xref: /openbmc/linux/kernel/bpf/verifier.c (revision 604ba230902d23c6e85c7dba9cfcb6a37661cb12)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25 
26 #include "disasm.h"
27 
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 	[_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all paths through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns either pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 	/* length of verifier log at the time this state was pushed on stack */
175 	u32 log_pos;
176 };
177 
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
179 #define BPF_COMPLEXITY_LIMIT_STATES	64
180 
181 #define BPF_MAP_KEY_POISON	(1ULL << 63)
182 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
183 
184 #define BPF_MAP_PTR_UNPRIV	1UL
185 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
186 					  POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188 
189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193 
194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198 
199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 			      const struct bpf_map *map, bool unpriv)
201 {
202 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 	unpriv |= bpf_map_ptr_unpriv(aux);
204 	aux->map_ptr_state = (unsigned long)map |
205 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207 
208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 	return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212 
213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217 
218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222 
223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 	bool poisoned = bpf_map_key_poisoned(aux);
226 
227 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230 
231 static bool bpf_pseudo_call(const struct bpf_insn *insn)
232 {
233 	return insn->code == (BPF_JMP | BPF_CALL) &&
234 	       insn->src_reg == BPF_PSEUDO_CALL;
235 }
236 
237 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
238 {
239 	return insn->code == (BPF_JMP | BPF_CALL) &&
240 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
241 }
242 
243 struct bpf_call_arg_meta {
244 	struct bpf_map *map_ptr;
245 	bool raw_mode;
246 	bool pkt_access;
247 	int regno;
248 	int access_size;
249 	int mem_size;
250 	u64 msize_max_value;
251 	int ref_obj_id;
252 	int map_uid;
253 	int func_id;
254 	struct btf *btf;
255 	u32 btf_id;
256 	struct btf *ret_btf;
257 	u32 ret_btf_id;
258 	u32 subprogno;
259 };
260 
261 struct btf *btf_vmlinux;
262 
263 static DEFINE_MUTEX(bpf_verifier_lock);
264 
265 static const struct bpf_line_info *
266 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
267 {
268 	const struct bpf_line_info *linfo;
269 	const struct bpf_prog *prog;
270 	u32 i, nr_linfo;
271 
272 	prog = env->prog;
273 	nr_linfo = prog->aux->nr_linfo;
274 
275 	if (!nr_linfo || insn_off >= prog->len)
276 		return NULL;
277 
278 	linfo = prog->aux->linfo;
279 	for (i = 1; i < nr_linfo; i++)
280 		if (insn_off < linfo[i].insn_off)
281 			break;
282 
283 	return &linfo[i - 1];
284 }
285 
286 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
287 		       va_list args)
288 {
289 	unsigned int n;
290 
291 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
292 
293 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
294 		  "verifier log line truncated - local buffer too short\n");
295 
296 	if (log->level == BPF_LOG_KERNEL) {
297 		bool newline = n > 0 && log->kbuf[n - 1] == '\n';
298 
299 		pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
300 		return;
301 	}
302 
303 	n = min(log->len_total - log->len_used - 1, n);
304 	log->kbuf[n] = '\0';
305 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
306 		log->len_used += n;
307 	else
308 		log->ubuf = NULL;
309 }
310 
311 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
312 {
313 	char zero = 0;
314 
315 	if (!bpf_verifier_log_needed(log))
316 		return;
317 
318 	log->len_used = new_pos;
319 	if (put_user(zero, log->ubuf + new_pos))
320 		log->ubuf = NULL;
321 }
322 
323 /* log_level controls verbosity level of eBPF verifier.
324  * bpf_verifier_log_write() is used to dump the verification trace to the log,
325  * so the user can figure out what's wrong with the program
326  */
327 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
328 					   const char *fmt, ...)
329 {
330 	va_list args;
331 
332 	if (!bpf_verifier_log_needed(&env->log))
333 		return;
334 
335 	va_start(args, fmt);
336 	bpf_verifier_vlog(&env->log, fmt, args);
337 	va_end(args);
338 }
339 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
340 
341 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
342 {
343 	struct bpf_verifier_env *env = private_data;
344 	va_list args;
345 
346 	if (!bpf_verifier_log_needed(&env->log))
347 		return;
348 
349 	va_start(args, fmt);
350 	bpf_verifier_vlog(&env->log, fmt, args);
351 	va_end(args);
352 }
353 
354 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
355 			    const char *fmt, ...)
356 {
357 	va_list args;
358 
359 	if (!bpf_verifier_log_needed(log))
360 		return;
361 
362 	va_start(args, fmt);
363 	bpf_verifier_vlog(log, fmt, args);
364 	va_end(args);
365 }
366 
367 static const char *ltrim(const char *s)
368 {
369 	while (isspace(*s))
370 		s++;
371 
372 	return s;
373 }
374 
375 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
376 					 u32 insn_off,
377 					 const char *prefix_fmt, ...)
378 {
379 	const struct bpf_line_info *linfo;
380 
381 	if (!bpf_verifier_log_needed(&env->log))
382 		return;
383 
384 	linfo = find_linfo(env, insn_off);
385 	if (!linfo || linfo == env->prev_linfo)
386 		return;
387 
388 	if (prefix_fmt) {
389 		va_list args;
390 
391 		va_start(args, prefix_fmt);
392 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
393 		va_end(args);
394 	}
395 
396 	verbose(env, "%s\n",
397 		ltrim(btf_name_by_offset(env->prog->aux->btf,
398 					 linfo->line_off)));
399 
400 	env->prev_linfo = linfo;
401 }
402 
403 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
404 				   struct bpf_reg_state *reg,
405 				   struct tnum *range, const char *ctx,
406 				   const char *reg_name)
407 {
408 	char tn_buf[48];
409 
410 	verbose(env, "At %s the register %s ", ctx, reg_name);
411 	if (!tnum_is_unknown(reg->var_off)) {
412 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
413 		verbose(env, "has value %s", tn_buf);
414 	} else {
415 		verbose(env, "has unknown scalar value");
416 	}
417 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
418 	verbose(env, " should have been in %s\n", tn_buf);
419 }
420 
421 static bool type_is_pkt_pointer(enum bpf_reg_type type)
422 {
423 	return type == PTR_TO_PACKET ||
424 	       type == PTR_TO_PACKET_META;
425 }
426 
427 static bool type_is_sk_pointer(enum bpf_reg_type type)
428 {
429 	return type == PTR_TO_SOCKET ||
430 		type == PTR_TO_SOCK_COMMON ||
431 		type == PTR_TO_TCP_SOCK ||
432 		type == PTR_TO_XDP_SOCK;
433 }
434 
435 static bool reg_type_not_null(enum bpf_reg_type type)
436 {
437 	return type == PTR_TO_SOCKET ||
438 		type == PTR_TO_TCP_SOCK ||
439 		type == PTR_TO_MAP_VALUE ||
440 		type == PTR_TO_MAP_KEY ||
441 		type == PTR_TO_SOCK_COMMON;
442 }
443 
444 static bool reg_type_may_be_null(enum bpf_reg_type type)
445 {
446 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
447 	       type == PTR_TO_SOCKET_OR_NULL ||
448 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
449 	       type == PTR_TO_TCP_SOCK_OR_NULL ||
450 	       type == PTR_TO_BTF_ID_OR_NULL ||
451 	       type == PTR_TO_MEM_OR_NULL ||
452 	       type == PTR_TO_RDONLY_BUF_OR_NULL ||
453 	       type == PTR_TO_RDWR_BUF_OR_NULL;
454 }
455 
456 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
457 {
458 	return reg->type == PTR_TO_MAP_VALUE &&
459 		map_value_has_spin_lock(reg->map_ptr);
460 }
461 
462 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
463 {
464 	return type == PTR_TO_SOCKET ||
465 		type == PTR_TO_SOCKET_OR_NULL ||
466 		type == PTR_TO_TCP_SOCK ||
467 		type == PTR_TO_TCP_SOCK_OR_NULL ||
468 		type == PTR_TO_MEM ||
469 		type == PTR_TO_MEM_OR_NULL;
470 }
471 
472 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
473 {
474 	return type == ARG_PTR_TO_SOCK_COMMON;
475 }
476 
477 static bool arg_type_may_be_null(enum bpf_arg_type type)
478 {
479 	return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
480 	       type == ARG_PTR_TO_MEM_OR_NULL ||
481 	       type == ARG_PTR_TO_CTX_OR_NULL ||
482 	       type == ARG_PTR_TO_SOCKET_OR_NULL ||
483 	       type == ARG_PTR_TO_ALLOC_MEM_OR_NULL ||
484 	       type == ARG_PTR_TO_STACK_OR_NULL;
485 }
486 
487 /* Determine whether the function releases some resources allocated by another
488  * function call. The first reference type argument will be assumed to be
489  * released by release_reference().
490  */
491 static bool is_release_function(enum bpf_func_id func_id)
492 {
493 	return func_id == BPF_FUNC_sk_release ||
494 	       func_id == BPF_FUNC_ringbuf_submit ||
495 	       func_id == BPF_FUNC_ringbuf_discard;
496 }
497 
498 static bool may_be_acquire_function(enum bpf_func_id func_id)
499 {
500 	return func_id == BPF_FUNC_sk_lookup_tcp ||
501 		func_id == BPF_FUNC_sk_lookup_udp ||
502 		func_id == BPF_FUNC_skc_lookup_tcp ||
503 		func_id == BPF_FUNC_map_lookup_elem ||
504 	        func_id == BPF_FUNC_ringbuf_reserve;
505 }
506 
507 static bool is_acquire_function(enum bpf_func_id func_id,
508 				const struct bpf_map *map)
509 {
510 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
511 
512 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
513 	    func_id == BPF_FUNC_sk_lookup_udp ||
514 	    func_id == BPF_FUNC_skc_lookup_tcp ||
515 	    func_id == BPF_FUNC_ringbuf_reserve)
516 		return true;
517 
518 	if (func_id == BPF_FUNC_map_lookup_elem &&
519 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
520 	     map_type == BPF_MAP_TYPE_SOCKHASH))
521 		return true;
522 
523 	return false;
524 }
525 
526 static bool is_ptr_cast_function(enum bpf_func_id func_id)
527 {
528 	return func_id == BPF_FUNC_tcp_sock ||
529 		func_id == BPF_FUNC_sk_fullsock ||
530 		func_id == BPF_FUNC_skc_to_tcp_sock ||
531 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
532 		func_id == BPF_FUNC_skc_to_udp6_sock ||
533 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
534 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
535 }
536 
537 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
538 {
539 	return BPF_CLASS(insn->code) == BPF_STX &&
540 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
541 	       insn->imm == BPF_CMPXCHG;
542 }
543 
544 /* string representation of 'enum bpf_reg_type' */
545 static const char * const reg_type_str[] = {
546 	[NOT_INIT]		= "?",
547 	[SCALAR_VALUE]		= "inv",
548 	[PTR_TO_CTX]		= "ctx",
549 	[CONST_PTR_TO_MAP]	= "map_ptr",
550 	[PTR_TO_MAP_VALUE]	= "map_value",
551 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
552 	[PTR_TO_STACK]		= "fp",
553 	[PTR_TO_PACKET]		= "pkt",
554 	[PTR_TO_PACKET_META]	= "pkt_meta",
555 	[PTR_TO_PACKET_END]	= "pkt_end",
556 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
557 	[PTR_TO_SOCKET]		= "sock",
558 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
559 	[PTR_TO_SOCK_COMMON]	= "sock_common",
560 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
561 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
562 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
563 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
564 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
565 	[PTR_TO_BTF_ID]		= "ptr_",
566 	[PTR_TO_BTF_ID_OR_NULL]	= "ptr_or_null_",
567 	[PTR_TO_PERCPU_BTF_ID]	= "percpu_ptr_",
568 	[PTR_TO_MEM]		= "mem",
569 	[PTR_TO_MEM_OR_NULL]	= "mem_or_null",
570 	[PTR_TO_RDONLY_BUF]	= "rdonly_buf",
571 	[PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
572 	[PTR_TO_RDWR_BUF]	= "rdwr_buf",
573 	[PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
574 	[PTR_TO_FUNC]		= "func",
575 	[PTR_TO_MAP_KEY]	= "map_key",
576 };
577 
578 static char slot_type_char[] = {
579 	[STACK_INVALID]	= '?',
580 	[STACK_SPILL]	= 'r',
581 	[STACK_MISC]	= 'm',
582 	[STACK_ZERO]	= '0',
583 };
584 
585 static void print_liveness(struct bpf_verifier_env *env,
586 			   enum bpf_reg_liveness live)
587 {
588 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
589 	    verbose(env, "_");
590 	if (live & REG_LIVE_READ)
591 		verbose(env, "r");
592 	if (live & REG_LIVE_WRITTEN)
593 		verbose(env, "w");
594 	if (live & REG_LIVE_DONE)
595 		verbose(env, "D");
596 }
597 
598 static struct bpf_func_state *func(struct bpf_verifier_env *env,
599 				   const struct bpf_reg_state *reg)
600 {
601 	struct bpf_verifier_state *cur = env->cur_state;
602 
603 	return cur->frame[reg->frameno];
604 }
605 
606 static const char *kernel_type_name(const struct btf* btf, u32 id)
607 {
608 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
609 }
610 
611 /* The reg state of a pointer or a bounded scalar was saved when
612  * it was spilled to the stack.
613  */
614 static bool is_spilled_reg(const struct bpf_stack_state *stack)
615 {
616 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
617 }
618 
619 static void scrub_spilled_slot(u8 *stype)
620 {
621 	if (*stype != STACK_INVALID)
622 		*stype = STACK_MISC;
623 }
624 
625 static void print_verifier_state(struct bpf_verifier_env *env,
626 				 const struct bpf_func_state *state)
627 {
628 	const struct bpf_reg_state *reg;
629 	enum bpf_reg_type t;
630 	int i;
631 
632 	if (state->frameno)
633 		verbose(env, " frame%d:", state->frameno);
634 	for (i = 0; i < MAX_BPF_REG; i++) {
635 		reg = &state->regs[i];
636 		t = reg->type;
637 		if (t == NOT_INIT)
638 			continue;
639 		verbose(env, " R%d", i);
640 		print_liveness(env, reg->live);
641 		verbose(env, "=%s", reg_type_str[t]);
642 		if (t == SCALAR_VALUE && reg->precise)
643 			verbose(env, "P");
644 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
645 		    tnum_is_const(reg->var_off)) {
646 			/* reg->off should be 0 for SCALAR_VALUE */
647 			verbose(env, "%lld", reg->var_off.value + reg->off);
648 		} else {
649 			if (t == PTR_TO_BTF_ID ||
650 			    t == PTR_TO_BTF_ID_OR_NULL ||
651 			    t == PTR_TO_PERCPU_BTF_ID)
652 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
653 			verbose(env, "(id=%d", reg->id);
654 			if (reg_type_may_be_refcounted_or_null(t))
655 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
656 			if (t != SCALAR_VALUE)
657 				verbose(env, ",off=%d", reg->off);
658 			if (type_is_pkt_pointer(t))
659 				verbose(env, ",r=%d", reg->range);
660 			else if (t == CONST_PTR_TO_MAP ||
661 				 t == PTR_TO_MAP_KEY ||
662 				 t == PTR_TO_MAP_VALUE ||
663 				 t == PTR_TO_MAP_VALUE_OR_NULL)
664 				verbose(env, ",ks=%d,vs=%d",
665 					reg->map_ptr->key_size,
666 					reg->map_ptr->value_size);
667 			if (tnum_is_const(reg->var_off)) {
668 				/* Typically an immediate SCALAR_VALUE, but
669 				 * could be a pointer whose offset is too big
670 				 * for reg->off
671 				 */
672 				verbose(env, ",imm=%llx", reg->var_off.value);
673 			} else {
674 				if (reg->smin_value != reg->umin_value &&
675 				    reg->smin_value != S64_MIN)
676 					verbose(env, ",smin_value=%lld",
677 						(long long)reg->smin_value);
678 				if (reg->smax_value != reg->umax_value &&
679 				    reg->smax_value != S64_MAX)
680 					verbose(env, ",smax_value=%lld",
681 						(long long)reg->smax_value);
682 				if (reg->umin_value != 0)
683 					verbose(env, ",umin_value=%llu",
684 						(unsigned long long)reg->umin_value);
685 				if (reg->umax_value != U64_MAX)
686 					verbose(env, ",umax_value=%llu",
687 						(unsigned long long)reg->umax_value);
688 				if (!tnum_is_unknown(reg->var_off)) {
689 					char tn_buf[48];
690 
691 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
692 					verbose(env, ",var_off=%s", tn_buf);
693 				}
694 				if (reg->s32_min_value != reg->smin_value &&
695 				    reg->s32_min_value != S32_MIN)
696 					verbose(env, ",s32_min_value=%d",
697 						(int)(reg->s32_min_value));
698 				if (reg->s32_max_value != reg->smax_value &&
699 				    reg->s32_max_value != S32_MAX)
700 					verbose(env, ",s32_max_value=%d",
701 						(int)(reg->s32_max_value));
702 				if (reg->u32_min_value != reg->umin_value &&
703 				    reg->u32_min_value != U32_MIN)
704 					verbose(env, ",u32_min_value=%d",
705 						(int)(reg->u32_min_value));
706 				if (reg->u32_max_value != reg->umax_value &&
707 				    reg->u32_max_value != U32_MAX)
708 					verbose(env, ",u32_max_value=%d",
709 						(int)(reg->u32_max_value));
710 			}
711 			verbose(env, ")");
712 		}
713 	}
714 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
715 		char types_buf[BPF_REG_SIZE + 1];
716 		bool valid = false;
717 		int j;
718 
719 		for (j = 0; j < BPF_REG_SIZE; j++) {
720 			if (state->stack[i].slot_type[j] != STACK_INVALID)
721 				valid = true;
722 			types_buf[j] = slot_type_char[
723 					state->stack[i].slot_type[j]];
724 		}
725 		types_buf[BPF_REG_SIZE] = 0;
726 		if (!valid)
727 			continue;
728 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
729 		print_liveness(env, state->stack[i].spilled_ptr.live);
730 		if (is_spilled_reg(&state->stack[i])) {
731 			reg = &state->stack[i].spilled_ptr;
732 			t = reg->type;
733 			verbose(env, "=%s", reg_type_str[t]);
734 			if (t == SCALAR_VALUE && reg->precise)
735 				verbose(env, "P");
736 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
737 				verbose(env, "%lld", reg->var_off.value + reg->off);
738 		} else {
739 			verbose(env, "=%s", types_buf);
740 		}
741 	}
742 	if (state->acquired_refs && state->refs[0].id) {
743 		verbose(env, " refs=%d", state->refs[0].id);
744 		for (i = 1; i < state->acquired_refs; i++)
745 			if (state->refs[i].id)
746 				verbose(env, ",%d", state->refs[i].id);
747 	}
748 	if (state->in_callback_fn)
749 		verbose(env, " cb");
750 	if (state->in_async_callback_fn)
751 		verbose(env, " async_cb");
752 	verbose(env, "\n");
753 }
754 
755 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
756  * small to hold src. This is different from krealloc since we don't want to preserve
757  * the contents of dst.
758  *
759  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
760  * not be allocated.
761  */
762 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
763 {
764 	size_t bytes;
765 
766 	if (ZERO_OR_NULL_PTR(src))
767 		goto out;
768 
769 	if (unlikely(check_mul_overflow(n, size, &bytes)))
770 		return NULL;
771 
772 	if (ksize(dst) < bytes) {
773 		kfree(dst);
774 		dst = kmalloc_track_caller(bytes, flags);
775 		if (!dst)
776 			return NULL;
777 	}
778 
779 	memcpy(dst, src, bytes);
780 out:
781 	return dst ? dst : ZERO_SIZE_PTR;
782 }
783 
784 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
785  * small to hold new_n items. new items are zeroed out if the array grows.
786  *
787  * Contrary to krealloc_array, does not free arr if new_n is zero.
788  */
789 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
790 {
791 	if (!new_n || old_n == new_n)
792 		goto out;
793 
794 	arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
795 	if (!arr)
796 		return NULL;
797 
798 	if (new_n > old_n)
799 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
800 
801 out:
802 	return arr ? arr : ZERO_SIZE_PTR;
803 }
804 
805 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
806 {
807 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
808 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
809 	if (!dst->refs)
810 		return -ENOMEM;
811 
812 	dst->acquired_refs = src->acquired_refs;
813 	return 0;
814 }
815 
816 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
817 {
818 	size_t n = src->allocated_stack / BPF_REG_SIZE;
819 
820 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
821 				GFP_KERNEL);
822 	if (!dst->stack)
823 		return -ENOMEM;
824 
825 	dst->allocated_stack = src->allocated_stack;
826 	return 0;
827 }
828 
829 static int resize_reference_state(struct bpf_func_state *state, size_t n)
830 {
831 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
832 				    sizeof(struct bpf_reference_state));
833 	if (!state->refs)
834 		return -ENOMEM;
835 
836 	state->acquired_refs = n;
837 	return 0;
838 }
839 
840 static int grow_stack_state(struct bpf_func_state *state, int size)
841 {
842 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
843 
844 	if (old_n >= n)
845 		return 0;
846 
847 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
848 	if (!state->stack)
849 		return -ENOMEM;
850 
851 	state->allocated_stack = size;
852 	return 0;
853 }
854 
855 /* Acquire a pointer id from the env and update the state->refs to include
856  * this new pointer reference.
857  * On success, returns a valid pointer id to associate with the register
858  * On failure, returns a negative errno.
859  */
860 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
861 {
862 	struct bpf_func_state *state = cur_func(env);
863 	int new_ofs = state->acquired_refs;
864 	int id, err;
865 
866 	err = resize_reference_state(state, state->acquired_refs + 1);
867 	if (err)
868 		return err;
869 	id = ++env->id_gen;
870 	state->refs[new_ofs].id = id;
871 	state->refs[new_ofs].insn_idx = insn_idx;
872 
873 	return id;
874 }
875 
876 /* release function corresponding to acquire_reference_state(). Idempotent. */
877 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
878 {
879 	int i, last_idx;
880 
881 	last_idx = state->acquired_refs - 1;
882 	for (i = 0; i < state->acquired_refs; i++) {
883 		if (state->refs[i].id == ptr_id) {
884 			if (last_idx && i != last_idx)
885 				memcpy(&state->refs[i], &state->refs[last_idx],
886 				       sizeof(*state->refs));
887 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
888 			state->acquired_refs--;
889 			return 0;
890 		}
891 	}
892 	return -EINVAL;
893 }
894 
895 static void free_func_state(struct bpf_func_state *state)
896 {
897 	if (!state)
898 		return;
899 	kfree(state->refs);
900 	kfree(state->stack);
901 	kfree(state);
902 }
903 
904 static void clear_jmp_history(struct bpf_verifier_state *state)
905 {
906 	kfree(state->jmp_history);
907 	state->jmp_history = NULL;
908 	state->jmp_history_cnt = 0;
909 }
910 
911 static void free_verifier_state(struct bpf_verifier_state *state,
912 				bool free_self)
913 {
914 	int i;
915 
916 	for (i = 0; i <= state->curframe; i++) {
917 		free_func_state(state->frame[i]);
918 		state->frame[i] = NULL;
919 	}
920 	clear_jmp_history(state);
921 	if (free_self)
922 		kfree(state);
923 }
924 
925 /* copy verifier state from src to dst growing dst stack space
926  * when necessary to accommodate larger src stack
927  */
928 static int copy_func_state(struct bpf_func_state *dst,
929 			   const struct bpf_func_state *src)
930 {
931 	int err;
932 
933 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
934 	err = copy_reference_state(dst, src);
935 	if (err)
936 		return err;
937 	return copy_stack_state(dst, src);
938 }
939 
940 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
941 			       const struct bpf_verifier_state *src)
942 {
943 	struct bpf_func_state *dst;
944 	int i, err;
945 
946 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
947 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
948 					    GFP_USER);
949 	if (!dst_state->jmp_history)
950 		return -ENOMEM;
951 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
952 
953 	/* if dst has more stack frames then src frame, free them */
954 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
955 		free_func_state(dst_state->frame[i]);
956 		dst_state->frame[i] = NULL;
957 	}
958 	dst_state->speculative = src->speculative;
959 	dst_state->curframe = src->curframe;
960 	dst_state->active_spin_lock = src->active_spin_lock;
961 	dst_state->branches = src->branches;
962 	dst_state->parent = src->parent;
963 	dst_state->first_insn_idx = src->first_insn_idx;
964 	dst_state->last_insn_idx = src->last_insn_idx;
965 	for (i = 0; i <= src->curframe; i++) {
966 		dst = dst_state->frame[i];
967 		if (!dst) {
968 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
969 			if (!dst)
970 				return -ENOMEM;
971 			dst_state->frame[i] = dst;
972 		}
973 		err = copy_func_state(dst, src->frame[i]);
974 		if (err)
975 			return err;
976 	}
977 	return 0;
978 }
979 
980 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
981 {
982 	while (st) {
983 		u32 br = --st->branches;
984 
985 		/* WARN_ON(br > 1) technically makes sense here,
986 		 * but see comment in push_stack(), hence:
987 		 */
988 		WARN_ONCE((int)br < 0,
989 			  "BUG update_branch_counts:branches_to_explore=%d\n",
990 			  br);
991 		if (br)
992 			break;
993 		st = st->parent;
994 	}
995 }
996 
997 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
998 		     int *insn_idx, bool pop_log)
999 {
1000 	struct bpf_verifier_state *cur = env->cur_state;
1001 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1002 	int err;
1003 
1004 	if (env->head == NULL)
1005 		return -ENOENT;
1006 
1007 	if (cur) {
1008 		err = copy_verifier_state(cur, &head->st);
1009 		if (err)
1010 			return err;
1011 	}
1012 	if (pop_log)
1013 		bpf_vlog_reset(&env->log, head->log_pos);
1014 	if (insn_idx)
1015 		*insn_idx = head->insn_idx;
1016 	if (prev_insn_idx)
1017 		*prev_insn_idx = head->prev_insn_idx;
1018 	elem = head->next;
1019 	free_verifier_state(&head->st, false);
1020 	kfree(head);
1021 	env->head = elem;
1022 	env->stack_size--;
1023 	return 0;
1024 }
1025 
1026 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1027 					     int insn_idx, int prev_insn_idx,
1028 					     bool speculative)
1029 {
1030 	struct bpf_verifier_state *cur = env->cur_state;
1031 	struct bpf_verifier_stack_elem *elem;
1032 	int err;
1033 
1034 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1035 	if (!elem)
1036 		goto err;
1037 
1038 	elem->insn_idx = insn_idx;
1039 	elem->prev_insn_idx = prev_insn_idx;
1040 	elem->next = env->head;
1041 	elem->log_pos = env->log.len_used;
1042 	env->head = elem;
1043 	env->stack_size++;
1044 	err = copy_verifier_state(&elem->st, cur);
1045 	if (err)
1046 		goto err;
1047 	elem->st.speculative |= speculative;
1048 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1049 		verbose(env, "The sequence of %d jumps is too complex.\n",
1050 			env->stack_size);
1051 		goto err;
1052 	}
1053 	if (elem->st.parent) {
1054 		++elem->st.parent->branches;
1055 		/* WARN_ON(branches > 2) technically makes sense here,
1056 		 * but
1057 		 * 1. speculative states will bump 'branches' for non-branch
1058 		 * instructions
1059 		 * 2. is_state_visited() heuristics may decide not to create
1060 		 * a new state for a sequence of branches and all such current
1061 		 * and cloned states will be pointing to a single parent state
1062 		 * which might have large 'branches' count.
1063 		 */
1064 	}
1065 	return &elem->st;
1066 err:
1067 	free_verifier_state(env->cur_state, true);
1068 	env->cur_state = NULL;
1069 	/* pop all elements and return */
1070 	while (!pop_stack(env, NULL, NULL, false));
1071 	return NULL;
1072 }
1073 
1074 #define CALLER_SAVED_REGS 6
1075 static const int caller_saved[CALLER_SAVED_REGS] = {
1076 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1077 };
1078 
1079 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1080 				struct bpf_reg_state *reg);
1081 
1082 /* This helper doesn't clear reg->id */
1083 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1084 {
1085 	reg->var_off = tnum_const(imm);
1086 	reg->smin_value = (s64)imm;
1087 	reg->smax_value = (s64)imm;
1088 	reg->umin_value = imm;
1089 	reg->umax_value = imm;
1090 
1091 	reg->s32_min_value = (s32)imm;
1092 	reg->s32_max_value = (s32)imm;
1093 	reg->u32_min_value = (u32)imm;
1094 	reg->u32_max_value = (u32)imm;
1095 }
1096 
1097 /* Mark the unknown part of a register (variable offset or scalar value) as
1098  * known to have the value @imm.
1099  */
1100 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1101 {
1102 	/* Clear id, off, and union(map_ptr, range) */
1103 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1104 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1105 	___mark_reg_known(reg, imm);
1106 }
1107 
1108 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1109 {
1110 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1111 	reg->s32_min_value = (s32)imm;
1112 	reg->s32_max_value = (s32)imm;
1113 	reg->u32_min_value = (u32)imm;
1114 	reg->u32_max_value = (u32)imm;
1115 }
1116 
1117 /* Mark the 'variable offset' part of a register as zero.  This should be
1118  * used only on registers holding a pointer type.
1119  */
1120 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1121 {
1122 	__mark_reg_known(reg, 0);
1123 }
1124 
1125 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1126 {
1127 	__mark_reg_known(reg, 0);
1128 	reg->type = SCALAR_VALUE;
1129 }
1130 
1131 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1132 				struct bpf_reg_state *regs, u32 regno)
1133 {
1134 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1135 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1136 		/* Something bad happened, let's kill all regs */
1137 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1138 			__mark_reg_not_init(env, regs + regno);
1139 		return;
1140 	}
1141 	__mark_reg_known_zero(regs + regno);
1142 }
1143 
1144 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1145 {
1146 	switch (reg->type) {
1147 	case PTR_TO_MAP_VALUE_OR_NULL: {
1148 		const struct bpf_map *map = reg->map_ptr;
1149 
1150 		if (map->inner_map_meta) {
1151 			reg->type = CONST_PTR_TO_MAP;
1152 			reg->map_ptr = map->inner_map_meta;
1153 			/* transfer reg's id which is unique for every map_lookup_elem
1154 			 * as UID of the inner map.
1155 			 */
1156 			if (map_value_has_timer(map->inner_map_meta))
1157 				reg->map_uid = reg->id;
1158 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1159 			reg->type = PTR_TO_XDP_SOCK;
1160 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1161 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1162 			reg->type = PTR_TO_SOCKET;
1163 		} else {
1164 			reg->type = PTR_TO_MAP_VALUE;
1165 		}
1166 		break;
1167 	}
1168 	case PTR_TO_SOCKET_OR_NULL:
1169 		reg->type = PTR_TO_SOCKET;
1170 		break;
1171 	case PTR_TO_SOCK_COMMON_OR_NULL:
1172 		reg->type = PTR_TO_SOCK_COMMON;
1173 		break;
1174 	case PTR_TO_TCP_SOCK_OR_NULL:
1175 		reg->type = PTR_TO_TCP_SOCK;
1176 		break;
1177 	case PTR_TO_BTF_ID_OR_NULL:
1178 		reg->type = PTR_TO_BTF_ID;
1179 		break;
1180 	case PTR_TO_MEM_OR_NULL:
1181 		reg->type = PTR_TO_MEM;
1182 		break;
1183 	case PTR_TO_RDONLY_BUF_OR_NULL:
1184 		reg->type = PTR_TO_RDONLY_BUF;
1185 		break;
1186 	case PTR_TO_RDWR_BUF_OR_NULL:
1187 		reg->type = PTR_TO_RDWR_BUF;
1188 		break;
1189 	default:
1190 		WARN_ONCE(1, "unknown nullable register type");
1191 	}
1192 }
1193 
1194 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1195 {
1196 	return type_is_pkt_pointer(reg->type);
1197 }
1198 
1199 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1200 {
1201 	return reg_is_pkt_pointer(reg) ||
1202 	       reg->type == PTR_TO_PACKET_END;
1203 }
1204 
1205 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1206 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1207 				    enum bpf_reg_type which)
1208 {
1209 	/* The register can already have a range from prior markings.
1210 	 * This is fine as long as it hasn't been advanced from its
1211 	 * origin.
1212 	 */
1213 	return reg->type == which &&
1214 	       reg->id == 0 &&
1215 	       reg->off == 0 &&
1216 	       tnum_equals_const(reg->var_off, 0);
1217 }
1218 
1219 /* Reset the min/max bounds of a register */
1220 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1221 {
1222 	reg->smin_value = S64_MIN;
1223 	reg->smax_value = S64_MAX;
1224 	reg->umin_value = 0;
1225 	reg->umax_value = U64_MAX;
1226 
1227 	reg->s32_min_value = S32_MIN;
1228 	reg->s32_max_value = S32_MAX;
1229 	reg->u32_min_value = 0;
1230 	reg->u32_max_value = U32_MAX;
1231 }
1232 
1233 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1234 {
1235 	reg->smin_value = S64_MIN;
1236 	reg->smax_value = S64_MAX;
1237 	reg->umin_value = 0;
1238 	reg->umax_value = U64_MAX;
1239 }
1240 
1241 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1242 {
1243 	reg->s32_min_value = S32_MIN;
1244 	reg->s32_max_value = S32_MAX;
1245 	reg->u32_min_value = 0;
1246 	reg->u32_max_value = U32_MAX;
1247 }
1248 
1249 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1250 {
1251 	struct tnum var32_off = tnum_subreg(reg->var_off);
1252 
1253 	/* min signed is max(sign bit) | min(other bits) */
1254 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1255 			var32_off.value | (var32_off.mask & S32_MIN));
1256 	/* max signed is min(sign bit) | max(other bits) */
1257 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1258 			var32_off.value | (var32_off.mask & S32_MAX));
1259 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1260 	reg->u32_max_value = min(reg->u32_max_value,
1261 				 (u32)(var32_off.value | var32_off.mask));
1262 }
1263 
1264 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1265 {
1266 	/* min signed is max(sign bit) | min(other bits) */
1267 	reg->smin_value = max_t(s64, reg->smin_value,
1268 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1269 	/* max signed is min(sign bit) | max(other bits) */
1270 	reg->smax_value = min_t(s64, reg->smax_value,
1271 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1272 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1273 	reg->umax_value = min(reg->umax_value,
1274 			      reg->var_off.value | reg->var_off.mask);
1275 }
1276 
1277 static void __update_reg_bounds(struct bpf_reg_state *reg)
1278 {
1279 	__update_reg32_bounds(reg);
1280 	__update_reg64_bounds(reg);
1281 }
1282 
1283 /* Uses signed min/max values to inform unsigned, and vice-versa */
1284 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1285 {
1286 	/* Learn sign from signed bounds.
1287 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1288 	 * are the same, so combine.  This works even in the negative case, e.g.
1289 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1290 	 */
1291 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1292 		reg->s32_min_value = reg->u32_min_value =
1293 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1294 		reg->s32_max_value = reg->u32_max_value =
1295 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1296 		return;
1297 	}
1298 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1299 	 * boundary, so we must be careful.
1300 	 */
1301 	if ((s32)reg->u32_max_value >= 0) {
1302 		/* Positive.  We can't learn anything from the smin, but smax
1303 		 * is positive, hence safe.
1304 		 */
1305 		reg->s32_min_value = reg->u32_min_value;
1306 		reg->s32_max_value = reg->u32_max_value =
1307 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1308 	} else if ((s32)reg->u32_min_value < 0) {
1309 		/* Negative.  We can't learn anything from the smax, but smin
1310 		 * is negative, hence safe.
1311 		 */
1312 		reg->s32_min_value = reg->u32_min_value =
1313 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1314 		reg->s32_max_value = reg->u32_max_value;
1315 	}
1316 }
1317 
1318 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1319 {
1320 	/* Learn sign from signed bounds.
1321 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1322 	 * are the same, so combine.  This works even in the negative case, e.g.
1323 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1324 	 */
1325 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1326 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1327 							  reg->umin_value);
1328 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1329 							  reg->umax_value);
1330 		return;
1331 	}
1332 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1333 	 * boundary, so we must be careful.
1334 	 */
1335 	if ((s64)reg->umax_value >= 0) {
1336 		/* Positive.  We can't learn anything from the smin, but smax
1337 		 * is positive, hence safe.
1338 		 */
1339 		reg->smin_value = reg->umin_value;
1340 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1341 							  reg->umax_value);
1342 	} else if ((s64)reg->umin_value < 0) {
1343 		/* Negative.  We can't learn anything from the smax, but smin
1344 		 * is negative, hence safe.
1345 		 */
1346 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1347 							  reg->umin_value);
1348 		reg->smax_value = reg->umax_value;
1349 	}
1350 }
1351 
1352 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1353 {
1354 	__reg32_deduce_bounds(reg);
1355 	__reg64_deduce_bounds(reg);
1356 }
1357 
1358 /* Attempts to improve var_off based on unsigned min/max information */
1359 static void __reg_bound_offset(struct bpf_reg_state *reg)
1360 {
1361 	struct tnum var64_off = tnum_intersect(reg->var_off,
1362 					       tnum_range(reg->umin_value,
1363 							  reg->umax_value));
1364 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1365 						tnum_range(reg->u32_min_value,
1366 							   reg->u32_max_value));
1367 
1368 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1369 }
1370 
1371 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1372 {
1373 	reg->umin_value = reg->u32_min_value;
1374 	reg->umax_value = reg->u32_max_value;
1375 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1376 	 * but must be positive otherwise set to worse case bounds
1377 	 * and refine later from tnum.
1378 	 */
1379 	if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1380 		reg->smax_value = reg->s32_max_value;
1381 	else
1382 		reg->smax_value = U32_MAX;
1383 	if (reg->s32_min_value >= 0)
1384 		reg->smin_value = reg->s32_min_value;
1385 	else
1386 		reg->smin_value = 0;
1387 }
1388 
1389 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1390 {
1391 	/* special case when 64-bit register has upper 32-bit register
1392 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1393 	 * allowing us to use 32-bit bounds directly,
1394 	 */
1395 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1396 		__reg_assign_32_into_64(reg);
1397 	} else {
1398 		/* Otherwise the best we can do is push lower 32bit known and
1399 		 * unknown bits into register (var_off set from jmp logic)
1400 		 * then learn as much as possible from the 64-bit tnum
1401 		 * known and unknown bits. The previous smin/smax bounds are
1402 		 * invalid here because of jmp32 compare so mark them unknown
1403 		 * so they do not impact tnum bounds calculation.
1404 		 */
1405 		__mark_reg64_unbounded(reg);
1406 		__update_reg_bounds(reg);
1407 	}
1408 
1409 	/* Intersecting with the old var_off might have improved our bounds
1410 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1411 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1412 	 */
1413 	__reg_deduce_bounds(reg);
1414 	__reg_bound_offset(reg);
1415 	__update_reg_bounds(reg);
1416 }
1417 
1418 static bool __reg64_bound_s32(s64 a)
1419 {
1420 	return a >= S32_MIN && a <= S32_MAX;
1421 }
1422 
1423 static bool __reg64_bound_u32(u64 a)
1424 {
1425 	return a >= U32_MIN && a <= U32_MAX;
1426 }
1427 
1428 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1429 {
1430 	__mark_reg32_unbounded(reg);
1431 
1432 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1433 		reg->s32_min_value = (s32)reg->smin_value;
1434 		reg->s32_max_value = (s32)reg->smax_value;
1435 	}
1436 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1437 		reg->u32_min_value = (u32)reg->umin_value;
1438 		reg->u32_max_value = (u32)reg->umax_value;
1439 	}
1440 
1441 	/* Intersecting with the old var_off might have improved our bounds
1442 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1443 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1444 	 */
1445 	__reg_deduce_bounds(reg);
1446 	__reg_bound_offset(reg);
1447 	__update_reg_bounds(reg);
1448 }
1449 
1450 /* Mark a register as having a completely unknown (scalar) value. */
1451 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1452 			       struct bpf_reg_state *reg)
1453 {
1454 	/*
1455 	 * Clear type, id, off, and union(map_ptr, range) and
1456 	 * padding between 'type' and union
1457 	 */
1458 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1459 	reg->type = SCALAR_VALUE;
1460 	reg->var_off = tnum_unknown;
1461 	reg->frameno = 0;
1462 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1463 	__mark_reg_unbounded(reg);
1464 }
1465 
1466 static void mark_reg_unknown(struct bpf_verifier_env *env,
1467 			     struct bpf_reg_state *regs, u32 regno)
1468 {
1469 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1470 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1471 		/* Something bad happened, let's kill all regs except FP */
1472 		for (regno = 0; regno < BPF_REG_FP; regno++)
1473 			__mark_reg_not_init(env, regs + regno);
1474 		return;
1475 	}
1476 	__mark_reg_unknown(env, regs + regno);
1477 }
1478 
1479 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1480 				struct bpf_reg_state *reg)
1481 {
1482 	__mark_reg_unknown(env, reg);
1483 	reg->type = NOT_INIT;
1484 }
1485 
1486 static void mark_reg_not_init(struct bpf_verifier_env *env,
1487 			      struct bpf_reg_state *regs, u32 regno)
1488 {
1489 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1490 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1491 		/* Something bad happened, let's kill all regs except FP */
1492 		for (regno = 0; regno < BPF_REG_FP; regno++)
1493 			__mark_reg_not_init(env, regs + regno);
1494 		return;
1495 	}
1496 	__mark_reg_not_init(env, regs + regno);
1497 }
1498 
1499 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1500 			    struct bpf_reg_state *regs, u32 regno,
1501 			    enum bpf_reg_type reg_type,
1502 			    struct btf *btf, u32 btf_id)
1503 {
1504 	if (reg_type == SCALAR_VALUE) {
1505 		mark_reg_unknown(env, regs, regno);
1506 		return;
1507 	}
1508 	mark_reg_known_zero(env, regs, regno);
1509 	regs[regno].type = PTR_TO_BTF_ID;
1510 	regs[regno].btf = btf;
1511 	regs[regno].btf_id = btf_id;
1512 }
1513 
1514 #define DEF_NOT_SUBREG	(0)
1515 static void init_reg_state(struct bpf_verifier_env *env,
1516 			   struct bpf_func_state *state)
1517 {
1518 	struct bpf_reg_state *regs = state->regs;
1519 	int i;
1520 
1521 	for (i = 0; i < MAX_BPF_REG; i++) {
1522 		mark_reg_not_init(env, regs, i);
1523 		regs[i].live = REG_LIVE_NONE;
1524 		regs[i].parent = NULL;
1525 		regs[i].subreg_def = DEF_NOT_SUBREG;
1526 	}
1527 
1528 	/* frame pointer */
1529 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1530 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1531 	regs[BPF_REG_FP].frameno = state->frameno;
1532 }
1533 
1534 #define BPF_MAIN_FUNC (-1)
1535 static void init_func_state(struct bpf_verifier_env *env,
1536 			    struct bpf_func_state *state,
1537 			    int callsite, int frameno, int subprogno)
1538 {
1539 	state->callsite = callsite;
1540 	state->frameno = frameno;
1541 	state->subprogno = subprogno;
1542 	init_reg_state(env, state);
1543 }
1544 
1545 /* Similar to push_stack(), but for async callbacks */
1546 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1547 						int insn_idx, int prev_insn_idx,
1548 						int subprog)
1549 {
1550 	struct bpf_verifier_stack_elem *elem;
1551 	struct bpf_func_state *frame;
1552 
1553 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1554 	if (!elem)
1555 		goto err;
1556 
1557 	elem->insn_idx = insn_idx;
1558 	elem->prev_insn_idx = prev_insn_idx;
1559 	elem->next = env->head;
1560 	elem->log_pos = env->log.len_used;
1561 	env->head = elem;
1562 	env->stack_size++;
1563 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1564 		verbose(env,
1565 			"The sequence of %d jumps is too complex for async cb.\n",
1566 			env->stack_size);
1567 		goto err;
1568 	}
1569 	/* Unlike push_stack() do not copy_verifier_state().
1570 	 * The caller state doesn't matter.
1571 	 * This is async callback. It starts in a fresh stack.
1572 	 * Initialize it similar to do_check_common().
1573 	 */
1574 	elem->st.branches = 1;
1575 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1576 	if (!frame)
1577 		goto err;
1578 	init_func_state(env, frame,
1579 			BPF_MAIN_FUNC /* callsite */,
1580 			0 /* frameno within this callchain */,
1581 			subprog /* subprog number within this prog */);
1582 	elem->st.frame[0] = frame;
1583 	return &elem->st;
1584 err:
1585 	free_verifier_state(env->cur_state, true);
1586 	env->cur_state = NULL;
1587 	/* pop all elements and return */
1588 	while (!pop_stack(env, NULL, NULL, false));
1589 	return NULL;
1590 }
1591 
1592 
1593 enum reg_arg_type {
1594 	SRC_OP,		/* register is used as source operand */
1595 	DST_OP,		/* register is used as destination operand */
1596 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1597 };
1598 
1599 static int cmp_subprogs(const void *a, const void *b)
1600 {
1601 	return ((struct bpf_subprog_info *)a)->start -
1602 	       ((struct bpf_subprog_info *)b)->start;
1603 }
1604 
1605 static int find_subprog(struct bpf_verifier_env *env, int off)
1606 {
1607 	struct bpf_subprog_info *p;
1608 
1609 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1610 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1611 	if (!p)
1612 		return -ENOENT;
1613 	return p - env->subprog_info;
1614 
1615 }
1616 
1617 static int add_subprog(struct bpf_verifier_env *env, int off)
1618 {
1619 	int insn_cnt = env->prog->len;
1620 	int ret;
1621 
1622 	if (off >= insn_cnt || off < 0) {
1623 		verbose(env, "call to invalid destination\n");
1624 		return -EINVAL;
1625 	}
1626 	ret = find_subprog(env, off);
1627 	if (ret >= 0)
1628 		return ret;
1629 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1630 		verbose(env, "too many subprograms\n");
1631 		return -E2BIG;
1632 	}
1633 	/* determine subprog starts. The end is one before the next starts */
1634 	env->subprog_info[env->subprog_cnt++].start = off;
1635 	sort(env->subprog_info, env->subprog_cnt,
1636 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1637 	return env->subprog_cnt - 1;
1638 }
1639 
1640 #define MAX_KFUNC_DESCS 256
1641 #define MAX_KFUNC_BTFS	256
1642 
1643 struct bpf_kfunc_desc {
1644 	struct btf_func_model func_model;
1645 	u32 func_id;
1646 	s32 imm;
1647 	u16 offset;
1648 };
1649 
1650 struct bpf_kfunc_btf {
1651 	struct btf *btf;
1652 	struct module *module;
1653 	u16 offset;
1654 };
1655 
1656 struct bpf_kfunc_desc_tab {
1657 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1658 	u32 nr_descs;
1659 };
1660 
1661 struct bpf_kfunc_btf_tab {
1662 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
1663 	u32 nr_descs;
1664 };
1665 
1666 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
1667 {
1668 	const struct bpf_kfunc_desc *d0 = a;
1669 	const struct bpf_kfunc_desc *d1 = b;
1670 
1671 	/* func_id is not greater than BTF_MAX_TYPE */
1672 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
1673 }
1674 
1675 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
1676 {
1677 	const struct bpf_kfunc_btf *d0 = a;
1678 	const struct bpf_kfunc_btf *d1 = b;
1679 
1680 	return d0->offset - d1->offset;
1681 }
1682 
1683 static const struct bpf_kfunc_desc *
1684 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
1685 {
1686 	struct bpf_kfunc_desc desc = {
1687 		.func_id = func_id,
1688 		.offset = offset,
1689 	};
1690 	struct bpf_kfunc_desc_tab *tab;
1691 
1692 	tab = prog->aux->kfunc_tab;
1693 	return bsearch(&desc, tab->descs, tab->nr_descs,
1694 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
1695 }
1696 
1697 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
1698 					 s16 offset, struct module **btf_modp)
1699 {
1700 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
1701 	struct bpf_kfunc_btf_tab *tab;
1702 	struct bpf_kfunc_btf *b;
1703 	struct module *mod;
1704 	struct btf *btf;
1705 	int btf_fd;
1706 
1707 	tab = env->prog->aux->kfunc_btf_tab;
1708 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
1709 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
1710 	if (!b) {
1711 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
1712 			verbose(env, "too many different module BTFs\n");
1713 			return ERR_PTR(-E2BIG);
1714 		}
1715 
1716 		if (bpfptr_is_null(env->fd_array)) {
1717 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
1718 			return ERR_PTR(-EPROTO);
1719 		}
1720 
1721 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
1722 					    offset * sizeof(btf_fd),
1723 					    sizeof(btf_fd)))
1724 			return ERR_PTR(-EFAULT);
1725 
1726 		btf = btf_get_by_fd(btf_fd);
1727 		if (IS_ERR(btf)) {
1728 			verbose(env, "invalid module BTF fd specified\n");
1729 			return btf;
1730 		}
1731 
1732 		if (!btf_is_module(btf)) {
1733 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
1734 			btf_put(btf);
1735 			return ERR_PTR(-EINVAL);
1736 		}
1737 
1738 		mod = btf_try_get_module(btf);
1739 		if (!mod) {
1740 			btf_put(btf);
1741 			return ERR_PTR(-ENXIO);
1742 		}
1743 
1744 		b = &tab->descs[tab->nr_descs++];
1745 		b->btf = btf;
1746 		b->module = mod;
1747 		b->offset = offset;
1748 
1749 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1750 		     kfunc_btf_cmp_by_off, NULL);
1751 	}
1752 	if (btf_modp)
1753 		*btf_modp = b->module;
1754 	return b->btf;
1755 }
1756 
1757 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
1758 {
1759 	if (!tab)
1760 		return;
1761 
1762 	while (tab->nr_descs--) {
1763 		module_put(tab->descs[tab->nr_descs].module);
1764 		btf_put(tab->descs[tab->nr_descs].btf);
1765 	}
1766 	kfree(tab);
1767 }
1768 
1769 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env,
1770 				       u32 func_id, s16 offset,
1771 				       struct module **btf_modp)
1772 {
1773 	if (offset) {
1774 		if (offset < 0) {
1775 			/* In the future, this can be allowed to increase limit
1776 			 * of fd index into fd_array, interpreted as u16.
1777 			 */
1778 			verbose(env, "negative offset disallowed for kernel module function call\n");
1779 			return ERR_PTR(-EINVAL);
1780 		}
1781 
1782 		return __find_kfunc_desc_btf(env, offset, btf_modp);
1783 	}
1784 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
1785 }
1786 
1787 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
1788 {
1789 	const struct btf_type *func, *func_proto;
1790 	struct bpf_kfunc_btf_tab *btf_tab;
1791 	struct bpf_kfunc_desc_tab *tab;
1792 	struct bpf_prog_aux *prog_aux;
1793 	struct bpf_kfunc_desc *desc;
1794 	const char *func_name;
1795 	struct btf *desc_btf;
1796 	unsigned long addr;
1797 	int err;
1798 
1799 	prog_aux = env->prog->aux;
1800 	tab = prog_aux->kfunc_tab;
1801 	btf_tab = prog_aux->kfunc_btf_tab;
1802 	if (!tab) {
1803 		if (!btf_vmlinux) {
1804 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
1805 			return -ENOTSUPP;
1806 		}
1807 
1808 		if (!env->prog->jit_requested) {
1809 			verbose(env, "JIT is required for calling kernel function\n");
1810 			return -ENOTSUPP;
1811 		}
1812 
1813 		if (!bpf_jit_supports_kfunc_call()) {
1814 			verbose(env, "JIT does not support calling kernel function\n");
1815 			return -ENOTSUPP;
1816 		}
1817 
1818 		if (!env->prog->gpl_compatible) {
1819 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
1820 			return -EINVAL;
1821 		}
1822 
1823 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
1824 		if (!tab)
1825 			return -ENOMEM;
1826 		prog_aux->kfunc_tab = tab;
1827 	}
1828 
1829 	/* func_id == 0 is always invalid, but instead of returning an error, be
1830 	 * conservative and wait until the code elimination pass before returning
1831 	 * error, so that invalid calls that get pruned out can be in BPF programs
1832 	 * loaded from userspace.  It is also required that offset be untouched
1833 	 * for such calls.
1834 	 */
1835 	if (!func_id && !offset)
1836 		return 0;
1837 
1838 	if (!btf_tab && offset) {
1839 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
1840 		if (!btf_tab)
1841 			return -ENOMEM;
1842 		prog_aux->kfunc_btf_tab = btf_tab;
1843 	}
1844 
1845 	desc_btf = find_kfunc_desc_btf(env, func_id, offset, NULL);
1846 	if (IS_ERR(desc_btf)) {
1847 		verbose(env, "failed to find BTF for kernel function\n");
1848 		return PTR_ERR(desc_btf);
1849 	}
1850 
1851 	if (find_kfunc_desc(env->prog, func_id, offset))
1852 		return 0;
1853 
1854 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
1855 		verbose(env, "too many different kernel function calls\n");
1856 		return -E2BIG;
1857 	}
1858 
1859 	func = btf_type_by_id(desc_btf, func_id);
1860 	if (!func || !btf_type_is_func(func)) {
1861 		verbose(env, "kernel btf_id %u is not a function\n",
1862 			func_id);
1863 		return -EINVAL;
1864 	}
1865 	func_proto = btf_type_by_id(desc_btf, func->type);
1866 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
1867 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
1868 			func_id);
1869 		return -EINVAL;
1870 	}
1871 
1872 	func_name = btf_name_by_offset(desc_btf, func->name_off);
1873 	addr = kallsyms_lookup_name(func_name);
1874 	if (!addr) {
1875 		verbose(env, "cannot find address for kernel function %s\n",
1876 			func_name);
1877 		return -EINVAL;
1878 	}
1879 
1880 	desc = &tab->descs[tab->nr_descs++];
1881 	desc->func_id = func_id;
1882 	desc->imm = BPF_CALL_IMM(addr);
1883 	desc->offset = offset;
1884 	err = btf_distill_func_proto(&env->log, desc_btf,
1885 				     func_proto, func_name,
1886 				     &desc->func_model);
1887 	if (!err)
1888 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1889 		     kfunc_desc_cmp_by_id_off, NULL);
1890 	return err;
1891 }
1892 
1893 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
1894 {
1895 	const struct bpf_kfunc_desc *d0 = a;
1896 	const struct bpf_kfunc_desc *d1 = b;
1897 
1898 	if (d0->imm > d1->imm)
1899 		return 1;
1900 	else if (d0->imm < d1->imm)
1901 		return -1;
1902 	return 0;
1903 }
1904 
1905 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
1906 {
1907 	struct bpf_kfunc_desc_tab *tab;
1908 
1909 	tab = prog->aux->kfunc_tab;
1910 	if (!tab)
1911 		return;
1912 
1913 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1914 	     kfunc_desc_cmp_by_imm, NULL);
1915 }
1916 
1917 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
1918 {
1919 	return !!prog->aux->kfunc_tab;
1920 }
1921 
1922 const struct btf_func_model *
1923 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
1924 			 const struct bpf_insn *insn)
1925 {
1926 	const struct bpf_kfunc_desc desc = {
1927 		.imm = insn->imm,
1928 	};
1929 	const struct bpf_kfunc_desc *res;
1930 	struct bpf_kfunc_desc_tab *tab;
1931 
1932 	tab = prog->aux->kfunc_tab;
1933 	res = bsearch(&desc, tab->descs, tab->nr_descs,
1934 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
1935 
1936 	return res ? &res->func_model : NULL;
1937 }
1938 
1939 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
1940 {
1941 	struct bpf_subprog_info *subprog = env->subprog_info;
1942 	struct bpf_insn *insn = env->prog->insnsi;
1943 	int i, ret, insn_cnt = env->prog->len;
1944 
1945 	/* Add entry function. */
1946 	ret = add_subprog(env, 0);
1947 	if (ret)
1948 		return ret;
1949 
1950 	for (i = 0; i < insn_cnt; i++, insn++) {
1951 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
1952 		    !bpf_pseudo_kfunc_call(insn))
1953 			continue;
1954 
1955 		if (!env->bpf_capable) {
1956 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1957 			return -EPERM;
1958 		}
1959 
1960 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
1961 			ret = add_subprog(env, i + insn->imm + 1);
1962 		else
1963 			ret = add_kfunc_call(env, insn->imm, insn->off);
1964 
1965 		if (ret < 0)
1966 			return ret;
1967 	}
1968 
1969 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1970 	 * logic. 'subprog_cnt' should not be increased.
1971 	 */
1972 	subprog[env->subprog_cnt].start = insn_cnt;
1973 
1974 	if (env->log.level & BPF_LOG_LEVEL2)
1975 		for (i = 0; i < env->subprog_cnt; i++)
1976 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1977 
1978 	return 0;
1979 }
1980 
1981 static int check_subprogs(struct bpf_verifier_env *env)
1982 {
1983 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
1984 	struct bpf_subprog_info *subprog = env->subprog_info;
1985 	struct bpf_insn *insn = env->prog->insnsi;
1986 	int insn_cnt = env->prog->len;
1987 
1988 	/* now check that all jumps are within the same subprog */
1989 	subprog_start = subprog[cur_subprog].start;
1990 	subprog_end = subprog[cur_subprog + 1].start;
1991 	for (i = 0; i < insn_cnt; i++) {
1992 		u8 code = insn[i].code;
1993 
1994 		if (code == (BPF_JMP | BPF_CALL) &&
1995 		    insn[i].imm == BPF_FUNC_tail_call &&
1996 		    insn[i].src_reg != BPF_PSEUDO_CALL)
1997 			subprog[cur_subprog].has_tail_call = true;
1998 		if (BPF_CLASS(code) == BPF_LD &&
1999 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2000 			subprog[cur_subprog].has_ld_abs = true;
2001 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2002 			goto next;
2003 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2004 			goto next;
2005 		off = i + insn[i].off + 1;
2006 		if (off < subprog_start || off >= subprog_end) {
2007 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2008 			return -EINVAL;
2009 		}
2010 next:
2011 		if (i == subprog_end - 1) {
2012 			/* to avoid fall-through from one subprog into another
2013 			 * the last insn of the subprog should be either exit
2014 			 * or unconditional jump back
2015 			 */
2016 			if (code != (BPF_JMP | BPF_EXIT) &&
2017 			    code != (BPF_JMP | BPF_JA)) {
2018 				verbose(env, "last insn is not an exit or jmp\n");
2019 				return -EINVAL;
2020 			}
2021 			subprog_start = subprog_end;
2022 			cur_subprog++;
2023 			if (cur_subprog < env->subprog_cnt)
2024 				subprog_end = subprog[cur_subprog + 1].start;
2025 		}
2026 	}
2027 	return 0;
2028 }
2029 
2030 /* Parentage chain of this register (or stack slot) should take care of all
2031  * issues like callee-saved registers, stack slot allocation time, etc.
2032  */
2033 static int mark_reg_read(struct bpf_verifier_env *env,
2034 			 const struct bpf_reg_state *state,
2035 			 struct bpf_reg_state *parent, u8 flag)
2036 {
2037 	bool writes = parent == state->parent; /* Observe write marks */
2038 	int cnt = 0;
2039 
2040 	while (parent) {
2041 		/* if read wasn't screened by an earlier write ... */
2042 		if (writes && state->live & REG_LIVE_WRITTEN)
2043 			break;
2044 		if (parent->live & REG_LIVE_DONE) {
2045 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2046 				reg_type_str[parent->type],
2047 				parent->var_off.value, parent->off);
2048 			return -EFAULT;
2049 		}
2050 		/* The first condition is more likely to be true than the
2051 		 * second, checked it first.
2052 		 */
2053 		if ((parent->live & REG_LIVE_READ) == flag ||
2054 		    parent->live & REG_LIVE_READ64)
2055 			/* The parentage chain never changes and
2056 			 * this parent was already marked as LIVE_READ.
2057 			 * There is no need to keep walking the chain again and
2058 			 * keep re-marking all parents as LIVE_READ.
2059 			 * This case happens when the same register is read
2060 			 * multiple times without writes into it in-between.
2061 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
2062 			 * then no need to set the weak REG_LIVE_READ32.
2063 			 */
2064 			break;
2065 		/* ... then we depend on parent's value */
2066 		parent->live |= flag;
2067 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2068 		if (flag == REG_LIVE_READ64)
2069 			parent->live &= ~REG_LIVE_READ32;
2070 		state = parent;
2071 		parent = state->parent;
2072 		writes = true;
2073 		cnt++;
2074 	}
2075 
2076 	if (env->longest_mark_read_walk < cnt)
2077 		env->longest_mark_read_walk = cnt;
2078 	return 0;
2079 }
2080 
2081 /* This function is supposed to be used by the following 32-bit optimization
2082  * code only. It returns TRUE if the source or destination register operates
2083  * on 64-bit, otherwise return FALSE.
2084  */
2085 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2086 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2087 {
2088 	u8 code, class, op;
2089 
2090 	code = insn->code;
2091 	class = BPF_CLASS(code);
2092 	op = BPF_OP(code);
2093 	if (class == BPF_JMP) {
2094 		/* BPF_EXIT for "main" will reach here. Return TRUE
2095 		 * conservatively.
2096 		 */
2097 		if (op == BPF_EXIT)
2098 			return true;
2099 		if (op == BPF_CALL) {
2100 			/* BPF to BPF call will reach here because of marking
2101 			 * caller saved clobber with DST_OP_NO_MARK for which we
2102 			 * don't care the register def because they are anyway
2103 			 * marked as NOT_INIT already.
2104 			 */
2105 			if (insn->src_reg == BPF_PSEUDO_CALL)
2106 				return false;
2107 			/* Helper call will reach here because of arg type
2108 			 * check, conservatively return TRUE.
2109 			 */
2110 			if (t == SRC_OP)
2111 				return true;
2112 
2113 			return false;
2114 		}
2115 	}
2116 
2117 	if (class == BPF_ALU64 || class == BPF_JMP ||
2118 	    /* BPF_END always use BPF_ALU class. */
2119 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2120 		return true;
2121 
2122 	if (class == BPF_ALU || class == BPF_JMP32)
2123 		return false;
2124 
2125 	if (class == BPF_LDX) {
2126 		if (t != SRC_OP)
2127 			return BPF_SIZE(code) == BPF_DW;
2128 		/* LDX source must be ptr. */
2129 		return true;
2130 	}
2131 
2132 	if (class == BPF_STX) {
2133 		/* BPF_STX (including atomic variants) has multiple source
2134 		 * operands, one of which is a ptr. Check whether the caller is
2135 		 * asking about it.
2136 		 */
2137 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
2138 			return true;
2139 		return BPF_SIZE(code) == BPF_DW;
2140 	}
2141 
2142 	if (class == BPF_LD) {
2143 		u8 mode = BPF_MODE(code);
2144 
2145 		/* LD_IMM64 */
2146 		if (mode == BPF_IMM)
2147 			return true;
2148 
2149 		/* Both LD_IND and LD_ABS return 32-bit data. */
2150 		if (t != SRC_OP)
2151 			return  false;
2152 
2153 		/* Implicit ctx ptr. */
2154 		if (regno == BPF_REG_6)
2155 			return true;
2156 
2157 		/* Explicit source could be any width. */
2158 		return true;
2159 	}
2160 
2161 	if (class == BPF_ST)
2162 		/* The only source register for BPF_ST is a ptr. */
2163 		return true;
2164 
2165 	/* Conservatively return true at default. */
2166 	return true;
2167 }
2168 
2169 /* Return the regno defined by the insn, or -1. */
2170 static int insn_def_regno(const struct bpf_insn *insn)
2171 {
2172 	switch (BPF_CLASS(insn->code)) {
2173 	case BPF_JMP:
2174 	case BPF_JMP32:
2175 	case BPF_ST:
2176 		return -1;
2177 	case BPF_STX:
2178 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2179 		    (insn->imm & BPF_FETCH)) {
2180 			if (insn->imm == BPF_CMPXCHG)
2181 				return BPF_REG_0;
2182 			else
2183 				return insn->src_reg;
2184 		} else {
2185 			return -1;
2186 		}
2187 	default:
2188 		return insn->dst_reg;
2189 	}
2190 }
2191 
2192 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
2193 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2194 {
2195 	int dst_reg = insn_def_regno(insn);
2196 
2197 	if (dst_reg == -1)
2198 		return false;
2199 
2200 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2201 }
2202 
2203 static void mark_insn_zext(struct bpf_verifier_env *env,
2204 			   struct bpf_reg_state *reg)
2205 {
2206 	s32 def_idx = reg->subreg_def;
2207 
2208 	if (def_idx == DEF_NOT_SUBREG)
2209 		return;
2210 
2211 	env->insn_aux_data[def_idx - 1].zext_dst = true;
2212 	/* The dst will be zero extended, so won't be sub-register anymore. */
2213 	reg->subreg_def = DEF_NOT_SUBREG;
2214 }
2215 
2216 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2217 			 enum reg_arg_type t)
2218 {
2219 	struct bpf_verifier_state *vstate = env->cur_state;
2220 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2221 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2222 	struct bpf_reg_state *reg, *regs = state->regs;
2223 	bool rw64;
2224 
2225 	if (regno >= MAX_BPF_REG) {
2226 		verbose(env, "R%d is invalid\n", regno);
2227 		return -EINVAL;
2228 	}
2229 
2230 	reg = &regs[regno];
2231 	rw64 = is_reg64(env, insn, regno, reg, t);
2232 	if (t == SRC_OP) {
2233 		/* check whether register used as source operand can be read */
2234 		if (reg->type == NOT_INIT) {
2235 			verbose(env, "R%d !read_ok\n", regno);
2236 			return -EACCES;
2237 		}
2238 		/* We don't need to worry about FP liveness because it's read-only */
2239 		if (regno == BPF_REG_FP)
2240 			return 0;
2241 
2242 		if (rw64)
2243 			mark_insn_zext(env, reg);
2244 
2245 		return mark_reg_read(env, reg, reg->parent,
2246 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2247 	} else {
2248 		/* check whether register used as dest operand can be written to */
2249 		if (regno == BPF_REG_FP) {
2250 			verbose(env, "frame pointer is read only\n");
2251 			return -EACCES;
2252 		}
2253 		reg->live |= REG_LIVE_WRITTEN;
2254 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2255 		if (t == DST_OP)
2256 			mark_reg_unknown(env, regs, regno);
2257 	}
2258 	return 0;
2259 }
2260 
2261 /* for any branch, call, exit record the history of jmps in the given state */
2262 static int push_jmp_history(struct bpf_verifier_env *env,
2263 			    struct bpf_verifier_state *cur)
2264 {
2265 	u32 cnt = cur->jmp_history_cnt;
2266 	struct bpf_idx_pair *p;
2267 
2268 	cnt++;
2269 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2270 	if (!p)
2271 		return -ENOMEM;
2272 	p[cnt - 1].idx = env->insn_idx;
2273 	p[cnt - 1].prev_idx = env->prev_insn_idx;
2274 	cur->jmp_history = p;
2275 	cur->jmp_history_cnt = cnt;
2276 	return 0;
2277 }
2278 
2279 /* Backtrack one insn at a time. If idx is not at the top of recorded
2280  * history then previous instruction came from straight line execution.
2281  */
2282 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2283 			     u32 *history)
2284 {
2285 	u32 cnt = *history;
2286 
2287 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
2288 		i = st->jmp_history[cnt - 1].prev_idx;
2289 		(*history)--;
2290 	} else {
2291 		i--;
2292 	}
2293 	return i;
2294 }
2295 
2296 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2297 {
2298 	const struct btf_type *func;
2299 	struct btf *desc_btf;
2300 
2301 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2302 		return NULL;
2303 
2304 	desc_btf = find_kfunc_desc_btf(data, insn->imm, insn->off, NULL);
2305 	if (IS_ERR(desc_btf))
2306 		return "<error>";
2307 
2308 	func = btf_type_by_id(desc_btf, insn->imm);
2309 	return btf_name_by_offset(desc_btf, func->name_off);
2310 }
2311 
2312 /* For given verifier state backtrack_insn() is called from the last insn to
2313  * the first insn. Its purpose is to compute a bitmask of registers and
2314  * stack slots that needs precision in the parent verifier state.
2315  */
2316 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2317 			  u32 *reg_mask, u64 *stack_mask)
2318 {
2319 	const struct bpf_insn_cbs cbs = {
2320 		.cb_call	= disasm_kfunc_name,
2321 		.cb_print	= verbose,
2322 		.private_data	= env,
2323 	};
2324 	struct bpf_insn *insn = env->prog->insnsi + idx;
2325 	u8 class = BPF_CLASS(insn->code);
2326 	u8 opcode = BPF_OP(insn->code);
2327 	u8 mode = BPF_MODE(insn->code);
2328 	u32 dreg = 1u << insn->dst_reg;
2329 	u32 sreg = 1u << insn->src_reg;
2330 	u32 spi;
2331 
2332 	if (insn->code == 0)
2333 		return 0;
2334 	if (env->log.level & BPF_LOG_LEVEL) {
2335 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2336 		verbose(env, "%d: ", idx);
2337 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2338 	}
2339 
2340 	if (class == BPF_ALU || class == BPF_ALU64) {
2341 		if (!(*reg_mask & dreg))
2342 			return 0;
2343 		if (opcode == BPF_MOV) {
2344 			if (BPF_SRC(insn->code) == BPF_X) {
2345 				/* dreg = sreg
2346 				 * dreg needs precision after this insn
2347 				 * sreg needs precision before this insn
2348 				 */
2349 				*reg_mask &= ~dreg;
2350 				*reg_mask |= sreg;
2351 			} else {
2352 				/* dreg = K
2353 				 * dreg needs precision after this insn.
2354 				 * Corresponding register is already marked
2355 				 * as precise=true in this verifier state.
2356 				 * No further markings in parent are necessary
2357 				 */
2358 				*reg_mask &= ~dreg;
2359 			}
2360 		} else {
2361 			if (BPF_SRC(insn->code) == BPF_X) {
2362 				/* dreg += sreg
2363 				 * both dreg and sreg need precision
2364 				 * before this insn
2365 				 */
2366 				*reg_mask |= sreg;
2367 			} /* else dreg += K
2368 			   * dreg still needs precision before this insn
2369 			   */
2370 		}
2371 	} else if (class == BPF_LDX) {
2372 		if (!(*reg_mask & dreg))
2373 			return 0;
2374 		*reg_mask &= ~dreg;
2375 
2376 		/* scalars can only be spilled into stack w/o losing precision.
2377 		 * Load from any other memory can be zero extended.
2378 		 * The desire to keep that precision is already indicated
2379 		 * by 'precise' mark in corresponding register of this state.
2380 		 * No further tracking necessary.
2381 		 */
2382 		if (insn->src_reg != BPF_REG_FP)
2383 			return 0;
2384 		if (BPF_SIZE(insn->code) != BPF_DW)
2385 			return 0;
2386 
2387 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
2388 		 * that [fp - off] slot contains scalar that needs to be
2389 		 * tracked with precision
2390 		 */
2391 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2392 		if (spi >= 64) {
2393 			verbose(env, "BUG spi %d\n", spi);
2394 			WARN_ONCE(1, "verifier backtracking bug");
2395 			return -EFAULT;
2396 		}
2397 		*stack_mask |= 1ull << spi;
2398 	} else if (class == BPF_STX || class == BPF_ST) {
2399 		if (*reg_mask & dreg)
2400 			/* stx & st shouldn't be using _scalar_ dst_reg
2401 			 * to access memory. It means backtracking
2402 			 * encountered a case of pointer subtraction.
2403 			 */
2404 			return -ENOTSUPP;
2405 		/* scalars can only be spilled into stack */
2406 		if (insn->dst_reg != BPF_REG_FP)
2407 			return 0;
2408 		if (BPF_SIZE(insn->code) != BPF_DW)
2409 			return 0;
2410 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2411 		if (spi >= 64) {
2412 			verbose(env, "BUG spi %d\n", spi);
2413 			WARN_ONCE(1, "verifier backtracking bug");
2414 			return -EFAULT;
2415 		}
2416 		if (!(*stack_mask & (1ull << spi)))
2417 			return 0;
2418 		*stack_mask &= ~(1ull << spi);
2419 		if (class == BPF_STX)
2420 			*reg_mask |= sreg;
2421 	} else if (class == BPF_JMP || class == BPF_JMP32) {
2422 		if (opcode == BPF_CALL) {
2423 			if (insn->src_reg == BPF_PSEUDO_CALL)
2424 				return -ENOTSUPP;
2425 			/* regular helper call sets R0 */
2426 			*reg_mask &= ~1;
2427 			if (*reg_mask & 0x3f) {
2428 				/* if backtracing was looking for registers R1-R5
2429 				 * they should have been found already.
2430 				 */
2431 				verbose(env, "BUG regs %x\n", *reg_mask);
2432 				WARN_ONCE(1, "verifier backtracking bug");
2433 				return -EFAULT;
2434 			}
2435 		} else if (opcode == BPF_EXIT) {
2436 			return -ENOTSUPP;
2437 		}
2438 	} else if (class == BPF_LD) {
2439 		if (!(*reg_mask & dreg))
2440 			return 0;
2441 		*reg_mask &= ~dreg;
2442 		/* It's ld_imm64 or ld_abs or ld_ind.
2443 		 * For ld_imm64 no further tracking of precision
2444 		 * into parent is necessary
2445 		 */
2446 		if (mode == BPF_IND || mode == BPF_ABS)
2447 			/* to be analyzed */
2448 			return -ENOTSUPP;
2449 	}
2450 	return 0;
2451 }
2452 
2453 /* the scalar precision tracking algorithm:
2454  * . at the start all registers have precise=false.
2455  * . scalar ranges are tracked as normal through alu and jmp insns.
2456  * . once precise value of the scalar register is used in:
2457  *   .  ptr + scalar alu
2458  *   . if (scalar cond K|scalar)
2459  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2460  *   backtrack through the verifier states and mark all registers and
2461  *   stack slots with spilled constants that these scalar regisers
2462  *   should be precise.
2463  * . during state pruning two registers (or spilled stack slots)
2464  *   are equivalent if both are not precise.
2465  *
2466  * Note the verifier cannot simply walk register parentage chain,
2467  * since many different registers and stack slots could have been
2468  * used to compute single precise scalar.
2469  *
2470  * The approach of starting with precise=true for all registers and then
2471  * backtrack to mark a register as not precise when the verifier detects
2472  * that program doesn't care about specific value (e.g., when helper
2473  * takes register as ARG_ANYTHING parameter) is not safe.
2474  *
2475  * It's ok to walk single parentage chain of the verifier states.
2476  * It's possible that this backtracking will go all the way till 1st insn.
2477  * All other branches will be explored for needing precision later.
2478  *
2479  * The backtracking needs to deal with cases like:
2480  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2481  * r9 -= r8
2482  * r5 = r9
2483  * if r5 > 0x79f goto pc+7
2484  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2485  * r5 += 1
2486  * ...
2487  * call bpf_perf_event_output#25
2488  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2489  *
2490  * and this case:
2491  * r6 = 1
2492  * call foo // uses callee's r6 inside to compute r0
2493  * r0 += r6
2494  * if r0 == 0 goto
2495  *
2496  * to track above reg_mask/stack_mask needs to be independent for each frame.
2497  *
2498  * Also if parent's curframe > frame where backtracking started,
2499  * the verifier need to mark registers in both frames, otherwise callees
2500  * may incorrectly prune callers. This is similar to
2501  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2502  *
2503  * For now backtracking falls back into conservative marking.
2504  */
2505 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2506 				     struct bpf_verifier_state *st)
2507 {
2508 	struct bpf_func_state *func;
2509 	struct bpf_reg_state *reg;
2510 	int i, j;
2511 
2512 	/* big hammer: mark all scalars precise in this path.
2513 	 * pop_stack may still get !precise scalars.
2514 	 */
2515 	for (; st; st = st->parent)
2516 		for (i = 0; i <= st->curframe; i++) {
2517 			func = st->frame[i];
2518 			for (j = 0; j < BPF_REG_FP; j++) {
2519 				reg = &func->regs[j];
2520 				if (reg->type != SCALAR_VALUE)
2521 					continue;
2522 				reg->precise = true;
2523 			}
2524 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2525 				if (!is_spilled_reg(&func->stack[j]))
2526 					continue;
2527 				reg = &func->stack[j].spilled_ptr;
2528 				if (reg->type != SCALAR_VALUE)
2529 					continue;
2530 				reg->precise = true;
2531 			}
2532 		}
2533 }
2534 
2535 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2536 				  int spi)
2537 {
2538 	struct bpf_verifier_state *st = env->cur_state;
2539 	int first_idx = st->first_insn_idx;
2540 	int last_idx = env->insn_idx;
2541 	struct bpf_func_state *func;
2542 	struct bpf_reg_state *reg;
2543 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2544 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2545 	bool skip_first = true;
2546 	bool new_marks = false;
2547 	int i, err;
2548 
2549 	if (!env->bpf_capable)
2550 		return 0;
2551 
2552 	func = st->frame[st->curframe];
2553 	if (regno >= 0) {
2554 		reg = &func->regs[regno];
2555 		if (reg->type != SCALAR_VALUE) {
2556 			WARN_ONCE(1, "backtracing misuse");
2557 			return -EFAULT;
2558 		}
2559 		if (!reg->precise)
2560 			new_marks = true;
2561 		else
2562 			reg_mask = 0;
2563 		reg->precise = true;
2564 	}
2565 
2566 	while (spi >= 0) {
2567 		if (!is_spilled_reg(&func->stack[spi])) {
2568 			stack_mask = 0;
2569 			break;
2570 		}
2571 		reg = &func->stack[spi].spilled_ptr;
2572 		if (reg->type != SCALAR_VALUE) {
2573 			stack_mask = 0;
2574 			break;
2575 		}
2576 		if (!reg->precise)
2577 			new_marks = true;
2578 		else
2579 			stack_mask = 0;
2580 		reg->precise = true;
2581 		break;
2582 	}
2583 
2584 	if (!new_marks)
2585 		return 0;
2586 	if (!reg_mask && !stack_mask)
2587 		return 0;
2588 	for (;;) {
2589 		DECLARE_BITMAP(mask, 64);
2590 		u32 history = st->jmp_history_cnt;
2591 
2592 		if (env->log.level & BPF_LOG_LEVEL)
2593 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2594 		for (i = last_idx;;) {
2595 			if (skip_first) {
2596 				err = 0;
2597 				skip_first = false;
2598 			} else {
2599 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2600 			}
2601 			if (err == -ENOTSUPP) {
2602 				mark_all_scalars_precise(env, st);
2603 				return 0;
2604 			} else if (err) {
2605 				return err;
2606 			}
2607 			if (!reg_mask && !stack_mask)
2608 				/* Found assignment(s) into tracked register in this state.
2609 				 * Since this state is already marked, just return.
2610 				 * Nothing to be tracked further in the parent state.
2611 				 */
2612 				return 0;
2613 			if (i == first_idx)
2614 				break;
2615 			i = get_prev_insn_idx(st, i, &history);
2616 			if (i >= env->prog->len) {
2617 				/* This can happen if backtracking reached insn 0
2618 				 * and there are still reg_mask or stack_mask
2619 				 * to backtrack.
2620 				 * It means the backtracking missed the spot where
2621 				 * particular register was initialized with a constant.
2622 				 */
2623 				verbose(env, "BUG backtracking idx %d\n", i);
2624 				WARN_ONCE(1, "verifier backtracking bug");
2625 				return -EFAULT;
2626 			}
2627 		}
2628 		st = st->parent;
2629 		if (!st)
2630 			break;
2631 
2632 		new_marks = false;
2633 		func = st->frame[st->curframe];
2634 		bitmap_from_u64(mask, reg_mask);
2635 		for_each_set_bit(i, mask, 32) {
2636 			reg = &func->regs[i];
2637 			if (reg->type != SCALAR_VALUE) {
2638 				reg_mask &= ~(1u << i);
2639 				continue;
2640 			}
2641 			if (!reg->precise)
2642 				new_marks = true;
2643 			reg->precise = true;
2644 		}
2645 
2646 		bitmap_from_u64(mask, stack_mask);
2647 		for_each_set_bit(i, mask, 64) {
2648 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2649 				/* the sequence of instructions:
2650 				 * 2: (bf) r3 = r10
2651 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2652 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2653 				 * doesn't contain jmps. It's backtracked
2654 				 * as a single block.
2655 				 * During backtracking insn 3 is not recognized as
2656 				 * stack access, so at the end of backtracking
2657 				 * stack slot fp-8 is still marked in stack_mask.
2658 				 * However the parent state may not have accessed
2659 				 * fp-8 and it's "unallocated" stack space.
2660 				 * In such case fallback to conservative.
2661 				 */
2662 				mark_all_scalars_precise(env, st);
2663 				return 0;
2664 			}
2665 
2666 			if (!is_spilled_reg(&func->stack[i])) {
2667 				stack_mask &= ~(1ull << i);
2668 				continue;
2669 			}
2670 			reg = &func->stack[i].spilled_ptr;
2671 			if (reg->type != SCALAR_VALUE) {
2672 				stack_mask &= ~(1ull << i);
2673 				continue;
2674 			}
2675 			if (!reg->precise)
2676 				new_marks = true;
2677 			reg->precise = true;
2678 		}
2679 		if (env->log.level & BPF_LOG_LEVEL) {
2680 			print_verifier_state(env, func);
2681 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2682 				new_marks ? "didn't have" : "already had",
2683 				reg_mask, stack_mask);
2684 		}
2685 
2686 		if (!reg_mask && !stack_mask)
2687 			break;
2688 		if (!new_marks)
2689 			break;
2690 
2691 		last_idx = st->last_insn_idx;
2692 		first_idx = st->first_insn_idx;
2693 	}
2694 	return 0;
2695 }
2696 
2697 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2698 {
2699 	return __mark_chain_precision(env, regno, -1);
2700 }
2701 
2702 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2703 {
2704 	return __mark_chain_precision(env, -1, spi);
2705 }
2706 
2707 static bool is_spillable_regtype(enum bpf_reg_type type)
2708 {
2709 	switch (type) {
2710 	case PTR_TO_MAP_VALUE:
2711 	case PTR_TO_MAP_VALUE_OR_NULL:
2712 	case PTR_TO_STACK:
2713 	case PTR_TO_CTX:
2714 	case PTR_TO_PACKET:
2715 	case PTR_TO_PACKET_META:
2716 	case PTR_TO_PACKET_END:
2717 	case PTR_TO_FLOW_KEYS:
2718 	case CONST_PTR_TO_MAP:
2719 	case PTR_TO_SOCKET:
2720 	case PTR_TO_SOCKET_OR_NULL:
2721 	case PTR_TO_SOCK_COMMON:
2722 	case PTR_TO_SOCK_COMMON_OR_NULL:
2723 	case PTR_TO_TCP_SOCK:
2724 	case PTR_TO_TCP_SOCK_OR_NULL:
2725 	case PTR_TO_XDP_SOCK:
2726 	case PTR_TO_BTF_ID:
2727 	case PTR_TO_BTF_ID_OR_NULL:
2728 	case PTR_TO_RDONLY_BUF:
2729 	case PTR_TO_RDONLY_BUF_OR_NULL:
2730 	case PTR_TO_RDWR_BUF:
2731 	case PTR_TO_RDWR_BUF_OR_NULL:
2732 	case PTR_TO_PERCPU_BTF_ID:
2733 	case PTR_TO_MEM:
2734 	case PTR_TO_MEM_OR_NULL:
2735 	case PTR_TO_FUNC:
2736 	case PTR_TO_MAP_KEY:
2737 		return true;
2738 	default:
2739 		return false;
2740 	}
2741 }
2742 
2743 /* Does this register contain a constant zero? */
2744 static bool register_is_null(struct bpf_reg_state *reg)
2745 {
2746 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2747 }
2748 
2749 static bool register_is_const(struct bpf_reg_state *reg)
2750 {
2751 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2752 }
2753 
2754 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2755 {
2756 	return tnum_is_unknown(reg->var_off) &&
2757 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2758 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2759 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2760 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2761 }
2762 
2763 static bool register_is_bounded(struct bpf_reg_state *reg)
2764 {
2765 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2766 }
2767 
2768 static bool __is_pointer_value(bool allow_ptr_leaks,
2769 			       const struct bpf_reg_state *reg)
2770 {
2771 	if (allow_ptr_leaks)
2772 		return false;
2773 
2774 	return reg->type != SCALAR_VALUE;
2775 }
2776 
2777 static void save_register_state(struct bpf_func_state *state,
2778 				int spi, struct bpf_reg_state *reg,
2779 				int size)
2780 {
2781 	int i;
2782 
2783 	state->stack[spi].spilled_ptr = *reg;
2784 	if (size == BPF_REG_SIZE)
2785 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2786 
2787 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
2788 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
2789 
2790 	/* size < 8 bytes spill */
2791 	for (; i; i--)
2792 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
2793 }
2794 
2795 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2796  * stack boundary and alignment are checked in check_mem_access()
2797  */
2798 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2799 				       /* stack frame we're writing to */
2800 				       struct bpf_func_state *state,
2801 				       int off, int size, int value_regno,
2802 				       int insn_idx)
2803 {
2804 	struct bpf_func_state *cur; /* state of the current function */
2805 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2806 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2807 	struct bpf_reg_state *reg = NULL;
2808 
2809 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
2810 	if (err)
2811 		return err;
2812 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2813 	 * so it's aligned access and [off, off + size) are within stack limits
2814 	 */
2815 	if (!env->allow_ptr_leaks &&
2816 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2817 	    size != BPF_REG_SIZE) {
2818 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2819 		return -EACCES;
2820 	}
2821 
2822 	cur = env->cur_state->frame[env->cur_state->curframe];
2823 	if (value_regno >= 0)
2824 		reg = &cur->regs[value_regno];
2825 	if (!env->bypass_spec_v4) {
2826 		bool sanitize = reg && is_spillable_regtype(reg->type);
2827 
2828 		for (i = 0; i < size; i++) {
2829 			if (state->stack[spi].slot_type[i] == STACK_INVALID) {
2830 				sanitize = true;
2831 				break;
2832 			}
2833 		}
2834 
2835 		if (sanitize)
2836 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
2837 	}
2838 
2839 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
2840 	    !register_is_null(reg) && env->bpf_capable) {
2841 		if (dst_reg != BPF_REG_FP) {
2842 			/* The backtracking logic can only recognize explicit
2843 			 * stack slot address like [fp - 8]. Other spill of
2844 			 * scalar via different register has to be conservative.
2845 			 * Backtrack from here and mark all registers as precise
2846 			 * that contributed into 'reg' being a constant.
2847 			 */
2848 			err = mark_chain_precision(env, value_regno);
2849 			if (err)
2850 				return err;
2851 		}
2852 		save_register_state(state, spi, reg, size);
2853 	} else if (reg && is_spillable_regtype(reg->type)) {
2854 		/* register containing pointer is being spilled into stack */
2855 		if (size != BPF_REG_SIZE) {
2856 			verbose_linfo(env, insn_idx, "; ");
2857 			verbose(env, "invalid size of register spill\n");
2858 			return -EACCES;
2859 		}
2860 		if (state != cur && reg->type == PTR_TO_STACK) {
2861 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2862 			return -EINVAL;
2863 		}
2864 		save_register_state(state, spi, reg, size);
2865 	} else {
2866 		u8 type = STACK_MISC;
2867 
2868 		/* regular write of data into stack destroys any spilled ptr */
2869 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2870 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2871 		if (is_spilled_reg(&state->stack[spi]))
2872 			for (i = 0; i < BPF_REG_SIZE; i++)
2873 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
2874 
2875 		/* only mark the slot as written if all 8 bytes were written
2876 		 * otherwise read propagation may incorrectly stop too soon
2877 		 * when stack slots are partially written.
2878 		 * This heuristic means that read propagation will be
2879 		 * conservative, since it will add reg_live_read marks
2880 		 * to stack slots all the way to first state when programs
2881 		 * writes+reads less than 8 bytes
2882 		 */
2883 		if (size == BPF_REG_SIZE)
2884 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2885 
2886 		/* when we zero initialize stack slots mark them as such */
2887 		if (reg && register_is_null(reg)) {
2888 			/* backtracking doesn't work for STACK_ZERO yet. */
2889 			err = mark_chain_precision(env, value_regno);
2890 			if (err)
2891 				return err;
2892 			type = STACK_ZERO;
2893 		}
2894 
2895 		/* Mark slots affected by this stack write. */
2896 		for (i = 0; i < size; i++)
2897 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2898 				type;
2899 	}
2900 	return 0;
2901 }
2902 
2903 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2904  * known to contain a variable offset.
2905  * This function checks whether the write is permitted and conservatively
2906  * tracks the effects of the write, considering that each stack slot in the
2907  * dynamic range is potentially written to.
2908  *
2909  * 'off' includes 'regno->off'.
2910  * 'value_regno' can be -1, meaning that an unknown value is being written to
2911  * the stack.
2912  *
2913  * Spilled pointers in range are not marked as written because we don't know
2914  * what's going to be actually written. This means that read propagation for
2915  * future reads cannot be terminated by this write.
2916  *
2917  * For privileged programs, uninitialized stack slots are considered
2918  * initialized by this write (even though we don't know exactly what offsets
2919  * are going to be written to). The idea is that we don't want the verifier to
2920  * reject future reads that access slots written to through variable offsets.
2921  */
2922 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2923 				     /* func where register points to */
2924 				     struct bpf_func_state *state,
2925 				     int ptr_regno, int off, int size,
2926 				     int value_regno, int insn_idx)
2927 {
2928 	struct bpf_func_state *cur; /* state of the current function */
2929 	int min_off, max_off;
2930 	int i, err;
2931 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2932 	bool writing_zero = false;
2933 	/* set if the fact that we're writing a zero is used to let any
2934 	 * stack slots remain STACK_ZERO
2935 	 */
2936 	bool zero_used = false;
2937 
2938 	cur = env->cur_state->frame[env->cur_state->curframe];
2939 	ptr_reg = &cur->regs[ptr_regno];
2940 	min_off = ptr_reg->smin_value + off;
2941 	max_off = ptr_reg->smax_value + off + size;
2942 	if (value_regno >= 0)
2943 		value_reg = &cur->regs[value_regno];
2944 	if (value_reg && register_is_null(value_reg))
2945 		writing_zero = true;
2946 
2947 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
2948 	if (err)
2949 		return err;
2950 
2951 
2952 	/* Variable offset writes destroy any spilled pointers in range. */
2953 	for (i = min_off; i < max_off; i++) {
2954 		u8 new_type, *stype;
2955 		int slot, spi;
2956 
2957 		slot = -i - 1;
2958 		spi = slot / BPF_REG_SIZE;
2959 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2960 
2961 		if (!env->allow_ptr_leaks
2962 				&& *stype != NOT_INIT
2963 				&& *stype != SCALAR_VALUE) {
2964 			/* Reject the write if there's are spilled pointers in
2965 			 * range. If we didn't reject here, the ptr status
2966 			 * would be erased below (even though not all slots are
2967 			 * actually overwritten), possibly opening the door to
2968 			 * leaks.
2969 			 */
2970 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2971 				insn_idx, i);
2972 			return -EINVAL;
2973 		}
2974 
2975 		/* Erase all spilled pointers. */
2976 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2977 
2978 		/* Update the slot type. */
2979 		new_type = STACK_MISC;
2980 		if (writing_zero && *stype == STACK_ZERO) {
2981 			new_type = STACK_ZERO;
2982 			zero_used = true;
2983 		}
2984 		/* If the slot is STACK_INVALID, we check whether it's OK to
2985 		 * pretend that it will be initialized by this write. The slot
2986 		 * might not actually be written to, and so if we mark it as
2987 		 * initialized future reads might leak uninitialized memory.
2988 		 * For privileged programs, we will accept such reads to slots
2989 		 * that may or may not be written because, if we're reject
2990 		 * them, the error would be too confusing.
2991 		 */
2992 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2993 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2994 					insn_idx, i);
2995 			return -EINVAL;
2996 		}
2997 		*stype = new_type;
2998 	}
2999 	if (zero_used) {
3000 		/* backtracking doesn't work for STACK_ZERO yet. */
3001 		err = mark_chain_precision(env, value_regno);
3002 		if (err)
3003 			return err;
3004 	}
3005 	return 0;
3006 }
3007 
3008 /* When register 'dst_regno' is assigned some values from stack[min_off,
3009  * max_off), we set the register's type according to the types of the
3010  * respective stack slots. If all the stack values are known to be zeros, then
3011  * so is the destination reg. Otherwise, the register is considered to be
3012  * SCALAR. This function does not deal with register filling; the caller must
3013  * ensure that all spilled registers in the stack range have been marked as
3014  * read.
3015  */
3016 static void mark_reg_stack_read(struct bpf_verifier_env *env,
3017 				/* func where src register points to */
3018 				struct bpf_func_state *ptr_state,
3019 				int min_off, int max_off, int dst_regno)
3020 {
3021 	struct bpf_verifier_state *vstate = env->cur_state;
3022 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3023 	int i, slot, spi;
3024 	u8 *stype;
3025 	int zeros = 0;
3026 
3027 	for (i = min_off; i < max_off; i++) {
3028 		slot = -i - 1;
3029 		spi = slot / BPF_REG_SIZE;
3030 		stype = ptr_state->stack[spi].slot_type;
3031 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3032 			break;
3033 		zeros++;
3034 	}
3035 	if (zeros == max_off - min_off) {
3036 		/* any access_size read into register is zero extended,
3037 		 * so the whole register == const_zero
3038 		 */
3039 		__mark_reg_const_zero(&state->regs[dst_regno]);
3040 		/* backtracking doesn't support STACK_ZERO yet,
3041 		 * so mark it precise here, so that later
3042 		 * backtracking can stop here.
3043 		 * Backtracking may not need this if this register
3044 		 * doesn't participate in pointer adjustment.
3045 		 * Forward propagation of precise flag is not
3046 		 * necessary either. This mark is only to stop
3047 		 * backtracking. Any register that contributed
3048 		 * to const 0 was marked precise before spill.
3049 		 */
3050 		state->regs[dst_regno].precise = true;
3051 	} else {
3052 		/* have read misc data from the stack */
3053 		mark_reg_unknown(env, state->regs, dst_regno);
3054 	}
3055 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3056 }
3057 
3058 /* Read the stack at 'off' and put the results into the register indicated by
3059  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3060  * spilled reg.
3061  *
3062  * 'dst_regno' can be -1, meaning that the read value is not going to a
3063  * register.
3064  *
3065  * The access is assumed to be within the current stack bounds.
3066  */
3067 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3068 				      /* func where src register points to */
3069 				      struct bpf_func_state *reg_state,
3070 				      int off, int size, int dst_regno)
3071 {
3072 	struct bpf_verifier_state *vstate = env->cur_state;
3073 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3074 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
3075 	struct bpf_reg_state *reg;
3076 	u8 *stype, type;
3077 
3078 	stype = reg_state->stack[spi].slot_type;
3079 	reg = &reg_state->stack[spi].spilled_ptr;
3080 
3081 	if (is_spilled_reg(&reg_state->stack[spi])) {
3082 		u8 spill_size = 1;
3083 
3084 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3085 			spill_size++;
3086 
3087 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
3088 			if (reg->type != SCALAR_VALUE) {
3089 				verbose_linfo(env, env->insn_idx, "; ");
3090 				verbose(env, "invalid size of register fill\n");
3091 				return -EACCES;
3092 			}
3093 
3094 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3095 			if (dst_regno < 0)
3096 				return 0;
3097 
3098 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
3099 				/* The earlier check_reg_arg() has decided the
3100 				 * subreg_def for this insn.  Save it first.
3101 				 */
3102 				s32 subreg_def = state->regs[dst_regno].subreg_def;
3103 
3104 				state->regs[dst_regno] = *reg;
3105 				state->regs[dst_regno].subreg_def = subreg_def;
3106 			} else {
3107 				for (i = 0; i < size; i++) {
3108 					type = stype[(slot - i) % BPF_REG_SIZE];
3109 					if (type == STACK_SPILL)
3110 						continue;
3111 					if (type == STACK_MISC)
3112 						continue;
3113 					verbose(env, "invalid read from stack off %d+%d size %d\n",
3114 						off, i, size);
3115 					return -EACCES;
3116 				}
3117 				mark_reg_unknown(env, state->regs, dst_regno);
3118 			}
3119 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3120 			return 0;
3121 		}
3122 
3123 		if (dst_regno >= 0) {
3124 			/* restore register state from stack */
3125 			state->regs[dst_regno] = *reg;
3126 			/* mark reg as written since spilled pointer state likely
3127 			 * has its liveness marks cleared by is_state_visited()
3128 			 * which resets stack/reg liveness for state transitions
3129 			 */
3130 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3131 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
3132 			/* If dst_regno==-1, the caller is asking us whether
3133 			 * it is acceptable to use this value as a SCALAR_VALUE
3134 			 * (e.g. for XADD).
3135 			 * We must not allow unprivileged callers to do that
3136 			 * with spilled pointers.
3137 			 */
3138 			verbose(env, "leaking pointer from stack off %d\n",
3139 				off);
3140 			return -EACCES;
3141 		}
3142 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3143 	} else {
3144 		for (i = 0; i < size; i++) {
3145 			type = stype[(slot - i) % BPF_REG_SIZE];
3146 			if (type == STACK_MISC)
3147 				continue;
3148 			if (type == STACK_ZERO)
3149 				continue;
3150 			verbose(env, "invalid read from stack off %d+%d size %d\n",
3151 				off, i, size);
3152 			return -EACCES;
3153 		}
3154 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3155 		if (dst_regno >= 0)
3156 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
3157 	}
3158 	return 0;
3159 }
3160 
3161 enum stack_access_src {
3162 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
3163 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
3164 };
3165 
3166 static int check_stack_range_initialized(struct bpf_verifier_env *env,
3167 					 int regno, int off, int access_size,
3168 					 bool zero_size_allowed,
3169 					 enum stack_access_src type,
3170 					 struct bpf_call_arg_meta *meta);
3171 
3172 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3173 {
3174 	return cur_regs(env) + regno;
3175 }
3176 
3177 /* Read the stack at 'ptr_regno + off' and put the result into the register
3178  * 'dst_regno'.
3179  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3180  * but not its variable offset.
3181  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3182  *
3183  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3184  * filling registers (i.e. reads of spilled register cannot be detected when
3185  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3186  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3187  * offset; for a fixed offset check_stack_read_fixed_off should be used
3188  * instead.
3189  */
3190 static int check_stack_read_var_off(struct bpf_verifier_env *env,
3191 				    int ptr_regno, int off, int size, int dst_regno)
3192 {
3193 	/* The state of the source register. */
3194 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3195 	struct bpf_func_state *ptr_state = func(env, reg);
3196 	int err;
3197 	int min_off, max_off;
3198 
3199 	/* Note that we pass a NULL meta, so raw access will not be permitted.
3200 	 */
3201 	err = check_stack_range_initialized(env, ptr_regno, off, size,
3202 					    false, ACCESS_DIRECT, NULL);
3203 	if (err)
3204 		return err;
3205 
3206 	min_off = reg->smin_value + off;
3207 	max_off = reg->smax_value + off;
3208 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3209 	return 0;
3210 }
3211 
3212 /* check_stack_read dispatches to check_stack_read_fixed_off or
3213  * check_stack_read_var_off.
3214  *
3215  * The caller must ensure that the offset falls within the allocated stack
3216  * bounds.
3217  *
3218  * 'dst_regno' is a register which will receive the value from the stack. It
3219  * can be -1, meaning that the read value is not going to a register.
3220  */
3221 static int check_stack_read(struct bpf_verifier_env *env,
3222 			    int ptr_regno, int off, int size,
3223 			    int dst_regno)
3224 {
3225 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3226 	struct bpf_func_state *state = func(env, reg);
3227 	int err;
3228 	/* Some accesses are only permitted with a static offset. */
3229 	bool var_off = !tnum_is_const(reg->var_off);
3230 
3231 	/* The offset is required to be static when reads don't go to a
3232 	 * register, in order to not leak pointers (see
3233 	 * check_stack_read_fixed_off).
3234 	 */
3235 	if (dst_regno < 0 && var_off) {
3236 		char tn_buf[48];
3237 
3238 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3239 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3240 			tn_buf, off, size);
3241 		return -EACCES;
3242 	}
3243 	/* Variable offset is prohibited for unprivileged mode for simplicity
3244 	 * since it requires corresponding support in Spectre masking for stack
3245 	 * ALU. See also retrieve_ptr_limit().
3246 	 */
3247 	if (!env->bypass_spec_v1 && var_off) {
3248 		char tn_buf[48];
3249 
3250 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3251 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3252 				ptr_regno, tn_buf);
3253 		return -EACCES;
3254 	}
3255 
3256 	if (!var_off) {
3257 		off += reg->var_off.value;
3258 		err = check_stack_read_fixed_off(env, state, off, size,
3259 						 dst_regno);
3260 	} else {
3261 		/* Variable offset stack reads need more conservative handling
3262 		 * than fixed offset ones. Note that dst_regno >= 0 on this
3263 		 * branch.
3264 		 */
3265 		err = check_stack_read_var_off(env, ptr_regno, off, size,
3266 					       dst_regno);
3267 	}
3268 	return err;
3269 }
3270 
3271 
3272 /* check_stack_write dispatches to check_stack_write_fixed_off or
3273  * check_stack_write_var_off.
3274  *
3275  * 'ptr_regno' is the register used as a pointer into the stack.
3276  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3277  * 'value_regno' is the register whose value we're writing to the stack. It can
3278  * be -1, meaning that we're not writing from a register.
3279  *
3280  * The caller must ensure that the offset falls within the maximum stack size.
3281  */
3282 static int check_stack_write(struct bpf_verifier_env *env,
3283 			     int ptr_regno, int off, int size,
3284 			     int value_regno, int insn_idx)
3285 {
3286 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3287 	struct bpf_func_state *state = func(env, reg);
3288 	int err;
3289 
3290 	if (tnum_is_const(reg->var_off)) {
3291 		off += reg->var_off.value;
3292 		err = check_stack_write_fixed_off(env, state, off, size,
3293 						  value_regno, insn_idx);
3294 	} else {
3295 		/* Variable offset stack reads need more conservative handling
3296 		 * than fixed offset ones.
3297 		 */
3298 		err = check_stack_write_var_off(env, state,
3299 						ptr_regno, off, size,
3300 						value_regno, insn_idx);
3301 	}
3302 	return err;
3303 }
3304 
3305 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3306 				 int off, int size, enum bpf_access_type type)
3307 {
3308 	struct bpf_reg_state *regs = cur_regs(env);
3309 	struct bpf_map *map = regs[regno].map_ptr;
3310 	u32 cap = bpf_map_flags_to_cap(map);
3311 
3312 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3313 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3314 			map->value_size, off, size);
3315 		return -EACCES;
3316 	}
3317 
3318 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3319 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3320 			map->value_size, off, size);
3321 		return -EACCES;
3322 	}
3323 
3324 	return 0;
3325 }
3326 
3327 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3328 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3329 			      int off, int size, u32 mem_size,
3330 			      bool zero_size_allowed)
3331 {
3332 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3333 	struct bpf_reg_state *reg;
3334 
3335 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3336 		return 0;
3337 
3338 	reg = &cur_regs(env)[regno];
3339 	switch (reg->type) {
3340 	case PTR_TO_MAP_KEY:
3341 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3342 			mem_size, off, size);
3343 		break;
3344 	case PTR_TO_MAP_VALUE:
3345 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3346 			mem_size, off, size);
3347 		break;
3348 	case PTR_TO_PACKET:
3349 	case PTR_TO_PACKET_META:
3350 	case PTR_TO_PACKET_END:
3351 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3352 			off, size, regno, reg->id, off, mem_size);
3353 		break;
3354 	case PTR_TO_MEM:
3355 	default:
3356 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3357 			mem_size, off, size);
3358 	}
3359 
3360 	return -EACCES;
3361 }
3362 
3363 /* check read/write into a memory region with possible variable offset */
3364 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3365 				   int off, int size, u32 mem_size,
3366 				   bool zero_size_allowed)
3367 {
3368 	struct bpf_verifier_state *vstate = env->cur_state;
3369 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3370 	struct bpf_reg_state *reg = &state->regs[regno];
3371 	int err;
3372 
3373 	/* We may have adjusted the register pointing to memory region, so we
3374 	 * need to try adding each of min_value and max_value to off
3375 	 * to make sure our theoretical access will be safe.
3376 	 */
3377 	if (env->log.level & BPF_LOG_LEVEL)
3378 		print_verifier_state(env, state);
3379 
3380 	/* The minimum value is only important with signed
3381 	 * comparisons where we can't assume the floor of a
3382 	 * value is 0.  If we are using signed variables for our
3383 	 * index'es we need to make sure that whatever we use
3384 	 * will have a set floor within our range.
3385 	 */
3386 	if (reg->smin_value < 0 &&
3387 	    (reg->smin_value == S64_MIN ||
3388 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3389 	      reg->smin_value + off < 0)) {
3390 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3391 			regno);
3392 		return -EACCES;
3393 	}
3394 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
3395 				 mem_size, zero_size_allowed);
3396 	if (err) {
3397 		verbose(env, "R%d min value is outside of the allowed memory range\n",
3398 			regno);
3399 		return err;
3400 	}
3401 
3402 	/* If we haven't set a max value then we need to bail since we can't be
3403 	 * sure we won't do bad things.
3404 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
3405 	 */
3406 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3407 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3408 			regno);
3409 		return -EACCES;
3410 	}
3411 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
3412 				 mem_size, zero_size_allowed);
3413 	if (err) {
3414 		verbose(env, "R%d max value is outside of the allowed memory range\n",
3415 			regno);
3416 		return err;
3417 	}
3418 
3419 	return 0;
3420 }
3421 
3422 /* check read/write into a map element with possible variable offset */
3423 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3424 			    int off, int size, bool zero_size_allowed)
3425 {
3426 	struct bpf_verifier_state *vstate = env->cur_state;
3427 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3428 	struct bpf_reg_state *reg = &state->regs[regno];
3429 	struct bpf_map *map = reg->map_ptr;
3430 	int err;
3431 
3432 	err = check_mem_region_access(env, regno, off, size, map->value_size,
3433 				      zero_size_allowed);
3434 	if (err)
3435 		return err;
3436 
3437 	if (map_value_has_spin_lock(map)) {
3438 		u32 lock = map->spin_lock_off;
3439 
3440 		/* if any part of struct bpf_spin_lock can be touched by
3441 		 * load/store reject this program.
3442 		 * To check that [x1, x2) overlaps with [y1, y2)
3443 		 * it is sufficient to check x1 < y2 && y1 < x2.
3444 		 */
3445 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3446 		     lock < reg->umax_value + off + size) {
3447 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3448 			return -EACCES;
3449 		}
3450 	}
3451 	if (map_value_has_timer(map)) {
3452 		u32 t = map->timer_off;
3453 
3454 		if (reg->smin_value + off < t + sizeof(struct bpf_timer) &&
3455 		     t < reg->umax_value + off + size) {
3456 			verbose(env, "bpf_timer cannot be accessed directly by load/store\n");
3457 			return -EACCES;
3458 		}
3459 	}
3460 	return err;
3461 }
3462 
3463 #define MAX_PACKET_OFF 0xffff
3464 
3465 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3466 {
3467 	return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
3468 }
3469 
3470 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3471 				       const struct bpf_call_arg_meta *meta,
3472 				       enum bpf_access_type t)
3473 {
3474 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3475 
3476 	switch (prog_type) {
3477 	/* Program types only with direct read access go here! */
3478 	case BPF_PROG_TYPE_LWT_IN:
3479 	case BPF_PROG_TYPE_LWT_OUT:
3480 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3481 	case BPF_PROG_TYPE_SK_REUSEPORT:
3482 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
3483 	case BPF_PROG_TYPE_CGROUP_SKB:
3484 		if (t == BPF_WRITE)
3485 			return false;
3486 		fallthrough;
3487 
3488 	/* Program types with direct read + write access go here! */
3489 	case BPF_PROG_TYPE_SCHED_CLS:
3490 	case BPF_PROG_TYPE_SCHED_ACT:
3491 	case BPF_PROG_TYPE_XDP:
3492 	case BPF_PROG_TYPE_LWT_XMIT:
3493 	case BPF_PROG_TYPE_SK_SKB:
3494 	case BPF_PROG_TYPE_SK_MSG:
3495 		if (meta)
3496 			return meta->pkt_access;
3497 
3498 		env->seen_direct_write = true;
3499 		return true;
3500 
3501 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3502 		if (t == BPF_WRITE)
3503 			env->seen_direct_write = true;
3504 
3505 		return true;
3506 
3507 	default:
3508 		return false;
3509 	}
3510 }
3511 
3512 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3513 			       int size, bool zero_size_allowed)
3514 {
3515 	struct bpf_reg_state *regs = cur_regs(env);
3516 	struct bpf_reg_state *reg = &regs[regno];
3517 	int err;
3518 
3519 	/* We may have added a variable offset to the packet pointer; but any
3520 	 * reg->range we have comes after that.  We are only checking the fixed
3521 	 * offset.
3522 	 */
3523 
3524 	/* We don't allow negative numbers, because we aren't tracking enough
3525 	 * detail to prove they're safe.
3526 	 */
3527 	if (reg->smin_value < 0) {
3528 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3529 			regno);
3530 		return -EACCES;
3531 	}
3532 
3533 	err = reg->range < 0 ? -EINVAL :
3534 	      __check_mem_access(env, regno, off, size, reg->range,
3535 				 zero_size_allowed);
3536 	if (err) {
3537 		verbose(env, "R%d offset is outside of the packet\n", regno);
3538 		return err;
3539 	}
3540 
3541 	/* __check_mem_access has made sure "off + size - 1" is within u16.
3542 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3543 	 * otherwise find_good_pkt_pointers would have refused to set range info
3544 	 * that __check_mem_access would have rejected this pkt access.
3545 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3546 	 */
3547 	env->prog->aux->max_pkt_offset =
3548 		max_t(u32, env->prog->aux->max_pkt_offset,
3549 		      off + reg->umax_value + size - 1);
3550 
3551 	return err;
3552 }
3553 
3554 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
3555 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3556 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
3557 			    struct btf **btf, u32 *btf_id)
3558 {
3559 	struct bpf_insn_access_aux info = {
3560 		.reg_type = *reg_type,
3561 		.log = &env->log,
3562 	};
3563 
3564 	if (env->ops->is_valid_access &&
3565 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3566 		/* A non zero info.ctx_field_size indicates that this field is a
3567 		 * candidate for later verifier transformation to load the whole
3568 		 * field and then apply a mask when accessed with a narrower
3569 		 * access than actual ctx access size. A zero info.ctx_field_size
3570 		 * will only allow for whole field access and rejects any other
3571 		 * type of narrower access.
3572 		 */
3573 		*reg_type = info.reg_type;
3574 
3575 		if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3576 			*btf = info.btf;
3577 			*btf_id = info.btf_id;
3578 		} else {
3579 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3580 		}
3581 		/* remember the offset of last byte accessed in ctx */
3582 		if (env->prog->aux->max_ctx_offset < off + size)
3583 			env->prog->aux->max_ctx_offset = off + size;
3584 		return 0;
3585 	}
3586 
3587 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3588 	return -EACCES;
3589 }
3590 
3591 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3592 				  int size)
3593 {
3594 	if (size < 0 || off < 0 ||
3595 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
3596 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
3597 			off, size);
3598 		return -EACCES;
3599 	}
3600 	return 0;
3601 }
3602 
3603 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3604 			     u32 regno, int off, int size,
3605 			     enum bpf_access_type t)
3606 {
3607 	struct bpf_reg_state *regs = cur_regs(env);
3608 	struct bpf_reg_state *reg = &regs[regno];
3609 	struct bpf_insn_access_aux info = {};
3610 	bool valid;
3611 
3612 	if (reg->smin_value < 0) {
3613 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3614 			regno);
3615 		return -EACCES;
3616 	}
3617 
3618 	switch (reg->type) {
3619 	case PTR_TO_SOCK_COMMON:
3620 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3621 		break;
3622 	case PTR_TO_SOCKET:
3623 		valid = bpf_sock_is_valid_access(off, size, t, &info);
3624 		break;
3625 	case PTR_TO_TCP_SOCK:
3626 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3627 		break;
3628 	case PTR_TO_XDP_SOCK:
3629 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3630 		break;
3631 	default:
3632 		valid = false;
3633 	}
3634 
3635 
3636 	if (valid) {
3637 		env->insn_aux_data[insn_idx].ctx_field_size =
3638 			info.ctx_field_size;
3639 		return 0;
3640 	}
3641 
3642 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
3643 		regno, reg_type_str[reg->type], off, size);
3644 
3645 	return -EACCES;
3646 }
3647 
3648 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3649 {
3650 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3651 }
3652 
3653 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3654 {
3655 	const struct bpf_reg_state *reg = reg_state(env, regno);
3656 
3657 	return reg->type == PTR_TO_CTX;
3658 }
3659 
3660 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3661 {
3662 	const struct bpf_reg_state *reg = reg_state(env, regno);
3663 
3664 	return type_is_sk_pointer(reg->type);
3665 }
3666 
3667 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3668 {
3669 	const struct bpf_reg_state *reg = reg_state(env, regno);
3670 
3671 	return type_is_pkt_pointer(reg->type);
3672 }
3673 
3674 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3675 {
3676 	const struct bpf_reg_state *reg = reg_state(env, regno);
3677 
3678 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3679 	return reg->type == PTR_TO_FLOW_KEYS;
3680 }
3681 
3682 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3683 				   const struct bpf_reg_state *reg,
3684 				   int off, int size, bool strict)
3685 {
3686 	struct tnum reg_off;
3687 	int ip_align;
3688 
3689 	/* Byte size accesses are always allowed. */
3690 	if (!strict || size == 1)
3691 		return 0;
3692 
3693 	/* For platforms that do not have a Kconfig enabling
3694 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3695 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
3696 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3697 	 * to this code only in strict mode where we want to emulate
3698 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
3699 	 * unconditional IP align value of '2'.
3700 	 */
3701 	ip_align = 2;
3702 
3703 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3704 	if (!tnum_is_aligned(reg_off, size)) {
3705 		char tn_buf[48];
3706 
3707 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3708 		verbose(env,
3709 			"misaligned packet access off %d+%s+%d+%d size %d\n",
3710 			ip_align, tn_buf, reg->off, off, size);
3711 		return -EACCES;
3712 	}
3713 
3714 	return 0;
3715 }
3716 
3717 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3718 				       const struct bpf_reg_state *reg,
3719 				       const char *pointer_desc,
3720 				       int off, int size, bool strict)
3721 {
3722 	struct tnum reg_off;
3723 
3724 	/* Byte size accesses are always allowed. */
3725 	if (!strict || size == 1)
3726 		return 0;
3727 
3728 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3729 	if (!tnum_is_aligned(reg_off, size)) {
3730 		char tn_buf[48];
3731 
3732 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3733 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3734 			pointer_desc, tn_buf, reg->off, off, size);
3735 		return -EACCES;
3736 	}
3737 
3738 	return 0;
3739 }
3740 
3741 static int check_ptr_alignment(struct bpf_verifier_env *env,
3742 			       const struct bpf_reg_state *reg, int off,
3743 			       int size, bool strict_alignment_once)
3744 {
3745 	bool strict = env->strict_alignment || strict_alignment_once;
3746 	const char *pointer_desc = "";
3747 
3748 	switch (reg->type) {
3749 	case PTR_TO_PACKET:
3750 	case PTR_TO_PACKET_META:
3751 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
3752 		 * right in front, treat it the very same way.
3753 		 */
3754 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
3755 	case PTR_TO_FLOW_KEYS:
3756 		pointer_desc = "flow keys ";
3757 		break;
3758 	case PTR_TO_MAP_KEY:
3759 		pointer_desc = "key ";
3760 		break;
3761 	case PTR_TO_MAP_VALUE:
3762 		pointer_desc = "value ";
3763 		break;
3764 	case PTR_TO_CTX:
3765 		pointer_desc = "context ";
3766 		break;
3767 	case PTR_TO_STACK:
3768 		pointer_desc = "stack ";
3769 		/* The stack spill tracking logic in check_stack_write_fixed_off()
3770 		 * and check_stack_read_fixed_off() relies on stack accesses being
3771 		 * aligned.
3772 		 */
3773 		strict = true;
3774 		break;
3775 	case PTR_TO_SOCKET:
3776 		pointer_desc = "sock ";
3777 		break;
3778 	case PTR_TO_SOCK_COMMON:
3779 		pointer_desc = "sock_common ";
3780 		break;
3781 	case PTR_TO_TCP_SOCK:
3782 		pointer_desc = "tcp_sock ";
3783 		break;
3784 	case PTR_TO_XDP_SOCK:
3785 		pointer_desc = "xdp_sock ";
3786 		break;
3787 	default:
3788 		break;
3789 	}
3790 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3791 					   strict);
3792 }
3793 
3794 static int update_stack_depth(struct bpf_verifier_env *env,
3795 			      const struct bpf_func_state *func,
3796 			      int off)
3797 {
3798 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
3799 
3800 	if (stack >= -off)
3801 		return 0;
3802 
3803 	/* update known max for given subprogram */
3804 	env->subprog_info[func->subprogno].stack_depth = -off;
3805 	return 0;
3806 }
3807 
3808 /* starting from main bpf function walk all instructions of the function
3809  * and recursively walk all callees that given function can call.
3810  * Ignore jump and exit insns.
3811  * Since recursion is prevented by check_cfg() this algorithm
3812  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3813  */
3814 static int check_max_stack_depth(struct bpf_verifier_env *env)
3815 {
3816 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3817 	struct bpf_subprog_info *subprog = env->subprog_info;
3818 	struct bpf_insn *insn = env->prog->insnsi;
3819 	bool tail_call_reachable = false;
3820 	int ret_insn[MAX_CALL_FRAMES];
3821 	int ret_prog[MAX_CALL_FRAMES];
3822 	int j;
3823 
3824 process_func:
3825 	/* protect against potential stack overflow that might happen when
3826 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3827 	 * depth for such case down to 256 so that the worst case scenario
3828 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
3829 	 * 8k).
3830 	 *
3831 	 * To get the idea what might happen, see an example:
3832 	 * func1 -> sub rsp, 128
3833 	 *  subfunc1 -> sub rsp, 256
3834 	 *  tailcall1 -> add rsp, 256
3835 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3836 	 *   subfunc2 -> sub rsp, 64
3837 	 *   subfunc22 -> sub rsp, 128
3838 	 *   tailcall2 -> add rsp, 128
3839 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3840 	 *
3841 	 * tailcall will unwind the current stack frame but it will not get rid
3842 	 * of caller's stack as shown on the example above.
3843 	 */
3844 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
3845 		verbose(env,
3846 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3847 			depth);
3848 		return -EACCES;
3849 	}
3850 	/* round up to 32-bytes, since this is granularity
3851 	 * of interpreter stack size
3852 	 */
3853 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3854 	if (depth > MAX_BPF_STACK) {
3855 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
3856 			frame + 1, depth);
3857 		return -EACCES;
3858 	}
3859 continue_func:
3860 	subprog_end = subprog[idx + 1].start;
3861 	for (; i < subprog_end; i++) {
3862 		int next_insn;
3863 
3864 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
3865 			continue;
3866 		/* remember insn and function to return to */
3867 		ret_insn[frame] = i + 1;
3868 		ret_prog[frame] = idx;
3869 
3870 		/* find the callee */
3871 		next_insn = i + insn[i].imm + 1;
3872 		idx = find_subprog(env, next_insn);
3873 		if (idx < 0) {
3874 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3875 				  next_insn);
3876 			return -EFAULT;
3877 		}
3878 		if (subprog[idx].is_async_cb) {
3879 			if (subprog[idx].has_tail_call) {
3880 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
3881 				return -EFAULT;
3882 			}
3883 			 /* async callbacks don't increase bpf prog stack size */
3884 			continue;
3885 		}
3886 		i = next_insn;
3887 
3888 		if (subprog[idx].has_tail_call)
3889 			tail_call_reachable = true;
3890 
3891 		frame++;
3892 		if (frame >= MAX_CALL_FRAMES) {
3893 			verbose(env, "the call stack of %d frames is too deep !\n",
3894 				frame);
3895 			return -E2BIG;
3896 		}
3897 		goto process_func;
3898 	}
3899 	/* if tail call got detected across bpf2bpf calls then mark each of the
3900 	 * currently present subprog frames as tail call reachable subprogs;
3901 	 * this info will be utilized by JIT so that we will be preserving the
3902 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
3903 	 */
3904 	if (tail_call_reachable)
3905 		for (j = 0; j < frame; j++)
3906 			subprog[ret_prog[j]].tail_call_reachable = true;
3907 	if (subprog[0].tail_call_reachable)
3908 		env->prog->aux->tail_call_reachable = true;
3909 
3910 	/* end of for() loop means the last insn of the 'subprog'
3911 	 * was reached. Doesn't matter whether it was JA or EXIT
3912 	 */
3913 	if (frame == 0)
3914 		return 0;
3915 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3916 	frame--;
3917 	i = ret_insn[frame];
3918 	idx = ret_prog[frame];
3919 	goto continue_func;
3920 }
3921 
3922 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3923 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3924 				  const struct bpf_insn *insn, int idx)
3925 {
3926 	int start = idx + insn->imm + 1, subprog;
3927 
3928 	subprog = find_subprog(env, start);
3929 	if (subprog < 0) {
3930 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3931 			  start);
3932 		return -EFAULT;
3933 	}
3934 	return env->subprog_info[subprog].stack_depth;
3935 }
3936 #endif
3937 
3938 int check_ctx_reg(struct bpf_verifier_env *env,
3939 		  const struct bpf_reg_state *reg, int regno)
3940 {
3941 	/* Access to ctx or passing it to a helper is only allowed in
3942 	 * its original, unmodified form.
3943 	 */
3944 
3945 	if (reg->off) {
3946 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3947 			regno, reg->off);
3948 		return -EACCES;
3949 	}
3950 
3951 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3952 		char tn_buf[48];
3953 
3954 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3955 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3956 		return -EACCES;
3957 	}
3958 
3959 	return 0;
3960 }
3961 
3962 static int __check_buffer_access(struct bpf_verifier_env *env,
3963 				 const char *buf_info,
3964 				 const struct bpf_reg_state *reg,
3965 				 int regno, int off, int size)
3966 {
3967 	if (off < 0) {
3968 		verbose(env,
3969 			"R%d invalid %s buffer access: off=%d, size=%d\n",
3970 			regno, buf_info, off, size);
3971 		return -EACCES;
3972 	}
3973 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3974 		char tn_buf[48];
3975 
3976 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3977 		verbose(env,
3978 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3979 			regno, off, tn_buf);
3980 		return -EACCES;
3981 	}
3982 
3983 	return 0;
3984 }
3985 
3986 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3987 				  const struct bpf_reg_state *reg,
3988 				  int regno, int off, int size)
3989 {
3990 	int err;
3991 
3992 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3993 	if (err)
3994 		return err;
3995 
3996 	if (off + size > env->prog->aux->max_tp_access)
3997 		env->prog->aux->max_tp_access = off + size;
3998 
3999 	return 0;
4000 }
4001 
4002 static int check_buffer_access(struct bpf_verifier_env *env,
4003 			       const struct bpf_reg_state *reg,
4004 			       int regno, int off, int size,
4005 			       bool zero_size_allowed,
4006 			       const char *buf_info,
4007 			       u32 *max_access)
4008 {
4009 	int err;
4010 
4011 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4012 	if (err)
4013 		return err;
4014 
4015 	if (off + size > *max_access)
4016 		*max_access = off + size;
4017 
4018 	return 0;
4019 }
4020 
4021 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
4022 static void zext_32_to_64(struct bpf_reg_state *reg)
4023 {
4024 	reg->var_off = tnum_subreg(reg->var_off);
4025 	__reg_assign_32_into_64(reg);
4026 }
4027 
4028 /* truncate register to smaller size (in bytes)
4029  * must be called with size < BPF_REG_SIZE
4030  */
4031 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4032 {
4033 	u64 mask;
4034 
4035 	/* clear high bits in bit representation */
4036 	reg->var_off = tnum_cast(reg->var_off, size);
4037 
4038 	/* fix arithmetic bounds */
4039 	mask = ((u64)1 << (size * 8)) - 1;
4040 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4041 		reg->umin_value &= mask;
4042 		reg->umax_value &= mask;
4043 	} else {
4044 		reg->umin_value = 0;
4045 		reg->umax_value = mask;
4046 	}
4047 	reg->smin_value = reg->umin_value;
4048 	reg->smax_value = reg->umax_value;
4049 
4050 	/* If size is smaller than 32bit register the 32bit register
4051 	 * values are also truncated so we push 64-bit bounds into
4052 	 * 32-bit bounds. Above were truncated < 32-bits already.
4053 	 */
4054 	if (size >= 4)
4055 		return;
4056 	__reg_combine_64_into_32(reg);
4057 }
4058 
4059 static bool bpf_map_is_rdonly(const struct bpf_map *map)
4060 {
4061 	/* A map is considered read-only if the following condition are true:
4062 	 *
4063 	 * 1) BPF program side cannot change any of the map content. The
4064 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
4065 	 *    and was set at map creation time.
4066 	 * 2) The map value(s) have been initialized from user space by a
4067 	 *    loader and then "frozen", such that no new map update/delete
4068 	 *    operations from syscall side are possible for the rest of
4069 	 *    the map's lifetime from that point onwards.
4070 	 * 3) Any parallel/pending map update/delete operations from syscall
4071 	 *    side have been completed. Only after that point, it's safe to
4072 	 *    assume that map value(s) are immutable.
4073 	 */
4074 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
4075 	       READ_ONCE(map->frozen) &&
4076 	       !bpf_map_write_active(map);
4077 }
4078 
4079 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4080 {
4081 	void *ptr;
4082 	u64 addr;
4083 	int err;
4084 
4085 	err = map->ops->map_direct_value_addr(map, &addr, off);
4086 	if (err)
4087 		return err;
4088 	ptr = (void *)(long)addr + off;
4089 
4090 	switch (size) {
4091 	case sizeof(u8):
4092 		*val = (u64)*(u8 *)ptr;
4093 		break;
4094 	case sizeof(u16):
4095 		*val = (u64)*(u16 *)ptr;
4096 		break;
4097 	case sizeof(u32):
4098 		*val = (u64)*(u32 *)ptr;
4099 		break;
4100 	case sizeof(u64):
4101 		*val = *(u64 *)ptr;
4102 		break;
4103 	default:
4104 		return -EINVAL;
4105 	}
4106 	return 0;
4107 }
4108 
4109 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4110 				   struct bpf_reg_state *regs,
4111 				   int regno, int off, int size,
4112 				   enum bpf_access_type atype,
4113 				   int value_regno)
4114 {
4115 	struct bpf_reg_state *reg = regs + regno;
4116 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4117 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
4118 	u32 btf_id;
4119 	int ret;
4120 
4121 	if (off < 0) {
4122 		verbose(env,
4123 			"R%d is ptr_%s invalid negative access: off=%d\n",
4124 			regno, tname, off);
4125 		return -EACCES;
4126 	}
4127 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4128 		char tn_buf[48];
4129 
4130 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4131 		verbose(env,
4132 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4133 			regno, tname, off, tn_buf);
4134 		return -EACCES;
4135 	}
4136 
4137 	if (env->ops->btf_struct_access) {
4138 		ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
4139 						  off, size, atype, &btf_id);
4140 	} else {
4141 		if (atype != BPF_READ) {
4142 			verbose(env, "only read is supported\n");
4143 			return -EACCES;
4144 		}
4145 
4146 		ret = btf_struct_access(&env->log, reg->btf, t, off, size,
4147 					atype, &btf_id);
4148 	}
4149 
4150 	if (ret < 0)
4151 		return ret;
4152 
4153 	if (atype == BPF_READ && value_regno >= 0)
4154 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
4155 
4156 	return 0;
4157 }
4158 
4159 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4160 				   struct bpf_reg_state *regs,
4161 				   int regno, int off, int size,
4162 				   enum bpf_access_type atype,
4163 				   int value_regno)
4164 {
4165 	struct bpf_reg_state *reg = regs + regno;
4166 	struct bpf_map *map = reg->map_ptr;
4167 	const struct btf_type *t;
4168 	const char *tname;
4169 	u32 btf_id;
4170 	int ret;
4171 
4172 	if (!btf_vmlinux) {
4173 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4174 		return -ENOTSUPP;
4175 	}
4176 
4177 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4178 		verbose(env, "map_ptr access not supported for map type %d\n",
4179 			map->map_type);
4180 		return -ENOTSUPP;
4181 	}
4182 
4183 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4184 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4185 
4186 	if (!env->allow_ptr_to_map_access) {
4187 		verbose(env,
4188 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4189 			tname);
4190 		return -EPERM;
4191 	}
4192 
4193 	if (off < 0) {
4194 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
4195 			regno, tname, off);
4196 		return -EACCES;
4197 	}
4198 
4199 	if (atype != BPF_READ) {
4200 		verbose(env, "only read from %s is supported\n", tname);
4201 		return -EACCES;
4202 	}
4203 
4204 	ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
4205 	if (ret < 0)
4206 		return ret;
4207 
4208 	if (value_regno >= 0)
4209 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
4210 
4211 	return 0;
4212 }
4213 
4214 /* Check that the stack access at the given offset is within bounds. The
4215  * maximum valid offset is -1.
4216  *
4217  * The minimum valid offset is -MAX_BPF_STACK for writes, and
4218  * -state->allocated_stack for reads.
4219  */
4220 static int check_stack_slot_within_bounds(int off,
4221 					  struct bpf_func_state *state,
4222 					  enum bpf_access_type t)
4223 {
4224 	int min_valid_off;
4225 
4226 	if (t == BPF_WRITE)
4227 		min_valid_off = -MAX_BPF_STACK;
4228 	else
4229 		min_valid_off = -state->allocated_stack;
4230 
4231 	if (off < min_valid_off || off > -1)
4232 		return -EACCES;
4233 	return 0;
4234 }
4235 
4236 /* Check that the stack access at 'regno + off' falls within the maximum stack
4237  * bounds.
4238  *
4239  * 'off' includes `regno->offset`, but not its dynamic part (if any).
4240  */
4241 static int check_stack_access_within_bounds(
4242 		struct bpf_verifier_env *env,
4243 		int regno, int off, int access_size,
4244 		enum stack_access_src src, enum bpf_access_type type)
4245 {
4246 	struct bpf_reg_state *regs = cur_regs(env);
4247 	struct bpf_reg_state *reg = regs + regno;
4248 	struct bpf_func_state *state = func(env, reg);
4249 	int min_off, max_off;
4250 	int err;
4251 	char *err_extra;
4252 
4253 	if (src == ACCESS_HELPER)
4254 		/* We don't know if helpers are reading or writing (or both). */
4255 		err_extra = " indirect access to";
4256 	else if (type == BPF_READ)
4257 		err_extra = " read from";
4258 	else
4259 		err_extra = " write to";
4260 
4261 	if (tnum_is_const(reg->var_off)) {
4262 		min_off = reg->var_off.value + off;
4263 		if (access_size > 0)
4264 			max_off = min_off + access_size - 1;
4265 		else
4266 			max_off = min_off;
4267 	} else {
4268 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4269 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
4270 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4271 				err_extra, regno);
4272 			return -EACCES;
4273 		}
4274 		min_off = reg->smin_value + off;
4275 		if (access_size > 0)
4276 			max_off = reg->smax_value + off + access_size - 1;
4277 		else
4278 			max_off = min_off;
4279 	}
4280 
4281 	err = check_stack_slot_within_bounds(min_off, state, type);
4282 	if (!err)
4283 		err = check_stack_slot_within_bounds(max_off, state, type);
4284 
4285 	if (err) {
4286 		if (tnum_is_const(reg->var_off)) {
4287 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4288 				err_extra, regno, off, access_size);
4289 		} else {
4290 			char tn_buf[48];
4291 
4292 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4293 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4294 				err_extra, regno, tn_buf, access_size);
4295 		}
4296 	}
4297 	return err;
4298 }
4299 
4300 /* check whether memory at (regno + off) is accessible for t = (read | write)
4301  * if t==write, value_regno is a register which value is stored into memory
4302  * if t==read, value_regno is a register which will receive the value from memory
4303  * if t==write && value_regno==-1, some unknown value is stored into memory
4304  * if t==read && value_regno==-1, don't care what we read from memory
4305  */
4306 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4307 			    int off, int bpf_size, enum bpf_access_type t,
4308 			    int value_regno, bool strict_alignment_once)
4309 {
4310 	struct bpf_reg_state *regs = cur_regs(env);
4311 	struct bpf_reg_state *reg = regs + regno;
4312 	struct bpf_func_state *state;
4313 	int size, err = 0;
4314 
4315 	size = bpf_size_to_bytes(bpf_size);
4316 	if (size < 0)
4317 		return size;
4318 
4319 	/* alignment checks will add in reg->off themselves */
4320 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
4321 	if (err)
4322 		return err;
4323 
4324 	/* for access checks, reg->off is just part of off */
4325 	off += reg->off;
4326 
4327 	if (reg->type == PTR_TO_MAP_KEY) {
4328 		if (t == BPF_WRITE) {
4329 			verbose(env, "write to change key R%d not allowed\n", regno);
4330 			return -EACCES;
4331 		}
4332 
4333 		err = check_mem_region_access(env, regno, off, size,
4334 					      reg->map_ptr->key_size, false);
4335 		if (err)
4336 			return err;
4337 		if (value_regno >= 0)
4338 			mark_reg_unknown(env, regs, value_regno);
4339 	} else if (reg->type == PTR_TO_MAP_VALUE) {
4340 		if (t == BPF_WRITE && value_regno >= 0 &&
4341 		    is_pointer_value(env, value_regno)) {
4342 			verbose(env, "R%d leaks addr into map\n", value_regno);
4343 			return -EACCES;
4344 		}
4345 		err = check_map_access_type(env, regno, off, size, t);
4346 		if (err)
4347 			return err;
4348 		err = check_map_access(env, regno, off, size, false);
4349 		if (!err && t == BPF_READ && value_regno >= 0) {
4350 			struct bpf_map *map = reg->map_ptr;
4351 
4352 			/* if map is read-only, track its contents as scalars */
4353 			if (tnum_is_const(reg->var_off) &&
4354 			    bpf_map_is_rdonly(map) &&
4355 			    map->ops->map_direct_value_addr) {
4356 				int map_off = off + reg->var_off.value;
4357 				u64 val = 0;
4358 
4359 				err = bpf_map_direct_read(map, map_off, size,
4360 							  &val);
4361 				if (err)
4362 					return err;
4363 
4364 				regs[value_regno].type = SCALAR_VALUE;
4365 				__mark_reg_known(&regs[value_regno], val);
4366 			} else {
4367 				mark_reg_unknown(env, regs, value_regno);
4368 			}
4369 		}
4370 	} else if (reg->type == PTR_TO_MEM) {
4371 		if (t == BPF_WRITE && value_regno >= 0 &&
4372 		    is_pointer_value(env, value_regno)) {
4373 			verbose(env, "R%d leaks addr into mem\n", value_regno);
4374 			return -EACCES;
4375 		}
4376 		err = check_mem_region_access(env, regno, off, size,
4377 					      reg->mem_size, false);
4378 		if (!err && t == BPF_READ && value_regno >= 0)
4379 			mark_reg_unknown(env, regs, value_regno);
4380 	} else if (reg->type == PTR_TO_CTX) {
4381 		enum bpf_reg_type reg_type = SCALAR_VALUE;
4382 		struct btf *btf = NULL;
4383 		u32 btf_id = 0;
4384 
4385 		if (t == BPF_WRITE && value_regno >= 0 &&
4386 		    is_pointer_value(env, value_regno)) {
4387 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
4388 			return -EACCES;
4389 		}
4390 
4391 		err = check_ctx_reg(env, reg, regno);
4392 		if (err < 0)
4393 			return err;
4394 
4395 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
4396 		if (err)
4397 			verbose_linfo(env, insn_idx, "; ");
4398 		if (!err && t == BPF_READ && value_regno >= 0) {
4399 			/* ctx access returns either a scalar, or a
4400 			 * PTR_TO_PACKET[_META,_END]. In the latter
4401 			 * case, we know the offset is zero.
4402 			 */
4403 			if (reg_type == SCALAR_VALUE) {
4404 				mark_reg_unknown(env, regs, value_regno);
4405 			} else {
4406 				mark_reg_known_zero(env, regs,
4407 						    value_regno);
4408 				if (reg_type_may_be_null(reg_type))
4409 					regs[value_regno].id = ++env->id_gen;
4410 				/* A load of ctx field could have different
4411 				 * actual load size with the one encoded in the
4412 				 * insn. When the dst is PTR, it is for sure not
4413 				 * a sub-register.
4414 				 */
4415 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
4416 				if (reg_type == PTR_TO_BTF_ID ||
4417 				    reg_type == PTR_TO_BTF_ID_OR_NULL) {
4418 					regs[value_regno].btf = btf;
4419 					regs[value_regno].btf_id = btf_id;
4420 				}
4421 			}
4422 			regs[value_regno].type = reg_type;
4423 		}
4424 
4425 	} else if (reg->type == PTR_TO_STACK) {
4426 		/* Basic bounds checks. */
4427 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
4428 		if (err)
4429 			return err;
4430 
4431 		state = func(env, reg);
4432 		err = update_stack_depth(env, state, off);
4433 		if (err)
4434 			return err;
4435 
4436 		if (t == BPF_READ)
4437 			err = check_stack_read(env, regno, off, size,
4438 					       value_regno);
4439 		else
4440 			err = check_stack_write(env, regno, off, size,
4441 						value_regno, insn_idx);
4442 	} else if (reg_is_pkt_pointer(reg)) {
4443 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4444 			verbose(env, "cannot write into packet\n");
4445 			return -EACCES;
4446 		}
4447 		if (t == BPF_WRITE && value_regno >= 0 &&
4448 		    is_pointer_value(env, value_regno)) {
4449 			verbose(env, "R%d leaks addr into packet\n",
4450 				value_regno);
4451 			return -EACCES;
4452 		}
4453 		err = check_packet_access(env, regno, off, size, false);
4454 		if (!err && t == BPF_READ && value_regno >= 0)
4455 			mark_reg_unknown(env, regs, value_regno);
4456 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
4457 		if (t == BPF_WRITE && value_regno >= 0 &&
4458 		    is_pointer_value(env, value_regno)) {
4459 			verbose(env, "R%d leaks addr into flow keys\n",
4460 				value_regno);
4461 			return -EACCES;
4462 		}
4463 
4464 		err = check_flow_keys_access(env, off, size);
4465 		if (!err && t == BPF_READ && value_regno >= 0)
4466 			mark_reg_unknown(env, regs, value_regno);
4467 	} else if (type_is_sk_pointer(reg->type)) {
4468 		if (t == BPF_WRITE) {
4469 			verbose(env, "R%d cannot write into %s\n",
4470 				regno, reg_type_str[reg->type]);
4471 			return -EACCES;
4472 		}
4473 		err = check_sock_access(env, insn_idx, regno, off, size, t);
4474 		if (!err && value_regno >= 0)
4475 			mark_reg_unknown(env, regs, value_regno);
4476 	} else if (reg->type == PTR_TO_TP_BUFFER) {
4477 		err = check_tp_buffer_access(env, reg, regno, off, size);
4478 		if (!err && t == BPF_READ && value_regno >= 0)
4479 			mark_reg_unknown(env, regs, value_regno);
4480 	} else if (reg->type == PTR_TO_BTF_ID) {
4481 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4482 					      value_regno);
4483 	} else if (reg->type == CONST_PTR_TO_MAP) {
4484 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4485 					      value_regno);
4486 	} else if (reg->type == PTR_TO_RDONLY_BUF) {
4487 		if (t == BPF_WRITE) {
4488 			verbose(env, "R%d cannot write into %s\n",
4489 				regno, reg_type_str[reg->type]);
4490 			return -EACCES;
4491 		}
4492 		err = check_buffer_access(env, reg, regno, off, size, false,
4493 					  "rdonly",
4494 					  &env->prog->aux->max_rdonly_access);
4495 		if (!err && value_regno >= 0)
4496 			mark_reg_unknown(env, regs, value_regno);
4497 	} else if (reg->type == PTR_TO_RDWR_BUF) {
4498 		err = check_buffer_access(env, reg, regno, off, size, false,
4499 					  "rdwr",
4500 					  &env->prog->aux->max_rdwr_access);
4501 		if (!err && t == BPF_READ && value_regno >= 0)
4502 			mark_reg_unknown(env, regs, value_regno);
4503 	} else {
4504 		verbose(env, "R%d invalid mem access '%s'\n", regno,
4505 			reg_type_str[reg->type]);
4506 		return -EACCES;
4507 	}
4508 
4509 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4510 	    regs[value_regno].type == SCALAR_VALUE) {
4511 		/* b/h/w load zero-extends, mark upper bits as known 0 */
4512 		coerce_reg_to_size(&regs[value_regno], size);
4513 	}
4514 	return err;
4515 }
4516 
4517 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4518 {
4519 	int load_reg;
4520 	int err;
4521 
4522 	switch (insn->imm) {
4523 	case BPF_ADD:
4524 	case BPF_ADD | BPF_FETCH:
4525 	case BPF_AND:
4526 	case BPF_AND | BPF_FETCH:
4527 	case BPF_OR:
4528 	case BPF_OR | BPF_FETCH:
4529 	case BPF_XOR:
4530 	case BPF_XOR | BPF_FETCH:
4531 	case BPF_XCHG:
4532 	case BPF_CMPXCHG:
4533 		break;
4534 	default:
4535 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4536 		return -EINVAL;
4537 	}
4538 
4539 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4540 		verbose(env, "invalid atomic operand size\n");
4541 		return -EINVAL;
4542 	}
4543 
4544 	/* check src1 operand */
4545 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
4546 	if (err)
4547 		return err;
4548 
4549 	/* check src2 operand */
4550 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4551 	if (err)
4552 		return err;
4553 
4554 	if (insn->imm == BPF_CMPXCHG) {
4555 		/* Check comparison of R0 with memory location */
4556 		err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4557 		if (err)
4558 			return err;
4559 	}
4560 
4561 	if (is_pointer_value(env, insn->src_reg)) {
4562 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4563 		return -EACCES;
4564 	}
4565 
4566 	if (is_ctx_reg(env, insn->dst_reg) ||
4567 	    is_pkt_reg(env, insn->dst_reg) ||
4568 	    is_flow_key_reg(env, insn->dst_reg) ||
4569 	    is_sk_reg(env, insn->dst_reg)) {
4570 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4571 			insn->dst_reg,
4572 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
4573 		return -EACCES;
4574 	}
4575 
4576 	if (insn->imm & BPF_FETCH) {
4577 		if (insn->imm == BPF_CMPXCHG)
4578 			load_reg = BPF_REG_0;
4579 		else
4580 			load_reg = insn->src_reg;
4581 
4582 		/* check and record load of old value */
4583 		err = check_reg_arg(env, load_reg, DST_OP);
4584 		if (err)
4585 			return err;
4586 	} else {
4587 		/* This instruction accesses a memory location but doesn't
4588 		 * actually load it into a register.
4589 		 */
4590 		load_reg = -1;
4591 	}
4592 
4593 	/* check whether we can read the memory */
4594 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4595 			       BPF_SIZE(insn->code), BPF_READ, load_reg, true);
4596 	if (err)
4597 		return err;
4598 
4599 	/* check whether we can write into the same memory */
4600 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4601 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4602 	if (err)
4603 		return err;
4604 
4605 	return 0;
4606 }
4607 
4608 /* When register 'regno' is used to read the stack (either directly or through
4609  * a helper function) make sure that it's within stack boundary and, depending
4610  * on the access type, that all elements of the stack are initialized.
4611  *
4612  * 'off' includes 'regno->off', but not its dynamic part (if any).
4613  *
4614  * All registers that have been spilled on the stack in the slots within the
4615  * read offsets are marked as read.
4616  */
4617 static int check_stack_range_initialized(
4618 		struct bpf_verifier_env *env, int regno, int off,
4619 		int access_size, bool zero_size_allowed,
4620 		enum stack_access_src type, struct bpf_call_arg_meta *meta)
4621 {
4622 	struct bpf_reg_state *reg = reg_state(env, regno);
4623 	struct bpf_func_state *state = func(env, reg);
4624 	int err, min_off, max_off, i, j, slot, spi;
4625 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4626 	enum bpf_access_type bounds_check_type;
4627 	/* Some accesses can write anything into the stack, others are
4628 	 * read-only.
4629 	 */
4630 	bool clobber = false;
4631 
4632 	if (access_size == 0 && !zero_size_allowed) {
4633 		verbose(env, "invalid zero-sized read\n");
4634 		return -EACCES;
4635 	}
4636 
4637 	if (type == ACCESS_HELPER) {
4638 		/* The bounds checks for writes are more permissive than for
4639 		 * reads. However, if raw_mode is not set, we'll do extra
4640 		 * checks below.
4641 		 */
4642 		bounds_check_type = BPF_WRITE;
4643 		clobber = true;
4644 	} else {
4645 		bounds_check_type = BPF_READ;
4646 	}
4647 	err = check_stack_access_within_bounds(env, regno, off, access_size,
4648 					       type, bounds_check_type);
4649 	if (err)
4650 		return err;
4651 
4652 
4653 	if (tnum_is_const(reg->var_off)) {
4654 		min_off = max_off = reg->var_off.value + off;
4655 	} else {
4656 		/* Variable offset is prohibited for unprivileged mode for
4657 		 * simplicity since it requires corresponding support in
4658 		 * Spectre masking for stack ALU.
4659 		 * See also retrieve_ptr_limit().
4660 		 */
4661 		if (!env->bypass_spec_v1) {
4662 			char tn_buf[48];
4663 
4664 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4665 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4666 				regno, err_extra, tn_buf);
4667 			return -EACCES;
4668 		}
4669 		/* Only initialized buffer on stack is allowed to be accessed
4670 		 * with variable offset. With uninitialized buffer it's hard to
4671 		 * guarantee that whole memory is marked as initialized on
4672 		 * helper return since specific bounds are unknown what may
4673 		 * cause uninitialized stack leaking.
4674 		 */
4675 		if (meta && meta->raw_mode)
4676 			meta = NULL;
4677 
4678 		min_off = reg->smin_value + off;
4679 		max_off = reg->smax_value + off;
4680 	}
4681 
4682 	if (meta && meta->raw_mode) {
4683 		meta->access_size = access_size;
4684 		meta->regno = regno;
4685 		return 0;
4686 	}
4687 
4688 	for (i = min_off; i < max_off + access_size; i++) {
4689 		u8 *stype;
4690 
4691 		slot = -i - 1;
4692 		spi = slot / BPF_REG_SIZE;
4693 		if (state->allocated_stack <= slot)
4694 			goto err;
4695 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4696 		if (*stype == STACK_MISC)
4697 			goto mark;
4698 		if (*stype == STACK_ZERO) {
4699 			if (clobber) {
4700 				/* helper can write anything into the stack */
4701 				*stype = STACK_MISC;
4702 			}
4703 			goto mark;
4704 		}
4705 
4706 		if (is_spilled_reg(&state->stack[spi]) &&
4707 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4708 			goto mark;
4709 
4710 		if (is_spilled_reg(&state->stack[spi]) &&
4711 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4712 		     env->allow_ptr_leaks)) {
4713 			if (clobber) {
4714 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4715 				for (j = 0; j < BPF_REG_SIZE; j++)
4716 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
4717 			}
4718 			goto mark;
4719 		}
4720 
4721 err:
4722 		if (tnum_is_const(reg->var_off)) {
4723 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4724 				err_extra, regno, min_off, i - min_off, access_size);
4725 		} else {
4726 			char tn_buf[48];
4727 
4728 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4729 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4730 				err_extra, regno, tn_buf, i - min_off, access_size);
4731 		}
4732 		return -EACCES;
4733 mark:
4734 		/* reading any byte out of 8-byte 'spill_slot' will cause
4735 		 * the whole slot to be marked as 'read'
4736 		 */
4737 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
4738 			      state->stack[spi].spilled_ptr.parent,
4739 			      REG_LIVE_READ64);
4740 	}
4741 	return update_stack_depth(env, state, min_off);
4742 }
4743 
4744 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4745 				   int access_size, bool zero_size_allowed,
4746 				   struct bpf_call_arg_meta *meta)
4747 {
4748 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4749 
4750 	switch (reg->type) {
4751 	case PTR_TO_PACKET:
4752 	case PTR_TO_PACKET_META:
4753 		return check_packet_access(env, regno, reg->off, access_size,
4754 					   zero_size_allowed);
4755 	case PTR_TO_MAP_KEY:
4756 		return check_mem_region_access(env, regno, reg->off, access_size,
4757 					       reg->map_ptr->key_size, false);
4758 	case PTR_TO_MAP_VALUE:
4759 		if (check_map_access_type(env, regno, reg->off, access_size,
4760 					  meta && meta->raw_mode ? BPF_WRITE :
4761 					  BPF_READ))
4762 			return -EACCES;
4763 		return check_map_access(env, regno, reg->off, access_size,
4764 					zero_size_allowed);
4765 	case PTR_TO_MEM:
4766 		return check_mem_region_access(env, regno, reg->off,
4767 					       access_size, reg->mem_size,
4768 					       zero_size_allowed);
4769 	case PTR_TO_RDONLY_BUF:
4770 		if (meta && meta->raw_mode)
4771 			return -EACCES;
4772 		return check_buffer_access(env, reg, regno, reg->off,
4773 					   access_size, zero_size_allowed,
4774 					   "rdonly",
4775 					   &env->prog->aux->max_rdonly_access);
4776 	case PTR_TO_RDWR_BUF:
4777 		return check_buffer_access(env, reg, regno, reg->off,
4778 					   access_size, zero_size_allowed,
4779 					   "rdwr",
4780 					   &env->prog->aux->max_rdwr_access);
4781 	case PTR_TO_STACK:
4782 		return check_stack_range_initialized(
4783 				env,
4784 				regno, reg->off, access_size,
4785 				zero_size_allowed, ACCESS_HELPER, meta);
4786 	default: /* scalar_value or invalid ptr */
4787 		/* Allow zero-byte read from NULL, regardless of pointer type */
4788 		if (zero_size_allowed && access_size == 0 &&
4789 		    register_is_null(reg))
4790 			return 0;
4791 
4792 		verbose(env, "R%d type=%s expected=%s\n", regno,
4793 			reg_type_str[reg->type],
4794 			reg_type_str[PTR_TO_STACK]);
4795 		return -EACCES;
4796 	}
4797 }
4798 
4799 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4800 		   u32 regno, u32 mem_size)
4801 {
4802 	if (register_is_null(reg))
4803 		return 0;
4804 
4805 	if (reg_type_may_be_null(reg->type)) {
4806 		/* Assuming that the register contains a value check if the memory
4807 		 * access is safe. Temporarily save and restore the register's state as
4808 		 * the conversion shouldn't be visible to a caller.
4809 		 */
4810 		const struct bpf_reg_state saved_reg = *reg;
4811 		int rv;
4812 
4813 		mark_ptr_not_null_reg(reg);
4814 		rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4815 		*reg = saved_reg;
4816 		return rv;
4817 	}
4818 
4819 	return check_helper_mem_access(env, regno, mem_size, true, NULL);
4820 }
4821 
4822 /* Implementation details:
4823  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4824  * Two bpf_map_lookups (even with the same key) will have different reg->id.
4825  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4826  * value_or_null->value transition, since the verifier only cares about
4827  * the range of access to valid map value pointer and doesn't care about actual
4828  * address of the map element.
4829  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4830  * reg->id > 0 after value_or_null->value transition. By doing so
4831  * two bpf_map_lookups will be considered two different pointers that
4832  * point to different bpf_spin_locks.
4833  * The verifier allows taking only one bpf_spin_lock at a time to avoid
4834  * dead-locks.
4835  * Since only one bpf_spin_lock is allowed the checks are simpler than
4836  * reg_is_refcounted() logic. The verifier needs to remember only
4837  * one spin_lock instead of array of acquired_refs.
4838  * cur_state->active_spin_lock remembers which map value element got locked
4839  * and clears it after bpf_spin_unlock.
4840  */
4841 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4842 			     bool is_lock)
4843 {
4844 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4845 	struct bpf_verifier_state *cur = env->cur_state;
4846 	bool is_const = tnum_is_const(reg->var_off);
4847 	struct bpf_map *map = reg->map_ptr;
4848 	u64 val = reg->var_off.value;
4849 
4850 	if (!is_const) {
4851 		verbose(env,
4852 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4853 			regno);
4854 		return -EINVAL;
4855 	}
4856 	if (!map->btf) {
4857 		verbose(env,
4858 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
4859 			map->name);
4860 		return -EINVAL;
4861 	}
4862 	if (!map_value_has_spin_lock(map)) {
4863 		if (map->spin_lock_off == -E2BIG)
4864 			verbose(env,
4865 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
4866 				map->name);
4867 		else if (map->spin_lock_off == -ENOENT)
4868 			verbose(env,
4869 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
4870 				map->name);
4871 		else
4872 			verbose(env,
4873 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4874 				map->name);
4875 		return -EINVAL;
4876 	}
4877 	if (map->spin_lock_off != val + reg->off) {
4878 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4879 			val + reg->off);
4880 		return -EINVAL;
4881 	}
4882 	if (is_lock) {
4883 		if (cur->active_spin_lock) {
4884 			verbose(env,
4885 				"Locking two bpf_spin_locks are not allowed\n");
4886 			return -EINVAL;
4887 		}
4888 		cur->active_spin_lock = reg->id;
4889 	} else {
4890 		if (!cur->active_spin_lock) {
4891 			verbose(env, "bpf_spin_unlock without taking a lock\n");
4892 			return -EINVAL;
4893 		}
4894 		if (cur->active_spin_lock != reg->id) {
4895 			verbose(env, "bpf_spin_unlock of different lock\n");
4896 			return -EINVAL;
4897 		}
4898 		cur->active_spin_lock = 0;
4899 	}
4900 	return 0;
4901 }
4902 
4903 static int process_timer_func(struct bpf_verifier_env *env, int regno,
4904 			      struct bpf_call_arg_meta *meta)
4905 {
4906 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4907 	bool is_const = tnum_is_const(reg->var_off);
4908 	struct bpf_map *map = reg->map_ptr;
4909 	u64 val = reg->var_off.value;
4910 
4911 	if (!is_const) {
4912 		verbose(env,
4913 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
4914 			regno);
4915 		return -EINVAL;
4916 	}
4917 	if (!map->btf) {
4918 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
4919 			map->name);
4920 		return -EINVAL;
4921 	}
4922 	if (!map_value_has_timer(map)) {
4923 		if (map->timer_off == -E2BIG)
4924 			verbose(env,
4925 				"map '%s' has more than one 'struct bpf_timer'\n",
4926 				map->name);
4927 		else if (map->timer_off == -ENOENT)
4928 			verbose(env,
4929 				"map '%s' doesn't have 'struct bpf_timer'\n",
4930 				map->name);
4931 		else
4932 			verbose(env,
4933 				"map '%s' is not a struct type or bpf_timer is mangled\n",
4934 				map->name);
4935 		return -EINVAL;
4936 	}
4937 	if (map->timer_off != val + reg->off) {
4938 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
4939 			val + reg->off, map->timer_off);
4940 		return -EINVAL;
4941 	}
4942 	if (meta->map_ptr) {
4943 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
4944 		return -EFAULT;
4945 	}
4946 	meta->map_uid = reg->map_uid;
4947 	meta->map_ptr = map;
4948 	return 0;
4949 }
4950 
4951 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4952 {
4953 	return type == ARG_PTR_TO_MEM ||
4954 	       type == ARG_PTR_TO_MEM_OR_NULL ||
4955 	       type == ARG_PTR_TO_UNINIT_MEM;
4956 }
4957 
4958 static bool arg_type_is_mem_size(enum bpf_arg_type type)
4959 {
4960 	return type == ARG_CONST_SIZE ||
4961 	       type == ARG_CONST_SIZE_OR_ZERO;
4962 }
4963 
4964 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4965 {
4966 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4967 }
4968 
4969 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4970 {
4971 	return type == ARG_PTR_TO_INT ||
4972 	       type == ARG_PTR_TO_LONG;
4973 }
4974 
4975 static int int_ptr_type_to_size(enum bpf_arg_type type)
4976 {
4977 	if (type == ARG_PTR_TO_INT)
4978 		return sizeof(u32);
4979 	else if (type == ARG_PTR_TO_LONG)
4980 		return sizeof(u64);
4981 
4982 	return -EINVAL;
4983 }
4984 
4985 static int resolve_map_arg_type(struct bpf_verifier_env *env,
4986 				 const struct bpf_call_arg_meta *meta,
4987 				 enum bpf_arg_type *arg_type)
4988 {
4989 	if (!meta->map_ptr) {
4990 		/* kernel subsystem misconfigured verifier */
4991 		verbose(env, "invalid map_ptr to access map->type\n");
4992 		return -EACCES;
4993 	}
4994 
4995 	switch (meta->map_ptr->map_type) {
4996 	case BPF_MAP_TYPE_SOCKMAP:
4997 	case BPF_MAP_TYPE_SOCKHASH:
4998 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4999 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
5000 		} else {
5001 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
5002 			return -EINVAL;
5003 		}
5004 		break;
5005 	case BPF_MAP_TYPE_BLOOM_FILTER:
5006 		if (meta->func_id == BPF_FUNC_map_peek_elem)
5007 			*arg_type = ARG_PTR_TO_MAP_VALUE;
5008 		break;
5009 	default:
5010 		break;
5011 	}
5012 	return 0;
5013 }
5014 
5015 struct bpf_reg_types {
5016 	const enum bpf_reg_type types[10];
5017 	u32 *btf_id;
5018 };
5019 
5020 static const struct bpf_reg_types map_key_value_types = {
5021 	.types = {
5022 		PTR_TO_STACK,
5023 		PTR_TO_PACKET,
5024 		PTR_TO_PACKET_META,
5025 		PTR_TO_MAP_KEY,
5026 		PTR_TO_MAP_VALUE,
5027 	},
5028 };
5029 
5030 static const struct bpf_reg_types sock_types = {
5031 	.types = {
5032 		PTR_TO_SOCK_COMMON,
5033 		PTR_TO_SOCKET,
5034 		PTR_TO_TCP_SOCK,
5035 		PTR_TO_XDP_SOCK,
5036 	},
5037 };
5038 
5039 #ifdef CONFIG_NET
5040 static const struct bpf_reg_types btf_id_sock_common_types = {
5041 	.types = {
5042 		PTR_TO_SOCK_COMMON,
5043 		PTR_TO_SOCKET,
5044 		PTR_TO_TCP_SOCK,
5045 		PTR_TO_XDP_SOCK,
5046 		PTR_TO_BTF_ID,
5047 	},
5048 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5049 };
5050 #endif
5051 
5052 static const struct bpf_reg_types mem_types = {
5053 	.types = {
5054 		PTR_TO_STACK,
5055 		PTR_TO_PACKET,
5056 		PTR_TO_PACKET_META,
5057 		PTR_TO_MAP_KEY,
5058 		PTR_TO_MAP_VALUE,
5059 		PTR_TO_MEM,
5060 		PTR_TO_RDONLY_BUF,
5061 		PTR_TO_RDWR_BUF,
5062 	},
5063 };
5064 
5065 static const struct bpf_reg_types int_ptr_types = {
5066 	.types = {
5067 		PTR_TO_STACK,
5068 		PTR_TO_PACKET,
5069 		PTR_TO_PACKET_META,
5070 		PTR_TO_MAP_KEY,
5071 		PTR_TO_MAP_VALUE,
5072 	},
5073 };
5074 
5075 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
5076 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
5077 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
5078 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
5079 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
5080 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
5081 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
5082 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
5083 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
5084 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
5085 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
5086 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
5087 
5088 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
5089 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
5090 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
5091 	[ARG_PTR_TO_UNINIT_MAP_VALUE]	= &map_key_value_types,
5092 	[ARG_PTR_TO_MAP_VALUE_OR_NULL]	= &map_key_value_types,
5093 	[ARG_CONST_SIZE]		= &scalar_types,
5094 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
5095 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
5096 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
5097 	[ARG_PTR_TO_CTX]		= &context_types,
5098 	[ARG_PTR_TO_CTX_OR_NULL]	= &context_types,
5099 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
5100 #ifdef CONFIG_NET
5101 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
5102 #endif
5103 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
5104 	[ARG_PTR_TO_SOCKET_OR_NULL]	= &fullsock_types,
5105 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
5106 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
5107 	[ARG_PTR_TO_MEM]		= &mem_types,
5108 	[ARG_PTR_TO_MEM_OR_NULL]	= &mem_types,
5109 	[ARG_PTR_TO_UNINIT_MEM]		= &mem_types,
5110 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
5111 	[ARG_PTR_TO_ALLOC_MEM_OR_NULL]	= &alloc_mem_types,
5112 	[ARG_PTR_TO_INT]		= &int_ptr_types,
5113 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
5114 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
5115 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
5116 	[ARG_PTR_TO_STACK_OR_NULL]	= &stack_ptr_types,
5117 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
5118 	[ARG_PTR_TO_TIMER]		= &timer_types,
5119 };
5120 
5121 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
5122 			  enum bpf_arg_type arg_type,
5123 			  const u32 *arg_btf_id)
5124 {
5125 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5126 	enum bpf_reg_type expected, type = reg->type;
5127 	const struct bpf_reg_types *compatible;
5128 	int i, j;
5129 
5130 	compatible = compatible_reg_types[arg_type];
5131 	if (!compatible) {
5132 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
5133 		return -EFAULT;
5134 	}
5135 
5136 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
5137 		expected = compatible->types[i];
5138 		if (expected == NOT_INIT)
5139 			break;
5140 
5141 		if (type == expected)
5142 			goto found;
5143 	}
5144 
5145 	verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
5146 	for (j = 0; j + 1 < i; j++)
5147 		verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
5148 	verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
5149 	return -EACCES;
5150 
5151 found:
5152 	if (type == PTR_TO_BTF_ID) {
5153 		if (!arg_btf_id) {
5154 			if (!compatible->btf_id) {
5155 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
5156 				return -EFAULT;
5157 			}
5158 			arg_btf_id = compatible->btf_id;
5159 		}
5160 
5161 		if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5162 					  btf_vmlinux, *arg_btf_id)) {
5163 			verbose(env, "R%d is of type %s but %s is expected\n",
5164 				regno, kernel_type_name(reg->btf, reg->btf_id),
5165 				kernel_type_name(btf_vmlinux, *arg_btf_id));
5166 			return -EACCES;
5167 		}
5168 
5169 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5170 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
5171 				regno);
5172 			return -EACCES;
5173 		}
5174 	}
5175 
5176 	return 0;
5177 }
5178 
5179 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
5180 			  struct bpf_call_arg_meta *meta,
5181 			  const struct bpf_func_proto *fn)
5182 {
5183 	u32 regno = BPF_REG_1 + arg;
5184 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5185 	enum bpf_arg_type arg_type = fn->arg_type[arg];
5186 	enum bpf_reg_type type = reg->type;
5187 	int err = 0;
5188 
5189 	if (arg_type == ARG_DONTCARE)
5190 		return 0;
5191 
5192 	err = check_reg_arg(env, regno, SRC_OP);
5193 	if (err)
5194 		return err;
5195 
5196 	if (arg_type == ARG_ANYTHING) {
5197 		if (is_pointer_value(env, regno)) {
5198 			verbose(env, "R%d leaks addr into helper function\n",
5199 				regno);
5200 			return -EACCES;
5201 		}
5202 		return 0;
5203 	}
5204 
5205 	if (type_is_pkt_pointer(type) &&
5206 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
5207 		verbose(env, "helper access to the packet is not allowed\n");
5208 		return -EACCES;
5209 	}
5210 
5211 	if (arg_type == ARG_PTR_TO_MAP_VALUE ||
5212 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
5213 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
5214 		err = resolve_map_arg_type(env, meta, &arg_type);
5215 		if (err)
5216 			return err;
5217 	}
5218 
5219 	if (register_is_null(reg) && arg_type_may_be_null(arg_type))
5220 		/* A NULL register has a SCALAR_VALUE type, so skip
5221 		 * type checking.
5222 		 */
5223 		goto skip_type_check;
5224 
5225 	err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
5226 	if (err)
5227 		return err;
5228 
5229 	if (type == PTR_TO_CTX) {
5230 		err = check_ctx_reg(env, reg, regno);
5231 		if (err < 0)
5232 			return err;
5233 	}
5234 
5235 skip_type_check:
5236 	if (reg->ref_obj_id) {
5237 		if (meta->ref_obj_id) {
5238 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
5239 				regno, reg->ref_obj_id,
5240 				meta->ref_obj_id);
5241 			return -EFAULT;
5242 		}
5243 		meta->ref_obj_id = reg->ref_obj_id;
5244 	}
5245 
5246 	if (arg_type == ARG_CONST_MAP_PTR) {
5247 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
5248 		if (meta->map_ptr) {
5249 			/* Use map_uid (which is unique id of inner map) to reject:
5250 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
5251 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
5252 			 * if (inner_map1 && inner_map2) {
5253 			 *     timer = bpf_map_lookup_elem(inner_map1);
5254 			 *     if (timer)
5255 			 *         // mismatch would have been allowed
5256 			 *         bpf_timer_init(timer, inner_map2);
5257 			 * }
5258 			 *
5259 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
5260 			 */
5261 			if (meta->map_ptr != reg->map_ptr ||
5262 			    meta->map_uid != reg->map_uid) {
5263 				verbose(env,
5264 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
5265 					meta->map_uid, reg->map_uid);
5266 				return -EINVAL;
5267 			}
5268 		}
5269 		meta->map_ptr = reg->map_ptr;
5270 		meta->map_uid = reg->map_uid;
5271 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
5272 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
5273 		 * check that [key, key + map->key_size) are within
5274 		 * stack limits and initialized
5275 		 */
5276 		if (!meta->map_ptr) {
5277 			/* in function declaration map_ptr must come before
5278 			 * map_key, so that it's verified and known before
5279 			 * we have to check map_key here. Otherwise it means
5280 			 * that kernel subsystem misconfigured verifier
5281 			 */
5282 			verbose(env, "invalid map_ptr to access map->key\n");
5283 			return -EACCES;
5284 		}
5285 		err = check_helper_mem_access(env, regno,
5286 					      meta->map_ptr->key_size, false,
5287 					      NULL);
5288 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
5289 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
5290 		    !register_is_null(reg)) ||
5291 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
5292 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
5293 		 * check [value, value + map->value_size) validity
5294 		 */
5295 		if (!meta->map_ptr) {
5296 			/* kernel subsystem misconfigured verifier */
5297 			verbose(env, "invalid map_ptr to access map->value\n");
5298 			return -EACCES;
5299 		}
5300 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
5301 		err = check_helper_mem_access(env, regno,
5302 					      meta->map_ptr->value_size, false,
5303 					      meta);
5304 	} else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
5305 		if (!reg->btf_id) {
5306 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
5307 			return -EACCES;
5308 		}
5309 		meta->ret_btf = reg->btf;
5310 		meta->ret_btf_id = reg->btf_id;
5311 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
5312 		if (meta->func_id == BPF_FUNC_spin_lock) {
5313 			if (process_spin_lock(env, regno, true))
5314 				return -EACCES;
5315 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
5316 			if (process_spin_lock(env, regno, false))
5317 				return -EACCES;
5318 		} else {
5319 			verbose(env, "verifier internal error\n");
5320 			return -EFAULT;
5321 		}
5322 	} else if (arg_type == ARG_PTR_TO_TIMER) {
5323 		if (process_timer_func(env, regno, meta))
5324 			return -EACCES;
5325 	} else if (arg_type == ARG_PTR_TO_FUNC) {
5326 		meta->subprogno = reg->subprogno;
5327 	} else if (arg_type_is_mem_ptr(arg_type)) {
5328 		/* The access to this pointer is only checked when we hit the
5329 		 * next is_mem_size argument below.
5330 		 */
5331 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
5332 	} else if (arg_type_is_mem_size(arg_type)) {
5333 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
5334 
5335 		/* This is used to refine r0 return value bounds for helpers
5336 		 * that enforce this value as an upper bound on return values.
5337 		 * See do_refine_retval_range() for helpers that can refine
5338 		 * the return value. C type of helper is u32 so we pull register
5339 		 * bound from umax_value however, if negative verifier errors
5340 		 * out. Only upper bounds can be learned because retval is an
5341 		 * int type and negative retvals are allowed.
5342 		 */
5343 		meta->msize_max_value = reg->umax_value;
5344 
5345 		/* The register is SCALAR_VALUE; the access check
5346 		 * happens using its boundaries.
5347 		 */
5348 		if (!tnum_is_const(reg->var_off))
5349 			/* For unprivileged variable accesses, disable raw
5350 			 * mode so that the program is required to
5351 			 * initialize all the memory that the helper could
5352 			 * just partially fill up.
5353 			 */
5354 			meta = NULL;
5355 
5356 		if (reg->smin_value < 0) {
5357 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5358 				regno);
5359 			return -EACCES;
5360 		}
5361 
5362 		if (reg->umin_value == 0) {
5363 			err = check_helper_mem_access(env, regno - 1, 0,
5364 						      zero_size_allowed,
5365 						      meta);
5366 			if (err)
5367 				return err;
5368 		}
5369 
5370 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5371 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5372 				regno);
5373 			return -EACCES;
5374 		}
5375 		err = check_helper_mem_access(env, regno - 1,
5376 					      reg->umax_value,
5377 					      zero_size_allowed, meta);
5378 		if (!err)
5379 			err = mark_chain_precision(env, regno);
5380 	} else if (arg_type_is_alloc_size(arg_type)) {
5381 		if (!tnum_is_const(reg->var_off)) {
5382 			verbose(env, "R%d is not a known constant'\n",
5383 				regno);
5384 			return -EACCES;
5385 		}
5386 		meta->mem_size = reg->var_off.value;
5387 	} else if (arg_type_is_int_ptr(arg_type)) {
5388 		int size = int_ptr_type_to_size(arg_type);
5389 
5390 		err = check_helper_mem_access(env, regno, size, false, meta);
5391 		if (err)
5392 			return err;
5393 		err = check_ptr_alignment(env, reg, 0, size, true);
5394 	} else if (arg_type == ARG_PTR_TO_CONST_STR) {
5395 		struct bpf_map *map = reg->map_ptr;
5396 		int map_off;
5397 		u64 map_addr;
5398 		char *str_ptr;
5399 
5400 		if (!bpf_map_is_rdonly(map)) {
5401 			verbose(env, "R%d does not point to a readonly map'\n", regno);
5402 			return -EACCES;
5403 		}
5404 
5405 		if (!tnum_is_const(reg->var_off)) {
5406 			verbose(env, "R%d is not a constant address'\n", regno);
5407 			return -EACCES;
5408 		}
5409 
5410 		if (!map->ops->map_direct_value_addr) {
5411 			verbose(env, "no direct value access support for this map type\n");
5412 			return -EACCES;
5413 		}
5414 
5415 		err = check_map_access(env, regno, reg->off,
5416 				       map->value_size - reg->off, false);
5417 		if (err)
5418 			return err;
5419 
5420 		map_off = reg->off + reg->var_off.value;
5421 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
5422 		if (err) {
5423 			verbose(env, "direct value access on string failed\n");
5424 			return err;
5425 		}
5426 
5427 		str_ptr = (char *)(long)(map_addr);
5428 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
5429 			verbose(env, "string is not zero-terminated\n");
5430 			return -EINVAL;
5431 		}
5432 	}
5433 
5434 	return err;
5435 }
5436 
5437 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
5438 {
5439 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
5440 	enum bpf_prog_type type = resolve_prog_type(env->prog);
5441 
5442 	if (func_id != BPF_FUNC_map_update_elem)
5443 		return false;
5444 
5445 	/* It's not possible to get access to a locked struct sock in these
5446 	 * contexts, so updating is safe.
5447 	 */
5448 	switch (type) {
5449 	case BPF_PROG_TYPE_TRACING:
5450 		if (eatype == BPF_TRACE_ITER)
5451 			return true;
5452 		break;
5453 	case BPF_PROG_TYPE_SOCKET_FILTER:
5454 	case BPF_PROG_TYPE_SCHED_CLS:
5455 	case BPF_PROG_TYPE_SCHED_ACT:
5456 	case BPF_PROG_TYPE_XDP:
5457 	case BPF_PROG_TYPE_SK_REUSEPORT:
5458 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5459 	case BPF_PROG_TYPE_SK_LOOKUP:
5460 		return true;
5461 	default:
5462 		break;
5463 	}
5464 
5465 	verbose(env, "cannot update sockmap in this context\n");
5466 	return false;
5467 }
5468 
5469 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
5470 {
5471 	return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
5472 }
5473 
5474 static int check_map_func_compatibility(struct bpf_verifier_env *env,
5475 					struct bpf_map *map, int func_id)
5476 {
5477 	if (!map)
5478 		return 0;
5479 
5480 	/* We need a two way check, first is from map perspective ... */
5481 	switch (map->map_type) {
5482 	case BPF_MAP_TYPE_PROG_ARRAY:
5483 		if (func_id != BPF_FUNC_tail_call)
5484 			goto error;
5485 		break;
5486 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5487 		if (func_id != BPF_FUNC_perf_event_read &&
5488 		    func_id != BPF_FUNC_perf_event_output &&
5489 		    func_id != BPF_FUNC_skb_output &&
5490 		    func_id != BPF_FUNC_perf_event_read_value &&
5491 		    func_id != BPF_FUNC_xdp_output)
5492 			goto error;
5493 		break;
5494 	case BPF_MAP_TYPE_RINGBUF:
5495 		if (func_id != BPF_FUNC_ringbuf_output &&
5496 		    func_id != BPF_FUNC_ringbuf_reserve &&
5497 		    func_id != BPF_FUNC_ringbuf_query)
5498 			goto error;
5499 		break;
5500 	case BPF_MAP_TYPE_STACK_TRACE:
5501 		if (func_id != BPF_FUNC_get_stackid)
5502 			goto error;
5503 		break;
5504 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5505 		if (func_id != BPF_FUNC_skb_under_cgroup &&
5506 		    func_id != BPF_FUNC_current_task_under_cgroup)
5507 			goto error;
5508 		break;
5509 	case BPF_MAP_TYPE_CGROUP_STORAGE:
5510 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
5511 		if (func_id != BPF_FUNC_get_local_storage)
5512 			goto error;
5513 		break;
5514 	case BPF_MAP_TYPE_DEVMAP:
5515 	case BPF_MAP_TYPE_DEVMAP_HASH:
5516 		if (func_id != BPF_FUNC_redirect_map &&
5517 		    func_id != BPF_FUNC_map_lookup_elem)
5518 			goto error;
5519 		break;
5520 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
5521 	 * appear.
5522 	 */
5523 	case BPF_MAP_TYPE_CPUMAP:
5524 		if (func_id != BPF_FUNC_redirect_map)
5525 			goto error;
5526 		break;
5527 	case BPF_MAP_TYPE_XSKMAP:
5528 		if (func_id != BPF_FUNC_redirect_map &&
5529 		    func_id != BPF_FUNC_map_lookup_elem)
5530 			goto error;
5531 		break;
5532 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5533 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5534 		if (func_id != BPF_FUNC_map_lookup_elem)
5535 			goto error;
5536 		break;
5537 	case BPF_MAP_TYPE_SOCKMAP:
5538 		if (func_id != BPF_FUNC_sk_redirect_map &&
5539 		    func_id != BPF_FUNC_sock_map_update &&
5540 		    func_id != BPF_FUNC_map_delete_elem &&
5541 		    func_id != BPF_FUNC_msg_redirect_map &&
5542 		    func_id != BPF_FUNC_sk_select_reuseport &&
5543 		    func_id != BPF_FUNC_map_lookup_elem &&
5544 		    !may_update_sockmap(env, func_id))
5545 			goto error;
5546 		break;
5547 	case BPF_MAP_TYPE_SOCKHASH:
5548 		if (func_id != BPF_FUNC_sk_redirect_hash &&
5549 		    func_id != BPF_FUNC_sock_hash_update &&
5550 		    func_id != BPF_FUNC_map_delete_elem &&
5551 		    func_id != BPF_FUNC_msg_redirect_hash &&
5552 		    func_id != BPF_FUNC_sk_select_reuseport &&
5553 		    func_id != BPF_FUNC_map_lookup_elem &&
5554 		    !may_update_sockmap(env, func_id))
5555 			goto error;
5556 		break;
5557 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5558 		if (func_id != BPF_FUNC_sk_select_reuseport)
5559 			goto error;
5560 		break;
5561 	case BPF_MAP_TYPE_QUEUE:
5562 	case BPF_MAP_TYPE_STACK:
5563 		if (func_id != BPF_FUNC_map_peek_elem &&
5564 		    func_id != BPF_FUNC_map_pop_elem &&
5565 		    func_id != BPF_FUNC_map_push_elem)
5566 			goto error;
5567 		break;
5568 	case BPF_MAP_TYPE_SK_STORAGE:
5569 		if (func_id != BPF_FUNC_sk_storage_get &&
5570 		    func_id != BPF_FUNC_sk_storage_delete)
5571 			goto error;
5572 		break;
5573 	case BPF_MAP_TYPE_INODE_STORAGE:
5574 		if (func_id != BPF_FUNC_inode_storage_get &&
5575 		    func_id != BPF_FUNC_inode_storage_delete)
5576 			goto error;
5577 		break;
5578 	case BPF_MAP_TYPE_TASK_STORAGE:
5579 		if (func_id != BPF_FUNC_task_storage_get &&
5580 		    func_id != BPF_FUNC_task_storage_delete)
5581 			goto error;
5582 		break;
5583 	case BPF_MAP_TYPE_BLOOM_FILTER:
5584 		if (func_id != BPF_FUNC_map_peek_elem &&
5585 		    func_id != BPF_FUNC_map_push_elem)
5586 			goto error;
5587 		break;
5588 	default:
5589 		break;
5590 	}
5591 
5592 	/* ... and second from the function itself. */
5593 	switch (func_id) {
5594 	case BPF_FUNC_tail_call:
5595 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5596 			goto error;
5597 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5598 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
5599 			return -EINVAL;
5600 		}
5601 		break;
5602 	case BPF_FUNC_perf_event_read:
5603 	case BPF_FUNC_perf_event_output:
5604 	case BPF_FUNC_perf_event_read_value:
5605 	case BPF_FUNC_skb_output:
5606 	case BPF_FUNC_xdp_output:
5607 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5608 			goto error;
5609 		break;
5610 	case BPF_FUNC_ringbuf_output:
5611 	case BPF_FUNC_ringbuf_reserve:
5612 	case BPF_FUNC_ringbuf_query:
5613 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
5614 			goto error;
5615 		break;
5616 	case BPF_FUNC_get_stackid:
5617 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5618 			goto error;
5619 		break;
5620 	case BPF_FUNC_current_task_under_cgroup:
5621 	case BPF_FUNC_skb_under_cgroup:
5622 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5623 			goto error;
5624 		break;
5625 	case BPF_FUNC_redirect_map:
5626 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
5627 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
5628 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
5629 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
5630 			goto error;
5631 		break;
5632 	case BPF_FUNC_sk_redirect_map:
5633 	case BPF_FUNC_msg_redirect_map:
5634 	case BPF_FUNC_sock_map_update:
5635 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5636 			goto error;
5637 		break;
5638 	case BPF_FUNC_sk_redirect_hash:
5639 	case BPF_FUNC_msg_redirect_hash:
5640 	case BPF_FUNC_sock_hash_update:
5641 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
5642 			goto error;
5643 		break;
5644 	case BPF_FUNC_get_local_storage:
5645 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5646 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
5647 			goto error;
5648 		break;
5649 	case BPF_FUNC_sk_select_reuseport:
5650 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5651 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5652 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
5653 			goto error;
5654 		break;
5655 	case BPF_FUNC_map_pop_elem:
5656 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5657 		    map->map_type != BPF_MAP_TYPE_STACK)
5658 			goto error;
5659 		break;
5660 	case BPF_FUNC_map_peek_elem:
5661 	case BPF_FUNC_map_push_elem:
5662 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5663 		    map->map_type != BPF_MAP_TYPE_STACK &&
5664 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
5665 			goto error;
5666 		break;
5667 	case BPF_FUNC_sk_storage_get:
5668 	case BPF_FUNC_sk_storage_delete:
5669 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5670 			goto error;
5671 		break;
5672 	case BPF_FUNC_inode_storage_get:
5673 	case BPF_FUNC_inode_storage_delete:
5674 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5675 			goto error;
5676 		break;
5677 	case BPF_FUNC_task_storage_get:
5678 	case BPF_FUNC_task_storage_delete:
5679 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5680 			goto error;
5681 		break;
5682 	default:
5683 		break;
5684 	}
5685 
5686 	return 0;
5687 error:
5688 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
5689 		map->map_type, func_id_name(func_id), func_id);
5690 	return -EINVAL;
5691 }
5692 
5693 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5694 {
5695 	int count = 0;
5696 
5697 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5698 		count++;
5699 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5700 		count++;
5701 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5702 		count++;
5703 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5704 		count++;
5705 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5706 		count++;
5707 
5708 	/* We only support one arg being in raw mode at the moment,
5709 	 * which is sufficient for the helper functions we have
5710 	 * right now.
5711 	 */
5712 	return count <= 1;
5713 }
5714 
5715 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5716 				    enum bpf_arg_type arg_next)
5717 {
5718 	return (arg_type_is_mem_ptr(arg_curr) &&
5719 	        !arg_type_is_mem_size(arg_next)) ||
5720 	       (!arg_type_is_mem_ptr(arg_curr) &&
5721 		arg_type_is_mem_size(arg_next));
5722 }
5723 
5724 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5725 {
5726 	/* bpf_xxx(..., buf, len) call will access 'len'
5727 	 * bytes from memory 'buf'. Both arg types need
5728 	 * to be paired, so make sure there's no buggy
5729 	 * helper function specification.
5730 	 */
5731 	if (arg_type_is_mem_size(fn->arg1_type) ||
5732 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
5733 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5734 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5735 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5736 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5737 		return false;
5738 
5739 	return true;
5740 }
5741 
5742 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5743 {
5744 	int count = 0;
5745 
5746 	if (arg_type_may_be_refcounted(fn->arg1_type))
5747 		count++;
5748 	if (arg_type_may_be_refcounted(fn->arg2_type))
5749 		count++;
5750 	if (arg_type_may_be_refcounted(fn->arg3_type))
5751 		count++;
5752 	if (arg_type_may_be_refcounted(fn->arg4_type))
5753 		count++;
5754 	if (arg_type_may_be_refcounted(fn->arg5_type))
5755 		count++;
5756 
5757 	/* A reference acquiring function cannot acquire
5758 	 * another refcounted ptr.
5759 	 */
5760 	if (may_be_acquire_function(func_id) && count)
5761 		return false;
5762 
5763 	/* We only support one arg being unreferenced at the moment,
5764 	 * which is sufficient for the helper functions we have right now.
5765 	 */
5766 	return count <= 1;
5767 }
5768 
5769 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5770 {
5771 	int i;
5772 
5773 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5774 		if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5775 			return false;
5776 
5777 		if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5778 			return false;
5779 	}
5780 
5781 	return true;
5782 }
5783 
5784 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5785 {
5786 	return check_raw_mode_ok(fn) &&
5787 	       check_arg_pair_ok(fn) &&
5788 	       check_btf_id_ok(fn) &&
5789 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5790 }
5791 
5792 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5793  * are now invalid, so turn them into unknown SCALAR_VALUE.
5794  */
5795 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5796 				     struct bpf_func_state *state)
5797 {
5798 	struct bpf_reg_state *regs = state->regs, *reg;
5799 	int i;
5800 
5801 	for (i = 0; i < MAX_BPF_REG; i++)
5802 		if (reg_is_pkt_pointer_any(&regs[i]))
5803 			mark_reg_unknown(env, regs, i);
5804 
5805 	bpf_for_each_spilled_reg(i, state, reg) {
5806 		if (!reg)
5807 			continue;
5808 		if (reg_is_pkt_pointer_any(reg))
5809 			__mark_reg_unknown(env, reg);
5810 	}
5811 }
5812 
5813 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5814 {
5815 	struct bpf_verifier_state *vstate = env->cur_state;
5816 	int i;
5817 
5818 	for (i = 0; i <= vstate->curframe; i++)
5819 		__clear_all_pkt_pointers(env, vstate->frame[i]);
5820 }
5821 
5822 enum {
5823 	AT_PKT_END = -1,
5824 	BEYOND_PKT_END = -2,
5825 };
5826 
5827 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5828 {
5829 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5830 	struct bpf_reg_state *reg = &state->regs[regn];
5831 
5832 	if (reg->type != PTR_TO_PACKET)
5833 		/* PTR_TO_PACKET_META is not supported yet */
5834 		return;
5835 
5836 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5837 	 * How far beyond pkt_end it goes is unknown.
5838 	 * if (!range_open) it's the case of pkt >= pkt_end
5839 	 * if (range_open) it's the case of pkt > pkt_end
5840 	 * hence this pointer is at least 1 byte bigger than pkt_end
5841 	 */
5842 	if (range_open)
5843 		reg->range = BEYOND_PKT_END;
5844 	else
5845 		reg->range = AT_PKT_END;
5846 }
5847 
5848 static void release_reg_references(struct bpf_verifier_env *env,
5849 				   struct bpf_func_state *state,
5850 				   int ref_obj_id)
5851 {
5852 	struct bpf_reg_state *regs = state->regs, *reg;
5853 	int i;
5854 
5855 	for (i = 0; i < MAX_BPF_REG; i++)
5856 		if (regs[i].ref_obj_id == ref_obj_id)
5857 			mark_reg_unknown(env, regs, i);
5858 
5859 	bpf_for_each_spilled_reg(i, state, reg) {
5860 		if (!reg)
5861 			continue;
5862 		if (reg->ref_obj_id == ref_obj_id)
5863 			__mark_reg_unknown(env, reg);
5864 	}
5865 }
5866 
5867 /* The pointer with the specified id has released its reference to kernel
5868  * resources. Identify all copies of the same pointer and clear the reference.
5869  */
5870 static int release_reference(struct bpf_verifier_env *env,
5871 			     int ref_obj_id)
5872 {
5873 	struct bpf_verifier_state *vstate = env->cur_state;
5874 	int err;
5875 	int i;
5876 
5877 	err = release_reference_state(cur_func(env), ref_obj_id);
5878 	if (err)
5879 		return err;
5880 
5881 	for (i = 0; i <= vstate->curframe; i++)
5882 		release_reg_references(env, vstate->frame[i], ref_obj_id);
5883 
5884 	return 0;
5885 }
5886 
5887 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5888 				    struct bpf_reg_state *regs)
5889 {
5890 	int i;
5891 
5892 	/* after the call registers r0 - r5 were scratched */
5893 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5894 		mark_reg_not_init(env, regs, caller_saved[i]);
5895 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5896 	}
5897 }
5898 
5899 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5900 				   struct bpf_func_state *caller,
5901 				   struct bpf_func_state *callee,
5902 				   int insn_idx);
5903 
5904 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5905 			     int *insn_idx, int subprog,
5906 			     set_callee_state_fn set_callee_state_cb)
5907 {
5908 	struct bpf_verifier_state *state = env->cur_state;
5909 	struct bpf_func_info_aux *func_info_aux;
5910 	struct bpf_func_state *caller, *callee;
5911 	int err;
5912 	bool is_global = false;
5913 
5914 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5915 		verbose(env, "the call stack of %d frames is too deep\n",
5916 			state->curframe + 2);
5917 		return -E2BIG;
5918 	}
5919 
5920 	caller = state->frame[state->curframe];
5921 	if (state->frame[state->curframe + 1]) {
5922 		verbose(env, "verifier bug. Frame %d already allocated\n",
5923 			state->curframe + 1);
5924 		return -EFAULT;
5925 	}
5926 
5927 	func_info_aux = env->prog->aux->func_info_aux;
5928 	if (func_info_aux)
5929 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5930 	err = btf_check_subprog_arg_match(env, subprog, caller->regs);
5931 	if (err == -EFAULT)
5932 		return err;
5933 	if (is_global) {
5934 		if (err) {
5935 			verbose(env, "Caller passes invalid args into func#%d\n",
5936 				subprog);
5937 			return err;
5938 		} else {
5939 			if (env->log.level & BPF_LOG_LEVEL)
5940 				verbose(env,
5941 					"Func#%d is global and valid. Skipping.\n",
5942 					subprog);
5943 			clear_caller_saved_regs(env, caller->regs);
5944 
5945 			/* All global functions return a 64-bit SCALAR_VALUE */
5946 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
5947 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5948 
5949 			/* continue with next insn after call */
5950 			return 0;
5951 		}
5952 	}
5953 
5954 	if (insn->code == (BPF_JMP | BPF_CALL) &&
5955 	    insn->imm == BPF_FUNC_timer_set_callback) {
5956 		struct bpf_verifier_state *async_cb;
5957 
5958 		/* there is no real recursion here. timer callbacks are async */
5959 		env->subprog_info[subprog].is_async_cb = true;
5960 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
5961 					 *insn_idx, subprog);
5962 		if (!async_cb)
5963 			return -EFAULT;
5964 		callee = async_cb->frame[0];
5965 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
5966 
5967 		/* Convert bpf_timer_set_callback() args into timer callback args */
5968 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
5969 		if (err)
5970 			return err;
5971 
5972 		clear_caller_saved_regs(env, caller->regs);
5973 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
5974 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5975 		/* continue with next insn after call */
5976 		return 0;
5977 	}
5978 
5979 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5980 	if (!callee)
5981 		return -ENOMEM;
5982 	state->frame[state->curframe + 1] = callee;
5983 
5984 	/* callee cannot access r0, r6 - r9 for reading and has to write
5985 	 * into its own stack before reading from it.
5986 	 * callee can read/write into caller's stack
5987 	 */
5988 	init_func_state(env, callee,
5989 			/* remember the callsite, it will be used by bpf_exit */
5990 			*insn_idx /* callsite */,
5991 			state->curframe + 1 /* frameno within this callchain */,
5992 			subprog /* subprog number within this prog */);
5993 
5994 	/* Transfer references to the callee */
5995 	err = copy_reference_state(callee, caller);
5996 	if (err)
5997 		return err;
5998 
5999 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
6000 	if (err)
6001 		return err;
6002 
6003 	clear_caller_saved_regs(env, caller->regs);
6004 
6005 	/* only increment it after check_reg_arg() finished */
6006 	state->curframe++;
6007 
6008 	/* and go analyze first insn of the callee */
6009 	*insn_idx = env->subprog_info[subprog].start - 1;
6010 
6011 	if (env->log.level & BPF_LOG_LEVEL) {
6012 		verbose(env, "caller:\n");
6013 		print_verifier_state(env, caller);
6014 		verbose(env, "callee:\n");
6015 		print_verifier_state(env, callee);
6016 	}
6017 	return 0;
6018 }
6019 
6020 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
6021 				   struct bpf_func_state *caller,
6022 				   struct bpf_func_state *callee)
6023 {
6024 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
6025 	 *      void *callback_ctx, u64 flags);
6026 	 * callback_fn(struct bpf_map *map, void *key, void *value,
6027 	 *      void *callback_ctx);
6028 	 */
6029 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6030 
6031 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6032 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6033 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6034 
6035 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6036 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6037 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6038 
6039 	/* pointer to stack or null */
6040 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
6041 
6042 	/* unused */
6043 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6044 	return 0;
6045 }
6046 
6047 static int set_callee_state(struct bpf_verifier_env *env,
6048 			    struct bpf_func_state *caller,
6049 			    struct bpf_func_state *callee, int insn_idx)
6050 {
6051 	int i;
6052 
6053 	/* copy r1 - r5 args that callee can access.  The copy includes parent
6054 	 * pointers, which connects us up to the liveness chain
6055 	 */
6056 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
6057 		callee->regs[i] = caller->regs[i];
6058 	return 0;
6059 }
6060 
6061 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6062 			   int *insn_idx)
6063 {
6064 	int subprog, target_insn;
6065 
6066 	target_insn = *insn_idx + insn->imm + 1;
6067 	subprog = find_subprog(env, target_insn);
6068 	if (subprog < 0) {
6069 		verbose(env, "verifier bug. No program starts at insn %d\n",
6070 			target_insn);
6071 		return -EFAULT;
6072 	}
6073 
6074 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
6075 }
6076 
6077 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
6078 				       struct bpf_func_state *caller,
6079 				       struct bpf_func_state *callee,
6080 				       int insn_idx)
6081 {
6082 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
6083 	struct bpf_map *map;
6084 	int err;
6085 
6086 	if (bpf_map_ptr_poisoned(insn_aux)) {
6087 		verbose(env, "tail_call abusing map_ptr\n");
6088 		return -EINVAL;
6089 	}
6090 
6091 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
6092 	if (!map->ops->map_set_for_each_callback_args ||
6093 	    !map->ops->map_for_each_callback) {
6094 		verbose(env, "callback function not allowed for map\n");
6095 		return -ENOTSUPP;
6096 	}
6097 
6098 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
6099 	if (err)
6100 		return err;
6101 
6102 	callee->in_callback_fn = true;
6103 	return 0;
6104 }
6105 
6106 static int set_loop_callback_state(struct bpf_verifier_env *env,
6107 				   struct bpf_func_state *caller,
6108 				   struct bpf_func_state *callee,
6109 				   int insn_idx)
6110 {
6111 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
6112 	 *	    u64 flags);
6113 	 * callback_fn(u32 index, void *callback_ctx);
6114 	 */
6115 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
6116 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
6117 
6118 	/* unused */
6119 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
6120 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6121 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6122 
6123 	callee->in_callback_fn = true;
6124 	return 0;
6125 }
6126 
6127 static int set_timer_callback_state(struct bpf_verifier_env *env,
6128 				    struct bpf_func_state *caller,
6129 				    struct bpf_func_state *callee,
6130 				    int insn_idx)
6131 {
6132 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
6133 
6134 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
6135 	 * callback_fn(struct bpf_map *map, void *key, void *value);
6136 	 */
6137 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
6138 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
6139 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
6140 
6141 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6142 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6143 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
6144 
6145 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6146 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6147 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
6148 
6149 	/* unused */
6150 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6151 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6152 	callee->in_async_callback_fn = true;
6153 	return 0;
6154 }
6155 
6156 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
6157 				       struct bpf_func_state *caller,
6158 				       struct bpf_func_state *callee,
6159 				       int insn_idx)
6160 {
6161 	/* bpf_find_vma(struct task_struct *task, u64 addr,
6162 	 *               void *callback_fn, void *callback_ctx, u64 flags)
6163 	 * (callback_fn)(struct task_struct *task,
6164 	 *               struct vm_area_struct *vma, void *callback_ctx);
6165 	 */
6166 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6167 
6168 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
6169 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6170 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
6171 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
6172 
6173 	/* pointer to stack or null */
6174 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
6175 
6176 	/* unused */
6177 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6178 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6179 	callee->in_callback_fn = true;
6180 	return 0;
6181 }
6182 
6183 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
6184 {
6185 	struct bpf_verifier_state *state = env->cur_state;
6186 	struct bpf_func_state *caller, *callee;
6187 	struct bpf_reg_state *r0;
6188 	int err;
6189 
6190 	callee = state->frame[state->curframe];
6191 	r0 = &callee->regs[BPF_REG_0];
6192 	if (r0->type == PTR_TO_STACK) {
6193 		/* technically it's ok to return caller's stack pointer
6194 		 * (or caller's caller's pointer) back to the caller,
6195 		 * since these pointers are valid. Only current stack
6196 		 * pointer will be invalid as soon as function exits,
6197 		 * but let's be conservative
6198 		 */
6199 		verbose(env, "cannot return stack pointer to the caller\n");
6200 		return -EINVAL;
6201 	}
6202 
6203 	state->curframe--;
6204 	caller = state->frame[state->curframe];
6205 	if (callee->in_callback_fn) {
6206 		/* enforce R0 return value range [0, 1]. */
6207 		struct tnum range = tnum_range(0, 1);
6208 
6209 		if (r0->type != SCALAR_VALUE) {
6210 			verbose(env, "R0 not a scalar value\n");
6211 			return -EACCES;
6212 		}
6213 		if (!tnum_in(range, r0->var_off)) {
6214 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
6215 			return -EINVAL;
6216 		}
6217 	} else {
6218 		/* return to the caller whatever r0 had in the callee */
6219 		caller->regs[BPF_REG_0] = *r0;
6220 	}
6221 
6222 	/* Transfer references to the caller */
6223 	err = copy_reference_state(caller, callee);
6224 	if (err)
6225 		return err;
6226 
6227 	*insn_idx = callee->callsite + 1;
6228 	if (env->log.level & BPF_LOG_LEVEL) {
6229 		verbose(env, "returning from callee:\n");
6230 		print_verifier_state(env, callee);
6231 		verbose(env, "to caller at %d:\n", *insn_idx);
6232 		print_verifier_state(env, caller);
6233 	}
6234 	/* clear everything in the callee */
6235 	free_func_state(callee);
6236 	state->frame[state->curframe + 1] = NULL;
6237 	return 0;
6238 }
6239 
6240 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
6241 				   int func_id,
6242 				   struct bpf_call_arg_meta *meta)
6243 {
6244 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
6245 
6246 	if (ret_type != RET_INTEGER ||
6247 	    (func_id != BPF_FUNC_get_stack &&
6248 	     func_id != BPF_FUNC_get_task_stack &&
6249 	     func_id != BPF_FUNC_probe_read_str &&
6250 	     func_id != BPF_FUNC_probe_read_kernel_str &&
6251 	     func_id != BPF_FUNC_probe_read_user_str))
6252 		return;
6253 
6254 	ret_reg->smax_value = meta->msize_max_value;
6255 	ret_reg->s32_max_value = meta->msize_max_value;
6256 	ret_reg->smin_value = -MAX_ERRNO;
6257 	ret_reg->s32_min_value = -MAX_ERRNO;
6258 	__reg_deduce_bounds(ret_reg);
6259 	__reg_bound_offset(ret_reg);
6260 	__update_reg_bounds(ret_reg);
6261 }
6262 
6263 static int
6264 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6265 		int func_id, int insn_idx)
6266 {
6267 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6268 	struct bpf_map *map = meta->map_ptr;
6269 
6270 	if (func_id != BPF_FUNC_tail_call &&
6271 	    func_id != BPF_FUNC_map_lookup_elem &&
6272 	    func_id != BPF_FUNC_map_update_elem &&
6273 	    func_id != BPF_FUNC_map_delete_elem &&
6274 	    func_id != BPF_FUNC_map_push_elem &&
6275 	    func_id != BPF_FUNC_map_pop_elem &&
6276 	    func_id != BPF_FUNC_map_peek_elem &&
6277 	    func_id != BPF_FUNC_for_each_map_elem &&
6278 	    func_id != BPF_FUNC_redirect_map)
6279 		return 0;
6280 
6281 	if (map == NULL) {
6282 		verbose(env, "kernel subsystem misconfigured verifier\n");
6283 		return -EINVAL;
6284 	}
6285 
6286 	/* In case of read-only, some additional restrictions
6287 	 * need to be applied in order to prevent altering the
6288 	 * state of the map from program side.
6289 	 */
6290 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
6291 	    (func_id == BPF_FUNC_map_delete_elem ||
6292 	     func_id == BPF_FUNC_map_update_elem ||
6293 	     func_id == BPF_FUNC_map_push_elem ||
6294 	     func_id == BPF_FUNC_map_pop_elem)) {
6295 		verbose(env, "write into map forbidden\n");
6296 		return -EACCES;
6297 	}
6298 
6299 	if (!BPF_MAP_PTR(aux->map_ptr_state))
6300 		bpf_map_ptr_store(aux, meta->map_ptr,
6301 				  !meta->map_ptr->bypass_spec_v1);
6302 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
6303 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
6304 				  !meta->map_ptr->bypass_spec_v1);
6305 	return 0;
6306 }
6307 
6308 static int
6309 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6310 		int func_id, int insn_idx)
6311 {
6312 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6313 	struct bpf_reg_state *regs = cur_regs(env), *reg;
6314 	struct bpf_map *map = meta->map_ptr;
6315 	struct tnum range;
6316 	u64 val;
6317 	int err;
6318 
6319 	if (func_id != BPF_FUNC_tail_call)
6320 		return 0;
6321 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
6322 		verbose(env, "kernel subsystem misconfigured verifier\n");
6323 		return -EINVAL;
6324 	}
6325 
6326 	range = tnum_range(0, map->max_entries - 1);
6327 	reg = &regs[BPF_REG_3];
6328 
6329 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
6330 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6331 		return 0;
6332 	}
6333 
6334 	err = mark_chain_precision(env, BPF_REG_3);
6335 	if (err)
6336 		return err;
6337 
6338 	val = reg->var_off.value;
6339 	if (bpf_map_key_unseen(aux))
6340 		bpf_map_key_store(aux, val);
6341 	else if (!bpf_map_key_poisoned(aux) &&
6342 		  bpf_map_key_immediate(aux) != val)
6343 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6344 	return 0;
6345 }
6346 
6347 static int check_reference_leak(struct bpf_verifier_env *env)
6348 {
6349 	struct bpf_func_state *state = cur_func(env);
6350 	int i;
6351 
6352 	for (i = 0; i < state->acquired_refs; i++) {
6353 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
6354 			state->refs[i].id, state->refs[i].insn_idx);
6355 	}
6356 	return state->acquired_refs ? -EINVAL : 0;
6357 }
6358 
6359 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
6360 				   struct bpf_reg_state *regs)
6361 {
6362 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
6363 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
6364 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
6365 	int err, fmt_map_off, num_args;
6366 	u64 fmt_addr;
6367 	char *fmt;
6368 
6369 	/* data must be an array of u64 */
6370 	if (data_len_reg->var_off.value % 8)
6371 		return -EINVAL;
6372 	num_args = data_len_reg->var_off.value / 8;
6373 
6374 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
6375 	 * and map_direct_value_addr is set.
6376 	 */
6377 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
6378 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
6379 						  fmt_map_off);
6380 	if (err) {
6381 		verbose(env, "verifier bug\n");
6382 		return -EFAULT;
6383 	}
6384 	fmt = (char *)(long)fmt_addr + fmt_map_off;
6385 
6386 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
6387 	 * can focus on validating the format specifiers.
6388 	 */
6389 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
6390 	if (err < 0)
6391 		verbose(env, "Invalid format string\n");
6392 
6393 	return err;
6394 }
6395 
6396 static int check_get_func_ip(struct bpf_verifier_env *env)
6397 {
6398 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
6399 	enum bpf_prog_type type = resolve_prog_type(env->prog);
6400 	int func_id = BPF_FUNC_get_func_ip;
6401 
6402 	if (type == BPF_PROG_TYPE_TRACING) {
6403 		if (eatype != BPF_TRACE_FENTRY && eatype != BPF_TRACE_FEXIT &&
6404 		    eatype != BPF_MODIFY_RETURN) {
6405 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
6406 				func_id_name(func_id), func_id);
6407 			return -ENOTSUPP;
6408 		}
6409 		return 0;
6410 	} else if (type == BPF_PROG_TYPE_KPROBE) {
6411 		return 0;
6412 	}
6413 
6414 	verbose(env, "func %s#%d not supported for program type %d\n",
6415 		func_id_name(func_id), func_id, type);
6416 	return -ENOTSUPP;
6417 }
6418 
6419 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6420 			     int *insn_idx_p)
6421 {
6422 	const struct bpf_func_proto *fn = NULL;
6423 	struct bpf_reg_state *regs;
6424 	struct bpf_call_arg_meta meta;
6425 	int insn_idx = *insn_idx_p;
6426 	bool changes_data;
6427 	int i, err, func_id;
6428 
6429 	/* find function prototype */
6430 	func_id = insn->imm;
6431 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
6432 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
6433 			func_id);
6434 		return -EINVAL;
6435 	}
6436 
6437 	if (env->ops->get_func_proto)
6438 		fn = env->ops->get_func_proto(func_id, env->prog);
6439 	if (!fn) {
6440 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
6441 			func_id);
6442 		return -EINVAL;
6443 	}
6444 
6445 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
6446 	if (!env->prog->gpl_compatible && fn->gpl_only) {
6447 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
6448 		return -EINVAL;
6449 	}
6450 
6451 	if (fn->allowed && !fn->allowed(env->prog)) {
6452 		verbose(env, "helper call is not allowed in probe\n");
6453 		return -EINVAL;
6454 	}
6455 
6456 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
6457 	changes_data = bpf_helper_changes_pkt_data(fn->func);
6458 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
6459 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
6460 			func_id_name(func_id), func_id);
6461 		return -EINVAL;
6462 	}
6463 
6464 	memset(&meta, 0, sizeof(meta));
6465 	meta.pkt_access = fn->pkt_access;
6466 
6467 	err = check_func_proto(fn, func_id);
6468 	if (err) {
6469 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
6470 			func_id_name(func_id), func_id);
6471 		return err;
6472 	}
6473 
6474 	meta.func_id = func_id;
6475 	/* check args */
6476 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6477 		err = check_func_arg(env, i, &meta, fn);
6478 		if (err)
6479 			return err;
6480 	}
6481 
6482 	err = record_func_map(env, &meta, func_id, insn_idx);
6483 	if (err)
6484 		return err;
6485 
6486 	err = record_func_key(env, &meta, func_id, insn_idx);
6487 	if (err)
6488 		return err;
6489 
6490 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
6491 	 * is inferred from register state.
6492 	 */
6493 	for (i = 0; i < meta.access_size; i++) {
6494 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
6495 				       BPF_WRITE, -1, false);
6496 		if (err)
6497 			return err;
6498 	}
6499 
6500 	if (is_release_function(func_id)) {
6501 		err = release_reference(env, meta.ref_obj_id);
6502 		if (err) {
6503 			verbose(env, "func %s#%d reference has not been acquired before\n",
6504 				func_id_name(func_id), func_id);
6505 			return err;
6506 		}
6507 	}
6508 
6509 	regs = cur_regs(env);
6510 
6511 	switch (func_id) {
6512 	case BPF_FUNC_tail_call:
6513 		err = check_reference_leak(env);
6514 		if (err) {
6515 			verbose(env, "tail_call would lead to reference leak\n");
6516 			return err;
6517 		}
6518 		break;
6519 	case BPF_FUNC_get_local_storage:
6520 		/* check that flags argument in get_local_storage(map, flags) is 0,
6521 		 * this is required because get_local_storage() can't return an error.
6522 		 */
6523 		if (!register_is_null(&regs[BPF_REG_2])) {
6524 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
6525 			return -EINVAL;
6526 		}
6527 		break;
6528 	case BPF_FUNC_for_each_map_elem:
6529 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6530 					set_map_elem_callback_state);
6531 		break;
6532 	case BPF_FUNC_timer_set_callback:
6533 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6534 					set_timer_callback_state);
6535 		break;
6536 	case BPF_FUNC_find_vma:
6537 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6538 					set_find_vma_callback_state);
6539 		break;
6540 	case BPF_FUNC_snprintf:
6541 		err = check_bpf_snprintf_call(env, regs);
6542 		break;
6543 	case BPF_FUNC_loop:
6544 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6545 					set_loop_callback_state);
6546 		break;
6547 	}
6548 
6549 	if (err)
6550 		return err;
6551 
6552 	/* reset caller saved regs */
6553 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6554 		mark_reg_not_init(env, regs, caller_saved[i]);
6555 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6556 	}
6557 
6558 	/* helper call returns 64-bit value. */
6559 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6560 
6561 	/* update return register (already marked as written above) */
6562 	if (fn->ret_type == RET_INTEGER) {
6563 		/* sets type to SCALAR_VALUE */
6564 		mark_reg_unknown(env, regs, BPF_REG_0);
6565 	} else if (fn->ret_type == RET_VOID) {
6566 		regs[BPF_REG_0].type = NOT_INIT;
6567 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
6568 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6569 		/* There is no offset yet applied, variable or fixed */
6570 		mark_reg_known_zero(env, regs, BPF_REG_0);
6571 		/* remember map_ptr, so that check_map_access()
6572 		 * can check 'value_size' boundary of memory access
6573 		 * to map element returned from bpf_map_lookup_elem()
6574 		 */
6575 		if (meta.map_ptr == NULL) {
6576 			verbose(env,
6577 				"kernel subsystem misconfigured verifier\n");
6578 			return -EINVAL;
6579 		}
6580 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
6581 		regs[BPF_REG_0].map_uid = meta.map_uid;
6582 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6583 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
6584 			if (map_value_has_spin_lock(meta.map_ptr))
6585 				regs[BPF_REG_0].id = ++env->id_gen;
6586 		} else {
6587 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
6588 		}
6589 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
6590 		mark_reg_known_zero(env, regs, BPF_REG_0);
6591 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
6592 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
6593 		mark_reg_known_zero(env, regs, BPF_REG_0);
6594 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
6595 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
6596 		mark_reg_known_zero(env, regs, BPF_REG_0);
6597 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
6598 	} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
6599 		mark_reg_known_zero(env, regs, BPF_REG_0);
6600 		regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
6601 		regs[BPF_REG_0].mem_size = meta.mem_size;
6602 	} else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
6603 		   fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
6604 		const struct btf_type *t;
6605 
6606 		mark_reg_known_zero(env, regs, BPF_REG_0);
6607 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
6608 		if (!btf_type_is_struct(t)) {
6609 			u32 tsize;
6610 			const struct btf_type *ret;
6611 			const char *tname;
6612 
6613 			/* resolve the type size of ksym. */
6614 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
6615 			if (IS_ERR(ret)) {
6616 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
6617 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
6618 					tname, PTR_ERR(ret));
6619 				return -EINVAL;
6620 			}
6621 			regs[BPF_REG_0].type =
6622 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6623 				PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
6624 			regs[BPF_REG_0].mem_size = tsize;
6625 		} else {
6626 			regs[BPF_REG_0].type =
6627 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6628 				PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
6629 			regs[BPF_REG_0].btf = meta.ret_btf;
6630 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
6631 		}
6632 	} else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
6633 		   fn->ret_type == RET_PTR_TO_BTF_ID) {
6634 		int ret_btf_id;
6635 
6636 		mark_reg_known_zero(env, regs, BPF_REG_0);
6637 		regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
6638 						     PTR_TO_BTF_ID :
6639 						     PTR_TO_BTF_ID_OR_NULL;
6640 		ret_btf_id = *fn->ret_btf_id;
6641 		if (ret_btf_id == 0) {
6642 			verbose(env, "invalid return type %d of func %s#%d\n",
6643 				fn->ret_type, func_id_name(func_id), func_id);
6644 			return -EINVAL;
6645 		}
6646 		/* current BPF helper definitions are only coming from
6647 		 * built-in code with type IDs from  vmlinux BTF
6648 		 */
6649 		regs[BPF_REG_0].btf = btf_vmlinux;
6650 		regs[BPF_REG_0].btf_id = ret_btf_id;
6651 	} else {
6652 		verbose(env, "unknown return type %d of func %s#%d\n",
6653 			fn->ret_type, func_id_name(func_id), func_id);
6654 		return -EINVAL;
6655 	}
6656 
6657 	if (reg_type_may_be_null(regs[BPF_REG_0].type))
6658 		regs[BPF_REG_0].id = ++env->id_gen;
6659 
6660 	if (is_ptr_cast_function(func_id)) {
6661 		/* For release_reference() */
6662 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
6663 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
6664 		int id = acquire_reference_state(env, insn_idx);
6665 
6666 		if (id < 0)
6667 			return id;
6668 		/* For mark_ptr_or_null_reg() */
6669 		regs[BPF_REG_0].id = id;
6670 		/* For release_reference() */
6671 		regs[BPF_REG_0].ref_obj_id = id;
6672 	}
6673 
6674 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
6675 
6676 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
6677 	if (err)
6678 		return err;
6679 
6680 	if ((func_id == BPF_FUNC_get_stack ||
6681 	     func_id == BPF_FUNC_get_task_stack) &&
6682 	    !env->prog->has_callchain_buf) {
6683 		const char *err_str;
6684 
6685 #ifdef CONFIG_PERF_EVENTS
6686 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
6687 		err_str = "cannot get callchain buffer for func %s#%d\n";
6688 #else
6689 		err = -ENOTSUPP;
6690 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
6691 #endif
6692 		if (err) {
6693 			verbose(env, err_str, func_id_name(func_id), func_id);
6694 			return err;
6695 		}
6696 
6697 		env->prog->has_callchain_buf = true;
6698 	}
6699 
6700 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
6701 		env->prog->call_get_stack = true;
6702 
6703 	if (func_id == BPF_FUNC_get_func_ip) {
6704 		if (check_get_func_ip(env))
6705 			return -ENOTSUPP;
6706 		env->prog->call_get_func_ip = true;
6707 	}
6708 
6709 	if (changes_data)
6710 		clear_all_pkt_pointers(env);
6711 	return 0;
6712 }
6713 
6714 /* mark_btf_func_reg_size() is used when the reg size is determined by
6715  * the BTF func_proto's return value size and argument.
6716  */
6717 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
6718 				   size_t reg_size)
6719 {
6720 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
6721 
6722 	if (regno == BPF_REG_0) {
6723 		/* Function return value */
6724 		reg->live |= REG_LIVE_WRITTEN;
6725 		reg->subreg_def = reg_size == sizeof(u64) ?
6726 			DEF_NOT_SUBREG : env->insn_idx + 1;
6727 	} else {
6728 		/* Function argument */
6729 		if (reg_size == sizeof(u64)) {
6730 			mark_insn_zext(env, reg);
6731 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
6732 		} else {
6733 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
6734 		}
6735 	}
6736 }
6737 
6738 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn)
6739 {
6740 	const struct btf_type *t, *func, *func_proto, *ptr_type;
6741 	struct bpf_reg_state *regs = cur_regs(env);
6742 	const char *func_name, *ptr_type_name;
6743 	u32 i, nargs, func_id, ptr_type_id;
6744 	struct module *btf_mod = NULL;
6745 	const struct btf_param *args;
6746 	struct btf *desc_btf;
6747 	int err;
6748 
6749 	/* skip for now, but return error when we find this in fixup_kfunc_call */
6750 	if (!insn->imm)
6751 		return 0;
6752 
6753 	desc_btf = find_kfunc_desc_btf(env, insn->imm, insn->off, &btf_mod);
6754 	if (IS_ERR(desc_btf))
6755 		return PTR_ERR(desc_btf);
6756 
6757 	func_id = insn->imm;
6758 	func = btf_type_by_id(desc_btf, func_id);
6759 	func_name = btf_name_by_offset(desc_btf, func->name_off);
6760 	func_proto = btf_type_by_id(desc_btf, func->type);
6761 
6762 	if (!env->ops->check_kfunc_call ||
6763 	    !env->ops->check_kfunc_call(func_id, btf_mod)) {
6764 		verbose(env, "calling kernel function %s is not allowed\n",
6765 			func_name);
6766 		return -EACCES;
6767 	}
6768 
6769 	/* Check the arguments */
6770 	err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs);
6771 	if (err)
6772 		return err;
6773 
6774 	for (i = 0; i < CALLER_SAVED_REGS; i++)
6775 		mark_reg_not_init(env, regs, caller_saved[i]);
6776 
6777 	/* Check return type */
6778 	t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
6779 	if (btf_type_is_scalar(t)) {
6780 		mark_reg_unknown(env, regs, BPF_REG_0);
6781 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
6782 	} else if (btf_type_is_ptr(t)) {
6783 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type,
6784 						   &ptr_type_id);
6785 		if (!btf_type_is_struct(ptr_type)) {
6786 			ptr_type_name = btf_name_by_offset(desc_btf,
6787 							   ptr_type->name_off);
6788 			verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
6789 				func_name, btf_type_str(ptr_type),
6790 				ptr_type_name);
6791 			return -EINVAL;
6792 		}
6793 		mark_reg_known_zero(env, regs, BPF_REG_0);
6794 		regs[BPF_REG_0].btf = desc_btf;
6795 		regs[BPF_REG_0].type = PTR_TO_BTF_ID;
6796 		regs[BPF_REG_0].btf_id = ptr_type_id;
6797 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
6798 	} /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
6799 
6800 	nargs = btf_type_vlen(func_proto);
6801 	args = (const struct btf_param *)(func_proto + 1);
6802 	for (i = 0; i < nargs; i++) {
6803 		u32 regno = i + 1;
6804 
6805 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
6806 		if (btf_type_is_ptr(t))
6807 			mark_btf_func_reg_size(env, regno, sizeof(void *));
6808 		else
6809 			/* scalar. ensured by btf_check_kfunc_arg_match() */
6810 			mark_btf_func_reg_size(env, regno, t->size);
6811 	}
6812 
6813 	return 0;
6814 }
6815 
6816 static bool signed_add_overflows(s64 a, s64 b)
6817 {
6818 	/* Do the add in u64, where overflow is well-defined */
6819 	s64 res = (s64)((u64)a + (u64)b);
6820 
6821 	if (b < 0)
6822 		return res > a;
6823 	return res < a;
6824 }
6825 
6826 static bool signed_add32_overflows(s32 a, s32 b)
6827 {
6828 	/* Do the add in u32, where overflow is well-defined */
6829 	s32 res = (s32)((u32)a + (u32)b);
6830 
6831 	if (b < 0)
6832 		return res > a;
6833 	return res < a;
6834 }
6835 
6836 static bool signed_sub_overflows(s64 a, s64 b)
6837 {
6838 	/* Do the sub in u64, where overflow is well-defined */
6839 	s64 res = (s64)((u64)a - (u64)b);
6840 
6841 	if (b < 0)
6842 		return res < a;
6843 	return res > a;
6844 }
6845 
6846 static bool signed_sub32_overflows(s32 a, s32 b)
6847 {
6848 	/* Do the sub in u32, where overflow is well-defined */
6849 	s32 res = (s32)((u32)a - (u32)b);
6850 
6851 	if (b < 0)
6852 		return res < a;
6853 	return res > a;
6854 }
6855 
6856 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
6857 				  const struct bpf_reg_state *reg,
6858 				  enum bpf_reg_type type)
6859 {
6860 	bool known = tnum_is_const(reg->var_off);
6861 	s64 val = reg->var_off.value;
6862 	s64 smin = reg->smin_value;
6863 
6864 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
6865 		verbose(env, "math between %s pointer and %lld is not allowed\n",
6866 			reg_type_str[type], val);
6867 		return false;
6868 	}
6869 
6870 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
6871 		verbose(env, "%s pointer offset %d is not allowed\n",
6872 			reg_type_str[type], reg->off);
6873 		return false;
6874 	}
6875 
6876 	if (smin == S64_MIN) {
6877 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
6878 			reg_type_str[type]);
6879 		return false;
6880 	}
6881 
6882 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6883 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
6884 			smin, reg_type_str[type]);
6885 		return false;
6886 	}
6887 
6888 	return true;
6889 }
6890 
6891 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6892 {
6893 	return &env->insn_aux_data[env->insn_idx];
6894 }
6895 
6896 enum {
6897 	REASON_BOUNDS	= -1,
6898 	REASON_TYPE	= -2,
6899 	REASON_PATHS	= -3,
6900 	REASON_LIMIT	= -4,
6901 	REASON_STACK	= -5,
6902 };
6903 
6904 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
6905 			      u32 *alu_limit, bool mask_to_left)
6906 {
6907 	u32 max = 0, ptr_limit = 0;
6908 
6909 	switch (ptr_reg->type) {
6910 	case PTR_TO_STACK:
6911 		/* Offset 0 is out-of-bounds, but acceptable start for the
6912 		 * left direction, see BPF_REG_FP. Also, unknown scalar
6913 		 * offset where we would need to deal with min/max bounds is
6914 		 * currently prohibited for unprivileged.
6915 		 */
6916 		max = MAX_BPF_STACK + mask_to_left;
6917 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
6918 		break;
6919 	case PTR_TO_MAP_VALUE:
6920 		max = ptr_reg->map_ptr->value_size;
6921 		ptr_limit = (mask_to_left ?
6922 			     ptr_reg->smin_value :
6923 			     ptr_reg->umax_value) + ptr_reg->off;
6924 		break;
6925 	default:
6926 		return REASON_TYPE;
6927 	}
6928 
6929 	if (ptr_limit >= max)
6930 		return REASON_LIMIT;
6931 	*alu_limit = ptr_limit;
6932 	return 0;
6933 }
6934 
6935 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
6936 				    const struct bpf_insn *insn)
6937 {
6938 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
6939 }
6940 
6941 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
6942 				       u32 alu_state, u32 alu_limit)
6943 {
6944 	/* If we arrived here from different branches with different
6945 	 * state or limits to sanitize, then this won't work.
6946 	 */
6947 	if (aux->alu_state &&
6948 	    (aux->alu_state != alu_state ||
6949 	     aux->alu_limit != alu_limit))
6950 		return REASON_PATHS;
6951 
6952 	/* Corresponding fixup done in do_misc_fixups(). */
6953 	aux->alu_state = alu_state;
6954 	aux->alu_limit = alu_limit;
6955 	return 0;
6956 }
6957 
6958 static int sanitize_val_alu(struct bpf_verifier_env *env,
6959 			    struct bpf_insn *insn)
6960 {
6961 	struct bpf_insn_aux_data *aux = cur_aux(env);
6962 
6963 	if (can_skip_alu_sanitation(env, insn))
6964 		return 0;
6965 
6966 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
6967 }
6968 
6969 static bool sanitize_needed(u8 opcode)
6970 {
6971 	return opcode == BPF_ADD || opcode == BPF_SUB;
6972 }
6973 
6974 struct bpf_sanitize_info {
6975 	struct bpf_insn_aux_data aux;
6976 	bool mask_to_left;
6977 };
6978 
6979 static struct bpf_verifier_state *
6980 sanitize_speculative_path(struct bpf_verifier_env *env,
6981 			  const struct bpf_insn *insn,
6982 			  u32 next_idx, u32 curr_idx)
6983 {
6984 	struct bpf_verifier_state *branch;
6985 	struct bpf_reg_state *regs;
6986 
6987 	branch = push_stack(env, next_idx, curr_idx, true);
6988 	if (branch && insn) {
6989 		regs = branch->frame[branch->curframe]->regs;
6990 		if (BPF_SRC(insn->code) == BPF_K) {
6991 			mark_reg_unknown(env, regs, insn->dst_reg);
6992 		} else if (BPF_SRC(insn->code) == BPF_X) {
6993 			mark_reg_unknown(env, regs, insn->dst_reg);
6994 			mark_reg_unknown(env, regs, insn->src_reg);
6995 		}
6996 	}
6997 	return branch;
6998 }
6999 
7000 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
7001 			    struct bpf_insn *insn,
7002 			    const struct bpf_reg_state *ptr_reg,
7003 			    const struct bpf_reg_state *off_reg,
7004 			    struct bpf_reg_state *dst_reg,
7005 			    struct bpf_sanitize_info *info,
7006 			    const bool commit_window)
7007 {
7008 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
7009 	struct bpf_verifier_state *vstate = env->cur_state;
7010 	bool off_is_imm = tnum_is_const(off_reg->var_off);
7011 	bool off_is_neg = off_reg->smin_value < 0;
7012 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
7013 	u8 opcode = BPF_OP(insn->code);
7014 	u32 alu_state, alu_limit;
7015 	struct bpf_reg_state tmp;
7016 	bool ret;
7017 	int err;
7018 
7019 	if (can_skip_alu_sanitation(env, insn))
7020 		return 0;
7021 
7022 	/* We already marked aux for masking from non-speculative
7023 	 * paths, thus we got here in the first place. We only care
7024 	 * to explore bad access from here.
7025 	 */
7026 	if (vstate->speculative)
7027 		goto do_sim;
7028 
7029 	if (!commit_window) {
7030 		if (!tnum_is_const(off_reg->var_off) &&
7031 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
7032 			return REASON_BOUNDS;
7033 
7034 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
7035 				     (opcode == BPF_SUB && !off_is_neg);
7036 	}
7037 
7038 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
7039 	if (err < 0)
7040 		return err;
7041 
7042 	if (commit_window) {
7043 		/* In commit phase we narrow the masking window based on
7044 		 * the observed pointer move after the simulated operation.
7045 		 */
7046 		alu_state = info->aux.alu_state;
7047 		alu_limit = abs(info->aux.alu_limit - alu_limit);
7048 	} else {
7049 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
7050 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
7051 		alu_state |= ptr_is_dst_reg ?
7052 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
7053 
7054 		/* Limit pruning on unknown scalars to enable deep search for
7055 		 * potential masking differences from other program paths.
7056 		 */
7057 		if (!off_is_imm)
7058 			env->explore_alu_limits = true;
7059 	}
7060 
7061 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
7062 	if (err < 0)
7063 		return err;
7064 do_sim:
7065 	/* If we're in commit phase, we're done here given we already
7066 	 * pushed the truncated dst_reg into the speculative verification
7067 	 * stack.
7068 	 *
7069 	 * Also, when register is a known constant, we rewrite register-based
7070 	 * operation to immediate-based, and thus do not need masking (and as
7071 	 * a consequence, do not need to simulate the zero-truncation either).
7072 	 */
7073 	if (commit_window || off_is_imm)
7074 		return 0;
7075 
7076 	/* Simulate and find potential out-of-bounds access under
7077 	 * speculative execution from truncation as a result of
7078 	 * masking when off was not within expected range. If off
7079 	 * sits in dst, then we temporarily need to move ptr there
7080 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
7081 	 * for cases where we use K-based arithmetic in one direction
7082 	 * and truncated reg-based in the other in order to explore
7083 	 * bad access.
7084 	 */
7085 	if (!ptr_is_dst_reg) {
7086 		tmp = *dst_reg;
7087 		*dst_reg = *ptr_reg;
7088 	}
7089 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
7090 					env->insn_idx);
7091 	if (!ptr_is_dst_reg && ret)
7092 		*dst_reg = tmp;
7093 	return !ret ? REASON_STACK : 0;
7094 }
7095 
7096 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
7097 {
7098 	struct bpf_verifier_state *vstate = env->cur_state;
7099 
7100 	/* If we simulate paths under speculation, we don't update the
7101 	 * insn as 'seen' such that when we verify unreachable paths in
7102 	 * the non-speculative domain, sanitize_dead_code() can still
7103 	 * rewrite/sanitize them.
7104 	 */
7105 	if (!vstate->speculative)
7106 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
7107 }
7108 
7109 static int sanitize_err(struct bpf_verifier_env *env,
7110 			const struct bpf_insn *insn, int reason,
7111 			const struct bpf_reg_state *off_reg,
7112 			const struct bpf_reg_state *dst_reg)
7113 {
7114 	static const char *err = "pointer arithmetic with it prohibited for !root";
7115 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
7116 	u32 dst = insn->dst_reg, src = insn->src_reg;
7117 
7118 	switch (reason) {
7119 	case REASON_BOUNDS:
7120 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
7121 			off_reg == dst_reg ? dst : src, err);
7122 		break;
7123 	case REASON_TYPE:
7124 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
7125 			off_reg == dst_reg ? src : dst, err);
7126 		break;
7127 	case REASON_PATHS:
7128 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
7129 			dst, op, err);
7130 		break;
7131 	case REASON_LIMIT:
7132 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
7133 			dst, op, err);
7134 		break;
7135 	case REASON_STACK:
7136 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
7137 			dst, err);
7138 		break;
7139 	default:
7140 		verbose(env, "verifier internal error: unknown reason (%d)\n",
7141 			reason);
7142 		break;
7143 	}
7144 
7145 	return -EACCES;
7146 }
7147 
7148 /* check that stack access falls within stack limits and that 'reg' doesn't
7149  * have a variable offset.
7150  *
7151  * Variable offset is prohibited for unprivileged mode for simplicity since it
7152  * requires corresponding support in Spectre masking for stack ALU.  See also
7153  * retrieve_ptr_limit().
7154  *
7155  *
7156  * 'off' includes 'reg->off'.
7157  */
7158 static int check_stack_access_for_ptr_arithmetic(
7159 				struct bpf_verifier_env *env,
7160 				int regno,
7161 				const struct bpf_reg_state *reg,
7162 				int off)
7163 {
7164 	if (!tnum_is_const(reg->var_off)) {
7165 		char tn_buf[48];
7166 
7167 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7168 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
7169 			regno, tn_buf, off);
7170 		return -EACCES;
7171 	}
7172 
7173 	if (off >= 0 || off < -MAX_BPF_STACK) {
7174 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
7175 			"prohibited for !root; off=%d\n", regno, off);
7176 		return -EACCES;
7177 	}
7178 
7179 	return 0;
7180 }
7181 
7182 static int sanitize_check_bounds(struct bpf_verifier_env *env,
7183 				 const struct bpf_insn *insn,
7184 				 const struct bpf_reg_state *dst_reg)
7185 {
7186 	u32 dst = insn->dst_reg;
7187 
7188 	/* For unprivileged we require that resulting offset must be in bounds
7189 	 * in order to be able to sanitize access later on.
7190 	 */
7191 	if (env->bypass_spec_v1)
7192 		return 0;
7193 
7194 	switch (dst_reg->type) {
7195 	case PTR_TO_STACK:
7196 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
7197 					dst_reg->off + dst_reg->var_off.value))
7198 			return -EACCES;
7199 		break;
7200 	case PTR_TO_MAP_VALUE:
7201 		if (check_map_access(env, dst, dst_reg->off, 1, false)) {
7202 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
7203 				"prohibited for !root\n", dst);
7204 			return -EACCES;
7205 		}
7206 		break;
7207 	default:
7208 		break;
7209 	}
7210 
7211 	return 0;
7212 }
7213 
7214 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
7215  * Caller should also handle BPF_MOV case separately.
7216  * If we return -EACCES, caller may want to try again treating pointer as a
7217  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
7218  */
7219 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
7220 				   struct bpf_insn *insn,
7221 				   const struct bpf_reg_state *ptr_reg,
7222 				   const struct bpf_reg_state *off_reg)
7223 {
7224 	struct bpf_verifier_state *vstate = env->cur_state;
7225 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7226 	struct bpf_reg_state *regs = state->regs, *dst_reg;
7227 	bool known = tnum_is_const(off_reg->var_off);
7228 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
7229 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
7230 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
7231 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
7232 	struct bpf_sanitize_info info = {};
7233 	u8 opcode = BPF_OP(insn->code);
7234 	u32 dst = insn->dst_reg;
7235 	int ret;
7236 
7237 	dst_reg = &regs[dst];
7238 
7239 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
7240 	    smin_val > smax_val || umin_val > umax_val) {
7241 		/* Taint dst register if offset had invalid bounds derived from
7242 		 * e.g. dead branches.
7243 		 */
7244 		__mark_reg_unknown(env, dst_reg);
7245 		return 0;
7246 	}
7247 
7248 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
7249 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
7250 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7251 			__mark_reg_unknown(env, dst_reg);
7252 			return 0;
7253 		}
7254 
7255 		verbose(env,
7256 			"R%d 32-bit pointer arithmetic prohibited\n",
7257 			dst);
7258 		return -EACCES;
7259 	}
7260 
7261 	switch (ptr_reg->type) {
7262 	case PTR_TO_MAP_VALUE_OR_NULL:
7263 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
7264 			dst, reg_type_str[ptr_reg->type]);
7265 		return -EACCES;
7266 	case CONST_PTR_TO_MAP:
7267 		/* smin_val represents the known value */
7268 		if (known && smin_val == 0 && opcode == BPF_ADD)
7269 			break;
7270 		fallthrough;
7271 	case PTR_TO_PACKET_END:
7272 	case PTR_TO_SOCKET:
7273 	case PTR_TO_SOCKET_OR_NULL:
7274 	case PTR_TO_SOCK_COMMON:
7275 	case PTR_TO_SOCK_COMMON_OR_NULL:
7276 	case PTR_TO_TCP_SOCK:
7277 	case PTR_TO_TCP_SOCK_OR_NULL:
7278 	case PTR_TO_XDP_SOCK:
7279 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
7280 			dst, reg_type_str[ptr_reg->type]);
7281 		return -EACCES;
7282 	default:
7283 		break;
7284 	}
7285 
7286 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
7287 	 * The id may be overwritten later if we create a new variable offset.
7288 	 */
7289 	dst_reg->type = ptr_reg->type;
7290 	dst_reg->id = ptr_reg->id;
7291 
7292 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
7293 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
7294 		return -EINVAL;
7295 
7296 	/* pointer types do not carry 32-bit bounds at the moment. */
7297 	__mark_reg32_unbounded(dst_reg);
7298 
7299 	if (sanitize_needed(opcode)) {
7300 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
7301 				       &info, false);
7302 		if (ret < 0)
7303 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
7304 	}
7305 
7306 	switch (opcode) {
7307 	case BPF_ADD:
7308 		/* We can take a fixed offset as long as it doesn't overflow
7309 		 * the s32 'off' field
7310 		 */
7311 		if (known && (ptr_reg->off + smin_val ==
7312 			      (s64)(s32)(ptr_reg->off + smin_val))) {
7313 			/* pointer += K.  Accumulate it into fixed offset */
7314 			dst_reg->smin_value = smin_ptr;
7315 			dst_reg->smax_value = smax_ptr;
7316 			dst_reg->umin_value = umin_ptr;
7317 			dst_reg->umax_value = umax_ptr;
7318 			dst_reg->var_off = ptr_reg->var_off;
7319 			dst_reg->off = ptr_reg->off + smin_val;
7320 			dst_reg->raw = ptr_reg->raw;
7321 			break;
7322 		}
7323 		/* A new variable offset is created.  Note that off_reg->off
7324 		 * == 0, since it's a scalar.
7325 		 * dst_reg gets the pointer type and since some positive
7326 		 * integer value was added to the pointer, give it a new 'id'
7327 		 * if it's a PTR_TO_PACKET.
7328 		 * this creates a new 'base' pointer, off_reg (variable) gets
7329 		 * added into the variable offset, and we copy the fixed offset
7330 		 * from ptr_reg.
7331 		 */
7332 		if (signed_add_overflows(smin_ptr, smin_val) ||
7333 		    signed_add_overflows(smax_ptr, smax_val)) {
7334 			dst_reg->smin_value = S64_MIN;
7335 			dst_reg->smax_value = S64_MAX;
7336 		} else {
7337 			dst_reg->smin_value = smin_ptr + smin_val;
7338 			dst_reg->smax_value = smax_ptr + smax_val;
7339 		}
7340 		if (umin_ptr + umin_val < umin_ptr ||
7341 		    umax_ptr + umax_val < umax_ptr) {
7342 			dst_reg->umin_value = 0;
7343 			dst_reg->umax_value = U64_MAX;
7344 		} else {
7345 			dst_reg->umin_value = umin_ptr + umin_val;
7346 			dst_reg->umax_value = umax_ptr + umax_val;
7347 		}
7348 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
7349 		dst_reg->off = ptr_reg->off;
7350 		dst_reg->raw = ptr_reg->raw;
7351 		if (reg_is_pkt_pointer(ptr_reg)) {
7352 			dst_reg->id = ++env->id_gen;
7353 			/* something was added to pkt_ptr, set range to zero */
7354 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
7355 		}
7356 		break;
7357 	case BPF_SUB:
7358 		if (dst_reg == off_reg) {
7359 			/* scalar -= pointer.  Creates an unknown scalar */
7360 			verbose(env, "R%d tried to subtract pointer from scalar\n",
7361 				dst);
7362 			return -EACCES;
7363 		}
7364 		/* We don't allow subtraction from FP, because (according to
7365 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
7366 		 * be able to deal with it.
7367 		 */
7368 		if (ptr_reg->type == PTR_TO_STACK) {
7369 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
7370 				dst);
7371 			return -EACCES;
7372 		}
7373 		if (known && (ptr_reg->off - smin_val ==
7374 			      (s64)(s32)(ptr_reg->off - smin_val))) {
7375 			/* pointer -= K.  Subtract it from fixed offset */
7376 			dst_reg->smin_value = smin_ptr;
7377 			dst_reg->smax_value = smax_ptr;
7378 			dst_reg->umin_value = umin_ptr;
7379 			dst_reg->umax_value = umax_ptr;
7380 			dst_reg->var_off = ptr_reg->var_off;
7381 			dst_reg->id = ptr_reg->id;
7382 			dst_reg->off = ptr_reg->off - smin_val;
7383 			dst_reg->raw = ptr_reg->raw;
7384 			break;
7385 		}
7386 		/* A new variable offset is created.  If the subtrahend is known
7387 		 * nonnegative, then any reg->range we had before is still good.
7388 		 */
7389 		if (signed_sub_overflows(smin_ptr, smax_val) ||
7390 		    signed_sub_overflows(smax_ptr, smin_val)) {
7391 			/* Overflow possible, we know nothing */
7392 			dst_reg->smin_value = S64_MIN;
7393 			dst_reg->smax_value = S64_MAX;
7394 		} else {
7395 			dst_reg->smin_value = smin_ptr - smax_val;
7396 			dst_reg->smax_value = smax_ptr - smin_val;
7397 		}
7398 		if (umin_ptr < umax_val) {
7399 			/* Overflow possible, we know nothing */
7400 			dst_reg->umin_value = 0;
7401 			dst_reg->umax_value = U64_MAX;
7402 		} else {
7403 			/* Cannot overflow (as long as bounds are consistent) */
7404 			dst_reg->umin_value = umin_ptr - umax_val;
7405 			dst_reg->umax_value = umax_ptr - umin_val;
7406 		}
7407 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
7408 		dst_reg->off = ptr_reg->off;
7409 		dst_reg->raw = ptr_reg->raw;
7410 		if (reg_is_pkt_pointer(ptr_reg)) {
7411 			dst_reg->id = ++env->id_gen;
7412 			/* something was added to pkt_ptr, set range to zero */
7413 			if (smin_val < 0)
7414 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
7415 		}
7416 		break;
7417 	case BPF_AND:
7418 	case BPF_OR:
7419 	case BPF_XOR:
7420 		/* bitwise ops on pointers are troublesome, prohibit. */
7421 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
7422 			dst, bpf_alu_string[opcode >> 4]);
7423 		return -EACCES;
7424 	default:
7425 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
7426 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
7427 			dst, bpf_alu_string[opcode >> 4]);
7428 		return -EACCES;
7429 	}
7430 
7431 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
7432 		return -EINVAL;
7433 
7434 	__update_reg_bounds(dst_reg);
7435 	__reg_deduce_bounds(dst_reg);
7436 	__reg_bound_offset(dst_reg);
7437 
7438 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
7439 		return -EACCES;
7440 	if (sanitize_needed(opcode)) {
7441 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
7442 				       &info, true);
7443 		if (ret < 0)
7444 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
7445 	}
7446 
7447 	return 0;
7448 }
7449 
7450 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
7451 				 struct bpf_reg_state *src_reg)
7452 {
7453 	s32 smin_val = src_reg->s32_min_value;
7454 	s32 smax_val = src_reg->s32_max_value;
7455 	u32 umin_val = src_reg->u32_min_value;
7456 	u32 umax_val = src_reg->u32_max_value;
7457 
7458 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
7459 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
7460 		dst_reg->s32_min_value = S32_MIN;
7461 		dst_reg->s32_max_value = S32_MAX;
7462 	} else {
7463 		dst_reg->s32_min_value += smin_val;
7464 		dst_reg->s32_max_value += smax_val;
7465 	}
7466 	if (dst_reg->u32_min_value + umin_val < umin_val ||
7467 	    dst_reg->u32_max_value + umax_val < umax_val) {
7468 		dst_reg->u32_min_value = 0;
7469 		dst_reg->u32_max_value = U32_MAX;
7470 	} else {
7471 		dst_reg->u32_min_value += umin_val;
7472 		dst_reg->u32_max_value += umax_val;
7473 	}
7474 }
7475 
7476 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
7477 			       struct bpf_reg_state *src_reg)
7478 {
7479 	s64 smin_val = src_reg->smin_value;
7480 	s64 smax_val = src_reg->smax_value;
7481 	u64 umin_val = src_reg->umin_value;
7482 	u64 umax_val = src_reg->umax_value;
7483 
7484 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
7485 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
7486 		dst_reg->smin_value = S64_MIN;
7487 		dst_reg->smax_value = S64_MAX;
7488 	} else {
7489 		dst_reg->smin_value += smin_val;
7490 		dst_reg->smax_value += smax_val;
7491 	}
7492 	if (dst_reg->umin_value + umin_val < umin_val ||
7493 	    dst_reg->umax_value + umax_val < umax_val) {
7494 		dst_reg->umin_value = 0;
7495 		dst_reg->umax_value = U64_MAX;
7496 	} else {
7497 		dst_reg->umin_value += umin_val;
7498 		dst_reg->umax_value += umax_val;
7499 	}
7500 }
7501 
7502 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
7503 				 struct bpf_reg_state *src_reg)
7504 {
7505 	s32 smin_val = src_reg->s32_min_value;
7506 	s32 smax_val = src_reg->s32_max_value;
7507 	u32 umin_val = src_reg->u32_min_value;
7508 	u32 umax_val = src_reg->u32_max_value;
7509 
7510 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
7511 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
7512 		/* Overflow possible, we know nothing */
7513 		dst_reg->s32_min_value = S32_MIN;
7514 		dst_reg->s32_max_value = S32_MAX;
7515 	} else {
7516 		dst_reg->s32_min_value -= smax_val;
7517 		dst_reg->s32_max_value -= smin_val;
7518 	}
7519 	if (dst_reg->u32_min_value < umax_val) {
7520 		/* Overflow possible, we know nothing */
7521 		dst_reg->u32_min_value = 0;
7522 		dst_reg->u32_max_value = U32_MAX;
7523 	} else {
7524 		/* Cannot overflow (as long as bounds are consistent) */
7525 		dst_reg->u32_min_value -= umax_val;
7526 		dst_reg->u32_max_value -= umin_val;
7527 	}
7528 }
7529 
7530 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
7531 			       struct bpf_reg_state *src_reg)
7532 {
7533 	s64 smin_val = src_reg->smin_value;
7534 	s64 smax_val = src_reg->smax_value;
7535 	u64 umin_val = src_reg->umin_value;
7536 	u64 umax_val = src_reg->umax_value;
7537 
7538 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
7539 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
7540 		/* Overflow possible, we know nothing */
7541 		dst_reg->smin_value = S64_MIN;
7542 		dst_reg->smax_value = S64_MAX;
7543 	} else {
7544 		dst_reg->smin_value -= smax_val;
7545 		dst_reg->smax_value -= smin_val;
7546 	}
7547 	if (dst_reg->umin_value < umax_val) {
7548 		/* Overflow possible, we know nothing */
7549 		dst_reg->umin_value = 0;
7550 		dst_reg->umax_value = U64_MAX;
7551 	} else {
7552 		/* Cannot overflow (as long as bounds are consistent) */
7553 		dst_reg->umin_value -= umax_val;
7554 		dst_reg->umax_value -= umin_val;
7555 	}
7556 }
7557 
7558 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
7559 				 struct bpf_reg_state *src_reg)
7560 {
7561 	s32 smin_val = src_reg->s32_min_value;
7562 	u32 umin_val = src_reg->u32_min_value;
7563 	u32 umax_val = src_reg->u32_max_value;
7564 
7565 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
7566 		/* Ain't nobody got time to multiply that sign */
7567 		__mark_reg32_unbounded(dst_reg);
7568 		return;
7569 	}
7570 	/* Both values are positive, so we can work with unsigned and
7571 	 * copy the result to signed (unless it exceeds S32_MAX).
7572 	 */
7573 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
7574 		/* Potential overflow, we know nothing */
7575 		__mark_reg32_unbounded(dst_reg);
7576 		return;
7577 	}
7578 	dst_reg->u32_min_value *= umin_val;
7579 	dst_reg->u32_max_value *= umax_val;
7580 	if (dst_reg->u32_max_value > S32_MAX) {
7581 		/* Overflow possible, we know nothing */
7582 		dst_reg->s32_min_value = S32_MIN;
7583 		dst_reg->s32_max_value = S32_MAX;
7584 	} else {
7585 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7586 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7587 	}
7588 }
7589 
7590 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
7591 			       struct bpf_reg_state *src_reg)
7592 {
7593 	s64 smin_val = src_reg->smin_value;
7594 	u64 umin_val = src_reg->umin_value;
7595 	u64 umax_val = src_reg->umax_value;
7596 
7597 	if (smin_val < 0 || dst_reg->smin_value < 0) {
7598 		/* Ain't nobody got time to multiply that sign */
7599 		__mark_reg64_unbounded(dst_reg);
7600 		return;
7601 	}
7602 	/* Both values are positive, so we can work with unsigned and
7603 	 * copy the result to signed (unless it exceeds S64_MAX).
7604 	 */
7605 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
7606 		/* Potential overflow, we know nothing */
7607 		__mark_reg64_unbounded(dst_reg);
7608 		return;
7609 	}
7610 	dst_reg->umin_value *= umin_val;
7611 	dst_reg->umax_value *= umax_val;
7612 	if (dst_reg->umax_value > S64_MAX) {
7613 		/* Overflow possible, we know nothing */
7614 		dst_reg->smin_value = S64_MIN;
7615 		dst_reg->smax_value = S64_MAX;
7616 	} else {
7617 		dst_reg->smin_value = dst_reg->umin_value;
7618 		dst_reg->smax_value = dst_reg->umax_value;
7619 	}
7620 }
7621 
7622 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
7623 				 struct bpf_reg_state *src_reg)
7624 {
7625 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7626 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7627 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7628 	s32 smin_val = src_reg->s32_min_value;
7629 	u32 umax_val = src_reg->u32_max_value;
7630 
7631 	if (src_known && dst_known) {
7632 		__mark_reg32_known(dst_reg, var32_off.value);
7633 		return;
7634 	}
7635 
7636 	/* We get our minimum from the var_off, since that's inherently
7637 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
7638 	 */
7639 	dst_reg->u32_min_value = var32_off.value;
7640 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
7641 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7642 		/* Lose signed bounds when ANDing negative numbers,
7643 		 * ain't nobody got time for that.
7644 		 */
7645 		dst_reg->s32_min_value = S32_MIN;
7646 		dst_reg->s32_max_value = S32_MAX;
7647 	} else {
7648 		/* ANDing two positives gives a positive, so safe to
7649 		 * cast result into s64.
7650 		 */
7651 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7652 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7653 	}
7654 }
7655 
7656 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
7657 			       struct bpf_reg_state *src_reg)
7658 {
7659 	bool src_known = tnum_is_const(src_reg->var_off);
7660 	bool dst_known = tnum_is_const(dst_reg->var_off);
7661 	s64 smin_val = src_reg->smin_value;
7662 	u64 umax_val = src_reg->umax_value;
7663 
7664 	if (src_known && dst_known) {
7665 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7666 		return;
7667 	}
7668 
7669 	/* We get our minimum from the var_off, since that's inherently
7670 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
7671 	 */
7672 	dst_reg->umin_value = dst_reg->var_off.value;
7673 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
7674 	if (dst_reg->smin_value < 0 || smin_val < 0) {
7675 		/* Lose signed bounds when ANDing negative numbers,
7676 		 * ain't nobody got time for that.
7677 		 */
7678 		dst_reg->smin_value = S64_MIN;
7679 		dst_reg->smax_value = S64_MAX;
7680 	} else {
7681 		/* ANDing two positives gives a positive, so safe to
7682 		 * cast result into s64.
7683 		 */
7684 		dst_reg->smin_value = dst_reg->umin_value;
7685 		dst_reg->smax_value = dst_reg->umax_value;
7686 	}
7687 	/* We may learn something more from the var_off */
7688 	__update_reg_bounds(dst_reg);
7689 }
7690 
7691 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
7692 				struct bpf_reg_state *src_reg)
7693 {
7694 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7695 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7696 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7697 	s32 smin_val = src_reg->s32_min_value;
7698 	u32 umin_val = src_reg->u32_min_value;
7699 
7700 	if (src_known && dst_known) {
7701 		__mark_reg32_known(dst_reg, var32_off.value);
7702 		return;
7703 	}
7704 
7705 	/* We get our maximum from the var_off, and our minimum is the
7706 	 * maximum of the operands' minima
7707 	 */
7708 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
7709 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7710 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7711 		/* Lose signed bounds when ORing negative numbers,
7712 		 * ain't nobody got time for that.
7713 		 */
7714 		dst_reg->s32_min_value = S32_MIN;
7715 		dst_reg->s32_max_value = S32_MAX;
7716 	} else {
7717 		/* ORing two positives gives a positive, so safe to
7718 		 * cast result into s64.
7719 		 */
7720 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7721 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7722 	}
7723 }
7724 
7725 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
7726 			      struct bpf_reg_state *src_reg)
7727 {
7728 	bool src_known = tnum_is_const(src_reg->var_off);
7729 	bool dst_known = tnum_is_const(dst_reg->var_off);
7730 	s64 smin_val = src_reg->smin_value;
7731 	u64 umin_val = src_reg->umin_value;
7732 
7733 	if (src_known && dst_known) {
7734 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7735 		return;
7736 	}
7737 
7738 	/* We get our maximum from the var_off, and our minimum is the
7739 	 * maximum of the operands' minima
7740 	 */
7741 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
7742 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7743 	if (dst_reg->smin_value < 0 || smin_val < 0) {
7744 		/* Lose signed bounds when ORing negative numbers,
7745 		 * ain't nobody got time for that.
7746 		 */
7747 		dst_reg->smin_value = S64_MIN;
7748 		dst_reg->smax_value = S64_MAX;
7749 	} else {
7750 		/* ORing two positives gives a positive, so safe to
7751 		 * cast result into s64.
7752 		 */
7753 		dst_reg->smin_value = dst_reg->umin_value;
7754 		dst_reg->smax_value = dst_reg->umax_value;
7755 	}
7756 	/* We may learn something more from the var_off */
7757 	__update_reg_bounds(dst_reg);
7758 }
7759 
7760 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
7761 				 struct bpf_reg_state *src_reg)
7762 {
7763 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7764 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7765 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7766 	s32 smin_val = src_reg->s32_min_value;
7767 
7768 	if (src_known && dst_known) {
7769 		__mark_reg32_known(dst_reg, var32_off.value);
7770 		return;
7771 	}
7772 
7773 	/* We get both minimum and maximum from the var32_off. */
7774 	dst_reg->u32_min_value = var32_off.value;
7775 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7776 
7777 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
7778 		/* XORing two positive sign numbers gives a positive,
7779 		 * so safe to cast u32 result into s32.
7780 		 */
7781 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7782 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7783 	} else {
7784 		dst_reg->s32_min_value = S32_MIN;
7785 		dst_reg->s32_max_value = S32_MAX;
7786 	}
7787 }
7788 
7789 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
7790 			       struct bpf_reg_state *src_reg)
7791 {
7792 	bool src_known = tnum_is_const(src_reg->var_off);
7793 	bool dst_known = tnum_is_const(dst_reg->var_off);
7794 	s64 smin_val = src_reg->smin_value;
7795 
7796 	if (src_known && dst_known) {
7797 		/* dst_reg->var_off.value has been updated earlier */
7798 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7799 		return;
7800 	}
7801 
7802 	/* We get both minimum and maximum from the var_off. */
7803 	dst_reg->umin_value = dst_reg->var_off.value;
7804 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7805 
7806 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
7807 		/* XORing two positive sign numbers gives a positive,
7808 		 * so safe to cast u64 result into s64.
7809 		 */
7810 		dst_reg->smin_value = dst_reg->umin_value;
7811 		dst_reg->smax_value = dst_reg->umax_value;
7812 	} else {
7813 		dst_reg->smin_value = S64_MIN;
7814 		dst_reg->smax_value = S64_MAX;
7815 	}
7816 
7817 	__update_reg_bounds(dst_reg);
7818 }
7819 
7820 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7821 				   u64 umin_val, u64 umax_val)
7822 {
7823 	/* We lose all sign bit information (except what we can pick
7824 	 * up from var_off)
7825 	 */
7826 	dst_reg->s32_min_value = S32_MIN;
7827 	dst_reg->s32_max_value = S32_MAX;
7828 	/* If we might shift our top bit out, then we know nothing */
7829 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
7830 		dst_reg->u32_min_value = 0;
7831 		dst_reg->u32_max_value = U32_MAX;
7832 	} else {
7833 		dst_reg->u32_min_value <<= umin_val;
7834 		dst_reg->u32_max_value <<= umax_val;
7835 	}
7836 }
7837 
7838 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7839 				 struct bpf_reg_state *src_reg)
7840 {
7841 	u32 umax_val = src_reg->u32_max_value;
7842 	u32 umin_val = src_reg->u32_min_value;
7843 	/* u32 alu operation will zext upper bits */
7844 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
7845 
7846 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7847 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
7848 	/* Not required but being careful mark reg64 bounds as unknown so
7849 	 * that we are forced to pick them up from tnum and zext later and
7850 	 * if some path skips this step we are still safe.
7851 	 */
7852 	__mark_reg64_unbounded(dst_reg);
7853 	__update_reg32_bounds(dst_reg);
7854 }
7855 
7856 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
7857 				   u64 umin_val, u64 umax_val)
7858 {
7859 	/* Special case <<32 because it is a common compiler pattern to sign
7860 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
7861 	 * positive we know this shift will also be positive so we can track
7862 	 * bounds correctly. Otherwise we lose all sign bit information except
7863 	 * what we can pick up from var_off. Perhaps we can generalize this
7864 	 * later to shifts of any length.
7865 	 */
7866 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
7867 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
7868 	else
7869 		dst_reg->smax_value = S64_MAX;
7870 
7871 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
7872 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
7873 	else
7874 		dst_reg->smin_value = S64_MIN;
7875 
7876 	/* If we might shift our top bit out, then we know nothing */
7877 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
7878 		dst_reg->umin_value = 0;
7879 		dst_reg->umax_value = U64_MAX;
7880 	} else {
7881 		dst_reg->umin_value <<= umin_val;
7882 		dst_reg->umax_value <<= umax_val;
7883 	}
7884 }
7885 
7886 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
7887 			       struct bpf_reg_state *src_reg)
7888 {
7889 	u64 umax_val = src_reg->umax_value;
7890 	u64 umin_val = src_reg->umin_value;
7891 
7892 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
7893 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
7894 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7895 
7896 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
7897 	/* We may learn something more from the var_off */
7898 	__update_reg_bounds(dst_reg);
7899 }
7900 
7901 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
7902 				 struct bpf_reg_state *src_reg)
7903 {
7904 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
7905 	u32 umax_val = src_reg->u32_max_value;
7906 	u32 umin_val = src_reg->u32_min_value;
7907 
7908 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7909 	 * be negative, then either:
7910 	 * 1) src_reg might be zero, so the sign bit of the result is
7911 	 *    unknown, so we lose our signed bounds
7912 	 * 2) it's known negative, thus the unsigned bounds capture the
7913 	 *    signed bounds
7914 	 * 3) the signed bounds cross zero, so they tell us nothing
7915 	 *    about the result
7916 	 * If the value in dst_reg is known nonnegative, then again the
7917 	 * unsigned bounds capture the signed bounds.
7918 	 * Thus, in all cases it suffices to blow away our signed bounds
7919 	 * and rely on inferring new ones from the unsigned bounds and
7920 	 * var_off of the result.
7921 	 */
7922 	dst_reg->s32_min_value = S32_MIN;
7923 	dst_reg->s32_max_value = S32_MAX;
7924 
7925 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
7926 	dst_reg->u32_min_value >>= umax_val;
7927 	dst_reg->u32_max_value >>= umin_val;
7928 
7929 	__mark_reg64_unbounded(dst_reg);
7930 	__update_reg32_bounds(dst_reg);
7931 }
7932 
7933 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
7934 			       struct bpf_reg_state *src_reg)
7935 {
7936 	u64 umax_val = src_reg->umax_value;
7937 	u64 umin_val = src_reg->umin_value;
7938 
7939 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7940 	 * be negative, then either:
7941 	 * 1) src_reg might be zero, so the sign bit of the result is
7942 	 *    unknown, so we lose our signed bounds
7943 	 * 2) it's known negative, thus the unsigned bounds capture the
7944 	 *    signed bounds
7945 	 * 3) the signed bounds cross zero, so they tell us nothing
7946 	 *    about the result
7947 	 * If the value in dst_reg is known nonnegative, then again the
7948 	 * unsigned bounds capture the signed bounds.
7949 	 * Thus, in all cases it suffices to blow away our signed bounds
7950 	 * and rely on inferring new ones from the unsigned bounds and
7951 	 * var_off of the result.
7952 	 */
7953 	dst_reg->smin_value = S64_MIN;
7954 	dst_reg->smax_value = S64_MAX;
7955 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
7956 	dst_reg->umin_value >>= umax_val;
7957 	dst_reg->umax_value >>= umin_val;
7958 
7959 	/* Its not easy to operate on alu32 bounds here because it depends
7960 	 * on bits being shifted in. Take easy way out and mark unbounded
7961 	 * so we can recalculate later from tnum.
7962 	 */
7963 	__mark_reg32_unbounded(dst_reg);
7964 	__update_reg_bounds(dst_reg);
7965 }
7966 
7967 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
7968 				  struct bpf_reg_state *src_reg)
7969 {
7970 	u64 umin_val = src_reg->u32_min_value;
7971 
7972 	/* Upon reaching here, src_known is true and
7973 	 * umax_val is equal to umin_val.
7974 	 */
7975 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
7976 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
7977 
7978 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
7979 
7980 	/* blow away the dst_reg umin_value/umax_value and rely on
7981 	 * dst_reg var_off to refine the result.
7982 	 */
7983 	dst_reg->u32_min_value = 0;
7984 	dst_reg->u32_max_value = U32_MAX;
7985 
7986 	__mark_reg64_unbounded(dst_reg);
7987 	__update_reg32_bounds(dst_reg);
7988 }
7989 
7990 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
7991 				struct bpf_reg_state *src_reg)
7992 {
7993 	u64 umin_val = src_reg->umin_value;
7994 
7995 	/* Upon reaching here, src_known is true and umax_val is equal
7996 	 * to umin_val.
7997 	 */
7998 	dst_reg->smin_value >>= umin_val;
7999 	dst_reg->smax_value >>= umin_val;
8000 
8001 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
8002 
8003 	/* blow away the dst_reg umin_value/umax_value and rely on
8004 	 * dst_reg var_off to refine the result.
8005 	 */
8006 	dst_reg->umin_value = 0;
8007 	dst_reg->umax_value = U64_MAX;
8008 
8009 	/* Its not easy to operate on alu32 bounds here because it depends
8010 	 * on bits being shifted in from upper 32-bits. Take easy way out
8011 	 * and mark unbounded so we can recalculate later from tnum.
8012 	 */
8013 	__mark_reg32_unbounded(dst_reg);
8014 	__update_reg_bounds(dst_reg);
8015 }
8016 
8017 /* WARNING: This function does calculations on 64-bit values, but the actual
8018  * execution may occur on 32-bit values. Therefore, things like bitshifts
8019  * need extra checks in the 32-bit case.
8020  */
8021 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
8022 				      struct bpf_insn *insn,
8023 				      struct bpf_reg_state *dst_reg,
8024 				      struct bpf_reg_state src_reg)
8025 {
8026 	struct bpf_reg_state *regs = cur_regs(env);
8027 	u8 opcode = BPF_OP(insn->code);
8028 	bool src_known;
8029 	s64 smin_val, smax_val;
8030 	u64 umin_val, umax_val;
8031 	s32 s32_min_val, s32_max_val;
8032 	u32 u32_min_val, u32_max_val;
8033 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
8034 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
8035 	int ret;
8036 
8037 	smin_val = src_reg.smin_value;
8038 	smax_val = src_reg.smax_value;
8039 	umin_val = src_reg.umin_value;
8040 	umax_val = src_reg.umax_value;
8041 
8042 	s32_min_val = src_reg.s32_min_value;
8043 	s32_max_val = src_reg.s32_max_value;
8044 	u32_min_val = src_reg.u32_min_value;
8045 	u32_max_val = src_reg.u32_max_value;
8046 
8047 	if (alu32) {
8048 		src_known = tnum_subreg_is_const(src_reg.var_off);
8049 		if ((src_known &&
8050 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
8051 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
8052 			/* Taint dst register if offset had invalid bounds
8053 			 * derived from e.g. dead branches.
8054 			 */
8055 			__mark_reg_unknown(env, dst_reg);
8056 			return 0;
8057 		}
8058 	} else {
8059 		src_known = tnum_is_const(src_reg.var_off);
8060 		if ((src_known &&
8061 		     (smin_val != smax_val || umin_val != umax_val)) ||
8062 		    smin_val > smax_val || umin_val > umax_val) {
8063 			/* Taint dst register if offset had invalid bounds
8064 			 * derived from e.g. dead branches.
8065 			 */
8066 			__mark_reg_unknown(env, dst_reg);
8067 			return 0;
8068 		}
8069 	}
8070 
8071 	if (!src_known &&
8072 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
8073 		__mark_reg_unknown(env, dst_reg);
8074 		return 0;
8075 	}
8076 
8077 	if (sanitize_needed(opcode)) {
8078 		ret = sanitize_val_alu(env, insn);
8079 		if (ret < 0)
8080 			return sanitize_err(env, insn, ret, NULL, NULL);
8081 	}
8082 
8083 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
8084 	 * There are two classes of instructions: The first class we track both
8085 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
8086 	 * greatest amount of precision when alu operations are mixed with jmp32
8087 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
8088 	 * and BPF_OR. This is possible because these ops have fairly easy to
8089 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
8090 	 * See alu32 verifier tests for examples. The second class of
8091 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
8092 	 * with regards to tracking sign/unsigned bounds because the bits may
8093 	 * cross subreg boundaries in the alu64 case. When this happens we mark
8094 	 * the reg unbounded in the subreg bound space and use the resulting
8095 	 * tnum to calculate an approximation of the sign/unsigned bounds.
8096 	 */
8097 	switch (opcode) {
8098 	case BPF_ADD:
8099 		scalar32_min_max_add(dst_reg, &src_reg);
8100 		scalar_min_max_add(dst_reg, &src_reg);
8101 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
8102 		break;
8103 	case BPF_SUB:
8104 		scalar32_min_max_sub(dst_reg, &src_reg);
8105 		scalar_min_max_sub(dst_reg, &src_reg);
8106 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
8107 		break;
8108 	case BPF_MUL:
8109 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
8110 		scalar32_min_max_mul(dst_reg, &src_reg);
8111 		scalar_min_max_mul(dst_reg, &src_reg);
8112 		break;
8113 	case BPF_AND:
8114 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
8115 		scalar32_min_max_and(dst_reg, &src_reg);
8116 		scalar_min_max_and(dst_reg, &src_reg);
8117 		break;
8118 	case BPF_OR:
8119 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
8120 		scalar32_min_max_or(dst_reg, &src_reg);
8121 		scalar_min_max_or(dst_reg, &src_reg);
8122 		break;
8123 	case BPF_XOR:
8124 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
8125 		scalar32_min_max_xor(dst_reg, &src_reg);
8126 		scalar_min_max_xor(dst_reg, &src_reg);
8127 		break;
8128 	case BPF_LSH:
8129 		if (umax_val >= insn_bitness) {
8130 			/* Shifts greater than 31 or 63 are undefined.
8131 			 * This includes shifts by a negative number.
8132 			 */
8133 			mark_reg_unknown(env, regs, insn->dst_reg);
8134 			break;
8135 		}
8136 		if (alu32)
8137 			scalar32_min_max_lsh(dst_reg, &src_reg);
8138 		else
8139 			scalar_min_max_lsh(dst_reg, &src_reg);
8140 		break;
8141 	case BPF_RSH:
8142 		if (umax_val >= insn_bitness) {
8143 			/* Shifts greater than 31 or 63 are undefined.
8144 			 * This includes shifts by a negative number.
8145 			 */
8146 			mark_reg_unknown(env, regs, insn->dst_reg);
8147 			break;
8148 		}
8149 		if (alu32)
8150 			scalar32_min_max_rsh(dst_reg, &src_reg);
8151 		else
8152 			scalar_min_max_rsh(dst_reg, &src_reg);
8153 		break;
8154 	case BPF_ARSH:
8155 		if (umax_val >= insn_bitness) {
8156 			/* Shifts greater than 31 or 63 are undefined.
8157 			 * This includes shifts by a negative number.
8158 			 */
8159 			mark_reg_unknown(env, regs, insn->dst_reg);
8160 			break;
8161 		}
8162 		if (alu32)
8163 			scalar32_min_max_arsh(dst_reg, &src_reg);
8164 		else
8165 			scalar_min_max_arsh(dst_reg, &src_reg);
8166 		break;
8167 	default:
8168 		mark_reg_unknown(env, regs, insn->dst_reg);
8169 		break;
8170 	}
8171 
8172 	/* ALU32 ops are zero extended into 64bit register */
8173 	if (alu32)
8174 		zext_32_to_64(dst_reg);
8175 
8176 	__update_reg_bounds(dst_reg);
8177 	__reg_deduce_bounds(dst_reg);
8178 	__reg_bound_offset(dst_reg);
8179 	return 0;
8180 }
8181 
8182 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
8183  * and var_off.
8184  */
8185 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
8186 				   struct bpf_insn *insn)
8187 {
8188 	struct bpf_verifier_state *vstate = env->cur_state;
8189 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8190 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
8191 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
8192 	u8 opcode = BPF_OP(insn->code);
8193 	int err;
8194 
8195 	dst_reg = &regs[insn->dst_reg];
8196 	src_reg = NULL;
8197 	if (dst_reg->type != SCALAR_VALUE)
8198 		ptr_reg = dst_reg;
8199 	else
8200 		/* Make sure ID is cleared otherwise dst_reg min/max could be
8201 		 * incorrectly propagated into other registers by find_equal_scalars()
8202 		 */
8203 		dst_reg->id = 0;
8204 	if (BPF_SRC(insn->code) == BPF_X) {
8205 		src_reg = &regs[insn->src_reg];
8206 		if (src_reg->type != SCALAR_VALUE) {
8207 			if (dst_reg->type != SCALAR_VALUE) {
8208 				/* Combining two pointers by any ALU op yields
8209 				 * an arbitrary scalar. Disallow all math except
8210 				 * pointer subtraction
8211 				 */
8212 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
8213 					mark_reg_unknown(env, regs, insn->dst_reg);
8214 					return 0;
8215 				}
8216 				verbose(env, "R%d pointer %s pointer prohibited\n",
8217 					insn->dst_reg,
8218 					bpf_alu_string[opcode >> 4]);
8219 				return -EACCES;
8220 			} else {
8221 				/* scalar += pointer
8222 				 * This is legal, but we have to reverse our
8223 				 * src/dest handling in computing the range
8224 				 */
8225 				err = mark_chain_precision(env, insn->dst_reg);
8226 				if (err)
8227 					return err;
8228 				return adjust_ptr_min_max_vals(env, insn,
8229 							       src_reg, dst_reg);
8230 			}
8231 		} else if (ptr_reg) {
8232 			/* pointer += scalar */
8233 			err = mark_chain_precision(env, insn->src_reg);
8234 			if (err)
8235 				return err;
8236 			return adjust_ptr_min_max_vals(env, insn,
8237 						       dst_reg, src_reg);
8238 		}
8239 	} else {
8240 		/* Pretend the src is a reg with a known value, since we only
8241 		 * need to be able to read from this state.
8242 		 */
8243 		off_reg.type = SCALAR_VALUE;
8244 		__mark_reg_known(&off_reg, insn->imm);
8245 		src_reg = &off_reg;
8246 		if (ptr_reg) /* pointer += K */
8247 			return adjust_ptr_min_max_vals(env, insn,
8248 						       ptr_reg, src_reg);
8249 	}
8250 
8251 	/* Got here implies adding two SCALAR_VALUEs */
8252 	if (WARN_ON_ONCE(ptr_reg)) {
8253 		print_verifier_state(env, state);
8254 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
8255 		return -EINVAL;
8256 	}
8257 	if (WARN_ON(!src_reg)) {
8258 		print_verifier_state(env, state);
8259 		verbose(env, "verifier internal error: no src_reg\n");
8260 		return -EINVAL;
8261 	}
8262 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
8263 }
8264 
8265 /* check validity of 32-bit and 64-bit arithmetic operations */
8266 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
8267 {
8268 	struct bpf_reg_state *regs = cur_regs(env);
8269 	u8 opcode = BPF_OP(insn->code);
8270 	int err;
8271 
8272 	if (opcode == BPF_END || opcode == BPF_NEG) {
8273 		if (opcode == BPF_NEG) {
8274 			if (BPF_SRC(insn->code) != 0 ||
8275 			    insn->src_reg != BPF_REG_0 ||
8276 			    insn->off != 0 || insn->imm != 0) {
8277 				verbose(env, "BPF_NEG uses reserved fields\n");
8278 				return -EINVAL;
8279 			}
8280 		} else {
8281 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
8282 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
8283 			    BPF_CLASS(insn->code) == BPF_ALU64) {
8284 				verbose(env, "BPF_END uses reserved fields\n");
8285 				return -EINVAL;
8286 			}
8287 		}
8288 
8289 		/* check src operand */
8290 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8291 		if (err)
8292 			return err;
8293 
8294 		if (is_pointer_value(env, insn->dst_reg)) {
8295 			verbose(env, "R%d pointer arithmetic prohibited\n",
8296 				insn->dst_reg);
8297 			return -EACCES;
8298 		}
8299 
8300 		/* check dest operand */
8301 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
8302 		if (err)
8303 			return err;
8304 
8305 	} else if (opcode == BPF_MOV) {
8306 
8307 		if (BPF_SRC(insn->code) == BPF_X) {
8308 			if (insn->imm != 0 || insn->off != 0) {
8309 				verbose(env, "BPF_MOV uses reserved fields\n");
8310 				return -EINVAL;
8311 			}
8312 
8313 			/* check src operand */
8314 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8315 			if (err)
8316 				return err;
8317 		} else {
8318 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
8319 				verbose(env, "BPF_MOV uses reserved fields\n");
8320 				return -EINVAL;
8321 			}
8322 		}
8323 
8324 		/* check dest operand, mark as required later */
8325 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8326 		if (err)
8327 			return err;
8328 
8329 		if (BPF_SRC(insn->code) == BPF_X) {
8330 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
8331 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
8332 
8333 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
8334 				/* case: R1 = R2
8335 				 * copy register state to dest reg
8336 				 */
8337 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
8338 					/* Assign src and dst registers the same ID
8339 					 * that will be used by find_equal_scalars()
8340 					 * to propagate min/max range.
8341 					 */
8342 					src_reg->id = ++env->id_gen;
8343 				*dst_reg = *src_reg;
8344 				dst_reg->live |= REG_LIVE_WRITTEN;
8345 				dst_reg->subreg_def = DEF_NOT_SUBREG;
8346 			} else {
8347 				/* R1 = (u32) R2 */
8348 				if (is_pointer_value(env, insn->src_reg)) {
8349 					verbose(env,
8350 						"R%d partial copy of pointer\n",
8351 						insn->src_reg);
8352 					return -EACCES;
8353 				} else if (src_reg->type == SCALAR_VALUE) {
8354 					*dst_reg = *src_reg;
8355 					/* Make sure ID is cleared otherwise
8356 					 * dst_reg min/max could be incorrectly
8357 					 * propagated into src_reg by find_equal_scalars()
8358 					 */
8359 					dst_reg->id = 0;
8360 					dst_reg->live |= REG_LIVE_WRITTEN;
8361 					dst_reg->subreg_def = env->insn_idx + 1;
8362 				} else {
8363 					mark_reg_unknown(env, regs,
8364 							 insn->dst_reg);
8365 				}
8366 				zext_32_to_64(dst_reg);
8367 			}
8368 		} else {
8369 			/* case: R = imm
8370 			 * remember the value we stored into this reg
8371 			 */
8372 			/* clear any state __mark_reg_known doesn't set */
8373 			mark_reg_unknown(env, regs, insn->dst_reg);
8374 			regs[insn->dst_reg].type = SCALAR_VALUE;
8375 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
8376 				__mark_reg_known(regs + insn->dst_reg,
8377 						 insn->imm);
8378 			} else {
8379 				__mark_reg_known(regs + insn->dst_reg,
8380 						 (u32)insn->imm);
8381 			}
8382 		}
8383 
8384 	} else if (opcode > BPF_END) {
8385 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
8386 		return -EINVAL;
8387 
8388 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
8389 
8390 		if (BPF_SRC(insn->code) == BPF_X) {
8391 			if (insn->imm != 0 || insn->off != 0) {
8392 				verbose(env, "BPF_ALU uses reserved fields\n");
8393 				return -EINVAL;
8394 			}
8395 			/* check src1 operand */
8396 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8397 			if (err)
8398 				return err;
8399 		} else {
8400 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
8401 				verbose(env, "BPF_ALU uses reserved fields\n");
8402 				return -EINVAL;
8403 			}
8404 		}
8405 
8406 		/* check src2 operand */
8407 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8408 		if (err)
8409 			return err;
8410 
8411 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
8412 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
8413 			verbose(env, "div by zero\n");
8414 			return -EINVAL;
8415 		}
8416 
8417 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
8418 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
8419 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
8420 
8421 			if (insn->imm < 0 || insn->imm >= size) {
8422 				verbose(env, "invalid shift %d\n", insn->imm);
8423 				return -EINVAL;
8424 			}
8425 		}
8426 
8427 		/* check dest operand */
8428 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8429 		if (err)
8430 			return err;
8431 
8432 		return adjust_reg_min_max_vals(env, insn);
8433 	}
8434 
8435 	return 0;
8436 }
8437 
8438 static void __find_good_pkt_pointers(struct bpf_func_state *state,
8439 				     struct bpf_reg_state *dst_reg,
8440 				     enum bpf_reg_type type, int new_range)
8441 {
8442 	struct bpf_reg_state *reg;
8443 	int i;
8444 
8445 	for (i = 0; i < MAX_BPF_REG; i++) {
8446 		reg = &state->regs[i];
8447 		if (reg->type == type && reg->id == dst_reg->id)
8448 			/* keep the maximum range already checked */
8449 			reg->range = max(reg->range, new_range);
8450 	}
8451 
8452 	bpf_for_each_spilled_reg(i, state, reg) {
8453 		if (!reg)
8454 			continue;
8455 		if (reg->type == type && reg->id == dst_reg->id)
8456 			reg->range = max(reg->range, new_range);
8457 	}
8458 }
8459 
8460 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
8461 				   struct bpf_reg_state *dst_reg,
8462 				   enum bpf_reg_type type,
8463 				   bool range_right_open)
8464 {
8465 	int new_range, i;
8466 
8467 	if (dst_reg->off < 0 ||
8468 	    (dst_reg->off == 0 && range_right_open))
8469 		/* This doesn't give us any range */
8470 		return;
8471 
8472 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
8473 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
8474 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
8475 		 * than pkt_end, but that's because it's also less than pkt.
8476 		 */
8477 		return;
8478 
8479 	new_range = dst_reg->off;
8480 	if (range_right_open)
8481 		new_range++;
8482 
8483 	/* Examples for register markings:
8484 	 *
8485 	 * pkt_data in dst register:
8486 	 *
8487 	 *   r2 = r3;
8488 	 *   r2 += 8;
8489 	 *   if (r2 > pkt_end) goto <handle exception>
8490 	 *   <access okay>
8491 	 *
8492 	 *   r2 = r3;
8493 	 *   r2 += 8;
8494 	 *   if (r2 < pkt_end) goto <access okay>
8495 	 *   <handle exception>
8496 	 *
8497 	 *   Where:
8498 	 *     r2 == dst_reg, pkt_end == src_reg
8499 	 *     r2=pkt(id=n,off=8,r=0)
8500 	 *     r3=pkt(id=n,off=0,r=0)
8501 	 *
8502 	 * pkt_data in src register:
8503 	 *
8504 	 *   r2 = r3;
8505 	 *   r2 += 8;
8506 	 *   if (pkt_end >= r2) goto <access okay>
8507 	 *   <handle exception>
8508 	 *
8509 	 *   r2 = r3;
8510 	 *   r2 += 8;
8511 	 *   if (pkt_end <= r2) goto <handle exception>
8512 	 *   <access okay>
8513 	 *
8514 	 *   Where:
8515 	 *     pkt_end == dst_reg, r2 == src_reg
8516 	 *     r2=pkt(id=n,off=8,r=0)
8517 	 *     r3=pkt(id=n,off=0,r=0)
8518 	 *
8519 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
8520 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
8521 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
8522 	 * the check.
8523 	 */
8524 
8525 	/* If our ids match, then we must have the same max_value.  And we
8526 	 * don't care about the other reg's fixed offset, since if it's too big
8527 	 * the range won't allow anything.
8528 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
8529 	 */
8530 	for (i = 0; i <= vstate->curframe; i++)
8531 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
8532 					 new_range);
8533 }
8534 
8535 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
8536 {
8537 	struct tnum subreg = tnum_subreg(reg->var_off);
8538 	s32 sval = (s32)val;
8539 
8540 	switch (opcode) {
8541 	case BPF_JEQ:
8542 		if (tnum_is_const(subreg))
8543 			return !!tnum_equals_const(subreg, val);
8544 		break;
8545 	case BPF_JNE:
8546 		if (tnum_is_const(subreg))
8547 			return !tnum_equals_const(subreg, val);
8548 		break;
8549 	case BPF_JSET:
8550 		if ((~subreg.mask & subreg.value) & val)
8551 			return 1;
8552 		if (!((subreg.mask | subreg.value) & val))
8553 			return 0;
8554 		break;
8555 	case BPF_JGT:
8556 		if (reg->u32_min_value > val)
8557 			return 1;
8558 		else if (reg->u32_max_value <= val)
8559 			return 0;
8560 		break;
8561 	case BPF_JSGT:
8562 		if (reg->s32_min_value > sval)
8563 			return 1;
8564 		else if (reg->s32_max_value <= sval)
8565 			return 0;
8566 		break;
8567 	case BPF_JLT:
8568 		if (reg->u32_max_value < val)
8569 			return 1;
8570 		else if (reg->u32_min_value >= val)
8571 			return 0;
8572 		break;
8573 	case BPF_JSLT:
8574 		if (reg->s32_max_value < sval)
8575 			return 1;
8576 		else if (reg->s32_min_value >= sval)
8577 			return 0;
8578 		break;
8579 	case BPF_JGE:
8580 		if (reg->u32_min_value >= val)
8581 			return 1;
8582 		else if (reg->u32_max_value < val)
8583 			return 0;
8584 		break;
8585 	case BPF_JSGE:
8586 		if (reg->s32_min_value >= sval)
8587 			return 1;
8588 		else if (reg->s32_max_value < sval)
8589 			return 0;
8590 		break;
8591 	case BPF_JLE:
8592 		if (reg->u32_max_value <= val)
8593 			return 1;
8594 		else if (reg->u32_min_value > val)
8595 			return 0;
8596 		break;
8597 	case BPF_JSLE:
8598 		if (reg->s32_max_value <= sval)
8599 			return 1;
8600 		else if (reg->s32_min_value > sval)
8601 			return 0;
8602 		break;
8603 	}
8604 
8605 	return -1;
8606 }
8607 
8608 
8609 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
8610 {
8611 	s64 sval = (s64)val;
8612 
8613 	switch (opcode) {
8614 	case BPF_JEQ:
8615 		if (tnum_is_const(reg->var_off))
8616 			return !!tnum_equals_const(reg->var_off, val);
8617 		break;
8618 	case BPF_JNE:
8619 		if (tnum_is_const(reg->var_off))
8620 			return !tnum_equals_const(reg->var_off, val);
8621 		break;
8622 	case BPF_JSET:
8623 		if ((~reg->var_off.mask & reg->var_off.value) & val)
8624 			return 1;
8625 		if (!((reg->var_off.mask | reg->var_off.value) & val))
8626 			return 0;
8627 		break;
8628 	case BPF_JGT:
8629 		if (reg->umin_value > val)
8630 			return 1;
8631 		else if (reg->umax_value <= val)
8632 			return 0;
8633 		break;
8634 	case BPF_JSGT:
8635 		if (reg->smin_value > sval)
8636 			return 1;
8637 		else if (reg->smax_value <= sval)
8638 			return 0;
8639 		break;
8640 	case BPF_JLT:
8641 		if (reg->umax_value < val)
8642 			return 1;
8643 		else if (reg->umin_value >= val)
8644 			return 0;
8645 		break;
8646 	case BPF_JSLT:
8647 		if (reg->smax_value < sval)
8648 			return 1;
8649 		else if (reg->smin_value >= sval)
8650 			return 0;
8651 		break;
8652 	case BPF_JGE:
8653 		if (reg->umin_value >= val)
8654 			return 1;
8655 		else if (reg->umax_value < val)
8656 			return 0;
8657 		break;
8658 	case BPF_JSGE:
8659 		if (reg->smin_value >= sval)
8660 			return 1;
8661 		else if (reg->smax_value < sval)
8662 			return 0;
8663 		break;
8664 	case BPF_JLE:
8665 		if (reg->umax_value <= val)
8666 			return 1;
8667 		else if (reg->umin_value > val)
8668 			return 0;
8669 		break;
8670 	case BPF_JSLE:
8671 		if (reg->smax_value <= sval)
8672 			return 1;
8673 		else if (reg->smin_value > sval)
8674 			return 0;
8675 		break;
8676 	}
8677 
8678 	return -1;
8679 }
8680 
8681 /* compute branch direction of the expression "if (reg opcode val) goto target;"
8682  * and return:
8683  *  1 - branch will be taken and "goto target" will be executed
8684  *  0 - branch will not be taken and fall-through to next insn
8685  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
8686  *      range [0,10]
8687  */
8688 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
8689 			   bool is_jmp32)
8690 {
8691 	if (__is_pointer_value(false, reg)) {
8692 		if (!reg_type_not_null(reg->type))
8693 			return -1;
8694 
8695 		/* If pointer is valid tests against zero will fail so we can
8696 		 * use this to direct branch taken.
8697 		 */
8698 		if (val != 0)
8699 			return -1;
8700 
8701 		switch (opcode) {
8702 		case BPF_JEQ:
8703 			return 0;
8704 		case BPF_JNE:
8705 			return 1;
8706 		default:
8707 			return -1;
8708 		}
8709 	}
8710 
8711 	if (is_jmp32)
8712 		return is_branch32_taken(reg, val, opcode);
8713 	return is_branch64_taken(reg, val, opcode);
8714 }
8715 
8716 static int flip_opcode(u32 opcode)
8717 {
8718 	/* How can we transform "a <op> b" into "b <op> a"? */
8719 	static const u8 opcode_flip[16] = {
8720 		/* these stay the same */
8721 		[BPF_JEQ  >> 4] = BPF_JEQ,
8722 		[BPF_JNE  >> 4] = BPF_JNE,
8723 		[BPF_JSET >> 4] = BPF_JSET,
8724 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
8725 		[BPF_JGE  >> 4] = BPF_JLE,
8726 		[BPF_JGT  >> 4] = BPF_JLT,
8727 		[BPF_JLE  >> 4] = BPF_JGE,
8728 		[BPF_JLT  >> 4] = BPF_JGT,
8729 		[BPF_JSGE >> 4] = BPF_JSLE,
8730 		[BPF_JSGT >> 4] = BPF_JSLT,
8731 		[BPF_JSLE >> 4] = BPF_JSGE,
8732 		[BPF_JSLT >> 4] = BPF_JSGT
8733 	};
8734 	return opcode_flip[opcode >> 4];
8735 }
8736 
8737 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
8738 				   struct bpf_reg_state *src_reg,
8739 				   u8 opcode)
8740 {
8741 	struct bpf_reg_state *pkt;
8742 
8743 	if (src_reg->type == PTR_TO_PACKET_END) {
8744 		pkt = dst_reg;
8745 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
8746 		pkt = src_reg;
8747 		opcode = flip_opcode(opcode);
8748 	} else {
8749 		return -1;
8750 	}
8751 
8752 	if (pkt->range >= 0)
8753 		return -1;
8754 
8755 	switch (opcode) {
8756 	case BPF_JLE:
8757 		/* pkt <= pkt_end */
8758 		fallthrough;
8759 	case BPF_JGT:
8760 		/* pkt > pkt_end */
8761 		if (pkt->range == BEYOND_PKT_END)
8762 			/* pkt has at last one extra byte beyond pkt_end */
8763 			return opcode == BPF_JGT;
8764 		break;
8765 	case BPF_JLT:
8766 		/* pkt < pkt_end */
8767 		fallthrough;
8768 	case BPF_JGE:
8769 		/* pkt >= pkt_end */
8770 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
8771 			return opcode == BPF_JGE;
8772 		break;
8773 	}
8774 	return -1;
8775 }
8776 
8777 /* Adjusts the register min/max values in the case that the dst_reg is the
8778  * variable register that we are working on, and src_reg is a constant or we're
8779  * simply doing a BPF_K check.
8780  * In JEQ/JNE cases we also adjust the var_off values.
8781  */
8782 static void reg_set_min_max(struct bpf_reg_state *true_reg,
8783 			    struct bpf_reg_state *false_reg,
8784 			    u64 val, u32 val32,
8785 			    u8 opcode, bool is_jmp32)
8786 {
8787 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
8788 	struct tnum false_64off = false_reg->var_off;
8789 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
8790 	struct tnum true_64off = true_reg->var_off;
8791 	s64 sval = (s64)val;
8792 	s32 sval32 = (s32)val32;
8793 
8794 	/* If the dst_reg is a pointer, we can't learn anything about its
8795 	 * variable offset from the compare (unless src_reg were a pointer into
8796 	 * the same object, but we don't bother with that.
8797 	 * Since false_reg and true_reg have the same type by construction, we
8798 	 * only need to check one of them for pointerness.
8799 	 */
8800 	if (__is_pointer_value(false, false_reg))
8801 		return;
8802 
8803 	switch (opcode) {
8804 	case BPF_JEQ:
8805 	case BPF_JNE:
8806 	{
8807 		struct bpf_reg_state *reg =
8808 			opcode == BPF_JEQ ? true_reg : false_reg;
8809 
8810 		/* JEQ/JNE comparison doesn't change the register equivalence.
8811 		 * r1 = r2;
8812 		 * if (r1 == 42) goto label;
8813 		 * ...
8814 		 * label: // here both r1 and r2 are known to be 42.
8815 		 *
8816 		 * Hence when marking register as known preserve it's ID.
8817 		 */
8818 		if (is_jmp32)
8819 			__mark_reg32_known(reg, val32);
8820 		else
8821 			___mark_reg_known(reg, val);
8822 		break;
8823 	}
8824 	case BPF_JSET:
8825 		if (is_jmp32) {
8826 			false_32off = tnum_and(false_32off, tnum_const(~val32));
8827 			if (is_power_of_2(val32))
8828 				true_32off = tnum_or(true_32off,
8829 						     tnum_const(val32));
8830 		} else {
8831 			false_64off = tnum_and(false_64off, tnum_const(~val));
8832 			if (is_power_of_2(val))
8833 				true_64off = tnum_or(true_64off,
8834 						     tnum_const(val));
8835 		}
8836 		break;
8837 	case BPF_JGE:
8838 	case BPF_JGT:
8839 	{
8840 		if (is_jmp32) {
8841 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
8842 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
8843 
8844 			false_reg->u32_max_value = min(false_reg->u32_max_value,
8845 						       false_umax);
8846 			true_reg->u32_min_value = max(true_reg->u32_min_value,
8847 						      true_umin);
8848 		} else {
8849 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
8850 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
8851 
8852 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
8853 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
8854 		}
8855 		break;
8856 	}
8857 	case BPF_JSGE:
8858 	case BPF_JSGT:
8859 	{
8860 		if (is_jmp32) {
8861 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
8862 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
8863 
8864 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
8865 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
8866 		} else {
8867 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
8868 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
8869 
8870 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
8871 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
8872 		}
8873 		break;
8874 	}
8875 	case BPF_JLE:
8876 	case BPF_JLT:
8877 	{
8878 		if (is_jmp32) {
8879 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
8880 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
8881 
8882 			false_reg->u32_min_value = max(false_reg->u32_min_value,
8883 						       false_umin);
8884 			true_reg->u32_max_value = min(true_reg->u32_max_value,
8885 						      true_umax);
8886 		} else {
8887 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
8888 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
8889 
8890 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
8891 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
8892 		}
8893 		break;
8894 	}
8895 	case BPF_JSLE:
8896 	case BPF_JSLT:
8897 	{
8898 		if (is_jmp32) {
8899 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
8900 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
8901 
8902 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
8903 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
8904 		} else {
8905 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
8906 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
8907 
8908 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
8909 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
8910 		}
8911 		break;
8912 	}
8913 	default:
8914 		return;
8915 	}
8916 
8917 	if (is_jmp32) {
8918 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
8919 					     tnum_subreg(false_32off));
8920 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
8921 					    tnum_subreg(true_32off));
8922 		__reg_combine_32_into_64(false_reg);
8923 		__reg_combine_32_into_64(true_reg);
8924 	} else {
8925 		false_reg->var_off = false_64off;
8926 		true_reg->var_off = true_64off;
8927 		__reg_combine_64_into_32(false_reg);
8928 		__reg_combine_64_into_32(true_reg);
8929 	}
8930 }
8931 
8932 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
8933  * the variable reg.
8934  */
8935 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
8936 				struct bpf_reg_state *false_reg,
8937 				u64 val, u32 val32,
8938 				u8 opcode, bool is_jmp32)
8939 {
8940 	opcode = flip_opcode(opcode);
8941 	/* This uses zero as "not present in table"; luckily the zero opcode,
8942 	 * BPF_JA, can't get here.
8943 	 */
8944 	if (opcode)
8945 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
8946 }
8947 
8948 /* Regs are known to be equal, so intersect their min/max/var_off */
8949 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
8950 				  struct bpf_reg_state *dst_reg)
8951 {
8952 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
8953 							dst_reg->umin_value);
8954 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
8955 							dst_reg->umax_value);
8956 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
8957 							dst_reg->smin_value);
8958 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
8959 							dst_reg->smax_value);
8960 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
8961 							     dst_reg->var_off);
8962 	/* We might have learned new bounds from the var_off. */
8963 	__update_reg_bounds(src_reg);
8964 	__update_reg_bounds(dst_reg);
8965 	/* We might have learned something about the sign bit. */
8966 	__reg_deduce_bounds(src_reg);
8967 	__reg_deduce_bounds(dst_reg);
8968 	/* We might have learned some bits from the bounds. */
8969 	__reg_bound_offset(src_reg);
8970 	__reg_bound_offset(dst_reg);
8971 	/* Intersecting with the old var_off might have improved our bounds
8972 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
8973 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
8974 	 */
8975 	__update_reg_bounds(src_reg);
8976 	__update_reg_bounds(dst_reg);
8977 }
8978 
8979 static void reg_combine_min_max(struct bpf_reg_state *true_src,
8980 				struct bpf_reg_state *true_dst,
8981 				struct bpf_reg_state *false_src,
8982 				struct bpf_reg_state *false_dst,
8983 				u8 opcode)
8984 {
8985 	switch (opcode) {
8986 	case BPF_JEQ:
8987 		__reg_combine_min_max(true_src, true_dst);
8988 		break;
8989 	case BPF_JNE:
8990 		__reg_combine_min_max(false_src, false_dst);
8991 		break;
8992 	}
8993 }
8994 
8995 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
8996 				 struct bpf_reg_state *reg, u32 id,
8997 				 bool is_null)
8998 {
8999 	if (reg_type_may_be_null(reg->type) && reg->id == id &&
9000 	    !WARN_ON_ONCE(!reg->id)) {
9001 		/* Old offset (both fixed and variable parts) should
9002 		 * have been known-zero, because we don't allow pointer
9003 		 * arithmetic on pointers that might be NULL.
9004 		 */
9005 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
9006 				 !tnum_equals_const(reg->var_off, 0) ||
9007 				 reg->off)) {
9008 			__mark_reg_known_zero(reg);
9009 			reg->off = 0;
9010 		}
9011 		if (is_null) {
9012 			reg->type = SCALAR_VALUE;
9013 			/* We don't need id and ref_obj_id from this point
9014 			 * onwards anymore, thus we should better reset it,
9015 			 * so that state pruning has chances to take effect.
9016 			 */
9017 			reg->id = 0;
9018 			reg->ref_obj_id = 0;
9019 
9020 			return;
9021 		}
9022 
9023 		mark_ptr_not_null_reg(reg);
9024 
9025 		if (!reg_may_point_to_spin_lock(reg)) {
9026 			/* For not-NULL ptr, reg->ref_obj_id will be reset
9027 			 * in release_reg_references().
9028 			 *
9029 			 * reg->id is still used by spin_lock ptr. Other
9030 			 * than spin_lock ptr type, reg->id can be reset.
9031 			 */
9032 			reg->id = 0;
9033 		}
9034 	}
9035 }
9036 
9037 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
9038 				    bool is_null)
9039 {
9040 	struct bpf_reg_state *reg;
9041 	int i;
9042 
9043 	for (i = 0; i < MAX_BPF_REG; i++)
9044 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
9045 
9046 	bpf_for_each_spilled_reg(i, state, reg) {
9047 		if (!reg)
9048 			continue;
9049 		mark_ptr_or_null_reg(state, reg, id, is_null);
9050 	}
9051 }
9052 
9053 /* The logic is similar to find_good_pkt_pointers(), both could eventually
9054  * be folded together at some point.
9055  */
9056 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
9057 				  bool is_null)
9058 {
9059 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9060 	struct bpf_reg_state *regs = state->regs;
9061 	u32 ref_obj_id = regs[regno].ref_obj_id;
9062 	u32 id = regs[regno].id;
9063 	int i;
9064 
9065 	if (ref_obj_id && ref_obj_id == id && is_null)
9066 		/* regs[regno] is in the " == NULL" branch.
9067 		 * No one could have freed the reference state before
9068 		 * doing the NULL check.
9069 		 */
9070 		WARN_ON_ONCE(release_reference_state(state, id));
9071 
9072 	for (i = 0; i <= vstate->curframe; i++)
9073 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
9074 }
9075 
9076 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
9077 				   struct bpf_reg_state *dst_reg,
9078 				   struct bpf_reg_state *src_reg,
9079 				   struct bpf_verifier_state *this_branch,
9080 				   struct bpf_verifier_state *other_branch)
9081 {
9082 	if (BPF_SRC(insn->code) != BPF_X)
9083 		return false;
9084 
9085 	/* Pointers are always 64-bit. */
9086 	if (BPF_CLASS(insn->code) == BPF_JMP32)
9087 		return false;
9088 
9089 	switch (BPF_OP(insn->code)) {
9090 	case BPF_JGT:
9091 		if ((dst_reg->type == PTR_TO_PACKET &&
9092 		     src_reg->type == PTR_TO_PACKET_END) ||
9093 		    (dst_reg->type == PTR_TO_PACKET_META &&
9094 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9095 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
9096 			find_good_pkt_pointers(this_branch, dst_reg,
9097 					       dst_reg->type, false);
9098 			mark_pkt_end(other_branch, insn->dst_reg, true);
9099 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9100 			    src_reg->type == PTR_TO_PACKET) ||
9101 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9102 			    src_reg->type == PTR_TO_PACKET_META)) {
9103 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
9104 			find_good_pkt_pointers(other_branch, src_reg,
9105 					       src_reg->type, true);
9106 			mark_pkt_end(this_branch, insn->src_reg, false);
9107 		} else {
9108 			return false;
9109 		}
9110 		break;
9111 	case BPF_JLT:
9112 		if ((dst_reg->type == PTR_TO_PACKET &&
9113 		     src_reg->type == PTR_TO_PACKET_END) ||
9114 		    (dst_reg->type == PTR_TO_PACKET_META &&
9115 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9116 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
9117 			find_good_pkt_pointers(other_branch, dst_reg,
9118 					       dst_reg->type, true);
9119 			mark_pkt_end(this_branch, insn->dst_reg, false);
9120 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9121 			    src_reg->type == PTR_TO_PACKET) ||
9122 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9123 			    src_reg->type == PTR_TO_PACKET_META)) {
9124 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
9125 			find_good_pkt_pointers(this_branch, src_reg,
9126 					       src_reg->type, false);
9127 			mark_pkt_end(other_branch, insn->src_reg, true);
9128 		} else {
9129 			return false;
9130 		}
9131 		break;
9132 	case BPF_JGE:
9133 		if ((dst_reg->type == PTR_TO_PACKET &&
9134 		     src_reg->type == PTR_TO_PACKET_END) ||
9135 		    (dst_reg->type == PTR_TO_PACKET_META &&
9136 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9137 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
9138 			find_good_pkt_pointers(this_branch, dst_reg,
9139 					       dst_reg->type, true);
9140 			mark_pkt_end(other_branch, insn->dst_reg, false);
9141 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9142 			    src_reg->type == PTR_TO_PACKET) ||
9143 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9144 			    src_reg->type == PTR_TO_PACKET_META)) {
9145 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
9146 			find_good_pkt_pointers(other_branch, src_reg,
9147 					       src_reg->type, false);
9148 			mark_pkt_end(this_branch, insn->src_reg, true);
9149 		} else {
9150 			return false;
9151 		}
9152 		break;
9153 	case BPF_JLE:
9154 		if ((dst_reg->type == PTR_TO_PACKET &&
9155 		     src_reg->type == PTR_TO_PACKET_END) ||
9156 		    (dst_reg->type == PTR_TO_PACKET_META &&
9157 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9158 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
9159 			find_good_pkt_pointers(other_branch, dst_reg,
9160 					       dst_reg->type, false);
9161 			mark_pkt_end(this_branch, insn->dst_reg, true);
9162 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9163 			    src_reg->type == PTR_TO_PACKET) ||
9164 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9165 			    src_reg->type == PTR_TO_PACKET_META)) {
9166 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
9167 			find_good_pkt_pointers(this_branch, src_reg,
9168 					       src_reg->type, true);
9169 			mark_pkt_end(other_branch, insn->src_reg, false);
9170 		} else {
9171 			return false;
9172 		}
9173 		break;
9174 	default:
9175 		return false;
9176 	}
9177 
9178 	return true;
9179 }
9180 
9181 static void find_equal_scalars(struct bpf_verifier_state *vstate,
9182 			       struct bpf_reg_state *known_reg)
9183 {
9184 	struct bpf_func_state *state;
9185 	struct bpf_reg_state *reg;
9186 	int i, j;
9187 
9188 	for (i = 0; i <= vstate->curframe; i++) {
9189 		state = vstate->frame[i];
9190 		for (j = 0; j < MAX_BPF_REG; j++) {
9191 			reg = &state->regs[j];
9192 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
9193 				*reg = *known_reg;
9194 		}
9195 
9196 		bpf_for_each_spilled_reg(j, state, reg) {
9197 			if (!reg)
9198 				continue;
9199 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
9200 				*reg = *known_reg;
9201 		}
9202 	}
9203 }
9204 
9205 static int check_cond_jmp_op(struct bpf_verifier_env *env,
9206 			     struct bpf_insn *insn, int *insn_idx)
9207 {
9208 	struct bpf_verifier_state *this_branch = env->cur_state;
9209 	struct bpf_verifier_state *other_branch;
9210 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
9211 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
9212 	u8 opcode = BPF_OP(insn->code);
9213 	bool is_jmp32;
9214 	int pred = -1;
9215 	int err;
9216 
9217 	/* Only conditional jumps are expected to reach here. */
9218 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
9219 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
9220 		return -EINVAL;
9221 	}
9222 
9223 	if (BPF_SRC(insn->code) == BPF_X) {
9224 		if (insn->imm != 0) {
9225 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
9226 			return -EINVAL;
9227 		}
9228 
9229 		/* check src1 operand */
9230 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
9231 		if (err)
9232 			return err;
9233 
9234 		if (is_pointer_value(env, insn->src_reg)) {
9235 			verbose(env, "R%d pointer comparison prohibited\n",
9236 				insn->src_reg);
9237 			return -EACCES;
9238 		}
9239 		src_reg = &regs[insn->src_reg];
9240 	} else {
9241 		if (insn->src_reg != BPF_REG_0) {
9242 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
9243 			return -EINVAL;
9244 		}
9245 	}
9246 
9247 	/* check src2 operand */
9248 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9249 	if (err)
9250 		return err;
9251 
9252 	dst_reg = &regs[insn->dst_reg];
9253 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
9254 
9255 	if (BPF_SRC(insn->code) == BPF_K) {
9256 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
9257 	} else if (src_reg->type == SCALAR_VALUE &&
9258 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
9259 		pred = is_branch_taken(dst_reg,
9260 				       tnum_subreg(src_reg->var_off).value,
9261 				       opcode,
9262 				       is_jmp32);
9263 	} else if (src_reg->type == SCALAR_VALUE &&
9264 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
9265 		pred = is_branch_taken(dst_reg,
9266 				       src_reg->var_off.value,
9267 				       opcode,
9268 				       is_jmp32);
9269 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
9270 		   reg_is_pkt_pointer_any(src_reg) &&
9271 		   !is_jmp32) {
9272 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
9273 	}
9274 
9275 	if (pred >= 0) {
9276 		/* If we get here with a dst_reg pointer type it is because
9277 		 * above is_branch_taken() special cased the 0 comparison.
9278 		 */
9279 		if (!__is_pointer_value(false, dst_reg))
9280 			err = mark_chain_precision(env, insn->dst_reg);
9281 		if (BPF_SRC(insn->code) == BPF_X && !err &&
9282 		    !__is_pointer_value(false, src_reg))
9283 			err = mark_chain_precision(env, insn->src_reg);
9284 		if (err)
9285 			return err;
9286 	}
9287 
9288 	if (pred == 1) {
9289 		/* Only follow the goto, ignore fall-through. If needed, push
9290 		 * the fall-through branch for simulation under speculative
9291 		 * execution.
9292 		 */
9293 		if (!env->bypass_spec_v1 &&
9294 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
9295 					       *insn_idx))
9296 			return -EFAULT;
9297 		*insn_idx += insn->off;
9298 		return 0;
9299 	} else if (pred == 0) {
9300 		/* Only follow the fall-through branch, since that's where the
9301 		 * program will go. If needed, push the goto branch for
9302 		 * simulation under speculative execution.
9303 		 */
9304 		if (!env->bypass_spec_v1 &&
9305 		    !sanitize_speculative_path(env, insn,
9306 					       *insn_idx + insn->off + 1,
9307 					       *insn_idx))
9308 			return -EFAULT;
9309 		return 0;
9310 	}
9311 
9312 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
9313 				  false);
9314 	if (!other_branch)
9315 		return -EFAULT;
9316 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
9317 
9318 	/* detect if we are comparing against a constant value so we can adjust
9319 	 * our min/max values for our dst register.
9320 	 * this is only legit if both are scalars (or pointers to the same
9321 	 * object, I suppose, but we don't support that right now), because
9322 	 * otherwise the different base pointers mean the offsets aren't
9323 	 * comparable.
9324 	 */
9325 	if (BPF_SRC(insn->code) == BPF_X) {
9326 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
9327 
9328 		if (dst_reg->type == SCALAR_VALUE &&
9329 		    src_reg->type == SCALAR_VALUE) {
9330 			if (tnum_is_const(src_reg->var_off) ||
9331 			    (is_jmp32 &&
9332 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
9333 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
9334 						dst_reg,
9335 						src_reg->var_off.value,
9336 						tnum_subreg(src_reg->var_off).value,
9337 						opcode, is_jmp32);
9338 			else if (tnum_is_const(dst_reg->var_off) ||
9339 				 (is_jmp32 &&
9340 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
9341 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
9342 						    src_reg,
9343 						    dst_reg->var_off.value,
9344 						    tnum_subreg(dst_reg->var_off).value,
9345 						    opcode, is_jmp32);
9346 			else if (!is_jmp32 &&
9347 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
9348 				/* Comparing for equality, we can combine knowledge */
9349 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
9350 						    &other_branch_regs[insn->dst_reg],
9351 						    src_reg, dst_reg, opcode);
9352 			if (src_reg->id &&
9353 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
9354 				find_equal_scalars(this_branch, src_reg);
9355 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
9356 			}
9357 
9358 		}
9359 	} else if (dst_reg->type == SCALAR_VALUE) {
9360 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
9361 					dst_reg, insn->imm, (u32)insn->imm,
9362 					opcode, is_jmp32);
9363 	}
9364 
9365 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
9366 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
9367 		find_equal_scalars(this_branch, dst_reg);
9368 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
9369 	}
9370 
9371 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
9372 	 * NOTE: these optimizations below are related with pointer comparison
9373 	 *       which will never be JMP32.
9374 	 */
9375 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
9376 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
9377 	    reg_type_may_be_null(dst_reg->type)) {
9378 		/* Mark all identical registers in each branch as either
9379 		 * safe or unknown depending R == 0 or R != 0 conditional.
9380 		 */
9381 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
9382 				      opcode == BPF_JNE);
9383 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
9384 				      opcode == BPF_JEQ);
9385 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
9386 					   this_branch, other_branch) &&
9387 		   is_pointer_value(env, insn->dst_reg)) {
9388 		verbose(env, "R%d pointer comparison prohibited\n",
9389 			insn->dst_reg);
9390 		return -EACCES;
9391 	}
9392 	if (env->log.level & BPF_LOG_LEVEL)
9393 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
9394 	return 0;
9395 }
9396 
9397 /* verify BPF_LD_IMM64 instruction */
9398 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
9399 {
9400 	struct bpf_insn_aux_data *aux = cur_aux(env);
9401 	struct bpf_reg_state *regs = cur_regs(env);
9402 	struct bpf_reg_state *dst_reg;
9403 	struct bpf_map *map;
9404 	int err;
9405 
9406 	if (BPF_SIZE(insn->code) != BPF_DW) {
9407 		verbose(env, "invalid BPF_LD_IMM insn\n");
9408 		return -EINVAL;
9409 	}
9410 	if (insn->off != 0) {
9411 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
9412 		return -EINVAL;
9413 	}
9414 
9415 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
9416 	if (err)
9417 		return err;
9418 
9419 	dst_reg = &regs[insn->dst_reg];
9420 	if (insn->src_reg == 0) {
9421 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
9422 
9423 		dst_reg->type = SCALAR_VALUE;
9424 		__mark_reg_known(&regs[insn->dst_reg], imm);
9425 		return 0;
9426 	}
9427 
9428 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
9429 		mark_reg_known_zero(env, regs, insn->dst_reg);
9430 
9431 		dst_reg->type = aux->btf_var.reg_type;
9432 		switch (dst_reg->type) {
9433 		case PTR_TO_MEM:
9434 			dst_reg->mem_size = aux->btf_var.mem_size;
9435 			break;
9436 		case PTR_TO_BTF_ID:
9437 		case PTR_TO_PERCPU_BTF_ID:
9438 			dst_reg->btf = aux->btf_var.btf;
9439 			dst_reg->btf_id = aux->btf_var.btf_id;
9440 			break;
9441 		default:
9442 			verbose(env, "bpf verifier is misconfigured\n");
9443 			return -EFAULT;
9444 		}
9445 		return 0;
9446 	}
9447 
9448 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
9449 		struct bpf_prog_aux *aux = env->prog->aux;
9450 		u32 subprogno = find_subprog(env,
9451 					     env->insn_idx + insn->imm + 1);
9452 
9453 		if (!aux->func_info) {
9454 			verbose(env, "missing btf func_info\n");
9455 			return -EINVAL;
9456 		}
9457 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
9458 			verbose(env, "callback function not static\n");
9459 			return -EINVAL;
9460 		}
9461 
9462 		dst_reg->type = PTR_TO_FUNC;
9463 		dst_reg->subprogno = subprogno;
9464 		return 0;
9465 	}
9466 
9467 	map = env->used_maps[aux->map_index];
9468 	mark_reg_known_zero(env, regs, insn->dst_reg);
9469 	dst_reg->map_ptr = map;
9470 
9471 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
9472 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
9473 		dst_reg->type = PTR_TO_MAP_VALUE;
9474 		dst_reg->off = aux->map_off;
9475 		if (map_value_has_spin_lock(map))
9476 			dst_reg->id = ++env->id_gen;
9477 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
9478 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
9479 		dst_reg->type = CONST_PTR_TO_MAP;
9480 	} else {
9481 		verbose(env, "bpf verifier is misconfigured\n");
9482 		return -EINVAL;
9483 	}
9484 
9485 	return 0;
9486 }
9487 
9488 static bool may_access_skb(enum bpf_prog_type type)
9489 {
9490 	switch (type) {
9491 	case BPF_PROG_TYPE_SOCKET_FILTER:
9492 	case BPF_PROG_TYPE_SCHED_CLS:
9493 	case BPF_PROG_TYPE_SCHED_ACT:
9494 		return true;
9495 	default:
9496 		return false;
9497 	}
9498 }
9499 
9500 /* verify safety of LD_ABS|LD_IND instructions:
9501  * - they can only appear in the programs where ctx == skb
9502  * - since they are wrappers of function calls, they scratch R1-R5 registers,
9503  *   preserve R6-R9, and store return value into R0
9504  *
9505  * Implicit input:
9506  *   ctx == skb == R6 == CTX
9507  *
9508  * Explicit input:
9509  *   SRC == any register
9510  *   IMM == 32-bit immediate
9511  *
9512  * Output:
9513  *   R0 - 8/16/32-bit skb data converted to cpu endianness
9514  */
9515 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
9516 {
9517 	struct bpf_reg_state *regs = cur_regs(env);
9518 	static const int ctx_reg = BPF_REG_6;
9519 	u8 mode = BPF_MODE(insn->code);
9520 	int i, err;
9521 
9522 	if (!may_access_skb(resolve_prog_type(env->prog))) {
9523 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
9524 		return -EINVAL;
9525 	}
9526 
9527 	if (!env->ops->gen_ld_abs) {
9528 		verbose(env, "bpf verifier is misconfigured\n");
9529 		return -EINVAL;
9530 	}
9531 
9532 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
9533 	    BPF_SIZE(insn->code) == BPF_DW ||
9534 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
9535 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
9536 		return -EINVAL;
9537 	}
9538 
9539 	/* check whether implicit source operand (register R6) is readable */
9540 	err = check_reg_arg(env, ctx_reg, SRC_OP);
9541 	if (err)
9542 		return err;
9543 
9544 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
9545 	 * gen_ld_abs() may terminate the program at runtime, leading to
9546 	 * reference leak.
9547 	 */
9548 	err = check_reference_leak(env);
9549 	if (err) {
9550 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
9551 		return err;
9552 	}
9553 
9554 	if (env->cur_state->active_spin_lock) {
9555 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
9556 		return -EINVAL;
9557 	}
9558 
9559 	if (regs[ctx_reg].type != PTR_TO_CTX) {
9560 		verbose(env,
9561 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
9562 		return -EINVAL;
9563 	}
9564 
9565 	if (mode == BPF_IND) {
9566 		/* check explicit source operand */
9567 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
9568 		if (err)
9569 			return err;
9570 	}
9571 
9572 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
9573 	if (err < 0)
9574 		return err;
9575 
9576 	/* reset caller saved regs to unreadable */
9577 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9578 		mark_reg_not_init(env, regs, caller_saved[i]);
9579 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9580 	}
9581 
9582 	/* mark destination R0 register as readable, since it contains
9583 	 * the value fetched from the packet.
9584 	 * Already marked as written above.
9585 	 */
9586 	mark_reg_unknown(env, regs, BPF_REG_0);
9587 	/* ld_abs load up to 32-bit skb data. */
9588 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
9589 	return 0;
9590 }
9591 
9592 static int check_return_code(struct bpf_verifier_env *env)
9593 {
9594 	struct tnum enforce_attach_type_range = tnum_unknown;
9595 	const struct bpf_prog *prog = env->prog;
9596 	struct bpf_reg_state *reg;
9597 	struct tnum range = tnum_range(0, 1);
9598 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9599 	int err;
9600 	struct bpf_func_state *frame = env->cur_state->frame[0];
9601 	const bool is_subprog = frame->subprogno;
9602 
9603 	/* LSM and struct_ops func-ptr's return type could be "void" */
9604 	if (!is_subprog &&
9605 	    (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
9606 	     prog_type == BPF_PROG_TYPE_LSM) &&
9607 	    !prog->aux->attach_func_proto->type)
9608 		return 0;
9609 
9610 	/* eBPF calling convention is such that R0 is used
9611 	 * to return the value from eBPF program.
9612 	 * Make sure that it's readable at this time
9613 	 * of bpf_exit, which means that program wrote
9614 	 * something into it earlier
9615 	 */
9616 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
9617 	if (err)
9618 		return err;
9619 
9620 	if (is_pointer_value(env, BPF_REG_0)) {
9621 		verbose(env, "R0 leaks addr as return value\n");
9622 		return -EACCES;
9623 	}
9624 
9625 	reg = cur_regs(env) + BPF_REG_0;
9626 
9627 	if (frame->in_async_callback_fn) {
9628 		/* enforce return zero from async callbacks like timer */
9629 		if (reg->type != SCALAR_VALUE) {
9630 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
9631 				reg_type_str[reg->type]);
9632 			return -EINVAL;
9633 		}
9634 
9635 		if (!tnum_in(tnum_const(0), reg->var_off)) {
9636 			verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
9637 			return -EINVAL;
9638 		}
9639 		return 0;
9640 	}
9641 
9642 	if (is_subprog) {
9643 		if (reg->type != SCALAR_VALUE) {
9644 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
9645 				reg_type_str[reg->type]);
9646 			return -EINVAL;
9647 		}
9648 		return 0;
9649 	}
9650 
9651 	switch (prog_type) {
9652 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
9653 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
9654 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
9655 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
9656 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
9657 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
9658 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
9659 			range = tnum_range(1, 1);
9660 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
9661 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
9662 			range = tnum_range(0, 3);
9663 		break;
9664 	case BPF_PROG_TYPE_CGROUP_SKB:
9665 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
9666 			range = tnum_range(0, 3);
9667 			enforce_attach_type_range = tnum_range(2, 3);
9668 		}
9669 		break;
9670 	case BPF_PROG_TYPE_CGROUP_SOCK:
9671 	case BPF_PROG_TYPE_SOCK_OPS:
9672 	case BPF_PROG_TYPE_CGROUP_DEVICE:
9673 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
9674 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
9675 		break;
9676 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
9677 		if (!env->prog->aux->attach_btf_id)
9678 			return 0;
9679 		range = tnum_const(0);
9680 		break;
9681 	case BPF_PROG_TYPE_TRACING:
9682 		switch (env->prog->expected_attach_type) {
9683 		case BPF_TRACE_FENTRY:
9684 		case BPF_TRACE_FEXIT:
9685 			range = tnum_const(0);
9686 			break;
9687 		case BPF_TRACE_RAW_TP:
9688 		case BPF_MODIFY_RETURN:
9689 			return 0;
9690 		case BPF_TRACE_ITER:
9691 			break;
9692 		default:
9693 			return -ENOTSUPP;
9694 		}
9695 		break;
9696 	case BPF_PROG_TYPE_SK_LOOKUP:
9697 		range = tnum_range(SK_DROP, SK_PASS);
9698 		break;
9699 	case BPF_PROG_TYPE_EXT:
9700 		/* freplace program can return anything as its return value
9701 		 * depends on the to-be-replaced kernel func or bpf program.
9702 		 */
9703 	default:
9704 		return 0;
9705 	}
9706 
9707 	if (reg->type != SCALAR_VALUE) {
9708 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
9709 			reg_type_str[reg->type]);
9710 		return -EINVAL;
9711 	}
9712 
9713 	if (!tnum_in(range, reg->var_off)) {
9714 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
9715 		return -EINVAL;
9716 	}
9717 
9718 	if (!tnum_is_unknown(enforce_attach_type_range) &&
9719 	    tnum_in(enforce_attach_type_range, reg->var_off))
9720 		env->prog->enforce_expected_attach_type = 1;
9721 	return 0;
9722 }
9723 
9724 /* non-recursive DFS pseudo code
9725  * 1  procedure DFS-iterative(G,v):
9726  * 2      label v as discovered
9727  * 3      let S be a stack
9728  * 4      S.push(v)
9729  * 5      while S is not empty
9730  * 6            t <- S.pop()
9731  * 7            if t is what we're looking for:
9732  * 8                return t
9733  * 9            for all edges e in G.adjacentEdges(t) do
9734  * 10               if edge e is already labelled
9735  * 11                   continue with the next edge
9736  * 12               w <- G.adjacentVertex(t,e)
9737  * 13               if vertex w is not discovered and not explored
9738  * 14                   label e as tree-edge
9739  * 15                   label w as discovered
9740  * 16                   S.push(w)
9741  * 17                   continue at 5
9742  * 18               else if vertex w is discovered
9743  * 19                   label e as back-edge
9744  * 20               else
9745  * 21                   // vertex w is explored
9746  * 22                   label e as forward- or cross-edge
9747  * 23           label t as explored
9748  * 24           S.pop()
9749  *
9750  * convention:
9751  * 0x10 - discovered
9752  * 0x11 - discovered and fall-through edge labelled
9753  * 0x12 - discovered and fall-through and branch edges labelled
9754  * 0x20 - explored
9755  */
9756 
9757 enum {
9758 	DISCOVERED = 0x10,
9759 	EXPLORED = 0x20,
9760 	FALLTHROUGH = 1,
9761 	BRANCH = 2,
9762 };
9763 
9764 static u32 state_htab_size(struct bpf_verifier_env *env)
9765 {
9766 	return env->prog->len;
9767 }
9768 
9769 static struct bpf_verifier_state_list **explored_state(
9770 					struct bpf_verifier_env *env,
9771 					int idx)
9772 {
9773 	struct bpf_verifier_state *cur = env->cur_state;
9774 	struct bpf_func_state *state = cur->frame[cur->curframe];
9775 
9776 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
9777 }
9778 
9779 static void init_explored_state(struct bpf_verifier_env *env, int idx)
9780 {
9781 	env->insn_aux_data[idx].prune_point = true;
9782 }
9783 
9784 enum {
9785 	DONE_EXPLORING = 0,
9786 	KEEP_EXPLORING = 1,
9787 };
9788 
9789 /* t, w, e - match pseudo-code above:
9790  * t - index of current instruction
9791  * w - next instruction
9792  * e - edge
9793  */
9794 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
9795 		     bool loop_ok)
9796 {
9797 	int *insn_stack = env->cfg.insn_stack;
9798 	int *insn_state = env->cfg.insn_state;
9799 
9800 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
9801 		return DONE_EXPLORING;
9802 
9803 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
9804 		return DONE_EXPLORING;
9805 
9806 	if (w < 0 || w >= env->prog->len) {
9807 		verbose_linfo(env, t, "%d: ", t);
9808 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
9809 		return -EINVAL;
9810 	}
9811 
9812 	if (e == BRANCH)
9813 		/* mark branch target for state pruning */
9814 		init_explored_state(env, w);
9815 
9816 	if (insn_state[w] == 0) {
9817 		/* tree-edge */
9818 		insn_state[t] = DISCOVERED | e;
9819 		insn_state[w] = DISCOVERED;
9820 		if (env->cfg.cur_stack >= env->prog->len)
9821 			return -E2BIG;
9822 		insn_stack[env->cfg.cur_stack++] = w;
9823 		return KEEP_EXPLORING;
9824 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
9825 		if (loop_ok && env->bpf_capable)
9826 			return DONE_EXPLORING;
9827 		verbose_linfo(env, t, "%d: ", t);
9828 		verbose_linfo(env, w, "%d: ", w);
9829 		verbose(env, "back-edge from insn %d to %d\n", t, w);
9830 		return -EINVAL;
9831 	} else if (insn_state[w] == EXPLORED) {
9832 		/* forward- or cross-edge */
9833 		insn_state[t] = DISCOVERED | e;
9834 	} else {
9835 		verbose(env, "insn state internal bug\n");
9836 		return -EFAULT;
9837 	}
9838 	return DONE_EXPLORING;
9839 }
9840 
9841 static int visit_func_call_insn(int t, int insn_cnt,
9842 				struct bpf_insn *insns,
9843 				struct bpf_verifier_env *env,
9844 				bool visit_callee)
9845 {
9846 	int ret;
9847 
9848 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
9849 	if (ret)
9850 		return ret;
9851 
9852 	if (t + 1 < insn_cnt)
9853 		init_explored_state(env, t + 1);
9854 	if (visit_callee) {
9855 		init_explored_state(env, t);
9856 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
9857 				/* It's ok to allow recursion from CFG point of
9858 				 * view. __check_func_call() will do the actual
9859 				 * check.
9860 				 */
9861 				bpf_pseudo_func(insns + t));
9862 	}
9863 	return ret;
9864 }
9865 
9866 /* Visits the instruction at index t and returns one of the following:
9867  *  < 0 - an error occurred
9868  *  DONE_EXPLORING - the instruction was fully explored
9869  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
9870  */
9871 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
9872 {
9873 	struct bpf_insn *insns = env->prog->insnsi;
9874 	int ret;
9875 
9876 	if (bpf_pseudo_func(insns + t))
9877 		return visit_func_call_insn(t, insn_cnt, insns, env, true);
9878 
9879 	/* All non-branch instructions have a single fall-through edge. */
9880 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
9881 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
9882 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
9883 
9884 	switch (BPF_OP(insns[t].code)) {
9885 	case BPF_EXIT:
9886 		return DONE_EXPLORING;
9887 
9888 	case BPF_CALL:
9889 		if (insns[t].imm == BPF_FUNC_timer_set_callback)
9890 			/* Mark this call insn to trigger is_state_visited() check
9891 			 * before call itself is processed by __check_func_call().
9892 			 * Otherwise new async state will be pushed for further
9893 			 * exploration.
9894 			 */
9895 			init_explored_state(env, t);
9896 		return visit_func_call_insn(t, insn_cnt, insns, env,
9897 					    insns[t].src_reg == BPF_PSEUDO_CALL);
9898 
9899 	case BPF_JA:
9900 		if (BPF_SRC(insns[t].code) != BPF_K)
9901 			return -EINVAL;
9902 
9903 		/* unconditional jump with single edge */
9904 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
9905 				true);
9906 		if (ret)
9907 			return ret;
9908 
9909 		/* unconditional jmp is not a good pruning point,
9910 		 * but it's marked, since backtracking needs
9911 		 * to record jmp history in is_state_visited().
9912 		 */
9913 		init_explored_state(env, t + insns[t].off + 1);
9914 		/* tell verifier to check for equivalent states
9915 		 * after every call and jump
9916 		 */
9917 		if (t + 1 < insn_cnt)
9918 			init_explored_state(env, t + 1);
9919 
9920 		return ret;
9921 
9922 	default:
9923 		/* conditional jump with two edges */
9924 		init_explored_state(env, t);
9925 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
9926 		if (ret)
9927 			return ret;
9928 
9929 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
9930 	}
9931 }
9932 
9933 /* non-recursive depth-first-search to detect loops in BPF program
9934  * loop == back-edge in directed graph
9935  */
9936 static int check_cfg(struct bpf_verifier_env *env)
9937 {
9938 	int insn_cnt = env->prog->len;
9939 	int *insn_stack, *insn_state;
9940 	int ret = 0;
9941 	int i;
9942 
9943 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9944 	if (!insn_state)
9945 		return -ENOMEM;
9946 
9947 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9948 	if (!insn_stack) {
9949 		kvfree(insn_state);
9950 		return -ENOMEM;
9951 	}
9952 
9953 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
9954 	insn_stack[0] = 0; /* 0 is the first instruction */
9955 	env->cfg.cur_stack = 1;
9956 
9957 	while (env->cfg.cur_stack > 0) {
9958 		int t = insn_stack[env->cfg.cur_stack - 1];
9959 
9960 		ret = visit_insn(t, insn_cnt, env);
9961 		switch (ret) {
9962 		case DONE_EXPLORING:
9963 			insn_state[t] = EXPLORED;
9964 			env->cfg.cur_stack--;
9965 			break;
9966 		case KEEP_EXPLORING:
9967 			break;
9968 		default:
9969 			if (ret > 0) {
9970 				verbose(env, "visit_insn internal bug\n");
9971 				ret = -EFAULT;
9972 			}
9973 			goto err_free;
9974 		}
9975 	}
9976 
9977 	if (env->cfg.cur_stack < 0) {
9978 		verbose(env, "pop stack internal bug\n");
9979 		ret = -EFAULT;
9980 		goto err_free;
9981 	}
9982 
9983 	for (i = 0; i < insn_cnt; i++) {
9984 		if (insn_state[i] != EXPLORED) {
9985 			verbose(env, "unreachable insn %d\n", i);
9986 			ret = -EINVAL;
9987 			goto err_free;
9988 		}
9989 	}
9990 	ret = 0; /* cfg looks good */
9991 
9992 err_free:
9993 	kvfree(insn_state);
9994 	kvfree(insn_stack);
9995 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
9996 	return ret;
9997 }
9998 
9999 static int check_abnormal_return(struct bpf_verifier_env *env)
10000 {
10001 	int i;
10002 
10003 	for (i = 1; i < env->subprog_cnt; i++) {
10004 		if (env->subprog_info[i].has_ld_abs) {
10005 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
10006 			return -EINVAL;
10007 		}
10008 		if (env->subprog_info[i].has_tail_call) {
10009 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
10010 			return -EINVAL;
10011 		}
10012 	}
10013 	return 0;
10014 }
10015 
10016 /* The minimum supported BTF func info size */
10017 #define MIN_BPF_FUNCINFO_SIZE	8
10018 #define MAX_FUNCINFO_REC_SIZE	252
10019 
10020 static int check_btf_func(struct bpf_verifier_env *env,
10021 			  const union bpf_attr *attr,
10022 			  bpfptr_t uattr)
10023 {
10024 	const struct btf_type *type, *func_proto, *ret_type;
10025 	u32 i, nfuncs, urec_size, min_size;
10026 	u32 krec_size = sizeof(struct bpf_func_info);
10027 	struct bpf_func_info *krecord;
10028 	struct bpf_func_info_aux *info_aux = NULL;
10029 	struct bpf_prog *prog;
10030 	const struct btf *btf;
10031 	bpfptr_t urecord;
10032 	u32 prev_offset = 0;
10033 	bool scalar_return;
10034 	int ret = -ENOMEM;
10035 
10036 	nfuncs = attr->func_info_cnt;
10037 	if (!nfuncs) {
10038 		if (check_abnormal_return(env))
10039 			return -EINVAL;
10040 		return 0;
10041 	}
10042 
10043 	if (nfuncs != env->subprog_cnt) {
10044 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
10045 		return -EINVAL;
10046 	}
10047 
10048 	urec_size = attr->func_info_rec_size;
10049 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
10050 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
10051 	    urec_size % sizeof(u32)) {
10052 		verbose(env, "invalid func info rec size %u\n", urec_size);
10053 		return -EINVAL;
10054 	}
10055 
10056 	prog = env->prog;
10057 	btf = prog->aux->btf;
10058 
10059 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
10060 	min_size = min_t(u32, krec_size, urec_size);
10061 
10062 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
10063 	if (!krecord)
10064 		return -ENOMEM;
10065 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
10066 	if (!info_aux)
10067 		goto err_free;
10068 
10069 	for (i = 0; i < nfuncs; i++) {
10070 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
10071 		if (ret) {
10072 			if (ret == -E2BIG) {
10073 				verbose(env, "nonzero tailing record in func info");
10074 				/* set the size kernel expects so loader can zero
10075 				 * out the rest of the record.
10076 				 */
10077 				if (copy_to_bpfptr_offset(uattr,
10078 							  offsetof(union bpf_attr, func_info_rec_size),
10079 							  &min_size, sizeof(min_size)))
10080 					ret = -EFAULT;
10081 			}
10082 			goto err_free;
10083 		}
10084 
10085 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
10086 			ret = -EFAULT;
10087 			goto err_free;
10088 		}
10089 
10090 		/* check insn_off */
10091 		ret = -EINVAL;
10092 		if (i == 0) {
10093 			if (krecord[i].insn_off) {
10094 				verbose(env,
10095 					"nonzero insn_off %u for the first func info record",
10096 					krecord[i].insn_off);
10097 				goto err_free;
10098 			}
10099 		} else if (krecord[i].insn_off <= prev_offset) {
10100 			verbose(env,
10101 				"same or smaller insn offset (%u) than previous func info record (%u)",
10102 				krecord[i].insn_off, prev_offset);
10103 			goto err_free;
10104 		}
10105 
10106 		if (env->subprog_info[i].start != krecord[i].insn_off) {
10107 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
10108 			goto err_free;
10109 		}
10110 
10111 		/* check type_id */
10112 		type = btf_type_by_id(btf, krecord[i].type_id);
10113 		if (!type || !btf_type_is_func(type)) {
10114 			verbose(env, "invalid type id %d in func info",
10115 				krecord[i].type_id);
10116 			goto err_free;
10117 		}
10118 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
10119 
10120 		func_proto = btf_type_by_id(btf, type->type);
10121 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
10122 			/* btf_func_check() already verified it during BTF load */
10123 			goto err_free;
10124 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
10125 		scalar_return =
10126 			btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
10127 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
10128 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
10129 			goto err_free;
10130 		}
10131 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
10132 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
10133 			goto err_free;
10134 		}
10135 
10136 		prev_offset = krecord[i].insn_off;
10137 		bpfptr_add(&urecord, urec_size);
10138 	}
10139 
10140 	prog->aux->func_info = krecord;
10141 	prog->aux->func_info_cnt = nfuncs;
10142 	prog->aux->func_info_aux = info_aux;
10143 	return 0;
10144 
10145 err_free:
10146 	kvfree(krecord);
10147 	kfree(info_aux);
10148 	return ret;
10149 }
10150 
10151 static void adjust_btf_func(struct bpf_verifier_env *env)
10152 {
10153 	struct bpf_prog_aux *aux = env->prog->aux;
10154 	int i;
10155 
10156 	if (!aux->func_info)
10157 		return;
10158 
10159 	for (i = 0; i < env->subprog_cnt; i++)
10160 		aux->func_info[i].insn_off = env->subprog_info[i].start;
10161 }
10162 
10163 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
10164 		sizeof(((struct bpf_line_info *)(0))->line_col))
10165 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
10166 
10167 static int check_btf_line(struct bpf_verifier_env *env,
10168 			  const union bpf_attr *attr,
10169 			  bpfptr_t uattr)
10170 {
10171 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
10172 	struct bpf_subprog_info *sub;
10173 	struct bpf_line_info *linfo;
10174 	struct bpf_prog *prog;
10175 	const struct btf *btf;
10176 	bpfptr_t ulinfo;
10177 	int err;
10178 
10179 	nr_linfo = attr->line_info_cnt;
10180 	if (!nr_linfo)
10181 		return 0;
10182 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
10183 		return -EINVAL;
10184 
10185 	rec_size = attr->line_info_rec_size;
10186 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
10187 	    rec_size > MAX_LINEINFO_REC_SIZE ||
10188 	    rec_size & (sizeof(u32) - 1))
10189 		return -EINVAL;
10190 
10191 	/* Need to zero it in case the userspace may
10192 	 * pass in a smaller bpf_line_info object.
10193 	 */
10194 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
10195 			 GFP_KERNEL | __GFP_NOWARN);
10196 	if (!linfo)
10197 		return -ENOMEM;
10198 
10199 	prog = env->prog;
10200 	btf = prog->aux->btf;
10201 
10202 	s = 0;
10203 	sub = env->subprog_info;
10204 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
10205 	expected_size = sizeof(struct bpf_line_info);
10206 	ncopy = min_t(u32, expected_size, rec_size);
10207 	for (i = 0; i < nr_linfo; i++) {
10208 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
10209 		if (err) {
10210 			if (err == -E2BIG) {
10211 				verbose(env, "nonzero tailing record in line_info");
10212 				if (copy_to_bpfptr_offset(uattr,
10213 							  offsetof(union bpf_attr, line_info_rec_size),
10214 							  &expected_size, sizeof(expected_size)))
10215 					err = -EFAULT;
10216 			}
10217 			goto err_free;
10218 		}
10219 
10220 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
10221 			err = -EFAULT;
10222 			goto err_free;
10223 		}
10224 
10225 		/*
10226 		 * Check insn_off to ensure
10227 		 * 1) strictly increasing AND
10228 		 * 2) bounded by prog->len
10229 		 *
10230 		 * The linfo[0].insn_off == 0 check logically falls into
10231 		 * the later "missing bpf_line_info for func..." case
10232 		 * because the first linfo[0].insn_off must be the
10233 		 * first sub also and the first sub must have
10234 		 * subprog_info[0].start == 0.
10235 		 */
10236 		if ((i && linfo[i].insn_off <= prev_offset) ||
10237 		    linfo[i].insn_off >= prog->len) {
10238 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
10239 				i, linfo[i].insn_off, prev_offset,
10240 				prog->len);
10241 			err = -EINVAL;
10242 			goto err_free;
10243 		}
10244 
10245 		if (!prog->insnsi[linfo[i].insn_off].code) {
10246 			verbose(env,
10247 				"Invalid insn code at line_info[%u].insn_off\n",
10248 				i);
10249 			err = -EINVAL;
10250 			goto err_free;
10251 		}
10252 
10253 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
10254 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
10255 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
10256 			err = -EINVAL;
10257 			goto err_free;
10258 		}
10259 
10260 		if (s != env->subprog_cnt) {
10261 			if (linfo[i].insn_off == sub[s].start) {
10262 				sub[s].linfo_idx = i;
10263 				s++;
10264 			} else if (sub[s].start < linfo[i].insn_off) {
10265 				verbose(env, "missing bpf_line_info for func#%u\n", s);
10266 				err = -EINVAL;
10267 				goto err_free;
10268 			}
10269 		}
10270 
10271 		prev_offset = linfo[i].insn_off;
10272 		bpfptr_add(&ulinfo, rec_size);
10273 	}
10274 
10275 	if (s != env->subprog_cnt) {
10276 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
10277 			env->subprog_cnt - s, s);
10278 		err = -EINVAL;
10279 		goto err_free;
10280 	}
10281 
10282 	prog->aux->linfo = linfo;
10283 	prog->aux->nr_linfo = nr_linfo;
10284 
10285 	return 0;
10286 
10287 err_free:
10288 	kvfree(linfo);
10289 	return err;
10290 }
10291 
10292 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
10293 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
10294 
10295 static int check_core_relo(struct bpf_verifier_env *env,
10296 			   const union bpf_attr *attr,
10297 			   bpfptr_t uattr)
10298 {
10299 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
10300 	struct bpf_core_relo core_relo = {};
10301 	struct bpf_prog *prog = env->prog;
10302 	const struct btf *btf = prog->aux->btf;
10303 	struct bpf_core_ctx ctx = {
10304 		.log = &env->log,
10305 		.btf = btf,
10306 	};
10307 	bpfptr_t u_core_relo;
10308 	int err;
10309 
10310 	nr_core_relo = attr->core_relo_cnt;
10311 	if (!nr_core_relo)
10312 		return 0;
10313 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
10314 		return -EINVAL;
10315 
10316 	rec_size = attr->core_relo_rec_size;
10317 	if (rec_size < MIN_CORE_RELO_SIZE ||
10318 	    rec_size > MAX_CORE_RELO_SIZE ||
10319 	    rec_size % sizeof(u32))
10320 		return -EINVAL;
10321 
10322 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
10323 	expected_size = sizeof(struct bpf_core_relo);
10324 	ncopy = min_t(u32, expected_size, rec_size);
10325 
10326 	/* Unlike func_info and line_info, copy and apply each CO-RE
10327 	 * relocation record one at a time.
10328 	 */
10329 	for (i = 0; i < nr_core_relo; i++) {
10330 		/* future proofing when sizeof(bpf_core_relo) changes */
10331 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
10332 		if (err) {
10333 			if (err == -E2BIG) {
10334 				verbose(env, "nonzero tailing record in core_relo");
10335 				if (copy_to_bpfptr_offset(uattr,
10336 							  offsetof(union bpf_attr, core_relo_rec_size),
10337 							  &expected_size, sizeof(expected_size)))
10338 					err = -EFAULT;
10339 			}
10340 			break;
10341 		}
10342 
10343 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
10344 			err = -EFAULT;
10345 			break;
10346 		}
10347 
10348 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
10349 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
10350 				i, core_relo.insn_off, prog->len);
10351 			err = -EINVAL;
10352 			break;
10353 		}
10354 
10355 		err = bpf_core_apply(&ctx, &core_relo, i,
10356 				     &prog->insnsi[core_relo.insn_off / 8]);
10357 		if (err)
10358 			break;
10359 		bpfptr_add(&u_core_relo, rec_size);
10360 	}
10361 	return err;
10362 }
10363 
10364 static int check_btf_info(struct bpf_verifier_env *env,
10365 			  const union bpf_attr *attr,
10366 			  bpfptr_t uattr)
10367 {
10368 	struct btf *btf;
10369 	int err;
10370 
10371 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
10372 		if (check_abnormal_return(env))
10373 			return -EINVAL;
10374 		return 0;
10375 	}
10376 
10377 	btf = btf_get_by_fd(attr->prog_btf_fd);
10378 	if (IS_ERR(btf))
10379 		return PTR_ERR(btf);
10380 	if (btf_is_kernel(btf)) {
10381 		btf_put(btf);
10382 		return -EACCES;
10383 	}
10384 	env->prog->aux->btf = btf;
10385 
10386 	err = check_btf_func(env, attr, uattr);
10387 	if (err)
10388 		return err;
10389 
10390 	err = check_btf_line(env, attr, uattr);
10391 	if (err)
10392 		return err;
10393 
10394 	err = check_core_relo(env, attr, uattr);
10395 	if (err)
10396 		return err;
10397 
10398 	return 0;
10399 }
10400 
10401 /* check %cur's range satisfies %old's */
10402 static bool range_within(struct bpf_reg_state *old,
10403 			 struct bpf_reg_state *cur)
10404 {
10405 	return old->umin_value <= cur->umin_value &&
10406 	       old->umax_value >= cur->umax_value &&
10407 	       old->smin_value <= cur->smin_value &&
10408 	       old->smax_value >= cur->smax_value &&
10409 	       old->u32_min_value <= cur->u32_min_value &&
10410 	       old->u32_max_value >= cur->u32_max_value &&
10411 	       old->s32_min_value <= cur->s32_min_value &&
10412 	       old->s32_max_value >= cur->s32_max_value;
10413 }
10414 
10415 /* If in the old state two registers had the same id, then they need to have
10416  * the same id in the new state as well.  But that id could be different from
10417  * the old state, so we need to track the mapping from old to new ids.
10418  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
10419  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
10420  * regs with a different old id could still have new id 9, we don't care about
10421  * that.
10422  * So we look through our idmap to see if this old id has been seen before.  If
10423  * so, we require the new id to match; otherwise, we add the id pair to the map.
10424  */
10425 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
10426 {
10427 	unsigned int i;
10428 
10429 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
10430 		if (!idmap[i].old) {
10431 			/* Reached an empty slot; haven't seen this id before */
10432 			idmap[i].old = old_id;
10433 			idmap[i].cur = cur_id;
10434 			return true;
10435 		}
10436 		if (idmap[i].old == old_id)
10437 			return idmap[i].cur == cur_id;
10438 	}
10439 	/* We ran out of idmap slots, which should be impossible */
10440 	WARN_ON_ONCE(1);
10441 	return false;
10442 }
10443 
10444 static void clean_func_state(struct bpf_verifier_env *env,
10445 			     struct bpf_func_state *st)
10446 {
10447 	enum bpf_reg_liveness live;
10448 	int i, j;
10449 
10450 	for (i = 0; i < BPF_REG_FP; i++) {
10451 		live = st->regs[i].live;
10452 		/* liveness must not touch this register anymore */
10453 		st->regs[i].live |= REG_LIVE_DONE;
10454 		if (!(live & REG_LIVE_READ))
10455 			/* since the register is unused, clear its state
10456 			 * to make further comparison simpler
10457 			 */
10458 			__mark_reg_not_init(env, &st->regs[i]);
10459 	}
10460 
10461 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
10462 		live = st->stack[i].spilled_ptr.live;
10463 		/* liveness must not touch this stack slot anymore */
10464 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
10465 		if (!(live & REG_LIVE_READ)) {
10466 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
10467 			for (j = 0; j < BPF_REG_SIZE; j++)
10468 				st->stack[i].slot_type[j] = STACK_INVALID;
10469 		}
10470 	}
10471 }
10472 
10473 static void clean_verifier_state(struct bpf_verifier_env *env,
10474 				 struct bpf_verifier_state *st)
10475 {
10476 	int i;
10477 
10478 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
10479 		/* all regs in this state in all frames were already marked */
10480 		return;
10481 
10482 	for (i = 0; i <= st->curframe; i++)
10483 		clean_func_state(env, st->frame[i]);
10484 }
10485 
10486 /* the parentage chains form a tree.
10487  * the verifier states are added to state lists at given insn and
10488  * pushed into state stack for future exploration.
10489  * when the verifier reaches bpf_exit insn some of the verifer states
10490  * stored in the state lists have their final liveness state already,
10491  * but a lot of states will get revised from liveness point of view when
10492  * the verifier explores other branches.
10493  * Example:
10494  * 1: r0 = 1
10495  * 2: if r1 == 100 goto pc+1
10496  * 3: r0 = 2
10497  * 4: exit
10498  * when the verifier reaches exit insn the register r0 in the state list of
10499  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
10500  * of insn 2 and goes exploring further. At the insn 4 it will walk the
10501  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
10502  *
10503  * Since the verifier pushes the branch states as it sees them while exploring
10504  * the program the condition of walking the branch instruction for the second
10505  * time means that all states below this branch were already explored and
10506  * their final liveness marks are already propagated.
10507  * Hence when the verifier completes the search of state list in is_state_visited()
10508  * we can call this clean_live_states() function to mark all liveness states
10509  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
10510  * will not be used.
10511  * This function also clears the registers and stack for states that !READ
10512  * to simplify state merging.
10513  *
10514  * Important note here that walking the same branch instruction in the callee
10515  * doesn't meant that the states are DONE. The verifier has to compare
10516  * the callsites
10517  */
10518 static void clean_live_states(struct bpf_verifier_env *env, int insn,
10519 			      struct bpf_verifier_state *cur)
10520 {
10521 	struct bpf_verifier_state_list *sl;
10522 	int i;
10523 
10524 	sl = *explored_state(env, insn);
10525 	while (sl) {
10526 		if (sl->state.branches)
10527 			goto next;
10528 		if (sl->state.insn_idx != insn ||
10529 		    sl->state.curframe != cur->curframe)
10530 			goto next;
10531 		for (i = 0; i <= cur->curframe; i++)
10532 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
10533 				goto next;
10534 		clean_verifier_state(env, &sl->state);
10535 next:
10536 		sl = sl->next;
10537 	}
10538 }
10539 
10540 /* Returns true if (rold safe implies rcur safe) */
10541 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
10542 		    struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
10543 {
10544 	bool equal;
10545 
10546 	if (!(rold->live & REG_LIVE_READ))
10547 		/* explored state didn't use this */
10548 		return true;
10549 
10550 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
10551 
10552 	if (rold->type == PTR_TO_STACK)
10553 		/* two stack pointers are equal only if they're pointing to
10554 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
10555 		 */
10556 		return equal && rold->frameno == rcur->frameno;
10557 
10558 	if (equal)
10559 		return true;
10560 
10561 	if (rold->type == NOT_INIT)
10562 		/* explored state can't have used this */
10563 		return true;
10564 	if (rcur->type == NOT_INIT)
10565 		return false;
10566 	switch (rold->type) {
10567 	case SCALAR_VALUE:
10568 		if (env->explore_alu_limits)
10569 			return false;
10570 		if (rcur->type == SCALAR_VALUE) {
10571 			if (!rold->precise && !rcur->precise)
10572 				return true;
10573 			/* new val must satisfy old val knowledge */
10574 			return range_within(rold, rcur) &&
10575 			       tnum_in(rold->var_off, rcur->var_off);
10576 		} else {
10577 			/* We're trying to use a pointer in place of a scalar.
10578 			 * Even if the scalar was unbounded, this could lead to
10579 			 * pointer leaks because scalars are allowed to leak
10580 			 * while pointers are not. We could make this safe in
10581 			 * special cases if root is calling us, but it's
10582 			 * probably not worth the hassle.
10583 			 */
10584 			return false;
10585 		}
10586 	case PTR_TO_MAP_KEY:
10587 	case PTR_TO_MAP_VALUE:
10588 		/* If the new min/max/var_off satisfy the old ones and
10589 		 * everything else matches, we are OK.
10590 		 * 'id' is not compared, since it's only used for maps with
10591 		 * bpf_spin_lock inside map element and in such cases if
10592 		 * the rest of the prog is valid for one map element then
10593 		 * it's valid for all map elements regardless of the key
10594 		 * used in bpf_map_lookup()
10595 		 */
10596 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
10597 		       range_within(rold, rcur) &&
10598 		       tnum_in(rold->var_off, rcur->var_off);
10599 	case PTR_TO_MAP_VALUE_OR_NULL:
10600 		/* a PTR_TO_MAP_VALUE could be safe to use as a
10601 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
10602 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
10603 		 * checked, doing so could have affected others with the same
10604 		 * id, and we can't check for that because we lost the id when
10605 		 * we converted to a PTR_TO_MAP_VALUE.
10606 		 */
10607 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
10608 			return false;
10609 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
10610 			return false;
10611 		/* Check our ids match any regs they're supposed to */
10612 		return check_ids(rold->id, rcur->id, idmap);
10613 	case PTR_TO_PACKET_META:
10614 	case PTR_TO_PACKET:
10615 		if (rcur->type != rold->type)
10616 			return false;
10617 		/* We must have at least as much range as the old ptr
10618 		 * did, so that any accesses which were safe before are
10619 		 * still safe.  This is true even if old range < old off,
10620 		 * since someone could have accessed through (ptr - k), or
10621 		 * even done ptr -= k in a register, to get a safe access.
10622 		 */
10623 		if (rold->range > rcur->range)
10624 			return false;
10625 		/* If the offsets don't match, we can't trust our alignment;
10626 		 * nor can we be sure that we won't fall out of range.
10627 		 */
10628 		if (rold->off != rcur->off)
10629 			return false;
10630 		/* id relations must be preserved */
10631 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
10632 			return false;
10633 		/* new val must satisfy old val knowledge */
10634 		return range_within(rold, rcur) &&
10635 		       tnum_in(rold->var_off, rcur->var_off);
10636 	case PTR_TO_CTX:
10637 	case CONST_PTR_TO_MAP:
10638 	case PTR_TO_PACKET_END:
10639 	case PTR_TO_FLOW_KEYS:
10640 	case PTR_TO_SOCKET:
10641 	case PTR_TO_SOCKET_OR_NULL:
10642 	case PTR_TO_SOCK_COMMON:
10643 	case PTR_TO_SOCK_COMMON_OR_NULL:
10644 	case PTR_TO_TCP_SOCK:
10645 	case PTR_TO_TCP_SOCK_OR_NULL:
10646 	case PTR_TO_XDP_SOCK:
10647 		/* Only valid matches are exact, which memcmp() above
10648 		 * would have accepted
10649 		 */
10650 	default:
10651 		/* Don't know what's going on, just say it's not safe */
10652 		return false;
10653 	}
10654 
10655 	/* Shouldn't get here; if we do, say it's not safe */
10656 	WARN_ON_ONCE(1);
10657 	return false;
10658 }
10659 
10660 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
10661 		      struct bpf_func_state *cur, struct bpf_id_pair *idmap)
10662 {
10663 	int i, spi;
10664 
10665 	/* walk slots of the explored stack and ignore any additional
10666 	 * slots in the current stack, since explored(safe) state
10667 	 * didn't use them
10668 	 */
10669 	for (i = 0; i < old->allocated_stack; i++) {
10670 		spi = i / BPF_REG_SIZE;
10671 
10672 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
10673 			i += BPF_REG_SIZE - 1;
10674 			/* explored state didn't use this */
10675 			continue;
10676 		}
10677 
10678 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
10679 			continue;
10680 
10681 		/* explored stack has more populated slots than current stack
10682 		 * and these slots were used
10683 		 */
10684 		if (i >= cur->allocated_stack)
10685 			return false;
10686 
10687 		/* if old state was safe with misc data in the stack
10688 		 * it will be safe with zero-initialized stack.
10689 		 * The opposite is not true
10690 		 */
10691 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
10692 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
10693 			continue;
10694 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
10695 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
10696 			/* Ex: old explored (safe) state has STACK_SPILL in
10697 			 * this stack slot, but current has STACK_MISC ->
10698 			 * this verifier states are not equivalent,
10699 			 * return false to continue verification of this path
10700 			 */
10701 			return false;
10702 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
10703 			continue;
10704 		if (!is_spilled_reg(&old->stack[spi]))
10705 			continue;
10706 		if (!regsafe(env, &old->stack[spi].spilled_ptr,
10707 			     &cur->stack[spi].spilled_ptr, idmap))
10708 			/* when explored and current stack slot are both storing
10709 			 * spilled registers, check that stored pointers types
10710 			 * are the same as well.
10711 			 * Ex: explored safe path could have stored
10712 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
10713 			 * but current path has stored:
10714 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
10715 			 * such verifier states are not equivalent.
10716 			 * return false to continue verification of this path
10717 			 */
10718 			return false;
10719 	}
10720 	return true;
10721 }
10722 
10723 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
10724 {
10725 	if (old->acquired_refs != cur->acquired_refs)
10726 		return false;
10727 	return !memcmp(old->refs, cur->refs,
10728 		       sizeof(*old->refs) * old->acquired_refs);
10729 }
10730 
10731 /* compare two verifier states
10732  *
10733  * all states stored in state_list are known to be valid, since
10734  * verifier reached 'bpf_exit' instruction through them
10735  *
10736  * this function is called when verifier exploring different branches of
10737  * execution popped from the state stack. If it sees an old state that has
10738  * more strict register state and more strict stack state then this execution
10739  * branch doesn't need to be explored further, since verifier already
10740  * concluded that more strict state leads to valid finish.
10741  *
10742  * Therefore two states are equivalent if register state is more conservative
10743  * and explored stack state is more conservative than the current one.
10744  * Example:
10745  *       explored                   current
10746  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
10747  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
10748  *
10749  * In other words if current stack state (one being explored) has more
10750  * valid slots than old one that already passed validation, it means
10751  * the verifier can stop exploring and conclude that current state is valid too
10752  *
10753  * Similarly with registers. If explored state has register type as invalid
10754  * whereas register type in current state is meaningful, it means that
10755  * the current state will reach 'bpf_exit' instruction safely
10756  */
10757 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
10758 			      struct bpf_func_state *cur)
10759 {
10760 	int i;
10761 
10762 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
10763 	for (i = 0; i < MAX_BPF_REG; i++)
10764 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
10765 			     env->idmap_scratch))
10766 			return false;
10767 
10768 	if (!stacksafe(env, old, cur, env->idmap_scratch))
10769 		return false;
10770 
10771 	if (!refsafe(old, cur))
10772 		return false;
10773 
10774 	return true;
10775 }
10776 
10777 static bool states_equal(struct bpf_verifier_env *env,
10778 			 struct bpf_verifier_state *old,
10779 			 struct bpf_verifier_state *cur)
10780 {
10781 	int i;
10782 
10783 	if (old->curframe != cur->curframe)
10784 		return false;
10785 
10786 	/* Verification state from speculative execution simulation
10787 	 * must never prune a non-speculative execution one.
10788 	 */
10789 	if (old->speculative && !cur->speculative)
10790 		return false;
10791 
10792 	if (old->active_spin_lock != cur->active_spin_lock)
10793 		return false;
10794 
10795 	/* for states to be equal callsites have to be the same
10796 	 * and all frame states need to be equivalent
10797 	 */
10798 	for (i = 0; i <= old->curframe; i++) {
10799 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
10800 			return false;
10801 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
10802 			return false;
10803 	}
10804 	return true;
10805 }
10806 
10807 /* Return 0 if no propagation happened. Return negative error code if error
10808  * happened. Otherwise, return the propagated bit.
10809  */
10810 static int propagate_liveness_reg(struct bpf_verifier_env *env,
10811 				  struct bpf_reg_state *reg,
10812 				  struct bpf_reg_state *parent_reg)
10813 {
10814 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
10815 	u8 flag = reg->live & REG_LIVE_READ;
10816 	int err;
10817 
10818 	/* When comes here, read flags of PARENT_REG or REG could be any of
10819 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
10820 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
10821 	 */
10822 	if (parent_flag == REG_LIVE_READ64 ||
10823 	    /* Or if there is no read flag from REG. */
10824 	    !flag ||
10825 	    /* Or if the read flag from REG is the same as PARENT_REG. */
10826 	    parent_flag == flag)
10827 		return 0;
10828 
10829 	err = mark_reg_read(env, reg, parent_reg, flag);
10830 	if (err)
10831 		return err;
10832 
10833 	return flag;
10834 }
10835 
10836 /* A write screens off any subsequent reads; but write marks come from the
10837  * straight-line code between a state and its parent.  When we arrive at an
10838  * equivalent state (jump target or such) we didn't arrive by the straight-line
10839  * code, so read marks in the state must propagate to the parent regardless
10840  * of the state's write marks. That's what 'parent == state->parent' comparison
10841  * in mark_reg_read() is for.
10842  */
10843 static int propagate_liveness(struct bpf_verifier_env *env,
10844 			      const struct bpf_verifier_state *vstate,
10845 			      struct bpf_verifier_state *vparent)
10846 {
10847 	struct bpf_reg_state *state_reg, *parent_reg;
10848 	struct bpf_func_state *state, *parent;
10849 	int i, frame, err = 0;
10850 
10851 	if (vparent->curframe != vstate->curframe) {
10852 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
10853 		     vparent->curframe, vstate->curframe);
10854 		return -EFAULT;
10855 	}
10856 	/* Propagate read liveness of registers... */
10857 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
10858 	for (frame = 0; frame <= vstate->curframe; frame++) {
10859 		parent = vparent->frame[frame];
10860 		state = vstate->frame[frame];
10861 		parent_reg = parent->regs;
10862 		state_reg = state->regs;
10863 		/* We don't need to worry about FP liveness, it's read-only */
10864 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
10865 			err = propagate_liveness_reg(env, &state_reg[i],
10866 						     &parent_reg[i]);
10867 			if (err < 0)
10868 				return err;
10869 			if (err == REG_LIVE_READ64)
10870 				mark_insn_zext(env, &parent_reg[i]);
10871 		}
10872 
10873 		/* Propagate stack slots. */
10874 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
10875 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
10876 			parent_reg = &parent->stack[i].spilled_ptr;
10877 			state_reg = &state->stack[i].spilled_ptr;
10878 			err = propagate_liveness_reg(env, state_reg,
10879 						     parent_reg);
10880 			if (err < 0)
10881 				return err;
10882 		}
10883 	}
10884 	return 0;
10885 }
10886 
10887 /* find precise scalars in the previous equivalent state and
10888  * propagate them into the current state
10889  */
10890 static int propagate_precision(struct bpf_verifier_env *env,
10891 			       const struct bpf_verifier_state *old)
10892 {
10893 	struct bpf_reg_state *state_reg;
10894 	struct bpf_func_state *state;
10895 	int i, err = 0;
10896 
10897 	state = old->frame[old->curframe];
10898 	state_reg = state->regs;
10899 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
10900 		if (state_reg->type != SCALAR_VALUE ||
10901 		    !state_reg->precise)
10902 			continue;
10903 		if (env->log.level & BPF_LOG_LEVEL2)
10904 			verbose(env, "propagating r%d\n", i);
10905 		err = mark_chain_precision(env, i);
10906 		if (err < 0)
10907 			return err;
10908 	}
10909 
10910 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
10911 		if (!is_spilled_reg(&state->stack[i]))
10912 			continue;
10913 		state_reg = &state->stack[i].spilled_ptr;
10914 		if (state_reg->type != SCALAR_VALUE ||
10915 		    !state_reg->precise)
10916 			continue;
10917 		if (env->log.level & BPF_LOG_LEVEL2)
10918 			verbose(env, "propagating fp%d\n",
10919 				(-i - 1) * BPF_REG_SIZE);
10920 		err = mark_chain_precision_stack(env, i);
10921 		if (err < 0)
10922 			return err;
10923 	}
10924 	return 0;
10925 }
10926 
10927 static bool states_maybe_looping(struct bpf_verifier_state *old,
10928 				 struct bpf_verifier_state *cur)
10929 {
10930 	struct bpf_func_state *fold, *fcur;
10931 	int i, fr = cur->curframe;
10932 
10933 	if (old->curframe != fr)
10934 		return false;
10935 
10936 	fold = old->frame[fr];
10937 	fcur = cur->frame[fr];
10938 	for (i = 0; i < MAX_BPF_REG; i++)
10939 		if (memcmp(&fold->regs[i], &fcur->regs[i],
10940 			   offsetof(struct bpf_reg_state, parent)))
10941 			return false;
10942 	return true;
10943 }
10944 
10945 
10946 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
10947 {
10948 	struct bpf_verifier_state_list *new_sl;
10949 	struct bpf_verifier_state_list *sl, **pprev;
10950 	struct bpf_verifier_state *cur = env->cur_state, *new;
10951 	int i, j, err, states_cnt = 0;
10952 	bool add_new_state = env->test_state_freq ? true : false;
10953 
10954 	cur->last_insn_idx = env->prev_insn_idx;
10955 	if (!env->insn_aux_data[insn_idx].prune_point)
10956 		/* this 'insn_idx' instruction wasn't marked, so we will not
10957 		 * be doing state search here
10958 		 */
10959 		return 0;
10960 
10961 	/* bpf progs typically have pruning point every 4 instructions
10962 	 * http://vger.kernel.org/bpfconf2019.html#session-1
10963 	 * Do not add new state for future pruning if the verifier hasn't seen
10964 	 * at least 2 jumps and at least 8 instructions.
10965 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
10966 	 * In tests that amounts to up to 50% reduction into total verifier
10967 	 * memory consumption and 20% verifier time speedup.
10968 	 */
10969 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
10970 	    env->insn_processed - env->prev_insn_processed >= 8)
10971 		add_new_state = true;
10972 
10973 	pprev = explored_state(env, insn_idx);
10974 	sl = *pprev;
10975 
10976 	clean_live_states(env, insn_idx, cur);
10977 
10978 	while (sl) {
10979 		states_cnt++;
10980 		if (sl->state.insn_idx != insn_idx)
10981 			goto next;
10982 
10983 		if (sl->state.branches) {
10984 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
10985 
10986 			if (frame->in_async_callback_fn &&
10987 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
10988 				/* Different async_entry_cnt means that the verifier is
10989 				 * processing another entry into async callback.
10990 				 * Seeing the same state is not an indication of infinite
10991 				 * loop or infinite recursion.
10992 				 * But finding the same state doesn't mean that it's safe
10993 				 * to stop processing the current state. The previous state
10994 				 * hasn't yet reached bpf_exit, since state.branches > 0.
10995 				 * Checking in_async_callback_fn alone is not enough either.
10996 				 * Since the verifier still needs to catch infinite loops
10997 				 * inside async callbacks.
10998 				 */
10999 			} else if (states_maybe_looping(&sl->state, cur) &&
11000 				   states_equal(env, &sl->state, cur)) {
11001 				verbose_linfo(env, insn_idx, "; ");
11002 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
11003 				return -EINVAL;
11004 			}
11005 			/* if the verifier is processing a loop, avoid adding new state
11006 			 * too often, since different loop iterations have distinct
11007 			 * states and may not help future pruning.
11008 			 * This threshold shouldn't be too low to make sure that
11009 			 * a loop with large bound will be rejected quickly.
11010 			 * The most abusive loop will be:
11011 			 * r1 += 1
11012 			 * if r1 < 1000000 goto pc-2
11013 			 * 1M insn_procssed limit / 100 == 10k peak states.
11014 			 * This threshold shouldn't be too high either, since states
11015 			 * at the end of the loop are likely to be useful in pruning.
11016 			 */
11017 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
11018 			    env->insn_processed - env->prev_insn_processed < 100)
11019 				add_new_state = false;
11020 			goto miss;
11021 		}
11022 		if (states_equal(env, &sl->state, cur)) {
11023 			sl->hit_cnt++;
11024 			/* reached equivalent register/stack state,
11025 			 * prune the search.
11026 			 * Registers read by the continuation are read by us.
11027 			 * If we have any write marks in env->cur_state, they
11028 			 * will prevent corresponding reads in the continuation
11029 			 * from reaching our parent (an explored_state).  Our
11030 			 * own state will get the read marks recorded, but
11031 			 * they'll be immediately forgotten as we're pruning
11032 			 * this state and will pop a new one.
11033 			 */
11034 			err = propagate_liveness(env, &sl->state, cur);
11035 
11036 			/* if previous state reached the exit with precision and
11037 			 * current state is equivalent to it (except precsion marks)
11038 			 * the precision needs to be propagated back in
11039 			 * the current state.
11040 			 */
11041 			err = err ? : push_jmp_history(env, cur);
11042 			err = err ? : propagate_precision(env, &sl->state);
11043 			if (err)
11044 				return err;
11045 			return 1;
11046 		}
11047 miss:
11048 		/* when new state is not going to be added do not increase miss count.
11049 		 * Otherwise several loop iterations will remove the state
11050 		 * recorded earlier. The goal of these heuristics is to have
11051 		 * states from some iterations of the loop (some in the beginning
11052 		 * and some at the end) to help pruning.
11053 		 */
11054 		if (add_new_state)
11055 			sl->miss_cnt++;
11056 		/* heuristic to determine whether this state is beneficial
11057 		 * to keep checking from state equivalence point of view.
11058 		 * Higher numbers increase max_states_per_insn and verification time,
11059 		 * but do not meaningfully decrease insn_processed.
11060 		 */
11061 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
11062 			/* the state is unlikely to be useful. Remove it to
11063 			 * speed up verification
11064 			 */
11065 			*pprev = sl->next;
11066 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
11067 				u32 br = sl->state.branches;
11068 
11069 				WARN_ONCE(br,
11070 					  "BUG live_done but branches_to_explore %d\n",
11071 					  br);
11072 				free_verifier_state(&sl->state, false);
11073 				kfree(sl);
11074 				env->peak_states--;
11075 			} else {
11076 				/* cannot free this state, since parentage chain may
11077 				 * walk it later. Add it for free_list instead to
11078 				 * be freed at the end of verification
11079 				 */
11080 				sl->next = env->free_list;
11081 				env->free_list = sl;
11082 			}
11083 			sl = *pprev;
11084 			continue;
11085 		}
11086 next:
11087 		pprev = &sl->next;
11088 		sl = *pprev;
11089 	}
11090 
11091 	if (env->max_states_per_insn < states_cnt)
11092 		env->max_states_per_insn = states_cnt;
11093 
11094 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
11095 		return push_jmp_history(env, cur);
11096 
11097 	if (!add_new_state)
11098 		return push_jmp_history(env, cur);
11099 
11100 	/* There were no equivalent states, remember the current one.
11101 	 * Technically the current state is not proven to be safe yet,
11102 	 * but it will either reach outer most bpf_exit (which means it's safe)
11103 	 * or it will be rejected. When there are no loops the verifier won't be
11104 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
11105 	 * again on the way to bpf_exit.
11106 	 * When looping the sl->state.branches will be > 0 and this state
11107 	 * will not be considered for equivalence until branches == 0.
11108 	 */
11109 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
11110 	if (!new_sl)
11111 		return -ENOMEM;
11112 	env->total_states++;
11113 	env->peak_states++;
11114 	env->prev_jmps_processed = env->jmps_processed;
11115 	env->prev_insn_processed = env->insn_processed;
11116 
11117 	/* add new state to the head of linked list */
11118 	new = &new_sl->state;
11119 	err = copy_verifier_state(new, cur);
11120 	if (err) {
11121 		free_verifier_state(new, false);
11122 		kfree(new_sl);
11123 		return err;
11124 	}
11125 	new->insn_idx = insn_idx;
11126 	WARN_ONCE(new->branches != 1,
11127 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
11128 
11129 	cur->parent = new;
11130 	cur->first_insn_idx = insn_idx;
11131 	clear_jmp_history(cur);
11132 	new_sl->next = *explored_state(env, insn_idx);
11133 	*explored_state(env, insn_idx) = new_sl;
11134 	/* connect new state to parentage chain. Current frame needs all
11135 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
11136 	 * to the stack implicitly by JITs) so in callers' frames connect just
11137 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
11138 	 * the state of the call instruction (with WRITTEN set), and r0 comes
11139 	 * from callee with its full parentage chain, anyway.
11140 	 */
11141 	/* clear write marks in current state: the writes we did are not writes
11142 	 * our child did, so they don't screen off its reads from us.
11143 	 * (There are no read marks in current state, because reads always mark
11144 	 * their parent and current state never has children yet.  Only
11145 	 * explored_states can get read marks.)
11146 	 */
11147 	for (j = 0; j <= cur->curframe; j++) {
11148 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
11149 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
11150 		for (i = 0; i < BPF_REG_FP; i++)
11151 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
11152 	}
11153 
11154 	/* all stack frames are accessible from callee, clear them all */
11155 	for (j = 0; j <= cur->curframe; j++) {
11156 		struct bpf_func_state *frame = cur->frame[j];
11157 		struct bpf_func_state *newframe = new->frame[j];
11158 
11159 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
11160 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
11161 			frame->stack[i].spilled_ptr.parent =
11162 						&newframe->stack[i].spilled_ptr;
11163 		}
11164 	}
11165 	return 0;
11166 }
11167 
11168 /* Return true if it's OK to have the same insn return a different type. */
11169 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
11170 {
11171 	switch (type) {
11172 	case PTR_TO_CTX:
11173 	case PTR_TO_SOCKET:
11174 	case PTR_TO_SOCKET_OR_NULL:
11175 	case PTR_TO_SOCK_COMMON:
11176 	case PTR_TO_SOCK_COMMON_OR_NULL:
11177 	case PTR_TO_TCP_SOCK:
11178 	case PTR_TO_TCP_SOCK_OR_NULL:
11179 	case PTR_TO_XDP_SOCK:
11180 	case PTR_TO_BTF_ID:
11181 	case PTR_TO_BTF_ID_OR_NULL:
11182 		return false;
11183 	default:
11184 		return true;
11185 	}
11186 }
11187 
11188 /* If an instruction was previously used with particular pointer types, then we
11189  * need to be careful to avoid cases such as the below, where it may be ok
11190  * for one branch accessing the pointer, but not ok for the other branch:
11191  *
11192  * R1 = sock_ptr
11193  * goto X;
11194  * ...
11195  * R1 = some_other_valid_ptr;
11196  * goto X;
11197  * ...
11198  * R2 = *(u32 *)(R1 + 0);
11199  */
11200 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
11201 {
11202 	return src != prev && (!reg_type_mismatch_ok(src) ||
11203 			       !reg_type_mismatch_ok(prev));
11204 }
11205 
11206 static int do_check(struct bpf_verifier_env *env)
11207 {
11208 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
11209 	struct bpf_verifier_state *state = env->cur_state;
11210 	struct bpf_insn *insns = env->prog->insnsi;
11211 	struct bpf_reg_state *regs;
11212 	int insn_cnt = env->prog->len;
11213 	bool do_print_state = false;
11214 	int prev_insn_idx = -1;
11215 
11216 	for (;;) {
11217 		struct bpf_insn *insn;
11218 		u8 class;
11219 		int err;
11220 
11221 		env->prev_insn_idx = prev_insn_idx;
11222 		if (env->insn_idx >= insn_cnt) {
11223 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
11224 				env->insn_idx, insn_cnt);
11225 			return -EFAULT;
11226 		}
11227 
11228 		insn = &insns[env->insn_idx];
11229 		class = BPF_CLASS(insn->code);
11230 
11231 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
11232 			verbose(env,
11233 				"BPF program is too large. Processed %d insn\n",
11234 				env->insn_processed);
11235 			return -E2BIG;
11236 		}
11237 
11238 		err = is_state_visited(env, env->insn_idx);
11239 		if (err < 0)
11240 			return err;
11241 		if (err == 1) {
11242 			/* found equivalent state, can prune the search */
11243 			if (env->log.level & BPF_LOG_LEVEL) {
11244 				if (do_print_state)
11245 					verbose(env, "\nfrom %d to %d%s: safe\n",
11246 						env->prev_insn_idx, env->insn_idx,
11247 						env->cur_state->speculative ?
11248 						" (speculative execution)" : "");
11249 				else
11250 					verbose(env, "%d: safe\n", env->insn_idx);
11251 			}
11252 			goto process_bpf_exit;
11253 		}
11254 
11255 		if (signal_pending(current))
11256 			return -EAGAIN;
11257 
11258 		if (need_resched())
11259 			cond_resched();
11260 
11261 		if (env->log.level & BPF_LOG_LEVEL2 ||
11262 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
11263 			if (env->log.level & BPF_LOG_LEVEL2)
11264 				verbose(env, "%d:", env->insn_idx);
11265 			else
11266 				verbose(env, "\nfrom %d to %d%s:",
11267 					env->prev_insn_idx, env->insn_idx,
11268 					env->cur_state->speculative ?
11269 					" (speculative execution)" : "");
11270 			print_verifier_state(env, state->frame[state->curframe]);
11271 			do_print_state = false;
11272 		}
11273 
11274 		if (env->log.level & BPF_LOG_LEVEL) {
11275 			const struct bpf_insn_cbs cbs = {
11276 				.cb_call	= disasm_kfunc_name,
11277 				.cb_print	= verbose,
11278 				.private_data	= env,
11279 			};
11280 
11281 			verbose_linfo(env, env->insn_idx, "; ");
11282 			verbose(env, "%d: ", env->insn_idx);
11283 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
11284 		}
11285 
11286 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
11287 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
11288 							   env->prev_insn_idx);
11289 			if (err)
11290 				return err;
11291 		}
11292 
11293 		regs = cur_regs(env);
11294 		sanitize_mark_insn_seen(env);
11295 		prev_insn_idx = env->insn_idx;
11296 
11297 		if (class == BPF_ALU || class == BPF_ALU64) {
11298 			err = check_alu_op(env, insn);
11299 			if (err)
11300 				return err;
11301 
11302 		} else if (class == BPF_LDX) {
11303 			enum bpf_reg_type *prev_src_type, src_reg_type;
11304 
11305 			/* check for reserved fields is already done */
11306 
11307 			/* check src operand */
11308 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
11309 			if (err)
11310 				return err;
11311 
11312 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
11313 			if (err)
11314 				return err;
11315 
11316 			src_reg_type = regs[insn->src_reg].type;
11317 
11318 			/* check that memory (src_reg + off) is readable,
11319 			 * the state of dst_reg will be updated by this func
11320 			 */
11321 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
11322 					       insn->off, BPF_SIZE(insn->code),
11323 					       BPF_READ, insn->dst_reg, false);
11324 			if (err)
11325 				return err;
11326 
11327 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
11328 
11329 			if (*prev_src_type == NOT_INIT) {
11330 				/* saw a valid insn
11331 				 * dst_reg = *(u32 *)(src_reg + off)
11332 				 * save type to validate intersecting paths
11333 				 */
11334 				*prev_src_type = src_reg_type;
11335 
11336 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
11337 				/* ABuser program is trying to use the same insn
11338 				 * dst_reg = *(u32*) (src_reg + off)
11339 				 * with different pointer types:
11340 				 * src_reg == ctx in one branch and
11341 				 * src_reg == stack|map in some other branch.
11342 				 * Reject it.
11343 				 */
11344 				verbose(env, "same insn cannot be used with different pointers\n");
11345 				return -EINVAL;
11346 			}
11347 
11348 		} else if (class == BPF_STX) {
11349 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
11350 
11351 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
11352 				err = check_atomic(env, env->insn_idx, insn);
11353 				if (err)
11354 					return err;
11355 				env->insn_idx++;
11356 				continue;
11357 			}
11358 
11359 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
11360 				verbose(env, "BPF_STX uses reserved fields\n");
11361 				return -EINVAL;
11362 			}
11363 
11364 			/* check src1 operand */
11365 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
11366 			if (err)
11367 				return err;
11368 			/* check src2 operand */
11369 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11370 			if (err)
11371 				return err;
11372 
11373 			dst_reg_type = regs[insn->dst_reg].type;
11374 
11375 			/* check that memory (dst_reg + off) is writeable */
11376 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11377 					       insn->off, BPF_SIZE(insn->code),
11378 					       BPF_WRITE, insn->src_reg, false);
11379 			if (err)
11380 				return err;
11381 
11382 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
11383 
11384 			if (*prev_dst_type == NOT_INIT) {
11385 				*prev_dst_type = dst_reg_type;
11386 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
11387 				verbose(env, "same insn cannot be used with different pointers\n");
11388 				return -EINVAL;
11389 			}
11390 
11391 		} else if (class == BPF_ST) {
11392 			if (BPF_MODE(insn->code) != BPF_MEM ||
11393 			    insn->src_reg != BPF_REG_0) {
11394 				verbose(env, "BPF_ST uses reserved fields\n");
11395 				return -EINVAL;
11396 			}
11397 			/* check src operand */
11398 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11399 			if (err)
11400 				return err;
11401 
11402 			if (is_ctx_reg(env, insn->dst_reg)) {
11403 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
11404 					insn->dst_reg,
11405 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
11406 				return -EACCES;
11407 			}
11408 
11409 			/* check that memory (dst_reg + off) is writeable */
11410 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11411 					       insn->off, BPF_SIZE(insn->code),
11412 					       BPF_WRITE, -1, false);
11413 			if (err)
11414 				return err;
11415 
11416 		} else if (class == BPF_JMP || class == BPF_JMP32) {
11417 			u8 opcode = BPF_OP(insn->code);
11418 
11419 			env->jmps_processed++;
11420 			if (opcode == BPF_CALL) {
11421 				if (BPF_SRC(insn->code) != BPF_K ||
11422 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
11423 				     && insn->off != 0) ||
11424 				    (insn->src_reg != BPF_REG_0 &&
11425 				     insn->src_reg != BPF_PSEUDO_CALL &&
11426 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
11427 				    insn->dst_reg != BPF_REG_0 ||
11428 				    class == BPF_JMP32) {
11429 					verbose(env, "BPF_CALL uses reserved fields\n");
11430 					return -EINVAL;
11431 				}
11432 
11433 				if (env->cur_state->active_spin_lock &&
11434 				    (insn->src_reg == BPF_PSEUDO_CALL ||
11435 				     insn->imm != BPF_FUNC_spin_unlock)) {
11436 					verbose(env, "function calls are not allowed while holding a lock\n");
11437 					return -EINVAL;
11438 				}
11439 				if (insn->src_reg == BPF_PSEUDO_CALL)
11440 					err = check_func_call(env, insn, &env->insn_idx);
11441 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
11442 					err = check_kfunc_call(env, insn);
11443 				else
11444 					err = check_helper_call(env, insn, &env->insn_idx);
11445 				if (err)
11446 					return err;
11447 			} else if (opcode == BPF_JA) {
11448 				if (BPF_SRC(insn->code) != BPF_K ||
11449 				    insn->imm != 0 ||
11450 				    insn->src_reg != BPF_REG_0 ||
11451 				    insn->dst_reg != BPF_REG_0 ||
11452 				    class == BPF_JMP32) {
11453 					verbose(env, "BPF_JA uses reserved fields\n");
11454 					return -EINVAL;
11455 				}
11456 
11457 				env->insn_idx += insn->off + 1;
11458 				continue;
11459 
11460 			} else if (opcode == BPF_EXIT) {
11461 				if (BPF_SRC(insn->code) != BPF_K ||
11462 				    insn->imm != 0 ||
11463 				    insn->src_reg != BPF_REG_0 ||
11464 				    insn->dst_reg != BPF_REG_0 ||
11465 				    class == BPF_JMP32) {
11466 					verbose(env, "BPF_EXIT uses reserved fields\n");
11467 					return -EINVAL;
11468 				}
11469 
11470 				if (env->cur_state->active_spin_lock) {
11471 					verbose(env, "bpf_spin_unlock is missing\n");
11472 					return -EINVAL;
11473 				}
11474 
11475 				if (state->curframe) {
11476 					/* exit from nested function */
11477 					err = prepare_func_exit(env, &env->insn_idx);
11478 					if (err)
11479 						return err;
11480 					do_print_state = true;
11481 					continue;
11482 				}
11483 
11484 				err = check_reference_leak(env);
11485 				if (err)
11486 					return err;
11487 
11488 				err = check_return_code(env);
11489 				if (err)
11490 					return err;
11491 process_bpf_exit:
11492 				update_branch_counts(env, env->cur_state);
11493 				err = pop_stack(env, &prev_insn_idx,
11494 						&env->insn_idx, pop_log);
11495 				if (err < 0) {
11496 					if (err != -ENOENT)
11497 						return err;
11498 					break;
11499 				} else {
11500 					do_print_state = true;
11501 					continue;
11502 				}
11503 			} else {
11504 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
11505 				if (err)
11506 					return err;
11507 			}
11508 		} else if (class == BPF_LD) {
11509 			u8 mode = BPF_MODE(insn->code);
11510 
11511 			if (mode == BPF_ABS || mode == BPF_IND) {
11512 				err = check_ld_abs(env, insn);
11513 				if (err)
11514 					return err;
11515 
11516 			} else if (mode == BPF_IMM) {
11517 				err = check_ld_imm(env, insn);
11518 				if (err)
11519 					return err;
11520 
11521 				env->insn_idx++;
11522 				sanitize_mark_insn_seen(env);
11523 			} else {
11524 				verbose(env, "invalid BPF_LD mode\n");
11525 				return -EINVAL;
11526 			}
11527 		} else {
11528 			verbose(env, "unknown insn class %d\n", class);
11529 			return -EINVAL;
11530 		}
11531 
11532 		env->insn_idx++;
11533 	}
11534 
11535 	return 0;
11536 }
11537 
11538 static int find_btf_percpu_datasec(struct btf *btf)
11539 {
11540 	const struct btf_type *t;
11541 	const char *tname;
11542 	int i, n;
11543 
11544 	/*
11545 	 * Both vmlinux and module each have their own ".data..percpu"
11546 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
11547 	 * types to look at only module's own BTF types.
11548 	 */
11549 	n = btf_nr_types(btf);
11550 	if (btf_is_module(btf))
11551 		i = btf_nr_types(btf_vmlinux);
11552 	else
11553 		i = 1;
11554 
11555 	for(; i < n; i++) {
11556 		t = btf_type_by_id(btf, i);
11557 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
11558 			continue;
11559 
11560 		tname = btf_name_by_offset(btf, t->name_off);
11561 		if (!strcmp(tname, ".data..percpu"))
11562 			return i;
11563 	}
11564 
11565 	return -ENOENT;
11566 }
11567 
11568 /* replace pseudo btf_id with kernel symbol address */
11569 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
11570 			       struct bpf_insn *insn,
11571 			       struct bpf_insn_aux_data *aux)
11572 {
11573 	const struct btf_var_secinfo *vsi;
11574 	const struct btf_type *datasec;
11575 	struct btf_mod_pair *btf_mod;
11576 	const struct btf_type *t;
11577 	const char *sym_name;
11578 	bool percpu = false;
11579 	u32 type, id = insn->imm;
11580 	struct btf *btf;
11581 	s32 datasec_id;
11582 	u64 addr;
11583 	int i, btf_fd, err;
11584 
11585 	btf_fd = insn[1].imm;
11586 	if (btf_fd) {
11587 		btf = btf_get_by_fd(btf_fd);
11588 		if (IS_ERR(btf)) {
11589 			verbose(env, "invalid module BTF object FD specified.\n");
11590 			return -EINVAL;
11591 		}
11592 	} else {
11593 		if (!btf_vmlinux) {
11594 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
11595 			return -EINVAL;
11596 		}
11597 		btf = btf_vmlinux;
11598 		btf_get(btf);
11599 	}
11600 
11601 	t = btf_type_by_id(btf, id);
11602 	if (!t) {
11603 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
11604 		err = -ENOENT;
11605 		goto err_put;
11606 	}
11607 
11608 	if (!btf_type_is_var(t)) {
11609 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
11610 		err = -EINVAL;
11611 		goto err_put;
11612 	}
11613 
11614 	sym_name = btf_name_by_offset(btf, t->name_off);
11615 	addr = kallsyms_lookup_name(sym_name);
11616 	if (!addr) {
11617 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
11618 			sym_name);
11619 		err = -ENOENT;
11620 		goto err_put;
11621 	}
11622 
11623 	datasec_id = find_btf_percpu_datasec(btf);
11624 	if (datasec_id > 0) {
11625 		datasec = btf_type_by_id(btf, datasec_id);
11626 		for_each_vsi(i, datasec, vsi) {
11627 			if (vsi->type == id) {
11628 				percpu = true;
11629 				break;
11630 			}
11631 		}
11632 	}
11633 
11634 	insn[0].imm = (u32)addr;
11635 	insn[1].imm = addr >> 32;
11636 
11637 	type = t->type;
11638 	t = btf_type_skip_modifiers(btf, type, NULL);
11639 	if (percpu) {
11640 		aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
11641 		aux->btf_var.btf = btf;
11642 		aux->btf_var.btf_id = type;
11643 	} else if (!btf_type_is_struct(t)) {
11644 		const struct btf_type *ret;
11645 		const char *tname;
11646 		u32 tsize;
11647 
11648 		/* resolve the type size of ksym. */
11649 		ret = btf_resolve_size(btf, t, &tsize);
11650 		if (IS_ERR(ret)) {
11651 			tname = btf_name_by_offset(btf, t->name_off);
11652 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
11653 				tname, PTR_ERR(ret));
11654 			err = -EINVAL;
11655 			goto err_put;
11656 		}
11657 		aux->btf_var.reg_type = PTR_TO_MEM;
11658 		aux->btf_var.mem_size = tsize;
11659 	} else {
11660 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
11661 		aux->btf_var.btf = btf;
11662 		aux->btf_var.btf_id = type;
11663 	}
11664 
11665 	/* check whether we recorded this BTF (and maybe module) already */
11666 	for (i = 0; i < env->used_btf_cnt; i++) {
11667 		if (env->used_btfs[i].btf == btf) {
11668 			btf_put(btf);
11669 			return 0;
11670 		}
11671 	}
11672 
11673 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
11674 		err = -E2BIG;
11675 		goto err_put;
11676 	}
11677 
11678 	btf_mod = &env->used_btfs[env->used_btf_cnt];
11679 	btf_mod->btf = btf;
11680 	btf_mod->module = NULL;
11681 
11682 	/* if we reference variables from kernel module, bump its refcount */
11683 	if (btf_is_module(btf)) {
11684 		btf_mod->module = btf_try_get_module(btf);
11685 		if (!btf_mod->module) {
11686 			err = -ENXIO;
11687 			goto err_put;
11688 		}
11689 	}
11690 
11691 	env->used_btf_cnt++;
11692 
11693 	return 0;
11694 err_put:
11695 	btf_put(btf);
11696 	return err;
11697 }
11698 
11699 static int check_map_prealloc(struct bpf_map *map)
11700 {
11701 	return (map->map_type != BPF_MAP_TYPE_HASH &&
11702 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
11703 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
11704 		!(map->map_flags & BPF_F_NO_PREALLOC);
11705 }
11706 
11707 static bool is_tracing_prog_type(enum bpf_prog_type type)
11708 {
11709 	switch (type) {
11710 	case BPF_PROG_TYPE_KPROBE:
11711 	case BPF_PROG_TYPE_TRACEPOINT:
11712 	case BPF_PROG_TYPE_PERF_EVENT:
11713 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
11714 		return true;
11715 	default:
11716 		return false;
11717 	}
11718 }
11719 
11720 static bool is_preallocated_map(struct bpf_map *map)
11721 {
11722 	if (!check_map_prealloc(map))
11723 		return false;
11724 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
11725 		return false;
11726 	return true;
11727 }
11728 
11729 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
11730 					struct bpf_map *map,
11731 					struct bpf_prog *prog)
11732 
11733 {
11734 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
11735 	/*
11736 	 * Validate that trace type programs use preallocated hash maps.
11737 	 *
11738 	 * For programs attached to PERF events this is mandatory as the
11739 	 * perf NMI can hit any arbitrary code sequence.
11740 	 *
11741 	 * All other trace types using preallocated hash maps are unsafe as
11742 	 * well because tracepoint or kprobes can be inside locked regions
11743 	 * of the memory allocator or at a place where a recursion into the
11744 	 * memory allocator would see inconsistent state.
11745 	 *
11746 	 * On RT enabled kernels run-time allocation of all trace type
11747 	 * programs is strictly prohibited due to lock type constraints. On
11748 	 * !RT kernels it is allowed for backwards compatibility reasons for
11749 	 * now, but warnings are emitted so developers are made aware of
11750 	 * the unsafety and can fix their programs before this is enforced.
11751 	 */
11752 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
11753 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
11754 			verbose(env, "perf_event programs can only use preallocated hash map\n");
11755 			return -EINVAL;
11756 		}
11757 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
11758 			verbose(env, "trace type programs can only use preallocated hash map\n");
11759 			return -EINVAL;
11760 		}
11761 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
11762 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
11763 	}
11764 
11765 	if (map_value_has_spin_lock(map)) {
11766 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
11767 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
11768 			return -EINVAL;
11769 		}
11770 
11771 		if (is_tracing_prog_type(prog_type)) {
11772 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
11773 			return -EINVAL;
11774 		}
11775 
11776 		if (prog->aux->sleepable) {
11777 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
11778 			return -EINVAL;
11779 		}
11780 	}
11781 
11782 	if (map_value_has_timer(map)) {
11783 		if (is_tracing_prog_type(prog_type)) {
11784 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
11785 			return -EINVAL;
11786 		}
11787 	}
11788 
11789 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
11790 	    !bpf_offload_prog_map_match(prog, map)) {
11791 		verbose(env, "offload device mismatch between prog and map\n");
11792 		return -EINVAL;
11793 	}
11794 
11795 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
11796 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
11797 		return -EINVAL;
11798 	}
11799 
11800 	if (prog->aux->sleepable)
11801 		switch (map->map_type) {
11802 		case BPF_MAP_TYPE_HASH:
11803 		case BPF_MAP_TYPE_LRU_HASH:
11804 		case BPF_MAP_TYPE_ARRAY:
11805 		case BPF_MAP_TYPE_PERCPU_HASH:
11806 		case BPF_MAP_TYPE_PERCPU_ARRAY:
11807 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
11808 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
11809 		case BPF_MAP_TYPE_HASH_OF_MAPS:
11810 			if (!is_preallocated_map(map)) {
11811 				verbose(env,
11812 					"Sleepable programs can only use preallocated maps\n");
11813 				return -EINVAL;
11814 			}
11815 			break;
11816 		case BPF_MAP_TYPE_RINGBUF:
11817 			break;
11818 		default:
11819 			verbose(env,
11820 				"Sleepable programs can only use array, hash, and ringbuf maps\n");
11821 			return -EINVAL;
11822 		}
11823 
11824 	return 0;
11825 }
11826 
11827 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
11828 {
11829 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
11830 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
11831 }
11832 
11833 /* find and rewrite pseudo imm in ld_imm64 instructions:
11834  *
11835  * 1. if it accesses map FD, replace it with actual map pointer.
11836  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
11837  *
11838  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
11839  */
11840 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
11841 {
11842 	struct bpf_insn *insn = env->prog->insnsi;
11843 	int insn_cnt = env->prog->len;
11844 	int i, j, err;
11845 
11846 	err = bpf_prog_calc_tag(env->prog);
11847 	if (err)
11848 		return err;
11849 
11850 	for (i = 0; i < insn_cnt; i++, insn++) {
11851 		if (BPF_CLASS(insn->code) == BPF_LDX &&
11852 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
11853 			verbose(env, "BPF_LDX uses reserved fields\n");
11854 			return -EINVAL;
11855 		}
11856 
11857 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
11858 			struct bpf_insn_aux_data *aux;
11859 			struct bpf_map *map;
11860 			struct fd f;
11861 			u64 addr;
11862 			u32 fd;
11863 
11864 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
11865 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
11866 			    insn[1].off != 0) {
11867 				verbose(env, "invalid bpf_ld_imm64 insn\n");
11868 				return -EINVAL;
11869 			}
11870 
11871 			if (insn[0].src_reg == 0)
11872 				/* valid generic load 64-bit imm */
11873 				goto next_insn;
11874 
11875 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
11876 				aux = &env->insn_aux_data[i];
11877 				err = check_pseudo_btf_id(env, insn, aux);
11878 				if (err)
11879 					return err;
11880 				goto next_insn;
11881 			}
11882 
11883 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
11884 				aux = &env->insn_aux_data[i];
11885 				aux->ptr_type = PTR_TO_FUNC;
11886 				goto next_insn;
11887 			}
11888 
11889 			/* In final convert_pseudo_ld_imm64() step, this is
11890 			 * converted into regular 64-bit imm load insn.
11891 			 */
11892 			switch (insn[0].src_reg) {
11893 			case BPF_PSEUDO_MAP_VALUE:
11894 			case BPF_PSEUDO_MAP_IDX_VALUE:
11895 				break;
11896 			case BPF_PSEUDO_MAP_FD:
11897 			case BPF_PSEUDO_MAP_IDX:
11898 				if (insn[1].imm == 0)
11899 					break;
11900 				fallthrough;
11901 			default:
11902 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
11903 				return -EINVAL;
11904 			}
11905 
11906 			switch (insn[0].src_reg) {
11907 			case BPF_PSEUDO_MAP_IDX_VALUE:
11908 			case BPF_PSEUDO_MAP_IDX:
11909 				if (bpfptr_is_null(env->fd_array)) {
11910 					verbose(env, "fd_idx without fd_array is invalid\n");
11911 					return -EPROTO;
11912 				}
11913 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
11914 							    insn[0].imm * sizeof(fd),
11915 							    sizeof(fd)))
11916 					return -EFAULT;
11917 				break;
11918 			default:
11919 				fd = insn[0].imm;
11920 				break;
11921 			}
11922 
11923 			f = fdget(fd);
11924 			map = __bpf_map_get(f);
11925 			if (IS_ERR(map)) {
11926 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
11927 					insn[0].imm);
11928 				return PTR_ERR(map);
11929 			}
11930 
11931 			err = check_map_prog_compatibility(env, map, env->prog);
11932 			if (err) {
11933 				fdput(f);
11934 				return err;
11935 			}
11936 
11937 			aux = &env->insn_aux_data[i];
11938 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
11939 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
11940 				addr = (unsigned long)map;
11941 			} else {
11942 				u32 off = insn[1].imm;
11943 
11944 				if (off >= BPF_MAX_VAR_OFF) {
11945 					verbose(env, "direct value offset of %u is not allowed\n", off);
11946 					fdput(f);
11947 					return -EINVAL;
11948 				}
11949 
11950 				if (!map->ops->map_direct_value_addr) {
11951 					verbose(env, "no direct value access support for this map type\n");
11952 					fdput(f);
11953 					return -EINVAL;
11954 				}
11955 
11956 				err = map->ops->map_direct_value_addr(map, &addr, off);
11957 				if (err) {
11958 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
11959 						map->value_size, off);
11960 					fdput(f);
11961 					return err;
11962 				}
11963 
11964 				aux->map_off = off;
11965 				addr += off;
11966 			}
11967 
11968 			insn[0].imm = (u32)addr;
11969 			insn[1].imm = addr >> 32;
11970 
11971 			/* check whether we recorded this map already */
11972 			for (j = 0; j < env->used_map_cnt; j++) {
11973 				if (env->used_maps[j] == map) {
11974 					aux->map_index = j;
11975 					fdput(f);
11976 					goto next_insn;
11977 				}
11978 			}
11979 
11980 			if (env->used_map_cnt >= MAX_USED_MAPS) {
11981 				fdput(f);
11982 				return -E2BIG;
11983 			}
11984 
11985 			/* hold the map. If the program is rejected by verifier,
11986 			 * the map will be released by release_maps() or it
11987 			 * will be used by the valid program until it's unloaded
11988 			 * and all maps are released in free_used_maps()
11989 			 */
11990 			bpf_map_inc(map);
11991 
11992 			aux->map_index = env->used_map_cnt;
11993 			env->used_maps[env->used_map_cnt++] = map;
11994 
11995 			if (bpf_map_is_cgroup_storage(map) &&
11996 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
11997 				verbose(env, "only one cgroup storage of each type is allowed\n");
11998 				fdput(f);
11999 				return -EBUSY;
12000 			}
12001 
12002 			fdput(f);
12003 next_insn:
12004 			insn++;
12005 			i++;
12006 			continue;
12007 		}
12008 
12009 		/* Basic sanity check before we invest more work here. */
12010 		if (!bpf_opcode_in_insntable(insn->code)) {
12011 			verbose(env, "unknown opcode %02x\n", insn->code);
12012 			return -EINVAL;
12013 		}
12014 	}
12015 
12016 	/* now all pseudo BPF_LD_IMM64 instructions load valid
12017 	 * 'struct bpf_map *' into a register instead of user map_fd.
12018 	 * These pointers will be used later by verifier to validate map access.
12019 	 */
12020 	return 0;
12021 }
12022 
12023 /* drop refcnt of maps used by the rejected program */
12024 static void release_maps(struct bpf_verifier_env *env)
12025 {
12026 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
12027 			     env->used_map_cnt);
12028 }
12029 
12030 /* drop refcnt of maps used by the rejected program */
12031 static void release_btfs(struct bpf_verifier_env *env)
12032 {
12033 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
12034 			     env->used_btf_cnt);
12035 }
12036 
12037 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
12038 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
12039 {
12040 	struct bpf_insn *insn = env->prog->insnsi;
12041 	int insn_cnt = env->prog->len;
12042 	int i;
12043 
12044 	for (i = 0; i < insn_cnt; i++, insn++) {
12045 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
12046 			continue;
12047 		if (insn->src_reg == BPF_PSEUDO_FUNC)
12048 			continue;
12049 		insn->src_reg = 0;
12050 	}
12051 }
12052 
12053 /* single env->prog->insni[off] instruction was replaced with the range
12054  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
12055  * [0, off) and [off, end) to new locations, so the patched range stays zero
12056  */
12057 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
12058 				 struct bpf_insn_aux_data *new_data,
12059 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
12060 {
12061 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
12062 	struct bpf_insn *insn = new_prog->insnsi;
12063 	u32 old_seen = old_data[off].seen;
12064 	u32 prog_len;
12065 	int i;
12066 
12067 	/* aux info at OFF always needs adjustment, no matter fast path
12068 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
12069 	 * original insn at old prog.
12070 	 */
12071 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
12072 
12073 	if (cnt == 1)
12074 		return;
12075 	prog_len = new_prog->len;
12076 
12077 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
12078 	memcpy(new_data + off + cnt - 1, old_data + off,
12079 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
12080 	for (i = off; i < off + cnt - 1; i++) {
12081 		/* Expand insni[off]'s seen count to the patched range. */
12082 		new_data[i].seen = old_seen;
12083 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
12084 	}
12085 	env->insn_aux_data = new_data;
12086 	vfree(old_data);
12087 }
12088 
12089 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
12090 {
12091 	int i;
12092 
12093 	if (len == 1)
12094 		return;
12095 	/* NOTE: fake 'exit' subprog should be updated as well. */
12096 	for (i = 0; i <= env->subprog_cnt; i++) {
12097 		if (env->subprog_info[i].start <= off)
12098 			continue;
12099 		env->subprog_info[i].start += len - 1;
12100 	}
12101 }
12102 
12103 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
12104 {
12105 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
12106 	int i, sz = prog->aux->size_poke_tab;
12107 	struct bpf_jit_poke_descriptor *desc;
12108 
12109 	for (i = 0; i < sz; i++) {
12110 		desc = &tab[i];
12111 		if (desc->insn_idx <= off)
12112 			continue;
12113 		desc->insn_idx += len - 1;
12114 	}
12115 }
12116 
12117 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
12118 					    const struct bpf_insn *patch, u32 len)
12119 {
12120 	struct bpf_prog *new_prog;
12121 	struct bpf_insn_aux_data *new_data = NULL;
12122 
12123 	if (len > 1) {
12124 		new_data = vzalloc(array_size(env->prog->len + len - 1,
12125 					      sizeof(struct bpf_insn_aux_data)));
12126 		if (!new_data)
12127 			return NULL;
12128 	}
12129 
12130 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
12131 	if (IS_ERR(new_prog)) {
12132 		if (PTR_ERR(new_prog) == -ERANGE)
12133 			verbose(env,
12134 				"insn %d cannot be patched due to 16-bit range\n",
12135 				env->insn_aux_data[off].orig_idx);
12136 		vfree(new_data);
12137 		return NULL;
12138 	}
12139 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
12140 	adjust_subprog_starts(env, off, len);
12141 	adjust_poke_descs(new_prog, off, len);
12142 	return new_prog;
12143 }
12144 
12145 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
12146 					      u32 off, u32 cnt)
12147 {
12148 	int i, j;
12149 
12150 	/* find first prog starting at or after off (first to remove) */
12151 	for (i = 0; i < env->subprog_cnt; i++)
12152 		if (env->subprog_info[i].start >= off)
12153 			break;
12154 	/* find first prog starting at or after off + cnt (first to stay) */
12155 	for (j = i; j < env->subprog_cnt; j++)
12156 		if (env->subprog_info[j].start >= off + cnt)
12157 			break;
12158 	/* if j doesn't start exactly at off + cnt, we are just removing
12159 	 * the front of previous prog
12160 	 */
12161 	if (env->subprog_info[j].start != off + cnt)
12162 		j--;
12163 
12164 	if (j > i) {
12165 		struct bpf_prog_aux *aux = env->prog->aux;
12166 		int move;
12167 
12168 		/* move fake 'exit' subprog as well */
12169 		move = env->subprog_cnt + 1 - j;
12170 
12171 		memmove(env->subprog_info + i,
12172 			env->subprog_info + j,
12173 			sizeof(*env->subprog_info) * move);
12174 		env->subprog_cnt -= j - i;
12175 
12176 		/* remove func_info */
12177 		if (aux->func_info) {
12178 			move = aux->func_info_cnt - j;
12179 
12180 			memmove(aux->func_info + i,
12181 				aux->func_info + j,
12182 				sizeof(*aux->func_info) * move);
12183 			aux->func_info_cnt -= j - i;
12184 			/* func_info->insn_off is set after all code rewrites,
12185 			 * in adjust_btf_func() - no need to adjust
12186 			 */
12187 		}
12188 	} else {
12189 		/* convert i from "first prog to remove" to "first to adjust" */
12190 		if (env->subprog_info[i].start == off)
12191 			i++;
12192 	}
12193 
12194 	/* update fake 'exit' subprog as well */
12195 	for (; i <= env->subprog_cnt; i++)
12196 		env->subprog_info[i].start -= cnt;
12197 
12198 	return 0;
12199 }
12200 
12201 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
12202 				      u32 cnt)
12203 {
12204 	struct bpf_prog *prog = env->prog;
12205 	u32 i, l_off, l_cnt, nr_linfo;
12206 	struct bpf_line_info *linfo;
12207 
12208 	nr_linfo = prog->aux->nr_linfo;
12209 	if (!nr_linfo)
12210 		return 0;
12211 
12212 	linfo = prog->aux->linfo;
12213 
12214 	/* find first line info to remove, count lines to be removed */
12215 	for (i = 0; i < nr_linfo; i++)
12216 		if (linfo[i].insn_off >= off)
12217 			break;
12218 
12219 	l_off = i;
12220 	l_cnt = 0;
12221 	for (; i < nr_linfo; i++)
12222 		if (linfo[i].insn_off < off + cnt)
12223 			l_cnt++;
12224 		else
12225 			break;
12226 
12227 	/* First live insn doesn't match first live linfo, it needs to "inherit"
12228 	 * last removed linfo.  prog is already modified, so prog->len == off
12229 	 * means no live instructions after (tail of the program was removed).
12230 	 */
12231 	if (prog->len != off && l_cnt &&
12232 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
12233 		l_cnt--;
12234 		linfo[--i].insn_off = off + cnt;
12235 	}
12236 
12237 	/* remove the line info which refer to the removed instructions */
12238 	if (l_cnt) {
12239 		memmove(linfo + l_off, linfo + i,
12240 			sizeof(*linfo) * (nr_linfo - i));
12241 
12242 		prog->aux->nr_linfo -= l_cnt;
12243 		nr_linfo = prog->aux->nr_linfo;
12244 	}
12245 
12246 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
12247 	for (i = l_off; i < nr_linfo; i++)
12248 		linfo[i].insn_off -= cnt;
12249 
12250 	/* fix up all subprogs (incl. 'exit') which start >= off */
12251 	for (i = 0; i <= env->subprog_cnt; i++)
12252 		if (env->subprog_info[i].linfo_idx > l_off) {
12253 			/* program may have started in the removed region but
12254 			 * may not be fully removed
12255 			 */
12256 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
12257 				env->subprog_info[i].linfo_idx -= l_cnt;
12258 			else
12259 				env->subprog_info[i].linfo_idx = l_off;
12260 		}
12261 
12262 	return 0;
12263 }
12264 
12265 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
12266 {
12267 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12268 	unsigned int orig_prog_len = env->prog->len;
12269 	int err;
12270 
12271 	if (bpf_prog_is_dev_bound(env->prog->aux))
12272 		bpf_prog_offload_remove_insns(env, off, cnt);
12273 
12274 	err = bpf_remove_insns(env->prog, off, cnt);
12275 	if (err)
12276 		return err;
12277 
12278 	err = adjust_subprog_starts_after_remove(env, off, cnt);
12279 	if (err)
12280 		return err;
12281 
12282 	err = bpf_adj_linfo_after_remove(env, off, cnt);
12283 	if (err)
12284 		return err;
12285 
12286 	memmove(aux_data + off,	aux_data + off + cnt,
12287 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
12288 
12289 	return 0;
12290 }
12291 
12292 /* The verifier does more data flow analysis than llvm and will not
12293  * explore branches that are dead at run time. Malicious programs can
12294  * have dead code too. Therefore replace all dead at-run-time code
12295  * with 'ja -1'.
12296  *
12297  * Just nops are not optimal, e.g. if they would sit at the end of the
12298  * program and through another bug we would manage to jump there, then
12299  * we'd execute beyond program memory otherwise. Returning exception
12300  * code also wouldn't work since we can have subprogs where the dead
12301  * code could be located.
12302  */
12303 static void sanitize_dead_code(struct bpf_verifier_env *env)
12304 {
12305 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12306 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
12307 	struct bpf_insn *insn = env->prog->insnsi;
12308 	const int insn_cnt = env->prog->len;
12309 	int i;
12310 
12311 	for (i = 0; i < insn_cnt; i++) {
12312 		if (aux_data[i].seen)
12313 			continue;
12314 		memcpy(insn + i, &trap, sizeof(trap));
12315 		aux_data[i].zext_dst = false;
12316 	}
12317 }
12318 
12319 static bool insn_is_cond_jump(u8 code)
12320 {
12321 	u8 op;
12322 
12323 	if (BPF_CLASS(code) == BPF_JMP32)
12324 		return true;
12325 
12326 	if (BPF_CLASS(code) != BPF_JMP)
12327 		return false;
12328 
12329 	op = BPF_OP(code);
12330 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
12331 }
12332 
12333 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
12334 {
12335 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12336 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12337 	struct bpf_insn *insn = env->prog->insnsi;
12338 	const int insn_cnt = env->prog->len;
12339 	int i;
12340 
12341 	for (i = 0; i < insn_cnt; i++, insn++) {
12342 		if (!insn_is_cond_jump(insn->code))
12343 			continue;
12344 
12345 		if (!aux_data[i + 1].seen)
12346 			ja.off = insn->off;
12347 		else if (!aux_data[i + 1 + insn->off].seen)
12348 			ja.off = 0;
12349 		else
12350 			continue;
12351 
12352 		if (bpf_prog_is_dev_bound(env->prog->aux))
12353 			bpf_prog_offload_replace_insn(env, i, &ja);
12354 
12355 		memcpy(insn, &ja, sizeof(ja));
12356 	}
12357 }
12358 
12359 static int opt_remove_dead_code(struct bpf_verifier_env *env)
12360 {
12361 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12362 	int insn_cnt = env->prog->len;
12363 	int i, err;
12364 
12365 	for (i = 0; i < insn_cnt; i++) {
12366 		int j;
12367 
12368 		j = 0;
12369 		while (i + j < insn_cnt && !aux_data[i + j].seen)
12370 			j++;
12371 		if (!j)
12372 			continue;
12373 
12374 		err = verifier_remove_insns(env, i, j);
12375 		if (err)
12376 			return err;
12377 		insn_cnt = env->prog->len;
12378 	}
12379 
12380 	return 0;
12381 }
12382 
12383 static int opt_remove_nops(struct bpf_verifier_env *env)
12384 {
12385 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12386 	struct bpf_insn *insn = env->prog->insnsi;
12387 	int insn_cnt = env->prog->len;
12388 	int i, err;
12389 
12390 	for (i = 0; i < insn_cnt; i++) {
12391 		if (memcmp(&insn[i], &ja, sizeof(ja)))
12392 			continue;
12393 
12394 		err = verifier_remove_insns(env, i, 1);
12395 		if (err)
12396 			return err;
12397 		insn_cnt--;
12398 		i--;
12399 	}
12400 
12401 	return 0;
12402 }
12403 
12404 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
12405 					 const union bpf_attr *attr)
12406 {
12407 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
12408 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
12409 	int i, patch_len, delta = 0, len = env->prog->len;
12410 	struct bpf_insn *insns = env->prog->insnsi;
12411 	struct bpf_prog *new_prog;
12412 	bool rnd_hi32;
12413 
12414 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
12415 	zext_patch[1] = BPF_ZEXT_REG(0);
12416 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
12417 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
12418 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
12419 	for (i = 0; i < len; i++) {
12420 		int adj_idx = i + delta;
12421 		struct bpf_insn insn;
12422 		int load_reg;
12423 
12424 		insn = insns[adj_idx];
12425 		load_reg = insn_def_regno(&insn);
12426 		if (!aux[adj_idx].zext_dst) {
12427 			u8 code, class;
12428 			u32 imm_rnd;
12429 
12430 			if (!rnd_hi32)
12431 				continue;
12432 
12433 			code = insn.code;
12434 			class = BPF_CLASS(code);
12435 			if (load_reg == -1)
12436 				continue;
12437 
12438 			/* NOTE: arg "reg" (the fourth one) is only used for
12439 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
12440 			 *       here.
12441 			 */
12442 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
12443 				if (class == BPF_LD &&
12444 				    BPF_MODE(code) == BPF_IMM)
12445 					i++;
12446 				continue;
12447 			}
12448 
12449 			/* ctx load could be transformed into wider load. */
12450 			if (class == BPF_LDX &&
12451 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
12452 				continue;
12453 
12454 			imm_rnd = get_random_int();
12455 			rnd_hi32_patch[0] = insn;
12456 			rnd_hi32_patch[1].imm = imm_rnd;
12457 			rnd_hi32_patch[3].dst_reg = load_reg;
12458 			patch = rnd_hi32_patch;
12459 			patch_len = 4;
12460 			goto apply_patch_buffer;
12461 		}
12462 
12463 		/* Add in an zero-extend instruction if a) the JIT has requested
12464 		 * it or b) it's a CMPXCHG.
12465 		 *
12466 		 * The latter is because: BPF_CMPXCHG always loads a value into
12467 		 * R0, therefore always zero-extends. However some archs'
12468 		 * equivalent instruction only does this load when the
12469 		 * comparison is successful. This detail of CMPXCHG is
12470 		 * orthogonal to the general zero-extension behaviour of the
12471 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
12472 		 */
12473 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
12474 			continue;
12475 
12476 		if (WARN_ON(load_reg == -1)) {
12477 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
12478 			return -EFAULT;
12479 		}
12480 
12481 		zext_patch[0] = insn;
12482 		zext_patch[1].dst_reg = load_reg;
12483 		zext_patch[1].src_reg = load_reg;
12484 		patch = zext_patch;
12485 		patch_len = 2;
12486 apply_patch_buffer:
12487 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
12488 		if (!new_prog)
12489 			return -ENOMEM;
12490 		env->prog = new_prog;
12491 		insns = new_prog->insnsi;
12492 		aux = env->insn_aux_data;
12493 		delta += patch_len - 1;
12494 	}
12495 
12496 	return 0;
12497 }
12498 
12499 /* convert load instructions that access fields of a context type into a
12500  * sequence of instructions that access fields of the underlying structure:
12501  *     struct __sk_buff    -> struct sk_buff
12502  *     struct bpf_sock_ops -> struct sock
12503  */
12504 static int convert_ctx_accesses(struct bpf_verifier_env *env)
12505 {
12506 	const struct bpf_verifier_ops *ops = env->ops;
12507 	int i, cnt, size, ctx_field_size, delta = 0;
12508 	const int insn_cnt = env->prog->len;
12509 	struct bpf_insn insn_buf[16], *insn;
12510 	u32 target_size, size_default, off;
12511 	struct bpf_prog *new_prog;
12512 	enum bpf_access_type type;
12513 	bool is_narrower_load;
12514 
12515 	if (ops->gen_prologue || env->seen_direct_write) {
12516 		if (!ops->gen_prologue) {
12517 			verbose(env, "bpf verifier is misconfigured\n");
12518 			return -EINVAL;
12519 		}
12520 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
12521 					env->prog);
12522 		if (cnt >= ARRAY_SIZE(insn_buf)) {
12523 			verbose(env, "bpf verifier is misconfigured\n");
12524 			return -EINVAL;
12525 		} else if (cnt) {
12526 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
12527 			if (!new_prog)
12528 				return -ENOMEM;
12529 
12530 			env->prog = new_prog;
12531 			delta += cnt - 1;
12532 		}
12533 	}
12534 
12535 	if (bpf_prog_is_dev_bound(env->prog->aux))
12536 		return 0;
12537 
12538 	insn = env->prog->insnsi + delta;
12539 
12540 	for (i = 0; i < insn_cnt; i++, insn++) {
12541 		bpf_convert_ctx_access_t convert_ctx_access;
12542 		bool ctx_access;
12543 
12544 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
12545 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
12546 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
12547 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
12548 			type = BPF_READ;
12549 			ctx_access = true;
12550 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
12551 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
12552 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
12553 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
12554 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
12555 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
12556 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
12557 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
12558 			type = BPF_WRITE;
12559 			ctx_access = BPF_CLASS(insn->code) == BPF_STX;
12560 		} else {
12561 			continue;
12562 		}
12563 
12564 		if (type == BPF_WRITE &&
12565 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
12566 			struct bpf_insn patch[] = {
12567 				*insn,
12568 				BPF_ST_NOSPEC(),
12569 			};
12570 
12571 			cnt = ARRAY_SIZE(patch);
12572 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
12573 			if (!new_prog)
12574 				return -ENOMEM;
12575 
12576 			delta    += cnt - 1;
12577 			env->prog = new_prog;
12578 			insn      = new_prog->insnsi + i + delta;
12579 			continue;
12580 		}
12581 
12582 		if (!ctx_access)
12583 			continue;
12584 
12585 		switch (env->insn_aux_data[i + delta].ptr_type) {
12586 		case PTR_TO_CTX:
12587 			if (!ops->convert_ctx_access)
12588 				continue;
12589 			convert_ctx_access = ops->convert_ctx_access;
12590 			break;
12591 		case PTR_TO_SOCKET:
12592 		case PTR_TO_SOCK_COMMON:
12593 			convert_ctx_access = bpf_sock_convert_ctx_access;
12594 			break;
12595 		case PTR_TO_TCP_SOCK:
12596 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
12597 			break;
12598 		case PTR_TO_XDP_SOCK:
12599 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
12600 			break;
12601 		case PTR_TO_BTF_ID:
12602 			if (type == BPF_READ) {
12603 				insn->code = BPF_LDX | BPF_PROBE_MEM |
12604 					BPF_SIZE((insn)->code);
12605 				env->prog->aux->num_exentries++;
12606 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
12607 				verbose(env, "Writes through BTF pointers are not allowed\n");
12608 				return -EINVAL;
12609 			}
12610 			continue;
12611 		default:
12612 			continue;
12613 		}
12614 
12615 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
12616 		size = BPF_LDST_BYTES(insn);
12617 
12618 		/* If the read access is a narrower load of the field,
12619 		 * convert to a 4/8-byte load, to minimum program type specific
12620 		 * convert_ctx_access changes. If conversion is successful,
12621 		 * we will apply proper mask to the result.
12622 		 */
12623 		is_narrower_load = size < ctx_field_size;
12624 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
12625 		off = insn->off;
12626 		if (is_narrower_load) {
12627 			u8 size_code;
12628 
12629 			if (type == BPF_WRITE) {
12630 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
12631 				return -EINVAL;
12632 			}
12633 
12634 			size_code = BPF_H;
12635 			if (ctx_field_size == 4)
12636 				size_code = BPF_W;
12637 			else if (ctx_field_size == 8)
12638 				size_code = BPF_DW;
12639 
12640 			insn->off = off & ~(size_default - 1);
12641 			insn->code = BPF_LDX | BPF_MEM | size_code;
12642 		}
12643 
12644 		target_size = 0;
12645 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
12646 					 &target_size);
12647 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
12648 		    (ctx_field_size && !target_size)) {
12649 			verbose(env, "bpf verifier is misconfigured\n");
12650 			return -EINVAL;
12651 		}
12652 
12653 		if (is_narrower_load && size < target_size) {
12654 			u8 shift = bpf_ctx_narrow_access_offset(
12655 				off, size, size_default) * 8;
12656 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
12657 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
12658 				return -EINVAL;
12659 			}
12660 			if (ctx_field_size <= 4) {
12661 				if (shift)
12662 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
12663 									insn->dst_reg,
12664 									shift);
12665 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
12666 								(1 << size * 8) - 1);
12667 			} else {
12668 				if (shift)
12669 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
12670 									insn->dst_reg,
12671 									shift);
12672 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
12673 								(1ULL << size * 8) - 1);
12674 			}
12675 		}
12676 
12677 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12678 		if (!new_prog)
12679 			return -ENOMEM;
12680 
12681 		delta += cnt - 1;
12682 
12683 		/* keep walking new program and skip insns we just inserted */
12684 		env->prog = new_prog;
12685 		insn      = new_prog->insnsi + i + delta;
12686 	}
12687 
12688 	return 0;
12689 }
12690 
12691 static int jit_subprogs(struct bpf_verifier_env *env)
12692 {
12693 	struct bpf_prog *prog = env->prog, **func, *tmp;
12694 	int i, j, subprog_start, subprog_end = 0, len, subprog;
12695 	struct bpf_map *map_ptr;
12696 	struct bpf_insn *insn;
12697 	void *old_bpf_func;
12698 	int err, num_exentries;
12699 
12700 	if (env->subprog_cnt <= 1)
12701 		return 0;
12702 
12703 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12704 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
12705 			continue;
12706 
12707 		/* Upon error here we cannot fall back to interpreter but
12708 		 * need a hard reject of the program. Thus -EFAULT is
12709 		 * propagated in any case.
12710 		 */
12711 		subprog = find_subprog(env, i + insn->imm + 1);
12712 		if (subprog < 0) {
12713 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
12714 				  i + insn->imm + 1);
12715 			return -EFAULT;
12716 		}
12717 		/* temporarily remember subprog id inside insn instead of
12718 		 * aux_data, since next loop will split up all insns into funcs
12719 		 */
12720 		insn->off = subprog;
12721 		/* remember original imm in case JIT fails and fallback
12722 		 * to interpreter will be needed
12723 		 */
12724 		env->insn_aux_data[i].call_imm = insn->imm;
12725 		/* point imm to __bpf_call_base+1 from JITs point of view */
12726 		insn->imm = 1;
12727 		if (bpf_pseudo_func(insn))
12728 			/* jit (e.g. x86_64) may emit fewer instructions
12729 			 * if it learns a u32 imm is the same as a u64 imm.
12730 			 * Force a non zero here.
12731 			 */
12732 			insn[1].imm = 1;
12733 	}
12734 
12735 	err = bpf_prog_alloc_jited_linfo(prog);
12736 	if (err)
12737 		goto out_undo_insn;
12738 
12739 	err = -ENOMEM;
12740 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
12741 	if (!func)
12742 		goto out_undo_insn;
12743 
12744 	for (i = 0; i < env->subprog_cnt; i++) {
12745 		subprog_start = subprog_end;
12746 		subprog_end = env->subprog_info[i + 1].start;
12747 
12748 		len = subprog_end - subprog_start;
12749 		/* bpf_prog_run() doesn't call subprogs directly,
12750 		 * hence main prog stats include the runtime of subprogs.
12751 		 * subprogs don't have IDs and not reachable via prog_get_next_id
12752 		 * func[i]->stats will never be accessed and stays NULL
12753 		 */
12754 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
12755 		if (!func[i])
12756 			goto out_free;
12757 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
12758 		       len * sizeof(struct bpf_insn));
12759 		func[i]->type = prog->type;
12760 		func[i]->len = len;
12761 		if (bpf_prog_calc_tag(func[i]))
12762 			goto out_free;
12763 		func[i]->is_func = 1;
12764 		func[i]->aux->func_idx = i;
12765 		/* Below members will be freed only at prog->aux */
12766 		func[i]->aux->btf = prog->aux->btf;
12767 		func[i]->aux->func_info = prog->aux->func_info;
12768 		func[i]->aux->poke_tab = prog->aux->poke_tab;
12769 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
12770 
12771 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
12772 			struct bpf_jit_poke_descriptor *poke;
12773 
12774 			poke = &prog->aux->poke_tab[j];
12775 			if (poke->insn_idx < subprog_end &&
12776 			    poke->insn_idx >= subprog_start)
12777 				poke->aux = func[i]->aux;
12778 		}
12779 
12780 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
12781 		 * Long term would need debug info to populate names
12782 		 */
12783 		func[i]->aux->name[0] = 'F';
12784 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
12785 		func[i]->jit_requested = 1;
12786 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
12787 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
12788 		func[i]->aux->linfo = prog->aux->linfo;
12789 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
12790 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
12791 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
12792 		num_exentries = 0;
12793 		insn = func[i]->insnsi;
12794 		for (j = 0; j < func[i]->len; j++, insn++) {
12795 			if (BPF_CLASS(insn->code) == BPF_LDX &&
12796 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
12797 				num_exentries++;
12798 		}
12799 		func[i]->aux->num_exentries = num_exentries;
12800 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
12801 		func[i] = bpf_int_jit_compile(func[i]);
12802 		if (!func[i]->jited) {
12803 			err = -ENOTSUPP;
12804 			goto out_free;
12805 		}
12806 		cond_resched();
12807 	}
12808 
12809 	/* at this point all bpf functions were successfully JITed
12810 	 * now populate all bpf_calls with correct addresses and
12811 	 * run last pass of JIT
12812 	 */
12813 	for (i = 0; i < env->subprog_cnt; i++) {
12814 		insn = func[i]->insnsi;
12815 		for (j = 0; j < func[i]->len; j++, insn++) {
12816 			if (bpf_pseudo_func(insn)) {
12817 				subprog = insn->off;
12818 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
12819 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
12820 				continue;
12821 			}
12822 			if (!bpf_pseudo_call(insn))
12823 				continue;
12824 			subprog = insn->off;
12825 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
12826 		}
12827 
12828 		/* we use the aux data to keep a list of the start addresses
12829 		 * of the JITed images for each function in the program
12830 		 *
12831 		 * for some architectures, such as powerpc64, the imm field
12832 		 * might not be large enough to hold the offset of the start
12833 		 * address of the callee's JITed image from __bpf_call_base
12834 		 *
12835 		 * in such cases, we can lookup the start address of a callee
12836 		 * by using its subprog id, available from the off field of
12837 		 * the call instruction, as an index for this list
12838 		 */
12839 		func[i]->aux->func = func;
12840 		func[i]->aux->func_cnt = env->subprog_cnt;
12841 	}
12842 	for (i = 0; i < env->subprog_cnt; i++) {
12843 		old_bpf_func = func[i]->bpf_func;
12844 		tmp = bpf_int_jit_compile(func[i]);
12845 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
12846 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
12847 			err = -ENOTSUPP;
12848 			goto out_free;
12849 		}
12850 		cond_resched();
12851 	}
12852 
12853 	/* finally lock prog and jit images for all functions and
12854 	 * populate kallsysm
12855 	 */
12856 	for (i = 0; i < env->subprog_cnt; i++) {
12857 		bpf_prog_lock_ro(func[i]);
12858 		bpf_prog_kallsyms_add(func[i]);
12859 	}
12860 
12861 	/* Last step: make now unused interpreter insns from main
12862 	 * prog consistent for later dump requests, so they can
12863 	 * later look the same as if they were interpreted only.
12864 	 */
12865 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12866 		if (bpf_pseudo_func(insn)) {
12867 			insn[0].imm = env->insn_aux_data[i].call_imm;
12868 			insn[1].imm = insn->off;
12869 			insn->off = 0;
12870 			continue;
12871 		}
12872 		if (!bpf_pseudo_call(insn))
12873 			continue;
12874 		insn->off = env->insn_aux_data[i].call_imm;
12875 		subprog = find_subprog(env, i + insn->off + 1);
12876 		insn->imm = subprog;
12877 	}
12878 
12879 	prog->jited = 1;
12880 	prog->bpf_func = func[0]->bpf_func;
12881 	prog->aux->func = func;
12882 	prog->aux->func_cnt = env->subprog_cnt;
12883 	bpf_prog_jit_attempt_done(prog);
12884 	return 0;
12885 out_free:
12886 	/* We failed JIT'ing, so at this point we need to unregister poke
12887 	 * descriptors from subprogs, so that kernel is not attempting to
12888 	 * patch it anymore as we're freeing the subprog JIT memory.
12889 	 */
12890 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
12891 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
12892 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
12893 	}
12894 	/* At this point we're guaranteed that poke descriptors are not
12895 	 * live anymore. We can just unlink its descriptor table as it's
12896 	 * released with the main prog.
12897 	 */
12898 	for (i = 0; i < env->subprog_cnt; i++) {
12899 		if (!func[i])
12900 			continue;
12901 		func[i]->aux->poke_tab = NULL;
12902 		bpf_jit_free(func[i]);
12903 	}
12904 	kfree(func);
12905 out_undo_insn:
12906 	/* cleanup main prog to be interpreted */
12907 	prog->jit_requested = 0;
12908 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12909 		if (!bpf_pseudo_call(insn))
12910 			continue;
12911 		insn->off = 0;
12912 		insn->imm = env->insn_aux_data[i].call_imm;
12913 	}
12914 	bpf_prog_jit_attempt_done(prog);
12915 	return err;
12916 }
12917 
12918 static int fixup_call_args(struct bpf_verifier_env *env)
12919 {
12920 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12921 	struct bpf_prog *prog = env->prog;
12922 	struct bpf_insn *insn = prog->insnsi;
12923 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
12924 	int i, depth;
12925 #endif
12926 	int err = 0;
12927 
12928 	if (env->prog->jit_requested &&
12929 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
12930 		err = jit_subprogs(env);
12931 		if (err == 0)
12932 			return 0;
12933 		if (err == -EFAULT)
12934 			return err;
12935 	}
12936 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12937 	if (has_kfunc_call) {
12938 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
12939 		return -EINVAL;
12940 	}
12941 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
12942 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
12943 		 * have to be rejected, since interpreter doesn't support them yet.
12944 		 */
12945 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
12946 		return -EINVAL;
12947 	}
12948 	for (i = 0; i < prog->len; i++, insn++) {
12949 		if (bpf_pseudo_func(insn)) {
12950 			/* When JIT fails the progs with callback calls
12951 			 * have to be rejected, since interpreter doesn't support them yet.
12952 			 */
12953 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
12954 			return -EINVAL;
12955 		}
12956 
12957 		if (!bpf_pseudo_call(insn))
12958 			continue;
12959 		depth = get_callee_stack_depth(env, insn, i);
12960 		if (depth < 0)
12961 			return depth;
12962 		bpf_patch_call_args(insn, depth);
12963 	}
12964 	err = 0;
12965 #endif
12966 	return err;
12967 }
12968 
12969 static int fixup_kfunc_call(struct bpf_verifier_env *env,
12970 			    struct bpf_insn *insn)
12971 {
12972 	const struct bpf_kfunc_desc *desc;
12973 
12974 	if (!insn->imm) {
12975 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
12976 		return -EINVAL;
12977 	}
12978 
12979 	/* insn->imm has the btf func_id. Replace it with
12980 	 * an address (relative to __bpf_base_call).
12981 	 */
12982 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
12983 	if (!desc) {
12984 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
12985 			insn->imm);
12986 		return -EFAULT;
12987 	}
12988 
12989 	insn->imm = desc->imm;
12990 
12991 	return 0;
12992 }
12993 
12994 /* Do various post-verification rewrites in a single program pass.
12995  * These rewrites simplify JIT and interpreter implementations.
12996  */
12997 static int do_misc_fixups(struct bpf_verifier_env *env)
12998 {
12999 	struct bpf_prog *prog = env->prog;
13000 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
13001 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
13002 	struct bpf_insn *insn = prog->insnsi;
13003 	const struct bpf_func_proto *fn;
13004 	const int insn_cnt = prog->len;
13005 	const struct bpf_map_ops *ops;
13006 	struct bpf_insn_aux_data *aux;
13007 	struct bpf_insn insn_buf[16];
13008 	struct bpf_prog *new_prog;
13009 	struct bpf_map *map_ptr;
13010 	int i, ret, cnt, delta = 0;
13011 
13012 	for (i = 0; i < insn_cnt; i++, insn++) {
13013 		/* Make divide-by-zero exceptions impossible. */
13014 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
13015 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
13016 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
13017 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
13018 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
13019 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
13020 			struct bpf_insn *patchlet;
13021 			struct bpf_insn chk_and_div[] = {
13022 				/* [R,W]x div 0 -> 0 */
13023 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
13024 					     BPF_JNE | BPF_K, insn->src_reg,
13025 					     0, 2, 0),
13026 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
13027 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
13028 				*insn,
13029 			};
13030 			struct bpf_insn chk_and_mod[] = {
13031 				/* [R,W]x mod 0 -> [R,W]x */
13032 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
13033 					     BPF_JEQ | BPF_K, insn->src_reg,
13034 					     0, 1 + (is64 ? 0 : 1), 0),
13035 				*insn,
13036 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
13037 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
13038 			};
13039 
13040 			patchlet = isdiv ? chk_and_div : chk_and_mod;
13041 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
13042 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
13043 
13044 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
13045 			if (!new_prog)
13046 				return -ENOMEM;
13047 
13048 			delta    += cnt - 1;
13049 			env->prog = prog = new_prog;
13050 			insn      = new_prog->insnsi + i + delta;
13051 			continue;
13052 		}
13053 
13054 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
13055 		if (BPF_CLASS(insn->code) == BPF_LD &&
13056 		    (BPF_MODE(insn->code) == BPF_ABS ||
13057 		     BPF_MODE(insn->code) == BPF_IND)) {
13058 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
13059 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
13060 				verbose(env, "bpf verifier is misconfigured\n");
13061 				return -EINVAL;
13062 			}
13063 
13064 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13065 			if (!new_prog)
13066 				return -ENOMEM;
13067 
13068 			delta    += cnt - 1;
13069 			env->prog = prog = new_prog;
13070 			insn      = new_prog->insnsi + i + delta;
13071 			continue;
13072 		}
13073 
13074 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
13075 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
13076 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
13077 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
13078 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
13079 			struct bpf_insn *patch = &insn_buf[0];
13080 			bool issrc, isneg, isimm;
13081 			u32 off_reg;
13082 
13083 			aux = &env->insn_aux_data[i + delta];
13084 			if (!aux->alu_state ||
13085 			    aux->alu_state == BPF_ALU_NON_POINTER)
13086 				continue;
13087 
13088 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
13089 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
13090 				BPF_ALU_SANITIZE_SRC;
13091 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
13092 
13093 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
13094 			if (isimm) {
13095 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
13096 			} else {
13097 				if (isneg)
13098 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
13099 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
13100 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
13101 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
13102 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
13103 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
13104 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
13105 			}
13106 			if (!issrc)
13107 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
13108 			insn->src_reg = BPF_REG_AX;
13109 			if (isneg)
13110 				insn->code = insn->code == code_add ?
13111 					     code_sub : code_add;
13112 			*patch++ = *insn;
13113 			if (issrc && isneg && !isimm)
13114 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
13115 			cnt = patch - insn_buf;
13116 
13117 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13118 			if (!new_prog)
13119 				return -ENOMEM;
13120 
13121 			delta    += cnt - 1;
13122 			env->prog = prog = new_prog;
13123 			insn      = new_prog->insnsi + i + delta;
13124 			continue;
13125 		}
13126 
13127 		if (insn->code != (BPF_JMP | BPF_CALL))
13128 			continue;
13129 		if (insn->src_reg == BPF_PSEUDO_CALL)
13130 			continue;
13131 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
13132 			ret = fixup_kfunc_call(env, insn);
13133 			if (ret)
13134 				return ret;
13135 			continue;
13136 		}
13137 
13138 		if (insn->imm == BPF_FUNC_get_route_realm)
13139 			prog->dst_needed = 1;
13140 		if (insn->imm == BPF_FUNC_get_prandom_u32)
13141 			bpf_user_rnd_init_once();
13142 		if (insn->imm == BPF_FUNC_override_return)
13143 			prog->kprobe_override = 1;
13144 		if (insn->imm == BPF_FUNC_tail_call) {
13145 			/* If we tail call into other programs, we
13146 			 * cannot make any assumptions since they can
13147 			 * be replaced dynamically during runtime in
13148 			 * the program array.
13149 			 */
13150 			prog->cb_access = 1;
13151 			if (!allow_tail_call_in_subprogs(env))
13152 				prog->aux->stack_depth = MAX_BPF_STACK;
13153 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
13154 
13155 			/* mark bpf_tail_call as different opcode to avoid
13156 			 * conditional branch in the interpreter for every normal
13157 			 * call and to prevent accidental JITing by JIT compiler
13158 			 * that doesn't support bpf_tail_call yet
13159 			 */
13160 			insn->imm = 0;
13161 			insn->code = BPF_JMP | BPF_TAIL_CALL;
13162 
13163 			aux = &env->insn_aux_data[i + delta];
13164 			if (env->bpf_capable && !expect_blinding &&
13165 			    prog->jit_requested &&
13166 			    !bpf_map_key_poisoned(aux) &&
13167 			    !bpf_map_ptr_poisoned(aux) &&
13168 			    !bpf_map_ptr_unpriv(aux)) {
13169 				struct bpf_jit_poke_descriptor desc = {
13170 					.reason = BPF_POKE_REASON_TAIL_CALL,
13171 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
13172 					.tail_call.key = bpf_map_key_immediate(aux),
13173 					.insn_idx = i + delta,
13174 				};
13175 
13176 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
13177 				if (ret < 0) {
13178 					verbose(env, "adding tail call poke descriptor failed\n");
13179 					return ret;
13180 				}
13181 
13182 				insn->imm = ret + 1;
13183 				continue;
13184 			}
13185 
13186 			if (!bpf_map_ptr_unpriv(aux))
13187 				continue;
13188 
13189 			/* instead of changing every JIT dealing with tail_call
13190 			 * emit two extra insns:
13191 			 * if (index >= max_entries) goto out;
13192 			 * index &= array->index_mask;
13193 			 * to avoid out-of-bounds cpu speculation
13194 			 */
13195 			if (bpf_map_ptr_poisoned(aux)) {
13196 				verbose(env, "tail_call abusing map_ptr\n");
13197 				return -EINVAL;
13198 			}
13199 
13200 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
13201 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
13202 						  map_ptr->max_entries, 2);
13203 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
13204 						    container_of(map_ptr,
13205 								 struct bpf_array,
13206 								 map)->index_mask);
13207 			insn_buf[2] = *insn;
13208 			cnt = 3;
13209 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13210 			if (!new_prog)
13211 				return -ENOMEM;
13212 
13213 			delta    += cnt - 1;
13214 			env->prog = prog = new_prog;
13215 			insn      = new_prog->insnsi + i + delta;
13216 			continue;
13217 		}
13218 
13219 		if (insn->imm == BPF_FUNC_timer_set_callback) {
13220 			/* The verifier will process callback_fn as many times as necessary
13221 			 * with different maps and the register states prepared by
13222 			 * set_timer_callback_state will be accurate.
13223 			 *
13224 			 * The following use case is valid:
13225 			 *   map1 is shared by prog1, prog2, prog3.
13226 			 *   prog1 calls bpf_timer_init for some map1 elements
13227 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
13228 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
13229 			 *   prog3 calls bpf_timer_start for some map1 elements.
13230 			 *     Those that were not both bpf_timer_init-ed and
13231 			 *     bpf_timer_set_callback-ed will return -EINVAL.
13232 			 */
13233 			struct bpf_insn ld_addrs[2] = {
13234 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
13235 			};
13236 
13237 			insn_buf[0] = ld_addrs[0];
13238 			insn_buf[1] = ld_addrs[1];
13239 			insn_buf[2] = *insn;
13240 			cnt = 3;
13241 
13242 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13243 			if (!new_prog)
13244 				return -ENOMEM;
13245 
13246 			delta    += cnt - 1;
13247 			env->prog = prog = new_prog;
13248 			insn      = new_prog->insnsi + i + delta;
13249 			goto patch_call_imm;
13250 		}
13251 
13252 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
13253 		 * and other inlining handlers are currently limited to 64 bit
13254 		 * only.
13255 		 */
13256 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
13257 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
13258 		     insn->imm == BPF_FUNC_map_update_elem ||
13259 		     insn->imm == BPF_FUNC_map_delete_elem ||
13260 		     insn->imm == BPF_FUNC_map_push_elem   ||
13261 		     insn->imm == BPF_FUNC_map_pop_elem    ||
13262 		     insn->imm == BPF_FUNC_map_peek_elem   ||
13263 		     insn->imm == BPF_FUNC_redirect_map    ||
13264 		     insn->imm == BPF_FUNC_for_each_map_elem)) {
13265 			aux = &env->insn_aux_data[i + delta];
13266 			if (bpf_map_ptr_poisoned(aux))
13267 				goto patch_call_imm;
13268 
13269 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
13270 			ops = map_ptr->ops;
13271 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
13272 			    ops->map_gen_lookup) {
13273 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
13274 				if (cnt == -EOPNOTSUPP)
13275 					goto patch_map_ops_generic;
13276 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
13277 					verbose(env, "bpf verifier is misconfigured\n");
13278 					return -EINVAL;
13279 				}
13280 
13281 				new_prog = bpf_patch_insn_data(env, i + delta,
13282 							       insn_buf, cnt);
13283 				if (!new_prog)
13284 					return -ENOMEM;
13285 
13286 				delta    += cnt - 1;
13287 				env->prog = prog = new_prog;
13288 				insn      = new_prog->insnsi + i + delta;
13289 				continue;
13290 			}
13291 
13292 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
13293 				     (void *(*)(struct bpf_map *map, void *key))NULL));
13294 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
13295 				     (int (*)(struct bpf_map *map, void *key))NULL));
13296 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
13297 				     (int (*)(struct bpf_map *map, void *key, void *value,
13298 					      u64 flags))NULL));
13299 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
13300 				     (int (*)(struct bpf_map *map, void *value,
13301 					      u64 flags))NULL));
13302 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
13303 				     (int (*)(struct bpf_map *map, void *value))NULL));
13304 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
13305 				     (int (*)(struct bpf_map *map, void *value))NULL));
13306 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
13307 				     (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
13308 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
13309 				     (int (*)(struct bpf_map *map,
13310 					      bpf_callback_t callback_fn,
13311 					      void *callback_ctx,
13312 					      u64 flags))NULL));
13313 
13314 patch_map_ops_generic:
13315 			switch (insn->imm) {
13316 			case BPF_FUNC_map_lookup_elem:
13317 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
13318 				continue;
13319 			case BPF_FUNC_map_update_elem:
13320 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
13321 				continue;
13322 			case BPF_FUNC_map_delete_elem:
13323 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
13324 				continue;
13325 			case BPF_FUNC_map_push_elem:
13326 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
13327 				continue;
13328 			case BPF_FUNC_map_pop_elem:
13329 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
13330 				continue;
13331 			case BPF_FUNC_map_peek_elem:
13332 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
13333 				continue;
13334 			case BPF_FUNC_redirect_map:
13335 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
13336 				continue;
13337 			case BPF_FUNC_for_each_map_elem:
13338 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
13339 				continue;
13340 			}
13341 
13342 			goto patch_call_imm;
13343 		}
13344 
13345 		/* Implement bpf_jiffies64 inline. */
13346 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
13347 		    insn->imm == BPF_FUNC_jiffies64) {
13348 			struct bpf_insn ld_jiffies_addr[2] = {
13349 				BPF_LD_IMM64(BPF_REG_0,
13350 					     (unsigned long)&jiffies),
13351 			};
13352 
13353 			insn_buf[0] = ld_jiffies_addr[0];
13354 			insn_buf[1] = ld_jiffies_addr[1];
13355 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
13356 						  BPF_REG_0, 0);
13357 			cnt = 3;
13358 
13359 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
13360 						       cnt);
13361 			if (!new_prog)
13362 				return -ENOMEM;
13363 
13364 			delta    += cnt - 1;
13365 			env->prog = prog = new_prog;
13366 			insn      = new_prog->insnsi + i + delta;
13367 			continue;
13368 		}
13369 
13370 		/* Implement bpf_get_func_ip inline. */
13371 		if (prog_type == BPF_PROG_TYPE_TRACING &&
13372 		    insn->imm == BPF_FUNC_get_func_ip) {
13373 			/* Load IP address from ctx - 8 */
13374 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
13375 
13376 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
13377 			if (!new_prog)
13378 				return -ENOMEM;
13379 
13380 			env->prog = prog = new_prog;
13381 			insn      = new_prog->insnsi + i + delta;
13382 			continue;
13383 		}
13384 
13385 patch_call_imm:
13386 		fn = env->ops->get_func_proto(insn->imm, env->prog);
13387 		/* all functions that have prototype and verifier allowed
13388 		 * programs to call them, must be real in-kernel functions
13389 		 */
13390 		if (!fn->func) {
13391 			verbose(env,
13392 				"kernel subsystem misconfigured func %s#%d\n",
13393 				func_id_name(insn->imm), insn->imm);
13394 			return -EFAULT;
13395 		}
13396 		insn->imm = fn->func - __bpf_call_base;
13397 	}
13398 
13399 	/* Since poke tab is now finalized, publish aux to tracker. */
13400 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
13401 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
13402 		if (!map_ptr->ops->map_poke_track ||
13403 		    !map_ptr->ops->map_poke_untrack ||
13404 		    !map_ptr->ops->map_poke_run) {
13405 			verbose(env, "bpf verifier is misconfigured\n");
13406 			return -EINVAL;
13407 		}
13408 
13409 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
13410 		if (ret < 0) {
13411 			verbose(env, "tracking tail call prog failed\n");
13412 			return ret;
13413 		}
13414 	}
13415 
13416 	sort_kfunc_descs_by_imm(env->prog);
13417 
13418 	return 0;
13419 }
13420 
13421 static void free_states(struct bpf_verifier_env *env)
13422 {
13423 	struct bpf_verifier_state_list *sl, *sln;
13424 	int i;
13425 
13426 	sl = env->free_list;
13427 	while (sl) {
13428 		sln = sl->next;
13429 		free_verifier_state(&sl->state, false);
13430 		kfree(sl);
13431 		sl = sln;
13432 	}
13433 	env->free_list = NULL;
13434 
13435 	if (!env->explored_states)
13436 		return;
13437 
13438 	for (i = 0; i < state_htab_size(env); i++) {
13439 		sl = env->explored_states[i];
13440 
13441 		while (sl) {
13442 			sln = sl->next;
13443 			free_verifier_state(&sl->state, false);
13444 			kfree(sl);
13445 			sl = sln;
13446 		}
13447 		env->explored_states[i] = NULL;
13448 	}
13449 }
13450 
13451 static int do_check_common(struct bpf_verifier_env *env, int subprog)
13452 {
13453 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
13454 	struct bpf_verifier_state *state;
13455 	struct bpf_reg_state *regs;
13456 	int ret, i;
13457 
13458 	env->prev_linfo = NULL;
13459 	env->pass_cnt++;
13460 
13461 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
13462 	if (!state)
13463 		return -ENOMEM;
13464 	state->curframe = 0;
13465 	state->speculative = false;
13466 	state->branches = 1;
13467 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
13468 	if (!state->frame[0]) {
13469 		kfree(state);
13470 		return -ENOMEM;
13471 	}
13472 	env->cur_state = state;
13473 	init_func_state(env, state->frame[0],
13474 			BPF_MAIN_FUNC /* callsite */,
13475 			0 /* frameno */,
13476 			subprog);
13477 
13478 	regs = state->frame[state->curframe]->regs;
13479 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
13480 		ret = btf_prepare_func_args(env, subprog, regs);
13481 		if (ret)
13482 			goto out;
13483 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
13484 			if (regs[i].type == PTR_TO_CTX)
13485 				mark_reg_known_zero(env, regs, i);
13486 			else if (regs[i].type == SCALAR_VALUE)
13487 				mark_reg_unknown(env, regs, i);
13488 			else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
13489 				const u32 mem_size = regs[i].mem_size;
13490 
13491 				mark_reg_known_zero(env, regs, i);
13492 				regs[i].mem_size = mem_size;
13493 				regs[i].id = ++env->id_gen;
13494 			}
13495 		}
13496 	} else {
13497 		/* 1st arg to a function */
13498 		regs[BPF_REG_1].type = PTR_TO_CTX;
13499 		mark_reg_known_zero(env, regs, BPF_REG_1);
13500 		ret = btf_check_subprog_arg_match(env, subprog, regs);
13501 		if (ret == -EFAULT)
13502 			/* unlikely verifier bug. abort.
13503 			 * ret == 0 and ret < 0 are sadly acceptable for
13504 			 * main() function due to backward compatibility.
13505 			 * Like socket filter program may be written as:
13506 			 * int bpf_prog(struct pt_regs *ctx)
13507 			 * and never dereference that ctx in the program.
13508 			 * 'struct pt_regs' is a type mismatch for socket
13509 			 * filter that should be using 'struct __sk_buff'.
13510 			 */
13511 			goto out;
13512 	}
13513 
13514 	ret = do_check(env);
13515 out:
13516 	/* check for NULL is necessary, since cur_state can be freed inside
13517 	 * do_check() under memory pressure.
13518 	 */
13519 	if (env->cur_state) {
13520 		free_verifier_state(env->cur_state, true);
13521 		env->cur_state = NULL;
13522 	}
13523 	while (!pop_stack(env, NULL, NULL, false));
13524 	if (!ret && pop_log)
13525 		bpf_vlog_reset(&env->log, 0);
13526 	free_states(env);
13527 	return ret;
13528 }
13529 
13530 /* Verify all global functions in a BPF program one by one based on their BTF.
13531  * All global functions must pass verification. Otherwise the whole program is rejected.
13532  * Consider:
13533  * int bar(int);
13534  * int foo(int f)
13535  * {
13536  *    return bar(f);
13537  * }
13538  * int bar(int b)
13539  * {
13540  *    ...
13541  * }
13542  * foo() will be verified first for R1=any_scalar_value. During verification it
13543  * will be assumed that bar() already verified successfully and call to bar()
13544  * from foo() will be checked for type match only. Later bar() will be verified
13545  * independently to check that it's safe for R1=any_scalar_value.
13546  */
13547 static int do_check_subprogs(struct bpf_verifier_env *env)
13548 {
13549 	struct bpf_prog_aux *aux = env->prog->aux;
13550 	int i, ret;
13551 
13552 	if (!aux->func_info)
13553 		return 0;
13554 
13555 	for (i = 1; i < env->subprog_cnt; i++) {
13556 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
13557 			continue;
13558 		env->insn_idx = env->subprog_info[i].start;
13559 		WARN_ON_ONCE(env->insn_idx == 0);
13560 		ret = do_check_common(env, i);
13561 		if (ret) {
13562 			return ret;
13563 		} else if (env->log.level & BPF_LOG_LEVEL) {
13564 			verbose(env,
13565 				"Func#%d is safe for any args that match its prototype\n",
13566 				i);
13567 		}
13568 	}
13569 	return 0;
13570 }
13571 
13572 static int do_check_main(struct bpf_verifier_env *env)
13573 {
13574 	int ret;
13575 
13576 	env->insn_idx = 0;
13577 	ret = do_check_common(env, 0);
13578 	if (!ret)
13579 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
13580 	return ret;
13581 }
13582 
13583 
13584 static void print_verification_stats(struct bpf_verifier_env *env)
13585 {
13586 	int i;
13587 
13588 	if (env->log.level & BPF_LOG_STATS) {
13589 		verbose(env, "verification time %lld usec\n",
13590 			div_u64(env->verification_time, 1000));
13591 		verbose(env, "stack depth ");
13592 		for (i = 0; i < env->subprog_cnt; i++) {
13593 			u32 depth = env->subprog_info[i].stack_depth;
13594 
13595 			verbose(env, "%d", depth);
13596 			if (i + 1 < env->subprog_cnt)
13597 				verbose(env, "+");
13598 		}
13599 		verbose(env, "\n");
13600 	}
13601 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
13602 		"total_states %d peak_states %d mark_read %d\n",
13603 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
13604 		env->max_states_per_insn, env->total_states,
13605 		env->peak_states, env->longest_mark_read_walk);
13606 }
13607 
13608 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
13609 {
13610 	const struct btf_type *t, *func_proto;
13611 	const struct bpf_struct_ops *st_ops;
13612 	const struct btf_member *member;
13613 	struct bpf_prog *prog = env->prog;
13614 	u32 btf_id, member_idx;
13615 	const char *mname;
13616 
13617 	if (!prog->gpl_compatible) {
13618 		verbose(env, "struct ops programs must have a GPL compatible license\n");
13619 		return -EINVAL;
13620 	}
13621 
13622 	btf_id = prog->aux->attach_btf_id;
13623 	st_ops = bpf_struct_ops_find(btf_id);
13624 	if (!st_ops) {
13625 		verbose(env, "attach_btf_id %u is not a supported struct\n",
13626 			btf_id);
13627 		return -ENOTSUPP;
13628 	}
13629 
13630 	t = st_ops->type;
13631 	member_idx = prog->expected_attach_type;
13632 	if (member_idx >= btf_type_vlen(t)) {
13633 		verbose(env, "attach to invalid member idx %u of struct %s\n",
13634 			member_idx, st_ops->name);
13635 		return -EINVAL;
13636 	}
13637 
13638 	member = &btf_type_member(t)[member_idx];
13639 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
13640 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
13641 					       NULL);
13642 	if (!func_proto) {
13643 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
13644 			mname, member_idx, st_ops->name);
13645 		return -EINVAL;
13646 	}
13647 
13648 	if (st_ops->check_member) {
13649 		int err = st_ops->check_member(t, member);
13650 
13651 		if (err) {
13652 			verbose(env, "attach to unsupported member %s of struct %s\n",
13653 				mname, st_ops->name);
13654 			return err;
13655 		}
13656 	}
13657 
13658 	prog->aux->attach_func_proto = func_proto;
13659 	prog->aux->attach_func_name = mname;
13660 	env->ops = st_ops->verifier_ops;
13661 
13662 	return 0;
13663 }
13664 #define SECURITY_PREFIX "security_"
13665 
13666 static int check_attach_modify_return(unsigned long addr, const char *func_name)
13667 {
13668 	if (within_error_injection_list(addr) ||
13669 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
13670 		return 0;
13671 
13672 	return -EINVAL;
13673 }
13674 
13675 /* list of non-sleepable functions that are otherwise on
13676  * ALLOW_ERROR_INJECTION list
13677  */
13678 BTF_SET_START(btf_non_sleepable_error_inject)
13679 /* Three functions below can be called from sleepable and non-sleepable context.
13680  * Assume non-sleepable from bpf safety point of view.
13681  */
13682 BTF_ID(func, __filemap_add_folio)
13683 BTF_ID(func, should_fail_alloc_page)
13684 BTF_ID(func, should_failslab)
13685 BTF_SET_END(btf_non_sleepable_error_inject)
13686 
13687 static int check_non_sleepable_error_inject(u32 btf_id)
13688 {
13689 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
13690 }
13691 
13692 int bpf_check_attach_target(struct bpf_verifier_log *log,
13693 			    const struct bpf_prog *prog,
13694 			    const struct bpf_prog *tgt_prog,
13695 			    u32 btf_id,
13696 			    struct bpf_attach_target_info *tgt_info)
13697 {
13698 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
13699 	const char prefix[] = "btf_trace_";
13700 	int ret = 0, subprog = -1, i;
13701 	const struct btf_type *t;
13702 	bool conservative = true;
13703 	const char *tname;
13704 	struct btf *btf;
13705 	long addr = 0;
13706 
13707 	if (!btf_id) {
13708 		bpf_log(log, "Tracing programs must provide btf_id\n");
13709 		return -EINVAL;
13710 	}
13711 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
13712 	if (!btf) {
13713 		bpf_log(log,
13714 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
13715 		return -EINVAL;
13716 	}
13717 	t = btf_type_by_id(btf, btf_id);
13718 	if (!t) {
13719 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
13720 		return -EINVAL;
13721 	}
13722 	tname = btf_name_by_offset(btf, t->name_off);
13723 	if (!tname) {
13724 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
13725 		return -EINVAL;
13726 	}
13727 	if (tgt_prog) {
13728 		struct bpf_prog_aux *aux = tgt_prog->aux;
13729 
13730 		for (i = 0; i < aux->func_info_cnt; i++)
13731 			if (aux->func_info[i].type_id == btf_id) {
13732 				subprog = i;
13733 				break;
13734 			}
13735 		if (subprog == -1) {
13736 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
13737 			return -EINVAL;
13738 		}
13739 		conservative = aux->func_info_aux[subprog].unreliable;
13740 		if (prog_extension) {
13741 			if (conservative) {
13742 				bpf_log(log,
13743 					"Cannot replace static functions\n");
13744 				return -EINVAL;
13745 			}
13746 			if (!prog->jit_requested) {
13747 				bpf_log(log,
13748 					"Extension programs should be JITed\n");
13749 				return -EINVAL;
13750 			}
13751 		}
13752 		if (!tgt_prog->jited) {
13753 			bpf_log(log, "Can attach to only JITed progs\n");
13754 			return -EINVAL;
13755 		}
13756 		if (tgt_prog->type == prog->type) {
13757 			/* Cannot fentry/fexit another fentry/fexit program.
13758 			 * Cannot attach program extension to another extension.
13759 			 * It's ok to attach fentry/fexit to extension program.
13760 			 */
13761 			bpf_log(log, "Cannot recursively attach\n");
13762 			return -EINVAL;
13763 		}
13764 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
13765 		    prog_extension &&
13766 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
13767 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
13768 			/* Program extensions can extend all program types
13769 			 * except fentry/fexit. The reason is the following.
13770 			 * The fentry/fexit programs are used for performance
13771 			 * analysis, stats and can be attached to any program
13772 			 * type except themselves. When extension program is
13773 			 * replacing XDP function it is necessary to allow
13774 			 * performance analysis of all functions. Both original
13775 			 * XDP program and its program extension. Hence
13776 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
13777 			 * allowed. If extending of fentry/fexit was allowed it
13778 			 * would be possible to create long call chain
13779 			 * fentry->extension->fentry->extension beyond
13780 			 * reasonable stack size. Hence extending fentry is not
13781 			 * allowed.
13782 			 */
13783 			bpf_log(log, "Cannot extend fentry/fexit\n");
13784 			return -EINVAL;
13785 		}
13786 	} else {
13787 		if (prog_extension) {
13788 			bpf_log(log, "Cannot replace kernel functions\n");
13789 			return -EINVAL;
13790 		}
13791 	}
13792 
13793 	switch (prog->expected_attach_type) {
13794 	case BPF_TRACE_RAW_TP:
13795 		if (tgt_prog) {
13796 			bpf_log(log,
13797 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
13798 			return -EINVAL;
13799 		}
13800 		if (!btf_type_is_typedef(t)) {
13801 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
13802 				btf_id);
13803 			return -EINVAL;
13804 		}
13805 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
13806 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
13807 				btf_id, tname);
13808 			return -EINVAL;
13809 		}
13810 		tname += sizeof(prefix) - 1;
13811 		t = btf_type_by_id(btf, t->type);
13812 		if (!btf_type_is_ptr(t))
13813 			/* should never happen in valid vmlinux build */
13814 			return -EINVAL;
13815 		t = btf_type_by_id(btf, t->type);
13816 		if (!btf_type_is_func_proto(t))
13817 			/* should never happen in valid vmlinux build */
13818 			return -EINVAL;
13819 
13820 		break;
13821 	case BPF_TRACE_ITER:
13822 		if (!btf_type_is_func(t)) {
13823 			bpf_log(log, "attach_btf_id %u is not a function\n",
13824 				btf_id);
13825 			return -EINVAL;
13826 		}
13827 		t = btf_type_by_id(btf, t->type);
13828 		if (!btf_type_is_func_proto(t))
13829 			return -EINVAL;
13830 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13831 		if (ret)
13832 			return ret;
13833 		break;
13834 	default:
13835 		if (!prog_extension)
13836 			return -EINVAL;
13837 		fallthrough;
13838 	case BPF_MODIFY_RETURN:
13839 	case BPF_LSM_MAC:
13840 	case BPF_TRACE_FENTRY:
13841 	case BPF_TRACE_FEXIT:
13842 		if (!btf_type_is_func(t)) {
13843 			bpf_log(log, "attach_btf_id %u is not a function\n",
13844 				btf_id);
13845 			return -EINVAL;
13846 		}
13847 		if (prog_extension &&
13848 		    btf_check_type_match(log, prog, btf, t))
13849 			return -EINVAL;
13850 		t = btf_type_by_id(btf, t->type);
13851 		if (!btf_type_is_func_proto(t))
13852 			return -EINVAL;
13853 
13854 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
13855 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
13856 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
13857 			return -EINVAL;
13858 
13859 		if (tgt_prog && conservative)
13860 			t = NULL;
13861 
13862 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13863 		if (ret < 0)
13864 			return ret;
13865 
13866 		if (tgt_prog) {
13867 			if (subprog == 0)
13868 				addr = (long) tgt_prog->bpf_func;
13869 			else
13870 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
13871 		} else {
13872 			addr = kallsyms_lookup_name(tname);
13873 			if (!addr) {
13874 				bpf_log(log,
13875 					"The address of function %s cannot be found\n",
13876 					tname);
13877 				return -ENOENT;
13878 			}
13879 		}
13880 
13881 		if (prog->aux->sleepable) {
13882 			ret = -EINVAL;
13883 			switch (prog->type) {
13884 			case BPF_PROG_TYPE_TRACING:
13885 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
13886 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
13887 				 */
13888 				if (!check_non_sleepable_error_inject(btf_id) &&
13889 				    within_error_injection_list(addr))
13890 					ret = 0;
13891 				break;
13892 			case BPF_PROG_TYPE_LSM:
13893 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
13894 				 * Only some of them are sleepable.
13895 				 */
13896 				if (bpf_lsm_is_sleepable_hook(btf_id))
13897 					ret = 0;
13898 				break;
13899 			default:
13900 				break;
13901 			}
13902 			if (ret) {
13903 				bpf_log(log, "%s is not sleepable\n", tname);
13904 				return ret;
13905 			}
13906 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
13907 			if (tgt_prog) {
13908 				bpf_log(log, "can't modify return codes of BPF programs\n");
13909 				return -EINVAL;
13910 			}
13911 			ret = check_attach_modify_return(addr, tname);
13912 			if (ret) {
13913 				bpf_log(log, "%s() is not modifiable\n", tname);
13914 				return ret;
13915 			}
13916 		}
13917 
13918 		break;
13919 	}
13920 	tgt_info->tgt_addr = addr;
13921 	tgt_info->tgt_name = tname;
13922 	tgt_info->tgt_type = t;
13923 	return 0;
13924 }
13925 
13926 BTF_SET_START(btf_id_deny)
13927 BTF_ID_UNUSED
13928 #ifdef CONFIG_SMP
13929 BTF_ID(func, migrate_disable)
13930 BTF_ID(func, migrate_enable)
13931 #endif
13932 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
13933 BTF_ID(func, rcu_read_unlock_strict)
13934 #endif
13935 BTF_SET_END(btf_id_deny)
13936 
13937 static int check_attach_btf_id(struct bpf_verifier_env *env)
13938 {
13939 	struct bpf_prog *prog = env->prog;
13940 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
13941 	struct bpf_attach_target_info tgt_info = {};
13942 	u32 btf_id = prog->aux->attach_btf_id;
13943 	struct bpf_trampoline *tr;
13944 	int ret;
13945 	u64 key;
13946 
13947 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
13948 		if (prog->aux->sleepable)
13949 			/* attach_btf_id checked to be zero already */
13950 			return 0;
13951 		verbose(env, "Syscall programs can only be sleepable\n");
13952 		return -EINVAL;
13953 	}
13954 
13955 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
13956 	    prog->type != BPF_PROG_TYPE_LSM) {
13957 		verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
13958 		return -EINVAL;
13959 	}
13960 
13961 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
13962 		return check_struct_ops_btf_id(env);
13963 
13964 	if (prog->type != BPF_PROG_TYPE_TRACING &&
13965 	    prog->type != BPF_PROG_TYPE_LSM &&
13966 	    prog->type != BPF_PROG_TYPE_EXT)
13967 		return 0;
13968 
13969 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
13970 	if (ret)
13971 		return ret;
13972 
13973 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
13974 		/* to make freplace equivalent to their targets, they need to
13975 		 * inherit env->ops and expected_attach_type for the rest of the
13976 		 * verification
13977 		 */
13978 		env->ops = bpf_verifier_ops[tgt_prog->type];
13979 		prog->expected_attach_type = tgt_prog->expected_attach_type;
13980 	}
13981 
13982 	/* store info about the attachment target that will be used later */
13983 	prog->aux->attach_func_proto = tgt_info.tgt_type;
13984 	prog->aux->attach_func_name = tgt_info.tgt_name;
13985 
13986 	if (tgt_prog) {
13987 		prog->aux->saved_dst_prog_type = tgt_prog->type;
13988 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
13989 	}
13990 
13991 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
13992 		prog->aux->attach_btf_trace = true;
13993 		return 0;
13994 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
13995 		if (!bpf_iter_prog_supported(prog))
13996 			return -EINVAL;
13997 		return 0;
13998 	}
13999 
14000 	if (prog->type == BPF_PROG_TYPE_LSM) {
14001 		ret = bpf_lsm_verify_prog(&env->log, prog);
14002 		if (ret < 0)
14003 			return ret;
14004 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
14005 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
14006 		return -EINVAL;
14007 	}
14008 
14009 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
14010 	tr = bpf_trampoline_get(key, &tgt_info);
14011 	if (!tr)
14012 		return -ENOMEM;
14013 
14014 	prog->aux->dst_trampoline = tr;
14015 	return 0;
14016 }
14017 
14018 struct btf *bpf_get_btf_vmlinux(void)
14019 {
14020 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
14021 		mutex_lock(&bpf_verifier_lock);
14022 		if (!btf_vmlinux)
14023 			btf_vmlinux = btf_parse_vmlinux();
14024 		mutex_unlock(&bpf_verifier_lock);
14025 	}
14026 	return btf_vmlinux;
14027 }
14028 
14029 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
14030 {
14031 	u64 start_time = ktime_get_ns();
14032 	struct bpf_verifier_env *env;
14033 	struct bpf_verifier_log *log;
14034 	int i, len, ret = -EINVAL;
14035 	bool is_priv;
14036 
14037 	/* no program is valid */
14038 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
14039 		return -EINVAL;
14040 
14041 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
14042 	 * allocate/free it every time bpf_check() is called
14043 	 */
14044 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
14045 	if (!env)
14046 		return -ENOMEM;
14047 	log = &env->log;
14048 
14049 	len = (*prog)->len;
14050 	env->insn_aux_data =
14051 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
14052 	ret = -ENOMEM;
14053 	if (!env->insn_aux_data)
14054 		goto err_free_env;
14055 	for (i = 0; i < len; i++)
14056 		env->insn_aux_data[i].orig_idx = i;
14057 	env->prog = *prog;
14058 	env->ops = bpf_verifier_ops[env->prog->type];
14059 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
14060 	is_priv = bpf_capable();
14061 
14062 	bpf_get_btf_vmlinux();
14063 
14064 	/* grab the mutex to protect few globals used by verifier */
14065 	if (!is_priv)
14066 		mutex_lock(&bpf_verifier_lock);
14067 
14068 	if (attr->log_level || attr->log_buf || attr->log_size) {
14069 		/* user requested verbose verifier output
14070 		 * and supplied buffer to store the verification trace
14071 		 */
14072 		log->level = attr->log_level;
14073 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
14074 		log->len_total = attr->log_size;
14075 
14076 		/* log attributes have to be sane */
14077 		if (!bpf_verifier_log_attr_valid(log)) {
14078 			ret = -EINVAL;
14079 			goto err_unlock;
14080 		}
14081 	}
14082 
14083 	if (IS_ERR(btf_vmlinux)) {
14084 		/* Either gcc or pahole or kernel are broken. */
14085 		verbose(env, "in-kernel BTF is malformed\n");
14086 		ret = PTR_ERR(btf_vmlinux);
14087 		goto skip_full_check;
14088 	}
14089 
14090 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
14091 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
14092 		env->strict_alignment = true;
14093 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
14094 		env->strict_alignment = false;
14095 
14096 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
14097 	env->allow_uninit_stack = bpf_allow_uninit_stack();
14098 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
14099 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
14100 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
14101 	env->bpf_capable = bpf_capable();
14102 
14103 	if (is_priv)
14104 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
14105 
14106 	env->explored_states = kvcalloc(state_htab_size(env),
14107 				       sizeof(struct bpf_verifier_state_list *),
14108 				       GFP_USER);
14109 	ret = -ENOMEM;
14110 	if (!env->explored_states)
14111 		goto skip_full_check;
14112 
14113 	ret = add_subprog_and_kfunc(env);
14114 	if (ret < 0)
14115 		goto skip_full_check;
14116 
14117 	ret = check_subprogs(env);
14118 	if (ret < 0)
14119 		goto skip_full_check;
14120 
14121 	ret = check_btf_info(env, attr, uattr);
14122 	if (ret < 0)
14123 		goto skip_full_check;
14124 
14125 	ret = check_attach_btf_id(env);
14126 	if (ret)
14127 		goto skip_full_check;
14128 
14129 	ret = resolve_pseudo_ldimm64(env);
14130 	if (ret < 0)
14131 		goto skip_full_check;
14132 
14133 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
14134 		ret = bpf_prog_offload_verifier_prep(env->prog);
14135 		if (ret)
14136 			goto skip_full_check;
14137 	}
14138 
14139 	ret = check_cfg(env);
14140 	if (ret < 0)
14141 		goto skip_full_check;
14142 
14143 	ret = do_check_subprogs(env);
14144 	ret = ret ?: do_check_main(env);
14145 
14146 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
14147 		ret = bpf_prog_offload_finalize(env);
14148 
14149 skip_full_check:
14150 	kvfree(env->explored_states);
14151 
14152 	if (ret == 0)
14153 		ret = check_max_stack_depth(env);
14154 
14155 	/* instruction rewrites happen after this point */
14156 	if (is_priv) {
14157 		if (ret == 0)
14158 			opt_hard_wire_dead_code_branches(env);
14159 		if (ret == 0)
14160 			ret = opt_remove_dead_code(env);
14161 		if (ret == 0)
14162 			ret = opt_remove_nops(env);
14163 	} else {
14164 		if (ret == 0)
14165 			sanitize_dead_code(env);
14166 	}
14167 
14168 	if (ret == 0)
14169 		/* program is valid, convert *(u32*)(ctx + off) accesses */
14170 		ret = convert_ctx_accesses(env);
14171 
14172 	if (ret == 0)
14173 		ret = do_misc_fixups(env);
14174 
14175 	/* do 32-bit optimization after insn patching has done so those patched
14176 	 * insns could be handled correctly.
14177 	 */
14178 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
14179 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
14180 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
14181 								     : false;
14182 	}
14183 
14184 	if (ret == 0)
14185 		ret = fixup_call_args(env);
14186 
14187 	env->verification_time = ktime_get_ns() - start_time;
14188 	print_verification_stats(env);
14189 	env->prog->aux->verified_insns = env->insn_processed;
14190 
14191 	if (log->level && bpf_verifier_log_full(log))
14192 		ret = -ENOSPC;
14193 	if (log->level && !log->ubuf) {
14194 		ret = -EFAULT;
14195 		goto err_release_maps;
14196 	}
14197 
14198 	if (ret)
14199 		goto err_release_maps;
14200 
14201 	if (env->used_map_cnt) {
14202 		/* if program passed verifier, update used_maps in bpf_prog_info */
14203 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
14204 							  sizeof(env->used_maps[0]),
14205 							  GFP_KERNEL);
14206 
14207 		if (!env->prog->aux->used_maps) {
14208 			ret = -ENOMEM;
14209 			goto err_release_maps;
14210 		}
14211 
14212 		memcpy(env->prog->aux->used_maps, env->used_maps,
14213 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
14214 		env->prog->aux->used_map_cnt = env->used_map_cnt;
14215 	}
14216 	if (env->used_btf_cnt) {
14217 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
14218 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
14219 							  sizeof(env->used_btfs[0]),
14220 							  GFP_KERNEL);
14221 		if (!env->prog->aux->used_btfs) {
14222 			ret = -ENOMEM;
14223 			goto err_release_maps;
14224 		}
14225 
14226 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
14227 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
14228 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
14229 	}
14230 	if (env->used_map_cnt || env->used_btf_cnt) {
14231 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
14232 		 * bpf_ld_imm64 instructions
14233 		 */
14234 		convert_pseudo_ld_imm64(env);
14235 	}
14236 
14237 	adjust_btf_func(env);
14238 
14239 err_release_maps:
14240 	if (!env->prog->aux->used_maps)
14241 		/* if we didn't copy map pointers into bpf_prog_info, release
14242 		 * them now. Otherwise free_used_maps() will release them.
14243 		 */
14244 		release_maps(env);
14245 	if (!env->prog->aux->used_btfs)
14246 		release_btfs(env);
14247 
14248 	/* extension progs temporarily inherit the attach_type of their targets
14249 	   for verification purposes, so set it back to zero before returning
14250 	 */
14251 	if (env->prog->type == BPF_PROG_TYPE_EXT)
14252 		env->prog->expected_attach_type = 0;
14253 
14254 	*prog = env->prog;
14255 err_unlock:
14256 	if (!is_priv)
14257 		mutex_unlock(&bpf_verifier_lock);
14258 	vfree(env->insn_aux_data);
14259 err_free_env:
14260 	kfree(env);
14261 	return ret;
14262 }
14263