1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of version 2 of the GNU General Public 7 * License as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 */ 14 #include <uapi/linux/btf.h> 15 #include <linux/kernel.h> 16 #include <linux/types.h> 17 #include <linux/slab.h> 18 #include <linux/bpf.h> 19 #include <linux/btf.h> 20 #include <linux/bpf_verifier.h> 21 #include <linux/filter.h> 22 #include <net/netlink.h> 23 #include <linux/file.h> 24 #include <linux/vmalloc.h> 25 #include <linux/stringify.h> 26 #include <linux/bsearch.h> 27 #include <linux/sort.h> 28 #include <linux/perf_event.h> 29 #include <linux/ctype.h> 30 31 #include "disasm.h" 32 33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 34 #define BPF_PROG_TYPE(_id, _name) \ 35 [_id] = & _name ## _verifier_ops, 36 #define BPF_MAP_TYPE(_id, _ops) 37 #include <linux/bpf_types.h> 38 #undef BPF_PROG_TYPE 39 #undef BPF_MAP_TYPE 40 }; 41 42 /* bpf_check() is a static code analyzer that walks eBPF program 43 * instruction by instruction and updates register/stack state. 44 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 45 * 46 * The first pass is depth-first-search to check that the program is a DAG. 47 * It rejects the following programs: 48 * - larger than BPF_MAXINSNS insns 49 * - if loop is present (detected via back-edge) 50 * - unreachable insns exist (shouldn't be a forest. program = one function) 51 * - out of bounds or malformed jumps 52 * The second pass is all possible path descent from the 1st insn. 53 * Since it's analyzing all pathes through the program, the length of the 54 * analysis is limited to 64k insn, which may be hit even if total number of 55 * insn is less then 4K, but there are too many branches that change stack/regs. 56 * Number of 'branches to be analyzed' is limited to 1k 57 * 58 * On entry to each instruction, each register has a type, and the instruction 59 * changes the types of the registers depending on instruction semantics. 60 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 61 * copied to R1. 62 * 63 * All registers are 64-bit. 64 * R0 - return register 65 * R1-R5 argument passing registers 66 * R6-R9 callee saved registers 67 * R10 - frame pointer read-only 68 * 69 * At the start of BPF program the register R1 contains a pointer to bpf_context 70 * and has type PTR_TO_CTX. 71 * 72 * Verifier tracks arithmetic operations on pointers in case: 73 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 74 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 75 * 1st insn copies R10 (which has FRAME_PTR) type into R1 76 * and 2nd arithmetic instruction is pattern matched to recognize 77 * that it wants to construct a pointer to some element within stack. 78 * So after 2nd insn, the register R1 has type PTR_TO_STACK 79 * (and -20 constant is saved for further stack bounds checking). 80 * Meaning that this reg is a pointer to stack plus known immediate constant. 81 * 82 * Most of the time the registers have SCALAR_VALUE type, which 83 * means the register has some value, but it's not a valid pointer. 84 * (like pointer plus pointer becomes SCALAR_VALUE type) 85 * 86 * When verifier sees load or store instructions the type of base register 87 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 88 * four pointer types recognized by check_mem_access() function. 89 * 90 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 91 * and the range of [ptr, ptr + map's value_size) is accessible. 92 * 93 * registers used to pass values to function calls are checked against 94 * function argument constraints. 95 * 96 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 97 * It means that the register type passed to this function must be 98 * PTR_TO_STACK and it will be used inside the function as 99 * 'pointer to map element key' 100 * 101 * For example the argument constraints for bpf_map_lookup_elem(): 102 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 103 * .arg1_type = ARG_CONST_MAP_PTR, 104 * .arg2_type = ARG_PTR_TO_MAP_KEY, 105 * 106 * ret_type says that this function returns 'pointer to map elem value or null' 107 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 108 * 2nd argument should be a pointer to stack, which will be used inside 109 * the helper function as a pointer to map element key. 110 * 111 * On the kernel side the helper function looks like: 112 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 113 * { 114 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 115 * void *key = (void *) (unsigned long) r2; 116 * void *value; 117 * 118 * here kernel can access 'key' and 'map' pointers safely, knowing that 119 * [key, key + map->key_size) bytes are valid and were initialized on 120 * the stack of eBPF program. 121 * } 122 * 123 * Corresponding eBPF program may look like: 124 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 125 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 126 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 127 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 128 * here verifier looks at prototype of map_lookup_elem() and sees: 129 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 130 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 131 * 132 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 133 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 134 * and were initialized prior to this call. 135 * If it's ok, then verifier allows this BPF_CALL insn and looks at 136 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 137 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 138 * returns ether pointer to map value or NULL. 139 * 140 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 141 * insn, the register holding that pointer in the true branch changes state to 142 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 143 * branch. See check_cond_jmp_op(). 144 * 145 * After the call R0 is set to return type of the function and registers R1-R5 146 * are set to NOT_INIT to indicate that they are no longer readable. 147 * 148 * The following reference types represent a potential reference to a kernel 149 * resource which, after first being allocated, must be checked and freed by 150 * the BPF program: 151 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 152 * 153 * When the verifier sees a helper call return a reference type, it allocates a 154 * pointer id for the reference and stores it in the current function state. 155 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 156 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 157 * passes through a NULL-check conditional. For the branch wherein the state is 158 * changed to CONST_IMM, the verifier releases the reference. 159 * 160 * For each helper function that allocates a reference, such as 161 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 162 * bpf_sk_release(). When a reference type passes into the release function, 163 * the verifier also releases the reference. If any unchecked or unreleased 164 * reference remains at the end of the program, the verifier rejects it. 165 */ 166 167 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 168 struct bpf_verifier_stack_elem { 169 /* verifer state is 'st' 170 * before processing instruction 'insn_idx' 171 * and after processing instruction 'prev_insn_idx' 172 */ 173 struct bpf_verifier_state st; 174 int insn_idx; 175 int prev_insn_idx; 176 struct bpf_verifier_stack_elem *next; 177 }; 178 179 #define BPF_COMPLEXITY_LIMIT_INSNS 131072 180 #define BPF_COMPLEXITY_LIMIT_STACK 1024 181 #define BPF_COMPLEXITY_LIMIT_STATES 64 182 183 #define BPF_MAP_PTR_UNPRIV 1UL 184 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 185 POISON_POINTER_DELTA)) 186 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 187 188 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 189 { 190 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON; 191 } 192 193 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 194 { 195 return aux->map_state & BPF_MAP_PTR_UNPRIV; 196 } 197 198 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 199 const struct bpf_map *map, bool unpriv) 200 { 201 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 202 unpriv |= bpf_map_ptr_unpriv(aux); 203 aux->map_state = (unsigned long)map | 204 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 205 } 206 207 struct bpf_call_arg_meta { 208 struct bpf_map *map_ptr; 209 bool raw_mode; 210 bool pkt_access; 211 int regno; 212 int access_size; 213 s64 msize_smax_value; 214 u64 msize_umax_value; 215 int ptr_id; 216 int func_id; 217 }; 218 219 static DEFINE_MUTEX(bpf_verifier_lock); 220 221 static const struct bpf_line_info * 222 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 223 { 224 const struct bpf_line_info *linfo; 225 const struct bpf_prog *prog; 226 u32 i, nr_linfo; 227 228 prog = env->prog; 229 nr_linfo = prog->aux->nr_linfo; 230 231 if (!nr_linfo || insn_off >= prog->len) 232 return NULL; 233 234 linfo = prog->aux->linfo; 235 for (i = 1; i < nr_linfo; i++) 236 if (insn_off < linfo[i].insn_off) 237 break; 238 239 return &linfo[i - 1]; 240 } 241 242 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 243 va_list args) 244 { 245 unsigned int n; 246 247 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 248 249 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 250 "verifier log line truncated - local buffer too short\n"); 251 252 n = min(log->len_total - log->len_used - 1, n); 253 log->kbuf[n] = '\0'; 254 255 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 256 log->len_used += n; 257 else 258 log->ubuf = NULL; 259 } 260 261 /* log_level controls verbosity level of eBPF verifier. 262 * bpf_verifier_log_write() is used to dump the verification trace to the log, 263 * so the user can figure out what's wrong with the program 264 */ 265 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 266 const char *fmt, ...) 267 { 268 va_list args; 269 270 if (!bpf_verifier_log_needed(&env->log)) 271 return; 272 273 va_start(args, fmt); 274 bpf_verifier_vlog(&env->log, fmt, args); 275 va_end(args); 276 } 277 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 278 279 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 280 { 281 struct bpf_verifier_env *env = private_data; 282 va_list args; 283 284 if (!bpf_verifier_log_needed(&env->log)) 285 return; 286 287 va_start(args, fmt); 288 bpf_verifier_vlog(&env->log, fmt, args); 289 va_end(args); 290 } 291 292 static const char *ltrim(const char *s) 293 { 294 while (isspace(*s)) 295 s++; 296 297 return s; 298 } 299 300 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 301 u32 insn_off, 302 const char *prefix_fmt, ...) 303 { 304 const struct bpf_line_info *linfo; 305 306 if (!bpf_verifier_log_needed(&env->log)) 307 return; 308 309 linfo = find_linfo(env, insn_off); 310 if (!linfo || linfo == env->prev_linfo) 311 return; 312 313 if (prefix_fmt) { 314 va_list args; 315 316 va_start(args, prefix_fmt); 317 bpf_verifier_vlog(&env->log, prefix_fmt, args); 318 va_end(args); 319 } 320 321 verbose(env, "%s\n", 322 ltrim(btf_name_by_offset(env->prog->aux->btf, 323 linfo->line_off))); 324 325 env->prev_linfo = linfo; 326 } 327 328 static bool type_is_pkt_pointer(enum bpf_reg_type type) 329 { 330 return type == PTR_TO_PACKET || 331 type == PTR_TO_PACKET_META; 332 } 333 334 static bool type_is_sk_pointer(enum bpf_reg_type type) 335 { 336 return type == PTR_TO_SOCKET || 337 type == PTR_TO_SOCK_COMMON || 338 type == PTR_TO_TCP_SOCK; 339 } 340 341 static bool reg_type_may_be_null(enum bpf_reg_type type) 342 { 343 return type == PTR_TO_MAP_VALUE_OR_NULL || 344 type == PTR_TO_SOCKET_OR_NULL || 345 type == PTR_TO_SOCK_COMMON_OR_NULL || 346 type == PTR_TO_TCP_SOCK_OR_NULL; 347 } 348 349 static bool type_is_refcounted(enum bpf_reg_type type) 350 { 351 return type == PTR_TO_SOCKET; 352 } 353 354 static bool type_is_refcounted_or_null(enum bpf_reg_type type) 355 { 356 return type == PTR_TO_SOCKET || type == PTR_TO_SOCKET_OR_NULL; 357 } 358 359 static bool reg_is_refcounted(const struct bpf_reg_state *reg) 360 { 361 return type_is_refcounted(reg->type); 362 } 363 364 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 365 { 366 return reg->type == PTR_TO_MAP_VALUE && 367 map_value_has_spin_lock(reg->map_ptr); 368 } 369 370 static bool reg_is_refcounted_or_null(const struct bpf_reg_state *reg) 371 { 372 return type_is_refcounted_or_null(reg->type); 373 } 374 375 static bool arg_type_is_refcounted(enum bpf_arg_type type) 376 { 377 return type == ARG_PTR_TO_SOCKET; 378 } 379 380 /* Determine whether the function releases some resources allocated by another 381 * function call. The first reference type argument will be assumed to be 382 * released by release_reference(). 383 */ 384 static bool is_release_function(enum bpf_func_id func_id) 385 { 386 return func_id == BPF_FUNC_sk_release; 387 } 388 389 static bool is_acquire_function(enum bpf_func_id func_id) 390 { 391 return func_id == BPF_FUNC_sk_lookup_tcp || 392 func_id == BPF_FUNC_sk_lookup_udp; 393 } 394 395 /* string representation of 'enum bpf_reg_type' */ 396 static const char * const reg_type_str[] = { 397 [NOT_INIT] = "?", 398 [SCALAR_VALUE] = "inv", 399 [PTR_TO_CTX] = "ctx", 400 [CONST_PTR_TO_MAP] = "map_ptr", 401 [PTR_TO_MAP_VALUE] = "map_value", 402 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 403 [PTR_TO_STACK] = "fp", 404 [PTR_TO_PACKET] = "pkt", 405 [PTR_TO_PACKET_META] = "pkt_meta", 406 [PTR_TO_PACKET_END] = "pkt_end", 407 [PTR_TO_FLOW_KEYS] = "flow_keys", 408 [PTR_TO_SOCKET] = "sock", 409 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 410 [PTR_TO_SOCK_COMMON] = "sock_common", 411 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 412 [PTR_TO_TCP_SOCK] = "tcp_sock", 413 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 414 }; 415 416 static char slot_type_char[] = { 417 [STACK_INVALID] = '?', 418 [STACK_SPILL] = 'r', 419 [STACK_MISC] = 'm', 420 [STACK_ZERO] = '0', 421 }; 422 423 static void print_liveness(struct bpf_verifier_env *env, 424 enum bpf_reg_liveness live) 425 { 426 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 427 verbose(env, "_"); 428 if (live & REG_LIVE_READ) 429 verbose(env, "r"); 430 if (live & REG_LIVE_WRITTEN) 431 verbose(env, "w"); 432 if (live & REG_LIVE_DONE) 433 verbose(env, "D"); 434 } 435 436 static struct bpf_func_state *func(struct bpf_verifier_env *env, 437 const struct bpf_reg_state *reg) 438 { 439 struct bpf_verifier_state *cur = env->cur_state; 440 441 return cur->frame[reg->frameno]; 442 } 443 444 static void print_verifier_state(struct bpf_verifier_env *env, 445 const struct bpf_func_state *state) 446 { 447 const struct bpf_reg_state *reg; 448 enum bpf_reg_type t; 449 int i; 450 451 if (state->frameno) 452 verbose(env, " frame%d:", state->frameno); 453 for (i = 0; i < MAX_BPF_REG; i++) { 454 reg = &state->regs[i]; 455 t = reg->type; 456 if (t == NOT_INIT) 457 continue; 458 verbose(env, " R%d", i); 459 print_liveness(env, reg->live); 460 verbose(env, "=%s", reg_type_str[t]); 461 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 462 tnum_is_const(reg->var_off)) { 463 /* reg->off should be 0 for SCALAR_VALUE */ 464 verbose(env, "%lld", reg->var_off.value + reg->off); 465 if (t == PTR_TO_STACK) 466 verbose(env, ",call_%d", func(env, reg)->callsite); 467 } else { 468 verbose(env, "(id=%d", reg->id); 469 if (t != SCALAR_VALUE) 470 verbose(env, ",off=%d", reg->off); 471 if (type_is_pkt_pointer(t)) 472 verbose(env, ",r=%d", reg->range); 473 else if (t == CONST_PTR_TO_MAP || 474 t == PTR_TO_MAP_VALUE || 475 t == PTR_TO_MAP_VALUE_OR_NULL) 476 verbose(env, ",ks=%d,vs=%d", 477 reg->map_ptr->key_size, 478 reg->map_ptr->value_size); 479 if (tnum_is_const(reg->var_off)) { 480 /* Typically an immediate SCALAR_VALUE, but 481 * could be a pointer whose offset is too big 482 * for reg->off 483 */ 484 verbose(env, ",imm=%llx", reg->var_off.value); 485 } else { 486 if (reg->smin_value != reg->umin_value && 487 reg->smin_value != S64_MIN) 488 verbose(env, ",smin_value=%lld", 489 (long long)reg->smin_value); 490 if (reg->smax_value != reg->umax_value && 491 reg->smax_value != S64_MAX) 492 verbose(env, ",smax_value=%lld", 493 (long long)reg->smax_value); 494 if (reg->umin_value != 0) 495 verbose(env, ",umin_value=%llu", 496 (unsigned long long)reg->umin_value); 497 if (reg->umax_value != U64_MAX) 498 verbose(env, ",umax_value=%llu", 499 (unsigned long long)reg->umax_value); 500 if (!tnum_is_unknown(reg->var_off)) { 501 char tn_buf[48]; 502 503 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 504 verbose(env, ",var_off=%s", tn_buf); 505 } 506 } 507 verbose(env, ")"); 508 } 509 } 510 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 511 char types_buf[BPF_REG_SIZE + 1]; 512 bool valid = false; 513 int j; 514 515 for (j = 0; j < BPF_REG_SIZE; j++) { 516 if (state->stack[i].slot_type[j] != STACK_INVALID) 517 valid = true; 518 types_buf[j] = slot_type_char[ 519 state->stack[i].slot_type[j]]; 520 } 521 types_buf[BPF_REG_SIZE] = 0; 522 if (!valid) 523 continue; 524 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 525 print_liveness(env, state->stack[i].spilled_ptr.live); 526 if (state->stack[i].slot_type[0] == STACK_SPILL) 527 verbose(env, "=%s", 528 reg_type_str[state->stack[i].spilled_ptr.type]); 529 else 530 verbose(env, "=%s", types_buf); 531 } 532 if (state->acquired_refs && state->refs[0].id) { 533 verbose(env, " refs=%d", state->refs[0].id); 534 for (i = 1; i < state->acquired_refs; i++) 535 if (state->refs[i].id) 536 verbose(env, ",%d", state->refs[i].id); 537 } 538 verbose(env, "\n"); 539 } 540 541 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 542 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 543 const struct bpf_func_state *src) \ 544 { \ 545 if (!src->FIELD) \ 546 return 0; \ 547 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 548 /* internal bug, make state invalid to reject the program */ \ 549 memset(dst, 0, sizeof(*dst)); \ 550 return -EFAULT; \ 551 } \ 552 memcpy(dst->FIELD, src->FIELD, \ 553 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 554 return 0; \ 555 } 556 /* copy_reference_state() */ 557 COPY_STATE_FN(reference, acquired_refs, refs, 1) 558 /* copy_stack_state() */ 559 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 560 #undef COPY_STATE_FN 561 562 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 563 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 564 bool copy_old) \ 565 { \ 566 u32 old_size = state->COUNT; \ 567 struct bpf_##NAME##_state *new_##FIELD; \ 568 int slot = size / SIZE; \ 569 \ 570 if (size <= old_size || !size) { \ 571 if (copy_old) \ 572 return 0; \ 573 state->COUNT = slot * SIZE; \ 574 if (!size && old_size) { \ 575 kfree(state->FIELD); \ 576 state->FIELD = NULL; \ 577 } \ 578 return 0; \ 579 } \ 580 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 581 GFP_KERNEL); \ 582 if (!new_##FIELD) \ 583 return -ENOMEM; \ 584 if (copy_old) { \ 585 if (state->FIELD) \ 586 memcpy(new_##FIELD, state->FIELD, \ 587 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 588 memset(new_##FIELD + old_size / SIZE, 0, \ 589 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 590 } \ 591 state->COUNT = slot * SIZE; \ 592 kfree(state->FIELD); \ 593 state->FIELD = new_##FIELD; \ 594 return 0; \ 595 } 596 /* realloc_reference_state() */ 597 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 598 /* realloc_stack_state() */ 599 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 600 #undef REALLOC_STATE_FN 601 602 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 603 * make it consume minimal amount of memory. check_stack_write() access from 604 * the program calls into realloc_func_state() to grow the stack size. 605 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 606 * which realloc_stack_state() copies over. It points to previous 607 * bpf_verifier_state which is never reallocated. 608 */ 609 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 610 int refs_size, bool copy_old) 611 { 612 int err = realloc_reference_state(state, refs_size, copy_old); 613 if (err) 614 return err; 615 return realloc_stack_state(state, stack_size, copy_old); 616 } 617 618 /* Acquire a pointer id from the env and update the state->refs to include 619 * this new pointer reference. 620 * On success, returns a valid pointer id to associate with the register 621 * On failure, returns a negative errno. 622 */ 623 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 624 { 625 struct bpf_func_state *state = cur_func(env); 626 int new_ofs = state->acquired_refs; 627 int id, err; 628 629 err = realloc_reference_state(state, state->acquired_refs + 1, true); 630 if (err) 631 return err; 632 id = ++env->id_gen; 633 state->refs[new_ofs].id = id; 634 state->refs[new_ofs].insn_idx = insn_idx; 635 636 return id; 637 } 638 639 /* release function corresponding to acquire_reference_state(). Idempotent. */ 640 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 641 { 642 int i, last_idx; 643 644 last_idx = state->acquired_refs - 1; 645 for (i = 0; i < state->acquired_refs; i++) { 646 if (state->refs[i].id == ptr_id) { 647 if (last_idx && i != last_idx) 648 memcpy(&state->refs[i], &state->refs[last_idx], 649 sizeof(*state->refs)); 650 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 651 state->acquired_refs--; 652 return 0; 653 } 654 } 655 return -EINVAL; 656 } 657 658 static int transfer_reference_state(struct bpf_func_state *dst, 659 struct bpf_func_state *src) 660 { 661 int err = realloc_reference_state(dst, src->acquired_refs, false); 662 if (err) 663 return err; 664 err = copy_reference_state(dst, src); 665 if (err) 666 return err; 667 return 0; 668 } 669 670 static void free_func_state(struct bpf_func_state *state) 671 { 672 if (!state) 673 return; 674 kfree(state->refs); 675 kfree(state->stack); 676 kfree(state); 677 } 678 679 static void free_verifier_state(struct bpf_verifier_state *state, 680 bool free_self) 681 { 682 int i; 683 684 for (i = 0; i <= state->curframe; i++) { 685 free_func_state(state->frame[i]); 686 state->frame[i] = NULL; 687 } 688 if (free_self) 689 kfree(state); 690 } 691 692 /* copy verifier state from src to dst growing dst stack space 693 * when necessary to accommodate larger src stack 694 */ 695 static int copy_func_state(struct bpf_func_state *dst, 696 const struct bpf_func_state *src) 697 { 698 int err; 699 700 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 701 false); 702 if (err) 703 return err; 704 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 705 err = copy_reference_state(dst, src); 706 if (err) 707 return err; 708 return copy_stack_state(dst, src); 709 } 710 711 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 712 const struct bpf_verifier_state *src) 713 { 714 struct bpf_func_state *dst; 715 int i, err; 716 717 /* if dst has more stack frames then src frame, free them */ 718 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 719 free_func_state(dst_state->frame[i]); 720 dst_state->frame[i] = NULL; 721 } 722 dst_state->speculative = src->speculative; 723 dst_state->curframe = src->curframe; 724 dst_state->active_spin_lock = src->active_spin_lock; 725 for (i = 0; i <= src->curframe; i++) { 726 dst = dst_state->frame[i]; 727 if (!dst) { 728 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 729 if (!dst) 730 return -ENOMEM; 731 dst_state->frame[i] = dst; 732 } 733 err = copy_func_state(dst, src->frame[i]); 734 if (err) 735 return err; 736 } 737 return 0; 738 } 739 740 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 741 int *insn_idx) 742 { 743 struct bpf_verifier_state *cur = env->cur_state; 744 struct bpf_verifier_stack_elem *elem, *head = env->head; 745 int err; 746 747 if (env->head == NULL) 748 return -ENOENT; 749 750 if (cur) { 751 err = copy_verifier_state(cur, &head->st); 752 if (err) 753 return err; 754 } 755 if (insn_idx) 756 *insn_idx = head->insn_idx; 757 if (prev_insn_idx) 758 *prev_insn_idx = head->prev_insn_idx; 759 elem = head->next; 760 free_verifier_state(&head->st, false); 761 kfree(head); 762 env->head = elem; 763 env->stack_size--; 764 return 0; 765 } 766 767 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 768 int insn_idx, int prev_insn_idx, 769 bool speculative) 770 { 771 struct bpf_verifier_state *cur = env->cur_state; 772 struct bpf_verifier_stack_elem *elem; 773 int err; 774 775 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 776 if (!elem) 777 goto err; 778 779 elem->insn_idx = insn_idx; 780 elem->prev_insn_idx = prev_insn_idx; 781 elem->next = env->head; 782 env->head = elem; 783 env->stack_size++; 784 err = copy_verifier_state(&elem->st, cur); 785 if (err) 786 goto err; 787 elem->st.speculative |= speculative; 788 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 789 verbose(env, "BPF program is too complex\n"); 790 goto err; 791 } 792 return &elem->st; 793 err: 794 free_verifier_state(env->cur_state, true); 795 env->cur_state = NULL; 796 /* pop all elements and return */ 797 while (!pop_stack(env, NULL, NULL)); 798 return NULL; 799 } 800 801 #define CALLER_SAVED_REGS 6 802 static const int caller_saved[CALLER_SAVED_REGS] = { 803 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 804 }; 805 806 static void __mark_reg_not_init(struct bpf_reg_state *reg); 807 808 /* Mark the unknown part of a register (variable offset or scalar value) as 809 * known to have the value @imm. 810 */ 811 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 812 { 813 /* Clear id, off, and union(map_ptr, range) */ 814 memset(((u8 *)reg) + sizeof(reg->type), 0, 815 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 816 reg->var_off = tnum_const(imm); 817 reg->smin_value = (s64)imm; 818 reg->smax_value = (s64)imm; 819 reg->umin_value = imm; 820 reg->umax_value = imm; 821 } 822 823 /* Mark the 'variable offset' part of a register as zero. This should be 824 * used only on registers holding a pointer type. 825 */ 826 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 827 { 828 __mark_reg_known(reg, 0); 829 } 830 831 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 832 { 833 __mark_reg_known(reg, 0); 834 reg->type = SCALAR_VALUE; 835 } 836 837 static void mark_reg_known_zero(struct bpf_verifier_env *env, 838 struct bpf_reg_state *regs, u32 regno) 839 { 840 if (WARN_ON(regno >= MAX_BPF_REG)) { 841 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 842 /* Something bad happened, let's kill all regs */ 843 for (regno = 0; regno < MAX_BPF_REG; regno++) 844 __mark_reg_not_init(regs + regno); 845 return; 846 } 847 __mark_reg_known_zero(regs + regno); 848 } 849 850 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 851 { 852 return type_is_pkt_pointer(reg->type); 853 } 854 855 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 856 { 857 return reg_is_pkt_pointer(reg) || 858 reg->type == PTR_TO_PACKET_END; 859 } 860 861 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 862 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 863 enum bpf_reg_type which) 864 { 865 /* The register can already have a range from prior markings. 866 * This is fine as long as it hasn't been advanced from its 867 * origin. 868 */ 869 return reg->type == which && 870 reg->id == 0 && 871 reg->off == 0 && 872 tnum_equals_const(reg->var_off, 0); 873 } 874 875 /* Attempts to improve min/max values based on var_off information */ 876 static void __update_reg_bounds(struct bpf_reg_state *reg) 877 { 878 /* min signed is max(sign bit) | min(other bits) */ 879 reg->smin_value = max_t(s64, reg->smin_value, 880 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 881 /* max signed is min(sign bit) | max(other bits) */ 882 reg->smax_value = min_t(s64, reg->smax_value, 883 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 884 reg->umin_value = max(reg->umin_value, reg->var_off.value); 885 reg->umax_value = min(reg->umax_value, 886 reg->var_off.value | reg->var_off.mask); 887 } 888 889 /* Uses signed min/max values to inform unsigned, and vice-versa */ 890 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 891 { 892 /* Learn sign from signed bounds. 893 * If we cannot cross the sign boundary, then signed and unsigned bounds 894 * are the same, so combine. This works even in the negative case, e.g. 895 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 896 */ 897 if (reg->smin_value >= 0 || reg->smax_value < 0) { 898 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 899 reg->umin_value); 900 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 901 reg->umax_value); 902 return; 903 } 904 /* Learn sign from unsigned bounds. Signed bounds cross the sign 905 * boundary, so we must be careful. 906 */ 907 if ((s64)reg->umax_value >= 0) { 908 /* Positive. We can't learn anything from the smin, but smax 909 * is positive, hence safe. 910 */ 911 reg->smin_value = reg->umin_value; 912 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 913 reg->umax_value); 914 } else if ((s64)reg->umin_value < 0) { 915 /* Negative. We can't learn anything from the smax, but smin 916 * is negative, hence safe. 917 */ 918 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 919 reg->umin_value); 920 reg->smax_value = reg->umax_value; 921 } 922 } 923 924 /* Attempts to improve var_off based on unsigned min/max information */ 925 static void __reg_bound_offset(struct bpf_reg_state *reg) 926 { 927 reg->var_off = tnum_intersect(reg->var_off, 928 tnum_range(reg->umin_value, 929 reg->umax_value)); 930 } 931 932 /* Reset the min/max bounds of a register */ 933 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 934 { 935 reg->smin_value = S64_MIN; 936 reg->smax_value = S64_MAX; 937 reg->umin_value = 0; 938 reg->umax_value = U64_MAX; 939 } 940 941 /* Mark a register as having a completely unknown (scalar) value. */ 942 static void __mark_reg_unknown(struct bpf_reg_state *reg) 943 { 944 /* 945 * Clear type, id, off, and union(map_ptr, range) and 946 * padding between 'type' and union 947 */ 948 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 949 reg->type = SCALAR_VALUE; 950 reg->var_off = tnum_unknown; 951 reg->frameno = 0; 952 __mark_reg_unbounded(reg); 953 } 954 955 static void mark_reg_unknown(struct bpf_verifier_env *env, 956 struct bpf_reg_state *regs, u32 regno) 957 { 958 if (WARN_ON(regno >= MAX_BPF_REG)) { 959 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 960 /* Something bad happened, let's kill all regs except FP */ 961 for (regno = 0; regno < BPF_REG_FP; regno++) 962 __mark_reg_not_init(regs + regno); 963 return; 964 } 965 __mark_reg_unknown(regs + regno); 966 } 967 968 static void __mark_reg_not_init(struct bpf_reg_state *reg) 969 { 970 __mark_reg_unknown(reg); 971 reg->type = NOT_INIT; 972 } 973 974 static void mark_reg_not_init(struct bpf_verifier_env *env, 975 struct bpf_reg_state *regs, u32 regno) 976 { 977 if (WARN_ON(regno >= MAX_BPF_REG)) { 978 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 979 /* Something bad happened, let's kill all regs except FP */ 980 for (regno = 0; regno < BPF_REG_FP; regno++) 981 __mark_reg_not_init(regs + regno); 982 return; 983 } 984 __mark_reg_not_init(regs + regno); 985 } 986 987 static void init_reg_state(struct bpf_verifier_env *env, 988 struct bpf_func_state *state) 989 { 990 struct bpf_reg_state *regs = state->regs; 991 int i; 992 993 for (i = 0; i < MAX_BPF_REG; i++) { 994 mark_reg_not_init(env, regs, i); 995 regs[i].live = REG_LIVE_NONE; 996 regs[i].parent = NULL; 997 } 998 999 /* frame pointer */ 1000 regs[BPF_REG_FP].type = PTR_TO_STACK; 1001 mark_reg_known_zero(env, regs, BPF_REG_FP); 1002 regs[BPF_REG_FP].frameno = state->frameno; 1003 1004 /* 1st arg to a function */ 1005 regs[BPF_REG_1].type = PTR_TO_CTX; 1006 mark_reg_known_zero(env, regs, BPF_REG_1); 1007 } 1008 1009 #define BPF_MAIN_FUNC (-1) 1010 static void init_func_state(struct bpf_verifier_env *env, 1011 struct bpf_func_state *state, 1012 int callsite, int frameno, int subprogno) 1013 { 1014 state->callsite = callsite; 1015 state->frameno = frameno; 1016 state->subprogno = subprogno; 1017 init_reg_state(env, state); 1018 } 1019 1020 enum reg_arg_type { 1021 SRC_OP, /* register is used as source operand */ 1022 DST_OP, /* register is used as destination operand */ 1023 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1024 }; 1025 1026 static int cmp_subprogs(const void *a, const void *b) 1027 { 1028 return ((struct bpf_subprog_info *)a)->start - 1029 ((struct bpf_subprog_info *)b)->start; 1030 } 1031 1032 static int find_subprog(struct bpf_verifier_env *env, int off) 1033 { 1034 struct bpf_subprog_info *p; 1035 1036 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1037 sizeof(env->subprog_info[0]), cmp_subprogs); 1038 if (!p) 1039 return -ENOENT; 1040 return p - env->subprog_info; 1041 1042 } 1043 1044 static int add_subprog(struct bpf_verifier_env *env, int off) 1045 { 1046 int insn_cnt = env->prog->len; 1047 int ret; 1048 1049 if (off >= insn_cnt || off < 0) { 1050 verbose(env, "call to invalid destination\n"); 1051 return -EINVAL; 1052 } 1053 ret = find_subprog(env, off); 1054 if (ret >= 0) 1055 return 0; 1056 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1057 verbose(env, "too many subprograms\n"); 1058 return -E2BIG; 1059 } 1060 env->subprog_info[env->subprog_cnt++].start = off; 1061 sort(env->subprog_info, env->subprog_cnt, 1062 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1063 return 0; 1064 } 1065 1066 static int check_subprogs(struct bpf_verifier_env *env) 1067 { 1068 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1069 struct bpf_subprog_info *subprog = env->subprog_info; 1070 struct bpf_insn *insn = env->prog->insnsi; 1071 int insn_cnt = env->prog->len; 1072 1073 /* Add entry function. */ 1074 ret = add_subprog(env, 0); 1075 if (ret < 0) 1076 return ret; 1077 1078 /* determine subprog starts. The end is one before the next starts */ 1079 for (i = 0; i < insn_cnt; i++) { 1080 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1081 continue; 1082 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1083 continue; 1084 if (!env->allow_ptr_leaks) { 1085 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1086 return -EPERM; 1087 } 1088 ret = add_subprog(env, i + insn[i].imm + 1); 1089 if (ret < 0) 1090 return ret; 1091 } 1092 1093 /* Add a fake 'exit' subprog which could simplify subprog iteration 1094 * logic. 'subprog_cnt' should not be increased. 1095 */ 1096 subprog[env->subprog_cnt].start = insn_cnt; 1097 1098 if (env->log.level > 1) 1099 for (i = 0; i < env->subprog_cnt; i++) 1100 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1101 1102 /* now check that all jumps are within the same subprog */ 1103 subprog_start = subprog[cur_subprog].start; 1104 subprog_end = subprog[cur_subprog + 1].start; 1105 for (i = 0; i < insn_cnt; i++) { 1106 u8 code = insn[i].code; 1107 1108 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1109 goto next; 1110 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1111 goto next; 1112 off = i + insn[i].off + 1; 1113 if (off < subprog_start || off >= subprog_end) { 1114 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1115 return -EINVAL; 1116 } 1117 next: 1118 if (i == subprog_end - 1) { 1119 /* to avoid fall-through from one subprog into another 1120 * the last insn of the subprog should be either exit 1121 * or unconditional jump back 1122 */ 1123 if (code != (BPF_JMP | BPF_EXIT) && 1124 code != (BPF_JMP | BPF_JA)) { 1125 verbose(env, "last insn is not an exit or jmp\n"); 1126 return -EINVAL; 1127 } 1128 subprog_start = subprog_end; 1129 cur_subprog++; 1130 if (cur_subprog < env->subprog_cnt) 1131 subprog_end = subprog[cur_subprog + 1].start; 1132 } 1133 } 1134 return 0; 1135 } 1136 1137 /* Parentage chain of this register (or stack slot) should take care of all 1138 * issues like callee-saved registers, stack slot allocation time, etc. 1139 */ 1140 static int mark_reg_read(struct bpf_verifier_env *env, 1141 const struct bpf_reg_state *state, 1142 struct bpf_reg_state *parent) 1143 { 1144 bool writes = parent == state->parent; /* Observe write marks */ 1145 1146 while (parent) { 1147 /* if read wasn't screened by an earlier write ... */ 1148 if (writes && state->live & REG_LIVE_WRITTEN) 1149 break; 1150 if (parent->live & REG_LIVE_DONE) { 1151 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1152 reg_type_str[parent->type], 1153 parent->var_off.value, parent->off); 1154 return -EFAULT; 1155 } 1156 /* ... then we depend on parent's value */ 1157 parent->live |= REG_LIVE_READ; 1158 state = parent; 1159 parent = state->parent; 1160 writes = true; 1161 } 1162 return 0; 1163 } 1164 1165 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1166 enum reg_arg_type t) 1167 { 1168 struct bpf_verifier_state *vstate = env->cur_state; 1169 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1170 struct bpf_reg_state *regs = state->regs; 1171 1172 if (regno >= MAX_BPF_REG) { 1173 verbose(env, "R%d is invalid\n", regno); 1174 return -EINVAL; 1175 } 1176 1177 if (t == SRC_OP) { 1178 /* check whether register used as source operand can be read */ 1179 if (regs[regno].type == NOT_INIT) { 1180 verbose(env, "R%d !read_ok\n", regno); 1181 return -EACCES; 1182 } 1183 /* We don't need to worry about FP liveness because it's read-only */ 1184 if (regno != BPF_REG_FP) 1185 return mark_reg_read(env, ®s[regno], 1186 regs[regno].parent); 1187 } else { 1188 /* check whether register used as dest operand can be written to */ 1189 if (regno == BPF_REG_FP) { 1190 verbose(env, "frame pointer is read only\n"); 1191 return -EACCES; 1192 } 1193 regs[regno].live |= REG_LIVE_WRITTEN; 1194 if (t == DST_OP) 1195 mark_reg_unknown(env, regs, regno); 1196 } 1197 return 0; 1198 } 1199 1200 static bool is_spillable_regtype(enum bpf_reg_type type) 1201 { 1202 switch (type) { 1203 case PTR_TO_MAP_VALUE: 1204 case PTR_TO_MAP_VALUE_OR_NULL: 1205 case PTR_TO_STACK: 1206 case PTR_TO_CTX: 1207 case PTR_TO_PACKET: 1208 case PTR_TO_PACKET_META: 1209 case PTR_TO_PACKET_END: 1210 case PTR_TO_FLOW_KEYS: 1211 case CONST_PTR_TO_MAP: 1212 case PTR_TO_SOCKET: 1213 case PTR_TO_SOCKET_OR_NULL: 1214 case PTR_TO_SOCK_COMMON: 1215 case PTR_TO_SOCK_COMMON_OR_NULL: 1216 case PTR_TO_TCP_SOCK: 1217 case PTR_TO_TCP_SOCK_OR_NULL: 1218 return true; 1219 default: 1220 return false; 1221 } 1222 } 1223 1224 /* Does this register contain a constant zero? */ 1225 static bool register_is_null(struct bpf_reg_state *reg) 1226 { 1227 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 1228 } 1229 1230 /* check_stack_read/write functions track spill/fill of registers, 1231 * stack boundary and alignment are checked in check_mem_access() 1232 */ 1233 static int check_stack_write(struct bpf_verifier_env *env, 1234 struct bpf_func_state *state, /* func where register points to */ 1235 int off, int size, int value_regno, int insn_idx) 1236 { 1237 struct bpf_func_state *cur; /* state of the current function */ 1238 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1239 enum bpf_reg_type type; 1240 1241 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1242 state->acquired_refs, true); 1243 if (err) 1244 return err; 1245 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1246 * so it's aligned access and [off, off + size) are within stack limits 1247 */ 1248 if (!env->allow_ptr_leaks && 1249 state->stack[spi].slot_type[0] == STACK_SPILL && 1250 size != BPF_REG_SIZE) { 1251 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1252 return -EACCES; 1253 } 1254 1255 cur = env->cur_state->frame[env->cur_state->curframe]; 1256 if (value_regno >= 0 && 1257 is_spillable_regtype((type = cur->regs[value_regno].type))) { 1258 1259 /* register containing pointer is being spilled into stack */ 1260 if (size != BPF_REG_SIZE) { 1261 verbose(env, "invalid size of register spill\n"); 1262 return -EACCES; 1263 } 1264 1265 if (state != cur && type == PTR_TO_STACK) { 1266 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1267 return -EINVAL; 1268 } 1269 1270 /* save register state */ 1271 state->stack[spi].spilled_ptr = cur->regs[value_regno]; 1272 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1273 1274 for (i = 0; i < BPF_REG_SIZE; i++) { 1275 if (state->stack[spi].slot_type[i] == STACK_MISC && 1276 !env->allow_ptr_leaks) { 1277 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 1278 int soff = (-spi - 1) * BPF_REG_SIZE; 1279 1280 /* detected reuse of integer stack slot with a pointer 1281 * which means either llvm is reusing stack slot or 1282 * an attacker is trying to exploit CVE-2018-3639 1283 * (speculative store bypass) 1284 * Have to sanitize that slot with preemptive 1285 * store of zero. 1286 */ 1287 if (*poff && *poff != soff) { 1288 /* disallow programs where single insn stores 1289 * into two different stack slots, since verifier 1290 * cannot sanitize them 1291 */ 1292 verbose(env, 1293 "insn %d cannot access two stack slots fp%d and fp%d", 1294 insn_idx, *poff, soff); 1295 return -EINVAL; 1296 } 1297 *poff = soff; 1298 } 1299 state->stack[spi].slot_type[i] = STACK_SPILL; 1300 } 1301 } else { 1302 u8 type = STACK_MISC; 1303 1304 /* regular write of data into stack destroys any spilled ptr */ 1305 state->stack[spi].spilled_ptr.type = NOT_INIT; 1306 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 1307 if (state->stack[spi].slot_type[0] == STACK_SPILL) 1308 for (i = 0; i < BPF_REG_SIZE; i++) 1309 state->stack[spi].slot_type[i] = STACK_MISC; 1310 1311 /* only mark the slot as written if all 8 bytes were written 1312 * otherwise read propagation may incorrectly stop too soon 1313 * when stack slots are partially written. 1314 * This heuristic means that read propagation will be 1315 * conservative, since it will add reg_live_read marks 1316 * to stack slots all the way to first state when programs 1317 * writes+reads less than 8 bytes 1318 */ 1319 if (size == BPF_REG_SIZE) 1320 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1321 1322 /* when we zero initialize stack slots mark them as such */ 1323 if (value_regno >= 0 && 1324 register_is_null(&cur->regs[value_regno])) 1325 type = STACK_ZERO; 1326 1327 /* Mark slots affected by this stack write. */ 1328 for (i = 0; i < size; i++) 1329 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 1330 type; 1331 } 1332 return 0; 1333 } 1334 1335 static int check_stack_read(struct bpf_verifier_env *env, 1336 struct bpf_func_state *reg_state /* func where register points to */, 1337 int off, int size, int value_regno) 1338 { 1339 struct bpf_verifier_state *vstate = env->cur_state; 1340 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1341 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 1342 u8 *stype; 1343 1344 if (reg_state->allocated_stack <= slot) { 1345 verbose(env, "invalid read from stack off %d+0 size %d\n", 1346 off, size); 1347 return -EACCES; 1348 } 1349 stype = reg_state->stack[spi].slot_type; 1350 1351 if (stype[0] == STACK_SPILL) { 1352 if (size != BPF_REG_SIZE) { 1353 verbose(env, "invalid size of register spill\n"); 1354 return -EACCES; 1355 } 1356 for (i = 1; i < BPF_REG_SIZE; i++) { 1357 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 1358 verbose(env, "corrupted spill memory\n"); 1359 return -EACCES; 1360 } 1361 } 1362 1363 if (value_regno >= 0) { 1364 /* restore register state from stack */ 1365 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr; 1366 /* mark reg as written since spilled pointer state likely 1367 * has its liveness marks cleared by is_state_visited() 1368 * which resets stack/reg liveness for state transitions 1369 */ 1370 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1371 } 1372 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1373 reg_state->stack[spi].spilled_ptr.parent); 1374 return 0; 1375 } else { 1376 int zeros = 0; 1377 1378 for (i = 0; i < size; i++) { 1379 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 1380 continue; 1381 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 1382 zeros++; 1383 continue; 1384 } 1385 verbose(env, "invalid read from stack off %d+%d size %d\n", 1386 off, i, size); 1387 return -EACCES; 1388 } 1389 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1390 reg_state->stack[spi].spilled_ptr.parent); 1391 if (value_regno >= 0) { 1392 if (zeros == size) { 1393 /* any size read into register is zero extended, 1394 * so the whole register == const_zero 1395 */ 1396 __mark_reg_const_zero(&state->regs[value_regno]); 1397 } else { 1398 /* have read misc data from the stack */ 1399 mark_reg_unknown(env, state->regs, value_regno); 1400 } 1401 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1402 } 1403 return 0; 1404 } 1405 } 1406 1407 static int check_stack_access(struct bpf_verifier_env *env, 1408 const struct bpf_reg_state *reg, 1409 int off, int size) 1410 { 1411 /* Stack accesses must be at a fixed offset, so that we 1412 * can determine what type of data were returned. See 1413 * check_stack_read(). 1414 */ 1415 if (!tnum_is_const(reg->var_off)) { 1416 char tn_buf[48]; 1417 1418 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1419 verbose(env, "variable stack access var_off=%s off=%d size=%d", 1420 tn_buf, off, size); 1421 return -EACCES; 1422 } 1423 1424 if (off >= 0 || off < -MAX_BPF_STACK) { 1425 verbose(env, "invalid stack off=%d size=%d\n", off, size); 1426 return -EACCES; 1427 } 1428 1429 return 0; 1430 } 1431 1432 /* check read/write into map element returned by bpf_map_lookup_elem() */ 1433 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 1434 int size, bool zero_size_allowed) 1435 { 1436 struct bpf_reg_state *regs = cur_regs(env); 1437 struct bpf_map *map = regs[regno].map_ptr; 1438 1439 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1440 off + size > map->value_size) { 1441 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 1442 map->value_size, off, size); 1443 return -EACCES; 1444 } 1445 return 0; 1446 } 1447 1448 /* check read/write into a map element with possible variable offset */ 1449 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 1450 int off, int size, bool zero_size_allowed) 1451 { 1452 struct bpf_verifier_state *vstate = env->cur_state; 1453 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1454 struct bpf_reg_state *reg = &state->regs[regno]; 1455 int err; 1456 1457 /* We may have adjusted the register to this map value, so we 1458 * need to try adding each of min_value and max_value to off 1459 * to make sure our theoretical access will be safe. 1460 */ 1461 if (env->log.level) 1462 print_verifier_state(env, state); 1463 1464 /* The minimum value is only important with signed 1465 * comparisons where we can't assume the floor of a 1466 * value is 0. If we are using signed variables for our 1467 * index'es we need to make sure that whatever we use 1468 * will have a set floor within our range. 1469 */ 1470 if (reg->smin_value < 0 && 1471 (reg->smin_value == S64_MIN || 1472 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 1473 reg->smin_value + off < 0)) { 1474 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1475 regno); 1476 return -EACCES; 1477 } 1478 err = __check_map_access(env, regno, reg->smin_value + off, size, 1479 zero_size_allowed); 1480 if (err) { 1481 verbose(env, "R%d min value is outside of the array range\n", 1482 regno); 1483 return err; 1484 } 1485 1486 /* If we haven't set a max value then we need to bail since we can't be 1487 * sure we won't do bad things. 1488 * If reg->umax_value + off could overflow, treat that as unbounded too. 1489 */ 1490 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 1491 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 1492 regno); 1493 return -EACCES; 1494 } 1495 err = __check_map_access(env, regno, reg->umax_value + off, size, 1496 zero_size_allowed); 1497 if (err) 1498 verbose(env, "R%d max value is outside of the array range\n", 1499 regno); 1500 1501 if (map_value_has_spin_lock(reg->map_ptr)) { 1502 u32 lock = reg->map_ptr->spin_lock_off; 1503 1504 /* if any part of struct bpf_spin_lock can be touched by 1505 * load/store reject this program. 1506 * To check that [x1, x2) overlaps with [y1, y2) 1507 * it is sufficient to check x1 < y2 && y1 < x2. 1508 */ 1509 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 1510 lock < reg->umax_value + off + size) { 1511 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 1512 return -EACCES; 1513 } 1514 } 1515 return err; 1516 } 1517 1518 #define MAX_PACKET_OFF 0xffff 1519 1520 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 1521 const struct bpf_call_arg_meta *meta, 1522 enum bpf_access_type t) 1523 { 1524 switch (env->prog->type) { 1525 /* Program types only with direct read access go here! */ 1526 case BPF_PROG_TYPE_LWT_IN: 1527 case BPF_PROG_TYPE_LWT_OUT: 1528 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 1529 case BPF_PROG_TYPE_SK_REUSEPORT: 1530 case BPF_PROG_TYPE_FLOW_DISSECTOR: 1531 case BPF_PROG_TYPE_CGROUP_SKB: 1532 if (t == BPF_WRITE) 1533 return false; 1534 /* fallthrough */ 1535 1536 /* Program types with direct read + write access go here! */ 1537 case BPF_PROG_TYPE_SCHED_CLS: 1538 case BPF_PROG_TYPE_SCHED_ACT: 1539 case BPF_PROG_TYPE_XDP: 1540 case BPF_PROG_TYPE_LWT_XMIT: 1541 case BPF_PROG_TYPE_SK_SKB: 1542 case BPF_PROG_TYPE_SK_MSG: 1543 if (meta) 1544 return meta->pkt_access; 1545 1546 env->seen_direct_write = true; 1547 return true; 1548 default: 1549 return false; 1550 } 1551 } 1552 1553 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 1554 int off, int size, bool zero_size_allowed) 1555 { 1556 struct bpf_reg_state *regs = cur_regs(env); 1557 struct bpf_reg_state *reg = ®s[regno]; 1558 1559 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1560 (u64)off + size > reg->range) { 1561 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 1562 off, size, regno, reg->id, reg->off, reg->range); 1563 return -EACCES; 1564 } 1565 return 0; 1566 } 1567 1568 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 1569 int size, bool zero_size_allowed) 1570 { 1571 struct bpf_reg_state *regs = cur_regs(env); 1572 struct bpf_reg_state *reg = ®s[regno]; 1573 int err; 1574 1575 /* We may have added a variable offset to the packet pointer; but any 1576 * reg->range we have comes after that. We are only checking the fixed 1577 * offset. 1578 */ 1579 1580 /* We don't allow negative numbers, because we aren't tracking enough 1581 * detail to prove they're safe. 1582 */ 1583 if (reg->smin_value < 0) { 1584 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1585 regno); 1586 return -EACCES; 1587 } 1588 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 1589 if (err) { 1590 verbose(env, "R%d offset is outside of the packet\n", regno); 1591 return err; 1592 } 1593 1594 /* __check_packet_access has made sure "off + size - 1" is within u16. 1595 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 1596 * otherwise find_good_pkt_pointers would have refused to set range info 1597 * that __check_packet_access would have rejected this pkt access. 1598 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 1599 */ 1600 env->prog->aux->max_pkt_offset = 1601 max_t(u32, env->prog->aux->max_pkt_offset, 1602 off + reg->umax_value + size - 1); 1603 1604 return err; 1605 } 1606 1607 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 1608 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 1609 enum bpf_access_type t, enum bpf_reg_type *reg_type) 1610 { 1611 struct bpf_insn_access_aux info = { 1612 .reg_type = *reg_type, 1613 }; 1614 1615 if (env->ops->is_valid_access && 1616 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 1617 /* A non zero info.ctx_field_size indicates that this field is a 1618 * candidate for later verifier transformation to load the whole 1619 * field and then apply a mask when accessed with a narrower 1620 * access than actual ctx access size. A zero info.ctx_field_size 1621 * will only allow for whole field access and rejects any other 1622 * type of narrower access. 1623 */ 1624 *reg_type = info.reg_type; 1625 1626 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 1627 /* remember the offset of last byte accessed in ctx */ 1628 if (env->prog->aux->max_ctx_offset < off + size) 1629 env->prog->aux->max_ctx_offset = off + size; 1630 return 0; 1631 } 1632 1633 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 1634 return -EACCES; 1635 } 1636 1637 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 1638 int size) 1639 { 1640 if (size < 0 || off < 0 || 1641 (u64)off + size > sizeof(struct bpf_flow_keys)) { 1642 verbose(env, "invalid access to flow keys off=%d size=%d\n", 1643 off, size); 1644 return -EACCES; 1645 } 1646 return 0; 1647 } 1648 1649 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 1650 u32 regno, int off, int size, 1651 enum bpf_access_type t) 1652 { 1653 struct bpf_reg_state *regs = cur_regs(env); 1654 struct bpf_reg_state *reg = ®s[regno]; 1655 struct bpf_insn_access_aux info = {}; 1656 bool valid; 1657 1658 if (reg->smin_value < 0) { 1659 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1660 regno); 1661 return -EACCES; 1662 } 1663 1664 switch (reg->type) { 1665 case PTR_TO_SOCK_COMMON: 1666 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 1667 break; 1668 case PTR_TO_SOCKET: 1669 valid = bpf_sock_is_valid_access(off, size, t, &info); 1670 break; 1671 case PTR_TO_TCP_SOCK: 1672 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 1673 break; 1674 default: 1675 valid = false; 1676 } 1677 1678 1679 if (valid) { 1680 env->insn_aux_data[insn_idx].ctx_field_size = 1681 info.ctx_field_size; 1682 return 0; 1683 } 1684 1685 verbose(env, "R%d invalid %s access off=%d size=%d\n", 1686 regno, reg_type_str[reg->type], off, size); 1687 1688 return -EACCES; 1689 } 1690 1691 static bool __is_pointer_value(bool allow_ptr_leaks, 1692 const struct bpf_reg_state *reg) 1693 { 1694 if (allow_ptr_leaks) 1695 return false; 1696 1697 return reg->type != SCALAR_VALUE; 1698 } 1699 1700 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 1701 { 1702 return cur_regs(env) + regno; 1703 } 1704 1705 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 1706 { 1707 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 1708 } 1709 1710 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 1711 { 1712 const struct bpf_reg_state *reg = reg_state(env, regno); 1713 1714 return reg->type == PTR_TO_CTX; 1715 } 1716 1717 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 1718 { 1719 const struct bpf_reg_state *reg = reg_state(env, regno); 1720 1721 return type_is_sk_pointer(reg->type); 1722 } 1723 1724 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 1725 { 1726 const struct bpf_reg_state *reg = reg_state(env, regno); 1727 1728 return type_is_pkt_pointer(reg->type); 1729 } 1730 1731 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 1732 { 1733 const struct bpf_reg_state *reg = reg_state(env, regno); 1734 1735 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 1736 return reg->type == PTR_TO_FLOW_KEYS; 1737 } 1738 1739 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 1740 const struct bpf_reg_state *reg, 1741 int off, int size, bool strict) 1742 { 1743 struct tnum reg_off; 1744 int ip_align; 1745 1746 /* Byte size accesses are always allowed. */ 1747 if (!strict || size == 1) 1748 return 0; 1749 1750 /* For platforms that do not have a Kconfig enabling 1751 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 1752 * NET_IP_ALIGN is universally set to '2'. And on platforms 1753 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 1754 * to this code only in strict mode where we want to emulate 1755 * the NET_IP_ALIGN==2 checking. Therefore use an 1756 * unconditional IP align value of '2'. 1757 */ 1758 ip_align = 2; 1759 1760 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1761 if (!tnum_is_aligned(reg_off, size)) { 1762 char tn_buf[48]; 1763 1764 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1765 verbose(env, 1766 "misaligned packet access off %d+%s+%d+%d size %d\n", 1767 ip_align, tn_buf, reg->off, off, size); 1768 return -EACCES; 1769 } 1770 1771 return 0; 1772 } 1773 1774 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 1775 const struct bpf_reg_state *reg, 1776 const char *pointer_desc, 1777 int off, int size, bool strict) 1778 { 1779 struct tnum reg_off; 1780 1781 /* Byte size accesses are always allowed. */ 1782 if (!strict || size == 1) 1783 return 0; 1784 1785 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1786 if (!tnum_is_aligned(reg_off, size)) { 1787 char tn_buf[48]; 1788 1789 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1790 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 1791 pointer_desc, tn_buf, reg->off, off, size); 1792 return -EACCES; 1793 } 1794 1795 return 0; 1796 } 1797 1798 static int check_ptr_alignment(struct bpf_verifier_env *env, 1799 const struct bpf_reg_state *reg, int off, 1800 int size, bool strict_alignment_once) 1801 { 1802 bool strict = env->strict_alignment || strict_alignment_once; 1803 const char *pointer_desc = ""; 1804 1805 switch (reg->type) { 1806 case PTR_TO_PACKET: 1807 case PTR_TO_PACKET_META: 1808 /* Special case, because of NET_IP_ALIGN. Given metadata sits 1809 * right in front, treat it the very same way. 1810 */ 1811 return check_pkt_ptr_alignment(env, reg, off, size, strict); 1812 case PTR_TO_FLOW_KEYS: 1813 pointer_desc = "flow keys "; 1814 break; 1815 case PTR_TO_MAP_VALUE: 1816 pointer_desc = "value "; 1817 break; 1818 case PTR_TO_CTX: 1819 pointer_desc = "context "; 1820 break; 1821 case PTR_TO_STACK: 1822 pointer_desc = "stack "; 1823 /* The stack spill tracking logic in check_stack_write() 1824 * and check_stack_read() relies on stack accesses being 1825 * aligned. 1826 */ 1827 strict = true; 1828 break; 1829 case PTR_TO_SOCKET: 1830 pointer_desc = "sock "; 1831 break; 1832 case PTR_TO_SOCK_COMMON: 1833 pointer_desc = "sock_common "; 1834 break; 1835 case PTR_TO_TCP_SOCK: 1836 pointer_desc = "tcp_sock "; 1837 break; 1838 default: 1839 break; 1840 } 1841 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 1842 strict); 1843 } 1844 1845 static int update_stack_depth(struct bpf_verifier_env *env, 1846 const struct bpf_func_state *func, 1847 int off) 1848 { 1849 u16 stack = env->subprog_info[func->subprogno].stack_depth; 1850 1851 if (stack >= -off) 1852 return 0; 1853 1854 /* update known max for given subprogram */ 1855 env->subprog_info[func->subprogno].stack_depth = -off; 1856 return 0; 1857 } 1858 1859 /* starting from main bpf function walk all instructions of the function 1860 * and recursively walk all callees that given function can call. 1861 * Ignore jump and exit insns. 1862 * Since recursion is prevented by check_cfg() this algorithm 1863 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 1864 */ 1865 static int check_max_stack_depth(struct bpf_verifier_env *env) 1866 { 1867 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 1868 struct bpf_subprog_info *subprog = env->subprog_info; 1869 struct bpf_insn *insn = env->prog->insnsi; 1870 int ret_insn[MAX_CALL_FRAMES]; 1871 int ret_prog[MAX_CALL_FRAMES]; 1872 1873 process_func: 1874 /* round up to 32-bytes, since this is granularity 1875 * of interpreter stack size 1876 */ 1877 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1878 if (depth > MAX_BPF_STACK) { 1879 verbose(env, "combined stack size of %d calls is %d. Too large\n", 1880 frame + 1, depth); 1881 return -EACCES; 1882 } 1883 continue_func: 1884 subprog_end = subprog[idx + 1].start; 1885 for (; i < subprog_end; i++) { 1886 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1887 continue; 1888 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1889 continue; 1890 /* remember insn and function to return to */ 1891 ret_insn[frame] = i + 1; 1892 ret_prog[frame] = idx; 1893 1894 /* find the callee */ 1895 i = i + insn[i].imm + 1; 1896 idx = find_subprog(env, i); 1897 if (idx < 0) { 1898 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1899 i); 1900 return -EFAULT; 1901 } 1902 frame++; 1903 if (frame >= MAX_CALL_FRAMES) { 1904 WARN_ONCE(1, "verifier bug. Call stack is too deep\n"); 1905 return -EFAULT; 1906 } 1907 goto process_func; 1908 } 1909 /* end of for() loop means the last insn of the 'subprog' 1910 * was reached. Doesn't matter whether it was JA or EXIT 1911 */ 1912 if (frame == 0) 1913 return 0; 1914 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1915 frame--; 1916 i = ret_insn[frame]; 1917 idx = ret_prog[frame]; 1918 goto continue_func; 1919 } 1920 1921 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1922 static int get_callee_stack_depth(struct bpf_verifier_env *env, 1923 const struct bpf_insn *insn, int idx) 1924 { 1925 int start = idx + insn->imm + 1, subprog; 1926 1927 subprog = find_subprog(env, start); 1928 if (subprog < 0) { 1929 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1930 start); 1931 return -EFAULT; 1932 } 1933 return env->subprog_info[subprog].stack_depth; 1934 } 1935 #endif 1936 1937 static int check_ctx_reg(struct bpf_verifier_env *env, 1938 const struct bpf_reg_state *reg, int regno) 1939 { 1940 /* Access to ctx or passing it to a helper is only allowed in 1941 * its original, unmodified form. 1942 */ 1943 1944 if (reg->off) { 1945 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 1946 regno, reg->off); 1947 return -EACCES; 1948 } 1949 1950 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 1951 char tn_buf[48]; 1952 1953 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1954 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 1955 return -EACCES; 1956 } 1957 1958 return 0; 1959 } 1960 1961 /* truncate register to smaller size (in bytes) 1962 * must be called with size < BPF_REG_SIZE 1963 */ 1964 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 1965 { 1966 u64 mask; 1967 1968 /* clear high bits in bit representation */ 1969 reg->var_off = tnum_cast(reg->var_off, size); 1970 1971 /* fix arithmetic bounds */ 1972 mask = ((u64)1 << (size * 8)) - 1; 1973 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 1974 reg->umin_value &= mask; 1975 reg->umax_value &= mask; 1976 } else { 1977 reg->umin_value = 0; 1978 reg->umax_value = mask; 1979 } 1980 reg->smin_value = reg->umin_value; 1981 reg->smax_value = reg->umax_value; 1982 } 1983 1984 /* check whether memory at (regno + off) is accessible for t = (read | write) 1985 * if t==write, value_regno is a register which value is stored into memory 1986 * if t==read, value_regno is a register which will receive the value from memory 1987 * if t==write && value_regno==-1, some unknown value is stored into memory 1988 * if t==read && value_regno==-1, don't care what we read from memory 1989 */ 1990 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 1991 int off, int bpf_size, enum bpf_access_type t, 1992 int value_regno, bool strict_alignment_once) 1993 { 1994 struct bpf_reg_state *regs = cur_regs(env); 1995 struct bpf_reg_state *reg = regs + regno; 1996 struct bpf_func_state *state; 1997 int size, err = 0; 1998 1999 size = bpf_size_to_bytes(bpf_size); 2000 if (size < 0) 2001 return size; 2002 2003 /* alignment checks will add in reg->off themselves */ 2004 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 2005 if (err) 2006 return err; 2007 2008 /* for access checks, reg->off is just part of off */ 2009 off += reg->off; 2010 2011 if (reg->type == PTR_TO_MAP_VALUE) { 2012 if (t == BPF_WRITE && value_regno >= 0 && 2013 is_pointer_value(env, value_regno)) { 2014 verbose(env, "R%d leaks addr into map\n", value_regno); 2015 return -EACCES; 2016 } 2017 2018 err = check_map_access(env, regno, off, size, false); 2019 if (!err && t == BPF_READ && value_regno >= 0) 2020 mark_reg_unknown(env, regs, value_regno); 2021 2022 } else if (reg->type == PTR_TO_CTX) { 2023 enum bpf_reg_type reg_type = SCALAR_VALUE; 2024 2025 if (t == BPF_WRITE && value_regno >= 0 && 2026 is_pointer_value(env, value_regno)) { 2027 verbose(env, "R%d leaks addr into ctx\n", value_regno); 2028 return -EACCES; 2029 } 2030 2031 err = check_ctx_reg(env, reg, regno); 2032 if (err < 0) 2033 return err; 2034 2035 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 2036 if (!err && t == BPF_READ && value_regno >= 0) { 2037 /* ctx access returns either a scalar, or a 2038 * PTR_TO_PACKET[_META,_END]. In the latter 2039 * case, we know the offset is zero. 2040 */ 2041 if (reg_type == SCALAR_VALUE) { 2042 mark_reg_unknown(env, regs, value_regno); 2043 } else { 2044 mark_reg_known_zero(env, regs, 2045 value_regno); 2046 if (reg_type_may_be_null(reg_type)) 2047 regs[value_regno].id = ++env->id_gen; 2048 } 2049 regs[value_regno].type = reg_type; 2050 } 2051 2052 } else if (reg->type == PTR_TO_STACK) { 2053 off += reg->var_off.value; 2054 err = check_stack_access(env, reg, off, size); 2055 if (err) 2056 return err; 2057 2058 state = func(env, reg); 2059 err = update_stack_depth(env, state, off); 2060 if (err) 2061 return err; 2062 2063 if (t == BPF_WRITE) 2064 err = check_stack_write(env, state, off, size, 2065 value_regno, insn_idx); 2066 else 2067 err = check_stack_read(env, state, off, size, 2068 value_regno); 2069 } else if (reg_is_pkt_pointer(reg)) { 2070 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 2071 verbose(env, "cannot write into packet\n"); 2072 return -EACCES; 2073 } 2074 if (t == BPF_WRITE && value_regno >= 0 && 2075 is_pointer_value(env, value_regno)) { 2076 verbose(env, "R%d leaks addr into packet\n", 2077 value_regno); 2078 return -EACCES; 2079 } 2080 err = check_packet_access(env, regno, off, size, false); 2081 if (!err && t == BPF_READ && value_regno >= 0) 2082 mark_reg_unknown(env, regs, value_regno); 2083 } else if (reg->type == PTR_TO_FLOW_KEYS) { 2084 if (t == BPF_WRITE && value_regno >= 0 && 2085 is_pointer_value(env, value_regno)) { 2086 verbose(env, "R%d leaks addr into flow keys\n", 2087 value_regno); 2088 return -EACCES; 2089 } 2090 2091 err = check_flow_keys_access(env, off, size); 2092 if (!err && t == BPF_READ && value_regno >= 0) 2093 mark_reg_unknown(env, regs, value_regno); 2094 } else if (type_is_sk_pointer(reg->type)) { 2095 if (t == BPF_WRITE) { 2096 verbose(env, "R%d cannot write into %s\n", 2097 regno, reg_type_str[reg->type]); 2098 return -EACCES; 2099 } 2100 err = check_sock_access(env, insn_idx, regno, off, size, t); 2101 if (!err && value_regno >= 0) 2102 mark_reg_unknown(env, regs, value_regno); 2103 } else { 2104 verbose(env, "R%d invalid mem access '%s'\n", regno, 2105 reg_type_str[reg->type]); 2106 return -EACCES; 2107 } 2108 2109 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 2110 regs[value_regno].type == SCALAR_VALUE) { 2111 /* b/h/w load zero-extends, mark upper bits as known 0 */ 2112 coerce_reg_to_size(®s[value_regno], size); 2113 } 2114 return err; 2115 } 2116 2117 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 2118 { 2119 int err; 2120 2121 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 2122 insn->imm != 0) { 2123 verbose(env, "BPF_XADD uses reserved fields\n"); 2124 return -EINVAL; 2125 } 2126 2127 /* check src1 operand */ 2128 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2129 if (err) 2130 return err; 2131 2132 /* check src2 operand */ 2133 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2134 if (err) 2135 return err; 2136 2137 if (is_pointer_value(env, insn->src_reg)) { 2138 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 2139 return -EACCES; 2140 } 2141 2142 if (is_ctx_reg(env, insn->dst_reg) || 2143 is_pkt_reg(env, insn->dst_reg) || 2144 is_flow_key_reg(env, insn->dst_reg) || 2145 is_sk_reg(env, insn->dst_reg)) { 2146 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 2147 insn->dst_reg, 2148 reg_type_str[reg_state(env, insn->dst_reg)->type]); 2149 return -EACCES; 2150 } 2151 2152 /* check whether atomic_add can read the memory */ 2153 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2154 BPF_SIZE(insn->code), BPF_READ, -1, true); 2155 if (err) 2156 return err; 2157 2158 /* check whether atomic_add can write into the same memory */ 2159 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2160 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 2161 } 2162 2163 /* when register 'regno' is passed into function that will read 'access_size' 2164 * bytes from that pointer, make sure that it's within stack boundary 2165 * and all elements of stack are initialized. 2166 * Unlike most pointer bounds-checking functions, this one doesn't take an 2167 * 'off' argument, so it has to add in reg->off itself. 2168 */ 2169 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 2170 int access_size, bool zero_size_allowed, 2171 struct bpf_call_arg_meta *meta) 2172 { 2173 struct bpf_reg_state *reg = reg_state(env, regno); 2174 struct bpf_func_state *state = func(env, reg); 2175 int off, i, slot, spi; 2176 2177 if (reg->type != PTR_TO_STACK) { 2178 /* Allow zero-byte read from NULL, regardless of pointer type */ 2179 if (zero_size_allowed && access_size == 0 && 2180 register_is_null(reg)) 2181 return 0; 2182 2183 verbose(env, "R%d type=%s expected=%s\n", regno, 2184 reg_type_str[reg->type], 2185 reg_type_str[PTR_TO_STACK]); 2186 return -EACCES; 2187 } 2188 2189 /* Only allow fixed-offset stack reads */ 2190 if (!tnum_is_const(reg->var_off)) { 2191 char tn_buf[48]; 2192 2193 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2194 verbose(env, "invalid variable stack read R%d var_off=%s\n", 2195 regno, tn_buf); 2196 return -EACCES; 2197 } 2198 off = reg->off + reg->var_off.value; 2199 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 2200 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 2201 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 2202 regno, off, access_size); 2203 return -EACCES; 2204 } 2205 2206 if (meta && meta->raw_mode) { 2207 meta->access_size = access_size; 2208 meta->regno = regno; 2209 return 0; 2210 } 2211 2212 for (i = 0; i < access_size; i++) { 2213 u8 *stype; 2214 2215 slot = -(off + i) - 1; 2216 spi = slot / BPF_REG_SIZE; 2217 if (state->allocated_stack <= slot) 2218 goto err; 2219 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2220 if (*stype == STACK_MISC) 2221 goto mark; 2222 if (*stype == STACK_ZERO) { 2223 /* helper can write anything into the stack */ 2224 *stype = STACK_MISC; 2225 goto mark; 2226 } 2227 err: 2228 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 2229 off, i, access_size); 2230 return -EACCES; 2231 mark: 2232 /* reading any byte out of 8-byte 'spill_slot' will cause 2233 * the whole slot to be marked as 'read' 2234 */ 2235 mark_reg_read(env, &state->stack[spi].spilled_ptr, 2236 state->stack[spi].spilled_ptr.parent); 2237 } 2238 return update_stack_depth(env, state, off); 2239 } 2240 2241 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 2242 int access_size, bool zero_size_allowed, 2243 struct bpf_call_arg_meta *meta) 2244 { 2245 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2246 2247 switch (reg->type) { 2248 case PTR_TO_PACKET: 2249 case PTR_TO_PACKET_META: 2250 return check_packet_access(env, regno, reg->off, access_size, 2251 zero_size_allowed); 2252 case PTR_TO_MAP_VALUE: 2253 return check_map_access(env, regno, reg->off, access_size, 2254 zero_size_allowed); 2255 default: /* scalar_value|ptr_to_stack or invalid ptr */ 2256 return check_stack_boundary(env, regno, access_size, 2257 zero_size_allowed, meta); 2258 } 2259 } 2260 2261 /* Implementation details: 2262 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 2263 * Two bpf_map_lookups (even with the same key) will have different reg->id. 2264 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 2265 * value_or_null->value transition, since the verifier only cares about 2266 * the range of access to valid map value pointer and doesn't care about actual 2267 * address of the map element. 2268 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 2269 * reg->id > 0 after value_or_null->value transition. By doing so 2270 * two bpf_map_lookups will be considered two different pointers that 2271 * point to different bpf_spin_locks. 2272 * The verifier allows taking only one bpf_spin_lock at a time to avoid 2273 * dead-locks. 2274 * Since only one bpf_spin_lock is allowed the checks are simpler than 2275 * reg_is_refcounted() logic. The verifier needs to remember only 2276 * one spin_lock instead of array of acquired_refs. 2277 * cur_state->active_spin_lock remembers which map value element got locked 2278 * and clears it after bpf_spin_unlock. 2279 */ 2280 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 2281 bool is_lock) 2282 { 2283 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2284 struct bpf_verifier_state *cur = env->cur_state; 2285 bool is_const = tnum_is_const(reg->var_off); 2286 struct bpf_map *map = reg->map_ptr; 2287 u64 val = reg->var_off.value; 2288 2289 if (reg->type != PTR_TO_MAP_VALUE) { 2290 verbose(env, "R%d is not a pointer to map_value\n", regno); 2291 return -EINVAL; 2292 } 2293 if (!is_const) { 2294 verbose(env, 2295 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 2296 regno); 2297 return -EINVAL; 2298 } 2299 if (!map->btf) { 2300 verbose(env, 2301 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 2302 map->name); 2303 return -EINVAL; 2304 } 2305 if (!map_value_has_spin_lock(map)) { 2306 if (map->spin_lock_off == -E2BIG) 2307 verbose(env, 2308 "map '%s' has more than one 'struct bpf_spin_lock'\n", 2309 map->name); 2310 else if (map->spin_lock_off == -ENOENT) 2311 verbose(env, 2312 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 2313 map->name); 2314 else 2315 verbose(env, 2316 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 2317 map->name); 2318 return -EINVAL; 2319 } 2320 if (map->spin_lock_off != val + reg->off) { 2321 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 2322 val + reg->off); 2323 return -EINVAL; 2324 } 2325 if (is_lock) { 2326 if (cur->active_spin_lock) { 2327 verbose(env, 2328 "Locking two bpf_spin_locks are not allowed\n"); 2329 return -EINVAL; 2330 } 2331 cur->active_spin_lock = reg->id; 2332 } else { 2333 if (!cur->active_spin_lock) { 2334 verbose(env, "bpf_spin_unlock without taking a lock\n"); 2335 return -EINVAL; 2336 } 2337 if (cur->active_spin_lock != reg->id) { 2338 verbose(env, "bpf_spin_unlock of different lock\n"); 2339 return -EINVAL; 2340 } 2341 cur->active_spin_lock = 0; 2342 } 2343 return 0; 2344 } 2345 2346 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 2347 { 2348 return type == ARG_PTR_TO_MEM || 2349 type == ARG_PTR_TO_MEM_OR_NULL || 2350 type == ARG_PTR_TO_UNINIT_MEM; 2351 } 2352 2353 static bool arg_type_is_mem_size(enum bpf_arg_type type) 2354 { 2355 return type == ARG_CONST_SIZE || 2356 type == ARG_CONST_SIZE_OR_ZERO; 2357 } 2358 2359 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 2360 enum bpf_arg_type arg_type, 2361 struct bpf_call_arg_meta *meta) 2362 { 2363 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2364 enum bpf_reg_type expected_type, type = reg->type; 2365 int err = 0; 2366 2367 if (arg_type == ARG_DONTCARE) 2368 return 0; 2369 2370 err = check_reg_arg(env, regno, SRC_OP); 2371 if (err) 2372 return err; 2373 2374 if (arg_type == ARG_ANYTHING) { 2375 if (is_pointer_value(env, regno)) { 2376 verbose(env, "R%d leaks addr into helper function\n", 2377 regno); 2378 return -EACCES; 2379 } 2380 return 0; 2381 } 2382 2383 if (type_is_pkt_pointer(type) && 2384 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 2385 verbose(env, "helper access to the packet is not allowed\n"); 2386 return -EACCES; 2387 } 2388 2389 if (arg_type == ARG_PTR_TO_MAP_KEY || 2390 arg_type == ARG_PTR_TO_MAP_VALUE || 2391 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 2392 expected_type = PTR_TO_STACK; 2393 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE && 2394 type != expected_type) 2395 goto err_type; 2396 } else if (arg_type == ARG_CONST_SIZE || 2397 arg_type == ARG_CONST_SIZE_OR_ZERO) { 2398 expected_type = SCALAR_VALUE; 2399 if (type != expected_type) 2400 goto err_type; 2401 } else if (arg_type == ARG_CONST_MAP_PTR) { 2402 expected_type = CONST_PTR_TO_MAP; 2403 if (type != expected_type) 2404 goto err_type; 2405 } else if (arg_type == ARG_PTR_TO_CTX) { 2406 expected_type = PTR_TO_CTX; 2407 if (type != expected_type) 2408 goto err_type; 2409 err = check_ctx_reg(env, reg, regno); 2410 if (err < 0) 2411 return err; 2412 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) { 2413 expected_type = PTR_TO_SOCK_COMMON; 2414 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */ 2415 if (!type_is_sk_pointer(type)) 2416 goto err_type; 2417 } else if (arg_type == ARG_PTR_TO_SOCKET) { 2418 expected_type = PTR_TO_SOCKET; 2419 if (type != expected_type) 2420 goto err_type; 2421 if (meta->ptr_id || !reg->id) { 2422 verbose(env, "verifier internal error: mismatched references meta=%d, reg=%d\n", 2423 meta->ptr_id, reg->id); 2424 return -EFAULT; 2425 } 2426 meta->ptr_id = reg->id; 2427 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 2428 if (meta->func_id == BPF_FUNC_spin_lock) { 2429 if (process_spin_lock(env, regno, true)) 2430 return -EACCES; 2431 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 2432 if (process_spin_lock(env, regno, false)) 2433 return -EACCES; 2434 } else { 2435 verbose(env, "verifier internal error\n"); 2436 return -EFAULT; 2437 } 2438 } else if (arg_type_is_mem_ptr(arg_type)) { 2439 expected_type = PTR_TO_STACK; 2440 /* One exception here. In case function allows for NULL to be 2441 * passed in as argument, it's a SCALAR_VALUE type. Final test 2442 * happens during stack boundary checking. 2443 */ 2444 if (register_is_null(reg) && 2445 arg_type == ARG_PTR_TO_MEM_OR_NULL) 2446 /* final test in check_stack_boundary() */; 2447 else if (!type_is_pkt_pointer(type) && 2448 type != PTR_TO_MAP_VALUE && 2449 type != expected_type) 2450 goto err_type; 2451 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 2452 } else { 2453 verbose(env, "unsupported arg_type %d\n", arg_type); 2454 return -EFAULT; 2455 } 2456 2457 if (arg_type == ARG_CONST_MAP_PTR) { 2458 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 2459 meta->map_ptr = reg->map_ptr; 2460 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 2461 /* bpf_map_xxx(..., map_ptr, ..., key) call: 2462 * check that [key, key + map->key_size) are within 2463 * stack limits and initialized 2464 */ 2465 if (!meta->map_ptr) { 2466 /* in function declaration map_ptr must come before 2467 * map_key, so that it's verified and known before 2468 * we have to check map_key here. Otherwise it means 2469 * that kernel subsystem misconfigured verifier 2470 */ 2471 verbose(env, "invalid map_ptr to access map->key\n"); 2472 return -EACCES; 2473 } 2474 err = check_helper_mem_access(env, regno, 2475 meta->map_ptr->key_size, false, 2476 NULL); 2477 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 2478 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 2479 /* bpf_map_xxx(..., map_ptr, ..., value) call: 2480 * check [value, value + map->value_size) validity 2481 */ 2482 if (!meta->map_ptr) { 2483 /* kernel subsystem misconfigured verifier */ 2484 verbose(env, "invalid map_ptr to access map->value\n"); 2485 return -EACCES; 2486 } 2487 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 2488 err = check_helper_mem_access(env, regno, 2489 meta->map_ptr->value_size, false, 2490 meta); 2491 } else if (arg_type_is_mem_size(arg_type)) { 2492 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 2493 2494 /* remember the mem_size which may be used later 2495 * to refine return values. 2496 */ 2497 meta->msize_smax_value = reg->smax_value; 2498 meta->msize_umax_value = reg->umax_value; 2499 2500 /* The register is SCALAR_VALUE; the access check 2501 * happens using its boundaries. 2502 */ 2503 if (!tnum_is_const(reg->var_off)) 2504 /* For unprivileged variable accesses, disable raw 2505 * mode so that the program is required to 2506 * initialize all the memory that the helper could 2507 * just partially fill up. 2508 */ 2509 meta = NULL; 2510 2511 if (reg->smin_value < 0) { 2512 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 2513 regno); 2514 return -EACCES; 2515 } 2516 2517 if (reg->umin_value == 0) { 2518 err = check_helper_mem_access(env, regno - 1, 0, 2519 zero_size_allowed, 2520 meta); 2521 if (err) 2522 return err; 2523 } 2524 2525 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 2526 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 2527 regno); 2528 return -EACCES; 2529 } 2530 err = check_helper_mem_access(env, regno - 1, 2531 reg->umax_value, 2532 zero_size_allowed, meta); 2533 } 2534 2535 return err; 2536 err_type: 2537 verbose(env, "R%d type=%s expected=%s\n", regno, 2538 reg_type_str[type], reg_type_str[expected_type]); 2539 return -EACCES; 2540 } 2541 2542 static int check_map_func_compatibility(struct bpf_verifier_env *env, 2543 struct bpf_map *map, int func_id) 2544 { 2545 if (!map) 2546 return 0; 2547 2548 /* We need a two way check, first is from map perspective ... */ 2549 switch (map->map_type) { 2550 case BPF_MAP_TYPE_PROG_ARRAY: 2551 if (func_id != BPF_FUNC_tail_call) 2552 goto error; 2553 break; 2554 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 2555 if (func_id != BPF_FUNC_perf_event_read && 2556 func_id != BPF_FUNC_perf_event_output && 2557 func_id != BPF_FUNC_perf_event_read_value) 2558 goto error; 2559 break; 2560 case BPF_MAP_TYPE_STACK_TRACE: 2561 if (func_id != BPF_FUNC_get_stackid) 2562 goto error; 2563 break; 2564 case BPF_MAP_TYPE_CGROUP_ARRAY: 2565 if (func_id != BPF_FUNC_skb_under_cgroup && 2566 func_id != BPF_FUNC_current_task_under_cgroup) 2567 goto error; 2568 break; 2569 case BPF_MAP_TYPE_CGROUP_STORAGE: 2570 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 2571 if (func_id != BPF_FUNC_get_local_storage) 2572 goto error; 2573 break; 2574 /* devmap returns a pointer to a live net_device ifindex that we cannot 2575 * allow to be modified from bpf side. So do not allow lookup elements 2576 * for now. 2577 */ 2578 case BPF_MAP_TYPE_DEVMAP: 2579 if (func_id != BPF_FUNC_redirect_map) 2580 goto error; 2581 break; 2582 /* Restrict bpf side of cpumap and xskmap, open when use-cases 2583 * appear. 2584 */ 2585 case BPF_MAP_TYPE_CPUMAP: 2586 case BPF_MAP_TYPE_XSKMAP: 2587 if (func_id != BPF_FUNC_redirect_map) 2588 goto error; 2589 break; 2590 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 2591 case BPF_MAP_TYPE_HASH_OF_MAPS: 2592 if (func_id != BPF_FUNC_map_lookup_elem) 2593 goto error; 2594 break; 2595 case BPF_MAP_TYPE_SOCKMAP: 2596 if (func_id != BPF_FUNC_sk_redirect_map && 2597 func_id != BPF_FUNC_sock_map_update && 2598 func_id != BPF_FUNC_map_delete_elem && 2599 func_id != BPF_FUNC_msg_redirect_map) 2600 goto error; 2601 break; 2602 case BPF_MAP_TYPE_SOCKHASH: 2603 if (func_id != BPF_FUNC_sk_redirect_hash && 2604 func_id != BPF_FUNC_sock_hash_update && 2605 func_id != BPF_FUNC_map_delete_elem && 2606 func_id != BPF_FUNC_msg_redirect_hash) 2607 goto error; 2608 break; 2609 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 2610 if (func_id != BPF_FUNC_sk_select_reuseport) 2611 goto error; 2612 break; 2613 case BPF_MAP_TYPE_QUEUE: 2614 case BPF_MAP_TYPE_STACK: 2615 if (func_id != BPF_FUNC_map_peek_elem && 2616 func_id != BPF_FUNC_map_pop_elem && 2617 func_id != BPF_FUNC_map_push_elem) 2618 goto error; 2619 break; 2620 default: 2621 break; 2622 } 2623 2624 /* ... and second from the function itself. */ 2625 switch (func_id) { 2626 case BPF_FUNC_tail_call: 2627 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 2628 goto error; 2629 if (env->subprog_cnt > 1) { 2630 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 2631 return -EINVAL; 2632 } 2633 break; 2634 case BPF_FUNC_perf_event_read: 2635 case BPF_FUNC_perf_event_output: 2636 case BPF_FUNC_perf_event_read_value: 2637 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 2638 goto error; 2639 break; 2640 case BPF_FUNC_get_stackid: 2641 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 2642 goto error; 2643 break; 2644 case BPF_FUNC_current_task_under_cgroup: 2645 case BPF_FUNC_skb_under_cgroup: 2646 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 2647 goto error; 2648 break; 2649 case BPF_FUNC_redirect_map: 2650 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 2651 map->map_type != BPF_MAP_TYPE_CPUMAP && 2652 map->map_type != BPF_MAP_TYPE_XSKMAP) 2653 goto error; 2654 break; 2655 case BPF_FUNC_sk_redirect_map: 2656 case BPF_FUNC_msg_redirect_map: 2657 case BPF_FUNC_sock_map_update: 2658 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2659 goto error; 2660 break; 2661 case BPF_FUNC_sk_redirect_hash: 2662 case BPF_FUNC_msg_redirect_hash: 2663 case BPF_FUNC_sock_hash_update: 2664 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 2665 goto error; 2666 break; 2667 case BPF_FUNC_get_local_storage: 2668 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 2669 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 2670 goto error; 2671 break; 2672 case BPF_FUNC_sk_select_reuseport: 2673 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) 2674 goto error; 2675 break; 2676 case BPF_FUNC_map_peek_elem: 2677 case BPF_FUNC_map_pop_elem: 2678 case BPF_FUNC_map_push_elem: 2679 if (map->map_type != BPF_MAP_TYPE_QUEUE && 2680 map->map_type != BPF_MAP_TYPE_STACK) 2681 goto error; 2682 break; 2683 default: 2684 break; 2685 } 2686 2687 return 0; 2688 error: 2689 verbose(env, "cannot pass map_type %d into func %s#%d\n", 2690 map->map_type, func_id_name(func_id), func_id); 2691 return -EINVAL; 2692 } 2693 2694 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 2695 { 2696 int count = 0; 2697 2698 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 2699 count++; 2700 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 2701 count++; 2702 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 2703 count++; 2704 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 2705 count++; 2706 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 2707 count++; 2708 2709 /* We only support one arg being in raw mode at the moment, 2710 * which is sufficient for the helper functions we have 2711 * right now. 2712 */ 2713 return count <= 1; 2714 } 2715 2716 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 2717 enum bpf_arg_type arg_next) 2718 { 2719 return (arg_type_is_mem_ptr(arg_curr) && 2720 !arg_type_is_mem_size(arg_next)) || 2721 (!arg_type_is_mem_ptr(arg_curr) && 2722 arg_type_is_mem_size(arg_next)); 2723 } 2724 2725 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 2726 { 2727 /* bpf_xxx(..., buf, len) call will access 'len' 2728 * bytes from memory 'buf'. Both arg types need 2729 * to be paired, so make sure there's no buggy 2730 * helper function specification. 2731 */ 2732 if (arg_type_is_mem_size(fn->arg1_type) || 2733 arg_type_is_mem_ptr(fn->arg5_type) || 2734 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 2735 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 2736 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 2737 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 2738 return false; 2739 2740 return true; 2741 } 2742 2743 static bool check_refcount_ok(const struct bpf_func_proto *fn) 2744 { 2745 int count = 0; 2746 2747 if (arg_type_is_refcounted(fn->arg1_type)) 2748 count++; 2749 if (arg_type_is_refcounted(fn->arg2_type)) 2750 count++; 2751 if (arg_type_is_refcounted(fn->arg3_type)) 2752 count++; 2753 if (arg_type_is_refcounted(fn->arg4_type)) 2754 count++; 2755 if (arg_type_is_refcounted(fn->arg5_type)) 2756 count++; 2757 2758 /* We only support one arg being unreferenced at the moment, 2759 * which is sufficient for the helper functions we have right now. 2760 */ 2761 return count <= 1; 2762 } 2763 2764 static int check_func_proto(const struct bpf_func_proto *fn) 2765 { 2766 return check_raw_mode_ok(fn) && 2767 check_arg_pair_ok(fn) && 2768 check_refcount_ok(fn) ? 0 : -EINVAL; 2769 } 2770 2771 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 2772 * are now invalid, so turn them into unknown SCALAR_VALUE. 2773 */ 2774 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 2775 struct bpf_func_state *state) 2776 { 2777 struct bpf_reg_state *regs = state->regs, *reg; 2778 int i; 2779 2780 for (i = 0; i < MAX_BPF_REG; i++) 2781 if (reg_is_pkt_pointer_any(®s[i])) 2782 mark_reg_unknown(env, regs, i); 2783 2784 bpf_for_each_spilled_reg(i, state, reg) { 2785 if (!reg) 2786 continue; 2787 if (reg_is_pkt_pointer_any(reg)) 2788 __mark_reg_unknown(reg); 2789 } 2790 } 2791 2792 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 2793 { 2794 struct bpf_verifier_state *vstate = env->cur_state; 2795 int i; 2796 2797 for (i = 0; i <= vstate->curframe; i++) 2798 __clear_all_pkt_pointers(env, vstate->frame[i]); 2799 } 2800 2801 static void release_reg_references(struct bpf_verifier_env *env, 2802 struct bpf_func_state *state, int id) 2803 { 2804 struct bpf_reg_state *regs = state->regs, *reg; 2805 int i; 2806 2807 for (i = 0; i < MAX_BPF_REG; i++) 2808 if (regs[i].id == id) 2809 mark_reg_unknown(env, regs, i); 2810 2811 bpf_for_each_spilled_reg(i, state, reg) { 2812 if (!reg) 2813 continue; 2814 if (reg_is_refcounted(reg) && reg->id == id) 2815 __mark_reg_unknown(reg); 2816 } 2817 } 2818 2819 /* The pointer with the specified id has released its reference to kernel 2820 * resources. Identify all copies of the same pointer and clear the reference. 2821 */ 2822 static int release_reference(struct bpf_verifier_env *env, 2823 struct bpf_call_arg_meta *meta) 2824 { 2825 struct bpf_verifier_state *vstate = env->cur_state; 2826 int i; 2827 2828 for (i = 0; i <= vstate->curframe; i++) 2829 release_reg_references(env, vstate->frame[i], meta->ptr_id); 2830 2831 return release_reference_state(cur_func(env), meta->ptr_id); 2832 } 2833 2834 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 2835 int *insn_idx) 2836 { 2837 struct bpf_verifier_state *state = env->cur_state; 2838 struct bpf_func_state *caller, *callee; 2839 int i, err, subprog, target_insn; 2840 2841 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 2842 verbose(env, "the call stack of %d frames is too deep\n", 2843 state->curframe + 2); 2844 return -E2BIG; 2845 } 2846 2847 target_insn = *insn_idx + insn->imm; 2848 subprog = find_subprog(env, target_insn + 1); 2849 if (subprog < 0) { 2850 verbose(env, "verifier bug. No program starts at insn %d\n", 2851 target_insn + 1); 2852 return -EFAULT; 2853 } 2854 2855 caller = state->frame[state->curframe]; 2856 if (state->frame[state->curframe + 1]) { 2857 verbose(env, "verifier bug. Frame %d already allocated\n", 2858 state->curframe + 1); 2859 return -EFAULT; 2860 } 2861 2862 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 2863 if (!callee) 2864 return -ENOMEM; 2865 state->frame[state->curframe + 1] = callee; 2866 2867 /* callee cannot access r0, r6 - r9 for reading and has to write 2868 * into its own stack before reading from it. 2869 * callee can read/write into caller's stack 2870 */ 2871 init_func_state(env, callee, 2872 /* remember the callsite, it will be used by bpf_exit */ 2873 *insn_idx /* callsite */, 2874 state->curframe + 1 /* frameno within this callchain */, 2875 subprog /* subprog number within this prog */); 2876 2877 /* Transfer references to the callee */ 2878 err = transfer_reference_state(callee, caller); 2879 if (err) 2880 return err; 2881 2882 /* copy r1 - r5 args that callee can access. The copy includes parent 2883 * pointers, which connects us up to the liveness chain 2884 */ 2885 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 2886 callee->regs[i] = caller->regs[i]; 2887 2888 /* after the call registers r0 - r5 were scratched */ 2889 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2890 mark_reg_not_init(env, caller->regs, caller_saved[i]); 2891 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2892 } 2893 2894 /* only increment it after check_reg_arg() finished */ 2895 state->curframe++; 2896 2897 /* and go analyze first insn of the callee */ 2898 *insn_idx = target_insn; 2899 2900 if (env->log.level) { 2901 verbose(env, "caller:\n"); 2902 print_verifier_state(env, caller); 2903 verbose(env, "callee:\n"); 2904 print_verifier_state(env, callee); 2905 } 2906 return 0; 2907 } 2908 2909 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 2910 { 2911 struct bpf_verifier_state *state = env->cur_state; 2912 struct bpf_func_state *caller, *callee; 2913 struct bpf_reg_state *r0; 2914 int err; 2915 2916 callee = state->frame[state->curframe]; 2917 r0 = &callee->regs[BPF_REG_0]; 2918 if (r0->type == PTR_TO_STACK) { 2919 /* technically it's ok to return caller's stack pointer 2920 * (or caller's caller's pointer) back to the caller, 2921 * since these pointers are valid. Only current stack 2922 * pointer will be invalid as soon as function exits, 2923 * but let's be conservative 2924 */ 2925 verbose(env, "cannot return stack pointer to the caller\n"); 2926 return -EINVAL; 2927 } 2928 2929 state->curframe--; 2930 caller = state->frame[state->curframe]; 2931 /* return to the caller whatever r0 had in the callee */ 2932 caller->regs[BPF_REG_0] = *r0; 2933 2934 /* Transfer references to the caller */ 2935 err = transfer_reference_state(caller, callee); 2936 if (err) 2937 return err; 2938 2939 *insn_idx = callee->callsite + 1; 2940 if (env->log.level) { 2941 verbose(env, "returning from callee:\n"); 2942 print_verifier_state(env, callee); 2943 verbose(env, "to caller at %d:\n", *insn_idx); 2944 print_verifier_state(env, caller); 2945 } 2946 /* clear everything in the callee */ 2947 free_func_state(callee); 2948 state->frame[state->curframe + 1] = NULL; 2949 return 0; 2950 } 2951 2952 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 2953 int func_id, 2954 struct bpf_call_arg_meta *meta) 2955 { 2956 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 2957 2958 if (ret_type != RET_INTEGER || 2959 (func_id != BPF_FUNC_get_stack && 2960 func_id != BPF_FUNC_probe_read_str)) 2961 return; 2962 2963 ret_reg->smax_value = meta->msize_smax_value; 2964 ret_reg->umax_value = meta->msize_umax_value; 2965 __reg_deduce_bounds(ret_reg); 2966 __reg_bound_offset(ret_reg); 2967 } 2968 2969 static int 2970 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 2971 int func_id, int insn_idx) 2972 { 2973 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 2974 2975 if (func_id != BPF_FUNC_tail_call && 2976 func_id != BPF_FUNC_map_lookup_elem && 2977 func_id != BPF_FUNC_map_update_elem && 2978 func_id != BPF_FUNC_map_delete_elem && 2979 func_id != BPF_FUNC_map_push_elem && 2980 func_id != BPF_FUNC_map_pop_elem && 2981 func_id != BPF_FUNC_map_peek_elem) 2982 return 0; 2983 2984 if (meta->map_ptr == NULL) { 2985 verbose(env, "kernel subsystem misconfigured verifier\n"); 2986 return -EINVAL; 2987 } 2988 2989 if (!BPF_MAP_PTR(aux->map_state)) 2990 bpf_map_ptr_store(aux, meta->map_ptr, 2991 meta->map_ptr->unpriv_array); 2992 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr) 2993 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 2994 meta->map_ptr->unpriv_array); 2995 return 0; 2996 } 2997 2998 static int check_reference_leak(struct bpf_verifier_env *env) 2999 { 3000 struct bpf_func_state *state = cur_func(env); 3001 int i; 3002 3003 for (i = 0; i < state->acquired_refs; i++) { 3004 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 3005 state->refs[i].id, state->refs[i].insn_idx); 3006 } 3007 return state->acquired_refs ? -EINVAL : 0; 3008 } 3009 3010 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 3011 { 3012 const struct bpf_func_proto *fn = NULL; 3013 struct bpf_reg_state *regs; 3014 struct bpf_call_arg_meta meta; 3015 bool changes_data; 3016 int i, err; 3017 3018 /* find function prototype */ 3019 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 3020 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 3021 func_id); 3022 return -EINVAL; 3023 } 3024 3025 if (env->ops->get_func_proto) 3026 fn = env->ops->get_func_proto(func_id, env->prog); 3027 if (!fn) { 3028 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 3029 func_id); 3030 return -EINVAL; 3031 } 3032 3033 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 3034 if (!env->prog->gpl_compatible && fn->gpl_only) { 3035 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 3036 return -EINVAL; 3037 } 3038 3039 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 3040 changes_data = bpf_helper_changes_pkt_data(fn->func); 3041 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 3042 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 3043 func_id_name(func_id), func_id); 3044 return -EINVAL; 3045 } 3046 3047 memset(&meta, 0, sizeof(meta)); 3048 meta.pkt_access = fn->pkt_access; 3049 3050 err = check_func_proto(fn); 3051 if (err) { 3052 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 3053 func_id_name(func_id), func_id); 3054 return err; 3055 } 3056 3057 meta.func_id = func_id; 3058 /* check args */ 3059 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 3060 if (err) 3061 return err; 3062 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 3063 if (err) 3064 return err; 3065 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 3066 if (err) 3067 return err; 3068 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 3069 if (err) 3070 return err; 3071 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 3072 if (err) 3073 return err; 3074 3075 err = record_func_map(env, &meta, func_id, insn_idx); 3076 if (err) 3077 return err; 3078 3079 /* Mark slots with STACK_MISC in case of raw mode, stack offset 3080 * is inferred from register state. 3081 */ 3082 for (i = 0; i < meta.access_size; i++) { 3083 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 3084 BPF_WRITE, -1, false); 3085 if (err) 3086 return err; 3087 } 3088 3089 if (func_id == BPF_FUNC_tail_call) { 3090 err = check_reference_leak(env); 3091 if (err) { 3092 verbose(env, "tail_call would lead to reference leak\n"); 3093 return err; 3094 } 3095 } else if (is_release_function(func_id)) { 3096 err = release_reference(env, &meta); 3097 if (err) { 3098 verbose(env, "func %s#%d reference has not been acquired before\n", 3099 func_id_name(func_id), func_id); 3100 return err; 3101 } 3102 } 3103 3104 regs = cur_regs(env); 3105 3106 /* check that flags argument in get_local_storage(map, flags) is 0, 3107 * this is required because get_local_storage() can't return an error. 3108 */ 3109 if (func_id == BPF_FUNC_get_local_storage && 3110 !register_is_null(®s[BPF_REG_2])) { 3111 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 3112 return -EINVAL; 3113 } 3114 3115 /* reset caller saved regs */ 3116 for (i = 0; i < CALLER_SAVED_REGS; i++) { 3117 mark_reg_not_init(env, regs, caller_saved[i]); 3118 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3119 } 3120 3121 /* update return register (already marked as written above) */ 3122 if (fn->ret_type == RET_INTEGER) { 3123 /* sets type to SCALAR_VALUE */ 3124 mark_reg_unknown(env, regs, BPF_REG_0); 3125 } else if (fn->ret_type == RET_VOID) { 3126 regs[BPF_REG_0].type = NOT_INIT; 3127 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 3128 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 3129 /* There is no offset yet applied, variable or fixed */ 3130 mark_reg_known_zero(env, regs, BPF_REG_0); 3131 /* remember map_ptr, so that check_map_access() 3132 * can check 'value_size' boundary of memory access 3133 * to map element returned from bpf_map_lookup_elem() 3134 */ 3135 if (meta.map_ptr == NULL) { 3136 verbose(env, 3137 "kernel subsystem misconfigured verifier\n"); 3138 return -EINVAL; 3139 } 3140 regs[BPF_REG_0].map_ptr = meta.map_ptr; 3141 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 3142 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 3143 if (map_value_has_spin_lock(meta.map_ptr)) 3144 regs[BPF_REG_0].id = ++env->id_gen; 3145 } else { 3146 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 3147 regs[BPF_REG_0].id = ++env->id_gen; 3148 } 3149 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 3150 mark_reg_known_zero(env, regs, BPF_REG_0); 3151 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 3152 if (is_acquire_function(func_id)) { 3153 int id = acquire_reference_state(env, insn_idx); 3154 3155 if (id < 0) 3156 return id; 3157 /* For release_reference() */ 3158 regs[BPF_REG_0].id = id; 3159 } else { 3160 /* For mark_ptr_or_null_reg() */ 3161 regs[BPF_REG_0].id = ++env->id_gen; 3162 } 3163 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 3164 mark_reg_known_zero(env, regs, BPF_REG_0); 3165 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 3166 regs[BPF_REG_0].id = ++env->id_gen; 3167 } else { 3168 verbose(env, "unknown return type %d of func %s#%d\n", 3169 fn->ret_type, func_id_name(func_id), func_id); 3170 return -EINVAL; 3171 } 3172 3173 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 3174 3175 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 3176 if (err) 3177 return err; 3178 3179 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 3180 const char *err_str; 3181 3182 #ifdef CONFIG_PERF_EVENTS 3183 err = get_callchain_buffers(sysctl_perf_event_max_stack); 3184 err_str = "cannot get callchain buffer for func %s#%d\n"; 3185 #else 3186 err = -ENOTSUPP; 3187 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 3188 #endif 3189 if (err) { 3190 verbose(env, err_str, func_id_name(func_id), func_id); 3191 return err; 3192 } 3193 3194 env->prog->has_callchain_buf = true; 3195 } 3196 3197 if (changes_data) 3198 clear_all_pkt_pointers(env); 3199 return 0; 3200 } 3201 3202 static bool signed_add_overflows(s64 a, s64 b) 3203 { 3204 /* Do the add in u64, where overflow is well-defined */ 3205 s64 res = (s64)((u64)a + (u64)b); 3206 3207 if (b < 0) 3208 return res > a; 3209 return res < a; 3210 } 3211 3212 static bool signed_sub_overflows(s64 a, s64 b) 3213 { 3214 /* Do the sub in u64, where overflow is well-defined */ 3215 s64 res = (s64)((u64)a - (u64)b); 3216 3217 if (b < 0) 3218 return res < a; 3219 return res > a; 3220 } 3221 3222 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 3223 const struct bpf_reg_state *reg, 3224 enum bpf_reg_type type) 3225 { 3226 bool known = tnum_is_const(reg->var_off); 3227 s64 val = reg->var_off.value; 3228 s64 smin = reg->smin_value; 3229 3230 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 3231 verbose(env, "math between %s pointer and %lld is not allowed\n", 3232 reg_type_str[type], val); 3233 return false; 3234 } 3235 3236 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 3237 verbose(env, "%s pointer offset %d is not allowed\n", 3238 reg_type_str[type], reg->off); 3239 return false; 3240 } 3241 3242 if (smin == S64_MIN) { 3243 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 3244 reg_type_str[type]); 3245 return false; 3246 } 3247 3248 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 3249 verbose(env, "value %lld makes %s pointer be out of bounds\n", 3250 smin, reg_type_str[type]); 3251 return false; 3252 } 3253 3254 return true; 3255 } 3256 3257 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 3258 { 3259 return &env->insn_aux_data[env->insn_idx]; 3260 } 3261 3262 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 3263 u32 *ptr_limit, u8 opcode, bool off_is_neg) 3264 { 3265 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 3266 (opcode == BPF_SUB && !off_is_neg); 3267 u32 off; 3268 3269 switch (ptr_reg->type) { 3270 case PTR_TO_STACK: 3271 off = ptr_reg->off + ptr_reg->var_off.value; 3272 if (mask_to_left) 3273 *ptr_limit = MAX_BPF_STACK + off; 3274 else 3275 *ptr_limit = -off; 3276 return 0; 3277 case PTR_TO_MAP_VALUE: 3278 if (mask_to_left) { 3279 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 3280 } else { 3281 off = ptr_reg->smin_value + ptr_reg->off; 3282 *ptr_limit = ptr_reg->map_ptr->value_size - off; 3283 } 3284 return 0; 3285 default: 3286 return -EINVAL; 3287 } 3288 } 3289 3290 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 3291 const struct bpf_insn *insn) 3292 { 3293 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K; 3294 } 3295 3296 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 3297 u32 alu_state, u32 alu_limit) 3298 { 3299 /* If we arrived here from different branches with different 3300 * state or limits to sanitize, then this won't work. 3301 */ 3302 if (aux->alu_state && 3303 (aux->alu_state != alu_state || 3304 aux->alu_limit != alu_limit)) 3305 return -EACCES; 3306 3307 /* Corresponding fixup done in fixup_bpf_calls(). */ 3308 aux->alu_state = alu_state; 3309 aux->alu_limit = alu_limit; 3310 return 0; 3311 } 3312 3313 static int sanitize_val_alu(struct bpf_verifier_env *env, 3314 struct bpf_insn *insn) 3315 { 3316 struct bpf_insn_aux_data *aux = cur_aux(env); 3317 3318 if (can_skip_alu_sanitation(env, insn)) 3319 return 0; 3320 3321 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 3322 } 3323 3324 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 3325 struct bpf_insn *insn, 3326 const struct bpf_reg_state *ptr_reg, 3327 struct bpf_reg_state *dst_reg, 3328 bool off_is_neg) 3329 { 3330 struct bpf_verifier_state *vstate = env->cur_state; 3331 struct bpf_insn_aux_data *aux = cur_aux(env); 3332 bool ptr_is_dst_reg = ptr_reg == dst_reg; 3333 u8 opcode = BPF_OP(insn->code); 3334 u32 alu_state, alu_limit; 3335 struct bpf_reg_state tmp; 3336 bool ret; 3337 3338 if (can_skip_alu_sanitation(env, insn)) 3339 return 0; 3340 3341 /* We already marked aux for masking from non-speculative 3342 * paths, thus we got here in the first place. We only care 3343 * to explore bad access from here. 3344 */ 3345 if (vstate->speculative) 3346 goto do_sim; 3347 3348 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 3349 alu_state |= ptr_is_dst_reg ? 3350 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 3351 3352 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 3353 return 0; 3354 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 3355 return -EACCES; 3356 do_sim: 3357 /* Simulate and find potential out-of-bounds access under 3358 * speculative execution from truncation as a result of 3359 * masking when off was not within expected range. If off 3360 * sits in dst, then we temporarily need to move ptr there 3361 * to simulate dst (== 0) +/-= ptr. Needed, for example, 3362 * for cases where we use K-based arithmetic in one direction 3363 * and truncated reg-based in the other in order to explore 3364 * bad access. 3365 */ 3366 if (!ptr_is_dst_reg) { 3367 tmp = *dst_reg; 3368 *dst_reg = *ptr_reg; 3369 } 3370 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 3371 if (!ptr_is_dst_reg) 3372 *dst_reg = tmp; 3373 return !ret ? -EFAULT : 0; 3374 } 3375 3376 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 3377 * Caller should also handle BPF_MOV case separately. 3378 * If we return -EACCES, caller may want to try again treating pointer as a 3379 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 3380 */ 3381 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 3382 struct bpf_insn *insn, 3383 const struct bpf_reg_state *ptr_reg, 3384 const struct bpf_reg_state *off_reg) 3385 { 3386 struct bpf_verifier_state *vstate = env->cur_state; 3387 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3388 struct bpf_reg_state *regs = state->regs, *dst_reg; 3389 bool known = tnum_is_const(off_reg->var_off); 3390 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 3391 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 3392 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 3393 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 3394 u32 dst = insn->dst_reg, src = insn->src_reg; 3395 u8 opcode = BPF_OP(insn->code); 3396 int ret; 3397 3398 dst_reg = ®s[dst]; 3399 3400 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 3401 smin_val > smax_val || umin_val > umax_val) { 3402 /* Taint dst register if offset had invalid bounds derived from 3403 * e.g. dead branches. 3404 */ 3405 __mark_reg_unknown(dst_reg); 3406 return 0; 3407 } 3408 3409 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3410 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 3411 verbose(env, 3412 "R%d 32-bit pointer arithmetic prohibited\n", 3413 dst); 3414 return -EACCES; 3415 } 3416 3417 switch (ptr_reg->type) { 3418 case PTR_TO_MAP_VALUE_OR_NULL: 3419 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 3420 dst, reg_type_str[ptr_reg->type]); 3421 return -EACCES; 3422 case CONST_PTR_TO_MAP: 3423 case PTR_TO_PACKET_END: 3424 case PTR_TO_SOCKET: 3425 case PTR_TO_SOCKET_OR_NULL: 3426 case PTR_TO_SOCK_COMMON: 3427 case PTR_TO_SOCK_COMMON_OR_NULL: 3428 case PTR_TO_TCP_SOCK: 3429 case PTR_TO_TCP_SOCK_OR_NULL: 3430 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 3431 dst, reg_type_str[ptr_reg->type]); 3432 return -EACCES; 3433 case PTR_TO_MAP_VALUE: 3434 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 3435 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 3436 off_reg == dst_reg ? dst : src); 3437 return -EACCES; 3438 } 3439 /* fall-through */ 3440 default: 3441 break; 3442 } 3443 3444 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 3445 * The id may be overwritten later if we create a new variable offset. 3446 */ 3447 dst_reg->type = ptr_reg->type; 3448 dst_reg->id = ptr_reg->id; 3449 3450 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 3451 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 3452 return -EINVAL; 3453 3454 switch (opcode) { 3455 case BPF_ADD: 3456 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 3457 if (ret < 0) { 3458 verbose(env, "R%d tried to add from different maps or paths\n", dst); 3459 return ret; 3460 } 3461 /* We can take a fixed offset as long as it doesn't overflow 3462 * the s32 'off' field 3463 */ 3464 if (known && (ptr_reg->off + smin_val == 3465 (s64)(s32)(ptr_reg->off + smin_val))) { 3466 /* pointer += K. Accumulate it into fixed offset */ 3467 dst_reg->smin_value = smin_ptr; 3468 dst_reg->smax_value = smax_ptr; 3469 dst_reg->umin_value = umin_ptr; 3470 dst_reg->umax_value = umax_ptr; 3471 dst_reg->var_off = ptr_reg->var_off; 3472 dst_reg->off = ptr_reg->off + smin_val; 3473 dst_reg->raw = ptr_reg->raw; 3474 break; 3475 } 3476 /* A new variable offset is created. Note that off_reg->off 3477 * == 0, since it's a scalar. 3478 * dst_reg gets the pointer type and since some positive 3479 * integer value was added to the pointer, give it a new 'id' 3480 * if it's a PTR_TO_PACKET. 3481 * this creates a new 'base' pointer, off_reg (variable) gets 3482 * added into the variable offset, and we copy the fixed offset 3483 * from ptr_reg. 3484 */ 3485 if (signed_add_overflows(smin_ptr, smin_val) || 3486 signed_add_overflows(smax_ptr, smax_val)) { 3487 dst_reg->smin_value = S64_MIN; 3488 dst_reg->smax_value = S64_MAX; 3489 } else { 3490 dst_reg->smin_value = smin_ptr + smin_val; 3491 dst_reg->smax_value = smax_ptr + smax_val; 3492 } 3493 if (umin_ptr + umin_val < umin_ptr || 3494 umax_ptr + umax_val < umax_ptr) { 3495 dst_reg->umin_value = 0; 3496 dst_reg->umax_value = U64_MAX; 3497 } else { 3498 dst_reg->umin_value = umin_ptr + umin_val; 3499 dst_reg->umax_value = umax_ptr + umax_val; 3500 } 3501 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 3502 dst_reg->off = ptr_reg->off; 3503 dst_reg->raw = ptr_reg->raw; 3504 if (reg_is_pkt_pointer(ptr_reg)) { 3505 dst_reg->id = ++env->id_gen; 3506 /* something was added to pkt_ptr, set range to zero */ 3507 dst_reg->raw = 0; 3508 } 3509 break; 3510 case BPF_SUB: 3511 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 3512 if (ret < 0) { 3513 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 3514 return ret; 3515 } 3516 if (dst_reg == off_reg) { 3517 /* scalar -= pointer. Creates an unknown scalar */ 3518 verbose(env, "R%d tried to subtract pointer from scalar\n", 3519 dst); 3520 return -EACCES; 3521 } 3522 /* We don't allow subtraction from FP, because (according to 3523 * test_verifier.c test "invalid fp arithmetic", JITs might not 3524 * be able to deal with it. 3525 */ 3526 if (ptr_reg->type == PTR_TO_STACK) { 3527 verbose(env, "R%d subtraction from stack pointer prohibited\n", 3528 dst); 3529 return -EACCES; 3530 } 3531 if (known && (ptr_reg->off - smin_val == 3532 (s64)(s32)(ptr_reg->off - smin_val))) { 3533 /* pointer -= K. Subtract it from fixed offset */ 3534 dst_reg->smin_value = smin_ptr; 3535 dst_reg->smax_value = smax_ptr; 3536 dst_reg->umin_value = umin_ptr; 3537 dst_reg->umax_value = umax_ptr; 3538 dst_reg->var_off = ptr_reg->var_off; 3539 dst_reg->id = ptr_reg->id; 3540 dst_reg->off = ptr_reg->off - smin_val; 3541 dst_reg->raw = ptr_reg->raw; 3542 break; 3543 } 3544 /* A new variable offset is created. If the subtrahend is known 3545 * nonnegative, then any reg->range we had before is still good. 3546 */ 3547 if (signed_sub_overflows(smin_ptr, smax_val) || 3548 signed_sub_overflows(smax_ptr, smin_val)) { 3549 /* Overflow possible, we know nothing */ 3550 dst_reg->smin_value = S64_MIN; 3551 dst_reg->smax_value = S64_MAX; 3552 } else { 3553 dst_reg->smin_value = smin_ptr - smax_val; 3554 dst_reg->smax_value = smax_ptr - smin_val; 3555 } 3556 if (umin_ptr < umax_val) { 3557 /* Overflow possible, we know nothing */ 3558 dst_reg->umin_value = 0; 3559 dst_reg->umax_value = U64_MAX; 3560 } else { 3561 /* Cannot overflow (as long as bounds are consistent) */ 3562 dst_reg->umin_value = umin_ptr - umax_val; 3563 dst_reg->umax_value = umax_ptr - umin_val; 3564 } 3565 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 3566 dst_reg->off = ptr_reg->off; 3567 dst_reg->raw = ptr_reg->raw; 3568 if (reg_is_pkt_pointer(ptr_reg)) { 3569 dst_reg->id = ++env->id_gen; 3570 /* something was added to pkt_ptr, set range to zero */ 3571 if (smin_val < 0) 3572 dst_reg->raw = 0; 3573 } 3574 break; 3575 case BPF_AND: 3576 case BPF_OR: 3577 case BPF_XOR: 3578 /* bitwise ops on pointers are troublesome, prohibit. */ 3579 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 3580 dst, bpf_alu_string[opcode >> 4]); 3581 return -EACCES; 3582 default: 3583 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 3584 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 3585 dst, bpf_alu_string[opcode >> 4]); 3586 return -EACCES; 3587 } 3588 3589 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 3590 return -EINVAL; 3591 3592 __update_reg_bounds(dst_reg); 3593 __reg_deduce_bounds(dst_reg); 3594 __reg_bound_offset(dst_reg); 3595 3596 /* For unprivileged we require that resulting offset must be in bounds 3597 * in order to be able to sanitize access later on. 3598 */ 3599 if (!env->allow_ptr_leaks) { 3600 if (dst_reg->type == PTR_TO_MAP_VALUE && 3601 check_map_access(env, dst, dst_reg->off, 1, false)) { 3602 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 3603 "prohibited for !root\n", dst); 3604 return -EACCES; 3605 } else if (dst_reg->type == PTR_TO_STACK && 3606 check_stack_access(env, dst_reg, dst_reg->off + 3607 dst_reg->var_off.value, 1)) { 3608 verbose(env, "R%d stack pointer arithmetic goes out of range, " 3609 "prohibited for !root\n", dst); 3610 return -EACCES; 3611 } 3612 } 3613 3614 return 0; 3615 } 3616 3617 /* WARNING: This function does calculations on 64-bit values, but the actual 3618 * execution may occur on 32-bit values. Therefore, things like bitshifts 3619 * need extra checks in the 32-bit case. 3620 */ 3621 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 3622 struct bpf_insn *insn, 3623 struct bpf_reg_state *dst_reg, 3624 struct bpf_reg_state src_reg) 3625 { 3626 struct bpf_reg_state *regs = cur_regs(env); 3627 u8 opcode = BPF_OP(insn->code); 3628 bool src_known, dst_known; 3629 s64 smin_val, smax_val; 3630 u64 umin_val, umax_val; 3631 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 3632 u32 dst = insn->dst_reg; 3633 int ret; 3634 3635 if (insn_bitness == 32) { 3636 /* Relevant for 32-bit RSH: Information can propagate towards 3637 * LSB, so it isn't sufficient to only truncate the output to 3638 * 32 bits. 3639 */ 3640 coerce_reg_to_size(dst_reg, 4); 3641 coerce_reg_to_size(&src_reg, 4); 3642 } 3643 3644 smin_val = src_reg.smin_value; 3645 smax_val = src_reg.smax_value; 3646 umin_val = src_reg.umin_value; 3647 umax_val = src_reg.umax_value; 3648 src_known = tnum_is_const(src_reg.var_off); 3649 dst_known = tnum_is_const(dst_reg->var_off); 3650 3651 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 3652 smin_val > smax_val || umin_val > umax_val) { 3653 /* Taint dst register if offset had invalid bounds derived from 3654 * e.g. dead branches. 3655 */ 3656 __mark_reg_unknown(dst_reg); 3657 return 0; 3658 } 3659 3660 if (!src_known && 3661 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 3662 __mark_reg_unknown(dst_reg); 3663 return 0; 3664 } 3665 3666 switch (opcode) { 3667 case BPF_ADD: 3668 ret = sanitize_val_alu(env, insn); 3669 if (ret < 0) { 3670 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 3671 return ret; 3672 } 3673 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 3674 signed_add_overflows(dst_reg->smax_value, smax_val)) { 3675 dst_reg->smin_value = S64_MIN; 3676 dst_reg->smax_value = S64_MAX; 3677 } else { 3678 dst_reg->smin_value += smin_val; 3679 dst_reg->smax_value += smax_val; 3680 } 3681 if (dst_reg->umin_value + umin_val < umin_val || 3682 dst_reg->umax_value + umax_val < umax_val) { 3683 dst_reg->umin_value = 0; 3684 dst_reg->umax_value = U64_MAX; 3685 } else { 3686 dst_reg->umin_value += umin_val; 3687 dst_reg->umax_value += umax_val; 3688 } 3689 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 3690 break; 3691 case BPF_SUB: 3692 ret = sanitize_val_alu(env, insn); 3693 if (ret < 0) { 3694 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 3695 return ret; 3696 } 3697 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 3698 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 3699 /* Overflow possible, we know nothing */ 3700 dst_reg->smin_value = S64_MIN; 3701 dst_reg->smax_value = S64_MAX; 3702 } else { 3703 dst_reg->smin_value -= smax_val; 3704 dst_reg->smax_value -= smin_val; 3705 } 3706 if (dst_reg->umin_value < umax_val) { 3707 /* Overflow possible, we know nothing */ 3708 dst_reg->umin_value = 0; 3709 dst_reg->umax_value = U64_MAX; 3710 } else { 3711 /* Cannot overflow (as long as bounds are consistent) */ 3712 dst_reg->umin_value -= umax_val; 3713 dst_reg->umax_value -= umin_val; 3714 } 3715 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 3716 break; 3717 case BPF_MUL: 3718 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 3719 if (smin_val < 0 || dst_reg->smin_value < 0) { 3720 /* Ain't nobody got time to multiply that sign */ 3721 __mark_reg_unbounded(dst_reg); 3722 __update_reg_bounds(dst_reg); 3723 break; 3724 } 3725 /* Both values are positive, so we can work with unsigned and 3726 * copy the result to signed (unless it exceeds S64_MAX). 3727 */ 3728 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 3729 /* Potential overflow, we know nothing */ 3730 __mark_reg_unbounded(dst_reg); 3731 /* (except what we can learn from the var_off) */ 3732 __update_reg_bounds(dst_reg); 3733 break; 3734 } 3735 dst_reg->umin_value *= umin_val; 3736 dst_reg->umax_value *= umax_val; 3737 if (dst_reg->umax_value > S64_MAX) { 3738 /* Overflow possible, we know nothing */ 3739 dst_reg->smin_value = S64_MIN; 3740 dst_reg->smax_value = S64_MAX; 3741 } else { 3742 dst_reg->smin_value = dst_reg->umin_value; 3743 dst_reg->smax_value = dst_reg->umax_value; 3744 } 3745 break; 3746 case BPF_AND: 3747 if (src_known && dst_known) { 3748 __mark_reg_known(dst_reg, dst_reg->var_off.value & 3749 src_reg.var_off.value); 3750 break; 3751 } 3752 /* We get our minimum from the var_off, since that's inherently 3753 * bitwise. Our maximum is the minimum of the operands' maxima. 3754 */ 3755 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 3756 dst_reg->umin_value = dst_reg->var_off.value; 3757 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 3758 if (dst_reg->smin_value < 0 || smin_val < 0) { 3759 /* Lose signed bounds when ANDing negative numbers, 3760 * ain't nobody got time for that. 3761 */ 3762 dst_reg->smin_value = S64_MIN; 3763 dst_reg->smax_value = S64_MAX; 3764 } else { 3765 /* ANDing two positives gives a positive, so safe to 3766 * cast result into s64. 3767 */ 3768 dst_reg->smin_value = dst_reg->umin_value; 3769 dst_reg->smax_value = dst_reg->umax_value; 3770 } 3771 /* We may learn something more from the var_off */ 3772 __update_reg_bounds(dst_reg); 3773 break; 3774 case BPF_OR: 3775 if (src_known && dst_known) { 3776 __mark_reg_known(dst_reg, dst_reg->var_off.value | 3777 src_reg.var_off.value); 3778 break; 3779 } 3780 /* We get our maximum from the var_off, and our minimum is the 3781 * maximum of the operands' minima 3782 */ 3783 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 3784 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 3785 dst_reg->umax_value = dst_reg->var_off.value | 3786 dst_reg->var_off.mask; 3787 if (dst_reg->smin_value < 0 || smin_val < 0) { 3788 /* Lose signed bounds when ORing negative numbers, 3789 * ain't nobody got time for that. 3790 */ 3791 dst_reg->smin_value = S64_MIN; 3792 dst_reg->smax_value = S64_MAX; 3793 } else { 3794 /* ORing two positives gives a positive, so safe to 3795 * cast result into s64. 3796 */ 3797 dst_reg->smin_value = dst_reg->umin_value; 3798 dst_reg->smax_value = dst_reg->umax_value; 3799 } 3800 /* We may learn something more from the var_off */ 3801 __update_reg_bounds(dst_reg); 3802 break; 3803 case BPF_LSH: 3804 if (umax_val >= insn_bitness) { 3805 /* Shifts greater than 31 or 63 are undefined. 3806 * This includes shifts by a negative number. 3807 */ 3808 mark_reg_unknown(env, regs, insn->dst_reg); 3809 break; 3810 } 3811 /* We lose all sign bit information (except what we can pick 3812 * up from var_off) 3813 */ 3814 dst_reg->smin_value = S64_MIN; 3815 dst_reg->smax_value = S64_MAX; 3816 /* If we might shift our top bit out, then we know nothing */ 3817 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 3818 dst_reg->umin_value = 0; 3819 dst_reg->umax_value = U64_MAX; 3820 } else { 3821 dst_reg->umin_value <<= umin_val; 3822 dst_reg->umax_value <<= umax_val; 3823 } 3824 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 3825 /* We may learn something more from the var_off */ 3826 __update_reg_bounds(dst_reg); 3827 break; 3828 case BPF_RSH: 3829 if (umax_val >= insn_bitness) { 3830 /* Shifts greater than 31 or 63 are undefined. 3831 * This includes shifts by a negative number. 3832 */ 3833 mark_reg_unknown(env, regs, insn->dst_reg); 3834 break; 3835 } 3836 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 3837 * be negative, then either: 3838 * 1) src_reg might be zero, so the sign bit of the result is 3839 * unknown, so we lose our signed bounds 3840 * 2) it's known negative, thus the unsigned bounds capture the 3841 * signed bounds 3842 * 3) the signed bounds cross zero, so they tell us nothing 3843 * about the result 3844 * If the value in dst_reg is known nonnegative, then again the 3845 * unsigned bounts capture the signed bounds. 3846 * Thus, in all cases it suffices to blow away our signed bounds 3847 * and rely on inferring new ones from the unsigned bounds and 3848 * var_off of the result. 3849 */ 3850 dst_reg->smin_value = S64_MIN; 3851 dst_reg->smax_value = S64_MAX; 3852 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 3853 dst_reg->umin_value >>= umax_val; 3854 dst_reg->umax_value >>= umin_val; 3855 /* We may learn something more from the var_off */ 3856 __update_reg_bounds(dst_reg); 3857 break; 3858 case BPF_ARSH: 3859 if (umax_val >= insn_bitness) { 3860 /* Shifts greater than 31 or 63 are undefined. 3861 * This includes shifts by a negative number. 3862 */ 3863 mark_reg_unknown(env, regs, insn->dst_reg); 3864 break; 3865 } 3866 3867 /* Upon reaching here, src_known is true and 3868 * umax_val is equal to umin_val. 3869 */ 3870 dst_reg->smin_value >>= umin_val; 3871 dst_reg->smax_value >>= umin_val; 3872 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 3873 3874 /* blow away the dst_reg umin_value/umax_value and rely on 3875 * dst_reg var_off to refine the result. 3876 */ 3877 dst_reg->umin_value = 0; 3878 dst_reg->umax_value = U64_MAX; 3879 __update_reg_bounds(dst_reg); 3880 break; 3881 default: 3882 mark_reg_unknown(env, regs, insn->dst_reg); 3883 break; 3884 } 3885 3886 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3887 /* 32-bit ALU ops are (32,32)->32 */ 3888 coerce_reg_to_size(dst_reg, 4); 3889 } 3890 3891 __reg_deduce_bounds(dst_reg); 3892 __reg_bound_offset(dst_reg); 3893 return 0; 3894 } 3895 3896 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 3897 * and var_off. 3898 */ 3899 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 3900 struct bpf_insn *insn) 3901 { 3902 struct bpf_verifier_state *vstate = env->cur_state; 3903 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3904 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 3905 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 3906 u8 opcode = BPF_OP(insn->code); 3907 3908 dst_reg = ®s[insn->dst_reg]; 3909 src_reg = NULL; 3910 if (dst_reg->type != SCALAR_VALUE) 3911 ptr_reg = dst_reg; 3912 if (BPF_SRC(insn->code) == BPF_X) { 3913 src_reg = ®s[insn->src_reg]; 3914 if (src_reg->type != SCALAR_VALUE) { 3915 if (dst_reg->type != SCALAR_VALUE) { 3916 /* Combining two pointers by any ALU op yields 3917 * an arbitrary scalar. Disallow all math except 3918 * pointer subtraction 3919 */ 3920 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 3921 mark_reg_unknown(env, regs, insn->dst_reg); 3922 return 0; 3923 } 3924 verbose(env, "R%d pointer %s pointer prohibited\n", 3925 insn->dst_reg, 3926 bpf_alu_string[opcode >> 4]); 3927 return -EACCES; 3928 } else { 3929 /* scalar += pointer 3930 * This is legal, but we have to reverse our 3931 * src/dest handling in computing the range 3932 */ 3933 return adjust_ptr_min_max_vals(env, insn, 3934 src_reg, dst_reg); 3935 } 3936 } else if (ptr_reg) { 3937 /* pointer += scalar */ 3938 return adjust_ptr_min_max_vals(env, insn, 3939 dst_reg, src_reg); 3940 } 3941 } else { 3942 /* Pretend the src is a reg with a known value, since we only 3943 * need to be able to read from this state. 3944 */ 3945 off_reg.type = SCALAR_VALUE; 3946 __mark_reg_known(&off_reg, insn->imm); 3947 src_reg = &off_reg; 3948 if (ptr_reg) /* pointer += K */ 3949 return adjust_ptr_min_max_vals(env, insn, 3950 ptr_reg, src_reg); 3951 } 3952 3953 /* Got here implies adding two SCALAR_VALUEs */ 3954 if (WARN_ON_ONCE(ptr_reg)) { 3955 print_verifier_state(env, state); 3956 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 3957 return -EINVAL; 3958 } 3959 if (WARN_ON(!src_reg)) { 3960 print_verifier_state(env, state); 3961 verbose(env, "verifier internal error: no src_reg\n"); 3962 return -EINVAL; 3963 } 3964 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 3965 } 3966 3967 /* check validity of 32-bit and 64-bit arithmetic operations */ 3968 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 3969 { 3970 struct bpf_reg_state *regs = cur_regs(env); 3971 u8 opcode = BPF_OP(insn->code); 3972 int err; 3973 3974 if (opcode == BPF_END || opcode == BPF_NEG) { 3975 if (opcode == BPF_NEG) { 3976 if (BPF_SRC(insn->code) != 0 || 3977 insn->src_reg != BPF_REG_0 || 3978 insn->off != 0 || insn->imm != 0) { 3979 verbose(env, "BPF_NEG uses reserved fields\n"); 3980 return -EINVAL; 3981 } 3982 } else { 3983 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 3984 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 3985 BPF_CLASS(insn->code) == BPF_ALU64) { 3986 verbose(env, "BPF_END uses reserved fields\n"); 3987 return -EINVAL; 3988 } 3989 } 3990 3991 /* check src operand */ 3992 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3993 if (err) 3994 return err; 3995 3996 if (is_pointer_value(env, insn->dst_reg)) { 3997 verbose(env, "R%d pointer arithmetic prohibited\n", 3998 insn->dst_reg); 3999 return -EACCES; 4000 } 4001 4002 /* check dest operand */ 4003 err = check_reg_arg(env, insn->dst_reg, DST_OP); 4004 if (err) 4005 return err; 4006 4007 } else if (opcode == BPF_MOV) { 4008 4009 if (BPF_SRC(insn->code) == BPF_X) { 4010 if (insn->imm != 0 || insn->off != 0) { 4011 verbose(env, "BPF_MOV uses reserved fields\n"); 4012 return -EINVAL; 4013 } 4014 4015 /* check src operand */ 4016 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4017 if (err) 4018 return err; 4019 } else { 4020 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 4021 verbose(env, "BPF_MOV uses reserved fields\n"); 4022 return -EINVAL; 4023 } 4024 } 4025 4026 /* check dest operand, mark as required later */ 4027 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 4028 if (err) 4029 return err; 4030 4031 if (BPF_SRC(insn->code) == BPF_X) { 4032 struct bpf_reg_state *src_reg = regs + insn->src_reg; 4033 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 4034 4035 if (BPF_CLASS(insn->code) == BPF_ALU64) { 4036 /* case: R1 = R2 4037 * copy register state to dest reg 4038 */ 4039 *dst_reg = *src_reg; 4040 dst_reg->live |= REG_LIVE_WRITTEN; 4041 } else { 4042 /* R1 = (u32) R2 */ 4043 if (is_pointer_value(env, insn->src_reg)) { 4044 verbose(env, 4045 "R%d partial copy of pointer\n", 4046 insn->src_reg); 4047 return -EACCES; 4048 } else if (src_reg->type == SCALAR_VALUE) { 4049 *dst_reg = *src_reg; 4050 dst_reg->live |= REG_LIVE_WRITTEN; 4051 } else { 4052 mark_reg_unknown(env, regs, 4053 insn->dst_reg); 4054 } 4055 coerce_reg_to_size(dst_reg, 4); 4056 } 4057 } else { 4058 /* case: R = imm 4059 * remember the value we stored into this reg 4060 */ 4061 /* clear any state __mark_reg_known doesn't set */ 4062 mark_reg_unknown(env, regs, insn->dst_reg); 4063 regs[insn->dst_reg].type = SCALAR_VALUE; 4064 if (BPF_CLASS(insn->code) == BPF_ALU64) { 4065 __mark_reg_known(regs + insn->dst_reg, 4066 insn->imm); 4067 } else { 4068 __mark_reg_known(regs + insn->dst_reg, 4069 (u32)insn->imm); 4070 } 4071 } 4072 4073 } else if (opcode > BPF_END) { 4074 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 4075 return -EINVAL; 4076 4077 } else { /* all other ALU ops: and, sub, xor, add, ... */ 4078 4079 if (BPF_SRC(insn->code) == BPF_X) { 4080 if (insn->imm != 0 || insn->off != 0) { 4081 verbose(env, "BPF_ALU uses reserved fields\n"); 4082 return -EINVAL; 4083 } 4084 /* check src1 operand */ 4085 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4086 if (err) 4087 return err; 4088 } else { 4089 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 4090 verbose(env, "BPF_ALU uses reserved fields\n"); 4091 return -EINVAL; 4092 } 4093 } 4094 4095 /* check src2 operand */ 4096 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4097 if (err) 4098 return err; 4099 4100 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 4101 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 4102 verbose(env, "div by zero\n"); 4103 return -EINVAL; 4104 } 4105 4106 if ((opcode == BPF_LSH || opcode == BPF_RSH || 4107 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 4108 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 4109 4110 if (insn->imm < 0 || insn->imm >= size) { 4111 verbose(env, "invalid shift %d\n", insn->imm); 4112 return -EINVAL; 4113 } 4114 } 4115 4116 /* check dest operand */ 4117 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 4118 if (err) 4119 return err; 4120 4121 return adjust_reg_min_max_vals(env, insn); 4122 } 4123 4124 return 0; 4125 } 4126 4127 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 4128 struct bpf_reg_state *dst_reg, 4129 enum bpf_reg_type type, 4130 bool range_right_open) 4131 { 4132 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4133 struct bpf_reg_state *regs = state->regs, *reg; 4134 u16 new_range; 4135 int i, j; 4136 4137 if (dst_reg->off < 0 || 4138 (dst_reg->off == 0 && range_right_open)) 4139 /* This doesn't give us any range */ 4140 return; 4141 4142 if (dst_reg->umax_value > MAX_PACKET_OFF || 4143 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 4144 /* Risk of overflow. For instance, ptr + (1<<63) may be less 4145 * than pkt_end, but that's because it's also less than pkt. 4146 */ 4147 return; 4148 4149 new_range = dst_reg->off; 4150 if (range_right_open) 4151 new_range--; 4152 4153 /* Examples for register markings: 4154 * 4155 * pkt_data in dst register: 4156 * 4157 * r2 = r3; 4158 * r2 += 8; 4159 * if (r2 > pkt_end) goto <handle exception> 4160 * <access okay> 4161 * 4162 * r2 = r3; 4163 * r2 += 8; 4164 * if (r2 < pkt_end) goto <access okay> 4165 * <handle exception> 4166 * 4167 * Where: 4168 * r2 == dst_reg, pkt_end == src_reg 4169 * r2=pkt(id=n,off=8,r=0) 4170 * r3=pkt(id=n,off=0,r=0) 4171 * 4172 * pkt_data in src register: 4173 * 4174 * r2 = r3; 4175 * r2 += 8; 4176 * if (pkt_end >= r2) goto <access okay> 4177 * <handle exception> 4178 * 4179 * r2 = r3; 4180 * r2 += 8; 4181 * if (pkt_end <= r2) goto <handle exception> 4182 * <access okay> 4183 * 4184 * Where: 4185 * pkt_end == dst_reg, r2 == src_reg 4186 * r2=pkt(id=n,off=8,r=0) 4187 * r3=pkt(id=n,off=0,r=0) 4188 * 4189 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 4190 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 4191 * and [r3, r3 + 8-1) respectively is safe to access depending on 4192 * the check. 4193 */ 4194 4195 /* If our ids match, then we must have the same max_value. And we 4196 * don't care about the other reg's fixed offset, since if it's too big 4197 * the range won't allow anything. 4198 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 4199 */ 4200 for (i = 0; i < MAX_BPF_REG; i++) 4201 if (regs[i].type == type && regs[i].id == dst_reg->id) 4202 /* keep the maximum range already checked */ 4203 regs[i].range = max(regs[i].range, new_range); 4204 4205 for (j = 0; j <= vstate->curframe; j++) { 4206 state = vstate->frame[j]; 4207 bpf_for_each_spilled_reg(i, state, reg) { 4208 if (!reg) 4209 continue; 4210 if (reg->type == type && reg->id == dst_reg->id) 4211 reg->range = max(reg->range, new_range); 4212 } 4213 } 4214 } 4215 4216 /* compute branch direction of the expression "if (reg opcode val) goto target;" 4217 * and return: 4218 * 1 - branch will be taken and "goto target" will be executed 4219 * 0 - branch will not be taken and fall-through to next insn 4220 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10] 4221 */ 4222 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 4223 bool is_jmp32) 4224 { 4225 struct bpf_reg_state reg_lo; 4226 s64 sval; 4227 4228 if (__is_pointer_value(false, reg)) 4229 return -1; 4230 4231 if (is_jmp32) { 4232 reg_lo = *reg; 4233 reg = ®_lo; 4234 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size 4235 * could truncate high bits and update umin/umax according to 4236 * information of low bits. 4237 */ 4238 coerce_reg_to_size(reg, 4); 4239 /* smin/smax need special handling. For example, after coerce, 4240 * if smin_value is 0x00000000ffffffffLL, the value is -1 when 4241 * used as operand to JMP32. It is a negative number from s32's 4242 * point of view, while it is a positive number when seen as 4243 * s64. The smin/smax are kept as s64, therefore, when used with 4244 * JMP32, they need to be transformed into s32, then sign 4245 * extended back to s64. 4246 * 4247 * Also, smin/smax were copied from umin/umax. If umin/umax has 4248 * different sign bit, then min/max relationship doesn't 4249 * maintain after casting into s32, for this case, set smin/smax 4250 * to safest range. 4251 */ 4252 if ((reg->umax_value ^ reg->umin_value) & 4253 (1ULL << 31)) { 4254 reg->smin_value = S32_MIN; 4255 reg->smax_value = S32_MAX; 4256 } 4257 reg->smin_value = (s64)(s32)reg->smin_value; 4258 reg->smax_value = (s64)(s32)reg->smax_value; 4259 4260 val = (u32)val; 4261 sval = (s64)(s32)val; 4262 } else { 4263 sval = (s64)val; 4264 } 4265 4266 switch (opcode) { 4267 case BPF_JEQ: 4268 if (tnum_is_const(reg->var_off)) 4269 return !!tnum_equals_const(reg->var_off, val); 4270 break; 4271 case BPF_JNE: 4272 if (tnum_is_const(reg->var_off)) 4273 return !tnum_equals_const(reg->var_off, val); 4274 break; 4275 case BPF_JSET: 4276 if ((~reg->var_off.mask & reg->var_off.value) & val) 4277 return 1; 4278 if (!((reg->var_off.mask | reg->var_off.value) & val)) 4279 return 0; 4280 break; 4281 case BPF_JGT: 4282 if (reg->umin_value > val) 4283 return 1; 4284 else if (reg->umax_value <= val) 4285 return 0; 4286 break; 4287 case BPF_JSGT: 4288 if (reg->smin_value > sval) 4289 return 1; 4290 else if (reg->smax_value < sval) 4291 return 0; 4292 break; 4293 case BPF_JLT: 4294 if (reg->umax_value < val) 4295 return 1; 4296 else if (reg->umin_value >= val) 4297 return 0; 4298 break; 4299 case BPF_JSLT: 4300 if (reg->smax_value < sval) 4301 return 1; 4302 else if (reg->smin_value >= sval) 4303 return 0; 4304 break; 4305 case BPF_JGE: 4306 if (reg->umin_value >= val) 4307 return 1; 4308 else if (reg->umax_value < val) 4309 return 0; 4310 break; 4311 case BPF_JSGE: 4312 if (reg->smin_value >= sval) 4313 return 1; 4314 else if (reg->smax_value < sval) 4315 return 0; 4316 break; 4317 case BPF_JLE: 4318 if (reg->umax_value <= val) 4319 return 1; 4320 else if (reg->umin_value > val) 4321 return 0; 4322 break; 4323 case BPF_JSLE: 4324 if (reg->smax_value <= sval) 4325 return 1; 4326 else if (reg->smin_value > sval) 4327 return 0; 4328 break; 4329 } 4330 4331 return -1; 4332 } 4333 4334 /* Generate min value of the high 32-bit from TNUM info. */ 4335 static u64 gen_hi_min(struct tnum var) 4336 { 4337 return var.value & ~0xffffffffULL; 4338 } 4339 4340 /* Generate max value of the high 32-bit from TNUM info. */ 4341 static u64 gen_hi_max(struct tnum var) 4342 { 4343 return (var.value | var.mask) & ~0xffffffffULL; 4344 } 4345 4346 /* Return true if VAL is compared with a s64 sign extended from s32, and they 4347 * are with the same signedness. 4348 */ 4349 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg) 4350 { 4351 return ((s32)sval >= 0 && 4352 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) || 4353 ((s32)sval < 0 && 4354 reg->smax_value <= 0 && reg->smin_value >= S32_MIN); 4355 } 4356 4357 /* Adjusts the register min/max values in the case that the dst_reg is the 4358 * variable register that we are working on, and src_reg is a constant or we're 4359 * simply doing a BPF_K check. 4360 * In JEQ/JNE cases we also adjust the var_off values. 4361 */ 4362 static void reg_set_min_max(struct bpf_reg_state *true_reg, 4363 struct bpf_reg_state *false_reg, u64 val, 4364 u8 opcode, bool is_jmp32) 4365 { 4366 s64 sval; 4367 4368 /* If the dst_reg is a pointer, we can't learn anything about its 4369 * variable offset from the compare (unless src_reg were a pointer into 4370 * the same object, but we don't bother with that. 4371 * Since false_reg and true_reg have the same type by construction, we 4372 * only need to check one of them for pointerness. 4373 */ 4374 if (__is_pointer_value(false, false_reg)) 4375 return; 4376 4377 val = is_jmp32 ? (u32)val : val; 4378 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 4379 4380 switch (opcode) { 4381 case BPF_JEQ: 4382 case BPF_JNE: 4383 { 4384 struct bpf_reg_state *reg = 4385 opcode == BPF_JEQ ? true_reg : false_reg; 4386 4387 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but 4388 * if it is true we know the value for sure. Likewise for 4389 * BPF_JNE. 4390 */ 4391 if (is_jmp32) { 4392 u64 old_v = reg->var_off.value; 4393 u64 hi_mask = ~0xffffffffULL; 4394 4395 reg->var_off.value = (old_v & hi_mask) | val; 4396 reg->var_off.mask &= hi_mask; 4397 } else { 4398 __mark_reg_known(reg, val); 4399 } 4400 break; 4401 } 4402 case BPF_JSET: 4403 false_reg->var_off = tnum_and(false_reg->var_off, 4404 tnum_const(~val)); 4405 if (is_power_of_2(val)) 4406 true_reg->var_off = tnum_or(true_reg->var_off, 4407 tnum_const(val)); 4408 break; 4409 case BPF_JGE: 4410 case BPF_JGT: 4411 { 4412 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 4413 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 4414 4415 if (is_jmp32) { 4416 false_umax += gen_hi_max(false_reg->var_off); 4417 true_umin += gen_hi_min(true_reg->var_off); 4418 } 4419 false_reg->umax_value = min(false_reg->umax_value, false_umax); 4420 true_reg->umin_value = max(true_reg->umin_value, true_umin); 4421 break; 4422 } 4423 case BPF_JSGE: 4424 case BPF_JSGT: 4425 { 4426 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 4427 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 4428 4429 /* If the full s64 was not sign-extended from s32 then don't 4430 * deduct further info. 4431 */ 4432 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4433 break; 4434 false_reg->smax_value = min(false_reg->smax_value, false_smax); 4435 true_reg->smin_value = max(true_reg->smin_value, true_smin); 4436 break; 4437 } 4438 case BPF_JLE: 4439 case BPF_JLT: 4440 { 4441 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 4442 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 4443 4444 if (is_jmp32) { 4445 false_umin += gen_hi_min(false_reg->var_off); 4446 true_umax += gen_hi_max(true_reg->var_off); 4447 } 4448 false_reg->umin_value = max(false_reg->umin_value, false_umin); 4449 true_reg->umax_value = min(true_reg->umax_value, true_umax); 4450 break; 4451 } 4452 case BPF_JSLE: 4453 case BPF_JSLT: 4454 { 4455 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 4456 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 4457 4458 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4459 break; 4460 false_reg->smin_value = max(false_reg->smin_value, false_smin); 4461 true_reg->smax_value = min(true_reg->smax_value, true_smax); 4462 break; 4463 } 4464 default: 4465 break; 4466 } 4467 4468 __reg_deduce_bounds(false_reg); 4469 __reg_deduce_bounds(true_reg); 4470 /* We might have learned some bits from the bounds. */ 4471 __reg_bound_offset(false_reg); 4472 __reg_bound_offset(true_reg); 4473 /* Intersecting with the old var_off might have improved our bounds 4474 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4475 * then new var_off is (0; 0x7f...fc) which improves our umax. 4476 */ 4477 __update_reg_bounds(false_reg); 4478 __update_reg_bounds(true_reg); 4479 } 4480 4481 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 4482 * the variable reg. 4483 */ 4484 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 4485 struct bpf_reg_state *false_reg, u64 val, 4486 u8 opcode, bool is_jmp32) 4487 { 4488 s64 sval; 4489 4490 if (__is_pointer_value(false, false_reg)) 4491 return; 4492 4493 val = is_jmp32 ? (u32)val : val; 4494 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 4495 4496 switch (opcode) { 4497 case BPF_JEQ: 4498 case BPF_JNE: 4499 { 4500 struct bpf_reg_state *reg = 4501 opcode == BPF_JEQ ? true_reg : false_reg; 4502 4503 if (is_jmp32) { 4504 u64 old_v = reg->var_off.value; 4505 u64 hi_mask = ~0xffffffffULL; 4506 4507 reg->var_off.value = (old_v & hi_mask) | val; 4508 reg->var_off.mask &= hi_mask; 4509 } else { 4510 __mark_reg_known(reg, val); 4511 } 4512 break; 4513 } 4514 case BPF_JSET: 4515 false_reg->var_off = tnum_and(false_reg->var_off, 4516 tnum_const(~val)); 4517 if (is_power_of_2(val)) 4518 true_reg->var_off = tnum_or(true_reg->var_off, 4519 tnum_const(val)); 4520 break; 4521 case BPF_JGE: 4522 case BPF_JGT: 4523 { 4524 u64 false_umin = opcode == BPF_JGT ? val : val + 1; 4525 u64 true_umax = opcode == BPF_JGT ? val - 1 : val; 4526 4527 if (is_jmp32) { 4528 false_umin += gen_hi_min(false_reg->var_off); 4529 true_umax += gen_hi_max(true_reg->var_off); 4530 } 4531 false_reg->umin_value = max(false_reg->umin_value, false_umin); 4532 true_reg->umax_value = min(true_reg->umax_value, true_umax); 4533 break; 4534 } 4535 case BPF_JSGE: 4536 case BPF_JSGT: 4537 { 4538 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1; 4539 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval; 4540 4541 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4542 break; 4543 false_reg->smin_value = max(false_reg->smin_value, false_smin); 4544 true_reg->smax_value = min(true_reg->smax_value, true_smax); 4545 break; 4546 } 4547 case BPF_JLE: 4548 case BPF_JLT: 4549 { 4550 u64 false_umax = opcode == BPF_JLT ? val : val - 1; 4551 u64 true_umin = opcode == BPF_JLT ? val + 1 : val; 4552 4553 if (is_jmp32) { 4554 false_umax += gen_hi_max(false_reg->var_off); 4555 true_umin += gen_hi_min(true_reg->var_off); 4556 } 4557 false_reg->umax_value = min(false_reg->umax_value, false_umax); 4558 true_reg->umin_value = max(true_reg->umin_value, true_umin); 4559 break; 4560 } 4561 case BPF_JSLE: 4562 case BPF_JSLT: 4563 { 4564 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1; 4565 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval; 4566 4567 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4568 break; 4569 false_reg->smax_value = min(false_reg->smax_value, false_smax); 4570 true_reg->smin_value = max(true_reg->smin_value, true_smin); 4571 break; 4572 } 4573 default: 4574 break; 4575 } 4576 4577 __reg_deduce_bounds(false_reg); 4578 __reg_deduce_bounds(true_reg); 4579 /* We might have learned some bits from the bounds. */ 4580 __reg_bound_offset(false_reg); 4581 __reg_bound_offset(true_reg); 4582 /* Intersecting with the old var_off might have improved our bounds 4583 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4584 * then new var_off is (0; 0x7f...fc) which improves our umax. 4585 */ 4586 __update_reg_bounds(false_reg); 4587 __update_reg_bounds(true_reg); 4588 } 4589 4590 /* Regs are known to be equal, so intersect their min/max/var_off */ 4591 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 4592 struct bpf_reg_state *dst_reg) 4593 { 4594 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 4595 dst_reg->umin_value); 4596 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 4597 dst_reg->umax_value); 4598 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 4599 dst_reg->smin_value); 4600 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 4601 dst_reg->smax_value); 4602 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 4603 dst_reg->var_off); 4604 /* We might have learned new bounds from the var_off. */ 4605 __update_reg_bounds(src_reg); 4606 __update_reg_bounds(dst_reg); 4607 /* We might have learned something about the sign bit. */ 4608 __reg_deduce_bounds(src_reg); 4609 __reg_deduce_bounds(dst_reg); 4610 /* We might have learned some bits from the bounds. */ 4611 __reg_bound_offset(src_reg); 4612 __reg_bound_offset(dst_reg); 4613 /* Intersecting with the old var_off might have improved our bounds 4614 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4615 * then new var_off is (0; 0x7f...fc) which improves our umax. 4616 */ 4617 __update_reg_bounds(src_reg); 4618 __update_reg_bounds(dst_reg); 4619 } 4620 4621 static void reg_combine_min_max(struct bpf_reg_state *true_src, 4622 struct bpf_reg_state *true_dst, 4623 struct bpf_reg_state *false_src, 4624 struct bpf_reg_state *false_dst, 4625 u8 opcode) 4626 { 4627 switch (opcode) { 4628 case BPF_JEQ: 4629 __reg_combine_min_max(true_src, true_dst); 4630 break; 4631 case BPF_JNE: 4632 __reg_combine_min_max(false_src, false_dst); 4633 break; 4634 } 4635 } 4636 4637 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 4638 struct bpf_reg_state *reg, u32 id, 4639 bool is_null) 4640 { 4641 if (reg_type_may_be_null(reg->type) && reg->id == id) { 4642 /* Old offset (both fixed and variable parts) should 4643 * have been known-zero, because we don't allow pointer 4644 * arithmetic on pointers that might be NULL. 4645 */ 4646 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 4647 !tnum_equals_const(reg->var_off, 0) || 4648 reg->off)) { 4649 __mark_reg_known_zero(reg); 4650 reg->off = 0; 4651 } 4652 if (is_null) { 4653 reg->type = SCALAR_VALUE; 4654 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 4655 if (reg->map_ptr->inner_map_meta) { 4656 reg->type = CONST_PTR_TO_MAP; 4657 reg->map_ptr = reg->map_ptr->inner_map_meta; 4658 } else { 4659 reg->type = PTR_TO_MAP_VALUE; 4660 } 4661 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 4662 reg->type = PTR_TO_SOCKET; 4663 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 4664 reg->type = PTR_TO_SOCK_COMMON; 4665 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 4666 reg->type = PTR_TO_TCP_SOCK; 4667 } 4668 if (is_null || !(reg_is_refcounted(reg) || 4669 reg_may_point_to_spin_lock(reg))) { 4670 /* We don't need id from this point onwards anymore, 4671 * thus we should better reset it, so that state 4672 * pruning has chances to take effect. 4673 */ 4674 reg->id = 0; 4675 } 4676 } 4677 } 4678 4679 /* The logic is similar to find_good_pkt_pointers(), both could eventually 4680 * be folded together at some point. 4681 */ 4682 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 4683 bool is_null) 4684 { 4685 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4686 struct bpf_reg_state *reg, *regs = state->regs; 4687 u32 id = regs[regno].id; 4688 int i, j; 4689 4690 if (reg_is_refcounted_or_null(®s[regno]) && is_null) 4691 release_reference_state(state, id); 4692 4693 for (i = 0; i < MAX_BPF_REG; i++) 4694 mark_ptr_or_null_reg(state, ®s[i], id, is_null); 4695 4696 for (j = 0; j <= vstate->curframe; j++) { 4697 state = vstate->frame[j]; 4698 bpf_for_each_spilled_reg(i, state, reg) { 4699 if (!reg) 4700 continue; 4701 mark_ptr_or_null_reg(state, reg, id, is_null); 4702 } 4703 } 4704 } 4705 4706 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 4707 struct bpf_reg_state *dst_reg, 4708 struct bpf_reg_state *src_reg, 4709 struct bpf_verifier_state *this_branch, 4710 struct bpf_verifier_state *other_branch) 4711 { 4712 if (BPF_SRC(insn->code) != BPF_X) 4713 return false; 4714 4715 /* Pointers are always 64-bit. */ 4716 if (BPF_CLASS(insn->code) == BPF_JMP32) 4717 return false; 4718 4719 switch (BPF_OP(insn->code)) { 4720 case BPF_JGT: 4721 if ((dst_reg->type == PTR_TO_PACKET && 4722 src_reg->type == PTR_TO_PACKET_END) || 4723 (dst_reg->type == PTR_TO_PACKET_META && 4724 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4725 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 4726 find_good_pkt_pointers(this_branch, dst_reg, 4727 dst_reg->type, false); 4728 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4729 src_reg->type == PTR_TO_PACKET) || 4730 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4731 src_reg->type == PTR_TO_PACKET_META)) { 4732 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 4733 find_good_pkt_pointers(other_branch, src_reg, 4734 src_reg->type, true); 4735 } else { 4736 return false; 4737 } 4738 break; 4739 case BPF_JLT: 4740 if ((dst_reg->type == PTR_TO_PACKET && 4741 src_reg->type == PTR_TO_PACKET_END) || 4742 (dst_reg->type == PTR_TO_PACKET_META && 4743 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4744 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 4745 find_good_pkt_pointers(other_branch, dst_reg, 4746 dst_reg->type, true); 4747 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4748 src_reg->type == PTR_TO_PACKET) || 4749 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4750 src_reg->type == PTR_TO_PACKET_META)) { 4751 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 4752 find_good_pkt_pointers(this_branch, src_reg, 4753 src_reg->type, false); 4754 } else { 4755 return false; 4756 } 4757 break; 4758 case BPF_JGE: 4759 if ((dst_reg->type == PTR_TO_PACKET && 4760 src_reg->type == PTR_TO_PACKET_END) || 4761 (dst_reg->type == PTR_TO_PACKET_META && 4762 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4763 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 4764 find_good_pkt_pointers(this_branch, dst_reg, 4765 dst_reg->type, true); 4766 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4767 src_reg->type == PTR_TO_PACKET) || 4768 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4769 src_reg->type == PTR_TO_PACKET_META)) { 4770 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 4771 find_good_pkt_pointers(other_branch, src_reg, 4772 src_reg->type, false); 4773 } else { 4774 return false; 4775 } 4776 break; 4777 case BPF_JLE: 4778 if ((dst_reg->type == PTR_TO_PACKET && 4779 src_reg->type == PTR_TO_PACKET_END) || 4780 (dst_reg->type == PTR_TO_PACKET_META && 4781 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4782 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 4783 find_good_pkt_pointers(other_branch, dst_reg, 4784 dst_reg->type, false); 4785 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4786 src_reg->type == PTR_TO_PACKET) || 4787 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4788 src_reg->type == PTR_TO_PACKET_META)) { 4789 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 4790 find_good_pkt_pointers(this_branch, src_reg, 4791 src_reg->type, true); 4792 } else { 4793 return false; 4794 } 4795 break; 4796 default: 4797 return false; 4798 } 4799 4800 return true; 4801 } 4802 4803 static int check_cond_jmp_op(struct bpf_verifier_env *env, 4804 struct bpf_insn *insn, int *insn_idx) 4805 { 4806 struct bpf_verifier_state *this_branch = env->cur_state; 4807 struct bpf_verifier_state *other_branch; 4808 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 4809 struct bpf_reg_state *dst_reg, *other_branch_regs; 4810 u8 opcode = BPF_OP(insn->code); 4811 bool is_jmp32; 4812 int err; 4813 4814 /* Only conditional jumps are expected to reach here. */ 4815 if (opcode == BPF_JA || opcode > BPF_JSLE) { 4816 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 4817 return -EINVAL; 4818 } 4819 4820 if (BPF_SRC(insn->code) == BPF_X) { 4821 if (insn->imm != 0) { 4822 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 4823 return -EINVAL; 4824 } 4825 4826 /* check src1 operand */ 4827 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4828 if (err) 4829 return err; 4830 4831 if (is_pointer_value(env, insn->src_reg)) { 4832 verbose(env, "R%d pointer comparison prohibited\n", 4833 insn->src_reg); 4834 return -EACCES; 4835 } 4836 } else { 4837 if (insn->src_reg != BPF_REG_0) { 4838 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 4839 return -EINVAL; 4840 } 4841 } 4842 4843 /* check src2 operand */ 4844 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4845 if (err) 4846 return err; 4847 4848 dst_reg = ®s[insn->dst_reg]; 4849 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 4850 4851 if (BPF_SRC(insn->code) == BPF_K) { 4852 int pred = is_branch_taken(dst_reg, insn->imm, opcode, 4853 is_jmp32); 4854 4855 if (pred == 1) { 4856 /* only follow the goto, ignore fall-through */ 4857 *insn_idx += insn->off; 4858 return 0; 4859 } else if (pred == 0) { 4860 /* only follow fall-through branch, since 4861 * that's where the program will go 4862 */ 4863 return 0; 4864 } 4865 } 4866 4867 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 4868 false); 4869 if (!other_branch) 4870 return -EFAULT; 4871 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 4872 4873 /* detect if we are comparing against a constant value so we can adjust 4874 * our min/max values for our dst register. 4875 * this is only legit if both are scalars (or pointers to the same 4876 * object, I suppose, but we don't support that right now), because 4877 * otherwise the different base pointers mean the offsets aren't 4878 * comparable. 4879 */ 4880 if (BPF_SRC(insn->code) == BPF_X) { 4881 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 4882 struct bpf_reg_state lo_reg0 = *dst_reg; 4883 struct bpf_reg_state lo_reg1 = *src_reg; 4884 struct bpf_reg_state *src_lo, *dst_lo; 4885 4886 dst_lo = &lo_reg0; 4887 src_lo = &lo_reg1; 4888 coerce_reg_to_size(dst_lo, 4); 4889 coerce_reg_to_size(src_lo, 4); 4890 4891 if (dst_reg->type == SCALAR_VALUE && 4892 src_reg->type == SCALAR_VALUE) { 4893 if (tnum_is_const(src_reg->var_off) || 4894 (is_jmp32 && tnum_is_const(src_lo->var_off))) 4895 reg_set_min_max(&other_branch_regs[insn->dst_reg], 4896 dst_reg, 4897 is_jmp32 4898 ? src_lo->var_off.value 4899 : src_reg->var_off.value, 4900 opcode, is_jmp32); 4901 else if (tnum_is_const(dst_reg->var_off) || 4902 (is_jmp32 && tnum_is_const(dst_lo->var_off))) 4903 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 4904 src_reg, 4905 is_jmp32 4906 ? dst_lo->var_off.value 4907 : dst_reg->var_off.value, 4908 opcode, is_jmp32); 4909 else if (!is_jmp32 && 4910 (opcode == BPF_JEQ || opcode == BPF_JNE)) 4911 /* Comparing for equality, we can combine knowledge */ 4912 reg_combine_min_max(&other_branch_regs[insn->src_reg], 4913 &other_branch_regs[insn->dst_reg], 4914 src_reg, dst_reg, opcode); 4915 } 4916 } else if (dst_reg->type == SCALAR_VALUE) { 4917 reg_set_min_max(&other_branch_regs[insn->dst_reg], 4918 dst_reg, insn->imm, opcode, is_jmp32); 4919 } 4920 4921 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 4922 * NOTE: these optimizations below are related with pointer comparison 4923 * which will never be JMP32. 4924 */ 4925 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 4926 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 4927 reg_type_may_be_null(dst_reg->type)) { 4928 /* Mark all identical registers in each branch as either 4929 * safe or unknown depending R == 0 or R != 0 conditional. 4930 */ 4931 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 4932 opcode == BPF_JNE); 4933 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 4934 opcode == BPF_JEQ); 4935 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 4936 this_branch, other_branch) && 4937 is_pointer_value(env, insn->dst_reg)) { 4938 verbose(env, "R%d pointer comparison prohibited\n", 4939 insn->dst_reg); 4940 return -EACCES; 4941 } 4942 if (env->log.level) 4943 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 4944 return 0; 4945 } 4946 4947 /* return the map pointer stored inside BPF_LD_IMM64 instruction */ 4948 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 4949 { 4950 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 4951 4952 return (struct bpf_map *) (unsigned long) imm64; 4953 } 4954 4955 /* verify BPF_LD_IMM64 instruction */ 4956 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 4957 { 4958 struct bpf_reg_state *regs = cur_regs(env); 4959 int err; 4960 4961 if (BPF_SIZE(insn->code) != BPF_DW) { 4962 verbose(env, "invalid BPF_LD_IMM insn\n"); 4963 return -EINVAL; 4964 } 4965 if (insn->off != 0) { 4966 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 4967 return -EINVAL; 4968 } 4969 4970 err = check_reg_arg(env, insn->dst_reg, DST_OP); 4971 if (err) 4972 return err; 4973 4974 if (insn->src_reg == 0) { 4975 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 4976 4977 regs[insn->dst_reg].type = SCALAR_VALUE; 4978 __mark_reg_known(®s[insn->dst_reg], imm); 4979 return 0; 4980 } 4981 4982 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ 4983 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); 4984 4985 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 4986 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); 4987 return 0; 4988 } 4989 4990 static bool may_access_skb(enum bpf_prog_type type) 4991 { 4992 switch (type) { 4993 case BPF_PROG_TYPE_SOCKET_FILTER: 4994 case BPF_PROG_TYPE_SCHED_CLS: 4995 case BPF_PROG_TYPE_SCHED_ACT: 4996 return true; 4997 default: 4998 return false; 4999 } 5000 } 5001 5002 /* verify safety of LD_ABS|LD_IND instructions: 5003 * - they can only appear in the programs where ctx == skb 5004 * - since they are wrappers of function calls, they scratch R1-R5 registers, 5005 * preserve R6-R9, and store return value into R0 5006 * 5007 * Implicit input: 5008 * ctx == skb == R6 == CTX 5009 * 5010 * Explicit input: 5011 * SRC == any register 5012 * IMM == 32-bit immediate 5013 * 5014 * Output: 5015 * R0 - 8/16/32-bit skb data converted to cpu endianness 5016 */ 5017 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 5018 { 5019 struct bpf_reg_state *regs = cur_regs(env); 5020 u8 mode = BPF_MODE(insn->code); 5021 int i, err; 5022 5023 if (!may_access_skb(env->prog->type)) { 5024 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 5025 return -EINVAL; 5026 } 5027 5028 if (!env->ops->gen_ld_abs) { 5029 verbose(env, "bpf verifier is misconfigured\n"); 5030 return -EINVAL; 5031 } 5032 5033 if (env->subprog_cnt > 1) { 5034 /* when program has LD_ABS insn JITs and interpreter assume 5035 * that r1 == ctx == skb which is not the case for callees 5036 * that can have arbitrary arguments. It's problematic 5037 * for main prog as well since JITs would need to analyze 5038 * all functions in order to make proper register save/restore 5039 * decisions in the main prog. Hence disallow LD_ABS with calls 5040 */ 5041 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 5042 return -EINVAL; 5043 } 5044 5045 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 5046 BPF_SIZE(insn->code) == BPF_DW || 5047 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 5048 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 5049 return -EINVAL; 5050 } 5051 5052 /* check whether implicit source operand (register R6) is readable */ 5053 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 5054 if (err) 5055 return err; 5056 5057 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 5058 * gen_ld_abs() may terminate the program at runtime, leading to 5059 * reference leak. 5060 */ 5061 err = check_reference_leak(env); 5062 if (err) { 5063 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 5064 return err; 5065 } 5066 5067 if (env->cur_state->active_spin_lock) { 5068 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 5069 return -EINVAL; 5070 } 5071 5072 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 5073 verbose(env, 5074 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 5075 return -EINVAL; 5076 } 5077 5078 if (mode == BPF_IND) { 5079 /* check explicit source operand */ 5080 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5081 if (err) 5082 return err; 5083 } 5084 5085 /* reset caller saved regs to unreadable */ 5086 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5087 mark_reg_not_init(env, regs, caller_saved[i]); 5088 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5089 } 5090 5091 /* mark destination R0 register as readable, since it contains 5092 * the value fetched from the packet. 5093 * Already marked as written above. 5094 */ 5095 mark_reg_unknown(env, regs, BPF_REG_0); 5096 return 0; 5097 } 5098 5099 static int check_return_code(struct bpf_verifier_env *env) 5100 { 5101 struct bpf_reg_state *reg; 5102 struct tnum range = tnum_range(0, 1); 5103 5104 switch (env->prog->type) { 5105 case BPF_PROG_TYPE_CGROUP_SKB: 5106 case BPF_PROG_TYPE_CGROUP_SOCK: 5107 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 5108 case BPF_PROG_TYPE_SOCK_OPS: 5109 case BPF_PROG_TYPE_CGROUP_DEVICE: 5110 break; 5111 default: 5112 return 0; 5113 } 5114 5115 reg = cur_regs(env) + BPF_REG_0; 5116 if (reg->type != SCALAR_VALUE) { 5117 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 5118 reg_type_str[reg->type]); 5119 return -EINVAL; 5120 } 5121 5122 if (!tnum_in(range, reg->var_off)) { 5123 verbose(env, "At program exit the register R0 "); 5124 if (!tnum_is_unknown(reg->var_off)) { 5125 char tn_buf[48]; 5126 5127 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5128 verbose(env, "has value %s", tn_buf); 5129 } else { 5130 verbose(env, "has unknown scalar value"); 5131 } 5132 verbose(env, " should have been 0 or 1\n"); 5133 return -EINVAL; 5134 } 5135 return 0; 5136 } 5137 5138 /* non-recursive DFS pseudo code 5139 * 1 procedure DFS-iterative(G,v): 5140 * 2 label v as discovered 5141 * 3 let S be a stack 5142 * 4 S.push(v) 5143 * 5 while S is not empty 5144 * 6 t <- S.pop() 5145 * 7 if t is what we're looking for: 5146 * 8 return t 5147 * 9 for all edges e in G.adjacentEdges(t) do 5148 * 10 if edge e is already labelled 5149 * 11 continue with the next edge 5150 * 12 w <- G.adjacentVertex(t,e) 5151 * 13 if vertex w is not discovered and not explored 5152 * 14 label e as tree-edge 5153 * 15 label w as discovered 5154 * 16 S.push(w) 5155 * 17 continue at 5 5156 * 18 else if vertex w is discovered 5157 * 19 label e as back-edge 5158 * 20 else 5159 * 21 // vertex w is explored 5160 * 22 label e as forward- or cross-edge 5161 * 23 label t as explored 5162 * 24 S.pop() 5163 * 5164 * convention: 5165 * 0x10 - discovered 5166 * 0x11 - discovered and fall-through edge labelled 5167 * 0x12 - discovered and fall-through and branch edges labelled 5168 * 0x20 - explored 5169 */ 5170 5171 enum { 5172 DISCOVERED = 0x10, 5173 EXPLORED = 0x20, 5174 FALLTHROUGH = 1, 5175 BRANCH = 2, 5176 }; 5177 5178 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 5179 5180 static int *insn_stack; /* stack of insns to process */ 5181 static int cur_stack; /* current stack index */ 5182 static int *insn_state; 5183 5184 /* t, w, e - match pseudo-code above: 5185 * t - index of current instruction 5186 * w - next instruction 5187 * e - edge 5188 */ 5189 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 5190 { 5191 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 5192 return 0; 5193 5194 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 5195 return 0; 5196 5197 if (w < 0 || w >= env->prog->len) { 5198 verbose_linfo(env, t, "%d: ", t); 5199 verbose(env, "jump out of range from insn %d to %d\n", t, w); 5200 return -EINVAL; 5201 } 5202 5203 if (e == BRANCH) 5204 /* mark branch target for state pruning */ 5205 env->explored_states[w] = STATE_LIST_MARK; 5206 5207 if (insn_state[w] == 0) { 5208 /* tree-edge */ 5209 insn_state[t] = DISCOVERED | e; 5210 insn_state[w] = DISCOVERED; 5211 if (cur_stack >= env->prog->len) 5212 return -E2BIG; 5213 insn_stack[cur_stack++] = w; 5214 return 1; 5215 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 5216 verbose_linfo(env, t, "%d: ", t); 5217 verbose_linfo(env, w, "%d: ", w); 5218 verbose(env, "back-edge from insn %d to %d\n", t, w); 5219 return -EINVAL; 5220 } else if (insn_state[w] == EXPLORED) { 5221 /* forward- or cross-edge */ 5222 insn_state[t] = DISCOVERED | e; 5223 } else { 5224 verbose(env, "insn state internal bug\n"); 5225 return -EFAULT; 5226 } 5227 return 0; 5228 } 5229 5230 /* non-recursive depth-first-search to detect loops in BPF program 5231 * loop == back-edge in directed graph 5232 */ 5233 static int check_cfg(struct bpf_verifier_env *env) 5234 { 5235 struct bpf_insn *insns = env->prog->insnsi; 5236 int insn_cnt = env->prog->len; 5237 int ret = 0; 5238 int i, t; 5239 5240 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 5241 if (!insn_state) 5242 return -ENOMEM; 5243 5244 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 5245 if (!insn_stack) { 5246 kfree(insn_state); 5247 return -ENOMEM; 5248 } 5249 5250 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 5251 insn_stack[0] = 0; /* 0 is the first instruction */ 5252 cur_stack = 1; 5253 5254 peek_stack: 5255 if (cur_stack == 0) 5256 goto check_state; 5257 t = insn_stack[cur_stack - 1]; 5258 5259 if (BPF_CLASS(insns[t].code) == BPF_JMP || 5260 BPF_CLASS(insns[t].code) == BPF_JMP32) { 5261 u8 opcode = BPF_OP(insns[t].code); 5262 5263 if (opcode == BPF_EXIT) { 5264 goto mark_explored; 5265 } else if (opcode == BPF_CALL) { 5266 ret = push_insn(t, t + 1, FALLTHROUGH, env); 5267 if (ret == 1) 5268 goto peek_stack; 5269 else if (ret < 0) 5270 goto err_free; 5271 if (t + 1 < insn_cnt) 5272 env->explored_states[t + 1] = STATE_LIST_MARK; 5273 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 5274 env->explored_states[t] = STATE_LIST_MARK; 5275 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 5276 if (ret == 1) 5277 goto peek_stack; 5278 else if (ret < 0) 5279 goto err_free; 5280 } 5281 } else if (opcode == BPF_JA) { 5282 if (BPF_SRC(insns[t].code) != BPF_K) { 5283 ret = -EINVAL; 5284 goto err_free; 5285 } 5286 /* unconditional jump with single edge */ 5287 ret = push_insn(t, t + insns[t].off + 1, 5288 FALLTHROUGH, env); 5289 if (ret == 1) 5290 goto peek_stack; 5291 else if (ret < 0) 5292 goto err_free; 5293 /* tell verifier to check for equivalent states 5294 * after every call and jump 5295 */ 5296 if (t + 1 < insn_cnt) 5297 env->explored_states[t + 1] = STATE_LIST_MARK; 5298 } else { 5299 /* conditional jump with two edges */ 5300 env->explored_states[t] = STATE_LIST_MARK; 5301 ret = push_insn(t, t + 1, FALLTHROUGH, env); 5302 if (ret == 1) 5303 goto peek_stack; 5304 else if (ret < 0) 5305 goto err_free; 5306 5307 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 5308 if (ret == 1) 5309 goto peek_stack; 5310 else if (ret < 0) 5311 goto err_free; 5312 } 5313 } else { 5314 /* all other non-branch instructions with single 5315 * fall-through edge 5316 */ 5317 ret = push_insn(t, t + 1, FALLTHROUGH, env); 5318 if (ret == 1) 5319 goto peek_stack; 5320 else if (ret < 0) 5321 goto err_free; 5322 } 5323 5324 mark_explored: 5325 insn_state[t] = EXPLORED; 5326 if (cur_stack-- <= 0) { 5327 verbose(env, "pop stack internal bug\n"); 5328 ret = -EFAULT; 5329 goto err_free; 5330 } 5331 goto peek_stack; 5332 5333 check_state: 5334 for (i = 0; i < insn_cnt; i++) { 5335 if (insn_state[i] != EXPLORED) { 5336 verbose(env, "unreachable insn %d\n", i); 5337 ret = -EINVAL; 5338 goto err_free; 5339 } 5340 } 5341 ret = 0; /* cfg looks good */ 5342 5343 err_free: 5344 kfree(insn_state); 5345 kfree(insn_stack); 5346 return ret; 5347 } 5348 5349 /* The minimum supported BTF func info size */ 5350 #define MIN_BPF_FUNCINFO_SIZE 8 5351 #define MAX_FUNCINFO_REC_SIZE 252 5352 5353 static int check_btf_func(struct bpf_verifier_env *env, 5354 const union bpf_attr *attr, 5355 union bpf_attr __user *uattr) 5356 { 5357 u32 i, nfuncs, urec_size, min_size; 5358 u32 krec_size = sizeof(struct bpf_func_info); 5359 struct bpf_func_info *krecord; 5360 const struct btf_type *type; 5361 struct bpf_prog *prog; 5362 const struct btf *btf; 5363 void __user *urecord; 5364 u32 prev_offset = 0; 5365 int ret = 0; 5366 5367 nfuncs = attr->func_info_cnt; 5368 if (!nfuncs) 5369 return 0; 5370 5371 if (nfuncs != env->subprog_cnt) { 5372 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 5373 return -EINVAL; 5374 } 5375 5376 urec_size = attr->func_info_rec_size; 5377 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 5378 urec_size > MAX_FUNCINFO_REC_SIZE || 5379 urec_size % sizeof(u32)) { 5380 verbose(env, "invalid func info rec size %u\n", urec_size); 5381 return -EINVAL; 5382 } 5383 5384 prog = env->prog; 5385 btf = prog->aux->btf; 5386 5387 urecord = u64_to_user_ptr(attr->func_info); 5388 min_size = min_t(u32, krec_size, urec_size); 5389 5390 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 5391 if (!krecord) 5392 return -ENOMEM; 5393 5394 for (i = 0; i < nfuncs; i++) { 5395 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 5396 if (ret) { 5397 if (ret == -E2BIG) { 5398 verbose(env, "nonzero tailing record in func info"); 5399 /* set the size kernel expects so loader can zero 5400 * out the rest of the record. 5401 */ 5402 if (put_user(min_size, &uattr->func_info_rec_size)) 5403 ret = -EFAULT; 5404 } 5405 goto err_free; 5406 } 5407 5408 if (copy_from_user(&krecord[i], urecord, min_size)) { 5409 ret = -EFAULT; 5410 goto err_free; 5411 } 5412 5413 /* check insn_off */ 5414 if (i == 0) { 5415 if (krecord[i].insn_off) { 5416 verbose(env, 5417 "nonzero insn_off %u for the first func info record", 5418 krecord[i].insn_off); 5419 ret = -EINVAL; 5420 goto err_free; 5421 } 5422 } else if (krecord[i].insn_off <= prev_offset) { 5423 verbose(env, 5424 "same or smaller insn offset (%u) than previous func info record (%u)", 5425 krecord[i].insn_off, prev_offset); 5426 ret = -EINVAL; 5427 goto err_free; 5428 } 5429 5430 if (env->subprog_info[i].start != krecord[i].insn_off) { 5431 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 5432 ret = -EINVAL; 5433 goto err_free; 5434 } 5435 5436 /* check type_id */ 5437 type = btf_type_by_id(btf, krecord[i].type_id); 5438 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) { 5439 verbose(env, "invalid type id %d in func info", 5440 krecord[i].type_id); 5441 ret = -EINVAL; 5442 goto err_free; 5443 } 5444 5445 prev_offset = krecord[i].insn_off; 5446 urecord += urec_size; 5447 } 5448 5449 prog->aux->func_info = krecord; 5450 prog->aux->func_info_cnt = nfuncs; 5451 return 0; 5452 5453 err_free: 5454 kvfree(krecord); 5455 return ret; 5456 } 5457 5458 static void adjust_btf_func(struct bpf_verifier_env *env) 5459 { 5460 int i; 5461 5462 if (!env->prog->aux->func_info) 5463 return; 5464 5465 for (i = 0; i < env->subprog_cnt; i++) 5466 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start; 5467 } 5468 5469 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 5470 sizeof(((struct bpf_line_info *)(0))->line_col)) 5471 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 5472 5473 static int check_btf_line(struct bpf_verifier_env *env, 5474 const union bpf_attr *attr, 5475 union bpf_attr __user *uattr) 5476 { 5477 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 5478 struct bpf_subprog_info *sub; 5479 struct bpf_line_info *linfo; 5480 struct bpf_prog *prog; 5481 const struct btf *btf; 5482 void __user *ulinfo; 5483 int err; 5484 5485 nr_linfo = attr->line_info_cnt; 5486 if (!nr_linfo) 5487 return 0; 5488 5489 rec_size = attr->line_info_rec_size; 5490 if (rec_size < MIN_BPF_LINEINFO_SIZE || 5491 rec_size > MAX_LINEINFO_REC_SIZE || 5492 rec_size & (sizeof(u32) - 1)) 5493 return -EINVAL; 5494 5495 /* Need to zero it in case the userspace may 5496 * pass in a smaller bpf_line_info object. 5497 */ 5498 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 5499 GFP_KERNEL | __GFP_NOWARN); 5500 if (!linfo) 5501 return -ENOMEM; 5502 5503 prog = env->prog; 5504 btf = prog->aux->btf; 5505 5506 s = 0; 5507 sub = env->subprog_info; 5508 ulinfo = u64_to_user_ptr(attr->line_info); 5509 expected_size = sizeof(struct bpf_line_info); 5510 ncopy = min_t(u32, expected_size, rec_size); 5511 for (i = 0; i < nr_linfo; i++) { 5512 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 5513 if (err) { 5514 if (err == -E2BIG) { 5515 verbose(env, "nonzero tailing record in line_info"); 5516 if (put_user(expected_size, 5517 &uattr->line_info_rec_size)) 5518 err = -EFAULT; 5519 } 5520 goto err_free; 5521 } 5522 5523 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 5524 err = -EFAULT; 5525 goto err_free; 5526 } 5527 5528 /* 5529 * Check insn_off to ensure 5530 * 1) strictly increasing AND 5531 * 2) bounded by prog->len 5532 * 5533 * The linfo[0].insn_off == 0 check logically falls into 5534 * the later "missing bpf_line_info for func..." case 5535 * because the first linfo[0].insn_off must be the 5536 * first sub also and the first sub must have 5537 * subprog_info[0].start == 0. 5538 */ 5539 if ((i && linfo[i].insn_off <= prev_offset) || 5540 linfo[i].insn_off >= prog->len) { 5541 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 5542 i, linfo[i].insn_off, prev_offset, 5543 prog->len); 5544 err = -EINVAL; 5545 goto err_free; 5546 } 5547 5548 if (!prog->insnsi[linfo[i].insn_off].code) { 5549 verbose(env, 5550 "Invalid insn code at line_info[%u].insn_off\n", 5551 i); 5552 err = -EINVAL; 5553 goto err_free; 5554 } 5555 5556 if (!btf_name_by_offset(btf, linfo[i].line_off) || 5557 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 5558 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 5559 err = -EINVAL; 5560 goto err_free; 5561 } 5562 5563 if (s != env->subprog_cnt) { 5564 if (linfo[i].insn_off == sub[s].start) { 5565 sub[s].linfo_idx = i; 5566 s++; 5567 } else if (sub[s].start < linfo[i].insn_off) { 5568 verbose(env, "missing bpf_line_info for func#%u\n", s); 5569 err = -EINVAL; 5570 goto err_free; 5571 } 5572 } 5573 5574 prev_offset = linfo[i].insn_off; 5575 ulinfo += rec_size; 5576 } 5577 5578 if (s != env->subprog_cnt) { 5579 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 5580 env->subprog_cnt - s, s); 5581 err = -EINVAL; 5582 goto err_free; 5583 } 5584 5585 prog->aux->linfo = linfo; 5586 prog->aux->nr_linfo = nr_linfo; 5587 5588 return 0; 5589 5590 err_free: 5591 kvfree(linfo); 5592 return err; 5593 } 5594 5595 static int check_btf_info(struct bpf_verifier_env *env, 5596 const union bpf_attr *attr, 5597 union bpf_attr __user *uattr) 5598 { 5599 struct btf *btf; 5600 int err; 5601 5602 if (!attr->func_info_cnt && !attr->line_info_cnt) 5603 return 0; 5604 5605 btf = btf_get_by_fd(attr->prog_btf_fd); 5606 if (IS_ERR(btf)) 5607 return PTR_ERR(btf); 5608 env->prog->aux->btf = btf; 5609 5610 err = check_btf_func(env, attr, uattr); 5611 if (err) 5612 return err; 5613 5614 err = check_btf_line(env, attr, uattr); 5615 if (err) 5616 return err; 5617 5618 return 0; 5619 } 5620 5621 /* check %cur's range satisfies %old's */ 5622 static bool range_within(struct bpf_reg_state *old, 5623 struct bpf_reg_state *cur) 5624 { 5625 return old->umin_value <= cur->umin_value && 5626 old->umax_value >= cur->umax_value && 5627 old->smin_value <= cur->smin_value && 5628 old->smax_value >= cur->smax_value; 5629 } 5630 5631 /* Maximum number of register states that can exist at once */ 5632 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 5633 struct idpair { 5634 u32 old; 5635 u32 cur; 5636 }; 5637 5638 /* If in the old state two registers had the same id, then they need to have 5639 * the same id in the new state as well. But that id could be different from 5640 * the old state, so we need to track the mapping from old to new ids. 5641 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 5642 * regs with old id 5 must also have new id 9 for the new state to be safe. But 5643 * regs with a different old id could still have new id 9, we don't care about 5644 * that. 5645 * So we look through our idmap to see if this old id has been seen before. If 5646 * so, we require the new id to match; otherwise, we add the id pair to the map. 5647 */ 5648 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 5649 { 5650 unsigned int i; 5651 5652 for (i = 0; i < ID_MAP_SIZE; i++) { 5653 if (!idmap[i].old) { 5654 /* Reached an empty slot; haven't seen this id before */ 5655 idmap[i].old = old_id; 5656 idmap[i].cur = cur_id; 5657 return true; 5658 } 5659 if (idmap[i].old == old_id) 5660 return idmap[i].cur == cur_id; 5661 } 5662 /* We ran out of idmap slots, which should be impossible */ 5663 WARN_ON_ONCE(1); 5664 return false; 5665 } 5666 5667 static void clean_func_state(struct bpf_verifier_env *env, 5668 struct bpf_func_state *st) 5669 { 5670 enum bpf_reg_liveness live; 5671 int i, j; 5672 5673 for (i = 0; i < BPF_REG_FP; i++) { 5674 live = st->regs[i].live; 5675 /* liveness must not touch this register anymore */ 5676 st->regs[i].live |= REG_LIVE_DONE; 5677 if (!(live & REG_LIVE_READ)) 5678 /* since the register is unused, clear its state 5679 * to make further comparison simpler 5680 */ 5681 __mark_reg_not_init(&st->regs[i]); 5682 } 5683 5684 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 5685 live = st->stack[i].spilled_ptr.live; 5686 /* liveness must not touch this stack slot anymore */ 5687 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 5688 if (!(live & REG_LIVE_READ)) { 5689 __mark_reg_not_init(&st->stack[i].spilled_ptr); 5690 for (j = 0; j < BPF_REG_SIZE; j++) 5691 st->stack[i].slot_type[j] = STACK_INVALID; 5692 } 5693 } 5694 } 5695 5696 static void clean_verifier_state(struct bpf_verifier_env *env, 5697 struct bpf_verifier_state *st) 5698 { 5699 int i; 5700 5701 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 5702 /* all regs in this state in all frames were already marked */ 5703 return; 5704 5705 for (i = 0; i <= st->curframe; i++) 5706 clean_func_state(env, st->frame[i]); 5707 } 5708 5709 /* the parentage chains form a tree. 5710 * the verifier states are added to state lists at given insn and 5711 * pushed into state stack for future exploration. 5712 * when the verifier reaches bpf_exit insn some of the verifer states 5713 * stored in the state lists have their final liveness state already, 5714 * but a lot of states will get revised from liveness point of view when 5715 * the verifier explores other branches. 5716 * Example: 5717 * 1: r0 = 1 5718 * 2: if r1 == 100 goto pc+1 5719 * 3: r0 = 2 5720 * 4: exit 5721 * when the verifier reaches exit insn the register r0 in the state list of 5722 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 5723 * of insn 2 and goes exploring further. At the insn 4 it will walk the 5724 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 5725 * 5726 * Since the verifier pushes the branch states as it sees them while exploring 5727 * the program the condition of walking the branch instruction for the second 5728 * time means that all states below this branch were already explored and 5729 * their final liveness markes are already propagated. 5730 * Hence when the verifier completes the search of state list in is_state_visited() 5731 * we can call this clean_live_states() function to mark all liveness states 5732 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 5733 * will not be used. 5734 * This function also clears the registers and stack for states that !READ 5735 * to simplify state merging. 5736 * 5737 * Important note here that walking the same branch instruction in the callee 5738 * doesn't meant that the states are DONE. The verifier has to compare 5739 * the callsites 5740 */ 5741 static void clean_live_states(struct bpf_verifier_env *env, int insn, 5742 struct bpf_verifier_state *cur) 5743 { 5744 struct bpf_verifier_state_list *sl; 5745 int i; 5746 5747 sl = env->explored_states[insn]; 5748 if (!sl) 5749 return; 5750 5751 while (sl != STATE_LIST_MARK) { 5752 if (sl->state.curframe != cur->curframe) 5753 goto next; 5754 for (i = 0; i <= cur->curframe; i++) 5755 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 5756 goto next; 5757 clean_verifier_state(env, &sl->state); 5758 next: 5759 sl = sl->next; 5760 } 5761 } 5762 5763 /* Returns true if (rold safe implies rcur safe) */ 5764 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 5765 struct idpair *idmap) 5766 { 5767 bool equal; 5768 5769 if (!(rold->live & REG_LIVE_READ)) 5770 /* explored state didn't use this */ 5771 return true; 5772 5773 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 5774 5775 if (rold->type == PTR_TO_STACK) 5776 /* two stack pointers are equal only if they're pointing to 5777 * the same stack frame, since fp-8 in foo != fp-8 in bar 5778 */ 5779 return equal && rold->frameno == rcur->frameno; 5780 5781 if (equal) 5782 return true; 5783 5784 if (rold->type == NOT_INIT) 5785 /* explored state can't have used this */ 5786 return true; 5787 if (rcur->type == NOT_INIT) 5788 return false; 5789 switch (rold->type) { 5790 case SCALAR_VALUE: 5791 if (rcur->type == SCALAR_VALUE) { 5792 /* new val must satisfy old val knowledge */ 5793 return range_within(rold, rcur) && 5794 tnum_in(rold->var_off, rcur->var_off); 5795 } else { 5796 /* We're trying to use a pointer in place of a scalar. 5797 * Even if the scalar was unbounded, this could lead to 5798 * pointer leaks because scalars are allowed to leak 5799 * while pointers are not. We could make this safe in 5800 * special cases if root is calling us, but it's 5801 * probably not worth the hassle. 5802 */ 5803 return false; 5804 } 5805 case PTR_TO_MAP_VALUE: 5806 /* If the new min/max/var_off satisfy the old ones and 5807 * everything else matches, we are OK. 5808 * 'id' is not compared, since it's only used for maps with 5809 * bpf_spin_lock inside map element and in such cases if 5810 * the rest of the prog is valid for one map element then 5811 * it's valid for all map elements regardless of the key 5812 * used in bpf_map_lookup() 5813 */ 5814 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 5815 range_within(rold, rcur) && 5816 tnum_in(rold->var_off, rcur->var_off); 5817 case PTR_TO_MAP_VALUE_OR_NULL: 5818 /* a PTR_TO_MAP_VALUE could be safe to use as a 5819 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 5820 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 5821 * checked, doing so could have affected others with the same 5822 * id, and we can't check for that because we lost the id when 5823 * we converted to a PTR_TO_MAP_VALUE. 5824 */ 5825 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 5826 return false; 5827 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 5828 return false; 5829 /* Check our ids match any regs they're supposed to */ 5830 return check_ids(rold->id, rcur->id, idmap); 5831 case PTR_TO_PACKET_META: 5832 case PTR_TO_PACKET: 5833 if (rcur->type != rold->type) 5834 return false; 5835 /* We must have at least as much range as the old ptr 5836 * did, so that any accesses which were safe before are 5837 * still safe. This is true even if old range < old off, 5838 * since someone could have accessed through (ptr - k), or 5839 * even done ptr -= k in a register, to get a safe access. 5840 */ 5841 if (rold->range > rcur->range) 5842 return false; 5843 /* If the offsets don't match, we can't trust our alignment; 5844 * nor can we be sure that we won't fall out of range. 5845 */ 5846 if (rold->off != rcur->off) 5847 return false; 5848 /* id relations must be preserved */ 5849 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 5850 return false; 5851 /* new val must satisfy old val knowledge */ 5852 return range_within(rold, rcur) && 5853 tnum_in(rold->var_off, rcur->var_off); 5854 case PTR_TO_CTX: 5855 case CONST_PTR_TO_MAP: 5856 case PTR_TO_PACKET_END: 5857 case PTR_TO_FLOW_KEYS: 5858 case PTR_TO_SOCKET: 5859 case PTR_TO_SOCKET_OR_NULL: 5860 case PTR_TO_SOCK_COMMON: 5861 case PTR_TO_SOCK_COMMON_OR_NULL: 5862 case PTR_TO_TCP_SOCK: 5863 case PTR_TO_TCP_SOCK_OR_NULL: 5864 /* Only valid matches are exact, which memcmp() above 5865 * would have accepted 5866 */ 5867 default: 5868 /* Don't know what's going on, just say it's not safe */ 5869 return false; 5870 } 5871 5872 /* Shouldn't get here; if we do, say it's not safe */ 5873 WARN_ON_ONCE(1); 5874 return false; 5875 } 5876 5877 static bool stacksafe(struct bpf_func_state *old, 5878 struct bpf_func_state *cur, 5879 struct idpair *idmap) 5880 { 5881 int i, spi; 5882 5883 /* walk slots of the explored stack and ignore any additional 5884 * slots in the current stack, since explored(safe) state 5885 * didn't use them 5886 */ 5887 for (i = 0; i < old->allocated_stack; i++) { 5888 spi = i / BPF_REG_SIZE; 5889 5890 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 5891 i += BPF_REG_SIZE - 1; 5892 /* explored state didn't use this */ 5893 continue; 5894 } 5895 5896 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 5897 continue; 5898 5899 /* explored stack has more populated slots than current stack 5900 * and these slots were used 5901 */ 5902 if (i >= cur->allocated_stack) 5903 return false; 5904 5905 /* if old state was safe with misc data in the stack 5906 * it will be safe with zero-initialized stack. 5907 * The opposite is not true 5908 */ 5909 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 5910 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 5911 continue; 5912 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 5913 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 5914 /* Ex: old explored (safe) state has STACK_SPILL in 5915 * this stack slot, but current has has STACK_MISC -> 5916 * this verifier states are not equivalent, 5917 * return false to continue verification of this path 5918 */ 5919 return false; 5920 if (i % BPF_REG_SIZE) 5921 continue; 5922 if (old->stack[spi].slot_type[0] != STACK_SPILL) 5923 continue; 5924 if (!regsafe(&old->stack[spi].spilled_ptr, 5925 &cur->stack[spi].spilled_ptr, 5926 idmap)) 5927 /* when explored and current stack slot are both storing 5928 * spilled registers, check that stored pointers types 5929 * are the same as well. 5930 * Ex: explored safe path could have stored 5931 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 5932 * but current path has stored: 5933 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 5934 * such verifier states are not equivalent. 5935 * return false to continue verification of this path 5936 */ 5937 return false; 5938 } 5939 return true; 5940 } 5941 5942 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 5943 { 5944 if (old->acquired_refs != cur->acquired_refs) 5945 return false; 5946 return !memcmp(old->refs, cur->refs, 5947 sizeof(*old->refs) * old->acquired_refs); 5948 } 5949 5950 /* compare two verifier states 5951 * 5952 * all states stored in state_list are known to be valid, since 5953 * verifier reached 'bpf_exit' instruction through them 5954 * 5955 * this function is called when verifier exploring different branches of 5956 * execution popped from the state stack. If it sees an old state that has 5957 * more strict register state and more strict stack state then this execution 5958 * branch doesn't need to be explored further, since verifier already 5959 * concluded that more strict state leads to valid finish. 5960 * 5961 * Therefore two states are equivalent if register state is more conservative 5962 * and explored stack state is more conservative than the current one. 5963 * Example: 5964 * explored current 5965 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 5966 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 5967 * 5968 * In other words if current stack state (one being explored) has more 5969 * valid slots than old one that already passed validation, it means 5970 * the verifier can stop exploring and conclude that current state is valid too 5971 * 5972 * Similarly with registers. If explored state has register type as invalid 5973 * whereas register type in current state is meaningful, it means that 5974 * the current state will reach 'bpf_exit' instruction safely 5975 */ 5976 static bool func_states_equal(struct bpf_func_state *old, 5977 struct bpf_func_state *cur) 5978 { 5979 struct idpair *idmap; 5980 bool ret = false; 5981 int i; 5982 5983 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 5984 /* If we failed to allocate the idmap, just say it's not safe */ 5985 if (!idmap) 5986 return false; 5987 5988 for (i = 0; i < MAX_BPF_REG; i++) { 5989 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 5990 goto out_free; 5991 } 5992 5993 if (!stacksafe(old, cur, idmap)) 5994 goto out_free; 5995 5996 if (!refsafe(old, cur)) 5997 goto out_free; 5998 ret = true; 5999 out_free: 6000 kfree(idmap); 6001 return ret; 6002 } 6003 6004 static bool states_equal(struct bpf_verifier_env *env, 6005 struct bpf_verifier_state *old, 6006 struct bpf_verifier_state *cur) 6007 { 6008 int i; 6009 6010 if (old->curframe != cur->curframe) 6011 return false; 6012 6013 /* Verification state from speculative execution simulation 6014 * must never prune a non-speculative execution one. 6015 */ 6016 if (old->speculative && !cur->speculative) 6017 return false; 6018 6019 if (old->active_spin_lock != cur->active_spin_lock) 6020 return false; 6021 6022 /* for states to be equal callsites have to be the same 6023 * and all frame states need to be equivalent 6024 */ 6025 for (i = 0; i <= old->curframe; i++) { 6026 if (old->frame[i]->callsite != cur->frame[i]->callsite) 6027 return false; 6028 if (!func_states_equal(old->frame[i], cur->frame[i])) 6029 return false; 6030 } 6031 return true; 6032 } 6033 6034 /* A write screens off any subsequent reads; but write marks come from the 6035 * straight-line code between a state and its parent. When we arrive at an 6036 * equivalent state (jump target or such) we didn't arrive by the straight-line 6037 * code, so read marks in the state must propagate to the parent regardless 6038 * of the state's write marks. That's what 'parent == state->parent' comparison 6039 * in mark_reg_read() is for. 6040 */ 6041 static int propagate_liveness(struct bpf_verifier_env *env, 6042 const struct bpf_verifier_state *vstate, 6043 struct bpf_verifier_state *vparent) 6044 { 6045 int i, frame, err = 0; 6046 struct bpf_func_state *state, *parent; 6047 6048 if (vparent->curframe != vstate->curframe) { 6049 WARN(1, "propagate_live: parent frame %d current frame %d\n", 6050 vparent->curframe, vstate->curframe); 6051 return -EFAULT; 6052 } 6053 /* Propagate read liveness of registers... */ 6054 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 6055 /* We don't need to worry about FP liveness because it's read-only */ 6056 for (i = 0; i < BPF_REG_FP; i++) { 6057 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ) 6058 continue; 6059 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) { 6060 err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i], 6061 &vparent->frame[vstate->curframe]->regs[i]); 6062 if (err) 6063 return err; 6064 } 6065 } 6066 6067 /* ... and stack slots */ 6068 for (frame = 0; frame <= vstate->curframe; frame++) { 6069 state = vstate->frame[frame]; 6070 parent = vparent->frame[frame]; 6071 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 6072 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 6073 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ) 6074 continue; 6075 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) 6076 mark_reg_read(env, &state->stack[i].spilled_ptr, 6077 &parent->stack[i].spilled_ptr); 6078 } 6079 } 6080 return err; 6081 } 6082 6083 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 6084 { 6085 struct bpf_verifier_state_list *new_sl; 6086 struct bpf_verifier_state_list *sl; 6087 struct bpf_verifier_state *cur = env->cur_state, *new; 6088 int i, j, err, states_cnt = 0; 6089 6090 sl = env->explored_states[insn_idx]; 6091 if (!sl) 6092 /* this 'insn_idx' instruction wasn't marked, so we will not 6093 * be doing state search here 6094 */ 6095 return 0; 6096 6097 clean_live_states(env, insn_idx, cur); 6098 6099 while (sl != STATE_LIST_MARK) { 6100 if (states_equal(env, &sl->state, cur)) { 6101 /* reached equivalent register/stack state, 6102 * prune the search. 6103 * Registers read by the continuation are read by us. 6104 * If we have any write marks in env->cur_state, they 6105 * will prevent corresponding reads in the continuation 6106 * from reaching our parent (an explored_state). Our 6107 * own state will get the read marks recorded, but 6108 * they'll be immediately forgotten as we're pruning 6109 * this state and will pop a new one. 6110 */ 6111 err = propagate_liveness(env, &sl->state, cur); 6112 if (err) 6113 return err; 6114 return 1; 6115 } 6116 sl = sl->next; 6117 states_cnt++; 6118 } 6119 6120 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 6121 return 0; 6122 6123 /* there were no equivalent states, remember current one. 6124 * technically the current state is not proven to be safe yet, 6125 * but it will either reach outer most bpf_exit (which means it's safe) 6126 * or it will be rejected. Since there are no loops, we won't be 6127 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 6128 * again on the way to bpf_exit 6129 */ 6130 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 6131 if (!new_sl) 6132 return -ENOMEM; 6133 6134 /* add new state to the head of linked list */ 6135 new = &new_sl->state; 6136 err = copy_verifier_state(new, cur); 6137 if (err) { 6138 free_verifier_state(new, false); 6139 kfree(new_sl); 6140 return err; 6141 } 6142 new_sl->next = env->explored_states[insn_idx]; 6143 env->explored_states[insn_idx] = new_sl; 6144 /* connect new state to parentage chain. Current frame needs all 6145 * registers connected. Only r6 - r9 of the callers are alive (pushed 6146 * to the stack implicitly by JITs) so in callers' frames connect just 6147 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 6148 * the state of the call instruction (with WRITTEN set), and r0 comes 6149 * from callee with its full parentage chain, anyway. 6150 */ 6151 for (j = 0; j <= cur->curframe; j++) 6152 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 6153 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 6154 /* clear write marks in current state: the writes we did are not writes 6155 * our child did, so they don't screen off its reads from us. 6156 * (There are no read marks in current state, because reads always mark 6157 * their parent and current state never has children yet. Only 6158 * explored_states can get read marks.) 6159 */ 6160 for (i = 0; i < BPF_REG_FP; i++) 6161 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE; 6162 6163 /* all stack frames are accessible from callee, clear them all */ 6164 for (j = 0; j <= cur->curframe; j++) { 6165 struct bpf_func_state *frame = cur->frame[j]; 6166 struct bpf_func_state *newframe = new->frame[j]; 6167 6168 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 6169 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 6170 frame->stack[i].spilled_ptr.parent = 6171 &newframe->stack[i].spilled_ptr; 6172 } 6173 } 6174 return 0; 6175 } 6176 6177 /* Return true if it's OK to have the same insn return a different type. */ 6178 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 6179 { 6180 switch (type) { 6181 case PTR_TO_CTX: 6182 case PTR_TO_SOCKET: 6183 case PTR_TO_SOCKET_OR_NULL: 6184 case PTR_TO_SOCK_COMMON: 6185 case PTR_TO_SOCK_COMMON_OR_NULL: 6186 case PTR_TO_TCP_SOCK: 6187 case PTR_TO_TCP_SOCK_OR_NULL: 6188 return false; 6189 default: 6190 return true; 6191 } 6192 } 6193 6194 /* If an instruction was previously used with particular pointer types, then we 6195 * need to be careful to avoid cases such as the below, where it may be ok 6196 * for one branch accessing the pointer, but not ok for the other branch: 6197 * 6198 * R1 = sock_ptr 6199 * goto X; 6200 * ... 6201 * R1 = some_other_valid_ptr; 6202 * goto X; 6203 * ... 6204 * R2 = *(u32 *)(R1 + 0); 6205 */ 6206 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 6207 { 6208 return src != prev && (!reg_type_mismatch_ok(src) || 6209 !reg_type_mismatch_ok(prev)); 6210 } 6211 6212 static int do_check(struct bpf_verifier_env *env) 6213 { 6214 struct bpf_verifier_state *state; 6215 struct bpf_insn *insns = env->prog->insnsi; 6216 struct bpf_reg_state *regs; 6217 int insn_cnt = env->prog->len, i; 6218 int insn_processed = 0; 6219 bool do_print_state = false; 6220 6221 env->prev_linfo = NULL; 6222 6223 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 6224 if (!state) 6225 return -ENOMEM; 6226 state->curframe = 0; 6227 state->speculative = false; 6228 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 6229 if (!state->frame[0]) { 6230 kfree(state); 6231 return -ENOMEM; 6232 } 6233 env->cur_state = state; 6234 init_func_state(env, state->frame[0], 6235 BPF_MAIN_FUNC /* callsite */, 6236 0 /* frameno */, 6237 0 /* subprogno, zero == main subprog */); 6238 6239 for (;;) { 6240 struct bpf_insn *insn; 6241 u8 class; 6242 int err; 6243 6244 if (env->insn_idx >= insn_cnt) { 6245 verbose(env, "invalid insn idx %d insn_cnt %d\n", 6246 env->insn_idx, insn_cnt); 6247 return -EFAULT; 6248 } 6249 6250 insn = &insns[env->insn_idx]; 6251 class = BPF_CLASS(insn->code); 6252 6253 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 6254 verbose(env, 6255 "BPF program is too large. Processed %d insn\n", 6256 insn_processed); 6257 return -E2BIG; 6258 } 6259 6260 err = is_state_visited(env, env->insn_idx); 6261 if (err < 0) 6262 return err; 6263 if (err == 1) { 6264 /* found equivalent state, can prune the search */ 6265 if (env->log.level) { 6266 if (do_print_state) 6267 verbose(env, "\nfrom %d to %d%s: safe\n", 6268 env->prev_insn_idx, env->insn_idx, 6269 env->cur_state->speculative ? 6270 " (speculative execution)" : ""); 6271 else 6272 verbose(env, "%d: safe\n", env->insn_idx); 6273 } 6274 goto process_bpf_exit; 6275 } 6276 6277 if (signal_pending(current)) 6278 return -EAGAIN; 6279 6280 if (need_resched()) 6281 cond_resched(); 6282 6283 if (env->log.level > 1 || (env->log.level && do_print_state)) { 6284 if (env->log.level > 1) 6285 verbose(env, "%d:", env->insn_idx); 6286 else 6287 verbose(env, "\nfrom %d to %d%s:", 6288 env->prev_insn_idx, env->insn_idx, 6289 env->cur_state->speculative ? 6290 " (speculative execution)" : ""); 6291 print_verifier_state(env, state->frame[state->curframe]); 6292 do_print_state = false; 6293 } 6294 6295 if (env->log.level) { 6296 const struct bpf_insn_cbs cbs = { 6297 .cb_print = verbose, 6298 .private_data = env, 6299 }; 6300 6301 verbose_linfo(env, env->insn_idx, "; "); 6302 verbose(env, "%d: ", env->insn_idx); 6303 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 6304 } 6305 6306 if (bpf_prog_is_dev_bound(env->prog->aux)) { 6307 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 6308 env->prev_insn_idx); 6309 if (err) 6310 return err; 6311 } 6312 6313 regs = cur_regs(env); 6314 env->insn_aux_data[env->insn_idx].seen = true; 6315 6316 if (class == BPF_ALU || class == BPF_ALU64) { 6317 err = check_alu_op(env, insn); 6318 if (err) 6319 return err; 6320 6321 } else if (class == BPF_LDX) { 6322 enum bpf_reg_type *prev_src_type, src_reg_type; 6323 6324 /* check for reserved fields is already done */ 6325 6326 /* check src operand */ 6327 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6328 if (err) 6329 return err; 6330 6331 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6332 if (err) 6333 return err; 6334 6335 src_reg_type = regs[insn->src_reg].type; 6336 6337 /* check that memory (src_reg + off) is readable, 6338 * the state of dst_reg will be updated by this func 6339 */ 6340 err = check_mem_access(env, env->insn_idx, insn->src_reg, 6341 insn->off, BPF_SIZE(insn->code), 6342 BPF_READ, insn->dst_reg, false); 6343 if (err) 6344 return err; 6345 6346 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 6347 6348 if (*prev_src_type == NOT_INIT) { 6349 /* saw a valid insn 6350 * dst_reg = *(u32 *)(src_reg + off) 6351 * save type to validate intersecting paths 6352 */ 6353 *prev_src_type = src_reg_type; 6354 6355 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 6356 /* ABuser program is trying to use the same insn 6357 * dst_reg = *(u32*) (src_reg + off) 6358 * with different pointer types: 6359 * src_reg == ctx in one branch and 6360 * src_reg == stack|map in some other branch. 6361 * Reject it. 6362 */ 6363 verbose(env, "same insn cannot be used with different pointers\n"); 6364 return -EINVAL; 6365 } 6366 6367 } else if (class == BPF_STX) { 6368 enum bpf_reg_type *prev_dst_type, dst_reg_type; 6369 6370 if (BPF_MODE(insn->code) == BPF_XADD) { 6371 err = check_xadd(env, env->insn_idx, insn); 6372 if (err) 6373 return err; 6374 env->insn_idx++; 6375 continue; 6376 } 6377 6378 /* check src1 operand */ 6379 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6380 if (err) 6381 return err; 6382 /* check src2 operand */ 6383 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6384 if (err) 6385 return err; 6386 6387 dst_reg_type = regs[insn->dst_reg].type; 6388 6389 /* check that memory (dst_reg + off) is writeable */ 6390 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 6391 insn->off, BPF_SIZE(insn->code), 6392 BPF_WRITE, insn->src_reg, false); 6393 if (err) 6394 return err; 6395 6396 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 6397 6398 if (*prev_dst_type == NOT_INIT) { 6399 *prev_dst_type = dst_reg_type; 6400 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 6401 verbose(env, "same insn cannot be used with different pointers\n"); 6402 return -EINVAL; 6403 } 6404 6405 } else if (class == BPF_ST) { 6406 if (BPF_MODE(insn->code) != BPF_MEM || 6407 insn->src_reg != BPF_REG_0) { 6408 verbose(env, "BPF_ST uses reserved fields\n"); 6409 return -EINVAL; 6410 } 6411 /* check src operand */ 6412 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6413 if (err) 6414 return err; 6415 6416 if (is_ctx_reg(env, insn->dst_reg)) { 6417 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 6418 insn->dst_reg, 6419 reg_type_str[reg_state(env, insn->dst_reg)->type]); 6420 return -EACCES; 6421 } 6422 6423 /* check that memory (dst_reg + off) is writeable */ 6424 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 6425 insn->off, BPF_SIZE(insn->code), 6426 BPF_WRITE, -1, false); 6427 if (err) 6428 return err; 6429 6430 } else if (class == BPF_JMP || class == BPF_JMP32) { 6431 u8 opcode = BPF_OP(insn->code); 6432 6433 if (opcode == BPF_CALL) { 6434 if (BPF_SRC(insn->code) != BPF_K || 6435 insn->off != 0 || 6436 (insn->src_reg != BPF_REG_0 && 6437 insn->src_reg != BPF_PSEUDO_CALL) || 6438 insn->dst_reg != BPF_REG_0 || 6439 class == BPF_JMP32) { 6440 verbose(env, "BPF_CALL uses reserved fields\n"); 6441 return -EINVAL; 6442 } 6443 6444 if (env->cur_state->active_spin_lock && 6445 (insn->src_reg == BPF_PSEUDO_CALL || 6446 insn->imm != BPF_FUNC_spin_unlock)) { 6447 verbose(env, "function calls are not allowed while holding a lock\n"); 6448 return -EINVAL; 6449 } 6450 if (insn->src_reg == BPF_PSEUDO_CALL) 6451 err = check_func_call(env, insn, &env->insn_idx); 6452 else 6453 err = check_helper_call(env, insn->imm, env->insn_idx); 6454 if (err) 6455 return err; 6456 6457 } else if (opcode == BPF_JA) { 6458 if (BPF_SRC(insn->code) != BPF_K || 6459 insn->imm != 0 || 6460 insn->src_reg != BPF_REG_0 || 6461 insn->dst_reg != BPF_REG_0 || 6462 class == BPF_JMP32) { 6463 verbose(env, "BPF_JA uses reserved fields\n"); 6464 return -EINVAL; 6465 } 6466 6467 env->insn_idx += insn->off + 1; 6468 continue; 6469 6470 } else if (opcode == BPF_EXIT) { 6471 if (BPF_SRC(insn->code) != BPF_K || 6472 insn->imm != 0 || 6473 insn->src_reg != BPF_REG_0 || 6474 insn->dst_reg != BPF_REG_0 || 6475 class == BPF_JMP32) { 6476 verbose(env, "BPF_EXIT uses reserved fields\n"); 6477 return -EINVAL; 6478 } 6479 6480 if (env->cur_state->active_spin_lock) { 6481 verbose(env, "bpf_spin_unlock is missing\n"); 6482 return -EINVAL; 6483 } 6484 6485 if (state->curframe) { 6486 /* exit from nested function */ 6487 env->prev_insn_idx = env->insn_idx; 6488 err = prepare_func_exit(env, &env->insn_idx); 6489 if (err) 6490 return err; 6491 do_print_state = true; 6492 continue; 6493 } 6494 6495 err = check_reference_leak(env); 6496 if (err) 6497 return err; 6498 6499 /* eBPF calling convetion is such that R0 is used 6500 * to return the value from eBPF program. 6501 * Make sure that it's readable at this time 6502 * of bpf_exit, which means that program wrote 6503 * something into it earlier 6504 */ 6505 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 6506 if (err) 6507 return err; 6508 6509 if (is_pointer_value(env, BPF_REG_0)) { 6510 verbose(env, "R0 leaks addr as return value\n"); 6511 return -EACCES; 6512 } 6513 6514 err = check_return_code(env); 6515 if (err) 6516 return err; 6517 process_bpf_exit: 6518 err = pop_stack(env, &env->prev_insn_idx, 6519 &env->insn_idx); 6520 if (err < 0) { 6521 if (err != -ENOENT) 6522 return err; 6523 break; 6524 } else { 6525 do_print_state = true; 6526 continue; 6527 } 6528 } else { 6529 err = check_cond_jmp_op(env, insn, &env->insn_idx); 6530 if (err) 6531 return err; 6532 } 6533 } else if (class == BPF_LD) { 6534 u8 mode = BPF_MODE(insn->code); 6535 6536 if (mode == BPF_ABS || mode == BPF_IND) { 6537 err = check_ld_abs(env, insn); 6538 if (err) 6539 return err; 6540 6541 } else if (mode == BPF_IMM) { 6542 err = check_ld_imm(env, insn); 6543 if (err) 6544 return err; 6545 6546 env->insn_idx++; 6547 env->insn_aux_data[env->insn_idx].seen = true; 6548 } else { 6549 verbose(env, "invalid BPF_LD mode\n"); 6550 return -EINVAL; 6551 } 6552 } else { 6553 verbose(env, "unknown insn class %d\n", class); 6554 return -EINVAL; 6555 } 6556 6557 env->insn_idx++; 6558 } 6559 6560 verbose(env, "processed %d insns (limit %d), stack depth ", 6561 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS); 6562 for (i = 0; i < env->subprog_cnt; i++) { 6563 u32 depth = env->subprog_info[i].stack_depth; 6564 6565 verbose(env, "%d", depth); 6566 if (i + 1 < env->subprog_cnt) 6567 verbose(env, "+"); 6568 } 6569 verbose(env, "\n"); 6570 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 6571 return 0; 6572 } 6573 6574 static int check_map_prealloc(struct bpf_map *map) 6575 { 6576 return (map->map_type != BPF_MAP_TYPE_HASH && 6577 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 6578 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 6579 !(map->map_flags & BPF_F_NO_PREALLOC); 6580 } 6581 6582 static bool is_tracing_prog_type(enum bpf_prog_type type) 6583 { 6584 switch (type) { 6585 case BPF_PROG_TYPE_KPROBE: 6586 case BPF_PROG_TYPE_TRACEPOINT: 6587 case BPF_PROG_TYPE_PERF_EVENT: 6588 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6589 return true; 6590 default: 6591 return false; 6592 } 6593 } 6594 6595 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 6596 struct bpf_map *map, 6597 struct bpf_prog *prog) 6598 6599 { 6600 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 6601 * preallocated hash maps, since doing memory allocation 6602 * in overflow_handler can crash depending on where nmi got 6603 * triggered. 6604 */ 6605 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 6606 if (!check_map_prealloc(map)) { 6607 verbose(env, "perf_event programs can only use preallocated hash map\n"); 6608 return -EINVAL; 6609 } 6610 if (map->inner_map_meta && 6611 !check_map_prealloc(map->inner_map_meta)) { 6612 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 6613 return -EINVAL; 6614 } 6615 } 6616 6617 if ((is_tracing_prog_type(prog->type) || 6618 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) && 6619 map_value_has_spin_lock(map)) { 6620 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 6621 return -EINVAL; 6622 } 6623 6624 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 6625 !bpf_offload_prog_map_match(prog, map)) { 6626 verbose(env, "offload device mismatch between prog and map\n"); 6627 return -EINVAL; 6628 } 6629 6630 return 0; 6631 } 6632 6633 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 6634 { 6635 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 6636 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 6637 } 6638 6639 /* look for pseudo eBPF instructions that access map FDs and 6640 * replace them with actual map pointers 6641 */ 6642 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 6643 { 6644 struct bpf_insn *insn = env->prog->insnsi; 6645 int insn_cnt = env->prog->len; 6646 int i, j, err; 6647 6648 err = bpf_prog_calc_tag(env->prog); 6649 if (err) 6650 return err; 6651 6652 for (i = 0; i < insn_cnt; i++, insn++) { 6653 if (BPF_CLASS(insn->code) == BPF_LDX && 6654 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 6655 verbose(env, "BPF_LDX uses reserved fields\n"); 6656 return -EINVAL; 6657 } 6658 6659 if (BPF_CLASS(insn->code) == BPF_STX && 6660 ((BPF_MODE(insn->code) != BPF_MEM && 6661 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 6662 verbose(env, "BPF_STX uses reserved fields\n"); 6663 return -EINVAL; 6664 } 6665 6666 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 6667 struct bpf_map *map; 6668 struct fd f; 6669 6670 if (i == insn_cnt - 1 || insn[1].code != 0 || 6671 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 6672 insn[1].off != 0) { 6673 verbose(env, "invalid bpf_ld_imm64 insn\n"); 6674 return -EINVAL; 6675 } 6676 6677 if (insn->src_reg == 0) 6678 /* valid generic load 64-bit imm */ 6679 goto next_insn; 6680 6681 if (insn[0].src_reg != BPF_PSEUDO_MAP_FD || 6682 insn[1].imm != 0) { 6683 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 6684 return -EINVAL; 6685 } 6686 6687 f = fdget(insn[0].imm); 6688 map = __bpf_map_get(f); 6689 if (IS_ERR(map)) { 6690 verbose(env, "fd %d is not pointing to valid bpf_map\n", 6691 insn[0].imm); 6692 return PTR_ERR(map); 6693 } 6694 6695 err = check_map_prog_compatibility(env, map, env->prog); 6696 if (err) { 6697 fdput(f); 6698 return err; 6699 } 6700 6701 /* store map pointer inside BPF_LD_IMM64 instruction */ 6702 insn[0].imm = (u32) (unsigned long) map; 6703 insn[1].imm = ((u64) (unsigned long) map) >> 32; 6704 6705 /* check whether we recorded this map already */ 6706 for (j = 0; j < env->used_map_cnt; j++) 6707 if (env->used_maps[j] == map) { 6708 fdput(f); 6709 goto next_insn; 6710 } 6711 6712 if (env->used_map_cnt >= MAX_USED_MAPS) { 6713 fdput(f); 6714 return -E2BIG; 6715 } 6716 6717 /* hold the map. If the program is rejected by verifier, 6718 * the map will be released by release_maps() or it 6719 * will be used by the valid program until it's unloaded 6720 * and all maps are released in free_used_maps() 6721 */ 6722 map = bpf_map_inc(map, false); 6723 if (IS_ERR(map)) { 6724 fdput(f); 6725 return PTR_ERR(map); 6726 } 6727 env->used_maps[env->used_map_cnt++] = map; 6728 6729 if (bpf_map_is_cgroup_storage(map) && 6730 bpf_cgroup_storage_assign(env->prog, map)) { 6731 verbose(env, "only one cgroup storage of each type is allowed\n"); 6732 fdput(f); 6733 return -EBUSY; 6734 } 6735 6736 fdput(f); 6737 next_insn: 6738 insn++; 6739 i++; 6740 continue; 6741 } 6742 6743 /* Basic sanity check before we invest more work here. */ 6744 if (!bpf_opcode_in_insntable(insn->code)) { 6745 verbose(env, "unknown opcode %02x\n", insn->code); 6746 return -EINVAL; 6747 } 6748 } 6749 6750 /* now all pseudo BPF_LD_IMM64 instructions load valid 6751 * 'struct bpf_map *' into a register instead of user map_fd. 6752 * These pointers will be used later by verifier to validate map access. 6753 */ 6754 return 0; 6755 } 6756 6757 /* drop refcnt of maps used by the rejected program */ 6758 static void release_maps(struct bpf_verifier_env *env) 6759 { 6760 enum bpf_cgroup_storage_type stype; 6761 int i; 6762 6763 for_each_cgroup_storage_type(stype) { 6764 if (!env->prog->aux->cgroup_storage[stype]) 6765 continue; 6766 bpf_cgroup_storage_release(env->prog, 6767 env->prog->aux->cgroup_storage[stype]); 6768 } 6769 6770 for (i = 0; i < env->used_map_cnt; i++) 6771 bpf_map_put(env->used_maps[i]); 6772 } 6773 6774 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 6775 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 6776 { 6777 struct bpf_insn *insn = env->prog->insnsi; 6778 int insn_cnt = env->prog->len; 6779 int i; 6780 6781 for (i = 0; i < insn_cnt; i++, insn++) 6782 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 6783 insn->src_reg = 0; 6784 } 6785 6786 /* single env->prog->insni[off] instruction was replaced with the range 6787 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 6788 * [0, off) and [off, end) to new locations, so the patched range stays zero 6789 */ 6790 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 6791 u32 off, u32 cnt) 6792 { 6793 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 6794 int i; 6795 6796 if (cnt == 1) 6797 return 0; 6798 new_data = vzalloc(array_size(prog_len, 6799 sizeof(struct bpf_insn_aux_data))); 6800 if (!new_data) 6801 return -ENOMEM; 6802 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 6803 memcpy(new_data + off + cnt - 1, old_data + off, 6804 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 6805 for (i = off; i < off + cnt - 1; i++) 6806 new_data[i].seen = true; 6807 env->insn_aux_data = new_data; 6808 vfree(old_data); 6809 return 0; 6810 } 6811 6812 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 6813 { 6814 int i; 6815 6816 if (len == 1) 6817 return; 6818 /* NOTE: fake 'exit' subprog should be updated as well. */ 6819 for (i = 0; i <= env->subprog_cnt; i++) { 6820 if (env->subprog_info[i].start <= off) 6821 continue; 6822 env->subprog_info[i].start += len - 1; 6823 } 6824 } 6825 6826 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 6827 const struct bpf_insn *patch, u32 len) 6828 { 6829 struct bpf_prog *new_prog; 6830 6831 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 6832 if (!new_prog) 6833 return NULL; 6834 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 6835 return NULL; 6836 adjust_subprog_starts(env, off, len); 6837 return new_prog; 6838 } 6839 6840 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 6841 u32 off, u32 cnt) 6842 { 6843 int i, j; 6844 6845 /* find first prog starting at or after off (first to remove) */ 6846 for (i = 0; i < env->subprog_cnt; i++) 6847 if (env->subprog_info[i].start >= off) 6848 break; 6849 /* find first prog starting at or after off + cnt (first to stay) */ 6850 for (j = i; j < env->subprog_cnt; j++) 6851 if (env->subprog_info[j].start >= off + cnt) 6852 break; 6853 /* if j doesn't start exactly at off + cnt, we are just removing 6854 * the front of previous prog 6855 */ 6856 if (env->subprog_info[j].start != off + cnt) 6857 j--; 6858 6859 if (j > i) { 6860 struct bpf_prog_aux *aux = env->prog->aux; 6861 int move; 6862 6863 /* move fake 'exit' subprog as well */ 6864 move = env->subprog_cnt + 1 - j; 6865 6866 memmove(env->subprog_info + i, 6867 env->subprog_info + j, 6868 sizeof(*env->subprog_info) * move); 6869 env->subprog_cnt -= j - i; 6870 6871 /* remove func_info */ 6872 if (aux->func_info) { 6873 move = aux->func_info_cnt - j; 6874 6875 memmove(aux->func_info + i, 6876 aux->func_info + j, 6877 sizeof(*aux->func_info) * move); 6878 aux->func_info_cnt -= j - i; 6879 /* func_info->insn_off is set after all code rewrites, 6880 * in adjust_btf_func() - no need to adjust 6881 */ 6882 } 6883 } else { 6884 /* convert i from "first prog to remove" to "first to adjust" */ 6885 if (env->subprog_info[i].start == off) 6886 i++; 6887 } 6888 6889 /* update fake 'exit' subprog as well */ 6890 for (; i <= env->subprog_cnt; i++) 6891 env->subprog_info[i].start -= cnt; 6892 6893 return 0; 6894 } 6895 6896 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 6897 u32 cnt) 6898 { 6899 struct bpf_prog *prog = env->prog; 6900 u32 i, l_off, l_cnt, nr_linfo; 6901 struct bpf_line_info *linfo; 6902 6903 nr_linfo = prog->aux->nr_linfo; 6904 if (!nr_linfo) 6905 return 0; 6906 6907 linfo = prog->aux->linfo; 6908 6909 /* find first line info to remove, count lines to be removed */ 6910 for (i = 0; i < nr_linfo; i++) 6911 if (linfo[i].insn_off >= off) 6912 break; 6913 6914 l_off = i; 6915 l_cnt = 0; 6916 for (; i < nr_linfo; i++) 6917 if (linfo[i].insn_off < off + cnt) 6918 l_cnt++; 6919 else 6920 break; 6921 6922 /* First live insn doesn't match first live linfo, it needs to "inherit" 6923 * last removed linfo. prog is already modified, so prog->len == off 6924 * means no live instructions after (tail of the program was removed). 6925 */ 6926 if (prog->len != off && l_cnt && 6927 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 6928 l_cnt--; 6929 linfo[--i].insn_off = off + cnt; 6930 } 6931 6932 /* remove the line info which refer to the removed instructions */ 6933 if (l_cnt) { 6934 memmove(linfo + l_off, linfo + i, 6935 sizeof(*linfo) * (nr_linfo - i)); 6936 6937 prog->aux->nr_linfo -= l_cnt; 6938 nr_linfo = prog->aux->nr_linfo; 6939 } 6940 6941 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 6942 for (i = l_off; i < nr_linfo; i++) 6943 linfo[i].insn_off -= cnt; 6944 6945 /* fix up all subprogs (incl. 'exit') which start >= off */ 6946 for (i = 0; i <= env->subprog_cnt; i++) 6947 if (env->subprog_info[i].linfo_idx > l_off) { 6948 /* program may have started in the removed region but 6949 * may not be fully removed 6950 */ 6951 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 6952 env->subprog_info[i].linfo_idx -= l_cnt; 6953 else 6954 env->subprog_info[i].linfo_idx = l_off; 6955 } 6956 6957 return 0; 6958 } 6959 6960 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 6961 { 6962 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 6963 unsigned int orig_prog_len = env->prog->len; 6964 int err; 6965 6966 if (bpf_prog_is_dev_bound(env->prog->aux)) 6967 bpf_prog_offload_remove_insns(env, off, cnt); 6968 6969 err = bpf_remove_insns(env->prog, off, cnt); 6970 if (err) 6971 return err; 6972 6973 err = adjust_subprog_starts_after_remove(env, off, cnt); 6974 if (err) 6975 return err; 6976 6977 err = bpf_adj_linfo_after_remove(env, off, cnt); 6978 if (err) 6979 return err; 6980 6981 memmove(aux_data + off, aux_data + off + cnt, 6982 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 6983 6984 return 0; 6985 } 6986 6987 /* The verifier does more data flow analysis than llvm and will not 6988 * explore branches that are dead at run time. Malicious programs can 6989 * have dead code too. Therefore replace all dead at-run-time code 6990 * with 'ja -1'. 6991 * 6992 * Just nops are not optimal, e.g. if they would sit at the end of the 6993 * program and through another bug we would manage to jump there, then 6994 * we'd execute beyond program memory otherwise. Returning exception 6995 * code also wouldn't work since we can have subprogs where the dead 6996 * code could be located. 6997 */ 6998 static void sanitize_dead_code(struct bpf_verifier_env *env) 6999 { 7000 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 7001 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 7002 struct bpf_insn *insn = env->prog->insnsi; 7003 const int insn_cnt = env->prog->len; 7004 int i; 7005 7006 for (i = 0; i < insn_cnt; i++) { 7007 if (aux_data[i].seen) 7008 continue; 7009 memcpy(insn + i, &trap, sizeof(trap)); 7010 } 7011 } 7012 7013 static bool insn_is_cond_jump(u8 code) 7014 { 7015 u8 op; 7016 7017 if (BPF_CLASS(code) == BPF_JMP32) 7018 return true; 7019 7020 if (BPF_CLASS(code) != BPF_JMP) 7021 return false; 7022 7023 op = BPF_OP(code); 7024 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 7025 } 7026 7027 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 7028 { 7029 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 7030 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 7031 struct bpf_insn *insn = env->prog->insnsi; 7032 const int insn_cnt = env->prog->len; 7033 int i; 7034 7035 for (i = 0; i < insn_cnt; i++, insn++) { 7036 if (!insn_is_cond_jump(insn->code)) 7037 continue; 7038 7039 if (!aux_data[i + 1].seen) 7040 ja.off = insn->off; 7041 else if (!aux_data[i + 1 + insn->off].seen) 7042 ja.off = 0; 7043 else 7044 continue; 7045 7046 if (bpf_prog_is_dev_bound(env->prog->aux)) 7047 bpf_prog_offload_replace_insn(env, i, &ja); 7048 7049 memcpy(insn, &ja, sizeof(ja)); 7050 } 7051 } 7052 7053 static int opt_remove_dead_code(struct bpf_verifier_env *env) 7054 { 7055 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 7056 int insn_cnt = env->prog->len; 7057 int i, err; 7058 7059 for (i = 0; i < insn_cnt; i++) { 7060 int j; 7061 7062 j = 0; 7063 while (i + j < insn_cnt && !aux_data[i + j].seen) 7064 j++; 7065 if (!j) 7066 continue; 7067 7068 err = verifier_remove_insns(env, i, j); 7069 if (err) 7070 return err; 7071 insn_cnt = env->prog->len; 7072 } 7073 7074 return 0; 7075 } 7076 7077 static int opt_remove_nops(struct bpf_verifier_env *env) 7078 { 7079 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 7080 struct bpf_insn *insn = env->prog->insnsi; 7081 int insn_cnt = env->prog->len; 7082 int i, err; 7083 7084 for (i = 0; i < insn_cnt; i++) { 7085 if (memcmp(&insn[i], &ja, sizeof(ja))) 7086 continue; 7087 7088 err = verifier_remove_insns(env, i, 1); 7089 if (err) 7090 return err; 7091 insn_cnt--; 7092 i--; 7093 } 7094 7095 return 0; 7096 } 7097 7098 /* convert load instructions that access fields of a context type into a 7099 * sequence of instructions that access fields of the underlying structure: 7100 * struct __sk_buff -> struct sk_buff 7101 * struct bpf_sock_ops -> struct sock 7102 */ 7103 static int convert_ctx_accesses(struct bpf_verifier_env *env) 7104 { 7105 const struct bpf_verifier_ops *ops = env->ops; 7106 int i, cnt, size, ctx_field_size, delta = 0; 7107 const int insn_cnt = env->prog->len; 7108 struct bpf_insn insn_buf[16], *insn; 7109 u32 target_size, size_default, off; 7110 struct bpf_prog *new_prog; 7111 enum bpf_access_type type; 7112 bool is_narrower_load; 7113 7114 if (ops->gen_prologue || env->seen_direct_write) { 7115 if (!ops->gen_prologue) { 7116 verbose(env, "bpf verifier is misconfigured\n"); 7117 return -EINVAL; 7118 } 7119 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 7120 env->prog); 7121 if (cnt >= ARRAY_SIZE(insn_buf)) { 7122 verbose(env, "bpf verifier is misconfigured\n"); 7123 return -EINVAL; 7124 } else if (cnt) { 7125 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 7126 if (!new_prog) 7127 return -ENOMEM; 7128 7129 env->prog = new_prog; 7130 delta += cnt - 1; 7131 } 7132 } 7133 7134 if (bpf_prog_is_dev_bound(env->prog->aux)) 7135 return 0; 7136 7137 insn = env->prog->insnsi + delta; 7138 7139 for (i = 0; i < insn_cnt; i++, insn++) { 7140 bpf_convert_ctx_access_t convert_ctx_access; 7141 7142 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 7143 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 7144 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 7145 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 7146 type = BPF_READ; 7147 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 7148 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 7149 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 7150 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 7151 type = BPF_WRITE; 7152 else 7153 continue; 7154 7155 if (type == BPF_WRITE && 7156 env->insn_aux_data[i + delta].sanitize_stack_off) { 7157 struct bpf_insn patch[] = { 7158 /* Sanitize suspicious stack slot with zero. 7159 * There are no memory dependencies for this store, 7160 * since it's only using frame pointer and immediate 7161 * constant of zero 7162 */ 7163 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 7164 env->insn_aux_data[i + delta].sanitize_stack_off, 7165 0), 7166 /* the original STX instruction will immediately 7167 * overwrite the same stack slot with appropriate value 7168 */ 7169 *insn, 7170 }; 7171 7172 cnt = ARRAY_SIZE(patch); 7173 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 7174 if (!new_prog) 7175 return -ENOMEM; 7176 7177 delta += cnt - 1; 7178 env->prog = new_prog; 7179 insn = new_prog->insnsi + i + delta; 7180 continue; 7181 } 7182 7183 switch (env->insn_aux_data[i + delta].ptr_type) { 7184 case PTR_TO_CTX: 7185 if (!ops->convert_ctx_access) 7186 continue; 7187 convert_ctx_access = ops->convert_ctx_access; 7188 break; 7189 case PTR_TO_SOCKET: 7190 case PTR_TO_SOCK_COMMON: 7191 convert_ctx_access = bpf_sock_convert_ctx_access; 7192 break; 7193 case PTR_TO_TCP_SOCK: 7194 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 7195 break; 7196 default: 7197 continue; 7198 } 7199 7200 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 7201 size = BPF_LDST_BYTES(insn); 7202 7203 /* If the read access is a narrower load of the field, 7204 * convert to a 4/8-byte load, to minimum program type specific 7205 * convert_ctx_access changes. If conversion is successful, 7206 * we will apply proper mask to the result. 7207 */ 7208 is_narrower_load = size < ctx_field_size; 7209 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 7210 off = insn->off; 7211 if (is_narrower_load) { 7212 u8 size_code; 7213 7214 if (type == BPF_WRITE) { 7215 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 7216 return -EINVAL; 7217 } 7218 7219 size_code = BPF_H; 7220 if (ctx_field_size == 4) 7221 size_code = BPF_W; 7222 else if (ctx_field_size == 8) 7223 size_code = BPF_DW; 7224 7225 insn->off = off & ~(size_default - 1); 7226 insn->code = BPF_LDX | BPF_MEM | size_code; 7227 } 7228 7229 target_size = 0; 7230 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 7231 &target_size); 7232 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 7233 (ctx_field_size && !target_size)) { 7234 verbose(env, "bpf verifier is misconfigured\n"); 7235 return -EINVAL; 7236 } 7237 7238 if (is_narrower_load && size < target_size) { 7239 u8 shift = (off & (size_default - 1)) * 8; 7240 7241 if (ctx_field_size <= 4) { 7242 if (shift) 7243 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 7244 insn->dst_reg, 7245 shift); 7246 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 7247 (1 << size * 8) - 1); 7248 } else { 7249 if (shift) 7250 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 7251 insn->dst_reg, 7252 shift); 7253 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 7254 (1 << size * 8) - 1); 7255 } 7256 } 7257 7258 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 7259 if (!new_prog) 7260 return -ENOMEM; 7261 7262 delta += cnt - 1; 7263 7264 /* keep walking new program and skip insns we just inserted */ 7265 env->prog = new_prog; 7266 insn = new_prog->insnsi + i + delta; 7267 } 7268 7269 return 0; 7270 } 7271 7272 static int jit_subprogs(struct bpf_verifier_env *env) 7273 { 7274 struct bpf_prog *prog = env->prog, **func, *tmp; 7275 int i, j, subprog_start, subprog_end = 0, len, subprog; 7276 struct bpf_insn *insn; 7277 void *old_bpf_func; 7278 int err; 7279 7280 if (env->subprog_cnt <= 1) 7281 return 0; 7282 7283 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 7284 if (insn->code != (BPF_JMP | BPF_CALL) || 7285 insn->src_reg != BPF_PSEUDO_CALL) 7286 continue; 7287 /* Upon error here we cannot fall back to interpreter but 7288 * need a hard reject of the program. Thus -EFAULT is 7289 * propagated in any case. 7290 */ 7291 subprog = find_subprog(env, i + insn->imm + 1); 7292 if (subprog < 0) { 7293 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 7294 i + insn->imm + 1); 7295 return -EFAULT; 7296 } 7297 /* temporarily remember subprog id inside insn instead of 7298 * aux_data, since next loop will split up all insns into funcs 7299 */ 7300 insn->off = subprog; 7301 /* remember original imm in case JIT fails and fallback 7302 * to interpreter will be needed 7303 */ 7304 env->insn_aux_data[i].call_imm = insn->imm; 7305 /* point imm to __bpf_call_base+1 from JITs point of view */ 7306 insn->imm = 1; 7307 } 7308 7309 err = bpf_prog_alloc_jited_linfo(prog); 7310 if (err) 7311 goto out_undo_insn; 7312 7313 err = -ENOMEM; 7314 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 7315 if (!func) 7316 goto out_undo_insn; 7317 7318 for (i = 0; i < env->subprog_cnt; i++) { 7319 subprog_start = subprog_end; 7320 subprog_end = env->subprog_info[i + 1].start; 7321 7322 len = subprog_end - subprog_start; 7323 /* BPF_PROG_RUN doesn't call subprogs directly, 7324 * hence main prog stats include the runtime of subprogs. 7325 * subprogs don't have IDs and not reachable via prog_get_next_id 7326 * func[i]->aux->stats will never be accessed and stays NULL 7327 */ 7328 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 7329 if (!func[i]) 7330 goto out_free; 7331 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 7332 len * sizeof(struct bpf_insn)); 7333 func[i]->type = prog->type; 7334 func[i]->len = len; 7335 if (bpf_prog_calc_tag(func[i])) 7336 goto out_free; 7337 func[i]->is_func = 1; 7338 func[i]->aux->func_idx = i; 7339 /* the btf and func_info will be freed only at prog->aux */ 7340 func[i]->aux->btf = prog->aux->btf; 7341 func[i]->aux->func_info = prog->aux->func_info; 7342 7343 /* Use bpf_prog_F_tag to indicate functions in stack traces. 7344 * Long term would need debug info to populate names 7345 */ 7346 func[i]->aux->name[0] = 'F'; 7347 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 7348 func[i]->jit_requested = 1; 7349 func[i]->aux->linfo = prog->aux->linfo; 7350 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 7351 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 7352 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 7353 func[i] = bpf_int_jit_compile(func[i]); 7354 if (!func[i]->jited) { 7355 err = -ENOTSUPP; 7356 goto out_free; 7357 } 7358 cond_resched(); 7359 } 7360 /* at this point all bpf functions were successfully JITed 7361 * now populate all bpf_calls with correct addresses and 7362 * run last pass of JIT 7363 */ 7364 for (i = 0; i < env->subprog_cnt; i++) { 7365 insn = func[i]->insnsi; 7366 for (j = 0; j < func[i]->len; j++, insn++) { 7367 if (insn->code != (BPF_JMP | BPF_CALL) || 7368 insn->src_reg != BPF_PSEUDO_CALL) 7369 continue; 7370 subprog = insn->off; 7371 insn->imm = (u64 (*)(u64, u64, u64, u64, u64)) 7372 func[subprog]->bpf_func - 7373 __bpf_call_base; 7374 } 7375 7376 /* we use the aux data to keep a list of the start addresses 7377 * of the JITed images for each function in the program 7378 * 7379 * for some architectures, such as powerpc64, the imm field 7380 * might not be large enough to hold the offset of the start 7381 * address of the callee's JITed image from __bpf_call_base 7382 * 7383 * in such cases, we can lookup the start address of a callee 7384 * by using its subprog id, available from the off field of 7385 * the call instruction, as an index for this list 7386 */ 7387 func[i]->aux->func = func; 7388 func[i]->aux->func_cnt = env->subprog_cnt; 7389 } 7390 for (i = 0; i < env->subprog_cnt; i++) { 7391 old_bpf_func = func[i]->bpf_func; 7392 tmp = bpf_int_jit_compile(func[i]); 7393 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 7394 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 7395 err = -ENOTSUPP; 7396 goto out_free; 7397 } 7398 cond_resched(); 7399 } 7400 7401 /* finally lock prog and jit images for all functions and 7402 * populate kallsysm 7403 */ 7404 for (i = 0; i < env->subprog_cnt; i++) { 7405 bpf_prog_lock_ro(func[i]); 7406 bpf_prog_kallsyms_add(func[i]); 7407 } 7408 7409 /* Last step: make now unused interpreter insns from main 7410 * prog consistent for later dump requests, so they can 7411 * later look the same as if they were interpreted only. 7412 */ 7413 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 7414 if (insn->code != (BPF_JMP | BPF_CALL) || 7415 insn->src_reg != BPF_PSEUDO_CALL) 7416 continue; 7417 insn->off = env->insn_aux_data[i].call_imm; 7418 subprog = find_subprog(env, i + insn->off + 1); 7419 insn->imm = subprog; 7420 } 7421 7422 prog->jited = 1; 7423 prog->bpf_func = func[0]->bpf_func; 7424 prog->aux->func = func; 7425 prog->aux->func_cnt = env->subprog_cnt; 7426 bpf_prog_free_unused_jited_linfo(prog); 7427 return 0; 7428 out_free: 7429 for (i = 0; i < env->subprog_cnt; i++) 7430 if (func[i]) 7431 bpf_jit_free(func[i]); 7432 kfree(func); 7433 out_undo_insn: 7434 /* cleanup main prog to be interpreted */ 7435 prog->jit_requested = 0; 7436 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 7437 if (insn->code != (BPF_JMP | BPF_CALL) || 7438 insn->src_reg != BPF_PSEUDO_CALL) 7439 continue; 7440 insn->off = 0; 7441 insn->imm = env->insn_aux_data[i].call_imm; 7442 } 7443 bpf_prog_free_jited_linfo(prog); 7444 return err; 7445 } 7446 7447 static int fixup_call_args(struct bpf_verifier_env *env) 7448 { 7449 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 7450 struct bpf_prog *prog = env->prog; 7451 struct bpf_insn *insn = prog->insnsi; 7452 int i, depth; 7453 #endif 7454 int err = 0; 7455 7456 if (env->prog->jit_requested && 7457 !bpf_prog_is_dev_bound(env->prog->aux)) { 7458 err = jit_subprogs(env); 7459 if (err == 0) 7460 return 0; 7461 if (err == -EFAULT) 7462 return err; 7463 } 7464 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 7465 for (i = 0; i < prog->len; i++, insn++) { 7466 if (insn->code != (BPF_JMP | BPF_CALL) || 7467 insn->src_reg != BPF_PSEUDO_CALL) 7468 continue; 7469 depth = get_callee_stack_depth(env, insn, i); 7470 if (depth < 0) 7471 return depth; 7472 bpf_patch_call_args(insn, depth); 7473 } 7474 err = 0; 7475 #endif 7476 return err; 7477 } 7478 7479 /* fixup insn->imm field of bpf_call instructions 7480 * and inline eligible helpers as explicit sequence of BPF instructions 7481 * 7482 * this function is called after eBPF program passed verification 7483 */ 7484 static int fixup_bpf_calls(struct bpf_verifier_env *env) 7485 { 7486 struct bpf_prog *prog = env->prog; 7487 struct bpf_insn *insn = prog->insnsi; 7488 const struct bpf_func_proto *fn; 7489 const int insn_cnt = prog->len; 7490 const struct bpf_map_ops *ops; 7491 struct bpf_insn_aux_data *aux; 7492 struct bpf_insn insn_buf[16]; 7493 struct bpf_prog *new_prog; 7494 struct bpf_map *map_ptr; 7495 int i, cnt, delta = 0; 7496 7497 for (i = 0; i < insn_cnt; i++, insn++) { 7498 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 7499 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 7500 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 7501 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 7502 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 7503 struct bpf_insn mask_and_div[] = { 7504 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 7505 /* Rx div 0 -> 0 */ 7506 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 7507 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 7508 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 7509 *insn, 7510 }; 7511 struct bpf_insn mask_and_mod[] = { 7512 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 7513 /* Rx mod 0 -> Rx */ 7514 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 7515 *insn, 7516 }; 7517 struct bpf_insn *patchlet; 7518 7519 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 7520 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 7521 patchlet = mask_and_div + (is64 ? 1 : 0); 7522 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 7523 } else { 7524 patchlet = mask_and_mod + (is64 ? 1 : 0); 7525 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 7526 } 7527 7528 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 7529 if (!new_prog) 7530 return -ENOMEM; 7531 7532 delta += cnt - 1; 7533 env->prog = prog = new_prog; 7534 insn = new_prog->insnsi + i + delta; 7535 continue; 7536 } 7537 7538 if (BPF_CLASS(insn->code) == BPF_LD && 7539 (BPF_MODE(insn->code) == BPF_ABS || 7540 BPF_MODE(insn->code) == BPF_IND)) { 7541 cnt = env->ops->gen_ld_abs(insn, insn_buf); 7542 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 7543 verbose(env, "bpf verifier is misconfigured\n"); 7544 return -EINVAL; 7545 } 7546 7547 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 7548 if (!new_prog) 7549 return -ENOMEM; 7550 7551 delta += cnt - 1; 7552 env->prog = prog = new_prog; 7553 insn = new_prog->insnsi + i + delta; 7554 continue; 7555 } 7556 7557 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 7558 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 7559 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 7560 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 7561 struct bpf_insn insn_buf[16]; 7562 struct bpf_insn *patch = &insn_buf[0]; 7563 bool issrc, isneg; 7564 u32 off_reg; 7565 7566 aux = &env->insn_aux_data[i + delta]; 7567 if (!aux->alu_state || 7568 aux->alu_state == BPF_ALU_NON_POINTER) 7569 continue; 7570 7571 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 7572 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 7573 BPF_ALU_SANITIZE_SRC; 7574 7575 off_reg = issrc ? insn->src_reg : insn->dst_reg; 7576 if (isneg) 7577 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 7578 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 7579 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 7580 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 7581 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 7582 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 7583 if (issrc) { 7584 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 7585 off_reg); 7586 insn->src_reg = BPF_REG_AX; 7587 } else { 7588 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 7589 BPF_REG_AX); 7590 } 7591 if (isneg) 7592 insn->code = insn->code == code_add ? 7593 code_sub : code_add; 7594 *patch++ = *insn; 7595 if (issrc && isneg) 7596 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 7597 cnt = patch - insn_buf; 7598 7599 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 7600 if (!new_prog) 7601 return -ENOMEM; 7602 7603 delta += cnt - 1; 7604 env->prog = prog = new_prog; 7605 insn = new_prog->insnsi + i + delta; 7606 continue; 7607 } 7608 7609 if (insn->code != (BPF_JMP | BPF_CALL)) 7610 continue; 7611 if (insn->src_reg == BPF_PSEUDO_CALL) 7612 continue; 7613 7614 if (insn->imm == BPF_FUNC_get_route_realm) 7615 prog->dst_needed = 1; 7616 if (insn->imm == BPF_FUNC_get_prandom_u32) 7617 bpf_user_rnd_init_once(); 7618 if (insn->imm == BPF_FUNC_override_return) 7619 prog->kprobe_override = 1; 7620 if (insn->imm == BPF_FUNC_tail_call) { 7621 /* If we tail call into other programs, we 7622 * cannot make any assumptions since they can 7623 * be replaced dynamically during runtime in 7624 * the program array. 7625 */ 7626 prog->cb_access = 1; 7627 env->prog->aux->stack_depth = MAX_BPF_STACK; 7628 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 7629 7630 /* mark bpf_tail_call as different opcode to avoid 7631 * conditional branch in the interpeter for every normal 7632 * call and to prevent accidental JITing by JIT compiler 7633 * that doesn't support bpf_tail_call yet 7634 */ 7635 insn->imm = 0; 7636 insn->code = BPF_JMP | BPF_TAIL_CALL; 7637 7638 aux = &env->insn_aux_data[i + delta]; 7639 if (!bpf_map_ptr_unpriv(aux)) 7640 continue; 7641 7642 /* instead of changing every JIT dealing with tail_call 7643 * emit two extra insns: 7644 * if (index >= max_entries) goto out; 7645 * index &= array->index_mask; 7646 * to avoid out-of-bounds cpu speculation 7647 */ 7648 if (bpf_map_ptr_poisoned(aux)) { 7649 verbose(env, "tail_call abusing map_ptr\n"); 7650 return -EINVAL; 7651 } 7652 7653 map_ptr = BPF_MAP_PTR(aux->map_state); 7654 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 7655 map_ptr->max_entries, 2); 7656 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 7657 container_of(map_ptr, 7658 struct bpf_array, 7659 map)->index_mask); 7660 insn_buf[2] = *insn; 7661 cnt = 3; 7662 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 7663 if (!new_prog) 7664 return -ENOMEM; 7665 7666 delta += cnt - 1; 7667 env->prog = prog = new_prog; 7668 insn = new_prog->insnsi + i + delta; 7669 continue; 7670 } 7671 7672 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 7673 * and other inlining handlers are currently limited to 64 bit 7674 * only. 7675 */ 7676 if (prog->jit_requested && BITS_PER_LONG == 64 && 7677 (insn->imm == BPF_FUNC_map_lookup_elem || 7678 insn->imm == BPF_FUNC_map_update_elem || 7679 insn->imm == BPF_FUNC_map_delete_elem || 7680 insn->imm == BPF_FUNC_map_push_elem || 7681 insn->imm == BPF_FUNC_map_pop_elem || 7682 insn->imm == BPF_FUNC_map_peek_elem)) { 7683 aux = &env->insn_aux_data[i + delta]; 7684 if (bpf_map_ptr_poisoned(aux)) 7685 goto patch_call_imm; 7686 7687 map_ptr = BPF_MAP_PTR(aux->map_state); 7688 ops = map_ptr->ops; 7689 if (insn->imm == BPF_FUNC_map_lookup_elem && 7690 ops->map_gen_lookup) { 7691 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 7692 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 7693 verbose(env, "bpf verifier is misconfigured\n"); 7694 return -EINVAL; 7695 } 7696 7697 new_prog = bpf_patch_insn_data(env, i + delta, 7698 insn_buf, cnt); 7699 if (!new_prog) 7700 return -ENOMEM; 7701 7702 delta += cnt - 1; 7703 env->prog = prog = new_prog; 7704 insn = new_prog->insnsi + i + delta; 7705 continue; 7706 } 7707 7708 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 7709 (void *(*)(struct bpf_map *map, void *key))NULL)); 7710 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 7711 (int (*)(struct bpf_map *map, void *key))NULL)); 7712 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 7713 (int (*)(struct bpf_map *map, void *key, void *value, 7714 u64 flags))NULL)); 7715 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 7716 (int (*)(struct bpf_map *map, void *value, 7717 u64 flags))NULL)); 7718 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 7719 (int (*)(struct bpf_map *map, void *value))NULL)); 7720 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 7721 (int (*)(struct bpf_map *map, void *value))NULL)); 7722 7723 switch (insn->imm) { 7724 case BPF_FUNC_map_lookup_elem: 7725 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 7726 __bpf_call_base; 7727 continue; 7728 case BPF_FUNC_map_update_elem: 7729 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 7730 __bpf_call_base; 7731 continue; 7732 case BPF_FUNC_map_delete_elem: 7733 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 7734 __bpf_call_base; 7735 continue; 7736 case BPF_FUNC_map_push_elem: 7737 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 7738 __bpf_call_base; 7739 continue; 7740 case BPF_FUNC_map_pop_elem: 7741 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 7742 __bpf_call_base; 7743 continue; 7744 case BPF_FUNC_map_peek_elem: 7745 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 7746 __bpf_call_base; 7747 continue; 7748 } 7749 7750 goto patch_call_imm; 7751 } 7752 7753 patch_call_imm: 7754 fn = env->ops->get_func_proto(insn->imm, env->prog); 7755 /* all functions that have prototype and verifier allowed 7756 * programs to call them, must be real in-kernel functions 7757 */ 7758 if (!fn->func) { 7759 verbose(env, 7760 "kernel subsystem misconfigured func %s#%d\n", 7761 func_id_name(insn->imm), insn->imm); 7762 return -EFAULT; 7763 } 7764 insn->imm = fn->func - __bpf_call_base; 7765 } 7766 7767 return 0; 7768 } 7769 7770 static void free_states(struct bpf_verifier_env *env) 7771 { 7772 struct bpf_verifier_state_list *sl, *sln; 7773 int i; 7774 7775 if (!env->explored_states) 7776 return; 7777 7778 for (i = 0; i < env->prog->len; i++) { 7779 sl = env->explored_states[i]; 7780 7781 if (sl) 7782 while (sl != STATE_LIST_MARK) { 7783 sln = sl->next; 7784 free_verifier_state(&sl->state, false); 7785 kfree(sl); 7786 sl = sln; 7787 } 7788 } 7789 7790 kfree(env->explored_states); 7791 } 7792 7793 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 7794 union bpf_attr __user *uattr) 7795 { 7796 struct bpf_verifier_env *env; 7797 struct bpf_verifier_log *log; 7798 int i, len, ret = -EINVAL; 7799 bool is_priv; 7800 7801 /* no program is valid */ 7802 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 7803 return -EINVAL; 7804 7805 /* 'struct bpf_verifier_env' can be global, but since it's not small, 7806 * allocate/free it every time bpf_check() is called 7807 */ 7808 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 7809 if (!env) 7810 return -ENOMEM; 7811 log = &env->log; 7812 7813 len = (*prog)->len; 7814 env->insn_aux_data = 7815 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 7816 ret = -ENOMEM; 7817 if (!env->insn_aux_data) 7818 goto err_free_env; 7819 for (i = 0; i < len; i++) 7820 env->insn_aux_data[i].orig_idx = i; 7821 env->prog = *prog; 7822 env->ops = bpf_verifier_ops[env->prog->type]; 7823 7824 /* grab the mutex to protect few globals used by verifier */ 7825 mutex_lock(&bpf_verifier_lock); 7826 7827 if (attr->log_level || attr->log_buf || attr->log_size) { 7828 /* user requested verbose verifier output 7829 * and supplied buffer to store the verification trace 7830 */ 7831 log->level = attr->log_level; 7832 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 7833 log->len_total = attr->log_size; 7834 7835 ret = -EINVAL; 7836 /* log attributes have to be sane */ 7837 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 7838 !log->level || !log->ubuf) 7839 goto err_unlock; 7840 } 7841 7842 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 7843 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 7844 env->strict_alignment = true; 7845 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 7846 env->strict_alignment = false; 7847 7848 is_priv = capable(CAP_SYS_ADMIN); 7849 env->allow_ptr_leaks = is_priv; 7850 7851 ret = replace_map_fd_with_map_ptr(env); 7852 if (ret < 0) 7853 goto skip_full_check; 7854 7855 if (bpf_prog_is_dev_bound(env->prog->aux)) { 7856 ret = bpf_prog_offload_verifier_prep(env->prog); 7857 if (ret) 7858 goto skip_full_check; 7859 } 7860 7861 env->explored_states = kcalloc(env->prog->len, 7862 sizeof(struct bpf_verifier_state_list *), 7863 GFP_USER); 7864 ret = -ENOMEM; 7865 if (!env->explored_states) 7866 goto skip_full_check; 7867 7868 ret = check_subprogs(env); 7869 if (ret < 0) 7870 goto skip_full_check; 7871 7872 ret = check_btf_info(env, attr, uattr); 7873 if (ret < 0) 7874 goto skip_full_check; 7875 7876 ret = check_cfg(env); 7877 if (ret < 0) 7878 goto skip_full_check; 7879 7880 ret = do_check(env); 7881 if (env->cur_state) { 7882 free_verifier_state(env->cur_state, true); 7883 env->cur_state = NULL; 7884 } 7885 7886 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 7887 ret = bpf_prog_offload_finalize(env); 7888 7889 skip_full_check: 7890 while (!pop_stack(env, NULL, NULL)); 7891 free_states(env); 7892 7893 if (ret == 0) 7894 ret = check_max_stack_depth(env); 7895 7896 /* instruction rewrites happen after this point */ 7897 if (is_priv) { 7898 if (ret == 0) 7899 opt_hard_wire_dead_code_branches(env); 7900 if (ret == 0) 7901 ret = opt_remove_dead_code(env); 7902 if (ret == 0) 7903 ret = opt_remove_nops(env); 7904 } else { 7905 if (ret == 0) 7906 sanitize_dead_code(env); 7907 } 7908 7909 if (ret == 0) 7910 /* program is valid, convert *(u32*)(ctx + off) accesses */ 7911 ret = convert_ctx_accesses(env); 7912 7913 if (ret == 0) 7914 ret = fixup_bpf_calls(env); 7915 7916 if (ret == 0) 7917 ret = fixup_call_args(env); 7918 7919 if (log->level && bpf_verifier_log_full(log)) 7920 ret = -ENOSPC; 7921 if (log->level && !log->ubuf) { 7922 ret = -EFAULT; 7923 goto err_release_maps; 7924 } 7925 7926 if (ret == 0 && env->used_map_cnt) { 7927 /* if program passed verifier, update used_maps in bpf_prog_info */ 7928 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 7929 sizeof(env->used_maps[0]), 7930 GFP_KERNEL); 7931 7932 if (!env->prog->aux->used_maps) { 7933 ret = -ENOMEM; 7934 goto err_release_maps; 7935 } 7936 7937 memcpy(env->prog->aux->used_maps, env->used_maps, 7938 sizeof(env->used_maps[0]) * env->used_map_cnt); 7939 env->prog->aux->used_map_cnt = env->used_map_cnt; 7940 7941 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 7942 * bpf_ld_imm64 instructions 7943 */ 7944 convert_pseudo_ld_imm64(env); 7945 } 7946 7947 if (ret == 0) 7948 adjust_btf_func(env); 7949 7950 err_release_maps: 7951 if (!env->prog->aux->used_maps) 7952 /* if we didn't copy map pointers into bpf_prog_info, release 7953 * them now. Otherwise free_used_maps() will release them. 7954 */ 7955 release_maps(env); 7956 *prog = env->prog; 7957 err_unlock: 7958 mutex_unlock(&bpf_verifier_lock); 7959 vfree(env->insn_aux_data); 7960 err_free_env: 7961 kfree(env); 7962 return ret; 7963 } 7964