xref: /openbmc/linux/kernel/bpf/verifier.c (revision 618945fb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 
28 #include "disasm.h"
29 
30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
31 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
32 	[_id] = & _name ## _verifier_ops,
33 #define BPF_MAP_TYPE(_id, _ops)
34 #define BPF_LINK_TYPE(_id, _name)
35 #include <linux/bpf_types.h>
36 #undef BPF_PROG_TYPE
37 #undef BPF_MAP_TYPE
38 #undef BPF_LINK_TYPE
39 };
40 
41 /* bpf_check() is a static code analyzer that walks eBPF program
42  * instruction by instruction and updates register/stack state.
43  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
44  *
45  * The first pass is depth-first-search to check that the program is a DAG.
46  * It rejects the following programs:
47  * - larger than BPF_MAXINSNS insns
48  * - if loop is present (detected via back-edge)
49  * - unreachable insns exist (shouldn't be a forest. program = one function)
50  * - out of bounds or malformed jumps
51  * The second pass is all possible path descent from the 1st insn.
52  * Since it's analyzing all paths through the program, the length of the
53  * analysis is limited to 64k insn, which may be hit even if total number of
54  * insn is less then 4K, but there are too many branches that change stack/regs.
55  * Number of 'branches to be analyzed' is limited to 1k
56  *
57  * On entry to each instruction, each register has a type, and the instruction
58  * changes the types of the registers depending on instruction semantics.
59  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
60  * copied to R1.
61  *
62  * All registers are 64-bit.
63  * R0 - return register
64  * R1-R5 argument passing registers
65  * R6-R9 callee saved registers
66  * R10 - frame pointer read-only
67  *
68  * At the start of BPF program the register R1 contains a pointer to bpf_context
69  * and has type PTR_TO_CTX.
70  *
71  * Verifier tracks arithmetic operations on pointers in case:
72  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
73  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
74  * 1st insn copies R10 (which has FRAME_PTR) type into R1
75  * and 2nd arithmetic instruction is pattern matched to recognize
76  * that it wants to construct a pointer to some element within stack.
77  * So after 2nd insn, the register R1 has type PTR_TO_STACK
78  * (and -20 constant is saved for further stack bounds checking).
79  * Meaning that this reg is a pointer to stack plus known immediate constant.
80  *
81  * Most of the time the registers have SCALAR_VALUE type, which
82  * means the register has some value, but it's not a valid pointer.
83  * (like pointer plus pointer becomes SCALAR_VALUE type)
84  *
85  * When verifier sees load or store instructions the type of base register
86  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
87  * four pointer types recognized by check_mem_access() function.
88  *
89  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
90  * and the range of [ptr, ptr + map's value_size) is accessible.
91  *
92  * registers used to pass values to function calls are checked against
93  * function argument constraints.
94  *
95  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
96  * It means that the register type passed to this function must be
97  * PTR_TO_STACK and it will be used inside the function as
98  * 'pointer to map element key'
99  *
100  * For example the argument constraints for bpf_map_lookup_elem():
101  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
102  *   .arg1_type = ARG_CONST_MAP_PTR,
103  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
104  *
105  * ret_type says that this function returns 'pointer to map elem value or null'
106  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
107  * 2nd argument should be a pointer to stack, which will be used inside
108  * the helper function as a pointer to map element key.
109  *
110  * On the kernel side the helper function looks like:
111  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
112  * {
113  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
114  *    void *key = (void *) (unsigned long) r2;
115  *    void *value;
116  *
117  *    here kernel can access 'key' and 'map' pointers safely, knowing that
118  *    [key, key + map->key_size) bytes are valid and were initialized on
119  *    the stack of eBPF program.
120  * }
121  *
122  * Corresponding eBPF program may look like:
123  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
124  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
125  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
126  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
127  * here verifier looks at prototype of map_lookup_elem() and sees:
128  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
129  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
130  *
131  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
132  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
133  * and were initialized prior to this call.
134  * If it's ok, then verifier allows this BPF_CALL insn and looks at
135  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
136  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
137  * returns either pointer to map value or NULL.
138  *
139  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
140  * insn, the register holding that pointer in the true branch changes state to
141  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
142  * branch. See check_cond_jmp_op().
143  *
144  * After the call R0 is set to return type of the function and registers R1-R5
145  * are set to NOT_INIT to indicate that they are no longer readable.
146  *
147  * The following reference types represent a potential reference to a kernel
148  * resource which, after first being allocated, must be checked and freed by
149  * the BPF program:
150  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
151  *
152  * When the verifier sees a helper call return a reference type, it allocates a
153  * pointer id for the reference and stores it in the current function state.
154  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
155  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
156  * passes through a NULL-check conditional. For the branch wherein the state is
157  * changed to CONST_IMM, the verifier releases the reference.
158  *
159  * For each helper function that allocates a reference, such as
160  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
161  * bpf_sk_release(). When a reference type passes into the release function,
162  * the verifier also releases the reference. If any unchecked or unreleased
163  * reference remains at the end of the program, the verifier rejects it.
164  */
165 
166 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
167 struct bpf_verifier_stack_elem {
168 	/* verifer state is 'st'
169 	 * before processing instruction 'insn_idx'
170 	 * and after processing instruction 'prev_insn_idx'
171 	 */
172 	struct bpf_verifier_state st;
173 	int insn_idx;
174 	int prev_insn_idx;
175 	struct bpf_verifier_stack_elem *next;
176 	/* length of verifier log at the time this state was pushed on stack */
177 	u32 log_pos;
178 };
179 
180 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
181 #define BPF_COMPLEXITY_LIMIT_STATES	64
182 
183 #define BPF_MAP_KEY_POISON	(1ULL << 63)
184 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
185 
186 #define BPF_MAP_PTR_UNPRIV	1UL
187 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
188 					  POISON_POINTER_DELTA))
189 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
190 
191 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
192 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
193 
194 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
195 {
196 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
197 }
198 
199 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
200 {
201 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
202 }
203 
204 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
205 			      const struct bpf_map *map, bool unpriv)
206 {
207 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
208 	unpriv |= bpf_map_ptr_unpriv(aux);
209 	aux->map_ptr_state = (unsigned long)map |
210 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
211 }
212 
213 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
214 {
215 	return aux->map_key_state & BPF_MAP_KEY_POISON;
216 }
217 
218 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
219 {
220 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
221 }
222 
223 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
224 {
225 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
226 }
227 
228 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
229 {
230 	bool poisoned = bpf_map_key_poisoned(aux);
231 
232 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
233 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
234 }
235 
236 static bool bpf_pseudo_call(const struct bpf_insn *insn)
237 {
238 	return insn->code == (BPF_JMP | BPF_CALL) &&
239 	       insn->src_reg == BPF_PSEUDO_CALL;
240 }
241 
242 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
243 {
244 	return insn->code == (BPF_JMP | BPF_CALL) &&
245 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
246 }
247 
248 struct bpf_call_arg_meta {
249 	struct bpf_map *map_ptr;
250 	bool raw_mode;
251 	bool pkt_access;
252 	u8 release_regno;
253 	int regno;
254 	int access_size;
255 	int mem_size;
256 	u64 msize_max_value;
257 	int ref_obj_id;
258 	int map_uid;
259 	int func_id;
260 	struct btf *btf;
261 	u32 btf_id;
262 	struct btf *ret_btf;
263 	u32 ret_btf_id;
264 	u32 subprogno;
265 	struct btf_field *kptr_field;
266 	u8 uninit_dynptr_regno;
267 };
268 
269 struct btf *btf_vmlinux;
270 
271 static DEFINE_MUTEX(bpf_verifier_lock);
272 
273 static const struct bpf_line_info *
274 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
275 {
276 	const struct bpf_line_info *linfo;
277 	const struct bpf_prog *prog;
278 	u32 i, nr_linfo;
279 
280 	prog = env->prog;
281 	nr_linfo = prog->aux->nr_linfo;
282 
283 	if (!nr_linfo || insn_off >= prog->len)
284 		return NULL;
285 
286 	linfo = prog->aux->linfo;
287 	for (i = 1; i < nr_linfo; i++)
288 		if (insn_off < linfo[i].insn_off)
289 			break;
290 
291 	return &linfo[i - 1];
292 }
293 
294 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
295 		       va_list args)
296 {
297 	unsigned int n;
298 
299 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
300 
301 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
302 		  "verifier log line truncated - local buffer too short\n");
303 
304 	if (log->level == BPF_LOG_KERNEL) {
305 		bool newline = n > 0 && log->kbuf[n - 1] == '\n';
306 
307 		pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
308 		return;
309 	}
310 
311 	n = min(log->len_total - log->len_used - 1, n);
312 	log->kbuf[n] = '\0';
313 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
314 		log->len_used += n;
315 	else
316 		log->ubuf = NULL;
317 }
318 
319 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
320 {
321 	char zero = 0;
322 
323 	if (!bpf_verifier_log_needed(log))
324 		return;
325 
326 	log->len_used = new_pos;
327 	if (put_user(zero, log->ubuf + new_pos))
328 		log->ubuf = NULL;
329 }
330 
331 /* log_level controls verbosity level of eBPF verifier.
332  * bpf_verifier_log_write() is used to dump the verification trace to the log,
333  * so the user can figure out what's wrong with the program
334  */
335 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
336 					   const char *fmt, ...)
337 {
338 	va_list args;
339 
340 	if (!bpf_verifier_log_needed(&env->log))
341 		return;
342 
343 	va_start(args, fmt);
344 	bpf_verifier_vlog(&env->log, fmt, args);
345 	va_end(args);
346 }
347 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
348 
349 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
350 {
351 	struct bpf_verifier_env *env = private_data;
352 	va_list args;
353 
354 	if (!bpf_verifier_log_needed(&env->log))
355 		return;
356 
357 	va_start(args, fmt);
358 	bpf_verifier_vlog(&env->log, fmt, args);
359 	va_end(args);
360 }
361 
362 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
363 			    const char *fmt, ...)
364 {
365 	va_list args;
366 
367 	if (!bpf_verifier_log_needed(log))
368 		return;
369 
370 	va_start(args, fmt);
371 	bpf_verifier_vlog(log, fmt, args);
372 	va_end(args);
373 }
374 EXPORT_SYMBOL_GPL(bpf_log);
375 
376 static const char *ltrim(const char *s)
377 {
378 	while (isspace(*s))
379 		s++;
380 
381 	return s;
382 }
383 
384 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
385 					 u32 insn_off,
386 					 const char *prefix_fmt, ...)
387 {
388 	const struct bpf_line_info *linfo;
389 
390 	if (!bpf_verifier_log_needed(&env->log))
391 		return;
392 
393 	linfo = find_linfo(env, insn_off);
394 	if (!linfo || linfo == env->prev_linfo)
395 		return;
396 
397 	if (prefix_fmt) {
398 		va_list args;
399 
400 		va_start(args, prefix_fmt);
401 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
402 		va_end(args);
403 	}
404 
405 	verbose(env, "%s\n",
406 		ltrim(btf_name_by_offset(env->prog->aux->btf,
407 					 linfo->line_off)));
408 
409 	env->prev_linfo = linfo;
410 }
411 
412 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
413 				   struct bpf_reg_state *reg,
414 				   struct tnum *range, const char *ctx,
415 				   const char *reg_name)
416 {
417 	char tn_buf[48];
418 
419 	verbose(env, "At %s the register %s ", ctx, reg_name);
420 	if (!tnum_is_unknown(reg->var_off)) {
421 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
422 		verbose(env, "has value %s", tn_buf);
423 	} else {
424 		verbose(env, "has unknown scalar value");
425 	}
426 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
427 	verbose(env, " should have been in %s\n", tn_buf);
428 }
429 
430 static bool type_is_pkt_pointer(enum bpf_reg_type type)
431 {
432 	type = base_type(type);
433 	return type == PTR_TO_PACKET ||
434 	       type == PTR_TO_PACKET_META;
435 }
436 
437 static bool type_is_sk_pointer(enum bpf_reg_type type)
438 {
439 	return type == PTR_TO_SOCKET ||
440 		type == PTR_TO_SOCK_COMMON ||
441 		type == PTR_TO_TCP_SOCK ||
442 		type == PTR_TO_XDP_SOCK;
443 }
444 
445 static bool reg_type_not_null(enum bpf_reg_type type)
446 {
447 	return type == PTR_TO_SOCKET ||
448 		type == PTR_TO_TCP_SOCK ||
449 		type == PTR_TO_MAP_VALUE ||
450 		type == PTR_TO_MAP_KEY ||
451 		type == PTR_TO_SOCK_COMMON;
452 }
453 
454 static bool type_is_ptr_alloc_obj(u32 type)
455 {
456 	return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
457 }
458 
459 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
460 {
461 	struct btf_record *rec = NULL;
462 	struct btf_struct_meta *meta;
463 
464 	if (reg->type == PTR_TO_MAP_VALUE) {
465 		rec = reg->map_ptr->record;
466 	} else if (type_is_ptr_alloc_obj(reg->type)) {
467 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
468 		if (meta)
469 			rec = meta->record;
470 	}
471 	return rec;
472 }
473 
474 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
475 {
476 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
477 }
478 
479 static bool type_is_rdonly_mem(u32 type)
480 {
481 	return type & MEM_RDONLY;
482 }
483 
484 static bool type_may_be_null(u32 type)
485 {
486 	return type & PTR_MAYBE_NULL;
487 }
488 
489 static bool is_acquire_function(enum bpf_func_id func_id,
490 				const struct bpf_map *map)
491 {
492 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
493 
494 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
495 	    func_id == BPF_FUNC_sk_lookup_udp ||
496 	    func_id == BPF_FUNC_skc_lookup_tcp ||
497 	    func_id == BPF_FUNC_ringbuf_reserve ||
498 	    func_id == BPF_FUNC_kptr_xchg)
499 		return true;
500 
501 	if (func_id == BPF_FUNC_map_lookup_elem &&
502 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
503 	     map_type == BPF_MAP_TYPE_SOCKHASH))
504 		return true;
505 
506 	return false;
507 }
508 
509 static bool is_ptr_cast_function(enum bpf_func_id func_id)
510 {
511 	return func_id == BPF_FUNC_tcp_sock ||
512 		func_id == BPF_FUNC_sk_fullsock ||
513 		func_id == BPF_FUNC_skc_to_tcp_sock ||
514 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
515 		func_id == BPF_FUNC_skc_to_udp6_sock ||
516 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
517 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
518 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
519 }
520 
521 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
522 {
523 	return func_id == BPF_FUNC_dynptr_data;
524 }
525 
526 static bool is_callback_calling_function(enum bpf_func_id func_id)
527 {
528 	return func_id == BPF_FUNC_for_each_map_elem ||
529 	       func_id == BPF_FUNC_timer_set_callback ||
530 	       func_id == BPF_FUNC_find_vma ||
531 	       func_id == BPF_FUNC_loop ||
532 	       func_id == BPF_FUNC_user_ringbuf_drain;
533 }
534 
535 static bool is_storage_get_function(enum bpf_func_id func_id)
536 {
537 	return func_id == BPF_FUNC_sk_storage_get ||
538 	       func_id == BPF_FUNC_inode_storage_get ||
539 	       func_id == BPF_FUNC_task_storage_get ||
540 	       func_id == BPF_FUNC_cgrp_storage_get;
541 }
542 
543 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
544 					const struct bpf_map *map)
545 {
546 	int ref_obj_uses = 0;
547 
548 	if (is_ptr_cast_function(func_id))
549 		ref_obj_uses++;
550 	if (is_acquire_function(func_id, map))
551 		ref_obj_uses++;
552 	if (is_dynptr_ref_function(func_id))
553 		ref_obj_uses++;
554 
555 	return ref_obj_uses > 1;
556 }
557 
558 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
559 {
560 	return BPF_CLASS(insn->code) == BPF_STX &&
561 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
562 	       insn->imm == BPF_CMPXCHG;
563 }
564 
565 /* string representation of 'enum bpf_reg_type'
566  *
567  * Note that reg_type_str() can not appear more than once in a single verbose()
568  * statement.
569  */
570 static const char *reg_type_str(struct bpf_verifier_env *env,
571 				enum bpf_reg_type type)
572 {
573 	char postfix[16] = {0}, prefix[64] = {0};
574 	static const char * const str[] = {
575 		[NOT_INIT]		= "?",
576 		[SCALAR_VALUE]		= "scalar",
577 		[PTR_TO_CTX]		= "ctx",
578 		[CONST_PTR_TO_MAP]	= "map_ptr",
579 		[PTR_TO_MAP_VALUE]	= "map_value",
580 		[PTR_TO_STACK]		= "fp",
581 		[PTR_TO_PACKET]		= "pkt",
582 		[PTR_TO_PACKET_META]	= "pkt_meta",
583 		[PTR_TO_PACKET_END]	= "pkt_end",
584 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
585 		[PTR_TO_SOCKET]		= "sock",
586 		[PTR_TO_SOCK_COMMON]	= "sock_common",
587 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
588 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
589 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
590 		[PTR_TO_BTF_ID]		= "ptr_",
591 		[PTR_TO_MEM]		= "mem",
592 		[PTR_TO_BUF]		= "buf",
593 		[PTR_TO_FUNC]		= "func",
594 		[PTR_TO_MAP_KEY]	= "map_key",
595 		[PTR_TO_DYNPTR]		= "dynptr_ptr",
596 	};
597 
598 	if (type & PTR_MAYBE_NULL) {
599 		if (base_type(type) == PTR_TO_BTF_ID)
600 			strncpy(postfix, "or_null_", 16);
601 		else
602 			strncpy(postfix, "_or_null", 16);
603 	}
604 
605 	snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
606 		 type & MEM_RDONLY ? "rdonly_" : "",
607 		 type & MEM_RINGBUF ? "ringbuf_" : "",
608 		 type & MEM_USER ? "user_" : "",
609 		 type & MEM_PERCPU ? "percpu_" : "",
610 		 type & MEM_RCU ? "rcu_" : "",
611 		 type & PTR_UNTRUSTED ? "untrusted_" : "",
612 		 type & PTR_TRUSTED ? "trusted_" : ""
613 	);
614 
615 	snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
616 		 prefix, str[base_type(type)], postfix);
617 	return env->type_str_buf;
618 }
619 
620 static char slot_type_char[] = {
621 	[STACK_INVALID]	= '?',
622 	[STACK_SPILL]	= 'r',
623 	[STACK_MISC]	= 'm',
624 	[STACK_ZERO]	= '0',
625 	[STACK_DYNPTR]	= 'd',
626 };
627 
628 static void print_liveness(struct bpf_verifier_env *env,
629 			   enum bpf_reg_liveness live)
630 {
631 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
632 	    verbose(env, "_");
633 	if (live & REG_LIVE_READ)
634 		verbose(env, "r");
635 	if (live & REG_LIVE_WRITTEN)
636 		verbose(env, "w");
637 	if (live & REG_LIVE_DONE)
638 		verbose(env, "D");
639 }
640 
641 static int get_spi(s32 off)
642 {
643 	return (-off - 1) / BPF_REG_SIZE;
644 }
645 
646 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
647 {
648 	int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
649 
650 	/* We need to check that slots between [spi - nr_slots + 1, spi] are
651 	 * within [0, allocated_stack).
652 	 *
653 	 * Please note that the spi grows downwards. For example, a dynptr
654 	 * takes the size of two stack slots; the first slot will be at
655 	 * spi and the second slot will be at spi - 1.
656 	 */
657 	return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
658 }
659 
660 static struct bpf_func_state *func(struct bpf_verifier_env *env,
661 				   const struct bpf_reg_state *reg)
662 {
663 	struct bpf_verifier_state *cur = env->cur_state;
664 
665 	return cur->frame[reg->frameno];
666 }
667 
668 static const char *kernel_type_name(const struct btf* btf, u32 id)
669 {
670 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
671 }
672 
673 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
674 {
675 	env->scratched_regs |= 1U << regno;
676 }
677 
678 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
679 {
680 	env->scratched_stack_slots |= 1ULL << spi;
681 }
682 
683 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
684 {
685 	return (env->scratched_regs >> regno) & 1;
686 }
687 
688 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
689 {
690 	return (env->scratched_stack_slots >> regno) & 1;
691 }
692 
693 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
694 {
695 	return env->scratched_regs || env->scratched_stack_slots;
696 }
697 
698 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
699 {
700 	env->scratched_regs = 0U;
701 	env->scratched_stack_slots = 0ULL;
702 }
703 
704 /* Used for printing the entire verifier state. */
705 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
706 {
707 	env->scratched_regs = ~0U;
708 	env->scratched_stack_slots = ~0ULL;
709 }
710 
711 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
712 {
713 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
714 	case DYNPTR_TYPE_LOCAL:
715 		return BPF_DYNPTR_TYPE_LOCAL;
716 	case DYNPTR_TYPE_RINGBUF:
717 		return BPF_DYNPTR_TYPE_RINGBUF;
718 	default:
719 		return BPF_DYNPTR_TYPE_INVALID;
720 	}
721 }
722 
723 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
724 {
725 	return type == BPF_DYNPTR_TYPE_RINGBUF;
726 }
727 
728 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
729 				   enum bpf_arg_type arg_type, int insn_idx)
730 {
731 	struct bpf_func_state *state = func(env, reg);
732 	enum bpf_dynptr_type type;
733 	int spi, i, id;
734 
735 	spi = get_spi(reg->off);
736 
737 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
738 		return -EINVAL;
739 
740 	for (i = 0; i < BPF_REG_SIZE; i++) {
741 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
742 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
743 	}
744 
745 	type = arg_to_dynptr_type(arg_type);
746 	if (type == BPF_DYNPTR_TYPE_INVALID)
747 		return -EINVAL;
748 
749 	state->stack[spi].spilled_ptr.dynptr.first_slot = true;
750 	state->stack[spi].spilled_ptr.dynptr.type = type;
751 	state->stack[spi - 1].spilled_ptr.dynptr.type = type;
752 
753 	if (dynptr_type_refcounted(type)) {
754 		/* The id is used to track proper releasing */
755 		id = acquire_reference_state(env, insn_idx);
756 		if (id < 0)
757 			return id;
758 
759 		state->stack[spi].spilled_ptr.id = id;
760 		state->stack[spi - 1].spilled_ptr.id = id;
761 	}
762 
763 	return 0;
764 }
765 
766 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
767 {
768 	struct bpf_func_state *state = func(env, reg);
769 	int spi, i;
770 
771 	spi = get_spi(reg->off);
772 
773 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
774 		return -EINVAL;
775 
776 	for (i = 0; i < BPF_REG_SIZE; i++) {
777 		state->stack[spi].slot_type[i] = STACK_INVALID;
778 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
779 	}
780 
781 	/* Invalidate any slices associated with this dynptr */
782 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
783 		release_reference(env, state->stack[spi].spilled_ptr.id);
784 		state->stack[spi].spilled_ptr.id = 0;
785 		state->stack[spi - 1].spilled_ptr.id = 0;
786 	}
787 
788 	state->stack[spi].spilled_ptr.dynptr.first_slot = false;
789 	state->stack[spi].spilled_ptr.dynptr.type = 0;
790 	state->stack[spi - 1].spilled_ptr.dynptr.type = 0;
791 
792 	return 0;
793 }
794 
795 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
796 {
797 	struct bpf_func_state *state = func(env, reg);
798 	int spi = get_spi(reg->off);
799 	int i;
800 
801 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
802 		return true;
803 
804 	for (i = 0; i < BPF_REG_SIZE; i++) {
805 		if (state->stack[spi].slot_type[i] == STACK_DYNPTR ||
806 		    state->stack[spi - 1].slot_type[i] == STACK_DYNPTR)
807 			return false;
808 	}
809 
810 	return true;
811 }
812 
813 bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env,
814 			      struct bpf_reg_state *reg)
815 {
816 	struct bpf_func_state *state = func(env, reg);
817 	int spi = get_spi(reg->off);
818 	int i;
819 
820 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
821 	    !state->stack[spi].spilled_ptr.dynptr.first_slot)
822 		return false;
823 
824 	for (i = 0; i < BPF_REG_SIZE; i++) {
825 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
826 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
827 			return false;
828 	}
829 
830 	return true;
831 }
832 
833 bool is_dynptr_type_expected(struct bpf_verifier_env *env,
834 			     struct bpf_reg_state *reg,
835 			     enum bpf_arg_type arg_type)
836 {
837 	struct bpf_func_state *state = func(env, reg);
838 	enum bpf_dynptr_type dynptr_type;
839 	int spi = get_spi(reg->off);
840 
841 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
842 	if (arg_type == ARG_PTR_TO_DYNPTR)
843 		return true;
844 
845 	dynptr_type = arg_to_dynptr_type(arg_type);
846 
847 	return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
848 }
849 
850 /* The reg state of a pointer or a bounded scalar was saved when
851  * it was spilled to the stack.
852  */
853 static bool is_spilled_reg(const struct bpf_stack_state *stack)
854 {
855 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
856 }
857 
858 static void scrub_spilled_slot(u8 *stype)
859 {
860 	if (*stype != STACK_INVALID)
861 		*stype = STACK_MISC;
862 }
863 
864 static void print_verifier_state(struct bpf_verifier_env *env,
865 				 const struct bpf_func_state *state,
866 				 bool print_all)
867 {
868 	const struct bpf_reg_state *reg;
869 	enum bpf_reg_type t;
870 	int i;
871 
872 	if (state->frameno)
873 		verbose(env, " frame%d:", state->frameno);
874 	for (i = 0; i < MAX_BPF_REG; i++) {
875 		reg = &state->regs[i];
876 		t = reg->type;
877 		if (t == NOT_INIT)
878 			continue;
879 		if (!print_all && !reg_scratched(env, i))
880 			continue;
881 		verbose(env, " R%d", i);
882 		print_liveness(env, reg->live);
883 		verbose(env, "=");
884 		if (t == SCALAR_VALUE && reg->precise)
885 			verbose(env, "P");
886 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
887 		    tnum_is_const(reg->var_off)) {
888 			/* reg->off should be 0 for SCALAR_VALUE */
889 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
890 			verbose(env, "%lld", reg->var_off.value + reg->off);
891 		} else {
892 			const char *sep = "";
893 
894 			verbose(env, "%s", reg_type_str(env, t));
895 			if (base_type(t) == PTR_TO_BTF_ID)
896 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
897 			verbose(env, "(");
898 /*
899  * _a stands for append, was shortened to avoid multiline statements below.
900  * This macro is used to output a comma separated list of attributes.
901  */
902 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
903 
904 			if (reg->id)
905 				verbose_a("id=%d", reg->id);
906 			if (reg->ref_obj_id)
907 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
908 			if (t != SCALAR_VALUE)
909 				verbose_a("off=%d", reg->off);
910 			if (type_is_pkt_pointer(t))
911 				verbose_a("r=%d", reg->range);
912 			else if (base_type(t) == CONST_PTR_TO_MAP ||
913 				 base_type(t) == PTR_TO_MAP_KEY ||
914 				 base_type(t) == PTR_TO_MAP_VALUE)
915 				verbose_a("ks=%d,vs=%d",
916 					  reg->map_ptr->key_size,
917 					  reg->map_ptr->value_size);
918 			if (tnum_is_const(reg->var_off)) {
919 				/* Typically an immediate SCALAR_VALUE, but
920 				 * could be a pointer whose offset is too big
921 				 * for reg->off
922 				 */
923 				verbose_a("imm=%llx", reg->var_off.value);
924 			} else {
925 				if (reg->smin_value != reg->umin_value &&
926 				    reg->smin_value != S64_MIN)
927 					verbose_a("smin=%lld", (long long)reg->smin_value);
928 				if (reg->smax_value != reg->umax_value &&
929 				    reg->smax_value != S64_MAX)
930 					verbose_a("smax=%lld", (long long)reg->smax_value);
931 				if (reg->umin_value != 0)
932 					verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
933 				if (reg->umax_value != U64_MAX)
934 					verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
935 				if (!tnum_is_unknown(reg->var_off)) {
936 					char tn_buf[48];
937 
938 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
939 					verbose_a("var_off=%s", tn_buf);
940 				}
941 				if (reg->s32_min_value != reg->smin_value &&
942 				    reg->s32_min_value != S32_MIN)
943 					verbose_a("s32_min=%d", (int)(reg->s32_min_value));
944 				if (reg->s32_max_value != reg->smax_value &&
945 				    reg->s32_max_value != S32_MAX)
946 					verbose_a("s32_max=%d", (int)(reg->s32_max_value));
947 				if (reg->u32_min_value != reg->umin_value &&
948 				    reg->u32_min_value != U32_MIN)
949 					verbose_a("u32_min=%d", (int)(reg->u32_min_value));
950 				if (reg->u32_max_value != reg->umax_value &&
951 				    reg->u32_max_value != U32_MAX)
952 					verbose_a("u32_max=%d", (int)(reg->u32_max_value));
953 			}
954 #undef verbose_a
955 
956 			verbose(env, ")");
957 		}
958 	}
959 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
960 		char types_buf[BPF_REG_SIZE + 1];
961 		bool valid = false;
962 		int j;
963 
964 		for (j = 0; j < BPF_REG_SIZE; j++) {
965 			if (state->stack[i].slot_type[j] != STACK_INVALID)
966 				valid = true;
967 			types_buf[j] = slot_type_char[
968 					state->stack[i].slot_type[j]];
969 		}
970 		types_buf[BPF_REG_SIZE] = 0;
971 		if (!valid)
972 			continue;
973 		if (!print_all && !stack_slot_scratched(env, i))
974 			continue;
975 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
976 		print_liveness(env, state->stack[i].spilled_ptr.live);
977 		if (is_spilled_reg(&state->stack[i])) {
978 			reg = &state->stack[i].spilled_ptr;
979 			t = reg->type;
980 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
981 			if (t == SCALAR_VALUE && reg->precise)
982 				verbose(env, "P");
983 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
984 				verbose(env, "%lld", reg->var_off.value + reg->off);
985 		} else {
986 			verbose(env, "=%s", types_buf);
987 		}
988 	}
989 	if (state->acquired_refs && state->refs[0].id) {
990 		verbose(env, " refs=%d", state->refs[0].id);
991 		for (i = 1; i < state->acquired_refs; i++)
992 			if (state->refs[i].id)
993 				verbose(env, ",%d", state->refs[i].id);
994 	}
995 	if (state->in_callback_fn)
996 		verbose(env, " cb");
997 	if (state->in_async_callback_fn)
998 		verbose(env, " async_cb");
999 	verbose(env, "\n");
1000 	mark_verifier_state_clean(env);
1001 }
1002 
1003 static inline u32 vlog_alignment(u32 pos)
1004 {
1005 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1006 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1007 }
1008 
1009 static void print_insn_state(struct bpf_verifier_env *env,
1010 			     const struct bpf_func_state *state)
1011 {
1012 	if (env->prev_log_len && env->prev_log_len == env->log.len_used) {
1013 		/* remove new line character */
1014 		bpf_vlog_reset(&env->log, env->prev_log_len - 1);
1015 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' ');
1016 	} else {
1017 		verbose(env, "%d:", env->insn_idx);
1018 	}
1019 	print_verifier_state(env, state, false);
1020 }
1021 
1022 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1023  * small to hold src. This is different from krealloc since we don't want to preserve
1024  * the contents of dst.
1025  *
1026  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1027  * not be allocated.
1028  */
1029 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1030 {
1031 	size_t bytes;
1032 
1033 	if (ZERO_OR_NULL_PTR(src))
1034 		goto out;
1035 
1036 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1037 		return NULL;
1038 
1039 	if (ksize(dst) < ksize(src)) {
1040 		kfree(dst);
1041 		dst = kmalloc_track_caller(kmalloc_size_roundup(bytes), flags);
1042 		if (!dst)
1043 			return NULL;
1044 	}
1045 
1046 	memcpy(dst, src, bytes);
1047 out:
1048 	return dst ? dst : ZERO_SIZE_PTR;
1049 }
1050 
1051 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1052  * small to hold new_n items. new items are zeroed out if the array grows.
1053  *
1054  * Contrary to krealloc_array, does not free arr if new_n is zero.
1055  */
1056 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1057 {
1058 	size_t alloc_size;
1059 	void *new_arr;
1060 
1061 	if (!new_n || old_n == new_n)
1062 		goto out;
1063 
1064 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1065 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1066 	if (!new_arr) {
1067 		kfree(arr);
1068 		return NULL;
1069 	}
1070 	arr = new_arr;
1071 
1072 	if (new_n > old_n)
1073 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1074 
1075 out:
1076 	return arr ? arr : ZERO_SIZE_PTR;
1077 }
1078 
1079 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1080 {
1081 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1082 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1083 	if (!dst->refs)
1084 		return -ENOMEM;
1085 
1086 	dst->acquired_refs = src->acquired_refs;
1087 	return 0;
1088 }
1089 
1090 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1091 {
1092 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1093 
1094 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1095 				GFP_KERNEL);
1096 	if (!dst->stack)
1097 		return -ENOMEM;
1098 
1099 	dst->allocated_stack = src->allocated_stack;
1100 	return 0;
1101 }
1102 
1103 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1104 {
1105 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1106 				    sizeof(struct bpf_reference_state));
1107 	if (!state->refs)
1108 		return -ENOMEM;
1109 
1110 	state->acquired_refs = n;
1111 	return 0;
1112 }
1113 
1114 static int grow_stack_state(struct bpf_func_state *state, int size)
1115 {
1116 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1117 
1118 	if (old_n >= n)
1119 		return 0;
1120 
1121 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1122 	if (!state->stack)
1123 		return -ENOMEM;
1124 
1125 	state->allocated_stack = size;
1126 	return 0;
1127 }
1128 
1129 /* Acquire a pointer id from the env and update the state->refs to include
1130  * this new pointer reference.
1131  * On success, returns a valid pointer id to associate with the register
1132  * On failure, returns a negative errno.
1133  */
1134 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1135 {
1136 	struct bpf_func_state *state = cur_func(env);
1137 	int new_ofs = state->acquired_refs;
1138 	int id, err;
1139 
1140 	err = resize_reference_state(state, state->acquired_refs + 1);
1141 	if (err)
1142 		return err;
1143 	id = ++env->id_gen;
1144 	state->refs[new_ofs].id = id;
1145 	state->refs[new_ofs].insn_idx = insn_idx;
1146 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1147 
1148 	return id;
1149 }
1150 
1151 /* release function corresponding to acquire_reference_state(). Idempotent. */
1152 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1153 {
1154 	int i, last_idx;
1155 
1156 	last_idx = state->acquired_refs - 1;
1157 	for (i = 0; i < state->acquired_refs; i++) {
1158 		if (state->refs[i].id == ptr_id) {
1159 			/* Cannot release caller references in callbacks */
1160 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1161 				return -EINVAL;
1162 			if (last_idx && i != last_idx)
1163 				memcpy(&state->refs[i], &state->refs[last_idx],
1164 				       sizeof(*state->refs));
1165 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1166 			state->acquired_refs--;
1167 			return 0;
1168 		}
1169 	}
1170 	return -EINVAL;
1171 }
1172 
1173 static void free_func_state(struct bpf_func_state *state)
1174 {
1175 	if (!state)
1176 		return;
1177 	kfree(state->refs);
1178 	kfree(state->stack);
1179 	kfree(state);
1180 }
1181 
1182 static void clear_jmp_history(struct bpf_verifier_state *state)
1183 {
1184 	kfree(state->jmp_history);
1185 	state->jmp_history = NULL;
1186 	state->jmp_history_cnt = 0;
1187 }
1188 
1189 static void free_verifier_state(struct bpf_verifier_state *state,
1190 				bool free_self)
1191 {
1192 	int i;
1193 
1194 	for (i = 0; i <= state->curframe; i++) {
1195 		free_func_state(state->frame[i]);
1196 		state->frame[i] = NULL;
1197 	}
1198 	clear_jmp_history(state);
1199 	if (free_self)
1200 		kfree(state);
1201 }
1202 
1203 /* copy verifier state from src to dst growing dst stack space
1204  * when necessary to accommodate larger src stack
1205  */
1206 static int copy_func_state(struct bpf_func_state *dst,
1207 			   const struct bpf_func_state *src)
1208 {
1209 	int err;
1210 
1211 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1212 	err = copy_reference_state(dst, src);
1213 	if (err)
1214 		return err;
1215 	return copy_stack_state(dst, src);
1216 }
1217 
1218 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1219 			       const struct bpf_verifier_state *src)
1220 {
1221 	struct bpf_func_state *dst;
1222 	int i, err;
1223 
1224 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1225 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1226 					    GFP_USER);
1227 	if (!dst_state->jmp_history)
1228 		return -ENOMEM;
1229 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1230 
1231 	/* if dst has more stack frames then src frame, free them */
1232 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1233 		free_func_state(dst_state->frame[i]);
1234 		dst_state->frame[i] = NULL;
1235 	}
1236 	dst_state->speculative = src->speculative;
1237 	dst_state->active_rcu_lock = src->active_rcu_lock;
1238 	dst_state->curframe = src->curframe;
1239 	dst_state->active_lock.ptr = src->active_lock.ptr;
1240 	dst_state->active_lock.id = src->active_lock.id;
1241 	dst_state->branches = src->branches;
1242 	dst_state->parent = src->parent;
1243 	dst_state->first_insn_idx = src->first_insn_idx;
1244 	dst_state->last_insn_idx = src->last_insn_idx;
1245 	for (i = 0; i <= src->curframe; i++) {
1246 		dst = dst_state->frame[i];
1247 		if (!dst) {
1248 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1249 			if (!dst)
1250 				return -ENOMEM;
1251 			dst_state->frame[i] = dst;
1252 		}
1253 		err = copy_func_state(dst, src->frame[i]);
1254 		if (err)
1255 			return err;
1256 	}
1257 	return 0;
1258 }
1259 
1260 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1261 {
1262 	while (st) {
1263 		u32 br = --st->branches;
1264 
1265 		/* WARN_ON(br > 1) technically makes sense here,
1266 		 * but see comment in push_stack(), hence:
1267 		 */
1268 		WARN_ONCE((int)br < 0,
1269 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1270 			  br);
1271 		if (br)
1272 			break;
1273 		st = st->parent;
1274 	}
1275 }
1276 
1277 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1278 		     int *insn_idx, bool pop_log)
1279 {
1280 	struct bpf_verifier_state *cur = env->cur_state;
1281 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1282 	int err;
1283 
1284 	if (env->head == NULL)
1285 		return -ENOENT;
1286 
1287 	if (cur) {
1288 		err = copy_verifier_state(cur, &head->st);
1289 		if (err)
1290 			return err;
1291 	}
1292 	if (pop_log)
1293 		bpf_vlog_reset(&env->log, head->log_pos);
1294 	if (insn_idx)
1295 		*insn_idx = head->insn_idx;
1296 	if (prev_insn_idx)
1297 		*prev_insn_idx = head->prev_insn_idx;
1298 	elem = head->next;
1299 	free_verifier_state(&head->st, false);
1300 	kfree(head);
1301 	env->head = elem;
1302 	env->stack_size--;
1303 	return 0;
1304 }
1305 
1306 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1307 					     int insn_idx, int prev_insn_idx,
1308 					     bool speculative)
1309 {
1310 	struct bpf_verifier_state *cur = env->cur_state;
1311 	struct bpf_verifier_stack_elem *elem;
1312 	int err;
1313 
1314 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1315 	if (!elem)
1316 		goto err;
1317 
1318 	elem->insn_idx = insn_idx;
1319 	elem->prev_insn_idx = prev_insn_idx;
1320 	elem->next = env->head;
1321 	elem->log_pos = env->log.len_used;
1322 	env->head = elem;
1323 	env->stack_size++;
1324 	err = copy_verifier_state(&elem->st, cur);
1325 	if (err)
1326 		goto err;
1327 	elem->st.speculative |= speculative;
1328 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1329 		verbose(env, "The sequence of %d jumps is too complex.\n",
1330 			env->stack_size);
1331 		goto err;
1332 	}
1333 	if (elem->st.parent) {
1334 		++elem->st.parent->branches;
1335 		/* WARN_ON(branches > 2) technically makes sense here,
1336 		 * but
1337 		 * 1. speculative states will bump 'branches' for non-branch
1338 		 * instructions
1339 		 * 2. is_state_visited() heuristics may decide not to create
1340 		 * a new state for a sequence of branches and all such current
1341 		 * and cloned states will be pointing to a single parent state
1342 		 * which might have large 'branches' count.
1343 		 */
1344 	}
1345 	return &elem->st;
1346 err:
1347 	free_verifier_state(env->cur_state, true);
1348 	env->cur_state = NULL;
1349 	/* pop all elements and return */
1350 	while (!pop_stack(env, NULL, NULL, false));
1351 	return NULL;
1352 }
1353 
1354 #define CALLER_SAVED_REGS 6
1355 static const int caller_saved[CALLER_SAVED_REGS] = {
1356 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1357 };
1358 
1359 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1360 				struct bpf_reg_state *reg);
1361 
1362 /* This helper doesn't clear reg->id */
1363 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1364 {
1365 	reg->var_off = tnum_const(imm);
1366 	reg->smin_value = (s64)imm;
1367 	reg->smax_value = (s64)imm;
1368 	reg->umin_value = imm;
1369 	reg->umax_value = imm;
1370 
1371 	reg->s32_min_value = (s32)imm;
1372 	reg->s32_max_value = (s32)imm;
1373 	reg->u32_min_value = (u32)imm;
1374 	reg->u32_max_value = (u32)imm;
1375 }
1376 
1377 /* Mark the unknown part of a register (variable offset or scalar value) as
1378  * known to have the value @imm.
1379  */
1380 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1381 {
1382 	/* Clear id, off, and union(map_ptr, range) */
1383 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1384 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1385 	___mark_reg_known(reg, imm);
1386 }
1387 
1388 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1389 {
1390 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1391 	reg->s32_min_value = (s32)imm;
1392 	reg->s32_max_value = (s32)imm;
1393 	reg->u32_min_value = (u32)imm;
1394 	reg->u32_max_value = (u32)imm;
1395 }
1396 
1397 /* Mark the 'variable offset' part of a register as zero.  This should be
1398  * used only on registers holding a pointer type.
1399  */
1400 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1401 {
1402 	__mark_reg_known(reg, 0);
1403 }
1404 
1405 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1406 {
1407 	__mark_reg_known(reg, 0);
1408 	reg->type = SCALAR_VALUE;
1409 }
1410 
1411 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1412 				struct bpf_reg_state *regs, u32 regno)
1413 {
1414 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1415 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1416 		/* Something bad happened, let's kill all regs */
1417 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1418 			__mark_reg_not_init(env, regs + regno);
1419 		return;
1420 	}
1421 	__mark_reg_known_zero(regs + regno);
1422 }
1423 
1424 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1425 {
1426 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1427 		const struct bpf_map *map = reg->map_ptr;
1428 
1429 		if (map->inner_map_meta) {
1430 			reg->type = CONST_PTR_TO_MAP;
1431 			reg->map_ptr = map->inner_map_meta;
1432 			/* transfer reg's id which is unique for every map_lookup_elem
1433 			 * as UID of the inner map.
1434 			 */
1435 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1436 				reg->map_uid = reg->id;
1437 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1438 			reg->type = PTR_TO_XDP_SOCK;
1439 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1440 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1441 			reg->type = PTR_TO_SOCKET;
1442 		} else {
1443 			reg->type = PTR_TO_MAP_VALUE;
1444 		}
1445 		return;
1446 	}
1447 
1448 	reg->type &= ~PTR_MAYBE_NULL;
1449 }
1450 
1451 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1452 {
1453 	return type_is_pkt_pointer(reg->type);
1454 }
1455 
1456 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1457 {
1458 	return reg_is_pkt_pointer(reg) ||
1459 	       reg->type == PTR_TO_PACKET_END;
1460 }
1461 
1462 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1463 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1464 				    enum bpf_reg_type which)
1465 {
1466 	/* The register can already have a range from prior markings.
1467 	 * This is fine as long as it hasn't been advanced from its
1468 	 * origin.
1469 	 */
1470 	return reg->type == which &&
1471 	       reg->id == 0 &&
1472 	       reg->off == 0 &&
1473 	       tnum_equals_const(reg->var_off, 0);
1474 }
1475 
1476 /* Reset the min/max bounds of a register */
1477 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1478 {
1479 	reg->smin_value = S64_MIN;
1480 	reg->smax_value = S64_MAX;
1481 	reg->umin_value = 0;
1482 	reg->umax_value = U64_MAX;
1483 
1484 	reg->s32_min_value = S32_MIN;
1485 	reg->s32_max_value = S32_MAX;
1486 	reg->u32_min_value = 0;
1487 	reg->u32_max_value = U32_MAX;
1488 }
1489 
1490 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1491 {
1492 	reg->smin_value = S64_MIN;
1493 	reg->smax_value = S64_MAX;
1494 	reg->umin_value = 0;
1495 	reg->umax_value = U64_MAX;
1496 }
1497 
1498 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1499 {
1500 	reg->s32_min_value = S32_MIN;
1501 	reg->s32_max_value = S32_MAX;
1502 	reg->u32_min_value = 0;
1503 	reg->u32_max_value = U32_MAX;
1504 }
1505 
1506 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1507 {
1508 	struct tnum var32_off = tnum_subreg(reg->var_off);
1509 
1510 	/* min signed is max(sign bit) | min(other bits) */
1511 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1512 			var32_off.value | (var32_off.mask & S32_MIN));
1513 	/* max signed is min(sign bit) | max(other bits) */
1514 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1515 			var32_off.value | (var32_off.mask & S32_MAX));
1516 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1517 	reg->u32_max_value = min(reg->u32_max_value,
1518 				 (u32)(var32_off.value | var32_off.mask));
1519 }
1520 
1521 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1522 {
1523 	/* min signed is max(sign bit) | min(other bits) */
1524 	reg->smin_value = max_t(s64, reg->smin_value,
1525 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1526 	/* max signed is min(sign bit) | max(other bits) */
1527 	reg->smax_value = min_t(s64, reg->smax_value,
1528 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1529 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1530 	reg->umax_value = min(reg->umax_value,
1531 			      reg->var_off.value | reg->var_off.mask);
1532 }
1533 
1534 static void __update_reg_bounds(struct bpf_reg_state *reg)
1535 {
1536 	__update_reg32_bounds(reg);
1537 	__update_reg64_bounds(reg);
1538 }
1539 
1540 /* Uses signed min/max values to inform unsigned, and vice-versa */
1541 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1542 {
1543 	/* Learn sign from signed bounds.
1544 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1545 	 * are the same, so combine.  This works even in the negative case, e.g.
1546 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1547 	 */
1548 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1549 		reg->s32_min_value = reg->u32_min_value =
1550 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1551 		reg->s32_max_value = reg->u32_max_value =
1552 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1553 		return;
1554 	}
1555 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1556 	 * boundary, so we must be careful.
1557 	 */
1558 	if ((s32)reg->u32_max_value >= 0) {
1559 		/* Positive.  We can't learn anything from the smin, but smax
1560 		 * is positive, hence safe.
1561 		 */
1562 		reg->s32_min_value = reg->u32_min_value;
1563 		reg->s32_max_value = reg->u32_max_value =
1564 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1565 	} else if ((s32)reg->u32_min_value < 0) {
1566 		/* Negative.  We can't learn anything from the smax, but smin
1567 		 * is negative, hence safe.
1568 		 */
1569 		reg->s32_min_value = reg->u32_min_value =
1570 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1571 		reg->s32_max_value = reg->u32_max_value;
1572 	}
1573 }
1574 
1575 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1576 {
1577 	/* Learn sign from signed bounds.
1578 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1579 	 * are the same, so combine.  This works even in the negative case, e.g.
1580 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1581 	 */
1582 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1583 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1584 							  reg->umin_value);
1585 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1586 							  reg->umax_value);
1587 		return;
1588 	}
1589 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1590 	 * boundary, so we must be careful.
1591 	 */
1592 	if ((s64)reg->umax_value >= 0) {
1593 		/* Positive.  We can't learn anything from the smin, but smax
1594 		 * is positive, hence safe.
1595 		 */
1596 		reg->smin_value = reg->umin_value;
1597 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1598 							  reg->umax_value);
1599 	} else if ((s64)reg->umin_value < 0) {
1600 		/* Negative.  We can't learn anything from the smax, but smin
1601 		 * is negative, hence safe.
1602 		 */
1603 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1604 							  reg->umin_value);
1605 		reg->smax_value = reg->umax_value;
1606 	}
1607 }
1608 
1609 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1610 {
1611 	__reg32_deduce_bounds(reg);
1612 	__reg64_deduce_bounds(reg);
1613 }
1614 
1615 /* Attempts to improve var_off based on unsigned min/max information */
1616 static void __reg_bound_offset(struct bpf_reg_state *reg)
1617 {
1618 	struct tnum var64_off = tnum_intersect(reg->var_off,
1619 					       tnum_range(reg->umin_value,
1620 							  reg->umax_value));
1621 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1622 						tnum_range(reg->u32_min_value,
1623 							   reg->u32_max_value));
1624 
1625 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1626 }
1627 
1628 static void reg_bounds_sync(struct bpf_reg_state *reg)
1629 {
1630 	/* We might have learned new bounds from the var_off. */
1631 	__update_reg_bounds(reg);
1632 	/* We might have learned something about the sign bit. */
1633 	__reg_deduce_bounds(reg);
1634 	/* We might have learned some bits from the bounds. */
1635 	__reg_bound_offset(reg);
1636 	/* Intersecting with the old var_off might have improved our bounds
1637 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1638 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1639 	 */
1640 	__update_reg_bounds(reg);
1641 }
1642 
1643 static bool __reg32_bound_s64(s32 a)
1644 {
1645 	return a >= 0 && a <= S32_MAX;
1646 }
1647 
1648 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1649 {
1650 	reg->umin_value = reg->u32_min_value;
1651 	reg->umax_value = reg->u32_max_value;
1652 
1653 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
1654 	 * be positive otherwise set to worse case bounds and refine later
1655 	 * from tnum.
1656 	 */
1657 	if (__reg32_bound_s64(reg->s32_min_value) &&
1658 	    __reg32_bound_s64(reg->s32_max_value)) {
1659 		reg->smin_value = reg->s32_min_value;
1660 		reg->smax_value = reg->s32_max_value;
1661 	} else {
1662 		reg->smin_value = 0;
1663 		reg->smax_value = U32_MAX;
1664 	}
1665 }
1666 
1667 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1668 {
1669 	/* special case when 64-bit register has upper 32-bit register
1670 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1671 	 * allowing us to use 32-bit bounds directly,
1672 	 */
1673 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1674 		__reg_assign_32_into_64(reg);
1675 	} else {
1676 		/* Otherwise the best we can do is push lower 32bit known and
1677 		 * unknown bits into register (var_off set from jmp logic)
1678 		 * then learn as much as possible from the 64-bit tnum
1679 		 * known and unknown bits. The previous smin/smax bounds are
1680 		 * invalid here because of jmp32 compare so mark them unknown
1681 		 * so they do not impact tnum bounds calculation.
1682 		 */
1683 		__mark_reg64_unbounded(reg);
1684 	}
1685 	reg_bounds_sync(reg);
1686 }
1687 
1688 static bool __reg64_bound_s32(s64 a)
1689 {
1690 	return a >= S32_MIN && a <= S32_MAX;
1691 }
1692 
1693 static bool __reg64_bound_u32(u64 a)
1694 {
1695 	return a >= U32_MIN && a <= U32_MAX;
1696 }
1697 
1698 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1699 {
1700 	__mark_reg32_unbounded(reg);
1701 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1702 		reg->s32_min_value = (s32)reg->smin_value;
1703 		reg->s32_max_value = (s32)reg->smax_value;
1704 	}
1705 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1706 		reg->u32_min_value = (u32)reg->umin_value;
1707 		reg->u32_max_value = (u32)reg->umax_value;
1708 	}
1709 	reg_bounds_sync(reg);
1710 }
1711 
1712 /* Mark a register as having a completely unknown (scalar) value. */
1713 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1714 			       struct bpf_reg_state *reg)
1715 {
1716 	/*
1717 	 * Clear type, id, off, and union(map_ptr, range) and
1718 	 * padding between 'type' and union
1719 	 */
1720 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1721 	reg->type = SCALAR_VALUE;
1722 	reg->var_off = tnum_unknown;
1723 	reg->frameno = 0;
1724 	reg->precise = !env->bpf_capable;
1725 	__mark_reg_unbounded(reg);
1726 }
1727 
1728 static void mark_reg_unknown(struct bpf_verifier_env *env,
1729 			     struct bpf_reg_state *regs, u32 regno)
1730 {
1731 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1732 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1733 		/* Something bad happened, let's kill all regs except FP */
1734 		for (regno = 0; regno < BPF_REG_FP; regno++)
1735 			__mark_reg_not_init(env, regs + regno);
1736 		return;
1737 	}
1738 	__mark_reg_unknown(env, regs + regno);
1739 }
1740 
1741 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1742 				struct bpf_reg_state *reg)
1743 {
1744 	__mark_reg_unknown(env, reg);
1745 	reg->type = NOT_INIT;
1746 }
1747 
1748 static void mark_reg_not_init(struct bpf_verifier_env *env,
1749 			      struct bpf_reg_state *regs, u32 regno)
1750 {
1751 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1752 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1753 		/* Something bad happened, let's kill all regs except FP */
1754 		for (regno = 0; regno < BPF_REG_FP; regno++)
1755 			__mark_reg_not_init(env, regs + regno);
1756 		return;
1757 	}
1758 	__mark_reg_not_init(env, regs + regno);
1759 }
1760 
1761 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1762 			    struct bpf_reg_state *regs, u32 regno,
1763 			    enum bpf_reg_type reg_type,
1764 			    struct btf *btf, u32 btf_id,
1765 			    enum bpf_type_flag flag)
1766 {
1767 	if (reg_type == SCALAR_VALUE) {
1768 		mark_reg_unknown(env, regs, regno);
1769 		return;
1770 	}
1771 	mark_reg_known_zero(env, regs, regno);
1772 	regs[regno].type = PTR_TO_BTF_ID | flag;
1773 	regs[regno].btf = btf;
1774 	regs[regno].btf_id = btf_id;
1775 }
1776 
1777 #define DEF_NOT_SUBREG	(0)
1778 static void init_reg_state(struct bpf_verifier_env *env,
1779 			   struct bpf_func_state *state)
1780 {
1781 	struct bpf_reg_state *regs = state->regs;
1782 	int i;
1783 
1784 	for (i = 0; i < MAX_BPF_REG; i++) {
1785 		mark_reg_not_init(env, regs, i);
1786 		regs[i].live = REG_LIVE_NONE;
1787 		regs[i].parent = NULL;
1788 		regs[i].subreg_def = DEF_NOT_SUBREG;
1789 	}
1790 
1791 	/* frame pointer */
1792 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1793 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1794 	regs[BPF_REG_FP].frameno = state->frameno;
1795 }
1796 
1797 #define BPF_MAIN_FUNC (-1)
1798 static void init_func_state(struct bpf_verifier_env *env,
1799 			    struct bpf_func_state *state,
1800 			    int callsite, int frameno, int subprogno)
1801 {
1802 	state->callsite = callsite;
1803 	state->frameno = frameno;
1804 	state->subprogno = subprogno;
1805 	state->callback_ret_range = tnum_range(0, 0);
1806 	init_reg_state(env, state);
1807 	mark_verifier_state_scratched(env);
1808 }
1809 
1810 /* Similar to push_stack(), but for async callbacks */
1811 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1812 						int insn_idx, int prev_insn_idx,
1813 						int subprog)
1814 {
1815 	struct bpf_verifier_stack_elem *elem;
1816 	struct bpf_func_state *frame;
1817 
1818 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1819 	if (!elem)
1820 		goto err;
1821 
1822 	elem->insn_idx = insn_idx;
1823 	elem->prev_insn_idx = prev_insn_idx;
1824 	elem->next = env->head;
1825 	elem->log_pos = env->log.len_used;
1826 	env->head = elem;
1827 	env->stack_size++;
1828 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1829 		verbose(env,
1830 			"The sequence of %d jumps is too complex for async cb.\n",
1831 			env->stack_size);
1832 		goto err;
1833 	}
1834 	/* Unlike push_stack() do not copy_verifier_state().
1835 	 * The caller state doesn't matter.
1836 	 * This is async callback. It starts in a fresh stack.
1837 	 * Initialize it similar to do_check_common().
1838 	 */
1839 	elem->st.branches = 1;
1840 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1841 	if (!frame)
1842 		goto err;
1843 	init_func_state(env, frame,
1844 			BPF_MAIN_FUNC /* callsite */,
1845 			0 /* frameno within this callchain */,
1846 			subprog /* subprog number within this prog */);
1847 	elem->st.frame[0] = frame;
1848 	return &elem->st;
1849 err:
1850 	free_verifier_state(env->cur_state, true);
1851 	env->cur_state = NULL;
1852 	/* pop all elements and return */
1853 	while (!pop_stack(env, NULL, NULL, false));
1854 	return NULL;
1855 }
1856 
1857 
1858 enum reg_arg_type {
1859 	SRC_OP,		/* register is used as source operand */
1860 	DST_OP,		/* register is used as destination operand */
1861 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1862 };
1863 
1864 static int cmp_subprogs(const void *a, const void *b)
1865 {
1866 	return ((struct bpf_subprog_info *)a)->start -
1867 	       ((struct bpf_subprog_info *)b)->start;
1868 }
1869 
1870 static int find_subprog(struct bpf_verifier_env *env, int off)
1871 {
1872 	struct bpf_subprog_info *p;
1873 
1874 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1875 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1876 	if (!p)
1877 		return -ENOENT;
1878 	return p - env->subprog_info;
1879 
1880 }
1881 
1882 static int add_subprog(struct bpf_verifier_env *env, int off)
1883 {
1884 	int insn_cnt = env->prog->len;
1885 	int ret;
1886 
1887 	if (off >= insn_cnt || off < 0) {
1888 		verbose(env, "call to invalid destination\n");
1889 		return -EINVAL;
1890 	}
1891 	ret = find_subprog(env, off);
1892 	if (ret >= 0)
1893 		return ret;
1894 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1895 		verbose(env, "too many subprograms\n");
1896 		return -E2BIG;
1897 	}
1898 	/* determine subprog starts. The end is one before the next starts */
1899 	env->subprog_info[env->subprog_cnt++].start = off;
1900 	sort(env->subprog_info, env->subprog_cnt,
1901 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1902 	return env->subprog_cnt - 1;
1903 }
1904 
1905 #define MAX_KFUNC_DESCS 256
1906 #define MAX_KFUNC_BTFS	256
1907 
1908 struct bpf_kfunc_desc {
1909 	struct btf_func_model func_model;
1910 	u32 func_id;
1911 	s32 imm;
1912 	u16 offset;
1913 };
1914 
1915 struct bpf_kfunc_btf {
1916 	struct btf *btf;
1917 	struct module *module;
1918 	u16 offset;
1919 };
1920 
1921 struct bpf_kfunc_desc_tab {
1922 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1923 	u32 nr_descs;
1924 };
1925 
1926 struct bpf_kfunc_btf_tab {
1927 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
1928 	u32 nr_descs;
1929 };
1930 
1931 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
1932 {
1933 	const struct bpf_kfunc_desc *d0 = a;
1934 	const struct bpf_kfunc_desc *d1 = b;
1935 
1936 	/* func_id is not greater than BTF_MAX_TYPE */
1937 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
1938 }
1939 
1940 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
1941 {
1942 	const struct bpf_kfunc_btf *d0 = a;
1943 	const struct bpf_kfunc_btf *d1 = b;
1944 
1945 	return d0->offset - d1->offset;
1946 }
1947 
1948 static const struct bpf_kfunc_desc *
1949 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
1950 {
1951 	struct bpf_kfunc_desc desc = {
1952 		.func_id = func_id,
1953 		.offset = offset,
1954 	};
1955 	struct bpf_kfunc_desc_tab *tab;
1956 
1957 	tab = prog->aux->kfunc_tab;
1958 	return bsearch(&desc, tab->descs, tab->nr_descs,
1959 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
1960 }
1961 
1962 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
1963 					 s16 offset)
1964 {
1965 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
1966 	struct bpf_kfunc_btf_tab *tab;
1967 	struct bpf_kfunc_btf *b;
1968 	struct module *mod;
1969 	struct btf *btf;
1970 	int btf_fd;
1971 
1972 	tab = env->prog->aux->kfunc_btf_tab;
1973 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
1974 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
1975 	if (!b) {
1976 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
1977 			verbose(env, "too many different module BTFs\n");
1978 			return ERR_PTR(-E2BIG);
1979 		}
1980 
1981 		if (bpfptr_is_null(env->fd_array)) {
1982 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
1983 			return ERR_PTR(-EPROTO);
1984 		}
1985 
1986 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
1987 					    offset * sizeof(btf_fd),
1988 					    sizeof(btf_fd)))
1989 			return ERR_PTR(-EFAULT);
1990 
1991 		btf = btf_get_by_fd(btf_fd);
1992 		if (IS_ERR(btf)) {
1993 			verbose(env, "invalid module BTF fd specified\n");
1994 			return btf;
1995 		}
1996 
1997 		if (!btf_is_module(btf)) {
1998 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
1999 			btf_put(btf);
2000 			return ERR_PTR(-EINVAL);
2001 		}
2002 
2003 		mod = btf_try_get_module(btf);
2004 		if (!mod) {
2005 			btf_put(btf);
2006 			return ERR_PTR(-ENXIO);
2007 		}
2008 
2009 		b = &tab->descs[tab->nr_descs++];
2010 		b->btf = btf;
2011 		b->module = mod;
2012 		b->offset = offset;
2013 
2014 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2015 		     kfunc_btf_cmp_by_off, NULL);
2016 	}
2017 	return b->btf;
2018 }
2019 
2020 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2021 {
2022 	if (!tab)
2023 		return;
2024 
2025 	while (tab->nr_descs--) {
2026 		module_put(tab->descs[tab->nr_descs].module);
2027 		btf_put(tab->descs[tab->nr_descs].btf);
2028 	}
2029 	kfree(tab);
2030 }
2031 
2032 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2033 {
2034 	if (offset) {
2035 		if (offset < 0) {
2036 			/* In the future, this can be allowed to increase limit
2037 			 * of fd index into fd_array, interpreted as u16.
2038 			 */
2039 			verbose(env, "negative offset disallowed for kernel module function call\n");
2040 			return ERR_PTR(-EINVAL);
2041 		}
2042 
2043 		return __find_kfunc_desc_btf(env, offset);
2044 	}
2045 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2046 }
2047 
2048 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2049 {
2050 	const struct btf_type *func, *func_proto;
2051 	struct bpf_kfunc_btf_tab *btf_tab;
2052 	struct bpf_kfunc_desc_tab *tab;
2053 	struct bpf_prog_aux *prog_aux;
2054 	struct bpf_kfunc_desc *desc;
2055 	const char *func_name;
2056 	struct btf *desc_btf;
2057 	unsigned long call_imm;
2058 	unsigned long addr;
2059 	int err;
2060 
2061 	prog_aux = env->prog->aux;
2062 	tab = prog_aux->kfunc_tab;
2063 	btf_tab = prog_aux->kfunc_btf_tab;
2064 	if (!tab) {
2065 		if (!btf_vmlinux) {
2066 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2067 			return -ENOTSUPP;
2068 		}
2069 
2070 		if (!env->prog->jit_requested) {
2071 			verbose(env, "JIT is required for calling kernel function\n");
2072 			return -ENOTSUPP;
2073 		}
2074 
2075 		if (!bpf_jit_supports_kfunc_call()) {
2076 			verbose(env, "JIT does not support calling kernel function\n");
2077 			return -ENOTSUPP;
2078 		}
2079 
2080 		if (!env->prog->gpl_compatible) {
2081 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2082 			return -EINVAL;
2083 		}
2084 
2085 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2086 		if (!tab)
2087 			return -ENOMEM;
2088 		prog_aux->kfunc_tab = tab;
2089 	}
2090 
2091 	/* func_id == 0 is always invalid, but instead of returning an error, be
2092 	 * conservative and wait until the code elimination pass before returning
2093 	 * error, so that invalid calls that get pruned out can be in BPF programs
2094 	 * loaded from userspace.  It is also required that offset be untouched
2095 	 * for such calls.
2096 	 */
2097 	if (!func_id && !offset)
2098 		return 0;
2099 
2100 	if (!btf_tab && offset) {
2101 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2102 		if (!btf_tab)
2103 			return -ENOMEM;
2104 		prog_aux->kfunc_btf_tab = btf_tab;
2105 	}
2106 
2107 	desc_btf = find_kfunc_desc_btf(env, offset);
2108 	if (IS_ERR(desc_btf)) {
2109 		verbose(env, "failed to find BTF for kernel function\n");
2110 		return PTR_ERR(desc_btf);
2111 	}
2112 
2113 	if (find_kfunc_desc(env->prog, func_id, offset))
2114 		return 0;
2115 
2116 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2117 		verbose(env, "too many different kernel function calls\n");
2118 		return -E2BIG;
2119 	}
2120 
2121 	func = btf_type_by_id(desc_btf, func_id);
2122 	if (!func || !btf_type_is_func(func)) {
2123 		verbose(env, "kernel btf_id %u is not a function\n",
2124 			func_id);
2125 		return -EINVAL;
2126 	}
2127 	func_proto = btf_type_by_id(desc_btf, func->type);
2128 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2129 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2130 			func_id);
2131 		return -EINVAL;
2132 	}
2133 
2134 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2135 	addr = kallsyms_lookup_name(func_name);
2136 	if (!addr) {
2137 		verbose(env, "cannot find address for kernel function %s\n",
2138 			func_name);
2139 		return -EINVAL;
2140 	}
2141 
2142 	call_imm = BPF_CALL_IMM(addr);
2143 	/* Check whether or not the relative offset overflows desc->imm */
2144 	if ((unsigned long)(s32)call_imm != call_imm) {
2145 		verbose(env, "address of kernel function %s is out of range\n",
2146 			func_name);
2147 		return -EINVAL;
2148 	}
2149 
2150 	desc = &tab->descs[tab->nr_descs++];
2151 	desc->func_id = func_id;
2152 	desc->imm = call_imm;
2153 	desc->offset = offset;
2154 	err = btf_distill_func_proto(&env->log, desc_btf,
2155 				     func_proto, func_name,
2156 				     &desc->func_model);
2157 	if (!err)
2158 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2159 		     kfunc_desc_cmp_by_id_off, NULL);
2160 	return err;
2161 }
2162 
2163 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
2164 {
2165 	const struct bpf_kfunc_desc *d0 = a;
2166 	const struct bpf_kfunc_desc *d1 = b;
2167 
2168 	if (d0->imm > d1->imm)
2169 		return 1;
2170 	else if (d0->imm < d1->imm)
2171 		return -1;
2172 	return 0;
2173 }
2174 
2175 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
2176 {
2177 	struct bpf_kfunc_desc_tab *tab;
2178 
2179 	tab = prog->aux->kfunc_tab;
2180 	if (!tab)
2181 		return;
2182 
2183 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2184 	     kfunc_desc_cmp_by_imm, NULL);
2185 }
2186 
2187 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2188 {
2189 	return !!prog->aux->kfunc_tab;
2190 }
2191 
2192 const struct btf_func_model *
2193 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2194 			 const struct bpf_insn *insn)
2195 {
2196 	const struct bpf_kfunc_desc desc = {
2197 		.imm = insn->imm,
2198 	};
2199 	const struct bpf_kfunc_desc *res;
2200 	struct bpf_kfunc_desc_tab *tab;
2201 
2202 	tab = prog->aux->kfunc_tab;
2203 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2204 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
2205 
2206 	return res ? &res->func_model : NULL;
2207 }
2208 
2209 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2210 {
2211 	struct bpf_subprog_info *subprog = env->subprog_info;
2212 	struct bpf_insn *insn = env->prog->insnsi;
2213 	int i, ret, insn_cnt = env->prog->len;
2214 
2215 	/* Add entry function. */
2216 	ret = add_subprog(env, 0);
2217 	if (ret)
2218 		return ret;
2219 
2220 	for (i = 0; i < insn_cnt; i++, insn++) {
2221 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2222 		    !bpf_pseudo_kfunc_call(insn))
2223 			continue;
2224 
2225 		if (!env->bpf_capable) {
2226 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2227 			return -EPERM;
2228 		}
2229 
2230 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2231 			ret = add_subprog(env, i + insn->imm + 1);
2232 		else
2233 			ret = add_kfunc_call(env, insn->imm, insn->off);
2234 
2235 		if (ret < 0)
2236 			return ret;
2237 	}
2238 
2239 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2240 	 * logic. 'subprog_cnt' should not be increased.
2241 	 */
2242 	subprog[env->subprog_cnt].start = insn_cnt;
2243 
2244 	if (env->log.level & BPF_LOG_LEVEL2)
2245 		for (i = 0; i < env->subprog_cnt; i++)
2246 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2247 
2248 	return 0;
2249 }
2250 
2251 static int check_subprogs(struct bpf_verifier_env *env)
2252 {
2253 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2254 	struct bpf_subprog_info *subprog = env->subprog_info;
2255 	struct bpf_insn *insn = env->prog->insnsi;
2256 	int insn_cnt = env->prog->len;
2257 
2258 	/* now check that all jumps are within the same subprog */
2259 	subprog_start = subprog[cur_subprog].start;
2260 	subprog_end = subprog[cur_subprog + 1].start;
2261 	for (i = 0; i < insn_cnt; i++) {
2262 		u8 code = insn[i].code;
2263 
2264 		if (code == (BPF_JMP | BPF_CALL) &&
2265 		    insn[i].imm == BPF_FUNC_tail_call &&
2266 		    insn[i].src_reg != BPF_PSEUDO_CALL)
2267 			subprog[cur_subprog].has_tail_call = true;
2268 		if (BPF_CLASS(code) == BPF_LD &&
2269 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2270 			subprog[cur_subprog].has_ld_abs = true;
2271 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2272 			goto next;
2273 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2274 			goto next;
2275 		off = i + insn[i].off + 1;
2276 		if (off < subprog_start || off >= subprog_end) {
2277 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2278 			return -EINVAL;
2279 		}
2280 next:
2281 		if (i == subprog_end - 1) {
2282 			/* to avoid fall-through from one subprog into another
2283 			 * the last insn of the subprog should be either exit
2284 			 * or unconditional jump back
2285 			 */
2286 			if (code != (BPF_JMP | BPF_EXIT) &&
2287 			    code != (BPF_JMP | BPF_JA)) {
2288 				verbose(env, "last insn is not an exit or jmp\n");
2289 				return -EINVAL;
2290 			}
2291 			subprog_start = subprog_end;
2292 			cur_subprog++;
2293 			if (cur_subprog < env->subprog_cnt)
2294 				subprog_end = subprog[cur_subprog + 1].start;
2295 		}
2296 	}
2297 	return 0;
2298 }
2299 
2300 /* Parentage chain of this register (or stack slot) should take care of all
2301  * issues like callee-saved registers, stack slot allocation time, etc.
2302  */
2303 static int mark_reg_read(struct bpf_verifier_env *env,
2304 			 const struct bpf_reg_state *state,
2305 			 struct bpf_reg_state *parent, u8 flag)
2306 {
2307 	bool writes = parent == state->parent; /* Observe write marks */
2308 	int cnt = 0;
2309 
2310 	while (parent) {
2311 		/* if read wasn't screened by an earlier write ... */
2312 		if (writes && state->live & REG_LIVE_WRITTEN)
2313 			break;
2314 		if (parent->live & REG_LIVE_DONE) {
2315 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2316 				reg_type_str(env, parent->type),
2317 				parent->var_off.value, parent->off);
2318 			return -EFAULT;
2319 		}
2320 		/* The first condition is more likely to be true than the
2321 		 * second, checked it first.
2322 		 */
2323 		if ((parent->live & REG_LIVE_READ) == flag ||
2324 		    parent->live & REG_LIVE_READ64)
2325 			/* The parentage chain never changes and
2326 			 * this parent was already marked as LIVE_READ.
2327 			 * There is no need to keep walking the chain again and
2328 			 * keep re-marking all parents as LIVE_READ.
2329 			 * This case happens when the same register is read
2330 			 * multiple times without writes into it in-between.
2331 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
2332 			 * then no need to set the weak REG_LIVE_READ32.
2333 			 */
2334 			break;
2335 		/* ... then we depend on parent's value */
2336 		parent->live |= flag;
2337 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2338 		if (flag == REG_LIVE_READ64)
2339 			parent->live &= ~REG_LIVE_READ32;
2340 		state = parent;
2341 		parent = state->parent;
2342 		writes = true;
2343 		cnt++;
2344 	}
2345 
2346 	if (env->longest_mark_read_walk < cnt)
2347 		env->longest_mark_read_walk = cnt;
2348 	return 0;
2349 }
2350 
2351 /* This function is supposed to be used by the following 32-bit optimization
2352  * code only. It returns TRUE if the source or destination register operates
2353  * on 64-bit, otherwise return FALSE.
2354  */
2355 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2356 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2357 {
2358 	u8 code, class, op;
2359 
2360 	code = insn->code;
2361 	class = BPF_CLASS(code);
2362 	op = BPF_OP(code);
2363 	if (class == BPF_JMP) {
2364 		/* BPF_EXIT for "main" will reach here. Return TRUE
2365 		 * conservatively.
2366 		 */
2367 		if (op == BPF_EXIT)
2368 			return true;
2369 		if (op == BPF_CALL) {
2370 			/* BPF to BPF call will reach here because of marking
2371 			 * caller saved clobber with DST_OP_NO_MARK for which we
2372 			 * don't care the register def because they are anyway
2373 			 * marked as NOT_INIT already.
2374 			 */
2375 			if (insn->src_reg == BPF_PSEUDO_CALL)
2376 				return false;
2377 			/* Helper call will reach here because of arg type
2378 			 * check, conservatively return TRUE.
2379 			 */
2380 			if (t == SRC_OP)
2381 				return true;
2382 
2383 			return false;
2384 		}
2385 	}
2386 
2387 	if (class == BPF_ALU64 || class == BPF_JMP ||
2388 	    /* BPF_END always use BPF_ALU class. */
2389 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2390 		return true;
2391 
2392 	if (class == BPF_ALU || class == BPF_JMP32)
2393 		return false;
2394 
2395 	if (class == BPF_LDX) {
2396 		if (t != SRC_OP)
2397 			return BPF_SIZE(code) == BPF_DW;
2398 		/* LDX source must be ptr. */
2399 		return true;
2400 	}
2401 
2402 	if (class == BPF_STX) {
2403 		/* BPF_STX (including atomic variants) has multiple source
2404 		 * operands, one of which is a ptr. Check whether the caller is
2405 		 * asking about it.
2406 		 */
2407 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
2408 			return true;
2409 		return BPF_SIZE(code) == BPF_DW;
2410 	}
2411 
2412 	if (class == BPF_LD) {
2413 		u8 mode = BPF_MODE(code);
2414 
2415 		/* LD_IMM64 */
2416 		if (mode == BPF_IMM)
2417 			return true;
2418 
2419 		/* Both LD_IND and LD_ABS return 32-bit data. */
2420 		if (t != SRC_OP)
2421 			return  false;
2422 
2423 		/* Implicit ctx ptr. */
2424 		if (regno == BPF_REG_6)
2425 			return true;
2426 
2427 		/* Explicit source could be any width. */
2428 		return true;
2429 	}
2430 
2431 	if (class == BPF_ST)
2432 		/* The only source register for BPF_ST is a ptr. */
2433 		return true;
2434 
2435 	/* Conservatively return true at default. */
2436 	return true;
2437 }
2438 
2439 /* Return the regno defined by the insn, or -1. */
2440 static int insn_def_regno(const struct bpf_insn *insn)
2441 {
2442 	switch (BPF_CLASS(insn->code)) {
2443 	case BPF_JMP:
2444 	case BPF_JMP32:
2445 	case BPF_ST:
2446 		return -1;
2447 	case BPF_STX:
2448 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2449 		    (insn->imm & BPF_FETCH)) {
2450 			if (insn->imm == BPF_CMPXCHG)
2451 				return BPF_REG_0;
2452 			else
2453 				return insn->src_reg;
2454 		} else {
2455 			return -1;
2456 		}
2457 	default:
2458 		return insn->dst_reg;
2459 	}
2460 }
2461 
2462 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
2463 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2464 {
2465 	int dst_reg = insn_def_regno(insn);
2466 
2467 	if (dst_reg == -1)
2468 		return false;
2469 
2470 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2471 }
2472 
2473 static void mark_insn_zext(struct bpf_verifier_env *env,
2474 			   struct bpf_reg_state *reg)
2475 {
2476 	s32 def_idx = reg->subreg_def;
2477 
2478 	if (def_idx == DEF_NOT_SUBREG)
2479 		return;
2480 
2481 	env->insn_aux_data[def_idx - 1].zext_dst = true;
2482 	/* The dst will be zero extended, so won't be sub-register anymore. */
2483 	reg->subreg_def = DEF_NOT_SUBREG;
2484 }
2485 
2486 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2487 			 enum reg_arg_type t)
2488 {
2489 	struct bpf_verifier_state *vstate = env->cur_state;
2490 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2491 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2492 	struct bpf_reg_state *reg, *regs = state->regs;
2493 	bool rw64;
2494 
2495 	if (regno >= MAX_BPF_REG) {
2496 		verbose(env, "R%d is invalid\n", regno);
2497 		return -EINVAL;
2498 	}
2499 
2500 	mark_reg_scratched(env, regno);
2501 
2502 	reg = &regs[regno];
2503 	rw64 = is_reg64(env, insn, regno, reg, t);
2504 	if (t == SRC_OP) {
2505 		/* check whether register used as source operand can be read */
2506 		if (reg->type == NOT_INIT) {
2507 			verbose(env, "R%d !read_ok\n", regno);
2508 			return -EACCES;
2509 		}
2510 		/* We don't need to worry about FP liveness because it's read-only */
2511 		if (regno == BPF_REG_FP)
2512 			return 0;
2513 
2514 		if (rw64)
2515 			mark_insn_zext(env, reg);
2516 
2517 		return mark_reg_read(env, reg, reg->parent,
2518 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2519 	} else {
2520 		/* check whether register used as dest operand can be written to */
2521 		if (regno == BPF_REG_FP) {
2522 			verbose(env, "frame pointer is read only\n");
2523 			return -EACCES;
2524 		}
2525 		reg->live |= REG_LIVE_WRITTEN;
2526 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2527 		if (t == DST_OP)
2528 			mark_reg_unknown(env, regs, regno);
2529 	}
2530 	return 0;
2531 }
2532 
2533 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
2534 {
2535 	env->insn_aux_data[idx].jmp_point = true;
2536 }
2537 
2538 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
2539 {
2540 	return env->insn_aux_data[insn_idx].jmp_point;
2541 }
2542 
2543 /* for any branch, call, exit record the history of jmps in the given state */
2544 static int push_jmp_history(struct bpf_verifier_env *env,
2545 			    struct bpf_verifier_state *cur)
2546 {
2547 	u32 cnt = cur->jmp_history_cnt;
2548 	struct bpf_idx_pair *p;
2549 	size_t alloc_size;
2550 
2551 	if (!is_jmp_point(env, env->insn_idx))
2552 		return 0;
2553 
2554 	cnt++;
2555 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
2556 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
2557 	if (!p)
2558 		return -ENOMEM;
2559 	p[cnt - 1].idx = env->insn_idx;
2560 	p[cnt - 1].prev_idx = env->prev_insn_idx;
2561 	cur->jmp_history = p;
2562 	cur->jmp_history_cnt = cnt;
2563 	return 0;
2564 }
2565 
2566 /* Backtrack one insn at a time. If idx is not at the top of recorded
2567  * history then previous instruction came from straight line execution.
2568  */
2569 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2570 			     u32 *history)
2571 {
2572 	u32 cnt = *history;
2573 
2574 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
2575 		i = st->jmp_history[cnt - 1].prev_idx;
2576 		(*history)--;
2577 	} else {
2578 		i--;
2579 	}
2580 	return i;
2581 }
2582 
2583 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2584 {
2585 	const struct btf_type *func;
2586 	struct btf *desc_btf;
2587 
2588 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2589 		return NULL;
2590 
2591 	desc_btf = find_kfunc_desc_btf(data, insn->off);
2592 	if (IS_ERR(desc_btf))
2593 		return "<error>";
2594 
2595 	func = btf_type_by_id(desc_btf, insn->imm);
2596 	return btf_name_by_offset(desc_btf, func->name_off);
2597 }
2598 
2599 /* For given verifier state backtrack_insn() is called from the last insn to
2600  * the first insn. Its purpose is to compute a bitmask of registers and
2601  * stack slots that needs precision in the parent verifier state.
2602  */
2603 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2604 			  u32 *reg_mask, u64 *stack_mask)
2605 {
2606 	const struct bpf_insn_cbs cbs = {
2607 		.cb_call	= disasm_kfunc_name,
2608 		.cb_print	= verbose,
2609 		.private_data	= env,
2610 	};
2611 	struct bpf_insn *insn = env->prog->insnsi + idx;
2612 	u8 class = BPF_CLASS(insn->code);
2613 	u8 opcode = BPF_OP(insn->code);
2614 	u8 mode = BPF_MODE(insn->code);
2615 	u32 dreg = 1u << insn->dst_reg;
2616 	u32 sreg = 1u << insn->src_reg;
2617 	u32 spi;
2618 
2619 	if (insn->code == 0)
2620 		return 0;
2621 	if (env->log.level & BPF_LOG_LEVEL2) {
2622 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2623 		verbose(env, "%d: ", idx);
2624 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2625 	}
2626 
2627 	if (class == BPF_ALU || class == BPF_ALU64) {
2628 		if (!(*reg_mask & dreg))
2629 			return 0;
2630 		if (opcode == BPF_MOV) {
2631 			if (BPF_SRC(insn->code) == BPF_X) {
2632 				/* dreg = sreg
2633 				 * dreg needs precision after this insn
2634 				 * sreg needs precision before this insn
2635 				 */
2636 				*reg_mask &= ~dreg;
2637 				*reg_mask |= sreg;
2638 			} else {
2639 				/* dreg = K
2640 				 * dreg needs precision after this insn.
2641 				 * Corresponding register is already marked
2642 				 * as precise=true in this verifier state.
2643 				 * No further markings in parent are necessary
2644 				 */
2645 				*reg_mask &= ~dreg;
2646 			}
2647 		} else {
2648 			if (BPF_SRC(insn->code) == BPF_X) {
2649 				/* dreg += sreg
2650 				 * both dreg and sreg need precision
2651 				 * before this insn
2652 				 */
2653 				*reg_mask |= sreg;
2654 			} /* else dreg += K
2655 			   * dreg still needs precision before this insn
2656 			   */
2657 		}
2658 	} else if (class == BPF_LDX) {
2659 		if (!(*reg_mask & dreg))
2660 			return 0;
2661 		*reg_mask &= ~dreg;
2662 
2663 		/* scalars can only be spilled into stack w/o losing precision.
2664 		 * Load from any other memory can be zero extended.
2665 		 * The desire to keep that precision is already indicated
2666 		 * by 'precise' mark in corresponding register of this state.
2667 		 * No further tracking necessary.
2668 		 */
2669 		if (insn->src_reg != BPF_REG_FP)
2670 			return 0;
2671 
2672 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
2673 		 * that [fp - off] slot contains scalar that needs to be
2674 		 * tracked with precision
2675 		 */
2676 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2677 		if (spi >= 64) {
2678 			verbose(env, "BUG spi %d\n", spi);
2679 			WARN_ONCE(1, "verifier backtracking bug");
2680 			return -EFAULT;
2681 		}
2682 		*stack_mask |= 1ull << spi;
2683 	} else if (class == BPF_STX || class == BPF_ST) {
2684 		if (*reg_mask & dreg)
2685 			/* stx & st shouldn't be using _scalar_ dst_reg
2686 			 * to access memory. It means backtracking
2687 			 * encountered a case of pointer subtraction.
2688 			 */
2689 			return -ENOTSUPP;
2690 		/* scalars can only be spilled into stack */
2691 		if (insn->dst_reg != BPF_REG_FP)
2692 			return 0;
2693 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2694 		if (spi >= 64) {
2695 			verbose(env, "BUG spi %d\n", spi);
2696 			WARN_ONCE(1, "verifier backtracking bug");
2697 			return -EFAULT;
2698 		}
2699 		if (!(*stack_mask & (1ull << spi)))
2700 			return 0;
2701 		*stack_mask &= ~(1ull << spi);
2702 		if (class == BPF_STX)
2703 			*reg_mask |= sreg;
2704 	} else if (class == BPF_JMP || class == BPF_JMP32) {
2705 		if (opcode == BPF_CALL) {
2706 			if (insn->src_reg == BPF_PSEUDO_CALL)
2707 				return -ENOTSUPP;
2708 			/* BPF helpers that invoke callback subprogs are
2709 			 * equivalent to BPF_PSEUDO_CALL above
2710 			 */
2711 			if (insn->src_reg == 0 && is_callback_calling_function(insn->imm))
2712 				return -ENOTSUPP;
2713 			/* regular helper call sets R0 */
2714 			*reg_mask &= ~1;
2715 			if (*reg_mask & 0x3f) {
2716 				/* if backtracing was looking for registers R1-R5
2717 				 * they should have been found already.
2718 				 */
2719 				verbose(env, "BUG regs %x\n", *reg_mask);
2720 				WARN_ONCE(1, "verifier backtracking bug");
2721 				return -EFAULT;
2722 			}
2723 		} else if (opcode == BPF_EXIT) {
2724 			return -ENOTSUPP;
2725 		}
2726 	} else if (class == BPF_LD) {
2727 		if (!(*reg_mask & dreg))
2728 			return 0;
2729 		*reg_mask &= ~dreg;
2730 		/* It's ld_imm64 or ld_abs or ld_ind.
2731 		 * For ld_imm64 no further tracking of precision
2732 		 * into parent is necessary
2733 		 */
2734 		if (mode == BPF_IND || mode == BPF_ABS)
2735 			/* to be analyzed */
2736 			return -ENOTSUPP;
2737 	}
2738 	return 0;
2739 }
2740 
2741 /* the scalar precision tracking algorithm:
2742  * . at the start all registers have precise=false.
2743  * . scalar ranges are tracked as normal through alu and jmp insns.
2744  * . once precise value of the scalar register is used in:
2745  *   .  ptr + scalar alu
2746  *   . if (scalar cond K|scalar)
2747  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2748  *   backtrack through the verifier states and mark all registers and
2749  *   stack slots with spilled constants that these scalar regisers
2750  *   should be precise.
2751  * . during state pruning two registers (or spilled stack slots)
2752  *   are equivalent if both are not precise.
2753  *
2754  * Note the verifier cannot simply walk register parentage chain,
2755  * since many different registers and stack slots could have been
2756  * used to compute single precise scalar.
2757  *
2758  * The approach of starting with precise=true for all registers and then
2759  * backtrack to mark a register as not precise when the verifier detects
2760  * that program doesn't care about specific value (e.g., when helper
2761  * takes register as ARG_ANYTHING parameter) is not safe.
2762  *
2763  * It's ok to walk single parentage chain of the verifier states.
2764  * It's possible that this backtracking will go all the way till 1st insn.
2765  * All other branches will be explored for needing precision later.
2766  *
2767  * The backtracking needs to deal with cases like:
2768  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2769  * r9 -= r8
2770  * r5 = r9
2771  * if r5 > 0x79f goto pc+7
2772  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2773  * r5 += 1
2774  * ...
2775  * call bpf_perf_event_output#25
2776  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2777  *
2778  * and this case:
2779  * r6 = 1
2780  * call foo // uses callee's r6 inside to compute r0
2781  * r0 += r6
2782  * if r0 == 0 goto
2783  *
2784  * to track above reg_mask/stack_mask needs to be independent for each frame.
2785  *
2786  * Also if parent's curframe > frame where backtracking started,
2787  * the verifier need to mark registers in both frames, otherwise callees
2788  * may incorrectly prune callers. This is similar to
2789  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2790  *
2791  * For now backtracking falls back into conservative marking.
2792  */
2793 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2794 				     struct bpf_verifier_state *st)
2795 {
2796 	struct bpf_func_state *func;
2797 	struct bpf_reg_state *reg;
2798 	int i, j;
2799 
2800 	/* big hammer: mark all scalars precise in this path.
2801 	 * pop_stack may still get !precise scalars.
2802 	 * We also skip current state and go straight to first parent state,
2803 	 * because precision markings in current non-checkpointed state are
2804 	 * not needed. See why in the comment in __mark_chain_precision below.
2805 	 */
2806 	for (st = st->parent; st; st = st->parent) {
2807 		for (i = 0; i <= st->curframe; i++) {
2808 			func = st->frame[i];
2809 			for (j = 0; j < BPF_REG_FP; j++) {
2810 				reg = &func->regs[j];
2811 				if (reg->type != SCALAR_VALUE)
2812 					continue;
2813 				reg->precise = true;
2814 			}
2815 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2816 				if (!is_spilled_reg(&func->stack[j]))
2817 					continue;
2818 				reg = &func->stack[j].spilled_ptr;
2819 				if (reg->type != SCALAR_VALUE)
2820 					continue;
2821 				reg->precise = true;
2822 			}
2823 		}
2824 	}
2825 }
2826 
2827 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
2828 {
2829 	struct bpf_func_state *func;
2830 	struct bpf_reg_state *reg;
2831 	int i, j;
2832 
2833 	for (i = 0; i <= st->curframe; i++) {
2834 		func = st->frame[i];
2835 		for (j = 0; j < BPF_REG_FP; j++) {
2836 			reg = &func->regs[j];
2837 			if (reg->type != SCALAR_VALUE)
2838 				continue;
2839 			reg->precise = false;
2840 		}
2841 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2842 			if (!is_spilled_reg(&func->stack[j]))
2843 				continue;
2844 			reg = &func->stack[j].spilled_ptr;
2845 			if (reg->type != SCALAR_VALUE)
2846 				continue;
2847 			reg->precise = false;
2848 		}
2849 	}
2850 }
2851 
2852 /*
2853  * __mark_chain_precision() backtracks BPF program instruction sequence and
2854  * chain of verifier states making sure that register *regno* (if regno >= 0)
2855  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
2856  * SCALARS, as well as any other registers and slots that contribute to
2857  * a tracked state of given registers/stack slots, depending on specific BPF
2858  * assembly instructions (see backtrack_insns() for exact instruction handling
2859  * logic). This backtracking relies on recorded jmp_history and is able to
2860  * traverse entire chain of parent states. This process ends only when all the
2861  * necessary registers/slots and their transitive dependencies are marked as
2862  * precise.
2863  *
2864  * One important and subtle aspect is that precise marks *do not matter* in
2865  * the currently verified state (current state). It is important to understand
2866  * why this is the case.
2867  *
2868  * First, note that current state is the state that is not yet "checkpointed",
2869  * i.e., it is not yet put into env->explored_states, and it has no children
2870  * states as well. It's ephemeral, and can end up either a) being discarded if
2871  * compatible explored state is found at some point or BPF_EXIT instruction is
2872  * reached or b) checkpointed and put into env->explored_states, branching out
2873  * into one or more children states.
2874  *
2875  * In the former case, precise markings in current state are completely
2876  * ignored by state comparison code (see regsafe() for details). Only
2877  * checkpointed ("old") state precise markings are important, and if old
2878  * state's register/slot is precise, regsafe() assumes current state's
2879  * register/slot as precise and checks value ranges exactly and precisely. If
2880  * states turn out to be compatible, current state's necessary precise
2881  * markings and any required parent states' precise markings are enforced
2882  * after the fact with propagate_precision() logic, after the fact. But it's
2883  * important to realize that in this case, even after marking current state
2884  * registers/slots as precise, we immediately discard current state. So what
2885  * actually matters is any of the precise markings propagated into current
2886  * state's parent states, which are always checkpointed (due to b) case above).
2887  * As such, for scenario a) it doesn't matter if current state has precise
2888  * markings set or not.
2889  *
2890  * Now, for the scenario b), checkpointing and forking into child(ren)
2891  * state(s). Note that before current state gets to checkpointing step, any
2892  * processed instruction always assumes precise SCALAR register/slot
2893  * knowledge: if precise value or range is useful to prune jump branch, BPF
2894  * verifier takes this opportunity enthusiastically. Similarly, when
2895  * register's value is used to calculate offset or memory address, exact
2896  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
2897  * what we mentioned above about state comparison ignoring precise markings
2898  * during state comparison, BPF verifier ignores and also assumes precise
2899  * markings *at will* during instruction verification process. But as verifier
2900  * assumes precision, it also propagates any precision dependencies across
2901  * parent states, which are not yet finalized, so can be further restricted
2902  * based on new knowledge gained from restrictions enforced by their children
2903  * states. This is so that once those parent states are finalized, i.e., when
2904  * they have no more active children state, state comparison logic in
2905  * is_state_visited() would enforce strict and precise SCALAR ranges, if
2906  * required for correctness.
2907  *
2908  * To build a bit more intuition, note also that once a state is checkpointed,
2909  * the path we took to get to that state is not important. This is crucial
2910  * property for state pruning. When state is checkpointed and finalized at
2911  * some instruction index, it can be correctly and safely used to "short
2912  * circuit" any *compatible* state that reaches exactly the same instruction
2913  * index. I.e., if we jumped to that instruction from a completely different
2914  * code path than original finalized state was derived from, it doesn't
2915  * matter, current state can be discarded because from that instruction
2916  * forward having a compatible state will ensure we will safely reach the
2917  * exit. States describe preconditions for further exploration, but completely
2918  * forget the history of how we got here.
2919  *
2920  * This also means that even if we needed precise SCALAR range to get to
2921  * finalized state, but from that point forward *that same* SCALAR register is
2922  * never used in a precise context (i.e., it's precise value is not needed for
2923  * correctness), it's correct and safe to mark such register as "imprecise"
2924  * (i.e., precise marking set to false). This is what we rely on when we do
2925  * not set precise marking in current state. If no child state requires
2926  * precision for any given SCALAR register, it's safe to dictate that it can
2927  * be imprecise. If any child state does require this register to be precise,
2928  * we'll mark it precise later retroactively during precise markings
2929  * propagation from child state to parent states.
2930  *
2931  * Skipping precise marking setting in current state is a mild version of
2932  * relying on the above observation. But we can utilize this property even
2933  * more aggressively by proactively forgetting any precise marking in the
2934  * current state (which we inherited from the parent state), right before we
2935  * checkpoint it and branch off into new child state. This is done by
2936  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
2937  * finalized states which help in short circuiting more future states.
2938  */
2939 static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno,
2940 				  int spi)
2941 {
2942 	struct bpf_verifier_state *st = env->cur_state;
2943 	int first_idx = st->first_insn_idx;
2944 	int last_idx = env->insn_idx;
2945 	struct bpf_func_state *func;
2946 	struct bpf_reg_state *reg;
2947 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2948 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2949 	bool skip_first = true;
2950 	bool new_marks = false;
2951 	int i, err;
2952 
2953 	if (!env->bpf_capable)
2954 		return 0;
2955 
2956 	/* Do sanity checks against current state of register and/or stack
2957 	 * slot, but don't set precise flag in current state, as precision
2958 	 * tracking in the current state is unnecessary.
2959 	 */
2960 	func = st->frame[frame];
2961 	if (regno >= 0) {
2962 		reg = &func->regs[regno];
2963 		if (reg->type != SCALAR_VALUE) {
2964 			WARN_ONCE(1, "backtracing misuse");
2965 			return -EFAULT;
2966 		}
2967 		new_marks = true;
2968 	}
2969 
2970 	while (spi >= 0) {
2971 		if (!is_spilled_reg(&func->stack[spi])) {
2972 			stack_mask = 0;
2973 			break;
2974 		}
2975 		reg = &func->stack[spi].spilled_ptr;
2976 		if (reg->type != SCALAR_VALUE) {
2977 			stack_mask = 0;
2978 			break;
2979 		}
2980 		new_marks = true;
2981 		break;
2982 	}
2983 
2984 	if (!new_marks)
2985 		return 0;
2986 	if (!reg_mask && !stack_mask)
2987 		return 0;
2988 
2989 	for (;;) {
2990 		DECLARE_BITMAP(mask, 64);
2991 		u32 history = st->jmp_history_cnt;
2992 
2993 		if (env->log.level & BPF_LOG_LEVEL2)
2994 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2995 
2996 		if (last_idx < 0) {
2997 			/* we are at the entry into subprog, which
2998 			 * is expected for global funcs, but only if
2999 			 * requested precise registers are R1-R5
3000 			 * (which are global func's input arguments)
3001 			 */
3002 			if (st->curframe == 0 &&
3003 			    st->frame[0]->subprogno > 0 &&
3004 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
3005 			    stack_mask == 0 && (reg_mask & ~0x3e) == 0) {
3006 				bitmap_from_u64(mask, reg_mask);
3007 				for_each_set_bit(i, mask, 32) {
3008 					reg = &st->frame[0]->regs[i];
3009 					if (reg->type != SCALAR_VALUE) {
3010 						reg_mask &= ~(1u << i);
3011 						continue;
3012 					}
3013 					reg->precise = true;
3014 				}
3015 				return 0;
3016 			}
3017 
3018 			verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n",
3019 				st->frame[0]->subprogno, reg_mask, stack_mask);
3020 			WARN_ONCE(1, "verifier backtracking bug");
3021 			return -EFAULT;
3022 		}
3023 
3024 		for (i = last_idx;;) {
3025 			if (skip_first) {
3026 				err = 0;
3027 				skip_first = false;
3028 			} else {
3029 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
3030 			}
3031 			if (err == -ENOTSUPP) {
3032 				mark_all_scalars_precise(env, st);
3033 				return 0;
3034 			} else if (err) {
3035 				return err;
3036 			}
3037 			if (!reg_mask && !stack_mask)
3038 				/* Found assignment(s) into tracked register in this state.
3039 				 * Since this state is already marked, just return.
3040 				 * Nothing to be tracked further in the parent state.
3041 				 */
3042 				return 0;
3043 			if (i == first_idx)
3044 				break;
3045 			i = get_prev_insn_idx(st, i, &history);
3046 			if (i >= env->prog->len) {
3047 				/* This can happen if backtracking reached insn 0
3048 				 * and there are still reg_mask or stack_mask
3049 				 * to backtrack.
3050 				 * It means the backtracking missed the spot where
3051 				 * particular register was initialized with a constant.
3052 				 */
3053 				verbose(env, "BUG backtracking idx %d\n", i);
3054 				WARN_ONCE(1, "verifier backtracking bug");
3055 				return -EFAULT;
3056 			}
3057 		}
3058 		st = st->parent;
3059 		if (!st)
3060 			break;
3061 
3062 		new_marks = false;
3063 		func = st->frame[frame];
3064 		bitmap_from_u64(mask, reg_mask);
3065 		for_each_set_bit(i, mask, 32) {
3066 			reg = &func->regs[i];
3067 			if (reg->type != SCALAR_VALUE) {
3068 				reg_mask &= ~(1u << i);
3069 				continue;
3070 			}
3071 			if (!reg->precise)
3072 				new_marks = true;
3073 			reg->precise = true;
3074 		}
3075 
3076 		bitmap_from_u64(mask, stack_mask);
3077 		for_each_set_bit(i, mask, 64) {
3078 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
3079 				/* the sequence of instructions:
3080 				 * 2: (bf) r3 = r10
3081 				 * 3: (7b) *(u64 *)(r3 -8) = r0
3082 				 * 4: (79) r4 = *(u64 *)(r10 -8)
3083 				 * doesn't contain jmps. It's backtracked
3084 				 * as a single block.
3085 				 * During backtracking insn 3 is not recognized as
3086 				 * stack access, so at the end of backtracking
3087 				 * stack slot fp-8 is still marked in stack_mask.
3088 				 * However the parent state may not have accessed
3089 				 * fp-8 and it's "unallocated" stack space.
3090 				 * In such case fallback to conservative.
3091 				 */
3092 				mark_all_scalars_precise(env, st);
3093 				return 0;
3094 			}
3095 
3096 			if (!is_spilled_reg(&func->stack[i])) {
3097 				stack_mask &= ~(1ull << i);
3098 				continue;
3099 			}
3100 			reg = &func->stack[i].spilled_ptr;
3101 			if (reg->type != SCALAR_VALUE) {
3102 				stack_mask &= ~(1ull << i);
3103 				continue;
3104 			}
3105 			if (!reg->precise)
3106 				new_marks = true;
3107 			reg->precise = true;
3108 		}
3109 		if (env->log.level & BPF_LOG_LEVEL2) {
3110 			verbose(env, "parent %s regs=%x stack=%llx marks:",
3111 				new_marks ? "didn't have" : "already had",
3112 				reg_mask, stack_mask);
3113 			print_verifier_state(env, func, true);
3114 		}
3115 
3116 		if (!reg_mask && !stack_mask)
3117 			break;
3118 		if (!new_marks)
3119 			break;
3120 
3121 		last_idx = st->last_insn_idx;
3122 		first_idx = st->first_insn_idx;
3123 	}
3124 	return 0;
3125 }
3126 
3127 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
3128 {
3129 	return __mark_chain_precision(env, env->cur_state->curframe, regno, -1);
3130 }
3131 
3132 static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno)
3133 {
3134 	return __mark_chain_precision(env, frame, regno, -1);
3135 }
3136 
3137 static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi)
3138 {
3139 	return __mark_chain_precision(env, frame, -1, spi);
3140 }
3141 
3142 static bool is_spillable_regtype(enum bpf_reg_type type)
3143 {
3144 	switch (base_type(type)) {
3145 	case PTR_TO_MAP_VALUE:
3146 	case PTR_TO_STACK:
3147 	case PTR_TO_CTX:
3148 	case PTR_TO_PACKET:
3149 	case PTR_TO_PACKET_META:
3150 	case PTR_TO_PACKET_END:
3151 	case PTR_TO_FLOW_KEYS:
3152 	case CONST_PTR_TO_MAP:
3153 	case PTR_TO_SOCKET:
3154 	case PTR_TO_SOCK_COMMON:
3155 	case PTR_TO_TCP_SOCK:
3156 	case PTR_TO_XDP_SOCK:
3157 	case PTR_TO_BTF_ID:
3158 	case PTR_TO_BUF:
3159 	case PTR_TO_MEM:
3160 	case PTR_TO_FUNC:
3161 	case PTR_TO_MAP_KEY:
3162 		return true;
3163 	default:
3164 		return false;
3165 	}
3166 }
3167 
3168 /* Does this register contain a constant zero? */
3169 static bool register_is_null(struct bpf_reg_state *reg)
3170 {
3171 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
3172 }
3173 
3174 static bool register_is_const(struct bpf_reg_state *reg)
3175 {
3176 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
3177 }
3178 
3179 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
3180 {
3181 	return tnum_is_unknown(reg->var_off) &&
3182 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
3183 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
3184 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
3185 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
3186 }
3187 
3188 static bool register_is_bounded(struct bpf_reg_state *reg)
3189 {
3190 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
3191 }
3192 
3193 static bool __is_pointer_value(bool allow_ptr_leaks,
3194 			       const struct bpf_reg_state *reg)
3195 {
3196 	if (allow_ptr_leaks)
3197 		return false;
3198 
3199 	return reg->type != SCALAR_VALUE;
3200 }
3201 
3202 static void save_register_state(struct bpf_func_state *state,
3203 				int spi, struct bpf_reg_state *reg,
3204 				int size)
3205 {
3206 	int i;
3207 
3208 	state->stack[spi].spilled_ptr = *reg;
3209 	if (size == BPF_REG_SIZE)
3210 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3211 
3212 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
3213 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
3214 
3215 	/* size < 8 bytes spill */
3216 	for (; i; i--)
3217 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
3218 }
3219 
3220 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
3221  * stack boundary and alignment are checked in check_mem_access()
3222  */
3223 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
3224 				       /* stack frame we're writing to */
3225 				       struct bpf_func_state *state,
3226 				       int off, int size, int value_regno,
3227 				       int insn_idx)
3228 {
3229 	struct bpf_func_state *cur; /* state of the current function */
3230 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
3231 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
3232 	struct bpf_reg_state *reg = NULL;
3233 
3234 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
3235 	if (err)
3236 		return err;
3237 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
3238 	 * so it's aligned access and [off, off + size) are within stack limits
3239 	 */
3240 	if (!env->allow_ptr_leaks &&
3241 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
3242 	    size != BPF_REG_SIZE) {
3243 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
3244 		return -EACCES;
3245 	}
3246 
3247 	cur = env->cur_state->frame[env->cur_state->curframe];
3248 	if (value_regno >= 0)
3249 		reg = &cur->regs[value_regno];
3250 	if (!env->bypass_spec_v4) {
3251 		bool sanitize = reg && is_spillable_regtype(reg->type);
3252 
3253 		for (i = 0; i < size; i++) {
3254 			if (state->stack[spi].slot_type[i] == STACK_INVALID) {
3255 				sanitize = true;
3256 				break;
3257 			}
3258 		}
3259 
3260 		if (sanitize)
3261 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
3262 	}
3263 
3264 	mark_stack_slot_scratched(env, spi);
3265 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
3266 	    !register_is_null(reg) && env->bpf_capable) {
3267 		if (dst_reg != BPF_REG_FP) {
3268 			/* The backtracking logic can only recognize explicit
3269 			 * stack slot address like [fp - 8]. Other spill of
3270 			 * scalar via different register has to be conservative.
3271 			 * Backtrack from here and mark all registers as precise
3272 			 * that contributed into 'reg' being a constant.
3273 			 */
3274 			err = mark_chain_precision(env, value_regno);
3275 			if (err)
3276 				return err;
3277 		}
3278 		save_register_state(state, spi, reg, size);
3279 	} else if (reg && is_spillable_regtype(reg->type)) {
3280 		/* register containing pointer is being spilled into stack */
3281 		if (size != BPF_REG_SIZE) {
3282 			verbose_linfo(env, insn_idx, "; ");
3283 			verbose(env, "invalid size of register spill\n");
3284 			return -EACCES;
3285 		}
3286 		if (state != cur && reg->type == PTR_TO_STACK) {
3287 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
3288 			return -EINVAL;
3289 		}
3290 		save_register_state(state, spi, reg, size);
3291 	} else {
3292 		u8 type = STACK_MISC;
3293 
3294 		/* regular write of data into stack destroys any spilled ptr */
3295 		state->stack[spi].spilled_ptr.type = NOT_INIT;
3296 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
3297 		if (is_spilled_reg(&state->stack[spi]))
3298 			for (i = 0; i < BPF_REG_SIZE; i++)
3299 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
3300 
3301 		/* only mark the slot as written if all 8 bytes were written
3302 		 * otherwise read propagation may incorrectly stop too soon
3303 		 * when stack slots are partially written.
3304 		 * This heuristic means that read propagation will be
3305 		 * conservative, since it will add reg_live_read marks
3306 		 * to stack slots all the way to first state when programs
3307 		 * writes+reads less than 8 bytes
3308 		 */
3309 		if (size == BPF_REG_SIZE)
3310 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3311 
3312 		/* when we zero initialize stack slots mark them as such */
3313 		if (reg && register_is_null(reg)) {
3314 			/* backtracking doesn't work for STACK_ZERO yet. */
3315 			err = mark_chain_precision(env, value_regno);
3316 			if (err)
3317 				return err;
3318 			type = STACK_ZERO;
3319 		}
3320 
3321 		/* Mark slots affected by this stack write. */
3322 		for (i = 0; i < size; i++)
3323 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
3324 				type;
3325 	}
3326 	return 0;
3327 }
3328 
3329 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
3330  * known to contain a variable offset.
3331  * This function checks whether the write is permitted and conservatively
3332  * tracks the effects of the write, considering that each stack slot in the
3333  * dynamic range is potentially written to.
3334  *
3335  * 'off' includes 'regno->off'.
3336  * 'value_regno' can be -1, meaning that an unknown value is being written to
3337  * the stack.
3338  *
3339  * Spilled pointers in range are not marked as written because we don't know
3340  * what's going to be actually written. This means that read propagation for
3341  * future reads cannot be terminated by this write.
3342  *
3343  * For privileged programs, uninitialized stack slots are considered
3344  * initialized by this write (even though we don't know exactly what offsets
3345  * are going to be written to). The idea is that we don't want the verifier to
3346  * reject future reads that access slots written to through variable offsets.
3347  */
3348 static int check_stack_write_var_off(struct bpf_verifier_env *env,
3349 				     /* func where register points to */
3350 				     struct bpf_func_state *state,
3351 				     int ptr_regno, int off, int size,
3352 				     int value_regno, int insn_idx)
3353 {
3354 	struct bpf_func_state *cur; /* state of the current function */
3355 	int min_off, max_off;
3356 	int i, err;
3357 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
3358 	bool writing_zero = false;
3359 	/* set if the fact that we're writing a zero is used to let any
3360 	 * stack slots remain STACK_ZERO
3361 	 */
3362 	bool zero_used = false;
3363 
3364 	cur = env->cur_state->frame[env->cur_state->curframe];
3365 	ptr_reg = &cur->regs[ptr_regno];
3366 	min_off = ptr_reg->smin_value + off;
3367 	max_off = ptr_reg->smax_value + off + size;
3368 	if (value_regno >= 0)
3369 		value_reg = &cur->regs[value_regno];
3370 	if (value_reg && register_is_null(value_reg))
3371 		writing_zero = true;
3372 
3373 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
3374 	if (err)
3375 		return err;
3376 
3377 
3378 	/* Variable offset writes destroy any spilled pointers in range. */
3379 	for (i = min_off; i < max_off; i++) {
3380 		u8 new_type, *stype;
3381 		int slot, spi;
3382 
3383 		slot = -i - 1;
3384 		spi = slot / BPF_REG_SIZE;
3385 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3386 		mark_stack_slot_scratched(env, spi);
3387 
3388 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
3389 			/* Reject the write if range we may write to has not
3390 			 * been initialized beforehand. If we didn't reject
3391 			 * here, the ptr status would be erased below (even
3392 			 * though not all slots are actually overwritten),
3393 			 * possibly opening the door to leaks.
3394 			 *
3395 			 * We do however catch STACK_INVALID case below, and
3396 			 * only allow reading possibly uninitialized memory
3397 			 * later for CAP_PERFMON, as the write may not happen to
3398 			 * that slot.
3399 			 */
3400 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
3401 				insn_idx, i);
3402 			return -EINVAL;
3403 		}
3404 
3405 		/* Erase all spilled pointers. */
3406 		state->stack[spi].spilled_ptr.type = NOT_INIT;
3407 
3408 		/* Update the slot type. */
3409 		new_type = STACK_MISC;
3410 		if (writing_zero && *stype == STACK_ZERO) {
3411 			new_type = STACK_ZERO;
3412 			zero_used = true;
3413 		}
3414 		/* If the slot is STACK_INVALID, we check whether it's OK to
3415 		 * pretend that it will be initialized by this write. The slot
3416 		 * might not actually be written to, and so if we mark it as
3417 		 * initialized future reads might leak uninitialized memory.
3418 		 * For privileged programs, we will accept such reads to slots
3419 		 * that may or may not be written because, if we're reject
3420 		 * them, the error would be too confusing.
3421 		 */
3422 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
3423 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
3424 					insn_idx, i);
3425 			return -EINVAL;
3426 		}
3427 		*stype = new_type;
3428 	}
3429 	if (zero_used) {
3430 		/* backtracking doesn't work for STACK_ZERO yet. */
3431 		err = mark_chain_precision(env, value_regno);
3432 		if (err)
3433 			return err;
3434 	}
3435 	return 0;
3436 }
3437 
3438 /* When register 'dst_regno' is assigned some values from stack[min_off,
3439  * max_off), we set the register's type according to the types of the
3440  * respective stack slots. If all the stack values are known to be zeros, then
3441  * so is the destination reg. Otherwise, the register is considered to be
3442  * SCALAR. This function does not deal with register filling; the caller must
3443  * ensure that all spilled registers in the stack range have been marked as
3444  * read.
3445  */
3446 static void mark_reg_stack_read(struct bpf_verifier_env *env,
3447 				/* func where src register points to */
3448 				struct bpf_func_state *ptr_state,
3449 				int min_off, int max_off, int dst_regno)
3450 {
3451 	struct bpf_verifier_state *vstate = env->cur_state;
3452 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3453 	int i, slot, spi;
3454 	u8 *stype;
3455 	int zeros = 0;
3456 
3457 	for (i = min_off; i < max_off; i++) {
3458 		slot = -i - 1;
3459 		spi = slot / BPF_REG_SIZE;
3460 		stype = ptr_state->stack[spi].slot_type;
3461 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3462 			break;
3463 		zeros++;
3464 	}
3465 	if (zeros == max_off - min_off) {
3466 		/* any access_size read into register is zero extended,
3467 		 * so the whole register == const_zero
3468 		 */
3469 		__mark_reg_const_zero(&state->regs[dst_regno]);
3470 		/* backtracking doesn't support STACK_ZERO yet,
3471 		 * so mark it precise here, so that later
3472 		 * backtracking can stop here.
3473 		 * Backtracking may not need this if this register
3474 		 * doesn't participate in pointer adjustment.
3475 		 * Forward propagation of precise flag is not
3476 		 * necessary either. This mark is only to stop
3477 		 * backtracking. Any register that contributed
3478 		 * to const 0 was marked precise before spill.
3479 		 */
3480 		state->regs[dst_regno].precise = true;
3481 	} else {
3482 		/* have read misc data from the stack */
3483 		mark_reg_unknown(env, state->regs, dst_regno);
3484 	}
3485 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3486 }
3487 
3488 /* Read the stack at 'off' and put the results into the register indicated by
3489  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3490  * spilled reg.
3491  *
3492  * 'dst_regno' can be -1, meaning that the read value is not going to a
3493  * register.
3494  *
3495  * The access is assumed to be within the current stack bounds.
3496  */
3497 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3498 				      /* func where src register points to */
3499 				      struct bpf_func_state *reg_state,
3500 				      int off, int size, int dst_regno)
3501 {
3502 	struct bpf_verifier_state *vstate = env->cur_state;
3503 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3504 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
3505 	struct bpf_reg_state *reg;
3506 	u8 *stype, type;
3507 
3508 	stype = reg_state->stack[spi].slot_type;
3509 	reg = &reg_state->stack[spi].spilled_ptr;
3510 
3511 	if (is_spilled_reg(&reg_state->stack[spi])) {
3512 		u8 spill_size = 1;
3513 
3514 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3515 			spill_size++;
3516 
3517 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
3518 			if (reg->type != SCALAR_VALUE) {
3519 				verbose_linfo(env, env->insn_idx, "; ");
3520 				verbose(env, "invalid size of register fill\n");
3521 				return -EACCES;
3522 			}
3523 
3524 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3525 			if (dst_regno < 0)
3526 				return 0;
3527 
3528 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
3529 				/* The earlier check_reg_arg() has decided the
3530 				 * subreg_def for this insn.  Save it first.
3531 				 */
3532 				s32 subreg_def = state->regs[dst_regno].subreg_def;
3533 
3534 				state->regs[dst_regno] = *reg;
3535 				state->regs[dst_regno].subreg_def = subreg_def;
3536 			} else {
3537 				for (i = 0; i < size; i++) {
3538 					type = stype[(slot - i) % BPF_REG_SIZE];
3539 					if (type == STACK_SPILL)
3540 						continue;
3541 					if (type == STACK_MISC)
3542 						continue;
3543 					verbose(env, "invalid read from stack off %d+%d size %d\n",
3544 						off, i, size);
3545 					return -EACCES;
3546 				}
3547 				mark_reg_unknown(env, state->regs, dst_regno);
3548 			}
3549 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3550 			return 0;
3551 		}
3552 
3553 		if (dst_regno >= 0) {
3554 			/* restore register state from stack */
3555 			state->regs[dst_regno] = *reg;
3556 			/* mark reg as written since spilled pointer state likely
3557 			 * has its liveness marks cleared by is_state_visited()
3558 			 * which resets stack/reg liveness for state transitions
3559 			 */
3560 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3561 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
3562 			/* If dst_regno==-1, the caller is asking us whether
3563 			 * it is acceptable to use this value as a SCALAR_VALUE
3564 			 * (e.g. for XADD).
3565 			 * We must not allow unprivileged callers to do that
3566 			 * with spilled pointers.
3567 			 */
3568 			verbose(env, "leaking pointer from stack off %d\n",
3569 				off);
3570 			return -EACCES;
3571 		}
3572 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3573 	} else {
3574 		for (i = 0; i < size; i++) {
3575 			type = stype[(slot - i) % BPF_REG_SIZE];
3576 			if (type == STACK_MISC)
3577 				continue;
3578 			if (type == STACK_ZERO)
3579 				continue;
3580 			verbose(env, "invalid read from stack off %d+%d size %d\n",
3581 				off, i, size);
3582 			return -EACCES;
3583 		}
3584 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3585 		if (dst_regno >= 0)
3586 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
3587 	}
3588 	return 0;
3589 }
3590 
3591 enum bpf_access_src {
3592 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
3593 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
3594 };
3595 
3596 static int check_stack_range_initialized(struct bpf_verifier_env *env,
3597 					 int regno, int off, int access_size,
3598 					 bool zero_size_allowed,
3599 					 enum bpf_access_src type,
3600 					 struct bpf_call_arg_meta *meta);
3601 
3602 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3603 {
3604 	return cur_regs(env) + regno;
3605 }
3606 
3607 /* Read the stack at 'ptr_regno + off' and put the result into the register
3608  * 'dst_regno'.
3609  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3610  * but not its variable offset.
3611  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3612  *
3613  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3614  * filling registers (i.e. reads of spilled register cannot be detected when
3615  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3616  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3617  * offset; for a fixed offset check_stack_read_fixed_off should be used
3618  * instead.
3619  */
3620 static int check_stack_read_var_off(struct bpf_verifier_env *env,
3621 				    int ptr_regno, int off, int size, int dst_regno)
3622 {
3623 	/* The state of the source register. */
3624 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3625 	struct bpf_func_state *ptr_state = func(env, reg);
3626 	int err;
3627 	int min_off, max_off;
3628 
3629 	/* Note that we pass a NULL meta, so raw access will not be permitted.
3630 	 */
3631 	err = check_stack_range_initialized(env, ptr_regno, off, size,
3632 					    false, ACCESS_DIRECT, NULL);
3633 	if (err)
3634 		return err;
3635 
3636 	min_off = reg->smin_value + off;
3637 	max_off = reg->smax_value + off;
3638 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3639 	return 0;
3640 }
3641 
3642 /* check_stack_read dispatches to check_stack_read_fixed_off or
3643  * check_stack_read_var_off.
3644  *
3645  * The caller must ensure that the offset falls within the allocated stack
3646  * bounds.
3647  *
3648  * 'dst_regno' is a register which will receive the value from the stack. It
3649  * can be -1, meaning that the read value is not going to a register.
3650  */
3651 static int check_stack_read(struct bpf_verifier_env *env,
3652 			    int ptr_regno, int off, int size,
3653 			    int dst_regno)
3654 {
3655 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3656 	struct bpf_func_state *state = func(env, reg);
3657 	int err;
3658 	/* Some accesses are only permitted with a static offset. */
3659 	bool var_off = !tnum_is_const(reg->var_off);
3660 
3661 	/* The offset is required to be static when reads don't go to a
3662 	 * register, in order to not leak pointers (see
3663 	 * check_stack_read_fixed_off).
3664 	 */
3665 	if (dst_regno < 0 && var_off) {
3666 		char tn_buf[48];
3667 
3668 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3669 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3670 			tn_buf, off, size);
3671 		return -EACCES;
3672 	}
3673 	/* Variable offset is prohibited for unprivileged mode for simplicity
3674 	 * since it requires corresponding support in Spectre masking for stack
3675 	 * ALU. See also retrieve_ptr_limit().
3676 	 */
3677 	if (!env->bypass_spec_v1 && var_off) {
3678 		char tn_buf[48];
3679 
3680 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3681 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3682 				ptr_regno, tn_buf);
3683 		return -EACCES;
3684 	}
3685 
3686 	if (!var_off) {
3687 		off += reg->var_off.value;
3688 		err = check_stack_read_fixed_off(env, state, off, size,
3689 						 dst_regno);
3690 	} else {
3691 		/* Variable offset stack reads need more conservative handling
3692 		 * than fixed offset ones. Note that dst_regno >= 0 on this
3693 		 * branch.
3694 		 */
3695 		err = check_stack_read_var_off(env, ptr_regno, off, size,
3696 					       dst_regno);
3697 	}
3698 	return err;
3699 }
3700 
3701 
3702 /* check_stack_write dispatches to check_stack_write_fixed_off or
3703  * check_stack_write_var_off.
3704  *
3705  * 'ptr_regno' is the register used as a pointer into the stack.
3706  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3707  * 'value_regno' is the register whose value we're writing to the stack. It can
3708  * be -1, meaning that we're not writing from a register.
3709  *
3710  * The caller must ensure that the offset falls within the maximum stack size.
3711  */
3712 static int check_stack_write(struct bpf_verifier_env *env,
3713 			     int ptr_regno, int off, int size,
3714 			     int value_regno, int insn_idx)
3715 {
3716 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3717 	struct bpf_func_state *state = func(env, reg);
3718 	int err;
3719 
3720 	if (tnum_is_const(reg->var_off)) {
3721 		off += reg->var_off.value;
3722 		err = check_stack_write_fixed_off(env, state, off, size,
3723 						  value_regno, insn_idx);
3724 	} else {
3725 		/* Variable offset stack reads need more conservative handling
3726 		 * than fixed offset ones.
3727 		 */
3728 		err = check_stack_write_var_off(env, state,
3729 						ptr_regno, off, size,
3730 						value_regno, insn_idx);
3731 	}
3732 	return err;
3733 }
3734 
3735 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3736 				 int off, int size, enum bpf_access_type type)
3737 {
3738 	struct bpf_reg_state *regs = cur_regs(env);
3739 	struct bpf_map *map = regs[regno].map_ptr;
3740 	u32 cap = bpf_map_flags_to_cap(map);
3741 
3742 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3743 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3744 			map->value_size, off, size);
3745 		return -EACCES;
3746 	}
3747 
3748 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3749 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3750 			map->value_size, off, size);
3751 		return -EACCES;
3752 	}
3753 
3754 	return 0;
3755 }
3756 
3757 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3758 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3759 			      int off, int size, u32 mem_size,
3760 			      bool zero_size_allowed)
3761 {
3762 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3763 	struct bpf_reg_state *reg;
3764 
3765 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3766 		return 0;
3767 
3768 	reg = &cur_regs(env)[regno];
3769 	switch (reg->type) {
3770 	case PTR_TO_MAP_KEY:
3771 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3772 			mem_size, off, size);
3773 		break;
3774 	case PTR_TO_MAP_VALUE:
3775 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3776 			mem_size, off, size);
3777 		break;
3778 	case PTR_TO_PACKET:
3779 	case PTR_TO_PACKET_META:
3780 	case PTR_TO_PACKET_END:
3781 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3782 			off, size, regno, reg->id, off, mem_size);
3783 		break;
3784 	case PTR_TO_MEM:
3785 	default:
3786 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3787 			mem_size, off, size);
3788 	}
3789 
3790 	return -EACCES;
3791 }
3792 
3793 /* check read/write into a memory region with possible variable offset */
3794 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3795 				   int off, int size, u32 mem_size,
3796 				   bool zero_size_allowed)
3797 {
3798 	struct bpf_verifier_state *vstate = env->cur_state;
3799 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3800 	struct bpf_reg_state *reg = &state->regs[regno];
3801 	int err;
3802 
3803 	/* We may have adjusted the register pointing to memory region, so we
3804 	 * need to try adding each of min_value and max_value to off
3805 	 * to make sure our theoretical access will be safe.
3806 	 *
3807 	 * The minimum value is only important with signed
3808 	 * comparisons where we can't assume the floor of a
3809 	 * value is 0.  If we are using signed variables for our
3810 	 * index'es we need to make sure that whatever we use
3811 	 * will have a set floor within our range.
3812 	 */
3813 	if (reg->smin_value < 0 &&
3814 	    (reg->smin_value == S64_MIN ||
3815 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3816 	      reg->smin_value + off < 0)) {
3817 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3818 			regno);
3819 		return -EACCES;
3820 	}
3821 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
3822 				 mem_size, zero_size_allowed);
3823 	if (err) {
3824 		verbose(env, "R%d min value is outside of the allowed memory range\n",
3825 			regno);
3826 		return err;
3827 	}
3828 
3829 	/* If we haven't set a max value then we need to bail since we can't be
3830 	 * sure we won't do bad things.
3831 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
3832 	 */
3833 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3834 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3835 			regno);
3836 		return -EACCES;
3837 	}
3838 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
3839 				 mem_size, zero_size_allowed);
3840 	if (err) {
3841 		verbose(env, "R%d max value is outside of the allowed memory range\n",
3842 			regno);
3843 		return err;
3844 	}
3845 
3846 	return 0;
3847 }
3848 
3849 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
3850 			       const struct bpf_reg_state *reg, int regno,
3851 			       bool fixed_off_ok)
3852 {
3853 	/* Access to this pointer-typed register or passing it to a helper
3854 	 * is only allowed in its original, unmodified form.
3855 	 */
3856 
3857 	if (reg->off < 0) {
3858 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
3859 			reg_type_str(env, reg->type), regno, reg->off);
3860 		return -EACCES;
3861 	}
3862 
3863 	if (!fixed_off_ok && reg->off) {
3864 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
3865 			reg_type_str(env, reg->type), regno, reg->off);
3866 		return -EACCES;
3867 	}
3868 
3869 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3870 		char tn_buf[48];
3871 
3872 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3873 		verbose(env, "variable %s access var_off=%s disallowed\n",
3874 			reg_type_str(env, reg->type), tn_buf);
3875 		return -EACCES;
3876 	}
3877 
3878 	return 0;
3879 }
3880 
3881 int check_ptr_off_reg(struct bpf_verifier_env *env,
3882 		      const struct bpf_reg_state *reg, int regno)
3883 {
3884 	return __check_ptr_off_reg(env, reg, regno, false);
3885 }
3886 
3887 static int map_kptr_match_type(struct bpf_verifier_env *env,
3888 			       struct btf_field *kptr_field,
3889 			       struct bpf_reg_state *reg, u32 regno)
3890 {
3891 	const char *targ_name = kernel_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
3892 	int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED;
3893 	const char *reg_name = "";
3894 
3895 	/* Only unreferenced case accepts untrusted pointers */
3896 	if (kptr_field->type == BPF_KPTR_UNREF)
3897 		perm_flags |= PTR_UNTRUSTED;
3898 
3899 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
3900 		goto bad_type;
3901 
3902 	if (!btf_is_kernel(reg->btf)) {
3903 		verbose(env, "R%d must point to kernel BTF\n", regno);
3904 		return -EINVAL;
3905 	}
3906 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
3907 	reg_name = kernel_type_name(reg->btf, reg->btf_id);
3908 
3909 	/* For ref_ptr case, release function check should ensure we get one
3910 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
3911 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
3912 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
3913 	 * reg->off and reg->ref_obj_id are not needed here.
3914 	 */
3915 	if (__check_ptr_off_reg(env, reg, regno, true))
3916 		return -EACCES;
3917 
3918 	/* A full type match is needed, as BTF can be vmlinux or module BTF, and
3919 	 * we also need to take into account the reg->off.
3920 	 *
3921 	 * We want to support cases like:
3922 	 *
3923 	 * struct foo {
3924 	 *         struct bar br;
3925 	 *         struct baz bz;
3926 	 * };
3927 	 *
3928 	 * struct foo *v;
3929 	 * v = func();	      // PTR_TO_BTF_ID
3930 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
3931 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
3932 	 *                    // first member type of struct after comparison fails
3933 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
3934 	 *                    // to match type
3935 	 *
3936 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
3937 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
3938 	 * the struct to match type against first member of struct, i.e. reject
3939 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
3940 	 * strict mode to true for type match.
3941 	 */
3942 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
3943 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
3944 				  kptr_field->type == BPF_KPTR_REF))
3945 		goto bad_type;
3946 	return 0;
3947 bad_type:
3948 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
3949 		reg_type_str(env, reg->type), reg_name);
3950 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
3951 	if (kptr_field->type == BPF_KPTR_UNREF)
3952 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
3953 			targ_name);
3954 	else
3955 		verbose(env, "\n");
3956 	return -EINVAL;
3957 }
3958 
3959 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
3960 				 int value_regno, int insn_idx,
3961 				 struct btf_field *kptr_field)
3962 {
3963 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
3964 	int class = BPF_CLASS(insn->code);
3965 	struct bpf_reg_state *val_reg;
3966 
3967 	/* Things we already checked for in check_map_access and caller:
3968 	 *  - Reject cases where variable offset may touch kptr
3969 	 *  - size of access (must be BPF_DW)
3970 	 *  - tnum_is_const(reg->var_off)
3971 	 *  - kptr_field->offset == off + reg->var_off.value
3972 	 */
3973 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
3974 	if (BPF_MODE(insn->code) != BPF_MEM) {
3975 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
3976 		return -EACCES;
3977 	}
3978 
3979 	/* We only allow loading referenced kptr, since it will be marked as
3980 	 * untrusted, similar to unreferenced kptr.
3981 	 */
3982 	if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
3983 		verbose(env, "store to referenced kptr disallowed\n");
3984 		return -EACCES;
3985 	}
3986 
3987 	if (class == BPF_LDX) {
3988 		val_reg = reg_state(env, value_regno);
3989 		/* We can simply mark the value_regno receiving the pointer
3990 		 * value from map as PTR_TO_BTF_ID, with the correct type.
3991 		 */
3992 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
3993 				kptr_field->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED);
3994 		/* For mark_ptr_or_null_reg */
3995 		val_reg->id = ++env->id_gen;
3996 	} else if (class == BPF_STX) {
3997 		val_reg = reg_state(env, value_regno);
3998 		if (!register_is_null(val_reg) &&
3999 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
4000 			return -EACCES;
4001 	} else if (class == BPF_ST) {
4002 		if (insn->imm) {
4003 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
4004 				kptr_field->offset);
4005 			return -EACCES;
4006 		}
4007 	} else {
4008 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
4009 		return -EACCES;
4010 	}
4011 	return 0;
4012 }
4013 
4014 /* check read/write into a map element with possible variable offset */
4015 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
4016 			    int off, int size, bool zero_size_allowed,
4017 			    enum bpf_access_src src)
4018 {
4019 	struct bpf_verifier_state *vstate = env->cur_state;
4020 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4021 	struct bpf_reg_state *reg = &state->regs[regno];
4022 	struct bpf_map *map = reg->map_ptr;
4023 	struct btf_record *rec;
4024 	int err, i;
4025 
4026 	err = check_mem_region_access(env, regno, off, size, map->value_size,
4027 				      zero_size_allowed);
4028 	if (err)
4029 		return err;
4030 
4031 	if (IS_ERR_OR_NULL(map->record))
4032 		return 0;
4033 	rec = map->record;
4034 	for (i = 0; i < rec->cnt; i++) {
4035 		struct btf_field *field = &rec->fields[i];
4036 		u32 p = field->offset;
4037 
4038 		/* If any part of a field  can be touched by load/store, reject
4039 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
4040 		 * it is sufficient to check x1 < y2 && y1 < x2.
4041 		 */
4042 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
4043 		    p < reg->umax_value + off + size) {
4044 			switch (field->type) {
4045 			case BPF_KPTR_UNREF:
4046 			case BPF_KPTR_REF:
4047 				if (src != ACCESS_DIRECT) {
4048 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
4049 					return -EACCES;
4050 				}
4051 				if (!tnum_is_const(reg->var_off)) {
4052 					verbose(env, "kptr access cannot have variable offset\n");
4053 					return -EACCES;
4054 				}
4055 				if (p != off + reg->var_off.value) {
4056 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
4057 						p, off + reg->var_off.value);
4058 					return -EACCES;
4059 				}
4060 				if (size != bpf_size_to_bytes(BPF_DW)) {
4061 					verbose(env, "kptr access size must be BPF_DW\n");
4062 					return -EACCES;
4063 				}
4064 				break;
4065 			default:
4066 				verbose(env, "%s cannot be accessed directly by load/store\n",
4067 					btf_field_type_name(field->type));
4068 				return -EACCES;
4069 			}
4070 		}
4071 	}
4072 	return 0;
4073 }
4074 
4075 #define MAX_PACKET_OFF 0xffff
4076 
4077 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
4078 				       const struct bpf_call_arg_meta *meta,
4079 				       enum bpf_access_type t)
4080 {
4081 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
4082 
4083 	switch (prog_type) {
4084 	/* Program types only with direct read access go here! */
4085 	case BPF_PROG_TYPE_LWT_IN:
4086 	case BPF_PROG_TYPE_LWT_OUT:
4087 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
4088 	case BPF_PROG_TYPE_SK_REUSEPORT:
4089 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
4090 	case BPF_PROG_TYPE_CGROUP_SKB:
4091 		if (t == BPF_WRITE)
4092 			return false;
4093 		fallthrough;
4094 
4095 	/* Program types with direct read + write access go here! */
4096 	case BPF_PROG_TYPE_SCHED_CLS:
4097 	case BPF_PROG_TYPE_SCHED_ACT:
4098 	case BPF_PROG_TYPE_XDP:
4099 	case BPF_PROG_TYPE_LWT_XMIT:
4100 	case BPF_PROG_TYPE_SK_SKB:
4101 	case BPF_PROG_TYPE_SK_MSG:
4102 		if (meta)
4103 			return meta->pkt_access;
4104 
4105 		env->seen_direct_write = true;
4106 		return true;
4107 
4108 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
4109 		if (t == BPF_WRITE)
4110 			env->seen_direct_write = true;
4111 
4112 		return true;
4113 
4114 	default:
4115 		return false;
4116 	}
4117 }
4118 
4119 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
4120 			       int size, bool zero_size_allowed)
4121 {
4122 	struct bpf_reg_state *regs = cur_regs(env);
4123 	struct bpf_reg_state *reg = &regs[regno];
4124 	int err;
4125 
4126 	/* We may have added a variable offset to the packet pointer; but any
4127 	 * reg->range we have comes after that.  We are only checking the fixed
4128 	 * offset.
4129 	 */
4130 
4131 	/* We don't allow negative numbers, because we aren't tracking enough
4132 	 * detail to prove they're safe.
4133 	 */
4134 	if (reg->smin_value < 0) {
4135 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4136 			regno);
4137 		return -EACCES;
4138 	}
4139 
4140 	err = reg->range < 0 ? -EINVAL :
4141 	      __check_mem_access(env, regno, off, size, reg->range,
4142 				 zero_size_allowed);
4143 	if (err) {
4144 		verbose(env, "R%d offset is outside of the packet\n", regno);
4145 		return err;
4146 	}
4147 
4148 	/* __check_mem_access has made sure "off + size - 1" is within u16.
4149 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
4150 	 * otherwise find_good_pkt_pointers would have refused to set range info
4151 	 * that __check_mem_access would have rejected this pkt access.
4152 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
4153 	 */
4154 	env->prog->aux->max_pkt_offset =
4155 		max_t(u32, env->prog->aux->max_pkt_offset,
4156 		      off + reg->umax_value + size - 1);
4157 
4158 	return err;
4159 }
4160 
4161 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
4162 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
4163 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
4164 			    struct btf **btf, u32 *btf_id)
4165 {
4166 	struct bpf_insn_access_aux info = {
4167 		.reg_type = *reg_type,
4168 		.log = &env->log,
4169 	};
4170 
4171 	if (env->ops->is_valid_access &&
4172 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
4173 		/* A non zero info.ctx_field_size indicates that this field is a
4174 		 * candidate for later verifier transformation to load the whole
4175 		 * field and then apply a mask when accessed with a narrower
4176 		 * access than actual ctx access size. A zero info.ctx_field_size
4177 		 * will only allow for whole field access and rejects any other
4178 		 * type of narrower access.
4179 		 */
4180 		*reg_type = info.reg_type;
4181 
4182 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
4183 			*btf = info.btf;
4184 			*btf_id = info.btf_id;
4185 		} else {
4186 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
4187 		}
4188 		/* remember the offset of last byte accessed in ctx */
4189 		if (env->prog->aux->max_ctx_offset < off + size)
4190 			env->prog->aux->max_ctx_offset = off + size;
4191 		return 0;
4192 	}
4193 
4194 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
4195 	return -EACCES;
4196 }
4197 
4198 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
4199 				  int size)
4200 {
4201 	if (size < 0 || off < 0 ||
4202 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
4203 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
4204 			off, size);
4205 		return -EACCES;
4206 	}
4207 	return 0;
4208 }
4209 
4210 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
4211 			     u32 regno, int off, int size,
4212 			     enum bpf_access_type t)
4213 {
4214 	struct bpf_reg_state *regs = cur_regs(env);
4215 	struct bpf_reg_state *reg = &regs[regno];
4216 	struct bpf_insn_access_aux info = {};
4217 	bool valid;
4218 
4219 	if (reg->smin_value < 0) {
4220 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4221 			regno);
4222 		return -EACCES;
4223 	}
4224 
4225 	switch (reg->type) {
4226 	case PTR_TO_SOCK_COMMON:
4227 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
4228 		break;
4229 	case PTR_TO_SOCKET:
4230 		valid = bpf_sock_is_valid_access(off, size, t, &info);
4231 		break;
4232 	case PTR_TO_TCP_SOCK:
4233 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
4234 		break;
4235 	case PTR_TO_XDP_SOCK:
4236 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
4237 		break;
4238 	default:
4239 		valid = false;
4240 	}
4241 
4242 
4243 	if (valid) {
4244 		env->insn_aux_data[insn_idx].ctx_field_size =
4245 			info.ctx_field_size;
4246 		return 0;
4247 	}
4248 
4249 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
4250 		regno, reg_type_str(env, reg->type), off, size);
4251 
4252 	return -EACCES;
4253 }
4254 
4255 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
4256 {
4257 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4258 }
4259 
4260 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
4261 {
4262 	const struct bpf_reg_state *reg = reg_state(env, regno);
4263 
4264 	return reg->type == PTR_TO_CTX;
4265 }
4266 
4267 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
4268 {
4269 	const struct bpf_reg_state *reg = reg_state(env, regno);
4270 
4271 	return type_is_sk_pointer(reg->type);
4272 }
4273 
4274 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
4275 {
4276 	const struct bpf_reg_state *reg = reg_state(env, regno);
4277 
4278 	return type_is_pkt_pointer(reg->type);
4279 }
4280 
4281 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
4282 {
4283 	const struct bpf_reg_state *reg = reg_state(env, regno);
4284 
4285 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
4286 	return reg->type == PTR_TO_FLOW_KEYS;
4287 }
4288 
4289 static bool is_trusted_reg(const struct bpf_reg_state *reg)
4290 {
4291 	/* A referenced register is always trusted. */
4292 	if (reg->ref_obj_id)
4293 		return true;
4294 
4295 	/* If a register is not referenced, it is trusted if it has the
4296 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
4297 	 * other type modifiers may be safe, but we elect to take an opt-in
4298 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
4299 	 * not.
4300 	 *
4301 	 * Eventually, we should make PTR_TRUSTED the single source of truth
4302 	 * for whether a register is trusted.
4303 	 */
4304 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
4305 	       !bpf_type_has_unsafe_modifiers(reg->type);
4306 }
4307 
4308 static bool is_rcu_reg(const struct bpf_reg_state *reg)
4309 {
4310 	return reg->type & MEM_RCU;
4311 }
4312 
4313 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
4314 				   const struct bpf_reg_state *reg,
4315 				   int off, int size, bool strict)
4316 {
4317 	struct tnum reg_off;
4318 	int ip_align;
4319 
4320 	/* Byte size accesses are always allowed. */
4321 	if (!strict || size == 1)
4322 		return 0;
4323 
4324 	/* For platforms that do not have a Kconfig enabling
4325 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
4326 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
4327 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
4328 	 * to this code only in strict mode where we want to emulate
4329 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
4330 	 * unconditional IP align value of '2'.
4331 	 */
4332 	ip_align = 2;
4333 
4334 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
4335 	if (!tnum_is_aligned(reg_off, size)) {
4336 		char tn_buf[48];
4337 
4338 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4339 		verbose(env,
4340 			"misaligned packet access off %d+%s+%d+%d size %d\n",
4341 			ip_align, tn_buf, reg->off, off, size);
4342 		return -EACCES;
4343 	}
4344 
4345 	return 0;
4346 }
4347 
4348 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
4349 				       const struct bpf_reg_state *reg,
4350 				       const char *pointer_desc,
4351 				       int off, int size, bool strict)
4352 {
4353 	struct tnum reg_off;
4354 
4355 	/* Byte size accesses are always allowed. */
4356 	if (!strict || size == 1)
4357 		return 0;
4358 
4359 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
4360 	if (!tnum_is_aligned(reg_off, size)) {
4361 		char tn_buf[48];
4362 
4363 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4364 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
4365 			pointer_desc, tn_buf, reg->off, off, size);
4366 		return -EACCES;
4367 	}
4368 
4369 	return 0;
4370 }
4371 
4372 static int check_ptr_alignment(struct bpf_verifier_env *env,
4373 			       const struct bpf_reg_state *reg, int off,
4374 			       int size, bool strict_alignment_once)
4375 {
4376 	bool strict = env->strict_alignment || strict_alignment_once;
4377 	const char *pointer_desc = "";
4378 
4379 	switch (reg->type) {
4380 	case PTR_TO_PACKET:
4381 	case PTR_TO_PACKET_META:
4382 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
4383 		 * right in front, treat it the very same way.
4384 		 */
4385 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
4386 	case PTR_TO_FLOW_KEYS:
4387 		pointer_desc = "flow keys ";
4388 		break;
4389 	case PTR_TO_MAP_KEY:
4390 		pointer_desc = "key ";
4391 		break;
4392 	case PTR_TO_MAP_VALUE:
4393 		pointer_desc = "value ";
4394 		break;
4395 	case PTR_TO_CTX:
4396 		pointer_desc = "context ";
4397 		break;
4398 	case PTR_TO_STACK:
4399 		pointer_desc = "stack ";
4400 		/* The stack spill tracking logic in check_stack_write_fixed_off()
4401 		 * and check_stack_read_fixed_off() relies on stack accesses being
4402 		 * aligned.
4403 		 */
4404 		strict = true;
4405 		break;
4406 	case PTR_TO_SOCKET:
4407 		pointer_desc = "sock ";
4408 		break;
4409 	case PTR_TO_SOCK_COMMON:
4410 		pointer_desc = "sock_common ";
4411 		break;
4412 	case PTR_TO_TCP_SOCK:
4413 		pointer_desc = "tcp_sock ";
4414 		break;
4415 	case PTR_TO_XDP_SOCK:
4416 		pointer_desc = "xdp_sock ";
4417 		break;
4418 	default:
4419 		break;
4420 	}
4421 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
4422 					   strict);
4423 }
4424 
4425 static int update_stack_depth(struct bpf_verifier_env *env,
4426 			      const struct bpf_func_state *func,
4427 			      int off)
4428 {
4429 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
4430 
4431 	if (stack >= -off)
4432 		return 0;
4433 
4434 	/* update known max for given subprogram */
4435 	env->subprog_info[func->subprogno].stack_depth = -off;
4436 	return 0;
4437 }
4438 
4439 /* starting from main bpf function walk all instructions of the function
4440  * and recursively walk all callees that given function can call.
4441  * Ignore jump and exit insns.
4442  * Since recursion is prevented by check_cfg() this algorithm
4443  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
4444  */
4445 static int check_max_stack_depth(struct bpf_verifier_env *env)
4446 {
4447 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
4448 	struct bpf_subprog_info *subprog = env->subprog_info;
4449 	struct bpf_insn *insn = env->prog->insnsi;
4450 	bool tail_call_reachable = false;
4451 	int ret_insn[MAX_CALL_FRAMES];
4452 	int ret_prog[MAX_CALL_FRAMES];
4453 	int j;
4454 
4455 process_func:
4456 	/* protect against potential stack overflow that might happen when
4457 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
4458 	 * depth for such case down to 256 so that the worst case scenario
4459 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
4460 	 * 8k).
4461 	 *
4462 	 * To get the idea what might happen, see an example:
4463 	 * func1 -> sub rsp, 128
4464 	 *  subfunc1 -> sub rsp, 256
4465 	 *  tailcall1 -> add rsp, 256
4466 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
4467 	 *   subfunc2 -> sub rsp, 64
4468 	 *   subfunc22 -> sub rsp, 128
4469 	 *   tailcall2 -> add rsp, 128
4470 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
4471 	 *
4472 	 * tailcall will unwind the current stack frame but it will not get rid
4473 	 * of caller's stack as shown on the example above.
4474 	 */
4475 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
4476 		verbose(env,
4477 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
4478 			depth);
4479 		return -EACCES;
4480 	}
4481 	/* round up to 32-bytes, since this is granularity
4482 	 * of interpreter stack size
4483 	 */
4484 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
4485 	if (depth > MAX_BPF_STACK) {
4486 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
4487 			frame + 1, depth);
4488 		return -EACCES;
4489 	}
4490 continue_func:
4491 	subprog_end = subprog[idx + 1].start;
4492 	for (; i < subprog_end; i++) {
4493 		int next_insn;
4494 
4495 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
4496 			continue;
4497 		/* remember insn and function to return to */
4498 		ret_insn[frame] = i + 1;
4499 		ret_prog[frame] = idx;
4500 
4501 		/* find the callee */
4502 		next_insn = i + insn[i].imm + 1;
4503 		idx = find_subprog(env, next_insn);
4504 		if (idx < 0) {
4505 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4506 				  next_insn);
4507 			return -EFAULT;
4508 		}
4509 		if (subprog[idx].is_async_cb) {
4510 			if (subprog[idx].has_tail_call) {
4511 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
4512 				return -EFAULT;
4513 			}
4514 			 /* async callbacks don't increase bpf prog stack size */
4515 			continue;
4516 		}
4517 		i = next_insn;
4518 
4519 		if (subprog[idx].has_tail_call)
4520 			tail_call_reachable = true;
4521 
4522 		frame++;
4523 		if (frame >= MAX_CALL_FRAMES) {
4524 			verbose(env, "the call stack of %d frames is too deep !\n",
4525 				frame);
4526 			return -E2BIG;
4527 		}
4528 		goto process_func;
4529 	}
4530 	/* if tail call got detected across bpf2bpf calls then mark each of the
4531 	 * currently present subprog frames as tail call reachable subprogs;
4532 	 * this info will be utilized by JIT so that we will be preserving the
4533 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
4534 	 */
4535 	if (tail_call_reachable)
4536 		for (j = 0; j < frame; j++)
4537 			subprog[ret_prog[j]].tail_call_reachable = true;
4538 	if (subprog[0].tail_call_reachable)
4539 		env->prog->aux->tail_call_reachable = true;
4540 
4541 	/* end of for() loop means the last insn of the 'subprog'
4542 	 * was reached. Doesn't matter whether it was JA or EXIT
4543 	 */
4544 	if (frame == 0)
4545 		return 0;
4546 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
4547 	frame--;
4548 	i = ret_insn[frame];
4549 	idx = ret_prog[frame];
4550 	goto continue_func;
4551 }
4552 
4553 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
4554 static int get_callee_stack_depth(struct bpf_verifier_env *env,
4555 				  const struct bpf_insn *insn, int idx)
4556 {
4557 	int start = idx + insn->imm + 1, subprog;
4558 
4559 	subprog = find_subprog(env, start);
4560 	if (subprog < 0) {
4561 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4562 			  start);
4563 		return -EFAULT;
4564 	}
4565 	return env->subprog_info[subprog].stack_depth;
4566 }
4567 #endif
4568 
4569 static int __check_buffer_access(struct bpf_verifier_env *env,
4570 				 const char *buf_info,
4571 				 const struct bpf_reg_state *reg,
4572 				 int regno, int off, int size)
4573 {
4574 	if (off < 0) {
4575 		verbose(env,
4576 			"R%d invalid %s buffer access: off=%d, size=%d\n",
4577 			regno, buf_info, off, size);
4578 		return -EACCES;
4579 	}
4580 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4581 		char tn_buf[48];
4582 
4583 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4584 		verbose(env,
4585 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
4586 			regno, off, tn_buf);
4587 		return -EACCES;
4588 	}
4589 
4590 	return 0;
4591 }
4592 
4593 static int check_tp_buffer_access(struct bpf_verifier_env *env,
4594 				  const struct bpf_reg_state *reg,
4595 				  int regno, int off, int size)
4596 {
4597 	int err;
4598 
4599 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
4600 	if (err)
4601 		return err;
4602 
4603 	if (off + size > env->prog->aux->max_tp_access)
4604 		env->prog->aux->max_tp_access = off + size;
4605 
4606 	return 0;
4607 }
4608 
4609 static int check_buffer_access(struct bpf_verifier_env *env,
4610 			       const struct bpf_reg_state *reg,
4611 			       int regno, int off, int size,
4612 			       bool zero_size_allowed,
4613 			       u32 *max_access)
4614 {
4615 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
4616 	int err;
4617 
4618 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4619 	if (err)
4620 		return err;
4621 
4622 	if (off + size > *max_access)
4623 		*max_access = off + size;
4624 
4625 	return 0;
4626 }
4627 
4628 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
4629 static void zext_32_to_64(struct bpf_reg_state *reg)
4630 {
4631 	reg->var_off = tnum_subreg(reg->var_off);
4632 	__reg_assign_32_into_64(reg);
4633 }
4634 
4635 /* truncate register to smaller size (in bytes)
4636  * must be called with size < BPF_REG_SIZE
4637  */
4638 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4639 {
4640 	u64 mask;
4641 
4642 	/* clear high bits in bit representation */
4643 	reg->var_off = tnum_cast(reg->var_off, size);
4644 
4645 	/* fix arithmetic bounds */
4646 	mask = ((u64)1 << (size * 8)) - 1;
4647 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4648 		reg->umin_value &= mask;
4649 		reg->umax_value &= mask;
4650 	} else {
4651 		reg->umin_value = 0;
4652 		reg->umax_value = mask;
4653 	}
4654 	reg->smin_value = reg->umin_value;
4655 	reg->smax_value = reg->umax_value;
4656 
4657 	/* If size is smaller than 32bit register the 32bit register
4658 	 * values are also truncated so we push 64-bit bounds into
4659 	 * 32-bit bounds. Above were truncated < 32-bits already.
4660 	 */
4661 	if (size >= 4)
4662 		return;
4663 	__reg_combine_64_into_32(reg);
4664 }
4665 
4666 static bool bpf_map_is_rdonly(const struct bpf_map *map)
4667 {
4668 	/* A map is considered read-only if the following condition are true:
4669 	 *
4670 	 * 1) BPF program side cannot change any of the map content. The
4671 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
4672 	 *    and was set at map creation time.
4673 	 * 2) The map value(s) have been initialized from user space by a
4674 	 *    loader and then "frozen", such that no new map update/delete
4675 	 *    operations from syscall side are possible for the rest of
4676 	 *    the map's lifetime from that point onwards.
4677 	 * 3) Any parallel/pending map update/delete operations from syscall
4678 	 *    side have been completed. Only after that point, it's safe to
4679 	 *    assume that map value(s) are immutable.
4680 	 */
4681 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
4682 	       READ_ONCE(map->frozen) &&
4683 	       !bpf_map_write_active(map);
4684 }
4685 
4686 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4687 {
4688 	void *ptr;
4689 	u64 addr;
4690 	int err;
4691 
4692 	err = map->ops->map_direct_value_addr(map, &addr, off);
4693 	if (err)
4694 		return err;
4695 	ptr = (void *)(long)addr + off;
4696 
4697 	switch (size) {
4698 	case sizeof(u8):
4699 		*val = (u64)*(u8 *)ptr;
4700 		break;
4701 	case sizeof(u16):
4702 		*val = (u64)*(u16 *)ptr;
4703 		break;
4704 	case sizeof(u32):
4705 		*val = (u64)*(u32 *)ptr;
4706 		break;
4707 	case sizeof(u64):
4708 		*val = *(u64 *)ptr;
4709 		break;
4710 	default:
4711 		return -EINVAL;
4712 	}
4713 	return 0;
4714 }
4715 
4716 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4717 				   struct bpf_reg_state *regs,
4718 				   int regno, int off, int size,
4719 				   enum bpf_access_type atype,
4720 				   int value_regno)
4721 {
4722 	struct bpf_reg_state *reg = regs + regno;
4723 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4724 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
4725 	enum bpf_type_flag flag = 0;
4726 	u32 btf_id;
4727 	int ret;
4728 
4729 	if (!env->allow_ptr_leaks) {
4730 		verbose(env,
4731 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4732 			tname);
4733 		return -EPERM;
4734 	}
4735 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
4736 		verbose(env,
4737 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
4738 			tname);
4739 		return -EINVAL;
4740 	}
4741 	if (off < 0) {
4742 		verbose(env,
4743 			"R%d is ptr_%s invalid negative access: off=%d\n",
4744 			regno, tname, off);
4745 		return -EACCES;
4746 	}
4747 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4748 		char tn_buf[48];
4749 
4750 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4751 		verbose(env,
4752 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4753 			regno, tname, off, tn_buf);
4754 		return -EACCES;
4755 	}
4756 
4757 	if (reg->type & MEM_USER) {
4758 		verbose(env,
4759 			"R%d is ptr_%s access user memory: off=%d\n",
4760 			regno, tname, off);
4761 		return -EACCES;
4762 	}
4763 
4764 	if (reg->type & MEM_PERCPU) {
4765 		verbose(env,
4766 			"R%d is ptr_%s access percpu memory: off=%d\n",
4767 			regno, tname, off);
4768 		return -EACCES;
4769 	}
4770 
4771 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type)) {
4772 		if (!btf_is_kernel(reg->btf)) {
4773 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
4774 			return -EFAULT;
4775 		}
4776 		ret = env->ops->btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag);
4777 	} else {
4778 		/* Writes are permitted with default btf_struct_access for
4779 		 * program allocated objects (which always have ref_obj_id > 0),
4780 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
4781 		 */
4782 		if (atype != BPF_READ && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
4783 			verbose(env, "only read is supported\n");
4784 			return -EACCES;
4785 		}
4786 
4787 		if (type_is_alloc(reg->type) && !reg->ref_obj_id) {
4788 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
4789 			return -EFAULT;
4790 		}
4791 
4792 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag);
4793 	}
4794 
4795 	if (ret < 0)
4796 		return ret;
4797 
4798 	/* If this is an untrusted pointer, all pointers formed by walking it
4799 	 * also inherit the untrusted flag.
4800 	 */
4801 	if (type_flag(reg->type) & PTR_UNTRUSTED)
4802 		flag |= PTR_UNTRUSTED;
4803 
4804 	/* By default any pointer obtained from walking a trusted pointer is
4805 	 * no longer trusted except the rcu case below.
4806 	 */
4807 	flag &= ~PTR_TRUSTED;
4808 
4809 	if (flag & MEM_RCU) {
4810 		/* Mark value register as MEM_RCU only if it is protected by
4811 		 * bpf_rcu_read_lock() and the ptr reg is rcu or trusted. MEM_RCU
4812 		 * itself can already indicate trustedness inside the rcu
4813 		 * read lock region. Also mark rcu pointer as PTR_MAYBE_NULL since
4814 		 * it could be null in some cases.
4815 		 */
4816 		if (!env->cur_state->active_rcu_lock ||
4817 		    !(is_trusted_reg(reg) || is_rcu_reg(reg)))
4818 			flag &= ~MEM_RCU;
4819 		else
4820 			flag |= PTR_MAYBE_NULL;
4821 	} else if (reg->type & MEM_RCU) {
4822 		/* ptr (reg) is marked as MEM_RCU, but the struct field is not tagged
4823 		 * with __rcu. Mark the flag as PTR_UNTRUSTED conservatively.
4824 		 */
4825 		flag |= PTR_UNTRUSTED;
4826 	}
4827 
4828 	if (atype == BPF_READ && value_regno >= 0)
4829 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
4830 
4831 	return 0;
4832 }
4833 
4834 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4835 				   struct bpf_reg_state *regs,
4836 				   int regno, int off, int size,
4837 				   enum bpf_access_type atype,
4838 				   int value_regno)
4839 {
4840 	struct bpf_reg_state *reg = regs + regno;
4841 	struct bpf_map *map = reg->map_ptr;
4842 	struct bpf_reg_state map_reg;
4843 	enum bpf_type_flag flag = 0;
4844 	const struct btf_type *t;
4845 	const char *tname;
4846 	u32 btf_id;
4847 	int ret;
4848 
4849 	if (!btf_vmlinux) {
4850 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4851 		return -ENOTSUPP;
4852 	}
4853 
4854 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4855 		verbose(env, "map_ptr access not supported for map type %d\n",
4856 			map->map_type);
4857 		return -ENOTSUPP;
4858 	}
4859 
4860 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4861 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4862 
4863 	if (!env->allow_ptr_leaks) {
4864 		verbose(env,
4865 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4866 			tname);
4867 		return -EPERM;
4868 	}
4869 
4870 	if (off < 0) {
4871 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
4872 			regno, tname, off);
4873 		return -EACCES;
4874 	}
4875 
4876 	if (atype != BPF_READ) {
4877 		verbose(env, "only read from %s is supported\n", tname);
4878 		return -EACCES;
4879 	}
4880 
4881 	/* Simulate access to a PTR_TO_BTF_ID */
4882 	memset(&map_reg, 0, sizeof(map_reg));
4883 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
4884 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag);
4885 	if (ret < 0)
4886 		return ret;
4887 
4888 	if (value_regno >= 0)
4889 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
4890 
4891 	return 0;
4892 }
4893 
4894 /* Check that the stack access at the given offset is within bounds. The
4895  * maximum valid offset is -1.
4896  *
4897  * The minimum valid offset is -MAX_BPF_STACK for writes, and
4898  * -state->allocated_stack for reads.
4899  */
4900 static int check_stack_slot_within_bounds(int off,
4901 					  struct bpf_func_state *state,
4902 					  enum bpf_access_type t)
4903 {
4904 	int min_valid_off;
4905 
4906 	if (t == BPF_WRITE)
4907 		min_valid_off = -MAX_BPF_STACK;
4908 	else
4909 		min_valid_off = -state->allocated_stack;
4910 
4911 	if (off < min_valid_off || off > -1)
4912 		return -EACCES;
4913 	return 0;
4914 }
4915 
4916 /* Check that the stack access at 'regno + off' falls within the maximum stack
4917  * bounds.
4918  *
4919  * 'off' includes `regno->offset`, but not its dynamic part (if any).
4920  */
4921 static int check_stack_access_within_bounds(
4922 		struct bpf_verifier_env *env,
4923 		int regno, int off, int access_size,
4924 		enum bpf_access_src src, enum bpf_access_type type)
4925 {
4926 	struct bpf_reg_state *regs = cur_regs(env);
4927 	struct bpf_reg_state *reg = regs + regno;
4928 	struct bpf_func_state *state = func(env, reg);
4929 	int min_off, max_off;
4930 	int err;
4931 	char *err_extra;
4932 
4933 	if (src == ACCESS_HELPER)
4934 		/* We don't know if helpers are reading or writing (or both). */
4935 		err_extra = " indirect access to";
4936 	else if (type == BPF_READ)
4937 		err_extra = " read from";
4938 	else
4939 		err_extra = " write to";
4940 
4941 	if (tnum_is_const(reg->var_off)) {
4942 		min_off = reg->var_off.value + off;
4943 		if (access_size > 0)
4944 			max_off = min_off + access_size - 1;
4945 		else
4946 			max_off = min_off;
4947 	} else {
4948 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4949 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
4950 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4951 				err_extra, regno);
4952 			return -EACCES;
4953 		}
4954 		min_off = reg->smin_value + off;
4955 		if (access_size > 0)
4956 			max_off = reg->smax_value + off + access_size - 1;
4957 		else
4958 			max_off = min_off;
4959 	}
4960 
4961 	err = check_stack_slot_within_bounds(min_off, state, type);
4962 	if (!err)
4963 		err = check_stack_slot_within_bounds(max_off, state, type);
4964 
4965 	if (err) {
4966 		if (tnum_is_const(reg->var_off)) {
4967 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4968 				err_extra, regno, off, access_size);
4969 		} else {
4970 			char tn_buf[48];
4971 
4972 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4973 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4974 				err_extra, regno, tn_buf, access_size);
4975 		}
4976 	}
4977 	return err;
4978 }
4979 
4980 /* check whether memory at (regno + off) is accessible for t = (read | write)
4981  * if t==write, value_regno is a register which value is stored into memory
4982  * if t==read, value_regno is a register which will receive the value from memory
4983  * if t==write && value_regno==-1, some unknown value is stored into memory
4984  * if t==read && value_regno==-1, don't care what we read from memory
4985  */
4986 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4987 			    int off, int bpf_size, enum bpf_access_type t,
4988 			    int value_regno, bool strict_alignment_once)
4989 {
4990 	struct bpf_reg_state *regs = cur_regs(env);
4991 	struct bpf_reg_state *reg = regs + regno;
4992 	struct bpf_func_state *state;
4993 	int size, err = 0;
4994 
4995 	size = bpf_size_to_bytes(bpf_size);
4996 	if (size < 0)
4997 		return size;
4998 
4999 	/* alignment checks will add in reg->off themselves */
5000 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
5001 	if (err)
5002 		return err;
5003 
5004 	/* for access checks, reg->off is just part of off */
5005 	off += reg->off;
5006 
5007 	if (reg->type == PTR_TO_MAP_KEY) {
5008 		if (t == BPF_WRITE) {
5009 			verbose(env, "write to change key R%d not allowed\n", regno);
5010 			return -EACCES;
5011 		}
5012 
5013 		err = check_mem_region_access(env, regno, off, size,
5014 					      reg->map_ptr->key_size, false);
5015 		if (err)
5016 			return err;
5017 		if (value_regno >= 0)
5018 			mark_reg_unknown(env, regs, value_regno);
5019 	} else if (reg->type == PTR_TO_MAP_VALUE) {
5020 		struct btf_field *kptr_field = NULL;
5021 
5022 		if (t == BPF_WRITE && value_regno >= 0 &&
5023 		    is_pointer_value(env, value_regno)) {
5024 			verbose(env, "R%d leaks addr into map\n", value_regno);
5025 			return -EACCES;
5026 		}
5027 		err = check_map_access_type(env, regno, off, size, t);
5028 		if (err)
5029 			return err;
5030 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
5031 		if (err)
5032 			return err;
5033 		if (tnum_is_const(reg->var_off))
5034 			kptr_field = btf_record_find(reg->map_ptr->record,
5035 						     off + reg->var_off.value, BPF_KPTR);
5036 		if (kptr_field) {
5037 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
5038 		} else if (t == BPF_READ && value_regno >= 0) {
5039 			struct bpf_map *map = reg->map_ptr;
5040 
5041 			/* if map is read-only, track its contents as scalars */
5042 			if (tnum_is_const(reg->var_off) &&
5043 			    bpf_map_is_rdonly(map) &&
5044 			    map->ops->map_direct_value_addr) {
5045 				int map_off = off + reg->var_off.value;
5046 				u64 val = 0;
5047 
5048 				err = bpf_map_direct_read(map, map_off, size,
5049 							  &val);
5050 				if (err)
5051 					return err;
5052 
5053 				regs[value_regno].type = SCALAR_VALUE;
5054 				__mark_reg_known(&regs[value_regno], val);
5055 			} else {
5056 				mark_reg_unknown(env, regs, value_regno);
5057 			}
5058 		}
5059 	} else if (base_type(reg->type) == PTR_TO_MEM) {
5060 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
5061 
5062 		if (type_may_be_null(reg->type)) {
5063 			verbose(env, "R%d invalid mem access '%s'\n", regno,
5064 				reg_type_str(env, reg->type));
5065 			return -EACCES;
5066 		}
5067 
5068 		if (t == BPF_WRITE && rdonly_mem) {
5069 			verbose(env, "R%d cannot write into %s\n",
5070 				regno, reg_type_str(env, reg->type));
5071 			return -EACCES;
5072 		}
5073 
5074 		if (t == BPF_WRITE && value_regno >= 0 &&
5075 		    is_pointer_value(env, value_regno)) {
5076 			verbose(env, "R%d leaks addr into mem\n", value_regno);
5077 			return -EACCES;
5078 		}
5079 
5080 		err = check_mem_region_access(env, regno, off, size,
5081 					      reg->mem_size, false);
5082 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
5083 			mark_reg_unknown(env, regs, value_regno);
5084 	} else if (reg->type == PTR_TO_CTX) {
5085 		enum bpf_reg_type reg_type = SCALAR_VALUE;
5086 		struct btf *btf = NULL;
5087 		u32 btf_id = 0;
5088 
5089 		if (t == BPF_WRITE && value_regno >= 0 &&
5090 		    is_pointer_value(env, value_regno)) {
5091 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
5092 			return -EACCES;
5093 		}
5094 
5095 		err = check_ptr_off_reg(env, reg, regno);
5096 		if (err < 0)
5097 			return err;
5098 
5099 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
5100 				       &btf_id);
5101 		if (err)
5102 			verbose_linfo(env, insn_idx, "; ");
5103 		if (!err && t == BPF_READ && value_regno >= 0) {
5104 			/* ctx access returns either a scalar, or a
5105 			 * PTR_TO_PACKET[_META,_END]. In the latter
5106 			 * case, we know the offset is zero.
5107 			 */
5108 			if (reg_type == SCALAR_VALUE) {
5109 				mark_reg_unknown(env, regs, value_regno);
5110 			} else {
5111 				mark_reg_known_zero(env, regs,
5112 						    value_regno);
5113 				if (type_may_be_null(reg_type))
5114 					regs[value_regno].id = ++env->id_gen;
5115 				/* A load of ctx field could have different
5116 				 * actual load size with the one encoded in the
5117 				 * insn. When the dst is PTR, it is for sure not
5118 				 * a sub-register.
5119 				 */
5120 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
5121 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
5122 					regs[value_regno].btf = btf;
5123 					regs[value_regno].btf_id = btf_id;
5124 				}
5125 			}
5126 			regs[value_regno].type = reg_type;
5127 		}
5128 
5129 	} else if (reg->type == PTR_TO_STACK) {
5130 		/* Basic bounds checks. */
5131 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
5132 		if (err)
5133 			return err;
5134 
5135 		state = func(env, reg);
5136 		err = update_stack_depth(env, state, off);
5137 		if (err)
5138 			return err;
5139 
5140 		if (t == BPF_READ)
5141 			err = check_stack_read(env, regno, off, size,
5142 					       value_regno);
5143 		else
5144 			err = check_stack_write(env, regno, off, size,
5145 						value_regno, insn_idx);
5146 	} else if (reg_is_pkt_pointer(reg)) {
5147 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
5148 			verbose(env, "cannot write into packet\n");
5149 			return -EACCES;
5150 		}
5151 		if (t == BPF_WRITE && value_regno >= 0 &&
5152 		    is_pointer_value(env, value_regno)) {
5153 			verbose(env, "R%d leaks addr into packet\n",
5154 				value_regno);
5155 			return -EACCES;
5156 		}
5157 		err = check_packet_access(env, regno, off, size, false);
5158 		if (!err && t == BPF_READ && value_regno >= 0)
5159 			mark_reg_unknown(env, regs, value_regno);
5160 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
5161 		if (t == BPF_WRITE && value_regno >= 0 &&
5162 		    is_pointer_value(env, value_regno)) {
5163 			verbose(env, "R%d leaks addr into flow keys\n",
5164 				value_regno);
5165 			return -EACCES;
5166 		}
5167 
5168 		err = check_flow_keys_access(env, off, size);
5169 		if (!err && t == BPF_READ && value_regno >= 0)
5170 			mark_reg_unknown(env, regs, value_regno);
5171 	} else if (type_is_sk_pointer(reg->type)) {
5172 		if (t == BPF_WRITE) {
5173 			verbose(env, "R%d cannot write into %s\n",
5174 				regno, reg_type_str(env, reg->type));
5175 			return -EACCES;
5176 		}
5177 		err = check_sock_access(env, insn_idx, regno, off, size, t);
5178 		if (!err && value_regno >= 0)
5179 			mark_reg_unknown(env, regs, value_regno);
5180 	} else if (reg->type == PTR_TO_TP_BUFFER) {
5181 		err = check_tp_buffer_access(env, reg, regno, off, size);
5182 		if (!err && t == BPF_READ && value_regno >= 0)
5183 			mark_reg_unknown(env, regs, value_regno);
5184 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
5185 		   !type_may_be_null(reg->type)) {
5186 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
5187 					      value_regno);
5188 	} else if (reg->type == CONST_PTR_TO_MAP) {
5189 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
5190 					      value_regno);
5191 	} else if (base_type(reg->type) == PTR_TO_BUF) {
5192 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
5193 		u32 *max_access;
5194 
5195 		if (rdonly_mem) {
5196 			if (t == BPF_WRITE) {
5197 				verbose(env, "R%d cannot write into %s\n",
5198 					regno, reg_type_str(env, reg->type));
5199 				return -EACCES;
5200 			}
5201 			max_access = &env->prog->aux->max_rdonly_access;
5202 		} else {
5203 			max_access = &env->prog->aux->max_rdwr_access;
5204 		}
5205 
5206 		err = check_buffer_access(env, reg, regno, off, size, false,
5207 					  max_access);
5208 
5209 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
5210 			mark_reg_unknown(env, regs, value_regno);
5211 	} else {
5212 		verbose(env, "R%d invalid mem access '%s'\n", regno,
5213 			reg_type_str(env, reg->type));
5214 		return -EACCES;
5215 	}
5216 
5217 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
5218 	    regs[value_regno].type == SCALAR_VALUE) {
5219 		/* b/h/w load zero-extends, mark upper bits as known 0 */
5220 		coerce_reg_to_size(&regs[value_regno], size);
5221 	}
5222 	return err;
5223 }
5224 
5225 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
5226 {
5227 	int load_reg;
5228 	int err;
5229 
5230 	switch (insn->imm) {
5231 	case BPF_ADD:
5232 	case BPF_ADD | BPF_FETCH:
5233 	case BPF_AND:
5234 	case BPF_AND | BPF_FETCH:
5235 	case BPF_OR:
5236 	case BPF_OR | BPF_FETCH:
5237 	case BPF_XOR:
5238 	case BPF_XOR | BPF_FETCH:
5239 	case BPF_XCHG:
5240 	case BPF_CMPXCHG:
5241 		break;
5242 	default:
5243 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
5244 		return -EINVAL;
5245 	}
5246 
5247 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
5248 		verbose(env, "invalid atomic operand size\n");
5249 		return -EINVAL;
5250 	}
5251 
5252 	/* check src1 operand */
5253 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
5254 	if (err)
5255 		return err;
5256 
5257 	/* check src2 operand */
5258 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5259 	if (err)
5260 		return err;
5261 
5262 	if (insn->imm == BPF_CMPXCHG) {
5263 		/* Check comparison of R0 with memory location */
5264 		const u32 aux_reg = BPF_REG_0;
5265 
5266 		err = check_reg_arg(env, aux_reg, SRC_OP);
5267 		if (err)
5268 			return err;
5269 
5270 		if (is_pointer_value(env, aux_reg)) {
5271 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
5272 			return -EACCES;
5273 		}
5274 	}
5275 
5276 	if (is_pointer_value(env, insn->src_reg)) {
5277 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
5278 		return -EACCES;
5279 	}
5280 
5281 	if (is_ctx_reg(env, insn->dst_reg) ||
5282 	    is_pkt_reg(env, insn->dst_reg) ||
5283 	    is_flow_key_reg(env, insn->dst_reg) ||
5284 	    is_sk_reg(env, insn->dst_reg)) {
5285 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
5286 			insn->dst_reg,
5287 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
5288 		return -EACCES;
5289 	}
5290 
5291 	if (insn->imm & BPF_FETCH) {
5292 		if (insn->imm == BPF_CMPXCHG)
5293 			load_reg = BPF_REG_0;
5294 		else
5295 			load_reg = insn->src_reg;
5296 
5297 		/* check and record load of old value */
5298 		err = check_reg_arg(env, load_reg, DST_OP);
5299 		if (err)
5300 			return err;
5301 	} else {
5302 		/* This instruction accesses a memory location but doesn't
5303 		 * actually load it into a register.
5304 		 */
5305 		load_reg = -1;
5306 	}
5307 
5308 	/* Check whether we can read the memory, with second call for fetch
5309 	 * case to simulate the register fill.
5310 	 */
5311 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5312 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
5313 	if (!err && load_reg >= 0)
5314 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5315 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
5316 				       true);
5317 	if (err)
5318 		return err;
5319 
5320 	/* Check whether we can write into the same memory. */
5321 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5322 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
5323 	if (err)
5324 		return err;
5325 
5326 	return 0;
5327 }
5328 
5329 /* When register 'regno' is used to read the stack (either directly or through
5330  * a helper function) make sure that it's within stack boundary and, depending
5331  * on the access type, that all elements of the stack are initialized.
5332  *
5333  * 'off' includes 'regno->off', but not its dynamic part (if any).
5334  *
5335  * All registers that have been spilled on the stack in the slots within the
5336  * read offsets are marked as read.
5337  */
5338 static int check_stack_range_initialized(
5339 		struct bpf_verifier_env *env, int regno, int off,
5340 		int access_size, bool zero_size_allowed,
5341 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
5342 {
5343 	struct bpf_reg_state *reg = reg_state(env, regno);
5344 	struct bpf_func_state *state = func(env, reg);
5345 	int err, min_off, max_off, i, j, slot, spi;
5346 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
5347 	enum bpf_access_type bounds_check_type;
5348 	/* Some accesses can write anything into the stack, others are
5349 	 * read-only.
5350 	 */
5351 	bool clobber = false;
5352 
5353 	if (access_size == 0 && !zero_size_allowed) {
5354 		verbose(env, "invalid zero-sized read\n");
5355 		return -EACCES;
5356 	}
5357 
5358 	if (type == ACCESS_HELPER) {
5359 		/* The bounds checks for writes are more permissive than for
5360 		 * reads. However, if raw_mode is not set, we'll do extra
5361 		 * checks below.
5362 		 */
5363 		bounds_check_type = BPF_WRITE;
5364 		clobber = true;
5365 	} else {
5366 		bounds_check_type = BPF_READ;
5367 	}
5368 	err = check_stack_access_within_bounds(env, regno, off, access_size,
5369 					       type, bounds_check_type);
5370 	if (err)
5371 		return err;
5372 
5373 
5374 	if (tnum_is_const(reg->var_off)) {
5375 		min_off = max_off = reg->var_off.value + off;
5376 	} else {
5377 		/* Variable offset is prohibited for unprivileged mode for
5378 		 * simplicity since it requires corresponding support in
5379 		 * Spectre masking for stack ALU.
5380 		 * See also retrieve_ptr_limit().
5381 		 */
5382 		if (!env->bypass_spec_v1) {
5383 			char tn_buf[48];
5384 
5385 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5386 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
5387 				regno, err_extra, tn_buf);
5388 			return -EACCES;
5389 		}
5390 		/* Only initialized buffer on stack is allowed to be accessed
5391 		 * with variable offset. With uninitialized buffer it's hard to
5392 		 * guarantee that whole memory is marked as initialized on
5393 		 * helper return since specific bounds are unknown what may
5394 		 * cause uninitialized stack leaking.
5395 		 */
5396 		if (meta && meta->raw_mode)
5397 			meta = NULL;
5398 
5399 		min_off = reg->smin_value + off;
5400 		max_off = reg->smax_value + off;
5401 	}
5402 
5403 	if (meta && meta->raw_mode) {
5404 		meta->access_size = access_size;
5405 		meta->regno = regno;
5406 		return 0;
5407 	}
5408 
5409 	for (i = min_off; i < max_off + access_size; i++) {
5410 		u8 *stype;
5411 
5412 		slot = -i - 1;
5413 		spi = slot / BPF_REG_SIZE;
5414 		if (state->allocated_stack <= slot)
5415 			goto err;
5416 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
5417 		if (*stype == STACK_MISC)
5418 			goto mark;
5419 		if (*stype == STACK_ZERO) {
5420 			if (clobber) {
5421 				/* helper can write anything into the stack */
5422 				*stype = STACK_MISC;
5423 			}
5424 			goto mark;
5425 		}
5426 
5427 		if (is_spilled_reg(&state->stack[spi]) &&
5428 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
5429 		     env->allow_ptr_leaks)) {
5430 			if (clobber) {
5431 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
5432 				for (j = 0; j < BPF_REG_SIZE; j++)
5433 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
5434 			}
5435 			goto mark;
5436 		}
5437 
5438 err:
5439 		if (tnum_is_const(reg->var_off)) {
5440 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
5441 				err_extra, regno, min_off, i - min_off, access_size);
5442 		} else {
5443 			char tn_buf[48];
5444 
5445 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5446 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
5447 				err_extra, regno, tn_buf, i - min_off, access_size);
5448 		}
5449 		return -EACCES;
5450 mark:
5451 		/* reading any byte out of 8-byte 'spill_slot' will cause
5452 		 * the whole slot to be marked as 'read'
5453 		 */
5454 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
5455 			      state->stack[spi].spilled_ptr.parent,
5456 			      REG_LIVE_READ64);
5457 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
5458 		 * be sure that whether stack slot is written to or not. Hence,
5459 		 * we must still conservatively propagate reads upwards even if
5460 		 * helper may write to the entire memory range.
5461 		 */
5462 	}
5463 	return update_stack_depth(env, state, min_off);
5464 }
5465 
5466 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
5467 				   int access_size, bool zero_size_allowed,
5468 				   struct bpf_call_arg_meta *meta)
5469 {
5470 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5471 	u32 *max_access;
5472 
5473 	switch (base_type(reg->type)) {
5474 	case PTR_TO_PACKET:
5475 	case PTR_TO_PACKET_META:
5476 		return check_packet_access(env, regno, reg->off, access_size,
5477 					   zero_size_allowed);
5478 	case PTR_TO_MAP_KEY:
5479 		if (meta && meta->raw_mode) {
5480 			verbose(env, "R%d cannot write into %s\n", regno,
5481 				reg_type_str(env, reg->type));
5482 			return -EACCES;
5483 		}
5484 		return check_mem_region_access(env, regno, reg->off, access_size,
5485 					       reg->map_ptr->key_size, false);
5486 	case PTR_TO_MAP_VALUE:
5487 		if (check_map_access_type(env, regno, reg->off, access_size,
5488 					  meta && meta->raw_mode ? BPF_WRITE :
5489 					  BPF_READ))
5490 			return -EACCES;
5491 		return check_map_access(env, regno, reg->off, access_size,
5492 					zero_size_allowed, ACCESS_HELPER);
5493 	case PTR_TO_MEM:
5494 		if (type_is_rdonly_mem(reg->type)) {
5495 			if (meta && meta->raw_mode) {
5496 				verbose(env, "R%d cannot write into %s\n", regno,
5497 					reg_type_str(env, reg->type));
5498 				return -EACCES;
5499 			}
5500 		}
5501 		return check_mem_region_access(env, regno, reg->off,
5502 					       access_size, reg->mem_size,
5503 					       zero_size_allowed);
5504 	case PTR_TO_BUF:
5505 		if (type_is_rdonly_mem(reg->type)) {
5506 			if (meta && meta->raw_mode) {
5507 				verbose(env, "R%d cannot write into %s\n", regno,
5508 					reg_type_str(env, reg->type));
5509 				return -EACCES;
5510 			}
5511 
5512 			max_access = &env->prog->aux->max_rdonly_access;
5513 		} else {
5514 			max_access = &env->prog->aux->max_rdwr_access;
5515 		}
5516 		return check_buffer_access(env, reg, regno, reg->off,
5517 					   access_size, zero_size_allowed,
5518 					   max_access);
5519 	case PTR_TO_STACK:
5520 		return check_stack_range_initialized(
5521 				env,
5522 				regno, reg->off, access_size,
5523 				zero_size_allowed, ACCESS_HELPER, meta);
5524 	case PTR_TO_CTX:
5525 		/* in case the function doesn't know how to access the context,
5526 		 * (because we are in a program of type SYSCALL for example), we
5527 		 * can not statically check its size.
5528 		 * Dynamically check it now.
5529 		 */
5530 		if (!env->ops->convert_ctx_access) {
5531 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
5532 			int offset = access_size - 1;
5533 
5534 			/* Allow zero-byte read from PTR_TO_CTX */
5535 			if (access_size == 0)
5536 				return zero_size_allowed ? 0 : -EACCES;
5537 
5538 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
5539 						atype, -1, false);
5540 		}
5541 
5542 		fallthrough;
5543 	default: /* scalar_value or invalid ptr */
5544 		/* Allow zero-byte read from NULL, regardless of pointer type */
5545 		if (zero_size_allowed && access_size == 0 &&
5546 		    register_is_null(reg))
5547 			return 0;
5548 
5549 		verbose(env, "R%d type=%s ", regno,
5550 			reg_type_str(env, reg->type));
5551 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
5552 		return -EACCES;
5553 	}
5554 }
5555 
5556 static int check_mem_size_reg(struct bpf_verifier_env *env,
5557 			      struct bpf_reg_state *reg, u32 regno,
5558 			      bool zero_size_allowed,
5559 			      struct bpf_call_arg_meta *meta)
5560 {
5561 	int err;
5562 
5563 	/* This is used to refine r0 return value bounds for helpers
5564 	 * that enforce this value as an upper bound on return values.
5565 	 * See do_refine_retval_range() for helpers that can refine
5566 	 * the return value. C type of helper is u32 so we pull register
5567 	 * bound from umax_value however, if negative verifier errors
5568 	 * out. Only upper bounds can be learned because retval is an
5569 	 * int type and negative retvals are allowed.
5570 	 */
5571 	meta->msize_max_value = reg->umax_value;
5572 
5573 	/* The register is SCALAR_VALUE; the access check
5574 	 * happens using its boundaries.
5575 	 */
5576 	if (!tnum_is_const(reg->var_off))
5577 		/* For unprivileged variable accesses, disable raw
5578 		 * mode so that the program is required to
5579 		 * initialize all the memory that the helper could
5580 		 * just partially fill up.
5581 		 */
5582 		meta = NULL;
5583 
5584 	if (reg->smin_value < 0) {
5585 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5586 			regno);
5587 		return -EACCES;
5588 	}
5589 
5590 	if (reg->umin_value == 0) {
5591 		err = check_helper_mem_access(env, regno - 1, 0,
5592 					      zero_size_allowed,
5593 					      meta);
5594 		if (err)
5595 			return err;
5596 	}
5597 
5598 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5599 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5600 			regno);
5601 		return -EACCES;
5602 	}
5603 	err = check_helper_mem_access(env, regno - 1,
5604 				      reg->umax_value,
5605 				      zero_size_allowed, meta);
5606 	if (!err)
5607 		err = mark_chain_precision(env, regno);
5608 	return err;
5609 }
5610 
5611 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5612 		   u32 regno, u32 mem_size)
5613 {
5614 	bool may_be_null = type_may_be_null(reg->type);
5615 	struct bpf_reg_state saved_reg;
5616 	struct bpf_call_arg_meta meta;
5617 	int err;
5618 
5619 	if (register_is_null(reg))
5620 		return 0;
5621 
5622 	memset(&meta, 0, sizeof(meta));
5623 	/* Assuming that the register contains a value check if the memory
5624 	 * access is safe. Temporarily save and restore the register's state as
5625 	 * the conversion shouldn't be visible to a caller.
5626 	 */
5627 	if (may_be_null) {
5628 		saved_reg = *reg;
5629 		mark_ptr_not_null_reg(reg);
5630 	}
5631 
5632 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
5633 	/* Check access for BPF_WRITE */
5634 	meta.raw_mode = true;
5635 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
5636 
5637 	if (may_be_null)
5638 		*reg = saved_reg;
5639 
5640 	return err;
5641 }
5642 
5643 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5644 				    u32 regno)
5645 {
5646 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
5647 	bool may_be_null = type_may_be_null(mem_reg->type);
5648 	struct bpf_reg_state saved_reg;
5649 	struct bpf_call_arg_meta meta;
5650 	int err;
5651 
5652 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
5653 
5654 	memset(&meta, 0, sizeof(meta));
5655 
5656 	if (may_be_null) {
5657 		saved_reg = *mem_reg;
5658 		mark_ptr_not_null_reg(mem_reg);
5659 	}
5660 
5661 	err = check_mem_size_reg(env, reg, regno, true, &meta);
5662 	/* Check access for BPF_WRITE */
5663 	meta.raw_mode = true;
5664 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
5665 
5666 	if (may_be_null)
5667 		*mem_reg = saved_reg;
5668 	return err;
5669 }
5670 
5671 /* Implementation details:
5672  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
5673  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
5674  * Two bpf_map_lookups (even with the same key) will have different reg->id.
5675  * Two separate bpf_obj_new will also have different reg->id.
5676  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
5677  * clears reg->id after value_or_null->value transition, since the verifier only
5678  * cares about the range of access to valid map value pointer and doesn't care
5679  * about actual address of the map element.
5680  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
5681  * reg->id > 0 after value_or_null->value transition. By doing so
5682  * two bpf_map_lookups will be considered two different pointers that
5683  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
5684  * returned from bpf_obj_new.
5685  * The verifier allows taking only one bpf_spin_lock at a time to avoid
5686  * dead-locks.
5687  * Since only one bpf_spin_lock is allowed the checks are simpler than
5688  * reg_is_refcounted() logic. The verifier needs to remember only
5689  * one spin_lock instead of array of acquired_refs.
5690  * cur_state->active_lock remembers which map value element or allocated
5691  * object got locked and clears it after bpf_spin_unlock.
5692  */
5693 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
5694 			     bool is_lock)
5695 {
5696 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5697 	struct bpf_verifier_state *cur = env->cur_state;
5698 	bool is_const = tnum_is_const(reg->var_off);
5699 	u64 val = reg->var_off.value;
5700 	struct bpf_map *map = NULL;
5701 	struct btf *btf = NULL;
5702 	struct btf_record *rec;
5703 
5704 	if (!is_const) {
5705 		verbose(env,
5706 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
5707 			regno);
5708 		return -EINVAL;
5709 	}
5710 	if (reg->type == PTR_TO_MAP_VALUE) {
5711 		map = reg->map_ptr;
5712 		if (!map->btf) {
5713 			verbose(env,
5714 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
5715 				map->name);
5716 			return -EINVAL;
5717 		}
5718 	} else {
5719 		btf = reg->btf;
5720 	}
5721 
5722 	rec = reg_btf_record(reg);
5723 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
5724 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
5725 			map ? map->name : "kptr");
5726 		return -EINVAL;
5727 	}
5728 	if (rec->spin_lock_off != val + reg->off) {
5729 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
5730 			val + reg->off, rec->spin_lock_off);
5731 		return -EINVAL;
5732 	}
5733 	if (is_lock) {
5734 		if (cur->active_lock.ptr) {
5735 			verbose(env,
5736 				"Locking two bpf_spin_locks are not allowed\n");
5737 			return -EINVAL;
5738 		}
5739 		if (map)
5740 			cur->active_lock.ptr = map;
5741 		else
5742 			cur->active_lock.ptr = btf;
5743 		cur->active_lock.id = reg->id;
5744 	} else {
5745 		struct bpf_func_state *fstate = cur_func(env);
5746 		void *ptr;
5747 		int i;
5748 
5749 		if (map)
5750 			ptr = map;
5751 		else
5752 			ptr = btf;
5753 
5754 		if (!cur->active_lock.ptr) {
5755 			verbose(env, "bpf_spin_unlock without taking a lock\n");
5756 			return -EINVAL;
5757 		}
5758 		if (cur->active_lock.ptr != ptr ||
5759 		    cur->active_lock.id != reg->id) {
5760 			verbose(env, "bpf_spin_unlock of different lock\n");
5761 			return -EINVAL;
5762 		}
5763 		cur->active_lock.ptr = NULL;
5764 		cur->active_lock.id = 0;
5765 
5766 		for (i = fstate->acquired_refs - 1; i >= 0; i--) {
5767 			int err;
5768 
5769 			/* Complain on error because this reference state cannot
5770 			 * be freed before this point, as bpf_spin_lock critical
5771 			 * section does not allow functions that release the
5772 			 * allocated object immediately.
5773 			 */
5774 			if (!fstate->refs[i].release_on_unlock)
5775 				continue;
5776 			err = release_reference(env, fstate->refs[i].id);
5777 			if (err) {
5778 				verbose(env, "failed to release release_on_unlock reference");
5779 				return err;
5780 			}
5781 		}
5782 	}
5783 	return 0;
5784 }
5785 
5786 static int process_timer_func(struct bpf_verifier_env *env, int regno,
5787 			      struct bpf_call_arg_meta *meta)
5788 {
5789 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5790 	bool is_const = tnum_is_const(reg->var_off);
5791 	struct bpf_map *map = reg->map_ptr;
5792 	u64 val = reg->var_off.value;
5793 
5794 	if (!is_const) {
5795 		verbose(env,
5796 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
5797 			regno);
5798 		return -EINVAL;
5799 	}
5800 	if (!map->btf) {
5801 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
5802 			map->name);
5803 		return -EINVAL;
5804 	}
5805 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
5806 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
5807 		return -EINVAL;
5808 	}
5809 	if (map->record->timer_off != val + reg->off) {
5810 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
5811 			val + reg->off, map->record->timer_off);
5812 		return -EINVAL;
5813 	}
5814 	if (meta->map_ptr) {
5815 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
5816 		return -EFAULT;
5817 	}
5818 	meta->map_uid = reg->map_uid;
5819 	meta->map_ptr = map;
5820 	return 0;
5821 }
5822 
5823 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
5824 			     struct bpf_call_arg_meta *meta)
5825 {
5826 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5827 	struct bpf_map *map_ptr = reg->map_ptr;
5828 	struct btf_field *kptr_field;
5829 	u32 kptr_off;
5830 
5831 	if (!tnum_is_const(reg->var_off)) {
5832 		verbose(env,
5833 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
5834 			regno);
5835 		return -EINVAL;
5836 	}
5837 	if (!map_ptr->btf) {
5838 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
5839 			map_ptr->name);
5840 		return -EINVAL;
5841 	}
5842 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
5843 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
5844 		return -EINVAL;
5845 	}
5846 
5847 	meta->map_ptr = map_ptr;
5848 	kptr_off = reg->off + reg->var_off.value;
5849 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
5850 	if (!kptr_field) {
5851 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
5852 		return -EACCES;
5853 	}
5854 	if (kptr_field->type != BPF_KPTR_REF) {
5855 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
5856 		return -EACCES;
5857 	}
5858 	meta->kptr_field = kptr_field;
5859 	return 0;
5860 }
5861 
5862 static bool arg_type_is_mem_size(enum bpf_arg_type type)
5863 {
5864 	return type == ARG_CONST_SIZE ||
5865 	       type == ARG_CONST_SIZE_OR_ZERO;
5866 }
5867 
5868 static bool arg_type_is_release(enum bpf_arg_type type)
5869 {
5870 	return type & OBJ_RELEASE;
5871 }
5872 
5873 static bool arg_type_is_dynptr(enum bpf_arg_type type)
5874 {
5875 	return base_type(type) == ARG_PTR_TO_DYNPTR;
5876 }
5877 
5878 static int int_ptr_type_to_size(enum bpf_arg_type type)
5879 {
5880 	if (type == ARG_PTR_TO_INT)
5881 		return sizeof(u32);
5882 	else if (type == ARG_PTR_TO_LONG)
5883 		return sizeof(u64);
5884 
5885 	return -EINVAL;
5886 }
5887 
5888 static int resolve_map_arg_type(struct bpf_verifier_env *env,
5889 				 const struct bpf_call_arg_meta *meta,
5890 				 enum bpf_arg_type *arg_type)
5891 {
5892 	if (!meta->map_ptr) {
5893 		/* kernel subsystem misconfigured verifier */
5894 		verbose(env, "invalid map_ptr to access map->type\n");
5895 		return -EACCES;
5896 	}
5897 
5898 	switch (meta->map_ptr->map_type) {
5899 	case BPF_MAP_TYPE_SOCKMAP:
5900 	case BPF_MAP_TYPE_SOCKHASH:
5901 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
5902 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
5903 		} else {
5904 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
5905 			return -EINVAL;
5906 		}
5907 		break;
5908 	case BPF_MAP_TYPE_BLOOM_FILTER:
5909 		if (meta->func_id == BPF_FUNC_map_peek_elem)
5910 			*arg_type = ARG_PTR_TO_MAP_VALUE;
5911 		break;
5912 	default:
5913 		break;
5914 	}
5915 	return 0;
5916 }
5917 
5918 struct bpf_reg_types {
5919 	const enum bpf_reg_type types[10];
5920 	u32 *btf_id;
5921 };
5922 
5923 static const struct bpf_reg_types sock_types = {
5924 	.types = {
5925 		PTR_TO_SOCK_COMMON,
5926 		PTR_TO_SOCKET,
5927 		PTR_TO_TCP_SOCK,
5928 		PTR_TO_XDP_SOCK,
5929 	},
5930 };
5931 
5932 #ifdef CONFIG_NET
5933 static const struct bpf_reg_types btf_id_sock_common_types = {
5934 	.types = {
5935 		PTR_TO_SOCK_COMMON,
5936 		PTR_TO_SOCKET,
5937 		PTR_TO_TCP_SOCK,
5938 		PTR_TO_XDP_SOCK,
5939 		PTR_TO_BTF_ID,
5940 		PTR_TO_BTF_ID | PTR_TRUSTED,
5941 	},
5942 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5943 };
5944 #endif
5945 
5946 static const struct bpf_reg_types mem_types = {
5947 	.types = {
5948 		PTR_TO_STACK,
5949 		PTR_TO_PACKET,
5950 		PTR_TO_PACKET_META,
5951 		PTR_TO_MAP_KEY,
5952 		PTR_TO_MAP_VALUE,
5953 		PTR_TO_MEM,
5954 		PTR_TO_MEM | MEM_RINGBUF,
5955 		PTR_TO_BUF,
5956 	},
5957 };
5958 
5959 static const struct bpf_reg_types int_ptr_types = {
5960 	.types = {
5961 		PTR_TO_STACK,
5962 		PTR_TO_PACKET,
5963 		PTR_TO_PACKET_META,
5964 		PTR_TO_MAP_KEY,
5965 		PTR_TO_MAP_VALUE,
5966 	},
5967 };
5968 
5969 static const struct bpf_reg_types spin_lock_types = {
5970 	.types = {
5971 		PTR_TO_MAP_VALUE,
5972 		PTR_TO_BTF_ID | MEM_ALLOC,
5973 	}
5974 };
5975 
5976 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
5977 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
5978 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
5979 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
5980 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
5981 static const struct bpf_reg_types btf_ptr_types = {
5982 	.types = {
5983 		PTR_TO_BTF_ID,
5984 		PTR_TO_BTF_ID | PTR_TRUSTED,
5985 		PTR_TO_BTF_ID | MEM_RCU,
5986 	},
5987 };
5988 static const struct bpf_reg_types percpu_btf_ptr_types = {
5989 	.types = {
5990 		PTR_TO_BTF_ID | MEM_PERCPU,
5991 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
5992 	}
5993 };
5994 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
5995 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
5996 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
5997 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
5998 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
5999 static const struct bpf_reg_types dynptr_types = {
6000 	.types = {
6001 		PTR_TO_STACK,
6002 		PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL,
6003 	}
6004 };
6005 
6006 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
6007 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
6008 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
6009 	[ARG_CONST_SIZE]		= &scalar_types,
6010 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
6011 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
6012 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
6013 	[ARG_PTR_TO_CTX]		= &context_types,
6014 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
6015 #ifdef CONFIG_NET
6016 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
6017 #endif
6018 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
6019 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
6020 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
6021 	[ARG_PTR_TO_MEM]		= &mem_types,
6022 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
6023 	[ARG_PTR_TO_INT]		= &int_ptr_types,
6024 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
6025 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
6026 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
6027 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
6028 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
6029 	[ARG_PTR_TO_TIMER]		= &timer_types,
6030 	[ARG_PTR_TO_KPTR]		= &kptr_types,
6031 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
6032 };
6033 
6034 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
6035 			  enum bpf_arg_type arg_type,
6036 			  const u32 *arg_btf_id,
6037 			  struct bpf_call_arg_meta *meta)
6038 {
6039 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6040 	enum bpf_reg_type expected, type = reg->type;
6041 	const struct bpf_reg_types *compatible;
6042 	int i, j;
6043 
6044 	compatible = compatible_reg_types[base_type(arg_type)];
6045 	if (!compatible) {
6046 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
6047 		return -EFAULT;
6048 	}
6049 
6050 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
6051 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
6052 	 *
6053 	 * Same for MAYBE_NULL:
6054 	 *
6055 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
6056 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
6057 	 *
6058 	 * Therefore we fold these flags depending on the arg_type before comparison.
6059 	 */
6060 	if (arg_type & MEM_RDONLY)
6061 		type &= ~MEM_RDONLY;
6062 	if (arg_type & PTR_MAYBE_NULL)
6063 		type &= ~PTR_MAYBE_NULL;
6064 
6065 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
6066 		expected = compatible->types[i];
6067 		if (expected == NOT_INIT)
6068 			break;
6069 
6070 		if (type == expected)
6071 			goto found;
6072 	}
6073 
6074 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
6075 	for (j = 0; j + 1 < i; j++)
6076 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
6077 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
6078 	return -EACCES;
6079 
6080 found:
6081 	if (reg->type == PTR_TO_BTF_ID || reg->type & PTR_TRUSTED) {
6082 		/* For bpf_sk_release, it needs to match against first member
6083 		 * 'struct sock_common', hence make an exception for it. This
6084 		 * allows bpf_sk_release to work for multiple socket types.
6085 		 */
6086 		bool strict_type_match = arg_type_is_release(arg_type) &&
6087 					 meta->func_id != BPF_FUNC_sk_release;
6088 
6089 		if (!arg_btf_id) {
6090 			if (!compatible->btf_id) {
6091 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
6092 				return -EFAULT;
6093 			}
6094 			arg_btf_id = compatible->btf_id;
6095 		}
6096 
6097 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
6098 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
6099 				return -EACCES;
6100 		} else {
6101 			if (arg_btf_id == BPF_PTR_POISON) {
6102 				verbose(env, "verifier internal error:");
6103 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
6104 					regno);
6105 				return -EACCES;
6106 			}
6107 
6108 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
6109 						  btf_vmlinux, *arg_btf_id,
6110 						  strict_type_match)) {
6111 				verbose(env, "R%d is of type %s but %s is expected\n",
6112 					regno, kernel_type_name(reg->btf, reg->btf_id),
6113 					kernel_type_name(btf_vmlinux, *arg_btf_id));
6114 				return -EACCES;
6115 			}
6116 		}
6117 	} else if (type_is_alloc(reg->type)) {
6118 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock) {
6119 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
6120 			return -EFAULT;
6121 		}
6122 	}
6123 
6124 	return 0;
6125 }
6126 
6127 int check_func_arg_reg_off(struct bpf_verifier_env *env,
6128 			   const struct bpf_reg_state *reg, int regno,
6129 			   enum bpf_arg_type arg_type)
6130 {
6131 	enum bpf_reg_type type = reg->type;
6132 	bool fixed_off_ok = false;
6133 
6134 	switch ((u32)type) {
6135 	/* Pointer types where reg offset is explicitly allowed: */
6136 	case PTR_TO_STACK:
6137 		if (arg_type_is_dynptr(arg_type) && reg->off % BPF_REG_SIZE) {
6138 			verbose(env, "cannot pass in dynptr at an offset\n");
6139 			return -EINVAL;
6140 		}
6141 		fallthrough;
6142 	case PTR_TO_PACKET:
6143 	case PTR_TO_PACKET_META:
6144 	case PTR_TO_MAP_KEY:
6145 	case PTR_TO_MAP_VALUE:
6146 	case PTR_TO_MEM:
6147 	case PTR_TO_MEM | MEM_RDONLY:
6148 	case PTR_TO_MEM | MEM_RINGBUF:
6149 	case PTR_TO_BUF:
6150 	case PTR_TO_BUF | MEM_RDONLY:
6151 	case SCALAR_VALUE:
6152 		/* Some of the argument types nevertheless require a
6153 		 * zero register offset.
6154 		 */
6155 		if (base_type(arg_type) != ARG_PTR_TO_RINGBUF_MEM)
6156 			return 0;
6157 		break;
6158 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
6159 	 * fixed offset.
6160 	 */
6161 	case PTR_TO_BTF_ID:
6162 	case PTR_TO_BTF_ID | MEM_ALLOC:
6163 	case PTR_TO_BTF_ID | PTR_TRUSTED:
6164 	case PTR_TO_BTF_ID | MEM_RCU:
6165 	case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED:
6166 		/* When referenced PTR_TO_BTF_ID is passed to release function,
6167 		 * it's fixed offset must be 0.	In the other cases, fixed offset
6168 		 * can be non-zero.
6169 		 */
6170 		if (arg_type_is_release(arg_type) && reg->off) {
6171 			verbose(env, "R%d must have zero offset when passed to release func\n",
6172 				regno);
6173 			return -EINVAL;
6174 		}
6175 		/* For arg is release pointer, fixed_off_ok must be false, but
6176 		 * we already checked and rejected reg->off != 0 above, so set
6177 		 * to true to allow fixed offset for all other cases.
6178 		 */
6179 		fixed_off_ok = true;
6180 		break;
6181 	default:
6182 		break;
6183 	}
6184 	return __check_ptr_off_reg(env, reg, regno, fixed_off_ok);
6185 }
6186 
6187 static u32 stack_slot_get_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
6188 {
6189 	struct bpf_func_state *state = func(env, reg);
6190 	int spi = get_spi(reg->off);
6191 
6192 	return state->stack[spi].spilled_ptr.id;
6193 }
6194 
6195 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
6196 			  struct bpf_call_arg_meta *meta,
6197 			  const struct bpf_func_proto *fn)
6198 {
6199 	u32 regno = BPF_REG_1 + arg;
6200 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6201 	enum bpf_arg_type arg_type = fn->arg_type[arg];
6202 	enum bpf_reg_type type = reg->type;
6203 	u32 *arg_btf_id = NULL;
6204 	int err = 0;
6205 
6206 	if (arg_type == ARG_DONTCARE)
6207 		return 0;
6208 
6209 	err = check_reg_arg(env, regno, SRC_OP);
6210 	if (err)
6211 		return err;
6212 
6213 	if (arg_type == ARG_ANYTHING) {
6214 		if (is_pointer_value(env, regno)) {
6215 			verbose(env, "R%d leaks addr into helper function\n",
6216 				regno);
6217 			return -EACCES;
6218 		}
6219 		return 0;
6220 	}
6221 
6222 	if (type_is_pkt_pointer(type) &&
6223 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
6224 		verbose(env, "helper access to the packet is not allowed\n");
6225 		return -EACCES;
6226 	}
6227 
6228 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
6229 		err = resolve_map_arg_type(env, meta, &arg_type);
6230 		if (err)
6231 			return err;
6232 	}
6233 
6234 	if (register_is_null(reg) && type_may_be_null(arg_type))
6235 		/* A NULL register has a SCALAR_VALUE type, so skip
6236 		 * type checking.
6237 		 */
6238 		goto skip_type_check;
6239 
6240 	/* arg_btf_id and arg_size are in a union. */
6241 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
6242 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
6243 		arg_btf_id = fn->arg_btf_id[arg];
6244 
6245 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
6246 	if (err)
6247 		return err;
6248 
6249 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
6250 	if (err)
6251 		return err;
6252 
6253 skip_type_check:
6254 	if (arg_type_is_release(arg_type)) {
6255 		if (arg_type_is_dynptr(arg_type)) {
6256 			struct bpf_func_state *state = func(env, reg);
6257 			int spi = get_spi(reg->off);
6258 
6259 			if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
6260 			    !state->stack[spi].spilled_ptr.id) {
6261 				verbose(env, "arg %d is an unacquired reference\n", regno);
6262 				return -EINVAL;
6263 			}
6264 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
6265 			verbose(env, "R%d must be referenced when passed to release function\n",
6266 				regno);
6267 			return -EINVAL;
6268 		}
6269 		if (meta->release_regno) {
6270 			verbose(env, "verifier internal error: more than one release argument\n");
6271 			return -EFAULT;
6272 		}
6273 		meta->release_regno = regno;
6274 	}
6275 
6276 	if (reg->ref_obj_id) {
6277 		if (meta->ref_obj_id) {
6278 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
6279 				regno, reg->ref_obj_id,
6280 				meta->ref_obj_id);
6281 			return -EFAULT;
6282 		}
6283 		meta->ref_obj_id = reg->ref_obj_id;
6284 	}
6285 
6286 	switch (base_type(arg_type)) {
6287 	case ARG_CONST_MAP_PTR:
6288 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
6289 		if (meta->map_ptr) {
6290 			/* Use map_uid (which is unique id of inner map) to reject:
6291 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
6292 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
6293 			 * if (inner_map1 && inner_map2) {
6294 			 *     timer = bpf_map_lookup_elem(inner_map1);
6295 			 *     if (timer)
6296 			 *         // mismatch would have been allowed
6297 			 *         bpf_timer_init(timer, inner_map2);
6298 			 * }
6299 			 *
6300 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
6301 			 */
6302 			if (meta->map_ptr != reg->map_ptr ||
6303 			    meta->map_uid != reg->map_uid) {
6304 				verbose(env,
6305 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
6306 					meta->map_uid, reg->map_uid);
6307 				return -EINVAL;
6308 			}
6309 		}
6310 		meta->map_ptr = reg->map_ptr;
6311 		meta->map_uid = reg->map_uid;
6312 		break;
6313 	case ARG_PTR_TO_MAP_KEY:
6314 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
6315 		 * check that [key, key + map->key_size) are within
6316 		 * stack limits and initialized
6317 		 */
6318 		if (!meta->map_ptr) {
6319 			/* in function declaration map_ptr must come before
6320 			 * map_key, so that it's verified and known before
6321 			 * we have to check map_key here. Otherwise it means
6322 			 * that kernel subsystem misconfigured verifier
6323 			 */
6324 			verbose(env, "invalid map_ptr to access map->key\n");
6325 			return -EACCES;
6326 		}
6327 		err = check_helper_mem_access(env, regno,
6328 					      meta->map_ptr->key_size, false,
6329 					      NULL);
6330 		break;
6331 	case ARG_PTR_TO_MAP_VALUE:
6332 		if (type_may_be_null(arg_type) && register_is_null(reg))
6333 			return 0;
6334 
6335 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
6336 		 * check [value, value + map->value_size) validity
6337 		 */
6338 		if (!meta->map_ptr) {
6339 			/* kernel subsystem misconfigured verifier */
6340 			verbose(env, "invalid map_ptr to access map->value\n");
6341 			return -EACCES;
6342 		}
6343 		meta->raw_mode = arg_type & MEM_UNINIT;
6344 		err = check_helper_mem_access(env, regno,
6345 					      meta->map_ptr->value_size, false,
6346 					      meta);
6347 		break;
6348 	case ARG_PTR_TO_PERCPU_BTF_ID:
6349 		if (!reg->btf_id) {
6350 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
6351 			return -EACCES;
6352 		}
6353 		meta->ret_btf = reg->btf;
6354 		meta->ret_btf_id = reg->btf_id;
6355 		break;
6356 	case ARG_PTR_TO_SPIN_LOCK:
6357 		if (meta->func_id == BPF_FUNC_spin_lock) {
6358 			if (process_spin_lock(env, regno, true))
6359 				return -EACCES;
6360 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
6361 			if (process_spin_lock(env, regno, false))
6362 				return -EACCES;
6363 		} else {
6364 			verbose(env, "verifier internal error\n");
6365 			return -EFAULT;
6366 		}
6367 		break;
6368 	case ARG_PTR_TO_TIMER:
6369 		if (process_timer_func(env, regno, meta))
6370 			return -EACCES;
6371 		break;
6372 	case ARG_PTR_TO_FUNC:
6373 		meta->subprogno = reg->subprogno;
6374 		break;
6375 	case ARG_PTR_TO_MEM:
6376 		/* The access to this pointer is only checked when we hit the
6377 		 * next is_mem_size argument below.
6378 		 */
6379 		meta->raw_mode = arg_type & MEM_UNINIT;
6380 		if (arg_type & MEM_FIXED_SIZE) {
6381 			err = check_helper_mem_access(env, regno,
6382 						      fn->arg_size[arg], false,
6383 						      meta);
6384 		}
6385 		break;
6386 	case ARG_CONST_SIZE:
6387 		err = check_mem_size_reg(env, reg, regno, false, meta);
6388 		break;
6389 	case ARG_CONST_SIZE_OR_ZERO:
6390 		err = check_mem_size_reg(env, reg, regno, true, meta);
6391 		break;
6392 	case ARG_PTR_TO_DYNPTR:
6393 		/* We only need to check for initialized / uninitialized helper
6394 		 * dynptr args if the dynptr is not PTR_TO_DYNPTR, as the
6395 		 * assumption is that if it is, that a helper function
6396 		 * initialized the dynptr on behalf of the BPF program.
6397 		 */
6398 		if (base_type(reg->type) == PTR_TO_DYNPTR)
6399 			break;
6400 		if (arg_type & MEM_UNINIT) {
6401 			if (!is_dynptr_reg_valid_uninit(env, reg)) {
6402 				verbose(env, "Dynptr has to be an uninitialized dynptr\n");
6403 				return -EINVAL;
6404 			}
6405 
6406 			/* We only support one dynptr being uninitialized at the moment,
6407 			 * which is sufficient for the helper functions we have right now.
6408 			 */
6409 			if (meta->uninit_dynptr_regno) {
6410 				verbose(env, "verifier internal error: multiple uninitialized dynptr args\n");
6411 				return -EFAULT;
6412 			}
6413 
6414 			meta->uninit_dynptr_regno = regno;
6415 		} else if (!is_dynptr_reg_valid_init(env, reg)) {
6416 			verbose(env,
6417 				"Expected an initialized dynptr as arg #%d\n",
6418 				arg + 1);
6419 			return -EINVAL;
6420 		} else if (!is_dynptr_type_expected(env, reg, arg_type)) {
6421 			const char *err_extra = "";
6422 
6423 			switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
6424 			case DYNPTR_TYPE_LOCAL:
6425 				err_extra = "local";
6426 				break;
6427 			case DYNPTR_TYPE_RINGBUF:
6428 				err_extra = "ringbuf";
6429 				break;
6430 			default:
6431 				err_extra = "<unknown>";
6432 				break;
6433 			}
6434 			verbose(env,
6435 				"Expected a dynptr of type %s as arg #%d\n",
6436 				err_extra, arg + 1);
6437 			return -EINVAL;
6438 		}
6439 		break;
6440 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
6441 		if (!tnum_is_const(reg->var_off)) {
6442 			verbose(env, "R%d is not a known constant'\n",
6443 				regno);
6444 			return -EACCES;
6445 		}
6446 		meta->mem_size = reg->var_off.value;
6447 		err = mark_chain_precision(env, regno);
6448 		if (err)
6449 			return err;
6450 		break;
6451 	case ARG_PTR_TO_INT:
6452 	case ARG_PTR_TO_LONG:
6453 	{
6454 		int size = int_ptr_type_to_size(arg_type);
6455 
6456 		err = check_helper_mem_access(env, regno, size, false, meta);
6457 		if (err)
6458 			return err;
6459 		err = check_ptr_alignment(env, reg, 0, size, true);
6460 		break;
6461 	}
6462 	case ARG_PTR_TO_CONST_STR:
6463 	{
6464 		struct bpf_map *map = reg->map_ptr;
6465 		int map_off;
6466 		u64 map_addr;
6467 		char *str_ptr;
6468 
6469 		if (!bpf_map_is_rdonly(map)) {
6470 			verbose(env, "R%d does not point to a readonly map'\n", regno);
6471 			return -EACCES;
6472 		}
6473 
6474 		if (!tnum_is_const(reg->var_off)) {
6475 			verbose(env, "R%d is not a constant address'\n", regno);
6476 			return -EACCES;
6477 		}
6478 
6479 		if (!map->ops->map_direct_value_addr) {
6480 			verbose(env, "no direct value access support for this map type\n");
6481 			return -EACCES;
6482 		}
6483 
6484 		err = check_map_access(env, regno, reg->off,
6485 				       map->value_size - reg->off, false,
6486 				       ACCESS_HELPER);
6487 		if (err)
6488 			return err;
6489 
6490 		map_off = reg->off + reg->var_off.value;
6491 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
6492 		if (err) {
6493 			verbose(env, "direct value access on string failed\n");
6494 			return err;
6495 		}
6496 
6497 		str_ptr = (char *)(long)(map_addr);
6498 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
6499 			verbose(env, "string is not zero-terminated\n");
6500 			return -EINVAL;
6501 		}
6502 		break;
6503 	}
6504 	case ARG_PTR_TO_KPTR:
6505 		if (process_kptr_func(env, regno, meta))
6506 			return -EACCES;
6507 		break;
6508 	}
6509 
6510 	return err;
6511 }
6512 
6513 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
6514 {
6515 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
6516 	enum bpf_prog_type type = resolve_prog_type(env->prog);
6517 
6518 	if (func_id != BPF_FUNC_map_update_elem)
6519 		return false;
6520 
6521 	/* It's not possible to get access to a locked struct sock in these
6522 	 * contexts, so updating is safe.
6523 	 */
6524 	switch (type) {
6525 	case BPF_PROG_TYPE_TRACING:
6526 		if (eatype == BPF_TRACE_ITER)
6527 			return true;
6528 		break;
6529 	case BPF_PROG_TYPE_SOCKET_FILTER:
6530 	case BPF_PROG_TYPE_SCHED_CLS:
6531 	case BPF_PROG_TYPE_SCHED_ACT:
6532 	case BPF_PROG_TYPE_XDP:
6533 	case BPF_PROG_TYPE_SK_REUSEPORT:
6534 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
6535 	case BPF_PROG_TYPE_SK_LOOKUP:
6536 		return true;
6537 	default:
6538 		break;
6539 	}
6540 
6541 	verbose(env, "cannot update sockmap in this context\n");
6542 	return false;
6543 }
6544 
6545 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
6546 {
6547 	return env->prog->jit_requested &&
6548 	       bpf_jit_supports_subprog_tailcalls();
6549 }
6550 
6551 static int check_map_func_compatibility(struct bpf_verifier_env *env,
6552 					struct bpf_map *map, int func_id)
6553 {
6554 	if (!map)
6555 		return 0;
6556 
6557 	/* We need a two way check, first is from map perspective ... */
6558 	switch (map->map_type) {
6559 	case BPF_MAP_TYPE_PROG_ARRAY:
6560 		if (func_id != BPF_FUNC_tail_call)
6561 			goto error;
6562 		break;
6563 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
6564 		if (func_id != BPF_FUNC_perf_event_read &&
6565 		    func_id != BPF_FUNC_perf_event_output &&
6566 		    func_id != BPF_FUNC_skb_output &&
6567 		    func_id != BPF_FUNC_perf_event_read_value &&
6568 		    func_id != BPF_FUNC_xdp_output)
6569 			goto error;
6570 		break;
6571 	case BPF_MAP_TYPE_RINGBUF:
6572 		if (func_id != BPF_FUNC_ringbuf_output &&
6573 		    func_id != BPF_FUNC_ringbuf_reserve &&
6574 		    func_id != BPF_FUNC_ringbuf_query &&
6575 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
6576 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
6577 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
6578 			goto error;
6579 		break;
6580 	case BPF_MAP_TYPE_USER_RINGBUF:
6581 		if (func_id != BPF_FUNC_user_ringbuf_drain)
6582 			goto error;
6583 		break;
6584 	case BPF_MAP_TYPE_STACK_TRACE:
6585 		if (func_id != BPF_FUNC_get_stackid)
6586 			goto error;
6587 		break;
6588 	case BPF_MAP_TYPE_CGROUP_ARRAY:
6589 		if (func_id != BPF_FUNC_skb_under_cgroup &&
6590 		    func_id != BPF_FUNC_current_task_under_cgroup)
6591 			goto error;
6592 		break;
6593 	case BPF_MAP_TYPE_CGROUP_STORAGE:
6594 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
6595 		if (func_id != BPF_FUNC_get_local_storage)
6596 			goto error;
6597 		break;
6598 	case BPF_MAP_TYPE_DEVMAP:
6599 	case BPF_MAP_TYPE_DEVMAP_HASH:
6600 		if (func_id != BPF_FUNC_redirect_map &&
6601 		    func_id != BPF_FUNC_map_lookup_elem)
6602 			goto error;
6603 		break;
6604 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
6605 	 * appear.
6606 	 */
6607 	case BPF_MAP_TYPE_CPUMAP:
6608 		if (func_id != BPF_FUNC_redirect_map)
6609 			goto error;
6610 		break;
6611 	case BPF_MAP_TYPE_XSKMAP:
6612 		if (func_id != BPF_FUNC_redirect_map &&
6613 		    func_id != BPF_FUNC_map_lookup_elem)
6614 			goto error;
6615 		break;
6616 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
6617 	case BPF_MAP_TYPE_HASH_OF_MAPS:
6618 		if (func_id != BPF_FUNC_map_lookup_elem)
6619 			goto error;
6620 		break;
6621 	case BPF_MAP_TYPE_SOCKMAP:
6622 		if (func_id != BPF_FUNC_sk_redirect_map &&
6623 		    func_id != BPF_FUNC_sock_map_update &&
6624 		    func_id != BPF_FUNC_map_delete_elem &&
6625 		    func_id != BPF_FUNC_msg_redirect_map &&
6626 		    func_id != BPF_FUNC_sk_select_reuseport &&
6627 		    func_id != BPF_FUNC_map_lookup_elem &&
6628 		    !may_update_sockmap(env, func_id))
6629 			goto error;
6630 		break;
6631 	case BPF_MAP_TYPE_SOCKHASH:
6632 		if (func_id != BPF_FUNC_sk_redirect_hash &&
6633 		    func_id != BPF_FUNC_sock_hash_update &&
6634 		    func_id != BPF_FUNC_map_delete_elem &&
6635 		    func_id != BPF_FUNC_msg_redirect_hash &&
6636 		    func_id != BPF_FUNC_sk_select_reuseport &&
6637 		    func_id != BPF_FUNC_map_lookup_elem &&
6638 		    !may_update_sockmap(env, func_id))
6639 			goto error;
6640 		break;
6641 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
6642 		if (func_id != BPF_FUNC_sk_select_reuseport)
6643 			goto error;
6644 		break;
6645 	case BPF_MAP_TYPE_QUEUE:
6646 	case BPF_MAP_TYPE_STACK:
6647 		if (func_id != BPF_FUNC_map_peek_elem &&
6648 		    func_id != BPF_FUNC_map_pop_elem &&
6649 		    func_id != BPF_FUNC_map_push_elem)
6650 			goto error;
6651 		break;
6652 	case BPF_MAP_TYPE_SK_STORAGE:
6653 		if (func_id != BPF_FUNC_sk_storage_get &&
6654 		    func_id != BPF_FUNC_sk_storage_delete)
6655 			goto error;
6656 		break;
6657 	case BPF_MAP_TYPE_INODE_STORAGE:
6658 		if (func_id != BPF_FUNC_inode_storage_get &&
6659 		    func_id != BPF_FUNC_inode_storage_delete)
6660 			goto error;
6661 		break;
6662 	case BPF_MAP_TYPE_TASK_STORAGE:
6663 		if (func_id != BPF_FUNC_task_storage_get &&
6664 		    func_id != BPF_FUNC_task_storage_delete)
6665 			goto error;
6666 		break;
6667 	case BPF_MAP_TYPE_CGRP_STORAGE:
6668 		if (func_id != BPF_FUNC_cgrp_storage_get &&
6669 		    func_id != BPF_FUNC_cgrp_storage_delete)
6670 			goto error;
6671 		break;
6672 	case BPF_MAP_TYPE_BLOOM_FILTER:
6673 		if (func_id != BPF_FUNC_map_peek_elem &&
6674 		    func_id != BPF_FUNC_map_push_elem)
6675 			goto error;
6676 		break;
6677 	default:
6678 		break;
6679 	}
6680 
6681 	/* ... and second from the function itself. */
6682 	switch (func_id) {
6683 	case BPF_FUNC_tail_call:
6684 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
6685 			goto error;
6686 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
6687 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
6688 			return -EINVAL;
6689 		}
6690 		break;
6691 	case BPF_FUNC_perf_event_read:
6692 	case BPF_FUNC_perf_event_output:
6693 	case BPF_FUNC_perf_event_read_value:
6694 	case BPF_FUNC_skb_output:
6695 	case BPF_FUNC_xdp_output:
6696 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
6697 			goto error;
6698 		break;
6699 	case BPF_FUNC_ringbuf_output:
6700 	case BPF_FUNC_ringbuf_reserve:
6701 	case BPF_FUNC_ringbuf_query:
6702 	case BPF_FUNC_ringbuf_reserve_dynptr:
6703 	case BPF_FUNC_ringbuf_submit_dynptr:
6704 	case BPF_FUNC_ringbuf_discard_dynptr:
6705 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
6706 			goto error;
6707 		break;
6708 	case BPF_FUNC_user_ringbuf_drain:
6709 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
6710 			goto error;
6711 		break;
6712 	case BPF_FUNC_get_stackid:
6713 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
6714 			goto error;
6715 		break;
6716 	case BPF_FUNC_current_task_under_cgroup:
6717 	case BPF_FUNC_skb_under_cgroup:
6718 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
6719 			goto error;
6720 		break;
6721 	case BPF_FUNC_redirect_map:
6722 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6723 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
6724 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
6725 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
6726 			goto error;
6727 		break;
6728 	case BPF_FUNC_sk_redirect_map:
6729 	case BPF_FUNC_msg_redirect_map:
6730 	case BPF_FUNC_sock_map_update:
6731 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
6732 			goto error;
6733 		break;
6734 	case BPF_FUNC_sk_redirect_hash:
6735 	case BPF_FUNC_msg_redirect_hash:
6736 	case BPF_FUNC_sock_hash_update:
6737 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
6738 			goto error;
6739 		break;
6740 	case BPF_FUNC_get_local_storage:
6741 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
6742 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
6743 			goto error;
6744 		break;
6745 	case BPF_FUNC_sk_select_reuseport:
6746 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
6747 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
6748 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
6749 			goto error;
6750 		break;
6751 	case BPF_FUNC_map_pop_elem:
6752 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6753 		    map->map_type != BPF_MAP_TYPE_STACK)
6754 			goto error;
6755 		break;
6756 	case BPF_FUNC_map_peek_elem:
6757 	case BPF_FUNC_map_push_elem:
6758 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6759 		    map->map_type != BPF_MAP_TYPE_STACK &&
6760 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
6761 			goto error;
6762 		break;
6763 	case BPF_FUNC_map_lookup_percpu_elem:
6764 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
6765 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6766 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
6767 			goto error;
6768 		break;
6769 	case BPF_FUNC_sk_storage_get:
6770 	case BPF_FUNC_sk_storage_delete:
6771 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
6772 			goto error;
6773 		break;
6774 	case BPF_FUNC_inode_storage_get:
6775 	case BPF_FUNC_inode_storage_delete:
6776 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
6777 			goto error;
6778 		break;
6779 	case BPF_FUNC_task_storage_get:
6780 	case BPF_FUNC_task_storage_delete:
6781 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
6782 			goto error;
6783 		break;
6784 	case BPF_FUNC_cgrp_storage_get:
6785 	case BPF_FUNC_cgrp_storage_delete:
6786 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
6787 			goto error;
6788 		break;
6789 	default:
6790 		break;
6791 	}
6792 
6793 	return 0;
6794 error:
6795 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
6796 		map->map_type, func_id_name(func_id), func_id);
6797 	return -EINVAL;
6798 }
6799 
6800 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
6801 {
6802 	int count = 0;
6803 
6804 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
6805 		count++;
6806 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
6807 		count++;
6808 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
6809 		count++;
6810 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
6811 		count++;
6812 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
6813 		count++;
6814 
6815 	/* We only support one arg being in raw mode at the moment,
6816 	 * which is sufficient for the helper functions we have
6817 	 * right now.
6818 	 */
6819 	return count <= 1;
6820 }
6821 
6822 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
6823 {
6824 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
6825 	bool has_size = fn->arg_size[arg] != 0;
6826 	bool is_next_size = false;
6827 
6828 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
6829 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
6830 
6831 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
6832 		return is_next_size;
6833 
6834 	return has_size == is_next_size || is_next_size == is_fixed;
6835 }
6836 
6837 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
6838 {
6839 	/* bpf_xxx(..., buf, len) call will access 'len'
6840 	 * bytes from memory 'buf'. Both arg types need
6841 	 * to be paired, so make sure there's no buggy
6842 	 * helper function specification.
6843 	 */
6844 	if (arg_type_is_mem_size(fn->arg1_type) ||
6845 	    check_args_pair_invalid(fn, 0) ||
6846 	    check_args_pair_invalid(fn, 1) ||
6847 	    check_args_pair_invalid(fn, 2) ||
6848 	    check_args_pair_invalid(fn, 3) ||
6849 	    check_args_pair_invalid(fn, 4))
6850 		return false;
6851 
6852 	return true;
6853 }
6854 
6855 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
6856 {
6857 	int i;
6858 
6859 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
6860 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
6861 			return !!fn->arg_btf_id[i];
6862 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
6863 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
6864 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
6865 		    /* arg_btf_id and arg_size are in a union. */
6866 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
6867 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
6868 			return false;
6869 	}
6870 
6871 	return true;
6872 }
6873 
6874 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
6875 {
6876 	return check_raw_mode_ok(fn) &&
6877 	       check_arg_pair_ok(fn) &&
6878 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
6879 }
6880 
6881 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
6882  * are now invalid, so turn them into unknown SCALAR_VALUE.
6883  */
6884 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
6885 {
6886 	struct bpf_func_state *state;
6887 	struct bpf_reg_state *reg;
6888 
6889 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
6890 		if (reg_is_pkt_pointer_any(reg))
6891 			__mark_reg_unknown(env, reg);
6892 	}));
6893 }
6894 
6895 enum {
6896 	AT_PKT_END = -1,
6897 	BEYOND_PKT_END = -2,
6898 };
6899 
6900 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
6901 {
6902 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6903 	struct bpf_reg_state *reg = &state->regs[regn];
6904 
6905 	if (reg->type != PTR_TO_PACKET)
6906 		/* PTR_TO_PACKET_META is not supported yet */
6907 		return;
6908 
6909 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
6910 	 * How far beyond pkt_end it goes is unknown.
6911 	 * if (!range_open) it's the case of pkt >= pkt_end
6912 	 * if (range_open) it's the case of pkt > pkt_end
6913 	 * hence this pointer is at least 1 byte bigger than pkt_end
6914 	 */
6915 	if (range_open)
6916 		reg->range = BEYOND_PKT_END;
6917 	else
6918 		reg->range = AT_PKT_END;
6919 }
6920 
6921 /* The pointer with the specified id has released its reference to kernel
6922  * resources. Identify all copies of the same pointer and clear the reference.
6923  */
6924 static int release_reference(struct bpf_verifier_env *env,
6925 			     int ref_obj_id)
6926 {
6927 	struct bpf_func_state *state;
6928 	struct bpf_reg_state *reg;
6929 	int err;
6930 
6931 	err = release_reference_state(cur_func(env), ref_obj_id);
6932 	if (err)
6933 		return err;
6934 
6935 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
6936 		if (reg->ref_obj_id == ref_obj_id) {
6937 			if (!env->allow_ptr_leaks)
6938 				__mark_reg_not_init(env, reg);
6939 			else
6940 				__mark_reg_unknown(env, reg);
6941 		}
6942 	}));
6943 
6944 	return 0;
6945 }
6946 
6947 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
6948 				    struct bpf_reg_state *regs)
6949 {
6950 	int i;
6951 
6952 	/* after the call registers r0 - r5 were scratched */
6953 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6954 		mark_reg_not_init(env, regs, caller_saved[i]);
6955 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6956 	}
6957 }
6958 
6959 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
6960 				   struct bpf_func_state *caller,
6961 				   struct bpf_func_state *callee,
6962 				   int insn_idx);
6963 
6964 static int set_callee_state(struct bpf_verifier_env *env,
6965 			    struct bpf_func_state *caller,
6966 			    struct bpf_func_state *callee, int insn_idx);
6967 
6968 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6969 			     int *insn_idx, int subprog,
6970 			     set_callee_state_fn set_callee_state_cb)
6971 {
6972 	struct bpf_verifier_state *state = env->cur_state;
6973 	struct bpf_func_info_aux *func_info_aux;
6974 	struct bpf_func_state *caller, *callee;
6975 	int err;
6976 	bool is_global = false;
6977 
6978 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
6979 		verbose(env, "the call stack of %d frames is too deep\n",
6980 			state->curframe + 2);
6981 		return -E2BIG;
6982 	}
6983 
6984 	caller = state->frame[state->curframe];
6985 	if (state->frame[state->curframe + 1]) {
6986 		verbose(env, "verifier bug. Frame %d already allocated\n",
6987 			state->curframe + 1);
6988 		return -EFAULT;
6989 	}
6990 
6991 	func_info_aux = env->prog->aux->func_info_aux;
6992 	if (func_info_aux)
6993 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6994 	err = btf_check_subprog_call(env, subprog, caller->regs);
6995 	if (err == -EFAULT)
6996 		return err;
6997 	if (is_global) {
6998 		if (err) {
6999 			verbose(env, "Caller passes invalid args into func#%d\n",
7000 				subprog);
7001 			return err;
7002 		} else {
7003 			if (env->log.level & BPF_LOG_LEVEL)
7004 				verbose(env,
7005 					"Func#%d is global and valid. Skipping.\n",
7006 					subprog);
7007 			clear_caller_saved_regs(env, caller->regs);
7008 
7009 			/* All global functions return a 64-bit SCALAR_VALUE */
7010 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
7011 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
7012 
7013 			/* continue with next insn after call */
7014 			return 0;
7015 		}
7016 	}
7017 
7018 	/* set_callee_state is used for direct subprog calls, but we are
7019 	 * interested in validating only BPF helpers that can call subprogs as
7020 	 * callbacks
7021 	 */
7022 	if (set_callee_state_cb != set_callee_state && !is_callback_calling_function(insn->imm)) {
7023 		verbose(env, "verifier bug: helper %s#%d is not marked as callback-calling\n",
7024 			func_id_name(insn->imm), insn->imm);
7025 		return -EFAULT;
7026 	}
7027 
7028 	if (insn->code == (BPF_JMP | BPF_CALL) &&
7029 	    insn->src_reg == 0 &&
7030 	    insn->imm == BPF_FUNC_timer_set_callback) {
7031 		struct bpf_verifier_state *async_cb;
7032 
7033 		/* there is no real recursion here. timer callbacks are async */
7034 		env->subprog_info[subprog].is_async_cb = true;
7035 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
7036 					 *insn_idx, subprog);
7037 		if (!async_cb)
7038 			return -EFAULT;
7039 		callee = async_cb->frame[0];
7040 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
7041 
7042 		/* Convert bpf_timer_set_callback() args into timer callback args */
7043 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
7044 		if (err)
7045 			return err;
7046 
7047 		clear_caller_saved_regs(env, caller->regs);
7048 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
7049 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
7050 		/* continue with next insn after call */
7051 		return 0;
7052 	}
7053 
7054 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
7055 	if (!callee)
7056 		return -ENOMEM;
7057 	state->frame[state->curframe + 1] = callee;
7058 
7059 	/* callee cannot access r0, r6 - r9 for reading and has to write
7060 	 * into its own stack before reading from it.
7061 	 * callee can read/write into caller's stack
7062 	 */
7063 	init_func_state(env, callee,
7064 			/* remember the callsite, it will be used by bpf_exit */
7065 			*insn_idx /* callsite */,
7066 			state->curframe + 1 /* frameno within this callchain */,
7067 			subprog /* subprog number within this prog */);
7068 
7069 	/* Transfer references to the callee */
7070 	err = copy_reference_state(callee, caller);
7071 	if (err)
7072 		goto err_out;
7073 
7074 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
7075 	if (err)
7076 		goto err_out;
7077 
7078 	clear_caller_saved_regs(env, caller->regs);
7079 
7080 	/* only increment it after check_reg_arg() finished */
7081 	state->curframe++;
7082 
7083 	/* and go analyze first insn of the callee */
7084 	*insn_idx = env->subprog_info[subprog].start - 1;
7085 
7086 	if (env->log.level & BPF_LOG_LEVEL) {
7087 		verbose(env, "caller:\n");
7088 		print_verifier_state(env, caller, true);
7089 		verbose(env, "callee:\n");
7090 		print_verifier_state(env, callee, true);
7091 	}
7092 	return 0;
7093 
7094 err_out:
7095 	free_func_state(callee);
7096 	state->frame[state->curframe + 1] = NULL;
7097 	return err;
7098 }
7099 
7100 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
7101 				   struct bpf_func_state *caller,
7102 				   struct bpf_func_state *callee)
7103 {
7104 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
7105 	 *      void *callback_ctx, u64 flags);
7106 	 * callback_fn(struct bpf_map *map, void *key, void *value,
7107 	 *      void *callback_ctx);
7108 	 */
7109 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
7110 
7111 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
7112 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
7113 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
7114 
7115 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
7116 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
7117 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
7118 
7119 	/* pointer to stack or null */
7120 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
7121 
7122 	/* unused */
7123 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7124 	return 0;
7125 }
7126 
7127 static int set_callee_state(struct bpf_verifier_env *env,
7128 			    struct bpf_func_state *caller,
7129 			    struct bpf_func_state *callee, int insn_idx)
7130 {
7131 	int i;
7132 
7133 	/* copy r1 - r5 args that callee can access.  The copy includes parent
7134 	 * pointers, which connects us up to the liveness chain
7135 	 */
7136 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
7137 		callee->regs[i] = caller->regs[i];
7138 	return 0;
7139 }
7140 
7141 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7142 			   int *insn_idx)
7143 {
7144 	int subprog, target_insn;
7145 
7146 	target_insn = *insn_idx + insn->imm + 1;
7147 	subprog = find_subprog(env, target_insn);
7148 	if (subprog < 0) {
7149 		verbose(env, "verifier bug. No program starts at insn %d\n",
7150 			target_insn);
7151 		return -EFAULT;
7152 	}
7153 
7154 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
7155 }
7156 
7157 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
7158 				       struct bpf_func_state *caller,
7159 				       struct bpf_func_state *callee,
7160 				       int insn_idx)
7161 {
7162 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
7163 	struct bpf_map *map;
7164 	int err;
7165 
7166 	if (bpf_map_ptr_poisoned(insn_aux)) {
7167 		verbose(env, "tail_call abusing map_ptr\n");
7168 		return -EINVAL;
7169 	}
7170 
7171 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
7172 	if (!map->ops->map_set_for_each_callback_args ||
7173 	    !map->ops->map_for_each_callback) {
7174 		verbose(env, "callback function not allowed for map\n");
7175 		return -ENOTSUPP;
7176 	}
7177 
7178 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
7179 	if (err)
7180 		return err;
7181 
7182 	callee->in_callback_fn = true;
7183 	callee->callback_ret_range = tnum_range(0, 1);
7184 	return 0;
7185 }
7186 
7187 static int set_loop_callback_state(struct bpf_verifier_env *env,
7188 				   struct bpf_func_state *caller,
7189 				   struct bpf_func_state *callee,
7190 				   int insn_idx)
7191 {
7192 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
7193 	 *	    u64 flags);
7194 	 * callback_fn(u32 index, void *callback_ctx);
7195 	 */
7196 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
7197 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
7198 
7199 	/* unused */
7200 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
7201 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7202 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7203 
7204 	callee->in_callback_fn = true;
7205 	callee->callback_ret_range = tnum_range(0, 1);
7206 	return 0;
7207 }
7208 
7209 static int set_timer_callback_state(struct bpf_verifier_env *env,
7210 				    struct bpf_func_state *caller,
7211 				    struct bpf_func_state *callee,
7212 				    int insn_idx)
7213 {
7214 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
7215 
7216 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
7217 	 * callback_fn(struct bpf_map *map, void *key, void *value);
7218 	 */
7219 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
7220 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
7221 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
7222 
7223 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
7224 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
7225 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
7226 
7227 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
7228 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
7229 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
7230 
7231 	/* unused */
7232 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7233 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7234 	callee->in_async_callback_fn = true;
7235 	callee->callback_ret_range = tnum_range(0, 1);
7236 	return 0;
7237 }
7238 
7239 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
7240 				       struct bpf_func_state *caller,
7241 				       struct bpf_func_state *callee,
7242 				       int insn_idx)
7243 {
7244 	/* bpf_find_vma(struct task_struct *task, u64 addr,
7245 	 *               void *callback_fn, void *callback_ctx, u64 flags)
7246 	 * (callback_fn)(struct task_struct *task,
7247 	 *               struct vm_area_struct *vma, void *callback_ctx);
7248 	 */
7249 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
7250 
7251 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
7252 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
7253 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
7254 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
7255 
7256 	/* pointer to stack or null */
7257 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
7258 
7259 	/* unused */
7260 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7261 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7262 	callee->in_callback_fn = true;
7263 	callee->callback_ret_range = tnum_range(0, 1);
7264 	return 0;
7265 }
7266 
7267 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
7268 					   struct bpf_func_state *caller,
7269 					   struct bpf_func_state *callee,
7270 					   int insn_idx)
7271 {
7272 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
7273 	 *			  callback_ctx, u64 flags);
7274 	 * callback_fn(struct bpf_dynptr_t* dynptr, void *callback_ctx);
7275 	 */
7276 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
7277 	callee->regs[BPF_REG_1].type = PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL;
7278 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
7279 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
7280 
7281 	/* unused */
7282 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
7283 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7284 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7285 
7286 	callee->in_callback_fn = true;
7287 	callee->callback_ret_range = tnum_range(0, 1);
7288 	return 0;
7289 }
7290 
7291 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
7292 {
7293 	struct bpf_verifier_state *state = env->cur_state;
7294 	struct bpf_func_state *caller, *callee;
7295 	struct bpf_reg_state *r0;
7296 	int err;
7297 
7298 	callee = state->frame[state->curframe];
7299 	r0 = &callee->regs[BPF_REG_0];
7300 	if (r0->type == PTR_TO_STACK) {
7301 		/* technically it's ok to return caller's stack pointer
7302 		 * (or caller's caller's pointer) back to the caller,
7303 		 * since these pointers are valid. Only current stack
7304 		 * pointer will be invalid as soon as function exits,
7305 		 * but let's be conservative
7306 		 */
7307 		verbose(env, "cannot return stack pointer to the caller\n");
7308 		return -EINVAL;
7309 	}
7310 
7311 	caller = state->frame[state->curframe - 1];
7312 	if (callee->in_callback_fn) {
7313 		/* enforce R0 return value range [0, 1]. */
7314 		struct tnum range = callee->callback_ret_range;
7315 
7316 		if (r0->type != SCALAR_VALUE) {
7317 			verbose(env, "R0 not a scalar value\n");
7318 			return -EACCES;
7319 		}
7320 		if (!tnum_in(range, r0->var_off)) {
7321 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
7322 			return -EINVAL;
7323 		}
7324 	} else {
7325 		/* return to the caller whatever r0 had in the callee */
7326 		caller->regs[BPF_REG_0] = *r0;
7327 	}
7328 
7329 	/* callback_fn frame should have released its own additions to parent's
7330 	 * reference state at this point, or check_reference_leak would
7331 	 * complain, hence it must be the same as the caller. There is no need
7332 	 * to copy it back.
7333 	 */
7334 	if (!callee->in_callback_fn) {
7335 		/* Transfer references to the caller */
7336 		err = copy_reference_state(caller, callee);
7337 		if (err)
7338 			return err;
7339 	}
7340 
7341 	*insn_idx = callee->callsite + 1;
7342 	if (env->log.level & BPF_LOG_LEVEL) {
7343 		verbose(env, "returning from callee:\n");
7344 		print_verifier_state(env, callee, true);
7345 		verbose(env, "to caller at %d:\n", *insn_idx);
7346 		print_verifier_state(env, caller, true);
7347 	}
7348 	/* clear everything in the callee */
7349 	free_func_state(callee);
7350 	state->frame[state->curframe--] = NULL;
7351 	return 0;
7352 }
7353 
7354 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
7355 				   int func_id,
7356 				   struct bpf_call_arg_meta *meta)
7357 {
7358 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
7359 
7360 	if (ret_type != RET_INTEGER ||
7361 	    (func_id != BPF_FUNC_get_stack &&
7362 	     func_id != BPF_FUNC_get_task_stack &&
7363 	     func_id != BPF_FUNC_probe_read_str &&
7364 	     func_id != BPF_FUNC_probe_read_kernel_str &&
7365 	     func_id != BPF_FUNC_probe_read_user_str))
7366 		return;
7367 
7368 	ret_reg->smax_value = meta->msize_max_value;
7369 	ret_reg->s32_max_value = meta->msize_max_value;
7370 	ret_reg->smin_value = -MAX_ERRNO;
7371 	ret_reg->s32_min_value = -MAX_ERRNO;
7372 	reg_bounds_sync(ret_reg);
7373 }
7374 
7375 static int
7376 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7377 		int func_id, int insn_idx)
7378 {
7379 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
7380 	struct bpf_map *map = meta->map_ptr;
7381 
7382 	if (func_id != BPF_FUNC_tail_call &&
7383 	    func_id != BPF_FUNC_map_lookup_elem &&
7384 	    func_id != BPF_FUNC_map_update_elem &&
7385 	    func_id != BPF_FUNC_map_delete_elem &&
7386 	    func_id != BPF_FUNC_map_push_elem &&
7387 	    func_id != BPF_FUNC_map_pop_elem &&
7388 	    func_id != BPF_FUNC_map_peek_elem &&
7389 	    func_id != BPF_FUNC_for_each_map_elem &&
7390 	    func_id != BPF_FUNC_redirect_map &&
7391 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
7392 		return 0;
7393 
7394 	if (map == NULL) {
7395 		verbose(env, "kernel subsystem misconfigured verifier\n");
7396 		return -EINVAL;
7397 	}
7398 
7399 	/* In case of read-only, some additional restrictions
7400 	 * need to be applied in order to prevent altering the
7401 	 * state of the map from program side.
7402 	 */
7403 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
7404 	    (func_id == BPF_FUNC_map_delete_elem ||
7405 	     func_id == BPF_FUNC_map_update_elem ||
7406 	     func_id == BPF_FUNC_map_push_elem ||
7407 	     func_id == BPF_FUNC_map_pop_elem)) {
7408 		verbose(env, "write into map forbidden\n");
7409 		return -EACCES;
7410 	}
7411 
7412 	if (!BPF_MAP_PTR(aux->map_ptr_state))
7413 		bpf_map_ptr_store(aux, meta->map_ptr,
7414 				  !meta->map_ptr->bypass_spec_v1);
7415 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
7416 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
7417 				  !meta->map_ptr->bypass_spec_v1);
7418 	return 0;
7419 }
7420 
7421 static int
7422 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7423 		int func_id, int insn_idx)
7424 {
7425 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
7426 	struct bpf_reg_state *regs = cur_regs(env), *reg;
7427 	struct bpf_map *map = meta->map_ptr;
7428 	u64 val, max;
7429 	int err;
7430 
7431 	if (func_id != BPF_FUNC_tail_call)
7432 		return 0;
7433 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
7434 		verbose(env, "kernel subsystem misconfigured verifier\n");
7435 		return -EINVAL;
7436 	}
7437 
7438 	reg = &regs[BPF_REG_3];
7439 	val = reg->var_off.value;
7440 	max = map->max_entries;
7441 
7442 	if (!(register_is_const(reg) && val < max)) {
7443 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7444 		return 0;
7445 	}
7446 
7447 	err = mark_chain_precision(env, BPF_REG_3);
7448 	if (err)
7449 		return err;
7450 	if (bpf_map_key_unseen(aux))
7451 		bpf_map_key_store(aux, val);
7452 	else if (!bpf_map_key_poisoned(aux) &&
7453 		  bpf_map_key_immediate(aux) != val)
7454 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7455 	return 0;
7456 }
7457 
7458 static int check_reference_leak(struct bpf_verifier_env *env)
7459 {
7460 	struct bpf_func_state *state = cur_func(env);
7461 	bool refs_lingering = false;
7462 	int i;
7463 
7464 	if (state->frameno && !state->in_callback_fn)
7465 		return 0;
7466 
7467 	for (i = 0; i < state->acquired_refs; i++) {
7468 		if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
7469 			continue;
7470 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
7471 			state->refs[i].id, state->refs[i].insn_idx);
7472 		refs_lingering = true;
7473 	}
7474 	return refs_lingering ? -EINVAL : 0;
7475 }
7476 
7477 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
7478 				   struct bpf_reg_state *regs)
7479 {
7480 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
7481 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
7482 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
7483 	int err, fmt_map_off, num_args;
7484 	u64 fmt_addr;
7485 	char *fmt;
7486 
7487 	/* data must be an array of u64 */
7488 	if (data_len_reg->var_off.value % 8)
7489 		return -EINVAL;
7490 	num_args = data_len_reg->var_off.value / 8;
7491 
7492 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
7493 	 * and map_direct_value_addr is set.
7494 	 */
7495 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
7496 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
7497 						  fmt_map_off);
7498 	if (err) {
7499 		verbose(env, "verifier bug\n");
7500 		return -EFAULT;
7501 	}
7502 	fmt = (char *)(long)fmt_addr + fmt_map_off;
7503 
7504 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
7505 	 * can focus on validating the format specifiers.
7506 	 */
7507 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
7508 	if (err < 0)
7509 		verbose(env, "Invalid format string\n");
7510 
7511 	return err;
7512 }
7513 
7514 static int check_get_func_ip(struct bpf_verifier_env *env)
7515 {
7516 	enum bpf_prog_type type = resolve_prog_type(env->prog);
7517 	int func_id = BPF_FUNC_get_func_ip;
7518 
7519 	if (type == BPF_PROG_TYPE_TRACING) {
7520 		if (!bpf_prog_has_trampoline(env->prog)) {
7521 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
7522 				func_id_name(func_id), func_id);
7523 			return -ENOTSUPP;
7524 		}
7525 		return 0;
7526 	} else if (type == BPF_PROG_TYPE_KPROBE) {
7527 		return 0;
7528 	}
7529 
7530 	verbose(env, "func %s#%d not supported for program type %d\n",
7531 		func_id_name(func_id), func_id, type);
7532 	return -ENOTSUPP;
7533 }
7534 
7535 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
7536 {
7537 	return &env->insn_aux_data[env->insn_idx];
7538 }
7539 
7540 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
7541 {
7542 	struct bpf_reg_state *regs = cur_regs(env);
7543 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
7544 	bool reg_is_null = register_is_null(reg);
7545 
7546 	if (reg_is_null)
7547 		mark_chain_precision(env, BPF_REG_4);
7548 
7549 	return reg_is_null;
7550 }
7551 
7552 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
7553 {
7554 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
7555 
7556 	if (!state->initialized) {
7557 		state->initialized = 1;
7558 		state->fit_for_inline = loop_flag_is_zero(env);
7559 		state->callback_subprogno = subprogno;
7560 		return;
7561 	}
7562 
7563 	if (!state->fit_for_inline)
7564 		return;
7565 
7566 	state->fit_for_inline = (loop_flag_is_zero(env) &&
7567 				 state->callback_subprogno == subprogno);
7568 }
7569 
7570 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7571 			     int *insn_idx_p)
7572 {
7573 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
7574 	const struct bpf_func_proto *fn = NULL;
7575 	enum bpf_return_type ret_type;
7576 	enum bpf_type_flag ret_flag;
7577 	struct bpf_reg_state *regs;
7578 	struct bpf_call_arg_meta meta;
7579 	int insn_idx = *insn_idx_p;
7580 	bool changes_data;
7581 	int i, err, func_id;
7582 
7583 	/* find function prototype */
7584 	func_id = insn->imm;
7585 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
7586 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
7587 			func_id);
7588 		return -EINVAL;
7589 	}
7590 
7591 	if (env->ops->get_func_proto)
7592 		fn = env->ops->get_func_proto(func_id, env->prog);
7593 	if (!fn) {
7594 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
7595 			func_id);
7596 		return -EINVAL;
7597 	}
7598 
7599 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
7600 	if (!env->prog->gpl_compatible && fn->gpl_only) {
7601 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
7602 		return -EINVAL;
7603 	}
7604 
7605 	if (fn->allowed && !fn->allowed(env->prog)) {
7606 		verbose(env, "helper call is not allowed in probe\n");
7607 		return -EINVAL;
7608 	}
7609 
7610 	if (!env->prog->aux->sleepable && fn->might_sleep) {
7611 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
7612 		return -EINVAL;
7613 	}
7614 
7615 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
7616 	changes_data = bpf_helper_changes_pkt_data(fn->func);
7617 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
7618 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
7619 			func_id_name(func_id), func_id);
7620 		return -EINVAL;
7621 	}
7622 
7623 	memset(&meta, 0, sizeof(meta));
7624 	meta.pkt_access = fn->pkt_access;
7625 
7626 	err = check_func_proto(fn, func_id);
7627 	if (err) {
7628 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
7629 			func_id_name(func_id), func_id);
7630 		return err;
7631 	}
7632 
7633 	if (env->cur_state->active_rcu_lock) {
7634 		if (fn->might_sleep) {
7635 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
7636 				func_id_name(func_id), func_id);
7637 			return -EINVAL;
7638 		}
7639 
7640 		if (env->prog->aux->sleepable && is_storage_get_function(func_id))
7641 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
7642 	}
7643 
7644 	meta.func_id = func_id;
7645 	/* check args */
7646 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7647 		err = check_func_arg(env, i, &meta, fn);
7648 		if (err)
7649 			return err;
7650 	}
7651 
7652 	err = record_func_map(env, &meta, func_id, insn_idx);
7653 	if (err)
7654 		return err;
7655 
7656 	err = record_func_key(env, &meta, func_id, insn_idx);
7657 	if (err)
7658 		return err;
7659 
7660 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
7661 	 * is inferred from register state.
7662 	 */
7663 	for (i = 0; i < meta.access_size; i++) {
7664 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
7665 				       BPF_WRITE, -1, false);
7666 		if (err)
7667 			return err;
7668 	}
7669 
7670 	regs = cur_regs(env);
7671 
7672 	if (meta.uninit_dynptr_regno) {
7673 		/* we write BPF_DW bits (8 bytes) at a time */
7674 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7675 			err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno,
7676 					       i, BPF_DW, BPF_WRITE, -1, false);
7677 			if (err)
7678 				return err;
7679 		}
7680 
7681 		err = mark_stack_slots_dynptr(env, &regs[meta.uninit_dynptr_regno],
7682 					      fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1],
7683 					      insn_idx);
7684 		if (err)
7685 			return err;
7686 	}
7687 
7688 	if (meta.release_regno) {
7689 		err = -EINVAL;
7690 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1]))
7691 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
7692 		else if (meta.ref_obj_id)
7693 			err = release_reference(env, meta.ref_obj_id);
7694 		/* meta.ref_obj_id can only be 0 if register that is meant to be
7695 		 * released is NULL, which must be > R0.
7696 		 */
7697 		else if (register_is_null(&regs[meta.release_regno]))
7698 			err = 0;
7699 		if (err) {
7700 			verbose(env, "func %s#%d reference has not been acquired before\n",
7701 				func_id_name(func_id), func_id);
7702 			return err;
7703 		}
7704 	}
7705 
7706 	switch (func_id) {
7707 	case BPF_FUNC_tail_call:
7708 		err = check_reference_leak(env);
7709 		if (err) {
7710 			verbose(env, "tail_call would lead to reference leak\n");
7711 			return err;
7712 		}
7713 		break;
7714 	case BPF_FUNC_get_local_storage:
7715 		/* check that flags argument in get_local_storage(map, flags) is 0,
7716 		 * this is required because get_local_storage() can't return an error.
7717 		 */
7718 		if (!register_is_null(&regs[BPF_REG_2])) {
7719 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
7720 			return -EINVAL;
7721 		}
7722 		break;
7723 	case BPF_FUNC_for_each_map_elem:
7724 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7725 					set_map_elem_callback_state);
7726 		break;
7727 	case BPF_FUNC_timer_set_callback:
7728 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7729 					set_timer_callback_state);
7730 		break;
7731 	case BPF_FUNC_find_vma:
7732 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7733 					set_find_vma_callback_state);
7734 		break;
7735 	case BPF_FUNC_snprintf:
7736 		err = check_bpf_snprintf_call(env, regs);
7737 		break;
7738 	case BPF_FUNC_loop:
7739 		update_loop_inline_state(env, meta.subprogno);
7740 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7741 					set_loop_callback_state);
7742 		break;
7743 	case BPF_FUNC_dynptr_from_mem:
7744 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
7745 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
7746 				reg_type_str(env, regs[BPF_REG_1].type));
7747 			return -EACCES;
7748 		}
7749 		break;
7750 	case BPF_FUNC_set_retval:
7751 		if (prog_type == BPF_PROG_TYPE_LSM &&
7752 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
7753 			if (!env->prog->aux->attach_func_proto->type) {
7754 				/* Make sure programs that attach to void
7755 				 * hooks don't try to modify return value.
7756 				 */
7757 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
7758 				return -EINVAL;
7759 			}
7760 		}
7761 		break;
7762 	case BPF_FUNC_dynptr_data:
7763 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7764 			if (arg_type_is_dynptr(fn->arg_type[i])) {
7765 				struct bpf_reg_state *reg = &regs[BPF_REG_1 + i];
7766 
7767 				if (meta.ref_obj_id) {
7768 					verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
7769 					return -EFAULT;
7770 				}
7771 
7772 				if (base_type(reg->type) != PTR_TO_DYNPTR)
7773 					/* Find the id of the dynptr we're
7774 					 * tracking the reference of
7775 					 */
7776 					meta.ref_obj_id = stack_slot_get_id(env, reg);
7777 				break;
7778 			}
7779 		}
7780 		if (i == MAX_BPF_FUNC_REG_ARGS) {
7781 			verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n");
7782 			return -EFAULT;
7783 		}
7784 		break;
7785 	case BPF_FUNC_user_ringbuf_drain:
7786 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7787 					set_user_ringbuf_callback_state);
7788 		break;
7789 	}
7790 
7791 	if (err)
7792 		return err;
7793 
7794 	/* reset caller saved regs */
7795 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
7796 		mark_reg_not_init(env, regs, caller_saved[i]);
7797 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7798 	}
7799 
7800 	/* helper call returns 64-bit value. */
7801 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
7802 
7803 	/* update return register (already marked as written above) */
7804 	ret_type = fn->ret_type;
7805 	ret_flag = type_flag(ret_type);
7806 
7807 	switch (base_type(ret_type)) {
7808 	case RET_INTEGER:
7809 		/* sets type to SCALAR_VALUE */
7810 		mark_reg_unknown(env, regs, BPF_REG_0);
7811 		break;
7812 	case RET_VOID:
7813 		regs[BPF_REG_0].type = NOT_INIT;
7814 		break;
7815 	case RET_PTR_TO_MAP_VALUE:
7816 		/* There is no offset yet applied, variable or fixed */
7817 		mark_reg_known_zero(env, regs, BPF_REG_0);
7818 		/* remember map_ptr, so that check_map_access()
7819 		 * can check 'value_size' boundary of memory access
7820 		 * to map element returned from bpf_map_lookup_elem()
7821 		 */
7822 		if (meta.map_ptr == NULL) {
7823 			verbose(env,
7824 				"kernel subsystem misconfigured verifier\n");
7825 			return -EINVAL;
7826 		}
7827 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
7828 		regs[BPF_REG_0].map_uid = meta.map_uid;
7829 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
7830 		if (!type_may_be_null(ret_type) &&
7831 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
7832 			regs[BPF_REG_0].id = ++env->id_gen;
7833 		}
7834 		break;
7835 	case RET_PTR_TO_SOCKET:
7836 		mark_reg_known_zero(env, regs, BPF_REG_0);
7837 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
7838 		break;
7839 	case RET_PTR_TO_SOCK_COMMON:
7840 		mark_reg_known_zero(env, regs, BPF_REG_0);
7841 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
7842 		break;
7843 	case RET_PTR_TO_TCP_SOCK:
7844 		mark_reg_known_zero(env, regs, BPF_REG_0);
7845 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
7846 		break;
7847 	case RET_PTR_TO_MEM:
7848 		mark_reg_known_zero(env, regs, BPF_REG_0);
7849 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
7850 		regs[BPF_REG_0].mem_size = meta.mem_size;
7851 		break;
7852 	case RET_PTR_TO_MEM_OR_BTF_ID:
7853 	{
7854 		const struct btf_type *t;
7855 
7856 		mark_reg_known_zero(env, regs, BPF_REG_0);
7857 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
7858 		if (!btf_type_is_struct(t)) {
7859 			u32 tsize;
7860 			const struct btf_type *ret;
7861 			const char *tname;
7862 
7863 			/* resolve the type size of ksym. */
7864 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
7865 			if (IS_ERR(ret)) {
7866 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
7867 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
7868 					tname, PTR_ERR(ret));
7869 				return -EINVAL;
7870 			}
7871 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
7872 			regs[BPF_REG_0].mem_size = tsize;
7873 		} else {
7874 			/* MEM_RDONLY may be carried from ret_flag, but it
7875 			 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
7876 			 * it will confuse the check of PTR_TO_BTF_ID in
7877 			 * check_mem_access().
7878 			 */
7879 			ret_flag &= ~MEM_RDONLY;
7880 
7881 			regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
7882 			regs[BPF_REG_0].btf = meta.ret_btf;
7883 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
7884 		}
7885 		break;
7886 	}
7887 	case RET_PTR_TO_BTF_ID:
7888 	{
7889 		struct btf *ret_btf;
7890 		int ret_btf_id;
7891 
7892 		mark_reg_known_zero(env, regs, BPF_REG_0);
7893 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
7894 		if (func_id == BPF_FUNC_kptr_xchg) {
7895 			ret_btf = meta.kptr_field->kptr.btf;
7896 			ret_btf_id = meta.kptr_field->kptr.btf_id;
7897 		} else {
7898 			if (fn->ret_btf_id == BPF_PTR_POISON) {
7899 				verbose(env, "verifier internal error:");
7900 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
7901 					func_id_name(func_id));
7902 				return -EINVAL;
7903 			}
7904 			ret_btf = btf_vmlinux;
7905 			ret_btf_id = *fn->ret_btf_id;
7906 		}
7907 		if (ret_btf_id == 0) {
7908 			verbose(env, "invalid return type %u of func %s#%d\n",
7909 				base_type(ret_type), func_id_name(func_id),
7910 				func_id);
7911 			return -EINVAL;
7912 		}
7913 		regs[BPF_REG_0].btf = ret_btf;
7914 		regs[BPF_REG_0].btf_id = ret_btf_id;
7915 		break;
7916 	}
7917 	default:
7918 		verbose(env, "unknown return type %u of func %s#%d\n",
7919 			base_type(ret_type), func_id_name(func_id), func_id);
7920 		return -EINVAL;
7921 	}
7922 
7923 	if (type_may_be_null(regs[BPF_REG_0].type))
7924 		regs[BPF_REG_0].id = ++env->id_gen;
7925 
7926 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
7927 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
7928 			func_id_name(func_id), func_id);
7929 		return -EFAULT;
7930 	}
7931 
7932 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
7933 		/* For release_reference() */
7934 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
7935 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
7936 		int id = acquire_reference_state(env, insn_idx);
7937 
7938 		if (id < 0)
7939 			return id;
7940 		/* For mark_ptr_or_null_reg() */
7941 		regs[BPF_REG_0].id = id;
7942 		/* For release_reference() */
7943 		regs[BPF_REG_0].ref_obj_id = id;
7944 	}
7945 
7946 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
7947 
7948 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
7949 	if (err)
7950 		return err;
7951 
7952 	if ((func_id == BPF_FUNC_get_stack ||
7953 	     func_id == BPF_FUNC_get_task_stack) &&
7954 	    !env->prog->has_callchain_buf) {
7955 		const char *err_str;
7956 
7957 #ifdef CONFIG_PERF_EVENTS
7958 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
7959 		err_str = "cannot get callchain buffer for func %s#%d\n";
7960 #else
7961 		err = -ENOTSUPP;
7962 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
7963 #endif
7964 		if (err) {
7965 			verbose(env, err_str, func_id_name(func_id), func_id);
7966 			return err;
7967 		}
7968 
7969 		env->prog->has_callchain_buf = true;
7970 	}
7971 
7972 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
7973 		env->prog->call_get_stack = true;
7974 
7975 	if (func_id == BPF_FUNC_get_func_ip) {
7976 		if (check_get_func_ip(env))
7977 			return -ENOTSUPP;
7978 		env->prog->call_get_func_ip = true;
7979 	}
7980 
7981 	if (changes_data)
7982 		clear_all_pkt_pointers(env);
7983 	return 0;
7984 }
7985 
7986 /* mark_btf_func_reg_size() is used when the reg size is determined by
7987  * the BTF func_proto's return value size and argument.
7988  */
7989 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
7990 				   size_t reg_size)
7991 {
7992 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
7993 
7994 	if (regno == BPF_REG_0) {
7995 		/* Function return value */
7996 		reg->live |= REG_LIVE_WRITTEN;
7997 		reg->subreg_def = reg_size == sizeof(u64) ?
7998 			DEF_NOT_SUBREG : env->insn_idx + 1;
7999 	} else {
8000 		/* Function argument */
8001 		if (reg_size == sizeof(u64)) {
8002 			mark_insn_zext(env, reg);
8003 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
8004 		} else {
8005 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
8006 		}
8007 	}
8008 }
8009 
8010 struct bpf_kfunc_call_arg_meta {
8011 	/* In parameters */
8012 	struct btf *btf;
8013 	u32 func_id;
8014 	u32 kfunc_flags;
8015 	const struct btf_type *func_proto;
8016 	const char *func_name;
8017 	/* Out parameters */
8018 	u32 ref_obj_id;
8019 	u8 release_regno;
8020 	bool r0_rdonly;
8021 	u32 ret_btf_id;
8022 	u64 r0_size;
8023 	struct {
8024 		u64 value;
8025 		bool found;
8026 	} arg_constant;
8027 	struct {
8028 		struct btf *btf;
8029 		u32 btf_id;
8030 	} arg_obj_drop;
8031 	struct {
8032 		struct btf_field *field;
8033 	} arg_list_head;
8034 };
8035 
8036 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
8037 {
8038 	return meta->kfunc_flags & KF_ACQUIRE;
8039 }
8040 
8041 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
8042 {
8043 	return meta->kfunc_flags & KF_RET_NULL;
8044 }
8045 
8046 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
8047 {
8048 	return meta->kfunc_flags & KF_RELEASE;
8049 }
8050 
8051 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
8052 {
8053 	return meta->kfunc_flags & KF_TRUSTED_ARGS;
8054 }
8055 
8056 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
8057 {
8058 	return meta->kfunc_flags & KF_SLEEPABLE;
8059 }
8060 
8061 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
8062 {
8063 	return meta->kfunc_flags & KF_DESTRUCTIVE;
8064 }
8065 
8066 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
8067 {
8068 	return meta->kfunc_flags & KF_RCU;
8069 }
8070 
8071 static bool is_kfunc_arg_kptr_get(struct bpf_kfunc_call_arg_meta *meta, int arg)
8072 {
8073 	return arg == 0 && (meta->kfunc_flags & KF_KPTR_GET);
8074 }
8075 
8076 static bool __kfunc_param_match_suffix(const struct btf *btf,
8077 				       const struct btf_param *arg,
8078 				       const char *suffix)
8079 {
8080 	int suffix_len = strlen(suffix), len;
8081 	const char *param_name;
8082 
8083 	/* In the future, this can be ported to use BTF tagging */
8084 	param_name = btf_name_by_offset(btf, arg->name_off);
8085 	if (str_is_empty(param_name))
8086 		return false;
8087 	len = strlen(param_name);
8088 	if (len < suffix_len)
8089 		return false;
8090 	param_name += len - suffix_len;
8091 	return !strncmp(param_name, suffix, suffix_len);
8092 }
8093 
8094 static bool is_kfunc_arg_mem_size(const struct btf *btf,
8095 				  const struct btf_param *arg,
8096 				  const struct bpf_reg_state *reg)
8097 {
8098 	const struct btf_type *t;
8099 
8100 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
8101 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
8102 		return false;
8103 
8104 	return __kfunc_param_match_suffix(btf, arg, "__sz");
8105 }
8106 
8107 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
8108 {
8109 	return __kfunc_param_match_suffix(btf, arg, "__k");
8110 }
8111 
8112 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
8113 {
8114 	return __kfunc_param_match_suffix(btf, arg, "__ign");
8115 }
8116 
8117 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
8118 {
8119 	return __kfunc_param_match_suffix(btf, arg, "__alloc");
8120 }
8121 
8122 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
8123 					  const struct btf_param *arg,
8124 					  const char *name)
8125 {
8126 	int len, target_len = strlen(name);
8127 	const char *param_name;
8128 
8129 	param_name = btf_name_by_offset(btf, arg->name_off);
8130 	if (str_is_empty(param_name))
8131 		return false;
8132 	len = strlen(param_name);
8133 	if (len != target_len)
8134 		return false;
8135 	if (strcmp(param_name, name))
8136 		return false;
8137 
8138 	return true;
8139 }
8140 
8141 enum {
8142 	KF_ARG_DYNPTR_ID,
8143 	KF_ARG_LIST_HEAD_ID,
8144 	KF_ARG_LIST_NODE_ID,
8145 };
8146 
8147 BTF_ID_LIST(kf_arg_btf_ids)
8148 BTF_ID(struct, bpf_dynptr_kern)
8149 BTF_ID(struct, bpf_list_head)
8150 BTF_ID(struct, bpf_list_node)
8151 
8152 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
8153 				    const struct btf_param *arg, int type)
8154 {
8155 	const struct btf_type *t;
8156 	u32 res_id;
8157 
8158 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
8159 	if (!t)
8160 		return false;
8161 	if (!btf_type_is_ptr(t))
8162 		return false;
8163 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
8164 	if (!t)
8165 		return false;
8166 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
8167 }
8168 
8169 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
8170 {
8171 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
8172 }
8173 
8174 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
8175 {
8176 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
8177 }
8178 
8179 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
8180 {
8181 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
8182 }
8183 
8184 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
8185 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
8186 					const struct btf *btf,
8187 					const struct btf_type *t, int rec)
8188 {
8189 	const struct btf_type *member_type;
8190 	const struct btf_member *member;
8191 	u32 i;
8192 
8193 	if (!btf_type_is_struct(t))
8194 		return false;
8195 
8196 	for_each_member(i, t, member) {
8197 		const struct btf_array *array;
8198 
8199 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
8200 		if (btf_type_is_struct(member_type)) {
8201 			if (rec >= 3) {
8202 				verbose(env, "max struct nesting depth exceeded\n");
8203 				return false;
8204 			}
8205 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
8206 				return false;
8207 			continue;
8208 		}
8209 		if (btf_type_is_array(member_type)) {
8210 			array = btf_array(member_type);
8211 			if (!array->nelems)
8212 				return false;
8213 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
8214 			if (!btf_type_is_scalar(member_type))
8215 				return false;
8216 			continue;
8217 		}
8218 		if (!btf_type_is_scalar(member_type))
8219 			return false;
8220 	}
8221 	return true;
8222 }
8223 
8224 
8225 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
8226 #ifdef CONFIG_NET
8227 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
8228 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8229 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
8230 #endif
8231 };
8232 
8233 enum kfunc_ptr_arg_type {
8234 	KF_ARG_PTR_TO_CTX,
8235 	KF_ARG_PTR_TO_ALLOC_BTF_ID,  /* Allocated object */
8236 	KF_ARG_PTR_TO_KPTR,	     /* PTR_TO_KPTR but type specific */
8237 	KF_ARG_PTR_TO_DYNPTR,
8238 	KF_ARG_PTR_TO_LIST_HEAD,
8239 	KF_ARG_PTR_TO_LIST_NODE,
8240 	KF_ARG_PTR_TO_BTF_ID,	     /* Also covers reg2btf_ids conversions */
8241 	KF_ARG_PTR_TO_MEM,
8242 	KF_ARG_PTR_TO_MEM_SIZE,	     /* Size derived from next argument, skip it */
8243 };
8244 
8245 enum special_kfunc_type {
8246 	KF_bpf_obj_new_impl,
8247 	KF_bpf_obj_drop_impl,
8248 	KF_bpf_list_push_front,
8249 	KF_bpf_list_push_back,
8250 	KF_bpf_list_pop_front,
8251 	KF_bpf_list_pop_back,
8252 	KF_bpf_cast_to_kern_ctx,
8253 	KF_bpf_rdonly_cast,
8254 	KF_bpf_rcu_read_lock,
8255 	KF_bpf_rcu_read_unlock,
8256 };
8257 
8258 BTF_SET_START(special_kfunc_set)
8259 BTF_ID(func, bpf_obj_new_impl)
8260 BTF_ID(func, bpf_obj_drop_impl)
8261 BTF_ID(func, bpf_list_push_front)
8262 BTF_ID(func, bpf_list_push_back)
8263 BTF_ID(func, bpf_list_pop_front)
8264 BTF_ID(func, bpf_list_pop_back)
8265 BTF_ID(func, bpf_cast_to_kern_ctx)
8266 BTF_ID(func, bpf_rdonly_cast)
8267 BTF_SET_END(special_kfunc_set)
8268 
8269 BTF_ID_LIST(special_kfunc_list)
8270 BTF_ID(func, bpf_obj_new_impl)
8271 BTF_ID(func, bpf_obj_drop_impl)
8272 BTF_ID(func, bpf_list_push_front)
8273 BTF_ID(func, bpf_list_push_back)
8274 BTF_ID(func, bpf_list_pop_front)
8275 BTF_ID(func, bpf_list_pop_back)
8276 BTF_ID(func, bpf_cast_to_kern_ctx)
8277 BTF_ID(func, bpf_rdonly_cast)
8278 BTF_ID(func, bpf_rcu_read_lock)
8279 BTF_ID(func, bpf_rcu_read_unlock)
8280 
8281 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
8282 {
8283 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
8284 }
8285 
8286 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
8287 {
8288 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
8289 }
8290 
8291 static enum kfunc_ptr_arg_type
8292 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
8293 		       struct bpf_kfunc_call_arg_meta *meta,
8294 		       const struct btf_type *t, const struct btf_type *ref_t,
8295 		       const char *ref_tname, const struct btf_param *args,
8296 		       int argno, int nargs)
8297 {
8298 	u32 regno = argno + 1;
8299 	struct bpf_reg_state *regs = cur_regs(env);
8300 	struct bpf_reg_state *reg = &regs[regno];
8301 	bool arg_mem_size = false;
8302 
8303 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
8304 		return KF_ARG_PTR_TO_CTX;
8305 
8306 	/* In this function, we verify the kfunc's BTF as per the argument type,
8307 	 * leaving the rest of the verification with respect to the register
8308 	 * type to our caller. When a set of conditions hold in the BTF type of
8309 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
8310 	 */
8311 	if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
8312 		return KF_ARG_PTR_TO_CTX;
8313 
8314 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
8315 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
8316 
8317 	if (is_kfunc_arg_kptr_get(meta, argno)) {
8318 		if (!btf_type_is_ptr(ref_t)) {
8319 			verbose(env, "arg#0 BTF type must be a double pointer for kptr_get kfunc\n");
8320 			return -EINVAL;
8321 		}
8322 		ref_t = btf_type_by_id(meta->btf, ref_t->type);
8323 		ref_tname = btf_name_by_offset(meta->btf, ref_t->name_off);
8324 		if (!btf_type_is_struct(ref_t)) {
8325 			verbose(env, "kernel function %s args#0 pointer type %s %s is not supported\n",
8326 				meta->func_name, btf_type_str(ref_t), ref_tname);
8327 			return -EINVAL;
8328 		}
8329 		return KF_ARG_PTR_TO_KPTR;
8330 	}
8331 
8332 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
8333 		return KF_ARG_PTR_TO_DYNPTR;
8334 
8335 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
8336 		return KF_ARG_PTR_TO_LIST_HEAD;
8337 
8338 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
8339 		return KF_ARG_PTR_TO_LIST_NODE;
8340 
8341 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
8342 		if (!btf_type_is_struct(ref_t)) {
8343 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
8344 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
8345 			return -EINVAL;
8346 		}
8347 		return KF_ARG_PTR_TO_BTF_ID;
8348 	}
8349 
8350 	if (argno + 1 < nargs && is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]))
8351 		arg_mem_size = true;
8352 
8353 	/* This is the catch all argument type of register types supported by
8354 	 * check_helper_mem_access. However, we only allow when argument type is
8355 	 * pointer to scalar, or struct composed (recursively) of scalars. When
8356 	 * arg_mem_size is true, the pointer can be void *.
8357 	 */
8358 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
8359 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
8360 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
8361 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
8362 		return -EINVAL;
8363 	}
8364 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
8365 }
8366 
8367 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
8368 					struct bpf_reg_state *reg,
8369 					const struct btf_type *ref_t,
8370 					const char *ref_tname, u32 ref_id,
8371 					struct bpf_kfunc_call_arg_meta *meta,
8372 					int argno)
8373 {
8374 	const struct btf_type *reg_ref_t;
8375 	bool strict_type_match = false;
8376 	const struct btf *reg_btf;
8377 	const char *reg_ref_tname;
8378 	u32 reg_ref_id;
8379 
8380 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
8381 		reg_btf = reg->btf;
8382 		reg_ref_id = reg->btf_id;
8383 	} else {
8384 		reg_btf = btf_vmlinux;
8385 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
8386 	}
8387 
8388 	if (is_kfunc_trusted_args(meta) || (is_kfunc_release(meta) && reg->ref_obj_id))
8389 		strict_type_match = true;
8390 
8391 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
8392 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
8393 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
8394 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
8395 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
8396 			btf_type_str(reg_ref_t), reg_ref_tname);
8397 		return -EINVAL;
8398 	}
8399 	return 0;
8400 }
8401 
8402 static int process_kf_arg_ptr_to_kptr(struct bpf_verifier_env *env,
8403 				      struct bpf_reg_state *reg,
8404 				      const struct btf_type *ref_t,
8405 				      const char *ref_tname,
8406 				      struct bpf_kfunc_call_arg_meta *meta,
8407 				      int argno)
8408 {
8409 	struct btf_field *kptr_field;
8410 
8411 	/* check_func_arg_reg_off allows var_off for
8412 	 * PTR_TO_MAP_VALUE, but we need fixed offset to find
8413 	 * off_desc.
8414 	 */
8415 	if (!tnum_is_const(reg->var_off)) {
8416 		verbose(env, "arg#0 must have constant offset\n");
8417 		return -EINVAL;
8418 	}
8419 
8420 	kptr_field = btf_record_find(reg->map_ptr->record, reg->off + reg->var_off.value, BPF_KPTR);
8421 	if (!kptr_field || kptr_field->type != BPF_KPTR_REF) {
8422 		verbose(env, "arg#0 no referenced kptr at map value offset=%llu\n",
8423 			reg->off + reg->var_off.value);
8424 		return -EINVAL;
8425 	}
8426 
8427 	if (!btf_struct_ids_match(&env->log, meta->btf, ref_t->type, 0, kptr_field->kptr.btf,
8428 				  kptr_field->kptr.btf_id, true)) {
8429 		verbose(env, "kernel function %s args#%d expected pointer to %s %s\n",
8430 			meta->func_name, argno, btf_type_str(ref_t), ref_tname);
8431 		return -EINVAL;
8432 	}
8433 	return 0;
8434 }
8435 
8436 static int ref_set_release_on_unlock(struct bpf_verifier_env *env, u32 ref_obj_id)
8437 {
8438 	struct bpf_func_state *state = cur_func(env);
8439 	struct bpf_reg_state *reg;
8440 	int i;
8441 
8442 	/* bpf_spin_lock only allows calling list_push and list_pop, no BPF
8443 	 * subprogs, no global functions. This means that the references would
8444 	 * not be released inside the critical section but they may be added to
8445 	 * the reference state, and the acquired_refs are never copied out for a
8446 	 * different frame as BPF to BPF calls don't work in bpf_spin_lock
8447 	 * critical sections.
8448 	 */
8449 	if (!ref_obj_id) {
8450 		verbose(env, "verifier internal error: ref_obj_id is zero for release_on_unlock\n");
8451 		return -EFAULT;
8452 	}
8453 	for (i = 0; i < state->acquired_refs; i++) {
8454 		if (state->refs[i].id == ref_obj_id) {
8455 			if (state->refs[i].release_on_unlock) {
8456 				verbose(env, "verifier internal error: expected false release_on_unlock");
8457 				return -EFAULT;
8458 			}
8459 			state->refs[i].release_on_unlock = true;
8460 			/* Now mark everyone sharing same ref_obj_id as untrusted */
8461 			bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8462 				if (reg->ref_obj_id == ref_obj_id)
8463 					reg->type |= PTR_UNTRUSTED;
8464 			}));
8465 			return 0;
8466 		}
8467 	}
8468 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
8469 	return -EFAULT;
8470 }
8471 
8472 /* Implementation details:
8473  *
8474  * Each register points to some region of memory, which we define as an
8475  * allocation. Each allocation may embed a bpf_spin_lock which protects any
8476  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
8477  * allocation. The lock and the data it protects are colocated in the same
8478  * memory region.
8479  *
8480  * Hence, everytime a register holds a pointer value pointing to such
8481  * allocation, the verifier preserves a unique reg->id for it.
8482  *
8483  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
8484  * bpf_spin_lock is called.
8485  *
8486  * To enable this, lock state in the verifier captures two values:
8487  *	active_lock.ptr = Register's type specific pointer
8488  *	active_lock.id  = A unique ID for each register pointer value
8489  *
8490  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
8491  * supported register types.
8492  *
8493  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
8494  * allocated objects is the reg->btf pointer.
8495  *
8496  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
8497  * can establish the provenance of the map value statically for each distinct
8498  * lookup into such maps. They always contain a single map value hence unique
8499  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
8500  *
8501  * So, in case of global variables, they use array maps with max_entries = 1,
8502  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
8503  * into the same map value as max_entries is 1, as described above).
8504  *
8505  * In case of inner map lookups, the inner map pointer has same map_ptr as the
8506  * outer map pointer (in verifier context), but each lookup into an inner map
8507  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
8508  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
8509  * will get different reg->id assigned to each lookup, hence different
8510  * active_lock.id.
8511  *
8512  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
8513  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
8514  * returned from bpf_obj_new. Each allocation receives a new reg->id.
8515  */
8516 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8517 {
8518 	void *ptr;
8519 	u32 id;
8520 
8521 	switch ((int)reg->type) {
8522 	case PTR_TO_MAP_VALUE:
8523 		ptr = reg->map_ptr;
8524 		break;
8525 	case PTR_TO_BTF_ID | MEM_ALLOC:
8526 	case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED:
8527 		ptr = reg->btf;
8528 		break;
8529 	default:
8530 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
8531 		return -EFAULT;
8532 	}
8533 	id = reg->id;
8534 
8535 	if (!env->cur_state->active_lock.ptr)
8536 		return -EINVAL;
8537 	if (env->cur_state->active_lock.ptr != ptr ||
8538 	    env->cur_state->active_lock.id != id) {
8539 		verbose(env, "held lock and object are not in the same allocation\n");
8540 		return -EINVAL;
8541 	}
8542 	return 0;
8543 }
8544 
8545 static bool is_bpf_list_api_kfunc(u32 btf_id)
8546 {
8547 	return btf_id == special_kfunc_list[KF_bpf_list_push_front] ||
8548 	       btf_id == special_kfunc_list[KF_bpf_list_push_back] ||
8549 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
8550 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
8551 }
8552 
8553 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
8554 					   struct bpf_reg_state *reg, u32 regno,
8555 					   struct bpf_kfunc_call_arg_meta *meta)
8556 {
8557 	struct btf_field *field;
8558 	struct btf_record *rec;
8559 	u32 list_head_off;
8560 
8561 	if (meta->btf != btf_vmlinux || !is_bpf_list_api_kfunc(meta->func_id)) {
8562 		verbose(env, "verifier internal error: bpf_list_head argument for unknown kfunc\n");
8563 		return -EFAULT;
8564 	}
8565 
8566 	if (!tnum_is_const(reg->var_off)) {
8567 		verbose(env,
8568 			"R%d doesn't have constant offset. bpf_list_head has to be at the constant offset\n",
8569 			regno);
8570 		return -EINVAL;
8571 	}
8572 
8573 	rec = reg_btf_record(reg);
8574 	list_head_off = reg->off + reg->var_off.value;
8575 	field = btf_record_find(rec, list_head_off, BPF_LIST_HEAD);
8576 	if (!field) {
8577 		verbose(env, "bpf_list_head not found at offset=%u\n", list_head_off);
8578 		return -EINVAL;
8579 	}
8580 
8581 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
8582 	if (check_reg_allocation_locked(env, reg)) {
8583 		verbose(env, "bpf_spin_lock at off=%d must be held for bpf_list_head\n",
8584 			rec->spin_lock_off);
8585 		return -EINVAL;
8586 	}
8587 
8588 	if (meta->arg_list_head.field) {
8589 		verbose(env, "verifier internal error: repeating bpf_list_head arg\n");
8590 		return -EFAULT;
8591 	}
8592 	meta->arg_list_head.field = field;
8593 	return 0;
8594 }
8595 
8596 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
8597 					   struct bpf_reg_state *reg, u32 regno,
8598 					   struct bpf_kfunc_call_arg_meta *meta)
8599 {
8600 	const struct btf_type *et, *t;
8601 	struct btf_field *field;
8602 	struct btf_record *rec;
8603 	u32 list_node_off;
8604 
8605 	if (meta->btf != btf_vmlinux ||
8606 	    (meta->func_id != special_kfunc_list[KF_bpf_list_push_front] &&
8607 	     meta->func_id != special_kfunc_list[KF_bpf_list_push_back])) {
8608 		verbose(env, "verifier internal error: bpf_list_node argument for unknown kfunc\n");
8609 		return -EFAULT;
8610 	}
8611 
8612 	if (!tnum_is_const(reg->var_off)) {
8613 		verbose(env,
8614 			"R%d doesn't have constant offset. bpf_list_node has to be at the constant offset\n",
8615 			regno);
8616 		return -EINVAL;
8617 	}
8618 
8619 	rec = reg_btf_record(reg);
8620 	list_node_off = reg->off + reg->var_off.value;
8621 	field = btf_record_find(rec, list_node_off, BPF_LIST_NODE);
8622 	if (!field || field->offset != list_node_off) {
8623 		verbose(env, "bpf_list_node not found at offset=%u\n", list_node_off);
8624 		return -EINVAL;
8625 	}
8626 
8627 	field = meta->arg_list_head.field;
8628 
8629 	et = btf_type_by_id(field->list_head.btf, field->list_head.value_btf_id);
8630 	t = btf_type_by_id(reg->btf, reg->btf_id);
8631 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->list_head.btf,
8632 				  field->list_head.value_btf_id, true)) {
8633 		verbose(env, "operation on bpf_list_head expects arg#1 bpf_list_node at offset=%d "
8634 			"in struct %s, but arg is at offset=%d in struct %s\n",
8635 			field->list_head.node_offset, btf_name_by_offset(field->list_head.btf, et->name_off),
8636 			list_node_off, btf_name_by_offset(reg->btf, t->name_off));
8637 		return -EINVAL;
8638 	}
8639 
8640 	if (list_node_off != field->list_head.node_offset) {
8641 		verbose(env, "arg#1 offset=%d, but expected bpf_list_node at offset=%d in struct %s\n",
8642 			list_node_off, field->list_head.node_offset,
8643 			btf_name_by_offset(field->list_head.btf, et->name_off));
8644 		return -EINVAL;
8645 	}
8646 	/* Set arg#1 for expiration after unlock */
8647 	return ref_set_release_on_unlock(env, reg->ref_obj_id);
8648 }
8649 
8650 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta)
8651 {
8652 	const char *func_name = meta->func_name, *ref_tname;
8653 	const struct btf *btf = meta->btf;
8654 	const struct btf_param *args;
8655 	u32 i, nargs;
8656 	int ret;
8657 
8658 	args = (const struct btf_param *)(meta->func_proto + 1);
8659 	nargs = btf_type_vlen(meta->func_proto);
8660 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
8661 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
8662 			MAX_BPF_FUNC_REG_ARGS);
8663 		return -EINVAL;
8664 	}
8665 
8666 	/* Check that BTF function arguments match actual types that the
8667 	 * verifier sees.
8668 	 */
8669 	for (i = 0; i < nargs; i++) {
8670 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
8671 		const struct btf_type *t, *ref_t, *resolve_ret;
8672 		enum bpf_arg_type arg_type = ARG_DONTCARE;
8673 		u32 regno = i + 1, ref_id, type_size;
8674 		bool is_ret_buf_sz = false;
8675 		int kf_arg_type;
8676 
8677 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
8678 
8679 		if (is_kfunc_arg_ignore(btf, &args[i]))
8680 			continue;
8681 
8682 		if (btf_type_is_scalar(t)) {
8683 			if (reg->type != SCALAR_VALUE) {
8684 				verbose(env, "R%d is not a scalar\n", regno);
8685 				return -EINVAL;
8686 			}
8687 
8688 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
8689 				if (meta->arg_constant.found) {
8690 					verbose(env, "verifier internal error: only one constant argument permitted\n");
8691 					return -EFAULT;
8692 				}
8693 				if (!tnum_is_const(reg->var_off)) {
8694 					verbose(env, "R%d must be a known constant\n", regno);
8695 					return -EINVAL;
8696 				}
8697 				ret = mark_chain_precision(env, regno);
8698 				if (ret < 0)
8699 					return ret;
8700 				meta->arg_constant.found = true;
8701 				meta->arg_constant.value = reg->var_off.value;
8702 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
8703 				meta->r0_rdonly = true;
8704 				is_ret_buf_sz = true;
8705 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
8706 				is_ret_buf_sz = true;
8707 			}
8708 
8709 			if (is_ret_buf_sz) {
8710 				if (meta->r0_size) {
8711 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
8712 					return -EINVAL;
8713 				}
8714 
8715 				if (!tnum_is_const(reg->var_off)) {
8716 					verbose(env, "R%d is not a const\n", regno);
8717 					return -EINVAL;
8718 				}
8719 
8720 				meta->r0_size = reg->var_off.value;
8721 				ret = mark_chain_precision(env, regno);
8722 				if (ret)
8723 					return ret;
8724 			}
8725 			continue;
8726 		}
8727 
8728 		if (!btf_type_is_ptr(t)) {
8729 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
8730 			return -EINVAL;
8731 		}
8732 
8733 		if (reg->ref_obj_id) {
8734 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
8735 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8736 					regno, reg->ref_obj_id,
8737 					meta->ref_obj_id);
8738 				return -EFAULT;
8739 			}
8740 			meta->ref_obj_id = reg->ref_obj_id;
8741 			if (is_kfunc_release(meta))
8742 				meta->release_regno = regno;
8743 		}
8744 
8745 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
8746 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
8747 
8748 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
8749 		if (kf_arg_type < 0)
8750 			return kf_arg_type;
8751 
8752 		switch (kf_arg_type) {
8753 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
8754 		case KF_ARG_PTR_TO_BTF_ID:
8755 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
8756 				break;
8757 
8758 			if (!is_trusted_reg(reg)) {
8759 				if (!is_kfunc_rcu(meta)) {
8760 					verbose(env, "R%d must be referenced or trusted\n", regno);
8761 					return -EINVAL;
8762 				}
8763 				if (!is_rcu_reg(reg)) {
8764 					verbose(env, "R%d must be a rcu pointer\n", regno);
8765 					return -EINVAL;
8766 				}
8767 			}
8768 
8769 			fallthrough;
8770 		case KF_ARG_PTR_TO_CTX:
8771 			/* Trusted arguments have the same offset checks as release arguments */
8772 			arg_type |= OBJ_RELEASE;
8773 			break;
8774 		case KF_ARG_PTR_TO_KPTR:
8775 		case KF_ARG_PTR_TO_DYNPTR:
8776 		case KF_ARG_PTR_TO_LIST_HEAD:
8777 		case KF_ARG_PTR_TO_LIST_NODE:
8778 		case KF_ARG_PTR_TO_MEM:
8779 		case KF_ARG_PTR_TO_MEM_SIZE:
8780 			/* Trusted by default */
8781 			break;
8782 		default:
8783 			WARN_ON_ONCE(1);
8784 			return -EFAULT;
8785 		}
8786 
8787 		if (is_kfunc_release(meta) && reg->ref_obj_id)
8788 			arg_type |= OBJ_RELEASE;
8789 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
8790 		if (ret < 0)
8791 			return ret;
8792 
8793 		switch (kf_arg_type) {
8794 		case KF_ARG_PTR_TO_CTX:
8795 			if (reg->type != PTR_TO_CTX) {
8796 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
8797 				return -EINVAL;
8798 			}
8799 
8800 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
8801 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
8802 				if (ret < 0)
8803 					return -EINVAL;
8804 				meta->ret_btf_id  = ret;
8805 			}
8806 			break;
8807 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
8808 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
8809 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
8810 				return -EINVAL;
8811 			}
8812 			if (!reg->ref_obj_id) {
8813 				verbose(env, "allocated object must be referenced\n");
8814 				return -EINVAL;
8815 			}
8816 			if (meta->btf == btf_vmlinux &&
8817 			    meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
8818 				meta->arg_obj_drop.btf = reg->btf;
8819 				meta->arg_obj_drop.btf_id = reg->btf_id;
8820 			}
8821 			break;
8822 		case KF_ARG_PTR_TO_KPTR:
8823 			if (reg->type != PTR_TO_MAP_VALUE) {
8824 				verbose(env, "arg#0 expected pointer to map value\n");
8825 				return -EINVAL;
8826 			}
8827 			ret = process_kf_arg_ptr_to_kptr(env, reg, ref_t, ref_tname, meta, i);
8828 			if (ret < 0)
8829 				return ret;
8830 			break;
8831 		case KF_ARG_PTR_TO_DYNPTR:
8832 			if (reg->type != PTR_TO_STACK) {
8833 				verbose(env, "arg#%d expected pointer to stack\n", i);
8834 				return -EINVAL;
8835 			}
8836 
8837 			if (!is_dynptr_reg_valid_init(env, reg)) {
8838 				verbose(env, "arg#%d pointer type %s %s must be valid and initialized\n",
8839 					i, btf_type_str(ref_t), ref_tname);
8840 				return -EINVAL;
8841 			}
8842 
8843 			if (!is_dynptr_type_expected(env, reg, ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL)) {
8844 				verbose(env, "arg#%d pointer type %s %s points to unsupported dynamic pointer type\n",
8845 					i, btf_type_str(ref_t), ref_tname);
8846 				return -EINVAL;
8847 			}
8848 			break;
8849 		case KF_ARG_PTR_TO_LIST_HEAD:
8850 			if (reg->type != PTR_TO_MAP_VALUE &&
8851 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
8852 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
8853 				return -EINVAL;
8854 			}
8855 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
8856 				verbose(env, "allocated object must be referenced\n");
8857 				return -EINVAL;
8858 			}
8859 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
8860 			if (ret < 0)
8861 				return ret;
8862 			break;
8863 		case KF_ARG_PTR_TO_LIST_NODE:
8864 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
8865 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
8866 				return -EINVAL;
8867 			}
8868 			if (!reg->ref_obj_id) {
8869 				verbose(env, "allocated object must be referenced\n");
8870 				return -EINVAL;
8871 			}
8872 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
8873 			if (ret < 0)
8874 				return ret;
8875 			break;
8876 		case KF_ARG_PTR_TO_BTF_ID:
8877 			/* Only base_type is checked, further checks are done here */
8878 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
8879 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
8880 			    !reg2btf_ids[base_type(reg->type)]) {
8881 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
8882 				verbose(env, "expected %s or socket\n",
8883 					reg_type_str(env, base_type(reg->type) |
8884 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
8885 				return -EINVAL;
8886 			}
8887 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
8888 			if (ret < 0)
8889 				return ret;
8890 			break;
8891 		case KF_ARG_PTR_TO_MEM:
8892 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
8893 			if (IS_ERR(resolve_ret)) {
8894 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
8895 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
8896 				return -EINVAL;
8897 			}
8898 			ret = check_mem_reg(env, reg, regno, type_size);
8899 			if (ret < 0)
8900 				return ret;
8901 			break;
8902 		case KF_ARG_PTR_TO_MEM_SIZE:
8903 			ret = check_kfunc_mem_size_reg(env, &regs[regno + 1], regno + 1);
8904 			if (ret < 0) {
8905 				verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
8906 				return ret;
8907 			}
8908 			/* Skip next '__sz' argument */
8909 			i++;
8910 			break;
8911 		}
8912 	}
8913 
8914 	if (is_kfunc_release(meta) && !meta->release_regno) {
8915 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
8916 			func_name);
8917 		return -EINVAL;
8918 	}
8919 
8920 	return 0;
8921 }
8922 
8923 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8924 			    int *insn_idx_p)
8925 {
8926 	const struct btf_type *t, *func, *func_proto, *ptr_type;
8927 	struct bpf_reg_state *regs = cur_regs(env);
8928 	const char *func_name, *ptr_type_name;
8929 	bool sleepable, rcu_lock, rcu_unlock;
8930 	struct bpf_kfunc_call_arg_meta meta;
8931 	u32 i, nargs, func_id, ptr_type_id;
8932 	int err, insn_idx = *insn_idx_p;
8933 	const struct btf_param *args;
8934 	const struct btf_type *ret_t;
8935 	struct btf *desc_btf;
8936 	u32 *kfunc_flags;
8937 
8938 	/* skip for now, but return error when we find this in fixup_kfunc_call */
8939 	if (!insn->imm)
8940 		return 0;
8941 
8942 	desc_btf = find_kfunc_desc_btf(env, insn->off);
8943 	if (IS_ERR(desc_btf))
8944 		return PTR_ERR(desc_btf);
8945 
8946 	func_id = insn->imm;
8947 	func = btf_type_by_id(desc_btf, func_id);
8948 	func_name = btf_name_by_offset(desc_btf, func->name_off);
8949 	func_proto = btf_type_by_id(desc_btf, func->type);
8950 
8951 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id);
8952 	if (!kfunc_flags) {
8953 		verbose(env, "calling kernel function %s is not allowed\n",
8954 			func_name);
8955 		return -EACCES;
8956 	}
8957 
8958 	/* Prepare kfunc call metadata */
8959 	memset(&meta, 0, sizeof(meta));
8960 	meta.btf = desc_btf;
8961 	meta.func_id = func_id;
8962 	meta.kfunc_flags = *kfunc_flags;
8963 	meta.func_proto = func_proto;
8964 	meta.func_name = func_name;
8965 
8966 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
8967 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
8968 		return -EACCES;
8969 	}
8970 
8971 	sleepable = is_kfunc_sleepable(&meta);
8972 	if (sleepable && !env->prog->aux->sleepable) {
8973 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
8974 		return -EACCES;
8975 	}
8976 
8977 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
8978 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
8979 	if ((rcu_lock || rcu_unlock) && !env->rcu_tag_supported) {
8980 		verbose(env, "no vmlinux btf rcu tag support for kfunc %s\n", func_name);
8981 		return -EACCES;
8982 	}
8983 
8984 	if (env->cur_state->active_rcu_lock) {
8985 		struct bpf_func_state *state;
8986 		struct bpf_reg_state *reg;
8987 
8988 		if (rcu_lock) {
8989 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
8990 			return -EINVAL;
8991 		} else if (rcu_unlock) {
8992 			bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8993 				if (reg->type & MEM_RCU) {
8994 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
8995 					reg->type |= PTR_UNTRUSTED;
8996 				}
8997 			}));
8998 			env->cur_state->active_rcu_lock = false;
8999 		} else if (sleepable) {
9000 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
9001 			return -EACCES;
9002 		}
9003 	} else if (rcu_lock) {
9004 		env->cur_state->active_rcu_lock = true;
9005 	} else if (rcu_unlock) {
9006 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
9007 		return -EINVAL;
9008 	}
9009 
9010 	/* Check the arguments */
9011 	err = check_kfunc_args(env, &meta);
9012 	if (err < 0)
9013 		return err;
9014 	/* In case of release function, we get register number of refcounted
9015 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
9016 	 */
9017 	if (meta.release_regno) {
9018 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
9019 		if (err) {
9020 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
9021 				func_name, func_id);
9022 			return err;
9023 		}
9024 	}
9025 
9026 	for (i = 0; i < CALLER_SAVED_REGS; i++)
9027 		mark_reg_not_init(env, regs, caller_saved[i]);
9028 
9029 	/* Check return type */
9030 	t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
9031 
9032 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
9033 		/* Only exception is bpf_obj_new_impl */
9034 		if (meta.btf != btf_vmlinux || meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl]) {
9035 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
9036 			return -EINVAL;
9037 		}
9038 	}
9039 
9040 	if (btf_type_is_scalar(t)) {
9041 		mark_reg_unknown(env, regs, BPF_REG_0);
9042 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
9043 	} else if (btf_type_is_ptr(t)) {
9044 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
9045 
9046 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
9047 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
9048 				struct btf *ret_btf;
9049 				u32 ret_btf_id;
9050 
9051 				if (unlikely(!bpf_global_ma_set))
9052 					return -ENOMEM;
9053 
9054 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
9055 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
9056 					return -EINVAL;
9057 				}
9058 
9059 				ret_btf = env->prog->aux->btf;
9060 				ret_btf_id = meta.arg_constant.value;
9061 
9062 				/* This may be NULL due to user not supplying a BTF */
9063 				if (!ret_btf) {
9064 					verbose(env, "bpf_obj_new requires prog BTF\n");
9065 					return -EINVAL;
9066 				}
9067 
9068 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
9069 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
9070 					verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
9071 					return -EINVAL;
9072 				}
9073 
9074 				mark_reg_known_zero(env, regs, BPF_REG_0);
9075 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
9076 				regs[BPF_REG_0].btf = ret_btf;
9077 				regs[BPF_REG_0].btf_id = ret_btf_id;
9078 
9079 				env->insn_aux_data[insn_idx].obj_new_size = ret_t->size;
9080 				env->insn_aux_data[insn_idx].kptr_struct_meta =
9081 					btf_find_struct_meta(ret_btf, ret_btf_id);
9082 			} else if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
9083 				env->insn_aux_data[insn_idx].kptr_struct_meta =
9084 					btf_find_struct_meta(meta.arg_obj_drop.btf,
9085 							     meta.arg_obj_drop.btf_id);
9086 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
9087 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
9088 				struct btf_field *field = meta.arg_list_head.field;
9089 
9090 				mark_reg_known_zero(env, regs, BPF_REG_0);
9091 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
9092 				regs[BPF_REG_0].btf = field->list_head.btf;
9093 				regs[BPF_REG_0].btf_id = field->list_head.value_btf_id;
9094 				regs[BPF_REG_0].off = field->list_head.node_offset;
9095 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
9096 				mark_reg_known_zero(env, regs, BPF_REG_0);
9097 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
9098 				regs[BPF_REG_0].btf = desc_btf;
9099 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
9100 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
9101 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
9102 				if (!ret_t || !btf_type_is_struct(ret_t)) {
9103 					verbose(env,
9104 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
9105 					return -EINVAL;
9106 				}
9107 
9108 				mark_reg_known_zero(env, regs, BPF_REG_0);
9109 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
9110 				regs[BPF_REG_0].btf = desc_btf;
9111 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
9112 			} else {
9113 				verbose(env, "kernel function %s unhandled dynamic return type\n",
9114 					meta.func_name);
9115 				return -EFAULT;
9116 			}
9117 		} else if (!__btf_type_is_struct(ptr_type)) {
9118 			if (!meta.r0_size) {
9119 				ptr_type_name = btf_name_by_offset(desc_btf,
9120 								   ptr_type->name_off);
9121 				verbose(env,
9122 					"kernel function %s returns pointer type %s %s is not supported\n",
9123 					func_name,
9124 					btf_type_str(ptr_type),
9125 					ptr_type_name);
9126 				return -EINVAL;
9127 			}
9128 
9129 			mark_reg_known_zero(env, regs, BPF_REG_0);
9130 			regs[BPF_REG_0].type = PTR_TO_MEM;
9131 			regs[BPF_REG_0].mem_size = meta.r0_size;
9132 
9133 			if (meta.r0_rdonly)
9134 				regs[BPF_REG_0].type |= MEM_RDONLY;
9135 
9136 			/* Ensures we don't access the memory after a release_reference() */
9137 			if (meta.ref_obj_id)
9138 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
9139 		} else {
9140 			mark_reg_known_zero(env, regs, BPF_REG_0);
9141 			regs[BPF_REG_0].btf = desc_btf;
9142 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
9143 			regs[BPF_REG_0].btf_id = ptr_type_id;
9144 		}
9145 
9146 		if (is_kfunc_ret_null(&meta)) {
9147 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
9148 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
9149 			regs[BPF_REG_0].id = ++env->id_gen;
9150 		}
9151 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
9152 		if (is_kfunc_acquire(&meta)) {
9153 			int id = acquire_reference_state(env, insn_idx);
9154 
9155 			if (id < 0)
9156 				return id;
9157 			if (is_kfunc_ret_null(&meta))
9158 				regs[BPF_REG_0].id = id;
9159 			regs[BPF_REG_0].ref_obj_id = id;
9160 		}
9161 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
9162 			regs[BPF_REG_0].id = ++env->id_gen;
9163 	} /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
9164 
9165 	nargs = btf_type_vlen(func_proto);
9166 	args = (const struct btf_param *)(func_proto + 1);
9167 	for (i = 0; i < nargs; i++) {
9168 		u32 regno = i + 1;
9169 
9170 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
9171 		if (btf_type_is_ptr(t))
9172 			mark_btf_func_reg_size(env, regno, sizeof(void *));
9173 		else
9174 			/* scalar. ensured by btf_check_kfunc_arg_match() */
9175 			mark_btf_func_reg_size(env, regno, t->size);
9176 	}
9177 
9178 	return 0;
9179 }
9180 
9181 static bool signed_add_overflows(s64 a, s64 b)
9182 {
9183 	/* Do the add in u64, where overflow is well-defined */
9184 	s64 res = (s64)((u64)a + (u64)b);
9185 
9186 	if (b < 0)
9187 		return res > a;
9188 	return res < a;
9189 }
9190 
9191 static bool signed_add32_overflows(s32 a, s32 b)
9192 {
9193 	/* Do the add in u32, where overflow is well-defined */
9194 	s32 res = (s32)((u32)a + (u32)b);
9195 
9196 	if (b < 0)
9197 		return res > a;
9198 	return res < a;
9199 }
9200 
9201 static bool signed_sub_overflows(s64 a, s64 b)
9202 {
9203 	/* Do the sub in u64, where overflow is well-defined */
9204 	s64 res = (s64)((u64)a - (u64)b);
9205 
9206 	if (b < 0)
9207 		return res < a;
9208 	return res > a;
9209 }
9210 
9211 static bool signed_sub32_overflows(s32 a, s32 b)
9212 {
9213 	/* Do the sub in u32, where overflow is well-defined */
9214 	s32 res = (s32)((u32)a - (u32)b);
9215 
9216 	if (b < 0)
9217 		return res < a;
9218 	return res > a;
9219 }
9220 
9221 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
9222 				  const struct bpf_reg_state *reg,
9223 				  enum bpf_reg_type type)
9224 {
9225 	bool known = tnum_is_const(reg->var_off);
9226 	s64 val = reg->var_off.value;
9227 	s64 smin = reg->smin_value;
9228 
9229 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
9230 		verbose(env, "math between %s pointer and %lld is not allowed\n",
9231 			reg_type_str(env, type), val);
9232 		return false;
9233 	}
9234 
9235 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
9236 		verbose(env, "%s pointer offset %d is not allowed\n",
9237 			reg_type_str(env, type), reg->off);
9238 		return false;
9239 	}
9240 
9241 	if (smin == S64_MIN) {
9242 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
9243 			reg_type_str(env, type));
9244 		return false;
9245 	}
9246 
9247 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
9248 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
9249 			smin, reg_type_str(env, type));
9250 		return false;
9251 	}
9252 
9253 	return true;
9254 }
9255 
9256 enum {
9257 	REASON_BOUNDS	= -1,
9258 	REASON_TYPE	= -2,
9259 	REASON_PATHS	= -3,
9260 	REASON_LIMIT	= -4,
9261 	REASON_STACK	= -5,
9262 };
9263 
9264 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
9265 			      u32 *alu_limit, bool mask_to_left)
9266 {
9267 	u32 max = 0, ptr_limit = 0;
9268 
9269 	switch (ptr_reg->type) {
9270 	case PTR_TO_STACK:
9271 		/* Offset 0 is out-of-bounds, but acceptable start for the
9272 		 * left direction, see BPF_REG_FP. Also, unknown scalar
9273 		 * offset where we would need to deal with min/max bounds is
9274 		 * currently prohibited for unprivileged.
9275 		 */
9276 		max = MAX_BPF_STACK + mask_to_left;
9277 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
9278 		break;
9279 	case PTR_TO_MAP_VALUE:
9280 		max = ptr_reg->map_ptr->value_size;
9281 		ptr_limit = (mask_to_left ?
9282 			     ptr_reg->smin_value :
9283 			     ptr_reg->umax_value) + ptr_reg->off;
9284 		break;
9285 	default:
9286 		return REASON_TYPE;
9287 	}
9288 
9289 	if (ptr_limit >= max)
9290 		return REASON_LIMIT;
9291 	*alu_limit = ptr_limit;
9292 	return 0;
9293 }
9294 
9295 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
9296 				    const struct bpf_insn *insn)
9297 {
9298 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
9299 }
9300 
9301 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
9302 				       u32 alu_state, u32 alu_limit)
9303 {
9304 	/* If we arrived here from different branches with different
9305 	 * state or limits to sanitize, then this won't work.
9306 	 */
9307 	if (aux->alu_state &&
9308 	    (aux->alu_state != alu_state ||
9309 	     aux->alu_limit != alu_limit))
9310 		return REASON_PATHS;
9311 
9312 	/* Corresponding fixup done in do_misc_fixups(). */
9313 	aux->alu_state = alu_state;
9314 	aux->alu_limit = alu_limit;
9315 	return 0;
9316 }
9317 
9318 static int sanitize_val_alu(struct bpf_verifier_env *env,
9319 			    struct bpf_insn *insn)
9320 {
9321 	struct bpf_insn_aux_data *aux = cur_aux(env);
9322 
9323 	if (can_skip_alu_sanitation(env, insn))
9324 		return 0;
9325 
9326 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
9327 }
9328 
9329 static bool sanitize_needed(u8 opcode)
9330 {
9331 	return opcode == BPF_ADD || opcode == BPF_SUB;
9332 }
9333 
9334 struct bpf_sanitize_info {
9335 	struct bpf_insn_aux_data aux;
9336 	bool mask_to_left;
9337 };
9338 
9339 static struct bpf_verifier_state *
9340 sanitize_speculative_path(struct bpf_verifier_env *env,
9341 			  const struct bpf_insn *insn,
9342 			  u32 next_idx, u32 curr_idx)
9343 {
9344 	struct bpf_verifier_state *branch;
9345 	struct bpf_reg_state *regs;
9346 
9347 	branch = push_stack(env, next_idx, curr_idx, true);
9348 	if (branch && insn) {
9349 		regs = branch->frame[branch->curframe]->regs;
9350 		if (BPF_SRC(insn->code) == BPF_K) {
9351 			mark_reg_unknown(env, regs, insn->dst_reg);
9352 		} else if (BPF_SRC(insn->code) == BPF_X) {
9353 			mark_reg_unknown(env, regs, insn->dst_reg);
9354 			mark_reg_unknown(env, regs, insn->src_reg);
9355 		}
9356 	}
9357 	return branch;
9358 }
9359 
9360 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
9361 			    struct bpf_insn *insn,
9362 			    const struct bpf_reg_state *ptr_reg,
9363 			    const struct bpf_reg_state *off_reg,
9364 			    struct bpf_reg_state *dst_reg,
9365 			    struct bpf_sanitize_info *info,
9366 			    const bool commit_window)
9367 {
9368 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
9369 	struct bpf_verifier_state *vstate = env->cur_state;
9370 	bool off_is_imm = tnum_is_const(off_reg->var_off);
9371 	bool off_is_neg = off_reg->smin_value < 0;
9372 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
9373 	u8 opcode = BPF_OP(insn->code);
9374 	u32 alu_state, alu_limit;
9375 	struct bpf_reg_state tmp;
9376 	bool ret;
9377 	int err;
9378 
9379 	if (can_skip_alu_sanitation(env, insn))
9380 		return 0;
9381 
9382 	/* We already marked aux for masking from non-speculative
9383 	 * paths, thus we got here in the first place. We only care
9384 	 * to explore bad access from here.
9385 	 */
9386 	if (vstate->speculative)
9387 		goto do_sim;
9388 
9389 	if (!commit_window) {
9390 		if (!tnum_is_const(off_reg->var_off) &&
9391 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
9392 			return REASON_BOUNDS;
9393 
9394 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
9395 				     (opcode == BPF_SUB && !off_is_neg);
9396 	}
9397 
9398 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
9399 	if (err < 0)
9400 		return err;
9401 
9402 	if (commit_window) {
9403 		/* In commit phase we narrow the masking window based on
9404 		 * the observed pointer move after the simulated operation.
9405 		 */
9406 		alu_state = info->aux.alu_state;
9407 		alu_limit = abs(info->aux.alu_limit - alu_limit);
9408 	} else {
9409 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
9410 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
9411 		alu_state |= ptr_is_dst_reg ?
9412 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
9413 
9414 		/* Limit pruning on unknown scalars to enable deep search for
9415 		 * potential masking differences from other program paths.
9416 		 */
9417 		if (!off_is_imm)
9418 			env->explore_alu_limits = true;
9419 	}
9420 
9421 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
9422 	if (err < 0)
9423 		return err;
9424 do_sim:
9425 	/* If we're in commit phase, we're done here given we already
9426 	 * pushed the truncated dst_reg into the speculative verification
9427 	 * stack.
9428 	 *
9429 	 * Also, when register is a known constant, we rewrite register-based
9430 	 * operation to immediate-based, and thus do not need masking (and as
9431 	 * a consequence, do not need to simulate the zero-truncation either).
9432 	 */
9433 	if (commit_window || off_is_imm)
9434 		return 0;
9435 
9436 	/* Simulate and find potential out-of-bounds access under
9437 	 * speculative execution from truncation as a result of
9438 	 * masking when off was not within expected range. If off
9439 	 * sits in dst, then we temporarily need to move ptr there
9440 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
9441 	 * for cases where we use K-based arithmetic in one direction
9442 	 * and truncated reg-based in the other in order to explore
9443 	 * bad access.
9444 	 */
9445 	if (!ptr_is_dst_reg) {
9446 		tmp = *dst_reg;
9447 		*dst_reg = *ptr_reg;
9448 	}
9449 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
9450 					env->insn_idx);
9451 	if (!ptr_is_dst_reg && ret)
9452 		*dst_reg = tmp;
9453 	return !ret ? REASON_STACK : 0;
9454 }
9455 
9456 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
9457 {
9458 	struct bpf_verifier_state *vstate = env->cur_state;
9459 
9460 	/* If we simulate paths under speculation, we don't update the
9461 	 * insn as 'seen' such that when we verify unreachable paths in
9462 	 * the non-speculative domain, sanitize_dead_code() can still
9463 	 * rewrite/sanitize them.
9464 	 */
9465 	if (!vstate->speculative)
9466 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9467 }
9468 
9469 static int sanitize_err(struct bpf_verifier_env *env,
9470 			const struct bpf_insn *insn, int reason,
9471 			const struct bpf_reg_state *off_reg,
9472 			const struct bpf_reg_state *dst_reg)
9473 {
9474 	static const char *err = "pointer arithmetic with it prohibited for !root";
9475 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
9476 	u32 dst = insn->dst_reg, src = insn->src_reg;
9477 
9478 	switch (reason) {
9479 	case REASON_BOUNDS:
9480 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
9481 			off_reg == dst_reg ? dst : src, err);
9482 		break;
9483 	case REASON_TYPE:
9484 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
9485 			off_reg == dst_reg ? src : dst, err);
9486 		break;
9487 	case REASON_PATHS:
9488 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
9489 			dst, op, err);
9490 		break;
9491 	case REASON_LIMIT:
9492 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
9493 			dst, op, err);
9494 		break;
9495 	case REASON_STACK:
9496 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
9497 			dst, err);
9498 		break;
9499 	default:
9500 		verbose(env, "verifier internal error: unknown reason (%d)\n",
9501 			reason);
9502 		break;
9503 	}
9504 
9505 	return -EACCES;
9506 }
9507 
9508 /* check that stack access falls within stack limits and that 'reg' doesn't
9509  * have a variable offset.
9510  *
9511  * Variable offset is prohibited for unprivileged mode for simplicity since it
9512  * requires corresponding support in Spectre masking for stack ALU.  See also
9513  * retrieve_ptr_limit().
9514  *
9515  *
9516  * 'off' includes 'reg->off'.
9517  */
9518 static int check_stack_access_for_ptr_arithmetic(
9519 				struct bpf_verifier_env *env,
9520 				int regno,
9521 				const struct bpf_reg_state *reg,
9522 				int off)
9523 {
9524 	if (!tnum_is_const(reg->var_off)) {
9525 		char tn_buf[48];
9526 
9527 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
9528 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
9529 			regno, tn_buf, off);
9530 		return -EACCES;
9531 	}
9532 
9533 	if (off >= 0 || off < -MAX_BPF_STACK) {
9534 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
9535 			"prohibited for !root; off=%d\n", regno, off);
9536 		return -EACCES;
9537 	}
9538 
9539 	return 0;
9540 }
9541 
9542 static int sanitize_check_bounds(struct bpf_verifier_env *env,
9543 				 const struct bpf_insn *insn,
9544 				 const struct bpf_reg_state *dst_reg)
9545 {
9546 	u32 dst = insn->dst_reg;
9547 
9548 	/* For unprivileged we require that resulting offset must be in bounds
9549 	 * in order to be able to sanitize access later on.
9550 	 */
9551 	if (env->bypass_spec_v1)
9552 		return 0;
9553 
9554 	switch (dst_reg->type) {
9555 	case PTR_TO_STACK:
9556 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
9557 					dst_reg->off + dst_reg->var_off.value))
9558 			return -EACCES;
9559 		break;
9560 	case PTR_TO_MAP_VALUE:
9561 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
9562 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
9563 				"prohibited for !root\n", dst);
9564 			return -EACCES;
9565 		}
9566 		break;
9567 	default:
9568 		break;
9569 	}
9570 
9571 	return 0;
9572 }
9573 
9574 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
9575  * Caller should also handle BPF_MOV case separately.
9576  * If we return -EACCES, caller may want to try again treating pointer as a
9577  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
9578  */
9579 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
9580 				   struct bpf_insn *insn,
9581 				   const struct bpf_reg_state *ptr_reg,
9582 				   const struct bpf_reg_state *off_reg)
9583 {
9584 	struct bpf_verifier_state *vstate = env->cur_state;
9585 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9586 	struct bpf_reg_state *regs = state->regs, *dst_reg;
9587 	bool known = tnum_is_const(off_reg->var_off);
9588 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
9589 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
9590 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
9591 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
9592 	struct bpf_sanitize_info info = {};
9593 	u8 opcode = BPF_OP(insn->code);
9594 	u32 dst = insn->dst_reg;
9595 	int ret;
9596 
9597 	dst_reg = &regs[dst];
9598 
9599 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
9600 	    smin_val > smax_val || umin_val > umax_val) {
9601 		/* Taint dst register if offset had invalid bounds derived from
9602 		 * e.g. dead branches.
9603 		 */
9604 		__mark_reg_unknown(env, dst_reg);
9605 		return 0;
9606 	}
9607 
9608 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
9609 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
9610 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
9611 			__mark_reg_unknown(env, dst_reg);
9612 			return 0;
9613 		}
9614 
9615 		verbose(env,
9616 			"R%d 32-bit pointer arithmetic prohibited\n",
9617 			dst);
9618 		return -EACCES;
9619 	}
9620 
9621 	if (ptr_reg->type & PTR_MAYBE_NULL) {
9622 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
9623 			dst, reg_type_str(env, ptr_reg->type));
9624 		return -EACCES;
9625 	}
9626 
9627 	switch (base_type(ptr_reg->type)) {
9628 	case CONST_PTR_TO_MAP:
9629 		/* smin_val represents the known value */
9630 		if (known && smin_val == 0 && opcode == BPF_ADD)
9631 			break;
9632 		fallthrough;
9633 	case PTR_TO_PACKET_END:
9634 	case PTR_TO_SOCKET:
9635 	case PTR_TO_SOCK_COMMON:
9636 	case PTR_TO_TCP_SOCK:
9637 	case PTR_TO_XDP_SOCK:
9638 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
9639 			dst, reg_type_str(env, ptr_reg->type));
9640 		return -EACCES;
9641 	default:
9642 		break;
9643 	}
9644 
9645 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
9646 	 * The id may be overwritten later if we create a new variable offset.
9647 	 */
9648 	dst_reg->type = ptr_reg->type;
9649 	dst_reg->id = ptr_reg->id;
9650 
9651 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
9652 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
9653 		return -EINVAL;
9654 
9655 	/* pointer types do not carry 32-bit bounds at the moment. */
9656 	__mark_reg32_unbounded(dst_reg);
9657 
9658 	if (sanitize_needed(opcode)) {
9659 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
9660 				       &info, false);
9661 		if (ret < 0)
9662 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
9663 	}
9664 
9665 	switch (opcode) {
9666 	case BPF_ADD:
9667 		/* We can take a fixed offset as long as it doesn't overflow
9668 		 * the s32 'off' field
9669 		 */
9670 		if (known && (ptr_reg->off + smin_val ==
9671 			      (s64)(s32)(ptr_reg->off + smin_val))) {
9672 			/* pointer += K.  Accumulate it into fixed offset */
9673 			dst_reg->smin_value = smin_ptr;
9674 			dst_reg->smax_value = smax_ptr;
9675 			dst_reg->umin_value = umin_ptr;
9676 			dst_reg->umax_value = umax_ptr;
9677 			dst_reg->var_off = ptr_reg->var_off;
9678 			dst_reg->off = ptr_reg->off + smin_val;
9679 			dst_reg->raw = ptr_reg->raw;
9680 			break;
9681 		}
9682 		/* A new variable offset is created.  Note that off_reg->off
9683 		 * == 0, since it's a scalar.
9684 		 * dst_reg gets the pointer type and since some positive
9685 		 * integer value was added to the pointer, give it a new 'id'
9686 		 * if it's a PTR_TO_PACKET.
9687 		 * this creates a new 'base' pointer, off_reg (variable) gets
9688 		 * added into the variable offset, and we copy the fixed offset
9689 		 * from ptr_reg.
9690 		 */
9691 		if (signed_add_overflows(smin_ptr, smin_val) ||
9692 		    signed_add_overflows(smax_ptr, smax_val)) {
9693 			dst_reg->smin_value = S64_MIN;
9694 			dst_reg->smax_value = S64_MAX;
9695 		} else {
9696 			dst_reg->smin_value = smin_ptr + smin_val;
9697 			dst_reg->smax_value = smax_ptr + smax_val;
9698 		}
9699 		if (umin_ptr + umin_val < umin_ptr ||
9700 		    umax_ptr + umax_val < umax_ptr) {
9701 			dst_reg->umin_value = 0;
9702 			dst_reg->umax_value = U64_MAX;
9703 		} else {
9704 			dst_reg->umin_value = umin_ptr + umin_val;
9705 			dst_reg->umax_value = umax_ptr + umax_val;
9706 		}
9707 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
9708 		dst_reg->off = ptr_reg->off;
9709 		dst_reg->raw = ptr_reg->raw;
9710 		if (reg_is_pkt_pointer(ptr_reg)) {
9711 			dst_reg->id = ++env->id_gen;
9712 			/* something was added to pkt_ptr, set range to zero */
9713 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
9714 		}
9715 		break;
9716 	case BPF_SUB:
9717 		if (dst_reg == off_reg) {
9718 			/* scalar -= pointer.  Creates an unknown scalar */
9719 			verbose(env, "R%d tried to subtract pointer from scalar\n",
9720 				dst);
9721 			return -EACCES;
9722 		}
9723 		/* We don't allow subtraction from FP, because (according to
9724 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
9725 		 * be able to deal with it.
9726 		 */
9727 		if (ptr_reg->type == PTR_TO_STACK) {
9728 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
9729 				dst);
9730 			return -EACCES;
9731 		}
9732 		if (known && (ptr_reg->off - smin_val ==
9733 			      (s64)(s32)(ptr_reg->off - smin_val))) {
9734 			/* pointer -= K.  Subtract it from fixed offset */
9735 			dst_reg->smin_value = smin_ptr;
9736 			dst_reg->smax_value = smax_ptr;
9737 			dst_reg->umin_value = umin_ptr;
9738 			dst_reg->umax_value = umax_ptr;
9739 			dst_reg->var_off = ptr_reg->var_off;
9740 			dst_reg->id = ptr_reg->id;
9741 			dst_reg->off = ptr_reg->off - smin_val;
9742 			dst_reg->raw = ptr_reg->raw;
9743 			break;
9744 		}
9745 		/* A new variable offset is created.  If the subtrahend is known
9746 		 * nonnegative, then any reg->range we had before is still good.
9747 		 */
9748 		if (signed_sub_overflows(smin_ptr, smax_val) ||
9749 		    signed_sub_overflows(smax_ptr, smin_val)) {
9750 			/* Overflow possible, we know nothing */
9751 			dst_reg->smin_value = S64_MIN;
9752 			dst_reg->smax_value = S64_MAX;
9753 		} else {
9754 			dst_reg->smin_value = smin_ptr - smax_val;
9755 			dst_reg->smax_value = smax_ptr - smin_val;
9756 		}
9757 		if (umin_ptr < umax_val) {
9758 			/* Overflow possible, we know nothing */
9759 			dst_reg->umin_value = 0;
9760 			dst_reg->umax_value = U64_MAX;
9761 		} else {
9762 			/* Cannot overflow (as long as bounds are consistent) */
9763 			dst_reg->umin_value = umin_ptr - umax_val;
9764 			dst_reg->umax_value = umax_ptr - umin_val;
9765 		}
9766 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
9767 		dst_reg->off = ptr_reg->off;
9768 		dst_reg->raw = ptr_reg->raw;
9769 		if (reg_is_pkt_pointer(ptr_reg)) {
9770 			dst_reg->id = ++env->id_gen;
9771 			/* something was added to pkt_ptr, set range to zero */
9772 			if (smin_val < 0)
9773 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
9774 		}
9775 		break;
9776 	case BPF_AND:
9777 	case BPF_OR:
9778 	case BPF_XOR:
9779 		/* bitwise ops on pointers are troublesome, prohibit. */
9780 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
9781 			dst, bpf_alu_string[opcode >> 4]);
9782 		return -EACCES;
9783 	default:
9784 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
9785 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
9786 			dst, bpf_alu_string[opcode >> 4]);
9787 		return -EACCES;
9788 	}
9789 
9790 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
9791 		return -EINVAL;
9792 	reg_bounds_sync(dst_reg);
9793 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
9794 		return -EACCES;
9795 	if (sanitize_needed(opcode)) {
9796 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
9797 				       &info, true);
9798 		if (ret < 0)
9799 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
9800 	}
9801 
9802 	return 0;
9803 }
9804 
9805 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
9806 				 struct bpf_reg_state *src_reg)
9807 {
9808 	s32 smin_val = src_reg->s32_min_value;
9809 	s32 smax_val = src_reg->s32_max_value;
9810 	u32 umin_val = src_reg->u32_min_value;
9811 	u32 umax_val = src_reg->u32_max_value;
9812 
9813 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
9814 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
9815 		dst_reg->s32_min_value = S32_MIN;
9816 		dst_reg->s32_max_value = S32_MAX;
9817 	} else {
9818 		dst_reg->s32_min_value += smin_val;
9819 		dst_reg->s32_max_value += smax_val;
9820 	}
9821 	if (dst_reg->u32_min_value + umin_val < umin_val ||
9822 	    dst_reg->u32_max_value + umax_val < umax_val) {
9823 		dst_reg->u32_min_value = 0;
9824 		dst_reg->u32_max_value = U32_MAX;
9825 	} else {
9826 		dst_reg->u32_min_value += umin_val;
9827 		dst_reg->u32_max_value += umax_val;
9828 	}
9829 }
9830 
9831 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
9832 			       struct bpf_reg_state *src_reg)
9833 {
9834 	s64 smin_val = src_reg->smin_value;
9835 	s64 smax_val = src_reg->smax_value;
9836 	u64 umin_val = src_reg->umin_value;
9837 	u64 umax_val = src_reg->umax_value;
9838 
9839 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
9840 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
9841 		dst_reg->smin_value = S64_MIN;
9842 		dst_reg->smax_value = S64_MAX;
9843 	} else {
9844 		dst_reg->smin_value += smin_val;
9845 		dst_reg->smax_value += smax_val;
9846 	}
9847 	if (dst_reg->umin_value + umin_val < umin_val ||
9848 	    dst_reg->umax_value + umax_val < umax_val) {
9849 		dst_reg->umin_value = 0;
9850 		dst_reg->umax_value = U64_MAX;
9851 	} else {
9852 		dst_reg->umin_value += umin_val;
9853 		dst_reg->umax_value += umax_val;
9854 	}
9855 }
9856 
9857 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
9858 				 struct bpf_reg_state *src_reg)
9859 {
9860 	s32 smin_val = src_reg->s32_min_value;
9861 	s32 smax_val = src_reg->s32_max_value;
9862 	u32 umin_val = src_reg->u32_min_value;
9863 	u32 umax_val = src_reg->u32_max_value;
9864 
9865 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
9866 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
9867 		/* Overflow possible, we know nothing */
9868 		dst_reg->s32_min_value = S32_MIN;
9869 		dst_reg->s32_max_value = S32_MAX;
9870 	} else {
9871 		dst_reg->s32_min_value -= smax_val;
9872 		dst_reg->s32_max_value -= smin_val;
9873 	}
9874 	if (dst_reg->u32_min_value < umax_val) {
9875 		/* Overflow possible, we know nothing */
9876 		dst_reg->u32_min_value = 0;
9877 		dst_reg->u32_max_value = U32_MAX;
9878 	} else {
9879 		/* Cannot overflow (as long as bounds are consistent) */
9880 		dst_reg->u32_min_value -= umax_val;
9881 		dst_reg->u32_max_value -= umin_val;
9882 	}
9883 }
9884 
9885 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
9886 			       struct bpf_reg_state *src_reg)
9887 {
9888 	s64 smin_val = src_reg->smin_value;
9889 	s64 smax_val = src_reg->smax_value;
9890 	u64 umin_val = src_reg->umin_value;
9891 	u64 umax_val = src_reg->umax_value;
9892 
9893 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
9894 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
9895 		/* Overflow possible, we know nothing */
9896 		dst_reg->smin_value = S64_MIN;
9897 		dst_reg->smax_value = S64_MAX;
9898 	} else {
9899 		dst_reg->smin_value -= smax_val;
9900 		dst_reg->smax_value -= smin_val;
9901 	}
9902 	if (dst_reg->umin_value < umax_val) {
9903 		/* Overflow possible, we know nothing */
9904 		dst_reg->umin_value = 0;
9905 		dst_reg->umax_value = U64_MAX;
9906 	} else {
9907 		/* Cannot overflow (as long as bounds are consistent) */
9908 		dst_reg->umin_value -= umax_val;
9909 		dst_reg->umax_value -= umin_val;
9910 	}
9911 }
9912 
9913 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
9914 				 struct bpf_reg_state *src_reg)
9915 {
9916 	s32 smin_val = src_reg->s32_min_value;
9917 	u32 umin_val = src_reg->u32_min_value;
9918 	u32 umax_val = src_reg->u32_max_value;
9919 
9920 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
9921 		/* Ain't nobody got time to multiply that sign */
9922 		__mark_reg32_unbounded(dst_reg);
9923 		return;
9924 	}
9925 	/* Both values are positive, so we can work with unsigned and
9926 	 * copy the result to signed (unless it exceeds S32_MAX).
9927 	 */
9928 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
9929 		/* Potential overflow, we know nothing */
9930 		__mark_reg32_unbounded(dst_reg);
9931 		return;
9932 	}
9933 	dst_reg->u32_min_value *= umin_val;
9934 	dst_reg->u32_max_value *= umax_val;
9935 	if (dst_reg->u32_max_value > S32_MAX) {
9936 		/* Overflow possible, we know nothing */
9937 		dst_reg->s32_min_value = S32_MIN;
9938 		dst_reg->s32_max_value = S32_MAX;
9939 	} else {
9940 		dst_reg->s32_min_value = dst_reg->u32_min_value;
9941 		dst_reg->s32_max_value = dst_reg->u32_max_value;
9942 	}
9943 }
9944 
9945 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
9946 			       struct bpf_reg_state *src_reg)
9947 {
9948 	s64 smin_val = src_reg->smin_value;
9949 	u64 umin_val = src_reg->umin_value;
9950 	u64 umax_val = src_reg->umax_value;
9951 
9952 	if (smin_val < 0 || dst_reg->smin_value < 0) {
9953 		/* Ain't nobody got time to multiply that sign */
9954 		__mark_reg64_unbounded(dst_reg);
9955 		return;
9956 	}
9957 	/* Both values are positive, so we can work with unsigned and
9958 	 * copy the result to signed (unless it exceeds S64_MAX).
9959 	 */
9960 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
9961 		/* Potential overflow, we know nothing */
9962 		__mark_reg64_unbounded(dst_reg);
9963 		return;
9964 	}
9965 	dst_reg->umin_value *= umin_val;
9966 	dst_reg->umax_value *= umax_val;
9967 	if (dst_reg->umax_value > S64_MAX) {
9968 		/* Overflow possible, we know nothing */
9969 		dst_reg->smin_value = S64_MIN;
9970 		dst_reg->smax_value = S64_MAX;
9971 	} else {
9972 		dst_reg->smin_value = dst_reg->umin_value;
9973 		dst_reg->smax_value = dst_reg->umax_value;
9974 	}
9975 }
9976 
9977 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
9978 				 struct bpf_reg_state *src_reg)
9979 {
9980 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
9981 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
9982 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
9983 	s32 smin_val = src_reg->s32_min_value;
9984 	u32 umax_val = src_reg->u32_max_value;
9985 
9986 	if (src_known && dst_known) {
9987 		__mark_reg32_known(dst_reg, var32_off.value);
9988 		return;
9989 	}
9990 
9991 	/* We get our minimum from the var_off, since that's inherently
9992 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
9993 	 */
9994 	dst_reg->u32_min_value = var32_off.value;
9995 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
9996 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
9997 		/* Lose signed bounds when ANDing negative numbers,
9998 		 * ain't nobody got time for that.
9999 		 */
10000 		dst_reg->s32_min_value = S32_MIN;
10001 		dst_reg->s32_max_value = S32_MAX;
10002 	} else {
10003 		/* ANDing two positives gives a positive, so safe to
10004 		 * cast result into s64.
10005 		 */
10006 		dst_reg->s32_min_value = dst_reg->u32_min_value;
10007 		dst_reg->s32_max_value = dst_reg->u32_max_value;
10008 	}
10009 }
10010 
10011 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
10012 			       struct bpf_reg_state *src_reg)
10013 {
10014 	bool src_known = tnum_is_const(src_reg->var_off);
10015 	bool dst_known = tnum_is_const(dst_reg->var_off);
10016 	s64 smin_val = src_reg->smin_value;
10017 	u64 umax_val = src_reg->umax_value;
10018 
10019 	if (src_known && dst_known) {
10020 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
10021 		return;
10022 	}
10023 
10024 	/* We get our minimum from the var_off, since that's inherently
10025 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
10026 	 */
10027 	dst_reg->umin_value = dst_reg->var_off.value;
10028 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
10029 	if (dst_reg->smin_value < 0 || smin_val < 0) {
10030 		/* Lose signed bounds when ANDing negative numbers,
10031 		 * ain't nobody got time for that.
10032 		 */
10033 		dst_reg->smin_value = S64_MIN;
10034 		dst_reg->smax_value = S64_MAX;
10035 	} else {
10036 		/* ANDing two positives gives a positive, so safe to
10037 		 * cast result into s64.
10038 		 */
10039 		dst_reg->smin_value = dst_reg->umin_value;
10040 		dst_reg->smax_value = dst_reg->umax_value;
10041 	}
10042 	/* We may learn something more from the var_off */
10043 	__update_reg_bounds(dst_reg);
10044 }
10045 
10046 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
10047 				struct bpf_reg_state *src_reg)
10048 {
10049 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
10050 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
10051 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
10052 	s32 smin_val = src_reg->s32_min_value;
10053 	u32 umin_val = src_reg->u32_min_value;
10054 
10055 	if (src_known && dst_known) {
10056 		__mark_reg32_known(dst_reg, var32_off.value);
10057 		return;
10058 	}
10059 
10060 	/* We get our maximum from the var_off, and our minimum is the
10061 	 * maximum of the operands' minima
10062 	 */
10063 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
10064 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
10065 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
10066 		/* Lose signed bounds when ORing negative numbers,
10067 		 * ain't nobody got time for that.
10068 		 */
10069 		dst_reg->s32_min_value = S32_MIN;
10070 		dst_reg->s32_max_value = S32_MAX;
10071 	} else {
10072 		/* ORing two positives gives a positive, so safe to
10073 		 * cast result into s64.
10074 		 */
10075 		dst_reg->s32_min_value = dst_reg->u32_min_value;
10076 		dst_reg->s32_max_value = dst_reg->u32_max_value;
10077 	}
10078 }
10079 
10080 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
10081 			      struct bpf_reg_state *src_reg)
10082 {
10083 	bool src_known = tnum_is_const(src_reg->var_off);
10084 	bool dst_known = tnum_is_const(dst_reg->var_off);
10085 	s64 smin_val = src_reg->smin_value;
10086 	u64 umin_val = src_reg->umin_value;
10087 
10088 	if (src_known && dst_known) {
10089 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
10090 		return;
10091 	}
10092 
10093 	/* We get our maximum from the var_off, and our minimum is the
10094 	 * maximum of the operands' minima
10095 	 */
10096 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
10097 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
10098 	if (dst_reg->smin_value < 0 || smin_val < 0) {
10099 		/* Lose signed bounds when ORing negative numbers,
10100 		 * ain't nobody got time for that.
10101 		 */
10102 		dst_reg->smin_value = S64_MIN;
10103 		dst_reg->smax_value = S64_MAX;
10104 	} else {
10105 		/* ORing two positives gives a positive, so safe to
10106 		 * cast result into s64.
10107 		 */
10108 		dst_reg->smin_value = dst_reg->umin_value;
10109 		dst_reg->smax_value = dst_reg->umax_value;
10110 	}
10111 	/* We may learn something more from the var_off */
10112 	__update_reg_bounds(dst_reg);
10113 }
10114 
10115 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
10116 				 struct bpf_reg_state *src_reg)
10117 {
10118 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
10119 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
10120 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
10121 	s32 smin_val = src_reg->s32_min_value;
10122 
10123 	if (src_known && dst_known) {
10124 		__mark_reg32_known(dst_reg, var32_off.value);
10125 		return;
10126 	}
10127 
10128 	/* We get both minimum and maximum from the var32_off. */
10129 	dst_reg->u32_min_value = var32_off.value;
10130 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
10131 
10132 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
10133 		/* XORing two positive sign numbers gives a positive,
10134 		 * so safe to cast u32 result into s32.
10135 		 */
10136 		dst_reg->s32_min_value = dst_reg->u32_min_value;
10137 		dst_reg->s32_max_value = dst_reg->u32_max_value;
10138 	} else {
10139 		dst_reg->s32_min_value = S32_MIN;
10140 		dst_reg->s32_max_value = S32_MAX;
10141 	}
10142 }
10143 
10144 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
10145 			       struct bpf_reg_state *src_reg)
10146 {
10147 	bool src_known = tnum_is_const(src_reg->var_off);
10148 	bool dst_known = tnum_is_const(dst_reg->var_off);
10149 	s64 smin_val = src_reg->smin_value;
10150 
10151 	if (src_known && dst_known) {
10152 		/* dst_reg->var_off.value has been updated earlier */
10153 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
10154 		return;
10155 	}
10156 
10157 	/* We get both minimum and maximum from the var_off. */
10158 	dst_reg->umin_value = dst_reg->var_off.value;
10159 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
10160 
10161 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
10162 		/* XORing two positive sign numbers gives a positive,
10163 		 * so safe to cast u64 result into s64.
10164 		 */
10165 		dst_reg->smin_value = dst_reg->umin_value;
10166 		dst_reg->smax_value = dst_reg->umax_value;
10167 	} else {
10168 		dst_reg->smin_value = S64_MIN;
10169 		dst_reg->smax_value = S64_MAX;
10170 	}
10171 
10172 	__update_reg_bounds(dst_reg);
10173 }
10174 
10175 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
10176 				   u64 umin_val, u64 umax_val)
10177 {
10178 	/* We lose all sign bit information (except what we can pick
10179 	 * up from var_off)
10180 	 */
10181 	dst_reg->s32_min_value = S32_MIN;
10182 	dst_reg->s32_max_value = S32_MAX;
10183 	/* If we might shift our top bit out, then we know nothing */
10184 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
10185 		dst_reg->u32_min_value = 0;
10186 		dst_reg->u32_max_value = U32_MAX;
10187 	} else {
10188 		dst_reg->u32_min_value <<= umin_val;
10189 		dst_reg->u32_max_value <<= umax_val;
10190 	}
10191 }
10192 
10193 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
10194 				 struct bpf_reg_state *src_reg)
10195 {
10196 	u32 umax_val = src_reg->u32_max_value;
10197 	u32 umin_val = src_reg->u32_min_value;
10198 	/* u32 alu operation will zext upper bits */
10199 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
10200 
10201 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
10202 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
10203 	/* Not required but being careful mark reg64 bounds as unknown so
10204 	 * that we are forced to pick them up from tnum and zext later and
10205 	 * if some path skips this step we are still safe.
10206 	 */
10207 	__mark_reg64_unbounded(dst_reg);
10208 	__update_reg32_bounds(dst_reg);
10209 }
10210 
10211 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
10212 				   u64 umin_val, u64 umax_val)
10213 {
10214 	/* Special case <<32 because it is a common compiler pattern to sign
10215 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
10216 	 * positive we know this shift will also be positive so we can track
10217 	 * bounds correctly. Otherwise we lose all sign bit information except
10218 	 * what we can pick up from var_off. Perhaps we can generalize this
10219 	 * later to shifts of any length.
10220 	 */
10221 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
10222 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
10223 	else
10224 		dst_reg->smax_value = S64_MAX;
10225 
10226 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
10227 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
10228 	else
10229 		dst_reg->smin_value = S64_MIN;
10230 
10231 	/* If we might shift our top bit out, then we know nothing */
10232 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
10233 		dst_reg->umin_value = 0;
10234 		dst_reg->umax_value = U64_MAX;
10235 	} else {
10236 		dst_reg->umin_value <<= umin_val;
10237 		dst_reg->umax_value <<= umax_val;
10238 	}
10239 }
10240 
10241 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
10242 			       struct bpf_reg_state *src_reg)
10243 {
10244 	u64 umax_val = src_reg->umax_value;
10245 	u64 umin_val = src_reg->umin_value;
10246 
10247 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
10248 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
10249 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
10250 
10251 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
10252 	/* We may learn something more from the var_off */
10253 	__update_reg_bounds(dst_reg);
10254 }
10255 
10256 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
10257 				 struct bpf_reg_state *src_reg)
10258 {
10259 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
10260 	u32 umax_val = src_reg->u32_max_value;
10261 	u32 umin_val = src_reg->u32_min_value;
10262 
10263 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
10264 	 * be negative, then either:
10265 	 * 1) src_reg might be zero, so the sign bit of the result is
10266 	 *    unknown, so we lose our signed bounds
10267 	 * 2) it's known negative, thus the unsigned bounds capture the
10268 	 *    signed bounds
10269 	 * 3) the signed bounds cross zero, so they tell us nothing
10270 	 *    about the result
10271 	 * If the value in dst_reg is known nonnegative, then again the
10272 	 * unsigned bounds capture the signed bounds.
10273 	 * Thus, in all cases it suffices to blow away our signed bounds
10274 	 * and rely on inferring new ones from the unsigned bounds and
10275 	 * var_off of the result.
10276 	 */
10277 	dst_reg->s32_min_value = S32_MIN;
10278 	dst_reg->s32_max_value = S32_MAX;
10279 
10280 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
10281 	dst_reg->u32_min_value >>= umax_val;
10282 	dst_reg->u32_max_value >>= umin_val;
10283 
10284 	__mark_reg64_unbounded(dst_reg);
10285 	__update_reg32_bounds(dst_reg);
10286 }
10287 
10288 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
10289 			       struct bpf_reg_state *src_reg)
10290 {
10291 	u64 umax_val = src_reg->umax_value;
10292 	u64 umin_val = src_reg->umin_value;
10293 
10294 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
10295 	 * be negative, then either:
10296 	 * 1) src_reg might be zero, so the sign bit of the result is
10297 	 *    unknown, so we lose our signed bounds
10298 	 * 2) it's known negative, thus the unsigned bounds capture the
10299 	 *    signed bounds
10300 	 * 3) the signed bounds cross zero, so they tell us nothing
10301 	 *    about the result
10302 	 * If the value in dst_reg is known nonnegative, then again the
10303 	 * unsigned bounds capture the signed bounds.
10304 	 * Thus, in all cases it suffices to blow away our signed bounds
10305 	 * and rely on inferring new ones from the unsigned bounds and
10306 	 * var_off of the result.
10307 	 */
10308 	dst_reg->smin_value = S64_MIN;
10309 	dst_reg->smax_value = S64_MAX;
10310 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
10311 	dst_reg->umin_value >>= umax_val;
10312 	dst_reg->umax_value >>= umin_val;
10313 
10314 	/* Its not easy to operate on alu32 bounds here because it depends
10315 	 * on bits being shifted in. Take easy way out and mark unbounded
10316 	 * so we can recalculate later from tnum.
10317 	 */
10318 	__mark_reg32_unbounded(dst_reg);
10319 	__update_reg_bounds(dst_reg);
10320 }
10321 
10322 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
10323 				  struct bpf_reg_state *src_reg)
10324 {
10325 	u64 umin_val = src_reg->u32_min_value;
10326 
10327 	/* Upon reaching here, src_known is true and
10328 	 * umax_val is equal to umin_val.
10329 	 */
10330 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
10331 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
10332 
10333 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
10334 
10335 	/* blow away the dst_reg umin_value/umax_value and rely on
10336 	 * dst_reg var_off to refine the result.
10337 	 */
10338 	dst_reg->u32_min_value = 0;
10339 	dst_reg->u32_max_value = U32_MAX;
10340 
10341 	__mark_reg64_unbounded(dst_reg);
10342 	__update_reg32_bounds(dst_reg);
10343 }
10344 
10345 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
10346 				struct bpf_reg_state *src_reg)
10347 {
10348 	u64 umin_val = src_reg->umin_value;
10349 
10350 	/* Upon reaching here, src_known is true and umax_val is equal
10351 	 * to umin_val.
10352 	 */
10353 	dst_reg->smin_value >>= umin_val;
10354 	dst_reg->smax_value >>= umin_val;
10355 
10356 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
10357 
10358 	/* blow away the dst_reg umin_value/umax_value and rely on
10359 	 * dst_reg var_off to refine the result.
10360 	 */
10361 	dst_reg->umin_value = 0;
10362 	dst_reg->umax_value = U64_MAX;
10363 
10364 	/* Its not easy to operate on alu32 bounds here because it depends
10365 	 * on bits being shifted in from upper 32-bits. Take easy way out
10366 	 * and mark unbounded so we can recalculate later from tnum.
10367 	 */
10368 	__mark_reg32_unbounded(dst_reg);
10369 	__update_reg_bounds(dst_reg);
10370 }
10371 
10372 /* WARNING: This function does calculations on 64-bit values, but the actual
10373  * execution may occur on 32-bit values. Therefore, things like bitshifts
10374  * need extra checks in the 32-bit case.
10375  */
10376 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
10377 				      struct bpf_insn *insn,
10378 				      struct bpf_reg_state *dst_reg,
10379 				      struct bpf_reg_state src_reg)
10380 {
10381 	struct bpf_reg_state *regs = cur_regs(env);
10382 	u8 opcode = BPF_OP(insn->code);
10383 	bool src_known;
10384 	s64 smin_val, smax_val;
10385 	u64 umin_val, umax_val;
10386 	s32 s32_min_val, s32_max_val;
10387 	u32 u32_min_val, u32_max_val;
10388 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
10389 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
10390 	int ret;
10391 
10392 	smin_val = src_reg.smin_value;
10393 	smax_val = src_reg.smax_value;
10394 	umin_val = src_reg.umin_value;
10395 	umax_val = src_reg.umax_value;
10396 
10397 	s32_min_val = src_reg.s32_min_value;
10398 	s32_max_val = src_reg.s32_max_value;
10399 	u32_min_val = src_reg.u32_min_value;
10400 	u32_max_val = src_reg.u32_max_value;
10401 
10402 	if (alu32) {
10403 		src_known = tnum_subreg_is_const(src_reg.var_off);
10404 		if ((src_known &&
10405 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
10406 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
10407 			/* Taint dst register if offset had invalid bounds
10408 			 * derived from e.g. dead branches.
10409 			 */
10410 			__mark_reg_unknown(env, dst_reg);
10411 			return 0;
10412 		}
10413 	} else {
10414 		src_known = tnum_is_const(src_reg.var_off);
10415 		if ((src_known &&
10416 		     (smin_val != smax_val || umin_val != umax_val)) ||
10417 		    smin_val > smax_val || umin_val > umax_val) {
10418 			/* Taint dst register if offset had invalid bounds
10419 			 * derived from e.g. dead branches.
10420 			 */
10421 			__mark_reg_unknown(env, dst_reg);
10422 			return 0;
10423 		}
10424 	}
10425 
10426 	if (!src_known &&
10427 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
10428 		__mark_reg_unknown(env, dst_reg);
10429 		return 0;
10430 	}
10431 
10432 	if (sanitize_needed(opcode)) {
10433 		ret = sanitize_val_alu(env, insn);
10434 		if (ret < 0)
10435 			return sanitize_err(env, insn, ret, NULL, NULL);
10436 	}
10437 
10438 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
10439 	 * There are two classes of instructions: The first class we track both
10440 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
10441 	 * greatest amount of precision when alu operations are mixed with jmp32
10442 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
10443 	 * and BPF_OR. This is possible because these ops have fairly easy to
10444 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
10445 	 * See alu32 verifier tests for examples. The second class of
10446 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
10447 	 * with regards to tracking sign/unsigned bounds because the bits may
10448 	 * cross subreg boundaries in the alu64 case. When this happens we mark
10449 	 * the reg unbounded in the subreg bound space and use the resulting
10450 	 * tnum to calculate an approximation of the sign/unsigned bounds.
10451 	 */
10452 	switch (opcode) {
10453 	case BPF_ADD:
10454 		scalar32_min_max_add(dst_reg, &src_reg);
10455 		scalar_min_max_add(dst_reg, &src_reg);
10456 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
10457 		break;
10458 	case BPF_SUB:
10459 		scalar32_min_max_sub(dst_reg, &src_reg);
10460 		scalar_min_max_sub(dst_reg, &src_reg);
10461 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
10462 		break;
10463 	case BPF_MUL:
10464 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
10465 		scalar32_min_max_mul(dst_reg, &src_reg);
10466 		scalar_min_max_mul(dst_reg, &src_reg);
10467 		break;
10468 	case BPF_AND:
10469 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
10470 		scalar32_min_max_and(dst_reg, &src_reg);
10471 		scalar_min_max_and(dst_reg, &src_reg);
10472 		break;
10473 	case BPF_OR:
10474 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
10475 		scalar32_min_max_or(dst_reg, &src_reg);
10476 		scalar_min_max_or(dst_reg, &src_reg);
10477 		break;
10478 	case BPF_XOR:
10479 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
10480 		scalar32_min_max_xor(dst_reg, &src_reg);
10481 		scalar_min_max_xor(dst_reg, &src_reg);
10482 		break;
10483 	case BPF_LSH:
10484 		if (umax_val >= insn_bitness) {
10485 			/* Shifts greater than 31 or 63 are undefined.
10486 			 * This includes shifts by a negative number.
10487 			 */
10488 			mark_reg_unknown(env, regs, insn->dst_reg);
10489 			break;
10490 		}
10491 		if (alu32)
10492 			scalar32_min_max_lsh(dst_reg, &src_reg);
10493 		else
10494 			scalar_min_max_lsh(dst_reg, &src_reg);
10495 		break;
10496 	case BPF_RSH:
10497 		if (umax_val >= insn_bitness) {
10498 			/* Shifts greater than 31 or 63 are undefined.
10499 			 * This includes shifts by a negative number.
10500 			 */
10501 			mark_reg_unknown(env, regs, insn->dst_reg);
10502 			break;
10503 		}
10504 		if (alu32)
10505 			scalar32_min_max_rsh(dst_reg, &src_reg);
10506 		else
10507 			scalar_min_max_rsh(dst_reg, &src_reg);
10508 		break;
10509 	case BPF_ARSH:
10510 		if (umax_val >= insn_bitness) {
10511 			/* Shifts greater than 31 or 63 are undefined.
10512 			 * This includes shifts by a negative number.
10513 			 */
10514 			mark_reg_unknown(env, regs, insn->dst_reg);
10515 			break;
10516 		}
10517 		if (alu32)
10518 			scalar32_min_max_arsh(dst_reg, &src_reg);
10519 		else
10520 			scalar_min_max_arsh(dst_reg, &src_reg);
10521 		break;
10522 	default:
10523 		mark_reg_unknown(env, regs, insn->dst_reg);
10524 		break;
10525 	}
10526 
10527 	/* ALU32 ops are zero extended into 64bit register */
10528 	if (alu32)
10529 		zext_32_to_64(dst_reg);
10530 	reg_bounds_sync(dst_reg);
10531 	return 0;
10532 }
10533 
10534 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
10535  * and var_off.
10536  */
10537 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
10538 				   struct bpf_insn *insn)
10539 {
10540 	struct bpf_verifier_state *vstate = env->cur_state;
10541 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
10542 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
10543 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
10544 	u8 opcode = BPF_OP(insn->code);
10545 	int err;
10546 
10547 	dst_reg = &regs[insn->dst_reg];
10548 	src_reg = NULL;
10549 	if (dst_reg->type != SCALAR_VALUE)
10550 		ptr_reg = dst_reg;
10551 	else
10552 		/* Make sure ID is cleared otherwise dst_reg min/max could be
10553 		 * incorrectly propagated into other registers by find_equal_scalars()
10554 		 */
10555 		dst_reg->id = 0;
10556 	if (BPF_SRC(insn->code) == BPF_X) {
10557 		src_reg = &regs[insn->src_reg];
10558 		if (src_reg->type != SCALAR_VALUE) {
10559 			if (dst_reg->type != SCALAR_VALUE) {
10560 				/* Combining two pointers by any ALU op yields
10561 				 * an arbitrary scalar. Disallow all math except
10562 				 * pointer subtraction
10563 				 */
10564 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
10565 					mark_reg_unknown(env, regs, insn->dst_reg);
10566 					return 0;
10567 				}
10568 				verbose(env, "R%d pointer %s pointer prohibited\n",
10569 					insn->dst_reg,
10570 					bpf_alu_string[opcode >> 4]);
10571 				return -EACCES;
10572 			} else {
10573 				/* scalar += pointer
10574 				 * This is legal, but we have to reverse our
10575 				 * src/dest handling in computing the range
10576 				 */
10577 				err = mark_chain_precision(env, insn->dst_reg);
10578 				if (err)
10579 					return err;
10580 				return adjust_ptr_min_max_vals(env, insn,
10581 							       src_reg, dst_reg);
10582 			}
10583 		} else if (ptr_reg) {
10584 			/* pointer += scalar */
10585 			err = mark_chain_precision(env, insn->src_reg);
10586 			if (err)
10587 				return err;
10588 			return adjust_ptr_min_max_vals(env, insn,
10589 						       dst_reg, src_reg);
10590 		} else if (dst_reg->precise) {
10591 			/* if dst_reg is precise, src_reg should be precise as well */
10592 			err = mark_chain_precision(env, insn->src_reg);
10593 			if (err)
10594 				return err;
10595 		}
10596 	} else {
10597 		/* Pretend the src is a reg with a known value, since we only
10598 		 * need to be able to read from this state.
10599 		 */
10600 		off_reg.type = SCALAR_VALUE;
10601 		__mark_reg_known(&off_reg, insn->imm);
10602 		src_reg = &off_reg;
10603 		if (ptr_reg) /* pointer += K */
10604 			return adjust_ptr_min_max_vals(env, insn,
10605 						       ptr_reg, src_reg);
10606 	}
10607 
10608 	/* Got here implies adding two SCALAR_VALUEs */
10609 	if (WARN_ON_ONCE(ptr_reg)) {
10610 		print_verifier_state(env, state, true);
10611 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
10612 		return -EINVAL;
10613 	}
10614 	if (WARN_ON(!src_reg)) {
10615 		print_verifier_state(env, state, true);
10616 		verbose(env, "verifier internal error: no src_reg\n");
10617 		return -EINVAL;
10618 	}
10619 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
10620 }
10621 
10622 /* check validity of 32-bit and 64-bit arithmetic operations */
10623 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
10624 {
10625 	struct bpf_reg_state *regs = cur_regs(env);
10626 	u8 opcode = BPF_OP(insn->code);
10627 	int err;
10628 
10629 	if (opcode == BPF_END || opcode == BPF_NEG) {
10630 		if (opcode == BPF_NEG) {
10631 			if (BPF_SRC(insn->code) != BPF_K ||
10632 			    insn->src_reg != BPF_REG_0 ||
10633 			    insn->off != 0 || insn->imm != 0) {
10634 				verbose(env, "BPF_NEG uses reserved fields\n");
10635 				return -EINVAL;
10636 			}
10637 		} else {
10638 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
10639 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
10640 			    BPF_CLASS(insn->code) == BPF_ALU64) {
10641 				verbose(env, "BPF_END uses reserved fields\n");
10642 				return -EINVAL;
10643 			}
10644 		}
10645 
10646 		/* check src operand */
10647 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10648 		if (err)
10649 			return err;
10650 
10651 		if (is_pointer_value(env, insn->dst_reg)) {
10652 			verbose(env, "R%d pointer arithmetic prohibited\n",
10653 				insn->dst_reg);
10654 			return -EACCES;
10655 		}
10656 
10657 		/* check dest operand */
10658 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
10659 		if (err)
10660 			return err;
10661 
10662 	} else if (opcode == BPF_MOV) {
10663 
10664 		if (BPF_SRC(insn->code) == BPF_X) {
10665 			if (insn->imm != 0 || insn->off != 0) {
10666 				verbose(env, "BPF_MOV uses reserved fields\n");
10667 				return -EINVAL;
10668 			}
10669 
10670 			/* check src operand */
10671 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10672 			if (err)
10673 				return err;
10674 		} else {
10675 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
10676 				verbose(env, "BPF_MOV uses reserved fields\n");
10677 				return -EINVAL;
10678 			}
10679 		}
10680 
10681 		/* check dest operand, mark as required later */
10682 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
10683 		if (err)
10684 			return err;
10685 
10686 		if (BPF_SRC(insn->code) == BPF_X) {
10687 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
10688 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
10689 
10690 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
10691 				/* case: R1 = R2
10692 				 * copy register state to dest reg
10693 				 */
10694 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
10695 					/* Assign src and dst registers the same ID
10696 					 * that will be used by find_equal_scalars()
10697 					 * to propagate min/max range.
10698 					 */
10699 					src_reg->id = ++env->id_gen;
10700 				*dst_reg = *src_reg;
10701 				dst_reg->live |= REG_LIVE_WRITTEN;
10702 				dst_reg->subreg_def = DEF_NOT_SUBREG;
10703 			} else {
10704 				/* R1 = (u32) R2 */
10705 				if (is_pointer_value(env, insn->src_reg)) {
10706 					verbose(env,
10707 						"R%d partial copy of pointer\n",
10708 						insn->src_reg);
10709 					return -EACCES;
10710 				} else if (src_reg->type == SCALAR_VALUE) {
10711 					*dst_reg = *src_reg;
10712 					/* Make sure ID is cleared otherwise
10713 					 * dst_reg min/max could be incorrectly
10714 					 * propagated into src_reg by find_equal_scalars()
10715 					 */
10716 					dst_reg->id = 0;
10717 					dst_reg->live |= REG_LIVE_WRITTEN;
10718 					dst_reg->subreg_def = env->insn_idx + 1;
10719 				} else {
10720 					mark_reg_unknown(env, regs,
10721 							 insn->dst_reg);
10722 				}
10723 				zext_32_to_64(dst_reg);
10724 				reg_bounds_sync(dst_reg);
10725 			}
10726 		} else {
10727 			/* case: R = imm
10728 			 * remember the value we stored into this reg
10729 			 */
10730 			/* clear any state __mark_reg_known doesn't set */
10731 			mark_reg_unknown(env, regs, insn->dst_reg);
10732 			regs[insn->dst_reg].type = SCALAR_VALUE;
10733 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
10734 				__mark_reg_known(regs + insn->dst_reg,
10735 						 insn->imm);
10736 			} else {
10737 				__mark_reg_known(regs + insn->dst_reg,
10738 						 (u32)insn->imm);
10739 			}
10740 		}
10741 
10742 	} else if (opcode > BPF_END) {
10743 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
10744 		return -EINVAL;
10745 
10746 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
10747 
10748 		if (BPF_SRC(insn->code) == BPF_X) {
10749 			if (insn->imm != 0 || insn->off != 0) {
10750 				verbose(env, "BPF_ALU uses reserved fields\n");
10751 				return -EINVAL;
10752 			}
10753 			/* check src1 operand */
10754 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10755 			if (err)
10756 				return err;
10757 		} else {
10758 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
10759 				verbose(env, "BPF_ALU uses reserved fields\n");
10760 				return -EINVAL;
10761 			}
10762 		}
10763 
10764 		/* check src2 operand */
10765 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10766 		if (err)
10767 			return err;
10768 
10769 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
10770 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
10771 			verbose(env, "div by zero\n");
10772 			return -EINVAL;
10773 		}
10774 
10775 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
10776 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
10777 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
10778 
10779 			if (insn->imm < 0 || insn->imm >= size) {
10780 				verbose(env, "invalid shift %d\n", insn->imm);
10781 				return -EINVAL;
10782 			}
10783 		}
10784 
10785 		/* check dest operand */
10786 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
10787 		if (err)
10788 			return err;
10789 
10790 		return adjust_reg_min_max_vals(env, insn);
10791 	}
10792 
10793 	return 0;
10794 }
10795 
10796 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
10797 				   struct bpf_reg_state *dst_reg,
10798 				   enum bpf_reg_type type,
10799 				   bool range_right_open)
10800 {
10801 	struct bpf_func_state *state;
10802 	struct bpf_reg_state *reg;
10803 	int new_range;
10804 
10805 	if (dst_reg->off < 0 ||
10806 	    (dst_reg->off == 0 && range_right_open))
10807 		/* This doesn't give us any range */
10808 		return;
10809 
10810 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
10811 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
10812 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
10813 		 * than pkt_end, but that's because it's also less than pkt.
10814 		 */
10815 		return;
10816 
10817 	new_range = dst_reg->off;
10818 	if (range_right_open)
10819 		new_range++;
10820 
10821 	/* Examples for register markings:
10822 	 *
10823 	 * pkt_data in dst register:
10824 	 *
10825 	 *   r2 = r3;
10826 	 *   r2 += 8;
10827 	 *   if (r2 > pkt_end) goto <handle exception>
10828 	 *   <access okay>
10829 	 *
10830 	 *   r2 = r3;
10831 	 *   r2 += 8;
10832 	 *   if (r2 < pkt_end) goto <access okay>
10833 	 *   <handle exception>
10834 	 *
10835 	 *   Where:
10836 	 *     r2 == dst_reg, pkt_end == src_reg
10837 	 *     r2=pkt(id=n,off=8,r=0)
10838 	 *     r3=pkt(id=n,off=0,r=0)
10839 	 *
10840 	 * pkt_data in src register:
10841 	 *
10842 	 *   r2 = r3;
10843 	 *   r2 += 8;
10844 	 *   if (pkt_end >= r2) goto <access okay>
10845 	 *   <handle exception>
10846 	 *
10847 	 *   r2 = r3;
10848 	 *   r2 += 8;
10849 	 *   if (pkt_end <= r2) goto <handle exception>
10850 	 *   <access okay>
10851 	 *
10852 	 *   Where:
10853 	 *     pkt_end == dst_reg, r2 == src_reg
10854 	 *     r2=pkt(id=n,off=8,r=0)
10855 	 *     r3=pkt(id=n,off=0,r=0)
10856 	 *
10857 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
10858 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
10859 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
10860 	 * the check.
10861 	 */
10862 
10863 	/* If our ids match, then we must have the same max_value.  And we
10864 	 * don't care about the other reg's fixed offset, since if it's too big
10865 	 * the range won't allow anything.
10866 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
10867 	 */
10868 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
10869 		if (reg->type == type && reg->id == dst_reg->id)
10870 			/* keep the maximum range already checked */
10871 			reg->range = max(reg->range, new_range);
10872 	}));
10873 }
10874 
10875 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
10876 {
10877 	struct tnum subreg = tnum_subreg(reg->var_off);
10878 	s32 sval = (s32)val;
10879 
10880 	switch (opcode) {
10881 	case BPF_JEQ:
10882 		if (tnum_is_const(subreg))
10883 			return !!tnum_equals_const(subreg, val);
10884 		break;
10885 	case BPF_JNE:
10886 		if (tnum_is_const(subreg))
10887 			return !tnum_equals_const(subreg, val);
10888 		break;
10889 	case BPF_JSET:
10890 		if ((~subreg.mask & subreg.value) & val)
10891 			return 1;
10892 		if (!((subreg.mask | subreg.value) & val))
10893 			return 0;
10894 		break;
10895 	case BPF_JGT:
10896 		if (reg->u32_min_value > val)
10897 			return 1;
10898 		else if (reg->u32_max_value <= val)
10899 			return 0;
10900 		break;
10901 	case BPF_JSGT:
10902 		if (reg->s32_min_value > sval)
10903 			return 1;
10904 		else if (reg->s32_max_value <= sval)
10905 			return 0;
10906 		break;
10907 	case BPF_JLT:
10908 		if (reg->u32_max_value < val)
10909 			return 1;
10910 		else if (reg->u32_min_value >= val)
10911 			return 0;
10912 		break;
10913 	case BPF_JSLT:
10914 		if (reg->s32_max_value < sval)
10915 			return 1;
10916 		else if (reg->s32_min_value >= sval)
10917 			return 0;
10918 		break;
10919 	case BPF_JGE:
10920 		if (reg->u32_min_value >= val)
10921 			return 1;
10922 		else if (reg->u32_max_value < val)
10923 			return 0;
10924 		break;
10925 	case BPF_JSGE:
10926 		if (reg->s32_min_value >= sval)
10927 			return 1;
10928 		else if (reg->s32_max_value < sval)
10929 			return 0;
10930 		break;
10931 	case BPF_JLE:
10932 		if (reg->u32_max_value <= val)
10933 			return 1;
10934 		else if (reg->u32_min_value > val)
10935 			return 0;
10936 		break;
10937 	case BPF_JSLE:
10938 		if (reg->s32_max_value <= sval)
10939 			return 1;
10940 		else if (reg->s32_min_value > sval)
10941 			return 0;
10942 		break;
10943 	}
10944 
10945 	return -1;
10946 }
10947 
10948 
10949 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
10950 {
10951 	s64 sval = (s64)val;
10952 
10953 	switch (opcode) {
10954 	case BPF_JEQ:
10955 		if (tnum_is_const(reg->var_off))
10956 			return !!tnum_equals_const(reg->var_off, val);
10957 		break;
10958 	case BPF_JNE:
10959 		if (tnum_is_const(reg->var_off))
10960 			return !tnum_equals_const(reg->var_off, val);
10961 		break;
10962 	case BPF_JSET:
10963 		if ((~reg->var_off.mask & reg->var_off.value) & val)
10964 			return 1;
10965 		if (!((reg->var_off.mask | reg->var_off.value) & val))
10966 			return 0;
10967 		break;
10968 	case BPF_JGT:
10969 		if (reg->umin_value > val)
10970 			return 1;
10971 		else if (reg->umax_value <= val)
10972 			return 0;
10973 		break;
10974 	case BPF_JSGT:
10975 		if (reg->smin_value > sval)
10976 			return 1;
10977 		else if (reg->smax_value <= sval)
10978 			return 0;
10979 		break;
10980 	case BPF_JLT:
10981 		if (reg->umax_value < val)
10982 			return 1;
10983 		else if (reg->umin_value >= val)
10984 			return 0;
10985 		break;
10986 	case BPF_JSLT:
10987 		if (reg->smax_value < sval)
10988 			return 1;
10989 		else if (reg->smin_value >= sval)
10990 			return 0;
10991 		break;
10992 	case BPF_JGE:
10993 		if (reg->umin_value >= val)
10994 			return 1;
10995 		else if (reg->umax_value < val)
10996 			return 0;
10997 		break;
10998 	case BPF_JSGE:
10999 		if (reg->smin_value >= sval)
11000 			return 1;
11001 		else if (reg->smax_value < sval)
11002 			return 0;
11003 		break;
11004 	case BPF_JLE:
11005 		if (reg->umax_value <= val)
11006 			return 1;
11007 		else if (reg->umin_value > val)
11008 			return 0;
11009 		break;
11010 	case BPF_JSLE:
11011 		if (reg->smax_value <= sval)
11012 			return 1;
11013 		else if (reg->smin_value > sval)
11014 			return 0;
11015 		break;
11016 	}
11017 
11018 	return -1;
11019 }
11020 
11021 /* compute branch direction of the expression "if (reg opcode val) goto target;"
11022  * and return:
11023  *  1 - branch will be taken and "goto target" will be executed
11024  *  0 - branch will not be taken and fall-through to next insn
11025  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
11026  *      range [0,10]
11027  */
11028 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
11029 			   bool is_jmp32)
11030 {
11031 	if (__is_pointer_value(false, reg)) {
11032 		if (!reg_type_not_null(reg->type))
11033 			return -1;
11034 
11035 		/* If pointer is valid tests against zero will fail so we can
11036 		 * use this to direct branch taken.
11037 		 */
11038 		if (val != 0)
11039 			return -1;
11040 
11041 		switch (opcode) {
11042 		case BPF_JEQ:
11043 			return 0;
11044 		case BPF_JNE:
11045 			return 1;
11046 		default:
11047 			return -1;
11048 		}
11049 	}
11050 
11051 	if (is_jmp32)
11052 		return is_branch32_taken(reg, val, opcode);
11053 	return is_branch64_taken(reg, val, opcode);
11054 }
11055 
11056 static int flip_opcode(u32 opcode)
11057 {
11058 	/* How can we transform "a <op> b" into "b <op> a"? */
11059 	static const u8 opcode_flip[16] = {
11060 		/* these stay the same */
11061 		[BPF_JEQ  >> 4] = BPF_JEQ,
11062 		[BPF_JNE  >> 4] = BPF_JNE,
11063 		[BPF_JSET >> 4] = BPF_JSET,
11064 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
11065 		[BPF_JGE  >> 4] = BPF_JLE,
11066 		[BPF_JGT  >> 4] = BPF_JLT,
11067 		[BPF_JLE  >> 4] = BPF_JGE,
11068 		[BPF_JLT  >> 4] = BPF_JGT,
11069 		[BPF_JSGE >> 4] = BPF_JSLE,
11070 		[BPF_JSGT >> 4] = BPF_JSLT,
11071 		[BPF_JSLE >> 4] = BPF_JSGE,
11072 		[BPF_JSLT >> 4] = BPF_JSGT
11073 	};
11074 	return opcode_flip[opcode >> 4];
11075 }
11076 
11077 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
11078 				   struct bpf_reg_state *src_reg,
11079 				   u8 opcode)
11080 {
11081 	struct bpf_reg_state *pkt;
11082 
11083 	if (src_reg->type == PTR_TO_PACKET_END) {
11084 		pkt = dst_reg;
11085 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
11086 		pkt = src_reg;
11087 		opcode = flip_opcode(opcode);
11088 	} else {
11089 		return -1;
11090 	}
11091 
11092 	if (pkt->range >= 0)
11093 		return -1;
11094 
11095 	switch (opcode) {
11096 	case BPF_JLE:
11097 		/* pkt <= pkt_end */
11098 		fallthrough;
11099 	case BPF_JGT:
11100 		/* pkt > pkt_end */
11101 		if (pkt->range == BEYOND_PKT_END)
11102 			/* pkt has at last one extra byte beyond pkt_end */
11103 			return opcode == BPF_JGT;
11104 		break;
11105 	case BPF_JLT:
11106 		/* pkt < pkt_end */
11107 		fallthrough;
11108 	case BPF_JGE:
11109 		/* pkt >= pkt_end */
11110 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
11111 			return opcode == BPF_JGE;
11112 		break;
11113 	}
11114 	return -1;
11115 }
11116 
11117 /* Adjusts the register min/max values in the case that the dst_reg is the
11118  * variable register that we are working on, and src_reg is a constant or we're
11119  * simply doing a BPF_K check.
11120  * In JEQ/JNE cases we also adjust the var_off values.
11121  */
11122 static void reg_set_min_max(struct bpf_reg_state *true_reg,
11123 			    struct bpf_reg_state *false_reg,
11124 			    u64 val, u32 val32,
11125 			    u8 opcode, bool is_jmp32)
11126 {
11127 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
11128 	struct tnum false_64off = false_reg->var_off;
11129 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
11130 	struct tnum true_64off = true_reg->var_off;
11131 	s64 sval = (s64)val;
11132 	s32 sval32 = (s32)val32;
11133 
11134 	/* If the dst_reg is a pointer, we can't learn anything about its
11135 	 * variable offset from the compare (unless src_reg were a pointer into
11136 	 * the same object, but we don't bother with that.
11137 	 * Since false_reg and true_reg have the same type by construction, we
11138 	 * only need to check one of them for pointerness.
11139 	 */
11140 	if (__is_pointer_value(false, false_reg))
11141 		return;
11142 
11143 	switch (opcode) {
11144 	/* JEQ/JNE comparison doesn't change the register equivalence.
11145 	 *
11146 	 * r1 = r2;
11147 	 * if (r1 == 42) goto label;
11148 	 * ...
11149 	 * label: // here both r1 and r2 are known to be 42.
11150 	 *
11151 	 * Hence when marking register as known preserve it's ID.
11152 	 */
11153 	case BPF_JEQ:
11154 		if (is_jmp32) {
11155 			__mark_reg32_known(true_reg, val32);
11156 			true_32off = tnum_subreg(true_reg->var_off);
11157 		} else {
11158 			___mark_reg_known(true_reg, val);
11159 			true_64off = true_reg->var_off;
11160 		}
11161 		break;
11162 	case BPF_JNE:
11163 		if (is_jmp32) {
11164 			__mark_reg32_known(false_reg, val32);
11165 			false_32off = tnum_subreg(false_reg->var_off);
11166 		} else {
11167 			___mark_reg_known(false_reg, val);
11168 			false_64off = false_reg->var_off;
11169 		}
11170 		break;
11171 	case BPF_JSET:
11172 		if (is_jmp32) {
11173 			false_32off = tnum_and(false_32off, tnum_const(~val32));
11174 			if (is_power_of_2(val32))
11175 				true_32off = tnum_or(true_32off,
11176 						     tnum_const(val32));
11177 		} else {
11178 			false_64off = tnum_and(false_64off, tnum_const(~val));
11179 			if (is_power_of_2(val))
11180 				true_64off = tnum_or(true_64off,
11181 						     tnum_const(val));
11182 		}
11183 		break;
11184 	case BPF_JGE:
11185 	case BPF_JGT:
11186 	{
11187 		if (is_jmp32) {
11188 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
11189 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
11190 
11191 			false_reg->u32_max_value = min(false_reg->u32_max_value,
11192 						       false_umax);
11193 			true_reg->u32_min_value = max(true_reg->u32_min_value,
11194 						      true_umin);
11195 		} else {
11196 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
11197 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
11198 
11199 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
11200 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
11201 		}
11202 		break;
11203 	}
11204 	case BPF_JSGE:
11205 	case BPF_JSGT:
11206 	{
11207 		if (is_jmp32) {
11208 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
11209 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
11210 
11211 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
11212 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
11213 		} else {
11214 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
11215 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
11216 
11217 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
11218 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
11219 		}
11220 		break;
11221 	}
11222 	case BPF_JLE:
11223 	case BPF_JLT:
11224 	{
11225 		if (is_jmp32) {
11226 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
11227 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
11228 
11229 			false_reg->u32_min_value = max(false_reg->u32_min_value,
11230 						       false_umin);
11231 			true_reg->u32_max_value = min(true_reg->u32_max_value,
11232 						      true_umax);
11233 		} else {
11234 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
11235 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
11236 
11237 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
11238 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
11239 		}
11240 		break;
11241 	}
11242 	case BPF_JSLE:
11243 	case BPF_JSLT:
11244 	{
11245 		if (is_jmp32) {
11246 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
11247 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
11248 
11249 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
11250 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
11251 		} else {
11252 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
11253 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
11254 
11255 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
11256 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
11257 		}
11258 		break;
11259 	}
11260 	default:
11261 		return;
11262 	}
11263 
11264 	if (is_jmp32) {
11265 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
11266 					     tnum_subreg(false_32off));
11267 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
11268 					    tnum_subreg(true_32off));
11269 		__reg_combine_32_into_64(false_reg);
11270 		__reg_combine_32_into_64(true_reg);
11271 	} else {
11272 		false_reg->var_off = false_64off;
11273 		true_reg->var_off = true_64off;
11274 		__reg_combine_64_into_32(false_reg);
11275 		__reg_combine_64_into_32(true_reg);
11276 	}
11277 }
11278 
11279 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
11280  * the variable reg.
11281  */
11282 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
11283 				struct bpf_reg_state *false_reg,
11284 				u64 val, u32 val32,
11285 				u8 opcode, bool is_jmp32)
11286 {
11287 	opcode = flip_opcode(opcode);
11288 	/* This uses zero as "not present in table"; luckily the zero opcode,
11289 	 * BPF_JA, can't get here.
11290 	 */
11291 	if (opcode)
11292 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
11293 }
11294 
11295 /* Regs are known to be equal, so intersect their min/max/var_off */
11296 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
11297 				  struct bpf_reg_state *dst_reg)
11298 {
11299 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
11300 							dst_reg->umin_value);
11301 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
11302 							dst_reg->umax_value);
11303 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
11304 							dst_reg->smin_value);
11305 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
11306 							dst_reg->smax_value);
11307 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
11308 							     dst_reg->var_off);
11309 	reg_bounds_sync(src_reg);
11310 	reg_bounds_sync(dst_reg);
11311 }
11312 
11313 static void reg_combine_min_max(struct bpf_reg_state *true_src,
11314 				struct bpf_reg_state *true_dst,
11315 				struct bpf_reg_state *false_src,
11316 				struct bpf_reg_state *false_dst,
11317 				u8 opcode)
11318 {
11319 	switch (opcode) {
11320 	case BPF_JEQ:
11321 		__reg_combine_min_max(true_src, true_dst);
11322 		break;
11323 	case BPF_JNE:
11324 		__reg_combine_min_max(false_src, false_dst);
11325 		break;
11326 	}
11327 }
11328 
11329 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
11330 				 struct bpf_reg_state *reg, u32 id,
11331 				 bool is_null)
11332 {
11333 	if (type_may_be_null(reg->type) && reg->id == id &&
11334 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
11335 		/* Old offset (both fixed and variable parts) should have been
11336 		 * known-zero, because we don't allow pointer arithmetic on
11337 		 * pointers that might be NULL. If we see this happening, don't
11338 		 * convert the register.
11339 		 *
11340 		 * But in some cases, some helpers that return local kptrs
11341 		 * advance offset for the returned pointer. In those cases, it
11342 		 * is fine to expect to see reg->off.
11343 		 */
11344 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
11345 			return;
11346 		if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL) && WARN_ON_ONCE(reg->off))
11347 			return;
11348 		if (is_null) {
11349 			reg->type = SCALAR_VALUE;
11350 			/* We don't need id and ref_obj_id from this point
11351 			 * onwards anymore, thus we should better reset it,
11352 			 * so that state pruning has chances to take effect.
11353 			 */
11354 			reg->id = 0;
11355 			reg->ref_obj_id = 0;
11356 
11357 			return;
11358 		}
11359 
11360 		mark_ptr_not_null_reg(reg);
11361 
11362 		if (!reg_may_point_to_spin_lock(reg)) {
11363 			/* For not-NULL ptr, reg->ref_obj_id will be reset
11364 			 * in release_reference().
11365 			 *
11366 			 * reg->id is still used by spin_lock ptr. Other
11367 			 * than spin_lock ptr type, reg->id can be reset.
11368 			 */
11369 			reg->id = 0;
11370 		}
11371 	}
11372 }
11373 
11374 /* The logic is similar to find_good_pkt_pointers(), both could eventually
11375  * be folded together at some point.
11376  */
11377 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
11378 				  bool is_null)
11379 {
11380 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
11381 	struct bpf_reg_state *regs = state->regs, *reg;
11382 	u32 ref_obj_id = regs[regno].ref_obj_id;
11383 	u32 id = regs[regno].id;
11384 
11385 	if (ref_obj_id && ref_obj_id == id && is_null)
11386 		/* regs[regno] is in the " == NULL" branch.
11387 		 * No one could have freed the reference state before
11388 		 * doing the NULL check.
11389 		 */
11390 		WARN_ON_ONCE(release_reference_state(state, id));
11391 
11392 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
11393 		mark_ptr_or_null_reg(state, reg, id, is_null);
11394 	}));
11395 }
11396 
11397 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
11398 				   struct bpf_reg_state *dst_reg,
11399 				   struct bpf_reg_state *src_reg,
11400 				   struct bpf_verifier_state *this_branch,
11401 				   struct bpf_verifier_state *other_branch)
11402 {
11403 	if (BPF_SRC(insn->code) != BPF_X)
11404 		return false;
11405 
11406 	/* Pointers are always 64-bit. */
11407 	if (BPF_CLASS(insn->code) == BPF_JMP32)
11408 		return false;
11409 
11410 	switch (BPF_OP(insn->code)) {
11411 	case BPF_JGT:
11412 		if ((dst_reg->type == PTR_TO_PACKET &&
11413 		     src_reg->type == PTR_TO_PACKET_END) ||
11414 		    (dst_reg->type == PTR_TO_PACKET_META &&
11415 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11416 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
11417 			find_good_pkt_pointers(this_branch, dst_reg,
11418 					       dst_reg->type, false);
11419 			mark_pkt_end(other_branch, insn->dst_reg, true);
11420 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
11421 			    src_reg->type == PTR_TO_PACKET) ||
11422 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11423 			    src_reg->type == PTR_TO_PACKET_META)) {
11424 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
11425 			find_good_pkt_pointers(other_branch, src_reg,
11426 					       src_reg->type, true);
11427 			mark_pkt_end(this_branch, insn->src_reg, false);
11428 		} else {
11429 			return false;
11430 		}
11431 		break;
11432 	case BPF_JLT:
11433 		if ((dst_reg->type == PTR_TO_PACKET &&
11434 		     src_reg->type == PTR_TO_PACKET_END) ||
11435 		    (dst_reg->type == PTR_TO_PACKET_META &&
11436 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11437 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
11438 			find_good_pkt_pointers(other_branch, dst_reg,
11439 					       dst_reg->type, true);
11440 			mark_pkt_end(this_branch, insn->dst_reg, false);
11441 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
11442 			    src_reg->type == PTR_TO_PACKET) ||
11443 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11444 			    src_reg->type == PTR_TO_PACKET_META)) {
11445 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
11446 			find_good_pkt_pointers(this_branch, src_reg,
11447 					       src_reg->type, false);
11448 			mark_pkt_end(other_branch, insn->src_reg, true);
11449 		} else {
11450 			return false;
11451 		}
11452 		break;
11453 	case BPF_JGE:
11454 		if ((dst_reg->type == PTR_TO_PACKET &&
11455 		     src_reg->type == PTR_TO_PACKET_END) ||
11456 		    (dst_reg->type == PTR_TO_PACKET_META &&
11457 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11458 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
11459 			find_good_pkt_pointers(this_branch, dst_reg,
11460 					       dst_reg->type, true);
11461 			mark_pkt_end(other_branch, insn->dst_reg, false);
11462 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
11463 			    src_reg->type == PTR_TO_PACKET) ||
11464 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11465 			    src_reg->type == PTR_TO_PACKET_META)) {
11466 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
11467 			find_good_pkt_pointers(other_branch, src_reg,
11468 					       src_reg->type, false);
11469 			mark_pkt_end(this_branch, insn->src_reg, true);
11470 		} else {
11471 			return false;
11472 		}
11473 		break;
11474 	case BPF_JLE:
11475 		if ((dst_reg->type == PTR_TO_PACKET &&
11476 		     src_reg->type == PTR_TO_PACKET_END) ||
11477 		    (dst_reg->type == PTR_TO_PACKET_META &&
11478 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11479 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
11480 			find_good_pkt_pointers(other_branch, dst_reg,
11481 					       dst_reg->type, false);
11482 			mark_pkt_end(this_branch, insn->dst_reg, true);
11483 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
11484 			    src_reg->type == PTR_TO_PACKET) ||
11485 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11486 			    src_reg->type == PTR_TO_PACKET_META)) {
11487 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
11488 			find_good_pkt_pointers(this_branch, src_reg,
11489 					       src_reg->type, true);
11490 			mark_pkt_end(other_branch, insn->src_reg, false);
11491 		} else {
11492 			return false;
11493 		}
11494 		break;
11495 	default:
11496 		return false;
11497 	}
11498 
11499 	return true;
11500 }
11501 
11502 static void find_equal_scalars(struct bpf_verifier_state *vstate,
11503 			       struct bpf_reg_state *known_reg)
11504 {
11505 	struct bpf_func_state *state;
11506 	struct bpf_reg_state *reg;
11507 
11508 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
11509 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
11510 			*reg = *known_reg;
11511 	}));
11512 }
11513 
11514 static int check_cond_jmp_op(struct bpf_verifier_env *env,
11515 			     struct bpf_insn *insn, int *insn_idx)
11516 {
11517 	struct bpf_verifier_state *this_branch = env->cur_state;
11518 	struct bpf_verifier_state *other_branch;
11519 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
11520 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
11521 	struct bpf_reg_state *eq_branch_regs;
11522 	u8 opcode = BPF_OP(insn->code);
11523 	bool is_jmp32;
11524 	int pred = -1;
11525 	int err;
11526 
11527 	/* Only conditional jumps are expected to reach here. */
11528 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
11529 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
11530 		return -EINVAL;
11531 	}
11532 
11533 	if (BPF_SRC(insn->code) == BPF_X) {
11534 		if (insn->imm != 0) {
11535 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
11536 			return -EINVAL;
11537 		}
11538 
11539 		/* check src1 operand */
11540 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
11541 		if (err)
11542 			return err;
11543 
11544 		if (is_pointer_value(env, insn->src_reg)) {
11545 			verbose(env, "R%d pointer comparison prohibited\n",
11546 				insn->src_reg);
11547 			return -EACCES;
11548 		}
11549 		src_reg = &regs[insn->src_reg];
11550 	} else {
11551 		if (insn->src_reg != BPF_REG_0) {
11552 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
11553 			return -EINVAL;
11554 		}
11555 	}
11556 
11557 	/* check src2 operand */
11558 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11559 	if (err)
11560 		return err;
11561 
11562 	dst_reg = &regs[insn->dst_reg];
11563 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
11564 
11565 	if (BPF_SRC(insn->code) == BPF_K) {
11566 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
11567 	} else if (src_reg->type == SCALAR_VALUE &&
11568 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
11569 		pred = is_branch_taken(dst_reg,
11570 				       tnum_subreg(src_reg->var_off).value,
11571 				       opcode,
11572 				       is_jmp32);
11573 	} else if (src_reg->type == SCALAR_VALUE &&
11574 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
11575 		pred = is_branch_taken(dst_reg,
11576 				       src_reg->var_off.value,
11577 				       opcode,
11578 				       is_jmp32);
11579 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
11580 		   reg_is_pkt_pointer_any(src_reg) &&
11581 		   !is_jmp32) {
11582 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
11583 	}
11584 
11585 	if (pred >= 0) {
11586 		/* If we get here with a dst_reg pointer type it is because
11587 		 * above is_branch_taken() special cased the 0 comparison.
11588 		 */
11589 		if (!__is_pointer_value(false, dst_reg))
11590 			err = mark_chain_precision(env, insn->dst_reg);
11591 		if (BPF_SRC(insn->code) == BPF_X && !err &&
11592 		    !__is_pointer_value(false, src_reg))
11593 			err = mark_chain_precision(env, insn->src_reg);
11594 		if (err)
11595 			return err;
11596 	}
11597 
11598 	if (pred == 1) {
11599 		/* Only follow the goto, ignore fall-through. If needed, push
11600 		 * the fall-through branch for simulation under speculative
11601 		 * execution.
11602 		 */
11603 		if (!env->bypass_spec_v1 &&
11604 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
11605 					       *insn_idx))
11606 			return -EFAULT;
11607 		*insn_idx += insn->off;
11608 		return 0;
11609 	} else if (pred == 0) {
11610 		/* Only follow the fall-through branch, since that's where the
11611 		 * program will go. If needed, push the goto branch for
11612 		 * simulation under speculative execution.
11613 		 */
11614 		if (!env->bypass_spec_v1 &&
11615 		    !sanitize_speculative_path(env, insn,
11616 					       *insn_idx + insn->off + 1,
11617 					       *insn_idx))
11618 			return -EFAULT;
11619 		return 0;
11620 	}
11621 
11622 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
11623 				  false);
11624 	if (!other_branch)
11625 		return -EFAULT;
11626 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
11627 
11628 	/* detect if we are comparing against a constant value so we can adjust
11629 	 * our min/max values for our dst register.
11630 	 * this is only legit if both are scalars (or pointers to the same
11631 	 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
11632 	 * because otherwise the different base pointers mean the offsets aren't
11633 	 * comparable.
11634 	 */
11635 	if (BPF_SRC(insn->code) == BPF_X) {
11636 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
11637 
11638 		if (dst_reg->type == SCALAR_VALUE &&
11639 		    src_reg->type == SCALAR_VALUE) {
11640 			if (tnum_is_const(src_reg->var_off) ||
11641 			    (is_jmp32 &&
11642 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
11643 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
11644 						dst_reg,
11645 						src_reg->var_off.value,
11646 						tnum_subreg(src_reg->var_off).value,
11647 						opcode, is_jmp32);
11648 			else if (tnum_is_const(dst_reg->var_off) ||
11649 				 (is_jmp32 &&
11650 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
11651 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
11652 						    src_reg,
11653 						    dst_reg->var_off.value,
11654 						    tnum_subreg(dst_reg->var_off).value,
11655 						    opcode, is_jmp32);
11656 			else if (!is_jmp32 &&
11657 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
11658 				/* Comparing for equality, we can combine knowledge */
11659 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
11660 						    &other_branch_regs[insn->dst_reg],
11661 						    src_reg, dst_reg, opcode);
11662 			if (src_reg->id &&
11663 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
11664 				find_equal_scalars(this_branch, src_reg);
11665 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
11666 			}
11667 
11668 		}
11669 	} else if (dst_reg->type == SCALAR_VALUE) {
11670 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
11671 					dst_reg, insn->imm, (u32)insn->imm,
11672 					opcode, is_jmp32);
11673 	}
11674 
11675 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
11676 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
11677 		find_equal_scalars(this_branch, dst_reg);
11678 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
11679 	}
11680 
11681 	/* if one pointer register is compared to another pointer
11682 	 * register check if PTR_MAYBE_NULL could be lifted.
11683 	 * E.g. register A - maybe null
11684 	 *      register B - not null
11685 	 * for JNE A, B, ... - A is not null in the false branch;
11686 	 * for JEQ A, B, ... - A is not null in the true branch.
11687 	 */
11688 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
11689 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
11690 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type)) {
11691 		eq_branch_regs = NULL;
11692 		switch (opcode) {
11693 		case BPF_JEQ:
11694 			eq_branch_regs = other_branch_regs;
11695 			break;
11696 		case BPF_JNE:
11697 			eq_branch_regs = regs;
11698 			break;
11699 		default:
11700 			/* do nothing */
11701 			break;
11702 		}
11703 		if (eq_branch_regs) {
11704 			if (type_may_be_null(src_reg->type))
11705 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
11706 			else
11707 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
11708 		}
11709 	}
11710 
11711 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
11712 	 * NOTE: these optimizations below are related with pointer comparison
11713 	 *       which will never be JMP32.
11714 	 */
11715 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
11716 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
11717 	    type_may_be_null(dst_reg->type)) {
11718 		/* Mark all identical registers in each branch as either
11719 		 * safe or unknown depending R == 0 or R != 0 conditional.
11720 		 */
11721 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
11722 				      opcode == BPF_JNE);
11723 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
11724 				      opcode == BPF_JEQ);
11725 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
11726 					   this_branch, other_branch) &&
11727 		   is_pointer_value(env, insn->dst_reg)) {
11728 		verbose(env, "R%d pointer comparison prohibited\n",
11729 			insn->dst_reg);
11730 		return -EACCES;
11731 	}
11732 	if (env->log.level & BPF_LOG_LEVEL)
11733 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
11734 	return 0;
11735 }
11736 
11737 /* verify BPF_LD_IMM64 instruction */
11738 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
11739 {
11740 	struct bpf_insn_aux_data *aux = cur_aux(env);
11741 	struct bpf_reg_state *regs = cur_regs(env);
11742 	struct bpf_reg_state *dst_reg;
11743 	struct bpf_map *map;
11744 	int err;
11745 
11746 	if (BPF_SIZE(insn->code) != BPF_DW) {
11747 		verbose(env, "invalid BPF_LD_IMM insn\n");
11748 		return -EINVAL;
11749 	}
11750 	if (insn->off != 0) {
11751 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
11752 		return -EINVAL;
11753 	}
11754 
11755 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
11756 	if (err)
11757 		return err;
11758 
11759 	dst_reg = &regs[insn->dst_reg];
11760 	if (insn->src_reg == 0) {
11761 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
11762 
11763 		dst_reg->type = SCALAR_VALUE;
11764 		__mark_reg_known(&regs[insn->dst_reg], imm);
11765 		return 0;
11766 	}
11767 
11768 	/* All special src_reg cases are listed below. From this point onwards
11769 	 * we either succeed and assign a corresponding dst_reg->type after
11770 	 * zeroing the offset, or fail and reject the program.
11771 	 */
11772 	mark_reg_known_zero(env, regs, insn->dst_reg);
11773 
11774 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
11775 		dst_reg->type = aux->btf_var.reg_type;
11776 		switch (base_type(dst_reg->type)) {
11777 		case PTR_TO_MEM:
11778 			dst_reg->mem_size = aux->btf_var.mem_size;
11779 			break;
11780 		case PTR_TO_BTF_ID:
11781 			dst_reg->btf = aux->btf_var.btf;
11782 			dst_reg->btf_id = aux->btf_var.btf_id;
11783 			break;
11784 		default:
11785 			verbose(env, "bpf verifier is misconfigured\n");
11786 			return -EFAULT;
11787 		}
11788 		return 0;
11789 	}
11790 
11791 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
11792 		struct bpf_prog_aux *aux = env->prog->aux;
11793 		u32 subprogno = find_subprog(env,
11794 					     env->insn_idx + insn->imm + 1);
11795 
11796 		if (!aux->func_info) {
11797 			verbose(env, "missing btf func_info\n");
11798 			return -EINVAL;
11799 		}
11800 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
11801 			verbose(env, "callback function not static\n");
11802 			return -EINVAL;
11803 		}
11804 
11805 		dst_reg->type = PTR_TO_FUNC;
11806 		dst_reg->subprogno = subprogno;
11807 		return 0;
11808 	}
11809 
11810 	map = env->used_maps[aux->map_index];
11811 	dst_reg->map_ptr = map;
11812 
11813 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
11814 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
11815 		dst_reg->type = PTR_TO_MAP_VALUE;
11816 		dst_reg->off = aux->map_off;
11817 		WARN_ON_ONCE(map->max_entries != 1);
11818 		/* We want reg->id to be same (0) as map_value is not distinct */
11819 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
11820 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
11821 		dst_reg->type = CONST_PTR_TO_MAP;
11822 	} else {
11823 		verbose(env, "bpf verifier is misconfigured\n");
11824 		return -EINVAL;
11825 	}
11826 
11827 	return 0;
11828 }
11829 
11830 static bool may_access_skb(enum bpf_prog_type type)
11831 {
11832 	switch (type) {
11833 	case BPF_PROG_TYPE_SOCKET_FILTER:
11834 	case BPF_PROG_TYPE_SCHED_CLS:
11835 	case BPF_PROG_TYPE_SCHED_ACT:
11836 		return true;
11837 	default:
11838 		return false;
11839 	}
11840 }
11841 
11842 /* verify safety of LD_ABS|LD_IND instructions:
11843  * - they can only appear in the programs where ctx == skb
11844  * - since they are wrappers of function calls, they scratch R1-R5 registers,
11845  *   preserve R6-R9, and store return value into R0
11846  *
11847  * Implicit input:
11848  *   ctx == skb == R6 == CTX
11849  *
11850  * Explicit input:
11851  *   SRC == any register
11852  *   IMM == 32-bit immediate
11853  *
11854  * Output:
11855  *   R0 - 8/16/32-bit skb data converted to cpu endianness
11856  */
11857 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
11858 {
11859 	struct bpf_reg_state *regs = cur_regs(env);
11860 	static const int ctx_reg = BPF_REG_6;
11861 	u8 mode = BPF_MODE(insn->code);
11862 	int i, err;
11863 
11864 	if (!may_access_skb(resolve_prog_type(env->prog))) {
11865 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
11866 		return -EINVAL;
11867 	}
11868 
11869 	if (!env->ops->gen_ld_abs) {
11870 		verbose(env, "bpf verifier is misconfigured\n");
11871 		return -EINVAL;
11872 	}
11873 
11874 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
11875 	    BPF_SIZE(insn->code) == BPF_DW ||
11876 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
11877 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
11878 		return -EINVAL;
11879 	}
11880 
11881 	/* check whether implicit source operand (register R6) is readable */
11882 	err = check_reg_arg(env, ctx_reg, SRC_OP);
11883 	if (err)
11884 		return err;
11885 
11886 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
11887 	 * gen_ld_abs() may terminate the program at runtime, leading to
11888 	 * reference leak.
11889 	 */
11890 	err = check_reference_leak(env);
11891 	if (err) {
11892 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
11893 		return err;
11894 	}
11895 
11896 	if (env->cur_state->active_lock.ptr) {
11897 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
11898 		return -EINVAL;
11899 	}
11900 
11901 	if (env->cur_state->active_rcu_lock) {
11902 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
11903 		return -EINVAL;
11904 	}
11905 
11906 	if (regs[ctx_reg].type != PTR_TO_CTX) {
11907 		verbose(env,
11908 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
11909 		return -EINVAL;
11910 	}
11911 
11912 	if (mode == BPF_IND) {
11913 		/* check explicit source operand */
11914 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
11915 		if (err)
11916 			return err;
11917 	}
11918 
11919 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
11920 	if (err < 0)
11921 		return err;
11922 
11923 	/* reset caller saved regs to unreadable */
11924 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
11925 		mark_reg_not_init(env, regs, caller_saved[i]);
11926 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
11927 	}
11928 
11929 	/* mark destination R0 register as readable, since it contains
11930 	 * the value fetched from the packet.
11931 	 * Already marked as written above.
11932 	 */
11933 	mark_reg_unknown(env, regs, BPF_REG_0);
11934 	/* ld_abs load up to 32-bit skb data. */
11935 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
11936 	return 0;
11937 }
11938 
11939 static int check_return_code(struct bpf_verifier_env *env)
11940 {
11941 	struct tnum enforce_attach_type_range = tnum_unknown;
11942 	const struct bpf_prog *prog = env->prog;
11943 	struct bpf_reg_state *reg;
11944 	struct tnum range = tnum_range(0, 1);
11945 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
11946 	int err;
11947 	struct bpf_func_state *frame = env->cur_state->frame[0];
11948 	const bool is_subprog = frame->subprogno;
11949 
11950 	/* LSM and struct_ops func-ptr's return type could be "void" */
11951 	if (!is_subprog) {
11952 		switch (prog_type) {
11953 		case BPF_PROG_TYPE_LSM:
11954 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
11955 				/* See below, can be 0 or 0-1 depending on hook. */
11956 				break;
11957 			fallthrough;
11958 		case BPF_PROG_TYPE_STRUCT_OPS:
11959 			if (!prog->aux->attach_func_proto->type)
11960 				return 0;
11961 			break;
11962 		default:
11963 			break;
11964 		}
11965 	}
11966 
11967 	/* eBPF calling convention is such that R0 is used
11968 	 * to return the value from eBPF program.
11969 	 * Make sure that it's readable at this time
11970 	 * of bpf_exit, which means that program wrote
11971 	 * something into it earlier
11972 	 */
11973 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
11974 	if (err)
11975 		return err;
11976 
11977 	if (is_pointer_value(env, BPF_REG_0)) {
11978 		verbose(env, "R0 leaks addr as return value\n");
11979 		return -EACCES;
11980 	}
11981 
11982 	reg = cur_regs(env) + BPF_REG_0;
11983 
11984 	if (frame->in_async_callback_fn) {
11985 		/* enforce return zero from async callbacks like timer */
11986 		if (reg->type != SCALAR_VALUE) {
11987 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
11988 				reg_type_str(env, reg->type));
11989 			return -EINVAL;
11990 		}
11991 
11992 		if (!tnum_in(tnum_const(0), reg->var_off)) {
11993 			verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
11994 			return -EINVAL;
11995 		}
11996 		return 0;
11997 	}
11998 
11999 	if (is_subprog) {
12000 		if (reg->type != SCALAR_VALUE) {
12001 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
12002 				reg_type_str(env, reg->type));
12003 			return -EINVAL;
12004 		}
12005 		return 0;
12006 	}
12007 
12008 	switch (prog_type) {
12009 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
12010 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
12011 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
12012 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
12013 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
12014 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
12015 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
12016 			range = tnum_range(1, 1);
12017 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
12018 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
12019 			range = tnum_range(0, 3);
12020 		break;
12021 	case BPF_PROG_TYPE_CGROUP_SKB:
12022 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
12023 			range = tnum_range(0, 3);
12024 			enforce_attach_type_range = tnum_range(2, 3);
12025 		}
12026 		break;
12027 	case BPF_PROG_TYPE_CGROUP_SOCK:
12028 	case BPF_PROG_TYPE_SOCK_OPS:
12029 	case BPF_PROG_TYPE_CGROUP_DEVICE:
12030 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
12031 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
12032 		break;
12033 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
12034 		if (!env->prog->aux->attach_btf_id)
12035 			return 0;
12036 		range = tnum_const(0);
12037 		break;
12038 	case BPF_PROG_TYPE_TRACING:
12039 		switch (env->prog->expected_attach_type) {
12040 		case BPF_TRACE_FENTRY:
12041 		case BPF_TRACE_FEXIT:
12042 			range = tnum_const(0);
12043 			break;
12044 		case BPF_TRACE_RAW_TP:
12045 		case BPF_MODIFY_RETURN:
12046 			return 0;
12047 		case BPF_TRACE_ITER:
12048 			break;
12049 		default:
12050 			return -ENOTSUPP;
12051 		}
12052 		break;
12053 	case BPF_PROG_TYPE_SK_LOOKUP:
12054 		range = tnum_range(SK_DROP, SK_PASS);
12055 		break;
12056 
12057 	case BPF_PROG_TYPE_LSM:
12058 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
12059 			/* Regular BPF_PROG_TYPE_LSM programs can return
12060 			 * any value.
12061 			 */
12062 			return 0;
12063 		}
12064 		if (!env->prog->aux->attach_func_proto->type) {
12065 			/* Make sure programs that attach to void
12066 			 * hooks don't try to modify return value.
12067 			 */
12068 			range = tnum_range(1, 1);
12069 		}
12070 		break;
12071 
12072 	case BPF_PROG_TYPE_EXT:
12073 		/* freplace program can return anything as its return value
12074 		 * depends on the to-be-replaced kernel func or bpf program.
12075 		 */
12076 	default:
12077 		return 0;
12078 	}
12079 
12080 	if (reg->type != SCALAR_VALUE) {
12081 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
12082 			reg_type_str(env, reg->type));
12083 		return -EINVAL;
12084 	}
12085 
12086 	if (!tnum_in(range, reg->var_off)) {
12087 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
12088 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
12089 		    prog_type == BPF_PROG_TYPE_LSM &&
12090 		    !prog->aux->attach_func_proto->type)
12091 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
12092 		return -EINVAL;
12093 	}
12094 
12095 	if (!tnum_is_unknown(enforce_attach_type_range) &&
12096 	    tnum_in(enforce_attach_type_range, reg->var_off))
12097 		env->prog->enforce_expected_attach_type = 1;
12098 	return 0;
12099 }
12100 
12101 /* non-recursive DFS pseudo code
12102  * 1  procedure DFS-iterative(G,v):
12103  * 2      label v as discovered
12104  * 3      let S be a stack
12105  * 4      S.push(v)
12106  * 5      while S is not empty
12107  * 6            t <- S.peek()
12108  * 7            if t is what we're looking for:
12109  * 8                return t
12110  * 9            for all edges e in G.adjacentEdges(t) do
12111  * 10               if edge e is already labelled
12112  * 11                   continue with the next edge
12113  * 12               w <- G.adjacentVertex(t,e)
12114  * 13               if vertex w is not discovered and not explored
12115  * 14                   label e as tree-edge
12116  * 15                   label w as discovered
12117  * 16                   S.push(w)
12118  * 17                   continue at 5
12119  * 18               else if vertex w is discovered
12120  * 19                   label e as back-edge
12121  * 20               else
12122  * 21                   // vertex w is explored
12123  * 22                   label e as forward- or cross-edge
12124  * 23           label t as explored
12125  * 24           S.pop()
12126  *
12127  * convention:
12128  * 0x10 - discovered
12129  * 0x11 - discovered and fall-through edge labelled
12130  * 0x12 - discovered and fall-through and branch edges labelled
12131  * 0x20 - explored
12132  */
12133 
12134 enum {
12135 	DISCOVERED = 0x10,
12136 	EXPLORED = 0x20,
12137 	FALLTHROUGH = 1,
12138 	BRANCH = 2,
12139 };
12140 
12141 static u32 state_htab_size(struct bpf_verifier_env *env)
12142 {
12143 	return env->prog->len;
12144 }
12145 
12146 static struct bpf_verifier_state_list **explored_state(
12147 					struct bpf_verifier_env *env,
12148 					int idx)
12149 {
12150 	struct bpf_verifier_state *cur = env->cur_state;
12151 	struct bpf_func_state *state = cur->frame[cur->curframe];
12152 
12153 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
12154 }
12155 
12156 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
12157 {
12158 	env->insn_aux_data[idx].prune_point = true;
12159 }
12160 
12161 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
12162 {
12163 	return env->insn_aux_data[insn_idx].prune_point;
12164 }
12165 
12166 enum {
12167 	DONE_EXPLORING = 0,
12168 	KEEP_EXPLORING = 1,
12169 };
12170 
12171 /* t, w, e - match pseudo-code above:
12172  * t - index of current instruction
12173  * w - next instruction
12174  * e - edge
12175  */
12176 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
12177 		     bool loop_ok)
12178 {
12179 	int *insn_stack = env->cfg.insn_stack;
12180 	int *insn_state = env->cfg.insn_state;
12181 
12182 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
12183 		return DONE_EXPLORING;
12184 
12185 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
12186 		return DONE_EXPLORING;
12187 
12188 	if (w < 0 || w >= env->prog->len) {
12189 		verbose_linfo(env, t, "%d: ", t);
12190 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
12191 		return -EINVAL;
12192 	}
12193 
12194 	if (e == BRANCH) {
12195 		/* mark branch target for state pruning */
12196 		mark_prune_point(env, w);
12197 		mark_jmp_point(env, w);
12198 	}
12199 
12200 	if (insn_state[w] == 0) {
12201 		/* tree-edge */
12202 		insn_state[t] = DISCOVERED | e;
12203 		insn_state[w] = DISCOVERED;
12204 		if (env->cfg.cur_stack >= env->prog->len)
12205 			return -E2BIG;
12206 		insn_stack[env->cfg.cur_stack++] = w;
12207 		return KEEP_EXPLORING;
12208 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
12209 		if (loop_ok && env->bpf_capable)
12210 			return DONE_EXPLORING;
12211 		verbose_linfo(env, t, "%d: ", t);
12212 		verbose_linfo(env, w, "%d: ", w);
12213 		verbose(env, "back-edge from insn %d to %d\n", t, w);
12214 		return -EINVAL;
12215 	} else if (insn_state[w] == EXPLORED) {
12216 		/* forward- or cross-edge */
12217 		insn_state[t] = DISCOVERED | e;
12218 	} else {
12219 		verbose(env, "insn state internal bug\n");
12220 		return -EFAULT;
12221 	}
12222 	return DONE_EXPLORING;
12223 }
12224 
12225 static int visit_func_call_insn(int t, int insn_cnt,
12226 				struct bpf_insn *insns,
12227 				struct bpf_verifier_env *env,
12228 				bool visit_callee)
12229 {
12230 	int ret;
12231 
12232 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
12233 	if (ret)
12234 		return ret;
12235 
12236 	mark_prune_point(env, t + 1);
12237 	/* when we exit from subprog, we need to record non-linear history */
12238 	mark_jmp_point(env, t + 1);
12239 
12240 	if (visit_callee) {
12241 		mark_prune_point(env, t);
12242 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
12243 				/* It's ok to allow recursion from CFG point of
12244 				 * view. __check_func_call() will do the actual
12245 				 * check.
12246 				 */
12247 				bpf_pseudo_func(insns + t));
12248 	}
12249 	return ret;
12250 }
12251 
12252 /* Visits the instruction at index t and returns one of the following:
12253  *  < 0 - an error occurred
12254  *  DONE_EXPLORING - the instruction was fully explored
12255  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
12256  */
12257 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
12258 {
12259 	struct bpf_insn *insns = env->prog->insnsi;
12260 	int ret;
12261 
12262 	if (bpf_pseudo_func(insns + t))
12263 		return visit_func_call_insn(t, insn_cnt, insns, env, true);
12264 
12265 	/* All non-branch instructions have a single fall-through edge. */
12266 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
12267 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
12268 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
12269 
12270 	switch (BPF_OP(insns[t].code)) {
12271 	case BPF_EXIT:
12272 		return DONE_EXPLORING;
12273 
12274 	case BPF_CALL:
12275 		if (insns[t].imm == BPF_FUNC_timer_set_callback)
12276 			/* Mark this call insn as a prune point to trigger
12277 			 * is_state_visited() check before call itself is
12278 			 * processed by __check_func_call(). Otherwise new
12279 			 * async state will be pushed for further exploration.
12280 			 */
12281 			mark_prune_point(env, t);
12282 		return visit_func_call_insn(t, insn_cnt, insns, env,
12283 					    insns[t].src_reg == BPF_PSEUDO_CALL);
12284 
12285 	case BPF_JA:
12286 		if (BPF_SRC(insns[t].code) != BPF_K)
12287 			return -EINVAL;
12288 
12289 		/* unconditional jump with single edge */
12290 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
12291 				true);
12292 		if (ret)
12293 			return ret;
12294 
12295 		mark_prune_point(env, t + insns[t].off + 1);
12296 		mark_jmp_point(env, t + insns[t].off + 1);
12297 
12298 		return ret;
12299 
12300 	default:
12301 		/* conditional jump with two edges */
12302 		mark_prune_point(env, t);
12303 
12304 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
12305 		if (ret)
12306 			return ret;
12307 
12308 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
12309 	}
12310 }
12311 
12312 /* non-recursive depth-first-search to detect loops in BPF program
12313  * loop == back-edge in directed graph
12314  */
12315 static int check_cfg(struct bpf_verifier_env *env)
12316 {
12317 	int insn_cnt = env->prog->len;
12318 	int *insn_stack, *insn_state;
12319 	int ret = 0;
12320 	int i;
12321 
12322 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
12323 	if (!insn_state)
12324 		return -ENOMEM;
12325 
12326 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
12327 	if (!insn_stack) {
12328 		kvfree(insn_state);
12329 		return -ENOMEM;
12330 	}
12331 
12332 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
12333 	insn_stack[0] = 0; /* 0 is the first instruction */
12334 	env->cfg.cur_stack = 1;
12335 
12336 	while (env->cfg.cur_stack > 0) {
12337 		int t = insn_stack[env->cfg.cur_stack - 1];
12338 
12339 		ret = visit_insn(t, insn_cnt, env);
12340 		switch (ret) {
12341 		case DONE_EXPLORING:
12342 			insn_state[t] = EXPLORED;
12343 			env->cfg.cur_stack--;
12344 			break;
12345 		case KEEP_EXPLORING:
12346 			break;
12347 		default:
12348 			if (ret > 0) {
12349 				verbose(env, "visit_insn internal bug\n");
12350 				ret = -EFAULT;
12351 			}
12352 			goto err_free;
12353 		}
12354 	}
12355 
12356 	if (env->cfg.cur_stack < 0) {
12357 		verbose(env, "pop stack internal bug\n");
12358 		ret = -EFAULT;
12359 		goto err_free;
12360 	}
12361 
12362 	for (i = 0; i < insn_cnt; i++) {
12363 		if (insn_state[i] != EXPLORED) {
12364 			verbose(env, "unreachable insn %d\n", i);
12365 			ret = -EINVAL;
12366 			goto err_free;
12367 		}
12368 	}
12369 	ret = 0; /* cfg looks good */
12370 
12371 err_free:
12372 	kvfree(insn_state);
12373 	kvfree(insn_stack);
12374 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
12375 	return ret;
12376 }
12377 
12378 static int check_abnormal_return(struct bpf_verifier_env *env)
12379 {
12380 	int i;
12381 
12382 	for (i = 1; i < env->subprog_cnt; i++) {
12383 		if (env->subprog_info[i].has_ld_abs) {
12384 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
12385 			return -EINVAL;
12386 		}
12387 		if (env->subprog_info[i].has_tail_call) {
12388 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
12389 			return -EINVAL;
12390 		}
12391 	}
12392 	return 0;
12393 }
12394 
12395 /* The minimum supported BTF func info size */
12396 #define MIN_BPF_FUNCINFO_SIZE	8
12397 #define MAX_FUNCINFO_REC_SIZE	252
12398 
12399 static int check_btf_func(struct bpf_verifier_env *env,
12400 			  const union bpf_attr *attr,
12401 			  bpfptr_t uattr)
12402 {
12403 	const struct btf_type *type, *func_proto, *ret_type;
12404 	u32 i, nfuncs, urec_size, min_size;
12405 	u32 krec_size = sizeof(struct bpf_func_info);
12406 	struct bpf_func_info *krecord;
12407 	struct bpf_func_info_aux *info_aux = NULL;
12408 	struct bpf_prog *prog;
12409 	const struct btf *btf;
12410 	bpfptr_t urecord;
12411 	u32 prev_offset = 0;
12412 	bool scalar_return;
12413 	int ret = -ENOMEM;
12414 
12415 	nfuncs = attr->func_info_cnt;
12416 	if (!nfuncs) {
12417 		if (check_abnormal_return(env))
12418 			return -EINVAL;
12419 		return 0;
12420 	}
12421 
12422 	if (nfuncs != env->subprog_cnt) {
12423 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
12424 		return -EINVAL;
12425 	}
12426 
12427 	urec_size = attr->func_info_rec_size;
12428 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
12429 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
12430 	    urec_size % sizeof(u32)) {
12431 		verbose(env, "invalid func info rec size %u\n", urec_size);
12432 		return -EINVAL;
12433 	}
12434 
12435 	prog = env->prog;
12436 	btf = prog->aux->btf;
12437 
12438 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
12439 	min_size = min_t(u32, krec_size, urec_size);
12440 
12441 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
12442 	if (!krecord)
12443 		return -ENOMEM;
12444 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
12445 	if (!info_aux)
12446 		goto err_free;
12447 
12448 	for (i = 0; i < nfuncs; i++) {
12449 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
12450 		if (ret) {
12451 			if (ret == -E2BIG) {
12452 				verbose(env, "nonzero tailing record in func info");
12453 				/* set the size kernel expects so loader can zero
12454 				 * out the rest of the record.
12455 				 */
12456 				if (copy_to_bpfptr_offset(uattr,
12457 							  offsetof(union bpf_attr, func_info_rec_size),
12458 							  &min_size, sizeof(min_size)))
12459 					ret = -EFAULT;
12460 			}
12461 			goto err_free;
12462 		}
12463 
12464 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
12465 			ret = -EFAULT;
12466 			goto err_free;
12467 		}
12468 
12469 		/* check insn_off */
12470 		ret = -EINVAL;
12471 		if (i == 0) {
12472 			if (krecord[i].insn_off) {
12473 				verbose(env,
12474 					"nonzero insn_off %u for the first func info record",
12475 					krecord[i].insn_off);
12476 				goto err_free;
12477 			}
12478 		} else if (krecord[i].insn_off <= prev_offset) {
12479 			verbose(env,
12480 				"same or smaller insn offset (%u) than previous func info record (%u)",
12481 				krecord[i].insn_off, prev_offset);
12482 			goto err_free;
12483 		}
12484 
12485 		if (env->subprog_info[i].start != krecord[i].insn_off) {
12486 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
12487 			goto err_free;
12488 		}
12489 
12490 		/* check type_id */
12491 		type = btf_type_by_id(btf, krecord[i].type_id);
12492 		if (!type || !btf_type_is_func(type)) {
12493 			verbose(env, "invalid type id %d in func info",
12494 				krecord[i].type_id);
12495 			goto err_free;
12496 		}
12497 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
12498 
12499 		func_proto = btf_type_by_id(btf, type->type);
12500 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
12501 			/* btf_func_check() already verified it during BTF load */
12502 			goto err_free;
12503 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
12504 		scalar_return =
12505 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
12506 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
12507 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
12508 			goto err_free;
12509 		}
12510 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
12511 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
12512 			goto err_free;
12513 		}
12514 
12515 		prev_offset = krecord[i].insn_off;
12516 		bpfptr_add(&urecord, urec_size);
12517 	}
12518 
12519 	prog->aux->func_info = krecord;
12520 	prog->aux->func_info_cnt = nfuncs;
12521 	prog->aux->func_info_aux = info_aux;
12522 	return 0;
12523 
12524 err_free:
12525 	kvfree(krecord);
12526 	kfree(info_aux);
12527 	return ret;
12528 }
12529 
12530 static void adjust_btf_func(struct bpf_verifier_env *env)
12531 {
12532 	struct bpf_prog_aux *aux = env->prog->aux;
12533 	int i;
12534 
12535 	if (!aux->func_info)
12536 		return;
12537 
12538 	for (i = 0; i < env->subprog_cnt; i++)
12539 		aux->func_info[i].insn_off = env->subprog_info[i].start;
12540 }
12541 
12542 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
12543 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
12544 
12545 static int check_btf_line(struct bpf_verifier_env *env,
12546 			  const union bpf_attr *attr,
12547 			  bpfptr_t uattr)
12548 {
12549 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
12550 	struct bpf_subprog_info *sub;
12551 	struct bpf_line_info *linfo;
12552 	struct bpf_prog *prog;
12553 	const struct btf *btf;
12554 	bpfptr_t ulinfo;
12555 	int err;
12556 
12557 	nr_linfo = attr->line_info_cnt;
12558 	if (!nr_linfo)
12559 		return 0;
12560 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
12561 		return -EINVAL;
12562 
12563 	rec_size = attr->line_info_rec_size;
12564 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
12565 	    rec_size > MAX_LINEINFO_REC_SIZE ||
12566 	    rec_size & (sizeof(u32) - 1))
12567 		return -EINVAL;
12568 
12569 	/* Need to zero it in case the userspace may
12570 	 * pass in a smaller bpf_line_info object.
12571 	 */
12572 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
12573 			 GFP_KERNEL | __GFP_NOWARN);
12574 	if (!linfo)
12575 		return -ENOMEM;
12576 
12577 	prog = env->prog;
12578 	btf = prog->aux->btf;
12579 
12580 	s = 0;
12581 	sub = env->subprog_info;
12582 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
12583 	expected_size = sizeof(struct bpf_line_info);
12584 	ncopy = min_t(u32, expected_size, rec_size);
12585 	for (i = 0; i < nr_linfo; i++) {
12586 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
12587 		if (err) {
12588 			if (err == -E2BIG) {
12589 				verbose(env, "nonzero tailing record in line_info");
12590 				if (copy_to_bpfptr_offset(uattr,
12591 							  offsetof(union bpf_attr, line_info_rec_size),
12592 							  &expected_size, sizeof(expected_size)))
12593 					err = -EFAULT;
12594 			}
12595 			goto err_free;
12596 		}
12597 
12598 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
12599 			err = -EFAULT;
12600 			goto err_free;
12601 		}
12602 
12603 		/*
12604 		 * Check insn_off to ensure
12605 		 * 1) strictly increasing AND
12606 		 * 2) bounded by prog->len
12607 		 *
12608 		 * The linfo[0].insn_off == 0 check logically falls into
12609 		 * the later "missing bpf_line_info for func..." case
12610 		 * because the first linfo[0].insn_off must be the
12611 		 * first sub also and the first sub must have
12612 		 * subprog_info[0].start == 0.
12613 		 */
12614 		if ((i && linfo[i].insn_off <= prev_offset) ||
12615 		    linfo[i].insn_off >= prog->len) {
12616 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
12617 				i, linfo[i].insn_off, prev_offset,
12618 				prog->len);
12619 			err = -EINVAL;
12620 			goto err_free;
12621 		}
12622 
12623 		if (!prog->insnsi[linfo[i].insn_off].code) {
12624 			verbose(env,
12625 				"Invalid insn code at line_info[%u].insn_off\n",
12626 				i);
12627 			err = -EINVAL;
12628 			goto err_free;
12629 		}
12630 
12631 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
12632 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
12633 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
12634 			err = -EINVAL;
12635 			goto err_free;
12636 		}
12637 
12638 		if (s != env->subprog_cnt) {
12639 			if (linfo[i].insn_off == sub[s].start) {
12640 				sub[s].linfo_idx = i;
12641 				s++;
12642 			} else if (sub[s].start < linfo[i].insn_off) {
12643 				verbose(env, "missing bpf_line_info for func#%u\n", s);
12644 				err = -EINVAL;
12645 				goto err_free;
12646 			}
12647 		}
12648 
12649 		prev_offset = linfo[i].insn_off;
12650 		bpfptr_add(&ulinfo, rec_size);
12651 	}
12652 
12653 	if (s != env->subprog_cnt) {
12654 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
12655 			env->subprog_cnt - s, s);
12656 		err = -EINVAL;
12657 		goto err_free;
12658 	}
12659 
12660 	prog->aux->linfo = linfo;
12661 	prog->aux->nr_linfo = nr_linfo;
12662 
12663 	return 0;
12664 
12665 err_free:
12666 	kvfree(linfo);
12667 	return err;
12668 }
12669 
12670 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
12671 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
12672 
12673 static int check_core_relo(struct bpf_verifier_env *env,
12674 			   const union bpf_attr *attr,
12675 			   bpfptr_t uattr)
12676 {
12677 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
12678 	struct bpf_core_relo core_relo = {};
12679 	struct bpf_prog *prog = env->prog;
12680 	const struct btf *btf = prog->aux->btf;
12681 	struct bpf_core_ctx ctx = {
12682 		.log = &env->log,
12683 		.btf = btf,
12684 	};
12685 	bpfptr_t u_core_relo;
12686 	int err;
12687 
12688 	nr_core_relo = attr->core_relo_cnt;
12689 	if (!nr_core_relo)
12690 		return 0;
12691 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
12692 		return -EINVAL;
12693 
12694 	rec_size = attr->core_relo_rec_size;
12695 	if (rec_size < MIN_CORE_RELO_SIZE ||
12696 	    rec_size > MAX_CORE_RELO_SIZE ||
12697 	    rec_size % sizeof(u32))
12698 		return -EINVAL;
12699 
12700 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
12701 	expected_size = sizeof(struct bpf_core_relo);
12702 	ncopy = min_t(u32, expected_size, rec_size);
12703 
12704 	/* Unlike func_info and line_info, copy and apply each CO-RE
12705 	 * relocation record one at a time.
12706 	 */
12707 	for (i = 0; i < nr_core_relo; i++) {
12708 		/* future proofing when sizeof(bpf_core_relo) changes */
12709 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
12710 		if (err) {
12711 			if (err == -E2BIG) {
12712 				verbose(env, "nonzero tailing record in core_relo");
12713 				if (copy_to_bpfptr_offset(uattr,
12714 							  offsetof(union bpf_attr, core_relo_rec_size),
12715 							  &expected_size, sizeof(expected_size)))
12716 					err = -EFAULT;
12717 			}
12718 			break;
12719 		}
12720 
12721 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
12722 			err = -EFAULT;
12723 			break;
12724 		}
12725 
12726 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
12727 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
12728 				i, core_relo.insn_off, prog->len);
12729 			err = -EINVAL;
12730 			break;
12731 		}
12732 
12733 		err = bpf_core_apply(&ctx, &core_relo, i,
12734 				     &prog->insnsi[core_relo.insn_off / 8]);
12735 		if (err)
12736 			break;
12737 		bpfptr_add(&u_core_relo, rec_size);
12738 	}
12739 	return err;
12740 }
12741 
12742 static int check_btf_info(struct bpf_verifier_env *env,
12743 			  const union bpf_attr *attr,
12744 			  bpfptr_t uattr)
12745 {
12746 	struct btf *btf;
12747 	int err;
12748 
12749 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
12750 		if (check_abnormal_return(env))
12751 			return -EINVAL;
12752 		return 0;
12753 	}
12754 
12755 	btf = btf_get_by_fd(attr->prog_btf_fd);
12756 	if (IS_ERR(btf))
12757 		return PTR_ERR(btf);
12758 	if (btf_is_kernel(btf)) {
12759 		btf_put(btf);
12760 		return -EACCES;
12761 	}
12762 	env->prog->aux->btf = btf;
12763 
12764 	err = check_btf_func(env, attr, uattr);
12765 	if (err)
12766 		return err;
12767 
12768 	err = check_btf_line(env, attr, uattr);
12769 	if (err)
12770 		return err;
12771 
12772 	err = check_core_relo(env, attr, uattr);
12773 	if (err)
12774 		return err;
12775 
12776 	return 0;
12777 }
12778 
12779 /* check %cur's range satisfies %old's */
12780 static bool range_within(struct bpf_reg_state *old,
12781 			 struct bpf_reg_state *cur)
12782 {
12783 	return old->umin_value <= cur->umin_value &&
12784 	       old->umax_value >= cur->umax_value &&
12785 	       old->smin_value <= cur->smin_value &&
12786 	       old->smax_value >= cur->smax_value &&
12787 	       old->u32_min_value <= cur->u32_min_value &&
12788 	       old->u32_max_value >= cur->u32_max_value &&
12789 	       old->s32_min_value <= cur->s32_min_value &&
12790 	       old->s32_max_value >= cur->s32_max_value;
12791 }
12792 
12793 /* If in the old state two registers had the same id, then they need to have
12794  * the same id in the new state as well.  But that id could be different from
12795  * the old state, so we need to track the mapping from old to new ids.
12796  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
12797  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
12798  * regs with a different old id could still have new id 9, we don't care about
12799  * that.
12800  * So we look through our idmap to see if this old id has been seen before.  If
12801  * so, we require the new id to match; otherwise, we add the id pair to the map.
12802  */
12803 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
12804 {
12805 	unsigned int i;
12806 
12807 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
12808 		if (!idmap[i].old) {
12809 			/* Reached an empty slot; haven't seen this id before */
12810 			idmap[i].old = old_id;
12811 			idmap[i].cur = cur_id;
12812 			return true;
12813 		}
12814 		if (idmap[i].old == old_id)
12815 			return idmap[i].cur == cur_id;
12816 	}
12817 	/* We ran out of idmap slots, which should be impossible */
12818 	WARN_ON_ONCE(1);
12819 	return false;
12820 }
12821 
12822 static void clean_func_state(struct bpf_verifier_env *env,
12823 			     struct bpf_func_state *st)
12824 {
12825 	enum bpf_reg_liveness live;
12826 	int i, j;
12827 
12828 	for (i = 0; i < BPF_REG_FP; i++) {
12829 		live = st->regs[i].live;
12830 		/* liveness must not touch this register anymore */
12831 		st->regs[i].live |= REG_LIVE_DONE;
12832 		if (!(live & REG_LIVE_READ))
12833 			/* since the register is unused, clear its state
12834 			 * to make further comparison simpler
12835 			 */
12836 			__mark_reg_not_init(env, &st->regs[i]);
12837 	}
12838 
12839 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
12840 		live = st->stack[i].spilled_ptr.live;
12841 		/* liveness must not touch this stack slot anymore */
12842 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
12843 		if (!(live & REG_LIVE_READ)) {
12844 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
12845 			for (j = 0; j < BPF_REG_SIZE; j++)
12846 				st->stack[i].slot_type[j] = STACK_INVALID;
12847 		}
12848 	}
12849 }
12850 
12851 static void clean_verifier_state(struct bpf_verifier_env *env,
12852 				 struct bpf_verifier_state *st)
12853 {
12854 	int i;
12855 
12856 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
12857 		/* all regs in this state in all frames were already marked */
12858 		return;
12859 
12860 	for (i = 0; i <= st->curframe; i++)
12861 		clean_func_state(env, st->frame[i]);
12862 }
12863 
12864 /* the parentage chains form a tree.
12865  * the verifier states are added to state lists at given insn and
12866  * pushed into state stack for future exploration.
12867  * when the verifier reaches bpf_exit insn some of the verifer states
12868  * stored in the state lists have their final liveness state already,
12869  * but a lot of states will get revised from liveness point of view when
12870  * the verifier explores other branches.
12871  * Example:
12872  * 1: r0 = 1
12873  * 2: if r1 == 100 goto pc+1
12874  * 3: r0 = 2
12875  * 4: exit
12876  * when the verifier reaches exit insn the register r0 in the state list of
12877  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
12878  * of insn 2 and goes exploring further. At the insn 4 it will walk the
12879  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
12880  *
12881  * Since the verifier pushes the branch states as it sees them while exploring
12882  * the program the condition of walking the branch instruction for the second
12883  * time means that all states below this branch were already explored and
12884  * their final liveness marks are already propagated.
12885  * Hence when the verifier completes the search of state list in is_state_visited()
12886  * we can call this clean_live_states() function to mark all liveness states
12887  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
12888  * will not be used.
12889  * This function also clears the registers and stack for states that !READ
12890  * to simplify state merging.
12891  *
12892  * Important note here that walking the same branch instruction in the callee
12893  * doesn't meant that the states are DONE. The verifier has to compare
12894  * the callsites
12895  */
12896 static void clean_live_states(struct bpf_verifier_env *env, int insn,
12897 			      struct bpf_verifier_state *cur)
12898 {
12899 	struct bpf_verifier_state_list *sl;
12900 	int i;
12901 
12902 	sl = *explored_state(env, insn);
12903 	while (sl) {
12904 		if (sl->state.branches)
12905 			goto next;
12906 		if (sl->state.insn_idx != insn ||
12907 		    sl->state.curframe != cur->curframe)
12908 			goto next;
12909 		for (i = 0; i <= cur->curframe; i++)
12910 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
12911 				goto next;
12912 		clean_verifier_state(env, &sl->state);
12913 next:
12914 		sl = sl->next;
12915 	}
12916 }
12917 
12918 /* Returns true if (rold safe implies rcur safe) */
12919 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
12920 		    struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
12921 {
12922 	bool equal;
12923 
12924 	if (!(rold->live & REG_LIVE_READ))
12925 		/* explored state didn't use this */
12926 		return true;
12927 
12928 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
12929 
12930 	if (rold->type == PTR_TO_STACK)
12931 		/* two stack pointers are equal only if they're pointing to
12932 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
12933 		 */
12934 		return equal && rold->frameno == rcur->frameno;
12935 
12936 	if (equal)
12937 		return true;
12938 
12939 	if (rold->type == NOT_INIT)
12940 		/* explored state can't have used this */
12941 		return true;
12942 	if (rcur->type == NOT_INIT)
12943 		return false;
12944 	switch (base_type(rold->type)) {
12945 	case SCALAR_VALUE:
12946 		if (env->explore_alu_limits)
12947 			return false;
12948 		if (rcur->type == SCALAR_VALUE) {
12949 			if (!rold->precise)
12950 				return true;
12951 			/* new val must satisfy old val knowledge */
12952 			return range_within(rold, rcur) &&
12953 			       tnum_in(rold->var_off, rcur->var_off);
12954 		} else {
12955 			/* We're trying to use a pointer in place of a scalar.
12956 			 * Even if the scalar was unbounded, this could lead to
12957 			 * pointer leaks because scalars are allowed to leak
12958 			 * while pointers are not. We could make this safe in
12959 			 * special cases if root is calling us, but it's
12960 			 * probably not worth the hassle.
12961 			 */
12962 			return false;
12963 		}
12964 	case PTR_TO_MAP_KEY:
12965 	case PTR_TO_MAP_VALUE:
12966 		/* a PTR_TO_MAP_VALUE could be safe to use as a
12967 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
12968 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
12969 		 * checked, doing so could have affected others with the same
12970 		 * id, and we can't check for that because we lost the id when
12971 		 * we converted to a PTR_TO_MAP_VALUE.
12972 		 */
12973 		if (type_may_be_null(rold->type)) {
12974 			if (!type_may_be_null(rcur->type))
12975 				return false;
12976 			if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
12977 				return false;
12978 			/* Check our ids match any regs they're supposed to */
12979 			return check_ids(rold->id, rcur->id, idmap);
12980 		}
12981 
12982 		/* If the new min/max/var_off satisfy the old ones and
12983 		 * everything else matches, we are OK.
12984 		 * 'id' is not compared, since it's only used for maps with
12985 		 * bpf_spin_lock inside map element and in such cases if
12986 		 * the rest of the prog is valid for one map element then
12987 		 * it's valid for all map elements regardless of the key
12988 		 * used in bpf_map_lookup()
12989 		 */
12990 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
12991 		       range_within(rold, rcur) &&
12992 		       tnum_in(rold->var_off, rcur->var_off);
12993 	case PTR_TO_PACKET_META:
12994 	case PTR_TO_PACKET:
12995 		if (rcur->type != rold->type)
12996 			return false;
12997 		/* We must have at least as much range as the old ptr
12998 		 * did, so that any accesses which were safe before are
12999 		 * still safe.  This is true even if old range < old off,
13000 		 * since someone could have accessed through (ptr - k), or
13001 		 * even done ptr -= k in a register, to get a safe access.
13002 		 */
13003 		if (rold->range > rcur->range)
13004 			return false;
13005 		/* If the offsets don't match, we can't trust our alignment;
13006 		 * nor can we be sure that we won't fall out of range.
13007 		 */
13008 		if (rold->off != rcur->off)
13009 			return false;
13010 		/* id relations must be preserved */
13011 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
13012 			return false;
13013 		/* new val must satisfy old val knowledge */
13014 		return range_within(rold, rcur) &&
13015 		       tnum_in(rold->var_off, rcur->var_off);
13016 	case PTR_TO_CTX:
13017 	case CONST_PTR_TO_MAP:
13018 	case PTR_TO_PACKET_END:
13019 	case PTR_TO_FLOW_KEYS:
13020 	case PTR_TO_SOCKET:
13021 	case PTR_TO_SOCK_COMMON:
13022 	case PTR_TO_TCP_SOCK:
13023 	case PTR_TO_XDP_SOCK:
13024 		/* Only valid matches are exact, which memcmp() above
13025 		 * would have accepted
13026 		 */
13027 	default:
13028 		/* Don't know what's going on, just say it's not safe */
13029 		return false;
13030 	}
13031 
13032 	/* Shouldn't get here; if we do, say it's not safe */
13033 	WARN_ON_ONCE(1);
13034 	return false;
13035 }
13036 
13037 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
13038 		      struct bpf_func_state *cur, struct bpf_id_pair *idmap)
13039 {
13040 	int i, spi;
13041 
13042 	/* walk slots of the explored stack and ignore any additional
13043 	 * slots in the current stack, since explored(safe) state
13044 	 * didn't use them
13045 	 */
13046 	for (i = 0; i < old->allocated_stack; i++) {
13047 		spi = i / BPF_REG_SIZE;
13048 
13049 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
13050 			i += BPF_REG_SIZE - 1;
13051 			/* explored state didn't use this */
13052 			continue;
13053 		}
13054 
13055 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
13056 			continue;
13057 
13058 		/* explored stack has more populated slots than current stack
13059 		 * and these slots were used
13060 		 */
13061 		if (i >= cur->allocated_stack)
13062 			return false;
13063 
13064 		/* if old state was safe with misc data in the stack
13065 		 * it will be safe with zero-initialized stack.
13066 		 * The opposite is not true
13067 		 */
13068 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
13069 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
13070 			continue;
13071 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
13072 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
13073 			/* Ex: old explored (safe) state has STACK_SPILL in
13074 			 * this stack slot, but current has STACK_MISC ->
13075 			 * this verifier states are not equivalent,
13076 			 * return false to continue verification of this path
13077 			 */
13078 			return false;
13079 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
13080 			continue;
13081 		if (!is_spilled_reg(&old->stack[spi]))
13082 			continue;
13083 		if (!regsafe(env, &old->stack[spi].spilled_ptr,
13084 			     &cur->stack[spi].spilled_ptr, idmap))
13085 			/* when explored and current stack slot are both storing
13086 			 * spilled registers, check that stored pointers types
13087 			 * are the same as well.
13088 			 * Ex: explored safe path could have stored
13089 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
13090 			 * but current path has stored:
13091 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
13092 			 * such verifier states are not equivalent.
13093 			 * return false to continue verification of this path
13094 			 */
13095 			return false;
13096 	}
13097 	return true;
13098 }
13099 
13100 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
13101 {
13102 	if (old->acquired_refs != cur->acquired_refs)
13103 		return false;
13104 	return !memcmp(old->refs, cur->refs,
13105 		       sizeof(*old->refs) * old->acquired_refs);
13106 }
13107 
13108 /* compare two verifier states
13109  *
13110  * all states stored in state_list are known to be valid, since
13111  * verifier reached 'bpf_exit' instruction through them
13112  *
13113  * this function is called when verifier exploring different branches of
13114  * execution popped from the state stack. If it sees an old state that has
13115  * more strict register state and more strict stack state then this execution
13116  * branch doesn't need to be explored further, since verifier already
13117  * concluded that more strict state leads to valid finish.
13118  *
13119  * Therefore two states are equivalent if register state is more conservative
13120  * and explored stack state is more conservative than the current one.
13121  * Example:
13122  *       explored                   current
13123  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
13124  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
13125  *
13126  * In other words if current stack state (one being explored) has more
13127  * valid slots than old one that already passed validation, it means
13128  * the verifier can stop exploring and conclude that current state is valid too
13129  *
13130  * Similarly with registers. If explored state has register type as invalid
13131  * whereas register type in current state is meaningful, it means that
13132  * the current state will reach 'bpf_exit' instruction safely
13133  */
13134 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
13135 			      struct bpf_func_state *cur)
13136 {
13137 	int i;
13138 
13139 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
13140 	for (i = 0; i < MAX_BPF_REG; i++)
13141 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
13142 			     env->idmap_scratch))
13143 			return false;
13144 
13145 	if (!stacksafe(env, old, cur, env->idmap_scratch))
13146 		return false;
13147 
13148 	if (!refsafe(old, cur))
13149 		return false;
13150 
13151 	return true;
13152 }
13153 
13154 static bool states_equal(struct bpf_verifier_env *env,
13155 			 struct bpf_verifier_state *old,
13156 			 struct bpf_verifier_state *cur)
13157 {
13158 	int i;
13159 
13160 	if (old->curframe != cur->curframe)
13161 		return false;
13162 
13163 	/* Verification state from speculative execution simulation
13164 	 * must never prune a non-speculative execution one.
13165 	 */
13166 	if (old->speculative && !cur->speculative)
13167 		return false;
13168 
13169 	if (old->active_lock.ptr != cur->active_lock.ptr ||
13170 	    old->active_lock.id != cur->active_lock.id)
13171 		return false;
13172 
13173 	if (old->active_rcu_lock != cur->active_rcu_lock)
13174 		return false;
13175 
13176 	/* for states to be equal callsites have to be the same
13177 	 * and all frame states need to be equivalent
13178 	 */
13179 	for (i = 0; i <= old->curframe; i++) {
13180 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
13181 			return false;
13182 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
13183 			return false;
13184 	}
13185 	return true;
13186 }
13187 
13188 /* Return 0 if no propagation happened. Return negative error code if error
13189  * happened. Otherwise, return the propagated bit.
13190  */
13191 static int propagate_liveness_reg(struct bpf_verifier_env *env,
13192 				  struct bpf_reg_state *reg,
13193 				  struct bpf_reg_state *parent_reg)
13194 {
13195 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
13196 	u8 flag = reg->live & REG_LIVE_READ;
13197 	int err;
13198 
13199 	/* When comes here, read flags of PARENT_REG or REG could be any of
13200 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
13201 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
13202 	 */
13203 	if (parent_flag == REG_LIVE_READ64 ||
13204 	    /* Or if there is no read flag from REG. */
13205 	    !flag ||
13206 	    /* Or if the read flag from REG is the same as PARENT_REG. */
13207 	    parent_flag == flag)
13208 		return 0;
13209 
13210 	err = mark_reg_read(env, reg, parent_reg, flag);
13211 	if (err)
13212 		return err;
13213 
13214 	return flag;
13215 }
13216 
13217 /* A write screens off any subsequent reads; but write marks come from the
13218  * straight-line code between a state and its parent.  When we arrive at an
13219  * equivalent state (jump target or such) we didn't arrive by the straight-line
13220  * code, so read marks in the state must propagate to the parent regardless
13221  * of the state's write marks. That's what 'parent == state->parent' comparison
13222  * in mark_reg_read() is for.
13223  */
13224 static int propagate_liveness(struct bpf_verifier_env *env,
13225 			      const struct bpf_verifier_state *vstate,
13226 			      struct bpf_verifier_state *vparent)
13227 {
13228 	struct bpf_reg_state *state_reg, *parent_reg;
13229 	struct bpf_func_state *state, *parent;
13230 	int i, frame, err = 0;
13231 
13232 	if (vparent->curframe != vstate->curframe) {
13233 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
13234 		     vparent->curframe, vstate->curframe);
13235 		return -EFAULT;
13236 	}
13237 	/* Propagate read liveness of registers... */
13238 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
13239 	for (frame = 0; frame <= vstate->curframe; frame++) {
13240 		parent = vparent->frame[frame];
13241 		state = vstate->frame[frame];
13242 		parent_reg = parent->regs;
13243 		state_reg = state->regs;
13244 		/* We don't need to worry about FP liveness, it's read-only */
13245 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
13246 			err = propagate_liveness_reg(env, &state_reg[i],
13247 						     &parent_reg[i]);
13248 			if (err < 0)
13249 				return err;
13250 			if (err == REG_LIVE_READ64)
13251 				mark_insn_zext(env, &parent_reg[i]);
13252 		}
13253 
13254 		/* Propagate stack slots. */
13255 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
13256 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
13257 			parent_reg = &parent->stack[i].spilled_ptr;
13258 			state_reg = &state->stack[i].spilled_ptr;
13259 			err = propagate_liveness_reg(env, state_reg,
13260 						     parent_reg);
13261 			if (err < 0)
13262 				return err;
13263 		}
13264 	}
13265 	return 0;
13266 }
13267 
13268 /* find precise scalars in the previous equivalent state and
13269  * propagate them into the current state
13270  */
13271 static int propagate_precision(struct bpf_verifier_env *env,
13272 			       const struct bpf_verifier_state *old)
13273 {
13274 	struct bpf_reg_state *state_reg;
13275 	struct bpf_func_state *state;
13276 	int i, err = 0, fr;
13277 
13278 	for (fr = old->curframe; fr >= 0; fr--) {
13279 		state = old->frame[fr];
13280 		state_reg = state->regs;
13281 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
13282 			if (state_reg->type != SCALAR_VALUE ||
13283 			    !state_reg->precise)
13284 				continue;
13285 			if (env->log.level & BPF_LOG_LEVEL2)
13286 				verbose(env, "frame %d: propagating r%d\n", i, fr);
13287 			err = mark_chain_precision_frame(env, fr, i);
13288 			if (err < 0)
13289 				return err;
13290 		}
13291 
13292 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
13293 			if (!is_spilled_reg(&state->stack[i]))
13294 				continue;
13295 			state_reg = &state->stack[i].spilled_ptr;
13296 			if (state_reg->type != SCALAR_VALUE ||
13297 			    !state_reg->precise)
13298 				continue;
13299 			if (env->log.level & BPF_LOG_LEVEL2)
13300 				verbose(env, "frame %d: propagating fp%d\n",
13301 					(-i - 1) * BPF_REG_SIZE, fr);
13302 			err = mark_chain_precision_stack_frame(env, fr, i);
13303 			if (err < 0)
13304 				return err;
13305 		}
13306 	}
13307 	return 0;
13308 }
13309 
13310 static bool states_maybe_looping(struct bpf_verifier_state *old,
13311 				 struct bpf_verifier_state *cur)
13312 {
13313 	struct bpf_func_state *fold, *fcur;
13314 	int i, fr = cur->curframe;
13315 
13316 	if (old->curframe != fr)
13317 		return false;
13318 
13319 	fold = old->frame[fr];
13320 	fcur = cur->frame[fr];
13321 	for (i = 0; i < MAX_BPF_REG; i++)
13322 		if (memcmp(&fold->regs[i], &fcur->regs[i],
13323 			   offsetof(struct bpf_reg_state, parent)))
13324 			return false;
13325 	return true;
13326 }
13327 
13328 
13329 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
13330 {
13331 	struct bpf_verifier_state_list *new_sl;
13332 	struct bpf_verifier_state_list *sl, **pprev;
13333 	struct bpf_verifier_state *cur = env->cur_state, *new;
13334 	int i, j, err, states_cnt = 0;
13335 	bool add_new_state = env->test_state_freq ? true : false;
13336 
13337 	/* bpf progs typically have pruning point every 4 instructions
13338 	 * http://vger.kernel.org/bpfconf2019.html#session-1
13339 	 * Do not add new state for future pruning if the verifier hasn't seen
13340 	 * at least 2 jumps and at least 8 instructions.
13341 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
13342 	 * In tests that amounts to up to 50% reduction into total verifier
13343 	 * memory consumption and 20% verifier time speedup.
13344 	 */
13345 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
13346 	    env->insn_processed - env->prev_insn_processed >= 8)
13347 		add_new_state = true;
13348 
13349 	pprev = explored_state(env, insn_idx);
13350 	sl = *pprev;
13351 
13352 	clean_live_states(env, insn_idx, cur);
13353 
13354 	while (sl) {
13355 		states_cnt++;
13356 		if (sl->state.insn_idx != insn_idx)
13357 			goto next;
13358 
13359 		if (sl->state.branches) {
13360 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
13361 
13362 			if (frame->in_async_callback_fn &&
13363 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
13364 				/* Different async_entry_cnt means that the verifier is
13365 				 * processing another entry into async callback.
13366 				 * Seeing the same state is not an indication of infinite
13367 				 * loop or infinite recursion.
13368 				 * But finding the same state doesn't mean that it's safe
13369 				 * to stop processing the current state. The previous state
13370 				 * hasn't yet reached bpf_exit, since state.branches > 0.
13371 				 * Checking in_async_callback_fn alone is not enough either.
13372 				 * Since the verifier still needs to catch infinite loops
13373 				 * inside async callbacks.
13374 				 */
13375 			} else if (states_maybe_looping(&sl->state, cur) &&
13376 				   states_equal(env, &sl->state, cur)) {
13377 				verbose_linfo(env, insn_idx, "; ");
13378 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
13379 				return -EINVAL;
13380 			}
13381 			/* if the verifier is processing a loop, avoid adding new state
13382 			 * too often, since different loop iterations have distinct
13383 			 * states and may not help future pruning.
13384 			 * This threshold shouldn't be too low to make sure that
13385 			 * a loop with large bound will be rejected quickly.
13386 			 * The most abusive loop will be:
13387 			 * r1 += 1
13388 			 * if r1 < 1000000 goto pc-2
13389 			 * 1M insn_procssed limit / 100 == 10k peak states.
13390 			 * This threshold shouldn't be too high either, since states
13391 			 * at the end of the loop are likely to be useful in pruning.
13392 			 */
13393 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
13394 			    env->insn_processed - env->prev_insn_processed < 100)
13395 				add_new_state = false;
13396 			goto miss;
13397 		}
13398 		if (states_equal(env, &sl->state, cur)) {
13399 			sl->hit_cnt++;
13400 			/* reached equivalent register/stack state,
13401 			 * prune the search.
13402 			 * Registers read by the continuation are read by us.
13403 			 * If we have any write marks in env->cur_state, they
13404 			 * will prevent corresponding reads in the continuation
13405 			 * from reaching our parent (an explored_state).  Our
13406 			 * own state will get the read marks recorded, but
13407 			 * they'll be immediately forgotten as we're pruning
13408 			 * this state and will pop a new one.
13409 			 */
13410 			err = propagate_liveness(env, &sl->state, cur);
13411 
13412 			/* if previous state reached the exit with precision and
13413 			 * current state is equivalent to it (except precsion marks)
13414 			 * the precision needs to be propagated back in
13415 			 * the current state.
13416 			 */
13417 			err = err ? : push_jmp_history(env, cur);
13418 			err = err ? : propagate_precision(env, &sl->state);
13419 			if (err)
13420 				return err;
13421 			return 1;
13422 		}
13423 miss:
13424 		/* when new state is not going to be added do not increase miss count.
13425 		 * Otherwise several loop iterations will remove the state
13426 		 * recorded earlier. The goal of these heuristics is to have
13427 		 * states from some iterations of the loop (some in the beginning
13428 		 * and some at the end) to help pruning.
13429 		 */
13430 		if (add_new_state)
13431 			sl->miss_cnt++;
13432 		/* heuristic to determine whether this state is beneficial
13433 		 * to keep checking from state equivalence point of view.
13434 		 * Higher numbers increase max_states_per_insn and verification time,
13435 		 * but do not meaningfully decrease insn_processed.
13436 		 */
13437 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
13438 			/* the state is unlikely to be useful. Remove it to
13439 			 * speed up verification
13440 			 */
13441 			*pprev = sl->next;
13442 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
13443 				u32 br = sl->state.branches;
13444 
13445 				WARN_ONCE(br,
13446 					  "BUG live_done but branches_to_explore %d\n",
13447 					  br);
13448 				free_verifier_state(&sl->state, false);
13449 				kfree(sl);
13450 				env->peak_states--;
13451 			} else {
13452 				/* cannot free this state, since parentage chain may
13453 				 * walk it later. Add it for free_list instead to
13454 				 * be freed at the end of verification
13455 				 */
13456 				sl->next = env->free_list;
13457 				env->free_list = sl;
13458 			}
13459 			sl = *pprev;
13460 			continue;
13461 		}
13462 next:
13463 		pprev = &sl->next;
13464 		sl = *pprev;
13465 	}
13466 
13467 	if (env->max_states_per_insn < states_cnt)
13468 		env->max_states_per_insn = states_cnt;
13469 
13470 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
13471 		return 0;
13472 
13473 	if (!add_new_state)
13474 		return 0;
13475 
13476 	/* There were no equivalent states, remember the current one.
13477 	 * Technically the current state is not proven to be safe yet,
13478 	 * but it will either reach outer most bpf_exit (which means it's safe)
13479 	 * or it will be rejected. When there are no loops the verifier won't be
13480 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
13481 	 * again on the way to bpf_exit.
13482 	 * When looping the sl->state.branches will be > 0 and this state
13483 	 * will not be considered for equivalence until branches == 0.
13484 	 */
13485 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
13486 	if (!new_sl)
13487 		return -ENOMEM;
13488 	env->total_states++;
13489 	env->peak_states++;
13490 	env->prev_jmps_processed = env->jmps_processed;
13491 	env->prev_insn_processed = env->insn_processed;
13492 
13493 	/* forget precise markings we inherited, see __mark_chain_precision */
13494 	if (env->bpf_capable)
13495 		mark_all_scalars_imprecise(env, cur);
13496 
13497 	/* add new state to the head of linked list */
13498 	new = &new_sl->state;
13499 	err = copy_verifier_state(new, cur);
13500 	if (err) {
13501 		free_verifier_state(new, false);
13502 		kfree(new_sl);
13503 		return err;
13504 	}
13505 	new->insn_idx = insn_idx;
13506 	WARN_ONCE(new->branches != 1,
13507 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
13508 
13509 	cur->parent = new;
13510 	cur->first_insn_idx = insn_idx;
13511 	clear_jmp_history(cur);
13512 	new_sl->next = *explored_state(env, insn_idx);
13513 	*explored_state(env, insn_idx) = new_sl;
13514 	/* connect new state to parentage chain. Current frame needs all
13515 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
13516 	 * to the stack implicitly by JITs) so in callers' frames connect just
13517 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
13518 	 * the state of the call instruction (with WRITTEN set), and r0 comes
13519 	 * from callee with its full parentage chain, anyway.
13520 	 */
13521 	/* clear write marks in current state: the writes we did are not writes
13522 	 * our child did, so they don't screen off its reads from us.
13523 	 * (There are no read marks in current state, because reads always mark
13524 	 * their parent and current state never has children yet.  Only
13525 	 * explored_states can get read marks.)
13526 	 */
13527 	for (j = 0; j <= cur->curframe; j++) {
13528 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
13529 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
13530 		for (i = 0; i < BPF_REG_FP; i++)
13531 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
13532 	}
13533 
13534 	/* all stack frames are accessible from callee, clear them all */
13535 	for (j = 0; j <= cur->curframe; j++) {
13536 		struct bpf_func_state *frame = cur->frame[j];
13537 		struct bpf_func_state *newframe = new->frame[j];
13538 
13539 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
13540 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
13541 			frame->stack[i].spilled_ptr.parent =
13542 						&newframe->stack[i].spilled_ptr;
13543 		}
13544 	}
13545 	return 0;
13546 }
13547 
13548 /* Return true if it's OK to have the same insn return a different type. */
13549 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
13550 {
13551 	switch (base_type(type)) {
13552 	case PTR_TO_CTX:
13553 	case PTR_TO_SOCKET:
13554 	case PTR_TO_SOCK_COMMON:
13555 	case PTR_TO_TCP_SOCK:
13556 	case PTR_TO_XDP_SOCK:
13557 	case PTR_TO_BTF_ID:
13558 		return false;
13559 	default:
13560 		return true;
13561 	}
13562 }
13563 
13564 /* If an instruction was previously used with particular pointer types, then we
13565  * need to be careful to avoid cases such as the below, where it may be ok
13566  * for one branch accessing the pointer, but not ok for the other branch:
13567  *
13568  * R1 = sock_ptr
13569  * goto X;
13570  * ...
13571  * R1 = some_other_valid_ptr;
13572  * goto X;
13573  * ...
13574  * R2 = *(u32 *)(R1 + 0);
13575  */
13576 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
13577 {
13578 	return src != prev && (!reg_type_mismatch_ok(src) ||
13579 			       !reg_type_mismatch_ok(prev));
13580 }
13581 
13582 static int do_check(struct bpf_verifier_env *env)
13583 {
13584 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
13585 	struct bpf_verifier_state *state = env->cur_state;
13586 	struct bpf_insn *insns = env->prog->insnsi;
13587 	struct bpf_reg_state *regs;
13588 	int insn_cnt = env->prog->len;
13589 	bool do_print_state = false;
13590 	int prev_insn_idx = -1;
13591 
13592 	for (;;) {
13593 		struct bpf_insn *insn;
13594 		u8 class;
13595 		int err;
13596 
13597 		env->prev_insn_idx = prev_insn_idx;
13598 		if (env->insn_idx >= insn_cnt) {
13599 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
13600 				env->insn_idx, insn_cnt);
13601 			return -EFAULT;
13602 		}
13603 
13604 		insn = &insns[env->insn_idx];
13605 		class = BPF_CLASS(insn->code);
13606 
13607 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
13608 			verbose(env,
13609 				"BPF program is too large. Processed %d insn\n",
13610 				env->insn_processed);
13611 			return -E2BIG;
13612 		}
13613 
13614 		state->last_insn_idx = env->prev_insn_idx;
13615 
13616 		if (is_prune_point(env, env->insn_idx)) {
13617 			err = is_state_visited(env, env->insn_idx);
13618 			if (err < 0)
13619 				return err;
13620 			if (err == 1) {
13621 				/* found equivalent state, can prune the search */
13622 				if (env->log.level & BPF_LOG_LEVEL) {
13623 					if (do_print_state)
13624 						verbose(env, "\nfrom %d to %d%s: safe\n",
13625 							env->prev_insn_idx, env->insn_idx,
13626 							env->cur_state->speculative ?
13627 							" (speculative execution)" : "");
13628 					else
13629 						verbose(env, "%d: safe\n", env->insn_idx);
13630 				}
13631 				goto process_bpf_exit;
13632 			}
13633 		}
13634 
13635 		if (is_jmp_point(env, env->insn_idx)) {
13636 			err = push_jmp_history(env, state);
13637 			if (err)
13638 				return err;
13639 		}
13640 
13641 		if (signal_pending(current))
13642 			return -EAGAIN;
13643 
13644 		if (need_resched())
13645 			cond_resched();
13646 
13647 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
13648 			verbose(env, "\nfrom %d to %d%s:",
13649 				env->prev_insn_idx, env->insn_idx,
13650 				env->cur_state->speculative ?
13651 				" (speculative execution)" : "");
13652 			print_verifier_state(env, state->frame[state->curframe], true);
13653 			do_print_state = false;
13654 		}
13655 
13656 		if (env->log.level & BPF_LOG_LEVEL) {
13657 			const struct bpf_insn_cbs cbs = {
13658 				.cb_call	= disasm_kfunc_name,
13659 				.cb_print	= verbose,
13660 				.private_data	= env,
13661 			};
13662 
13663 			if (verifier_state_scratched(env))
13664 				print_insn_state(env, state->frame[state->curframe]);
13665 
13666 			verbose_linfo(env, env->insn_idx, "; ");
13667 			env->prev_log_len = env->log.len_used;
13668 			verbose(env, "%d: ", env->insn_idx);
13669 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
13670 			env->prev_insn_print_len = env->log.len_used - env->prev_log_len;
13671 			env->prev_log_len = env->log.len_used;
13672 		}
13673 
13674 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
13675 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
13676 							   env->prev_insn_idx);
13677 			if (err)
13678 				return err;
13679 		}
13680 
13681 		regs = cur_regs(env);
13682 		sanitize_mark_insn_seen(env);
13683 		prev_insn_idx = env->insn_idx;
13684 
13685 		if (class == BPF_ALU || class == BPF_ALU64) {
13686 			err = check_alu_op(env, insn);
13687 			if (err)
13688 				return err;
13689 
13690 		} else if (class == BPF_LDX) {
13691 			enum bpf_reg_type *prev_src_type, src_reg_type;
13692 
13693 			/* check for reserved fields is already done */
13694 
13695 			/* check src operand */
13696 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13697 			if (err)
13698 				return err;
13699 
13700 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13701 			if (err)
13702 				return err;
13703 
13704 			src_reg_type = regs[insn->src_reg].type;
13705 
13706 			/* check that memory (src_reg + off) is readable,
13707 			 * the state of dst_reg will be updated by this func
13708 			 */
13709 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
13710 					       insn->off, BPF_SIZE(insn->code),
13711 					       BPF_READ, insn->dst_reg, false);
13712 			if (err)
13713 				return err;
13714 
13715 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
13716 
13717 			if (*prev_src_type == NOT_INIT) {
13718 				/* saw a valid insn
13719 				 * dst_reg = *(u32 *)(src_reg + off)
13720 				 * save type to validate intersecting paths
13721 				 */
13722 				*prev_src_type = src_reg_type;
13723 
13724 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
13725 				/* ABuser program is trying to use the same insn
13726 				 * dst_reg = *(u32*) (src_reg + off)
13727 				 * with different pointer types:
13728 				 * src_reg == ctx in one branch and
13729 				 * src_reg == stack|map in some other branch.
13730 				 * Reject it.
13731 				 */
13732 				verbose(env, "same insn cannot be used with different pointers\n");
13733 				return -EINVAL;
13734 			}
13735 
13736 		} else if (class == BPF_STX) {
13737 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
13738 
13739 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
13740 				err = check_atomic(env, env->insn_idx, insn);
13741 				if (err)
13742 					return err;
13743 				env->insn_idx++;
13744 				continue;
13745 			}
13746 
13747 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
13748 				verbose(env, "BPF_STX uses reserved fields\n");
13749 				return -EINVAL;
13750 			}
13751 
13752 			/* check src1 operand */
13753 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13754 			if (err)
13755 				return err;
13756 			/* check src2 operand */
13757 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13758 			if (err)
13759 				return err;
13760 
13761 			dst_reg_type = regs[insn->dst_reg].type;
13762 
13763 			/* check that memory (dst_reg + off) is writeable */
13764 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
13765 					       insn->off, BPF_SIZE(insn->code),
13766 					       BPF_WRITE, insn->src_reg, false);
13767 			if (err)
13768 				return err;
13769 
13770 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
13771 
13772 			if (*prev_dst_type == NOT_INIT) {
13773 				*prev_dst_type = dst_reg_type;
13774 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
13775 				verbose(env, "same insn cannot be used with different pointers\n");
13776 				return -EINVAL;
13777 			}
13778 
13779 		} else if (class == BPF_ST) {
13780 			if (BPF_MODE(insn->code) != BPF_MEM ||
13781 			    insn->src_reg != BPF_REG_0) {
13782 				verbose(env, "BPF_ST uses reserved fields\n");
13783 				return -EINVAL;
13784 			}
13785 			/* check src operand */
13786 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13787 			if (err)
13788 				return err;
13789 
13790 			if (is_ctx_reg(env, insn->dst_reg)) {
13791 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
13792 					insn->dst_reg,
13793 					reg_type_str(env, reg_state(env, insn->dst_reg)->type));
13794 				return -EACCES;
13795 			}
13796 
13797 			/* check that memory (dst_reg + off) is writeable */
13798 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
13799 					       insn->off, BPF_SIZE(insn->code),
13800 					       BPF_WRITE, -1, false);
13801 			if (err)
13802 				return err;
13803 
13804 		} else if (class == BPF_JMP || class == BPF_JMP32) {
13805 			u8 opcode = BPF_OP(insn->code);
13806 
13807 			env->jmps_processed++;
13808 			if (opcode == BPF_CALL) {
13809 				if (BPF_SRC(insn->code) != BPF_K ||
13810 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
13811 				     && insn->off != 0) ||
13812 				    (insn->src_reg != BPF_REG_0 &&
13813 				     insn->src_reg != BPF_PSEUDO_CALL &&
13814 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
13815 				    insn->dst_reg != BPF_REG_0 ||
13816 				    class == BPF_JMP32) {
13817 					verbose(env, "BPF_CALL uses reserved fields\n");
13818 					return -EINVAL;
13819 				}
13820 
13821 				if (env->cur_state->active_lock.ptr) {
13822 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
13823 					    (insn->src_reg == BPF_PSEUDO_CALL) ||
13824 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
13825 					     (insn->off != 0 || !is_bpf_list_api_kfunc(insn->imm)))) {
13826 						verbose(env, "function calls are not allowed while holding a lock\n");
13827 						return -EINVAL;
13828 					}
13829 				}
13830 				if (insn->src_reg == BPF_PSEUDO_CALL)
13831 					err = check_func_call(env, insn, &env->insn_idx);
13832 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
13833 					err = check_kfunc_call(env, insn, &env->insn_idx);
13834 				else
13835 					err = check_helper_call(env, insn, &env->insn_idx);
13836 				if (err)
13837 					return err;
13838 			} else if (opcode == BPF_JA) {
13839 				if (BPF_SRC(insn->code) != BPF_K ||
13840 				    insn->imm != 0 ||
13841 				    insn->src_reg != BPF_REG_0 ||
13842 				    insn->dst_reg != BPF_REG_0 ||
13843 				    class == BPF_JMP32) {
13844 					verbose(env, "BPF_JA uses reserved fields\n");
13845 					return -EINVAL;
13846 				}
13847 
13848 				env->insn_idx += insn->off + 1;
13849 				continue;
13850 
13851 			} else if (opcode == BPF_EXIT) {
13852 				if (BPF_SRC(insn->code) != BPF_K ||
13853 				    insn->imm != 0 ||
13854 				    insn->src_reg != BPF_REG_0 ||
13855 				    insn->dst_reg != BPF_REG_0 ||
13856 				    class == BPF_JMP32) {
13857 					verbose(env, "BPF_EXIT uses reserved fields\n");
13858 					return -EINVAL;
13859 				}
13860 
13861 				if (env->cur_state->active_lock.ptr) {
13862 					verbose(env, "bpf_spin_unlock is missing\n");
13863 					return -EINVAL;
13864 				}
13865 
13866 				if (env->cur_state->active_rcu_lock) {
13867 					verbose(env, "bpf_rcu_read_unlock is missing\n");
13868 					return -EINVAL;
13869 				}
13870 
13871 				/* We must do check_reference_leak here before
13872 				 * prepare_func_exit to handle the case when
13873 				 * state->curframe > 0, it may be a callback
13874 				 * function, for which reference_state must
13875 				 * match caller reference state when it exits.
13876 				 */
13877 				err = check_reference_leak(env);
13878 				if (err)
13879 					return err;
13880 
13881 				if (state->curframe) {
13882 					/* exit from nested function */
13883 					err = prepare_func_exit(env, &env->insn_idx);
13884 					if (err)
13885 						return err;
13886 					do_print_state = true;
13887 					continue;
13888 				}
13889 
13890 				err = check_return_code(env);
13891 				if (err)
13892 					return err;
13893 process_bpf_exit:
13894 				mark_verifier_state_scratched(env);
13895 				update_branch_counts(env, env->cur_state);
13896 				err = pop_stack(env, &prev_insn_idx,
13897 						&env->insn_idx, pop_log);
13898 				if (err < 0) {
13899 					if (err != -ENOENT)
13900 						return err;
13901 					break;
13902 				} else {
13903 					do_print_state = true;
13904 					continue;
13905 				}
13906 			} else {
13907 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
13908 				if (err)
13909 					return err;
13910 			}
13911 		} else if (class == BPF_LD) {
13912 			u8 mode = BPF_MODE(insn->code);
13913 
13914 			if (mode == BPF_ABS || mode == BPF_IND) {
13915 				err = check_ld_abs(env, insn);
13916 				if (err)
13917 					return err;
13918 
13919 			} else if (mode == BPF_IMM) {
13920 				err = check_ld_imm(env, insn);
13921 				if (err)
13922 					return err;
13923 
13924 				env->insn_idx++;
13925 				sanitize_mark_insn_seen(env);
13926 			} else {
13927 				verbose(env, "invalid BPF_LD mode\n");
13928 				return -EINVAL;
13929 			}
13930 		} else {
13931 			verbose(env, "unknown insn class %d\n", class);
13932 			return -EINVAL;
13933 		}
13934 
13935 		env->insn_idx++;
13936 	}
13937 
13938 	return 0;
13939 }
13940 
13941 static int find_btf_percpu_datasec(struct btf *btf)
13942 {
13943 	const struct btf_type *t;
13944 	const char *tname;
13945 	int i, n;
13946 
13947 	/*
13948 	 * Both vmlinux and module each have their own ".data..percpu"
13949 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
13950 	 * types to look at only module's own BTF types.
13951 	 */
13952 	n = btf_nr_types(btf);
13953 	if (btf_is_module(btf))
13954 		i = btf_nr_types(btf_vmlinux);
13955 	else
13956 		i = 1;
13957 
13958 	for(; i < n; i++) {
13959 		t = btf_type_by_id(btf, i);
13960 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
13961 			continue;
13962 
13963 		tname = btf_name_by_offset(btf, t->name_off);
13964 		if (!strcmp(tname, ".data..percpu"))
13965 			return i;
13966 	}
13967 
13968 	return -ENOENT;
13969 }
13970 
13971 /* replace pseudo btf_id with kernel symbol address */
13972 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
13973 			       struct bpf_insn *insn,
13974 			       struct bpf_insn_aux_data *aux)
13975 {
13976 	const struct btf_var_secinfo *vsi;
13977 	const struct btf_type *datasec;
13978 	struct btf_mod_pair *btf_mod;
13979 	const struct btf_type *t;
13980 	const char *sym_name;
13981 	bool percpu = false;
13982 	u32 type, id = insn->imm;
13983 	struct btf *btf;
13984 	s32 datasec_id;
13985 	u64 addr;
13986 	int i, btf_fd, err;
13987 
13988 	btf_fd = insn[1].imm;
13989 	if (btf_fd) {
13990 		btf = btf_get_by_fd(btf_fd);
13991 		if (IS_ERR(btf)) {
13992 			verbose(env, "invalid module BTF object FD specified.\n");
13993 			return -EINVAL;
13994 		}
13995 	} else {
13996 		if (!btf_vmlinux) {
13997 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
13998 			return -EINVAL;
13999 		}
14000 		btf = btf_vmlinux;
14001 		btf_get(btf);
14002 	}
14003 
14004 	t = btf_type_by_id(btf, id);
14005 	if (!t) {
14006 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
14007 		err = -ENOENT;
14008 		goto err_put;
14009 	}
14010 
14011 	if (!btf_type_is_var(t)) {
14012 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
14013 		err = -EINVAL;
14014 		goto err_put;
14015 	}
14016 
14017 	sym_name = btf_name_by_offset(btf, t->name_off);
14018 	addr = kallsyms_lookup_name(sym_name);
14019 	if (!addr) {
14020 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
14021 			sym_name);
14022 		err = -ENOENT;
14023 		goto err_put;
14024 	}
14025 
14026 	datasec_id = find_btf_percpu_datasec(btf);
14027 	if (datasec_id > 0) {
14028 		datasec = btf_type_by_id(btf, datasec_id);
14029 		for_each_vsi(i, datasec, vsi) {
14030 			if (vsi->type == id) {
14031 				percpu = true;
14032 				break;
14033 			}
14034 		}
14035 	}
14036 
14037 	insn[0].imm = (u32)addr;
14038 	insn[1].imm = addr >> 32;
14039 
14040 	type = t->type;
14041 	t = btf_type_skip_modifiers(btf, type, NULL);
14042 	if (percpu) {
14043 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
14044 		aux->btf_var.btf = btf;
14045 		aux->btf_var.btf_id = type;
14046 	} else if (!btf_type_is_struct(t)) {
14047 		const struct btf_type *ret;
14048 		const char *tname;
14049 		u32 tsize;
14050 
14051 		/* resolve the type size of ksym. */
14052 		ret = btf_resolve_size(btf, t, &tsize);
14053 		if (IS_ERR(ret)) {
14054 			tname = btf_name_by_offset(btf, t->name_off);
14055 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
14056 				tname, PTR_ERR(ret));
14057 			err = -EINVAL;
14058 			goto err_put;
14059 		}
14060 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
14061 		aux->btf_var.mem_size = tsize;
14062 	} else {
14063 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
14064 		aux->btf_var.btf = btf;
14065 		aux->btf_var.btf_id = type;
14066 	}
14067 
14068 	/* check whether we recorded this BTF (and maybe module) already */
14069 	for (i = 0; i < env->used_btf_cnt; i++) {
14070 		if (env->used_btfs[i].btf == btf) {
14071 			btf_put(btf);
14072 			return 0;
14073 		}
14074 	}
14075 
14076 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
14077 		err = -E2BIG;
14078 		goto err_put;
14079 	}
14080 
14081 	btf_mod = &env->used_btfs[env->used_btf_cnt];
14082 	btf_mod->btf = btf;
14083 	btf_mod->module = NULL;
14084 
14085 	/* if we reference variables from kernel module, bump its refcount */
14086 	if (btf_is_module(btf)) {
14087 		btf_mod->module = btf_try_get_module(btf);
14088 		if (!btf_mod->module) {
14089 			err = -ENXIO;
14090 			goto err_put;
14091 		}
14092 	}
14093 
14094 	env->used_btf_cnt++;
14095 
14096 	return 0;
14097 err_put:
14098 	btf_put(btf);
14099 	return err;
14100 }
14101 
14102 static bool is_tracing_prog_type(enum bpf_prog_type type)
14103 {
14104 	switch (type) {
14105 	case BPF_PROG_TYPE_KPROBE:
14106 	case BPF_PROG_TYPE_TRACEPOINT:
14107 	case BPF_PROG_TYPE_PERF_EVENT:
14108 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
14109 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
14110 		return true;
14111 	default:
14112 		return false;
14113 	}
14114 }
14115 
14116 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
14117 					struct bpf_map *map,
14118 					struct bpf_prog *prog)
14119 
14120 {
14121 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
14122 
14123 	if (btf_record_has_field(map->record, BPF_LIST_HEAD)) {
14124 		if (is_tracing_prog_type(prog_type)) {
14125 			verbose(env, "tracing progs cannot use bpf_list_head yet\n");
14126 			return -EINVAL;
14127 		}
14128 	}
14129 
14130 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
14131 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
14132 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
14133 			return -EINVAL;
14134 		}
14135 
14136 		if (is_tracing_prog_type(prog_type)) {
14137 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
14138 			return -EINVAL;
14139 		}
14140 
14141 		if (prog->aux->sleepable) {
14142 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
14143 			return -EINVAL;
14144 		}
14145 	}
14146 
14147 	if (btf_record_has_field(map->record, BPF_TIMER)) {
14148 		if (is_tracing_prog_type(prog_type)) {
14149 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
14150 			return -EINVAL;
14151 		}
14152 	}
14153 
14154 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
14155 	    !bpf_offload_prog_map_match(prog, map)) {
14156 		verbose(env, "offload device mismatch between prog and map\n");
14157 		return -EINVAL;
14158 	}
14159 
14160 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
14161 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
14162 		return -EINVAL;
14163 	}
14164 
14165 	if (prog->aux->sleepable)
14166 		switch (map->map_type) {
14167 		case BPF_MAP_TYPE_HASH:
14168 		case BPF_MAP_TYPE_LRU_HASH:
14169 		case BPF_MAP_TYPE_ARRAY:
14170 		case BPF_MAP_TYPE_PERCPU_HASH:
14171 		case BPF_MAP_TYPE_PERCPU_ARRAY:
14172 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
14173 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
14174 		case BPF_MAP_TYPE_HASH_OF_MAPS:
14175 		case BPF_MAP_TYPE_RINGBUF:
14176 		case BPF_MAP_TYPE_USER_RINGBUF:
14177 		case BPF_MAP_TYPE_INODE_STORAGE:
14178 		case BPF_MAP_TYPE_SK_STORAGE:
14179 		case BPF_MAP_TYPE_TASK_STORAGE:
14180 		case BPF_MAP_TYPE_CGRP_STORAGE:
14181 			break;
14182 		default:
14183 			verbose(env,
14184 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
14185 			return -EINVAL;
14186 		}
14187 
14188 	return 0;
14189 }
14190 
14191 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
14192 {
14193 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
14194 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
14195 }
14196 
14197 /* find and rewrite pseudo imm in ld_imm64 instructions:
14198  *
14199  * 1. if it accesses map FD, replace it with actual map pointer.
14200  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
14201  *
14202  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
14203  */
14204 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
14205 {
14206 	struct bpf_insn *insn = env->prog->insnsi;
14207 	int insn_cnt = env->prog->len;
14208 	int i, j, err;
14209 
14210 	err = bpf_prog_calc_tag(env->prog);
14211 	if (err)
14212 		return err;
14213 
14214 	for (i = 0; i < insn_cnt; i++, insn++) {
14215 		if (BPF_CLASS(insn->code) == BPF_LDX &&
14216 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
14217 			verbose(env, "BPF_LDX uses reserved fields\n");
14218 			return -EINVAL;
14219 		}
14220 
14221 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
14222 			struct bpf_insn_aux_data *aux;
14223 			struct bpf_map *map;
14224 			struct fd f;
14225 			u64 addr;
14226 			u32 fd;
14227 
14228 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
14229 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
14230 			    insn[1].off != 0) {
14231 				verbose(env, "invalid bpf_ld_imm64 insn\n");
14232 				return -EINVAL;
14233 			}
14234 
14235 			if (insn[0].src_reg == 0)
14236 				/* valid generic load 64-bit imm */
14237 				goto next_insn;
14238 
14239 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
14240 				aux = &env->insn_aux_data[i];
14241 				err = check_pseudo_btf_id(env, insn, aux);
14242 				if (err)
14243 					return err;
14244 				goto next_insn;
14245 			}
14246 
14247 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
14248 				aux = &env->insn_aux_data[i];
14249 				aux->ptr_type = PTR_TO_FUNC;
14250 				goto next_insn;
14251 			}
14252 
14253 			/* In final convert_pseudo_ld_imm64() step, this is
14254 			 * converted into regular 64-bit imm load insn.
14255 			 */
14256 			switch (insn[0].src_reg) {
14257 			case BPF_PSEUDO_MAP_VALUE:
14258 			case BPF_PSEUDO_MAP_IDX_VALUE:
14259 				break;
14260 			case BPF_PSEUDO_MAP_FD:
14261 			case BPF_PSEUDO_MAP_IDX:
14262 				if (insn[1].imm == 0)
14263 					break;
14264 				fallthrough;
14265 			default:
14266 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
14267 				return -EINVAL;
14268 			}
14269 
14270 			switch (insn[0].src_reg) {
14271 			case BPF_PSEUDO_MAP_IDX_VALUE:
14272 			case BPF_PSEUDO_MAP_IDX:
14273 				if (bpfptr_is_null(env->fd_array)) {
14274 					verbose(env, "fd_idx without fd_array is invalid\n");
14275 					return -EPROTO;
14276 				}
14277 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
14278 							    insn[0].imm * sizeof(fd),
14279 							    sizeof(fd)))
14280 					return -EFAULT;
14281 				break;
14282 			default:
14283 				fd = insn[0].imm;
14284 				break;
14285 			}
14286 
14287 			f = fdget(fd);
14288 			map = __bpf_map_get(f);
14289 			if (IS_ERR(map)) {
14290 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
14291 					insn[0].imm);
14292 				return PTR_ERR(map);
14293 			}
14294 
14295 			err = check_map_prog_compatibility(env, map, env->prog);
14296 			if (err) {
14297 				fdput(f);
14298 				return err;
14299 			}
14300 
14301 			aux = &env->insn_aux_data[i];
14302 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
14303 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
14304 				addr = (unsigned long)map;
14305 			} else {
14306 				u32 off = insn[1].imm;
14307 
14308 				if (off >= BPF_MAX_VAR_OFF) {
14309 					verbose(env, "direct value offset of %u is not allowed\n", off);
14310 					fdput(f);
14311 					return -EINVAL;
14312 				}
14313 
14314 				if (!map->ops->map_direct_value_addr) {
14315 					verbose(env, "no direct value access support for this map type\n");
14316 					fdput(f);
14317 					return -EINVAL;
14318 				}
14319 
14320 				err = map->ops->map_direct_value_addr(map, &addr, off);
14321 				if (err) {
14322 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
14323 						map->value_size, off);
14324 					fdput(f);
14325 					return err;
14326 				}
14327 
14328 				aux->map_off = off;
14329 				addr += off;
14330 			}
14331 
14332 			insn[0].imm = (u32)addr;
14333 			insn[1].imm = addr >> 32;
14334 
14335 			/* check whether we recorded this map already */
14336 			for (j = 0; j < env->used_map_cnt; j++) {
14337 				if (env->used_maps[j] == map) {
14338 					aux->map_index = j;
14339 					fdput(f);
14340 					goto next_insn;
14341 				}
14342 			}
14343 
14344 			if (env->used_map_cnt >= MAX_USED_MAPS) {
14345 				fdput(f);
14346 				return -E2BIG;
14347 			}
14348 
14349 			/* hold the map. If the program is rejected by verifier,
14350 			 * the map will be released by release_maps() or it
14351 			 * will be used by the valid program until it's unloaded
14352 			 * and all maps are released in free_used_maps()
14353 			 */
14354 			bpf_map_inc(map);
14355 
14356 			aux->map_index = env->used_map_cnt;
14357 			env->used_maps[env->used_map_cnt++] = map;
14358 
14359 			if (bpf_map_is_cgroup_storage(map) &&
14360 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
14361 				verbose(env, "only one cgroup storage of each type is allowed\n");
14362 				fdput(f);
14363 				return -EBUSY;
14364 			}
14365 
14366 			fdput(f);
14367 next_insn:
14368 			insn++;
14369 			i++;
14370 			continue;
14371 		}
14372 
14373 		/* Basic sanity check before we invest more work here. */
14374 		if (!bpf_opcode_in_insntable(insn->code)) {
14375 			verbose(env, "unknown opcode %02x\n", insn->code);
14376 			return -EINVAL;
14377 		}
14378 	}
14379 
14380 	/* now all pseudo BPF_LD_IMM64 instructions load valid
14381 	 * 'struct bpf_map *' into a register instead of user map_fd.
14382 	 * These pointers will be used later by verifier to validate map access.
14383 	 */
14384 	return 0;
14385 }
14386 
14387 /* drop refcnt of maps used by the rejected program */
14388 static void release_maps(struct bpf_verifier_env *env)
14389 {
14390 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
14391 			     env->used_map_cnt);
14392 }
14393 
14394 /* drop refcnt of maps used by the rejected program */
14395 static void release_btfs(struct bpf_verifier_env *env)
14396 {
14397 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
14398 			     env->used_btf_cnt);
14399 }
14400 
14401 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
14402 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
14403 {
14404 	struct bpf_insn *insn = env->prog->insnsi;
14405 	int insn_cnt = env->prog->len;
14406 	int i;
14407 
14408 	for (i = 0; i < insn_cnt; i++, insn++) {
14409 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
14410 			continue;
14411 		if (insn->src_reg == BPF_PSEUDO_FUNC)
14412 			continue;
14413 		insn->src_reg = 0;
14414 	}
14415 }
14416 
14417 /* single env->prog->insni[off] instruction was replaced with the range
14418  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
14419  * [0, off) and [off, end) to new locations, so the patched range stays zero
14420  */
14421 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
14422 				 struct bpf_insn_aux_data *new_data,
14423 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
14424 {
14425 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
14426 	struct bpf_insn *insn = new_prog->insnsi;
14427 	u32 old_seen = old_data[off].seen;
14428 	u32 prog_len;
14429 	int i;
14430 
14431 	/* aux info at OFF always needs adjustment, no matter fast path
14432 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
14433 	 * original insn at old prog.
14434 	 */
14435 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
14436 
14437 	if (cnt == 1)
14438 		return;
14439 	prog_len = new_prog->len;
14440 
14441 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
14442 	memcpy(new_data + off + cnt - 1, old_data + off,
14443 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
14444 	for (i = off; i < off + cnt - 1; i++) {
14445 		/* Expand insni[off]'s seen count to the patched range. */
14446 		new_data[i].seen = old_seen;
14447 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
14448 	}
14449 	env->insn_aux_data = new_data;
14450 	vfree(old_data);
14451 }
14452 
14453 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
14454 {
14455 	int i;
14456 
14457 	if (len == 1)
14458 		return;
14459 	/* NOTE: fake 'exit' subprog should be updated as well. */
14460 	for (i = 0; i <= env->subprog_cnt; i++) {
14461 		if (env->subprog_info[i].start <= off)
14462 			continue;
14463 		env->subprog_info[i].start += len - 1;
14464 	}
14465 }
14466 
14467 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
14468 {
14469 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
14470 	int i, sz = prog->aux->size_poke_tab;
14471 	struct bpf_jit_poke_descriptor *desc;
14472 
14473 	for (i = 0; i < sz; i++) {
14474 		desc = &tab[i];
14475 		if (desc->insn_idx <= off)
14476 			continue;
14477 		desc->insn_idx += len - 1;
14478 	}
14479 }
14480 
14481 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
14482 					    const struct bpf_insn *patch, u32 len)
14483 {
14484 	struct bpf_prog *new_prog;
14485 	struct bpf_insn_aux_data *new_data = NULL;
14486 
14487 	if (len > 1) {
14488 		new_data = vzalloc(array_size(env->prog->len + len - 1,
14489 					      sizeof(struct bpf_insn_aux_data)));
14490 		if (!new_data)
14491 			return NULL;
14492 	}
14493 
14494 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
14495 	if (IS_ERR(new_prog)) {
14496 		if (PTR_ERR(new_prog) == -ERANGE)
14497 			verbose(env,
14498 				"insn %d cannot be patched due to 16-bit range\n",
14499 				env->insn_aux_data[off].orig_idx);
14500 		vfree(new_data);
14501 		return NULL;
14502 	}
14503 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
14504 	adjust_subprog_starts(env, off, len);
14505 	adjust_poke_descs(new_prog, off, len);
14506 	return new_prog;
14507 }
14508 
14509 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
14510 					      u32 off, u32 cnt)
14511 {
14512 	int i, j;
14513 
14514 	/* find first prog starting at or after off (first to remove) */
14515 	for (i = 0; i < env->subprog_cnt; i++)
14516 		if (env->subprog_info[i].start >= off)
14517 			break;
14518 	/* find first prog starting at or after off + cnt (first to stay) */
14519 	for (j = i; j < env->subprog_cnt; j++)
14520 		if (env->subprog_info[j].start >= off + cnt)
14521 			break;
14522 	/* if j doesn't start exactly at off + cnt, we are just removing
14523 	 * the front of previous prog
14524 	 */
14525 	if (env->subprog_info[j].start != off + cnt)
14526 		j--;
14527 
14528 	if (j > i) {
14529 		struct bpf_prog_aux *aux = env->prog->aux;
14530 		int move;
14531 
14532 		/* move fake 'exit' subprog as well */
14533 		move = env->subprog_cnt + 1 - j;
14534 
14535 		memmove(env->subprog_info + i,
14536 			env->subprog_info + j,
14537 			sizeof(*env->subprog_info) * move);
14538 		env->subprog_cnt -= j - i;
14539 
14540 		/* remove func_info */
14541 		if (aux->func_info) {
14542 			move = aux->func_info_cnt - j;
14543 
14544 			memmove(aux->func_info + i,
14545 				aux->func_info + j,
14546 				sizeof(*aux->func_info) * move);
14547 			aux->func_info_cnt -= j - i;
14548 			/* func_info->insn_off is set after all code rewrites,
14549 			 * in adjust_btf_func() - no need to adjust
14550 			 */
14551 		}
14552 	} else {
14553 		/* convert i from "first prog to remove" to "first to adjust" */
14554 		if (env->subprog_info[i].start == off)
14555 			i++;
14556 	}
14557 
14558 	/* update fake 'exit' subprog as well */
14559 	for (; i <= env->subprog_cnt; i++)
14560 		env->subprog_info[i].start -= cnt;
14561 
14562 	return 0;
14563 }
14564 
14565 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
14566 				      u32 cnt)
14567 {
14568 	struct bpf_prog *prog = env->prog;
14569 	u32 i, l_off, l_cnt, nr_linfo;
14570 	struct bpf_line_info *linfo;
14571 
14572 	nr_linfo = prog->aux->nr_linfo;
14573 	if (!nr_linfo)
14574 		return 0;
14575 
14576 	linfo = prog->aux->linfo;
14577 
14578 	/* find first line info to remove, count lines to be removed */
14579 	for (i = 0; i < nr_linfo; i++)
14580 		if (linfo[i].insn_off >= off)
14581 			break;
14582 
14583 	l_off = i;
14584 	l_cnt = 0;
14585 	for (; i < nr_linfo; i++)
14586 		if (linfo[i].insn_off < off + cnt)
14587 			l_cnt++;
14588 		else
14589 			break;
14590 
14591 	/* First live insn doesn't match first live linfo, it needs to "inherit"
14592 	 * last removed linfo.  prog is already modified, so prog->len == off
14593 	 * means no live instructions after (tail of the program was removed).
14594 	 */
14595 	if (prog->len != off && l_cnt &&
14596 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
14597 		l_cnt--;
14598 		linfo[--i].insn_off = off + cnt;
14599 	}
14600 
14601 	/* remove the line info which refer to the removed instructions */
14602 	if (l_cnt) {
14603 		memmove(linfo + l_off, linfo + i,
14604 			sizeof(*linfo) * (nr_linfo - i));
14605 
14606 		prog->aux->nr_linfo -= l_cnt;
14607 		nr_linfo = prog->aux->nr_linfo;
14608 	}
14609 
14610 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
14611 	for (i = l_off; i < nr_linfo; i++)
14612 		linfo[i].insn_off -= cnt;
14613 
14614 	/* fix up all subprogs (incl. 'exit') which start >= off */
14615 	for (i = 0; i <= env->subprog_cnt; i++)
14616 		if (env->subprog_info[i].linfo_idx > l_off) {
14617 			/* program may have started in the removed region but
14618 			 * may not be fully removed
14619 			 */
14620 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
14621 				env->subprog_info[i].linfo_idx -= l_cnt;
14622 			else
14623 				env->subprog_info[i].linfo_idx = l_off;
14624 		}
14625 
14626 	return 0;
14627 }
14628 
14629 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
14630 {
14631 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
14632 	unsigned int orig_prog_len = env->prog->len;
14633 	int err;
14634 
14635 	if (bpf_prog_is_dev_bound(env->prog->aux))
14636 		bpf_prog_offload_remove_insns(env, off, cnt);
14637 
14638 	err = bpf_remove_insns(env->prog, off, cnt);
14639 	if (err)
14640 		return err;
14641 
14642 	err = adjust_subprog_starts_after_remove(env, off, cnt);
14643 	if (err)
14644 		return err;
14645 
14646 	err = bpf_adj_linfo_after_remove(env, off, cnt);
14647 	if (err)
14648 		return err;
14649 
14650 	memmove(aux_data + off,	aux_data + off + cnt,
14651 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
14652 
14653 	return 0;
14654 }
14655 
14656 /* The verifier does more data flow analysis than llvm and will not
14657  * explore branches that are dead at run time. Malicious programs can
14658  * have dead code too. Therefore replace all dead at-run-time code
14659  * with 'ja -1'.
14660  *
14661  * Just nops are not optimal, e.g. if they would sit at the end of the
14662  * program and through another bug we would manage to jump there, then
14663  * we'd execute beyond program memory otherwise. Returning exception
14664  * code also wouldn't work since we can have subprogs where the dead
14665  * code could be located.
14666  */
14667 static void sanitize_dead_code(struct bpf_verifier_env *env)
14668 {
14669 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
14670 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
14671 	struct bpf_insn *insn = env->prog->insnsi;
14672 	const int insn_cnt = env->prog->len;
14673 	int i;
14674 
14675 	for (i = 0; i < insn_cnt; i++) {
14676 		if (aux_data[i].seen)
14677 			continue;
14678 		memcpy(insn + i, &trap, sizeof(trap));
14679 		aux_data[i].zext_dst = false;
14680 	}
14681 }
14682 
14683 static bool insn_is_cond_jump(u8 code)
14684 {
14685 	u8 op;
14686 
14687 	if (BPF_CLASS(code) == BPF_JMP32)
14688 		return true;
14689 
14690 	if (BPF_CLASS(code) != BPF_JMP)
14691 		return false;
14692 
14693 	op = BPF_OP(code);
14694 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
14695 }
14696 
14697 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
14698 {
14699 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
14700 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
14701 	struct bpf_insn *insn = env->prog->insnsi;
14702 	const int insn_cnt = env->prog->len;
14703 	int i;
14704 
14705 	for (i = 0; i < insn_cnt; i++, insn++) {
14706 		if (!insn_is_cond_jump(insn->code))
14707 			continue;
14708 
14709 		if (!aux_data[i + 1].seen)
14710 			ja.off = insn->off;
14711 		else if (!aux_data[i + 1 + insn->off].seen)
14712 			ja.off = 0;
14713 		else
14714 			continue;
14715 
14716 		if (bpf_prog_is_dev_bound(env->prog->aux))
14717 			bpf_prog_offload_replace_insn(env, i, &ja);
14718 
14719 		memcpy(insn, &ja, sizeof(ja));
14720 	}
14721 }
14722 
14723 static int opt_remove_dead_code(struct bpf_verifier_env *env)
14724 {
14725 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
14726 	int insn_cnt = env->prog->len;
14727 	int i, err;
14728 
14729 	for (i = 0; i < insn_cnt; i++) {
14730 		int j;
14731 
14732 		j = 0;
14733 		while (i + j < insn_cnt && !aux_data[i + j].seen)
14734 			j++;
14735 		if (!j)
14736 			continue;
14737 
14738 		err = verifier_remove_insns(env, i, j);
14739 		if (err)
14740 			return err;
14741 		insn_cnt = env->prog->len;
14742 	}
14743 
14744 	return 0;
14745 }
14746 
14747 static int opt_remove_nops(struct bpf_verifier_env *env)
14748 {
14749 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
14750 	struct bpf_insn *insn = env->prog->insnsi;
14751 	int insn_cnt = env->prog->len;
14752 	int i, err;
14753 
14754 	for (i = 0; i < insn_cnt; i++) {
14755 		if (memcmp(&insn[i], &ja, sizeof(ja)))
14756 			continue;
14757 
14758 		err = verifier_remove_insns(env, i, 1);
14759 		if (err)
14760 			return err;
14761 		insn_cnt--;
14762 		i--;
14763 	}
14764 
14765 	return 0;
14766 }
14767 
14768 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
14769 					 const union bpf_attr *attr)
14770 {
14771 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
14772 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
14773 	int i, patch_len, delta = 0, len = env->prog->len;
14774 	struct bpf_insn *insns = env->prog->insnsi;
14775 	struct bpf_prog *new_prog;
14776 	bool rnd_hi32;
14777 
14778 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
14779 	zext_patch[1] = BPF_ZEXT_REG(0);
14780 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
14781 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
14782 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
14783 	for (i = 0; i < len; i++) {
14784 		int adj_idx = i + delta;
14785 		struct bpf_insn insn;
14786 		int load_reg;
14787 
14788 		insn = insns[adj_idx];
14789 		load_reg = insn_def_regno(&insn);
14790 		if (!aux[adj_idx].zext_dst) {
14791 			u8 code, class;
14792 			u32 imm_rnd;
14793 
14794 			if (!rnd_hi32)
14795 				continue;
14796 
14797 			code = insn.code;
14798 			class = BPF_CLASS(code);
14799 			if (load_reg == -1)
14800 				continue;
14801 
14802 			/* NOTE: arg "reg" (the fourth one) is only used for
14803 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
14804 			 *       here.
14805 			 */
14806 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
14807 				if (class == BPF_LD &&
14808 				    BPF_MODE(code) == BPF_IMM)
14809 					i++;
14810 				continue;
14811 			}
14812 
14813 			/* ctx load could be transformed into wider load. */
14814 			if (class == BPF_LDX &&
14815 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
14816 				continue;
14817 
14818 			imm_rnd = get_random_u32();
14819 			rnd_hi32_patch[0] = insn;
14820 			rnd_hi32_patch[1].imm = imm_rnd;
14821 			rnd_hi32_patch[3].dst_reg = load_reg;
14822 			patch = rnd_hi32_patch;
14823 			patch_len = 4;
14824 			goto apply_patch_buffer;
14825 		}
14826 
14827 		/* Add in an zero-extend instruction if a) the JIT has requested
14828 		 * it or b) it's a CMPXCHG.
14829 		 *
14830 		 * The latter is because: BPF_CMPXCHG always loads a value into
14831 		 * R0, therefore always zero-extends. However some archs'
14832 		 * equivalent instruction only does this load when the
14833 		 * comparison is successful. This detail of CMPXCHG is
14834 		 * orthogonal to the general zero-extension behaviour of the
14835 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
14836 		 */
14837 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
14838 			continue;
14839 
14840 		if (WARN_ON(load_reg == -1)) {
14841 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
14842 			return -EFAULT;
14843 		}
14844 
14845 		zext_patch[0] = insn;
14846 		zext_patch[1].dst_reg = load_reg;
14847 		zext_patch[1].src_reg = load_reg;
14848 		patch = zext_patch;
14849 		patch_len = 2;
14850 apply_patch_buffer:
14851 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
14852 		if (!new_prog)
14853 			return -ENOMEM;
14854 		env->prog = new_prog;
14855 		insns = new_prog->insnsi;
14856 		aux = env->insn_aux_data;
14857 		delta += patch_len - 1;
14858 	}
14859 
14860 	return 0;
14861 }
14862 
14863 /* convert load instructions that access fields of a context type into a
14864  * sequence of instructions that access fields of the underlying structure:
14865  *     struct __sk_buff    -> struct sk_buff
14866  *     struct bpf_sock_ops -> struct sock
14867  */
14868 static int convert_ctx_accesses(struct bpf_verifier_env *env)
14869 {
14870 	const struct bpf_verifier_ops *ops = env->ops;
14871 	int i, cnt, size, ctx_field_size, delta = 0;
14872 	const int insn_cnt = env->prog->len;
14873 	struct bpf_insn insn_buf[16], *insn;
14874 	u32 target_size, size_default, off;
14875 	struct bpf_prog *new_prog;
14876 	enum bpf_access_type type;
14877 	bool is_narrower_load;
14878 
14879 	if (ops->gen_prologue || env->seen_direct_write) {
14880 		if (!ops->gen_prologue) {
14881 			verbose(env, "bpf verifier is misconfigured\n");
14882 			return -EINVAL;
14883 		}
14884 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
14885 					env->prog);
14886 		if (cnt >= ARRAY_SIZE(insn_buf)) {
14887 			verbose(env, "bpf verifier is misconfigured\n");
14888 			return -EINVAL;
14889 		} else if (cnt) {
14890 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
14891 			if (!new_prog)
14892 				return -ENOMEM;
14893 
14894 			env->prog = new_prog;
14895 			delta += cnt - 1;
14896 		}
14897 	}
14898 
14899 	if (bpf_prog_is_dev_bound(env->prog->aux))
14900 		return 0;
14901 
14902 	insn = env->prog->insnsi + delta;
14903 
14904 	for (i = 0; i < insn_cnt; i++, insn++) {
14905 		bpf_convert_ctx_access_t convert_ctx_access;
14906 		bool ctx_access;
14907 
14908 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
14909 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
14910 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
14911 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
14912 			type = BPF_READ;
14913 			ctx_access = true;
14914 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
14915 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
14916 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
14917 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
14918 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
14919 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
14920 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
14921 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
14922 			type = BPF_WRITE;
14923 			ctx_access = BPF_CLASS(insn->code) == BPF_STX;
14924 		} else {
14925 			continue;
14926 		}
14927 
14928 		if (type == BPF_WRITE &&
14929 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
14930 			struct bpf_insn patch[] = {
14931 				*insn,
14932 				BPF_ST_NOSPEC(),
14933 			};
14934 
14935 			cnt = ARRAY_SIZE(patch);
14936 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
14937 			if (!new_prog)
14938 				return -ENOMEM;
14939 
14940 			delta    += cnt - 1;
14941 			env->prog = new_prog;
14942 			insn      = new_prog->insnsi + i + delta;
14943 			continue;
14944 		}
14945 
14946 		if (!ctx_access)
14947 			continue;
14948 
14949 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
14950 		case PTR_TO_CTX:
14951 			if (!ops->convert_ctx_access)
14952 				continue;
14953 			convert_ctx_access = ops->convert_ctx_access;
14954 			break;
14955 		case PTR_TO_SOCKET:
14956 		case PTR_TO_SOCK_COMMON:
14957 			convert_ctx_access = bpf_sock_convert_ctx_access;
14958 			break;
14959 		case PTR_TO_TCP_SOCK:
14960 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
14961 			break;
14962 		case PTR_TO_XDP_SOCK:
14963 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
14964 			break;
14965 		case PTR_TO_BTF_ID:
14966 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
14967 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
14968 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
14969 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
14970 		 * any faults for loads into such types. BPF_WRITE is disallowed
14971 		 * for this case.
14972 		 */
14973 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
14974 			if (type == BPF_READ) {
14975 				insn->code = BPF_LDX | BPF_PROBE_MEM |
14976 					BPF_SIZE((insn)->code);
14977 				env->prog->aux->num_exentries++;
14978 			}
14979 			continue;
14980 		default:
14981 			continue;
14982 		}
14983 
14984 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
14985 		size = BPF_LDST_BYTES(insn);
14986 
14987 		/* If the read access is a narrower load of the field,
14988 		 * convert to a 4/8-byte load, to minimum program type specific
14989 		 * convert_ctx_access changes. If conversion is successful,
14990 		 * we will apply proper mask to the result.
14991 		 */
14992 		is_narrower_load = size < ctx_field_size;
14993 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
14994 		off = insn->off;
14995 		if (is_narrower_load) {
14996 			u8 size_code;
14997 
14998 			if (type == BPF_WRITE) {
14999 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
15000 				return -EINVAL;
15001 			}
15002 
15003 			size_code = BPF_H;
15004 			if (ctx_field_size == 4)
15005 				size_code = BPF_W;
15006 			else if (ctx_field_size == 8)
15007 				size_code = BPF_DW;
15008 
15009 			insn->off = off & ~(size_default - 1);
15010 			insn->code = BPF_LDX | BPF_MEM | size_code;
15011 		}
15012 
15013 		target_size = 0;
15014 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
15015 					 &target_size);
15016 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
15017 		    (ctx_field_size && !target_size)) {
15018 			verbose(env, "bpf verifier is misconfigured\n");
15019 			return -EINVAL;
15020 		}
15021 
15022 		if (is_narrower_load && size < target_size) {
15023 			u8 shift = bpf_ctx_narrow_access_offset(
15024 				off, size, size_default) * 8;
15025 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
15026 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
15027 				return -EINVAL;
15028 			}
15029 			if (ctx_field_size <= 4) {
15030 				if (shift)
15031 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
15032 									insn->dst_reg,
15033 									shift);
15034 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
15035 								(1 << size * 8) - 1);
15036 			} else {
15037 				if (shift)
15038 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
15039 									insn->dst_reg,
15040 									shift);
15041 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
15042 								(1ULL << size * 8) - 1);
15043 			}
15044 		}
15045 
15046 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15047 		if (!new_prog)
15048 			return -ENOMEM;
15049 
15050 		delta += cnt - 1;
15051 
15052 		/* keep walking new program and skip insns we just inserted */
15053 		env->prog = new_prog;
15054 		insn      = new_prog->insnsi + i + delta;
15055 	}
15056 
15057 	return 0;
15058 }
15059 
15060 static int jit_subprogs(struct bpf_verifier_env *env)
15061 {
15062 	struct bpf_prog *prog = env->prog, **func, *tmp;
15063 	int i, j, subprog_start, subprog_end = 0, len, subprog;
15064 	struct bpf_map *map_ptr;
15065 	struct bpf_insn *insn;
15066 	void *old_bpf_func;
15067 	int err, num_exentries;
15068 
15069 	if (env->subprog_cnt <= 1)
15070 		return 0;
15071 
15072 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
15073 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
15074 			continue;
15075 
15076 		/* Upon error here we cannot fall back to interpreter but
15077 		 * need a hard reject of the program. Thus -EFAULT is
15078 		 * propagated in any case.
15079 		 */
15080 		subprog = find_subprog(env, i + insn->imm + 1);
15081 		if (subprog < 0) {
15082 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
15083 				  i + insn->imm + 1);
15084 			return -EFAULT;
15085 		}
15086 		/* temporarily remember subprog id inside insn instead of
15087 		 * aux_data, since next loop will split up all insns into funcs
15088 		 */
15089 		insn->off = subprog;
15090 		/* remember original imm in case JIT fails and fallback
15091 		 * to interpreter will be needed
15092 		 */
15093 		env->insn_aux_data[i].call_imm = insn->imm;
15094 		/* point imm to __bpf_call_base+1 from JITs point of view */
15095 		insn->imm = 1;
15096 		if (bpf_pseudo_func(insn))
15097 			/* jit (e.g. x86_64) may emit fewer instructions
15098 			 * if it learns a u32 imm is the same as a u64 imm.
15099 			 * Force a non zero here.
15100 			 */
15101 			insn[1].imm = 1;
15102 	}
15103 
15104 	err = bpf_prog_alloc_jited_linfo(prog);
15105 	if (err)
15106 		goto out_undo_insn;
15107 
15108 	err = -ENOMEM;
15109 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
15110 	if (!func)
15111 		goto out_undo_insn;
15112 
15113 	for (i = 0; i < env->subprog_cnt; i++) {
15114 		subprog_start = subprog_end;
15115 		subprog_end = env->subprog_info[i + 1].start;
15116 
15117 		len = subprog_end - subprog_start;
15118 		/* bpf_prog_run() doesn't call subprogs directly,
15119 		 * hence main prog stats include the runtime of subprogs.
15120 		 * subprogs don't have IDs and not reachable via prog_get_next_id
15121 		 * func[i]->stats will never be accessed and stays NULL
15122 		 */
15123 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
15124 		if (!func[i])
15125 			goto out_free;
15126 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
15127 		       len * sizeof(struct bpf_insn));
15128 		func[i]->type = prog->type;
15129 		func[i]->len = len;
15130 		if (bpf_prog_calc_tag(func[i]))
15131 			goto out_free;
15132 		func[i]->is_func = 1;
15133 		func[i]->aux->func_idx = i;
15134 		/* Below members will be freed only at prog->aux */
15135 		func[i]->aux->btf = prog->aux->btf;
15136 		func[i]->aux->func_info = prog->aux->func_info;
15137 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
15138 		func[i]->aux->poke_tab = prog->aux->poke_tab;
15139 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
15140 
15141 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
15142 			struct bpf_jit_poke_descriptor *poke;
15143 
15144 			poke = &prog->aux->poke_tab[j];
15145 			if (poke->insn_idx < subprog_end &&
15146 			    poke->insn_idx >= subprog_start)
15147 				poke->aux = func[i]->aux;
15148 		}
15149 
15150 		func[i]->aux->name[0] = 'F';
15151 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
15152 		func[i]->jit_requested = 1;
15153 		func[i]->blinding_requested = prog->blinding_requested;
15154 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
15155 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
15156 		func[i]->aux->linfo = prog->aux->linfo;
15157 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
15158 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
15159 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
15160 		num_exentries = 0;
15161 		insn = func[i]->insnsi;
15162 		for (j = 0; j < func[i]->len; j++, insn++) {
15163 			if (BPF_CLASS(insn->code) == BPF_LDX &&
15164 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
15165 				num_exentries++;
15166 		}
15167 		func[i]->aux->num_exentries = num_exentries;
15168 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
15169 		func[i] = bpf_int_jit_compile(func[i]);
15170 		if (!func[i]->jited) {
15171 			err = -ENOTSUPP;
15172 			goto out_free;
15173 		}
15174 		cond_resched();
15175 	}
15176 
15177 	/* at this point all bpf functions were successfully JITed
15178 	 * now populate all bpf_calls with correct addresses and
15179 	 * run last pass of JIT
15180 	 */
15181 	for (i = 0; i < env->subprog_cnt; i++) {
15182 		insn = func[i]->insnsi;
15183 		for (j = 0; j < func[i]->len; j++, insn++) {
15184 			if (bpf_pseudo_func(insn)) {
15185 				subprog = insn->off;
15186 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
15187 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
15188 				continue;
15189 			}
15190 			if (!bpf_pseudo_call(insn))
15191 				continue;
15192 			subprog = insn->off;
15193 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
15194 		}
15195 
15196 		/* we use the aux data to keep a list of the start addresses
15197 		 * of the JITed images for each function in the program
15198 		 *
15199 		 * for some architectures, such as powerpc64, the imm field
15200 		 * might not be large enough to hold the offset of the start
15201 		 * address of the callee's JITed image from __bpf_call_base
15202 		 *
15203 		 * in such cases, we can lookup the start address of a callee
15204 		 * by using its subprog id, available from the off field of
15205 		 * the call instruction, as an index for this list
15206 		 */
15207 		func[i]->aux->func = func;
15208 		func[i]->aux->func_cnt = env->subprog_cnt;
15209 	}
15210 	for (i = 0; i < env->subprog_cnt; i++) {
15211 		old_bpf_func = func[i]->bpf_func;
15212 		tmp = bpf_int_jit_compile(func[i]);
15213 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
15214 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
15215 			err = -ENOTSUPP;
15216 			goto out_free;
15217 		}
15218 		cond_resched();
15219 	}
15220 
15221 	/* finally lock prog and jit images for all functions and
15222 	 * populate kallsysm
15223 	 */
15224 	for (i = 0; i < env->subprog_cnt; i++) {
15225 		bpf_prog_lock_ro(func[i]);
15226 		bpf_prog_kallsyms_add(func[i]);
15227 	}
15228 
15229 	/* Last step: make now unused interpreter insns from main
15230 	 * prog consistent for later dump requests, so they can
15231 	 * later look the same as if they were interpreted only.
15232 	 */
15233 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
15234 		if (bpf_pseudo_func(insn)) {
15235 			insn[0].imm = env->insn_aux_data[i].call_imm;
15236 			insn[1].imm = insn->off;
15237 			insn->off = 0;
15238 			continue;
15239 		}
15240 		if (!bpf_pseudo_call(insn))
15241 			continue;
15242 		insn->off = env->insn_aux_data[i].call_imm;
15243 		subprog = find_subprog(env, i + insn->off + 1);
15244 		insn->imm = subprog;
15245 	}
15246 
15247 	prog->jited = 1;
15248 	prog->bpf_func = func[0]->bpf_func;
15249 	prog->jited_len = func[0]->jited_len;
15250 	prog->aux->func = func;
15251 	prog->aux->func_cnt = env->subprog_cnt;
15252 	bpf_prog_jit_attempt_done(prog);
15253 	return 0;
15254 out_free:
15255 	/* We failed JIT'ing, so at this point we need to unregister poke
15256 	 * descriptors from subprogs, so that kernel is not attempting to
15257 	 * patch it anymore as we're freeing the subprog JIT memory.
15258 	 */
15259 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
15260 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
15261 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
15262 	}
15263 	/* At this point we're guaranteed that poke descriptors are not
15264 	 * live anymore. We can just unlink its descriptor table as it's
15265 	 * released with the main prog.
15266 	 */
15267 	for (i = 0; i < env->subprog_cnt; i++) {
15268 		if (!func[i])
15269 			continue;
15270 		func[i]->aux->poke_tab = NULL;
15271 		bpf_jit_free(func[i]);
15272 	}
15273 	kfree(func);
15274 out_undo_insn:
15275 	/* cleanup main prog to be interpreted */
15276 	prog->jit_requested = 0;
15277 	prog->blinding_requested = 0;
15278 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
15279 		if (!bpf_pseudo_call(insn))
15280 			continue;
15281 		insn->off = 0;
15282 		insn->imm = env->insn_aux_data[i].call_imm;
15283 	}
15284 	bpf_prog_jit_attempt_done(prog);
15285 	return err;
15286 }
15287 
15288 static int fixup_call_args(struct bpf_verifier_env *env)
15289 {
15290 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
15291 	struct bpf_prog *prog = env->prog;
15292 	struct bpf_insn *insn = prog->insnsi;
15293 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
15294 	int i, depth;
15295 #endif
15296 	int err = 0;
15297 
15298 	if (env->prog->jit_requested &&
15299 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
15300 		err = jit_subprogs(env);
15301 		if (err == 0)
15302 			return 0;
15303 		if (err == -EFAULT)
15304 			return err;
15305 	}
15306 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
15307 	if (has_kfunc_call) {
15308 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
15309 		return -EINVAL;
15310 	}
15311 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
15312 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
15313 		 * have to be rejected, since interpreter doesn't support them yet.
15314 		 */
15315 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
15316 		return -EINVAL;
15317 	}
15318 	for (i = 0; i < prog->len; i++, insn++) {
15319 		if (bpf_pseudo_func(insn)) {
15320 			/* When JIT fails the progs with callback calls
15321 			 * have to be rejected, since interpreter doesn't support them yet.
15322 			 */
15323 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
15324 			return -EINVAL;
15325 		}
15326 
15327 		if (!bpf_pseudo_call(insn))
15328 			continue;
15329 		depth = get_callee_stack_depth(env, insn, i);
15330 		if (depth < 0)
15331 			return depth;
15332 		bpf_patch_call_args(insn, depth);
15333 	}
15334 	err = 0;
15335 #endif
15336 	return err;
15337 }
15338 
15339 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
15340 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
15341 {
15342 	const struct bpf_kfunc_desc *desc;
15343 
15344 	if (!insn->imm) {
15345 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
15346 		return -EINVAL;
15347 	}
15348 
15349 	/* insn->imm has the btf func_id. Replace it with
15350 	 * an address (relative to __bpf_base_call).
15351 	 */
15352 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
15353 	if (!desc) {
15354 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
15355 			insn->imm);
15356 		return -EFAULT;
15357 	}
15358 
15359 	*cnt = 0;
15360 	insn->imm = desc->imm;
15361 	if (insn->off)
15362 		return 0;
15363 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
15364 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
15365 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
15366 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
15367 
15368 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
15369 		insn_buf[1] = addr[0];
15370 		insn_buf[2] = addr[1];
15371 		insn_buf[3] = *insn;
15372 		*cnt = 4;
15373 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
15374 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
15375 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
15376 
15377 		insn_buf[0] = addr[0];
15378 		insn_buf[1] = addr[1];
15379 		insn_buf[2] = *insn;
15380 		*cnt = 3;
15381 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
15382 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
15383 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
15384 		*cnt = 1;
15385 	}
15386 	return 0;
15387 }
15388 
15389 /* Do various post-verification rewrites in a single program pass.
15390  * These rewrites simplify JIT and interpreter implementations.
15391  */
15392 static int do_misc_fixups(struct bpf_verifier_env *env)
15393 {
15394 	struct bpf_prog *prog = env->prog;
15395 	enum bpf_attach_type eatype = prog->expected_attach_type;
15396 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
15397 	struct bpf_insn *insn = prog->insnsi;
15398 	const struct bpf_func_proto *fn;
15399 	const int insn_cnt = prog->len;
15400 	const struct bpf_map_ops *ops;
15401 	struct bpf_insn_aux_data *aux;
15402 	struct bpf_insn insn_buf[16];
15403 	struct bpf_prog *new_prog;
15404 	struct bpf_map *map_ptr;
15405 	int i, ret, cnt, delta = 0;
15406 
15407 	for (i = 0; i < insn_cnt; i++, insn++) {
15408 		/* Make divide-by-zero exceptions impossible. */
15409 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
15410 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
15411 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
15412 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
15413 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
15414 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
15415 			struct bpf_insn *patchlet;
15416 			struct bpf_insn chk_and_div[] = {
15417 				/* [R,W]x div 0 -> 0 */
15418 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
15419 					     BPF_JNE | BPF_K, insn->src_reg,
15420 					     0, 2, 0),
15421 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
15422 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
15423 				*insn,
15424 			};
15425 			struct bpf_insn chk_and_mod[] = {
15426 				/* [R,W]x mod 0 -> [R,W]x */
15427 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
15428 					     BPF_JEQ | BPF_K, insn->src_reg,
15429 					     0, 1 + (is64 ? 0 : 1), 0),
15430 				*insn,
15431 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
15432 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
15433 			};
15434 
15435 			patchlet = isdiv ? chk_and_div : chk_and_mod;
15436 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
15437 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
15438 
15439 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
15440 			if (!new_prog)
15441 				return -ENOMEM;
15442 
15443 			delta    += cnt - 1;
15444 			env->prog = prog = new_prog;
15445 			insn      = new_prog->insnsi + i + delta;
15446 			continue;
15447 		}
15448 
15449 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
15450 		if (BPF_CLASS(insn->code) == BPF_LD &&
15451 		    (BPF_MODE(insn->code) == BPF_ABS ||
15452 		     BPF_MODE(insn->code) == BPF_IND)) {
15453 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
15454 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
15455 				verbose(env, "bpf verifier is misconfigured\n");
15456 				return -EINVAL;
15457 			}
15458 
15459 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15460 			if (!new_prog)
15461 				return -ENOMEM;
15462 
15463 			delta    += cnt - 1;
15464 			env->prog = prog = new_prog;
15465 			insn      = new_prog->insnsi + i + delta;
15466 			continue;
15467 		}
15468 
15469 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
15470 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
15471 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
15472 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
15473 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
15474 			struct bpf_insn *patch = &insn_buf[0];
15475 			bool issrc, isneg, isimm;
15476 			u32 off_reg;
15477 
15478 			aux = &env->insn_aux_data[i + delta];
15479 			if (!aux->alu_state ||
15480 			    aux->alu_state == BPF_ALU_NON_POINTER)
15481 				continue;
15482 
15483 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
15484 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
15485 				BPF_ALU_SANITIZE_SRC;
15486 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
15487 
15488 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
15489 			if (isimm) {
15490 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
15491 			} else {
15492 				if (isneg)
15493 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
15494 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
15495 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
15496 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
15497 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
15498 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
15499 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
15500 			}
15501 			if (!issrc)
15502 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
15503 			insn->src_reg = BPF_REG_AX;
15504 			if (isneg)
15505 				insn->code = insn->code == code_add ?
15506 					     code_sub : code_add;
15507 			*patch++ = *insn;
15508 			if (issrc && isneg && !isimm)
15509 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
15510 			cnt = patch - insn_buf;
15511 
15512 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15513 			if (!new_prog)
15514 				return -ENOMEM;
15515 
15516 			delta    += cnt - 1;
15517 			env->prog = prog = new_prog;
15518 			insn      = new_prog->insnsi + i + delta;
15519 			continue;
15520 		}
15521 
15522 		if (insn->code != (BPF_JMP | BPF_CALL))
15523 			continue;
15524 		if (insn->src_reg == BPF_PSEUDO_CALL)
15525 			continue;
15526 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
15527 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
15528 			if (ret)
15529 				return ret;
15530 			if (cnt == 0)
15531 				continue;
15532 
15533 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15534 			if (!new_prog)
15535 				return -ENOMEM;
15536 
15537 			delta	 += cnt - 1;
15538 			env->prog = prog = new_prog;
15539 			insn	  = new_prog->insnsi + i + delta;
15540 			continue;
15541 		}
15542 
15543 		if (insn->imm == BPF_FUNC_get_route_realm)
15544 			prog->dst_needed = 1;
15545 		if (insn->imm == BPF_FUNC_get_prandom_u32)
15546 			bpf_user_rnd_init_once();
15547 		if (insn->imm == BPF_FUNC_override_return)
15548 			prog->kprobe_override = 1;
15549 		if (insn->imm == BPF_FUNC_tail_call) {
15550 			/* If we tail call into other programs, we
15551 			 * cannot make any assumptions since they can
15552 			 * be replaced dynamically during runtime in
15553 			 * the program array.
15554 			 */
15555 			prog->cb_access = 1;
15556 			if (!allow_tail_call_in_subprogs(env))
15557 				prog->aux->stack_depth = MAX_BPF_STACK;
15558 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
15559 
15560 			/* mark bpf_tail_call as different opcode to avoid
15561 			 * conditional branch in the interpreter for every normal
15562 			 * call and to prevent accidental JITing by JIT compiler
15563 			 * that doesn't support bpf_tail_call yet
15564 			 */
15565 			insn->imm = 0;
15566 			insn->code = BPF_JMP | BPF_TAIL_CALL;
15567 
15568 			aux = &env->insn_aux_data[i + delta];
15569 			if (env->bpf_capable && !prog->blinding_requested &&
15570 			    prog->jit_requested &&
15571 			    !bpf_map_key_poisoned(aux) &&
15572 			    !bpf_map_ptr_poisoned(aux) &&
15573 			    !bpf_map_ptr_unpriv(aux)) {
15574 				struct bpf_jit_poke_descriptor desc = {
15575 					.reason = BPF_POKE_REASON_TAIL_CALL,
15576 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
15577 					.tail_call.key = bpf_map_key_immediate(aux),
15578 					.insn_idx = i + delta,
15579 				};
15580 
15581 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
15582 				if (ret < 0) {
15583 					verbose(env, "adding tail call poke descriptor failed\n");
15584 					return ret;
15585 				}
15586 
15587 				insn->imm = ret + 1;
15588 				continue;
15589 			}
15590 
15591 			if (!bpf_map_ptr_unpriv(aux))
15592 				continue;
15593 
15594 			/* instead of changing every JIT dealing with tail_call
15595 			 * emit two extra insns:
15596 			 * if (index >= max_entries) goto out;
15597 			 * index &= array->index_mask;
15598 			 * to avoid out-of-bounds cpu speculation
15599 			 */
15600 			if (bpf_map_ptr_poisoned(aux)) {
15601 				verbose(env, "tail_call abusing map_ptr\n");
15602 				return -EINVAL;
15603 			}
15604 
15605 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
15606 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
15607 						  map_ptr->max_entries, 2);
15608 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
15609 						    container_of(map_ptr,
15610 								 struct bpf_array,
15611 								 map)->index_mask);
15612 			insn_buf[2] = *insn;
15613 			cnt = 3;
15614 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15615 			if (!new_prog)
15616 				return -ENOMEM;
15617 
15618 			delta    += cnt - 1;
15619 			env->prog = prog = new_prog;
15620 			insn      = new_prog->insnsi + i + delta;
15621 			continue;
15622 		}
15623 
15624 		if (insn->imm == BPF_FUNC_timer_set_callback) {
15625 			/* The verifier will process callback_fn as many times as necessary
15626 			 * with different maps and the register states prepared by
15627 			 * set_timer_callback_state will be accurate.
15628 			 *
15629 			 * The following use case is valid:
15630 			 *   map1 is shared by prog1, prog2, prog3.
15631 			 *   prog1 calls bpf_timer_init for some map1 elements
15632 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
15633 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
15634 			 *   prog3 calls bpf_timer_start for some map1 elements.
15635 			 *     Those that were not both bpf_timer_init-ed and
15636 			 *     bpf_timer_set_callback-ed will return -EINVAL.
15637 			 */
15638 			struct bpf_insn ld_addrs[2] = {
15639 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
15640 			};
15641 
15642 			insn_buf[0] = ld_addrs[0];
15643 			insn_buf[1] = ld_addrs[1];
15644 			insn_buf[2] = *insn;
15645 			cnt = 3;
15646 
15647 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15648 			if (!new_prog)
15649 				return -ENOMEM;
15650 
15651 			delta    += cnt - 1;
15652 			env->prog = prog = new_prog;
15653 			insn      = new_prog->insnsi + i + delta;
15654 			goto patch_call_imm;
15655 		}
15656 
15657 		if (is_storage_get_function(insn->imm)) {
15658 			if (!env->prog->aux->sleepable ||
15659 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
15660 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
15661 			else
15662 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
15663 			insn_buf[1] = *insn;
15664 			cnt = 2;
15665 
15666 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15667 			if (!new_prog)
15668 				return -ENOMEM;
15669 
15670 			delta += cnt - 1;
15671 			env->prog = prog = new_prog;
15672 			insn = new_prog->insnsi + i + delta;
15673 			goto patch_call_imm;
15674 		}
15675 
15676 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
15677 		 * and other inlining handlers are currently limited to 64 bit
15678 		 * only.
15679 		 */
15680 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
15681 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
15682 		     insn->imm == BPF_FUNC_map_update_elem ||
15683 		     insn->imm == BPF_FUNC_map_delete_elem ||
15684 		     insn->imm == BPF_FUNC_map_push_elem   ||
15685 		     insn->imm == BPF_FUNC_map_pop_elem    ||
15686 		     insn->imm == BPF_FUNC_map_peek_elem   ||
15687 		     insn->imm == BPF_FUNC_redirect_map    ||
15688 		     insn->imm == BPF_FUNC_for_each_map_elem ||
15689 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
15690 			aux = &env->insn_aux_data[i + delta];
15691 			if (bpf_map_ptr_poisoned(aux))
15692 				goto patch_call_imm;
15693 
15694 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
15695 			ops = map_ptr->ops;
15696 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
15697 			    ops->map_gen_lookup) {
15698 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
15699 				if (cnt == -EOPNOTSUPP)
15700 					goto patch_map_ops_generic;
15701 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
15702 					verbose(env, "bpf verifier is misconfigured\n");
15703 					return -EINVAL;
15704 				}
15705 
15706 				new_prog = bpf_patch_insn_data(env, i + delta,
15707 							       insn_buf, cnt);
15708 				if (!new_prog)
15709 					return -ENOMEM;
15710 
15711 				delta    += cnt - 1;
15712 				env->prog = prog = new_prog;
15713 				insn      = new_prog->insnsi + i + delta;
15714 				continue;
15715 			}
15716 
15717 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
15718 				     (void *(*)(struct bpf_map *map, void *key))NULL));
15719 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
15720 				     (int (*)(struct bpf_map *map, void *key))NULL));
15721 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
15722 				     (int (*)(struct bpf_map *map, void *key, void *value,
15723 					      u64 flags))NULL));
15724 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
15725 				     (int (*)(struct bpf_map *map, void *value,
15726 					      u64 flags))NULL));
15727 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
15728 				     (int (*)(struct bpf_map *map, void *value))NULL));
15729 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
15730 				     (int (*)(struct bpf_map *map, void *value))NULL));
15731 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
15732 				     (int (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
15733 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
15734 				     (int (*)(struct bpf_map *map,
15735 					      bpf_callback_t callback_fn,
15736 					      void *callback_ctx,
15737 					      u64 flags))NULL));
15738 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
15739 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
15740 
15741 patch_map_ops_generic:
15742 			switch (insn->imm) {
15743 			case BPF_FUNC_map_lookup_elem:
15744 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
15745 				continue;
15746 			case BPF_FUNC_map_update_elem:
15747 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
15748 				continue;
15749 			case BPF_FUNC_map_delete_elem:
15750 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
15751 				continue;
15752 			case BPF_FUNC_map_push_elem:
15753 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
15754 				continue;
15755 			case BPF_FUNC_map_pop_elem:
15756 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
15757 				continue;
15758 			case BPF_FUNC_map_peek_elem:
15759 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
15760 				continue;
15761 			case BPF_FUNC_redirect_map:
15762 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
15763 				continue;
15764 			case BPF_FUNC_for_each_map_elem:
15765 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
15766 				continue;
15767 			case BPF_FUNC_map_lookup_percpu_elem:
15768 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
15769 				continue;
15770 			}
15771 
15772 			goto patch_call_imm;
15773 		}
15774 
15775 		/* Implement bpf_jiffies64 inline. */
15776 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
15777 		    insn->imm == BPF_FUNC_jiffies64) {
15778 			struct bpf_insn ld_jiffies_addr[2] = {
15779 				BPF_LD_IMM64(BPF_REG_0,
15780 					     (unsigned long)&jiffies),
15781 			};
15782 
15783 			insn_buf[0] = ld_jiffies_addr[0];
15784 			insn_buf[1] = ld_jiffies_addr[1];
15785 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
15786 						  BPF_REG_0, 0);
15787 			cnt = 3;
15788 
15789 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
15790 						       cnt);
15791 			if (!new_prog)
15792 				return -ENOMEM;
15793 
15794 			delta    += cnt - 1;
15795 			env->prog = prog = new_prog;
15796 			insn      = new_prog->insnsi + i + delta;
15797 			continue;
15798 		}
15799 
15800 		/* Implement bpf_get_func_arg inline. */
15801 		if (prog_type == BPF_PROG_TYPE_TRACING &&
15802 		    insn->imm == BPF_FUNC_get_func_arg) {
15803 			/* Load nr_args from ctx - 8 */
15804 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
15805 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
15806 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
15807 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
15808 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
15809 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
15810 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
15811 			insn_buf[7] = BPF_JMP_A(1);
15812 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
15813 			cnt = 9;
15814 
15815 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15816 			if (!new_prog)
15817 				return -ENOMEM;
15818 
15819 			delta    += cnt - 1;
15820 			env->prog = prog = new_prog;
15821 			insn      = new_prog->insnsi + i + delta;
15822 			continue;
15823 		}
15824 
15825 		/* Implement bpf_get_func_ret inline. */
15826 		if (prog_type == BPF_PROG_TYPE_TRACING &&
15827 		    insn->imm == BPF_FUNC_get_func_ret) {
15828 			if (eatype == BPF_TRACE_FEXIT ||
15829 			    eatype == BPF_MODIFY_RETURN) {
15830 				/* Load nr_args from ctx - 8 */
15831 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
15832 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
15833 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
15834 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
15835 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
15836 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
15837 				cnt = 6;
15838 			} else {
15839 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
15840 				cnt = 1;
15841 			}
15842 
15843 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15844 			if (!new_prog)
15845 				return -ENOMEM;
15846 
15847 			delta    += cnt - 1;
15848 			env->prog = prog = new_prog;
15849 			insn      = new_prog->insnsi + i + delta;
15850 			continue;
15851 		}
15852 
15853 		/* Implement get_func_arg_cnt inline. */
15854 		if (prog_type == BPF_PROG_TYPE_TRACING &&
15855 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
15856 			/* Load nr_args from ctx - 8 */
15857 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
15858 
15859 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
15860 			if (!new_prog)
15861 				return -ENOMEM;
15862 
15863 			env->prog = prog = new_prog;
15864 			insn      = new_prog->insnsi + i + delta;
15865 			continue;
15866 		}
15867 
15868 		/* Implement bpf_get_func_ip inline. */
15869 		if (prog_type == BPF_PROG_TYPE_TRACING &&
15870 		    insn->imm == BPF_FUNC_get_func_ip) {
15871 			/* Load IP address from ctx - 16 */
15872 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
15873 
15874 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
15875 			if (!new_prog)
15876 				return -ENOMEM;
15877 
15878 			env->prog = prog = new_prog;
15879 			insn      = new_prog->insnsi + i + delta;
15880 			continue;
15881 		}
15882 
15883 patch_call_imm:
15884 		fn = env->ops->get_func_proto(insn->imm, env->prog);
15885 		/* all functions that have prototype and verifier allowed
15886 		 * programs to call them, must be real in-kernel functions
15887 		 */
15888 		if (!fn->func) {
15889 			verbose(env,
15890 				"kernel subsystem misconfigured func %s#%d\n",
15891 				func_id_name(insn->imm), insn->imm);
15892 			return -EFAULT;
15893 		}
15894 		insn->imm = fn->func - __bpf_call_base;
15895 	}
15896 
15897 	/* Since poke tab is now finalized, publish aux to tracker. */
15898 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
15899 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
15900 		if (!map_ptr->ops->map_poke_track ||
15901 		    !map_ptr->ops->map_poke_untrack ||
15902 		    !map_ptr->ops->map_poke_run) {
15903 			verbose(env, "bpf verifier is misconfigured\n");
15904 			return -EINVAL;
15905 		}
15906 
15907 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
15908 		if (ret < 0) {
15909 			verbose(env, "tracking tail call prog failed\n");
15910 			return ret;
15911 		}
15912 	}
15913 
15914 	sort_kfunc_descs_by_imm(env->prog);
15915 
15916 	return 0;
15917 }
15918 
15919 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
15920 					int position,
15921 					s32 stack_base,
15922 					u32 callback_subprogno,
15923 					u32 *cnt)
15924 {
15925 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
15926 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
15927 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
15928 	int reg_loop_max = BPF_REG_6;
15929 	int reg_loop_cnt = BPF_REG_7;
15930 	int reg_loop_ctx = BPF_REG_8;
15931 
15932 	struct bpf_prog *new_prog;
15933 	u32 callback_start;
15934 	u32 call_insn_offset;
15935 	s32 callback_offset;
15936 
15937 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
15938 	 * be careful to modify this code in sync.
15939 	 */
15940 	struct bpf_insn insn_buf[] = {
15941 		/* Return error and jump to the end of the patch if
15942 		 * expected number of iterations is too big.
15943 		 */
15944 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
15945 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
15946 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
15947 		/* spill R6, R7, R8 to use these as loop vars */
15948 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
15949 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
15950 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
15951 		/* initialize loop vars */
15952 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
15953 		BPF_MOV32_IMM(reg_loop_cnt, 0),
15954 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
15955 		/* loop header,
15956 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
15957 		 */
15958 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
15959 		/* callback call,
15960 		 * correct callback offset would be set after patching
15961 		 */
15962 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
15963 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
15964 		BPF_CALL_REL(0),
15965 		/* increment loop counter */
15966 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
15967 		/* jump to loop header if callback returned 0 */
15968 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
15969 		/* return value of bpf_loop,
15970 		 * set R0 to the number of iterations
15971 		 */
15972 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
15973 		/* restore original values of R6, R7, R8 */
15974 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
15975 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
15976 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
15977 	};
15978 
15979 	*cnt = ARRAY_SIZE(insn_buf);
15980 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
15981 	if (!new_prog)
15982 		return new_prog;
15983 
15984 	/* callback start is known only after patching */
15985 	callback_start = env->subprog_info[callback_subprogno].start;
15986 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
15987 	call_insn_offset = position + 12;
15988 	callback_offset = callback_start - call_insn_offset - 1;
15989 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
15990 
15991 	return new_prog;
15992 }
15993 
15994 static bool is_bpf_loop_call(struct bpf_insn *insn)
15995 {
15996 	return insn->code == (BPF_JMP | BPF_CALL) &&
15997 		insn->src_reg == 0 &&
15998 		insn->imm == BPF_FUNC_loop;
15999 }
16000 
16001 /* For all sub-programs in the program (including main) check
16002  * insn_aux_data to see if there are bpf_loop calls that require
16003  * inlining. If such calls are found the calls are replaced with a
16004  * sequence of instructions produced by `inline_bpf_loop` function and
16005  * subprog stack_depth is increased by the size of 3 registers.
16006  * This stack space is used to spill values of the R6, R7, R8.  These
16007  * registers are used to store the loop bound, counter and context
16008  * variables.
16009  */
16010 static int optimize_bpf_loop(struct bpf_verifier_env *env)
16011 {
16012 	struct bpf_subprog_info *subprogs = env->subprog_info;
16013 	int i, cur_subprog = 0, cnt, delta = 0;
16014 	struct bpf_insn *insn = env->prog->insnsi;
16015 	int insn_cnt = env->prog->len;
16016 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
16017 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
16018 	u16 stack_depth_extra = 0;
16019 
16020 	for (i = 0; i < insn_cnt; i++, insn++) {
16021 		struct bpf_loop_inline_state *inline_state =
16022 			&env->insn_aux_data[i + delta].loop_inline_state;
16023 
16024 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
16025 			struct bpf_prog *new_prog;
16026 
16027 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
16028 			new_prog = inline_bpf_loop(env,
16029 						   i + delta,
16030 						   -(stack_depth + stack_depth_extra),
16031 						   inline_state->callback_subprogno,
16032 						   &cnt);
16033 			if (!new_prog)
16034 				return -ENOMEM;
16035 
16036 			delta     += cnt - 1;
16037 			env->prog  = new_prog;
16038 			insn       = new_prog->insnsi + i + delta;
16039 		}
16040 
16041 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
16042 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
16043 			cur_subprog++;
16044 			stack_depth = subprogs[cur_subprog].stack_depth;
16045 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
16046 			stack_depth_extra = 0;
16047 		}
16048 	}
16049 
16050 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
16051 
16052 	return 0;
16053 }
16054 
16055 static void free_states(struct bpf_verifier_env *env)
16056 {
16057 	struct bpf_verifier_state_list *sl, *sln;
16058 	int i;
16059 
16060 	sl = env->free_list;
16061 	while (sl) {
16062 		sln = sl->next;
16063 		free_verifier_state(&sl->state, false);
16064 		kfree(sl);
16065 		sl = sln;
16066 	}
16067 	env->free_list = NULL;
16068 
16069 	if (!env->explored_states)
16070 		return;
16071 
16072 	for (i = 0; i < state_htab_size(env); i++) {
16073 		sl = env->explored_states[i];
16074 
16075 		while (sl) {
16076 			sln = sl->next;
16077 			free_verifier_state(&sl->state, false);
16078 			kfree(sl);
16079 			sl = sln;
16080 		}
16081 		env->explored_states[i] = NULL;
16082 	}
16083 }
16084 
16085 static int do_check_common(struct bpf_verifier_env *env, int subprog)
16086 {
16087 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
16088 	struct bpf_verifier_state *state;
16089 	struct bpf_reg_state *regs;
16090 	int ret, i;
16091 
16092 	env->prev_linfo = NULL;
16093 	env->pass_cnt++;
16094 
16095 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
16096 	if (!state)
16097 		return -ENOMEM;
16098 	state->curframe = 0;
16099 	state->speculative = false;
16100 	state->branches = 1;
16101 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
16102 	if (!state->frame[0]) {
16103 		kfree(state);
16104 		return -ENOMEM;
16105 	}
16106 	env->cur_state = state;
16107 	init_func_state(env, state->frame[0],
16108 			BPF_MAIN_FUNC /* callsite */,
16109 			0 /* frameno */,
16110 			subprog);
16111 	state->first_insn_idx = env->subprog_info[subprog].start;
16112 	state->last_insn_idx = -1;
16113 
16114 	regs = state->frame[state->curframe]->regs;
16115 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
16116 		ret = btf_prepare_func_args(env, subprog, regs);
16117 		if (ret)
16118 			goto out;
16119 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
16120 			if (regs[i].type == PTR_TO_CTX)
16121 				mark_reg_known_zero(env, regs, i);
16122 			else if (regs[i].type == SCALAR_VALUE)
16123 				mark_reg_unknown(env, regs, i);
16124 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
16125 				const u32 mem_size = regs[i].mem_size;
16126 
16127 				mark_reg_known_zero(env, regs, i);
16128 				regs[i].mem_size = mem_size;
16129 				regs[i].id = ++env->id_gen;
16130 			}
16131 		}
16132 	} else {
16133 		/* 1st arg to a function */
16134 		regs[BPF_REG_1].type = PTR_TO_CTX;
16135 		mark_reg_known_zero(env, regs, BPF_REG_1);
16136 		ret = btf_check_subprog_arg_match(env, subprog, regs);
16137 		if (ret == -EFAULT)
16138 			/* unlikely verifier bug. abort.
16139 			 * ret == 0 and ret < 0 are sadly acceptable for
16140 			 * main() function due to backward compatibility.
16141 			 * Like socket filter program may be written as:
16142 			 * int bpf_prog(struct pt_regs *ctx)
16143 			 * and never dereference that ctx in the program.
16144 			 * 'struct pt_regs' is a type mismatch for socket
16145 			 * filter that should be using 'struct __sk_buff'.
16146 			 */
16147 			goto out;
16148 	}
16149 
16150 	ret = do_check(env);
16151 out:
16152 	/* check for NULL is necessary, since cur_state can be freed inside
16153 	 * do_check() under memory pressure.
16154 	 */
16155 	if (env->cur_state) {
16156 		free_verifier_state(env->cur_state, true);
16157 		env->cur_state = NULL;
16158 	}
16159 	while (!pop_stack(env, NULL, NULL, false));
16160 	if (!ret && pop_log)
16161 		bpf_vlog_reset(&env->log, 0);
16162 	free_states(env);
16163 	return ret;
16164 }
16165 
16166 /* Verify all global functions in a BPF program one by one based on their BTF.
16167  * All global functions must pass verification. Otherwise the whole program is rejected.
16168  * Consider:
16169  * int bar(int);
16170  * int foo(int f)
16171  * {
16172  *    return bar(f);
16173  * }
16174  * int bar(int b)
16175  * {
16176  *    ...
16177  * }
16178  * foo() will be verified first for R1=any_scalar_value. During verification it
16179  * will be assumed that bar() already verified successfully and call to bar()
16180  * from foo() will be checked for type match only. Later bar() will be verified
16181  * independently to check that it's safe for R1=any_scalar_value.
16182  */
16183 static int do_check_subprogs(struct bpf_verifier_env *env)
16184 {
16185 	struct bpf_prog_aux *aux = env->prog->aux;
16186 	int i, ret;
16187 
16188 	if (!aux->func_info)
16189 		return 0;
16190 
16191 	for (i = 1; i < env->subprog_cnt; i++) {
16192 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
16193 			continue;
16194 		env->insn_idx = env->subprog_info[i].start;
16195 		WARN_ON_ONCE(env->insn_idx == 0);
16196 		ret = do_check_common(env, i);
16197 		if (ret) {
16198 			return ret;
16199 		} else if (env->log.level & BPF_LOG_LEVEL) {
16200 			verbose(env,
16201 				"Func#%d is safe for any args that match its prototype\n",
16202 				i);
16203 		}
16204 	}
16205 	return 0;
16206 }
16207 
16208 static int do_check_main(struct bpf_verifier_env *env)
16209 {
16210 	int ret;
16211 
16212 	env->insn_idx = 0;
16213 	ret = do_check_common(env, 0);
16214 	if (!ret)
16215 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
16216 	return ret;
16217 }
16218 
16219 
16220 static void print_verification_stats(struct bpf_verifier_env *env)
16221 {
16222 	int i;
16223 
16224 	if (env->log.level & BPF_LOG_STATS) {
16225 		verbose(env, "verification time %lld usec\n",
16226 			div_u64(env->verification_time, 1000));
16227 		verbose(env, "stack depth ");
16228 		for (i = 0; i < env->subprog_cnt; i++) {
16229 			u32 depth = env->subprog_info[i].stack_depth;
16230 
16231 			verbose(env, "%d", depth);
16232 			if (i + 1 < env->subprog_cnt)
16233 				verbose(env, "+");
16234 		}
16235 		verbose(env, "\n");
16236 	}
16237 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
16238 		"total_states %d peak_states %d mark_read %d\n",
16239 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
16240 		env->max_states_per_insn, env->total_states,
16241 		env->peak_states, env->longest_mark_read_walk);
16242 }
16243 
16244 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
16245 {
16246 	const struct btf_type *t, *func_proto;
16247 	const struct bpf_struct_ops *st_ops;
16248 	const struct btf_member *member;
16249 	struct bpf_prog *prog = env->prog;
16250 	u32 btf_id, member_idx;
16251 	const char *mname;
16252 
16253 	if (!prog->gpl_compatible) {
16254 		verbose(env, "struct ops programs must have a GPL compatible license\n");
16255 		return -EINVAL;
16256 	}
16257 
16258 	btf_id = prog->aux->attach_btf_id;
16259 	st_ops = bpf_struct_ops_find(btf_id);
16260 	if (!st_ops) {
16261 		verbose(env, "attach_btf_id %u is not a supported struct\n",
16262 			btf_id);
16263 		return -ENOTSUPP;
16264 	}
16265 
16266 	t = st_ops->type;
16267 	member_idx = prog->expected_attach_type;
16268 	if (member_idx >= btf_type_vlen(t)) {
16269 		verbose(env, "attach to invalid member idx %u of struct %s\n",
16270 			member_idx, st_ops->name);
16271 		return -EINVAL;
16272 	}
16273 
16274 	member = &btf_type_member(t)[member_idx];
16275 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
16276 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
16277 					       NULL);
16278 	if (!func_proto) {
16279 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
16280 			mname, member_idx, st_ops->name);
16281 		return -EINVAL;
16282 	}
16283 
16284 	if (st_ops->check_member) {
16285 		int err = st_ops->check_member(t, member);
16286 
16287 		if (err) {
16288 			verbose(env, "attach to unsupported member %s of struct %s\n",
16289 				mname, st_ops->name);
16290 			return err;
16291 		}
16292 	}
16293 
16294 	prog->aux->attach_func_proto = func_proto;
16295 	prog->aux->attach_func_name = mname;
16296 	env->ops = st_ops->verifier_ops;
16297 
16298 	return 0;
16299 }
16300 #define SECURITY_PREFIX "security_"
16301 
16302 static int check_attach_modify_return(unsigned long addr, const char *func_name)
16303 {
16304 	if (within_error_injection_list(addr) ||
16305 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
16306 		return 0;
16307 
16308 	return -EINVAL;
16309 }
16310 
16311 /* list of non-sleepable functions that are otherwise on
16312  * ALLOW_ERROR_INJECTION list
16313  */
16314 BTF_SET_START(btf_non_sleepable_error_inject)
16315 /* Three functions below can be called from sleepable and non-sleepable context.
16316  * Assume non-sleepable from bpf safety point of view.
16317  */
16318 BTF_ID(func, __filemap_add_folio)
16319 BTF_ID(func, should_fail_alloc_page)
16320 BTF_ID(func, should_failslab)
16321 BTF_SET_END(btf_non_sleepable_error_inject)
16322 
16323 static int check_non_sleepable_error_inject(u32 btf_id)
16324 {
16325 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
16326 }
16327 
16328 int bpf_check_attach_target(struct bpf_verifier_log *log,
16329 			    const struct bpf_prog *prog,
16330 			    const struct bpf_prog *tgt_prog,
16331 			    u32 btf_id,
16332 			    struct bpf_attach_target_info *tgt_info)
16333 {
16334 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
16335 	const char prefix[] = "btf_trace_";
16336 	int ret = 0, subprog = -1, i;
16337 	const struct btf_type *t;
16338 	bool conservative = true;
16339 	const char *tname;
16340 	struct btf *btf;
16341 	long addr = 0;
16342 
16343 	if (!btf_id) {
16344 		bpf_log(log, "Tracing programs must provide btf_id\n");
16345 		return -EINVAL;
16346 	}
16347 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
16348 	if (!btf) {
16349 		bpf_log(log,
16350 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
16351 		return -EINVAL;
16352 	}
16353 	t = btf_type_by_id(btf, btf_id);
16354 	if (!t) {
16355 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
16356 		return -EINVAL;
16357 	}
16358 	tname = btf_name_by_offset(btf, t->name_off);
16359 	if (!tname) {
16360 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
16361 		return -EINVAL;
16362 	}
16363 	if (tgt_prog) {
16364 		struct bpf_prog_aux *aux = tgt_prog->aux;
16365 
16366 		for (i = 0; i < aux->func_info_cnt; i++)
16367 			if (aux->func_info[i].type_id == btf_id) {
16368 				subprog = i;
16369 				break;
16370 			}
16371 		if (subprog == -1) {
16372 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
16373 			return -EINVAL;
16374 		}
16375 		conservative = aux->func_info_aux[subprog].unreliable;
16376 		if (prog_extension) {
16377 			if (conservative) {
16378 				bpf_log(log,
16379 					"Cannot replace static functions\n");
16380 				return -EINVAL;
16381 			}
16382 			if (!prog->jit_requested) {
16383 				bpf_log(log,
16384 					"Extension programs should be JITed\n");
16385 				return -EINVAL;
16386 			}
16387 		}
16388 		if (!tgt_prog->jited) {
16389 			bpf_log(log, "Can attach to only JITed progs\n");
16390 			return -EINVAL;
16391 		}
16392 		if (tgt_prog->type == prog->type) {
16393 			/* Cannot fentry/fexit another fentry/fexit program.
16394 			 * Cannot attach program extension to another extension.
16395 			 * It's ok to attach fentry/fexit to extension program.
16396 			 */
16397 			bpf_log(log, "Cannot recursively attach\n");
16398 			return -EINVAL;
16399 		}
16400 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
16401 		    prog_extension &&
16402 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
16403 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
16404 			/* Program extensions can extend all program types
16405 			 * except fentry/fexit. The reason is the following.
16406 			 * The fentry/fexit programs are used for performance
16407 			 * analysis, stats and can be attached to any program
16408 			 * type except themselves. When extension program is
16409 			 * replacing XDP function it is necessary to allow
16410 			 * performance analysis of all functions. Both original
16411 			 * XDP program and its program extension. Hence
16412 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
16413 			 * allowed. If extending of fentry/fexit was allowed it
16414 			 * would be possible to create long call chain
16415 			 * fentry->extension->fentry->extension beyond
16416 			 * reasonable stack size. Hence extending fentry is not
16417 			 * allowed.
16418 			 */
16419 			bpf_log(log, "Cannot extend fentry/fexit\n");
16420 			return -EINVAL;
16421 		}
16422 	} else {
16423 		if (prog_extension) {
16424 			bpf_log(log, "Cannot replace kernel functions\n");
16425 			return -EINVAL;
16426 		}
16427 	}
16428 
16429 	switch (prog->expected_attach_type) {
16430 	case BPF_TRACE_RAW_TP:
16431 		if (tgt_prog) {
16432 			bpf_log(log,
16433 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
16434 			return -EINVAL;
16435 		}
16436 		if (!btf_type_is_typedef(t)) {
16437 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
16438 				btf_id);
16439 			return -EINVAL;
16440 		}
16441 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
16442 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
16443 				btf_id, tname);
16444 			return -EINVAL;
16445 		}
16446 		tname += sizeof(prefix) - 1;
16447 		t = btf_type_by_id(btf, t->type);
16448 		if (!btf_type_is_ptr(t))
16449 			/* should never happen in valid vmlinux build */
16450 			return -EINVAL;
16451 		t = btf_type_by_id(btf, t->type);
16452 		if (!btf_type_is_func_proto(t))
16453 			/* should never happen in valid vmlinux build */
16454 			return -EINVAL;
16455 
16456 		break;
16457 	case BPF_TRACE_ITER:
16458 		if (!btf_type_is_func(t)) {
16459 			bpf_log(log, "attach_btf_id %u is not a function\n",
16460 				btf_id);
16461 			return -EINVAL;
16462 		}
16463 		t = btf_type_by_id(btf, t->type);
16464 		if (!btf_type_is_func_proto(t))
16465 			return -EINVAL;
16466 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
16467 		if (ret)
16468 			return ret;
16469 		break;
16470 	default:
16471 		if (!prog_extension)
16472 			return -EINVAL;
16473 		fallthrough;
16474 	case BPF_MODIFY_RETURN:
16475 	case BPF_LSM_MAC:
16476 	case BPF_LSM_CGROUP:
16477 	case BPF_TRACE_FENTRY:
16478 	case BPF_TRACE_FEXIT:
16479 		if (!btf_type_is_func(t)) {
16480 			bpf_log(log, "attach_btf_id %u is not a function\n",
16481 				btf_id);
16482 			return -EINVAL;
16483 		}
16484 		if (prog_extension &&
16485 		    btf_check_type_match(log, prog, btf, t))
16486 			return -EINVAL;
16487 		t = btf_type_by_id(btf, t->type);
16488 		if (!btf_type_is_func_proto(t))
16489 			return -EINVAL;
16490 
16491 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
16492 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
16493 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
16494 			return -EINVAL;
16495 
16496 		if (tgt_prog && conservative)
16497 			t = NULL;
16498 
16499 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
16500 		if (ret < 0)
16501 			return ret;
16502 
16503 		if (tgt_prog) {
16504 			if (subprog == 0)
16505 				addr = (long) tgt_prog->bpf_func;
16506 			else
16507 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
16508 		} else {
16509 			addr = kallsyms_lookup_name(tname);
16510 			if (!addr) {
16511 				bpf_log(log,
16512 					"The address of function %s cannot be found\n",
16513 					tname);
16514 				return -ENOENT;
16515 			}
16516 		}
16517 
16518 		if (prog->aux->sleepable) {
16519 			ret = -EINVAL;
16520 			switch (prog->type) {
16521 			case BPF_PROG_TYPE_TRACING:
16522 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
16523 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
16524 				 */
16525 				if (!check_non_sleepable_error_inject(btf_id) &&
16526 				    within_error_injection_list(addr))
16527 					ret = 0;
16528 				break;
16529 			case BPF_PROG_TYPE_LSM:
16530 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
16531 				 * Only some of them are sleepable.
16532 				 */
16533 				if (bpf_lsm_is_sleepable_hook(btf_id))
16534 					ret = 0;
16535 				break;
16536 			default:
16537 				break;
16538 			}
16539 			if (ret) {
16540 				bpf_log(log, "%s is not sleepable\n", tname);
16541 				return ret;
16542 			}
16543 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
16544 			if (tgt_prog) {
16545 				bpf_log(log, "can't modify return codes of BPF programs\n");
16546 				return -EINVAL;
16547 			}
16548 			ret = check_attach_modify_return(addr, tname);
16549 			if (ret) {
16550 				bpf_log(log, "%s() is not modifiable\n", tname);
16551 				return ret;
16552 			}
16553 		}
16554 
16555 		break;
16556 	}
16557 	tgt_info->tgt_addr = addr;
16558 	tgt_info->tgt_name = tname;
16559 	tgt_info->tgt_type = t;
16560 	return 0;
16561 }
16562 
16563 BTF_SET_START(btf_id_deny)
16564 BTF_ID_UNUSED
16565 #ifdef CONFIG_SMP
16566 BTF_ID(func, migrate_disable)
16567 BTF_ID(func, migrate_enable)
16568 #endif
16569 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
16570 BTF_ID(func, rcu_read_unlock_strict)
16571 #endif
16572 BTF_SET_END(btf_id_deny)
16573 
16574 static int check_attach_btf_id(struct bpf_verifier_env *env)
16575 {
16576 	struct bpf_prog *prog = env->prog;
16577 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
16578 	struct bpf_attach_target_info tgt_info = {};
16579 	u32 btf_id = prog->aux->attach_btf_id;
16580 	struct bpf_trampoline *tr;
16581 	int ret;
16582 	u64 key;
16583 
16584 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
16585 		if (prog->aux->sleepable)
16586 			/* attach_btf_id checked to be zero already */
16587 			return 0;
16588 		verbose(env, "Syscall programs can only be sleepable\n");
16589 		return -EINVAL;
16590 	}
16591 
16592 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
16593 	    prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) {
16594 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n");
16595 		return -EINVAL;
16596 	}
16597 
16598 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
16599 		return check_struct_ops_btf_id(env);
16600 
16601 	if (prog->type != BPF_PROG_TYPE_TRACING &&
16602 	    prog->type != BPF_PROG_TYPE_LSM &&
16603 	    prog->type != BPF_PROG_TYPE_EXT)
16604 		return 0;
16605 
16606 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
16607 	if (ret)
16608 		return ret;
16609 
16610 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
16611 		/* to make freplace equivalent to their targets, they need to
16612 		 * inherit env->ops and expected_attach_type for the rest of the
16613 		 * verification
16614 		 */
16615 		env->ops = bpf_verifier_ops[tgt_prog->type];
16616 		prog->expected_attach_type = tgt_prog->expected_attach_type;
16617 	}
16618 
16619 	/* store info about the attachment target that will be used later */
16620 	prog->aux->attach_func_proto = tgt_info.tgt_type;
16621 	prog->aux->attach_func_name = tgt_info.tgt_name;
16622 
16623 	if (tgt_prog) {
16624 		prog->aux->saved_dst_prog_type = tgt_prog->type;
16625 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
16626 	}
16627 
16628 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
16629 		prog->aux->attach_btf_trace = true;
16630 		return 0;
16631 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
16632 		if (!bpf_iter_prog_supported(prog))
16633 			return -EINVAL;
16634 		return 0;
16635 	}
16636 
16637 	if (prog->type == BPF_PROG_TYPE_LSM) {
16638 		ret = bpf_lsm_verify_prog(&env->log, prog);
16639 		if (ret < 0)
16640 			return ret;
16641 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
16642 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
16643 		return -EINVAL;
16644 	}
16645 
16646 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
16647 	tr = bpf_trampoline_get(key, &tgt_info);
16648 	if (!tr)
16649 		return -ENOMEM;
16650 
16651 	prog->aux->dst_trampoline = tr;
16652 	return 0;
16653 }
16654 
16655 struct btf *bpf_get_btf_vmlinux(void)
16656 {
16657 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
16658 		mutex_lock(&bpf_verifier_lock);
16659 		if (!btf_vmlinux)
16660 			btf_vmlinux = btf_parse_vmlinux();
16661 		mutex_unlock(&bpf_verifier_lock);
16662 	}
16663 	return btf_vmlinux;
16664 }
16665 
16666 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
16667 {
16668 	u64 start_time = ktime_get_ns();
16669 	struct bpf_verifier_env *env;
16670 	struct bpf_verifier_log *log;
16671 	int i, len, ret = -EINVAL;
16672 	bool is_priv;
16673 
16674 	/* no program is valid */
16675 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
16676 		return -EINVAL;
16677 
16678 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
16679 	 * allocate/free it every time bpf_check() is called
16680 	 */
16681 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
16682 	if (!env)
16683 		return -ENOMEM;
16684 	log = &env->log;
16685 
16686 	len = (*prog)->len;
16687 	env->insn_aux_data =
16688 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
16689 	ret = -ENOMEM;
16690 	if (!env->insn_aux_data)
16691 		goto err_free_env;
16692 	for (i = 0; i < len; i++)
16693 		env->insn_aux_data[i].orig_idx = i;
16694 	env->prog = *prog;
16695 	env->ops = bpf_verifier_ops[env->prog->type];
16696 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
16697 	is_priv = bpf_capable();
16698 
16699 	bpf_get_btf_vmlinux();
16700 
16701 	/* grab the mutex to protect few globals used by verifier */
16702 	if (!is_priv)
16703 		mutex_lock(&bpf_verifier_lock);
16704 
16705 	if (attr->log_level || attr->log_buf || attr->log_size) {
16706 		/* user requested verbose verifier output
16707 		 * and supplied buffer to store the verification trace
16708 		 */
16709 		log->level = attr->log_level;
16710 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
16711 		log->len_total = attr->log_size;
16712 
16713 		/* log attributes have to be sane */
16714 		if (!bpf_verifier_log_attr_valid(log)) {
16715 			ret = -EINVAL;
16716 			goto err_unlock;
16717 		}
16718 	}
16719 
16720 	mark_verifier_state_clean(env);
16721 
16722 	if (IS_ERR(btf_vmlinux)) {
16723 		/* Either gcc or pahole or kernel are broken. */
16724 		verbose(env, "in-kernel BTF is malformed\n");
16725 		ret = PTR_ERR(btf_vmlinux);
16726 		goto skip_full_check;
16727 	}
16728 
16729 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
16730 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
16731 		env->strict_alignment = true;
16732 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
16733 		env->strict_alignment = false;
16734 
16735 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
16736 	env->allow_uninit_stack = bpf_allow_uninit_stack();
16737 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
16738 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
16739 	env->bpf_capable = bpf_capable();
16740 	env->rcu_tag_supported = btf_vmlinux &&
16741 		btf_find_by_name_kind(btf_vmlinux, "rcu", BTF_KIND_TYPE_TAG) > 0;
16742 
16743 	if (is_priv)
16744 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
16745 
16746 	env->explored_states = kvcalloc(state_htab_size(env),
16747 				       sizeof(struct bpf_verifier_state_list *),
16748 				       GFP_USER);
16749 	ret = -ENOMEM;
16750 	if (!env->explored_states)
16751 		goto skip_full_check;
16752 
16753 	ret = add_subprog_and_kfunc(env);
16754 	if (ret < 0)
16755 		goto skip_full_check;
16756 
16757 	ret = check_subprogs(env);
16758 	if (ret < 0)
16759 		goto skip_full_check;
16760 
16761 	ret = check_btf_info(env, attr, uattr);
16762 	if (ret < 0)
16763 		goto skip_full_check;
16764 
16765 	ret = check_attach_btf_id(env);
16766 	if (ret)
16767 		goto skip_full_check;
16768 
16769 	ret = resolve_pseudo_ldimm64(env);
16770 	if (ret < 0)
16771 		goto skip_full_check;
16772 
16773 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
16774 		ret = bpf_prog_offload_verifier_prep(env->prog);
16775 		if (ret)
16776 			goto skip_full_check;
16777 	}
16778 
16779 	ret = check_cfg(env);
16780 	if (ret < 0)
16781 		goto skip_full_check;
16782 
16783 	ret = do_check_subprogs(env);
16784 	ret = ret ?: do_check_main(env);
16785 
16786 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
16787 		ret = bpf_prog_offload_finalize(env);
16788 
16789 skip_full_check:
16790 	kvfree(env->explored_states);
16791 
16792 	if (ret == 0)
16793 		ret = check_max_stack_depth(env);
16794 
16795 	/* instruction rewrites happen after this point */
16796 	if (ret == 0)
16797 		ret = optimize_bpf_loop(env);
16798 
16799 	if (is_priv) {
16800 		if (ret == 0)
16801 			opt_hard_wire_dead_code_branches(env);
16802 		if (ret == 0)
16803 			ret = opt_remove_dead_code(env);
16804 		if (ret == 0)
16805 			ret = opt_remove_nops(env);
16806 	} else {
16807 		if (ret == 0)
16808 			sanitize_dead_code(env);
16809 	}
16810 
16811 	if (ret == 0)
16812 		/* program is valid, convert *(u32*)(ctx + off) accesses */
16813 		ret = convert_ctx_accesses(env);
16814 
16815 	if (ret == 0)
16816 		ret = do_misc_fixups(env);
16817 
16818 	/* do 32-bit optimization after insn patching has done so those patched
16819 	 * insns could be handled correctly.
16820 	 */
16821 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
16822 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
16823 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
16824 								     : false;
16825 	}
16826 
16827 	if (ret == 0)
16828 		ret = fixup_call_args(env);
16829 
16830 	env->verification_time = ktime_get_ns() - start_time;
16831 	print_verification_stats(env);
16832 	env->prog->aux->verified_insns = env->insn_processed;
16833 
16834 	if (log->level && bpf_verifier_log_full(log))
16835 		ret = -ENOSPC;
16836 	if (log->level && !log->ubuf) {
16837 		ret = -EFAULT;
16838 		goto err_release_maps;
16839 	}
16840 
16841 	if (ret)
16842 		goto err_release_maps;
16843 
16844 	if (env->used_map_cnt) {
16845 		/* if program passed verifier, update used_maps in bpf_prog_info */
16846 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
16847 							  sizeof(env->used_maps[0]),
16848 							  GFP_KERNEL);
16849 
16850 		if (!env->prog->aux->used_maps) {
16851 			ret = -ENOMEM;
16852 			goto err_release_maps;
16853 		}
16854 
16855 		memcpy(env->prog->aux->used_maps, env->used_maps,
16856 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
16857 		env->prog->aux->used_map_cnt = env->used_map_cnt;
16858 	}
16859 	if (env->used_btf_cnt) {
16860 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
16861 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
16862 							  sizeof(env->used_btfs[0]),
16863 							  GFP_KERNEL);
16864 		if (!env->prog->aux->used_btfs) {
16865 			ret = -ENOMEM;
16866 			goto err_release_maps;
16867 		}
16868 
16869 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
16870 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
16871 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
16872 	}
16873 	if (env->used_map_cnt || env->used_btf_cnt) {
16874 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
16875 		 * bpf_ld_imm64 instructions
16876 		 */
16877 		convert_pseudo_ld_imm64(env);
16878 	}
16879 
16880 	adjust_btf_func(env);
16881 
16882 err_release_maps:
16883 	if (!env->prog->aux->used_maps)
16884 		/* if we didn't copy map pointers into bpf_prog_info, release
16885 		 * them now. Otherwise free_used_maps() will release them.
16886 		 */
16887 		release_maps(env);
16888 	if (!env->prog->aux->used_btfs)
16889 		release_btfs(env);
16890 
16891 	/* extension progs temporarily inherit the attach_type of their targets
16892 	   for verification purposes, so set it back to zero before returning
16893 	 */
16894 	if (env->prog->type == BPF_PROG_TYPE_EXT)
16895 		env->prog->expected_attach_type = 0;
16896 
16897 	*prog = env->prog;
16898 err_unlock:
16899 	if (!is_priv)
16900 		mutex_unlock(&bpf_verifier_lock);
16901 	vfree(env->insn_aux_data);
16902 err_free_env:
16903 	kfree(env);
16904 	return ret;
16905 }
16906