xref: /openbmc/linux/kernel/bpf/verifier.c (revision 5b628549)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of version 2 of the GNU General Public
7  * License as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  * General Public License for more details.
13  */
14 #include <uapi/linux/btf.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/slab.h>
18 #include <linux/bpf.h>
19 #include <linux/btf.h>
20 #include <linux/bpf_verifier.h>
21 #include <linux/filter.h>
22 #include <net/netlink.h>
23 #include <linux/file.h>
24 #include <linux/vmalloc.h>
25 #include <linux/stringify.h>
26 #include <linux/bsearch.h>
27 #include <linux/sort.h>
28 #include <linux/perf_event.h>
29 #include <linux/ctype.h>
30 
31 #include "disasm.h"
32 
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name) \
35 	[_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #include <linux/bpf_types.h>
38 #undef BPF_PROG_TYPE
39 #undef BPF_MAP_TYPE
40 };
41 
42 /* bpf_check() is a static code analyzer that walks eBPF program
43  * instruction by instruction and updates register/stack state.
44  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
45  *
46  * The first pass is depth-first-search to check that the program is a DAG.
47  * It rejects the following programs:
48  * - larger than BPF_MAXINSNS insns
49  * - if loop is present (detected via back-edge)
50  * - unreachable insns exist (shouldn't be a forest. program = one function)
51  * - out of bounds or malformed jumps
52  * The second pass is all possible path descent from the 1st insn.
53  * Since it's analyzing all pathes through the program, the length of the
54  * analysis is limited to 64k insn, which may be hit even if total number of
55  * insn is less then 4K, but there are too many branches that change stack/regs.
56  * Number of 'branches to be analyzed' is limited to 1k
57  *
58  * On entry to each instruction, each register has a type, and the instruction
59  * changes the types of the registers depending on instruction semantics.
60  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
61  * copied to R1.
62  *
63  * All registers are 64-bit.
64  * R0 - return register
65  * R1-R5 argument passing registers
66  * R6-R9 callee saved registers
67  * R10 - frame pointer read-only
68  *
69  * At the start of BPF program the register R1 contains a pointer to bpf_context
70  * and has type PTR_TO_CTX.
71  *
72  * Verifier tracks arithmetic operations on pointers in case:
73  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
74  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
75  * 1st insn copies R10 (which has FRAME_PTR) type into R1
76  * and 2nd arithmetic instruction is pattern matched to recognize
77  * that it wants to construct a pointer to some element within stack.
78  * So after 2nd insn, the register R1 has type PTR_TO_STACK
79  * (and -20 constant is saved for further stack bounds checking).
80  * Meaning that this reg is a pointer to stack plus known immediate constant.
81  *
82  * Most of the time the registers have SCALAR_VALUE type, which
83  * means the register has some value, but it's not a valid pointer.
84  * (like pointer plus pointer becomes SCALAR_VALUE type)
85  *
86  * When verifier sees load or store instructions the type of base register
87  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
88  * four pointer types recognized by check_mem_access() function.
89  *
90  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
91  * and the range of [ptr, ptr + map's value_size) is accessible.
92  *
93  * registers used to pass values to function calls are checked against
94  * function argument constraints.
95  *
96  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
97  * It means that the register type passed to this function must be
98  * PTR_TO_STACK and it will be used inside the function as
99  * 'pointer to map element key'
100  *
101  * For example the argument constraints for bpf_map_lookup_elem():
102  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
103  *   .arg1_type = ARG_CONST_MAP_PTR,
104  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
105  *
106  * ret_type says that this function returns 'pointer to map elem value or null'
107  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
108  * 2nd argument should be a pointer to stack, which will be used inside
109  * the helper function as a pointer to map element key.
110  *
111  * On the kernel side the helper function looks like:
112  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
113  * {
114  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
115  *    void *key = (void *) (unsigned long) r2;
116  *    void *value;
117  *
118  *    here kernel can access 'key' and 'map' pointers safely, knowing that
119  *    [key, key + map->key_size) bytes are valid and were initialized on
120  *    the stack of eBPF program.
121  * }
122  *
123  * Corresponding eBPF program may look like:
124  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
125  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
126  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
127  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
128  * here verifier looks at prototype of map_lookup_elem() and sees:
129  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
130  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
131  *
132  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
133  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
134  * and were initialized prior to this call.
135  * If it's ok, then verifier allows this BPF_CALL insn and looks at
136  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
137  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
138  * returns ether pointer to map value or NULL.
139  *
140  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
141  * insn, the register holding that pointer in the true branch changes state to
142  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
143  * branch. See check_cond_jmp_op().
144  *
145  * After the call R0 is set to return type of the function and registers R1-R5
146  * are set to NOT_INIT to indicate that they are no longer readable.
147  *
148  * The following reference types represent a potential reference to a kernel
149  * resource which, after first being allocated, must be checked and freed by
150  * the BPF program:
151  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
152  *
153  * When the verifier sees a helper call return a reference type, it allocates a
154  * pointer id for the reference and stores it in the current function state.
155  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
156  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
157  * passes through a NULL-check conditional. For the branch wherein the state is
158  * changed to CONST_IMM, the verifier releases the reference.
159  *
160  * For each helper function that allocates a reference, such as
161  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
162  * bpf_sk_release(). When a reference type passes into the release function,
163  * the verifier also releases the reference. If any unchecked or unreleased
164  * reference remains at the end of the program, the verifier rejects it.
165  */
166 
167 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
168 struct bpf_verifier_stack_elem {
169 	/* verifer state is 'st'
170 	 * before processing instruction 'insn_idx'
171 	 * and after processing instruction 'prev_insn_idx'
172 	 */
173 	struct bpf_verifier_state st;
174 	int insn_idx;
175 	int prev_insn_idx;
176 	struct bpf_verifier_stack_elem *next;
177 };
178 
179 #define BPF_COMPLEXITY_LIMIT_INSNS	131072
180 #define BPF_COMPLEXITY_LIMIT_STACK	1024
181 #define BPF_COMPLEXITY_LIMIT_STATES	64
182 
183 #define BPF_MAP_PTR_UNPRIV	1UL
184 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
185 					  POISON_POINTER_DELTA))
186 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
187 
188 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
189 {
190 	return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
191 }
192 
193 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
194 {
195 	return aux->map_state & BPF_MAP_PTR_UNPRIV;
196 }
197 
198 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
199 			      const struct bpf_map *map, bool unpriv)
200 {
201 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
202 	unpriv |= bpf_map_ptr_unpriv(aux);
203 	aux->map_state = (unsigned long)map |
204 			 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
205 }
206 
207 struct bpf_call_arg_meta {
208 	struct bpf_map *map_ptr;
209 	bool raw_mode;
210 	bool pkt_access;
211 	int regno;
212 	int access_size;
213 	s64 msize_smax_value;
214 	u64 msize_umax_value;
215 	int ptr_id;
216 	int func_id;
217 };
218 
219 static DEFINE_MUTEX(bpf_verifier_lock);
220 
221 static const struct bpf_line_info *
222 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
223 {
224 	const struct bpf_line_info *linfo;
225 	const struct bpf_prog *prog;
226 	u32 i, nr_linfo;
227 
228 	prog = env->prog;
229 	nr_linfo = prog->aux->nr_linfo;
230 
231 	if (!nr_linfo || insn_off >= prog->len)
232 		return NULL;
233 
234 	linfo = prog->aux->linfo;
235 	for (i = 1; i < nr_linfo; i++)
236 		if (insn_off < linfo[i].insn_off)
237 			break;
238 
239 	return &linfo[i - 1];
240 }
241 
242 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
243 		       va_list args)
244 {
245 	unsigned int n;
246 
247 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
248 
249 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
250 		  "verifier log line truncated - local buffer too short\n");
251 
252 	n = min(log->len_total - log->len_used - 1, n);
253 	log->kbuf[n] = '\0';
254 
255 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
256 		log->len_used += n;
257 	else
258 		log->ubuf = NULL;
259 }
260 
261 /* log_level controls verbosity level of eBPF verifier.
262  * bpf_verifier_log_write() is used to dump the verification trace to the log,
263  * so the user can figure out what's wrong with the program
264  */
265 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
266 					   const char *fmt, ...)
267 {
268 	va_list args;
269 
270 	if (!bpf_verifier_log_needed(&env->log))
271 		return;
272 
273 	va_start(args, fmt);
274 	bpf_verifier_vlog(&env->log, fmt, args);
275 	va_end(args);
276 }
277 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
278 
279 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
280 {
281 	struct bpf_verifier_env *env = private_data;
282 	va_list args;
283 
284 	if (!bpf_verifier_log_needed(&env->log))
285 		return;
286 
287 	va_start(args, fmt);
288 	bpf_verifier_vlog(&env->log, fmt, args);
289 	va_end(args);
290 }
291 
292 static const char *ltrim(const char *s)
293 {
294 	while (isspace(*s))
295 		s++;
296 
297 	return s;
298 }
299 
300 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
301 					 u32 insn_off,
302 					 const char *prefix_fmt, ...)
303 {
304 	const struct bpf_line_info *linfo;
305 
306 	if (!bpf_verifier_log_needed(&env->log))
307 		return;
308 
309 	linfo = find_linfo(env, insn_off);
310 	if (!linfo || linfo == env->prev_linfo)
311 		return;
312 
313 	if (prefix_fmt) {
314 		va_list args;
315 
316 		va_start(args, prefix_fmt);
317 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
318 		va_end(args);
319 	}
320 
321 	verbose(env, "%s\n",
322 		ltrim(btf_name_by_offset(env->prog->aux->btf,
323 					 linfo->line_off)));
324 
325 	env->prev_linfo = linfo;
326 }
327 
328 static bool type_is_pkt_pointer(enum bpf_reg_type type)
329 {
330 	return type == PTR_TO_PACKET ||
331 	       type == PTR_TO_PACKET_META;
332 }
333 
334 static bool type_is_sk_pointer(enum bpf_reg_type type)
335 {
336 	return type == PTR_TO_SOCKET ||
337 		type == PTR_TO_SOCK_COMMON ||
338 		type == PTR_TO_TCP_SOCK;
339 }
340 
341 static bool reg_type_may_be_null(enum bpf_reg_type type)
342 {
343 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
344 	       type == PTR_TO_SOCKET_OR_NULL ||
345 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
346 	       type == PTR_TO_TCP_SOCK_OR_NULL;
347 }
348 
349 static bool type_is_refcounted(enum bpf_reg_type type)
350 {
351 	return type == PTR_TO_SOCKET;
352 }
353 
354 static bool type_is_refcounted_or_null(enum bpf_reg_type type)
355 {
356 	return type == PTR_TO_SOCKET || type == PTR_TO_SOCKET_OR_NULL;
357 }
358 
359 static bool reg_is_refcounted(const struct bpf_reg_state *reg)
360 {
361 	return type_is_refcounted(reg->type);
362 }
363 
364 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
365 {
366 	return reg->type == PTR_TO_MAP_VALUE &&
367 		map_value_has_spin_lock(reg->map_ptr);
368 }
369 
370 static bool reg_is_refcounted_or_null(const struct bpf_reg_state *reg)
371 {
372 	return type_is_refcounted_or_null(reg->type);
373 }
374 
375 static bool arg_type_is_refcounted(enum bpf_arg_type type)
376 {
377 	return type == ARG_PTR_TO_SOCKET;
378 }
379 
380 /* Determine whether the function releases some resources allocated by another
381  * function call. The first reference type argument will be assumed to be
382  * released by release_reference().
383  */
384 static bool is_release_function(enum bpf_func_id func_id)
385 {
386 	return func_id == BPF_FUNC_sk_release;
387 }
388 
389 static bool is_acquire_function(enum bpf_func_id func_id)
390 {
391 	return func_id == BPF_FUNC_sk_lookup_tcp ||
392 		func_id == BPF_FUNC_sk_lookup_udp;
393 }
394 
395 /* string representation of 'enum bpf_reg_type' */
396 static const char * const reg_type_str[] = {
397 	[NOT_INIT]		= "?",
398 	[SCALAR_VALUE]		= "inv",
399 	[PTR_TO_CTX]		= "ctx",
400 	[CONST_PTR_TO_MAP]	= "map_ptr",
401 	[PTR_TO_MAP_VALUE]	= "map_value",
402 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
403 	[PTR_TO_STACK]		= "fp",
404 	[PTR_TO_PACKET]		= "pkt",
405 	[PTR_TO_PACKET_META]	= "pkt_meta",
406 	[PTR_TO_PACKET_END]	= "pkt_end",
407 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
408 	[PTR_TO_SOCKET]		= "sock",
409 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
410 	[PTR_TO_SOCK_COMMON]	= "sock_common",
411 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
412 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
413 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
414 };
415 
416 static char slot_type_char[] = {
417 	[STACK_INVALID]	= '?',
418 	[STACK_SPILL]	= 'r',
419 	[STACK_MISC]	= 'm',
420 	[STACK_ZERO]	= '0',
421 };
422 
423 static void print_liveness(struct bpf_verifier_env *env,
424 			   enum bpf_reg_liveness live)
425 {
426 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
427 	    verbose(env, "_");
428 	if (live & REG_LIVE_READ)
429 		verbose(env, "r");
430 	if (live & REG_LIVE_WRITTEN)
431 		verbose(env, "w");
432 	if (live & REG_LIVE_DONE)
433 		verbose(env, "D");
434 }
435 
436 static struct bpf_func_state *func(struct bpf_verifier_env *env,
437 				   const struct bpf_reg_state *reg)
438 {
439 	struct bpf_verifier_state *cur = env->cur_state;
440 
441 	return cur->frame[reg->frameno];
442 }
443 
444 static void print_verifier_state(struct bpf_verifier_env *env,
445 				 const struct bpf_func_state *state)
446 {
447 	const struct bpf_reg_state *reg;
448 	enum bpf_reg_type t;
449 	int i;
450 
451 	if (state->frameno)
452 		verbose(env, " frame%d:", state->frameno);
453 	for (i = 0; i < MAX_BPF_REG; i++) {
454 		reg = &state->regs[i];
455 		t = reg->type;
456 		if (t == NOT_INIT)
457 			continue;
458 		verbose(env, " R%d", i);
459 		print_liveness(env, reg->live);
460 		verbose(env, "=%s", reg_type_str[t]);
461 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
462 		    tnum_is_const(reg->var_off)) {
463 			/* reg->off should be 0 for SCALAR_VALUE */
464 			verbose(env, "%lld", reg->var_off.value + reg->off);
465 			if (t == PTR_TO_STACK)
466 				verbose(env, ",call_%d", func(env, reg)->callsite);
467 		} else {
468 			verbose(env, "(id=%d", reg->id);
469 			if (t != SCALAR_VALUE)
470 				verbose(env, ",off=%d", reg->off);
471 			if (type_is_pkt_pointer(t))
472 				verbose(env, ",r=%d", reg->range);
473 			else if (t == CONST_PTR_TO_MAP ||
474 				 t == PTR_TO_MAP_VALUE ||
475 				 t == PTR_TO_MAP_VALUE_OR_NULL)
476 				verbose(env, ",ks=%d,vs=%d",
477 					reg->map_ptr->key_size,
478 					reg->map_ptr->value_size);
479 			if (tnum_is_const(reg->var_off)) {
480 				/* Typically an immediate SCALAR_VALUE, but
481 				 * could be a pointer whose offset is too big
482 				 * for reg->off
483 				 */
484 				verbose(env, ",imm=%llx", reg->var_off.value);
485 			} else {
486 				if (reg->smin_value != reg->umin_value &&
487 				    reg->smin_value != S64_MIN)
488 					verbose(env, ",smin_value=%lld",
489 						(long long)reg->smin_value);
490 				if (reg->smax_value != reg->umax_value &&
491 				    reg->smax_value != S64_MAX)
492 					verbose(env, ",smax_value=%lld",
493 						(long long)reg->smax_value);
494 				if (reg->umin_value != 0)
495 					verbose(env, ",umin_value=%llu",
496 						(unsigned long long)reg->umin_value);
497 				if (reg->umax_value != U64_MAX)
498 					verbose(env, ",umax_value=%llu",
499 						(unsigned long long)reg->umax_value);
500 				if (!tnum_is_unknown(reg->var_off)) {
501 					char tn_buf[48];
502 
503 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
504 					verbose(env, ",var_off=%s", tn_buf);
505 				}
506 			}
507 			verbose(env, ")");
508 		}
509 	}
510 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
511 		char types_buf[BPF_REG_SIZE + 1];
512 		bool valid = false;
513 		int j;
514 
515 		for (j = 0; j < BPF_REG_SIZE; j++) {
516 			if (state->stack[i].slot_type[j] != STACK_INVALID)
517 				valid = true;
518 			types_buf[j] = slot_type_char[
519 					state->stack[i].slot_type[j]];
520 		}
521 		types_buf[BPF_REG_SIZE] = 0;
522 		if (!valid)
523 			continue;
524 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
525 		print_liveness(env, state->stack[i].spilled_ptr.live);
526 		if (state->stack[i].slot_type[0] == STACK_SPILL)
527 			verbose(env, "=%s",
528 				reg_type_str[state->stack[i].spilled_ptr.type]);
529 		else
530 			verbose(env, "=%s", types_buf);
531 	}
532 	if (state->acquired_refs && state->refs[0].id) {
533 		verbose(env, " refs=%d", state->refs[0].id);
534 		for (i = 1; i < state->acquired_refs; i++)
535 			if (state->refs[i].id)
536 				verbose(env, ",%d", state->refs[i].id);
537 	}
538 	verbose(env, "\n");
539 }
540 
541 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
542 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
543 			       const struct bpf_func_state *src)	\
544 {									\
545 	if (!src->FIELD)						\
546 		return 0;						\
547 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
548 		/* internal bug, make state invalid to reject the program */ \
549 		memset(dst, 0, sizeof(*dst));				\
550 		return -EFAULT;						\
551 	}								\
552 	memcpy(dst->FIELD, src->FIELD,					\
553 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
554 	return 0;							\
555 }
556 /* copy_reference_state() */
557 COPY_STATE_FN(reference, acquired_refs, refs, 1)
558 /* copy_stack_state() */
559 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
560 #undef COPY_STATE_FN
561 
562 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
563 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
564 				  bool copy_old)			\
565 {									\
566 	u32 old_size = state->COUNT;					\
567 	struct bpf_##NAME##_state *new_##FIELD;				\
568 	int slot = size / SIZE;						\
569 									\
570 	if (size <= old_size || !size) {				\
571 		if (copy_old)						\
572 			return 0;					\
573 		state->COUNT = slot * SIZE;				\
574 		if (!size && old_size) {				\
575 			kfree(state->FIELD);				\
576 			state->FIELD = NULL;				\
577 		}							\
578 		return 0;						\
579 	}								\
580 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
581 				    GFP_KERNEL);			\
582 	if (!new_##FIELD)						\
583 		return -ENOMEM;						\
584 	if (copy_old) {							\
585 		if (state->FIELD)					\
586 			memcpy(new_##FIELD, state->FIELD,		\
587 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
588 		memset(new_##FIELD + old_size / SIZE, 0,		\
589 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
590 	}								\
591 	state->COUNT = slot * SIZE;					\
592 	kfree(state->FIELD);						\
593 	state->FIELD = new_##FIELD;					\
594 	return 0;							\
595 }
596 /* realloc_reference_state() */
597 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
598 /* realloc_stack_state() */
599 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
600 #undef REALLOC_STATE_FN
601 
602 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
603  * make it consume minimal amount of memory. check_stack_write() access from
604  * the program calls into realloc_func_state() to grow the stack size.
605  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
606  * which realloc_stack_state() copies over. It points to previous
607  * bpf_verifier_state which is never reallocated.
608  */
609 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
610 			      int refs_size, bool copy_old)
611 {
612 	int err = realloc_reference_state(state, refs_size, copy_old);
613 	if (err)
614 		return err;
615 	return realloc_stack_state(state, stack_size, copy_old);
616 }
617 
618 /* Acquire a pointer id from the env and update the state->refs to include
619  * this new pointer reference.
620  * On success, returns a valid pointer id to associate with the register
621  * On failure, returns a negative errno.
622  */
623 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
624 {
625 	struct bpf_func_state *state = cur_func(env);
626 	int new_ofs = state->acquired_refs;
627 	int id, err;
628 
629 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
630 	if (err)
631 		return err;
632 	id = ++env->id_gen;
633 	state->refs[new_ofs].id = id;
634 	state->refs[new_ofs].insn_idx = insn_idx;
635 
636 	return id;
637 }
638 
639 /* release function corresponding to acquire_reference_state(). Idempotent. */
640 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
641 {
642 	int i, last_idx;
643 
644 	last_idx = state->acquired_refs - 1;
645 	for (i = 0; i < state->acquired_refs; i++) {
646 		if (state->refs[i].id == ptr_id) {
647 			if (last_idx && i != last_idx)
648 				memcpy(&state->refs[i], &state->refs[last_idx],
649 				       sizeof(*state->refs));
650 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
651 			state->acquired_refs--;
652 			return 0;
653 		}
654 	}
655 	return -EINVAL;
656 }
657 
658 static int transfer_reference_state(struct bpf_func_state *dst,
659 				    struct bpf_func_state *src)
660 {
661 	int err = realloc_reference_state(dst, src->acquired_refs, false);
662 	if (err)
663 		return err;
664 	err = copy_reference_state(dst, src);
665 	if (err)
666 		return err;
667 	return 0;
668 }
669 
670 static void free_func_state(struct bpf_func_state *state)
671 {
672 	if (!state)
673 		return;
674 	kfree(state->refs);
675 	kfree(state->stack);
676 	kfree(state);
677 }
678 
679 static void free_verifier_state(struct bpf_verifier_state *state,
680 				bool free_self)
681 {
682 	int i;
683 
684 	for (i = 0; i <= state->curframe; i++) {
685 		free_func_state(state->frame[i]);
686 		state->frame[i] = NULL;
687 	}
688 	if (free_self)
689 		kfree(state);
690 }
691 
692 /* copy verifier state from src to dst growing dst stack space
693  * when necessary to accommodate larger src stack
694  */
695 static int copy_func_state(struct bpf_func_state *dst,
696 			   const struct bpf_func_state *src)
697 {
698 	int err;
699 
700 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
701 				 false);
702 	if (err)
703 		return err;
704 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
705 	err = copy_reference_state(dst, src);
706 	if (err)
707 		return err;
708 	return copy_stack_state(dst, src);
709 }
710 
711 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
712 			       const struct bpf_verifier_state *src)
713 {
714 	struct bpf_func_state *dst;
715 	int i, err;
716 
717 	/* if dst has more stack frames then src frame, free them */
718 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
719 		free_func_state(dst_state->frame[i]);
720 		dst_state->frame[i] = NULL;
721 	}
722 	dst_state->speculative = src->speculative;
723 	dst_state->curframe = src->curframe;
724 	dst_state->active_spin_lock = src->active_spin_lock;
725 	for (i = 0; i <= src->curframe; i++) {
726 		dst = dst_state->frame[i];
727 		if (!dst) {
728 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
729 			if (!dst)
730 				return -ENOMEM;
731 			dst_state->frame[i] = dst;
732 		}
733 		err = copy_func_state(dst, src->frame[i]);
734 		if (err)
735 			return err;
736 	}
737 	return 0;
738 }
739 
740 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
741 		     int *insn_idx)
742 {
743 	struct bpf_verifier_state *cur = env->cur_state;
744 	struct bpf_verifier_stack_elem *elem, *head = env->head;
745 	int err;
746 
747 	if (env->head == NULL)
748 		return -ENOENT;
749 
750 	if (cur) {
751 		err = copy_verifier_state(cur, &head->st);
752 		if (err)
753 			return err;
754 	}
755 	if (insn_idx)
756 		*insn_idx = head->insn_idx;
757 	if (prev_insn_idx)
758 		*prev_insn_idx = head->prev_insn_idx;
759 	elem = head->next;
760 	free_verifier_state(&head->st, false);
761 	kfree(head);
762 	env->head = elem;
763 	env->stack_size--;
764 	return 0;
765 }
766 
767 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
768 					     int insn_idx, int prev_insn_idx,
769 					     bool speculative)
770 {
771 	struct bpf_verifier_state *cur = env->cur_state;
772 	struct bpf_verifier_stack_elem *elem;
773 	int err;
774 
775 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
776 	if (!elem)
777 		goto err;
778 
779 	elem->insn_idx = insn_idx;
780 	elem->prev_insn_idx = prev_insn_idx;
781 	elem->next = env->head;
782 	env->head = elem;
783 	env->stack_size++;
784 	err = copy_verifier_state(&elem->st, cur);
785 	if (err)
786 		goto err;
787 	elem->st.speculative |= speculative;
788 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
789 		verbose(env, "BPF program is too complex\n");
790 		goto err;
791 	}
792 	return &elem->st;
793 err:
794 	free_verifier_state(env->cur_state, true);
795 	env->cur_state = NULL;
796 	/* pop all elements and return */
797 	while (!pop_stack(env, NULL, NULL));
798 	return NULL;
799 }
800 
801 #define CALLER_SAVED_REGS 6
802 static const int caller_saved[CALLER_SAVED_REGS] = {
803 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
804 };
805 
806 static void __mark_reg_not_init(struct bpf_reg_state *reg);
807 
808 /* Mark the unknown part of a register (variable offset or scalar value) as
809  * known to have the value @imm.
810  */
811 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
812 {
813 	/* Clear id, off, and union(map_ptr, range) */
814 	memset(((u8 *)reg) + sizeof(reg->type), 0,
815 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
816 	reg->var_off = tnum_const(imm);
817 	reg->smin_value = (s64)imm;
818 	reg->smax_value = (s64)imm;
819 	reg->umin_value = imm;
820 	reg->umax_value = imm;
821 }
822 
823 /* Mark the 'variable offset' part of a register as zero.  This should be
824  * used only on registers holding a pointer type.
825  */
826 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
827 {
828 	__mark_reg_known(reg, 0);
829 }
830 
831 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
832 {
833 	__mark_reg_known(reg, 0);
834 	reg->type = SCALAR_VALUE;
835 }
836 
837 static void mark_reg_known_zero(struct bpf_verifier_env *env,
838 				struct bpf_reg_state *regs, u32 regno)
839 {
840 	if (WARN_ON(regno >= MAX_BPF_REG)) {
841 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
842 		/* Something bad happened, let's kill all regs */
843 		for (regno = 0; regno < MAX_BPF_REG; regno++)
844 			__mark_reg_not_init(regs + regno);
845 		return;
846 	}
847 	__mark_reg_known_zero(regs + regno);
848 }
849 
850 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
851 {
852 	return type_is_pkt_pointer(reg->type);
853 }
854 
855 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
856 {
857 	return reg_is_pkt_pointer(reg) ||
858 	       reg->type == PTR_TO_PACKET_END;
859 }
860 
861 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
862 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
863 				    enum bpf_reg_type which)
864 {
865 	/* The register can already have a range from prior markings.
866 	 * This is fine as long as it hasn't been advanced from its
867 	 * origin.
868 	 */
869 	return reg->type == which &&
870 	       reg->id == 0 &&
871 	       reg->off == 0 &&
872 	       tnum_equals_const(reg->var_off, 0);
873 }
874 
875 /* Attempts to improve min/max values based on var_off information */
876 static void __update_reg_bounds(struct bpf_reg_state *reg)
877 {
878 	/* min signed is max(sign bit) | min(other bits) */
879 	reg->smin_value = max_t(s64, reg->smin_value,
880 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
881 	/* max signed is min(sign bit) | max(other bits) */
882 	reg->smax_value = min_t(s64, reg->smax_value,
883 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
884 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
885 	reg->umax_value = min(reg->umax_value,
886 			      reg->var_off.value | reg->var_off.mask);
887 }
888 
889 /* Uses signed min/max values to inform unsigned, and vice-versa */
890 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
891 {
892 	/* Learn sign from signed bounds.
893 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
894 	 * are the same, so combine.  This works even in the negative case, e.g.
895 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
896 	 */
897 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
898 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
899 							  reg->umin_value);
900 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
901 							  reg->umax_value);
902 		return;
903 	}
904 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
905 	 * boundary, so we must be careful.
906 	 */
907 	if ((s64)reg->umax_value >= 0) {
908 		/* Positive.  We can't learn anything from the smin, but smax
909 		 * is positive, hence safe.
910 		 */
911 		reg->smin_value = reg->umin_value;
912 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
913 							  reg->umax_value);
914 	} else if ((s64)reg->umin_value < 0) {
915 		/* Negative.  We can't learn anything from the smax, but smin
916 		 * is negative, hence safe.
917 		 */
918 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
919 							  reg->umin_value);
920 		reg->smax_value = reg->umax_value;
921 	}
922 }
923 
924 /* Attempts to improve var_off based on unsigned min/max information */
925 static void __reg_bound_offset(struct bpf_reg_state *reg)
926 {
927 	reg->var_off = tnum_intersect(reg->var_off,
928 				      tnum_range(reg->umin_value,
929 						 reg->umax_value));
930 }
931 
932 /* Reset the min/max bounds of a register */
933 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
934 {
935 	reg->smin_value = S64_MIN;
936 	reg->smax_value = S64_MAX;
937 	reg->umin_value = 0;
938 	reg->umax_value = U64_MAX;
939 }
940 
941 /* Mark a register as having a completely unknown (scalar) value. */
942 static void __mark_reg_unknown(struct bpf_reg_state *reg)
943 {
944 	/*
945 	 * Clear type, id, off, and union(map_ptr, range) and
946 	 * padding between 'type' and union
947 	 */
948 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
949 	reg->type = SCALAR_VALUE;
950 	reg->var_off = tnum_unknown;
951 	reg->frameno = 0;
952 	__mark_reg_unbounded(reg);
953 }
954 
955 static void mark_reg_unknown(struct bpf_verifier_env *env,
956 			     struct bpf_reg_state *regs, u32 regno)
957 {
958 	if (WARN_ON(regno >= MAX_BPF_REG)) {
959 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
960 		/* Something bad happened, let's kill all regs except FP */
961 		for (regno = 0; regno < BPF_REG_FP; regno++)
962 			__mark_reg_not_init(regs + regno);
963 		return;
964 	}
965 	__mark_reg_unknown(regs + regno);
966 }
967 
968 static void __mark_reg_not_init(struct bpf_reg_state *reg)
969 {
970 	__mark_reg_unknown(reg);
971 	reg->type = NOT_INIT;
972 }
973 
974 static void mark_reg_not_init(struct bpf_verifier_env *env,
975 			      struct bpf_reg_state *regs, u32 regno)
976 {
977 	if (WARN_ON(regno >= MAX_BPF_REG)) {
978 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
979 		/* Something bad happened, let's kill all regs except FP */
980 		for (regno = 0; regno < BPF_REG_FP; regno++)
981 			__mark_reg_not_init(regs + regno);
982 		return;
983 	}
984 	__mark_reg_not_init(regs + regno);
985 }
986 
987 static void init_reg_state(struct bpf_verifier_env *env,
988 			   struct bpf_func_state *state)
989 {
990 	struct bpf_reg_state *regs = state->regs;
991 	int i;
992 
993 	for (i = 0; i < MAX_BPF_REG; i++) {
994 		mark_reg_not_init(env, regs, i);
995 		regs[i].live = REG_LIVE_NONE;
996 		regs[i].parent = NULL;
997 	}
998 
999 	/* frame pointer */
1000 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1001 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1002 	regs[BPF_REG_FP].frameno = state->frameno;
1003 
1004 	/* 1st arg to a function */
1005 	regs[BPF_REG_1].type = PTR_TO_CTX;
1006 	mark_reg_known_zero(env, regs, BPF_REG_1);
1007 }
1008 
1009 #define BPF_MAIN_FUNC (-1)
1010 static void init_func_state(struct bpf_verifier_env *env,
1011 			    struct bpf_func_state *state,
1012 			    int callsite, int frameno, int subprogno)
1013 {
1014 	state->callsite = callsite;
1015 	state->frameno = frameno;
1016 	state->subprogno = subprogno;
1017 	init_reg_state(env, state);
1018 }
1019 
1020 enum reg_arg_type {
1021 	SRC_OP,		/* register is used as source operand */
1022 	DST_OP,		/* register is used as destination operand */
1023 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1024 };
1025 
1026 static int cmp_subprogs(const void *a, const void *b)
1027 {
1028 	return ((struct bpf_subprog_info *)a)->start -
1029 	       ((struct bpf_subprog_info *)b)->start;
1030 }
1031 
1032 static int find_subprog(struct bpf_verifier_env *env, int off)
1033 {
1034 	struct bpf_subprog_info *p;
1035 
1036 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1037 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1038 	if (!p)
1039 		return -ENOENT;
1040 	return p - env->subprog_info;
1041 
1042 }
1043 
1044 static int add_subprog(struct bpf_verifier_env *env, int off)
1045 {
1046 	int insn_cnt = env->prog->len;
1047 	int ret;
1048 
1049 	if (off >= insn_cnt || off < 0) {
1050 		verbose(env, "call to invalid destination\n");
1051 		return -EINVAL;
1052 	}
1053 	ret = find_subprog(env, off);
1054 	if (ret >= 0)
1055 		return 0;
1056 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1057 		verbose(env, "too many subprograms\n");
1058 		return -E2BIG;
1059 	}
1060 	env->subprog_info[env->subprog_cnt++].start = off;
1061 	sort(env->subprog_info, env->subprog_cnt,
1062 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1063 	return 0;
1064 }
1065 
1066 static int check_subprogs(struct bpf_verifier_env *env)
1067 {
1068 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1069 	struct bpf_subprog_info *subprog = env->subprog_info;
1070 	struct bpf_insn *insn = env->prog->insnsi;
1071 	int insn_cnt = env->prog->len;
1072 
1073 	/* Add entry function. */
1074 	ret = add_subprog(env, 0);
1075 	if (ret < 0)
1076 		return ret;
1077 
1078 	/* determine subprog starts. The end is one before the next starts */
1079 	for (i = 0; i < insn_cnt; i++) {
1080 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1081 			continue;
1082 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1083 			continue;
1084 		if (!env->allow_ptr_leaks) {
1085 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
1086 			return -EPERM;
1087 		}
1088 		ret = add_subprog(env, i + insn[i].imm + 1);
1089 		if (ret < 0)
1090 			return ret;
1091 	}
1092 
1093 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1094 	 * logic. 'subprog_cnt' should not be increased.
1095 	 */
1096 	subprog[env->subprog_cnt].start = insn_cnt;
1097 
1098 	if (env->log.level > 1)
1099 		for (i = 0; i < env->subprog_cnt; i++)
1100 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1101 
1102 	/* now check that all jumps are within the same subprog */
1103 	subprog_start = subprog[cur_subprog].start;
1104 	subprog_end = subprog[cur_subprog + 1].start;
1105 	for (i = 0; i < insn_cnt; i++) {
1106 		u8 code = insn[i].code;
1107 
1108 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1109 			goto next;
1110 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1111 			goto next;
1112 		off = i + insn[i].off + 1;
1113 		if (off < subprog_start || off >= subprog_end) {
1114 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1115 			return -EINVAL;
1116 		}
1117 next:
1118 		if (i == subprog_end - 1) {
1119 			/* to avoid fall-through from one subprog into another
1120 			 * the last insn of the subprog should be either exit
1121 			 * or unconditional jump back
1122 			 */
1123 			if (code != (BPF_JMP | BPF_EXIT) &&
1124 			    code != (BPF_JMP | BPF_JA)) {
1125 				verbose(env, "last insn is not an exit or jmp\n");
1126 				return -EINVAL;
1127 			}
1128 			subprog_start = subprog_end;
1129 			cur_subprog++;
1130 			if (cur_subprog < env->subprog_cnt)
1131 				subprog_end = subprog[cur_subprog + 1].start;
1132 		}
1133 	}
1134 	return 0;
1135 }
1136 
1137 /* Parentage chain of this register (or stack slot) should take care of all
1138  * issues like callee-saved registers, stack slot allocation time, etc.
1139  */
1140 static int mark_reg_read(struct bpf_verifier_env *env,
1141 			 const struct bpf_reg_state *state,
1142 			 struct bpf_reg_state *parent)
1143 {
1144 	bool writes = parent == state->parent; /* Observe write marks */
1145 
1146 	while (parent) {
1147 		/* if read wasn't screened by an earlier write ... */
1148 		if (writes && state->live & REG_LIVE_WRITTEN)
1149 			break;
1150 		if (parent->live & REG_LIVE_DONE) {
1151 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1152 				reg_type_str[parent->type],
1153 				parent->var_off.value, parent->off);
1154 			return -EFAULT;
1155 		}
1156 		/* ... then we depend on parent's value */
1157 		parent->live |= REG_LIVE_READ;
1158 		state = parent;
1159 		parent = state->parent;
1160 		writes = true;
1161 	}
1162 	return 0;
1163 }
1164 
1165 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1166 			 enum reg_arg_type t)
1167 {
1168 	struct bpf_verifier_state *vstate = env->cur_state;
1169 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1170 	struct bpf_reg_state *regs = state->regs;
1171 
1172 	if (regno >= MAX_BPF_REG) {
1173 		verbose(env, "R%d is invalid\n", regno);
1174 		return -EINVAL;
1175 	}
1176 
1177 	if (t == SRC_OP) {
1178 		/* check whether register used as source operand can be read */
1179 		if (regs[regno].type == NOT_INIT) {
1180 			verbose(env, "R%d !read_ok\n", regno);
1181 			return -EACCES;
1182 		}
1183 		/* We don't need to worry about FP liveness because it's read-only */
1184 		if (regno != BPF_REG_FP)
1185 			return mark_reg_read(env, &regs[regno],
1186 					     regs[regno].parent);
1187 	} else {
1188 		/* check whether register used as dest operand can be written to */
1189 		if (regno == BPF_REG_FP) {
1190 			verbose(env, "frame pointer is read only\n");
1191 			return -EACCES;
1192 		}
1193 		regs[regno].live |= REG_LIVE_WRITTEN;
1194 		if (t == DST_OP)
1195 			mark_reg_unknown(env, regs, regno);
1196 	}
1197 	return 0;
1198 }
1199 
1200 static bool is_spillable_regtype(enum bpf_reg_type type)
1201 {
1202 	switch (type) {
1203 	case PTR_TO_MAP_VALUE:
1204 	case PTR_TO_MAP_VALUE_OR_NULL:
1205 	case PTR_TO_STACK:
1206 	case PTR_TO_CTX:
1207 	case PTR_TO_PACKET:
1208 	case PTR_TO_PACKET_META:
1209 	case PTR_TO_PACKET_END:
1210 	case PTR_TO_FLOW_KEYS:
1211 	case CONST_PTR_TO_MAP:
1212 	case PTR_TO_SOCKET:
1213 	case PTR_TO_SOCKET_OR_NULL:
1214 	case PTR_TO_SOCK_COMMON:
1215 	case PTR_TO_SOCK_COMMON_OR_NULL:
1216 	case PTR_TO_TCP_SOCK:
1217 	case PTR_TO_TCP_SOCK_OR_NULL:
1218 		return true;
1219 	default:
1220 		return false;
1221 	}
1222 }
1223 
1224 /* Does this register contain a constant zero? */
1225 static bool register_is_null(struct bpf_reg_state *reg)
1226 {
1227 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1228 }
1229 
1230 /* check_stack_read/write functions track spill/fill of registers,
1231  * stack boundary and alignment are checked in check_mem_access()
1232  */
1233 static int check_stack_write(struct bpf_verifier_env *env,
1234 			     struct bpf_func_state *state, /* func where register points to */
1235 			     int off, int size, int value_regno, int insn_idx)
1236 {
1237 	struct bpf_func_state *cur; /* state of the current function */
1238 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1239 	enum bpf_reg_type type;
1240 
1241 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1242 				 state->acquired_refs, true);
1243 	if (err)
1244 		return err;
1245 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1246 	 * so it's aligned access and [off, off + size) are within stack limits
1247 	 */
1248 	if (!env->allow_ptr_leaks &&
1249 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
1250 	    size != BPF_REG_SIZE) {
1251 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
1252 		return -EACCES;
1253 	}
1254 
1255 	cur = env->cur_state->frame[env->cur_state->curframe];
1256 	if (value_regno >= 0 &&
1257 	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
1258 
1259 		/* register containing pointer is being spilled into stack */
1260 		if (size != BPF_REG_SIZE) {
1261 			verbose(env, "invalid size of register spill\n");
1262 			return -EACCES;
1263 		}
1264 
1265 		if (state != cur && type == PTR_TO_STACK) {
1266 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1267 			return -EINVAL;
1268 		}
1269 
1270 		/* save register state */
1271 		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1272 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1273 
1274 		for (i = 0; i < BPF_REG_SIZE; i++) {
1275 			if (state->stack[spi].slot_type[i] == STACK_MISC &&
1276 			    !env->allow_ptr_leaks) {
1277 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1278 				int soff = (-spi - 1) * BPF_REG_SIZE;
1279 
1280 				/* detected reuse of integer stack slot with a pointer
1281 				 * which means either llvm is reusing stack slot or
1282 				 * an attacker is trying to exploit CVE-2018-3639
1283 				 * (speculative store bypass)
1284 				 * Have to sanitize that slot with preemptive
1285 				 * store of zero.
1286 				 */
1287 				if (*poff && *poff != soff) {
1288 					/* disallow programs where single insn stores
1289 					 * into two different stack slots, since verifier
1290 					 * cannot sanitize them
1291 					 */
1292 					verbose(env,
1293 						"insn %d cannot access two stack slots fp%d and fp%d",
1294 						insn_idx, *poff, soff);
1295 					return -EINVAL;
1296 				}
1297 				*poff = soff;
1298 			}
1299 			state->stack[spi].slot_type[i] = STACK_SPILL;
1300 		}
1301 	} else {
1302 		u8 type = STACK_MISC;
1303 
1304 		/* regular write of data into stack destroys any spilled ptr */
1305 		state->stack[spi].spilled_ptr.type = NOT_INIT;
1306 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1307 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
1308 			for (i = 0; i < BPF_REG_SIZE; i++)
1309 				state->stack[spi].slot_type[i] = STACK_MISC;
1310 
1311 		/* only mark the slot as written if all 8 bytes were written
1312 		 * otherwise read propagation may incorrectly stop too soon
1313 		 * when stack slots are partially written.
1314 		 * This heuristic means that read propagation will be
1315 		 * conservative, since it will add reg_live_read marks
1316 		 * to stack slots all the way to first state when programs
1317 		 * writes+reads less than 8 bytes
1318 		 */
1319 		if (size == BPF_REG_SIZE)
1320 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1321 
1322 		/* when we zero initialize stack slots mark them as such */
1323 		if (value_regno >= 0 &&
1324 		    register_is_null(&cur->regs[value_regno]))
1325 			type = STACK_ZERO;
1326 
1327 		/* Mark slots affected by this stack write. */
1328 		for (i = 0; i < size; i++)
1329 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1330 				type;
1331 	}
1332 	return 0;
1333 }
1334 
1335 static int check_stack_read(struct bpf_verifier_env *env,
1336 			    struct bpf_func_state *reg_state /* func where register points to */,
1337 			    int off, int size, int value_regno)
1338 {
1339 	struct bpf_verifier_state *vstate = env->cur_state;
1340 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1341 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1342 	u8 *stype;
1343 
1344 	if (reg_state->allocated_stack <= slot) {
1345 		verbose(env, "invalid read from stack off %d+0 size %d\n",
1346 			off, size);
1347 		return -EACCES;
1348 	}
1349 	stype = reg_state->stack[spi].slot_type;
1350 
1351 	if (stype[0] == STACK_SPILL) {
1352 		if (size != BPF_REG_SIZE) {
1353 			verbose(env, "invalid size of register spill\n");
1354 			return -EACCES;
1355 		}
1356 		for (i = 1; i < BPF_REG_SIZE; i++) {
1357 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1358 				verbose(env, "corrupted spill memory\n");
1359 				return -EACCES;
1360 			}
1361 		}
1362 
1363 		if (value_regno >= 0) {
1364 			/* restore register state from stack */
1365 			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1366 			/* mark reg as written since spilled pointer state likely
1367 			 * has its liveness marks cleared by is_state_visited()
1368 			 * which resets stack/reg liveness for state transitions
1369 			 */
1370 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1371 		}
1372 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1373 			      reg_state->stack[spi].spilled_ptr.parent);
1374 		return 0;
1375 	} else {
1376 		int zeros = 0;
1377 
1378 		for (i = 0; i < size; i++) {
1379 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1380 				continue;
1381 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1382 				zeros++;
1383 				continue;
1384 			}
1385 			verbose(env, "invalid read from stack off %d+%d size %d\n",
1386 				off, i, size);
1387 			return -EACCES;
1388 		}
1389 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1390 			      reg_state->stack[spi].spilled_ptr.parent);
1391 		if (value_regno >= 0) {
1392 			if (zeros == size) {
1393 				/* any size read into register is zero extended,
1394 				 * so the whole register == const_zero
1395 				 */
1396 				__mark_reg_const_zero(&state->regs[value_regno]);
1397 			} else {
1398 				/* have read misc data from the stack */
1399 				mark_reg_unknown(env, state->regs, value_regno);
1400 			}
1401 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1402 		}
1403 		return 0;
1404 	}
1405 }
1406 
1407 static int check_stack_access(struct bpf_verifier_env *env,
1408 			      const struct bpf_reg_state *reg,
1409 			      int off, int size)
1410 {
1411 	/* Stack accesses must be at a fixed offset, so that we
1412 	 * can determine what type of data were returned. See
1413 	 * check_stack_read().
1414 	 */
1415 	if (!tnum_is_const(reg->var_off)) {
1416 		char tn_buf[48];
1417 
1418 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1419 		verbose(env, "variable stack access var_off=%s off=%d size=%d",
1420 			tn_buf, off, size);
1421 		return -EACCES;
1422 	}
1423 
1424 	if (off >= 0 || off < -MAX_BPF_STACK) {
1425 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
1426 		return -EACCES;
1427 	}
1428 
1429 	return 0;
1430 }
1431 
1432 /* check read/write into map element returned by bpf_map_lookup_elem() */
1433 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1434 			      int size, bool zero_size_allowed)
1435 {
1436 	struct bpf_reg_state *regs = cur_regs(env);
1437 	struct bpf_map *map = regs[regno].map_ptr;
1438 
1439 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1440 	    off + size > map->value_size) {
1441 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1442 			map->value_size, off, size);
1443 		return -EACCES;
1444 	}
1445 	return 0;
1446 }
1447 
1448 /* check read/write into a map element with possible variable offset */
1449 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1450 			    int off, int size, bool zero_size_allowed)
1451 {
1452 	struct bpf_verifier_state *vstate = env->cur_state;
1453 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1454 	struct bpf_reg_state *reg = &state->regs[regno];
1455 	int err;
1456 
1457 	/* We may have adjusted the register to this map value, so we
1458 	 * need to try adding each of min_value and max_value to off
1459 	 * to make sure our theoretical access will be safe.
1460 	 */
1461 	if (env->log.level)
1462 		print_verifier_state(env, state);
1463 
1464 	/* The minimum value is only important with signed
1465 	 * comparisons where we can't assume the floor of a
1466 	 * value is 0.  If we are using signed variables for our
1467 	 * index'es we need to make sure that whatever we use
1468 	 * will have a set floor within our range.
1469 	 */
1470 	if (reg->smin_value < 0 &&
1471 	    (reg->smin_value == S64_MIN ||
1472 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
1473 	      reg->smin_value + off < 0)) {
1474 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1475 			regno);
1476 		return -EACCES;
1477 	}
1478 	err = __check_map_access(env, regno, reg->smin_value + off, size,
1479 				 zero_size_allowed);
1480 	if (err) {
1481 		verbose(env, "R%d min value is outside of the array range\n",
1482 			regno);
1483 		return err;
1484 	}
1485 
1486 	/* If we haven't set a max value then we need to bail since we can't be
1487 	 * sure we won't do bad things.
1488 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1489 	 */
1490 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1491 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1492 			regno);
1493 		return -EACCES;
1494 	}
1495 	err = __check_map_access(env, regno, reg->umax_value + off, size,
1496 				 zero_size_allowed);
1497 	if (err)
1498 		verbose(env, "R%d max value is outside of the array range\n",
1499 			regno);
1500 
1501 	if (map_value_has_spin_lock(reg->map_ptr)) {
1502 		u32 lock = reg->map_ptr->spin_lock_off;
1503 
1504 		/* if any part of struct bpf_spin_lock can be touched by
1505 		 * load/store reject this program.
1506 		 * To check that [x1, x2) overlaps with [y1, y2)
1507 		 * it is sufficient to check x1 < y2 && y1 < x2.
1508 		 */
1509 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
1510 		     lock < reg->umax_value + off + size) {
1511 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
1512 			return -EACCES;
1513 		}
1514 	}
1515 	return err;
1516 }
1517 
1518 #define MAX_PACKET_OFF 0xffff
1519 
1520 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1521 				       const struct bpf_call_arg_meta *meta,
1522 				       enum bpf_access_type t)
1523 {
1524 	switch (env->prog->type) {
1525 	/* Program types only with direct read access go here! */
1526 	case BPF_PROG_TYPE_LWT_IN:
1527 	case BPF_PROG_TYPE_LWT_OUT:
1528 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
1529 	case BPF_PROG_TYPE_SK_REUSEPORT:
1530 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
1531 	case BPF_PROG_TYPE_CGROUP_SKB:
1532 		if (t == BPF_WRITE)
1533 			return false;
1534 		/* fallthrough */
1535 
1536 	/* Program types with direct read + write access go here! */
1537 	case BPF_PROG_TYPE_SCHED_CLS:
1538 	case BPF_PROG_TYPE_SCHED_ACT:
1539 	case BPF_PROG_TYPE_XDP:
1540 	case BPF_PROG_TYPE_LWT_XMIT:
1541 	case BPF_PROG_TYPE_SK_SKB:
1542 	case BPF_PROG_TYPE_SK_MSG:
1543 		if (meta)
1544 			return meta->pkt_access;
1545 
1546 		env->seen_direct_write = true;
1547 		return true;
1548 	default:
1549 		return false;
1550 	}
1551 }
1552 
1553 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1554 				 int off, int size, bool zero_size_allowed)
1555 {
1556 	struct bpf_reg_state *regs = cur_regs(env);
1557 	struct bpf_reg_state *reg = &regs[regno];
1558 
1559 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1560 	    (u64)off + size > reg->range) {
1561 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1562 			off, size, regno, reg->id, reg->off, reg->range);
1563 		return -EACCES;
1564 	}
1565 	return 0;
1566 }
1567 
1568 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1569 			       int size, bool zero_size_allowed)
1570 {
1571 	struct bpf_reg_state *regs = cur_regs(env);
1572 	struct bpf_reg_state *reg = &regs[regno];
1573 	int err;
1574 
1575 	/* We may have added a variable offset to the packet pointer; but any
1576 	 * reg->range we have comes after that.  We are only checking the fixed
1577 	 * offset.
1578 	 */
1579 
1580 	/* We don't allow negative numbers, because we aren't tracking enough
1581 	 * detail to prove they're safe.
1582 	 */
1583 	if (reg->smin_value < 0) {
1584 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1585 			regno);
1586 		return -EACCES;
1587 	}
1588 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1589 	if (err) {
1590 		verbose(env, "R%d offset is outside of the packet\n", regno);
1591 		return err;
1592 	}
1593 
1594 	/* __check_packet_access has made sure "off + size - 1" is within u16.
1595 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
1596 	 * otherwise find_good_pkt_pointers would have refused to set range info
1597 	 * that __check_packet_access would have rejected this pkt access.
1598 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
1599 	 */
1600 	env->prog->aux->max_pkt_offset =
1601 		max_t(u32, env->prog->aux->max_pkt_offset,
1602 		      off + reg->umax_value + size - 1);
1603 
1604 	return err;
1605 }
1606 
1607 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1608 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1609 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1610 {
1611 	struct bpf_insn_access_aux info = {
1612 		.reg_type = *reg_type,
1613 	};
1614 
1615 	if (env->ops->is_valid_access &&
1616 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1617 		/* A non zero info.ctx_field_size indicates that this field is a
1618 		 * candidate for later verifier transformation to load the whole
1619 		 * field and then apply a mask when accessed with a narrower
1620 		 * access than actual ctx access size. A zero info.ctx_field_size
1621 		 * will only allow for whole field access and rejects any other
1622 		 * type of narrower access.
1623 		 */
1624 		*reg_type = info.reg_type;
1625 
1626 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1627 		/* remember the offset of last byte accessed in ctx */
1628 		if (env->prog->aux->max_ctx_offset < off + size)
1629 			env->prog->aux->max_ctx_offset = off + size;
1630 		return 0;
1631 	}
1632 
1633 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1634 	return -EACCES;
1635 }
1636 
1637 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1638 				  int size)
1639 {
1640 	if (size < 0 || off < 0 ||
1641 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
1642 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
1643 			off, size);
1644 		return -EACCES;
1645 	}
1646 	return 0;
1647 }
1648 
1649 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
1650 			     u32 regno, int off, int size,
1651 			     enum bpf_access_type t)
1652 {
1653 	struct bpf_reg_state *regs = cur_regs(env);
1654 	struct bpf_reg_state *reg = &regs[regno];
1655 	struct bpf_insn_access_aux info = {};
1656 	bool valid;
1657 
1658 	if (reg->smin_value < 0) {
1659 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1660 			regno);
1661 		return -EACCES;
1662 	}
1663 
1664 	switch (reg->type) {
1665 	case PTR_TO_SOCK_COMMON:
1666 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
1667 		break;
1668 	case PTR_TO_SOCKET:
1669 		valid = bpf_sock_is_valid_access(off, size, t, &info);
1670 		break;
1671 	case PTR_TO_TCP_SOCK:
1672 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
1673 		break;
1674 	default:
1675 		valid = false;
1676 	}
1677 
1678 
1679 	if (valid) {
1680 		env->insn_aux_data[insn_idx].ctx_field_size =
1681 			info.ctx_field_size;
1682 		return 0;
1683 	}
1684 
1685 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
1686 		regno, reg_type_str[reg->type], off, size);
1687 
1688 	return -EACCES;
1689 }
1690 
1691 static bool __is_pointer_value(bool allow_ptr_leaks,
1692 			       const struct bpf_reg_state *reg)
1693 {
1694 	if (allow_ptr_leaks)
1695 		return false;
1696 
1697 	return reg->type != SCALAR_VALUE;
1698 }
1699 
1700 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
1701 {
1702 	return cur_regs(env) + regno;
1703 }
1704 
1705 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1706 {
1707 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
1708 }
1709 
1710 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1711 {
1712 	const struct bpf_reg_state *reg = reg_state(env, regno);
1713 
1714 	return reg->type == PTR_TO_CTX;
1715 }
1716 
1717 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
1718 {
1719 	const struct bpf_reg_state *reg = reg_state(env, regno);
1720 
1721 	return type_is_sk_pointer(reg->type);
1722 }
1723 
1724 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1725 {
1726 	const struct bpf_reg_state *reg = reg_state(env, regno);
1727 
1728 	return type_is_pkt_pointer(reg->type);
1729 }
1730 
1731 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
1732 {
1733 	const struct bpf_reg_state *reg = reg_state(env, regno);
1734 
1735 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
1736 	return reg->type == PTR_TO_FLOW_KEYS;
1737 }
1738 
1739 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1740 				   const struct bpf_reg_state *reg,
1741 				   int off, int size, bool strict)
1742 {
1743 	struct tnum reg_off;
1744 	int ip_align;
1745 
1746 	/* Byte size accesses are always allowed. */
1747 	if (!strict || size == 1)
1748 		return 0;
1749 
1750 	/* For platforms that do not have a Kconfig enabling
1751 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1752 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
1753 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1754 	 * to this code only in strict mode where we want to emulate
1755 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
1756 	 * unconditional IP align value of '2'.
1757 	 */
1758 	ip_align = 2;
1759 
1760 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1761 	if (!tnum_is_aligned(reg_off, size)) {
1762 		char tn_buf[48];
1763 
1764 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1765 		verbose(env,
1766 			"misaligned packet access off %d+%s+%d+%d size %d\n",
1767 			ip_align, tn_buf, reg->off, off, size);
1768 		return -EACCES;
1769 	}
1770 
1771 	return 0;
1772 }
1773 
1774 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1775 				       const struct bpf_reg_state *reg,
1776 				       const char *pointer_desc,
1777 				       int off, int size, bool strict)
1778 {
1779 	struct tnum reg_off;
1780 
1781 	/* Byte size accesses are always allowed. */
1782 	if (!strict || size == 1)
1783 		return 0;
1784 
1785 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1786 	if (!tnum_is_aligned(reg_off, size)) {
1787 		char tn_buf[48];
1788 
1789 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1790 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1791 			pointer_desc, tn_buf, reg->off, off, size);
1792 		return -EACCES;
1793 	}
1794 
1795 	return 0;
1796 }
1797 
1798 static int check_ptr_alignment(struct bpf_verifier_env *env,
1799 			       const struct bpf_reg_state *reg, int off,
1800 			       int size, bool strict_alignment_once)
1801 {
1802 	bool strict = env->strict_alignment || strict_alignment_once;
1803 	const char *pointer_desc = "";
1804 
1805 	switch (reg->type) {
1806 	case PTR_TO_PACKET:
1807 	case PTR_TO_PACKET_META:
1808 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
1809 		 * right in front, treat it the very same way.
1810 		 */
1811 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1812 	case PTR_TO_FLOW_KEYS:
1813 		pointer_desc = "flow keys ";
1814 		break;
1815 	case PTR_TO_MAP_VALUE:
1816 		pointer_desc = "value ";
1817 		break;
1818 	case PTR_TO_CTX:
1819 		pointer_desc = "context ";
1820 		break;
1821 	case PTR_TO_STACK:
1822 		pointer_desc = "stack ";
1823 		/* The stack spill tracking logic in check_stack_write()
1824 		 * and check_stack_read() relies on stack accesses being
1825 		 * aligned.
1826 		 */
1827 		strict = true;
1828 		break;
1829 	case PTR_TO_SOCKET:
1830 		pointer_desc = "sock ";
1831 		break;
1832 	case PTR_TO_SOCK_COMMON:
1833 		pointer_desc = "sock_common ";
1834 		break;
1835 	case PTR_TO_TCP_SOCK:
1836 		pointer_desc = "tcp_sock ";
1837 		break;
1838 	default:
1839 		break;
1840 	}
1841 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1842 					   strict);
1843 }
1844 
1845 static int update_stack_depth(struct bpf_verifier_env *env,
1846 			      const struct bpf_func_state *func,
1847 			      int off)
1848 {
1849 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
1850 
1851 	if (stack >= -off)
1852 		return 0;
1853 
1854 	/* update known max for given subprogram */
1855 	env->subprog_info[func->subprogno].stack_depth = -off;
1856 	return 0;
1857 }
1858 
1859 /* starting from main bpf function walk all instructions of the function
1860  * and recursively walk all callees that given function can call.
1861  * Ignore jump and exit insns.
1862  * Since recursion is prevented by check_cfg() this algorithm
1863  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1864  */
1865 static int check_max_stack_depth(struct bpf_verifier_env *env)
1866 {
1867 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1868 	struct bpf_subprog_info *subprog = env->subprog_info;
1869 	struct bpf_insn *insn = env->prog->insnsi;
1870 	int ret_insn[MAX_CALL_FRAMES];
1871 	int ret_prog[MAX_CALL_FRAMES];
1872 
1873 process_func:
1874 	/* round up to 32-bytes, since this is granularity
1875 	 * of interpreter stack size
1876 	 */
1877 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1878 	if (depth > MAX_BPF_STACK) {
1879 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1880 			frame + 1, depth);
1881 		return -EACCES;
1882 	}
1883 continue_func:
1884 	subprog_end = subprog[idx + 1].start;
1885 	for (; i < subprog_end; i++) {
1886 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1887 			continue;
1888 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1889 			continue;
1890 		/* remember insn and function to return to */
1891 		ret_insn[frame] = i + 1;
1892 		ret_prog[frame] = idx;
1893 
1894 		/* find the callee */
1895 		i = i + insn[i].imm + 1;
1896 		idx = find_subprog(env, i);
1897 		if (idx < 0) {
1898 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1899 				  i);
1900 			return -EFAULT;
1901 		}
1902 		frame++;
1903 		if (frame >= MAX_CALL_FRAMES) {
1904 			WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1905 			return -EFAULT;
1906 		}
1907 		goto process_func;
1908 	}
1909 	/* end of for() loop means the last insn of the 'subprog'
1910 	 * was reached. Doesn't matter whether it was JA or EXIT
1911 	 */
1912 	if (frame == 0)
1913 		return 0;
1914 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1915 	frame--;
1916 	i = ret_insn[frame];
1917 	idx = ret_prog[frame];
1918 	goto continue_func;
1919 }
1920 
1921 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1922 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1923 				  const struct bpf_insn *insn, int idx)
1924 {
1925 	int start = idx + insn->imm + 1, subprog;
1926 
1927 	subprog = find_subprog(env, start);
1928 	if (subprog < 0) {
1929 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1930 			  start);
1931 		return -EFAULT;
1932 	}
1933 	return env->subprog_info[subprog].stack_depth;
1934 }
1935 #endif
1936 
1937 static int check_ctx_reg(struct bpf_verifier_env *env,
1938 			 const struct bpf_reg_state *reg, int regno)
1939 {
1940 	/* Access to ctx or passing it to a helper is only allowed in
1941 	 * its original, unmodified form.
1942 	 */
1943 
1944 	if (reg->off) {
1945 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1946 			regno, reg->off);
1947 		return -EACCES;
1948 	}
1949 
1950 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1951 		char tn_buf[48];
1952 
1953 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1954 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1955 		return -EACCES;
1956 	}
1957 
1958 	return 0;
1959 }
1960 
1961 /* truncate register to smaller size (in bytes)
1962  * must be called with size < BPF_REG_SIZE
1963  */
1964 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1965 {
1966 	u64 mask;
1967 
1968 	/* clear high bits in bit representation */
1969 	reg->var_off = tnum_cast(reg->var_off, size);
1970 
1971 	/* fix arithmetic bounds */
1972 	mask = ((u64)1 << (size * 8)) - 1;
1973 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1974 		reg->umin_value &= mask;
1975 		reg->umax_value &= mask;
1976 	} else {
1977 		reg->umin_value = 0;
1978 		reg->umax_value = mask;
1979 	}
1980 	reg->smin_value = reg->umin_value;
1981 	reg->smax_value = reg->umax_value;
1982 }
1983 
1984 /* check whether memory at (regno + off) is accessible for t = (read | write)
1985  * if t==write, value_regno is a register which value is stored into memory
1986  * if t==read, value_regno is a register which will receive the value from memory
1987  * if t==write && value_regno==-1, some unknown value is stored into memory
1988  * if t==read && value_regno==-1, don't care what we read from memory
1989  */
1990 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1991 			    int off, int bpf_size, enum bpf_access_type t,
1992 			    int value_regno, bool strict_alignment_once)
1993 {
1994 	struct bpf_reg_state *regs = cur_regs(env);
1995 	struct bpf_reg_state *reg = regs + regno;
1996 	struct bpf_func_state *state;
1997 	int size, err = 0;
1998 
1999 	size = bpf_size_to_bytes(bpf_size);
2000 	if (size < 0)
2001 		return size;
2002 
2003 	/* alignment checks will add in reg->off themselves */
2004 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
2005 	if (err)
2006 		return err;
2007 
2008 	/* for access checks, reg->off is just part of off */
2009 	off += reg->off;
2010 
2011 	if (reg->type == PTR_TO_MAP_VALUE) {
2012 		if (t == BPF_WRITE && value_regno >= 0 &&
2013 		    is_pointer_value(env, value_regno)) {
2014 			verbose(env, "R%d leaks addr into map\n", value_regno);
2015 			return -EACCES;
2016 		}
2017 
2018 		err = check_map_access(env, regno, off, size, false);
2019 		if (!err && t == BPF_READ && value_regno >= 0)
2020 			mark_reg_unknown(env, regs, value_regno);
2021 
2022 	} else if (reg->type == PTR_TO_CTX) {
2023 		enum bpf_reg_type reg_type = SCALAR_VALUE;
2024 
2025 		if (t == BPF_WRITE && value_regno >= 0 &&
2026 		    is_pointer_value(env, value_regno)) {
2027 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
2028 			return -EACCES;
2029 		}
2030 
2031 		err = check_ctx_reg(env, reg, regno);
2032 		if (err < 0)
2033 			return err;
2034 
2035 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
2036 		if (!err && t == BPF_READ && value_regno >= 0) {
2037 			/* ctx access returns either a scalar, or a
2038 			 * PTR_TO_PACKET[_META,_END]. In the latter
2039 			 * case, we know the offset is zero.
2040 			 */
2041 			if (reg_type == SCALAR_VALUE) {
2042 				mark_reg_unknown(env, regs, value_regno);
2043 			} else {
2044 				mark_reg_known_zero(env, regs,
2045 						    value_regno);
2046 				if (reg_type_may_be_null(reg_type))
2047 					regs[value_regno].id = ++env->id_gen;
2048 			}
2049 			regs[value_regno].type = reg_type;
2050 		}
2051 
2052 	} else if (reg->type == PTR_TO_STACK) {
2053 		off += reg->var_off.value;
2054 		err = check_stack_access(env, reg, off, size);
2055 		if (err)
2056 			return err;
2057 
2058 		state = func(env, reg);
2059 		err = update_stack_depth(env, state, off);
2060 		if (err)
2061 			return err;
2062 
2063 		if (t == BPF_WRITE)
2064 			err = check_stack_write(env, state, off, size,
2065 						value_regno, insn_idx);
2066 		else
2067 			err = check_stack_read(env, state, off, size,
2068 					       value_regno);
2069 	} else if (reg_is_pkt_pointer(reg)) {
2070 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
2071 			verbose(env, "cannot write into packet\n");
2072 			return -EACCES;
2073 		}
2074 		if (t == BPF_WRITE && value_regno >= 0 &&
2075 		    is_pointer_value(env, value_regno)) {
2076 			verbose(env, "R%d leaks addr into packet\n",
2077 				value_regno);
2078 			return -EACCES;
2079 		}
2080 		err = check_packet_access(env, regno, off, size, false);
2081 		if (!err && t == BPF_READ && value_regno >= 0)
2082 			mark_reg_unknown(env, regs, value_regno);
2083 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
2084 		if (t == BPF_WRITE && value_regno >= 0 &&
2085 		    is_pointer_value(env, value_regno)) {
2086 			verbose(env, "R%d leaks addr into flow keys\n",
2087 				value_regno);
2088 			return -EACCES;
2089 		}
2090 
2091 		err = check_flow_keys_access(env, off, size);
2092 		if (!err && t == BPF_READ && value_regno >= 0)
2093 			mark_reg_unknown(env, regs, value_regno);
2094 	} else if (type_is_sk_pointer(reg->type)) {
2095 		if (t == BPF_WRITE) {
2096 			verbose(env, "R%d cannot write into %s\n",
2097 				regno, reg_type_str[reg->type]);
2098 			return -EACCES;
2099 		}
2100 		err = check_sock_access(env, insn_idx, regno, off, size, t);
2101 		if (!err && value_regno >= 0)
2102 			mark_reg_unknown(env, regs, value_regno);
2103 	} else {
2104 		verbose(env, "R%d invalid mem access '%s'\n", regno,
2105 			reg_type_str[reg->type]);
2106 		return -EACCES;
2107 	}
2108 
2109 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
2110 	    regs[value_regno].type == SCALAR_VALUE) {
2111 		/* b/h/w load zero-extends, mark upper bits as known 0 */
2112 		coerce_reg_to_size(&regs[value_regno], size);
2113 	}
2114 	return err;
2115 }
2116 
2117 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
2118 {
2119 	int err;
2120 
2121 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2122 	    insn->imm != 0) {
2123 		verbose(env, "BPF_XADD uses reserved fields\n");
2124 		return -EINVAL;
2125 	}
2126 
2127 	/* check src1 operand */
2128 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
2129 	if (err)
2130 		return err;
2131 
2132 	/* check src2 operand */
2133 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2134 	if (err)
2135 		return err;
2136 
2137 	if (is_pointer_value(env, insn->src_reg)) {
2138 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
2139 		return -EACCES;
2140 	}
2141 
2142 	if (is_ctx_reg(env, insn->dst_reg) ||
2143 	    is_pkt_reg(env, insn->dst_reg) ||
2144 	    is_flow_key_reg(env, insn->dst_reg) ||
2145 	    is_sk_reg(env, insn->dst_reg)) {
2146 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2147 			insn->dst_reg,
2148 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
2149 		return -EACCES;
2150 	}
2151 
2152 	/* check whether atomic_add can read the memory */
2153 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2154 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
2155 	if (err)
2156 		return err;
2157 
2158 	/* check whether atomic_add can write into the same memory */
2159 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2160 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
2161 }
2162 
2163 /* when register 'regno' is passed into function that will read 'access_size'
2164  * bytes from that pointer, make sure that it's within stack boundary
2165  * and all elements of stack are initialized.
2166  * Unlike most pointer bounds-checking functions, this one doesn't take an
2167  * 'off' argument, so it has to add in reg->off itself.
2168  */
2169 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
2170 				int access_size, bool zero_size_allowed,
2171 				struct bpf_call_arg_meta *meta)
2172 {
2173 	struct bpf_reg_state *reg = reg_state(env, regno);
2174 	struct bpf_func_state *state = func(env, reg);
2175 	int off, i, slot, spi;
2176 
2177 	if (reg->type != PTR_TO_STACK) {
2178 		/* Allow zero-byte read from NULL, regardless of pointer type */
2179 		if (zero_size_allowed && access_size == 0 &&
2180 		    register_is_null(reg))
2181 			return 0;
2182 
2183 		verbose(env, "R%d type=%s expected=%s\n", regno,
2184 			reg_type_str[reg->type],
2185 			reg_type_str[PTR_TO_STACK]);
2186 		return -EACCES;
2187 	}
2188 
2189 	/* Only allow fixed-offset stack reads */
2190 	if (!tnum_is_const(reg->var_off)) {
2191 		char tn_buf[48];
2192 
2193 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2194 		verbose(env, "invalid variable stack read R%d var_off=%s\n",
2195 			regno, tn_buf);
2196 		return -EACCES;
2197 	}
2198 	off = reg->off + reg->var_off.value;
2199 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2200 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2201 		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2202 			regno, off, access_size);
2203 		return -EACCES;
2204 	}
2205 
2206 	if (meta && meta->raw_mode) {
2207 		meta->access_size = access_size;
2208 		meta->regno = regno;
2209 		return 0;
2210 	}
2211 
2212 	for (i = 0; i < access_size; i++) {
2213 		u8 *stype;
2214 
2215 		slot = -(off + i) - 1;
2216 		spi = slot / BPF_REG_SIZE;
2217 		if (state->allocated_stack <= slot)
2218 			goto err;
2219 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2220 		if (*stype == STACK_MISC)
2221 			goto mark;
2222 		if (*stype == STACK_ZERO) {
2223 			/* helper can write anything into the stack */
2224 			*stype = STACK_MISC;
2225 			goto mark;
2226 		}
2227 err:
2228 		verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2229 			off, i, access_size);
2230 		return -EACCES;
2231 mark:
2232 		/* reading any byte out of 8-byte 'spill_slot' will cause
2233 		 * the whole slot to be marked as 'read'
2234 		 */
2235 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
2236 			      state->stack[spi].spilled_ptr.parent);
2237 	}
2238 	return update_stack_depth(env, state, off);
2239 }
2240 
2241 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2242 				   int access_size, bool zero_size_allowed,
2243 				   struct bpf_call_arg_meta *meta)
2244 {
2245 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2246 
2247 	switch (reg->type) {
2248 	case PTR_TO_PACKET:
2249 	case PTR_TO_PACKET_META:
2250 		return check_packet_access(env, regno, reg->off, access_size,
2251 					   zero_size_allowed);
2252 	case PTR_TO_MAP_VALUE:
2253 		return check_map_access(env, regno, reg->off, access_size,
2254 					zero_size_allowed);
2255 	default: /* scalar_value|ptr_to_stack or invalid ptr */
2256 		return check_stack_boundary(env, regno, access_size,
2257 					    zero_size_allowed, meta);
2258 	}
2259 }
2260 
2261 /* Implementation details:
2262  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
2263  * Two bpf_map_lookups (even with the same key) will have different reg->id.
2264  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
2265  * value_or_null->value transition, since the verifier only cares about
2266  * the range of access to valid map value pointer and doesn't care about actual
2267  * address of the map element.
2268  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
2269  * reg->id > 0 after value_or_null->value transition. By doing so
2270  * two bpf_map_lookups will be considered two different pointers that
2271  * point to different bpf_spin_locks.
2272  * The verifier allows taking only one bpf_spin_lock at a time to avoid
2273  * dead-locks.
2274  * Since only one bpf_spin_lock is allowed the checks are simpler than
2275  * reg_is_refcounted() logic. The verifier needs to remember only
2276  * one spin_lock instead of array of acquired_refs.
2277  * cur_state->active_spin_lock remembers which map value element got locked
2278  * and clears it after bpf_spin_unlock.
2279  */
2280 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
2281 			     bool is_lock)
2282 {
2283 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2284 	struct bpf_verifier_state *cur = env->cur_state;
2285 	bool is_const = tnum_is_const(reg->var_off);
2286 	struct bpf_map *map = reg->map_ptr;
2287 	u64 val = reg->var_off.value;
2288 
2289 	if (reg->type != PTR_TO_MAP_VALUE) {
2290 		verbose(env, "R%d is not a pointer to map_value\n", regno);
2291 		return -EINVAL;
2292 	}
2293 	if (!is_const) {
2294 		verbose(env,
2295 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
2296 			regno);
2297 		return -EINVAL;
2298 	}
2299 	if (!map->btf) {
2300 		verbose(env,
2301 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
2302 			map->name);
2303 		return -EINVAL;
2304 	}
2305 	if (!map_value_has_spin_lock(map)) {
2306 		if (map->spin_lock_off == -E2BIG)
2307 			verbose(env,
2308 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
2309 				map->name);
2310 		else if (map->spin_lock_off == -ENOENT)
2311 			verbose(env,
2312 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
2313 				map->name);
2314 		else
2315 			verbose(env,
2316 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
2317 				map->name);
2318 		return -EINVAL;
2319 	}
2320 	if (map->spin_lock_off != val + reg->off) {
2321 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
2322 			val + reg->off);
2323 		return -EINVAL;
2324 	}
2325 	if (is_lock) {
2326 		if (cur->active_spin_lock) {
2327 			verbose(env,
2328 				"Locking two bpf_spin_locks are not allowed\n");
2329 			return -EINVAL;
2330 		}
2331 		cur->active_spin_lock = reg->id;
2332 	} else {
2333 		if (!cur->active_spin_lock) {
2334 			verbose(env, "bpf_spin_unlock without taking a lock\n");
2335 			return -EINVAL;
2336 		}
2337 		if (cur->active_spin_lock != reg->id) {
2338 			verbose(env, "bpf_spin_unlock of different lock\n");
2339 			return -EINVAL;
2340 		}
2341 		cur->active_spin_lock = 0;
2342 	}
2343 	return 0;
2344 }
2345 
2346 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2347 {
2348 	return type == ARG_PTR_TO_MEM ||
2349 	       type == ARG_PTR_TO_MEM_OR_NULL ||
2350 	       type == ARG_PTR_TO_UNINIT_MEM;
2351 }
2352 
2353 static bool arg_type_is_mem_size(enum bpf_arg_type type)
2354 {
2355 	return type == ARG_CONST_SIZE ||
2356 	       type == ARG_CONST_SIZE_OR_ZERO;
2357 }
2358 
2359 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
2360 			  enum bpf_arg_type arg_type,
2361 			  struct bpf_call_arg_meta *meta)
2362 {
2363 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2364 	enum bpf_reg_type expected_type, type = reg->type;
2365 	int err = 0;
2366 
2367 	if (arg_type == ARG_DONTCARE)
2368 		return 0;
2369 
2370 	err = check_reg_arg(env, regno, SRC_OP);
2371 	if (err)
2372 		return err;
2373 
2374 	if (arg_type == ARG_ANYTHING) {
2375 		if (is_pointer_value(env, regno)) {
2376 			verbose(env, "R%d leaks addr into helper function\n",
2377 				regno);
2378 			return -EACCES;
2379 		}
2380 		return 0;
2381 	}
2382 
2383 	if (type_is_pkt_pointer(type) &&
2384 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
2385 		verbose(env, "helper access to the packet is not allowed\n");
2386 		return -EACCES;
2387 	}
2388 
2389 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
2390 	    arg_type == ARG_PTR_TO_MAP_VALUE ||
2391 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2392 		expected_type = PTR_TO_STACK;
2393 		if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
2394 		    type != expected_type)
2395 			goto err_type;
2396 	} else if (arg_type == ARG_CONST_SIZE ||
2397 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
2398 		expected_type = SCALAR_VALUE;
2399 		if (type != expected_type)
2400 			goto err_type;
2401 	} else if (arg_type == ARG_CONST_MAP_PTR) {
2402 		expected_type = CONST_PTR_TO_MAP;
2403 		if (type != expected_type)
2404 			goto err_type;
2405 	} else if (arg_type == ARG_PTR_TO_CTX) {
2406 		expected_type = PTR_TO_CTX;
2407 		if (type != expected_type)
2408 			goto err_type;
2409 		err = check_ctx_reg(env, reg, regno);
2410 		if (err < 0)
2411 			return err;
2412 	} else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
2413 		expected_type = PTR_TO_SOCK_COMMON;
2414 		/* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
2415 		if (!type_is_sk_pointer(type))
2416 			goto err_type;
2417 	} else if (arg_type == ARG_PTR_TO_SOCKET) {
2418 		expected_type = PTR_TO_SOCKET;
2419 		if (type != expected_type)
2420 			goto err_type;
2421 		if (meta->ptr_id || !reg->id) {
2422 			verbose(env, "verifier internal error: mismatched references meta=%d, reg=%d\n",
2423 				meta->ptr_id, reg->id);
2424 			return -EFAULT;
2425 		}
2426 		meta->ptr_id = reg->id;
2427 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
2428 		if (meta->func_id == BPF_FUNC_spin_lock) {
2429 			if (process_spin_lock(env, regno, true))
2430 				return -EACCES;
2431 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
2432 			if (process_spin_lock(env, regno, false))
2433 				return -EACCES;
2434 		} else {
2435 			verbose(env, "verifier internal error\n");
2436 			return -EFAULT;
2437 		}
2438 	} else if (arg_type_is_mem_ptr(arg_type)) {
2439 		expected_type = PTR_TO_STACK;
2440 		/* One exception here. In case function allows for NULL to be
2441 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
2442 		 * happens during stack boundary checking.
2443 		 */
2444 		if (register_is_null(reg) &&
2445 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
2446 			/* final test in check_stack_boundary() */;
2447 		else if (!type_is_pkt_pointer(type) &&
2448 			 type != PTR_TO_MAP_VALUE &&
2449 			 type != expected_type)
2450 			goto err_type;
2451 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
2452 	} else {
2453 		verbose(env, "unsupported arg_type %d\n", arg_type);
2454 		return -EFAULT;
2455 	}
2456 
2457 	if (arg_type == ARG_CONST_MAP_PTR) {
2458 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
2459 		meta->map_ptr = reg->map_ptr;
2460 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2461 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
2462 		 * check that [key, key + map->key_size) are within
2463 		 * stack limits and initialized
2464 		 */
2465 		if (!meta->map_ptr) {
2466 			/* in function declaration map_ptr must come before
2467 			 * map_key, so that it's verified and known before
2468 			 * we have to check map_key here. Otherwise it means
2469 			 * that kernel subsystem misconfigured verifier
2470 			 */
2471 			verbose(env, "invalid map_ptr to access map->key\n");
2472 			return -EACCES;
2473 		}
2474 		err = check_helper_mem_access(env, regno,
2475 					      meta->map_ptr->key_size, false,
2476 					      NULL);
2477 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
2478 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2479 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
2480 		 * check [value, value + map->value_size) validity
2481 		 */
2482 		if (!meta->map_ptr) {
2483 			/* kernel subsystem misconfigured verifier */
2484 			verbose(env, "invalid map_ptr to access map->value\n");
2485 			return -EACCES;
2486 		}
2487 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
2488 		err = check_helper_mem_access(env, regno,
2489 					      meta->map_ptr->value_size, false,
2490 					      meta);
2491 	} else if (arg_type_is_mem_size(arg_type)) {
2492 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
2493 
2494 		/* remember the mem_size which may be used later
2495 		 * to refine return values.
2496 		 */
2497 		meta->msize_smax_value = reg->smax_value;
2498 		meta->msize_umax_value = reg->umax_value;
2499 
2500 		/* The register is SCALAR_VALUE; the access check
2501 		 * happens using its boundaries.
2502 		 */
2503 		if (!tnum_is_const(reg->var_off))
2504 			/* For unprivileged variable accesses, disable raw
2505 			 * mode so that the program is required to
2506 			 * initialize all the memory that the helper could
2507 			 * just partially fill up.
2508 			 */
2509 			meta = NULL;
2510 
2511 		if (reg->smin_value < 0) {
2512 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2513 				regno);
2514 			return -EACCES;
2515 		}
2516 
2517 		if (reg->umin_value == 0) {
2518 			err = check_helper_mem_access(env, regno - 1, 0,
2519 						      zero_size_allowed,
2520 						      meta);
2521 			if (err)
2522 				return err;
2523 		}
2524 
2525 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2526 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2527 				regno);
2528 			return -EACCES;
2529 		}
2530 		err = check_helper_mem_access(env, regno - 1,
2531 					      reg->umax_value,
2532 					      zero_size_allowed, meta);
2533 	}
2534 
2535 	return err;
2536 err_type:
2537 	verbose(env, "R%d type=%s expected=%s\n", regno,
2538 		reg_type_str[type], reg_type_str[expected_type]);
2539 	return -EACCES;
2540 }
2541 
2542 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2543 					struct bpf_map *map, int func_id)
2544 {
2545 	if (!map)
2546 		return 0;
2547 
2548 	/* We need a two way check, first is from map perspective ... */
2549 	switch (map->map_type) {
2550 	case BPF_MAP_TYPE_PROG_ARRAY:
2551 		if (func_id != BPF_FUNC_tail_call)
2552 			goto error;
2553 		break;
2554 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2555 		if (func_id != BPF_FUNC_perf_event_read &&
2556 		    func_id != BPF_FUNC_perf_event_output &&
2557 		    func_id != BPF_FUNC_perf_event_read_value)
2558 			goto error;
2559 		break;
2560 	case BPF_MAP_TYPE_STACK_TRACE:
2561 		if (func_id != BPF_FUNC_get_stackid)
2562 			goto error;
2563 		break;
2564 	case BPF_MAP_TYPE_CGROUP_ARRAY:
2565 		if (func_id != BPF_FUNC_skb_under_cgroup &&
2566 		    func_id != BPF_FUNC_current_task_under_cgroup)
2567 			goto error;
2568 		break;
2569 	case BPF_MAP_TYPE_CGROUP_STORAGE:
2570 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
2571 		if (func_id != BPF_FUNC_get_local_storage)
2572 			goto error;
2573 		break;
2574 	/* devmap returns a pointer to a live net_device ifindex that we cannot
2575 	 * allow to be modified from bpf side. So do not allow lookup elements
2576 	 * for now.
2577 	 */
2578 	case BPF_MAP_TYPE_DEVMAP:
2579 		if (func_id != BPF_FUNC_redirect_map)
2580 			goto error;
2581 		break;
2582 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
2583 	 * appear.
2584 	 */
2585 	case BPF_MAP_TYPE_CPUMAP:
2586 	case BPF_MAP_TYPE_XSKMAP:
2587 		if (func_id != BPF_FUNC_redirect_map)
2588 			goto error;
2589 		break;
2590 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2591 	case BPF_MAP_TYPE_HASH_OF_MAPS:
2592 		if (func_id != BPF_FUNC_map_lookup_elem)
2593 			goto error;
2594 		break;
2595 	case BPF_MAP_TYPE_SOCKMAP:
2596 		if (func_id != BPF_FUNC_sk_redirect_map &&
2597 		    func_id != BPF_FUNC_sock_map_update &&
2598 		    func_id != BPF_FUNC_map_delete_elem &&
2599 		    func_id != BPF_FUNC_msg_redirect_map)
2600 			goto error;
2601 		break;
2602 	case BPF_MAP_TYPE_SOCKHASH:
2603 		if (func_id != BPF_FUNC_sk_redirect_hash &&
2604 		    func_id != BPF_FUNC_sock_hash_update &&
2605 		    func_id != BPF_FUNC_map_delete_elem &&
2606 		    func_id != BPF_FUNC_msg_redirect_hash)
2607 			goto error;
2608 		break;
2609 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2610 		if (func_id != BPF_FUNC_sk_select_reuseport)
2611 			goto error;
2612 		break;
2613 	case BPF_MAP_TYPE_QUEUE:
2614 	case BPF_MAP_TYPE_STACK:
2615 		if (func_id != BPF_FUNC_map_peek_elem &&
2616 		    func_id != BPF_FUNC_map_pop_elem &&
2617 		    func_id != BPF_FUNC_map_push_elem)
2618 			goto error;
2619 		break;
2620 	default:
2621 		break;
2622 	}
2623 
2624 	/* ... and second from the function itself. */
2625 	switch (func_id) {
2626 	case BPF_FUNC_tail_call:
2627 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2628 			goto error;
2629 		if (env->subprog_cnt > 1) {
2630 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2631 			return -EINVAL;
2632 		}
2633 		break;
2634 	case BPF_FUNC_perf_event_read:
2635 	case BPF_FUNC_perf_event_output:
2636 	case BPF_FUNC_perf_event_read_value:
2637 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2638 			goto error;
2639 		break;
2640 	case BPF_FUNC_get_stackid:
2641 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2642 			goto error;
2643 		break;
2644 	case BPF_FUNC_current_task_under_cgroup:
2645 	case BPF_FUNC_skb_under_cgroup:
2646 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2647 			goto error;
2648 		break;
2649 	case BPF_FUNC_redirect_map:
2650 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2651 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
2652 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
2653 			goto error;
2654 		break;
2655 	case BPF_FUNC_sk_redirect_map:
2656 	case BPF_FUNC_msg_redirect_map:
2657 	case BPF_FUNC_sock_map_update:
2658 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2659 			goto error;
2660 		break;
2661 	case BPF_FUNC_sk_redirect_hash:
2662 	case BPF_FUNC_msg_redirect_hash:
2663 	case BPF_FUNC_sock_hash_update:
2664 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2665 			goto error;
2666 		break;
2667 	case BPF_FUNC_get_local_storage:
2668 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2669 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
2670 			goto error;
2671 		break;
2672 	case BPF_FUNC_sk_select_reuseport:
2673 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
2674 			goto error;
2675 		break;
2676 	case BPF_FUNC_map_peek_elem:
2677 	case BPF_FUNC_map_pop_elem:
2678 	case BPF_FUNC_map_push_elem:
2679 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
2680 		    map->map_type != BPF_MAP_TYPE_STACK)
2681 			goto error;
2682 		break;
2683 	default:
2684 		break;
2685 	}
2686 
2687 	return 0;
2688 error:
2689 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2690 		map->map_type, func_id_name(func_id), func_id);
2691 	return -EINVAL;
2692 }
2693 
2694 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2695 {
2696 	int count = 0;
2697 
2698 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2699 		count++;
2700 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2701 		count++;
2702 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2703 		count++;
2704 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2705 		count++;
2706 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2707 		count++;
2708 
2709 	/* We only support one arg being in raw mode at the moment,
2710 	 * which is sufficient for the helper functions we have
2711 	 * right now.
2712 	 */
2713 	return count <= 1;
2714 }
2715 
2716 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2717 				    enum bpf_arg_type arg_next)
2718 {
2719 	return (arg_type_is_mem_ptr(arg_curr) &&
2720 	        !arg_type_is_mem_size(arg_next)) ||
2721 	       (!arg_type_is_mem_ptr(arg_curr) &&
2722 		arg_type_is_mem_size(arg_next));
2723 }
2724 
2725 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2726 {
2727 	/* bpf_xxx(..., buf, len) call will access 'len'
2728 	 * bytes from memory 'buf'. Both arg types need
2729 	 * to be paired, so make sure there's no buggy
2730 	 * helper function specification.
2731 	 */
2732 	if (arg_type_is_mem_size(fn->arg1_type) ||
2733 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
2734 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2735 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2736 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2737 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2738 		return false;
2739 
2740 	return true;
2741 }
2742 
2743 static bool check_refcount_ok(const struct bpf_func_proto *fn)
2744 {
2745 	int count = 0;
2746 
2747 	if (arg_type_is_refcounted(fn->arg1_type))
2748 		count++;
2749 	if (arg_type_is_refcounted(fn->arg2_type))
2750 		count++;
2751 	if (arg_type_is_refcounted(fn->arg3_type))
2752 		count++;
2753 	if (arg_type_is_refcounted(fn->arg4_type))
2754 		count++;
2755 	if (arg_type_is_refcounted(fn->arg5_type))
2756 		count++;
2757 
2758 	/* We only support one arg being unreferenced at the moment,
2759 	 * which is sufficient for the helper functions we have right now.
2760 	 */
2761 	return count <= 1;
2762 }
2763 
2764 static int check_func_proto(const struct bpf_func_proto *fn)
2765 {
2766 	return check_raw_mode_ok(fn) &&
2767 	       check_arg_pair_ok(fn) &&
2768 	       check_refcount_ok(fn) ? 0 : -EINVAL;
2769 }
2770 
2771 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2772  * are now invalid, so turn them into unknown SCALAR_VALUE.
2773  */
2774 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2775 				     struct bpf_func_state *state)
2776 {
2777 	struct bpf_reg_state *regs = state->regs, *reg;
2778 	int i;
2779 
2780 	for (i = 0; i < MAX_BPF_REG; i++)
2781 		if (reg_is_pkt_pointer_any(&regs[i]))
2782 			mark_reg_unknown(env, regs, i);
2783 
2784 	bpf_for_each_spilled_reg(i, state, reg) {
2785 		if (!reg)
2786 			continue;
2787 		if (reg_is_pkt_pointer_any(reg))
2788 			__mark_reg_unknown(reg);
2789 	}
2790 }
2791 
2792 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2793 {
2794 	struct bpf_verifier_state *vstate = env->cur_state;
2795 	int i;
2796 
2797 	for (i = 0; i <= vstate->curframe; i++)
2798 		__clear_all_pkt_pointers(env, vstate->frame[i]);
2799 }
2800 
2801 static void release_reg_references(struct bpf_verifier_env *env,
2802 				   struct bpf_func_state *state, int id)
2803 {
2804 	struct bpf_reg_state *regs = state->regs, *reg;
2805 	int i;
2806 
2807 	for (i = 0; i < MAX_BPF_REG; i++)
2808 		if (regs[i].id == id)
2809 			mark_reg_unknown(env, regs, i);
2810 
2811 	bpf_for_each_spilled_reg(i, state, reg) {
2812 		if (!reg)
2813 			continue;
2814 		if (reg_is_refcounted(reg) && reg->id == id)
2815 			__mark_reg_unknown(reg);
2816 	}
2817 }
2818 
2819 /* The pointer with the specified id has released its reference to kernel
2820  * resources. Identify all copies of the same pointer and clear the reference.
2821  */
2822 static int release_reference(struct bpf_verifier_env *env,
2823 			     struct bpf_call_arg_meta *meta)
2824 {
2825 	struct bpf_verifier_state *vstate = env->cur_state;
2826 	int i;
2827 
2828 	for (i = 0; i <= vstate->curframe; i++)
2829 		release_reg_references(env, vstate->frame[i], meta->ptr_id);
2830 
2831 	return release_reference_state(cur_func(env), meta->ptr_id);
2832 }
2833 
2834 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2835 			   int *insn_idx)
2836 {
2837 	struct bpf_verifier_state *state = env->cur_state;
2838 	struct bpf_func_state *caller, *callee;
2839 	int i, err, subprog, target_insn;
2840 
2841 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2842 		verbose(env, "the call stack of %d frames is too deep\n",
2843 			state->curframe + 2);
2844 		return -E2BIG;
2845 	}
2846 
2847 	target_insn = *insn_idx + insn->imm;
2848 	subprog = find_subprog(env, target_insn + 1);
2849 	if (subprog < 0) {
2850 		verbose(env, "verifier bug. No program starts at insn %d\n",
2851 			target_insn + 1);
2852 		return -EFAULT;
2853 	}
2854 
2855 	caller = state->frame[state->curframe];
2856 	if (state->frame[state->curframe + 1]) {
2857 		verbose(env, "verifier bug. Frame %d already allocated\n",
2858 			state->curframe + 1);
2859 		return -EFAULT;
2860 	}
2861 
2862 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2863 	if (!callee)
2864 		return -ENOMEM;
2865 	state->frame[state->curframe + 1] = callee;
2866 
2867 	/* callee cannot access r0, r6 - r9 for reading and has to write
2868 	 * into its own stack before reading from it.
2869 	 * callee can read/write into caller's stack
2870 	 */
2871 	init_func_state(env, callee,
2872 			/* remember the callsite, it will be used by bpf_exit */
2873 			*insn_idx /* callsite */,
2874 			state->curframe + 1 /* frameno within this callchain */,
2875 			subprog /* subprog number within this prog */);
2876 
2877 	/* Transfer references to the callee */
2878 	err = transfer_reference_state(callee, caller);
2879 	if (err)
2880 		return err;
2881 
2882 	/* copy r1 - r5 args that callee can access.  The copy includes parent
2883 	 * pointers, which connects us up to the liveness chain
2884 	 */
2885 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2886 		callee->regs[i] = caller->regs[i];
2887 
2888 	/* after the call registers r0 - r5 were scratched */
2889 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2890 		mark_reg_not_init(env, caller->regs, caller_saved[i]);
2891 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2892 	}
2893 
2894 	/* only increment it after check_reg_arg() finished */
2895 	state->curframe++;
2896 
2897 	/* and go analyze first insn of the callee */
2898 	*insn_idx = target_insn;
2899 
2900 	if (env->log.level) {
2901 		verbose(env, "caller:\n");
2902 		print_verifier_state(env, caller);
2903 		verbose(env, "callee:\n");
2904 		print_verifier_state(env, callee);
2905 	}
2906 	return 0;
2907 }
2908 
2909 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2910 {
2911 	struct bpf_verifier_state *state = env->cur_state;
2912 	struct bpf_func_state *caller, *callee;
2913 	struct bpf_reg_state *r0;
2914 	int err;
2915 
2916 	callee = state->frame[state->curframe];
2917 	r0 = &callee->regs[BPF_REG_0];
2918 	if (r0->type == PTR_TO_STACK) {
2919 		/* technically it's ok to return caller's stack pointer
2920 		 * (or caller's caller's pointer) back to the caller,
2921 		 * since these pointers are valid. Only current stack
2922 		 * pointer will be invalid as soon as function exits,
2923 		 * but let's be conservative
2924 		 */
2925 		verbose(env, "cannot return stack pointer to the caller\n");
2926 		return -EINVAL;
2927 	}
2928 
2929 	state->curframe--;
2930 	caller = state->frame[state->curframe];
2931 	/* return to the caller whatever r0 had in the callee */
2932 	caller->regs[BPF_REG_0] = *r0;
2933 
2934 	/* Transfer references to the caller */
2935 	err = transfer_reference_state(caller, callee);
2936 	if (err)
2937 		return err;
2938 
2939 	*insn_idx = callee->callsite + 1;
2940 	if (env->log.level) {
2941 		verbose(env, "returning from callee:\n");
2942 		print_verifier_state(env, callee);
2943 		verbose(env, "to caller at %d:\n", *insn_idx);
2944 		print_verifier_state(env, caller);
2945 	}
2946 	/* clear everything in the callee */
2947 	free_func_state(callee);
2948 	state->frame[state->curframe + 1] = NULL;
2949 	return 0;
2950 }
2951 
2952 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
2953 				   int func_id,
2954 				   struct bpf_call_arg_meta *meta)
2955 {
2956 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
2957 
2958 	if (ret_type != RET_INTEGER ||
2959 	    (func_id != BPF_FUNC_get_stack &&
2960 	     func_id != BPF_FUNC_probe_read_str))
2961 		return;
2962 
2963 	ret_reg->smax_value = meta->msize_smax_value;
2964 	ret_reg->umax_value = meta->msize_umax_value;
2965 	__reg_deduce_bounds(ret_reg);
2966 	__reg_bound_offset(ret_reg);
2967 }
2968 
2969 static int
2970 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
2971 		int func_id, int insn_idx)
2972 {
2973 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
2974 
2975 	if (func_id != BPF_FUNC_tail_call &&
2976 	    func_id != BPF_FUNC_map_lookup_elem &&
2977 	    func_id != BPF_FUNC_map_update_elem &&
2978 	    func_id != BPF_FUNC_map_delete_elem &&
2979 	    func_id != BPF_FUNC_map_push_elem &&
2980 	    func_id != BPF_FUNC_map_pop_elem &&
2981 	    func_id != BPF_FUNC_map_peek_elem)
2982 		return 0;
2983 
2984 	if (meta->map_ptr == NULL) {
2985 		verbose(env, "kernel subsystem misconfigured verifier\n");
2986 		return -EINVAL;
2987 	}
2988 
2989 	if (!BPF_MAP_PTR(aux->map_state))
2990 		bpf_map_ptr_store(aux, meta->map_ptr,
2991 				  meta->map_ptr->unpriv_array);
2992 	else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
2993 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2994 				  meta->map_ptr->unpriv_array);
2995 	return 0;
2996 }
2997 
2998 static int check_reference_leak(struct bpf_verifier_env *env)
2999 {
3000 	struct bpf_func_state *state = cur_func(env);
3001 	int i;
3002 
3003 	for (i = 0; i < state->acquired_refs; i++) {
3004 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
3005 			state->refs[i].id, state->refs[i].insn_idx);
3006 	}
3007 	return state->acquired_refs ? -EINVAL : 0;
3008 }
3009 
3010 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
3011 {
3012 	const struct bpf_func_proto *fn = NULL;
3013 	struct bpf_reg_state *regs;
3014 	struct bpf_call_arg_meta meta;
3015 	bool changes_data;
3016 	int i, err;
3017 
3018 	/* find function prototype */
3019 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
3020 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
3021 			func_id);
3022 		return -EINVAL;
3023 	}
3024 
3025 	if (env->ops->get_func_proto)
3026 		fn = env->ops->get_func_proto(func_id, env->prog);
3027 	if (!fn) {
3028 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
3029 			func_id);
3030 		return -EINVAL;
3031 	}
3032 
3033 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
3034 	if (!env->prog->gpl_compatible && fn->gpl_only) {
3035 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
3036 		return -EINVAL;
3037 	}
3038 
3039 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
3040 	changes_data = bpf_helper_changes_pkt_data(fn->func);
3041 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
3042 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
3043 			func_id_name(func_id), func_id);
3044 		return -EINVAL;
3045 	}
3046 
3047 	memset(&meta, 0, sizeof(meta));
3048 	meta.pkt_access = fn->pkt_access;
3049 
3050 	err = check_func_proto(fn);
3051 	if (err) {
3052 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
3053 			func_id_name(func_id), func_id);
3054 		return err;
3055 	}
3056 
3057 	meta.func_id = func_id;
3058 	/* check args */
3059 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
3060 	if (err)
3061 		return err;
3062 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
3063 	if (err)
3064 		return err;
3065 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
3066 	if (err)
3067 		return err;
3068 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
3069 	if (err)
3070 		return err;
3071 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
3072 	if (err)
3073 		return err;
3074 
3075 	err = record_func_map(env, &meta, func_id, insn_idx);
3076 	if (err)
3077 		return err;
3078 
3079 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
3080 	 * is inferred from register state.
3081 	 */
3082 	for (i = 0; i < meta.access_size; i++) {
3083 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
3084 				       BPF_WRITE, -1, false);
3085 		if (err)
3086 			return err;
3087 	}
3088 
3089 	if (func_id == BPF_FUNC_tail_call) {
3090 		err = check_reference_leak(env);
3091 		if (err) {
3092 			verbose(env, "tail_call would lead to reference leak\n");
3093 			return err;
3094 		}
3095 	} else if (is_release_function(func_id)) {
3096 		err = release_reference(env, &meta);
3097 		if (err) {
3098 			verbose(env, "func %s#%d reference has not been acquired before\n",
3099 				func_id_name(func_id), func_id);
3100 			return err;
3101 		}
3102 	}
3103 
3104 	regs = cur_regs(env);
3105 
3106 	/* check that flags argument in get_local_storage(map, flags) is 0,
3107 	 * this is required because get_local_storage() can't return an error.
3108 	 */
3109 	if (func_id == BPF_FUNC_get_local_storage &&
3110 	    !register_is_null(&regs[BPF_REG_2])) {
3111 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
3112 		return -EINVAL;
3113 	}
3114 
3115 	/* reset caller saved regs */
3116 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3117 		mark_reg_not_init(env, regs, caller_saved[i]);
3118 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3119 	}
3120 
3121 	/* update return register (already marked as written above) */
3122 	if (fn->ret_type == RET_INTEGER) {
3123 		/* sets type to SCALAR_VALUE */
3124 		mark_reg_unknown(env, regs, BPF_REG_0);
3125 	} else if (fn->ret_type == RET_VOID) {
3126 		regs[BPF_REG_0].type = NOT_INIT;
3127 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
3128 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3129 		/* There is no offset yet applied, variable or fixed */
3130 		mark_reg_known_zero(env, regs, BPF_REG_0);
3131 		/* remember map_ptr, so that check_map_access()
3132 		 * can check 'value_size' boundary of memory access
3133 		 * to map element returned from bpf_map_lookup_elem()
3134 		 */
3135 		if (meta.map_ptr == NULL) {
3136 			verbose(env,
3137 				"kernel subsystem misconfigured verifier\n");
3138 			return -EINVAL;
3139 		}
3140 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
3141 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3142 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
3143 			if (map_value_has_spin_lock(meta.map_ptr))
3144 				regs[BPF_REG_0].id = ++env->id_gen;
3145 		} else {
3146 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
3147 			regs[BPF_REG_0].id = ++env->id_gen;
3148 		}
3149 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
3150 		mark_reg_known_zero(env, regs, BPF_REG_0);
3151 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
3152 		if (is_acquire_function(func_id)) {
3153 			int id = acquire_reference_state(env, insn_idx);
3154 
3155 			if (id < 0)
3156 				return id;
3157 			/* For release_reference() */
3158 			regs[BPF_REG_0].id = id;
3159 		} else {
3160 			/* For mark_ptr_or_null_reg() */
3161 			regs[BPF_REG_0].id = ++env->id_gen;
3162 		}
3163 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
3164 		mark_reg_known_zero(env, regs, BPF_REG_0);
3165 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
3166 		regs[BPF_REG_0].id = ++env->id_gen;
3167 	} else {
3168 		verbose(env, "unknown return type %d of func %s#%d\n",
3169 			fn->ret_type, func_id_name(func_id), func_id);
3170 		return -EINVAL;
3171 	}
3172 
3173 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
3174 
3175 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
3176 	if (err)
3177 		return err;
3178 
3179 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
3180 		const char *err_str;
3181 
3182 #ifdef CONFIG_PERF_EVENTS
3183 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
3184 		err_str = "cannot get callchain buffer for func %s#%d\n";
3185 #else
3186 		err = -ENOTSUPP;
3187 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
3188 #endif
3189 		if (err) {
3190 			verbose(env, err_str, func_id_name(func_id), func_id);
3191 			return err;
3192 		}
3193 
3194 		env->prog->has_callchain_buf = true;
3195 	}
3196 
3197 	if (changes_data)
3198 		clear_all_pkt_pointers(env);
3199 	return 0;
3200 }
3201 
3202 static bool signed_add_overflows(s64 a, s64 b)
3203 {
3204 	/* Do the add in u64, where overflow is well-defined */
3205 	s64 res = (s64)((u64)a + (u64)b);
3206 
3207 	if (b < 0)
3208 		return res > a;
3209 	return res < a;
3210 }
3211 
3212 static bool signed_sub_overflows(s64 a, s64 b)
3213 {
3214 	/* Do the sub in u64, where overflow is well-defined */
3215 	s64 res = (s64)((u64)a - (u64)b);
3216 
3217 	if (b < 0)
3218 		return res < a;
3219 	return res > a;
3220 }
3221 
3222 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
3223 				  const struct bpf_reg_state *reg,
3224 				  enum bpf_reg_type type)
3225 {
3226 	bool known = tnum_is_const(reg->var_off);
3227 	s64 val = reg->var_off.value;
3228 	s64 smin = reg->smin_value;
3229 
3230 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
3231 		verbose(env, "math between %s pointer and %lld is not allowed\n",
3232 			reg_type_str[type], val);
3233 		return false;
3234 	}
3235 
3236 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
3237 		verbose(env, "%s pointer offset %d is not allowed\n",
3238 			reg_type_str[type], reg->off);
3239 		return false;
3240 	}
3241 
3242 	if (smin == S64_MIN) {
3243 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
3244 			reg_type_str[type]);
3245 		return false;
3246 	}
3247 
3248 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
3249 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
3250 			smin, reg_type_str[type]);
3251 		return false;
3252 	}
3253 
3254 	return true;
3255 }
3256 
3257 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
3258 {
3259 	return &env->insn_aux_data[env->insn_idx];
3260 }
3261 
3262 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
3263 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
3264 {
3265 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
3266 			    (opcode == BPF_SUB && !off_is_neg);
3267 	u32 off;
3268 
3269 	switch (ptr_reg->type) {
3270 	case PTR_TO_STACK:
3271 		off = ptr_reg->off + ptr_reg->var_off.value;
3272 		if (mask_to_left)
3273 			*ptr_limit = MAX_BPF_STACK + off;
3274 		else
3275 			*ptr_limit = -off;
3276 		return 0;
3277 	case PTR_TO_MAP_VALUE:
3278 		if (mask_to_left) {
3279 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
3280 		} else {
3281 			off = ptr_reg->smin_value + ptr_reg->off;
3282 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
3283 		}
3284 		return 0;
3285 	default:
3286 		return -EINVAL;
3287 	}
3288 }
3289 
3290 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
3291 				    const struct bpf_insn *insn)
3292 {
3293 	return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
3294 }
3295 
3296 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
3297 				       u32 alu_state, u32 alu_limit)
3298 {
3299 	/* If we arrived here from different branches with different
3300 	 * state or limits to sanitize, then this won't work.
3301 	 */
3302 	if (aux->alu_state &&
3303 	    (aux->alu_state != alu_state ||
3304 	     aux->alu_limit != alu_limit))
3305 		return -EACCES;
3306 
3307 	/* Corresponding fixup done in fixup_bpf_calls(). */
3308 	aux->alu_state = alu_state;
3309 	aux->alu_limit = alu_limit;
3310 	return 0;
3311 }
3312 
3313 static int sanitize_val_alu(struct bpf_verifier_env *env,
3314 			    struct bpf_insn *insn)
3315 {
3316 	struct bpf_insn_aux_data *aux = cur_aux(env);
3317 
3318 	if (can_skip_alu_sanitation(env, insn))
3319 		return 0;
3320 
3321 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
3322 }
3323 
3324 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
3325 			    struct bpf_insn *insn,
3326 			    const struct bpf_reg_state *ptr_reg,
3327 			    struct bpf_reg_state *dst_reg,
3328 			    bool off_is_neg)
3329 {
3330 	struct bpf_verifier_state *vstate = env->cur_state;
3331 	struct bpf_insn_aux_data *aux = cur_aux(env);
3332 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
3333 	u8 opcode = BPF_OP(insn->code);
3334 	u32 alu_state, alu_limit;
3335 	struct bpf_reg_state tmp;
3336 	bool ret;
3337 
3338 	if (can_skip_alu_sanitation(env, insn))
3339 		return 0;
3340 
3341 	/* We already marked aux for masking from non-speculative
3342 	 * paths, thus we got here in the first place. We only care
3343 	 * to explore bad access from here.
3344 	 */
3345 	if (vstate->speculative)
3346 		goto do_sim;
3347 
3348 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
3349 	alu_state |= ptr_is_dst_reg ?
3350 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
3351 
3352 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
3353 		return 0;
3354 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
3355 		return -EACCES;
3356 do_sim:
3357 	/* Simulate and find potential out-of-bounds access under
3358 	 * speculative execution from truncation as a result of
3359 	 * masking when off was not within expected range. If off
3360 	 * sits in dst, then we temporarily need to move ptr there
3361 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
3362 	 * for cases where we use K-based arithmetic in one direction
3363 	 * and truncated reg-based in the other in order to explore
3364 	 * bad access.
3365 	 */
3366 	if (!ptr_is_dst_reg) {
3367 		tmp = *dst_reg;
3368 		*dst_reg = *ptr_reg;
3369 	}
3370 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
3371 	if (!ptr_is_dst_reg)
3372 		*dst_reg = tmp;
3373 	return !ret ? -EFAULT : 0;
3374 }
3375 
3376 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
3377  * Caller should also handle BPF_MOV case separately.
3378  * If we return -EACCES, caller may want to try again treating pointer as a
3379  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
3380  */
3381 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
3382 				   struct bpf_insn *insn,
3383 				   const struct bpf_reg_state *ptr_reg,
3384 				   const struct bpf_reg_state *off_reg)
3385 {
3386 	struct bpf_verifier_state *vstate = env->cur_state;
3387 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3388 	struct bpf_reg_state *regs = state->regs, *dst_reg;
3389 	bool known = tnum_is_const(off_reg->var_off);
3390 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
3391 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
3392 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
3393 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
3394 	u32 dst = insn->dst_reg, src = insn->src_reg;
3395 	u8 opcode = BPF_OP(insn->code);
3396 	int ret;
3397 
3398 	dst_reg = &regs[dst];
3399 
3400 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
3401 	    smin_val > smax_val || umin_val > umax_val) {
3402 		/* Taint dst register if offset had invalid bounds derived from
3403 		 * e.g. dead branches.
3404 		 */
3405 		__mark_reg_unknown(dst_reg);
3406 		return 0;
3407 	}
3408 
3409 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
3410 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
3411 		verbose(env,
3412 			"R%d 32-bit pointer arithmetic prohibited\n",
3413 			dst);
3414 		return -EACCES;
3415 	}
3416 
3417 	switch (ptr_reg->type) {
3418 	case PTR_TO_MAP_VALUE_OR_NULL:
3419 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
3420 			dst, reg_type_str[ptr_reg->type]);
3421 		return -EACCES;
3422 	case CONST_PTR_TO_MAP:
3423 	case PTR_TO_PACKET_END:
3424 	case PTR_TO_SOCKET:
3425 	case PTR_TO_SOCKET_OR_NULL:
3426 	case PTR_TO_SOCK_COMMON:
3427 	case PTR_TO_SOCK_COMMON_OR_NULL:
3428 	case PTR_TO_TCP_SOCK:
3429 	case PTR_TO_TCP_SOCK_OR_NULL:
3430 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
3431 			dst, reg_type_str[ptr_reg->type]);
3432 		return -EACCES;
3433 	case PTR_TO_MAP_VALUE:
3434 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
3435 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
3436 				off_reg == dst_reg ? dst : src);
3437 			return -EACCES;
3438 		}
3439 		/* fall-through */
3440 	default:
3441 		break;
3442 	}
3443 
3444 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3445 	 * The id may be overwritten later if we create a new variable offset.
3446 	 */
3447 	dst_reg->type = ptr_reg->type;
3448 	dst_reg->id = ptr_reg->id;
3449 
3450 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
3451 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
3452 		return -EINVAL;
3453 
3454 	switch (opcode) {
3455 	case BPF_ADD:
3456 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3457 		if (ret < 0) {
3458 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
3459 			return ret;
3460 		}
3461 		/* We can take a fixed offset as long as it doesn't overflow
3462 		 * the s32 'off' field
3463 		 */
3464 		if (known && (ptr_reg->off + smin_val ==
3465 			      (s64)(s32)(ptr_reg->off + smin_val))) {
3466 			/* pointer += K.  Accumulate it into fixed offset */
3467 			dst_reg->smin_value = smin_ptr;
3468 			dst_reg->smax_value = smax_ptr;
3469 			dst_reg->umin_value = umin_ptr;
3470 			dst_reg->umax_value = umax_ptr;
3471 			dst_reg->var_off = ptr_reg->var_off;
3472 			dst_reg->off = ptr_reg->off + smin_val;
3473 			dst_reg->raw = ptr_reg->raw;
3474 			break;
3475 		}
3476 		/* A new variable offset is created.  Note that off_reg->off
3477 		 * == 0, since it's a scalar.
3478 		 * dst_reg gets the pointer type and since some positive
3479 		 * integer value was added to the pointer, give it a new 'id'
3480 		 * if it's a PTR_TO_PACKET.
3481 		 * this creates a new 'base' pointer, off_reg (variable) gets
3482 		 * added into the variable offset, and we copy the fixed offset
3483 		 * from ptr_reg.
3484 		 */
3485 		if (signed_add_overflows(smin_ptr, smin_val) ||
3486 		    signed_add_overflows(smax_ptr, smax_val)) {
3487 			dst_reg->smin_value = S64_MIN;
3488 			dst_reg->smax_value = S64_MAX;
3489 		} else {
3490 			dst_reg->smin_value = smin_ptr + smin_val;
3491 			dst_reg->smax_value = smax_ptr + smax_val;
3492 		}
3493 		if (umin_ptr + umin_val < umin_ptr ||
3494 		    umax_ptr + umax_val < umax_ptr) {
3495 			dst_reg->umin_value = 0;
3496 			dst_reg->umax_value = U64_MAX;
3497 		} else {
3498 			dst_reg->umin_value = umin_ptr + umin_val;
3499 			dst_reg->umax_value = umax_ptr + umax_val;
3500 		}
3501 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3502 		dst_reg->off = ptr_reg->off;
3503 		dst_reg->raw = ptr_reg->raw;
3504 		if (reg_is_pkt_pointer(ptr_reg)) {
3505 			dst_reg->id = ++env->id_gen;
3506 			/* something was added to pkt_ptr, set range to zero */
3507 			dst_reg->raw = 0;
3508 		}
3509 		break;
3510 	case BPF_SUB:
3511 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3512 		if (ret < 0) {
3513 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
3514 			return ret;
3515 		}
3516 		if (dst_reg == off_reg) {
3517 			/* scalar -= pointer.  Creates an unknown scalar */
3518 			verbose(env, "R%d tried to subtract pointer from scalar\n",
3519 				dst);
3520 			return -EACCES;
3521 		}
3522 		/* We don't allow subtraction from FP, because (according to
3523 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
3524 		 * be able to deal with it.
3525 		 */
3526 		if (ptr_reg->type == PTR_TO_STACK) {
3527 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
3528 				dst);
3529 			return -EACCES;
3530 		}
3531 		if (known && (ptr_reg->off - smin_val ==
3532 			      (s64)(s32)(ptr_reg->off - smin_val))) {
3533 			/* pointer -= K.  Subtract it from fixed offset */
3534 			dst_reg->smin_value = smin_ptr;
3535 			dst_reg->smax_value = smax_ptr;
3536 			dst_reg->umin_value = umin_ptr;
3537 			dst_reg->umax_value = umax_ptr;
3538 			dst_reg->var_off = ptr_reg->var_off;
3539 			dst_reg->id = ptr_reg->id;
3540 			dst_reg->off = ptr_reg->off - smin_val;
3541 			dst_reg->raw = ptr_reg->raw;
3542 			break;
3543 		}
3544 		/* A new variable offset is created.  If the subtrahend is known
3545 		 * nonnegative, then any reg->range we had before is still good.
3546 		 */
3547 		if (signed_sub_overflows(smin_ptr, smax_val) ||
3548 		    signed_sub_overflows(smax_ptr, smin_val)) {
3549 			/* Overflow possible, we know nothing */
3550 			dst_reg->smin_value = S64_MIN;
3551 			dst_reg->smax_value = S64_MAX;
3552 		} else {
3553 			dst_reg->smin_value = smin_ptr - smax_val;
3554 			dst_reg->smax_value = smax_ptr - smin_val;
3555 		}
3556 		if (umin_ptr < umax_val) {
3557 			/* Overflow possible, we know nothing */
3558 			dst_reg->umin_value = 0;
3559 			dst_reg->umax_value = U64_MAX;
3560 		} else {
3561 			/* Cannot overflow (as long as bounds are consistent) */
3562 			dst_reg->umin_value = umin_ptr - umax_val;
3563 			dst_reg->umax_value = umax_ptr - umin_val;
3564 		}
3565 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3566 		dst_reg->off = ptr_reg->off;
3567 		dst_reg->raw = ptr_reg->raw;
3568 		if (reg_is_pkt_pointer(ptr_reg)) {
3569 			dst_reg->id = ++env->id_gen;
3570 			/* something was added to pkt_ptr, set range to zero */
3571 			if (smin_val < 0)
3572 				dst_reg->raw = 0;
3573 		}
3574 		break;
3575 	case BPF_AND:
3576 	case BPF_OR:
3577 	case BPF_XOR:
3578 		/* bitwise ops on pointers are troublesome, prohibit. */
3579 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3580 			dst, bpf_alu_string[opcode >> 4]);
3581 		return -EACCES;
3582 	default:
3583 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
3584 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3585 			dst, bpf_alu_string[opcode >> 4]);
3586 		return -EACCES;
3587 	}
3588 
3589 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3590 		return -EINVAL;
3591 
3592 	__update_reg_bounds(dst_reg);
3593 	__reg_deduce_bounds(dst_reg);
3594 	__reg_bound_offset(dst_reg);
3595 
3596 	/* For unprivileged we require that resulting offset must be in bounds
3597 	 * in order to be able to sanitize access later on.
3598 	 */
3599 	if (!env->allow_ptr_leaks) {
3600 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
3601 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
3602 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
3603 				"prohibited for !root\n", dst);
3604 			return -EACCES;
3605 		} else if (dst_reg->type == PTR_TO_STACK &&
3606 			   check_stack_access(env, dst_reg, dst_reg->off +
3607 					      dst_reg->var_off.value, 1)) {
3608 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
3609 				"prohibited for !root\n", dst);
3610 			return -EACCES;
3611 		}
3612 	}
3613 
3614 	return 0;
3615 }
3616 
3617 /* WARNING: This function does calculations on 64-bit values, but the actual
3618  * execution may occur on 32-bit values. Therefore, things like bitshifts
3619  * need extra checks in the 32-bit case.
3620  */
3621 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3622 				      struct bpf_insn *insn,
3623 				      struct bpf_reg_state *dst_reg,
3624 				      struct bpf_reg_state src_reg)
3625 {
3626 	struct bpf_reg_state *regs = cur_regs(env);
3627 	u8 opcode = BPF_OP(insn->code);
3628 	bool src_known, dst_known;
3629 	s64 smin_val, smax_val;
3630 	u64 umin_val, umax_val;
3631 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3632 	u32 dst = insn->dst_reg;
3633 	int ret;
3634 
3635 	if (insn_bitness == 32) {
3636 		/* Relevant for 32-bit RSH: Information can propagate towards
3637 		 * LSB, so it isn't sufficient to only truncate the output to
3638 		 * 32 bits.
3639 		 */
3640 		coerce_reg_to_size(dst_reg, 4);
3641 		coerce_reg_to_size(&src_reg, 4);
3642 	}
3643 
3644 	smin_val = src_reg.smin_value;
3645 	smax_val = src_reg.smax_value;
3646 	umin_val = src_reg.umin_value;
3647 	umax_val = src_reg.umax_value;
3648 	src_known = tnum_is_const(src_reg.var_off);
3649 	dst_known = tnum_is_const(dst_reg->var_off);
3650 
3651 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
3652 	    smin_val > smax_val || umin_val > umax_val) {
3653 		/* Taint dst register if offset had invalid bounds derived from
3654 		 * e.g. dead branches.
3655 		 */
3656 		__mark_reg_unknown(dst_reg);
3657 		return 0;
3658 	}
3659 
3660 	if (!src_known &&
3661 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
3662 		__mark_reg_unknown(dst_reg);
3663 		return 0;
3664 	}
3665 
3666 	switch (opcode) {
3667 	case BPF_ADD:
3668 		ret = sanitize_val_alu(env, insn);
3669 		if (ret < 0) {
3670 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
3671 			return ret;
3672 		}
3673 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
3674 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
3675 			dst_reg->smin_value = S64_MIN;
3676 			dst_reg->smax_value = S64_MAX;
3677 		} else {
3678 			dst_reg->smin_value += smin_val;
3679 			dst_reg->smax_value += smax_val;
3680 		}
3681 		if (dst_reg->umin_value + umin_val < umin_val ||
3682 		    dst_reg->umax_value + umax_val < umax_val) {
3683 			dst_reg->umin_value = 0;
3684 			dst_reg->umax_value = U64_MAX;
3685 		} else {
3686 			dst_reg->umin_value += umin_val;
3687 			dst_reg->umax_value += umax_val;
3688 		}
3689 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
3690 		break;
3691 	case BPF_SUB:
3692 		ret = sanitize_val_alu(env, insn);
3693 		if (ret < 0) {
3694 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
3695 			return ret;
3696 		}
3697 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
3698 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
3699 			/* Overflow possible, we know nothing */
3700 			dst_reg->smin_value = S64_MIN;
3701 			dst_reg->smax_value = S64_MAX;
3702 		} else {
3703 			dst_reg->smin_value -= smax_val;
3704 			dst_reg->smax_value -= smin_val;
3705 		}
3706 		if (dst_reg->umin_value < umax_val) {
3707 			/* Overflow possible, we know nothing */
3708 			dst_reg->umin_value = 0;
3709 			dst_reg->umax_value = U64_MAX;
3710 		} else {
3711 			/* Cannot overflow (as long as bounds are consistent) */
3712 			dst_reg->umin_value -= umax_val;
3713 			dst_reg->umax_value -= umin_val;
3714 		}
3715 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
3716 		break;
3717 	case BPF_MUL:
3718 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
3719 		if (smin_val < 0 || dst_reg->smin_value < 0) {
3720 			/* Ain't nobody got time to multiply that sign */
3721 			__mark_reg_unbounded(dst_reg);
3722 			__update_reg_bounds(dst_reg);
3723 			break;
3724 		}
3725 		/* Both values are positive, so we can work with unsigned and
3726 		 * copy the result to signed (unless it exceeds S64_MAX).
3727 		 */
3728 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
3729 			/* Potential overflow, we know nothing */
3730 			__mark_reg_unbounded(dst_reg);
3731 			/* (except what we can learn from the var_off) */
3732 			__update_reg_bounds(dst_reg);
3733 			break;
3734 		}
3735 		dst_reg->umin_value *= umin_val;
3736 		dst_reg->umax_value *= umax_val;
3737 		if (dst_reg->umax_value > S64_MAX) {
3738 			/* Overflow possible, we know nothing */
3739 			dst_reg->smin_value = S64_MIN;
3740 			dst_reg->smax_value = S64_MAX;
3741 		} else {
3742 			dst_reg->smin_value = dst_reg->umin_value;
3743 			dst_reg->smax_value = dst_reg->umax_value;
3744 		}
3745 		break;
3746 	case BPF_AND:
3747 		if (src_known && dst_known) {
3748 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
3749 						  src_reg.var_off.value);
3750 			break;
3751 		}
3752 		/* We get our minimum from the var_off, since that's inherently
3753 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
3754 		 */
3755 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
3756 		dst_reg->umin_value = dst_reg->var_off.value;
3757 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
3758 		if (dst_reg->smin_value < 0 || smin_val < 0) {
3759 			/* Lose signed bounds when ANDing negative numbers,
3760 			 * ain't nobody got time for that.
3761 			 */
3762 			dst_reg->smin_value = S64_MIN;
3763 			dst_reg->smax_value = S64_MAX;
3764 		} else {
3765 			/* ANDing two positives gives a positive, so safe to
3766 			 * cast result into s64.
3767 			 */
3768 			dst_reg->smin_value = dst_reg->umin_value;
3769 			dst_reg->smax_value = dst_reg->umax_value;
3770 		}
3771 		/* We may learn something more from the var_off */
3772 		__update_reg_bounds(dst_reg);
3773 		break;
3774 	case BPF_OR:
3775 		if (src_known && dst_known) {
3776 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
3777 						  src_reg.var_off.value);
3778 			break;
3779 		}
3780 		/* We get our maximum from the var_off, and our minimum is the
3781 		 * maximum of the operands' minima
3782 		 */
3783 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
3784 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
3785 		dst_reg->umax_value = dst_reg->var_off.value |
3786 				      dst_reg->var_off.mask;
3787 		if (dst_reg->smin_value < 0 || smin_val < 0) {
3788 			/* Lose signed bounds when ORing negative numbers,
3789 			 * ain't nobody got time for that.
3790 			 */
3791 			dst_reg->smin_value = S64_MIN;
3792 			dst_reg->smax_value = S64_MAX;
3793 		} else {
3794 			/* ORing two positives gives a positive, so safe to
3795 			 * cast result into s64.
3796 			 */
3797 			dst_reg->smin_value = dst_reg->umin_value;
3798 			dst_reg->smax_value = dst_reg->umax_value;
3799 		}
3800 		/* We may learn something more from the var_off */
3801 		__update_reg_bounds(dst_reg);
3802 		break;
3803 	case BPF_LSH:
3804 		if (umax_val >= insn_bitness) {
3805 			/* Shifts greater than 31 or 63 are undefined.
3806 			 * This includes shifts by a negative number.
3807 			 */
3808 			mark_reg_unknown(env, regs, insn->dst_reg);
3809 			break;
3810 		}
3811 		/* We lose all sign bit information (except what we can pick
3812 		 * up from var_off)
3813 		 */
3814 		dst_reg->smin_value = S64_MIN;
3815 		dst_reg->smax_value = S64_MAX;
3816 		/* If we might shift our top bit out, then we know nothing */
3817 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
3818 			dst_reg->umin_value = 0;
3819 			dst_reg->umax_value = U64_MAX;
3820 		} else {
3821 			dst_reg->umin_value <<= umin_val;
3822 			dst_reg->umax_value <<= umax_val;
3823 		}
3824 		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
3825 		/* We may learn something more from the var_off */
3826 		__update_reg_bounds(dst_reg);
3827 		break;
3828 	case BPF_RSH:
3829 		if (umax_val >= insn_bitness) {
3830 			/* Shifts greater than 31 or 63 are undefined.
3831 			 * This includes shifts by a negative number.
3832 			 */
3833 			mark_reg_unknown(env, regs, insn->dst_reg);
3834 			break;
3835 		}
3836 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
3837 		 * be negative, then either:
3838 		 * 1) src_reg might be zero, so the sign bit of the result is
3839 		 *    unknown, so we lose our signed bounds
3840 		 * 2) it's known negative, thus the unsigned bounds capture the
3841 		 *    signed bounds
3842 		 * 3) the signed bounds cross zero, so they tell us nothing
3843 		 *    about the result
3844 		 * If the value in dst_reg is known nonnegative, then again the
3845 		 * unsigned bounts capture the signed bounds.
3846 		 * Thus, in all cases it suffices to blow away our signed bounds
3847 		 * and rely on inferring new ones from the unsigned bounds and
3848 		 * var_off of the result.
3849 		 */
3850 		dst_reg->smin_value = S64_MIN;
3851 		dst_reg->smax_value = S64_MAX;
3852 		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
3853 		dst_reg->umin_value >>= umax_val;
3854 		dst_reg->umax_value >>= umin_val;
3855 		/* We may learn something more from the var_off */
3856 		__update_reg_bounds(dst_reg);
3857 		break;
3858 	case BPF_ARSH:
3859 		if (umax_val >= insn_bitness) {
3860 			/* Shifts greater than 31 or 63 are undefined.
3861 			 * This includes shifts by a negative number.
3862 			 */
3863 			mark_reg_unknown(env, regs, insn->dst_reg);
3864 			break;
3865 		}
3866 
3867 		/* Upon reaching here, src_known is true and
3868 		 * umax_val is equal to umin_val.
3869 		 */
3870 		dst_reg->smin_value >>= umin_val;
3871 		dst_reg->smax_value >>= umin_val;
3872 		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
3873 
3874 		/* blow away the dst_reg umin_value/umax_value and rely on
3875 		 * dst_reg var_off to refine the result.
3876 		 */
3877 		dst_reg->umin_value = 0;
3878 		dst_reg->umax_value = U64_MAX;
3879 		__update_reg_bounds(dst_reg);
3880 		break;
3881 	default:
3882 		mark_reg_unknown(env, regs, insn->dst_reg);
3883 		break;
3884 	}
3885 
3886 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
3887 		/* 32-bit ALU ops are (32,32)->32 */
3888 		coerce_reg_to_size(dst_reg, 4);
3889 	}
3890 
3891 	__reg_deduce_bounds(dst_reg);
3892 	__reg_bound_offset(dst_reg);
3893 	return 0;
3894 }
3895 
3896 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3897  * and var_off.
3898  */
3899 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3900 				   struct bpf_insn *insn)
3901 {
3902 	struct bpf_verifier_state *vstate = env->cur_state;
3903 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3904 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
3905 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3906 	u8 opcode = BPF_OP(insn->code);
3907 
3908 	dst_reg = &regs[insn->dst_reg];
3909 	src_reg = NULL;
3910 	if (dst_reg->type != SCALAR_VALUE)
3911 		ptr_reg = dst_reg;
3912 	if (BPF_SRC(insn->code) == BPF_X) {
3913 		src_reg = &regs[insn->src_reg];
3914 		if (src_reg->type != SCALAR_VALUE) {
3915 			if (dst_reg->type != SCALAR_VALUE) {
3916 				/* Combining two pointers by any ALU op yields
3917 				 * an arbitrary scalar. Disallow all math except
3918 				 * pointer subtraction
3919 				 */
3920 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
3921 					mark_reg_unknown(env, regs, insn->dst_reg);
3922 					return 0;
3923 				}
3924 				verbose(env, "R%d pointer %s pointer prohibited\n",
3925 					insn->dst_reg,
3926 					bpf_alu_string[opcode >> 4]);
3927 				return -EACCES;
3928 			} else {
3929 				/* scalar += pointer
3930 				 * This is legal, but we have to reverse our
3931 				 * src/dest handling in computing the range
3932 				 */
3933 				return adjust_ptr_min_max_vals(env, insn,
3934 							       src_reg, dst_reg);
3935 			}
3936 		} else if (ptr_reg) {
3937 			/* pointer += scalar */
3938 			return adjust_ptr_min_max_vals(env, insn,
3939 						       dst_reg, src_reg);
3940 		}
3941 	} else {
3942 		/* Pretend the src is a reg with a known value, since we only
3943 		 * need to be able to read from this state.
3944 		 */
3945 		off_reg.type = SCALAR_VALUE;
3946 		__mark_reg_known(&off_reg, insn->imm);
3947 		src_reg = &off_reg;
3948 		if (ptr_reg) /* pointer += K */
3949 			return adjust_ptr_min_max_vals(env, insn,
3950 						       ptr_reg, src_reg);
3951 	}
3952 
3953 	/* Got here implies adding two SCALAR_VALUEs */
3954 	if (WARN_ON_ONCE(ptr_reg)) {
3955 		print_verifier_state(env, state);
3956 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
3957 		return -EINVAL;
3958 	}
3959 	if (WARN_ON(!src_reg)) {
3960 		print_verifier_state(env, state);
3961 		verbose(env, "verifier internal error: no src_reg\n");
3962 		return -EINVAL;
3963 	}
3964 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3965 }
3966 
3967 /* check validity of 32-bit and 64-bit arithmetic operations */
3968 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3969 {
3970 	struct bpf_reg_state *regs = cur_regs(env);
3971 	u8 opcode = BPF_OP(insn->code);
3972 	int err;
3973 
3974 	if (opcode == BPF_END || opcode == BPF_NEG) {
3975 		if (opcode == BPF_NEG) {
3976 			if (BPF_SRC(insn->code) != 0 ||
3977 			    insn->src_reg != BPF_REG_0 ||
3978 			    insn->off != 0 || insn->imm != 0) {
3979 				verbose(env, "BPF_NEG uses reserved fields\n");
3980 				return -EINVAL;
3981 			}
3982 		} else {
3983 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3984 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3985 			    BPF_CLASS(insn->code) == BPF_ALU64) {
3986 				verbose(env, "BPF_END uses reserved fields\n");
3987 				return -EINVAL;
3988 			}
3989 		}
3990 
3991 		/* check src operand */
3992 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3993 		if (err)
3994 			return err;
3995 
3996 		if (is_pointer_value(env, insn->dst_reg)) {
3997 			verbose(env, "R%d pointer arithmetic prohibited\n",
3998 				insn->dst_reg);
3999 			return -EACCES;
4000 		}
4001 
4002 		/* check dest operand */
4003 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
4004 		if (err)
4005 			return err;
4006 
4007 	} else if (opcode == BPF_MOV) {
4008 
4009 		if (BPF_SRC(insn->code) == BPF_X) {
4010 			if (insn->imm != 0 || insn->off != 0) {
4011 				verbose(env, "BPF_MOV uses reserved fields\n");
4012 				return -EINVAL;
4013 			}
4014 
4015 			/* check src operand */
4016 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4017 			if (err)
4018 				return err;
4019 		} else {
4020 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4021 				verbose(env, "BPF_MOV uses reserved fields\n");
4022 				return -EINVAL;
4023 			}
4024 		}
4025 
4026 		/* check dest operand, mark as required later */
4027 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4028 		if (err)
4029 			return err;
4030 
4031 		if (BPF_SRC(insn->code) == BPF_X) {
4032 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
4033 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
4034 
4035 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
4036 				/* case: R1 = R2
4037 				 * copy register state to dest reg
4038 				 */
4039 				*dst_reg = *src_reg;
4040 				dst_reg->live |= REG_LIVE_WRITTEN;
4041 			} else {
4042 				/* R1 = (u32) R2 */
4043 				if (is_pointer_value(env, insn->src_reg)) {
4044 					verbose(env,
4045 						"R%d partial copy of pointer\n",
4046 						insn->src_reg);
4047 					return -EACCES;
4048 				} else if (src_reg->type == SCALAR_VALUE) {
4049 					*dst_reg = *src_reg;
4050 					dst_reg->live |= REG_LIVE_WRITTEN;
4051 				} else {
4052 					mark_reg_unknown(env, regs,
4053 							 insn->dst_reg);
4054 				}
4055 				coerce_reg_to_size(dst_reg, 4);
4056 			}
4057 		} else {
4058 			/* case: R = imm
4059 			 * remember the value we stored into this reg
4060 			 */
4061 			/* clear any state __mark_reg_known doesn't set */
4062 			mark_reg_unknown(env, regs, insn->dst_reg);
4063 			regs[insn->dst_reg].type = SCALAR_VALUE;
4064 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
4065 				__mark_reg_known(regs + insn->dst_reg,
4066 						 insn->imm);
4067 			} else {
4068 				__mark_reg_known(regs + insn->dst_reg,
4069 						 (u32)insn->imm);
4070 			}
4071 		}
4072 
4073 	} else if (opcode > BPF_END) {
4074 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
4075 		return -EINVAL;
4076 
4077 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
4078 
4079 		if (BPF_SRC(insn->code) == BPF_X) {
4080 			if (insn->imm != 0 || insn->off != 0) {
4081 				verbose(env, "BPF_ALU uses reserved fields\n");
4082 				return -EINVAL;
4083 			}
4084 			/* check src1 operand */
4085 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4086 			if (err)
4087 				return err;
4088 		} else {
4089 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4090 				verbose(env, "BPF_ALU uses reserved fields\n");
4091 				return -EINVAL;
4092 			}
4093 		}
4094 
4095 		/* check src2 operand */
4096 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4097 		if (err)
4098 			return err;
4099 
4100 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
4101 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
4102 			verbose(env, "div by zero\n");
4103 			return -EINVAL;
4104 		}
4105 
4106 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
4107 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
4108 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
4109 
4110 			if (insn->imm < 0 || insn->imm >= size) {
4111 				verbose(env, "invalid shift %d\n", insn->imm);
4112 				return -EINVAL;
4113 			}
4114 		}
4115 
4116 		/* check dest operand */
4117 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4118 		if (err)
4119 			return err;
4120 
4121 		return adjust_reg_min_max_vals(env, insn);
4122 	}
4123 
4124 	return 0;
4125 }
4126 
4127 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
4128 				   struct bpf_reg_state *dst_reg,
4129 				   enum bpf_reg_type type,
4130 				   bool range_right_open)
4131 {
4132 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4133 	struct bpf_reg_state *regs = state->regs, *reg;
4134 	u16 new_range;
4135 	int i, j;
4136 
4137 	if (dst_reg->off < 0 ||
4138 	    (dst_reg->off == 0 && range_right_open))
4139 		/* This doesn't give us any range */
4140 		return;
4141 
4142 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
4143 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
4144 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
4145 		 * than pkt_end, but that's because it's also less than pkt.
4146 		 */
4147 		return;
4148 
4149 	new_range = dst_reg->off;
4150 	if (range_right_open)
4151 		new_range--;
4152 
4153 	/* Examples for register markings:
4154 	 *
4155 	 * pkt_data in dst register:
4156 	 *
4157 	 *   r2 = r3;
4158 	 *   r2 += 8;
4159 	 *   if (r2 > pkt_end) goto <handle exception>
4160 	 *   <access okay>
4161 	 *
4162 	 *   r2 = r3;
4163 	 *   r2 += 8;
4164 	 *   if (r2 < pkt_end) goto <access okay>
4165 	 *   <handle exception>
4166 	 *
4167 	 *   Where:
4168 	 *     r2 == dst_reg, pkt_end == src_reg
4169 	 *     r2=pkt(id=n,off=8,r=0)
4170 	 *     r3=pkt(id=n,off=0,r=0)
4171 	 *
4172 	 * pkt_data in src register:
4173 	 *
4174 	 *   r2 = r3;
4175 	 *   r2 += 8;
4176 	 *   if (pkt_end >= r2) goto <access okay>
4177 	 *   <handle exception>
4178 	 *
4179 	 *   r2 = r3;
4180 	 *   r2 += 8;
4181 	 *   if (pkt_end <= r2) goto <handle exception>
4182 	 *   <access okay>
4183 	 *
4184 	 *   Where:
4185 	 *     pkt_end == dst_reg, r2 == src_reg
4186 	 *     r2=pkt(id=n,off=8,r=0)
4187 	 *     r3=pkt(id=n,off=0,r=0)
4188 	 *
4189 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
4190 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
4191 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
4192 	 * the check.
4193 	 */
4194 
4195 	/* If our ids match, then we must have the same max_value.  And we
4196 	 * don't care about the other reg's fixed offset, since if it's too big
4197 	 * the range won't allow anything.
4198 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
4199 	 */
4200 	for (i = 0; i < MAX_BPF_REG; i++)
4201 		if (regs[i].type == type && regs[i].id == dst_reg->id)
4202 			/* keep the maximum range already checked */
4203 			regs[i].range = max(regs[i].range, new_range);
4204 
4205 	for (j = 0; j <= vstate->curframe; j++) {
4206 		state = vstate->frame[j];
4207 		bpf_for_each_spilled_reg(i, state, reg) {
4208 			if (!reg)
4209 				continue;
4210 			if (reg->type == type && reg->id == dst_reg->id)
4211 				reg->range = max(reg->range, new_range);
4212 		}
4213 	}
4214 }
4215 
4216 /* compute branch direction of the expression "if (reg opcode val) goto target;"
4217  * and return:
4218  *  1 - branch will be taken and "goto target" will be executed
4219  *  0 - branch will not be taken and fall-through to next insn
4220  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
4221  */
4222 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
4223 			   bool is_jmp32)
4224 {
4225 	struct bpf_reg_state reg_lo;
4226 	s64 sval;
4227 
4228 	if (__is_pointer_value(false, reg))
4229 		return -1;
4230 
4231 	if (is_jmp32) {
4232 		reg_lo = *reg;
4233 		reg = &reg_lo;
4234 		/* For JMP32, only low 32 bits are compared, coerce_reg_to_size
4235 		 * could truncate high bits and update umin/umax according to
4236 		 * information of low bits.
4237 		 */
4238 		coerce_reg_to_size(reg, 4);
4239 		/* smin/smax need special handling. For example, after coerce,
4240 		 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
4241 		 * used as operand to JMP32. It is a negative number from s32's
4242 		 * point of view, while it is a positive number when seen as
4243 		 * s64. The smin/smax are kept as s64, therefore, when used with
4244 		 * JMP32, they need to be transformed into s32, then sign
4245 		 * extended back to s64.
4246 		 *
4247 		 * Also, smin/smax were copied from umin/umax. If umin/umax has
4248 		 * different sign bit, then min/max relationship doesn't
4249 		 * maintain after casting into s32, for this case, set smin/smax
4250 		 * to safest range.
4251 		 */
4252 		if ((reg->umax_value ^ reg->umin_value) &
4253 		    (1ULL << 31)) {
4254 			reg->smin_value = S32_MIN;
4255 			reg->smax_value = S32_MAX;
4256 		}
4257 		reg->smin_value = (s64)(s32)reg->smin_value;
4258 		reg->smax_value = (s64)(s32)reg->smax_value;
4259 
4260 		val = (u32)val;
4261 		sval = (s64)(s32)val;
4262 	} else {
4263 		sval = (s64)val;
4264 	}
4265 
4266 	switch (opcode) {
4267 	case BPF_JEQ:
4268 		if (tnum_is_const(reg->var_off))
4269 			return !!tnum_equals_const(reg->var_off, val);
4270 		break;
4271 	case BPF_JNE:
4272 		if (tnum_is_const(reg->var_off))
4273 			return !tnum_equals_const(reg->var_off, val);
4274 		break;
4275 	case BPF_JSET:
4276 		if ((~reg->var_off.mask & reg->var_off.value) & val)
4277 			return 1;
4278 		if (!((reg->var_off.mask | reg->var_off.value) & val))
4279 			return 0;
4280 		break;
4281 	case BPF_JGT:
4282 		if (reg->umin_value > val)
4283 			return 1;
4284 		else if (reg->umax_value <= val)
4285 			return 0;
4286 		break;
4287 	case BPF_JSGT:
4288 		if (reg->smin_value > sval)
4289 			return 1;
4290 		else if (reg->smax_value < sval)
4291 			return 0;
4292 		break;
4293 	case BPF_JLT:
4294 		if (reg->umax_value < val)
4295 			return 1;
4296 		else if (reg->umin_value >= val)
4297 			return 0;
4298 		break;
4299 	case BPF_JSLT:
4300 		if (reg->smax_value < sval)
4301 			return 1;
4302 		else if (reg->smin_value >= sval)
4303 			return 0;
4304 		break;
4305 	case BPF_JGE:
4306 		if (reg->umin_value >= val)
4307 			return 1;
4308 		else if (reg->umax_value < val)
4309 			return 0;
4310 		break;
4311 	case BPF_JSGE:
4312 		if (reg->smin_value >= sval)
4313 			return 1;
4314 		else if (reg->smax_value < sval)
4315 			return 0;
4316 		break;
4317 	case BPF_JLE:
4318 		if (reg->umax_value <= val)
4319 			return 1;
4320 		else if (reg->umin_value > val)
4321 			return 0;
4322 		break;
4323 	case BPF_JSLE:
4324 		if (reg->smax_value <= sval)
4325 			return 1;
4326 		else if (reg->smin_value > sval)
4327 			return 0;
4328 		break;
4329 	}
4330 
4331 	return -1;
4332 }
4333 
4334 /* Generate min value of the high 32-bit from TNUM info. */
4335 static u64 gen_hi_min(struct tnum var)
4336 {
4337 	return var.value & ~0xffffffffULL;
4338 }
4339 
4340 /* Generate max value of the high 32-bit from TNUM info. */
4341 static u64 gen_hi_max(struct tnum var)
4342 {
4343 	return (var.value | var.mask) & ~0xffffffffULL;
4344 }
4345 
4346 /* Return true if VAL is compared with a s64 sign extended from s32, and they
4347  * are with the same signedness.
4348  */
4349 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
4350 {
4351 	return ((s32)sval >= 0 &&
4352 		reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
4353 	       ((s32)sval < 0 &&
4354 		reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
4355 }
4356 
4357 /* Adjusts the register min/max values in the case that the dst_reg is the
4358  * variable register that we are working on, and src_reg is a constant or we're
4359  * simply doing a BPF_K check.
4360  * In JEQ/JNE cases we also adjust the var_off values.
4361  */
4362 static void reg_set_min_max(struct bpf_reg_state *true_reg,
4363 			    struct bpf_reg_state *false_reg, u64 val,
4364 			    u8 opcode, bool is_jmp32)
4365 {
4366 	s64 sval;
4367 
4368 	/* If the dst_reg is a pointer, we can't learn anything about its
4369 	 * variable offset from the compare (unless src_reg were a pointer into
4370 	 * the same object, but we don't bother with that.
4371 	 * Since false_reg and true_reg have the same type by construction, we
4372 	 * only need to check one of them for pointerness.
4373 	 */
4374 	if (__is_pointer_value(false, false_reg))
4375 		return;
4376 
4377 	val = is_jmp32 ? (u32)val : val;
4378 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
4379 
4380 	switch (opcode) {
4381 	case BPF_JEQ:
4382 	case BPF_JNE:
4383 	{
4384 		struct bpf_reg_state *reg =
4385 			opcode == BPF_JEQ ? true_reg : false_reg;
4386 
4387 		/* For BPF_JEQ, if this is false we know nothing Jon Snow, but
4388 		 * if it is true we know the value for sure. Likewise for
4389 		 * BPF_JNE.
4390 		 */
4391 		if (is_jmp32) {
4392 			u64 old_v = reg->var_off.value;
4393 			u64 hi_mask = ~0xffffffffULL;
4394 
4395 			reg->var_off.value = (old_v & hi_mask) | val;
4396 			reg->var_off.mask &= hi_mask;
4397 		} else {
4398 			__mark_reg_known(reg, val);
4399 		}
4400 		break;
4401 	}
4402 	case BPF_JSET:
4403 		false_reg->var_off = tnum_and(false_reg->var_off,
4404 					      tnum_const(~val));
4405 		if (is_power_of_2(val))
4406 			true_reg->var_off = tnum_or(true_reg->var_off,
4407 						    tnum_const(val));
4408 		break;
4409 	case BPF_JGE:
4410 	case BPF_JGT:
4411 	{
4412 		u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
4413 		u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
4414 
4415 		if (is_jmp32) {
4416 			false_umax += gen_hi_max(false_reg->var_off);
4417 			true_umin += gen_hi_min(true_reg->var_off);
4418 		}
4419 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
4420 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
4421 		break;
4422 	}
4423 	case BPF_JSGE:
4424 	case BPF_JSGT:
4425 	{
4426 		s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
4427 		s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
4428 
4429 		/* If the full s64 was not sign-extended from s32 then don't
4430 		 * deduct further info.
4431 		 */
4432 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4433 			break;
4434 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
4435 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
4436 		break;
4437 	}
4438 	case BPF_JLE:
4439 	case BPF_JLT:
4440 	{
4441 		u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
4442 		u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
4443 
4444 		if (is_jmp32) {
4445 			false_umin += gen_hi_min(false_reg->var_off);
4446 			true_umax += gen_hi_max(true_reg->var_off);
4447 		}
4448 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
4449 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
4450 		break;
4451 	}
4452 	case BPF_JSLE:
4453 	case BPF_JSLT:
4454 	{
4455 		s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
4456 		s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
4457 
4458 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4459 			break;
4460 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
4461 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
4462 		break;
4463 	}
4464 	default:
4465 		break;
4466 	}
4467 
4468 	__reg_deduce_bounds(false_reg);
4469 	__reg_deduce_bounds(true_reg);
4470 	/* We might have learned some bits from the bounds. */
4471 	__reg_bound_offset(false_reg);
4472 	__reg_bound_offset(true_reg);
4473 	/* Intersecting with the old var_off might have improved our bounds
4474 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4475 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4476 	 */
4477 	__update_reg_bounds(false_reg);
4478 	__update_reg_bounds(true_reg);
4479 }
4480 
4481 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
4482  * the variable reg.
4483  */
4484 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
4485 				struct bpf_reg_state *false_reg, u64 val,
4486 				u8 opcode, bool is_jmp32)
4487 {
4488 	s64 sval;
4489 
4490 	if (__is_pointer_value(false, false_reg))
4491 		return;
4492 
4493 	val = is_jmp32 ? (u32)val : val;
4494 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
4495 
4496 	switch (opcode) {
4497 	case BPF_JEQ:
4498 	case BPF_JNE:
4499 	{
4500 		struct bpf_reg_state *reg =
4501 			opcode == BPF_JEQ ? true_reg : false_reg;
4502 
4503 		if (is_jmp32) {
4504 			u64 old_v = reg->var_off.value;
4505 			u64 hi_mask = ~0xffffffffULL;
4506 
4507 			reg->var_off.value = (old_v & hi_mask) | val;
4508 			reg->var_off.mask &= hi_mask;
4509 		} else {
4510 			__mark_reg_known(reg, val);
4511 		}
4512 		break;
4513 	}
4514 	case BPF_JSET:
4515 		false_reg->var_off = tnum_and(false_reg->var_off,
4516 					      tnum_const(~val));
4517 		if (is_power_of_2(val))
4518 			true_reg->var_off = tnum_or(true_reg->var_off,
4519 						    tnum_const(val));
4520 		break;
4521 	case BPF_JGE:
4522 	case BPF_JGT:
4523 	{
4524 		u64 false_umin = opcode == BPF_JGT ? val    : val + 1;
4525 		u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
4526 
4527 		if (is_jmp32) {
4528 			false_umin += gen_hi_min(false_reg->var_off);
4529 			true_umax += gen_hi_max(true_reg->var_off);
4530 		}
4531 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
4532 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
4533 		break;
4534 	}
4535 	case BPF_JSGE:
4536 	case BPF_JSGT:
4537 	{
4538 		s64 false_smin = opcode == BPF_JSGT ? sval    : sval + 1;
4539 		s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
4540 
4541 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4542 			break;
4543 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
4544 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
4545 		break;
4546 	}
4547 	case BPF_JLE:
4548 	case BPF_JLT:
4549 	{
4550 		u64 false_umax = opcode == BPF_JLT ? val    : val - 1;
4551 		u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
4552 
4553 		if (is_jmp32) {
4554 			false_umax += gen_hi_max(false_reg->var_off);
4555 			true_umin += gen_hi_min(true_reg->var_off);
4556 		}
4557 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
4558 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
4559 		break;
4560 	}
4561 	case BPF_JSLE:
4562 	case BPF_JSLT:
4563 	{
4564 		s64 false_smax = opcode == BPF_JSLT ? sval    : sval - 1;
4565 		s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
4566 
4567 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4568 			break;
4569 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
4570 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
4571 		break;
4572 	}
4573 	default:
4574 		break;
4575 	}
4576 
4577 	__reg_deduce_bounds(false_reg);
4578 	__reg_deduce_bounds(true_reg);
4579 	/* We might have learned some bits from the bounds. */
4580 	__reg_bound_offset(false_reg);
4581 	__reg_bound_offset(true_reg);
4582 	/* Intersecting with the old var_off might have improved our bounds
4583 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4584 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4585 	 */
4586 	__update_reg_bounds(false_reg);
4587 	__update_reg_bounds(true_reg);
4588 }
4589 
4590 /* Regs are known to be equal, so intersect their min/max/var_off */
4591 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
4592 				  struct bpf_reg_state *dst_reg)
4593 {
4594 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
4595 							dst_reg->umin_value);
4596 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
4597 							dst_reg->umax_value);
4598 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
4599 							dst_reg->smin_value);
4600 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
4601 							dst_reg->smax_value);
4602 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
4603 							     dst_reg->var_off);
4604 	/* We might have learned new bounds from the var_off. */
4605 	__update_reg_bounds(src_reg);
4606 	__update_reg_bounds(dst_reg);
4607 	/* We might have learned something about the sign bit. */
4608 	__reg_deduce_bounds(src_reg);
4609 	__reg_deduce_bounds(dst_reg);
4610 	/* We might have learned some bits from the bounds. */
4611 	__reg_bound_offset(src_reg);
4612 	__reg_bound_offset(dst_reg);
4613 	/* Intersecting with the old var_off might have improved our bounds
4614 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4615 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4616 	 */
4617 	__update_reg_bounds(src_reg);
4618 	__update_reg_bounds(dst_reg);
4619 }
4620 
4621 static void reg_combine_min_max(struct bpf_reg_state *true_src,
4622 				struct bpf_reg_state *true_dst,
4623 				struct bpf_reg_state *false_src,
4624 				struct bpf_reg_state *false_dst,
4625 				u8 opcode)
4626 {
4627 	switch (opcode) {
4628 	case BPF_JEQ:
4629 		__reg_combine_min_max(true_src, true_dst);
4630 		break;
4631 	case BPF_JNE:
4632 		__reg_combine_min_max(false_src, false_dst);
4633 		break;
4634 	}
4635 }
4636 
4637 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
4638 				 struct bpf_reg_state *reg, u32 id,
4639 				 bool is_null)
4640 {
4641 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
4642 		/* Old offset (both fixed and variable parts) should
4643 		 * have been known-zero, because we don't allow pointer
4644 		 * arithmetic on pointers that might be NULL.
4645 		 */
4646 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
4647 				 !tnum_equals_const(reg->var_off, 0) ||
4648 				 reg->off)) {
4649 			__mark_reg_known_zero(reg);
4650 			reg->off = 0;
4651 		}
4652 		if (is_null) {
4653 			reg->type = SCALAR_VALUE;
4654 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
4655 			if (reg->map_ptr->inner_map_meta) {
4656 				reg->type = CONST_PTR_TO_MAP;
4657 				reg->map_ptr = reg->map_ptr->inner_map_meta;
4658 			} else {
4659 				reg->type = PTR_TO_MAP_VALUE;
4660 			}
4661 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
4662 			reg->type = PTR_TO_SOCKET;
4663 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
4664 			reg->type = PTR_TO_SOCK_COMMON;
4665 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
4666 			reg->type = PTR_TO_TCP_SOCK;
4667 		}
4668 		if (is_null || !(reg_is_refcounted(reg) ||
4669 				 reg_may_point_to_spin_lock(reg))) {
4670 			/* We don't need id from this point onwards anymore,
4671 			 * thus we should better reset it, so that state
4672 			 * pruning has chances to take effect.
4673 			 */
4674 			reg->id = 0;
4675 		}
4676 	}
4677 }
4678 
4679 /* The logic is similar to find_good_pkt_pointers(), both could eventually
4680  * be folded together at some point.
4681  */
4682 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
4683 				  bool is_null)
4684 {
4685 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4686 	struct bpf_reg_state *reg, *regs = state->regs;
4687 	u32 id = regs[regno].id;
4688 	int i, j;
4689 
4690 	if (reg_is_refcounted_or_null(&regs[regno]) && is_null)
4691 		release_reference_state(state, id);
4692 
4693 	for (i = 0; i < MAX_BPF_REG; i++)
4694 		mark_ptr_or_null_reg(state, &regs[i], id, is_null);
4695 
4696 	for (j = 0; j <= vstate->curframe; j++) {
4697 		state = vstate->frame[j];
4698 		bpf_for_each_spilled_reg(i, state, reg) {
4699 			if (!reg)
4700 				continue;
4701 			mark_ptr_or_null_reg(state, reg, id, is_null);
4702 		}
4703 	}
4704 }
4705 
4706 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
4707 				   struct bpf_reg_state *dst_reg,
4708 				   struct bpf_reg_state *src_reg,
4709 				   struct bpf_verifier_state *this_branch,
4710 				   struct bpf_verifier_state *other_branch)
4711 {
4712 	if (BPF_SRC(insn->code) != BPF_X)
4713 		return false;
4714 
4715 	/* Pointers are always 64-bit. */
4716 	if (BPF_CLASS(insn->code) == BPF_JMP32)
4717 		return false;
4718 
4719 	switch (BPF_OP(insn->code)) {
4720 	case BPF_JGT:
4721 		if ((dst_reg->type == PTR_TO_PACKET &&
4722 		     src_reg->type == PTR_TO_PACKET_END) ||
4723 		    (dst_reg->type == PTR_TO_PACKET_META &&
4724 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4725 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
4726 			find_good_pkt_pointers(this_branch, dst_reg,
4727 					       dst_reg->type, false);
4728 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4729 			    src_reg->type == PTR_TO_PACKET) ||
4730 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4731 			    src_reg->type == PTR_TO_PACKET_META)) {
4732 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
4733 			find_good_pkt_pointers(other_branch, src_reg,
4734 					       src_reg->type, true);
4735 		} else {
4736 			return false;
4737 		}
4738 		break;
4739 	case BPF_JLT:
4740 		if ((dst_reg->type == PTR_TO_PACKET &&
4741 		     src_reg->type == PTR_TO_PACKET_END) ||
4742 		    (dst_reg->type == PTR_TO_PACKET_META &&
4743 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4744 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
4745 			find_good_pkt_pointers(other_branch, dst_reg,
4746 					       dst_reg->type, true);
4747 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4748 			    src_reg->type == PTR_TO_PACKET) ||
4749 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4750 			    src_reg->type == PTR_TO_PACKET_META)) {
4751 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
4752 			find_good_pkt_pointers(this_branch, src_reg,
4753 					       src_reg->type, false);
4754 		} else {
4755 			return false;
4756 		}
4757 		break;
4758 	case BPF_JGE:
4759 		if ((dst_reg->type == PTR_TO_PACKET &&
4760 		     src_reg->type == PTR_TO_PACKET_END) ||
4761 		    (dst_reg->type == PTR_TO_PACKET_META &&
4762 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4763 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
4764 			find_good_pkt_pointers(this_branch, dst_reg,
4765 					       dst_reg->type, true);
4766 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4767 			    src_reg->type == PTR_TO_PACKET) ||
4768 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4769 			    src_reg->type == PTR_TO_PACKET_META)) {
4770 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
4771 			find_good_pkt_pointers(other_branch, src_reg,
4772 					       src_reg->type, false);
4773 		} else {
4774 			return false;
4775 		}
4776 		break;
4777 	case BPF_JLE:
4778 		if ((dst_reg->type == PTR_TO_PACKET &&
4779 		     src_reg->type == PTR_TO_PACKET_END) ||
4780 		    (dst_reg->type == PTR_TO_PACKET_META &&
4781 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4782 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
4783 			find_good_pkt_pointers(other_branch, dst_reg,
4784 					       dst_reg->type, false);
4785 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4786 			    src_reg->type == PTR_TO_PACKET) ||
4787 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4788 			    src_reg->type == PTR_TO_PACKET_META)) {
4789 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
4790 			find_good_pkt_pointers(this_branch, src_reg,
4791 					       src_reg->type, true);
4792 		} else {
4793 			return false;
4794 		}
4795 		break;
4796 	default:
4797 		return false;
4798 	}
4799 
4800 	return true;
4801 }
4802 
4803 static int check_cond_jmp_op(struct bpf_verifier_env *env,
4804 			     struct bpf_insn *insn, int *insn_idx)
4805 {
4806 	struct bpf_verifier_state *this_branch = env->cur_state;
4807 	struct bpf_verifier_state *other_branch;
4808 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
4809 	struct bpf_reg_state *dst_reg, *other_branch_regs;
4810 	u8 opcode = BPF_OP(insn->code);
4811 	bool is_jmp32;
4812 	int err;
4813 
4814 	/* Only conditional jumps are expected to reach here. */
4815 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
4816 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
4817 		return -EINVAL;
4818 	}
4819 
4820 	if (BPF_SRC(insn->code) == BPF_X) {
4821 		if (insn->imm != 0) {
4822 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
4823 			return -EINVAL;
4824 		}
4825 
4826 		/* check src1 operand */
4827 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
4828 		if (err)
4829 			return err;
4830 
4831 		if (is_pointer_value(env, insn->src_reg)) {
4832 			verbose(env, "R%d pointer comparison prohibited\n",
4833 				insn->src_reg);
4834 			return -EACCES;
4835 		}
4836 	} else {
4837 		if (insn->src_reg != BPF_REG_0) {
4838 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
4839 			return -EINVAL;
4840 		}
4841 	}
4842 
4843 	/* check src2 operand */
4844 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4845 	if (err)
4846 		return err;
4847 
4848 	dst_reg = &regs[insn->dst_reg];
4849 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
4850 
4851 	if (BPF_SRC(insn->code) == BPF_K) {
4852 		int pred = is_branch_taken(dst_reg, insn->imm, opcode,
4853 					   is_jmp32);
4854 
4855 		if (pred == 1) {
4856 			 /* only follow the goto, ignore fall-through */
4857 			*insn_idx += insn->off;
4858 			return 0;
4859 		} else if (pred == 0) {
4860 			/* only follow fall-through branch, since
4861 			 * that's where the program will go
4862 			 */
4863 			return 0;
4864 		}
4865 	}
4866 
4867 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
4868 				  false);
4869 	if (!other_branch)
4870 		return -EFAULT;
4871 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
4872 
4873 	/* detect if we are comparing against a constant value so we can adjust
4874 	 * our min/max values for our dst register.
4875 	 * this is only legit if both are scalars (or pointers to the same
4876 	 * object, I suppose, but we don't support that right now), because
4877 	 * otherwise the different base pointers mean the offsets aren't
4878 	 * comparable.
4879 	 */
4880 	if (BPF_SRC(insn->code) == BPF_X) {
4881 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
4882 		struct bpf_reg_state lo_reg0 = *dst_reg;
4883 		struct bpf_reg_state lo_reg1 = *src_reg;
4884 		struct bpf_reg_state *src_lo, *dst_lo;
4885 
4886 		dst_lo = &lo_reg0;
4887 		src_lo = &lo_reg1;
4888 		coerce_reg_to_size(dst_lo, 4);
4889 		coerce_reg_to_size(src_lo, 4);
4890 
4891 		if (dst_reg->type == SCALAR_VALUE &&
4892 		    src_reg->type == SCALAR_VALUE) {
4893 			if (tnum_is_const(src_reg->var_off) ||
4894 			    (is_jmp32 && tnum_is_const(src_lo->var_off)))
4895 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
4896 						dst_reg,
4897 						is_jmp32
4898 						? src_lo->var_off.value
4899 						: src_reg->var_off.value,
4900 						opcode, is_jmp32);
4901 			else if (tnum_is_const(dst_reg->var_off) ||
4902 				 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
4903 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
4904 						    src_reg,
4905 						    is_jmp32
4906 						    ? dst_lo->var_off.value
4907 						    : dst_reg->var_off.value,
4908 						    opcode, is_jmp32);
4909 			else if (!is_jmp32 &&
4910 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
4911 				/* Comparing for equality, we can combine knowledge */
4912 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
4913 						    &other_branch_regs[insn->dst_reg],
4914 						    src_reg, dst_reg, opcode);
4915 		}
4916 	} else if (dst_reg->type == SCALAR_VALUE) {
4917 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
4918 					dst_reg, insn->imm, opcode, is_jmp32);
4919 	}
4920 
4921 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
4922 	 * NOTE: these optimizations below are related with pointer comparison
4923 	 *       which will never be JMP32.
4924 	 */
4925 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
4926 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
4927 	    reg_type_may_be_null(dst_reg->type)) {
4928 		/* Mark all identical registers in each branch as either
4929 		 * safe or unknown depending R == 0 or R != 0 conditional.
4930 		 */
4931 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
4932 				      opcode == BPF_JNE);
4933 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
4934 				      opcode == BPF_JEQ);
4935 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
4936 					   this_branch, other_branch) &&
4937 		   is_pointer_value(env, insn->dst_reg)) {
4938 		verbose(env, "R%d pointer comparison prohibited\n",
4939 			insn->dst_reg);
4940 		return -EACCES;
4941 	}
4942 	if (env->log.level)
4943 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
4944 	return 0;
4945 }
4946 
4947 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
4948 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
4949 {
4950 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
4951 
4952 	return (struct bpf_map *) (unsigned long) imm64;
4953 }
4954 
4955 /* verify BPF_LD_IMM64 instruction */
4956 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
4957 {
4958 	struct bpf_reg_state *regs = cur_regs(env);
4959 	int err;
4960 
4961 	if (BPF_SIZE(insn->code) != BPF_DW) {
4962 		verbose(env, "invalid BPF_LD_IMM insn\n");
4963 		return -EINVAL;
4964 	}
4965 	if (insn->off != 0) {
4966 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
4967 		return -EINVAL;
4968 	}
4969 
4970 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
4971 	if (err)
4972 		return err;
4973 
4974 	if (insn->src_reg == 0) {
4975 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
4976 
4977 		regs[insn->dst_reg].type = SCALAR_VALUE;
4978 		__mark_reg_known(&regs[insn->dst_reg], imm);
4979 		return 0;
4980 	}
4981 
4982 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
4983 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
4984 
4985 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
4986 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
4987 	return 0;
4988 }
4989 
4990 static bool may_access_skb(enum bpf_prog_type type)
4991 {
4992 	switch (type) {
4993 	case BPF_PROG_TYPE_SOCKET_FILTER:
4994 	case BPF_PROG_TYPE_SCHED_CLS:
4995 	case BPF_PROG_TYPE_SCHED_ACT:
4996 		return true;
4997 	default:
4998 		return false;
4999 	}
5000 }
5001 
5002 /* verify safety of LD_ABS|LD_IND instructions:
5003  * - they can only appear in the programs where ctx == skb
5004  * - since they are wrappers of function calls, they scratch R1-R5 registers,
5005  *   preserve R6-R9, and store return value into R0
5006  *
5007  * Implicit input:
5008  *   ctx == skb == R6 == CTX
5009  *
5010  * Explicit input:
5011  *   SRC == any register
5012  *   IMM == 32-bit immediate
5013  *
5014  * Output:
5015  *   R0 - 8/16/32-bit skb data converted to cpu endianness
5016  */
5017 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
5018 {
5019 	struct bpf_reg_state *regs = cur_regs(env);
5020 	u8 mode = BPF_MODE(insn->code);
5021 	int i, err;
5022 
5023 	if (!may_access_skb(env->prog->type)) {
5024 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
5025 		return -EINVAL;
5026 	}
5027 
5028 	if (!env->ops->gen_ld_abs) {
5029 		verbose(env, "bpf verifier is misconfigured\n");
5030 		return -EINVAL;
5031 	}
5032 
5033 	if (env->subprog_cnt > 1) {
5034 		/* when program has LD_ABS insn JITs and interpreter assume
5035 		 * that r1 == ctx == skb which is not the case for callees
5036 		 * that can have arbitrary arguments. It's problematic
5037 		 * for main prog as well since JITs would need to analyze
5038 		 * all functions in order to make proper register save/restore
5039 		 * decisions in the main prog. Hence disallow LD_ABS with calls
5040 		 */
5041 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
5042 		return -EINVAL;
5043 	}
5044 
5045 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
5046 	    BPF_SIZE(insn->code) == BPF_DW ||
5047 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
5048 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
5049 		return -EINVAL;
5050 	}
5051 
5052 	/* check whether implicit source operand (register R6) is readable */
5053 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
5054 	if (err)
5055 		return err;
5056 
5057 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
5058 	 * gen_ld_abs() may terminate the program at runtime, leading to
5059 	 * reference leak.
5060 	 */
5061 	err = check_reference_leak(env);
5062 	if (err) {
5063 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
5064 		return err;
5065 	}
5066 
5067 	if (env->cur_state->active_spin_lock) {
5068 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
5069 		return -EINVAL;
5070 	}
5071 
5072 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
5073 		verbose(env,
5074 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
5075 		return -EINVAL;
5076 	}
5077 
5078 	if (mode == BPF_IND) {
5079 		/* check explicit source operand */
5080 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
5081 		if (err)
5082 			return err;
5083 	}
5084 
5085 	/* reset caller saved regs to unreadable */
5086 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5087 		mark_reg_not_init(env, regs, caller_saved[i]);
5088 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5089 	}
5090 
5091 	/* mark destination R0 register as readable, since it contains
5092 	 * the value fetched from the packet.
5093 	 * Already marked as written above.
5094 	 */
5095 	mark_reg_unknown(env, regs, BPF_REG_0);
5096 	return 0;
5097 }
5098 
5099 static int check_return_code(struct bpf_verifier_env *env)
5100 {
5101 	struct bpf_reg_state *reg;
5102 	struct tnum range = tnum_range(0, 1);
5103 
5104 	switch (env->prog->type) {
5105 	case BPF_PROG_TYPE_CGROUP_SKB:
5106 	case BPF_PROG_TYPE_CGROUP_SOCK:
5107 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
5108 	case BPF_PROG_TYPE_SOCK_OPS:
5109 	case BPF_PROG_TYPE_CGROUP_DEVICE:
5110 		break;
5111 	default:
5112 		return 0;
5113 	}
5114 
5115 	reg = cur_regs(env) + BPF_REG_0;
5116 	if (reg->type != SCALAR_VALUE) {
5117 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
5118 			reg_type_str[reg->type]);
5119 		return -EINVAL;
5120 	}
5121 
5122 	if (!tnum_in(range, reg->var_off)) {
5123 		verbose(env, "At program exit the register R0 ");
5124 		if (!tnum_is_unknown(reg->var_off)) {
5125 			char tn_buf[48];
5126 
5127 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5128 			verbose(env, "has value %s", tn_buf);
5129 		} else {
5130 			verbose(env, "has unknown scalar value");
5131 		}
5132 		verbose(env, " should have been 0 or 1\n");
5133 		return -EINVAL;
5134 	}
5135 	return 0;
5136 }
5137 
5138 /* non-recursive DFS pseudo code
5139  * 1  procedure DFS-iterative(G,v):
5140  * 2      label v as discovered
5141  * 3      let S be a stack
5142  * 4      S.push(v)
5143  * 5      while S is not empty
5144  * 6            t <- S.pop()
5145  * 7            if t is what we're looking for:
5146  * 8                return t
5147  * 9            for all edges e in G.adjacentEdges(t) do
5148  * 10               if edge e is already labelled
5149  * 11                   continue with the next edge
5150  * 12               w <- G.adjacentVertex(t,e)
5151  * 13               if vertex w is not discovered and not explored
5152  * 14                   label e as tree-edge
5153  * 15                   label w as discovered
5154  * 16                   S.push(w)
5155  * 17                   continue at 5
5156  * 18               else if vertex w is discovered
5157  * 19                   label e as back-edge
5158  * 20               else
5159  * 21                   // vertex w is explored
5160  * 22                   label e as forward- or cross-edge
5161  * 23           label t as explored
5162  * 24           S.pop()
5163  *
5164  * convention:
5165  * 0x10 - discovered
5166  * 0x11 - discovered and fall-through edge labelled
5167  * 0x12 - discovered and fall-through and branch edges labelled
5168  * 0x20 - explored
5169  */
5170 
5171 enum {
5172 	DISCOVERED = 0x10,
5173 	EXPLORED = 0x20,
5174 	FALLTHROUGH = 1,
5175 	BRANCH = 2,
5176 };
5177 
5178 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
5179 
5180 static int *insn_stack;	/* stack of insns to process */
5181 static int cur_stack;	/* current stack index */
5182 static int *insn_state;
5183 
5184 /* t, w, e - match pseudo-code above:
5185  * t - index of current instruction
5186  * w - next instruction
5187  * e - edge
5188  */
5189 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
5190 {
5191 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
5192 		return 0;
5193 
5194 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
5195 		return 0;
5196 
5197 	if (w < 0 || w >= env->prog->len) {
5198 		verbose_linfo(env, t, "%d: ", t);
5199 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
5200 		return -EINVAL;
5201 	}
5202 
5203 	if (e == BRANCH)
5204 		/* mark branch target for state pruning */
5205 		env->explored_states[w] = STATE_LIST_MARK;
5206 
5207 	if (insn_state[w] == 0) {
5208 		/* tree-edge */
5209 		insn_state[t] = DISCOVERED | e;
5210 		insn_state[w] = DISCOVERED;
5211 		if (cur_stack >= env->prog->len)
5212 			return -E2BIG;
5213 		insn_stack[cur_stack++] = w;
5214 		return 1;
5215 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
5216 		verbose_linfo(env, t, "%d: ", t);
5217 		verbose_linfo(env, w, "%d: ", w);
5218 		verbose(env, "back-edge from insn %d to %d\n", t, w);
5219 		return -EINVAL;
5220 	} else if (insn_state[w] == EXPLORED) {
5221 		/* forward- or cross-edge */
5222 		insn_state[t] = DISCOVERED | e;
5223 	} else {
5224 		verbose(env, "insn state internal bug\n");
5225 		return -EFAULT;
5226 	}
5227 	return 0;
5228 }
5229 
5230 /* non-recursive depth-first-search to detect loops in BPF program
5231  * loop == back-edge in directed graph
5232  */
5233 static int check_cfg(struct bpf_verifier_env *env)
5234 {
5235 	struct bpf_insn *insns = env->prog->insnsi;
5236 	int insn_cnt = env->prog->len;
5237 	int ret = 0;
5238 	int i, t;
5239 
5240 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5241 	if (!insn_state)
5242 		return -ENOMEM;
5243 
5244 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5245 	if (!insn_stack) {
5246 		kfree(insn_state);
5247 		return -ENOMEM;
5248 	}
5249 
5250 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
5251 	insn_stack[0] = 0; /* 0 is the first instruction */
5252 	cur_stack = 1;
5253 
5254 peek_stack:
5255 	if (cur_stack == 0)
5256 		goto check_state;
5257 	t = insn_stack[cur_stack - 1];
5258 
5259 	if (BPF_CLASS(insns[t].code) == BPF_JMP ||
5260 	    BPF_CLASS(insns[t].code) == BPF_JMP32) {
5261 		u8 opcode = BPF_OP(insns[t].code);
5262 
5263 		if (opcode == BPF_EXIT) {
5264 			goto mark_explored;
5265 		} else if (opcode == BPF_CALL) {
5266 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
5267 			if (ret == 1)
5268 				goto peek_stack;
5269 			else if (ret < 0)
5270 				goto err_free;
5271 			if (t + 1 < insn_cnt)
5272 				env->explored_states[t + 1] = STATE_LIST_MARK;
5273 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5274 				env->explored_states[t] = STATE_LIST_MARK;
5275 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
5276 				if (ret == 1)
5277 					goto peek_stack;
5278 				else if (ret < 0)
5279 					goto err_free;
5280 			}
5281 		} else if (opcode == BPF_JA) {
5282 			if (BPF_SRC(insns[t].code) != BPF_K) {
5283 				ret = -EINVAL;
5284 				goto err_free;
5285 			}
5286 			/* unconditional jump with single edge */
5287 			ret = push_insn(t, t + insns[t].off + 1,
5288 					FALLTHROUGH, env);
5289 			if (ret == 1)
5290 				goto peek_stack;
5291 			else if (ret < 0)
5292 				goto err_free;
5293 			/* tell verifier to check for equivalent states
5294 			 * after every call and jump
5295 			 */
5296 			if (t + 1 < insn_cnt)
5297 				env->explored_states[t + 1] = STATE_LIST_MARK;
5298 		} else {
5299 			/* conditional jump with two edges */
5300 			env->explored_states[t] = STATE_LIST_MARK;
5301 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
5302 			if (ret == 1)
5303 				goto peek_stack;
5304 			else if (ret < 0)
5305 				goto err_free;
5306 
5307 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
5308 			if (ret == 1)
5309 				goto peek_stack;
5310 			else if (ret < 0)
5311 				goto err_free;
5312 		}
5313 	} else {
5314 		/* all other non-branch instructions with single
5315 		 * fall-through edge
5316 		 */
5317 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
5318 		if (ret == 1)
5319 			goto peek_stack;
5320 		else if (ret < 0)
5321 			goto err_free;
5322 	}
5323 
5324 mark_explored:
5325 	insn_state[t] = EXPLORED;
5326 	if (cur_stack-- <= 0) {
5327 		verbose(env, "pop stack internal bug\n");
5328 		ret = -EFAULT;
5329 		goto err_free;
5330 	}
5331 	goto peek_stack;
5332 
5333 check_state:
5334 	for (i = 0; i < insn_cnt; i++) {
5335 		if (insn_state[i] != EXPLORED) {
5336 			verbose(env, "unreachable insn %d\n", i);
5337 			ret = -EINVAL;
5338 			goto err_free;
5339 		}
5340 	}
5341 	ret = 0; /* cfg looks good */
5342 
5343 err_free:
5344 	kfree(insn_state);
5345 	kfree(insn_stack);
5346 	return ret;
5347 }
5348 
5349 /* The minimum supported BTF func info size */
5350 #define MIN_BPF_FUNCINFO_SIZE	8
5351 #define MAX_FUNCINFO_REC_SIZE	252
5352 
5353 static int check_btf_func(struct bpf_verifier_env *env,
5354 			  const union bpf_attr *attr,
5355 			  union bpf_attr __user *uattr)
5356 {
5357 	u32 i, nfuncs, urec_size, min_size;
5358 	u32 krec_size = sizeof(struct bpf_func_info);
5359 	struct bpf_func_info *krecord;
5360 	const struct btf_type *type;
5361 	struct bpf_prog *prog;
5362 	const struct btf *btf;
5363 	void __user *urecord;
5364 	u32 prev_offset = 0;
5365 	int ret = 0;
5366 
5367 	nfuncs = attr->func_info_cnt;
5368 	if (!nfuncs)
5369 		return 0;
5370 
5371 	if (nfuncs != env->subprog_cnt) {
5372 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
5373 		return -EINVAL;
5374 	}
5375 
5376 	urec_size = attr->func_info_rec_size;
5377 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
5378 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
5379 	    urec_size % sizeof(u32)) {
5380 		verbose(env, "invalid func info rec size %u\n", urec_size);
5381 		return -EINVAL;
5382 	}
5383 
5384 	prog = env->prog;
5385 	btf = prog->aux->btf;
5386 
5387 	urecord = u64_to_user_ptr(attr->func_info);
5388 	min_size = min_t(u32, krec_size, urec_size);
5389 
5390 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
5391 	if (!krecord)
5392 		return -ENOMEM;
5393 
5394 	for (i = 0; i < nfuncs; i++) {
5395 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
5396 		if (ret) {
5397 			if (ret == -E2BIG) {
5398 				verbose(env, "nonzero tailing record in func info");
5399 				/* set the size kernel expects so loader can zero
5400 				 * out the rest of the record.
5401 				 */
5402 				if (put_user(min_size, &uattr->func_info_rec_size))
5403 					ret = -EFAULT;
5404 			}
5405 			goto err_free;
5406 		}
5407 
5408 		if (copy_from_user(&krecord[i], urecord, min_size)) {
5409 			ret = -EFAULT;
5410 			goto err_free;
5411 		}
5412 
5413 		/* check insn_off */
5414 		if (i == 0) {
5415 			if (krecord[i].insn_off) {
5416 				verbose(env,
5417 					"nonzero insn_off %u for the first func info record",
5418 					krecord[i].insn_off);
5419 				ret = -EINVAL;
5420 				goto err_free;
5421 			}
5422 		} else if (krecord[i].insn_off <= prev_offset) {
5423 			verbose(env,
5424 				"same or smaller insn offset (%u) than previous func info record (%u)",
5425 				krecord[i].insn_off, prev_offset);
5426 			ret = -EINVAL;
5427 			goto err_free;
5428 		}
5429 
5430 		if (env->subprog_info[i].start != krecord[i].insn_off) {
5431 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
5432 			ret = -EINVAL;
5433 			goto err_free;
5434 		}
5435 
5436 		/* check type_id */
5437 		type = btf_type_by_id(btf, krecord[i].type_id);
5438 		if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
5439 			verbose(env, "invalid type id %d in func info",
5440 				krecord[i].type_id);
5441 			ret = -EINVAL;
5442 			goto err_free;
5443 		}
5444 
5445 		prev_offset = krecord[i].insn_off;
5446 		urecord += urec_size;
5447 	}
5448 
5449 	prog->aux->func_info = krecord;
5450 	prog->aux->func_info_cnt = nfuncs;
5451 	return 0;
5452 
5453 err_free:
5454 	kvfree(krecord);
5455 	return ret;
5456 }
5457 
5458 static void adjust_btf_func(struct bpf_verifier_env *env)
5459 {
5460 	int i;
5461 
5462 	if (!env->prog->aux->func_info)
5463 		return;
5464 
5465 	for (i = 0; i < env->subprog_cnt; i++)
5466 		env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
5467 }
5468 
5469 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
5470 		sizeof(((struct bpf_line_info *)(0))->line_col))
5471 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
5472 
5473 static int check_btf_line(struct bpf_verifier_env *env,
5474 			  const union bpf_attr *attr,
5475 			  union bpf_attr __user *uattr)
5476 {
5477 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
5478 	struct bpf_subprog_info *sub;
5479 	struct bpf_line_info *linfo;
5480 	struct bpf_prog *prog;
5481 	const struct btf *btf;
5482 	void __user *ulinfo;
5483 	int err;
5484 
5485 	nr_linfo = attr->line_info_cnt;
5486 	if (!nr_linfo)
5487 		return 0;
5488 
5489 	rec_size = attr->line_info_rec_size;
5490 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
5491 	    rec_size > MAX_LINEINFO_REC_SIZE ||
5492 	    rec_size & (sizeof(u32) - 1))
5493 		return -EINVAL;
5494 
5495 	/* Need to zero it in case the userspace may
5496 	 * pass in a smaller bpf_line_info object.
5497 	 */
5498 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
5499 			 GFP_KERNEL | __GFP_NOWARN);
5500 	if (!linfo)
5501 		return -ENOMEM;
5502 
5503 	prog = env->prog;
5504 	btf = prog->aux->btf;
5505 
5506 	s = 0;
5507 	sub = env->subprog_info;
5508 	ulinfo = u64_to_user_ptr(attr->line_info);
5509 	expected_size = sizeof(struct bpf_line_info);
5510 	ncopy = min_t(u32, expected_size, rec_size);
5511 	for (i = 0; i < nr_linfo; i++) {
5512 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
5513 		if (err) {
5514 			if (err == -E2BIG) {
5515 				verbose(env, "nonzero tailing record in line_info");
5516 				if (put_user(expected_size,
5517 					     &uattr->line_info_rec_size))
5518 					err = -EFAULT;
5519 			}
5520 			goto err_free;
5521 		}
5522 
5523 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
5524 			err = -EFAULT;
5525 			goto err_free;
5526 		}
5527 
5528 		/*
5529 		 * Check insn_off to ensure
5530 		 * 1) strictly increasing AND
5531 		 * 2) bounded by prog->len
5532 		 *
5533 		 * The linfo[0].insn_off == 0 check logically falls into
5534 		 * the later "missing bpf_line_info for func..." case
5535 		 * because the first linfo[0].insn_off must be the
5536 		 * first sub also and the first sub must have
5537 		 * subprog_info[0].start == 0.
5538 		 */
5539 		if ((i && linfo[i].insn_off <= prev_offset) ||
5540 		    linfo[i].insn_off >= prog->len) {
5541 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
5542 				i, linfo[i].insn_off, prev_offset,
5543 				prog->len);
5544 			err = -EINVAL;
5545 			goto err_free;
5546 		}
5547 
5548 		if (!prog->insnsi[linfo[i].insn_off].code) {
5549 			verbose(env,
5550 				"Invalid insn code at line_info[%u].insn_off\n",
5551 				i);
5552 			err = -EINVAL;
5553 			goto err_free;
5554 		}
5555 
5556 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
5557 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
5558 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
5559 			err = -EINVAL;
5560 			goto err_free;
5561 		}
5562 
5563 		if (s != env->subprog_cnt) {
5564 			if (linfo[i].insn_off == sub[s].start) {
5565 				sub[s].linfo_idx = i;
5566 				s++;
5567 			} else if (sub[s].start < linfo[i].insn_off) {
5568 				verbose(env, "missing bpf_line_info for func#%u\n", s);
5569 				err = -EINVAL;
5570 				goto err_free;
5571 			}
5572 		}
5573 
5574 		prev_offset = linfo[i].insn_off;
5575 		ulinfo += rec_size;
5576 	}
5577 
5578 	if (s != env->subprog_cnt) {
5579 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
5580 			env->subprog_cnt - s, s);
5581 		err = -EINVAL;
5582 		goto err_free;
5583 	}
5584 
5585 	prog->aux->linfo = linfo;
5586 	prog->aux->nr_linfo = nr_linfo;
5587 
5588 	return 0;
5589 
5590 err_free:
5591 	kvfree(linfo);
5592 	return err;
5593 }
5594 
5595 static int check_btf_info(struct bpf_verifier_env *env,
5596 			  const union bpf_attr *attr,
5597 			  union bpf_attr __user *uattr)
5598 {
5599 	struct btf *btf;
5600 	int err;
5601 
5602 	if (!attr->func_info_cnt && !attr->line_info_cnt)
5603 		return 0;
5604 
5605 	btf = btf_get_by_fd(attr->prog_btf_fd);
5606 	if (IS_ERR(btf))
5607 		return PTR_ERR(btf);
5608 	env->prog->aux->btf = btf;
5609 
5610 	err = check_btf_func(env, attr, uattr);
5611 	if (err)
5612 		return err;
5613 
5614 	err = check_btf_line(env, attr, uattr);
5615 	if (err)
5616 		return err;
5617 
5618 	return 0;
5619 }
5620 
5621 /* check %cur's range satisfies %old's */
5622 static bool range_within(struct bpf_reg_state *old,
5623 			 struct bpf_reg_state *cur)
5624 {
5625 	return old->umin_value <= cur->umin_value &&
5626 	       old->umax_value >= cur->umax_value &&
5627 	       old->smin_value <= cur->smin_value &&
5628 	       old->smax_value >= cur->smax_value;
5629 }
5630 
5631 /* Maximum number of register states that can exist at once */
5632 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
5633 struct idpair {
5634 	u32 old;
5635 	u32 cur;
5636 };
5637 
5638 /* If in the old state two registers had the same id, then they need to have
5639  * the same id in the new state as well.  But that id could be different from
5640  * the old state, so we need to track the mapping from old to new ids.
5641  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
5642  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
5643  * regs with a different old id could still have new id 9, we don't care about
5644  * that.
5645  * So we look through our idmap to see if this old id has been seen before.  If
5646  * so, we require the new id to match; otherwise, we add the id pair to the map.
5647  */
5648 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
5649 {
5650 	unsigned int i;
5651 
5652 	for (i = 0; i < ID_MAP_SIZE; i++) {
5653 		if (!idmap[i].old) {
5654 			/* Reached an empty slot; haven't seen this id before */
5655 			idmap[i].old = old_id;
5656 			idmap[i].cur = cur_id;
5657 			return true;
5658 		}
5659 		if (idmap[i].old == old_id)
5660 			return idmap[i].cur == cur_id;
5661 	}
5662 	/* We ran out of idmap slots, which should be impossible */
5663 	WARN_ON_ONCE(1);
5664 	return false;
5665 }
5666 
5667 static void clean_func_state(struct bpf_verifier_env *env,
5668 			     struct bpf_func_state *st)
5669 {
5670 	enum bpf_reg_liveness live;
5671 	int i, j;
5672 
5673 	for (i = 0; i < BPF_REG_FP; i++) {
5674 		live = st->regs[i].live;
5675 		/* liveness must not touch this register anymore */
5676 		st->regs[i].live |= REG_LIVE_DONE;
5677 		if (!(live & REG_LIVE_READ))
5678 			/* since the register is unused, clear its state
5679 			 * to make further comparison simpler
5680 			 */
5681 			__mark_reg_not_init(&st->regs[i]);
5682 	}
5683 
5684 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
5685 		live = st->stack[i].spilled_ptr.live;
5686 		/* liveness must not touch this stack slot anymore */
5687 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
5688 		if (!(live & REG_LIVE_READ)) {
5689 			__mark_reg_not_init(&st->stack[i].spilled_ptr);
5690 			for (j = 0; j < BPF_REG_SIZE; j++)
5691 				st->stack[i].slot_type[j] = STACK_INVALID;
5692 		}
5693 	}
5694 }
5695 
5696 static void clean_verifier_state(struct bpf_verifier_env *env,
5697 				 struct bpf_verifier_state *st)
5698 {
5699 	int i;
5700 
5701 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
5702 		/* all regs in this state in all frames were already marked */
5703 		return;
5704 
5705 	for (i = 0; i <= st->curframe; i++)
5706 		clean_func_state(env, st->frame[i]);
5707 }
5708 
5709 /* the parentage chains form a tree.
5710  * the verifier states are added to state lists at given insn and
5711  * pushed into state stack for future exploration.
5712  * when the verifier reaches bpf_exit insn some of the verifer states
5713  * stored in the state lists have their final liveness state already,
5714  * but a lot of states will get revised from liveness point of view when
5715  * the verifier explores other branches.
5716  * Example:
5717  * 1: r0 = 1
5718  * 2: if r1 == 100 goto pc+1
5719  * 3: r0 = 2
5720  * 4: exit
5721  * when the verifier reaches exit insn the register r0 in the state list of
5722  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
5723  * of insn 2 and goes exploring further. At the insn 4 it will walk the
5724  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
5725  *
5726  * Since the verifier pushes the branch states as it sees them while exploring
5727  * the program the condition of walking the branch instruction for the second
5728  * time means that all states below this branch were already explored and
5729  * their final liveness markes are already propagated.
5730  * Hence when the verifier completes the search of state list in is_state_visited()
5731  * we can call this clean_live_states() function to mark all liveness states
5732  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
5733  * will not be used.
5734  * This function also clears the registers and stack for states that !READ
5735  * to simplify state merging.
5736  *
5737  * Important note here that walking the same branch instruction in the callee
5738  * doesn't meant that the states are DONE. The verifier has to compare
5739  * the callsites
5740  */
5741 static void clean_live_states(struct bpf_verifier_env *env, int insn,
5742 			      struct bpf_verifier_state *cur)
5743 {
5744 	struct bpf_verifier_state_list *sl;
5745 	int i;
5746 
5747 	sl = env->explored_states[insn];
5748 	if (!sl)
5749 		return;
5750 
5751 	while (sl != STATE_LIST_MARK) {
5752 		if (sl->state.curframe != cur->curframe)
5753 			goto next;
5754 		for (i = 0; i <= cur->curframe; i++)
5755 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
5756 				goto next;
5757 		clean_verifier_state(env, &sl->state);
5758 next:
5759 		sl = sl->next;
5760 	}
5761 }
5762 
5763 /* Returns true if (rold safe implies rcur safe) */
5764 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
5765 		    struct idpair *idmap)
5766 {
5767 	bool equal;
5768 
5769 	if (!(rold->live & REG_LIVE_READ))
5770 		/* explored state didn't use this */
5771 		return true;
5772 
5773 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
5774 
5775 	if (rold->type == PTR_TO_STACK)
5776 		/* two stack pointers are equal only if they're pointing to
5777 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
5778 		 */
5779 		return equal && rold->frameno == rcur->frameno;
5780 
5781 	if (equal)
5782 		return true;
5783 
5784 	if (rold->type == NOT_INIT)
5785 		/* explored state can't have used this */
5786 		return true;
5787 	if (rcur->type == NOT_INIT)
5788 		return false;
5789 	switch (rold->type) {
5790 	case SCALAR_VALUE:
5791 		if (rcur->type == SCALAR_VALUE) {
5792 			/* new val must satisfy old val knowledge */
5793 			return range_within(rold, rcur) &&
5794 			       tnum_in(rold->var_off, rcur->var_off);
5795 		} else {
5796 			/* We're trying to use a pointer in place of a scalar.
5797 			 * Even if the scalar was unbounded, this could lead to
5798 			 * pointer leaks because scalars are allowed to leak
5799 			 * while pointers are not. We could make this safe in
5800 			 * special cases if root is calling us, but it's
5801 			 * probably not worth the hassle.
5802 			 */
5803 			return false;
5804 		}
5805 	case PTR_TO_MAP_VALUE:
5806 		/* If the new min/max/var_off satisfy the old ones and
5807 		 * everything else matches, we are OK.
5808 		 * 'id' is not compared, since it's only used for maps with
5809 		 * bpf_spin_lock inside map element and in such cases if
5810 		 * the rest of the prog is valid for one map element then
5811 		 * it's valid for all map elements regardless of the key
5812 		 * used in bpf_map_lookup()
5813 		 */
5814 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
5815 		       range_within(rold, rcur) &&
5816 		       tnum_in(rold->var_off, rcur->var_off);
5817 	case PTR_TO_MAP_VALUE_OR_NULL:
5818 		/* a PTR_TO_MAP_VALUE could be safe to use as a
5819 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
5820 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
5821 		 * checked, doing so could have affected others with the same
5822 		 * id, and we can't check for that because we lost the id when
5823 		 * we converted to a PTR_TO_MAP_VALUE.
5824 		 */
5825 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
5826 			return false;
5827 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
5828 			return false;
5829 		/* Check our ids match any regs they're supposed to */
5830 		return check_ids(rold->id, rcur->id, idmap);
5831 	case PTR_TO_PACKET_META:
5832 	case PTR_TO_PACKET:
5833 		if (rcur->type != rold->type)
5834 			return false;
5835 		/* We must have at least as much range as the old ptr
5836 		 * did, so that any accesses which were safe before are
5837 		 * still safe.  This is true even if old range < old off,
5838 		 * since someone could have accessed through (ptr - k), or
5839 		 * even done ptr -= k in a register, to get a safe access.
5840 		 */
5841 		if (rold->range > rcur->range)
5842 			return false;
5843 		/* If the offsets don't match, we can't trust our alignment;
5844 		 * nor can we be sure that we won't fall out of range.
5845 		 */
5846 		if (rold->off != rcur->off)
5847 			return false;
5848 		/* id relations must be preserved */
5849 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
5850 			return false;
5851 		/* new val must satisfy old val knowledge */
5852 		return range_within(rold, rcur) &&
5853 		       tnum_in(rold->var_off, rcur->var_off);
5854 	case PTR_TO_CTX:
5855 	case CONST_PTR_TO_MAP:
5856 	case PTR_TO_PACKET_END:
5857 	case PTR_TO_FLOW_KEYS:
5858 	case PTR_TO_SOCKET:
5859 	case PTR_TO_SOCKET_OR_NULL:
5860 	case PTR_TO_SOCK_COMMON:
5861 	case PTR_TO_SOCK_COMMON_OR_NULL:
5862 	case PTR_TO_TCP_SOCK:
5863 	case PTR_TO_TCP_SOCK_OR_NULL:
5864 		/* Only valid matches are exact, which memcmp() above
5865 		 * would have accepted
5866 		 */
5867 	default:
5868 		/* Don't know what's going on, just say it's not safe */
5869 		return false;
5870 	}
5871 
5872 	/* Shouldn't get here; if we do, say it's not safe */
5873 	WARN_ON_ONCE(1);
5874 	return false;
5875 }
5876 
5877 static bool stacksafe(struct bpf_func_state *old,
5878 		      struct bpf_func_state *cur,
5879 		      struct idpair *idmap)
5880 {
5881 	int i, spi;
5882 
5883 	/* walk slots of the explored stack and ignore any additional
5884 	 * slots in the current stack, since explored(safe) state
5885 	 * didn't use them
5886 	 */
5887 	for (i = 0; i < old->allocated_stack; i++) {
5888 		spi = i / BPF_REG_SIZE;
5889 
5890 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
5891 			i += BPF_REG_SIZE - 1;
5892 			/* explored state didn't use this */
5893 			continue;
5894 		}
5895 
5896 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
5897 			continue;
5898 
5899 		/* explored stack has more populated slots than current stack
5900 		 * and these slots were used
5901 		 */
5902 		if (i >= cur->allocated_stack)
5903 			return false;
5904 
5905 		/* if old state was safe with misc data in the stack
5906 		 * it will be safe with zero-initialized stack.
5907 		 * The opposite is not true
5908 		 */
5909 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
5910 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
5911 			continue;
5912 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
5913 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
5914 			/* Ex: old explored (safe) state has STACK_SPILL in
5915 			 * this stack slot, but current has has STACK_MISC ->
5916 			 * this verifier states are not equivalent,
5917 			 * return false to continue verification of this path
5918 			 */
5919 			return false;
5920 		if (i % BPF_REG_SIZE)
5921 			continue;
5922 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
5923 			continue;
5924 		if (!regsafe(&old->stack[spi].spilled_ptr,
5925 			     &cur->stack[spi].spilled_ptr,
5926 			     idmap))
5927 			/* when explored and current stack slot are both storing
5928 			 * spilled registers, check that stored pointers types
5929 			 * are the same as well.
5930 			 * Ex: explored safe path could have stored
5931 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
5932 			 * but current path has stored:
5933 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
5934 			 * such verifier states are not equivalent.
5935 			 * return false to continue verification of this path
5936 			 */
5937 			return false;
5938 	}
5939 	return true;
5940 }
5941 
5942 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
5943 {
5944 	if (old->acquired_refs != cur->acquired_refs)
5945 		return false;
5946 	return !memcmp(old->refs, cur->refs,
5947 		       sizeof(*old->refs) * old->acquired_refs);
5948 }
5949 
5950 /* compare two verifier states
5951  *
5952  * all states stored in state_list are known to be valid, since
5953  * verifier reached 'bpf_exit' instruction through them
5954  *
5955  * this function is called when verifier exploring different branches of
5956  * execution popped from the state stack. If it sees an old state that has
5957  * more strict register state and more strict stack state then this execution
5958  * branch doesn't need to be explored further, since verifier already
5959  * concluded that more strict state leads to valid finish.
5960  *
5961  * Therefore two states are equivalent if register state is more conservative
5962  * and explored stack state is more conservative than the current one.
5963  * Example:
5964  *       explored                   current
5965  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
5966  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
5967  *
5968  * In other words if current stack state (one being explored) has more
5969  * valid slots than old one that already passed validation, it means
5970  * the verifier can stop exploring and conclude that current state is valid too
5971  *
5972  * Similarly with registers. If explored state has register type as invalid
5973  * whereas register type in current state is meaningful, it means that
5974  * the current state will reach 'bpf_exit' instruction safely
5975  */
5976 static bool func_states_equal(struct bpf_func_state *old,
5977 			      struct bpf_func_state *cur)
5978 {
5979 	struct idpair *idmap;
5980 	bool ret = false;
5981 	int i;
5982 
5983 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
5984 	/* If we failed to allocate the idmap, just say it's not safe */
5985 	if (!idmap)
5986 		return false;
5987 
5988 	for (i = 0; i < MAX_BPF_REG; i++) {
5989 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
5990 			goto out_free;
5991 	}
5992 
5993 	if (!stacksafe(old, cur, idmap))
5994 		goto out_free;
5995 
5996 	if (!refsafe(old, cur))
5997 		goto out_free;
5998 	ret = true;
5999 out_free:
6000 	kfree(idmap);
6001 	return ret;
6002 }
6003 
6004 static bool states_equal(struct bpf_verifier_env *env,
6005 			 struct bpf_verifier_state *old,
6006 			 struct bpf_verifier_state *cur)
6007 {
6008 	int i;
6009 
6010 	if (old->curframe != cur->curframe)
6011 		return false;
6012 
6013 	/* Verification state from speculative execution simulation
6014 	 * must never prune a non-speculative execution one.
6015 	 */
6016 	if (old->speculative && !cur->speculative)
6017 		return false;
6018 
6019 	if (old->active_spin_lock != cur->active_spin_lock)
6020 		return false;
6021 
6022 	/* for states to be equal callsites have to be the same
6023 	 * and all frame states need to be equivalent
6024 	 */
6025 	for (i = 0; i <= old->curframe; i++) {
6026 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
6027 			return false;
6028 		if (!func_states_equal(old->frame[i], cur->frame[i]))
6029 			return false;
6030 	}
6031 	return true;
6032 }
6033 
6034 /* A write screens off any subsequent reads; but write marks come from the
6035  * straight-line code between a state and its parent.  When we arrive at an
6036  * equivalent state (jump target or such) we didn't arrive by the straight-line
6037  * code, so read marks in the state must propagate to the parent regardless
6038  * of the state's write marks. That's what 'parent == state->parent' comparison
6039  * in mark_reg_read() is for.
6040  */
6041 static int propagate_liveness(struct bpf_verifier_env *env,
6042 			      const struct bpf_verifier_state *vstate,
6043 			      struct bpf_verifier_state *vparent)
6044 {
6045 	int i, frame, err = 0;
6046 	struct bpf_func_state *state, *parent;
6047 
6048 	if (vparent->curframe != vstate->curframe) {
6049 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
6050 		     vparent->curframe, vstate->curframe);
6051 		return -EFAULT;
6052 	}
6053 	/* Propagate read liveness of registers... */
6054 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
6055 	/* We don't need to worry about FP liveness because it's read-only */
6056 	for (i = 0; i < BPF_REG_FP; i++) {
6057 		if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
6058 			continue;
6059 		if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
6060 			err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i],
6061 					    &vparent->frame[vstate->curframe]->regs[i]);
6062 			if (err)
6063 				return err;
6064 		}
6065 	}
6066 
6067 	/* ... and stack slots */
6068 	for (frame = 0; frame <= vstate->curframe; frame++) {
6069 		state = vstate->frame[frame];
6070 		parent = vparent->frame[frame];
6071 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
6072 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
6073 			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
6074 				continue;
6075 			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
6076 				mark_reg_read(env, &state->stack[i].spilled_ptr,
6077 					      &parent->stack[i].spilled_ptr);
6078 		}
6079 	}
6080 	return err;
6081 }
6082 
6083 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
6084 {
6085 	struct bpf_verifier_state_list *new_sl;
6086 	struct bpf_verifier_state_list *sl;
6087 	struct bpf_verifier_state *cur = env->cur_state, *new;
6088 	int i, j, err, states_cnt = 0;
6089 
6090 	sl = env->explored_states[insn_idx];
6091 	if (!sl)
6092 		/* this 'insn_idx' instruction wasn't marked, so we will not
6093 		 * be doing state search here
6094 		 */
6095 		return 0;
6096 
6097 	clean_live_states(env, insn_idx, cur);
6098 
6099 	while (sl != STATE_LIST_MARK) {
6100 		if (states_equal(env, &sl->state, cur)) {
6101 			/* reached equivalent register/stack state,
6102 			 * prune the search.
6103 			 * Registers read by the continuation are read by us.
6104 			 * If we have any write marks in env->cur_state, they
6105 			 * will prevent corresponding reads in the continuation
6106 			 * from reaching our parent (an explored_state).  Our
6107 			 * own state will get the read marks recorded, but
6108 			 * they'll be immediately forgotten as we're pruning
6109 			 * this state and will pop a new one.
6110 			 */
6111 			err = propagate_liveness(env, &sl->state, cur);
6112 			if (err)
6113 				return err;
6114 			return 1;
6115 		}
6116 		sl = sl->next;
6117 		states_cnt++;
6118 	}
6119 
6120 	if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
6121 		return 0;
6122 
6123 	/* there were no equivalent states, remember current one.
6124 	 * technically the current state is not proven to be safe yet,
6125 	 * but it will either reach outer most bpf_exit (which means it's safe)
6126 	 * or it will be rejected. Since there are no loops, we won't be
6127 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
6128 	 * again on the way to bpf_exit
6129 	 */
6130 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
6131 	if (!new_sl)
6132 		return -ENOMEM;
6133 
6134 	/* add new state to the head of linked list */
6135 	new = &new_sl->state;
6136 	err = copy_verifier_state(new, cur);
6137 	if (err) {
6138 		free_verifier_state(new, false);
6139 		kfree(new_sl);
6140 		return err;
6141 	}
6142 	new_sl->next = env->explored_states[insn_idx];
6143 	env->explored_states[insn_idx] = new_sl;
6144 	/* connect new state to parentage chain. Current frame needs all
6145 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
6146 	 * to the stack implicitly by JITs) so in callers' frames connect just
6147 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
6148 	 * the state of the call instruction (with WRITTEN set), and r0 comes
6149 	 * from callee with its full parentage chain, anyway.
6150 	 */
6151 	for (j = 0; j <= cur->curframe; j++)
6152 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
6153 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
6154 	/* clear write marks in current state: the writes we did are not writes
6155 	 * our child did, so they don't screen off its reads from us.
6156 	 * (There are no read marks in current state, because reads always mark
6157 	 * their parent and current state never has children yet.  Only
6158 	 * explored_states can get read marks.)
6159 	 */
6160 	for (i = 0; i < BPF_REG_FP; i++)
6161 		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
6162 
6163 	/* all stack frames are accessible from callee, clear them all */
6164 	for (j = 0; j <= cur->curframe; j++) {
6165 		struct bpf_func_state *frame = cur->frame[j];
6166 		struct bpf_func_state *newframe = new->frame[j];
6167 
6168 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
6169 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
6170 			frame->stack[i].spilled_ptr.parent =
6171 						&newframe->stack[i].spilled_ptr;
6172 		}
6173 	}
6174 	return 0;
6175 }
6176 
6177 /* Return true if it's OK to have the same insn return a different type. */
6178 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
6179 {
6180 	switch (type) {
6181 	case PTR_TO_CTX:
6182 	case PTR_TO_SOCKET:
6183 	case PTR_TO_SOCKET_OR_NULL:
6184 	case PTR_TO_SOCK_COMMON:
6185 	case PTR_TO_SOCK_COMMON_OR_NULL:
6186 	case PTR_TO_TCP_SOCK:
6187 	case PTR_TO_TCP_SOCK_OR_NULL:
6188 		return false;
6189 	default:
6190 		return true;
6191 	}
6192 }
6193 
6194 /* If an instruction was previously used with particular pointer types, then we
6195  * need to be careful to avoid cases such as the below, where it may be ok
6196  * for one branch accessing the pointer, but not ok for the other branch:
6197  *
6198  * R1 = sock_ptr
6199  * goto X;
6200  * ...
6201  * R1 = some_other_valid_ptr;
6202  * goto X;
6203  * ...
6204  * R2 = *(u32 *)(R1 + 0);
6205  */
6206 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
6207 {
6208 	return src != prev && (!reg_type_mismatch_ok(src) ||
6209 			       !reg_type_mismatch_ok(prev));
6210 }
6211 
6212 static int do_check(struct bpf_verifier_env *env)
6213 {
6214 	struct bpf_verifier_state *state;
6215 	struct bpf_insn *insns = env->prog->insnsi;
6216 	struct bpf_reg_state *regs;
6217 	int insn_cnt = env->prog->len, i;
6218 	int insn_processed = 0;
6219 	bool do_print_state = false;
6220 
6221 	env->prev_linfo = NULL;
6222 
6223 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
6224 	if (!state)
6225 		return -ENOMEM;
6226 	state->curframe = 0;
6227 	state->speculative = false;
6228 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
6229 	if (!state->frame[0]) {
6230 		kfree(state);
6231 		return -ENOMEM;
6232 	}
6233 	env->cur_state = state;
6234 	init_func_state(env, state->frame[0],
6235 			BPF_MAIN_FUNC /* callsite */,
6236 			0 /* frameno */,
6237 			0 /* subprogno, zero == main subprog */);
6238 
6239 	for (;;) {
6240 		struct bpf_insn *insn;
6241 		u8 class;
6242 		int err;
6243 
6244 		if (env->insn_idx >= insn_cnt) {
6245 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
6246 				env->insn_idx, insn_cnt);
6247 			return -EFAULT;
6248 		}
6249 
6250 		insn = &insns[env->insn_idx];
6251 		class = BPF_CLASS(insn->code);
6252 
6253 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
6254 			verbose(env,
6255 				"BPF program is too large. Processed %d insn\n",
6256 				insn_processed);
6257 			return -E2BIG;
6258 		}
6259 
6260 		err = is_state_visited(env, env->insn_idx);
6261 		if (err < 0)
6262 			return err;
6263 		if (err == 1) {
6264 			/* found equivalent state, can prune the search */
6265 			if (env->log.level) {
6266 				if (do_print_state)
6267 					verbose(env, "\nfrom %d to %d%s: safe\n",
6268 						env->prev_insn_idx, env->insn_idx,
6269 						env->cur_state->speculative ?
6270 						" (speculative execution)" : "");
6271 				else
6272 					verbose(env, "%d: safe\n", env->insn_idx);
6273 			}
6274 			goto process_bpf_exit;
6275 		}
6276 
6277 		if (signal_pending(current))
6278 			return -EAGAIN;
6279 
6280 		if (need_resched())
6281 			cond_resched();
6282 
6283 		if (env->log.level > 1 || (env->log.level && do_print_state)) {
6284 			if (env->log.level > 1)
6285 				verbose(env, "%d:", env->insn_idx);
6286 			else
6287 				verbose(env, "\nfrom %d to %d%s:",
6288 					env->prev_insn_idx, env->insn_idx,
6289 					env->cur_state->speculative ?
6290 					" (speculative execution)" : "");
6291 			print_verifier_state(env, state->frame[state->curframe]);
6292 			do_print_state = false;
6293 		}
6294 
6295 		if (env->log.level) {
6296 			const struct bpf_insn_cbs cbs = {
6297 				.cb_print	= verbose,
6298 				.private_data	= env,
6299 			};
6300 
6301 			verbose_linfo(env, env->insn_idx, "; ");
6302 			verbose(env, "%d: ", env->insn_idx);
6303 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
6304 		}
6305 
6306 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
6307 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
6308 							   env->prev_insn_idx);
6309 			if (err)
6310 				return err;
6311 		}
6312 
6313 		regs = cur_regs(env);
6314 		env->insn_aux_data[env->insn_idx].seen = true;
6315 
6316 		if (class == BPF_ALU || class == BPF_ALU64) {
6317 			err = check_alu_op(env, insn);
6318 			if (err)
6319 				return err;
6320 
6321 		} else if (class == BPF_LDX) {
6322 			enum bpf_reg_type *prev_src_type, src_reg_type;
6323 
6324 			/* check for reserved fields is already done */
6325 
6326 			/* check src operand */
6327 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6328 			if (err)
6329 				return err;
6330 
6331 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6332 			if (err)
6333 				return err;
6334 
6335 			src_reg_type = regs[insn->src_reg].type;
6336 
6337 			/* check that memory (src_reg + off) is readable,
6338 			 * the state of dst_reg will be updated by this func
6339 			 */
6340 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
6341 					       insn->off, BPF_SIZE(insn->code),
6342 					       BPF_READ, insn->dst_reg, false);
6343 			if (err)
6344 				return err;
6345 
6346 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
6347 
6348 			if (*prev_src_type == NOT_INIT) {
6349 				/* saw a valid insn
6350 				 * dst_reg = *(u32 *)(src_reg + off)
6351 				 * save type to validate intersecting paths
6352 				 */
6353 				*prev_src_type = src_reg_type;
6354 
6355 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
6356 				/* ABuser program is trying to use the same insn
6357 				 * dst_reg = *(u32*) (src_reg + off)
6358 				 * with different pointer types:
6359 				 * src_reg == ctx in one branch and
6360 				 * src_reg == stack|map in some other branch.
6361 				 * Reject it.
6362 				 */
6363 				verbose(env, "same insn cannot be used with different pointers\n");
6364 				return -EINVAL;
6365 			}
6366 
6367 		} else if (class == BPF_STX) {
6368 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
6369 
6370 			if (BPF_MODE(insn->code) == BPF_XADD) {
6371 				err = check_xadd(env, env->insn_idx, insn);
6372 				if (err)
6373 					return err;
6374 				env->insn_idx++;
6375 				continue;
6376 			}
6377 
6378 			/* check src1 operand */
6379 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6380 			if (err)
6381 				return err;
6382 			/* check src2 operand */
6383 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6384 			if (err)
6385 				return err;
6386 
6387 			dst_reg_type = regs[insn->dst_reg].type;
6388 
6389 			/* check that memory (dst_reg + off) is writeable */
6390 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6391 					       insn->off, BPF_SIZE(insn->code),
6392 					       BPF_WRITE, insn->src_reg, false);
6393 			if (err)
6394 				return err;
6395 
6396 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
6397 
6398 			if (*prev_dst_type == NOT_INIT) {
6399 				*prev_dst_type = dst_reg_type;
6400 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
6401 				verbose(env, "same insn cannot be used with different pointers\n");
6402 				return -EINVAL;
6403 			}
6404 
6405 		} else if (class == BPF_ST) {
6406 			if (BPF_MODE(insn->code) != BPF_MEM ||
6407 			    insn->src_reg != BPF_REG_0) {
6408 				verbose(env, "BPF_ST uses reserved fields\n");
6409 				return -EINVAL;
6410 			}
6411 			/* check src operand */
6412 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6413 			if (err)
6414 				return err;
6415 
6416 			if (is_ctx_reg(env, insn->dst_reg)) {
6417 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
6418 					insn->dst_reg,
6419 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
6420 				return -EACCES;
6421 			}
6422 
6423 			/* check that memory (dst_reg + off) is writeable */
6424 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6425 					       insn->off, BPF_SIZE(insn->code),
6426 					       BPF_WRITE, -1, false);
6427 			if (err)
6428 				return err;
6429 
6430 		} else if (class == BPF_JMP || class == BPF_JMP32) {
6431 			u8 opcode = BPF_OP(insn->code);
6432 
6433 			if (opcode == BPF_CALL) {
6434 				if (BPF_SRC(insn->code) != BPF_K ||
6435 				    insn->off != 0 ||
6436 				    (insn->src_reg != BPF_REG_0 &&
6437 				     insn->src_reg != BPF_PSEUDO_CALL) ||
6438 				    insn->dst_reg != BPF_REG_0 ||
6439 				    class == BPF_JMP32) {
6440 					verbose(env, "BPF_CALL uses reserved fields\n");
6441 					return -EINVAL;
6442 				}
6443 
6444 				if (env->cur_state->active_spin_lock &&
6445 				    (insn->src_reg == BPF_PSEUDO_CALL ||
6446 				     insn->imm != BPF_FUNC_spin_unlock)) {
6447 					verbose(env, "function calls are not allowed while holding a lock\n");
6448 					return -EINVAL;
6449 				}
6450 				if (insn->src_reg == BPF_PSEUDO_CALL)
6451 					err = check_func_call(env, insn, &env->insn_idx);
6452 				else
6453 					err = check_helper_call(env, insn->imm, env->insn_idx);
6454 				if (err)
6455 					return err;
6456 
6457 			} else if (opcode == BPF_JA) {
6458 				if (BPF_SRC(insn->code) != BPF_K ||
6459 				    insn->imm != 0 ||
6460 				    insn->src_reg != BPF_REG_0 ||
6461 				    insn->dst_reg != BPF_REG_0 ||
6462 				    class == BPF_JMP32) {
6463 					verbose(env, "BPF_JA uses reserved fields\n");
6464 					return -EINVAL;
6465 				}
6466 
6467 				env->insn_idx += insn->off + 1;
6468 				continue;
6469 
6470 			} else if (opcode == BPF_EXIT) {
6471 				if (BPF_SRC(insn->code) != BPF_K ||
6472 				    insn->imm != 0 ||
6473 				    insn->src_reg != BPF_REG_0 ||
6474 				    insn->dst_reg != BPF_REG_0 ||
6475 				    class == BPF_JMP32) {
6476 					verbose(env, "BPF_EXIT uses reserved fields\n");
6477 					return -EINVAL;
6478 				}
6479 
6480 				if (env->cur_state->active_spin_lock) {
6481 					verbose(env, "bpf_spin_unlock is missing\n");
6482 					return -EINVAL;
6483 				}
6484 
6485 				if (state->curframe) {
6486 					/* exit from nested function */
6487 					env->prev_insn_idx = env->insn_idx;
6488 					err = prepare_func_exit(env, &env->insn_idx);
6489 					if (err)
6490 						return err;
6491 					do_print_state = true;
6492 					continue;
6493 				}
6494 
6495 				err = check_reference_leak(env);
6496 				if (err)
6497 					return err;
6498 
6499 				/* eBPF calling convetion is such that R0 is used
6500 				 * to return the value from eBPF program.
6501 				 * Make sure that it's readable at this time
6502 				 * of bpf_exit, which means that program wrote
6503 				 * something into it earlier
6504 				 */
6505 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
6506 				if (err)
6507 					return err;
6508 
6509 				if (is_pointer_value(env, BPF_REG_0)) {
6510 					verbose(env, "R0 leaks addr as return value\n");
6511 					return -EACCES;
6512 				}
6513 
6514 				err = check_return_code(env);
6515 				if (err)
6516 					return err;
6517 process_bpf_exit:
6518 				err = pop_stack(env, &env->prev_insn_idx,
6519 						&env->insn_idx);
6520 				if (err < 0) {
6521 					if (err != -ENOENT)
6522 						return err;
6523 					break;
6524 				} else {
6525 					do_print_state = true;
6526 					continue;
6527 				}
6528 			} else {
6529 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
6530 				if (err)
6531 					return err;
6532 			}
6533 		} else if (class == BPF_LD) {
6534 			u8 mode = BPF_MODE(insn->code);
6535 
6536 			if (mode == BPF_ABS || mode == BPF_IND) {
6537 				err = check_ld_abs(env, insn);
6538 				if (err)
6539 					return err;
6540 
6541 			} else if (mode == BPF_IMM) {
6542 				err = check_ld_imm(env, insn);
6543 				if (err)
6544 					return err;
6545 
6546 				env->insn_idx++;
6547 				env->insn_aux_data[env->insn_idx].seen = true;
6548 			} else {
6549 				verbose(env, "invalid BPF_LD mode\n");
6550 				return -EINVAL;
6551 			}
6552 		} else {
6553 			verbose(env, "unknown insn class %d\n", class);
6554 			return -EINVAL;
6555 		}
6556 
6557 		env->insn_idx++;
6558 	}
6559 
6560 	verbose(env, "processed %d insns (limit %d), stack depth ",
6561 		insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
6562 	for (i = 0; i < env->subprog_cnt; i++) {
6563 		u32 depth = env->subprog_info[i].stack_depth;
6564 
6565 		verbose(env, "%d", depth);
6566 		if (i + 1 < env->subprog_cnt)
6567 			verbose(env, "+");
6568 	}
6569 	verbose(env, "\n");
6570 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
6571 	return 0;
6572 }
6573 
6574 static int check_map_prealloc(struct bpf_map *map)
6575 {
6576 	return (map->map_type != BPF_MAP_TYPE_HASH &&
6577 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6578 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
6579 		!(map->map_flags & BPF_F_NO_PREALLOC);
6580 }
6581 
6582 static bool is_tracing_prog_type(enum bpf_prog_type type)
6583 {
6584 	switch (type) {
6585 	case BPF_PROG_TYPE_KPROBE:
6586 	case BPF_PROG_TYPE_TRACEPOINT:
6587 	case BPF_PROG_TYPE_PERF_EVENT:
6588 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6589 		return true;
6590 	default:
6591 		return false;
6592 	}
6593 }
6594 
6595 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
6596 					struct bpf_map *map,
6597 					struct bpf_prog *prog)
6598 
6599 {
6600 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
6601 	 * preallocated hash maps, since doing memory allocation
6602 	 * in overflow_handler can crash depending on where nmi got
6603 	 * triggered.
6604 	 */
6605 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
6606 		if (!check_map_prealloc(map)) {
6607 			verbose(env, "perf_event programs can only use preallocated hash map\n");
6608 			return -EINVAL;
6609 		}
6610 		if (map->inner_map_meta &&
6611 		    !check_map_prealloc(map->inner_map_meta)) {
6612 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
6613 			return -EINVAL;
6614 		}
6615 	}
6616 
6617 	if ((is_tracing_prog_type(prog->type) ||
6618 	     prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
6619 	    map_value_has_spin_lock(map)) {
6620 		verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
6621 		return -EINVAL;
6622 	}
6623 
6624 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
6625 	    !bpf_offload_prog_map_match(prog, map)) {
6626 		verbose(env, "offload device mismatch between prog and map\n");
6627 		return -EINVAL;
6628 	}
6629 
6630 	return 0;
6631 }
6632 
6633 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
6634 {
6635 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
6636 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
6637 }
6638 
6639 /* look for pseudo eBPF instructions that access map FDs and
6640  * replace them with actual map pointers
6641  */
6642 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
6643 {
6644 	struct bpf_insn *insn = env->prog->insnsi;
6645 	int insn_cnt = env->prog->len;
6646 	int i, j, err;
6647 
6648 	err = bpf_prog_calc_tag(env->prog);
6649 	if (err)
6650 		return err;
6651 
6652 	for (i = 0; i < insn_cnt; i++, insn++) {
6653 		if (BPF_CLASS(insn->code) == BPF_LDX &&
6654 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
6655 			verbose(env, "BPF_LDX uses reserved fields\n");
6656 			return -EINVAL;
6657 		}
6658 
6659 		if (BPF_CLASS(insn->code) == BPF_STX &&
6660 		    ((BPF_MODE(insn->code) != BPF_MEM &&
6661 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
6662 			verbose(env, "BPF_STX uses reserved fields\n");
6663 			return -EINVAL;
6664 		}
6665 
6666 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
6667 			struct bpf_map *map;
6668 			struct fd f;
6669 
6670 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
6671 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
6672 			    insn[1].off != 0) {
6673 				verbose(env, "invalid bpf_ld_imm64 insn\n");
6674 				return -EINVAL;
6675 			}
6676 
6677 			if (insn->src_reg == 0)
6678 				/* valid generic load 64-bit imm */
6679 				goto next_insn;
6680 
6681 			if (insn[0].src_reg != BPF_PSEUDO_MAP_FD ||
6682 			    insn[1].imm != 0) {
6683 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
6684 				return -EINVAL;
6685 			}
6686 
6687 			f = fdget(insn[0].imm);
6688 			map = __bpf_map_get(f);
6689 			if (IS_ERR(map)) {
6690 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
6691 					insn[0].imm);
6692 				return PTR_ERR(map);
6693 			}
6694 
6695 			err = check_map_prog_compatibility(env, map, env->prog);
6696 			if (err) {
6697 				fdput(f);
6698 				return err;
6699 			}
6700 
6701 			/* store map pointer inside BPF_LD_IMM64 instruction */
6702 			insn[0].imm = (u32) (unsigned long) map;
6703 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
6704 
6705 			/* check whether we recorded this map already */
6706 			for (j = 0; j < env->used_map_cnt; j++)
6707 				if (env->used_maps[j] == map) {
6708 					fdput(f);
6709 					goto next_insn;
6710 				}
6711 
6712 			if (env->used_map_cnt >= MAX_USED_MAPS) {
6713 				fdput(f);
6714 				return -E2BIG;
6715 			}
6716 
6717 			/* hold the map. If the program is rejected by verifier,
6718 			 * the map will be released by release_maps() or it
6719 			 * will be used by the valid program until it's unloaded
6720 			 * and all maps are released in free_used_maps()
6721 			 */
6722 			map = bpf_map_inc(map, false);
6723 			if (IS_ERR(map)) {
6724 				fdput(f);
6725 				return PTR_ERR(map);
6726 			}
6727 			env->used_maps[env->used_map_cnt++] = map;
6728 
6729 			if (bpf_map_is_cgroup_storage(map) &&
6730 			    bpf_cgroup_storage_assign(env->prog, map)) {
6731 				verbose(env, "only one cgroup storage of each type is allowed\n");
6732 				fdput(f);
6733 				return -EBUSY;
6734 			}
6735 
6736 			fdput(f);
6737 next_insn:
6738 			insn++;
6739 			i++;
6740 			continue;
6741 		}
6742 
6743 		/* Basic sanity check before we invest more work here. */
6744 		if (!bpf_opcode_in_insntable(insn->code)) {
6745 			verbose(env, "unknown opcode %02x\n", insn->code);
6746 			return -EINVAL;
6747 		}
6748 	}
6749 
6750 	/* now all pseudo BPF_LD_IMM64 instructions load valid
6751 	 * 'struct bpf_map *' into a register instead of user map_fd.
6752 	 * These pointers will be used later by verifier to validate map access.
6753 	 */
6754 	return 0;
6755 }
6756 
6757 /* drop refcnt of maps used by the rejected program */
6758 static void release_maps(struct bpf_verifier_env *env)
6759 {
6760 	enum bpf_cgroup_storage_type stype;
6761 	int i;
6762 
6763 	for_each_cgroup_storage_type(stype) {
6764 		if (!env->prog->aux->cgroup_storage[stype])
6765 			continue;
6766 		bpf_cgroup_storage_release(env->prog,
6767 			env->prog->aux->cgroup_storage[stype]);
6768 	}
6769 
6770 	for (i = 0; i < env->used_map_cnt; i++)
6771 		bpf_map_put(env->used_maps[i]);
6772 }
6773 
6774 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
6775 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
6776 {
6777 	struct bpf_insn *insn = env->prog->insnsi;
6778 	int insn_cnt = env->prog->len;
6779 	int i;
6780 
6781 	for (i = 0; i < insn_cnt; i++, insn++)
6782 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
6783 			insn->src_reg = 0;
6784 }
6785 
6786 /* single env->prog->insni[off] instruction was replaced with the range
6787  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
6788  * [0, off) and [off, end) to new locations, so the patched range stays zero
6789  */
6790 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
6791 				u32 off, u32 cnt)
6792 {
6793 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
6794 	int i;
6795 
6796 	if (cnt == 1)
6797 		return 0;
6798 	new_data = vzalloc(array_size(prog_len,
6799 				      sizeof(struct bpf_insn_aux_data)));
6800 	if (!new_data)
6801 		return -ENOMEM;
6802 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
6803 	memcpy(new_data + off + cnt - 1, old_data + off,
6804 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
6805 	for (i = off; i < off + cnt - 1; i++)
6806 		new_data[i].seen = true;
6807 	env->insn_aux_data = new_data;
6808 	vfree(old_data);
6809 	return 0;
6810 }
6811 
6812 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
6813 {
6814 	int i;
6815 
6816 	if (len == 1)
6817 		return;
6818 	/* NOTE: fake 'exit' subprog should be updated as well. */
6819 	for (i = 0; i <= env->subprog_cnt; i++) {
6820 		if (env->subprog_info[i].start <= off)
6821 			continue;
6822 		env->subprog_info[i].start += len - 1;
6823 	}
6824 }
6825 
6826 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
6827 					    const struct bpf_insn *patch, u32 len)
6828 {
6829 	struct bpf_prog *new_prog;
6830 
6831 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
6832 	if (!new_prog)
6833 		return NULL;
6834 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
6835 		return NULL;
6836 	adjust_subprog_starts(env, off, len);
6837 	return new_prog;
6838 }
6839 
6840 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
6841 					      u32 off, u32 cnt)
6842 {
6843 	int i, j;
6844 
6845 	/* find first prog starting at or after off (first to remove) */
6846 	for (i = 0; i < env->subprog_cnt; i++)
6847 		if (env->subprog_info[i].start >= off)
6848 			break;
6849 	/* find first prog starting at or after off + cnt (first to stay) */
6850 	for (j = i; j < env->subprog_cnt; j++)
6851 		if (env->subprog_info[j].start >= off + cnt)
6852 			break;
6853 	/* if j doesn't start exactly at off + cnt, we are just removing
6854 	 * the front of previous prog
6855 	 */
6856 	if (env->subprog_info[j].start != off + cnt)
6857 		j--;
6858 
6859 	if (j > i) {
6860 		struct bpf_prog_aux *aux = env->prog->aux;
6861 		int move;
6862 
6863 		/* move fake 'exit' subprog as well */
6864 		move = env->subprog_cnt + 1 - j;
6865 
6866 		memmove(env->subprog_info + i,
6867 			env->subprog_info + j,
6868 			sizeof(*env->subprog_info) * move);
6869 		env->subprog_cnt -= j - i;
6870 
6871 		/* remove func_info */
6872 		if (aux->func_info) {
6873 			move = aux->func_info_cnt - j;
6874 
6875 			memmove(aux->func_info + i,
6876 				aux->func_info + j,
6877 				sizeof(*aux->func_info) * move);
6878 			aux->func_info_cnt -= j - i;
6879 			/* func_info->insn_off is set after all code rewrites,
6880 			 * in adjust_btf_func() - no need to adjust
6881 			 */
6882 		}
6883 	} else {
6884 		/* convert i from "first prog to remove" to "first to adjust" */
6885 		if (env->subprog_info[i].start == off)
6886 			i++;
6887 	}
6888 
6889 	/* update fake 'exit' subprog as well */
6890 	for (; i <= env->subprog_cnt; i++)
6891 		env->subprog_info[i].start -= cnt;
6892 
6893 	return 0;
6894 }
6895 
6896 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
6897 				      u32 cnt)
6898 {
6899 	struct bpf_prog *prog = env->prog;
6900 	u32 i, l_off, l_cnt, nr_linfo;
6901 	struct bpf_line_info *linfo;
6902 
6903 	nr_linfo = prog->aux->nr_linfo;
6904 	if (!nr_linfo)
6905 		return 0;
6906 
6907 	linfo = prog->aux->linfo;
6908 
6909 	/* find first line info to remove, count lines to be removed */
6910 	for (i = 0; i < nr_linfo; i++)
6911 		if (linfo[i].insn_off >= off)
6912 			break;
6913 
6914 	l_off = i;
6915 	l_cnt = 0;
6916 	for (; i < nr_linfo; i++)
6917 		if (linfo[i].insn_off < off + cnt)
6918 			l_cnt++;
6919 		else
6920 			break;
6921 
6922 	/* First live insn doesn't match first live linfo, it needs to "inherit"
6923 	 * last removed linfo.  prog is already modified, so prog->len == off
6924 	 * means no live instructions after (tail of the program was removed).
6925 	 */
6926 	if (prog->len != off && l_cnt &&
6927 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
6928 		l_cnt--;
6929 		linfo[--i].insn_off = off + cnt;
6930 	}
6931 
6932 	/* remove the line info which refer to the removed instructions */
6933 	if (l_cnt) {
6934 		memmove(linfo + l_off, linfo + i,
6935 			sizeof(*linfo) * (nr_linfo - i));
6936 
6937 		prog->aux->nr_linfo -= l_cnt;
6938 		nr_linfo = prog->aux->nr_linfo;
6939 	}
6940 
6941 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
6942 	for (i = l_off; i < nr_linfo; i++)
6943 		linfo[i].insn_off -= cnt;
6944 
6945 	/* fix up all subprogs (incl. 'exit') which start >= off */
6946 	for (i = 0; i <= env->subprog_cnt; i++)
6947 		if (env->subprog_info[i].linfo_idx > l_off) {
6948 			/* program may have started in the removed region but
6949 			 * may not be fully removed
6950 			 */
6951 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
6952 				env->subprog_info[i].linfo_idx -= l_cnt;
6953 			else
6954 				env->subprog_info[i].linfo_idx = l_off;
6955 		}
6956 
6957 	return 0;
6958 }
6959 
6960 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
6961 {
6962 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
6963 	unsigned int orig_prog_len = env->prog->len;
6964 	int err;
6965 
6966 	if (bpf_prog_is_dev_bound(env->prog->aux))
6967 		bpf_prog_offload_remove_insns(env, off, cnt);
6968 
6969 	err = bpf_remove_insns(env->prog, off, cnt);
6970 	if (err)
6971 		return err;
6972 
6973 	err = adjust_subprog_starts_after_remove(env, off, cnt);
6974 	if (err)
6975 		return err;
6976 
6977 	err = bpf_adj_linfo_after_remove(env, off, cnt);
6978 	if (err)
6979 		return err;
6980 
6981 	memmove(aux_data + off,	aux_data + off + cnt,
6982 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
6983 
6984 	return 0;
6985 }
6986 
6987 /* The verifier does more data flow analysis than llvm and will not
6988  * explore branches that are dead at run time. Malicious programs can
6989  * have dead code too. Therefore replace all dead at-run-time code
6990  * with 'ja -1'.
6991  *
6992  * Just nops are not optimal, e.g. if they would sit at the end of the
6993  * program and through another bug we would manage to jump there, then
6994  * we'd execute beyond program memory otherwise. Returning exception
6995  * code also wouldn't work since we can have subprogs where the dead
6996  * code could be located.
6997  */
6998 static void sanitize_dead_code(struct bpf_verifier_env *env)
6999 {
7000 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7001 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
7002 	struct bpf_insn *insn = env->prog->insnsi;
7003 	const int insn_cnt = env->prog->len;
7004 	int i;
7005 
7006 	for (i = 0; i < insn_cnt; i++) {
7007 		if (aux_data[i].seen)
7008 			continue;
7009 		memcpy(insn + i, &trap, sizeof(trap));
7010 	}
7011 }
7012 
7013 static bool insn_is_cond_jump(u8 code)
7014 {
7015 	u8 op;
7016 
7017 	if (BPF_CLASS(code) == BPF_JMP32)
7018 		return true;
7019 
7020 	if (BPF_CLASS(code) != BPF_JMP)
7021 		return false;
7022 
7023 	op = BPF_OP(code);
7024 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
7025 }
7026 
7027 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
7028 {
7029 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7030 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7031 	struct bpf_insn *insn = env->prog->insnsi;
7032 	const int insn_cnt = env->prog->len;
7033 	int i;
7034 
7035 	for (i = 0; i < insn_cnt; i++, insn++) {
7036 		if (!insn_is_cond_jump(insn->code))
7037 			continue;
7038 
7039 		if (!aux_data[i + 1].seen)
7040 			ja.off = insn->off;
7041 		else if (!aux_data[i + 1 + insn->off].seen)
7042 			ja.off = 0;
7043 		else
7044 			continue;
7045 
7046 		if (bpf_prog_is_dev_bound(env->prog->aux))
7047 			bpf_prog_offload_replace_insn(env, i, &ja);
7048 
7049 		memcpy(insn, &ja, sizeof(ja));
7050 	}
7051 }
7052 
7053 static int opt_remove_dead_code(struct bpf_verifier_env *env)
7054 {
7055 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7056 	int insn_cnt = env->prog->len;
7057 	int i, err;
7058 
7059 	for (i = 0; i < insn_cnt; i++) {
7060 		int j;
7061 
7062 		j = 0;
7063 		while (i + j < insn_cnt && !aux_data[i + j].seen)
7064 			j++;
7065 		if (!j)
7066 			continue;
7067 
7068 		err = verifier_remove_insns(env, i, j);
7069 		if (err)
7070 			return err;
7071 		insn_cnt = env->prog->len;
7072 	}
7073 
7074 	return 0;
7075 }
7076 
7077 static int opt_remove_nops(struct bpf_verifier_env *env)
7078 {
7079 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7080 	struct bpf_insn *insn = env->prog->insnsi;
7081 	int insn_cnt = env->prog->len;
7082 	int i, err;
7083 
7084 	for (i = 0; i < insn_cnt; i++) {
7085 		if (memcmp(&insn[i], &ja, sizeof(ja)))
7086 			continue;
7087 
7088 		err = verifier_remove_insns(env, i, 1);
7089 		if (err)
7090 			return err;
7091 		insn_cnt--;
7092 		i--;
7093 	}
7094 
7095 	return 0;
7096 }
7097 
7098 /* convert load instructions that access fields of a context type into a
7099  * sequence of instructions that access fields of the underlying structure:
7100  *     struct __sk_buff    -> struct sk_buff
7101  *     struct bpf_sock_ops -> struct sock
7102  */
7103 static int convert_ctx_accesses(struct bpf_verifier_env *env)
7104 {
7105 	const struct bpf_verifier_ops *ops = env->ops;
7106 	int i, cnt, size, ctx_field_size, delta = 0;
7107 	const int insn_cnt = env->prog->len;
7108 	struct bpf_insn insn_buf[16], *insn;
7109 	u32 target_size, size_default, off;
7110 	struct bpf_prog *new_prog;
7111 	enum bpf_access_type type;
7112 	bool is_narrower_load;
7113 
7114 	if (ops->gen_prologue || env->seen_direct_write) {
7115 		if (!ops->gen_prologue) {
7116 			verbose(env, "bpf verifier is misconfigured\n");
7117 			return -EINVAL;
7118 		}
7119 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
7120 					env->prog);
7121 		if (cnt >= ARRAY_SIZE(insn_buf)) {
7122 			verbose(env, "bpf verifier is misconfigured\n");
7123 			return -EINVAL;
7124 		} else if (cnt) {
7125 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
7126 			if (!new_prog)
7127 				return -ENOMEM;
7128 
7129 			env->prog = new_prog;
7130 			delta += cnt - 1;
7131 		}
7132 	}
7133 
7134 	if (bpf_prog_is_dev_bound(env->prog->aux))
7135 		return 0;
7136 
7137 	insn = env->prog->insnsi + delta;
7138 
7139 	for (i = 0; i < insn_cnt; i++, insn++) {
7140 		bpf_convert_ctx_access_t convert_ctx_access;
7141 
7142 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
7143 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
7144 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
7145 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
7146 			type = BPF_READ;
7147 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
7148 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
7149 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
7150 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
7151 			type = BPF_WRITE;
7152 		else
7153 			continue;
7154 
7155 		if (type == BPF_WRITE &&
7156 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
7157 			struct bpf_insn patch[] = {
7158 				/* Sanitize suspicious stack slot with zero.
7159 				 * There are no memory dependencies for this store,
7160 				 * since it's only using frame pointer and immediate
7161 				 * constant of zero
7162 				 */
7163 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
7164 					   env->insn_aux_data[i + delta].sanitize_stack_off,
7165 					   0),
7166 				/* the original STX instruction will immediately
7167 				 * overwrite the same stack slot with appropriate value
7168 				 */
7169 				*insn,
7170 			};
7171 
7172 			cnt = ARRAY_SIZE(patch);
7173 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
7174 			if (!new_prog)
7175 				return -ENOMEM;
7176 
7177 			delta    += cnt - 1;
7178 			env->prog = new_prog;
7179 			insn      = new_prog->insnsi + i + delta;
7180 			continue;
7181 		}
7182 
7183 		switch (env->insn_aux_data[i + delta].ptr_type) {
7184 		case PTR_TO_CTX:
7185 			if (!ops->convert_ctx_access)
7186 				continue;
7187 			convert_ctx_access = ops->convert_ctx_access;
7188 			break;
7189 		case PTR_TO_SOCKET:
7190 		case PTR_TO_SOCK_COMMON:
7191 			convert_ctx_access = bpf_sock_convert_ctx_access;
7192 			break;
7193 		case PTR_TO_TCP_SOCK:
7194 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
7195 			break;
7196 		default:
7197 			continue;
7198 		}
7199 
7200 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
7201 		size = BPF_LDST_BYTES(insn);
7202 
7203 		/* If the read access is a narrower load of the field,
7204 		 * convert to a 4/8-byte load, to minimum program type specific
7205 		 * convert_ctx_access changes. If conversion is successful,
7206 		 * we will apply proper mask to the result.
7207 		 */
7208 		is_narrower_load = size < ctx_field_size;
7209 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
7210 		off = insn->off;
7211 		if (is_narrower_load) {
7212 			u8 size_code;
7213 
7214 			if (type == BPF_WRITE) {
7215 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
7216 				return -EINVAL;
7217 			}
7218 
7219 			size_code = BPF_H;
7220 			if (ctx_field_size == 4)
7221 				size_code = BPF_W;
7222 			else if (ctx_field_size == 8)
7223 				size_code = BPF_DW;
7224 
7225 			insn->off = off & ~(size_default - 1);
7226 			insn->code = BPF_LDX | BPF_MEM | size_code;
7227 		}
7228 
7229 		target_size = 0;
7230 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
7231 					 &target_size);
7232 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
7233 		    (ctx_field_size && !target_size)) {
7234 			verbose(env, "bpf verifier is misconfigured\n");
7235 			return -EINVAL;
7236 		}
7237 
7238 		if (is_narrower_load && size < target_size) {
7239 			u8 shift = (off & (size_default - 1)) * 8;
7240 
7241 			if (ctx_field_size <= 4) {
7242 				if (shift)
7243 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
7244 									insn->dst_reg,
7245 									shift);
7246 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
7247 								(1 << size * 8) - 1);
7248 			} else {
7249 				if (shift)
7250 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
7251 									insn->dst_reg,
7252 									shift);
7253 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
7254 								(1 << size * 8) - 1);
7255 			}
7256 		}
7257 
7258 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7259 		if (!new_prog)
7260 			return -ENOMEM;
7261 
7262 		delta += cnt - 1;
7263 
7264 		/* keep walking new program and skip insns we just inserted */
7265 		env->prog = new_prog;
7266 		insn      = new_prog->insnsi + i + delta;
7267 	}
7268 
7269 	return 0;
7270 }
7271 
7272 static int jit_subprogs(struct bpf_verifier_env *env)
7273 {
7274 	struct bpf_prog *prog = env->prog, **func, *tmp;
7275 	int i, j, subprog_start, subprog_end = 0, len, subprog;
7276 	struct bpf_insn *insn;
7277 	void *old_bpf_func;
7278 	int err;
7279 
7280 	if (env->subprog_cnt <= 1)
7281 		return 0;
7282 
7283 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7284 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7285 		    insn->src_reg != BPF_PSEUDO_CALL)
7286 			continue;
7287 		/* Upon error here we cannot fall back to interpreter but
7288 		 * need a hard reject of the program. Thus -EFAULT is
7289 		 * propagated in any case.
7290 		 */
7291 		subprog = find_subprog(env, i + insn->imm + 1);
7292 		if (subprog < 0) {
7293 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7294 				  i + insn->imm + 1);
7295 			return -EFAULT;
7296 		}
7297 		/* temporarily remember subprog id inside insn instead of
7298 		 * aux_data, since next loop will split up all insns into funcs
7299 		 */
7300 		insn->off = subprog;
7301 		/* remember original imm in case JIT fails and fallback
7302 		 * to interpreter will be needed
7303 		 */
7304 		env->insn_aux_data[i].call_imm = insn->imm;
7305 		/* point imm to __bpf_call_base+1 from JITs point of view */
7306 		insn->imm = 1;
7307 	}
7308 
7309 	err = bpf_prog_alloc_jited_linfo(prog);
7310 	if (err)
7311 		goto out_undo_insn;
7312 
7313 	err = -ENOMEM;
7314 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
7315 	if (!func)
7316 		goto out_undo_insn;
7317 
7318 	for (i = 0; i < env->subprog_cnt; i++) {
7319 		subprog_start = subprog_end;
7320 		subprog_end = env->subprog_info[i + 1].start;
7321 
7322 		len = subprog_end - subprog_start;
7323 		/* BPF_PROG_RUN doesn't call subprogs directly,
7324 		 * hence main prog stats include the runtime of subprogs.
7325 		 * subprogs don't have IDs and not reachable via prog_get_next_id
7326 		 * func[i]->aux->stats will never be accessed and stays NULL
7327 		 */
7328 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
7329 		if (!func[i])
7330 			goto out_free;
7331 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
7332 		       len * sizeof(struct bpf_insn));
7333 		func[i]->type = prog->type;
7334 		func[i]->len = len;
7335 		if (bpf_prog_calc_tag(func[i]))
7336 			goto out_free;
7337 		func[i]->is_func = 1;
7338 		func[i]->aux->func_idx = i;
7339 		/* the btf and func_info will be freed only at prog->aux */
7340 		func[i]->aux->btf = prog->aux->btf;
7341 		func[i]->aux->func_info = prog->aux->func_info;
7342 
7343 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
7344 		 * Long term would need debug info to populate names
7345 		 */
7346 		func[i]->aux->name[0] = 'F';
7347 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
7348 		func[i]->jit_requested = 1;
7349 		func[i]->aux->linfo = prog->aux->linfo;
7350 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
7351 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
7352 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
7353 		func[i] = bpf_int_jit_compile(func[i]);
7354 		if (!func[i]->jited) {
7355 			err = -ENOTSUPP;
7356 			goto out_free;
7357 		}
7358 		cond_resched();
7359 	}
7360 	/* at this point all bpf functions were successfully JITed
7361 	 * now populate all bpf_calls with correct addresses and
7362 	 * run last pass of JIT
7363 	 */
7364 	for (i = 0; i < env->subprog_cnt; i++) {
7365 		insn = func[i]->insnsi;
7366 		for (j = 0; j < func[i]->len; j++, insn++) {
7367 			if (insn->code != (BPF_JMP | BPF_CALL) ||
7368 			    insn->src_reg != BPF_PSEUDO_CALL)
7369 				continue;
7370 			subprog = insn->off;
7371 			insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
7372 				func[subprog]->bpf_func -
7373 				__bpf_call_base;
7374 		}
7375 
7376 		/* we use the aux data to keep a list of the start addresses
7377 		 * of the JITed images for each function in the program
7378 		 *
7379 		 * for some architectures, such as powerpc64, the imm field
7380 		 * might not be large enough to hold the offset of the start
7381 		 * address of the callee's JITed image from __bpf_call_base
7382 		 *
7383 		 * in such cases, we can lookup the start address of a callee
7384 		 * by using its subprog id, available from the off field of
7385 		 * the call instruction, as an index for this list
7386 		 */
7387 		func[i]->aux->func = func;
7388 		func[i]->aux->func_cnt = env->subprog_cnt;
7389 	}
7390 	for (i = 0; i < env->subprog_cnt; i++) {
7391 		old_bpf_func = func[i]->bpf_func;
7392 		tmp = bpf_int_jit_compile(func[i]);
7393 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
7394 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
7395 			err = -ENOTSUPP;
7396 			goto out_free;
7397 		}
7398 		cond_resched();
7399 	}
7400 
7401 	/* finally lock prog and jit images for all functions and
7402 	 * populate kallsysm
7403 	 */
7404 	for (i = 0; i < env->subprog_cnt; i++) {
7405 		bpf_prog_lock_ro(func[i]);
7406 		bpf_prog_kallsyms_add(func[i]);
7407 	}
7408 
7409 	/* Last step: make now unused interpreter insns from main
7410 	 * prog consistent for later dump requests, so they can
7411 	 * later look the same as if they were interpreted only.
7412 	 */
7413 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7414 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7415 		    insn->src_reg != BPF_PSEUDO_CALL)
7416 			continue;
7417 		insn->off = env->insn_aux_data[i].call_imm;
7418 		subprog = find_subprog(env, i + insn->off + 1);
7419 		insn->imm = subprog;
7420 	}
7421 
7422 	prog->jited = 1;
7423 	prog->bpf_func = func[0]->bpf_func;
7424 	prog->aux->func = func;
7425 	prog->aux->func_cnt = env->subprog_cnt;
7426 	bpf_prog_free_unused_jited_linfo(prog);
7427 	return 0;
7428 out_free:
7429 	for (i = 0; i < env->subprog_cnt; i++)
7430 		if (func[i])
7431 			bpf_jit_free(func[i]);
7432 	kfree(func);
7433 out_undo_insn:
7434 	/* cleanup main prog to be interpreted */
7435 	prog->jit_requested = 0;
7436 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7437 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7438 		    insn->src_reg != BPF_PSEUDO_CALL)
7439 			continue;
7440 		insn->off = 0;
7441 		insn->imm = env->insn_aux_data[i].call_imm;
7442 	}
7443 	bpf_prog_free_jited_linfo(prog);
7444 	return err;
7445 }
7446 
7447 static int fixup_call_args(struct bpf_verifier_env *env)
7448 {
7449 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
7450 	struct bpf_prog *prog = env->prog;
7451 	struct bpf_insn *insn = prog->insnsi;
7452 	int i, depth;
7453 #endif
7454 	int err = 0;
7455 
7456 	if (env->prog->jit_requested &&
7457 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
7458 		err = jit_subprogs(env);
7459 		if (err == 0)
7460 			return 0;
7461 		if (err == -EFAULT)
7462 			return err;
7463 	}
7464 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
7465 	for (i = 0; i < prog->len; i++, insn++) {
7466 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7467 		    insn->src_reg != BPF_PSEUDO_CALL)
7468 			continue;
7469 		depth = get_callee_stack_depth(env, insn, i);
7470 		if (depth < 0)
7471 			return depth;
7472 		bpf_patch_call_args(insn, depth);
7473 	}
7474 	err = 0;
7475 #endif
7476 	return err;
7477 }
7478 
7479 /* fixup insn->imm field of bpf_call instructions
7480  * and inline eligible helpers as explicit sequence of BPF instructions
7481  *
7482  * this function is called after eBPF program passed verification
7483  */
7484 static int fixup_bpf_calls(struct bpf_verifier_env *env)
7485 {
7486 	struct bpf_prog *prog = env->prog;
7487 	struct bpf_insn *insn = prog->insnsi;
7488 	const struct bpf_func_proto *fn;
7489 	const int insn_cnt = prog->len;
7490 	const struct bpf_map_ops *ops;
7491 	struct bpf_insn_aux_data *aux;
7492 	struct bpf_insn insn_buf[16];
7493 	struct bpf_prog *new_prog;
7494 	struct bpf_map *map_ptr;
7495 	int i, cnt, delta = 0;
7496 
7497 	for (i = 0; i < insn_cnt; i++, insn++) {
7498 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
7499 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
7500 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
7501 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
7502 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
7503 			struct bpf_insn mask_and_div[] = {
7504 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
7505 				/* Rx div 0 -> 0 */
7506 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
7507 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
7508 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
7509 				*insn,
7510 			};
7511 			struct bpf_insn mask_and_mod[] = {
7512 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
7513 				/* Rx mod 0 -> Rx */
7514 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
7515 				*insn,
7516 			};
7517 			struct bpf_insn *patchlet;
7518 
7519 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
7520 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
7521 				patchlet = mask_and_div + (is64 ? 1 : 0);
7522 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
7523 			} else {
7524 				patchlet = mask_and_mod + (is64 ? 1 : 0);
7525 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
7526 			}
7527 
7528 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
7529 			if (!new_prog)
7530 				return -ENOMEM;
7531 
7532 			delta    += cnt - 1;
7533 			env->prog = prog = new_prog;
7534 			insn      = new_prog->insnsi + i + delta;
7535 			continue;
7536 		}
7537 
7538 		if (BPF_CLASS(insn->code) == BPF_LD &&
7539 		    (BPF_MODE(insn->code) == BPF_ABS ||
7540 		     BPF_MODE(insn->code) == BPF_IND)) {
7541 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
7542 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
7543 				verbose(env, "bpf verifier is misconfigured\n");
7544 				return -EINVAL;
7545 			}
7546 
7547 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7548 			if (!new_prog)
7549 				return -ENOMEM;
7550 
7551 			delta    += cnt - 1;
7552 			env->prog = prog = new_prog;
7553 			insn      = new_prog->insnsi + i + delta;
7554 			continue;
7555 		}
7556 
7557 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
7558 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
7559 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
7560 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
7561 			struct bpf_insn insn_buf[16];
7562 			struct bpf_insn *patch = &insn_buf[0];
7563 			bool issrc, isneg;
7564 			u32 off_reg;
7565 
7566 			aux = &env->insn_aux_data[i + delta];
7567 			if (!aux->alu_state ||
7568 			    aux->alu_state == BPF_ALU_NON_POINTER)
7569 				continue;
7570 
7571 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
7572 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
7573 				BPF_ALU_SANITIZE_SRC;
7574 
7575 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
7576 			if (isneg)
7577 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
7578 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
7579 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
7580 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
7581 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
7582 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
7583 			if (issrc) {
7584 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
7585 							 off_reg);
7586 				insn->src_reg = BPF_REG_AX;
7587 			} else {
7588 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
7589 							 BPF_REG_AX);
7590 			}
7591 			if (isneg)
7592 				insn->code = insn->code == code_add ?
7593 					     code_sub : code_add;
7594 			*patch++ = *insn;
7595 			if (issrc && isneg)
7596 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
7597 			cnt = patch - insn_buf;
7598 
7599 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7600 			if (!new_prog)
7601 				return -ENOMEM;
7602 
7603 			delta    += cnt - 1;
7604 			env->prog = prog = new_prog;
7605 			insn      = new_prog->insnsi + i + delta;
7606 			continue;
7607 		}
7608 
7609 		if (insn->code != (BPF_JMP | BPF_CALL))
7610 			continue;
7611 		if (insn->src_reg == BPF_PSEUDO_CALL)
7612 			continue;
7613 
7614 		if (insn->imm == BPF_FUNC_get_route_realm)
7615 			prog->dst_needed = 1;
7616 		if (insn->imm == BPF_FUNC_get_prandom_u32)
7617 			bpf_user_rnd_init_once();
7618 		if (insn->imm == BPF_FUNC_override_return)
7619 			prog->kprobe_override = 1;
7620 		if (insn->imm == BPF_FUNC_tail_call) {
7621 			/* If we tail call into other programs, we
7622 			 * cannot make any assumptions since they can
7623 			 * be replaced dynamically during runtime in
7624 			 * the program array.
7625 			 */
7626 			prog->cb_access = 1;
7627 			env->prog->aux->stack_depth = MAX_BPF_STACK;
7628 			env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7629 
7630 			/* mark bpf_tail_call as different opcode to avoid
7631 			 * conditional branch in the interpeter for every normal
7632 			 * call and to prevent accidental JITing by JIT compiler
7633 			 * that doesn't support bpf_tail_call yet
7634 			 */
7635 			insn->imm = 0;
7636 			insn->code = BPF_JMP | BPF_TAIL_CALL;
7637 
7638 			aux = &env->insn_aux_data[i + delta];
7639 			if (!bpf_map_ptr_unpriv(aux))
7640 				continue;
7641 
7642 			/* instead of changing every JIT dealing with tail_call
7643 			 * emit two extra insns:
7644 			 * if (index >= max_entries) goto out;
7645 			 * index &= array->index_mask;
7646 			 * to avoid out-of-bounds cpu speculation
7647 			 */
7648 			if (bpf_map_ptr_poisoned(aux)) {
7649 				verbose(env, "tail_call abusing map_ptr\n");
7650 				return -EINVAL;
7651 			}
7652 
7653 			map_ptr = BPF_MAP_PTR(aux->map_state);
7654 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
7655 						  map_ptr->max_entries, 2);
7656 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
7657 						    container_of(map_ptr,
7658 								 struct bpf_array,
7659 								 map)->index_mask);
7660 			insn_buf[2] = *insn;
7661 			cnt = 3;
7662 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7663 			if (!new_prog)
7664 				return -ENOMEM;
7665 
7666 			delta    += cnt - 1;
7667 			env->prog = prog = new_prog;
7668 			insn      = new_prog->insnsi + i + delta;
7669 			continue;
7670 		}
7671 
7672 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
7673 		 * and other inlining handlers are currently limited to 64 bit
7674 		 * only.
7675 		 */
7676 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
7677 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
7678 		     insn->imm == BPF_FUNC_map_update_elem ||
7679 		     insn->imm == BPF_FUNC_map_delete_elem ||
7680 		     insn->imm == BPF_FUNC_map_push_elem   ||
7681 		     insn->imm == BPF_FUNC_map_pop_elem    ||
7682 		     insn->imm == BPF_FUNC_map_peek_elem)) {
7683 			aux = &env->insn_aux_data[i + delta];
7684 			if (bpf_map_ptr_poisoned(aux))
7685 				goto patch_call_imm;
7686 
7687 			map_ptr = BPF_MAP_PTR(aux->map_state);
7688 			ops = map_ptr->ops;
7689 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
7690 			    ops->map_gen_lookup) {
7691 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
7692 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
7693 					verbose(env, "bpf verifier is misconfigured\n");
7694 					return -EINVAL;
7695 				}
7696 
7697 				new_prog = bpf_patch_insn_data(env, i + delta,
7698 							       insn_buf, cnt);
7699 				if (!new_prog)
7700 					return -ENOMEM;
7701 
7702 				delta    += cnt - 1;
7703 				env->prog = prog = new_prog;
7704 				insn      = new_prog->insnsi + i + delta;
7705 				continue;
7706 			}
7707 
7708 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
7709 				     (void *(*)(struct bpf_map *map, void *key))NULL));
7710 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
7711 				     (int (*)(struct bpf_map *map, void *key))NULL));
7712 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
7713 				     (int (*)(struct bpf_map *map, void *key, void *value,
7714 					      u64 flags))NULL));
7715 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
7716 				     (int (*)(struct bpf_map *map, void *value,
7717 					      u64 flags))NULL));
7718 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
7719 				     (int (*)(struct bpf_map *map, void *value))NULL));
7720 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
7721 				     (int (*)(struct bpf_map *map, void *value))NULL));
7722 
7723 			switch (insn->imm) {
7724 			case BPF_FUNC_map_lookup_elem:
7725 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
7726 					    __bpf_call_base;
7727 				continue;
7728 			case BPF_FUNC_map_update_elem:
7729 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
7730 					    __bpf_call_base;
7731 				continue;
7732 			case BPF_FUNC_map_delete_elem:
7733 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
7734 					    __bpf_call_base;
7735 				continue;
7736 			case BPF_FUNC_map_push_elem:
7737 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
7738 					    __bpf_call_base;
7739 				continue;
7740 			case BPF_FUNC_map_pop_elem:
7741 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
7742 					    __bpf_call_base;
7743 				continue;
7744 			case BPF_FUNC_map_peek_elem:
7745 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
7746 					    __bpf_call_base;
7747 				continue;
7748 			}
7749 
7750 			goto patch_call_imm;
7751 		}
7752 
7753 patch_call_imm:
7754 		fn = env->ops->get_func_proto(insn->imm, env->prog);
7755 		/* all functions that have prototype and verifier allowed
7756 		 * programs to call them, must be real in-kernel functions
7757 		 */
7758 		if (!fn->func) {
7759 			verbose(env,
7760 				"kernel subsystem misconfigured func %s#%d\n",
7761 				func_id_name(insn->imm), insn->imm);
7762 			return -EFAULT;
7763 		}
7764 		insn->imm = fn->func - __bpf_call_base;
7765 	}
7766 
7767 	return 0;
7768 }
7769 
7770 static void free_states(struct bpf_verifier_env *env)
7771 {
7772 	struct bpf_verifier_state_list *sl, *sln;
7773 	int i;
7774 
7775 	if (!env->explored_states)
7776 		return;
7777 
7778 	for (i = 0; i < env->prog->len; i++) {
7779 		sl = env->explored_states[i];
7780 
7781 		if (sl)
7782 			while (sl != STATE_LIST_MARK) {
7783 				sln = sl->next;
7784 				free_verifier_state(&sl->state, false);
7785 				kfree(sl);
7786 				sl = sln;
7787 			}
7788 	}
7789 
7790 	kfree(env->explored_states);
7791 }
7792 
7793 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
7794 	      union bpf_attr __user *uattr)
7795 {
7796 	struct bpf_verifier_env *env;
7797 	struct bpf_verifier_log *log;
7798 	int i, len, ret = -EINVAL;
7799 	bool is_priv;
7800 
7801 	/* no program is valid */
7802 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
7803 		return -EINVAL;
7804 
7805 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
7806 	 * allocate/free it every time bpf_check() is called
7807 	 */
7808 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
7809 	if (!env)
7810 		return -ENOMEM;
7811 	log = &env->log;
7812 
7813 	len = (*prog)->len;
7814 	env->insn_aux_data =
7815 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
7816 	ret = -ENOMEM;
7817 	if (!env->insn_aux_data)
7818 		goto err_free_env;
7819 	for (i = 0; i < len; i++)
7820 		env->insn_aux_data[i].orig_idx = i;
7821 	env->prog = *prog;
7822 	env->ops = bpf_verifier_ops[env->prog->type];
7823 
7824 	/* grab the mutex to protect few globals used by verifier */
7825 	mutex_lock(&bpf_verifier_lock);
7826 
7827 	if (attr->log_level || attr->log_buf || attr->log_size) {
7828 		/* user requested verbose verifier output
7829 		 * and supplied buffer to store the verification trace
7830 		 */
7831 		log->level = attr->log_level;
7832 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
7833 		log->len_total = attr->log_size;
7834 
7835 		ret = -EINVAL;
7836 		/* log attributes have to be sane */
7837 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
7838 		    !log->level || !log->ubuf)
7839 			goto err_unlock;
7840 	}
7841 
7842 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
7843 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
7844 		env->strict_alignment = true;
7845 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
7846 		env->strict_alignment = false;
7847 
7848 	is_priv = capable(CAP_SYS_ADMIN);
7849 	env->allow_ptr_leaks = is_priv;
7850 
7851 	ret = replace_map_fd_with_map_ptr(env);
7852 	if (ret < 0)
7853 		goto skip_full_check;
7854 
7855 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
7856 		ret = bpf_prog_offload_verifier_prep(env->prog);
7857 		if (ret)
7858 			goto skip_full_check;
7859 	}
7860 
7861 	env->explored_states = kcalloc(env->prog->len,
7862 				       sizeof(struct bpf_verifier_state_list *),
7863 				       GFP_USER);
7864 	ret = -ENOMEM;
7865 	if (!env->explored_states)
7866 		goto skip_full_check;
7867 
7868 	ret = check_subprogs(env);
7869 	if (ret < 0)
7870 		goto skip_full_check;
7871 
7872 	ret = check_btf_info(env, attr, uattr);
7873 	if (ret < 0)
7874 		goto skip_full_check;
7875 
7876 	ret = check_cfg(env);
7877 	if (ret < 0)
7878 		goto skip_full_check;
7879 
7880 	ret = do_check(env);
7881 	if (env->cur_state) {
7882 		free_verifier_state(env->cur_state, true);
7883 		env->cur_state = NULL;
7884 	}
7885 
7886 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
7887 		ret = bpf_prog_offload_finalize(env);
7888 
7889 skip_full_check:
7890 	while (!pop_stack(env, NULL, NULL));
7891 	free_states(env);
7892 
7893 	if (ret == 0)
7894 		ret = check_max_stack_depth(env);
7895 
7896 	/* instruction rewrites happen after this point */
7897 	if (is_priv) {
7898 		if (ret == 0)
7899 			opt_hard_wire_dead_code_branches(env);
7900 		if (ret == 0)
7901 			ret = opt_remove_dead_code(env);
7902 		if (ret == 0)
7903 			ret = opt_remove_nops(env);
7904 	} else {
7905 		if (ret == 0)
7906 			sanitize_dead_code(env);
7907 	}
7908 
7909 	if (ret == 0)
7910 		/* program is valid, convert *(u32*)(ctx + off) accesses */
7911 		ret = convert_ctx_accesses(env);
7912 
7913 	if (ret == 0)
7914 		ret = fixup_bpf_calls(env);
7915 
7916 	if (ret == 0)
7917 		ret = fixup_call_args(env);
7918 
7919 	if (log->level && bpf_verifier_log_full(log))
7920 		ret = -ENOSPC;
7921 	if (log->level && !log->ubuf) {
7922 		ret = -EFAULT;
7923 		goto err_release_maps;
7924 	}
7925 
7926 	if (ret == 0 && env->used_map_cnt) {
7927 		/* if program passed verifier, update used_maps in bpf_prog_info */
7928 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
7929 							  sizeof(env->used_maps[0]),
7930 							  GFP_KERNEL);
7931 
7932 		if (!env->prog->aux->used_maps) {
7933 			ret = -ENOMEM;
7934 			goto err_release_maps;
7935 		}
7936 
7937 		memcpy(env->prog->aux->used_maps, env->used_maps,
7938 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
7939 		env->prog->aux->used_map_cnt = env->used_map_cnt;
7940 
7941 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
7942 		 * bpf_ld_imm64 instructions
7943 		 */
7944 		convert_pseudo_ld_imm64(env);
7945 	}
7946 
7947 	if (ret == 0)
7948 		adjust_btf_func(env);
7949 
7950 err_release_maps:
7951 	if (!env->prog->aux->used_maps)
7952 		/* if we didn't copy map pointers into bpf_prog_info, release
7953 		 * them now. Otherwise free_used_maps() will release them.
7954 		 */
7955 		release_maps(env);
7956 	*prog = env->prog;
7957 err_unlock:
7958 	mutex_unlock(&bpf_verifier_lock);
7959 	vfree(env->insn_aux_data);
7960 err_free_env:
7961 	kfree(env);
7962 	return ret;
7963 }
7964