	int err;
2632 
2633 	prog_aux = env->prog->aux;
2634 	tab = prog_aux->kfunc_tab;
2635 	btf_tab = prog_aux->kfunc_btf_tab;
2636 	if (!tab) {
2637 		if (!btf_vmlinux) {
2638 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2639 			return -ENOTSUPP;
2640 		}
2641 
2642 		if (!env->prog->jit_requested) {
2643 			verbose(env, "JIT is required for calling kernel function\n");
2644 			return -ENOTSUPP;
2645 		}
2646 
2647 		if (!bpf_jit_supports_kfunc_call()) {
2648 			verbose(env, "JIT does not support calling kernel function\n");
2649 			return -ENOTSUPP;
2650 		}
2651 
2652 		if (!env->prog->gpl_compatible) {
2653 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2654 			return -EINVAL;
2655 		}
2656 
2657 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2658 		if (!tab)
2659 			return -ENOMEM;
2660 		prog_aux->kfunc_tab = tab;
2661 	}
2662 
2663 	/* func_id == 0 is always invalid, but instead of returning an error, be
2664 	 * conservative and wait until the code elimination pass before returning
2665 	 * error, so that invalid calls that get pruned out can be in BPF programs
2666 	 * loaded from userspace.  It is also required that offset be untouched
2667 	 * for such calls.
2668 	 */
2669 	if (!func_id && !offset)
2670 		return 0;
2671 
2672 	if (!btf_tab && offset) {
2673 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2674 		if (!btf_tab)
2675 			return -ENOMEM;
2676 		prog_aux->kfunc_btf_tab = btf_tab;
2677 	}
2678 
2679 	desc_btf = find_kfunc_desc_btf(env, offset);
2680 	if (IS_ERR(desc_btf)) {
2681 		verbose(env, "failed to find BTF for kernel function\n");
2682 		return PTR_ERR(desc_btf);
2683 	}
2684 
2685 	if (find_kfunc_desc(env->prog, func_id, offset))
2686 		return 0;
2687 
2688 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2689 		verbose(env, "too many different kernel function calls\n");
2690 		return -E2BIG;
2691 	}
2692 
2693 	func = btf_type_by_id(desc_btf, func_id);
2694 	if (!func || !btf_type_is_func(func)) {
2695 		verbose(env, "kernel btf_id %u is not a function\n",
2696 			func_id);
2697 		return -EINVAL;
2698 	}
2699 	func_proto = btf_type_by_id(desc_btf, func->type);
2700 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2701 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2702 			func_id);
2703 		return -EINVAL;
2704 	}
2705 
2706 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2707 	addr = kallsyms_lookup_name(func_name);
2708 	if (!addr) {
2709 		verbose(env, "cannot find address for kernel function %s\n",
2710 			func_name);
2711 		return -EINVAL;
2712 	}
2713 	specialize_kfunc(env, func_id, offset, &addr);
2714 
2715 	if (bpf_jit_supports_far_kfunc_call()) {
2716 		call_imm = func_id;
2717 	} else {
2718 		call_imm = BPF_CALL_IMM(addr);
2719 		/* Check whether the relative offset overflows desc->imm */
2720 		if ((unsigned long)(s32)call_imm != call_imm) {
2721 			verbose(env, "address of kernel function %s is out of range\n",
2722 				func_name);
2723 			return -EINVAL;
2724 		}
2725 	}
2726 
2727 	if (bpf_dev_bound_kfunc_id(func_id)) {
2728 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2729 		if (err)
2730 			return err;
2731 	}
2732 
2733 	desc = &tab->descs[tab->nr_descs++];
2734 	desc->func_id = func_id;
2735 	desc->imm = call_imm;
2736 	desc->offset = offset;
2737 	desc->addr = addr;
2738 	err = btf_distill_func_proto(&env->log, desc_btf,
2739 				     func_proto, func_name,
2740 				     &desc->func_model);
2741 	if (!err)
2742 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2743 		     kfunc_desc_cmp_by_id_off, NULL);
2744 	return err;
2745 }
2746 
2747 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2748 {
2749 	const struct bpf_kfunc_desc *d0 = a;
2750 	const struct bpf_kfunc_desc *d1 = b;
2751 
2752 	if (d0->imm != d1->imm)
2753 		return d0->imm < d1->imm ? -1 : 1;
2754 	if (d0->offset != d1->offset)
2755 		return d0->offset < d1->offset ? -1 : 1;
2756 	return 0;
2757 }
2758 
2759 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
2760 {
2761 	struct bpf_kfunc_desc_tab *tab;
2762 
2763 	tab = prog->aux->kfunc_tab;
2764 	if (!tab)
2765 		return;
2766 
2767 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2768 	     kfunc_desc_cmp_by_imm_off, NULL);
2769 }
2770 
2771 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2772 {
2773 	return !!prog->aux->kfunc_tab;
2774 }
2775 
2776 const struct btf_func_model *
2777 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2778 			 const struct bpf_insn *insn)
2779 {
2780 	const struct bpf_kfunc_desc desc = {
2781 		.imm = insn->imm,
2782 		.offset = insn->off,
2783 	};
2784 	const struct bpf_kfunc_desc *res;
2785 	struct bpf_kfunc_desc_tab *tab;
2786 
2787 	tab = prog->aux->kfunc_tab;
2788 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2789 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
2790 
2791 	return res ? &res->func_model : NULL;
2792 }
2793 
2794 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2795 {
2796 	struct bpf_subprog_info *subprog = env->subprog_info;
2797 	struct bpf_insn *insn = env->prog->insnsi;
2798 	int i, ret, insn_cnt = env->prog->len;
2799 
2800 	/* Add entry function. */
2801 	ret = add_subprog(env, 0);
2802 	if (ret)
2803 		return ret;
2804 
2805 	for (i = 0; i < insn_cnt; i++, insn++) {
2806 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2807 		    !bpf_pseudo_kfunc_call(insn))
2808 			continue;
2809 
2810 		if (!env->bpf_capable) {
2811 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2812 			return -EPERM;
2813 		}
2814 
2815 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2816 			ret = add_subprog(env, i + insn->imm + 1);
2817 		else
2818 			ret = add_kfunc_call(env, insn->imm, insn->off);
2819 
2820 		if (ret < 0)
2821 			return ret;
2822 	}
2823 
2824 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2825 	 * logic. 'subprog_cnt' should not be increased.
2826 	 */
2827 	subprog[env->subprog_cnt].start = insn_cnt;
2828 
2829 	if (env->log.level & BPF_LOG_LEVEL2)
2830 		for (i = 0; i < env->subprog_cnt; i++)
2831 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2832 
2833 	return 0;
2834 }
2835 
2836 static int check_subprogs(struct bpf_verifier_env *env)
2837 {
2838 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2839 	struct bpf_subprog_info *subprog = env->subprog_info;
2840 	struct bpf_insn *insn = env->prog->insnsi;
2841 	int insn_cnt = env->prog->len;
2842 
2843 	/* now check that all jumps are within the same subprog */
2844 	subprog_start = subprog[cur_subprog].start;
2845 	subprog_end = subprog[cur_subprog + 1].start;
2846 	for (i = 0; i < insn_cnt; i++) {
2847 		u8 code = insn[i].code;
2848 
2849 		if (code == (BPF_JMP | BPF_CALL) &&
2850 		    insn[i].src_reg == 0 &&
2851 		    insn[i].imm == BPF_FUNC_tail_call)
2852 			subprog[cur_subprog].has_tail_call = true;
2853 		if (BPF_CLASS(code) == BPF_LD &&
2854 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2855 			subprog[cur_subprog].has_ld_abs = true;
2856 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2857 			goto next;
2858 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2859 			goto next;
2860 		if (code == (BPF_JMP32 | BPF_JA))
2861 			off = i + insn[i].imm + 1;
2862 		else
2863 			off = i + insn[i].off + 1;
2864 		if (off < subprog_start || off >= subprog_end) {
2865 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2866 			return -EINVAL;
2867 		}
2868 next:
2869 		if (i == subprog_end - 1) {
2870 			/* to avoid fall-through from one subprog into another
2871 			 * the last insn of the subprog should be either exit
2872 			 * or unconditional jump back
2873 			 */
2874 			if (code != (BPF_JMP | BPF_EXIT) &&
2875 			    code != (BPF_JMP32 | BPF_JA) &&
2876 			    code != (BPF_JMP | BPF_JA)) {
2877 				verbose(env, "last insn is not an exit or jmp\n");
2878 				return -EINVAL;
2879 			}
2880 			subprog_start = subprog_end;
2881 			cur_subprog++;
2882 			if (cur_subprog < env->subprog_cnt)
2883 				subprog_end = subprog[cur_subprog + 1].start;
2884 		}
2885 	}
2886 	return 0;
2887 }
2888 
2889 /* Parentage chain of this register (or stack slot) should take care of all
2890  * issues like callee-saved registers, stack slot allocation time, etc.
2891  */
2892 static int mark_reg_read(struct bpf_verifier_env *env,
2893 			 const struct bpf_reg_state *state,
2894 			 struct bpf_reg_state *parent, u8 flag)
2895 {
2896 	bool writes = parent == state->parent; /* Observe write marks */
2897 	int cnt = 0;
2898 
2899 	while (parent) {
2900 		/* if read wasn't screened by an earlier write ... */
2901 		if (writes && state->live & REG_LIVE_WRITTEN)
2902 			break;
2903 		if (parent->live & REG_LIVE_DONE) {
2904 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2905 				reg_type_str(env, parent->type),
2906 				parent->var_off.value, parent->off);
2907 			return -EFAULT;
2908 		}
2909 		/* The first condition is more likely to be true than the
2910 		 * second, checked it first.
2911 		 */
2912 		if ((parent->live & REG_LIVE_READ) == flag ||
2913 		    parent->live & REG_LIVE_READ64)
2914 			/* The parentage chain never changes and
2915 			 * this parent was already marked as LIVE_READ.
2916 			 * There is no need to keep walking the chain again and
2917 			 * keep re-marking all parents as LIVE_READ.
2918 			 * This case happens when the same register is read
2919 			 * multiple times without writes into it in-between.
2920 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
2921 			 * then no need to set the weak REG_LIVE_READ32.
2922 			 */
2923 			break;
2924 		/* ... then we depend on parent's value */
2925 		parent->live |= flag;
2926 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2927 		if (flag == REG_LIVE_READ64)
2928 			parent->live &= ~REG_LIVE_READ32;
2929 		state = parent;
2930 		parent = state->parent;
2931 		writes = true;
2932 		cnt++;
2933 	}
2934 
2935 	if (env->longest_mark_read_walk < cnt)
2936 		env->longest_mark_read_walk = cnt;
2937 	return 0;
2938 }
2939 
2940 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
2941 {
2942 	struct bpf_func_state *state = func(env, reg);
2943 	int spi, ret;
2944 
2945 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
2946 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
2947 	 * check_kfunc_call.
2948 	 */
2949 	if (reg->type == CONST_PTR_TO_DYNPTR)
2950 		return 0;
2951 	spi = dynptr_get_spi(env, reg);
2952 	if (spi < 0)
2953 		return spi;
2954 	/* Caller ensures dynptr is valid and initialized, which means spi is in
2955 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
2956 	 * read.
2957 	 */
2958 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
2959 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
2960 	if (ret)
2961 		return ret;
2962 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
2963 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
2964 }
2965 
2966 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
2967 			  int spi, int nr_slots)
2968 {
2969 	struct bpf_func_state *state = func(env, reg);
2970 	int err, i;
2971 
2972 	for (i = 0; i < nr_slots; i++) {
2973 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
2974 
2975 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
2976 		if (err)
2977 			return err;
2978 
2979 		mark_stack_slot_scratched(env, spi - i);
2980 	}
2981 
2982 	return 0;
2983 }
2984 
2985 /* This function is supposed to be used by the following 32-bit optimization
2986  * code only. It returns TRUE if the source or destination register operates
2987  * on 64-bit, otherwise return FALSE.
2988  */
2989 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2990 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2991 {
2992 	u8 code, class, op;
2993 
2994 	code = insn->code;
2995 	class = BPF_CLASS(code);
2996 	op = BPF_OP(code);
2997 	if (class == BPF_JMP) {
2998 		/* BPF_EXIT for "main" will reach here. Return TRUE
2999 		 * conservatively.
3000 		 */
3001 		if (op == BPF_EXIT)
3002 			return true;
3003 		if (op == BPF_CALL) {
3004 			/* BPF to BPF call will reach here because of marking
3005 			 * caller saved clobber with DST_OP_NO_MARK for which we
3006 			 * don't care the register def because they are anyway
3007 			 * marked as NOT_INIT already.
3008 			 */
3009 			if (insn->src_reg == BPF_PSEUDO_CALL)
3010 				return false;
3011 			/* Helper call will reach here because of arg type
3012 			 * check, conservatively return TRUE.
3013 			 */
3014 			if (t == SRC_OP)
3015 				return true;
3016 
3017 			return false;
3018 		}
3019 	}
3020 
3021 	if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3022 		return false;
3023 
3024 	if (class == BPF_ALU64 || class == BPF_JMP ||
3025 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3026 		return true;
3027 
3028 	if (class == BPF_ALU || class == BPF_JMP32)
3029 		return false;
3030 
3031 	if (class == BPF_LDX) {
3032 		if (t != SRC_OP)
3033 			return BPF_SIZE(code) == BPF_DW;
3034 		/* LDX source must be ptr. */
3035 		return true;
3036 	}
3037 
3038 	if (class == BPF_STX) {
3039 		/* BPF_STX (including atomic variants) has multiple source
3040 		 * operands, one of which is a ptr. Check whether the caller is
3041 		 * asking about it.
3042 		 */
3043 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3044 			return true;
3045 		return BPF_SIZE(code) == BPF_DW;
3046 	}
3047 
3048 	if (class == BPF_LD) {
3049 		u8 mode = BPF_MODE(code);
3050 
3051 		/* LD_IMM64 */
3052 		if (mode == BPF_IMM)
3053 			return true;
3054 
3055 		/* Both LD_IND and LD_ABS return 32-bit data. */
3056 		if (t != SRC_OP)
3057 			return  false;
3058 
3059 		/* Implicit ctx ptr. */
3060 		if (regno == BPF_REG_6)
3061 			return true;
3062 
3063 		/* Explicit source could be any width. */
3064 		return true;
3065 	}
3066 
3067 	if (class == BPF_ST)
3068 		/* The only source register for BPF_ST is a ptr. */
3069 		return true;
3070 
3071 	/* Conservatively return true at default. */
3072 	return true;
3073 }
3074 
3075 /* Return the regno defined by the insn, or -1. */
3076 static int insn_def_regno(const struct bpf_insn *insn)
3077 {
3078 	switch (BPF_CLASS(insn->code)) {
3079 	case BPF_JMP:
3080 	case BPF_JMP32:
3081 	case BPF_ST:
3082 		return -1;
3083 	case BPF_STX:
3084 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3085 		    (insn->imm & BPF_FETCH)) {
3086 			if (insn->imm == BPF_CMPXCHG)
3087 				return BPF_REG_0;
3088 			else
3089 				return insn->src_reg;
3090 		} else {
3091 			return -1;
3092 		}
3093 	default:
3094 		return insn->dst_reg;
3095 	}
3096 }
3097 
3098 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3099 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3100 {
3101 	int dst_reg = insn_def_regno(insn);
3102 
3103 	if (dst_reg == -1)
3104 		return false;
3105 
3106 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3107 }
3108 
3109 static void mark_insn_zext(struct bpf_verifier_env *env,
3110 			   struct bpf_reg_state *reg)
3111 {
3112 	s32 def_idx = reg->subreg_def;
3113 
3114 	if (def_idx == DEF_NOT_SUBREG)
3115 		return;
3116 
3117 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3118 	/* The dst will be zero extended, so won't be sub-register anymore. */
3119 	reg->subreg_def = DEF_NOT_SUBREG;
3120 }
3121 
3122 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3123 			 enum reg_arg_type t)
3124 {
3125 	struct bpf_verifier_state *vstate = env->cur_state;
3126 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3127 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3128 	struct bpf_reg_state *reg, *regs = state->regs;
3129 	bool rw64;
3130 
3131 	if (regno >= MAX_BPF_REG) {
3132 		verbose(env, "R%d is invalid\n", regno);
3133 		return -EINVAL;
3134 	}
3135 
3136 	mark_reg_scratched(env, regno);
3137 
3138 	reg = &regs[regno];
3139 	rw64 = is_reg64(env, insn, regno, reg, t);
3140 	if (t == SRC_OP) {
3141 		/* check whether register used as source operand can be read */
3142 		if (reg->type == NOT_INIT) {
3143 			verbose(env, "R%d !read_ok\n", regno);
3144 			return -EACCES;
3145 		}
3146 		/* We don't need to worry about FP liveness because it's read-only */
3147 		if (regno == BPF_REG_FP)
3148 			return 0;
3149 
3150 		if (rw64)
3151 			mark_insn_zext(env, reg);
3152 
3153 		return mark_reg_read(env, reg, reg->parent,
3154 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3155 	} else {
3156 		/* check whether register used as dest operand can be written to */
3157 		if (regno == BPF_REG_FP) {
3158 			verbose(env, "frame pointer is read only\n");
3159 			return -EACCES;
3160 		}
3161 		reg->live |= REG_LIVE_WRITTEN;
3162 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3163 		if (t == DST_OP)
3164 			mark_reg_unknown(env, regs, regno);
3165 	}
3166 	return 0;
3167 }
3168 
3169 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3170 {
3171 	env->insn_aux_data[idx].jmp_point = true;
3172 }
3173 
3174 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3175 {
3176 	return env->insn_aux_data[insn_idx].jmp_point;
3177 }
3178 
3179 /* for any branch, call, exit record the history of jmps in the given state */
3180 static int push_jmp_history(struct bpf_verifier_env *env,
3181 			    struct bpf_verifier_state *cur)
3182 {
3183 	u32 cnt = cur->jmp_history_cnt;
3184 	struct bpf_idx_pair *p;
3185 	size_t alloc_size;
3186 
3187 	if (!is_jmp_point(env, env->insn_idx))
3188 		return 0;
3189 
3190 	cnt++;
3191 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3192 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3193 	if (!p)
3194 		return -ENOMEM;
3195 	p[cnt - 1].idx = env->insn_idx;
3196 	p[cnt - 1].prev_idx = env->prev_insn_idx;
3197 	cur->jmp_history = p;
3198 	cur->jmp_history_cnt = cnt;
3199 	return 0;
3200 }
3201 
3202 /* Backtrack one insn at a time. If idx is not at the top of recorded
3203  * history then previous instruction came from straight line execution.
3204  * Return -ENOENT if we exhausted all instructions within given state.
3205  *
3206  * It's legal to have a bit of a looping with the same starting and ending
3207  * insn index within the same state, e.g.: 3->4->5->3, so just because current
3208  * instruction index is the same as state's first_idx doesn't mean we are
3209  * done. If there is still some jump history left, we should keep going. We
3210  * need to take into account that we might have a jump history between given
3211  * state's parent and itself, due to checkpointing. In this case, we'll have
3212  * history entry recording a jump from last instruction of parent state and
3213  * first instruction of given state.
3214  */
3215 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3216 			     u32 *history)
3217 {
3218 	u32 cnt = *history;
3219 
3220 	if (i == st->first_insn_idx) {
3221 		if (cnt == 0)
3222 			return -ENOENT;
3223 		if (cnt == 1 && st->jmp_history[0].idx == i)
3224 			return -ENOENT;
3225 	}
3226 
3227 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
3228 		i = st->jmp_history[cnt - 1].prev_idx;
3229 		(*history)--;
3230 	} else {
3231 		i--;
3232 	}
3233 	return i;
3234 }
3235 
3236 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3237 {
3238 	const struct btf_type *func;
3239 	struct btf *desc_btf;
3240 
3241 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3242 		return NULL;
3243 
3244 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3245 	if (IS_ERR(desc_btf))
3246 		return "<error>";
3247 
3248 	func = btf_type_by_id(desc_btf, insn->imm);
3249 	return btf_name_by_offset(desc_btf, func->name_off);
3250 }
3251 
3252 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3253 {
3254 	bt->frame = frame;
3255 }
3256 
3257 static inline void bt_reset(struct backtrack_state *bt)
3258 {
3259 	struct bpf_verifier_env *env = bt->env;
3260 
3261 	memset(bt, 0, sizeof(*bt));
3262 	bt->env = env;
3263 }
3264 
3265 static inline u32 bt_empty(struct backtrack_state *bt)
3266 {
3267 	u64 mask = 0;
3268 	int i;
3269 
3270 	for (i = 0; i <= bt->frame; i++)
3271 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
3272 
3273 	return mask == 0;
3274 }
3275 
3276 static inline int bt_subprog_enter(struct backtrack_state *bt)
3277 {
3278 	if (bt->frame == MAX_CALL_FRAMES - 1) {
3279 		verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3280 		WARN_ONCE(1, "verifier backtracking bug");
3281 		return -EFAULT;
3282 	}
3283 	bt->frame++;
3284 	return 0;
3285 }
3286 
3287 static inline int bt_subprog_exit(struct backtrack_state *bt)
3288 {
3289 	if (bt->frame == 0) {
3290 		verbose(bt->env, "BUG subprog exit from frame 0\n");
3291 		WARN_ONCE(1, "verifier backtracking bug");
3292 		return -EFAULT;
3293 	}
3294 	bt->frame--;
3295 	return 0;
3296 }
3297 
3298 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3299 {
3300 	bt->reg_masks[frame] |= 1 << reg;
3301 }
3302 
3303 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3304 {
3305 	bt->reg_masks[frame] &= ~(1 << reg);
3306 }
3307 
3308 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3309 {
3310 	bt_set_frame_reg(bt, bt->frame, reg);
3311 }
3312 
3313 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3314 {
3315 	bt_clear_frame_reg(bt, bt->frame, reg);
3316 }
3317 
3318 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3319 {
3320 	bt->stack_masks[frame] |= 1ull << slot;
3321 }
3322 
3323 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3324 {
3325 	bt->stack_masks[frame] &= ~(1ull << slot);
3326 }
3327 
3328 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot)
3329 {
3330 	bt_set_frame_slot(bt, bt->frame, slot);
3331 }
3332 
3333 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot)
3334 {
3335 	bt_clear_frame_slot(bt, bt->frame, slot);
3336 }
3337 
3338 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3339 {
3340 	return bt->reg_masks[frame];
3341 }
3342 
3343 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3344 {
3345 	return bt->reg_masks[bt->frame];
3346 }
3347 
3348 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3349 {
3350 	return bt->stack_masks[frame];
3351 }
3352 
3353 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3354 {
3355 	return bt->stack_masks[bt->frame];
3356 }
3357 
3358 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3359 {
3360 	return bt->reg_masks[bt->frame] & (1 << reg);
3361 }
3362 
3363 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot)
3364 {
3365 	return bt->stack_masks[bt->frame] & (1ull << slot);
3366 }
3367 
3368 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3369 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3370 {
3371 	DECLARE_BITMAP(mask, 64);
3372 	bool first = true;
3373 	int i, n;
3374 
3375 	buf[0] = '\0';
3376 
3377 	bitmap_from_u64(mask, reg_mask);
3378 	for_each_set_bit(i, mask, 32) {
3379 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3380 		first = false;
3381 		buf += n;
3382 		buf_sz -= n;
3383 		if (buf_sz < 0)
3384 			break;
3385 	}
3386 }
3387 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3388 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3389 {
3390 	DECLARE_BITMAP(mask, 64);
3391 	bool first = true;
3392 	int i, n;
3393 
3394 	buf[0] = '\0';
3395 
3396 	bitmap_from_u64(mask, stack_mask);
3397 	for_each_set_bit(i, mask, 64) {
3398 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3399 		first = false;
3400 		buf += n;
3401 		buf_sz -= n;
3402 		if (buf_sz < 0)
3403 			break;
3404 	}
3405 }
3406 
3407 /* For given verifier state backtrack_insn() is called from the last insn to
3408  * the first insn. Its purpose is to compute a bitmask of registers and
3409  * stack slots that needs precision in the parent verifier state.
3410  *
3411  * @idx is an index of the instruction we are currently processing;
3412  * @subseq_idx is an index of the subsequent instruction that:
3413  *   - *would be* executed next, if jump history is viewed in forward order;
3414  *   - *was* processed previously during backtracking.
3415  */
3416 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3417 			  struct backtrack_state *bt)
3418 {
3419 	const struct bpf_insn_cbs cbs = {
3420 		.cb_call	= disasm_kfunc_name,
3421 		.cb_print	= verbose,
3422 		.private_data	= env,
3423 	};
3424 	struct bpf_insn *insn = env->prog->insnsi + idx;
3425 	u8 class = BPF_CLASS(insn->code);
3426 	u8 opcode = BPF_OP(insn->code);
3427 	u8 mode = BPF_MODE(insn->code);
3428 	u32 dreg = insn->dst_reg;
3429 	u32 sreg = insn->src_reg;
3430 	u32 spi, i;
3431 
3432 	if (insn->code == 0)
3433 		return 0;
3434 	if (env->log.level & BPF_LOG_LEVEL2) {
3435 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3436 		verbose(env, "mark_precise: frame%d: regs=%s ",
3437 			bt->frame, env->tmp_str_buf);
3438 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3439 		verbose(env, "stack=%s before ", env->tmp_str_buf);
3440 		verbose(env, "%d: ", idx);
3441 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3442 	}
3443 
3444 	if (class == BPF_ALU || class == BPF_ALU64) {
3445 		if (!bt_is_reg_set(bt, dreg))
3446 			return 0;
3447 		if (opcode == BPF_END || opcode == BPF_NEG) {
3448 			/* sreg is reserved and unused
3449 			 * dreg still need precision before this insn
3450 			 */
3451 			return 0;
3452 		} else if (opcode == BPF_MOV) {
3453 			if (BPF_SRC(insn->code) == BPF_X) {
3454 				/* dreg = sreg or dreg = (s8, s16, s32)sreg
3455 				 * dreg needs precision after this insn
3456 				 * sreg needs precision before this insn
3457 				 */
3458 				bt_clear_reg(bt, dreg);
3459 				bt_set_reg(bt, sreg);
3460 			} else {
3461 				/* dreg = K
3462 				 * dreg needs precision after this insn.
3463 				 * Corresponding register is already marked
3464 				 * as precise=true in this verifier state.
3465 				 * No further markings in parent are necessary
3466 				 */
3467 				bt_clear_reg(bt, dreg);
3468 			}
3469 		} else {
3470 			if (BPF_SRC(insn->code) == BPF_X) {
3471 				/* dreg += sreg
3472 				 * both dreg and sreg need precision
3473 				 * before this insn
3474 				 */
3475 				bt_set_reg(bt, sreg);
3476 			} /* else dreg += K
3477 			   * dreg still needs precision before this insn
3478 			   */
3479 		}
3480 	} else if (class == BPF_LDX) {
3481 		if (!bt_is_reg_set(bt, dreg))
3482 			return 0;
3483 		bt_clear_reg(bt, dreg);
3484 
3485 		/* scalars can only be spilled into stack w/o losing precision.
3486 		 * Load from any other memory can be zero extended.
3487 		 * The desire to keep that precision is already indicated
3488 		 * by 'precise' mark in corresponding register of this state.
3489 		 * No further tracking necessary.
3490 		 */
3491 		if (insn->src_reg != BPF_REG_FP)
3492 			return 0;
3493 
3494 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
3495 		 * that [fp - off] slot contains scalar that needs to be
3496 		 * tracked with precision
3497 		 */
3498 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3499 		if (spi >= 64) {
3500 			verbose(env, "BUG spi %d\n", spi);
3501 			WARN_ONCE(1, "verifier backtracking bug");
3502 			return -EFAULT;
3503 		}
3504 		bt_set_slot(bt, spi);
3505 	} else if (class == BPF_STX || class == BPF_ST) {
3506 		if (bt_is_reg_set(bt, dreg))
3507 			/* stx & st shouldn't be using _scalar_ dst_reg
3508 			 * to access memory. It means backtracking
3509 			 * encountered a case of pointer subtraction.
3510 			 */
3511 			return -ENOTSUPP;
3512 		/* scalars can only be spilled into stack */
3513 		if (insn->dst_reg != BPF_REG_FP)
3514 			return 0;
3515 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3516 		if (spi >= 64) {
3517 			verbose(env, "BUG spi %d\n", spi);
3518 			WARN_ONCE(1, "verifier backtracking bug");
3519 			return -EFAULT;
3520 		}
3521 		if (!bt_is_slot_set(bt, spi))
3522 			return 0;
3523 		bt_clear_slot(bt, spi);
3524 		if (class == BPF_STX)
3525 			bt_set_reg(bt, sreg);
3526 	} else if (class == BPF_JMP || class == BPF_JMP32) {
3527 		if (bpf_pseudo_call(insn)) {
3528 			int subprog_insn_idx, subprog;
3529 
3530 			subprog_insn_idx = idx + insn->imm + 1;
3531 			subprog = find_subprog(env, subprog_insn_idx);
3532 			if (subprog < 0)
3533 				return -EFAULT;
3534 
3535 			if (subprog_is_global(env, subprog)) {
3536 				/* check that jump history doesn't have any
3537 				 * extra instructions from subprog; the next
3538 				 * instruction after call to global subprog
3539 				 * should be literally next instruction in
3540 				 * caller program
3541 				 */
3542 				WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3543 				/* r1-r5 are invalidated after subprog call,
3544 				 * so for global func call it shouldn't be set
3545 				 * anymore
3546 				 */
3547 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3548 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3549 					WARN_ONCE(1, "verifier backtracking bug");
3550 					return -EFAULT;
3551 				}
3552 				/* global subprog always sets R0 */
3553 				bt_clear_reg(bt, BPF_REG_0);
3554 				return 0;
3555 			} else {
3556 				/* static subprog call instruction, which
3557 				 * means that we are exiting current subprog,
3558 				 * so only r1-r5 could be still requested as
3559 				 * precise, r0 and r6-r10 or any stack slot in
3560 				 * the current frame should be zero by now
3561 				 */
3562 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3563 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3564 					WARN_ONCE(1, "verifier backtracking bug");
3565 					return -EFAULT;
3566 				}
3567 				/* we don't track register spills perfectly,
3568 				 * so fallback to force-precise instead of failing */
3569 				if (bt_stack_mask(bt) != 0)
3570 					return -ENOTSUPP;
3571 				/* propagate r1-r5 to the caller */
3572 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3573 					if (bt_is_reg_set(bt, i)) {
3574 						bt_clear_reg(bt, i);
3575 						bt_set_frame_reg(bt, bt->frame - 1, i);
3576 					}
3577 				}
3578 				if (bt_subprog_exit(bt))
3579 					return -EFAULT;
3580 				return 0;
3581 			}
3582 		} else if ((bpf_helper_call(insn) &&
3583 			    is_callback_calling_function(insn->imm) &&
3584 			    !is_async_callback_calling_function(insn->imm)) ||
3585 			   (bpf_pseudo_kfunc_call(insn) && is_callback_calling_kfunc(insn->imm))) {
3586 			/* callback-calling helper or kfunc call, which means
3587 			 * we are exiting from subprog, but unlike the subprog
3588 			 * call handling above, we shouldn't propagate
3589 			 * precision of r1-r5 (if any requested), as they are
3590 			 * not actually arguments passed directly to callback
3591 			 * subprogs
3592 			 */
3593 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3594 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3595 				WARN_ONCE(1, "verifier backtracking bug");
3596 				return -EFAULT;
3597 			}
3598 			if (bt_stack_mask(bt) != 0)
3599 				return -ENOTSUPP;
3600 			/* clear r1-r5 in callback subprog's mask */
3601 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3602 				bt_clear_reg(bt, i);
3603 			if (bt_subprog_exit(bt))
3604 				return -EFAULT;
3605 			return 0;
3606 		} else if (opcode == BPF_CALL) {
3607 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
3608 			 * catch this error later. Make backtracking conservative
3609 			 * with ENOTSUPP.
3610 			 */
3611 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3612 				return -ENOTSUPP;
3613 			/* regular helper call sets R0 */
3614 			bt_clear_reg(bt, BPF_REG_0);
3615 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3616 				/* if backtracing was looking for registers R1-R5
3617 				 * they should have been found already.
3618 				 */
3619 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3620 				WARN_ONCE(1, "verifier backtracking bug");
3621 				return -EFAULT;
3622 			}
3623 		} else if (opcode == BPF_EXIT) {
3624 			bool r0_precise;
3625 
3626 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3627 				/* if backtracing was looking for registers R1-R5
3628 				 * they should have been found already.
3629 				 */
3630 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3631 				WARN_ONCE(1, "verifier backtracking bug");
3632 				return -EFAULT;
3633 			}
3634 
3635 			/* BPF_EXIT in subprog or callback always returns
3636 			 * right after the call instruction, so by checking
3637 			 * whether the instruction at subseq_idx-1 is subprog
3638 			 * call or not we can distinguish actual exit from
3639 			 * *subprog* from exit from *callback*. In the former
3640 			 * case, we need to propagate r0 precision, if
3641 			 * necessary. In the former we never do that.
3642 			 */
3643 			r0_precise = subseq_idx - 1 >= 0 &&
3644 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3645 				     bt_is_reg_set(bt, BPF_REG_0);
3646 
3647 			bt_clear_reg(bt, BPF_REG_0);
3648 			if (bt_subprog_enter(bt))
3649 				return -EFAULT;
3650 
3651 			if (r0_precise)
3652 				bt_set_reg(bt, BPF_REG_0);
3653 			/* r6-r9 and stack slots will stay set in caller frame
3654 			 * bitmasks until we return back from callee(s)
3655 			 */
3656 			return 0;
3657 		} else if (BPF_SRC(insn->code) == BPF_X) {
3658 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
3659 				return 0;
3660 			/* dreg <cond> sreg
3661 			 * Both dreg and sreg need precision before
3662 			 * this insn. If only sreg was marked precise
3663 			 * before it would be equally necessary to
3664 			 * propagate it to dreg.
3665 			 */
3666 			bt_set_reg(bt, dreg);
3667 			bt_set_reg(bt, sreg);
3668 			 /* else dreg <cond> K
3669 			  * Only dreg still needs precision before
3670 			  * this insn, so for the K-based conditional
3671 			  * there is nothing new to be marked.
3672 			  */
3673 		}
3674 	} else if (class == BPF_LD) {
3675 		if (!bt_is_reg_set(bt, dreg))
3676 			return 0;
3677 		bt_clear_reg(bt, dreg);
3678 		/* It's ld_imm64 or ld_abs or ld_ind.
3679 		 * For ld_imm64 no further tracking of precision
3680 		 * into parent is necessary
3681 		 */
3682 		if (mode == BPF_IND || mode == BPF_ABS)
3683 			/* to be analyzed */
3684 			return -ENOTSUPP;
3685 	}
3686 	return 0;
3687 }
3688 
3689 /* the scalar precision tracking algorithm:
3690  * . at the start all registers have precise=false.
3691  * . scalar ranges are tracked as normal through alu and jmp insns.
3692  * . once precise value of the scalar register is used in:
3693  *   .  ptr + scalar alu
3694  *   . if (scalar cond K|scalar)
3695  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
3696  *   backtrack through the verifier states and mark all registers and
3697  *   stack slots with spilled constants that these scalar regisers
3698  *   should be precise.
3699  * . during state pruning two registers (or spilled stack slots)
3700  *   are equivalent if both are not precise.
3701  *
3702  * Note the verifier cannot simply walk register parentage chain,
3703  * since many different registers and stack slots could have been
3704  * used to compute single precise scalar.
3705  *
3706  * The approach of starting with precise=true for all registers and then
3707  * backtrack to mark a register as not precise when the verifier detects
3708  * that program doesn't care about specific value (e.g., when helper
3709  * takes register as ARG_ANYTHING parameter) is not safe.
3710  *
3711  * It's ok to walk single parentage chain of the verifier states.
3712  * It's possible that this backtracking will go all the way till 1st insn.
3713  * All other branches will be explored for needing precision later.
3714  *
3715  * The backtracking needs to deal with cases like:
3716  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3717  * r9 -= r8
3718  * r5 = r9
3719  * if r5 > 0x79f goto pc+7
3720  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
3721  * r5 += 1
3722  * ...
3723  * call bpf_perf_event_output#25
3724  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
3725  *
3726  * and this case:
3727  * r6 = 1
3728  * call foo // uses callee's r6 inside to compute r0
3729  * r0 += r6
3730  * if r0 == 0 goto
3731  *
3732  * to track above reg_mask/stack_mask needs to be independent for each frame.
3733  *
3734  * Also if parent's curframe > frame where backtracking started,
3735  * the verifier need to mark registers in both frames, otherwise callees
3736  * may incorrectly prune callers. This is similar to
3737  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3738  *
3739  * For now backtracking falls back into conservative marking.
3740  */
3741 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
3742 				     struct bpf_verifier_state *st)
3743 {
3744 	struct bpf_func_state *func;
3745 	struct bpf_reg_state *reg;
3746 	int i, j;
3747 
3748 	if (env->log.level & BPF_LOG_LEVEL2) {
3749 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
3750 			st->curframe);
3751 	}
3752 
3753 	/* big hammer: mark all scalars precise in this path.
3754 	 * pop_stack may still get !precise scalars.
3755 	 * We also skip current state and go straight to first parent state,
3756 	 * because precision markings in current non-checkpointed state are
3757 	 * not needed. See why in the comment in __mark_chain_precision below.
3758 	 */
3759 	for (st = st->parent; st; st = st->parent) {
3760 		for (i = 0; i <= st->curframe; i++) {
3761 			func = st->frame[i];
3762 			for (j = 0; j < BPF_REG_FP; j++) {
3763 				reg = &func->regs[j];
3764 				if (reg->type != SCALAR_VALUE || reg->precise)
3765 					continue;
3766 				reg->precise = true;
3767 				if (env->log.level & BPF_LOG_LEVEL2) {
3768 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
3769 						i, j);
3770 				}
3771 			}
3772 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3773 				if (!is_spilled_reg(&func->stack[j]))
3774 					continue;
3775 				reg = &func->stack[j].spilled_ptr;
3776 				if (reg->type != SCALAR_VALUE || reg->precise)
3777 					continue;
3778 				reg->precise = true;
3779 				if (env->log.level & BPF_LOG_LEVEL2) {
3780 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
3781 						i, -(j + 1) * 8);
3782 				}
3783 			}
3784 		}
3785 	}
3786 }
3787 
3788 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3789 {
3790 	struct bpf_func_state *func;
3791 	struct bpf_reg_state *reg;
3792 	int i, j;
3793 
3794 	for (i = 0; i <= st->curframe; i++) {
3795 		func = st->frame[i];
3796 		for (j = 0; j < BPF_REG_FP; j++) {
3797 			reg = &func->regs[j];
3798 			if (reg->type != SCALAR_VALUE)
3799 				continue;
3800 			reg->precise = false;
3801 		}
3802 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3803 			if (!is_spilled_reg(&func->stack[j]))
3804 				continue;
3805 			reg = &func->stack[j].spilled_ptr;
3806 			if (reg->type != SCALAR_VALUE)
3807 				continue;
3808 			reg->precise = false;
3809 		}
3810 	}
3811 }
3812 
3813 static bool idset_contains(struct bpf_idset *s, u32 id)
3814 {
3815 	u32 i;
3816 
3817 	for (i = 0; i < s->count; ++i)
3818 		if (s->ids[i] == id)
3819 			return true;
3820 
3821 	return false;
3822 }
3823 
3824 static int idset_push(struct bpf_idset *s, u32 id)
3825 {
3826 	if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
3827 		return -EFAULT;
3828 	s->ids[s->count++] = id;
3829 	return 0;
3830 }
3831 
3832 static void idset_reset(struct bpf_idset *s)
3833 {
3834 	s->count = 0;
3835 }
3836 
3837 /* Collect a set of IDs for all registers currently marked as precise in env->bt.
3838  * Mark all registers with these IDs as precise.
3839  */
3840 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3841 {
3842 	struct bpf_idset *precise_ids = &env->idset_scratch;
3843 	struct backtrack_state *bt = &env->bt;
3844 	struct bpf_func_state *func;
3845 	struct bpf_reg_state *reg;
3846 	DECLARE_BITMAP(mask, 64);
3847 	int i, fr;
3848 
3849 	idset_reset(precise_ids);
3850 
3851 	for (fr = bt->frame; fr >= 0; fr--) {
3852 		func = st->frame[fr];
3853 
3854 		bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
3855 		for_each_set_bit(i, mask, 32) {
3856 			reg = &func->regs[i];
3857 			if (!reg->id || reg->type != SCALAR_VALUE)
3858 				continue;
3859 			if (idset_push(precise_ids, reg->id))
3860 				return -EFAULT;
3861 		}
3862 
3863 		bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
3864 		for_each_set_bit(i, mask, 64) {
3865 			if (i >= func->allocated_stack / BPF_REG_SIZE)
3866 				break;
3867 			if (!is_spilled_scalar_reg(&func->stack[i]))
3868 				continue;
3869 			reg = &func->stack[i].spilled_ptr;
3870 			if (!reg->id)
3871 				continue;
3872 			if (idset_push(precise_ids, reg->id))
3873 				return -EFAULT;
3874 		}
3875 	}
3876 
3877 	for (fr = 0; fr <= st->curframe; ++fr) {
3878 		func = st->frame[fr];
3879 
3880 		for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
3881 			reg = &func->regs[i];
3882 			if (!reg->id)
3883 				continue;
3884 			if (!idset_contains(precise_ids, reg->id))
3885 				continue;
3886 			bt_set_frame_reg(bt, fr, i);
3887 		}
3888 		for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
3889 			if (!is_spilled_scalar_reg(&func->stack[i]))
3890 				continue;
3891 			reg = &func->stack[i].spilled_ptr;
3892 			if (!reg->id)
3893 				continue;
3894 			if (!idset_contains(precise_ids, reg->id))
3895 				continue;
3896 			bt_set_frame_slot(bt, fr, i);
3897 		}
3898 	}
3899 
3900 	return 0;
3901 }
3902 
3903 /*
3904  * __mark_chain_precision() backtracks BPF program instruction sequence and
3905  * chain of verifier states making sure that register *regno* (if regno >= 0)
3906  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
3907  * SCALARS, as well as any other registers and slots that contribute to
3908  * a tracked state of given registers/stack slots, depending on specific BPF
3909  * assembly instructions (see backtrack_insns() for exact instruction handling
3910  * logic). This backtracking relies on recorded jmp_history and is able to
3911  * traverse entire chain of parent states. This process ends only when all the
3912  * necessary registers/slots and their transitive dependencies are marked as
3913  * precise.
3914  *
3915  * One important and subtle aspect is that precise marks *do not matter* in
3916  * the currently verified state (current state). It is important to understand
3917  * why this is the case.
3918  *
3919  * First, note that current state is the state that is not yet "checkpointed",
3920  * i.e., it is not yet put into env->explored_states, and it has no children
3921  * states as well. It's ephemeral, and can end up either a) being discarded if
3922  * compatible explored state is found at some point or BPF_EXIT instruction is
3923  * reached or b) checkpointed and put into env->explored_states, branching out
3924  * into one or more children states.
3925  *
3926  * In the former case, precise markings in current state are completely
3927  * ignored by state comparison code (see regsafe() for details). Only
3928  * checkpointed ("old") state precise markings are important, and if old
3929  * state's register/slot is precise, regsafe() assumes current state's
3930  * register/slot as precise and checks value ranges exactly and precisely. If
3931  * states turn out to be compatible, current state's necessary precise
3932  * markings and any required parent states' precise markings are enforced
3933  * after the fact with propagate_precision() logic, after the fact. But it's
3934  * important to realize that in this case, even after marking current state
3935  * registers/slots as precise, we immediately discard current state. So what
3936  * actually matters is any of the precise markings propagated into current
3937  * state's parent states, which are always checkpointed (due to b) case above).
3938  * As such, for scenario a) it doesn't matter if current state has precise
3939  * markings set or not.
3940  *
3941  * Now, for the scenario b), checkpointing and forking into child(ren)
3942  * state(s). Note that before current state gets to checkpointing step, any
3943  * processed instruction always assumes precise SCALAR register/slot
3944  * knowledge: if precise value or range is useful to prune jump branch, BPF
3945  * verifier takes this opportunity enthusiastically. Similarly, when
3946  * register's value is used to calculate offset or memory address, exact
3947  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
3948  * what we mentioned above about state comparison ignoring precise markings
3949  * during state comparison, BPF verifier ignores and also assumes precise
3950  * markings *at will* during instruction verification process. But as verifier
3951  * assumes precision, it also propagates any precision dependencies across
3952  * parent states, which are not yet finalized, so can be further restricted
3953  * based on new knowledge gained from restrictions enforced by their children
3954  * states. This is so that once those parent states are finalized, i.e., when
3955  * they have no more active children state, state comparison logic in
3956  * is_state_visited() would enforce strict and precise SCALAR ranges, if
3957  * required for correctness.
3958  *
3959  * To build a bit more intuition, note also that once a state is checkpointed,
3960  * the path we took to get to that state is not important. This is crucial
3961  * property for state pruning. When state is checkpointed and finalized at
3962  * some instruction index, it can be correctly and safely used to "short
3963  * circuit" any *compatible* state that reaches exactly the same instruction
3964  * index. I.e., if we jumped to that instruction from a completely different
3965  * code path than original finalized state was derived from, it doesn't
3966  * matter, current state can be discarded because from that instruction
3967  * forward having a compatible state will ensure we will safely reach the
3968  * exit. States describe preconditions for further exploration, but completely
3969  * forget the history of how we got here.
3970  *
3971  * This also means that even if we needed precise SCALAR range to get to
3972  * finalized state, but from that point forward *that same* SCALAR register is
3973  * never used in a precise context (i.e., it's precise value is not needed for
3974  * correctness), it's correct and safe to mark such register as "imprecise"
3975  * (i.e., precise marking set to false). This is what we rely on when we do
3976  * not set precise marking in current state. If no child state requires
3977  * precision for any given SCALAR register, it's safe to dictate that it can
3978  * be imprecise. If any child state does require this register to be precise,
3979  * we'll mark it precise later retroactively during precise markings
3980  * propagation from child state to parent states.
3981  *
3982  * Skipping precise marking setting in current state is a mild version of
3983  * relying on the above observation. But we can utilize this property even
3984  * more aggressively by proactively forgetting any precise marking in the
3985  * current state (which we inherited from the parent state), right before we
3986  * checkpoint it and branch off into new child state. This is done by
3987  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
3988  * finalized states which help in short circuiting more future states.
3989  */
3990 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
3991 {
3992 	struct backtrack_state *bt = &env->bt;
3993 	struct bpf_verifier_state *st = env->cur_state;
3994 	int first_idx = st->first_insn_idx;
3995 	int last_idx = env->insn_idx;
3996 	int subseq_idx = -1;
3997 	struct bpf_func_state *func;
3998 	struct bpf_reg_state *reg;
3999 	bool skip_first = true;
4000 	int i, fr, err;
4001 
4002 	if (!env->bpf_capable)
4003 		return 0;
4004 
4005 	/* set frame number from which we are starting to backtrack */
4006 	bt_init(bt, env->cur_state->curframe);
4007 
4008 	/* Do sanity checks against current state of register and/or stack
4009 	 * slot, but don't set precise flag in current state, as precision
4010 	 * tracking in the current state is unnecessary.
4011 	 */
4012 	func = st->frame[bt->frame];
4013 	if (regno >= 0) {
4014 		reg = &func->regs[regno];
4015 		if (reg->type != SCALAR_VALUE) {
4016 			WARN_ONCE(1, "backtracing misuse");
4017 			return -EFAULT;
4018 		}
4019 		bt_set_reg(bt, regno);
4020 	}
4021 
4022 	if (bt_empty(bt))
4023 		return 0;
4024 
4025 	for (;;) {
4026 		DECLARE_BITMAP(mask, 64);
4027 		u32 history = st->jmp_history_cnt;
4028 
4029 		if (env->log.level & BPF_LOG_LEVEL2) {
4030 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4031 				bt->frame, last_idx, first_idx, subseq_idx);
4032 		}
4033 
4034 		/* If some register with scalar ID is marked as precise,
4035 		 * make sure that all registers sharing this ID are also precise.
4036 		 * This is needed to estimate effect of find_equal_scalars().
4037 		 * Do this at the last instruction of each state,
4038 		 * bpf_reg_state::id fields are valid for these instructions.
4039 		 *
4040 		 * Allows to track precision in situation like below:
4041 		 *
4042 		 *     r2 = unknown value
4043 		 *     ...
4044 		 *   --- state #0 ---
4045 		 *     ...
4046 		 *     r1 = r2                 // r1 and r2 now share the same ID
4047 		 *     ...
4048 		 *   --- state #1 {r1.id = A, r2.id = A} ---
4049 		 *     ...
4050 		 *     if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4051 		 *     ...
4052 		 *   --- state #2 {r1.id = A, r2.id = A} ---
4053 		 *     r3 = r10
4054 		 *     r3 += r1                // need to mark both r1 and r2
4055 		 */
4056 		if (mark_precise_scalar_ids(env, st))
4057 			return -EFAULT;
4058 
4059 		if (last_idx < 0) {
4060 			/* we are at the entry into subprog, which
4061 			 * is expected for global funcs, but only if
4062 			 * requested precise registers are R1-R5
4063 			 * (which are global func's input arguments)
4064 			 */
4065 			if (st->curframe == 0 &&
4066 			    st->frame[0]->subprogno > 0 &&
4067 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4068 			    bt_stack_mask(bt) == 0 &&
4069 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4070 				bitmap_from_u64(mask, bt_reg_mask(bt));
4071 				for_each_set_bit(i, mask, 32) {
4072 					reg = &st->frame[0]->regs[i];
4073 					bt_clear_reg(bt, i);
4074 					if (reg->type == SCALAR_VALUE)
4075 						reg->precise = true;
4076 				}
4077 				return 0;
4078 			}
4079 
4080 			verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4081 				st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4082 			WARN_ONCE(1, "verifier backtracking bug");
4083 			return -EFAULT;
4084 		}
4085 
4086 		for (i = last_idx;;) {
4087 			if (skip_first) {
4088 				err = 0;
4089 				skip_first = false;
4090 			} else {
4091 				err = backtrack_insn(env, i, subseq_idx, bt);
4092 			}
4093 			if (err == -ENOTSUPP) {
4094 				mark_all_scalars_precise(env, env->cur_state);
4095 				bt_reset(bt);
4096 				return 0;
4097 			} else if (err) {
4098 				return err;
4099 			}
4100 			if (bt_empty(bt))
4101 				/* Found assignment(s) into tracked register in this state.
4102 				 * Since this state is already marked, just return.
4103 				 * Nothing to be tracked further in the parent state.
4104 				 */
4105 				return 0;
4106 			subseq_idx = i;
4107 			i = get_prev_insn_idx(st, i, &history);
4108 			if (i == -ENOENT)
4109 				break;
4110 			if (i >= env->prog->len) {
4111 				/* This can happen if backtracking reached insn 0
4112 				 * and there are still reg_mask or stack_mask
4113 				 * to backtrack.
4114 				 * It means the backtracking missed the spot where
4115 				 * particular register was initialized with a constant.
4116 				 */
4117 				verbose(env, "BUG backtracking idx %d\n", i);
4118 				WARN_ONCE(1, "verifier backtracking bug");
4119 				return -EFAULT;
4120 			}
4121 		}
4122 		st = st->parent;
4123 		if (!st)
4124 			break;
4125 
4126 		for (fr = bt->frame; fr >= 0; fr--) {
4127 			func = st->frame[fr];
4128 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4129 			for_each_set_bit(i, mask, 32) {
4130 				reg = &func->regs[i];
4131 				if (reg->type != SCALAR_VALUE) {
4132 					bt_clear_frame_reg(bt, fr, i);
4133 					continue;
4134 				}
4135 				if (reg->precise)
4136 					bt_clear_frame_reg(bt, fr, i);
4137 				else
4138 					reg->precise = true;
4139 			}
4140 
4141 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4142 			for_each_set_bit(i, mask, 64) {
4143 				if (i >= func->allocated_stack / BPF_REG_SIZE) {
4144 					/* the sequence of instructions:
4145 					 * 2: (bf) r3 = r10
4146 					 * 3: (7b) *(u64 *)(r3 -8) = r0
4147 					 * 4: (79) r4 = *(u64 *)(r10 -8)
4148 					 * doesn't contain jmps. It's backtracked
4149 					 * as a single block.
4150 					 * During backtracking insn 3 is not recognized as
4151 					 * stack access, so at the end of backtracking
4152 					 * stack slot fp-8 is still marked in stack_mask.
4153 					 * However the parent state may not have accessed
4154 					 * fp-8 and it's "unallocated" stack space.
4155 					 * In such case fallback to conservative.
4156 					 */
4157 					mark_all_scalars_precise(env, env->cur_state);
4158 					bt_reset(bt);
4159 					return 0;
4160 				}
4161 
4162 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4163 					bt_clear_frame_slot(bt, fr, i);
4164 					continue;
4165 				}
4166 				reg = &func->stack[i].spilled_ptr;
4167 				if (reg->precise)
4168 					bt_clear_frame_slot(bt, fr, i);
4169 				else
4170 					reg->precise = true;
4171 			}
4172 			if (env->log.level & BPF_LOG_LEVEL2) {
4173 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4174 					     bt_frame_reg_mask(bt, fr));
4175 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4176 					fr, env->tmp_str_buf);
4177 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4178 					       bt_frame_stack_mask(bt, fr));
4179 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4180 				print_verifier_state(env, func, true);
4181 			}
4182 		}
4183 
4184 		if (bt_empty(bt))
4185 			return 0;
4186 
4187 		subseq_idx = first_idx;
4188 		last_idx = st->last_insn_idx;
4189 		first_idx = st->first_insn_idx;
4190 	}
4191 
4192 	/* if we still have requested precise regs or slots, we missed
4193 	 * something (e.g., stack access through non-r10 register), so
4194 	 * fallback to marking all precise
4195 	 */
4196 	if (!bt_empty(bt)) {
4197 		mark_all_scalars_precise(env, env->cur_state);
4198 		bt_reset(bt);
4199 	}
4200 
4201 	return 0;
4202 }
4203 
4204 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4205 {
4206 	return __mark_chain_precision(env, regno);
4207 }
4208 
4209 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4210  * desired reg and stack masks across all relevant frames
4211  */
4212 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4213 {
4214 	return __mark_chain_precision(env, -1);
4215 }
4216 
4217 static bool is_spillable_regtype(enum bpf_reg_type type)
4218 {
4219 	switch (base_type(type)) {
4220 	case PTR_TO_MAP_VALUE:
4221 	case PTR_TO_STACK:
4222 	case PTR_TO_CTX:
4223 	case PTR_TO_PACKET:
4224 	case PTR_TO_PACKET_META:
4225 	case PTR_TO_PACKET_END:
4226 	case PTR_TO_FLOW_KEYS:
4227 	case CONST_PTR_TO_MAP:
4228 	case PTR_TO_SOCKET:
4229 	case PTR_TO_SOCK_COMMON:
4230 	case PTR_TO_TCP_SOCK:
4231 	case PTR_TO_XDP_SOCK:
4232 	case PTR_TO_BTF_ID:
4233 	case PTR_TO_BUF:
4234 	case PTR_TO_MEM:
4235 	case PTR_TO_FUNC:
4236 	case PTR_TO_MAP_KEY:
4237 		return true;
4238 	default:
4239 		return false;
4240 	}
4241 }
4242 
4243 /* Does this register contain a constant zero? */
4244 static bool register_is_null(struct bpf_reg_state *reg)
4245 {
4246 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4247 }
4248 
4249 static bool register_is_const(struct bpf_reg_state *reg)
4250 {
4251 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
4252 }
4253 
4254 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
4255 {
4256 	return tnum_is_unknown(reg->var_off) &&
4257 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
4258 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
4259 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
4260 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
4261 }
4262 
4263 static bool register_is_bounded(struct bpf_reg_state *reg)
4264 {
4265 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
4266 }
4267 
4268 static bool __is_pointer_value(bool allow_ptr_leaks,
4269 			       const struct bpf_reg_state *reg)
4270 {
4271 	if (allow_ptr_leaks)
4272 		return false;
4273 
4274 	return reg->type != SCALAR_VALUE;
4275 }
4276 
4277 /* Copy src state preserving dst->parent and dst->live fields */
4278 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4279 {
4280 	struct bpf_reg_state *parent = dst->parent;
4281 	enum bpf_reg_liveness live = dst->live;
4282 
4283 	*dst = *src;
4284 	dst->parent = parent;
4285 	dst->live = live;
4286 }
4287 
4288 static void save_register_state(struct bpf_func_state *state,
4289 				int spi, struct bpf_reg_state *reg,
4290 				int size)
4291 {
4292 	int i;
4293 
4294 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
4295 	if (size == BPF_REG_SIZE)
4296 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4297 
4298 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4299 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4300 
4301 	/* size < 8 bytes spill */
4302 	for (; i; i--)
4303 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
4304 }
4305 
4306 static bool is_bpf_st_mem(struct bpf_insn *insn)
4307 {
4308 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4309 }
4310 
4311 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4312  * stack boundary and alignment are checked in check_mem_access()
4313  */
4314 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4315 				       /* stack frame we're writing to */
4316 				       struct bpf_func_state *state,
4317 				       int off, int size, int value_regno,
4318 				       int insn_idx)
4319 {
4320 	struct bpf_func_state *cur; /* state of the current function */
4321 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4322 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4323 	struct bpf_reg_state *reg = NULL;
4324 	u32 dst_reg = insn->dst_reg;
4325 
4326 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
4327 	if (err)
4328 		return err;
4329 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4330 	 * so it's aligned access and [off, off + size) are within stack limits
4331 	 */
4332 	if (!env->allow_ptr_leaks &&
4333 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
4334 	    size != BPF_REG_SIZE) {
4335 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
4336 		return -EACCES;
4337 	}
4338 
4339 	cur = env->cur_state->frame[env->cur_state->curframe];
4340 	if (value_regno >= 0)
4341 		reg = &cur->regs[value_regno];
4342 	if (!env->bypass_spec_v4) {
4343 		bool sanitize = reg && is_spillable_regtype(reg->type);
4344 
4345 		for (i = 0; i < size; i++) {
4346 			u8 type = state->stack[spi].slot_type[i];
4347 
4348 			if (type != STACK_MISC && type != STACK_ZERO) {
4349 				sanitize = true;
4350 				break;
4351 			}
4352 		}
4353 
4354 		if (sanitize)
4355 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4356 	}
4357 
4358 	err = destroy_if_dynptr_stack_slot(env, state, spi);
4359 	if (err)
4360 		return err;
4361 
4362 	mark_stack_slot_scratched(env, spi);
4363 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
4364 	    !register_is_null(reg) && env->bpf_capable) {
4365 		if (dst_reg != BPF_REG_FP) {
4366 			/* The backtracking logic can only recognize explicit
4367 			 * stack slot address like [fp - 8]. Other spill of
4368 			 * scalar via different register has to be conservative.
4369 			 * Backtrack from here and mark all registers as precise
4370 			 * that contributed into 'reg' being a constant.
4371 			 */
4372 			err = mark_chain_precision(env, value_regno);
4373 			if (err)
4374 				return err;
4375 		}
4376 		save_register_state(state, spi, reg, size);
4377 		/* Break the relation on a narrowing spill. */
4378 		if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
4379 			state->stack[spi].spilled_ptr.id = 0;
4380 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4381 		   insn->imm != 0 && env->bpf_capable) {
4382 		struct bpf_reg_state fake_reg = {};
4383 
4384 		__mark_reg_known(&fake_reg, insn->imm);
4385 		fake_reg.type = SCALAR_VALUE;
4386 		save_register_state(state, spi, &fake_reg, size);
4387 	} else if (reg && is_spillable_regtype(reg->type)) {
4388 		/* register containing pointer is being spilled into stack */
4389 		if (size != BPF_REG_SIZE) {
4390 			verbose_linfo(env, insn_idx, "; ");
4391 			verbose(env, "invalid size of register spill\n");
4392 			return -EACCES;
4393 		}
4394 		if (state != cur && reg->type == PTR_TO_STACK) {
4395 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4396 			return -EINVAL;
4397 		}
4398 		save_register_state(state, spi, reg, size);
4399 	} else {
4400 		u8 type = STACK_MISC;
4401 
4402 		/* regular write of data into stack destroys any spilled ptr */
4403 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4404 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4405 		if (is_stack_slot_special(&state->stack[spi]))
4406 			for (i = 0; i < BPF_REG_SIZE; i++)
4407 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4408 
4409 		/* only mark the slot as written if all 8 bytes were written
4410 		 * otherwise read propagation may incorrectly stop too soon
4411 		 * when stack slots are partially written.
4412 		 * This heuristic means that read propagation will be
4413 		 * conservative, since it will add reg_live_read marks
4414 		 * to stack slots all the way to first state when programs
4415 		 * writes+reads less than 8 bytes
4416 		 */
4417 		if (size == BPF_REG_SIZE)
4418 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4419 
4420 		/* when we zero initialize stack slots mark them as such */
4421 		if ((reg && register_is_null(reg)) ||
4422 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4423 			/* backtracking doesn't work for STACK_ZERO yet. */
4424 			err = mark_chain_precision(env, value_regno);
4425 			if (err)
4426 				return err;
4427 			type = STACK_ZERO;
4428 		}
4429 
4430 		/* Mark slots affected by this stack write. */
4431 		for (i = 0; i < size; i++)
4432 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
4433 				type;
4434 	}
4435 	return 0;
4436 }
4437 
4438 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4439  * known to contain a variable offset.
4440  * This function checks whether the write is permitted and conservatively
4441  * tracks the effects of the write, considering that each stack slot in the
4442  * dynamic range is potentially written to.
4443  *
4444  * 'off' includes 'regno->off'.
4445  * 'value_regno' can be -1, meaning that an unknown value is being written to
4446  * the stack.
4447  *
4448  * Spilled pointers in range are not marked as written because we don't know
4449  * what's going to be actually written. This means that read propagation for
4450  * future reads cannot be terminated by this write.
4451  *
4452  * For privileged programs, uninitialized stack slots are considered
4453  * initialized by this write (even though we don't know exactly what offsets
4454  * are going to be written to). The idea is that we don't want the verifier to
4455  * reject future reads that access slots written to through variable offsets.
4456  */
4457 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4458 				     /* func where register points to */
4459 				     struct bpf_func_state *state,
4460 				     int ptr_regno, int off, int size,
4461 				     int value_regno, int insn_idx)
4462 {
4463 	struct bpf_func_state *cur; /* state of the current function */
4464 	int min_off, max_off;
4465 	int i, err;
4466 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4467 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4468 	bool writing_zero = false;
4469 	/* set if the fact that we're writing a zero is used to let any
4470 	 * stack slots remain STACK_ZERO
4471 	 */
4472 	bool zero_used = false;
4473 
4474 	cur = env->cur_state->frame[env->cur_state->curframe];
4475 	ptr_reg = &cur->regs[ptr_regno];
4476 	min_off = ptr_reg->smin_value + off;
4477 	max_off = ptr_reg->smax_value + off + size;
4478 	if (value_regno >= 0)
4479 		value_reg = &cur->regs[value_regno];
4480 	if ((value_reg && register_is_null(value_reg)) ||
4481 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4482 		writing_zero = true;
4483 
4484 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
4485 	if (err)
4486 		return err;
4487 
4488 	for (i = min_off; i < max_off; i++) {
4489 		int spi;
4490 
4491 		spi = __get_spi(i);
4492 		err = destroy_if_dynptr_stack_slot(env, state, spi);
4493 		if (err)
4494 			return err;
4495 	}
4496 
4497 	/* Variable offset writes destroy any spilled pointers in range. */
4498 	for (i = min_off; i < max_off; i++) {
4499 		u8 new_type, *stype;
4500 		int slot, spi;
4501 
4502 		slot = -i - 1;
4503 		spi = slot / BPF_REG_SIZE;
4504 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4505 		mark_stack_slot_scratched(env, spi);
4506 
4507 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4508 			/* Reject the write if range we may write to has not
4509 			 * been initialized beforehand. If we didn't reject
4510 			 * here, the ptr status would be erased below (even
4511 			 * though not all slots are actually overwritten),
4512 			 * possibly opening the door to leaks.
4513 			 *
4514 			 * We do however catch STACK_INVALID case below, and
4515 			 * only allow reading possibly uninitialized memory
4516 			 * later for CAP_PERFMON, as the write may not happen to
4517 			 * that slot.
4518 			 */
4519 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4520 				insn_idx, i);
4521 			return -EINVAL;
4522 		}
4523 
4524 		/* Erase all spilled pointers. */
4525 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4526 
4527 		/* Update the slot type. */
4528 		new_type = STACK_MISC;
4529 		if (writing_zero && *stype == STACK_ZERO) {
4530 			new_type = STACK_ZERO;
4531 			zero_used = true;
4532 		}
4533 		/* If the slot is STACK_INVALID, we check whether it's OK to
4534 		 * pretend that it will be initialized by this write. The slot
4535 		 * might not actually be written to, and so if we mark it as
4536 		 * initialized future reads might leak uninitialized memory.
4537 		 * For privileged programs, we will accept such reads to slots
4538 		 * that may or may not be written because, if we're reject
4539 		 * them, the error would be too confusing.
4540 		 */
4541 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4542 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4543 					insn_idx, i);
4544 			return -EINVAL;
4545 		}
4546 		*stype = new_type;
4547 	}
4548 	if (zero_used) {
4549 		/* backtracking doesn't work for STACK_ZERO yet. */
4550 		err = mark_chain_precision(env, value_regno);
4551 		if (err)
4552 			return err;
4553 	}
4554 	return 0;
4555 }
4556 
4557 /* When register 'dst_regno' is assigned some values from stack[min_off,
4558  * max_off), we set the register's type according to the types of the
4559  * respective stack slots. If all the stack values are known to be zeros, then
4560  * so is the destination reg. Otherwise, the register is considered to be
4561  * SCALAR. This function does not deal with register filling; the caller must
4562  * ensure that all spilled registers in the stack range have been marked as
4563  * read.
4564  */
4565 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4566 				/* func where src register points to */
4567 				struct bpf_func_state *ptr_state,
4568 				int min_off, int max_off, int dst_regno)
4569 {
4570 	struct bpf_verifier_state *vstate = env->cur_state;
4571 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4572 	int i, slot, spi;
4573 	u8 *stype;
4574 	int zeros = 0;
4575 
4576 	for (i = min_off; i < max_off; i++) {
4577 		slot = -i - 1;
4578 		spi = slot / BPF_REG_SIZE;
4579 		mark_stack_slot_scratched(env, spi);
4580 		stype = ptr_state->stack[spi].slot_type;
4581 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4582 			break;
4583 		zeros++;
4584 	}
4585 	if (zeros == max_off - min_off) {
4586 		/* any access_size read into register is zero extended,
4587 		 * so the whole register == const_zero
4588 		 */
4589 		__mark_reg_const_zero(&state->regs[dst_regno]);
4590 		/* backtracking doesn't support STACK_ZERO yet,
4591 		 * so mark it precise here, so that later
4592 		 * backtracking can stop here.
4593 		 * Backtracking may not need this if this register
4594 		 * doesn't participate in pointer adjustment.
4595 		 * Forward propagation of precise flag is not
4596 		 * necessary either. This mark is only to stop
4597 		 * backtracking. Any register that contributed
4598 		 * to const 0 was marked precise before spill.
4599 		 */
4600 		state->regs[dst_regno].precise = true;
4601 	} else {
4602 		/* have read misc data from the stack */
4603 		mark_reg_unknown(env, state->regs, dst_regno);
4604 	}
4605 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4606 }
4607 
4608 /* Read the stack at 'off' and put the results into the register indicated by
4609  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4610  * spilled reg.
4611  *
4612  * 'dst_regno' can be -1, meaning that the read value is not going to a
4613  * register.
4614  *
4615  * The access is assumed to be within the current stack bounds.
4616  */
4617 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4618 				      /* func where src register points to */
4619 				      struct bpf_func_state *reg_state,
4620 				      int off, int size, int dst_regno)
4621 {
4622 	struct bpf_verifier_state *vstate = env->cur_state;
4623 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4624 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4625 	struct bpf_reg_state *reg;
4626 	u8 *stype, type;
4627 
4628 	stype = reg_state->stack[spi].slot_type;
4629 	reg = &reg_state->stack[spi].spilled_ptr;
4630 
4631 	mark_stack_slot_scratched(env, spi);
4632 
4633 	if (is_spilled_reg(&reg_state->stack[spi])) {
4634 		u8 spill_size = 1;
4635 
4636 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4637 			spill_size++;
4638 
4639 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4640 			if (reg->type != SCALAR_VALUE) {
4641 				verbose_linfo(env, env->insn_idx, "; ");
4642 				verbose(env, "invalid size of register fill\n");
4643 				return -EACCES;
4644 			}
4645 
4646 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4647 			if (dst_regno < 0)
4648 				return 0;
4649 
4650 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
4651 				/* The earlier check_reg_arg() has decided the
4652 				 * subreg_def for this insn.  Save it first.
4653 				 */
4654 				s32 subreg_def = state->regs[dst_regno].subreg_def;
4655 
4656 				copy_register_state(&state->regs[dst_regno], reg);
4657 				state->regs[dst_regno].subreg_def = subreg_def;
4658 			} else {
4659 				for (i = 0; i < size; i++) {
4660 					type = stype[(slot - i) % BPF_REG_SIZE];
4661 					if (type == STACK_SPILL)
4662 						continue;
4663 					if (type == STACK_MISC)
4664 						continue;
4665 					if (type == STACK_INVALID && env->allow_uninit_stack)
4666 						continue;
4667 					verbose(env, "invalid read from stack off %d+%d size %d\n",
4668 						off, i, size);
4669 					return -EACCES;
4670 				}
4671 				mark_reg_unknown(env, state->regs, dst_regno);
4672 			}
4673 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4674 			return 0;
4675 		}
4676 
4677 		if (dst_regno >= 0) {
4678 			/* restore register state from stack */
4679 			copy_register_state(&state->regs[dst_regno], reg);
4680 			/* mark reg as written since spilled pointer state likely
4681 			 * has its liveness marks cleared by is_state_visited()
4682 			 * which resets stack/reg liveness for state transitions
4683 			 */
4684 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4685 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4686 			/* If dst_regno==-1, the caller is asking us whether
4687 			 * it is acceptable to use this value as a SCALAR_VALUE
4688 			 * (e.g. for XADD).
4689 			 * We must not allow unprivileged callers to do that
4690 			 * with spilled pointers.
4691 			 */
4692 			verbose(env, "leaking pointer from stack off %d\n",
4693 				off);
4694 			return -EACCES;
4695 		}
4696 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4697 	} else {
4698 		for (i = 0; i < size; i++) {
4699 			type = stype[(slot - i) % BPF_REG_SIZE];
4700 			if (type == STACK_MISC)
4701 				continue;
4702 			if (type == STACK_ZERO)
4703 				continue;
4704 			if (type == STACK_INVALID && env->allow_uninit_stack)
4705 				continue;
4706 			verbose(env, "invalid read from stack off %d+%d size %d\n",
4707 				off, i, size);
4708 			return -EACCES;
4709 		}
4710 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4711 		if (dst_regno >= 0)
4712 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
4713 	}
4714 	return 0;
4715 }
4716 
4717 enum bpf_access_src {
4718 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
4719 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
4720 };
4721 
4722 static int check_stack_range_initialized(struct bpf_verifier_env *env,
4723 					 int regno, int off, int access_size,
4724 					 bool zero_size_allowed,
4725 					 enum bpf_access_src type,
4726 					 struct bpf_call_arg_meta *meta);
4727 
4728 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4729 {
4730 	return cur_regs(env) + regno;
4731 }
4732 
4733 /* Read the stack at 'ptr_regno + off' and put the result into the register
4734  * 'dst_regno'.
4735  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4736  * but not its variable offset.
4737  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4738  *
4739  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
4740  * filling registers (i.e. reads of spilled register cannot be detected when
4741  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
4742  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
4743  * offset; for a fixed offset check_stack_read_fixed_off should be used
4744  * instead.
4745  */
4746 static int check_stack_read_var_off(struct bpf_verifier_env *env,
4747 				    int ptr_regno, int off, int size, int dst_regno)
4748 {
4749 	/* The state of the source register. */
4750 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4751 	struct bpf_func_state *ptr_state = func(env, reg);
4752 	int err;
4753 	int min_off, max_off;
4754 
4755 	/* Note that we pass a NULL meta, so raw access will not be permitted.
4756 	 */
4757 	err = check_stack_range_initialized(env, ptr_regno, off, size,
4758 					    false, ACCESS_DIRECT, NULL);
4759 	if (err)
4760 		return err;
4761 
4762 	min_off = reg->smin_value + off;
4763 	max_off = reg->smax_value + off;
4764 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
4765 	return 0;
4766 }
4767 
4768 /* check_stack_read dispatches to check_stack_read_fixed_off or
4769  * check_stack_read_var_off.
4770  *
4771  * The caller must ensure that the offset falls within the allocated stack
4772  * bounds.
4773  *
4774  * 'dst_regno' is a register which will receive the value from the stack. It
4775  * can be -1, meaning that the read value is not going to a register.
4776  */
4777 static int check_stack_read(struct bpf_verifier_env *env,
4778 			    int ptr_regno, int off, int size,
4779 			    int dst_regno)
4780 {
4781 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4782 	struct bpf_func_state *state = func(env, reg);
4783 	int err;
4784 	/* Some accesses are only permitted with a static offset. */
4785 	bool var_off = !tnum_is_const(reg->var_off);
4786 
4787 	/* The offset is required to be static when reads don't go to a
4788 	 * register, in order to not leak pointers (see
4789 	 * check_stack_read_fixed_off).
4790 	 */
4791 	if (dst_regno < 0 && var_off) {
4792 		char tn_buf[48];
4793 
4794 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4795 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
4796 			tn_buf, off, size);
4797 		return -EACCES;
4798 	}
4799 	/* Variable offset is prohibited for unprivileged mode for simplicity
4800 	 * since it requires corresponding support in Spectre masking for stack
4801 	 * ALU. See also retrieve_ptr_limit(). The check in
4802 	 * check_stack_access_for_ptr_arithmetic() called by
4803 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
4804 	 * with variable offsets, therefore no check is required here. Further,
4805 	 * just checking it here would be insufficient as speculative stack
4806 	 * writes could still lead to unsafe speculative behaviour.
4807 	 */
4808 	if (!var_off) {
4809 		off += reg->var_off.value;
4810 		err = check_stack_read_fixed_off(env, state, off, size,
4811 						 dst_regno);
4812 	} else {
4813 		/* Variable offset stack reads need more conservative handling
4814 		 * than fixed offset ones. Note that dst_regno >= 0 on this
4815 		 * branch.
4816 		 */
4817 		err = check_stack_read_var_off(env, ptr_regno, off, size,
4818 					       dst_regno);
4819 	}
4820 	return err;
4821 }
4822 
4823 
4824 /* check_stack_write dispatches to check_stack_write_fixed_off or
4825  * check_stack_write_var_off.
4826  *
4827  * 'ptr_regno' is the register used as a pointer into the stack.
4828  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
4829  * 'value_regno' is the register whose value we're writing to the stack. It can
4830  * be -1, meaning that we're not writing from a register.
4831  *
4832  * The caller must ensure that the offset falls within the maximum stack size.
4833  */
4834 static int check_stack_write(struct bpf_verifier_env *env,
4835 			     int ptr_regno, int off, int size,
4836 			     int value_regno, int insn_idx)
4837 {
4838 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4839 	struct bpf_func_state *state = func(env, reg);
4840 	int err;
4841 
4842 	if (tnum_is_const(reg->var_off)) {
4843 		off += reg->var_off.value;
4844 		err = check_stack_write_fixed_off(env, state, off, size,
4845 						  value_regno, insn_idx);
4846 	} else {
4847 		/* Variable offset stack reads need more conservative handling
4848 		 * than fixed offset ones.
4849 		 */
4850 		err = check_stack_write_var_off(env, state,
4851 						ptr_regno, off, size,
4852 						value_regno, insn_idx);
4853 	}
4854 	return err;
4855 }
4856 
4857 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
4858 				 int off, int size, enum bpf_access_type type)
4859 {
4860 	struct bpf_reg_state *regs = cur_regs(env);
4861 	struct bpf_map *map = regs[regno].map_ptr;
4862 	u32 cap = bpf_map_flags_to_cap(map);
4863 
4864 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
4865 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
4866 			map->value_size, off, size);
4867 		return -EACCES;
4868 	}
4869 
4870 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
4871 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
4872 			map->value_size, off, size);
4873 		return -EACCES;
4874 	}
4875 
4876 	return 0;
4877 }
4878 
4879 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
4880 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
4881 			      int off, int size, u32 mem_size,
4882 			      bool zero_size_allowed)
4883 {
4884 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
4885 	struct bpf_reg_state *reg;
4886 
4887 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
4888 		return 0;
4889 
4890 	reg = &cur_regs(env)[regno];
4891 	switch (reg->type) {
4892 	case PTR_TO_MAP_KEY:
4893 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
4894 			mem_size, off, size);
4895 		break;
4896 	case PTR_TO_MAP_VALUE:
4897 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
4898 			mem_size, off, size);
4899 		break;
4900 	case PTR_TO_PACKET:
4901 	case PTR_TO_PACKET_META:
4902 	case PTR_TO_PACKET_END:
4903 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
4904 			off, size, regno, reg->id, off, mem_size);
4905 		break;
4906 	case PTR_TO_MEM:
4907 	default:
4908 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
4909 			mem_size, off, size);
4910 	}
4911 
4912 	return -EACCES;
4913 }
4914 
4915 /* check read/write into a memory region with possible variable offset */
4916 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
4917 				   int off, int size, u32 mem_size,
4918 				   bool zero_size_allowed)
4919 {
4920 	struct bpf_verifier_state *vstate = env->cur_state;
4921 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4922 	struct bpf_reg_state *reg = &state->regs[regno];
4923 	int err;
4924 
4925 	/* We may have adjusted the register pointing to memory region, so we
4926 	 * need to try adding each of min_value and max_value to off
4927 	 * to make sure our theoretical access will be safe.
4928 	 *
4929 	 * The minimum value is only important with signed
4930 	 * comparisons where we can't assume the floor of a
4931 	 * value is 0.  If we are using signed variables for our
4932 	 * index'es we need to make sure that whatever we use
4933 	 * will have a set floor within our range.
4934 	 */
4935 	if (reg->smin_value < 0 &&
4936 	    (reg->smin_value == S64_MIN ||
4937 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
4938 	      reg->smin_value + off < 0)) {
4939 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4940 			regno);
4941 		return -EACCES;
4942 	}
4943 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
4944 				 mem_size, zero_size_allowed);
4945 	if (err) {
4946 		verbose(env, "R%d min value is outside of the allowed memory range\n",
4947 			regno);
4948 		return err;
4949 	}
4950 
4951 	/* If we haven't set a max value then we need to bail since we can't be
4952 	 * sure we won't do bad things.
4953 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
4954 	 */
4955 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
4956 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
4957 			regno);
4958 		return -EACCES;
4959 	}
4960 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
4961 				 mem_size, zero_size_allowed);
4962 	if (err) {
4963 		verbose(env, "R%d max value is outside of the allowed memory range\n",
4964 			regno);
4965 		return err;
4966 	}
4967 
4968 	return 0;
4969 }
4970 
4971 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
4972 			       const struct bpf_reg_state *reg, int regno,
4973 			       bool fixed_off_ok)
4974 {
4975 	/* Access to this pointer-typed register or passing it to a helper
4976 	 * is only allowed in its original, unmodified form.
4977 	 */
4978 
4979 	if (reg->off < 0) {
4980 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
4981 			reg_type_str(env, reg->type), regno, reg->off);
4982 		return -EACCES;
4983 	}
4984 
4985 	if (!fixed_off_ok && reg->off) {
4986 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
4987 			reg_type_str(env, reg->type), regno, reg->off);
4988 		return -EACCES;
4989 	}
4990 
4991 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4992 		char tn_buf[48];
4993 
4994 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4995 		verbose(env, "variable %s access var_off=%s disallowed\n",
4996 			reg_type_str(env, reg->type), tn_buf);
4997 		return -EACCES;
4998 	}
4999 
5000 	return 0;
5001 }
5002 
5003 int check_ptr_off_reg(struct bpf_verifier_env *env,
5004 		      const struct bpf_reg_state *reg, int regno)
5005 {
5006 	return __check_ptr_off_reg(env, reg, regno, false);
5007 }
5008 
5009 static int map_kptr_match_type(struct bpf_verifier_env *env,
5010 			       struct btf_field *kptr_field,
5011 			       struct bpf_reg_state *reg, u32 regno)
5012 {
5013 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5014 	int perm_flags;
5015 	const char *reg_name = "";
5016 
5017 	if (btf_is_kernel(reg->btf)) {
5018 		perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5019 
5020 		/* Only unreferenced case accepts untrusted pointers */
5021 		if (kptr_field->type == BPF_KPTR_UNREF)
5022 			perm_flags |= PTR_UNTRUSTED;
5023 	} else {
5024 		perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5025 	}
5026 
5027 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5028 		goto bad_type;
5029 
5030 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5031 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5032 
5033 	/* For ref_ptr case, release function check should ensure we get one
5034 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5035 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5036 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5037 	 * reg->off and reg->ref_obj_id are not needed here.
5038 	 */
5039 	if (__check_ptr_off_reg(env, reg, regno, true))
5040 		return -EACCES;
5041 
5042 	/* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5043 	 * we also need to take into account the reg->off.
5044 	 *
5045 	 * We want to support cases like:
5046 	 *
5047 	 * struct foo {
5048 	 *         struct bar br;
5049 	 *         struct baz bz;
5050 	 * };
5051 	 *
5052 	 * struct foo *v;
5053 	 * v = func();	      // PTR_TO_BTF_ID
5054 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5055 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5056 	 *                    // first member type of struct after comparison fails
5057 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5058 	 *                    // to match type
5059 	 *
5060 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5061 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5062 	 * the struct to match type against first member of struct, i.e. reject
5063 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5064 	 * strict mode to true for type match.
5065 	 */
5066 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5067 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5068 				  kptr_field->type == BPF_KPTR_REF))
5069 		goto bad_type;
5070 	return 0;
5071 bad_type:
5072 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5073 		reg_type_str(env, reg->type), reg_name);
5074 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5075 	if (kptr_field->type == BPF_KPTR_UNREF)
5076 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5077 			targ_name);
5078 	else
5079 		verbose(env, "\n");
5080 	return -EINVAL;
5081 }
5082 
5083 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5084  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5085  */
5086 static bool in_rcu_cs(struct bpf_verifier_env *env)
5087 {
5088 	return env->cur_state->active_rcu_lock ||
5089 	       env->cur_state->active_lock.ptr ||
5090 	       !env->prog->aux->sleepable;
5091 }
5092 
5093 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5094 BTF_SET_START(rcu_protected_types)
5095 BTF_ID(struct, prog_test_ref_kfunc)
5096 BTF_ID(struct, cgroup)
5097 BTF_ID(struct, bpf_cpumask)
5098 BTF_ID(struct, task_struct)
5099 BTF_SET_END(rcu_protected_types)
5100 
5101 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5102 {
5103 	if (!btf_is_kernel(btf))
5104 		return false;
5105 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5106 }
5107 
5108 static bool rcu_safe_kptr(const struct btf_field *field)
5109 {
5110 	const struct btf_field_kptr *kptr = &field->kptr;
5111 
5112 	return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id);
5113 }
5114 
5115 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5116 				 int value_regno, int insn_idx,
5117 				 struct btf_field *kptr_field)
5118 {
5119 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5120 	int class = BPF_CLASS(insn->code);
5121 	struct bpf_reg_state *val_reg;
5122 
5123 	/* Things we already checked for in check_map_access and caller:
5124 	 *  - Reject cases where variable offset may touch kptr
5125 	 *  - size of access (must be BPF_DW)
5126 	 *  - tnum_is_const(reg->var_off)
5127 	 *  - kptr_field->offset == off + reg->var_off.value
5128 	 */
5129 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5130 	if (BPF_MODE(insn->code) != BPF_MEM) {
5131 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5132 		return -EACCES;
5133 	}
5134 
5135 	/* We only allow loading referenced kptr, since it will be marked as
5136 	 * untrusted, similar to unreferenced kptr.
5137 	 */
5138 	if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
5139 		verbose(env, "store to referenced kptr disallowed\n");
5140 		return -EACCES;
5141 	}
5142 
5143 	if (class == BPF_LDX) {
5144 		val_reg = reg_state(env, value_regno);
5145 		/* We can simply mark the value_regno receiving the pointer
5146 		 * value from map as PTR_TO_BTF_ID, with the correct type.
5147 		 */
5148 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5149 				kptr_field->kptr.btf_id,
5150 				rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ?
5151 				PTR_MAYBE_NULL | MEM_RCU :
5152 				PTR_MAYBE_NULL | PTR_UNTRUSTED);
5153 		/* For mark_ptr_or_null_reg */
5154 		val_reg->id = ++env->id_gen;
5155 	} else if (class == BPF_STX) {
5156 		val_reg = reg_state(env, value_regno);
5157 		if (!register_is_null(val_reg) &&
5158 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5159 			return -EACCES;
5160 	} else if (class == BPF_ST) {
5161 		if (insn->imm) {
5162 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5163 				kptr_field->offset);
5164 			return -EACCES;
5165 		}
5166 	} else {
5167 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5168 		return -EACCES;
5169 	}
5170 	return 0;
5171 }
5172 
5173 /* check read/write into a map element with possible variable offset */
5174 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5175 			    int off, int size, bool zero_size_allowed,
5176 			    enum bpf_access_src src)
5177 {
5178 	struct bpf_verifier_state *vstate = env->cur_state;
5179 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5180 	struct bpf_reg_state *reg = &state->regs[regno];
5181 	struct bpf_map *map = reg->map_ptr;
5182 	struct btf_record *rec;
5183 	int err, i;
5184 
5185 	err = check_mem_region_access(env, regno, off, size, map->value_size,
5186 				      zero_size_allowed);
5187 	if (err)
5188 		return err;
5189 
5190 	if (IS_ERR_OR_NULL(map->record))
5191 		return 0;
5192 	rec = map->record;
5193 	for (i = 0; i < rec->cnt; i++) {
5194 		struct btf_field *field = &rec->fields[i];
5195 		u32 p = field->offset;
5196 
5197 		/* If any part of a field  can be touched by load/store, reject
5198 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
5199 		 * it is sufficient to check x1 < y2 && y1 < x2.
5200 		 */
5201 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5202 		    p < reg->umax_value + off + size) {
5203 			switch (field->type) {
5204 			case BPF_KPTR_UNREF:
5205 			case BPF_KPTR_REF:
5206 				if (src != ACCESS_DIRECT) {
5207 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
5208 					return -EACCES;
5209 				}
5210 				if (!tnum_is_const(reg->var_off)) {
5211 					verbose(env, "kptr access cannot have variable offset\n");
5212 					return -EACCES;
5213 				}
5214 				if (p != off + reg->var_off.value) {
5215 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5216 						p, off + reg->var_off.value);
5217 					return -EACCES;
5218 				}
5219 				if (size != bpf_size_to_bytes(BPF_DW)) {
5220 					verbose(env, "kptr access size must be BPF_DW\n");
5221 					return -EACCES;
5222 				}
5223 				break;
5224 			default:
5225 				verbose(env, "%s cannot be accessed directly by load/store\n",
5226 					btf_field_type_name(field->type));
5227 				return -EACCES;
5228 			}
5229 		}
5230 	}
5231 	return 0;
5232 }
5233 
5234 #define MAX_PACKET_OFF 0xffff
5235 
5236 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5237 				       const struct bpf_call_arg_meta *meta,
5238 				       enum bpf_access_type t)
5239 {
5240 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5241 
5242 	switch (prog_type) {
5243 	/* Program types only with direct read access go here! */
5244 	case BPF_PROG_TYPE_LWT_IN:
5245 	case BPF_PROG_TYPE_LWT_OUT:
5246 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5247 	case BPF_PROG_TYPE_SK_REUSEPORT:
5248 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5249 	case BPF_PROG_TYPE_CGROUP_SKB:
5250 		if (t == BPF_WRITE)
5251 			return false;
5252 		fallthrough;
5253 
5254 	/* Program types with direct read + write access go here! */
5255 	case BPF_PROG_TYPE_SCHED_CLS:
5256 	case BPF_PROG_TYPE_SCHED_ACT:
5257 	case BPF_PROG_TYPE_XDP:
5258 	case BPF_PROG_TYPE_LWT_XMIT:
5259 	case BPF_PROG_TYPE_SK_SKB:
5260 	case BPF_PROG_TYPE_SK_MSG:
5261 		if (meta)
5262 			return meta->pkt_access;
5263 
5264 		env->seen_direct_write = true;
5265 		return true;
5266 
5267 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5268 		if (t == BPF_WRITE)
5269 			env->seen_direct_write = true;
5270 
5271 		return true;
5272 
5273 	default:
5274 		return false;
5275 	}
5276 }
5277 
5278 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5279 			       int size, bool zero_size_allowed)
5280 {
5281 	struct bpf_reg_state *regs = cur_regs(env);
5282 	struct bpf_reg_state *reg = &regs[regno];
5283 	int err;
5284 
5285 	/* We may have added a variable offset to the packet pointer; but any
5286 	 * reg->range we have comes after that.  We are only checking the fixed
5287 	 * offset.
5288 	 */
5289 
5290 	/* We don't allow negative numbers, because we aren't tracking enough
5291 	 * detail to prove they're safe.
5292 	 */
5293 	if (reg->smin_value < 0) {
5294 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5295 			regno);
5296 		return -EACCES;
5297 	}
5298 
5299 	err = reg->range < 0 ? -EINVAL :
5300 	      __check_mem_access(env, regno, off, size, reg->range,
5301 				 zero_size_allowed);
5302 	if (err) {
5303 		verbose(env, "R%d offset is outside of the packet\n", regno);
5304 		return err;
5305 	}
5306 
5307 	/* __check_mem_access has made sure "off + size - 1" is within u16.
5308 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5309 	 * otherwise find_good_pkt_pointers would have refused to set range info
5310 	 * that __check_mem_access would have rejected this pkt access.
5311 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5312 	 */
5313 	env->prog->aux->max_pkt_offset =
5314 		max_t(u32, env->prog->aux->max_pkt_offset,
5315 		      off + reg->umax_value + size - 1);
5316 
5317 	return err;
5318 }
5319 
5320 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
5321 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5322 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
5323 			    struct btf **btf, u32 *btf_id)
5324 {
5325 	struct bpf_insn_access_aux info = {
5326 		.reg_type = *reg_type,
5327 		.log = &env->log,
5328 	};
5329 
5330 	if (env->ops->is_valid_access &&
5331 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5332 		/* A non zero info.ctx_field_size indicates that this field is a
5333 		 * candidate for later verifier transformation to load the whole
5334 		 * field and then apply a mask when accessed with a narrower
5335 		 * access than actual ctx access size. A zero info.ctx_field_size
5336 		 * will only allow for whole field access and rejects any other
5337 		 * type of narrower access.
5338 		 */
5339 		*reg_type = info.reg_type;
5340 
5341 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5342 			*btf = info.btf;
5343 			*btf_id = info.btf_id;
5344 		} else {
5345 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5346 		}
5347 		/* remember the offset of last byte accessed in ctx */
5348 		if (env->prog->aux->max_ctx_offset < off + size)
5349 			env->prog->aux->max_ctx_offset = off + size;
5350 		return 0;
5351 	}
5352 
5353 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5354 	return -EACCES;
5355 }
5356 
5357 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5358 				  int size)
5359 {
5360 	if (size < 0 || off < 0 ||
5361 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
5362 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
5363 			off, size);
5364 		return -EACCES;
5365 	}
5366 	return 0;
5367 }
5368 
5369 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5370 			     u32 regno, int off, int size,
5371 			     enum bpf_access_type t)
5372 {
5373 	struct bpf_reg_state *regs = cur_regs(env);
5374 	struct bpf_reg_state *reg = &regs[regno];
5375 	struct bpf_insn_access_aux info = {};
5376 	bool valid;
5377 
5378 	if (reg->smin_value < 0) {
5379 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5380 			regno);
5381 		return -EACCES;
5382 	}
5383 
5384 	switch (reg->type) {
5385 	case PTR_TO_SOCK_COMMON:
5386 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5387 		break;
5388 	case PTR_TO_SOCKET:
5389 		valid = bpf_sock_is_valid_access(off, size, t, &info);
5390 		break;
5391 	case PTR_TO_TCP_SOCK:
5392 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5393 		break;
5394 	case PTR_TO_XDP_SOCK:
5395 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5396 		break;
5397 	default:
5398 		valid = false;
5399 	}
5400 
5401 
5402 	if (valid) {
5403 		env->insn_aux_data[insn_idx].ctx_field_size =
5404 			info.ctx_field_size;
5405 		return 0;
5406 	}
5407 
5408 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
5409 		regno, reg_type_str(env, reg->type), off, size);
5410 
5411 	return -EACCES;
5412 }
5413 
5414 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5415 {
5416 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5417 }
5418 
5419 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5420 {
5421 	const struct bpf_reg_state *reg = reg_state(env, regno);
5422 
5423 	return reg->type == PTR_TO_CTX;
5424 }
5425 
5426 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5427 {
5428 	const struct bpf_reg_state *reg = reg_state(env, regno);
5429 
5430 	return type_is_sk_pointer(reg->type);
5431 }
5432 
5433 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5434 {
5435 	const struct bpf_reg_state *reg = reg_state(env, regno);
5436 
5437 	return type_is_pkt_pointer(reg->type);
5438 }
5439 
5440 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5441 {
5442 	const struct bpf_reg_state *reg = reg_state(env, regno);
5443 
5444 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5445 	return reg->type == PTR_TO_FLOW_KEYS;
5446 }
5447 
5448 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5449 #ifdef CONFIG_NET
5450 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5451 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5452 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5453 #endif
5454 	[CONST_PTR_TO_MAP] = btf_bpf_map_id,
5455 };
5456 
5457 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5458 {
5459 	/* A referenced register is always trusted. */
5460 	if (reg->ref_obj_id)
5461 		return true;
5462 
5463 	/* Types listed in the reg2btf_ids are always trusted */
5464 	if (reg2btf_ids[base_type(reg->type)])
5465 		return true;
5466 
5467 	/* If a register is not referenced, it is trusted if it has the
5468 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5469 	 * other type modifiers may be safe, but we elect to take an opt-in
5470 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5471 	 * not.
5472 	 *
5473 	 * Eventually, we should make PTR_TRUSTED the single source of truth
5474 	 * for whether a register is trusted.
5475 	 */
5476 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5477 	       !bpf_type_has_unsafe_modifiers(reg->type);
5478 }
5479 
5480 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5481 {
5482 	return reg->type & MEM_RCU;
5483 }
5484 
5485 static void clear_trusted_flags(enum bpf_type_flag *flag)
5486 {
5487 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5488 }
5489 
5490 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5491 				   const struct bpf_reg_state *reg,
5492 				   int off, int size, bool strict)
5493 {
5494 	struct tnum reg_off;
5495 	int ip_align;
5496 
5497 	/* Byte size accesses are always allowed. */
5498 	if (!strict || size == 1)
5499 		return 0;
5500 
5501 	/* For platforms that do not have a Kconfig enabling
5502 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5503 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
5504 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5505 	 * to this code only in strict mode where we want to emulate
5506 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
5507 	 * unconditional IP align value of '2'.
5508 	 */
5509 	ip_align = 2;
5510 
5511 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5512 	if (!tnum_is_aligned(reg_off, size)) {
5513 		char tn_buf[48];
5514 
5515 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5516 		verbose(env,
5517 			"misaligned packet access off %d+%s+%d+%d size %d\n",
5518 			ip_align, tn_buf, reg->off, off, size);
5519 		return -EACCES;
5520 	}
5521 
5522 	return 0;
5523 }
5524 
5525 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5526 				       const struct bpf_reg_state *reg,
5527 				       const char *pointer_desc,
5528 				       int off, int size, bool strict)
5529 {
5530 	struct tnum reg_off;
5531 
5532 	/* Byte size accesses are always allowed. */
5533 	if (!strict || size == 1)
5534 		return 0;
5535 
5536 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5537 	if (!tnum_is_aligned(reg_off, size)) {
5538 		char tn_buf[48];
5539 
5540 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5541 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5542 			pointer_desc, tn_buf, reg->off, off, size);
5543 		return -EACCES;
5544 	}
5545 
5546 	return 0;
5547 }
5548 
5549 static int check_ptr_alignment(struct bpf_verifier_env *env,
5550 			       const struct bpf_reg_state *reg, int off,
5551 			       int size, bool strict_alignment_once)
5552 {
5553 	bool strict = env->strict_alignment || strict_alignment_once;
5554 	const char *pointer_desc = "";
5555 
5556 	switch (reg->type) {
5557 	case PTR_TO_PACKET:
5558 	case PTR_TO_PACKET_META:
5559 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
5560 		 * right in front, treat it the very same way.
5561 		 */
5562 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
5563 	case PTR_TO_FLOW_KEYS:
5564 		pointer_desc = "flow keys ";
5565 		break;
5566 	case PTR_TO_MAP_KEY:
5567 		pointer_desc = "key ";
5568 		break;
5569 	case PTR_TO_MAP_VALUE:
5570 		pointer_desc = "value ";
5571 		break;
5572 	case PTR_TO_CTX:
5573 		pointer_desc = "context ";
5574 		break;
5575 	case PTR_TO_STACK:
5576 		pointer_desc = "stack ";
5577 		/* The stack spill tracking logic in check_stack_write_fixed_off()
5578 		 * and check_stack_read_fixed_off() relies on stack accesses being
5579 		 * aligned.
5580 		 */
5581 		strict = true;
5582 		break;
5583 	case PTR_TO_SOCKET:
5584 		pointer_desc = "sock ";
5585 		break;
5586 	case PTR_TO_SOCK_COMMON:
5587 		pointer_desc = "sock_common ";
5588 		break;
5589 	case PTR_TO_TCP_SOCK:
5590 		pointer_desc = "tcp_sock ";
5591 		break;
5592 	case PTR_TO_XDP_SOCK:
5593 		pointer_desc = "xdp_sock ";
5594 		break;
5595 	default:
5596 		break;
5597 	}
5598 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5599 					   strict);
5600 }
5601 
5602 static int update_stack_depth(struct bpf_verifier_env *env,
5603 			      const struct bpf_func_state *func,
5604 			      int off)
5605 {
5606 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
5607 
5608 	if (stack >= -off)
5609 		return 0;
5610 
5611 	/* update known max for given subprogram */
5612 	env->subprog_info[func->subprogno].stack_depth = -off;
5613 	return 0;
5614 }
5615 
5616 /* starting from main bpf function walk all instructions of the function
5617  * and recursively walk all callees that given function can call.
5618  * Ignore jump and exit insns.
5619  * Since recursion is prevented by check_cfg() this algorithm
5620  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5621  */
5622 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
5623 {
5624 	struct bpf_subprog_info *subprog = env->subprog_info;
5625 	struct bpf_insn *insn = env->prog->insnsi;
5626 	int depth = 0, frame = 0, i, subprog_end;
5627 	bool tail_call_reachable = false;
5628 	int ret_insn[MAX_CALL_FRAMES];
5629 	int ret_prog[MAX_CALL_FRAMES];
5630 	int j;
5631 
5632 	i = subprog[idx].start;
5633 process_func:
5634 	/* protect against potential stack overflow that might happen when
5635 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5636 	 * depth for such case down to 256 so that the worst case scenario
5637 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
5638 	 * 8k).
5639 	 *
5640 	 * To get the idea what might happen, see an example:
5641 	 * func1 -> sub rsp, 128
5642 	 *  subfunc1 -> sub rsp, 256
5643 	 *  tailcall1 -> add rsp, 256
5644 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5645 	 *   subfunc2 -> sub rsp, 64
5646 	 *   subfunc22 -> sub rsp, 128
5647 	 *   tailcall2 -> add rsp, 128
5648 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5649 	 *
5650 	 * tailcall will unwind the current stack frame but it will not get rid
5651 	 * of caller's stack as shown on the example above.
5652 	 */
5653 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
5654 		verbose(env,
5655 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5656 			depth);
5657 		return -EACCES;
5658 	}
5659 	/* round up to 32-bytes, since this is granularity
5660 	 * of interpreter stack size
5661 	 */
5662 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5663 	if (depth > MAX_BPF_STACK) {
5664 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
5665 			frame + 1, depth);
5666 		return -EACCES;
5667 	}
5668 continue_func:
5669 	subprog_end = subprog[idx + 1].start;
5670 	for (; i < subprog_end; i++) {
5671 		int next_insn, sidx;
5672 
5673 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
5674 			continue;
5675 		/* remember insn and function to return to */
5676 		ret_insn[frame] = i + 1;
5677 		ret_prog[frame] = idx;
5678 
5679 		/* find the callee */
5680 		next_insn = i + insn[i].imm + 1;
5681 		sidx = find_subprog(env, next_insn);
5682 		if (sidx < 0) {
5683 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5684 				  next_insn);
5685 			return -EFAULT;
5686 		}
5687 		if (subprog[sidx].is_async_cb) {
5688 			if (subprog[sidx].has_tail_call) {
5689 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5690 				return -EFAULT;
5691 			}
5692 			/* async callbacks don't increase bpf prog stack size unless called directly */
5693 			if (!bpf_pseudo_call(insn + i))
5694 				continue;
5695 		}
5696 		i = next_insn;
5697 		idx = sidx;
5698 
5699 		if (subprog[idx].has_tail_call)
5700 			tail_call_reachable = true;
5701 
5702 		frame++;
5703 		if (frame >= MAX_CALL_FRAMES) {
5704 			verbose(env, "the call stack of %d frames is too deep !\n",
5705 				frame);
5706 			return -E2BIG;
5707 		}
5708 		goto process_func;
5709 	}
5710 	/* if tail call got detected across bpf2bpf calls then mark each of the
5711 	 * currently present subprog frames as tail call reachable subprogs;
5712 	 * this info will be utilized by JIT so that we will be preserving the
5713 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
5714 	 */
5715 	if (tail_call_reachable)
5716 		for (j = 0; j < frame; j++)
5717 			subprog[ret_prog[j]].tail_call_reachable = true;
5718 	if (subprog[0].tail_call_reachable)
5719 		env->prog->aux->tail_call_reachable = true;
5720 
5721 	/* end of for() loop means the last insn of the 'subprog'
5722 	 * was reached. Doesn't matter whether it was JA or EXIT
5723 	 */
5724 	if (frame == 0)
5725 		return 0;
5726 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5727 	frame--;
5728 	i = ret_insn[frame];
5729 	idx = ret_prog[frame];
5730 	goto continue_func;
5731 }
5732 
5733 static int check_max_stack_depth(struct bpf_verifier_env *env)
5734 {
5735 	struct bpf_subprog_info *si = env->subprog_info;
5736 	int ret;
5737 
5738 	for (int i = 0; i < env->subprog_cnt; i++) {
5739 		if (!i || si[i].is_async_cb) {
5740 			ret = check_max_stack_depth_subprog(env, i);
5741 			if (ret < 0)
5742 				return ret;
5743 		}
5744 		continue;
5745 	}
5746 	return 0;
5747 }
5748 
5749 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5750 static int get_callee_stack_depth(struct bpf_verifier_env *env,
5751 				  const struct bpf_insn *insn, int idx)
5752 {
5753 	int start = idx + insn->imm + 1, subprog;
5754 
5755 	subprog = find_subprog(env, start);
5756 	if (subprog < 0) {
5757 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5758 			  start);
5759 		return -EFAULT;
5760 	}
5761 	return env->subprog_info[subprog].stack_depth;
5762 }
5763 #endif
5764 
5765 static int __check_buffer_access(struct bpf_verifier_env *env,
5766 				 const char *buf_info,
5767 				 const struct bpf_reg_state *reg,
5768 				 int regno, int off, int size)
5769 {
5770 	if (off < 0) {
5771 		verbose(env,
5772 			"R%d invalid %s buffer access: off=%d, size=%d\n",
5773 			regno, buf_info, off, size);
5774 		return -EACCES;
5775 	}
5776 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5777 		char tn_buf[48];
5778 
5779 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5780 		verbose(env,
5781 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
5782 			regno, off, tn_buf);
5783 		return -EACCES;
5784 	}
5785 
5786 	return 0;
5787 }
5788 
5789 static int check_tp_buffer_access(struct bpf_verifier_env *env,
5790 				  const struct bpf_reg_state *reg,
5791 				  int regno, int off, int size)
5792 {
5793 	int err;
5794 
5795 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
5796 	if (err)
5797 		return err;
5798 
5799 	if (off + size > env->prog->aux->max_tp_access)
5800 		env->prog->aux->max_tp_access = off + size;
5801 
5802 	return 0;
5803 }
5804 
5805 static int check_buffer_access(struct bpf_verifier_env *env,
5806 			       const struct bpf_reg_state *reg,
5807 			       int regno, int off, int size,
5808 			       bool zero_size_allowed,
5809 			       u32 *max_access)
5810 {
5811 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
5812 	int err;
5813 
5814 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
5815 	if (err)
5816 		return err;
5817 
5818 	if (off + size > *max_access)
5819 		*max_access = off + size;
5820 
5821 	return 0;
5822 }
5823 
5824 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
5825 static void zext_32_to_64(struct bpf_reg_state *reg)
5826 {
5827 	reg->var_off = tnum_subreg(reg->var_off);
5828 	__reg_assign_32_into_64(reg);
5829 }
5830 
5831 /* truncate register to smaller size (in bytes)
5832  * must be called with size < BPF_REG_SIZE
5833  */
5834 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
5835 {
5836 	u64 mask;
5837 
5838 	/* clear high bits in bit representation */
5839 	reg->var_off = tnum_cast(reg->var_off, size);
5840 
5841 	/* fix arithmetic bounds */
5842 	mask = ((u64)1 << (size * 8)) - 1;
5843 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
5844 		reg->umin_value &= mask;
5845 		reg->umax_value &= mask;
5846 	} else {
5847 		reg->umin_value = 0;
5848 		reg->umax_value = mask;
5849 	}
5850 	reg->smin_value = reg->umin_value;
5851 	reg->smax_value = reg->umax_value;
5852 
5853 	/* If size is smaller than 32bit register the 32bit register
5854 	 * values are also truncated so we push 64-bit bounds into
5855 	 * 32-bit bounds. Above were truncated < 32-bits already.
5856 	 */
5857 	if (size >= 4)
5858 		return;
5859 	__reg_combine_64_into_32(reg);
5860 }
5861 
5862 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
5863 {
5864 	if (size == 1) {
5865 		reg->smin_value = reg->s32_min_value = S8_MIN;
5866 		reg->smax_value = reg->s32_max_value = S8_MAX;
5867 	} else if (size == 2) {
5868 		reg->smin_value = reg->s32_min_value = S16_MIN;
5869 		reg->smax_value = reg->s32_max_value = S16_MAX;
5870 	} else {
5871 		/* size == 4 */
5872 		reg->smin_value = reg->s32_min_value = S32_MIN;
5873 		reg->smax_value = reg->s32_max_value = S32_MAX;
5874 	}
5875 	reg->umin_value = reg->u32_min_value = 0;
5876 	reg->umax_value = U64_MAX;
5877 	reg->u32_max_value = U32_MAX;
5878 	reg->var_off = tnum_unknown;
5879 }
5880 
5881 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
5882 {
5883 	s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
5884 	u64 top_smax_value, top_smin_value;
5885 	u64 num_bits = size * 8;
5886 
5887 	if (tnum_is_const(reg->var_off)) {
5888 		u64_cval = reg->var_off.value;
5889 		if (size == 1)
5890 			reg->var_off = tnum_const((s8)u64_cval);
5891 		else if (size == 2)
5892 			reg->var_off = tnum_const((s16)u64_cval);
5893 		else
5894 			/* size == 4 */
5895 			reg->var_off = tnum_const((s32)u64_cval);
5896 
5897 		u64_cval = reg->var_off.value;
5898 		reg->smax_value = reg->smin_value = u64_cval;
5899 		reg->umax_value = reg->umin_value = u64_cval;
5900 		reg->s32_max_value = reg->s32_min_value = u64_cval;
5901 		reg->u32_max_value = reg->u32_min_value = u64_cval;
5902 		return;
5903 	}
5904 
5905 	top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
5906 	top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
5907 
5908 	if (top_smax_value != top_smin_value)
5909 		goto out;
5910 
5911 	/* find the s64_min and s64_min after sign extension */
5912 	if (size == 1) {
5913 		init_s64_max = (s8)reg->smax_value;
5914 		init_s64_min = (s8)reg->smin_value;
5915 	} else if (size == 2) {
5916 		init_s64_max = (s16)reg->smax_value;
5917 		init_s64_min = (s16)reg->smin_value;
5918 	} else {
5919 		init_s64_max = (s32)reg->smax_value;
5920 		init_s64_min = (s32)reg->smin_value;
5921 	}
5922 
5923 	s64_max = max(init_s64_max, init_s64_min);
5924 	s64_min = min(init_s64_max, init_s64_min);
5925 
5926 	/* both of s64_max/s64_min positive or negative */
5927 	if ((s64_max >= 0) == (s64_min >= 0)) {
5928 		reg->smin_value = reg->s32_min_value = s64_min;
5929 		reg->smax_value = reg->s32_max_value = s64_max;
5930 		reg->umin_value = reg->u32_min_value = s64_min;
5931 		reg->umax_value = reg->u32_max_value = s64_max;
5932 		reg->var_off = tnum_range(s64_min, s64_max);
5933 		return;
5934 	}
5935 
5936 out:
5937 	set_sext64_default_val(reg, size);
5938 }
5939 
5940 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
5941 {
5942 	if (size == 1) {
5943 		reg->s32_min_value = S8_MIN;
5944 		reg->s32_max_value = S8_MAX;
5945 	} else {
5946 		/* size == 2 */
5947 		reg->s32_min_value = S16_MIN;
5948 		reg->s32_max_value = S16_MAX;
5949 	}
5950 	reg->u32_min_value = 0;
5951 	reg->u32_max_value = U32_MAX;
5952 }
5953 
5954 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
5955 {
5956 	s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
5957 	u32 top_smax_value, top_smin_value;
5958 	u32 num_bits = size * 8;
5959 
5960 	if (tnum_is_const(reg->var_off)) {
5961 		u32_val = reg->var_off.value;
5962 		if (size == 1)
5963 			reg->var_off = tnum_const((s8)u32_val);
5964 		else
5965 			reg->var_off = tnum_const((s16)u32_val);
5966 
5967 		u32_val = reg->var_off.value;
5968 		reg->s32_min_value = reg->s32_max_value = u32_val;
5969 		reg->u32_min_value = reg->u32_max_value = u32_val;
5970 		return;
5971 	}
5972 
5973 	top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
5974 	top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
5975 
5976 	if (top_smax_value != top_smin_value)
5977 		goto out;
5978 
5979 	/* find the s32_min and s32_min after sign extension */
5980 	if (size == 1) {
5981 		init_s32_max = (s8)reg->s32_max_value;
5982 		init_s32_min = (s8)reg->s32_min_value;
5983 	} else {
5984 		/* size == 2 */
5985 		init_s32_max = (s16)reg->s32_max_value;
5986 		init_s32_min = (s16)reg->s32_min_value;
5987 	}
5988 	s32_max = max(init_s32_max, init_s32_min);
5989 	s32_min = min(init_s32_max, init_s32_min);
5990 
5991 	if ((s32_min >= 0) == (s32_max >= 0)) {
5992 		reg->s32_min_value = s32_min;
5993 		reg->s32_max_value = s32_max;
5994 		reg->u32_min_value = (u32)s32_min;
5995 		reg->u32_max_value = (u32)s32_max;
5996 		return;
5997 	}
5998 
5999 out:
6000 	set_sext32_default_val(reg, size);
6001 }
6002 
6003 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6004 {
6005 	/* A map is considered read-only if the following condition are true:
6006 	 *
6007 	 * 1) BPF program side cannot change any of the map content. The
6008 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6009 	 *    and was set at map creation time.
6010 	 * 2) The map value(s) have been initialized from user space by a
6011 	 *    loader and then "frozen", such that no new map update/delete
6012 	 *    operations from syscall side are possible for the rest of
6013 	 *    the map's lifetime from that point onwards.
6014 	 * 3) Any parallel/pending map update/delete operations from syscall
6015 	 *    side have been completed. Only after that point, it's safe to
6016 	 *    assume that map value(s) are immutable.
6017 	 */
6018 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
6019 	       READ_ONCE(map->frozen) &&
6020 	       !bpf_map_write_active(map);
6021 }
6022 
6023 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6024 			       bool is_ldsx)
6025 {
6026 	void *ptr;
6027 	u64 addr;
6028 	int err;
6029 
6030 	err = map->ops->map_direct_value_addr(map, &addr, off);
6031 	if (err)
6032 		return err;
6033 	ptr = (void *)(long)addr + off;
6034 
6035 	switch (size) {
6036 	case sizeof(u8):
6037 		*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6038 		break;
6039 	case sizeof(u16):
6040 		*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6041 		break;
6042 	case sizeof(u32):
6043 		*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6044 		break;
6045 	case sizeof(u64):
6046 		*val = *(u64 *)ptr;
6047 		break;
6048 	default:
6049 		return -EINVAL;
6050 	}
6051 	return 0;
6052 }
6053 
6054 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
6055 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
6056 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
6057 
6058 /*
6059  * Allow list few fields as RCU trusted or full trusted.
6060  * This logic doesn't allow mix tagging and will be removed once GCC supports
6061  * btf_type_tag.
6062  */
6063 
6064 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
6065 BTF_TYPE_SAFE_RCU(struct task_struct) {
6066 	const cpumask_t *cpus_ptr;
6067 	struct css_set __rcu *cgroups;
6068 	struct task_struct __rcu *real_parent;
6069 	struct task_struct *group_leader;
6070 };
6071 
6072 BTF_TYPE_SAFE_RCU(struct cgroup) {
6073 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6074 	struct kernfs_node *kn;
6075 };
6076 
6077 BTF_TYPE_SAFE_RCU(struct css_set) {
6078 	struct cgroup *dfl_cgrp;
6079 };
6080 
6081 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
6082 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6083 	struct file __rcu *exe_file;
6084 };
6085 
6086 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6087  * because bpf prog accessible sockets are SOCK_RCU_FREE.
6088  */
6089 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6090 	struct sock *sk;
6091 };
6092 
6093 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6094 	struct sock *sk;
6095 };
6096 
6097 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
6098 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6099 	struct seq_file *seq;
6100 };
6101 
6102 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6103 	struct bpf_iter_meta *meta;
6104 	struct task_struct *task;
6105 };
6106 
6107 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6108 	struct file *file;
6109 };
6110 
6111 BTF_TYPE_SAFE_TRUSTED(struct file) {
6112 	struct inode *f_inode;
6113 };
6114 
6115 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6116 	/* no negative dentry-s in places where bpf can see it */
6117 	struct inode *d_inode;
6118 };
6119 
6120 BTF_TYPE_SAFE_TRUSTED(struct socket) {
6121 	struct sock *sk;
6122 };
6123 
6124 static bool type_is_rcu(struct bpf_verifier_env *env,
6125 			struct bpf_reg_state *reg,
6126 			const char *field_name, u32 btf_id)
6127 {
6128 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6129 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6130 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6131 
6132 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6133 }
6134 
6135 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6136 				struct bpf_reg_state *reg,
6137 				const char *field_name, u32 btf_id)
6138 {
6139 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6140 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6141 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6142 
6143 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6144 }
6145 
6146 static bool type_is_trusted(struct bpf_verifier_env *env,
6147 			    struct bpf_reg_state *reg,
6148 			    const char *field_name, u32 btf_id)
6149 {
6150 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6151 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6152 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6153 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6154 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6155 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
6156 
6157 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6158 }
6159 
6160 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6161 				   struct bpf_reg_state *regs,
6162 				   int regno, int off, int size,
6163 				   enum bpf_access_type atype,
6164 				   int value_regno)
6165 {
6166 	struct bpf_reg_state *reg = regs + regno;
6167 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6168 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6169 	const char *field_name = NULL;
6170 	enum bpf_type_flag flag = 0;
6171 	u32 btf_id = 0;
6172 	int ret;
6173 
6174 	if (!env->allow_ptr_leaks) {
6175 		verbose(env,
6176 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6177 			tname);
6178 		return -EPERM;
6179 	}
6180 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6181 		verbose(env,
6182 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6183 			tname);
6184 		return -EINVAL;
6185 	}
6186 	if (off < 0) {
6187 		verbose(env,
6188 			"R%d is ptr_%s invalid negative access: off=%d\n",
6189 			regno, tname, off);
6190 		return -EACCES;
6191 	}
6192 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6193 		char tn_buf[48];
6194 
6195 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6196 		verbose(env,
6197 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6198 			regno, tname, off, tn_buf);
6199 		return -EACCES;
6200 	}
6201 
6202 	if (reg->type & MEM_USER) {
6203 		verbose(env,
6204 			"R%d is ptr_%s access user memory: off=%d\n",
6205 			regno, tname, off);
6206 		return -EACCES;
6207 	}
6208 
6209 	if (reg->type & MEM_PERCPU) {
6210 		verbose(env,
6211 			"R%d is ptr_%s access percpu memory: off=%d\n",
6212 			regno, tname, off);
6213 		return -EACCES;
6214 	}
6215 
6216 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6217 		if (!btf_is_kernel(reg->btf)) {
6218 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6219 			return -EFAULT;
6220 		}
6221 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6222 	} else {
6223 		/* Writes are permitted with default btf_struct_access for
6224 		 * program allocated objects (which always have ref_obj_id > 0),
6225 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6226 		 */
6227 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6228 			verbose(env, "only read is supported\n");
6229 			return -EACCES;
6230 		}
6231 
6232 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6233 		    !reg->ref_obj_id) {
6234 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6235 			return -EFAULT;
6236 		}
6237 
6238 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6239 	}
6240 
6241 	if (ret < 0)
6242 		return ret;
6243 
6244 	if (ret != PTR_TO_BTF_ID) {
6245 		/* just mark; */
6246 
6247 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6248 		/* If this is an untrusted pointer, all pointers formed by walking it
6249 		 * also inherit the untrusted flag.
6250 		 */
6251 		flag = PTR_UNTRUSTED;
6252 
6253 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6254 		/* By default any pointer obtained from walking a trusted pointer is no
6255 		 * longer trusted, unless the field being accessed has explicitly been
6256 		 * marked as inheriting its parent's state of trust (either full or RCU).
6257 		 * For example:
6258 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
6259 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
6260 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6261 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6262 		 *
6263 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
6264 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
6265 		 */
6266 		if (type_is_trusted(env, reg, field_name, btf_id)) {
6267 			flag |= PTR_TRUSTED;
6268 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6269 			if (type_is_rcu(env, reg, field_name, btf_id)) {
6270 				/* ignore __rcu tag and mark it MEM_RCU */
6271 				flag |= MEM_RCU;
6272 			} else if (flag & MEM_RCU ||
6273 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6274 				/* __rcu tagged pointers can be NULL */
6275 				flag |= MEM_RCU | PTR_MAYBE_NULL;
6276 
6277 				/* We always trust them */
6278 				if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6279 				    flag & PTR_UNTRUSTED)
6280 					flag &= ~PTR_UNTRUSTED;
6281 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
6282 				/* keep as-is */
6283 			} else {
6284 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6285 				clear_trusted_flags(&flag);
6286 			}
6287 		} else {
6288 			/*
6289 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
6290 			 * aggressively mark as untrusted otherwise such
6291 			 * pointers will be plain PTR_TO_BTF_ID without flags
6292 			 * and will be allowed to be passed into helpers for
6293 			 * compat reasons.
6294 			 */
6295 			flag = PTR_UNTRUSTED;
6296 		}
6297 	} else {
6298 		/* Old compat. Deprecated */
6299 		clear_trusted_flags(&flag);
6300 	}
6301 
6302 	if (atype == BPF_READ && value_regno >= 0)
6303 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6304 
6305 	return 0;
6306 }
6307 
6308 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6309 				   struct bpf_reg_state *regs,
6310 				   int regno, int off, int size,
6311 				   enum bpf_access_type atype,
6312 				   int value_regno)
6313 {
6314 	struct bpf_reg_state *reg = regs + regno;
6315 	struct bpf_map *map = reg->map_ptr;
6316 	struct bpf_reg_state map_reg;
6317 	enum bpf_type_flag flag = 0;
6318 	const struct btf_type *t;
6319 	const char *tname;
6320 	u32 btf_id;
6321 	int ret;
6322 
6323 	if (!btf_vmlinux) {
6324 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6325 		return -ENOTSUPP;
6326 	}
6327 
6328 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6329 		verbose(env, "map_ptr access not supported for map type %d\n",
6330 			map->map_type);
6331 		return -ENOTSUPP;
6332 	}
6333 
6334 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6335 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6336 
6337 	if (!env->allow_ptr_leaks) {
6338 		verbose(env,
6339 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6340 			tname);
6341 		return -EPERM;
6342 	}
6343 
6344 	if (off < 0) {
6345 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
6346 			regno, tname, off);
6347 		return -EACCES;
6348 	}
6349 
6350 	if (atype != BPF_READ) {
6351 		verbose(env, "only read from %s is supported\n", tname);
6352 		return -EACCES;
6353 	}
6354 
6355 	/* Simulate access to a PTR_TO_BTF_ID */
6356 	memset(&map_reg, 0, sizeof(map_reg));
6357 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6358 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6359 	if (ret < 0)
6360 		return ret;
6361 
6362 	if (value_regno >= 0)
6363 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6364 
6365 	return 0;
6366 }
6367 
6368 /* Check that the stack access at the given offset is within bounds. The
6369  * maximum valid offset is -1.
6370  *
6371  * The minimum valid offset is -MAX_BPF_STACK for writes, and
6372  * -state->allocated_stack for reads.
6373  */
6374 static int check_stack_slot_within_bounds(int off,
6375 					  struct bpf_func_state *state,
6376 					  enum bpf_access_type t)
6377 {
6378 	int min_valid_off;
6379 
6380 	if (t == BPF_WRITE)
6381 		min_valid_off = -MAX_BPF_STACK;
6382 	else
6383 		min_valid_off = -state->allocated_stack;
6384 
6385 	if (off < min_valid_off || off > -1)
6386 		return -EACCES;
6387 	return 0;
6388 }
6389 
6390 /* Check that the stack access at 'regno + off' falls within the maximum stack
6391  * bounds.
6392  *
6393  * 'off' includes `regno->offset`, but not its dynamic part (if any).
6394  */
6395 static int check_stack_access_within_bounds(
6396 		struct bpf_verifier_env *env,
6397 		int regno, int off, int access_size,
6398 		enum bpf_access_src src, enum bpf_access_type type)
6399 {
6400 	struct bpf_reg_state *regs = cur_regs(env);
6401 	struct bpf_reg_state *reg = regs + regno;
6402 	struct bpf_func_state *state = func(env, reg);
6403 	int min_off, max_off;
6404 	int err;
6405 	char *err_extra;
6406 
6407 	if (src == ACCESS_HELPER)
6408 		/* We don't know if helpers are reading or writing (or both). */
6409 		err_extra = " indirect access to";
6410 	else if (type == BPF_READ)
6411 		err_extra = " read from";
6412 	else
6413 		err_extra = " write to";
6414 
6415 	if (tnum_is_const(reg->var_off)) {
6416 		min_off = reg->var_off.value + off;
6417 		if (access_size > 0)
6418 			max_off = min_off + access_size - 1;
6419 		else
6420 			max_off = min_off;
6421 	} else {
6422 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6423 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
6424 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6425 				err_extra, regno);
6426 			return -EACCES;
6427 		}
6428 		min_off = reg->smin_value + off;
6429 		if (access_size > 0)
6430 			max_off = reg->smax_value + off + access_size - 1;
6431 		else
6432 			max_off = min_off;
6433 	}
6434 
6435 	err = check_stack_slot_within_bounds(min_off, state, type);
6436 	if (!err)
6437 		err = check_stack_slot_within_bounds(max_off, state, type);
6438 
6439 	if (err) {
6440 		if (tnum_is_const(reg->var_off)) {
6441 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6442 				err_extra, regno, off, access_size);
6443 		} else {
6444 			char tn_buf[48];
6445 
6446 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6447 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
6448 				err_extra, regno, tn_buf, access_size);
6449 		}
6450 	}
6451 	return err;
6452 }
6453 
6454 /* check whether memory at (regno + off) is accessible for t = (read | write)
6455  * if t==write, value_regno is a register which value is stored into memory
6456  * if t==read, value_regno is a register which will receive the value from memory
6457  * if t==write && value_regno==-1, some unknown value is stored into memory
6458  * if t==read && value_regno==-1, don't care what we read from memory
6459  */
6460 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6461 			    int off, int bpf_size, enum bpf_access_type t,
6462 			    int value_regno, bool strict_alignment_once, bool is_ldsx)
6463 {
6464 	struct bpf_reg_state *regs = cur_regs(env);
6465 	struct bpf_reg_state *reg = regs + regno;
6466 	struct bpf_func_state *state;
6467 	int size, err = 0;
6468 
6469 	size = bpf_size_to_bytes(bpf_size);
6470 	if (size < 0)
6471 		return size;
6472 
6473 	/* alignment checks will add in reg->off themselves */
6474 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6475 	if (err)
6476 		return err;
6477 
6478 	/* for access checks, reg->off is just part of off */
6479 	off += reg->off;
6480 
6481 	if (reg->type == PTR_TO_MAP_KEY) {
6482 		if (t == BPF_WRITE) {
6483 			verbose(env, "write to change key R%d not allowed\n", regno);
6484 			return -EACCES;
6485 		}
6486 
6487 		err = check_mem_region_access(env, regno, off, size,
6488 					      reg->map_ptr->key_size, false);
6489 		if (err)
6490 			return err;
6491 		if (value_regno >= 0)
6492 			mark_reg_unknown(env, regs, value_regno);
6493 	} else if (reg->type == PTR_TO_MAP_VALUE) {
6494 		struct btf_field *kptr_field = NULL;
6495 
6496 		if (t == BPF_WRITE && value_regno >= 0 &&
6497 		    is_pointer_value(env, value_regno)) {
6498 			verbose(env, "R%d leaks addr into map\n", value_regno);
6499 			return -EACCES;
6500 		}
6501 		err = check_map_access_type(env, regno, off, size, t);
6502 		if (err)
6503 			return err;
6504 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6505 		if (err)
6506 			return err;
6507 		if (tnum_is_const(reg->var_off))
6508 			kptr_field = btf_record_find(reg->map_ptr->record,
6509 						     off + reg->var_off.value, BPF_KPTR);
6510 		if (kptr_field) {
6511 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6512 		} else if (t == BPF_READ && value_regno >= 0) {
6513 			struct bpf_map *map = reg->map_ptr;
6514 
6515 			/* if map is read-only, track its contents as scalars */
6516 			if (tnum_is_const(reg->var_off) &&
6517 			    bpf_map_is_rdonly(map) &&
6518 			    map->ops->map_direct_value_addr) {
6519 				int map_off = off + reg->var_off.value;
6520 				u64 val = 0;
6521 
6522 				err = bpf_map_direct_read(map, map_off, size,
6523 							  &val, is_ldsx);
6524 				if (err)
6525 					return err;
6526 
6527 				regs[value_regno].type = SCALAR_VALUE;
6528 				__mark_reg_known(&regs[value_regno], val);
6529 			} else {
6530 				mark_reg_unknown(env, regs, value_regno);
6531 			}
6532 		}
6533 	} else if (base_type(reg->type) == PTR_TO_MEM) {
6534 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6535 
6536 		if (type_may_be_null(reg->type)) {
6537 			verbose(env, "R%d invalid mem access '%s'\n", regno,
6538 				reg_type_str(env, reg->type));
6539 			return -EACCES;
6540 		}
6541 
6542 		if (t == BPF_WRITE && rdonly_mem) {
6543 			verbose(env, "R%d cannot write into %s\n",
6544 				regno, reg_type_str(env, reg->type));
6545 			return -EACCES;
6546 		}
6547 
6548 		if (t == BPF_WRITE && value_regno >= 0 &&
6549 		    is_pointer_value(env, value_regno)) {
6550 			verbose(env, "R%d leaks addr into mem\n", value_regno);
6551 			return -EACCES;
6552 		}
6553 
6554 		err = check_mem_region_access(env, regno, off, size,
6555 					      reg->mem_size, false);
6556 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6557 			mark_reg_unknown(env, regs, value_regno);
6558 	} else if (reg->type == PTR_TO_CTX) {
6559 		enum bpf_reg_type reg_type = SCALAR_VALUE;
6560 		struct btf *btf = NULL;
6561 		u32 btf_id = 0;
6562 
6563 		if (t == BPF_WRITE && value_regno >= 0 &&
6564 		    is_pointer_value(env, value_regno)) {
6565 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
6566 			return -EACCES;
6567 		}
6568 
6569 		err = check_ptr_off_reg(env, reg, regno);
6570 		if (err < 0)
6571 			return err;
6572 
6573 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
6574 				       &btf_id);
6575 		if (err)
6576 			verbose_linfo(env, insn_idx, "; ");
6577 		if (!err && t == BPF_READ && value_regno >= 0) {
6578 			/* ctx access returns either a scalar, or a
6579 			 * PTR_TO_PACKET[_META,_END]. In the latter
6580 			 * case, we know the offset is zero.
6581 			 */
6582 			if (reg_type == SCALAR_VALUE) {
6583 				mark_reg_unknown(env, regs, value_regno);
6584 			} else {
6585 				mark_reg_known_zero(env, regs,
6586 						    value_regno);
6587 				if (type_may_be_null(reg_type))
6588 					regs[value_regno].id = ++env->id_gen;
6589 				/* A load of ctx field could have different
6590 				 * actual load size with the one encoded in the
6591 				 * insn. When the dst is PTR, it is for sure not
6592 				 * a sub-register.
6593 				 */
6594 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6595 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
6596 					regs[value_regno].btf = btf;
6597 					regs[value_regno].btf_id = btf_id;
6598 				}
6599 			}
6600 			regs[value_regno].type = reg_type;
6601 		}
6602 
6603 	} else if (reg->type == PTR_TO_STACK) {
6604 		/* Basic bounds checks. */
6605 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6606 		if (err)
6607 			return err;
6608 
6609 		state = func(env, reg);
6610 		err = update_stack_depth(env, state, off);
6611 		if (err)
6612 			return err;
6613 
6614 		if (t == BPF_READ)
6615 			err = check_stack_read(env, regno, off, size,
6616 					       value_regno);
6617 		else
6618 			err = check_stack_write(env, regno, off, size,
6619 						value_regno, insn_idx);
6620 	} else if (reg_is_pkt_pointer(reg)) {
6621 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
6622 			verbose(env, "cannot write into packet\n");
6623 			return -EACCES;
6624 		}
6625 		if (t == BPF_WRITE && value_regno >= 0 &&
6626 		    is_pointer_value(env, value_regno)) {
6627 			verbose(env, "R%d leaks addr into packet\n",
6628 				value_regno);
6629 			return -EACCES;
6630 		}
6631 		err = check_packet_access(env, regno, off, size, false);
6632 		if (!err && t == BPF_READ && value_regno >= 0)
6633 			mark_reg_unknown(env, regs, value_regno);
6634 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
6635 		if (t == BPF_WRITE && value_regno >= 0 &&
6636 		    is_pointer_value(env, value_regno)) {
6637 			verbose(env, "R%d leaks addr into flow keys\n",
6638 				value_regno);
6639 			return -EACCES;
6640 		}
6641 
6642 		err = check_flow_keys_access(env, off, size);
6643 		if (!err && t == BPF_READ && value_regno >= 0)
6644 			mark_reg_unknown(env, regs, value_regno);
6645 	} else if (type_is_sk_pointer(reg->type)) {
6646 		if (t == BPF_WRITE) {
6647 			verbose(env, "R%d cannot write into %s\n",
6648 				regno, reg_type_str(env, reg->type));
6649 			return -EACCES;
6650 		}
6651 		err = check_sock_access(env, insn_idx, regno, off, size, t);
6652 		if (!err && value_regno >= 0)
6653 			mark_reg_unknown(env, regs, value_regno);
6654 	} else if (reg->type == PTR_TO_TP_BUFFER) {
6655 		err = check_tp_buffer_access(env, reg, regno, off, size);
6656 		if (!err && t == BPF_READ && value_regno >= 0)
6657 			mark_reg_unknown(env, regs, value_regno);
6658 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
6659 		   !type_may_be_null(reg->type)) {
6660 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
6661 					      value_regno);
6662 	} else if (reg->type == CONST_PTR_TO_MAP) {
6663 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
6664 					      value_regno);
6665 	} else if (base_type(reg->type) == PTR_TO_BUF) {
6666 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6667 		u32 *max_access;
6668 
6669 		if (rdonly_mem) {
6670 			if (t == BPF_WRITE) {
6671 				verbose(env, "R%d cannot write into %s\n",
6672 					regno, reg_type_str(env, reg->type));
6673 				return -EACCES;
6674 			}
6675 			max_access = &env->prog->aux->max_rdonly_access;
6676 		} else {
6677 			max_access = &env->prog->aux->max_rdwr_access;
6678 		}
6679 
6680 		err = check_buffer_access(env, reg, regno, off, size, false,
6681 					  max_access);
6682 
6683 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
6684 			mark_reg_unknown(env, regs, value_regno);
6685 	} else {
6686 		verbose(env, "R%d invalid mem access '%s'\n", regno,
6687 			reg_type_str(env, reg->type));
6688 		return -EACCES;
6689 	}
6690 
6691 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
6692 	    regs[value_regno].type == SCALAR_VALUE) {
6693 		if (!is_ldsx)
6694 			/* b/h/w load zero-extends, mark upper bits as known 0 */
6695 			coerce_reg_to_size(&regs[value_regno], size);
6696 		else
6697 			coerce_reg_to_size_sx(&regs[value_regno], size);
6698 	}
6699 	return err;
6700 }
6701 
6702 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
6703 {
6704 	int load_reg;
6705 	int err;
6706 
6707 	switch (insn->imm) {
6708 	case BPF_ADD:
6709 	case BPF_ADD | BPF_FETCH:
6710 	case BPF_AND:
6711 	case BPF_AND | BPF_FETCH:
6712 	case BPF_OR:
6713 	case BPF_OR | BPF_FETCH:
6714 	case BPF_XOR:
6715 	case BPF_XOR | BPF_FETCH:
6716 	case BPF_XCHG:
6717 	case BPF_CMPXCHG:
6718 		break;
6719 	default:
6720 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
6721 		return -EINVAL;
6722 	}
6723 
6724 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
6725 		verbose(env, "invalid atomic operand size\n");
6726 		return -EINVAL;
6727 	}
6728 
6729 	/* check src1 operand */
6730 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
6731 	if (err)
6732 		return err;
6733 
6734 	/* check src2 operand */
6735 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6736 	if (err)
6737 		return err;
6738 
6739 	if (insn->imm == BPF_CMPXCHG) {
6740 		/* Check comparison of R0 with memory location */
6741 		const u32 aux_reg = BPF_REG_0;
6742 
6743 		err = check_reg_arg(env, aux_reg, SRC_OP);
6744 		if (err)
6745 			return err;
6746 
6747 		if (is_pointer_value(env, aux_reg)) {
6748 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
6749 			return -EACCES;
6750 		}
6751 	}
6752 
6753 	if (is_pointer_value(env, insn->src_reg)) {
6754 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6755 		return -EACCES;
6756 	}
6757 
6758 	if (is_ctx_reg(env, insn->dst_reg) ||
6759 	    is_pkt_reg(env, insn->dst_reg) ||
6760 	    is_flow_key_reg(env, insn->dst_reg) ||
6761 	    is_sk_reg(env, insn->dst_reg)) {
6762 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
6763 			insn->dst_reg,
6764 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
6765 		return -EACCES;
6766 	}
6767 
6768 	if (insn->imm & BPF_FETCH) {
6769 		if (insn->imm == BPF_CMPXCHG)
6770 			load_reg = BPF_REG_0;
6771 		else
6772 			load_reg = insn->src_reg;
6773 
6774 		/* check and record load of old value */
6775 		err = check_reg_arg(env, load_reg, DST_OP);
6776 		if (err)
6777 			return err;
6778 	} else {
6779 		/* This instruction accesses a memory location but doesn't
6780 		 * actually load it into a register.
6781 		 */
6782 		load_reg = -1;
6783 	}
6784 
6785 	/* Check whether we can read the memory, with second call for fetch
6786 	 * case to simulate the register fill.
6787 	 */
6788 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6789 			       BPF_SIZE(insn->code), BPF_READ, -1, true, false);
6790 	if (!err && load_reg >= 0)
6791 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6792 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
6793 				       true, false);
6794 	if (err)
6795 		return err;
6796 
6797 	/* Check whether we can write into the same memory. */
6798 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6799 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
6800 	if (err)
6801 		return err;
6802 
6803 	return 0;
6804 }
6805 
6806 /* When register 'regno' is used to read the stack (either directly or through
6807  * a helper function) make sure that it's within stack boundary and, depending
6808  * on the access type, that all elements of the stack are initialized.
6809  *
6810  * 'off' includes 'regno->off', but not its dynamic part (if any).
6811  *
6812  * All registers that have been spilled on the stack in the slots within the
6813  * read offsets are marked as read.
6814  */
6815 static int check_stack_range_initialized(
6816 		struct bpf_verifier_env *env, int regno, int off,
6817 		int access_size, bool zero_size_allowed,
6818 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
6819 {
6820 	struct bpf_reg_state *reg = reg_state(env, regno);
6821 	struct bpf_func_state *state = func(env, reg);
6822 	int err, min_off, max_off, i, j, slot, spi;
6823 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
6824 	enum bpf_access_type bounds_check_type;
6825 	/* Some accesses can write anything into the stack, others are
6826 	 * read-only.
6827 	 */
6828 	bool clobber = false;
6829 
6830 	if (access_size == 0 && !zero_size_allowed) {
6831 		verbose(env, "invalid zero-sized read\n");
6832 		return -EACCES;
6833 	}
6834 
6835 	if (type == ACCESS_HELPER) {
6836 		/* The bounds checks for writes are more permissive than for
6837 		 * reads. However, if raw_mode is not set, we'll do extra
6838 		 * checks below.
6839 		 */
6840 		bounds_check_type = BPF_WRITE;
6841 		clobber = true;
6842 	} else {
6843 		bounds_check_type = BPF_READ;
6844 	}
6845 	err = check_stack_access_within_bounds(env, regno, off, access_size,
6846 					       type, bounds_check_type);
6847 	if (err)
6848 		return err;
6849 
6850 
6851 	if (tnum_is_const(reg->var_off)) {
6852 		min_off = max_off = reg->var_off.value + off;
6853 	} else {
6854 		/* Variable offset is prohibited for unprivileged mode for
6855 		 * simplicity since it requires corresponding support in
6856 		 * Spectre masking for stack ALU.
6857 		 * See also retrieve_ptr_limit().
6858 		 */
6859 		if (!env->bypass_spec_v1) {
6860 			char tn_buf[48];
6861 
6862 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6863 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
6864 				regno, err_extra, tn_buf);
6865 			return -EACCES;
6866 		}
6867 		/* Only initialized buffer on stack is allowed to be accessed
6868 		 * with variable offset. With uninitialized buffer it's hard to
6869 		 * guarantee that whole memory is marked as initialized on
6870 		 * helper return since specific bounds are unknown what may
6871 		 * cause uninitialized stack leaking.
6872 		 */
6873 		if (meta && meta->raw_mode)
6874 			meta = NULL;
6875 
6876 		min_off = reg->smin_value + off;
6877 		max_off = reg->smax_value + off;
6878 	}
6879 
6880 	if (meta && meta->raw_mode) {
6881 		/* Ensure we won't be overwriting dynptrs when simulating byte
6882 		 * by byte access in check_helper_call using meta.access_size.
6883 		 * This would be a problem if we have a helper in the future
6884 		 * which takes:
6885 		 *
6886 		 *	helper(uninit_mem, len, dynptr)
6887 		 *
6888 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
6889 		 * may end up writing to dynptr itself when touching memory from
6890 		 * arg 1. This can be relaxed on a case by case basis for known
6891 		 * safe cases, but reject due to the possibilitiy of aliasing by
6892 		 * default.
6893 		 */
6894 		for (i = min_off; i < max_off + access_size; i++) {
6895 			int stack_off = -i - 1;
6896 
6897 			spi = __get_spi(i);
6898 			/* raw_mode may write past allocated_stack */
6899 			if (state->allocated_stack <= stack_off)
6900 				continue;
6901 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
6902 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
6903 				return -EACCES;
6904 			}
6905 		}
6906 		meta->access_size = access_size;
6907 		meta->regno = regno;
6908 		return 0;
6909 	}
6910 
6911 	for (i = min_off; i < max_off + access_size; i++) {
6912 		u8 *stype;
6913 
6914 		slot = -i - 1;
6915 		spi = slot / BPF_REG_SIZE;
6916 		if (state->allocated_stack <= slot)
6917 			goto err;
6918 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
6919 		if (*stype == STACK_MISC)
6920 			goto mark;
6921 		if ((*stype == STACK_ZERO) ||
6922 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
6923 			if (clobber) {
6924 				/* helper can write anything into the stack */
6925 				*stype = STACK_MISC;
6926 			}
6927 			goto mark;
6928 		}
6929 
6930 		if (is_spilled_reg(&state->stack[spi]) &&
6931 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
6932 		     env->allow_ptr_leaks)) {
6933 			if (clobber) {
6934 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
6935 				for (j = 0; j < BPF_REG_SIZE; j++)
6936 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
6937 			}
6938 			goto mark;
6939 		}
6940 
6941 err:
6942 		if (tnum_is_const(reg->var_off)) {
6943 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
6944 				err_extra, regno, min_off, i - min_off, access_size);
6945 		} else {
6946 			char tn_buf[48];
6947 
6948 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6949 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
6950 				err_extra, regno, tn_buf, i - min_off, access_size);
6951 		}
6952 		return -EACCES;
6953 mark:
6954 		/* reading any byte out of 8-byte 'spill_slot' will cause
6955 		 * the whole slot to be marked as 'read'
6956 		 */
6957 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
6958 			      state->stack[spi].spilled_ptr.parent,
6959 			      REG_LIVE_READ64);
6960 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
6961 		 * be sure that whether stack slot is written to or not. Hence,
6962 		 * we must still conservatively propagate reads upwards even if
6963 		 * helper may write to the entire memory range.
6964 		 */
6965 	}
6966 	return update_stack_depth(env, state, min_off);
6967 }
6968 
6969 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
6970 				   int access_size, bool zero_size_allowed,
6971 				   struct bpf_call_arg_meta *meta)
6972 {
6973 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6974 	u32 *max_access;
6975 
6976 	switch (base_type(reg->type)) {
6977 	case PTR_TO_PACKET:
6978 	case PTR_TO_PACKET_META:
6979 		return check_packet_access(env, regno, reg->off, access_size,
6980 					   zero_size_allowed);
6981 	case PTR_TO_MAP_KEY:
6982 		if (meta && meta->raw_mode) {
6983 			verbose(env, "R%d cannot write into %s\n", regno,
6984 				reg_type_str(env, reg->type));
6985 			return -EACCES;
6986 		}
6987 		return check_mem_region_access(env, regno, reg->off, access_size,
6988 					       reg->map_ptr->key_size, false);
6989 	case PTR_TO_MAP_VALUE:
6990 		if (check_map_access_type(env, regno, reg->off, access_size,
6991 					  meta && meta->raw_mode ? BPF_WRITE :
6992 					  BPF_READ))
6993 			return -EACCES;
6994 		return check_map_access(env, regno, reg->off, access_size,
6995 					zero_size_allowed, ACCESS_HELPER);
6996 	case PTR_TO_MEM:
6997 		if (type_is_rdonly_mem(reg->type)) {
6998 			if (meta && meta->raw_mode) {
6999 				verbose(env, "R%d cannot write into %s\n", regno,
7000 					reg_type_str(env, reg->type));
7001 				return -EACCES;
7002 			}
7003 		}
7004 		return check_mem_region_access(env, regno, reg->off,
7005 					       access_size, reg->mem_size,
7006 					       zero_size_allowed);
7007 	case PTR_TO_BUF:
7008 		if (type_is_rdonly_mem(reg->type)) {
7009 			if (meta && meta->raw_mode) {
7010 				verbose(env, "R%d cannot write into %s\n", regno,
7011 					reg_type_str(env, reg->type));
7012 				return -EACCES;
7013 			}
7014 
7015 			max_access = &env->prog->aux->max_rdonly_access;
7016 		} else {
7017 			max_access = &env->prog->aux->max_rdwr_access;
7018 		}
7019 		return check_buffer_access(env, reg, regno, reg->off,
7020 					   access_size, zero_size_allowed,
7021 					   max_access);
7022 	case PTR_TO_STACK:
7023 		return check_stack_range_initialized(
7024 				env,
7025 				regno, reg->off, access_size,
7026 				zero_size_allowed, ACCESS_HELPER, meta);
7027 	case PTR_TO_BTF_ID:
7028 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
7029 					       access_size, BPF_READ, -1);
7030 	case PTR_TO_CTX:
7031 		/* in case the function doesn't know how to access the context,
7032 		 * (because we are in a program of type SYSCALL for example), we
7033 		 * can not statically check its size.
7034 		 * Dynamically check it now.
7035 		 */
7036 		if (!env->ops->convert_ctx_access) {
7037 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
7038 			int offset = access_size - 1;
7039 
7040 			/* Allow zero-byte read from PTR_TO_CTX */
7041 			if (access_size == 0)
7042 				return zero_size_allowed ? 0 : -EACCES;
7043 
7044 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7045 						atype, -1, false, false);
7046 		}
7047 
7048 		fallthrough;
7049 	default: /* scalar_value or invalid ptr */
7050 		/* Allow zero-byte read from NULL, regardless of pointer type */
7051 		if (zero_size_allowed && access_size == 0 &&
7052 		    register_is_null(reg))
7053 			return 0;
7054 
7055 		verbose(env, "R%d type=%s ", regno,
7056 			reg_type_str(env, reg->type));
7057 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7058 		return -EACCES;
7059 	}
7060 }
7061 
7062 static int check_mem_size_reg(struct bpf_verifier_env *env,
7063 			      struct bpf_reg_state *reg, u32 regno,
7064 			      bool zero_size_allowed,
7065 			      struct bpf_call_arg_meta *meta)
7066 {
7067 	int err;
7068 
7069 	/* This is used to refine r0 return value bounds for helpers
7070 	 * that enforce this value as an upper bound on return values.
7071 	 * See do_refine_retval_range() for helpers that can refine
7072 	 * the return value. C type of helper is u32 so we pull register
7073 	 * bound from umax_value however, if negative verifier errors
7074 	 * out. Only upper bounds can be learned because retval is an
7075 	 * int type and negative retvals are allowed.
7076 	 */
7077 	meta->msize_max_value = reg->umax_value;
7078 
7079 	/* The register is SCALAR_VALUE; the access check
7080 	 * happens using its boundaries.
7081 	 */
7082 	if (!tnum_is_const(reg->var_off))
7083 		/* For unprivileged variable accesses, disable raw
7084 		 * mode so that the program is required to
7085 		 * initialize all the memory that the helper could
7086 		 * just partially fill up.
7087 		 */
7088 		meta = NULL;
7089 
7090 	if (reg->smin_value < 0) {
7091 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7092 			regno);
7093 		return -EACCES;
7094 	}
7095 
7096 	if (reg->umin_value == 0) {
7097 		err = check_helper_mem_access(env, regno - 1, 0,
7098 					      zero_size_allowed,
7099 					      meta);
7100 		if (err)
7101 			return err;
7102 	}
7103 
7104 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7105 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7106 			regno);
7107 		return -EACCES;
7108 	}
7109 	err = check_helper_mem_access(env, regno - 1,
7110 				      reg->umax_value,
7111 				      zero_size_allowed, meta);
7112 	if (!err)
7113 		err = mark_chain_precision(env, regno);
7114 	return err;
7115 }
7116 
7117 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7118 		   u32 regno, u32 mem_size)
7119 {
7120 	bool may_be_null = type_may_be_null(reg->type);
7121 	struct bpf_reg_state saved_reg;
7122 	struct bpf_call_arg_meta meta;
7123 	int err;
7124 
7125 	if (register_is_null(reg))
7126 		return 0;
7127 
7128 	memset(&meta, 0, sizeof(meta));
7129 	/* Assuming that the register contains a value check if the memory
7130 	 * access is safe. Temporarily save and restore the register's state as
7131 	 * the conversion shouldn't be visible to a caller.
7132 	 */
7133 	if (may_be_null) {
7134 		saved_reg = *reg;
7135 		mark_ptr_not_null_reg(reg);
7136 	}
7137 
7138 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
7139 	/* Check access for BPF_WRITE */
7140 	meta.raw_mode = true;
7141 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
7142 
7143 	if (may_be_null)
7144 		*reg = saved_reg;
7145 
7146 	return err;
7147 }
7148 
7149 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7150 				    u32 regno)
7151 {
7152 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7153 	bool may_be_null = type_may_be_null(mem_reg->type);
7154 	struct bpf_reg_state saved_reg;
7155 	struct bpf_call_arg_meta meta;
7156 	int err;
7157 
7158 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7159 
7160 	memset(&meta, 0, sizeof(meta));
7161 
7162 	if (may_be_null) {
7163 		saved_reg = *mem_reg;
7164 		mark_ptr_not_null_reg(mem_reg);
7165 	}
7166 
7167 	err = check_mem_size_reg(env, reg, regno, true, &meta);
7168 	/* Check access for BPF_WRITE */
7169 	meta.raw_mode = true;
7170 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
7171 
7172 	if (may_be_null)
7173 		*mem_reg = saved_reg;
7174 	return err;
7175 }
7176 
7177 /* Implementation details:
7178  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7179  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7180  * Two bpf_map_lookups (even with the same key) will have different reg->id.
7181  * Two separate bpf_obj_new will also have different reg->id.
7182  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7183  * clears reg->id after value_or_null->value transition, since the verifier only
7184  * cares about the range of access to valid map value pointer and doesn't care
7185  * about actual address of the map element.
7186  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7187  * reg->id > 0 after value_or_null->value transition. By doing so
7188  * two bpf_map_lookups will be considered two different pointers that
7189  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7190  * returned from bpf_obj_new.
7191  * The verifier allows taking only one bpf_spin_lock at a time to avoid
7192  * dead-locks.
7193  * Since only one bpf_spin_lock is allowed the checks are simpler than
7194  * reg_is_refcounted() logic. The verifier needs to remember only
7195  * one spin_lock instead of array of acquired_refs.
7196  * cur_state->active_lock remembers which map value element or allocated
7197  * object got locked and clears it after bpf_spin_unlock.
7198  */
7199 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7200 			     bool is_lock)
7201 {
7202 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7203 	struct bpf_verifier_state *cur = env->cur_state;
7204 	bool is_const = tnum_is_const(reg->var_off);
7205 	u64 val = reg->var_off.value;
7206 	struct bpf_map *map = NULL;
7207 	struct btf *btf = NULL;
7208 	struct btf_record *rec;
7209 
7210 	if (!is_const) {
7211 		verbose(env,
7212 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7213 			regno);
7214 		return -EINVAL;
7215 	}
7216 	if (reg->type == PTR_TO_MAP_VALUE) {
7217 		map = reg->map_ptr;
7218 		if (!map->btf) {
7219 			verbose(env,
7220 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
7221 				map->name);
7222 			return -EINVAL;
7223 		}
7224 	} else {
7225 		btf = reg->btf;
7226 	}
7227 
7228 	rec = reg_btf_record(reg);
7229 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7230 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7231 			map ? map->name : "kptr");
7232 		return -EINVAL;
7233 	}
7234 	if (rec->spin_lock_off != val + reg->off) {
7235 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7236 			val + reg->off, rec->spin_lock_off);
7237 		return -EINVAL;
7238 	}
7239 	if (is_lock) {
7240 		if (cur->active_lock.ptr) {
7241 			verbose(env,
7242 				"Locking two bpf_spin_locks are not allowed\n");
7243 			return -EINVAL;
7244 		}
7245 		if (map)
7246 			cur->active_lock.ptr = map;
7247 		else
7248 			cur->active_lock.ptr = btf;
7249 		cur->active_lock.id = reg->id;
7250 	} else {
7251 		void *ptr;
7252 
7253 		if (map)
7254 			ptr = map;
7255 		else
7256 			ptr = btf;
7257 
7258 		if (!cur->active_lock.ptr) {
7259 			verbose(env, "bpf_spin_unlock without taking a lock\n");
7260 			return -EINVAL;
7261 		}
7262 		if (cur->active_lock.ptr != ptr ||
7263 		    cur->active_lock.id != reg->id) {
7264 			verbose(env, "bpf_spin_unlock of different lock\n");
7265 			return -EINVAL;
7266 		}
7267 
7268 		invalidate_non_owning_refs(env);
7269 
7270 		cur->active_lock.ptr = NULL;
7271 		cur->active_lock.id = 0;
7272 	}
7273 	return 0;
7274 }
7275 
7276 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7277 			      struct bpf_call_arg_meta *meta)
7278 {
7279 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7280 	bool is_const = tnum_is_const(reg->var_off);
7281 	struct bpf_map *map = reg->map_ptr;
7282 	u64 val = reg->var_off.value;
7283 
7284 	if (!is_const) {
7285 		verbose(env,
7286 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7287 			regno);
7288 		return -EINVAL;
7289 	}
7290 	if (!map->btf) {
7291 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7292 			map->name);
7293 		return -EINVAL;
7294 	}
7295 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
7296 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7297 		return -EINVAL;
7298 	}
7299 	if (map->record->timer_off != val + reg->off) {
7300 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7301 			val + reg->off, map->record->timer_off);
7302 		return -EINVAL;
7303 	}
7304 	if (meta->map_ptr) {
7305 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7306 		return -EFAULT;
7307 	}
7308 	meta->map_uid = reg->map_uid;
7309 	meta->map_ptr = map;
7310 	return 0;
7311 }
7312 
7313 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7314 			     struct bpf_call_arg_meta *meta)
7315 {
7316 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7317 	struct bpf_map *map_ptr = reg->map_ptr;
7318 	struct btf_field *kptr_field;
7319 	u32 kptr_off;
7320 
7321 	if (!tnum_is_const(reg->var_off)) {
7322 		verbose(env,
7323 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7324 			regno);
7325 		return -EINVAL;
7326 	}
7327 	if (!map_ptr->btf) {
7328 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7329 			map_ptr->name);
7330 		return -EINVAL;
7331 	}
7332 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7333 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
7334 		return -EINVAL;
7335 	}
7336 
7337 	meta->map_ptr = map_ptr;
7338 	kptr_off = reg->off + reg->var_off.value;
7339 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7340 	if (!kptr_field) {
7341 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7342 		return -EACCES;
7343 	}
7344 	if (kptr_field->type != BPF_KPTR_REF) {
7345 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7346 		return -EACCES;
7347 	}
7348 	meta->kptr_field = kptr_field;
7349 	return 0;
7350 }
7351 
7352 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7353  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7354  *
7355  * In both cases we deal with the first 8 bytes, but need to mark the next 8
7356  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7357  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7358  *
7359  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7360  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7361  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7362  * mutate the view of the dynptr and also possibly destroy it. In the latter
7363  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7364  * memory that dynptr points to.
7365  *
7366  * The verifier will keep track both levels of mutation (bpf_dynptr's in
7367  * reg->type and the memory's in reg->dynptr.type), but there is no support for
7368  * readonly dynptr view yet, hence only the first case is tracked and checked.
7369  *
7370  * This is consistent with how C applies the const modifier to a struct object,
7371  * where the pointer itself inside bpf_dynptr becomes const but not what it
7372  * points to.
7373  *
7374  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7375  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7376  */
7377 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7378 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
7379 {
7380 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7381 	int err;
7382 
7383 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7384 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7385 	 */
7386 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7387 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7388 		return -EFAULT;
7389 	}
7390 
7391 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
7392 	 *		 constructing a mutable bpf_dynptr object.
7393 	 *
7394 	 *		 Currently, this is only possible with PTR_TO_STACK
7395 	 *		 pointing to a region of at least 16 bytes which doesn't
7396 	 *		 contain an existing bpf_dynptr.
7397 	 *
7398 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7399 	 *		 mutated or destroyed. However, the memory it points to
7400 	 *		 may be mutated.
7401 	 *
7402 	 *  None       - Points to a initialized dynptr that can be mutated and
7403 	 *		 destroyed, including mutation of the memory it points
7404 	 *		 to.
7405 	 */
7406 	if (arg_type & MEM_UNINIT) {
7407 		int i;
7408 
7409 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
7410 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7411 			return -EINVAL;
7412 		}
7413 
7414 		/* we write BPF_DW bits (8 bytes) at a time */
7415 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7416 			err = check_mem_access(env, insn_idx, regno,
7417 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7418 			if (err)
7419 				return err;
7420 		}
7421 
7422 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7423 	} else /* MEM_RDONLY and None case from above */ {
7424 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7425 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7426 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7427 			return -EINVAL;
7428 		}
7429 
7430 		if (!is_dynptr_reg_valid_init(env, reg)) {
7431 			verbose(env,
7432 				"Expected an initialized dynptr as arg #%d\n",
7433 				regno);
7434 			return -EINVAL;
7435 		}
7436 
7437 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7438 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7439 			verbose(env,
7440 				"Expected a dynptr of type %s as arg #%d\n",
7441 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7442 			return -EINVAL;
7443 		}
7444 
7445 		err = mark_dynptr_read(env, reg);
7446 	}
7447 	return err;
7448 }
7449 
7450 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7451 {
7452 	struct bpf_func_state *state = func(env, reg);
7453 
7454 	return state->stack[spi].spilled_ptr.ref_obj_id;
7455 }
7456 
7457 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7458 {
7459 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7460 }
7461 
7462 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7463 {
7464 	return meta->kfunc_flags & KF_ITER_NEW;
7465 }
7466 
7467 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7468 {
7469 	return meta->kfunc_flags & KF_ITER_NEXT;
7470 }
7471 
7472 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7473 {
7474 	return meta->kfunc_flags & KF_ITER_DESTROY;
7475 }
7476 
7477 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7478 {
7479 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
7480 	 * kfunc is iter state pointer
7481 	 */
7482 	return arg == 0 && is_iter_kfunc(meta);
7483 }
7484 
7485 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7486 			    struct bpf_kfunc_call_arg_meta *meta)
7487 {
7488 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7489 	const struct btf_type *t;
7490 	const struct btf_param *arg;
7491 	int spi, err, i, nr_slots;
7492 	u32 btf_id;
7493 
7494 	/* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7495 	arg = &btf_params(meta->func_proto)[0];
7496 	t = btf_type_skip_modifiers(meta->btf, arg->type, NULL);	/* PTR */
7497 	t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id);	/* STRUCT */
7498 	nr_slots = t->size / BPF_REG_SIZE;
7499 
7500 	if (is_iter_new_kfunc(meta)) {
7501 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
7502 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7503 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7504 				iter_type_str(meta->btf, btf_id), regno);
7505 			return -EINVAL;
7506 		}
7507 
7508 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7509 			err = check_mem_access(env, insn_idx, regno,
7510 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7511 			if (err)
7512 				return err;
7513 		}
7514 
7515 		err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots);
7516 		if (err)
7517 			return err;
7518 	} else {
7519 		/* iter_next() or iter_destroy() expect initialized iter state*/
7520 		if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) {
7521 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
7522 				iter_type_str(meta->btf, btf_id), regno);
7523 			return -EINVAL;
7524 		}
7525 
7526 		spi = iter_get_spi(env, reg, nr_slots);
7527 		if (spi < 0)
7528 			return spi;
7529 
7530 		err = mark_iter_read(env, reg, spi, nr_slots);
7531 		if (err)
7532 			return err;
7533 
7534 		/* remember meta->iter info for process_iter_next_call() */
7535 		meta->iter.spi = spi;
7536 		meta->iter.frameno = reg->frameno;
7537 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7538 
7539 		if (is_iter_destroy_kfunc(meta)) {
7540 			err = unmark_stack_slots_iter(env, reg, nr_slots);
7541 			if (err)
7542 				return err;
7543 		}
7544 	}
7545 
7546 	return 0;
7547 }
7548 
7549 /* process_iter_next_call() is called when verifier gets to iterator's next
7550  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7551  * to it as just "iter_next()" in comments below.
7552  *
7553  * BPF verifier relies on a crucial contract for any iter_next()
7554  * implementation: it should *eventually* return NULL, and once that happens
7555  * it should keep returning NULL. That is, once iterator exhausts elements to
7556  * iterate, it should never reset or spuriously return new elements.
7557  *
7558  * With the assumption of such contract, process_iter_next_call() simulates
7559  * a fork in the verifier state to validate loop logic correctness and safety
7560  * without having to simulate infinite amount of iterations.
7561  *
7562  * In current state, we first assume that iter_next() returned NULL and
7563  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
7564  * conditions we should not form an infinite loop and should eventually reach
7565  * exit.
7566  *
7567  * Besides that, we also fork current state and enqueue it for later
7568  * verification. In a forked state we keep iterator state as ACTIVE
7569  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
7570  * also bump iteration depth to prevent erroneous infinite loop detection
7571  * later on (see iter_active_depths_differ() comment for details). In this
7572  * state we assume that we'll eventually loop back to another iter_next()
7573  * calls (it could be in exactly same location or in some other instruction,
7574  * it doesn't matter, we don't make any unnecessary assumptions about this,
7575  * everything revolves around iterator state in a stack slot, not which
7576  * instruction is calling iter_next()). When that happens, we either will come
7577  * to iter_next() with equivalent state and can conclude that next iteration
7578  * will proceed in exactly the same way as we just verified, so it's safe to
7579  * assume that loop converges. If not, we'll go on another iteration
7580  * simulation with a different input state, until all possible starting states
7581  * are validated or we reach maximum number of instructions limit.
7582  *
7583  * This way, we will either exhaustively discover all possible input states
7584  * that iterator loop can start with and eventually will converge, or we'll
7585  * effectively regress into bounded loop simulation logic and either reach
7586  * maximum number of instructions if loop is not provably convergent, or there
7587  * is some statically known limit on number of iterations (e.g., if there is
7588  * an explicit `if n > 100 then break;` statement somewhere in the loop).
7589  *
7590  * One very subtle but very important aspect is that we *always* simulate NULL
7591  * condition first (as the current state) before we simulate non-NULL case.
7592  * This has to do with intricacies of scalar precision tracking. By simulating
7593  * "exit condition" of iter_next() returning NULL first, we make sure all the
7594  * relevant precision marks *that will be set **after** we exit iterator loop*
7595  * are propagated backwards to common parent state of NULL and non-NULL
7596  * branches. Thanks to that, state equivalence checks done later in forked
7597  * state, when reaching iter_next() for ACTIVE iterator, can assume that
7598  * precision marks are finalized and won't change. Because simulating another
7599  * ACTIVE iterator iteration won't change them (because given same input
7600  * states we'll end up with exactly same output states which we are currently
7601  * comparing; and verification after the loop already propagated back what
7602  * needs to be **additionally** tracked as precise). It's subtle, grok
7603  * precision tracking for more intuitive understanding.
7604  */
7605 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
7606 				  struct bpf_kfunc_call_arg_meta *meta)
7607 {
7608 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st;
7609 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
7610 	struct bpf_reg_state *cur_iter, *queued_iter;
7611 	int iter_frameno = meta->iter.frameno;
7612 	int iter_spi = meta->iter.spi;
7613 
7614 	BTF_TYPE_EMIT(struct bpf_iter);
7615 
7616 	cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7617 
7618 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
7619 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
7620 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
7621 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
7622 		return -EFAULT;
7623 	}
7624 
7625 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
7626 		/* branch out active iter state */
7627 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
7628 		if (!queued_st)
7629 			return -ENOMEM;
7630 
7631 		queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7632 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
7633 		queued_iter->iter.depth++;
7634 
7635 		queued_fr = queued_st->frame[queued_st->curframe];
7636 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
7637 	}
7638 
7639 	/* switch to DRAINED state, but keep the depth unchanged */
7640 	/* mark current iter state as drained and assume returned NULL */
7641 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
7642 	__mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
7643 
7644 	return 0;
7645 }
7646 
7647 static bool arg_type_is_mem_size(enum bpf_arg_type type)
7648 {
7649 	return type == ARG_CONST_SIZE ||
7650 	       type == ARG_CONST_SIZE_OR_ZERO;
7651 }
7652 
7653 static bool arg_type_is_release(enum bpf_arg_type type)
7654 {
7655 	return type & OBJ_RELEASE;
7656 }
7657 
7658 static bool arg_type_is_dynptr(enum bpf_arg_type type)
7659 {
7660 	return base_type(type) == ARG_PTR_TO_DYNPTR;
7661 }
7662 
7663 static int int_ptr_type_to_size(enum bpf_arg_type type)
7664 {
7665 	if (type == ARG_PTR_TO_INT)
7666 		return sizeof(u32);
7667 	else if (type == ARG_PTR_TO_LONG)
7668 		return sizeof(u64);
7669 
7670 	return -EINVAL;
7671 }
7672 
7673 static int resolve_map_arg_type(struct bpf_verifier_env *env,
7674 				 const struct bpf_call_arg_meta *meta,
7675 				 enum bpf_arg_type *arg_type)
7676 {
7677 	if (!meta->map_ptr) {
7678 		/* kernel subsystem misconfigured verifier */
7679 		verbose(env, "invalid map_ptr to access map->type\n");
7680 		return -EACCES;
7681 	}
7682 
7683 	switch (meta->map_ptr->map_type) {
7684 	case BPF_MAP_TYPE_SOCKMAP:
7685 	case BPF_MAP_TYPE_SOCKHASH:
7686 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
7687 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
7688 		} else {
7689 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
7690 			return -EINVAL;
7691 		}
7692 		break;
7693 	case BPF_MAP_TYPE_BLOOM_FILTER:
7694 		if (meta->func_id == BPF_FUNC_map_peek_elem)
7695 			*arg_type = ARG_PTR_TO_MAP_VALUE;
7696 		break;
7697 	default:
7698 		break;
7699 	}
7700 	return 0;
7701 }
7702 
7703 struct bpf_reg_types {
7704 	const enum bpf_reg_type types[10];
7705 	u32 *btf_id;
7706 };
7707 
7708 static const struct bpf_reg_types sock_types = {
7709 	.types = {
7710 		PTR_TO_SOCK_COMMON,
7711 		PTR_TO_SOCKET,
7712 		PTR_TO_TCP_SOCK,
7713 		PTR_TO_XDP_SOCK,
7714 	},
7715 };
7716 
7717 #ifdef CONFIG_NET
7718 static const struct bpf_reg_types btf_id_sock_common_types = {
7719 	.types = {
7720 		PTR_TO_SOCK_COMMON,
7721 		PTR_TO_SOCKET,
7722 		PTR_TO_TCP_SOCK,
7723 		PTR_TO_XDP_SOCK,
7724 		PTR_TO_BTF_ID,
7725 		PTR_TO_BTF_ID | PTR_TRUSTED,
7726 	},
7727 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
7728 };
7729 #endif
7730 
7731 static const struct bpf_reg_types mem_types = {
7732 	.types = {
7733 		PTR_TO_STACK,
7734 		PTR_TO_PACKET,
7735 		PTR_TO_PACKET_META,
7736 		PTR_TO_MAP_KEY,
7737 		PTR_TO_MAP_VALUE,
7738 		PTR_TO_MEM,
7739 		PTR_TO_MEM | MEM_RINGBUF,
7740 		PTR_TO_BUF,
7741 		PTR_TO_BTF_ID | PTR_TRUSTED,
7742 	},
7743 };
7744 
7745 static const struct bpf_reg_types int_ptr_types = {
7746 	.types = {
7747 		PTR_TO_STACK,
7748 		PTR_TO_PACKET,
7749 		PTR_TO_PACKET_META,
7750 		PTR_TO_MAP_KEY,
7751 		PTR_TO_MAP_VALUE,
7752 	},
7753 };
7754 
7755 static const struct bpf_reg_types spin_lock_types = {
7756 	.types = {
7757 		PTR_TO_MAP_VALUE,
7758 		PTR_TO_BTF_ID | MEM_ALLOC,
7759 	}
7760 };
7761 
7762 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
7763 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
7764 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
7765 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
7766 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
7767 static const struct bpf_reg_types btf_ptr_types = {
7768 	.types = {
7769 		PTR_TO_BTF_ID,
7770 		PTR_TO_BTF_ID | PTR_TRUSTED,
7771 		PTR_TO_BTF_ID | MEM_RCU,
7772 	},
7773 };
7774 static const struct bpf_reg_types percpu_btf_ptr_types = {
7775 	.types = {
7776 		PTR_TO_BTF_ID | MEM_PERCPU,
7777 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
7778 	}
7779 };
7780 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
7781 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
7782 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
7783 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
7784 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
7785 static const struct bpf_reg_types dynptr_types = {
7786 	.types = {
7787 		PTR_TO_STACK,
7788 		CONST_PTR_TO_DYNPTR,
7789 	}
7790 };
7791 
7792 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
7793 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
7794 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
7795 	[ARG_CONST_SIZE]		= &scalar_types,
7796 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
7797 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
7798 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
7799 	[ARG_PTR_TO_CTX]		= &context_types,
7800 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
7801 #ifdef CONFIG_NET
7802 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
7803 #endif
7804 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
7805 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
7806 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
7807 	[ARG_PTR_TO_MEM]		= &mem_types,
7808 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
7809 	[ARG_PTR_TO_INT]		= &int_ptr_types,
7810 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
7811 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
7812 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
7813 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
7814 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
7815 	[ARG_PTR_TO_TIMER]		= &timer_types,
7816 	[ARG_PTR_TO_KPTR]		= &kptr_types,
7817 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
7818 };
7819 
7820 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
7821 			  enum bpf_arg_type arg_type,
7822 			  const u32 *arg_btf_id,
7823 			  struct bpf_call_arg_meta *meta)
7824 {
7825 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7826 	enum bpf_reg_type expected, type = reg->type;
7827 	const struct bpf_reg_types *compatible;
7828 	int i, j;
7829 
7830 	compatible = compatible_reg_types[base_type(arg_type)];
7831 	if (!compatible) {
7832 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
7833 		return -EFAULT;
7834 	}
7835 
7836 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
7837 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
7838 	 *
7839 	 * Same for MAYBE_NULL:
7840 	 *
7841 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
7842 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
7843 	 *
7844 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
7845 	 *
7846 	 * Therefore we fold these flags depending on the arg_type before comparison.
7847 	 */
7848 	if (arg_type & MEM_RDONLY)
7849 		type &= ~MEM_RDONLY;
7850 	if (arg_type & PTR_MAYBE_NULL)
7851 		type &= ~PTR_MAYBE_NULL;
7852 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
7853 		type &= ~DYNPTR_TYPE_FLAG_MASK;
7854 
7855 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type))
7856 		type &= ~MEM_ALLOC;
7857 
7858 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
7859 		expected = compatible->types[i];
7860 		if (expected == NOT_INIT)
7861 			break;
7862 
7863 		if (type == expected)
7864 			goto found;
7865 	}
7866 
7867 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
7868 	for (j = 0; j + 1 < i; j++)
7869 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
7870 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
7871 	return -EACCES;
7872 
7873 found:
7874 	if (base_type(reg->type) != PTR_TO_BTF_ID)
7875 		return 0;
7876 
7877 	if (compatible == &mem_types) {
7878 		if (!(arg_type & MEM_RDONLY)) {
7879 			verbose(env,
7880 				"%s() may write into memory pointed by R%d type=%s\n",
7881 				func_id_name(meta->func_id),
7882 				regno, reg_type_str(env, reg->type));
7883 			return -EACCES;
7884 		}
7885 		return 0;
7886 	}
7887 
7888 	switch ((int)reg->type) {
7889 	case PTR_TO_BTF_ID:
7890 	case PTR_TO_BTF_ID | PTR_TRUSTED:
7891 	case PTR_TO_BTF_ID | MEM_RCU:
7892 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
7893 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
7894 	{
7895 		/* For bpf_sk_release, it needs to match against first member
7896 		 * 'struct sock_common', hence make an exception for it. This
7897 		 * allows bpf_sk_release to work for multiple socket types.
7898 		 */
7899 		bool strict_type_match = arg_type_is_release(arg_type) &&
7900 					 meta->func_id != BPF_FUNC_sk_release;
7901 
7902 		if (type_may_be_null(reg->type) &&
7903 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
7904 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
7905 			return -EACCES;
7906 		}
7907 
7908 		if (!arg_btf_id) {
7909 			if (!compatible->btf_id) {
7910 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
7911 				return -EFAULT;
7912 			}
7913 			arg_btf_id = compatible->btf_id;
7914 		}
7915 
7916 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
7917 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
7918 				return -EACCES;
7919 		} else {
7920 			if (arg_btf_id == BPF_PTR_POISON) {
7921 				verbose(env, "verifier internal error:");
7922 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
7923 					regno);
7924 				return -EACCES;
7925 			}
7926 
7927 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
7928 						  btf_vmlinux, *arg_btf_id,
7929 						  strict_type_match)) {
7930 				verbose(env, "R%d is of type %s but %s is expected\n",
7931 					regno, btf_type_name(reg->btf, reg->btf_id),
7932 					btf_type_name(btf_vmlinux, *arg_btf_id));
7933 				return -EACCES;
7934 			}
7935 		}
7936 		break;
7937 	}
7938 	case PTR_TO_BTF_ID | MEM_ALLOC:
7939 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
7940 		    meta->func_id != BPF_FUNC_kptr_xchg) {
7941 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
7942 			return -EFAULT;
7943 		}
7944 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
7945 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
7946 				return -EACCES;
7947 		}
7948 		break;
7949 	case PTR_TO_BTF_ID | MEM_PERCPU:
7950 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
7951 		/* Handled by helper specific checks */
7952 		break;
7953 	default:
7954 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
7955 		return -EFAULT;
7956 	}
7957 	return 0;
7958 }
7959 
7960 static struct btf_field *
7961 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
7962 {
7963 	struct btf_field *field;
7964 	struct btf_record *rec;
7965 
7966 	rec = reg_btf_record(reg);
7967 	if (!rec)
7968 		return NULL;
7969 
7970 	field = btf_record_find(rec, off, fields);
7971 	if (!field)
7972 		return NULL;
7973 
7974 	return field;
7975 }
7976 
7977 int check_func_arg_reg_off(struct bpf_verifier_env *env,
7978 			   const struct bpf_reg_state *reg, int regno,
7979 			   enum bpf_arg_type arg_type)
7980 {
7981 	u32 type = reg->type;
7982 
7983 	/* When referenced register is passed to release function, its fixed
7984 	 * offset must be 0.
7985 	 *
7986 	 * We will check arg_type_is_release reg has ref_obj_id when storing
7987 	 * meta->release_regno.
7988 	 */
7989 	if (arg_type_is_release(arg_type)) {
7990 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
7991 		 * may not directly point to the object being released, but to
7992 		 * dynptr pointing to such object, which might be at some offset
7993 		 * on the stack. In that case, we simply to fallback to the
7994 		 * default handling.
7995 		 */
7996 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
7997 			return 0;
7998 
7999 		/* Doing check_ptr_off_reg check for the offset will catch this
8000 		 * because fixed_off_ok is false, but checking here allows us
8001 		 * to give the user a better error message.
8002 		 */
8003 		if (reg->off) {
8004 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
8005 				regno);
8006 			return -EINVAL;
8007 		}
8008 		return __check_ptr_off_reg(env, reg, regno, false);
8009 	}
8010 
8011 	switch (type) {
8012 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
8013 	case PTR_TO_STACK:
8014 	case PTR_TO_PACKET:
8015 	case PTR_TO_PACKET_META:
8016 	case PTR_TO_MAP_KEY:
8017 	case PTR_TO_MAP_VALUE:
8018 	case PTR_TO_MEM:
8019 	case PTR_TO_MEM | MEM_RDONLY:
8020 	case PTR_TO_MEM | MEM_RINGBUF:
8021 	case PTR_TO_BUF:
8022 	case PTR_TO_BUF | MEM_RDONLY:
8023 	case SCALAR_VALUE:
8024 		return 0;
8025 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8026 	 * fixed offset.
8027 	 */
8028 	case PTR_TO_BTF_ID:
8029 	case PTR_TO_BTF_ID | MEM_ALLOC:
8030 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8031 	case PTR_TO_BTF_ID | MEM_RCU:
8032 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8033 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8034 		/* When referenced PTR_TO_BTF_ID is passed to release function,
8035 		 * its fixed offset must be 0. In the other cases, fixed offset
8036 		 * can be non-zero. This was already checked above. So pass
8037 		 * fixed_off_ok as true to allow fixed offset for all other
8038 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8039 		 * still need to do checks instead of returning.
8040 		 */
8041 		return __check_ptr_off_reg(env, reg, regno, true);
8042 	default:
8043 		return __check_ptr_off_reg(env, reg, regno, false);
8044 	}
8045 }
8046 
8047 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8048 						const struct bpf_func_proto *fn,
8049 						struct bpf_reg_state *regs)
8050 {
8051 	struct bpf_reg_state *state = NULL;
8052 	int i;
8053 
8054 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8055 		if (arg_type_is_dynptr(fn->arg_type[i])) {
8056 			if (state) {
8057 				verbose(env, "verifier internal error: multiple dynptr args\n");
8058 				return NULL;
8059 			}
8060 			state = &regs[BPF_REG_1 + i];
8061 		}
8062 
8063 	if (!state)
8064 		verbose(env, "verifier internal error: no dynptr arg found\n");
8065 
8066 	return state;
8067 }
8068 
8069 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8070 {
8071 	struct bpf_func_state *state = func(env, reg);
8072 	int spi;
8073 
8074 	if (reg->type == CONST_PTR_TO_DYNPTR)
8075 		return reg->id;
8076 	spi = dynptr_get_spi(env, reg);
8077 	if (spi < 0)
8078 		return spi;
8079 	return state->stack[spi].spilled_ptr.id;
8080 }
8081 
8082 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8083 {
8084 	struct bpf_func_state *state = func(env, reg);
8085 	int spi;
8086 
8087 	if (reg->type == CONST_PTR_TO_DYNPTR)
8088 		return reg->ref_obj_id;
8089 	spi = dynptr_get_spi(env, reg);
8090 	if (spi < 0)
8091 		return spi;
8092 	return state->stack[spi].spilled_ptr.ref_obj_id;
8093 }
8094 
8095 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8096 					    struct bpf_reg_state *reg)
8097 {
8098 	struct bpf_func_state *state = func(env, reg);
8099 	int spi;
8100 
8101 	if (reg->type == CONST_PTR_TO_DYNPTR)
8102 		return reg->dynptr.type;
8103 
8104 	spi = __get_spi(reg->off);
8105 	if (spi < 0) {
8106 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8107 		return BPF_DYNPTR_TYPE_INVALID;
8108 	}
8109 
8110 	return state->stack[spi].spilled_ptr.dynptr.type;
8111 }
8112 
8113 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8114 			  struct bpf_call_arg_meta *meta,
8115 			  const struct bpf_func_proto *fn,
8116 			  int insn_idx)
8117 {
8118 	u32 regno = BPF_REG_1 + arg;
8119 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8120 	enum bpf_arg_type arg_type = fn->arg_type[arg];
8121 	enum bpf_reg_type type = reg->type;
8122 	u32 *arg_btf_id = NULL;
8123 	int err = 0;
8124 
8125 	if (arg_type == ARG_DONTCARE)
8126 		return 0;
8127 
8128 	err = check_reg_arg(env, regno, SRC_OP);
8129 	if (err)
8130 		return err;
8131 
8132 	if (arg_type == ARG_ANYTHING) {
8133 		if (is_pointer_value(env, regno)) {
8134 			verbose(env, "R%d leaks addr into helper function\n",
8135 				regno);
8136 			return -EACCES;
8137 		}
8138 		return 0;
8139 	}
8140 
8141 	if (type_is_pkt_pointer(type) &&
8142 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8143 		verbose(env, "helper access to the packet is not allowed\n");
8144 		return -EACCES;
8145 	}
8146 
8147 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8148 		err = resolve_map_arg_type(env, meta, &arg_type);
8149 		if (err)
8150 			return err;
8151 	}
8152 
8153 	if (register_is_null(reg) && type_may_be_null(arg_type))
8154 		/* A NULL register has a SCALAR_VALUE type, so skip
8155 		 * type checking.
8156 		 */
8157 		goto skip_type_check;
8158 
8159 	/* arg_btf_id and arg_size are in a union. */
8160 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8161 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8162 		arg_btf_id = fn->arg_btf_id[arg];
8163 
8164 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8165 	if (err)
8166 		return err;
8167 
8168 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
8169 	if (err)
8170 		return err;
8171 
8172 skip_type_check:
8173 	if (arg_type_is_release(arg_type)) {
8174 		if (arg_type_is_dynptr(arg_type)) {
8175 			struct bpf_func_state *state = func(env, reg);
8176 			int spi;
8177 
8178 			/* Only dynptr created on stack can be released, thus
8179 			 * the get_spi and stack state checks for spilled_ptr
8180 			 * should only be done before process_dynptr_func for
8181 			 * PTR_TO_STACK.
8182 			 */
8183 			if (reg->type == PTR_TO_STACK) {
8184 				spi = dynptr_get_spi(env, reg);
8185 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8186 					verbose(env, "arg %d is an unacquired reference\n", regno);
8187 					return -EINVAL;
8188 				}
8189 			} else {
8190 				verbose(env, "cannot release unowned const bpf_dynptr\n");
8191 				return -EINVAL;
8192 			}
8193 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
8194 			verbose(env, "R%d must be referenced when passed to release function\n",
8195 				regno);
8196 			return -EINVAL;
8197 		}
8198 		if (meta->release_regno) {
8199 			verbose(env, "verifier internal error: more than one release argument\n");
8200 			return -EFAULT;
8201 		}
8202 		meta->release_regno = regno;
8203 	}
8204 
8205 	if (reg->ref_obj_id) {
8206 		if (meta->ref_obj_id) {
8207 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8208 				regno, reg->ref_obj_id,
8209 				meta->ref_obj_id);
8210 			return -EFAULT;
8211 		}
8212 		meta->ref_obj_id = reg->ref_obj_id;
8213 	}
8214 
8215 	switch (base_type(arg_type)) {
8216 	case ARG_CONST_MAP_PTR:
8217 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8218 		if (meta->map_ptr) {
8219 			/* Use map_uid (which is unique id of inner map) to reject:
8220 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8221 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8222 			 * if (inner_map1 && inner_map2) {
8223 			 *     timer = bpf_map_lookup_elem(inner_map1);
8224 			 *     if (timer)
8225 			 *         // mismatch would have been allowed
8226 			 *         bpf_timer_init(timer, inner_map2);
8227 			 * }
8228 			 *
8229 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
8230 			 */
8231 			if (meta->map_ptr != reg->map_ptr ||
8232 			    meta->map_uid != reg->map_uid) {
8233 				verbose(env,
8234 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8235 					meta->map_uid, reg->map_uid);
8236 				return -EINVAL;
8237 			}
8238 		}
8239 		meta->map_ptr = reg->map_ptr;
8240 		meta->map_uid = reg->map_uid;
8241 		break;
8242 	case ARG_PTR_TO_MAP_KEY:
8243 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
8244 		 * check that [key, key + map->key_size) are within
8245 		 * stack limits and initialized
8246 		 */
8247 		if (!meta->map_ptr) {
8248 			/* in function declaration map_ptr must come before
8249 			 * map_key, so that it's verified and known before
8250 			 * we have to check map_key here. Otherwise it means
8251 			 * that kernel subsystem misconfigured verifier
8252 			 */
8253 			verbose(env, "invalid map_ptr to access map->key\n");
8254 			return -EACCES;
8255 		}
8256 		err = check_helper_mem_access(env, regno,
8257 					      meta->map_ptr->key_size, false,
8258 					      NULL);
8259 		break;
8260 	case ARG_PTR_TO_MAP_VALUE:
8261 		if (type_may_be_null(arg_type) && register_is_null(reg))
8262 			return 0;
8263 
8264 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
8265 		 * check [value, value + map->value_size) validity
8266 		 */
8267 		if (!meta->map_ptr) {
8268 			/* kernel subsystem misconfigured verifier */
8269 			verbose(env, "invalid map_ptr to access map->value\n");
8270 			return -EACCES;
8271 		}
8272 		meta->raw_mode = arg_type & MEM_UNINIT;
8273 		err = check_helper_mem_access(env, regno,
8274 					      meta->map_ptr->value_size, false,
8275 					      meta);
8276 		break;
8277 	case ARG_PTR_TO_PERCPU_BTF_ID:
8278 		if (!reg->btf_id) {
8279 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8280 			return -EACCES;
8281 		}
8282 		meta->ret_btf = reg->btf;
8283 		meta->ret_btf_id = reg->btf_id;
8284 		break;
8285 	case ARG_PTR_TO_SPIN_LOCK:
8286 		if (in_rbtree_lock_required_cb(env)) {
8287 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8288 			return -EACCES;
8289 		}
8290 		if (meta->func_id == BPF_FUNC_spin_lock) {
8291 			err = process_spin_lock(env, regno, true);
8292 			if (err)
8293 				return err;
8294 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
8295 			err = process_spin_lock(env, regno, false);
8296 			if (err)
8297 				return err;
8298 		} else {
8299 			verbose(env, "verifier internal error\n");
8300 			return -EFAULT;
8301 		}
8302 		break;
8303 	case ARG_PTR_TO_TIMER:
8304 		err = process_timer_func(env, regno, meta);
8305 		if (err)
8306 			return err;
8307 		break;
8308 	case ARG_PTR_TO_FUNC:
8309 		meta->subprogno = reg->subprogno;
8310 		break;
8311 	case ARG_PTR_TO_MEM:
8312 		/* The access to this pointer is only checked when we hit the
8313 		 * next is_mem_size argument below.
8314 		 */
8315 		meta->raw_mode = arg_type & MEM_UNINIT;
8316 		if (arg_type & MEM_FIXED_SIZE) {
8317 			err = check_helper_mem_access(env, regno,
8318 						      fn->arg_size[arg], false,
8319 						      meta);
8320 		}
8321 		break;
8322 	case ARG_CONST_SIZE:
8323 		err = check_mem_size_reg(env, reg, regno, false, meta);
8324 		break;
8325 	case ARG_CONST_SIZE_OR_ZERO:
8326 		err = check_mem_size_reg(env, reg, regno, true, meta);
8327 		break;
8328 	case ARG_PTR_TO_DYNPTR:
8329 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
8330 		if (err)
8331 			return err;
8332 		break;
8333 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
8334 		if (!tnum_is_const(reg->var_off)) {
8335 			verbose(env, "R%d is not a known constant'\n",
8336 				regno);
8337 			return -EACCES;
8338 		}
8339 		meta->mem_size = reg->var_off.value;
8340 		err = mark_chain_precision(env, regno);
8341 		if (err)
8342 			return err;
8343 		break;
8344 	case ARG_PTR_TO_INT:
8345 	case ARG_PTR_TO_LONG:
8346 	{
8347 		int size = int_ptr_type_to_size(arg_type);
8348 
8349 		err = check_helper_mem_access(env, regno, size, false, meta);
8350 		if (err)
8351 			return err;
8352 		err = check_ptr_alignment(env, reg, 0, size, true);
8353 		break;
8354 	}
8355 	case ARG_PTR_TO_CONST_STR:
8356 	{
8357 		struct bpf_map *map = reg->map_ptr;
8358 		int map_off;
8359 		u64 map_addr;
8360 		char *str_ptr;
8361 
8362 		if (!bpf_map_is_rdonly(map)) {
8363 			verbose(env, "R%d does not point to a readonly map'\n", regno);
8364 			return -EACCES;
8365 		}
8366 
8367 		if (!tnum_is_const(reg->var_off)) {
8368 			verbose(env, "R%d is not a constant address'\n", regno);
8369 			return -EACCES;
8370 		}
8371 
8372 		if (!map->ops->map_direct_value_addr) {
8373 			verbose(env, "no direct value access support for this map type\n");
8374 			return -EACCES;
8375 		}
8376 
8377 		err = check_map_access(env, regno, reg->off,
8378 				       map->value_size - reg->off, false,
8379 				       ACCESS_HELPER);
8380 		if (err)
8381 			return err;
8382 
8383 		map_off = reg->off + reg->var_off.value;
8384 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8385 		if (err) {
8386 			verbose(env, "direct value access on string failed\n");
8387 			return err;
8388 		}
8389 
8390 		str_ptr = (char *)(long)(map_addr);
8391 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8392 			verbose(env, "string is not zero-terminated\n");
8393 			return -EINVAL;
8394 		}
8395 		break;
8396 	}
8397 	case ARG_PTR_TO_KPTR:
8398 		err = process_kptr_func(env, regno, meta);
8399 		if (err)
8400 			return err;
8401 		break;
8402 	}
8403 
8404 	return err;
8405 }
8406 
8407 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8408 {
8409 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
8410 	enum bpf_prog_type type = resolve_prog_type(env->prog);
8411 
8412 	if (func_id != BPF_FUNC_map_update_elem)
8413 		return false;
8414 
8415 	/* It's not possible to get access to a locked struct sock in these
8416 	 * contexts, so updating is safe.
8417 	 */
8418 	switch (type) {
8419 	case BPF_PROG_TYPE_TRACING:
8420 		if (eatype == BPF_TRACE_ITER)
8421 			return true;
8422 		break;
8423 	case BPF_PROG_TYPE_SOCKET_FILTER:
8424 	case BPF_PROG_TYPE_SCHED_CLS:
8425 	case BPF_PROG_TYPE_SCHED_ACT:
8426 	case BPF_PROG_TYPE_XDP:
8427 	case BPF_PROG_TYPE_SK_REUSEPORT:
8428 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
8429 	case BPF_PROG_TYPE_SK_LOOKUP:
8430 		return true;
8431 	default:
8432 		break;
8433 	}
8434 
8435 	verbose(env, "cannot update sockmap in this context\n");
8436 	return false;
8437 }
8438 
8439 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8440 {
8441 	return env->prog->jit_requested &&
8442 	       bpf_jit_supports_subprog_tailcalls();
8443 }
8444 
8445 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8446 					struct bpf_map *map, int func_id)
8447 {
8448 	if (!map)
8449 		return 0;
8450 
8451 	/* We need a two way check, first is from map perspective ... */
8452 	switch (map->map_type) {
8453 	case BPF_MAP_TYPE_PROG_ARRAY:
8454 		if (func_id != BPF_FUNC_tail_call)
8455 			goto error;
8456 		break;
8457 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8458 		if (func_id != BPF_FUNC_perf_event_read &&
8459 		    func_id != BPF_FUNC_perf_event_output &&
8460 		    func_id != BPF_FUNC_skb_output &&
8461 		    func_id != BPF_FUNC_perf_event_read_value &&
8462 		    func_id != BPF_FUNC_xdp_output)
8463 			goto error;
8464 		break;
8465 	case BPF_MAP_TYPE_RINGBUF:
8466 		if (func_id != BPF_FUNC_ringbuf_output &&
8467 		    func_id != BPF_FUNC_ringbuf_reserve &&
8468 		    func_id != BPF_FUNC_ringbuf_query &&
8469 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8470 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8471 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
8472 			goto error;
8473 		break;
8474 	case BPF_MAP_TYPE_USER_RINGBUF:
8475 		if (func_id != BPF_FUNC_user_ringbuf_drain)
8476 			goto error;
8477 		break;
8478 	case BPF_MAP_TYPE_STACK_TRACE:
8479 		if (func_id != BPF_FUNC_get_stackid)
8480 			goto error;
8481 		break;
8482 	case BPF_MAP_TYPE_CGROUP_ARRAY:
8483 		if (func_id != BPF_FUNC_skb_under_cgroup &&
8484 		    func_id != BPF_FUNC_current_task_under_cgroup)
8485 			goto error;
8486 		break;
8487 	case BPF_MAP_TYPE_CGROUP_STORAGE:
8488 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
8489 		if (func_id != BPF_FUNC_get_local_storage)
8490 			goto error;
8491 		break;
8492 	case BPF_MAP_TYPE_DEVMAP:
8493 	case BPF_MAP_TYPE_DEVMAP_HASH:
8494 		if (func_id != BPF_FUNC_redirect_map &&
8495 		    func_id != BPF_FUNC_map_lookup_elem)
8496 			goto error;
8497 		break;
8498 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
8499 	 * appear.
8500 	 */
8501 	case BPF_MAP_TYPE_CPUMAP:
8502 		if (func_id != BPF_FUNC_redirect_map)
8503 			goto error;
8504 		break;
8505 	case BPF_MAP_TYPE_XSKMAP:
8506 		if (func_id != BPF_FUNC_redirect_map &&
8507 		    func_id != BPF_FUNC_map_lookup_elem)
8508 			goto error;
8509 		break;
8510 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
8511 	case BPF_MAP_TYPE_HASH_OF_MAPS:
8512 		if (func_id != BPF_FUNC_map_lookup_elem)
8513 			goto error;
8514 		break;
8515 	case BPF_MAP_TYPE_SOCKMAP:
8516 		if (func_id != BPF_FUNC_sk_redirect_map &&
8517 		    func_id != BPF_FUNC_sock_map_update &&
8518 		    func_id != BPF_FUNC_map_delete_elem &&
8519 		    func_id != BPF_FUNC_msg_redirect_map &&
8520 		    func_id != BPF_FUNC_sk_select_reuseport &&
8521 		    func_id != BPF_FUNC_map_lookup_elem &&
8522 		    !may_update_sockmap(env, func_id))
8523 			goto error;
8524 		break;
8525 	case BPF_MAP_TYPE_SOCKHASH:
8526 		if (func_id != BPF_FUNC_sk_redirect_hash &&
8527 		    func_id != BPF_FUNC_sock_hash_update &&
8528 		    func_id != BPF_FUNC_map_delete_elem &&
8529 		    func_id != BPF_FUNC_msg_redirect_hash &&
8530 		    func_id != BPF_FUNC_sk_select_reuseport &&
8531 		    func_id != BPF_FUNC_map_lookup_elem &&
8532 		    !may_update_sockmap(env, func_id))
8533 			goto error;
8534 		break;
8535 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
8536 		if (func_id != BPF_FUNC_sk_select_reuseport)
8537 			goto error;
8538 		break;
8539 	case BPF_MAP_TYPE_QUEUE:
8540 	case BPF_MAP_TYPE_STACK:
8541 		if (func_id != BPF_FUNC_map_peek_elem &&
8542 		    func_id != BPF_FUNC_map_pop_elem &&
8543 		    func_id != BPF_FUNC_map_push_elem)
8544 			goto error;
8545 		break;
8546 	case BPF_MAP_TYPE_SK_STORAGE:
8547 		if (func_id != BPF_FUNC_sk_storage_get &&
8548 		    func_id != BPF_FUNC_sk_storage_delete &&
8549 		    func_id != BPF_FUNC_kptr_xchg)
8550 			goto error;
8551 		break;
8552 	case BPF_MAP_TYPE_INODE_STORAGE:
8553 		if (func_id != BPF_FUNC_inode_storage_get &&
8554 		    func_id != BPF_FUNC_inode_storage_delete &&
8555 		    func_id != BPF_FUNC_kptr_xchg)
8556 			goto error;
8557 		break;
8558 	case BPF_MAP_TYPE_TASK_STORAGE:
8559 		if (func_id != BPF_FUNC_task_storage_get &&
8560 		    func_id != BPF_FUNC_task_storage_delete &&
8561 		    func_id != BPF_FUNC_kptr_xchg)
8562 			goto error;
8563 		break;
8564 	case BPF_MAP_TYPE_CGRP_STORAGE:
8565 		if (func_id != BPF_FUNC_cgrp_storage_get &&
8566 		    func_id != BPF_FUNC_cgrp_storage_delete &&
8567 		    func_id != BPF_FUNC_kptr_xchg)
8568 			goto error;
8569 		break;
8570 	case BPF_MAP_TYPE_BLOOM_FILTER:
8571 		if (func_id != BPF_FUNC_map_peek_elem &&
8572 		    func_id != BPF_FUNC_map_push_elem)
8573 			goto error;
8574 		break;
8575 	default:
8576 		break;
8577 	}
8578 
8579 	/* ... and second from the function itself. */
8580 	switch (func_id) {
8581 	case BPF_FUNC_tail_call:
8582 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
8583 			goto error;
8584 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
8585 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
8586 			return -EINVAL;
8587 		}
8588 		break;
8589 	case BPF_FUNC_perf_event_read:
8590 	case BPF_FUNC_perf_event_output:
8591 	case BPF_FUNC_perf_event_read_value:
8592 	case BPF_FUNC_skb_output:
8593 	case BPF_FUNC_xdp_output:
8594 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
8595 			goto error;
8596 		break;
8597 	case BPF_FUNC_ringbuf_output:
8598 	case BPF_FUNC_ringbuf_reserve:
8599 	case BPF_FUNC_ringbuf_query:
8600 	case BPF_FUNC_ringbuf_reserve_dynptr:
8601 	case BPF_FUNC_ringbuf_submit_dynptr:
8602 	case BPF_FUNC_ringbuf_discard_dynptr:
8603 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
8604 			goto error;
8605 		break;
8606 	case BPF_FUNC_user_ringbuf_drain:
8607 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
8608 			goto error;
8609 		break;
8610 	case BPF_FUNC_get_stackid:
8611 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
8612 			goto error;
8613 		break;
8614 	case BPF_FUNC_current_task_under_cgroup:
8615 	case BPF_FUNC_skb_under_cgroup:
8616 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
8617 			goto error;
8618 		break;
8619 	case BPF_FUNC_redirect_map:
8620 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
8621 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
8622 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
8623 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
8624 			goto error;
8625 		break;
8626 	case BPF_FUNC_sk_redirect_map:
8627 	case BPF_FUNC_msg_redirect_map:
8628 	case BPF_FUNC_sock_map_update:
8629 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
8630 			goto error;
8631 		break;
8632 	case BPF_FUNC_sk_redirect_hash:
8633 	case BPF_FUNC_msg_redirect_hash:
8634 	case BPF_FUNC_sock_hash_update:
8635 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
8636 			goto error;
8637 		break;
8638 	case BPF_FUNC_get_local_storage:
8639 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
8640 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
8641 			goto error;
8642 		break;
8643 	case BPF_FUNC_sk_select_reuseport:
8644 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
8645 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
8646 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
8647 			goto error;
8648 		break;
8649 	case BPF_FUNC_map_pop_elem:
8650 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8651 		    map->map_type != BPF_MAP_TYPE_STACK)
8652 			goto error;
8653 		break;
8654 	case BPF_FUNC_map_peek_elem:
8655 	case BPF_FUNC_map_push_elem:
8656 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8657 		    map->map_type != BPF_MAP_TYPE_STACK &&
8658 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
8659 			goto error;
8660 		break;
8661 	case BPF_FUNC_map_lookup_percpu_elem:
8662 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
8663 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8664 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
8665 			goto error;
8666 		break;
8667 	case BPF_FUNC_sk_storage_get:
8668 	case BPF_FUNC_sk_storage_delete:
8669 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
8670 			goto error;
8671 		break;
8672 	case BPF_FUNC_inode_storage_get:
8673 	case BPF_FUNC_inode_storage_delete:
8674 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
8675 			goto error;
8676 		break;
8677 	case BPF_FUNC_task_storage_get:
8678 	case BPF_FUNC_task_storage_delete:
8679 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
8680 			goto error;
8681 		break;
8682 	case BPF_FUNC_cgrp_storage_get:
8683 	case BPF_FUNC_cgrp_storage_delete:
8684 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
8685 			goto error;
8686 		break;
8687 	default:
8688 		break;
8689 	}
8690 
8691 	return 0;
8692 error:
8693 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
8694 		map->map_type, func_id_name(func_id), func_id);
8695 	return -EINVAL;
8696 }
8697 
8698 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
8699 {
8700 	int count = 0;
8701 
8702 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
8703 		count++;
8704 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
8705 		count++;
8706 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
8707 		count++;
8708 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
8709 		count++;
8710 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
8711 		count++;
8712 
8713 	/* We only support one arg being in raw mode at the moment,
8714 	 * which is sufficient for the helper functions we have
8715 	 * right now.
8716 	 */
8717 	return count <= 1;
8718 }
8719 
8720 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
8721 {
8722 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
8723 	bool has_size = fn->arg_size[arg] != 0;
8724 	bool is_next_size = false;
8725 
8726 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
8727 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
8728 
8729 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
8730 		return is_next_size;
8731 
8732 	return has_size == is_next_size || is_next_size == is_fixed;
8733 }
8734 
8735 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
8736 {
8737 	/* bpf_xxx(..., buf, len) call will access 'len'
8738 	 * bytes from memory 'buf'. Both arg types need
8739 	 * to be paired, so make sure there's no buggy
8740 	 * helper function specification.
8741 	 */
8742 	if (arg_type_is_mem_size(fn->arg1_type) ||
8743 	    check_args_pair_invalid(fn, 0) ||
8744 	    check_args_pair_invalid(fn, 1) ||
8745 	    check_args_pair_invalid(fn, 2) ||
8746 	    check_args_pair_invalid(fn, 3) ||
8747 	    check_args_pair_invalid(fn, 4))
8748 		return false;
8749 
8750 	return true;
8751 }
8752 
8753 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
8754 {
8755 	int i;
8756 
8757 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
8758 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
8759 			return !!fn->arg_btf_id[i];
8760 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
8761 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
8762 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
8763 		    /* arg_btf_id and arg_size are in a union. */
8764 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
8765 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
8766 			return false;
8767 	}
8768 
8769 	return true;
8770 }
8771 
8772 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
8773 {
8774 	return check_raw_mode_ok(fn) &&
8775 	       check_arg_pair_ok(fn) &&
8776 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
8777 }
8778 
8779 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
8780  * are now invalid, so turn them into unknown SCALAR_VALUE.
8781  *
8782  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
8783  * since these slices point to packet data.
8784  */
8785 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
8786 {
8787 	struct bpf_func_state *state;
8788 	struct bpf_reg_state *reg;
8789 
8790 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8791 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
8792 			mark_reg_invalid(env, reg);
8793 	}));
8794 }
8795 
8796 enum {
8797 	AT_PKT_END = -1,
8798 	BEYOND_PKT_END = -2,
8799 };
8800 
8801 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
8802 {
8803 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8804 	struct bpf_reg_state *reg = &state->regs[regn];
8805 
8806 	if (reg->type != PTR_TO_PACKET)
8807 		/* PTR_TO_PACKET_META is not supported yet */
8808 		return;
8809 
8810 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
8811 	 * How far beyond pkt_end it goes is unknown.
8812 	 * if (!range_open) it's the case of pkt >= pkt_end
8813 	 * if (range_open) it's the case of pkt > pkt_end
8814 	 * hence this pointer is at least 1 byte bigger than pkt_end
8815 	 */
8816 	if (range_open)
8817 		reg->range = BEYOND_PKT_END;
8818 	else
8819 		reg->range = AT_PKT_END;
8820 }
8821 
8822 /* The pointer with the specified id has released its reference to kernel
8823  * resources. Identify all copies of the same pointer and clear the reference.
8824  */
8825 static int release_reference(struct bpf_verifier_env *env,
8826 			     int ref_obj_id)
8827 {
8828 	struct bpf_func_state *state;
8829 	struct bpf_reg_state *reg;
8830 	int err;
8831 
8832 	err = release_reference_state(cur_func(env), ref_obj_id);
8833 	if (err)
8834 		return err;
8835 
8836 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8837 		if (reg->ref_obj_id == ref_obj_id)
8838 			mark_reg_invalid(env, reg);
8839 	}));
8840 
8841 	return 0;
8842 }
8843 
8844 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
8845 {
8846 	struct bpf_func_state *unused;
8847 	struct bpf_reg_state *reg;
8848 
8849 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
8850 		if (type_is_non_owning_ref(reg->type))
8851 			mark_reg_invalid(env, reg);
8852 	}));
8853 }
8854 
8855 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
8856 				    struct bpf_reg_state *regs)
8857 {
8858 	int i;
8859 
8860 	/* after the call registers r0 - r5 were scratched */
8861 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
8862 		mark_reg_not_init(env, regs, caller_saved[i]);
8863 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8864 	}
8865 }
8866 
8867 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
8868 				   struct bpf_func_state *caller,
8869 				   struct bpf_func_state *callee,
8870 				   int insn_idx);
8871 
8872 static int set_callee_state(struct bpf_verifier_env *env,
8873 			    struct bpf_func_state *caller,
8874 			    struct bpf_func_state *callee, int insn_idx);
8875 
8876 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8877 			     int *insn_idx, int subprog,
8878 			     set_callee_state_fn set_callee_state_cb)
8879 {
8880 	struct bpf_verifier_state *state = env->cur_state;
8881 	struct bpf_func_state *caller, *callee;
8882 	int err;
8883 
8884 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
8885 		verbose(env, "the call stack of %d frames is too deep\n",
8886 			state->curframe + 2);
8887 		return -E2BIG;
8888 	}
8889 
8890 	caller = state->frame[state->curframe];
8891 	if (state->frame[state->curframe + 1]) {
8892 		verbose(env, "verifier bug. Frame %d already allocated\n",
8893 			state->curframe + 1);
8894 		return -EFAULT;
8895 	}
8896 
8897 	err = btf_check_subprog_call(env, subprog, caller->regs);
8898 	if (err == -EFAULT)
8899 		return err;
8900 	if (subprog_is_global(env, subprog)) {
8901 		if (err) {
8902 			verbose(env, "Caller passes invalid args into func#%d\n",
8903 				subprog);
8904 			return err;
8905 		} else {
8906 			if (env->log.level & BPF_LOG_LEVEL)
8907 				verbose(env,
8908 					"Func#%d is global and valid. Skipping.\n",
8909 					subprog);
8910 			clear_caller_saved_regs(env, caller->regs);
8911 
8912 			/* All global functions return a 64-bit SCALAR_VALUE */
8913 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
8914 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
8915 
8916 			/* continue with next insn after call */
8917 			return 0;
8918 		}
8919 	}
8920 
8921 	/* set_callee_state is used for direct subprog calls, but we are
8922 	 * interested in validating only BPF helpers that can call subprogs as
8923 	 * callbacks
8924 	 */
8925 	if (set_callee_state_cb != set_callee_state) {
8926 		if (bpf_pseudo_kfunc_call(insn) &&
8927 		    !is_callback_calling_kfunc(insn->imm)) {
8928 			verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
8929 				func_id_name(insn->imm), insn->imm);
8930 			return -EFAULT;
8931 		} else if (!bpf_pseudo_kfunc_call(insn) &&
8932 			   !is_callback_calling_function(insn->imm)) { /* helper */
8933 			verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
8934 				func_id_name(insn->imm), insn->imm);
8935 			return -EFAULT;
8936 		}
8937 	}
8938 
8939 	if (insn->code == (BPF_JMP | BPF_CALL) &&
8940 	    insn->src_reg == 0 &&
8941 	    insn->imm == BPF_FUNC_timer_set_callback) {
8942 		struct bpf_verifier_state *async_cb;
8943 
8944 		/* there is no real recursion here. timer callbacks are async */
8945 		env->subprog_info[subprog].is_async_cb = true;
8946 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
8947 					 *insn_idx, subprog);
8948 		if (!async_cb)
8949 			return -EFAULT;
8950 		callee = async_cb->frame[0];
8951 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
8952 
8953 		/* Convert bpf_timer_set_callback() args into timer callback args */
8954 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
8955 		if (err)
8956 			return err;
8957 
8958 		clear_caller_saved_regs(env, caller->regs);
8959 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
8960 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
8961 		/* continue with next insn after call */
8962 		return 0;
8963 	}
8964 
8965 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
8966 	if (!callee)
8967 		return -ENOMEM;
8968 	state->frame[state->curframe + 1] = callee;
8969 
8970 	/* callee cannot access r0, r6 - r9 for reading and has to write
8971 	 * into its own stack before reading from it.
8972 	 * callee can read/write into caller's stack
8973 	 */
8974 	init_func_state(env, callee,
8975 			/* remember the callsite, it will be used by bpf_exit */
8976 			*insn_idx /* callsite */,
8977 			state->curframe + 1 /* frameno within this callchain */,
8978 			subprog /* subprog number within this prog */);
8979 
8980 	/* Transfer references to the callee */
8981 	err = copy_reference_state(callee, caller);
8982 	if (err)
8983 		goto err_out;
8984 
8985 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
8986 	if (err)
8987 		goto err_out;
8988 
8989 	clear_caller_saved_regs(env, caller->regs);
8990 
8991 	/* only increment it after check_reg_arg() finished */
8992 	state->curframe++;
8993 
8994 	/* and go analyze first insn of the callee */
8995 	*insn_idx = env->subprog_info[subprog].start - 1;
8996 
8997 	if (env->log.level & BPF_LOG_LEVEL) {
8998 		verbose(env, "caller:\n");
8999 		print_verifier_state(env, caller, true);
9000 		verbose(env, "callee:\n");
9001 		print_verifier_state(env, callee, true);
9002 	}
9003 	return 0;
9004 
9005 err_out:
9006 	free_func_state(callee);
9007 	state->frame[state->curframe + 1] = NULL;
9008 	return err;
9009 }
9010 
9011 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
9012 				   struct bpf_func_state *caller,
9013 				   struct bpf_func_state *callee)
9014 {
9015 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
9016 	 *      void *callback_ctx, u64 flags);
9017 	 * callback_fn(struct bpf_map *map, void *key, void *value,
9018 	 *      void *callback_ctx);
9019 	 */
9020 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9021 
9022 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9023 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9024 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9025 
9026 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9027 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9028 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9029 
9030 	/* pointer to stack or null */
9031 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9032 
9033 	/* unused */
9034 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9035 	return 0;
9036 }
9037 
9038 static int set_callee_state(struct bpf_verifier_env *env,
9039 			    struct bpf_func_state *caller,
9040 			    struct bpf_func_state *callee, int insn_idx)
9041 {
9042 	int i;
9043 
9044 	/* copy r1 - r5 args that callee can access.  The copy includes parent
9045 	 * pointers, which connects us up to the liveness chain
9046 	 */
9047 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9048 		callee->regs[i] = caller->regs[i];
9049 	return 0;
9050 }
9051 
9052 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9053 			   int *insn_idx)
9054 {
9055 	int subprog, target_insn;
9056 
9057 	target_insn = *insn_idx + insn->imm + 1;
9058 	subprog = find_subprog(env, target_insn);
9059 	if (subprog < 0) {
9060 		verbose(env, "verifier bug. No program starts at insn %d\n",
9061 			target_insn);
9062 		return -EFAULT;
9063 	}
9064 
9065 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
9066 }
9067 
9068 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9069 				       struct bpf_func_state *caller,
9070 				       struct bpf_func_state *callee,
9071 				       int insn_idx)
9072 {
9073 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9074 	struct bpf_map *map;
9075 	int err;
9076 
9077 	if (bpf_map_ptr_poisoned(insn_aux)) {
9078 		verbose(env, "tail_call abusing map_ptr\n");
9079 		return -EINVAL;
9080 	}
9081 
9082 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
9083 	if (!map->ops->map_set_for_each_callback_args ||
9084 	    !map->ops->map_for_each_callback) {
9085 		verbose(env, "callback function not allowed for map\n");
9086 		return -ENOTSUPP;
9087 	}
9088 
9089 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9090 	if (err)
9091 		return err;
9092 
9093 	callee->in_callback_fn = true;
9094 	callee->callback_ret_range = tnum_range(0, 1);
9095 	return 0;
9096 }
9097 
9098 static int set_loop_callback_state(struct bpf_verifier_env *env,
9099 				   struct bpf_func_state *caller,
9100 				   struct bpf_func_state *callee,
9101 				   int insn_idx)
9102 {
9103 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9104 	 *	    u64 flags);
9105 	 * callback_fn(u32 index, void *callback_ctx);
9106 	 */
9107 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9108 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9109 
9110 	/* unused */
9111 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9112 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9113 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9114 
9115 	callee->in_callback_fn = true;
9116 	callee->callback_ret_range = tnum_range(0, 1);
9117 	return 0;
9118 }
9119 
9120 static int set_timer_callback_state(struct bpf_verifier_env *env,
9121 				    struct bpf_func_state *caller,
9122 				    struct bpf_func_state *callee,
9123 				    int insn_idx)
9124 {
9125 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9126 
9127 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9128 	 * callback_fn(struct bpf_map *map, void *key, void *value);
9129 	 */
9130 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9131 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9132 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
9133 
9134 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9135 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9136 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
9137 
9138 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9139 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9140 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
9141 
9142 	/* unused */
9143 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9144 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9145 	callee->in_async_callback_fn = true;
9146 	callee->callback_ret_range = tnum_range(0, 1);
9147 	return 0;
9148 }
9149 
9150 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9151 				       struct bpf_func_state *caller,
9152 				       struct bpf_func_state *callee,
9153 				       int insn_idx)
9154 {
9155 	/* bpf_find_vma(struct task_struct *task, u64 addr,
9156 	 *               void *callback_fn, void *callback_ctx, u64 flags)
9157 	 * (callback_fn)(struct task_struct *task,
9158 	 *               struct vm_area_struct *vma, void *callback_ctx);
9159 	 */
9160 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9161 
9162 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9163 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9164 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
9165 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
9166 
9167 	/* pointer to stack or null */
9168 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9169 
9170 	/* unused */
9171 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9172 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9173 	callee->in_callback_fn = true;
9174 	callee->callback_ret_range = tnum_range(0, 1);
9175 	return 0;
9176 }
9177 
9178 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9179 					   struct bpf_func_state *caller,
9180 					   struct bpf_func_state *callee,
9181 					   int insn_idx)
9182 {
9183 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9184 	 *			  callback_ctx, u64 flags);
9185 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
9186 	 */
9187 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
9188 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9189 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9190 
9191 	/* unused */
9192 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9193 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9194 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9195 
9196 	callee->in_callback_fn = true;
9197 	callee->callback_ret_range = tnum_range(0, 1);
9198 	return 0;
9199 }
9200 
9201 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9202 					 struct bpf_func_state *caller,
9203 					 struct bpf_func_state *callee,
9204 					 int insn_idx)
9205 {
9206 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
9207 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9208 	 *
9209 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
9210 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9211 	 * by this point, so look at 'root'
9212 	 */
9213 	struct btf_field *field;
9214 
9215 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9216 				      BPF_RB_ROOT);
9217 	if (!field || !field->graph_root.value_btf_id)
9218 		return -EFAULT;
9219 
9220 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9221 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9222 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9223 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9224 
9225 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9226 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9227 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9228 	callee->in_callback_fn = true;
9229 	callee->callback_ret_range = tnum_range(0, 1);
9230 	return 0;
9231 }
9232 
9233 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9234 
9235 /* Are we currently verifying the callback for a rbtree helper that must
9236  * be called with lock held? If so, no need to complain about unreleased
9237  * lock
9238  */
9239 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9240 {
9241 	struct bpf_verifier_state *state = env->cur_state;
9242 	struct bpf_insn *insn = env->prog->insnsi;
9243 	struct bpf_func_state *callee;
9244 	int kfunc_btf_id;
9245 
9246 	if (!state->curframe)
9247 		return false;
9248 
9249 	callee = state->frame[state->curframe];
9250 
9251 	if (!callee->in_callback_fn)
9252 		return false;
9253 
9254 	kfunc_btf_id = insn[callee->callsite].imm;
9255 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9256 }
9257 
9258 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9259 {
9260 	struct bpf_verifier_state *state = env->cur_state;
9261 	struct bpf_func_state *caller, *callee;
9262 	struct bpf_reg_state *r0;
9263 	int err;
9264 
9265 	callee = state->frame[state->curframe];
9266 	r0 = &callee->regs[BPF_REG_0];
9267 	if (r0->type == PTR_TO_STACK) {
9268 		/* technically it's ok to return caller's stack pointer
9269 		 * (or caller's caller's pointer) back to the caller,
9270 		 * since these pointers are valid. Only current stack
9271 		 * pointer will be invalid as soon as function exits,
9272 		 * but let's be conservative
9273 		 */
9274 		verbose(env, "cannot return stack pointer to the caller\n");
9275 		return -EINVAL;
9276 	}
9277 
9278 	caller = state->frame[state->curframe - 1];
9279 	if (callee->in_callback_fn) {
9280 		/* enforce R0 return value range [0, 1]. */
9281 		struct tnum range = callee->callback_ret_range;
9282 
9283 		if (r0->type != SCALAR_VALUE) {
9284 			verbose(env, "R0 not a scalar value\n");
9285 			return -EACCES;
9286 		}
9287 		if (!tnum_in(range, r0->var_off)) {
9288 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
9289 			return -EINVAL;
9290 		}
9291 	} else {
9292 		/* return to the caller whatever r0 had in the callee */
9293 		caller->regs[BPF_REG_0] = *r0;
9294 	}
9295 
9296 	/* callback_fn frame should have released its own additions to parent's
9297 	 * reference state at this point, or check_reference_leak would
9298 	 * complain, hence it must be the same as the caller. There is no need
9299 	 * to copy it back.
9300 	 */
9301 	if (!callee->in_callback_fn) {
9302 		/* Transfer references to the caller */
9303 		err = copy_reference_state(caller, callee);
9304 		if (err)
9305 			return err;
9306 	}
9307 
9308 	*insn_idx = callee->callsite + 1;
9309 	if (env->log.level & BPF_LOG_LEVEL) {
9310 		verbose(env, "returning from callee:\n");
9311 		print_verifier_state(env, callee, true);
9312 		verbose(env, "to caller at %d:\n", *insn_idx);
9313 		print_verifier_state(env, caller, true);
9314 	}
9315 	/* clear everything in the callee */
9316 	free_func_state(callee);
9317 	state->frame[state->curframe--] = NULL;
9318 	return 0;
9319 }
9320 
9321 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
9322 				   int func_id,
9323 				   struct bpf_call_arg_meta *meta)
9324 {
9325 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
9326 
9327 	if (ret_type != RET_INTEGER)
9328 		return;
9329 
9330 	switch (func_id) {
9331 	case BPF_FUNC_get_stack:
9332 	case BPF_FUNC_get_task_stack:
9333 	case BPF_FUNC_probe_read_str:
9334 	case BPF_FUNC_probe_read_kernel_str:
9335 	case BPF_FUNC_probe_read_user_str:
9336 		ret_reg->smax_value = meta->msize_max_value;
9337 		ret_reg->s32_max_value = meta->msize_max_value;
9338 		ret_reg->smin_value = -MAX_ERRNO;
9339 		ret_reg->s32_min_value = -MAX_ERRNO;
9340 		reg_bounds_sync(ret_reg);
9341 		break;
9342 	case BPF_FUNC_get_smp_processor_id:
9343 		ret_reg->umax_value = nr_cpu_ids - 1;
9344 		ret_reg->u32_max_value = nr_cpu_ids - 1;
9345 		ret_reg->smax_value = nr_cpu_ids - 1;
9346 		ret_reg->s32_max_value = nr_cpu_ids - 1;
9347 		ret_reg->umin_value = 0;
9348 		ret_reg->u32_min_value = 0;
9349 		ret_reg->smin_value = 0;
9350 		ret_reg->s32_min_value = 0;
9351 		reg_bounds_sync(ret_reg);
9352 		break;
9353 	}
9354 }
9355 
9356 static int
9357 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9358 		int func_id, int insn_idx)
9359 {
9360 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9361 	struct bpf_map *map = meta->map_ptr;
9362 
9363 	if (func_id != BPF_FUNC_tail_call &&
9364 	    func_id != BPF_FUNC_map_lookup_elem &&
9365 	    func_id != BPF_FUNC_map_update_elem &&
9366 	    func_id != BPF_FUNC_map_delete_elem &&
9367 	    func_id != BPF_FUNC_map_push_elem &&
9368 	    func_id != BPF_FUNC_map_pop_elem &&
9369 	    func_id != BPF_FUNC_map_peek_elem &&
9370 	    func_id != BPF_FUNC_for_each_map_elem &&
9371 	    func_id != BPF_FUNC_redirect_map &&
9372 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
9373 		return 0;
9374 
9375 	if (map == NULL) {
9376 		verbose(env, "kernel subsystem misconfigured verifier\n");
9377 		return -EINVAL;
9378 	}
9379 
9380 	/* In case of read-only, some additional restrictions
9381 	 * need to be applied in order to prevent altering the
9382 	 * state of the map from program side.
9383 	 */
9384 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
9385 	    (func_id == BPF_FUNC_map_delete_elem ||
9386 	     func_id == BPF_FUNC_map_update_elem ||
9387 	     func_id == BPF_FUNC_map_push_elem ||
9388 	     func_id == BPF_FUNC_map_pop_elem)) {
9389 		verbose(env, "write into map forbidden\n");
9390 		return -EACCES;
9391 	}
9392 
9393 	if (!BPF_MAP_PTR(aux->map_ptr_state))
9394 		bpf_map_ptr_store(aux, meta->map_ptr,
9395 				  !meta->map_ptr->bypass_spec_v1);
9396 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
9397 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
9398 				  !meta->map_ptr->bypass_spec_v1);
9399 	return 0;
9400 }
9401 
9402 static int
9403 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9404 		int func_id, int insn_idx)
9405 {
9406 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9407 	struct bpf_reg_state *regs = cur_regs(env), *reg;
9408 	struct bpf_map *map = meta->map_ptr;
9409 	u64 val, max;
9410 	int err;
9411 
9412 	if (func_id != BPF_FUNC_tail_call)
9413 		return 0;
9414 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
9415 		verbose(env, "kernel subsystem misconfigured verifier\n");
9416 		return -EINVAL;
9417 	}
9418 
9419 	reg = &regs[BPF_REG_3];
9420 	val = reg->var_off.value;
9421 	max = map->max_entries;
9422 
9423 	if (!(register_is_const(reg) && val < max)) {
9424 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9425 		return 0;
9426 	}
9427 
9428 	err = mark_chain_precision(env, BPF_REG_3);
9429 	if (err)
9430 		return err;
9431 	if (bpf_map_key_unseen(aux))
9432 		bpf_map_key_store(aux, val);
9433 	else if (!bpf_map_key_poisoned(aux) &&
9434 		  bpf_map_key_immediate(aux) != val)
9435 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9436 	return 0;
9437 }
9438 
9439 static int check_reference_leak(struct bpf_verifier_env *env)
9440 {
9441 	struct bpf_func_state *state = cur_func(env);
9442 	bool refs_lingering = false;
9443 	int i;
9444 
9445 	if (state->frameno && !state->in_callback_fn)
9446 		return 0;
9447 
9448 	for (i = 0; i < state->acquired_refs; i++) {
9449 		if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
9450 			continue;
9451 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
9452 			state->refs[i].id, state->refs[i].insn_idx);
9453 		refs_lingering = true;
9454 	}
9455 	return refs_lingering ? -EINVAL : 0;
9456 }
9457 
9458 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
9459 				   struct bpf_reg_state *regs)
9460 {
9461 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
9462 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
9463 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
9464 	struct bpf_bprintf_data data = {};
9465 	int err, fmt_map_off, num_args;
9466 	u64 fmt_addr;
9467 	char *fmt;
9468 
9469 	/* data must be an array of u64 */
9470 	if (data_len_reg->var_off.value % 8)
9471 		return -EINVAL;
9472 	num_args = data_len_reg->var_off.value / 8;
9473 
9474 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
9475 	 * and map_direct_value_addr is set.
9476 	 */
9477 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
9478 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
9479 						  fmt_map_off);
9480 	if (err) {
9481 		verbose(env, "verifier bug\n");
9482 		return -EFAULT;
9483 	}
9484 	fmt = (char *)(long)fmt_addr + fmt_map_off;
9485 
9486 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
9487 	 * can focus on validating the format specifiers.
9488 	 */
9489 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
9490 	if (err < 0)
9491 		verbose(env, "Invalid format string\n");
9492 
9493 	return err;
9494 }
9495 
9496 static int check_get_func_ip(struct bpf_verifier_env *env)
9497 {
9498 	enum bpf_prog_type type = resolve_prog_type(env->prog);
9499 	int func_id = BPF_FUNC_get_func_ip;
9500 
9501 	if (type == BPF_PROG_TYPE_TRACING) {
9502 		if (!bpf_prog_has_trampoline(env->prog)) {
9503 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
9504 				func_id_name(func_id), func_id);
9505 			return -ENOTSUPP;
9506 		}
9507 		return 0;
9508 	} else if (type == BPF_PROG_TYPE_KPROBE) {
9509 		return 0;
9510 	}
9511 
9512 	verbose(env, "func %s#%d not supported for program type %d\n",
9513 		func_id_name(func_id), func_id, type);
9514 	return -ENOTSUPP;
9515 }
9516 
9517 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
9518 {
9519 	return &env->insn_aux_data[env->insn_idx];
9520 }
9521 
9522 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
9523 {
9524 	struct bpf_reg_state *regs = cur_regs(env);
9525 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
9526 	bool reg_is_null = register_is_null(reg);
9527 
9528 	if (reg_is_null)
9529 		mark_chain_precision(env, BPF_REG_4);
9530 
9531 	return reg_is_null;
9532 }
9533 
9534 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
9535 {
9536 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
9537 
9538 	if (!state->initialized) {
9539 		state->initialized = 1;
9540 		state->fit_for_inline = loop_flag_is_zero(env);
9541 		state->callback_subprogno = subprogno;
9542 		return;
9543 	}
9544 
9545 	if (!state->fit_for_inline)
9546 		return;
9547 
9548 	state->fit_for_inline = (loop_flag_is_zero(env) &&
9549 				 state->callback_subprogno == subprogno);
9550 }
9551 
9552 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9553 			     int *insn_idx_p)
9554 {
9555 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9556 	const struct bpf_func_proto *fn = NULL;
9557 	enum bpf_return_type ret_type;
9558 	enum bpf_type_flag ret_flag;
9559 	struct bpf_reg_state *regs;
9560 	struct bpf_call_arg_meta meta;
9561 	int insn_idx = *insn_idx_p;
9562 	bool changes_data;
9563 	int i, err, func_id;
9564 
9565 	/* find function prototype */
9566 	func_id = insn->imm;
9567 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
9568 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
9569 			func_id);
9570 		return -EINVAL;
9571 	}
9572 
9573 	if (env->ops->get_func_proto)
9574 		fn = env->ops->get_func_proto(func_id, env->prog);
9575 	if (!fn) {
9576 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
9577 			func_id);
9578 		return -EINVAL;
9579 	}
9580 
9581 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
9582 	if (!env->prog->gpl_compatible && fn->gpl_only) {
9583 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
9584 		return -EINVAL;
9585 	}
9586 
9587 	if (fn->allowed && !fn->allowed(env->prog)) {
9588 		verbose(env, "helper call is not allowed in probe\n");
9589 		return -EINVAL;
9590 	}
9591 
9592 	if (!env->prog->aux->sleepable && fn->might_sleep) {
9593 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
9594 		return -EINVAL;
9595 	}
9596 
9597 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
9598 	changes_data = bpf_helper_changes_pkt_data(fn->func);
9599 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
9600 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
9601 			func_id_name(func_id), func_id);
9602 		return -EINVAL;
9603 	}
9604 
9605 	memset(&meta, 0, sizeof(meta));
9606 	meta.pkt_access = fn->pkt_access;
9607 
9608 	err = check_func_proto(fn, func_id);
9609 	if (err) {
9610 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
9611 			func_id_name(func_id), func_id);
9612 		return err;
9613 	}
9614 
9615 	if (env->cur_state->active_rcu_lock) {
9616 		if (fn->might_sleep) {
9617 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
9618 				func_id_name(func_id), func_id);
9619 			return -EINVAL;
9620 		}
9621 
9622 		if (env->prog->aux->sleepable && is_storage_get_function(func_id))
9623 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
9624 	}
9625 
9626 	meta.func_id = func_id;
9627 	/* check args */
9628 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
9629 		err = check_func_arg(env, i, &meta, fn, insn_idx);
9630 		if (err)
9631 			return err;
9632 	}
9633 
9634 	err = record_func_map(env, &meta, func_id, insn_idx);
9635 	if (err)
9636 		return err;
9637 
9638 	err = record_func_key(env, &meta, func_id, insn_idx);
9639 	if (err)
9640 		return err;
9641 
9642 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
9643 	 * is inferred from register state.
9644 	 */
9645 	for (i = 0; i < meta.access_size; i++) {
9646 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
9647 				       BPF_WRITE, -1, false, false);
9648 		if (err)
9649 			return err;
9650 	}
9651 
9652 	regs = cur_regs(env);
9653 
9654 	if (meta.release_regno) {
9655 		err = -EINVAL;
9656 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
9657 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
9658 		 * is safe to do directly.
9659 		 */
9660 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
9661 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
9662 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
9663 				return -EFAULT;
9664 			}
9665 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
9666 		} else if (meta.ref_obj_id) {
9667 			err = release_reference(env, meta.ref_obj_id);
9668 		} else if (register_is_null(&regs[meta.release_regno])) {
9669 			/* meta.ref_obj_id can only be 0 if register that is meant to be
9670 			 * released is NULL, which must be > R0.
9671 			 */
9672 			err = 0;
9673 		}
9674 		if (err) {
9675 			verbose(env, "func %s#%d reference has not been acquired before\n",
9676 				func_id_name(func_id), func_id);
9677 			return err;
9678 		}
9679 	}
9680 
9681 	switch (func_id) {
9682 	case BPF_FUNC_tail_call:
9683 		err = check_reference_leak(env);
9684 		if (err) {
9685 			verbose(env, "tail_call would lead to reference leak\n");
9686 			return err;
9687 		}
9688 		break;
9689 	case BPF_FUNC_get_local_storage:
9690 		/* check that flags argument in get_local_storage(map, flags) is 0,
9691 		 * this is required because get_local_storage() can't return an error.
9692 		 */
9693 		if (!register_is_null(&regs[BPF_REG_2])) {
9694 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
9695 			return -EINVAL;
9696 		}
9697 		break;
9698 	case BPF_FUNC_for_each_map_elem:
9699 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9700 					set_map_elem_callback_state);
9701 		break;
9702 	case BPF_FUNC_timer_set_callback:
9703 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9704 					set_timer_callback_state);
9705 		break;
9706 	case BPF_FUNC_find_vma:
9707 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9708 					set_find_vma_callback_state);
9709 		break;
9710 	case BPF_FUNC_snprintf:
9711 		err = check_bpf_snprintf_call(env, regs);
9712 		break;
9713 	case BPF_FUNC_loop:
9714 		update_loop_inline_state(env, meta.subprogno);
9715 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9716 					set_loop_callback_state);
9717 		break;
9718 	case BPF_FUNC_dynptr_from_mem:
9719 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
9720 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
9721 				reg_type_str(env, regs[BPF_REG_1].type));
9722 			return -EACCES;
9723 		}
9724 		break;
9725 	case BPF_FUNC_set_retval:
9726 		if (prog_type == BPF_PROG_TYPE_LSM &&
9727 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
9728 			if (!env->prog->aux->attach_func_proto->type) {
9729 				/* Make sure programs that attach to void
9730 				 * hooks don't try to modify return value.
9731 				 */
9732 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
9733 				return -EINVAL;
9734 			}
9735 		}
9736 		break;
9737 	case BPF_FUNC_dynptr_data:
9738 	{
9739 		struct bpf_reg_state *reg;
9740 		int id, ref_obj_id;
9741 
9742 		reg = get_dynptr_arg_reg(env, fn, regs);
9743 		if (!reg)
9744 			return -EFAULT;
9745 
9746 
9747 		if (meta.dynptr_id) {
9748 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
9749 			return -EFAULT;
9750 		}
9751 		if (meta.ref_obj_id) {
9752 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
9753 			return -EFAULT;
9754 		}
9755 
9756 		id = dynptr_id(env, reg);
9757 		if (id < 0) {
9758 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
9759 			return id;
9760 		}
9761 
9762 		ref_obj_id = dynptr_ref_obj_id(env, reg);
9763 		if (ref_obj_id < 0) {
9764 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
9765 			return ref_obj_id;
9766 		}
9767 
9768 		meta.dynptr_id = id;
9769 		meta.ref_obj_id = ref_obj_id;
9770 
9771 		break;
9772 	}
9773 	case BPF_FUNC_dynptr_write:
9774 	{
9775 		enum bpf_dynptr_type dynptr_type;
9776 		struct bpf_reg_state *reg;
9777 
9778 		reg = get_dynptr_arg_reg(env, fn, regs);
9779 		if (!reg)
9780 			return -EFAULT;
9781 
9782 		dynptr_type = dynptr_get_type(env, reg);
9783 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
9784 			return -EFAULT;
9785 
9786 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
9787 			/* this will trigger clear_all_pkt_pointers(), which will
9788 			 * invalidate all dynptr slices associated with the skb
9789 			 */
9790 			changes_data = true;
9791 
9792 		break;
9793 	}
9794 	case BPF_FUNC_user_ringbuf_drain:
9795 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9796 					set_user_ringbuf_callback_state);
9797 		break;
9798 	}
9799 
9800 	if (err)
9801 		return err;
9802 
9803 	/* reset caller saved regs */
9804 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9805 		mark_reg_not_init(env, regs, caller_saved[i]);
9806 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9807 	}
9808 
9809 	/* helper call returns 64-bit value. */
9810 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9811 
9812 	/* update return register (already marked as written above) */
9813 	ret_type = fn->ret_type;
9814 	ret_flag = type_flag(ret_type);
9815 
9816 	switch (base_type(ret_type)) {
9817 	case RET_INTEGER:
9818 		/* sets type to SCALAR_VALUE */
9819 		mark_reg_unknown(env, regs, BPF_REG_0);
9820 		break;
9821 	case RET_VOID:
9822 		regs[BPF_REG_0].type = NOT_INIT;
9823 		break;
9824 	case RET_PTR_TO_MAP_VALUE:
9825 		/* There is no offset yet applied, variable or fixed */
9826 		mark_reg_known_zero(env, regs, BPF_REG_0);
9827 		/* remember map_ptr, so that check_map_access()
9828 		 * can check 'value_size' boundary of memory access
9829 		 * to map element returned from bpf_map_lookup_elem()
9830 		 */
9831 		if (meta.map_ptr == NULL) {
9832 			verbose(env,
9833 				"kernel subsystem misconfigured verifier\n");
9834 			return -EINVAL;
9835 		}
9836 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
9837 		regs[BPF_REG_0].map_uid = meta.map_uid;
9838 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
9839 		if (!type_may_be_null(ret_type) &&
9840 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
9841 			regs[BPF_REG_0].id = ++env->id_gen;
9842 		}
9843 		break;
9844 	case RET_PTR_TO_SOCKET:
9845 		mark_reg_known_zero(env, regs, BPF_REG_0);
9846 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
9847 		break;
9848 	case RET_PTR_TO_SOCK_COMMON:
9849 		mark_reg_known_zero(env, regs, BPF_REG_0);
9850 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
9851 		break;
9852 	case RET_PTR_TO_TCP_SOCK:
9853 		mark_reg_known_zero(env, regs, BPF_REG_0);
9854 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
9855 		break;
9856 	case RET_PTR_TO_MEM:
9857 		mark_reg_known_zero(env, regs, BPF_REG_0);
9858 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
9859 		regs[BPF_REG_0].mem_size = meta.mem_size;
9860 		break;
9861 	case RET_PTR_TO_MEM_OR_BTF_ID:
9862 	{
9863 		const struct btf_type *t;
9864 
9865 		mark_reg_known_zero(env, regs, BPF_REG_0);
9866 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
9867 		if (!btf_type_is_struct(t)) {
9868 			u32 tsize;
9869 			const struct btf_type *ret;
9870 			const char *tname;
9871 
9872 			/* resolve the type size of ksym. */
9873 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
9874 			if (IS_ERR(ret)) {
9875 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
9876 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
9877 					tname, PTR_ERR(ret));
9878 				return -EINVAL;
9879 			}
9880 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
9881 			regs[BPF_REG_0].mem_size = tsize;
9882 		} else {
9883 			/* MEM_RDONLY may be carried from ret_flag, but it
9884 			 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
9885 			 * it will confuse the check of PTR_TO_BTF_ID in
9886 			 * check_mem_access().
9887 			 */
9888 			ret_flag &= ~MEM_RDONLY;
9889 
9890 			regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
9891 			regs[BPF_REG_0].btf = meta.ret_btf;
9892 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
9893 		}
9894 		break;
9895 	}
9896 	case RET_PTR_TO_BTF_ID:
9897 	{
9898 		struct btf *ret_btf;
9899 		int ret_btf_id;
9900 
9901 		mark_reg_known_zero(env, regs, BPF_REG_0);
9902 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
9903 		if (func_id == BPF_FUNC_kptr_xchg) {
9904 			ret_btf = meta.kptr_field->kptr.btf;
9905 			ret_btf_id = meta.kptr_field->kptr.btf_id;
9906 			if (!btf_is_kernel(ret_btf))
9907 				regs[BPF_REG_0].type |= MEM_ALLOC;
9908 		} else {
9909 			if (fn->ret_btf_id == BPF_PTR_POISON) {
9910 				verbose(env, "verifier internal error:");
9911 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
9912 					func_id_name(func_id));
9913 				return -EINVAL;
9914 			}
9915 			ret_btf = btf_vmlinux;
9916 			ret_btf_id = *fn->ret_btf_id;
9917 		}
9918 		if (ret_btf_id == 0) {
9919 			verbose(env, "invalid return type %u of func %s#%d\n",
9920 				base_type(ret_type), func_id_name(func_id),
9921 				func_id);
9922 			return -EINVAL;
9923 		}
9924 		regs[BPF_REG_0].btf = ret_btf;
9925 		regs[BPF_REG_0].btf_id = ret_btf_id;
9926 		break;
9927 	}
9928 	default:
9929 		verbose(env, "unknown return type %u of func %s#%d\n",
9930 			base_type(ret_type), func_id_name(func_id), func_id);
9931 		return -EINVAL;
9932 	}
9933 
9934 	if (type_may_be_null(regs[BPF_REG_0].type))
9935 		regs[BPF_REG_0].id = ++env->id_gen;
9936 
9937 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
9938 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
9939 			func_id_name(func_id), func_id);
9940 		return -EFAULT;
9941 	}
9942 
9943 	if (is_dynptr_ref_function(func_id))
9944 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
9945 
9946 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
9947 		/* For release_reference() */
9948 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
9949 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
9950 		int id = acquire_reference_state(env, insn_idx);
9951 
9952 		if (id < 0)
9953 			return id;
9954 		/* For mark_ptr_or_null_reg() */
9955 		regs[BPF_REG_0].id = id;
9956 		/* For release_reference() */
9957 		regs[BPF_REG_0].ref_obj_id = id;
9958 	}
9959 
9960 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
9961 
9962 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
9963 	if (err)
9964 		return err;
9965 
9966 	if ((func_id == BPF_FUNC_get_stack ||
9967 	     func_id == BPF_FUNC_get_task_stack) &&
9968 	    !env->prog->has_callchain_buf) {
9969 		const char *err_str;
9970 
9971 #ifdef CONFIG_PERF_EVENTS
9972 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
9973 		err_str = "cannot get callchain buffer for func %s#%d\n";
9974 #else
9975 		err = -ENOTSUPP;
9976 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
9977 #endif
9978 		if (err) {
9979 			verbose(env, err_str, func_id_name(func_id), func_id);
9980 			return err;
9981 		}
9982 
9983 		env->prog->has_callchain_buf = true;
9984 	}
9985 
9986 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
9987 		env->prog->call_get_stack = true;
9988 
9989 	if (func_id == BPF_FUNC_get_func_ip) {
9990 		if (check_get_func_ip(env))
9991 			return -ENOTSUPP;
9992 		env->prog->call_get_func_ip = true;
9993 	}
9994 
9995 	if (changes_data)
9996 		clear_all_pkt_pointers(env);
9997 	return 0;
9998 }
9999 
10000 /* mark_btf_func_reg_size() is used when the reg size is determined by
10001  * the BTF func_proto's return value size and argument.
10002  */
10003 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
10004 				   size_t reg_size)
10005 {
10006 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
10007 
10008 	if (regno == BPF_REG_0) {
10009 		/* Function return value */
10010 		reg->live |= REG_LIVE_WRITTEN;
10011 		reg->subreg_def = reg_size == sizeof(u64) ?
10012 			DEF_NOT_SUBREG : env->insn_idx + 1;
10013 	} else {
10014 		/* Function argument */
10015 		if (reg_size == sizeof(u64)) {
10016 			mark_insn_zext(env, reg);
10017 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
10018 		} else {
10019 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10020 		}
10021 	}
10022 }
10023 
10024 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10025 {
10026 	return meta->kfunc_flags & KF_ACQUIRE;
10027 }
10028 
10029 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10030 {
10031 	return meta->kfunc_flags & KF_RELEASE;
10032 }
10033 
10034 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10035 {
10036 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10037 }
10038 
10039 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10040 {
10041 	return meta->kfunc_flags & KF_SLEEPABLE;
10042 }
10043 
10044 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10045 {
10046 	return meta->kfunc_flags & KF_DESTRUCTIVE;
10047 }
10048 
10049 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10050 {
10051 	return meta->kfunc_flags & KF_RCU;
10052 }
10053 
10054 static bool __kfunc_param_match_suffix(const struct btf *btf,
10055 				       const struct btf_param *arg,
10056 				       const char *suffix)
10057 {
10058 	int suffix_len = strlen(suffix), len;
10059 	const char *param_name;
10060 
10061 	/* In the future, this can be ported to use BTF tagging */
10062 	param_name = btf_name_by_offset(btf, arg->name_off);
10063 	if (str_is_empty(param_name))
10064 		return false;
10065 	len = strlen(param_name);
10066 	if (len < suffix_len)
10067 		return false;
10068 	param_name += len - suffix_len;
10069 	return !strncmp(param_name, suffix, suffix_len);
10070 }
10071 
10072 static bool is_kfunc_arg_mem_size(const struct btf *btf,
10073 				  const struct btf_param *arg,
10074 				  const struct bpf_reg_state *reg)
10075 {
10076 	const struct btf_type *t;
10077 
10078 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10079 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10080 		return false;
10081 
10082 	return __kfunc_param_match_suffix(btf, arg, "__sz");
10083 }
10084 
10085 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
10086 					const struct btf_param *arg,
10087 					const struct bpf_reg_state *reg)
10088 {
10089 	const struct btf_type *t;
10090 
10091 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10092 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10093 		return false;
10094 
10095 	return __kfunc_param_match_suffix(btf, arg, "__szk");
10096 }
10097 
10098 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
10099 {
10100 	return __kfunc_param_match_suffix(btf, arg, "__opt");
10101 }
10102 
10103 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
10104 {
10105 	return __kfunc_param_match_suffix(btf, arg, "__k");
10106 }
10107 
10108 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
10109 {
10110 	return __kfunc_param_match_suffix(btf, arg, "__ign");
10111 }
10112 
10113 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
10114 {
10115 	return __kfunc_param_match_suffix(btf, arg, "__alloc");
10116 }
10117 
10118 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
10119 {
10120 	return __kfunc_param_match_suffix(btf, arg, "__uninit");
10121 }
10122 
10123 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
10124 {
10125 	return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
10126 }
10127 
10128 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
10129 					  const struct btf_param *arg,
10130 					  const char *name)
10131 {
10132 	int len, target_len = strlen(name);
10133 	const char *param_name;
10134 
10135 	param_name = btf_name_by_offset(btf, arg->name_off);
10136 	if (str_is_empty(param_name))
10137 		return false;
10138 	len = strlen(param_name);
10139 	if (len != target_len)
10140 		return false;
10141 	if (strcmp(param_name, name))
10142 		return false;
10143 
10144 	return true;
10145 }
10146 
10147 enum {
10148 	KF_ARG_DYNPTR_ID,
10149 	KF_ARG_LIST_HEAD_ID,
10150 	KF_ARG_LIST_NODE_ID,
10151 	KF_ARG_RB_ROOT_ID,
10152 	KF_ARG_RB_NODE_ID,
10153 };
10154 
10155 BTF_ID_LIST(kf_arg_btf_ids)
10156 BTF_ID(struct, bpf_dynptr_kern)
10157 BTF_ID(struct, bpf_list_head)
10158 BTF_ID(struct, bpf_list_node)
10159 BTF_ID(struct, bpf_rb_root)
10160 BTF_ID(struct, bpf_rb_node)
10161 
10162 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
10163 				    const struct btf_param *arg, int type)
10164 {
10165 	const struct btf_type *t;
10166 	u32 res_id;
10167 
10168 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10169 	if (!t)
10170 		return false;
10171 	if (!btf_type_is_ptr(t))
10172 		return false;
10173 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
10174 	if (!t)
10175 		return false;
10176 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
10177 }
10178 
10179 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
10180 {
10181 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
10182 }
10183 
10184 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
10185 {
10186 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
10187 }
10188 
10189 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
10190 {
10191 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
10192 }
10193 
10194 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
10195 {
10196 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
10197 }
10198 
10199 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
10200 {
10201 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
10202 }
10203 
10204 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10205 				  const struct btf_param *arg)
10206 {
10207 	const struct btf_type *t;
10208 
10209 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10210 	if (!t)
10211 		return false;
10212 
10213 	return true;
10214 }
10215 
10216 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
10217 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10218 					const struct btf *btf,
10219 					const struct btf_type *t, int rec)
10220 {
10221 	const struct btf_type *member_type;
10222 	const struct btf_member *member;
10223 	u32 i;
10224 
10225 	if (!btf_type_is_struct(t))
10226 		return false;
10227 
10228 	for_each_member(i, t, member) {
10229 		const struct btf_array *array;
10230 
10231 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
10232 		if (btf_type_is_struct(member_type)) {
10233 			if (rec >= 3) {
10234 				verbose(env, "max struct nesting depth exceeded\n");
10235 				return false;
10236 			}
10237 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
10238 				return false;
10239 			continue;
10240 		}
10241 		if (btf_type_is_array(member_type)) {
10242 			array = btf_array(member_type);
10243 			if (!array->nelems)
10244 				return false;
10245 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
10246 			if (!btf_type_is_scalar(member_type))
10247 				return false;
10248 			continue;
10249 		}
10250 		if (!btf_type_is_scalar(member_type))
10251 			return false;
10252 	}
10253 	return true;
10254 }
10255 
10256 enum kfunc_ptr_arg_type {
10257 	KF_ARG_PTR_TO_CTX,
10258 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
10259 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
10260 	KF_ARG_PTR_TO_DYNPTR,
10261 	KF_ARG_PTR_TO_ITER,
10262 	KF_ARG_PTR_TO_LIST_HEAD,
10263 	KF_ARG_PTR_TO_LIST_NODE,
10264 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
10265 	KF_ARG_PTR_TO_MEM,
10266 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
10267 	KF_ARG_PTR_TO_CALLBACK,
10268 	KF_ARG_PTR_TO_RB_ROOT,
10269 	KF_ARG_PTR_TO_RB_NODE,
10270 };
10271 
10272 enum special_kfunc_type {
10273 	KF_bpf_obj_new_impl,
10274 	KF_bpf_obj_drop_impl,
10275 	KF_bpf_refcount_acquire_impl,
10276 	KF_bpf_list_push_front_impl,
10277 	KF_bpf_list_push_back_impl,
10278 	KF_bpf_list_pop_front,
10279 	KF_bpf_list_pop_back,
10280 	KF_bpf_cast_to_kern_ctx,
10281 	KF_bpf_rdonly_cast,
10282 	KF_bpf_rcu_read_lock,
10283 	KF_bpf_rcu_read_unlock,
10284 	KF_bpf_rbtree_remove,
10285 	KF_bpf_rbtree_add_impl,
10286 	KF_bpf_rbtree_first,
10287 	KF_bpf_dynptr_from_skb,
10288 	KF_bpf_dynptr_from_xdp,
10289 	KF_bpf_dynptr_slice,
10290 	KF_bpf_dynptr_slice_rdwr,
10291 	KF_bpf_dynptr_clone,
10292 };
10293 
10294 BTF_SET_START(special_kfunc_set)
10295 BTF_ID(func, bpf_obj_new_impl)
10296 BTF_ID(func, bpf_obj_drop_impl)
10297 BTF_ID(func, bpf_refcount_acquire_impl)
10298 BTF_ID(func, bpf_list_push_front_impl)
10299 BTF_ID(func, bpf_list_push_back_impl)
10300 BTF_ID(func, bpf_list_pop_front)
10301 BTF_ID(func, bpf_list_pop_back)
10302 BTF_ID(func, bpf_cast_to_kern_ctx)
10303 BTF_ID(func, bpf_rdonly_cast)
10304 BTF_ID(func, bpf_rbtree_remove)
10305 BTF_ID(func, bpf_rbtree_add_impl)
10306 BTF_ID(func, bpf_rbtree_first)
10307 BTF_ID(func, bpf_dynptr_from_skb)
10308 BTF_ID(func, bpf_dynptr_from_xdp)
10309 BTF_ID(func, bpf_dynptr_slice)
10310 BTF_ID(func, bpf_dynptr_slice_rdwr)
10311 BTF_ID(func, bpf_dynptr_clone)
10312 BTF_SET_END(special_kfunc_set)
10313 
10314 BTF_ID_LIST(special_kfunc_list)
10315 BTF_ID(func, bpf_obj_new_impl)
10316 BTF_ID(func, bpf_obj_drop_impl)
10317 BTF_ID(func, bpf_refcount_acquire_impl)
10318 BTF_ID(func, bpf_list_push_front_impl)
10319 BTF_ID(func, bpf_list_push_back_impl)
10320 BTF_ID(func, bpf_list_pop_front)
10321 BTF_ID(func, bpf_list_pop_back)
10322 BTF_ID(func, bpf_cast_to_kern_ctx)
10323 BTF_ID(func, bpf_rdonly_cast)
10324 BTF_ID(func, bpf_rcu_read_lock)
10325 BTF_ID(func, bpf_rcu_read_unlock)
10326 BTF_ID(func, bpf_rbtree_remove)
10327 BTF_ID(func, bpf_rbtree_add_impl)
10328 BTF_ID(func, bpf_rbtree_first)
10329 BTF_ID(func, bpf_dynptr_from_skb)
10330 BTF_ID(func, bpf_dynptr_from_xdp)
10331 BTF_ID(func, bpf_dynptr_slice)
10332 BTF_ID(func, bpf_dynptr_slice_rdwr)
10333 BTF_ID(func, bpf_dynptr_clone)
10334 
10335 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
10336 {
10337 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
10338 	    meta->arg_owning_ref) {
10339 		return false;
10340 	}
10341 
10342 	return meta->kfunc_flags & KF_RET_NULL;
10343 }
10344 
10345 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
10346 {
10347 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
10348 }
10349 
10350 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
10351 {
10352 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
10353 }
10354 
10355 static enum kfunc_ptr_arg_type
10356 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
10357 		       struct bpf_kfunc_call_arg_meta *meta,
10358 		       const struct btf_type *t, const struct btf_type *ref_t,
10359 		       const char *ref_tname, const struct btf_param *args,
10360 		       int argno, int nargs)
10361 {
10362 	u32 regno = argno + 1;
10363 	struct bpf_reg_state *regs = cur_regs(env);
10364 	struct bpf_reg_state *reg = &regs[regno];
10365 	bool arg_mem_size = false;
10366 
10367 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
10368 		return KF_ARG_PTR_TO_CTX;
10369 
10370 	/* In this function, we verify the kfunc's BTF as per the argument type,
10371 	 * leaving the rest of the verification with respect to the register
10372 	 * type to our caller. When a set of conditions hold in the BTF type of
10373 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
10374 	 */
10375 	if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
10376 		return KF_ARG_PTR_TO_CTX;
10377 
10378 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
10379 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
10380 
10381 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
10382 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
10383 
10384 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
10385 		return KF_ARG_PTR_TO_DYNPTR;
10386 
10387 	if (is_kfunc_arg_iter(meta, argno))
10388 		return KF_ARG_PTR_TO_ITER;
10389 
10390 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
10391 		return KF_ARG_PTR_TO_LIST_HEAD;
10392 
10393 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
10394 		return KF_ARG_PTR_TO_LIST_NODE;
10395 
10396 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
10397 		return KF_ARG_PTR_TO_RB_ROOT;
10398 
10399 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
10400 		return KF_ARG_PTR_TO_RB_NODE;
10401 
10402 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
10403 		if (!btf_type_is_struct(ref_t)) {
10404 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
10405 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
10406 			return -EINVAL;
10407 		}
10408 		return KF_ARG_PTR_TO_BTF_ID;
10409 	}
10410 
10411 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
10412 		return KF_ARG_PTR_TO_CALLBACK;
10413 
10414 
10415 	if (argno + 1 < nargs &&
10416 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
10417 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
10418 		arg_mem_size = true;
10419 
10420 	/* This is the catch all argument type of register types supported by
10421 	 * check_helper_mem_access. However, we only allow when argument type is
10422 	 * pointer to scalar, or struct composed (recursively) of scalars. When
10423 	 * arg_mem_size is true, the pointer can be void *.
10424 	 */
10425 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
10426 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
10427 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
10428 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
10429 		return -EINVAL;
10430 	}
10431 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
10432 }
10433 
10434 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
10435 					struct bpf_reg_state *reg,
10436 					const struct btf_type *ref_t,
10437 					const char *ref_tname, u32 ref_id,
10438 					struct bpf_kfunc_call_arg_meta *meta,
10439 					int argno)
10440 {
10441 	const struct btf_type *reg_ref_t;
10442 	bool strict_type_match = false;
10443 	const struct btf *reg_btf;
10444 	const char *reg_ref_tname;
10445 	u32 reg_ref_id;
10446 
10447 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
10448 		reg_btf = reg->btf;
10449 		reg_ref_id = reg->btf_id;
10450 	} else {
10451 		reg_btf = btf_vmlinux;
10452 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
10453 	}
10454 
10455 	/* Enforce strict type matching for calls to kfuncs that are acquiring
10456 	 * or releasing a reference, or are no-cast aliases. We do _not_
10457 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
10458 	 * as we want to enable BPF programs to pass types that are bitwise
10459 	 * equivalent without forcing them to explicitly cast with something
10460 	 * like bpf_cast_to_kern_ctx().
10461 	 *
10462 	 * For example, say we had a type like the following:
10463 	 *
10464 	 * struct bpf_cpumask {
10465 	 *	cpumask_t cpumask;
10466 	 *	refcount_t usage;
10467 	 * };
10468 	 *
10469 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
10470 	 * to a struct cpumask, so it would be safe to pass a struct
10471 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
10472 	 *
10473 	 * The philosophy here is similar to how we allow scalars of different
10474 	 * types to be passed to kfuncs as long as the size is the same. The
10475 	 * only difference here is that we're simply allowing
10476 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
10477 	 * resolve types.
10478 	 */
10479 	if (is_kfunc_acquire(meta) ||
10480 	    (is_kfunc_release(meta) && reg->ref_obj_id) ||
10481 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
10482 		strict_type_match = true;
10483 
10484 	WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
10485 
10486 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
10487 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
10488 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
10489 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
10490 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
10491 			btf_type_str(reg_ref_t), reg_ref_tname);
10492 		return -EINVAL;
10493 	}
10494 	return 0;
10495 }
10496 
10497 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10498 {
10499 	struct bpf_verifier_state *state = env->cur_state;
10500 	struct btf_record *rec = reg_btf_record(reg);
10501 
10502 	if (!state->active_lock.ptr) {
10503 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
10504 		return -EFAULT;
10505 	}
10506 
10507 	if (type_flag(reg->type) & NON_OWN_REF) {
10508 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
10509 		return -EFAULT;
10510 	}
10511 
10512 	reg->type |= NON_OWN_REF;
10513 	if (rec->refcount_off >= 0)
10514 		reg->type |= MEM_RCU;
10515 
10516 	return 0;
10517 }
10518 
10519 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
10520 {
10521 	struct bpf_func_state *state, *unused;
10522 	struct bpf_reg_state *reg;
10523 	int i;
10524 
10525 	state = cur_func(env);
10526 
10527 	if (!ref_obj_id) {
10528 		verbose(env, "verifier internal error: ref_obj_id is zero for "
10529 			     "owning -> non-owning conversion\n");
10530 		return -EFAULT;
10531 	}
10532 
10533 	for (i = 0; i < state->acquired_refs; i++) {
10534 		if (state->refs[i].id != ref_obj_id)
10535 			continue;
10536 
10537 		/* Clear ref_obj_id here so release_reference doesn't clobber
10538 		 * the whole reg
10539 		 */
10540 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
10541 			if (reg->ref_obj_id == ref_obj_id) {
10542 				reg->ref_obj_id = 0;
10543 				ref_set_non_owning(env, reg);
10544 			}
10545 		}));
10546 		return 0;
10547 	}
10548 
10549 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
10550 	return -EFAULT;
10551 }
10552 
10553 /* Implementation details:
10554  *
10555  * Each register points to some region of memory, which we define as an
10556  * allocation. Each allocation may embed a bpf_spin_lock which protects any
10557  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
10558  * allocation. The lock and the data it protects are colocated in the same
10559  * memory region.
10560  *
10561  * Hence, everytime a register holds a pointer value pointing to such
10562  * allocation, the verifier preserves a unique reg->id for it.
10563  *
10564  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
10565  * bpf_spin_lock is called.
10566  *
10567  * To enable this, lock state in the verifier captures two values:
10568  *	active_lock.ptr = Register's type specific pointer
10569  *	active_lock.id  = A unique ID for each register pointer value
10570  *
10571  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
10572  * supported register types.
10573  *
10574  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
10575  * allocated objects is the reg->btf pointer.
10576  *
10577  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
10578  * can establish the provenance of the map value statically for each distinct
10579  * lookup into such maps. They always contain a single map value hence unique
10580  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
10581  *
10582  * So, in case of global variables, they use array maps with max_entries = 1,
10583  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
10584  * into the same map value as max_entries is 1, as described above).
10585  *
10586  * In case of inner map lookups, the inner map pointer has same map_ptr as the
10587  * outer map pointer (in verifier context), but each lookup into an inner map
10588  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
10589  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
10590  * will get different reg->id assigned to each lookup, hence different
10591  * active_lock.id.
10592  *
10593  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
10594  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
10595  * returned from bpf_obj_new. Each allocation receives a new reg->id.
10596  */
10597 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10598 {
10599 	void *ptr;
10600 	u32 id;
10601 
10602 	switch ((int)reg->type) {
10603 	case PTR_TO_MAP_VALUE:
10604 		ptr = reg->map_ptr;
10605 		break;
10606 	case PTR_TO_BTF_ID | MEM_ALLOC:
10607 		ptr = reg->btf;
10608 		break;
10609 	default:
10610 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
10611 		return -EFAULT;
10612 	}
10613 	id = reg->id;
10614 
10615 	if (!env->cur_state->active_lock.ptr)
10616 		return -EINVAL;
10617 	if (env->cur_state->active_lock.ptr != ptr ||
10618 	    env->cur_state->active_lock.id != id) {
10619 		verbose(env, "held lock and object are not in the same allocation\n");
10620 		return -EINVAL;
10621 	}
10622 	return 0;
10623 }
10624 
10625 static bool is_bpf_list_api_kfunc(u32 btf_id)
10626 {
10627 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
10628 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
10629 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
10630 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
10631 }
10632 
10633 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
10634 {
10635 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
10636 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10637 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first];
10638 }
10639 
10640 static bool is_bpf_graph_api_kfunc(u32 btf_id)
10641 {
10642 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
10643 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
10644 }
10645 
10646 static bool is_callback_calling_kfunc(u32 btf_id)
10647 {
10648 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
10649 }
10650 
10651 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
10652 {
10653 	return is_bpf_rbtree_api_kfunc(btf_id);
10654 }
10655 
10656 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
10657 					  enum btf_field_type head_field_type,
10658 					  u32 kfunc_btf_id)
10659 {
10660 	bool ret;
10661 
10662 	switch (head_field_type) {
10663 	case BPF_LIST_HEAD:
10664 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
10665 		break;
10666 	case BPF_RB_ROOT:
10667 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
10668 		break;
10669 	default:
10670 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
10671 			btf_field_type_name(head_field_type));
10672 		return false;
10673 	}
10674 
10675 	if (!ret)
10676 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
10677 			btf_field_type_name(head_field_type));
10678 	return ret;
10679 }
10680 
10681 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
10682 					  enum btf_field_type node_field_type,
10683 					  u32 kfunc_btf_id)
10684 {
10685 	bool ret;
10686 
10687 	switch (node_field_type) {
10688 	case BPF_LIST_NODE:
10689 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
10690 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
10691 		break;
10692 	case BPF_RB_NODE:
10693 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10694 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
10695 		break;
10696 	default:
10697 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
10698 			btf_field_type_name(node_field_type));
10699 		return false;
10700 	}
10701 
10702 	if (!ret)
10703 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
10704 			btf_field_type_name(node_field_type));
10705 	return ret;
10706 }
10707 
10708 static int
10709 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
10710 				   struct bpf_reg_state *reg, u32 regno,
10711 				   struct bpf_kfunc_call_arg_meta *meta,
10712 				   enum btf_field_type head_field_type,
10713 				   struct btf_field **head_field)
10714 {
10715 	const char *head_type_name;
10716 	struct btf_field *field;
10717 	struct btf_record *rec;
10718 	u32 head_off;
10719 
10720 	if (meta->btf != btf_vmlinux) {
10721 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
10722 		return -EFAULT;
10723 	}
10724 
10725 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
10726 		return -EFAULT;
10727 
10728 	head_type_name = btf_field_type_name(head_field_type);
10729 	if (!tnum_is_const(reg->var_off)) {
10730 		verbose(env,
10731 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
10732 			regno, head_type_name);
10733 		return -EINVAL;
10734 	}
10735 
10736 	rec = reg_btf_record(reg);
10737 	head_off = reg->off + reg->var_off.value;
10738 	field = btf_record_find(rec, head_off, head_field_type);
10739 	if (!field) {
10740 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
10741 		return -EINVAL;
10742 	}
10743 
10744 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
10745 	if (check_reg_allocation_locked(env, reg)) {
10746 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
10747 			rec->spin_lock_off, head_type_name);
10748 		return -EINVAL;
10749 	}
10750 
10751 	if (*head_field) {
10752 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
10753 		return -EFAULT;
10754 	}
10755 	*head_field = field;
10756 	return 0;
10757 }
10758 
10759 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
10760 					   struct bpf_reg_state *reg, u32 regno,
10761 					   struct bpf_kfunc_call_arg_meta *meta)
10762 {
10763 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
10764 							  &meta->arg_list_head.field);
10765 }
10766 
10767 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
10768 					     struct bpf_reg_state *reg, u32 regno,
10769 					     struct bpf_kfunc_call_arg_meta *meta)
10770 {
10771 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
10772 							  &meta->arg_rbtree_root.field);
10773 }
10774 
10775 static int
10776 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
10777 				   struct bpf_reg_state *reg, u32 regno,
10778 				   struct bpf_kfunc_call_arg_meta *meta,
10779 				   enum btf_field_type head_field_type,
10780 				   enum btf_field_type node_field_type,
10781 				   struct btf_field **node_field)
10782 {
10783 	const char *node_type_name;
10784 	const struct btf_type *et, *t;
10785 	struct btf_field *field;
10786 	u32 node_off;
10787 
10788 	if (meta->btf != btf_vmlinux) {
10789 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
10790 		return -EFAULT;
10791 	}
10792 
10793 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
10794 		return -EFAULT;
10795 
10796 	node_type_name = btf_field_type_name(node_field_type);
10797 	if (!tnum_is_const(reg->var_off)) {
10798 		verbose(env,
10799 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
10800 			regno, node_type_name);
10801 		return -EINVAL;
10802 	}
10803 
10804 	node_off = reg->off + reg->var_off.value;
10805 	field = reg_find_field_offset(reg, node_off, node_field_type);
10806 	if (!field || field->offset != node_off) {
10807 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
10808 		return -EINVAL;
10809 	}
10810 
10811 	field = *node_field;
10812 
10813 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
10814 	t = btf_type_by_id(reg->btf, reg->btf_id);
10815 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
10816 				  field->graph_root.value_btf_id, true)) {
10817 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
10818 			"in struct %s, but arg is at offset=%d in struct %s\n",
10819 			btf_field_type_name(head_field_type),
10820 			btf_field_type_name(node_field_type),
10821 			field->graph_root.node_offset,
10822 			btf_name_by_offset(field->graph_root.btf, et->name_off),
10823 			node_off, btf_name_by_offset(reg->btf, t->name_off));
10824 		return -EINVAL;
10825 	}
10826 	meta->arg_btf = reg->btf;
10827 	meta->arg_btf_id = reg->btf_id;
10828 
10829 	if (node_off != field->graph_root.node_offset) {
10830 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
10831 			node_off, btf_field_type_name(node_field_type),
10832 			field->graph_root.node_offset,
10833 			btf_name_by_offset(field->graph_root.btf, et->name_off));
10834 		return -EINVAL;
10835 	}
10836 
10837 	return 0;
10838 }
10839 
10840 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
10841 					   struct bpf_reg_state *reg, u32 regno,
10842 					   struct bpf_kfunc_call_arg_meta *meta)
10843 {
10844 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10845 						  BPF_LIST_HEAD, BPF_LIST_NODE,
10846 						  &meta->arg_list_head.field);
10847 }
10848 
10849 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
10850 					     struct bpf_reg_state *reg, u32 regno,
10851 					     struct bpf_kfunc_call_arg_meta *meta)
10852 {
10853 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10854 						  BPF_RB_ROOT, BPF_RB_NODE,
10855 						  &meta->arg_rbtree_root.field);
10856 }
10857 
10858 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
10859 			    int insn_idx)
10860 {
10861 	const char *func_name = meta->func_name, *ref_tname;
10862 	const struct btf *btf = meta->btf;
10863 	const struct btf_param *args;
10864 	struct btf_record *rec;
10865 	u32 i, nargs;
10866 	int ret;
10867 
10868 	args = (const struct btf_param *)(meta->func_proto + 1);
10869 	nargs = btf_type_vlen(meta->func_proto);
10870 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
10871 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
10872 			MAX_BPF_FUNC_REG_ARGS);
10873 		return -EINVAL;
10874 	}
10875 
10876 	/* Check that BTF function arguments match actual types that the
10877 	 * verifier sees.
10878 	 */
10879 	for (i = 0; i < nargs; i++) {
10880 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
10881 		const struct btf_type *t, *ref_t, *resolve_ret;
10882 		enum bpf_arg_type arg_type = ARG_DONTCARE;
10883 		u32 regno = i + 1, ref_id, type_size;
10884 		bool is_ret_buf_sz = false;
10885 		int kf_arg_type;
10886 
10887 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
10888 
10889 		if (is_kfunc_arg_ignore(btf, &args[i]))
10890 			continue;
10891 
10892 		if (btf_type_is_scalar(t)) {
10893 			if (reg->type != SCALAR_VALUE) {
10894 				verbose(env, "R%d is not a scalar\n", regno);
10895 				return -EINVAL;
10896 			}
10897 
10898 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
10899 				if (meta->arg_constant.found) {
10900 					verbose(env, "verifier internal error: only one constant argument permitted\n");
10901 					return -EFAULT;
10902 				}
10903 				if (!tnum_is_const(reg->var_off)) {
10904 					verbose(env, "R%d must be a known constant\n", regno);
10905 					return -EINVAL;
10906 				}
10907 				ret = mark_chain_precision(env, regno);
10908 				if (ret < 0)
10909 					return ret;
10910 				meta->arg_constant.found = true;
10911 				meta->arg_constant.value = reg->var_off.value;
10912 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
10913 				meta->r0_rdonly = true;
10914 				is_ret_buf_sz = true;
10915 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
10916 				is_ret_buf_sz = true;
10917 			}
10918 
10919 			if (is_ret_buf_sz) {
10920 				if (meta->r0_size) {
10921 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
10922 					return -EINVAL;
10923 				}
10924 
10925 				if (!tnum_is_const(reg->var_off)) {
10926 					verbose(env, "R%d is not a const\n", regno);
10927 					return -EINVAL;
10928 				}
10929 
10930 				meta->r0_size = reg->var_off.value;
10931 				ret = mark_chain_precision(env, regno);
10932 				if (ret)
10933 					return ret;
10934 			}
10935 			continue;
10936 		}
10937 
10938 		if (!btf_type_is_ptr(t)) {
10939 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
10940 			return -EINVAL;
10941 		}
10942 
10943 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
10944 		    (register_is_null(reg) || type_may_be_null(reg->type))) {
10945 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
10946 			return -EACCES;
10947 		}
10948 
10949 		if (reg->ref_obj_id) {
10950 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
10951 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
10952 					regno, reg->ref_obj_id,
10953 					meta->ref_obj_id);
10954 				return -EFAULT;
10955 			}
10956 			meta->ref_obj_id = reg->ref_obj_id;
10957 			if (is_kfunc_release(meta))
10958 				meta->release_regno = regno;
10959 		}
10960 
10961 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
10962 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
10963 
10964 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
10965 		if (kf_arg_type < 0)
10966 			return kf_arg_type;
10967 
10968 		switch (kf_arg_type) {
10969 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
10970 		case KF_ARG_PTR_TO_BTF_ID:
10971 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
10972 				break;
10973 
10974 			if (!is_trusted_reg(reg)) {
10975 				if (!is_kfunc_rcu(meta)) {
10976 					verbose(env, "R%d must be referenced or trusted\n", regno);
10977 					return -EINVAL;
10978 				}
10979 				if (!is_rcu_reg(reg)) {
10980 					verbose(env, "R%d must be a rcu pointer\n", regno);
10981 					return -EINVAL;
10982 				}
10983 			}
10984 
10985 			fallthrough;
10986 		case KF_ARG_PTR_TO_CTX:
10987 			/* Trusted arguments have the same offset checks as release arguments */
10988 			arg_type |= OBJ_RELEASE;
10989 			break;
10990 		case KF_ARG_PTR_TO_DYNPTR:
10991 		case KF_ARG_PTR_TO_ITER:
10992 		case KF_ARG_PTR_TO_LIST_HEAD:
10993 		case KF_ARG_PTR_TO_LIST_NODE:
10994 		case KF_ARG_PTR_TO_RB_ROOT:
10995 		case KF_ARG_PTR_TO_RB_NODE:
10996 		case KF_ARG_PTR_TO_MEM:
10997 		case KF_ARG_PTR_TO_MEM_SIZE:
10998 		case KF_ARG_PTR_TO_CALLBACK:
10999 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11000 			/* Trusted by default */
11001 			break;
11002 		default:
11003 			WARN_ON_ONCE(1);
11004 			return -EFAULT;
11005 		}
11006 
11007 		if (is_kfunc_release(meta) && reg->ref_obj_id)
11008 			arg_type |= OBJ_RELEASE;
11009 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
11010 		if (ret < 0)
11011 			return ret;
11012 
11013 		switch (kf_arg_type) {
11014 		case KF_ARG_PTR_TO_CTX:
11015 			if (reg->type != PTR_TO_CTX) {
11016 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
11017 				return -EINVAL;
11018 			}
11019 
11020 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11021 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
11022 				if (ret < 0)
11023 					return -EINVAL;
11024 				meta->ret_btf_id  = ret;
11025 			}
11026 			break;
11027 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11028 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11029 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11030 				return -EINVAL;
11031 			}
11032 			if (!reg->ref_obj_id) {
11033 				verbose(env, "allocated object must be referenced\n");
11034 				return -EINVAL;
11035 			}
11036 			if (meta->btf == btf_vmlinux &&
11037 			    meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
11038 				meta->arg_btf = reg->btf;
11039 				meta->arg_btf_id = reg->btf_id;
11040 			}
11041 			break;
11042 		case KF_ARG_PTR_TO_DYNPTR:
11043 		{
11044 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
11045 			int clone_ref_obj_id = 0;
11046 
11047 			if (reg->type != PTR_TO_STACK &&
11048 			    reg->type != CONST_PTR_TO_DYNPTR) {
11049 				verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
11050 				return -EINVAL;
11051 			}
11052 
11053 			if (reg->type == CONST_PTR_TO_DYNPTR)
11054 				dynptr_arg_type |= MEM_RDONLY;
11055 
11056 			if (is_kfunc_arg_uninit(btf, &args[i]))
11057 				dynptr_arg_type |= MEM_UNINIT;
11058 
11059 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
11060 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
11061 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
11062 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
11063 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
11064 				   (dynptr_arg_type & MEM_UNINIT)) {
11065 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
11066 
11067 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
11068 					verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
11069 					return -EFAULT;
11070 				}
11071 
11072 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
11073 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
11074 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
11075 					verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
11076 					return -EFAULT;
11077 				}
11078 			}
11079 
11080 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
11081 			if (ret < 0)
11082 				return ret;
11083 
11084 			if (!(dynptr_arg_type & MEM_UNINIT)) {
11085 				int id = dynptr_id(env, reg);
11086 
11087 				if (id < 0) {
11088 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
11089 					return id;
11090 				}
11091 				meta->initialized_dynptr.id = id;
11092 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
11093 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
11094 			}
11095 
11096 			break;
11097 		}
11098 		case KF_ARG_PTR_TO_ITER:
11099 			ret = process_iter_arg(env, regno, insn_idx, meta);
11100 			if (ret < 0)
11101 				return ret;
11102 			break;
11103 		case KF_ARG_PTR_TO_LIST_HEAD:
11104 			if (reg->type != PTR_TO_MAP_VALUE &&
11105 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11106 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11107 				return -EINVAL;
11108 			}
11109 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11110 				verbose(env, "allocated object must be referenced\n");
11111 				return -EINVAL;
11112 			}
11113 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
11114 			if (ret < 0)
11115 				return ret;
11116 			break;
11117 		case KF_ARG_PTR_TO_RB_ROOT:
11118 			if (reg->type != PTR_TO_MAP_VALUE &&
11119 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11120 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11121 				return -EINVAL;
11122 			}
11123 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11124 				verbose(env, "allocated object must be referenced\n");
11125 				return -EINVAL;
11126 			}
11127 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
11128 			if (ret < 0)
11129 				return ret;
11130 			break;
11131 		case KF_ARG_PTR_TO_LIST_NODE:
11132 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11133 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11134 				return -EINVAL;
11135 			}
11136 			if (!reg->ref_obj_id) {
11137 				verbose(env, "allocated object must be referenced\n");
11138 				return -EINVAL;
11139 			}
11140 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
11141 			if (ret < 0)
11142 				return ret;
11143 			break;
11144 		case KF_ARG_PTR_TO_RB_NODE:
11145 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
11146 				if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
11147 					verbose(env, "rbtree_remove node input must be non-owning ref\n");
11148 					return -EINVAL;
11149 				}
11150 				if (in_rbtree_lock_required_cb(env)) {
11151 					verbose(env, "rbtree_remove not allowed in rbtree cb\n");
11152 					return -EINVAL;
11153 				}
11154 			} else {
11155 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11156 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
11157 					return -EINVAL;
11158 				}
11159 				if (!reg->ref_obj_id) {
11160 					verbose(env, "allocated object must be referenced\n");
11161 					return -EINVAL;
11162 				}
11163 			}
11164 
11165 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
11166 			if (ret < 0)
11167 				return ret;
11168 			break;
11169 		case KF_ARG_PTR_TO_BTF_ID:
11170 			/* Only base_type is checked, further checks are done here */
11171 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
11172 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
11173 			    !reg2btf_ids[base_type(reg->type)]) {
11174 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
11175 				verbose(env, "expected %s or socket\n",
11176 					reg_type_str(env, base_type(reg->type) |
11177 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
11178 				return -EINVAL;
11179 			}
11180 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
11181 			if (ret < 0)
11182 				return ret;
11183 			break;
11184 		case KF_ARG_PTR_TO_MEM:
11185 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
11186 			if (IS_ERR(resolve_ret)) {
11187 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
11188 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
11189 				return -EINVAL;
11190 			}
11191 			ret = check_mem_reg(env, reg, regno, type_size);
11192 			if (ret < 0)
11193 				return ret;
11194 			break;
11195 		case KF_ARG_PTR_TO_MEM_SIZE:
11196 		{
11197 			struct bpf_reg_state *buff_reg = &regs[regno];
11198 			const struct btf_param *buff_arg = &args[i];
11199 			struct bpf_reg_state *size_reg = &regs[regno + 1];
11200 			const struct btf_param *size_arg = &args[i + 1];
11201 
11202 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
11203 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
11204 				if (ret < 0) {
11205 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
11206 					return ret;
11207 				}
11208 			}
11209 
11210 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
11211 				if (meta->arg_constant.found) {
11212 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11213 					return -EFAULT;
11214 				}
11215 				if (!tnum_is_const(size_reg->var_off)) {
11216 					verbose(env, "R%d must be a known constant\n", regno + 1);
11217 					return -EINVAL;
11218 				}
11219 				meta->arg_constant.found = true;
11220 				meta->arg_constant.value = size_reg->var_off.value;
11221 			}
11222 
11223 			/* Skip next '__sz' or '__szk' argument */
11224 			i++;
11225 			break;
11226 		}
11227 		case KF_ARG_PTR_TO_CALLBACK:
11228 			if (reg->type != PTR_TO_FUNC) {
11229 				verbose(env, "arg%d expected pointer to func\n", i);
11230 				return -EINVAL;
11231 			}
11232 			meta->subprogno = reg->subprogno;
11233 			break;
11234 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11235 			if (!type_is_ptr_alloc_obj(reg->type)) {
11236 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
11237 				return -EINVAL;
11238 			}
11239 			if (!type_is_non_owning_ref(reg->type))
11240 				meta->arg_owning_ref = true;
11241 
11242 			rec = reg_btf_record(reg);
11243 			if (!rec) {
11244 				verbose(env, "verifier internal error: Couldn't find btf_record\n");
11245 				return -EFAULT;
11246 			}
11247 
11248 			if (rec->refcount_off < 0) {
11249 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
11250 				return -EINVAL;
11251 			}
11252 
11253 			meta->arg_btf = reg->btf;
11254 			meta->arg_btf_id = reg->btf_id;
11255 			break;
11256 		}
11257 	}
11258 
11259 	if (is_kfunc_release(meta) && !meta->release_regno) {
11260 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
11261 			func_name);
11262 		return -EINVAL;
11263 	}
11264 
11265 	return 0;
11266 }
11267 
11268 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
11269 			    struct bpf_insn *insn,
11270 			    struct bpf_kfunc_call_arg_meta *meta,
11271 			    const char **kfunc_name)
11272 {
11273 	const struct btf_type *func, *func_proto;
11274 	u32 func_id, *kfunc_flags;
11275 	const char *func_name;
11276 	struct btf *desc_btf;
11277 
11278 	if (kfunc_name)
11279 		*kfunc_name = NULL;
11280 
11281 	if (!insn->imm)
11282 		return -EINVAL;
11283 
11284 	desc_btf = find_kfunc_desc_btf(env, insn->off);
11285 	if (IS_ERR(desc_btf))
11286 		return PTR_ERR(desc_btf);
11287 
11288 	func_id = insn->imm;
11289 	func = btf_type_by_id(desc_btf, func_id);
11290 	func_name = btf_name_by_offset(desc_btf, func->name_off);
11291 	if (kfunc_name)
11292 		*kfunc_name = func_name;
11293 	func_proto = btf_type_by_id(desc_btf, func->type);
11294 
11295 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
11296 	if (!kfunc_flags) {
11297 		return -EACCES;
11298 	}
11299 
11300 	memset(meta, 0, sizeof(*meta));
11301 	meta->btf = desc_btf;
11302 	meta->func_id = func_id;
11303 	meta->kfunc_flags = *kfunc_flags;
11304 	meta->func_proto = func_proto;
11305 	meta->func_name = func_name;
11306 
11307 	return 0;
11308 }
11309 
11310 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11311 			    int *insn_idx_p)
11312 {
11313 	const struct btf_type *t, *ptr_type;
11314 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
11315 	struct bpf_reg_state *regs = cur_regs(env);
11316 	const char *func_name, *ptr_type_name;
11317 	bool sleepable, rcu_lock, rcu_unlock;
11318 	struct bpf_kfunc_call_arg_meta meta;
11319 	struct bpf_insn_aux_data *insn_aux;
11320 	int err, insn_idx = *insn_idx_p;
11321 	const struct btf_param *args;
11322 	const struct btf_type *ret_t;
11323 	struct btf *desc_btf;
11324 
11325 	/* skip for now, but return error when we find this in fixup_kfunc_call */
11326 	if (!insn->imm)
11327 		return 0;
11328 
11329 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
11330 	if (err == -EACCES && func_name)
11331 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
11332 	if (err)
11333 		return err;
11334 	desc_btf = meta.btf;
11335 	insn_aux = &env->insn_aux_data[insn_idx];
11336 
11337 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
11338 
11339 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
11340 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
11341 		return -EACCES;
11342 	}
11343 
11344 	sleepable = is_kfunc_sleepable(&meta);
11345 	if (sleepable && !env->prog->aux->sleepable) {
11346 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
11347 		return -EACCES;
11348 	}
11349 
11350 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
11351 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
11352 
11353 	if (env->cur_state->active_rcu_lock) {
11354 		struct bpf_func_state *state;
11355 		struct bpf_reg_state *reg;
11356 
11357 		if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
11358 			verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
11359 			return -EACCES;
11360 		}
11361 
11362 		if (rcu_lock) {
11363 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
11364 			return -EINVAL;
11365 		} else if (rcu_unlock) {
11366 			bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
11367 				if (reg->type & MEM_RCU) {
11368 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
11369 					reg->type |= PTR_UNTRUSTED;
11370 				}
11371 			}));
11372 			env->cur_state->active_rcu_lock = false;
11373 		} else if (sleepable) {
11374 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
11375 			return -EACCES;
11376 		}
11377 	} else if (rcu_lock) {
11378 		env->cur_state->active_rcu_lock = true;
11379 	} else if (rcu_unlock) {
11380 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
11381 		return -EINVAL;
11382 	}
11383 
11384 	/* Check the arguments */
11385 	err = check_kfunc_args(env, &meta, insn_idx);
11386 	if (err < 0)
11387 		return err;
11388 	/* In case of release function, we get register number of refcounted
11389 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
11390 	 */
11391 	if (meta.release_regno) {
11392 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
11393 		if (err) {
11394 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11395 				func_name, meta.func_id);
11396 			return err;
11397 		}
11398 	}
11399 
11400 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11401 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11402 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11403 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
11404 		insn_aux->insert_off = regs[BPF_REG_2].off;
11405 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
11406 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
11407 		if (err) {
11408 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
11409 				func_name, meta.func_id);
11410 			return err;
11411 		}
11412 
11413 		err = release_reference(env, release_ref_obj_id);
11414 		if (err) {
11415 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11416 				func_name, meta.func_id);
11417 			return err;
11418 		}
11419 	}
11420 
11421 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11422 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
11423 					set_rbtree_add_callback_state);
11424 		if (err) {
11425 			verbose(env, "kfunc %s#%d failed callback verification\n",
11426 				func_name, meta.func_id);
11427 			return err;
11428 		}
11429 	}
11430 
11431 	for (i = 0; i < CALLER_SAVED_REGS; i++)
11432 		mark_reg_not_init(env, regs, caller_saved[i]);
11433 
11434 	/* Check return type */
11435 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
11436 
11437 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
11438 		/* Only exception is bpf_obj_new_impl */
11439 		if (meta.btf != btf_vmlinux ||
11440 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
11441 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
11442 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
11443 			return -EINVAL;
11444 		}
11445 	}
11446 
11447 	if (btf_type_is_scalar(t)) {
11448 		mark_reg_unknown(env, regs, BPF_REG_0);
11449 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
11450 	} else if (btf_type_is_ptr(t)) {
11451 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
11452 
11453 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11454 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
11455 				struct btf *ret_btf;
11456 				u32 ret_btf_id;
11457 
11458 				if (unlikely(!bpf_global_ma_set))
11459 					return -ENOMEM;
11460 
11461 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
11462 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
11463 					return -EINVAL;
11464 				}
11465 
11466 				ret_btf = env->prog->aux->btf;
11467 				ret_btf_id = meta.arg_constant.value;
11468 
11469 				/* This may be NULL due to user not supplying a BTF */
11470 				if (!ret_btf) {
11471 					verbose(env, "bpf_obj_new requires prog BTF\n");
11472 					return -EINVAL;
11473 				}
11474 
11475 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
11476 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
11477 					verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
11478 					return -EINVAL;
11479 				}
11480 
11481 				mark_reg_known_zero(env, regs, BPF_REG_0);
11482 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11483 				regs[BPF_REG_0].btf = ret_btf;
11484 				regs[BPF_REG_0].btf_id = ret_btf_id;
11485 
11486 				insn_aux->obj_new_size = ret_t->size;
11487 				insn_aux->kptr_struct_meta =
11488 					btf_find_struct_meta(ret_btf, ret_btf_id);
11489 			} else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
11490 				mark_reg_known_zero(env, regs, BPF_REG_0);
11491 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11492 				regs[BPF_REG_0].btf = meta.arg_btf;
11493 				regs[BPF_REG_0].btf_id = meta.arg_btf_id;
11494 
11495 				insn_aux->kptr_struct_meta =
11496 					btf_find_struct_meta(meta.arg_btf,
11497 							     meta.arg_btf_id);
11498 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11499 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
11500 				struct btf_field *field = meta.arg_list_head.field;
11501 
11502 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11503 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11504 				   meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11505 				struct btf_field *field = meta.arg_rbtree_root.field;
11506 
11507 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11508 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11509 				mark_reg_known_zero(env, regs, BPF_REG_0);
11510 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
11511 				regs[BPF_REG_0].btf = desc_btf;
11512 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
11513 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
11514 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
11515 				if (!ret_t || !btf_type_is_struct(ret_t)) {
11516 					verbose(env,
11517 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
11518 					return -EINVAL;
11519 				}
11520 
11521 				mark_reg_known_zero(env, regs, BPF_REG_0);
11522 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
11523 				regs[BPF_REG_0].btf = desc_btf;
11524 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
11525 			} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
11526 				   meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
11527 				enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
11528 
11529 				mark_reg_known_zero(env, regs, BPF_REG_0);
11530 
11531 				if (!meta.arg_constant.found) {
11532 					verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
11533 					return -EFAULT;
11534 				}
11535 
11536 				regs[BPF_REG_0].mem_size = meta.arg_constant.value;
11537 
11538 				/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
11539 				regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
11540 
11541 				if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
11542 					regs[BPF_REG_0].type |= MEM_RDONLY;
11543 				} else {
11544 					/* this will set env->seen_direct_write to true */
11545 					if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
11546 						verbose(env, "the prog does not allow writes to packet data\n");
11547 						return -EINVAL;
11548 					}
11549 				}
11550 
11551 				if (!meta.initialized_dynptr.id) {
11552 					verbose(env, "verifier internal error: no dynptr id\n");
11553 					return -EFAULT;
11554 				}
11555 				regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
11556 
11557 				/* we don't need to set BPF_REG_0's ref obj id
11558 				 * because packet slices are not refcounted (see
11559 				 * dynptr_type_refcounted)
11560 				 */
11561 			} else {
11562 				verbose(env, "kernel function %s unhandled dynamic return type\n",
11563 					meta.func_name);
11564 				return -EFAULT;
11565 			}
11566 		} else if (!__btf_type_is_struct(ptr_type)) {
11567 			if (!meta.r0_size) {
11568 				__u32 sz;
11569 
11570 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
11571 					meta.r0_size = sz;
11572 					meta.r0_rdonly = true;
11573 				}
11574 			}
11575 			if (!meta.r0_size) {
11576 				ptr_type_name = btf_name_by_offset(desc_btf,
11577 								   ptr_type->name_off);
11578 				verbose(env,
11579 					"kernel function %s returns pointer type %s %s is not supported\n",
11580 					func_name,
11581 					btf_type_str(ptr_type),
11582 					ptr_type_name);
11583 				return -EINVAL;
11584 			}
11585 
11586 			mark_reg_known_zero(env, regs, BPF_REG_0);
11587 			regs[BPF_REG_0].type = PTR_TO_MEM;
11588 			regs[BPF_REG_0].mem_size = meta.r0_size;
11589 
11590 			if (meta.r0_rdonly)
11591 				regs[BPF_REG_0].type |= MEM_RDONLY;
11592 
11593 			/* Ensures we don't access the memory after a release_reference() */
11594 			if (meta.ref_obj_id)
11595 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
11596 		} else {
11597 			mark_reg_known_zero(env, regs, BPF_REG_0);
11598 			regs[BPF_REG_0].btf = desc_btf;
11599 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
11600 			regs[BPF_REG_0].btf_id = ptr_type_id;
11601 		}
11602 
11603 		if (is_kfunc_ret_null(&meta)) {
11604 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
11605 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
11606 			regs[BPF_REG_0].id = ++env->id_gen;
11607 		}
11608 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
11609 		if (is_kfunc_acquire(&meta)) {
11610 			int id = acquire_reference_state(env, insn_idx);
11611 
11612 			if (id < 0)
11613 				return id;
11614 			if (is_kfunc_ret_null(&meta))
11615 				regs[BPF_REG_0].id = id;
11616 			regs[BPF_REG_0].ref_obj_id = id;
11617 		} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11618 			ref_set_non_owning(env, &regs[BPF_REG_0]);
11619 		}
11620 
11621 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
11622 			regs[BPF_REG_0].id = ++env->id_gen;
11623 	} else if (btf_type_is_void(t)) {
11624 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11625 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
11626 				insn_aux->kptr_struct_meta =
11627 					btf_find_struct_meta(meta.arg_btf,
11628 							     meta.arg_btf_id);
11629 			}
11630 		}
11631 	}
11632 
11633 	nargs = btf_type_vlen(meta.func_proto);
11634 	args = (const struct btf_param *)(meta.func_proto + 1);
11635 	for (i = 0; i < nargs; i++) {
11636 		u32 regno = i + 1;
11637 
11638 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
11639 		if (btf_type_is_ptr(t))
11640 			mark_btf_func_reg_size(env, regno, sizeof(void *));
11641 		else
11642 			/* scalar. ensured by btf_check_kfunc_arg_match() */
11643 			mark_btf_func_reg_size(env, regno, t->size);
11644 	}
11645 
11646 	if (is_iter_next_kfunc(&meta)) {
11647 		err = process_iter_next_call(env, insn_idx, &meta);
11648 		if (err)
11649 			return err;
11650 	}
11651 
11652 	return 0;
11653 }
11654 
11655 static bool signed_add_overflows(s64 a, s64 b)
11656 {
11657 	/* Do the add in u64, where overflow is well-defined */
11658 	s64 res = (s64)((u64)a + (u64)b);
11659 
11660 	if (b < 0)
11661 		return res > a;
11662 	return res < a;
11663 }
11664 
11665 static bool signed_add32_overflows(s32 a, s32 b)
11666 {
11667 	/* Do the add in u32, where overflow is well-defined */
11668 	s32 res = (s32)((u32)a + (u32)b);
11669 
11670 	if (b < 0)
11671 		return res > a;
11672 	return res < a;
11673 }
11674 
11675 static bool signed_sub_overflows(s64 a, s64 b)
11676 {
11677 	/* Do the sub in u64, where overflow is well-defined */
11678 	s64 res = (s64)((u64)a - (u64)b);
11679 
11680 	if (b < 0)
11681 		return res < a;
11682 	return res > a;
11683 }
11684 
11685 static bool signed_sub32_overflows(s32 a, s32 b)
11686 {
11687 	/* Do the sub in u32, where overflow is well-defined */
11688 	s32 res = (s32)((u32)a - (u32)b);
11689 
11690 	if (b < 0)
11691 		return res < a;
11692 	return res > a;
11693 }
11694 
11695 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
11696 				  const struct bpf_reg_state *reg,
11697 				  enum bpf_reg_type type)
11698 {
11699 	bool known = tnum_is_const(reg->var_off);
11700 	s64 val = reg->var_off.value;
11701 	s64 smin = reg->smin_value;
11702 
11703 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
11704 		verbose(env, "math between %s pointer and %lld is not allowed\n",
11705 			reg_type_str(env, type), val);
11706 		return false;
11707 	}
11708 
11709 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
11710 		verbose(env, "%s pointer offset %d is not allowed\n",
11711 			reg_type_str(env, type), reg->off);
11712 		return false;
11713 	}
11714 
11715 	if (smin == S64_MIN) {
11716 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
11717 			reg_type_str(env, type));
11718 		return false;
11719 	}
11720 
11721 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
11722 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
11723 			smin, reg_type_str(env, type));
11724 		return false;
11725 	}
11726 
11727 	return true;
11728 }
11729 
11730 enum {
11731 	REASON_BOUNDS	= -1,
11732 	REASON_TYPE	= -2,
11733 	REASON_PATHS	= -3,
11734 	REASON_LIMIT	= -4,
11735 	REASON_STACK	= -5,
11736 };
11737 
11738 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
11739 			      u32 *alu_limit, bool mask_to_left)
11740 {
11741 	u32 max = 0, ptr_limit = 0;
11742 
11743 	switch (ptr_reg->type) {
11744 	case PTR_TO_STACK:
11745 		/* Offset 0 is out-of-bounds, but acceptable start for the
11746 		 * left direction, see BPF_REG_FP. Also, unknown scalar
11747 		 * offset where we would need to deal with min/max bounds is
11748 		 * currently prohibited for unprivileged.
11749 		 */
11750 		max = MAX_BPF_STACK + mask_to_left;
11751 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
11752 		break;
11753 	case PTR_TO_MAP_VALUE:
11754 		max = ptr_reg->map_ptr->value_size;
11755 		ptr_limit = (mask_to_left ?
11756 			     ptr_reg->smin_value :
11757 			     ptr_reg->umax_value) + ptr_reg->off;
11758 		break;
11759 	default:
11760 		return REASON_TYPE;
11761 	}
11762 
11763 	if (ptr_limit >= max)
11764 		return REASON_LIMIT;
11765 	*alu_limit = ptr_limit;
11766 	return 0;
11767 }
11768 
11769 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
11770 				    const struct bpf_insn *insn)
11771 {
11772 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
11773 }
11774 
11775 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
11776 				       u32 alu_state, u32 alu_limit)
11777 {
11778 	/* If we arrived here from different branches with different
11779 	 * state or limits to sanitize, then this won't work.
11780 	 */
11781 	if (aux->alu_state &&
11782 	    (aux->alu_state != alu_state ||
11783 	     aux->alu_limit != alu_limit))
11784 		return REASON_PATHS;
11785 
11786 	/* Corresponding fixup done in do_misc_fixups(). */
11787 	aux->alu_state = alu_state;
11788 	aux->alu_limit = alu_limit;
11789 	return 0;
11790 }
11791 
11792 static int sanitize_val_alu(struct bpf_verifier_env *env,
11793 			    struct bpf_insn *insn)
11794 {
11795 	struct bpf_insn_aux_data *aux = cur_aux(env);
11796 
11797 	if (can_skip_alu_sanitation(env, insn))
11798 		return 0;
11799 
11800 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
11801 }
11802 
11803 static bool sanitize_needed(u8 opcode)
11804 {
11805 	return opcode == BPF_ADD || opcode == BPF_SUB;
11806 }
11807 
11808 struct bpf_sanitize_info {
11809 	struct bpf_insn_aux_data aux;
11810 	bool mask_to_left;
11811 };
11812 
11813 static struct bpf_verifier_state *
11814 sanitize_speculative_path(struct bpf_verifier_env *env,
11815 			  const struct bpf_insn *insn,
11816 			  u32 next_idx, u32 curr_idx)
11817 {
11818 	struct bpf_verifier_state *branch;
11819 	struct bpf_reg_state *regs;
11820 
11821 	branch = push_stack(env, next_idx, curr_idx, true);
11822 	if (branch && insn) {
11823 		regs = branch->frame[branch->curframe]->regs;
11824 		if (BPF_SRC(insn->code) == BPF_K) {
11825 			mark_reg_unknown(env, regs, insn->dst_reg);
11826 		} else if (BPF_SRC(insn->code) == BPF_X) {
11827 			mark_reg_unknown(env, regs, insn->dst_reg);
11828 			mark_reg_unknown(env, regs, insn->src_reg);
11829 		}
11830 	}
11831 	return branch;
11832 }
11833 
11834 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
11835 			    struct bpf_insn *insn,
11836 			    const struct bpf_reg_state *ptr_reg,
11837 			    const struct bpf_reg_state *off_reg,
11838 			    struct bpf_reg_state *dst_reg,
11839 			    struct bpf_sanitize_info *info,
11840 			    const bool commit_window)
11841 {
11842 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
11843 	struct bpf_verifier_state *vstate = env->cur_state;
11844 	bool off_is_imm = tnum_is_const(off_reg->var_off);
11845 	bool off_is_neg = off_reg->smin_value < 0;
11846 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
11847 	u8 opcode = BPF_OP(insn->code);
11848 	u32 alu_state, alu_limit;
11849 	struct bpf_reg_state tmp;
11850 	bool ret;
11851 	int err;
11852 
11853 	if (can_skip_alu_sanitation(env, insn))
11854 		return 0;
11855 
11856 	/* We already marked aux for masking from non-speculative
11857 	 * paths, thus we got here in the first place. We only care
11858 	 * to explore bad access from here.
11859 	 */
11860 	if (vstate->speculative)
11861 		goto do_sim;
11862 
11863 	if (!commit_window) {
11864 		if (!tnum_is_const(off_reg->var_off) &&
11865 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
11866 			return REASON_BOUNDS;
11867 
11868 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
11869 				     (opcode == BPF_SUB && !off_is_neg);
11870 	}
11871 
11872 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
11873 	if (err < 0)
11874 		return err;
11875 
11876 	if (commit_window) {
11877 		/* In commit phase we narrow the masking window based on
11878 		 * the observed pointer move after the simulated operation.
11879 		 */
11880 		alu_state = info->aux.alu_state;
11881 		alu_limit = abs(info->aux.alu_limit - alu_limit);
11882 	} else {
11883 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
11884 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
11885 		alu_state |= ptr_is_dst_reg ?
11886 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
11887 
11888 		/* Limit pruning on unknown scalars to enable deep search for
11889 		 * potential masking differences from other program paths.
11890 		 */
11891 		if (!off_is_imm)
11892 			env->explore_alu_limits = true;
11893 	}
11894 
11895 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
11896 	if (err < 0)
11897 		return err;
11898 do_sim:
11899 	/* If we're in commit phase, we're done here given we already
11900 	 * pushed the truncated dst_reg into the speculative verification
11901 	 * stack.
11902 	 *
11903 	 * Also, when register is a known constant, we rewrite register-based
11904 	 * operation to immediate-based, and thus do not need masking (and as
11905 	 * a consequence, do not need to simulate the zero-truncation either).
11906 	 */
11907 	if (commit_window || off_is_imm)
11908 		return 0;
11909 
11910 	/* Simulate and find potential out-of-bounds access under
11911 	 * speculative execution from truncation as a result of
11912 	 * masking when off was not within expected range. If off
11913 	 * sits in dst, then we temporarily need to move ptr there
11914 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
11915 	 * for cases where we use K-based arithmetic in one direction
11916 	 * and truncated reg-based in the other in order to explore
11917 	 * bad access.
11918 	 */
11919 	if (!ptr_is_dst_reg) {
11920 		tmp = *dst_reg;
11921 		copy_register_state(dst_reg, ptr_reg);
11922 	}
11923 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
11924 					env->insn_idx);
11925 	if (!ptr_is_dst_reg && ret)
11926 		*dst_reg = tmp;
11927 	return !ret ? REASON_STACK : 0;
11928 }
11929 
11930 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
11931 {
11932 	struct bpf_verifier_state *vstate = env->cur_state;
11933 
11934 	/* If we simulate paths under speculation, we don't update the
11935 	 * insn as 'seen' such that when we verify unreachable paths in
11936 	 * the non-speculative domain, sanitize_dead_code() can still
11937 	 * rewrite/sanitize them.
11938 	 */
11939 	if (!vstate->speculative)
11940 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
11941 }
11942 
11943 static int sanitize_err(struct bpf_verifier_env *env,
11944 			const struct bpf_insn *insn, int reason,
11945 			const struct bpf_reg_state *off_reg,
11946 			const struct bpf_reg_state *dst_reg)
11947 {
11948 	static const char *err = "pointer arithmetic with it prohibited for !root";
11949 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
11950 	u32 dst = insn->dst_reg, src = insn->src_reg;
11951 
11952 	switch (reason) {
11953 	case REASON_BOUNDS:
11954 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
11955 			off_reg == dst_reg ? dst : src, err);
11956 		break;
11957 	case REASON_TYPE:
11958 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
11959 			off_reg == dst_reg ? src : dst, err);
11960 		break;
11961 	case REASON_PATHS:
11962 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
11963 			dst, op, err);
11964 		break;
11965 	case REASON_LIMIT:
11966 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
11967 			dst, op, err);
11968 		break;
11969 	case REASON_STACK:
11970 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
11971 			dst, err);
11972 		break;
11973 	default:
11974 		verbose(env, "verifier internal error: unknown reason (%d)\n",
11975 			reason);
11976 		break;
11977 	}
11978 
11979 	return -EACCES;
11980 }
11981 
11982 /* check that stack access falls within stack limits and that 'reg' doesn't
11983  * have a variable offset.
11984  *
11985  * Variable offset is prohibited for unprivileged mode for simplicity since it
11986  * requires corresponding support in Spectre masking for stack ALU.  See also
11987  * retrieve_ptr_limit().
11988  *
11989  *
11990  * 'off' includes 'reg->off'.
11991  */
11992 static int check_stack_access_for_ptr_arithmetic(
11993 				struct bpf_verifier_env *env,
11994 				int regno,
11995 				const struct bpf_reg_state *reg,
11996 				int off)
11997 {
11998 	if (!tnum_is_const(reg->var_off)) {
11999 		char tn_buf[48];
12000 
12001 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
12002 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
12003 			regno, tn_buf, off);
12004 		return -EACCES;
12005 	}
12006 
12007 	if (off >= 0 || off < -MAX_BPF_STACK) {
12008 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
12009 			"prohibited for !root; off=%d\n", regno, off);
12010 		return -EACCES;
12011 	}
12012 
12013 	return 0;
12014 }
12015 
12016 static int sanitize_check_bounds(struct bpf_verifier_env *env,
12017 				 const struct bpf_insn *insn,
12018 				 const struct bpf_reg_state *dst_reg)
12019 {
12020 	u32 dst = insn->dst_reg;
12021 
12022 	/* For unprivileged we require that resulting offset must be in bounds
12023 	 * in order to be able to sanitize access later on.
12024 	 */
12025 	if (env->bypass_spec_v1)
12026 		return 0;
12027 
12028 	switch (dst_reg->type) {
12029 	case PTR_TO_STACK:
12030 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
12031 					dst_reg->off + dst_reg->var_off.value))
12032 			return -EACCES;
12033 		break;
12034 	case PTR_TO_MAP_VALUE:
12035 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
12036 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
12037 				"prohibited for !root\n", dst);
12038 			return -EACCES;
12039 		}
12040 		break;
12041 	default:
12042 		break;
12043 	}
12044 
12045 	return 0;
12046 }
12047 
12048 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
12049  * Caller should also handle BPF_MOV case separately.
12050  * If we return -EACCES, caller may want to try again treating pointer as a
12051  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
12052  */
12053 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
12054 				   struct bpf_insn *insn,
12055 				   const struct bpf_reg_state *ptr_reg,
12056 				   const struct bpf_reg_state *off_reg)
12057 {
12058 	struct bpf_verifier_state *vstate = env->cur_state;
12059 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
12060 	struct bpf_reg_state *regs = state->regs, *dst_reg;
12061 	bool known = tnum_is_const(off_reg->var_off);
12062 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
12063 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
12064 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
12065 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
12066 	struct bpf_sanitize_info info = {};
12067 	u8 opcode = BPF_OP(insn->code);
12068 	u32 dst = insn->dst_reg;
12069 	int ret;
12070 
12071 	dst_reg = &regs[dst];
12072 
12073 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
12074 	    smin_val > smax_val || umin_val > umax_val) {
12075 		/* Taint dst register if offset had invalid bounds derived from
12076 		 * e.g. dead branches.
12077 		 */
12078 		__mark_reg_unknown(env, dst_reg);
12079 		return 0;
12080 	}
12081 
12082 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
12083 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
12084 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12085 			__mark_reg_unknown(env, dst_reg);
12086 			return 0;
12087 		}
12088 
12089 		verbose(env,
12090 			"R%d 32-bit pointer arithmetic prohibited\n",
12091 			dst);
12092 		return -EACCES;
12093 	}
12094 
12095 	if (ptr_reg->type & PTR_MAYBE_NULL) {
12096 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
12097 			dst, reg_type_str(env, ptr_reg->type));
12098 		return -EACCES;
12099 	}
12100 
12101 	switch (base_type(ptr_reg->type)) {
12102 	case CONST_PTR_TO_MAP:
12103 		/* smin_val represents the known value */
12104 		if (known && smin_val == 0 && opcode == BPF_ADD)
12105 			break;
12106 		fallthrough;
12107 	case PTR_TO_PACKET_END:
12108 	case PTR_TO_SOCKET:
12109 	case PTR_TO_SOCK_COMMON:
12110 	case PTR_TO_TCP_SOCK:
12111 	case PTR_TO_XDP_SOCK:
12112 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
12113 			dst, reg_type_str(env, ptr_reg->type));
12114 		return -EACCES;
12115 	default:
12116 		break;
12117 	}
12118 
12119 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
12120 	 * The id may be overwritten later if we create a new variable offset.
12121 	 */
12122 	dst_reg->type = ptr_reg->type;
12123 	dst_reg->id = ptr_reg->id;
12124 
12125 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
12126 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
12127 		return -EINVAL;
12128 
12129 	/* pointer types do not carry 32-bit bounds at the moment. */
12130 	__mark_reg32_unbounded(dst_reg);
12131 
12132 	if (sanitize_needed(opcode)) {
12133 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
12134 				       &info, false);
12135 		if (ret < 0)
12136 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12137 	}
12138 
12139 	switch (opcode) {
12140 	case BPF_ADD:
12141 		/* We can take a fixed offset as long as it doesn't overflow
12142 		 * the s32 'off' field
12143 		 */
12144 		if (known && (ptr_reg->off + smin_val ==
12145 			      (s64)(s32)(ptr_reg->off + smin_val))) {
12146 			/* pointer += K.  Accumulate it into fixed offset */
12147 			dst_reg->smin_value = smin_ptr;
12148 			dst_reg->smax_value = smax_ptr;
12149 			dst_reg->umin_value = umin_ptr;
12150 			dst_reg->umax_value = umax_ptr;
12151 			dst_reg->var_off = ptr_reg->var_off;
12152 			dst_reg->off = ptr_reg->off + smin_val;
12153 			dst_reg->raw = ptr_reg->raw;
12154 			break;
12155 		}
12156 		/* A new variable offset is created.  Note that off_reg->off
12157 		 * == 0, since it's a scalar.
12158 		 * dst_reg gets the pointer type and since some positive
12159 		 * integer value was added to the pointer, give it a new 'id'
12160 		 * if it's a PTR_TO_PACKET.
12161 		 * this creates a new 'base' pointer, off_reg (variable) gets
12162 		 * added into the variable offset, and we copy the fixed offset
12163 		 * from ptr_reg.
12164 		 */
12165 		if (signed_add_overflows(smin_ptr, smin_val) ||
12166 		    signed_add_overflows(smax_ptr, smax_val)) {
12167 			dst_reg->smin_value = S64_MIN;
12168 			dst_reg->smax_value = S64_MAX;
12169 		} else {
12170 			dst_reg->smin_value = smin_ptr + smin_val;
12171 			dst_reg->smax_value = smax_ptr + smax_val;
12172 		}
12173 		if (umin_ptr + umin_val < umin_ptr ||
12174 		    umax_ptr + umax_val < umax_ptr) {
12175 			dst_reg->umin_value = 0;
12176 			dst_reg->umax_value = U64_MAX;
12177 		} else {
12178 			dst_reg->umin_value = umin_ptr + umin_val;
12179 			dst_reg->umax_value = umax_ptr + umax_val;
12180 		}
12181 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
12182 		dst_reg->off = ptr_reg->off;
12183 		dst_reg->raw = ptr_reg->raw;
12184 		if (reg_is_pkt_pointer(ptr_reg)) {
12185 			dst_reg->id = ++env->id_gen;
12186 			/* something was added to pkt_ptr, set range to zero */
12187 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12188 		}
12189 		break;
12190 	case BPF_SUB:
12191 		if (dst_reg == off_reg) {
12192 			/* scalar -= pointer.  Creates an unknown scalar */
12193 			verbose(env, "R%d tried to subtract pointer from scalar\n",
12194 				dst);
12195 			return -EACCES;
12196 		}
12197 		/* We don't allow subtraction from FP, because (according to
12198 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
12199 		 * be able to deal with it.
12200 		 */
12201 		if (ptr_reg->type == PTR_TO_STACK) {
12202 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
12203 				dst);
12204 			return -EACCES;
12205 		}
12206 		if (known && (ptr_reg->off - smin_val ==
12207 			      (s64)(s32)(ptr_reg->off - smin_val))) {
12208 			/* pointer -= K.  Subtract it from fixed offset */
12209 			dst_reg->smin_value = smin_ptr;
12210 			dst_reg->smax_value = smax_ptr;
12211 			dst_reg->umin_value = umin_ptr;
12212 			dst_reg->umax_value = umax_ptr;
12213 			dst_reg->var_off = ptr_reg->var_off;
12214 			dst_reg->id = ptr_reg->id;
12215 			dst_reg->off = ptr_reg->off - smin_val;
12216 			dst_reg->raw = ptr_reg->raw;
12217 			break;
12218 		}
12219 		/* A new variable offset is created.  If the subtrahend is known
12220 		 * nonnegative, then any reg->range we had before is still good.
12221 		 */
12222 		if (signed_sub_overflows(smin_ptr, smax_val) ||
12223 		    signed_sub_overflows(smax_ptr, smin_val)) {
12224 			/* Overflow possible, we know nothing */
12225 			dst_reg->smin_value = S64_MIN;
12226 			dst_reg->smax_value = S64_MAX;
12227 		} else {
12228 			dst_reg->smin_value = smin_ptr - smax_val;
12229 			dst_reg->smax_value = smax_ptr - smin_val;
12230 		}
12231 		if (umin_ptr < umax_val) {
12232 			/* Overflow possible, we know nothing */
12233 			dst_reg->umin_value = 0;
12234 			dst_reg->umax_value = U64_MAX;
12235 		} else {
12236 			/* Cannot overflow (as long as bounds are consistent) */
12237 			dst_reg->umin_value = umin_ptr - umax_val;
12238 			dst_reg->umax_value = umax_ptr - umin_val;
12239 		}
12240 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
12241 		dst_reg->off = ptr_reg->off;
12242 		dst_reg->raw = ptr_reg->raw;
12243 		if (reg_is_pkt_pointer(ptr_reg)) {
12244 			dst_reg->id = ++env->id_gen;
12245 			/* something was added to pkt_ptr, set range to zero */
12246 			if (smin_val < 0)
12247 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12248 		}
12249 		break;
12250 	case BPF_AND:
12251 	case BPF_OR:
12252 	case BPF_XOR:
12253 		/* bitwise ops on pointers are troublesome, prohibit. */
12254 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
12255 			dst, bpf_alu_string[opcode >> 4]);
12256 		return -EACCES;
12257 	default:
12258 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
12259 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
12260 			dst, bpf_alu_string[opcode >> 4]);
12261 		return -EACCES;
12262 	}
12263 
12264 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
12265 		return -EINVAL;
12266 	reg_bounds_sync(dst_reg);
12267 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
12268 		return -EACCES;
12269 	if (sanitize_needed(opcode)) {
12270 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
12271 				       &info, true);
12272 		if (ret < 0)
12273 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12274 	}
12275 
12276 	return 0;
12277 }
12278 
12279 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
12280 				 struct bpf_reg_state *src_reg)
12281 {
12282 	s32 smin_val = src_reg->s32_min_value;
12283 	s32 smax_val = src_reg->s32_max_value;
12284 	u32 umin_val = src_reg->u32_min_value;
12285 	u32 umax_val = src_reg->u32_max_value;
12286 
12287 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
12288 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
12289 		dst_reg->s32_min_value = S32_MIN;
12290 		dst_reg->s32_max_value = S32_MAX;
12291 	} else {
12292 		dst_reg->s32_min_value += smin_val;
12293 		dst_reg->s32_max_value += smax_val;
12294 	}
12295 	if (dst_reg->u32_min_value + umin_val < umin_val ||
12296 	    dst_reg->u32_max_value + umax_val < umax_val) {
12297 		dst_reg->u32_min_value = 0;
12298 		dst_reg->u32_max_value = U32_MAX;
12299 	} else {
12300 		dst_reg->u32_min_value += umin_val;
12301 		dst_reg->u32_max_value += umax_val;
12302 	}
12303 }
12304 
12305 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
12306 			       struct bpf_reg_state *src_reg)
12307 {
12308 	s64 smin_val = src_reg->smin_value;
12309 	s64 smax_val = src_reg->smax_value;
12310 	u64 umin_val = src_reg->umin_value;
12311 	u64 umax_val = src_reg->umax_value;
12312 
12313 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
12314 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
12315 		dst_reg->smin_value = S64_MIN;
12316 		dst_reg->smax_value = S64_MAX;
12317 	} else {
12318 		dst_reg->smin_value += smin_val;
12319 		dst_reg->smax_value += smax_val;
12320 	}
12321 	if (dst_reg->umin_value + umin_val < umin_val ||
12322 	    dst_reg->umax_value + umax_val < umax_val) {
12323 		dst_reg->umin_value = 0;
12324 		dst_reg->umax_value = U64_MAX;
12325 	} else {
12326 		dst_reg->umin_value += umin_val;
12327 		dst_reg->umax_value += umax_val;
12328 	}
12329 }
12330 
12331 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
12332 				 struct bpf_reg_state *src_reg)
12333 {
12334 	s32 smin_val = src_reg->s32_min_value;
12335 	s32 smax_val = src_reg->s32_max_value;
12336 	u32 umin_val = src_reg->u32_min_value;
12337 	u32 umax_val = src_reg->u32_max_value;
12338 
12339 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
12340 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
12341 		/* Overflow possible, we know nothing */
12342 		dst_reg->s32_min_value = S32_MIN;
12343 		dst_reg->s32_max_value = S32_MAX;
12344 	} else {
12345 		dst_reg->s32_min_value -= smax_val;
12346 		dst_reg->s32_max_value -= smin_val;
12347 	}
12348 	if (dst_reg->u32_min_value < umax_val) {
12349 		/* Overflow possible, we know nothing */
12350 		dst_reg->u32_min_value = 0;
12351 		dst_reg->u32_max_value = U32_MAX;
12352 	} else {
12353 		/* Cannot overflow (as long as bounds are consistent) */
12354 		dst_reg->u32_min_value -= umax_val;
12355 		dst_reg->u32_max_value -= umin_val;
12356 	}
12357 }
12358 
12359 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
12360 			       struct bpf_reg_state *src_reg)
12361 {
12362 	s64 smin_val = src_reg->smin_value;
12363 	s64 smax_val = src_reg->smax_value;
12364 	u64 umin_val = src_reg->umin_value;
12365 	u64 umax_val = src_reg->umax_value;
12366 
12367 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
12368 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
12369 		/* Overflow possible, we know nothing */
12370 		dst_reg->smin_value = S64_MIN;
12371 		dst_reg->smax_value = S64_MAX;
12372 	} else {
12373 		dst_reg->smin_value -= smax_val;
12374 		dst_reg->smax_value -= smin_val;
12375 	}
12376 	if (dst_reg->umin_value < umax_val) {
12377 		/* Overflow possible, we know nothing */
12378 		dst_reg->umin_value = 0;
12379 		dst_reg->umax_value = U64_MAX;
12380 	} else {
12381 		/* Cannot overflow (as long as bounds are consistent) */
12382 		dst_reg->umin_value -= umax_val;
12383 		dst_reg->umax_value -= umin_val;
12384 	}
12385 }
12386 
12387 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
12388 				 struct bpf_reg_state *src_reg)
12389 {
12390 	s32 smin_val = src_reg->s32_min_value;
12391 	u32 umin_val = src_reg->u32_min_value;
12392 	u32 umax_val = src_reg->u32_max_value;
12393 
12394 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
12395 		/* Ain't nobody got time to multiply that sign */
12396 		__mark_reg32_unbounded(dst_reg);
12397 		return;
12398 	}
12399 	/* Both values are positive, so we can work with unsigned and
12400 	 * copy the result to signed (unless it exceeds S32_MAX).
12401 	 */
12402 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
12403 		/* Potential overflow, we know nothing */
12404 		__mark_reg32_unbounded(dst_reg);
12405 		return;
12406 	}
12407 	dst_reg->u32_min_value *= umin_val;
12408 	dst_reg->u32_max_value *= umax_val;
12409 	if (dst_reg->u32_max_value > S32_MAX) {
12410 		/* Overflow possible, we know nothing */
12411 		dst_reg->s32_min_value = S32_MIN;
12412 		dst_reg->s32_max_value = S32_MAX;
12413 	} else {
12414 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12415 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12416 	}
12417 }
12418 
12419 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
12420 			       struct bpf_reg_state *src_reg)
12421 {
12422 	s64 smin_val = src_reg->smin_value;
12423 	u64 umin_val = src_reg->umin_value;
12424 	u64 umax_val = src_reg->umax_value;
12425 
12426 	if (smin_val < 0 || dst_reg->smin_value < 0) {
12427 		/* Ain't nobody got time to multiply that sign */
12428 		__mark_reg64_unbounded(dst_reg);
12429 		return;
12430 	}
12431 	/* Both values are positive, so we can work with unsigned and
12432 	 * copy the result to signed (unless it exceeds S64_MAX).
12433 	 */
12434 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
12435 		/* Potential overflow, we know nothing */
12436 		__mark_reg64_unbounded(dst_reg);
12437 		return;
12438 	}
12439 	dst_reg->umin_value *= umin_val;
12440 	dst_reg->umax_value *= umax_val;
12441 	if (dst_reg->umax_value > S64_MAX) {
12442 		/* Overflow possible, we know nothing */
12443 		dst_reg->smin_value = S64_MIN;
12444 		dst_reg->smax_value = S64_MAX;
12445 	} else {
12446 		dst_reg->smin_value = dst_reg->umin_value;
12447 		dst_reg->smax_value = dst_reg->umax_value;
12448 	}
12449 }
12450 
12451 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
12452 				 struct bpf_reg_state *src_reg)
12453 {
12454 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12455 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12456 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12457 	s32 smin_val = src_reg->s32_min_value;
12458 	u32 umax_val = src_reg->u32_max_value;
12459 
12460 	if (src_known && dst_known) {
12461 		__mark_reg32_known(dst_reg, var32_off.value);
12462 		return;
12463 	}
12464 
12465 	/* We get our minimum from the var_off, since that's inherently
12466 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
12467 	 */
12468 	dst_reg->u32_min_value = var32_off.value;
12469 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
12470 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12471 		/* Lose signed bounds when ANDing negative numbers,
12472 		 * ain't nobody got time for that.
12473 		 */
12474 		dst_reg->s32_min_value = S32_MIN;
12475 		dst_reg->s32_max_value = S32_MAX;
12476 	} else {
12477 		/* ANDing two positives gives a positive, so safe to
12478 		 * cast result into s64.
12479 		 */
12480 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12481 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12482 	}
12483 }
12484 
12485 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
12486 			       struct bpf_reg_state *src_reg)
12487 {
12488 	bool src_known = tnum_is_const(src_reg->var_off);
12489 	bool dst_known = tnum_is_const(dst_reg->var_off);
12490 	s64 smin_val = src_reg->smin_value;
12491 	u64 umax_val = src_reg->umax_value;
12492 
12493 	if (src_known && dst_known) {
12494 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12495 		return;
12496 	}
12497 
12498 	/* We get our minimum from the var_off, since that's inherently
12499 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
12500 	 */
12501 	dst_reg->umin_value = dst_reg->var_off.value;
12502 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
12503 	if (dst_reg->smin_value < 0 || smin_val < 0) {
12504 		/* Lose signed bounds when ANDing negative numbers,
12505 		 * ain't nobody got time for that.
12506 		 */
12507 		dst_reg->smin_value = S64_MIN;
12508 		dst_reg->smax_value = S64_MAX;
12509 	} else {
12510 		/* ANDing two positives gives a positive, so safe to
12511 		 * cast result into s64.
12512 		 */
12513 		dst_reg->smin_value = dst_reg->umin_value;
12514 		dst_reg->smax_value = dst_reg->umax_value;
12515 	}
12516 	/* We may learn something more from the var_off */
12517 	__update_reg_bounds(dst_reg);
12518 }
12519 
12520 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
12521 				struct bpf_reg_state *src_reg)
12522 {
12523 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12524 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12525 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12526 	s32 smin_val = src_reg->s32_min_value;
12527 	u32 umin_val = src_reg->u32_min_value;
12528 
12529 	if (src_known && dst_known) {
12530 		__mark_reg32_known(dst_reg, var32_off.value);
12531 		return;
12532 	}
12533 
12534 	/* We get our maximum from the var_off, and our minimum is the
12535 	 * maximum of the operands' minima
12536 	 */
12537 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
12538 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12539 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12540 		/* Lose signed bounds when ORing negative numbers,
12541 		 * ain't nobody got time for that.
12542 		 */
12543 		dst_reg->s32_min_value = S32_MIN;
12544 		dst_reg->s32_max_value = S32_MAX;
12545 	} else {
12546 		/* ORing two positives gives a positive, so safe to
12547 		 * cast result into s64.
12548 		 */
12549 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12550 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12551 	}
12552 }
12553 
12554 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
12555 			      struct bpf_reg_state *src_reg)
12556 {
12557 	bool src_known = tnum_is_const(src_reg->var_off);
12558 	bool dst_known = tnum_is_const(dst_reg->var_off);
12559 	s64 smin_val = src_reg->smin_value;
12560 	u64 umin_val = src_reg->umin_value;
12561 
12562 	if (src_known && dst_known) {
12563 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12564 		return;
12565 	}
12566 
12567 	/* We get our maximum from the var_off, and our minimum is the
12568 	 * maximum of the operands' minima
12569 	 */
12570 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
12571 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
12572 	if (dst_reg->smin_value < 0 || smin_val < 0) {
12573 		/* Lose signed bounds when ORing negative numbers,
12574 		 * ain't nobody got time for that.
12575 		 */
12576 		dst_reg->smin_value = S64_MIN;
12577 		dst_reg->smax_value = S64_MAX;
12578 	} else {
12579 		/* ORing two positives gives a positive, so safe to
12580 		 * cast result into s64.
12581 		 */
12582 		dst_reg->smin_value = dst_reg->umin_value;
12583 		dst_reg->smax_value = dst_reg->umax_value;
12584 	}
12585 	/* We may learn something more from the var_off */
12586 	__update_reg_bounds(dst_reg);
12587 }
12588 
12589 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
12590 				 struct bpf_reg_state *src_reg)
12591 {
12592 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12593 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12594 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12595 	s32 smin_val = src_reg->s32_min_value;
12596 
12597 	if (src_known && dst_known) {
12598 		__mark_reg32_known(dst_reg, var32_off.value);
12599 		return;
12600 	}
12601 
12602 	/* We get both minimum and maximum from the var32_off. */
12603 	dst_reg->u32_min_value = var32_off.value;
12604 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12605 
12606 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
12607 		/* XORing two positive sign numbers gives a positive,
12608 		 * so safe to cast u32 result into s32.
12609 		 */
12610 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12611 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12612 	} else {
12613 		dst_reg->s32_min_value = S32_MIN;
12614 		dst_reg->s32_max_value = S32_MAX;
12615 	}
12616 }
12617 
12618 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
12619 			       struct bpf_reg_state *src_reg)
12620 {
12621 	bool src_known = tnum_is_const(src_reg->var_off);
12622 	bool dst_known = tnum_is_const(dst_reg->var_off);
12623 	s64 smin_val = src_reg->smin_value;
12624 
12625 	if (src_known && dst_known) {
12626 		/* dst_reg->var_off.value has been updated earlier */
12627 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12628 		return;
12629 	}
12630 
12631 	/* We get both minimum and maximum from the var_off. */
12632 	dst_reg->umin_value = dst_reg->var_off.value;
12633 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
12634 
12635 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
12636 		/* XORing two positive sign numbers gives a positive,
12637 		 * so safe to cast u64 result into s64.
12638 		 */
12639 		dst_reg->smin_value = dst_reg->umin_value;
12640 		dst_reg->smax_value = dst_reg->umax_value;
12641 	} else {
12642 		dst_reg->smin_value = S64_MIN;
12643 		dst_reg->smax_value = S64_MAX;
12644 	}
12645 
12646 	__update_reg_bounds(dst_reg);
12647 }
12648 
12649 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
12650 				   u64 umin_val, u64 umax_val)
12651 {
12652 	/* We lose all sign bit information (except what we can pick
12653 	 * up from var_off)
12654 	 */
12655 	dst_reg->s32_min_value = S32_MIN;
12656 	dst_reg->s32_max_value = S32_MAX;
12657 	/* If we might shift our top bit out, then we know nothing */
12658 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
12659 		dst_reg->u32_min_value = 0;
12660 		dst_reg->u32_max_value = U32_MAX;
12661 	} else {
12662 		dst_reg->u32_min_value <<= umin_val;
12663 		dst_reg->u32_max_value <<= umax_val;
12664 	}
12665 }
12666 
12667 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
12668 				 struct bpf_reg_state *src_reg)
12669 {
12670 	u32 umax_val = src_reg->u32_max_value;
12671 	u32 umin_val = src_reg->u32_min_value;
12672 	/* u32 alu operation will zext upper bits */
12673 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
12674 
12675 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
12676 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
12677 	/* Not required but being careful mark reg64 bounds as unknown so
12678 	 * that we are forced to pick them up from tnum and zext later and
12679 	 * if some path skips this step we are still safe.
12680 	 */
12681 	__mark_reg64_unbounded(dst_reg);
12682 	__update_reg32_bounds(dst_reg);
12683 }
12684 
12685 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
12686 				   u64 umin_val, u64 umax_val)
12687 {
12688 	/* Special case <<32 because it is a common compiler pattern to sign
12689 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
12690 	 * positive we know this shift will also be positive so we can track
12691 	 * bounds correctly. Otherwise we lose all sign bit information except
12692 	 * what we can pick up from var_off. Perhaps we can generalize this
12693 	 * later to shifts of any length.
12694 	 */
12695 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
12696 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
12697 	else
12698 		dst_reg->smax_value = S64_MAX;
12699 
12700 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
12701 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
12702 	else
12703 		dst_reg->smin_value = S64_MIN;
12704 
12705 	/* If we might shift our top bit out, then we know nothing */
12706 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
12707 		dst_reg->umin_value = 0;
12708 		dst_reg->umax_value = U64_MAX;
12709 	} else {
12710 		dst_reg->umin_value <<= umin_val;
12711 		dst_reg->umax_value <<= umax_val;
12712 	}
12713 }
12714 
12715 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
12716 			       struct bpf_reg_state *src_reg)
12717 {
12718 	u64 umax_val = src_reg->umax_value;
12719 	u64 umin_val = src_reg->umin_value;
12720 
12721 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
12722 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
12723 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
12724 
12725 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
12726 	/* We may learn something more from the var_off */
12727 	__update_reg_bounds(dst_reg);
12728 }
12729 
12730 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
12731 				 struct bpf_reg_state *src_reg)
12732 {
12733 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
12734 	u32 umax_val = src_reg->u32_max_value;
12735 	u32 umin_val = src_reg->u32_min_value;
12736 
12737 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
12738 	 * be negative, then either:
12739 	 * 1) src_reg might be zero, so the sign bit of the result is
12740 	 *    unknown, so we lose our signed bounds
12741 	 * 2) it's known negative, thus the unsigned bounds capture the
12742 	 *    signed bounds
12743 	 * 3) the signed bounds cross zero, so they tell us nothing
12744 	 *    about the result
12745 	 * If the value in dst_reg is known nonnegative, then again the
12746 	 * unsigned bounds capture the signed bounds.
12747 	 * Thus, in all cases it suffices to blow away our signed bounds
12748 	 * and rely on inferring new ones from the unsigned bounds and
12749 	 * var_off of the result.
12750 	 */
12751 	dst_reg->s32_min_value = S32_MIN;
12752 	dst_reg->s32_max_value = S32_MAX;
12753 
12754 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
12755 	dst_reg->u32_min_value >>= umax_val;
12756 	dst_reg->u32_max_value >>= umin_val;
12757 
12758 	__mark_reg64_unbounded(dst_reg);
12759 	__update_reg32_bounds(dst_reg);
12760 }
12761 
12762 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
12763 			       struct bpf_reg_state *src_reg)
12764 {
12765 	u64 umax_val = src_reg->umax_value;
12766 	u64 umin_val = src_reg->umin_value;
12767 
12768 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
12769 	 * be negative, then either:
12770 	 * 1) src_reg might be zero, so the sign bit of the result is
12771 	 *    unknown, so we lose our signed bounds
12772 	 * 2) it's known negative, thus the unsigned bounds capture the
12773 	 *    signed bounds
12774 	 * 3) the signed bounds cross zero, so they tell us nothing
12775 	 *    about the result
12776 	 * If the value in dst_reg is known nonnegative, then again the
12777 	 * unsigned bounds capture the signed bounds.
12778 	 * Thus, in all cases it suffices to blow away our signed bounds
12779 	 * and rely on inferring new ones from the unsigned bounds and
12780 	 * var_off of the result.
12781 	 */
12782 	dst_reg->smin_value = S64_MIN;
12783 	dst_reg->smax_value = S64_MAX;
12784 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
12785 	dst_reg->umin_value >>= umax_val;
12786 	dst_reg->umax_value >>= umin_val;
12787 
12788 	/* Its not easy to operate on alu32 bounds here because it depends
12789 	 * on bits being shifted in. Take easy way out and mark unbounded
12790 	 * so we can recalculate later from tnum.
12791 	 */
12792 	__mark_reg32_unbounded(dst_reg);
12793 	__update_reg_bounds(dst_reg);
12794 }
12795 
12796 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
12797 				  struct bpf_reg_state *src_reg)
12798 {
12799 	u64 umin_val = src_reg->u32_min_value;
12800 
12801 	/* Upon reaching here, src_known is true and
12802 	 * umax_val is equal to umin_val.
12803 	 */
12804 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
12805 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
12806 
12807 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
12808 
12809 	/* blow away the dst_reg umin_value/umax_value and rely on
12810 	 * dst_reg var_off to refine the result.
12811 	 */
12812 	dst_reg->u32_min_value = 0;
12813 	dst_reg->u32_max_value = U32_MAX;
12814 
12815 	__mark_reg64_unbounded(dst_reg);
12816 	__update_reg32_bounds(dst_reg);
12817 }
12818 
12819 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
12820 				struct bpf_reg_state *src_reg)
12821 {
12822 	u64 umin_val = src_reg->umin_value;
12823 
12824 	/* Upon reaching here, src_known is true and umax_val is equal
12825 	 * to umin_val.
12826 	 */
12827 	dst_reg->smin_value >>= umin_val;
12828 	dst_reg->smax_value >>= umin_val;
12829 
12830 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
12831 
12832 	/* blow away the dst_reg umin_value/umax_value and rely on
12833 	 * dst_reg var_off to refine the result.
12834 	 */
12835 	dst_reg->umin_value = 0;
12836 	dst_reg->umax_value = U64_MAX;
12837 
12838 	/* Its not easy to operate on alu32 bounds here because it depends
12839 	 * on bits being shifted in from upper 32-bits. Take easy way out
12840 	 * and mark unbounded so we can recalculate later from tnum.
12841 	 */
12842 	__mark_reg32_unbounded(dst_reg);
12843 	__update_reg_bounds(dst_reg);
12844 }
12845 
12846 /* WARNING: This function does calculations on 64-bit values, but the actual
12847  * execution may occur on 32-bit values. Therefore, things like bitshifts
12848  * need extra checks in the 32-bit case.
12849  */
12850 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
12851 				      struct bpf_insn *insn,
12852 				      struct bpf_reg_state *dst_reg,
12853 				      struct bpf_reg_state src_reg)
12854 {
12855 	struct bpf_reg_state *regs = cur_regs(env);
12856 	u8 opcode = BPF_OP(insn->code);
12857 	bool src_known;
12858 	s64 smin_val, smax_val;
12859 	u64 umin_val, umax_val;
12860 	s32 s32_min_val, s32_max_val;
12861 	u32 u32_min_val, u32_max_val;
12862 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
12863 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
12864 	int ret;
12865 
12866 	smin_val = src_reg.smin_value;
12867 	smax_val = src_reg.smax_value;
12868 	umin_val = src_reg.umin_value;
12869 	umax_val = src_reg.umax_value;
12870 
12871 	s32_min_val = src_reg.s32_min_value;
12872 	s32_max_val = src_reg.s32_max_value;
12873 	u32_min_val = src_reg.u32_min_value;
12874 	u32_max_val = src_reg.u32_max_value;
12875 
12876 	if (alu32) {
12877 		src_known = tnum_subreg_is_const(src_reg.var_off);
12878 		if ((src_known &&
12879 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
12880 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
12881 			/* Taint dst register if offset had invalid bounds
12882 			 * derived from e.g. dead branches.
12883 			 */
12884 			__mark_reg_unknown(env, dst_reg);
12885 			return 0;
12886 		}
12887 	} else {
12888 		src_known = tnum_is_const(src_reg.var_off);
12889 		if ((src_known &&
12890 		     (smin_val != smax_val || umin_val != umax_val)) ||
12891 		    smin_val > smax_val || umin_val > umax_val) {
12892 			/* Taint dst register if offset had invalid bounds
12893 			 * derived from e.g. dead branches.
12894 			 */
12895 			__mark_reg_unknown(env, dst_reg);
12896 			return 0;
12897 		}
12898 	}
12899 
12900 	if (!src_known &&
12901 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
12902 		__mark_reg_unknown(env, dst_reg);
12903 		return 0;
12904 	}
12905 
12906 	if (sanitize_needed(opcode)) {
12907 		ret = sanitize_val_alu(env, insn);
12908 		if (ret < 0)
12909 			return sanitize_err(env, insn, ret, NULL, NULL);
12910 	}
12911 
12912 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
12913 	 * There are two classes of instructions: The first class we track both
12914 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
12915 	 * greatest amount of precision when alu operations are mixed with jmp32
12916 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
12917 	 * and BPF_OR. This is possible because these ops have fairly easy to
12918 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
12919 	 * See alu32 verifier tests for examples. The second class of
12920 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
12921 	 * with regards to tracking sign/unsigned bounds because the bits may
12922 	 * cross subreg boundaries in the alu64 case. When this happens we mark
12923 	 * the reg unbounded in the subreg bound space and use the resulting
12924 	 * tnum to calculate an approximation of the sign/unsigned bounds.
12925 	 */
12926 	switch (opcode) {
12927 	case BPF_ADD:
12928 		scalar32_min_max_add(dst_reg, &src_reg);
12929 		scalar_min_max_add(dst_reg, &src_reg);
12930 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
12931 		break;
12932 	case BPF_SUB:
12933 		scalar32_min_max_sub(dst_reg, &src_reg);
12934 		scalar_min_max_sub(dst_reg, &src_reg);
12935 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
12936 		break;
12937 	case BPF_MUL:
12938 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
12939 		scalar32_min_max_mul(dst_reg, &src_reg);
12940 		scalar_min_max_mul(dst_reg, &src_reg);
12941 		break;
12942 	case BPF_AND:
12943 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
12944 		scalar32_min_max_and(dst_reg, &src_reg);
12945 		scalar_min_max_and(dst_reg, &src_reg);
12946 		break;
12947 	case BPF_OR:
12948 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
12949 		scalar32_min_max_or(dst_reg, &src_reg);
12950 		scalar_min_max_or(dst_reg, &src_reg);
12951 		break;
12952 	case BPF_XOR:
12953 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
12954 		scalar32_min_max_xor(dst_reg, &src_reg);
12955 		scalar_min_max_xor(dst_reg, &src_reg);
12956 		break;
12957 	case BPF_LSH:
12958 		if (umax_val >= insn_bitness) {
12959 			/* Shifts greater than 31 or 63 are undefined.
12960 			 * This includes shifts by a negative number.
12961 			 */
12962 			mark_reg_unknown(env, regs, insn->dst_reg);
12963 			break;
12964 		}
12965 		if (alu32)
12966 			scalar32_min_max_lsh(dst_reg, &src_reg);
12967 		else
12968 			scalar_min_max_lsh(dst_reg, &src_reg);
12969 		break;
12970 	case BPF_RSH:
12971 		if (umax_val >= insn_bitness) {
12972 			/* Shifts greater than 31 or 63 are undefined.
12973 			 * This includes shifts by a negative number.
12974 			 */
12975 			mark_reg_unknown(env, regs, insn->dst_reg);
12976 			break;
12977 		}
12978 		if (alu32)
12979 			scalar32_min_max_rsh(dst_reg, &src_reg);
12980 		else
12981 			scalar_min_max_rsh(dst_reg, &src_reg);
12982 		break;
12983 	case BPF_ARSH:
12984 		if (umax_val >= insn_bitness) {
12985 			/* Shifts greater than 31 or 63 are undefined.
12986 			 * This includes shifts by a negative number.
12987 			 */
12988 			mark_reg_unknown(env, regs, insn->dst_reg);
12989 			break;
12990 		}
12991 		if (alu32)
12992 			scalar32_min_max_arsh(dst_reg, &src_reg);
12993 		else
12994 			scalar_min_max_arsh(dst_reg, &src_reg);
12995 		break;
12996 	default:
12997 		mark_reg_unknown(env, regs, insn->dst_reg);
12998 		break;
12999 	}
13000 
13001 	/* ALU32 ops are zero extended into 64bit register */
13002 	if (alu32)
13003 		zext_32_to_64(dst_reg);
13004 	reg_bounds_sync(dst_reg);
13005 	return 0;
13006 }
13007 
13008 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
13009  * and var_off.
13010  */
13011 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
13012 				   struct bpf_insn *insn)
13013 {
13014 	struct bpf_verifier_state *vstate = env->cur_state;
13015 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13016 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
13017 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
13018 	u8 opcode = BPF_OP(insn->code);
13019 	int err;
13020 
13021 	dst_reg = &regs[insn->dst_reg];
13022 	src_reg = NULL;
13023 	if (dst_reg->type != SCALAR_VALUE)
13024 		ptr_reg = dst_reg;
13025 	else
13026 		/* Make sure ID is cleared otherwise dst_reg min/max could be
13027 		 * incorrectly propagated into other registers by find_equal_scalars()
13028 		 */
13029 		dst_reg->id = 0;
13030 	if (BPF_SRC(insn->code) == BPF_X) {
13031 		src_reg = &regs[insn->src_reg];
13032 		if (src_reg->type != SCALAR_VALUE) {
13033 			if (dst_reg->type != SCALAR_VALUE) {
13034 				/* Combining two pointers by any ALU op yields
13035 				 * an arbitrary scalar. Disallow all math except
13036 				 * pointer subtraction
13037 				 */
13038 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13039 					mark_reg_unknown(env, regs, insn->dst_reg);
13040 					return 0;
13041 				}
13042 				verbose(env, "R%d pointer %s pointer prohibited\n",
13043 					insn->dst_reg,
13044 					bpf_alu_string[opcode >> 4]);
13045 				return -EACCES;
13046 			} else {
13047 				/* scalar += pointer
13048 				 * This is legal, but we have to reverse our
13049 				 * src/dest handling in computing the range
13050 				 */
13051 				err = mark_chain_precision(env, insn->dst_reg);
13052 				if (err)
13053 					return err;
13054 				return adjust_ptr_min_max_vals(env, insn,
13055 							       src_reg, dst_reg);
13056 			}
13057 		} else if (ptr_reg) {
13058 			/* pointer += scalar */
13059 			err = mark_chain_precision(env, insn->src_reg);
13060 			if (err)
13061 				return err;
13062 			return adjust_ptr_min_max_vals(env, insn,
13063 						       dst_reg, src_reg);
13064 		} else if (dst_reg->precise) {
13065 			/* if dst_reg is precise, src_reg should be precise as well */
13066 			err = mark_chain_precision(env, insn->src_reg);
13067 			if (err)
13068 				return err;
13069 		}
13070 	} else {
13071 		/* Pretend the src is a reg with a known value, since we only
13072 		 * need to be able to read from this state.
13073 		 */
13074 		off_reg.type = SCALAR_VALUE;
13075 		__mark_reg_known(&off_reg, insn->imm);
13076 		src_reg = &off_reg;
13077 		if (ptr_reg) /* pointer += K */
13078 			return adjust_ptr_min_max_vals(env, insn,
13079 						       ptr_reg, src_reg);
13080 	}
13081 
13082 	/* Got here implies adding two SCALAR_VALUEs */
13083 	if (WARN_ON_ONCE(ptr_reg)) {
13084 		print_verifier_state(env, state, true);
13085 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
13086 		return -EINVAL;
13087 	}
13088 	if (WARN_ON(!src_reg)) {
13089 		print_verifier_state(env, state, true);
13090 		verbose(env, "verifier internal error: no src_reg\n");
13091 		return -EINVAL;
13092 	}
13093 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
13094 }
13095 
13096 /* check validity of 32-bit and 64-bit arithmetic operations */
13097 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
13098 {
13099 	struct bpf_reg_state *regs = cur_regs(env);
13100 	u8 opcode = BPF_OP(insn->code);
13101 	int err;
13102 
13103 	if (opcode == BPF_END || opcode == BPF_NEG) {
13104 		if (opcode == BPF_NEG) {
13105 			if (BPF_SRC(insn->code) != BPF_K ||
13106 			    insn->src_reg != BPF_REG_0 ||
13107 			    insn->off != 0 || insn->imm != 0) {
13108 				verbose(env, "BPF_NEG uses reserved fields\n");
13109 				return -EINVAL;
13110 			}
13111 		} else {
13112 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
13113 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
13114 			    (BPF_CLASS(insn->code) == BPF_ALU64 &&
13115 			     BPF_SRC(insn->code) != BPF_TO_LE)) {
13116 				verbose(env, "BPF_END uses reserved fields\n");
13117 				return -EINVAL;
13118 			}
13119 		}
13120 
13121 		/* check src operand */
13122 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13123 		if (err)
13124 			return err;
13125 
13126 		if (is_pointer_value(env, insn->dst_reg)) {
13127 			verbose(env, "R%d pointer arithmetic prohibited\n",
13128 				insn->dst_reg);
13129 			return -EACCES;
13130 		}
13131 
13132 		/* check dest operand */
13133 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
13134 		if (err)
13135 			return err;
13136 
13137 	} else if (opcode == BPF_MOV) {
13138 
13139 		if (BPF_SRC(insn->code) == BPF_X) {
13140 			if (insn->imm != 0) {
13141 				verbose(env, "BPF_MOV uses reserved fields\n");
13142 				return -EINVAL;
13143 			}
13144 
13145 			if (BPF_CLASS(insn->code) == BPF_ALU) {
13146 				if (insn->off != 0 && insn->off != 8 && insn->off != 16) {
13147 					verbose(env, "BPF_MOV uses reserved fields\n");
13148 					return -EINVAL;
13149 				}
13150 			} else {
13151 				if (insn->off != 0 && insn->off != 8 && insn->off != 16 &&
13152 				    insn->off != 32) {
13153 					verbose(env, "BPF_MOV uses reserved fields\n");
13154 					return -EINVAL;
13155 				}
13156 			}
13157 
13158 			/* check src operand */
13159 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13160 			if (err)
13161 				return err;
13162 		} else {
13163 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
13164 				verbose(env, "BPF_MOV uses reserved fields\n");
13165 				return -EINVAL;
13166 			}
13167 		}
13168 
13169 		/* check dest operand, mark as required later */
13170 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13171 		if (err)
13172 			return err;
13173 
13174 		if (BPF_SRC(insn->code) == BPF_X) {
13175 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
13176 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
13177 			bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id &&
13178 				       !tnum_is_const(src_reg->var_off);
13179 
13180 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13181 				if (insn->off == 0) {
13182 					/* case: R1 = R2
13183 					 * copy register state to dest reg
13184 					 */
13185 					if (need_id)
13186 						/* Assign src and dst registers the same ID
13187 						 * that will be used by find_equal_scalars()
13188 						 * to propagate min/max range.
13189 						 */
13190 						src_reg->id = ++env->id_gen;
13191 					copy_register_state(dst_reg, src_reg);
13192 					dst_reg->live |= REG_LIVE_WRITTEN;
13193 					dst_reg->subreg_def = DEF_NOT_SUBREG;
13194 				} else {
13195 					/* case: R1 = (s8, s16 s32)R2 */
13196 					if (is_pointer_value(env, insn->src_reg)) {
13197 						verbose(env,
13198 							"R%d sign-extension part of pointer\n",
13199 							insn->src_reg);
13200 						return -EACCES;
13201 					} else if (src_reg->type == SCALAR_VALUE) {
13202 						bool no_sext;
13203 
13204 						no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13205 						if (no_sext && need_id)
13206 							src_reg->id = ++env->id_gen;
13207 						copy_register_state(dst_reg, src_reg);
13208 						if (!no_sext)
13209 							dst_reg->id = 0;
13210 						coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
13211 						dst_reg->live |= REG_LIVE_WRITTEN;
13212 						dst_reg->subreg_def = DEF_NOT_SUBREG;
13213 					} else {
13214 						mark_reg_unknown(env, regs, insn->dst_reg);
13215 					}
13216 				}
13217 			} else {
13218 				/* R1 = (u32) R2 */
13219 				if (is_pointer_value(env, insn->src_reg)) {
13220 					verbose(env,
13221 						"R%d partial copy of pointer\n",
13222 						insn->src_reg);
13223 					return -EACCES;
13224 				} else if (src_reg->type == SCALAR_VALUE) {
13225 					if (insn->off == 0) {
13226 						bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
13227 
13228 						if (is_src_reg_u32 && need_id)
13229 							src_reg->id = ++env->id_gen;
13230 						copy_register_state(dst_reg, src_reg);
13231 						/* Make sure ID is cleared if src_reg is not in u32
13232 						 * range otherwise dst_reg min/max could be incorrectly
13233 						 * propagated into src_reg by find_equal_scalars()
13234 						 */
13235 						if (!is_src_reg_u32)
13236 							dst_reg->id = 0;
13237 						dst_reg->live |= REG_LIVE_WRITTEN;
13238 						dst_reg->subreg_def = env->insn_idx + 1;
13239 					} else {
13240 						/* case: W1 = (s8, s16)W2 */
13241 						bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13242 
13243 						if (no_sext && need_id)
13244 							src_reg->id = ++env->id_gen;
13245 						copy_register_state(dst_reg, src_reg);
13246 						if (!no_sext)
13247 							dst_reg->id = 0;
13248 						dst_reg->live |= REG_LIVE_WRITTEN;
13249 						dst_reg->subreg_def = env->insn_idx + 1;
13250 						coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
13251 					}
13252 				} else {
13253 					mark_reg_unknown(env, regs,
13254 							 insn->dst_reg);
13255 				}
13256 				zext_32_to_64(dst_reg);
13257 				reg_bounds_sync(dst_reg);
13258 			}
13259 		} else {
13260 			/* case: R = imm
13261 			 * remember the value we stored into this reg
13262 			 */
13263 			/* clear any state __mark_reg_known doesn't set */
13264 			mark_reg_unknown(env, regs, insn->dst_reg);
13265 			regs[insn->dst_reg].type = SCALAR_VALUE;
13266 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13267 				__mark_reg_known(regs + insn->dst_reg,
13268 						 insn->imm);
13269 			} else {
13270 				__mark_reg_known(regs + insn->dst_reg,
13271 						 (u32)insn->imm);
13272 			}
13273 		}
13274 
13275 	} else if (opcode > BPF_END) {
13276 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
13277 		return -EINVAL;
13278 
13279 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
13280 
13281 		if (BPF_SRC(insn->code) == BPF_X) {
13282 			if (insn->imm != 0 || insn->off > 1 ||
13283 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13284 				verbose(env, "BPF_ALU uses reserved fields\n");
13285 				return -EINVAL;
13286 			}
13287 			/* check src1 operand */
13288 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13289 			if (err)
13290 				return err;
13291 		} else {
13292 			if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
13293 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13294 				verbose(env, "BPF_ALU uses reserved fields\n");
13295 				return -EINVAL;
13296 			}
13297 		}
13298 
13299 		/* check src2 operand */
13300 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13301 		if (err)
13302 			return err;
13303 
13304 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
13305 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
13306 			verbose(env, "div by zero\n");
13307 			return -EINVAL;
13308 		}
13309 
13310 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
13311 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
13312 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
13313 
13314 			if (insn->imm < 0 || insn->imm >= size) {
13315 				verbose(env, "invalid shift %d\n", insn->imm);
13316 				return -EINVAL;
13317 			}
13318 		}
13319 
13320 		/* check dest operand */
13321 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13322 		if (err)
13323 			return err;
13324 
13325 		return adjust_reg_min_max_vals(env, insn);
13326 	}
13327 
13328 	return 0;
13329 }
13330 
13331 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
13332 				   struct bpf_reg_state *dst_reg,
13333 				   enum bpf_reg_type type,
13334 				   bool range_right_open)
13335 {
13336 	struct bpf_func_state *state;
13337 	struct bpf_reg_state *reg;
13338 	int new_range;
13339 
13340 	if (dst_reg->off < 0 ||
13341 	    (dst_reg->off == 0 && range_right_open))
13342 		/* This doesn't give us any range */
13343 		return;
13344 
13345 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
13346 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
13347 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
13348 		 * than pkt_end, but that's because it's also less than pkt.
13349 		 */
13350 		return;
13351 
13352 	new_range = dst_reg->off;
13353 	if (range_right_open)
13354 		new_range++;
13355 
13356 	/* Examples for register markings:
13357 	 *
13358 	 * pkt_data in dst register:
13359 	 *
13360 	 *   r2 = r3;
13361 	 *   r2 += 8;
13362 	 *   if (r2 > pkt_end) goto <handle exception>
13363 	 *   <access okay>
13364 	 *
13365 	 *   r2 = r3;
13366 	 *   r2 += 8;
13367 	 *   if (r2 < pkt_end) goto <access okay>
13368 	 *   <handle exception>
13369 	 *
13370 	 *   Where:
13371 	 *     r2 == dst_reg, pkt_end == src_reg
13372 	 *     r2=pkt(id=n,off=8,r=0)
13373 	 *     r3=pkt(id=n,off=0,r=0)
13374 	 *
13375 	 * pkt_data in src register:
13376 	 *
13377 	 *   r2 = r3;
13378 	 *   r2 += 8;
13379 	 *   if (pkt_end >= r2) goto <access okay>
13380 	 *   <handle exception>
13381 	 *
13382 	 *   r2 = r3;
13383 	 *   r2 += 8;
13384 	 *   if (pkt_end <= r2) goto <handle exception>
13385 	 *   <access okay>
13386 	 *
13387 	 *   Where:
13388 	 *     pkt_end == dst_reg, r2 == src_reg
13389 	 *     r2=pkt(id=n,off=8,r=0)
13390 	 *     r3=pkt(id=n,off=0,r=0)
13391 	 *
13392 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
13393 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
13394 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
13395 	 * the check.
13396 	 */
13397 
13398 	/* If our ids match, then we must have the same max_value.  And we
13399 	 * don't care about the other reg's fixed offset, since if it's too big
13400 	 * the range won't allow anything.
13401 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
13402 	 */
13403 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13404 		if (reg->type == type && reg->id == dst_reg->id)
13405 			/* keep the maximum range already checked */
13406 			reg->range = max(reg->range, new_range);
13407 	}));
13408 }
13409 
13410 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
13411 {
13412 	struct tnum subreg = tnum_subreg(reg->var_off);
13413 	s32 sval = (s32)val;
13414 
13415 	switch (opcode) {
13416 	case BPF_JEQ:
13417 		if (tnum_is_const(subreg))
13418 			return !!tnum_equals_const(subreg, val);
13419 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
13420 			return 0;
13421 		break;
13422 	case BPF_JNE:
13423 		if (tnum_is_const(subreg))
13424 			return !tnum_equals_const(subreg, val);
13425 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
13426 			return 1;
13427 		break;
13428 	case BPF_JSET:
13429 		if ((~subreg.mask & subreg.value) & val)
13430 			return 1;
13431 		if (!((subreg.mask | subreg.value) & val))
13432 			return 0;
13433 		break;
13434 	case BPF_JGT:
13435 		if (reg->u32_min_value > val)
13436 			return 1;
13437 		else if (reg->u32_max_value <= val)
13438 			return 0;
13439 		break;
13440 	case BPF_JSGT:
13441 		if (reg->s32_min_value > sval)
13442 			return 1;
13443 		else if (reg->s32_max_value <= sval)
13444 			return 0;
13445 		break;
13446 	case BPF_JLT:
13447 		if (reg->u32_max_value < val)
13448 			return 1;
13449 		else if (reg->u32_min_value >= val)
13450 			return 0;
13451 		break;
13452 	case BPF_JSLT:
13453 		if (reg->s32_max_value < sval)
13454 			return 1;
13455 		else if (reg->s32_min_value >= sval)
13456 			return 0;
13457 		break;
13458 	case BPF_JGE:
13459 		if (reg->u32_min_value >= val)
13460 			return 1;
13461 		else if (reg->u32_max_value < val)
13462 			return 0;
13463 		break;
13464 	case BPF_JSGE:
13465 		if (reg->s32_min_value >= sval)
13466 			return 1;
13467 		else if (reg->s32_max_value < sval)
13468 			return 0;
13469 		break;
13470 	case BPF_JLE:
13471 		if (reg->u32_max_value <= val)
13472 			return 1;
13473 		else if (reg->u32_min_value > val)
13474 			return 0;
13475 		break;
13476 	case BPF_JSLE:
13477 		if (reg->s32_max_value <= sval)
13478 			return 1;
13479 		else if (reg->s32_min_value > sval)
13480 			return 0;
13481 		break;
13482 	}
13483 
13484 	return -1;
13485 }
13486 
13487 
13488 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
13489 {
13490 	s64 sval = (s64)val;
13491 
13492 	switch (opcode) {
13493 	case BPF_JEQ:
13494 		if (tnum_is_const(reg->var_off))
13495 			return !!tnum_equals_const(reg->var_off, val);
13496 		else if (val < reg->umin_value || val > reg->umax_value)
13497 			return 0;
13498 		break;
13499 	case BPF_JNE:
13500 		if (tnum_is_const(reg->var_off))
13501 			return !tnum_equals_const(reg->var_off, val);
13502 		else if (val < reg->umin_value || val > reg->umax_value)
13503 			return 1;
13504 		break;
13505 	case BPF_JSET:
13506 		if ((~reg->var_off.mask & reg->var_off.value) & val)
13507 			return 1;
13508 		if (!((reg->var_off.mask | reg->var_off.value) & val))
13509 			return 0;
13510 		break;
13511 	case BPF_JGT:
13512 		if (reg->umin_value > val)
13513 			return 1;
13514 		else if (reg->umax_value <= val)
13515 			return 0;
13516 		break;
13517 	case BPF_JSGT:
13518 		if (reg->smin_value > sval)
13519 			return 1;
13520 		else if (reg->smax_value <= sval)
13521 			return 0;
13522 		break;
13523 	case BPF_JLT:
13524 		if (reg->umax_value < val)
13525 			return 1;
13526 		else if (reg->umin_value >= val)
13527 			return 0;
13528 		break;
13529 	case BPF_JSLT:
13530 		if (reg->smax_value < sval)
13531 			return 1;
13532 		else if (reg->smin_value >= sval)
13533 			return 0;
13534 		break;
13535 	case BPF_JGE:
13536 		if (reg->umin_value >= val)
13537 			return 1;
13538 		else if (reg->umax_value < val)
13539 			return 0;
13540 		break;
13541 	case BPF_JSGE:
13542 		if (reg->smin_value >= sval)
13543 			return 1;
13544 		else if (reg->smax_value < sval)
13545 			return 0;
13546 		break;
13547 	case BPF_JLE:
13548 		if (reg->umax_value <= val)
13549 			return 1;
13550 		else if (reg->umin_value > val)
13551 			return 0;
13552 		break;
13553 	case BPF_JSLE:
13554 		if (reg->smax_value <= sval)
13555 			return 1;
13556 		else if (reg->smin_value > sval)
13557 			return 0;
13558 		break;
13559 	}
13560 
13561 	return -1;
13562 }
13563 
13564 /* compute branch direction of the expression "if (reg opcode val) goto target;"
13565  * and return:
13566  *  1 - branch will be taken and "goto target" will be executed
13567  *  0 - branch will not be taken and fall-through to next insn
13568  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
13569  *      range [0,10]
13570  */
13571 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
13572 			   bool is_jmp32)
13573 {
13574 	if (__is_pointer_value(false, reg)) {
13575 		if (!reg_not_null(reg))
13576 			return -1;
13577 
13578 		/* If pointer is valid tests against zero will fail so we can
13579 		 * use this to direct branch taken.
13580 		 */
13581 		if (val != 0)
13582 			return -1;
13583 
13584 		switch (opcode) {
13585 		case BPF_JEQ:
13586 			return 0;
13587 		case BPF_JNE:
13588 			return 1;
13589 		default:
13590 			return -1;
13591 		}
13592 	}
13593 
13594 	if (is_jmp32)
13595 		return is_branch32_taken(reg, val, opcode);
13596 	return is_branch64_taken(reg, val, opcode);
13597 }
13598 
13599 static int flip_opcode(u32 opcode)
13600 {
13601 	/* How can we transform "a <op> b" into "b <op> a"? */
13602 	static const u8 opcode_flip[16] = {
13603 		/* these stay the same */
13604 		[BPF_JEQ  >> 4] = BPF_JEQ,
13605 		[BPF_JNE  >> 4] = BPF_JNE,
13606 		[BPF_JSET >> 4] = BPF_JSET,
13607 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
13608 		[BPF_JGE  >> 4] = BPF_JLE,
13609 		[BPF_JGT  >> 4] = BPF_JLT,
13610 		[BPF_JLE  >> 4] = BPF_JGE,
13611 		[BPF_JLT  >> 4] = BPF_JGT,
13612 		[BPF_JSGE >> 4] = BPF_JSLE,
13613 		[BPF_JSGT >> 4] = BPF_JSLT,
13614 		[BPF_JSLE >> 4] = BPF_JSGE,
13615 		[BPF_JSLT >> 4] = BPF_JSGT
13616 	};
13617 	return opcode_flip[opcode >> 4];
13618 }
13619 
13620 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
13621 				   struct bpf_reg_state *src_reg,
13622 				   u8 opcode)
13623 {
13624 	struct bpf_reg_state *pkt;
13625 
13626 	if (src_reg->type == PTR_TO_PACKET_END) {
13627 		pkt = dst_reg;
13628 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
13629 		pkt = src_reg;
13630 		opcode = flip_opcode(opcode);
13631 	} else {
13632 		return -1;
13633 	}
13634 
13635 	if (pkt->range >= 0)
13636 		return -1;
13637 
13638 	switch (opcode) {
13639 	case BPF_JLE:
13640 		/* pkt <= pkt_end */
13641 		fallthrough;
13642 	case BPF_JGT:
13643 		/* pkt > pkt_end */
13644 		if (pkt->range == BEYOND_PKT_END)
13645 			/* pkt has at last one extra byte beyond pkt_end */
13646 			return opcode == BPF_JGT;
13647 		break;
13648 	case BPF_JLT:
13649 		/* pkt < pkt_end */
13650 		fallthrough;
13651 	case BPF_JGE:
13652 		/* pkt >= pkt_end */
13653 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
13654 			return opcode == BPF_JGE;
13655 		break;
13656 	}
13657 	return -1;
13658 }
13659 
13660 /* Adjusts the register min/max values in the case that the dst_reg is the
13661  * variable register that we are working on, and src_reg is a constant or we're
13662  * simply doing a BPF_K check.
13663  * In JEQ/JNE cases we also adjust the var_off values.
13664  */
13665 static void reg_set_min_max(struct bpf_reg_state *true_reg,
13666 			    struct bpf_reg_state *false_reg,
13667 			    u64 val, u32 val32,
13668 			    u8 opcode, bool is_jmp32)
13669 {
13670 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
13671 	struct tnum false_64off = false_reg->var_off;
13672 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
13673 	struct tnum true_64off = true_reg->var_off;
13674 	s64 sval = (s64)val;
13675 	s32 sval32 = (s32)val32;
13676 
13677 	/* If the dst_reg is a pointer, we can't learn anything about its
13678 	 * variable offset from the compare (unless src_reg were a pointer into
13679 	 * the same object, but we don't bother with that.
13680 	 * Since false_reg and true_reg have the same type by construction, we
13681 	 * only need to check one of them for pointerness.
13682 	 */
13683 	if (__is_pointer_value(false, false_reg))
13684 		return;
13685 
13686 	switch (opcode) {
13687 	/* JEQ/JNE comparison doesn't change the register equivalence.
13688 	 *
13689 	 * r1 = r2;
13690 	 * if (r1 == 42) goto label;
13691 	 * ...
13692 	 * label: // here both r1 and r2 are known to be 42.
13693 	 *
13694 	 * Hence when marking register as known preserve it's ID.
13695 	 */
13696 	case BPF_JEQ:
13697 		if (is_jmp32) {
13698 			__mark_reg32_known(true_reg, val32);
13699 			true_32off = tnum_subreg(true_reg->var_off);
13700 		} else {
13701 			___mark_reg_known(true_reg, val);
13702 			true_64off = true_reg->var_off;
13703 		}
13704 		break;
13705 	case BPF_JNE:
13706 		if (is_jmp32) {
13707 			__mark_reg32_known(false_reg, val32);
13708 			false_32off = tnum_subreg(false_reg->var_off);
13709 		} else {
13710 			___mark_reg_known(false_reg, val);
13711 			false_64off = false_reg->var_off;
13712 		}
13713 		break;
13714 	case BPF_JSET:
13715 		if (is_jmp32) {
13716 			false_32off = tnum_and(false_32off, tnum_const(~val32));
13717 			if (is_power_of_2(val32))
13718 				true_32off = tnum_or(true_32off,
13719 						     tnum_const(val32));
13720 		} else {
13721 			false_64off = tnum_and(false_64off, tnum_const(~val));
13722 			if (is_power_of_2(val))
13723 				true_64off = tnum_or(true_64off,
13724 						     tnum_const(val));
13725 		}
13726 		break;
13727 	case BPF_JGE:
13728 	case BPF_JGT:
13729 	{
13730 		if (is_jmp32) {
13731 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
13732 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
13733 
13734 			false_reg->u32_max_value = min(false_reg->u32_max_value,
13735 						       false_umax);
13736 			true_reg->u32_min_value = max(true_reg->u32_min_value,
13737 						      true_umin);
13738 		} else {
13739 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
13740 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
13741 
13742 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
13743 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
13744 		}
13745 		break;
13746 	}
13747 	case BPF_JSGE:
13748 	case BPF_JSGT:
13749 	{
13750 		if (is_jmp32) {
13751 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
13752 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
13753 
13754 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
13755 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
13756 		} else {
13757 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
13758 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
13759 
13760 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
13761 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
13762 		}
13763 		break;
13764 	}
13765 	case BPF_JLE:
13766 	case BPF_JLT:
13767 	{
13768 		if (is_jmp32) {
13769 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
13770 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
13771 
13772 			false_reg->u32_min_value = max(false_reg->u32_min_value,
13773 						       false_umin);
13774 			true_reg->u32_max_value = min(true_reg->u32_max_value,
13775 						      true_umax);
13776 		} else {
13777 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
13778 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
13779 
13780 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
13781 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
13782 		}
13783 		break;
13784 	}
13785 	case BPF_JSLE:
13786 	case BPF_JSLT:
13787 	{
13788 		if (is_jmp32) {
13789 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
13790 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
13791 
13792 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
13793 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
13794 		} else {
13795 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
13796 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
13797 
13798 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
13799 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
13800 		}
13801 		break;
13802 	}
13803 	default:
13804 		return;
13805 	}
13806 
13807 	if (is_jmp32) {
13808 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
13809 					     tnum_subreg(false_32off));
13810 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
13811 					    tnum_subreg(true_32off));
13812 		__reg_combine_32_into_64(false_reg);
13813 		__reg_combine_32_into_64(true_reg);
13814 	} else {
13815 		false_reg->var_off = false_64off;
13816 		true_reg->var_off = true_64off;
13817 		__reg_combine_64_into_32(false_reg);
13818 		__reg_combine_64_into_32(true_reg);
13819 	}
13820 }
13821 
13822 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
13823  * the variable reg.
13824  */
13825 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
13826 				struct bpf_reg_state *false_reg,
13827 				u64 val, u32 val32,
13828 				u8 opcode, bool is_jmp32)
13829 {
13830 	opcode = flip_opcode(opcode);
13831 	/* This uses zero as "not present in table"; luckily the zero opcode,
13832 	 * BPF_JA, can't get here.
13833 	 */
13834 	if (opcode)
13835 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
13836 }
13837 
13838 /* Regs are known to be equal, so intersect their min/max/var_off */
13839 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
13840 				  struct bpf_reg_state *dst_reg)
13841 {
13842 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
13843 							dst_reg->umin_value);
13844 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
13845 							dst_reg->umax_value);
13846 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
13847 							dst_reg->smin_value);
13848 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
13849 							dst_reg->smax_value);
13850 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
13851 							     dst_reg->var_off);
13852 	reg_bounds_sync(src_reg);
13853 	reg_bounds_sync(dst_reg);
13854 }
13855 
13856 static void reg_combine_min_max(struct bpf_reg_state *true_src,
13857 				struct bpf_reg_state *true_dst,
13858 				struct bpf_reg_state *false_src,
13859 				struct bpf_reg_state *false_dst,
13860 				u8 opcode)
13861 {
13862 	switch (opcode) {
13863 	case BPF_JEQ:
13864 		__reg_combine_min_max(true_src, true_dst);
13865 		break;
13866 	case BPF_JNE:
13867 		__reg_combine_min_max(false_src, false_dst);
13868 		break;
13869 	}
13870 }
13871 
13872 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
13873 				 struct bpf_reg_state *reg, u32 id,
13874 				 bool is_null)
13875 {
13876 	if (type_may_be_null(reg->type) && reg->id == id &&
13877 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
13878 		/* Old offset (both fixed and variable parts) should have been
13879 		 * known-zero, because we don't allow pointer arithmetic on
13880 		 * pointers that might be NULL. If we see this happening, don't
13881 		 * convert the register.
13882 		 *
13883 		 * But in some cases, some helpers that return local kptrs
13884 		 * advance offset for the returned pointer. In those cases, it
13885 		 * is fine to expect to see reg->off.
13886 		 */
13887 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
13888 			return;
13889 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
13890 		    WARN_ON_ONCE(reg->off))
13891 			return;
13892 
13893 		if (is_null) {
13894 			reg->type = SCALAR_VALUE;
13895 			/* We don't need id and ref_obj_id from this point
13896 			 * onwards anymore, thus we should better reset it,
13897 			 * so that state pruning has chances to take effect.
13898 			 */
13899 			reg->id = 0;
13900 			reg->ref_obj_id = 0;
13901 
13902 			return;
13903 		}
13904 
13905 		mark_ptr_not_null_reg(reg);
13906 
13907 		if (!reg_may_point_to_spin_lock(reg)) {
13908 			/* For not-NULL ptr, reg->ref_obj_id will be reset
13909 			 * in release_reference().
13910 			 *
13911 			 * reg->id is still used by spin_lock ptr. Other
13912 			 * than spin_lock ptr type, reg->id can be reset.
13913 			 */
13914 			reg->id = 0;
13915 		}
13916 	}
13917 }
13918 
13919 /* The logic is similar to find_good_pkt_pointers(), both could eventually
13920  * be folded together at some point.
13921  */
13922 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
13923 				  bool is_null)
13924 {
13925 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13926 	struct bpf_reg_state *regs = state->regs, *reg;
13927 	u32 ref_obj_id = regs[regno].ref_obj_id;
13928 	u32 id = regs[regno].id;
13929 
13930 	if (ref_obj_id && ref_obj_id == id && is_null)
13931 		/* regs[regno] is in the " == NULL" branch.
13932 		 * No one could have freed the reference state before
13933 		 * doing the NULL check.
13934 		 */
13935 		WARN_ON_ONCE(release_reference_state(state, id));
13936 
13937 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13938 		mark_ptr_or_null_reg(state, reg, id, is_null);
13939 	}));
13940 }
13941 
13942 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
13943 				   struct bpf_reg_state *dst_reg,
13944 				   struct bpf_reg_state *src_reg,
13945 				   struct bpf_verifier_state *this_branch,
13946 				   struct bpf_verifier_state *other_branch)
13947 {
13948 	if (BPF_SRC(insn->code) != BPF_X)
13949 		return false;
13950 
13951 	/* Pointers are always 64-bit. */
13952 	if (BPF_CLASS(insn->code) == BPF_JMP32)
13953 		return false;
13954 
13955 	switch (BPF_OP(insn->code)) {
13956 	case BPF_JGT:
13957 		if ((dst_reg->type == PTR_TO_PACKET &&
13958 		     src_reg->type == PTR_TO_PACKET_END) ||
13959 		    (dst_reg->type == PTR_TO_PACKET_META &&
13960 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13961 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
13962 			find_good_pkt_pointers(this_branch, dst_reg,
13963 					       dst_reg->type, false);
13964 			mark_pkt_end(other_branch, insn->dst_reg, true);
13965 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
13966 			    src_reg->type == PTR_TO_PACKET) ||
13967 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13968 			    src_reg->type == PTR_TO_PACKET_META)) {
13969 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
13970 			find_good_pkt_pointers(other_branch, src_reg,
13971 					       src_reg->type, true);
13972 			mark_pkt_end(this_branch, insn->src_reg, false);
13973 		} else {
13974 			return false;
13975 		}
13976 		break;
13977 	case BPF_JLT:
13978 		if ((dst_reg->type == PTR_TO_PACKET &&
13979 		     src_reg->type == PTR_TO_PACKET_END) ||
13980 		    (dst_reg->type == PTR_TO_PACKET_META &&
13981 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13982 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
13983 			find_good_pkt_pointers(other_branch, dst_reg,
13984 					       dst_reg->type, true);
13985 			mark_pkt_end(this_branch, insn->dst_reg, false);
13986 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
13987 			    src_reg->type == PTR_TO_PACKET) ||
13988 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13989 			    src_reg->type == PTR_TO_PACKET_META)) {
13990 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
13991 			find_good_pkt_pointers(this_branch, src_reg,
13992 					       src_reg->type, false);
13993 			mark_pkt_end(other_branch, insn->src_reg, true);
13994 		} else {
13995 			return false;
13996 		}
13997 		break;
13998 	case BPF_JGE:
13999 		if ((dst_reg->type == PTR_TO_PACKET &&
14000 		     src_reg->type == PTR_TO_PACKET_END) ||
14001 		    (dst_reg->type == PTR_TO_PACKET_META &&
14002 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14003 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
14004 			find_good_pkt_pointers(this_branch, dst_reg,
14005 					       dst_reg->type, true);
14006 			mark_pkt_end(other_branch, insn->dst_reg, false);
14007 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14008 			    src_reg->type == PTR_TO_PACKET) ||
14009 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14010 			    src_reg->type == PTR_TO_PACKET_META)) {
14011 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
14012 			find_good_pkt_pointers(other_branch, src_reg,
14013 					       src_reg->type, false);
14014 			mark_pkt_end(this_branch, insn->src_reg, true);
14015 		} else {
14016 			return false;
14017 		}
14018 		break;
14019 	case BPF_JLE:
14020 		if ((dst_reg->type == PTR_TO_PACKET &&
14021 		     src_reg->type == PTR_TO_PACKET_END) ||
14022 		    (dst_reg->type == PTR_TO_PACKET_META &&
14023 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14024 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
14025 			find_good_pkt_pointers(other_branch, dst_reg,
14026 					       dst_reg->type, false);
14027 			mark_pkt_end(this_branch, insn->dst_reg, true);
14028 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14029 			    src_reg->type == PTR_TO_PACKET) ||
14030 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14031 			    src_reg->type == PTR_TO_PACKET_META)) {
14032 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
14033 			find_good_pkt_pointers(this_branch, src_reg,
14034 					       src_reg->type, true);
14035 			mark_pkt_end(other_branch, insn->src_reg, false);
14036 		} else {
14037 			return false;
14038 		}
14039 		break;
14040 	default:
14041 		return false;
14042 	}
14043 
14044 	return true;
14045 }
14046 
14047 static void find_equal_scalars(struct bpf_verifier_state *vstate,
14048 			       struct bpf_reg_state *known_reg)
14049 {
14050 	struct bpf_func_state *state;
14051 	struct bpf_reg_state *reg;
14052 
14053 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14054 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
14055 			copy_register_state(reg, known_reg);
14056 	}));
14057 }
14058 
14059 static int check_cond_jmp_op(struct bpf_verifier_env *env,
14060 			     struct bpf_insn *insn, int *insn_idx)
14061 {
14062 	struct bpf_verifier_state *this_branch = env->cur_state;
14063 	struct bpf_verifier_state *other_branch;
14064 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
14065 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
14066 	struct bpf_reg_state *eq_branch_regs;
14067 	u8 opcode = BPF_OP(insn->code);
14068 	bool is_jmp32;
14069 	int pred = -1;
14070 	int err;
14071 
14072 	/* Only conditional jumps are expected to reach here. */
14073 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
14074 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
14075 		return -EINVAL;
14076 	}
14077 
14078 	/* check src2 operand */
14079 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14080 	if (err)
14081 		return err;
14082 
14083 	dst_reg = &regs[insn->dst_reg];
14084 	if (BPF_SRC(insn->code) == BPF_X) {
14085 		if (insn->imm != 0) {
14086 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14087 			return -EINVAL;
14088 		}
14089 
14090 		/* check src1 operand */
14091 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14092 		if (err)
14093 			return err;
14094 
14095 		src_reg = &regs[insn->src_reg];
14096 		if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
14097 		    is_pointer_value(env, insn->src_reg)) {
14098 			verbose(env, "R%d pointer comparison prohibited\n",
14099 				insn->src_reg);
14100 			return -EACCES;
14101 		}
14102 	} else {
14103 		if (insn->src_reg != BPF_REG_0) {
14104 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14105 			return -EINVAL;
14106 		}
14107 	}
14108 
14109 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
14110 
14111 	if (BPF_SRC(insn->code) == BPF_K) {
14112 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
14113 	} else if (src_reg->type == SCALAR_VALUE &&
14114 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
14115 		pred = is_branch_taken(dst_reg,
14116 				       tnum_subreg(src_reg->var_off).value,
14117 				       opcode,
14118 				       is_jmp32);
14119 	} else if (src_reg->type == SCALAR_VALUE &&
14120 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
14121 		pred = is_branch_taken(dst_reg,
14122 				       src_reg->var_off.value,
14123 				       opcode,
14124 				       is_jmp32);
14125 	} else if (dst_reg->type == SCALAR_VALUE &&
14126 		   is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) {
14127 		pred = is_branch_taken(src_reg,
14128 				       tnum_subreg(dst_reg->var_off).value,
14129 				       flip_opcode(opcode),
14130 				       is_jmp32);
14131 	} else if (dst_reg->type == SCALAR_VALUE &&
14132 		   !is_jmp32 && tnum_is_const(dst_reg->var_off)) {
14133 		pred = is_branch_taken(src_reg,
14134 				       dst_reg->var_off.value,
14135 				       flip_opcode(opcode),
14136 				       is_jmp32);
14137 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
14138 		   reg_is_pkt_pointer_any(src_reg) &&
14139 		   !is_jmp32) {
14140 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
14141 	}
14142 
14143 	if (pred >= 0) {
14144 		/* If we get here with a dst_reg pointer type it is because
14145 		 * above is_branch_taken() special cased the 0 comparison.
14146 		 */
14147 		if (!__is_pointer_value(false, dst_reg))
14148 			err = mark_chain_precision(env, insn->dst_reg);
14149 		if (BPF_SRC(insn->code) == BPF_X && !err &&
14150 		    !__is_pointer_value(false, src_reg))
14151 			err = mark_chain_precision(env, insn->src_reg);
14152 		if (err)
14153 			return err;
14154 	}
14155 
14156 	if (pred == 1) {
14157 		/* Only follow the goto, ignore fall-through. If needed, push
14158 		 * the fall-through branch for simulation under speculative
14159 		 * execution.
14160 		 */
14161 		if (!env->bypass_spec_v1 &&
14162 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
14163 					       *insn_idx))
14164 			return -EFAULT;
14165 		if (env->log.level & BPF_LOG_LEVEL)
14166 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14167 		*insn_idx += insn->off;
14168 		return 0;
14169 	} else if (pred == 0) {
14170 		/* Only follow the fall-through branch, since that's where the
14171 		 * program will go. If needed, push the goto branch for
14172 		 * simulation under speculative execution.
14173 		 */
14174 		if (!env->bypass_spec_v1 &&
14175 		    !sanitize_speculative_path(env, insn,
14176 					       *insn_idx + insn->off + 1,
14177 					       *insn_idx))
14178 			return -EFAULT;
14179 		if (env->log.level & BPF_LOG_LEVEL)
14180 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14181 		return 0;
14182 	}
14183 
14184 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
14185 				  false);
14186 	if (!other_branch)
14187 		return -EFAULT;
14188 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
14189 
14190 	/* detect if we are comparing against a constant value so we can adjust
14191 	 * our min/max values for our dst register.
14192 	 * this is only legit if both are scalars (or pointers to the same
14193 	 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
14194 	 * because otherwise the different base pointers mean the offsets aren't
14195 	 * comparable.
14196 	 */
14197 	if (BPF_SRC(insn->code) == BPF_X) {
14198 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
14199 
14200 		if (dst_reg->type == SCALAR_VALUE &&
14201 		    src_reg->type == SCALAR_VALUE) {
14202 			if (tnum_is_const(src_reg->var_off) ||
14203 			    (is_jmp32 &&
14204 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
14205 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
14206 						dst_reg,
14207 						src_reg->var_off.value,
14208 						tnum_subreg(src_reg->var_off).value,
14209 						opcode, is_jmp32);
14210 			else if (tnum_is_const(dst_reg->var_off) ||
14211 				 (is_jmp32 &&
14212 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
14213 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
14214 						    src_reg,
14215 						    dst_reg->var_off.value,
14216 						    tnum_subreg(dst_reg->var_off).value,
14217 						    opcode, is_jmp32);
14218 			else if (!is_jmp32 &&
14219 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
14220 				/* Comparing for equality, we can combine knowledge */
14221 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
14222 						    &other_branch_regs[insn->dst_reg],
14223 						    src_reg, dst_reg, opcode);
14224 			if (src_reg->id &&
14225 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
14226 				find_equal_scalars(this_branch, src_reg);
14227 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
14228 			}
14229 
14230 		}
14231 	} else if (dst_reg->type == SCALAR_VALUE) {
14232 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
14233 					dst_reg, insn->imm, (u32)insn->imm,
14234 					opcode, is_jmp32);
14235 	}
14236 
14237 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
14238 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
14239 		find_equal_scalars(this_branch, dst_reg);
14240 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
14241 	}
14242 
14243 	/* if one pointer register is compared to another pointer
14244 	 * register check if PTR_MAYBE_NULL could be lifted.
14245 	 * E.g. register A - maybe null
14246 	 *      register B - not null
14247 	 * for JNE A, B, ... - A is not null in the false branch;
14248 	 * for JEQ A, B, ... - A is not null in the true branch.
14249 	 *
14250 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
14251 	 * not need to be null checked by the BPF program, i.e.,
14252 	 * could be null even without PTR_MAYBE_NULL marking, so
14253 	 * only propagate nullness when neither reg is that type.
14254 	 */
14255 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
14256 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
14257 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
14258 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
14259 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
14260 		eq_branch_regs = NULL;
14261 		switch (opcode) {
14262 		case BPF_JEQ:
14263 			eq_branch_regs = other_branch_regs;
14264 			break;
14265 		case BPF_JNE:
14266 			eq_branch_regs = regs;
14267 			break;
14268 		default:
14269 			/* do nothing */
14270 			break;
14271 		}
14272 		if (eq_branch_regs) {
14273 			if (type_may_be_null(src_reg->type))
14274 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
14275 			else
14276 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
14277 		}
14278 	}
14279 
14280 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
14281 	 * NOTE: these optimizations below are related with pointer comparison
14282 	 *       which will never be JMP32.
14283 	 */
14284 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
14285 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
14286 	    type_may_be_null(dst_reg->type)) {
14287 		/* Mark all identical registers in each branch as either
14288 		 * safe or unknown depending R == 0 or R != 0 conditional.
14289 		 */
14290 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
14291 				      opcode == BPF_JNE);
14292 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
14293 				      opcode == BPF_JEQ);
14294 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
14295 					   this_branch, other_branch) &&
14296 		   is_pointer_value(env, insn->dst_reg)) {
14297 		verbose(env, "R%d pointer comparison prohibited\n",
14298 			insn->dst_reg);
14299 		return -EACCES;
14300 	}
14301 	if (env->log.level & BPF_LOG_LEVEL)
14302 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
14303 	return 0;
14304 }
14305 
14306 /* verify BPF_LD_IMM64 instruction */
14307 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
14308 {
14309 	struct bpf_insn_aux_data *aux = cur_aux(env);
14310 	struct bpf_reg_state *regs = cur_regs(env);
14311 	struct bpf_reg_state *dst_reg;
14312 	struct bpf_map *map;
14313 	int err;
14314 
14315 	if (BPF_SIZE(insn->code) != BPF_DW) {
14316 		verbose(env, "invalid BPF_LD_IMM insn\n");
14317 		return -EINVAL;
14318 	}
14319 	if (insn->off != 0) {
14320 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
14321 		return -EINVAL;
14322 	}
14323 
14324 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
14325 	if (err)
14326 		return err;
14327 
14328 	dst_reg = &regs[insn->dst_reg];
14329 	if (insn->src_reg == 0) {
14330 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
14331 
14332 		dst_reg->type = SCALAR_VALUE;
14333 		__mark_reg_known(&regs[insn->dst_reg], imm);
14334 		return 0;
14335 	}
14336 
14337 	/* All special src_reg cases are listed below. From this point onwards
14338 	 * we either succeed and assign a corresponding dst_reg->type after
14339 	 * zeroing the offset, or fail and reject the program.
14340 	 */
14341 	mark_reg_known_zero(env, regs, insn->dst_reg);
14342 
14343 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
14344 		dst_reg->type = aux->btf_var.reg_type;
14345 		switch (base_type(dst_reg->type)) {
14346 		case PTR_TO_MEM:
14347 			dst_reg->mem_size = aux->btf_var.mem_size;
14348 			break;
14349 		case PTR_TO_BTF_ID:
14350 			dst_reg->btf = aux->btf_var.btf;
14351 			dst_reg->btf_id = aux->btf_var.btf_id;
14352 			break;
14353 		default:
14354 			verbose(env, "bpf verifier is misconfigured\n");
14355 			return -EFAULT;
14356 		}
14357 		return 0;
14358 	}
14359 
14360 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
14361 		struct bpf_prog_aux *aux = env->prog->aux;
14362 		u32 subprogno = find_subprog(env,
14363 					     env->insn_idx + insn->imm + 1);
14364 
14365 		if (!aux->func_info) {
14366 			verbose(env, "missing btf func_info\n");
14367 			return -EINVAL;
14368 		}
14369 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
14370 			verbose(env, "callback function not static\n");
14371 			return -EINVAL;
14372 		}
14373 
14374 		dst_reg->type = PTR_TO_FUNC;
14375 		dst_reg->subprogno = subprogno;
14376 		return 0;
14377 	}
14378 
14379 	map = env->used_maps[aux->map_index];
14380 	dst_reg->map_ptr = map;
14381 
14382 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
14383 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
14384 		dst_reg->type = PTR_TO_MAP_VALUE;
14385 		dst_reg->off = aux->map_off;
14386 		WARN_ON_ONCE(map->max_entries != 1);
14387 		/* We want reg->id to be same (0) as map_value is not distinct */
14388 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
14389 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
14390 		dst_reg->type = CONST_PTR_TO_MAP;
14391 	} else {
14392 		verbose(env, "bpf verifier is misconfigured\n");
14393 		return -EINVAL;
14394 	}
14395 
14396 	return 0;
14397 }
14398 
14399 static bool may_access_skb(enum bpf_prog_type type)
14400 {
14401 	switch (type) {
14402 	case BPF_PROG_TYPE_SOCKET_FILTER:
14403 	case BPF_PROG_TYPE_SCHED_CLS:
14404 	case BPF_PROG_TYPE_SCHED_ACT:
14405 		return true;
14406 	default:
14407 		return false;
14408 	}
14409 }
14410 
14411 /* verify safety of LD_ABS|LD_IND instructions:
14412  * - they can only appear in the programs where ctx == skb
14413  * - since they are wrappers of function calls, they scratch R1-R5 registers,
14414  *   preserve R6-R9, and store return value into R0
14415  *
14416  * Implicit input:
14417  *   ctx == skb == R6 == CTX
14418  *
14419  * Explicit input:
14420  *   SRC == any register
14421  *   IMM == 32-bit immediate
14422  *
14423  * Output:
14424  *   R0 - 8/16/32-bit skb data converted to cpu endianness
14425  */
14426 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
14427 {
14428 	struct bpf_reg_state *regs = cur_regs(env);
14429 	static const int ctx_reg = BPF_REG_6;
14430 	u8 mode = BPF_MODE(insn->code);
14431 	int i, err;
14432 
14433 	if (!may_access_skb(resolve_prog_type(env->prog))) {
14434 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
14435 		return -EINVAL;
14436 	}
14437 
14438 	if (!env->ops->gen_ld_abs) {
14439 		verbose(env, "bpf verifier is misconfigured\n");
14440 		return -EINVAL;
14441 	}
14442 
14443 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
14444 	    BPF_SIZE(insn->code) == BPF_DW ||
14445 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
14446 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
14447 		return -EINVAL;
14448 	}
14449 
14450 	/* check whether implicit source operand (register R6) is readable */
14451 	err = check_reg_arg(env, ctx_reg, SRC_OP);
14452 	if (err)
14453 		return err;
14454 
14455 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
14456 	 * gen_ld_abs() may terminate the program at runtime, leading to
14457 	 * reference leak.
14458 	 */
14459 	err = check_reference_leak(env);
14460 	if (err) {
14461 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
14462 		return err;
14463 	}
14464 
14465 	if (env->cur_state->active_lock.ptr) {
14466 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
14467 		return -EINVAL;
14468 	}
14469 
14470 	if (env->cur_state->active_rcu_lock) {
14471 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
14472 		return -EINVAL;
14473 	}
14474 
14475 	if (regs[ctx_reg].type != PTR_TO_CTX) {
14476 		verbose(env,
14477 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
14478 		return -EINVAL;
14479 	}
14480 
14481 	if (mode == BPF_IND) {
14482 		/* check explicit source operand */
14483 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14484 		if (err)
14485 			return err;
14486 	}
14487 
14488 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
14489 	if (err < 0)
14490 		return err;
14491 
14492 	/* reset caller saved regs to unreadable */
14493 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
14494 		mark_reg_not_init(env, regs, caller_saved[i]);
14495 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
14496 	}
14497 
14498 	/* mark destination R0 register as readable, since it contains
14499 	 * the value fetched from the packet.
14500 	 * Already marked as written above.
14501 	 */
14502 	mark_reg_unknown(env, regs, BPF_REG_0);
14503 	/* ld_abs load up to 32-bit skb data. */
14504 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
14505 	return 0;
14506 }
14507 
14508 static int check_return_code(struct bpf_verifier_env *env)
14509 {
14510 	struct tnum enforce_attach_type_range = tnum_unknown;
14511 	const struct bpf_prog *prog = env->prog;
14512 	struct bpf_reg_state *reg;
14513 	struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0);
14514 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
14515 	int err;
14516 	struct bpf_func_state *frame = env->cur_state->frame[0];
14517 	const bool is_subprog = frame->subprogno;
14518 
14519 	/* LSM and struct_ops func-ptr's return type could be "void" */
14520 	if (!is_subprog) {
14521 		switch (prog_type) {
14522 		case BPF_PROG_TYPE_LSM:
14523 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
14524 				/* See below, can be 0 or 0-1 depending on hook. */
14525 				break;
14526 			fallthrough;
14527 		case BPF_PROG_TYPE_STRUCT_OPS:
14528 			if (!prog->aux->attach_func_proto->type)
14529 				return 0;
14530 			break;
14531 		default:
14532 			break;
14533 		}
14534 	}
14535 
14536 	/* eBPF calling convention is such that R0 is used
14537 	 * to return the value from eBPF program.
14538 	 * Make sure that it's readable at this time
14539 	 * of bpf_exit, which means that program wrote
14540 	 * something into it earlier
14541 	 */
14542 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
14543 	if (err)
14544 		return err;
14545 
14546 	if (is_pointer_value(env, BPF_REG_0)) {
14547 		verbose(env, "R0 leaks addr as return value\n");
14548 		return -EACCES;
14549 	}
14550 
14551 	reg = cur_regs(env) + BPF_REG_0;
14552 
14553 	if (frame->in_async_callback_fn) {
14554 		/* enforce return zero from async callbacks like timer */
14555 		if (reg->type != SCALAR_VALUE) {
14556 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
14557 				reg_type_str(env, reg->type));
14558 			return -EINVAL;
14559 		}
14560 
14561 		if (!tnum_in(const_0, reg->var_off)) {
14562 			verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0");
14563 			return -EINVAL;
14564 		}
14565 		return 0;
14566 	}
14567 
14568 	if (is_subprog) {
14569 		if (reg->type != SCALAR_VALUE) {
14570 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
14571 				reg_type_str(env, reg->type));
14572 			return -EINVAL;
14573 		}
14574 		return 0;
14575 	}
14576 
14577 	switch (prog_type) {
14578 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
14579 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
14580 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
14581 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
14582 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
14583 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
14584 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
14585 			range = tnum_range(1, 1);
14586 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
14587 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
14588 			range = tnum_range(0, 3);
14589 		break;
14590 	case BPF_PROG_TYPE_CGROUP_SKB:
14591 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
14592 			range = tnum_range(0, 3);
14593 			enforce_attach_type_range = tnum_range(2, 3);
14594 		}
14595 		break;
14596 	case BPF_PROG_TYPE_CGROUP_SOCK:
14597 	case BPF_PROG_TYPE_SOCK_OPS:
14598 	case BPF_PROG_TYPE_CGROUP_DEVICE:
14599 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
14600 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
14601 		break;
14602 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
14603 		if (!env->prog->aux->attach_btf_id)
14604 			return 0;
14605 		range = tnum_const(0);
14606 		break;
14607 	case BPF_PROG_TYPE_TRACING:
14608 		switch (env->prog->expected_attach_type) {
14609 		case BPF_TRACE_FENTRY:
14610 		case BPF_TRACE_FEXIT:
14611 			range = tnum_const(0);
14612 			break;
14613 		case BPF_TRACE_RAW_TP:
14614 		case BPF_MODIFY_RETURN:
14615 			return 0;
14616 		case BPF_TRACE_ITER:
14617 			break;
14618 		default:
14619 			return -ENOTSUPP;
14620 		}
14621 		break;
14622 	case BPF_PROG_TYPE_SK_LOOKUP:
14623 		range = tnum_range(SK_DROP, SK_PASS);
14624 		break;
14625 
14626 	case BPF_PROG_TYPE_LSM:
14627 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
14628 			/* Regular BPF_PROG_TYPE_LSM programs can return
14629 			 * any value.
14630 			 */
14631 			return 0;
14632 		}
14633 		if (!env->prog->aux->attach_func_proto->type) {
14634 			/* Make sure programs that attach to void
14635 			 * hooks don't try to modify return value.
14636 			 */
14637 			range = tnum_range(1, 1);
14638 		}
14639 		break;
14640 
14641 	case BPF_PROG_TYPE_NETFILTER:
14642 		range = tnum_range(NF_DROP, NF_ACCEPT);
14643 		break;
14644 	case BPF_PROG_TYPE_EXT:
14645 		/* freplace program can return anything as its return value
14646 		 * depends on the to-be-replaced kernel func or bpf program.
14647 		 */
14648 	default:
14649 		return 0;
14650 	}
14651 
14652 	if (reg->type != SCALAR_VALUE) {
14653 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
14654 			reg_type_str(env, reg->type));
14655 		return -EINVAL;
14656 	}
14657 
14658 	if (!tnum_in(range, reg->var_off)) {
14659 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
14660 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
14661 		    prog_type == BPF_PROG_TYPE_LSM &&
14662 		    !prog->aux->attach_func_proto->type)
14663 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
14664 		return -EINVAL;
14665 	}
14666 
14667 	if (!tnum_is_unknown(enforce_attach_type_range) &&
14668 	    tnum_in(enforce_attach_type_range, reg->var_off))
14669 		env->prog->enforce_expected_attach_type = 1;
14670 	return 0;
14671 }
14672 
14673 /* non-recursive DFS pseudo code
14674  * 1  procedure DFS-iterative(G,v):
14675  * 2      label v as discovered
14676  * 3      let S be a stack
14677  * 4      S.push(v)
14678  * 5      while S is not empty
14679  * 6            t <- S.peek()
14680  * 7            if t is what we're looking for:
14681  * 8                return t
14682  * 9            for all edges e in G.adjacentEdges(t) do
14683  * 10               if edge e is already labelled
14684  * 11                   continue with the next edge
14685  * 12               w <- G.adjacentVertex(t,e)
14686  * 13               if vertex w is not discovered and not explored
14687  * 14                   label e as tree-edge
14688  * 15                   label w as discovered
14689  * 16                   S.push(w)
14690  * 17                   continue at 5
14691  * 18               else if vertex w is discovered
14692  * 19                   label e as back-edge
14693  * 20               else
14694  * 21                   // vertex w is explored
14695  * 22                   label e as forward- or cross-edge
14696  * 23           label t as explored
14697  * 24           S.pop()
14698  *
14699  * convention:
14700  * 0x10 - discovered
14701  * 0x11 - discovered and fall-through edge labelled
14702  * 0x12 - discovered and fall-through and branch edges labelled
14703  * 0x20 - explored
14704  */
14705 
14706 enum {
14707 	DISCOVERED = 0x10,
14708 	EXPLORED = 0x20,
14709 	FALLTHROUGH = 1,
14710 	BRANCH = 2,
14711 };
14712 
14713 static u32 state_htab_size(struct bpf_verifier_env *env)
14714 {
14715 	return env->prog->len;
14716 }
14717 
14718 static struct bpf_verifier_state_list **explored_state(
14719 					struct bpf_verifier_env *env,
14720 					int idx)
14721 {
14722 	struct bpf_verifier_state *cur = env->cur_state;
14723 	struct bpf_func_state *state = cur->frame[cur->curframe];
14724 
14725 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
14726 }
14727 
14728 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
14729 {
14730 	env->insn_aux_data[idx].prune_point = true;
14731 }
14732 
14733 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
14734 {
14735 	return env->insn_aux_data[insn_idx].prune_point;
14736 }
14737 
14738 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
14739 {
14740 	env->insn_aux_data[idx].force_checkpoint = true;
14741 }
14742 
14743 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
14744 {
14745 	return env->insn_aux_data[insn_idx].force_checkpoint;
14746 }
14747 
14748 
14749 enum {
14750 	DONE_EXPLORING = 0,
14751 	KEEP_EXPLORING = 1,
14752 };
14753 
14754 /* t, w, e - match pseudo-code above:
14755  * t - index of current instruction
14756  * w - next instruction
14757  * e - edge
14758  */
14759 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
14760 {
14761 	int *insn_stack = env->cfg.insn_stack;
14762 	int *insn_state = env->cfg.insn_state;
14763 
14764 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
14765 		return DONE_EXPLORING;
14766 
14767 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
14768 		return DONE_EXPLORING;
14769 
14770 	if (w < 0 || w >= env->prog->len) {
14771 		verbose_linfo(env, t, "%d: ", t);
14772 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
14773 		return -EINVAL;
14774 	}
14775 
14776 	if (e == BRANCH) {
14777 		/* mark branch target for state pruning */
14778 		mark_prune_point(env, w);
14779 		mark_jmp_point(env, w);
14780 	}
14781 
14782 	if (insn_state[w] == 0) {
14783 		/* tree-edge */
14784 		insn_state[t] = DISCOVERED | e;
14785 		insn_state[w] = DISCOVERED;
14786 		if (env->cfg.cur_stack >= env->prog->len)
14787 			return -E2BIG;
14788 		insn_stack[env->cfg.cur_stack++] = w;
14789 		return KEEP_EXPLORING;
14790 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
14791 		if (env->bpf_capable)
14792 			return DONE_EXPLORING;
14793 		verbose_linfo(env, t, "%d: ", t);
14794 		verbose_linfo(env, w, "%d: ", w);
14795 		verbose(env, "back-edge from insn %d to %d\n", t, w);
14796 		return -EINVAL;
14797 	} else if (insn_state[w] == EXPLORED) {
14798 		/* forward- or cross-edge */
14799 		insn_state[t] = DISCOVERED | e;
14800 	} else {
14801 		verbose(env, "insn state internal bug\n");
14802 		return -EFAULT;
14803 	}
14804 	return DONE_EXPLORING;
14805 }
14806 
14807 static int visit_func_call_insn(int t, struct bpf_insn *insns,
14808 				struct bpf_verifier_env *env,
14809 				bool visit_callee)
14810 {
14811 	int ret, insn_sz;
14812 
14813 	insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
14814 	ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
14815 	if (ret)
14816 		return ret;
14817 
14818 	mark_prune_point(env, t + insn_sz);
14819 	/* when we exit from subprog, we need to record non-linear history */
14820 	mark_jmp_point(env, t + insn_sz);
14821 
14822 	if (visit_callee) {
14823 		mark_prune_point(env, t);
14824 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
14825 	}
14826 	return ret;
14827 }
14828 
14829 /* Visits the instruction at index t and returns one of the following:
14830  *  < 0 - an error occurred
14831  *  DONE_EXPLORING - the instruction was fully explored
14832  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
14833  */
14834 static int visit_insn(int t, struct bpf_verifier_env *env)
14835 {
14836 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
14837 	int ret, off, insn_sz;
14838 
14839 	if (bpf_pseudo_func(insn))
14840 		return visit_func_call_insn(t, insns, env, true);
14841 
14842 	/* All non-branch instructions have a single fall-through edge. */
14843 	if (BPF_CLASS(insn->code) != BPF_JMP &&
14844 	    BPF_CLASS(insn->code) != BPF_JMP32) {
14845 		insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
14846 		return push_insn(t, t + insn_sz, FALLTHROUGH, env);
14847 	}
14848 
14849 	switch (BPF_OP(insn->code)) {
14850 	case BPF_EXIT:
14851 		return DONE_EXPLORING;
14852 
14853 	case BPF_CALL:
14854 		if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
14855 			/* Mark this call insn as a prune point to trigger
14856 			 * is_state_visited() check before call itself is
14857 			 * processed by __check_func_call(). Otherwise new
14858 			 * async state will be pushed for further exploration.
14859 			 */
14860 			mark_prune_point(env, t);
14861 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
14862 			struct bpf_kfunc_call_arg_meta meta;
14863 
14864 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
14865 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
14866 				mark_prune_point(env, t);
14867 				/* Checking and saving state checkpoints at iter_next() call
14868 				 * is crucial for fast convergence of open-coded iterator loop
14869 				 * logic, so we need to force it. If we don't do that,
14870 				 * is_state_visited() might skip saving a checkpoint, causing
14871 				 * unnecessarily long sequence of not checkpointed
14872 				 * instructions and jumps, leading to exhaustion of jump
14873 				 * history buffer, and potentially other undesired outcomes.
14874 				 * It is expected that with correct open-coded iterators
14875 				 * convergence will happen quickly, so we don't run a risk of
14876 				 * exhausting memory.
14877 				 */
14878 				mark_force_checkpoint(env, t);
14879 			}
14880 		}
14881 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
14882 
14883 	case BPF_JA:
14884 		if (BPF_SRC(insn->code) != BPF_K)
14885 			return -EINVAL;
14886 
14887 		if (BPF_CLASS(insn->code) == BPF_JMP)
14888 			off = insn->off;
14889 		else
14890 			off = insn->imm;
14891 
14892 		/* unconditional jump with single edge */
14893 		ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
14894 		if (ret)
14895 			return ret;
14896 
14897 		mark_prune_point(env, t + off + 1);
14898 		mark_jmp_point(env, t + off + 1);
14899 
14900 		return ret;
14901 
14902 	default:
14903 		/* conditional jump with two edges */
14904 		mark_prune_point(env, t);
14905 
14906 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
14907 		if (ret)
14908 			return ret;
14909 
14910 		return push_insn(t, t + insn->off + 1, BRANCH, env);
14911 	}
14912 }
14913 
14914 /* non-recursive depth-first-search to detect loops in BPF program
14915  * loop == back-edge in directed graph
14916  */
14917 static int check_cfg(struct bpf_verifier_env *env)
14918 {
14919 	int insn_cnt = env->prog->len;
14920 	int *insn_stack, *insn_state;
14921 	int ret = 0;
14922 	int i;
14923 
14924 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
14925 	if (!insn_state)
14926 		return -ENOMEM;
14927 
14928 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
14929 	if (!insn_stack) {
14930 		kvfree(insn_state);
14931 		return -ENOMEM;
14932 	}
14933 
14934 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
14935 	insn_stack[0] = 0; /* 0 is the first instruction */
14936 	env->cfg.cur_stack = 1;
14937 
14938 	while (env->cfg.cur_stack > 0) {
14939 		int t = insn_stack[env->cfg.cur_stack - 1];
14940 
14941 		ret = visit_insn(t, env);
14942 		switch (ret) {
14943 		case DONE_EXPLORING:
14944 			insn_state[t] = EXPLORED;
14945 			env->cfg.cur_stack--;
14946 			break;
14947 		case KEEP_EXPLORING:
14948 			break;
14949 		default:
14950 			if (ret > 0) {
14951 				verbose(env, "visit_insn internal bug\n");
14952 				ret = -EFAULT;
14953 			}
14954 			goto err_free;
14955 		}
14956 	}
14957 
14958 	if (env->cfg.cur_stack < 0) {
14959 		verbose(env, "pop stack internal bug\n");
14960 		ret = -EFAULT;
14961 		goto err_free;
14962 	}
14963 
14964 	for (i = 0; i < insn_cnt; i++) {
14965 		struct bpf_insn *insn = &env->prog->insnsi[i];
14966 
14967 		if (insn_state[i] != EXPLORED) {
14968 			verbose(env, "unreachable insn %d\n", i);
14969 			ret = -EINVAL;
14970 			goto err_free;
14971 		}
14972 		if (bpf_is_ldimm64(insn)) {
14973 			if (insn_state[i + 1] != 0) {
14974 				verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
14975 				ret = -EINVAL;
14976 				goto err_free;
14977 			}
14978 			i++; /* skip second half of ldimm64 */
14979 		}
14980 	}
14981 	ret = 0; /* cfg looks good */
14982 
14983 err_free:
14984 	kvfree(insn_state);
14985 	kvfree(insn_stack);
14986 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
14987 	return ret;
14988 }
14989 
14990 static int check_abnormal_return(struct bpf_verifier_env *env)
14991 {
14992 	int i;
14993 
14994 	for (i = 1; i < env->subprog_cnt; i++) {
14995 		if (env->subprog_info[i].has_ld_abs) {
14996 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
14997 			return -EINVAL;
14998 		}
14999 		if (env->subprog_info[i].has_tail_call) {
15000 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
15001 			return -EINVAL;
15002 		}
15003 	}
15004 	return 0;
15005 }
15006 
15007 /* The minimum supported BTF func info size */
15008 #define MIN_BPF_FUNCINFO_SIZE	8
15009 #define MAX_FUNCINFO_REC_SIZE	252
15010 
15011 static int check_btf_func(struct bpf_verifier_env *env,
15012 			  const union bpf_attr *attr,
15013 			  bpfptr_t uattr)
15014 {
15015 	const struct btf_type *type, *func_proto, *ret_type;
15016 	u32 i, nfuncs, urec_size, min_size;
15017 	u32 krec_size = sizeof(struct bpf_func_info);
15018 	struct bpf_func_info *krecord;
15019 	struct bpf_func_info_aux *info_aux = NULL;
15020 	struct bpf_prog *prog;
15021 	const struct btf *btf;
15022 	bpfptr_t urecord;
15023 	u32 prev_offset = 0;
15024 	bool scalar_return;
15025 	int ret = -ENOMEM;
15026 
15027 	nfuncs = attr->func_info_cnt;
15028 	if (!nfuncs) {
15029 		if (check_abnormal_return(env))
15030 			return -EINVAL;
15031 		return 0;
15032 	}
15033 
15034 	if (nfuncs != env->subprog_cnt) {
15035 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
15036 		return -EINVAL;
15037 	}
15038 
15039 	urec_size = attr->func_info_rec_size;
15040 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
15041 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
15042 	    urec_size % sizeof(u32)) {
15043 		verbose(env, "invalid func info rec size %u\n", urec_size);
15044 		return -EINVAL;
15045 	}
15046 
15047 	prog = env->prog;
15048 	btf = prog->aux->btf;
15049 
15050 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15051 	min_size = min_t(u32, krec_size, urec_size);
15052 
15053 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
15054 	if (!krecord)
15055 		return -ENOMEM;
15056 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
15057 	if (!info_aux)
15058 		goto err_free;
15059 
15060 	for (i = 0; i < nfuncs; i++) {
15061 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
15062 		if (ret) {
15063 			if (ret == -E2BIG) {
15064 				verbose(env, "nonzero tailing record in func info");
15065 				/* set the size kernel expects so loader can zero
15066 				 * out the rest of the record.
15067 				 */
15068 				if (copy_to_bpfptr_offset(uattr,
15069 							  offsetof(union bpf_attr, func_info_rec_size),
15070 							  &min_size, sizeof(min_size)))
15071 					ret = -EFAULT;
15072 			}
15073 			goto err_free;
15074 		}
15075 
15076 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
15077 			ret = -EFAULT;
15078 			goto err_free;
15079 		}
15080 
15081 		/* check insn_off */
15082 		ret = -EINVAL;
15083 		if (i == 0) {
15084 			if (krecord[i].insn_off) {
15085 				verbose(env,
15086 					"nonzero insn_off %u for the first func info record",
15087 					krecord[i].insn_off);
15088 				goto err_free;
15089 			}
15090 		} else if (krecord[i].insn_off <= prev_offset) {
15091 			verbose(env,
15092 				"same or smaller insn offset (%u) than previous func info record (%u)",
15093 				krecord[i].insn_off, prev_offset);
15094 			goto err_free;
15095 		}
15096 
15097 		if (env->subprog_info[i].start != krecord[i].insn_off) {
15098 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
15099 			goto err_free;
15100 		}
15101 
15102 		/* check type_id */
15103 		type = btf_type_by_id(btf, krecord[i].type_id);
15104 		if (!type || !btf_type_is_func(type)) {
15105 			verbose(env, "invalid type id %d in func info",
15106 				krecord[i].type_id);
15107 			goto err_free;
15108 		}
15109 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
15110 
15111 		func_proto = btf_type_by_id(btf, type->type);
15112 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
15113 			/* btf_func_check() already verified it during BTF load */
15114 			goto err_free;
15115 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
15116 		scalar_return =
15117 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
15118 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
15119 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
15120 			goto err_free;
15121 		}
15122 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
15123 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
15124 			goto err_free;
15125 		}
15126 
15127 		prev_offset = krecord[i].insn_off;
15128 		bpfptr_add(&urecord, urec_size);
15129 	}
15130 
15131 	prog->aux->func_info = krecord;
15132 	prog->aux->func_info_cnt = nfuncs;
15133 	prog->aux->func_info_aux = info_aux;
15134 	return 0;
15135 
15136 err_free:
15137 	kvfree(krecord);
15138 	kfree(info_aux);
15139 	return ret;
15140 }
15141 
15142 static void adjust_btf_func(struct bpf_verifier_env *env)
15143 {
15144 	struct bpf_prog_aux *aux = env->prog->aux;
15145 	int i;
15146 
15147 	if (!aux->func_info)
15148 		return;
15149 
15150 	for (i = 0; i < env->subprog_cnt; i++)
15151 		aux->func_info[i].insn_off = env->subprog_info[i].start;
15152 }
15153 
15154 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
15155 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
15156 
15157 static int check_btf_line(struct bpf_verifier_env *env,
15158 			  const union bpf_attr *attr,
15159 			  bpfptr_t uattr)
15160 {
15161 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
15162 	struct bpf_subprog_info *sub;
15163 	struct bpf_line_info *linfo;
15164 	struct bpf_prog *prog;
15165 	const struct btf *btf;
15166 	bpfptr_t ulinfo;
15167 	int err;
15168 
15169 	nr_linfo = attr->line_info_cnt;
15170 	if (!nr_linfo)
15171 		return 0;
15172 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
15173 		return -EINVAL;
15174 
15175 	rec_size = attr->line_info_rec_size;
15176 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
15177 	    rec_size > MAX_LINEINFO_REC_SIZE ||
15178 	    rec_size & (sizeof(u32) - 1))
15179 		return -EINVAL;
15180 
15181 	/* Need to zero it in case the userspace may
15182 	 * pass in a smaller bpf_line_info object.
15183 	 */
15184 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
15185 			 GFP_KERNEL | __GFP_NOWARN);
15186 	if (!linfo)
15187 		return -ENOMEM;
15188 
15189 	prog = env->prog;
15190 	btf = prog->aux->btf;
15191 
15192 	s = 0;
15193 	sub = env->subprog_info;
15194 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
15195 	expected_size = sizeof(struct bpf_line_info);
15196 	ncopy = min_t(u32, expected_size, rec_size);
15197 	for (i = 0; i < nr_linfo; i++) {
15198 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
15199 		if (err) {
15200 			if (err == -E2BIG) {
15201 				verbose(env, "nonzero tailing record in line_info");
15202 				if (copy_to_bpfptr_offset(uattr,
15203 							  offsetof(union bpf_attr, line_info_rec_size),
15204 							  &expected_size, sizeof(expected_size)))
15205 					err = -EFAULT;
15206 			}
15207 			goto err_free;
15208 		}
15209 
15210 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
15211 			err = -EFAULT;
15212 			goto err_free;
15213 		}
15214 
15215 		/*
15216 		 * Check insn_off to ensure
15217 		 * 1) strictly increasing AND
15218 		 * 2) bounded by prog->len
15219 		 *
15220 		 * The linfo[0].insn_off == 0 check logically falls into
15221 		 * the later "missing bpf_line_info for func..." case
15222 		 * because the first linfo[0].insn_off must be the
15223 		 * first sub also and the first sub must have
15224 		 * subprog_info[0].start == 0.
15225 		 */
15226 		if ((i && linfo[i].insn_off <= prev_offset) ||
15227 		    linfo[i].insn_off >= prog->len) {
15228 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
15229 				i, linfo[i].insn_off, prev_offset,
15230 				prog->len);
15231 			err = -EINVAL;
15232 			goto err_free;
15233 		}
15234 
15235 		if (!prog->insnsi[linfo[i].insn_off].code) {
15236 			verbose(env,
15237 				"Invalid insn code at line_info[%u].insn_off\n",
15238 				i);
15239 			err = -EINVAL;
15240 			goto err_free;
15241 		}
15242 
15243 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
15244 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
15245 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
15246 			err = -EINVAL;
15247 			goto err_free;
15248 		}
15249 
15250 		if (s != env->subprog_cnt) {
15251 			if (linfo[i].insn_off == sub[s].start) {
15252 				sub[s].linfo_idx = i;
15253 				s++;
15254 			} else if (sub[s].start < linfo[i].insn_off) {
15255 				verbose(env, "missing bpf_line_info for func#%u\n", s);
15256 				err = -EINVAL;
15257 				goto err_free;
15258 			}
15259 		}
15260 
15261 		prev_offset = linfo[i].insn_off;
15262 		bpfptr_add(&ulinfo, rec_size);
15263 	}
15264 
15265 	if (s != env->subprog_cnt) {
15266 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
15267 			env->subprog_cnt - s, s);
15268 		err = -EINVAL;
15269 		goto err_free;
15270 	}
15271 
15272 	prog->aux->linfo = linfo;
15273 	prog->aux->nr_linfo = nr_linfo;
15274 
15275 	return 0;
15276 
15277 err_free:
15278 	kvfree(linfo);
15279 	return err;
15280 }
15281 
15282 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
15283 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
15284 
15285 static int check_core_relo(struct bpf_verifier_env *env,
15286 			   const union bpf_attr *attr,
15287 			   bpfptr_t uattr)
15288 {
15289 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
15290 	struct bpf_core_relo core_relo = {};
15291 	struct bpf_prog *prog = env->prog;
15292 	const struct btf *btf = prog->aux->btf;
15293 	struct bpf_core_ctx ctx = {
15294 		.log = &env->log,
15295 		.btf = btf,
15296 	};
15297 	bpfptr_t u_core_relo;
15298 	int err;
15299 
15300 	nr_core_relo = attr->core_relo_cnt;
15301 	if (!nr_core_relo)
15302 		return 0;
15303 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
15304 		return -EINVAL;
15305 
15306 	rec_size = attr->core_relo_rec_size;
15307 	if (rec_size < MIN_CORE_RELO_SIZE ||
15308 	    rec_size > MAX_CORE_RELO_SIZE ||
15309 	    rec_size % sizeof(u32))
15310 		return -EINVAL;
15311 
15312 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
15313 	expected_size = sizeof(struct bpf_core_relo);
15314 	ncopy = min_t(u32, expected_size, rec_size);
15315 
15316 	/* Unlike func_info and line_info, copy and apply each CO-RE
15317 	 * relocation record one at a time.
15318 	 */
15319 	for (i = 0; i < nr_core_relo; i++) {
15320 		/* future proofing when sizeof(bpf_core_relo) changes */
15321 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
15322 		if (err) {
15323 			if (err == -E2BIG) {
15324 				verbose(env, "nonzero tailing record in core_relo");
15325 				if (copy_to_bpfptr_offset(uattr,
15326 							  offsetof(union bpf_attr, core_relo_rec_size),
15327 							  &expected_size, sizeof(expected_size)))
15328 					err = -EFAULT;
15329 			}
15330 			break;
15331 		}
15332 
15333 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
15334 			err = -EFAULT;
15335 			break;
15336 		}
15337 
15338 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
15339 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
15340 				i, core_relo.insn_off, prog->len);
15341 			err = -EINVAL;
15342 			break;
15343 		}
15344 
15345 		err = bpf_core_apply(&ctx, &core_relo, i,
15346 				     &prog->insnsi[core_relo.insn_off / 8]);
15347 		if (err)
15348 			break;
15349 		bpfptr_add(&u_core_relo, rec_size);
15350 	}
15351 	return err;
15352 }
15353 
15354 static int check_btf_info(struct bpf_verifier_env *env,
15355 			  const union bpf_attr *attr,
15356 			  bpfptr_t uattr)
15357 {
15358 	struct btf *btf;
15359 	int err;
15360 
15361 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
15362 		if (check_abnormal_return(env))
15363 			return -EINVAL;
15364 		return 0;
15365 	}
15366 
15367 	btf = btf_get_by_fd(attr->prog_btf_fd);
15368 	if (IS_ERR(btf))
15369 		return PTR_ERR(btf);
15370 	if (btf_is_kernel(btf)) {
15371 		btf_put(btf);
15372 		return -EACCES;
15373 	}
15374 	env->prog->aux->btf = btf;
15375 
15376 	err = check_btf_func(env, attr, uattr);
15377 	if (err)
15378 		return err;
15379 
15380 	err = check_btf_line(env, attr, uattr);
15381 	if (err)
15382 		return err;
15383 
15384 	err = check_core_relo(env, attr, uattr);
15385 	if (err)
15386 		return err;
15387 
15388 	return 0;
15389 }
15390 
15391 /* check %cur's range satisfies %old's */
15392 static bool range_within(struct bpf_reg_state *old,
15393 			 struct bpf_reg_state *cur)
15394 {
15395 	return old->umin_value <= cur->umin_value &&
15396 	       old->umax_value >= cur->umax_value &&
15397 	       old->smin_value <= cur->smin_value &&
15398 	       old->smax_value >= cur->smax_value &&
15399 	       old->u32_min_value <= cur->u32_min_value &&
15400 	       old->u32_max_value >= cur->u32_max_value &&
15401 	       old->s32_min_value <= cur->s32_min_value &&
15402 	       old->s32_max_value >= cur->s32_max_value;
15403 }
15404 
15405 /* If in the old state two registers had the same id, then they need to have
15406  * the same id in the new state as well.  But that id could be different from
15407  * the old state, so we need to track the mapping from old to new ids.
15408  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
15409  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
15410  * regs with a different old id could still have new id 9, we don't care about
15411  * that.
15412  * So we look through our idmap to see if this old id has been seen before.  If
15413  * so, we require the new id to match; otherwise, we add the id pair to the map.
15414  */
15415 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15416 {
15417 	struct bpf_id_pair *map = idmap->map;
15418 	unsigned int i;
15419 
15420 	/* either both IDs should be set or both should be zero */
15421 	if (!!old_id != !!cur_id)
15422 		return false;
15423 
15424 	if (old_id == 0) /* cur_id == 0 as well */
15425 		return true;
15426 
15427 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
15428 		if (!map[i].old) {
15429 			/* Reached an empty slot; haven't seen this id before */
15430 			map[i].old = old_id;
15431 			map[i].cur = cur_id;
15432 			return true;
15433 		}
15434 		if (map[i].old == old_id)
15435 			return map[i].cur == cur_id;
15436 		if (map[i].cur == cur_id)
15437 			return false;
15438 	}
15439 	/* We ran out of idmap slots, which should be impossible */
15440 	WARN_ON_ONCE(1);
15441 	return false;
15442 }
15443 
15444 /* Similar to check_ids(), but allocate a unique temporary ID
15445  * for 'old_id' or 'cur_id' of zero.
15446  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
15447  */
15448 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15449 {
15450 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
15451 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
15452 
15453 	return check_ids(old_id, cur_id, idmap);
15454 }
15455 
15456 static void clean_func_state(struct bpf_verifier_env *env,
15457 			     struct bpf_func_state *st)
15458 {
15459 	enum bpf_reg_liveness live;
15460 	int i, j;
15461 
15462 	for (i = 0; i < BPF_REG_FP; i++) {
15463 		live = st->regs[i].live;
15464 		/* liveness must not touch this register anymore */
15465 		st->regs[i].live |= REG_LIVE_DONE;
15466 		if (!(live & REG_LIVE_READ))
15467 			/* since the register is unused, clear its state
15468 			 * to make further comparison simpler
15469 			 */
15470 			__mark_reg_not_init(env, &st->regs[i]);
15471 	}
15472 
15473 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
15474 		live = st->stack[i].spilled_ptr.live;
15475 		/* liveness must not touch this stack slot anymore */
15476 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
15477 		if (!(live & REG_LIVE_READ)) {
15478 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
15479 			for (j = 0; j < BPF_REG_SIZE; j++)
15480 				st->stack[i].slot_type[j] = STACK_INVALID;
15481 		}
15482 	}
15483 }
15484 
15485 static void clean_verifier_state(struct bpf_verifier_env *env,
15486 				 struct bpf_verifier_state *st)
15487 {
15488 	int i;
15489 
15490 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
15491 		/* all regs in this state in all frames were already marked */
15492 		return;
15493 
15494 	for (i = 0; i <= st->curframe; i++)
15495 		clean_func_state(env, st->frame[i]);
15496 }
15497 
15498 /* the parentage chains form a tree.
15499  * the verifier states are added to state lists at given insn and
15500  * pushed into state stack for future exploration.
15501  * when the verifier reaches bpf_exit insn some of the verifer states
15502  * stored in the state lists have their final liveness state already,
15503  * but a lot of states will get revised from liveness point of view when
15504  * the verifier explores other branches.
15505  * Example:
15506  * 1: r0 = 1
15507  * 2: if r1 == 100 goto pc+1
15508  * 3: r0 = 2
15509  * 4: exit
15510  * when the verifier reaches exit insn the register r0 in the state list of
15511  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
15512  * of insn 2 and goes exploring further. At the insn 4 it will walk the
15513  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
15514  *
15515  * Since the verifier pushes the branch states as it sees them while exploring
15516  * the program the condition of walking the branch instruction for the second
15517  * time means that all states below this branch were already explored and
15518  * their final liveness marks are already propagated.
15519  * Hence when the verifier completes the search of state list in is_state_visited()
15520  * we can call this clean_live_states() function to mark all liveness states
15521  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
15522  * will not be used.
15523  * This function also clears the registers and stack for states that !READ
15524  * to simplify state merging.
15525  *
15526  * Important note here that walking the same branch instruction in the callee
15527  * doesn't meant that the states are DONE. The verifier has to compare
15528  * the callsites
15529  */
15530 static void clean_live_states(struct bpf_verifier_env *env, int insn,
15531 			      struct bpf_verifier_state *cur)
15532 {
15533 	struct bpf_verifier_state_list *sl;
15534 	int i;
15535 
15536 	sl = *explored_state(env, insn);
15537 	while (sl) {
15538 		if (sl->state.branches)
15539 			goto next;
15540 		if (sl->state.insn_idx != insn ||
15541 		    sl->state.curframe != cur->curframe)
15542 			goto next;
15543 		for (i = 0; i <= cur->curframe; i++)
15544 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
15545 				goto next;
15546 		clean_verifier_state(env, &sl->state);
15547 next:
15548 		sl = sl->next;
15549 	}
15550 }
15551 
15552 static bool regs_exact(const struct bpf_reg_state *rold,
15553 		       const struct bpf_reg_state *rcur,
15554 		       struct bpf_idmap *idmap)
15555 {
15556 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
15557 	       check_ids(rold->id, rcur->id, idmap) &&
15558 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
15559 }
15560 
15561 /* Returns true if (rold safe implies rcur safe) */
15562 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
15563 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap)
15564 {
15565 	if (!(rold->live & REG_LIVE_READ))
15566 		/* explored state didn't use this */
15567 		return true;
15568 	if (rold->type == NOT_INIT)
15569 		/* explored state can't have used this */
15570 		return true;
15571 	if (rcur->type == NOT_INIT)
15572 		return false;
15573 
15574 	/* Enforce that register types have to match exactly, including their
15575 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
15576 	 * rule.
15577 	 *
15578 	 * One can make a point that using a pointer register as unbounded
15579 	 * SCALAR would be technically acceptable, but this could lead to
15580 	 * pointer leaks because scalars are allowed to leak while pointers
15581 	 * are not. We could make this safe in special cases if root is
15582 	 * calling us, but it's probably not worth the hassle.
15583 	 *
15584 	 * Also, register types that are *not* MAYBE_NULL could technically be
15585 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
15586 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
15587 	 * to the same map).
15588 	 * However, if the old MAYBE_NULL register then got NULL checked,
15589 	 * doing so could have affected others with the same id, and we can't
15590 	 * check for that because we lost the id when we converted to
15591 	 * a non-MAYBE_NULL variant.
15592 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
15593 	 * non-MAYBE_NULL registers as well.
15594 	 */
15595 	if (rold->type != rcur->type)
15596 		return false;
15597 
15598 	switch (base_type(rold->type)) {
15599 	case SCALAR_VALUE:
15600 		if (env->explore_alu_limits) {
15601 			/* explore_alu_limits disables tnum_in() and range_within()
15602 			 * logic and requires everything to be strict
15603 			 */
15604 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
15605 			       check_scalar_ids(rold->id, rcur->id, idmap);
15606 		}
15607 		if (!rold->precise)
15608 			return true;
15609 		/* Why check_ids() for scalar registers?
15610 		 *
15611 		 * Consider the following BPF code:
15612 		 *   1: r6 = ... unbound scalar, ID=a ...
15613 		 *   2: r7 = ... unbound scalar, ID=b ...
15614 		 *   3: if (r6 > r7) goto +1
15615 		 *   4: r6 = r7
15616 		 *   5: if (r6 > X) goto ...
15617 		 *   6: ... memory operation using r7 ...
15618 		 *
15619 		 * First verification path is [1-6]:
15620 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
15621 		 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
15622 		 *   r7 <= X, because r6 and r7 share same id.
15623 		 * Next verification path is [1-4, 6].
15624 		 *
15625 		 * Instruction (6) would be reached in two states:
15626 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
15627 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
15628 		 *
15629 		 * Use check_ids() to distinguish these states.
15630 		 * ---
15631 		 * Also verify that new value satisfies old value range knowledge.
15632 		 */
15633 		return range_within(rold, rcur) &&
15634 		       tnum_in(rold->var_off, rcur->var_off) &&
15635 		       check_scalar_ids(rold->id, rcur->id, idmap);
15636 	case PTR_TO_MAP_KEY:
15637 	case PTR_TO_MAP_VALUE:
15638 	case PTR_TO_MEM:
15639 	case PTR_TO_BUF:
15640 	case PTR_TO_TP_BUFFER:
15641 		/* If the new min/max/var_off satisfy the old ones and
15642 		 * everything else matches, we are OK.
15643 		 */
15644 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
15645 		       range_within(rold, rcur) &&
15646 		       tnum_in(rold->var_off, rcur->var_off) &&
15647 		       check_ids(rold->id, rcur->id, idmap) &&
15648 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
15649 	case PTR_TO_PACKET_META:
15650 	case PTR_TO_PACKET:
15651 		/* We must have at least as much range as the old ptr
15652 		 * did, so that any accesses which were safe before are
15653 		 * still safe.  This is true even if old range < old off,
15654 		 * since someone could have accessed through (ptr - k), or
15655 		 * even done ptr -= k in a register, to get a safe access.
15656 		 */
15657 		if (rold->range > rcur->range)
15658 			return false;
15659 		/* If the offsets don't match, we can't trust our alignment;
15660 		 * nor can we be sure that we won't fall out of range.
15661 		 */
15662 		if (rold->off != rcur->off)
15663 			return false;
15664 		/* id relations must be preserved */
15665 		if (!check_ids(rold->id, rcur->id, idmap))
15666 			return false;
15667 		/* new val must satisfy old val knowledge */
15668 		return range_within(rold, rcur) &&
15669 		       tnum_in(rold->var_off, rcur->var_off);
15670 	case PTR_TO_STACK:
15671 		/* two stack pointers are equal only if they're pointing to
15672 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
15673 		 */
15674 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
15675 	default:
15676 		return regs_exact(rold, rcur, idmap);
15677 	}
15678 }
15679 
15680 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
15681 		      struct bpf_func_state *cur, struct bpf_idmap *idmap)
15682 {
15683 	int i, spi;
15684 
15685 	/* walk slots of the explored stack and ignore any additional
15686 	 * slots in the current stack, since explored(safe) state
15687 	 * didn't use them
15688 	 */
15689 	for (i = 0; i < old->allocated_stack; i++) {
15690 		struct bpf_reg_state *old_reg, *cur_reg;
15691 
15692 		spi = i / BPF_REG_SIZE;
15693 
15694 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
15695 			i += BPF_REG_SIZE - 1;
15696 			/* explored state didn't use this */
15697 			continue;
15698 		}
15699 
15700 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
15701 			continue;
15702 
15703 		if (env->allow_uninit_stack &&
15704 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
15705 			continue;
15706 
15707 		/* explored stack has more populated slots than current stack
15708 		 * and these slots were used
15709 		 */
15710 		if (i >= cur->allocated_stack)
15711 			return false;
15712 
15713 		/* if old state was safe with misc data in the stack
15714 		 * it will be safe with zero-initialized stack.
15715 		 * The opposite is not true
15716 		 */
15717 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
15718 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
15719 			continue;
15720 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
15721 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
15722 			/* Ex: old explored (safe) state has STACK_SPILL in
15723 			 * this stack slot, but current has STACK_MISC ->
15724 			 * this verifier states are not equivalent,
15725 			 * return false to continue verification of this path
15726 			 */
15727 			return false;
15728 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
15729 			continue;
15730 		/* Both old and cur are having same slot_type */
15731 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
15732 		case STACK_SPILL:
15733 			/* when explored and current stack slot are both storing
15734 			 * spilled registers, check that stored pointers types
15735 			 * are the same as well.
15736 			 * Ex: explored safe path could have stored
15737 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
15738 			 * but current path has stored:
15739 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
15740 			 * such verifier states are not equivalent.
15741 			 * return false to continue verification of this path
15742 			 */
15743 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
15744 				     &cur->stack[spi].spilled_ptr, idmap))
15745 				return false;
15746 			break;
15747 		case STACK_DYNPTR:
15748 			old_reg = &old->stack[spi].spilled_ptr;
15749 			cur_reg = &cur->stack[spi].spilled_ptr;
15750 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
15751 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
15752 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
15753 				return false;
15754 			break;
15755 		case STACK_ITER:
15756 			old_reg = &old->stack[spi].spilled_ptr;
15757 			cur_reg = &cur->stack[spi].spilled_ptr;
15758 			/* iter.depth is not compared between states as it
15759 			 * doesn't matter for correctness and would otherwise
15760 			 * prevent convergence; we maintain it only to prevent
15761 			 * infinite loop check triggering, see
15762 			 * iter_active_depths_differ()
15763 			 */
15764 			if (old_reg->iter.btf != cur_reg->iter.btf ||
15765 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
15766 			    old_reg->iter.state != cur_reg->iter.state ||
15767 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
15768 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
15769 				return false;
15770 			break;
15771 		case STACK_MISC:
15772 		case STACK_ZERO:
15773 		case STACK_INVALID:
15774 			continue;
15775 		/* Ensure that new unhandled slot types return false by default */
15776 		default:
15777 			return false;
15778 		}
15779 	}
15780 	return true;
15781 }
15782 
15783 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
15784 		    struct bpf_idmap *idmap)
15785 {
15786 	int i;
15787 
15788 	if (old->acquired_refs != cur->acquired_refs)
15789 		return false;
15790 
15791 	for (i = 0; i < old->acquired_refs; i++) {
15792 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
15793 			return false;
15794 	}
15795 
15796 	return true;
15797 }
15798 
15799 /* compare two verifier states
15800  *
15801  * all states stored in state_list are known to be valid, since
15802  * verifier reached 'bpf_exit' instruction through them
15803  *
15804  * this function is called when verifier exploring different branches of
15805  * execution popped from the state stack. If it sees an old state that has
15806  * more strict register state and more strict stack state then this execution
15807  * branch doesn't need to be explored further, since verifier already
15808  * concluded that more strict state leads to valid finish.
15809  *
15810  * Therefore two states are equivalent if register state is more conservative
15811  * and explored stack state is more conservative than the current one.
15812  * Example:
15813  *       explored                   current
15814  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
15815  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
15816  *
15817  * In other words if current stack state (one being explored) has more
15818  * valid slots than old one that already passed validation, it means
15819  * the verifier can stop exploring and conclude that current state is valid too
15820  *
15821  * Similarly with registers. If explored state has register type as invalid
15822  * whereas register type in current state is meaningful, it means that
15823  * the current state will reach 'bpf_exit' instruction safely
15824  */
15825 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
15826 			      struct bpf_func_state *cur)
15827 {
15828 	int i;
15829 
15830 	for (i = 0; i < MAX_BPF_REG; i++)
15831 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
15832 			     &env->idmap_scratch))
15833 			return false;
15834 
15835 	if (!stacksafe(env, old, cur, &env->idmap_scratch))
15836 		return false;
15837 
15838 	if (!refsafe(old, cur, &env->idmap_scratch))
15839 		return false;
15840 
15841 	return true;
15842 }
15843 
15844 static bool states_equal(struct bpf_verifier_env *env,
15845 			 struct bpf_verifier_state *old,
15846 			 struct bpf_verifier_state *cur)
15847 {
15848 	int i;
15849 
15850 	if (old->curframe != cur->curframe)
15851 		return false;
15852 
15853 	env->idmap_scratch.tmp_id_gen = env->id_gen;
15854 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
15855 
15856 	/* Verification state from speculative execution simulation
15857 	 * must never prune a non-speculative execution one.
15858 	 */
15859 	if (old->speculative && !cur->speculative)
15860 		return false;
15861 
15862 	if (old->active_lock.ptr != cur->active_lock.ptr)
15863 		return false;
15864 
15865 	/* Old and cur active_lock's have to be either both present
15866 	 * or both absent.
15867 	 */
15868 	if (!!old->active_lock.id != !!cur->active_lock.id)
15869 		return false;
15870 
15871 	if (old->active_lock.id &&
15872 	    !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
15873 		return false;
15874 
15875 	if (old->active_rcu_lock != cur->active_rcu_lock)
15876 		return false;
15877 
15878 	/* for states to be equal callsites have to be the same
15879 	 * and all frame states need to be equivalent
15880 	 */
15881 	for (i = 0; i <= old->curframe; i++) {
15882 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
15883 			return false;
15884 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
15885 			return false;
15886 	}
15887 	return true;
15888 }
15889 
15890 /* Return 0 if no propagation happened. Return negative error code if error
15891  * happened. Otherwise, return the propagated bit.
15892  */
15893 static int propagate_liveness_reg(struct bpf_verifier_env *env,
15894 				  struct bpf_reg_state *reg,
15895 				  struct bpf_reg_state *parent_reg)
15896 {
15897 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
15898 	u8 flag = reg->live & REG_LIVE_READ;
15899 	int err;
15900 
15901 	/* When comes here, read flags of PARENT_REG or REG could be any of
15902 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
15903 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
15904 	 */
15905 	if (parent_flag == REG_LIVE_READ64 ||
15906 	    /* Or if there is no read flag from REG. */
15907 	    !flag ||
15908 	    /* Or if the read flag from REG is the same as PARENT_REG. */
15909 	    parent_flag == flag)
15910 		return 0;
15911 
15912 	err = mark_reg_read(env, reg, parent_reg, flag);
15913 	if (err)
15914 		return err;
15915 
15916 	return flag;
15917 }
15918 
15919 /* A write screens off any subsequent reads; but write marks come from the
15920  * straight-line code between a state and its parent.  When we arrive at an
15921  * equivalent state (jump target or such) we didn't arrive by the straight-line
15922  * code, so read marks in the state must propagate to the parent regardless
15923  * of the state's write marks. That's what 'parent == state->parent' comparison
15924  * in mark_reg_read() is for.
15925  */
15926 static int propagate_liveness(struct bpf_verifier_env *env,
15927 			      const struct bpf_verifier_state *vstate,
15928 			      struct bpf_verifier_state *vparent)
15929 {
15930 	struct bpf_reg_state *state_reg, *parent_reg;
15931 	struct bpf_func_state *state, *parent;
15932 	int i, frame, err = 0;
15933 
15934 	if (vparent->curframe != vstate->curframe) {
15935 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
15936 		     vparent->curframe, vstate->curframe);
15937 		return -EFAULT;
15938 	}
15939 	/* Propagate read liveness of registers... */
15940 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
15941 	for (frame = 0; frame <= vstate->curframe; frame++) {
15942 		parent = vparent->frame[frame];
15943 		state = vstate->frame[frame];
15944 		parent_reg = parent->regs;
15945 		state_reg = state->regs;
15946 		/* We don't need to worry about FP liveness, it's read-only */
15947 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
15948 			err = propagate_liveness_reg(env, &state_reg[i],
15949 						     &parent_reg[i]);
15950 			if (err < 0)
15951 				return err;
15952 			if (err == REG_LIVE_READ64)
15953 				mark_insn_zext(env, &parent_reg[i]);
15954 		}
15955 
15956 		/* Propagate stack slots. */
15957 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
15958 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
15959 			parent_reg = &parent->stack[i].spilled_ptr;
15960 			state_reg = &state->stack[i].spilled_ptr;
15961 			err = propagate_liveness_reg(env, state_reg,
15962 						     parent_reg);
15963 			if (err < 0)
15964 				return err;
15965 		}
15966 	}
15967 	return 0;
15968 }
15969 
15970 /* find precise scalars in the previous equivalent state and
15971  * propagate them into the current state
15972  */
15973 static int propagate_precision(struct bpf_verifier_env *env,
15974 			       const struct bpf_verifier_state *old)
15975 {
15976 	struct bpf_reg_state *state_reg;
15977 	struct bpf_func_state *state;
15978 	int i, err = 0, fr;
15979 	bool first;
15980 
15981 	for (fr = old->curframe; fr >= 0; fr--) {
15982 		state = old->frame[fr];
15983 		state_reg = state->regs;
15984 		first = true;
15985 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
15986 			if (state_reg->type != SCALAR_VALUE ||
15987 			    !state_reg->precise ||
15988 			    !(state_reg->live & REG_LIVE_READ))
15989 				continue;
15990 			if (env->log.level & BPF_LOG_LEVEL2) {
15991 				if (first)
15992 					verbose(env, "frame %d: propagating r%d", fr, i);
15993 				else
15994 					verbose(env, ",r%d", i);
15995 			}
15996 			bt_set_frame_reg(&env->bt, fr, i);
15997 			first = false;
15998 		}
15999 
16000 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16001 			if (!is_spilled_reg(&state->stack[i]))
16002 				continue;
16003 			state_reg = &state->stack[i].spilled_ptr;
16004 			if (state_reg->type != SCALAR_VALUE ||
16005 			    !state_reg->precise ||
16006 			    !(state_reg->live & REG_LIVE_READ))
16007 				continue;
16008 			if (env->log.level & BPF_LOG_LEVEL2) {
16009 				if (first)
16010 					verbose(env, "frame %d: propagating fp%d",
16011 						fr, (-i - 1) * BPF_REG_SIZE);
16012 				else
16013 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
16014 			}
16015 			bt_set_frame_slot(&env->bt, fr, i);
16016 			first = false;
16017 		}
16018 		if (!first)
16019 			verbose(env, "\n");
16020 	}
16021 
16022 	err = mark_chain_precision_batch(env);
16023 	if (err < 0)
16024 		return err;
16025 
16026 	return 0;
16027 }
16028 
16029 static bool states_maybe_looping(struct bpf_verifier_state *old,
16030 				 struct bpf_verifier_state *cur)
16031 {
16032 	struct bpf_func_state *fold, *fcur;
16033 	int i, fr = cur->curframe;
16034 
16035 	if (old->curframe != fr)
16036 		return false;
16037 
16038 	fold = old->frame[fr];
16039 	fcur = cur->frame[fr];
16040 	for (i = 0; i < MAX_BPF_REG; i++)
16041 		if (memcmp(&fold->regs[i], &fcur->regs[i],
16042 			   offsetof(struct bpf_reg_state, parent)))
16043 			return false;
16044 	return true;
16045 }
16046 
16047 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
16048 {
16049 	return env->insn_aux_data[insn_idx].is_iter_next;
16050 }
16051 
16052 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
16053  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
16054  * states to match, which otherwise would look like an infinite loop. So while
16055  * iter_next() calls are taken care of, we still need to be careful and
16056  * prevent erroneous and too eager declaration of "ininite loop", when
16057  * iterators are involved.
16058  *
16059  * Here's a situation in pseudo-BPF assembly form:
16060  *
16061  *   0: again:                          ; set up iter_next() call args
16062  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
16063  *   2:   call bpf_iter_num_next        ; this is iter_next() call
16064  *   3:   if r0 == 0 goto done
16065  *   4:   ... something useful here ...
16066  *   5:   goto again                    ; another iteration
16067  *   6: done:
16068  *   7:   r1 = &it
16069  *   8:   call bpf_iter_num_destroy     ; clean up iter state
16070  *   9:   exit
16071  *
16072  * This is a typical loop. Let's assume that we have a prune point at 1:,
16073  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
16074  * again`, assuming other heuristics don't get in a way).
16075  *
16076  * When we first time come to 1:, let's say we have some state X. We proceed
16077  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
16078  * Now we come back to validate that forked ACTIVE state. We proceed through
16079  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
16080  * are converging. But the problem is that we don't know that yet, as this
16081  * convergence has to happen at iter_next() call site only. So if nothing is
16082  * done, at 1: verifier will use bounded loop logic and declare infinite
16083  * looping (and would be *technically* correct, if not for iterator's
16084  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
16085  * don't want that. So what we do in process_iter_next_call() when we go on
16086  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
16087  * a different iteration. So when we suspect an infinite loop, we additionally
16088  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
16089  * pretend we are not looping and wait for next iter_next() call.
16090  *
16091  * This only applies to ACTIVE state. In DRAINED state we don't expect to
16092  * loop, because that would actually mean infinite loop, as DRAINED state is
16093  * "sticky", and so we'll keep returning into the same instruction with the
16094  * same state (at least in one of possible code paths).
16095  *
16096  * This approach allows to keep infinite loop heuristic even in the face of
16097  * active iterator. E.g., C snippet below is and will be detected as
16098  * inifintely looping:
16099  *
16100  *   struct bpf_iter_num it;
16101  *   int *p, x;
16102  *
16103  *   bpf_iter_num_new(&it, 0, 10);
16104  *   while ((p = bpf_iter_num_next(&t))) {
16105  *       x = p;
16106  *       while (x--) {} // <<-- infinite loop here
16107  *   }
16108  *
16109  */
16110 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
16111 {
16112 	struct bpf_reg_state *slot, *cur_slot;
16113 	struct bpf_func_state *state;
16114 	int i, fr;
16115 
16116 	for (fr = old->curframe; fr >= 0; fr--) {
16117 		state = old->frame[fr];
16118 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16119 			if (state->stack[i].slot_type[0] != STACK_ITER)
16120 				continue;
16121 
16122 			slot = &state->stack[i].spilled_ptr;
16123 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
16124 				continue;
16125 
16126 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
16127 			if (cur_slot->iter.depth != slot->iter.depth)
16128 				return true;
16129 		}
16130 	}
16131 	return false;
16132 }
16133 
16134 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
16135 {
16136 	struct bpf_verifier_state_list *new_sl;
16137 	struct bpf_verifier_state_list *sl, **pprev;
16138 	struct bpf_verifier_state *cur = env->cur_state, *new;
16139 	int i, j, err, states_cnt = 0;
16140 	bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
16141 	bool add_new_state = force_new_state;
16142 
16143 	/* bpf progs typically have pruning point every 4 instructions
16144 	 * http://vger.kernel.org/bpfconf2019.html#session-1
16145 	 * Do not add new state for future pruning if the verifier hasn't seen
16146 	 * at least 2 jumps and at least 8 instructions.
16147 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
16148 	 * In tests that amounts to up to 50% reduction into total verifier
16149 	 * memory consumption and 20% verifier time speedup.
16150 	 */
16151 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
16152 	    env->insn_processed - env->prev_insn_processed >= 8)
16153 		add_new_state = true;
16154 
16155 	pprev = explored_state(env, insn_idx);
16156 	sl = *pprev;
16157 
16158 	clean_live_states(env, insn_idx, cur);
16159 
16160 	while (sl) {
16161 		states_cnt++;
16162 		if (sl->state.insn_idx != insn_idx)
16163 			goto next;
16164 
16165 		if (sl->state.branches) {
16166 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
16167 
16168 			if (frame->in_async_callback_fn &&
16169 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
16170 				/* Different async_entry_cnt means that the verifier is
16171 				 * processing another entry into async callback.
16172 				 * Seeing the same state is not an indication of infinite
16173 				 * loop or infinite recursion.
16174 				 * But finding the same state doesn't mean that it's safe
16175 				 * to stop processing the current state. The previous state
16176 				 * hasn't yet reached bpf_exit, since state.branches > 0.
16177 				 * Checking in_async_callback_fn alone is not enough either.
16178 				 * Since the verifier still needs to catch infinite loops
16179 				 * inside async callbacks.
16180 				 */
16181 				goto skip_inf_loop_check;
16182 			}
16183 			/* BPF open-coded iterators loop detection is special.
16184 			 * states_maybe_looping() logic is too simplistic in detecting
16185 			 * states that *might* be equivalent, because it doesn't know
16186 			 * about ID remapping, so don't even perform it.
16187 			 * See process_iter_next_call() and iter_active_depths_differ()
16188 			 * for overview of the logic. When current and one of parent
16189 			 * states are detected as equivalent, it's a good thing: we prove
16190 			 * convergence and can stop simulating further iterations.
16191 			 * It's safe to assume that iterator loop will finish, taking into
16192 			 * account iter_next() contract of eventually returning
16193 			 * sticky NULL result.
16194 			 */
16195 			if (is_iter_next_insn(env, insn_idx)) {
16196 				if (states_equal(env, &sl->state, cur)) {
16197 					struct bpf_func_state *cur_frame;
16198 					struct bpf_reg_state *iter_state, *iter_reg;
16199 					int spi;
16200 
16201 					cur_frame = cur->frame[cur->curframe];
16202 					/* btf_check_iter_kfuncs() enforces that
16203 					 * iter state pointer is always the first arg
16204 					 */
16205 					iter_reg = &cur_frame->regs[BPF_REG_1];
16206 					/* current state is valid due to states_equal(),
16207 					 * so we can assume valid iter and reg state,
16208 					 * no need for extra (re-)validations
16209 					 */
16210 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
16211 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
16212 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE)
16213 						goto hit;
16214 				}
16215 				goto skip_inf_loop_check;
16216 			}
16217 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
16218 			if (states_maybe_looping(&sl->state, cur) &&
16219 			    states_equal(env, &sl->state, cur) &&
16220 			    !iter_active_depths_differ(&sl->state, cur)) {
16221 				verbose_linfo(env, insn_idx, "; ");
16222 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
16223 				return -EINVAL;
16224 			}
16225 			/* if the verifier is processing a loop, avoid adding new state
16226 			 * too often, since different loop iterations have distinct
16227 			 * states and may not help future pruning.
16228 			 * This threshold shouldn't be too low to make sure that
16229 			 * a loop with large bound will be rejected quickly.
16230 			 * The most abusive loop will be:
16231 			 * r1 += 1
16232 			 * if r1 < 1000000 goto pc-2
16233 			 * 1M insn_procssed limit / 100 == 10k peak states.
16234 			 * This threshold shouldn't be too high either, since states
16235 			 * at the end of the loop are likely to be useful in pruning.
16236 			 */
16237 skip_inf_loop_check:
16238 			if (!force_new_state &&
16239 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
16240 			    env->insn_processed - env->prev_insn_processed < 100)
16241 				add_new_state = false;
16242 			goto miss;
16243 		}
16244 		if (states_equal(env, &sl->state, cur)) {
16245 hit:
16246 			sl->hit_cnt++;
16247 			/* reached equivalent register/stack state,
16248 			 * prune the search.
16249 			 * Registers read by the continuation are read by us.
16250 			 * If we have any write marks in env->cur_state, they
16251 			 * will prevent corresponding reads in the continuation
16252 			 * from reaching our parent (an explored_state).  Our
16253 			 * own state will get the read marks recorded, but
16254 			 * they'll be immediately forgotten as we're pruning
16255 			 * this state and will pop a new one.
16256 			 */
16257 			err = propagate_liveness(env, &sl->state, cur);
16258 
16259 			/* if previous state reached the exit with precision and
16260 			 * current state is equivalent to it (except precsion marks)
16261 			 * the precision needs to be propagated back in
16262 			 * the current state.
16263 			 */
16264 			err = err ? : push_jmp_history(env, cur);
16265 			err = err ? : propagate_precision(env, &sl->state);
16266 			if (err)
16267 				return err;
16268 			return 1;
16269 		}
16270 miss:
16271 		/* when new state is not going to be added do not increase miss count.
16272 		 * Otherwise several loop iterations will remove the state
16273 		 * recorded earlier. The goal of these heuristics is to have
16274 		 * states from some iterations of the loop (some in the beginning
16275 		 * and some at the end) to help pruning.
16276 		 */
16277 		if (add_new_state)
16278 			sl->miss_cnt++;
16279 		/* heuristic to determine whether this state is beneficial
16280 		 * to keep checking from state equivalence point of view.
16281 		 * Higher numbers increase max_states_per_insn and verification time,
16282 		 * but do not meaningfully decrease insn_processed.
16283 		 */
16284 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
16285 			/* the state is unlikely to be useful. Remove it to
16286 			 * speed up verification
16287 			 */
16288 			*pprev = sl->next;
16289 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
16290 				u32 br = sl->state.branches;
16291 
16292 				WARN_ONCE(br,
16293 					  "BUG live_done but branches_to_explore %d\n",
16294 					  br);
16295 				free_verifier_state(&sl->state, false);
16296 				kfree(sl);
16297 				env->peak_states--;
16298 			} else {
16299 				/* cannot free this state, since parentage chain may
16300 				 * walk it later. Add it for free_list instead to
16301 				 * be freed at the end of verification
16302 				 */
16303 				sl->next = env->free_list;
16304 				env->free_list = sl;
16305 			}
16306 			sl = *pprev;
16307 			continue;
16308 		}
16309 next:
16310 		pprev = &sl->next;
16311 		sl = *pprev;
16312 	}
16313 
16314 	if (env->max_states_per_insn < states_cnt)
16315 		env->max_states_per_insn = states_cnt;
16316 
16317 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
16318 		return 0;
16319 
16320 	if (!add_new_state)
16321 		return 0;
16322 
16323 	/* There were no equivalent states, remember the current one.
16324 	 * Technically the current state is not proven to be safe yet,
16325 	 * but it will either reach outer most bpf_exit (which means it's safe)
16326 	 * or it will be rejected. When there are no loops the verifier won't be
16327 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
16328 	 * again on the way to bpf_exit.
16329 	 * When looping the sl->state.branches will be > 0 and this state
16330 	 * will not be considered for equivalence until branches == 0.
16331 	 */
16332 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
16333 	if (!new_sl)
16334 		return -ENOMEM;
16335 	env->total_states++;
16336 	env->peak_states++;
16337 	env->prev_jmps_processed = env->jmps_processed;
16338 	env->prev_insn_processed = env->insn_processed;
16339 
16340 	/* forget precise markings we inherited, see __mark_chain_precision */
16341 	if (env->bpf_capable)
16342 		mark_all_scalars_imprecise(env, cur);
16343 
16344 	/* add new state to the head of linked list */
16345 	new = &new_sl->state;
16346 	err = copy_verifier_state(new, cur);
16347 	if (err) {
16348 		free_verifier_state(new, false);
16349 		kfree(new_sl);
16350 		return err;
16351 	}
16352 	new->insn_idx = insn_idx;
16353 	WARN_ONCE(new->branches != 1,
16354 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
16355 
16356 	cur->parent = new;
16357 	cur->first_insn_idx = insn_idx;
16358 	clear_jmp_history(cur);
16359 	new_sl->next = *explored_state(env, insn_idx);
16360 	*explored_state(env, insn_idx) = new_sl;
16361 	/* connect new state to parentage chain. Current frame needs all
16362 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
16363 	 * to the stack implicitly by JITs) so in callers' frames connect just
16364 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
16365 	 * the state of the call instruction (with WRITTEN set), and r0 comes
16366 	 * from callee with its full parentage chain, anyway.
16367 	 */
16368 	/* clear write marks in current state: the writes we did are not writes
16369 	 * our child did, so they don't screen off its reads from us.
16370 	 * (There are no read marks in current state, because reads always mark
16371 	 * their parent and current state never has children yet.  Only
16372 	 * explored_states can get read marks.)
16373 	 */
16374 	for (j = 0; j <= cur->curframe; j++) {
16375 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
16376 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
16377 		for (i = 0; i < BPF_REG_FP; i++)
16378 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
16379 	}
16380 
16381 	/* all stack frames are accessible from callee, clear them all */
16382 	for (j = 0; j <= cur->curframe; j++) {
16383 		struct bpf_func_state *frame = cur->frame[j];
16384 		struct bpf_func_state *newframe = new->frame[j];
16385 
16386 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
16387 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
16388 			frame->stack[i].spilled_ptr.parent =
16389 						&newframe->stack[i].spilled_ptr;
16390 		}
16391 	}
16392 	return 0;
16393 }
16394 
16395 /* Return true if it's OK to have the same insn return a different type. */
16396 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
16397 {
16398 	switch (base_type(type)) {
16399 	case PTR_TO_CTX:
16400 	case PTR_TO_SOCKET:
16401 	case PTR_TO_SOCK_COMMON:
16402 	case PTR_TO_TCP_SOCK:
16403 	case PTR_TO_XDP_SOCK:
16404 	case PTR_TO_BTF_ID:
16405 		return false;
16406 	default:
16407 		return true;
16408 	}
16409 }
16410 
16411 /* If an instruction was previously used with particular pointer types, then we
16412  * need to be careful to avoid cases such as the below, where it may be ok
16413  * for one branch accessing the pointer, but not ok for the other branch:
16414  *
16415  * R1 = sock_ptr
16416  * goto X;
16417  * ...
16418  * R1 = some_other_valid_ptr;
16419  * goto X;
16420  * ...
16421  * R2 = *(u32 *)(R1 + 0);
16422  */
16423 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
16424 {
16425 	return src != prev && (!reg_type_mismatch_ok(src) ||
16426 			       !reg_type_mismatch_ok(prev));
16427 }
16428 
16429 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
16430 			     bool allow_trust_missmatch)
16431 {
16432 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
16433 
16434 	if (*prev_type == NOT_INIT) {
16435 		/* Saw a valid insn
16436 		 * dst_reg = *(u32 *)(src_reg + off)
16437 		 * save type to validate intersecting paths
16438 		 */
16439 		*prev_type = type;
16440 	} else if (reg_type_mismatch(type, *prev_type)) {
16441 		/* Abuser program is trying to use the same insn
16442 		 * dst_reg = *(u32*) (src_reg + off)
16443 		 * with different pointer types:
16444 		 * src_reg == ctx in one branch and
16445 		 * src_reg == stack|map in some other branch.
16446 		 * Reject it.
16447 		 */
16448 		if (allow_trust_missmatch &&
16449 		    base_type(type) == PTR_TO_BTF_ID &&
16450 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
16451 			/*
16452 			 * Have to support a use case when one path through
16453 			 * the program yields TRUSTED pointer while another
16454 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
16455 			 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
16456 			 */
16457 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
16458 		} else {
16459 			verbose(env, "same insn cannot be used with different pointers\n");
16460 			return -EINVAL;
16461 		}
16462 	}
16463 
16464 	return 0;
16465 }
16466 
16467 static int do_check(struct bpf_verifier_env *env)
16468 {
16469 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
16470 	struct bpf_verifier_state *state = env->cur_state;
16471 	struct bpf_insn *insns = env->prog->insnsi;
16472 	struct bpf_reg_state *regs;
16473 	int insn_cnt = env->prog->len;
16474 	bool do_print_state = false;
16475 	int prev_insn_idx = -1;
16476 
16477 	for (;;) {
16478 		struct bpf_insn *insn;
16479 		u8 class;
16480 		int err;
16481 
16482 		env->prev_insn_idx = prev_insn_idx;
16483 		if (env->insn_idx >= insn_cnt) {
16484 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
16485 				env->insn_idx, insn_cnt);
16486 			return -EFAULT;
16487 		}
16488 
16489 		insn = &insns[env->insn_idx];
16490 		class = BPF_CLASS(insn->code);
16491 
16492 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
16493 			verbose(env,
16494 				"BPF program is too large. Processed %d insn\n",
16495 				env->insn_processed);
16496 			return -E2BIG;
16497 		}
16498 
16499 		state->last_insn_idx = env->prev_insn_idx;
16500 
16501 		if (is_prune_point(env, env->insn_idx)) {
16502 			err = is_state_visited(env, env->insn_idx);
16503 			if (err < 0)
16504 				return err;
16505 			if (err == 1) {
16506 				/* found equivalent state, can prune the search */
16507 				if (env->log.level & BPF_LOG_LEVEL) {
16508 					if (do_print_state)
16509 						verbose(env, "\nfrom %d to %d%s: safe\n",
16510 							env->prev_insn_idx, env->insn_idx,
16511 							env->cur_state->speculative ?
16512 							" (speculative execution)" : "");
16513 					else
16514 						verbose(env, "%d: safe\n", env->insn_idx);
16515 				}
16516 				goto process_bpf_exit;
16517 			}
16518 		}
16519 
16520 		if (is_jmp_point(env, env->insn_idx)) {
16521 			err = push_jmp_history(env, state);
16522 			if (err)
16523 				return err;
16524 		}
16525 
16526 		if (signal_pending(current))
16527 			return -EAGAIN;
16528 
16529 		if (need_resched())
16530 			cond_resched();
16531 
16532 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
16533 			verbose(env, "\nfrom %d to %d%s:",
16534 				env->prev_insn_idx, env->insn_idx,
16535 				env->cur_state->speculative ?
16536 				" (speculative execution)" : "");
16537 			print_verifier_state(env, state->frame[state->curframe], true);
16538 			do_print_state = false;
16539 		}
16540 
16541 		if (env->log.level & BPF_LOG_LEVEL) {
16542 			const struct bpf_insn_cbs cbs = {
16543 				.cb_call	= disasm_kfunc_name,
16544 				.cb_print	= verbose,
16545 				.private_data	= env,
16546 			};
16547 
16548 			if (verifier_state_scratched(env))
16549 				print_insn_state(env, state->frame[state->curframe]);
16550 
16551 			verbose_linfo(env, env->insn_idx, "; ");
16552 			env->prev_log_pos = env->log.end_pos;
16553 			verbose(env, "%d: ", env->insn_idx);
16554 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
16555 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
16556 			env->prev_log_pos = env->log.end_pos;
16557 		}
16558 
16559 		if (bpf_prog_is_offloaded(env->prog->aux)) {
16560 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
16561 							   env->prev_insn_idx);
16562 			if (err)
16563 				return err;
16564 		}
16565 
16566 		regs = cur_regs(env);
16567 		sanitize_mark_insn_seen(env);
16568 		prev_insn_idx = env->insn_idx;
16569 
16570 		if (class == BPF_ALU || class == BPF_ALU64) {
16571 			err = check_alu_op(env, insn);
16572 			if (err)
16573 				return err;
16574 
16575 		} else if (class == BPF_LDX) {
16576 			enum bpf_reg_type src_reg_type;
16577 
16578 			/* check for reserved fields is already done */
16579 
16580 			/* check src operand */
16581 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
16582 			if (err)
16583 				return err;
16584 
16585 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
16586 			if (err)
16587 				return err;
16588 
16589 			src_reg_type = regs[insn->src_reg].type;
16590 
16591 			/* check that memory (src_reg + off) is readable,
16592 			 * the state of dst_reg will be updated by this func
16593 			 */
16594 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
16595 					       insn->off, BPF_SIZE(insn->code),
16596 					       BPF_READ, insn->dst_reg, false,
16597 					       BPF_MODE(insn->code) == BPF_MEMSX);
16598 			if (err)
16599 				return err;
16600 
16601 			err = save_aux_ptr_type(env, src_reg_type, true);
16602 			if (err)
16603 				return err;
16604 		} else if (class == BPF_STX) {
16605 			enum bpf_reg_type dst_reg_type;
16606 
16607 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
16608 				err = check_atomic(env, env->insn_idx, insn);
16609 				if (err)
16610 					return err;
16611 				env->insn_idx++;
16612 				continue;
16613 			}
16614 
16615 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
16616 				verbose(env, "BPF_STX uses reserved fields\n");
16617 				return -EINVAL;
16618 			}
16619 
16620 			/* check src1 operand */
16621 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
16622 			if (err)
16623 				return err;
16624 			/* check src2 operand */
16625 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
16626 			if (err)
16627 				return err;
16628 
16629 			dst_reg_type = regs[insn->dst_reg].type;
16630 
16631 			/* check that memory (dst_reg + off) is writeable */
16632 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
16633 					       insn->off, BPF_SIZE(insn->code),
16634 					       BPF_WRITE, insn->src_reg, false, false);
16635 			if (err)
16636 				return err;
16637 
16638 			err = save_aux_ptr_type(env, dst_reg_type, false);
16639 			if (err)
16640 				return err;
16641 		} else if (class == BPF_ST) {
16642 			enum bpf_reg_type dst_reg_type;
16643 
16644 			if (BPF_MODE(insn->code) != BPF_MEM ||
16645 			    insn->src_reg != BPF_REG_0) {
16646 				verbose(env, "BPF_ST uses reserved fields\n");
16647 				return -EINVAL;
16648 			}
16649 			/* check src operand */
16650 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
16651 			if (err)
16652 				return err;
16653 
16654 			dst_reg_type = regs[insn->dst_reg].type;
16655 
16656 			/* check that memory (dst_reg + off) is writeable */
16657 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
16658 					       insn->off, BPF_SIZE(insn->code),
16659 					       BPF_WRITE, -1, false, false);
16660 			if (err)
16661 				return err;
16662 
16663 			err = save_aux_ptr_type(env, dst_reg_type, false);
16664 			if (err)
16665 				return err;
16666 		} else if (class == BPF_JMP || class == BPF_JMP32) {
16667 			u8 opcode = BPF_OP(insn->code);
16668 
16669 			env->jmps_processed++;
16670 			if (opcode == BPF_CALL) {
16671 				if (BPF_SRC(insn->code) != BPF_K ||
16672 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
16673 				     && insn->off != 0) ||
16674 				    (insn->src_reg != BPF_REG_0 &&
16675 				     insn->src_reg != BPF_PSEUDO_CALL &&
16676 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
16677 				    insn->dst_reg != BPF_REG_0 ||
16678 				    class == BPF_JMP32) {
16679 					verbose(env, "BPF_CALL uses reserved fields\n");
16680 					return -EINVAL;
16681 				}
16682 
16683 				if (env->cur_state->active_lock.ptr) {
16684 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
16685 					    (insn->src_reg == BPF_PSEUDO_CALL) ||
16686 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
16687 					     (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
16688 						verbose(env, "function calls are not allowed while holding a lock\n");
16689 						return -EINVAL;
16690 					}
16691 				}
16692 				if (insn->src_reg == BPF_PSEUDO_CALL)
16693 					err = check_func_call(env, insn, &env->insn_idx);
16694 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
16695 					err = check_kfunc_call(env, insn, &env->insn_idx);
16696 				else
16697 					err = check_helper_call(env, insn, &env->insn_idx);
16698 				if (err)
16699 					return err;
16700 
16701 				mark_reg_scratched(env, BPF_REG_0);
16702 			} else if (opcode == BPF_JA) {
16703 				if (BPF_SRC(insn->code) != BPF_K ||
16704 				    insn->src_reg != BPF_REG_0 ||
16705 				    insn->dst_reg != BPF_REG_0 ||
16706 				    (class == BPF_JMP && insn->imm != 0) ||
16707 				    (class == BPF_JMP32 && insn->off != 0)) {
16708 					verbose(env, "BPF_JA uses reserved fields\n");
16709 					return -EINVAL;
16710 				}
16711 
16712 				if (class == BPF_JMP)
16713 					env->insn_idx += insn->off + 1;
16714 				else
16715 					env->insn_idx += insn->imm + 1;
16716 				continue;
16717 
16718 			} else if (opcode == BPF_EXIT) {
16719 				if (BPF_SRC(insn->code) != BPF_K ||
16720 				    insn->imm != 0 ||
16721 				    insn->src_reg != BPF_REG_0 ||
16722 				    insn->dst_reg != BPF_REG_0 ||
16723 				    class == BPF_JMP32) {
16724 					verbose(env, "BPF_EXIT uses reserved fields\n");
16725 					return -EINVAL;
16726 				}
16727 
16728 				if (env->cur_state->active_lock.ptr &&
16729 				    !in_rbtree_lock_required_cb(env)) {
16730 					verbose(env, "bpf_spin_unlock is missing\n");
16731 					return -EINVAL;
16732 				}
16733 
16734 				if (env->cur_state->active_rcu_lock &&
16735 				    !in_rbtree_lock_required_cb(env)) {
16736 					verbose(env, "bpf_rcu_read_unlock is missing\n");
16737 					return -EINVAL;
16738 				}
16739 
16740 				/* We must do check_reference_leak here before
16741 				 * prepare_func_exit to handle the case when
16742 				 * state->curframe > 0, it may be a callback
16743 				 * function, for which reference_state must
16744 				 * match caller reference state when it exits.
16745 				 */
16746 				err = check_reference_leak(env);
16747 				if (err)
16748 					return err;
16749 
16750 				if (state->curframe) {
16751 					/* exit from nested function */
16752 					err = prepare_func_exit(env, &env->insn_idx);
16753 					if (err)
16754 						return err;
16755 					do_print_state = true;
16756 					continue;
16757 				}
16758 
16759 				err = check_return_code(env);
16760 				if (err)
16761 					return err;
16762 process_bpf_exit:
16763 				mark_verifier_state_scratched(env);
16764 				update_branch_counts(env, env->cur_state);
16765 				err = pop_stack(env, &prev_insn_idx,
16766 						&env->insn_idx, pop_log);
16767 				if (err < 0) {
16768 					if (err != -ENOENT)
16769 						return err;
16770 					break;
16771 				} else {
16772 					do_print_state = true;
16773 					continue;
16774 				}
16775 			} else {
16776 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
16777 				if (err)
16778 					return err;
16779 			}
16780 		} else if (class == BPF_LD) {
16781 			u8 mode = BPF_MODE(insn->code);
16782 
16783 			if (mode == BPF_ABS || mode == BPF_IND) {
16784 				err = check_ld_abs(env, insn);
16785 				if (err)
16786 					return err;
16787 
16788 			} else if (mode == BPF_IMM) {
16789 				err = check_ld_imm(env, insn);
16790 				if (err)
16791 					return err;
16792 
16793 				env->insn_idx++;
16794 				sanitize_mark_insn_seen(env);
16795 			} else {
16796 				verbose(env, "invalid BPF_LD mode\n");
16797 				return -EINVAL;
16798 			}
16799 		} else {
16800 			verbose(env, "unknown insn class %d\n", class);
16801 			return -EINVAL;
16802 		}
16803 
16804 		env->insn_idx++;
16805 	}
16806 
16807 	return 0;
16808 }
16809 
16810 static int find_btf_percpu_datasec(struct btf *btf)
16811 {
16812 	const struct btf_type *t;
16813 	const char *tname;
16814 	int i, n;
16815 
16816 	/*
16817 	 * Both vmlinux and module each have their own ".data..percpu"
16818 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
16819 	 * types to look at only module's own BTF types.
16820 	 */
16821 	n = btf_nr_types(btf);
16822 	if (btf_is_module(btf))
16823 		i = btf_nr_types(btf_vmlinux);
16824 	else
16825 		i = 1;
16826 
16827 	for(; i < n; i++) {
16828 		t = btf_type_by_id(btf, i);
16829 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
16830 			continue;
16831 
16832 		tname = btf_name_by_offset(btf, t->name_off);
16833 		if (!strcmp(tname, ".data..percpu"))
16834 			return i;
16835 	}
16836 
16837 	return -ENOENT;
16838 }
16839 
16840 /* replace pseudo btf_id with kernel symbol address */
16841 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
16842 			       struct bpf_insn *insn,
16843 			       struct bpf_insn_aux_data *aux)
16844 {
16845 	const struct btf_var_secinfo *vsi;
16846 	const struct btf_type *datasec;
16847 	struct btf_mod_pair *btf_mod;
16848 	const struct btf_type *t;
16849 	const char *sym_name;
16850 	bool percpu = false;
16851 	u32 type, id = insn->imm;
16852 	struct btf *btf;
16853 	s32 datasec_id;
16854 	u64 addr;
16855 	int i, btf_fd, err;
16856 
16857 	btf_fd = insn[1].imm;
16858 	if (btf_fd) {
16859 		btf = btf_get_by_fd(btf_fd);
16860 		if (IS_ERR(btf)) {
16861 			verbose(env, "invalid module BTF object FD specified.\n");
16862 			return -EINVAL;
16863 		}
16864 	} else {
16865 		if (!btf_vmlinux) {
16866 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
16867 			return -EINVAL;
16868 		}
16869 		btf = btf_vmlinux;
16870 		btf_get(btf);
16871 	}
16872 
16873 	t = btf_type_by_id(btf, id);
16874 	if (!t) {
16875 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
16876 		err = -ENOENT;
16877 		goto err_put;
16878 	}
16879 
16880 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
16881 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
16882 		err = -EINVAL;
16883 		goto err_put;
16884 	}
16885 
16886 	sym_name = btf_name_by_offset(btf, t->name_off);
16887 	addr = kallsyms_lookup_name(sym_name);
16888 	if (!addr) {
16889 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
16890 			sym_name);
16891 		err = -ENOENT;
16892 		goto err_put;
16893 	}
16894 	insn[0].imm = (u32)addr;
16895 	insn[1].imm = addr >> 32;
16896 
16897 	if (btf_type_is_func(t)) {
16898 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
16899 		aux->btf_var.mem_size = 0;
16900 		goto check_btf;
16901 	}
16902 
16903 	datasec_id = find_btf_percpu_datasec(btf);
16904 	if (datasec_id > 0) {
16905 		datasec = btf_type_by_id(btf, datasec_id);
16906 		for_each_vsi(i, datasec, vsi) {
16907 			if (vsi->type == id) {
16908 				percpu = true;
16909 				break;
16910 			}
16911 		}
16912 	}
16913 
16914 	type = t->type;
16915 	t = btf_type_skip_modifiers(btf, type, NULL);
16916 	if (percpu) {
16917 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
16918 		aux->btf_var.btf = btf;
16919 		aux->btf_var.btf_id = type;
16920 	} else if (!btf_type_is_struct(t)) {
16921 		const struct btf_type *ret;
16922 		const char *tname;
16923 		u32 tsize;
16924 
16925 		/* resolve the type size of ksym. */
16926 		ret = btf_resolve_size(btf, t, &tsize);
16927 		if (IS_ERR(ret)) {
16928 			tname = btf_name_by_offset(btf, t->name_off);
16929 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
16930 				tname, PTR_ERR(ret));
16931 			err = -EINVAL;
16932 			goto err_put;
16933 		}
16934 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
16935 		aux->btf_var.mem_size = tsize;
16936 	} else {
16937 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
16938 		aux->btf_var.btf = btf;
16939 		aux->btf_var.btf_id = type;
16940 	}
16941 check_btf:
16942 	/* check whether we recorded this BTF (and maybe module) already */
16943 	for (i = 0; i < env->used_btf_cnt; i++) {
16944 		if (env->used_btfs[i].btf == btf) {
16945 			btf_put(btf);
16946 			return 0;
16947 		}
16948 	}
16949 
16950 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
16951 		err = -E2BIG;
16952 		goto err_put;
16953 	}
16954 
16955 	btf_mod = &env->used_btfs[env->used_btf_cnt];
16956 	btf_mod->btf = btf;
16957 	btf_mod->module = NULL;
16958 
16959 	/* if we reference variables from kernel module, bump its refcount */
16960 	if (btf_is_module(btf)) {
16961 		btf_mod->module = btf_try_get_module(btf);
16962 		if (!btf_mod->module) {
16963 			err = -ENXIO;
16964 			goto err_put;
16965 		}
16966 	}
16967 
16968 	env->used_btf_cnt++;
16969 
16970 	return 0;
16971 err_put:
16972 	btf_put(btf);
16973 	return err;
16974 }
16975 
16976 static bool is_tracing_prog_type(enum bpf_prog_type type)
16977 {
16978 	switch (type) {
16979 	case BPF_PROG_TYPE_KPROBE:
16980 	case BPF_PROG_TYPE_TRACEPOINT:
16981 	case BPF_PROG_TYPE_PERF_EVENT:
16982 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
16983 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
16984 		return true;
16985 	default:
16986 		return false;
16987 	}
16988 }
16989 
16990 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
16991 					struct bpf_map *map,
16992 					struct bpf_prog *prog)
16993 
16994 {
16995 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
16996 
16997 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
16998 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
16999 		if (is_tracing_prog_type(prog_type)) {
17000 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
17001 			return -EINVAL;
17002 		}
17003 	}
17004 
17005 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
17006 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
17007 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
17008 			return -EINVAL;
17009 		}
17010 
17011 		if (is_tracing_prog_type(prog_type)) {
17012 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
17013 			return -EINVAL;
17014 		}
17015 	}
17016 
17017 	if (btf_record_has_field(map->record, BPF_TIMER)) {
17018 		if (is_tracing_prog_type(prog_type)) {
17019 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
17020 			return -EINVAL;
17021 		}
17022 	}
17023 
17024 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
17025 	    !bpf_offload_prog_map_match(prog, map)) {
17026 		verbose(env, "offload device mismatch between prog and map\n");
17027 		return -EINVAL;
17028 	}
17029 
17030 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
17031 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
17032 		return -EINVAL;
17033 	}
17034 
17035 	if (prog->aux->sleepable)
17036 		switch (map->map_type) {
17037 		case BPF_MAP_TYPE_HASH:
17038 		case BPF_MAP_TYPE_LRU_HASH:
17039 		case BPF_MAP_TYPE_ARRAY:
17040 		case BPF_MAP_TYPE_PERCPU_HASH:
17041 		case BPF_MAP_TYPE_PERCPU_ARRAY:
17042 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
17043 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
17044 		case BPF_MAP_TYPE_HASH_OF_MAPS:
17045 		case BPF_MAP_TYPE_RINGBUF:
17046 		case BPF_MAP_TYPE_USER_RINGBUF:
17047 		case BPF_MAP_TYPE_INODE_STORAGE:
17048 		case BPF_MAP_TYPE_SK_STORAGE:
17049 		case BPF_MAP_TYPE_TASK_STORAGE:
17050 		case BPF_MAP_TYPE_CGRP_STORAGE:
17051 			break;
17052 		default:
17053 			verbose(env,
17054 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
17055 			return -EINVAL;
17056 		}
17057 
17058 	return 0;
17059 }
17060 
17061 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
17062 {
17063 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
17064 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
17065 }
17066 
17067 /* find and rewrite pseudo imm in ld_imm64 instructions:
17068  *
17069  * 1. if it accesses map FD, replace it with actual map pointer.
17070  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
17071  *
17072  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
17073  */
17074 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
17075 {
17076 	struct bpf_insn *insn = env->prog->insnsi;
17077 	int insn_cnt = env->prog->len;
17078 	int i, j, err;
17079 
17080 	err = bpf_prog_calc_tag(env->prog);
17081 	if (err)
17082 		return err;
17083 
17084 	for (i = 0; i < insn_cnt; i++, insn++) {
17085 		if (BPF_CLASS(insn->code) == BPF_LDX &&
17086 		    ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
17087 		    insn->imm != 0)) {
17088 			verbose(env, "BPF_LDX uses reserved fields\n");
17089 			return -EINVAL;
17090 		}
17091 
17092 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
17093 			struct bpf_insn_aux_data *aux;
17094 			struct bpf_map *map;
17095 			struct fd f;
17096 			u64 addr;
17097 			u32 fd;
17098 
17099 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
17100 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
17101 			    insn[1].off != 0) {
17102 				verbose(env, "invalid bpf_ld_imm64 insn\n");
17103 				return -EINVAL;
17104 			}
17105 
17106 			if (insn[0].src_reg == 0)
17107 				/* valid generic load 64-bit imm */
17108 				goto next_insn;
17109 
17110 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
17111 				aux = &env->insn_aux_data[i];
17112 				err = check_pseudo_btf_id(env, insn, aux);
17113 				if (err)
17114 					return err;
17115 				goto next_insn;
17116 			}
17117 
17118 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
17119 				aux = &env->insn_aux_data[i];
17120 				aux->ptr_type = PTR_TO_FUNC;
17121 				goto next_insn;
17122 			}
17123 
17124 			/* In final convert_pseudo_ld_imm64() step, this is
17125 			 * converted into regular 64-bit imm load insn.
17126 			 */
17127 			switch (insn[0].src_reg) {
17128 			case BPF_PSEUDO_MAP_VALUE:
17129 			case BPF_PSEUDO_MAP_IDX_VALUE:
17130 				break;
17131 			case BPF_PSEUDO_MAP_FD:
17132 			case BPF_PSEUDO_MAP_IDX:
17133 				if (insn[1].imm == 0)
17134 					break;
17135 				fallthrough;
17136 			default:
17137 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
17138 				return -EINVAL;
17139 			}
17140 
17141 			switch (insn[0].src_reg) {
17142 			case BPF_PSEUDO_MAP_IDX_VALUE:
17143 			case BPF_PSEUDO_MAP_IDX:
17144 				if (bpfptr_is_null(env->fd_array)) {
17145 					verbose(env, "fd_idx without fd_array is invalid\n");
17146 					return -EPROTO;
17147 				}
17148 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
17149 							    insn[0].imm * sizeof(fd),
17150 							    sizeof(fd)))
17151 					return -EFAULT;
17152 				break;
17153 			default:
17154 				fd = insn[0].imm;
17155 				break;
17156 			}
17157 
17158 			f = fdget(fd);
17159 			map = __bpf_map_get(f);
17160 			if (IS_ERR(map)) {
17161 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
17162 					insn[0].imm);
17163 				return PTR_ERR(map);
17164 			}
17165 
17166 			err = check_map_prog_compatibility(env, map, env->prog);
17167 			if (err) {
17168 				fdput(f);
17169 				return err;
17170 			}
17171 
17172 			aux = &env->insn_aux_data[i];
17173 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
17174 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
17175 				addr = (unsigned long)map;
17176 			} else {
17177 				u32 off = insn[1].imm;
17178 
17179 				if (off >= BPF_MAX_VAR_OFF) {
17180 					verbose(env, "direct value offset of %u is not allowed\n", off);
17181 					fdput(f);
17182 					return -EINVAL;
17183 				}
17184 
17185 				if (!map->ops->map_direct_value_addr) {
17186 					verbose(env, "no direct value access support for this map type\n");
17187 					fdput(f);
17188 					return -EINVAL;
17189 				}
17190 
17191 				err = map->ops->map_direct_value_addr(map, &addr, off);
17192 				if (err) {
17193 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
17194 						map->value_size, off);
17195 					fdput(f);
17196 					return err;
17197 				}
17198 
17199 				aux->map_off = off;
17200 				addr += off;
17201 			}
17202 
17203 			insn[0].imm = (u32)addr;
17204 			insn[1].imm = addr >> 32;
17205 
17206 			/* check whether we recorded this map already */
17207 			for (j = 0; j < env->used_map_cnt; j++) {
17208 				if (env->used_maps[j] == map) {
17209 					aux->map_index = j;
17210 					fdput(f);
17211 					goto next_insn;
17212 				}
17213 			}
17214 
17215 			if (env->used_map_cnt >= MAX_USED_MAPS) {
17216 				fdput(f);
17217 				return -E2BIG;
17218 			}
17219 
17220 			/* hold the map. If the program is rejected by verifier,
17221 			 * the map will be released by release_maps() or it
17222 			 * will be used by the valid program until it's unloaded
17223 			 * and all maps are released in free_used_maps()
17224 			 */
17225 			bpf_map_inc(map);
17226 
17227 			aux->map_index = env->used_map_cnt;
17228 			env->used_maps[env->used_map_cnt++] = map;
17229 
17230 			if (bpf_map_is_cgroup_storage(map) &&
17231 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
17232 				verbose(env, "only one cgroup storage of each type is allowed\n");
17233 				fdput(f);
17234 				return -EBUSY;
17235 			}
17236 
17237 			fdput(f);
17238 next_insn:
17239 			insn++;
17240 			i++;
17241 			continue;
17242 		}
17243 
17244 		/* Basic sanity check before we invest more work here. */
17245 		if (!bpf_opcode_in_insntable(insn->code)) {
17246 			verbose(env, "unknown opcode %02x\n", insn->code);
17247 			return -EINVAL;
17248 		}
17249 	}
17250 
17251 	/* now all pseudo BPF_LD_IMM64 instructions load valid
17252 	 * 'struct bpf_map *' into a register instead of user map_fd.
17253 	 * These pointers will be used later by verifier to validate map access.
17254 	 */
17255 	return 0;
17256 }
17257 
17258 /* drop refcnt of maps used by the rejected program */
17259 static void release_maps(struct bpf_verifier_env *env)
17260 {
17261 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
17262 			     env->used_map_cnt);
17263 }
17264 
17265 /* drop refcnt of maps used by the rejected program */
17266 static void release_btfs(struct bpf_verifier_env *env)
17267 {
17268 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
17269 			     env->used_btf_cnt);
17270 }
17271 
17272 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
17273 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
17274 {
17275 	struct bpf_insn *insn = env->prog->insnsi;
17276 	int insn_cnt = env->prog->len;
17277 	int i;
17278 
17279 	for (i = 0; i < insn_cnt; i++, insn++) {
17280 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
17281 			continue;
17282 		if (insn->src_reg == BPF_PSEUDO_FUNC)
17283 			continue;
17284 		insn->src_reg = 0;
17285 	}
17286 }
17287 
17288 /* single env->prog->insni[off] instruction was replaced with the range
17289  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
17290  * [0, off) and [off, end) to new locations, so the patched range stays zero
17291  */
17292 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
17293 				 struct bpf_insn_aux_data *new_data,
17294 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
17295 {
17296 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
17297 	struct bpf_insn *insn = new_prog->insnsi;
17298 	u32 old_seen = old_data[off].seen;
17299 	u32 prog_len;
17300 	int i;
17301 
17302 	/* aux info at OFF always needs adjustment, no matter fast path
17303 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
17304 	 * original insn at old prog.
17305 	 */
17306 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
17307 
17308 	if (cnt == 1)
17309 		return;
17310 	prog_len = new_prog->len;
17311 
17312 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
17313 	memcpy(new_data + off + cnt - 1, old_data + off,
17314 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
17315 	for (i = off; i < off + cnt - 1; i++) {
17316 		/* Expand insni[off]'s seen count to the patched range. */
17317 		new_data[i].seen = old_seen;
17318 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
17319 	}
17320 	env->insn_aux_data = new_data;
17321 	vfree(old_data);
17322 }
17323 
17324 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
17325 {
17326 	int i;
17327 
17328 	if (len == 1)
17329 		return;
17330 	/* NOTE: fake 'exit' subprog should be updated as well. */
17331 	for (i = 0; i <= env->subprog_cnt; i++) {
17332 		if (env->subprog_info[i].start <= off)
17333 			continue;
17334 		env->subprog_info[i].start += len - 1;
17335 	}
17336 }
17337 
17338 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
17339 {
17340 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
17341 	int i, sz = prog->aux->size_poke_tab;
17342 	struct bpf_jit_poke_descriptor *desc;
17343 
17344 	for (i = 0; i < sz; i++) {
17345 		desc = &tab[i];
17346 		if (desc->insn_idx <= off)
17347 			continue;
17348 		desc->insn_idx += len - 1;
17349 	}
17350 }
17351 
17352 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
17353 					    const struct bpf_insn *patch, u32 len)
17354 {
17355 	struct bpf_prog *new_prog;
17356 	struct bpf_insn_aux_data *new_data = NULL;
17357 
17358 	if (len > 1) {
17359 		new_data = vzalloc(array_size(env->prog->len + len - 1,
17360 					      sizeof(struct bpf_insn_aux_data)));
17361 		if (!new_data)
17362 			return NULL;
17363 	}
17364 
17365 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
17366 	if (IS_ERR(new_prog)) {
17367 		if (PTR_ERR(new_prog) == -ERANGE)
17368 			verbose(env,
17369 				"insn %d cannot be patched due to 16-bit range\n",
17370 				env->insn_aux_data[off].orig_idx);
17371 		vfree(new_data);
17372 		return NULL;
17373 	}
17374 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
17375 	adjust_subprog_starts(env, off, len);
17376 	adjust_poke_descs(new_prog, off, len);
17377 	return new_prog;
17378 }
17379 
17380 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
17381 					      u32 off, u32 cnt)
17382 {
17383 	int i, j;
17384 
17385 	/* find first prog starting at or after off (first to remove) */
17386 	for (i = 0; i < env->subprog_cnt; i++)
17387 		if (env->subprog_info[i].start >= off)
17388 			break;
17389 	/* find first prog starting at or after off + cnt (first to stay) */
17390 	for (j = i; j < env->subprog_cnt; j++)
17391 		if (env->subprog_info[j].start >= off + cnt)
17392 			break;
17393 	/* if j doesn't start exactly at off + cnt, we are just removing
17394 	 * the front of previous prog
17395 	 */
17396 	if (env->subprog_info[j].start != off + cnt)
17397 		j--;
17398 
17399 	if (j > i) {
17400 		struct bpf_prog_aux *aux = env->prog->aux;
17401 		int move;
17402 
17403 		/* move fake 'exit' subprog as well */
17404 		move = env->subprog_cnt + 1 - j;
17405 
17406 		memmove(env->subprog_info + i,
17407 			env->subprog_info + j,
17408 			sizeof(*env->subprog_info) * move);
17409 		env->subprog_cnt -= j - i;
17410 
17411 		/* remove func_info */
17412 		if (aux->func_info) {
17413 			move = aux->func_info_cnt - j;
17414 
17415 			memmove(aux->func_info + i,
17416 				aux->func_info + j,
17417 				sizeof(*aux->func_info) * move);
17418 			aux->func_info_cnt -= j - i;
17419 			/* func_info->insn_off is set after all code rewrites,
17420 			 * in adjust_btf_func() - no need to adjust
17421 			 */
17422 		}
17423 	} else {
17424 		/* convert i from "first prog to remove" to "first to adjust" */
17425 		if (env->subprog_info[i].start == off)
17426 			i++;
17427 	}
17428 
17429 	/* update fake 'exit' subprog as well */
17430 	for (; i <= env->subprog_cnt; i++)
17431 		env->subprog_info[i].start -= cnt;
17432 
17433 	return 0;
17434 }
17435 
17436 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
17437 				      u32 cnt)
17438 {
17439 	struct bpf_prog *prog = env->prog;
17440 	u32 i, l_off, l_cnt, nr_linfo;
17441 	struct bpf_line_info *linfo;
17442 
17443 	nr_linfo = prog->aux->nr_linfo;
17444 	if (!nr_linfo)
17445 		return 0;
17446 
17447 	linfo = prog->aux->linfo;
17448 
17449 	/* find first line info to remove, count lines to be removed */
17450 	for (i = 0; i < nr_linfo; i++)
17451 		if (linfo[i].insn_off >= off)
17452 			break;
17453 
17454 	l_off = i;
17455 	l_cnt = 0;
17456 	for (; i < nr_linfo; i++)
17457 		if (linfo[i].insn_off < off + cnt)
17458 			l_cnt++;
17459 		else
17460 			break;
17461 
17462 	/* First live insn doesn't match first live linfo, it needs to "inherit"
17463 	 * last removed linfo.  prog is already modified, so prog->len == off
17464 	 * means no live instructions after (tail of the program was removed).
17465 	 */
17466 	if (prog->len != off && l_cnt &&
17467 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
17468 		l_cnt--;
17469 		linfo[--i].insn_off = off + cnt;
17470 	}
17471 
17472 	/* remove the line info which refer to the removed instructions */
17473 	if (l_cnt) {
17474 		memmove(linfo + l_off, linfo + i,
17475 			sizeof(*linfo) * (nr_linfo - i));
17476 
17477 		prog->aux->nr_linfo -= l_cnt;
17478 		nr_linfo = prog->aux->nr_linfo;
17479 	}
17480 
17481 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
17482 	for (i = l_off; i < nr_linfo; i++)
17483 		linfo[i].insn_off -= cnt;
17484 
17485 	/* fix up all subprogs (incl. 'exit') which start >= off */
17486 	for (i = 0; i <= env->subprog_cnt; i++)
17487 		if (env->subprog_info[i].linfo_idx > l_off) {
17488 			/* program may have started in the removed region but
17489 			 * may not be fully removed
17490 			 */
17491 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
17492 				env->subprog_info[i].linfo_idx -= l_cnt;
17493 			else
17494 				env->subprog_info[i].linfo_idx = l_off;
17495 		}
17496 
17497 	return 0;
17498 }
17499 
17500 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
17501 {
17502 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17503 	unsigned int orig_prog_len = env->prog->len;
17504 	int err;
17505 
17506 	if (bpf_prog_is_offloaded(env->prog->aux))
17507 		bpf_prog_offload_remove_insns(env, off, cnt);
17508 
17509 	err = bpf_remove_insns(env->prog, off, cnt);
17510 	if (err)
17511 		return err;
17512 
17513 	err = adjust_subprog_starts_after_remove(env, off, cnt);
17514 	if (err)
17515 		return err;
17516 
17517 	err = bpf_adj_linfo_after_remove(env, off, cnt);
17518 	if (err)
17519 		return err;
17520 
17521 	memmove(aux_data + off,	aux_data + off + cnt,
17522 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
17523 
17524 	return 0;
17525 }
17526 
17527 /* The verifier does more data flow analysis than llvm and will not
17528  * explore branches that are dead at run time. Malicious programs can
17529  * have dead code too. Therefore replace all dead at-run-time code
17530  * with 'ja -1'.
17531  *
17532  * Just nops are not optimal, e.g. if they would sit at the end of the
17533  * program and through another bug we would manage to jump there, then
17534  * we'd execute beyond program memory otherwise. Returning exception
17535  * code also wouldn't work since we can have subprogs where the dead
17536  * code could be located.
17537  */
17538 static void sanitize_dead_code(struct bpf_verifier_env *env)
17539 {
17540 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17541 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
17542 	struct bpf_insn *insn = env->prog->insnsi;
17543 	const int insn_cnt = env->prog->len;
17544 	int i;
17545 
17546 	for (i = 0; i < insn_cnt; i++) {
17547 		if (aux_data[i].seen)
17548 			continue;
17549 		memcpy(insn + i, &trap, sizeof(trap));
17550 		aux_data[i].zext_dst = false;
17551 	}
17552 }
17553 
17554 static bool insn_is_cond_jump(u8 code)
17555 {
17556 	u8 op;
17557 
17558 	op = BPF_OP(code);
17559 	if (BPF_CLASS(code) == BPF_JMP32)
17560 		return op != BPF_JA;
17561 
17562 	if (BPF_CLASS(code) != BPF_JMP)
17563 		return false;
17564 
17565 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
17566 }
17567 
17568 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
17569 {
17570 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17571 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
17572 	struct bpf_insn *insn = env->prog->insnsi;
17573 	const int insn_cnt = env->prog->len;
17574 	int i;
17575 
17576 	for (i = 0; i < insn_cnt; i++, insn++) {
17577 		if (!insn_is_cond_jump(insn->code))
17578 			continue;
17579 
17580 		if (!aux_data[i + 1].seen)
17581 			ja.off = insn->off;
17582 		else if (!aux_data[i + 1 + insn->off].seen)
17583 			ja.off = 0;
17584 		else
17585 			continue;
17586 
17587 		if (bpf_prog_is_offloaded(env->prog->aux))
17588 			bpf_prog_offload_replace_insn(env, i, &ja);
17589 
17590 		memcpy(insn, &ja, sizeof(ja));
17591 	}
17592 }
17593 
17594 static int opt_remove_dead_code(struct bpf_verifier_env *env)
17595 {
17596 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17597 	int insn_cnt = env->prog->len;
17598 	int i, err;
17599 
17600 	for (i = 0; i < insn_cnt; i++) {
17601 		int j;
17602 
17603 		j = 0;
17604 		while (i + j < insn_cnt && !aux_data[i + j].seen)
17605 			j++;
17606 		if (!j)
17607 			continue;
17608 
17609 		err = verifier_remove_insns(env, i, j);
17610 		if (err)
17611 			return err;
17612 		insn_cnt = env->prog->len;
17613 	}
17614 
17615 	return 0;
17616 }
17617 
17618 static int opt_remove_nops(struct bpf_verifier_env *env)
17619 {
17620 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
17621 	struct bpf_insn *insn = env->prog->insnsi;
17622 	int insn_cnt = env->prog->len;
17623 	int i, err;
17624 
17625 	for (i = 0; i < insn_cnt; i++) {
17626 		if (memcmp(&insn[i], &ja, sizeof(ja)))
17627 			continue;
17628 
17629 		err = verifier_remove_insns(env, i, 1);
17630 		if (err)
17631 			return err;
17632 		insn_cnt--;
17633 		i--;
17634 	}
17635 
17636 	return 0;
17637 }
17638 
17639 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
17640 					 const union bpf_attr *attr)
17641 {
17642 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
17643 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
17644 	int i, patch_len, delta = 0, len = env->prog->len;
17645 	struct bpf_insn *insns = env->prog->insnsi;
17646 	struct bpf_prog *new_prog;
17647 	bool rnd_hi32;
17648 
17649 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
17650 	zext_patch[1] = BPF_ZEXT_REG(0);
17651 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
17652 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
17653 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
17654 	for (i = 0; i < len; i++) {
17655 		int adj_idx = i + delta;
17656 		struct bpf_insn insn;
17657 		int load_reg;
17658 
17659 		insn = insns[adj_idx];
17660 		load_reg = insn_def_regno(&insn);
17661 		if (!aux[adj_idx].zext_dst) {
17662 			u8 code, class;
17663 			u32 imm_rnd;
17664 
17665 			if (!rnd_hi32)
17666 				continue;
17667 
17668 			code = insn.code;
17669 			class = BPF_CLASS(code);
17670 			if (load_reg == -1)
17671 				continue;
17672 
17673 			/* NOTE: arg "reg" (the fourth one) is only used for
17674 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
17675 			 *       here.
17676 			 */
17677 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
17678 				if (class == BPF_LD &&
17679 				    BPF_MODE(code) == BPF_IMM)
17680 					i++;
17681 				continue;
17682 			}
17683 
17684 			/* ctx load could be transformed into wider load. */
17685 			if (class == BPF_LDX &&
17686 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
17687 				continue;
17688 
17689 			imm_rnd = get_random_u32();
17690 			rnd_hi32_patch[0] = insn;
17691 			rnd_hi32_patch[1].imm = imm_rnd;
17692 			rnd_hi32_patch[3].dst_reg = load_reg;
17693 			patch = rnd_hi32_patch;
17694 			patch_len = 4;
17695 			goto apply_patch_buffer;
17696 		}
17697 
17698 		/* Add in an zero-extend instruction if a) the JIT has requested
17699 		 * it or b) it's a CMPXCHG.
17700 		 *
17701 		 * The latter is because: BPF_CMPXCHG always loads a value into
17702 		 * R0, therefore always zero-extends. However some archs'
17703 		 * equivalent instruction only does this load when the
17704 		 * comparison is successful. This detail of CMPXCHG is
17705 		 * orthogonal to the general zero-extension behaviour of the
17706 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
17707 		 */
17708 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
17709 			continue;
17710 
17711 		/* Zero-extension is done by the caller. */
17712 		if (bpf_pseudo_kfunc_call(&insn))
17713 			continue;
17714 
17715 		if (WARN_ON(load_reg == -1)) {
17716 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
17717 			return -EFAULT;
17718 		}
17719 
17720 		zext_patch[0] = insn;
17721 		zext_patch[1].dst_reg = load_reg;
17722 		zext_patch[1].src_reg = load_reg;
17723 		patch = zext_patch;
17724 		patch_len = 2;
17725 apply_patch_buffer:
17726 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
17727 		if (!new_prog)
17728 			return -ENOMEM;
17729 		env->prog = new_prog;
17730 		insns = new_prog->insnsi;
17731 		aux = env->insn_aux_data;
17732 		delta += patch_len - 1;
17733 	}
17734 
17735 	return 0;
17736 }
17737 
17738 /* convert load instructions that access fields of a context type into a
17739  * sequence of instructions that access fields of the underlying structure:
17740  *     struct __sk_buff    -> struct sk_buff
17741  *     struct bpf_sock_ops -> struct sock
17742  */
17743 static int convert_ctx_accesses(struct bpf_verifier_env *env)
17744 {
17745 	const struct bpf_verifier_ops *ops = env->ops;
17746 	int i, cnt, size, ctx_field_size, delta = 0;
17747 	const int insn_cnt = env->prog->len;
17748 	struct bpf_insn insn_buf[16], *insn;
17749 	u32 target_size, size_default, off;
17750 	struct bpf_prog *new_prog;
17751 	enum bpf_access_type type;
17752 	bool is_narrower_load;
17753 
17754 	if (ops->gen_prologue || env->seen_direct_write) {
17755 		if (!ops->gen_prologue) {
17756 			verbose(env, "bpf verifier is misconfigured\n");
17757 			return -EINVAL;
17758 		}
17759 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
17760 					env->prog);
17761 		if (cnt >= ARRAY_SIZE(insn_buf)) {
17762 			verbose(env, "bpf verifier is misconfigured\n");
17763 			return -EINVAL;
17764 		} else if (cnt) {
17765 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
17766 			if (!new_prog)
17767 				return -ENOMEM;
17768 
17769 			env->prog = new_prog;
17770 			delta += cnt - 1;
17771 		}
17772 	}
17773 
17774 	if (bpf_prog_is_offloaded(env->prog->aux))
17775 		return 0;
17776 
17777 	insn = env->prog->insnsi + delta;
17778 
17779 	for (i = 0; i < insn_cnt; i++, insn++) {
17780 		bpf_convert_ctx_access_t convert_ctx_access;
17781 		u8 mode;
17782 
17783 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
17784 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
17785 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
17786 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
17787 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
17788 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
17789 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
17790 			type = BPF_READ;
17791 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
17792 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
17793 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
17794 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
17795 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
17796 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
17797 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
17798 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
17799 			type = BPF_WRITE;
17800 		} else {
17801 			continue;
17802 		}
17803 
17804 		if (type == BPF_WRITE &&
17805 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
17806 			struct bpf_insn patch[] = {
17807 				*insn,
17808 				BPF_ST_NOSPEC(),
17809 			};
17810 
17811 			cnt = ARRAY_SIZE(patch);
17812 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
17813 			if (!new_prog)
17814 				return -ENOMEM;
17815 
17816 			delta    += cnt - 1;
17817 			env->prog = new_prog;
17818 			insn      = new_prog->insnsi + i + delta;
17819 			continue;
17820 		}
17821 
17822 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
17823 		case PTR_TO_CTX:
17824 			if (!ops->convert_ctx_access)
17825 				continue;
17826 			convert_ctx_access = ops->convert_ctx_access;
17827 			break;
17828 		case PTR_TO_SOCKET:
17829 		case PTR_TO_SOCK_COMMON:
17830 			convert_ctx_access = bpf_sock_convert_ctx_access;
17831 			break;
17832 		case PTR_TO_TCP_SOCK:
17833 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
17834 			break;
17835 		case PTR_TO_XDP_SOCK:
17836 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
17837 			break;
17838 		case PTR_TO_BTF_ID:
17839 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
17840 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
17841 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
17842 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
17843 		 * any faults for loads into such types. BPF_WRITE is disallowed
17844 		 * for this case.
17845 		 */
17846 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
17847 			if (type == BPF_READ) {
17848 				if (BPF_MODE(insn->code) == BPF_MEM)
17849 					insn->code = BPF_LDX | BPF_PROBE_MEM |
17850 						     BPF_SIZE((insn)->code);
17851 				else
17852 					insn->code = BPF_LDX | BPF_PROBE_MEMSX |
17853 						     BPF_SIZE((insn)->code);
17854 				env->prog->aux->num_exentries++;
17855 			}
17856 			continue;
17857 		default:
17858 			continue;
17859 		}
17860 
17861 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
17862 		size = BPF_LDST_BYTES(insn);
17863 		mode = BPF_MODE(insn->code);
17864 
17865 		/* If the read access is a narrower load of the field,
17866 		 * convert to a 4/8-byte load, to minimum program type specific
17867 		 * convert_ctx_access changes. If conversion is successful,
17868 		 * we will apply proper mask to the result.
17869 		 */
17870 		is_narrower_load = size < ctx_field_size;
17871 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
17872 		off = insn->off;
17873 		if (is_narrower_load) {
17874 			u8 size_code;
17875 
17876 			if (type == BPF_WRITE) {
17877 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
17878 				return -EINVAL;
17879 			}
17880 
17881 			size_code = BPF_H;
17882 			if (ctx_field_size == 4)
17883 				size_code = BPF_W;
17884 			else if (ctx_field_size == 8)
17885 				size_code = BPF_DW;
17886 
17887 			insn->off = off & ~(size_default - 1);
17888 			insn->code = BPF_LDX | BPF_MEM | size_code;
17889 		}
17890 
17891 		target_size = 0;
17892 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
17893 					 &target_size);
17894 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
17895 		    (ctx_field_size && !target_size)) {
17896 			verbose(env, "bpf verifier is misconfigured\n");
17897 			return -EINVAL;
17898 		}
17899 
17900 		if (is_narrower_load && size < target_size) {
17901 			u8 shift = bpf_ctx_narrow_access_offset(
17902 				off, size, size_default) * 8;
17903 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
17904 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
17905 				return -EINVAL;
17906 			}
17907 			if (ctx_field_size <= 4) {
17908 				if (shift)
17909 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
17910 									insn->dst_reg,
17911 									shift);
17912 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
17913 								(1 << size * 8) - 1);
17914 			} else {
17915 				if (shift)
17916 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
17917 									insn->dst_reg,
17918 									shift);
17919 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
17920 								(1ULL << size * 8) - 1);
17921 			}
17922 		}
17923 		if (mode == BPF_MEMSX)
17924 			insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
17925 						       insn->dst_reg, insn->dst_reg,
17926 						       size * 8, 0);
17927 
17928 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17929 		if (!new_prog)
17930 			return -ENOMEM;
17931 
17932 		delta += cnt - 1;
17933 
17934 		/* keep walking new program and skip insns we just inserted */
17935 		env->prog = new_prog;
17936 		insn      = new_prog->insnsi + i + delta;
17937 	}
17938 
17939 	return 0;
17940 }
17941 
17942 static int jit_subprogs(struct bpf_verifier_env *env)
17943 {
17944 	struct bpf_prog *prog = env->prog, **func, *tmp;
17945 	int i, j, subprog_start, subprog_end = 0, len, subprog;
17946 	struct bpf_map *map_ptr;
17947 	struct bpf_insn *insn;
17948 	void *old_bpf_func;
17949 	int err, num_exentries;
17950 
17951 	if (env->subprog_cnt <= 1)
17952 		return 0;
17953 
17954 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
17955 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
17956 			continue;
17957 
17958 		/* Upon error here we cannot fall back to interpreter but
17959 		 * need a hard reject of the program. Thus -EFAULT is
17960 		 * propagated in any case.
17961 		 */
17962 		subprog = find_subprog(env, i + insn->imm + 1);
17963 		if (subprog < 0) {
17964 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
17965 				  i + insn->imm + 1);
17966 			return -EFAULT;
17967 		}
17968 		/* temporarily remember subprog id inside insn instead of
17969 		 * aux_data, since next loop will split up all insns into funcs
17970 		 */
17971 		insn->off = subprog;
17972 		/* remember original imm in case JIT fails and fallback
17973 		 * to interpreter will be needed
17974 		 */
17975 		env->insn_aux_data[i].call_imm = insn->imm;
17976 		/* point imm to __bpf_call_base+1 from JITs point of view */
17977 		insn->imm = 1;
17978 		if (bpf_pseudo_func(insn))
17979 			/* jit (e.g. x86_64) may emit fewer instructions
17980 			 * if it learns a u32 imm is the same as a u64 imm.
17981 			 * Force a non zero here.
17982 			 */
17983 			insn[1].imm = 1;
17984 	}
17985 
17986 	err = bpf_prog_alloc_jited_linfo(prog);
17987 	if (err)
17988 		goto out_undo_insn;
17989 
17990 	err = -ENOMEM;
17991 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
17992 	if (!func)
17993 		goto out_undo_insn;
17994 
17995 	for (i = 0; i < env->subprog_cnt; i++) {
17996 		subprog_start = subprog_end;
17997 		subprog_end = env->subprog_info[i + 1].start;
17998 
17999 		len = subprog_end - subprog_start;
18000 		/* bpf_prog_run() doesn't call subprogs directly,
18001 		 * hence main prog stats include the runtime of subprogs.
18002 		 * subprogs don't have IDs and not reachable via prog_get_next_id
18003 		 * func[i]->stats will never be accessed and stays NULL
18004 		 */
18005 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
18006 		if (!func[i])
18007 			goto out_free;
18008 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
18009 		       len * sizeof(struct bpf_insn));
18010 		func[i]->type = prog->type;
18011 		func[i]->len = len;
18012 		if (bpf_prog_calc_tag(func[i]))
18013 			goto out_free;
18014 		func[i]->is_func = 1;
18015 		func[i]->aux->func_idx = i;
18016 		/* Below members will be freed only at prog->aux */
18017 		func[i]->aux->btf = prog->aux->btf;
18018 		func[i]->aux->func_info = prog->aux->func_info;
18019 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
18020 		func[i]->aux->poke_tab = prog->aux->poke_tab;
18021 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
18022 
18023 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
18024 			struct bpf_jit_poke_descriptor *poke;
18025 
18026 			poke = &prog->aux->poke_tab[j];
18027 			if (poke->insn_idx < subprog_end &&
18028 			    poke->insn_idx >= subprog_start)
18029 				poke->aux = func[i]->aux;
18030 		}
18031 
18032 		func[i]->aux->name[0] = 'F';
18033 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
18034 		func[i]->jit_requested = 1;
18035 		func[i]->blinding_requested = prog->blinding_requested;
18036 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
18037 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
18038 		func[i]->aux->linfo = prog->aux->linfo;
18039 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
18040 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
18041 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
18042 		num_exentries = 0;
18043 		insn = func[i]->insnsi;
18044 		for (j = 0; j < func[i]->len; j++, insn++) {
18045 			if (BPF_CLASS(insn->code) == BPF_LDX &&
18046 			    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
18047 			     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
18048 				num_exentries++;
18049 		}
18050 		func[i]->aux->num_exentries = num_exentries;
18051 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
18052 		func[i] = bpf_int_jit_compile(func[i]);
18053 		if (!func[i]->jited) {
18054 			err = -ENOTSUPP;
18055 			goto out_free;
18056 		}
18057 		cond_resched();
18058 	}
18059 
18060 	/* at this point all bpf functions were successfully JITed
18061 	 * now populate all bpf_calls with correct addresses and
18062 	 * run last pass of JIT
18063 	 */
18064 	for (i = 0; i < env->subprog_cnt; i++) {
18065 		insn = func[i]->insnsi;
18066 		for (j = 0; j < func[i]->len; j++, insn++) {
18067 			if (bpf_pseudo_func(insn)) {
18068 				subprog = insn->off;
18069 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
18070 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
18071 				continue;
18072 			}
18073 			if (!bpf_pseudo_call(insn))
18074 				continue;
18075 			subprog = insn->off;
18076 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
18077 		}
18078 
18079 		/* we use the aux data to keep a list of the start addresses
18080 		 * of the JITed images for each function in the program
18081 		 *
18082 		 * for some architectures, such as powerpc64, the imm field
18083 		 * might not be large enough to hold the offset of the start
18084 		 * address of the callee's JITed image from __bpf_call_base
18085 		 *
18086 		 * in such cases, we can lookup the start address of a callee
18087 		 * by using its subprog id, available from the off field of
18088 		 * the call instruction, as an index for this list
18089 		 */
18090 		func[i]->aux->func = func;
18091 		func[i]->aux->func_cnt = env->subprog_cnt;
18092 	}
18093 	for (i = 0; i < env->subprog_cnt; i++) {
18094 		old_bpf_func = func[i]->bpf_func;
18095 		tmp = bpf_int_jit_compile(func[i]);
18096 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
18097 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
18098 			err = -ENOTSUPP;
18099 			goto out_free;
18100 		}
18101 		cond_resched();
18102 	}
18103 
18104 	/* finally lock prog and jit images for all functions and
18105 	 * populate kallsysm. Begin at the first subprogram, since
18106 	 * bpf_prog_load will add the kallsyms for the main program.
18107 	 */
18108 	for (i = 1; i < env->subprog_cnt; i++) {
18109 		bpf_prog_lock_ro(func[i]);
18110 		bpf_prog_kallsyms_add(func[i]);
18111 	}
18112 
18113 	/* Last step: make now unused interpreter insns from main
18114 	 * prog consistent for later dump requests, so they can
18115 	 * later look the same as if they were interpreted only.
18116 	 */
18117 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18118 		if (bpf_pseudo_func(insn)) {
18119 			insn[0].imm = env->insn_aux_data[i].call_imm;
18120 			insn[1].imm = insn->off;
18121 			insn->off = 0;
18122 			continue;
18123 		}
18124 		if (!bpf_pseudo_call(insn))
18125 			continue;
18126 		insn->off = env->insn_aux_data[i].call_imm;
18127 		subprog = find_subprog(env, i + insn->off + 1);
18128 		insn->imm = subprog;
18129 	}
18130 
18131 	prog->jited = 1;
18132 	prog->bpf_func = func[0]->bpf_func;
18133 	prog->jited_len = func[0]->jited_len;
18134 	prog->aux->extable = func[0]->aux->extable;
18135 	prog->aux->num_exentries = func[0]->aux->num_exentries;
18136 	prog->aux->func = func;
18137 	prog->aux->func_cnt = env->subprog_cnt;
18138 	bpf_prog_jit_attempt_done(prog);
18139 	return 0;
18140 out_free:
18141 	/* We failed JIT'ing, so at this point we need to unregister poke
18142 	 * descriptors from subprogs, so that kernel is not attempting to
18143 	 * patch it anymore as we're freeing the subprog JIT memory.
18144 	 */
18145 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
18146 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
18147 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
18148 	}
18149 	/* At this point we're guaranteed that poke descriptors are not
18150 	 * live anymore. We can just unlink its descriptor table as it's
18151 	 * released with the main prog.
18152 	 */
18153 	for (i = 0; i < env->subprog_cnt; i++) {
18154 		if (!func[i])
18155 			continue;
18156 		func[i]->aux->poke_tab = NULL;
18157 		bpf_jit_free(func[i]);
18158 	}
18159 	kfree(func);
18160 out_undo_insn:
18161 	/* cleanup main prog to be interpreted */
18162 	prog->jit_requested = 0;
18163 	prog->blinding_requested = 0;
18164 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18165 		if (!bpf_pseudo_call(insn))
18166 			continue;
18167 		insn->off = 0;
18168 		insn->imm = env->insn_aux_data[i].call_imm;
18169 	}
18170 	bpf_prog_jit_attempt_done(prog);
18171 	return err;
18172 }
18173 
18174 static int fixup_call_args(struct bpf_verifier_env *env)
18175 {
18176 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18177 	struct bpf_prog *prog = env->prog;
18178 	struct bpf_insn *insn = prog->insnsi;
18179 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
18180 	int i, depth;
18181 #endif
18182 	int err = 0;
18183 
18184 	if (env->prog->jit_requested &&
18185 	    !bpf_prog_is_offloaded(env->prog->aux)) {
18186 		err = jit_subprogs(env);
18187 		if (err == 0)
18188 			return 0;
18189 		if (err == -EFAULT)
18190 			return err;
18191 	}
18192 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18193 	if (has_kfunc_call) {
18194 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
18195 		return -EINVAL;
18196 	}
18197 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
18198 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
18199 		 * have to be rejected, since interpreter doesn't support them yet.
18200 		 */
18201 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
18202 		return -EINVAL;
18203 	}
18204 	for (i = 0; i < prog->len; i++, insn++) {
18205 		if (bpf_pseudo_func(insn)) {
18206 			/* When JIT fails the progs with callback calls
18207 			 * have to be rejected, since interpreter doesn't support them yet.
18208 			 */
18209 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
18210 			return -EINVAL;
18211 		}
18212 
18213 		if (!bpf_pseudo_call(insn))
18214 			continue;
18215 		depth = get_callee_stack_depth(env, insn, i);
18216 		if (depth < 0)
18217 			return depth;
18218 		bpf_patch_call_args(insn, depth);
18219 	}
18220 	err = 0;
18221 #endif
18222 	return err;
18223 }
18224 
18225 /* replace a generic kfunc with a specialized version if necessary */
18226 static void specialize_kfunc(struct bpf_verifier_env *env,
18227 			     u32 func_id, u16 offset, unsigned long *addr)
18228 {
18229 	struct bpf_prog *prog = env->prog;
18230 	bool seen_direct_write;
18231 	void *xdp_kfunc;
18232 	bool is_rdonly;
18233 
18234 	if (bpf_dev_bound_kfunc_id(func_id)) {
18235 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
18236 		if (xdp_kfunc) {
18237 			*addr = (unsigned long)xdp_kfunc;
18238 			return;
18239 		}
18240 		/* fallback to default kfunc when not supported by netdev */
18241 	}
18242 
18243 	if (offset)
18244 		return;
18245 
18246 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
18247 		seen_direct_write = env->seen_direct_write;
18248 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
18249 
18250 		if (is_rdonly)
18251 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
18252 
18253 		/* restore env->seen_direct_write to its original value, since
18254 		 * may_access_direct_pkt_data mutates it
18255 		 */
18256 		env->seen_direct_write = seen_direct_write;
18257 	}
18258 }
18259 
18260 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
18261 					    u16 struct_meta_reg,
18262 					    u16 node_offset_reg,
18263 					    struct bpf_insn *insn,
18264 					    struct bpf_insn *insn_buf,
18265 					    int *cnt)
18266 {
18267 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
18268 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
18269 
18270 	insn_buf[0] = addr[0];
18271 	insn_buf[1] = addr[1];
18272 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
18273 	insn_buf[3] = *insn;
18274 	*cnt = 4;
18275 }
18276 
18277 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
18278 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
18279 {
18280 	const struct bpf_kfunc_desc *desc;
18281 
18282 	if (!insn->imm) {
18283 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
18284 		return -EINVAL;
18285 	}
18286 
18287 	*cnt = 0;
18288 
18289 	/* insn->imm has the btf func_id. Replace it with an offset relative to
18290 	 * __bpf_call_base, unless the JIT needs to call functions that are
18291 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
18292 	 */
18293 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
18294 	if (!desc) {
18295 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
18296 			insn->imm);
18297 		return -EFAULT;
18298 	}
18299 
18300 	if (!bpf_jit_supports_far_kfunc_call())
18301 		insn->imm = BPF_CALL_IMM(desc->addr);
18302 	if (insn->off)
18303 		return 0;
18304 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
18305 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18306 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18307 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
18308 
18309 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
18310 		insn_buf[1] = addr[0];
18311 		insn_buf[2] = addr[1];
18312 		insn_buf[3] = *insn;
18313 		*cnt = 4;
18314 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
18315 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
18316 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18317 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18318 
18319 		if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
18320 		    !kptr_struct_meta) {
18321 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18322 				insn_idx);
18323 			return -EFAULT;
18324 		}
18325 
18326 		insn_buf[0] = addr[0];
18327 		insn_buf[1] = addr[1];
18328 		insn_buf[2] = *insn;
18329 		*cnt = 3;
18330 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
18331 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
18332 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18333 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18334 		int struct_meta_reg = BPF_REG_3;
18335 		int node_offset_reg = BPF_REG_4;
18336 
18337 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
18338 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18339 			struct_meta_reg = BPF_REG_4;
18340 			node_offset_reg = BPF_REG_5;
18341 		}
18342 
18343 		if (!kptr_struct_meta) {
18344 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18345 				insn_idx);
18346 			return -EFAULT;
18347 		}
18348 
18349 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
18350 						node_offset_reg, insn, insn_buf, cnt);
18351 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
18352 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
18353 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
18354 		*cnt = 1;
18355 	}
18356 	return 0;
18357 }
18358 
18359 /* Do various post-verification rewrites in a single program pass.
18360  * These rewrites simplify JIT and interpreter implementations.
18361  */
18362 static int do_misc_fixups(struct bpf_verifier_env *env)
18363 {
18364 	struct bpf_prog *prog = env->prog;
18365 	enum bpf_attach_type eatype = prog->expected_attach_type;
18366 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
18367 	struct bpf_insn *insn = prog->insnsi;
18368 	const struct bpf_func_proto *fn;
18369 	const int insn_cnt = prog->len;
18370 	const struct bpf_map_ops *ops;
18371 	struct bpf_insn_aux_data *aux;
18372 	struct bpf_insn insn_buf[16];
18373 	struct bpf_prog *new_prog;
18374 	struct bpf_map *map_ptr;
18375 	int i, ret, cnt, delta = 0;
18376 
18377 	for (i = 0; i < insn_cnt; i++, insn++) {
18378 		/* Make divide-by-zero exceptions impossible. */
18379 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
18380 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
18381 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
18382 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
18383 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
18384 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
18385 			struct bpf_insn *patchlet;
18386 			struct bpf_insn chk_and_div[] = {
18387 				/* [R,W]x div 0 -> 0 */
18388 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18389 					     BPF_JNE | BPF_K, insn->src_reg,
18390 					     0, 2, 0),
18391 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
18392 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18393 				*insn,
18394 			};
18395 			struct bpf_insn chk_and_mod[] = {
18396 				/* [R,W]x mod 0 -> [R,W]x */
18397 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18398 					     BPF_JEQ | BPF_K, insn->src_reg,
18399 					     0, 1 + (is64 ? 0 : 1), 0),
18400 				*insn,
18401 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18402 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
18403 			};
18404 
18405 			patchlet = isdiv ? chk_and_div : chk_and_mod;
18406 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
18407 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
18408 
18409 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
18410 			if (!new_prog)
18411 				return -ENOMEM;
18412 
18413 			delta    += cnt - 1;
18414 			env->prog = prog = new_prog;
18415 			insn      = new_prog->insnsi + i + delta;
18416 			continue;
18417 		}
18418 
18419 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
18420 		if (BPF_CLASS(insn->code) == BPF_LD &&
18421 		    (BPF_MODE(insn->code) == BPF_ABS ||
18422 		     BPF_MODE(insn->code) == BPF_IND)) {
18423 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
18424 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
18425 				verbose(env, "bpf verifier is misconfigured\n");
18426 				return -EINVAL;
18427 			}
18428 
18429 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18430 			if (!new_prog)
18431 				return -ENOMEM;
18432 
18433 			delta    += cnt - 1;
18434 			env->prog = prog = new_prog;
18435 			insn      = new_prog->insnsi + i + delta;
18436 			continue;
18437 		}
18438 
18439 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
18440 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
18441 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
18442 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
18443 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
18444 			struct bpf_insn *patch = &insn_buf[0];
18445 			bool issrc, isneg, isimm;
18446 			u32 off_reg;
18447 
18448 			aux = &env->insn_aux_data[i + delta];
18449 			if (!aux->alu_state ||
18450 			    aux->alu_state == BPF_ALU_NON_POINTER)
18451 				continue;
18452 
18453 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
18454 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
18455 				BPF_ALU_SANITIZE_SRC;
18456 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
18457 
18458 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
18459 			if (isimm) {
18460 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
18461 			} else {
18462 				if (isneg)
18463 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
18464 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
18465 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
18466 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
18467 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
18468 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
18469 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
18470 			}
18471 			if (!issrc)
18472 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
18473 			insn->src_reg = BPF_REG_AX;
18474 			if (isneg)
18475 				insn->code = insn->code == code_add ?
18476 					     code_sub : code_add;
18477 			*patch++ = *insn;
18478 			if (issrc && isneg && !isimm)
18479 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
18480 			cnt = patch - insn_buf;
18481 
18482 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18483 			if (!new_prog)
18484 				return -ENOMEM;
18485 
18486 			delta    += cnt - 1;
18487 			env->prog = prog = new_prog;
18488 			insn      = new_prog->insnsi + i + delta;
18489 			continue;
18490 		}
18491 
18492 		if (insn->code != (BPF_JMP | BPF_CALL))
18493 			continue;
18494 		if (insn->src_reg == BPF_PSEUDO_CALL)
18495 			continue;
18496 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
18497 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
18498 			if (ret)
18499 				return ret;
18500 			if (cnt == 0)
18501 				continue;
18502 
18503 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18504 			if (!new_prog)
18505 				return -ENOMEM;
18506 
18507 			delta	 += cnt - 1;
18508 			env->prog = prog = new_prog;
18509 			insn	  = new_prog->insnsi + i + delta;
18510 			continue;
18511 		}
18512 
18513 		if (insn->imm == BPF_FUNC_get_route_realm)
18514 			prog->dst_needed = 1;
18515 		if (insn->imm == BPF_FUNC_get_prandom_u32)
18516 			bpf_user_rnd_init_once();
18517 		if (insn->imm == BPF_FUNC_override_return)
18518 			prog->kprobe_override = 1;
18519 		if (insn->imm == BPF_FUNC_tail_call) {
18520 			/* If we tail call into other programs, we
18521 			 * cannot make any assumptions since they can
18522 			 * be replaced dynamically during runtime in
18523 			 * the program array.
18524 			 */
18525 			prog->cb_access = 1;
18526 			if (!allow_tail_call_in_subprogs(env))
18527 				prog->aux->stack_depth = MAX_BPF_STACK;
18528 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
18529 
18530 			/* mark bpf_tail_call as different opcode to avoid
18531 			 * conditional branch in the interpreter for every normal
18532 			 * call and to prevent accidental JITing by JIT compiler
18533 			 * that doesn't support bpf_tail_call yet
18534 			 */
18535 			insn->imm = 0;
18536 			insn->code = BPF_JMP | BPF_TAIL_CALL;
18537 
18538 			aux = &env->insn_aux_data[i + delta];
18539 			if (env->bpf_capable && !prog->blinding_requested &&
18540 			    prog->jit_requested &&
18541 			    !bpf_map_key_poisoned(aux) &&
18542 			    !bpf_map_ptr_poisoned(aux) &&
18543 			    !bpf_map_ptr_unpriv(aux)) {
18544 				struct bpf_jit_poke_descriptor desc = {
18545 					.reason = BPF_POKE_REASON_TAIL_CALL,
18546 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
18547 					.tail_call.key = bpf_map_key_immediate(aux),
18548 					.insn_idx = i + delta,
18549 				};
18550 
18551 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
18552 				if (ret < 0) {
18553 					verbose(env, "adding tail call poke descriptor failed\n");
18554 					return ret;
18555 				}
18556 
18557 				insn->imm = ret + 1;
18558 				continue;
18559 			}
18560 
18561 			if (!bpf_map_ptr_unpriv(aux))
18562 				continue;
18563 
18564 			/* instead of changing every JIT dealing with tail_call
18565 			 * emit two extra insns:
18566 			 * if (index >= max_entries) goto out;
18567 			 * index &= array->index_mask;
18568 			 * to avoid out-of-bounds cpu speculation
18569 			 */
18570 			if (bpf_map_ptr_poisoned(aux)) {
18571 				verbose(env, "tail_call abusing map_ptr\n");
18572 				return -EINVAL;
18573 			}
18574 
18575 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
18576 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
18577 						  map_ptr->max_entries, 2);
18578 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
18579 						    container_of(map_ptr,
18580 								 struct bpf_array,
18581 								 map)->index_mask);
18582 			insn_buf[2] = *insn;
18583 			cnt = 3;
18584 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18585 			if (!new_prog)
18586 				return -ENOMEM;
18587 
18588 			delta    += cnt - 1;
18589 			env->prog = prog = new_prog;
18590 			insn      = new_prog->insnsi + i + delta;
18591 			continue;
18592 		}
18593 
18594 		if (insn->imm == BPF_FUNC_timer_set_callback) {
18595 			/* The verifier will process callback_fn as many times as necessary
18596 			 * with different maps and the register states prepared by
18597 			 * set_timer_callback_state will be accurate.
18598 			 *
18599 			 * The following use case is valid:
18600 			 *   map1 is shared by prog1, prog2, prog3.
18601 			 *   prog1 calls bpf_timer_init for some map1 elements
18602 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
18603 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
18604 			 *   prog3 calls bpf_timer_start for some map1 elements.
18605 			 *     Those that were not both bpf_timer_init-ed and
18606 			 *     bpf_timer_set_callback-ed will return -EINVAL.
18607 			 */
18608 			struct bpf_insn ld_addrs[2] = {
18609 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
18610 			};
18611 
18612 			insn_buf[0] = ld_addrs[0];
18613 			insn_buf[1] = ld_addrs[1];
18614 			insn_buf[2] = *insn;
18615 			cnt = 3;
18616 
18617 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18618 			if (!new_prog)
18619 				return -ENOMEM;
18620 
18621 			delta    += cnt - 1;
18622 			env->prog = prog = new_prog;
18623 			insn      = new_prog->insnsi + i + delta;
18624 			goto patch_call_imm;
18625 		}
18626 
18627 		if (is_storage_get_function(insn->imm)) {
18628 			if (!env->prog->aux->sleepable ||
18629 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
18630 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
18631 			else
18632 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
18633 			insn_buf[1] = *insn;
18634 			cnt = 2;
18635 
18636 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18637 			if (!new_prog)
18638 				return -ENOMEM;
18639 
18640 			delta += cnt - 1;
18641 			env->prog = prog = new_prog;
18642 			insn = new_prog->insnsi + i + delta;
18643 			goto patch_call_imm;
18644 		}
18645 
18646 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
18647 		 * and other inlining handlers are currently limited to 64 bit
18648 		 * only.
18649 		 */
18650 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
18651 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
18652 		     insn->imm == BPF_FUNC_map_update_elem ||
18653 		     insn->imm == BPF_FUNC_map_delete_elem ||
18654 		     insn->imm == BPF_FUNC_map_push_elem   ||
18655 		     insn->imm == BPF_FUNC_map_pop_elem    ||
18656 		     insn->imm == BPF_FUNC_map_peek_elem   ||
18657 		     insn->imm == BPF_FUNC_redirect_map    ||
18658 		     insn->imm == BPF_FUNC_for_each_map_elem ||
18659 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
18660 			aux = &env->insn_aux_data[i + delta];
18661 			if (bpf_map_ptr_poisoned(aux))
18662 				goto patch_call_imm;
18663 
18664 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
18665 			ops = map_ptr->ops;
18666 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
18667 			    ops->map_gen_lookup) {
18668 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
18669 				if (cnt == -EOPNOTSUPP)
18670 					goto patch_map_ops_generic;
18671 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
18672 					verbose(env, "bpf verifier is misconfigured\n");
18673 					return -EINVAL;
18674 				}
18675 
18676 				new_prog = bpf_patch_insn_data(env, i + delta,
18677 							       insn_buf, cnt);
18678 				if (!new_prog)
18679 					return -ENOMEM;
18680 
18681 				delta    += cnt - 1;
18682 				env->prog = prog = new_prog;
18683 				insn      = new_prog->insnsi + i + delta;
18684 				continue;
18685 			}
18686 
18687 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
18688 				     (void *(*)(struct bpf_map *map, void *key))NULL));
18689 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
18690 				     (long (*)(struct bpf_map *map, void *key))NULL));
18691 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
18692 				     (long (*)(struct bpf_map *map, void *key, void *value,
18693 					      u64 flags))NULL));
18694 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
18695 				     (long (*)(struct bpf_map *map, void *value,
18696 					      u64 flags))NULL));
18697 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
18698 				     (long (*)(struct bpf_map *map, void *value))NULL));
18699 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
18700 				     (long (*)(struct bpf_map *map, void *value))NULL));
18701 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
18702 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
18703 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
18704 				     (long (*)(struct bpf_map *map,
18705 					      bpf_callback_t callback_fn,
18706 					      void *callback_ctx,
18707 					      u64 flags))NULL));
18708 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
18709 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
18710 
18711 patch_map_ops_generic:
18712 			switch (insn->imm) {
18713 			case BPF_FUNC_map_lookup_elem:
18714 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
18715 				continue;
18716 			case BPF_FUNC_map_update_elem:
18717 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
18718 				continue;
18719 			case BPF_FUNC_map_delete_elem:
18720 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
18721 				continue;
18722 			case BPF_FUNC_map_push_elem:
18723 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
18724 				continue;
18725 			case BPF_FUNC_map_pop_elem:
18726 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
18727 				continue;
18728 			case BPF_FUNC_map_peek_elem:
18729 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
18730 				continue;
18731 			case BPF_FUNC_redirect_map:
18732 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
18733 				continue;
18734 			case BPF_FUNC_for_each_map_elem:
18735 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
18736 				continue;
18737 			case BPF_FUNC_map_lookup_percpu_elem:
18738 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
18739 				continue;
18740 			}
18741 
18742 			goto patch_call_imm;
18743 		}
18744 
18745 		/* Implement bpf_jiffies64 inline. */
18746 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
18747 		    insn->imm == BPF_FUNC_jiffies64) {
18748 			struct bpf_insn ld_jiffies_addr[2] = {
18749 				BPF_LD_IMM64(BPF_REG_0,
18750 					     (unsigned long)&jiffies),
18751 			};
18752 
18753 			insn_buf[0] = ld_jiffies_addr[0];
18754 			insn_buf[1] = ld_jiffies_addr[1];
18755 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
18756 						  BPF_REG_0, 0);
18757 			cnt = 3;
18758 
18759 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
18760 						       cnt);
18761 			if (!new_prog)
18762 				return -ENOMEM;
18763 
18764 			delta    += cnt - 1;
18765 			env->prog = prog = new_prog;
18766 			insn      = new_prog->insnsi + i + delta;
18767 			continue;
18768 		}
18769 
18770 		/* Implement bpf_get_func_arg inline. */
18771 		if (prog_type == BPF_PROG_TYPE_TRACING &&
18772 		    insn->imm == BPF_FUNC_get_func_arg) {
18773 			/* Load nr_args from ctx - 8 */
18774 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18775 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
18776 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
18777 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
18778 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
18779 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
18780 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
18781 			insn_buf[7] = BPF_JMP_A(1);
18782 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
18783 			cnt = 9;
18784 
18785 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18786 			if (!new_prog)
18787 				return -ENOMEM;
18788 
18789 			delta    += cnt - 1;
18790 			env->prog = prog = new_prog;
18791 			insn      = new_prog->insnsi + i + delta;
18792 			continue;
18793 		}
18794 
18795 		/* Implement bpf_get_func_ret inline. */
18796 		if (prog_type == BPF_PROG_TYPE_TRACING &&
18797 		    insn->imm == BPF_FUNC_get_func_ret) {
18798 			if (eatype == BPF_TRACE_FEXIT ||
18799 			    eatype == BPF_MODIFY_RETURN) {
18800 				/* Load nr_args from ctx - 8 */
18801 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18802 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
18803 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
18804 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
18805 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
18806 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
18807 				cnt = 6;
18808 			} else {
18809 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
18810 				cnt = 1;
18811 			}
18812 
18813 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18814 			if (!new_prog)
18815 				return -ENOMEM;
18816 
18817 			delta    += cnt - 1;
18818 			env->prog = prog = new_prog;
18819 			insn      = new_prog->insnsi + i + delta;
18820 			continue;
18821 		}
18822 
18823 		/* Implement get_func_arg_cnt inline. */
18824 		if (prog_type == BPF_PROG_TYPE_TRACING &&
18825 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
18826 			/* Load nr_args from ctx - 8 */
18827 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18828 
18829 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
18830 			if (!new_prog)
18831 				return -ENOMEM;
18832 
18833 			env->prog = prog = new_prog;
18834 			insn      = new_prog->insnsi + i + delta;
18835 			continue;
18836 		}
18837 
18838 		/* Implement bpf_get_func_ip inline. */
18839 		if (prog_type == BPF_PROG_TYPE_TRACING &&
18840 		    insn->imm == BPF_FUNC_get_func_ip) {
18841 			/* Load IP address from ctx - 16 */
18842 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
18843 
18844 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
18845 			if (!new_prog)
18846 				return -ENOMEM;
18847 
18848 			env->prog = prog = new_prog;
18849 			insn      = new_prog->insnsi + i + delta;
18850 			continue;
18851 		}
18852 
18853 patch_call_imm:
18854 		fn = env->ops->get_func_proto(insn->imm, env->prog);
18855 		/* all functions that have prototype and verifier allowed
18856 		 * programs to call them, must be real in-kernel functions
18857 		 */
18858 		if (!fn->func) {
18859 			verbose(env,
18860 				"kernel subsystem misconfigured func %s#%d\n",
18861 				func_id_name(insn->imm), insn->imm);
18862 			return -EFAULT;
18863 		}
18864 		insn->imm = fn->func - __bpf_call_base;
18865 	}
18866 
18867 	/* Since poke tab is now finalized, publish aux to tracker. */
18868 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
18869 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
18870 		if (!map_ptr->ops->map_poke_track ||
18871 		    !map_ptr->ops->map_poke_untrack ||
18872 		    !map_ptr->ops->map_poke_run) {
18873 			verbose(env, "bpf verifier is misconfigured\n");
18874 			return -EINVAL;
18875 		}
18876 
18877 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
18878 		if (ret < 0) {
18879 			verbose(env, "tracking tail call prog failed\n");
18880 			return ret;
18881 		}
18882 	}
18883 
18884 	sort_kfunc_descs_by_imm_off(env->prog);
18885 
18886 	return 0;
18887 }
18888 
18889 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
18890 					int position,
18891 					s32 stack_base,
18892 					u32 callback_subprogno,
18893 					u32 *cnt)
18894 {
18895 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
18896 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
18897 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
18898 	int reg_loop_max = BPF_REG_6;
18899 	int reg_loop_cnt = BPF_REG_7;
18900 	int reg_loop_ctx = BPF_REG_8;
18901 
18902 	struct bpf_prog *new_prog;
18903 	u32 callback_start;
18904 	u32 call_insn_offset;
18905 	s32 callback_offset;
18906 
18907 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
18908 	 * be careful to modify this code in sync.
18909 	 */
18910 	struct bpf_insn insn_buf[] = {
18911 		/* Return error and jump to the end of the patch if
18912 		 * expected number of iterations is too big.
18913 		 */
18914 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
18915 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
18916 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
18917 		/* spill R6, R7, R8 to use these as loop vars */
18918 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
18919 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
18920 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
18921 		/* initialize loop vars */
18922 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
18923 		BPF_MOV32_IMM(reg_loop_cnt, 0),
18924 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
18925 		/* loop header,
18926 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
18927 		 */
18928 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
18929 		/* callback call,
18930 		 * correct callback offset would be set after patching
18931 		 */
18932 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
18933 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
18934 		BPF_CALL_REL(0),
18935 		/* increment loop counter */
18936 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
18937 		/* jump to loop header if callback returned 0 */
18938 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
18939 		/* return value of bpf_loop,
18940 		 * set R0 to the number of iterations
18941 		 */
18942 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
18943 		/* restore original values of R6, R7, R8 */
18944 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
18945 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
18946 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
18947 	};
18948 
18949 	*cnt = ARRAY_SIZE(insn_buf);
18950 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
18951 	if (!new_prog)
18952 		return new_prog;
18953 
18954 	/* callback start is known only after patching */
18955 	callback_start = env->subprog_info[callback_subprogno].start;
18956 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
18957 	call_insn_offset = position + 12;
18958 	callback_offset = callback_start - call_insn_offset - 1;
18959 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
18960 
18961 	return new_prog;
18962 }
18963 
18964 static bool is_bpf_loop_call(struct bpf_insn *insn)
18965 {
18966 	return insn->code == (BPF_JMP | BPF_CALL) &&
18967 		insn->src_reg == 0 &&
18968 		insn->imm == BPF_FUNC_loop;
18969 }
18970 
18971 /* For all sub-programs in the program (including main) check
18972  * insn_aux_data to see if there are bpf_loop calls that require
18973  * inlining. If such calls are found the calls are replaced with a
18974  * sequence of instructions produced by `inline_bpf_loop` function and
18975  * subprog stack_depth is increased by the size of 3 registers.
18976  * This stack space is used to spill values of the R6, R7, R8.  These
18977  * registers are used to store the loop bound, counter and context
18978  * variables.
18979  */
18980 static int optimize_bpf_loop(struct bpf_verifier_env *env)
18981 {
18982 	struct bpf_subprog_info *subprogs = env->subprog_info;
18983 	int i, cur_subprog = 0, cnt, delta = 0;
18984 	struct bpf_insn *insn = env->prog->insnsi;
18985 	int insn_cnt = env->prog->len;
18986 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
18987 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
18988 	u16 stack_depth_extra = 0;
18989 
18990 	for (i = 0; i < insn_cnt; i++, insn++) {
18991 		struct bpf_loop_inline_state *inline_state =
18992 			&env->insn_aux_data[i + delta].loop_inline_state;
18993 
18994 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
18995 			struct bpf_prog *new_prog;
18996 
18997 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
18998 			new_prog = inline_bpf_loop(env,
18999 						   i + delta,
19000 						   -(stack_depth + stack_depth_extra),
19001 						   inline_state->callback_subprogno,
19002 						   &cnt);
19003 			if (!new_prog)
19004 				return -ENOMEM;
19005 
19006 			delta     += cnt - 1;
19007 			env->prog  = new_prog;
19008 			insn       = new_prog->insnsi + i + delta;
19009 		}
19010 
19011 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
19012 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
19013 			cur_subprog++;
19014 			stack_depth = subprogs[cur_subprog].stack_depth;
19015 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19016 			stack_depth_extra = 0;
19017 		}
19018 	}
19019 
19020 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19021 
19022 	return 0;
19023 }
19024 
19025 static void free_states(struct bpf_verifier_env *env)
19026 {
19027 	struct bpf_verifier_state_list *sl, *sln;
19028 	int i;
19029 
19030 	sl = env->free_list;
19031 	while (sl) {
19032 		sln = sl->next;
19033 		free_verifier_state(&sl->state, false);
19034 		kfree(sl);
19035 		sl = sln;
19036 	}
19037 	env->free_list = NULL;
19038 
19039 	if (!env->explored_states)
19040 		return;
19041 
19042 	for (i = 0; i < state_htab_size(env); i++) {
19043 		sl = env->explored_states[i];
19044 
19045 		while (sl) {
19046 			sln = sl->next;
19047 			free_verifier_state(&sl->state, false);
19048 			kfree(sl);
19049 			sl = sln;
19050 		}
19051 		env->explored_states[i] = NULL;
19052 	}
19053 }
19054 
19055 static int do_check_common(struct bpf_verifier_env *env, int subprog)
19056 {
19057 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
19058 	struct bpf_verifier_state *state;
19059 	struct bpf_reg_state *regs;
19060 	int ret, i;
19061 
19062 	env->prev_linfo = NULL;
19063 	env->pass_cnt++;
19064 
19065 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
19066 	if (!state)
19067 		return -ENOMEM;
19068 	state->curframe = 0;
19069 	state->speculative = false;
19070 	state->branches = 1;
19071 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
19072 	if (!state->frame[0]) {
19073 		kfree(state);
19074 		return -ENOMEM;
19075 	}
19076 	env->cur_state = state;
19077 	init_func_state(env, state->frame[0],
19078 			BPF_MAIN_FUNC /* callsite */,
19079 			0 /* frameno */,
19080 			subprog);
19081 	state->first_insn_idx = env->subprog_info[subprog].start;
19082 	state->last_insn_idx = -1;
19083 
19084 	regs = state->frame[state->curframe]->regs;
19085 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
19086 		ret = btf_prepare_func_args(env, subprog, regs);
19087 		if (ret)
19088 			goto out;
19089 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
19090 			if (regs[i].type == PTR_TO_CTX)
19091 				mark_reg_known_zero(env, regs, i);
19092 			else if (regs[i].type == SCALAR_VALUE)
19093 				mark_reg_unknown(env, regs, i);
19094 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
19095 				const u32 mem_size = regs[i].mem_size;
19096 
19097 				mark_reg_known_zero(env, regs, i);
19098 				regs[i].mem_size = mem_size;
19099 				regs[i].id = ++env->id_gen;
19100 			}
19101 		}
19102 	} else {
19103 		/* 1st arg to a function */
19104 		regs[BPF_REG_1].type = PTR_TO_CTX;
19105 		mark_reg_known_zero(env, regs, BPF_REG_1);
19106 		ret = btf_check_subprog_arg_match(env, subprog, regs);
19107 		if (ret == -EFAULT)
19108 			/* unlikely verifier bug. abort.
19109 			 * ret == 0 and ret < 0 are sadly acceptable for
19110 			 * main() function due to backward compatibility.
19111 			 * Like socket filter program may be written as:
19112 			 * int bpf_prog(struct pt_regs *ctx)
19113 			 * and never dereference that ctx in the program.
19114 			 * 'struct pt_regs' is a type mismatch for socket
19115 			 * filter that should be using 'struct __sk_buff'.
19116 			 */
19117 			goto out;
19118 	}
19119 
19120 	ret = do_check(env);
19121 out:
19122 	/* check for NULL is necessary, since cur_state can be freed inside
19123 	 * do_check() under memory pressure.
19124 	 */
19125 	if (env->cur_state) {
19126 		free_verifier_state(env->cur_state, true);
19127 		env->cur_state = NULL;
19128 	}
19129 	while (!pop_stack(env, NULL, NULL, false));
19130 	if (!ret && pop_log)
19131 		bpf_vlog_reset(&env->log, 0);
19132 	free_states(env);
19133 	return ret;
19134 }
19135 
19136 /* Verify all global functions in a BPF program one by one based on their BTF.
19137  * All global functions must pass verification. Otherwise the whole program is rejected.
19138  * Consider:
19139  * int bar(int);
19140  * int foo(int f)
19141  * {
19142  *    return bar(f);
19143  * }
19144  * int bar(int b)
19145  * {
19146  *    ...
19147  * }
19148  * foo() will be verified first for R1=any_scalar_value. During verification it
19149  * will be assumed that bar() already verified successfully and call to bar()
19150  * from foo() will be checked for type match only. Later bar() will be verified
19151  * independently to check that it's safe for R1=any_scalar_value.
19152  */
19153 static int do_check_subprogs(struct bpf_verifier_env *env)
19154 {
19155 	struct bpf_prog_aux *aux = env->prog->aux;
19156 	int i, ret;
19157 
19158 	if (!aux->func_info)
19159 		return 0;
19160 
19161 	for (i = 1; i < env->subprog_cnt; i++) {
19162 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
19163 			continue;
19164 		env->insn_idx = env->subprog_info[i].start;
19165 		WARN_ON_ONCE(env->insn_idx == 0);
19166 		ret = do_check_common(env, i);
19167 		if (ret) {
19168 			return ret;
19169 		} else if (env->log.level & BPF_LOG_LEVEL) {
19170 			verbose(env,
19171 				"Func#%d is safe for any args that match its prototype\n",
19172 				i);
19173 		}
19174 	}
19175 	return 0;
19176 }
19177 
19178 static int do_check_main(struct bpf_verifier_env *env)
19179 {
19180 	int ret;
19181 
19182 	env->insn_idx = 0;
19183 	ret = do_check_common(env, 0);
19184 	if (!ret)
19185 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19186 	return ret;
19187 }
19188 
19189 
19190 static void print_verification_stats(struct bpf_verifier_env *env)
19191 {
19192 	int i;
19193 
19194 	if (env->log.level & BPF_LOG_STATS) {
19195 		verbose(env, "verification time %lld usec\n",
19196 			div_u64(env->verification_time, 1000));
19197 		verbose(env, "stack depth ");
19198 		for (i = 0; i < env->subprog_cnt; i++) {
19199 			u32 depth = env->subprog_info[i].stack_depth;
19200 
19201 			verbose(env, "%d", depth);
19202 			if (i + 1 < env->subprog_cnt)
19203 				verbose(env, "+");
19204 		}
19205 		verbose(env, "\n");
19206 	}
19207 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
19208 		"total_states %d peak_states %d mark_read %d\n",
19209 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
19210 		env->max_states_per_insn, env->total_states,
19211 		env->peak_states, env->longest_mark_read_walk);
19212 }
19213 
19214 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
19215 {
19216 	const struct btf_type *t, *func_proto;
19217 	const struct bpf_struct_ops *st_ops;
19218 	const struct btf_member *member;
19219 	struct bpf_prog *prog = env->prog;
19220 	u32 btf_id, member_idx;
19221 	const char *mname;
19222 
19223 	if (!prog->gpl_compatible) {
19224 		verbose(env, "struct ops programs must have a GPL compatible license\n");
19225 		return -EINVAL;
19226 	}
19227 
19228 	btf_id = prog->aux->attach_btf_id;
19229 	st_ops = bpf_struct_ops_find(btf_id);
19230 	if (!st_ops) {
19231 		verbose(env, "attach_btf_id %u is not a supported struct\n",
19232 			btf_id);
19233 		return -ENOTSUPP;
19234 	}
19235 
19236 	t = st_ops->type;
19237 	member_idx = prog->expected_attach_type;
19238 	if (member_idx >= btf_type_vlen(t)) {
19239 		verbose(env, "attach to invalid member idx %u of struct %s\n",
19240 			member_idx, st_ops->name);
19241 		return -EINVAL;
19242 	}
19243 
19244 	member = &btf_type_member(t)[member_idx];
19245 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
19246 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
19247 					       NULL);
19248 	if (!func_proto) {
19249 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
19250 			mname, member_idx, st_ops->name);
19251 		return -EINVAL;
19252 	}
19253 
19254 	if (st_ops->check_member) {
19255 		int err = st_ops->check_member(t, member, prog);
19256 
19257 		if (err) {
19258 			verbose(env, "attach to unsupported member %s of struct %s\n",
19259 				mname, st_ops->name);
19260 			return err;
19261 		}
19262 	}
19263 
19264 	prog->aux->attach_func_proto = func_proto;
19265 	prog->aux->attach_func_name = mname;
19266 	env->ops = st_ops->verifier_ops;
19267 
19268 	return 0;
19269 }
19270 #define SECURITY_PREFIX "security_"
19271 
19272 static int check_attach_modify_return(unsigned long addr, const char *func_name)
19273 {
19274 	if (within_error_injection_list(addr) ||
19275 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
19276 		return 0;
19277 
19278 	return -EINVAL;
19279 }
19280 
19281 /* list of non-sleepable functions that are otherwise on
19282  * ALLOW_ERROR_INJECTION list
19283  */
19284 BTF_SET_START(btf_non_sleepable_error_inject)
19285 /* Three functions below can be called from sleepable and non-sleepable context.
19286  * Assume non-sleepable from bpf safety point of view.
19287  */
19288 BTF_ID(func, __filemap_add_folio)
19289 BTF_ID(func, should_fail_alloc_page)
19290 BTF_ID(func, should_failslab)
19291 BTF_SET_END(btf_non_sleepable_error_inject)
19292 
19293 static int check_non_sleepable_error_inject(u32 btf_id)
19294 {
19295 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
19296 }
19297 
19298 int bpf_check_attach_target(struct bpf_verifier_log *log,
19299 			    const struct bpf_prog *prog,
19300 			    const struct bpf_prog *tgt_prog,
19301 			    u32 btf_id,
19302 			    struct bpf_attach_target_info *tgt_info)
19303 {
19304 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
19305 	const char prefix[] = "btf_trace_";
19306 	int ret = 0, subprog = -1, i;
19307 	const struct btf_type *t;
19308 	bool conservative = true;
19309 	const char *tname;
19310 	struct btf *btf;
19311 	long addr = 0;
19312 	struct module *mod = NULL;
19313 
19314 	if (!btf_id) {
19315 		bpf_log(log, "Tracing programs must provide btf_id\n");
19316 		return -EINVAL;
19317 	}
19318 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
19319 	if (!btf) {
19320 		bpf_log(log,
19321 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
19322 		return -EINVAL;
19323 	}
19324 	t = btf_type_by_id(btf, btf_id);
19325 	if (!t) {
19326 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
19327 		return -EINVAL;
19328 	}
19329 	tname = btf_name_by_offset(btf, t->name_off);
19330 	if (!tname) {
19331 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
19332 		return -EINVAL;
19333 	}
19334 	if (tgt_prog) {
19335 		struct bpf_prog_aux *aux = tgt_prog->aux;
19336 
19337 		if (bpf_prog_is_dev_bound(prog->aux) &&
19338 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
19339 			bpf_log(log, "Target program bound device mismatch");
19340 			return -EINVAL;
19341 		}
19342 
19343 		for (i = 0; i < aux->func_info_cnt; i++)
19344 			if (aux->func_info[i].type_id == btf_id) {
19345 				subprog = i;
19346 				break;
19347 			}
19348 		if (subprog == -1) {
19349 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
19350 			return -EINVAL;
19351 		}
19352 		conservative = aux->func_info_aux[subprog].unreliable;
19353 		if (prog_extension) {
19354 			if (conservative) {
19355 				bpf_log(log,
19356 					"Cannot replace static functions\n");
19357 				return -EINVAL;
19358 			}
19359 			if (!prog->jit_requested) {
19360 				bpf_log(log,
19361 					"Extension programs should be JITed\n");
19362 				return -EINVAL;
19363 			}
19364 		}
19365 		if (!tgt_prog->jited) {
19366 			bpf_log(log, "Can attach to only JITed progs\n");
19367 			return -EINVAL;
19368 		}
19369 		if (tgt_prog->type == prog->type) {
19370 			/* Cannot fentry/fexit another fentry/fexit program.
19371 			 * Cannot attach program extension to another extension.
19372 			 * It's ok to attach fentry/fexit to extension program.
19373 			 */
19374 			bpf_log(log, "Cannot recursively attach\n");
19375 			return -EINVAL;
19376 		}
19377 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
19378 		    prog_extension &&
19379 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
19380 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
19381 			/* Program extensions can extend all program types
19382 			 * except fentry/fexit. The reason is the following.
19383 			 * The fentry/fexit programs are used for performance
19384 			 * analysis, stats and can be attached to any program
19385 			 * type except themselves. When extension program is
19386 			 * replacing XDP function it is necessary to allow
19387 			 * performance analysis of all functions. Both original
19388 			 * XDP program and its program extension. Hence
19389 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
19390 			 * allowed. If extending of fentry/fexit was allowed it
19391 			 * would be possible to create long call chain
19392 			 * fentry->extension->fentry->extension beyond
19393 			 * reasonable stack size. Hence extending fentry is not
19394 			 * allowed.
19395 			 */
19396 			bpf_log(log, "Cannot extend fentry/fexit\n");
19397 			return -EINVAL;
19398 		}
19399 	} else {
19400 		if (prog_extension) {
19401 			bpf_log(log, "Cannot replace kernel functions\n");
19402 			return -EINVAL;
19403 		}
19404 	}
19405 
19406 	switch (prog->expected_attach_type) {
19407 	case BPF_TRACE_RAW_TP:
19408 		if (tgt_prog) {
19409 			bpf_log(log,
19410 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
19411 			return -EINVAL;
19412 		}
19413 		if (!btf_type_is_typedef(t)) {
19414 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
19415 				btf_id);
19416 			return -EINVAL;
19417 		}
19418 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
19419 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
19420 				btf_id, tname);
19421 			return -EINVAL;
19422 		}
19423 		tname += sizeof(prefix) - 1;
19424 		t = btf_type_by_id(btf, t->type);
19425 		if (!btf_type_is_ptr(t))
19426 			/* should never happen in valid vmlinux build */
19427 			return -EINVAL;
19428 		t = btf_type_by_id(btf, t->type);
19429 		if (!btf_type_is_func_proto(t))
19430 			/* should never happen in valid vmlinux build */
19431 			return -EINVAL;
19432 
19433 		break;
19434 	case BPF_TRACE_ITER:
19435 		if (!btf_type_is_func(t)) {
19436 			bpf_log(log, "attach_btf_id %u is not a function\n",
19437 				btf_id);
19438 			return -EINVAL;
19439 		}
19440 		t = btf_type_by_id(btf, t->type);
19441 		if (!btf_type_is_func_proto(t))
19442 			return -EINVAL;
19443 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
19444 		if (ret)
19445 			return ret;
19446 		break;
19447 	default:
19448 		if (!prog_extension)
19449 			return -EINVAL;
19450 		fallthrough;
19451 	case BPF_MODIFY_RETURN:
19452 	case BPF_LSM_MAC:
19453 	case BPF_LSM_CGROUP:
19454 	case BPF_TRACE_FENTRY:
19455 	case BPF_TRACE_FEXIT:
19456 		if (!btf_type_is_func(t)) {
19457 			bpf_log(log, "attach_btf_id %u is not a function\n",
19458 				btf_id);
19459 			return -EINVAL;
19460 		}
19461 		if (prog_extension &&
19462 		    btf_check_type_match(log, prog, btf, t))
19463 			return -EINVAL;
19464 		t = btf_type_by_id(btf, t->type);
19465 		if (!btf_type_is_func_proto(t))
19466 			return -EINVAL;
19467 
19468 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
19469 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
19470 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
19471 			return -EINVAL;
19472 
19473 		if (tgt_prog && conservative)
19474 			t = NULL;
19475 
19476 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
19477 		if (ret < 0)
19478 			return ret;
19479 
19480 		if (tgt_prog) {
19481 			if (subprog == 0)
19482 				addr = (long) tgt_prog->bpf_func;
19483 			else
19484 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
19485 		} else {
19486 			if (btf_is_module(btf)) {
19487 				mod = btf_try_get_module(btf);
19488 				if (mod)
19489 					addr = find_kallsyms_symbol_value(mod, tname);
19490 				else
19491 					addr = 0;
19492 			} else {
19493 				addr = kallsyms_lookup_name(tname);
19494 			}
19495 			if (!addr) {
19496 				module_put(mod);
19497 				bpf_log(log,
19498 					"The address of function %s cannot be found\n",
19499 					tname);
19500 				return -ENOENT;
19501 			}
19502 		}
19503 
19504 		if (prog->aux->sleepable) {
19505 			ret = -EINVAL;
19506 			switch (prog->type) {
19507 			case BPF_PROG_TYPE_TRACING:
19508 
19509 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
19510 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
19511 				 */
19512 				if (!check_non_sleepable_error_inject(btf_id) &&
19513 				    within_error_injection_list(addr))
19514 					ret = 0;
19515 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
19516 				 * in the fmodret id set with the KF_SLEEPABLE flag.
19517 				 */
19518 				else {
19519 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
19520 										prog);
19521 
19522 					if (flags && (*flags & KF_SLEEPABLE))
19523 						ret = 0;
19524 				}
19525 				break;
19526 			case BPF_PROG_TYPE_LSM:
19527 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
19528 				 * Only some of them are sleepable.
19529 				 */
19530 				if (bpf_lsm_is_sleepable_hook(btf_id))
19531 					ret = 0;
19532 				break;
19533 			default:
19534 				break;
19535 			}
19536 			if (ret) {
19537 				module_put(mod);
19538 				bpf_log(log, "%s is not sleepable\n", tname);
19539 				return ret;
19540 			}
19541 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
19542 			if (tgt_prog) {
19543 				module_put(mod);
19544 				bpf_log(log, "can't modify return codes of BPF programs\n");
19545 				return -EINVAL;
19546 			}
19547 			ret = -EINVAL;
19548 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
19549 			    !check_attach_modify_return(addr, tname))
19550 				ret = 0;
19551 			if (ret) {
19552 				module_put(mod);
19553 				bpf_log(log, "%s() is not modifiable\n", tname);
19554 				return ret;
19555 			}
19556 		}
19557 
19558 		break;
19559 	}
19560 	tgt_info->tgt_addr = addr;
19561 	tgt_info->tgt_name = tname;
19562 	tgt_info->tgt_type = t;
19563 	tgt_info->tgt_mod = mod;
19564 	return 0;
19565 }
19566 
19567 BTF_SET_START(btf_id_deny)
19568 BTF_ID_UNUSED
19569 #ifdef CONFIG_SMP
19570 BTF_ID(func, migrate_disable)
19571 BTF_ID(func, migrate_enable)
19572 #endif
19573 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
19574 BTF_ID(func, rcu_read_unlock_strict)
19575 #endif
19576 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
19577 BTF_ID(func, preempt_count_add)
19578 BTF_ID(func, preempt_count_sub)
19579 #endif
19580 #ifdef CONFIG_PREEMPT_RCU
19581 BTF_ID(func, __rcu_read_lock)
19582 BTF_ID(func, __rcu_read_unlock)
19583 #endif
19584 BTF_SET_END(btf_id_deny)
19585 
19586 static bool can_be_sleepable(struct bpf_prog *prog)
19587 {
19588 	if (prog->type == BPF_PROG_TYPE_TRACING) {
19589 		switch (prog->expected_attach_type) {
19590 		case BPF_TRACE_FENTRY:
19591 		case BPF_TRACE_FEXIT:
19592 		case BPF_MODIFY_RETURN:
19593 		case BPF_TRACE_ITER:
19594 			return true;
19595 		default:
19596 			return false;
19597 		}
19598 	}
19599 	return prog->type == BPF_PROG_TYPE_LSM ||
19600 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
19601 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
19602 }
19603 
19604 static int check_attach_btf_id(struct bpf_verifier_env *env)
19605 {
19606 	struct bpf_prog *prog = env->prog;
19607 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
19608 	struct bpf_attach_target_info tgt_info = {};
19609 	u32 btf_id = prog->aux->attach_btf_id;
19610 	struct bpf_trampoline *tr;
19611 	int ret;
19612 	u64 key;
19613 
19614 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
19615 		if (prog->aux->sleepable)
19616 			/* attach_btf_id checked to be zero already */
19617 			return 0;
19618 		verbose(env, "Syscall programs can only be sleepable\n");
19619 		return -EINVAL;
19620 	}
19621 
19622 	if (prog->aux->sleepable && !can_be_sleepable(prog)) {
19623 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
19624 		return -EINVAL;
19625 	}
19626 
19627 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
19628 		return check_struct_ops_btf_id(env);
19629 
19630 	if (prog->type != BPF_PROG_TYPE_TRACING &&
19631 	    prog->type != BPF_PROG_TYPE_LSM &&
19632 	    prog->type != BPF_PROG_TYPE_EXT)
19633 		return 0;
19634 
19635 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
19636 	if (ret)
19637 		return ret;
19638 
19639 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
19640 		/* to make freplace equivalent to their targets, they need to
19641 		 * inherit env->ops and expected_attach_type for the rest of the
19642 		 * verification
19643 		 */
19644 		env->ops = bpf_verifier_ops[tgt_prog->type];
19645 		prog->expected_attach_type = tgt_prog->expected_attach_type;
19646 	}
19647 
19648 	/* store info about the attachment target that will be used later */
19649 	prog->aux->attach_func_proto = tgt_info.tgt_type;
19650 	prog->aux->attach_func_name = tgt_info.tgt_name;
19651 	prog->aux->mod = tgt_info.tgt_mod;
19652 
19653 	if (tgt_prog) {
19654 		prog->aux->saved_dst_prog_type = tgt_prog->type;
19655 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
19656 	}
19657 
19658 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
19659 		prog->aux->attach_btf_trace = true;
19660 		return 0;
19661 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
19662 		if (!bpf_iter_prog_supported(prog))
19663 			return -EINVAL;
19664 		return 0;
19665 	}
19666 
19667 	if (prog->type == BPF_PROG_TYPE_LSM) {
19668 		ret = bpf_lsm_verify_prog(&env->log, prog);
19669 		if (ret < 0)
19670 			return ret;
19671 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
19672 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
19673 		return -EINVAL;
19674 	}
19675 
19676 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
19677 	tr = bpf_trampoline_get(key, &tgt_info);
19678 	if (!tr)
19679 		return -ENOMEM;
19680 
19681 	if (tgt_prog && tgt_prog->aux->tail_call_reachable)
19682 		tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
19683 
19684 	prog->aux->dst_trampoline = tr;
19685 	return 0;
19686 }
19687 
19688 struct btf *bpf_get_btf_vmlinux(void)
19689 {
19690 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
19691 		mutex_lock(&bpf_verifier_lock);
19692 		if (!btf_vmlinux)
19693 			btf_vmlinux = btf_parse_vmlinux();
19694 		mutex_unlock(&bpf_verifier_lock);
19695 	}
19696 	return btf_vmlinux;
19697 }
19698 
19699 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
19700 {
19701 	u64 start_time = ktime_get_ns();
19702 	struct bpf_verifier_env *env;
19703 	int i, len, ret = -EINVAL, err;
19704 	u32 log_true_size;
19705 	bool is_priv;
19706 
19707 	/* no program is valid */
19708 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
19709 		return -EINVAL;
19710 
19711 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
19712 	 * allocate/free it every time bpf_check() is called
19713 	 */
19714 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
19715 	if (!env)
19716 		return -ENOMEM;
19717 
19718 	env->bt.env = env;
19719 
19720 	len = (*prog)->len;
19721 	env->insn_aux_data =
19722 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
19723 	ret = -ENOMEM;
19724 	if (!env->insn_aux_data)
19725 		goto err_free_env;
19726 	for (i = 0; i < len; i++)
19727 		env->insn_aux_data[i].orig_idx = i;
19728 	env->prog = *prog;
19729 	env->ops = bpf_verifier_ops[env->prog->type];
19730 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
19731 	is_priv = bpf_capable();
19732 
19733 	bpf_get_btf_vmlinux();
19734 
19735 	/* grab the mutex to protect few globals used by verifier */
19736 	if (!is_priv)
19737 		mutex_lock(&bpf_verifier_lock);
19738 
19739 	/* user could have requested verbose verifier output
19740 	 * and supplied buffer to store the verification trace
19741 	 */
19742 	ret = bpf_vlog_init(&env->log, attr->log_level,
19743 			    (char __user *) (unsigned long) attr->log_buf,
19744 			    attr->log_size);
19745 	if (ret)
19746 		goto err_unlock;
19747 
19748 	mark_verifier_state_clean(env);
19749 
19750 	if (IS_ERR(btf_vmlinux)) {
19751 		/* Either gcc or pahole or kernel are broken. */
19752 		verbose(env, "in-kernel BTF is malformed\n");
19753 		ret = PTR_ERR(btf_vmlinux);
19754 		goto skip_full_check;
19755 	}
19756 
19757 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
19758 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
19759 		env->strict_alignment = true;
19760 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
19761 		env->strict_alignment = false;
19762 
19763 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
19764 	env->allow_uninit_stack = bpf_allow_uninit_stack();
19765 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
19766 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
19767 	env->bpf_capable = bpf_capable();
19768 
19769 	if (is_priv)
19770 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
19771 
19772 	env->explored_states = kvcalloc(state_htab_size(env),
19773 				       sizeof(struct bpf_verifier_state_list *),
19774 				       GFP_USER);
19775 	ret = -ENOMEM;
19776 	if (!env->explored_states)
19777 		goto skip_full_check;
19778 
19779 	ret = add_subprog_and_kfunc(env);
19780 	if (ret < 0)
19781 		goto skip_full_check;
19782 
19783 	ret = check_subprogs(env);
19784 	if (ret < 0)
19785 		goto skip_full_check;
19786 
19787 	ret = check_btf_info(env, attr, uattr);
19788 	if (ret < 0)
19789 		goto skip_full_check;
19790 
19791 	ret = check_attach_btf_id(env);
19792 	if (ret)
19793 		goto skip_full_check;
19794 
19795 	ret = resolve_pseudo_ldimm64(env);
19796 	if (ret < 0)
19797 		goto skip_full_check;
19798 
19799 	if (bpf_prog_is_offloaded(env->prog->aux)) {
19800 		ret = bpf_prog_offload_verifier_prep(env->prog);
19801 		if (ret)
19802 			goto skip_full_check;
19803 	}
19804 
19805 	ret = check_cfg(env);
19806 	if (ret < 0)
19807 		goto skip_full_check;
19808 
19809 	ret = do_check_subprogs(env);
19810 	ret = ret ?: do_check_main(env);
19811 
19812 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
19813 		ret = bpf_prog_offload_finalize(env);
19814 
19815 skip_full_check:
19816 	kvfree(env->explored_states);
19817 
19818 	if (ret == 0)
19819 		ret = check_max_stack_depth(env);
19820 
19821 	/* instruction rewrites happen after this point */
19822 	if (ret == 0)
19823 		ret = optimize_bpf_loop(env);
19824 
19825 	if (is_priv) {
19826 		if (ret == 0)
19827 			opt_hard_wire_dead_code_branches(env);
19828 		if (ret == 0)
19829 			ret = opt_remove_dead_code(env);
19830 		if (ret == 0)
19831 			ret = opt_remove_nops(env);
19832 	} else {
19833 		if (ret == 0)
19834 			sanitize_dead_code(env);
19835 	}
19836 
19837 	if (ret == 0)
19838 		/* program is valid, convert *(u32*)(ctx + off) accesses */
19839 		ret = convert_ctx_accesses(env);
19840 
19841 	if (ret == 0)
19842 		ret = do_misc_fixups(env);
19843 
19844 	/* do 32-bit optimization after insn patching has done so those patched
19845 	 * insns could be handled correctly.
19846 	 */
19847 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
19848 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
19849 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
19850 								     : false;
19851 	}
19852 
19853 	if (ret == 0)
19854 		ret = fixup_call_args(env);
19855 
19856 	env->verification_time = ktime_get_ns() - start_time;
19857 	print_verification_stats(env);
19858 	env->prog->aux->verified_insns = env->insn_processed;
19859 
19860 	/* preserve original error even if log finalization is successful */
19861 	err = bpf_vlog_finalize(&env->log, &log_true_size);
19862 	if (err)
19863 		ret = err;
19864 
19865 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
19866 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
19867 				  &log_true_size, sizeof(log_true_size))) {
19868 		ret = -EFAULT;
19869 		goto err_release_maps;
19870 	}
19871 
19872 	if (ret)
19873 		goto err_release_maps;
19874 
19875 	if (env->used_map_cnt) {
19876 		/* if program passed verifier, update used_maps in bpf_prog_info */
19877 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
19878 							  sizeof(env->used_maps[0]),
19879 							  GFP_KERNEL);
19880 
19881 		if (!env->prog->aux->used_maps) {
19882 			ret = -ENOMEM;
19883 			goto err_release_maps;
19884 		}
19885 
19886 		memcpy(env->prog->aux->used_maps, env->used_maps,
19887 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
19888 		env->prog->aux->used_map_cnt = env->used_map_cnt;
19889 	}
19890 	if (env->used_btf_cnt) {
19891 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
19892 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
19893 							  sizeof(env->used_btfs[0]),
19894 							  GFP_KERNEL);
19895 		if (!env->prog->aux->used_btfs) {
19896 			ret = -ENOMEM;
19897 			goto err_release_maps;
19898 		}
19899 
19900 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
19901 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
19902 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
19903 	}
19904 	if (env->used_map_cnt || env->used_btf_cnt) {
19905 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
19906 		 * bpf_ld_imm64 instructions
19907 		 */
19908 		convert_pseudo_ld_imm64(env);
19909 	}
19910 
19911 	adjust_btf_func(env);
19912 
19913 err_release_maps:
19914 	if (!env->prog->aux->used_maps)
19915 		/* if we didn't copy map pointers into bpf_prog_info, release
19916 		 * them now. Otherwise free_used_maps() will release them.
19917 		 */
19918 		release_maps(env);
19919 	if (!env->prog->aux->used_btfs)
19920 		release_btfs(env);
19921 
19922 	/* extension progs temporarily inherit the attach_type of their targets
19923 	   for verification purposes, so set it back to zero before returning
19924 	 */
19925 	if (env->prog->type == BPF_PROG_TYPE_EXT)
19926 		env->prog->expected_attach_type = 0;
19927 
19928 	*prog = env->prog;
19929 err_unlock:
19930 	if (!is_priv)
19931 		mutex_unlock(&bpf_verifier_lock);
19932 	vfree(env->insn_aux_data);
19933 err_free_env:
19934 	kfree(env);
19935 	return ret;
19936 }
19937