xref: /openbmc/linux/kernel/bpf/verifier.c (revision 6197e5b7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25 
26 #include "disasm.h"
27 
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 	[_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all pathes through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns ether pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 	/* length of verifier log at the time this state was pushed on stack */
175 	u32 log_pos;
176 };
177 
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
179 #define BPF_COMPLEXITY_LIMIT_STATES	64
180 
181 #define BPF_MAP_KEY_POISON	(1ULL << 63)
182 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
183 
184 #define BPF_MAP_PTR_UNPRIV	1UL
185 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
186 					  POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188 
189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193 
194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198 
199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 			      const struct bpf_map *map, bool unpriv)
201 {
202 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 	unpriv |= bpf_map_ptr_unpriv(aux);
204 	aux->map_ptr_state = (unsigned long)map |
205 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207 
208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 	return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212 
213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217 
218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222 
223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 	bool poisoned = bpf_map_key_poisoned(aux);
226 
227 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230 
231 static bool bpf_pseudo_call(const struct bpf_insn *insn)
232 {
233 	return insn->code == (BPF_JMP | BPF_CALL) &&
234 	       insn->src_reg == BPF_PSEUDO_CALL;
235 }
236 
237 static bool bpf_pseudo_func(const struct bpf_insn *insn)
238 {
239 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW) &&
240 	       insn->src_reg == BPF_PSEUDO_FUNC;
241 }
242 
243 struct bpf_call_arg_meta {
244 	struct bpf_map *map_ptr;
245 	bool raw_mode;
246 	bool pkt_access;
247 	int regno;
248 	int access_size;
249 	int mem_size;
250 	u64 msize_max_value;
251 	int ref_obj_id;
252 	int func_id;
253 	struct btf *btf;
254 	u32 btf_id;
255 	struct btf *ret_btf;
256 	u32 ret_btf_id;
257 	u32 subprogno;
258 };
259 
260 struct btf *btf_vmlinux;
261 
262 static DEFINE_MUTEX(bpf_verifier_lock);
263 
264 static const struct bpf_line_info *
265 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
266 {
267 	const struct bpf_line_info *linfo;
268 	const struct bpf_prog *prog;
269 	u32 i, nr_linfo;
270 
271 	prog = env->prog;
272 	nr_linfo = prog->aux->nr_linfo;
273 
274 	if (!nr_linfo || insn_off >= prog->len)
275 		return NULL;
276 
277 	linfo = prog->aux->linfo;
278 	for (i = 1; i < nr_linfo; i++)
279 		if (insn_off < linfo[i].insn_off)
280 			break;
281 
282 	return &linfo[i - 1];
283 }
284 
285 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
286 		       va_list args)
287 {
288 	unsigned int n;
289 
290 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
291 
292 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
293 		  "verifier log line truncated - local buffer too short\n");
294 
295 	n = min(log->len_total - log->len_used - 1, n);
296 	log->kbuf[n] = '\0';
297 
298 	if (log->level == BPF_LOG_KERNEL) {
299 		pr_err("BPF:%s\n", log->kbuf);
300 		return;
301 	}
302 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
303 		log->len_used += n;
304 	else
305 		log->ubuf = NULL;
306 }
307 
308 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
309 {
310 	char zero = 0;
311 
312 	if (!bpf_verifier_log_needed(log))
313 		return;
314 
315 	log->len_used = new_pos;
316 	if (put_user(zero, log->ubuf + new_pos))
317 		log->ubuf = NULL;
318 }
319 
320 /* log_level controls verbosity level of eBPF verifier.
321  * bpf_verifier_log_write() is used to dump the verification trace to the log,
322  * so the user can figure out what's wrong with the program
323  */
324 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
325 					   const char *fmt, ...)
326 {
327 	va_list args;
328 
329 	if (!bpf_verifier_log_needed(&env->log))
330 		return;
331 
332 	va_start(args, fmt);
333 	bpf_verifier_vlog(&env->log, fmt, args);
334 	va_end(args);
335 }
336 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
337 
338 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
339 {
340 	struct bpf_verifier_env *env = private_data;
341 	va_list args;
342 
343 	if (!bpf_verifier_log_needed(&env->log))
344 		return;
345 
346 	va_start(args, fmt);
347 	bpf_verifier_vlog(&env->log, fmt, args);
348 	va_end(args);
349 }
350 
351 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
352 			    const char *fmt, ...)
353 {
354 	va_list args;
355 
356 	if (!bpf_verifier_log_needed(log))
357 		return;
358 
359 	va_start(args, fmt);
360 	bpf_verifier_vlog(log, fmt, args);
361 	va_end(args);
362 }
363 
364 static const char *ltrim(const char *s)
365 {
366 	while (isspace(*s))
367 		s++;
368 
369 	return s;
370 }
371 
372 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
373 					 u32 insn_off,
374 					 const char *prefix_fmt, ...)
375 {
376 	const struct bpf_line_info *linfo;
377 
378 	if (!bpf_verifier_log_needed(&env->log))
379 		return;
380 
381 	linfo = find_linfo(env, insn_off);
382 	if (!linfo || linfo == env->prev_linfo)
383 		return;
384 
385 	if (prefix_fmt) {
386 		va_list args;
387 
388 		va_start(args, prefix_fmt);
389 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
390 		va_end(args);
391 	}
392 
393 	verbose(env, "%s\n",
394 		ltrim(btf_name_by_offset(env->prog->aux->btf,
395 					 linfo->line_off)));
396 
397 	env->prev_linfo = linfo;
398 }
399 
400 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
401 				   struct bpf_reg_state *reg,
402 				   struct tnum *range, const char *ctx,
403 				   const char *reg_name)
404 {
405 	char tn_buf[48];
406 
407 	verbose(env, "At %s the register %s ", ctx, reg_name);
408 	if (!tnum_is_unknown(reg->var_off)) {
409 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
410 		verbose(env, "has value %s", tn_buf);
411 	} else {
412 		verbose(env, "has unknown scalar value");
413 	}
414 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
415 	verbose(env, " should have been in %s\n", tn_buf);
416 }
417 
418 static bool type_is_pkt_pointer(enum bpf_reg_type type)
419 {
420 	return type == PTR_TO_PACKET ||
421 	       type == PTR_TO_PACKET_META;
422 }
423 
424 static bool type_is_sk_pointer(enum bpf_reg_type type)
425 {
426 	return type == PTR_TO_SOCKET ||
427 		type == PTR_TO_SOCK_COMMON ||
428 		type == PTR_TO_TCP_SOCK ||
429 		type == PTR_TO_XDP_SOCK;
430 }
431 
432 static bool reg_type_not_null(enum bpf_reg_type type)
433 {
434 	return type == PTR_TO_SOCKET ||
435 		type == PTR_TO_TCP_SOCK ||
436 		type == PTR_TO_MAP_VALUE ||
437 		type == PTR_TO_MAP_KEY ||
438 		type == PTR_TO_SOCK_COMMON;
439 }
440 
441 static bool reg_type_may_be_null(enum bpf_reg_type type)
442 {
443 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
444 	       type == PTR_TO_SOCKET_OR_NULL ||
445 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
446 	       type == PTR_TO_TCP_SOCK_OR_NULL ||
447 	       type == PTR_TO_BTF_ID_OR_NULL ||
448 	       type == PTR_TO_MEM_OR_NULL ||
449 	       type == PTR_TO_RDONLY_BUF_OR_NULL ||
450 	       type == PTR_TO_RDWR_BUF_OR_NULL;
451 }
452 
453 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
454 {
455 	return reg->type == PTR_TO_MAP_VALUE &&
456 		map_value_has_spin_lock(reg->map_ptr);
457 }
458 
459 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
460 {
461 	return type == PTR_TO_SOCKET ||
462 		type == PTR_TO_SOCKET_OR_NULL ||
463 		type == PTR_TO_TCP_SOCK ||
464 		type == PTR_TO_TCP_SOCK_OR_NULL ||
465 		type == PTR_TO_MEM ||
466 		type == PTR_TO_MEM_OR_NULL;
467 }
468 
469 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
470 {
471 	return type == ARG_PTR_TO_SOCK_COMMON;
472 }
473 
474 static bool arg_type_may_be_null(enum bpf_arg_type type)
475 {
476 	return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
477 	       type == ARG_PTR_TO_MEM_OR_NULL ||
478 	       type == ARG_PTR_TO_CTX_OR_NULL ||
479 	       type == ARG_PTR_TO_SOCKET_OR_NULL ||
480 	       type == ARG_PTR_TO_ALLOC_MEM_OR_NULL ||
481 	       type == ARG_PTR_TO_STACK_OR_NULL;
482 }
483 
484 /* Determine whether the function releases some resources allocated by another
485  * function call. The first reference type argument will be assumed to be
486  * released by release_reference().
487  */
488 static bool is_release_function(enum bpf_func_id func_id)
489 {
490 	return func_id == BPF_FUNC_sk_release ||
491 	       func_id == BPF_FUNC_ringbuf_submit ||
492 	       func_id == BPF_FUNC_ringbuf_discard;
493 }
494 
495 static bool may_be_acquire_function(enum bpf_func_id func_id)
496 {
497 	return func_id == BPF_FUNC_sk_lookup_tcp ||
498 		func_id == BPF_FUNC_sk_lookup_udp ||
499 		func_id == BPF_FUNC_skc_lookup_tcp ||
500 		func_id == BPF_FUNC_map_lookup_elem ||
501 	        func_id == BPF_FUNC_ringbuf_reserve;
502 }
503 
504 static bool is_acquire_function(enum bpf_func_id func_id,
505 				const struct bpf_map *map)
506 {
507 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
508 
509 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
510 	    func_id == BPF_FUNC_sk_lookup_udp ||
511 	    func_id == BPF_FUNC_skc_lookup_tcp ||
512 	    func_id == BPF_FUNC_ringbuf_reserve)
513 		return true;
514 
515 	if (func_id == BPF_FUNC_map_lookup_elem &&
516 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
517 	     map_type == BPF_MAP_TYPE_SOCKHASH))
518 		return true;
519 
520 	return false;
521 }
522 
523 static bool is_ptr_cast_function(enum bpf_func_id func_id)
524 {
525 	return func_id == BPF_FUNC_tcp_sock ||
526 		func_id == BPF_FUNC_sk_fullsock ||
527 		func_id == BPF_FUNC_skc_to_tcp_sock ||
528 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
529 		func_id == BPF_FUNC_skc_to_udp6_sock ||
530 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
531 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
532 }
533 
534 /* string representation of 'enum bpf_reg_type' */
535 static const char * const reg_type_str[] = {
536 	[NOT_INIT]		= "?",
537 	[SCALAR_VALUE]		= "inv",
538 	[PTR_TO_CTX]		= "ctx",
539 	[CONST_PTR_TO_MAP]	= "map_ptr",
540 	[PTR_TO_MAP_VALUE]	= "map_value",
541 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
542 	[PTR_TO_STACK]		= "fp",
543 	[PTR_TO_PACKET]		= "pkt",
544 	[PTR_TO_PACKET_META]	= "pkt_meta",
545 	[PTR_TO_PACKET_END]	= "pkt_end",
546 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
547 	[PTR_TO_SOCKET]		= "sock",
548 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
549 	[PTR_TO_SOCK_COMMON]	= "sock_common",
550 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
551 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
552 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
553 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
554 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
555 	[PTR_TO_BTF_ID]		= "ptr_",
556 	[PTR_TO_BTF_ID_OR_NULL]	= "ptr_or_null_",
557 	[PTR_TO_PERCPU_BTF_ID]	= "percpu_ptr_",
558 	[PTR_TO_MEM]		= "mem",
559 	[PTR_TO_MEM_OR_NULL]	= "mem_or_null",
560 	[PTR_TO_RDONLY_BUF]	= "rdonly_buf",
561 	[PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
562 	[PTR_TO_RDWR_BUF]	= "rdwr_buf",
563 	[PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
564 	[PTR_TO_FUNC]		= "func",
565 	[PTR_TO_MAP_KEY]	= "map_key",
566 };
567 
568 static char slot_type_char[] = {
569 	[STACK_INVALID]	= '?',
570 	[STACK_SPILL]	= 'r',
571 	[STACK_MISC]	= 'm',
572 	[STACK_ZERO]	= '0',
573 };
574 
575 static void print_liveness(struct bpf_verifier_env *env,
576 			   enum bpf_reg_liveness live)
577 {
578 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
579 	    verbose(env, "_");
580 	if (live & REG_LIVE_READ)
581 		verbose(env, "r");
582 	if (live & REG_LIVE_WRITTEN)
583 		verbose(env, "w");
584 	if (live & REG_LIVE_DONE)
585 		verbose(env, "D");
586 }
587 
588 static struct bpf_func_state *func(struct bpf_verifier_env *env,
589 				   const struct bpf_reg_state *reg)
590 {
591 	struct bpf_verifier_state *cur = env->cur_state;
592 
593 	return cur->frame[reg->frameno];
594 }
595 
596 static const char *kernel_type_name(const struct btf* btf, u32 id)
597 {
598 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
599 }
600 
601 static void print_verifier_state(struct bpf_verifier_env *env,
602 				 const struct bpf_func_state *state)
603 {
604 	const struct bpf_reg_state *reg;
605 	enum bpf_reg_type t;
606 	int i;
607 
608 	if (state->frameno)
609 		verbose(env, " frame%d:", state->frameno);
610 	for (i = 0; i < MAX_BPF_REG; i++) {
611 		reg = &state->regs[i];
612 		t = reg->type;
613 		if (t == NOT_INIT)
614 			continue;
615 		verbose(env, " R%d", i);
616 		print_liveness(env, reg->live);
617 		verbose(env, "=%s", reg_type_str[t]);
618 		if (t == SCALAR_VALUE && reg->precise)
619 			verbose(env, "P");
620 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
621 		    tnum_is_const(reg->var_off)) {
622 			/* reg->off should be 0 for SCALAR_VALUE */
623 			verbose(env, "%lld", reg->var_off.value + reg->off);
624 		} else {
625 			if (t == PTR_TO_BTF_ID ||
626 			    t == PTR_TO_BTF_ID_OR_NULL ||
627 			    t == PTR_TO_PERCPU_BTF_ID)
628 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
629 			verbose(env, "(id=%d", reg->id);
630 			if (reg_type_may_be_refcounted_or_null(t))
631 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
632 			if (t != SCALAR_VALUE)
633 				verbose(env, ",off=%d", reg->off);
634 			if (type_is_pkt_pointer(t))
635 				verbose(env, ",r=%d", reg->range);
636 			else if (t == CONST_PTR_TO_MAP ||
637 				 t == PTR_TO_MAP_KEY ||
638 				 t == PTR_TO_MAP_VALUE ||
639 				 t == PTR_TO_MAP_VALUE_OR_NULL)
640 				verbose(env, ",ks=%d,vs=%d",
641 					reg->map_ptr->key_size,
642 					reg->map_ptr->value_size);
643 			if (tnum_is_const(reg->var_off)) {
644 				/* Typically an immediate SCALAR_VALUE, but
645 				 * could be a pointer whose offset is too big
646 				 * for reg->off
647 				 */
648 				verbose(env, ",imm=%llx", reg->var_off.value);
649 			} else {
650 				if (reg->smin_value != reg->umin_value &&
651 				    reg->smin_value != S64_MIN)
652 					verbose(env, ",smin_value=%lld",
653 						(long long)reg->smin_value);
654 				if (reg->smax_value != reg->umax_value &&
655 				    reg->smax_value != S64_MAX)
656 					verbose(env, ",smax_value=%lld",
657 						(long long)reg->smax_value);
658 				if (reg->umin_value != 0)
659 					verbose(env, ",umin_value=%llu",
660 						(unsigned long long)reg->umin_value);
661 				if (reg->umax_value != U64_MAX)
662 					verbose(env, ",umax_value=%llu",
663 						(unsigned long long)reg->umax_value);
664 				if (!tnum_is_unknown(reg->var_off)) {
665 					char tn_buf[48];
666 
667 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
668 					verbose(env, ",var_off=%s", tn_buf);
669 				}
670 				if (reg->s32_min_value != reg->smin_value &&
671 				    reg->s32_min_value != S32_MIN)
672 					verbose(env, ",s32_min_value=%d",
673 						(int)(reg->s32_min_value));
674 				if (reg->s32_max_value != reg->smax_value &&
675 				    reg->s32_max_value != S32_MAX)
676 					verbose(env, ",s32_max_value=%d",
677 						(int)(reg->s32_max_value));
678 				if (reg->u32_min_value != reg->umin_value &&
679 				    reg->u32_min_value != U32_MIN)
680 					verbose(env, ",u32_min_value=%d",
681 						(int)(reg->u32_min_value));
682 				if (reg->u32_max_value != reg->umax_value &&
683 				    reg->u32_max_value != U32_MAX)
684 					verbose(env, ",u32_max_value=%d",
685 						(int)(reg->u32_max_value));
686 			}
687 			verbose(env, ")");
688 		}
689 	}
690 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
691 		char types_buf[BPF_REG_SIZE + 1];
692 		bool valid = false;
693 		int j;
694 
695 		for (j = 0; j < BPF_REG_SIZE; j++) {
696 			if (state->stack[i].slot_type[j] != STACK_INVALID)
697 				valid = true;
698 			types_buf[j] = slot_type_char[
699 					state->stack[i].slot_type[j]];
700 		}
701 		types_buf[BPF_REG_SIZE] = 0;
702 		if (!valid)
703 			continue;
704 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
705 		print_liveness(env, state->stack[i].spilled_ptr.live);
706 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
707 			reg = &state->stack[i].spilled_ptr;
708 			t = reg->type;
709 			verbose(env, "=%s", reg_type_str[t]);
710 			if (t == SCALAR_VALUE && reg->precise)
711 				verbose(env, "P");
712 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
713 				verbose(env, "%lld", reg->var_off.value + reg->off);
714 		} else {
715 			verbose(env, "=%s", types_buf);
716 		}
717 	}
718 	if (state->acquired_refs && state->refs[0].id) {
719 		verbose(env, " refs=%d", state->refs[0].id);
720 		for (i = 1; i < state->acquired_refs; i++)
721 			if (state->refs[i].id)
722 				verbose(env, ",%d", state->refs[i].id);
723 	}
724 	verbose(env, "\n");
725 }
726 
727 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
728 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
729 			       const struct bpf_func_state *src)	\
730 {									\
731 	if (!src->FIELD)						\
732 		return 0;						\
733 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
734 		/* internal bug, make state invalid to reject the program */ \
735 		memset(dst, 0, sizeof(*dst));				\
736 		return -EFAULT;						\
737 	}								\
738 	memcpy(dst->FIELD, src->FIELD,					\
739 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
740 	return 0;							\
741 }
742 /* copy_reference_state() */
743 COPY_STATE_FN(reference, acquired_refs, refs, 1)
744 /* copy_stack_state() */
745 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
746 #undef COPY_STATE_FN
747 
748 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
749 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
750 				  bool copy_old)			\
751 {									\
752 	u32 old_size = state->COUNT;					\
753 	struct bpf_##NAME##_state *new_##FIELD;				\
754 	int slot = size / SIZE;						\
755 									\
756 	if (size <= old_size || !size) {				\
757 		if (copy_old)						\
758 			return 0;					\
759 		state->COUNT = slot * SIZE;				\
760 		if (!size && old_size) {				\
761 			kfree(state->FIELD);				\
762 			state->FIELD = NULL;				\
763 		}							\
764 		return 0;						\
765 	}								\
766 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
767 				    GFP_KERNEL);			\
768 	if (!new_##FIELD)						\
769 		return -ENOMEM;						\
770 	if (copy_old) {							\
771 		if (state->FIELD)					\
772 			memcpy(new_##FIELD, state->FIELD,		\
773 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
774 		memset(new_##FIELD + old_size / SIZE, 0,		\
775 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
776 	}								\
777 	state->COUNT = slot * SIZE;					\
778 	kfree(state->FIELD);						\
779 	state->FIELD = new_##FIELD;					\
780 	return 0;							\
781 }
782 /* realloc_reference_state() */
783 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
784 /* realloc_stack_state() */
785 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
786 #undef REALLOC_STATE_FN
787 
788 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
789  * make it consume minimal amount of memory. check_stack_write() access from
790  * the program calls into realloc_func_state() to grow the stack size.
791  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
792  * which realloc_stack_state() copies over. It points to previous
793  * bpf_verifier_state which is never reallocated.
794  */
795 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
796 			      int refs_size, bool copy_old)
797 {
798 	int err = realloc_reference_state(state, refs_size, copy_old);
799 	if (err)
800 		return err;
801 	return realloc_stack_state(state, stack_size, copy_old);
802 }
803 
804 /* Acquire a pointer id from the env and update the state->refs to include
805  * this new pointer reference.
806  * On success, returns a valid pointer id to associate with the register
807  * On failure, returns a negative errno.
808  */
809 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
810 {
811 	struct bpf_func_state *state = cur_func(env);
812 	int new_ofs = state->acquired_refs;
813 	int id, err;
814 
815 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
816 	if (err)
817 		return err;
818 	id = ++env->id_gen;
819 	state->refs[new_ofs].id = id;
820 	state->refs[new_ofs].insn_idx = insn_idx;
821 
822 	return id;
823 }
824 
825 /* release function corresponding to acquire_reference_state(). Idempotent. */
826 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
827 {
828 	int i, last_idx;
829 
830 	last_idx = state->acquired_refs - 1;
831 	for (i = 0; i < state->acquired_refs; i++) {
832 		if (state->refs[i].id == ptr_id) {
833 			if (last_idx && i != last_idx)
834 				memcpy(&state->refs[i], &state->refs[last_idx],
835 				       sizeof(*state->refs));
836 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
837 			state->acquired_refs--;
838 			return 0;
839 		}
840 	}
841 	return -EINVAL;
842 }
843 
844 static int transfer_reference_state(struct bpf_func_state *dst,
845 				    struct bpf_func_state *src)
846 {
847 	int err = realloc_reference_state(dst, src->acquired_refs, false);
848 	if (err)
849 		return err;
850 	err = copy_reference_state(dst, src);
851 	if (err)
852 		return err;
853 	return 0;
854 }
855 
856 static void free_func_state(struct bpf_func_state *state)
857 {
858 	if (!state)
859 		return;
860 	kfree(state->refs);
861 	kfree(state->stack);
862 	kfree(state);
863 }
864 
865 static void clear_jmp_history(struct bpf_verifier_state *state)
866 {
867 	kfree(state->jmp_history);
868 	state->jmp_history = NULL;
869 	state->jmp_history_cnt = 0;
870 }
871 
872 static void free_verifier_state(struct bpf_verifier_state *state,
873 				bool free_self)
874 {
875 	int i;
876 
877 	for (i = 0; i <= state->curframe; i++) {
878 		free_func_state(state->frame[i]);
879 		state->frame[i] = NULL;
880 	}
881 	clear_jmp_history(state);
882 	if (free_self)
883 		kfree(state);
884 }
885 
886 /* copy verifier state from src to dst growing dst stack space
887  * when necessary to accommodate larger src stack
888  */
889 static int copy_func_state(struct bpf_func_state *dst,
890 			   const struct bpf_func_state *src)
891 {
892 	int err;
893 
894 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
895 				 false);
896 	if (err)
897 		return err;
898 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
899 	err = copy_reference_state(dst, src);
900 	if (err)
901 		return err;
902 	return copy_stack_state(dst, src);
903 }
904 
905 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
906 			       const struct bpf_verifier_state *src)
907 {
908 	struct bpf_func_state *dst;
909 	u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
910 	int i, err;
911 
912 	if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
913 		kfree(dst_state->jmp_history);
914 		dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
915 		if (!dst_state->jmp_history)
916 			return -ENOMEM;
917 	}
918 	memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
919 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
920 
921 	/* if dst has more stack frames then src frame, free them */
922 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
923 		free_func_state(dst_state->frame[i]);
924 		dst_state->frame[i] = NULL;
925 	}
926 	dst_state->speculative = src->speculative;
927 	dst_state->curframe = src->curframe;
928 	dst_state->active_spin_lock = src->active_spin_lock;
929 	dst_state->branches = src->branches;
930 	dst_state->parent = src->parent;
931 	dst_state->first_insn_idx = src->first_insn_idx;
932 	dst_state->last_insn_idx = src->last_insn_idx;
933 	for (i = 0; i <= src->curframe; i++) {
934 		dst = dst_state->frame[i];
935 		if (!dst) {
936 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
937 			if (!dst)
938 				return -ENOMEM;
939 			dst_state->frame[i] = dst;
940 		}
941 		err = copy_func_state(dst, src->frame[i]);
942 		if (err)
943 			return err;
944 	}
945 	return 0;
946 }
947 
948 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
949 {
950 	while (st) {
951 		u32 br = --st->branches;
952 
953 		/* WARN_ON(br > 1) technically makes sense here,
954 		 * but see comment in push_stack(), hence:
955 		 */
956 		WARN_ONCE((int)br < 0,
957 			  "BUG update_branch_counts:branches_to_explore=%d\n",
958 			  br);
959 		if (br)
960 			break;
961 		st = st->parent;
962 	}
963 }
964 
965 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
966 		     int *insn_idx, bool pop_log)
967 {
968 	struct bpf_verifier_state *cur = env->cur_state;
969 	struct bpf_verifier_stack_elem *elem, *head = env->head;
970 	int err;
971 
972 	if (env->head == NULL)
973 		return -ENOENT;
974 
975 	if (cur) {
976 		err = copy_verifier_state(cur, &head->st);
977 		if (err)
978 			return err;
979 	}
980 	if (pop_log)
981 		bpf_vlog_reset(&env->log, head->log_pos);
982 	if (insn_idx)
983 		*insn_idx = head->insn_idx;
984 	if (prev_insn_idx)
985 		*prev_insn_idx = head->prev_insn_idx;
986 	elem = head->next;
987 	free_verifier_state(&head->st, false);
988 	kfree(head);
989 	env->head = elem;
990 	env->stack_size--;
991 	return 0;
992 }
993 
994 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
995 					     int insn_idx, int prev_insn_idx,
996 					     bool speculative)
997 {
998 	struct bpf_verifier_state *cur = env->cur_state;
999 	struct bpf_verifier_stack_elem *elem;
1000 	int err;
1001 
1002 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1003 	if (!elem)
1004 		goto err;
1005 
1006 	elem->insn_idx = insn_idx;
1007 	elem->prev_insn_idx = prev_insn_idx;
1008 	elem->next = env->head;
1009 	elem->log_pos = env->log.len_used;
1010 	env->head = elem;
1011 	env->stack_size++;
1012 	err = copy_verifier_state(&elem->st, cur);
1013 	if (err)
1014 		goto err;
1015 	elem->st.speculative |= speculative;
1016 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1017 		verbose(env, "The sequence of %d jumps is too complex.\n",
1018 			env->stack_size);
1019 		goto err;
1020 	}
1021 	if (elem->st.parent) {
1022 		++elem->st.parent->branches;
1023 		/* WARN_ON(branches > 2) technically makes sense here,
1024 		 * but
1025 		 * 1. speculative states will bump 'branches' for non-branch
1026 		 * instructions
1027 		 * 2. is_state_visited() heuristics may decide not to create
1028 		 * a new state for a sequence of branches and all such current
1029 		 * and cloned states will be pointing to a single parent state
1030 		 * which might have large 'branches' count.
1031 		 */
1032 	}
1033 	return &elem->st;
1034 err:
1035 	free_verifier_state(env->cur_state, true);
1036 	env->cur_state = NULL;
1037 	/* pop all elements and return */
1038 	while (!pop_stack(env, NULL, NULL, false));
1039 	return NULL;
1040 }
1041 
1042 #define CALLER_SAVED_REGS 6
1043 static const int caller_saved[CALLER_SAVED_REGS] = {
1044 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1045 };
1046 
1047 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1048 				struct bpf_reg_state *reg);
1049 
1050 /* This helper doesn't clear reg->id */
1051 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1052 {
1053 	reg->var_off = tnum_const(imm);
1054 	reg->smin_value = (s64)imm;
1055 	reg->smax_value = (s64)imm;
1056 	reg->umin_value = imm;
1057 	reg->umax_value = imm;
1058 
1059 	reg->s32_min_value = (s32)imm;
1060 	reg->s32_max_value = (s32)imm;
1061 	reg->u32_min_value = (u32)imm;
1062 	reg->u32_max_value = (u32)imm;
1063 }
1064 
1065 /* Mark the unknown part of a register (variable offset or scalar value) as
1066  * known to have the value @imm.
1067  */
1068 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1069 {
1070 	/* Clear id, off, and union(map_ptr, range) */
1071 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1072 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1073 	___mark_reg_known(reg, imm);
1074 }
1075 
1076 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1077 {
1078 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1079 	reg->s32_min_value = (s32)imm;
1080 	reg->s32_max_value = (s32)imm;
1081 	reg->u32_min_value = (u32)imm;
1082 	reg->u32_max_value = (u32)imm;
1083 }
1084 
1085 /* Mark the 'variable offset' part of a register as zero.  This should be
1086  * used only on registers holding a pointer type.
1087  */
1088 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1089 {
1090 	__mark_reg_known(reg, 0);
1091 }
1092 
1093 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1094 {
1095 	__mark_reg_known(reg, 0);
1096 	reg->type = SCALAR_VALUE;
1097 }
1098 
1099 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1100 				struct bpf_reg_state *regs, u32 regno)
1101 {
1102 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1103 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1104 		/* Something bad happened, let's kill all regs */
1105 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1106 			__mark_reg_not_init(env, regs + regno);
1107 		return;
1108 	}
1109 	__mark_reg_known_zero(regs + regno);
1110 }
1111 
1112 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1113 {
1114 	switch (reg->type) {
1115 	case PTR_TO_MAP_VALUE_OR_NULL: {
1116 		const struct bpf_map *map = reg->map_ptr;
1117 
1118 		if (map->inner_map_meta) {
1119 			reg->type = CONST_PTR_TO_MAP;
1120 			reg->map_ptr = map->inner_map_meta;
1121 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1122 			reg->type = PTR_TO_XDP_SOCK;
1123 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1124 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1125 			reg->type = PTR_TO_SOCKET;
1126 		} else {
1127 			reg->type = PTR_TO_MAP_VALUE;
1128 		}
1129 		break;
1130 	}
1131 	case PTR_TO_SOCKET_OR_NULL:
1132 		reg->type = PTR_TO_SOCKET;
1133 		break;
1134 	case PTR_TO_SOCK_COMMON_OR_NULL:
1135 		reg->type = PTR_TO_SOCK_COMMON;
1136 		break;
1137 	case PTR_TO_TCP_SOCK_OR_NULL:
1138 		reg->type = PTR_TO_TCP_SOCK;
1139 		break;
1140 	case PTR_TO_BTF_ID_OR_NULL:
1141 		reg->type = PTR_TO_BTF_ID;
1142 		break;
1143 	case PTR_TO_MEM_OR_NULL:
1144 		reg->type = PTR_TO_MEM;
1145 		break;
1146 	case PTR_TO_RDONLY_BUF_OR_NULL:
1147 		reg->type = PTR_TO_RDONLY_BUF;
1148 		break;
1149 	case PTR_TO_RDWR_BUF_OR_NULL:
1150 		reg->type = PTR_TO_RDWR_BUF;
1151 		break;
1152 	default:
1153 		WARN_ON("unknown nullable register type");
1154 	}
1155 }
1156 
1157 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1158 {
1159 	return type_is_pkt_pointer(reg->type);
1160 }
1161 
1162 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1163 {
1164 	return reg_is_pkt_pointer(reg) ||
1165 	       reg->type == PTR_TO_PACKET_END;
1166 }
1167 
1168 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1169 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1170 				    enum bpf_reg_type which)
1171 {
1172 	/* The register can already have a range from prior markings.
1173 	 * This is fine as long as it hasn't been advanced from its
1174 	 * origin.
1175 	 */
1176 	return reg->type == which &&
1177 	       reg->id == 0 &&
1178 	       reg->off == 0 &&
1179 	       tnum_equals_const(reg->var_off, 0);
1180 }
1181 
1182 /* Reset the min/max bounds of a register */
1183 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1184 {
1185 	reg->smin_value = S64_MIN;
1186 	reg->smax_value = S64_MAX;
1187 	reg->umin_value = 0;
1188 	reg->umax_value = U64_MAX;
1189 
1190 	reg->s32_min_value = S32_MIN;
1191 	reg->s32_max_value = S32_MAX;
1192 	reg->u32_min_value = 0;
1193 	reg->u32_max_value = U32_MAX;
1194 }
1195 
1196 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1197 {
1198 	reg->smin_value = S64_MIN;
1199 	reg->smax_value = S64_MAX;
1200 	reg->umin_value = 0;
1201 	reg->umax_value = U64_MAX;
1202 }
1203 
1204 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1205 {
1206 	reg->s32_min_value = S32_MIN;
1207 	reg->s32_max_value = S32_MAX;
1208 	reg->u32_min_value = 0;
1209 	reg->u32_max_value = U32_MAX;
1210 }
1211 
1212 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1213 {
1214 	struct tnum var32_off = tnum_subreg(reg->var_off);
1215 
1216 	/* min signed is max(sign bit) | min(other bits) */
1217 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1218 			var32_off.value | (var32_off.mask & S32_MIN));
1219 	/* max signed is min(sign bit) | max(other bits) */
1220 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1221 			var32_off.value | (var32_off.mask & S32_MAX));
1222 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1223 	reg->u32_max_value = min(reg->u32_max_value,
1224 				 (u32)(var32_off.value | var32_off.mask));
1225 }
1226 
1227 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1228 {
1229 	/* min signed is max(sign bit) | min(other bits) */
1230 	reg->smin_value = max_t(s64, reg->smin_value,
1231 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1232 	/* max signed is min(sign bit) | max(other bits) */
1233 	reg->smax_value = min_t(s64, reg->smax_value,
1234 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1235 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1236 	reg->umax_value = min(reg->umax_value,
1237 			      reg->var_off.value | reg->var_off.mask);
1238 }
1239 
1240 static void __update_reg_bounds(struct bpf_reg_state *reg)
1241 {
1242 	__update_reg32_bounds(reg);
1243 	__update_reg64_bounds(reg);
1244 }
1245 
1246 /* Uses signed min/max values to inform unsigned, and vice-versa */
1247 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1248 {
1249 	/* Learn sign from signed bounds.
1250 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1251 	 * are the same, so combine.  This works even in the negative case, e.g.
1252 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1253 	 */
1254 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1255 		reg->s32_min_value = reg->u32_min_value =
1256 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1257 		reg->s32_max_value = reg->u32_max_value =
1258 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1259 		return;
1260 	}
1261 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1262 	 * boundary, so we must be careful.
1263 	 */
1264 	if ((s32)reg->u32_max_value >= 0) {
1265 		/* Positive.  We can't learn anything from the smin, but smax
1266 		 * is positive, hence safe.
1267 		 */
1268 		reg->s32_min_value = reg->u32_min_value;
1269 		reg->s32_max_value = reg->u32_max_value =
1270 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1271 	} else if ((s32)reg->u32_min_value < 0) {
1272 		/* Negative.  We can't learn anything from the smax, but smin
1273 		 * is negative, hence safe.
1274 		 */
1275 		reg->s32_min_value = reg->u32_min_value =
1276 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1277 		reg->s32_max_value = reg->u32_max_value;
1278 	}
1279 }
1280 
1281 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1282 {
1283 	/* Learn sign from signed bounds.
1284 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1285 	 * are the same, so combine.  This works even in the negative case, e.g.
1286 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1287 	 */
1288 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1289 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1290 							  reg->umin_value);
1291 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1292 							  reg->umax_value);
1293 		return;
1294 	}
1295 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1296 	 * boundary, so we must be careful.
1297 	 */
1298 	if ((s64)reg->umax_value >= 0) {
1299 		/* Positive.  We can't learn anything from the smin, but smax
1300 		 * is positive, hence safe.
1301 		 */
1302 		reg->smin_value = reg->umin_value;
1303 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1304 							  reg->umax_value);
1305 	} else if ((s64)reg->umin_value < 0) {
1306 		/* Negative.  We can't learn anything from the smax, but smin
1307 		 * is negative, hence safe.
1308 		 */
1309 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1310 							  reg->umin_value);
1311 		reg->smax_value = reg->umax_value;
1312 	}
1313 }
1314 
1315 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1316 {
1317 	__reg32_deduce_bounds(reg);
1318 	__reg64_deduce_bounds(reg);
1319 }
1320 
1321 /* Attempts to improve var_off based on unsigned min/max information */
1322 static void __reg_bound_offset(struct bpf_reg_state *reg)
1323 {
1324 	struct tnum var64_off = tnum_intersect(reg->var_off,
1325 					       tnum_range(reg->umin_value,
1326 							  reg->umax_value));
1327 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1328 						tnum_range(reg->u32_min_value,
1329 							   reg->u32_max_value));
1330 
1331 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1332 }
1333 
1334 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1335 {
1336 	reg->umin_value = reg->u32_min_value;
1337 	reg->umax_value = reg->u32_max_value;
1338 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1339 	 * but must be positive otherwise set to worse case bounds
1340 	 * and refine later from tnum.
1341 	 */
1342 	if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1343 		reg->smax_value = reg->s32_max_value;
1344 	else
1345 		reg->smax_value = U32_MAX;
1346 	if (reg->s32_min_value >= 0)
1347 		reg->smin_value = reg->s32_min_value;
1348 	else
1349 		reg->smin_value = 0;
1350 }
1351 
1352 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1353 {
1354 	/* special case when 64-bit register has upper 32-bit register
1355 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1356 	 * allowing us to use 32-bit bounds directly,
1357 	 */
1358 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1359 		__reg_assign_32_into_64(reg);
1360 	} else {
1361 		/* Otherwise the best we can do is push lower 32bit known and
1362 		 * unknown bits into register (var_off set from jmp logic)
1363 		 * then learn as much as possible from the 64-bit tnum
1364 		 * known and unknown bits. The previous smin/smax bounds are
1365 		 * invalid here because of jmp32 compare so mark them unknown
1366 		 * so they do not impact tnum bounds calculation.
1367 		 */
1368 		__mark_reg64_unbounded(reg);
1369 		__update_reg_bounds(reg);
1370 	}
1371 
1372 	/* Intersecting with the old var_off might have improved our bounds
1373 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1374 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1375 	 */
1376 	__reg_deduce_bounds(reg);
1377 	__reg_bound_offset(reg);
1378 	__update_reg_bounds(reg);
1379 }
1380 
1381 static bool __reg64_bound_s32(s64 a)
1382 {
1383 	return a > S32_MIN && a < S32_MAX;
1384 }
1385 
1386 static bool __reg64_bound_u32(u64 a)
1387 {
1388 	if (a > U32_MIN && a < U32_MAX)
1389 		return true;
1390 	return false;
1391 }
1392 
1393 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1394 {
1395 	__mark_reg32_unbounded(reg);
1396 
1397 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1398 		reg->s32_min_value = (s32)reg->smin_value;
1399 		reg->s32_max_value = (s32)reg->smax_value;
1400 	}
1401 	if (__reg64_bound_u32(reg->umin_value))
1402 		reg->u32_min_value = (u32)reg->umin_value;
1403 	if (__reg64_bound_u32(reg->umax_value))
1404 		reg->u32_max_value = (u32)reg->umax_value;
1405 
1406 	/* Intersecting with the old var_off might have improved our bounds
1407 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1408 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1409 	 */
1410 	__reg_deduce_bounds(reg);
1411 	__reg_bound_offset(reg);
1412 	__update_reg_bounds(reg);
1413 }
1414 
1415 /* Mark a register as having a completely unknown (scalar) value. */
1416 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1417 			       struct bpf_reg_state *reg)
1418 {
1419 	/*
1420 	 * Clear type, id, off, and union(map_ptr, range) and
1421 	 * padding between 'type' and union
1422 	 */
1423 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1424 	reg->type = SCALAR_VALUE;
1425 	reg->var_off = tnum_unknown;
1426 	reg->frameno = 0;
1427 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1428 	__mark_reg_unbounded(reg);
1429 }
1430 
1431 static void mark_reg_unknown(struct bpf_verifier_env *env,
1432 			     struct bpf_reg_state *regs, u32 regno)
1433 {
1434 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1435 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1436 		/* Something bad happened, let's kill all regs except FP */
1437 		for (regno = 0; regno < BPF_REG_FP; regno++)
1438 			__mark_reg_not_init(env, regs + regno);
1439 		return;
1440 	}
1441 	__mark_reg_unknown(env, regs + regno);
1442 }
1443 
1444 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1445 				struct bpf_reg_state *reg)
1446 {
1447 	__mark_reg_unknown(env, reg);
1448 	reg->type = NOT_INIT;
1449 }
1450 
1451 static void mark_reg_not_init(struct bpf_verifier_env *env,
1452 			      struct bpf_reg_state *regs, u32 regno)
1453 {
1454 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1455 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1456 		/* Something bad happened, let's kill all regs except FP */
1457 		for (regno = 0; regno < BPF_REG_FP; regno++)
1458 			__mark_reg_not_init(env, regs + regno);
1459 		return;
1460 	}
1461 	__mark_reg_not_init(env, regs + regno);
1462 }
1463 
1464 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1465 			    struct bpf_reg_state *regs, u32 regno,
1466 			    enum bpf_reg_type reg_type,
1467 			    struct btf *btf, u32 btf_id)
1468 {
1469 	if (reg_type == SCALAR_VALUE) {
1470 		mark_reg_unknown(env, regs, regno);
1471 		return;
1472 	}
1473 	mark_reg_known_zero(env, regs, regno);
1474 	regs[regno].type = PTR_TO_BTF_ID;
1475 	regs[regno].btf = btf;
1476 	regs[regno].btf_id = btf_id;
1477 }
1478 
1479 #define DEF_NOT_SUBREG	(0)
1480 static void init_reg_state(struct bpf_verifier_env *env,
1481 			   struct bpf_func_state *state)
1482 {
1483 	struct bpf_reg_state *regs = state->regs;
1484 	int i;
1485 
1486 	for (i = 0; i < MAX_BPF_REG; i++) {
1487 		mark_reg_not_init(env, regs, i);
1488 		regs[i].live = REG_LIVE_NONE;
1489 		regs[i].parent = NULL;
1490 		regs[i].subreg_def = DEF_NOT_SUBREG;
1491 	}
1492 
1493 	/* frame pointer */
1494 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1495 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1496 	regs[BPF_REG_FP].frameno = state->frameno;
1497 }
1498 
1499 #define BPF_MAIN_FUNC (-1)
1500 static void init_func_state(struct bpf_verifier_env *env,
1501 			    struct bpf_func_state *state,
1502 			    int callsite, int frameno, int subprogno)
1503 {
1504 	state->callsite = callsite;
1505 	state->frameno = frameno;
1506 	state->subprogno = subprogno;
1507 	init_reg_state(env, state);
1508 }
1509 
1510 enum reg_arg_type {
1511 	SRC_OP,		/* register is used as source operand */
1512 	DST_OP,		/* register is used as destination operand */
1513 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1514 };
1515 
1516 static int cmp_subprogs(const void *a, const void *b)
1517 {
1518 	return ((struct bpf_subprog_info *)a)->start -
1519 	       ((struct bpf_subprog_info *)b)->start;
1520 }
1521 
1522 static int find_subprog(struct bpf_verifier_env *env, int off)
1523 {
1524 	struct bpf_subprog_info *p;
1525 
1526 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1527 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1528 	if (!p)
1529 		return -ENOENT;
1530 	return p - env->subprog_info;
1531 
1532 }
1533 
1534 static int add_subprog(struct bpf_verifier_env *env, int off)
1535 {
1536 	int insn_cnt = env->prog->len;
1537 	int ret;
1538 
1539 	if (off >= insn_cnt || off < 0) {
1540 		verbose(env, "call to invalid destination\n");
1541 		return -EINVAL;
1542 	}
1543 	ret = find_subprog(env, off);
1544 	if (ret >= 0)
1545 		return ret;
1546 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1547 		verbose(env, "too many subprograms\n");
1548 		return -E2BIG;
1549 	}
1550 	env->subprog_info[env->subprog_cnt++].start = off;
1551 	sort(env->subprog_info, env->subprog_cnt,
1552 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1553 	return env->subprog_cnt - 1;
1554 }
1555 
1556 static int check_subprogs(struct bpf_verifier_env *env)
1557 {
1558 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1559 	struct bpf_subprog_info *subprog = env->subprog_info;
1560 	struct bpf_insn *insn = env->prog->insnsi;
1561 	int insn_cnt = env->prog->len;
1562 
1563 	/* Add entry function. */
1564 	ret = add_subprog(env, 0);
1565 	if (ret < 0)
1566 		return ret;
1567 
1568 	/* determine subprog starts. The end is one before the next starts */
1569 	for (i = 0; i < insn_cnt; i++) {
1570 		if (bpf_pseudo_func(insn + i)) {
1571 			if (!env->bpf_capable) {
1572 				verbose(env,
1573 					"function pointers are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1574 				return -EPERM;
1575 			}
1576 			ret = add_subprog(env, i + insn[i].imm + 1);
1577 			if (ret < 0)
1578 				return ret;
1579 			/* remember subprog */
1580 			insn[i + 1].imm = ret;
1581 			continue;
1582 		}
1583 		if (!bpf_pseudo_call(insn + i))
1584 			continue;
1585 		if (!env->bpf_capable) {
1586 			verbose(env,
1587 				"function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1588 			return -EPERM;
1589 		}
1590 		ret = add_subprog(env, i + insn[i].imm + 1);
1591 		if (ret < 0)
1592 			return ret;
1593 	}
1594 
1595 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1596 	 * logic. 'subprog_cnt' should not be increased.
1597 	 */
1598 	subprog[env->subprog_cnt].start = insn_cnt;
1599 
1600 	if (env->log.level & BPF_LOG_LEVEL2)
1601 		for (i = 0; i < env->subprog_cnt; i++)
1602 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1603 
1604 	/* now check that all jumps are within the same subprog */
1605 	subprog_start = subprog[cur_subprog].start;
1606 	subprog_end = subprog[cur_subprog + 1].start;
1607 	for (i = 0; i < insn_cnt; i++) {
1608 		u8 code = insn[i].code;
1609 
1610 		if (code == (BPF_JMP | BPF_CALL) &&
1611 		    insn[i].imm == BPF_FUNC_tail_call &&
1612 		    insn[i].src_reg != BPF_PSEUDO_CALL)
1613 			subprog[cur_subprog].has_tail_call = true;
1614 		if (BPF_CLASS(code) == BPF_LD &&
1615 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1616 			subprog[cur_subprog].has_ld_abs = true;
1617 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1618 			goto next;
1619 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1620 			goto next;
1621 		off = i + insn[i].off + 1;
1622 		if (off < subprog_start || off >= subprog_end) {
1623 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1624 			return -EINVAL;
1625 		}
1626 next:
1627 		if (i == subprog_end - 1) {
1628 			/* to avoid fall-through from one subprog into another
1629 			 * the last insn of the subprog should be either exit
1630 			 * or unconditional jump back
1631 			 */
1632 			if (code != (BPF_JMP | BPF_EXIT) &&
1633 			    code != (BPF_JMP | BPF_JA)) {
1634 				verbose(env, "last insn is not an exit or jmp\n");
1635 				return -EINVAL;
1636 			}
1637 			subprog_start = subprog_end;
1638 			cur_subprog++;
1639 			if (cur_subprog < env->subprog_cnt)
1640 				subprog_end = subprog[cur_subprog + 1].start;
1641 		}
1642 	}
1643 	return 0;
1644 }
1645 
1646 /* Parentage chain of this register (or stack slot) should take care of all
1647  * issues like callee-saved registers, stack slot allocation time, etc.
1648  */
1649 static int mark_reg_read(struct bpf_verifier_env *env,
1650 			 const struct bpf_reg_state *state,
1651 			 struct bpf_reg_state *parent, u8 flag)
1652 {
1653 	bool writes = parent == state->parent; /* Observe write marks */
1654 	int cnt = 0;
1655 
1656 	while (parent) {
1657 		/* if read wasn't screened by an earlier write ... */
1658 		if (writes && state->live & REG_LIVE_WRITTEN)
1659 			break;
1660 		if (parent->live & REG_LIVE_DONE) {
1661 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1662 				reg_type_str[parent->type],
1663 				parent->var_off.value, parent->off);
1664 			return -EFAULT;
1665 		}
1666 		/* The first condition is more likely to be true than the
1667 		 * second, checked it first.
1668 		 */
1669 		if ((parent->live & REG_LIVE_READ) == flag ||
1670 		    parent->live & REG_LIVE_READ64)
1671 			/* The parentage chain never changes and
1672 			 * this parent was already marked as LIVE_READ.
1673 			 * There is no need to keep walking the chain again and
1674 			 * keep re-marking all parents as LIVE_READ.
1675 			 * This case happens when the same register is read
1676 			 * multiple times without writes into it in-between.
1677 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1678 			 * then no need to set the weak REG_LIVE_READ32.
1679 			 */
1680 			break;
1681 		/* ... then we depend on parent's value */
1682 		parent->live |= flag;
1683 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1684 		if (flag == REG_LIVE_READ64)
1685 			parent->live &= ~REG_LIVE_READ32;
1686 		state = parent;
1687 		parent = state->parent;
1688 		writes = true;
1689 		cnt++;
1690 	}
1691 
1692 	if (env->longest_mark_read_walk < cnt)
1693 		env->longest_mark_read_walk = cnt;
1694 	return 0;
1695 }
1696 
1697 /* This function is supposed to be used by the following 32-bit optimization
1698  * code only. It returns TRUE if the source or destination register operates
1699  * on 64-bit, otherwise return FALSE.
1700  */
1701 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1702 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1703 {
1704 	u8 code, class, op;
1705 
1706 	code = insn->code;
1707 	class = BPF_CLASS(code);
1708 	op = BPF_OP(code);
1709 	if (class == BPF_JMP) {
1710 		/* BPF_EXIT for "main" will reach here. Return TRUE
1711 		 * conservatively.
1712 		 */
1713 		if (op == BPF_EXIT)
1714 			return true;
1715 		if (op == BPF_CALL) {
1716 			/* BPF to BPF call will reach here because of marking
1717 			 * caller saved clobber with DST_OP_NO_MARK for which we
1718 			 * don't care the register def because they are anyway
1719 			 * marked as NOT_INIT already.
1720 			 */
1721 			if (insn->src_reg == BPF_PSEUDO_CALL)
1722 				return false;
1723 			/* Helper call will reach here because of arg type
1724 			 * check, conservatively return TRUE.
1725 			 */
1726 			if (t == SRC_OP)
1727 				return true;
1728 
1729 			return false;
1730 		}
1731 	}
1732 
1733 	if (class == BPF_ALU64 || class == BPF_JMP ||
1734 	    /* BPF_END always use BPF_ALU class. */
1735 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1736 		return true;
1737 
1738 	if (class == BPF_ALU || class == BPF_JMP32)
1739 		return false;
1740 
1741 	if (class == BPF_LDX) {
1742 		if (t != SRC_OP)
1743 			return BPF_SIZE(code) == BPF_DW;
1744 		/* LDX source must be ptr. */
1745 		return true;
1746 	}
1747 
1748 	if (class == BPF_STX) {
1749 		if (reg->type != SCALAR_VALUE)
1750 			return true;
1751 		return BPF_SIZE(code) == BPF_DW;
1752 	}
1753 
1754 	if (class == BPF_LD) {
1755 		u8 mode = BPF_MODE(code);
1756 
1757 		/* LD_IMM64 */
1758 		if (mode == BPF_IMM)
1759 			return true;
1760 
1761 		/* Both LD_IND and LD_ABS return 32-bit data. */
1762 		if (t != SRC_OP)
1763 			return  false;
1764 
1765 		/* Implicit ctx ptr. */
1766 		if (regno == BPF_REG_6)
1767 			return true;
1768 
1769 		/* Explicit source could be any width. */
1770 		return true;
1771 	}
1772 
1773 	if (class == BPF_ST)
1774 		/* The only source register for BPF_ST is a ptr. */
1775 		return true;
1776 
1777 	/* Conservatively return true at default. */
1778 	return true;
1779 }
1780 
1781 /* Return TRUE if INSN doesn't have explicit value define. */
1782 static bool insn_no_def(struct bpf_insn *insn)
1783 {
1784 	u8 class = BPF_CLASS(insn->code);
1785 
1786 	return (class == BPF_JMP || class == BPF_JMP32 ||
1787 		class == BPF_STX || class == BPF_ST);
1788 }
1789 
1790 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1791 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1792 {
1793 	if (insn_no_def(insn))
1794 		return false;
1795 
1796 	return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1797 }
1798 
1799 static void mark_insn_zext(struct bpf_verifier_env *env,
1800 			   struct bpf_reg_state *reg)
1801 {
1802 	s32 def_idx = reg->subreg_def;
1803 
1804 	if (def_idx == DEF_NOT_SUBREG)
1805 		return;
1806 
1807 	env->insn_aux_data[def_idx - 1].zext_dst = true;
1808 	/* The dst will be zero extended, so won't be sub-register anymore. */
1809 	reg->subreg_def = DEF_NOT_SUBREG;
1810 }
1811 
1812 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1813 			 enum reg_arg_type t)
1814 {
1815 	struct bpf_verifier_state *vstate = env->cur_state;
1816 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1817 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1818 	struct bpf_reg_state *reg, *regs = state->regs;
1819 	bool rw64;
1820 
1821 	if (regno >= MAX_BPF_REG) {
1822 		verbose(env, "R%d is invalid\n", regno);
1823 		return -EINVAL;
1824 	}
1825 
1826 	reg = &regs[regno];
1827 	rw64 = is_reg64(env, insn, regno, reg, t);
1828 	if (t == SRC_OP) {
1829 		/* check whether register used as source operand can be read */
1830 		if (reg->type == NOT_INIT) {
1831 			verbose(env, "R%d !read_ok\n", regno);
1832 			return -EACCES;
1833 		}
1834 		/* We don't need to worry about FP liveness because it's read-only */
1835 		if (regno == BPF_REG_FP)
1836 			return 0;
1837 
1838 		if (rw64)
1839 			mark_insn_zext(env, reg);
1840 
1841 		return mark_reg_read(env, reg, reg->parent,
1842 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1843 	} else {
1844 		/* check whether register used as dest operand can be written to */
1845 		if (regno == BPF_REG_FP) {
1846 			verbose(env, "frame pointer is read only\n");
1847 			return -EACCES;
1848 		}
1849 		reg->live |= REG_LIVE_WRITTEN;
1850 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1851 		if (t == DST_OP)
1852 			mark_reg_unknown(env, regs, regno);
1853 	}
1854 	return 0;
1855 }
1856 
1857 /* for any branch, call, exit record the history of jmps in the given state */
1858 static int push_jmp_history(struct bpf_verifier_env *env,
1859 			    struct bpf_verifier_state *cur)
1860 {
1861 	u32 cnt = cur->jmp_history_cnt;
1862 	struct bpf_idx_pair *p;
1863 
1864 	cnt++;
1865 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1866 	if (!p)
1867 		return -ENOMEM;
1868 	p[cnt - 1].idx = env->insn_idx;
1869 	p[cnt - 1].prev_idx = env->prev_insn_idx;
1870 	cur->jmp_history = p;
1871 	cur->jmp_history_cnt = cnt;
1872 	return 0;
1873 }
1874 
1875 /* Backtrack one insn at a time. If idx is not at the top of recorded
1876  * history then previous instruction came from straight line execution.
1877  */
1878 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1879 			     u32 *history)
1880 {
1881 	u32 cnt = *history;
1882 
1883 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
1884 		i = st->jmp_history[cnt - 1].prev_idx;
1885 		(*history)--;
1886 	} else {
1887 		i--;
1888 	}
1889 	return i;
1890 }
1891 
1892 /* For given verifier state backtrack_insn() is called from the last insn to
1893  * the first insn. Its purpose is to compute a bitmask of registers and
1894  * stack slots that needs precision in the parent verifier state.
1895  */
1896 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1897 			  u32 *reg_mask, u64 *stack_mask)
1898 {
1899 	const struct bpf_insn_cbs cbs = {
1900 		.cb_print	= verbose,
1901 		.private_data	= env,
1902 	};
1903 	struct bpf_insn *insn = env->prog->insnsi + idx;
1904 	u8 class = BPF_CLASS(insn->code);
1905 	u8 opcode = BPF_OP(insn->code);
1906 	u8 mode = BPF_MODE(insn->code);
1907 	u32 dreg = 1u << insn->dst_reg;
1908 	u32 sreg = 1u << insn->src_reg;
1909 	u32 spi;
1910 
1911 	if (insn->code == 0)
1912 		return 0;
1913 	if (env->log.level & BPF_LOG_LEVEL) {
1914 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1915 		verbose(env, "%d: ", idx);
1916 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1917 	}
1918 
1919 	if (class == BPF_ALU || class == BPF_ALU64) {
1920 		if (!(*reg_mask & dreg))
1921 			return 0;
1922 		if (opcode == BPF_MOV) {
1923 			if (BPF_SRC(insn->code) == BPF_X) {
1924 				/* dreg = sreg
1925 				 * dreg needs precision after this insn
1926 				 * sreg needs precision before this insn
1927 				 */
1928 				*reg_mask &= ~dreg;
1929 				*reg_mask |= sreg;
1930 			} else {
1931 				/* dreg = K
1932 				 * dreg needs precision after this insn.
1933 				 * Corresponding register is already marked
1934 				 * as precise=true in this verifier state.
1935 				 * No further markings in parent are necessary
1936 				 */
1937 				*reg_mask &= ~dreg;
1938 			}
1939 		} else {
1940 			if (BPF_SRC(insn->code) == BPF_X) {
1941 				/* dreg += sreg
1942 				 * both dreg and sreg need precision
1943 				 * before this insn
1944 				 */
1945 				*reg_mask |= sreg;
1946 			} /* else dreg += K
1947 			   * dreg still needs precision before this insn
1948 			   */
1949 		}
1950 	} else if (class == BPF_LDX) {
1951 		if (!(*reg_mask & dreg))
1952 			return 0;
1953 		*reg_mask &= ~dreg;
1954 
1955 		/* scalars can only be spilled into stack w/o losing precision.
1956 		 * Load from any other memory can be zero extended.
1957 		 * The desire to keep that precision is already indicated
1958 		 * by 'precise' mark in corresponding register of this state.
1959 		 * No further tracking necessary.
1960 		 */
1961 		if (insn->src_reg != BPF_REG_FP)
1962 			return 0;
1963 		if (BPF_SIZE(insn->code) != BPF_DW)
1964 			return 0;
1965 
1966 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
1967 		 * that [fp - off] slot contains scalar that needs to be
1968 		 * tracked with precision
1969 		 */
1970 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1971 		if (spi >= 64) {
1972 			verbose(env, "BUG spi %d\n", spi);
1973 			WARN_ONCE(1, "verifier backtracking bug");
1974 			return -EFAULT;
1975 		}
1976 		*stack_mask |= 1ull << spi;
1977 	} else if (class == BPF_STX || class == BPF_ST) {
1978 		if (*reg_mask & dreg)
1979 			/* stx & st shouldn't be using _scalar_ dst_reg
1980 			 * to access memory. It means backtracking
1981 			 * encountered a case of pointer subtraction.
1982 			 */
1983 			return -ENOTSUPP;
1984 		/* scalars can only be spilled into stack */
1985 		if (insn->dst_reg != BPF_REG_FP)
1986 			return 0;
1987 		if (BPF_SIZE(insn->code) != BPF_DW)
1988 			return 0;
1989 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1990 		if (spi >= 64) {
1991 			verbose(env, "BUG spi %d\n", spi);
1992 			WARN_ONCE(1, "verifier backtracking bug");
1993 			return -EFAULT;
1994 		}
1995 		if (!(*stack_mask & (1ull << spi)))
1996 			return 0;
1997 		*stack_mask &= ~(1ull << spi);
1998 		if (class == BPF_STX)
1999 			*reg_mask |= sreg;
2000 	} else if (class == BPF_JMP || class == BPF_JMP32) {
2001 		if (opcode == BPF_CALL) {
2002 			if (insn->src_reg == BPF_PSEUDO_CALL)
2003 				return -ENOTSUPP;
2004 			/* regular helper call sets R0 */
2005 			*reg_mask &= ~1;
2006 			if (*reg_mask & 0x3f) {
2007 				/* if backtracing was looking for registers R1-R5
2008 				 * they should have been found already.
2009 				 */
2010 				verbose(env, "BUG regs %x\n", *reg_mask);
2011 				WARN_ONCE(1, "verifier backtracking bug");
2012 				return -EFAULT;
2013 			}
2014 		} else if (opcode == BPF_EXIT) {
2015 			return -ENOTSUPP;
2016 		}
2017 	} else if (class == BPF_LD) {
2018 		if (!(*reg_mask & dreg))
2019 			return 0;
2020 		*reg_mask &= ~dreg;
2021 		/* It's ld_imm64 or ld_abs or ld_ind.
2022 		 * For ld_imm64 no further tracking of precision
2023 		 * into parent is necessary
2024 		 */
2025 		if (mode == BPF_IND || mode == BPF_ABS)
2026 			/* to be analyzed */
2027 			return -ENOTSUPP;
2028 	}
2029 	return 0;
2030 }
2031 
2032 /* the scalar precision tracking algorithm:
2033  * . at the start all registers have precise=false.
2034  * . scalar ranges are tracked as normal through alu and jmp insns.
2035  * . once precise value of the scalar register is used in:
2036  *   .  ptr + scalar alu
2037  *   . if (scalar cond K|scalar)
2038  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2039  *   backtrack through the verifier states and mark all registers and
2040  *   stack slots with spilled constants that these scalar regisers
2041  *   should be precise.
2042  * . during state pruning two registers (or spilled stack slots)
2043  *   are equivalent if both are not precise.
2044  *
2045  * Note the verifier cannot simply walk register parentage chain,
2046  * since many different registers and stack slots could have been
2047  * used to compute single precise scalar.
2048  *
2049  * The approach of starting with precise=true for all registers and then
2050  * backtrack to mark a register as not precise when the verifier detects
2051  * that program doesn't care about specific value (e.g., when helper
2052  * takes register as ARG_ANYTHING parameter) is not safe.
2053  *
2054  * It's ok to walk single parentage chain of the verifier states.
2055  * It's possible that this backtracking will go all the way till 1st insn.
2056  * All other branches will be explored for needing precision later.
2057  *
2058  * The backtracking needs to deal with cases like:
2059  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2060  * r9 -= r8
2061  * r5 = r9
2062  * if r5 > 0x79f goto pc+7
2063  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2064  * r5 += 1
2065  * ...
2066  * call bpf_perf_event_output#25
2067  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2068  *
2069  * and this case:
2070  * r6 = 1
2071  * call foo // uses callee's r6 inside to compute r0
2072  * r0 += r6
2073  * if r0 == 0 goto
2074  *
2075  * to track above reg_mask/stack_mask needs to be independent for each frame.
2076  *
2077  * Also if parent's curframe > frame where backtracking started,
2078  * the verifier need to mark registers in both frames, otherwise callees
2079  * may incorrectly prune callers. This is similar to
2080  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2081  *
2082  * For now backtracking falls back into conservative marking.
2083  */
2084 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2085 				     struct bpf_verifier_state *st)
2086 {
2087 	struct bpf_func_state *func;
2088 	struct bpf_reg_state *reg;
2089 	int i, j;
2090 
2091 	/* big hammer: mark all scalars precise in this path.
2092 	 * pop_stack may still get !precise scalars.
2093 	 */
2094 	for (; st; st = st->parent)
2095 		for (i = 0; i <= st->curframe; i++) {
2096 			func = st->frame[i];
2097 			for (j = 0; j < BPF_REG_FP; j++) {
2098 				reg = &func->regs[j];
2099 				if (reg->type != SCALAR_VALUE)
2100 					continue;
2101 				reg->precise = true;
2102 			}
2103 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2104 				if (func->stack[j].slot_type[0] != STACK_SPILL)
2105 					continue;
2106 				reg = &func->stack[j].spilled_ptr;
2107 				if (reg->type != SCALAR_VALUE)
2108 					continue;
2109 				reg->precise = true;
2110 			}
2111 		}
2112 }
2113 
2114 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2115 				  int spi)
2116 {
2117 	struct bpf_verifier_state *st = env->cur_state;
2118 	int first_idx = st->first_insn_idx;
2119 	int last_idx = env->insn_idx;
2120 	struct bpf_func_state *func;
2121 	struct bpf_reg_state *reg;
2122 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2123 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2124 	bool skip_first = true;
2125 	bool new_marks = false;
2126 	int i, err;
2127 
2128 	if (!env->bpf_capable)
2129 		return 0;
2130 
2131 	func = st->frame[st->curframe];
2132 	if (regno >= 0) {
2133 		reg = &func->regs[regno];
2134 		if (reg->type != SCALAR_VALUE) {
2135 			WARN_ONCE(1, "backtracing misuse");
2136 			return -EFAULT;
2137 		}
2138 		if (!reg->precise)
2139 			new_marks = true;
2140 		else
2141 			reg_mask = 0;
2142 		reg->precise = true;
2143 	}
2144 
2145 	while (spi >= 0) {
2146 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2147 			stack_mask = 0;
2148 			break;
2149 		}
2150 		reg = &func->stack[spi].spilled_ptr;
2151 		if (reg->type != SCALAR_VALUE) {
2152 			stack_mask = 0;
2153 			break;
2154 		}
2155 		if (!reg->precise)
2156 			new_marks = true;
2157 		else
2158 			stack_mask = 0;
2159 		reg->precise = true;
2160 		break;
2161 	}
2162 
2163 	if (!new_marks)
2164 		return 0;
2165 	if (!reg_mask && !stack_mask)
2166 		return 0;
2167 	for (;;) {
2168 		DECLARE_BITMAP(mask, 64);
2169 		u32 history = st->jmp_history_cnt;
2170 
2171 		if (env->log.level & BPF_LOG_LEVEL)
2172 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2173 		for (i = last_idx;;) {
2174 			if (skip_first) {
2175 				err = 0;
2176 				skip_first = false;
2177 			} else {
2178 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2179 			}
2180 			if (err == -ENOTSUPP) {
2181 				mark_all_scalars_precise(env, st);
2182 				return 0;
2183 			} else if (err) {
2184 				return err;
2185 			}
2186 			if (!reg_mask && !stack_mask)
2187 				/* Found assignment(s) into tracked register in this state.
2188 				 * Since this state is already marked, just return.
2189 				 * Nothing to be tracked further in the parent state.
2190 				 */
2191 				return 0;
2192 			if (i == first_idx)
2193 				break;
2194 			i = get_prev_insn_idx(st, i, &history);
2195 			if (i >= env->prog->len) {
2196 				/* This can happen if backtracking reached insn 0
2197 				 * and there are still reg_mask or stack_mask
2198 				 * to backtrack.
2199 				 * It means the backtracking missed the spot where
2200 				 * particular register was initialized with a constant.
2201 				 */
2202 				verbose(env, "BUG backtracking idx %d\n", i);
2203 				WARN_ONCE(1, "verifier backtracking bug");
2204 				return -EFAULT;
2205 			}
2206 		}
2207 		st = st->parent;
2208 		if (!st)
2209 			break;
2210 
2211 		new_marks = false;
2212 		func = st->frame[st->curframe];
2213 		bitmap_from_u64(mask, reg_mask);
2214 		for_each_set_bit(i, mask, 32) {
2215 			reg = &func->regs[i];
2216 			if (reg->type != SCALAR_VALUE) {
2217 				reg_mask &= ~(1u << i);
2218 				continue;
2219 			}
2220 			if (!reg->precise)
2221 				new_marks = true;
2222 			reg->precise = true;
2223 		}
2224 
2225 		bitmap_from_u64(mask, stack_mask);
2226 		for_each_set_bit(i, mask, 64) {
2227 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2228 				/* the sequence of instructions:
2229 				 * 2: (bf) r3 = r10
2230 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2231 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2232 				 * doesn't contain jmps. It's backtracked
2233 				 * as a single block.
2234 				 * During backtracking insn 3 is not recognized as
2235 				 * stack access, so at the end of backtracking
2236 				 * stack slot fp-8 is still marked in stack_mask.
2237 				 * However the parent state may not have accessed
2238 				 * fp-8 and it's "unallocated" stack space.
2239 				 * In such case fallback to conservative.
2240 				 */
2241 				mark_all_scalars_precise(env, st);
2242 				return 0;
2243 			}
2244 
2245 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
2246 				stack_mask &= ~(1ull << i);
2247 				continue;
2248 			}
2249 			reg = &func->stack[i].spilled_ptr;
2250 			if (reg->type != SCALAR_VALUE) {
2251 				stack_mask &= ~(1ull << i);
2252 				continue;
2253 			}
2254 			if (!reg->precise)
2255 				new_marks = true;
2256 			reg->precise = true;
2257 		}
2258 		if (env->log.level & BPF_LOG_LEVEL) {
2259 			print_verifier_state(env, func);
2260 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2261 				new_marks ? "didn't have" : "already had",
2262 				reg_mask, stack_mask);
2263 		}
2264 
2265 		if (!reg_mask && !stack_mask)
2266 			break;
2267 		if (!new_marks)
2268 			break;
2269 
2270 		last_idx = st->last_insn_idx;
2271 		first_idx = st->first_insn_idx;
2272 	}
2273 	return 0;
2274 }
2275 
2276 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2277 {
2278 	return __mark_chain_precision(env, regno, -1);
2279 }
2280 
2281 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2282 {
2283 	return __mark_chain_precision(env, -1, spi);
2284 }
2285 
2286 static bool is_spillable_regtype(enum bpf_reg_type type)
2287 {
2288 	switch (type) {
2289 	case PTR_TO_MAP_VALUE:
2290 	case PTR_TO_MAP_VALUE_OR_NULL:
2291 	case PTR_TO_STACK:
2292 	case PTR_TO_CTX:
2293 	case PTR_TO_PACKET:
2294 	case PTR_TO_PACKET_META:
2295 	case PTR_TO_PACKET_END:
2296 	case PTR_TO_FLOW_KEYS:
2297 	case CONST_PTR_TO_MAP:
2298 	case PTR_TO_SOCKET:
2299 	case PTR_TO_SOCKET_OR_NULL:
2300 	case PTR_TO_SOCK_COMMON:
2301 	case PTR_TO_SOCK_COMMON_OR_NULL:
2302 	case PTR_TO_TCP_SOCK:
2303 	case PTR_TO_TCP_SOCK_OR_NULL:
2304 	case PTR_TO_XDP_SOCK:
2305 	case PTR_TO_BTF_ID:
2306 	case PTR_TO_BTF_ID_OR_NULL:
2307 	case PTR_TO_RDONLY_BUF:
2308 	case PTR_TO_RDONLY_BUF_OR_NULL:
2309 	case PTR_TO_RDWR_BUF:
2310 	case PTR_TO_RDWR_BUF_OR_NULL:
2311 	case PTR_TO_PERCPU_BTF_ID:
2312 	case PTR_TO_MEM:
2313 	case PTR_TO_MEM_OR_NULL:
2314 	case PTR_TO_FUNC:
2315 	case PTR_TO_MAP_KEY:
2316 		return true;
2317 	default:
2318 		return false;
2319 	}
2320 }
2321 
2322 /* Does this register contain a constant zero? */
2323 static bool register_is_null(struct bpf_reg_state *reg)
2324 {
2325 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2326 }
2327 
2328 static bool register_is_const(struct bpf_reg_state *reg)
2329 {
2330 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2331 }
2332 
2333 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2334 {
2335 	return tnum_is_unknown(reg->var_off) &&
2336 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2337 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2338 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2339 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2340 }
2341 
2342 static bool register_is_bounded(struct bpf_reg_state *reg)
2343 {
2344 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2345 }
2346 
2347 static bool __is_pointer_value(bool allow_ptr_leaks,
2348 			       const struct bpf_reg_state *reg)
2349 {
2350 	if (allow_ptr_leaks)
2351 		return false;
2352 
2353 	return reg->type != SCALAR_VALUE;
2354 }
2355 
2356 static void save_register_state(struct bpf_func_state *state,
2357 				int spi, struct bpf_reg_state *reg)
2358 {
2359 	int i;
2360 
2361 	state->stack[spi].spilled_ptr = *reg;
2362 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2363 
2364 	for (i = 0; i < BPF_REG_SIZE; i++)
2365 		state->stack[spi].slot_type[i] = STACK_SPILL;
2366 }
2367 
2368 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2369  * stack boundary and alignment are checked in check_mem_access()
2370  */
2371 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2372 				       /* stack frame we're writing to */
2373 				       struct bpf_func_state *state,
2374 				       int off, int size, int value_regno,
2375 				       int insn_idx)
2376 {
2377 	struct bpf_func_state *cur; /* state of the current function */
2378 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2379 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2380 	struct bpf_reg_state *reg = NULL;
2381 
2382 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2383 				 state->acquired_refs, true);
2384 	if (err)
2385 		return err;
2386 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2387 	 * so it's aligned access and [off, off + size) are within stack limits
2388 	 */
2389 	if (!env->allow_ptr_leaks &&
2390 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2391 	    size != BPF_REG_SIZE) {
2392 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2393 		return -EACCES;
2394 	}
2395 
2396 	cur = env->cur_state->frame[env->cur_state->curframe];
2397 	if (value_regno >= 0)
2398 		reg = &cur->regs[value_regno];
2399 
2400 	if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2401 	    !register_is_null(reg) && env->bpf_capable) {
2402 		if (dst_reg != BPF_REG_FP) {
2403 			/* The backtracking logic can only recognize explicit
2404 			 * stack slot address like [fp - 8]. Other spill of
2405 			 * scalar via different register has to be conervative.
2406 			 * Backtrack from here and mark all registers as precise
2407 			 * that contributed into 'reg' being a constant.
2408 			 */
2409 			err = mark_chain_precision(env, value_regno);
2410 			if (err)
2411 				return err;
2412 		}
2413 		save_register_state(state, spi, reg);
2414 	} else if (reg && is_spillable_regtype(reg->type)) {
2415 		/* register containing pointer is being spilled into stack */
2416 		if (size != BPF_REG_SIZE) {
2417 			verbose_linfo(env, insn_idx, "; ");
2418 			verbose(env, "invalid size of register spill\n");
2419 			return -EACCES;
2420 		}
2421 
2422 		if (state != cur && reg->type == PTR_TO_STACK) {
2423 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2424 			return -EINVAL;
2425 		}
2426 
2427 		if (!env->bypass_spec_v4) {
2428 			bool sanitize = false;
2429 
2430 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2431 			    register_is_const(&state->stack[spi].spilled_ptr))
2432 				sanitize = true;
2433 			for (i = 0; i < BPF_REG_SIZE; i++)
2434 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
2435 					sanitize = true;
2436 					break;
2437 				}
2438 			if (sanitize) {
2439 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2440 				int soff = (-spi - 1) * BPF_REG_SIZE;
2441 
2442 				/* detected reuse of integer stack slot with a pointer
2443 				 * which means either llvm is reusing stack slot or
2444 				 * an attacker is trying to exploit CVE-2018-3639
2445 				 * (speculative store bypass)
2446 				 * Have to sanitize that slot with preemptive
2447 				 * store of zero.
2448 				 */
2449 				if (*poff && *poff != soff) {
2450 					/* disallow programs where single insn stores
2451 					 * into two different stack slots, since verifier
2452 					 * cannot sanitize them
2453 					 */
2454 					verbose(env,
2455 						"insn %d cannot access two stack slots fp%d and fp%d",
2456 						insn_idx, *poff, soff);
2457 					return -EINVAL;
2458 				}
2459 				*poff = soff;
2460 			}
2461 		}
2462 		save_register_state(state, spi, reg);
2463 	} else {
2464 		u8 type = STACK_MISC;
2465 
2466 		/* regular write of data into stack destroys any spilled ptr */
2467 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2468 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2469 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2470 			for (i = 0; i < BPF_REG_SIZE; i++)
2471 				state->stack[spi].slot_type[i] = STACK_MISC;
2472 
2473 		/* only mark the slot as written if all 8 bytes were written
2474 		 * otherwise read propagation may incorrectly stop too soon
2475 		 * when stack slots are partially written.
2476 		 * This heuristic means that read propagation will be
2477 		 * conservative, since it will add reg_live_read marks
2478 		 * to stack slots all the way to first state when programs
2479 		 * writes+reads less than 8 bytes
2480 		 */
2481 		if (size == BPF_REG_SIZE)
2482 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2483 
2484 		/* when we zero initialize stack slots mark them as such */
2485 		if (reg && register_is_null(reg)) {
2486 			/* backtracking doesn't work for STACK_ZERO yet. */
2487 			err = mark_chain_precision(env, value_regno);
2488 			if (err)
2489 				return err;
2490 			type = STACK_ZERO;
2491 		}
2492 
2493 		/* Mark slots affected by this stack write. */
2494 		for (i = 0; i < size; i++)
2495 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2496 				type;
2497 	}
2498 	return 0;
2499 }
2500 
2501 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2502  * known to contain a variable offset.
2503  * This function checks whether the write is permitted and conservatively
2504  * tracks the effects of the write, considering that each stack slot in the
2505  * dynamic range is potentially written to.
2506  *
2507  * 'off' includes 'regno->off'.
2508  * 'value_regno' can be -1, meaning that an unknown value is being written to
2509  * the stack.
2510  *
2511  * Spilled pointers in range are not marked as written because we don't know
2512  * what's going to be actually written. This means that read propagation for
2513  * future reads cannot be terminated by this write.
2514  *
2515  * For privileged programs, uninitialized stack slots are considered
2516  * initialized by this write (even though we don't know exactly what offsets
2517  * are going to be written to). The idea is that we don't want the verifier to
2518  * reject future reads that access slots written to through variable offsets.
2519  */
2520 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2521 				     /* func where register points to */
2522 				     struct bpf_func_state *state,
2523 				     int ptr_regno, int off, int size,
2524 				     int value_regno, int insn_idx)
2525 {
2526 	struct bpf_func_state *cur; /* state of the current function */
2527 	int min_off, max_off;
2528 	int i, err;
2529 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2530 	bool writing_zero = false;
2531 	/* set if the fact that we're writing a zero is used to let any
2532 	 * stack slots remain STACK_ZERO
2533 	 */
2534 	bool zero_used = false;
2535 
2536 	cur = env->cur_state->frame[env->cur_state->curframe];
2537 	ptr_reg = &cur->regs[ptr_regno];
2538 	min_off = ptr_reg->smin_value + off;
2539 	max_off = ptr_reg->smax_value + off + size;
2540 	if (value_regno >= 0)
2541 		value_reg = &cur->regs[value_regno];
2542 	if (value_reg && register_is_null(value_reg))
2543 		writing_zero = true;
2544 
2545 	err = realloc_func_state(state, round_up(-min_off, BPF_REG_SIZE),
2546 				 state->acquired_refs, true);
2547 	if (err)
2548 		return err;
2549 
2550 
2551 	/* Variable offset writes destroy any spilled pointers in range. */
2552 	for (i = min_off; i < max_off; i++) {
2553 		u8 new_type, *stype;
2554 		int slot, spi;
2555 
2556 		slot = -i - 1;
2557 		spi = slot / BPF_REG_SIZE;
2558 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2559 
2560 		if (!env->allow_ptr_leaks
2561 				&& *stype != NOT_INIT
2562 				&& *stype != SCALAR_VALUE) {
2563 			/* Reject the write if there's are spilled pointers in
2564 			 * range. If we didn't reject here, the ptr status
2565 			 * would be erased below (even though not all slots are
2566 			 * actually overwritten), possibly opening the door to
2567 			 * leaks.
2568 			 */
2569 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2570 				insn_idx, i);
2571 			return -EINVAL;
2572 		}
2573 
2574 		/* Erase all spilled pointers. */
2575 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2576 
2577 		/* Update the slot type. */
2578 		new_type = STACK_MISC;
2579 		if (writing_zero && *stype == STACK_ZERO) {
2580 			new_type = STACK_ZERO;
2581 			zero_used = true;
2582 		}
2583 		/* If the slot is STACK_INVALID, we check whether it's OK to
2584 		 * pretend that it will be initialized by this write. The slot
2585 		 * might not actually be written to, and so if we mark it as
2586 		 * initialized future reads might leak uninitialized memory.
2587 		 * For privileged programs, we will accept such reads to slots
2588 		 * that may or may not be written because, if we're reject
2589 		 * them, the error would be too confusing.
2590 		 */
2591 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2592 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2593 					insn_idx, i);
2594 			return -EINVAL;
2595 		}
2596 		*stype = new_type;
2597 	}
2598 	if (zero_used) {
2599 		/* backtracking doesn't work for STACK_ZERO yet. */
2600 		err = mark_chain_precision(env, value_regno);
2601 		if (err)
2602 			return err;
2603 	}
2604 	return 0;
2605 }
2606 
2607 /* When register 'dst_regno' is assigned some values from stack[min_off,
2608  * max_off), we set the register's type according to the types of the
2609  * respective stack slots. If all the stack values are known to be zeros, then
2610  * so is the destination reg. Otherwise, the register is considered to be
2611  * SCALAR. This function does not deal with register filling; the caller must
2612  * ensure that all spilled registers in the stack range have been marked as
2613  * read.
2614  */
2615 static void mark_reg_stack_read(struct bpf_verifier_env *env,
2616 				/* func where src register points to */
2617 				struct bpf_func_state *ptr_state,
2618 				int min_off, int max_off, int dst_regno)
2619 {
2620 	struct bpf_verifier_state *vstate = env->cur_state;
2621 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2622 	int i, slot, spi;
2623 	u8 *stype;
2624 	int zeros = 0;
2625 
2626 	for (i = min_off; i < max_off; i++) {
2627 		slot = -i - 1;
2628 		spi = slot / BPF_REG_SIZE;
2629 		stype = ptr_state->stack[spi].slot_type;
2630 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
2631 			break;
2632 		zeros++;
2633 	}
2634 	if (zeros == max_off - min_off) {
2635 		/* any access_size read into register is zero extended,
2636 		 * so the whole register == const_zero
2637 		 */
2638 		__mark_reg_const_zero(&state->regs[dst_regno]);
2639 		/* backtracking doesn't support STACK_ZERO yet,
2640 		 * so mark it precise here, so that later
2641 		 * backtracking can stop here.
2642 		 * Backtracking may not need this if this register
2643 		 * doesn't participate in pointer adjustment.
2644 		 * Forward propagation of precise flag is not
2645 		 * necessary either. This mark is only to stop
2646 		 * backtracking. Any register that contributed
2647 		 * to const 0 was marked precise before spill.
2648 		 */
2649 		state->regs[dst_regno].precise = true;
2650 	} else {
2651 		/* have read misc data from the stack */
2652 		mark_reg_unknown(env, state->regs, dst_regno);
2653 	}
2654 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2655 }
2656 
2657 /* Read the stack at 'off' and put the results into the register indicated by
2658  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
2659  * spilled reg.
2660  *
2661  * 'dst_regno' can be -1, meaning that the read value is not going to a
2662  * register.
2663  *
2664  * The access is assumed to be within the current stack bounds.
2665  */
2666 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
2667 				      /* func where src register points to */
2668 				      struct bpf_func_state *reg_state,
2669 				      int off, int size, int dst_regno)
2670 {
2671 	struct bpf_verifier_state *vstate = env->cur_state;
2672 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2673 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2674 	struct bpf_reg_state *reg;
2675 	u8 *stype;
2676 
2677 	stype = reg_state->stack[spi].slot_type;
2678 	reg = &reg_state->stack[spi].spilled_ptr;
2679 
2680 	if (stype[0] == STACK_SPILL) {
2681 		if (size != BPF_REG_SIZE) {
2682 			if (reg->type != SCALAR_VALUE) {
2683 				verbose_linfo(env, env->insn_idx, "; ");
2684 				verbose(env, "invalid size of register fill\n");
2685 				return -EACCES;
2686 			}
2687 			if (dst_regno >= 0) {
2688 				mark_reg_unknown(env, state->regs, dst_regno);
2689 				state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2690 			}
2691 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2692 			return 0;
2693 		}
2694 		for (i = 1; i < BPF_REG_SIZE; i++) {
2695 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2696 				verbose(env, "corrupted spill memory\n");
2697 				return -EACCES;
2698 			}
2699 		}
2700 
2701 		if (dst_regno >= 0) {
2702 			/* restore register state from stack */
2703 			state->regs[dst_regno] = *reg;
2704 			/* mark reg as written since spilled pointer state likely
2705 			 * has its liveness marks cleared by is_state_visited()
2706 			 * which resets stack/reg liveness for state transitions
2707 			 */
2708 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2709 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2710 			/* If dst_regno==-1, the caller is asking us whether
2711 			 * it is acceptable to use this value as a SCALAR_VALUE
2712 			 * (e.g. for XADD).
2713 			 * We must not allow unprivileged callers to do that
2714 			 * with spilled pointers.
2715 			 */
2716 			verbose(env, "leaking pointer from stack off %d\n",
2717 				off);
2718 			return -EACCES;
2719 		}
2720 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2721 	} else {
2722 		u8 type;
2723 
2724 		for (i = 0; i < size; i++) {
2725 			type = stype[(slot - i) % BPF_REG_SIZE];
2726 			if (type == STACK_MISC)
2727 				continue;
2728 			if (type == STACK_ZERO)
2729 				continue;
2730 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2731 				off, i, size);
2732 			return -EACCES;
2733 		}
2734 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2735 		if (dst_regno >= 0)
2736 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
2737 	}
2738 	return 0;
2739 }
2740 
2741 enum stack_access_src {
2742 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
2743 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
2744 };
2745 
2746 static int check_stack_range_initialized(struct bpf_verifier_env *env,
2747 					 int regno, int off, int access_size,
2748 					 bool zero_size_allowed,
2749 					 enum stack_access_src type,
2750 					 struct bpf_call_arg_meta *meta);
2751 
2752 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2753 {
2754 	return cur_regs(env) + regno;
2755 }
2756 
2757 /* Read the stack at 'ptr_regno + off' and put the result into the register
2758  * 'dst_regno'.
2759  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
2760  * but not its variable offset.
2761  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
2762  *
2763  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
2764  * filling registers (i.e. reads of spilled register cannot be detected when
2765  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
2766  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
2767  * offset; for a fixed offset check_stack_read_fixed_off should be used
2768  * instead.
2769  */
2770 static int check_stack_read_var_off(struct bpf_verifier_env *env,
2771 				    int ptr_regno, int off, int size, int dst_regno)
2772 {
2773 	/* The state of the source register. */
2774 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2775 	struct bpf_func_state *ptr_state = func(env, reg);
2776 	int err;
2777 	int min_off, max_off;
2778 
2779 	/* Note that we pass a NULL meta, so raw access will not be permitted.
2780 	 */
2781 	err = check_stack_range_initialized(env, ptr_regno, off, size,
2782 					    false, ACCESS_DIRECT, NULL);
2783 	if (err)
2784 		return err;
2785 
2786 	min_off = reg->smin_value + off;
2787 	max_off = reg->smax_value + off;
2788 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
2789 	return 0;
2790 }
2791 
2792 /* check_stack_read dispatches to check_stack_read_fixed_off or
2793  * check_stack_read_var_off.
2794  *
2795  * The caller must ensure that the offset falls within the allocated stack
2796  * bounds.
2797  *
2798  * 'dst_regno' is a register which will receive the value from the stack. It
2799  * can be -1, meaning that the read value is not going to a register.
2800  */
2801 static int check_stack_read(struct bpf_verifier_env *env,
2802 			    int ptr_regno, int off, int size,
2803 			    int dst_regno)
2804 {
2805 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2806 	struct bpf_func_state *state = func(env, reg);
2807 	int err;
2808 	/* Some accesses are only permitted with a static offset. */
2809 	bool var_off = !tnum_is_const(reg->var_off);
2810 
2811 	/* The offset is required to be static when reads don't go to a
2812 	 * register, in order to not leak pointers (see
2813 	 * check_stack_read_fixed_off).
2814 	 */
2815 	if (dst_regno < 0 && var_off) {
2816 		char tn_buf[48];
2817 
2818 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2819 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
2820 			tn_buf, off, size);
2821 		return -EACCES;
2822 	}
2823 	/* Variable offset is prohibited for unprivileged mode for simplicity
2824 	 * since it requires corresponding support in Spectre masking for stack
2825 	 * ALU. See also retrieve_ptr_limit().
2826 	 */
2827 	if (!env->bypass_spec_v1 && var_off) {
2828 		char tn_buf[48];
2829 
2830 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2831 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
2832 				ptr_regno, tn_buf);
2833 		return -EACCES;
2834 	}
2835 
2836 	if (!var_off) {
2837 		off += reg->var_off.value;
2838 		err = check_stack_read_fixed_off(env, state, off, size,
2839 						 dst_regno);
2840 	} else {
2841 		/* Variable offset stack reads need more conservative handling
2842 		 * than fixed offset ones. Note that dst_regno >= 0 on this
2843 		 * branch.
2844 		 */
2845 		err = check_stack_read_var_off(env, ptr_regno, off, size,
2846 					       dst_regno);
2847 	}
2848 	return err;
2849 }
2850 
2851 
2852 /* check_stack_write dispatches to check_stack_write_fixed_off or
2853  * check_stack_write_var_off.
2854  *
2855  * 'ptr_regno' is the register used as a pointer into the stack.
2856  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
2857  * 'value_regno' is the register whose value we're writing to the stack. It can
2858  * be -1, meaning that we're not writing from a register.
2859  *
2860  * The caller must ensure that the offset falls within the maximum stack size.
2861  */
2862 static int check_stack_write(struct bpf_verifier_env *env,
2863 			     int ptr_regno, int off, int size,
2864 			     int value_regno, int insn_idx)
2865 {
2866 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2867 	struct bpf_func_state *state = func(env, reg);
2868 	int err;
2869 
2870 	if (tnum_is_const(reg->var_off)) {
2871 		off += reg->var_off.value;
2872 		err = check_stack_write_fixed_off(env, state, off, size,
2873 						  value_regno, insn_idx);
2874 	} else {
2875 		/* Variable offset stack reads need more conservative handling
2876 		 * than fixed offset ones.
2877 		 */
2878 		err = check_stack_write_var_off(env, state,
2879 						ptr_regno, off, size,
2880 						value_regno, insn_idx);
2881 	}
2882 	return err;
2883 }
2884 
2885 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2886 				 int off, int size, enum bpf_access_type type)
2887 {
2888 	struct bpf_reg_state *regs = cur_regs(env);
2889 	struct bpf_map *map = regs[regno].map_ptr;
2890 	u32 cap = bpf_map_flags_to_cap(map);
2891 
2892 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2893 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2894 			map->value_size, off, size);
2895 		return -EACCES;
2896 	}
2897 
2898 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2899 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2900 			map->value_size, off, size);
2901 		return -EACCES;
2902 	}
2903 
2904 	return 0;
2905 }
2906 
2907 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
2908 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2909 			      int off, int size, u32 mem_size,
2910 			      bool zero_size_allowed)
2911 {
2912 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2913 	struct bpf_reg_state *reg;
2914 
2915 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2916 		return 0;
2917 
2918 	reg = &cur_regs(env)[regno];
2919 	switch (reg->type) {
2920 	case PTR_TO_MAP_KEY:
2921 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
2922 			mem_size, off, size);
2923 		break;
2924 	case PTR_TO_MAP_VALUE:
2925 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2926 			mem_size, off, size);
2927 		break;
2928 	case PTR_TO_PACKET:
2929 	case PTR_TO_PACKET_META:
2930 	case PTR_TO_PACKET_END:
2931 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2932 			off, size, regno, reg->id, off, mem_size);
2933 		break;
2934 	case PTR_TO_MEM:
2935 	default:
2936 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2937 			mem_size, off, size);
2938 	}
2939 
2940 	return -EACCES;
2941 }
2942 
2943 /* check read/write into a memory region with possible variable offset */
2944 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2945 				   int off, int size, u32 mem_size,
2946 				   bool zero_size_allowed)
2947 {
2948 	struct bpf_verifier_state *vstate = env->cur_state;
2949 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2950 	struct bpf_reg_state *reg = &state->regs[regno];
2951 	int err;
2952 
2953 	/* We may have adjusted the register pointing to memory region, so we
2954 	 * need to try adding each of min_value and max_value to off
2955 	 * to make sure our theoretical access will be safe.
2956 	 */
2957 	if (env->log.level & BPF_LOG_LEVEL)
2958 		print_verifier_state(env, state);
2959 
2960 	/* The minimum value is only important with signed
2961 	 * comparisons where we can't assume the floor of a
2962 	 * value is 0.  If we are using signed variables for our
2963 	 * index'es we need to make sure that whatever we use
2964 	 * will have a set floor within our range.
2965 	 */
2966 	if (reg->smin_value < 0 &&
2967 	    (reg->smin_value == S64_MIN ||
2968 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2969 	      reg->smin_value + off < 0)) {
2970 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2971 			regno);
2972 		return -EACCES;
2973 	}
2974 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
2975 				 mem_size, zero_size_allowed);
2976 	if (err) {
2977 		verbose(env, "R%d min value is outside of the allowed memory range\n",
2978 			regno);
2979 		return err;
2980 	}
2981 
2982 	/* If we haven't set a max value then we need to bail since we can't be
2983 	 * sure we won't do bad things.
2984 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
2985 	 */
2986 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2987 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
2988 			regno);
2989 		return -EACCES;
2990 	}
2991 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
2992 				 mem_size, zero_size_allowed);
2993 	if (err) {
2994 		verbose(env, "R%d max value is outside of the allowed memory range\n",
2995 			regno);
2996 		return err;
2997 	}
2998 
2999 	return 0;
3000 }
3001 
3002 /* check read/write into a map element with possible variable offset */
3003 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3004 			    int off, int size, bool zero_size_allowed)
3005 {
3006 	struct bpf_verifier_state *vstate = env->cur_state;
3007 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3008 	struct bpf_reg_state *reg = &state->regs[regno];
3009 	struct bpf_map *map = reg->map_ptr;
3010 	int err;
3011 
3012 	err = check_mem_region_access(env, regno, off, size, map->value_size,
3013 				      zero_size_allowed);
3014 	if (err)
3015 		return err;
3016 
3017 	if (map_value_has_spin_lock(map)) {
3018 		u32 lock = map->spin_lock_off;
3019 
3020 		/* if any part of struct bpf_spin_lock can be touched by
3021 		 * load/store reject this program.
3022 		 * To check that [x1, x2) overlaps with [y1, y2)
3023 		 * it is sufficient to check x1 < y2 && y1 < x2.
3024 		 */
3025 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3026 		     lock < reg->umax_value + off + size) {
3027 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3028 			return -EACCES;
3029 		}
3030 	}
3031 	return err;
3032 }
3033 
3034 #define MAX_PACKET_OFF 0xffff
3035 
3036 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3037 {
3038 	return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
3039 }
3040 
3041 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3042 				       const struct bpf_call_arg_meta *meta,
3043 				       enum bpf_access_type t)
3044 {
3045 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3046 
3047 	switch (prog_type) {
3048 	/* Program types only with direct read access go here! */
3049 	case BPF_PROG_TYPE_LWT_IN:
3050 	case BPF_PROG_TYPE_LWT_OUT:
3051 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3052 	case BPF_PROG_TYPE_SK_REUSEPORT:
3053 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
3054 	case BPF_PROG_TYPE_CGROUP_SKB:
3055 		if (t == BPF_WRITE)
3056 			return false;
3057 		fallthrough;
3058 
3059 	/* Program types with direct read + write access go here! */
3060 	case BPF_PROG_TYPE_SCHED_CLS:
3061 	case BPF_PROG_TYPE_SCHED_ACT:
3062 	case BPF_PROG_TYPE_XDP:
3063 	case BPF_PROG_TYPE_LWT_XMIT:
3064 	case BPF_PROG_TYPE_SK_SKB:
3065 	case BPF_PROG_TYPE_SK_MSG:
3066 		if (meta)
3067 			return meta->pkt_access;
3068 
3069 		env->seen_direct_write = true;
3070 		return true;
3071 
3072 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3073 		if (t == BPF_WRITE)
3074 			env->seen_direct_write = true;
3075 
3076 		return true;
3077 
3078 	default:
3079 		return false;
3080 	}
3081 }
3082 
3083 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3084 			       int size, bool zero_size_allowed)
3085 {
3086 	struct bpf_reg_state *regs = cur_regs(env);
3087 	struct bpf_reg_state *reg = &regs[regno];
3088 	int err;
3089 
3090 	/* We may have added a variable offset to the packet pointer; but any
3091 	 * reg->range we have comes after that.  We are only checking the fixed
3092 	 * offset.
3093 	 */
3094 
3095 	/* We don't allow negative numbers, because we aren't tracking enough
3096 	 * detail to prove they're safe.
3097 	 */
3098 	if (reg->smin_value < 0) {
3099 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3100 			regno);
3101 		return -EACCES;
3102 	}
3103 
3104 	err = reg->range < 0 ? -EINVAL :
3105 	      __check_mem_access(env, regno, off, size, reg->range,
3106 				 zero_size_allowed);
3107 	if (err) {
3108 		verbose(env, "R%d offset is outside of the packet\n", regno);
3109 		return err;
3110 	}
3111 
3112 	/* __check_mem_access has made sure "off + size - 1" is within u16.
3113 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3114 	 * otherwise find_good_pkt_pointers would have refused to set range info
3115 	 * that __check_mem_access would have rejected this pkt access.
3116 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3117 	 */
3118 	env->prog->aux->max_pkt_offset =
3119 		max_t(u32, env->prog->aux->max_pkt_offset,
3120 		      off + reg->umax_value + size - 1);
3121 
3122 	return err;
3123 }
3124 
3125 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
3126 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3127 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
3128 			    struct btf **btf, u32 *btf_id)
3129 {
3130 	struct bpf_insn_access_aux info = {
3131 		.reg_type = *reg_type,
3132 		.log = &env->log,
3133 	};
3134 
3135 	if (env->ops->is_valid_access &&
3136 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3137 		/* A non zero info.ctx_field_size indicates that this field is a
3138 		 * candidate for later verifier transformation to load the whole
3139 		 * field and then apply a mask when accessed with a narrower
3140 		 * access than actual ctx access size. A zero info.ctx_field_size
3141 		 * will only allow for whole field access and rejects any other
3142 		 * type of narrower access.
3143 		 */
3144 		*reg_type = info.reg_type;
3145 
3146 		if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3147 			*btf = info.btf;
3148 			*btf_id = info.btf_id;
3149 		} else {
3150 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3151 		}
3152 		/* remember the offset of last byte accessed in ctx */
3153 		if (env->prog->aux->max_ctx_offset < off + size)
3154 			env->prog->aux->max_ctx_offset = off + size;
3155 		return 0;
3156 	}
3157 
3158 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3159 	return -EACCES;
3160 }
3161 
3162 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3163 				  int size)
3164 {
3165 	if (size < 0 || off < 0 ||
3166 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
3167 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
3168 			off, size);
3169 		return -EACCES;
3170 	}
3171 	return 0;
3172 }
3173 
3174 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3175 			     u32 regno, int off, int size,
3176 			     enum bpf_access_type t)
3177 {
3178 	struct bpf_reg_state *regs = cur_regs(env);
3179 	struct bpf_reg_state *reg = &regs[regno];
3180 	struct bpf_insn_access_aux info = {};
3181 	bool valid;
3182 
3183 	if (reg->smin_value < 0) {
3184 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3185 			regno);
3186 		return -EACCES;
3187 	}
3188 
3189 	switch (reg->type) {
3190 	case PTR_TO_SOCK_COMMON:
3191 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3192 		break;
3193 	case PTR_TO_SOCKET:
3194 		valid = bpf_sock_is_valid_access(off, size, t, &info);
3195 		break;
3196 	case PTR_TO_TCP_SOCK:
3197 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3198 		break;
3199 	case PTR_TO_XDP_SOCK:
3200 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3201 		break;
3202 	default:
3203 		valid = false;
3204 	}
3205 
3206 
3207 	if (valid) {
3208 		env->insn_aux_data[insn_idx].ctx_field_size =
3209 			info.ctx_field_size;
3210 		return 0;
3211 	}
3212 
3213 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
3214 		regno, reg_type_str[reg->type], off, size);
3215 
3216 	return -EACCES;
3217 }
3218 
3219 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3220 {
3221 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3222 }
3223 
3224 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3225 {
3226 	const struct bpf_reg_state *reg = reg_state(env, regno);
3227 
3228 	return reg->type == PTR_TO_CTX;
3229 }
3230 
3231 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3232 {
3233 	const struct bpf_reg_state *reg = reg_state(env, regno);
3234 
3235 	return type_is_sk_pointer(reg->type);
3236 }
3237 
3238 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3239 {
3240 	const struct bpf_reg_state *reg = reg_state(env, regno);
3241 
3242 	return type_is_pkt_pointer(reg->type);
3243 }
3244 
3245 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3246 {
3247 	const struct bpf_reg_state *reg = reg_state(env, regno);
3248 
3249 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3250 	return reg->type == PTR_TO_FLOW_KEYS;
3251 }
3252 
3253 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3254 				   const struct bpf_reg_state *reg,
3255 				   int off, int size, bool strict)
3256 {
3257 	struct tnum reg_off;
3258 	int ip_align;
3259 
3260 	/* Byte size accesses are always allowed. */
3261 	if (!strict || size == 1)
3262 		return 0;
3263 
3264 	/* For platforms that do not have a Kconfig enabling
3265 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3266 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
3267 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3268 	 * to this code only in strict mode where we want to emulate
3269 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
3270 	 * unconditional IP align value of '2'.
3271 	 */
3272 	ip_align = 2;
3273 
3274 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3275 	if (!tnum_is_aligned(reg_off, size)) {
3276 		char tn_buf[48];
3277 
3278 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3279 		verbose(env,
3280 			"misaligned packet access off %d+%s+%d+%d size %d\n",
3281 			ip_align, tn_buf, reg->off, off, size);
3282 		return -EACCES;
3283 	}
3284 
3285 	return 0;
3286 }
3287 
3288 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3289 				       const struct bpf_reg_state *reg,
3290 				       const char *pointer_desc,
3291 				       int off, int size, bool strict)
3292 {
3293 	struct tnum reg_off;
3294 
3295 	/* Byte size accesses are always allowed. */
3296 	if (!strict || size == 1)
3297 		return 0;
3298 
3299 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3300 	if (!tnum_is_aligned(reg_off, size)) {
3301 		char tn_buf[48];
3302 
3303 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3304 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3305 			pointer_desc, tn_buf, reg->off, off, size);
3306 		return -EACCES;
3307 	}
3308 
3309 	return 0;
3310 }
3311 
3312 static int check_ptr_alignment(struct bpf_verifier_env *env,
3313 			       const struct bpf_reg_state *reg, int off,
3314 			       int size, bool strict_alignment_once)
3315 {
3316 	bool strict = env->strict_alignment || strict_alignment_once;
3317 	const char *pointer_desc = "";
3318 
3319 	switch (reg->type) {
3320 	case PTR_TO_PACKET:
3321 	case PTR_TO_PACKET_META:
3322 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
3323 		 * right in front, treat it the very same way.
3324 		 */
3325 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
3326 	case PTR_TO_FLOW_KEYS:
3327 		pointer_desc = "flow keys ";
3328 		break;
3329 	case PTR_TO_MAP_KEY:
3330 		pointer_desc = "key ";
3331 		break;
3332 	case PTR_TO_MAP_VALUE:
3333 		pointer_desc = "value ";
3334 		break;
3335 	case PTR_TO_CTX:
3336 		pointer_desc = "context ";
3337 		break;
3338 	case PTR_TO_STACK:
3339 		pointer_desc = "stack ";
3340 		/* The stack spill tracking logic in check_stack_write_fixed_off()
3341 		 * and check_stack_read_fixed_off() relies on stack accesses being
3342 		 * aligned.
3343 		 */
3344 		strict = true;
3345 		break;
3346 	case PTR_TO_SOCKET:
3347 		pointer_desc = "sock ";
3348 		break;
3349 	case PTR_TO_SOCK_COMMON:
3350 		pointer_desc = "sock_common ";
3351 		break;
3352 	case PTR_TO_TCP_SOCK:
3353 		pointer_desc = "tcp_sock ";
3354 		break;
3355 	case PTR_TO_XDP_SOCK:
3356 		pointer_desc = "xdp_sock ";
3357 		break;
3358 	default:
3359 		break;
3360 	}
3361 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3362 					   strict);
3363 }
3364 
3365 static int update_stack_depth(struct bpf_verifier_env *env,
3366 			      const struct bpf_func_state *func,
3367 			      int off)
3368 {
3369 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
3370 
3371 	if (stack >= -off)
3372 		return 0;
3373 
3374 	/* update known max for given subprogram */
3375 	env->subprog_info[func->subprogno].stack_depth = -off;
3376 	return 0;
3377 }
3378 
3379 /* starting from main bpf function walk all instructions of the function
3380  * and recursively walk all callees that given function can call.
3381  * Ignore jump and exit insns.
3382  * Since recursion is prevented by check_cfg() this algorithm
3383  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3384  */
3385 static int check_max_stack_depth(struct bpf_verifier_env *env)
3386 {
3387 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3388 	struct bpf_subprog_info *subprog = env->subprog_info;
3389 	struct bpf_insn *insn = env->prog->insnsi;
3390 	bool tail_call_reachable = false;
3391 	int ret_insn[MAX_CALL_FRAMES];
3392 	int ret_prog[MAX_CALL_FRAMES];
3393 	int j;
3394 
3395 process_func:
3396 	/* protect against potential stack overflow that might happen when
3397 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3398 	 * depth for such case down to 256 so that the worst case scenario
3399 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
3400 	 * 8k).
3401 	 *
3402 	 * To get the idea what might happen, see an example:
3403 	 * func1 -> sub rsp, 128
3404 	 *  subfunc1 -> sub rsp, 256
3405 	 *  tailcall1 -> add rsp, 256
3406 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3407 	 *   subfunc2 -> sub rsp, 64
3408 	 *   subfunc22 -> sub rsp, 128
3409 	 *   tailcall2 -> add rsp, 128
3410 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3411 	 *
3412 	 * tailcall will unwind the current stack frame but it will not get rid
3413 	 * of caller's stack as shown on the example above.
3414 	 */
3415 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
3416 		verbose(env,
3417 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3418 			depth);
3419 		return -EACCES;
3420 	}
3421 	/* round up to 32-bytes, since this is granularity
3422 	 * of interpreter stack size
3423 	 */
3424 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3425 	if (depth > MAX_BPF_STACK) {
3426 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
3427 			frame + 1, depth);
3428 		return -EACCES;
3429 	}
3430 continue_func:
3431 	subprog_end = subprog[idx + 1].start;
3432 	for (; i < subprog_end; i++) {
3433 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
3434 			continue;
3435 		/* remember insn and function to return to */
3436 		ret_insn[frame] = i + 1;
3437 		ret_prog[frame] = idx;
3438 
3439 		/* find the callee */
3440 		i = i + insn[i].imm + 1;
3441 		idx = find_subprog(env, i);
3442 		if (idx < 0) {
3443 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3444 				  i);
3445 			return -EFAULT;
3446 		}
3447 
3448 		if (subprog[idx].has_tail_call)
3449 			tail_call_reachable = true;
3450 
3451 		frame++;
3452 		if (frame >= MAX_CALL_FRAMES) {
3453 			verbose(env, "the call stack of %d frames is too deep !\n",
3454 				frame);
3455 			return -E2BIG;
3456 		}
3457 		goto process_func;
3458 	}
3459 	/* if tail call got detected across bpf2bpf calls then mark each of the
3460 	 * currently present subprog frames as tail call reachable subprogs;
3461 	 * this info will be utilized by JIT so that we will be preserving the
3462 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
3463 	 */
3464 	if (tail_call_reachable)
3465 		for (j = 0; j < frame; j++)
3466 			subprog[ret_prog[j]].tail_call_reachable = true;
3467 
3468 	/* end of for() loop means the last insn of the 'subprog'
3469 	 * was reached. Doesn't matter whether it was JA or EXIT
3470 	 */
3471 	if (frame == 0)
3472 		return 0;
3473 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3474 	frame--;
3475 	i = ret_insn[frame];
3476 	idx = ret_prog[frame];
3477 	goto continue_func;
3478 }
3479 
3480 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3481 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3482 				  const struct bpf_insn *insn, int idx)
3483 {
3484 	int start = idx + insn->imm + 1, subprog;
3485 
3486 	subprog = find_subprog(env, start);
3487 	if (subprog < 0) {
3488 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3489 			  start);
3490 		return -EFAULT;
3491 	}
3492 	return env->subprog_info[subprog].stack_depth;
3493 }
3494 #endif
3495 
3496 int check_ctx_reg(struct bpf_verifier_env *env,
3497 		  const struct bpf_reg_state *reg, int regno)
3498 {
3499 	/* Access to ctx or passing it to a helper is only allowed in
3500 	 * its original, unmodified form.
3501 	 */
3502 
3503 	if (reg->off) {
3504 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3505 			regno, reg->off);
3506 		return -EACCES;
3507 	}
3508 
3509 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3510 		char tn_buf[48];
3511 
3512 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3513 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3514 		return -EACCES;
3515 	}
3516 
3517 	return 0;
3518 }
3519 
3520 static int __check_buffer_access(struct bpf_verifier_env *env,
3521 				 const char *buf_info,
3522 				 const struct bpf_reg_state *reg,
3523 				 int regno, int off, int size)
3524 {
3525 	if (off < 0) {
3526 		verbose(env,
3527 			"R%d invalid %s buffer access: off=%d, size=%d\n",
3528 			regno, buf_info, off, size);
3529 		return -EACCES;
3530 	}
3531 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3532 		char tn_buf[48];
3533 
3534 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3535 		verbose(env,
3536 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3537 			regno, off, tn_buf);
3538 		return -EACCES;
3539 	}
3540 
3541 	return 0;
3542 }
3543 
3544 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3545 				  const struct bpf_reg_state *reg,
3546 				  int regno, int off, int size)
3547 {
3548 	int err;
3549 
3550 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3551 	if (err)
3552 		return err;
3553 
3554 	if (off + size > env->prog->aux->max_tp_access)
3555 		env->prog->aux->max_tp_access = off + size;
3556 
3557 	return 0;
3558 }
3559 
3560 static int check_buffer_access(struct bpf_verifier_env *env,
3561 			       const struct bpf_reg_state *reg,
3562 			       int regno, int off, int size,
3563 			       bool zero_size_allowed,
3564 			       const char *buf_info,
3565 			       u32 *max_access)
3566 {
3567 	int err;
3568 
3569 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3570 	if (err)
3571 		return err;
3572 
3573 	if (off + size > *max_access)
3574 		*max_access = off + size;
3575 
3576 	return 0;
3577 }
3578 
3579 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
3580 static void zext_32_to_64(struct bpf_reg_state *reg)
3581 {
3582 	reg->var_off = tnum_subreg(reg->var_off);
3583 	__reg_assign_32_into_64(reg);
3584 }
3585 
3586 /* truncate register to smaller size (in bytes)
3587  * must be called with size < BPF_REG_SIZE
3588  */
3589 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3590 {
3591 	u64 mask;
3592 
3593 	/* clear high bits in bit representation */
3594 	reg->var_off = tnum_cast(reg->var_off, size);
3595 
3596 	/* fix arithmetic bounds */
3597 	mask = ((u64)1 << (size * 8)) - 1;
3598 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3599 		reg->umin_value &= mask;
3600 		reg->umax_value &= mask;
3601 	} else {
3602 		reg->umin_value = 0;
3603 		reg->umax_value = mask;
3604 	}
3605 	reg->smin_value = reg->umin_value;
3606 	reg->smax_value = reg->umax_value;
3607 
3608 	/* If size is smaller than 32bit register the 32bit register
3609 	 * values are also truncated so we push 64-bit bounds into
3610 	 * 32-bit bounds. Above were truncated < 32-bits already.
3611 	 */
3612 	if (size >= 4)
3613 		return;
3614 	__reg_combine_64_into_32(reg);
3615 }
3616 
3617 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3618 {
3619 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3620 }
3621 
3622 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3623 {
3624 	void *ptr;
3625 	u64 addr;
3626 	int err;
3627 
3628 	err = map->ops->map_direct_value_addr(map, &addr, off);
3629 	if (err)
3630 		return err;
3631 	ptr = (void *)(long)addr + off;
3632 
3633 	switch (size) {
3634 	case sizeof(u8):
3635 		*val = (u64)*(u8 *)ptr;
3636 		break;
3637 	case sizeof(u16):
3638 		*val = (u64)*(u16 *)ptr;
3639 		break;
3640 	case sizeof(u32):
3641 		*val = (u64)*(u32 *)ptr;
3642 		break;
3643 	case sizeof(u64):
3644 		*val = *(u64 *)ptr;
3645 		break;
3646 	default:
3647 		return -EINVAL;
3648 	}
3649 	return 0;
3650 }
3651 
3652 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3653 				   struct bpf_reg_state *regs,
3654 				   int regno, int off, int size,
3655 				   enum bpf_access_type atype,
3656 				   int value_regno)
3657 {
3658 	struct bpf_reg_state *reg = regs + regno;
3659 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
3660 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
3661 	u32 btf_id;
3662 	int ret;
3663 
3664 	if (off < 0) {
3665 		verbose(env,
3666 			"R%d is ptr_%s invalid negative access: off=%d\n",
3667 			regno, tname, off);
3668 		return -EACCES;
3669 	}
3670 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3671 		char tn_buf[48];
3672 
3673 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3674 		verbose(env,
3675 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3676 			regno, tname, off, tn_buf);
3677 		return -EACCES;
3678 	}
3679 
3680 	if (env->ops->btf_struct_access) {
3681 		ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
3682 						  off, size, atype, &btf_id);
3683 	} else {
3684 		if (atype != BPF_READ) {
3685 			verbose(env, "only read is supported\n");
3686 			return -EACCES;
3687 		}
3688 
3689 		ret = btf_struct_access(&env->log, reg->btf, t, off, size,
3690 					atype, &btf_id);
3691 	}
3692 
3693 	if (ret < 0)
3694 		return ret;
3695 
3696 	if (atype == BPF_READ && value_regno >= 0)
3697 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
3698 
3699 	return 0;
3700 }
3701 
3702 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3703 				   struct bpf_reg_state *regs,
3704 				   int regno, int off, int size,
3705 				   enum bpf_access_type atype,
3706 				   int value_regno)
3707 {
3708 	struct bpf_reg_state *reg = regs + regno;
3709 	struct bpf_map *map = reg->map_ptr;
3710 	const struct btf_type *t;
3711 	const char *tname;
3712 	u32 btf_id;
3713 	int ret;
3714 
3715 	if (!btf_vmlinux) {
3716 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3717 		return -ENOTSUPP;
3718 	}
3719 
3720 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3721 		verbose(env, "map_ptr access not supported for map type %d\n",
3722 			map->map_type);
3723 		return -ENOTSUPP;
3724 	}
3725 
3726 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3727 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3728 
3729 	if (!env->allow_ptr_to_map_access) {
3730 		verbose(env,
3731 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3732 			tname);
3733 		return -EPERM;
3734 	}
3735 
3736 	if (off < 0) {
3737 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
3738 			regno, tname, off);
3739 		return -EACCES;
3740 	}
3741 
3742 	if (atype != BPF_READ) {
3743 		verbose(env, "only read from %s is supported\n", tname);
3744 		return -EACCES;
3745 	}
3746 
3747 	ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
3748 	if (ret < 0)
3749 		return ret;
3750 
3751 	if (value_regno >= 0)
3752 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
3753 
3754 	return 0;
3755 }
3756 
3757 /* Check that the stack access at the given offset is within bounds. The
3758  * maximum valid offset is -1.
3759  *
3760  * The minimum valid offset is -MAX_BPF_STACK for writes, and
3761  * -state->allocated_stack for reads.
3762  */
3763 static int check_stack_slot_within_bounds(int off,
3764 					  struct bpf_func_state *state,
3765 					  enum bpf_access_type t)
3766 {
3767 	int min_valid_off;
3768 
3769 	if (t == BPF_WRITE)
3770 		min_valid_off = -MAX_BPF_STACK;
3771 	else
3772 		min_valid_off = -state->allocated_stack;
3773 
3774 	if (off < min_valid_off || off > -1)
3775 		return -EACCES;
3776 	return 0;
3777 }
3778 
3779 /* Check that the stack access at 'regno + off' falls within the maximum stack
3780  * bounds.
3781  *
3782  * 'off' includes `regno->offset`, but not its dynamic part (if any).
3783  */
3784 static int check_stack_access_within_bounds(
3785 		struct bpf_verifier_env *env,
3786 		int regno, int off, int access_size,
3787 		enum stack_access_src src, enum bpf_access_type type)
3788 {
3789 	struct bpf_reg_state *regs = cur_regs(env);
3790 	struct bpf_reg_state *reg = regs + regno;
3791 	struct bpf_func_state *state = func(env, reg);
3792 	int min_off, max_off;
3793 	int err;
3794 	char *err_extra;
3795 
3796 	if (src == ACCESS_HELPER)
3797 		/* We don't know if helpers are reading or writing (or both). */
3798 		err_extra = " indirect access to";
3799 	else if (type == BPF_READ)
3800 		err_extra = " read from";
3801 	else
3802 		err_extra = " write to";
3803 
3804 	if (tnum_is_const(reg->var_off)) {
3805 		min_off = reg->var_off.value + off;
3806 		if (access_size > 0)
3807 			max_off = min_off + access_size - 1;
3808 		else
3809 			max_off = min_off;
3810 	} else {
3811 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3812 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
3813 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
3814 				err_extra, regno);
3815 			return -EACCES;
3816 		}
3817 		min_off = reg->smin_value + off;
3818 		if (access_size > 0)
3819 			max_off = reg->smax_value + off + access_size - 1;
3820 		else
3821 			max_off = min_off;
3822 	}
3823 
3824 	err = check_stack_slot_within_bounds(min_off, state, type);
3825 	if (!err)
3826 		err = check_stack_slot_within_bounds(max_off, state, type);
3827 
3828 	if (err) {
3829 		if (tnum_is_const(reg->var_off)) {
3830 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
3831 				err_extra, regno, off, access_size);
3832 		} else {
3833 			char tn_buf[48];
3834 
3835 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3836 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
3837 				err_extra, regno, tn_buf, access_size);
3838 		}
3839 	}
3840 	return err;
3841 }
3842 
3843 /* check whether memory at (regno + off) is accessible for t = (read | write)
3844  * if t==write, value_regno is a register which value is stored into memory
3845  * if t==read, value_regno is a register which will receive the value from memory
3846  * if t==write && value_regno==-1, some unknown value is stored into memory
3847  * if t==read && value_regno==-1, don't care what we read from memory
3848  */
3849 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3850 			    int off, int bpf_size, enum bpf_access_type t,
3851 			    int value_regno, bool strict_alignment_once)
3852 {
3853 	struct bpf_reg_state *regs = cur_regs(env);
3854 	struct bpf_reg_state *reg = regs + regno;
3855 	struct bpf_func_state *state;
3856 	int size, err = 0;
3857 
3858 	size = bpf_size_to_bytes(bpf_size);
3859 	if (size < 0)
3860 		return size;
3861 
3862 	/* alignment checks will add in reg->off themselves */
3863 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3864 	if (err)
3865 		return err;
3866 
3867 	/* for access checks, reg->off is just part of off */
3868 	off += reg->off;
3869 
3870 	if (reg->type == PTR_TO_MAP_KEY) {
3871 		if (t == BPF_WRITE) {
3872 			verbose(env, "write to change key R%d not allowed\n", regno);
3873 			return -EACCES;
3874 		}
3875 
3876 		err = check_mem_region_access(env, regno, off, size,
3877 					      reg->map_ptr->key_size, false);
3878 		if (err)
3879 			return err;
3880 		if (value_regno >= 0)
3881 			mark_reg_unknown(env, regs, value_regno);
3882 	} else if (reg->type == PTR_TO_MAP_VALUE) {
3883 		if (t == BPF_WRITE && value_regno >= 0 &&
3884 		    is_pointer_value(env, value_regno)) {
3885 			verbose(env, "R%d leaks addr into map\n", value_regno);
3886 			return -EACCES;
3887 		}
3888 		err = check_map_access_type(env, regno, off, size, t);
3889 		if (err)
3890 			return err;
3891 		err = check_map_access(env, regno, off, size, false);
3892 		if (!err && t == BPF_READ && value_regno >= 0) {
3893 			struct bpf_map *map = reg->map_ptr;
3894 
3895 			/* if map is read-only, track its contents as scalars */
3896 			if (tnum_is_const(reg->var_off) &&
3897 			    bpf_map_is_rdonly(map) &&
3898 			    map->ops->map_direct_value_addr) {
3899 				int map_off = off + reg->var_off.value;
3900 				u64 val = 0;
3901 
3902 				err = bpf_map_direct_read(map, map_off, size,
3903 							  &val);
3904 				if (err)
3905 					return err;
3906 
3907 				regs[value_regno].type = SCALAR_VALUE;
3908 				__mark_reg_known(&regs[value_regno], val);
3909 			} else {
3910 				mark_reg_unknown(env, regs, value_regno);
3911 			}
3912 		}
3913 	} else if (reg->type == PTR_TO_MEM) {
3914 		if (t == BPF_WRITE && value_regno >= 0 &&
3915 		    is_pointer_value(env, value_regno)) {
3916 			verbose(env, "R%d leaks addr into mem\n", value_regno);
3917 			return -EACCES;
3918 		}
3919 		err = check_mem_region_access(env, regno, off, size,
3920 					      reg->mem_size, false);
3921 		if (!err && t == BPF_READ && value_regno >= 0)
3922 			mark_reg_unknown(env, regs, value_regno);
3923 	} else if (reg->type == PTR_TO_CTX) {
3924 		enum bpf_reg_type reg_type = SCALAR_VALUE;
3925 		struct btf *btf = NULL;
3926 		u32 btf_id = 0;
3927 
3928 		if (t == BPF_WRITE && value_regno >= 0 &&
3929 		    is_pointer_value(env, value_regno)) {
3930 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
3931 			return -EACCES;
3932 		}
3933 
3934 		err = check_ctx_reg(env, reg, regno);
3935 		if (err < 0)
3936 			return err;
3937 
3938 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
3939 		if (err)
3940 			verbose_linfo(env, insn_idx, "; ");
3941 		if (!err && t == BPF_READ && value_regno >= 0) {
3942 			/* ctx access returns either a scalar, or a
3943 			 * PTR_TO_PACKET[_META,_END]. In the latter
3944 			 * case, we know the offset is zero.
3945 			 */
3946 			if (reg_type == SCALAR_VALUE) {
3947 				mark_reg_unknown(env, regs, value_regno);
3948 			} else {
3949 				mark_reg_known_zero(env, regs,
3950 						    value_regno);
3951 				if (reg_type_may_be_null(reg_type))
3952 					regs[value_regno].id = ++env->id_gen;
3953 				/* A load of ctx field could have different
3954 				 * actual load size with the one encoded in the
3955 				 * insn. When the dst is PTR, it is for sure not
3956 				 * a sub-register.
3957 				 */
3958 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
3959 				if (reg_type == PTR_TO_BTF_ID ||
3960 				    reg_type == PTR_TO_BTF_ID_OR_NULL) {
3961 					regs[value_regno].btf = btf;
3962 					regs[value_regno].btf_id = btf_id;
3963 				}
3964 			}
3965 			regs[value_regno].type = reg_type;
3966 		}
3967 
3968 	} else if (reg->type == PTR_TO_STACK) {
3969 		/* Basic bounds checks. */
3970 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
3971 		if (err)
3972 			return err;
3973 
3974 		state = func(env, reg);
3975 		err = update_stack_depth(env, state, off);
3976 		if (err)
3977 			return err;
3978 
3979 		if (t == BPF_READ)
3980 			err = check_stack_read(env, regno, off, size,
3981 					       value_regno);
3982 		else
3983 			err = check_stack_write(env, regno, off, size,
3984 						value_regno, insn_idx);
3985 	} else if (reg_is_pkt_pointer(reg)) {
3986 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3987 			verbose(env, "cannot write into packet\n");
3988 			return -EACCES;
3989 		}
3990 		if (t == BPF_WRITE && value_regno >= 0 &&
3991 		    is_pointer_value(env, value_regno)) {
3992 			verbose(env, "R%d leaks addr into packet\n",
3993 				value_regno);
3994 			return -EACCES;
3995 		}
3996 		err = check_packet_access(env, regno, off, size, false);
3997 		if (!err && t == BPF_READ && value_regno >= 0)
3998 			mark_reg_unknown(env, regs, value_regno);
3999 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
4000 		if (t == BPF_WRITE && value_regno >= 0 &&
4001 		    is_pointer_value(env, value_regno)) {
4002 			verbose(env, "R%d leaks addr into flow keys\n",
4003 				value_regno);
4004 			return -EACCES;
4005 		}
4006 
4007 		err = check_flow_keys_access(env, off, size);
4008 		if (!err && t == BPF_READ && value_regno >= 0)
4009 			mark_reg_unknown(env, regs, value_regno);
4010 	} else if (type_is_sk_pointer(reg->type)) {
4011 		if (t == BPF_WRITE) {
4012 			verbose(env, "R%d cannot write into %s\n",
4013 				regno, reg_type_str[reg->type]);
4014 			return -EACCES;
4015 		}
4016 		err = check_sock_access(env, insn_idx, regno, off, size, t);
4017 		if (!err && value_regno >= 0)
4018 			mark_reg_unknown(env, regs, value_regno);
4019 	} else if (reg->type == PTR_TO_TP_BUFFER) {
4020 		err = check_tp_buffer_access(env, reg, regno, off, size);
4021 		if (!err && t == BPF_READ && value_regno >= 0)
4022 			mark_reg_unknown(env, regs, value_regno);
4023 	} else if (reg->type == PTR_TO_BTF_ID) {
4024 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4025 					      value_regno);
4026 	} else if (reg->type == CONST_PTR_TO_MAP) {
4027 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4028 					      value_regno);
4029 	} else if (reg->type == PTR_TO_RDONLY_BUF) {
4030 		if (t == BPF_WRITE) {
4031 			verbose(env, "R%d cannot write into %s\n",
4032 				regno, reg_type_str[reg->type]);
4033 			return -EACCES;
4034 		}
4035 		err = check_buffer_access(env, reg, regno, off, size, false,
4036 					  "rdonly",
4037 					  &env->prog->aux->max_rdonly_access);
4038 		if (!err && value_regno >= 0)
4039 			mark_reg_unknown(env, regs, value_regno);
4040 	} else if (reg->type == PTR_TO_RDWR_BUF) {
4041 		err = check_buffer_access(env, reg, regno, off, size, false,
4042 					  "rdwr",
4043 					  &env->prog->aux->max_rdwr_access);
4044 		if (!err && t == BPF_READ && value_regno >= 0)
4045 			mark_reg_unknown(env, regs, value_regno);
4046 	} else {
4047 		verbose(env, "R%d invalid mem access '%s'\n", regno,
4048 			reg_type_str[reg->type]);
4049 		return -EACCES;
4050 	}
4051 
4052 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4053 	    regs[value_regno].type == SCALAR_VALUE) {
4054 		/* b/h/w load zero-extends, mark upper bits as known 0 */
4055 		coerce_reg_to_size(&regs[value_regno], size);
4056 	}
4057 	return err;
4058 }
4059 
4060 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4061 {
4062 	int load_reg;
4063 	int err;
4064 
4065 	switch (insn->imm) {
4066 	case BPF_ADD:
4067 	case BPF_ADD | BPF_FETCH:
4068 	case BPF_AND:
4069 	case BPF_AND | BPF_FETCH:
4070 	case BPF_OR:
4071 	case BPF_OR | BPF_FETCH:
4072 	case BPF_XOR:
4073 	case BPF_XOR | BPF_FETCH:
4074 	case BPF_XCHG:
4075 	case BPF_CMPXCHG:
4076 		break;
4077 	default:
4078 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4079 		return -EINVAL;
4080 	}
4081 
4082 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4083 		verbose(env, "invalid atomic operand size\n");
4084 		return -EINVAL;
4085 	}
4086 
4087 	/* check src1 operand */
4088 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
4089 	if (err)
4090 		return err;
4091 
4092 	/* check src2 operand */
4093 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4094 	if (err)
4095 		return err;
4096 
4097 	if (insn->imm == BPF_CMPXCHG) {
4098 		/* Check comparison of R0 with memory location */
4099 		err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4100 		if (err)
4101 			return err;
4102 	}
4103 
4104 	if (is_pointer_value(env, insn->src_reg)) {
4105 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4106 		return -EACCES;
4107 	}
4108 
4109 	if (is_ctx_reg(env, insn->dst_reg) ||
4110 	    is_pkt_reg(env, insn->dst_reg) ||
4111 	    is_flow_key_reg(env, insn->dst_reg) ||
4112 	    is_sk_reg(env, insn->dst_reg)) {
4113 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4114 			insn->dst_reg,
4115 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
4116 		return -EACCES;
4117 	}
4118 
4119 	if (insn->imm & BPF_FETCH) {
4120 		if (insn->imm == BPF_CMPXCHG)
4121 			load_reg = BPF_REG_0;
4122 		else
4123 			load_reg = insn->src_reg;
4124 
4125 		/* check and record load of old value */
4126 		err = check_reg_arg(env, load_reg, DST_OP);
4127 		if (err)
4128 			return err;
4129 	} else {
4130 		/* This instruction accesses a memory location but doesn't
4131 		 * actually load it into a register.
4132 		 */
4133 		load_reg = -1;
4134 	}
4135 
4136 	/* check whether we can read the memory */
4137 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4138 			       BPF_SIZE(insn->code), BPF_READ, load_reg, true);
4139 	if (err)
4140 		return err;
4141 
4142 	/* check whether we can write into the same memory */
4143 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4144 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4145 	if (err)
4146 		return err;
4147 
4148 	return 0;
4149 }
4150 
4151 /* When register 'regno' is used to read the stack (either directly or through
4152  * a helper function) make sure that it's within stack boundary and, depending
4153  * on the access type, that all elements of the stack are initialized.
4154  *
4155  * 'off' includes 'regno->off', but not its dynamic part (if any).
4156  *
4157  * All registers that have been spilled on the stack in the slots within the
4158  * read offsets are marked as read.
4159  */
4160 static int check_stack_range_initialized(
4161 		struct bpf_verifier_env *env, int regno, int off,
4162 		int access_size, bool zero_size_allowed,
4163 		enum stack_access_src type, struct bpf_call_arg_meta *meta)
4164 {
4165 	struct bpf_reg_state *reg = reg_state(env, regno);
4166 	struct bpf_func_state *state = func(env, reg);
4167 	int err, min_off, max_off, i, j, slot, spi;
4168 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4169 	enum bpf_access_type bounds_check_type;
4170 	/* Some accesses can write anything into the stack, others are
4171 	 * read-only.
4172 	 */
4173 	bool clobber = false;
4174 
4175 	if (access_size == 0 && !zero_size_allowed) {
4176 		verbose(env, "invalid zero-sized read\n");
4177 		return -EACCES;
4178 	}
4179 
4180 	if (type == ACCESS_HELPER) {
4181 		/* The bounds checks for writes are more permissive than for
4182 		 * reads. However, if raw_mode is not set, we'll do extra
4183 		 * checks below.
4184 		 */
4185 		bounds_check_type = BPF_WRITE;
4186 		clobber = true;
4187 	} else {
4188 		bounds_check_type = BPF_READ;
4189 	}
4190 	err = check_stack_access_within_bounds(env, regno, off, access_size,
4191 					       type, bounds_check_type);
4192 	if (err)
4193 		return err;
4194 
4195 
4196 	if (tnum_is_const(reg->var_off)) {
4197 		min_off = max_off = reg->var_off.value + off;
4198 	} else {
4199 		/* Variable offset is prohibited for unprivileged mode for
4200 		 * simplicity since it requires corresponding support in
4201 		 * Spectre masking for stack ALU.
4202 		 * See also retrieve_ptr_limit().
4203 		 */
4204 		if (!env->bypass_spec_v1) {
4205 			char tn_buf[48];
4206 
4207 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4208 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4209 				regno, err_extra, tn_buf);
4210 			return -EACCES;
4211 		}
4212 		/* Only initialized buffer on stack is allowed to be accessed
4213 		 * with variable offset. With uninitialized buffer it's hard to
4214 		 * guarantee that whole memory is marked as initialized on
4215 		 * helper return since specific bounds are unknown what may
4216 		 * cause uninitialized stack leaking.
4217 		 */
4218 		if (meta && meta->raw_mode)
4219 			meta = NULL;
4220 
4221 		min_off = reg->smin_value + off;
4222 		max_off = reg->smax_value + off;
4223 	}
4224 
4225 	if (meta && meta->raw_mode) {
4226 		meta->access_size = access_size;
4227 		meta->regno = regno;
4228 		return 0;
4229 	}
4230 
4231 	for (i = min_off; i < max_off + access_size; i++) {
4232 		u8 *stype;
4233 
4234 		slot = -i - 1;
4235 		spi = slot / BPF_REG_SIZE;
4236 		if (state->allocated_stack <= slot)
4237 			goto err;
4238 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4239 		if (*stype == STACK_MISC)
4240 			goto mark;
4241 		if (*stype == STACK_ZERO) {
4242 			if (clobber) {
4243 				/* helper can write anything into the stack */
4244 				*stype = STACK_MISC;
4245 			}
4246 			goto mark;
4247 		}
4248 
4249 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4250 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4251 			goto mark;
4252 
4253 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4254 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4255 		     env->allow_ptr_leaks)) {
4256 			if (clobber) {
4257 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4258 				for (j = 0; j < BPF_REG_SIZE; j++)
4259 					state->stack[spi].slot_type[j] = STACK_MISC;
4260 			}
4261 			goto mark;
4262 		}
4263 
4264 err:
4265 		if (tnum_is_const(reg->var_off)) {
4266 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4267 				err_extra, regno, min_off, i - min_off, access_size);
4268 		} else {
4269 			char tn_buf[48];
4270 
4271 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4272 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4273 				err_extra, regno, tn_buf, i - min_off, access_size);
4274 		}
4275 		return -EACCES;
4276 mark:
4277 		/* reading any byte out of 8-byte 'spill_slot' will cause
4278 		 * the whole slot to be marked as 'read'
4279 		 */
4280 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
4281 			      state->stack[spi].spilled_ptr.parent,
4282 			      REG_LIVE_READ64);
4283 	}
4284 	return update_stack_depth(env, state, min_off);
4285 }
4286 
4287 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4288 				   int access_size, bool zero_size_allowed,
4289 				   struct bpf_call_arg_meta *meta)
4290 {
4291 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4292 
4293 	switch (reg->type) {
4294 	case PTR_TO_PACKET:
4295 	case PTR_TO_PACKET_META:
4296 		return check_packet_access(env, regno, reg->off, access_size,
4297 					   zero_size_allowed);
4298 	case PTR_TO_MAP_KEY:
4299 		return check_mem_region_access(env, regno, reg->off, access_size,
4300 					       reg->map_ptr->key_size, false);
4301 	case PTR_TO_MAP_VALUE:
4302 		if (check_map_access_type(env, regno, reg->off, access_size,
4303 					  meta && meta->raw_mode ? BPF_WRITE :
4304 					  BPF_READ))
4305 			return -EACCES;
4306 		return check_map_access(env, regno, reg->off, access_size,
4307 					zero_size_allowed);
4308 	case PTR_TO_MEM:
4309 		return check_mem_region_access(env, regno, reg->off,
4310 					       access_size, reg->mem_size,
4311 					       zero_size_allowed);
4312 	case PTR_TO_RDONLY_BUF:
4313 		if (meta && meta->raw_mode)
4314 			return -EACCES;
4315 		return check_buffer_access(env, reg, regno, reg->off,
4316 					   access_size, zero_size_allowed,
4317 					   "rdonly",
4318 					   &env->prog->aux->max_rdonly_access);
4319 	case PTR_TO_RDWR_BUF:
4320 		return check_buffer_access(env, reg, regno, reg->off,
4321 					   access_size, zero_size_allowed,
4322 					   "rdwr",
4323 					   &env->prog->aux->max_rdwr_access);
4324 	case PTR_TO_STACK:
4325 		return check_stack_range_initialized(
4326 				env,
4327 				regno, reg->off, access_size,
4328 				zero_size_allowed, ACCESS_HELPER, meta);
4329 	default: /* scalar_value or invalid ptr */
4330 		/* Allow zero-byte read from NULL, regardless of pointer type */
4331 		if (zero_size_allowed && access_size == 0 &&
4332 		    register_is_null(reg))
4333 			return 0;
4334 
4335 		verbose(env, "R%d type=%s expected=%s\n", regno,
4336 			reg_type_str[reg->type],
4337 			reg_type_str[PTR_TO_STACK]);
4338 		return -EACCES;
4339 	}
4340 }
4341 
4342 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4343 		   u32 regno, u32 mem_size)
4344 {
4345 	if (register_is_null(reg))
4346 		return 0;
4347 
4348 	if (reg_type_may_be_null(reg->type)) {
4349 		/* Assuming that the register contains a value check if the memory
4350 		 * access is safe. Temporarily save and restore the register's state as
4351 		 * the conversion shouldn't be visible to a caller.
4352 		 */
4353 		const struct bpf_reg_state saved_reg = *reg;
4354 		int rv;
4355 
4356 		mark_ptr_not_null_reg(reg);
4357 		rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4358 		*reg = saved_reg;
4359 		return rv;
4360 	}
4361 
4362 	return check_helper_mem_access(env, regno, mem_size, true, NULL);
4363 }
4364 
4365 /* Implementation details:
4366  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4367  * Two bpf_map_lookups (even with the same key) will have different reg->id.
4368  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4369  * value_or_null->value transition, since the verifier only cares about
4370  * the range of access to valid map value pointer and doesn't care about actual
4371  * address of the map element.
4372  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4373  * reg->id > 0 after value_or_null->value transition. By doing so
4374  * two bpf_map_lookups will be considered two different pointers that
4375  * point to different bpf_spin_locks.
4376  * The verifier allows taking only one bpf_spin_lock at a time to avoid
4377  * dead-locks.
4378  * Since only one bpf_spin_lock is allowed the checks are simpler than
4379  * reg_is_refcounted() logic. The verifier needs to remember only
4380  * one spin_lock instead of array of acquired_refs.
4381  * cur_state->active_spin_lock remembers which map value element got locked
4382  * and clears it after bpf_spin_unlock.
4383  */
4384 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4385 			     bool is_lock)
4386 {
4387 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4388 	struct bpf_verifier_state *cur = env->cur_state;
4389 	bool is_const = tnum_is_const(reg->var_off);
4390 	struct bpf_map *map = reg->map_ptr;
4391 	u64 val = reg->var_off.value;
4392 
4393 	if (!is_const) {
4394 		verbose(env,
4395 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4396 			regno);
4397 		return -EINVAL;
4398 	}
4399 	if (!map->btf) {
4400 		verbose(env,
4401 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
4402 			map->name);
4403 		return -EINVAL;
4404 	}
4405 	if (!map_value_has_spin_lock(map)) {
4406 		if (map->spin_lock_off == -E2BIG)
4407 			verbose(env,
4408 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
4409 				map->name);
4410 		else if (map->spin_lock_off == -ENOENT)
4411 			verbose(env,
4412 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
4413 				map->name);
4414 		else
4415 			verbose(env,
4416 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4417 				map->name);
4418 		return -EINVAL;
4419 	}
4420 	if (map->spin_lock_off != val + reg->off) {
4421 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4422 			val + reg->off);
4423 		return -EINVAL;
4424 	}
4425 	if (is_lock) {
4426 		if (cur->active_spin_lock) {
4427 			verbose(env,
4428 				"Locking two bpf_spin_locks are not allowed\n");
4429 			return -EINVAL;
4430 		}
4431 		cur->active_spin_lock = reg->id;
4432 	} else {
4433 		if (!cur->active_spin_lock) {
4434 			verbose(env, "bpf_spin_unlock without taking a lock\n");
4435 			return -EINVAL;
4436 		}
4437 		if (cur->active_spin_lock != reg->id) {
4438 			verbose(env, "bpf_spin_unlock of different lock\n");
4439 			return -EINVAL;
4440 		}
4441 		cur->active_spin_lock = 0;
4442 	}
4443 	return 0;
4444 }
4445 
4446 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4447 {
4448 	return type == ARG_PTR_TO_MEM ||
4449 	       type == ARG_PTR_TO_MEM_OR_NULL ||
4450 	       type == ARG_PTR_TO_UNINIT_MEM;
4451 }
4452 
4453 static bool arg_type_is_mem_size(enum bpf_arg_type type)
4454 {
4455 	return type == ARG_CONST_SIZE ||
4456 	       type == ARG_CONST_SIZE_OR_ZERO;
4457 }
4458 
4459 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4460 {
4461 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4462 }
4463 
4464 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4465 {
4466 	return type == ARG_PTR_TO_INT ||
4467 	       type == ARG_PTR_TO_LONG;
4468 }
4469 
4470 static int int_ptr_type_to_size(enum bpf_arg_type type)
4471 {
4472 	if (type == ARG_PTR_TO_INT)
4473 		return sizeof(u32);
4474 	else if (type == ARG_PTR_TO_LONG)
4475 		return sizeof(u64);
4476 
4477 	return -EINVAL;
4478 }
4479 
4480 static int resolve_map_arg_type(struct bpf_verifier_env *env,
4481 				 const struct bpf_call_arg_meta *meta,
4482 				 enum bpf_arg_type *arg_type)
4483 {
4484 	if (!meta->map_ptr) {
4485 		/* kernel subsystem misconfigured verifier */
4486 		verbose(env, "invalid map_ptr to access map->type\n");
4487 		return -EACCES;
4488 	}
4489 
4490 	switch (meta->map_ptr->map_type) {
4491 	case BPF_MAP_TYPE_SOCKMAP:
4492 	case BPF_MAP_TYPE_SOCKHASH:
4493 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4494 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4495 		} else {
4496 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
4497 			return -EINVAL;
4498 		}
4499 		break;
4500 
4501 	default:
4502 		break;
4503 	}
4504 	return 0;
4505 }
4506 
4507 struct bpf_reg_types {
4508 	const enum bpf_reg_type types[10];
4509 	u32 *btf_id;
4510 };
4511 
4512 static const struct bpf_reg_types map_key_value_types = {
4513 	.types = {
4514 		PTR_TO_STACK,
4515 		PTR_TO_PACKET,
4516 		PTR_TO_PACKET_META,
4517 		PTR_TO_MAP_KEY,
4518 		PTR_TO_MAP_VALUE,
4519 	},
4520 };
4521 
4522 static const struct bpf_reg_types sock_types = {
4523 	.types = {
4524 		PTR_TO_SOCK_COMMON,
4525 		PTR_TO_SOCKET,
4526 		PTR_TO_TCP_SOCK,
4527 		PTR_TO_XDP_SOCK,
4528 	},
4529 };
4530 
4531 #ifdef CONFIG_NET
4532 static const struct bpf_reg_types btf_id_sock_common_types = {
4533 	.types = {
4534 		PTR_TO_SOCK_COMMON,
4535 		PTR_TO_SOCKET,
4536 		PTR_TO_TCP_SOCK,
4537 		PTR_TO_XDP_SOCK,
4538 		PTR_TO_BTF_ID,
4539 	},
4540 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4541 };
4542 #endif
4543 
4544 static const struct bpf_reg_types mem_types = {
4545 	.types = {
4546 		PTR_TO_STACK,
4547 		PTR_TO_PACKET,
4548 		PTR_TO_PACKET_META,
4549 		PTR_TO_MAP_KEY,
4550 		PTR_TO_MAP_VALUE,
4551 		PTR_TO_MEM,
4552 		PTR_TO_RDONLY_BUF,
4553 		PTR_TO_RDWR_BUF,
4554 	},
4555 };
4556 
4557 static const struct bpf_reg_types int_ptr_types = {
4558 	.types = {
4559 		PTR_TO_STACK,
4560 		PTR_TO_PACKET,
4561 		PTR_TO_PACKET_META,
4562 		PTR_TO_MAP_KEY,
4563 		PTR_TO_MAP_VALUE,
4564 	},
4565 };
4566 
4567 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4568 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4569 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4570 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4571 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4572 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4573 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4574 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4575 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
4576 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
4577 
4578 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4579 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
4580 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
4581 	[ARG_PTR_TO_UNINIT_MAP_VALUE]	= &map_key_value_types,
4582 	[ARG_PTR_TO_MAP_VALUE_OR_NULL]	= &map_key_value_types,
4583 	[ARG_CONST_SIZE]		= &scalar_types,
4584 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
4585 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
4586 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
4587 	[ARG_PTR_TO_CTX]		= &context_types,
4588 	[ARG_PTR_TO_CTX_OR_NULL]	= &context_types,
4589 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
4590 #ifdef CONFIG_NET
4591 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
4592 #endif
4593 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
4594 	[ARG_PTR_TO_SOCKET_OR_NULL]	= &fullsock_types,
4595 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
4596 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
4597 	[ARG_PTR_TO_MEM]		= &mem_types,
4598 	[ARG_PTR_TO_MEM_OR_NULL]	= &mem_types,
4599 	[ARG_PTR_TO_UNINIT_MEM]		= &mem_types,
4600 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
4601 	[ARG_PTR_TO_ALLOC_MEM_OR_NULL]	= &alloc_mem_types,
4602 	[ARG_PTR_TO_INT]		= &int_ptr_types,
4603 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
4604 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
4605 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
4606 	[ARG_PTR_TO_STACK_OR_NULL]	= &stack_ptr_types,
4607 };
4608 
4609 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4610 			  enum bpf_arg_type arg_type,
4611 			  const u32 *arg_btf_id)
4612 {
4613 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4614 	enum bpf_reg_type expected, type = reg->type;
4615 	const struct bpf_reg_types *compatible;
4616 	int i, j;
4617 
4618 	compatible = compatible_reg_types[arg_type];
4619 	if (!compatible) {
4620 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4621 		return -EFAULT;
4622 	}
4623 
4624 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4625 		expected = compatible->types[i];
4626 		if (expected == NOT_INIT)
4627 			break;
4628 
4629 		if (type == expected)
4630 			goto found;
4631 	}
4632 
4633 	verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4634 	for (j = 0; j + 1 < i; j++)
4635 		verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4636 	verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4637 	return -EACCES;
4638 
4639 found:
4640 	if (type == PTR_TO_BTF_ID) {
4641 		if (!arg_btf_id) {
4642 			if (!compatible->btf_id) {
4643 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4644 				return -EFAULT;
4645 			}
4646 			arg_btf_id = compatible->btf_id;
4647 		}
4648 
4649 		if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4650 					  btf_vmlinux, *arg_btf_id)) {
4651 			verbose(env, "R%d is of type %s but %s is expected\n",
4652 				regno, kernel_type_name(reg->btf, reg->btf_id),
4653 				kernel_type_name(btf_vmlinux, *arg_btf_id));
4654 			return -EACCES;
4655 		}
4656 
4657 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4658 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4659 				regno);
4660 			return -EACCES;
4661 		}
4662 	}
4663 
4664 	return 0;
4665 }
4666 
4667 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4668 			  struct bpf_call_arg_meta *meta,
4669 			  const struct bpf_func_proto *fn)
4670 {
4671 	u32 regno = BPF_REG_1 + arg;
4672 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4673 	enum bpf_arg_type arg_type = fn->arg_type[arg];
4674 	enum bpf_reg_type type = reg->type;
4675 	int err = 0;
4676 
4677 	if (arg_type == ARG_DONTCARE)
4678 		return 0;
4679 
4680 	err = check_reg_arg(env, regno, SRC_OP);
4681 	if (err)
4682 		return err;
4683 
4684 	if (arg_type == ARG_ANYTHING) {
4685 		if (is_pointer_value(env, regno)) {
4686 			verbose(env, "R%d leaks addr into helper function\n",
4687 				regno);
4688 			return -EACCES;
4689 		}
4690 		return 0;
4691 	}
4692 
4693 	if (type_is_pkt_pointer(type) &&
4694 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4695 		verbose(env, "helper access to the packet is not allowed\n");
4696 		return -EACCES;
4697 	}
4698 
4699 	if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4700 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4701 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4702 		err = resolve_map_arg_type(env, meta, &arg_type);
4703 		if (err)
4704 			return err;
4705 	}
4706 
4707 	if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4708 		/* A NULL register has a SCALAR_VALUE type, so skip
4709 		 * type checking.
4710 		 */
4711 		goto skip_type_check;
4712 
4713 	err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4714 	if (err)
4715 		return err;
4716 
4717 	if (type == PTR_TO_CTX) {
4718 		err = check_ctx_reg(env, reg, regno);
4719 		if (err < 0)
4720 			return err;
4721 	}
4722 
4723 skip_type_check:
4724 	if (reg->ref_obj_id) {
4725 		if (meta->ref_obj_id) {
4726 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4727 				regno, reg->ref_obj_id,
4728 				meta->ref_obj_id);
4729 			return -EFAULT;
4730 		}
4731 		meta->ref_obj_id = reg->ref_obj_id;
4732 	}
4733 
4734 	if (arg_type == ARG_CONST_MAP_PTR) {
4735 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4736 		meta->map_ptr = reg->map_ptr;
4737 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4738 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
4739 		 * check that [key, key + map->key_size) are within
4740 		 * stack limits and initialized
4741 		 */
4742 		if (!meta->map_ptr) {
4743 			/* in function declaration map_ptr must come before
4744 			 * map_key, so that it's verified and known before
4745 			 * we have to check map_key here. Otherwise it means
4746 			 * that kernel subsystem misconfigured verifier
4747 			 */
4748 			verbose(env, "invalid map_ptr to access map->key\n");
4749 			return -EACCES;
4750 		}
4751 		err = check_helper_mem_access(env, regno,
4752 					      meta->map_ptr->key_size, false,
4753 					      NULL);
4754 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4755 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4756 		    !register_is_null(reg)) ||
4757 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4758 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
4759 		 * check [value, value + map->value_size) validity
4760 		 */
4761 		if (!meta->map_ptr) {
4762 			/* kernel subsystem misconfigured verifier */
4763 			verbose(env, "invalid map_ptr to access map->value\n");
4764 			return -EACCES;
4765 		}
4766 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4767 		err = check_helper_mem_access(env, regno,
4768 					      meta->map_ptr->value_size, false,
4769 					      meta);
4770 	} else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4771 		if (!reg->btf_id) {
4772 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4773 			return -EACCES;
4774 		}
4775 		meta->ret_btf = reg->btf;
4776 		meta->ret_btf_id = reg->btf_id;
4777 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4778 		if (meta->func_id == BPF_FUNC_spin_lock) {
4779 			if (process_spin_lock(env, regno, true))
4780 				return -EACCES;
4781 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
4782 			if (process_spin_lock(env, regno, false))
4783 				return -EACCES;
4784 		} else {
4785 			verbose(env, "verifier internal error\n");
4786 			return -EFAULT;
4787 		}
4788 	} else if (arg_type == ARG_PTR_TO_FUNC) {
4789 		meta->subprogno = reg->subprogno;
4790 	} else if (arg_type_is_mem_ptr(arg_type)) {
4791 		/* The access to this pointer is only checked when we hit the
4792 		 * next is_mem_size argument below.
4793 		 */
4794 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
4795 	} else if (arg_type_is_mem_size(arg_type)) {
4796 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
4797 
4798 		/* This is used to refine r0 return value bounds for helpers
4799 		 * that enforce this value as an upper bound on return values.
4800 		 * See do_refine_retval_range() for helpers that can refine
4801 		 * the return value. C type of helper is u32 so we pull register
4802 		 * bound from umax_value however, if negative verifier errors
4803 		 * out. Only upper bounds can be learned because retval is an
4804 		 * int type and negative retvals are allowed.
4805 		 */
4806 		meta->msize_max_value = reg->umax_value;
4807 
4808 		/* The register is SCALAR_VALUE; the access check
4809 		 * happens using its boundaries.
4810 		 */
4811 		if (!tnum_is_const(reg->var_off))
4812 			/* For unprivileged variable accesses, disable raw
4813 			 * mode so that the program is required to
4814 			 * initialize all the memory that the helper could
4815 			 * just partially fill up.
4816 			 */
4817 			meta = NULL;
4818 
4819 		if (reg->smin_value < 0) {
4820 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
4821 				regno);
4822 			return -EACCES;
4823 		}
4824 
4825 		if (reg->umin_value == 0) {
4826 			err = check_helper_mem_access(env, regno - 1, 0,
4827 						      zero_size_allowed,
4828 						      meta);
4829 			if (err)
4830 				return err;
4831 		}
4832 
4833 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
4834 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
4835 				regno);
4836 			return -EACCES;
4837 		}
4838 		err = check_helper_mem_access(env, regno - 1,
4839 					      reg->umax_value,
4840 					      zero_size_allowed, meta);
4841 		if (!err)
4842 			err = mark_chain_precision(env, regno);
4843 	} else if (arg_type_is_alloc_size(arg_type)) {
4844 		if (!tnum_is_const(reg->var_off)) {
4845 			verbose(env, "R%d is not a known constant'\n",
4846 				regno);
4847 			return -EACCES;
4848 		}
4849 		meta->mem_size = reg->var_off.value;
4850 	} else if (arg_type_is_int_ptr(arg_type)) {
4851 		int size = int_ptr_type_to_size(arg_type);
4852 
4853 		err = check_helper_mem_access(env, regno, size, false, meta);
4854 		if (err)
4855 			return err;
4856 		err = check_ptr_alignment(env, reg, 0, size, true);
4857 	}
4858 
4859 	return err;
4860 }
4861 
4862 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4863 {
4864 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
4865 	enum bpf_prog_type type = resolve_prog_type(env->prog);
4866 
4867 	if (func_id != BPF_FUNC_map_update_elem)
4868 		return false;
4869 
4870 	/* It's not possible to get access to a locked struct sock in these
4871 	 * contexts, so updating is safe.
4872 	 */
4873 	switch (type) {
4874 	case BPF_PROG_TYPE_TRACING:
4875 		if (eatype == BPF_TRACE_ITER)
4876 			return true;
4877 		break;
4878 	case BPF_PROG_TYPE_SOCKET_FILTER:
4879 	case BPF_PROG_TYPE_SCHED_CLS:
4880 	case BPF_PROG_TYPE_SCHED_ACT:
4881 	case BPF_PROG_TYPE_XDP:
4882 	case BPF_PROG_TYPE_SK_REUSEPORT:
4883 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
4884 	case BPF_PROG_TYPE_SK_LOOKUP:
4885 		return true;
4886 	default:
4887 		break;
4888 	}
4889 
4890 	verbose(env, "cannot update sockmap in this context\n");
4891 	return false;
4892 }
4893 
4894 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
4895 {
4896 	return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
4897 }
4898 
4899 static int check_map_func_compatibility(struct bpf_verifier_env *env,
4900 					struct bpf_map *map, int func_id)
4901 {
4902 	if (!map)
4903 		return 0;
4904 
4905 	/* We need a two way check, first is from map perspective ... */
4906 	switch (map->map_type) {
4907 	case BPF_MAP_TYPE_PROG_ARRAY:
4908 		if (func_id != BPF_FUNC_tail_call)
4909 			goto error;
4910 		break;
4911 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4912 		if (func_id != BPF_FUNC_perf_event_read &&
4913 		    func_id != BPF_FUNC_perf_event_output &&
4914 		    func_id != BPF_FUNC_skb_output &&
4915 		    func_id != BPF_FUNC_perf_event_read_value &&
4916 		    func_id != BPF_FUNC_xdp_output)
4917 			goto error;
4918 		break;
4919 	case BPF_MAP_TYPE_RINGBUF:
4920 		if (func_id != BPF_FUNC_ringbuf_output &&
4921 		    func_id != BPF_FUNC_ringbuf_reserve &&
4922 		    func_id != BPF_FUNC_ringbuf_submit &&
4923 		    func_id != BPF_FUNC_ringbuf_discard &&
4924 		    func_id != BPF_FUNC_ringbuf_query)
4925 			goto error;
4926 		break;
4927 	case BPF_MAP_TYPE_STACK_TRACE:
4928 		if (func_id != BPF_FUNC_get_stackid)
4929 			goto error;
4930 		break;
4931 	case BPF_MAP_TYPE_CGROUP_ARRAY:
4932 		if (func_id != BPF_FUNC_skb_under_cgroup &&
4933 		    func_id != BPF_FUNC_current_task_under_cgroup)
4934 			goto error;
4935 		break;
4936 	case BPF_MAP_TYPE_CGROUP_STORAGE:
4937 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
4938 		if (func_id != BPF_FUNC_get_local_storage)
4939 			goto error;
4940 		break;
4941 	case BPF_MAP_TYPE_DEVMAP:
4942 	case BPF_MAP_TYPE_DEVMAP_HASH:
4943 		if (func_id != BPF_FUNC_redirect_map &&
4944 		    func_id != BPF_FUNC_map_lookup_elem)
4945 			goto error;
4946 		break;
4947 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
4948 	 * appear.
4949 	 */
4950 	case BPF_MAP_TYPE_CPUMAP:
4951 		if (func_id != BPF_FUNC_redirect_map)
4952 			goto error;
4953 		break;
4954 	case BPF_MAP_TYPE_XSKMAP:
4955 		if (func_id != BPF_FUNC_redirect_map &&
4956 		    func_id != BPF_FUNC_map_lookup_elem)
4957 			goto error;
4958 		break;
4959 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4960 	case BPF_MAP_TYPE_HASH_OF_MAPS:
4961 		if (func_id != BPF_FUNC_map_lookup_elem)
4962 			goto error;
4963 		break;
4964 	case BPF_MAP_TYPE_SOCKMAP:
4965 		if (func_id != BPF_FUNC_sk_redirect_map &&
4966 		    func_id != BPF_FUNC_sock_map_update &&
4967 		    func_id != BPF_FUNC_map_delete_elem &&
4968 		    func_id != BPF_FUNC_msg_redirect_map &&
4969 		    func_id != BPF_FUNC_sk_select_reuseport &&
4970 		    func_id != BPF_FUNC_map_lookup_elem &&
4971 		    !may_update_sockmap(env, func_id))
4972 			goto error;
4973 		break;
4974 	case BPF_MAP_TYPE_SOCKHASH:
4975 		if (func_id != BPF_FUNC_sk_redirect_hash &&
4976 		    func_id != BPF_FUNC_sock_hash_update &&
4977 		    func_id != BPF_FUNC_map_delete_elem &&
4978 		    func_id != BPF_FUNC_msg_redirect_hash &&
4979 		    func_id != BPF_FUNC_sk_select_reuseport &&
4980 		    func_id != BPF_FUNC_map_lookup_elem &&
4981 		    !may_update_sockmap(env, func_id))
4982 			goto error;
4983 		break;
4984 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4985 		if (func_id != BPF_FUNC_sk_select_reuseport)
4986 			goto error;
4987 		break;
4988 	case BPF_MAP_TYPE_QUEUE:
4989 	case BPF_MAP_TYPE_STACK:
4990 		if (func_id != BPF_FUNC_map_peek_elem &&
4991 		    func_id != BPF_FUNC_map_pop_elem &&
4992 		    func_id != BPF_FUNC_map_push_elem)
4993 			goto error;
4994 		break;
4995 	case BPF_MAP_TYPE_SK_STORAGE:
4996 		if (func_id != BPF_FUNC_sk_storage_get &&
4997 		    func_id != BPF_FUNC_sk_storage_delete)
4998 			goto error;
4999 		break;
5000 	case BPF_MAP_TYPE_INODE_STORAGE:
5001 		if (func_id != BPF_FUNC_inode_storage_get &&
5002 		    func_id != BPF_FUNC_inode_storage_delete)
5003 			goto error;
5004 		break;
5005 	case BPF_MAP_TYPE_TASK_STORAGE:
5006 		if (func_id != BPF_FUNC_task_storage_get &&
5007 		    func_id != BPF_FUNC_task_storage_delete)
5008 			goto error;
5009 		break;
5010 	default:
5011 		break;
5012 	}
5013 
5014 	/* ... and second from the function itself. */
5015 	switch (func_id) {
5016 	case BPF_FUNC_tail_call:
5017 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5018 			goto error;
5019 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5020 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
5021 			return -EINVAL;
5022 		}
5023 		break;
5024 	case BPF_FUNC_perf_event_read:
5025 	case BPF_FUNC_perf_event_output:
5026 	case BPF_FUNC_perf_event_read_value:
5027 	case BPF_FUNC_skb_output:
5028 	case BPF_FUNC_xdp_output:
5029 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5030 			goto error;
5031 		break;
5032 	case BPF_FUNC_get_stackid:
5033 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5034 			goto error;
5035 		break;
5036 	case BPF_FUNC_current_task_under_cgroup:
5037 	case BPF_FUNC_skb_under_cgroup:
5038 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5039 			goto error;
5040 		break;
5041 	case BPF_FUNC_redirect_map:
5042 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
5043 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
5044 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
5045 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
5046 			goto error;
5047 		break;
5048 	case BPF_FUNC_sk_redirect_map:
5049 	case BPF_FUNC_msg_redirect_map:
5050 	case BPF_FUNC_sock_map_update:
5051 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5052 			goto error;
5053 		break;
5054 	case BPF_FUNC_sk_redirect_hash:
5055 	case BPF_FUNC_msg_redirect_hash:
5056 	case BPF_FUNC_sock_hash_update:
5057 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
5058 			goto error;
5059 		break;
5060 	case BPF_FUNC_get_local_storage:
5061 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5062 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
5063 			goto error;
5064 		break;
5065 	case BPF_FUNC_sk_select_reuseport:
5066 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5067 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5068 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
5069 			goto error;
5070 		break;
5071 	case BPF_FUNC_map_peek_elem:
5072 	case BPF_FUNC_map_pop_elem:
5073 	case BPF_FUNC_map_push_elem:
5074 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5075 		    map->map_type != BPF_MAP_TYPE_STACK)
5076 			goto error;
5077 		break;
5078 	case BPF_FUNC_sk_storage_get:
5079 	case BPF_FUNC_sk_storage_delete:
5080 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5081 			goto error;
5082 		break;
5083 	case BPF_FUNC_inode_storage_get:
5084 	case BPF_FUNC_inode_storage_delete:
5085 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5086 			goto error;
5087 		break;
5088 	case BPF_FUNC_task_storage_get:
5089 	case BPF_FUNC_task_storage_delete:
5090 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5091 			goto error;
5092 		break;
5093 	default:
5094 		break;
5095 	}
5096 
5097 	return 0;
5098 error:
5099 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
5100 		map->map_type, func_id_name(func_id), func_id);
5101 	return -EINVAL;
5102 }
5103 
5104 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5105 {
5106 	int count = 0;
5107 
5108 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5109 		count++;
5110 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5111 		count++;
5112 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5113 		count++;
5114 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5115 		count++;
5116 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5117 		count++;
5118 
5119 	/* We only support one arg being in raw mode at the moment,
5120 	 * which is sufficient for the helper functions we have
5121 	 * right now.
5122 	 */
5123 	return count <= 1;
5124 }
5125 
5126 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5127 				    enum bpf_arg_type arg_next)
5128 {
5129 	return (arg_type_is_mem_ptr(arg_curr) &&
5130 	        !arg_type_is_mem_size(arg_next)) ||
5131 	       (!arg_type_is_mem_ptr(arg_curr) &&
5132 		arg_type_is_mem_size(arg_next));
5133 }
5134 
5135 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5136 {
5137 	/* bpf_xxx(..., buf, len) call will access 'len'
5138 	 * bytes from memory 'buf'. Both arg types need
5139 	 * to be paired, so make sure there's no buggy
5140 	 * helper function specification.
5141 	 */
5142 	if (arg_type_is_mem_size(fn->arg1_type) ||
5143 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
5144 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5145 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5146 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5147 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5148 		return false;
5149 
5150 	return true;
5151 }
5152 
5153 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5154 {
5155 	int count = 0;
5156 
5157 	if (arg_type_may_be_refcounted(fn->arg1_type))
5158 		count++;
5159 	if (arg_type_may_be_refcounted(fn->arg2_type))
5160 		count++;
5161 	if (arg_type_may_be_refcounted(fn->arg3_type))
5162 		count++;
5163 	if (arg_type_may_be_refcounted(fn->arg4_type))
5164 		count++;
5165 	if (arg_type_may_be_refcounted(fn->arg5_type))
5166 		count++;
5167 
5168 	/* A reference acquiring function cannot acquire
5169 	 * another refcounted ptr.
5170 	 */
5171 	if (may_be_acquire_function(func_id) && count)
5172 		return false;
5173 
5174 	/* We only support one arg being unreferenced at the moment,
5175 	 * which is sufficient for the helper functions we have right now.
5176 	 */
5177 	return count <= 1;
5178 }
5179 
5180 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5181 {
5182 	int i;
5183 
5184 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5185 		if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5186 			return false;
5187 
5188 		if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5189 			return false;
5190 	}
5191 
5192 	return true;
5193 }
5194 
5195 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5196 {
5197 	return check_raw_mode_ok(fn) &&
5198 	       check_arg_pair_ok(fn) &&
5199 	       check_btf_id_ok(fn) &&
5200 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5201 }
5202 
5203 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5204  * are now invalid, so turn them into unknown SCALAR_VALUE.
5205  */
5206 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5207 				     struct bpf_func_state *state)
5208 {
5209 	struct bpf_reg_state *regs = state->regs, *reg;
5210 	int i;
5211 
5212 	for (i = 0; i < MAX_BPF_REG; i++)
5213 		if (reg_is_pkt_pointer_any(&regs[i]))
5214 			mark_reg_unknown(env, regs, i);
5215 
5216 	bpf_for_each_spilled_reg(i, state, reg) {
5217 		if (!reg)
5218 			continue;
5219 		if (reg_is_pkt_pointer_any(reg))
5220 			__mark_reg_unknown(env, reg);
5221 	}
5222 }
5223 
5224 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5225 {
5226 	struct bpf_verifier_state *vstate = env->cur_state;
5227 	int i;
5228 
5229 	for (i = 0; i <= vstate->curframe; i++)
5230 		__clear_all_pkt_pointers(env, vstate->frame[i]);
5231 }
5232 
5233 enum {
5234 	AT_PKT_END = -1,
5235 	BEYOND_PKT_END = -2,
5236 };
5237 
5238 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5239 {
5240 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5241 	struct bpf_reg_state *reg = &state->regs[regn];
5242 
5243 	if (reg->type != PTR_TO_PACKET)
5244 		/* PTR_TO_PACKET_META is not supported yet */
5245 		return;
5246 
5247 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5248 	 * How far beyond pkt_end it goes is unknown.
5249 	 * if (!range_open) it's the case of pkt >= pkt_end
5250 	 * if (range_open) it's the case of pkt > pkt_end
5251 	 * hence this pointer is at least 1 byte bigger than pkt_end
5252 	 */
5253 	if (range_open)
5254 		reg->range = BEYOND_PKT_END;
5255 	else
5256 		reg->range = AT_PKT_END;
5257 }
5258 
5259 static void release_reg_references(struct bpf_verifier_env *env,
5260 				   struct bpf_func_state *state,
5261 				   int ref_obj_id)
5262 {
5263 	struct bpf_reg_state *regs = state->regs, *reg;
5264 	int i;
5265 
5266 	for (i = 0; i < MAX_BPF_REG; i++)
5267 		if (regs[i].ref_obj_id == ref_obj_id)
5268 			mark_reg_unknown(env, regs, i);
5269 
5270 	bpf_for_each_spilled_reg(i, state, reg) {
5271 		if (!reg)
5272 			continue;
5273 		if (reg->ref_obj_id == ref_obj_id)
5274 			__mark_reg_unknown(env, reg);
5275 	}
5276 }
5277 
5278 /* The pointer with the specified id has released its reference to kernel
5279  * resources. Identify all copies of the same pointer and clear the reference.
5280  */
5281 static int release_reference(struct bpf_verifier_env *env,
5282 			     int ref_obj_id)
5283 {
5284 	struct bpf_verifier_state *vstate = env->cur_state;
5285 	int err;
5286 	int i;
5287 
5288 	err = release_reference_state(cur_func(env), ref_obj_id);
5289 	if (err)
5290 		return err;
5291 
5292 	for (i = 0; i <= vstate->curframe; i++)
5293 		release_reg_references(env, vstate->frame[i], ref_obj_id);
5294 
5295 	return 0;
5296 }
5297 
5298 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5299 				    struct bpf_reg_state *regs)
5300 {
5301 	int i;
5302 
5303 	/* after the call registers r0 - r5 were scratched */
5304 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5305 		mark_reg_not_init(env, regs, caller_saved[i]);
5306 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5307 	}
5308 }
5309 
5310 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5311 				   struct bpf_func_state *caller,
5312 				   struct bpf_func_state *callee,
5313 				   int insn_idx);
5314 
5315 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5316 			     int *insn_idx, int subprog,
5317 			     set_callee_state_fn set_callee_state_cb)
5318 {
5319 	struct bpf_verifier_state *state = env->cur_state;
5320 	struct bpf_func_info_aux *func_info_aux;
5321 	struct bpf_func_state *caller, *callee;
5322 	int err;
5323 	bool is_global = false;
5324 
5325 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5326 		verbose(env, "the call stack of %d frames is too deep\n",
5327 			state->curframe + 2);
5328 		return -E2BIG;
5329 	}
5330 
5331 	caller = state->frame[state->curframe];
5332 	if (state->frame[state->curframe + 1]) {
5333 		verbose(env, "verifier bug. Frame %d already allocated\n",
5334 			state->curframe + 1);
5335 		return -EFAULT;
5336 	}
5337 
5338 	func_info_aux = env->prog->aux->func_info_aux;
5339 	if (func_info_aux)
5340 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5341 	err = btf_check_func_arg_match(env, subprog, caller->regs);
5342 	if (err == -EFAULT)
5343 		return err;
5344 	if (is_global) {
5345 		if (err) {
5346 			verbose(env, "Caller passes invalid args into func#%d\n",
5347 				subprog);
5348 			return err;
5349 		} else {
5350 			if (env->log.level & BPF_LOG_LEVEL)
5351 				verbose(env,
5352 					"Func#%d is global and valid. Skipping.\n",
5353 					subprog);
5354 			clear_caller_saved_regs(env, caller->regs);
5355 
5356 			/* All global functions return a 64-bit SCALAR_VALUE */
5357 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
5358 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5359 
5360 			/* continue with next insn after call */
5361 			return 0;
5362 		}
5363 	}
5364 
5365 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5366 	if (!callee)
5367 		return -ENOMEM;
5368 	state->frame[state->curframe + 1] = callee;
5369 
5370 	/* callee cannot access r0, r6 - r9 for reading and has to write
5371 	 * into its own stack before reading from it.
5372 	 * callee can read/write into caller's stack
5373 	 */
5374 	init_func_state(env, callee,
5375 			/* remember the callsite, it will be used by bpf_exit */
5376 			*insn_idx /* callsite */,
5377 			state->curframe + 1 /* frameno within this callchain */,
5378 			subprog /* subprog number within this prog */);
5379 
5380 	/* Transfer references to the callee */
5381 	err = transfer_reference_state(callee, caller);
5382 	if (err)
5383 		return err;
5384 
5385 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
5386 	if (err)
5387 		return err;
5388 
5389 	clear_caller_saved_regs(env, caller->regs);
5390 
5391 	/* only increment it after check_reg_arg() finished */
5392 	state->curframe++;
5393 
5394 	/* and go analyze first insn of the callee */
5395 	*insn_idx = env->subprog_info[subprog].start - 1;
5396 
5397 	if (env->log.level & BPF_LOG_LEVEL) {
5398 		verbose(env, "caller:\n");
5399 		print_verifier_state(env, caller);
5400 		verbose(env, "callee:\n");
5401 		print_verifier_state(env, callee);
5402 	}
5403 	return 0;
5404 }
5405 
5406 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
5407 				   struct bpf_func_state *caller,
5408 				   struct bpf_func_state *callee)
5409 {
5410 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
5411 	 *      void *callback_ctx, u64 flags);
5412 	 * callback_fn(struct bpf_map *map, void *key, void *value,
5413 	 *      void *callback_ctx);
5414 	 */
5415 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
5416 
5417 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
5418 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
5419 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5420 
5421 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
5422 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
5423 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5424 
5425 	/* pointer to stack or null */
5426 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
5427 
5428 	/* unused */
5429 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
5430 	return 0;
5431 }
5432 
5433 static int set_callee_state(struct bpf_verifier_env *env,
5434 			    struct bpf_func_state *caller,
5435 			    struct bpf_func_state *callee, int insn_idx)
5436 {
5437 	int i;
5438 
5439 	/* copy r1 - r5 args that callee can access.  The copy includes parent
5440 	 * pointers, which connects us up to the liveness chain
5441 	 */
5442 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
5443 		callee->regs[i] = caller->regs[i];
5444 	return 0;
5445 }
5446 
5447 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5448 			   int *insn_idx)
5449 {
5450 	int subprog, target_insn;
5451 
5452 	target_insn = *insn_idx + insn->imm + 1;
5453 	subprog = find_subprog(env, target_insn);
5454 	if (subprog < 0) {
5455 		verbose(env, "verifier bug. No program starts at insn %d\n",
5456 			target_insn);
5457 		return -EFAULT;
5458 	}
5459 
5460 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
5461 }
5462 
5463 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
5464 				       struct bpf_func_state *caller,
5465 				       struct bpf_func_state *callee,
5466 				       int insn_idx)
5467 {
5468 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
5469 	struct bpf_map *map;
5470 	int err;
5471 
5472 	if (bpf_map_ptr_poisoned(insn_aux)) {
5473 		verbose(env, "tail_call abusing map_ptr\n");
5474 		return -EINVAL;
5475 	}
5476 
5477 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
5478 	if (!map->ops->map_set_for_each_callback_args ||
5479 	    !map->ops->map_for_each_callback) {
5480 		verbose(env, "callback function not allowed for map\n");
5481 		return -ENOTSUPP;
5482 	}
5483 
5484 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
5485 	if (err)
5486 		return err;
5487 
5488 	callee->in_callback_fn = true;
5489 	return 0;
5490 }
5491 
5492 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
5493 {
5494 	struct bpf_verifier_state *state = env->cur_state;
5495 	struct bpf_func_state *caller, *callee;
5496 	struct bpf_reg_state *r0;
5497 	int err;
5498 
5499 	callee = state->frame[state->curframe];
5500 	r0 = &callee->regs[BPF_REG_0];
5501 	if (r0->type == PTR_TO_STACK) {
5502 		/* technically it's ok to return caller's stack pointer
5503 		 * (or caller's caller's pointer) back to the caller,
5504 		 * since these pointers are valid. Only current stack
5505 		 * pointer will be invalid as soon as function exits,
5506 		 * but let's be conservative
5507 		 */
5508 		verbose(env, "cannot return stack pointer to the caller\n");
5509 		return -EINVAL;
5510 	}
5511 
5512 	state->curframe--;
5513 	caller = state->frame[state->curframe];
5514 	if (callee->in_callback_fn) {
5515 		/* enforce R0 return value range [0, 1]. */
5516 		struct tnum range = tnum_range(0, 1);
5517 
5518 		if (r0->type != SCALAR_VALUE) {
5519 			verbose(env, "R0 not a scalar value\n");
5520 			return -EACCES;
5521 		}
5522 		if (!tnum_in(range, r0->var_off)) {
5523 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
5524 			return -EINVAL;
5525 		}
5526 	} else {
5527 		/* return to the caller whatever r0 had in the callee */
5528 		caller->regs[BPF_REG_0] = *r0;
5529 	}
5530 
5531 	/* Transfer references to the caller */
5532 	err = transfer_reference_state(caller, callee);
5533 	if (err)
5534 		return err;
5535 
5536 	*insn_idx = callee->callsite + 1;
5537 	if (env->log.level & BPF_LOG_LEVEL) {
5538 		verbose(env, "returning from callee:\n");
5539 		print_verifier_state(env, callee);
5540 		verbose(env, "to caller at %d:\n", *insn_idx);
5541 		print_verifier_state(env, caller);
5542 	}
5543 	/* clear everything in the callee */
5544 	free_func_state(callee);
5545 	state->frame[state->curframe + 1] = NULL;
5546 	return 0;
5547 }
5548 
5549 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
5550 				   int func_id,
5551 				   struct bpf_call_arg_meta *meta)
5552 {
5553 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
5554 
5555 	if (ret_type != RET_INTEGER ||
5556 	    (func_id != BPF_FUNC_get_stack &&
5557 	     func_id != BPF_FUNC_probe_read_str &&
5558 	     func_id != BPF_FUNC_probe_read_kernel_str &&
5559 	     func_id != BPF_FUNC_probe_read_user_str))
5560 		return;
5561 
5562 	ret_reg->smax_value = meta->msize_max_value;
5563 	ret_reg->s32_max_value = meta->msize_max_value;
5564 	ret_reg->smin_value = -MAX_ERRNO;
5565 	ret_reg->s32_min_value = -MAX_ERRNO;
5566 	__reg_deduce_bounds(ret_reg);
5567 	__reg_bound_offset(ret_reg);
5568 	__update_reg_bounds(ret_reg);
5569 }
5570 
5571 static int
5572 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5573 		int func_id, int insn_idx)
5574 {
5575 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5576 	struct bpf_map *map = meta->map_ptr;
5577 
5578 	if (func_id != BPF_FUNC_tail_call &&
5579 	    func_id != BPF_FUNC_map_lookup_elem &&
5580 	    func_id != BPF_FUNC_map_update_elem &&
5581 	    func_id != BPF_FUNC_map_delete_elem &&
5582 	    func_id != BPF_FUNC_map_push_elem &&
5583 	    func_id != BPF_FUNC_map_pop_elem &&
5584 	    func_id != BPF_FUNC_map_peek_elem &&
5585 	    func_id != BPF_FUNC_for_each_map_elem)
5586 		return 0;
5587 
5588 	if (map == NULL) {
5589 		verbose(env, "kernel subsystem misconfigured verifier\n");
5590 		return -EINVAL;
5591 	}
5592 
5593 	/* In case of read-only, some additional restrictions
5594 	 * need to be applied in order to prevent altering the
5595 	 * state of the map from program side.
5596 	 */
5597 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
5598 	    (func_id == BPF_FUNC_map_delete_elem ||
5599 	     func_id == BPF_FUNC_map_update_elem ||
5600 	     func_id == BPF_FUNC_map_push_elem ||
5601 	     func_id == BPF_FUNC_map_pop_elem)) {
5602 		verbose(env, "write into map forbidden\n");
5603 		return -EACCES;
5604 	}
5605 
5606 	if (!BPF_MAP_PTR(aux->map_ptr_state))
5607 		bpf_map_ptr_store(aux, meta->map_ptr,
5608 				  !meta->map_ptr->bypass_spec_v1);
5609 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
5610 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
5611 				  !meta->map_ptr->bypass_spec_v1);
5612 	return 0;
5613 }
5614 
5615 static int
5616 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5617 		int func_id, int insn_idx)
5618 {
5619 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5620 	struct bpf_reg_state *regs = cur_regs(env), *reg;
5621 	struct bpf_map *map = meta->map_ptr;
5622 	struct tnum range;
5623 	u64 val;
5624 	int err;
5625 
5626 	if (func_id != BPF_FUNC_tail_call)
5627 		return 0;
5628 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5629 		verbose(env, "kernel subsystem misconfigured verifier\n");
5630 		return -EINVAL;
5631 	}
5632 
5633 	range = tnum_range(0, map->max_entries - 1);
5634 	reg = &regs[BPF_REG_3];
5635 
5636 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
5637 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5638 		return 0;
5639 	}
5640 
5641 	err = mark_chain_precision(env, BPF_REG_3);
5642 	if (err)
5643 		return err;
5644 
5645 	val = reg->var_off.value;
5646 	if (bpf_map_key_unseen(aux))
5647 		bpf_map_key_store(aux, val);
5648 	else if (!bpf_map_key_poisoned(aux) &&
5649 		  bpf_map_key_immediate(aux) != val)
5650 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5651 	return 0;
5652 }
5653 
5654 static int check_reference_leak(struct bpf_verifier_env *env)
5655 {
5656 	struct bpf_func_state *state = cur_func(env);
5657 	int i;
5658 
5659 	for (i = 0; i < state->acquired_refs; i++) {
5660 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5661 			state->refs[i].id, state->refs[i].insn_idx);
5662 	}
5663 	return state->acquired_refs ? -EINVAL : 0;
5664 }
5665 
5666 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5667 			     int *insn_idx_p)
5668 {
5669 	const struct bpf_func_proto *fn = NULL;
5670 	struct bpf_reg_state *regs;
5671 	struct bpf_call_arg_meta meta;
5672 	int insn_idx = *insn_idx_p;
5673 	bool changes_data;
5674 	int i, err, func_id;
5675 
5676 	/* find function prototype */
5677 	func_id = insn->imm;
5678 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5679 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5680 			func_id);
5681 		return -EINVAL;
5682 	}
5683 
5684 	if (env->ops->get_func_proto)
5685 		fn = env->ops->get_func_proto(func_id, env->prog);
5686 	if (!fn) {
5687 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5688 			func_id);
5689 		return -EINVAL;
5690 	}
5691 
5692 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
5693 	if (!env->prog->gpl_compatible && fn->gpl_only) {
5694 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5695 		return -EINVAL;
5696 	}
5697 
5698 	if (fn->allowed && !fn->allowed(env->prog)) {
5699 		verbose(env, "helper call is not allowed in probe\n");
5700 		return -EINVAL;
5701 	}
5702 
5703 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
5704 	changes_data = bpf_helper_changes_pkt_data(fn->func);
5705 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5706 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5707 			func_id_name(func_id), func_id);
5708 		return -EINVAL;
5709 	}
5710 
5711 	memset(&meta, 0, sizeof(meta));
5712 	meta.pkt_access = fn->pkt_access;
5713 
5714 	err = check_func_proto(fn, func_id);
5715 	if (err) {
5716 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
5717 			func_id_name(func_id), func_id);
5718 		return err;
5719 	}
5720 
5721 	meta.func_id = func_id;
5722 	/* check args */
5723 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
5724 		err = check_func_arg(env, i, &meta, fn);
5725 		if (err)
5726 			return err;
5727 	}
5728 
5729 	err = record_func_map(env, &meta, func_id, insn_idx);
5730 	if (err)
5731 		return err;
5732 
5733 	err = record_func_key(env, &meta, func_id, insn_idx);
5734 	if (err)
5735 		return err;
5736 
5737 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
5738 	 * is inferred from register state.
5739 	 */
5740 	for (i = 0; i < meta.access_size; i++) {
5741 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
5742 				       BPF_WRITE, -1, false);
5743 		if (err)
5744 			return err;
5745 	}
5746 
5747 	if (func_id == BPF_FUNC_tail_call) {
5748 		err = check_reference_leak(env);
5749 		if (err) {
5750 			verbose(env, "tail_call would lead to reference leak\n");
5751 			return err;
5752 		}
5753 	} else if (is_release_function(func_id)) {
5754 		err = release_reference(env, meta.ref_obj_id);
5755 		if (err) {
5756 			verbose(env, "func %s#%d reference has not been acquired before\n",
5757 				func_id_name(func_id), func_id);
5758 			return err;
5759 		}
5760 	}
5761 
5762 	regs = cur_regs(env);
5763 
5764 	/* check that flags argument in get_local_storage(map, flags) is 0,
5765 	 * this is required because get_local_storage() can't return an error.
5766 	 */
5767 	if (func_id == BPF_FUNC_get_local_storage &&
5768 	    !register_is_null(&regs[BPF_REG_2])) {
5769 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
5770 		return -EINVAL;
5771 	}
5772 
5773 	if (func_id == BPF_FUNC_for_each_map_elem) {
5774 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
5775 					set_map_elem_callback_state);
5776 		if (err < 0)
5777 			return -EINVAL;
5778 	}
5779 
5780 	/* reset caller saved regs */
5781 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5782 		mark_reg_not_init(env, regs, caller_saved[i]);
5783 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5784 	}
5785 
5786 	/* helper call returns 64-bit value. */
5787 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5788 
5789 	/* update return register (already marked as written above) */
5790 	if (fn->ret_type == RET_INTEGER) {
5791 		/* sets type to SCALAR_VALUE */
5792 		mark_reg_unknown(env, regs, BPF_REG_0);
5793 	} else if (fn->ret_type == RET_VOID) {
5794 		regs[BPF_REG_0].type = NOT_INIT;
5795 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
5796 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5797 		/* There is no offset yet applied, variable or fixed */
5798 		mark_reg_known_zero(env, regs, BPF_REG_0);
5799 		/* remember map_ptr, so that check_map_access()
5800 		 * can check 'value_size' boundary of memory access
5801 		 * to map element returned from bpf_map_lookup_elem()
5802 		 */
5803 		if (meta.map_ptr == NULL) {
5804 			verbose(env,
5805 				"kernel subsystem misconfigured verifier\n");
5806 			return -EINVAL;
5807 		}
5808 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
5809 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5810 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
5811 			if (map_value_has_spin_lock(meta.map_ptr))
5812 				regs[BPF_REG_0].id = ++env->id_gen;
5813 		} else {
5814 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
5815 		}
5816 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
5817 		mark_reg_known_zero(env, regs, BPF_REG_0);
5818 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
5819 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
5820 		mark_reg_known_zero(env, regs, BPF_REG_0);
5821 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
5822 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
5823 		mark_reg_known_zero(env, regs, BPF_REG_0);
5824 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
5825 	} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
5826 		mark_reg_known_zero(env, regs, BPF_REG_0);
5827 		regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
5828 		regs[BPF_REG_0].mem_size = meta.mem_size;
5829 	} else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
5830 		   fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
5831 		const struct btf_type *t;
5832 
5833 		mark_reg_known_zero(env, regs, BPF_REG_0);
5834 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
5835 		if (!btf_type_is_struct(t)) {
5836 			u32 tsize;
5837 			const struct btf_type *ret;
5838 			const char *tname;
5839 
5840 			/* resolve the type size of ksym. */
5841 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
5842 			if (IS_ERR(ret)) {
5843 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
5844 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
5845 					tname, PTR_ERR(ret));
5846 				return -EINVAL;
5847 			}
5848 			regs[BPF_REG_0].type =
5849 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5850 				PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
5851 			regs[BPF_REG_0].mem_size = tsize;
5852 		} else {
5853 			regs[BPF_REG_0].type =
5854 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5855 				PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
5856 			regs[BPF_REG_0].btf = meta.ret_btf;
5857 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
5858 		}
5859 	} else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
5860 		   fn->ret_type == RET_PTR_TO_BTF_ID) {
5861 		int ret_btf_id;
5862 
5863 		mark_reg_known_zero(env, regs, BPF_REG_0);
5864 		regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
5865 						     PTR_TO_BTF_ID :
5866 						     PTR_TO_BTF_ID_OR_NULL;
5867 		ret_btf_id = *fn->ret_btf_id;
5868 		if (ret_btf_id == 0) {
5869 			verbose(env, "invalid return type %d of func %s#%d\n",
5870 				fn->ret_type, func_id_name(func_id), func_id);
5871 			return -EINVAL;
5872 		}
5873 		/* current BPF helper definitions are only coming from
5874 		 * built-in code with type IDs from  vmlinux BTF
5875 		 */
5876 		regs[BPF_REG_0].btf = btf_vmlinux;
5877 		regs[BPF_REG_0].btf_id = ret_btf_id;
5878 	} else {
5879 		verbose(env, "unknown return type %d of func %s#%d\n",
5880 			fn->ret_type, func_id_name(func_id), func_id);
5881 		return -EINVAL;
5882 	}
5883 
5884 	if (reg_type_may_be_null(regs[BPF_REG_0].type))
5885 		regs[BPF_REG_0].id = ++env->id_gen;
5886 
5887 	if (is_ptr_cast_function(func_id)) {
5888 		/* For release_reference() */
5889 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
5890 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
5891 		int id = acquire_reference_state(env, insn_idx);
5892 
5893 		if (id < 0)
5894 			return id;
5895 		/* For mark_ptr_or_null_reg() */
5896 		regs[BPF_REG_0].id = id;
5897 		/* For release_reference() */
5898 		regs[BPF_REG_0].ref_obj_id = id;
5899 	}
5900 
5901 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
5902 
5903 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
5904 	if (err)
5905 		return err;
5906 
5907 	if ((func_id == BPF_FUNC_get_stack ||
5908 	     func_id == BPF_FUNC_get_task_stack) &&
5909 	    !env->prog->has_callchain_buf) {
5910 		const char *err_str;
5911 
5912 #ifdef CONFIG_PERF_EVENTS
5913 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
5914 		err_str = "cannot get callchain buffer for func %s#%d\n";
5915 #else
5916 		err = -ENOTSUPP;
5917 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5918 #endif
5919 		if (err) {
5920 			verbose(env, err_str, func_id_name(func_id), func_id);
5921 			return err;
5922 		}
5923 
5924 		env->prog->has_callchain_buf = true;
5925 	}
5926 
5927 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5928 		env->prog->call_get_stack = true;
5929 
5930 	if (changes_data)
5931 		clear_all_pkt_pointers(env);
5932 	return 0;
5933 }
5934 
5935 static bool signed_add_overflows(s64 a, s64 b)
5936 {
5937 	/* Do the add in u64, where overflow is well-defined */
5938 	s64 res = (s64)((u64)a + (u64)b);
5939 
5940 	if (b < 0)
5941 		return res > a;
5942 	return res < a;
5943 }
5944 
5945 static bool signed_add32_overflows(s32 a, s32 b)
5946 {
5947 	/* Do the add in u32, where overflow is well-defined */
5948 	s32 res = (s32)((u32)a + (u32)b);
5949 
5950 	if (b < 0)
5951 		return res > a;
5952 	return res < a;
5953 }
5954 
5955 static bool signed_sub_overflows(s64 a, s64 b)
5956 {
5957 	/* Do the sub in u64, where overflow is well-defined */
5958 	s64 res = (s64)((u64)a - (u64)b);
5959 
5960 	if (b < 0)
5961 		return res < a;
5962 	return res > a;
5963 }
5964 
5965 static bool signed_sub32_overflows(s32 a, s32 b)
5966 {
5967 	/* Do the sub in u32, where overflow is well-defined */
5968 	s32 res = (s32)((u32)a - (u32)b);
5969 
5970 	if (b < 0)
5971 		return res < a;
5972 	return res > a;
5973 }
5974 
5975 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5976 				  const struct bpf_reg_state *reg,
5977 				  enum bpf_reg_type type)
5978 {
5979 	bool known = tnum_is_const(reg->var_off);
5980 	s64 val = reg->var_off.value;
5981 	s64 smin = reg->smin_value;
5982 
5983 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5984 		verbose(env, "math between %s pointer and %lld is not allowed\n",
5985 			reg_type_str[type], val);
5986 		return false;
5987 	}
5988 
5989 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5990 		verbose(env, "%s pointer offset %d is not allowed\n",
5991 			reg_type_str[type], reg->off);
5992 		return false;
5993 	}
5994 
5995 	if (smin == S64_MIN) {
5996 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5997 			reg_type_str[type]);
5998 		return false;
5999 	}
6000 
6001 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6002 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
6003 			smin, reg_type_str[type]);
6004 		return false;
6005 	}
6006 
6007 	return true;
6008 }
6009 
6010 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6011 {
6012 	return &env->insn_aux_data[env->insn_idx];
6013 }
6014 
6015 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
6016 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
6017 {
6018 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
6019 			    (opcode == BPF_SUB && !off_is_neg);
6020 	u32 off;
6021 
6022 	switch (ptr_reg->type) {
6023 	case PTR_TO_STACK:
6024 		/* Indirect variable offset stack access is prohibited in
6025 		 * unprivileged mode so it's not handled here.
6026 		 */
6027 		off = ptr_reg->off + ptr_reg->var_off.value;
6028 		if (mask_to_left)
6029 			*ptr_limit = MAX_BPF_STACK + off;
6030 		else
6031 			*ptr_limit = -off;
6032 		return 0;
6033 	case PTR_TO_MAP_KEY:
6034 		/* Currently, this code is not exercised as the only use
6035 		 * is bpf_for_each_map_elem() helper which requires
6036 		 * bpf_capble. The code has been tested manually for
6037 		 * future use.
6038 		 */
6039 		if (mask_to_left) {
6040 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
6041 		} else {
6042 			off = ptr_reg->smin_value + ptr_reg->off;
6043 			*ptr_limit = ptr_reg->map_ptr->key_size - off;
6044 		}
6045 		return 0;
6046 	case PTR_TO_MAP_VALUE:
6047 		if (mask_to_left) {
6048 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
6049 		} else {
6050 			off = ptr_reg->smin_value + ptr_reg->off;
6051 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
6052 		}
6053 		return 0;
6054 	default:
6055 		return -EINVAL;
6056 	}
6057 }
6058 
6059 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
6060 				    const struct bpf_insn *insn)
6061 {
6062 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
6063 }
6064 
6065 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
6066 				       u32 alu_state, u32 alu_limit)
6067 {
6068 	/* If we arrived here from different branches with different
6069 	 * state or limits to sanitize, then this won't work.
6070 	 */
6071 	if (aux->alu_state &&
6072 	    (aux->alu_state != alu_state ||
6073 	     aux->alu_limit != alu_limit))
6074 		return -EACCES;
6075 
6076 	/* Corresponding fixup done in do_misc_fixups(). */
6077 	aux->alu_state = alu_state;
6078 	aux->alu_limit = alu_limit;
6079 	return 0;
6080 }
6081 
6082 static int sanitize_val_alu(struct bpf_verifier_env *env,
6083 			    struct bpf_insn *insn)
6084 {
6085 	struct bpf_insn_aux_data *aux = cur_aux(env);
6086 
6087 	if (can_skip_alu_sanitation(env, insn))
6088 		return 0;
6089 
6090 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
6091 }
6092 
6093 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
6094 			    struct bpf_insn *insn,
6095 			    const struct bpf_reg_state *ptr_reg,
6096 			    struct bpf_reg_state *dst_reg,
6097 			    bool off_is_neg)
6098 {
6099 	struct bpf_verifier_state *vstate = env->cur_state;
6100 	struct bpf_insn_aux_data *aux = cur_aux(env);
6101 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
6102 	u8 opcode = BPF_OP(insn->code);
6103 	u32 alu_state, alu_limit;
6104 	struct bpf_reg_state tmp;
6105 	bool ret;
6106 
6107 	if (can_skip_alu_sanitation(env, insn))
6108 		return 0;
6109 
6110 	/* We already marked aux for masking from non-speculative
6111 	 * paths, thus we got here in the first place. We only care
6112 	 * to explore bad access from here.
6113 	 */
6114 	if (vstate->speculative)
6115 		goto do_sim;
6116 
6117 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
6118 	alu_state |= ptr_is_dst_reg ?
6119 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
6120 
6121 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
6122 		return 0;
6123 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
6124 		return -EACCES;
6125 do_sim:
6126 	/* Simulate and find potential out-of-bounds access under
6127 	 * speculative execution from truncation as a result of
6128 	 * masking when off was not within expected range. If off
6129 	 * sits in dst, then we temporarily need to move ptr there
6130 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
6131 	 * for cases where we use K-based arithmetic in one direction
6132 	 * and truncated reg-based in the other in order to explore
6133 	 * bad access.
6134 	 */
6135 	if (!ptr_is_dst_reg) {
6136 		tmp = *dst_reg;
6137 		*dst_reg = *ptr_reg;
6138 	}
6139 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
6140 	if (!ptr_is_dst_reg && ret)
6141 		*dst_reg = tmp;
6142 	return !ret ? -EFAULT : 0;
6143 }
6144 
6145 /* check that stack access falls within stack limits and that 'reg' doesn't
6146  * have a variable offset.
6147  *
6148  * Variable offset is prohibited for unprivileged mode for simplicity since it
6149  * requires corresponding support in Spectre masking for stack ALU.  See also
6150  * retrieve_ptr_limit().
6151  *
6152  *
6153  * 'off' includes 'reg->off'.
6154  */
6155 static int check_stack_access_for_ptr_arithmetic(
6156 				struct bpf_verifier_env *env,
6157 				int regno,
6158 				const struct bpf_reg_state *reg,
6159 				int off)
6160 {
6161 	if (!tnum_is_const(reg->var_off)) {
6162 		char tn_buf[48];
6163 
6164 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6165 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
6166 			regno, tn_buf, off);
6167 		return -EACCES;
6168 	}
6169 
6170 	if (off >= 0 || off < -MAX_BPF_STACK) {
6171 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
6172 			"prohibited for !root; off=%d\n", regno, off);
6173 		return -EACCES;
6174 	}
6175 
6176 	return 0;
6177 }
6178 
6179 
6180 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
6181  * Caller should also handle BPF_MOV case separately.
6182  * If we return -EACCES, caller may want to try again treating pointer as a
6183  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
6184  */
6185 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
6186 				   struct bpf_insn *insn,
6187 				   const struct bpf_reg_state *ptr_reg,
6188 				   const struct bpf_reg_state *off_reg)
6189 {
6190 	struct bpf_verifier_state *vstate = env->cur_state;
6191 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6192 	struct bpf_reg_state *regs = state->regs, *dst_reg;
6193 	bool known = tnum_is_const(off_reg->var_off);
6194 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
6195 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
6196 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
6197 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
6198 	u32 dst = insn->dst_reg, src = insn->src_reg;
6199 	u8 opcode = BPF_OP(insn->code);
6200 	int ret;
6201 
6202 	dst_reg = &regs[dst];
6203 
6204 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
6205 	    smin_val > smax_val || umin_val > umax_val) {
6206 		/* Taint dst register if offset had invalid bounds derived from
6207 		 * e.g. dead branches.
6208 		 */
6209 		__mark_reg_unknown(env, dst_reg);
6210 		return 0;
6211 	}
6212 
6213 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
6214 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
6215 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6216 			__mark_reg_unknown(env, dst_reg);
6217 			return 0;
6218 		}
6219 
6220 		verbose(env,
6221 			"R%d 32-bit pointer arithmetic prohibited\n",
6222 			dst);
6223 		return -EACCES;
6224 	}
6225 
6226 	switch (ptr_reg->type) {
6227 	case PTR_TO_MAP_VALUE_OR_NULL:
6228 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
6229 			dst, reg_type_str[ptr_reg->type]);
6230 		return -EACCES;
6231 	case CONST_PTR_TO_MAP:
6232 		/* smin_val represents the known value */
6233 		if (known && smin_val == 0 && opcode == BPF_ADD)
6234 			break;
6235 		fallthrough;
6236 	case PTR_TO_PACKET_END:
6237 	case PTR_TO_SOCKET:
6238 	case PTR_TO_SOCKET_OR_NULL:
6239 	case PTR_TO_SOCK_COMMON:
6240 	case PTR_TO_SOCK_COMMON_OR_NULL:
6241 	case PTR_TO_TCP_SOCK:
6242 	case PTR_TO_TCP_SOCK_OR_NULL:
6243 	case PTR_TO_XDP_SOCK:
6244 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
6245 			dst, reg_type_str[ptr_reg->type]);
6246 		return -EACCES;
6247 	case PTR_TO_MAP_KEY:
6248 	case PTR_TO_MAP_VALUE:
6249 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
6250 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
6251 				off_reg == dst_reg ? dst : src);
6252 			return -EACCES;
6253 		}
6254 		fallthrough;
6255 	default:
6256 		break;
6257 	}
6258 
6259 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
6260 	 * The id may be overwritten later if we create a new variable offset.
6261 	 */
6262 	dst_reg->type = ptr_reg->type;
6263 	dst_reg->id = ptr_reg->id;
6264 
6265 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
6266 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
6267 		return -EINVAL;
6268 
6269 	/* pointer types do not carry 32-bit bounds at the moment. */
6270 	__mark_reg32_unbounded(dst_reg);
6271 
6272 	switch (opcode) {
6273 	case BPF_ADD:
6274 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
6275 		if (ret < 0) {
6276 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
6277 			return ret;
6278 		}
6279 		/* We can take a fixed offset as long as it doesn't overflow
6280 		 * the s32 'off' field
6281 		 */
6282 		if (known && (ptr_reg->off + smin_val ==
6283 			      (s64)(s32)(ptr_reg->off + smin_val))) {
6284 			/* pointer += K.  Accumulate it into fixed offset */
6285 			dst_reg->smin_value = smin_ptr;
6286 			dst_reg->smax_value = smax_ptr;
6287 			dst_reg->umin_value = umin_ptr;
6288 			dst_reg->umax_value = umax_ptr;
6289 			dst_reg->var_off = ptr_reg->var_off;
6290 			dst_reg->off = ptr_reg->off + smin_val;
6291 			dst_reg->raw = ptr_reg->raw;
6292 			break;
6293 		}
6294 		/* A new variable offset is created.  Note that off_reg->off
6295 		 * == 0, since it's a scalar.
6296 		 * dst_reg gets the pointer type and since some positive
6297 		 * integer value was added to the pointer, give it a new 'id'
6298 		 * if it's a PTR_TO_PACKET.
6299 		 * this creates a new 'base' pointer, off_reg (variable) gets
6300 		 * added into the variable offset, and we copy the fixed offset
6301 		 * from ptr_reg.
6302 		 */
6303 		if (signed_add_overflows(smin_ptr, smin_val) ||
6304 		    signed_add_overflows(smax_ptr, smax_val)) {
6305 			dst_reg->smin_value = S64_MIN;
6306 			dst_reg->smax_value = S64_MAX;
6307 		} else {
6308 			dst_reg->smin_value = smin_ptr + smin_val;
6309 			dst_reg->smax_value = smax_ptr + smax_val;
6310 		}
6311 		if (umin_ptr + umin_val < umin_ptr ||
6312 		    umax_ptr + umax_val < umax_ptr) {
6313 			dst_reg->umin_value = 0;
6314 			dst_reg->umax_value = U64_MAX;
6315 		} else {
6316 			dst_reg->umin_value = umin_ptr + umin_val;
6317 			dst_reg->umax_value = umax_ptr + umax_val;
6318 		}
6319 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
6320 		dst_reg->off = ptr_reg->off;
6321 		dst_reg->raw = ptr_reg->raw;
6322 		if (reg_is_pkt_pointer(ptr_reg)) {
6323 			dst_reg->id = ++env->id_gen;
6324 			/* something was added to pkt_ptr, set range to zero */
6325 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6326 		}
6327 		break;
6328 	case BPF_SUB:
6329 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
6330 		if (ret < 0) {
6331 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
6332 			return ret;
6333 		}
6334 		if (dst_reg == off_reg) {
6335 			/* scalar -= pointer.  Creates an unknown scalar */
6336 			verbose(env, "R%d tried to subtract pointer from scalar\n",
6337 				dst);
6338 			return -EACCES;
6339 		}
6340 		/* We don't allow subtraction from FP, because (according to
6341 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
6342 		 * be able to deal with it.
6343 		 */
6344 		if (ptr_reg->type == PTR_TO_STACK) {
6345 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
6346 				dst);
6347 			return -EACCES;
6348 		}
6349 		if (known && (ptr_reg->off - smin_val ==
6350 			      (s64)(s32)(ptr_reg->off - smin_val))) {
6351 			/* pointer -= K.  Subtract it from fixed offset */
6352 			dst_reg->smin_value = smin_ptr;
6353 			dst_reg->smax_value = smax_ptr;
6354 			dst_reg->umin_value = umin_ptr;
6355 			dst_reg->umax_value = umax_ptr;
6356 			dst_reg->var_off = ptr_reg->var_off;
6357 			dst_reg->id = ptr_reg->id;
6358 			dst_reg->off = ptr_reg->off - smin_val;
6359 			dst_reg->raw = ptr_reg->raw;
6360 			break;
6361 		}
6362 		/* A new variable offset is created.  If the subtrahend is known
6363 		 * nonnegative, then any reg->range we had before is still good.
6364 		 */
6365 		if (signed_sub_overflows(smin_ptr, smax_val) ||
6366 		    signed_sub_overflows(smax_ptr, smin_val)) {
6367 			/* Overflow possible, we know nothing */
6368 			dst_reg->smin_value = S64_MIN;
6369 			dst_reg->smax_value = S64_MAX;
6370 		} else {
6371 			dst_reg->smin_value = smin_ptr - smax_val;
6372 			dst_reg->smax_value = smax_ptr - smin_val;
6373 		}
6374 		if (umin_ptr < umax_val) {
6375 			/* Overflow possible, we know nothing */
6376 			dst_reg->umin_value = 0;
6377 			dst_reg->umax_value = U64_MAX;
6378 		} else {
6379 			/* Cannot overflow (as long as bounds are consistent) */
6380 			dst_reg->umin_value = umin_ptr - umax_val;
6381 			dst_reg->umax_value = umax_ptr - umin_val;
6382 		}
6383 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
6384 		dst_reg->off = ptr_reg->off;
6385 		dst_reg->raw = ptr_reg->raw;
6386 		if (reg_is_pkt_pointer(ptr_reg)) {
6387 			dst_reg->id = ++env->id_gen;
6388 			/* something was added to pkt_ptr, set range to zero */
6389 			if (smin_val < 0)
6390 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6391 		}
6392 		break;
6393 	case BPF_AND:
6394 	case BPF_OR:
6395 	case BPF_XOR:
6396 		/* bitwise ops on pointers are troublesome, prohibit. */
6397 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
6398 			dst, bpf_alu_string[opcode >> 4]);
6399 		return -EACCES;
6400 	default:
6401 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
6402 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
6403 			dst, bpf_alu_string[opcode >> 4]);
6404 		return -EACCES;
6405 	}
6406 
6407 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
6408 		return -EINVAL;
6409 
6410 	__update_reg_bounds(dst_reg);
6411 	__reg_deduce_bounds(dst_reg);
6412 	__reg_bound_offset(dst_reg);
6413 
6414 	/* For unprivileged we require that resulting offset must be in bounds
6415 	 * in order to be able to sanitize access later on.
6416 	 */
6417 	if (!env->bypass_spec_v1) {
6418 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
6419 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
6420 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
6421 				"prohibited for !root\n", dst);
6422 			return -EACCES;
6423 		} else if (dst_reg->type == PTR_TO_STACK &&
6424 			   check_stack_access_for_ptr_arithmetic(
6425 				   env, dst, dst_reg, dst_reg->off +
6426 				   dst_reg->var_off.value)) {
6427 			return -EACCES;
6428 		}
6429 	}
6430 
6431 	return 0;
6432 }
6433 
6434 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
6435 				 struct bpf_reg_state *src_reg)
6436 {
6437 	s32 smin_val = src_reg->s32_min_value;
6438 	s32 smax_val = src_reg->s32_max_value;
6439 	u32 umin_val = src_reg->u32_min_value;
6440 	u32 umax_val = src_reg->u32_max_value;
6441 
6442 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
6443 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
6444 		dst_reg->s32_min_value = S32_MIN;
6445 		dst_reg->s32_max_value = S32_MAX;
6446 	} else {
6447 		dst_reg->s32_min_value += smin_val;
6448 		dst_reg->s32_max_value += smax_val;
6449 	}
6450 	if (dst_reg->u32_min_value + umin_val < umin_val ||
6451 	    dst_reg->u32_max_value + umax_val < umax_val) {
6452 		dst_reg->u32_min_value = 0;
6453 		dst_reg->u32_max_value = U32_MAX;
6454 	} else {
6455 		dst_reg->u32_min_value += umin_val;
6456 		dst_reg->u32_max_value += umax_val;
6457 	}
6458 }
6459 
6460 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
6461 			       struct bpf_reg_state *src_reg)
6462 {
6463 	s64 smin_val = src_reg->smin_value;
6464 	s64 smax_val = src_reg->smax_value;
6465 	u64 umin_val = src_reg->umin_value;
6466 	u64 umax_val = src_reg->umax_value;
6467 
6468 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
6469 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
6470 		dst_reg->smin_value = S64_MIN;
6471 		dst_reg->smax_value = S64_MAX;
6472 	} else {
6473 		dst_reg->smin_value += smin_val;
6474 		dst_reg->smax_value += smax_val;
6475 	}
6476 	if (dst_reg->umin_value + umin_val < umin_val ||
6477 	    dst_reg->umax_value + umax_val < umax_val) {
6478 		dst_reg->umin_value = 0;
6479 		dst_reg->umax_value = U64_MAX;
6480 	} else {
6481 		dst_reg->umin_value += umin_val;
6482 		dst_reg->umax_value += umax_val;
6483 	}
6484 }
6485 
6486 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
6487 				 struct bpf_reg_state *src_reg)
6488 {
6489 	s32 smin_val = src_reg->s32_min_value;
6490 	s32 smax_val = src_reg->s32_max_value;
6491 	u32 umin_val = src_reg->u32_min_value;
6492 	u32 umax_val = src_reg->u32_max_value;
6493 
6494 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
6495 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
6496 		/* Overflow possible, we know nothing */
6497 		dst_reg->s32_min_value = S32_MIN;
6498 		dst_reg->s32_max_value = S32_MAX;
6499 	} else {
6500 		dst_reg->s32_min_value -= smax_val;
6501 		dst_reg->s32_max_value -= smin_val;
6502 	}
6503 	if (dst_reg->u32_min_value < umax_val) {
6504 		/* Overflow possible, we know nothing */
6505 		dst_reg->u32_min_value = 0;
6506 		dst_reg->u32_max_value = U32_MAX;
6507 	} else {
6508 		/* Cannot overflow (as long as bounds are consistent) */
6509 		dst_reg->u32_min_value -= umax_val;
6510 		dst_reg->u32_max_value -= umin_val;
6511 	}
6512 }
6513 
6514 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
6515 			       struct bpf_reg_state *src_reg)
6516 {
6517 	s64 smin_val = src_reg->smin_value;
6518 	s64 smax_val = src_reg->smax_value;
6519 	u64 umin_val = src_reg->umin_value;
6520 	u64 umax_val = src_reg->umax_value;
6521 
6522 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
6523 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
6524 		/* Overflow possible, we know nothing */
6525 		dst_reg->smin_value = S64_MIN;
6526 		dst_reg->smax_value = S64_MAX;
6527 	} else {
6528 		dst_reg->smin_value -= smax_val;
6529 		dst_reg->smax_value -= smin_val;
6530 	}
6531 	if (dst_reg->umin_value < umax_val) {
6532 		/* Overflow possible, we know nothing */
6533 		dst_reg->umin_value = 0;
6534 		dst_reg->umax_value = U64_MAX;
6535 	} else {
6536 		/* Cannot overflow (as long as bounds are consistent) */
6537 		dst_reg->umin_value -= umax_val;
6538 		dst_reg->umax_value -= umin_val;
6539 	}
6540 }
6541 
6542 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
6543 				 struct bpf_reg_state *src_reg)
6544 {
6545 	s32 smin_val = src_reg->s32_min_value;
6546 	u32 umin_val = src_reg->u32_min_value;
6547 	u32 umax_val = src_reg->u32_max_value;
6548 
6549 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
6550 		/* Ain't nobody got time to multiply that sign */
6551 		__mark_reg32_unbounded(dst_reg);
6552 		return;
6553 	}
6554 	/* Both values are positive, so we can work with unsigned and
6555 	 * copy the result to signed (unless it exceeds S32_MAX).
6556 	 */
6557 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
6558 		/* Potential overflow, we know nothing */
6559 		__mark_reg32_unbounded(dst_reg);
6560 		return;
6561 	}
6562 	dst_reg->u32_min_value *= umin_val;
6563 	dst_reg->u32_max_value *= umax_val;
6564 	if (dst_reg->u32_max_value > S32_MAX) {
6565 		/* Overflow possible, we know nothing */
6566 		dst_reg->s32_min_value = S32_MIN;
6567 		dst_reg->s32_max_value = S32_MAX;
6568 	} else {
6569 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6570 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6571 	}
6572 }
6573 
6574 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
6575 			       struct bpf_reg_state *src_reg)
6576 {
6577 	s64 smin_val = src_reg->smin_value;
6578 	u64 umin_val = src_reg->umin_value;
6579 	u64 umax_val = src_reg->umax_value;
6580 
6581 	if (smin_val < 0 || dst_reg->smin_value < 0) {
6582 		/* Ain't nobody got time to multiply that sign */
6583 		__mark_reg64_unbounded(dst_reg);
6584 		return;
6585 	}
6586 	/* Both values are positive, so we can work with unsigned and
6587 	 * copy the result to signed (unless it exceeds S64_MAX).
6588 	 */
6589 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
6590 		/* Potential overflow, we know nothing */
6591 		__mark_reg64_unbounded(dst_reg);
6592 		return;
6593 	}
6594 	dst_reg->umin_value *= umin_val;
6595 	dst_reg->umax_value *= umax_val;
6596 	if (dst_reg->umax_value > S64_MAX) {
6597 		/* Overflow possible, we know nothing */
6598 		dst_reg->smin_value = S64_MIN;
6599 		dst_reg->smax_value = S64_MAX;
6600 	} else {
6601 		dst_reg->smin_value = dst_reg->umin_value;
6602 		dst_reg->smax_value = dst_reg->umax_value;
6603 	}
6604 }
6605 
6606 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
6607 				 struct bpf_reg_state *src_reg)
6608 {
6609 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
6610 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6611 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6612 	s32 smin_val = src_reg->s32_min_value;
6613 	u32 umax_val = src_reg->u32_max_value;
6614 
6615 	/* Assuming scalar64_min_max_and will be called so its safe
6616 	 * to skip updating register for known 32-bit case.
6617 	 */
6618 	if (src_known && dst_known)
6619 		return;
6620 
6621 	/* We get our minimum from the var_off, since that's inherently
6622 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
6623 	 */
6624 	dst_reg->u32_min_value = var32_off.value;
6625 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
6626 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6627 		/* Lose signed bounds when ANDing negative numbers,
6628 		 * ain't nobody got time for that.
6629 		 */
6630 		dst_reg->s32_min_value = S32_MIN;
6631 		dst_reg->s32_max_value = S32_MAX;
6632 	} else {
6633 		/* ANDing two positives gives a positive, so safe to
6634 		 * cast result into s64.
6635 		 */
6636 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6637 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6638 	}
6639 
6640 }
6641 
6642 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
6643 			       struct bpf_reg_state *src_reg)
6644 {
6645 	bool src_known = tnum_is_const(src_reg->var_off);
6646 	bool dst_known = tnum_is_const(dst_reg->var_off);
6647 	s64 smin_val = src_reg->smin_value;
6648 	u64 umax_val = src_reg->umax_value;
6649 
6650 	if (src_known && dst_known) {
6651 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6652 		return;
6653 	}
6654 
6655 	/* We get our minimum from the var_off, since that's inherently
6656 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
6657 	 */
6658 	dst_reg->umin_value = dst_reg->var_off.value;
6659 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
6660 	if (dst_reg->smin_value < 0 || smin_val < 0) {
6661 		/* Lose signed bounds when ANDing negative numbers,
6662 		 * ain't nobody got time for that.
6663 		 */
6664 		dst_reg->smin_value = S64_MIN;
6665 		dst_reg->smax_value = S64_MAX;
6666 	} else {
6667 		/* ANDing two positives gives a positive, so safe to
6668 		 * cast result into s64.
6669 		 */
6670 		dst_reg->smin_value = dst_reg->umin_value;
6671 		dst_reg->smax_value = dst_reg->umax_value;
6672 	}
6673 	/* We may learn something more from the var_off */
6674 	__update_reg_bounds(dst_reg);
6675 }
6676 
6677 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
6678 				struct bpf_reg_state *src_reg)
6679 {
6680 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
6681 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6682 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6683 	s32 smin_val = src_reg->s32_min_value;
6684 	u32 umin_val = src_reg->u32_min_value;
6685 
6686 	/* Assuming scalar64_min_max_or will be called so it is safe
6687 	 * to skip updating register for known case.
6688 	 */
6689 	if (src_known && dst_known)
6690 		return;
6691 
6692 	/* We get our maximum from the var_off, and our minimum is the
6693 	 * maximum of the operands' minima
6694 	 */
6695 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
6696 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6697 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6698 		/* Lose signed bounds when ORing negative numbers,
6699 		 * ain't nobody got time for that.
6700 		 */
6701 		dst_reg->s32_min_value = S32_MIN;
6702 		dst_reg->s32_max_value = S32_MAX;
6703 	} else {
6704 		/* ORing two positives gives a positive, so safe to
6705 		 * cast result into s64.
6706 		 */
6707 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6708 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6709 	}
6710 }
6711 
6712 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
6713 			      struct bpf_reg_state *src_reg)
6714 {
6715 	bool src_known = tnum_is_const(src_reg->var_off);
6716 	bool dst_known = tnum_is_const(dst_reg->var_off);
6717 	s64 smin_val = src_reg->smin_value;
6718 	u64 umin_val = src_reg->umin_value;
6719 
6720 	if (src_known && dst_known) {
6721 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6722 		return;
6723 	}
6724 
6725 	/* We get our maximum from the var_off, and our minimum is the
6726 	 * maximum of the operands' minima
6727 	 */
6728 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
6729 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6730 	if (dst_reg->smin_value < 0 || smin_val < 0) {
6731 		/* Lose signed bounds when ORing negative numbers,
6732 		 * ain't nobody got time for that.
6733 		 */
6734 		dst_reg->smin_value = S64_MIN;
6735 		dst_reg->smax_value = S64_MAX;
6736 	} else {
6737 		/* ORing two positives gives a positive, so safe to
6738 		 * cast result into s64.
6739 		 */
6740 		dst_reg->smin_value = dst_reg->umin_value;
6741 		dst_reg->smax_value = dst_reg->umax_value;
6742 	}
6743 	/* We may learn something more from the var_off */
6744 	__update_reg_bounds(dst_reg);
6745 }
6746 
6747 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
6748 				 struct bpf_reg_state *src_reg)
6749 {
6750 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
6751 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6752 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6753 	s32 smin_val = src_reg->s32_min_value;
6754 
6755 	/* Assuming scalar64_min_max_xor will be called so it is safe
6756 	 * to skip updating register for known case.
6757 	 */
6758 	if (src_known && dst_known)
6759 		return;
6760 
6761 	/* We get both minimum and maximum from the var32_off. */
6762 	dst_reg->u32_min_value = var32_off.value;
6763 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6764 
6765 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
6766 		/* XORing two positive sign numbers gives a positive,
6767 		 * so safe to cast u32 result into s32.
6768 		 */
6769 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6770 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6771 	} else {
6772 		dst_reg->s32_min_value = S32_MIN;
6773 		dst_reg->s32_max_value = S32_MAX;
6774 	}
6775 }
6776 
6777 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
6778 			       struct bpf_reg_state *src_reg)
6779 {
6780 	bool src_known = tnum_is_const(src_reg->var_off);
6781 	bool dst_known = tnum_is_const(dst_reg->var_off);
6782 	s64 smin_val = src_reg->smin_value;
6783 
6784 	if (src_known && dst_known) {
6785 		/* dst_reg->var_off.value has been updated earlier */
6786 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6787 		return;
6788 	}
6789 
6790 	/* We get both minimum and maximum from the var_off. */
6791 	dst_reg->umin_value = dst_reg->var_off.value;
6792 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6793 
6794 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
6795 		/* XORing two positive sign numbers gives a positive,
6796 		 * so safe to cast u64 result into s64.
6797 		 */
6798 		dst_reg->smin_value = dst_reg->umin_value;
6799 		dst_reg->smax_value = dst_reg->umax_value;
6800 	} else {
6801 		dst_reg->smin_value = S64_MIN;
6802 		dst_reg->smax_value = S64_MAX;
6803 	}
6804 
6805 	__update_reg_bounds(dst_reg);
6806 }
6807 
6808 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6809 				   u64 umin_val, u64 umax_val)
6810 {
6811 	/* We lose all sign bit information (except what we can pick
6812 	 * up from var_off)
6813 	 */
6814 	dst_reg->s32_min_value = S32_MIN;
6815 	dst_reg->s32_max_value = S32_MAX;
6816 	/* If we might shift our top bit out, then we know nothing */
6817 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
6818 		dst_reg->u32_min_value = 0;
6819 		dst_reg->u32_max_value = U32_MAX;
6820 	} else {
6821 		dst_reg->u32_min_value <<= umin_val;
6822 		dst_reg->u32_max_value <<= umax_val;
6823 	}
6824 }
6825 
6826 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6827 				 struct bpf_reg_state *src_reg)
6828 {
6829 	u32 umax_val = src_reg->u32_max_value;
6830 	u32 umin_val = src_reg->u32_min_value;
6831 	/* u32 alu operation will zext upper bits */
6832 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
6833 
6834 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6835 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
6836 	/* Not required but being careful mark reg64 bounds as unknown so
6837 	 * that we are forced to pick them up from tnum and zext later and
6838 	 * if some path skips this step we are still safe.
6839 	 */
6840 	__mark_reg64_unbounded(dst_reg);
6841 	__update_reg32_bounds(dst_reg);
6842 }
6843 
6844 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
6845 				   u64 umin_val, u64 umax_val)
6846 {
6847 	/* Special case <<32 because it is a common compiler pattern to sign
6848 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
6849 	 * positive we know this shift will also be positive so we can track
6850 	 * bounds correctly. Otherwise we lose all sign bit information except
6851 	 * what we can pick up from var_off. Perhaps we can generalize this
6852 	 * later to shifts of any length.
6853 	 */
6854 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
6855 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
6856 	else
6857 		dst_reg->smax_value = S64_MAX;
6858 
6859 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
6860 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
6861 	else
6862 		dst_reg->smin_value = S64_MIN;
6863 
6864 	/* If we might shift our top bit out, then we know nothing */
6865 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
6866 		dst_reg->umin_value = 0;
6867 		dst_reg->umax_value = U64_MAX;
6868 	} else {
6869 		dst_reg->umin_value <<= umin_val;
6870 		dst_reg->umax_value <<= umax_val;
6871 	}
6872 }
6873 
6874 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
6875 			       struct bpf_reg_state *src_reg)
6876 {
6877 	u64 umax_val = src_reg->umax_value;
6878 	u64 umin_val = src_reg->umin_value;
6879 
6880 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
6881 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
6882 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6883 
6884 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
6885 	/* We may learn something more from the var_off */
6886 	__update_reg_bounds(dst_reg);
6887 }
6888 
6889 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
6890 				 struct bpf_reg_state *src_reg)
6891 {
6892 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
6893 	u32 umax_val = src_reg->u32_max_value;
6894 	u32 umin_val = src_reg->u32_min_value;
6895 
6896 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
6897 	 * be negative, then either:
6898 	 * 1) src_reg might be zero, so the sign bit of the result is
6899 	 *    unknown, so we lose our signed bounds
6900 	 * 2) it's known negative, thus the unsigned bounds capture the
6901 	 *    signed bounds
6902 	 * 3) the signed bounds cross zero, so they tell us nothing
6903 	 *    about the result
6904 	 * If the value in dst_reg is known nonnegative, then again the
6905 	 * unsigned bounds capture the signed bounds.
6906 	 * Thus, in all cases it suffices to blow away our signed bounds
6907 	 * and rely on inferring new ones from the unsigned bounds and
6908 	 * var_off of the result.
6909 	 */
6910 	dst_reg->s32_min_value = S32_MIN;
6911 	dst_reg->s32_max_value = S32_MAX;
6912 
6913 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
6914 	dst_reg->u32_min_value >>= umax_val;
6915 	dst_reg->u32_max_value >>= umin_val;
6916 
6917 	__mark_reg64_unbounded(dst_reg);
6918 	__update_reg32_bounds(dst_reg);
6919 }
6920 
6921 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6922 			       struct bpf_reg_state *src_reg)
6923 {
6924 	u64 umax_val = src_reg->umax_value;
6925 	u64 umin_val = src_reg->umin_value;
6926 
6927 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
6928 	 * be negative, then either:
6929 	 * 1) src_reg might be zero, so the sign bit of the result is
6930 	 *    unknown, so we lose our signed bounds
6931 	 * 2) it's known negative, thus the unsigned bounds capture the
6932 	 *    signed bounds
6933 	 * 3) the signed bounds cross zero, so they tell us nothing
6934 	 *    about the result
6935 	 * If the value in dst_reg is known nonnegative, then again the
6936 	 * unsigned bounds capture the signed bounds.
6937 	 * Thus, in all cases it suffices to blow away our signed bounds
6938 	 * and rely on inferring new ones from the unsigned bounds and
6939 	 * var_off of the result.
6940 	 */
6941 	dst_reg->smin_value = S64_MIN;
6942 	dst_reg->smax_value = S64_MAX;
6943 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
6944 	dst_reg->umin_value >>= umax_val;
6945 	dst_reg->umax_value >>= umin_val;
6946 
6947 	/* Its not easy to operate on alu32 bounds here because it depends
6948 	 * on bits being shifted in. Take easy way out and mark unbounded
6949 	 * so we can recalculate later from tnum.
6950 	 */
6951 	__mark_reg32_unbounded(dst_reg);
6952 	__update_reg_bounds(dst_reg);
6953 }
6954 
6955 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
6956 				  struct bpf_reg_state *src_reg)
6957 {
6958 	u64 umin_val = src_reg->u32_min_value;
6959 
6960 	/* Upon reaching here, src_known is true and
6961 	 * umax_val is equal to umin_val.
6962 	 */
6963 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
6964 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
6965 
6966 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
6967 
6968 	/* blow away the dst_reg umin_value/umax_value and rely on
6969 	 * dst_reg var_off to refine the result.
6970 	 */
6971 	dst_reg->u32_min_value = 0;
6972 	dst_reg->u32_max_value = U32_MAX;
6973 
6974 	__mark_reg64_unbounded(dst_reg);
6975 	__update_reg32_bounds(dst_reg);
6976 }
6977 
6978 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
6979 				struct bpf_reg_state *src_reg)
6980 {
6981 	u64 umin_val = src_reg->umin_value;
6982 
6983 	/* Upon reaching here, src_known is true and umax_val is equal
6984 	 * to umin_val.
6985 	 */
6986 	dst_reg->smin_value >>= umin_val;
6987 	dst_reg->smax_value >>= umin_val;
6988 
6989 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
6990 
6991 	/* blow away the dst_reg umin_value/umax_value and rely on
6992 	 * dst_reg var_off to refine the result.
6993 	 */
6994 	dst_reg->umin_value = 0;
6995 	dst_reg->umax_value = U64_MAX;
6996 
6997 	/* Its not easy to operate on alu32 bounds here because it depends
6998 	 * on bits being shifted in from upper 32-bits. Take easy way out
6999 	 * and mark unbounded so we can recalculate later from tnum.
7000 	 */
7001 	__mark_reg32_unbounded(dst_reg);
7002 	__update_reg_bounds(dst_reg);
7003 }
7004 
7005 /* WARNING: This function does calculations on 64-bit values, but the actual
7006  * execution may occur on 32-bit values. Therefore, things like bitshifts
7007  * need extra checks in the 32-bit case.
7008  */
7009 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
7010 				      struct bpf_insn *insn,
7011 				      struct bpf_reg_state *dst_reg,
7012 				      struct bpf_reg_state src_reg)
7013 {
7014 	struct bpf_reg_state *regs = cur_regs(env);
7015 	u8 opcode = BPF_OP(insn->code);
7016 	bool src_known;
7017 	s64 smin_val, smax_val;
7018 	u64 umin_val, umax_val;
7019 	s32 s32_min_val, s32_max_val;
7020 	u32 u32_min_val, u32_max_val;
7021 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
7022 	u32 dst = insn->dst_reg;
7023 	int ret;
7024 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
7025 
7026 	smin_val = src_reg.smin_value;
7027 	smax_val = src_reg.smax_value;
7028 	umin_val = src_reg.umin_value;
7029 	umax_val = src_reg.umax_value;
7030 
7031 	s32_min_val = src_reg.s32_min_value;
7032 	s32_max_val = src_reg.s32_max_value;
7033 	u32_min_val = src_reg.u32_min_value;
7034 	u32_max_val = src_reg.u32_max_value;
7035 
7036 	if (alu32) {
7037 		src_known = tnum_subreg_is_const(src_reg.var_off);
7038 		if ((src_known &&
7039 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
7040 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
7041 			/* Taint dst register if offset had invalid bounds
7042 			 * derived from e.g. dead branches.
7043 			 */
7044 			__mark_reg_unknown(env, dst_reg);
7045 			return 0;
7046 		}
7047 	} else {
7048 		src_known = tnum_is_const(src_reg.var_off);
7049 		if ((src_known &&
7050 		     (smin_val != smax_val || umin_val != umax_val)) ||
7051 		    smin_val > smax_val || umin_val > umax_val) {
7052 			/* Taint dst register if offset had invalid bounds
7053 			 * derived from e.g. dead branches.
7054 			 */
7055 			__mark_reg_unknown(env, dst_reg);
7056 			return 0;
7057 		}
7058 	}
7059 
7060 	if (!src_known &&
7061 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
7062 		__mark_reg_unknown(env, dst_reg);
7063 		return 0;
7064 	}
7065 
7066 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
7067 	 * There are two classes of instructions: The first class we track both
7068 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
7069 	 * greatest amount of precision when alu operations are mixed with jmp32
7070 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
7071 	 * and BPF_OR. This is possible because these ops have fairly easy to
7072 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
7073 	 * See alu32 verifier tests for examples. The second class of
7074 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
7075 	 * with regards to tracking sign/unsigned bounds because the bits may
7076 	 * cross subreg boundaries in the alu64 case. When this happens we mark
7077 	 * the reg unbounded in the subreg bound space and use the resulting
7078 	 * tnum to calculate an approximation of the sign/unsigned bounds.
7079 	 */
7080 	switch (opcode) {
7081 	case BPF_ADD:
7082 		ret = sanitize_val_alu(env, insn);
7083 		if (ret < 0) {
7084 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
7085 			return ret;
7086 		}
7087 		scalar32_min_max_add(dst_reg, &src_reg);
7088 		scalar_min_max_add(dst_reg, &src_reg);
7089 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
7090 		break;
7091 	case BPF_SUB:
7092 		ret = sanitize_val_alu(env, insn);
7093 		if (ret < 0) {
7094 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
7095 			return ret;
7096 		}
7097 		scalar32_min_max_sub(dst_reg, &src_reg);
7098 		scalar_min_max_sub(dst_reg, &src_reg);
7099 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
7100 		break;
7101 	case BPF_MUL:
7102 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
7103 		scalar32_min_max_mul(dst_reg, &src_reg);
7104 		scalar_min_max_mul(dst_reg, &src_reg);
7105 		break;
7106 	case BPF_AND:
7107 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
7108 		scalar32_min_max_and(dst_reg, &src_reg);
7109 		scalar_min_max_and(dst_reg, &src_reg);
7110 		break;
7111 	case BPF_OR:
7112 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
7113 		scalar32_min_max_or(dst_reg, &src_reg);
7114 		scalar_min_max_or(dst_reg, &src_reg);
7115 		break;
7116 	case BPF_XOR:
7117 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
7118 		scalar32_min_max_xor(dst_reg, &src_reg);
7119 		scalar_min_max_xor(dst_reg, &src_reg);
7120 		break;
7121 	case BPF_LSH:
7122 		if (umax_val >= insn_bitness) {
7123 			/* Shifts greater than 31 or 63 are undefined.
7124 			 * This includes shifts by a negative number.
7125 			 */
7126 			mark_reg_unknown(env, regs, insn->dst_reg);
7127 			break;
7128 		}
7129 		if (alu32)
7130 			scalar32_min_max_lsh(dst_reg, &src_reg);
7131 		else
7132 			scalar_min_max_lsh(dst_reg, &src_reg);
7133 		break;
7134 	case BPF_RSH:
7135 		if (umax_val >= insn_bitness) {
7136 			/* Shifts greater than 31 or 63 are undefined.
7137 			 * This includes shifts by a negative number.
7138 			 */
7139 			mark_reg_unknown(env, regs, insn->dst_reg);
7140 			break;
7141 		}
7142 		if (alu32)
7143 			scalar32_min_max_rsh(dst_reg, &src_reg);
7144 		else
7145 			scalar_min_max_rsh(dst_reg, &src_reg);
7146 		break;
7147 	case BPF_ARSH:
7148 		if (umax_val >= insn_bitness) {
7149 			/* Shifts greater than 31 or 63 are undefined.
7150 			 * This includes shifts by a negative number.
7151 			 */
7152 			mark_reg_unknown(env, regs, insn->dst_reg);
7153 			break;
7154 		}
7155 		if (alu32)
7156 			scalar32_min_max_arsh(dst_reg, &src_reg);
7157 		else
7158 			scalar_min_max_arsh(dst_reg, &src_reg);
7159 		break;
7160 	default:
7161 		mark_reg_unknown(env, regs, insn->dst_reg);
7162 		break;
7163 	}
7164 
7165 	/* ALU32 ops are zero extended into 64bit register */
7166 	if (alu32)
7167 		zext_32_to_64(dst_reg);
7168 
7169 	__update_reg_bounds(dst_reg);
7170 	__reg_deduce_bounds(dst_reg);
7171 	__reg_bound_offset(dst_reg);
7172 	return 0;
7173 }
7174 
7175 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
7176  * and var_off.
7177  */
7178 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
7179 				   struct bpf_insn *insn)
7180 {
7181 	struct bpf_verifier_state *vstate = env->cur_state;
7182 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7183 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
7184 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
7185 	u8 opcode = BPF_OP(insn->code);
7186 	int err;
7187 
7188 	dst_reg = &regs[insn->dst_reg];
7189 	src_reg = NULL;
7190 	if (dst_reg->type != SCALAR_VALUE)
7191 		ptr_reg = dst_reg;
7192 	else
7193 		/* Make sure ID is cleared otherwise dst_reg min/max could be
7194 		 * incorrectly propagated into other registers by find_equal_scalars()
7195 		 */
7196 		dst_reg->id = 0;
7197 	if (BPF_SRC(insn->code) == BPF_X) {
7198 		src_reg = &regs[insn->src_reg];
7199 		if (src_reg->type != SCALAR_VALUE) {
7200 			if (dst_reg->type != SCALAR_VALUE) {
7201 				/* Combining two pointers by any ALU op yields
7202 				 * an arbitrary scalar. Disallow all math except
7203 				 * pointer subtraction
7204 				 */
7205 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7206 					mark_reg_unknown(env, regs, insn->dst_reg);
7207 					return 0;
7208 				}
7209 				verbose(env, "R%d pointer %s pointer prohibited\n",
7210 					insn->dst_reg,
7211 					bpf_alu_string[opcode >> 4]);
7212 				return -EACCES;
7213 			} else {
7214 				/* scalar += pointer
7215 				 * This is legal, but we have to reverse our
7216 				 * src/dest handling in computing the range
7217 				 */
7218 				err = mark_chain_precision(env, insn->dst_reg);
7219 				if (err)
7220 					return err;
7221 				return adjust_ptr_min_max_vals(env, insn,
7222 							       src_reg, dst_reg);
7223 			}
7224 		} else if (ptr_reg) {
7225 			/* pointer += scalar */
7226 			err = mark_chain_precision(env, insn->src_reg);
7227 			if (err)
7228 				return err;
7229 			return adjust_ptr_min_max_vals(env, insn,
7230 						       dst_reg, src_reg);
7231 		}
7232 	} else {
7233 		/* Pretend the src is a reg with a known value, since we only
7234 		 * need to be able to read from this state.
7235 		 */
7236 		off_reg.type = SCALAR_VALUE;
7237 		__mark_reg_known(&off_reg, insn->imm);
7238 		src_reg = &off_reg;
7239 		if (ptr_reg) /* pointer += K */
7240 			return adjust_ptr_min_max_vals(env, insn,
7241 						       ptr_reg, src_reg);
7242 	}
7243 
7244 	/* Got here implies adding two SCALAR_VALUEs */
7245 	if (WARN_ON_ONCE(ptr_reg)) {
7246 		print_verifier_state(env, state);
7247 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
7248 		return -EINVAL;
7249 	}
7250 	if (WARN_ON(!src_reg)) {
7251 		print_verifier_state(env, state);
7252 		verbose(env, "verifier internal error: no src_reg\n");
7253 		return -EINVAL;
7254 	}
7255 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
7256 }
7257 
7258 /* check validity of 32-bit and 64-bit arithmetic operations */
7259 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
7260 {
7261 	struct bpf_reg_state *regs = cur_regs(env);
7262 	u8 opcode = BPF_OP(insn->code);
7263 	int err;
7264 
7265 	if (opcode == BPF_END || opcode == BPF_NEG) {
7266 		if (opcode == BPF_NEG) {
7267 			if (BPF_SRC(insn->code) != 0 ||
7268 			    insn->src_reg != BPF_REG_0 ||
7269 			    insn->off != 0 || insn->imm != 0) {
7270 				verbose(env, "BPF_NEG uses reserved fields\n");
7271 				return -EINVAL;
7272 			}
7273 		} else {
7274 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
7275 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
7276 			    BPF_CLASS(insn->code) == BPF_ALU64) {
7277 				verbose(env, "BPF_END uses reserved fields\n");
7278 				return -EINVAL;
7279 			}
7280 		}
7281 
7282 		/* check src operand */
7283 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7284 		if (err)
7285 			return err;
7286 
7287 		if (is_pointer_value(env, insn->dst_reg)) {
7288 			verbose(env, "R%d pointer arithmetic prohibited\n",
7289 				insn->dst_reg);
7290 			return -EACCES;
7291 		}
7292 
7293 		/* check dest operand */
7294 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
7295 		if (err)
7296 			return err;
7297 
7298 	} else if (opcode == BPF_MOV) {
7299 
7300 		if (BPF_SRC(insn->code) == BPF_X) {
7301 			if (insn->imm != 0 || insn->off != 0) {
7302 				verbose(env, "BPF_MOV uses reserved fields\n");
7303 				return -EINVAL;
7304 			}
7305 
7306 			/* check src operand */
7307 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7308 			if (err)
7309 				return err;
7310 		} else {
7311 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7312 				verbose(env, "BPF_MOV uses reserved fields\n");
7313 				return -EINVAL;
7314 			}
7315 		}
7316 
7317 		/* check dest operand, mark as required later */
7318 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7319 		if (err)
7320 			return err;
7321 
7322 		if (BPF_SRC(insn->code) == BPF_X) {
7323 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
7324 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
7325 
7326 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
7327 				/* case: R1 = R2
7328 				 * copy register state to dest reg
7329 				 */
7330 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
7331 					/* Assign src and dst registers the same ID
7332 					 * that will be used by find_equal_scalars()
7333 					 * to propagate min/max range.
7334 					 */
7335 					src_reg->id = ++env->id_gen;
7336 				*dst_reg = *src_reg;
7337 				dst_reg->live |= REG_LIVE_WRITTEN;
7338 				dst_reg->subreg_def = DEF_NOT_SUBREG;
7339 			} else {
7340 				/* R1 = (u32) R2 */
7341 				if (is_pointer_value(env, insn->src_reg)) {
7342 					verbose(env,
7343 						"R%d partial copy of pointer\n",
7344 						insn->src_reg);
7345 					return -EACCES;
7346 				} else if (src_reg->type == SCALAR_VALUE) {
7347 					*dst_reg = *src_reg;
7348 					/* Make sure ID is cleared otherwise
7349 					 * dst_reg min/max could be incorrectly
7350 					 * propagated into src_reg by find_equal_scalars()
7351 					 */
7352 					dst_reg->id = 0;
7353 					dst_reg->live |= REG_LIVE_WRITTEN;
7354 					dst_reg->subreg_def = env->insn_idx + 1;
7355 				} else {
7356 					mark_reg_unknown(env, regs,
7357 							 insn->dst_reg);
7358 				}
7359 				zext_32_to_64(dst_reg);
7360 			}
7361 		} else {
7362 			/* case: R = imm
7363 			 * remember the value we stored into this reg
7364 			 */
7365 			/* clear any state __mark_reg_known doesn't set */
7366 			mark_reg_unknown(env, regs, insn->dst_reg);
7367 			regs[insn->dst_reg].type = SCALAR_VALUE;
7368 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
7369 				__mark_reg_known(regs + insn->dst_reg,
7370 						 insn->imm);
7371 			} else {
7372 				__mark_reg_known(regs + insn->dst_reg,
7373 						 (u32)insn->imm);
7374 			}
7375 		}
7376 
7377 	} else if (opcode > BPF_END) {
7378 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
7379 		return -EINVAL;
7380 
7381 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
7382 
7383 		if (BPF_SRC(insn->code) == BPF_X) {
7384 			if (insn->imm != 0 || insn->off != 0) {
7385 				verbose(env, "BPF_ALU uses reserved fields\n");
7386 				return -EINVAL;
7387 			}
7388 			/* check src1 operand */
7389 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7390 			if (err)
7391 				return err;
7392 		} else {
7393 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7394 				verbose(env, "BPF_ALU uses reserved fields\n");
7395 				return -EINVAL;
7396 			}
7397 		}
7398 
7399 		/* check src2 operand */
7400 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7401 		if (err)
7402 			return err;
7403 
7404 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
7405 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
7406 			verbose(env, "div by zero\n");
7407 			return -EINVAL;
7408 		}
7409 
7410 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
7411 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
7412 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
7413 
7414 			if (insn->imm < 0 || insn->imm >= size) {
7415 				verbose(env, "invalid shift %d\n", insn->imm);
7416 				return -EINVAL;
7417 			}
7418 		}
7419 
7420 		/* check dest operand */
7421 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7422 		if (err)
7423 			return err;
7424 
7425 		return adjust_reg_min_max_vals(env, insn);
7426 	}
7427 
7428 	return 0;
7429 }
7430 
7431 static void __find_good_pkt_pointers(struct bpf_func_state *state,
7432 				     struct bpf_reg_state *dst_reg,
7433 				     enum bpf_reg_type type, int new_range)
7434 {
7435 	struct bpf_reg_state *reg;
7436 	int i;
7437 
7438 	for (i = 0; i < MAX_BPF_REG; i++) {
7439 		reg = &state->regs[i];
7440 		if (reg->type == type && reg->id == dst_reg->id)
7441 			/* keep the maximum range already checked */
7442 			reg->range = max(reg->range, new_range);
7443 	}
7444 
7445 	bpf_for_each_spilled_reg(i, state, reg) {
7446 		if (!reg)
7447 			continue;
7448 		if (reg->type == type && reg->id == dst_reg->id)
7449 			reg->range = max(reg->range, new_range);
7450 	}
7451 }
7452 
7453 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
7454 				   struct bpf_reg_state *dst_reg,
7455 				   enum bpf_reg_type type,
7456 				   bool range_right_open)
7457 {
7458 	int new_range, i;
7459 
7460 	if (dst_reg->off < 0 ||
7461 	    (dst_reg->off == 0 && range_right_open))
7462 		/* This doesn't give us any range */
7463 		return;
7464 
7465 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
7466 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
7467 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
7468 		 * than pkt_end, but that's because it's also less than pkt.
7469 		 */
7470 		return;
7471 
7472 	new_range = dst_reg->off;
7473 	if (range_right_open)
7474 		new_range--;
7475 
7476 	/* Examples for register markings:
7477 	 *
7478 	 * pkt_data in dst register:
7479 	 *
7480 	 *   r2 = r3;
7481 	 *   r2 += 8;
7482 	 *   if (r2 > pkt_end) goto <handle exception>
7483 	 *   <access okay>
7484 	 *
7485 	 *   r2 = r3;
7486 	 *   r2 += 8;
7487 	 *   if (r2 < pkt_end) goto <access okay>
7488 	 *   <handle exception>
7489 	 *
7490 	 *   Where:
7491 	 *     r2 == dst_reg, pkt_end == src_reg
7492 	 *     r2=pkt(id=n,off=8,r=0)
7493 	 *     r3=pkt(id=n,off=0,r=0)
7494 	 *
7495 	 * pkt_data in src register:
7496 	 *
7497 	 *   r2 = r3;
7498 	 *   r2 += 8;
7499 	 *   if (pkt_end >= r2) goto <access okay>
7500 	 *   <handle exception>
7501 	 *
7502 	 *   r2 = r3;
7503 	 *   r2 += 8;
7504 	 *   if (pkt_end <= r2) goto <handle exception>
7505 	 *   <access okay>
7506 	 *
7507 	 *   Where:
7508 	 *     pkt_end == dst_reg, r2 == src_reg
7509 	 *     r2=pkt(id=n,off=8,r=0)
7510 	 *     r3=pkt(id=n,off=0,r=0)
7511 	 *
7512 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
7513 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
7514 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
7515 	 * the check.
7516 	 */
7517 
7518 	/* If our ids match, then we must have the same max_value.  And we
7519 	 * don't care about the other reg's fixed offset, since if it's too big
7520 	 * the range won't allow anything.
7521 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
7522 	 */
7523 	for (i = 0; i <= vstate->curframe; i++)
7524 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
7525 					 new_range);
7526 }
7527 
7528 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
7529 {
7530 	struct tnum subreg = tnum_subreg(reg->var_off);
7531 	s32 sval = (s32)val;
7532 
7533 	switch (opcode) {
7534 	case BPF_JEQ:
7535 		if (tnum_is_const(subreg))
7536 			return !!tnum_equals_const(subreg, val);
7537 		break;
7538 	case BPF_JNE:
7539 		if (tnum_is_const(subreg))
7540 			return !tnum_equals_const(subreg, val);
7541 		break;
7542 	case BPF_JSET:
7543 		if ((~subreg.mask & subreg.value) & val)
7544 			return 1;
7545 		if (!((subreg.mask | subreg.value) & val))
7546 			return 0;
7547 		break;
7548 	case BPF_JGT:
7549 		if (reg->u32_min_value > val)
7550 			return 1;
7551 		else if (reg->u32_max_value <= val)
7552 			return 0;
7553 		break;
7554 	case BPF_JSGT:
7555 		if (reg->s32_min_value > sval)
7556 			return 1;
7557 		else if (reg->s32_max_value <= sval)
7558 			return 0;
7559 		break;
7560 	case BPF_JLT:
7561 		if (reg->u32_max_value < val)
7562 			return 1;
7563 		else if (reg->u32_min_value >= val)
7564 			return 0;
7565 		break;
7566 	case BPF_JSLT:
7567 		if (reg->s32_max_value < sval)
7568 			return 1;
7569 		else if (reg->s32_min_value >= sval)
7570 			return 0;
7571 		break;
7572 	case BPF_JGE:
7573 		if (reg->u32_min_value >= val)
7574 			return 1;
7575 		else if (reg->u32_max_value < val)
7576 			return 0;
7577 		break;
7578 	case BPF_JSGE:
7579 		if (reg->s32_min_value >= sval)
7580 			return 1;
7581 		else if (reg->s32_max_value < sval)
7582 			return 0;
7583 		break;
7584 	case BPF_JLE:
7585 		if (reg->u32_max_value <= val)
7586 			return 1;
7587 		else if (reg->u32_min_value > val)
7588 			return 0;
7589 		break;
7590 	case BPF_JSLE:
7591 		if (reg->s32_max_value <= sval)
7592 			return 1;
7593 		else if (reg->s32_min_value > sval)
7594 			return 0;
7595 		break;
7596 	}
7597 
7598 	return -1;
7599 }
7600 
7601 
7602 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
7603 {
7604 	s64 sval = (s64)val;
7605 
7606 	switch (opcode) {
7607 	case BPF_JEQ:
7608 		if (tnum_is_const(reg->var_off))
7609 			return !!tnum_equals_const(reg->var_off, val);
7610 		break;
7611 	case BPF_JNE:
7612 		if (tnum_is_const(reg->var_off))
7613 			return !tnum_equals_const(reg->var_off, val);
7614 		break;
7615 	case BPF_JSET:
7616 		if ((~reg->var_off.mask & reg->var_off.value) & val)
7617 			return 1;
7618 		if (!((reg->var_off.mask | reg->var_off.value) & val))
7619 			return 0;
7620 		break;
7621 	case BPF_JGT:
7622 		if (reg->umin_value > val)
7623 			return 1;
7624 		else if (reg->umax_value <= val)
7625 			return 0;
7626 		break;
7627 	case BPF_JSGT:
7628 		if (reg->smin_value > sval)
7629 			return 1;
7630 		else if (reg->smax_value <= sval)
7631 			return 0;
7632 		break;
7633 	case BPF_JLT:
7634 		if (reg->umax_value < val)
7635 			return 1;
7636 		else if (reg->umin_value >= val)
7637 			return 0;
7638 		break;
7639 	case BPF_JSLT:
7640 		if (reg->smax_value < sval)
7641 			return 1;
7642 		else if (reg->smin_value >= sval)
7643 			return 0;
7644 		break;
7645 	case BPF_JGE:
7646 		if (reg->umin_value >= val)
7647 			return 1;
7648 		else if (reg->umax_value < val)
7649 			return 0;
7650 		break;
7651 	case BPF_JSGE:
7652 		if (reg->smin_value >= sval)
7653 			return 1;
7654 		else if (reg->smax_value < sval)
7655 			return 0;
7656 		break;
7657 	case BPF_JLE:
7658 		if (reg->umax_value <= val)
7659 			return 1;
7660 		else if (reg->umin_value > val)
7661 			return 0;
7662 		break;
7663 	case BPF_JSLE:
7664 		if (reg->smax_value <= sval)
7665 			return 1;
7666 		else if (reg->smin_value > sval)
7667 			return 0;
7668 		break;
7669 	}
7670 
7671 	return -1;
7672 }
7673 
7674 /* compute branch direction of the expression "if (reg opcode val) goto target;"
7675  * and return:
7676  *  1 - branch will be taken and "goto target" will be executed
7677  *  0 - branch will not be taken and fall-through to next insn
7678  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
7679  *      range [0,10]
7680  */
7681 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
7682 			   bool is_jmp32)
7683 {
7684 	if (__is_pointer_value(false, reg)) {
7685 		if (!reg_type_not_null(reg->type))
7686 			return -1;
7687 
7688 		/* If pointer is valid tests against zero will fail so we can
7689 		 * use this to direct branch taken.
7690 		 */
7691 		if (val != 0)
7692 			return -1;
7693 
7694 		switch (opcode) {
7695 		case BPF_JEQ:
7696 			return 0;
7697 		case BPF_JNE:
7698 			return 1;
7699 		default:
7700 			return -1;
7701 		}
7702 	}
7703 
7704 	if (is_jmp32)
7705 		return is_branch32_taken(reg, val, opcode);
7706 	return is_branch64_taken(reg, val, opcode);
7707 }
7708 
7709 static int flip_opcode(u32 opcode)
7710 {
7711 	/* How can we transform "a <op> b" into "b <op> a"? */
7712 	static const u8 opcode_flip[16] = {
7713 		/* these stay the same */
7714 		[BPF_JEQ  >> 4] = BPF_JEQ,
7715 		[BPF_JNE  >> 4] = BPF_JNE,
7716 		[BPF_JSET >> 4] = BPF_JSET,
7717 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
7718 		[BPF_JGE  >> 4] = BPF_JLE,
7719 		[BPF_JGT  >> 4] = BPF_JLT,
7720 		[BPF_JLE  >> 4] = BPF_JGE,
7721 		[BPF_JLT  >> 4] = BPF_JGT,
7722 		[BPF_JSGE >> 4] = BPF_JSLE,
7723 		[BPF_JSGT >> 4] = BPF_JSLT,
7724 		[BPF_JSLE >> 4] = BPF_JSGE,
7725 		[BPF_JSLT >> 4] = BPF_JSGT
7726 	};
7727 	return opcode_flip[opcode >> 4];
7728 }
7729 
7730 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
7731 				   struct bpf_reg_state *src_reg,
7732 				   u8 opcode)
7733 {
7734 	struct bpf_reg_state *pkt;
7735 
7736 	if (src_reg->type == PTR_TO_PACKET_END) {
7737 		pkt = dst_reg;
7738 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
7739 		pkt = src_reg;
7740 		opcode = flip_opcode(opcode);
7741 	} else {
7742 		return -1;
7743 	}
7744 
7745 	if (pkt->range >= 0)
7746 		return -1;
7747 
7748 	switch (opcode) {
7749 	case BPF_JLE:
7750 		/* pkt <= pkt_end */
7751 		fallthrough;
7752 	case BPF_JGT:
7753 		/* pkt > pkt_end */
7754 		if (pkt->range == BEYOND_PKT_END)
7755 			/* pkt has at last one extra byte beyond pkt_end */
7756 			return opcode == BPF_JGT;
7757 		break;
7758 	case BPF_JLT:
7759 		/* pkt < pkt_end */
7760 		fallthrough;
7761 	case BPF_JGE:
7762 		/* pkt >= pkt_end */
7763 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
7764 			return opcode == BPF_JGE;
7765 		break;
7766 	}
7767 	return -1;
7768 }
7769 
7770 /* Adjusts the register min/max values in the case that the dst_reg is the
7771  * variable register that we are working on, and src_reg is a constant or we're
7772  * simply doing a BPF_K check.
7773  * In JEQ/JNE cases we also adjust the var_off values.
7774  */
7775 static void reg_set_min_max(struct bpf_reg_state *true_reg,
7776 			    struct bpf_reg_state *false_reg,
7777 			    u64 val, u32 val32,
7778 			    u8 opcode, bool is_jmp32)
7779 {
7780 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
7781 	struct tnum false_64off = false_reg->var_off;
7782 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
7783 	struct tnum true_64off = true_reg->var_off;
7784 	s64 sval = (s64)val;
7785 	s32 sval32 = (s32)val32;
7786 
7787 	/* If the dst_reg is a pointer, we can't learn anything about its
7788 	 * variable offset from the compare (unless src_reg were a pointer into
7789 	 * the same object, but we don't bother with that.
7790 	 * Since false_reg and true_reg have the same type by construction, we
7791 	 * only need to check one of them for pointerness.
7792 	 */
7793 	if (__is_pointer_value(false, false_reg))
7794 		return;
7795 
7796 	switch (opcode) {
7797 	case BPF_JEQ:
7798 	case BPF_JNE:
7799 	{
7800 		struct bpf_reg_state *reg =
7801 			opcode == BPF_JEQ ? true_reg : false_reg;
7802 
7803 		/* JEQ/JNE comparison doesn't change the register equivalence.
7804 		 * r1 = r2;
7805 		 * if (r1 == 42) goto label;
7806 		 * ...
7807 		 * label: // here both r1 and r2 are known to be 42.
7808 		 *
7809 		 * Hence when marking register as known preserve it's ID.
7810 		 */
7811 		if (is_jmp32)
7812 			__mark_reg32_known(reg, val32);
7813 		else
7814 			___mark_reg_known(reg, val);
7815 		break;
7816 	}
7817 	case BPF_JSET:
7818 		if (is_jmp32) {
7819 			false_32off = tnum_and(false_32off, tnum_const(~val32));
7820 			if (is_power_of_2(val32))
7821 				true_32off = tnum_or(true_32off,
7822 						     tnum_const(val32));
7823 		} else {
7824 			false_64off = tnum_and(false_64off, tnum_const(~val));
7825 			if (is_power_of_2(val))
7826 				true_64off = tnum_or(true_64off,
7827 						     tnum_const(val));
7828 		}
7829 		break;
7830 	case BPF_JGE:
7831 	case BPF_JGT:
7832 	{
7833 		if (is_jmp32) {
7834 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
7835 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
7836 
7837 			false_reg->u32_max_value = min(false_reg->u32_max_value,
7838 						       false_umax);
7839 			true_reg->u32_min_value = max(true_reg->u32_min_value,
7840 						      true_umin);
7841 		} else {
7842 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
7843 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
7844 
7845 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
7846 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
7847 		}
7848 		break;
7849 	}
7850 	case BPF_JSGE:
7851 	case BPF_JSGT:
7852 	{
7853 		if (is_jmp32) {
7854 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
7855 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
7856 
7857 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
7858 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
7859 		} else {
7860 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
7861 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
7862 
7863 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
7864 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
7865 		}
7866 		break;
7867 	}
7868 	case BPF_JLE:
7869 	case BPF_JLT:
7870 	{
7871 		if (is_jmp32) {
7872 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
7873 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
7874 
7875 			false_reg->u32_min_value = max(false_reg->u32_min_value,
7876 						       false_umin);
7877 			true_reg->u32_max_value = min(true_reg->u32_max_value,
7878 						      true_umax);
7879 		} else {
7880 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
7881 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
7882 
7883 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
7884 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
7885 		}
7886 		break;
7887 	}
7888 	case BPF_JSLE:
7889 	case BPF_JSLT:
7890 	{
7891 		if (is_jmp32) {
7892 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
7893 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
7894 
7895 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
7896 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
7897 		} else {
7898 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
7899 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
7900 
7901 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
7902 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
7903 		}
7904 		break;
7905 	}
7906 	default:
7907 		return;
7908 	}
7909 
7910 	if (is_jmp32) {
7911 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
7912 					     tnum_subreg(false_32off));
7913 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
7914 					    tnum_subreg(true_32off));
7915 		__reg_combine_32_into_64(false_reg);
7916 		__reg_combine_32_into_64(true_reg);
7917 	} else {
7918 		false_reg->var_off = false_64off;
7919 		true_reg->var_off = true_64off;
7920 		__reg_combine_64_into_32(false_reg);
7921 		__reg_combine_64_into_32(true_reg);
7922 	}
7923 }
7924 
7925 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
7926  * the variable reg.
7927  */
7928 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
7929 				struct bpf_reg_state *false_reg,
7930 				u64 val, u32 val32,
7931 				u8 opcode, bool is_jmp32)
7932 {
7933 	opcode = flip_opcode(opcode);
7934 	/* This uses zero as "not present in table"; luckily the zero opcode,
7935 	 * BPF_JA, can't get here.
7936 	 */
7937 	if (opcode)
7938 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
7939 }
7940 
7941 /* Regs are known to be equal, so intersect their min/max/var_off */
7942 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
7943 				  struct bpf_reg_state *dst_reg)
7944 {
7945 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
7946 							dst_reg->umin_value);
7947 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
7948 							dst_reg->umax_value);
7949 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
7950 							dst_reg->smin_value);
7951 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
7952 							dst_reg->smax_value);
7953 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
7954 							     dst_reg->var_off);
7955 	/* We might have learned new bounds from the var_off. */
7956 	__update_reg_bounds(src_reg);
7957 	__update_reg_bounds(dst_reg);
7958 	/* We might have learned something about the sign bit. */
7959 	__reg_deduce_bounds(src_reg);
7960 	__reg_deduce_bounds(dst_reg);
7961 	/* We might have learned some bits from the bounds. */
7962 	__reg_bound_offset(src_reg);
7963 	__reg_bound_offset(dst_reg);
7964 	/* Intersecting with the old var_off might have improved our bounds
7965 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
7966 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
7967 	 */
7968 	__update_reg_bounds(src_reg);
7969 	__update_reg_bounds(dst_reg);
7970 }
7971 
7972 static void reg_combine_min_max(struct bpf_reg_state *true_src,
7973 				struct bpf_reg_state *true_dst,
7974 				struct bpf_reg_state *false_src,
7975 				struct bpf_reg_state *false_dst,
7976 				u8 opcode)
7977 {
7978 	switch (opcode) {
7979 	case BPF_JEQ:
7980 		__reg_combine_min_max(true_src, true_dst);
7981 		break;
7982 	case BPF_JNE:
7983 		__reg_combine_min_max(false_src, false_dst);
7984 		break;
7985 	}
7986 }
7987 
7988 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
7989 				 struct bpf_reg_state *reg, u32 id,
7990 				 bool is_null)
7991 {
7992 	if (reg_type_may_be_null(reg->type) && reg->id == id &&
7993 	    !WARN_ON_ONCE(!reg->id)) {
7994 		/* Old offset (both fixed and variable parts) should
7995 		 * have been known-zero, because we don't allow pointer
7996 		 * arithmetic on pointers that might be NULL.
7997 		 */
7998 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
7999 				 !tnum_equals_const(reg->var_off, 0) ||
8000 				 reg->off)) {
8001 			__mark_reg_known_zero(reg);
8002 			reg->off = 0;
8003 		}
8004 		if (is_null) {
8005 			reg->type = SCALAR_VALUE;
8006 			/* We don't need id and ref_obj_id from this point
8007 			 * onwards anymore, thus we should better reset it,
8008 			 * so that state pruning has chances to take effect.
8009 			 */
8010 			reg->id = 0;
8011 			reg->ref_obj_id = 0;
8012 
8013 			return;
8014 		}
8015 
8016 		mark_ptr_not_null_reg(reg);
8017 
8018 		if (!reg_may_point_to_spin_lock(reg)) {
8019 			/* For not-NULL ptr, reg->ref_obj_id will be reset
8020 			 * in release_reg_references().
8021 			 *
8022 			 * reg->id is still used by spin_lock ptr. Other
8023 			 * than spin_lock ptr type, reg->id can be reset.
8024 			 */
8025 			reg->id = 0;
8026 		}
8027 	}
8028 }
8029 
8030 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
8031 				    bool is_null)
8032 {
8033 	struct bpf_reg_state *reg;
8034 	int i;
8035 
8036 	for (i = 0; i < MAX_BPF_REG; i++)
8037 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
8038 
8039 	bpf_for_each_spilled_reg(i, state, reg) {
8040 		if (!reg)
8041 			continue;
8042 		mark_ptr_or_null_reg(state, reg, id, is_null);
8043 	}
8044 }
8045 
8046 /* The logic is similar to find_good_pkt_pointers(), both could eventually
8047  * be folded together at some point.
8048  */
8049 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
8050 				  bool is_null)
8051 {
8052 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8053 	struct bpf_reg_state *regs = state->regs;
8054 	u32 ref_obj_id = regs[regno].ref_obj_id;
8055 	u32 id = regs[regno].id;
8056 	int i;
8057 
8058 	if (ref_obj_id && ref_obj_id == id && is_null)
8059 		/* regs[regno] is in the " == NULL" branch.
8060 		 * No one could have freed the reference state before
8061 		 * doing the NULL check.
8062 		 */
8063 		WARN_ON_ONCE(release_reference_state(state, id));
8064 
8065 	for (i = 0; i <= vstate->curframe; i++)
8066 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
8067 }
8068 
8069 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
8070 				   struct bpf_reg_state *dst_reg,
8071 				   struct bpf_reg_state *src_reg,
8072 				   struct bpf_verifier_state *this_branch,
8073 				   struct bpf_verifier_state *other_branch)
8074 {
8075 	if (BPF_SRC(insn->code) != BPF_X)
8076 		return false;
8077 
8078 	/* Pointers are always 64-bit. */
8079 	if (BPF_CLASS(insn->code) == BPF_JMP32)
8080 		return false;
8081 
8082 	switch (BPF_OP(insn->code)) {
8083 	case BPF_JGT:
8084 		if ((dst_reg->type == PTR_TO_PACKET &&
8085 		     src_reg->type == PTR_TO_PACKET_END) ||
8086 		    (dst_reg->type == PTR_TO_PACKET_META &&
8087 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8088 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
8089 			find_good_pkt_pointers(this_branch, dst_reg,
8090 					       dst_reg->type, false);
8091 			mark_pkt_end(other_branch, insn->dst_reg, true);
8092 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8093 			    src_reg->type == PTR_TO_PACKET) ||
8094 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8095 			    src_reg->type == PTR_TO_PACKET_META)) {
8096 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
8097 			find_good_pkt_pointers(other_branch, src_reg,
8098 					       src_reg->type, true);
8099 			mark_pkt_end(this_branch, insn->src_reg, false);
8100 		} else {
8101 			return false;
8102 		}
8103 		break;
8104 	case BPF_JLT:
8105 		if ((dst_reg->type == PTR_TO_PACKET &&
8106 		     src_reg->type == PTR_TO_PACKET_END) ||
8107 		    (dst_reg->type == PTR_TO_PACKET_META &&
8108 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8109 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
8110 			find_good_pkt_pointers(other_branch, dst_reg,
8111 					       dst_reg->type, true);
8112 			mark_pkt_end(this_branch, insn->dst_reg, false);
8113 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8114 			    src_reg->type == PTR_TO_PACKET) ||
8115 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8116 			    src_reg->type == PTR_TO_PACKET_META)) {
8117 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
8118 			find_good_pkt_pointers(this_branch, src_reg,
8119 					       src_reg->type, false);
8120 			mark_pkt_end(other_branch, insn->src_reg, true);
8121 		} else {
8122 			return false;
8123 		}
8124 		break;
8125 	case BPF_JGE:
8126 		if ((dst_reg->type == PTR_TO_PACKET &&
8127 		     src_reg->type == PTR_TO_PACKET_END) ||
8128 		    (dst_reg->type == PTR_TO_PACKET_META &&
8129 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8130 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
8131 			find_good_pkt_pointers(this_branch, dst_reg,
8132 					       dst_reg->type, true);
8133 			mark_pkt_end(other_branch, insn->dst_reg, false);
8134 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8135 			    src_reg->type == PTR_TO_PACKET) ||
8136 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8137 			    src_reg->type == PTR_TO_PACKET_META)) {
8138 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
8139 			find_good_pkt_pointers(other_branch, src_reg,
8140 					       src_reg->type, false);
8141 			mark_pkt_end(this_branch, insn->src_reg, true);
8142 		} else {
8143 			return false;
8144 		}
8145 		break;
8146 	case BPF_JLE:
8147 		if ((dst_reg->type == PTR_TO_PACKET &&
8148 		     src_reg->type == PTR_TO_PACKET_END) ||
8149 		    (dst_reg->type == PTR_TO_PACKET_META &&
8150 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8151 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
8152 			find_good_pkt_pointers(other_branch, dst_reg,
8153 					       dst_reg->type, false);
8154 			mark_pkt_end(this_branch, insn->dst_reg, true);
8155 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8156 			    src_reg->type == PTR_TO_PACKET) ||
8157 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8158 			    src_reg->type == PTR_TO_PACKET_META)) {
8159 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
8160 			find_good_pkt_pointers(this_branch, src_reg,
8161 					       src_reg->type, true);
8162 			mark_pkt_end(other_branch, insn->src_reg, false);
8163 		} else {
8164 			return false;
8165 		}
8166 		break;
8167 	default:
8168 		return false;
8169 	}
8170 
8171 	return true;
8172 }
8173 
8174 static void find_equal_scalars(struct bpf_verifier_state *vstate,
8175 			       struct bpf_reg_state *known_reg)
8176 {
8177 	struct bpf_func_state *state;
8178 	struct bpf_reg_state *reg;
8179 	int i, j;
8180 
8181 	for (i = 0; i <= vstate->curframe; i++) {
8182 		state = vstate->frame[i];
8183 		for (j = 0; j < MAX_BPF_REG; j++) {
8184 			reg = &state->regs[j];
8185 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8186 				*reg = *known_reg;
8187 		}
8188 
8189 		bpf_for_each_spilled_reg(j, state, reg) {
8190 			if (!reg)
8191 				continue;
8192 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8193 				*reg = *known_reg;
8194 		}
8195 	}
8196 }
8197 
8198 static int check_cond_jmp_op(struct bpf_verifier_env *env,
8199 			     struct bpf_insn *insn, int *insn_idx)
8200 {
8201 	struct bpf_verifier_state *this_branch = env->cur_state;
8202 	struct bpf_verifier_state *other_branch;
8203 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
8204 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
8205 	u8 opcode = BPF_OP(insn->code);
8206 	bool is_jmp32;
8207 	int pred = -1;
8208 	int err;
8209 
8210 	/* Only conditional jumps are expected to reach here. */
8211 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
8212 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
8213 		return -EINVAL;
8214 	}
8215 
8216 	if (BPF_SRC(insn->code) == BPF_X) {
8217 		if (insn->imm != 0) {
8218 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8219 			return -EINVAL;
8220 		}
8221 
8222 		/* check src1 operand */
8223 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
8224 		if (err)
8225 			return err;
8226 
8227 		if (is_pointer_value(env, insn->src_reg)) {
8228 			verbose(env, "R%d pointer comparison prohibited\n",
8229 				insn->src_reg);
8230 			return -EACCES;
8231 		}
8232 		src_reg = &regs[insn->src_reg];
8233 	} else {
8234 		if (insn->src_reg != BPF_REG_0) {
8235 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8236 			return -EINVAL;
8237 		}
8238 	}
8239 
8240 	/* check src2 operand */
8241 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8242 	if (err)
8243 		return err;
8244 
8245 	dst_reg = &regs[insn->dst_reg];
8246 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
8247 
8248 	if (BPF_SRC(insn->code) == BPF_K) {
8249 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
8250 	} else if (src_reg->type == SCALAR_VALUE &&
8251 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
8252 		pred = is_branch_taken(dst_reg,
8253 				       tnum_subreg(src_reg->var_off).value,
8254 				       opcode,
8255 				       is_jmp32);
8256 	} else if (src_reg->type == SCALAR_VALUE &&
8257 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
8258 		pred = is_branch_taken(dst_reg,
8259 				       src_reg->var_off.value,
8260 				       opcode,
8261 				       is_jmp32);
8262 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
8263 		   reg_is_pkt_pointer_any(src_reg) &&
8264 		   !is_jmp32) {
8265 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
8266 	}
8267 
8268 	if (pred >= 0) {
8269 		/* If we get here with a dst_reg pointer type it is because
8270 		 * above is_branch_taken() special cased the 0 comparison.
8271 		 */
8272 		if (!__is_pointer_value(false, dst_reg))
8273 			err = mark_chain_precision(env, insn->dst_reg);
8274 		if (BPF_SRC(insn->code) == BPF_X && !err &&
8275 		    !__is_pointer_value(false, src_reg))
8276 			err = mark_chain_precision(env, insn->src_reg);
8277 		if (err)
8278 			return err;
8279 	}
8280 	if (pred == 1) {
8281 		/* only follow the goto, ignore fall-through */
8282 		*insn_idx += insn->off;
8283 		return 0;
8284 	} else if (pred == 0) {
8285 		/* only follow fall-through branch, since
8286 		 * that's where the program will go
8287 		 */
8288 		return 0;
8289 	}
8290 
8291 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
8292 				  false);
8293 	if (!other_branch)
8294 		return -EFAULT;
8295 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
8296 
8297 	/* detect if we are comparing against a constant value so we can adjust
8298 	 * our min/max values for our dst register.
8299 	 * this is only legit if both are scalars (or pointers to the same
8300 	 * object, I suppose, but we don't support that right now), because
8301 	 * otherwise the different base pointers mean the offsets aren't
8302 	 * comparable.
8303 	 */
8304 	if (BPF_SRC(insn->code) == BPF_X) {
8305 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
8306 
8307 		if (dst_reg->type == SCALAR_VALUE &&
8308 		    src_reg->type == SCALAR_VALUE) {
8309 			if (tnum_is_const(src_reg->var_off) ||
8310 			    (is_jmp32 &&
8311 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
8312 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
8313 						dst_reg,
8314 						src_reg->var_off.value,
8315 						tnum_subreg(src_reg->var_off).value,
8316 						opcode, is_jmp32);
8317 			else if (tnum_is_const(dst_reg->var_off) ||
8318 				 (is_jmp32 &&
8319 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
8320 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
8321 						    src_reg,
8322 						    dst_reg->var_off.value,
8323 						    tnum_subreg(dst_reg->var_off).value,
8324 						    opcode, is_jmp32);
8325 			else if (!is_jmp32 &&
8326 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
8327 				/* Comparing for equality, we can combine knowledge */
8328 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
8329 						    &other_branch_regs[insn->dst_reg],
8330 						    src_reg, dst_reg, opcode);
8331 			if (src_reg->id &&
8332 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
8333 				find_equal_scalars(this_branch, src_reg);
8334 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
8335 			}
8336 
8337 		}
8338 	} else if (dst_reg->type == SCALAR_VALUE) {
8339 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
8340 					dst_reg, insn->imm, (u32)insn->imm,
8341 					opcode, is_jmp32);
8342 	}
8343 
8344 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
8345 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
8346 		find_equal_scalars(this_branch, dst_reg);
8347 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
8348 	}
8349 
8350 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
8351 	 * NOTE: these optimizations below are related with pointer comparison
8352 	 *       which will never be JMP32.
8353 	 */
8354 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
8355 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
8356 	    reg_type_may_be_null(dst_reg->type)) {
8357 		/* Mark all identical registers in each branch as either
8358 		 * safe or unknown depending R == 0 or R != 0 conditional.
8359 		 */
8360 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
8361 				      opcode == BPF_JNE);
8362 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
8363 				      opcode == BPF_JEQ);
8364 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
8365 					   this_branch, other_branch) &&
8366 		   is_pointer_value(env, insn->dst_reg)) {
8367 		verbose(env, "R%d pointer comparison prohibited\n",
8368 			insn->dst_reg);
8369 		return -EACCES;
8370 	}
8371 	if (env->log.level & BPF_LOG_LEVEL)
8372 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
8373 	return 0;
8374 }
8375 
8376 /* verify BPF_LD_IMM64 instruction */
8377 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
8378 {
8379 	struct bpf_insn_aux_data *aux = cur_aux(env);
8380 	struct bpf_reg_state *regs = cur_regs(env);
8381 	struct bpf_reg_state *dst_reg;
8382 	struct bpf_map *map;
8383 	int err;
8384 
8385 	if (BPF_SIZE(insn->code) != BPF_DW) {
8386 		verbose(env, "invalid BPF_LD_IMM insn\n");
8387 		return -EINVAL;
8388 	}
8389 	if (insn->off != 0) {
8390 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
8391 		return -EINVAL;
8392 	}
8393 
8394 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
8395 	if (err)
8396 		return err;
8397 
8398 	dst_reg = &regs[insn->dst_reg];
8399 	if (insn->src_reg == 0) {
8400 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
8401 
8402 		dst_reg->type = SCALAR_VALUE;
8403 		__mark_reg_known(&regs[insn->dst_reg], imm);
8404 		return 0;
8405 	}
8406 
8407 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
8408 		mark_reg_known_zero(env, regs, insn->dst_reg);
8409 
8410 		dst_reg->type = aux->btf_var.reg_type;
8411 		switch (dst_reg->type) {
8412 		case PTR_TO_MEM:
8413 			dst_reg->mem_size = aux->btf_var.mem_size;
8414 			break;
8415 		case PTR_TO_BTF_ID:
8416 		case PTR_TO_PERCPU_BTF_ID:
8417 			dst_reg->btf = aux->btf_var.btf;
8418 			dst_reg->btf_id = aux->btf_var.btf_id;
8419 			break;
8420 		default:
8421 			verbose(env, "bpf verifier is misconfigured\n");
8422 			return -EFAULT;
8423 		}
8424 		return 0;
8425 	}
8426 
8427 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
8428 		struct bpf_prog_aux *aux = env->prog->aux;
8429 		u32 subprogno = insn[1].imm;
8430 
8431 		if (!aux->func_info) {
8432 			verbose(env, "missing btf func_info\n");
8433 			return -EINVAL;
8434 		}
8435 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
8436 			verbose(env, "callback function not static\n");
8437 			return -EINVAL;
8438 		}
8439 
8440 		dst_reg->type = PTR_TO_FUNC;
8441 		dst_reg->subprogno = subprogno;
8442 		return 0;
8443 	}
8444 
8445 	map = env->used_maps[aux->map_index];
8446 	mark_reg_known_zero(env, regs, insn->dst_reg);
8447 	dst_reg->map_ptr = map;
8448 
8449 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
8450 		dst_reg->type = PTR_TO_MAP_VALUE;
8451 		dst_reg->off = aux->map_off;
8452 		if (map_value_has_spin_lock(map))
8453 			dst_reg->id = ++env->id_gen;
8454 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8455 		dst_reg->type = CONST_PTR_TO_MAP;
8456 	} else {
8457 		verbose(env, "bpf verifier is misconfigured\n");
8458 		return -EINVAL;
8459 	}
8460 
8461 	return 0;
8462 }
8463 
8464 static bool may_access_skb(enum bpf_prog_type type)
8465 {
8466 	switch (type) {
8467 	case BPF_PROG_TYPE_SOCKET_FILTER:
8468 	case BPF_PROG_TYPE_SCHED_CLS:
8469 	case BPF_PROG_TYPE_SCHED_ACT:
8470 		return true;
8471 	default:
8472 		return false;
8473 	}
8474 }
8475 
8476 /* verify safety of LD_ABS|LD_IND instructions:
8477  * - they can only appear in the programs where ctx == skb
8478  * - since they are wrappers of function calls, they scratch R1-R5 registers,
8479  *   preserve R6-R9, and store return value into R0
8480  *
8481  * Implicit input:
8482  *   ctx == skb == R6 == CTX
8483  *
8484  * Explicit input:
8485  *   SRC == any register
8486  *   IMM == 32-bit immediate
8487  *
8488  * Output:
8489  *   R0 - 8/16/32-bit skb data converted to cpu endianness
8490  */
8491 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
8492 {
8493 	struct bpf_reg_state *regs = cur_regs(env);
8494 	static const int ctx_reg = BPF_REG_6;
8495 	u8 mode = BPF_MODE(insn->code);
8496 	int i, err;
8497 
8498 	if (!may_access_skb(resolve_prog_type(env->prog))) {
8499 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
8500 		return -EINVAL;
8501 	}
8502 
8503 	if (!env->ops->gen_ld_abs) {
8504 		verbose(env, "bpf verifier is misconfigured\n");
8505 		return -EINVAL;
8506 	}
8507 
8508 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
8509 	    BPF_SIZE(insn->code) == BPF_DW ||
8510 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
8511 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
8512 		return -EINVAL;
8513 	}
8514 
8515 	/* check whether implicit source operand (register R6) is readable */
8516 	err = check_reg_arg(env, ctx_reg, SRC_OP);
8517 	if (err)
8518 		return err;
8519 
8520 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
8521 	 * gen_ld_abs() may terminate the program at runtime, leading to
8522 	 * reference leak.
8523 	 */
8524 	err = check_reference_leak(env);
8525 	if (err) {
8526 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
8527 		return err;
8528 	}
8529 
8530 	if (env->cur_state->active_spin_lock) {
8531 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
8532 		return -EINVAL;
8533 	}
8534 
8535 	if (regs[ctx_reg].type != PTR_TO_CTX) {
8536 		verbose(env,
8537 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
8538 		return -EINVAL;
8539 	}
8540 
8541 	if (mode == BPF_IND) {
8542 		/* check explicit source operand */
8543 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
8544 		if (err)
8545 			return err;
8546 	}
8547 
8548 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
8549 	if (err < 0)
8550 		return err;
8551 
8552 	/* reset caller saved regs to unreadable */
8553 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
8554 		mark_reg_not_init(env, regs, caller_saved[i]);
8555 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8556 	}
8557 
8558 	/* mark destination R0 register as readable, since it contains
8559 	 * the value fetched from the packet.
8560 	 * Already marked as written above.
8561 	 */
8562 	mark_reg_unknown(env, regs, BPF_REG_0);
8563 	/* ld_abs load up to 32-bit skb data. */
8564 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
8565 	return 0;
8566 }
8567 
8568 static int check_return_code(struct bpf_verifier_env *env)
8569 {
8570 	struct tnum enforce_attach_type_range = tnum_unknown;
8571 	const struct bpf_prog *prog = env->prog;
8572 	struct bpf_reg_state *reg;
8573 	struct tnum range = tnum_range(0, 1);
8574 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
8575 	int err;
8576 	const bool is_subprog = env->cur_state->frame[0]->subprogno;
8577 
8578 	/* LSM and struct_ops func-ptr's return type could be "void" */
8579 	if (!is_subprog &&
8580 	    (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
8581 	     prog_type == BPF_PROG_TYPE_LSM) &&
8582 	    !prog->aux->attach_func_proto->type)
8583 		return 0;
8584 
8585 	/* eBPF calling convetion is such that R0 is used
8586 	 * to return the value from eBPF program.
8587 	 * Make sure that it's readable at this time
8588 	 * of bpf_exit, which means that program wrote
8589 	 * something into it earlier
8590 	 */
8591 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
8592 	if (err)
8593 		return err;
8594 
8595 	if (is_pointer_value(env, BPF_REG_0)) {
8596 		verbose(env, "R0 leaks addr as return value\n");
8597 		return -EACCES;
8598 	}
8599 
8600 	reg = cur_regs(env) + BPF_REG_0;
8601 	if (is_subprog) {
8602 		if (reg->type != SCALAR_VALUE) {
8603 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
8604 				reg_type_str[reg->type]);
8605 			return -EINVAL;
8606 		}
8607 		return 0;
8608 	}
8609 
8610 	switch (prog_type) {
8611 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8612 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
8613 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
8614 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
8615 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
8616 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
8617 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
8618 			range = tnum_range(1, 1);
8619 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
8620 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
8621 			range = tnum_range(0, 3);
8622 		break;
8623 	case BPF_PROG_TYPE_CGROUP_SKB:
8624 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
8625 			range = tnum_range(0, 3);
8626 			enforce_attach_type_range = tnum_range(2, 3);
8627 		}
8628 		break;
8629 	case BPF_PROG_TYPE_CGROUP_SOCK:
8630 	case BPF_PROG_TYPE_SOCK_OPS:
8631 	case BPF_PROG_TYPE_CGROUP_DEVICE:
8632 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
8633 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
8634 		break;
8635 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
8636 		if (!env->prog->aux->attach_btf_id)
8637 			return 0;
8638 		range = tnum_const(0);
8639 		break;
8640 	case BPF_PROG_TYPE_TRACING:
8641 		switch (env->prog->expected_attach_type) {
8642 		case BPF_TRACE_FENTRY:
8643 		case BPF_TRACE_FEXIT:
8644 			range = tnum_const(0);
8645 			break;
8646 		case BPF_TRACE_RAW_TP:
8647 		case BPF_MODIFY_RETURN:
8648 			return 0;
8649 		case BPF_TRACE_ITER:
8650 			break;
8651 		default:
8652 			return -ENOTSUPP;
8653 		}
8654 		break;
8655 	case BPF_PROG_TYPE_SK_LOOKUP:
8656 		range = tnum_range(SK_DROP, SK_PASS);
8657 		break;
8658 	case BPF_PROG_TYPE_EXT:
8659 		/* freplace program can return anything as its return value
8660 		 * depends on the to-be-replaced kernel func or bpf program.
8661 		 */
8662 	default:
8663 		return 0;
8664 	}
8665 
8666 	if (reg->type != SCALAR_VALUE) {
8667 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
8668 			reg_type_str[reg->type]);
8669 		return -EINVAL;
8670 	}
8671 
8672 	if (!tnum_in(range, reg->var_off)) {
8673 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
8674 		return -EINVAL;
8675 	}
8676 
8677 	if (!tnum_is_unknown(enforce_attach_type_range) &&
8678 	    tnum_in(enforce_attach_type_range, reg->var_off))
8679 		env->prog->enforce_expected_attach_type = 1;
8680 	return 0;
8681 }
8682 
8683 /* non-recursive DFS pseudo code
8684  * 1  procedure DFS-iterative(G,v):
8685  * 2      label v as discovered
8686  * 3      let S be a stack
8687  * 4      S.push(v)
8688  * 5      while S is not empty
8689  * 6            t <- S.pop()
8690  * 7            if t is what we're looking for:
8691  * 8                return t
8692  * 9            for all edges e in G.adjacentEdges(t) do
8693  * 10               if edge e is already labelled
8694  * 11                   continue with the next edge
8695  * 12               w <- G.adjacentVertex(t,e)
8696  * 13               if vertex w is not discovered and not explored
8697  * 14                   label e as tree-edge
8698  * 15                   label w as discovered
8699  * 16                   S.push(w)
8700  * 17                   continue at 5
8701  * 18               else if vertex w is discovered
8702  * 19                   label e as back-edge
8703  * 20               else
8704  * 21                   // vertex w is explored
8705  * 22                   label e as forward- or cross-edge
8706  * 23           label t as explored
8707  * 24           S.pop()
8708  *
8709  * convention:
8710  * 0x10 - discovered
8711  * 0x11 - discovered and fall-through edge labelled
8712  * 0x12 - discovered and fall-through and branch edges labelled
8713  * 0x20 - explored
8714  */
8715 
8716 enum {
8717 	DISCOVERED = 0x10,
8718 	EXPLORED = 0x20,
8719 	FALLTHROUGH = 1,
8720 	BRANCH = 2,
8721 };
8722 
8723 static u32 state_htab_size(struct bpf_verifier_env *env)
8724 {
8725 	return env->prog->len;
8726 }
8727 
8728 static struct bpf_verifier_state_list **explored_state(
8729 					struct bpf_verifier_env *env,
8730 					int idx)
8731 {
8732 	struct bpf_verifier_state *cur = env->cur_state;
8733 	struct bpf_func_state *state = cur->frame[cur->curframe];
8734 
8735 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
8736 }
8737 
8738 static void init_explored_state(struct bpf_verifier_env *env, int idx)
8739 {
8740 	env->insn_aux_data[idx].prune_point = true;
8741 }
8742 
8743 enum {
8744 	DONE_EXPLORING = 0,
8745 	KEEP_EXPLORING = 1,
8746 };
8747 
8748 /* t, w, e - match pseudo-code above:
8749  * t - index of current instruction
8750  * w - next instruction
8751  * e - edge
8752  */
8753 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
8754 		     bool loop_ok)
8755 {
8756 	int *insn_stack = env->cfg.insn_stack;
8757 	int *insn_state = env->cfg.insn_state;
8758 
8759 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
8760 		return DONE_EXPLORING;
8761 
8762 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
8763 		return DONE_EXPLORING;
8764 
8765 	if (w < 0 || w >= env->prog->len) {
8766 		verbose_linfo(env, t, "%d: ", t);
8767 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
8768 		return -EINVAL;
8769 	}
8770 
8771 	if (e == BRANCH)
8772 		/* mark branch target for state pruning */
8773 		init_explored_state(env, w);
8774 
8775 	if (insn_state[w] == 0) {
8776 		/* tree-edge */
8777 		insn_state[t] = DISCOVERED | e;
8778 		insn_state[w] = DISCOVERED;
8779 		if (env->cfg.cur_stack >= env->prog->len)
8780 			return -E2BIG;
8781 		insn_stack[env->cfg.cur_stack++] = w;
8782 		return KEEP_EXPLORING;
8783 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
8784 		if (loop_ok && env->bpf_capable)
8785 			return DONE_EXPLORING;
8786 		verbose_linfo(env, t, "%d: ", t);
8787 		verbose_linfo(env, w, "%d: ", w);
8788 		verbose(env, "back-edge from insn %d to %d\n", t, w);
8789 		return -EINVAL;
8790 	} else if (insn_state[w] == EXPLORED) {
8791 		/* forward- or cross-edge */
8792 		insn_state[t] = DISCOVERED | e;
8793 	} else {
8794 		verbose(env, "insn state internal bug\n");
8795 		return -EFAULT;
8796 	}
8797 	return DONE_EXPLORING;
8798 }
8799 
8800 static int visit_func_call_insn(int t, int insn_cnt,
8801 				struct bpf_insn *insns,
8802 				struct bpf_verifier_env *env,
8803 				bool visit_callee)
8804 {
8805 	int ret;
8806 
8807 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8808 	if (ret)
8809 		return ret;
8810 
8811 	if (t + 1 < insn_cnt)
8812 		init_explored_state(env, t + 1);
8813 	if (visit_callee) {
8814 		init_explored_state(env, t);
8815 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
8816 				env, false);
8817 	}
8818 	return ret;
8819 }
8820 
8821 /* Visits the instruction at index t and returns one of the following:
8822  *  < 0 - an error occurred
8823  *  DONE_EXPLORING - the instruction was fully explored
8824  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
8825  */
8826 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
8827 {
8828 	struct bpf_insn *insns = env->prog->insnsi;
8829 	int ret;
8830 
8831 	if (bpf_pseudo_func(insns + t))
8832 		return visit_func_call_insn(t, insn_cnt, insns, env, true);
8833 
8834 	/* All non-branch instructions have a single fall-through edge. */
8835 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
8836 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
8837 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
8838 
8839 	switch (BPF_OP(insns[t].code)) {
8840 	case BPF_EXIT:
8841 		return DONE_EXPLORING;
8842 
8843 	case BPF_CALL:
8844 		return visit_func_call_insn(t, insn_cnt, insns, env,
8845 					    insns[t].src_reg == BPF_PSEUDO_CALL);
8846 
8847 	case BPF_JA:
8848 		if (BPF_SRC(insns[t].code) != BPF_K)
8849 			return -EINVAL;
8850 
8851 		/* unconditional jump with single edge */
8852 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
8853 				true);
8854 		if (ret)
8855 			return ret;
8856 
8857 		/* unconditional jmp is not a good pruning point,
8858 		 * but it's marked, since backtracking needs
8859 		 * to record jmp history in is_state_visited().
8860 		 */
8861 		init_explored_state(env, t + insns[t].off + 1);
8862 		/* tell verifier to check for equivalent states
8863 		 * after every call and jump
8864 		 */
8865 		if (t + 1 < insn_cnt)
8866 			init_explored_state(env, t + 1);
8867 
8868 		return ret;
8869 
8870 	default:
8871 		/* conditional jump with two edges */
8872 		init_explored_state(env, t);
8873 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
8874 		if (ret)
8875 			return ret;
8876 
8877 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
8878 	}
8879 }
8880 
8881 /* non-recursive depth-first-search to detect loops in BPF program
8882  * loop == back-edge in directed graph
8883  */
8884 static int check_cfg(struct bpf_verifier_env *env)
8885 {
8886 	int insn_cnt = env->prog->len;
8887 	int *insn_stack, *insn_state;
8888 	int ret = 0;
8889 	int i;
8890 
8891 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8892 	if (!insn_state)
8893 		return -ENOMEM;
8894 
8895 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8896 	if (!insn_stack) {
8897 		kvfree(insn_state);
8898 		return -ENOMEM;
8899 	}
8900 
8901 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
8902 	insn_stack[0] = 0; /* 0 is the first instruction */
8903 	env->cfg.cur_stack = 1;
8904 
8905 	while (env->cfg.cur_stack > 0) {
8906 		int t = insn_stack[env->cfg.cur_stack - 1];
8907 
8908 		ret = visit_insn(t, insn_cnt, env);
8909 		switch (ret) {
8910 		case DONE_EXPLORING:
8911 			insn_state[t] = EXPLORED;
8912 			env->cfg.cur_stack--;
8913 			break;
8914 		case KEEP_EXPLORING:
8915 			break;
8916 		default:
8917 			if (ret > 0) {
8918 				verbose(env, "visit_insn internal bug\n");
8919 				ret = -EFAULT;
8920 			}
8921 			goto err_free;
8922 		}
8923 	}
8924 
8925 	if (env->cfg.cur_stack < 0) {
8926 		verbose(env, "pop stack internal bug\n");
8927 		ret = -EFAULT;
8928 		goto err_free;
8929 	}
8930 
8931 	for (i = 0; i < insn_cnt; i++) {
8932 		if (insn_state[i] != EXPLORED) {
8933 			verbose(env, "unreachable insn %d\n", i);
8934 			ret = -EINVAL;
8935 			goto err_free;
8936 		}
8937 	}
8938 	ret = 0; /* cfg looks good */
8939 
8940 err_free:
8941 	kvfree(insn_state);
8942 	kvfree(insn_stack);
8943 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
8944 	return ret;
8945 }
8946 
8947 static int check_abnormal_return(struct bpf_verifier_env *env)
8948 {
8949 	int i;
8950 
8951 	for (i = 1; i < env->subprog_cnt; i++) {
8952 		if (env->subprog_info[i].has_ld_abs) {
8953 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
8954 			return -EINVAL;
8955 		}
8956 		if (env->subprog_info[i].has_tail_call) {
8957 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
8958 			return -EINVAL;
8959 		}
8960 	}
8961 	return 0;
8962 }
8963 
8964 /* The minimum supported BTF func info size */
8965 #define MIN_BPF_FUNCINFO_SIZE	8
8966 #define MAX_FUNCINFO_REC_SIZE	252
8967 
8968 static int check_btf_func(struct bpf_verifier_env *env,
8969 			  const union bpf_attr *attr,
8970 			  union bpf_attr __user *uattr)
8971 {
8972 	const struct btf_type *type, *func_proto, *ret_type;
8973 	u32 i, nfuncs, urec_size, min_size;
8974 	u32 krec_size = sizeof(struct bpf_func_info);
8975 	struct bpf_func_info *krecord;
8976 	struct bpf_func_info_aux *info_aux = NULL;
8977 	struct bpf_prog *prog;
8978 	const struct btf *btf;
8979 	void __user *urecord;
8980 	u32 prev_offset = 0;
8981 	bool scalar_return;
8982 	int ret = -ENOMEM;
8983 
8984 	nfuncs = attr->func_info_cnt;
8985 	if (!nfuncs) {
8986 		if (check_abnormal_return(env))
8987 			return -EINVAL;
8988 		return 0;
8989 	}
8990 
8991 	if (nfuncs != env->subprog_cnt) {
8992 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
8993 		return -EINVAL;
8994 	}
8995 
8996 	urec_size = attr->func_info_rec_size;
8997 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
8998 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
8999 	    urec_size % sizeof(u32)) {
9000 		verbose(env, "invalid func info rec size %u\n", urec_size);
9001 		return -EINVAL;
9002 	}
9003 
9004 	prog = env->prog;
9005 	btf = prog->aux->btf;
9006 
9007 	urecord = u64_to_user_ptr(attr->func_info);
9008 	min_size = min_t(u32, krec_size, urec_size);
9009 
9010 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
9011 	if (!krecord)
9012 		return -ENOMEM;
9013 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
9014 	if (!info_aux)
9015 		goto err_free;
9016 
9017 	for (i = 0; i < nfuncs; i++) {
9018 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
9019 		if (ret) {
9020 			if (ret == -E2BIG) {
9021 				verbose(env, "nonzero tailing record in func info");
9022 				/* set the size kernel expects so loader can zero
9023 				 * out the rest of the record.
9024 				 */
9025 				if (put_user(min_size, &uattr->func_info_rec_size))
9026 					ret = -EFAULT;
9027 			}
9028 			goto err_free;
9029 		}
9030 
9031 		if (copy_from_user(&krecord[i], urecord, min_size)) {
9032 			ret = -EFAULT;
9033 			goto err_free;
9034 		}
9035 
9036 		/* check insn_off */
9037 		ret = -EINVAL;
9038 		if (i == 0) {
9039 			if (krecord[i].insn_off) {
9040 				verbose(env,
9041 					"nonzero insn_off %u for the first func info record",
9042 					krecord[i].insn_off);
9043 				goto err_free;
9044 			}
9045 		} else if (krecord[i].insn_off <= prev_offset) {
9046 			verbose(env,
9047 				"same or smaller insn offset (%u) than previous func info record (%u)",
9048 				krecord[i].insn_off, prev_offset);
9049 			goto err_free;
9050 		}
9051 
9052 		if (env->subprog_info[i].start != krecord[i].insn_off) {
9053 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
9054 			goto err_free;
9055 		}
9056 
9057 		/* check type_id */
9058 		type = btf_type_by_id(btf, krecord[i].type_id);
9059 		if (!type || !btf_type_is_func(type)) {
9060 			verbose(env, "invalid type id %d in func info",
9061 				krecord[i].type_id);
9062 			goto err_free;
9063 		}
9064 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
9065 
9066 		func_proto = btf_type_by_id(btf, type->type);
9067 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
9068 			/* btf_func_check() already verified it during BTF load */
9069 			goto err_free;
9070 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
9071 		scalar_return =
9072 			btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
9073 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
9074 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
9075 			goto err_free;
9076 		}
9077 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
9078 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
9079 			goto err_free;
9080 		}
9081 
9082 		prev_offset = krecord[i].insn_off;
9083 		urecord += urec_size;
9084 	}
9085 
9086 	prog->aux->func_info = krecord;
9087 	prog->aux->func_info_cnt = nfuncs;
9088 	prog->aux->func_info_aux = info_aux;
9089 	return 0;
9090 
9091 err_free:
9092 	kvfree(krecord);
9093 	kfree(info_aux);
9094 	return ret;
9095 }
9096 
9097 static void adjust_btf_func(struct bpf_verifier_env *env)
9098 {
9099 	struct bpf_prog_aux *aux = env->prog->aux;
9100 	int i;
9101 
9102 	if (!aux->func_info)
9103 		return;
9104 
9105 	for (i = 0; i < env->subprog_cnt; i++)
9106 		aux->func_info[i].insn_off = env->subprog_info[i].start;
9107 }
9108 
9109 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
9110 		sizeof(((struct bpf_line_info *)(0))->line_col))
9111 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
9112 
9113 static int check_btf_line(struct bpf_verifier_env *env,
9114 			  const union bpf_attr *attr,
9115 			  union bpf_attr __user *uattr)
9116 {
9117 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
9118 	struct bpf_subprog_info *sub;
9119 	struct bpf_line_info *linfo;
9120 	struct bpf_prog *prog;
9121 	const struct btf *btf;
9122 	void __user *ulinfo;
9123 	int err;
9124 
9125 	nr_linfo = attr->line_info_cnt;
9126 	if (!nr_linfo)
9127 		return 0;
9128 
9129 	rec_size = attr->line_info_rec_size;
9130 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
9131 	    rec_size > MAX_LINEINFO_REC_SIZE ||
9132 	    rec_size & (sizeof(u32) - 1))
9133 		return -EINVAL;
9134 
9135 	/* Need to zero it in case the userspace may
9136 	 * pass in a smaller bpf_line_info object.
9137 	 */
9138 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
9139 			 GFP_KERNEL | __GFP_NOWARN);
9140 	if (!linfo)
9141 		return -ENOMEM;
9142 
9143 	prog = env->prog;
9144 	btf = prog->aux->btf;
9145 
9146 	s = 0;
9147 	sub = env->subprog_info;
9148 	ulinfo = u64_to_user_ptr(attr->line_info);
9149 	expected_size = sizeof(struct bpf_line_info);
9150 	ncopy = min_t(u32, expected_size, rec_size);
9151 	for (i = 0; i < nr_linfo; i++) {
9152 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
9153 		if (err) {
9154 			if (err == -E2BIG) {
9155 				verbose(env, "nonzero tailing record in line_info");
9156 				if (put_user(expected_size,
9157 					     &uattr->line_info_rec_size))
9158 					err = -EFAULT;
9159 			}
9160 			goto err_free;
9161 		}
9162 
9163 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
9164 			err = -EFAULT;
9165 			goto err_free;
9166 		}
9167 
9168 		/*
9169 		 * Check insn_off to ensure
9170 		 * 1) strictly increasing AND
9171 		 * 2) bounded by prog->len
9172 		 *
9173 		 * The linfo[0].insn_off == 0 check logically falls into
9174 		 * the later "missing bpf_line_info for func..." case
9175 		 * because the first linfo[0].insn_off must be the
9176 		 * first sub also and the first sub must have
9177 		 * subprog_info[0].start == 0.
9178 		 */
9179 		if ((i && linfo[i].insn_off <= prev_offset) ||
9180 		    linfo[i].insn_off >= prog->len) {
9181 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
9182 				i, linfo[i].insn_off, prev_offset,
9183 				prog->len);
9184 			err = -EINVAL;
9185 			goto err_free;
9186 		}
9187 
9188 		if (!prog->insnsi[linfo[i].insn_off].code) {
9189 			verbose(env,
9190 				"Invalid insn code at line_info[%u].insn_off\n",
9191 				i);
9192 			err = -EINVAL;
9193 			goto err_free;
9194 		}
9195 
9196 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
9197 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
9198 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
9199 			err = -EINVAL;
9200 			goto err_free;
9201 		}
9202 
9203 		if (s != env->subprog_cnt) {
9204 			if (linfo[i].insn_off == sub[s].start) {
9205 				sub[s].linfo_idx = i;
9206 				s++;
9207 			} else if (sub[s].start < linfo[i].insn_off) {
9208 				verbose(env, "missing bpf_line_info for func#%u\n", s);
9209 				err = -EINVAL;
9210 				goto err_free;
9211 			}
9212 		}
9213 
9214 		prev_offset = linfo[i].insn_off;
9215 		ulinfo += rec_size;
9216 	}
9217 
9218 	if (s != env->subprog_cnt) {
9219 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
9220 			env->subprog_cnt - s, s);
9221 		err = -EINVAL;
9222 		goto err_free;
9223 	}
9224 
9225 	prog->aux->linfo = linfo;
9226 	prog->aux->nr_linfo = nr_linfo;
9227 
9228 	return 0;
9229 
9230 err_free:
9231 	kvfree(linfo);
9232 	return err;
9233 }
9234 
9235 static int check_btf_info(struct bpf_verifier_env *env,
9236 			  const union bpf_attr *attr,
9237 			  union bpf_attr __user *uattr)
9238 {
9239 	struct btf *btf;
9240 	int err;
9241 
9242 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
9243 		if (check_abnormal_return(env))
9244 			return -EINVAL;
9245 		return 0;
9246 	}
9247 
9248 	btf = btf_get_by_fd(attr->prog_btf_fd);
9249 	if (IS_ERR(btf))
9250 		return PTR_ERR(btf);
9251 	env->prog->aux->btf = btf;
9252 
9253 	err = check_btf_func(env, attr, uattr);
9254 	if (err)
9255 		return err;
9256 
9257 	err = check_btf_line(env, attr, uattr);
9258 	if (err)
9259 		return err;
9260 
9261 	return 0;
9262 }
9263 
9264 /* check %cur's range satisfies %old's */
9265 static bool range_within(struct bpf_reg_state *old,
9266 			 struct bpf_reg_state *cur)
9267 {
9268 	return old->umin_value <= cur->umin_value &&
9269 	       old->umax_value >= cur->umax_value &&
9270 	       old->smin_value <= cur->smin_value &&
9271 	       old->smax_value >= cur->smax_value &&
9272 	       old->u32_min_value <= cur->u32_min_value &&
9273 	       old->u32_max_value >= cur->u32_max_value &&
9274 	       old->s32_min_value <= cur->s32_min_value &&
9275 	       old->s32_max_value >= cur->s32_max_value;
9276 }
9277 
9278 /* Maximum number of register states that can exist at once */
9279 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
9280 struct idpair {
9281 	u32 old;
9282 	u32 cur;
9283 };
9284 
9285 /* If in the old state two registers had the same id, then they need to have
9286  * the same id in the new state as well.  But that id could be different from
9287  * the old state, so we need to track the mapping from old to new ids.
9288  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
9289  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
9290  * regs with a different old id could still have new id 9, we don't care about
9291  * that.
9292  * So we look through our idmap to see if this old id has been seen before.  If
9293  * so, we require the new id to match; otherwise, we add the id pair to the map.
9294  */
9295 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
9296 {
9297 	unsigned int i;
9298 
9299 	for (i = 0; i < ID_MAP_SIZE; i++) {
9300 		if (!idmap[i].old) {
9301 			/* Reached an empty slot; haven't seen this id before */
9302 			idmap[i].old = old_id;
9303 			idmap[i].cur = cur_id;
9304 			return true;
9305 		}
9306 		if (idmap[i].old == old_id)
9307 			return idmap[i].cur == cur_id;
9308 	}
9309 	/* We ran out of idmap slots, which should be impossible */
9310 	WARN_ON_ONCE(1);
9311 	return false;
9312 }
9313 
9314 static void clean_func_state(struct bpf_verifier_env *env,
9315 			     struct bpf_func_state *st)
9316 {
9317 	enum bpf_reg_liveness live;
9318 	int i, j;
9319 
9320 	for (i = 0; i < BPF_REG_FP; i++) {
9321 		live = st->regs[i].live;
9322 		/* liveness must not touch this register anymore */
9323 		st->regs[i].live |= REG_LIVE_DONE;
9324 		if (!(live & REG_LIVE_READ))
9325 			/* since the register is unused, clear its state
9326 			 * to make further comparison simpler
9327 			 */
9328 			__mark_reg_not_init(env, &st->regs[i]);
9329 	}
9330 
9331 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
9332 		live = st->stack[i].spilled_ptr.live;
9333 		/* liveness must not touch this stack slot anymore */
9334 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
9335 		if (!(live & REG_LIVE_READ)) {
9336 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9337 			for (j = 0; j < BPF_REG_SIZE; j++)
9338 				st->stack[i].slot_type[j] = STACK_INVALID;
9339 		}
9340 	}
9341 }
9342 
9343 static void clean_verifier_state(struct bpf_verifier_env *env,
9344 				 struct bpf_verifier_state *st)
9345 {
9346 	int i;
9347 
9348 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
9349 		/* all regs in this state in all frames were already marked */
9350 		return;
9351 
9352 	for (i = 0; i <= st->curframe; i++)
9353 		clean_func_state(env, st->frame[i]);
9354 }
9355 
9356 /* the parentage chains form a tree.
9357  * the verifier states are added to state lists at given insn and
9358  * pushed into state stack for future exploration.
9359  * when the verifier reaches bpf_exit insn some of the verifer states
9360  * stored in the state lists have their final liveness state already,
9361  * but a lot of states will get revised from liveness point of view when
9362  * the verifier explores other branches.
9363  * Example:
9364  * 1: r0 = 1
9365  * 2: if r1 == 100 goto pc+1
9366  * 3: r0 = 2
9367  * 4: exit
9368  * when the verifier reaches exit insn the register r0 in the state list of
9369  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
9370  * of insn 2 and goes exploring further. At the insn 4 it will walk the
9371  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
9372  *
9373  * Since the verifier pushes the branch states as it sees them while exploring
9374  * the program the condition of walking the branch instruction for the second
9375  * time means that all states below this branch were already explored and
9376  * their final liveness markes are already propagated.
9377  * Hence when the verifier completes the search of state list in is_state_visited()
9378  * we can call this clean_live_states() function to mark all liveness states
9379  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
9380  * will not be used.
9381  * This function also clears the registers and stack for states that !READ
9382  * to simplify state merging.
9383  *
9384  * Important note here that walking the same branch instruction in the callee
9385  * doesn't meant that the states are DONE. The verifier has to compare
9386  * the callsites
9387  */
9388 static void clean_live_states(struct bpf_verifier_env *env, int insn,
9389 			      struct bpf_verifier_state *cur)
9390 {
9391 	struct bpf_verifier_state_list *sl;
9392 	int i;
9393 
9394 	sl = *explored_state(env, insn);
9395 	while (sl) {
9396 		if (sl->state.branches)
9397 			goto next;
9398 		if (sl->state.insn_idx != insn ||
9399 		    sl->state.curframe != cur->curframe)
9400 			goto next;
9401 		for (i = 0; i <= cur->curframe; i++)
9402 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
9403 				goto next;
9404 		clean_verifier_state(env, &sl->state);
9405 next:
9406 		sl = sl->next;
9407 	}
9408 }
9409 
9410 /* Returns true if (rold safe implies rcur safe) */
9411 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
9412 		    struct idpair *idmap)
9413 {
9414 	bool equal;
9415 
9416 	if (!(rold->live & REG_LIVE_READ))
9417 		/* explored state didn't use this */
9418 		return true;
9419 
9420 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
9421 
9422 	if (rold->type == PTR_TO_STACK)
9423 		/* two stack pointers are equal only if they're pointing to
9424 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
9425 		 */
9426 		return equal && rold->frameno == rcur->frameno;
9427 
9428 	if (equal)
9429 		return true;
9430 
9431 	if (rold->type == NOT_INIT)
9432 		/* explored state can't have used this */
9433 		return true;
9434 	if (rcur->type == NOT_INIT)
9435 		return false;
9436 	switch (rold->type) {
9437 	case SCALAR_VALUE:
9438 		if (rcur->type == SCALAR_VALUE) {
9439 			if (!rold->precise && !rcur->precise)
9440 				return true;
9441 			/* new val must satisfy old val knowledge */
9442 			return range_within(rold, rcur) &&
9443 			       tnum_in(rold->var_off, rcur->var_off);
9444 		} else {
9445 			/* We're trying to use a pointer in place of a scalar.
9446 			 * Even if the scalar was unbounded, this could lead to
9447 			 * pointer leaks because scalars are allowed to leak
9448 			 * while pointers are not. We could make this safe in
9449 			 * special cases if root is calling us, but it's
9450 			 * probably not worth the hassle.
9451 			 */
9452 			return false;
9453 		}
9454 	case PTR_TO_MAP_KEY:
9455 	case PTR_TO_MAP_VALUE:
9456 		/* If the new min/max/var_off satisfy the old ones and
9457 		 * everything else matches, we are OK.
9458 		 * 'id' is not compared, since it's only used for maps with
9459 		 * bpf_spin_lock inside map element and in such cases if
9460 		 * the rest of the prog is valid for one map element then
9461 		 * it's valid for all map elements regardless of the key
9462 		 * used in bpf_map_lookup()
9463 		 */
9464 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
9465 		       range_within(rold, rcur) &&
9466 		       tnum_in(rold->var_off, rcur->var_off);
9467 	case PTR_TO_MAP_VALUE_OR_NULL:
9468 		/* a PTR_TO_MAP_VALUE could be safe to use as a
9469 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
9470 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
9471 		 * checked, doing so could have affected others with the same
9472 		 * id, and we can't check for that because we lost the id when
9473 		 * we converted to a PTR_TO_MAP_VALUE.
9474 		 */
9475 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
9476 			return false;
9477 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
9478 			return false;
9479 		/* Check our ids match any regs they're supposed to */
9480 		return check_ids(rold->id, rcur->id, idmap);
9481 	case PTR_TO_PACKET_META:
9482 	case PTR_TO_PACKET:
9483 		if (rcur->type != rold->type)
9484 			return false;
9485 		/* We must have at least as much range as the old ptr
9486 		 * did, so that any accesses which were safe before are
9487 		 * still safe.  This is true even if old range < old off,
9488 		 * since someone could have accessed through (ptr - k), or
9489 		 * even done ptr -= k in a register, to get a safe access.
9490 		 */
9491 		if (rold->range > rcur->range)
9492 			return false;
9493 		/* If the offsets don't match, we can't trust our alignment;
9494 		 * nor can we be sure that we won't fall out of range.
9495 		 */
9496 		if (rold->off != rcur->off)
9497 			return false;
9498 		/* id relations must be preserved */
9499 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
9500 			return false;
9501 		/* new val must satisfy old val knowledge */
9502 		return range_within(rold, rcur) &&
9503 		       tnum_in(rold->var_off, rcur->var_off);
9504 	case PTR_TO_CTX:
9505 	case CONST_PTR_TO_MAP:
9506 	case PTR_TO_PACKET_END:
9507 	case PTR_TO_FLOW_KEYS:
9508 	case PTR_TO_SOCKET:
9509 	case PTR_TO_SOCKET_OR_NULL:
9510 	case PTR_TO_SOCK_COMMON:
9511 	case PTR_TO_SOCK_COMMON_OR_NULL:
9512 	case PTR_TO_TCP_SOCK:
9513 	case PTR_TO_TCP_SOCK_OR_NULL:
9514 	case PTR_TO_XDP_SOCK:
9515 		/* Only valid matches are exact, which memcmp() above
9516 		 * would have accepted
9517 		 */
9518 	default:
9519 		/* Don't know what's going on, just say it's not safe */
9520 		return false;
9521 	}
9522 
9523 	/* Shouldn't get here; if we do, say it's not safe */
9524 	WARN_ON_ONCE(1);
9525 	return false;
9526 }
9527 
9528 static bool stacksafe(struct bpf_func_state *old,
9529 		      struct bpf_func_state *cur,
9530 		      struct idpair *idmap)
9531 {
9532 	int i, spi;
9533 
9534 	/* walk slots of the explored stack and ignore any additional
9535 	 * slots in the current stack, since explored(safe) state
9536 	 * didn't use them
9537 	 */
9538 	for (i = 0; i < old->allocated_stack; i++) {
9539 		spi = i / BPF_REG_SIZE;
9540 
9541 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
9542 			i += BPF_REG_SIZE - 1;
9543 			/* explored state didn't use this */
9544 			continue;
9545 		}
9546 
9547 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
9548 			continue;
9549 
9550 		/* explored stack has more populated slots than current stack
9551 		 * and these slots were used
9552 		 */
9553 		if (i >= cur->allocated_stack)
9554 			return false;
9555 
9556 		/* if old state was safe with misc data in the stack
9557 		 * it will be safe with zero-initialized stack.
9558 		 * The opposite is not true
9559 		 */
9560 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
9561 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
9562 			continue;
9563 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
9564 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
9565 			/* Ex: old explored (safe) state has STACK_SPILL in
9566 			 * this stack slot, but current has STACK_MISC ->
9567 			 * this verifier states are not equivalent,
9568 			 * return false to continue verification of this path
9569 			 */
9570 			return false;
9571 		if (i % BPF_REG_SIZE)
9572 			continue;
9573 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
9574 			continue;
9575 		if (!regsafe(&old->stack[spi].spilled_ptr,
9576 			     &cur->stack[spi].spilled_ptr,
9577 			     idmap))
9578 			/* when explored and current stack slot are both storing
9579 			 * spilled registers, check that stored pointers types
9580 			 * are the same as well.
9581 			 * Ex: explored safe path could have stored
9582 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
9583 			 * but current path has stored:
9584 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
9585 			 * such verifier states are not equivalent.
9586 			 * return false to continue verification of this path
9587 			 */
9588 			return false;
9589 	}
9590 	return true;
9591 }
9592 
9593 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
9594 {
9595 	if (old->acquired_refs != cur->acquired_refs)
9596 		return false;
9597 	return !memcmp(old->refs, cur->refs,
9598 		       sizeof(*old->refs) * old->acquired_refs);
9599 }
9600 
9601 /* compare two verifier states
9602  *
9603  * all states stored in state_list are known to be valid, since
9604  * verifier reached 'bpf_exit' instruction through them
9605  *
9606  * this function is called when verifier exploring different branches of
9607  * execution popped from the state stack. If it sees an old state that has
9608  * more strict register state and more strict stack state then this execution
9609  * branch doesn't need to be explored further, since verifier already
9610  * concluded that more strict state leads to valid finish.
9611  *
9612  * Therefore two states are equivalent if register state is more conservative
9613  * and explored stack state is more conservative than the current one.
9614  * Example:
9615  *       explored                   current
9616  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
9617  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
9618  *
9619  * In other words if current stack state (one being explored) has more
9620  * valid slots than old one that already passed validation, it means
9621  * the verifier can stop exploring and conclude that current state is valid too
9622  *
9623  * Similarly with registers. If explored state has register type as invalid
9624  * whereas register type in current state is meaningful, it means that
9625  * the current state will reach 'bpf_exit' instruction safely
9626  */
9627 static bool func_states_equal(struct bpf_func_state *old,
9628 			      struct bpf_func_state *cur)
9629 {
9630 	struct idpair *idmap;
9631 	bool ret = false;
9632 	int i;
9633 
9634 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
9635 	/* If we failed to allocate the idmap, just say it's not safe */
9636 	if (!idmap)
9637 		return false;
9638 
9639 	for (i = 0; i < MAX_BPF_REG; i++) {
9640 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
9641 			goto out_free;
9642 	}
9643 
9644 	if (!stacksafe(old, cur, idmap))
9645 		goto out_free;
9646 
9647 	if (!refsafe(old, cur))
9648 		goto out_free;
9649 	ret = true;
9650 out_free:
9651 	kfree(idmap);
9652 	return ret;
9653 }
9654 
9655 static bool states_equal(struct bpf_verifier_env *env,
9656 			 struct bpf_verifier_state *old,
9657 			 struct bpf_verifier_state *cur)
9658 {
9659 	int i;
9660 
9661 	if (old->curframe != cur->curframe)
9662 		return false;
9663 
9664 	/* Verification state from speculative execution simulation
9665 	 * must never prune a non-speculative execution one.
9666 	 */
9667 	if (old->speculative && !cur->speculative)
9668 		return false;
9669 
9670 	if (old->active_spin_lock != cur->active_spin_lock)
9671 		return false;
9672 
9673 	/* for states to be equal callsites have to be the same
9674 	 * and all frame states need to be equivalent
9675 	 */
9676 	for (i = 0; i <= old->curframe; i++) {
9677 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
9678 			return false;
9679 		if (!func_states_equal(old->frame[i], cur->frame[i]))
9680 			return false;
9681 	}
9682 	return true;
9683 }
9684 
9685 /* Return 0 if no propagation happened. Return negative error code if error
9686  * happened. Otherwise, return the propagated bit.
9687  */
9688 static int propagate_liveness_reg(struct bpf_verifier_env *env,
9689 				  struct bpf_reg_state *reg,
9690 				  struct bpf_reg_state *parent_reg)
9691 {
9692 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
9693 	u8 flag = reg->live & REG_LIVE_READ;
9694 	int err;
9695 
9696 	/* When comes here, read flags of PARENT_REG or REG could be any of
9697 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
9698 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
9699 	 */
9700 	if (parent_flag == REG_LIVE_READ64 ||
9701 	    /* Or if there is no read flag from REG. */
9702 	    !flag ||
9703 	    /* Or if the read flag from REG is the same as PARENT_REG. */
9704 	    parent_flag == flag)
9705 		return 0;
9706 
9707 	err = mark_reg_read(env, reg, parent_reg, flag);
9708 	if (err)
9709 		return err;
9710 
9711 	return flag;
9712 }
9713 
9714 /* A write screens off any subsequent reads; but write marks come from the
9715  * straight-line code between a state and its parent.  When we arrive at an
9716  * equivalent state (jump target or such) we didn't arrive by the straight-line
9717  * code, so read marks in the state must propagate to the parent regardless
9718  * of the state's write marks. That's what 'parent == state->parent' comparison
9719  * in mark_reg_read() is for.
9720  */
9721 static int propagate_liveness(struct bpf_verifier_env *env,
9722 			      const struct bpf_verifier_state *vstate,
9723 			      struct bpf_verifier_state *vparent)
9724 {
9725 	struct bpf_reg_state *state_reg, *parent_reg;
9726 	struct bpf_func_state *state, *parent;
9727 	int i, frame, err = 0;
9728 
9729 	if (vparent->curframe != vstate->curframe) {
9730 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
9731 		     vparent->curframe, vstate->curframe);
9732 		return -EFAULT;
9733 	}
9734 	/* Propagate read liveness of registers... */
9735 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
9736 	for (frame = 0; frame <= vstate->curframe; frame++) {
9737 		parent = vparent->frame[frame];
9738 		state = vstate->frame[frame];
9739 		parent_reg = parent->regs;
9740 		state_reg = state->regs;
9741 		/* We don't need to worry about FP liveness, it's read-only */
9742 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
9743 			err = propagate_liveness_reg(env, &state_reg[i],
9744 						     &parent_reg[i]);
9745 			if (err < 0)
9746 				return err;
9747 			if (err == REG_LIVE_READ64)
9748 				mark_insn_zext(env, &parent_reg[i]);
9749 		}
9750 
9751 		/* Propagate stack slots. */
9752 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
9753 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
9754 			parent_reg = &parent->stack[i].spilled_ptr;
9755 			state_reg = &state->stack[i].spilled_ptr;
9756 			err = propagate_liveness_reg(env, state_reg,
9757 						     parent_reg);
9758 			if (err < 0)
9759 				return err;
9760 		}
9761 	}
9762 	return 0;
9763 }
9764 
9765 /* find precise scalars in the previous equivalent state and
9766  * propagate them into the current state
9767  */
9768 static int propagate_precision(struct bpf_verifier_env *env,
9769 			       const struct bpf_verifier_state *old)
9770 {
9771 	struct bpf_reg_state *state_reg;
9772 	struct bpf_func_state *state;
9773 	int i, err = 0;
9774 
9775 	state = old->frame[old->curframe];
9776 	state_reg = state->regs;
9777 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
9778 		if (state_reg->type != SCALAR_VALUE ||
9779 		    !state_reg->precise)
9780 			continue;
9781 		if (env->log.level & BPF_LOG_LEVEL2)
9782 			verbose(env, "propagating r%d\n", i);
9783 		err = mark_chain_precision(env, i);
9784 		if (err < 0)
9785 			return err;
9786 	}
9787 
9788 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
9789 		if (state->stack[i].slot_type[0] != STACK_SPILL)
9790 			continue;
9791 		state_reg = &state->stack[i].spilled_ptr;
9792 		if (state_reg->type != SCALAR_VALUE ||
9793 		    !state_reg->precise)
9794 			continue;
9795 		if (env->log.level & BPF_LOG_LEVEL2)
9796 			verbose(env, "propagating fp%d\n",
9797 				(-i - 1) * BPF_REG_SIZE);
9798 		err = mark_chain_precision_stack(env, i);
9799 		if (err < 0)
9800 			return err;
9801 	}
9802 	return 0;
9803 }
9804 
9805 static bool states_maybe_looping(struct bpf_verifier_state *old,
9806 				 struct bpf_verifier_state *cur)
9807 {
9808 	struct bpf_func_state *fold, *fcur;
9809 	int i, fr = cur->curframe;
9810 
9811 	if (old->curframe != fr)
9812 		return false;
9813 
9814 	fold = old->frame[fr];
9815 	fcur = cur->frame[fr];
9816 	for (i = 0; i < MAX_BPF_REG; i++)
9817 		if (memcmp(&fold->regs[i], &fcur->regs[i],
9818 			   offsetof(struct bpf_reg_state, parent)))
9819 			return false;
9820 	return true;
9821 }
9822 
9823 
9824 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
9825 {
9826 	struct bpf_verifier_state_list *new_sl;
9827 	struct bpf_verifier_state_list *sl, **pprev;
9828 	struct bpf_verifier_state *cur = env->cur_state, *new;
9829 	int i, j, err, states_cnt = 0;
9830 	bool add_new_state = env->test_state_freq ? true : false;
9831 
9832 	cur->last_insn_idx = env->prev_insn_idx;
9833 	if (!env->insn_aux_data[insn_idx].prune_point)
9834 		/* this 'insn_idx' instruction wasn't marked, so we will not
9835 		 * be doing state search here
9836 		 */
9837 		return 0;
9838 
9839 	/* bpf progs typically have pruning point every 4 instructions
9840 	 * http://vger.kernel.org/bpfconf2019.html#session-1
9841 	 * Do not add new state for future pruning if the verifier hasn't seen
9842 	 * at least 2 jumps and at least 8 instructions.
9843 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
9844 	 * In tests that amounts to up to 50% reduction into total verifier
9845 	 * memory consumption and 20% verifier time speedup.
9846 	 */
9847 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
9848 	    env->insn_processed - env->prev_insn_processed >= 8)
9849 		add_new_state = true;
9850 
9851 	pprev = explored_state(env, insn_idx);
9852 	sl = *pprev;
9853 
9854 	clean_live_states(env, insn_idx, cur);
9855 
9856 	while (sl) {
9857 		states_cnt++;
9858 		if (sl->state.insn_idx != insn_idx)
9859 			goto next;
9860 		if (sl->state.branches) {
9861 			if (states_maybe_looping(&sl->state, cur) &&
9862 			    states_equal(env, &sl->state, cur)) {
9863 				verbose_linfo(env, insn_idx, "; ");
9864 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
9865 				return -EINVAL;
9866 			}
9867 			/* if the verifier is processing a loop, avoid adding new state
9868 			 * too often, since different loop iterations have distinct
9869 			 * states and may not help future pruning.
9870 			 * This threshold shouldn't be too low to make sure that
9871 			 * a loop with large bound will be rejected quickly.
9872 			 * The most abusive loop will be:
9873 			 * r1 += 1
9874 			 * if r1 < 1000000 goto pc-2
9875 			 * 1M insn_procssed limit / 100 == 10k peak states.
9876 			 * This threshold shouldn't be too high either, since states
9877 			 * at the end of the loop are likely to be useful in pruning.
9878 			 */
9879 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
9880 			    env->insn_processed - env->prev_insn_processed < 100)
9881 				add_new_state = false;
9882 			goto miss;
9883 		}
9884 		if (states_equal(env, &sl->state, cur)) {
9885 			sl->hit_cnt++;
9886 			/* reached equivalent register/stack state,
9887 			 * prune the search.
9888 			 * Registers read by the continuation are read by us.
9889 			 * If we have any write marks in env->cur_state, they
9890 			 * will prevent corresponding reads in the continuation
9891 			 * from reaching our parent (an explored_state).  Our
9892 			 * own state will get the read marks recorded, but
9893 			 * they'll be immediately forgotten as we're pruning
9894 			 * this state and will pop a new one.
9895 			 */
9896 			err = propagate_liveness(env, &sl->state, cur);
9897 
9898 			/* if previous state reached the exit with precision and
9899 			 * current state is equivalent to it (except precsion marks)
9900 			 * the precision needs to be propagated back in
9901 			 * the current state.
9902 			 */
9903 			err = err ? : push_jmp_history(env, cur);
9904 			err = err ? : propagate_precision(env, &sl->state);
9905 			if (err)
9906 				return err;
9907 			return 1;
9908 		}
9909 miss:
9910 		/* when new state is not going to be added do not increase miss count.
9911 		 * Otherwise several loop iterations will remove the state
9912 		 * recorded earlier. The goal of these heuristics is to have
9913 		 * states from some iterations of the loop (some in the beginning
9914 		 * and some at the end) to help pruning.
9915 		 */
9916 		if (add_new_state)
9917 			sl->miss_cnt++;
9918 		/* heuristic to determine whether this state is beneficial
9919 		 * to keep checking from state equivalence point of view.
9920 		 * Higher numbers increase max_states_per_insn and verification time,
9921 		 * but do not meaningfully decrease insn_processed.
9922 		 */
9923 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
9924 			/* the state is unlikely to be useful. Remove it to
9925 			 * speed up verification
9926 			 */
9927 			*pprev = sl->next;
9928 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
9929 				u32 br = sl->state.branches;
9930 
9931 				WARN_ONCE(br,
9932 					  "BUG live_done but branches_to_explore %d\n",
9933 					  br);
9934 				free_verifier_state(&sl->state, false);
9935 				kfree(sl);
9936 				env->peak_states--;
9937 			} else {
9938 				/* cannot free this state, since parentage chain may
9939 				 * walk it later. Add it for free_list instead to
9940 				 * be freed at the end of verification
9941 				 */
9942 				sl->next = env->free_list;
9943 				env->free_list = sl;
9944 			}
9945 			sl = *pprev;
9946 			continue;
9947 		}
9948 next:
9949 		pprev = &sl->next;
9950 		sl = *pprev;
9951 	}
9952 
9953 	if (env->max_states_per_insn < states_cnt)
9954 		env->max_states_per_insn = states_cnt;
9955 
9956 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
9957 		return push_jmp_history(env, cur);
9958 
9959 	if (!add_new_state)
9960 		return push_jmp_history(env, cur);
9961 
9962 	/* There were no equivalent states, remember the current one.
9963 	 * Technically the current state is not proven to be safe yet,
9964 	 * but it will either reach outer most bpf_exit (which means it's safe)
9965 	 * or it will be rejected. When there are no loops the verifier won't be
9966 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
9967 	 * again on the way to bpf_exit.
9968 	 * When looping the sl->state.branches will be > 0 and this state
9969 	 * will not be considered for equivalence until branches == 0.
9970 	 */
9971 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
9972 	if (!new_sl)
9973 		return -ENOMEM;
9974 	env->total_states++;
9975 	env->peak_states++;
9976 	env->prev_jmps_processed = env->jmps_processed;
9977 	env->prev_insn_processed = env->insn_processed;
9978 
9979 	/* add new state to the head of linked list */
9980 	new = &new_sl->state;
9981 	err = copy_verifier_state(new, cur);
9982 	if (err) {
9983 		free_verifier_state(new, false);
9984 		kfree(new_sl);
9985 		return err;
9986 	}
9987 	new->insn_idx = insn_idx;
9988 	WARN_ONCE(new->branches != 1,
9989 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
9990 
9991 	cur->parent = new;
9992 	cur->first_insn_idx = insn_idx;
9993 	clear_jmp_history(cur);
9994 	new_sl->next = *explored_state(env, insn_idx);
9995 	*explored_state(env, insn_idx) = new_sl;
9996 	/* connect new state to parentage chain. Current frame needs all
9997 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
9998 	 * to the stack implicitly by JITs) so in callers' frames connect just
9999 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
10000 	 * the state of the call instruction (with WRITTEN set), and r0 comes
10001 	 * from callee with its full parentage chain, anyway.
10002 	 */
10003 	/* clear write marks in current state: the writes we did are not writes
10004 	 * our child did, so they don't screen off its reads from us.
10005 	 * (There are no read marks in current state, because reads always mark
10006 	 * their parent and current state never has children yet.  Only
10007 	 * explored_states can get read marks.)
10008 	 */
10009 	for (j = 0; j <= cur->curframe; j++) {
10010 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
10011 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
10012 		for (i = 0; i < BPF_REG_FP; i++)
10013 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
10014 	}
10015 
10016 	/* all stack frames are accessible from callee, clear them all */
10017 	for (j = 0; j <= cur->curframe; j++) {
10018 		struct bpf_func_state *frame = cur->frame[j];
10019 		struct bpf_func_state *newframe = new->frame[j];
10020 
10021 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
10022 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
10023 			frame->stack[i].spilled_ptr.parent =
10024 						&newframe->stack[i].spilled_ptr;
10025 		}
10026 	}
10027 	return 0;
10028 }
10029 
10030 /* Return true if it's OK to have the same insn return a different type. */
10031 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
10032 {
10033 	switch (type) {
10034 	case PTR_TO_CTX:
10035 	case PTR_TO_SOCKET:
10036 	case PTR_TO_SOCKET_OR_NULL:
10037 	case PTR_TO_SOCK_COMMON:
10038 	case PTR_TO_SOCK_COMMON_OR_NULL:
10039 	case PTR_TO_TCP_SOCK:
10040 	case PTR_TO_TCP_SOCK_OR_NULL:
10041 	case PTR_TO_XDP_SOCK:
10042 	case PTR_TO_BTF_ID:
10043 	case PTR_TO_BTF_ID_OR_NULL:
10044 		return false;
10045 	default:
10046 		return true;
10047 	}
10048 }
10049 
10050 /* If an instruction was previously used with particular pointer types, then we
10051  * need to be careful to avoid cases such as the below, where it may be ok
10052  * for one branch accessing the pointer, but not ok for the other branch:
10053  *
10054  * R1 = sock_ptr
10055  * goto X;
10056  * ...
10057  * R1 = some_other_valid_ptr;
10058  * goto X;
10059  * ...
10060  * R2 = *(u32 *)(R1 + 0);
10061  */
10062 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
10063 {
10064 	return src != prev && (!reg_type_mismatch_ok(src) ||
10065 			       !reg_type_mismatch_ok(prev));
10066 }
10067 
10068 static int do_check(struct bpf_verifier_env *env)
10069 {
10070 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
10071 	struct bpf_verifier_state *state = env->cur_state;
10072 	struct bpf_insn *insns = env->prog->insnsi;
10073 	struct bpf_reg_state *regs;
10074 	int insn_cnt = env->prog->len;
10075 	bool do_print_state = false;
10076 	int prev_insn_idx = -1;
10077 
10078 	for (;;) {
10079 		struct bpf_insn *insn;
10080 		u8 class;
10081 		int err;
10082 
10083 		env->prev_insn_idx = prev_insn_idx;
10084 		if (env->insn_idx >= insn_cnt) {
10085 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
10086 				env->insn_idx, insn_cnt);
10087 			return -EFAULT;
10088 		}
10089 
10090 		insn = &insns[env->insn_idx];
10091 		class = BPF_CLASS(insn->code);
10092 
10093 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
10094 			verbose(env,
10095 				"BPF program is too large. Processed %d insn\n",
10096 				env->insn_processed);
10097 			return -E2BIG;
10098 		}
10099 
10100 		err = is_state_visited(env, env->insn_idx);
10101 		if (err < 0)
10102 			return err;
10103 		if (err == 1) {
10104 			/* found equivalent state, can prune the search */
10105 			if (env->log.level & BPF_LOG_LEVEL) {
10106 				if (do_print_state)
10107 					verbose(env, "\nfrom %d to %d%s: safe\n",
10108 						env->prev_insn_idx, env->insn_idx,
10109 						env->cur_state->speculative ?
10110 						" (speculative execution)" : "");
10111 				else
10112 					verbose(env, "%d: safe\n", env->insn_idx);
10113 			}
10114 			goto process_bpf_exit;
10115 		}
10116 
10117 		if (signal_pending(current))
10118 			return -EAGAIN;
10119 
10120 		if (need_resched())
10121 			cond_resched();
10122 
10123 		if (env->log.level & BPF_LOG_LEVEL2 ||
10124 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
10125 			if (env->log.level & BPF_LOG_LEVEL2)
10126 				verbose(env, "%d:", env->insn_idx);
10127 			else
10128 				verbose(env, "\nfrom %d to %d%s:",
10129 					env->prev_insn_idx, env->insn_idx,
10130 					env->cur_state->speculative ?
10131 					" (speculative execution)" : "");
10132 			print_verifier_state(env, state->frame[state->curframe]);
10133 			do_print_state = false;
10134 		}
10135 
10136 		if (env->log.level & BPF_LOG_LEVEL) {
10137 			const struct bpf_insn_cbs cbs = {
10138 				.cb_print	= verbose,
10139 				.private_data	= env,
10140 			};
10141 
10142 			verbose_linfo(env, env->insn_idx, "; ");
10143 			verbose(env, "%d: ", env->insn_idx);
10144 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
10145 		}
10146 
10147 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
10148 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
10149 							   env->prev_insn_idx);
10150 			if (err)
10151 				return err;
10152 		}
10153 
10154 		regs = cur_regs(env);
10155 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
10156 		prev_insn_idx = env->insn_idx;
10157 
10158 		if (class == BPF_ALU || class == BPF_ALU64) {
10159 			err = check_alu_op(env, insn);
10160 			if (err)
10161 				return err;
10162 
10163 		} else if (class == BPF_LDX) {
10164 			enum bpf_reg_type *prev_src_type, src_reg_type;
10165 
10166 			/* check for reserved fields is already done */
10167 
10168 			/* check src operand */
10169 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10170 			if (err)
10171 				return err;
10172 
10173 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
10174 			if (err)
10175 				return err;
10176 
10177 			src_reg_type = regs[insn->src_reg].type;
10178 
10179 			/* check that memory (src_reg + off) is readable,
10180 			 * the state of dst_reg will be updated by this func
10181 			 */
10182 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
10183 					       insn->off, BPF_SIZE(insn->code),
10184 					       BPF_READ, insn->dst_reg, false);
10185 			if (err)
10186 				return err;
10187 
10188 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10189 
10190 			if (*prev_src_type == NOT_INIT) {
10191 				/* saw a valid insn
10192 				 * dst_reg = *(u32 *)(src_reg + off)
10193 				 * save type to validate intersecting paths
10194 				 */
10195 				*prev_src_type = src_reg_type;
10196 
10197 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
10198 				/* ABuser program is trying to use the same insn
10199 				 * dst_reg = *(u32*) (src_reg + off)
10200 				 * with different pointer types:
10201 				 * src_reg == ctx in one branch and
10202 				 * src_reg == stack|map in some other branch.
10203 				 * Reject it.
10204 				 */
10205 				verbose(env, "same insn cannot be used with different pointers\n");
10206 				return -EINVAL;
10207 			}
10208 
10209 		} else if (class == BPF_STX) {
10210 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
10211 
10212 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
10213 				err = check_atomic(env, env->insn_idx, insn);
10214 				if (err)
10215 					return err;
10216 				env->insn_idx++;
10217 				continue;
10218 			}
10219 
10220 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
10221 				verbose(env, "BPF_STX uses reserved fields\n");
10222 				return -EINVAL;
10223 			}
10224 
10225 			/* check src1 operand */
10226 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10227 			if (err)
10228 				return err;
10229 			/* check src2 operand */
10230 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10231 			if (err)
10232 				return err;
10233 
10234 			dst_reg_type = regs[insn->dst_reg].type;
10235 
10236 			/* check that memory (dst_reg + off) is writeable */
10237 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10238 					       insn->off, BPF_SIZE(insn->code),
10239 					       BPF_WRITE, insn->src_reg, false);
10240 			if (err)
10241 				return err;
10242 
10243 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10244 
10245 			if (*prev_dst_type == NOT_INIT) {
10246 				*prev_dst_type = dst_reg_type;
10247 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
10248 				verbose(env, "same insn cannot be used with different pointers\n");
10249 				return -EINVAL;
10250 			}
10251 
10252 		} else if (class == BPF_ST) {
10253 			if (BPF_MODE(insn->code) != BPF_MEM ||
10254 			    insn->src_reg != BPF_REG_0) {
10255 				verbose(env, "BPF_ST uses reserved fields\n");
10256 				return -EINVAL;
10257 			}
10258 			/* check src operand */
10259 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10260 			if (err)
10261 				return err;
10262 
10263 			if (is_ctx_reg(env, insn->dst_reg)) {
10264 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
10265 					insn->dst_reg,
10266 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
10267 				return -EACCES;
10268 			}
10269 
10270 			/* check that memory (dst_reg + off) is writeable */
10271 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10272 					       insn->off, BPF_SIZE(insn->code),
10273 					       BPF_WRITE, -1, false);
10274 			if (err)
10275 				return err;
10276 
10277 		} else if (class == BPF_JMP || class == BPF_JMP32) {
10278 			u8 opcode = BPF_OP(insn->code);
10279 
10280 			env->jmps_processed++;
10281 			if (opcode == BPF_CALL) {
10282 				if (BPF_SRC(insn->code) != BPF_K ||
10283 				    insn->off != 0 ||
10284 				    (insn->src_reg != BPF_REG_0 &&
10285 				     insn->src_reg != BPF_PSEUDO_CALL) ||
10286 				    insn->dst_reg != BPF_REG_0 ||
10287 				    class == BPF_JMP32) {
10288 					verbose(env, "BPF_CALL uses reserved fields\n");
10289 					return -EINVAL;
10290 				}
10291 
10292 				if (env->cur_state->active_spin_lock &&
10293 				    (insn->src_reg == BPF_PSEUDO_CALL ||
10294 				     insn->imm != BPF_FUNC_spin_unlock)) {
10295 					verbose(env, "function calls are not allowed while holding a lock\n");
10296 					return -EINVAL;
10297 				}
10298 				if (insn->src_reg == BPF_PSEUDO_CALL)
10299 					err = check_func_call(env, insn, &env->insn_idx);
10300 				else
10301 					err = check_helper_call(env, insn, &env->insn_idx);
10302 				if (err)
10303 					return err;
10304 			} else if (opcode == BPF_JA) {
10305 				if (BPF_SRC(insn->code) != BPF_K ||
10306 				    insn->imm != 0 ||
10307 				    insn->src_reg != BPF_REG_0 ||
10308 				    insn->dst_reg != BPF_REG_0 ||
10309 				    class == BPF_JMP32) {
10310 					verbose(env, "BPF_JA uses reserved fields\n");
10311 					return -EINVAL;
10312 				}
10313 
10314 				env->insn_idx += insn->off + 1;
10315 				continue;
10316 
10317 			} else if (opcode == BPF_EXIT) {
10318 				if (BPF_SRC(insn->code) != BPF_K ||
10319 				    insn->imm != 0 ||
10320 				    insn->src_reg != BPF_REG_0 ||
10321 				    insn->dst_reg != BPF_REG_0 ||
10322 				    class == BPF_JMP32) {
10323 					verbose(env, "BPF_EXIT uses reserved fields\n");
10324 					return -EINVAL;
10325 				}
10326 
10327 				if (env->cur_state->active_spin_lock) {
10328 					verbose(env, "bpf_spin_unlock is missing\n");
10329 					return -EINVAL;
10330 				}
10331 
10332 				if (state->curframe) {
10333 					/* exit from nested function */
10334 					err = prepare_func_exit(env, &env->insn_idx);
10335 					if (err)
10336 						return err;
10337 					do_print_state = true;
10338 					continue;
10339 				}
10340 
10341 				err = check_reference_leak(env);
10342 				if (err)
10343 					return err;
10344 
10345 				err = check_return_code(env);
10346 				if (err)
10347 					return err;
10348 process_bpf_exit:
10349 				update_branch_counts(env, env->cur_state);
10350 				err = pop_stack(env, &prev_insn_idx,
10351 						&env->insn_idx, pop_log);
10352 				if (err < 0) {
10353 					if (err != -ENOENT)
10354 						return err;
10355 					break;
10356 				} else {
10357 					do_print_state = true;
10358 					continue;
10359 				}
10360 			} else {
10361 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
10362 				if (err)
10363 					return err;
10364 			}
10365 		} else if (class == BPF_LD) {
10366 			u8 mode = BPF_MODE(insn->code);
10367 
10368 			if (mode == BPF_ABS || mode == BPF_IND) {
10369 				err = check_ld_abs(env, insn);
10370 				if (err)
10371 					return err;
10372 
10373 			} else if (mode == BPF_IMM) {
10374 				err = check_ld_imm(env, insn);
10375 				if (err)
10376 					return err;
10377 
10378 				env->insn_idx++;
10379 				env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
10380 			} else {
10381 				verbose(env, "invalid BPF_LD mode\n");
10382 				return -EINVAL;
10383 			}
10384 		} else {
10385 			verbose(env, "unknown insn class %d\n", class);
10386 			return -EINVAL;
10387 		}
10388 
10389 		env->insn_idx++;
10390 	}
10391 
10392 	return 0;
10393 }
10394 
10395 static int find_btf_percpu_datasec(struct btf *btf)
10396 {
10397 	const struct btf_type *t;
10398 	const char *tname;
10399 	int i, n;
10400 
10401 	/*
10402 	 * Both vmlinux and module each have their own ".data..percpu"
10403 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
10404 	 * types to look at only module's own BTF types.
10405 	 */
10406 	n = btf_nr_types(btf);
10407 	if (btf_is_module(btf))
10408 		i = btf_nr_types(btf_vmlinux);
10409 	else
10410 		i = 1;
10411 
10412 	for(; i < n; i++) {
10413 		t = btf_type_by_id(btf, i);
10414 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
10415 			continue;
10416 
10417 		tname = btf_name_by_offset(btf, t->name_off);
10418 		if (!strcmp(tname, ".data..percpu"))
10419 			return i;
10420 	}
10421 
10422 	return -ENOENT;
10423 }
10424 
10425 /* replace pseudo btf_id with kernel symbol address */
10426 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
10427 			       struct bpf_insn *insn,
10428 			       struct bpf_insn_aux_data *aux)
10429 {
10430 	const struct btf_var_secinfo *vsi;
10431 	const struct btf_type *datasec;
10432 	struct btf_mod_pair *btf_mod;
10433 	const struct btf_type *t;
10434 	const char *sym_name;
10435 	bool percpu = false;
10436 	u32 type, id = insn->imm;
10437 	struct btf *btf;
10438 	s32 datasec_id;
10439 	u64 addr;
10440 	int i, btf_fd, err;
10441 
10442 	btf_fd = insn[1].imm;
10443 	if (btf_fd) {
10444 		btf = btf_get_by_fd(btf_fd);
10445 		if (IS_ERR(btf)) {
10446 			verbose(env, "invalid module BTF object FD specified.\n");
10447 			return -EINVAL;
10448 		}
10449 	} else {
10450 		if (!btf_vmlinux) {
10451 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
10452 			return -EINVAL;
10453 		}
10454 		btf = btf_vmlinux;
10455 		btf_get(btf);
10456 	}
10457 
10458 	t = btf_type_by_id(btf, id);
10459 	if (!t) {
10460 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
10461 		err = -ENOENT;
10462 		goto err_put;
10463 	}
10464 
10465 	if (!btf_type_is_var(t)) {
10466 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
10467 		err = -EINVAL;
10468 		goto err_put;
10469 	}
10470 
10471 	sym_name = btf_name_by_offset(btf, t->name_off);
10472 	addr = kallsyms_lookup_name(sym_name);
10473 	if (!addr) {
10474 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
10475 			sym_name);
10476 		err = -ENOENT;
10477 		goto err_put;
10478 	}
10479 
10480 	datasec_id = find_btf_percpu_datasec(btf);
10481 	if (datasec_id > 0) {
10482 		datasec = btf_type_by_id(btf, datasec_id);
10483 		for_each_vsi(i, datasec, vsi) {
10484 			if (vsi->type == id) {
10485 				percpu = true;
10486 				break;
10487 			}
10488 		}
10489 	}
10490 
10491 	insn[0].imm = (u32)addr;
10492 	insn[1].imm = addr >> 32;
10493 
10494 	type = t->type;
10495 	t = btf_type_skip_modifiers(btf, type, NULL);
10496 	if (percpu) {
10497 		aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
10498 		aux->btf_var.btf = btf;
10499 		aux->btf_var.btf_id = type;
10500 	} else if (!btf_type_is_struct(t)) {
10501 		const struct btf_type *ret;
10502 		const char *tname;
10503 		u32 tsize;
10504 
10505 		/* resolve the type size of ksym. */
10506 		ret = btf_resolve_size(btf, t, &tsize);
10507 		if (IS_ERR(ret)) {
10508 			tname = btf_name_by_offset(btf, t->name_off);
10509 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
10510 				tname, PTR_ERR(ret));
10511 			err = -EINVAL;
10512 			goto err_put;
10513 		}
10514 		aux->btf_var.reg_type = PTR_TO_MEM;
10515 		aux->btf_var.mem_size = tsize;
10516 	} else {
10517 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
10518 		aux->btf_var.btf = btf;
10519 		aux->btf_var.btf_id = type;
10520 	}
10521 
10522 	/* check whether we recorded this BTF (and maybe module) already */
10523 	for (i = 0; i < env->used_btf_cnt; i++) {
10524 		if (env->used_btfs[i].btf == btf) {
10525 			btf_put(btf);
10526 			return 0;
10527 		}
10528 	}
10529 
10530 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
10531 		err = -E2BIG;
10532 		goto err_put;
10533 	}
10534 
10535 	btf_mod = &env->used_btfs[env->used_btf_cnt];
10536 	btf_mod->btf = btf;
10537 	btf_mod->module = NULL;
10538 
10539 	/* if we reference variables from kernel module, bump its refcount */
10540 	if (btf_is_module(btf)) {
10541 		btf_mod->module = btf_try_get_module(btf);
10542 		if (!btf_mod->module) {
10543 			err = -ENXIO;
10544 			goto err_put;
10545 		}
10546 	}
10547 
10548 	env->used_btf_cnt++;
10549 
10550 	return 0;
10551 err_put:
10552 	btf_put(btf);
10553 	return err;
10554 }
10555 
10556 static int check_map_prealloc(struct bpf_map *map)
10557 {
10558 	return (map->map_type != BPF_MAP_TYPE_HASH &&
10559 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
10560 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
10561 		!(map->map_flags & BPF_F_NO_PREALLOC);
10562 }
10563 
10564 static bool is_tracing_prog_type(enum bpf_prog_type type)
10565 {
10566 	switch (type) {
10567 	case BPF_PROG_TYPE_KPROBE:
10568 	case BPF_PROG_TYPE_TRACEPOINT:
10569 	case BPF_PROG_TYPE_PERF_EVENT:
10570 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
10571 		return true;
10572 	default:
10573 		return false;
10574 	}
10575 }
10576 
10577 static bool is_preallocated_map(struct bpf_map *map)
10578 {
10579 	if (!check_map_prealloc(map))
10580 		return false;
10581 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
10582 		return false;
10583 	return true;
10584 }
10585 
10586 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
10587 					struct bpf_map *map,
10588 					struct bpf_prog *prog)
10589 
10590 {
10591 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
10592 	/*
10593 	 * Validate that trace type programs use preallocated hash maps.
10594 	 *
10595 	 * For programs attached to PERF events this is mandatory as the
10596 	 * perf NMI can hit any arbitrary code sequence.
10597 	 *
10598 	 * All other trace types using preallocated hash maps are unsafe as
10599 	 * well because tracepoint or kprobes can be inside locked regions
10600 	 * of the memory allocator or at a place where a recursion into the
10601 	 * memory allocator would see inconsistent state.
10602 	 *
10603 	 * On RT enabled kernels run-time allocation of all trace type
10604 	 * programs is strictly prohibited due to lock type constraints. On
10605 	 * !RT kernels it is allowed for backwards compatibility reasons for
10606 	 * now, but warnings are emitted so developers are made aware of
10607 	 * the unsafety and can fix their programs before this is enforced.
10608 	 */
10609 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
10610 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
10611 			verbose(env, "perf_event programs can only use preallocated hash map\n");
10612 			return -EINVAL;
10613 		}
10614 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
10615 			verbose(env, "trace type programs can only use preallocated hash map\n");
10616 			return -EINVAL;
10617 		}
10618 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
10619 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
10620 	}
10621 
10622 	if (map_value_has_spin_lock(map)) {
10623 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
10624 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
10625 			return -EINVAL;
10626 		}
10627 
10628 		if (is_tracing_prog_type(prog_type)) {
10629 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
10630 			return -EINVAL;
10631 		}
10632 
10633 		if (prog->aux->sleepable) {
10634 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
10635 			return -EINVAL;
10636 		}
10637 	}
10638 
10639 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
10640 	    !bpf_offload_prog_map_match(prog, map)) {
10641 		verbose(env, "offload device mismatch between prog and map\n");
10642 		return -EINVAL;
10643 	}
10644 
10645 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
10646 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
10647 		return -EINVAL;
10648 	}
10649 
10650 	if (prog->aux->sleepable)
10651 		switch (map->map_type) {
10652 		case BPF_MAP_TYPE_HASH:
10653 		case BPF_MAP_TYPE_LRU_HASH:
10654 		case BPF_MAP_TYPE_ARRAY:
10655 		case BPF_MAP_TYPE_PERCPU_HASH:
10656 		case BPF_MAP_TYPE_PERCPU_ARRAY:
10657 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
10658 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
10659 		case BPF_MAP_TYPE_HASH_OF_MAPS:
10660 			if (!is_preallocated_map(map)) {
10661 				verbose(env,
10662 					"Sleepable programs can only use preallocated maps\n");
10663 				return -EINVAL;
10664 			}
10665 			break;
10666 		case BPF_MAP_TYPE_RINGBUF:
10667 			break;
10668 		default:
10669 			verbose(env,
10670 				"Sleepable programs can only use array, hash, and ringbuf maps\n");
10671 			return -EINVAL;
10672 		}
10673 
10674 	return 0;
10675 }
10676 
10677 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
10678 {
10679 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
10680 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
10681 }
10682 
10683 /* find and rewrite pseudo imm in ld_imm64 instructions:
10684  *
10685  * 1. if it accesses map FD, replace it with actual map pointer.
10686  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
10687  *
10688  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
10689  */
10690 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
10691 {
10692 	struct bpf_insn *insn = env->prog->insnsi;
10693 	int insn_cnt = env->prog->len;
10694 	int i, j, err;
10695 
10696 	err = bpf_prog_calc_tag(env->prog);
10697 	if (err)
10698 		return err;
10699 
10700 	for (i = 0; i < insn_cnt; i++, insn++) {
10701 		if (BPF_CLASS(insn->code) == BPF_LDX &&
10702 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
10703 			verbose(env, "BPF_LDX uses reserved fields\n");
10704 			return -EINVAL;
10705 		}
10706 
10707 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
10708 			struct bpf_insn_aux_data *aux;
10709 			struct bpf_map *map;
10710 			struct fd f;
10711 			u64 addr;
10712 
10713 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
10714 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
10715 			    insn[1].off != 0) {
10716 				verbose(env, "invalid bpf_ld_imm64 insn\n");
10717 				return -EINVAL;
10718 			}
10719 
10720 			if (insn[0].src_reg == 0)
10721 				/* valid generic load 64-bit imm */
10722 				goto next_insn;
10723 
10724 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
10725 				aux = &env->insn_aux_data[i];
10726 				err = check_pseudo_btf_id(env, insn, aux);
10727 				if (err)
10728 					return err;
10729 				goto next_insn;
10730 			}
10731 
10732 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
10733 				aux = &env->insn_aux_data[i];
10734 				aux->ptr_type = PTR_TO_FUNC;
10735 				goto next_insn;
10736 			}
10737 
10738 			/* In final convert_pseudo_ld_imm64() step, this is
10739 			 * converted into regular 64-bit imm load insn.
10740 			 */
10741 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
10742 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
10743 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
10744 			     insn[1].imm != 0)) {
10745 				verbose(env,
10746 					"unrecognized bpf_ld_imm64 insn\n");
10747 				return -EINVAL;
10748 			}
10749 
10750 			f = fdget(insn[0].imm);
10751 			map = __bpf_map_get(f);
10752 			if (IS_ERR(map)) {
10753 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
10754 					insn[0].imm);
10755 				return PTR_ERR(map);
10756 			}
10757 
10758 			err = check_map_prog_compatibility(env, map, env->prog);
10759 			if (err) {
10760 				fdput(f);
10761 				return err;
10762 			}
10763 
10764 			aux = &env->insn_aux_data[i];
10765 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
10766 				addr = (unsigned long)map;
10767 			} else {
10768 				u32 off = insn[1].imm;
10769 
10770 				if (off >= BPF_MAX_VAR_OFF) {
10771 					verbose(env, "direct value offset of %u is not allowed\n", off);
10772 					fdput(f);
10773 					return -EINVAL;
10774 				}
10775 
10776 				if (!map->ops->map_direct_value_addr) {
10777 					verbose(env, "no direct value access support for this map type\n");
10778 					fdput(f);
10779 					return -EINVAL;
10780 				}
10781 
10782 				err = map->ops->map_direct_value_addr(map, &addr, off);
10783 				if (err) {
10784 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
10785 						map->value_size, off);
10786 					fdput(f);
10787 					return err;
10788 				}
10789 
10790 				aux->map_off = off;
10791 				addr += off;
10792 			}
10793 
10794 			insn[0].imm = (u32)addr;
10795 			insn[1].imm = addr >> 32;
10796 
10797 			/* check whether we recorded this map already */
10798 			for (j = 0; j < env->used_map_cnt; j++) {
10799 				if (env->used_maps[j] == map) {
10800 					aux->map_index = j;
10801 					fdput(f);
10802 					goto next_insn;
10803 				}
10804 			}
10805 
10806 			if (env->used_map_cnt >= MAX_USED_MAPS) {
10807 				fdput(f);
10808 				return -E2BIG;
10809 			}
10810 
10811 			/* hold the map. If the program is rejected by verifier,
10812 			 * the map will be released by release_maps() or it
10813 			 * will be used by the valid program until it's unloaded
10814 			 * and all maps are released in free_used_maps()
10815 			 */
10816 			bpf_map_inc(map);
10817 
10818 			aux->map_index = env->used_map_cnt;
10819 			env->used_maps[env->used_map_cnt++] = map;
10820 
10821 			if (bpf_map_is_cgroup_storage(map) &&
10822 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
10823 				verbose(env, "only one cgroup storage of each type is allowed\n");
10824 				fdput(f);
10825 				return -EBUSY;
10826 			}
10827 
10828 			fdput(f);
10829 next_insn:
10830 			insn++;
10831 			i++;
10832 			continue;
10833 		}
10834 
10835 		/* Basic sanity check before we invest more work here. */
10836 		if (!bpf_opcode_in_insntable(insn->code)) {
10837 			verbose(env, "unknown opcode %02x\n", insn->code);
10838 			return -EINVAL;
10839 		}
10840 	}
10841 
10842 	/* now all pseudo BPF_LD_IMM64 instructions load valid
10843 	 * 'struct bpf_map *' into a register instead of user map_fd.
10844 	 * These pointers will be used later by verifier to validate map access.
10845 	 */
10846 	return 0;
10847 }
10848 
10849 /* drop refcnt of maps used by the rejected program */
10850 static void release_maps(struct bpf_verifier_env *env)
10851 {
10852 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
10853 			     env->used_map_cnt);
10854 }
10855 
10856 /* drop refcnt of maps used by the rejected program */
10857 static void release_btfs(struct bpf_verifier_env *env)
10858 {
10859 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
10860 			     env->used_btf_cnt);
10861 }
10862 
10863 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
10864 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
10865 {
10866 	struct bpf_insn *insn = env->prog->insnsi;
10867 	int insn_cnt = env->prog->len;
10868 	int i;
10869 
10870 	for (i = 0; i < insn_cnt; i++, insn++) {
10871 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
10872 			continue;
10873 		if (insn->src_reg == BPF_PSEUDO_FUNC)
10874 			continue;
10875 		insn->src_reg = 0;
10876 	}
10877 }
10878 
10879 /* single env->prog->insni[off] instruction was replaced with the range
10880  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
10881  * [0, off) and [off, end) to new locations, so the patched range stays zero
10882  */
10883 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
10884 				struct bpf_prog *new_prog, u32 off, u32 cnt)
10885 {
10886 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
10887 	struct bpf_insn *insn = new_prog->insnsi;
10888 	u32 prog_len;
10889 	int i;
10890 
10891 	/* aux info at OFF always needs adjustment, no matter fast path
10892 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
10893 	 * original insn at old prog.
10894 	 */
10895 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
10896 
10897 	if (cnt == 1)
10898 		return 0;
10899 	prog_len = new_prog->len;
10900 	new_data = vzalloc(array_size(prog_len,
10901 				      sizeof(struct bpf_insn_aux_data)));
10902 	if (!new_data)
10903 		return -ENOMEM;
10904 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
10905 	memcpy(new_data + off + cnt - 1, old_data + off,
10906 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
10907 	for (i = off; i < off + cnt - 1; i++) {
10908 		new_data[i].seen = env->pass_cnt;
10909 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
10910 	}
10911 	env->insn_aux_data = new_data;
10912 	vfree(old_data);
10913 	return 0;
10914 }
10915 
10916 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
10917 {
10918 	int i;
10919 
10920 	if (len == 1)
10921 		return;
10922 	/* NOTE: fake 'exit' subprog should be updated as well. */
10923 	for (i = 0; i <= env->subprog_cnt; i++) {
10924 		if (env->subprog_info[i].start <= off)
10925 			continue;
10926 		env->subprog_info[i].start += len - 1;
10927 	}
10928 }
10929 
10930 static void adjust_poke_descs(struct bpf_prog *prog, u32 len)
10931 {
10932 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
10933 	int i, sz = prog->aux->size_poke_tab;
10934 	struct bpf_jit_poke_descriptor *desc;
10935 
10936 	for (i = 0; i < sz; i++) {
10937 		desc = &tab[i];
10938 		desc->insn_idx += len - 1;
10939 	}
10940 }
10941 
10942 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
10943 					    const struct bpf_insn *patch, u32 len)
10944 {
10945 	struct bpf_prog *new_prog;
10946 
10947 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
10948 	if (IS_ERR(new_prog)) {
10949 		if (PTR_ERR(new_prog) == -ERANGE)
10950 			verbose(env,
10951 				"insn %d cannot be patched due to 16-bit range\n",
10952 				env->insn_aux_data[off].orig_idx);
10953 		return NULL;
10954 	}
10955 	if (adjust_insn_aux_data(env, new_prog, off, len))
10956 		return NULL;
10957 	adjust_subprog_starts(env, off, len);
10958 	adjust_poke_descs(new_prog, len);
10959 	return new_prog;
10960 }
10961 
10962 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
10963 					      u32 off, u32 cnt)
10964 {
10965 	int i, j;
10966 
10967 	/* find first prog starting at or after off (first to remove) */
10968 	for (i = 0; i < env->subprog_cnt; i++)
10969 		if (env->subprog_info[i].start >= off)
10970 			break;
10971 	/* find first prog starting at or after off + cnt (first to stay) */
10972 	for (j = i; j < env->subprog_cnt; j++)
10973 		if (env->subprog_info[j].start >= off + cnt)
10974 			break;
10975 	/* if j doesn't start exactly at off + cnt, we are just removing
10976 	 * the front of previous prog
10977 	 */
10978 	if (env->subprog_info[j].start != off + cnt)
10979 		j--;
10980 
10981 	if (j > i) {
10982 		struct bpf_prog_aux *aux = env->prog->aux;
10983 		int move;
10984 
10985 		/* move fake 'exit' subprog as well */
10986 		move = env->subprog_cnt + 1 - j;
10987 
10988 		memmove(env->subprog_info + i,
10989 			env->subprog_info + j,
10990 			sizeof(*env->subprog_info) * move);
10991 		env->subprog_cnt -= j - i;
10992 
10993 		/* remove func_info */
10994 		if (aux->func_info) {
10995 			move = aux->func_info_cnt - j;
10996 
10997 			memmove(aux->func_info + i,
10998 				aux->func_info + j,
10999 				sizeof(*aux->func_info) * move);
11000 			aux->func_info_cnt -= j - i;
11001 			/* func_info->insn_off is set after all code rewrites,
11002 			 * in adjust_btf_func() - no need to adjust
11003 			 */
11004 		}
11005 	} else {
11006 		/* convert i from "first prog to remove" to "first to adjust" */
11007 		if (env->subprog_info[i].start == off)
11008 			i++;
11009 	}
11010 
11011 	/* update fake 'exit' subprog as well */
11012 	for (; i <= env->subprog_cnt; i++)
11013 		env->subprog_info[i].start -= cnt;
11014 
11015 	return 0;
11016 }
11017 
11018 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
11019 				      u32 cnt)
11020 {
11021 	struct bpf_prog *prog = env->prog;
11022 	u32 i, l_off, l_cnt, nr_linfo;
11023 	struct bpf_line_info *linfo;
11024 
11025 	nr_linfo = prog->aux->nr_linfo;
11026 	if (!nr_linfo)
11027 		return 0;
11028 
11029 	linfo = prog->aux->linfo;
11030 
11031 	/* find first line info to remove, count lines to be removed */
11032 	for (i = 0; i < nr_linfo; i++)
11033 		if (linfo[i].insn_off >= off)
11034 			break;
11035 
11036 	l_off = i;
11037 	l_cnt = 0;
11038 	for (; i < nr_linfo; i++)
11039 		if (linfo[i].insn_off < off + cnt)
11040 			l_cnt++;
11041 		else
11042 			break;
11043 
11044 	/* First live insn doesn't match first live linfo, it needs to "inherit"
11045 	 * last removed linfo.  prog is already modified, so prog->len == off
11046 	 * means no live instructions after (tail of the program was removed).
11047 	 */
11048 	if (prog->len != off && l_cnt &&
11049 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
11050 		l_cnt--;
11051 		linfo[--i].insn_off = off + cnt;
11052 	}
11053 
11054 	/* remove the line info which refer to the removed instructions */
11055 	if (l_cnt) {
11056 		memmove(linfo + l_off, linfo + i,
11057 			sizeof(*linfo) * (nr_linfo - i));
11058 
11059 		prog->aux->nr_linfo -= l_cnt;
11060 		nr_linfo = prog->aux->nr_linfo;
11061 	}
11062 
11063 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
11064 	for (i = l_off; i < nr_linfo; i++)
11065 		linfo[i].insn_off -= cnt;
11066 
11067 	/* fix up all subprogs (incl. 'exit') which start >= off */
11068 	for (i = 0; i <= env->subprog_cnt; i++)
11069 		if (env->subprog_info[i].linfo_idx > l_off) {
11070 			/* program may have started in the removed region but
11071 			 * may not be fully removed
11072 			 */
11073 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
11074 				env->subprog_info[i].linfo_idx -= l_cnt;
11075 			else
11076 				env->subprog_info[i].linfo_idx = l_off;
11077 		}
11078 
11079 	return 0;
11080 }
11081 
11082 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
11083 {
11084 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11085 	unsigned int orig_prog_len = env->prog->len;
11086 	int err;
11087 
11088 	if (bpf_prog_is_dev_bound(env->prog->aux))
11089 		bpf_prog_offload_remove_insns(env, off, cnt);
11090 
11091 	err = bpf_remove_insns(env->prog, off, cnt);
11092 	if (err)
11093 		return err;
11094 
11095 	err = adjust_subprog_starts_after_remove(env, off, cnt);
11096 	if (err)
11097 		return err;
11098 
11099 	err = bpf_adj_linfo_after_remove(env, off, cnt);
11100 	if (err)
11101 		return err;
11102 
11103 	memmove(aux_data + off,	aux_data + off + cnt,
11104 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
11105 
11106 	return 0;
11107 }
11108 
11109 /* The verifier does more data flow analysis than llvm and will not
11110  * explore branches that are dead at run time. Malicious programs can
11111  * have dead code too. Therefore replace all dead at-run-time code
11112  * with 'ja -1'.
11113  *
11114  * Just nops are not optimal, e.g. if they would sit at the end of the
11115  * program and through another bug we would manage to jump there, then
11116  * we'd execute beyond program memory otherwise. Returning exception
11117  * code also wouldn't work since we can have subprogs where the dead
11118  * code could be located.
11119  */
11120 static void sanitize_dead_code(struct bpf_verifier_env *env)
11121 {
11122 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11123 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
11124 	struct bpf_insn *insn = env->prog->insnsi;
11125 	const int insn_cnt = env->prog->len;
11126 	int i;
11127 
11128 	for (i = 0; i < insn_cnt; i++) {
11129 		if (aux_data[i].seen)
11130 			continue;
11131 		memcpy(insn + i, &trap, sizeof(trap));
11132 	}
11133 }
11134 
11135 static bool insn_is_cond_jump(u8 code)
11136 {
11137 	u8 op;
11138 
11139 	if (BPF_CLASS(code) == BPF_JMP32)
11140 		return true;
11141 
11142 	if (BPF_CLASS(code) != BPF_JMP)
11143 		return false;
11144 
11145 	op = BPF_OP(code);
11146 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
11147 }
11148 
11149 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
11150 {
11151 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11152 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11153 	struct bpf_insn *insn = env->prog->insnsi;
11154 	const int insn_cnt = env->prog->len;
11155 	int i;
11156 
11157 	for (i = 0; i < insn_cnt; i++, insn++) {
11158 		if (!insn_is_cond_jump(insn->code))
11159 			continue;
11160 
11161 		if (!aux_data[i + 1].seen)
11162 			ja.off = insn->off;
11163 		else if (!aux_data[i + 1 + insn->off].seen)
11164 			ja.off = 0;
11165 		else
11166 			continue;
11167 
11168 		if (bpf_prog_is_dev_bound(env->prog->aux))
11169 			bpf_prog_offload_replace_insn(env, i, &ja);
11170 
11171 		memcpy(insn, &ja, sizeof(ja));
11172 	}
11173 }
11174 
11175 static int opt_remove_dead_code(struct bpf_verifier_env *env)
11176 {
11177 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11178 	int insn_cnt = env->prog->len;
11179 	int i, err;
11180 
11181 	for (i = 0; i < insn_cnt; i++) {
11182 		int j;
11183 
11184 		j = 0;
11185 		while (i + j < insn_cnt && !aux_data[i + j].seen)
11186 			j++;
11187 		if (!j)
11188 			continue;
11189 
11190 		err = verifier_remove_insns(env, i, j);
11191 		if (err)
11192 			return err;
11193 		insn_cnt = env->prog->len;
11194 	}
11195 
11196 	return 0;
11197 }
11198 
11199 static int opt_remove_nops(struct bpf_verifier_env *env)
11200 {
11201 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11202 	struct bpf_insn *insn = env->prog->insnsi;
11203 	int insn_cnt = env->prog->len;
11204 	int i, err;
11205 
11206 	for (i = 0; i < insn_cnt; i++) {
11207 		if (memcmp(&insn[i], &ja, sizeof(ja)))
11208 			continue;
11209 
11210 		err = verifier_remove_insns(env, i, 1);
11211 		if (err)
11212 			return err;
11213 		insn_cnt--;
11214 		i--;
11215 	}
11216 
11217 	return 0;
11218 }
11219 
11220 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
11221 					 const union bpf_attr *attr)
11222 {
11223 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
11224 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
11225 	int i, patch_len, delta = 0, len = env->prog->len;
11226 	struct bpf_insn *insns = env->prog->insnsi;
11227 	struct bpf_prog *new_prog;
11228 	bool rnd_hi32;
11229 
11230 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
11231 	zext_patch[1] = BPF_ZEXT_REG(0);
11232 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
11233 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
11234 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
11235 	for (i = 0; i < len; i++) {
11236 		int adj_idx = i + delta;
11237 		struct bpf_insn insn;
11238 		u8 load_reg;
11239 
11240 		insn = insns[adj_idx];
11241 		if (!aux[adj_idx].zext_dst) {
11242 			u8 code, class;
11243 			u32 imm_rnd;
11244 
11245 			if (!rnd_hi32)
11246 				continue;
11247 
11248 			code = insn.code;
11249 			class = BPF_CLASS(code);
11250 			if (insn_no_def(&insn))
11251 				continue;
11252 
11253 			/* NOTE: arg "reg" (the fourth one) is only used for
11254 			 *       BPF_STX which has been ruled out in above
11255 			 *       check, it is safe to pass NULL here.
11256 			 */
11257 			if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
11258 				if (class == BPF_LD &&
11259 				    BPF_MODE(code) == BPF_IMM)
11260 					i++;
11261 				continue;
11262 			}
11263 
11264 			/* ctx load could be transformed into wider load. */
11265 			if (class == BPF_LDX &&
11266 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
11267 				continue;
11268 
11269 			imm_rnd = get_random_int();
11270 			rnd_hi32_patch[0] = insn;
11271 			rnd_hi32_patch[1].imm = imm_rnd;
11272 			rnd_hi32_patch[3].dst_reg = insn.dst_reg;
11273 			patch = rnd_hi32_patch;
11274 			patch_len = 4;
11275 			goto apply_patch_buffer;
11276 		}
11277 
11278 		if (!bpf_jit_needs_zext())
11279 			continue;
11280 
11281 		/* zext_dst means that we want to zero-extend whatever register
11282 		 * the insn defines, which is dst_reg most of the time, with
11283 		 * the notable exception of BPF_STX + BPF_ATOMIC + BPF_FETCH.
11284 		 */
11285 		if (BPF_CLASS(insn.code) == BPF_STX &&
11286 		    BPF_MODE(insn.code) == BPF_ATOMIC) {
11287 			/* BPF_STX + BPF_ATOMIC insns without BPF_FETCH do not
11288 			 * define any registers, therefore zext_dst cannot be
11289 			 * set.
11290 			 */
11291 			if (WARN_ON(!(insn.imm & BPF_FETCH)))
11292 				return -EINVAL;
11293 			load_reg = insn.imm == BPF_CMPXCHG ? BPF_REG_0
11294 							   : insn.src_reg;
11295 		} else {
11296 			load_reg = insn.dst_reg;
11297 		}
11298 
11299 		zext_patch[0] = insn;
11300 		zext_patch[1].dst_reg = load_reg;
11301 		zext_patch[1].src_reg = load_reg;
11302 		patch = zext_patch;
11303 		patch_len = 2;
11304 apply_patch_buffer:
11305 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
11306 		if (!new_prog)
11307 			return -ENOMEM;
11308 		env->prog = new_prog;
11309 		insns = new_prog->insnsi;
11310 		aux = env->insn_aux_data;
11311 		delta += patch_len - 1;
11312 	}
11313 
11314 	return 0;
11315 }
11316 
11317 /* convert load instructions that access fields of a context type into a
11318  * sequence of instructions that access fields of the underlying structure:
11319  *     struct __sk_buff    -> struct sk_buff
11320  *     struct bpf_sock_ops -> struct sock
11321  */
11322 static int convert_ctx_accesses(struct bpf_verifier_env *env)
11323 {
11324 	const struct bpf_verifier_ops *ops = env->ops;
11325 	int i, cnt, size, ctx_field_size, delta = 0;
11326 	const int insn_cnt = env->prog->len;
11327 	struct bpf_insn insn_buf[16], *insn;
11328 	u32 target_size, size_default, off;
11329 	struct bpf_prog *new_prog;
11330 	enum bpf_access_type type;
11331 	bool is_narrower_load;
11332 
11333 	if (ops->gen_prologue || env->seen_direct_write) {
11334 		if (!ops->gen_prologue) {
11335 			verbose(env, "bpf verifier is misconfigured\n");
11336 			return -EINVAL;
11337 		}
11338 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
11339 					env->prog);
11340 		if (cnt >= ARRAY_SIZE(insn_buf)) {
11341 			verbose(env, "bpf verifier is misconfigured\n");
11342 			return -EINVAL;
11343 		} else if (cnt) {
11344 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
11345 			if (!new_prog)
11346 				return -ENOMEM;
11347 
11348 			env->prog = new_prog;
11349 			delta += cnt - 1;
11350 		}
11351 	}
11352 
11353 	if (bpf_prog_is_dev_bound(env->prog->aux))
11354 		return 0;
11355 
11356 	insn = env->prog->insnsi + delta;
11357 
11358 	for (i = 0; i < insn_cnt; i++, insn++) {
11359 		bpf_convert_ctx_access_t convert_ctx_access;
11360 
11361 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
11362 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
11363 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
11364 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
11365 			type = BPF_READ;
11366 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
11367 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
11368 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
11369 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
11370 			type = BPF_WRITE;
11371 		else
11372 			continue;
11373 
11374 		if (type == BPF_WRITE &&
11375 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
11376 			struct bpf_insn patch[] = {
11377 				/* Sanitize suspicious stack slot with zero.
11378 				 * There are no memory dependencies for this store,
11379 				 * since it's only using frame pointer and immediate
11380 				 * constant of zero
11381 				 */
11382 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
11383 					   env->insn_aux_data[i + delta].sanitize_stack_off,
11384 					   0),
11385 				/* the original STX instruction will immediately
11386 				 * overwrite the same stack slot with appropriate value
11387 				 */
11388 				*insn,
11389 			};
11390 
11391 			cnt = ARRAY_SIZE(patch);
11392 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
11393 			if (!new_prog)
11394 				return -ENOMEM;
11395 
11396 			delta    += cnt - 1;
11397 			env->prog = new_prog;
11398 			insn      = new_prog->insnsi + i + delta;
11399 			continue;
11400 		}
11401 
11402 		switch (env->insn_aux_data[i + delta].ptr_type) {
11403 		case PTR_TO_CTX:
11404 			if (!ops->convert_ctx_access)
11405 				continue;
11406 			convert_ctx_access = ops->convert_ctx_access;
11407 			break;
11408 		case PTR_TO_SOCKET:
11409 		case PTR_TO_SOCK_COMMON:
11410 			convert_ctx_access = bpf_sock_convert_ctx_access;
11411 			break;
11412 		case PTR_TO_TCP_SOCK:
11413 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
11414 			break;
11415 		case PTR_TO_XDP_SOCK:
11416 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
11417 			break;
11418 		case PTR_TO_BTF_ID:
11419 			if (type == BPF_READ) {
11420 				insn->code = BPF_LDX | BPF_PROBE_MEM |
11421 					BPF_SIZE((insn)->code);
11422 				env->prog->aux->num_exentries++;
11423 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
11424 				verbose(env, "Writes through BTF pointers are not allowed\n");
11425 				return -EINVAL;
11426 			}
11427 			continue;
11428 		default:
11429 			continue;
11430 		}
11431 
11432 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
11433 		size = BPF_LDST_BYTES(insn);
11434 
11435 		/* If the read access is a narrower load of the field,
11436 		 * convert to a 4/8-byte load, to minimum program type specific
11437 		 * convert_ctx_access changes. If conversion is successful,
11438 		 * we will apply proper mask to the result.
11439 		 */
11440 		is_narrower_load = size < ctx_field_size;
11441 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
11442 		off = insn->off;
11443 		if (is_narrower_load) {
11444 			u8 size_code;
11445 
11446 			if (type == BPF_WRITE) {
11447 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
11448 				return -EINVAL;
11449 			}
11450 
11451 			size_code = BPF_H;
11452 			if (ctx_field_size == 4)
11453 				size_code = BPF_W;
11454 			else if (ctx_field_size == 8)
11455 				size_code = BPF_DW;
11456 
11457 			insn->off = off & ~(size_default - 1);
11458 			insn->code = BPF_LDX | BPF_MEM | size_code;
11459 		}
11460 
11461 		target_size = 0;
11462 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
11463 					 &target_size);
11464 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
11465 		    (ctx_field_size && !target_size)) {
11466 			verbose(env, "bpf verifier is misconfigured\n");
11467 			return -EINVAL;
11468 		}
11469 
11470 		if (is_narrower_load && size < target_size) {
11471 			u8 shift = bpf_ctx_narrow_access_offset(
11472 				off, size, size_default) * 8;
11473 			if (ctx_field_size <= 4) {
11474 				if (shift)
11475 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
11476 									insn->dst_reg,
11477 									shift);
11478 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
11479 								(1 << size * 8) - 1);
11480 			} else {
11481 				if (shift)
11482 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
11483 									insn->dst_reg,
11484 									shift);
11485 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
11486 								(1ULL << size * 8) - 1);
11487 			}
11488 		}
11489 
11490 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11491 		if (!new_prog)
11492 			return -ENOMEM;
11493 
11494 		delta += cnt - 1;
11495 
11496 		/* keep walking new program and skip insns we just inserted */
11497 		env->prog = new_prog;
11498 		insn      = new_prog->insnsi + i + delta;
11499 	}
11500 
11501 	return 0;
11502 }
11503 
11504 static int jit_subprogs(struct bpf_verifier_env *env)
11505 {
11506 	struct bpf_prog *prog = env->prog, **func, *tmp;
11507 	int i, j, subprog_start, subprog_end = 0, len, subprog;
11508 	struct bpf_map *map_ptr;
11509 	struct bpf_insn *insn;
11510 	void *old_bpf_func;
11511 	int err, num_exentries;
11512 
11513 	if (env->subprog_cnt <= 1)
11514 		return 0;
11515 
11516 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11517 		if (bpf_pseudo_func(insn)) {
11518 			env->insn_aux_data[i].call_imm = insn->imm;
11519 			/* subprog is encoded in insn[1].imm */
11520 			continue;
11521 		}
11522 
11523 		if (!bpf_pseudo_call(insn))
11524 			continue;
11525 		/* Upon error here we cannot fall back to interpreter but
11526 		 * need a hard reject of the program. Thus -EFAULT is
11527 		 * propagated in any case.
11528 		 */
11529 		subprog = find_subprog(env, i + insn->imm + 1);
11530 		if (subprog < 0) {
11531 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
11532 				  i + insn->imm + 1);
11533 			return -EFAULT;
11534 		}
11535 		/* temporarily remember subprog id inside insn instead of
11536 		 * aux_data, since next loop will split up all insns into funcs
11537 		 */
11538 		insn->off = subprog;
11539 		/* remember original imm in case JIT fails and fallback
11540 		 * to interpreter will be needed
11541 		 */
11542 		env->insn_aux_data[i].call_imm = insn->imm;
11543 		/* point imm to __bpf_call_base+1 from JITs point of view */
11544 		insn->imm = 1;
11545 	}
11546 
11547 	err = bpf_prog_alloc_jited_linfo(prog);
11548 	if (err)
11549 		goto out_undo_insn;
11550 
11551 	err = -ENOMEM;
11552 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
11553 	if (!func)
11554 		goto out_undo_insn;
11555 
11556 	for (i = 0; i < env->subprog_cnt; i++) {
11557 		subprog_start = subprog_end;
11558 		subprog_end = env->subprog_info[i + 1].start;
11559 
11560 		len = subprog_end - subprog_start;
11561 		/* BPF_PROG_RUN doesn't call subprogs directly,
11562 		 * hence main prog stats include the runtime of subprogs.
11563 		 * subprogs don't have IDs and not reachable via prog_get_next_id
11564 		 * func[i]->stats will never be accessed and stays NULL
11565 		 */
11566 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
11567 		if (!func[i])
11568 			goto out_free;
11569 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
11570 		       len * sizeof(struct bpf_insn));
11571 		func[i]->type = prog->type;
11572 		func[i]->len = len;
11573 		if (bpf_prog_calc_tag(func[i]))
11574 			goto out_free;
11575 		func[i]->is_func = 1;
11576 		func[i]->aux->func_idx = i;
11577 		/* the btf and func_info will be freed only at prog->aux */
11578 		func[i]->aux->btf = prog->aux->btf;
11579 		func[i]->aux->func_info = prog->aux->func_info;
11580 
11581 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
11582 			u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
11583 			int ret;
11584 
11585 			if (!(insn_idx >= subprog_start &&
11586 			      insn_idx <= subprog_end))
11587 				continue;
11588 
11589 			ret = bpf_jit_add_poke_descriptor(func[i],
11590 							  &prog->aux->poke_tab[j]);
11591 			if (ret < 0) {
11592 				verbose(env, "adding tail call poke descriptor failed\n");
11593 				goto out_free;
11594 			}
11595 
11596 			func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
11597 
11598 			map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
11599 			ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
11600 			if (ret < 0) {
11601 				verbose(env, "tracking tail call prog failed\n");
11602 				goto out_free;
11603 			}
11604 		}
11605 
11606 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
11607 		 * Long term would need debug info to populate names
11608 		 */
11609 		func[i]->aux->name[0] = 'F';
11610 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
11611 		func[i]->jit_requested = 1;
11612 		func[i]->aux->linfo = prog->aux->linfo;
11613 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
11614 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
11615 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
11616 		num_exentries = 0;
11617 		insn = func[i]->insnsi;
11618 		for (j = 0; j < func[i]->len; j++, insn++) {
11619 			if (BPF_CLASS(insn->code) == BPF_LDX &&
11620 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
11621 				num_exentries++;
11622 		}
11623 		func[i]->aux->num_exentries = num_exentries;
11624 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
11625 		func[i] = bpf_int_jit_compile(func[i]);
11626 		if (!func[i]->jited) {
11627 			err = -ENOTSUPP;
11628 			goto out_free;
11629 		}
11630 		cond_resched();
11631 	}
11632 
11633 	/* Untrack main program's aux structs so that during map_poke_run()
11634 	 * we will not stumble upon the unfilled poke descriptors; each
11635 	 * of the main program's poke descs got distributed across subprogs
11636 	 * and got tracked onto map, so we are sure that none of them will
11637 	 * be missed after the operation below
11638 	 */
11639 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
11640 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
11641 
11642 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
11643 	}
11644 
11645 	/* at this point all bpf functions were successfully JITed
11646 	 * now populate all bpf_calls with correct addresses and
11647 	 * run last pass of JIT
11648 	 */
11649 	for (i = 0; i < env->subprog_cnt; i++) {
11650 		insn = func[i]->insnsi;
11651 		for (j = 0; j < func[i]->len; j++, insn++) {
11652 			if (bpf_pseudo_func(insn)) {
11653 				subprog = insn[1].imm;
11654 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
11655 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
11656 				continue;
11657 			}
11658 			if (!bpf_pseudo_call(insn))
11659 				continue;
11660 			subprog = insn->off;
11661 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
11662 				    __bpf_call_base;
11663 		}
11664 
11665 		/* we use the aux data to keep a list of the start addresses
11666 		 * of the JITed images for each function in the program
11667 		 *
11668 		 * for some architectures, such as powerpc64, the imm field
11669 		 * might not be large enough to hold the offset of the start
11670 		 * address of the callee's JITed image from __bpf_call_base
11671 		 *
11672 		 * in such cases, we can lookup the start address of a callee
11673 		 * by using its subprog id, available from the off field of
11674 		 * the call instruction, as an index for this list
11675 		 */
11676 		func[i]->aux->func = func;
11677 		func[i]->aux->func_cnt = env->subprog_cnt;
11678 	}
11679 	for (i = 0; i < env->subprog_cnt; i++) {
11680 		old_bpf_func = func[i]->bpf_func;
11681 		tmp = bpf_int_jit_compile(func[i]);
11682 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
11683 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
11684 			err = -ENOTSUPP;
11685 			goto out_free;
11686 		}
11687 		cond_resched();
11688 	}
11689 
11690 	/* finally lock prog and jit images for all functions and
11691 	 * populate kallsysm
11692 	 */
11693 	for (i = 0; i < env->subprog_cnt; i++) {
11694 		bpf_prog_lock_ro(func[i]);
11695 		bpf_prog_kallsyms_add(func[i]);
11696 	}
11697 
11698 	/* Last step: make now unused interpreter insns from main
11699 	 * prog consistent for later dump requests, so they can
11700 	 * later look the same as if they were interpreted only.
11701 	 */
11702 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11703 		if (bpf_pseudo_func(insn)) {
11704 			insn[0].imm = env->insn_aux_data[i].call_imm;
11705 			insn[1].imm = find_subprog(env, i + insn[0].imm + 1);
11706 			continue;
11707 		}
11708 		if (!bpf_pseudo_call(insn))
11709 			continue;
11710 		insn->off = env->insn_aux_data[i].call_imm;
11711 		subprog = find_subprog(env, i + insn->off + 1);
11712 		insn->imm = subprog;
11713 	}
11714 
11715 	prog->jited = 1;
11716 	prog->bpf_func = func[0]->bpf_func;
11717 	prog->aux->func = func;
11718 	prog->aux->func_cnt = env->subprog_cnt;
11719 	bpf_prog_free_unused_jited_linfo(prog);
11720 	return 0;
11721 out_free:
11722 	for (i = 0; i < env->subprog_cnt; i++) {
11723 		if (!func[i])
11724 			continue;
11725 
11726 		for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
11727 			map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
11728 			map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
11729 		}
11730 		bpf_jit_free(func[i]);
11731 	}
11732 	kfree(func);
11733 out_undo_insn:
11734 	/* cleanup main prog to be interpreted */
11735 	prog->jit_requested = 0;
11736 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11737 		if (!bpf_pseudo_call(insn))
11738 			continue;
11739 		insn->off = 0;
11740 		insn->imm = env->insn_aux_data[i].call_imm;
11741 	}
11742 	bpf_prog_free_jited_linfo(prog);
11743 	return err;
11744 }
11745 
11746 static int fixup_call_args(struct bpf_verifier_env *env)
11747 {
11748 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
11749 	struct bpf_prog *prog = env->prog;
11750 	struct bpf_insn *insn = prog->insnsi;
11751 	int i, depth;
11752 #endif
11753 	int err = 0;
11754 
11755 	if (env->prog->jit_requested &&
11756 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
11757 		err = jit_subprogs(env);
11758 		if (err == 0)
11759 			return 0;
11760 		if (err == -EFAULT)
11761 			return err;
11762 	}
11763 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
11764 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
11765 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
11766 		 * have to be rejected, since interpreter doesn't support them yet.
11767 		 */
11768 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
11769 		return -EINVAL;
11770 	}
11771 	for (i = 0; i < prog->len; i++, insn++) {
11772 		if (bpf_pseudo_func(insn)) {
11773 			/* When JIT fails the progs with callback calls
11774 			 * have to be rejected, since interpreter doesn't support them yet.
11775 			 */
11776 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
11777 			return -EINVAL;
11778 		}
11779 
11780 		if (!bpf_pseudo_call(insn))
11781 			continue;
11782 		depth = get_callee_stack_depth(env, insn, i);
11783 		if (depth < 0)
11784 			return depth;
11785 		bpf_patch_call_args(insn, depth);
11786 	}
11787 	err = 0;
11788 #endif
11789 	return err;
11790 }
11791 
11792 /* Do various post-verification rewrites in a single program pass.
11793  * These rewrites simplify JIT and interpreter implementations.
11794  */
11795 static int do_misc_fixups(struct bpf_verifier_env *env)
11796 {
11797 	struct bpf_prog *prog = env->prog;
11798 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
11799 	struct bpf_insn *insn = prog->insnsi;
11800 	const struct bpf_func_proto *fn;
11801 	const int insn_cnt = prog->len;
11802 	const struct bpf_map_ops *ops;
11803 	struct bpf_insn_aux_data *aux;
11804 	struct bpf_insn insn_buf[16];
11805 	struct bpf_prog *new_prog;
11806 	struct bpf_map *map_ptr;
11807 	int i, ret, cnt, delta = 0;
11808 
11809 	for (i = 0; i < insn_cnt; i++, insn++) {
11810 		/* Make divide-by-zero exceptions impossible. */
11811 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
11812 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
11813 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
11814 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
11815 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
11816 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
11817 			struct bpf_insn *patchlet;
11818 			struct bpf_insn chk_and_div[] = {
11819 				/* [R,W]x div 0 -> 0 */
11820 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11821 					     BPF_JNE | BPF_K, insn->src_reg,
11822 					     0, 2, 0),
11823 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
11824 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11825 				*insn,
11826 			};
11827 			struct bpf_insn chk_and_mod[] = {
11828 				/* [R,W]x mod 0 -> [R,W]x */
11829 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11830 					     BPF_JEQ | BPF_K, insn->src_reg,
11831 					     0, 1 + (is64 ? 0 : 1), 0),
11832 				*insn,
11833 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11834 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
11835 			};
11836 
11837 			patchlet = isdiv ? chk_and_div : chk_and_mod;
11838 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
11839 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
11840 
11841 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
11842 			if (!new_prog)
11843 				return -ENOMEM;
11844 
11845 			delta    += cnt - 1;
11846 			env->prog = prog = new_prog;
11847 			insn      = new_prog->insnsi + i + delta;
11848 			continue;
11849 		}
11850 
11851 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
11852 		if (BPF_CLASS(insn->code) == BPF_LD &&
11853 		    (BPF_MODE(insn->code) == BPF_ABS ||
11854 		     BPF_MODE(insn->code) == BPF_IND)) {
11855 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
11856 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11857 				verbose(env, "bpf verifier is misconfigured\n");
11858 				return -EINVAL;
11859 			}
11860 
11861 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11862 			if (!new_prog)
11863 				return -ENOMEM;
11864 
11865 			delta    += cnt - 1;
11866 			env->prog = prog = new_prog;
11867 			insn      = new_prog->insnsi + i + delta;
11868 			continue;
11869 		}
11870 
11871 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
11872 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
11873 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
11874 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
11875 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
11876 			struct bpf_insn insn_buf[16];
11877 			struct bpf_insn *patch = &insn_buf[0];
11878 			bool issrc, isneg;
11879 			u32 off_reg;
11880 
11881 			aux = &env->insn_aux_data[i + delta];
11882 			if (!aux->alu_state ||
11883 			    aux->alu_state == BPF_ALU_NON_POINTER)
11884 				continue;
11885 
11886 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
11887 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
11888 				BPF_ALU_SANITIZE_SRC;
11889 
11890 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
11891 			if (isneg)
11892 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11893 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
11894 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
11895 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
11896 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
11897 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
11898 			if (issrc) {
11899 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
11900 							 off_reg);
11901 				insn->src_reg = BPF_REG_AX;
11902 			} else {
11903 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
11904 							 BPF_REG_AX);
11905 			}
11906 			if (isneg)
11907 				insn->code = insn->code == code_add ?
11908 					     code_sub : code_add;
11909 			*patch++ = *insn;
11910 			if (issrc && isneg)
11911 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11912 			cnt = patch - insn_buf;
11913 
11914 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11915 			if (!new_prog)
11916 				return -ENOMEM;
11917 
11918 			delta    += cnt - 1;
11919 			env->prog = prog = new_prog;
11920 			insn      = new_prog->insnsi + i + delta;
11921 			continue;
11922 		}
11923 
11924 		if (insn->code != (BPF_JMP | BPF_CALL))
11925 			continue;
11926 		if (insn->src_reg == BPF_PSEUDO_CALL)
11927 			continue;
11928 
11929 		if (insn->imm == BPF_FUNC_get_route_realm)
11930 			prog->dst_needed = 1;
11931 		if (insn->imm == BPF_FUNC_get_prandom_u32)
11932 			bpf_user_rnd_init_once();
11933 		if (insn->imm == BPF_FUNC_override_return)
11934 			prog->kprobe_override = 1;
11935 		if (insn->imm == BPF_FUNC_tail_call) {
11936 			/* If we tail call into other programs, we
11937 			 * cannot make any assumptions since they can
11938 			 * be replaced dynamically during runtime in
11939 			 * the program array.
11940 			 */
11941 			prog->cb_access = 1;
11942 			if (!allow_tail_call_in_subprogs(env))
11943 				prog->aux->stack_depth = MAX_BPF_STACK;
11944 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
11945 
11946 			/* mark bpf_tail_call as different opcode to avoid
11947 			 * conditional branch in the interpeter for every normal
11948 			 * call and to prevent accidental JITing by JIT compiler
11949 			 * that doesn't support bpf_tail_call yet
11950 			 */
11951 			insn->imm = 0;
11952 			insn->code = BPF_JMP | BPF_TAIL_CALL;
11953 
11954 			aux = &env->insn_aux_data[i + delta];
11955 			if (env->bpf_capable && !expect_blinding &&
11956 			    prog->jit_requested &&
11957 			    !bpf_map_key_poisoned(aux) &&
11958 			    !bpf_map_ptr_poisoned(aux) &&
11959 			    !bpf_map_ptr_unpriv(aux)) {
11960 				struct bpf_jit_poke_descriptor desc = {
11961 					.reason = BPF_POKE_REASON_TAIL_CALL,
11962 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
11963 					.tail_call.key = bpf_map_key_immediate(aux),
11964 					.insn_idx = i + delta,
11965 				};
11966 
11967 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
11968 				if (ret < 0) {
11969 					verbose(env, "adding tail call poke descriptor failed\n");
11970 					return ret;
11971 				}
11972 
11973 				insn->imm = ret + 1;
11974 				continue;
11975 			}
11976 
11977 			if (!bpf_map_ptr_unpriv(aux))
11978 				continue;
11979 
11980 			/* instead of changing every JIT dealing with tail_call
11981 			 * emit two extra insns:
11982 			 * if (index >= max_entries) goto out;
11983 			 * index &= array->index_mask;
11984 			 * to avoid out-of-bounds cpu speculation
11985 			 */
11986 			if (bpf_map_ptr_poisoned(aux)) {
11987 				verbose(env, "tail_call abusing map_ptr\n");
11988 				return -EINVAL;
11989 			}
11990 
11991 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11992 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
11993 						  map_ptr->max_entries, 2);
11994 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
11995 						    container_of(map_ptr,
11996 								 struct bpf_array,
11997 								 map)->index_mask);
11998 			insn_buf[2] = *insn;
11999 			cnt = 3;
12000 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12001 			if (!new_prog)
12002 				return -ENOMEM;
12003 
12004 			delta    += cnt - 1;
12005 			env->prog = prog = new_prog;
12006 			insn      = new_prog->insnsi + i + delta;
12007 			continue;
12008 		}
12009 
12010 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
12011 		 * and other inlining handlers are currently limited to 64 bit
12012 		 * only.
12013 		 */
12014 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
12015 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
12016 		     insn->imm == BPF_FUNC_map_update_elem ||
12017 		     insn->imm == BPF_FUNC_map_delete_elem ||
12018 		     insn->imm == BPF_FUNC_map_push_elem   ||
12019 		     insn->imm == BPF_FUNC_map_pop_elem    ||
12020 		     insn->imm == BPF_FUNC_map_peek_elem)) {
12021 			aux = &env->insn_aux_data[i + delta];
12022 			if (bpf_map_ptr_poisoned(aux))
12023 				goto patch_call_imm;
12024 
12025 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
12026 			ops = map_ptr->ops;
12027 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
12028 			    ops->map_gen_lookup) {
12029 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
12030 				if (cnt == -EOPNOTSUPP)
12031 					goto patch_map_ops_generic;
12032 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12033 					verbose(env, "bpf verifier is misconfigured\n");
12034 					return -EINVAL;
12035 				}
12036 
12037 				new_prog = bpf_patch_insn_data(env, i + delta,
12038 							       insn_buf, cnt);
12039 				if (!new_prog)
12040 					return -ENOMEM;
12041 
12042 				delta    += cnt - 1;
12043 				env->prog = prog = new_prog;
12044 				insn      = new_prog->insnsi + i + delta;
12045 				continue;
12046 			}
12047 
12048 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
12049 				     (void *(*)(struct bpf_map *map, void *key))NULL));
12050 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
12051 				     (int (*)(struct bpf_map *map, void *key))NULL));
12052 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
12053 				     (int (*)(struct bpf_map *map, void *key, void *value,
12054 					      u64 flags))NULL));
12055 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
12056 				     (int (*)(struct bpf_map *map, void *value,
12057 					      u64 flags))NULL));
12058 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
12059 				     (int (*)(struct bpf_map *map, void *value))NULL));
12060 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
12061 				     (int (*)(struct bpf_map *map, void *value))NULL));
12062 patch_map_ops_generic:
12063 			switch (insn->imm) {
12064 			case BPF_FUNC_map_lookup_elem:
12065 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
12066 					    __bpf_call_base;
12067 				continue;
12068 			case BPF_FUNC_map_update_elem:
12069 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
12070 					    __bpf_call_base;
12071 				continue;
12072 			case BPF_FUNC_map_delete_elem:
12073 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
12074 					    __bpf_call_base;
12075 				continue;
12076 			case BPF_FUNC_map_push_elem:
12077 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
12078 					    __bpf_call_base;
12079 				continue;
12080 			case BPF_FUNC_map_pop_elem:
12081 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
12082 					    __bpf_call_base;
12083 				continue;
12084 			case BPF_FUNC_map_peek_elem:
12085 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
12086 					    __bpf_call_base;
12087 				continue;
12088 			}
12089 
12090 			goto patch_call_imm;
12091 		}
12092 
12093 		/* Implement bpf_jiffies64 inline. */
12094 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
12095 		    insn->imm == BPF_FUNC_jiffies64) {
12096 			struct bpf_insn ld_jiffies_addr[2] = {
12097 				BPF_LD_IMM64(BPF_REG_0,
12098 					     (unsigned long)&jiffies),
12099 			};
12100 
12101 			insn_buf[0] = ld_jiffies_addr[0];
12102 			insn_buf[1] = ld_jiffies_addr[1];
12103 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
12104 						  BPF_REG_0, 0);
12105 			cnt = 3;
12106 
12107 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
12108 						       cnt);
12109 			if (!new_prog)
12110 				return -ENOMEM;
12111 
12112 			delta    += cnt - 1;
12113 			env->prog = prog = new_prog;
12114 			insn      = new_prog->insnsi + i + delta;
12115 			continue;
12116 		}
12117 
12118 patch_call_imm:
12119 		fn = env->ops->get_func_proto(insn->imm, env->prog);
12120 		/* all functions that have prototype and verifier allowed
12121 		 * programs to call them, must be real in-kernel functions
12122 		 */
12123 		if (!fn->func) {
12124 			verbose(env,
12125 				"kernel subsystem misconfigured func %s#%d\n",
12126 				func_id_name(insn->imm), insn->imm);
12127 			return -EFAULT;
12128 		}
12129 		insn->imm = fn->func - __bpf_call_base;
12130 	}
12131 
12132 	/* Since poke tab is now finalized, publish aux to tracker. */
12133 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
12134 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
12135 		if (!map_ptr->ops->map_poke_track ||
12136 		    !map_ptr->ops->map_poke_untrack ||
12137 		    !map_ptr->ops->map_poke_run) {
12138 			verbose(env, "bpf verifier is misconfigured\n");
12139 			return -EINVAL;
12140 		}
12141 
12142 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
12143 		if (ret < 0) {
12144 			verbose(env, "tracking tail call prog failed\n");
12145 			return ret;
12146 		}
12147 	}
12148 
12149 	return 0;
12150 }
12151 
12152 static void free_states(struct bpf_verifier_env *env)
12153 {
12154 	struct bpf_verifier_state_list *sl, *sln;
12155 	int i;
12156 
12157 	sl = env->free_list;
12158 	while (sl) {
12159 		sln = sl->next;
12160 		free_verifier_state(&sl->state, false);
12161 		kfree(sl);
12162 		sl = sln;
12163 	}
12164 	env->free_list = NULL;
12165 
12166 	if (!env->explored_states)
12167 		return;
12168 
12169 	for (i = 0; i < state_htab_size(env); i++) {
12170 		sl = env->explored_states[i];
12171 
12172 		while (sl) {
12173 			sln = sl->next;
12174 			free_verifier_state(&sl->state, false);
12175 			kfree(sl);
12176 			sl = sln;
12177 		}
12178 		env->explored_states[i] = NULL;
12179 	}
12180 }
12181 
12182 /* The verifier is using insn_aux_data[] to store temporary data during
12183  * verification and to store information for passes that run after the
12184  * verification like dead code sanitization. do_check_common() for subprogram N
12185  * may analyze many other subprograms. sanitize_insn_aux_data() clears all
12186  * temporary data after do_check_common() finds that subprogram N cannot be
12187  * verified independently. pass_cnt counts the number of times
12188  * do_check_common() was run and insn->aux->seen tells the pass number
12189  * insn_aux_data was touched. These variables are compared to clear temporary
12190  * data from failed pass. For testing and experiments do_check_common() can be
12191  * run multiple times even when prior attempt to verify is unsuccessful.
12192  */
12193 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
12194 {
12195 	struct bpf_insn *insn = env->prog->insnsi;
12196 	struct bpf_insn_aux_data *aux;
12197 	int i, class;
12198 
12199 	for (i = 0; i < env->prog->len; i++) {
12200 		class = BPF_CLASS(insn[i].code);
12201 		if (class != BPF_LDX && class != BPF_STX)
12202 			continue;
12203 		aux = &env->insn_aux_data[i];
12204 		if (aux->seen != env->pass_cnt)
12205 			continue;
12206 		memset(aux, 0, offsetof(typeof(*aux), orig_idx));
12207 	}
12208 }
12209 
12210 static int do_check_common(struct bpf_verifier_env *env, int subprog)
12211 {
12212 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
12213 	struct bpf_verifier_state *state;
12214 	struct bpf_reg_state *regs;
12215 	int ret, i;
12216 
12217 	env->prev_linfo = NULL;
12218 	env->pass_cnt++;
12219 
12220 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
12221 	if (!state)
12222 		return -ENOMEM;
12223 	state->curframe = 0;
12224 	state->speculative = false;
12225 	state->branches = 1;
12226 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
12227 	if (!state->frame[0]) {
12228 		kfree(state);
12229 		return -ENOMEM;
12230 	}
12231 	env->cur_state = state;
12232 	init_func_state(env, state->frame[0],
12233 			BPF_MAIN_FUNC /* callsite */,
12234 			0 /* frameno */,
12235 			subprog);
12236 
12237 	regs = state->frame[state->curframe]->regs;
12238 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
12239 		ret = btf_prepare_func_args(env, subprog, regs);
12240 		if (ret)
12241 			goto out;
12242 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
12243 			if (regs[i].type == PTR_TO_CTX)
12244 				mark_reg_known_zero(env, regs, i);
12245 			else if (regs[i].type == SCALAR_VALUE)
12246 				mark_reg_unknown(env, regs, i);
12247 			else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
12248 				const u32 mem_size = regs[i].mem_size;
12249 
12250 				mark_reg_known_zero(env, regs, i);
12251 				regs[i].mem_size = mem_size;
12252 				regs[i].id = ++env->id_gen;
12253 			}
12254 		}
12255 	} else {
12256 		/* 1st arg to a function */
12257 		regs[BPF_REG_1].type = PTR_TO_CTX;
12258 		mark_reg_known_zero(env, regs, BPF_REG_1);
12259 		ret = btf_check_func_arg_match(env, subprog, regs);
12260 		if (ret == -EFAULT)
12261 			/* unlikely verifier bug. abort.
12262 			 * ret == 0 and ret < 0 are sadly acceptable for
12263 			 * main() function due to backward compatibility.
12264 			 * Like socket filter program may be written as:
12265 			 * int bpf_prog(struct pt_regs *ctx)
12266 			 * and never dereference that ctx in the program.
12267 			 * 'struct pt_regs' is a type mismatch for socket
12268 			 * filter that should be using 'struct __sk_buff'.
12269 			 */
12270 			goto out;
12271 	}
12272 
12273 	ret = do_check(env);
12274 out:
12275 	/* check for NULL is necessary, since cur_state can be freed inside
12276 	 * do_check() under memory pressure.
12277 	 */
12278 	if (env->cur_state) {
12279 		free_verifier_state(env->cur_state, true);
12280 		env->cur_state = NULL;
12281 	}
12282 	while (!pop_stack(env, NULL, NULL, false));
12283 	if (!ret && pop_log)
12284 		bpf_vlog_reset(&env->log, 0);
12285 	free_states(env);
12286 	if (ret)
12287 		/* clean aux data in case subprog was rejected */
12288 		sanitize_insn_aux_data(env);
12289 	return ret;
12290 }
12291 
12292 /* Verify all global functions in a BPF program one by one based on their BTF.
12293  * All global functions must pass verification. Otherwise the whole program is rejected.
12294  * Consider:
12295  * int bar(int);
12296  * int foo(int f)
12297  * {
12298  *    return bar(f);
12299  * }
12300  * int bar(int b)
12301  * {
12302  *    ...
12303  * }
12304  * foo() will be verified first for R1=any_scalar_value. During verification it
12305  * will be assumed that bar() already verified successfully and call to bar()
12306  * from foo() will be checked for type match only. Later bar() will be verified
12307  * independently to check that it's safe for R1=any_scalar_value.
12308  */
12309 static int do_check_subprogs(struct bpf_verifier_env *env)
12310 {
12311 	struct bpf_prog_aux *aux = env->prog->aux;
12312 	int i, ret;
12313 
12314 	if (!aux->func_info)
12315 		return 0;
12316 
12317 	for (i = 1; i < env->subprog_cnt; i++) {
12318 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
12319 			continue;
12320 		env->insn_idx = env->subprog_info[i].start;
12321 		WARN_ON_ONCE(env->insn_idx == 0);
12322 		ret = do_check_common(env, i);
12323 		if (ret) {
12324 			return ret;
12325 		} else if (env->log.level & BPF_LOG_LEVEL) {
12326 			verbose(env,
12327 				"Func#%d is safe for any args that match its prototype\n",
12328 				i);
12329 		}
12330 	}
12331 	return 0;
12332 }
12333 
12334 static int do_check_main(struct bpf_verifier_env *env)
12335 {
12336 	int ret;
12337 
12338 	env->insn_idx = 0;
12339 	ret = do_check_common(env, 0);
12340 	if (!ret)
12341 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
12342 	return ret;
12343 }
12344 
12345 
12346 static void print_verification_stats(struct bpf_verifier_env *env)
12347 {
12348 	int i;
12349 
12350 	if (env->log.level & BPF_LOG_STATS) {
12351 		verbose(env, "verification time %lld usec\n",
12352 			div_u64(env->verification_time, 1000));
12353 		verbose(env, "stack depth ");
12354 		for (i = 0; i < env->subprog_cnt; i++) {
12355 			u32 depth = env->subprog_info[i].stack_depth;
12356 
12357 			verbose(env, "%d", depth);
12358 			if (i + 1 < env->subprog_cnt)
12359 				verbose(env, "+");
12360 		}
12361 		verbose(env, "\n");
12362 	}
12363 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
12364 		"total_states %d peak_states %d mark_read %d\n",
12365 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
12366 		env->max_states_per_insn, env->total_states,
12367 		env->peak_states, env->longest_mark_read_walk);
12368 }
12369 
12370 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
12371 {
12372 	const struct btf_type *t, *func_proto;
12373 	const struct bpf_struct_ops *st_ops;
12374 	const struct btf_member *member;
12375 	struct bpf_prog *prog = env->prog;
12376 	u32 btf_id, member_idx;
12377 	const char *mname;
12378 
12379 	btf_id = prog->aux->attach_btf_id;
12380 	st_ops = bpf_struct_ops_find(btf_id);
12381 	if (!st_ops) {
12382 		verbose(env, "attach_btf_id %u is not a supported struct\n",
12383 			btf_id);
12384 		return -ENOTSUPP;
12385 	}
12386 
12387 	t = st_ops->type;
12388 	member_idx = prog->expected_attach_type;
12389 	if (member_idx >= btf_type_vlen(t)) {
12390 		verbose(env, "attach to invalid member idx %u of struct %s\n",
12391 			member_idx, st_ops->name);
12392 		return -EINVAL;
12393 	}
12394 
12395 	member = &btf_type_member(t)[member_idx];
12396 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
12397 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
12398 					       NULL);
12399 	if (!func_proto) {
12400 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
12401 			mname, member_idx, st_ops->name);
12402 		return -EINVAL;
12403 	}
12404 
12405 	if (st_ops->check_member) {
12406 		int err = st_ops->check_member(t, member);
12407 
12408 		if (err) {
12409 			verbose(env, "attach to unsupported member %s of struct %s\n",
12410 				mname, st_ops->name);
12411 			return err;
12412 		}
12413 	}
12414 
12415 	prog->aux->attach_func_proto = func_proto;
12416 	prog->aux->attach_func_name = mname;
12417 	env->ops = st_ops->verifier_ops;
12418 
12419 	return 0;
12420 }
12421 #define SECURITY_PREFIX "security_"
12422 
12423 static int check_attach_modify_return(unsigned long addr, const char *func_name)
12424 {
12425 	if (within_error_injection_list(addr) ||
12426 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
12427 		return 0;
12428 
12429 	return -EINVAL;
12430 }
12431 
12432 /* list of non-sleepable functions that are otherwise on
12433  * ALLOW_ERROR_INJECTION list
12434  */
12435 BTF_SET_START(btf_non_sleepable_error_inject)
12436 /* Three functions below can be called from sleepable and non-sleepable context.
12437  * Assume non-sleepable from bpf safety point of view.
12438  */
12439 BTF_ID(func, __add_to_page_cache_locked)
12440 BTF_ID(func, should_fail_alloc_page)
12441 BTF_ID(func, should_failslab)
12442 BTF_SET_END(btf_non_sleepable_error_inject)
12443 
12444 static int check_non_sleepable_error_inject(u32 btf_id)
12445 {
12446 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
12447 }
12448 
12449 int bpf_check_attach_target(struct bpf_verifier_log *log,
12450 			    const struct bpf_prog *prog,
12451 			    const struct bpf_prog *tgt_prog,
12452 			    u32 btf_id,
12453 			    struct bpf_attach_target_info *tgt_info)
12454 {
12455 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
12456 	const char prefix[] = "btf_trace_";
12457 	int ret = 0, subprog = -1, i;
12458 	const struct btf_type *t;
12459 	bool conservative = true;
12460 	const char *tname;
12461 	struct btf *btf;
12462 	long addr = 0;
12463 
12464 	if (!btf_id) {
12465 		bpf_log(log, "Tracing programs must provide btf_id\n");
12466 		return -EINVAL;
12467 	}
12468 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
12469 	if (!btf) {
12470 		bpf_log(log,
12471 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
12472 		return -EINVAL;
12473 	}
12474 	t = btf_type_by_id(btf, btf_id);
12475 	if (!t) {
12476 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
12477 		return -EINVAL;
12478 	}
12479 	tname = btf_name_by_offset(btf, t->name_off);
12480 	if (!tname) {
12481 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
12482 		return -EINVAL;
12483 	}
12484 	if (tgt_prog) {
12485 		struct bpf_prog_aux *aux = tgt_prog->aux;
12486 
12487 		for (i = 0; i < aux->func_info_cnt; i++)
12488 			if (aux->func_info[i].type_id == btf_id) {
12489 				subprog = i;
12490 				break;
12491 			}
12492 		if (subprog == -1) {
12493 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
12494 			return -EINVAL;
12495 		}
12496 		conservative = aux->func_info_aux[subprog].unreliable;
12497 		if (prog_extension) {
12498 			if (conservative) {
12499 				bpf_log(log,
12500 					"Cannot replace static functions\n");
12501 				return -EINVAL;
12502 			}
12503 			if (!prog->jit_requested) {
12504 				bpf_log(log,
12505 					"Extension programs should be JITed\n");
12506 				return -EINVAL;
12507 			}
12508 		}
12509 		if (!tgt_prog->jited) {
12510 			bpf_log(log, "Can attach to only JITed progs\n");
12511 			return -EINVAL;
12512 		}
12513 		if (tgt_prog->type == prog->type) {
12514 			/* Cannot fentry/fexit another fentry/fexit program.
12515 			 * Cannot attach program extension to another extension.
12516 			 * It's ok to attach fentry/fexit to extension program.
12517 			 */
12518 			bpf_log(log, "Cannot recursively attach\n");
12519 			return -EINVAL;
12520 		}
12521 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
12522 		    prog_extension &&
12523 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
12524 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
12525 			/* Program extensions can extend all program types
12526 			 * except fentry/fexit. The reason is the following.
12527 			 * The fentry/fexit programs are used for performance
12528 			 * analysis, stats and can be attached to any program
12529 			 * type except themselves. When extension program is
12530 			 * replacing XDP function it is necessary to allow
12531 			 * performance analysis of all functions. Both original
12532 			 * XDP program and its program extension. Hence
12533 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
12534 			 * allowed. If extending of fentry/fexit was allowed it
12535 			 * would be possible to create long call chain
12536 			 * fentry->extension->fentry->extension beyond
12537 			 * reasonable stack size. Hence extending fentry is not
12538 			 * allowed.
12539 			 */
12540 			bpf_log(log, "Cannot extend fentry/fexit\n");
12541 			return -EINVAL;
12542 		}
12543 	} else {
12544 		if (prog_extension) {
12545 			bpf_log(log, "Cannot replace kernel functions\n");
12546 			return -EINVAL;
12547 		}
12548 	}
12549 
12550 	switch (prog->expected_attach_type) {
12551 	case BPF_TRACE_RAW_TP:
12552 		if (tgt_prog) {
12553 			bpf_log(log,
12554 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
12555 			return -EINVAL;
12556 		}
12557 		if (!btf_type_is_typedef(t)) {
12558 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
12559 				btf_id);
12560 			return -EINVAL;
12561 		}
12562 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
12563 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
12564 				btf_id, tname);
12565 			return -EINVAL;
12566 		}
12567 		tname += sizeof(prefix) - 1;
12568 		t = btf_type_by_id(btf, t->type);
12569 		if (!btf_type_is_ptr(t))
12570 			/* should never happen in valid vmlinux build */
12571 			return -EINVAL;
12572 		t = btf_type_by_id(btf, t->type);
12573 		if (!btf_type_is_func_proto(t))
12574 			/* should never happen in valid vmlinux build */
12575 			return -EINVAL;
12576 
12577 		break;
12578 	case BPF_TRACE_ITER:
12579 		if (!btf_type_is_func(t)) {
12580 			bpf_log(log, "attach_btf_id %u is not a function\n",
12581 				btf_id);
12582 			return -EINVAL;
12583 		}
12584 		t = btf_type_by_id(btf, t->type);
12585 		if (!btf_type_is_func_proto(t))
12586 			return -EINVAL;
12587 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12588 		if (ret)
12589 			return ret;
12590 		break;
12591 	default:
12592 		if (!prog_extension)
12593 			return -EINVAL;
12594 		fallthrough;
12595 	case BPF_MODIFY_RETURN:
12596 	case BPF_LSM_MAC:
12597 	case BPF_TRACE_FENTRY:
12598 	case BPF_TRACE_FEXIT:
12599 		if (!btf_type_is_func(t)) {
12600 			bpf_log(log, "attach_btf_id %u is not a function\n",
12601 				btf_id);
12602 			return -EINVAL;
12603 		}
12604 		if (prog_extension &&
12605 		    btf_check_type_match(log, prog, btf, t))
12606 			return -EINVAL;
12607 		t = btf_type_by_id(btf, t->type);
12608 		if (!btf_type_is_func_proto(t))
12609 			return -EINVAL;
12610 
12611 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
12612 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
12613 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
12614 			return -EINVAL;
12615 
12616 		if (tgt_prog && conservative)
12617 			t = NULL;
12618 
12619 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12620 		if (ret < 0)
12621 			return ret;
12622 
12623 		if (tgt_prog) {
12624 			if (subprog == 0)
12625 				addr = (long) tgt_prog->bpf_func;
12626 			else
12627 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
12628 		} else {
12629 			addr = kallsyms_lookup_name(tname);
12630 			if (!addr) {
12631 				bpf_log(log,
12632 					"The address of function %s cannot be found\n",
12633 					tname);
12634 				return -ENOENT;
12635 			}
12636 		}
12637 
12638 		if (prog->aux->sleepable) {
12639 			ret = -EINVAL;
12640 			switch (prog->type) {
12641 			case BPF_PROG_TYPE_TRACING:
12642 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
12643 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
12644 				 */
12645 				if (!check_non_sleepable_error_inject(btf_id) &&
12646 				    within_error_injection_list(addr))
12647 					ret = 0;
12648 				break;
12649 			case BPF_PROG_TYPE_LSM:
12650 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
12651 				 * Only some of them are sleepable.
12652 				 */
12653 				if (bpf_lsm_is_sleepable_hook(btf_id))
12654 					ret = 0;
12655 				break;
12656 			default:
12657 				break;
12658 			}
12659 			if (ret) {
12660 				bpf_log(log, "%s is not sleepable\n", tname);
12661 				return ret;
12662 			}
12663 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
12664 			if (tgt_prog) {
12665 				bpf_log(log, "can't modify return codes of BPF programs\n");
12666 				return -EINVAL;
12667 			}
12668 			ret = check_attach_modify_return(addr, tname);
12669 			if (ret) {
12670 				bpf_log(log, "%s() is not modifiable\n", tname);
12671 				return ret;
12672 			}
12673 		}
12674 
12675 		break;
12676 	}
12677 	tgt_info->tgt_addr = addr;
12678 	tgt_info->tgt_name = tname;
12679 	tgt_info->tgt_type = t;
12680 	return 0;
12681 }
12682 
12683 static int check_attach_btf_id(struct bpf_verifier_env *env)
12684 {
12685 	struct bpf_prog *prog = env->prog;
12686 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
12687 	struct bpf_attach_target_info tgt_info = {};
12688 	u32 btf_id = prog->aux->attach_btf_id;
12689 	struct bpf_trampoline *tr;
12690 	int ret;
12691 	u64 key;
12692 
12693 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
12694 	    prog->type != BPF_PROG_TYPE_LSM) {
12695 		verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
12696 		return -EINVAL;
12697 	}
12698 
12699 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
12700 		return check_struct_ops_btf_id(env);
12701 
12702 	if (prog->type != BPF_PROG_TYPE_TRACING &&
12703 	    prog->type != BPF_PROG_TYPE_LSM &&
12704 	    prog->type != BPF_PROG_TYPE_EXT)
12705 		return 0;
12706 
12707 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
12708 	if (ret)
12709 		return ret;
12710 
12711 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
12712 		/* to make freplace equivalent to their targets, they need to
12713 		 * inherit env->ops and expected_attach_type for the rest of the
12714 		 * verification
12715 		 */
12716 		env->ops = bpf_verifier_ops[tgt_prog->type];
12717 		prog->expected_attach_type = tgt_prog->expected_attach_type;
12718 	}
12719 
12720 	/* store info about the attachment target that will be used later */
12721 	prog->aux->attach_func_proto = tgt_info.tgt_type;
12722 	prog->aux->attach_func_name = tgt_info.tgt_name;
12723 
12724 	if (tgt_prog) {
12725 		prog->aux->saved_dst_prog_type = tgt_prog->type;
12726 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
12727 	}
12728 
12729 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
12730 		prog->aux->attach_btf_trace = true;
12731 		return 0;
12732 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
12733 		if (!bpf_iter_prog_supported(prog))
12734 			return -EINVAL;
12735 		return 0;
12736 	}
12737 
12738 	if (prog->type == BPF_PROG_TYPE_LSM) {
12739 		ret = bpf_lsm_verify_prog(&env->log, prog);
12740 		if (ret < 0)
12741 			return ret;
12742 	}
12743 
12744 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
12745 	tr = bpf_trampoline_get(key, &tgt_info);
12746 	if (!tr)
12747 		return -ENOMEM;
12748 
12749 	prog->aux->dst_trampoline = tr;
12750 	return 0;
12751 }
12752 
12753 struct btf *bpf_get_btf_vmlinux(void)
12754 {
12755 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
12756 		mutex_lock(&bpf_verifier_lock);
12757 		if (!btf_vmlinux)
12758 			btf_vmlinux = btf_parse_vmlinux();
12759 		mutex_unlock(&bpf_verifier_lock);
12760 	}
12761 	return btf_vmlinux;
12762 }
12763 
12764 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
12765 	      union bpf_attr __user *uattr)
12766 {
12767 	u64 start_time = ktime_get_ns();
12768 	struct bpf_verifier_env *env;
12769 	struct bpf_verifier_log *log;
12770 	int i, len, ret = -EINVAL;
12771 	bool is_priv;
12772 
12773 	/* no program is valid */
12774 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
12775 		return -EINVAL;
12776 
12777 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
12778 	 * allocate/free it every time bpf_check() is called
12779 	 */
12780 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
12781 	if (!env)
12782 		return -ENOMEM;
12783 	log = &env->log;
12784 
12785 	len = (*prog)->len;
12786 	env->insn_aux_data =
12787 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
12788 	ret = -ENOMEM;
12789 	if (!env->insn_aux_data)
12790 		goto err_free_env;
12791 	for (i = 0; i < len; i++)
12792 		env->insn_aux_data[i].orig_idx = i;
12793 	env->prog = *prog;
12794 	env->ops = bpf_verifier_ops[env->prog->type];
12795 	is_priv = bpf_capable();
12796 
12797 	bpf_get_btf_vmlinux();
12798 
12799 	/* grab the mutex to protect few globals used by verifier */
12800 	if (!is_priv)
12801 		mutex_lock(&bpf_verifier_lock);
12802 
12803 	if (attr->log_level || attr->log_buf || attr->log_size) {
12804 		/* user requested verbose verifier output
12805 		 * and supplied buffer to store the verification trace
12806 		 */
12807 		log->level = attr->log_level;
12808 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
12809 		log->len_total = attr->log_size;
12810 
12811 		ret = -EINVAL;
12812 		/* log attributes have to be sane */
12813 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
12814 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
12815 			goto err_unlock;
12816 	}
12817 
12818 	if (IS_ERR(btf_vmlinux)) {
12819 		/* Either gcc or pahole or kernel are broken. */
12820 		verbose(env, "in-kernel BTF is malformed\n");
12821 		ret = PTR_ERR(btf_vmlinux);
12822 		goto skip_full_check;
12823 	}
12824 
12825 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
12826 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
12827 		env->strict_alignment = true;
12828 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
12829 		env->strict_alignment = false;
12830 
12831 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
12832 	env->allow_uninit_stack = bpf_allow_uninit_stack();
12833 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
12834 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
12835 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
12836 	env->bpf_capable = bpf_capable();
12837 
12838 	if (is_priv)
12839 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
12840 
12841 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
12842 		ret = bpf_prog_offload_verifier_prep(env->prog);
12843 		if (ret)
12844 			goto skip_full_check;
12845 	}
12846 
12847 	env->explored_states = kvcalloc(state_htab_size(env),
12848 				       sizeof(struct bpf_verifier_state_list *),
12849 				       GFP_USER);
12850 	ret = -ENOMEM;
12851 	if (!env->explored_states)
12852 		goto skip_full_check;
12853 
12854 	ret = check_subprogs(env);
12855 	if (ret < 0)
12856 		goto skip_full_check;
12857 
12858 	ret = check_btf_info(env, attr, uattr);
12859 	if (ret < 0)
12860 		goto skip_full_check;
12861 
12862 	ret = check_attach_btf_id(env);
12863 	if (ret)
12864 		goto skip_full_check;
12865 
12866 	ret = resolve_pseudo_ldimm64(env);
12867 	if (ret < 0)
12868 		goto skip_full_check;
12869 
12870 	ret = check_cfg(env);
12871 	if (ret < 0)
12872 		goto skip_full_check;
12873 
12874 	ret = do_check_subprogs(env);
12875 	ret = ret ?: do_check_main(env);
12876 
12877 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
12878 		ret = bpf_prog_offload_finalize(env);
12879 
12880 skip_full_check:
12881 	kvfree(env->explored_states);
12882 
12883 	if (ret == 0)
12884 		ret = check_max_stack_depth(env);
12885 
12886 	/* instruction rewrites happen after this point */
12887 	if (is_priv) {
12888 		if (ret == 0)
12889 			opt_hard_wire_dead_code_branches(env);
12890 		if (ret == 0)
12891 			ret = opt_remove_dead_code(env);
12892 		if (ret == 0)
12893 			ret = opt_remove_nops(env);
12894 	} else {
12895 		if (ret == 0)
12896 			sanitize_dead_code(env);
12897 	}
12898 
12899 	if (ret == 0)
12900 		/* program is valid, convert *(u32*)(ctx + off) accesses */
12901 		ret = convert_ctx_accesses(env);
12902 
12903 	if (ret == 0)
12904 		ret = do_misc_fixups(env);
12905 
12906 	/* do 32-bit optimization after insn patching has done so those patched
12907 	 * insns could be handled correctly.
12908 	 */
12909 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
12910 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
12911 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
12912 								     : false;
12913 	}
12914 
12915 	if (ret == 0)
12916 		ret = fixup_call_args(env);
12917 
12918 	env->verification_time = ktime_get_ns() - start_time;
12919 	print_verification_stats(env);
12920 
12921 	if (log->level && bpf_verifier_log_full(log))
12922 		ret = -ENOSPC;
12923 	if (log->level && !log->ubuf) {
12924 		ret = -EFAULT;
12925 		goto err_release_maps;
12926 	}
12927 
12928 	if (ret)
12929 		goto err_release_maps;
12930 
12931 	if (env->used_map_cnt) {
12932 		/* if program passed verifier, update used_maps in bpf_prog_info */
12933 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
12934 							  sizeof(env->used_maps[0]),
12935 							  GFP_KERNEL);
12936 
12937 		if (!env->prog->aux->used_maps) {
12938 			ret = -ENOMEM;
12939 			goto err_release_maps;
12940 		}
12941 
12942 		memcpy(env->prog->aux->used_maps, env->used_maps,
12943 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
12944 		env->prog->aux->used_map_cnt = env->used_map_cnt;
12945 	}
12946 	if (env->used_btf_cnt) {
12947 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
12948 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
12949 							  sizeof(env->used_btfs[0]),
12950 							  GFP_KERNEL);
12951 		if (!env->prog->aux->used_btfs) {
12952 			ret = -ENOMEM;
12953 			goto err_release_maps;
12954 		}
12955 
12956 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
12957 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
12958 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
12959 	}
12960 	if (env->used_map_cnt || env->used_btf_cnt) {
12961 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
12962 		 * bpf_ld_imm64 instructions
12963 		 */
12964 		convert_pseudo_ld_imm64(env);
12965 	}
12966 
12967 	adjust_btf_func(env);
12968 
12969 err_release_maps:
12970 	if (!env->prog->aux->used_maps)
12971 		/* if we didn't copy map pointers into bpf_prog_info, release
12972 		 * them now. Otherwise free_used_maps() will release them.
12973 		 */
12974 		release_maps(env);
12975 	if (!env->prog->aux->used_btfs)
12976 		release_btfs(env);
12977 
12978 	/* extension progs temporarily inherit the attach_type of their targets
12979 	   for verification purposes, so set it back to zero before returning
12980 	 */
12981 	if (env->prog->type == BPF_PROG_TYPE_EXT)
12982 		env->prog->expected_attach_type = 0;
12983 
12984 	*prog = env->prog;
12985 err_unlock:
12986 	if (!is_priv)
12987 		mutex_unlock(&bpf_verifier_lock);
12988 	vfree(env->insn_aux_data);
12989 err_free_env:
12990 	kfree(env);
12991 	return ret;
12992 }
12993