1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 #include <linux/error-injection.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/btf_ids.h> 25 26 #include "disasm.h" 27 28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 30 [_id] = & _name ## _verifier_ops, 31 #define BPF_MAP_TYPE(_id, _ops) 32 #define BPF_LINK_TYPE(_id, _name) 33 #include <linux/bpf_types.h> 34 #undef BPF_PROG_TYPE 35 #undef BPF_MAP_TYPE 36 #undef BPF_LINK_TYPE 37 }; 38 39 /* bpf_check() is a static code analyzer that walks eBPF program 40 * instruction by instruction and updates register/stack state. 41 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 42 * 43 * The first pass is depth-first-search to check that the program is a DAG. 44 * It rejects the following programs: 45 * - larger than BPF_MAXINSNS insns 46 * - if loop is present (detected via back-edge) 47 * - unreachable insns exist (shouldn't be a forest. program = one function) 48 * - out of bounds or malformed jumps 49 * The second pass is all possible path descent from the 1st insn. 50 * Since it's analyzing all paths through the program, the length of the 51 * analysis is limited to 64k insn, which may be hit even if total number of 52 * insn is less then 4K, but there are too many branches that change stack/regs. 53 * Number of 'branches to be analyzed' is limited to 1k 54 * 55 * On entry to each instruction, each register has a type, and the instruction 56 * changes the types of the registers depending on instruction semantics. 57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 58 * copied to R1. 59 * 60 * All registers are 64-bit. 61 * R0 - return register 62 * R1-R5 argument passing registers 63 * R6-R9 callee saved registers 64 * R10 - frame pointer read-only 65 * 66 * At the start of BPF program the register R1 contains a pointer to bpf_context 67 * and has type PTR_TO_CTX. 68 * 69 * Verifier tracks arithmetic operations on pointers in case: 70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 72 * 1st insn copies R10 (which has FRAME_PTR) type into R1 73 * and 2nd arithmetic instruction is pattern matched to recognize 74 * that it wants to construct a pointer to some element within stack. 75 * So after 2nd insn, the register R1 has type PTR_TO_STACK 76 * (and -20 constant is saved for further stack bounds checking). 77 * Meaning that this reg is a pointer to stack plus known immediate constant. 78 * 79 * Most of the time the registers have SCALAR_VALUE type, which 80 * means the register has some value, but it's not a valid pointer. 81 * (like pointer plus pointer becomes SCALAR_VALUE type) 82 * 83 * When verifier sees load or store instructions the type of base register 84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 85 * four pointer types recognized by check_mem_access() function. 86 * 87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 88 * and the range of [ptr, ptr + map's value_size) is accessible. 89 * 90 * registers used to pass values to function calls are checked against 91 * function argument constraints. 92 * 93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 94 * It means that the register type passed to this function must be 95 * PTR_TO_STACK and it will be used inside the function as 96 * 'pointer to map element key' 97 * 98 * For example the argument constraints for bpf_map_lookup_elem(): 99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 100 * .arg1_type = ARG_CONST_MAP_PTR, 101 * .arg2_type = ARG_PTR_TO_MAP_KEY, 102 * 103 * ret_type says that this function returns 'pointer to map elem value or null' 104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 105 * 2nd argument should be a pointer to stack, which will be used inside 106 * the helper function as a pointer to map element key. 107 * 108 * On the kernel side the helper function looks like: 109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 110 * { 111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 112 * void *key = (void *) (unsigned long) r2; 113 * void *value; 114 * 115 * here kernel can access 'key' and 'map' pointers safely, knowing that 116 * [key, key + map->key_size) bytes are valid and were initialized on 117 * the stack of eBPF program. 118 * } 119 * 120 * Corresponding eBPF program may look like: 121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 125 * here verifier looks at prototype of map_lookup_elem() and sees: 126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 128 * 129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 131 * and were initialized prior to this call. 132 * If it's ok, then verifier allows this BPF_CALL insn and looks at 133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 135 * returns either pointer to map value or NULL. 136 * 137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 138 * insn, the register holding that pointer in the true branch changes state to 139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 140 * branch. See check_cond_jmp_op(). 141 * 142 * After the call R0 is set to return type of the function and registers R1-R5 143 * are set to NOT_INIT to indicate that they are no longer readable. 144 * 145 * The following reference types represent a potential reference to a kernel 146 * resource which, after first being allocated, must be checked and freed by 147 * the BPF program: 148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 149 * 150 * When the verifier sees a helper call return a reference type, it allocates a 151 * pointer id for the reference and stores it in the current function state. 152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 154 * passes through a NULL-check conditional. For the branch wherein the state is 155 * changed to CONST_IMM, the verifier releases the reference. 156 * 157 * For each helper function that allocates a reference, such as 158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 159 * bpf_sk_release(). When a reference type passes into the release function, 160 * the verifier also releases the reference. If any unchecked or unreleased 161 * reference remains at the end of the program, the verifier rejects it. 162 */ 163 164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 165 struct bpf_verifier_stack_elem { 166 /* verifer state is 'st' 167 * before processing instruction 'insn_idx' 168 * and after processing instruction 'prev_insn_idx' 169 */ 170 struct bpf_verifier_state st; 171 int insn_idx; 172 int prev_insn_idx; 173 struct bpf_verifier_stack_elem *next; 174 /* length of verifier log at the time this state was pushed on stack */ 175 u32 log_pos; 176 }; 177 178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 179 #define BPF_COMPLEXITY_LIMIT_STATES 64 180 181 #define BPF_MAP_KEY_POISON (1ULL << 63) 182 #define BPF_MAP_KEY_SEEN (1ULL << 62) 183 184 #define BPF_MAP_PTR_UNPRIV 1UL 185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 186 POISON_POINTER_DELTA)) 187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 188 189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 190 { 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 192 } 193 194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 195 { 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 197 } 198 199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 200 const struct bpf_map *map, bool unpriv) 201 { 202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 203 unpriv |= bpf_map_ptr_unpriv(aux); 204 aux->map_ptr_state = (unsigned long)map | 205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 206 } 207 208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 209 { 210 return aux->map_key_state & BPF_MAP_KEY_POISON; 211 } 212 213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 214 { 215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 216 } 217 218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 219 { 220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 221 } 222 223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 224 { 225 bool poisoned = bpf_map_key_poisoned(aux); 226 227 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 229 } 230 231 static bool bpf_pseudo_call(const struct bpf_insn *insn) 232 { 233 return insn->code == (BPF_JMP | BPF_CALL) && 234 insn->src_reg == BPF_PSEUDO_CALL; 235 } 236 237 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 238 { 239 return insn->code == (BPF_JMP | BPF_CALL) && 240 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 241 } 242 243 struct bpf_call_arg_meta { 244 struct bpf_map *map_ptr; 245 bool raw_mode; 246 bool pkt_access; 247 int regno; 248 int access_size; 249 int mem_size; 250 u64 msize_max_value; 251 int ref_obj_id; 252 int map_uid; 253 int func_id; 254 struct btf *btf; 255 u32 btf_id; 256 struct btf *ret_btf; 257 u32 ret_btf_id; 258 u32 subprogno; 259 }; 260 261 struct btf *btf_vmlinux; 262 263 static DEFINE_MUTEX(bpf_verifier_lock); 264 265 static const struct bpf_line_info * 266 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 267 { 268 const struct bpf_line_info *linfo; 269 const struct bpf_prog *prog; 270 u32 i, nr_linfo; 271 272 prog = env->prog; 273 nr_linfo = prog->aux->nr_linfo; 274 275 if (!nr_linfo || insn_off >= prog->len) 276 return NULL; 277 278 linfo = prog->aux->linfo; 279 for (i = 1; i < nr_linfo; i++) 280 if (insn_off < linfo[i].insn_off) 281 break; 282 283 return &linfo[i - 1]; 284 } 285 286 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 287 va_list args) 288 { 289 unsigned int n; 290 291 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 292 293 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 294 "verifier log line truncated - local buffer too short\n"); 295 296 if (log->level == BPF_LOG_KERNEL) { 297 bool newline = n > 0 && log->kbuf[n - 1] == '\n'; 298 299 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n"); 300 return; 301 } 302 303 n = min(log->len_total - log->len_used - 1, n); 304 log->kbuf[n] = '\0'; 305 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 306 log->len_used += n; 307 else 308 log->ubuf = NULL; 309 } 310 311 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 312 { 313 char zero = 0; 314 315 if (!bpf_verifier_log_needed(log)) 316 return; 317 318 log->len_used = new_pos; 319 if (put_user(zero, log->ubuf + new_pos)) 320 log->ubuf = NULL; 321 } 322 323 /* log_level controls verbosity level of eBPF verifier. 324 * bpf_verifier_log_write() is used to dump the verification trace to the log, 325 * so the user can figure out what's wrong with the program 326 */ 327 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 328 const char *fmt, ...) 329 { 330 va_list args; 331 332 if (!bpf_verifier_log_needed(&env->log)) 333 return; 334 335 va_start(args, fmt); 336 bpf_verifier_vlog(&env->log, fmt, args); 337 va_end(args); 338 } 339 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 340 341 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 342 { 343 struct bpf_verifier_env *env = private_data; 344 va_list args; 345 346 if (!bpf_verifier_log_needed(&env->log)) 347 return; 348 349 va_start(args, fmt); 350 bpf_verifier_vlog(&env->log, fmt, args); 351 va_end(args); 352 } 353 354 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 355 const char *fmt, ...) 356 { 357 va_list args; 358 359 if (!bpf_verifier_log_needed(log)) 360 return; 361 362 va_start(args, fmt); 363 bpf_verifier_vlog(log, fmt, args); 364 va_end(args); 365 } 366 367 static const char *ltrim(const char *s) 368 { 369 while (isspace(*s)) 370 s++; 371 372 return s; 373 } 374 375 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 376 u32 insn_off, 377 const char *prefix_fmt, ...) 378 { 379 const struct bpf_line_info *linfo; 380 381 if (!bpf_verifier_log_needed(&env->log)) 382 return; 383 384 linfo = find_linfo(env, insn_off); 385 if (!linfo || linfo == env->prev_linfo) 386 return; 387 388 if (prefix_fmt) { 389 va_list args; 390 391 va_start(args, prefix_fmt); 392 bpf_verifier_vlog(&env->log, prefix_fmt, args); 393 va_end(args); 394 } 395 396 verbose(env, "%s\n", 397 ltrim(btf_name_by_offset(env->prog->aux->btf, 398 linfo->line_off))); 399 400 env->prev_linfo = linfo; 401 } 402 403 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 404 struct bpf_reg_state *reg, 405 struct tnum *range, const char *ctx, 406 const char *reg_name) 407 { 408 char tn_buf[48]; 409 410 verbose(env, "At %s the register %s ", ctx, reg_name); 411 if (!tnum_is_unknown(reg->var_off)) { 412 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 413 verbose(env, "has value %s", tn_buf); 414 } else { 415 verbose(env, "has unknown scalar value"); 416 } 417 tnum_strn(tn_buf, sizeof(tn_buf), *range); 418 verbose(env, " should have been in %s\n", tn_buf); 419 } 420 421 static bool type_is_pkt_pointer(enum bpf_reg_type type) 422 { 423 return type == PTR_TO_PACKET || 424 type == PTR_TO_PACKET_META; 425 } 426 427 static bool type_is_sk_pointer(enum bpf_reg_type type) 428 { 429 return type == PTR_TO_SOCKET || 430 type == PTR_TO_SOCK_COMMON || 431 type == PTR_TO_TCP_SOCK || 432 type == PTR_TO_XDP_SOCK; 433 } 434 435 static bool reg_type_not_null(enum bpf_reg_type type) 436 { 437 return type == PTR_TO_SOCKET || 438 type == PTR_TO_TCP_SOCK || 439 type == PTR_TO_MAP_VALUE || 440 type == PTR_TO_MAP_KEY || 441 type == PTR_TO_SOCK_COMMON; 442 } 443 444 static bool reg_type_may_be_null(enum bpf_reg_type type) 445 { 446 return type == PTR_TO_MAP_VALUE_OR_NULL || 447 type == PTR_TO_SOCKET_OR_NULL || 448 type == PTR_TO_SOCK_COMMON_OR_NULL || 449 type == PTR_TO_TCP_SOCK_OR_NULL || 450 type == PTR_TO_BTF_ID_OR_NULL || 451 type == PTR_TO_MEM_OR_NULL || 452 type == PTR_TO_RDONLY_BUF_OR_NULL || 453 type == PTR_TO_RDWR_BUF_OR_NULL; 454 } 455 456 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 457 { 458 return reg->type == PTR_TO_MAP_VALUE && 459 map_value_has_spin_lock(reg->map_ptr); 460 } 461 462 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 463 { 464 return type == PTR_TO_SOCKET || 465 type == PTR_TO_SOCKET_OR_NULL || 466 type == PTR_TO_TCP_SOCK || 467 type == PTR_TO_TCP_SOCK_OR_NULL || 468 type == PTR_TO_MEM || 469 type == PTR_TO_MEM_OR_NULL; 470 } 471 472 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 473 { 474 return type == ARG_PTR_TO_SOCK_COMMON; 475 } 476 477 static bool arg_type_may_be_null(enum bpf_arg_type type) 478 { 479 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL || 480 type == ARG_PTR_TO_MEM_OR_NULL || 481 type == ARG_PTR_TO_CTX_OR_NULL || 482 type == ARG_PTR_TO_SOCKET_OR_NULL || 483 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL || 484 type == ARG_PTR_TO_STACK_OR_NULL; 485 } 486 487 /* Determine whether the function releases some resources allocated by another 488 * function call. The first reference type argument will be assumed to be 489 * released by release_reference(). 490 */ 491 static bool is_release_function(enum bpf_func_id func_id) 492 { 493 return func_id == BPF_FUNC_sk_release || 494 func_id == BPF_FUNC_ringbuf_submit || 495 func_id == BPF_FUNC_ringbuf_discard; 496 } 497 498 static bool may_be_acquire_function(enum bpf_func_id func_id) 499 { 500 return func_id == BPF_FUNC_sk_lookup_tcp || 501 func_id == BPF_FUNC_sk_lookup_udp || 502 func_id == BPF_FUNC_skc_lookup_tcp || 503 func_id == BPF_FUNC_map_lookup_elem || 504 func_id == BPF_FUNC_ringbuf_reserve; 505 } 506 507 static bool is_acquire_function(enum bpf_func_id func_id, 508 const struct bpf_map *map) 509 { 510 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 511 512 if (func_id == BPF_FUNC_sk_lookup_tcp || 513 func_id == BPF_FUNC_sk_lookup_udp || 514 func_id == BPF_FUNC_skc_lookup_tcp || 515 func_id == BPF_FUNC_ringbuf_reserve) 516 return true; 517 518 if (func_id == BPF_FUNC_map_lookup_elem && 519 (map_type == BPF_MAP_TYPE_SOCKMAP || 520 map_type == BPF_MAP_TYPE_SOCKHASH)) 521 return true; 522 523 return false; 524 } 525 526 static bool is_ptr_cast_function(enum bpf_func_id func_id) 527 { 528 return func_id == BPF_FUNC_tcp_sock || 529 func_id == BPF_FUNC_sk_fullsock || 530 func_id == BPF_FUNC_skc_to_tcp_sock || 531 func_id == BPF_FUNC_skc_to_tcp6_sock || 532 func_id == BPF_FUNC_skc_to_udp6_sock || 533 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 534 func_id == BPF_FUNC_skc_to_tcp_request_sock; 535 } 536 537 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 538 { 539 return BPF_CLASS(insn->code) == BPF_STX && 540 BPF_MODE(insn->code) == BPF_ATOMIC && 541 insn->imm == BPF_CMPXCHG; 542 } 543 544 /* string representation of 'enum bpf_reg_type' */ 545 static const char * const reg_type_str[] = { 546 [NOT_INIT] = "?", 547 [SCALAR_VALUE] = "inv", 548 [PTR_TO_CTX] = "ctx", 549 [CONST_PTR_TO_MAP] = "map_ptr", 550 [PTR_TO_MAP_VALUE] = "map_value", 551 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 552 [PTR_TO_STACK] = "fp", 553 [PTR_TO_PACKET] = "pkt", 554 [PTR_TO_PACKET_META] = "pkt_meta", 555 [PTR_TO_PACKET_END] = "pkt_end", 556 [PTR_TO_FLOW_KEYS] = "flow_keys", 557 [PTR_TO_SOCKET] = "sock", 558 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 559 [PTR_TO_SOCK_COMMON] = "sock_common", 560 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 561 [PTR_TO_TCP_SOCK] = "tcp_sock", 562 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 563 [PTR_TO_TP_BUFFER] = "tp_buffer", 564 [PTR_TO_XDP_SOCK] = "xdp_sock", 565 [PTR_TO_BTF_ID] = "ptr_", 566 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_", 567 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_", 568 [PTR_TO_MEM] = "mem", 569 [PTR_TO_MEM_OR_NULL] = "mem_or_null", 570 [PTR_TO_RDONLY_BUF] = "rdonly_buf", 571 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null", 572 [PTR_TO_RDWR_BUF] = "rdwr_buf", 573 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null", 574 [PTR_TO_FUNC] = "func", 575 [PTR_TO_MAP_KEY] = "map_key", 576 }; 577 578 static char slot_type_char[] = { 579 [STACK_INVALID] = '?', 580 [STACK_SPILL] = 'r', 581 [STACK_MISC] = 'm', 582 [STACK_ZERO] = '0', 583 }; 584 585 static void print_liveness(struct bpf_verifier_env *env, 586 enum bpf_reg_liveness live) 587 { 588 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 589 verbose(env, "_"); 590 if (live & REG_LIVE_READ) 591 verbose(env, "r"); 592 if (live & REG_LIVE_WRITTEN) 593 verbose(env, "w"); 594 if (live & REG_LIVE_DONE) 595 verbose(env, "D"); 596 } 597 598 static struct bpf_func_state *func(struct bpf_verifier_env *env, 599 const struct bpf_reg_state *reg) 600 { 601 struct bpf_verifier_state *cur = env->cur_state; 602 603 return cur->frame[reg->frameno]; 604 } 605 606 static const char *kernel_type_name(const struct btf* btf, u32 id) 607 { 608 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 609 } 610 611 /* The reg state of a pointer or a bounded scalar was saved when 612 * it was spilled to the stack. 613 */ 614 static bool is_spilled_reg(const struct bpf_stack_state *stack) 615 { 616 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 617 } 618 619 static void scrub_spilled_slot(u8 *stype) 620 { 621 if (*stype != STACK_INVALID) 622 *stype = STACK_MISC; 623 } 624 625 static void print_verifier_state(struct bpf_verifier_env *env, 626 const struct bpf_func_state *state) 627 { 628 const struct bpf_reg_state *reg; 629 enum bpf_reg_type t; 630 int i; 631 632 if (state->frameno) 633 verbose(env, " frame%d:", state->frameno); 634 for (i = 0; i < MAX_BPF_REG; i++) { 635 reg = &state->regs[i]; 636 t = reg->type; 637 if (t == NOT_INIT) 638 continue; 639 verbose(env, " R%d", i); 640 print_liveness(env, reg->live); 641 verbose(env, "=%s", reg_type_str[t]); 642 if (t == SCALAR_VALUE && reg->precise) 643 verbose(env, "P"); 644 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 645 tnum_is_const(reg->var_off)) { 646 /* reg->off should be 0 for SCALAR_VALUE */ 647 verbose(env, "%lld", reg->var_off.value + reg->off); 648 } else { 649 if (t == PTR_TO_BTF_ID || 650 t == PTR_TO_BTF_ID_OR_NULL || 651 t == PTR_TO_PERCPU_BTF_ID) 652 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 653 verbose(env, "(id=%d", reg->id); 654 if (reg_type_may_be_refcounted_or_null(t)) 655 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 656 if (t != SCALAR_VALUE) 657 verbose(env, ",off=%d", reg->off); 658 if (type_is_pkt_pointer(t)) 659 verbose(env, ",r=%d", reg->range); 660 else if (t == CONST_PTR_TO_MAP || 661 t == PTR_TO_MAP_KEY || 662 t == PTR_TO_MAP_VALUE || 663 t == PTR_TO_MAP_VALUE_OR_NULL) 664 verbose(env, ",ks=%d,vs=%d", 665 reg->map_ptr->key_size, 666 reg->map_ptr->value_size); 667 if (tnum_is_const(reg->var_off)) { 668 /* Typically an immediate SCALAR_VALUE, but 669 * could be a pointer whose offset is too big 670 * for reg->off 671 */ 672 verbose(env, ",imm=%llx", reg->var_off.value); 673 } else { 674 if (reg->smin_value != reg->umin_value && 675 reg->smin_value != S64_MIN) 676 verbose(env, ",smin_value=%lld", 677 (long long)reg->smin_value); 678 if (reg->smax_value != reg->umax_value && 679 reg->smax_value != S64_MAX) 680 verbose(env, ",smax_value=%lld", 681 (long long)reg->smax_value); 682 if (reg->umin_value != 0) 683 verbose(env, ",umin_value=%llu", 684 (unsigned long long)reg->umin_value); 685 if (reg->umax_value != U64_MAX) 686 verbose(env, ",umax_value=%llu", 687 (unsigned long long)reg->umax_value); 688 if (!tnum_is_unknown(reg->var_off)) { 689 char tn_buf[48]; 690 691 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 692 verbose(env, ",var_off=%s", tn_buf); 693 } 694 if (reg->s32_min_value != reg->smin_value && 695 reg->s32_min_value != S32_MIN) 696 verbose(env, ",s32_min_value=%d", 697 (int)(reg->s32_min_value)); 698 if (reg->s32_max_value != reg->smax_value && 699 reg->s32_max_value != S32_MAX) 700 verbose(env, ",s32_max_value=%d", 701 (int)(reg->s32_max_value)); 702 if (reg->u32_min_value != reg->umin_value && 703 reg->u32_min_value != U32_MIN) 704 verbose(env, ",u32_min_value=%d", 705 (int)(reg->u32_min_value)); 706 if (reg->u32_max_value != reg->umax_value && 707 reg->u32_max_value != U32_MAX) 708 verbose(env, ",u32_max_value=%d", 709 (int)(reg->u32_max_value)); 710 } 711 verbose(env, ")"); 712 } 713 } 714 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 715 char types_buf[BPF_REG_SIZE + 1]; 716 bool valid = false; 717 int j; 718 719 for (j = 0; j < BPF_REG_SIZE; j++) { 720 if (state->stack[i].slot_type[j] != STACK_INVALID) 721 valid = true; 722 types_buf[j] = slot_type_char[ 723 state->stack[i].slot_type[j]]; 724 } 725 types_buf[BPF_REG_SIZE] = 0; 726 if (!valid) 727 continue; 728 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 729 print_liveness(env, state->stack[i].spilled_ptr.live); 730 if (is_spilled_reg(&state->stack[i])) { 731 reg = &state->stack[i].spilled_ptr; 732 t = reg->type; 733 verbose(env, "=%s", reg_type_str[t]); 734 if (t == SCALAR_VALUE && reg->precise) 735 verbose(env, "P"); 736 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 737 verbose(env, "%lld", reg->var_off.value + reg->off); 738 } else { 739 verbose(env, "=%s", types_buf); 740 } 741 } 742 if (state->acquired_refs && state->refs[0].id) { 743 verbose(env, " refs=%d", state->refs[0].id); 744 for (i = 1; i < state->acquired_refs; i++) 745 if (state->refs[i].id) 746 verbose(env, ",%d", state->refs[i].id); 747 } 748 if (state->in_callback_fn) 749 verbose(env, " cb"); 750 if (state->in_async_callback_fn) 751 verbose(env, " async_cb"); 752 verbose(env, "\n"); 753 } 754 755 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 756 * small to hold src. This is different from krealloc since we don't want to preserve 757 * the contents of dst. 758 * 759 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 760 * not be allocated. 761 */ 762 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 763 { 764 size_t bytes; 765 766 if (ZERO_OR_NULL_PTR(src)) 767 goto out; 768 769 if (unlikely(check_mul_overflow(n, size, &bytes))) 770 return NULL; 771 772 if (ksize(dst) < bytes) { 773 kfree(dst); 774 dst = kmalloc_track_caller(bytes, flags); 775 if (!dst) 776 return NULL; 777 } 778 779 memcpy(dst, src, bytes); 780 out: 781 return dst ? dst : ZERO_SIZE_PTR; 782 } 783 784 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 785 * small to hold new_n items. new items are zeroed out if the array grows. 786 * 787 * Contrary to krealloc_array, does not free arr if new_n is zero. 788 */ 789 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 790 { 791 if (!new_n || old_n == new_n) 792 goto out; 793 794 arr = krealloc_array(arr, new_n, size, GFP_KERNEL); 795 if (!arr) 796 return NULL; 797 798 if (new_n > old_n) 799 memset(arr + old_n * size, 0, (new_n - old_n) * size); 800 801 out: 802 return arr ? arr : ZERO_SIZE_PTR; 803 } 804 805 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 806 { 807 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 808 sizeof(struct bpf_reference_state), GFP_KERNEL); 809 if (!dst->refs) 810 return -ENOMEM; 811 812 dst->acquired_refs = src->acquired_refs; 813 return 0; 814 } 815 816 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 817 { 818 size_t n = src->allocated_stack / BPF_REG_SIZE; 819 820 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 821 GFP_KERNEL); 822 if (!dst->stack) 823 return -ENOMEM; 824 825 dst->allocated_stack = src->allocated_stack; 826 return 0; 827 } 828 829 static int resize_reference_state(struct bpf_func_state *state, size_t n) 830 { 831 state->refs = realloc_array(state->refs, state->acquired_refs, n, 832 sizeof(struct bpf_reference_state)); 833 if (!state->refs) 834 return -ENOMEM; 835 836 state->acquired_refs = n; 837 return 0; 838 } 839 840 static int grow_stack_state(struct bpf_func_state *state, int size) 841 { 842 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 843 844 if (old_n >= n) 845 return 0; 846 847 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 848 if (!state->stack) 849 return -ENOMEM; 850 851 state->allocated_stack = size; 852 return 0; 853 } 854 855 /* Acquire a pointer id from the env and update the state->refs to include 856 * this new pointer reference. 857 * On success, returns a valid pointer id to associate with the register 858 * On failure, returns a negative errno. 859 */ 860 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 861 { 862 struct bpf_func_state *state = cur_func(env); 863 int new_ofs = state->acquired_refs; 864 int id, err; 865 866 err = resize_reference_state(state, state->acquired_refs + 1); 867 if (err) 868 return err; 869 id = ++env->id_gen; 870 state->refs[new_ofs].id = id; 871 state->refs[new_ofs].insn_idx = insn_idx; 872 873 return id; 874 } 875 876 /* release function corresponding to acquire_reference_state(). Idempotent. */ 877 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 878 { 879 int i, last_idx; 880 881 last_idx = state->acquired_refs - 1; 882 for (i = 0; i < state->acquired_refs; i++) { 883 if (state->refs[i].id == ptr_id) { 884 if (last_idx && i != last_idx) 885 memcpy(&state->refs[i], &state->refs[last_idx], 886 sizeof(*state->refs)); 887 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 888 state->acquired_refs--; 889 return 0; 890 } 891 } 892 return -EINVAL; 893 } 894 895 static void free_func_state(struct bpf_func_state *state) 896 { 897 if (!state) 898 return; 899 kfree(state->refs); 900 kfree(state->stack); 901 kfree(state); 902 } 903 904 static void clear_jmp_history(struct bpf_verifier_state *state) 905 { 906 kfree(state->jmp_history); 907 state->jmp_history = NULL; 908 state->jmp_history_cnt = 0; 909 } 910 911 static void free_verifier_state(struct bpf_verifier_state *state, 912 bool free_self) 913 { 914 int i; 915 916 for (i = 0; i <= state->curframe; i++) { 917 free_func_state(state->frame[i]); 918 state->frame[i] = NULL; 919 } 920 clear_jmp_history(state); 921 if (free_self) 922 kfree(state); 923 } 924 925 /* copy verifier state from src to dst growing dst stack space 926 * when necessary to accommodate larger src stack 927 */ 928 static int copy_func_state(struct bpf_func_state *dst, 929 const struct bpf_func_state *src) 930 { 931 int err; 932 933 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 934 err = copy_reference_state(dst, src); 935 if (err) 936 return err; 937 return copy_stack_state(dst, src); 938 } 939 940 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 941 const struct bpf_verifier_state *src) 942 { 943 struct bpf_func_state *dst; 944 int i, err; 945 946 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 947 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 948 GFP_USER); 949 if (!dst_state->jmp_history) 950 return -ENOMEM; 951 dst_state->jmp_history_cnt = src->jmp_history_cnt; 952 953 /* if dst has more stack frames then src frame, free them */ 954 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 955 free_func_state(dst_state->frame[i]); 956 dst_state->frame[i] = NULL; 957 } 958 dst_state->speculative = src->speculative; 959 dst_state->curframe = src->curframe; 960 dst_state->active_spin_lock = src->active_spin_lock; 961 dst_state->branches = src->branches; 962 dst_state->parent = src->parent; 963 dst_state->first_insn_idx = src->first_insn_idx; 964 dst_state->last_insn_idx = src->last_insn_idx; 965 for (i = 0; i <= src->curframe; i++) { 966 dst = dst_state->frame[i]; 967 if (!dst) { 968 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 969 if (!dst) 970 return -ENOMEM; 971 dst_state->frame[i] = dst; 972 } 973 err = copy_func_state(dst, src->frame[i]); 974 if (err) 975 return err; 976 } 977 return 0; 978 } 979 980 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 981 { 982 while (st) { 983 u32 br = --st->branches; 984 985 /* WARN_ON(br > 1) technically makes sense here, 986 * but see comment in push_stack(), hence: 987 */ 988 WARN_ONCE((int)br < 0, 989 "BUG update_branch_counts:branches_to_explore=%d\n", 990 br); 991 if (br) 992 break; 993 st = st->parent; 994 } 995 } 996 997 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 998 int *insn_idx, bool pop_log) 999 { 1000 struct bpf_verifier_state *cur = env->cur_state; 1001 struct bpf_verifier_stack_elem *elem, *head = env->head; 1002 int err; 1003 1004 if (env->head == NULL) 1005 return -ENOENT; 1006 1007 if (cur) { 1008 err = copy_verifier_state(cur, &head->st); 1009 if (err) 1010 return err; 1011 } 1012 if (pop_log) 1013 bpf_vlog_reset(&env->log, head->log_pos); 1014 if (insn_idx) 1015 *insn_idx = head->insn_idx; 1016 if (prev_insn_idx) 1017 *prev_insn_idx = head->prev_insn_idx; 1018 elem = head->next; 1019 free_verifier_state(&head->st, false); 1020 kfree(head); 1021 env->head = elem; 1022 env->stack_size--; 1023 return 0; 1024 } 1025 1026 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1027 int insn_idx, int prev_insn_idx, 1028 bool speculative) 1029 { 1030 struct bpf_verifier_state *cur = env->cur_state; 1031 struct bpf_verifier_stack_elem *elem; 1032 int err; 1033 1034 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1035 if (!elem) 1036 goto err; 1037 1038 elem->insn_idx = insn_idx; 1039 elem->prev_insn_idx = prev_insn_idx; 1040 elem->next = env->head; 1041 elem->log_pos = env->log.len_used; 1042 env->head = elem; 1043 env->stack_size++; 1044 err = copy_verifier_state(&elem->st, cur); 1045 if (err) 1046 goto err; 1047 elem->st.speculative |= speculative; 1048 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1049 verbose(env, "The sequence of %d jumps is too complex.\n", 1050 env->stack_size); 1051 goto err; 1052 } 1053 if (elem->st.parent) { 1054 ++elem->st.parent->branches; 1055 /* WARN_ON(branches > 2) technically makes sense here, 1056 * but 1057 * 1. speculative states will bump 'branches' for non-branch 1058 * instructions 1059 * 2. is_state_visited() heuristics may decide not to create 1060 * a new state for a sequence of branches and all such current 1061 * and cloned states will be pointing to a single parent state 1062 * which might have large 'branches' count. 1063 */ 1064 } 1065 return &elem->st; 1066 err: 1067 free_verifier_state(env->cur_state, true); 1068 env->cur_state = NULL; 1069 /* pop all elements and return */ 1070 while (!pop_stack(env, NULL, NULL, false)); 1071 return NULL; 1072 } 1073 1074 #define CALLER_SAVED_REGS 6 1075 static const int caller_saved[CALLER_SAVED_REGS] = { 1076 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1077 }; 1078 1079 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1080 struct bpf_reg_state *reg); 1081 1082 /* This helper doesn't clear reg->id */ 1083 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1084 { 1085 reg->var_off = tnum_const(imm); 1086 reg->smin_value = (s64)imm; 1087 reg->smax_value = (s64)imm; 1088 reg->umin_value = imm; 1089 reg->umax_value = imm; 1090 1091 reg->s32_min_value = (s32)imm; 1092 reg->s32_max_value = (s32)imm; 1093 reg->u32_min_value = (u32)imm; 1094 reg->u32_max_value = (u32)imm; 1095 } 1096 1097 /* Mark the unknown part of a register (variable offset or scalar value) as 1098 * known to have the value @imm. 1099 */ 1100 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1101 { 1102 /* Clear id, off, and union(map_ptr, range) */ 1103 memset(((u8 *)reg) + sizeof(reg->type), 0, 1104 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1105 ___mark_reg_known(reg, imm); 1106 } 1107 1108 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1109 { 1110 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1111 reg->s32_min_value = (s32)imm; 1112 reg->s32_max_value = (s32)imm; 1113 reg->u32_min_value = (u32)imm; 1114 reg->u32_max_value = (u32)imm; 1115 } 1116 1117 /* Mark the 'variable offset' part of a register as zero. This should be 1118 * used only on registers holding a pointer type. 1119 */ 1120 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1121 { 1122 __mark_reg_known(reg, 0); 1123 } 1124 1125 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1126 { 1127 __mark_reg_known(reg, 0); 1128 reg->type = SCALAR_VALUE; 1129 } 1130 1131 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1132 struct bpf_reg_state *regs, u32 regno) 1133 { 1134 if (WARN_ON(regno >= MAX_BPF_REG)) { 1135 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1136 /* Something bad happened, let's kill all regs */ 1137 for (regno = 0; regno < MAX_BPF_REG; regno++) 1138 __mark_reg_not_init(env, regs + regno); 1139 return; 1140 } 1141 __mark_reg_known_zero(regs + regno); 1142 } 1143 1144 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1145 { 1146 switch (reg->type) { 1147 case PTR_TO_MAP_VALUE_OR_NULL: { 1148 const struct bpf_map *map = reg->map_ptr; 1149 1150 if (map->inner_map_meta) { 1151 reg->type = CONST_PTR_TO_MAP; 1152 reg->map_ptr = map->inner_map_meta; 1153 /* transfer reg's id which is unique for every map_lookup_elem 1154 * as UID of the inner map. 1155 */ 1156 if (map_value_has_timer(map->inner_map_meta)) 1157 reg->map_uid = reg->id; 1158 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1159 reg->type = PTR_TO_XDP_SOCK; 1160 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1161 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1162 reg->type = PTR_TO_SOCKET; 1163 } else { 1164 reg->type = PTR_TO_MAP_VALUE; 1165 } 1166 break; 1167 } 1168 case PTR_TO_SOCKET_OR_NULL: 1169 reg->type = PTR_TO_SOCKET; 1170 break; 1171 case PTR_TO_SOCK_COMMON_OR_NULL: 1172 reg->type = PTR_TO_SOCK_COMMON; 1173 break; 1174 case PTR_TO_TCP_SOCK_OR_NULL: 1175 reg->type = PTR_TO_TCP_SOCK; 1176 break; 1177 case PTR_TO_BTF_ID_OR_NULL: 1178 reg->type = PTR_TO_BTF_ID; 1179 break; 1180 case PTR_TO_MEM_OR_NULL: 1181 reg->type = PTR_TO_MEM; 1182 break; 1183 case PTR_TO_RDONLY_BUF_OR_NULL: 1184 reg->type = PTR_TO_RDONLY_BUF; 1185 break; 1186 case PTR_TO_RDWR_BUF_OR_NULL: 1187 reg->type = PTR_TO_RDWR_BUF; 1188 break; 1189 default: 1190 WARN_ONCE(1, "unknown nullable register type"); 1191 } 1192 } 1193 1194 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1195 { 1196 return type_is_pkt_pointer(reg->type); 1197 } 1198 1199 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1200 { 1201 return reg_is_pkt_pointer(reg) || 1202 reg->type == PTR_TO_PACKET_END; 1203 } 1204 1205 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1206 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1207 enum bpf_reg_type which) 1208 { 1209 /* The register can already have a range from prior markings. 1210 * This is fine as long as it hasn't been advanced from its 1211 * origin. 1212 */ 1213 return reg->type == which && 1214 reg->id == 0 && 1215 reg->off == 0 && 1216 tnum_equals_const(reg->var_off, 0); 1217 } 1218 1219 /* Reset the min/max bounds of a register */ 1220 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1221 { 1222 reg->smin_value = S64_MIN; 1223 reg->smax_value = S64_MAX; 1224 reg->umin_value = 0; 1225 reg->umax_value = U64_MAX; 1226 1227 reg->s32_min_value = S32_MIN; 1228 reg->s32_max_value = S32_MAX; 1229 reg->u32_min_value = 0; 1230 reg->u32_max_value = U32_MAX; 1231 } 1232 1233 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1234 { 1235 reg->smin_value = S64_MIN; 1236 reg->smax_value = S64_MAX; 1237 reg->umin_value = 0; 1238 reg->umax_value = U64_MAX; 1239 } 1240 1241 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1242 { 1243 reg->s32_min_value = S32_MIN; 1244 reg->s32_max_value = S32_MAX; 1245 reg->u32_min_value = 0; 1246 reg->u32_max_value = U32_MAX; 1247 } 1248 1249 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1250 { 1251 struct tnum var32_off = tnum_subreg(reg->var_off); 1252 1253 /* min signed is max(sign bit) | min(other bits) */ 1254 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1255 var32_off.value | (var32_off.mask & S32_MIN)); 1256 /* max signed is min(sign bit) | max(other bits) */ 1257 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1258 var32_off.value | (var32_off.mask & S32_MAX)); 1259 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1260 reg->u32_max_value = min(reg->u32_max_value, 1261 (u32)(var32_off.value | var32_off.mask)); 1262 } 1263 1264 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1265 { 1266 /* min signed is max(sign bit) | min(other bits) */ 1267 reg->smin_value = max_t(s64, reg->smin_value, 1268 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1269 /* max signed is min(sign bit) | max(other bits) */ 1270 reg->smax_value = min_t(s64, reg->smax_value, 1271 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1272 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1273 reg->umax_value = min(reg->umax_value, 1274 reg->var_off.value | reg->var_off.mask); 1275 } 1276 1277 static void __update_reg_bounds(struct bpf_reg_state *reg) 1278 { 1279 __update_reg32_bounds(reg); 1280 __update_reg64_bounds(reg); 1281 } 1282 1283 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1284 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1285 { 1286 /* Learn sign from signed bounds. 1287 * If we cannot cross the sign boundary, then signed and unsigned bounds 1288 * are the same, so combine. This works even in the negative case, e.g. 1289 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1290 */ 1291 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1292 reg->s32_min_value = reg->u32_min_value = 1293 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1294 reg->s32_max_value = reg->u32_max_value = 1295 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1296 return; 1297 } 1298 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1299 * boundary, so we must be careful. 1300 */ 1301 if ((s32)reg->u32_max_value >= 0) { 1302 /* Positive. We can't learn anything from the smin, but smax 1303 * is positive, hence safe. 1304 */ 1305 reg->s32_min_value = reg->u32_min_value; 1306 reg->s32_max_value = reg->u32_max_value = 1307 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1308 } else if ((s32)reg->u32_min_value < 0) { 1309 /* Negative. We can't learn anything from the smax, but smin 1310 * is negative, hence safe. 1311 */ 1312 reg->s32_min_value = reg->u32_min_value = 1313 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1314 reg->s32_max_value = reg->u32_max_value; 1315 } 1316 } 1317 1318 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1319 { 1320 /* Learn sign from signed bounds. 1321 * If we cannot cross the sign boundary, then signed and unsigned bounds 1322 * are the same, so combine. This works even in the negative case, e.g. 1323 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1324 */ 1325 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1326 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1327 reg->umin_value); 1328 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1329 reg->umax_value); 1330 return; 1331 } 1332 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1333 * boundary, so we must be careful. 1334 */ 1335 if ((s64)reg->umax_value >= 0) { 1336 /* Positive. We can't learn anything from the smin, but smax 1337 * is positive, hence safe. 1338 */ 1339 reg->smin_value = reg->umin_value; 1340 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1341 reg->umax_value); 1342 } else if ((s64)reg->umin_value < 0) { 1343 /* Negative. We can't learn anything from the smax, but smin 1344 * is negative, hence safe. 1345 */ 1346 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1347 reg->umin_value); 1348 reg->smax_value = reg->umax_value; 1349 } 1350 } 1351 1352 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1353 { 1354 __reg32_deduce_bounds(reg); 1355 __reg64_deduce_bounds(reg); 1356 } 1357 1358 /* Attempts to improve var_off based on unsigned min/max information */ 1359 static void __reg_bound_offset(struct bpf_reg_state *reg) 1360 { 1361 struct tnum var64_off = tnum_intersect(reg->var_off, 1362 tnum_range(reg->umin_value, 1363 reg->umax_value)); 1364 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1365 tnum_range(reg->u32_min_value, 1366 reg->u32_max_value)); 1367 1368 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1369 } 1370 1371 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1372 { 1373 reg->umin_value = reg->u32_min_value; 1374 reg->umax_value = reg->u32_max_value; 1375 /* Attempt to pull 32-bit signed bounds into 64-bit bounds 1376 * but must be positive otherwise set to worse case bounds 1377 * and refine later from tnum. 1378 */ 1379 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0) 1380 reg->smax_value = reg->s32_max_value; 1381 else 1382 reg->smax_value = U32_MAX; 1383 if (reg->s32_min_value >= 0) 1384 reg->smin_value = reg->s32_min_value; 1385 else 1386 reg->smin_value = 0; 1387 } 1388 1389 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1390 { 1391 /* special case when 64-bit register has upper 32-bit register 1392 * zeroed. Typically happens after zext or <<32, >>32 sequence 1393 * allowing us to use 32-bit bounds directly, 1394 */ 1395 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1396 __reg_assign_32_into_64(reg); 1397 } else { 1398 /* Otherwise the best we can do is push lower 32bit known and 1399 * unknown bits into register (var_off set from jmp logic) 1400 * then learn as much as possible from the 64-bit tnum 1401 * known and unknown bits. The previous smin/smax bounds are 1402 * invalid here because of jmp32 compare so mark them unknown 1403 * so they do not impact tnum bounds calculation. 1404 */ 1405 __mark_reg64_unbounded(reg); 1406 __update_reg_bounds(reg); 1407 } 1408 1409 /* Intersecting with the old var_off might have improved our bounds 1410 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1411 * then new var_off is (0; 0x7f...fc) which improves our umax. 1412 */ 1413 __reg_deduce_bounds(reg); 1414 __reg_bound_offset(reg); 1415 __update_reg_bounds(reg); 1416 } 1417 1418 static bool __reg64_bound_s32(s64 a) 1419 { 1420 return a >= S32_MIN && a <= S32_MAX; 1421 } 1422 1423 static bool __reg64_bound_u32(u64 a) 1424 { 1425 return a >= U32_MIN && a <= U32_MAX; 1426 } 1427 1428 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1429 { 1430 __mark_reg32_unbounded(reg); 1431 1432 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1433 reg->s32_min_value = (s32)reg->smin_value; 1434 reg->s32_max_value = (s32)reg->smax_value; 1435 } 1436 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1437 reg->u32_min_value = (u32)reg->umin_value; 1438 reg->u32_max_value = (u32)reg->umax_value; 1439 } 1440 1441 /* Intersecting with the old var_off might have improved our bounds 1442 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1443 * then new var_off is (0; 0x7f...fc) which improves our umax. 1444 */ 1445 __reg_deduce_bounds(reg); 1446 __reg_bound_offset(reg); 1447 __update_reg_bounds(reg); 1448 } 1449 1450 /* Mark a register as having a completely unknown (scalar) value. */ 1451 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1452 struct bpf_reg_state *reg) 1453 { 1454 /* 1455 * Clear type, id, off, and union(map_ptr, range) and 1456 * padding between 'type' and union 1457 */ 1458 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1459 reg->type = SCALAR_VALUE; 1460 reg->var_off = tnum_unknown; 1461 reg->frameno = 0; 1462 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1463 __mark_reg_unbounded(reg); 1464 } 1465 1466 static void mark_reg_unknown(struct bpf_verifier_env *env, 1467 struct bpf_reg_state *regs, u32 regno) 1468 { 1469 if (WARN_ON(regno >= MAX_BPF_REG)) { 1470 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1471 /* Something bad happened, let's kill all regs except FP */ 1472 for (regno = 0; regno < BPF_REG_FP; regno++) 1473 __mark_reg_not_init(env, regs + regno); 1474 return; 1475 } 1476 __mark_reg_unknown(env, regs + regno); 1477 } 1478 1479 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1480 struct bpf_reg_state *reg) 1481 { 1482 __mark_reg_unknown(env, reg); 1483 reg->type = NOT_INIT; 1484 } 1485 1486 static void mark_reg_not_init(struct bpf_verifier_env *env, 1487 struct bpf_reg_state *regs, u32 regno) 1488 { 1489 if (WARN_ON(regno >= MAX_BPF_REG)) { 1490 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1491 /* Something bad happened, let's kill all regs except FP */ 1492 for (regno = 0; regno < BPF_REG_FP; regno++) 1493 __mark_reg_not_init(env, regs + regno); 1494 return; 1495 } 1496 __mark_reg_not_init(env, regs + regno); 1497 } 1498 1499 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1500 struct bpf_reg_state *regs, u32 regno, 1501 enum bpf_reg_type reg_type, 1502 struct btf *btf, u32 btf_id) 1503 { 1504 if (reg_type == SCALAR_VALUE) { 1505 mark_reg_unknown(env, regs, regno); 1506 return; 1507 } 1508 mark_reg_known_zero(env, regs, regno); 1509 regs[regno].type = PTR_TO_BTF_ID; 1510 regs[regno].btf = btf; 1511 regs[regno].btf_id = btf_id; 1512 } 1513 1514 #define DEF_NOT_SUBREG (0) 1515 static void init_reg_state(struct bpf_verifier_env *env, 1516 struct bpf_func_state *state) 1517 { 1518 struct bpf_reg_state *regs = state->regs; 1519 int i; 1520 1521 for (i = 0; i < MAX_BPF_REG; i++) { 1522 mark_reg_not_init(env, regs, i); 1523 regs[i].live = REG_LIVE_NONE; 1524 regs[i].parent = NULL; 1525 regs[i].subreg_def = DEF_NOT_SUBREG; 1526 } 1527 1528 /* frame pointer */ 1529 regs[BPF_REG_FP].type = PTR_TO_STACK; 1530 mark_reg_known_zero(env, regs, BPF_REG_FP); 1531 regs[BPF_REG_FP].frameno = state->frameno; 1532 } 1533 1534 #define BPF_MAIN_FUNC (-1) 1535 static void init_func_state(struct bpf_verifier_env *env, 1536 struct bpf_func_state *state, 1537 int callsite, int frameno, int subprogno) 1538 { 1539 state->callsite = callsite; 1540 state->frameno = frameno; 1541 state->subprogno = subprogno; 1542 init_reg_state(env, state); 1543 } 1544 1545 /* Similar to push_stack(), but for async callbacks */ 1546 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 1547 int insn_idx, int prev_insn_idx, 1548 int subprog) 1549 { 1550 struct bpf_verifier_stack_elem *elem; 1551 struct bpf_func_state *frame; 1552 1553 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1554 if (!elem) 1555 goto err; 1556 1557 elem->insn_idx = insn_idx; 1558 elem->prev_insn_idx = prev_insn_idx; 1559 elem->next = env->head; 1560 elem->log_pos = env->log.len_used; 1561 env->head = elem; 1562 env->stack_size++; 1563 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1564 verbose(env, 1565 "The sequence of %d jumps is too complex for async cb.\n", 1566 env->stack_size); 1567 goto err; 1568 } 1569 /* Unlike push_stack() do not copy_verifier_state(). 1570 * The caller state doesn't matter. 1571 * This is async callback. It starts in a fresh stack. 1572 * Initialize it similar to do_check_common(). 1573 */ 1574 elem->st.branches = 1; 1575 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1576 if (!frame) 1577 goto err; 1578 init_func_state(env, frame, 1579 BPF_MAIN_FUNC /* callsite */, 1580 0 /* frameno within this callchain */, 1581 subprog /* subprog number within this prog */); 1582 elem->st.frame[0] = frame; 1583 return &elem->st; 1584 err: 1585 free_verifier_state(env->cur_state, true); 1586 env->cur_state = NULL; 1587 /* pop all elements and return */ 1588 while (!pop_stack(env, NULL, NULL, false)); 1589 return NULL; 1590 } 1591 1592 1593 enum reg_arg_type { 1594 SRC_OP, /* register is used as source operand */ 1595 DST_OP, /* register is used as destination operand */ 1596 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1597 }; 1598 1599 static int cmp_subprogs(const void *a, const void *b) 1600 { 1601 return ((struct bpf_subprog_info *)a)->start - 1602 ((struct bpf_subprog_info *)b)->start; 1603 } 1604 1605 static int find_subprog(struct bpf_verifier_env *env, int off) 1606 { 1607 struct bpf_subprog_info *p; 1608 1609 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1610 sizeof(env->subprog_info[0]), cmp_subprogs); 1611 if (!p) 1612 return -ENOENT; 1613 return p - env->subprog_info; 1614 1615 } 1616 1617 static int add_subprog(struct bpf_verifier_env *env, int off) 1618 { 1619 int insn_cnt = env->prog->len; 1620 int ret; 1621 1622 if (off >= insn_cnt || off < 0) { 1623 verbose(env, "call to invalid destination\n"); 1624 return -EINVAL; 1625 } 1626 ret = find_subprog(env, off); 1627 if (ret >= 0) 1628 return ret; 1629 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1630 verbose(env, "too many subprograms\n"); 1631 return -E2BIG; 1632 } 1633 /* determine subprog starts. The end is one before the next starts */ 1634 env->subprog_info[env->subprog_cnt++].start = off; 1635 sort(env->subprog_info, env->subprog_cnt, 1636 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1637 return env->subprog_cnt - 1; 1638 } 1639 1640 #define MAX_KFUNC_DESCS 256 1641 #define MAX_KFUNC_BTFS 256 1642 1643 struct bpf_kfunc_desc { 1644 struct btf_func_model func_model; 1645 u32 func_id; 1646 s32 imm; 1647 u16 offset; 1648 }; 1649 1650 struct bpf_kfunc_btf { 1651 struct btf *btf; 1652 struct module *module; 1653 u16 offset; 1654 }; 1655 1656 struct bpf_kfunc_desc_tab { 1657 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1658 u32 nr_descs; 1659 }; 1660 1661 struct bpf_kfunc_btf_tab { 1662 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 1663 u32 nr_descs; 1664 }; 1665 1666 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 1667 { 1668 const struct bpf_kfunc_desc *d0 = a; 1669 const struct bpf_kfunc_desc *d1 = b; 1670 1671 /* func_id is not greater than BTF_MAX_TYPE */ 1672 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 1673 } 1674 1675 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 1676 { 1677 const struct bpf_kfunc_btf *d0 = a; 1678 const struct bpf_kfunc_btf *d1 = b; 1679 1680 return d0->offset - d1->offset; 1681 } 1682 1683 static const struct bpf_kfunc_desc * 1684 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 1685 { 1686 struct bpf_kfunc_desc desc = { 1687 .func_id = func_id, 1688 .offset = offset, 1689 }; 1690 struct bpf_kfunc_desc_tab *tab; 1691 1692 tab = prog->aux->kfunc_tab; 1693 return bsearch(&desc, tab->descs, tab->nr_descs, 1694 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 1695 } 1696 1697 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 1698 s16 offset, struct module **btf_modp) 1699 { 1700 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 1701 struct bpf_kfunc_btf_tab *tab; 1702 struct bpf_kfunc_btf *b; 1703 struct module *mod; 1704 struct btf *btf; 1705 int btf_fd; 1706 1707 tab = env->prog->aux->kfunc_btf_tab; 1708 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 1709 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 1710 if (!b) { 1711 if (tab->nr_descs == MAX_KFUNC_BTFS) { 1712 verbose(env, "too many different module BTFs\n"); 1713 return ERR_PTR(-E2BIG); 1714 } 1715 1716 if (bpfptr_is_null(env->fd_array)) { 1717 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 1718 return ERR_PTR(-EPROTO); 1719 } 1720 1721 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 1722 offset * sizeof(btf_fd), 1723 sizeof(btf_fd))) 1724 return ERR_PTR(-EFAULT); 1725 1726 btf = btf_get_by_fd(btf_fd); 1727 if (IS_ERR(btf)) { 1728 verbose(env, "invalid module BTF fd specified\n"); 1729 return btf; 1730 } 1731 1732 if (!btf_is_module(btf)) { 1733 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 1734 btf_put(btf); 1735 return ERR_PTR(-EINVAL); 1736 } 1737 1738 mod = btf_try_get_module(btf); 1739 if (!mod) { 1740 btf_put(btf); 1741 return ERR_PTR(-ENXIO); 1742 } 1743 1744 b = &tab->descs[tab->nr_descs++]; 1745 b->btf = btf; 1746 b->module = mod; 1747 b->offset = offset; 1748 1749 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1750 kfunc_btf_cmp_by_off, NULL); 1751 } 1752 if (btf_modp) 1753 *btf_modp = b->module; 1754 return b->btf; 1755 } 1756 1757 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 1758 { 1759 if (!tab) 1760 return; 1761 1762 while (tab->nr_descs--) { 1763 module_put(tab->descs[tab->nr_descs].module); 1764 btf_put(tab->descs[tab->nr_descs].btf); 1765 } 1766 kfree(tab); 1767 } 1768 1769 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, 1770 u32 func_id, s16 offset, 1771 struct module **btf_modp) 1772 { 1773 if (offset) { 1774 if (offset < 0) { 1775 /* In the future, this can be allowed to increase limit 1776 * of fd index into fd_array, interpreted as u16. 1777 */ 1778 verbose(env, "negative offset disallowed for kernel module function call\n"); 1779 return ERR_PTR(-EINVAL); 1780 } 1781 1782 return __find_kfunc_desc_btf(env, offset, btf_modp); 1783 } 1784 return btf_vmlinux ?: ERR_PTR(-ENOENT); 1785 } 1786 1787 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 1788 { 1789 const struct btf_type *func, *func_proto; 1790 struct bpf_kfunc_btf_tab *btf_tab; 1791 struct bpf_kfunc_desc_tab *tab; 1792 struct bpf_prog_aux *prog_aux; 1793 struct bpf_kfunc_desc *desc; 1794 const char *func_name; 1795 struct btf *desc_btf; 1796 unsigned long addr; 1797 int err; 1798 1799 prog_aux = env->prog->aux; 1800 tab = prog_aux->kfunc_tab; 1801 btf_tab = prog_aux->kfunc_btf_tab; 1802 if (!tab) { 1803 if (!btf_vmlinux) { 1804 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 1805 return -ENOTSUPP; 1806 } 1807 1808 if (!env->prog->jit_requested) { 1809 verbose(env, "JIT is required for calling kernel function\n"); 1810 return -ENOTSUPP; 1811 } 1812 1813 if (!bpf_jit_supports_kfunc_call()) { 1814 verbose(env, "JIT does not support calling kernel function\n"); 1815 return -ENOTSUPP; 1816 } 1817 1818 if (!env->prog->gpl_compatible) { 1819 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 1820 return -EINVAL; 1821 } 1822 1823 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 1824 if (!tab) 1825 return -ENOMEM; 1826 prog_aux->kfunc_tab = tab; 1827 } 1828 1829 /* func_id == 0 is always invalid, but instead of returning an error, be 1830 * conservative and wait until the code elimination pass before returning 1831 * error, so that invalid calls that get pruned out can be in BPF programs 1832 * loaded from userspace. It is also required that offset be untouched 1833 * for such calls. 1834 */ 1835 if (!func_id && !offset) 1836 return 0; 1837 1838 if (!btf_tab && offset) { 1839 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 1840 if (!btf_tab) 1841 return -ENOMEM; 1842 prog_aux->kfunc_btf_tab = btf_tab; 1843 } 1844 1845 desc_btf = find_kfunc_desc_btf(env, func_id, offset, NULL); 1846 if (IS_ERR(desc_btf)) { 1847 verbose(env, "failed to find BTF for kernel function\n"); 1848 return PTR_ERR(desc_btf); 1849 } 1850 1851 if (find_kfunc_desc(env->prog, func_id, offset)) 1852 return 0; 1853 1854 if (tab->nr_descs == MAX_KFUNC_DESCS) { 1855 verbose(env, "too many different kernel function calls\n"); 1856 return -E2BIG; 1857 } 1858 1859 func = btf_type_by_id(desc_btf, func_id); 1860 if (!func || !btf_type_is_func(func)) { 1861 verbose(env, "kernel btf_id %u is not a function\n", 1862 func_id); 1863 return -EINVAL; 1864 } 1865 func_proto = btf_type_by_id(desc_btf, func->type); 1866 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 1867 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 1868 func_id); 1869 return -EINVAL; 1870 } 1871 1872 func_name = btf_name_by_offset(desc_btf, func->name_off); 1873 addr = kallsyms_lookup_name(func_name); 1874 if (!addr) { 1875 verbose(env, "cannot find address for kernel function %s\n", 1876 func_name); 1877 return -EINVAL; 1878 } 1879 1880 desc = &tab->descs[tab->nr_descs++]; 1881 desc->func_id = func_id; 1882 desc->imm = BPF_CALL_IMM(addr); 1883 desc->offset = offset; 1884 err = btf_distill_func_proto(&env->log, desc_btf, 1885 func_proto, func_name, 1886 &desc->func_model); 1887 if (!err) 1888 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1889 kfunc_desc_cmp_by_id_off, NULL); 1890 return err; 1891 } 1892 1893 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 1894 { 1895 const struct bpf_kfunc_desc *d0 = a; 1896 const struct bpf_kfunc_desc *d1 = b; 1897 1898 if (d0->imm > d1->imm) 1899 return 1; 1900 else if (d0->imm < d1->imm) 1901 return -1; 1902 return 0; 1903 } 1904 1905 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 1906 { 1907 struct bpf_kfunc_desc_tab *tab; 1908 1909 tab = prog->aux->kfunc_tab; 1910 if (!tab) 1911 return; 1912 1913 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1914 kfunc_desc_cmp_by_imm, NULL); 1915 } 1916 1917 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 1918 { 1919 return !!prog->aux->kfunc_tab; 1920 } 1921 1922 const struct btf_func_model * 1923 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 1924 const struct bpf_insn *insn) 1925 { 1926 const struct bpf_kfunc_desc desc = { 1927 .imm = insn->imm, 1928 }; 1929 const struct bpf_kfunc_desc *res; 1930 struct bpf_kfunc_desc_tab *tab; 1931 1932 tab = prog->aux->kfunc_tab; 1933 res = bsearch(&desc, tab->descs, tab->nr_descs, 1934 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 1935 1936 return res ? &res->func_model : NULL; 1937 } 1938 1939 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 1940 { 1941 struct bpf_subprog_info *subprog = env->subprog_info; 1942 struct bpf_insn *insn = env->prog->insnsi; 1943 int i, ret, insn_cnt = env->prog->len; 1944 1945 /* Add entry function. */ 1946 ret = add_subprog(env, 0); 1947 if (ret) 1948 return ret; 1949 1950 for (i = 0; i < insn_cnt; i++, insn++) { 1951 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 1952 !bpf_pseudo_kfunc_call(insn)) 1953 continue; 1954 1955 if (!env->bpf_capable) { 1956 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 1957 return -EPERM; 1958 } 1959 1960 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 1961 ret = add_subprog(env, i + insn->imm + 1); 1962 else 1963 ret = add_kfunc_call(env, insn->imm, insn->off); 1964 1965 if (ret < 0) 1966 return ret; 1967 } 1968 1969 /* Add a fake 'exit' subprog which could simplify subprog iteration 1970 * logic. 'subprog_cnt' should not be increased. 1971 */ 1972 subprog[env->subprog_cnt].start = insn_cnt; 1973 1974 if (env->log.level & BPF_LOG_LEVEL2) 1975 for (i = 0; i < env->subprog_cnt; i++) 1976 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1977 1978 return 0; 1979 } 1980 1981 static int check_subprogs(struct bpf_verifier_env *env) 1982 { 1983 int i, subprog_start, subprog_end, off, cur_subprog = 0; 1984 struct bpf_subprog_info *subprog = env->subprog_info; 1985 struct bpf_insn *insn = env->prog->insnsi; 1986 int insn_cnt = env->prog->len; 1987 1988 /* now check that all jumps are within the same subprog */ 1989 subprog_start = subprog[cur_subprog].start; 1990 subprog_end = subprog[cur_subprog + 1].start; 1991 for (i = 0; i < insn_cnt; i++) { 1992 u8 code = insn[i].code; 1993 1994 if (code == (BPF_JMP | BPF_CALL) && 1995 insn[i].imm == BPF_FUNC_tail_call && 1996 insn[i].src_reg != BPF_PSEUDO_CALL) 1997 subprog[cur_subprog].has_tail_call = true; 1998 if (BPF_CLASS(code) == BPF_LD && 1999 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2000 subprog[cur_subprog].has_ld_abs = true; 2001 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2002 goto next; 2003 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2004 goto next; 2005 off = i + insn[i].off + 1; 2006 if (off < subprog_start || off >= subprog_end) { 2007 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2008 return -EINVAL; 2009 } 2010 next: 2011 if (i == subprog_end - 1) { 2012 /* to avoid fall-through from one subprog into another 2013 * the last insn of the subprog should be either exit 2014 * or unconditional jump back 2015 */ 2016 if (code != (BPF_JMP | BPF_EXIT) && 2017 code != (BPF_JMP | BPF_JA)) { 2018 verbose(env, "last insn is not an exit or jmp\n"); 2019 return -EINVAL; 2020 } 2021 subprog_start = subprog_end; 2022 cur_subprog++; 2023 if (cur_subprog < env->subprog_cnt) 2024 subprog_end = subprog[cur_subprog + 1].start; 2025 } 2026 } 2027 return 0; 2028 } 2029 2030 /* Parentage chain of this register (or stack slot) should take care of all 2031 * issues like callee-saved registers, stack slot allocation time, etc. 2032 */ 2033 static int mark_reg_read(struct bpf_verifier_env *env, 2034 const struct bpf_reg_state *state, 2035 struct bpf_reg_state *parent, u8 flag) 2036 { 2037 bool writes = parent == state->parent; /* Observe write marks */ 2038 int cnt = 0; 2039 2040 while (parent) { 2041 /* if read wasn't screened by an earlier write ... */ 2042 if (writes && state->live & REG_LIVE_WRITTEN) 2043 break; 2044 if (parent->live & REG_LIVE_DONE) { 2045 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2046 reg_type_str[parent->type], 2047 parent->var_off.value, parent->off); 2048 return -EFAULT; 2049 } 2050 /* The first condition is more likely to be true than the 2051 * second, checked it first. 2052 */ 2053 if ((parent->live & REG_LIVE_READ) == flag || 2054 parent->live & REG_LIVE_READ64) 2055 /* The parentage chain never changes and 2056 * this parent was already marked as LIVE_READ. 2057 * There is no need to keep walking the chain again and 2058 * keep re-marking all parents as LIVE_READ. 2059 * This case happens when the same register is read 2060 * multiple times without writes into it in-between. 2061 * Also, if parent has the stronger REG_LIVE_READ64 set, 2062 * then no need to set the weak REG_LIVE_READ32. 2063 */ 2064 break; 2065 /* ... then we depend on parent's value */ 2066 parent->live |= flag; 2067 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2068 if (flag == REG_LIVE_READ64) 2069 parent->live &= ~REG_LIVE_READ32; 2070 state = parent; 2071 parent = state->parent; 2072 writes = true; 2073 cnt++; 2074 } 2075 2076 if (env->longest_mark_read_walk < cnt) 2077 env->longest_mark_read_walk = cnt; 2078 return 0; 2079 } 2080 2081 /* This function is supposed to be used by the following 32-bit optimization 2082 * code only. It returns TRUE if the source or destination register operates 2083 * on 64-bit, otherwise return FALSE. 2084 */ 2085 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2086 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2087 { 2088 u8 code, class, op; 2089 2090 code = insn->code; 2091 class = BPF_CLASS(code); 2092 op = BPF_OP(code); 2093 if (class == BPF_JMP) { 2094 /* BPF_EXIT for "main" will reach here. Return TRUE 2095 * conservatively. 2096 */ 2097 if (op == BPF_EXIT) 2098 return true; 2099 if (op == BPF_CALL) { 2100 /* BPF to BPF call will reach here because of marking 2101 * caller saved clobber with DST_OP_NO_MARK for which we 2102 * don't care the register def because they are anyway 2103 * marked as NOT_INIT already. 2104 */ 2105 if (insn->src_reg == BPF_PSEUDO_CALL) 2106 return false; 2107 /* Helper call will reach here because of arg type 2108 * check, conservatively return TRUE. 2109 */ 2110 if (t == SRC_OP) 2111 return true; 2112 2113 return false; 2114 } 2115 } 2116 2117 if (class == BPF_ALU64 || class == BPF_JMP || 2118 /* BPF_END always use BPF_ALU class. */ 2119 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 2120 return true; 2121 2122 if (class == BPF_ALU || class == BPF_JMP32) 2123 return false; 2124 2125 if (class == BPF_LDX) { 2126 if (t != SRC_OP) 2127 return BPF_SIZE(code) == BPF_DW; 2128 /* LDX source must be ptr. */ 2129 return true; 2130 } 2131 2132 if (class == BPF_STX) { 2133 /* BPF_STX (including atomic variants) has multiple source 2134 * operands, one of which is a ptr. Check whether the caller is 2135 * asking about it. 2136 */ 2137 if (t == SRC_OP && reg->type != SCALAR_VALUE) 2138 return true; 2139 return BPF_SIZE(code) == BPF_DW; 2140 } 2141 2142 if (class == BPF_LD) { 2143 u8 mode = BPF_MODE(code); 2144 2145 /* LD_IMM64 */ 2146 if (mode == BPF_IMM) 2147 return true; 2148 2149 /* Both LD_IND and LD_ABS return 32-bit data. */ 2150 if (t != SRC_OP) 2151 return false; 2152 2153 /* Implicit ctx ptr. */ 2154 if (regno == BPF_REG_6) 2155 return true; 2156 2157 /* Explicit source could be any width. */ 2158 return true; 2159 } 2160 2161 if (class == BPF_ST) 2162 /* The only source register for BPF_ST is a ptr. */ 2163 return true; 2164 2165 /* Conservatively return true at default. */ 2166 return true; 2167 } 2168 2169 /* Return the regno defined by the insn, or -1. */ 2170 static int insn_def_regno(const struct bpf_insn *insn) 2171 { 2172 switch (BPF_CLASS(insn->code)) { 2173 case BPF_JMP: 2174 case BPF_JMP32: 2175 case BPF_ST: 2176 return -1; 2177 case BPF_STX: 2178 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2179 (insn->imm & BPF_FETCH)) { 2180 if (insn->imm == BPF_CMPXCHG) 2181 return BPF_REG_0; 2182 else 2183 return insn->src_reg; 2184 } else { 2185 return -1; 2186 } 2187 default: 2188 return insn->dst_reg; 2189 } 2190 } 2191 2192 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2193 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2194 { 2195 int dst_reg = insn_def_regno(insn); 2196 2197 if (dst_reg == -1) 2198 return false; 2199 2200 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2201 } 2202 2203 static void mark_insn_zext(struct bpf_verifier_env *env, 2204 struct bpf_reg_state *reg) 2205 { 2206 s32 def_idx = reg->subreg_def; 2207 2208 if (def_idx == DEF_NOT_SUBREG) 2209 return; 2210 2211 env->insn_aux_data[def_idx - 1].zext_dst = true; 2212 /* The dst will be zero extended, so won't be sub-register anymore. */ 2213 reg->subreg_def = DEF_NOT_SUBREG; 2214 } 2215 2216 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2217 enum reg_arg_type t) 2218 { 2219 struct bpf_verifier_state *vstate = env->cur_state; 2220 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2221 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2222 struct bpf_reg_state *reg, *regs = state->regs; 2223 bool rw64; 2224 2225 if (regno >= MAX_BPF_REG) { 2226 verbose(env, "R%d is invalid\n", regno); 2227 return -EINVAL; 2228 } 2229 2230 reg = ®s[regno]; 2231 rw64 = is_reg64(env, insn, regno, reg, t); 2232 if (t == SRC_OP) { 2233 /* check whether register used as source operand can be read */ 2234 if (reg->type == NOT_INIT) { 2235 verbose(env, "R%d !read_ok\n", regno); 2236 return -EACCES; 2237 } 2238 /* We don't need to worry about FP liveness because it's read-only */ 2239 if (regno == BPF_REG_FP) 2240 return 0; 2241 2242 if (rw64) 2243 mark_insn_zext(env, reg); 2244 2245 return mark_reg_read(env, reg, reg->parent, 2246 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2247 } else { 2248 /* check whether register used as dest operand can be written to */ 2249 if (regno == BPF_REG_FP) { 2250 verbose(env, "frame pointer is read only\n"); 2251 return -EACCES; 2252 } 2253 reg->live |= REG_LIVE_WRITTEN; 2254 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2255 if (t == DST_OP) 2256 mark_reg_unknown(env, regs, regno); 2257 } 2258 return 0; 2259 } 2260 2261 /* for any branch, call, exit record the history of jmps in the given state */ 2262 static int push_jmp_history(struct bpf_verifier_env *env, 2263 struct bpf_verifier_state *cur) 2264 { 2265 u32 cnt = cur->jmp_history_cnt; 2266 struct bpf_idx_pair *p; 2267 2268 cnt++; 2269 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 2270 if (!p) 2271 return -ENOMEM; 2272 p[cnt - 1].idx = env->insn_idx; 2273 p[cnt - 1].prev_idx = env->prev_insn_idx; 2274 cur->jmp_history = p; 2275 cur->jmp_history_cnt = cnt; 2276 return 0; 2277 } 2278 2279 /* Backtrack one insn at a time. If idx is not at the top of recorded 2280 * history then previous instruction came from straight line execution. 2281 */ 2282 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2283 u32 *history) 2284 { 2285 u32 cnt = *history; 2286 2287 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2288 i = st->jmp_history[cnt - 1].prev_idx; 2289 (*history)--; 2290 } else { 2291 i--; 2292 } 2293 return i; 2294 } 2295 2296 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2297 { 2298 const struct btf_type *func; 2299 struct btf *desc_btf; 2300 2301 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2302 return NULL; 2303 2304 desc_btf = find_kfunc_desc_btf(data, insn->imm, insn->off, NULL); 2305 if (IS_ERR(desc_btf)) 2306 return "<error>"; 2307 2308 func = btf_type_by_id(desc_btf, insn->imm); 2309 return btf_name_by_offset(desc_btf, func->name_off); 2310 } 2311 2312 /* For given verifier state backtrack_insn() is called from the last insn to 2313 * the first insn. Its purpose is to compute a bitmask of registers and 2314 * stack slots that needs precision in the parent verifier state. 2315 */ 2316 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2317 u32 *reg_mask, u64 *stack_mask) 2318 { 2319 const struct bpf_insn_cbs cbs = { 2320 .cb_call = disasm_kfunc_name, 2321 .cb_print = verbose, 2322 .private_data = env, 2323 }; 2324 struct bpf_insn *insn = env->prog->insnsi + idx; 2325 u8 class = BPF_CLASS(insn->code); 2326 u8 opcode = BPF_OP(insn->code); 2327 u8 mode = BPF_MODE(insn->code); 2328 u32 dreg = 1u << insn->dst_reg; 2329 u32 sreg = 1u << insn->src_reg; 2330 u32 spi; 2331 2332 if (insn->code == 0) 2333 return 0; 2334 if (env->log.level & BPF_LOG_LEVEL) { 2335 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2336 verbose(env, "%d: ", idx); 2337 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2338 } 2339 2340 if (class == BPF_ALU || class == BPF_ALU64) { 2341 if (!(*reg_mask & dreg)) 2342 return 0; 2343 if (opcode == BPF_MOV) { 2344 if (BPF_SRC(insn->code) == BPF_X) { 2345 /* dreg = sreg 2346 * dreg needs precision after this insn 2347 * sreg needs precision before this insn 2348 */ 2349 *reg_mask &= ~dreg; 2350 *reg_mask |= sreg; 2351 } else { 2352 /* dreg = K 2353 * dreg needs precision after this insn. 2354 * Corresponding register is already marked 2355 * as precise=true in this verifier state. 2356 * No further markings in parent are necessary 2357 */ 2358 *reg_mask &= ~dreg; 2359 } 2360 } else { 2361 if (BPF_SRC(insn->code) == BPF_X) { 2362 /* dreg += sreg 2363 * both dreg and sreg need precision 2364 * before this insn 2365 */ 2366 *reg_mask |= sreg; 2367 } /* else dreg += K 2368 * dreg still needs precision before this insn 2369 */ 2370 } 2371 } else if (class == BPF_LDX) { 2372 if (!(*reg_mask & dreg)) 2373 return 0; 2374 *reg_mask &= ~dreg; 2375 2376 /* scalars can only be spilled into stack w/o losing precision. 2377 * Load from any other memory can be zero extended. 2378 * The desire to keep that precision is already indicated 2379 * by 'precise' mark in corresponding register of this state. 2380 * No further tracking necessary. 2381 */ 2382 if (insn->src_reg != BPF_REG_FP) 2383 return 0; 2384 if (BPF_SIZE(insn->code) != BPF_DW) 2385 return 0; 2386 2387 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2388 * that [fp - off] slot contains scalar that needs to be 2389 * tracked with precision 2390 */ 2391 spi = (-insn->off - 1) / BPF_REG_SIZE; 2392 if (spi >= 64) { 2393 verbose(env, "BUG spi %d\n", spi); 2394 WARN_ONCE(1, "verifier backtracking bug"); 2395 return -EFAULT; 2396 } 2397 *stack_mask |= 1ull << spi; 2398 } else if (class == BPF_STX || class == BPF_ST) { 2399 if (*reg_mask & dreg) 2400 /* stx & st shouldn't be using _scalar_ dst_reg 2401 * to access memory. It means backtracking 2402 * encountered a case of pointer subtraction. 2403 */ 2404 return -ENOTSUPP; 2405 /* scalars can only be spilled into stack */ 2406 if (insn->dst_reg != BPF_REG_FP) 2407 return 0; 2408 if (BPF_SIZE(insn->code) != BPF_DW) 2409 return 0; 2410 spi = (-insn->off - 1) / BPF_REG_SIZE; 2411 if (spi >= 64) { 2412 verbose(env, "BUG spi %d\n", spi); 2413 WARN_ONCE(1, "verifier backtracking bug"); 2414 return -EFAULT; 2415 } 2416 if (!(*stack_mask & (1ull << spi))) 2417 return 0; 2418 *stack_mask &= ~(1ull << spi); 2419 if (class == BPF_STX) 2420 *reg_mask |= sreg; 2421 } else if (class == BPF_JMP || class == BPF_JMP32) { 2422 if (opcode == BPF_CALL) { 2423 if (insn->src_reg == BPF_PSEUDO_CALL) 2424 return -ENOTSUPP; 2425 /* regular helper call sets R0 */ 2426 *reg_mask &= ~1; 2427 if (*reg_mask & 0x3f) { 2428 /* if backtracing was looking for registers R1-R5 2429 * they should have been found already. 2430 */ 2431 verbose(env, "BUG regs %x\n", *reg_mask); 2432 WARN_ONCE(1, "verifier backtracking bug"); 2433 return -EFAULT; 2434 } 2435 } else if (opcode == BPF_EXIT) { 2436 return -ENOTSUPP; 2437 } 2438 } else if (class == BPF_LD) { 2439 if (!(*reg_mask & dreg)) 2440 return 0; 2441 *reg_mask &= ~dreg; 2442 /* It's ld_imm64 or ld_abs or ld_ind. 2443 * For ld_imm64 no further tracking of precision 2444 * into parent is necessary 2445 */ 2446 if (mode == BPF_IND || mode == BPF_ABS) 2447 /* to be analyzed */ 2448 return -ENOTSUPP; 2449 } 2450 return 0; 2451 } 2452 2453 /* the scalar precision tracking algorithm: 2454 * . at the start all registers have precise=false. 2455 * . scalar ranges are tracked as normal through alu and jmp insns. 2456 * . once precise value of the scalar register is used in: 2457 * . ptr + scalar alu 2458 * . if (scalar cond K|scalar) 2459 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2460 * backtrack through the verifier states and mark all registers and 2461 * stack slots with spilled constants that these scalar regisers 2462 * should be precise. 2463 * . during state pruning two registers (or spilled stack slots) 2464 * are equivalent if both are not precise. 2465 * 2466 * Note the verifier cannot simply walk register parentage chain, 2467 * since many different registers and stack slots could have been 2468 * used to compute single precise scalar. 2469 * 2470 * The approach of starting with precise=true for all registers and then 2471 * backtrack to mark a register as not precise when the verifier detects 2472 * that program doesn't care about specific value (e.g., when helper 2473 * takes register as ARG_ANYTHING parameter) is not safe. 2474 * 2475 * It's ok to walk single parentage chain of the verifier states. 2476 * It's possible that this backtracking will go all the way till 1st insn. 2477 * All other branches will be explored for needing precision later. 2478 * 2479 * The backtracking needs to deal with cases like: 2480 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2481 * r9 -= r8 2482 * r5 = r9 2483 * if r5 > 0x79f goto pc+7 2484 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2485 * r5 += 1 2486 * ... 2487 * call bpf_perf_event_output#25 2488 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2489 * 2490 * and this case: 2491 * r6 = 1 2492 * call foo // uses callee's r6 inside to compute r0 2493 * r0 += r6 2494 * if r0 == 0 goto 2495 * 2496 * to track above reg_mask/stack_mask needs to be independent for each frame. 2497 * 2498 * Also if parent's curframe > frame where backtracking started, 2499 * the verifier need to mark registers in both frames, otherwise callees 2500 * may incorrectly prune callers. This is similar to 2501 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2502 * 2503 * For now backtracking falls back into conservative marking. 2504 */ 2505 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2506 struct bpf_verifier_state *st) 2507 { 2508 struct bpf_func_state *func; 2509 struct bpf_reg_state *reg; 2510 int i, j; 2511 2512 /* big hammer: mark all scalars precise in this path. 2513 * pop_stack may still get !precise scalars. 2514 */ 2515 for (; st; st = st->parent) 2516 for (i = 0; i <= st->curframe; i++) { 2517 func = st->frame[i]; 2518 for (j = 0; j < BPF_REG_FP; j++) { 2519 reg = &func->regs[j]; 2520 if (reg->type != SCALAR_VALUE) 2521 continue; 2522 reg->precise = true; 2523 } 2524 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2525 if (!is_spilled_reg(&func->stack[j])) 2526 continue; 2527 reg = &func->stack[j].spilled_ptr; 2528 if (reg->type != SCALAR_VALUE) 2529 continue; 2530 reg->precise = true; 2531 } 2532 } 2533 } 2534 2535 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2536 int spi) 2537 { 2538 struct bpf_verifier_state *st = env->cur_state; 2539 int first_idx = st->first_insn_idx; 2540 int last_idx = env->insn_idx; 2541 struct bpf_func_state *func; 2542 struct bpf_reg_state *reg; 2543 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2544 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2545 bool skip_first = true; 2546 bool new_marks = false; 2547 int i, err; 2548 2549 if (!env->bpf_capable) 2550 return 0; 2551 2552 func = st->frame[st->curframe]; 2553 if (regno >= 0) { 2554 reg = &func->regs[regno]; 2555 if (reg->type != SCALAR_VALUE) { 2556 WARN_ONCE(1, "backtracing misuse"); 2557 return -EFAULT; 2558 } 2559 if (!reg->precise) 2560 new_marks = true; 2561 else 2562 reg_mask = 0; 2563 reg->precise = true; 2564 } 2565 2566 while (spi >= 0) { 2567 if (!is_spilled_reg(&func->stack[spi])) { 2568 stack_mask = 0; 2569 break; 2570 } 2571 reg = &func->stack[spi].spilled_ptr; 2572 if (reg->type != SCALAR_VALUE) { 2573 stack_mask = 0; 2574 break; 2575 } 2576 if (!reg->precise) 2577 new_marks = true; 2578 else 2579 stack_mask = 0; 2580 reg->precise = true; 2581 break; 2582 } 2583 2584 if (!new_marks) 2585 return 0; 2586 if (!reg_mask && !stack_mask) 2587 return 0; 2588 for (;;) { 2589 DECLARE_BITMAP(mask, 64); 2590 u32 history = st->jmp_history_cnt; 2591 2592 if (env->log.level & BPF_LOG_LEVEL) 2593 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2594 for (i = last_idx;;) { 2595 if (skip_first) { 2596 err = 0; 2597 skip_first = false; 2598 } else { 2599 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2600 } 2601 if (err == -ENOTSUPP) { 2602 mark_all_scalars_precise(env, st); 2603 return 0; 2604 } else if (err) { 2605 return err; 2606 } 2607 if (!reg_mask && !stack_mask) 2608 /* Found assignment(s) into tracked register in this state. 2609 * Since this state is already marked, just return. 2610 * Nothing to be tracked further in the parent state. 2611 */ 2612 return 0; 2613 if (i == first_idx) 2614 break; 2615 i = get_prev_insn_idx(st, i, &history); 2616 if (i >= env->prog->len) { 2617 /* This can happen if backtracking reached insn 0 2618 * and there are still reg_mask or stack_mask 2619 * to backtrack. 2620 * It means the backtracking missed the spot where 2621 * particular register was initialized with a constant. 2622 */ 2623 verbose(env, "BUG backtracking idx %d\n", i); 2624 WARN_ONCE(1, "verifier backtracking bug"); 2625 return -EFAULT; 2626 } 2627 } 2628 st = st->parent; 2629 if (!st) 2630 break; 2631 2632 new_marks = false; 2633 func = st->frame[st->curframe]; 2634 bitmap_from_u64(mask, reg_mask); 2635 for_each_set_bit(i, mask, 32) { 2636 reg = &func->regs[i]; 2637 if (reg->type != SCALAR_VALUE) { 2638 reg_mask &= ~(1u << i); 2639 continue; 2640 } 2641 if (!reg->precise) 2642 new_marks = true; 2643 reg->precise = true; 2644 } 2645 2646 bitmap_from_u64(mask, stack_mask); 2647 for_each_set_bit(i, mask, 64) { 2648 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2649 /* the sequence of instructions: 2650 * 2: (bf) r3 = r10 2651 * 3: (7b) *(u64 *)(r3 -8) = r0 2652 * 4: (79) r4 = *(u64 *)(r10 -8) 2653 * doesn't contain jmps. It's backtracked 2654 * as a single block. 2655 * During backtracking insn 3 is not recognized as 2656 * stack access, so at the end of backtracking 2657 * stack slot fp-8 is still marked in stack_mask. 2658 * However the parent state may not have accessed 2659 * fp-8 and it's "unallocated" stack space. 2660 * In such case fallback to conservative. 2661 */ 2662 mark_all_scalars_precise(env, st); 2663 return 0; 2664 } 2665 2666 if (!is_spilled_reg(&func->stack[i])) { 2667 stack_mask &= ~(1ull << i); 2668 continue; 2669 } 2670 reg = &func->stack[i].spilled_ptr; 2671 if (reg->type != SCALAR_VALUE) { 2672 stack_mask &= ~(1ull << i); 2673 continue; 2674 } 2675 if (!reg->precise) 2676 new_marks = true; 2677 reg->precise = true; 2678 } 2679 if (env->log.level & BPF_LOG_LEVEL) { 2680 print_verifier_state(env, func); 2681 verbose(env, "parent %s regs=%x stack=%llx marks\n", 2682 new_marks ? "didn't have" : "already had", 2683 reg_mask, stack_mask); 2684 } 2685 2686 if (!reg_mask && !stack_mask) 2687 break; 2688 if (!new_marks) 2689 break; 2690 2691 last_idx = st->last_insn_idx; 2692 first_idx = st->first_insn_idx; 2693 } 2694 return 0; 2695 } 2696 2697 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2698 { 2699 return __mark_chain_precision(env, regno, -1); 2700 } 2701 2702 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2703 { 2704 return __mark_chain_precision(env, -1, spi); 2705 } 2706 2707 static bool is_spillable_regtype(enum bpf_reg_type type) 2708 { 2709 switch (type) { 2710 case PTR_TO_MAP_VALUE: 2711 case PTR_TO_MAP_VALUE_OR_NULL: 2712 case PTR_TO_STACK: 2713 case PTR_TO_CTX: 2714 case PTR_TO_PACKET: 2715 case PTR_TO_PACKET_META: 2716 case PTR_TO_PACKET_END: 2717 case PTR_TO_FLOW_KEYS: 2718 case CONST_PTR_TO_MAP: 2719 case PTR_TO_SOCKET: 2720 case PTR_TO_SOCKET_OR_NULL: 2721 case PTR_TO_SOCK_COMMON: 2722 case PTR_TO_SOCK_COMMON_OR_NULL: 2723 case PTR_TO_TCP_SOCK: 2724 case PTR_TO_TCP_SOCK_OR_NULL: 2725 case PTR_TO_XDP_SOCK: 2726 case PTR_TO_BTF_ID: 2727 case PTR_TO_BTF_ID_OR_NULL: 2728 case PTR_TO_RDONLY_BUF: 2729 case PTR_TO_RDONLY_BUF_OR_NULL: 2730 case PTR_TO_RDWR_BUF: 2731 case PTR_TO_RDWR_BUF_OR_NULL: 2732 case PTR_TO_PERCPU_BTF_ID: 2733 case PTR_TO_MEM: 2734 case PTR_TO_MEM_OR_NULL: 2735 case PTR_TO_FUNC: 2736 case PTR_TO_MAP_KEY: 2737 return true; 2738 default: 2739 return false; 2740 } 2741 } 2742 2743 /* Does this register contain a constant zero? */ 2744 static bool register_is_null(struct bpf_reg_state *reg) 2745 { 2746 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2747 } 2748 2749 static bool register_is_const(struct bpf_reg_state *reg) 2750 { 2751 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2752 } 2753 2754 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2755 { 2756 return tnum_is_unknown(reg->var_off) && 2757 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2758 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2759 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2760 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2761 } 2762 2763 static bool register_is_bounded(struct bpf_reg_state *reg) 2764 { 2765 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2766 } 2767 2768 static bool __is_pointer_value(bool allow_ptr_leaks, 2769 const struct bpf_reg_state *reg) 2770 { 2771 if (allow_ptr_leaks) 2772 return false; 2773 2774 return reg->type != SCALAR_VALUE; 2775 } 2776 2777 static void save_register_state(struct bpf_func_state *state, 2778 int spi, struct bpf_reg_state *reg, 2779 int size) 2780 { 2781 int i; 2782 2783 state->stack[spi].spilled_ptr = *reg; 2784 if (size == BPF_REG_SIZE) 2785 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2786 2787 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 2788 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 2789 2790 /* size < 8 bytes spill */ 2791 for (; i; i--) 2792 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 2793 } 2794 2795 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 2796 * stack boundary and alignment are checked in check_mem_access() 2797 */ 2798 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 2799 /* stack frame we're writing to */ 2800 struct bpf_func_state *state, 2801 int off, int size, int value_regno, 2802 int insn_idx) 2803 { 2804 struct bpf_func_state *cur; /* state of the current function */ 2805 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2806 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2807 struct bpf_reg_state *reg = NULL; 2808 2809 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 2810 if (err) 2811 return err; 2812 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2813 * so it's aligned access and [off, off + size) are within stack limits 2814 */ 2815 if (!env->allow_ptr_leaks && 2816 state->stack[spi].slot_type[0] == STACK_SPILL && 2817 size != BPF_REG_SIZE) { 2818 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2819 return -EACCES; 2820 } 2821 2822 cur = env->cur_state->frame[env->cur_state->curframe]; 2823 if (value_regno >= 0) 2824 reg = &cur->regs[value_regno]; 2825 if (!env->bypass_spec_v4) { 2826 bool sanitize = reg && is_spillable_regtype(reg->type); 2827 2828 for (i = 0; i < size; i++) { 2829 if (state->stack[spi].slot_type[i] == STACK_INVALID) { 2830 sanitize = true; 2831 break; 2832 } 2833 } 2834 2835 if (sanitize) 2836 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 2837 } 2838 2839 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 2840 !register_is_null(reg) && env->bpf_capable) { 2841 if (dst_reg != BPF_REG_FP) { 2842 /* The backtracking logic can only recognize explicit 2843 * stack slot address like [fp - 8]. Other spill of 2844 * scalar via different register has to be conservative. 2845 * Backtrack from here and mark all registers as precise 2846 * that contributed into 'reg' being a constant. 2847 */ 2848 err = mark_chain_precision(env, value_regno); 2849 if (err) 2850 return err; 2851 } 2852 save_register_state(state, spi, reg, size); 2853 } else if (reg && is_spillable_regtype(reg->type)) { 2854 /* register containing pointer is being spilled into stack */ 2855 if (size != BPF_REG_SIZE) { 2856 verbose_linfo(env, insn_idx, "; "); 2857 verbose(env, "invalid size of register spill\n"); 2858 return -EACCES; 2859 } 2860 if (state != cur && reg->type == PTR_TO_STACK) { 2861 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2862 return -EINVAL; 2863 } 2864 save_register_state(state, spi, reg, size); 2865 } else { 2866 u8 type = STACK_MISC; 2867 2868 /* regular write of data into stack destroys any spilled ptr */ 2869 state->stack[spi].spilled_ptr.type = NOT_INIT; 2870 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2871 if (is_spilled_reg(&state->stack[spi])) 2872 for (i = 0; i < BPF_REG_SIZE; i++) 2873 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 2874 2875 /* only mark the slot as written if all 8 bytes were written 2876 * otherwise read propagation may incorrectly stop too soon 2877 * when stack slots are partially written. 2878 * This heuristic means that read propagation will be 2879 * conservative, since it will add reg_live_read marks 2880 * to stack slots all the way to first state when programs 2881 * writes+reads less than 8 bytes 2882 */ 2883 if (size == BPF_REG_SIZE) 2884 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2885 2886 /* when we zero initialize stack slots mark them as such */ 2887 if (reg && register_is_null(reg)) { 2888 /* backtracking doesn't work for STACK_ZERO yet. */ 2889 err = mark_chain_precision(env, value_regno); 2890 if (err) 2891 return err; 2892 type = STACK_ZERO; 2893 } 2894 2895 /* Mark slots affected by this stack write. */ 2896 for (i = 0; i < size; i++) 2897 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2898 type; 2899 } 2900 return 0; 2901 } 2902 2903 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 2904 * known to contain a variable offset. 2905 * This function checks whether the write is permitted and conservatively 2906 * tracks the effects of the write, considering that each stack slot in the 2907 * dynamic range is potentially written to. 2908 * 2909 * 'off' includes 'regno->off'. 2910 * 'value_regno' can be -1, meaning that an unknown value is being written to 2911 * the stack. 2912 * 2913 * Spilled pointers in range are not marked as written because we don't know 2914 * what's going to be actually written. This means that read propagation for 2915 * future reads cannot be terminated by this write. 2916 * 2917 * For privileged programs, uninitialized stack slots are considered 2918 * initialized by this write (even though we don't know exactly what offsets 2919 * are going to be written to). The idea is that we don't want the verifier to 2920 * reject future reads that access slots written to through variable offsets. 2921 */ 2922 static int check_stack_write_var_off(struct bpf_verifier_env *env, 2923 /* func where register points to */ 2924 struct bpf_func_state *state, 2925 int ptr_regno, int off, int size, 2926 int value_regno, int insn_idx) 2927 { 2928 struct bpf_func_state *cur; /* state of the current function */ 2929 int min_off, max_off; 2930 int i, err; 2931 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 2932 bool writing_zero = false; 2933 /* set if the fact that we're writing a zero is used to let any 2934 * stack slots remain STACK_ZERO 2935 */ 2936 bool zero_used = false; 2937 2938 cur = env->cur_state->frame[env->cur_state->curframe]; 2939 ptr_reg = &cur->regs[ptr_regno]; 2940 min_off = ptr_reg->smin_value + off; 2941 max_off = ptr_reg->smax_value + off + size; 2942 if (value_regno >= 0) 2943 value_reg = &cur->regs[value_regno]; 2944 if (value_reg && register_is_null(value_reg)) 2945 writing_zero = true; 2946 2947 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 2948 if (err) 2949 return err; 2950 2951 2952 /* Variable offset writes destroy any spilled pointers in range. */ 2953 for (i = min_off; i < max_off; i++) { 2954 u8 new_type, *stype; 2955 int slot, spi; 2956 2957 slot = -i - 1; 2958 spi = slot / BPF_REG_SIZE; 2959 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2960 2961 if (!env->allow_ptr_leaks 2962 && *stype != NOT_INIT 2963 && *stype != SCALAR_VALUE) { 2964 /* Reject the write if there's are spilled pointers in 2965 * range. If we didn't reject here, the ptr status 2966 * would be erased below (even though not all slots are 2967 * actually overwritten), possibly opening the door to 2968 * leaks. 2969 */ 2970 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 2971 insn_idx, i); 2972 return -EINVAL; 2973 } 2974 2975 /* Erase all spilled pointers. */ 2976 state->stack[spi].spilled_ptr.type = NOT_INIT; 2977 2978 /* Update the slot type. */ 2979 new_type = STACK_MISC; 2980 if (writing_zero && *stype == STACK_ZERO) { 2981 new_type = STACK_ZERO; 2982 zero_used = true; 2983 } 2984 /* If the slot is STACK_INVALID, we check whether it's OK to 2985 * pretend that it will be initialized by this write. The slot 2986 * might not actually be written to, and so if we mark it as 2987 * initialized future reads might leak uninitialized memory. 2988 * For privileged programs, we will accept such reads to slots 2989 * that may or may not be written because, if we're reject 2990 * them, the error would be too confusing. 2991 */ 2992 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 2993 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 2994 insn_idx, i); 2995 return -EINVAL; 2996 } 2997 *stype = new_type; 2998 } 2999 if (zero_used) { 3000 /* backtracking doesn't work for STACK_ZERO yet. */ 3001 err = mark_chain_precision(env, value_regno); 3002 if (err) 3003 return err; 3004 } 3005 return 0; 3006 } 3007 3008 /* When register 'dst_regno' is assigned some values from stack[min_off, 3009 * max_off), we set the register's type according to the types of the 3010 * respective stack slots. If all the stack values are known to be zeros, then 3011 * so is the destination reg. Otherwise, the register is considered to be 3012 * SCALAR. This function does not deal with register filling; the caller must 3013 * ensure that all spilled registers in the stack range have been marked as 3014 * read. 3015 */ 3016 static void mark_reg_stack_read(struct bpf_verifier_env *env, 3017 /* func where src register points to */ 3018 struct bpf_func_state *ptr_state, 3019 int min_off, int max_off, int dst_regno) 3020 { 3021 struct bpf_verifier_state *vstate = env->cur_state; 3022 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3023 int i, slot, spi; 3024 u8 *stype; 3025 int zeros = 0; 3026 3027 for (i = min_off; i < max_off; i++) { 3028 slot = -i - 1; 3029 spi = slot / BPF_REG_SIZE; 3030 stype = ptr_state->stack[spi].slot_type; 3031 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 3032 break; 3033 zeros++; 3034 } 3035 if (zeros == max_off - min_off) { 3036 /* any access_size read into register is zero extended, 3037 * so the whole register == const_zero 3038 */ 3039 __mark_reg_const_zero(&state->regs[dst_regno]); 3040 /* backtracking doesn't support STACK_ZERO yet, 3041 * so mark it precise here, so that later 3042 * backtracking can stop here. 3043 * Backtracking may not need this if this register 3044 * doesn't participate in pointer adjustment. 3045 * Forward propagation of precise flag is not 3046 * necessary either. This mark is only to stop 3047 * backtracking. Any register that contributed 3048 * to const 0 was marked precise before spill. 3049 */ 3050 state->regs[dst_regno].precise = true; 3051 } else { 3052 /* have read misc data from the stack */ 3053 mark_reg_unknown(env, state->regs, dst_regno); 3054 } 3055 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3056 } 3057 3058 /* Read the stack at 'off' and put the results into the register indicated by 3059 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 3060 * spilled reg. 3061 * 3062 * 'dst_regno' can be -1, meaning that the read value is not going to a 3063 * register. 3064 * 3065 * The access is assumed to be within the current stack bounds. 3066 */ 3067 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 3068 /* func where src register points to */ 3069 struct bpf_func_state *reg_state, 3070 int off, int size, int dst_regno) 3071 { 3072 struct bpf_verifier_state *vstate = env->cur_state; 3073 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3074 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 3075 struct bpf_reg_state *reg; 3076 u8 *stype, type; 3077 3078 stype = reg_state->stack[spi].slot_type; 3079 reg = ®_state->stack[spi].spilled_ptr; 3080 3081 if (is_spilled_reg(®_state->stack[spi])) { 3082 u8 spill_size = 1; 3083 3084 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 3085 spill_size++; 3086 3087 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 3088 if (reg->type != SCALAR_VALUE) { 3089 verbose_linfo(env, env->insn_idx, "; "); 3090 verbose(env, "invalid size of register fill\n"); 3091 return -EACCES; 3092 } 3093 3094 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3095 if (dst_regno < 0) 3096 return 0; 3097 3098 if (!(off % BPF_REG_SIZE) && size == spill_size) { 3099 /* The earlier check_reg_arg() has decided the 3100 * subreg_def for this insn. Save it first. 3101 */ 3102 s32 subreg_def = state->regs[dst_regno].subreg_def; 3103 3104 state->regs[dst_regno] = *reg; 3105 state->regs[dst_regno].subreg_def = subreg_def; 3106 } else { 3107 for (i = 0; i < size; i++) { 3108 type = stype[(slot - i) % BPF_REG_SIZE]; 3109 if (type == STACK_SPILL) 3110 continue; 3111 if (type == STACK_MISC) 3112 continue; 3113 verbose(env, "invalid read from stack off %d+%d size %d\n", 3114 off, i, size); 3115 return -EACCES; 3116 } 3117 mark_reg_unknown(env, state->regs, dst_regno); 3118 } 3119 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3120 return 0; 3121 } 3122 3123 if (dst_regno >= 0) { 3124 /* restore register state from stack */ 3125 state->regs[dst_regno] = *reg; 3126 /* mark reg as written since spilled pointer state likely 3127 * has its liveness marks cleared by is_state_visited() 3128 * which resets stack/reg liveness for state transitions 3129 */ 3130 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3131 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 3132 /* If dst_regno==-1, the caller is asking us whether 3133 * it is acceptable to use this value as a SCALAR_VALUE 3134 * (e.g. for XADD). 3135 * We must not allow unprivileged callers to do that 3136 * with spilled pointers. 3137 */ 3138 verbose(env, "leaking pointer from stack off %d\n", 3139 off); 3140 return -EACCES; 3141 } 3142 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3143 } else { 3144 for (i = 0; i < size; i++) { 3145 type = stype[(slot - i) % BPF_REG_SIZE]; 3146 if (type == STACK_MISC) 3147 continue; 3148 if (type == STACK_ZERO) 3149 continue; 3150 verbose(env, "invalid read from stack off %d+%d size %d\n", 3151 off, i, size); 3152 return -EACCES; 3153 } 3154 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3155 if (dst_regno >= 0) 3156 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 3157 } 3158 return 0; 3159 } 3160 3161 enum stack_access_src { 3162 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 3163 ACCESS_HELPER = 2, /* the access is performed by a helper */ 3164 }; 3165 3166 static int check_stack_range_initialized(struct bpf_verifier_env *env, 3167 int regno, int off, int access_size, 3168 bool zero_size_allowed, 3169 enum stack_access_src type, 3170 struct bpf_call_arg_meta *meta); 3171 3172 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 3173 { 3174 return cur_regs(env) + regno; 3175 } 3176 3177 /* Read the stack at 'ptr_regno + off' and put the result into the register 3178 * 'dst_regno'. 3179 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 3180 * but not its variable offset. 3181 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 3182 * 3183 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 3184 * filling registers (i.e. reads of spilled register cannot be detected when 3185 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 3186 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 3187 * offset; for a fixed offset check_stack_read_fixed_off should be used 3188 * instead. 3189 */ 3190 static int check_stack_read_var_off(struct bpf_verifier_env *env, 3191 int ptr_regno, int off, int size, int dst_regno) 3192 { 3193 /* The state of the source register. */ 3194 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3195 struct bpf_func_state *ptr_state = func(env, reg); 3196 int err; 3197 int min_off, max_off; 3198 3199 /* Note that we pass a NULL meta, so raw access will not be permitted. 3200 */ 3201 err = check_stack_range_initialized(env, ptr_regno, off, size, 3202 false, ACCESS_DIRECT, NULL); 3203 if (err) 3204 return err; 3205 3206 min_off = reg->smin_value + off; 3207 max_off = reg->smax_value + off; 3208 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3209 return 0; 3210 } 3211 3212 /* check_stack_read dispatches to check_stack_read_fixed_off or 3213 * check_stack_read_var_off. 3214 * 3215 * The caller must ensure that the offset falls within the allocated stack 3216 * bounds. 3217 * 3218 * 'dst_regno' is a register which will receive the value from the stack. It 3219 * can be -1, meaning that the read value is not going to a register. 3220 */ 3221 static int check_stack_read(struct bpf_verifier_env *env, 3222 int ptr_regno, int off, int size, 3223 int dst_regno) 3224 { 3225 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3226 struct bpf_func_state *state = func(env, reg); 3227 int err; 3228 /* Some accesses are only permitted with a static offset. */ 3229 bool var_off = !tnum_is_const(reg->var_off); 3230 3231 /* The offset is required to be static when reads don't go to a 3232 * register, in order to not leak pointers (see 3233 * check_stack_read_fixed_off). 3234 */ 3235 if (dst_regno < 0 && var_off) { 3236 char tn_buf[48]; 3237 3238 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3239 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3240 tn_buf, off, size); 3241 return -EACCES; 3242 } 3243 /* Variable offset is prohibited for unprivileged mode for simplicity 3244 * since it requires corresponding support in Spectre masking for stack 3245 * ALU. See also retrieve_ptr_limit(). 3246 */ 3247 if (!env->bypass_spec_v1 && var_off) { 3248 char tn_buf[48]; 3249 3250 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3251 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3252 ptr_regno, tn_buf); 3253 return -EACCES; 3254 } 3255 3256 if (!var_off) { 3257 off += reg->var_off.value; 3258 err = check_stack_read_fixed_off(env, state, off, size, 3259 dst_regno); 3260 } else { 3261 /* Variable offset stack reads need more conservative handling 3262 * than fixed offset ones. Note that dst_regno >= 0 on this 3263 * branch. 3264 */ 3265 err = check_stack_read_var_off(env, ptr_regno, off, size, 3266 dst_regno); 3267 } 3268 return err; 3269 } 3270 3271 3272 /* check_stack_write dispatches to check_stack_write_fixed_off or 3273 * check_stack_write_var_off. 3274 * 3275 * 'ptr_regno' is the register used as a pointer into the stack. 3276 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3277 * 'value_regno' is the register whose value we're writing to the stack. It can 3278 * be -1, meaning that we're not writing from a register. 3279 * 3280 * The caller must ensure that the offset falls within the maximum stack size. 3281 */ 3282 static int check_stack_write(struct bpf_verifier_env *env, 3283 int ptr_regno, int off, int size, 3284 int value_regno, int insn_idx) 3285 { 3286 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3287 struct bpf_func_state *state = func(env, reg); 3288 int err; 3289 3290 if (tnum_is_const(reg->var_off)) { 3291 off += reg->var_off.value; 3292 err = check_stack_write_fixed_off(env, state, off, size, 3293 value_regno, insn_idx); 3294 } else { 3295 /* Variable offset stack reads need more conservative handling 3296 * than fixed offset ones. 3297 */ 3298 err = check_stack_write_var_off(env, state, 3299 ptr_regno, off, size, 3300 value_regno, insn_idx); 3301 } 3302 return err; 3303 } 3304 3305 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3306 int off, int size, enum bpf_access_type type) 3307 { 3308 struct bpf_reg_state *regs = cur_regs(env); 3309 struct bpf_map *map = regs[regno].map_ptr; 3310 u32 cap = bpf_map_flags_to_cap(map); 3311 3312 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3313 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3314 map->value_size, off, size); 3315 return -EACCES; 3316 } 3317 3318 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3319 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3320 map->value_size, off, size); 3321 return -EACCES; 3322 } 3323 3324 return 0; 3325 } 3326 3327 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3328 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3329 int off, int size, u32 mem_size, 3330 bool zero_size_allowed) 3331 { 3332 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3333 struct bpf_reg_state *reg; 3334 3335 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3336 return 0; 3337 3338 reg = &cur_regs(env)[regno]; 3339 switch (reg->type) { 3340 case PTR_TO_MAP_KEY: 3341 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3342 mem_size, off, size); 3343 break; 3344 case PTR_TO_MAP_VALUE: 3345 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3346 mem_size, off, size); 3347 break; 3348 case PTR_TO_PACKET: 3349 case PTR_TO_PACKET_META: 3350 case PTR_TO_PACKET_END: 3351 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3352 off, size, regno, reg->id, off, mem_size); 3353 break; 3354 case PTR_TO_MEM: 3355 default: 3356 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3357 mem_size, off, size); 3358 } 3359 3360 return -EACCES; 3361 } 3362 3363 /* check read/write into a memory region with possible variable offset */ 3364 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3365 int off, int size, u32 mem_size, 3366 bool zero_size_allowed) 3367 { 3368 struct bpf_verifier_state *vstate = env->cur_state; 3369 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3370 struct bpf_reg_state *reg = &state->regs[regno]; 3371 int err; 3372 3373 /* We may have adjusted the register pointing to memory region, so we 3374 * need to try adding each of min_value and max_value to off 3375 * to make sure our theoretical access will be safe. 3376 */ 3377 if (env->log.level & BPF_LOG_LEVEL) 3378 print_verifier_state(env, state); 3379 3380 /* The minimum value is only important with signed 3381 * comparisons where we can't assume the floor of a 3382 * value is 0. If we are using signed variables for our 3383 * index'es we need to make sure that whatever we use 3384 * will have a set floor within our range. 3385 */ 3386 if (reg->smin_value < 0 && 3387 (reg->smin_value == S64_MIN || 3388 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3389 reg->smin_value + off < 0)) { 3390 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3391 regno); 3392 return -EACCES; 3393 } 3394 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3395 mem_size, zero_size_allowed); 3396 if (err) { 3397 verbose(env, "R%d min value is outside of the allowed memory range\n", 3398 regno); 3399 return err; 3400 } 3401 3402 /* If we haven't set a max value then we need to bail since we can't be 3403 * sure we won't do bad things. 3404 * If reg->umax_value + off could overflow, treat that as unbounded too. 3405 */ 3406 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3407 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3408 regno); 3409 return -EACCES; 3410 } 3411 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3412 mem_size, zero_size_allowed); 3413 if (err) { 3414 verbose(env, "R%d max value is outside of the allowed memory range\n", 3415 regno); 3416 return err; 3417 } 3418 3419 return 0; 3420 } 3421 3422 /* check read/write into a map element with possible variable offset */ 3423 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 3424 int off, int size, bool zero_size_allowed) 3425 { 3426 struct bpf_verifier_state *vstate = env->cur_state; 3427 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3428 struct bpf_reg_state *reg = &state->regs[regno]; 3429 struct bpf_map *map = reg->map_ptr; 3430 int err; 3431 3432 err = check_mem_region_access(env, regno, off, size, map->value_size, 3433 zero_size_allowed); 3434 if (err) 3435 return err; 3436 3437 if (map_value_has_spin_lock(map)) { 3438 u32 lock = map->spin_lock_off; 3439 3440 /* if any part of struct bpf_spin_lock can be touched by 3441 * load/store reject this program. 3442 * To check that [x1, x2) overlaps with [y1, y2) 3443 * it is sufficient to check x1 < y2 && y1 < x2. 3444 */ 3445 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 3446 lock < reg->umax_value + off + size) { 3447 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 3448 return -EACCES; 3449 } 3450 } 3451 if (map_value_has_timer(map)) { 3452 u32 t = map->timer_off; 3453 3454 if (reg->smin_value + off < t + sizeof(struct bpf_timer) && 3455 t < reg->umax_value + off + size) { 3456 verbose(env, "bpf_timer cannot be accessed directly by load/store\n"); 3457 return -EACCES; 3458 } 3459 } 3460 return err; 3461 } 3462 3463 #define MAX_PACKET_OFF 0xffff 3464 3465 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog) 3466 { 3467 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type; 3468 } 3469 3470 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 3471 const struct bpf_call_arg_meta *meta, 3472 enum bpf_access_type t) 3473 { 3474 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 3475 3476 switch (prog_type) { 3477 /* Program types only with direct read access go here! */ 3478 case BPF_PROG_TYPE_LWT_IN: 3479 case BPF_PROG_TYPE_LWT_OUT: 3480 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 3481 case BPF_PROG_TYPE_SK_REUSEPORT: 3482 case BPF_PROG_TYPE_FLOW_DISSECTOR: 3483 case BPF_PROG_TYPE_CGROUP_SKB: 3484 if (t == BPF_WRITE) 3485 return false; 3486 fallthrough; 3487 3488 /* Program types with direct read + write access go here! */ 3489 case BPF_PROG_TYPE_SCHED_CLS: 3490 case BPF_PROG_TYPE_SCHED_ACT: 3491 case BPF_PROG_TYPE_XDP: 3492 case BPF_PROG_TYPE_LWT_XMIT: 3493 case BPF_PROG_TYPE_SK_SKB: 3494 case BPF_PROG_TYPE_SK_MSG: 3495 if (meta) 3496 return meta->pkt_access; 3497 3498 env->seen_direct_write = true; 3499 return true; 3500 3501 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 3502 if (t == BPF_WRITE) 3503 env->seen_direct_write = true; 3504 3505 return true; 3506 3507 default: 3508 return false; 3509 } 3510 } 3511 3512 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 3513 int size, bool zero_size_allowed) 3514 { 3515 struct bpf_reg_state *regs = cur_regs(env); 3516 struct bpf_reg_state *reg = ®s[regno]; 3517 int err; 3518 3519 /* We may have added a variable offset to the packet pointer; but any 3520 * reg->range we have comes after that. We are only checking the fixed 3521 * offset. 3522 */ 3523 3524 /* We don't allow negative numbers, because we aren't tracking enough 3525 * detail to prove they're safe. 3526 */ 3527 if (reg->smin_value < 0) { 3528 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3529 regno); 3530 return -EACCES; 3531 } 3532 3533 err = reg->range < 0 ? -EINVAL : 3534 __check_mem_access(env, regno, off, size, reg->range, 3535 zero_size_allowed); 3536 if (err) { 3537 verbose(env, "R%d offset is outside of the packet\n", regno); 3538 return err; 3539 } 3540 3541 /* __check_mem_access has made sure "off + size - 1" is within u16. 3542 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 3543 * otherwise find_good_pkt_pointers would have refused to set range info 3544 * that __check_mem_access would have rejected this pkt access. 3545 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 3546 */ 3547 env->prog->aux->max_pkt_offset = 3548 max_t(u32, env->prog->aux->max_pkt_offset, 3549 off + reg->umax_value + size - 1); 3550 3551 return err; 3552 } 3553 3554 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 3555 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 3556 enum bpf_access_type t, enum bpf_reg_type *reg_type, 3557 struct btf **btf, u32 *btf_id) 3558 { 3559 struct bpf_insn_access_aux info = { 3560 .reg_type = *reg_type, 3561 .log = &env->log, 3562 }; 3563 3564 if (env->ops->is_valid_access && 3565 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 3566 /* A non zero info.ctx_field_size indicates that this field is a 3567 * candidate for later verifier transformation to load the whole 3568 * field and then apply a mask when accessed with a narrower 3569 * access than actual ctx access size. A zero info.ctx_field_size 3570 * will only allow for whole field access and rejects any other 3571 * type of narrower access. 3572 */ 3573 *reg_type = info.reg_type; 3574 3575 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) { 3576 *btf = info.btf; 3577 *btf_id = info.btf_id; 3578 } else { 3579 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 3580 } 3581 /* remember the offset of last byte accessed in ctx */ 3582 if (env->prog->aux->max_ctx_offset < off + size) 3583 env->prog->aux->max_ctx_offset = off + size; 3584 return 0; 3585 } 3586 3587 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 3588 return -EACCES; 3589 } 3590 3591 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 3592 int size) 3593 { 3594 if (size < 0 || off < 0 || 3595 (u64)off + size > sizeof(struct bpf_flow_keys)) { 3596 verbose(env, "invalid access to flow keys off=%d size=%d\n", 3597 off, size); 3598 return -EACCES; 3599 } 3600 return 0; 3601 } 3602 3603 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 3604 u32 regno, int off, int size, 3605 enum bpf_access_type t) 3606 { 3607 struct bpf_reg_state *regs = cur_regs(env); 3608 struct bpf_reg_state *reg = ®s[regno]; 3609 struct bpf_insn_access_aux info = {}; 3610 bool valid; 3611 3612 if (reg->smin_value < 0) { 3613 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3614 regno); 3615 return -EACCES; 3616 } 3617 3618 switch (reg->type) { 3619 case PTR_TO_SOCK_COMMON: 3620 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 3621 break; 3622 case PTR_TO_SOCKET: 3623 valid = bpf_sock_is_valid_access(off, size, t, &info); 3624 break; 3625 case PTR_TO_TCP_SOCK: 3626 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 3627 break; 3628 case PTR_TO_XDP_SOCK: 3629 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 3630 break; 3631 default: 3632 valid = false; 3633 } 3634 3635 3636 if (valid) { 3637 env->insn_aux_data[insn_idx].ctx_field_size = 3638 info.ctx_field_size; 3639 return 0; 3640 } 3641 3642 verbose(env, "R%d invalid %s access off=%d size=%d\n", 3643 regno, reg_type_str[reg->type], off, size); 3644 3645 return -EACCES; 3646 } 3647 3648 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 3649 { 3650 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 3651 } 3652 3653 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 3654 { 3655 const struct bpf_reg_state *reg = reg_state(env, regno); 3656 3657 return reg->type == PTR_TO_CTX; 3658 } 3659 3660 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 3661 { 3662 const struct bpf_reg_state *reg = reg_state(env, regno); 3663 3664 return type_is_sk_pointer(reg->type); 3665 } 3666 3667 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 3668 { 3669 const struct bpf_reg_state *reg = reg_state(env, regno); 3670 3671 return type_is_pkt_pointer(reg->type); 3672 } 3673 3674 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 3675 { 3676 const struct bpf_reg_state *reg = reg_state(env, regno); 3677 3678 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 3679 return reg->type == PTR_TO_FLOW_KEYS; 3680 } 3681 3682 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 3683 const struct bpf_reg_state *reg, 3684 int off, int size, bool strict) 3685 { 3686 struct tnum reg_off; 3687 int ip_align; 3688 3689 /* Byte size accesses are always allowed. */ 3690 if (!strict || size == 1) 3691 return 0; 3692 3693 /* For platforms that do not have a Kconfig enabling 3694 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 3695 * NET_IP_ALIGN is universally set to '2'. And on platforms 3696 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 3697 * to this code only in strict mode where we want to emulate 3698 * the NET_IP_ALIGN==2 checking. Therefore use an 3699 * unconditional IP align value of '2'. 3700 */ 3701 ip_align = 2; 3702 3703 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 3704 if (!tnum_is_aligned(reg_off, size)) { 3705 char tn_buf[48]; 3706 3707 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3708 verbose(env, 3709 "misaligned packet access off %d+%s+%d+%d size %d\n", 3710 ip_align, tn_buf, reg->off, off, size); 3711 return -EACCES; 3712 } 3713 3714 return 0; 3715 } 3716 3717 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 3718 const struct bpf_reg_state *reg, 3719 const char *pointer_desc, 3720 int off, int size, bool strict) 3721 { 3722 struct tnum reg_off; 3723 3724 /* Byte size accesses are always allowed. */ 3725 if (!strict || size == 1) 3726 return 0; 3727 3728 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 3729 if (!tnum_is_aligned(reg_off, size)) { 3730 char tn_buf[48]; 3731 3732 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3733 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 3734 pointer_desc, tn_buf, reg->off, off, size); 3735 return -EACCES; 3736 } 3737 3738 return 0; 3739 } 3740 3741 static int check_ptr_alignment(struct bpf_verifier_env *env, 3742 const struct bpf_reg_state *reg, int off, 3743 int size, bool strict_alignment_once) 3744 { 3745 bool strict = env->strict_alignment || strict_alignment_once; 3746 const char *pointer_desc = ""; 3747 3748 switch (reg->type) { 3749 case PTR_TO_PACKET: 3750 case PTR_TO_PACKET_META: 3751 /* Special case, because of NET_IP_ALIGN. Given metadata sits 3752 * right in front, treat it the very same way. 3753 */ 3754 return check_pkt_ptr_alignment(env, reg, off, size, strict); 3755 case PTR_TO_FLOW_KEYS: 3756 pointer_desc = "flow keys "; 3757 break; 3758 case PTR_TO_MAP_KEY: 3759 pointer_desc = "key "; 3760 break; 3761 case PTR_TO_MAP_VALUE: 3762 pointer_desc = "value "; 3763 break; 3764 case PTR_TO_CTX: 3765 pointer_desc = "context "; 3766 break; 3767 case PTR_TO_STACK: 3768 pointer_desc = "stack "; 3769 /* The stack spill tracking logic in check_stack_write_fixed_off() 3770 * and check_stack_read_fixed_off() relies on stack accesses being 3771 * aligned. 3772 */ 3773 strict = true; 3774 break; 3775 case PTR_TO_SOCKET: 3776 pointer_desc = "sock "; 3777 break; 3778 case PTR_TO_SOCK_COMMON: 3779 pointer_desc = "sock_common "; 3780 break; 3781 case PTR_TO_TCP_SOCK: 3782 pointer_desc = "tcp_sock "; 3783 break; 3784 case PTR_TO_XDP_SOCK: 3785 pointer_desc = "xdp_sock "; 3786 break; 3787 default: 3788 break; 3789 } 3790 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 3791 strict); 3792 } 3793 3794 static int update_stack_depth(struct bpf_verifier_env *env, 3795 const struct bpf_func_state *func, 3796 int off) 3797 { 3798 u16 stack = env->subprog_info[func->subprogno].stack_depth; 3799 3800 if (stack >= -off) 3801 return 0; 3802 3803 /* update known max for given subprogram */ 3804 env->subprog_info[func->subprogno].stack_depth = -off; 3805 return 0; 3806 } 3807 3808 /* starting from main bpf function walk all instructions of the function 3809 * and recursively walk all callees that given function can call. 3810 * Ignore jump and exit insns. 3811 * Since recursion is prevented by check_cfg() this algorithm 3812 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 3813 */ 3814 static int check_max_stack_depth(struct bpf_verifier_env *env) 3815 { 3816 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 3817 struct bpf_subprog_info *subprog = env->subprog_info; 3818 struct bpf_insn *insn = env->prog->insnsi; 3819 bool tail_call_reachable = false; 3820 int ret_insn[MAX_CALL_FRAMES]; 3821 int ret_prog[MAX_CALL_FRAMES]; 3822 int j; 3823 3824 process_func: 3825 /* protect against potential stack overflow that might happen when 3826 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 3827 * depth for such case down to 256 so that the worst case scenario 3828 * would result in 8k stack size (32 which is tailcall limit * 256 = 3829 * 8k). 3830 * 3831 * To get the idea what might happen, see an example: 3832 * func1 -> sub rsp, 128 3833 * subfunc1 -> sub rsp, 256 3834 * tailcall1 -> add rsp, 256 3835 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 3836 * subfunc2 -> sub rsp, 64 3837 * subfunc22 -> sub rsp, 128 3838 * tailcall2 -> add rsp, 128 3839 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 3840 * 3841 * tailcall will unwind the current stack frame but it will not get rid 3842 * of caller's stack as shown on the example above. 3843 */ 3844 if (idx && subprog[idx].has_tail_call && depth >= 256) { 3845 verbose(env, 3846 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 3847 depth); 3848 return -EACCES; 3849 } 3850 /* round up to 32-bytes, since this is granularity 3851 * of interpreter stack size 3852 */ 3853 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3854 if (depth > MAX_BPF_STACK) { 3855 verbose(env, "combined stack size of %d calls is %d. Too large\n", 3856 frame + 1, depth); 3857 return -EACCES; 3858 } 3859 continue_func: 3860 subprog_end = subprog[idx + 1].start; 3861 for (; i < subprog_end; i++) { 3862 int next_insn; 3863 3864 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 3865 continue; 3866 /* remember insn and function to return to */ 3867 ret_insn[frame] = i + 1; 3868 ret_prog[frame] = idx; 3869 3870 /* find the callee */ 3871 next_insn = i + insn[i].imm + 1; 3872 idx = find_subprog(env, next_insn); 3873 if (idx < 0) { 3874 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3875 next_insn); 3876 return -EFAULT; 3877 } 3878 if (subprog[idx].is_async_cb) { 3879 if (subprog[idx].has_tail_call) { 3880 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 3881 return -EFAULT; 3882 } 3883 /* async callbacks don't increase bpf prog stack size */ 3884 continue; 3885 } 3886 i = next_insn; 3887 3888 if (subprog[idx].has_tail_call) 3889 tail_call_reachable = true; 3890 3891 frame++; 3892 if (frame >= MAX_CALL_FRAMES) { 3893 verbose(env, "the call stack of %d frames is too deep !\n", 3894 frame); 3895 return -E2BIG; 3896 } 3897 goto process_func; 3898 } 3899 /* if tail call got detected across bpf2bpf calls then mark each of the 3900 * currently present subprog frames as tail call reachable subprogs; 3901 * this info will be utilized by JIT so that we will be preserving the 3902 * tail call counter throughout bpf2bpf calls combined with tailcalls 3903 */ 3904 if (tail_call_reachable) 3905 for (j = 0; j < frame; j++) 3906 subprog[ret_prog[j]].tail_call_reachable = true; 3907 if (subprog[0].tail_call_reachable) 3908 env->prog->aux->tail_call_reachable = true; 3909 3910 /* end of for() loop means the last insn of the 'subprog' 3911 * was reached. Doesn't matter whether it was JA or EXIT 3912 */ 3913 if (frame == 0) 3914 return 0; 3915 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3916 frame--; 3917 i = ret_insn[frame]; 3918 idx = ret_prog[frame]; 3919 goto continue_func; 3920 } 3921 3922 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 3923 static int get_callee_stack_depth(struct bpf_verifier_env *env, 3924 const struct bpf_insn *insn, int idx) 3925 { 3926 int start = idx + insn->imm + 1, subprog; 3927 3928 subprog = find_subprog(env, start); 3929 if (subprog < 0) { 3930 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3931 start); 3932 return -EFAULT; 3933 } 3934 return env->subprog_info[subprog].stack_depth; 3935 } 3936 #endif 3937 3938 int check_ctx_reg(struct bpf_verifier_env *env, 3939 const struct bpf_reg_state *reg, int regno) 3940 { 3941 /* Access to ctx or passing it to a helper is only allowed in 3942 * its original, unmodified form. 3943 */ 3944 3945 if (reg->off) { 3946 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 3947 regno, reg->off); 3948 return -EACCES; 3949 } 3950 3951 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3952 char tn_buf[48]; 3953 3954 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3955 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 3956 return -EACCES; 3957 } 3958 3959 return 0; 3960 } 3961 3962 static int __check_buffer_access(struct bpf_verifier_env *env, 3963 const char *buf_info, 3964 const struct bpf_reg_state *reg, 3965 int regno, int off, int size) 3966 { 3967 if (off < 0) { 3968 verbose(env, 3969 "R%d invalid %s buffer access: off=%d, size=%d\n", 3970 regno, buf_info, off, size); 3971 return -EACCES; 3972 } 3973 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3974 char tn_buf[48]; 3975 3976 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3977 verbose(env, 3978 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 3979 regno, off, tn_buf); 3980 return -EACCES; 3981 } 3982 3983 return 0; 3984 } 3985 3986 static int check_tp_buffer_access(struct bpf_verifier_env *env, 3987 const struct bpf_reg_state *reg, 3988 int regno, int off, int size) 3989 { 3990 int err; 3991 3992 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 3993 if (err) 3994 return err; 3995 3996 if (off + size > env->prog->aux->max_tp_access) 3997 env->prog->aux->max_tp_access = off + size; 3998 3999 return 0; 4000 } 4001 4002 static int check_buffer_access(struct bpf_verifier_env *env, 4003 const struct bpf_reg_state *reg, 4004 int regno, int off, int size, 4005 bool zero_size_allowed, 4006 const char *buf_info, 4007 u32 *max_access) 4008 { 4009 int err; 4010 4011 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 4012 if (err) 4013 return err; 4014 4015 if (off + size > *max_access) 4016 *max_access = off + size; 4017 4018 return 0; 4019 } 4020 4021 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 4022 static void zext_32_to_64(struct bpf_reg_state *reg) 4023 { 4024 reg->var_off = tnum_subreg(reg->var_off); 4025 __reg_assign_32_into_64(reg); 4026 } 4027 4028 /* truncate register to smaller size (in bytes) 4029 * must be called with size < BPF_REG_SIZE 4030 */ 4031 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 4032 { 4033 u64 mask; 4034 4035 /* clear high bits in bit representation */ 4036 reg->var_off = tnum_cast(reg->var_off, size); 4037 4038 /* fix arithmetic bounds */ 4039 mask = ((u64)1 << (size * 8)) - 1; 4040 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 4041 reg->umin_value &= mask; 4042 reg->umax_value &= mask; 4043 } else { 4044 reg->umin_value = 0; 4045 reg->umax_value = mask; 4046 } 4047 reg->smin_value = reg->umin_value; 4048 reg->smax_value = reg->umax_value; 4049 4050 /* If size is smaller than 32bit register the 32bit register 4051 * values are also truncated so we push 64-bit bounds into 4052 * 32-bit bounds. Above were truncated < 32-bits already. 4053 */ 4054 if (size >= 4) 4055 return; 4056 __reg_combine_64_into_32(reg); 4057 } 4058 4059 static bool bpf_map_is_rdonly(const struct bpf_map *map) 4060 { 4061 /* A map is considered read-only if the following condition are true: 4062 * 4063 * 1) BPF program side cannot change any of the map content. The 4064 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 4065 * and was set at map creation time. 4066 * 2) The map value(s) have been initialized from user space by a 4067 * loader and then "frozen", such that no new map update/delete 4068 * operations from syscall side are possible for the rest of 4069 * the map's lifetime from that point onwards. 4070 * 3) Any parallel/pending map update/delete operations from syscall 4071 * side have been completed. Only after that point, it's safe to 4072 * assume that map value(s) are immutable. 4073 */ 4074 return (map->map_flags & BPF_F_RDONLY_PROG) && 4075 READ_ONCE(map->frozen) && 4076 !bpf_map_write_active(map); 4077 } 4078 4079 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 4080 { 4081 void *ptr; 4082 u64 addr; 4083 int err; 4084 4085 err = map->ops->map_direct_value_addr(map, &addr, off); 4086 if (err) 4087 return err; 4088 ptr = (void *)(long)addr + off; 4089 4090 switch (size) { 4091 case sizeof(u8): 4092 *val = (u64)*(u8 *)ptr; 4093 break; 4094 case sizeof(u16): 4095 *val = (u64)*(u16 *)ptr; 4096 break; 4097 case sizeof(u32): 4098 *val = (u64)*(u32 *)ptr; 4099 break; 4100 case sizeof(u64): 4101 *val = *(u64 *)ptr; 4102 break; 4103 default: 4104 return -EINVAL; 4105 } 4106 return 0; 4107 } 4108 4109 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 4110 struct bpf_reg_state *regs, 4111 int regno, int off, int size, 4112 enum bpf_access_type atype, 4113 int value_regno) 4114 { 4115 struct bpf_reg_state *reg = regs + regno; 4116 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 4117 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 4118 u32 btf_id; 4119 int ret; 4120 4121 if (off < 0) { 4122 verbose(env, 4123 "R%d is ptr_%s invalid negative access: off=%d\n", 4124 regno, tname, off); 4125 return -EACCES; 4126 } 4127 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4128 char tn_buf[48]; 4129 4130 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4131 verbose(env, 4132 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 4133 regno, tname, off, tn_buf); 4134 return -EACCES; 4135 } 4136 4137 if (env->ops->btf_struct_access) { 4138 ret = env->ops->btf_struct_access(&env->log, reg->btf, t, 4139 off, size, atype, &btf_id); 4140 } else { 4141 if (atype != BPF_READ) { 4142 verbose(env, "only read is supported\n"); 4143 return -EACCES; 4144 } 4145 4146 ret = btf_struct_access(&env->log, reg->btf, t, off, size, 4147 atype, &btf_id); 4148 } 4149 4150 if (ret < 0) 4151 return ret; 4152 4153 if (atype == BPF_READ && value_regno >= 0) 4154 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id); 4155 4156 return 0; 4157 } 4158 4159 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 4160 struct bpf_reg_state *regs, 4161 int regno, int off, int size, 4162 enum bpf_access_type atype, 4163 int value_regno) 4164 { 4165 struct bpf_reg_state *reg = regs + regno; 4166 struct bpf_map *map = reg->map_ptr; 4167 const struct btf_type *t; 4168 const char *tname; 4169 u32 btf_id; 4170 int ret; 4171 4172 if (!btf_vmlinux) { 4173 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 4174 return -ENOTSUPP; 4175 } 4176 4177 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 4178 verbose(env, "map_ptr access not supported for map type %d\n", 4179 map->map_type); 4180 return -ENOTSUPP; 4181 } 4182 4183 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 4184 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 4185 4186 if (!env->allow_ptr_to_map_access) { 4187 verbose(env, 4188 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4189 tname); 4190 return -EPERM; 4191 } 4192 4193 if (off < 0) { 4194 verbose(env, "R%d is %s invalid negative access: off=%d\n", 4195 regno, tname, off); 4196 return -EACCES; 4197 } 4198 4199 if (atype != BPF_READ) { 4200 verbose(env, "only read from %s is supported\n", tname); 4201 return -EACCES; 4202 } 4203 4204 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id); 4205 if (ret < 0) 4206 return ret; 4207 4208 if (value_regno >= 0) 4209 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id); 4210 4211 return 0; 4212 } 4213 4214 /* Check that the stack access at the given offset is within bounds. The 4215 * maximum valid offset is -1. 4216 * 4217 * The minimum valid offset is -MAX_BPF_STACK for writes, and 4218 * -state->allocated_stack for reads. 4219 */ 4220 static int check_stack_slot_within_bounds(int off, 4221 struct bpf_func_state *state, 4222 enum bpf_access_type t) 4223 { 4224 int min_valid_off; 4225 4226 if (t == BPF_WRITE) 4227 min_valid_off = -MAX_BPF_STACK; 4228 else 4229 min_valid_off = -state->allocated_stack; 4230 4231 if (off < min_valid_off || off > -1) 4232 return -EACCES; 4233 return 0; 4234 } 4235 4236 /* Check that the stack access at 'regno + off' falls within the maximum stack 4237 * bounds. 4238 * 4239 * 'off' includes `regno->offset`, but not its dynamic part (if any). 4240 */ 4241 static int check_stack_access_within_bounds( 4242 struct bpf_verifier_env *env, 4243 int regno, int off, int access_size, 4244 enum stack_access_src src, enum bpf_access_type type) 4245 { 4246 struct bpf_reg_state *regs = cur_regs(env); 4247 struct bpf_reg_state *reg = regs + regno; 4248 struct bpf_func_state *state = func(env, reg); 4249 int min_off, max_off; 4250 int err; 4251 char *err_extra; 4252 4253 if (src == ACCESS_HELPER) 4254 /* We don't know if helpers are reading or writing (or both). */ 4255 err_extra = " indirect access to"; 4256 else if (type == BPF_READ) 4257 err_extra = " read from"; 4258 else 4259 err_extra = " write to"; 4260 4261 if (tnum_is_const(reg->var_off)) { 4262 min_off = reg->var_off.value + off; 4263 if (access_size > 0) 4264 max_off = min_off + access_size - 1; 4265 else 4266 max_off = min_off; 4267 } else { 4268 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4269 reg->smin_value <= -BPF_MAX_VAR_OFF) { 4270 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 4271 err_extra, regno); 4272 return -EACCES; 4273 } 4274 min_off = reg->smin_value + off; 4275 if (access_size > 0) 4276 max_off = reg->smax_value + off + access_size - 1; 4277 else 4278 max_off = min_off; 4279 } 4280 4281 err = check_stack_slot_within_bounds(min_off, state, type); 4282 if (!err) 4283 err = check_stack_slot_within_bounds(max_off, state, type); 4284 4285 if (err) { 4286 if (tnum_is_const(reg->var_off)) { 4287 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 4288 err_extra, regno, off, access_size); 4289 } else { 4290 char tn_buf[48]; 4291 4292 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4293 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 4294 err_extra, regno, tn_buf, access_size); 4295 } 4296 } 4297 return err; 4298 } 4299 4300 /* check whether memory at (regno + off) is accessible for t = (read | write) 4301 * if t==write, value_regno is a register which value is stored into memory 4302 * if t==read, value_regno is a register which will receive the value from memory 4303 * if t==write && value_regno==-1, some unknown value is stored into memory 4304 * if t==read && value_regno==-1, don't care what we read from memory 4305 */ 4306 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 4307 int off, int bpf_size, enum bpf_access_type t, 4308 int value_regno, bool strict_alignment_once) 4309 { 4310 struct bpf_reg_state *regs = cur_regs(env); 4311 struct bpf_reg_state *reg = regs + regno; 4312 struct bpf_func_state *state; 4313 int size, err = 0; 4314 4315 size = bpf_size_to_bytes(bpf_size); 4316 if (size < 0) 4317 return size; 4318 4319 /* alignment checks will add in reg->off themselves */ 4320 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 4321 if (err) 4322 return err; 4323 4324 /* for access checks, reg->off is just part of off */ 4325 off += reg->off; 4326 4327 if (reg->type == PTR_TO_MAP_KEY) { 4328 if (t == BPF_WRITE) { 4329 verbose(env, "write to change key R%d not allowed\n", regno); 4330 return -EACCES; 4331 } 4332 4333 err = check_mem_region_access(env, regno, off, size, 4334 reg->map_ptr->key_size, false); 4335 if (err) 4336 return err; 4337 if (value_regno >= 0) 4338 mark_reg_unknown(env, regs, value_regno); 4339 } else if (reg->type == PTR_TO_MAP_VALUE) { 4340 if (t == BPF_WRITE && value_regno >= 0 && 4341 is_pointer_value(env, value_regno)) { 4342 verbose(env, "R%d leaks addr into map\n", value_regno); 4343 return -EACCES; 4344 } 4345 err = check_map_access_type(env, regno, off, size, t); 4346 if (err) 4347 return err; 4348 err = check_map_access(env, regno, off, size, false); 4349 if (!err && t == BPF_READ && value_regno >= 0) { 4350 struct bpf_map *map = reg->map_ptr; 4351 4352 /* if map is read-only, track its contents as scalars */ 4353 if (tnum_is_const(reg->var_off) && 4354 bpf_map_is_rdonly(map) && 4355 map->ops->map_direct_value_addr) { 4356 int map_off = off + reg->var_off.value; 4357 u64 val = 0; 4358 4359 err = bpf_map_direct_read(map, map_off, size, 4360 &val); 4361 if (err) 4362 return err; 4363 4364 regs[value_regno].type = SCALAR_VALUE; 4365 __mark_reg_known(®s[value_regno], val); 4366 } else { 4367 mark_reg_unknown(env, regs, value_regno); 4368 } 4369 } 4370 } else if (reg->type == PTR_TO_MEM) { 4371 if (t == BPF_WRITE && value_regno >= 0 && 4372 is_pointer_value(env, value_regno)) { 4373 verbose(env, "R%d leaks addr into mem\n", value_regno); 4374 return -EACCES; 4375 } 4376 err = check_mem_region_access(env, regno, off, size, 4377 reg->mem_size, false); 4378 if (!err && t == BPF_READ && value_regno >= 0) 4379 mark_reg_unknown(env, regs, value_regno); 4380 } else if (reg->type == PTR_TO_CTX) { 4381 enum bpf_reg_type reg_type = SCALAR_VALUE; 4382 struct btf *btf = NULL; 4383 u32 btf_id = 0; 4384 4385 if (t == BPF_WRITE && value_regno >= 0 && 4386 is_pointer_value(env, value_regno)) { 4387 verbose(env, "R%d leaks addr into ctx\n", value_regno); 4388 return -EACCES; 4389 } 4390 4391 err = check_ctx_reg(env, reg, regno); 4392 if (err < 0) 4393 return err; 4394 4395 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, &btf_id); 4396 if (err) 4397 verbose_linfo(env, insn_idx, "; "); 4398 if (!err && t == BPF_READ && value_regno >= 0) { 4399 /* ctx access returns either a scalar, or a 4400 * PTR_TO_PACKET[_META,_END]. In the latter 4401 * case, we know the offset is zero. 4402 */ 4403 if (reg_type == SCALAR_VALUE) { 4404 mark_reg_unknown(env, regs, value_regno); 4405 } else { 4406 mark_reg_known_zero(env, regs, 4407 value_regno); 4408 if (reg_type_may_be_null(reg_type)) 4409 regs[value_regno].id = ++env->id_gen; 4410 /* A load of ctx field could have different 4411 * actual load size with the one encoded in the 4412 * insn. When the dst is PTR, it is for sure not 4413 * a sub-register. 4414 */ 4415 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 4416 if (reg_type == PTR_TO_BTF_ID || 4417 reg_type == PTR_TO_BTF_ID_OR_NULL) { 4418 regs[value_regno].btf = btf; 4419 regs[value_regno].btf_id = btf_id; 4420 } 4421 } 4422 regs[value_regno].type = reg_type; 4423 } 4424 4425 } else if (reg->type == PTR_TO_STACK) { 4426 /* Basic bounds checks. */ 4427 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 4428 if (err) 4429 return err; 4430 4431 state = func(env, reg); 4432 err = update_stack_depth(env, state, off); 4433 if (err) 4434 return err; 4435 4436 if (t == BPF_READ) 4437 err = check_stack_read(env, regno, off, size, 4438 value_regno); 4439 else 4440 err = check_stack_write(env, regno, off, size, 4441 value_regno, insn_idx); 4442 } else if (reg_is_pkt_pointer(reg)) { 4443 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 4444 verbose(env, "cannot write into packet\n"); 4445 return -EACCES; 4446 } 4447 if (t == BPF_WRITE && value_regno >= 0 && 4448 is_pointer_value(env, value_regno)) { 4449 verbose(env, "R%d leaks addr into packet\n", 4450 value_regno); 4451 return -EACCES; 4452 } 4453 err = check_packet_access(env, regno, off, size, false); 4454 if (!err && t == BPF_READ && value_regno >= 0) 4455 mark_reg_unknown(env, regs, value_regno); 4456 } else if (reg->type == PTR_TO_FLOW_KEYS) { 4457 if (t == BPF_WRITE && value_regno >= 0 && 4458 is_pointer_value(env, value_regno)) { 4459 verbose(env, "R%d leaks addr into flow keys\n", 4460 value_regno); 4461 return -EACCES; 4462 } 4463 4464 err = check_flow_keys_access(env, off, size); 4465 if (!err && t == BPF_READ && value_regno >= 0) 4466 mark_reg_unknown(env, regs, value_regno); 4467 } else if (type_is_sk_pointer(reg->type)) { 4468 if (t == BPF_WRITE) { 4469 verbose(env, "R%d cannot write into %s\n", 4470 regno, reg_type_str[reg->type]); 4471 return -EACCES; 4472 } 4473 err = check_sock_access(env, insn_idx, regno, off, size, t); 4474 if (!err && value_regno >= 0) 4475 mark_reg_unknown(env, regs, value_regno); 4476 } else if (reg->type == PTR_TO_TP_BUFFER) { 4477 err = check_tp_buffer_access(env, reg, regno, off, size); 4478 if (!err && t == BPF_READ && value_regno >= 0) 4479 mark_reg_unknown(env, regs, value_regno); 4480 } else if (reg->type == PTR_TO_BTF_ID) { 4481 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 4482 value_regno); 4483 } else if (reg->type == CONST_PTR_TO_MAP) { 4484 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 4485 value_regno); 4486 } else if (reg->type == PTR_TO_RDONLY_BUF) { 4487 if (t == BPF_WRITE) { 4488 verbose(env, "R%d cannot write into %s\n", 4489 regno, reg_type_str[reg->type]); 4490 return -EACCES; 4491 } 4492 err = check_buffer_access(env, reg, regno, off, size, false, 4493 "rdonly", 4494 &env->prog->aux->max_rdonly_access); 4495 if (!err && value_regno >= 0) 4496 mark_reg_unknown(env, regs, value_regno); 4497 } else if (reg->type == PTR_TO_RDWR_BUF) { 4498 err = check_buffer_access(env, reg, regno, off, size, false, 4499 "rdwr", 4500 &env->prog->aux->max_rdwr_access); 4501 if (!err && t == BPF_READ && value_regno >= 0) 4502 mark_reg_unknown(env, regs, value_regno); 4503 } else { 4504 verbose(env, "R%d invalid mem access '%s'\n", regno, 4505 reg_type_str[reg->type]); 4506 return -EACCES; 4507 } 4508 4509 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 4510 regs[value_regno].type == SCALAR_VALUE) { 4511 /* b/h/w load zero-extends, mark upper bits as known 0 */ 4512 coerce_reg_to_size(®s[value_regno], size); 4513 } 4514 return err; 4515 } 4516 4517 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 4518 { 4519 int load_reg; 4520 int err; 4521 4522 switch (insn->imm) { 4523 case BPF_ADD: 4524 case BPF_ADD | BPF_FETCH: 4525 case BPF_AND: 4526 case BPF_AND | BPF_FETCH: 4527 case BPF_OR: 4528 case BPF_OR | BPF_FETCH: 4529 case BPF_XOR: 4530 case BPF_XOR | BPF_FETCH: 4531 case BPF_XCHG: 4532 case BPF_CMPXCHG: 4533 break; 4534 default: 4535 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 4536 return -EINVAL; 4537 } 4538 4539 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 4540 verbose(env, "invalid atomic operand size\n"); 4541 return -EINVAL; 4542 } 4543 4544 /* check src1 operand */ 4545 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4546 if (err) 4547 return err; 4548 4549 /* check src2 operand */ 4550 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4551 if (err) 4552 return err; 4553 4554 if (insn->imm == BPF_CMPXCHG) { 4555 /* Check comparison of R0 with memory location */ 4556 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 4557 if (err) 4558 return err; 4559 } 4560 4561 if (is_pointer_value(env, insn->src_reg)) { 4562 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 4563 return -EACCES; 4564 } 4565 4566 if (is_ctx_reg(env, insn->dst_reg) || 4567 is_pkt_reg(env, insn->dst_reg) || 4568 is_flow_key_reg(env, insn->dst_reg) || 4569 is_sk_reg(env, insn->dst_reg)) { 4570 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 4571 insn->dst_reg, 4572 reg_type_str[reg_state(env, insn->dst_reg)->type]); 4573 return -EACCES; 4574 } 4575 4576 if (insn->imm & BPF_FETCH) { 4577 if (insn->imm == BPF_CMPXCHG) 4578 load_reg = BPF_REG_0; 4579 else 4580 load_reg = insn->src_reg; 4581 4582 /* check and record load of old value */ 4583 err = check_reg_arg(env, load_reg, DST_OP); 4584 if (err) 4585 return err; 4586 } else { 4587 /* This instruction accesses a memory location but doesn't 4588 * actually load it into a register. 4589 */ 4590 load_reg = -1; 4591 } 4592 4593 /* check whether we can read the memory */ 4594 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4595 BPF_SIZE(insn->code), BPF_READ, load_reg, true); 4596 if (err) 4597 return err; 4598 4599 /* check whether we can write into the same memory */ 4600 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4601 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 4602 if (err) 4603 return err; 4604 4605 return 0; 4606 } 4607 4608 /* When register 'regno' is used to read the stack (either directly or through 4609 * a helper function) make sure that it's within stack boundary and, depending 4610 * on the access type, that all elements of the stack are initialized. 4611 * 4612 * 'off' includes 'regno->off', but not its dynamic part (if any). 4613 * 4614 * All registers that have been spilled on the stack in the slots within the 4615 * read offsets are marked as read. 4616 */ 4617 static int check_stack_range_initialized( 4618 struct bpf_verifier_env *env, int regno, int off, 4619 int access_size, bool zero_size_allowed, 4620 enum stack_access_src type, struct bpf_call_arg_meta *meta) 4621 { 4622 struct bpf_reg_state *reg = reg_state(env, regno); 4623 struct bpf_func_state *state = func(env, reg); 4624 int err, min_off, max_off, i, j, slot, spi; 4625 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 4626 enum bpf_access_type bounds_check_type; 4627 /* Some accesses can write anything into the stack, others are 4628 * read-only. 4629 */ 4630 bool clobber = false; 4631 4632 if (access_size == 0 && !zero_size_allowed) { 4633 verbose(env, "invalid zero-sized read\n"); 4634 return -EACCES; 4635 } 4636 4637 if (type == ACCESS_HELPER) { 4638 /* The bounds checks for writes are more permissive than for 4639 * reads. However, if raw_mode is not set, we'll do extra 4640 * checks below. 4641 */ 4642 bounds_check_type = BPF_WRITE; 4643 clobber = true; 4644 } else { 4645 bounds_check_type = BPF_READ; 4646 } 4647 err = check_stack_access_within_bounds(env, regno, off, access_size, 4648 type, bounds_check_type); 4649 if (err) 4650 return err; 4651 4652 4653 if (tnum_is_const(reg->var_off)) { 4654 min_off = max_off = reg->var_off.value + off; 4655 } else { 4656 /* Variable offset is prohibited for unprivileged mode for 4657 * simplicity since it requires corresponding support in 4658 * Spectre masking for stack ALU. 4659 * See also retrieve_ptr_limit(). 4660 */ 4661 if (!env->bypass_spec_v1) { 4662 char tn_buf[48]; 4663 4664 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4665 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 4666 regno, err_extra, tn_buf); 4667 return -EACCES; 4668 } 4669 /* Only initialized buffer on stack is allowed to be accessed 4670 * with variable offset. With uninitialized buffer it's hard to 4671 * guarantee that whole memory is marked as initialized on 4672 * helper return since specific bounds are unknown what may 4673 * cause uninitialized stack leaking. 4674 */ 4675 if (meta && meta->raw_mode) 4676 meta = NULL; 4677 4678 min_off = reg->smin_value + off; 4679 max_off = reg->smax_value + off; 4680 } 4681 4682 if (meta && meta->raw_mode) { 4683 meta->access_size = access_size; 4684 meta->regno = regno; 4685 return 0; 4686 } 4687 4688 for (i = min_off; i < max_off + access_size; i++) { 4689 u8 *stype; 4690 4691 slot = -i - 1; 4692 spi = slot / BPF_REG_SIZE; 4693 if (state->allocated_stack <= slot) 4694 goto err; 4695 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4696 if (*stype == STACK_MISC) 4697 goto mark; 4698 if (*stype == STACK_ZERO) { 4699 if (clobber) { 4700 /* helper can write anything into the stack */ 4701 *stype = STACK_MISC; 4702 } 4703 goto mark; 4704 } 4705 4706 if (is_spilled_reg(&state->stack[spi]) && 4707 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) 4708 goto mark; 4709 4710 if (is_spilled_reg(&state->stack[spi]) && 4711 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 4712 env->allow_ptr_leaks)) { 4713 if (clobber) { 4714 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 4715 for (j = 0; j < BPF_REG_SIZE; j++) 4716 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 4717 } 4718 goto mark; 4719 } 4720 4721 err: 4722 if (tnum_is_const(reg->var_off)) { 4723 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 4724 err_extra, regno, min_off, i - min_off, access_size); 4725 } else { 4726 char tn_buf[48]; 4727 4728 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4729 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 4730 err_extra, regno, tn_buf, i - min_off, access_size); 4731 } 4732 return -EACCES; 4733 mark: 4734 /* reading any byte out of 8-byte 'spill_slot' will cause 4735 * the whole slot to be marked as 'read' 4736 */ 4737 mark_reg_read(env, &state->stack[spi].spilled_ptr, 4738 state->stack[spi].spilled_ptr.parent, 4739 REG_LIVE_READ64); 4740 } 4741 return update_stack_depth(env, state, min_off); 4742 } 4743 4744 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 4745 int access_size, bool zero_size_allowed, 4746 struct bpf_call_arg_meta *meta) 4747 { 4748 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4749 4750 switch (reg->type) { 4751 case PTR_TO_PACKET: 4752 case PTR_TO_PACKET_META: 4753 return check_packet_access(env, regno, reg->off, access_size, 4754 zero_size_allowed); 4755 case PTR_TO_MAP_KEY: 4756 return check_mem_region_access(env, regno, reg->off, access_size, 4757 reg->map_ptr->key_size, false); 4758 case PTR_TO_MAP_VALUE: 4759 if (check_map_access_type(env, regno, reg->off, access_size, 4760 meta && meta->raw_mode ? BPF_WRITE : 4761 BPF_READ)) 4762 return -EACCES; 4763 return check_map_access(env, regno, reg->off, access_size, 4764 zero_size_allowed); 4765 case PTR_TO_MEM: 4766 return check_mem_region_access(env, regno, reg->off, 4767 access_size, reg->mem_size, 4768 zero_size_allowed); 4769 case PTR_TO_RDONLY_BUF: 4770 if (meta && meta->raw_mode) 4771 return -EACCES; 4772 return check_buffer_access(env, reg, regno, reg->off, 4773 access_size, zero_size_allowed, 4774 "rdonly", 4775 &env->prog->aux->max_rdonly_access); 4776 case PTR_TO_RDWR_BUF: 4777 return check_buffer_access(env, reg, regno, reg->off, 4778 access_size, zero_size_allowed, 4779 "rdwr", 4780 &env->prog->aux->max_rdwr_access); 4781 case PTR_TO_STACK: 4782 return check_stack_range_initialized( 4783 env, 4784 regno, reg->off, access_size, 4785 zero_size_allowed, ACCESS_HELPER, meta); 4786 default: /* scalar_value or invalid ptr */ 4787 /* Allow zero-byte read from NULL, regardless of pointer type */ 4788 if (zero_size_allowed && access_size == 0 && 4789 register_is_null(reg)) 4790 return 0; 4791 4792 verbose(env, "R%d type=%s expected=%s\n", regno, 4793 reg_type_str[reg->type], 4794 reg_type_str[PTR_TO_STACK]); 4795 return -EACCES; 4796 } 4797 } 4798 4799 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 4800 u32 regno, u32 mem_size) 4801 { 4802 if (register_is_null(reg)) 4803 return 0; 4804 4805 if (reg_type_may_be_null(reg->type)) { 4806 /* Assuming that the register contains a value check if the memory 4807 * access is safe. Temporarily save and restore the register's state as 4808 * the conversion shouldn't be visible to a caller. 4809 */ 4810 const struct bpf_reg_state saved_reg = *reg; 4811 int rv; 4812 4813 mark_ptr_not_null_reg(reg); 4814 rv = check_helper_mem_access(env, regno, mem_size, true, NULL); 4815 *reg = saved_reg; 4816 return rv; 4817 } 4818 4819 return check_helper_mem_access(env, regno, mem_size, true, NULL); 4820 } 4821 4822 /* Implementation details: 4823 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 4824 * Two bpf_map_lookups (even with the same key) will have different reg->id. 4825 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 4826 * value_or_null->value transition, since the verifier only cares about 4827 * the range of access to valid map value pointer and doesn't care about actual 4828 * address of the map element. 4829 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 4830 * reg->id > 0 after value_or_null->value transition. By doing so 4831 * two bpf_map_lookups will be considered two different pointers that 4832 * point to different bpf_spin_locks. 4833 * The verifier allows taking only one bpf_spin_lock at a time to avoid 4834 * dead-locks. 4835 * Since only one bpf_spin_lock is allowed the checks are simpler than 4836 * reg_is_refcounted() logic. The verifier needs to remember only 4837 * one spin_lock instead of array of acquired_refs. 4838 * cur_state->active_spin_lock remembers which map value element got locked 4839 * and clears it after bpf_spin_unlock. 4840 */ 4841 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 4842 bool is_lock) 4843 { 4844 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4845 struct bpf_verifier_state *cur = env->cur_state; 4846 bool is_const = tnum_is_const(reg->var_off); 4847 struct bpf_map *map = reg->map_ptr; 4848 u64 val = reg->var_off.value; 4849 4850 if (!is_const) { 4851 verbose(env, 4852 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 4853 regno); 4854 return -EINVAL; 4855 } 4856 if (!map->btf) { 4857 verbose(env, 4858 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 4859 map->name); 4860 return -EINVAL; 4861 } 4862 if (!map_value_has_spin_lock(map)) { 4863 if (map->spin_lock_off == -E2BIG) 4864 verbose(env, 4865 "map '%s' has more than one 'struct bpf_spin_lock'\n", 4866 map->name); 4867 else if (map->spin_lock_off == -ENOENT) 4868 verbose(env, 4869 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 4870 map->name); 4871 else 4872 verbose(env, 4873 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 4874 map->name); 4875 return -EINVAL; 4876 } 4877 if (map->spin_lock_off != val + reg->off) { 4878 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 4879 val + reg->off); 4880 return -EINVAL; 4881 } 4882 if (is_lock) { 4883 if (cur->active_spin_lock) { 4884 verbose(env, 4885 "Locking two bpf_spin_locks are not allowed\n"); 4886 return -EINVAL; 4887 } 4888 cur->active_spin_lock = reg->id; 4889 } else { 4890 if (!cur->active_spin_lock) { 4891 verbose(env, "bpf_spin_unlock without taking a lock\n"); 4892 return -EINVAL; 4893 } 4894 if (cur->active_spin_lock != reg->id) { 4895 verbose(env, "bpf_spin_unlock of different lock\n"); 4896 return -EINVAL; 4897 } 4898 cur->active_spin_lock = 0; 4899 } 4900 return 0; 4901 } 4902 4903 static int process_timer_func(struct bpf_verifier_env *env, int regno, 4904 struct bpf_call_arg_meta *meta) 4905 { 4906 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4907 bool is_const = tnum_is_const(reg->var_off); 4908 struct bpf_map *map = reg->map_ptr; 4909 u64 val = reg->var_off.value; 4910 4911 if (!is_const) { 4912 verbose(env, 4913 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 4914 regno); 4915 return -EINVAL; 4916 } 4917 if (!map->btf) { 4918 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 4919 map->name); 4920 return -EINVAL; 4921 } 4922 if (!map_value_has_timer(map)) { 4923 if (map->timer_off == -E2BIG) 4924 verbose(env, 4925 "map '%s' has more than one 'struct bpf_timer'\n", 4926 map->name); 4927 else if (map->timer_off == -ENOENT) 4928 verbose(env, 4929 "map '%s' doesn't have 'struct bpf_timer'\n", 4930 map->name); 4931 else 4932 verbose(env, 4933 "map '%s' is not a struct type or bpf_timer is mangled\n", 4934 map->name); 4935 return -EINVAL; 4936 } 4937 if (map->timer_off != val + reg->off) { 4938 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 4939 val + reg->off, map->timer_off); 4940 return -EINVAL; 4941 } 4942 if (meta->map_ptr) { 4943 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 4944 return -EFAULT; 4945 } 4946 meta->map_uid = reg->map_uid; 4947 meta->map_ptr = map; 4948 return 0; 4949 } 4950 4951 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 4952 { 4953 return type == ARG_PTR_TO_MEM || 4954 type == ARG_PTR_TO_MEM_OR_NULL || 4955 type == ARG_PTR_TO_UNINIT_MEM; 4956 } 4957 4958 static bool arg_type_is_mem_size(enum bpf_arg_type type) 4959 { 4960 return type == ARG_CONST_SIZE || 4961 type == ARG_CONST_SIZE_OR_ZERO; 4962 } 4963 4964 static bool arg_type_is_alloc_size(enum bpf_arg_type type) 4965 { 4966 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 4967 } 4968 4969 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 4970 { 4971 return type == ARG_PTR_TO_INT || 4972 type == ARG_PTR_TO_LONG; 4973 } 4974 4975 static int int_ptr_type_to_size(enum bpf_arg_type type) 4976 { 4977 if (type == ARG_PTR_TO_INT) 4978 return sizeof(u32); 4979 else if (type == ARG_PTR_TO_LONG) 4980 return sizeof(u64); 4981 4982 return -EINVAL; 4983 } 4984 4985 static int resolve_map_arg_type(struct bpf_verifier_env *env, 4986 const struct bpf_call_arg_meta *meta, 4987 enum bpf_arg_type *arg_type) 4988 { 4989 if (!meta->map_ptr) { 4990 /* kernel subsystem misconfigured verifier */ 4991 verbose(env, "invalid map_ptr to access map->type\n"); 4992 return -EACCES; 4993 } 4994 4995 switch (meta->map_ptr->map_type) { 4996 case BPF_MAP_TYPE_SOCKMAP: 4997 case BPF_MAP_TYPE_SOCKHASH: 4998 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 4999 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 5000 } else { 5001 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 5002 return -EINVAL; 5003 } 5004 break; 5005 case BPF_MAP_TYPE_BLOOM_FILTER: 5006 if (meta->func_id == BPF_FUNC_map_peek_elem) 5007 *arg_type = ARG_PTR_TO_MAP_VALUE; 5008 break; 5009 default: 5010 break; 5011 } 5012 return 0; 5013 } 5014 5015 struct bpf_reg_types { 5016 const enum bpf_reg_type types[10]; 5017 u32 *btf_id; 5018 }; 5019 5020 static const struct bpf_reg_types map_key_value_types = { 5021 .types = { 5022 PTR_TO_STACK, 5023 PTR_TO_PACKET, 5024 PTR_TO_PACKET_META, 5025 PTR_TO_MAP_KEY, 5026 PTR_TO_MAP_VALUE, 5027 }, 5028 }; 5029 5030 static const struct bpf_reg_types sock_types = { 5031 .types = { 5032 PTR_TO_SOCK_COMMON, 5033 PTR_TO_SOCKET, 5034 PTR_TO_TCP_SOCK, 5035 PTR_TO_XDP_SOCK, 5036 }, 5037 }; 5038 5039 #ifdef CONFIG_NET 5040 static const struct bpf_reg_types btf_id_sock_common_types = { 5041 .types = { 5042 PTR_TO_SOCK_COMMON, 5043 PTR_TO_SOCKET, 5044 PTR_TO_TCP_SOCK, 5045 PTR_TO_XDP_SOCK, 5046 PTR_TO_BTF_ID, 5047 }, 5048 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5049 }; 5050 #endif 5051 5052 static const struct bpf_reg_types mem_types = { 5053 .types = { 5054 PTR_TO_STACK, 5055 PTR_TO_PACKET, 5056 PTR_TO_PACKET_META, 5057 PTR_TO_MAP_KEY, 5058 PTR_TO_MAP_VALUE, 5059 PTR_TO_MEM, 5060 PTR_TO_RDONLY_BUF, 5061 PTR_TO_RDWR_BUF, 5062 }, 5063 }; 5064 5065 static const struct bpf_reg_types int_ptr_types = { 5066 .types = { 5067 PTR_TO_STACK, 5068 PTR_TO_PACKET, 5069 PTR_TO_PACKET_META, 5070 PTR_TO_MAP_KEY, 5071 PTR_TO_MAP_VALUE, 5072 }, 5073 }; 5074 5075 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 5076 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 5077 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 5078 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } }; 5079 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 5080 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 5081 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 5082 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } }; 5083 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 5084 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 5085 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5086 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 5087 5088 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 5089 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 5090 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 5091 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types, 5092 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types, 5093 [ARG_CONST_SIZE] = &scalar_types, 5094 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 5095 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 5096 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 5097 [ARG_PTR_TO_CTX] = &context_types, 5098 [ARG_PTR_TO_CTX_OR_NULL] = &context_types, 5099 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 5100 #ifdef CONFIG_NET 5101 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 5102 #endif 5103 [ARG_PTR_TO_SOCKET] = &fullsock_types, 5104 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types, 5105 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 5106 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 5107 [ARG_PTR_TO_MEM] = &mem_types, 5108 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types, 5109 [ARG_PTR_TO_UNINIT_MEM] = &mem_types, 5110 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 5111 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types, 5112 [ARG_PTR_TO_INT] = &int_ptr_types, 5113 [ARG_PTR_TO_LONG] = &int_ptr_types, 5114 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 5115 [ARG_PTR_TO_FUNC] = &func_ptr_types, 5116 [ARG_PTR_TO_STACK_OR_NULL] = &stack_ptr_types, 5117 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 5118 [ARG_PTR_TO_TIMER] = &timer_types, 5119 }; 5120 5121 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 5122 enum bpf_arg_type arg_type, 5123 const u32 *arg_btf_id) 5124 { 5125 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5126 enum bpf_reg_type expected, type = reg->type; 5127 const struct bpf_reg_types *compatible; 5128 int i, j; 5129 5130 compatible = compatible_reg_types[arg_type]; 5131 if (!compatible) { 5132 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 5133 return -EFAULT; 5134 } 5135 5136 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 5137 expected = compatible->types[i]; 5138 if (expected == NOT_INIT) 5139 break; 5140 5141 if (type == expected) 5142 goto found; 5143 } 5144 5145 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]); 5146 for (j = 0; j + 1 < i; j++) 5147 verbose(env, "%s, ", reg_type_str[compatible->types[j]]); 5148 verbose(env, "%s\n", reg_type_str[compatible->types[j]]); 5149 return -EACCES; 5150 5151 found: 5152 if (type == PTR_TO_BTF_ID) { 5153 if (!arg_btf_id) { 5154 if (!compatible->btf_id) { 5155 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 5156 return -EFAULT; 5157 } 5158 arg_btf_id = compatible->btf_id; 5159 } 5160 5161 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5162 btf_vmlinux, *arg_btf_id)) { 5163 verbose(env, "R%d is of type %s but %s is expected\n", 5164 regno, kernel_type_name(reg->btf, reg->btf_id), 5165 kernel_type_name(btf_vmlinux, *arg_btf_id)); 5166 return -EACCES; 5167 } 5168 5169 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5170 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 5171 regno); 5172 return -EACCES; 5173 } 5174 } 5175 5176 return 0; 5177 } 5178 5179 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 5180 struct bpf_call_arg_meta *meta, 5181 const struct bpf_func_proto *fn) 5182 { 5183 u32 regno = BPF_REG_1 + arg; 5184 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5185 enum bpf_arg_type arg_type = fn->arg_type[arg]; 5186 enum bpf_reg_type type = reg->type; 5187 int err = 0; 5188 5189 if (arg_type == ARG_DONTCARE) 5190 return 0; 5191 5192 err = check_reg_arg(env, regno, SRC_OP); 5193 if (err) 5194 return err; 5195 5196 if (arg_type == ARG_ANYTHING) { 5197 if (is_pointer_value(env, regno)) { 5198 verbose(env, "R%d leaks addr into helper function\n", 5199 regno); 5200 return -EACCES; 5201 } 5202 return 0; 5203 } 5204 5205 if (type_is_pkt_pointer(type) && 5206 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 5207 verbose(env, "helper access to the packet is not allowed\n"); 5208 return -EACCES; 5209 } 5210 5211 if (arg_type == ARG_PTR_TO_MAP_VALUE || 5212 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 5213 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 5214 err = resolve_map_arg_type(env, meta, &arg_type); 5215 if (err) 5216 return err; 5217 } 5218 5219 if (register_is_null(reg) && arg_type_may_be_null(arg_type)) 5220 /* A NULL register has a SCALAR_VALUE type, so skip 5221 * type checking. 5222 */ 5223 goto skip_type_check; 5224 5225 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]); 5226 if (err) 5227 return err; 5228 5229 if (type == PTR_TO_CTX) { 5230 err = check_ctx_reg(env, reg, regno); 5231 if (err < 0) 5232 return err; 5233 } 5234 5235 skip_type_check: 5236 if (reg->ref_obj_id) { 5237 if (meta->ref_obj_id) { 5238 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 5239 regno, reg->ref_obj_id, 5240 meta->ref_obj_id); 5241 return -EFAULT; 5242 } 5243 meta->ref_obj_id = reg->ref_obj_id; 5244 } 5245 5246 if (arg_type == ARG_CONST_MAP_PTR) { 5247 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 5248 if (meta->map_ptr) { 5249 /* Use map_uid (which is unique id of inner map) to reject: 5250 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 5251 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 5252 * if (inner_map1 && inner_map2) { 5253 * timer = bpf_map_lookup_elem(inner_map1); 5254 * if (timer) 5255 * // mismatch would have been allowed 5256 * bpf_timer_init(timer, inner_map2); 5257 * } 5258 * 5259 * Comparing map_ptr is enough to distinguish normal and outer maps. 5260 */ 5261 if (meta->map_ptr != reg->map_ptr || 5262 meta->map_uid != reg->map_uid) { 5263 verbose(env, 5264 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 5265 meta->map_uid, reg->map_uid); 5266 return -EINVAL; 5267 } 5268 } 5269 meta->map_ptr = reg->map_ptr; 5270 meta->map_uid = reg->map_uid; 5271 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 5272 /* bpf_map_xxx(..., map_ptr, ..., key) call: 5273 * check that [key, key + map->key_size) are within 5274 * stack limits and initialized 5275 */ 5276 if (!meta->map_ptr) { 5277 /* in function declaration map_ptr must come before 5278 * map_key, so that it's verified and known before 5279 * we have to check map_key here. Otherwise it means 5280 * that kernel subsystem misconfigured verifier 5281 */ 5282 verbose(env, "invalid map_ptr to access map->key\n"); 5283 return -EACCES; 5284 } 5285 err = check_helper_mem_access(env, regno, 5286 meta->map_ptr->key_size, false, 5287 NULL); 5288 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 5289 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 5290 !register_is_null(reg)) || 5291 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 5292 /* bpf_map_xxx(..., map_ptr, ..., value) call: 5293 * check [value, value + map->value_size) validity 5294 */ 5295 if (!meta->map_ptr) { 5296 /* kernel subsystem misconfigured verifier */ 5297 verbose(env, "invalid map_ptr to access map->value\n"); 5298 return -EACCES; 5299 } 5300 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 5301 err = check_helper_mem_access(env, regno, 5302 meta->map_ptr->value_size, false, 5303 meta); 5304 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) { 5305 if (!reg->btf_id) { 5306 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 5307 return -EACCES; 5308 } 5309 meta->ret_btf = reg->btf; 5310 meta->ret_btf_id = reg->btf_id; 5311 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 5312 if (meta->func_id == BPF_FUNC_spin_lock) { 5313 if (process_spin_lock(env, regno, true)) 5314 return -EACCES; 5315 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 5316 if (process_spin_lock(env, regno, false)) 5317 return -EACCES; 5318 } else { 5319 verbose(env, "verifier internal error\n"); 5320 return -EFAULT; 5321 } 5322 } else if (arg_type == ARG_PTR_TO_TIMER) { 5323 if (process_timer_func(env, regno, meta)) 5324 return -EACCES; 5325 } else if (arg_type == ARG_PTR_TO_FUNC) { 5326 meta->subprogno = reg->subprogno; 5327 } else if (arg_type_is_mem_ptr(arg_type)) { 5328 /* The access to this pointer is only checked when we hit the 5329 * next is_mem_size argument below. 5330 */ 5331 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM); 5332 } else if (arg_type_is_mem_size(arg_type)) { 5333 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 5334 5335 /* This is used to refine r0 return value bounds for helpers 5336 * that enforce this value as an upper bound on return values. 5337 * See do_refine_retval_range() for helpers that can refine 5338 * the return value. C type of helper is u32 so we pull register 5339 * bound from umax_value however, if negative verifier errors 5340 * out. Only upper bounds can be learned because retval is an 5341 * int type and negative retvals are allowed. 5342 */ 5343 meta->msize_max_value = reg->umax_value; 5344 5345 /* The register is SCALAR_VALUE; the access check 5346 * happens using its boundaries. 5347 */ 5348 if (!tnum_is_const(reg->var_off)) 5349 /* For unprivileged variable accesses, disable raw 5350 * mode so that the program is required to 5351 * initialize all the memory that the helper could 5352 * just partially fill up. 5353 */ 5354 meta = NULL; 5355 5356 if (reg->smin_value < 0) { 5357 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5358 regno); 5359 return -EACCES; 5360 } 5361 5362 if (reg->umin_value == 0) { 5363 err = check_helper_mem_access(env, regno - 1, 0, 5364 zero_size_allowed, 5365 meta); 5366 if (err) 5367 return err; 5368 } 5369 5370 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5371 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5372 regno); 5373 return -EACCES; 5374 } 5375 err = check_helper_mem_access(env, regno - 1, 5376 reg->umax_value, 5377 zero_size_allowed, meta); 5378 if (!err) 5379 err = mark_chain_precision(env, regno); 5380 } else if (arg_type_is_alloc_size(arg_type)) { 5381 if (!tnum_is_const(reg->var_off)) { 5382 verbose(env, "R%d is not a known constant'\n", 5383 regno); 5384 return -EACCES; 5385 } 5386 meta->mem_size = reg->var_off.value; 5387 } else if (arg_type_is_int_ptr(arg_type)) { 5388 int size = int_ptr_type_to_size(arg_type); 5389 5390 err = check_helper_mem_access(env, regno, size, false, meta); 5391 if (err) 5392 return err; 5393 err = check_ptr_alignment(env, reg, 0, size, true); 5394 } else if (arg_type == ARG_PTR_TO_CONST_STR) { 5395 struct bpf_map *map = reg->map_ptr; 5396 int map_off; 5397 u64 map_addr; 5398 char *str_ptr; 5399 5400 if (!bpf_map_is_rdonly(map)) { 5401 verbose(env, "R%d does not point to a readonly map'\n", regno); 5402 return -EACCES; 5403 } 5404 5405 if (!tnum_is_const(reg->var_off)) { 5406 verbose(env, "R%d is not a constant address'\n", regno); 5407 return -EACCES; 5408 } 5409 5410 if (!map->ops->map_direct_value_addr) { 5411 verbose(env, "no direct value access support for this map type\n"); 5412 return -EACCES; 5413 } 5414 5415 err = check_map_access(env, regno, reg->off, 5416 map->value_size - reg->off, false); 5417 if (err) 5418 return err; 5419 5420 map_off = reg->off + reg->var_off.value; 5421 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 5422 if (err) { 5423 verbose(env, "direct value access on string failed\n"); 5424 return err; 5425 } 5426 5427 str_ptr = (char *)(long)(map_addr); 5428 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 5429 verbose(env, "string is not zero-terminated\n"); 5430 return -EINVAL; 5431 } 5432 } 5433 5434 return err; 5435 } 5436 5437 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 5438 { 5439 enum bpf_attach_type eatype = env->prog->expected_attach_type; 5440 enum bpf_prog_type type = resolve_prog_type(env->prog); 5441 5442 if (func_id != BPF_FUNC_map_update_elem) 5443 return false; 5444 5445 /* It's not possible to get access to a locked struct sock in these 5446 * contexts, so updating is safe. 5447 */ 5448 switch (type) { 5449 case BPF_PROG_TYPE_TRACING: 5450 if (eatype == BPF_TRACE_ITER) 5451 return true; 5452 break; 5453 case BPF_PROG_TYPE_SOCKET_FILTER: 5454 case BPF_PROG_TYPE_SCHED_CLS: 5455 case BPF_PROG_TYPE_SCHED_ACT: 5456 case BPF_PROG_TYPE_XDP: 5457 case BPF_PROG_TYPE_SK_REUSEPORT: 5458 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5459 case BPF_PROG_TYPE_SK_LOOKUP: 5460 return true; 5461 default: 5462 break; 5463 } 5464 5465 verbose(env, "cannot update sockmap in this context\n"); 5466 return false; 5467 } 5468 5469 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 5470 { 5471 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64); 5472 } 5473 5474 static int check_map_func_compatibility(struct bpf_verifier_env *env, 5475 struct bpf_map *map, int func_id) 5476 { 5477 if (!map) 5478 return 0; 5479 5480 /* We need a two way check, first is from map perspective ... */ 5481 switch (map->map_type) { 5482 case BPF_MAP_TYPE_PROG_ARRAY: 5483 if (func_id != BPF_FUNC_tail_call) 5484 goto error; 5485 break; 5486 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5487 if (func_id != BPF_FUNC_perf_event_read && 5488 func_id != BPF_FUNC_perf_event_output && 5489 func_id != BPF_FUNC_skb_output && 5490 func_id != BPF_FUNC_perf_event_read_value && 5491 func_id != BPF_FUNC_xdp_output) 5492 goto error; 5493 break; 5494 case BPF_MAP_TYPE_RINGBUF: 5495 if (func_id != BPF_FUNC_ringbuf_output && 5496 func_id != BPF_FUNC_ringbuf_reserve && 5497 func_id != BPF_FUNC_ringbuf_query) 5498 goto error; 5499 break; 5500 case BPF_MAP_TYPE_STACK_TRACE: 5501 if (func_id != BPF_FUNC_get_stackid) 5502 goto error; 5503 break; 5504 case BPF_MAP_TYPE_CGROUP_ARRAY: 5505 if (func_id != BPF_FUNC_skb_under_cgroup && 5506 func_id != BPF_FUNC_current_task_under_cgroup) 5507 goto error; 5508 break; 5509 case BPF_MAP_TYPE_CGROUP_STORAGE: 5510 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 5511 if (func_id != BPF_FUNC_get_local_storage) 5512 goto error; 5513 break; 5514 case BPF_MAP_TYPE_DEVMAP: 5515 case BPF_MAP_TYPE_DEVMAP_HASH: 5516 if (func_id != BPF_FUNC_redirect_map && 5517 func_id != BPF_FUNC_map_lookup_elem) 5518 goto error; 5519 break; 5520 /* Restrict bpf side of cpumap and xskmap, open when use-cases 5521 * appear. 5522 */ 5523 case BPF_MAP_TYPE_CPUMAP: 5524 if (func_id != BPF_FUNC_redirect_map) 5525 goto error; 5526 break; 5527 case BPF_MAP_TYPE_XSKMAP: 5528 if (func_id != BPF_FUNC_redirect_map && 5529 func_id != BPF_FUNC_map_lookup_elem) 5530 goto error; 5531 break; 5532 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5533 case BPF_MAP_TYPE_HASH_OF_MAPS: 5534 if (func_id != BPF_FUNC_map_lookup_elem) 5535 goto error; 5536 break; 5537 case BPF_MAP_TYPE_SOCKMAP: 5538 if (func_id != BPF_FUNC_sk_redirect_map && 5539 func_id != BPF_FUNC_sock_map_update && 5540 func_id != BPF_FUNC_map_delete_elem && 5541 func_id != BPF_FUNC_msg_redirect_map && 5542 func_id != BPF_FUNC_sk_select_reuseport && 5543 func_id != BPF_FUNC_map_lookup_elem && 5544 !may_update_sockmap(env, func_id)) 5545 goto error; 5546 break; 5547 case BPF_MAP_TYPE_SOCKHASH: 5548 if (func_id != BPF_FUNC_sk_redirect_hash && 5549 func_id != BPF_FUNC_sock_hash_update && 5550 func_id != BPF_FUNC_map_delete_elem && 5551 func_id != BPF_FUNC_msg_redirect_hash && 5552 func_id != BPF_FUNC_sk_select_reuseport && 5553 func_id != BPF_FUNC_map_lookup_elem && 5554 !may_update_sockmap(env, func_id)) 5555 goto error; 5556 break; 5557 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 5558 if (func_id != BPF_FUNC_sk_select_reuseport) 5559 goto error; 5560 break; 5561 case BPF_MAP_TYPE_QUEUE: 5562 case BPF_MAP_TYPE_STACK: 5563 if (func_id != BPF_FUNC_map_peek_elem && 5564 func_id != BPF_FUNC_map_pop_elem && 5565 func_id != BPF_FUNC_map_push_elem) 5566 goto error; 5567 break; 5568 case BPF_MAP_TYPE_SK_STORAGE: 5569 if (func_id != BPF_FUNC_sk_storage_get && 5570 func_id != BPF_FUNC_sk_storage_delete) 5571 goto error; 5572 break; 5573 case BPF_MAP_TYPE_INODE_STORAGE: 5574 if (func_id != BPF_FUNC_inode_storage_get && 5575 func_id != BPF_FUNC_inode_storage_delete) 5576 goto error; 5577 break; 5578 case BPF_MAP_TYPE_TASK_STORAGE: 5579 if (func_id != BPF_FUNC_task_storage_get && 5580 func_id != BPF_FUNC_task_storage_delete) 5581 goto error; 5582 break; 5583 case BPF_MAP_TYPE_BLOOM_FILTER: 5584 if (func_id != BPF_FUNC_map_peek_elem && 5585 func_id != BPF_FUNC_map_push_elem) 5586 goto error; 5587 break; 5588 default: 5589 break; 5590 } 5591 5592 /* ... and second from the function itself. */ 5593 switch (func_id) { 5594 case BPF_FUNC_tail_call: 5595 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 5596 goto error; 5597 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 5598 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 5599 return -EINVAL; 5600 } 5601 break; 5602 case BPF_FUNC_perf_event_read: 5603 case BPF_FUNC_perf_event_output: 5604 case BPF_FUNC_perf_event_read_value: 5605 case BPF_FUNC_skb_output: 5606 case BPF_FUNC_xdp_output: 5607 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 5608 goto error; 5609 break; 5610 case BPF_FUNC_ringbuf_output: 5611 case BPF_FUNC_ringbuf_reserve: 5612 case BPF_FUNC_ringbuf_query: 5613 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 5614 goto error; 5615 break; 5616 case BPF_FUNC_get_stackid: 5617 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 5618 goto error; 5619 break; 5620 case BPF_FUNC_current_task_under_cgroup: 5621 case BPF_FUNC_skb_under_cgroup: 5622 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 5623 goto error; 5624 break; 5625 case BPF_FUNC_redirect_map: 5626 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 5627 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 5628 map->map_type != BPF_MAP_TYPE_CPUMAP && 5629 map->map_type != BPF_MAP_TYPE_XSKMAP) 5630 goto error; 5631 break; 5632 case BPF_FUNC_sk_redirect_map: 5633 case BPF_FUNC_msg_redirect_map: 5634 case BPF_FUNC_sock_map_update: 5635 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 5636 goto error; 5637 break; 5638 case BPF_FUNC_sk_redirect_hash: 5639 case BPF_FUNC_msg_redirect_hash: 5640 case BPF_FUNC_sock_hash_update: 5641 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 5642 goto error; 5643 break; 5644 case BPF_FUNC_get_local_storage: 5645 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 5646 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 5647 goto error; 5648 break; 5649 case BPF_FUNC_sk_select_reuseport: 5650 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 5651 map->map_type != BPF_MAP_TYPE_SOCKMAP && 5652 map->map_type != BPF_MAP_TYPE_SOCKHASH) 5653 goto error; 5654 break; 5655 case BPF_FUNC_map_pop_elem: 5656 if (map->map_type != BPF_MAP_TYPE_QUEUE && 5657 map->map_type != BPF_MAP_TYPE_STACK) 5658 goto error; 5659 break; 5660 case BPF_FUNC_map_peek_elem: 5661 case BPF_FUNC_map_push_elem: 5662 if (map->map_type != BPF_MAP_TYPE_QUEUE && 5663 map->map_type != BPF_MAP_TYPE_STACK && 5664 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 5665 goto error; 5666 break; 5667 case BPF_FUNC_sk_storage_get: 5668 case BPF_FUNC_sk_storage_delete: 5669 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 5670 goto error; 5671 break; 5672 case BPF_FUNC_inode_storage_get: 5673 case BPF_FUNC_inode_storage_delete: 5674 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 5675 goto error; 5676 break; 5677 case BPF_FUNC_task_storage_get: 5678 case BPF_FUNC_task_storage_delete: 5679 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 5680 goto error; 5681 break; 5682 default: 5683 break; 5684 } 5685 5686 return 0; 5687 error: 5688 verbose(env, "cannot pass map_type %d into func %s#%d\n", 5689 map->map_type, func_id_name(func_id), func_id); 5690 return -EINVAL; 5691 } 5692 5693 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 5694 { 5695 int count = 0; 5696 5697 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 5698 count++; 5699 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 5700 count++; 5701 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 5702 count++; 5703 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 5704 count++; 5705 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 5706 count++; 5707 5708 /* We only support one arg being in raw mode at the moment, 5709 * which is sufficient for the helper functions we have 5710 * right now. 5711 */ 5712 return count <= 1; 5713 } 5714 5715 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 5716 enum bpf_arg_type arg_next) 5717 { 5718 return (arg_type_is_mem_ptr(arg_curr) && 5719 !arg_type_is_mem_size(arg_next)) || 5720 (!arg_type_is_mem_ptr(arg_curr) && 5721 arg_type_is_mem_size(arg_next)); 5722 } 5723 5724 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 5725 { 5726 /* bpf_xxx(..., buf, len) call will access 'len' 5727 * bytes from memory 'buf'. Both arg types need 5728 * to be paired, so make sure there's no buggy 5729 * helper function specification. 5730 */ 5731 if (arg_type_is_mem_size(fn->arg1_type) || 5732 arg_type_is_mem_ptr(fn->arg5_type) || 5733 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 5734 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 5735 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 5736 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 5737 return false; 5738 5739 return true; 5740 } 5741 5742 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 5743 { 5744 int count = 0; 5745 5746 if (arg_type_may_be_refcounted(fn->arg1_type)) 5747 count++; 5748 if (arg_type_may_be_refcounted(fn->arg2_type)) 5749 count++; 5750 if (arg_type_may_be_refcounted(fn->arg3_type)) 5751 count++; 5752 if (arg_type_may_be_refcounted(fn->arg4_type)) 5753 count++; 5754 if (arg_type_may_be_refcounted(fn->arg5_type)) 5755 count++; 5756 5757 /* A reference acquiring function cannot acquire 5758 * another refcounted ptr. 5759 */ 5760 if (may_be_acquire_function(func_id) && count) 5761 return false; 5762 5763 /* We only support one arg being unreferenced at the moment, 5764 * which is sufficient for the helper functions we have right now. 5765 */ 5766 return count <= 1; 5767 } 5768 5769 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 5770 { 5771 int i; 5772 5773 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 5774 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 5775 return false; 5776 5777 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i]) 5778 return false; 5779 } 5780 5781 return true; 5782 } 5783 5784 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 5785 { 5786 return check_raw_mode_ok(fn) && 5787 check_arg_pair_ok(fn) && 5788 check_btf_id_ok(fn) && 5789 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 5790 } 5791 5792 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 5793 * are now invalid, so turn them into unknown SCALAR_VALUE. 5794 */ 5795 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 5796 struct bpf_func_state *state) 5797 { 5798 struct bpf_reg_state *regs = state->regs, *reg; 5799 int i; 5800 5801 for (i = 0; i < MAX_BPF_REG; i++) 5802 if (reg_is_pkt_pointer_any(®s[i])) 5803 mark_reg_unknown(env, regs, i); 5804 5805 bpf_for_each_spilled_reg(i, state, reg) { 5806 if (!reg) 5807 continue; 5808 if (reg_is_pkt_pointer_any(reg)) 5809 __mark_reg_unknown(env, reg); 5810 } 5811 } 5812 5813 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 5814 { 5815 struct bpf_verifier_state *vstate = env->cur_state; 5816 int i; 5817 5818 for (i = 0; i <= vstate->curframe; i++) 5819 __clear_all_pkt_pointers(env, vstate->frame[i]); 5820 } 5821 5822 enum { 5823 AT_PKT_END = -1, 5824 BEYOND_PKT_END = -2, 5825 }; 5826 5827 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 5828 { 5829 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5830 struct bpf_reg_state *reg = &state->regs[regn]; 5831 5832 if (reg->type != PTR_TO_PACKET) 5833 /* PTR_TO_PACKET_META is not supported yet */ 5834 return; 5835 5836 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 5837 * How far beyond pkt_end it goes is unknown. 5838 * if (!range_open) it's the case of pkt >= pkt_end 5839 * if (range_open) it's the case of pkt > pkt_end 5840 * hence this pointer is at least 1 byte bigger than pkt_end 5841 */ 5842 if (range_open) 5843 reg->range = BEYOND_PKT_END; 5844 else 5845 reg->range = AT_PKT_END; 5846 } 5847 5848 static void release_reg_references(struct bpf_verifier_env *env, 5849 struct bpf_func_state *state, 5850 int ref_obj_id) 5851 { 5852 struct bpf_reg_state *regs = state->regs, *reg; 5853 int i; 5854 5855 for (i = 0; i < MAX_BPF_REG; i++) 5856 if (regs[i].ref_obj_id == ref_obj_id) 5857 mark_reg_unknown(env, regs, i); 5858 5859 bpf_for_each_spilled_reg(i, state, reg) { 5860 if (!reg) 5861 continue; 5862 if (reg->ref_obj_id == ref_obj_id) 5863 __mark_reg_unknown(env, reg); 5864 } 5865 } 5866 5867 /* The pointer with the specified id has released its reference to kernel 5868 * resources. Identify all copies of the same pointer and clear the reference. 5869 */ 5870 static int release_reference(struct bpf_verifier_env *env, 5871 int ref_obj_id) 5872 { 5873 struct bpf_verifier_state *vstate = env->cur_state; 5874 int err; 5875 int i; 5876 5877 err = release_reference_state(cur_func(env), ref_obj_id); 5878 if (err) 5879 return err; 5880 5881 for (i = 0; i <= vstate->curframe; i++) 5882 release_reg_references(env, vstate->frame[i], ref_obj_id); 5883 5884 return 0; 5885 } 5886 5887 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 5888 struct bpf_reg_state *regs) 5889 { 5890 int i; 5891 5892 /* after the call registers r0 - r5 were scratched */ 5893 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5894 mark_reg_not_init(env, regs, caller_saved[i]); 5895 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5896 } 5897 } 5898 5899 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 5900 struct bpf_func_state *caller, 5901 struct bpf_func_state *callee, 5902 int insn_idx); 5903 5904 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 5905 int *insn_idx, int subprog, 5906 set_callee_state_fn set_callee_state_cb) 5907 { 5908 struct bpf_verifier_state *state = env->cur_state; 5909 struct bpf_func_info_aux *func_info_aux; 5910 struct bpf_func_state *caller, *callee; 5911 int err; 5912 bool is_global = false; 5913 5914 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 5915 verbose(env, "the call stack of %d frames is too deep\n", 5916 state->curframe + 2); 5917 return -E2BIG; 5918 } 5919 5920 caller = state->frame[state->curframe]; 5921 if (state->frame[state->curframe + 1]) { 5922 verbose(env, "verifier bug. Frame %d already allocated\n", 5923 state->curframe + 1); 5924 return -EFAULT; 5925 } 5926 5927 func_info_aux = env->prog->aux->func_info_aux; 5928 if (func_info_aux) 5929 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 5930 err = btf_check_subprog_arg_match(env, subprog, caller->regs); 5931 if (err == -EFAULT) 5932 return err; 5933 if (is_global) { 5934 if (err) { 5935 verbose(env, "Caller passes invalid args into func#%d\n", 5936 subprog); 5937 return err; 5938 } else { 5939 if (env->log.level & BPF_LOG_LEVEL) 5940 verbose(env, 5941 "Func#%d is global and valid. Skipping.\n", 5942 subprog); 5943 clear_caller_saved_regs(env, caller->regs); 5944 5945 /* All global functions return a 64-bit SCALAR_VALUE */ 5946 mark_reg_unknown(env, caller->regs, BPF_REG_0); 5947 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5948 5949 /* continue with next insn after call */ 5950 return 0; 5951 } 5952 } 5953 5954 if (insn->code == (BPF_JMP | BPF_CALL) && 5955 insn->imm == BPF_FUNC_timer_set_callback) { 5956 struct bpf_verifier_state *async_cb; 5957 5958 /* there is no real recursion here. timer callbacks are async */ 5959 env->subprog_info[subprog].is_async_cb = true; 5960 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 5961 *insn_idx, subprog); 5962 if (!async_cb) 5963 return -EFAULT; 5964 callee = async_cb->frame[0]; 5965 callee->async_entry_cnt = caller->async_entry_cnt + 1; 5966 5967 /* Convert bpf_timer_set_callback() args into timer callback args */ 5968 err = set_callee_state_cb(env, caller, callee, *insn_idx); 5969 if (err) 5970 return err; 5971 5972 clear_caller_saved_regs(env, caller->regs); 5973 mark_reg_unknown(env, caller->regs, BPF_REG_0); 5974 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5975 /* continue with next insn after call */ 5976 return 0; 5977 } 5978 5979 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 5980 if (!callee) 5981 return -ENOMEM; 5982 state->frame[state->curframe + 1] = callee; 5983 5984 /* callee cannot access r0, r6 - r9 for reading and has to write 5985 * into its own stack before reading from it. 5986 * callee can read/write into caller's stack 5987 */ 5988 init_func_state(env, callee, 5989 /* remember the callsite, it will be used by bpf_exit */ 5990 *insn_idx /* callsite */, 5991 state->curframe + 1 /* frameno within this callchain */, 5992 subprog /* subprog number within this prog */); 5993 5994 /* Transfer references to the callee */ 5995 err = copy_reference_state(callee, caller); 5996 if (err) 5997 return err; 5998 5999 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6000 if (err) 6001 return err; 6002 6003 clear_caller_saved_regs(env, caller->regs); 6004 6005 /* only increment it after check_reg_arg() finished */ 6006 state->curframe++; 6007 6008 /* and go analyze first insn of the callee */ 6009 *insn_idx = env->subprog_info[subprog].start - 1; 6010 6011 if (env->log.level & BPF_LOG_LEVEL) { 6012 verbose(env, "caller:\n"); 6013 print_verifier_state(env, caller); 6014 verbose(env, "callee:\n"); 6015 print_verifier_state(env, callee); 6016 } 6017 return 0; 6018 } 6019 6020 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 6021 struct bpf_func_state *caller, 6022 struct bpf_func_state *callee) 6023 { 6024 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 6025 * void *callback_ctx, u64 flags); 6026 * callback_fn(struct bpf_map *map, void *key, void *value, 6027 * void *callback_ctx); 6028 */ 6029 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6030 6031 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6032 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6033 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6034 6035 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6036 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6037 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6038 6039 /* pointer to stack or null */ 6040 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 6041 6042 /* unused */ 6043 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6044 return 0; 6045 } 6046 6047 static int set_callee_state(struct bpf_verifier_env *env, 6048 struct bpf_func_state *caller, 6049 struct bpf_func_state *callee, int insn_idx) 6050 { 6051 int i; 6052 6053 /* copy r1 - r5 args that callee can access. The copy includes parent 6054 * pointers, which connects us up to the liveness chain 6055 */ 6056 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 6057 callee->regs[i] = caller->regs[i]; 6058 return 0; 6059 } 6060 6061 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6062 int *insn_idx) 6063 { 6064 int subprog, target_insn; 6065 6066 target_insn = *insn_idx + insn->imm + 1; 6067 subprog = find_subprog(env, target_insn); 6068 if (subprog < 0) { 6069 verbose(env, "verifier bug. No program starts at insn %d\n", 6070 target_insn); 6071 return -EFAULT; 6072 } 6073 6074 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 6075 } 6076 6077 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 6078 struct bpf_func_state *caller, 6079 struct bpf_func_state *callee, 6080 int insn_idx) 6081 { 6082 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 6083 struct bpf_map *map; 6084 int err; 6085 6086 if (bpf_map_ptr_poisoned(insn_aux)) { 6087 verbose(env, "tail_call abusing map_ptr\n"); 6088 return -EINVAL; 6089 } 6090 6091 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 6092 if (!map->ops->map_set_for_each_callback_args || 6093 !map->ops->map_for_each_callback) { 6094 verbose(env, "callback function not allowed for map\n"); 6095 return -ENOTSUPP; 6096 } 6097 6098 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 6099 if (err) 6100 return err; 6101 6102 callee->in_callback_fn = true; 6103 return 0; 6104 } 6105 6106 static int set_loop_callback_state(struct bpf_verifier_env *env, 6107 struct bpf_func_state *caller, 6108 struct bpf_func_state *callee, 6109 int insn_idx) 6110 { 6111 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 6112 * u64 flags); 6113 * callback_fn(u32 index, void *callback_ctx); 6114 */ 6115 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 6116 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 6117 6118 /* unused */ 6119 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 6120 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6121 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6122 6123 callee->in_callback_fn = true; 6124 return 0; 6125 } 6126 6127 static int set_timer_callback_state(struct bpf_verifier_env *env, 6128 struct bpf_func_state *caller, 6129 struct bpf_func_state *callee, 6130 int insn_idx) 6131 { 6132 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 6133 6134 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 6135 * callback_fn(struct bpf_map *map, void *key, void *value); 6136 */ 6137 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 6138 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 6139 callee->regs[BPF_REG_1].map_ptr = map_ptr; 6140 6141 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6142 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6143 callee->regs[BPF_REG_2].map_ptr = map_ptr; 6144 6145 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6146 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6147 callee->regs[BPF_REG_3].map_ptr = map_ptr; 6148 6149 /* unused */ 6150 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6151 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6152 callee->in_async_callback_fn = true; 6153 return 0; 6154 } 6155 6156 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 6157 struct bpf_func_state *caller, 6158 struct bpf_func_state *callee, 6159 int insn_idx) 6160 { 6161 /* bpf_find_vma(struct task_struct *task, u64 addr, 6162 * void *callback_fn, void *callback_ctx, u64 flags) 6163 * (callback_fn)(struct task_struct *task, 6164 * struct vm_area_struct *vma, void *callback_ctx); 6165 */ 6166 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6167 6168 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 6169 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6170 callee->regs[BPF_REG_2].btf = btf_vmlinux; 6171 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 6172 6173 /* pointer to stack or null */ 6174 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 6175 6176 /* unused */ 6177 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6178 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6179 callee->in_callback_fn = true; 6180 return 0; 6181 } 6182 6183 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 6184 { 6185 struct bpf_verifier_state *state = env->cur_state; 6186 struct bpf_func_state *caller, *callee; 6187 struct bpf_reg_state *r0; 6188 int err; 6189 6190 callee = state->frame[state->curframe]; 6191 r0 = &callee->regs[BPF_REG_0]; 6192 if (r0->type == PTR_TO_STACK) { 6193 /* technically it's ok to return caller's stack pointer 6194 * (or caller's caller's pointer) back to the caller, 6195 * since these pointers are valid. Only current stack 6196 * pointer will be invalid as soon as function exits, 6197 * but let's be conservative 6198 */ 6199 verbose(env, "cannot return stack pointer to the caller\n"); 6200 return -EINVAL; 6201 } 6202 6203 state->curframe--; 6204 caller = state->frame[state->curframe]; 6205 if (callee->in_callback_fn) { 6206 /* enforce R0 return value range [0, 1]. */ 6207 struct tnum range = tnum_range(0, 1); 6208 6209 if (r0->type != SCALAR_VALUE) { 6210 verbose(env, "R0 not a scalar value\n"); 6211 return -EACCES; 6212 } 6213 if (!tnum_in(range, r0->var_off)) { 6214 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 6215 return -EINVAL; 6216 } 6217 } else { 6218 /* return to the caller whatever r0 had in the callee */ 6219 caller->regs[BPF_REG_0] = *r0; 6220 } 6221 6222 /* Transfer references to the caller */ 6223 err = copy_reference_state(caller, callee); 6224 if (err) 6225 return err; 6226 6227 *insn_idx = callee->callsite + 1; 6228 if (env->log.level & BPF_LOG_LEVEL) { 6229 verbose(env, "returning from callee:\n"); 6230 print_verifier_state(env, callee); 6231 verbose(env, "to caller at %d:\n", *insn_idx); 6232 print_verifier_state(env, caller); 6233 } 6234 /* clear everything in the callee */ 6235 free_func_state(callee); 6236 state->frame[state->curframe + 1] = NULL; 6237 return 0; 6238 } 6239 6240 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 6241 int func_id, 6242 struct bpf_call_arg_meta *meta) 6243 { 6244 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 6245 6246 if (ret_type != RET_INTEGER || 6247 (func_id != BPF_FUNC_get_stack && 6248 func_id != BPF_FUNC_get_task_stack && 6249 func_id != BPF_FUNC_probe_read_str && 6250 func_id != BPF_FUNC_probe_read_kernel_str && 6251 func_id != BPF_FUNC_probe_read_user_str)) 6252 return; 6253 6254 ret_reg->smax_value = meta->msize_max_value; 6255 ret_reg->s32_max_value = meta->msize_max_value; 6256 ret_reg->smin_value = -MAX_ERRNO; 6257 ret_reg->s32_min_value = -MAX_ERRNO; 6258 __reg_deduce_bounds(ret_reg); 6259 __reg_bound_offset(ret_reg); 6260 __update_reg_bounds(ret_reg); 6261 } 6262 6263 static int 6264 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6265 int func_id, int insn_idx) 6266 { 6267 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 6268 struct bpf_map *map = meta->map_ptr; 6269 6270 if (func_id != BPF_FUNC_tail_call && 6271 func_id != BPF_FUNC_map_lookup_elem && 6272 func_id != BPF_FUNC_map_update_elem && 6273 func_id != BPF_FUNC_map_delete_elem && 6274 func_id != BPF_FUNC_map_push_elem && 6275 func_id != BPF_FUNC_map_pop_elem && 6276 func_id != BPF_FUNC_map_peek_elem && 6277 func_id != BPF_FUNC_for_each_map_elem && 6278 func_id != BPF_FUNC_redirect_map) 6279 return 0; 6280 6281 if (map == NULL) { 6282 verbose(env, "kernel subsystem misconfigured verifier\n"); 6283 return -EINVAL; 6284 } 6285 6286 /* In case of read-only, some additional restrictions 6287 * need to be applied in order to prevent altering the 6288 * state of the map from program side. 6289 */ 6290 if ((map->map_flags & BPF_F_RDONLY_PROG) && 6291 (func_id == BPF_FUNC_map_delete_elem || 6292 func_id == BPF_FUNC_map_update_elem || 6293 func_id == BPF_FUNC_map_push_elem || 6294 func_id == BPF_FUNC_map_pop_elem)) { 6295 verbose(env, "write into map forbidden\n"); 6296 return -EACCES; 6297 } 6298 6299 if (!BPF_MAP_PTR(aux->map_ptr_state)) 6300 bpf_map_ptr_store(aux, meta->map_ptr, 6301 !meta->map_ptr->bypass_spec_v1); 6302 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 6303 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 6304 !meta->map_ptr->bypass_spec_v1); 6305 return 0; 6306 } 6307 6308 static int 6309 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6310 int func_id, int insn_idx) 6311 { 6312 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 6313 struct bpf_reg_state *regs = cur_regs(env), *reg; 6314 struct bpf_map *map = meta->map_ptr; 6315 struct tnum range; 6316 u64 val; 6317 int err; 6318 6319 if (func_id != BPF_FUNC_tail_call) 6320 return 0; 6321 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 6322 verbose(env, "kernel subsystem misconfigured verifier\n"); 6323 return -EINVAL; 6324 } 6325 6326 range = tnum_range(0, map->max_entries - 1); 6327 reg = ®s[BPF_REG_3]; 6328 6329 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 6330 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 6331 return 0; 6332 } 6333 6334 err = mark_chain_precision(env, BPF_REG_3); 6335 if (err) 6336 return err; 6337 6338 val = reg->var_off.value; 6339 if (bpf_map_key_unseen(aux)) 6340 bpf_map_key_store(aux, val); 6341 else if (!bpf_map_key_poisoned(aux) && 6342 bpf_map_key_immediate(aux) != val) 6343 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 6344 return 0; 6345 } 6346 6347 static int check_reference_leak(struct bpf_verifier_env *env) 6348 { 6349 struct bpf_func_state *state = cur_func(env); 6350 int i; 6351 6352 for (i = 0; i < state->acquired_refs; i++) { 6353 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 6354 state->refs[i].id, state->refs[i].insn_idx); 6355 } 6356 return state->acquired_refs ? -EINVAL : 0; 6357 } 6358 6359 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 6360 struct bpf_reg_state *regs) 6361 { 6362 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 6363 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 6364 struct bpf_map *fmt_map = fmt_reg->map_ptr; 6365 int err, fmt_map_off, num_args; 6366 u64 fmt_addr; 6367 char *fmt; 6368 6369 /* data must be an array of u64 */ 6370 if (data_len_reg->var_off.value % 8) 6371 return -EINVAL; 6372 num_args = data_len_reg->var_off.value / 8; 6373 6374 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 6375 * and map_direct_value_addr is set. 6376 */ 6377 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 6378 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 6379 fmt_map_off); 6380 if (err) { 6381 verbose(env, "verifier bug\n"); 6382 return -EFAULT; 6383 } 6384 fmt = (char *)(long)fmt_addr + fmt_map_off; 6385 6386 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 6387 * can focus on validating the format specifiers. 6388 */ 6389 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args); 6390 if (err < 0) 6391 verbose(env, "Invalid format string\n"); 6392 6393 return err; 6394 } 6395 6396 static int check_get_func_ip(struct bpf_verifier_env *env) 6397 { 6398 enum bpf_attach_type eatype = env->prog->expected_attach_type; 6399 enum bpf_prog_type type = resolve_prog_type(env->prog); 6400 int func_id = BPF_FUNC_get_func_ip; 6401 6402 if (type == BPF_PROG_TYPE_TRACING) { 6403 if (eatype != BPF_TRACE_FENTRY && eatype != BPF_TRACE_FEXIT && 6404 eatype != BPF_MODIFY_RETURN) { 6405 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 6406 func_id_name(func_id), func_id); 6407 return -ENOTSUPP; 6408 } 6409 return 0; 6410 } else if (type == BPF_PROG_TYPE_KPROBE) { 6411 return 0; 6412 } 6413 6414 verbose(env, "func %s#%d not supported for program type %d\n", 6415 func_id_name(func_id), func_id, type); 6416 return -ENOTSUPP; 6417 } 6418 6419 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6420 int *insn_idx_p) 6421 { 6422 const struct bpf_func_proto *fn = NULL; 6423 struct bpf_reg_state *regs; 6424 struct bpf_call_arg_meta meta; 6425 int insn_idx = *insn_idx_p; 6426 bool changes_data; 6427 int i, err, func_id; 6428 6429 /* find function prototype */ 6430 func_id = insn->imm; 6431 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 6432 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 6433 func_id); 6434 return -EINVAL; 6435 } 6436 6437 if (env->ops->get_func_proto) 6438 fn = env->ops->get_func_proto(func_id, env->prog); 6439 if (!fn) { 6440 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 6441 func_id); 6442 return -EINVAL; 6443 } 6444 6445 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 6446 if (!env->prog->gpl_compatible && fn->gpl_only) { 6447 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 6448 return -EINVAL; 6449 } 6450 6451 if (fn->allowed && !fn->allowed(env->prog)) { 6452 verbose(env, "helper call is not allowed in probe\n"); 6453 return -EINVAL; 6454 } 6455 6456 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 6457 changes_data = bpf_helper_changes_pkt_data(fn->func); 6458 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 6459 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 6460 func_id_name(func_id), func_id); 6461 return -EINVAL; 6462 } 6463 6464 memset(&meta, 0, sizeof(meta)); 6465 meta.pkt_access = fn->pkt_access; 6466 6467 err = check_func_proto(fn, func_id); 6468 if (err) { 6469 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 6470 func_id_name(func_id), func_id); 6471 return err; 6472 } 6473 6474 meta.func_id = func_id; 6475 /* check args */ 6476 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 6477 err = check_func_arg(env, i, &meta, fn); 6478 if (err) 6479 return err; 6480 } 6481 6482 err = record_func_map(env, &meta, func_id, insn_idx); 6483 if (err) 6484 return err; 6485 6486 err = record_func_key(env, &meta, func_id, insn_idx); 6487 if (err) 6488 return err; 6489 6490 /* Mark slots with STACK_MISC in case of raw mode, stack offset 6491 * is inferred from register state. 6492 */ 6493 for (i = 0; i < meta.access_size; i++) { 6494 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 6495 BPF_WRITE, -1, false); 6496 if (err) 6497 return err; 6498 } 6499 6500 if (is_release_function(func_id)) { 6501 err = release_reference(env, meta.ref_obj_id); 6502 if (err) { 6503 verbose(env, "func %s#%d reference has not been acquired before\n", 6504 func_id_name(func_id), func_id); 6505 return err; 6506 } 6507 } 6508 6509 regs = cur_regs(env); 6510 6511 switch (func_id) { 6512 case BPF_FUNC_tail_call: 6513 err = check_reference_leak(env); 6514 if (err) { 6515 verbose(env, "tail_call would lead to reference leak\n"); 6516 return err; 6517 } 6518 break; 6519 case BPF_FUNC_get_local_storage: 6520 /* check that flags argument in get_local_storage(map, flags) is 0, 6521 * this is required because get_local_storage() can't return an error. 6522 */ 6523 if (!register_is_null(®s[BPF_REG_2])) { 6524 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 6525 return -EINVAL; 6526 } 6527 break; 6528 case BPF_FUNC_for_each_map_elem: 6529 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6530 set_map_elem_callback_state); 6531 break; 6532 case BPF_FUNC_timer_set_callback: 6533 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6534 set_timer_callback_state); 6535 break; 6536 case BPF_FUNC_find_vma: 6537 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6538 set_find_vma_callback_state); 6539 break; 6540 case BPF_FUNC_snprintf: 6541 err = check_bpf_snprintf_call(env, regs); 6542 break; 6543 case BPF_FUNC_loop: 6544 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6545 set_loop_callback_state); 6546 break; 6547 } 6548 6549 if (err) 6550 return err; 6551 6552 /* reset caller saved regs */ 6553 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6554 mark_reg_not_init(env, regs, caller_saved[i]); 6555 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6556 } 6557 6558 /* helper call returns 64-bit value. */ 6559 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6560 6561 /* update return register (already marked as written above) */ 6562 if (fn->ret_type == RET_INTEGER) { 6563 /* sets type to SCALAR_VALUE */ 6564 mark_reg_unknown(env, regs, BPF_REG_0); 6565 } else if (fn->ret_type == RET_VOID) { 6566 regs[BPF_REG_0].type = NOT_INIT; 6567 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 6568 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 6569 /* There is no offset yet applied, variable or fixed */ 6570 mark_reg_known_zero(env, regs, BPF_REG_0); 6571 /* remember map_ptr, so that check_map_access() 6572 * can check 'value_size' boundary of memory access 6573 * to map element returned from bpf_map_lookup_elem() 6574 */ 6575 if (meta.map_ptr == NULL) { 6576 verbose(env, 6577 "kernel subsystem misconfigured verifier\n"); 6578 return -EINVAL; 6579 } 6580 regs[BPF_REG_0].map_ptr = meta.map_ptr; 6581 regs[BPF_REG_0].map_uid = meta.map_uid; 6582 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 6583 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 6584 if (map_value_has_spin_lock(meta.map_ptr)) 6585 regs[BPF_REG_0].id = ++env->id_gen; 6586 } else { 6587 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 6588 } 6589 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 6590 mark_reg_known_zero(env, regs, BPF_REG_0); 6591 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 6592 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 6593 mark_reg_known_zero(env, regs, BPF_REG_0); 6594 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 6595 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 6596 mark_reg_known_zero(env, regs, BPF_REG_0); 6597 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 6598 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) { 6599 mark_reg_known_zero(env, regs, BPF_REG_0); 6600 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL; 6601 regs[BPF_REG_0].mem_size = meta.mem_size; 6602 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL || 6603 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) { 6604 const struct btf_type *t; 6605 6606 mark_reg_known_zero(env, regs, BPF_REG_0); 6607 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 6608 if (!btf_type_is_struct(t)) { 6609 u32 tsize; 6610 const struct btf_type *ret; 6611 const char *tname; 6612 6613 /* resolve the type size of ksym. */ 6614 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 6615 if (IS_ERR(ret)) { 6616 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 6617 verbose(env, "unable to resolve the size of type '%s': %ld\n", 6618 tname, PTR_ERR(ret)); 6619 return -EINVAL; 6620 } 6621 regs[BPF_REG_0].type = 6622 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 6623 PTR_TO_MEM : PTR_TO_MEM_OR_NULL; 6624 regs[BPF_REG_0].mem_size = tsize; 6625 } else { 6626 regs[BPF_REG_0].type = 6627 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 6628 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL; 6629 regs[BPF_REG_0].btf = meta.ret_btf; 6630 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 6631 } 6632 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL || 6633 fn->ret_type == RET_PTR_TO_BTF_ID) { 6634 int ret_btf_id; 6635 6636 mark_reg_known_zero(env, regs, BPF_REG_0); 6637 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ? 6638 PTR_TO_BTF_ID : 6639 PTR_TO_BTF_ID_OR_NULL; 6640 ret_btf_id = *fn->ret_btf_id; 6641 if (ret_btf_id == 0) { 6642 verbose(env, "invalid return type %d of func %s#%d\n", 6643 fn->ret_type, func_id_name(func_id), func_id); 6644 return -EINVAL; 6645 } 6646 /* current BPF helper definitions are only coming from 6647 * built-in code with type IDs from vmlinux BTF 6648 */ 6649 regs[BPF_REG_0].btf = btf_vmlinux; 6650 regs[BPF_REG_0].btf_id = ret_btf_id; 6651 } else { 6652 verbose(env, "unknown return type %d of func %s#%d\n", 6653 fn->ret_type, func_id_name(func_id), func_id); 6654 return -EINVAL; 6655 } 6656 6657 if (reg_type_may_be_null(regs[BPF_REG_0].type)) 6658 regs[BPF_REG_0].id = ++env->id_gen; 6659 6660 if (is_ptr_cast_function(func_id)) { 6661 /* For release_reference() */ 6662 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 6663 } else if (is_acquire_function(func_id, meta.map_ptr)) { 6664 int id = acquire_reference_state(env, insn_idx); 6665 6666 if (id < 0) 6667 return id; 6668 /* For mark_ptr_or_null_reg() */ 6669 regs[BPF_REG_0].id = id; 6670 /* For release_reference() */ 6671 regs[BPF_REG_0].ref_obj_id = id; 6672 } 6673 6674 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 6675 6676 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 6677 if (err) 6678 return err; 6679 6680 if ((func_id == BPF_FUNC_get_stack || 6681 func_id == BPF_FUNC_get_task_stack) && 6682 !env->prog->has_callchain_buf) { 6683 const char *err_str; 6684 6685 #ifdef CONFIG_PERF_EVENTS 6686 err = get_callchain_buffers(sysctl_perf_event_max_stack); 6687 err_str = "cannot get callchain buffer for func %s#%d\n"; 6688 #else 6689 err = -ENOTSUPP; 6690 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 6691 #endif 6692 if (err) { 6693 verbose(env, err_str, func_id_name(func_id), func_id); 6694 return err; 6695 } 6696 6697 env->prog->has_callchain_buf = true; 6698 } 6699 6700 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 6701 env->prog->call_get_stack = true; 6702 6703 if (func_id == BPF_FUNC_get_func_ip) { 6704 if (check_get_func_ip(env)) 6705 return -ENOTSUPP; 6706 env->prog->call_get_func_ip = true; 6707 } 6708 6709 if (changes_data) 6710 clear_all_pkt_pointers(env); 6711 return 0; 6712 } 6713 6714 /* mark_btf_func_reg_size() is used when the reg size is determined by 6715 * the BTF func_proto's return value size and argument. 6716 */ 6717 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 6718 size_t reg_size) 6719 { 6720 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 6721 6722 if (regno == BPF_REG_0) { 6723 /* Function return value */ 6724 reg->live |= REG_LIVE_WRITTEN; 6725 reg->subreg_def = reg_size == sizeof(u64) ? 6726 DEF_NOT_SUBREG : env->insn_idx + 1; 6727 } else { 6728 /* Function argument */ 6729 if (reg_size == sizeof(u64)) { 6730 mark_insn_zext(env, reg); 6731 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 6732 } else { 6733 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 6734 } 6735 } 6736 } 6737 6738 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn) 6739 { 6740 const struct btf_type *t, *func, *func_proto, *ptr_type; 6741 struct bpf_reg_state *regs = cur_regs(env); 6742 const char *func_name, *ptr_type_name; 6743 u32 i, nargs, func_id, ptr_type_id; 6744 struct module *btf_mod = NULL; 6745 const struct btf_param *args; 6746 struct btf *desc_btf; 6747 int err; 6748 6749 /* skip for now, but return error when we find this in fixup_kfunc_call */ 6750 if (!insn->imm) 6751 return 0; 6752 6753 desc_btf = find_kfunc_desc_btf(env, insn->imm, insn->off, &btf_mod); 6754 if (IS_ERR(desc_btf)) 6755 return PTR_ERR(desc_btf); 6756 6757 func_id = insn->imm; 6758 func = btf_type_by_id(desc_btf, func_id); 6759 func_name = btf_name_by_offset(desc_btf, func->name_off); 6760 func_proto = btf_type_by_id(desc_btf, func->type); 6761 6762 if (!env->ops->check_kfunc_call || 6763 !env->ops->check_kfunc_call(func_id, btf_mod)) { 6764 verbose(env, "calling kernel function %s is not allowed\n", 6765 func_name); 6766 return -EACCES; 6767 } 6768 6769 /* Check the arguments */ 6770 err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs); 6771 if (err) 6772 return err; 6773 6774 for (i = 0; i < CALLER_SAVED_REGS; i++) 6775 mark_reg_not_init(env, regs, caller_saved[i]); 6776 6777 /* Check return type */ 6778 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL); 6779 if (btf_type_is_scalar(t)) { 6780 mark_reg_unknown(env, regs, BPF_REG_0); 6781 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 6782 } else if (btf_type_is_ptr(t)) { 6783 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, 6784 &ptr_type_id); 6785 if (!btf_type_is_struct(ptr_type)) { 6786 ptr_type_name = btf_name_by_offset(desc_btf, 6787 ptr_type->name_off); 6788 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n", 6789 func_name, btf_type_str(ptr_type), 6790 ptr_type_name); 6791 return -EINVAL; 6792 } 6793 mark_reg_known_zero(env, regs, BPF_REG_0); 6794 regs[BPF_REG_0].btf = desc_btf; 6795 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 6796 regs[BPF_REG_0].btf_id = ptr_type_id; 6797 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 6798 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 6799 6800 nargs = btf_type_vlen(func_proto); 6801 args = (const struct btf_param *)(func_proto + 1); 6802 for (i = 0; i < nargs; i++) { 6803 u32 regno = i + 1; 6804 6805 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 6806 if (btf_type_is_ptr(t)) 6807 mark_btf_func_reg_size(env, regno, sizeof(void *)); 6808 else 6809 /* scalar. ensured by btf_check_kfunc_arg_match() */ 6810 mark_btf_func_reg_size(env, regno, t->size); 6811 } 6812 6813 return 0; 6814 } 6815 6816 static bool signed_add_overflows(s64 a, s64 b) 6817 { 6818 /* Do the add in u64, where overflow is well-defined */ 6819 s64 res = (s64)((u64)a + (u64)b); 6820 6821 if (b < 0) 6822 return res > a; 6823 return res < a; 6824 } 6825 6826 static bool signed_add32_overflows(s32 a, s32 b) 6827 { 6828 /* Do the add in u32, where overflow is well-defined */ 6829 s32 res = (s32)((u32)a + (u32)b); 6830 6831 if (b < 0) 6832 return res > a; 6833 return res < a; 6834 } 6835 6836 static bool signed_sub_overflows(s64 a, s64 b) 6837 { 6838 /* Do the sub in u64, where overflow is well-defined */ 6839 s64 res = (s64)((u64)a - (u64)b); 6840 6841 if (b < 0) 6842 return res < a; 6843 return res > a; 6844 } 6845 6846 static bool signed_sub32_overflows(s32 a, s32 b) 6847 { 6848 /* Do the sub in u32, where overflow is well-defined */ 6849 s32 res = (s32)((u32)a - (u32)b); 6850 6851 if (b < 0) 6852 return res < a; 6853 return res > a; 6854 } 6855 6856 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 6857 const struct bpf_reg_state *reg, 6858 enum bpf_reg_type type) 6859 { 6860 bool known = tnum_is_const(reg->var_off); 6861 s64 val = reg->var_off.value; 6862 s64 smin = reg->smin_value; 6863 6864 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 6865 verbose(env, "math between %s pointer and %lld is not allowed\n", 6866 reg_type_str[type], val); 6867 return false; 6868 } 6869 6870 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 6871 verbose(env, "%s pointer offset %d is not allowed\n", 6872 reg_type_str[type], reg->off); 6873 return false; 6874 } 6875 6876 if (smin == S64_MIN) { 6877 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 6878 reg_type_str[type]); 6879 return false; 6880 } 6881 6882 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 6883 verbose(env, "value %lld makes %s pointer be out of bounds\n", 6884 smin, reg_type_str[type]); 6885 return false; 6886 } 6887 6888 return true; 6889 } 6890 6891 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 6892 { 6893 return &env->insn_aux_data[env->insn_idx]; 6894 } 6895 6896 enum { 6897 REASON_BOUNDS = -1, 6898 REASON_TYPE = -2, 6899 REASON_PATHS = -3, 6900 REASON_LIMIT = -4, 6901 REASON_STACK = -5, 6902 }; 6903 6904 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 6905 u32 *alu_limit, bool mask_to_left) 6906 { 6907 u32 max = 0, ptr_limit = 0; 6908 6909 switch (ptr_reg->type) { 6910 case PTR_TO_STACK: 6911 /* Offset 0 is out-of-bounds, but acceptable start for the 6912 * left direction, see BPF_REG_FP. Also, unknown scalar 6913 * offset where we would need to deal with min/max bounds is 6914 * currently prohibited for unprivileged. 6915 */ 6916 max = MAX_BPF_STACK + mask_to_left; 6917 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 6918 break; 6919 case PTR_TO_MAP_VALUE: 6920 max = ptr_reg->map_ptr->value_size; 6921 ptr_limit = (mask_to_left ? 6922 ptr_reg->smin_value : 6923 ptr_reg->umax_value) + ptr_reg->off; 6924 break; 6925 default: 6926 return REASON_TYPE; 6927 } 6928 6929 if (ptr_limit >= max) 6930 return REASON_LIMIT; 6931 *alu_limit = ptr_limit; 6932 return 0; 6933 } 6934 6935 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 6936 const struct bpf_insn *insn) 6937 { 6938 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 6939 } 6940 6941 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 6942 u32 alu_state, u32 alu_limit) 6943 { 6944 /* If we arrived here from different branches with different 6945 * state or limits to sanitize, then this won't work. 6946 */ 6947 if (aux->alu_state && 6948 (aux->alu_state != alu_state || 6949 aux->alu_limit != alu_limit)) 6950 return REASON_PATHS; 6951 6952 /* Corresponding fixup done in do_misc_fixups(). */ 6953 aux->alu_state = alu_state; 6954 aux->alu_limit = alu_limit; 6955 return 0; 6956 } 6957 6958 static int sanitize_val_alu(struct bpf_verifier_env *env, 6959 struct bpf_insn *insn) 6960 { 6961 struct bpf_insn_aux_data *aux = cur_aux(env); 6962 6963 if (can_skip_alu_sanitation(env, insn)) 6964 return 0; 6965 6966 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 6967 } 6968 6969 static bool sanitize_needed(u8 opcode) 6970 { 6971 return opcode == BPF_ADD || opcode == BPF_SUB; 6972 } 6973 6974 struct bpf_sanitize_info { 6975 struct bpf_insn_aux_data aux; 6976 bool mask_to_left; 6977 }; 6978 6979 static struct bpf_verifier_state * 6980 sanitize_speculative_path(struct bpf_verifier_env *env, 6981 const struct bpf_insn *insn, 6982 u32 next_idx, u32 curr_idx) 6983 { 6984 struct bpf_verifier_state *branch; 6985 struct bpf_reg_state *regs; 6986 6987 branch = push_stack(env, next_idx, curr_idx, true); 6988 if (branch && insn) { 6989 regs = branch->frame[branch->curframe]->regs; 6990 if (BPF_SRC(insn->code) == BPF_K) { 6991 mark_reg_unknown(env, regs, insn->dst_reg); 6992 } else if (BPF_SRC(insn->code) == BPF_X) { 6993 mark_reg_unknown(env, regs, insn->dst_reg); 6994 mark_reg_unknown(env, regs, insn->src_reg); 6995 } 6996 } 6997 return branch; 6998 } 6999 7000 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 7001 struct bpf_insn *insn, 7002 const struct bpf_reg_state *ptr_reg, 7003 const struct bpf_reg_state *off_reg, 7004 struct bpf_reg_state *dst_reg, 7005 struct bpf_sanitize_info *info, 7006 const bool commit_window) 7007 { 7008 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 7009 struct bpf_verifier_state *vstate = env->cur_state; 7010 bool off_is_imm = tnum_is_const(off_reg->var_off); 7011 bool off_is_neg = off_reg->smin_value < 0; 7012 bool ptr_is_dst_reg = ptr_reg == dst_reg; 7013 u8 opcode = BPF_OP(insn->code); 7014 u32 alu_state, alu_limit; 7015 struct bpf_reg_state tmp; 7016 bool ret; 7017 int err; 7018 7019 if (can_skip_alu_sanitation(env, insn)) 7020 return 0; 7021 7022 /* We already marked aux for masking from non-speculative 7023 * paths, thus we got here in the first place. We only care 7024 * to explore bad access from here. 7025 */ 7026 if (vstate->speculative) 7027 goto do_sim; 7028 7029 if (!commit_window) { 7030 if (!tnum_is_const(off_reg->var_off) && 7031 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 7032 return REASON_BOUNDS; 7033 7034 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 7035 (opcode == BPF_SUB && !off_is_neg); 7036 } 7037 7038 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 7039 if (err < 0) 7040 return err; 7041 7042 if (commit_window) { 7043 /* In commit phase we narrow the masking window based on 7044 * the observed pointer move after the simulated operation. 7045 */ 7046 alu_state = info->aux.alu_state; 7047 alu_limit = abs(info->aux.alu_limit - alu_limit); 7048 } else { 7049 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 7050 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 7051 alu_state |= ptr_is_dst_reg ? 7052 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 7053 7054 /* Limit pruning on unknown scalars to enable deep search for 7055 * potential masking differences from other program paths. 7056 */ 7057 if (!off_is_imm) 7058 env->explore_alu_limits = true; 7059 } 7060 7061 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 7062 if (err < 0) 7063 return err; 7064 do_sim: 7065 /* If we're in commit phase, we're done here given we already 7066 * pushed the truncated dst_reg into the speculative verification 7067 * stack. 7068 * 7069 * Also, when register is a known constant, we rewrite register-based 7070 * operation to immediate-based, and thus do not need masking (and as 7071 * a consequence, do not need to simulate the zero-truncation either). 7072 */ 7073 if (commit_window || off_is_imm) 7074 return 0; 7075 7076 /* Simulate and find potential out-of-bounds access under 7077 * speculative execution from truncation as a result of 7078 * masking when off was not within expected range. If off 7079 * sits in dst, then we temporarily need to move ptr there 7080 * to simulate dst (== 0) +/-= ptr. Needed, for example, 7081 * for cases where we use K-based arithmetic in one direction 7082 * and truncated reg-based in the other in order to explore 7083 * bad access. 7084 */ 7085 if (!ptr_is_dst_reg) { 7086 tmp = *dst_reg; 7087 *dst_reg = *ptr_reg; 7088 } 7089 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 7090 env->insn_idx); 7091 if (!ptr_is_dst_reg && ret) 7092 *dst_reg = tmp; 7093 return !ret ? REASON_STACK : 0; 7094 } 7095 7096 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 7097 { 7098 struct bpf_verifier_state *vstate = env->cur_state; 7099 7100 /* If we simulate paths under speculation, we don't update the 7101 * insn as 'seen' such that when we verify unreachable paths in 7102 * the non-speculative domain, sanitize_dead_code() can still 7103 * rewrite/sanitize them. 7104 */ 7105 if (!vstate->speculative) 7106 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 7107 } 7108 7109 static int sanitize_err(struct bpf_verifier_env *env, 7110 const struct bpf_insn *insn, int reason, 7111 const struct bpf_reg_state *off_reg, 7112 const struct bpf_reg_state *dst_reg) 7113 { 7114 static const char *err = "pointer arithmetic with it prohibited for !root"; 7115 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 7116 u32 dst = insn->dst_reg, src = insn->src_reg; 7117 7118 switch (reason) { 7119 case REASON_BOUNDS: 7120 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 7121 off_reg == dst_reg ? dst : src, err); 7122 break; 7123 case REASON_TYPE: 7124 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 7125 off_reg == dst_reg ? src : dst, err); 7126 break; 7127 case REASON_PATHS: 7128 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 7129 dst, op, err); 7130 break; 7131 case REASON_LIMIT: 7132 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 7133 dst, op, err); 7134 break; 7135 case REASON_STACK: 7136 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 7137 dst, err); 7138 break; 7139 default: 7140 verbose(env, "verifier internal error: unknown reason (%d)\n", 7141 reason); 7142 break; 7143 } 7144 7145 return -EACCES; 7146 } 7147 7148 /* check that stack access falls within stack limits and that 'reg' doesn't 7149 * have a variable offset. 7150 * 7151 * Variable offset is prohibited for unprivileged mode for simplicity since it 7152 * requires corresponding support in Spectre masking for stack ALU. See also 7153 * retrieve_ptr_limit(). 7154 * 7155 * 7156 * 'off' includes 'reg->off'. 7157 */ 7158 static int check_stack_access_for_ptr_arithmetic( 7159 struct bpf_verifier_env *env, 7160 int regno, 7161 const struct bpf_reg_state *reg, 7162 int off) 7163 { 7164 if (!tnum_is_const(reg->var_off)) { 7165 char tn_buf[48]; 7166 7167 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7168 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 7169 regno, tn_buf, off); 7170 return -EACCES; 7171 } 7172 7173 if (off >= 0 || off < -MAX_BPF_STACK) { 7174 verbose(env, "R%d stack pointer arithmetic goes out of range, " 7175 "prohibited for !root; off=%d\n", regno, off); 7176 return -EACCES; 7177 } 7178 7179 return 0; 7180 } 7181 7182 static int sanitize_check_bounds(struct bpf_verifier_env *env, 7183 const struct bpf_insn *insn, 7184 const struct bpf_reg_state *dst_reg) 7185 { 7186 u32 dst = insn->dst_reg; 7187 7188 /* For unprivileged we require that resulting offset must be in bounds 7189 * in order to be able to sanitize access later on. 7190 */ 7191 if (env->bypass_spec_v1) 7192 return 0; 7193 7194 switch (dst_reg->type) { 7195 case PTR_TO_STACK: 7196 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 7197 dst_reg->off + dst_reg->var_off.value)) 7198 return -EACCES; 7199 break; 7200 case PTR_TO_MAP_VALUE: 7201 if (check_map_access(env, dst, dst_reg->off, 1, false)) { 7202 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 7203 "prohibited for !root\n", dst); 7204 return -EACCES; 7205 } 7206 break; 7207 default: 7208 break; 7209 } 7210 7211 return 0; 7212 } 7213 7214 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 7215 * Caller should also handle BPF_MOV case separately. 7216 * If we return -EACCES, caller may want to try again treating pointer as a 7217 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 7218 */ 7219 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 7220 struct bpf_insn *insn, 7221 const struct bpf_reg_state *ptr_reg, 7222 const struct bpf_reg_state *off_reg) 7223 { 7224 struct bpf_verifier_state *vstate = env->cur_state; 7225 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7226 struct bpf_reg_state *regs = state->regs, *dst_reg; 7227 bool known = tnum_is_const(off_reg->var_off); 7228 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 7229 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 7230 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 7231 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 7232 struct bpf_sanitize_info info = {}; 7233 u8 opcode = BPF_OP(insn->code); 7234 u32 dst = insn->dst_reg; 7235 int ret; 7236 7237 dst_reg = ®s[dst]; 7238 7239 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 7240 smin_val > smax_val || umin_val > umax_val) { 7241 /* Taint dst register if offset had invalid bounds derived from 7242 * e.g. dead branches. 7243 */ 7244 __mark_reg_unknown(env, dst_reg); 7245 return 0; 7246 } 7247 7248 if (BPF_CLASS(insn->code) != BPF_ALU64) { 7249 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 7250 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 7251 __mark_reg_unknown(env, dst_reg); 7252 return 0; 7253 } 7254 7255 verbose(env, 7256 "R%d 32-bit pointer arithmetic prohibited\n", 7257 dst); 7258 return -EACCES; 7259 } 7260 7261 switch (ptr_reg->type) { 7262 case PTR_TO_MAP_VALUE_OR_NULL: 7263 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 7264 dst, reg_type_str[ptr_reg->type]); 7265 return -EACCES; 7266 case CONST_PTR_TO_MAP: 7267 /* smin_val represents the known value */ 7268 if (known && smin_val == 0 && opcode == BPF_ADD) 7269 break; 7270 fallthrough; 7271 case PTR_TO_PACKET_END: 7272 case PTR_TO_SOCKET: 7273 case PTR_TO_SOCKET_OR_NULL: 7274 case PTR_TO_SOCK_COMMON: 7275 case PTR_TO_SOCK_COMMON_OR_NULL: 7276 case PTR_TO_TCP_SOCK: 7277 case PTR_TO_TCP_SOCK_OR_NULL: 7278 case PTR_TO_XDP_SOCK: 7279 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 7280 dst, reg_type_str[ptr_reg->type]); 7281 return -EACCES; 7282 default: 7283 break; 7284 } 7285 7286 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 7287 * The id may be overwritten later if we create a new variable offset. 7288 */ 7289 dst_reg->type = ptr_reg->type; 7290 dst_reg->id = ptr_reg->id; 7291 7292 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 7293 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 7294 return -EINVAL; 7295 7296 /* pointer types do not carry 32-bit bounds at the moment. */ 7297 __mark_reg32_unbounded(dst_reg); 7298 7299 if (sanitize_needed(opcode)) { 7300 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 7301 &info, false); 7302 if (ret < 0) 7303 return sanitize_err(env, insn, ret, off_reg, dst_reg); 7304 } 7305 7306 switch (opcode) { 7307 case BPF_ADD: 7308 /* We can take a fixed offset as long as it doesn't overflow 7309 * the s32 'off' field 7310 */ 7311 if (known && (ptr_reg->off + smin_val == 7312 (s64)(s32)(ptr_reg->off + smin_val))) { 7313 /* pointer += K. Accumulate it into fixed offset */ 7314 dst_reg->smin_value = smin_ptr; 7315 dst_reg->smax_value = smax_ptr; 7316 dst_reg->umin_value = umin_ptr; 7317 dst_reg->umax_value = umax_ptr; 7318 dst_reg->var_off = ptr_reg->var_off; 7319 dst_reg->off = ptr_reg->off + smin_val; 7320 dst_reg->raw = ptr_reg->raw; 7321 break; 7322 } 7323 /* A new variable offset is created. Note that off_reg->off 7324 * == 0, since it's a scalar. 7325 * dst_reg gets the pointer type and since some positive 7326 * integer value was added to the pointer, give it a new 'id' 7327 * if it's a PTR_TO_PACKET. 7328 * this creates a new 'base' pointer, off_reg (variable) gets 7329 * added into the variable offset, and we copy the fixed offset 7330 * from ptr_reg. 7331 */ 7332 if (signed_add_overflows(smin_ptr, smin_val) || 7333 signed_add_overflows(smax_ptr, smax_val)) { 7334 dst_reg->smin_value = S64_MIN; 7335 dst_reg->smax_value = S64_MAX; 7336 } else { 7337 dst_reg->smin_value = smin_ptr + smin_val; 7338 dst_reg->smax_value = smax_ptr + smax_val; 7339 } 7340 if (umin_ptr + umin_val < umin_ptr || 7341 umax_ptr + umax_val < umax_ptr) { 7342 dst_reg->umin_value = 0; 7343 dst_reg->umax_value = U64_MAX; 7344 } else { 7345 dst_reg->umin_value = umin_ptr + umin_val; 7346 dst_reg->umax_value = umax_ptr + umax_val; 7347 } 7348 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 7349 dst_reg->off = ptr_reg->off; 7350 dst_reg->raw = ptr_reg->raw; 7351 if (reg_is_pkt_pointer(ptr_reg)) { 7352 dst_reg->id = ++env->id_gen; 7353 /* something was added to pkt_ptr, set range to zero */ 7354 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 7355 } 7356 break; 7357 case BPF_SUB: 7358 if (dst_reg == off_reg) { 7359 /* scalar -= pointer. Creates an unknown scalar */ 7360 verbose(env, "R%d tried to subtract pointer from scalar\n", 7361 dst); 7362 return -EACCES; 7363 } 7364 /* We don't allow subtraction from FP, because (according to 7365 * test_verifier.c test "invalid fp arithmetic", JITs might not 7366 * be able to deal with it. 7367 */ 7368 if (ptr_reg->type == PTR_TO_STACK) { 7369 verbose(env, "R%d subtraction from stack pointer prohibited\n", 7370 dst); 7371 return -EACCES; 7372 } 7373 if (known && (ptr_reg->off - smin_val == 7374 (s64)(s32)(ptr_reg->off - smin_val))) { 7375 /* pointer -= K. Subtract it from fixed offset */ 7376 dst_reg->smin_value = smin_ptr; 7377 dst_reg->smax_value = smax_ptr; 7378 dst_reg->umin_value = umin_ptr; 7379 dst_reg->umax_value = umax_ptr; 7380 dst_reg->var_off = ptr_reg->var_off; 7381 dst_reg->id = ptr_reg->id; 7382 dst_reg->off = ptr_reg->off - smin_val; 7383 dst_reg->raw = ptr_reg->raw; 7384 break; 7385 } 7386 /* A new variable offset is created. If the subtrahend is known 7387 * nonnegative, then any reg->range we had before is still good. 7388 */ 7389 if (signed_sub_overflows(smin_ptr, smax_val) || 7390 signed_sub_overflows(smax_ptr, smin_val)) { 7391 /* Overflow possible, we know nothing */ 7392 dst_reg->smin_value = S64_MIN; 7393 dst_reg->smax_value = S64_MAX; 7394 } else { 7395 dst_reg->smin_value = smin_ptr - smax_val; 7396 dst_reg->smax_value = smax_ptr - smin_val; 7397 } 7398 if (umin_ptr < umax_val) { 7399 /* Overflow possible, we know nothing */ 7400 dst_reg->umin_value = 0; 7401 dst_reg->umax_value = U64_MAX; 7402 } else { 7403 /* Cannot overflow (as long as bounds are consistent) */ 7404 dst_reg->umin_value = umin_ptr - umax_val; 7405 dst_reg->umax_value = umax_ptr - umin_val; 7406 } 7407 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 7408 dst_reg->off = ptr_reg->off; 7409 dst_reg->raw = ptr_reg->raw; 7410 if (reg_is_pkt_pointer(ptr_reg)) { 7411 dst_reg->id = ++env->id_gen; 7412 /* something was added to pkt_ptr, set range to zero */ 7413 if (smin_val < 0) 7414 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 7415 } 7416 break; 7417 case BPF_AND: 7418 case BPF_OR: 7419 case BPF_XOR: 7420 /* bitwise ops on pointers are troublesome, prohibit. */ 7421 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 7422 dst, bpf_alu_string[opcode >> 4]); 7423 return -EACCES; 7424 default: 7425 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 7426 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 7427 dst, bpf_alu_string[opcode >> 4]); 7428 return -EACCES; 7429 } 7430 7431 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 7432 return -EINVAL; 7433 7434 __update_reg_bounds(dst_reg); 7435 __reg_deduce_bounds(dst_reg); 7436 __reg_bound_offset(dst_reg); 7437 7438 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 7439 return -EACCES; 7440 if (sanitize_needed(opcode)) { 7441 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 7442 &info, true); 7443 if (ret < 0) 7444 return sanitize_err(env, insn, ret, off_reg, dst_reg); 7445 } 7446 7447 return 0; 7448 } 7449 7450 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 7451 struct bpf_reg_state *src_reg) 7452 { 7453 s32 smin_val = src_reg->s32_min_value; 7454 s32 smax_val = src_reg->s32_max_value; 7455 u32 umin_val = src_reg->u32_min_value; 7456 u32 umax_val = src_reg->u32_max_value; 7457 7458 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 7459 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 7460 dst_reg->s32_min_value = S32_MIN; 7461 dst_reg->s32_max_value = S32_MAX; 7462 } else { 7463 dst_reg->s32_min_value += smin_val; 7464 dst_reg->s32_max_value += smax_val; 7465 } 7466 if (dst_reg->u32_min_value + umin_val < umin_val || 7467 dst_reg->u32_max_value + umax_val < umax_val) { 7468 dst_reg->u32_min_value = 0; 7469 dst_reg->u32_max_value = U32_MAX; 7470 } else { 7471 dst_reg->u32_min_value += umin_val; 7472 dst_reg->u32_max_value += umax_val; 7473 } 7474 } 7475 7476 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 7477 struct bpf_reg_state *src_reg) 7478 { 7479 s64 smin_val = src_reg->smin_value; 7480 s64 smax_val = src_reg->smax_value; 7481 u64 umin_val = src_reg->umin_value; 7482 u64 umax_val = src_reg->umax_value; 7483 7484 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 7485 signed_add_overflows(dst_reg->smax_value, smax_val)) { 7486 dst_reg->smin_value = S64_MIN; 7487 dst_reg->smax_value = S64_MAX; 7488 } else { 7489 dst_reg->smin_value += smin_val; 7490 dst_reg->smax_value += smax_val; 7491 } 7492 if (dst_reg->umin_value + umin_val < umin_val || 7493 dst_reg->umax_value + umax_val < umax_val) { 7494 dst_reg->umin_value = 0; 7495 dst_reg->umax_value = U64_MAX; 7496 } else { 7497 dst_reg->umin_value += umin_val; 7498 dst_reg->umax_value += umax_val; 7499 } 7500 } 7501 7502 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 7503 struct bpf_reg_state *src_reg) 7504 { 7505 s32 smin_val = src_reg->s32_min_value; 7506 s32 smax_val = src_reg->s32_max_value; 7507 u32 umin_val = src_reg->u32_min_value; 7508 u32 umax_val = src_reg->u32_max_value; 7509 7510 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 7511 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 7512 /* Overflow possible, we know nothing */ 7513 dst_reg->s32_min_value = S32_MIN; 7514 dst_reg->s32_max_value = S32_MAX; 7515 } else { 7516 dst_reg->s32_min_value -= smax_val; 7517 dst_reg->s32_max_value -= smin_val; 7518 } 7519 if (dst_reg->u32_min_value < umax_val) { 7520 /* Overflow possible, we know nothing */ 7521 dst_reg->u32_min_value = 0; 7522 dst_reg->u32_max_value = U32_MAX; 7523 } else { 7524 /* Cannot overflow (as long as bounds are consistent) */ 7525 dst_reg->u32_min_value -= umax_val; 7526 dst_reg->u32_max_value -= umin_val; 7527 } 7528 } 7529 7530 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 7531 struct bpf_reg_state *src_reg) 7532 { 7533 s64 smin_val = src_reg->smin_value; 7534 s64 smax_val = src_reg->smax_value; 7535 u64 umin_val = src_reg->umin_value; 7536 u64 umax_val = src_reg->umax_value; 7537 7538 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 7539 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 7540 /* Overflow possible, we know nothing */ 7541 dst_reg->smin_value = S64_MIN; 7542 dst_reg->smax_value = S64_MAX; 7543 } else { 7544 dst_reg->smin_value -= smax_val; 7545 dst_reg->smax_value -= smin_val; 7546 } 7547 if (dst_reg->umin_value < umax_val) { 7548 /* Overflow possible, we know nothing */ 7549 dst_reg->umin_value = 0; 7550 dst_reg->umax_value = U64_MAX; 7551 } else { 7552 /* Cannot overflow (as long as bounds are consistent) */ 7553 dst_reg->umin_value -= umax_val; 7554 dst_reg->umax_value -= umin_val; 7555 } 7556 } 7557 7558 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 7559 struct bpf_reg_state *src_reg) 7560 { 7561 s32 smin_val = src_reg->s32_min_value; 7562 u32 umin_val = src_reg->u32_min_value; 7563 u32 umax_val = src_reg->u32_max_value; 7564 7565 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 7566 /* Ain't nobody got time to multiply that sign */ 7567 __mark_reg32_unbounded(dst_reg); 7568 return; 7569 } 7570 /* Both values are positive, so we can work with unsigned and 7571 * copy the result to signed (unless it exceeds S32_MAX). 7572 */ 7573 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 7574 /* Potential overflow, we know nothing */ 7575 __mark_reg32_unbounded(dst_reg); 7576 return; 7577 } 7578 dst_reg->u32_min_value *= umin_val; 7579 dst_reg->u32_max_value *= umax_val; 7580 if (dst_reg->u32_max_value > S32_MAX) { 7581 /* Overflow possible, we know nothing */ 7582 dst_reg->s32_min_value = S32_MIN; 7583 dst_reg->s32_max_value = S32_MAX; 7584 } else { 7585 dst_reg->s32_min_value = dst_reg->u32_min_value; 7586 dst_reg->s32_max_value = dst_reg->u32_max_value; 7587 } 7588 } 7589 7590 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 7591 struct bpf_reg_state *src_reg) 7592 { 7593 s64 smin_val = src_reg->smin_value; 7594 u64 umin_val = src_reg->umin_value; 7595 u64 umax_val = src_reg->umax_value; 7596 7597 if (smin_val < 0 || dst_reg->smin_value < 0) { 7598 /* Ain't nobody got time to multiply that sign */ 7599 __mark_reg64_unbounded(dst_reg); 7600 return; 7601 } 7602 /* Both values are positive, so we can work with unsigned and 7603 * copy the result to signed (unless it exceeds S64_MAX). 7604 */ 7605 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 7606 /* Potential overflow, we know nothing */ 7607 __mark_reg64_unbounded(dst_reg); 7608 return; 7609 } 7610 dst_reg->umin_value *= umin_val; 7611 dst_reg->umax_value *= umax_val; 7612 if (dst_reg->umax_value > S64_MAX) { 7613 /* Overflow possible, we know nothing */ 7614 dst_reg->smin_value = S64_MIN; 7615 dst_reg->smax_value = S64_MAX; 7616 } else { 7617 dst_reg->smin_value = dst_reg->umin_value; 7618 dst_reg->smax_value = dst_reg->umax_value; 7619 } 7620 } 7621 7622 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 7623 struct bpf_reg_state *src_reg) 7624 { 7625 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7626 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7627 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7628 s32 smin_val = src_reg->s32_min_value; 7629 u32 umax_val = src_reg->u32_max_value; 7630 7631 if (src_known && dst_known) { 7632 __mark_reg32_known(dst_reg, var32_off.value); 7633 return; 7634 } 7635 7636 /* We get our minimum from the var_off, since that's inherently 7637 * bitwise. Our maximum is the minimum of the operands' maxima. 7638 */ 7639 dst_reg->u32_min_value = var32_off.value; 7640 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 7641 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7642 /* Lose signed bounds when ANDing negative numbers, 7643 * ain't nobody got time for that. 7644 */ 7645 dst_reg->s32_min_value = S32_MIN; 7646 dst_reg->s32_max_value = S32_MAX; 7647 } else { 7648 /* ANDing two positives gives a positive, so safe to 7649 * cast result into s64. 7650 */ 7651 dst_reg->s32_min_value = dst_reg->u32_min_value; 7652 dst_reg->s32_max_value = dst_reg->u32_max_value; 7653 } 7654 } 7655 7656 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 7657 struct bpf_reg_state *src_reg) 7658 { 7659 bool src_known = tnum_is_const(src_reg->var_off); 7660 bool dst_known = tnum_is_const(dst_reg->var_off); 7661 s64 smin_val = src_reg->smin_value; 7662 u64 umax_val = src_reg->umax_value; 7663 7664 if (src_known && dst_known) { 7665 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7666 return; 7667 } 7668 7669 /* We get our minimum from the var_off, since that's inherently 7670 * bitwise. Our maximum is the minimum of the operands' maxima. 7671 */ 7672 dst_reg->umin_value = dst_reg->var_off.value; 7673 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 7674 if (dst_reg->smin_value < 0 || smin_val < 0) { 7675 /* Lose signed bounds when ANDing negative numbers, 7676 * ain't nobody got time for that. 7677 */ 7678 dst_reg->smin_value = S64_MIN; 7679 dst_reg->smax_value = S64_MAX; 7680 } else { 7681 /* ANDing two positives gives a positive, so safe to 7682 * cast result into s64. 7683 */ 7684 dst_reg->smin_value = dst_reg->umin_value; 7685 dst_reg->smax_value = dst_reg->umax_value; 7686 } 7687 /* We may learn something more from the var_off */ 7688 __update_reg_bounds(dst_reg); 7689 } 7690 7691 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 7692 struct bpf_reg_state *src_reg) 7693 { 7694 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7695 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7696 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7697 s32 smin_val = src_reg->s32_min_value; 7698 u32 umin_val = src_reg->u32_min_value; 7699 7700 if (src_known && dst_known) { 7701 __mark_reg32_known(dst_reg, var32_off.value); 7702 return; 7703 } 7704 7705 /* We get our maximum from the var_off, and our minimum is the 7706 * maximum of the operands' minima 7707 */ 7708 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 7709 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 7710 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7711 /* Lose signed bounds when ORing negative numbers, 7712 * ain't nobody got time for that. 7713 */ 7714 dst_reg->s32_min_value = S32_MIN; 7715 dst_reg->s32_max_value = S32_MAX; 7716 } else { 7717 /* ORing two positives gives a positive, so safe to 7718 * cast result into s64. 7719 */ 7720 dst_reg->s32_min_value = dst_reg->u32_min_value; 7721 dst_reg->s32_max_value = dst_reg->u32_max_value; 7722 } 7723 } 7724 7725 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 7726 struct bpf_reg_state *src_reg) 7727 { 7728 bool src_known = tnum_is_const(src_reg->var_off); 7729 bool dst_known = tnum_is_const(dst_reg->var_off); 7730 s64 smin_val = src_reg->smin_value; 7731 u64 umin_val = src_reg->umin_value; 7732 7733 if (src_known && dst_known) { 7734 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7735 return; 7736 } 7737 7738 /* We get our maximum from the var_off, and our minimum is the 7739 * maximum of the operands' minima 7740 */ 7741 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 7742 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 7743 if (dst_reg->smin_value < 0 || smin_val < 0) { 7744 /* Lose signed bounds when ORing negative numbers, 7745 * ain't nobody got time for that. 7746 */ 7747 dst_reg->smin_value = S64_MIN; 7748 dst_reg->smax_value = S64_MAX; 7749 } else { 7750 /* ORing two positives gives a positive, so safe to 7751 * cast result into s64. 7752 */ 7753 dst_reg->smin_value = dst_reg->umin_value; 7754 dst_reg->smax_value = dst_reg->umax_value; 7755 } 7756 /* We may learn something more from the var_off */ 7757 __update_reg_bounds(dst_reg); 7758 } 7759 7760 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 7761 struct bpf_reg_state *src_reg) 7762 { 7763 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7764 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7765 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7766 s32 smin_val = src_reg->s32_min_value; 7767 7768 if (src_known && dst_known) { 7769 __mark_reg32_known(dst_reg, var32_off.value); 7770 return; 7771 } 7772 7773 /* We get both minimum and maximum from the var32_off. */ 7774 dst_reg->u32_min_value = var32_off.value; 7775 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 7776 7777 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 7778 /* XORing two positive sign numbers gives a positive, 7779 * so safe to cast u32 result into s32. 7780 */ 7781 dst_reg->s32_min_value = dst_reg->u32_min_value; 7782 dst_reg->s32_max_value = dst_reg->u32_max_value; 7783 } else { 7784 dst_reg->s32_min_value = S32_MIN; 7785 dst_reg->s32_max_value = S32_MAX; 7786 } 7787 } 7788 7789 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 7790 struct bpf_reg_state *src_reg) 7791 { 7792 bool src_known = tnum_is_const(src_reg->var_off); 7793 bool dst_known = tnum_is_const(dst_reg->var_off); 7794 s64 smin_val = src_reg->smin_value; 7795 7796 if (src_known && dst_known) { 7797 /* dst_reg->var_off.value has been updated earlier */ 7798 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7799 return; 7800 } 7801 7802 /* We get both minimum and maximum from the var_off. */ 7803 dst_reg->umin_value = dst_reg->var_off.value; 7804 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 7805 7806 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 7807 /* XORing two positive sign numbers gives a positive, 7808 * so safe to cast u64 result into s64. 7809 */ 7810 dst_reg->smin_value = dst_reg->umin_value; 7811 dst_reg->smax_value = dst_reg->umax_value; 7812 } else { 7813 dst_reg->smin_value = S64_MIN; 7814 dst_reg->smax_value = S64_MAX; 7815 } 7816 7817 __update_reg_bounds(dst_reg); 7818 } 7819 7820 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 7821 u64 umin_val, u64 umax_val) 7822 { 7823 /* We lose all sign bit information (except what we can pick 7824 * up from var_off) 7825 */ 7826 dst_reg->s32_min_value = S32_MIN; 7827 dst_reg->s32_max_value = S32_MAX; 7828 /* If we might shift our top bit out, then we know nothing */ 7829 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 7830 dst_reg->u32_min_value = 0; 7831 dst_reg->u32_max_value = U32_MAX; 7832 } else { 7833 dst_reg->u32_min_value <<= umin_val; 7834 dst_reg->u32_max_value <<= umax_val; 7835 } 7836 } 7837 7838 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 7839 struct bpf_reg_state *src_reg) 7840 { 7841 u32 umax_val = src_reg->u32_max_value; 7842 u32 umin_val = src_reg->u32_min_value; 7843 /* u32 alu operation will zext upper bits */ 7844 struct tnum subreg = tnum_subreg(dst_reg->var_off); 7845 7846 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 7847 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 7848 /* Not required but being careful mark reg64 bounds as unknown so 7849 * that we are forced to pick them up from tnum and zext later and 7850 * if some path skips this step we are still safe. 7851 */ 7852 __mark_reg64_unbounded(dst_reg); 7853 __update_reg32_bounds(dst_reg); 7854 } 7855 7856 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 7857 u64 umin_val, u64 umax_val) 7858 { 7859 /* Special case <<32 because it is a common compiler pattern to sign 7860 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 7861 * positive we know this shift will also be positive so we can track 7862 * bounds correctly. Otherwise we lose all sign bit information except 7863 * what we can pick up from var_off. Perhaps we can generalize this 7864 * later to shifts of any length. 7865 */ 7866 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 7867 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 7868 else 7869 dst_reg->smax_value = S64_MAX; 7870 7871 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 7872 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 7873 else 7874 dst_reg->smin_value = S64_MIN; 7875 7876 /* If we might shift our top bit out, then we know nothing */ 7877 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 7878 dst_reg->umin_value = 0; 7879 dst_reg->umax_value = U64_MAX; 7880 } else { 7881 dst_reg->umin_value <<= umin_val; 7882 dst_reg->umax_value <<= umax_val; 7883 } 7884 } 7885 7886 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 7887 struct bpf_reg_state *src_reg) 7888 { 7889 u64 umax_val = src_reg->umax_value; 7890 u64 umin_val = src_reg->umin_value; 7891 7892 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 7893 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 7894 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 7895 7896 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 7897 /* We may learn something more from the var_off */ 7898 __update_reg_bounds(dst_reg); 7899 } 7900 7901 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 7902 struct bpf_reg_state *src_reg) 7903 { 7904 struct tnum subreg = tnum_subreg(dst_reg->var_off); 7905 u32 umax_val = src_reg->u32_max_value; 7906 u32 umin_val = src_reg->u32_min_value; 7907 7908 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 7909 * be negative, then either: 7910 * 1) src_reg might be zero, so the sign bit of the result is 7911 * unknown, so we lose our signed bounds 7912 * 2) it's known negative, thus the unsigned bounds capture the 7913 * signed bounds 7914 * 3) the signed bounds cross zero, so they tell us nothing 7915 * about the result 7916 * If the value in dst_reg is known nonnegative, then again the 7917 * unsigned bounds capture the signed bounds. 7918 * Thus, in all cases it suffices to blow away our signed bounds 7919 * and rely on inferring new ones from the unsigned bounds and 7920 * var_off of the result. 7921 */ 7922 dst_reg->s32_min_value = S32_MIN; 7923 dst_reg->s32_max_value = S32_MAX; 7924 7925 dst_reg->var_off = tnum_rshift(subreg, umin_val); 7926 dst_reg->u32_min_value >>= umax_val; 7927 dst_reg->u32_max_value >>= umin_val; 7928 7929 __mark_reg64_unbounded(dst_reg); 7930 __update_reg32_bounds(dst_reg); 7931 } 7932 7933 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 7934 struct bpf_reg_state *src_reg) 7935 { 7936 u64 umax_val = src_reg->umax_value; 7937 u64 umin_val = src_reg->umin_value; 7938 7939 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 7940 * be negative, then either: 7941 * 1) src_reg might be zero, so the sign bit of the result is 7942 * unknown, so we lose our signed bounds 7943 * 2) it's known negative, thus the unsigned bounds capture the 7944 * signed bounds 7945 * 3) the signed bounds cross zero, so they tell us nothing 7946 * about the result 7947 * If the value in dst_reg is known nonnegative, then again the 7948 * unsigned bounds capture the signed bounds. 7949 * Thus, in all cases it suffices to blow away our signed bounds 7950 * and rely on inferring new ones from the unsigned bounds and 7951 * var_off of the result. 7952 */ 7953 dst_reg->smin_value = S64_MIN; 7954 dst_reg->smax_value = S64_MAX; 7955 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 7956 dst_reg->umin_value >>= umax_val; 7957 dst_reg->umax_value >>= umin_val; 7958 7959 /* Its not easy to operate on alu32 bounds here because it depends 7960 * on bits being shifted in. Take easy way out and mark unbounded 7961 * so we can recalculate later from tnum. 7962 */ 7963 __mark_reg32_unbounded(dst_reg); 7964 __update_reg_bounds(dst_reg); 7965 } 7966 7967 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 7968 struct bpf_reg_state *src_reg) 7969 { 7970 u64 umin_val = src_reg->u32_min_value; 7971 7972 /* Upon reaching here, src_known is true and 7973 * umax_val is equal to umin_val. 7974 */ 7975 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 7976 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 7977 7978 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 7979 7980 /* blow away the dst_reg umin_value/umax_value and rely on 7981 * dst_reg var_off to refine the result. 7982 */ 7983 dst_reg->u32_min_value = 0; 7984 dst_reg->u32_max_value = U32_MAX; 7985 7986 __mark_reg64_unbounded(dst_reg); 7987 __update_reg32_bounds(dst_reg); 7988 } 7989 7990 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 7991 struct bpf_reg_state *src_reg) 7992 { 7993 u64 umin_val = src_reg->umin_value; 7994 7995 /* Upon reaching here, src_known is true and umax_val is equal 7996 * to umin_val. 7997 */ 7998 dst_reg->smin_value >>= umin_val; 7999 dst_reg->smax_value >>= umin_val; 8000 8001 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 8002 8003 /* blow away the dst_reg umin_value/umax_value and rely on 8004 * dst_reg var_off to refine the result. 8005 */ 8006 dst_reg->umin_value = 0; 8007 dst_reg->umax_value = U64_MAX; 8008 8009 /* Its not easy to operate on alu32 bounds here because it depends 8010 * on bits being shifted in from upper 32-bits. Take easy way out 8011 * and mark unbounded so we can recalculate later from tnum. 8012 */ 8013 __mark_reg32_unbounded(dst_reg); 8014 __update_reg_bounds(dst_reg); 8015 } 8016 8017 /* WARNING: This function does calculations on 64-bit values, but the actual 8018 * execution may occur on 32-bit values. Therefore, things like bitshifts 8019 * need extra checks in the 32-bit case. 8020 */ 8021 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 8022 struct bpf_insn *insn, 8023 struct bpf_reg_state *dst_reg, 8024 struct bpf_reg_state src_reg) 8025 { 8026 struct bpf_reg_state *regs = cur_regs(env); 8027 u8 opcode = BPF_OP(insn->code); 8028 bool src_known; 8029 s64 smin_val, smax_val; 8030 u64 umin_val, umax_val; 8031 s32 s32_min_val, s32_max_val; 8032 u32 u32_min_val, u32_max_val; 8033 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 8034 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 8035 int ret; 8036 8037 smin_val = src_reg.smin_value; 8038 smax_val = src_reg.smax_value; 8039 umin_val = src_reg.umin_value; 8040 umax_val = src_reg.umax_value; 8041 8042 s32_min_val = src_reg.s32_min_value; 8043 s32_max_val = src_reg.s32_max_value; 8044 u32_min_val = src_reg.u32_min_value; 8045 u32_max_val = src_reg.u32_max_value; 8046 8047 if (alu32) { 8048 src_known = tnum_subreg_is_const(src_reg.var_off); 8049 if ((src_known && 8050 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 8051 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 8052 /* Taint dst register if offset had invalid bounds 8053 * derived from e.g. dead branches. 8054 */ 8055 __mark_reg_unknown(env, dst_reg); 8056 return 0; 8057 } 8058 } else { 8059 src_known = tnum_is_const(src_reg.var_off); 8060 if ((src_known && 8061 (smin_val != smax_val || umin_val != umax_val)) || 8062 smin_val > smax_val || umin_val > umax_val) { 8063 /* Taint dst register if offset had invalid bounds 8064 * derived from e.g. dead branches. 8065 */ 8066 __mark_reg_unknown(env, dst_reg); 8067 return 0; 8068 } 8069 } 8070 8071 if (!src_known && 8072 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 8073 __mark_reg_unknown(env, dst_reg); 8074 return 0; 8075 } 8076 8077 if (sanitize_needed(opcode)) { 8078 ret = sanitize_val_alu(env, insn); 8079 if (ret < 0) 8080 return sanitize_err(env, insn, ret, NULL, NULL); 8081 } 8082 8083 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 8084 * There are two classes of instructions: The first class we track both 8085 * alu32 and alu64 sign/unsigned bounds independently this provides the 8086 * greatest amount of precision when alu operations are mixed with jmp32 8087 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 8088 * and BPF_OR. This is possible because these ops have fairly easy to 8089 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 8090 * See alu32 verifier tests for examples. The second class of 8091 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 8092 * with regards to tracking sign/unsigned bounds because the bits may 8093 * cross subreg boundaries in the alu64 case. When this happens we mark 8094 * the reg unbounded in the subreg bound space and use the resulting 8095 * tnum to calculate an approximation of the sign/unsigned bounds. 8096 */ 8097 switch (opcode) { 8098 case BPF_ADD: 8099 scalar32_min_max_add(dst_reg, &src_reg); 8100 scalar_min_max_add(dst_reg, &src_reg); 8101 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 8102 break; 8103 case BPF_SUB: 8104 scalar32_min_max_sub(dst_reg, &src_reg); 8105 scalar_min_max_sub(dst_reg, &src_reg); 8106 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 8107 break; 8108 case BPF_MUL: 8109 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 8110 scalar32_min_max_mul(dst_reg, &src_reg); 8111 scalar_min_max_mul(dst_reg, &src_reg); 8112 break; 8113 case BPF_AND: 8114 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 8115 scalar32_min_max_and(dst_reg, &src_reg); 8116 scalar_min_max_and(dst_reg, &src_reg); 8117 break; 8118 case BPF_OR: 8119 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 8120 scalar32_min_max_or(dst_reg, &src_reg); 8121 scalar_min_max_or(dst_reg, &src_reg); 8122 break; 8123 case BPF_XOR: 8124 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 8125 scalar32_min_max_xor(dst_reg, &src_reg); 8126 scalar_min_max_xor(dst_reg, &src_reg); 8127 break; 8128 case BPF_LSH: 8129 if (umax_val >= insn_bitness) { 8130 /* Shifts greater than 31 or 63 are undefined. 8131 * This includes shifts by a negative number. 8132 */ 8133 mark_reg_unknown(env, regs, insn->dst_reg); 8134 break; 8135 } 8136 if (alu32) 8137 scalar32_min_max_lsh(dst_reg, &src_reg); 8138 else 8139 scalar_min_max_lsh(dst_reg, &src_reg); 8140 break; 8141 case BPF_RSH: 8142 if (umax_val >= insn_bitness) { 8143 /* Shifts greater than 31 or 63 are undefined. 8144 * This includes shifts by a negative number. 8145 */ 8146 mark_reg_unknown(env, regs, insn->dst_reg); 8147 break; 8148 } 8149 if (alu32) 8150 scalar32_min_max_rsh(dst_reg, &src_reg); 8151 else 8152 scalar_min_max_rsh(dst_reg, &src_reg); 8153 break; 8154 case BPF_ARSH: 8155 if (umax_val >= insn_bitness) { 8156 /* Shifts greater than 31 or 63 are undefined. 8157 * This includes shifts by a negative number. 8158 */ 8159 mark_reg_unknown(env, regs, insn->dst_reg); 8160 break; 8161 } 8162 if (alu32) 8163 scalar32_min_max_arsh(dst_reg, &src_reg); 8164 else 8165 scalar_min_max_arsh(dst_reg, &src_reg); 8166 break; 8167 default: 8168 mark_reg_unknown(env, regs, insn->dst_reg); 8169 break; 8170 } 8171 8172 /* ALU32 ops are zero extended into 64bit register */ 8173 if (alu32) 8174 zext_32_to_64(dst_reg); 8175 8176 __update_reg_bounds(dst_reg); 8177 __reg_deduce_bounds(dst_reg); 8178 __reg_bound_offset(dst_reg); 8179 return 0; 8180 } 8181 8182 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 8183 * and var_off. 8184 */ 8185 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 8186 struct bpf_insn *insn) 8187 { 8188 struct bpf_verifier_state *vstate = env->cur_state; 8189 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8190 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 8191 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 8192 u8 opcode = BPF_OP(insn->code); 8193 int err; 8194 8195 dst_reg = ®s[insn->dst_reg]; 8196 src_reg = NULL; 8197 if (dst_reg->type != SCALAR_VALUE) 8198 ptr_reg = dst_reg; 8199 else 8200 /* Make sure ID is cleared otherwise dst_reg min/max could be 8201 * incorrectly propagated into other registers by find_equal_scalars() 8202 */ 8203 dst_reg->id = 0; 8204 if (BPF_SRC(insn->code) == BPF_X) { 8205 src_reg = ®s[insn->src_reg]; 8206 if (src_reg->type != SCALAR_VALUE) { 8207 if (dst_reg->type != SCALAR_VALUE) { 8208 /* Combining two pointers by any ALU op yields 8209 * an arbitrary scalar. Disallow all math except 8210 * pointer subtraction 8211 */ 8212 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 8213 mark_reg_unknown(env, regs, insn->dst_reg); 8214 return 0; 8215 } 8216 verbose(env, "R%d pointer %s pointer prohibited\n", 8217 insn->dst_reg, 8218 bpf_alu_string[opcode >> 4]); 8219 return -EACCES; 8220 } else { 8221 /* scalar += pointer 8222 * This is legal, but we have to reverse our 8223 * src/dest handling in computing the range 8224 */ 8225 err = mark_chain_precision(env, insn->dst_reg); 8226 if (err) 8227 return err; 8228 return adjust_ptr_min_max_vals(env, insn, 8229 src_reg, dst_reg); 8230 } 8231 } else if (ptr_reg) { 8232 /* pointer += scalar */ 8233 err = mark_chain_precision(env, insn->src_reg); 8234 if (err) 8235 return err; 8236 return adjust_ptr_min_max_vals(env, insn, 8237 dst_reg, src_reg); 8238 } 8239 } else { 8240 /* Pretend the src is a reg with a known value, since we only 8241 * need to be able to read from this state. 8242 */ 8243 off_reg.type = SCALAR_VALUE; 8244 __mark_reg_known(&off_reg, insn->imm); 8245 src_reg = &off_reg; 8246 if (ptr_reg) /* pointer += K */ 8247 return adjust_ptr_min_max_vals(env, insn, 8248 ptr_reg, src_reg); 8249 } 8250 8251 /* Got here implies adding two SCALAR_VALUEs */ 8252 if (WARN_ON_ONCE(ptr_reg)) { 8253 print_verifier_state(env, state); 8254 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 8255 return -EINVAL; 8256 } 8257 if (WARN_ON(!src_reg)) { 8258 print_verifier_state(env, state); 8259 verbose(env, "verifier internal error: no src_reg\n"); 8260 return -EINVAL; 8261 } 8262 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 8263 } 8264 8265 /* check validity of 32-bit and 64-bit arithmetic operations */ 8266 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 8267 { 8268 struct bpf_reg_state *regs = cur_regs(env); 8269 u8 opcode = BPF_OP(insn->code); 8270 int err; 8271 8272 if (opcode == BPF_END || opcode == BPF_NEG) { 8273 if (opcode == BPF_NEG) { 8274 if (BPF_SRC(insn->code) != 0 || 8275 insn->src_reg != BPF_REG_0 || 8276 insn->off != 0 || insn->imm != 0) { 8277 verbose(env, "BPF_NEG uses reserved fields\n"); 8278 return -EINVAL; 8279 } 8280 } else { 8281 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 8282 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 8283 BPF_CLASS(insn->code) == BPF_ALU64) { 8284 verbose(env, "BPF_END uses reserved fields\n"); 8285 return -EINVAL; 8286 } 8287 } 8288 8289 /* check src operand */ 8290 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8291 if (err) 8292 return err; 8293 8294 if (is_pointer_value(env, insn->dst_reg)) { 8295 verbose(env, "R%d pointer arithmetic prohibited\n", 8296 insn->dst_reg); 8297 return -EACCES; 8298 } 8299 8300 /* check dest operand */ 8301 err = check_reg_arg(env, insn->dst_reg, DST_OP); 8302 if (err) 8303 return err; 8304 8305 } else if (opcode == BPF_MOV) { 8306 8307 if (BPF_SRC(insn->code) == BPF_X) { 8308 if (insn->imm != 0 || insn->off != 0) { 8309 verbose(env, "BPF_MOV uses reserved fields\n"); 8310 return -EINVAL; 8311 } 8312 8313 /* check src operand */ 8314 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8315 if (err) 8316 return err; 8317 } else { 8318 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 8319 verbose(env, "BPF_MOV uses reserved fields\n"); 8320 return -EINVAL; 8321 } 8322 } 8323 8324 /* check dest operand, mark as required later */ 8325 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8326 if (err) 8327 return err; 8328 8329 if (BPF_SRC(insn->code) == BPF_X) { 8330 struct bpf_reg_state *src_reg = regs + insn->src_reg; 8331 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 8332 8333 if (BPF_CLASS(insn->code) == BPF_ALU64) { 8334 /* case: R1 = R2 8335 * copy register state to dest reg 8336 */ 8337 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 8338 /* Assign src and dst registers the same ID 8339 * that will be used by find_equal_scalars() 8340 * to propagate min/max range. 8341 */ 8342 src_reg->id = ++env->id_gen; 8343 *dst_reg = *src_reg; 8344 dst_reg->live |= REG_LIVE_WRITTEN; 8345 dst_reg->subreg_def = DEF_NOT_SUBREG; 8346 } else { 8347 /* R1 = (u32) R2 */ 8348 if (is_pointer_value(env, insn->src_reg)) { 8349 verbose(env, 8350 "R%d partial copy of pointer\n", 8351 insn->src_reg); 8352 return -EACCES; 8353 } else if (src_reg->type == SCALAR_VALUE) { 8354 *dst_reg = *src_reg; 8355 /* Make sure ID is cleared otherwise 8356 * dst_reg min/max could be incorrectly 8357 * propagated into src_reg by find_equal_scalars() 8358 */ 8359 dst_reg->id = 0; 8360 dst_reg->live |= REG_LIVE_WRITTEN; 8361 dst_reg->subreg_def = env->insn_idx + 1; 8362 } else { 8363 mark_reg_unknown(env, regs, 8364 insn->dst_reg); 8365 } 8366 zext_32_to_64(dst_reg); 8367 } 8368 } else { 8369 /* case: R = imm 8370 * remember the value we stored into this reg 8371 */ 8372 /* clear any state __mark_reg_known doesn't set */ 8373 mark_reg_unknown(env, regs, insn->dst_reg); 8374 regs[insn->dst_reg].type = SCALAR_VALUE; 8375 if (BPF_CLASS(insn->code) == BPF_ALU64) { 8376 __mark_reg_known(regs + insn->dst_reg, 8377 insn->imm); 8378 } else { 8379 __mark_reg_known(regs + insn->dst_reg, 8380 (u32)insn->imm); 8381 } 8382 } 8383 8384 } else if (opcode > BPF_END) { 8385 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 8386 return -EINVAL; 8387 8388 } else { /* all other ALU ops: and, sub, xor, add, ... */ 8389 8390 if (BPF_SRC(insn->code) == BPF_X) { 8391 if (insn->imm != 0 || insn->off != 0) { 8392 verbose(env, "BPF_ALU uses reserved fields\n"); 8393 return -EINVAL; 8394 } 8395 /* check src1 operand */ 8396 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8397 if (err) 8398 return err; 8399 } else { 8400 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 8401 verbose(env, "BPF_ALU uses reserved fields\n"); 8402 return -EINVAL; 8403 } 8404 } 8405 8406 /* check src2 operand */ 8407 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8408 if (err) 8409 return err; 8410 8411 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 8412 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 8413 verbose(env, "div by zero\n"); 8414 return -EINVAL; 8415 } 8416 8417 if ((opcode == BPF_LSH || opcode == BPF_RSH || 8418 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 8419 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 8420 8421 if (insn->imm < 0 || insn->imm >= size) { 8422 verbose(env, "invalid shift %d\n", insn->imm); 8423 return -EINVAL; 8424 } 8425 } 8426 8427 /* check dest operand */ 8428 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8429 if (err) 8430 return err; 8431 8432 return adjust_reg_min_max_vals(env, insn); 8433 } 8434 8435 return 0; 8436 } 8437 8438 static void __find_good_pkt_pointers(struct bpf_func_state *state, 8439 struct bpf_reg_state *dst_reg, 8440 enum bpf_reg_type type, int new_range) 8441 { 8442 struct bpf_reg_state *reg; 8443 int i; 8444 8445 for (i = 0; i < MAX_BPF_REG; i++) { 8446 reg = &state->regs[i]; 8447 if (reg->type == type && reg->id == dst_reg->id) 8448 /* keep the maximum range already checked */ 8449 reg->range = max(reg->range, new_range); 8450 } 8451 8452 bpf_for_each_spilled_reg(i, state, reg) { 8453 if (!reg) 8454 continue; 8455 if (reg->type == type && reg->id == dst_reg->id) 8456 reg->range = max(reg->range, new_range); 8457 } 8458 } 8459 8460 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 8461 struct bpf_reg_state *dst_reg, 8462 enum bpf_reg_type type, 8463 bool range_right_open) 8464 { 8465 int new_range, i; 8466 8467 if (dst_reg->off < 0 || 8468 (dst_reg->off == 0 && range_right_open)) 8469 /* This doesn't give us any range */ 8470 return; 8471 8472 if (dst_reg->umax_value > MAX_PACKET_OFF || 8473 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 8474 /* Risk of overflow. For instance, ptr + (1<<63) may be less 8475 * than pkt_end, but that's because it's also less than pkt. 8476 */ 8477 return; 8478 8479 new_range = dst_reg->off; 8480 if (range_right_open) 8481 new_range++; 8482 8483 /* Examples for register markings: 8484 * 8485 * pkt_data in dst register: 8486 * 8487 * r2 = r3; 8488 * r2 += 8; 8489 * if (r2 > pkt_end) goto <handle exception> 8490 * <access okay> 8491 * 8492 * r2 = r3; 8493 * r2 += 8; 8494 * if (r2 < pkt_end) goto <access okay> 8495 * <handle exception> 8496 * 8497 * Where: 8498 * r2 == dst_reg, pkt_end == src_reg 8499 * r2=pkt(id=n,off=8,r=0) 8500 * r3=pkt(id=n,off=0,r=0) 8501 * 8502 * pkt_data in src register: 8503 * 8504 * r2 = r3; 8505 * r2 += 8; 8506 * if (pkt_end >= r2) goto <access okay> 8507 * <handle exception> 8508 * 8509 * r2 = r3; 8510 * r2 += 8; 8511 * if (pkt_end <= r2) goto <handle exception> 8512 * <access okay> 8513 * 8514 * Where: 8515 * pkt_end == dst_reg, r2 == src_reg 8516 * r2=pkt(id=n,off=8,r=0) 8517 * r3=pkt(id=n,off=0,r=0) 8518 * 8519 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 8520 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 8521 * and [r3, r3 + 8-1) respectively is safe to access depending on 8522 * the check. 8523 */ 8524 8525 /* If our ids match, then we must have the same max_value. And we 8526 * don't care about the other reg's fixed offset, since if it's too big 8527 * the range won't allow anything. 8528 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 8529 */ 8530 for (i = 0; i <= vstate->curframe; i++) 8531 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 8532 new_range); 8533 } 8534 8535 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 8536 { 8537 struct tnum subreg = tnum_subreg(reg->var_off); 8538 s32 sval = (s32)val; 8539 8540 switch (opcode) { 8541 case BPF_JEQ: 8542 if (tnum_is_const(subreg)) 8543 return !!tnum_equals_const(subreg, val); 8544 break; 8545 case BPF_JNE: 8546 if (tnum_is_const(subreg)) 8547 return !tnum_equals_const(subreg, val); 8548 break; 8549 case BPF_JSET: 8550 if ((~subreg.mask & subreg.value) & val) 8551 return 1; 8552 if (!((subreg.mask | subreg.value) & val)) 8553 return 0; 8554 break; 8555 case BPF_JGT: 8556 if (reg->u32_min_value > val) 8557 return 1; 8558 else if (reg->u32_max_value <= val) 8559 return 0; 8560 break; 8561 case BPF_JSGT: 8562 if (reg->s32_min_value > sval) 8563 return 1; 8564 else if (reg->s32_max_value <= sval) 8565 return 0; 8566 break; 8567 case BPF_JLT: 8568 if (reg->u32_max_value < val) 8569 return 1; 8570 else if (reg->u32_min_value >= val) 8571 return 0; 8572 break; 8573 case BPF_JSLT: 8574 if (reg->s32_max_value < sval) 8575 return 1; 8576 else if (reg->s32_min_value >= sval) 8577 return 0; 8578 break; 8579 case BPF_JGE: 8580 if (reg->u32_min_value >= val) 8581 return 1; 8582 else if (reg->u32_max_value < val) 8583 return 0; 8584 break; 8585 case BPF_JSGE: 8586 if (reg->s32_min_value >= sval) 8587 return 1; 8588 else if (reg->s32_max_value < sval) 8589 return 0; 8590 break; 8591 case BPF_JLE: 8592 if (reg->u32_max_value <= val) 8593 return 1; 8594 else if (reg->u32_min_value > val) 8595 return 0; 8596 break; 8597 case BPF_JSLE: 8598 if (reg->s32_max_value <= sval) 8599 return 1; 8600 else if (reg->s32_min_value > sval) 8601 return 0; 8602 break; 8603 } 8604 8605 return -1; 8606 } 8607 8608 8609 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 8610 { 8611 s64 sval = (s64)val; 8612 8613 switch (opcode) { 8614 case BPF_JEQ: 8615 if (tnum_is_const(reg->var_off)) 8616 return !!tnum_equals_const(reg->var_off, val); 8617 break; 8618 case BPF_JNE: 8619 if (tnum_is_const(reg->var_off)) 8620 return !tnum_equals_const(reg->var_off, val); 8621 break; 8622 case BPF_JSET: 8623 if ((~reg->var_off.mask & reg->var_off.value) & val) 8624 return 1; 8625 if (!((reg->var_off.mask | reg->var_off.value) & val)) 8626 return 0; 8627 break; 8628 case BPF_JGT: 8629 if (reg->umin_value > val) 8630 return 1; 8631 else if (reg->umax_value <= val) 8632 return 0; 8633 break; 8634 case BPF_JSGT: 8635 if (reg->smin_value > sval) 8636 return 1; 8637 else if (reg->smax_value <= sval) 8638 return 0; 8639 break; 8640 case BPF_JLT: 8641 if (reg->umax_value < val) 8642 return 1; 8643 else if (reg->umin_value >= val) 8644 return 0; 8645 break; 8646 case BPF_JSLT: 8647 if (reg->smax_value < sval) 8648 return 1; 8649 else if (reg->smin_value >= sval) 8650 return 0; 8651 break; 8652 case BPF_JGE: 8653 if (reg->umin_value >= val) 8654 return 1; 8655 else if (reg->umax_value < val) 8656 return 0; 8657 break; 8658 case BPF_JSGE: 8659 if (reg->smin_value >= sval) 8660 return 1; 8661 else if (reg->smax_value < sval) 8662 return 0; 8663 break; 8664 case BPF_JLE: 8665 if (reg->umax_value <= val) 8666 return 1; 8667 else if (reg->umin_value > val) 8668 return 0; 8669 break; 8670 case BPF_JSLE: 8671 if (reg->smax_value <= sval) 8672 return 1; 8673 else if (reg->smin_value > sval) 8674 return 0; 8675 break; 8676 } 8677 8678 return -1; 8679 } 8680 8681 /* compute branch direction of the expression "if (reg opcode val) goto target;" 8682 * and return: 8683 * 1 - branch will be taken and "goto target" will be executed 8684 * 0 - branch will not be taken and fall-through to next insn 8685 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 8686 * range [0,10] 8687 */ 8688 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 8689 bool is_jmp32) 8690 { 8691 if (__is_pointer_value(false, reg)) { 8692 if (!reg_type_not_null(reg->type)) 8693 return -1; 8694 8695 /* If pointer is valid tests against zero will fail so we can 8696 * use this to direct branch taken. 8697 */ 8698 if (val != 0) 8699 return -1; 8700 8701 switch (opcode) { 8702 case BPF_JEQ: 8703 return 0; 8704 case BPF_JNE: 8705 return 1; 8706 default: 8707 return -1; 8708 } 8709 } 8710 8711 if (is_jmp32) 8712 return is_branch32_taken(reg, val, opcode); 8713 return is_branch64_taken(reg, val, opcode); 8714 } 8715 8716 static int flip_opcode(u32 opcode) 8717 { 8718 /* How can we transform "a <op> b" into "b <op> a"? */ 8719 static const u8 opcode_flip[16] = { 8720 /* these stay the same */ 8721 [BPF_JEQ >> 4] = BPF_JEQ, 8722 [BPF_JNE >> 4] = BPF_JNE, 8723 [BPF_JSET >> 4] = BPF_JSET, 8724 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 8725 [BPF_JGE >> 4] = BPF_JLE, 8726 [BPF_JGT >> 4] = BPF_JLT, 8727 [BPF_JLE >> 4] = BPF_JGE, 8728 [BPF_JLT >> 4] = BPF_JGT, 8729 [BPF_JSGE >> 4] = BPF_JSLE, 8730 [BPF_JSGT >> 4] = BPF_JSLT, 8731 [BPF_JSLE >> 4] = BPF_JSGE, 8732 [BPF_JSLT >> 4] = BPF_JSGT 8733 }; 8734 return opcode_flip[opcode >> 4]; 8735 } 8736 8737 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 8738 struct bpf_reg_state *src_reg, 8739 u8 opcode) 8740 { 8741 struct bpf_reg_state *pkt; 8742 8743 if (src_reg->type == PTR_TO_PACKET_END) { 8744 pkt = dst_reg; 8745 } else if (dst_reg->type == PTR_TO_PACKET_END) { 8746 pkt = src_reg; 8747 opcode = flip_opcode(opcode); 8748 } else { 8749 return -1; 8750 } 8751 8752 if (pkt->range >= 0) 8753 return -1; 8754 8755 switch (opcode) { 8756 case BPF_JLE: 8757 /* pkt <= pkt_end */ 8758 fallthrough; 8759 case BPF_JGT: 8760 /* pkt > pkt_end */ 8761 if (pkt->range == BEYOND_PKT_END) 8762 /* pkt has at last one extra byte beyond pkt_end */ 8763 return opcode == BPF_JGT; 8764 break; 8765 case BPF_JLT: 8766 /* pkt < pkt_end */ 8767 fallthrough; 8768 case BPF_JGE: 8769 /* pkt >= pkt_end */ 8770 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 8771 return opcode == BPF_JGE; 8772 break; 8773 } 8774 return -1; 8775 } 8776 8777 /* Adjusts the register min/max values in the case that the dst_reg is the 8778 * variable register that we are working on, and src_reg is a constant or we're 8779 * simply doing a BPF_K check. 8780 * In JEQ/JNE cases we also adjust the var_off values. 8781 */ 8782 static void reg_set_min_max(struct bpf_reg_state *true_reg, 8783 struct bpf_reg_state *false_reg, 8784 u64 val, u32 val32, 8785 u8 opcode, bool is_jmp32) 8786 { 8787 struct tnum false_32off = tnum_subreg(false_reg->var_off); 8788 struct tnum false_64off = false_reg->var_off; 8789 struct tnum true_32off = tnum_subreg(true_reg->var_off); 8790 struct tnum true_64off = true_reg->var_off; 8791 s64 sval = (s64)val; 8792 s32 sval32 = (s32)val32; 8793 8794 /* If the dst_reg is a pointer, we can't learn anything about its 8795 * variable offset from the compare (unless src_reg were a pointer into 8796 * the same object, but we don't bother with that. 8797 * Since false_reg and true_reg have the same type by construction, we 8798 * only need to check one of them for pointerness. 8799 */ 8800 if (__is_pointer_value(false, false_reg)) 8801 return; 8802 8803 switch (opcode) { 8804 case BPF_JEQ: 8805 case BPF_JNE: 8806 { 8807 struct bpf_reg_state *reg = 8808 opcode == BPF_JEQ ? true_reg : false_reg; 8809 8810 /* JEQ/JNE comparison doesn't change the register equivalence. 8811 * r1 = r2; 8812 * if (r1 == 42) goto label; 8813 * ... 8814 * label: // here both r1 and r2 are known to be 42. 8815 * 8816 * Hence when marking register as known preserve it's ID. 8817 */ 8818 if (is_jmp32) 8819 __mark_reg32_known(reg, val32); 8820 else 8821 ___mark_reg_known(reg, val); 8822 break; 8823 } 8824 case BPF_JSET: 8825 if (is_jmp32) { 8826 false_32off = tnum_and(false_32off, tnum_const(~val32)); 8827 if (is_power_of_2(val32)) 8828 true_32off = tnum_or(true_32off, 8829 tnum_const(val32)); 8830 } else { 8831 false_64off = tnum_and(false_64off, tnum_const(~val)); 8832 if (is_power_of_2(val)) 8833 true_64off = tnum_or(true_64off, 8834 tnum_const(val)); 8835 } 8836 break; 8837 case BPF_JGE: 8838 case BPF_JGT: 8839 { 8840 if (is_jmp32) { 8841 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 8842 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 8843 8844 false_reg->u32_max_value = min(false_reg->u32_max_value, 8845 false_umax); 8846 true_reg->u32_min_value = max(true_reg->u32_min_value, 8847 true_umin); 8848 } else { 8849 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 8850 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 8851 8852 false_reg->umax_value = min(false_reg->umax_value, false_umax); 8853 true_reg->umin_value = max(true_reg->umin_value, true_umin); 8854 } 8855 break; 8856 } 8857 case BPF_JSGE: 8858 case BPF_JSGT: 8859 { 8860 if (is_jmp32) { 8861 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 8862 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 8863 8864 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 8865 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 8866 } else { 8867 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 8868 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 8869 8870 false_reg->smax_value = min(false_reg->smax_value, false_smax); 8871 true_reg->smin_value = max(true_reg->smin_value, true_smin); 8872 } 8873 break; 8874 } 8875 case BPF_JLE: 8876 case BPF_JLT: 8877 { 8878 if (is_jmp32) { 8879 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 8880 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 8881 8882 false_reg->u32_min_value = max(false_reg->u32_min_value, 8883 false_umin); 8884 true_reg->u32_max_value = min(true_reg->u32_max_value, 8885 true_umax); 8886 } else { 8887 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 8888 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 8889 8890 false_reg->umin_value = max(false_reg->umin_value, false_umin); 8891 true_reg->umax_value = min(true_reg->umax_value, true_umax); 8892 } 8893 break; 8894 } 8895 case BPF_JSLE: 8896 case BPF_JSLT: 8897 { 8898 if (is_jmp32) { 8899 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 8900 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 8901 8902 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 8903 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 8904 } else { 8905 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 8906 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 8907 8908 false_reg->smin_value = max(false_reg->smin_value, false_smin); 8909 true_reg->smax_value = min(true_reg->smax_value, true_smax); 8910 } 8911 break; 8912 } 8913 default: 8914 return; 8915 } 8916 8917 if (is_jmp32) { 8918 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 8919 tnum_subreg(false_32off)); 8920 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 8921 tnum_subreg(true_32off)); 8922 __reg_combine_32_into_64(false_reg); 8923 __reg_combine_32_into_64(true_reg); 8924 } else { 8925 false_reg->var_off = false_64off; 8926 true_reg->var_off = true_64off; 8927 __reg_combine_64_into_32(false_reg); 8928 __reg_combine_64_into_32(true_reg); 8929 } 8930 } 8931 8932 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 8933 * the variable reg. 8934 */ 8935 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 8936 struct bpf_reg_state *false_reg, 8937 u64 val, u32 val32, 8938 u8 opcode, bool is_jmp32) 8939 { 8940 opcode = flip_opcode(opcode); 8941 /* This uses zero as "not present in table"; luckily the zero opcode, 8942 * BPF_JA, can't get here. 8943 */ 8944 if (opcode) 8945 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 8946 } 8947 8948 /* Regs are known to be equal, so intersect their min/max/var_off */ 8949 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 8950 struct bpf_reg_state *dst_reg) 8951 { 8952 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 8953 dst_reg->umin_value); 8954 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 8955 dst_reg->umax_value); 8956 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 8957 dst_reg->smin_value); 8958 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 8959 dst_reg->smax_value); 8960 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 8961 dst_reg->var_off); 8962 /* We might have learned new bounds from the var_off. */ 8963 __update_reg_bounds(src_reg); 8964 __update_reg_bounds(dst_reg); 8965 /* We might have learned something about the sign bit. */ 8966 __reg_deduce_bounds(src_reg); 8967 __reg_deduce_bounds(dst_reg); 8968 /* We might have learned some bits from the bounds. */ 8969 __reg_bound_offset(src_reg); 8970 __reg_bound_offset(dst_reg); 8971 /* Intersecting with the old var_off might have improved our bounds 8972 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 8973 * then new var_off is (0; 0x7f...fc) which improves our umax. 8974 */ 8975 __update_reg_bounds(src_reg); 8976 __update_reg_bounds(dst_reg); 8977 } 8978 8979 static void reg_combine_min_max(struct bpf_reg_state *true_src, 8980 struct bpf_reg_state *true_dst, 8981 struct bpf_reg_state *false_src, 8982 struct bpf_reg_state *false_dst, 8983 u8 opcode) 8984 { 8985 switch (opcode) { 8986 case BPF_JEQ: 8987 __reg_combine_min_max(true_src, true_dst); 8988 break; 8989 case BPF_JNE: 8990 __reg_combine_min_max(false_src, false_dst); 8991 break; 8992 } 8993 } 8994 8995 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 8996 struct bpf_reg_state *reg, u32 id, 8997 bool is_null) 8998 { 8999 if (reg_type_may_be_null(reg->type) && reg->id == id && 9000 !WARN_ON_ONCE(!reg->id)) { 9001 /* Old offset (both fixed and variable parts) should 9002 * have been known-zero, because we don't allow pointer 9003 * arithmetic on pointers that might be NULL. 9004 */ 9005 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 9006 !tnum_equals_const(reg->var_off, 0) || 9007 reg->off)) { 9008 __mark_reg_known_zero(reg); 9009 reg->off = 0; 9010 } 9011 if (is_null) { 9012 reg->type = SCALAR_VALUE; 9013 /* We don't need id and ref_obj_id from this point 9014 * onwards anymore, thus we should better reset it, 9015 * so that state pruning has chances to take effect. 9016 */ 9017 reg->id = 0; 9018 reg->ref_obj_id = 0; 9019 9020 return; 9021 } 9022 9023 mark_ptr_not_null_reg(reg); 9024 9025 if (!reg_may_point_to_spin_lock(reg)) { 9026 /* For not-NULL ptr, reg->ref_obj_id will be reset 9027 * in release_reg_references(). 9028 * 9029 * reg->id is still used by spin_lock ptr. Other 9030 * than spin_lock ptr type, reg->id can be reset. 9031 */ 9032 reg->id = 0; 9033 } 9034 } 9035 } 9036 9037 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 9038 bool is_null) 9039 { 9040 struct bpf_reg_state *reg; 9041 int i; 9042 9043 for (i = 0; i < MAX_BPF_REG; i++) 9044 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 9045 9046 bpf_for_each_spilled_reg(i, state, reg) { 9047 if (!reg) 9048 continue; 9049 mark_ptr_or_null_reg(state, reg, id, is_null); 9050 } 9051 } 9052 9053 /* The logic is similar to find_good_pkt_pointers(), both could eventually 9054 * be folded together at some point. 9055 */ 9056 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 9057 bool is_null) 9058 { 9059 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9060 struct bpf_reg_state *regs = state->regs; 9061 u32 ref_obj_id = regs[regno].ref_obj_id; 9062 u32 id = regs[regno].id; 9063 int i; 9064 9065 if (ref_obj_id && ref_obj_id == id && is_null) 9066 /* regs[regno] is in the " == NULL" branch. 9067 * No one could have freed the reference state before 9068 * doing the NULL check. 9069 */ 9070 WARN_ON_ONCE(release_reference_state(state, id)); 9071 9072 for (i = 0; i <= vstate->curframe; i++) 9073 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 9074 } 9075 9076 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 9077 struct bpf_reg_state *dst_reg, 9078 struct bpf_reg_state *src_reg, 9079 struct bpf_verifier_state *this_branch, 9080 struct bpf_verifier_state *other_branch) 9081 { 9082 if (BPF_SRC(insn->code) != BPF_X) 9083 return false; 9084 9085 /* Pointers are always 64-bit. */ 9086 if (BPF_CLASS(insn->code) == BPF_JMP32) 9087 return false; 9088 9089 switch (BPF_OP(insn->code)) { 9090 case BPF_JGT: 9091 if ((dst_reg->type == PTR_TO_PACKET && 9092 src_reg->type == PTR_TO_PACKET_END) || 9093 (dst_reg->type == PTR_TO_PACKET_META && 9094 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9095 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 9096 find_good_pkt_pointers(this_branch, dst_reg, 9097 dst_reg->type, false); 9098 mark_pkt_end(other_branch, insn->dst_reg, true); 9099 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9100 src_reg->type == PTR_TO_PACKET) || 9101 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9102 src_reg->type == PTR_TO_PACKET_META)) { 9103 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 9104 find_good_pkt_pointers(other_branch, src_reg, 9105 src_reg->type, true); 9106 mark_pkt_end(this_branch, insn->src_reg, false); 9107 } else { 9108 return false; 9109 } 9110 break; 9111 case BPF_JLT: 9112 if ((dst_reg->type == PTR_TO_PACKET && 9113 src_reg->type == PTR_TO_PACKET_END) || 9114 (dst_reg->type == PTR_TO_PACKET_META && 9115 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9116 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 9117 find_good_pkt_pointers(other_branch, dst_reg, 9118 dst_reg->type, true); 9119 mark_pkt_end(this_branch, insn->dst_reg, false); 9120 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9121 src_reg->type == PTR_TO_PACKET) || 9122 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9123 src_reg->type == PTR_TO_PACKET_META)) { 9124 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 9125 find_good_pkt_pointers(this_branch, src_reg, 9126 src_reg->type, false); 9127 mark_pkt_end(other_branch, insn->src_reg, true); 9128 } else { 9129 return false; 9130 } 9131 break; 9132 case BPF_JGE: 9133 if ((dst_reg->type == PTR_TO_PACKET && 9134 src_reg->type == PTR_TO_PACKET_END) || 9135 (dst_reg->type == PTR_TO_PACKET_META && 9136 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9137 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 9138 find_good_pkt_pointers(this_branch, dst_reg, 9139 dst_reg->type, true); 9140 mark_pkt_end(other_branch, insn->dst_reg, false); 9141 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9142 src_reg->type == PTR_TO_PACKET) || 9143 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9144 src_reg->type == PTR_TO_PACKET_META)) { 9145 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 9146 find_good_pkt_pointers(other_branch, src_reg, 9147 src_reg->type, false); 9148 mark_pkt_end(this_branch, insn->src_reg, true); 9149 } else { 9150 return false; 9151 } 9152 break; 9153 case BPF_JLE: 9154 if ((dst_reg->type == PTR_TO_PACKET && 9155 src_reg->type == PTR_TO_PACKET_END) || 9156 (dst_reg->type == PTR_TO_PACKET_META && 9157 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9158 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 9159 find_good_pkt_pointers(other_branch, dst_reg, 9160 dst_reg->type, false); 9161 mark_pkt_end(this_branch, insn->dst_reg, true); 9162 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9163 src_reg->type == PTR_TO_PACKET) || 9164 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9165 src_reg->type == PTR_TO_PACKET_META)) { 9166 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 9167 find_good_pkt_pointers(this_branch, src_reg, 9168 src_reg->type, true); 9169 mark_pkt_end(other_branch, insn->src_reg, false); 9170 } else { 9171 return false; 9172 } 9173 break; 9174 default: 9175 return false; 9176 } 9177 9178 return true; 9179 } 9180 9181 static void find_equal_scalars(struct bpf_verifier_state *vstate, 9182 struct bpf_reg_state *known_reg) 9183 { 9184 struct bpf_func_state *state; 9185 struct bpf_reg_state *reg; 9186 int i, j; 9187 9188 for (i = 0; i <= vstate->curframe; i++) { 9189 state = vstate->frame[i]; 9190 for (j = 0; j < MAX_BPF_REG; j++) { 9191 reg = &state->regs[j]; 9192 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 9193 *reg = *known_reg; 9194 } 9195 9196 bpf_for_each_spilled_reg(j, state, reg) { 9197 if (!reg) 9198 continue; 9199 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 9200 *reg = *known_reg; 9201 } 9202 } 9203 } 9204 9205 static int check_cond_jmp_op(struct bpf_verifier_env *env, 9206 struct bpf_insn *insn, int *insn_idx) 9207 { 9208 struct bpf_verifier_state *this_branch = env->cur_state; 9209 struct bpf_verifier_state *other_branch; 9210 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 9211 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 9212 u8 opcode = BPF_OP(insn->code); 9213 bool is_jmp32; 9214 int pred = -1; 9215 int err; 9216 9217 /* Only conditional jumps are expected to reach here. */ 9218 if (opcode == BPF_JA || opcode > BPF_JSLE) { 9219 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 9220 return -EINVAL; 9221 } 9222 9223 if (BPF_SRC(insn->code) == BPF_X) { 9224 if (insn->imm != 0) { 9225 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 9226 return -EINVAL; 9227 } 9228 9229 /* check src1 operand */ 9230 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9231 if (err) 9232 return err; 9233 9234 if (is_pointer_value(env, insn->src_reg)) { 9235 verbose(env, "R%d pointer comparison prohibited\n", 9236 insn->src_reg); 9237 return -EACCES; 9238 } 9239 src_reg = ®s[insn->src_reg]; 9240 } else { 9241 if (insn->src_reg != BPF_REG_0) { 9242 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 9243 return -EINVAL; 9244 } 9245 } 9246 9247 /* check src2 operand */ 9248 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9249 if (err) 9250 return err; 9251 9252 dst_reg = ®s[insn->dst_reg]; 9253 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 9254 9255 if (BPF_SRC(insn->code) == BPF_K) { 9256 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 9257 } else if (src_reg->type == SCALAR_VALUE && 9258 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 9259 pred = is_branch_taken(dst_reg, 9260 tnum_subreg(src_reg->var_off).value, 9261 opcode, 9262 is_jmp32); 9263 } else if (src_reg->type == SCALAR_VALUE && 9264 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 9265 pred = is_branch_taken(dst_reg, 9266 src_reg->var_off.value, 9267 opcode, 9268 is_jmp32); 9269 } else if (reg_is_pkt_pointer_any(dst_reg) && 9270 reg_is_pkt_pointer_any(src_reg) && 9271 !is_jmp32) { 9272 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 9273 } 9274 9275 if (pred >= 0) { 9276 /* If we get here with a dst_reg pointer type it is because 9277 * above is_branch_taken() special cased the 0 comparison. 9278 */ 9279 if (!__is_pointer_value(false, dst_reg)) 9280 err = mark_chain_precision(env, insn->dst_reg); 9281 if (BPF_SRC(insn->code) == BPF_X && !err && 9282 !__is_pointer_value(false, src_reg)) 9283 err = mark_chain_precision(env, insn->src_reg); 9284 if (err) 9285 return err; 9286 } 9287 9288 if (pred == 1) { 9289 /* Only follow the goto, ignore fall-through. If needed, push 9290 * the fall-through branch for simulation under speculative 9291 * execution. 9292 */ 9293 if (!env->bypass_spec_v1 && 9294 !sanitize_speculative_path(env, insn, *insn_idx + 1, 9295 *insn_idx)) 9296 return -EFAULT; 9297 *insn_idx += insn->off; 9298 return 0; 9299 } else if (pred == 0) { 9300 /* Only follow the fall-through branch, since that's where the 9301 * program will go. If needed, push the goto branch for 9302 * simulation under speculative execution. 9303 */ 9304 if (!env->bypass_spec_v1 && 9305 !sanitize_speculative_path(env, insn, 9306 *insn_idx + insn->off + 1, 9307 *insn_idx)) 9308 return -EFAULT; 9309 return 0; 9310 } 9311 9312 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 9313 false); 9314 if (!other_branch) 9315 return -EFAULT; 9316 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 9317 9318 /* detect if we are comparing against a constant value so we can adjust 9319 * our min/max values for our dst register. 9320 * this is only legit if both are scalars (or pointers to the same 9321 * object, I suppose, but we don't support that right now), because 9322 * otherwise the different base pointers mean the offsets aren't 9323 * comparable. 9324 */ 9325 if (BPF_SRC(insn->code) == BPF_X) { 9326 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 9327 9328 if (dst_reg->type == SCALAR_VALUE && 9329 src_reg->type == SCALAR_VALUE) { 9330 if (tnum_is_const(src_reg->var_off) || 9331 (is_jmp32 && 9332 tnum_is_const(tnum_subreg(src_reg->var_off)))) 9333 reg_set_min_max(&other_branch_regs[insn->dst_reg], 9334 dst_reg, 9335 src_reg->var_off.value, 9336 tnum_subreg(src_reg->var_off).value, 9337 opcode, is_jmp32); 9338 else if (tnum_is_const(dst_reg->var_off) || 9339 (is_jmp32 && 9340 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 9341 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 9342 src_reg, 9343 dst_reg->var_off.value, 9344 tnum_subreg(dst_reg->var_off).value, 9345 opcode, is_jmp32); 9346 else if (!is_jmp32 && 9347 (opcode == BPF_JEQ || opcode == BPF_JNE)) 9348 /* Comparing for equality, we can combine knowledge */ 9349 reg_combine_min_max(&other_branch_regs[insn->src_reg], 9350 &other_branch_regs[insn->dst_reg], 9351 src_reg, dst_reg, opcode); 9352 if (src_reg->id && 9353 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 9354 find_equal_scalars(this_branch, src_reg); 9355 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 9356 } 9357 9358 } 9359 } else if (dst_reg->type == SCALAR_VALUE) { 9360 reg_set_min_max(&other_branch_regs[insn->dst_reg], 9361 dst_reg, insn->imm, (u32)insn->imm, 9362 opcode, is_jmp32); 9363 } 9364 9365 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 9366 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 9367 find_equal_scalars(this_branch, dst_reg); 9368 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 9369 } 9370 9371 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 9372 * NOTE: these optimizations below are related with pointer comparison 9373 * which will never be JMP32. 9374 */ 9375 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 9376 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 9377 reg_type_may_be_null(dst_reg->type)) { 9378 /* Mark all identical registers in each branch as either 9379 * safe or unknown depending R == 0 or R != 0 conditional. 9380 */ 9381 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 9382 opcode == BPF_JNE); 9383 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 9384 opcode == BPF_JEQ); 9385 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 9386 this_branch, other_branch) && 9387 is_pointer_value(env, insn->dst_reg)) { 9388 verbose(env, "R%d pointer comparison prohibited\n", 9389 insn->dst_reg); 9390 return -EACCES; 9391 } 9392 if (env->log.level & BPF_LOG_LEVEL) 9393 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 9394 return 0; 9395 } 9396 9397 /* verify BPF_LD_IMM64 instruction */ 9398 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 9399 { 9400 struct bpf_insn_aux_data *aux = cur_aux(env); 9401 struct bpf_reg_state *regs = cur_regs(env); 9402 struct bpf_reg_state *dst_reg; 9403 struct bpf_map *map; 9404 int err; 9405 9406 if (BPF_SIZE(insn->code) != BPF_DW) { 9407 verbose(env, "invalid BPF_LD_IMM insn\n"); 9408 return -EINVAL; 9409 } 9410 if (insn->off != 0) { 9411 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 9412 return -EINVAL; 9413 } 9414 9415 err = check_reg_arg(env, insn->dst_reg, DST_OP); 9416 if (err) 9417 return err; 9418 9419 dst_reg = ®s[insn->dst_reg]; 9420 if (insn->src_reg == 0) { 9421 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 9422 9423 dst_reg->type = SCALAR_VALUE; 9424 __mark_reg_known(®s[insn->dst_reg], imm); 9425 return 0; 9426 } 9427 9428 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 9429 mark_reg_known_zero(env, regs, insn->dst_reg); 9430 9431 dst_reg->type = aux->btf_var.reg_type; 9432 switch (dst_reg->type) { 9433 case PTR_TO_MEM: 9434 dst_reg->mem_size = aux->btf_var.mem_size; 9435 break; 9436 case PTR_TO_BTF_ID: 9437 case PTR_TO_PERCPU_BTF_ID: 9438 dst_reg->btf = aux->btf_var.btf; 9439 dst_reg->btf_id = aux->btf_var.btf_id; 9440 break; 9441 default: 9442 verbose(env, "bpf verifier is misconfigured\n"); 9443 return -EFAULT; 9444 } 9445 return 0; 9446 } 9447 9448 if (insn->src_reg == BPF_PSEUDO_FUNC) { 9449 struct bpf_prog_aux *aux = env->prog->aux; 9450 u32 subprogno = find_subprog(env, 9451 env->insn_idx + insn->imm + 1); 9452 9453 if (!aux->func_info) { 9454 verbose(env, "missing btf func_info\n"); 9455 return -EINVAL; 9456 } 9457 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 9458 verbose(env, "callback function not static\n"); 9459 return -EINVAL; 9460 } 9461 9462 dst_reg->type = PTR_TO_FUNC; 9463 dst_reg->subprogno = subprogno; 9464 return 0; 9465 } 9466 9467 map = env->used_maps[aux->map_index]; 9468 mark_reg_known_zero(env, regs, insn->dst_reg); 9469 dst_reg->map_ptr = map; 9470 9471 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 9472 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 9473 dst_reg->type = PTR_TO_MAP_VALUE; 9474 dst_reg->off = aux->map_off; 9475 if (map_value_has_spin_lock(map)) 9476 dst_reg->id = ++env->id_gen; 9477 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 9478 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 9479 dst_reg->type = CONST_PTR_TO_MAP; 9480 } else { 9481 verbose(env, "bpf verifier is misconfigured\n"); 9482 return -EINVAL; 9483 } 9484 9485 return 0; 9486 } 9487 9488 static bool may_access_skb(enum bpf_prog_type type) 9489 { 9490 switch (type) { 9491 case BPF_PROG_TYPE_SOCKET_FILTER: 9492 case BPF_PROG_TYPE_SCHED_CLS: 9493 case BPF_PROG_TYPE_SCHED_ACT: 9494 return true; 9495 default: 9496 return false; 9497 } 9498 } 9499 9500 /* verify safety of LD_ABS|LD_IND instructions: 9501 * - they can only appear in the programs where ctx == skb 9502 * - since they are wrappers of function calls, they scratch R1-R5 registers, 9503 * preserve R6-R9, and store return value into R0 9504 * 9505 * Implicit input: 9506 * ctx == skb == R6 == CTX 9507 * 9508 * Explicit input: 9509 * SRC == any register 9510 * IMM == 32-bit immediate 9511 * 9512 * Output: 9513 * R0 - 8/16/32-bit skb data converted to cpu endianness 9514 */ 9515 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 9516 { 9517 struct bpf_reg_state *regs = cur_regs(env); 9518 static const int ctx_reg = BPF_REG_6; 9519 u8 mode = BPF_MODE(insn->code); 9520 int i, err; 9521 9522 if (!may_access_skb(resolve_prog_type(env->prog))) { 9523 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 9524 return -EINVAL; 9525 } 9526 9527 if (!env->ops->gen_ld_abs) { 9528 verbose(env, "bpf verifier is misconfigured\n"); 9529 return -EINVAL; 9530 } 9531 9532 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 9533 BPF_SIZE(insn->code) == BPF_DW || 9534 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 9535 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 9536 return -EINVAL; 9537 } 9538 9539 /* check whether implicit source operand (register R6) is readable */ 9540 err = check_reg_arg(env, ctx_reg, SRC_OP); 9541 if (err) 9542 return err; 9543 9544 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 9545 * gen_ld_abs() may terminate the program at runtime, leading to 9546 * reference leak. 9547 */ 9548 err = check_reference_leak(env); 9549 if (err) { 9550 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 9551 return err; 9552 } 9553 9554 if (env->cur_state->active_spin_lock) { 9555 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 9556 return -EINVAL; 9557 } 9558 9559 if (regs[ctx_reg].type != PTR_TO_CTX) { 9560 verbose(env, 9561 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 9562 return -EINVAL; 9563 } 9564 9565 if (mode == BPF_IND) { 9566 /* check explicit source operand */ 9567 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9568 if (err) 9569 return err; 9570 } 9571 9572 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 9573 if (err < 0) 9574 return err; 9575 9576 /* reset caller saved regs to unreadable */ 9577 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9578 mark_reg_not_init(env, regs, caller_saved[i]); 9579 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 9580 } 9581 9582 /* mark destination R0 register as readable, since it contains 9583 * the value fetched from the packet. 9584 * Already marked as written above. 9585 */ 9586 mark_reg_unknown(env, regs, BPF_REG_0); 9587 /* ld_abs load up to 32-bit skb data. */ 9588 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 9589 return 0; 9590 } 9591 9592 static int check_return_code(struct bpf_verifier_env *env) 9593 { 9594 struct tnum enforce_attach_type_range = tnum_unknown; 9595 const struct bpf_prog *prog = env->prog; 9596 struct bpf_reg_state *reg; 9597 struct tnum range = tnum_range(0, 1); 9598 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9599 int err; 9600 struct bpf_func_state *frame = env->cur_state->frame[0]; 9601 const bool is_subprog = frame->subprogno; 9602 9603 /* LSM and struct_ops func-ptr's return type could be "void" */ 9604 if (!is_subprog && 9605 (prog_type == BPF_PROG_TYPE_STRUCT_OPS || 9606 prog_type == BPF_PROG_TYPE_LSM) && 9607 !prog->aux->attach_func_proto->type) 9608 return 0; 9609 9610 /* eBPF calling convention is such that R0 is used 9611 * to return the value from eBPF program. 9612 * Make sure that it's readable at this time 9613 * of bpf_exit, which means that program wrote 9614 * something into it earlier 9615 */ 9616 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 9617 if (err) 9618 return err; 9619 9620 if (is_pointer_value(env, BPF_REG_0)) { 9621 verbose(env, "R0 leaks addr as return value\n"); 9622 return -EACCES; 9623 } 9624 9625 reg = cur_regs(env) + BPF_REG_0; 9626 9627 if (frame->in_async_callback_fn) { 9628 /* enforce return zero from async callbacks like timer */ 9629 if (reg->type != SCALAR_VALUE) { 9630 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 9631 reg_type_str[reg->type]); 9632 return -EINVAL; 9633 } 9634 9635 if (!tnum_in(tnum_const(0), reg->var_off)) { 9636 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 9637 return -EINVAL; 9638 } 9639 return 0; 9640 } 9641 9642 if (is_subprog) { 9643 if (reg->type != SCALAR_VALUE) { 9644 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 9645 reg_type_str[reg->type]); 9646 return -EINVAL; 9647 } 9648 return 0; 9649 } 9650 9651 switch (prog_type) { 9652 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 9653 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 9654 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 9655 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 9656 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 9657 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 9658 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 9659 range = tnum_range(1, 1); 9660 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 9661 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 9662 range = tnum_range(0, 3); 9663 break; 9664 case BPF_PROG_TYPE_CGROUP_SKB: 9665 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 9666 range = tnum_range(0, 3); 9667 enforce_attach_type_range = tnum_range(2, 3); 9668 } 9669 break; 9670 case BPF_PROG_TYPE_CGROUP_SOCK: 9671 case BPF_PROG_TYPE_SOCK_OPS: 9672 case BPF_PROG_TYPE_CGROUP_DEVICE: 9673 case BPF_PROG_TYPE_CGROUP_SYSCTL: 9674 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 9675 break; 9676 case BPF_PROG_TYPE_RAW_TRACEPOINT: 9677 if (!env->prog->aux->attach_btf_id) 9678 return 0; 9679 range = tnum_const(0); 9680 break; 9681 case BPF_PROG_TYPE_TRACING: 9682 switch (env->prog->expected_attach_type) { 9683 case BPF_TRACE_FENTRY: 9684 case BPF_TRACE_FEXIT: 9685 range = tnum_const(0); 9686 break; 9687 case BPF_TRACE_RAW_TP: 9688 case BPF_MODIFY_RETURN: 9689 return 0; 9690 case BPF_TRACE_ITER: 9691 break; 9692 default: 9693 return -ENOTSUPP; 9694 } 9695 break; 9696 case BPF_PROG_TYPE_SK_LOOKUP: 9697 range = tnum_range(SK_DROP, SK_PASS); 9698 break; 9699 case BPF_PROG_TYPE_EXT: 9700 /* freplace program can return anything as its return value 9701 * depends on the to-be-replaced kernel func or bpf program. 9702 */ 9703 default: 9704 return 0; 9705 } 9706 9707 if (reg->type != SCALAR_VALUE) { 9708 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 9709 reg_type_str[reg->type]); 9710 return -EINVAL; 9711 } 9712 9713 if (!tnum_in(range, reg->var_off)) { 9714 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 9715 return -EINVAL; 9716 } 9717 9718 if (!tnum_is_unknown(enforce_attach_type_range) && 9719 tnum_in(enforce_attach_type_range, reg->var_off)) 9720 env->prog->enforce_expected_attach_type = 1; 9721 return 0; 9722 } 9723 9724 /* non-recursive DFS pseudo code 9725 * 1 procedure DFS-iterative(G,v): 9726 * 2 label v as discovered 9727 * 3 let S be a stack 9728 * 4 S.push(v) 9729 * 5 while S is not empty 9730 * 6 t <- S.pop() 9731 * 7 if t is what we're looking for: 9732 * 8 return t 9733 * 9 for all edges e in G.adjacentEdges(t) do 9734 * 10 if edge e is already labelled 9735 * 11 continue with the next edge 9736 * 12 w <- G.adjacentVertex(t,e) 9737 * 13 if vertex w is not discovered and not explored 9738 * 14 label e as tree-edge 9739 * 15 label w as discovered 9740 * 16 S.push(w) 9741 * 17 continue at 5 9742 * 18 else if vertex w is discovered 9743 * 19 label e as back-edge 9744 * 20 else 9745 * 21 // vertex w is explored 9746 * 22 label e as forward- or cross-edge 9747 * 23 label t as explored 9748 * 24 S.pop() 9749 * 9750 * convention: 9751 * 0x10 - discovered 9752 * 0x11 - discovered and fall-through edge labelled 9753 * 0x12 - discovered and fall-through and branch edges labelled 9754 * 0x20 - explored 9755 */ 9756 9757 enum { 9758 DISCOVERED = 0x10, 9759 EXPLORED = 0x20, 9760 FALLTHROUGH = 1, 9761 BRANCH = 2, 9762 }; 9763 9764 static u32 state_htab_size(struct bpf_verifier_env *env) 9765 { 9766 return env->prog->len; 9767 } 9768 9769 static struct bpf_verifier_state_list **explored_state( 9770 struct bpf_verifier_env *env, 9771 int idx) 9772 { 9773 struct bpf_verifier_state *cur = env->cur_state; 9774 struct bpf_func_state *state = cur->frame[cur->curframe]; 9775 9776 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 9777 } 9778 9779 static void init_explored_state(struct bpf_verifier_env *env, int idx) 9780 { 9781 env->insn_aux_data[idx].prune_point = true; 9782 } 9783 9784 enum { 9785 DONE_EXPLORING = 0, 9786 KEEP_EXPLORING = 1, 9787 }; 9788 9789 /* t, w, e - match pseudo-code above: 9790 * t - index of current instruction 9791 * w - next instruction 9792 * e - edge 9793 */ 9794 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 9795 bool loop_ok) 9796 { 9797 int *insn_stack = env->cfg.insn_stack; 9798 int *insn_state = env->cfg.insn_state; 9799 9800 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 9801 return DONE_EXPLORING; 9802 9803 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 9804 return DONE_EXPLORING; 9805 9806 if (w < 0 || w >= env->prog->len) { 9807 verbose_linfo(env, t, "%d: ", t); 9808 verbose(env, "jump out of range from insn %d to %d\n", t, w); 9809 return -EINVAL; 9810 } 9811 9812 if (e == BRANCH) 9813 /* mark branch target for state pruning */ 9814 init_explored_state(env, w); 9815 9816 if (insn_state[w] == 0) { 9817 /* tree-edge */ 9818 insn_state[t] = DISCOVERED | e; 9819 insn_state[w] = DISCOVERED; 9820 if (env->cfg.cur_stack >= env->prog->len) 9821 return -E2BIG; 9822 insn_stack[env->cfg.cur_stack++] = w; 9823 return KEEP_EXPLORING; 9824 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 9825 if (loop_ok && env->bpf_capable) 9826 return DONE_EXPLORING; 9827 verbose_linfo(env, t, "%d: ", t); 9828 verbose_linfo(env, w, "%d: ", w); 9829 verbose(env, "back-edge from insn %d to %d\n", t, w); 9830 return -EINVAL; 9831 } else if (insn_state[w] == EXPLORED) { 9832 /* forward- or cross-edge */ 9833 insn_state[t] = DISCOVERED | e; 9834 } else { 9835 verbose(env, "insn state internal bug\n"); 9836 return -EFAULT; 9837 } 9838 return DONE_EXPLORING; 9839 } 9840 9841 static int visit_func_call_insn(int t, int insn_cnt, 9842 struct bpf_insn *insns, 9843 struct bpf_verifier_env *env, 9844 bool visit_callee) 9845 { 9846 int ret; 9847 9848 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 9849 if (ret) 9850 return ret; 9851 9852 if (t + 1 < insn_cnt) 9853 init_explored_state(env, t + 1); 9854 if (visit_callee) { 9855 init_explored_state(env, t); 9856 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 9857 /* It's ok to allow recursion from CFG point of 9858 * view. __check_func_call() will do the actual 9859 * check. 9860 */ 9861 bpf_pseudo_func(insns + t)); 9862 } 9863 return ret; 9864 } 9865 9866 /* Visits the instruction at index t and returns one of the following: 9867 * < 0 - an error occurred 9868 * DONE_EXPLORING - the instruction was fully explored 9869 * KEEP_EXPLORING - there is still work to be done before it is fully explored 9870 */ 9871 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) 9872 { 9873 struct bpf_insn *insns = env->prog->insnsi; 9874 int ret; 9875 9876 if (bpf_pseudo_func(insns + t)) 9877 return visit_func_call_insn(t, insn_cnt, insns, env, true); 9878 9879 /* All non-branch instructions have a single fall-through edge. */ 9880 if (BPF_CLASS(insns[t].code) != BPF_JMP && 9881 BPF_CLASS(insns[t].code) != BPF_JMP32) 9882 return push_insn(t, t + 1, FALLTHROUGH, env, false); 9883 9884 switch (BPF_OP(insns[t].code)) { 9885 case BPF_EXIT: 9886 return DONE_EXPLORING; 9887 9888 case BPF_CALL: 9889 if (insns[t].imm == BPF_FUNC_timer_set_callback) 9890 /* Mark this call insn to trigger is_state_visited() check 9891 * before call itself is processed by __check_func_call(). 9892 * Otherwise new async state will be pushed for further 9893 * exploration. 9894 */ 9895 init_explored_state(env, t); 9896 return visit_func_call_insn(t, insn_cnt, insns, env, 9897 insns[t].src_reg == BPF_PSEUDO_CALL); 9898 9899 case BPF_JA: 9900 if (BPF_SRC(insns[t].code) != BPF_K) 9901 return -EINVAL; 9902 9903 /* unconditional jump with single edge */ 9904 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 9905 true); 9906 if (ret) 9907 return ret; 9908 9909 /* unconditional jmp is not a good pruning point, 9910 * but it's marked, since backtracking needs 9911 * to record jmp history in is_state_visited(). 9912 */ 9913 init_explored_state(env, t + insns[t].off + 1); 9914 /* tell verifier to check for equivalent states 9915 * after every call and jump 9916 */ 9917 if (t + 1 < insn_cnt) 9918 init_explored_state(env, t + 1); 9919 9920 return ret; 9921 9922 default: 9923 /* conditional jump with two edges */ 9924 init_explored_state(env, t); 9925 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 9926 if (ret) 9927 return ret; 9928 9929 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 9930 } 9931 } 9932 9933 /* non-recursive depth-first-search to detect loops in BPF program 9934 * loop == back-edge in directed graph 9935 */ 9936 static int check_cfg(struct bpf_verifier_env *env) 9937 { 9938 int insn_cnt = env->prog->len; 9939 int *insn_stack, *insn_state; 9940 int ret = 0; 9941 int i; 9942 9943 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 9944 if (!insn_state) 9945 return -ENOMEM; 9946 9947 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 9948 if (!insn_stack) { 9949 kvfree(insn_state); 9950 return -ENOMEM; 9951 } 9952 9953 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 9954 insn_stack[0] = 0; /* 0 is the first instruction */ 9955 env->cfg.cur_stack = 1; 9956 9957 while (env->cfg.cur_stack > 0) { 9958 int t = insn_stack[env->cfg.cur_stack - 1]; 9959 9960 ret = visit_insn(t, insn_cnt, env); 9961 switch (ret) { 9962 case DONE_EXPLORING: 9963 insn_state[t] = EXPLORED; 9964 env->cfg.cur_stack--; 9965 break; 9966 case KEEP_EXPLORING: 9967 break; 9968 default: 9969 if (ret > 0) { 9970 verbose(env, "visit_insn internal bug\n"); 9971 ret = -EFAULT; 9972 } 9973 goto err_free; 9974 } 9975 } 9976 9977 if (env->cfg.cur_stack < 0) { 9978 verbose(env, "pop stack internal bug\n"); 9979 ret = -EFAULT; 9980 goto err_free; 9981 } 9982 9983 for (i = 0; i < insn_cnt; i++) { 9984 if (insn_state[i] != EXPLORED) { 9985 verbose(env, "unreachable insn %d\n", i); 9986 ret = -EINVAL; 9987 goto err_free; 9988 } 9989 } 9990 ret = 0; /* cfg looks good */ 9991 9992 err_free: 9993 kvfree(insn_state); 9994 kvfree(insn_stack); 9995 env->cfg.insn_state = env->cfg.insn_stack = NULL; 9996 return ret; 9997 } 9998 9999 static int check_abnormal_return(struct bpf_verifier_env *env) 10000 { 10001 int i; 10002 10003 for (i = 1; i < env->subprog_cnt; i++) { 10004 if (env->subprog_info[i].has_ld_abs) { 10005 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 10006 return -EINVAL; 10007 } 10008 if (env->subprog_info[i].has_tail_call) { 10009 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 10010 return -EINVAL; 10011 } 10012 } 10013 return 0; 10014 } 10015 10016 /* The minimum supported BTF func info size */ 10017 #define MIN_BPF_FUNCINFO_SIZE 8 10018 #define MAX_FUNCINFO_REC_SIZE 252 10019 10020 static int check_btf_func(struct bpf_verifier_env *env, 10021 const union bpf_attr *attr, 10022 bpfptr_t uattr) 10023 { 10024 const struct btf_type *type, *func_proto, *ret_type; 10025 u32 i, nfuncs, urec_size, min_size; 10026 u32 krec_size = sizeof(struct bpf_func_info); 10027 struct bpf_func_info *krecord; 10028 struct bpf_func_info_aux *info_aux = NULL; 10029 struct bpf_prog *prog; 10030 const struct btf *btf; 10031 bpfptr_t urecord; 10032 u32 prev_offset = 0; 10033 bool scalar_return; 10034 int ret = -ENOMEM; 10035 10036 nfuncs = attr->func_info_cnt; 10037 if (!nfuncs) { 10038 if (check_abnormal_return(env)) 10039 return -EINVAL; 10040 return 0; 10041 } 10042 10043 if (nfuncs != env->subprog_cnt) { 10044 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 10045 return -EINVAL; 10046 } 10047 10048 urec_size = attr->func_info_rec_size; 10049 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 10050 urec_size > MAX_FUNCINFO_REC_SIZE || 10051 urec_size % sizeof(u32)) { 10052 verbose(env, "invalid func info rec size %u\n", urec_size); 10053 return -EINVAL; 10054 } 10055 10056 prog = env->prog; 10057 btf = prog->aux->btf; 10058 10059 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 10060 min_size = min_t(u32, krec_size, urec_size); 10061 10062 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 10063 if (!krecord) 10064 return -ENOMEM; 10065 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 10066 if (!info_aux) 10067 goto err_free; 10068 10069 for (i = 0; i < nfuncs; i++) { 10070 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 10071 if (ret) { 10072 if (ret == -E2BIG) { 10073 verbose(env, "nonzero tailing record in func info"); 10074 /* set the size kernel expects so loader can zero 10075 * out the rest of the record. 10076 */ 10077 if (copy_to_bpfptr_offset(uattr, 10078 offsetof(union bpf_attr, func_info_rec_size), 10079 &min_size, sizeof(min_size))) 10080 ret = -EFAULT; 10081 } 10082 goto err_free; 10083 } 10084 10085 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 10086 ret = -EFAULT; 10087 goto err_free; 10088 } 10089 10090 /* check insn_off */ 10091 ret = -EINVAL; 10092 if (i == 0) { 10093 if (krecord[i].insn_off) { 10094 verbose(env, 10095 "nonzero insn_off %u for the first func info record", 10096 krecord[i].insn_off); 10097 goto err_free; 10098 } 10099 } else if (krecord[i].insn_off <= prev_offset) { 10100 verbose(env, 10101 "same or smaller insn offset (%u) than previous func info record (%u)", 10102 krecord[i].insn_off, prev_offset); 10103 goto err_free; 10104 } 10105 10106 if (env->subprog_info[i].start != krecord[i].insn_off) { 10107 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 10108 goto err_free; 10109 } 10110 10111 /* check type_id */ 10112 type = btf_type_by_id(btf, krecord[i].type_id); 10113 if (!type || !btf_type_is_func(type)) { 10114 verbose(env, "invalid type id %d in func info", 10115 krecord[i].type_id); 10116 goto err_free; 10117 } 10118 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 10119 10120 func_proto = btf_type_by_id(btf, type->type); 10121 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 10122 /* btf_func_check() already verified it during BTF load */ 10123 goto err_free; 10124 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 10125 scalar_return = 10126 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type); 10127 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 10128 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 10129 goto err_free; 10130 } 10131 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 10132 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 10133 goto err_free; 10134 } 10135 10136 prev_offset = krecord[i].insn_off; 10137 bpfptr_add(&urecord, urec_size); 10138 } 10139 10140 prog->aux->func_info = krecord; 10141 prog->aux->func_info_cnt = nfuncs; 10142 prog->aux->func_info_aux = info_aux; 10143 return 0; 10144 10145 err_free: 10146 kvfree(krecord); 10147 kfree(info_aux); 10148 return ret; 10149 } 10150 10151 static void adjust_btf_func(struct bpf_verifier_env *env) 10152 { 10153 struct bpf_prog_aux *aux = env->prog->aux; 10154 int i; 10155 10156 if (!aux->func_info) 10157 return; 10158 10159 for (i = 0; i < env->subprog_cnt; i++) 10160 aux->func_info[i].insn_off = env->subprog_info[i].start; 10161 } 10162 10163 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 10164 sizeof(((struct bpf_line_info *)(0))->line_col)) 10165 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 10166 10167 static int check_btf_line(struct bpf_verifier_env *env, 10168 const union bpf_attr *attr, 10169 bpfptr_t uattr) 10170 { 10171 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 10172 struct bpf_subprog_info *sub; 10173 struct bpf_line_info *linfo; 10174 struct bpf_prog *prog; 10175 const struct btf *btf; 10176 bpfptr_t ulinfo; 10177 int err; 10178 10179 nr_linfo = attr->line_info_cnt; 10180 if (!nr_linfo) 10181 return 0; 10182 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 10183 return -EINVAL; 10184 10185 rec_size = attr->line_info_rec_size; 10186 if (rec_size < MIN_BPF_LINEINFO_SIZE || 10187 rec_size > MAX_LINEINFO_REC_SIZE || 10188 rec_size & (sizeof(u32) - 1)) 10189 return -EINVAL; 10190 10191 /* Need to zero it in case the userspace may 10192 * pass in a smaller bpf_line_info object. 10193 */ 10194 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 10195 GFP_KERNEL | __GFP_NOWARN); 10196 if (!linfo) 10197 return -ENOMEM; 10198 10199 prog = env->prog; 10200 btf = prog->aux->btf; 10201 10202 s = 0; 10203 sub = env->subprog_info; 10204 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 10205 expected_size = sizeof(struct bpf_line_info); 10206 ncopy = min_t(u32, expected_size, rec_size); 10207 for (i = 0; i < nr_linfo; i++) { 10208 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 10209 if (err) { 10210 if (err == -E2BIG) { 10211 verbose(env, "nonzero tailing record in line_info"); 10212 if (copy_to_bpfptr_offset(uattr, 10213 offsetof(union bpf_attr, line_info_rec_size), 10214 &expected_size, sizeof(expected_size))) 10215 err = -EFAULT; 10216 } 10217 goto err_free; 10218 } 10219 10220 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 10221 err = -EFAULT; 10222 goto err_free; 10223 } 10224 10225 /* 10226 * Check insn_off to ensure 10227 * 1) strictly increasing AND 10228 * 2) bounded by prog->len 10229 * 10230 * The linfo[0].insn_off == 0 check logically falls into 10231 * the later "missing bpf_line_info for func..." case 10232 * because the first linfo[0].insn_off must be the 10233 * first sub also and the first sub must have 10234 * subprog_info[0].start == 0. 10235 */ 10236 if ((i && linfo[i].insn_off <= prev_offset) || 10237 linfo[i].insn_off >= prog->len) { 10238 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 10239 i, linfo[i].insn_off, prev_offset, 10240 prog->len); 10241 err = -EINVAL; 10242 goto err_free; 10243 } 10244 10245 if (!prog->insnsi[linfo[i].insn_off].code) { 10246 verbose(env, 10247 "Invalid insn code at line_info[%u].insn_off\n", 10248 i); 10249 err = -EINVAL; 10250 goto err_free; 10251 } 10252 10253 if (!btf_name_by_offset(btf, linfo[i].line_off) || 10254 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 10255 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 10256 err = -EINVAL; 10257 goto err_free; 10258 } 10259 10260 if (s != env->subprog_cnt) { 10261 if (linfo[i].insn_off == sub[s].start) { 10262 sub[s].linfo_idx = i; 10263 s++; 10264 } else if (sub[s].start < linfo[i].insn_off) { 10265 verbose(env, "missing bpf_line_info for func#%u\n", s); 10266 err = -EINVAL; 10267 goto err_free; 10268 } 10269 } 10270 10271 prev_offset = linfo[i].insn_off; 10272 bpfptr_add(&ulinfo, rec_size); 10273 } 10274 10275 if (s != env->subprog_cnt) { 10276 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 10277 env->subprog_cnt - s, s); 10278 err = -EINVAL; 10279 goto err_free; 10280 } 10281 10282 prog->aux->linfo = linfo; 10283 prog->aux->nr_linfo = nr_linfo; 10284 10285 return 0; 10286 10287 err_free: 10288 kvfree(linfo); 10289 return err; 10290 } 10291 10292 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 10293 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 10294 10295 static int check_core_relo(struct bpf_verifier_env *env, 10296 const union bpf_attr *attr, 10297 bpfptr_t uattr) 10298 { 10299 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 10300 struct bpf_core_relo core_relo = {}; 10301 struct bpf_prog *prog = env->prog; 10302 const struct btf *btf = prog->aux->btf; 10303 struct bpf_core_ctx ctx = { 10304 .log = &env->log, 10305 .btf = btf, 10306 }; 10307 bpfptr_t u_core_relo; 10308 int err; 10309 10310 nr_core_relo = attr->core_relo_cnt; 10311 if (!nr_core_relo) 10312 return 0; 10313 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 10314 return -EINVAL; 10315 10316 rec_size = attr->core_relo_rec_size; 10317 if (rec_size < MIN_CORE_RELO_SIZE || 10318 rec_size > MAX_CORE_RELO_SIZE || 10319 rec_size % sizeof(u32)) 10320 return -EINVAL; 10321 10322 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 10323 expected_size = sizeof(struct bpf_core_relo); 10324 ncopy = min_t(u32, expected_size, rec_size); 10325 10326 /* Unlike func_info and line_info, copy and apply each CO-RE 10327 * relocation record one at a time. 10328 */ 10329 for (i = 0; i < nr_core_relo; i++) { 10330 /* future proofing when sizeof(bpf_core_relo) changes */ 10331 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 10332 if (err) { 10333 if (err == -E2BIG) { 10334 verbose(env, "nonzero tailing record in core_relo"); 10335 if (copy_to_bpfptr_offset(uattr, 10336 offsetof(union bpf_attr, core_relo_rec_size), 10337 &expected_size, sizeof(expected_size))) 10338 err = -EFAULT; 10339 } 10340 break; 10341 } 10342 10343 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 10344 err = -EFAULT; 10345 break; 10346 } 10347 10348 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 10349 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 10350 i, core_relo.insn_off, prog->len); 10351 err = -EINVAL; 10352 break; 10353 } 10354 10355 err = bpf_core_apply(&ctx, &core_relo, i, 10356 &prog->insnsi[core_relo.insn_off / 8]); 10357 if (err) 10358 break; 10359 bpfptr_add(&u_core_relo, rec_size); 10360 } 10361 return err; 10362 } 10363 10364 static int check_btf_info(struct bpf_verifier_env *env, 10365 const union bpf_attr *attr, 10366 bpfptr_t uattr) 10367 { 10368 struct btf *btf; 10369 int err; 10370 10371 if (!attr->func_info_cnt && !attr->line_info_cnt) { 10372 if (check_abnormal_return(env)) 10373 return -EINVAL; 10374 return 0; 10375 } 10376 10377 btf = btf_get_by_fd(attr->prog_btf_fd); 10378 if (IS_ERR(btf)) 10379 return PTR_ERR(btf); 10380 if (btf_is_kernel(btf)) { 10381 btf_put(btf); 10382 return -EACCES; 10383 } 10384 env->prog->aux->btf = btf; 10385 10386 err = check_btf_func(env, attr, uattr); 10387 if (err) 10388 return err; 10389 10390 err = check_btf_line(env, attr, uattr); 10391 if (err) 10392 return err; 10393 10394 err = check_core_relo(env, attr, uattr); 10395 if (err) 10396 return err; 10397 10398 return 0; 10399 } 10400 10401 /* check %cur's range satisfies %old's */ 10402 static bool range_within(struct bpf_reg_state *old, 10403 struct bpf_reg_state *cur) 10404 { 10405 return old->umin_value <= cur->umin_value && 10406 old->umax_value >= cur->umax_value && 10407 old->smin_value <= cur->smin_value && 10408 old->smax_value >= cur->smax_value && 10409 old->u32_min_value <= cur->u32_min_value && 10410 old->u32_max_value >= cur->u32_max_value && 10411 old->s32_min_value <= cur->s32_min_value && 10412 old->s32_max_value >= cur->s32_max_value; 10413 } 10414 10415 /* If in the old state two registers had the same id, then they need to have 10416 * the same id in the new state as well. But that id could be different from 10417 * the old state, so we need to track the mapping from old to new ids. 10418 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 10419 * regs with old id 5 must also have new id 9 for the new state to be safe. But 10420 * regs with a different old id could still have new id 9, we don't care about 10421 * that. 10422 * So we look through our idmap to see if this old id has been seen before. If 10423 * so, we require the new id to match; otherwise, we add the id pair to the map. 10424 */ 10425 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 10426 { 10427 unsigned int i; 10428 10429 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 10430 if (!idmap[i].old) { 10431 /* Reached an empty slot; haven't seen this id before */ 10432 idmap[i].old = old_id; 10433 idmap[i].cur = cur_id; 10434 return true; 10435 } 10436 if (idmap[i].old == old_id) 10437 return idmap[i].cur == cur_id; 10438 } 10439 /* We ran out of idmap slots, which should be impossible */ 10440 WARN_ON_ONCE(1); 10441 return false; 10442 } 10443 10444 static void clean_func_state(struct bpf_verifier_env *env, 10445 struct bpf_func_state *st) 10446 { 10447 enum bpf_reg_liveness live; 10448 int i, j; 10449 10450 for (i = 0; i < BPF_REG_FP; i++) { 10451 live = st->regs[i].live; 10452 /* liveness must not touch this register anymore */ 10453 st->regs[i].live |= REG_LIVE_DONE; 10454 if (!(live & REG_LIVE_READ)) 10455 /* since the register is unused, clear its state 10456 * to make further comparison simpler 10457 */ 10458 __mark_reg_not_init(env, &st->regs[i]); 10459 } 10460 10461 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 10462 live = st->stack[i].spilled_ptr.live; 10463 /* liveness must not touch this stack slot anymore */ 10464 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 10465 if (!(live & REG_LIVE_READ)) { 10466 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 10467 for (j = 0; j < BPF_REG_SIZE; j++) 10468 st->stack[i].slot_type[j] = STACK_INVALID; 10469 } 10470 } 10471 } 10472 10473 static void clean_verifier_state(struct bpf_verifier_env *env, 10474 struct bpf_verifier_state *st) 10475 { 10476 int i; 10477 10478 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 10479 /* all regs in this state in all frames were already marked */ 10480 return; 10481 10482 for (i = 0; i <= st->curframe; i++) 10483 clean_func_state(env, st->frame[i]); 10484 } 10485 10486 /* the parentage chains form a tree. 10487 * the verifier states are added to state lists at given insn and 10488 * pushed into state stack for future exploration. 10489 * when the verifier reaches bpf_exit insn some of the verifer states 10490 * stored in the state lists have their final liveness state already, 10491 * but a lot of states will get revised from liveness point of view when 10492 * the verifier explores other branches. 10493 * Example: 10494 * 1: r0 = 1 10495 * 2: if r1 == 100 goto pc+1 10496 * 3: r0 = 2 10497 * 4: exit 10498 * when the verifier reaches exit insn the register r0 in the state list of 10499 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 10500 * of insn 2 and goes exploring further. At the insn 4 it will walk the 10501 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 10502 * 10503 * Since the verifier pushes the branch states as it sees them while exploring 10504 * the program the condition of walking the branch instruction for the second 10505 * time means that all states below this branch were already explored and 10506 * their final liveness marks are already propagated. 10507 * Hence when the verifier completes the search of state list in is_state_visited() 10508 * we can call this clean_live_states() function to mark all liveness states 10509 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 10510 * will not be used. 10511 * This function also clears the registers and stack for states that !READ 10512 * to simplify state merging. 10513 * 10514 * Important note here that walking the same branch instruction in the callee 10515 * doesn't meant that the states are DONE. The verifier has to compare 10516 * the callsites 10517 */ 10518 static void clean_live_states(struct bpf_verifier_env *env, int insn, 10519 struct bpf_verifier_state *cur) 10520 { 10521 struct bpf_verifier_state_list *sl; 10522 int i; 10523 10524 sl = *explored_state(env, insn); 10525 while (sl) { 10526 if (sl->state.branches) 10527 goto next; 10528 if (sl->state.insn_idx != insn || 10529 sl->state.curframe != cur->curframe) 10530 goto next; 10531 for (i = 0; i <= cur->curframe; i++) 10532 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 10533 goto next; 10534 clean_verifier_state(env, &sl->state); 10535 next: 10536 sl = sl->next; 10537 } 10538 } 10539 10540 /* Returns true if (rold safe implies rcur safe) */ 10541 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 10542 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 10543 { 10544 bool equal; 10545 10546 if (!(rold->live & REG_LIVE_READ)) 10547 /* explored state didn't use this */ 10548 return true; 10549 10550 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 10551 10552 if (rold->type == PTR_TO_STACK) 10553 /* two stack pointers are equal only if they're pointing to 10554 * the same stack frame, since fp-8 in foo != fp-8 in bar 10555 */ 10556 return equal && rold->frameno == rcur->frameno; 10557 10558 if (equal) 10559 return true; 10560 10561 if (rold->type == NOT_INIT) 10562 /* explored state can't have used this */ 10563 return true; 10564 if (rcur->type == NOT_INIT) 10565 return false; 10566 switch (rold->type) { 10567 case SCALAR_VALUE: 10568 if (env->explore_alu_limits) 10569 return false; 10570 if (rcur->type == SCALAR_VALUE) { 10571 if (!rold->precise && !rcur->precise) 10572 return true; 10573 /* new val must satisfy old val knowledge */ 10574 return range_within(rold, rcur) && 10575 tnum_in(rold->var_off, rcur->var_off); 10576 } else { 10577 /* We're trying to use a pointer in place of a scalar. 10578 * Even if the scalar was unbounded, this could lead to 10579 * pointer leaks because scalars are allowed to leak 10580 * while pointers are not. We could make this safe in 10581 * special cases if root is calling us, but it's 10582 * probably not worth the hassle. 10583 */ 10584 return false; 10585 } 10586 case PTR_TO_MAP_KEY: 10587 case PTR_TO_MAP_VALUE: 10588 /* If the new min/max/var_off satisfy the old ones and 10589 * everything else matches, we are OK. 10590 * 'id' is not compared, since it's only used for maps with 10591 * bpf_spin_lock inside map element and in such cases if 10592 * the rest of the prog is valid for one map element then 10593 * it's valid for all map elements regardless of the key 10594 * used in bpf_map_lookup() 10595 */ 10596 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 10597 range_within(rold, rcur) && 10598 tnum_in(rold->var_off, rcur->var_off); 10599 case PTR_TO_MAP_VALUE_OR_NULL: 10600 /* a PTR_TO_MAP_VALUE could be safe to use as a 10601 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 10602 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 10603 * checked, doing so could have affected others with the same 10604 * id, and we can't check for that because we lost the id when 10605 * we converted to a PTR_TO_MAP_VALUE. 10606 */ 10607 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 10608 return false; 10609 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 10610 return false; 10611 /* Check our ids match any regs they're supposed to */ 10612 return check_ids(rold->id, rcur->id, idmap); 10613 case PTR_TO_PACKET_META: 10614 case PTR_TO_PACKET: 10615 if (rcur->type != rold->type) 10616 return false; 10617 /* We must have at least as much range as the old ptr 10618 * did, so that any accesses which were safe before are 10619 * still safe. This is true even if old range < old off, 10620 * since someone could have accessed through (ptr - k), or 10621 * even done ptr -= k in a register, to get a safe access. 10622 */ 10623 if (rold->range > rcur->range) 10624 return false; 10625 /* If the offsets don't match, we can't trust our alignment; 10626 * nor can we be sure that we won't fall out of range. 10627 */ 10628 if (rold->off != rcur->off) 10629 return false; 10630 /* id relations must be preserved */ 10631 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 10632 return false; 10633 /* new val must satisfy old val knowledge */ 10634 return range_within(rold, rcur) && 10635 tnum_in(rold->var_off, rcur->var_off); 10636 case PTR_TO_CTX: 10637 case CONST_PTR_TO_MAP: 10638 case PTR_TO_PACKET_END: 10639 case PTR_TO_FLOW_KEYS: 10640 case PTR_TO_SOCKET: 10641 case PTR_TO_SOCKET_OR_NULL: 10642 case PTR_TO_SOCK_COMMON: 10643 case PTR_TO_SOCK_COMMON_OR_NULL: 10644 case PTR_TO_TCP_SOCK: 10645 case PTR_TO_TCP_SOCK_OR_NULL: 10646 case PTR_TO_XDP_SOCK: 10647 /* Only valid matches are exact, which memcmp() above 10648 * would have accepted 10649 */ 10650 default: 10651 /* Don't know what's going on, just say it's not safe */ 10652 return false; 10653 } 10654 10655 /* Shouldn't get here; if we do, say it's not safe */ 10656 WARN_ON_ONCE(1); 10657 return false; 10658 } 10659 10660 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 10661 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 10662 { 10663 int i, spi; 10664 10665 /* walk slots of the explored stack and ignore any additional 10666 * slots in the current stack, since explored(safe) state 10667 * didn't use them 10668 */ 10669 for (i = 0; i < old->allocated_stack; i++) { 10670 spi = i / BPF_REG_SIZE; 10671 10672 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 10673 i += BPF_REG_SIZE - 1; 10674 /* explored state didn't use this */ 10675 continue; 10676 } 10677 10678 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 10679 continue; 10680 10681 /* explored stack has more populated slots than current stack 10682 * and these slots were used 10683 */ 10684 if (i >= cur->allocated_stack) 10685 return false; 10686 10687 /* if old state was safe with misc data in the stack 10688 * it will be safe with zero-initialized stack. 10689 * The opposite is not true 10690 */ 10691 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 10692 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 10693 continue; 10694 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 10695 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 10696 /* Ex: old explored (safe) state has STACK_SPILL in 10697 * this stack slot, but current has STACK_MISC -> 10698 * this verifier states are not equivalent, 10699 * return false to continue verification of this path 10700 */ 10701 return false; 10702 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 10703 continue; 10704 if (!is_spilled_reg(&old->stack[spi])) 10705 continue; 10706 if (!regsafe(env, &old->stack[spi].spilled_ptr, 10707 &cur->stack[spi].spilled_ptr, idmap)) 10708 /* when explored and current stack slot are both storing 10709 * spilled registers, check that stored pointers types 10710 * are the same as well. 10711 * Ex: explored safe path could have stored 10712 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 10713 * but current path has stored: 10714 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 10715 * such verifier states are not equivalent. 10716 * return false to continue verification of this path 10717 */ 10718 return false; 10719 } 10720 return true; 10721 } 10722 10723 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 10724 { 10725 if (old->acquired_refs != cur->acquired_refs) 10726 return false; 10727 return !memcmp(old->refs, cur->refs, 10728 sizeof(*old->refs) * old->acquired_refs); 10729 } 10730 10731 /* compare two verifier states 10732 * 10733 * all states stored in state_list are known to be valid, since 10734 * verifier reached 'bpf_exit' instruction through them 10735 * 10736 * this function is called when verifier exploring different branches of 10737 * execution popped from the state stack. If it sees an old state that has 10738 * more strict register state and more strict stack state then this execution 10739 * branch doesn't need to be explored further, since verifier already 10740 * concluded that more strict state leads to valid finish. 10741 * 10742 * Therefore two states are equivalent if register state is more conservative 10743 * and explored stack state is more conservative than the current one. 10744 * Example: 10745 * explored current 10746 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 10747 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 10748 * 10749 * In other words if current stack state (one being explored) has more 10750 * valid slots than old one that already passed validation, it means 10751 * the verifier can stop exploring and conclude that current state is valid too 10752 * 10753 * Similarly with registers. If explored state has register type as invalid 10754 * whereas register type in current state is meaningful, it means that 10755 * the current state will reach 'bpf_exit' instruction safely 10756 */ 10757 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 10758 struct bpf_func_state *cur) 10759 { 10760 int i; 10761 10762 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 10763 for (i = 0; i < MAX_BPF_REG; i++) 10764 if (!regsafe(env, &old->regs[i], &cur->regs[i], 10765 env->idmap_scratch)) 10766 return false; 10767 10768 if (!stacksafe(env, old, cur, env->idmap_scratch)) 10769 return false; 10770 10771 if (!refsafe(old, cur)) 10772 return false; 10773 10774 return true; 10775 } 10776 10777 static bool states_equal(struct bpf_verifier_env *env, 10778 struct bpf_verifier_state *old, 10779 struct bpf_verifier_state *cur) 10780 { 10781 int i; 10782 10783 if (old->curframe != cur->curframe) 10784 return false; 10785 10786 /* Verification state from speculative execution simulation 10787 * must never prune a non-speculative execution one. 10788 */ 10789 if (old->speculative && !cur->speculative) 10790 return false; 10791 10792 if (old->active_spin_lock != cur->active_spin_lock) 10793 return false; 10794 10795 /* for states to be equal callsites have to be the same 10796 * and all frame states need to be equivalent 10797 */ 10798 for (i = 0; i <= old->curframe; i++) { 10799 if (old->frame[i]->callsite != cur->frame[i]->callsite) 10800 return false; 10801 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 10802 return false; 10803 } 10804 return true; 10805 } 10806 10807 /* Return 0 if no propagation happened. Return negative error code if error 10808 * happened. Otherwise, return the propagated bit. 10809 */ 10810 static int propagate_liveness_reg(struct bpf_verifier_env *env, 10811 struct bpf_reg_state *reg, 10812 struct bpf_reg_state *parent_reg) 10813 { 10814 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 10815 u8 flag = reg->live & REG_LIVE_READ; 10816 int err; 10817 10818 /* When comes here, read flags of PARENT_REG or REG could be any of 10819 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 10820 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 10821 */ 10822 if (parent_flag == REG_LIVE_READ64 || 10823 /* Or if there is no read flag from REG. */ 10824 !flag || 10825 /* Or if the read flag from REG is the same as PARENT_REG. */ 10826 parent_flag == flag) 10827 return 0; 10828 10829 err = mark_reg_read(env, reg, parent_reg, flag); 10830 if (err) 10831 return err; 10832 10833 return flag; 10834 } 10835 10836 /* A write screens off any subsequent reads; but write marks come from the 10837 * straight-line code between a state and its parent. When we arrive at an 10838 * equivalent state (jump target or such) we didn't arrive by the straight-line 10839 * code, so read marks in the state must propagate to the parent regardless 10840 * of the state's write marks. That's what 'parent == state->parent' comparison 10841 * in mark_reg_read() is for. 10842 */ 10843 static int propagate_liveness(struct bpf_verifier_env *env, 10844 const struct bpf_verifier_state *vstate, 10845 struct bpf_verifier_state *vparent) 10846 { 10847 struct bpf_reg_state *state_reg, *parent_reg; 10848 struct bpf_func_state *state, *parent; 10849 int i, frame, err = 0; 10850 10851 if (vparent->curframe != vstate->curframe) { 10852 WARN(1, "propagate_live: parent frame %d current frame %d\n", 10853 vparent->curframe, vstate->curframe); 10854 return -EFAULT; 10855 } 10856 /* Propagate read liveness of registers... */ 10857 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 10858 for (frame = 0; frame <= vstate->curframe; frame++) { 10859 parent = vparent->frame[frame]; 10860 state = vstate->frame[frame]; 10861 parent_reg = parent->regs; 10862 state_reg = state->regs; 10863 /* We don't need to worry about FP liveness, it's read-only */ 10864 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 10865 err = propagate_liveness_reg(env, &state_reg[i], 10866 &parent_reg[i]); 10867 if (err < 0) 10868 return err; 10869 if (err == REG_LIVE_READ64) 10870 mark_insn_zext(env, &parent_reg[i]); 10871 } 10872 10873 /* Propagate stack slots. */ 10874 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 10875 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 10876 parent_reg = &parent->stack[i].spilled_ptr; 10877 state_reg = &state->stack[i].spilled_ptr; 10878 err = propagate_liveness_reg(env, state_reg, 10879 parent_reg); 10880 if (err < 0) 10881 return err; 10882 } 10883 } 10884 return 0; 10885 } 10886 10887 /* find precise scalars in the previous equivalent state and 10888 * propagate them into the current state 10889 */ 10890 static int propagate_precision(struct bpf_verifier_env *env, 10891 const struct bpf_verifier_state *old) 10892 { 10893 struct bpf_reg_state *state_reg; 10894 struct bpf_func_state *state; 10895 int i, err = 0; 10896 10897 state = old->frame[old->curframe]; 10898 state_reg = state->regs; 10899 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 10900 if (state_reg->type != SCALAR_VALUE || 10901 !state_reg->precise) 10902 continue; 10903 if (env->log.level & BPF_LOG_LEVEL2) 10904 verbose(env, "propagating r%d\n", i); 10905 err = mark_chain_precision(env, i); 10906 if (err < 0) 10907 return err; 10908 } 10909 10910 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 10911 if (!is_spilled_reg(&state->stack[i])) 10912 continue; 10913 state_reg = &state->stack[i].spilled_ptr; 10914 if (state_reg->type != SCALAR_VALUE || 10915 !state_reg->precise) 10916 continue; 10917 if (env->log.level & BPF_LOG_LEVEL2) 10918 verbose(env, "propagating fp%d\n", 10919 (-i - 1) * BPF_REG_SIZE); 10920 err = mark_chain_precision_stack(env, i); 10921 if (err < 0) 10922 return err; 10923 } 10924 return 0; 10925 } 10926 10927 static bool states_maybe_looping(struct bpf_verifier_state *old, 10928 struct bpf_verifier_state *cur) 10929 { 10930 struct bpf_func_state *fold, *fcur; 10931 int i, fr = cur->curframe; 10932 10933 if (old->curframe != fr) 10934 return false; 10935 10936 fold = old->frame[fr]; 10937 fcur = cur->frame[fr]; 10938 for (i = 0; i < MAX_BPF_REG; i++) 10939 if (memcmp(&fold->regs[i], &fcur->regs[i], 10940 offsetof(struct bpf_reg_state, parent))) 10941 return false; 10942 return true; 10943 } 10944 10945 10946 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 10947 { 10948 struct bpf_verifier_state_list *new_sl; 10949 struct bpf_verifier_state_list *sl, **pprev; 10950 struct bpf_verifier_state *cur = env->cur_state, *new; 10951 int i, j, err, states_cnt = 0; 10952 bool add_new_state = env->test_state_freq ? true : false; 10953 10954 cur->last_insn_idx = env->prev_insn_idx; 10955 if (!env->insn_aux_data[insn_idx].prune_point) 10956 /* this 'insn_idx' instruction wasn't marked, so we will not 10957 * be doing state search here 10958 */ 10959 return 0; 10960 10961 /* bpf progs typically have pruning point every 4 instructions 10962 * http://vger.kernel.org/bpfconf2019.html#session-1 10963 * Do not add new state for future pruning if the verifier hasn't seen 10964 * at least 2 jumps and at least 8 instructions. 10965 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 10966 * In tests that amounts to up to 50% reduction into total verifier 10967 * memory consumption and 20% verifier time speedup. 10968 */ 10969 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 10970 env->insn_processed - env->prev_insn_processed >= 8) 10971 add_new_state = true; 10972 10973 pprev = explored_state(env, insn_idx); 10974 sl = *pprev; 10975 10976 clean_live_states(env, insn_idx, cur); 10977 10978 while (sl) { 10979 states_cnt++; 10980 if (sl->state.insn_idx != insn_idx) 10981 goto next; 10982 10983 if (sl->state.branches) { 10984 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 10985 10986 if (frame->in_async_callback_fn && 10987 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 10988 /* Different async_entry_cnt means that the verifier is 10989 * processing another entry into async callback. 10990 * Seeing the same state is not an indication of infinite 10991 * loop or infinite recursion. 10992 * But finding the same state doesn't mean that it's safe 10993 * to stop processing the current state. The previous state 10994 * hasn't yet reached bpf_exit, since state.branches > 0. 10995 * Checking in_async_callback_fn alone is not enough either. 10996 * Since the verifier still needs to catch infinite loops 10997 * inside async callbacks. 10998 */ 10999 } else if (states_maybe_looping(&sl->state, cur) && 11000 states_equal(env, &sl->state, cur)) { 11001 verbose_linfo(env, insn_idx, "; "); 11002 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 11003 return -EINVAL; 11004 } 11005 /* if the verifier is processing a loop, avoid adding new state 11006 * too often, since different loop iterations have distinct 11007 * states and may not help future pruning. 11008 * This threshold shouldn't be too low to make sure that 11009 * a loop with large bound will be rejected quickly. 11010 * The most abusive loop will be: 11011 * r1 += 1 11012 * if r1 < 1000000 goto pc-2 11013 * 1M insn_procssed limit / 100 == 10k peak states. 11014 * This threshold shouldn't be too high either, since states 11015 * at the end of the loop are likely to be useful in pruning. 11016 */ 11017 if (env->jmps_processed - env->prev_jmps_processed < 20 && 11018 env->insn_processed - env->prev_insn_processed < 100) 11019 add_new_state = false; 11020 goto miss; 11021 } 11022 if (states_equal(env, &sl->state, cur)) { 11023 sl->hit_cnt++; 11024 /* reached equivalent register/stack state, 11025 * prune the search. 11026 * Registers read by the continuation are read by us. 11027 * If we have any write marks in env->cur_state, they 11028 * will prevent corresponding reads in the continuation 11029 * from reaching our parent (an explored_state). Our 11030 * own state will get the read marks recorded, but 11031 * they'll be immediately forgotten as we're pruning 11032 * this state and will pop a new one. 11033 */ 11034 err = propagate_liveness(env, &sl->state, cur); 11035 11036 /* if previous state reached the exit with precision and 11037 * current state is equivalent to it (except precsion marks) 11038 * the precision needs to be propagated back in 11039 * the current state. 11040 */ 11041 err = err ? : push_jmp_history(env, cur); 11042 err = err ? : propagate_precision(env, &sl->state); 11043 if (err) 11044 return err; 11045 return 1; 11046 } 11047 miss: 11048 /* when new state is not going to be added do not increase miss count. 11049 * Otherwise several loop iterations will remove the state 11050 * recorded earlier. The goal of these heuristics is to have 11051 * states from some iterations of the loop (some in the beginning 11052 * and some at the end) to help pruning. 11053 */ 11054 if (add_new_state) 11055 sl->miss_cnt++; 11056 /* heuristic to determine whether this state is beneficial 11057 * to keep checking from state equivalence point of view. 11058 * Higher numbers increase max_states_per_insn and verification time, 11059 * but do not meaningfully decrease insn_processed. 11060 */ 11061 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 11062 /* the state is unlikely to be useful. Remove it to 11063 * speed up verification 11064 */ 11065 *pprev = sl->next; 11066 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 11067 u32 br = sl->state.branches; 11068 11069 WARN_ONCE(br, 11070 "BUG live_done but branches_to_explore %d\n", 11071 br); 11072 free_verifier_state(&sl->state, false); 11073 kfree(sl); 11074 env->peak_states--; 11075 } else { 11076 /* cannot free this state, since parentage chain may 11077 * walk it later. Add it for free_list instead to 11078 * be freed at the end of verification 11079 */ 11080 sl->next = env->free_list; 11081 env->free_list = sl; 11082 } 11083 sl = *pprev; 11084 continue; 11085 } 11086 next: 11087 pprev = &sl->next; 11088 sl = *pprev; 11089 } 11090 11091 if (env->max_states_per_insn < states_cnt) 11092 env->max_states_per_insn = states_cnt; 11093 11094 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 11095 return push_jmp_history(env, cur); 11096 11097 if (!add_new_state) 11098 return push_jmp_history(env, cur); 11099 11100 /* There were no equivalent states, remember the current one. 11101 * Technically the current state is not proven to be safe yet, 11102 * but it will either reach outer most bpf_exit (which means it's safe) 11103 * or it will be rejected. When there are no loops the verifier won't be 11104 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 11105 * again on the way to bpf_exit. 11106 * When looping the sl->state.branches will be > 0 and this state 11107 * will not be considered for equivalence until branches == 0. 11108 */ 11109 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 11110 if (!new_sl) 11111 return -ENOMEM; 11112 env->total_states++; 11113 env->peak_states++; 11114 env->prev_jmps_processed = env->jmps_processed; 11115 env->prev_insn_processed = env->insn_processed; 11116 11117 /* add new state to the head of linked list */ 11118 new = &new_sl->state; 11119 err = copy_verifier_state(new, cur); 11120 if (err) { 11121 free_verifier_state(new, false); 11122 kfree(new_sl); 11123 return err; 11124 } 11125 new->insn_idx = insn_idx; 11126 WARN_ONCE(new->branches != 1, 11127 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 11128 11129 cur->parent = new; 11130 cur->first_insn_idx = insn_idx; 11131 clear_jmp_history(cur); 11132 new_sl->next = *explored_state(env, insn_idx); 11133 *explored_state(env, insn_idx) = new_sl; 11134 /* connect new state to parentage chain. Current frame needs all 11135 * registers connected. Only r6 - r9 of the callers are alive (pushed 11136 * to the stack implicitly by JITs) so in callers' frames connect just 11137 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 11138 * the state of the call instruction (with WRITTEN set), and r0 comes 11139 * from callee with its full parentage chain, anyway. 11140 */ 11141 /* clear write marks in current state: the writes we did are not writes 11142 * our child did, so they don't screen off its reads from us. 11143 * (There are no read marks in current state, because reads always mark 11144 * their parent and current state never has children yet. Only 11145 * explored_states can get read marks.) 11146 */ 11147 for (j = 0; j <= cur->curframe; j++) { 11148 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 11149 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 11150 for (i = 0; i < BPF_REG_FP; i++) 11151 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 11152 } 11153 11154 /* all stack frames are accessible from callee, clear them all */ 11155 for (j = 0; j <= cur->curframe; j++) { 11156 struct bpf_func_state *frame = cur->frame[j]; 11157 struct bpf_func_state *newframe = new->frame[j]; 11158 11159 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 11160 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 11161 frame->stack[i].spilled_ptr.parent = 11162 &newframe->stack[i].spilled_ptr; 11163 } 11164 } 11165 return 0; 11166 } 11167 11168 /* Return true if it's OK to have the same insn return a different type. */ 11169 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 11170 { 11171 switch (type) { 11172 case PTR_TO_CTX: 11173 case PTR_TO_SOCKET: 11174 case PTR_TO_SOCKET_OR_NULL: 11175 case PTR_TO_SOCK_COMMON: 11176 case PTR_TO_SOCK_COMMON_OR_NULL: 11177 case PTR_TO_TCP_SOCK: 11178 case PTR_TO_TCP_SOCK_OR_NULL: 11179 case PTR_TO_XDP_SOCK: 11180 case PTR_TO_BTF_ID: 11181 case PTR_TO_BTF_ID_OR_NULL: 11182 return false; 11183 default: 11184 return true; 11185 } 11186 } 11187 11188 /* If an instruction was previously used with particular pointer types, then we 11189 * need to be careful to avoid cases such as the below, where it may be ok 11190 * for one branch accessing the pointer, but not ok for the other branch: 11191 * 11192 * R1 = sock_ptr 11193 * goto X; 11194 * ... 11195 * R1 = some_other_valid_ptr; 11196 * goto X; 11197 * ... 11198 * R2 = *(u32 *)(R1 + 0); 11199 */ 11200 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 11201 { 11202 return src != prev && (!reg_type_mismatch_ok(src) || 11203 !reg_type_mismatch_ok(prev)); 11204 } 11205 11206 static int do_check(struct bpf_verifier_env *env) 11207 { 11208 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 11209 struct bpf_verifier_state *state = env->cur_state; 11210 struct bpf_insn *insns = env->prog->insnsi; 11211 struct bpf_reg_state *regs; 11212 int insn_cnt = env->prog->len; 11213 bool do_print_state = false; 11214 int prev_insn_idx = -1; 11215 11216 for (;;) { 11217 struct bpf_insn *insn; 11218 u8 class; 11219 int err; 11220 11221 env->prev_insn_idx = prev_insn_idx; 11222 if (env->insn_idx >= insn_cnt) { 11223 verbose(env, "invalid insn idx %d insn_cnt %d\n", 11224 env->insn_idx, insn_cnt); 11225 return -EFAULT; 11226 } 11227 11228 insn = &insns[env->insn_idx]; 11229 class = BPF_CLASS(insn->code); 11230 11231 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 11232 verbose(env, 11233 "BPF program is too large. Processed %d insn\n", 11234 env->insn_processed); 11235 return -E2BIG; 11236 } 11237 11238 err = is_state_visited(env, env->insn_idx); 11239 if (err < 0) 11240 return err; 11241 if (err == 1) { 11242 /* found equivalent state, can prune the search */ 11243 if (env->log.level & BPF_LOG_LEVEL) { 11244 if (do_print_state) 11245 verbose(env, "\nfrom %d to %d%s: safe\n", 11246 env->prev_insn_idx, env->insn_idx, 11247 env->cur_state->speculative ? 11248 " (speculative execution)" : ""); 11249 else 11250 verbose(env, "%d: safe\n", env->insn_idx); 11251 } 11252 goto process_bpf_exit; 11253 } 11254 11255 if (signal_pending(current)) 11256 return -EAGAIN; 11257 11258 if (need_resched()) 11259 cond_resched(); 11260 11261 if (env->log.level & BPF_LOG_LEVEL2 || 11262 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 11263 if (env->log.level & BPF_LOG_LEVEL2) 11264 verbose(env, "%d:", env->insn_idx); 11265 else 11266 verbose(env, "\nfrom %d to %d%s:", 11267 env->prev_insn_idx, env->insn_idx, 11268 env->cur_state->speculative ? 11269 " (speculative execution)" : ""); 11270 print_verifier_state(env, state->frame[state->curframe]); 11271 do_print_state = false; 11272 } 11273 11274 if (env->log.level & BPF_LOG_LEVEL) { 11275 const struct bpf_insn_cbs cbs = { 11276 .cb_call = disasm_kfunc_name, 11277 .cb_print = verbose, 11278 .private_data = env, 11279 }; 11280 11281 verbose_linfo(env, env->insn_idx, "; "); 11282 verbose(env, "%d: ", env->insn_idx); 11283 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 11284 } 11285 11286 if (bpf_prog_is_dev_bound(env->prog->aux)) { 11287 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 11288 env->prev_insn_idx); 11289 if (err) 11290 return err; 11291 } 11292 11293 regs = cur_regs(env); 11294 sanitize_mark_insn_seen(env); 11295 prev_insn_idx = env->insn_idx; 11296 11297 if (class == BPF_ALU || class == BPF_ALU64) { 11298 err = check_alu_op(env, insn); 11299 if (err) 11300 return err; 11301 11302 } else if (class == BPF_LDX) { 11303 enum bpf_reg_type *prev_src_type, src_reg_type; 11304 11305 /* check for reserved fields is already done */ 11306 11307 /* check src operand */ 11308 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11309 if (err) 11310 return err; 11311 11312 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 11313 if (err) 11314 return err; 11315 11316 src_reg_type = regs[insn->src_reg].type; 11317 11318 /* check that memory (src_reg + off) is readable, 11319 * the state of dst_reg will be updated by this func 11320 */ 11321 err = check_mem_access(env, env->insn_idx, insn->src_reg, 11322 insn->off, BPF_SIZE(insn->code), 11323 BPF_READ, insn->dst_reg, false); 11324 if (err) 11325 return err; 11326 11327 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 11328 11329 if (*prev_src_type == NOT_INIT) { 11330 /* saw a valid insn 11331 * dst_reg = *(u32 *)(src_reg + off) 11332 * save type to validate intersecting paths 11333 */ 11334 *prev_src_type = src_reg_type; 11335 11336 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 11337 /* ABuser program is trying to use the same insn 11338 * dst_reg = *(u32*) (src_reg + off) 11339 * with different pointer types: 11340 * src_reg == ctx in one branch and 11341 * src_reg == stack|map in some other branch. 11342 * Reject it. 11343 */ 11344 verbose(env, "same insn cannot be used with different pointers\n"); 11345 return -EINVAL; 11346 } 11347 11348 } else if (class == BPF_STX) { 11349 enum bpf_reg_type *prev_dst_type, dst_reg_type; 11350 11351 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 11352 err = check_atomic(env, env->insn_idx, insn); 11353 if (err) 11354 return err; 11355 env->insn_idx++; 11356 continue; 11357 } 11358 11359 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 11360 verbose(env, "BPF_STX uses reserved fields\n"); 11361 return -EINVAL; 11362 } 11363 11364 /* check src1 operand */ 11365 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11366 if (err) 11367 return err; 11368 /* check src2 operand */ 11369 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11370 if (err) 11371 return err; 11372 11373 dst_reg_type = regs[insn->dst_reg].type; 11374 11375 /* check that memory (dst_reg + off) is writeable */ 11376 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 11377 insn->off, BPF_SIZE(insn->code), 11378 BPF_WRITE, insn->src_reg, false); 11379 if (err) 11380 return err; 11381 11382 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 11383 11384 if (*prev_dst_type == NOT_INIT) { 11385 *prev_dst_type = dst_reg_type; 11386 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 11387 verbose(env, "same insn cannot be used with different pointers\n"); 11388 return -EINVAL; 11389 } 11390 11391 } else if (class == BPF_ST) { 11392 if (BPF_MODE(insn->code) != BPF_MEM || 11393 insn->src_reg != BPF_REG_0) { 11394 verbose(env, "BPF_ST uses reserved fields\n"); 11395 return -EINVAL; 11396 } 11397 /* check src operand */ 11398 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11399 if (err) 11400 return err; 11401 11402 if (is_ctx_reg(env, insn->dst_reg)) { 11403 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 11404 insn->dst_reg, 11405 reg_type_str[reg_state(env, insn->dst_reg)->type]); 11406 return -EACCES; 11407 } 11408 11409 /* check that memory (dst_reg + off) is writeable */ 11410 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 11411 insn->off, BPF_SIZE(insn->code), 11412 BPF_WRITE, -1, false); 11413 if (err) 11414 return err; 11415 11416 } else if (class == BPF_JMP || class == BPF_JMP32) { 11417 u8 opcode = BPF_OP(insn->code); 11418 11419 env->jmps_processed++; 11420 if (opcode == BPF_CALL) { 11421 if (BPF_SRC(insn->code) != BPF_K || 11422 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 11423 && insn->off != 0) || 11424 (insn->src_reg != BPF_REG_0 && 11425 insn->src_reg != BPF_PSEUDO_CALL && 11426 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 11427 insn->dst_reg != BPF_REG_0 || 11428 class == BPF_JMP32) { 11429 verbose(env, "BPF_CALL uses reserved fields\n"); 11430 return -EINVAL; 11431 } 11432 11433 if (env->cur_state->active_spin_lock && 11434 (insn->src_reg == BPF_PSEUDO_CALL || 11435 insn->imm != BPF_FUNC_spin_unlock)) { 11436 verbose(env, "function calls are not allowed while holding a lock\n"); 11437 return -EINVAL; 11438 } 11439 if (insn->src_reg == BPF_PSEUDO_CALL) 11440 err = check_func_call(env, insn, &env->insn_idx); 11441 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 11442 err = check_kfunc_call(env, insn); 11443 else 11444 err = check_helper_call(env, insn, &env->insn_idx); 11445 if (err) 11446 return err; 11447 } else if (opcode == BPF_JA) { 11448 if (BPF_SRC(insn->code) != BPF_K || 11449 insn->imm != 0 || 11450 insn->src_reg != BPF_REG_0 || 11451 insn->dst_reg != BPF_REG_0 || 11452 class == BPF_JMP32) { 11453 verbose(env, "BPF_JA uses reserved fields\n"); 11454 return -EINVAL; 11455 } 11456 11457 env->insn_idx += insn->off + 1; 11458 continue; 11459 11460 } else if (opcode == BPF_EXIT) { 11461 if (BPF_SRC(insn->code) != BPF_K || 11462 insn->imm != 0 || 11463 insn->src_reg != BPF_REG_0 || 11464 insn->dst_reg != BPF_REG_0 || 11465 class == BPF_JMP32) { 11466 verbose(env, "BPF_EXIT uses reserved fields\n"); 11467 return -EINVAL; 11468 } 11469 11470 if (env->cur_state->active_spin_lock) { 11471 verbose(env, "bpf_spin_unlock is missing\n"); 11472 return -EINVAL; 11473 } 11474 11475 if (state->curframe) { 11476 /* exit from nested function */ 11477 err = prepare_func_exit(env, &env->insn_idx); 11478 if (err) 11479 return err; 11480 do_print_state = true; 11481 continue; 11482 } 11483 11484 err = check_reference_leak(env); 11485 if (err) 11486 return err; 11487 11488 err = check_return_code(env); 11489 if (err) 11490 return err; 11491 process_bpf_exit: 11492 update_branch_counts(env, env->cur_state); 11493 err = pop_stack(env, &prev_insn_idx, 11494 &env->insn_idx, pop_log); 11495 if (err < 0) { 11496 if (err != -ENOENT) 11497 return err; 11498 break; 11499 } else { 11500 do_print_state = true; 11501 continue; 11502 } 11503 } else { 11504 err = check_cond_jmp_op(env, insn, &env->insn_idx); 11505 if (err) 11506 return err; 11507 } 11508 } else if (class == BPF_LD) { 11509 u8 mode = BPF_MODE(insn->code); 11510 11511 if (mode == BPF_ABS || mode == BPF_IND) { 11512 err = check_ld_abs(env, insn); 11513 if (err) 11514 return err; 11515 11516 } else if (mode == BPF_IMM) { 11517 err = check_ld_imm(env, insn); 11518 if (err) 11519 return err; 11520 11521 env->insn_idx++; 11522 sanitize_mark_insn_seen(env); 11523 } else { 11524 verbose(env, "invalid BPF_LD mode\n"); 11525 return -EINVAL; 11526 } 11527 } else { 11528 verbose(env, "unknown insn class %d\n", class); 11529 return -EINVAL; 11530 } 11531 11532 env->insn_idx++; 11533 } 11534 11535 return 0; 11536 } 11537 11538 static int find_btf_percpu_datasec(struct btf *btf) 11539 { 11540 const struct btf_type *t; 11541 const char *tname; 11542 int i, n; 11543 11544 /* 11545 * Both vmlinux and module each have their own ".data..percpu" 11546 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 11547 * types to look at only module's own BTF types. 11548 */ 11549 n = btf_nr_types(btf); 11550 if (btf_is_module(btf)) 11551 i = btf_nr_types(btf_vmlinux); 11552 else 11553 i = 1; 11554 11555 for(; i < n; i++) { 11556 t = btf_type_by_id(btf, i); 11557 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 11558 continue; 11559 11560 tname = btf_name_by_offset(btf, t->name_off); 11561 if (!strcmp(tname, ".data..percpu")) 11562 return i; 11563 } 11564 11565 return -ENOENT; 11566 } 11567 11568 /* replace pseudo btf_id with kernel symbol address */ 11569 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 11570 struct bpf_insn *insn, 11571 struct bpf_insn_aux_data *aux) 11572 { 11573 const struct btf_var_secinfo *vsi; 11574 const struct btf_type *datasec; 11575 struct btf_mod_pair *btf_mod; 11576 const struct btf_type *t; 11577 const char *sym_name; 11578 bool percpu = false; 11579 u32 type, id = insn->imm; 11580 struct btf *btf; 11581 s32 datasec_id; 11582 u64 addr; 11583 int i, btf_fd, err; 11584 11585 btf_fd = insn[1].imm; 11586 if (btf_fd) { 11587 btf = btf_get_by_fd(btf_fd); 11588 if (IS_ERR(btf)) { 11589 verbose(env, "invalid module BTF object FD specified.\n"); 11590 return -EINVAL; 11591 } 11592 } else { 11593 if (!btf_vmlinux) { 11594 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 11595 return -EINVAL; 11596 } 11597 btf = btf_vmlinux; 11598 btf_get(btf); 11599 } 11600 11601 t = btf_type_by_id(btf, id); 11602 if (!t) { 11603 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 11604 err = -ENOENT; 11605 goto err_put; 11606 } 11607 11608 if (!btf_type_is_var(t)) { 11609 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 11610 err = -EINVAL; 11611 goto err_put; 11612 } 11613 11614 sym_name = btf_name_by_offset(btf, t->name_off); 11615 addr = kallsyms_lookup_name(sym_name); 11616 if (!addr) { 11617 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 11618 sym_name); 11619 err = -ENOENT; 11620 goto err_put; 11621 } 11622 11623 datasec_id = find_btf_percpu_datasec(btf); 11624 if (datasec_id > 0) { 11625 datasec = btf_type_by_id(btf, datasec_id); 11626 for_each_vsi(i, datasec, vsi) { 11627 if (vsi->type == id) { 11628 percpu = true; 11629 break; 11630 } 11631 } 11632 } 11633 11634 insn[0].imm = (u32)addr; 11635 insn[1].imm = addr >> 32; 11636 11637 type = t->type; 11638 t = btf_type_skip_modifiers(btf, type, NULL); 11639 if (percpu) { 11640 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID; 11641 aux->btf_var.btf = btf; 11642 aux->btf_var.btf_id = type; 11643 } else if (!btf_type_is_struct(t)) { 11644 const struct btf_type *ret; 11645 const char *tname; 11646 u32 tsize; 11647 11648 /* resolve the type size of ksym. */ 11649 ret = btf_resolve_size(btf, t, &tsize); 11650 if (IS_ERR(ret)) { 11651 tname = btf_name_by_offset(btf, t->name_off); 11652 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 11653 tname, PTR_ERR(ret)); 11654 err = -EINVAL; 11655 goto err_put; 11656 } 11657 aux->btf_var.reg_type = PTR_TO_MEM; 11658 aux->btf_var.mem_size = tsize; 11659 } else { 11660 aux->btf_var.reg_type = PTR_TO_BTF_ID; 11661 aux->btf_var.btf = btf; 11662 aux->btf_var.btf_id = type; 11663 } 11664 11665 /* check whether we recorded this BTF (and maybe module) already */ 11666 for (i = 0; i < env->used_btf_cnt; i++) { 11667 if (env->used_btfs[i].btf == btf) { 11668 btf_put(btf); 11669 return 0; 11670 } 11671 } 11672 11673 if (env->used_btf_cnt >= MAX_USED_BTFS) { 11674 err = -E2BIG; 11675 goto err_put; 11676 } 11677 11678 btf_mod = &env->used_btfs[env->used_btf_cnt]; 11679 btf_mod->btf = btf; 11680 btf_mod->module = NULL; 11681 11682 /* if we reference variables from kernel module, bump its refcount */ 11683 if (btf_is_module(btf)) { 11684 btf_mod->module = btf_try_get_module(btf); 11685 if (!btf_mod->module) { 11686 err = -ENXIO; 11687 goto err_put; 11688 } 11689 } 11690 11691 env->used_btf_cnt++; 11692 11693 return 0; 11694 err_put: 11695 btf_put(btf); 11696 return err; 11697 } 11698 11699 static int check_map_prealloc(struct bpf_map *map) 11700 { 11701 return (map->map_type != BPF_MAP_TYPE_HASH && 11702 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 11703 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 11704 !(map->map_flags & BPF_F_NO_PREALLOC); 11705 } 11706 11707 static bool is_tracing_prog_type(enum bpf_prog_type type) 11708 { 11709 switch (type) { 11710 case BPF_PROG_TYPE_KPROBE: 11711 case BPF_PROG_TYPE_TRACEPOINT: 11712 case BPF_PROG_TYPE_PERF_EVENT: 11713 case BPF_PROG_TYPE_RAW_TRACEPOINT: 11714 return true; 11715 default: 11716 return false; 11717 } 11718 } 11719 11720 static bool is_preallocated_map(struct bpf_map *map) 11721 { 11722 if (!check_map_prealloc(map)) 11723 return false; 11724 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 11725 return false; 11726 return true; 11727 } 11728 11729 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 11730 struct bpf_map *map, 11731 struct bpf_prog *prog) 11732 11733 { 11734 enum bpf_prog_type prog_type = resolve_prog_type(prog); 11735 /* 11736 * Validate that trace type programs use preallocated hash maps. 11737 * 11738 * For programs attached to PERF events this is mandatory as the 11739 * perf NMI can hit any arbitrary code sequence. 11740 * 11741 * All other trace types using preallocated hash maps are unsafe as 11742 * well because tracepoint or kprobes can be inside locked regions 11743 * of the memory allocator or at a place where a recursion into the 11744 * memory allocator would see inconsistent state. 11745 * 11746 * On RT enabled kernels run-time allocation of all trace type 11747 * programs is strictly prohibited due to lock type constraints. On 11748 * !RT kernels it is allowed for backwards compatibility reasons for 11749 * now, but warnings are emitted so developers are made aware of 11750 * the unsafety and can fix their programs before this is enforced. 11751 */ 11752 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { 11753 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { 11754 verbose(env, "perf_event programs can only use preallocated hash map\n"); 11755 return -EINVAL; 11756 } 11757 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 11758 verbose(env, "trace type programs can only use preallocated hash map\n"); 11759 return -EINVAL; 11760 } 11761 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 11762 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 11763 } 11764 11765 if (map_value_has_spin_lock(map)) { 11766 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 11767 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 11768 return -EINVAL; 11769 } 11770 11771 if (is_tracing_prog_type(prog_type)) { 11772 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 11773 return -EINVAL; 11774 } 11775 11776 if (prog->aux->sleepable) { 11777 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 11778 return -EINVAL; 11779 } 11780 } 11781 11782 if (map_value_has_timer(map)) { 11783 if (is_tracing_prog_type(prog_type)) { 11784 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 11785 return -EINVAL; 11786 } 11787 } 11788 11789 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 11790 !bpf_offload_prog_map_match(prog, map)) { 11791 verbose(env, "offload device mismatch between prog and map\n"); 11792 return -EINVAL; 11793 } 11794 11795 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 11796 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 11797 return -EINVAL; 11798 } 11799 11800 if (prog->aux->sleepable) 11801 switch (map->map_type) { 11802 case BPF_MAP_TYPE_HASH: 11803 case BPF_MAP_TYPE_LRU_HASH: 11804 case BPF_MAP_TYPE_ARRAY: 11805 case BPF_MAP_TYPE_PERCPU_HASH: 11806 case BPF_MAP_TYPE_PERCPU_ARRAY: 11807 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 11808 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 11809 case BPF_MAP_TYPE_HASH_OF_MAPS: 11810 if (!is_preallocated_map(map)) { 11811 verbose(env, 11812 "Sleepable programs can only use preallocated maps\n"); 11813 return -EINVAL; 11814 } 11815 break; 11816 case BPF_MAP_TYPE_RINGBUF: 11817 break; 11818 default: 11819 verbose(env, 11820 "Sleepable programs can only use array, hash, and ringbuf maps\n"); 11821 return -EINVAL; 11822 } 11823 11824 return 0; 11825 } 11826 11827 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 11828 { 11829 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 11830 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 11831 } 11832 11833 /* find and rewrite pseudo imm in ld_imm64 instructions: 11834 * 11835 * 1. if it accesses map FD, replace it with actual map pointer. 11836 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 11837 * 11838 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 11839 */ 11840 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 11841 { 11842 struct bpf_insn *insn = env->prog->insnsi; 11843 int insn_cnt = env->prog->len; 11844 int i, j, err; 11845 11846 err = bpf_prog_calc_tag(env->prog); 11847 if (err) 11848 return err; 11849 11850 for (i = 0; i < insn_cnt; i++, insn++) { 11851 if (BPF_CLASS(insn->code) == BPF_LDX && 11852 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 11853 verbose(env, "BPF_LDX uses reserved fields\n"); 11854 return -EINVAL; 11855 } 11856 11857 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 11858 struct bpf_insn_aux_data *aux; 11859 struct bpf_map *map; 11860 struct fd f; 11861 u64 addr; 11862 u32 fd; 11863 11864 if (i == insn_cnt - 1 || insn[1].code != 0 || 11865 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 11866 insn[1].off != 0) { 11867 verbose(env, "invalid bpf_ld_imm64 insn\n"); 11868 return -EINVAL; 11869 } 11870 11871 if (insn[0].src_reg == 0) 11872 /* valid generic load 64-bit imm */ 11873 goto next_insn; 11874 11875 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 11876 aux = &env->insn_aux_data[i]; 11877 err = check_pseudo_btf_id(env, insn, aux); 11878 if (err) 11879 return err; 11880 goto next_insn; 11881 } 11882 11883 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 11884 aux = &env->insn_aux_data[i]; 11885 aux->ptr_type = PTR_TO_FUNC; 11886 goto next_insn; 11887 } 11888 11889 /* In final convert_pseudo_ld_imm64() step, this is 11890 * converted into regular 64-bit imm load insn. 11891 */ 11892 switch (insn[0].src_reg) { 11893 case BPF_PSEUDO_MAP_VALUE: 11894 case BPF_PSEUDO_MAP_IDX_VALUE: 11895 break; 11896 case BPF_PSEUDO_MAP_FD: 11897 case BPF_PSEUDO_MAP_IDX: 11898 if (insn[1].imm == 0) 11899 break; 11900 fallthrough; 11901 default: 11902 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 11903 return -EINVAL; 11904 } 11905 11906 switch (insn[0].src_reg) { 11907 case BPF_PSEUDO_MAP_IDX_VALUE: 11908 case BPF_PSEUDO_MAP_IDX: 11909 if (bpfptr_is_null(env->fd_array)) { 11910 verbose(env, "fd_idx without fd_array is invalid\n"); 11911 return -EPROTO; 11912 } 11913 if (copy_from_bpfptr_offset(&fd, env->fd_array, 11914 insn[0].imm * sizeof(fd), 11915 sizeof(fd))) 11916 return -EFAULT; 11917 break; 11918 default: 11919 fd = insn[0].imm; 11920 break; 11921 } 11922 11923 f = fdget(fd); 11924 map = __bpf_map_get(f); 11925 if (IS_ERR(map)) { 11926 verbose(env, "fd %d is not pointing to valid bpf_map\n", 11927 insn[0].imm); 11928 return PTR_ERR(map); 11929 } 11930 11931 err = check_map_prog_compatibility(env, map, env->prog); 11932 if (err) { 11933 fdput(f); 11934 return err; 11935 } 11936 11937 aux = &env->insn_aux_data[i]; 11938 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 11939 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 11940 addr = (unsigned long)map; 11941 } else { 11942 u32 off = insn[1].imm; 11943 11944 if (off >= BPF_MAX_VAR_OFF) { 11945 verbose(env, "direct value offset of %u is not allowed\n", off); 11946 fdput(f); 11947 return -EINVAL; 11948 } 11949 11950 if (!map->ops->map_direct_value_addr) { 11951 verbose(env, "no direct value access support for this map type\n"); 11952 fdput(f); 11953 return -EINVAL; 11954 } 11955 11956 err = map->ops->map_direct_value_addr(map, &addr, off); 11957 if (err) { 11958 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 11959 map->value_size, off); 11960 fdput(f); 11961 return err; 11962 } 11963 11964 aux->map_off = off; 11965 addr += off; 11966 } 11967 11968 insn[0].imm = (u32)addr; 11969 insn[1].imm = addr >> 32; 11970 11971 /* check whether we recorded this map already */ 11972 for (j = 0; j < env->used_map_cnt; j++) { 11973 if (env->used_maps[j] == map) { 11974 aux->map_index = j; 11975 fdput(f); 11976 goto next_insn; 11977 } 11978 } 11979 11980 if (env->used_map_cnt >= MAX_USED_MAPS) { 11981 fdput(f); 11982 return -E2BIG; 11983 } 11984 11985 /* hold the map. If the program is rejected by verifier, 11986 * the map will be released by release_maps() or it 11987 * will be used by the valid program until it's unloaded 11988 * and all maps are released in free_used_maps() 11989 */ 11990 bpf_map_inc(map); 11991 11992 aux->map_index = env->used_map_cnt; 11993 env->used_maps[env->used_map_cnt++] = map; 11994 11995 if (bpf_map_is_cgroup_storage(map) && 11996 bpf_cgroup_storage_assign(env->prog->aux, map)) { 11997 verbose(env, "only one cgroup storage of each type is allowed\n"); 11998 fdput(f); 11999 return -EBUSY; 12000 } 12001 12002 fdput(f); 12003 next_insn: 12004 insn++; 12005 i++; 12006 continue; 12007 } 12008 12009 /* Basic sanity check before we invest more work here. */ 12010 if (!bpf_opcode_in_insntable(insn->code)) { 12011 verbose(env, "unknown opcode %02x\n", insn->code); 12012 return -EINVAL; 12013 } 12014 } 12015 12016 /* now all pseudo BPF_LD_IMM64 instructions load valid 12017 * 'struct bpf_map *' into a register instead of user map_fd. 12018 * These pointers will be used later by verifier to validate map access. 12019 */ 12020 return 0; 12021 } 12022 12023 /* drop refcnt of maps used by the rejected program */ 12024 static void release_maps(struct bpf_verifier_env *env) 12025 { 12026 __bpf_free_used_maps(env->prog->aux, env->used_maps, 12027 env->used_map_cnt); 12028 } 12029 12030 /* drop refcnt of maps used by the rejected program */ 12031 static void release_btfs(struct bpf_verifier_env *env) 12032 { 12033 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 12034 env->used_btf_cnt); 12035 } 12036 12037 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 12038 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 12039 { 12040 struct bpf_insn *insn = env->prog->insnsi; 12041 int insn_cnt = env->prog->len; 12042 int i; 12043 12044 for (i = 0; i < insn_cnt; i++, insn++) { 12045 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 12046 continue; 12047 if (insn->src_reg == BPF_PSEUDO_FUNC) 12048 continue; 12049 insn->src_reg = 0; 12050 } 12051 } 12052 12053 /* single env->prog->insni[off] instruction was replaced with the range 12054 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 12055 * [0, off) and [off, end) to new locations, so the patched range stays zero 12056 */ 12057 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 12058 struct bpf_insn_aux_data *new_data, 12059 struct bpf_prog *new_prog, u32 off, u32 cnt) 12060 { 12061 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 12062 struct bpf_insn *insn = new_prog->insnsi; 12063 u32 old_seen = old_data[off].seen; 12064 u32 prog_len; 12065 int i; 12066 12067 /* aux info at OFF always needs adjustment, no matter fast path 12068 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 12069 * original insn at old prog. 12070 */ 12071 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 12072 12073 if (cnt == 1) 12074 return; 12075 prog_len = new_prog->len; 12076 12077 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 12078 memcpy(new_data + off + cnt - 1, old_data + off, 12079 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 12080 for (i = off; i < off + cnt - 1; i++) { 12081 /* Expand insni[off]'s seen count to the patched range. */ 12082 new_data[i].seen = old_seen; 12083 new_data[i].zext_dst = insn_has_def32(env, insn + i); 12084 } 12085 env->insn_aux_data = new_data; 12086 vfree(old_data); 12087 } 12088 12089 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 12090 { 12091 int i; 12092 12093 if (len == 1) 12094 return; 12095 /* NOTE: fake 'exit' subprog should be updated as well. */ 12096 for (i = 0; i <= env->subprog_cnt; i++) { 12097 if (env->subprog_info[i].start <= off) 12098 continue; 12099 env->subprog_info[i].start += len - 1; 12100 } 12101 } 12102 12103 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 12104 { 12105 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 12106 int i, sz = prog->aux->size_poke_tab; 12107 struct bpf_jit_poke_descriptor *desc; 12108 12109 for (i = 0; i < sz; i++) { 12110 desc = &tab[i]; 12111 if (desc->insn_idx <= off) 12112 continue; 12113 desc->insn_idx += len - 1; 12114 } 12115 } 12116 12117 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 12118 const struct bpf_insn *patch, u32 len) 12119 { 12120 struct bpf_prog *new_prog; 12121 struct bpf_insn_aux_data *new_data = NULL; 12122 12123 if (len > 1) { 12124 new_data = vzalloc(array_size(env->prog->len + len - 1, 12125 sizeof(struct bpf_insn_aux_data))); 12126 if (!new_data) 12127 return NULL; 12128 } 12129 12130 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 12131 if (IS_ERR(new_prog)) { 12132 if (PTR_ERR(new_prog) == -ERANGE) 12133 verbose(env, 12134 "insn %d cannot be patched due to 16-bit range\n", 12135 env->insn_aux_data[off].orig_idx); 12136 vfree(new_data); 12137 return NULL; 12138 } 12139 adjust_insn_aux_data(env, new_data, new_prog, off, len); 12140 adjust_subprog_starts(env, off, len); 12141 adjust_poke_descs(new_prog, off, len); 12142 return new_prog; 12143 } 12144 12145 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 12146 u32 off, u32 cnt) 12147 { 12148 int i, j; 12149 12150 /* find first prog starting at or after off (first to remove) */ 12151 for (i = 0; i < env->subprog_cnt; i++) 12152 if (env->subprog_info[i].start >= off) 12153 break; 12154 /* find first prog starting at or after off + cnt (first to stay) */ 12155 for (j = i; j < env->subprog_cnt; j++) 12156 if (env->subprog_info[j].start >= off + cnt) 12157 break; 12158 /* if j doesn't start exactly at off + cnt, we are just removing 12159 * the front of previous prog 12160 */ 12161 if (env->subprog_info[j].start != off + cnt) 12162 j--; 12163 12164 if (j > i) { 12165 struct bpf_prog_aux *aux = env->prog->aux; 12166 int move; 12167 12168 /* move fake 'exit' subprog as well */ 12169 move = env->subprog_cnt + 1 - j; 12170 12171 memmove(env->subprog_info + i, 12172 env->subprog_info + j, 12173 sizeof(*env->subprog_info) * move); 12174 env->subprog_cnt -= j - i; 12175 12176 /* remove func_info */ 12177 if (aux->func_info) { 12178 move = aux->func_info_cnt - j; 12179 12180 memmove(aux->func_info + i, 12181 aux->func_info + j, 12182 sizeof(*aux->func_info) * move); 12183 aux->func_info_cnt -= j - i; 12184 /* func_info->insn_off is set after all code rewrites, 12185 * in adjust_btf_func() - no need to adjust 12186 */ 12187 } 12188 } else { 12189 /* convert i from "first prog to remove" to "first to adjust" */ 12190 if (env->subprog_info[i].start == off) 12191 i++; 12192 } 12193 12194 /* update fake 'exit' subprog as well */ 12195 for (; i <= env->subprog_cnt; i++) 12196 env->subprog_info[i].start -= cnt; 12197 12198 return 0; 12199 } 12200 12201 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 12202 u32 cnt) 12203 { 12204 struct bpf_prog *prog = env->prog; 12205 u32 i, l_off, l_cnt, nr_linfo; 12206 struct bpf_line_info *linfo; 12207 12208 nr_linfo = prog->aux->nr_linfo; 12209 if (!nr_linfo) 12210 return 0; 12211 12212 linfo = prog->aux->linfo; 12213 12214 /* find first line info to remove, count lines to be removed */ 12215 for (i = 0; i < nr_linfo; i++) 12216 if (linfo[i].insn_off >= off) 12217 break; 12218 12219 l_off = i; 12220 l_cnt = 0; 12221 for (; i < nr_linfo; i++) 12222 if (linfo[i].insn_off < off + cnt) 12223 l_cnt++; 12224 else 12225 break; 12226 12227 /* First live insn doesn't match first live linfo, it needs to "inherit" 12228 * last removed linfo. prog is already modified, so prog->len == off 12229 * means no live instructions after (tail of the program was removed). 12230 */ 12231 if (prog->len != off && l_cnt && 12232 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 12233 l_cnt--; 12234 linfo[--i].insn_off = off + cnt; 12235 } 12236 12237 /* remove the line info which refer to the removed instructions */ 12238 if (l_cnt) { 12239 memmove(linfo + l_off, linfo + i, 12240 sizeof(*linfo) * (nr_linfo - i)); 12241 12242 prog->aux->nr_linfo -= l_cnt; 12243 nr_linfo = prog->aux->nr_linfo; 12244 } 12245 12246 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 12247 for (i = l_off; i < nr_linfo; i++) 12248 linfo[i].insn_off -= cnt; 12249 12250 /* fix up all subprogs (incl. 'exit') which start >= off */ 12251 for (i = 0; i <= env->subprog_cnt; i++) 12252 if (env->subprog_info[i].linfo_idx > l_off) { 12253 /* program may have started in the removed region but 12254 * may not be fully removed 12255 */ 12256 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 12257 env->subprog_info[i].linfo_idx -= l_cnt; 12258 else 12259 env->subprog_info[i].linfo_idx = l_off; 12260 } 12261 12262 return 0; 12263 } 12264 12265 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 12266 { 12267 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12268 unsigned int orig_prog_len = env->prog->len; 12269 int err; 12270 12271 if (bpf_prog_is_dev_bound(env->prog->aux)) 12272 bpf_prog_offload_remove_insns(env, off, cnt); 12273 12274 err = bpf_remove_insns(env->prog, off, cnt); 12275 if (err) 12276 return err; 12277 12278 err = adjust_subprog_starts_after_remove(env, off, cnt); 12279 if (err) 12280 return err; 12281 12282 err = bpf_adj_linfo_after_remove(env, off, cnt); 12283 if (err) 12284 return err; 12285 12286 memmove(aux_data + off, aux_data + off + cnt, 12287 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 12288 12289 return 0; 12290 } 12291 12292 /* The verifier does more data flow analysis than llvm and will not 12293 * explore branches that are dead at run time. Malicious programs can 12294 * have dead code too. Therefore replace all dead at-run-time code 12295 * with 'ja -1'. 12296 * 12297 * Just nops are not optimal, e.g. if they would sit at the end of the 12298 * program and through another bug we would manage to jump there, then 12299 * we'd execute beyond program memory otherwise. Returning exception 12300 * code also wouldn't work since we can have subprogs where the dead 12301 * code could be located. 12302 */ 12303 static void sanitize_dead_code(struct bpf_verifier_env *env) 12304 { 12305 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12306 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 12307 struct bpf_insn *insn = env->prog->insnsi; 12308 const int insn_cnt = env->prog->len; 12309 int i; 12310 12311 for (i = 0; i < insn_cnt; i++) { 12312 if (aux_data[i].seen) 12313 continue; 12314 memcpy(insn + i, &trap, sizeof(trap)); 12315 aux_data[i].zext_dst = false; 12316 } 12317 } 12318 12319 static bool insn_is_cond_jump(u8 code) 12320 { 12321 u8 op; 12322 12323 if (BPF_CLASS(code) == BPF_JMP32) 12324 return true; 12325 12326 if (BPF_CLASS(code) != BPF_JMP) 12327 return false; 12328 12329 op = BPF_OP(code); 12330 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 12331 } 12332 12333 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 12334 { 12335 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12336 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 12337 struct bpf_insn *insn = env->prog->insnsi; 12338 const int insn_cnt = env->prog->len; 12339 int i; 12340 12341 for (i = 0; i < insn_cnt; i++, insn++) { 12342 if (!insn_is_cond_jump(insn->code)) 12343 continue; 12344 12345 if (!aux_data[i + 1].seen) 12346 ja.off = insn->off; 12347 else if (!aux_data[i + 1 + insn->off].seen) 12348 ja.off = 0; 12349 else 12350 continue; 12351 12352 if (bpf_prog_is_dev_bound(env->prog->aux)) 12353 bpf_prog_offload_replace_insn(env, i, &ja); 12354 12355 memcpy(insn, &ja, sizeof(ja)); 12356 } 12357 } 12358 12359 static int opt_remove_dead_code(struct bpf_verifier_env *env) 12360 { 12361 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12362 int insn_cnt = env->prog->len; 12363 int i, err; 12364 12365 for (i = 0; i < insn_cnt; i++) { 12366 int j; 12367 12368 j = 0; 12369 while (i + j < insn_cnt && !aux_data[i + j].seen) 12370 j++; 12371 if (!j) 12372 continue; 12373 12374 err = verifier_remove_insns(env, i, j); 12375 if (err) 12376 return err; 12377 insn_cnt = env->prog->len; 12378 } 12379 12380 return 0; 12381 } 12382 12383 static int opt_remove_nops(struct bpf_verifier_env *env) 12384 { 12385 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 12386 struct bpf_insn *insn = env->prog->insnsi; 12387 int insn_cnt = env->prog->len; 12388 int i, err; 12389 12390 for (i = 0; i < insn_cnt; i++) { 12391 if (memcmp(&insn[i], &ja, sizeof(ja))) 12392 continue; 12393 12394 err = verifier_remove_insns(env, i, 1); 12395 if (err) 12396 return err; 12397 insn_cnt--; 12398 i--; 12399 } 12400 12401 return 0; 12402 } 12403 12404 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 12405 const union bpf_attr *attr) 12406 { 12407 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 12408 struct bpf_insn_aux_data *aux = env->insn_aux_data; 12409 int i, patch_len, delta = 0, len = env->prog->len; 12410 struct bpf_insn *insns = env->prog->insnsi; 12411 struct bpf_prog *new_prog; 12412 bool rnd_hi32; 12413 12414 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 12415 zext_patch[1] = BPF_ZEXT_REG(0); 12416 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 12417 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 12418 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 12419 for (i = 0; i < len; i++) { 12420 int adj_idx = i + delta; 12421 struct bpf_insn insn; 12422 int load_reg; 12423 12424 insn = insns[adj_idx]; 12425 load_reg = insn_def_regno(&insn); 12426 if (!aux[adj_idx].zext_dst) { 12427 u8 code, class; 12428 u32 imm_rnd; 12429 12430 if (!rnd_hi32) 12431 continue; 12432 12433 code = insn.code; 12434 class = BPF_CLASS(code); 12435 if (load_reg == -1) 12436 continue; 12437 12438 /* NOTE: arg "reg" (the fourth one) is only used for 12439 * BPF_STX + SRC_OP, so it is safe to pass NULL 12440 * here. 12441 */ 12442 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 12443 if (class == BPF_LD && 12444 BPF_MODE(code) == BPF_IMM) 12445 i++; 12446 continue; 12447 } 12448 12449 /* ctx load could be transformed into wider load. */ 12450 if (class == BPF_LDX && 12451 aux[adj_idx].ptr_type == PTR_TO_CTX) 12452 continue; 12453 12454 imm_rnd = get_random_int(); 12455 rnd_hi32_patch[0] = insn; 12456 rnd_hi32_patch[1].imm = imm_rnd; 12457 rnd_hi32_patch[3].dst_reg = load_reg; 12458 patch = rnd_hi32_patch; 12459 patch_len = 4; 12460 goto apply_patch_buffer; 12461 } 12462 12463 /* Add in an zero-extend instruction if a) the JIT has requested 12464 * it or b) it's a CMPXCHG. 12465 * 12466 * The latter is because: BPF_CMPXCHG always loads a value into 12467 * R0, therefore always zero-extends. However some archs' 12468 * equivalent instruction only does this load when the 12469 * comparison is successful. This detail of CMPXCHG is 12470 * orthogonal to the general zero-extension behaviour of the 12471 * CPU, so it's treated independently of bpf_jit_needs_zext. 12472 */ 12473 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 12474 continue; 12475 12476 if (WARN_ON(load_reg == -1)) { 12477 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 12478 return -EFAULT; 12479 } 12480 12481 zext_patch[0] = insn; 12482 zext_patch[1].dst_reg = load_reg; 12483 zext_patch[1].src_reg = load_reg; 12484 patch = zext_patch; 12485 patch_len = 2; 12486 apply_patch_buffer: 12487 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 12488 if (!new_prog) 12489 return -ENOMEM; 12490 env->prog = new_prog; 12491 insns = new_prog->insnsi; 12492 aux = env->insn_aux_data; 12493 delta += patch_len - 1; 12494 } 12495 12496 return 0; 12497 } 12498 12499 /* convert load instructions that access fields of a context type into a 12500 * sequence of instructions that access fields of the underlying structure: 12501 * struct __sk_buff -> struct sk_buff 12502 * struct bpf_sock_ops -> struct sock 12503 */ 12504 static int convert_ctx_accesses(struct bpf_verifier_env *env) 12505 { 12506 const struct bpf_verifier_ops *ops = env->ops; 12507 int i, cnt, size, ctx_field_size, delta = 0; 12508 const int insn_cnt = env->prog->len; 12509 struct bpf_insn insn_buf[16], *insn; 12510 u32 target_size, size_default, off; 12511 struct bpf_prog *new_prog; 12512 enum bpf_access_type type; 12513 bool is_narrower_load; 12514 12515 if (ops->gen_prologue || env->seen_direct_write) { 12516 if (!ops->gen_prologue) { 12517 verbose(env, "bpf verifier is misconfigured\n"); 12518 return -EINVAL; 12519 } 12520 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 12521 env->prog); 12522 if (cnt >= ARRAY_SIZE(insn_buf)) { 12523 verbose(env, "bpf verifier is misconfigured\n"); 12524 return -EINVAL; 12525 } else if (cnt) { 12526 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 12527 if (!new_prog) 12528 return -ENOMEM; 12529 12530 env->prog = new_prog; 12531 delta += cnt - 1; 12532 } 12533 } 12534 12535 if (bpf_prog_is_dev_bound(env->prog->aux)) 12536 return 0; 12537 12538 insn = env->prog->insnsi + delta; 12539 12540 for (i = 0; i < insn_cnt; i++, insn++) { 12541 bpf_convert_ctx_access_t convert_ctx_access; 12542 bool ctx_access; 12543 12544 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 12545 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 12546 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 12547 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 12548 type = BPF_READ; 12549 ctx_access = true; 12550 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 12551 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 12552 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 12553 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 12554 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 12555 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 12556 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 12557 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 12558 type = BPF_WRITE; 12559 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 12560 } else { 12561 continue; 12562 } 12563 12564 if (type == BPF_WRITE && 12565 env->insn_aux_data[i + delta].sanitize_stack_spill) { 12566 struct bpf_insn patch[] = { 12567 *insn, 12568 BPF_ST_NOSPEC(), 12569 }; 12570 12571 cnt = ARRAY_SIZE(patch); 12572 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 12573 if (!new_prog) 12574 return -ENOMEM; 12575 12576 delta += cnt - 1; 12577 env->prog = new_prog; 12578 insn = new_prog->insnsi + i + delta; 12579 continue; 12580 } 12581 12582 if (!ctx_access) 12583 continue; 12584 12585 switch (env->insn_aux_data[i + delta].ptr_type) { 12586 case PTR_TO_CTX: 12587 if (!ops->convert_ctx_access) 12588 continue; 12589 convert_ctx_access = ops->convert_ctx_access; 12590 break; 12591 case PTR_TO_SOCKET: 12592 case PTR_TO_SOCK_COMMON: 12593 convert_ctx_access = bpf_sock_convert_ctx_access; 12594 break; 12595 case PTR_TO_TCP_SOCK: 12596 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 12597 break; 12598 case PTR_TO_XDP_SOCK: 12599 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 12600 break; 12601 case PTR_TO_BTF_ID: 12602 if (type == BPF_READ) { 12603 insn->code = BPF_LDX | BPF_PROBE_MEM | 12604 BPF_SIZE((insn)->code); 12605 env->prog->aux->num_exentries++; 12606 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 12607 verbose(env, "Writes through BTF pointers are not allowed\n"); 12608 return -EINVAL; 12609 } 12610 continue; 12611 default: 12612 continue; 12613 } 12614 12615 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 12616 size = BPF_LDST_BYTES(insn); 12617 12618 /* If the read access is a narrower load of the field, 12619 * convert to a 4/8-byte load, to minimum program type specific 12620 * convert_ctx_access changes. If conversion is successful, 12621 * we will apply proper mask to the result. 12622 */ 12623 is_narrower_load = size < ctx_field_size; 12624 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 12625 off = insn->off; 12626 if (is_narrower_load) { 12627 u8 size_code; 12628 12629 if (type == BPF_WRITE) { 12630 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 12631 return -EINVAL; 12632 } 12633 12634 size_code = BPF_H; 12635 if (ctx_field_size == 4) 12636 size_code = BPF_W; 12637 else if (ctx_field_size == 8) 12638 size_code = BPF_DW; 12639 12640 insn->off = off & ~(size_default - 1); 12641 insn->code = BPF_LDX | BPF_MEM | size_code; 12642 } 12643 12644 target_size = 0; 12645 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 12646 &target_size); 12647 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 12648 (ctx_field_size && !target_size)) { 12649 verbose(env, "bpf verifier is misconfigured\n"); 12650 return -EINVAL; 12651 } 12652 12653 if (is_narrower_load && size < target_size) { 12654 u8 shift = bpf_ctx_narrow_access_offset( 12655 off, size, size_default) * 8; 12656 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 12657 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 12658 return -EINVAL; 12659 } 12660 if (ctx_field_size <= 4) { 12661 if (shift) 12662 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 12663 insn->dst_reg, 12664 shift); 12665 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 12666 (1 << size * 8) - 1); 12667 } else { 12668 if (shift) 12669 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 12670 insn->dst_reg, 12671 shift); 12672 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 12673 (1ULL << size * 8) - 1); 12674 } 12675 } 12676 12677 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12678 if (!new_prog) 12679 return -ENOMEM; 12680 12681 delta += cnt - 1; 12682 12683 /* keep walking new program and skip insns we just inserted */ 12684 env->prog = new_prog; 12685 insn = new_prog->insnsi + i + delta; 12686 } 12687 12688 return 0; 12689 } 12690 12691 static int jit_subprogs(struct bpf_verifier_env *env) 12692 { 12693 struct bpf_prog *prog = env->prog, **func, *tmp; 12694 int i, j, subprog_start, subprog_end = 0, len, subprog; 12695 struct bpf_map *map_ptr; 12696 struct bpf_insn *insn; 12697 void *old_bpf_func; 12698 int err, num_exentries; 12699 12700 if (env->subprog_cnt <= 1) 12701 return 0; 12702 12703 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12704 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 12705 continue; 12706 12707 /* Upon error here we cannot fall back to interpreter but 12708 * need a hard reject of the program. Thus -EFAULT is 12709 * propagated in any case. 12710 */ 12711 subprog = find_subprog(env, i + insn->imm + 1); 12712 if (subprog < 0) { 12713 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 12714 i + insn->imm + 1); 12715 return -EFAULT; 12716 } 12717 /* temporarily remember subprog id inside insn instead of 12718 * aux_data, since next loop will split up all insns into funcs 12719 */ 12720 insn->off = subprog; 12721 /* remember original imm in case JIT fails and fallback 12722 * to interpreter will be needed 12723 */ 12724 env->insn_aux_data[i].call_imm = insn->imm; 12725 /* point imm to __bpf_call_base+1 from JITs point of view */ 12726 insn->imm = 1; 12727 if (bpf_pseudo_func(insn)) 12728 /* jit (e.g. x86_64) may emit fewer instructions 12729 * if it learns a u32 imm is the same as a u64 imm. 12730 * Force a non zero here. 12731 */ 12732 insn[1].imm = 1; 12733 } 12734 12735 err = bpf_prog_alloc_jited_linfo(prog); 12736 if (err) 12737 goto out_undo_insn; 12738 12739 err = -ENOMEM; 12740 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 12741 if (!func) 12742 goto out_undo_insn; 12743 12744 for (i = 0; i < env->subprog_cnt; i++) { 12745 subprog_start = subprog_end; 12746 subprog_end = env->subprog_info[i + 1].start; 12747 12748 len = subprog_end - subprog_start; 12749 /* bpf_prog_run() doesn't call subprogs directly, 12750 * hence main prog stats include the runtime of subprogs. 12751 * subprogs don't have IDs and not reachable via prog_get_next_id 12752 * func[i]->stats will never be accessed and stays NULL 12753 */ 12754 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 12755 if (!func[i]) 12756 goto out_free; 12757 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 12758 len * sizeof(struct bpf_insn)); 12759 func[i]->type = prog->type; 12760 func[i]->len = len; 12761 if (bpf_prog_calc_tag(func[i])) 12762 goto out_free; 12763 func[i]->is_func = 1; 12764 func[i]->aux->func_idx = i; 12765 /* Below members will be freed only at prog->aux */ 12766 func[i]->aux->btf = prog->aux->btf; 12767 func[i]->aux->func_info = prog->aux->func_info; 12768 func[i]->aux->poke_tab = prog->aux->poke_tab; 12769 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 12770 12771 for (j = 0; j < prog->aux->size_poke_tab; j++) { 12772 struct bpf_jit_poke_descriptor *poke; 12773 12774 poke = &prog->aux->poke_tab[j]; 12775 if (poke->insn_idx < subprog_end && 12776 poke->insn_idx >= subprog_start) 12777 poke->aux = func[i]->aux; 12778 } 12779 12780 /* Use bpf_prog_F_tag to indicate functions in stack traces. 12781 * Long term would need debug info to populate names 12782 */ 12783 func[i]->aux->name[0] = 'F'; 12784 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 12785 func[i]->jit_requested = 1; 12786 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 12787 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 12788 func[i]->aux->linfo = prog->aux->linfo; 12789 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 12790 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 12791 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 12792 num_exentries = 0; 12793 insn = func[i]->insnsi; 12794 for (j = 0; j < func[i]->len; j++, insn++) { 12795 if (BPF_CLASS(insn->code) == BPF_LDX && 12796 BPF_MODE(insn->code) == BPF_PROBE_MEM) 12797 num_exentries++; 12798 } 12799 func[i]->aux->num_exentries = num_exentries; 12800 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 12801 func[i] = bpf_int_jit_compile(func[i]); 12802 if (!func[i]->jited) { 12803 err = -ENOTSUPP; 12804 goto out_free; 12805 } 12806 cond_resched(); 12807 } 12808 12809 /* at this point all bpf functions were successfully JITed 12810 * now populate all bpf_calls with correct addresses and 12811 * run last pass of JIT 12812 */ 12813 for (i = 0; i < env->subprog_cnt; i++) { 12814 insn = func[i]->insnsi; 12815 for (j = 0; j < func[i]->len; j++, insn++) { 12816 if (bpf_pseudo_func(insn)) { 12817 subprog = insn->off; 12818 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 12819 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 12820 continue; 12821 } 12822 if (!bpf_pseudo_call(insn)) 12823 continue; 12824 subprog = insn->off; 12825 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 12826 } 12827 12828 /* we use the aux data to keep a list of the start addresses 12829 * of the JITed images for each function in the program 12830 * 12831 * for some architectures, such as powerpc64, the imm field 12832 * might not be large enough to hold the offset of the start 12833 * address of the callee's JITed image from __bpf_call_base 12834 * 12835 * in such cases, we can lookup the start address of a callee 12836 * by using its subprog id, available from the off field of 12837 * the call instruction, as an index for this list 12838 */ 12839 func[i]->aux->func = func; 12840 func[i]->aux->func_cnt = env->subprog_cnt; 12841 } 12842 for (i = 0; i < env->subprog_cnt; i++) { 12843 old_bpf_func = func[i]->bpf_func; 12844 tmp = bpf_int_jit_compile(func[i]); 12845 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 12846 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 12847 err = -ENOTSUPP; 12848 goto out_free; 12849 } 12850 cond_resched(); 12851 } 12852 12853 /* finally lock prog and jit images for all functions and 12854 * populate kallsysm 12855 */ 12856 for (i = 0; i < env->subprog_cnt; i++) { 12857 bpf_prog_lock_ro(func[i]); 12858 bpf_prog_kallsyms_add(func[i]); 12859 } 12860 12861 /* Last step: make now unused interpreter insns from main 12862 * prog consistent for later dump requests, so they can 12863 * later look the same as if they were interpreted only. 12864 */ 12865 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12866 if (bpf_pseudo_func(insn)) { 12867 insn[0].imm = env->insn_aux_data[i].call_imm; 12868 insn[1].imm = insn->off; 12869 insn->off = 0; 12870 continue; 12871 } 12872 if (!bpf_pseudo_call(insn)) 12873 continue; 12874 insn->off = env->insn_aux_data[i].call_imm; 12875 subprog = find_subprog(env, i + insn->off + 1); 12876 insn->imm = subprog; 12877 } 12878 12879 prog->jited = 1; 12880 prog->bpf_func = func[0]->bpf_func; 12881 prog->aux->func = func; 12882 prog->aux->func_cnt = env->subprog_cnt; 12883 bpf_prog_jit_attempt_done(prog); 12884 return 0; 12885 out_free: 12886 /* We failed JIT'ing, so at this point we need to unregister poke 12887 * descriptors from subprogs, so that kernel is not attempting to 12888 * patch it anymore as we're freeing the subprog JIT memory. 12889 */ 12890 for (i = 0; i < prog->aux->size_poke_tab; i++) { 12891 map_ptr = prog->aux->poke_tab[i].tail_call.map; 12892 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 12893 } 12894 /* At this point we're guaranteed that poke descriptors are not 12895 * live anymore. We can just unlink its descriptor table as it's 12896 * released with the main prog. 12897 */ 12898 for (i = 0; i < env->subprog_cnt; i++) { 12899 if (!func[i]) 12900 continue; 12901 func[i]->aux->poke_tab = NULL; 12902 bpf_jit_free(func[i]); 12903 } 12904 kfree(func); 12905 out_undo_insn: 12906 /* cleanup main prog to be interpreted */ 12907 prog->jit_requested = 0; 12908 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12909 if (!bpf_pseudo_call(insn)) 12910 continue; 12911 insn->off = 0; 12912 insn->imm = env->insn_aux_data[i].call_imm; 12913 } 12914 bpf_prog_jit_attempt_done(prog); 12915 return err; 12916 } 12917 12918 static int fixup_call_args(struct bpf_verifier_env *env) 12919 { 12920 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 12921 struct bpf_prog *prog = env->prog; 12922 struct bpf_insn *insn = prog->insnsi; 12923 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 12924 int i, depth; 12925 #endif 12926 int err = 0; 12927 12928 if (env->prog->jit_requested && 12929 !bpf_prog_is_dev_bound(env->prog->aux)) { 12930 err = jit_subprogs(env); 12931 if (err == 0) 12932 return 0; 12933 if (err == -EFAULT) 12934 return err; 12935 } 12936 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 12937 if (has_kfunc_call) { 12938 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 12939 return -EINVAL; 12940 } 12941 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 12942 /* When JIT fails the progs with bpf2bpf calls and tail_calls 12943 * have to be rejected, since interpreter doesn't support them yet. 12944 */ 12945 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 12946 return -EINVAL; 12947 } 12948 for (i = 0; i < prog->len; i++, insn++) { 12949 if (bpf_pseudo_func(insn)) { 12950 /* When JIT fails the progs with callback calls 12951 * have to be rejected, since interpreter doesn't support them yet. 12952 */ 12953 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 12954 return -EINVAL; 12955 } 12956 12957 if (!bpf_pseudo_call(insn)) 12958 continue; 12959 depth = get_callee_stack_depth(env, insn, i); 12960 if (depth < 0) 12961 return depth; 12962 bpf_patch_call_args(insn, depth); 12963 } 12964 err = 0; 12965 #endif 12966 return err; 12967 } 12968 12969 static int fixup_kfunc_call(struct bpf_verifier_env *env, 12970 struct bpf_insn *insn) 12971 { 12972 const struct bpf_kfunc_desc *desc; 12973 12974 if (!insn->imm) { 12975 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 12976 return -EINVAL; 12977 } 12978 12979 /* insn->imm has the btf func_id. Replace it with 12980 * an address (relative to __bpf_base_call). 12981 */ 12982 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 12983 if (!desc) { 12984 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 12985 insn->imm); 12986 return -EFAULT; 12987 } 12988 12989 insn->imm = desc->imm; 12990 12991 return 0; 12992 } 12993 12994 /* Do various post-verification rewrites in a single program pass. 12995 * These rewrites simplify JIT and interpreter implementations. 12996 */ 12997 static int do_misc_fixups(struct bpf_verifier_env *env) 12998 { 12999 struct bpf_prog *prog = env->prog; 13000 bool expect_blinding = bpf_jit_blinding_enabled(prog); 13001 enum bpf_prog_type prog_type = resolve_prog_type(prog); 13002 struct bpf_insn *insn = prog->insnsi; 13003 const struct bpf_func_proto *fn; 13004 const int insn_cnt = prog->len; 13005 const struct bpf_map_ops *ops; 13006 struct bpf_insn_aux_data *aux; 13007 struct bpf_insn insn_buf[16]; 13008 struct bpf_prog *new_prog; 13009 struct bpf_map *map_ptr; 13010 int i, ret, cnt, delta = 0; 13011 13012 for (i = 0; i < insn_cnt; i++, insn++) { 13013 /* Make divide-by-zero exceptions impossible. */ 13014 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 13015 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 13016 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 13017 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 13018 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 13019 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 13020 struct bpf_insn *patchlet; 13021 struct bpf_insn chk_and_div[] = { 13022 /* [R,W]x div 0 -> 0 */ 13023 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 13024 BPF_JNE | BPF_K, insn->src_reg, 13025 0, 2, 0), 13026 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 13027 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 13028 *insn, 13029 }; 13030 struct bpf_insn chk_and_mod[] = { 13031 /* [R,W]x mod 0 -> [R,W]x */ 13032 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 13033 BPF_JEQ | BPF_K, insn->src_reg, 13034 0, 1 + (is64 ? 0 : 1), 0), 13035 *insn, 13036 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 13037 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 13038 }; 13039 13040 patchlet = isdiv ? chk_and_div : chk_and_mod; 13041 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 13042 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 13043 13044 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 13045 if (!new_prog) 13046 return -ENOMEM; 13047 13048 delta += cnt - 1; 13049 env->prog = prog = new_prog; 13050 insn = new_prog->insnsi + i + delta; 13051 continue; 13052 } 13053 13054 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 13055 if (BPF_CLASS(insn->code) == BPF_LD && 13056 (BPF_MODE(insn->code) == BPF_ABS || 13057 BPF_MODE(insn->code) == BPF_IND)) { 13058 cnt = env->ops->gen_ld_abs(insn, insn_buf); 13059 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 13060 verbose(env, "bpf verifier is misconfigured\n"); 13061 return -EINVAL; 13062 } 13063 13064 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13065 if (!new_prog) 13066 return -ENOMEM; 13067 13068 delta += cnt - 1; 13069 env->prog = prog = new_prog; 13070 insn = new_prog->insnsi + i + delta; 13071 continue; 13072 } 13073 13074 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 13075 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 13076 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 13077 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 13078 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 13079 struct bpf_insn *patch = &insn_buf[0]; 13080 bool issrc, isneg, isimm; 13081 u32 off_reg; 13082 13083 aux = &env->insn_aux_data[i + delta]; 13084 if (!aux->alu_state || 13085 aux->alu_state == BPF_ALU_NON_POINTER) 13086 continue; 13087 13088 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 13089 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 13090 BPF_ALU_SANITIZE_SRC; 13091 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 13092 13093 off_reg = issrc ? insn->src_reg : insn->dst_reg; 13094 if (isimm) { 13095 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 13096 } else { 13097 if (isneg) 13098 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 13099 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 13100 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 13101 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 13102 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 13103 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 13104 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 13105 } 13106 if (!issrc) 13107 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 13108 insn->src_reg = BPF_REG_AX; 13109 if (isneg) 13110 insn->code = insn->code == code_add ? 13111 code_sub : code_add; 13112 *patch++ = *insn; 13113 if (issrc && isneg && !isimm) 13114 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 13115 cnt = patch - insn_buf; 13116 13117 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13118 if (!new_prog) 13119 return -ENOMEM; 13120 13121 delta += cnt - 1; 13122 env->prog = prog = new_prog; 13123 insn = new_prog->insnsi + i + delta; 13124 continue; 13125 } 13126 13127 if (insn->code != (BPF_JMP | BPF_CALL)) 13128 continue; 13129 if (insn->src_reg == BPF_PSEUDO_CALL) 13130 continue; 13131 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 13132 ret = fixup_kfunc_call(env, insn); 13133 if (ret) 13134 return ret; 13135 continue; 13136 } 13137 13138 if (insn->imm == BPF_FUNC_get_route_realm) 13139 prog->dst_needed = 1; 13140 if (insn->imm == BPF_FUNC_get_prandom_u32) 13141 bpf_user_rnd_init_once(); 13142 if (insn->imm == BPF_FUNC_override_return) 13143 prog->kprobe_override = 1; 13144 if (insn->imm == BPF_FUNC_tail_call) { 13145 /* If we tail call into other programs, we 13146 * cannot make any assumptions since they can 13147 * be replaced dynamically during runtime in 13148 * the program array. 13149 */ 13150 prog->cb_access = 1; 13151 if (!allow_tail_call_in_subprogs(env)) 13152 prog->aux->stack_depth = MAX_BPF_STACK; 13153 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 13154 13155 /* mark bpf_tail_call as different opcode to avoid 13156 * conditional branch in the interpreter for every normal 13157 * call and to prevent accidental JITing by JIT compiler 13158 * that doesn't support bpf_tail_call yet 13159 */ 13160 insn->imm = 0; 13161 insn->code = BPF_JMP | BPF_TAIL_CALL; 13162 13163 aux = &env->insn_aux_data[i + delta]; 13164 if (env->bpf_capable && !expect_blinding && 13165 prog->jit_requested && 13166 !bpf_map_key_poisoned(aux) && 13167 !bpf_map_ptr_poisoned(aux) && 13168 !bpf_map_ptr_unpriv(aux)) { 13169 struct bpf_jit_poke_descriptor desc = { 13170 .reason = BPF_POKE_REASON_TAIL_CALL, 13171 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 13172 .tail_call.key = bpf_map_key_immediate(aux), 13173 .insn_idx = i + delta, 13174 }; 13175 13176 ret = bpf_jit_add_poke_descriptor(prog, &desc); 13177 if (ret < 0) { 13178 verbose(env, "adding tail call poke descriptor failed\n"); 13179 return ret; 13180 } 13181 13182 insn->imm = ret + 1; 13183 continue; 13184 } 13185 13186 if (!bpf_map_ptr_unpriv(aux)) 13187 continue; 13188 13189 /* instead of changing every JIT dealing with tail_call 13190 * emit two extra insns: 13191 * if (index >= max_entries) goto out; 13192 * index &= array->index_mask; 13193 * to avoid out-of-bounds cpu speculation 13194 */ 13195 if (bpf_map_ptr_poisoned(aux)) { 13196 verbose(env, "tail_call abusing map_ptr\n"); 13197 return -EINVAL; 13198 } 13199 13200 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 13201 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 13202 map_ptr->max_entries, 2); 13203 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 13204 container_of(map_ptr, 13205 struct bpf_array, 13206 map)->index_mask); 13207 insn_buf[2] = *insn; 13208 cnt = 3; 13209 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13210 if (!new_prog) 13211 return -ENOMEM; 13212 13213 delta += cnt - 1; 13214 env->prog = prog = new_prog; 13215 insn = new_prog->insnsi + i + delta; 13216 continue; 13217 } 13218 13219 if (insn->imm == BPF_FUNC_timer_set_callback) { 13220 /* The verifier will process callback_fn as many times as necessary 13221 * with different maps and the register states prepared by 13222 * set_timer_callback_state will be accurate. 13223 * 13224 * The following use case is valid: 13225 * map1 is shared by prog1, prog2, prog3. 13226 * prog1 calls bpf_timer_init for some map1 elements 13227 * prog2 calls bpf_timer_set_callback for some map1 elements. 13228 * Those that were not bpf_timer_init-ed will return -EINVAL. 13229 * prog3 calls bpf_timer_start for some map1 elements. 13230 * Those that were not both bpf_timer_init-ed and 13231 * bpf_timer_set_callback-ed will return -EINVAL. 13232 */ 13233 struct bpf_insn ld_addrs[2] = { 13234 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 13235 }; 13236 13237 insn_buf[0] = ld_addrs[0]; 13238 insn_buf[1] = ld_addrs[1]; 13239 insn_buf[2] = *insn; 13240 cnt = 3; 13241 13242 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13243 if (!new_prog) 13244 return -ENOMEM; 13245 13246 delta += cnt - 1; 13247 env->prog = prog = new_prog; 13248 insn = new_prog->insnsi + i + delta; 13249 goto patch_call_imm; 13250 } 13251 13252 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 13253 * and other inlining handlers are currently limited to 64 bit 13254 * only. 13255 */ 13256 if (prog->jit_requested && BITS_PER_LONG == 64 && 13257 (insn->imm == BPF_FUNC_map_lookup_elem || 13258 insn->imm == BPF_FUNC_map_update_elem || 13259 insn->imm == BPF_FUNC_map_delete_elem || 13260 insn->imm == BPF_FUNC_map_push_elem || 13261 insn->imm == BPF_FUNC_map_pop_elem || 13262 insn->imm == BPF_FUNC_map_peek_elem || 13263 insn->imm == BPF_FUNC_redirect_map || 13264 insn->imm == BPF_FUNC_for_each_map_elem)) { 13265 aux = &env->insn_aux_data[i + delta]; 13266 if (bpf_map_ptr_poisoned(aux)) 13267 goto patch_call_imm; 13268 13269 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 13270 ops = map_ptr->ops; 13271 if (insn->imm == BPF_FUNC_map_lookup_elem && 13272 ops->map_gen_lookup) { 13273 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 13274 if (cnt == -EOPNOTSUPP) 13275 goto patch_map_ops_generic; 13276 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 13277 verbose(env, "bpf verifier is misconfigured\n"); 13278 return -EINVAL; 13279 } 13280 13281 new_prog = bpf_patch_insn_data(env, i + delta, 13282 insn_buf, cnt); 13283 if (!new_prog) 13284 return -ENOMEM; 13285 13286 delta += cnt - 1; 13287 env->prog = prog = new_prog; 13288 insn = new_prog->insnsi + i + delta; 13289 continue; 13290 } 13291 13292 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 13293 (void *(*)(struct bpf_map *map, void *key))NULL)); 13294 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 13295 (int (*)(struct bpf_map *map, void *key))NULL)); 13296 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 13297 (int (*)(struct bpf_map *map, void *key, void *value, 13298 u64 flags))NULL)); 13299 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 13300 (int (*)(struct bpf_map *map, void *value, 13301 u64 flags))NULL)); 13302 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 13303 (int (*)(struct bpf_map *map, void *value))NULL)); 13304 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 13305 (int (*)(struct bpf_map *map, void *value))NULL)); 13306 BUILD_BUG_ON(!__same_type(ops->map_redirect, 13307 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL)); 13308 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 13309 (int (*)(struct bpf_map *map, 13310 bpf_callback_t callback_fn, 13311 void *callback_ctx, 13312 u64 flags))NULL)); 13313 13314 patch_map_ops_generic: 13315 switch (insn->imm) { 13316 case BPF_FUNC_map_lookup_elem: 13317 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 13318 continue; 13319 case BPF_FUNC_map_update_elem: 13320 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 13321 continue; 13322 case BPF_FUNC_map_delete_elem: 13323 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 13324 continue; 13325 case BPF_FUNC_map_push_elem: 13326 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 13327 continue; 13328 case BPF_FUNC_map_pop_elem: 13329 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 13330 continue; 13331 case BPF_FUNC_map_peek_elem: 13332 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 13333 continue; 13334 case BPF_FUNC_redirect_map: 13335 insn->imm = BPF_CALL_IMM(ops->map_redirect); 13336 continue; 13337 case BPF_FUNC_for_each_map_elem: 13338 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 13339 continue; 13340 } 13341 13342 goto patch_call_imm; 13343 } 13344 13345 /* Implement bpf_jiffies64 inline. */ 13346 if (prog->jit_requested && BITS_PER_LONG == 64 && 13347 insn->imm == BPF_FUNC_jiffies64) { 13348 struct bpf_insn ld_jiffies_addr[2] = { 13349 BPF_LD_IMM64(BPF_REG_0, 13350 (unsigned long)&jiffies), 13351 }; 13352 13353 insn_buf[0] = ld_jiffies_addr[0]; 13354 insn_buf[1] = ld_jiffies_addr[1]; 13355 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 13356 BPF_REG_0, 0); 13357 cnt = 3; 13358 13359 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 13360 cnt); 13361 if (!new_prog) 13362 return -ENOMEM; 13363 13364 delta += cnt - 1; 13365 env->prog = prog = new_prog; 13366 insn = new_prog->insnsi + i + delta; 13367 continue; 13368 } 13369 13370 /* Implement bpf_get_func_ip inline. */ 13371 if (prog_type == BPF_PROG_TYPE_TRACING && 13372 insn->imm == BPF_FUNC_get_func_ip) { 13373 /* Load IP address from ctx - 8 */ 13374 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 13375 13376 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 13377 if (!new_prog) 13378 return -ENOMEM; 13379 13380 env->prog = prog = new_prog; 13381 insn = new_prog->insnsi + i + delta; 13382 continue; 13383 } 13384 13385 patch_call_imm: 13386 fn = env->ops->get_func_proto(insn->imm, env->prog); 13387 /* all functions that have prototype and verifier allowed 13388 * programs to call them, must be real in-kernel functions 13389 */ 13390 if (!fn->func) { 13391 verbose(env, 13392 "kernel subsystem misconfigured func %s#%d\n", 13393 func_id_name(insn->imm), insn->imm); 13394 return -EFAULT; 13395 } 13396 insn->imm = fn->func - __bpf_call_base; 13397 } 13398 13399 /* Since poke tab is now finalized, publish aux to tracker. */ 13400 for (i = 0; i < prog->aux->size_poke_tab; i++) { 13401 map_ptr = prog->aux->poke_tab[i].tail_call.map; 13402 if (!map_ptr->ops->map_poke_track || 13403 !map_ptr->ops->map_poke_untrack || 13404 !map_ptr->ops->map_poke_run) { 13405 verbose(env, "bpf verifier is misconfigured\n"); 13406 return -EINVAL; 13407 } 13408 13409 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 13410 if (ret < 0) { 13411 verbose(env, "tracking tail call prog failed\n"); 13412 return ret; 13413 } 13414 } 13415 13416 sort_kfunc_descs_by_imm(env->prog); 13417 13418 return 0; 13419 } 13420 13421 static void free_states(struct bpf_verifier_env *env) 13422 { 13423 struct bpf_verifier_state_list *sl, *sln; 13424 int i; 13425 13426 sl = env->free_list; 13427 while (sl) { 13428 sln = sl->next; 13429 free_verifier_state(&sl->state, false); 13430 kfree(sl); 13431 sl = sln; 13432 } 13433 env->free_list = NULL; 13434 13435 if (!env->explored_states) 13436 return; 13437 13438 for (i = 0; i < state_htab_size(env); i++) { 13439 sl = env->explored_states[i]; 13440 13441 while (sl) { 13442 sln = sl->next; 13443 free_verifier_state(&sl->state, false); 13444 kfree(sl); 13445 sl = sln; 13446 } 13447 env->explored_states[i] = NULL; 13448 } 13449 } 13450 13451 static int do_check_common(struct bpf_verifier_env *env, int subprog) 13452 { 13453 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 13454 struct bpf_verifier_state *state; 13455 struct bpf_reg_state *regs; 13456 int ret, i; 13457 13458 env->prev_linfo = NULL; 13459 env->pass_cnt++; 13460 13461 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 13462 if (!state) 13463 return -ENOMEM; 13464 state->curframe = 0; 13465 state->speculative = false; 13466 state->branches = 1; 13467 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 13468 if (!state->frame[0]) { 13469 kfree(state); 13470 return -ENOMEM; 13471 } 13472 env->cur_state = state; 13473 init_func_state(env, state->frame[0], 13474 BPF_MAIN_FUNC /* callsite */, 13475 0 /* frameno */, 13476 subprog); 13477 13478 regs = state->frame[state->curframe]->regs; 13479 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 13480 ret = btf_prepare_func_args(env, subprog, regs); 13481 if (ret) 13482 goto out; 13483 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 13484 if (regs[i].type == PTR_TO_CTX) 13485 mark_reg_known_zero(env, regs, i); 13486 else if (regs[i].type == SCALAR_VALUE) 13487 mark_reg_unknown(env, regs, i); 13488 else if (regs[i].type == PTR_TO_MEM_OR_NULL) { 13489 const u32 mem_size = regs[i].mem_size; 13490 13491 mark_reg_known_zero(env, regs, i); 13492 regs[i].mem_size = mem_size; 13493 regs[i].id = ++env->id_gen; 13494 } 13495 } 13496 } else { 13497 /* 1st arg to a function */ 13498 regs[BPF_REG_1].type = PTR_TO_CTX; 13499 mark_reg_known_zero(env, regs, BPF_REG_1); 13500 ret = btf_check_subprog_arg_match(env, subprog, regs); 13501 if (ret == -EFAULT) 13502 /* unlikely verifier bug. abort. 13503 * ret == 0 and ret < 0 are sadly acceptable for 13504 * main() function due to backward compatibility. 13505 * Like socket filter program may be written as: 13506 * int bpf_prog(struct pt_regs *ctx) 13507 * and never dereference that ctx in the program. 13508 * 'struct pt_regs' is a type mismatch for socket 13509 * filter that should be using 'struct __sk_buff'. 13510 */ 13511 goto out; 13512 } 13513 13514 ret = do_check(env); 13515 out: 13516 /* check for NULL is necessary, since cur_state can be freed inside 13517 * do_check() under memory pressure. 13518 */ 13519 if (env->cur_state) { 13520 free_verifier_state(env->cur_state, true); 13521 env->cur_state = NULL; 13522 } 13523 while (!pop_stack(env, NULL, NULL, false)); 13524 if (!ret && pop_log) 13525 bpf_vlog_reset(&env->log, 0); 13526 free_states(env); 13527 return ret; 13528 } 13529 13530 /* Verify all global functions in a BPF program one by one based on their BTF. 13531 * All global functions must pass verification. Otherwise the whole program is rejected. 13532 * Consider: 13533 * int bar(int); 13534 * int foo(int f) 13535 * { 13536 * return bar(f); 13537 * } 13538 * int bar(int b) 13539 * { 13540 * ... 13541 * } 13542 * foo() will be verified first for R1=any_scalar_value. During verification it 13543 * will be assumed that bar() already verified successfully and call to bar() 13544 * from foo() will be checked for type match only. Later bar() will be verified 13545 * independently to check that it's safe for R1=any_scalar_value. 13546 */ 13547 static int do_check_subprogs(struct bpf_verifier_env *env) 13548 { 13549 struct bpf_prog_aux *aux = env->prog->aux; 13550 int i, ret; 13551 13552 if (!aux->func_info) 13553 return 0; 13554 13555 for (i = 1; i < env->subprog_cnt; i++) { 13556 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 13557 continue; 13558 env->insn_idx = env->subprog_info[i].start; 13559 WARN_ON_ONCE(env->insn_idx == 0); 13560 ret = do_check_common(env, i); 13561 if (ret) { 13562 return ret; 13563 } else if (env->log.level & BPF_LOG_LEVEL) { 13564 verbose(env, 13565 "Func#%d is safe for any args that match its prototype\n", 13566 i); 13567 } 13568 } 13569 return 0; 13570 } 13571 13572 static int do_check_main(struct bpf_verifier_env *env) 13573 { 13574 int ret; 13575 13576 env->insn_idx = 0; 13577 ret = do_check_common(env, 0); 13578 if (!ret) 13579 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 13580 return ret; 13581 } 13582 13583 13584 static void print_verification_stats(struct bpf_verifier_env *env) 13585 { 13586 int i; 13587 13588 if (env->log.level & BPF_LOG_STATS) { 13589 verbose(env, "verification time %lld usec\n", 13590 div_u64(env->verification_time, 1000)); 13591 verbose(env, "stack depth "); 13592 for (i = 0; i < env->subprog_cnt; i++) { 13593 u32 depth = env->subprog_info[i].stack_depth; 13594 13595 verbose(env, "%d", depth); 13596 if (i + 1 < env->subprog_cnt) 13597 verbose(env, "+"); 13598 } 13599 verbose(env, "\n"); 13600 } 13601 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 13602 "total_states %d peak_states %d mark_read %d\n", 13603 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 13604 env->max_states_per_insn, env->total_states, 13605 env->peak_states, env->longest_mark_read_walk); 13606 } 13607 13608 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 13609 { 13610 const struct btf_type *t, *func_proto; 13611 const struct bpf_struct_ops *st_ops; 13612 const struct btf_member *member; 13613 struct bpf_prog *prog = env->prog; 13614 u32 btf_id, member_idx; 13615 const char *mname; 13616 13617 if (!prog->gpl_compatible) { 13618 verbose(env, "struct ops programs must have a GPL compatible license\n"); 13619 return -EINVAL; 13620 } 13621 13622 btf_id = prog->aux->attach_btf_id; 13623 st_ops = bpf_struct_ops_find(btf_id); 13624 if (!st_ops) { 13625 verbose(env, "attach_btf_id %u is not a supported struct\n", 13626 btf_id); 13627 return -ENOTSUPP; 13628 } 13629 13630 t = st_ops->type; 13631 member_idx = prog->expected_attach_type; 13632 if (member_idx >= btf_type_vlen(t)) { 13633 verbose(env, "attach to invalid member idx %u of struct %s\n", 13634 member_idx, st_ops->name); 13635 return -EINVAL; 13636 } 13637 13638 member = &btf_type_member(t)[member_idx]; 13639 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 13640 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 13641 NULL); 13642 if (!func_proto) { 13643 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 13644 mname, member_idx, st_ops->name); 13645 return -EINVAL; 13646 } 13647 13648 if (st_ops->check_member) { 13649 int err = st_ops->check_member(t, member); 13650 13651 if (err) { 13652 verbose(env, "attach to unsupported member %s of struct %s\n", 13653 mname, st_ops->name); 13654 return err; 13655 } 13656 } 13657 13658 prog->aux->attach_func_proto = func_proto; 13659 prog->aux->attach_func_name = mname; 13660 env->ops = st_ops->verifier_ops; 13661 13662 return 0; 13663 } 13664 #define SECURITY_PREFIX "security_" 13665 13666 static int check_attach_modify_return(unsigned long addr, const char *func_name) 13667 { 13668 if (within_error_injection_list(addr) || 13669 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 13670 return 0; 13671 13672 return -EINVAL; 13673 } 13674 13675 /* list of non-sleepable functions that are otherwise on 13676 * ALLOW_ERROR_INJECTION list 13677 */ 13678 BTF_SET_START(btf_non_sleepable_error_inject) 13679 /* Three functions below can be called from sleepable and non-sleepable context. 13680 * Assume non-sleepable from bpf safety point of view. 13681 */ 13682 BTF_ID(func, __filemap_add_folio) 13683 BTF_ID(func, should_fail_alloc_page) 13684 BTF_ID(func, should_failslab) 13685 BTF_SET_END(btf_non_sleepable_error_inject) 13686 13687 static int check_non_sleepable_error_inject(u32 btf_id) 13688 { 13689 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 13690 } 13691 13692 int bpf_check_attach_target(struct bpf_verifier_log *log, 13693 const struct bpf_prog *prog, 13694 const struct bpf_prog *tgt_prog, 13695 u32 btf_id, 13696 struct bpf_attach_target_info *tgt_info) 13697 { 13698 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 13699 const char prefix[] = "btf_trace_"; 13700 int ret = 0, subprog = -1, i; 13701 const struct btf_type *t; 13702 bool conservative = true; 13703 const char *tname; 13704 struct btf *btf; 13705 long addr = 0; 13706 13707 if (!btf_id) { 13708 bpf_log(log, "Tracing programs must provide btf_id\n"); 13709 return -EINVAL; 13710 } 13711 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 13712 if (!btf) { 13713 bpf_log(log, 13714 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 13715 return -EINVAL; 13716 } 13717 t = btf_type_by_id(btf, btf_id); 13718 if (!t) { 13719 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 13720 return -EINVAL; 13721 } 13722 tname = btf_name_by_offset(btf, t->name_off); 13723 if (!tname) { 13724 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 13725 return -EINVAL; 13726 } 13727 if (tgt_prog) { 13728 struct bpf_prog_aux *aux = tgt_prog->aux; 13729 13730 for (i = 0; i < aux->func_info_cnt; i++) 13731 if (aux->func_info[i].type_id == btf_id) { 13732 subprog = i; 13733 break; 13734 } 13735 if (subprog == -1) { 13736 bpf_log(log, "Subprog %s doesn't exist\n", tname); 13737 return -EINVAL; 13738 } 13739 conservative = aux->func_info_aux[subprog].unreliable; 13740 if (prog_extension) { 13741 if (conservative) { 13742 bpf_log(log, 13743 "Cannot replace static functions\n"); 13744 return -EINVAL; 13745 } 13746 if (!prog->jit_requested) { 13747 bpf_log(log, 13748 "Extension programs should be JITed\n"); 13749 return -EINVAL; 13750 } 13751 } 13752 if (!tgt_prog->jited) { 13753 bpf_log(log, "Can attach to only JITed progs\n"); 13754 return -EINVAL; 13755 } 13756 if (tgt_prog->type == prog->type) { 13757 /* Cannot fentry/fexit another fentry/fexit program. 13758 * Cannot attach program extension to another extension. 13759 * It's ok to attach fentry/fexit to extension program. 13760 */ 13761 bpf_log(log, "Cannot recursively attach\n"); 13762 return -EINVAL; 13763 } 13764 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 13765 prog_extension && 13766 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 13767 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 13768 /* Program extensions can extend all program types 13769 * except fentry/fexit. The reason is the following. 13770 * The fentry/fexit programs are used for performance 13771 * analysis, stats and can be attached to any program 13772 * type except themselves. When extension program is 13773 * replacing XDP function it is necessary to allow 13774 * performance analysis of all functions. Both original 13775 * XDP program and its program extension. Hence 13776 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 13777 * allowed. If extending of fentry/fexit was allowed it 13778 * would be possible to create long call chain 13779 * fentry->extension->fentry->extension beyond 13780 * reasonable stack size. Hence extending fentry is not 13781 * allowed. 13782 */ 13783 bpf_log(log, "Cannot extend fentry/fexit\n"); 13784 return -EINVAL; 13785 } 13786 } else { 13787 if (prog_extension) { 13788 bpf_log(log, "Cannot replace kernel functions\n"); 13789 return -EINVAL; 13790 } 13791 } 13792 13793 switch (prog->expected_attach_type) { 13794 case BPF_TRACE_RAW_TP: 13795 if (tgt_prog) { 13796 bpf_log(log, 13797 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 13798 return -EINVAL; 13799 } 13800 if (!btf_type_is_typedef(t)) { 13801 bpf_log(log, "attach_btf_id %u is not a typedef\n", 13802 btf_id); 13803 return -EINVAL; 13804 } 13805 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 13806 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 13807 btf_id, tname); 13808 return -EINVAL; 13809 } 13810 tname += sizeof(prefix) - 1; 13811 t = btf_type_by_id(btf, t->type); 13812 if (!btf_type_is_ptr(t)) 13813 /* should never happen in valid vmlinux build */ 13814 return -EINVAL; 13815 t = btf_type_by_id(btf, t->type); 13816 if (!btf_type_is_func_proto(t)) 13817 /* should never happen in valid vmlinux build */ 13818 return -EINVAL; 13819 13820 break; 13821 case BPF_TRACE_ITER: 13822 if (!btf_type_is_func(t)) { 13823 bpf_log(log, "attach_btf_id %u is not a function\n", 13824 btf_id); 13825 return -EINVAL; 13826 } 13827 t = btf_type_by_id(btf, t->type); 13828 if (!btf_type_is_func_proto(t)) 13829 return -EINVAL; 13830 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 13831 if (ret) 13832 return ret; 13833 break; 13834 default: 13835 if (!prog_extension) 13836 return -EINVAL; 13837 fallthrough; 13838 case BPF_MODIFY_RETURN: 13839 case BPF_LSM_MAC: 13840 case BPF_TRACE_FENTRY: 13841 case BPF_TRACE_FEXIT: 13842 if (!btf_type_is_func(t)) { 13843 bpf_log(log, "attach_btf_id %u is not a function\n", 13844 btf_id); 13845 return -EINVAL; 13846 } 13847 if (prog_extension && 13848 btf_check_type_match(log, prog, btf, t)) 13849 return -EINVAL; 13850 t = btf_type_by_id(btf, t->type); 13851 if (!btf_type_is_func_proto(t)) 13852 return -EINVAL; 13853 13854 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 13855 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 13856 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 13857 return -EINVAL; 13858 13859 if (tgt_prog && conservative) 13860 t = NULL; 13861 13862 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 13863 if (ret < 0) 13864 return ret; 13865 13866 if (tgt_prog) { 13867 if (subprog == 0) 13868 addr = (long) tgt_prog->bpf_func; 13869 else 13870 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 13871 } else { 13872 addr = kallsyms_lookup_name(tname); 13873 if (!addr) { 13874 bpf_log(log, 13875 "The address of function %s cannot be found\n", 13876 tname); 13877 return -ENOENT; 13878 } 13879 } 13880 13881 if (prog->aux->sleepable) { 13882 ret = -EINVAL; 13883 switch (prog->type) { 13884 case BPF_PROG_TYPE_TRACING: 13885 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 13886 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 13887 */ 13888 if (!check_non_sleepable_error_inject(btf_id) && 13889 within_error_injection_list(addr)) 13890 ret = 0; 13891 break; 13892 case BPF_PROG_TYPE_LSM: 13893 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 13894 * Only some of them are sleepable. 13895 */ 13896 if (bpf_lsm_is_sleepable_hook(btf_id)) 13897 ret = 0; 13898 break; 13899 default: 13900 break; 13901 } 13902 if (ret) { 13903 bpf_log(log, "%s is not sleepable\n", tname); 13904 return ret; 13905 } 13906 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 13907 if (tgt_prog) { 13908 bpf_log(log, "can't modify return codes of BPF programs\n"); 13909 return -EINVAL; 13910 } 13911 ret = check_attach_modify_return(addr, tname); 13912 if (ret) { 13913 bpf_log(log, "%s() is not modifiable\n", tname); 13914 return ret; 13915 } 13916 } 13917 13918 break; 13919 } 13920 tgt_info->tgt_addr = addr; 13921 tgt_info->tgt_name = tname; 13922 tgt_info->tgt_type = t; 13923 return 0; 13924 } 13925 13926 BTF_SET_START(btf_id_deny) 13927 BTF_ID_UNUSED 13928 #ifdef CONFIG_SMP 13929 BTF_ID(func, migrate_disable) 13930 BTF_ID(func, migrate_enable) 13931 #endif 13932 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 13933 BTF_ID(func, rcu_read_unlock_strict) 13934 #endif 13935 BTF_SET_END(btf_id_deny) 13936 13937 static int check_attach_btf_id(struct bpf_verifier_env *env) 13938 { 13939 struct bpf_prog *prog = env->prog; 13940 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 13941 struct bpf_attach_target_info tgt_info = {}; 13942 u32 btf_id = prog->aux->attach_btf_id; 13943 struct bpf_trampoline *tr; 13944 int ret; 13945 u64 key; 13946 13947 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 13948 if (prog->aux->sleepable) 13949 /* attach_btf_id checked to be zero already */ 13950 return 0; 13951 verbose(env, "Syscall programs can only be sleepable\n"); 13952 return -EINVAL; 13953 } 13954 13955 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 13956 prog->type != BPF_PROG_TYPE_LSM) { 13957 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n"); 13958 return -EINVAL; 13959 } 13960 13961 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 13962 return check_struct_ops_btf_id(env); 13963 13964 if (prog->type != BPF_PROG_TYPE_TRACING && 13965 prog->type != BPF_PROG_TYPE_LSM && 13966 prog->type != BPF_PROG_TYPE_EXT) 13967 return 0; 13968 13969 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 13970 if (ret) 13971 return ret; 13972 13973 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 13974 /* to make freplace equivalent to their targets, they need to 13975 * inherit env->ops and expected_attach_type for the rest of the 13976 * verification 13977 */ 13978 env->ops = bpf_verifier_ops[tgt_prog->type]; 13979 prog->expected_attach_type = tgt_prog->expected_attach_type; 13980 } 13981 13982 /* store info about the attachment target that will be used later */ 13983 prog->aux->attach_func_proto = tgt_info.tgt_type; 13984 prog->aux->attach_func_name = tgt_info.tgt_name; 13985 13986 if (tgt_prog) { 13987 prog->aux->saved_dst_prog_type = tgt_prog->type; 13988 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 13989 } 13990 13991 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 13992 prog->aux->attach_btf_trace = true; 13993 return 0; 13994 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 13995 if (!bpf_iter_prog_supported(prog)) 13996 return -EINVAL; 13997 return 0; 13998 } 13999 14000 if (prog->type == BPF_PROG_TYPE_LSM) { 14001 ret = bpf_lsm_verify_prog(&env->log, prog); 14002 if (ret < 0) 14003 return ret; 14004 } else if (prog->type == BPF_PROG_TYPE_TRACING && 14005 btf_id_set_contains(&btf_id_deny, btf_id)) { 14006 return -EINVAL; 14007 } 14008 14009 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 14010 tr = bpf_trampoline_get(key, &tgt_info); 14011 if (!tr) 14012 return -ENOMEM; 14013 14014 prog->aux->dst_trampoline = tr; 14015 return 0; 14016 } 14017 14018 struct btf *bpf_get_btf_vmlinux(void) 14019 { 14020 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 14021 mutex_lock(&bpf_verifier_lock); 14022 if (!btf_vmlinux) 14023 btf_vmlinux = btf_parse_vmlinux(); 14024 mutex_unlock(&bpf_verifier_lock); 14025 } 14026 return btf_vmlinux; 14027 } 14028 14029 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 14030 { 14031 u64 start_time = ktime_get_ns(); 14032 struct bpf_verifier_env *env; 14033 struct bpf_verifier_log *log; 14034 int i, len, ret = -EINVAL; 14035 bool is_priv; 14036 14037 /* no program is valid */ 14038 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 14039 return -EINVAL; 14040 14041 /* 'struct bpf_verifier_env' can be global, but since it's not small, 14042 * allocate/free it every time bpf_check() is called 14043 */ 14044 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 14045 if (!env) 14046 return -ENOMEM; 14047 log = &env->log; 14048 14049 len = (*prog)->len; 14050 env->insn_aux_data = 14051 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 14052 ret = -ENOMEM; 14053 if (!env->insn_aux_data) 14054 goto err_free_env; 14055 for (i = 0; i < len; i++) 14056 env->insn_aux_data[i].orig_idx = i; 14057 env->prog = *prog; 14058 env->ops = bpf_verifier_ops[env->prog->type]; 14059 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 14060 is_priv = bpf_capable(); 14061 14062 bpf_get_btf_vmlinux(); 14063 14064 /* grab the mutex to protect few globals used by verifier */ 14065 if (!is_priv) 14066 mutex_lock(&bpf_verifier_lock); 14067 14068 if (attr->log_level || attr->log_buf || attr->log_size) { 14069 /* user requested verbose verifier output 14070 * and supplied buffer to store the verification trace 14071 */ 14072 log->level = attr->log_level; 14073 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 14074 log->len_total = attr->log_size; 14075 14076 /* log attributes have to be sane */ 14077 if (!bpf_verifier_log_attr_valid(log)) { 14078 ret = -EINVAL; 14079 goto err_unlock; 14080 } 14081 } 14082 14083 if (IS_ERR(btf_vmlinux)) { 14084 /* Either gcc or pahole or kernel are broken. */ 14085 verbose(env, "in-kernel BTF is malformed\n"); 14086 ret = PTR_ERR(btf_vmlinux); 14087 goto skip_full_check; 14088 } 14089 14090 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 14091 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 14092 env->strict_alignment = true; 14093 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 14094 env->strict_alignment = false; 14095 14096 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 14097 env->allow_uninit_stack = bpf_allow_uninit_stack(); 14098 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 14099 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 14100 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 14101 env->bpf_capable = bpf_capable(); 14102 14103 if (is_priv) 14104 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 14105 14106 env->explored_states = kvcalloc(state_htab_size(env), 14107 sizeof(struct bpf_verifier_state_list *), 14108 GFP_USER); 14109 ret = -ENOMEM; 14110 if (!env->explored_states) 14111 goto skip_full_check; 14112 14113 ret = add_subprog_and_kfunc(env); 14114 if (ret < 0) 14115 goto skip_full_check; 14116 14117 ret = check_subprogs(env); 14118 if (ret < 0) 14119 goto skip_full_check; 14120 14121 ret = check_btf_info(env, attr, uattr); 14122 if (ret < 0) 14123 goto skip_full_check; 14124 14125 ret = check_attach_btf_id(env); 14126 if (ret) 14127 goto skip_full_check; 14128 14129 ret = resolve_pseudo_ldimm64(env); 14130 if (ret < 0) 14131 goto skip_full_check; 14132 14133 if (bpf_prog_is_dev_bound(env->prog->aux)) { 14134 ret = bpf_prog_offload_verifier_prep(env->prog); 14135 if (ret) 14136 goto skip_full_check; 14137 } 14138 14139 ret = check_cfg(env); 14140 if (ret < 0) 14141 goto skip_full_check; 14142 14143 ret = do_check_subprogs(env); 14144 ret = ret ?: do_check_main(env); 14145 14146 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 14147 ret = bpf_prog_offload_finalize(env); 14148 14149 skip_full_check: 14150 kvfree(env->explored_states); 14151 14152 if (ret == 0) 14153 ret = check_max_stack_depth(env); 14154 14155 /* instruction rewrites happen after this point */ 14156 if (is_priv) { 14157 if (ret == 0) 14158 opt_hard_wire_dead_code_branches(env); 14159 if (ret == 0) 14160 ret = opt_remove_dead_code(env); 14161 if (ret == 0) 14162 ret = opt_remove_nops(env); 14163 } else { 14164 if (ret == 0) 14165 sanitize_dead_code(env); 14166 } 14167 14168 if (ret == 0) 14169 /* program is valid, convert *(u32*)(ctx + off) accesses */ 14170 ret = convert_ctx_accesses(env); 14171 14172 if (ret == 0) 14173 ret = do_misc_fixups(env); 14174 14175 /* do 32-bit optimization after insn patching has done so those patched 14176 * insns could be handled correctly. 14177 */ 14178 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 14179 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 14180 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 14181 : false; 14182 } 14183 14184 if (ret == 0) 14185 ret = fixup_call_args(env); 14186 14187 env->verification_time = ktime_get_ns() - start_time; 14188 print_verification_stats(env); 14189 env->prog->aux->verified_insns = env->insn_processed; 14190 14191 if (log->level && bpf_verifier_log_full(log)) 14192 ret = -ENOSPC; 14193 if (log->level && !log->ubuf) { 14194 ret = -EFAULT; 14195 goto err_release_maps; 14196 } 14197 14198 if (ret) 14199 goto err_release_maps; 14200 14201 if (env->used_map_cnt) { 14202 /* if program passed verifier, update used_maps in bpf_prog_info */ 14203 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 14204 sizeof(env->used_maps[0]), 14205 GFP_KERNEL); 14206 14207 if (!env->prog->aux->used_maps) { 14208 ret = -ENOMEM; 14209 goto err_release_maps; 14210 } 14211 14212 memcpy(env->prog->aux->used_maps, env->used_maps, 14213 sizeof(env->used_maps[0]) * env->used_map_cnt); 14214 env->prog->aux->used_map_cnt = env->used_map_cnt; 14215 } 14216 if (env->used_btf_cnt) { 14217 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 14218 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 14219 sizeof(env->used_btfs[0]), 14220 GFP_KERNEL); 14221 if (!env->prog->aux->used_btfs) { 14222 ret = -ENOMEM; 14223 goto err_release_maps; 14224 } 14225 14226 memcpy(env->prog->aux->used_btfs, env->used_btfs, 14227 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 14228 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 14229 } 14230 if (env->used_map_cnt || env->used_btf_cnt) { 14231 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 14232 * bpf_ld_imm64 instructions 14233 */ 14234 convert_pseudo_ld_imm64(env); 14235 } 14236 14237 adjust_btf_func(env); 14238 14239 err_release_maps: 14240 if (!env->prog->aux->used_maps) 14241 /* if we didn't copy map pointers into bpf_prog_info, release 14242 * them now. Otherwise free_used_maps() will release them. 14243 */ 14244 release_maps(env); 14245 if (!env->prog->aux->used_btfs) 14246 release_btfs(env); 14247 14248 /* extension progs temporarily inherit the attach_type of their targets 14249 for verification purposes, so set it back to zero before returning 14250 */ 14251 if (env->prog->type == BPF_PROG_TYPE_EXT) 14252 env->prog->expected_attach_type = 0; 14253 14254 *prog = env->prog; 14255 err_unlock: 14256 if (!is_priv) 14257 mutex_unlock(&bpf_verifier_lock); 14258 vfree(env->insn_aux_data); 14259 err_free_env: 14260 kfree(env); 14261 return ret; 14262 } 14263