xref: /openbmc/linux/kernel/bpf/verifier.c (revision 5ace6934)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 
24 /* bpf_check() is a static code analyzer that walks eBPF program
25  * instruction by instruction and updates register/stack state.
26  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27  *
28  * The first pass is depth-first-search to check that the program is a DAG.
29  * It rejects the following programs:
30  * - larger than BPF_MAXINSNS insns
31  * - if loop is present (detected via back-edge)
32  * - unreachable insns exist (shouldn't be a forest. program = one function)
33  * - out of bounds or malformed jumps
34  * The second pass is all possible path descent from the 1st insn.
35  * Since it's analyzing all pathes through the program, the length of the
36  * analysis is limited to 64k insn, which may be hit even if total number of
37  * insn is less then 4K, but there are too many branches that change stack/regs.
38  * Number of 'branches to be analyzed' is limited to 1k
39  *
40  * On entry to each instruction, each register has a type, and the instruction
41  * changes the types of the registers depending on instruction semantics.
42  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43  * copied to R1.
44  *
45  * All registers are 64-bit.
46  * R0 - return register
47  * R1-R5 argument passing registers
48  * R6-R9 callee saved registers
49  * R10 - frame pointer read-only
50  *
51  * At the start of BPF program the register R1 contains a pointer to bpf_context
52  * and has type PTR_TO_CTX.
53  *
54  * Verifier tracks arithmetic operations on pointers in case:
55  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57  * 1st insn copies R10 (which has FRAME_PTR) type into R1
58  * and 2nd arithmetic instruction is pattern matched to recognize
59  * that it wants to construct a pointer to some element within stack.
60  * So after 2nd insn, the register R1 has type PTR_TO_STACK
61  * (and -20 constant is saved for further stack bounds checking).
62  * Meaning that this reg is a pointer to stack plus known immediate constant.
63  *
64  * Most of the time the registers have UNKNOWN_VALUE type, which
65  * means the register has some value, but it's not a valid pointer.
66  * (like pointer plus pointer becomes UNKNOWN_VALUE type)
67  *
68  * When verifier sees load or store instructions the type of base register
69  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
70  * types recognized by check_mem_access() function.
71  *
72  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73  * and the range of [ptr, ptr + map's value_size) is accessible.
74  *
75  * registers used to pass values to function calls are checked against
76  * function argument constraints.
77  *
78  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79  * It means that the register type passed to this function must be
80  * PTR_TO_STACK and it will be used inside the function as
81  * 'pointer to map element key'
82  *
83  * For example the argument constraints for bpf_map_lookup_elem():
84  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85  *   .arg1_type = ARG_CONST_MAP_PTR,
86  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
87  *
88  * ret_type says that this function returns 'pointer to map elem value or null'
89  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90  * 2nd argument should be a pointer to stack, which will be used inside
91  * the helper function as a pointer to map element key.
92  *
93  * On the kernel side the helper function looks like:
94  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95  * {
96  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97  *    void *key = (void *) (unsigned long) r2;
98  *    void *value;
99  *
100  *    here kernel can access 'key' and 'map' pointers safely, knowing that
101  *    [key, key + map->key_size) bytes are valid and were initialized on
102  *    the stack of eBPF program.
103  * }
104  *
105  * Corresponding eBPF program may look like:
106  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
107  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
109  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110  * here verifier looks at prototype of map_lookup_elem() and sees:
111  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113  *
114  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116  * and were initialized prior to this call.
117  * If it's ok, then verifier allows this BPF_CALL insn and looks at
118  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120  * returns ether pointer to map value or NULL.
121  *
122  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123  * insn, the register holding that pointer in the true branch changes state to
124  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125  * branch. See check_cond_jmp_op().
126  *
127  * After the call R0 is set to return type of the function and registers R1-R5
128  * are set to NOT_INIT to indicate that they are no longer readable.
129  */
130 
131 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
132 struct bpf_verifier_stack_elem {
133 	/* verifer state is 'st'
134 	 * before processing instruction 'insn_idx'
135 	 * and after processing instruction 'prev_insn_idx'
136 	 */
137 	struct bpf_verifier_state st;
138 	int insn_idx;
139 	int prev_insn_idx;
140 	struct bpf_verifier_stack_elem *next;
141 };
142 
143 #define BPF_COMPLEXITY_LIMIT_INSNS	65536
144 #define BPF_COMPLEXITY_LIMIT_STACK	1024
145 
146 struct bpf_call_arg_meta {
147 	struct bpf_map *map_ptr;
148 	bool raw_mode;
149 	bool pkt_access;
150 	int regno;
151 	int access_size;
152 };
153 
154 /* verbose verifier prints what it's seeing
155  * bpf_check() is called under lock, so no race to access these global vars
156  */
157 static u32 log_level, log_size, log_len;
158 static char *log_buf;
159 
160 static DEFINE_MUTEX(bpf_verifier_lock);
161 
162 /* log_level controls verbosity level of eBPF verifier.
163  * verbose() is used to dump the verification trace to the log, so the user
164  * can figure out what's wrong with the program
165  */
166 static __printf(1, 2) void verbose(const char *fmt, ...)
167 {
168 	va_list args;
169 
170 	if (log_level == 0 || log_len >= log_size - 1)
171 		return;
172 
173 	va_start(args, fmt);
174 	log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
175 	va_end(args);
176 }
177 
178 /* string representation of 'enum bpf_reg_type' */
179 static const char * const reg_type_str[] = {
180 	[NOT_INIT]		= "?",
181 	[UNKNOWN_VALUE]		= "inv",
182 	[PTR_TO_CTX]		= "ctx",
183 	[CONST_PTR_TO_MAP]	= "map_ptr",
184 	[PTR_TO_MAP_VALUE]	= "map_value",
185 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
186 	[PTR_TO_MAP_VALUE_ADJ]	= "map_value_adj",
187 	[FRAME_PTR]		= "fp",
188 	[PTR_TO_STACK]		= "fp",
189 	[CONST_IMM]		= "imm",
190 	[PTR_TO_PACKET]		= "pkt",
191 	[PTR_TO_PACKET_END]	= "pkt_end",
192 };
193 
194 #define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
195 static const char * const func_id_str[] = {
196 	__BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
197 };
198 #undef __BPF_FUNC_STR_FN
199 
200 static const char *func_id_name(int id)
201 {
202 	BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
203 
204 	if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
205 		return func_id_str[id];
206 	else
207 		return "unknown";
208 }
209 
210 static void print_verifier_state(struct bpf_verifier_state *state)
211 {
212 	struct bpf_reg_state *reg;
213 	enum bpf_reg_type t;
214 	int i;
215 
216 	for (i = 0; i < MAX_BPF_REG; i++) {
217 		reg = &state->regs[i];
218 		t = reg->type;
219 		if (t == NOT_INIT)
220 			continue;
221 		verbose(" R%d=%s", i, reg_type_str[t]);
222 		if (t == CONST_IMM || t == PTR_TO_STACK)
223 			verbose("%lld", reg->imm);
224 		else if (t == PTR_TO_PACKET)
225 			verbose("(id=%d,off=%d,r=%d)",
226 				reg->id, reg->off, reg->range);
227 		else if (t == UNKNOWN_VALUE && reg->imm)
228 			verbose("%lld", reg->imm);
229 		else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
230 			 t == PTR_TO_MAP_VALUE_OR_NULL ||
231 			 t == PTR_TO_MAP_VALUE_ADJ)
232 			verbose("(ks=%d,vs=%d,id=%u)",
233 				reg->map_ptr->key_size,
234 				reg->map_ptr->value_size,
235 				reg->id);
236 		if (reg->min_value != BPF_REGISTER_MIN_RANGE)
237 			verbose(",min_value=%lld",
238 				(long long)reg->min_value);
239 		if (reg->max_value != BPF_REGISTER_MAX_RANGE)
240 			verbose(",max_value=%llu",
241 				(unsigned long long)reg->max_value);
242 	}
243 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
244 		if (state->stack_slot_type[i] == STACK_SPILL)
245 			verbose(" fp%d=%s", -MAX_BPF_STACK + i,
246 				reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
247 	}
248 	verbose("\n");
249 }
250 
251 static const char *const bpf_class_string[] = {
252 	[BPF_LD]    = "ld",
253 	[BPF_LDX]   = "ldx",
254 	[BPF_ST]    = "st",
255 	[BPF_STX]   = "stx",
256 	[BPF_ALU]   = "alu",
257 	[BPF_JMP]   = "jmp",
258 	[BPF_RET]   = "BUG",
259 	[BPF_ALU64] = "alu64",
260 };
261 
262 static const char *const bpf_alu_string[16] = {
263 	[BPF_ADD >> 4]  = "+=",
264 	[BPF_SUB >> 4]  = "-=",
265 	[BPF_MUL >> 4]  = "*=",
266 	[BPF_DIV >> 4]  = "/=",
267 	[BPF_OR  >> 4]  = "|=",
268 	[BPF_AND >> 4]  = "&=",
269 	[BPF_LSH >> 4]  = "<<=",
270 	[BPF_RSH >> 4]  = ">>=",
271 	[BPF_NEG >> 4]  = "neg",
272 	[BPF_MOD >> 4]  = "%=",
273 	[BPF_XOR >> 4]  = "^=",
274 	[BPF_MOV >> 4]  = "=",
275 	[BPF_ARSH >> 4] = "s>>=",
276 	[BPF_END >> 4]  = "endian",
277 };
278 
279 static const char *const bpf_ldst_string[] = {
280 	[BPF_W >> 3]  = "u32",
281 	[BPF_H >> 3]  = "u16",
282 	[BPF_B >> 3]  = "u8",
283 	[BPF_DW >> 3] = "u64",
284 };
285 
286 static const char *const bpf_jmp_string[16] = {
287 	[BPF_JA >> 4]   = "jmp",
288 	[BPF_JEQ >> 4]  = "==",
289 	[BPF_JGT >> 4]  = ">",
290 	[BPF_JGE >> 4]  = ">=",
291 	[BPF_JSET >> 4] = "&",
292 	[BPF_JNE >> 4]  = "!=",
293 	[BPF_JSGT >> 4] = "s>",
294 	[BPF_JSGE >> 4] = "s>=",
295 	[BPF_CALL >> 4] = "call",
296 	[BPF_EXIT >> 4] = "exit",
297 };
298 
299 static void print_bpf_insn(struct bpf_insn *insn)
300 {
301 	u8 class = BPF_CLASS(insn->code);
302 
303 	if (class == BPF_ALU || class == BPF_ALU64) {
304 		if (BPF_SRC(insn->code) == BPF_X)
305 			verbose("(%02x) %sr%d %s %sr%d\n",
306 				insn->code, class == BPF_ALU ? "(u32) " : "",
307 				insn->dst_reg,
308 				bpf_alu_string[BPF_OP(insn->code) >> 4],
309 				class == BPF_ALU ? "(u32) " : "",
310 				insn->src_reg);
311 		else
312 			verbose("(%02x) %sr%d %s %s%d\n",
313 				insn->code, class == BPF_ALU ? "(u32) " : "",
314 				insn->dst_reg,
315 				bpf_alu_string[BPF_OP(insn->code) >> 4],
316 				class == BPF_ALU ? "(u32) " : "",
317 				insn->imm);
318 	} else if (class == BPF_STX) {
319 		if (BPF_MODE(insn->code) == BPF_MEM)
320 			verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
321 				insn->code,
322 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
323 				insn->dst_reg,
324 				insn->off, insn->src_reg);
325 		else if (BPF_MODE(insn->code) == BPF_XADD)
326 			verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
327 				insn->code,
328 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
329 				insn->dst_reg, insn->off,
330 				insn->src_reg);
331 		else
332 			verbose("BUG_%02x\n", insn->code);
333 	} else if (class == BPF_ST) {
334 		if (BPF_MODE(insn->code) != BPF_MEM) {
335 			verbose("BUG_st_%02x\n", insn->code);
336 			return;
337 		}
338 		verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
339 			insn->code,
340 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
341 			insn->dst_reg,
342 			insn->off, insn->imm);
343 	} else if (class == BPF_LDX) {
344 		if (BPF_MODE(insn->code) != BPF_MEM) {
345 			verbose("BUG_ldx_%02x\n", insn->code);
346 			return;
347 		}
348 		verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
349 			insn->code, insn->dst_reg,
350 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
351 			insn->src_reg, insn->off);
352 	} else if (class == BPF_LD) {
353 		if (BPF_MODE(insn->code) == BPF_ABS) {
354 			verbose("(%02x) r0 = *(%s *)skb[%d]\n",
355 				insn->code,
356 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
357 				insn->imm);
358 		} else if (BPF_MODE(insn->code) == BPF_IND) {
359 			verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
360 				insn->code,
361 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
362 				insn->src_reg, insn->imm);
363 		} else if (BPF_MODE(insn->code) == BPF_IMM) {
364 			verbose("(%02x) r%d = 0x%x\n",
365 				insn->code, insn->dst_reg, insn->imm);
366 		} else {
367 			verbose("BUG_ld_%02x\n", insn->code);
368 			return;
369 		}
370 	} else if (class == BPF_JMP) {
371 		u8 opcode = BPF_OP(insn->code);
372 
373 		if (opcode == BPF_CALL) {
374 			verbose("(%02x) call %s#%d\n", insn->code,
375 				func_id_name(insn->imm), insn->imm);
376 		} else if (insn->code == (BPF_JMP | BPF_JA)) {
377 			verbose("(%02x) goto pc%+d\n",
378 				insn->code, insn->off);
379 		} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
380 			verbose("(%02x) exit\n", insn->code);
381 		} else if (BPF_SRC(insn->code) == BPF_X) {
382 			verbose("(%02x) if r%d %s r%d goto pc%+d\n",
383 				insn->code, insn->dst_reg,
384 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
385 				insn->src_reg, insn->off);
386 		} else {
387 			verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
388 				insn->code, insn->dst_reg,
389 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
390 				insn->imm, insn->off);
391 		}
392 	} else {
393 		verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
394 	}
395 }
396 
397 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
398 {
399 	struct bpf_verifier_stack_elem *elem;
400 	int insn_idx;
401 
402 	if (env->head == NULL)
403 		return -1;
404 
405 	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
406 	insn_idx = env->head->insn_idx;
407 	if (prev_insn_idx)
408 		*prev_insn_idx = env->head->prev_insn_idx;
409 	elem = env->head->next;
410 	kfree(env->head);
411 	env->head = elem;
412 	env->stack_size--;
413 	return insn_idx;
414 }
415 
416 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
417 					     int insn_idx, int prev_insn_idx)
418 {
419 	struct bpf_verifier_stack_elem *elem;
420 
421 	elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
422 	if (!elem)
423 		goto err;
424 
425 	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
426 	elem->insn_idx = insn_idx;
427 	elem->prev_insn_idx = prev_insn_idx;
428 	elem->next = env->head;
429 	env->head = elem;
430 	env->stack_size++;
431 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
432 		verbose("BPF program is too complex\n");
433 		goto err;
434 	}
435 	return &elem->st;
436 err:
437 	/* pop all elements and return */
438 	while (pop_stack(env, NULL) >= 0);
439 	return NULL;
440 }
441 
442 #define CALLER_SAVED_REGS 6
443 static const int caller_saved[CALLER_SAVED_REGS] = {
444 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
445 };
446 
447 static void init_reg_state(struct bpf_reg_state *regs)
448 {
449 	int i;
450 
451 	for (i = 0; i < MAX_BPF_REG; i++) {
452 		regs[i].type = NOT_INIT;
453 		regs[i].imm = 0;
454 		regs[i].min_value = BPF_REGISTER_MIN_RANGE;
455 		regs[i].max_value = BPF_REGISTER_MAX_RANGE;
456 	}
457 
458 	/* frame pointer */
459 	regs[BPF_REG_FP].type = FRAME_PTR;
460 
461 	/* 1st arg to a function */
462 	regs[BPF_REG_1].type = PTR_TO_CTX;
463 }
464 
465 static void __mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
466 {
467 	regs[regno].type = UNKNOWN_VALUE;
468 	regs[regno].id = 0;
469 	regs[regno].imm = 0;
470 }
471 
472 static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
473 {
474 	BUG_ON(regno >= MAX_BPF_REG);
475 	__mark_reg_unknown_value(regs, regno);
476 }
477 
478 static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
479 {
480 	regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
481 	regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
482 }
483 
484 static void mark_reg_unknown_value_and_range(struct bpf_reg_state *regs,
485 					     u32 regno)
486 {
487 	mark_reg_unknown_value(regs, regno);
488 	reset_reg_range_values(regs, regno);
489 }
490 
491 enum reg_arg_type {
492 	SRC_OP,		/* register is used as source operand */
493 	DST_OP,		/* register is used as destination operand */
494 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
495 };
496 
497 static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
498 			 enum reg_arg_type t)
499 {
500 	if (regno >= MAX_BPF_REG) {
501 		verbose("R%d is invalid\n", regno);
502 		return -EINVAL;
503 	}
504 
505 	if (t == SRC_OP) {
506 		/* check whether register used as source operand can be read */
507 		if (regs[regno].type == NOT_INIT) {
508 			verbose("R%d !read_ok\n", regno);
509 			return -EACCES;
510 		}
511 	} else {
512 		/* check whether register used as dest operand can be written to */
513 		if (regno == BPF_REG_FP) {
514 			verbose("frame pointer is read only\n");
515 			return -EACCES;
516 		}
517 		if (t == DST_OP)
518 			mark_reg_unknown_value(regs, regno);
519 	}
520 	return 0;
521 }
522 
523 static int bpf_size_to_bytes(int bpf_size)
524 {
525 	if (bpf_size == BPF_W)
526 		return 4;
527 	else if (bpf_size == BPF_H)
528 		return 2;
529 	else if (bpf_size == BPF_B)
530 		return 1;
531 	else if (bpf_size == BPF_DW)
532 		return 8;
533 	else
534 		return -EINVAL;
535 }
536 
537 static bool is_spillable_regtype(enum bpf_reg_type type)
538 {
539 	switch (type) {
540 	case PTR_TO_MAP_VALUE:
541 	case PTR_TO_MAP_VALUE_OR_NULL:
542 	case PTR_TO_MAP_VALUE_ADJ:
543 	case PTR_TO_STACK:
544 	case PTR_TO_CTX:
545 	case PTR_TO_PACKET:
546 	case PTR_TO_PACKET_END:
547 	case FRAME_PTR:
548 	case CONST_PTR_TO_MAP:
549 		return true;
550 	default:
551 		return false;
552 	}
553 }
554 
555 /* check_stack_read/write functions track spill/fill of registers,
556  * stack boundary and alignment are checked in check_mem_access()
557  */
558 static int check_stack_write(struct bpf_verifier_state *state, int off,
559 			     int size, int value_regno)
560 {
561 	int i;
562 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
563 	 * so it's aligned access and [off, off + size) are within stack limits
564 	 */
565 
566 	if (value_regno >= 0 &&
567 	    is_spillable_regtype(state->regs[value_regno].type)) {
568 
569 		/* register containing pointer is being spilled into stack */
570 		if (size != BPF_REG_SIZE) {
571 			verbose("invalid size of register spill\n");
572 			return -EACCES;
573 		}
574 
575 		/* save register state */
576 		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
577 			state->regs[value_regno];
578 
579 		for (i = 0; i < BPF_REG_SIZE; i++)
580 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
581 	} else {
582 		/* regular write of data into stack */
583 		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
584 			(struct bpf_reg_state) {};
585 
586 		for (i = 0; i < size; i++)
587 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
588 	}
589 	return 0;
590 }
591 
592 static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
593 			    int value_regno)
594 {
595 	u8 *slot_type;
596 	int i;
597 
598 	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
599 
600 	if (slot_type[0] == STACK_SPILL) {
601 		if (size != BPF_REG_SIZE) {
602 			verbose("invalid size of register spill\n");
603 			return -EACCES;
604 		}
605 		for (i = 1; i < BPF_REG_SIZE; i++) {
606 			if (slot_type[i] != STACK_SPILL) {
607 				verbose("corrupted spill memory\n");
608 				return -EACCES;
609 			}
610 		}
611 
612 		if (value_regno >= 0)
613 			/* restore register state from stack */
614 			state->regs[value_regno] =
615 				state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
616 		return 0;
617 	} else {
618 		for (i = 0; i < size; i++) {
619 			if (slot_type[i] != STACK_MISC) {
620 				verbose("invalid read from stack off %d+%d size %d\n",
621 					off, i, size);
622 				return -EACCES;
623 			}
624 		}
625 		if (value_regno >= 0)
626 			/* have read misc data from the stack */
627 			mark_reg_unknown_value_and_range(state->regs,
628 							 value_regno);
629 		return 0;
630 	}
631 }
632 
633 /* check read/write into map element returned by bpf_map_lookup_elem() */
634 static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
635 			    int size)
636 {
637 	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
638 
639 	if (off < 0 || size <= 0 || off + size > map->value_size) {
640 		verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
641 			map->value_size, off, size);
642 		return -EACCES;
643 	}
644 	return 0;
645 }
646 
647 /* check read/write into an adjusted map element */
648 static int check_map_access_adj(struct bpf_verifier_env *env, u32 regno,
649 				int off, int size)
650 {
651 	struct bpf_verifier_state *state = &env->cur_state;
652 	struct bpf_reg_state *reg = &state->regs[regno];
653 	int err;
654 
655 	/* We adjusted the register to this map value, so we
656 	 * need to change off and size to min_value and max_value
657 	 * respectively to make sure our theoretical access will be
658 	 * safe.
659 	 */
660 	if (log_level)
661 		print_verifier_state(state);
662 	env->varlen_map_value_access = true;
663 	/* The minimum value is only important with signed
664 	 * comparisons where we can't assume the floor of a
665 	 * value is 0.  If we are using signed variables for our
666 	 * index'es we need to make sure that whatever we use
667 	 * will have a set floor within our range.
668 	 */
669 	if (reg->min_value < 0) {
670 		verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
671 			regno);
672 		return -EACCES;
673 	}
674 	err = check_map_access(env, regno, reg->min_value + off, size);
675 	if (err) {
676 		verbose("R%d min value is outside of the array range\n",
677 			regno);
678 		return err;
679 	}
680 
681 	/* If we haven't set a max value then we need to bail
682 	 * since we can't be sure we won't do bad things.
683 	 */
684 	if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
685 		verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
686 			regno);
687 		return -EACCES;
688 	}
689 	return check_map_access(env, regno, reg->max_value + off, size);
690 }
691 
692 #define MAX_PACKET_OFF 0xffff
693 
694 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
695 				       const struct bpf_call_arg_meta *meta,
696 				       enum bpf_access_type t)
697 {
698 	switch (env->prog->type) {
699 	case BPF_PROG_TYPE_LWT_IN:
700 	case BPF_PROG_TYPE_LWT_OUT:
701 		/* dst_input() and dst_output() can't write for now */
702 		if (t == BPF_WRITE)
703 			return false;
704 		/* fallthrough */
705 	case BPF_PROG_TYPE_SCHED_CLS:
706 	case BPF_PROG_TYPE_SCHED_ACT:
707 	case BPF_PROG_TYPE_XDP:
708 	case BPF_PROG_TYPE_LWT_XMIT:
709 		if (meta)
710 			return meta->pkt_access;
711 
712 		env->seen_direct_write = true;
713 		return true;
714 	default:
715 		return false;
716 	}
717 }
718 
719 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
720 			       int size)
721 {
722 	struct bpf_reg_state *regs = env->cur_state.regs;
723 	struct bpf_reg_state *reg = &regs[regno];
724 
725 	off += reg->off;
726 	if (off < 0 || size <= 0 || off + size > reg->range) {
727 		verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
728 			off, size, regno, reg->id, reg->off, reg->range);
729 		return -EACCES;
730 	}
731 	return 0;
732 }
733 
734 /* check access to 'struct bpf_context' fields */
735 static int check_ctx_access(struct bpf_verifier_env *env, int off, int size,
736 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
737 {
738 	/* for analyzer ctx accesses are already validated and converted */
739 	if (env->analyzer_ops)
740 		return 0;
741 
742 	if (env->prog->aux->ops->is_valid_access &&
743 	    env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
744 		/* remember the offset of last byte accessed in ctx */
745 		if (env->prog->aux->max_ctx_offset < off + size)
746 			env->prog->aux->max_ctx_offset = off + size;
747 		return 0;
748 	}
749 
750 	verbose("invalid bpf_context access off=%d size=%d\n", off, size);
751 	return -EACCES;
752 }
753 
754 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
755 {
756 	if (env->allow_ptr_leaks)
757 		return false;
758 
759 	switch (env->cur_state.regs[regno].type) {
760 	case UNKNOWN_VALUE:
761 	case CONST_IMM:
762 		return false;
763 	default:
764 		return true;
765 	}
766 }
767 
768 static int check_ptr_alignment(struct bpf_verifier_env *env,
769 			       struct bpf_reg_state *reg, int off, int size)
770 {
771 	if (reg->type != PTR_TO_PACKET && reg->type != PTR_TO_MAP_VALUE_ADJ) {
772 		if (off % size != 0) {
773 			verbose("misaligned access off %d size %d\n",
774 				off, size);
775 			return -EACCES;
776 		} else {
777 			return 0;
778 		}
779 	}
780 
781 	if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
782 		/* misaligned access to packet is ok on x86,arm,arm64 */
783 		return 0;
784 
785 	if (reg->id && size != 1) {
786 		verbose("Unknown packet alignment. Only byte-sized access allowed\n");
787 		return -EACCES;
788 	}
789 
790 	/* skb->data is NET_IP_ALIGN-ed */
791 	if (reg->type == PTR_TO_PACKET &&
792 	    (NET_IP_ALIGN + reg->off + off) % size != 0) {
793 		verbose("misaligned packet access off %d+%d+%d size %d\n",
794 			NET_IP_ALIGN, reg->off, off, size);
795 		return -EACCES;
796 	}
797 	return 0;
798 }
799 
800 /* check whether memory at (regno + off) is accessible for t = (read | write)
801  * if t==write, value_regno is a register which value is stored into memory
802  * if t==read, value_regno is a register which will receive the value from memory
803  * if t==write && value_regno==-1, some unknown value is stored into memory
804  * if t==read && value_regno==-1, don't care what we read from memory
805  */
806 static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off,
807 			    int bpf_size, enum bpf_access_type t,
808 			    int value_regno)
809 {
810 	struct bpf_verifier_state *state = &env->cur_state;
811 	struct bpf_reg_state *reg = &state->regs[regno];
812 	int size, err = 0;
813 
814 	if (reg->type == PTR_TO_STACK)
815 		off += reg->imm;
816 
817 	size = bpf_size_to_bytes(bpf_size);
818 	if (size < 0)
819 		return size;
820 
821 	err = check_ptr_alignment(env, reg, off, size);
822 	if (err)
823 		return err;
824 
825 	if (reg->type == PTR_TO_MAP_VALUE ||
826 	    reg->type == PTR_TO_MAP_VALUE_ADJ) {
827 		if (t == BPF_WRITE && value_regno >= 0 &&
828 		    is_pointer_value(env, value_regno)) {
829 			verbose("R%d leaks addr into map\n", value_regno);
830 			return -EACCES;
831 		}
832 
833 		if (reg->type == PTR_TO_MAP_VALUE_ADJ)
834 			err = check_map_access_adj(env, regno, off, size);
835 		else
836 			err = check_map_access(env, regno, off, size);
837 		if (!err && t == BPF_READ && value_regno >= 0)
838 			mark_reg_unknown_value_and_range(state->regs,
839 							 value_regno);
840 
841 	} else if (reg->type == PTR_TO_CTX) {
842 		enum bpf_reg_type reg_type = UNKNOWN_VALUE;
843 
844 		if (t == BPF_WRITE && value_regno >= 0 &&
845 		    is_pointer_value(env, value_regno)) {
846 			verbose("R%d leaks addr into ctx\n", value_regno);
847 			return -EACCES;
848 		}
849 		err = check_ctx_access(env, off, size, t, &reg_type);
850 		if (!err && t == BPF_READ && value_regno >= 0) {
851 			mark_reg_unknown_value_and_range(state->regs,
852 							 value_regno);
853 			/* note that reg.[id|off|range] == 0 */
854 			state->regs[value_regno].type = reg_type;
855 		}
856 
857 	} else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
858 		if (off >= 0 || off < -MAX_BPF_STACK) {
859 			verbose("invalid stack off=%d size=%d\n", off, size);
860 			return -EACCES;
861 		}
862 		if (t == BPF_WRITE) {
863 			if (!env->allow_ptr_leaks &&
864 			    state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
865 			    size != BPF_REG_SIZE) {
866 				verbose("attempt to corrupt spilled pointer on stack\n");
867 				return -EACCES;
868 			}
869 			err = check_stack_write(state, off, size, value_regno);
870 		} else {
871 			err = check_stack_read(state, off, size, value_regno);
872 		}
873 	} else if (state->regs[regno].type == PTR_TO_PACKET) {
874 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
875 			verbose("cannot write into packet\n");
876 			return -EACCES;
877 		}
878 		if (t == BPF_WRITE && value_regno >= 0 &&
879 		    is_pointer_value(env, value_regno)) {
880 			verbose("R%d leaks addr into packet\n", value_regno);
881 			return -EACCES;
882 		}
883 		err = check_packet_access(env, regno, off, size);
884 		if (!err && t == BPF_READ && value_regno >= 0)
885 			mark_reg_unknown_value_and_range(state->regs,
886 							 value_regno);
887 	} else {
888 		verbose("R%d invalid mem access '%s'\n",
889 			regno, reg_type_str[reg->type]);
890 		return -EACCES;
891 	}
892 
893 	if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
894 	    state->regs[value_regno].type == UNKNOWN_VALUE) {
895 		/* 1 or 2 byte load zero-extends, determine the number of
896 		 * zero upper bits. Not doing it fo 4 byte load, since
897 		 * such values cannot be added to ptr_to_packet anyway.
898 		 */
899 		state->regs[value_regno].imm = 64 - size * 8;
900 	}
901 	return err;
902 }
903 
904 static int check_xadd(struct bpf_verifier_env *env, struct bpf_insn *insn)
905 {
906 	struct bpf_reg_state *regs = env->cur_state.regs;
907 	int err;
908 
909 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
910 	    insn->imm != 0) {
911 		verbose("BPF_XADD uses reserved fields\n");
912 		return -EINVAL;
913 	}
914 
915 	/* check src1 operand */
916 	err = check_reg_arg(regs, insn->src_reg, SRC_OP);
917 	if (err)
918 		return err;
919 
920 	/* check src2 operand */
921 	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
922 	if (err)
923 		return err;
924 
925 	/* check whether atomic_add can read the memory */
926 	err = check_mem_access(env, insn->dst_reg, insn->off,
927 			       BPF_SIZE(insn->code), BPF_READ, -1);
928 	if (err)
929 		return err;
930 
931 	/* check whether atomic_add can write into the same memory */
932 	return check_mem_access(env, insn->dst_reg, insn->off,
933 				BPF_SIZE(insn->code), BPF_WRITE, -1);
934 }
935 
936 /* when register 'regno' is passed into function that will read 'access_size'
937  * bytes from that pointer, make sure that it's within stack boundary
938  * and all elements of stack are initialized
939  */
940 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
941 				int access_size, bool zero_size_allowed,
942 				struct bpf_call_arg_meta *meta)
943 {
944 	struct bpf_verifier_state *state = &env->cur_state;
945 	struct bpf_reg_state *regs = state->regs;
946 	int off, i;
947 
948 	if (regs[regno].type != PTR_TO_STACK) {
949 		if (zero_size_allowed && access_size == 0 &&
950 		    regs[regno].type == CONST_IMM &&
951 		    regs[regno].imm  == 0)
952 			return 0;
953 
954 		verbose("R%d type=%s expected=%s\n", regno,
955 			reg_type_str[regs[regno].type],
956 			reg_type_str[PTR_TO_STACK]);
957 		return -EACCES;
958 	}
959 
960 	off = regs[regno].imm;
961 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
962 	    access_size <= 0) {
963 		verbose("invalid stack type R%d off=%d access_size=%d\n",
964 			regno, off, access_size);
965 		return -EACCES;
966 	}
967 
968 	if (meta && meta->raw_mode) {
969 		meta->access_size = access_size;
970 		meta->regno = regno;
971 		return 0;
972 	}
973 
974 	for (i = 0; i < access_size; i++) {
975 		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
976 			verbose("invalid indirect read from stack off %d+%d size %d\n",
977 				off, i, access_size);
978 			return -EACCES;
979 		}
980 	}
981 	return 0;
982 }
983 
984 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
985 				   int access_size, bool zero_size_allowed,
986 				   struct bpf_call_arg_meta *meta)
987 {
988 	struct bpf_reg_state *regs = env->cur_state.regs;
989 
990 	switch (regs[regno].type) {
991 	case PTR_TO_PACKET:
992 		return check_packet_access(env, regno, 0, access_size);
993 	case PTR_TO_MAP_VALUE:
994 		return check_map_access(env, regno, 0, access_size);
995 	case PTR_TO_MAP_VALUE_ADJ:
996 		return check_map_access_adj(env, regno, 0, access_size);
997 	default: /* const_imm|ptr_to_stack or invalid ptr */
998 		return check_stack_boundary(env, regno, access_size,
999 					    zero_size_allowed, meta);
1000 	}
1001 }
1002 
1003 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1004 			  enum bpf_arg_type arg_type,
1005 			  struct bpf_call_arg_meta *meta)
1006 {
1007 	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1008 	enum bpf_reg_type expected_type, type = reg->type;
1009 	int err = 0;
1010 
1011 	if (arg_type == ARG_DONTCARE)
1012 		return 0;
1013 
1014 	if (type == NOT_INIT) {
1015 		verbose("R%d !read_ok\n", regno);
1016 		return -EACCES;
1017 	}
1018 
1019 	if (arg_type == ARG_ANYTHING) {
1020 		if (is_pointer_value(env, regno)) {
1021 			verbose("R%d leaks addr into helper function\n", regno);
1022 			return -EACCES;
1023 		}
1024 		return 0;
1025 	}
1026 
1027 	if (type == PTR_TO_PACKET &&
1028 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1029 		verbose("helper access to the packet is not allowed\n");
1030 		return -EACCES;
1031 	}
1032 
1033 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1034 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
1035 		expected_type = PTR_TO_STACK;
1036 		if (type != PTR_TO_PACKET && type != expected_type)
1037 			goto err_type;
1038 	} else if (arg_type == ARG_CONST_SIZE ||
1039 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1040 		expected_type = CONST_IMM;
1041 		/* One exception. Allow UNKNOWN_VALUE registers when the
1042 		 * boundaries are known and don't cause unsafe memory accesses
1043 		 */
1044 		if (type != UNKNOWN_VALUE && type != expected_type)
1045 			goto err_type;
1046 	} else if (arg_type == ARG_CONST_MAP_PTR) {
1047 		expected_type = CONST_PTR_TO_MAP;
1048 		if (type != expected_type)
1049 			goto err_type;
1050 	} else if (arg_type == ARG_PTR_TO_CTX) {
1051 		expected_type = PTR_TO_CTX;
1052 		if (type != expected_type)
1053 			goto err_type;
1054 	} else if (arg_type == ARG_PTR_TO_MEM ||
1055 		   arg_type == ARG_PTR_TO_UNINIT_MEM) {
1056 		expected_type = PTR_TO_STACK;
1057 		/* One exception here. In case function allows for NULL to be
1058 		 * passed in as argument, it's a CONST_IMM type. Final test
1059 		 * happens during stack boundary checking.
1060 		 */
1061 		if (type == CONST_IMM && reg->imm == 0)
1062 			/* final test in check_stack_boundary() */;
1063 		else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
1064 			 type != PTR_TO_MAP_VALUE_ADJ && type != expected_type)
1065 			goto err_type;
1066 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1067 	} else {
1068 		verbose("unsupported arg_type %d\n", arg_type);
1069 		return -EFAULT;
1070 	}
1071 
1072 	if (arg_type == ARG_CONST_MAP_PTR) {
1073 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1074 		meta->map_ptr = reg->map_ptr;
1075 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1076 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
1077 		 * check that [key, key + map->key_size) are within
1078 		 * stack limits and initialized
1079 		 */
1080 		if (!meta->map_ptr) {
1081 			/* in function declaration map_ptr must come before
1082 			 * map_key, so that it's verified and known before
1083 			 * we have to check map_key here. Otherwise it means
1084 			 * that kernel subsystem misconfigured verifier
1085 			 */
1086 			verbose("invalid map_ptr to access map->key\n");
1087 			return -EACCES;
1088 		}
1089 		if (type == PTR_TO_PACKET)
1090 			err = check_packet_access(env, regno, 0,
1091 						  meta->map_ptr->key_size);
1092 		else
1093 			err = check_stack_boundary(env, regno,
1094 						   meta->map_ptr->key_size,
1095 						   false, NULL);
1096 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1097 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
1098 		 * check [value, value + map->value_size) validity
1099 		 */
1100 		if (!meta->map_ptr) {
1101 			/* kernel subsystem misconfigured verifier */
1102 			verbose("invalid map_ptr to access map->value\n");
1103 			return -EACCES;
1104 		}
1105 		if (type == PTR_TO_PACKET)
1106 			err = check_packet_access(env, regno, 0,
1107 						  meta->map_ptr->value_size);
1108 		else
1109 			err = check_stack_boundary(env, regno,
1110 						   meta->map_ptr->value_size,
1111 						   false, NULL);
1112 	} else if (arg_type == ARG_CONST_SIZE ||
1113 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1114 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1115 
1116 		/* bpf_xxx(..., buf, len) call will access 'len' bytes
1117 		 * from stack pointer 'buf'. Check it
1118 		 * note: regno == len, regno - 1 == buf
1119 		 */
1120 		if (regno == 0) {
1121 			/* kernel subsystem misconfigured verifier */
1122 			verbose("ARG_CONST_SIZE cannot be first argument\n");
1123 			return -EACCES;
1124 		}
1125 
1126 		/* If the register is UNKNOWN_VALUE, the access check happens
1127 		 * using its boundaries. Otherwise, just use its imm
1128 		 */
1129 		if (type == UNKNOWN_VALUE) {
1130 			/* For unprivileged variable accesses, disable raw
1131 			 * mode so that the program is required to
1132 			 * initialize all the memory that the helper could
1133 			 * just partially fill up.
1134 			 */
1135 			meta = NULL;
1136 
1137 			if (reg->min_value < 0) {
1138 				verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
1139 					regno);
1140 				return -EACCES;
1141 			}
1142 
1143 			if (reg->min_value == 0) {
1144 				err = check_helper_mem_access(env, regno - 1, 0,
1145 							      zero_size_allowed,
1146 							      meta);
1147 				if (err)
1148 					return err;
1149 			}
1150 
1151 			if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
1152 				verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1153 					regno);
1154 				return -EACCES;
1155 			}
1156 			err = check_helper_mem_access(env, regno - 1,
1157 						      reg->max_value,
1158 						      zero_size_allowed, meta);
1159 			if (err)
1160 				return err;
1161 		} else {
1162 			/* register is CONST_IMM */
1163 			err = check_helper_mem_access(env, regno - 1, reg->imm,
1164 						      zero_size_allowed, meta);
1165 		}
1166 	}
1167 
1168 	return err;
1169 err_type:
1170 	verbose("R%d type=%s expected=%s\n", regno,
1171 		reg_type_str[type], reg_type_str[expected_type]);
1172 	return -EACCES;
1173 }
1174 
1175 static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1176 {
1177 	if (!map)
1178 		return 0;
1179 
1180 	/* We need a two way check, first is from map perspective ... */
1181 	switch (map->map_type) {
1182 	case BPF_MAP_TYPE_PROG_ARRAY:
1183 		if (func_id != BPF_FUNC_tail_call)
1184 			goto error;
1185 		break;
1186 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1187 		if (func_id != BPF_FUNC_perf_event_read &&
1188 		    func_id != BPF_FUNC_perf_event_output)
1189 			goto error;
1190 		break;
1191 	case BPF_MAP_TYPE_STACK_TRACE:
1192 		if (func_id != BPF_FUNC_get_stackid)
1193 			goto error;
1194 		break;
1195 	case BPF_MAP_TYPE_CGROUP_ARRAY:
1196 		if (func_id != BPF_FUNC_skb_under_cgroup &&
1197 		    func_id != BPF_FUNC_current_task_under_cgroup)
1198 			goto error;
1199 		break;
1200 	default:
1201 		break;
1202 	}
1203 
1204 	/* ... and second from the function itself. */
1205 	switch (func_id) {
1206 	case BPF_FUNC_tail_call:
1207 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1208 			goto error;
1209 		break;
1210 	case BPF_FUNC_perf_event_read:
1211 	case BPF_FUNC_perf_event_output:
1212 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1213 			goto error;
1214 		break;
1215 	case BPF_FUNC_get_stackid:
1216 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1217 			goto error;
1218 		break;
1219 	case BPF_FUNC_current_task_under_cgroup:
1220 	case BPF_FUNC_skb_under_cgroup:
1221 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1222 			goto error;
1223 		break;
1224 	default:
1225 		break;
1226 	}
1227 
1228 	return 0;
1229 error:
1230 	verbose("cannot pass map_type %d into func %s#%d\n",
1231 		map->map_type, func_id_name(func_id), func_id);
1232 	return -EINVAL;
1233 }
1234 
1235 static int check_raw_mode(const struct bpf_func_proto *fn)
1236 {
1237 	int count = 0;
1238 
1239 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1240 		count++;
1241 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1242 		count++;
1243 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1244 		count++;
1245 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1246 		count++;
1247 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1248 		count++;
1249 
1250 	return count > 1 ? -EINVAL : 0;
1251 }
1252 
1253 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1254 {
1255 	struct bpf_verifier_state *state = &env->cur_state;
1256 	struct bpf_reg_state *regs = state->regs, *reg;
1257 	int i;
1258 
1259 	for (i = 0; i < MAX_BPF_REG; i++)
1260 		if (regs[i].type == PTR_TO_PACKET ||
1261 		    regs[i].type == PTR_TO_PACKET_END)
1262 			mark_reg_unknown_value(regs, i);
1263 
1264 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1265 		if (state->stack_slot_type[i] != STACK_SPILL)
1266 			continue;
1267 		reg = &state->spilled_regs[i / BPF_REG_SIZE];
1268 		if (reg->type != PTR_TO_PACKET &&
1269 		    reg->type != PTR_TO_PACKET_END)
1270 			continue;
1271 		reg->type = UNKNOWN_VALUE;
1272 		reg->imm = 0;
1273 	}
1274 }
1275 
1276 static int check_call(struct bpf_verifier_env *env, int func_id)
1277 {
1278 	struct bpf_verifier_state *state = &env->cur_state;
1279 	const struct bpf_func_proto *fn = NULL;
1280 	struct bpf_reg_state *regs = state->regs;
1281 	struct bpf_reg_state *reg;
1282 	struct bpf_call_arg_meta meta;
1283 	bool changes_data;
1284 	int i, err;
1285 
1286 	/* find function prototype */
1287 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1288 		verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
1289 		return -EINVAL;
1290 	}
1291 
1292 	if (env->prog->aux->ops->get_func_proto)
1293 		fn = env->prog->aux->ops->get_func_proto(func_id);
1294 
1295 	if (!fn) {
1296 		verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
1297 		return -EINVAL;
1298 	}
1299 
1300 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1301 	if (!env->prog->gpl_compatible && fn->gpl_only) {
1302 		verbose("cannot call GPL only function from proprietary program\n");
1303 		return -EINVAL;
1304 	}
1305 
1306 	changes_data = bpf_helper_changes_pkt_data(fn->func);
1307 
1308 	memset(&meta, 0, sizeof(meta));
1309 	meta.pkt_access = fn->pkt_access;
1310 
1311 	/* We only support one arg being in raw mode at the moment, which
1312 	 * is sufficient for the helper functions we have right now.
1313 	 */
1314 	err = check_raw_mode(fn);
1315 	if (err) {
1316 		verbose("kernel subsystem misconfigured func %s#%d\n",
1317 			func_id_name(func_id), func_id);
1318 		return err;
1319 	}
1320 
1321 	/* check args */
1322 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1323 	if (err)
1324 		return err;
1325 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1326 	if (err)
1327 		return err;
1328 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1329 	if (err)
1330 		return err;
1331 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1332 	if (err)
1333 		return err;
1334 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1335 	if (err)
1336 		return err;
1337 
1338 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
1339 	 * is inferred from register state.
1340 	 */
1341 	for (i = 0; i < meta.access_size; i++) {
1342 		err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
1343 		if (err)
1344 			return err;
1345 	}
1346 
1347 	/* reset caller saved regs */
1348 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1349 		reg = regs + caller_saved[i];
1350 		reg->type = NOT_INIT;
1351 		reg->imm = 0;
1352 	}
1353 
1354 	/* update return register */
1355 	if (fn->ret_type == RET_INTEGER) {
1356 		regs[BPF_REG_0].type = UNKNOWN_VALUE;
1357 	} else if (fn->ret_type == RET_VOID) {
1358 		regs[BPF_REG_0].type = NOT_INIT;
1359 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1360 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1361 		regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
1362 		/* remember map_ptr, so that check_map_access()
1363 		 * can check 'value_size' boundary of memory access
1364 		 * to map element returned from bpf_map_lookup_elem()
1365 		 */
1366 		if (meta.map_ptr == NULL) {
1367 			verbose("kernel subsystem misconfigured verifier\n");
1368 			return -EINVAL;
1369 		}
1370 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1371 		regs[BPF_REG_0].id = ++env->id_gen;
1372 	} else {
1373 		verbose("unknown return type %d of func %s#%d\n",
1374 			fn->ret_type, func_id_name(func_id), func_id);
1375 		return -EINVAL;
1376 	}
1377 
1378 	err = check_map_func_compatibility(meta.map_ptr, func_id);
1379 	if (err)
1380 		return err;
1381 
1382 	if (changes_data)
1383 		clear_all_pkt_pointers(env);
1384 	return 0;
1385 }
1386 
1387 static int check_packet_ptr_add(struct bpf_verifier_env *env,
1388 				struct bpf_insn *insn)
1389 {
1390 	struct bpf_reg_state *regs = env->cur_state.regs;
1391 	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1392 	struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1393 	struct bpf_reg_state tmp_reg;
1394 	s32 imm;
1395 
1396 	if (BPF_SRC(insn->code) == BPF_K) {
1397 		/* pkt_ptr += imm */
1398 		imm = insn->imm;
1399 
1400 add_imm:
1401 		if (imm < 0) {
1402 			verbose("addition of negative constant to packet pointer is not allowed\n");
1403 			return -EACCES;
1404 		}
1405 		if (imm >= MAX_PACKET_OFF ||
1406 		    imm + dst_reg->off >= MAX_PACKET_OFF) {
1407 			verbose("constant %d is too large to add to packet pointer\n",
1408 				imm);
1409 			return -EACCES;
1410 		}
1411 		/* a constant was added to pkt_ptr.
1412 		 * Remember it while keeping the same 'id'
1413 		 */
1414 		dst_reg->off += imm;
1415 	} else {
1416 		if (src_reg->type == PTR_TO_PACKET) {
1417 			/* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1418 			tmp_reg = *dst_reg;  /* save r7 state */
1419 			*dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1420 			src_reg = &tmp_reg;  /* pretend it's src_reg state */
1421 			/* if the checks below reject it, the copy won't matter,
1422 			 * since we're rejecting the whole program. If all ok,
1423 			 * then imm22 state will be added to r7
1424 			 * and r7 will be pkt(id=0,off=22,r=62) while
1425 			 * r6 will stay as pkt(id=0,off=0,r=62)
1426 			 */
1427 		}
1428 
1429 		if (src_reg->type == CONST_IMM) {
1430 			/* pkt_ptr += reg where reg is known constant */
1431 			imm = src_reg->imm;
1432 			goto add_imm;
1433 		}
1434 		/* disallow pkt_ptr += reg
1435 		 * if reg is not uknown_value with guaranteed zero upper bits
1436 		 * otherwise pkt_ptr may overflow and addition will become
1437 		 * subtraction which is not allowed
1438 		 */
1439 		if (src_reg->type != UNKNOWN_VALUE) {
1440 			verbose("cannot add '%s' to ptr_to_packet\n",
1441 				reg_type_str[src_reg->type]);
1442 			return -EACCES;
1443 		}
1444 		if (src_reg->imm < 48) {
1445 			verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1446 				src_reg->imm);
1447 			return -EACCES;
1448 		}
1449 		/* dst_reg stays as pkt_ptr type and since some positive
1450 		 * integer value was added to the pointer, increment its 'id'
1451 		 */
1452 		dst_reg->id = ++env->id_gen;
1453 
1454 		/* something was added to pkt_ptr, set range and off to zero */
1455 		dst_reg->off = 0;
1456 		dst_reg->range = 0;
1457 	}
1458 	return 0;
1459 }
1460 
1461 static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
1462 {
1463 	struct bpf_reg_state *regs = env->cur_state.regs;
1464 	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1465 	u8 opcode = BPF_OP(insn->code);
1466 	s64 imm_log2;
1467 
1468 	/* for type == UNKNOWN_VALUE:
1469 	 * imm > 0 -> number of zero upper bits
1470 	 * imm == 0 -> don't track which is the same as all bits can be non-zero
1471 	 */
1472 
1473 	if (BPF_SRC(insn->code) == BPF_X) {
1474 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1475 
1476 		if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1477 		    dst_reg->imm && opcode == BPF_ADD) {
1478 			/* dreg += sreg
1479 			 * where both have zero upper bits. Adding them
1480 			 * can only result making one more bit non-zero
1481 			 * in the larger value.
1482 			 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1483 			 *     0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1484 			 */
1485 			dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1486 			dst_reg->imm--;
1487 			return 0;
1488 		}
1489 		if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1490 		    dst_reg->imm && opcode == BPF_ADD) {
1491 			/* dreg += sreg
1492 			 * where dreg has zero upper bits and sreg is const.
1493 			 * Adding them can only result making one more bit
1494 			 * non-zero in the larger value.
1495 			 */
1496 			imm_log2 = __ilog2_u64((long long)src_reg->imm);
1497 			dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1498 			dst_reg->imm--;
1499 			return 0;
1500 		}
1501 		/* all other cases non supported yet, just mark dst_reg */
1502 		dst_reg->imm = 0;
1503 		return 0;
1504 	}
1505 
1506 	/* sign extend 32-bit imm into 64-bit to make sure that
1507 	 * negative values occupy bit 63. Note ilog2() would have
1508 	 * been incorrect, since sizeof(insn->imm) == 4
1509 	 */
1510 	imm_log2 = __ilog2_u64((long long)insn->imm);
1511 
1512 	if (dst_reg->imm && opcode == BPF_LSH) {
1513 		/* reg <<= imm
1514 		 * if reg was a result of 2 byte load, then its imm == 48
1515 		 * which means that upper 48 bits are zero and shifting this reg
1516 		 * left by 4 would mean that upper 44 bits are still zero
1517 		 */
1518 		dst_reg->imm -= insn->imm;
1519 	} else if (dst_reg->imm && opcode == BPF_MUL) {
1520 		/* reg *= imm
1521 		 * if multiplying by 14 subtract 4
1522 		 * This is conservative calculation of upper zero bits.
1523 		 * It's not trying to special case insn->imm == 1 or 0 cases
1524 		 */
1525 		dst_reg->imm -= imm_log2 + 1;
1526 	} else if (opcode == BPF_AND) {
1527 		/* reg &= imm */
1528 		dst_reg->imm = 63 - imm_log2;
1529 	} else if (dst_reg->imm && opcode == BPF_ADD) {
1530 		/* reg += imm */
1531 		dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1532 		dst_reg->imm--;
1533 	} else if (opcode == BPF_RSH) {
1534 		/* reg >>= imm
1535 		 * which means that after right shift, upper bits will be zero
1536 		 * note that verifier already checked that
1537 		 * 0 <= imm < 64 for shift insn
1538 		 */
1539 		dst_reg->imm += insn->imm;
1540 		if (unlikely(dst_reg->imm > 64))
1541 			/* some dumb code did:
1542 			 * r2 = *(u32 *)mem;
1543 			 * r2 >>= 32;
1544 			 * and all bits are zero now */
1545 			dst_reg->imm = 64;
1546 	} else {
1547 		/* all other alu ops, means that we don't know what will
1548 		 * happen to the value, mark it with unknown number of zero bits
1549 		 */
1550 		dst_reg->imm = 0;
1551 	}
1552 
1553 	if (dst_reg->imm < 0) {
1554 		/* all 64 bits of the register can contain non-zero bits
1555 		 * and such value cannot be added to ptr_to_packet, since it
1556 		 * may overflow, mark it as unknown to avoid further eval
1557 		 */
1558 		dst_reg->imm = 0;
1559 	}
1560 	return 0;
1561 }
1562 
1563 static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
1564 				struct bpf_insn *insn)
1565 {
1566 	struct bpf_reg_state *regs = env->cur_state.regs;
1567 	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1568 	struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1569 	u8 opcode = BPF_OP(insn->code);
1570 	u64 dst_imm = dst_reg->imm;
1571 
1572 	/* dst_reg->type == CONST_IMM here. Simulate execution of insns
1573 	 * containing ALU ops. Don't care about overflow or negative
1574 	 * values, just add/sub/... them; registers are in u64.
1575 	 */
1576 	if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K) {
1577 		dst_imm += insn->imm;
1578 	} else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1579 		   src_reg->type == CONST_IMM) {
1580 		dst_imm += src_reg->imm;
1581 	} else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_K) {
1582 		dst_imm -= insn->imm;
1583 	} else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_X &&
1584 		   src_reg->type == CONST_IMM) {
1585 		dst_imm -= src_reg->imm;
1586 	} else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_K) {
1587 		dst_imm *= insn->imm;
1588 	} else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_X &&
1589 		   src_reg->type == CONST_IMM) {
1590 		dst_imm *= src_reg->imm;
1591 	} else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K) {
1592 		dst_imm |= insn->imm;
1593 	} else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X &&
1594 		   src_reg->type == CONST_IMM) {
1595 		dst_imm |= src_reg->imm;
1596 	} else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_K) {
1597 		dst_imm &= insn->imm;
1598 	} else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_X &&
1599 		   src_reg->type == CONST_IMM) {
1600 		dst_imm &= src_reg->imm;
1601 	} else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_K) {
1602 		dst_imm >>= insn->imm;
1603 	} else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_X &&
1604 		   src_reg->type == CONST_IMM) {
1605 		dst_imm >>= src_reg->imm;
1606 	} else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_K) {
1607 		dst_imm <<= insn->imm;
1608 	} else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_X &&
1609 		   src_reg->type == CONST_IMM) {
1610 		dst_imm <<= src_reg->imm;
1611 	} else {
1612 		mark_reg_unknown_value(regs, insn->dst_reg);
1613 		goto out;
1614 	}
1615 
1616 	dst_reg->imm = dst_imm;
1617 out:
1618 	return 0;
1619 }
1620 
1621 static void check_reg_overflow(struct bpf_reg_state *reg)
1622 {
1623 	if (reg->max_value > BPF_REGISTER_MAX_RANGE)
1624 		reg->max_value = BPF_REGISTER_MAX_RANGE;
1625 	if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
1626 	    reg->min_value > BPF_REGISTER_MAX_RANGE)
1627 		reg->min_value = BPF_REGISTER_MIN_RANGE;
1628 }
1629 
1630 static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
1631 				    struct bpf_insn *insn)
1632 {
1633 	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1634 	s64 min_val = BPF_REGISTER_MIN_RANGE;
1635 	u64 max_val = BPF_REGISTER_MAX_RANGE;
1636 	u8 opcode = BPF_OP(insn->code);
1637 
1638 	dst_reg = &regs[insn->dst_reg];
1639 	if (BPF_SRC(insn->code) == BPF_X) {
1640 		check_reg_overflow(&regs[insn->src_reg]);
1641 		min_val = regs[insn->src_reg].min_value;
1642 		max_val = regs[insn->src_reg].max_value;
1643 
1644 		/* If the source register is a random pointer then the
1645 		 * min_value/max_value values represent the range of the known
1646 		 * accesses into that value, not the actual min/max value of the
1647 		 * register itself.  In this case we have to reset the reg range
1648 		 * values so we know it is not safe to look at.
1649 		 */
1650 		if (regs[insn->src_reg].type != CONST_IMM &&
1651 		    regs[insn->src_reg].type != UNKNOWN_VALUE) {
1652 			min_val = BPF_REGISTER_MIN_RANGE;
1653 			max_val = BPF_REGISTER_MAX_RANGE;
1654 		}
1655 	} else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
1656 		   (s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
1657 		min_val = max_val = insn->imm;
1658 	}
1659 
1660 	/* We don't know anything about what was done to this register, mark it
1661 	 * as unknown.
1662 	 */
1663 	if (min_val == BPF_REGISTER_MIN_RANGE &&
1664 	    max_val == BPF_REGISTER_MAX_RANGE) {
1665 		reset_reg_range_values(regs, insn->dst_reg);
1666 		return;
1667 	}
1668 
1669 	/* If one of our values was at the end of our ranges then we can't just
1670 	 * do our normal operations to the register, we need to set the values
1671 	 * to the min/max since they are undefined.
1672 	 */
1673 	if (min_val == BPF_REGISTER_MIN_RANGE)
1674 		dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1675 	if (max_val == BPF_REGISTER_MAX_RANGE)
1676 		dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1677 
1678 	switch (opcode) {
1679 	case BPF_ADD:
1680 		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1681 			dst_reg->min_value += min_val;
1682 		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1683 			dst_reg->max_value += max_val;
1684 		break;
1685 	case BPF_SUB:
1686 		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1687 			dst_reg->min_value -= min_val;
1688 		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1689 			dst_reg->max_value -= max_val;
1690 		break;
1691 	case BPF_MUL:
1692 		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1693 			dst_reg->min_value *= min_val;
1694 		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1695 			dst_reg->max_value *= max_val;
1696 		break;
1697 	case BPF_AND:
1698 		/* Disallow AND'ing of negative numbers, ain't nobody got time
1699 		 * for that.  Otherwise the minimum is 0 and the max is the max
1700 		 * value we could AND against.
1701 		 */
1702 		if (min_val < 0)
1703 			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1704 		else
1705 			dst_reg->min_value = 0;
1706 		dst_reg->max_value = max_val;
1707 		break;
1708 	case BPF_LSH:
1709 		/* Gotta have special overflow logic here, if we're shifting
1710 		 * more than MAX_RANGE then just assume we have an invalid
1711 		 * range.
1712 		 */
1713 		if (min_val > ilog2(BPF_REGISTER_MAX_RANGE))
1714 			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1715 		else if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1716 			dst_reg->min_value <<= min_val;
1717 
1718 		if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
1719 			dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1720 		else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1721 			dst_reg->max_value <<= max_val;
1722 		break;
1723 	case BPF_RSH:
1724 		/* RSH by a negative number is undefined, and the BPF_RSH is an
1725 		 * unsigned shift, so make the appropriate casts.
1726 		 */
1727 		if (min_val < 0 || dst_reg->min_value < 0)
1728 			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1729 		else
1730 			dst_reg->min_value =
1731 				(u64)(dst_reg->min_value) >> min_val;
1732 		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1733 			dst_reg->max_value >>= max_val;
1734 		break;
1735 	default:
1736 		reset_reg_range_values(regs, insn->dst_reg);
1737 		break;
1738 	}
1739 
1740 	check_reg_overflow(dst_reg);
1741 }
1742 
1743 /* check validity of 32-bit and 64-bit arithmetic operations */
1744 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
1745 {
1746 	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1747 	u8 opcode = BPF_OP(insn->code);
1748 	int err;
1749 
1750 	if (opcode == BPF_END || opcode == BPF_NEG) {
1751 		if (opcode == BPF_NEG) {
1752 			if (BPF_SRC(insn->code) != 0 ||
1753 			    insn->src_reg != BPF_REG_0 ||
1754 			    insn->off != 0 || insn->imm != 0) {
1755 				verbose("BPF_NEG uses reserved fields\n");
1756 				return -EINVAL;
1757 			}
1758 		} else {
1759 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1760 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1761 				verbose("BPF_END uses reserved fields\n");
1762 				return -EINVAL;
1763 			}
1764 		}
1765 
1766 		/* check src operand */
1767 		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1768 		if (err)
1769 			return err;
1770 
1771 		if (is_pointer_value(env, insn->dst_reg)) {
1772 			verbose("R%d pointer arithmetic prohibited\n",
1773 				insn->dst_reg);
1774 			return -EACCES;
1775 		}
1776 
1777 		/* check dest operand */
1778 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1779 		if (err)
1780 			return err;
1781 
1782 	} else if (opcode == BPF_MOV) {
1783 
1784 		if (BPF_SRC(insn->code) == BPF_X) {
1785 			if (insn->imm != 0 || insn->off != 0) {
1786 				verbose("BPF_MOV uses reserved fields\n");
1787 				return -EINVAL;
1788 			}
1789 
1790 			/* check src operand */
1791 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1792 			if (err)
1793 				return err;
1794 		} else {
1795 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1796 				verbose("BPF_MOV uses reserved fields\n");
1797 				return -EINVAL;
1798 			}
1799 		}
1800 
1801 		/* check dest operand */
1802 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1803 		if (err)
1804 			return err;
1805 
1806 		/* we are setting our register to something new, we need to
1807 		 * reset its range values.
1808 		 */
1809 		reset_reg_range_values(regs, insn->dst_reg);
1810 
1811 		if (BPF_SRC(insn->code) == BPF_X) {
1812 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
1813 				/* case: R1 = R2
1814 				 * copy register state to dest reg
1815 				 */
1816 				regs[insn->dst_reg] = regs[insn->src_reg];
1817 			} else {
1818 				if (is_pointer_value(env, insn->src_reg)) {
1819 					verbose("R%d partial copy of pointer\n",
1820 						insn->src_reg);
1821 					return -EACCES;
1822 				}
1823 				mark_reg_unknown_value(regs, insn->dst_reg);
1824 			}
1825 		} else {
1826 			/* case: R = imm
1827 			 * remember the value we stored into this reg
1828 			 */
1829 			regs[insn->dst_reg].type = CONST_IMM;
1830 			regs[insn->dst_reg].imm = insn->imm;
1831 			regs[insn->dst_reg].max_value = insn->imm;
1832 			regs[insn->dst_reg].min_value = insn->imm;
1833 		}
1834 
1835 	} else if (opcode > BPF_END) {
1836 		verbose("invalid BPF_ALU opcode %x\n", opcode);
1837 		return -EINVAL;
1838 
1839 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
1840 
1841 		if (BPF_SRC(insn->code) == BPF_X) {
1842 			if (insn->imm != 0 || insn->off != 0) {
1843 				verbose("BPF_ALU uses reserved fields\n");
1844 				return -EINVAL;
1845 			}
1846 			/* check src1 operand */
1847 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1848 			if (err)
1849 				return err;
1850 		} else {
1851 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1852 				verbose("BPF_ALU uses reserved fields\n");
1853 				return -EINVAL;
1854 			}
1855 		}
1856 
1857 		/* check src2 operand */
1858 		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1859 		if (err)
1860 			return err;
1861 
1862 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1863 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1864 			verbose("div by zero\n");
1865 			return -EINVAL;
1866 		}
1867 
1868 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1869 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1870 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1871 
1872 			if (insn->imm < 0 || insn->imm >= size) {
1873 				verbose("invalid shift %d\n", insn->imm);
1874 				return -EINVAL;
1875 			}
1876 		}
1877 
1878 		/* check dest operand */
1879 		err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1880 		if (err)
1881 			return err;
1882 
1883 		dst_reg = &regs[insn->dst_reg];
1884 
1885 		/* first we want to adjust our ranges. */
1886 		adjust_reg_min_max_vals(env, insn);
1887 
1888 		/* pattern match 'bpf_add Rx, imm' instruction */
1889 		if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1890 		    dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
1891 			dst_reg->type = PTR_TO_STACK;
1892 			dst_reg->imm = insn->imm;
1893 			return 0;
1894 		} else if (opcode == BPF_ADD &&
1895 			   BPF_CLASS(insn->code) == BPF_ALU64 &&
1896 			   (dst_reg->type == PTR_TO_PACKET ||
1897 			    (BPF_SRC(insn->code) == BPF_X &&
1898 			     regs[insn->src_reg].type == PTR_TO_PACKET))) {
1899 			/* ptr_to_packet += K|X */
1900 			return check_packet_ptr_add(env, insn);
1901 		} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1902 			   dst_reg->type == UNKNOWN_VALUE &&
1903 			   env->allow_ptr_leaks) {
1904 			/* unknown += K|X */
1905 			return evaluate_reg_alu(env, insn);
1906 		} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1907 			   dst_reg->type == CONST_IMM &&
1908 			   env->allow_ptr_leaks) {
1909 			/* reg_imm += K|X */
1910 			return evaluate_reg_imm_alu(env, insn);
1911 		} else if (is_pointer_value(env, insn->dst_reg)) {
1912 			verbose("R%d pointer arithmetic prohibited\n",
1913 				insn->dst_reg);
1914 			return -EACCES;
1915 		} else if (BPF_SRC(insn->code) == BPF_X &&
1916 			   is_pointer_value(env, insn->src_reg)) {
1917 			verbose("R%d pointer arithmetic prohibited\n",
1918 				insn->src_reg);
1919 			return -EACCES;
1920 		}
1921 
1922 		/* If we did pointer math on a map value then just set it to our
1923 		 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
1924 		 * loads to this register appropriately, otherwise just mark the
1925 		 * register as unknown.
1926 		 */
1927 		if (env->allow_ptr_leaks &&
1928 		    (dst_reg->type == PTR_TO_MAP_VALUE ||
1929 		     dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
1930 			dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
1931 		else
1932 			mark_reg_unknown_value(regs, insn->dst_reg);
1933 	}
1934 
1935 	return 0;
1936 }
1937 
1938 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
1939 				   struct bpf_reg_state *dst_reg)
1940 {
1941 	struct bpf_reg_state *regs = state->regs, *reg;
1942 	int i;
1943 
1944 	/* LLVM can generate two kind of checks:
1945 	 *
1946 	 * Type 1:
1947 	 *
1948 	 *   r2 = r3;
1949 	 *   r2 += 8;
1950 	 *   if (r2 > pkt_end) goto <handle exception>
1951 	 *   <access okay>
1952 	 *
1953 	 *   Where:
1954 	 *     r2 == dst_reg, pkt_end == src_reg
1955 	 *     r2=pkt(id=n,off=8,r=0)
1956 	 *     r3=pkt(id=n,off=0,r=0)
1957 	 *
1958 	 * Type 2:
1959 	 *
1960 	 *   r2 = r3;
1961 	 *   r2 += 8;
1962 	 *   if (pkt_end >= r2) goto <access okay>
1963 	 *   <handle exception>
1964 	 *
1965 	 *   Where:
1966 	 *     pkt_end == dst_reg, r2 == src_reg
1967 	 *     r2=pkt(id=n,off=8,r=0)
1968 	 *     r3=pkt(id=n,off=0,r=0)
1969 	 *
1970 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
1971 	 * so that range of bytes [r3, r3 + 8) is safe to access.
1972 	 */
1973 
1974 	for (i = 0; i < MAX_BPF_REG; i++)
1975 		if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
1976 			regs[i].range = dst_reg->off;
1977 
1978 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1979 		if (state->stack_slot_type[i] != STACK_SPILL)
1980 			continue;
1981 		reg = &state->spilled_regs[i / BPF_REG_SIZE];
1982 		if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
1983 			reg->range = dst_reg->off;
1984 	}
1985 }
1986 
1987 /* Adjusts the register min/max values in the case that the dst_reg is the
1988  * variable register that we are working on, and src_reg is a constant or we're
1989  * simply doing a BPF_K check.
1990  */
1991 static void reg_set_min_max(struct bpf_reg_state *true_reg,
1992 			    struct bpf_reg_state *false_reg, u64 val,
1993 			    u8 opcode)
1994 {
1995 	switch (opcode) {
1996 	case BPF_JEQ:
1997 		/* If this is false then we know nothing Jon Snow, but if it is
1998 		 * true then we know for sure.
1999 		 */
2000 		true_reg->max_value = true_reg->min_value = val;
2001 		break;
2002 	case BPF_JNE:
2003 		/* If this is true we know nothing Jon Snow, but if it is false
2004 		 * we know the value for sure;
2005 		 */
2006 		false_reg->max_value = false_reg->min_value = val;
2007 		break;
2008 	case BPF_JGT:
2009 		/* Unsigned comparison, the minimum value is 0. */
2010 		false_reg->min_value = 0;
2011 		/* fallthrough */
2012 	case BPF_JSGT:
2013 		/* If this is false then we know the maximum val is val,
2014 		 * otherwise we know the min val is val+1.
2015 		 */
2016 		false_reg->max_value = val;
2017 		true_reg->min_value = val + 1;
2018 		break;
2019 	case BPF_JGE:
2020 		/* Unsigned comparison, the minimum value is 0. */
2021 		false_reg->min_value = 0;
2022 		/* fallthrough */
2023 	case BPF_JSGE:
2024 		/* If this is false then we know the maximum value is val - 1,
2025 		 * otherwise we know the mimimum value is val.
2026 		 */
2027 		false_reg->max_value = val - 1;
2028 		true_reg->min_value = val;
2029 		break;
2030 	default:
2031 		break;
2032 	}
2033 
2034 	check_reg_overflow(false_reg);
2035 	check_reg_overflow(true_reg);
2036 }
2037 
2038 /* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
2039  * is the variable reg.
2040  */
2041 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2042 				struct bpf_reg_state *false_reg, u64 val,
2043 				u8 opcode)
2044 {
2045 	switch (opcode) {
2046 	case BPF_JEQ:
2047 		/* If this is false then we know nothing Jon Snow, but if it is
2048 		 * true then we know for sure.
2049 		 */
2050 		true_reg->max_value = true_reg->min_value = val;
2051 		break;
2052 	case BPF_JNE:
2053 		/* If this is true we know nothing Jon Snow, but if it is false
2054 		 * we know the value for sure;
2055 		 */
2056 		false_reg->max_value = false_reg->min_value = val;
2057 		break;
2058 	case BPF_JGT:
2059 		/* Unsigned comparison, the minimum value is 0. */
2060 		true_reg->min_value = 0;
2061 		/* fallthrough */
2062 	case BPF_JSGT:
2063 		/*
2064 		 * If this is false, then the val is <= the register, if it is
2065 		 * true the register <= to the val.
2066 		 */
2067 		false_reg->min_value = val;
2068 		true_reg->max_value = val - 1;
2069 		break;
2070 	case BPF_JGE:
2071 		/* Unsigned comparison, the minimum value is 0. */
2072 		true_reg->min_value = 0;
2073 		/* fallthrough */
2074 	case BPF_JSGE:
2075 		/* If this is false then constant < register, if it is true then
2076 		 * the register < constant.
2077 		 */
2078 		false_reg->min_value = val + 1;
2079 		true_reg->max_value = val;
2080 		break;
2081 	default:
2082 		break;
2083 	}
2084 
2085 	check_reg_overflow(false_reg);
2086 	check_reg_overflow(true_reg);
2087 }
2088 
2089 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2090 			 enum bpf_reg_type type)
2091 {
2092 	struct bpf_reg_state *reg = &regs[regno];
2093 
2094 	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2095 		reg->type = type;
2096 		/* We don't need id from this point onwards anymore, thus we
2097 		 * should better reset it, so that state pruning has chances
2098 		 * to take effect.
2099 		 */
2100 		reg->id = 0;
2101 		if (type == UNKNOWN_VALUE)
2102 			__mark_reg_unknown_value(regs, regno);
2103 	}
2104 }
2105 
2106 /* The logic is similar to find_good_pkt_pointers(), both could eventually
2107  * be folded together at some point.
2108  */
2109 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2110 			  enum bpf_reg_type type)
2111 {
2112 	struct bpf_reg_state *regs = state->regs;
2113 	u32 id = regs[regno].id;
2114 	int i;
2115 
2116 	for (i = 0; i < MAX_BPF_REG; i++)
2117 		mark_map_reg(regs, i, id, type);
2118 
2119 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2120 		if (state->stack_slot_type[i] != STACK_SPILL)
2121 			continue;
2122 		mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, type);
2123 	}
2124 }
2125 
2126 static int check_cond_jmp_op(struct bpf_verifier_env *env,
2127 			     struct bpf_insn *insn, int *insn_idx)
2128 {
2129 	struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2130 	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2131 	u8 opcode = BPF_OP(insn->code);
2132 	int err;
2133 
2134 	if (opcode > BPF_EXIT) {
2135 		verbose("invalid BPF_JMP opcode %x\n", opcode);
2136 		return -EINVAL;
2137 	}
2138 
2139 	if (BPF_SRC(insn->code) == BPF_X) {
2140 		if (insn->imm != 0) {
2141 			verbose("BPF_JMP uses reserved fields\n");
2142 			return -EINVAL;
2143 		}
2144 
2145 		/* check src1 operand */
2146 		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2147 		if (err)
2148 			return err;
2149 
2150 		if (is_pointer_value(env, insn->src_reg)) {
2151 			verbose("R%d pointer comparison prohibited\n",
2152 				insn->src_reg);
2153 			return -EACCES;
2154 		}
2155 	} else {
2156 		if (insn->src_reg != BPF_REG_0) {
2157 			verbose("BPF_JMP uses reserved fields\n");
2158 			return -EINVAL;
2159 		}
2160 	}
2161 
2162 	/* check src2 operand */
2163 	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2164 	if (err)
2165 		return err;
2166 
2167 	dst_reg = &regs[insn->dst_reg];
2168 
2169 	/* detect if R == 0 where R was initialized to zero earlier */
2170 	if (BPF_SRC(insn->code) == BPF_K &&
2171 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2172 	    dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
2173 		if (opcode == BPF_JEQ) {
2174 			/* if (imm == imm) goto pc+off;
2175 			 * only follow the goto, ignore fall-through
2176 			 */
2177 			*insn_idx += insn->off;
2178 			return 0;
2179 		} else {
2180 			/* if (imm != imm) goto pc+off;
2181 			 * only follow fall-through branch, since
2182 			 * that's where the program will go
2183 			 */
2184 			return 0;
2185 		}
2186 	}
2187 
2188 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2189 	if (!other_branch)
2190 		return -EFAULT;
2191 
2192 	/* detect if we are comparing against a constant value so we can adjust
2193 	 * our min/max values for our dst register.
2194 	 */
2195 	if (BPF_SRC(insn->code) == BPF_X) {
2196 		if (regs[insn->src_reg].type == CONST_IMM)
2197 			reg_set_min_max(&other_branch->regs[insn->dst_reg],
2198 					dst_reg, regs[insn->src_reg].imm,
2199 					opcode);
2200 		else if (dst_reg->type == CONST_IMM)
2201 			reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2202 					    &regs[insn->src_reg], dst_reg->imm,
2203 					    opcode);
2204 	} else {
2205 		reg_set_min_max(&other_branch->regs[insn->dst_reg],
2206 					dst_reg, insn->imm, opcode);
2207 	}
2208 
2209 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2210 	if (BPF_SRC(insn->code) == BPF_K &&
2211 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2212 	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2213 		/* Mark all identical map registers in each branch as either
2214 		 * safe or unknown depending R == 0 or R != 0 conditional.
2215 		 */
2216 		mark_map_regs(this_branch, insn->dst_reg,
2217 			      opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE);
2218 		mark_map_regs(other_branch, insn->dst_reg,
2219 			      opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE);
2220 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2221 		   dst_reg->type == PTR_TO_PACKET &&
2222 		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2223 		find_good_pkt_pointers(this_branch, dst_reg);
2224 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2225 		   dst_reg->type == PTR_TO_PACKET_END &&
2226 		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2227 		find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
2228 	} else if (is_pointer_value(env, insn->dst_reg)) {
2229 		verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2230 		return -EACCES;
2231 	}
2232 	if (log_level)
2233 		print_verifier_state(this_branch);
2234 	return 0;
2235 }
2236 
2237 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
2238 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2239 {
2240 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2241 
2242 	return (struct bpf_map *) (unsigned long) imm64;
2243 }
2244 
2245 /* verify BPF_LD_IMM64 instruction */
2246 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2247 {
2248 	struct bpf_reg_state *regs = env->cur_state.regs;
2249 	int err;
2250 
2251 	if (BPF_SIZE(insn->code) != BPF_DW) {
2252 		verbose("invalid BPF_LD_IMM insn\n");
2253 		return -EINVAL;
2254 	}
2255 	if (insn->off != 0) {
2256 		verbose("BPF_LD_IMM64 uses reserved fields\n");
2257 		return -EINVAL;
2258 	}
2259 
2260 	err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2261 	if (err)
2262 		return err;
2263 
2264 	if (insn->src_reg == 0) {
2265 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2266 
2267 		regs[insn->dst_reg].type = CONST_IMM;
2268 		regs[insn->dst_reg].imm = imm;
2269 		return 0;
2270 	}
2271 
2272 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2273 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2274 
2275 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2276 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2277 	return 0;
2278 }
2279 
2280 static bool may_access_skb(enum bpf_prog_type type)
2281 {
2282 	switch (type) {
2283 	case BPF_PROG_TYPE_SOCKET_FILTER:
2284 	case BPF_PROG_TYPE_SCHED_CLS:
2285 	case BPF_PROG_TYPE_SCHED_ACT:
2286 		return true;
2287 	default:
2288 		return false;
2289 	}
2290 }
2291 
2292 /* verify safety of LD_ABS|LD_IND instructions:
2293  * - they can only appear in the programs where ctx == skb
2294  * - since they are wrappers of function calls, they scratch R1-R5 registers,
2295  *   preserve R6-R9, and store return value into R0
2296  *
2297  * Implicit input:
2298  *   ctx == skb == R6 == CTX
2299  *
2300  * Explicit input:
2301  *   SRC == any register
2302  *   IMM == 32-bit immediate
2303  *
2304  * Output:
2305  *   R0 - 8/16/32-bit skb data converted to cpu endianness
2306  */
2307 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
2308 {
2309 	struct bpf_reg_state *regs = env->cur_state.regs;
2310 	u8 mode = BPF_MODE(insn->code);
2311 	struct bpf_reg_state *reg;
2312 	int i, err;
2313 
2314 	if (!may_access_skb(env->prog->type)) {
2315 		verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
2316 		return -EINVAL;
2317 	}
2318 
2319 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
2320 	    BPF_SIZE(insn->code) == BPF_DW ||
2321 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
2322 		verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
2323 		return -EINVAL;
2324 	}
2325 
2326 	/* check whether implicit source operand (register R6) is readable */
2327 	err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
2328 	if (err)
2329 		return err;
2330 
2331 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2332 		verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2333 		return -EINVAL;
2334 	}
2335 
2336 	if (mode == BPF_IND) {
2337 		/* check explicit source operand */
2338 		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2339 		if (err)
2340 			return err;
2341 	}
2342 
2343 	/* reset caller saved regs to unreadable */
2344 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2345 		reg = regs + caller_saved[i];
2346 		reg->type = NOT_INIT;
2347 		reg->imm = 0;
2348 	}
2349 
2350 	/* mark destination R0 register as readable, since it contains
2351 	 * the value fetched from the packet
2352 	 */
2353 	regs[BPF_REG_0].type = UNKNOWN_VALUE;
2354 	return 0;
2355 }
2356 
2357 /* non-recursive DFS pseudo code
2358  * 1  procedure DFS-iterative(G,v):
2359  * 2      label v as discovered
2360  * 3      let S be a stack
2361  * 4      S.push(v)
2362  * 5      while S is not empty
2363  * 6            t <- S.pop()
2364  * 7            if t is what we're looking for:
2365  * 8                return t
2366  * 9            for all edges e in G.adjacentEdges(t) do
2367  * 10               if edge e is already labelled
2368  * 11                   continue with the next edge
2369  * 12               w <- G.adjacentVertex(t,e)
2370  * 13               if vertex w is not discovered and not explored
2371  * 14                   label e as tree-edge
2372  * 15                   label w as discovered
2373  * 16                   S.push(w)
2374  * 17                   continue at 5
2375  * 18               else if vertex w is discovered
2376  * 19                   label e as back-edge
2377  * 20               else
2378  * 21                   // vertex w is explored
2379  * 22                   label e as forward- or cross-edge
2380  * 23           label t as explored
2381  * 24           S.pop()
2382  *
2383  * convention:
2384  * 0x10 - discovered
2385  * 0x11 - discovered and fall-through edge labelled
2386  * 0x12 - discovered and fall-through and branch edges labelled
2387  * 0x20 - explored
2388  */
2389 
2390 enum {
2391 	DISCOVERED = 0x10,
2392 	EXPLORED = 0x20,
2393 	FALLTHROUGH = 1,
2394 	BRANCH = 2,
2395 };
2396 
2397 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
2398 
2399 static int *insn_stack;	/* stack of insns to process */
2400 static int cur_stack;	/* current stack index */
2401 static int *insn_state;
2402 
2403 /* t, w, e - match pseudo-code above:
2404  * t - index of current instruction
2405  * w - next instruction
2406  * e - edge
2407  */
2408 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
2409 {
2410 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
2411 		return 0;
2412 
2413 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
2414 		return 0;
2415 
2416 	if (w < 0 || w >= env->prog->len) {
2417 		verbose("jump out of range from insn %d to %d\n", t, w);
2418 		return -EINVAL;
2419 	}
2420 
2421 	if (e == BRANCH)
2422 		/* mark branch target for state pruning */
2423 		env->explored_states[w] = STATE_LIST_MARK;
2424 
2425 	if (insn_state[w] == 0) {
2426 		/* tree-edge */
2427 		insn_state[t] = DISCOVERED | e;
2428 		insn_state[w] = DISCOVERED;
2429 		if (cur_stack >= env->prog->len)
2430 			return -E2BIG;
2431 		insn_stack[cur_stack++] = w;
2432 		return 1;
2433 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2434 		verbose("back-edge from insn %d to %d\n", t, w);
2435 		return -EINVAL;
2436 	} else if (insn_state[w] == EXPLORED) {
2437 		/* forward- or cross-edge */
2438 		insn_state[t] = DISCOVERED | e;
2439 	} else {
2440 		verbose("insn state internal bug\n");
2441 		return -EFAULT;
2442 	}
2443 	return 0;
2444 }
2445 
2446 /* non-recursive depth-first-search to detect loops in BPF program
2447  * loop == back-edge in directed graph
2448  */
2449 static int check_cfg(struct bpf_verifier_env *env)
2450 {
2451 	struct bpf_insn *insns = env->prog->insnsi;
2452 	int insn_cnt = env->prog->len;
2453 	int ret = 0;
2454 	int i, t;
2455 
2456 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2457 	if (!insn_state)
2458 		return -ENOMEM;
2459 
2460 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2461 	if (!insn_stack) {
2462 		kfree(insn_state);
2463 		return -ENOMEM;
2464 	}
2465 
2466 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
2467 	insn_stack[0] = 0; /* 0 is the first instruction */
2468 	cur_stack = 1;
2469 
2470 peek_stack:
2471 	if (cur_stack == 0)
2472 		goto check_state;
2473 	t = insn_stack[cur_stack - 1];
2474 
2475 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
2476 		u8 opcode = BPF_OP(insns[t].code);
2477 
2478 		if (opcode == BPF_EXIT) {
2479 			goto mark_explored;
2480 		} else if (opcode == BPF_CALL) {
2481 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
2482 			if (ret == 1)
2483 				goto peek_stack;
2484 			else if (ret < 0)
2485 				goto err_free;
2486 			if (t + 1 < insn_cnt)
2487 				env->explored_states[t + 1] = STATE_LIST_MARK;
2488 		} else if (opcode == BPF_JA) {
2489 			if (BPF_SRC(insns[t].code) != BPF_K) {
2490 				ret = -EINVAL;
2491 				goto err_free;
2492 			}
2493 			/* unconditional jump with single edge */
2494 			ret = push_insn(t, t + insns[t].off + 1,
2495 					FALLTHROUGH, env);
2496 			if (ret == 1)
2497 				goto peek_stack;
2498 			else if (ret < 0)
2499 				goto err_free;
2500 			/* tell verifier to check for equivalent states
2501 			 * after every call and jump
2502 			 */
2503 			if (t + 1 < insn_cnt)
2504 				env->explored_states[t + 1] = STATE_LIST_MARK;
2505 		} else {
2506 			/* conditional jump with two edges */
2507 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
2508 			if (ret == 1)
2509 				goto peek_stack;
2510 			else if (ret < 0)
2511 				goto err_free;
2512 
2513 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
2514 			if (ret == 1)
2515 				goto peek_stack;
2516 			else if (ret < 0)
2517 				goto err_free;
2518 		}
2519 	} else {
2520 		/* all other non-branch instructions with single
2521 		 * fall-through edge
2522 		 */
2523 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
2524 		if (ret == 1)
2525 			goto peek_stack;
2526 		else if (ret < 0)
2527 			goto err_free;
2528 	}
2529 
2530 mark_explored:
2531 	insn_state[t] = EXPLORED;
2532 	if (cur_stack-- <= 0) {
2533 		verbose("pop stack internal bug\n");
2534 		ret = -EFAULT;
2535 		goto err_free;
2536 	}
2537 	goto peek_stack;
2538 
2539 check_state:
2540 	for (i = 0; i < insn_cnt; i++) {
2541 		if (insn_state[i] != EXPLORED) {
2542 			verbose("unreachable insn %d\n", i);
2543 			ret = -EINVAL;
2544 			goto err_free;
2545 		}
2546 	}
2547 	ret = 0; /* cfg looks good */
2548 
2549 err_free:
2550 	kfree(insn_state);
2551 	kfree(insn_stack);
2552 	return ret;
2553 }
2554 
2555 /* the following conditions reduce the number of explored insns
2556  * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2557  */
2558 static bool compare_ptrs_to_packet(struct bpf_reg_state *old,
2559 				   struct bpf_reg_state *cur)
2560 {
2561 	if (old->id != cur->id)
2562 		return false;
2563 
2564 	/* old ptr_to_packet is more conservative, since it allows smaller
2565 	 * range. Ex:
2566 	 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2567 	 * old(off=0,r=10) means that with range=10 the verifier proceeded
2568 	 * further and found no issues with the program. Now we're in the same
2569 	 * spot with cur(off=0,r=20), so we're safe too, since anything further
2570 	 * will only be looking at most 10 bytes after this pointer.
2571 	 */
2572 	if (old->off == cur->off && old->range < cur->range)
2573 		return true;
2574 
2575 	/* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2576 	 * since both cannot be used for packet access and safe(old)
2577 	 * pointer has smaller off that could be used for further
2578 	 * 'if (ptr > data_end)' check
2579 	 * Ex:
2580 	 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2581 	 * that we cannot access the packet.
2582 	 * The safe range is:
2583 	 * [ptr, ptr + range - off)
2584 	 * so whenever off >=range, it means no safe bytes from this pointer.
2585 	 * When comparing old->off <= cur->off, it means that older code
2586 	 * went with smaller offset and that offset was later
2587 	 * used to figure out the safe range after 'if (ptr > data_end)' check
2588 	 * Say, 'old' state was explored like:
2589 	 * ... R3(off=0, r=0)
2590 	 * R4 = R3 + 20
2591 	 * ... now R4(off=20,r=0)  <-- here
2592 	 * if (R4 > data_end)
2593 	 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2594 	 * ... the code further went all the way to bpf_exit.
2595 	 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2596 	 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2597 	 * goes further, such cur_R4 will give larger safe packet range after
2598 	 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2599 	 * so they will be good with r=30 and we can prune the search.
2600 	 */
2601 	if (old->off <= cur->off &&
2602 	    old->off >= old->range && cur->off >= cur->range)
2603 		return true;
2604 
2605 	return false;
2606 }
2607 
2608 /* compare two verifier states
2609  *
2610  * all states stored in state_list are known to be valid, since
2611  * verifier reached 'bpf_exit' instruction through them
2612  *
2613  * this function is called when verifier exploring different branches of
2614  * execution popped from the state stack. If it sees an old state that has
2615  * more strict register state and more strict stack state then this execution
2616  * branch doesn't need to be explored further, since verifier already
2617  * concluded that more strict state leads to valid finish.
2618  *
2619  * Therefore two states are equivalent if register state is more conservative
2620  * and explored stack state is more conservative than the current one.
2621  * Example:
2622  *       explored                   current
2623  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2624  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2625  *
2626  * In other words if current stack state (one being explored) has more
2627  * valid slots than old one that already passed validation, it means
2628  * the verifier can stop exploring and conclude that current state is valid too
2629  *
2630  * Similarly with registers. If explored state has register type as invalid
2631  * whereas register type in current state is meaningful, it means that
2632  * the current state will reach 'bpf_exit' instruction safely
2633  */
2634 static bool states_equal(struct bpf_verifier_env *env,
2635 			 struct bpf_verifier_state *old,
2636 			 struct bpf_verifier_state *cur)
2637 {
2638 	bool varlen_map_access = env->varlen_map_value_access;
2639 	struct bpf_reg_state *rold, *rcur;
2640 	int i;
2641 
2642 	for (i = 0; i < MAX_BPF_REG; i++) {
2643 		rold = &old->regs[i];
2644 		rcur = &cur->regs[i];
2645 
2646 		if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2647 			continue;
2648 
2649 		/* If the ranges were not the same, but everything else was and
2650 		 * we didn't do a variable access into a map then we are a-ok.
2651 		 */
2652 		if (!varlen_map_access &&
2653 		    memcmp(rold, rcur, offsetofend(struct bpf_reg_state, id)) == 0)
2654 			continue;
2655 
2656 		/* If we didn't map access then again we don't care about the
2657 		 * mismatched range values and it's ok if our old type was
2658 		 * UNKNOWN and we didn't go to a NOT_INIT'ed reg.
2659 		 */
2660 		if (rold->type == NOT_INIT ||
2661 		    (!varlen_map_access && rold->type == UNKNOWN_VALUE &&
2662 		     rcur->type != NOT_INIT))
2663 			continue;
2664 
2665 		if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
2666 		    compare_ptrs_to_packet(rold, rcur))
2667 			continue;
2668 
2669 		return false;
2670 	}
2671 
2672 	for (i = 0; i < MAX_BPF_STACK; i++) {
2673 		if (old->stack_slot_type[i] == STACK_INVALID)
2674 			continue;
2675 		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
2676 			/* Ex: old explored (safe) state has STACK_SPILL in
2677 			 * this stack slot, but current has has STACK_MISC ->
2678 			 * this verifier states are not equivalent,
2679 			 * return false to continue verification of this path
2680 			 */
2681 			return false;
2682 		if (i % BPF_REG_SIZE)
2683 			continue;
2684 		if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
2685 			   &cur->spilled_regs[i / BPF_REG_SIZE],
2686 			   sizeof(old->spilled_regs[0])))
2687 			/* when explored and current stack slot types are
2688 			 * the same, check that stored pointers types
2689 			 * are the same as well.
2690 			 * Ex: explored safe path could have stored
2691 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
2692 			 * but current path has stored:
2693 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
2694 			 * such verifier states are not equivalent.
2695 			 * return false to continue verification of this path
2696 			 */
2697 			return false;
2698 		else
2699 			continue;
2700 	}
2701 	return true;
2702 }
2703 
2704 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
2705 {
2706 	struct bpf_verifier_state_list *new_sl;
2707 	struct bpf_verifier_state_list *sl;
2708 
2709 	sl = env->explored_states[insn_idx];
2710 	if (!sl)
2711 		/* this 'insn_idx' instruction wasn't marked, so we will not
2712 		 * be doing state search here
2713 		 */
2714 		return 0;
2715 
2716 	while (sl != STATE_LIST_MARK) {
2717 		if (states_equal(env, &sl->state, &env->cur_state))
2718 			/* reached equivalent register/stack state,
2719 			 * prune the search
2720 			 */
2721 			return 1;
2722 		sl = sl->next;
2723 	}
2724 
2725 	/* there were no equivalent states, remember current one.
2726 	 * technically the current state is not proven to be safe yet,
2727 	 * but it will either reach bpf_exit (which means it's safe) or
2728 	 * it will be rejected. Since there are no loops, we won't be
2729 	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
2730 	 */
2731 	new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
2732 	if (!new_sl)
2733 		return -ENOMEM;
2734 
2735 	/* add new state to the head of linked list */
2736 	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
2737 	new_sl->next = env->explored_states[insn_idx];
2738 	env->explored_states[insn_idx] = new_sl;
2739 	return 0;
2740 }
2741 
2742 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
2743 				  int insn_idx, int prev_insn_idx)
2744 {
2745 	if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
2746 		return 0;
2747 
2748 	return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
2749 }
2750 
2751 static int do_check(struct bpf_verifier_env *env)
2752 {
2753 	struct bpf_verifier_state *state = &env->cur_state;
2754 	struct bpf_insn *insns = env->prog->insnsi;
2755 	struct bpf_reg_state *regs = state->regs;
2756 	int insn_cnt = env->prog->len;
2757 	int insn_idx, prev_insn_idx = 0;
2758 	int insn_processed = 0;
2759 	bool do_print_state = false;
2760 
2761 	init_reg_state(regs);
2762 	insn_idx = 0;
2763 	env->varlen_map_value_access = false;
2764 	for (;;) {
2765 		struct bpf_insn *insn;
2766 		u8 class;
2767 		int err;
2768 
2769 		if (insn_idx >= insn_cnt) {
2770 			verbose("invalid insn idx %d insn_cnt %d\n",
2771 				insn_idx, insn_cnt);
2772 			return -EFAULT;
2773 		}
2774 
2775 		insn = &insns[insn_idx];
2776 		class = BPF_CLASS(insn->code);
2777 
2778 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
2779 			verbose("BPF program is too large. Processed %d insn\n",
2780 				insn_processed);
2781 			return -E2BIG;
2782 		}
2783 
2784 		err = is_state_visited(env, insn_idx);
2785 		if (err < 0)
2786 			return err;
2787 		if (err == 1) {
2788 			/* found equivalent state, can prune the search */
2789 			if (log_level) {
2790 				if (do_print_state)
2791 					verbose("\nfrom %d to %d: safe\n",
2792 						prev_insn_idx, insn_idx);
2793 				else
2794 					verbose("%d: safe\n", insn_idx);
2795 			}
2796 			goto process_bpf_exit;
2797 		}
2798 
2799 		if (log_level && do_print_state) {
2800 			verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
2801 			print_verifier_state(&env->cur_state);
2802 			do_print_state = false;
2803 		}
2804 
2805 		if (log_level) {
2806 			verbose("%d: ", insn_idx);
2807 			print_bpf_insn(insn);
2808 		}
2809 
2810 		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
2811 		if (err)
2812 			return err;
2813 
2814 		if (class == BPF_ALU || class == BPF_ALU64) {
2815 			err = check_alu_op(env, insn);
2816 			if (err)
2817 				return err;
2818 
2819 		} else if (class == BPF_LDX) {
2820 			enum bpf_reg_type *prev_src_type, src_reg_type;
2821 
2822 			/* check for reserved fields is already done */
2823 
2824 			/* check src operand */
2825 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2826 			if (err)
2827 				return err;
2828 
2829 			err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2830 			if (err)
2831 				return err;
2832 
2833 			src_reg_type = regs[insn->src_reg].type;
2834 
2835 			/* check that memory (src_reg + off) is readable,
2836 			 * the state of dst_reg will be updated by this func
2837 			 */
2838 			err = check_mem_access(env, insn->src_reg, insn->off,
2839 					       BPF_SIZE(insn->code), BPF_READ,
2840 					       insn->dst_reg);
2841 			if (err)
2842 				return err;
2843 
2844 			if (BPF_SIZE(insn->code) != BPF_W &&
2845 			    BPF_SIZE(insn->code) != BPF_DW) {
2846 				insn_idx++;
2847 				continue;
2848 			}
2849 
2850 			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
2851 
2852 			if (*prev_src_type == NOT_INIT) {
2853 				/* saw a valid insn
2854 				 * dst_reg = *(u32 *)(src_reg + off)
2855 				 * save type to validate intersecting paths
2856 				 */
2857 				*prev_src_type = src_reg_type;
2858 
2859 			} else if (src_reg_type != *prev_src_type &&
2860 				   (src_reg_type == PTR_TO_CTX ||
2861 				    *prev_src_type == PTR_TO_CTX)) {
2862 				/* ABuser program is trying to use the same insn
2863 				 * dst_reg = *(u32*) (src_reg + off)
2864 				 * with different pointer types:
2865 				 * src_reg == ctx in one branch and
2866 				 * src_reg == stack|map in some other branch.
2867 				 * Reject it.
2868 				 */
2869 				verbose("same insn cannot be used with different pointers\n");
2870 				return -EINVAL;
2871 			}
2872 
2873 		} else if (class == BPF_STX) {
2874 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
2875 
2876 			if (BPF_MODE(insn->code) == BPF_XADD) {
2877 				err = check_xadd(env, insn);
2878 				if (err)
2879 					return err;
2880 				insn_idx++;
2881 				continue;
2882 			}
2883 
2884 			/* check src1 operand */
2885 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2886 			if (err)
2887 				return err;
2888 			/* check src2 operand */
2889 			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2890 			if (err)
2891 				return err;
2892 
2893 			dst_reg_type = regs[insn->dst_reg].type;
2894 
2895 			/* check that memory (dst_reg + off) is writeable */
2896 			err = check_mem_access(env, insn->dst_reg, insn->off,
2897 					       BPF_SIZE(insn->code), BPF_WRITE,
2898 					       insn->src_reg);
2899 			if (err)
2900 				return err;
2901 
2902 			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
2903 
2904 			if (*prev_dst_type == NOT_INIT) {
2905 				*prev_dst_type = dst_reg_type;
2906 			} else if (dst_reg_type != *prev_dst_type &&
2907 				   (dst_reg_type == PTR_TO_CTX ||
2908 				    *prev_dst_type == PTR_TO_CTX)) {
2909 				verbose("same insn cannot be used with different pointers\n");
2910 				return -EINVAL;
2911 			}
2912 
2913 		} else if (class == BPF_ST) {
2914 			if (BPF_MODE(insn->code) != BPF_MEM ||
2915 			    insn->src_reg != BPF_REG_0) {
2916 				verbose("BPF_ST uses reserved fields\n");
2917 				return -EINVAL;
2918 			}
2919 			/* check src operand */
2920 			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2921 			if (err)
2922 				return err;
2923 
2924 			/* check that memory (dst_reg + off) is writeable */
2925 			err = check_mem_access(env, insn->dst_reg, insn->off,
2926 					       BPF_SIZE(insn->code), BPF_WRITE,
2927 					       -1);
2928 			if (err)
2929 				return err;
2930 
2931 		} else if (class == BPF_JMP) {
2932 			u8 opcode = BPF_OP(insn->code);
2933 
2934 			if (opcode == BPF_CALL) {
2935 				if (BPF_SRC(insn->code) != BPF_K ||
2936 				    insn->off != 0 ||
2937 				    insn->src_reg != BPF_REG_0 ||
2938 				    insn->dst_reg != BPF_REG_0) {
2939 					verbose("BPF_CALL uses reserved fields\n");
2940 					return -EINVAL;
2941 				}
2942 
2943 				err = check_call(env, insn->imm);
2944 				if (err)
2945 					return err;
2946 
2947 			} else if (opcode == BPF_JA) {
2948 				if (BPF_SRC(insn->code) != BPF_K ||
2949 				    insn->imm != 0 ||
2950 				    insn->src_reg != BPF_REG_0 ||
2951 				    insn->dst_reg != BPF_REG_0) {
2952 					verbose("BPF_JA uses reserved fields\n");
2953 					return -EINVAL;
2954 				}
2955 
2956 				insn_idx += insn->off + 1;
2957 				continue;
2958 
2959 			} else if (opcode == BPF_EXIT) {
2960 				if (BPF_SRC(insn->code) != BPF_K ||
2961 				    insn->imm != 0 ||
2962 				    insn->src_reg != BPF_REG_0 ||
2963 				    insn->dst_reg != BPF_REG_0) {
2964 					verbose("BPF_EXIT uses reserved fields\n");
2965 					return -EINVAL;
2966 				}
2967 
2968 				/* eBPF calling convetion is such that R0 is used
2969 				 * to return the value from eBPF program.
2970 				 * Make sure that it's readable at this time
2971 				 * of bpf_exit, which means that program wrote
2972 				 * something into it earlier
2973 				 */
2974 				err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
2975 				if (err)
2976 					return err;
2977 
2978 				if (is_pointer_value(env, BPF_REG_0)) {
2979 					verbose("R0 leaks addr as return value\n");
2980 					return -EACCES;
2981 				}
2982 
2983 process_bpf_exit:
2984 				insn_idx = pop_stack(env, &prev_insn_idx);
2985 				if (insn_idx < 0) {
2986 					break;
2987 				} else {
2988 					do_print_state = true;
2989 					continue;
2990 				}
2991 			} else {
2992 				err = check_cond_jmp_op(env, insn, &insn_idx);
2993 				if (err)
2994 					return err;
2995 			}
2996 		} else if (class == BPF_LD) {
2997 			u8 mode = BPF_MODE(insn->code);
2998 
2999 			if (mode == BPF_ABS || mode == BPF_IND) {
3000 				err = check_ld_abs(env, insn);
3001 				if (err)
3002 					return err;
3003 
3004 			} else if (mode == BPF_IMM) {
3005 				err = check_ld_imm(env, insn);
3006 				if (err)
3007 					return err;
3008 
3009 				insn_idx++;
3010 			} else {
3011 				verbose("invalid BPF_LD mode\n");
3012 				return -EINVAL;
3013 			}
3014 			reset_reg_range_values(regs, insn->dst_reg);
3015 		} else {
3016 			verbose("unknown insn class %d\n", class);
3017 			return -EINVAL;
3018 		}
3019 
3020 		insn_idx++;
3021 	}
3022 
3023 	verbose("processed %d insns\n", insn_processed);
3024 	return 0;
3025 }
3026 
3027 static int check_map_prog_compatibility(struct bpf_map *map,
3028 					struct bpf_prog *prog)
3029 
3030 {
3031 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT &&
3032 	    (map->map_type == BPF_MAP_TYPE_HASH ||
3033 	     map->map_type == BPF_MAP_TYPE_PERCPU_HASH) &&
3034 	    (map->map_flags & BPF_F_NO_PREALLOC)) {
3035 		verbose("perf_event programs can only use preallocated hash map\n");
3036 		return -EINVAL;
3037 	}
3038 	return 0;
3039 }
3040 
3041 /* look for pseudo eBPF instructions that access map FDs and
3042  * replace them with actual map pointers
3043  */
3044 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
3045 {
3046 	struct bpf_insn *insn = env->prog->insnsi;
3047 	int insn_cnt = env->prog->len;
3048 	int i, j, err;
3049 
3050 	err = bpf_prog_calc_tag(env->prog);
3051 	if (err)
3052 		return err;
3053 
3054 	for (i = 0; i < insn_cnt; i++, insn++) {
3055 		if (BPF_CLASS(insn->code) == BPF_LDX &&
3056 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
3057 			verbose("BPF_LDX uses reserved fields\n");
3058 			return -EINVAL;
3059 		}
3060 
3061 		if (BPF_CLASS(insn->code) == BPF_STX &&
3062 		    ((BPF_MODE(insn->code) != BPF_MEM &&
3063 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3064 			verbose("BPF_STX uses reserved fields\n");
3065 			return -EINVAL;
3066 		}
3067 
3068 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3069 			struct bpf_map *map;
3070 			struct fd f;
3071 
3072 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
3073 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3074 			    insn[1].off != 0) {
3075 				verbose("invalid bpf_ld_imm64 insn\n");
3076 				return -EINVAL;
3077 			}
3078 
3079 			if (insn->src_reg == 0)
3080 				/* valid generic load 64-bit imm */
3081 				goto next_insn;
3082 
3083 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3084 				verbose("unrecognized bpf_ld_imm64 insn\n");
3085 				return -EINVAL;
3086 			}
3087 
3088 			f = fdget(insn->imm);
3089 			map = __bpf_map_get(f);
3090 			if (IS_ERR(map)) {
3091 				verbose("fd %d is not pointing to valid bpf_map\n",
3092 					insn->imm);
3093 				return PTR_ERR(map);
3094 			}
3095 
3096 			err = check_map_prog_compatibility(map, env->prog);
3097 			if (err) {
3098 				fdput(f);
3099 				return err;
3100 			}
3101 
3102 			/* store map pointer inside BPF_LD_IMM64 instruction */
3103 			insn[0].imm = (u32) (unsigned long) map;
3104 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
3105 
3106 			/* check whether we recorded this map already */
3107 			for (j = 0; j < env->used_map_cnt; j++)
3108 				if (env->used_maps[j] == map) {
3109 					fdput(f);
3110 					goto next_insn;
3111 				}
3112 
3113 			if (env->used_map_cnt >= MAX_USED_MAPS) {
3114 				fdput(f);
3115 				return -E2BIG;
3116 			}
3117 
3118 			/* hold the map. If the program is rejected by verifier,
3119 			 * the map will be released by release_maps() or it
3120 			 * will be used by the valid program until it's unloaded
3121 			 * and all maps are released in free_bpf_prog_info()
3122 			 */
3123 			map = bpf_map_inc(map, false);
3124 			if (IS_ERR(map)) {
3125 				fdput(f);
3126 				return PTR_ERR(map);
3127 			}
3128 			env->used_maps[env->used_map_cnt++] = map;
3129 
3130 			fdput(f);
3131 next_insn:
3132 			insn++;
3133 			i++;
3134 		}
3135 	}
3136 
3137 	/* now all pseudo BPF_LD_IMM64 instructions load valid
3138 	 * 'struct bpf_map *' into a register instead of user map_fd.
3139 	 * These pointers will be used later by verifier to validate map access.
3140 	 */
3141 	return 0;
3142 }
3143 
3144 /* drop refcnt of maps used by the rejected program */
3145 static void release_maps(struct bpf_verifier_env *env)
3146 {
3147 	int i;
3148 
3149 	for (i = 0; i < env->used_map_cnt; i++)
3150 		bpf_map_put(env->used_maps[i]);
3151 }
3152 
3153 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
3154 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
3155 {
3156 	struct bpf_insn *insn = env->prog->insnsi;
3157 	int insn_cnt = env->prog->len;
3158 	int i;
3159 
3160 	for (i = 0; i < insn_cnt; i++, insn++)
3161 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3162 			insn->src_reg = 0;
3163 }
3164 
3165 /* convert load instructions that access fields of 'struct __sk_buff'
3166  * into sequence of instructions that access fields of 'struct sk_buff'
3167  */
3168 static int convert_ctx_accesses(struct bpf_verifier_env *env)
3169 {
3170 	const struct bpf_verifier_ops *ops = env->prog->aux->ops;
3171 	const int insn_cnt = env->prog->len;
3172 	struct bpf_insn insn_buf[16], *insn;
3173 	struct bpf_prog *new_prog;
3174 	enum bpf_access_type type;
3175 	int i, cnt, delta = 0;
3176 
3177 	if (ops->gen_prologue) {
3178 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
3179 					env->prog);
3180 		if (cnt >= ARRAY_SIZE(insn_buf)) {
3181 			verbose("bpf verifier is misconfigured\n");
3182 			return -EINVAL;
3183 		} else if (cnt) {
3184 			new_prog = bpf_patch_insn_single(env->prog, 0,
3185 							 insn_buf, cnt);
3186 			if (!new_prog)
3187 				return -ENOMEM;
3188 			env->prog = new_prog;
3189 			delta += cnt - 1;
3190 		}
3191 	}
3192 
3193 	if (!ops->convert_ctx_access)
3194 		return 0;
3195 
3196 	insn = env->prog->insnsi + delta;
3197 
3198 	for (i = 0; i < insn_cnt; i++, insn++) {
3199 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
3200 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
3201 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
3202 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
3203 			type = BPF_READ;
3204 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
3205 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
3206 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
3207 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
3208 			type = BPF_WRITE;
3209 		else
3210 			continue;
3211 
3212 		if (env->insn_aux_data[i].ptr_type != PTR_TO_CTX)
3213 			continue;
3214 
3215 		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog);
3216 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3217 			verbose("bpf verifier is misconfigured\n");
3218 			return -EINVAL;
3219 		}
3220 
3221 		new_prog = bpf_patch_insn_single(env->prog, i + delta, insn_buf,
3222 						 cnt);
3223 		if (!new_prog)
3224 			return -ENOMEM;
3225 
3226 		delta += cnt - 1;
3227 
3228 		/* keep walking new program and skip insns we just inserted */
3229 		env->prog = new_prog;
3230 		insn      = new_prog->insnsi + i + delta;
3231 	}
3232 
3233 	return 0;
3234 }
3235 
3236 static void free_states(struct bpf_verifier_env *env)
3237 {
3238 	struct bpf_verifier_state_list *sl, *sln;
3239 	int i;
3240 
3241 	if (!env->explored_states)
3242 		return;
3243 
3244 	for (i = 0; i < env->prog->len; i++) {
3245 		sl = env->explored_states[i];
3246 
3247 		if (sl)
3248 			while (sl != STATE_LIST_MARK) {
3249 				sln = sl->next;
3250 				kfree(sl);
3251 				sl = sln;
3252 			}
3253 	}
3254 
3255 	kfree(env->explored_states);
3256 }
3257 
3258 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
3259 {
3260 	char __user *log_ubuf = NULL;
3261 	struct bpf_verifier_env *env;
3262 	int ret = -EINVAL;
3263 
3264 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
3265 	 * allocate/free it every time bpf_check() is called
3266 	 */
3267 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3268 	if (!env)
3269 		return -ENOMEM;
3270 
3271 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3272 				     (*prog)->len);
3273 	ret = -ENOMEM;
3274 	if (!env->insn_aux_data)
3275 		goto err_free_env;
3276 	env->prog = *prog;
3277 
3278 	/* grab the mutex to protect few globals used by verifier */
3279 	mutex_lock(&bpf_verifier_lock);
3280 
3281 	if (attr->log_level || attr->log_buf || attr->log_size) {
3282 		/* user requested verbose verifier output
3283 		 * and supplied buffer to store the verification trace
3284 		 */
3285 		log_level = attr->log_level;
3286 		log_ubuf = (char __user *) (unsigned long) attr->log_buf;
3287 		log_size = attr->log_size;
3288 		log_len = 0;
3289 
3290 		ret = -EINVAL;
3291 		/* log_* values have to be sane */
3292 		if (log_size < 128 || log_size > UINT_MAX >> 8 ||
3293 		    log_level == 0 || log_ubuf == NULL)
3294 			goto err_unlock;
3295 
3296 		ret = -ENOMEM;
3297 		log_buf = vmalloc(log_size);
3298 		if (!log_buf)
3299 			goto err_unlock;
3300 	} else {
3301 		log_level = 0;
3302 	}
3303 
3304 	ret = replace_map_fd_with_map_ptr(env);
3305 	if (ret < 0)
3306 		goto skip_full_check;
3307 
3308 	env->explored_states = kcalloc(env->prog->len,
3309 				       sizeof(struct bpf_verifier_state_list *),
3310 				       GFP_USER);
3311 	ret = -ENOMEM;
3312 	if (!env->explored_states)
3313 		goto skip_full_check;
3314 
3315 	ret = check_cfg(env);
3316 	if (ret < 0)
3317 		goto skip_full_check;
3318 
3319 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3320 
3321 	ret = do_check(env);
3322 
3323 skip_full_check:
3324 	while (pop_stack(env, NULL) >= 0);
3325 	free_states(env);
3326 
3327 	if (ret == 0)
3328 		/* program is valid, convert *(u32*)(ctx + off) accesses */
3329 		ret = convert_ctx_accesses(env);
3330 
3331 	if (log_level && log_len >= log_size - 1) {
3332 		BUG_ON(log_len >= log_size);
3333 		/* verifier log exceeded user supplied buffer */
3334 		ret = -ENOSPC;
3335 		/* fall through to return what was recorded */
3336 	}
3337 
3338 	/* copy verifier log back to user space including trailing zero */
3339 	if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
3340 		ret = -EFAULT;
3341 		goto free_log_buf;
3342 	}
3343 
3344 	if (ret == 0 && env->used_map_cnt) {
3345 		/* if program passed verifier, update used_maps in bpf_prog_info */
3346 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
3347 							  sizeof(env->used_maps[0]),
3348 							  GFP_KERNEL);
3349 
3350 		if (!env->prog->aux->used_maps) {
3351 			ret = -ENOMEM;
3352 			goto free_log_buf;
3353 		}
3354 
3355 		memcpy(env->prog->aux->used_maps, env->used_maps,
3356 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
3357 		env->prog->aux->used_map_cnt = env->used_map_cnt;
3358 
3359 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
3360 		 * bpf_ld_imm64 instructions
3361 		 */
3362 		convert_pseudo_ld_imm64(env);
3363 	}
3364 
3365 free_log_buf:
3366 	if (log_level)
3367 		vfree(log_buf);
3368 	if (!env->prog->aux->used_maps)
3369 		/* if we didn't copy map pointers into bpf_prog_info, release
3370 		 * them now. Otherwise free_bpf_prog_info() will release them.
3371 		 */
3372 		release_maps(env);
3373 	*prog = env->prog;
3374 err_unlock:
3375 	mutex_unlock(&bpf_verifier_lock);
3376 	vfree(env->insn_aux_data);
3377 err_free_env:
3378 	kfree(env);
3379 	return ret;
3380 }
3381 
3382 int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
3383 		 void *priv)
3384 {
3385 	struct bpf_verifier_env *env;
3386 	int ret;
3387 
3388 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3389 	if (!env)
3390 		return -ENOMEM;
3391 
3392 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3393 				     prog->len);
3394 	ret = -ENOMEM;
3395 	if (!env->insn_aux_data)
3396 		goto err_free_env;
3397 	env->prog = prog;
3398 	env->analyzer_ops = ops;
3399 	env->analyzer_priv = priv;
3400 
3401 	/* grab the mutex to protect few globals used by verifier */
3402 	mutex_lock(&bpf_verifier_lock);
3403 
3404 	log_level = 0;
3405 
3406 	env->explored_states = kcalloc(env->prog->len,
3407 				       sizeof(struct bpf_verifier_state_list *),
3408 				       GFP_KERNEL);
3409 	ret = -ENOMEM;
3410 	if (!env->explored_states)
3411 		goto skip_full_check;
3412 
3413 	ret = check_cfg(env);
3414 	if (ret < 0)
3415 		goto skip_full_check;
3416 
3417 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3418 
3419 	ret = do_check(env);
3420 
3421 skip_full_check:
3422 	while (pop_stack(env, NULL) >= 0);
3423 	free_states(env);
3424 
3425 	mutex_unlock(&bpf_verifier_lock);
3426 	vfree(env->insn_aux_data);
3427 err_free_env:
3428 	kfree(env);
3429 	return ret;
3430 }
3431 EXPORT_SYMBOL_GPL(bpf_analyzer);
3432