1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 28 #include "disasm.h" 29 30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 31 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 32 [_id] = & _name ## _verifier_ops, 33 #define BPF_MAP_TYPE(_id, _ops) 34 #define BPF_LINK_TYPE(_id, _name) 35 #include <linux/bpf_types.h> 36 #undef BPF_PROG_TYPE 37 #undef BPF_MAP_TYPE 38 #undef BPF_LINK_TYPE 39 }; 40 41 /* bpf_check() is a static code analyzer that walks eBPF program 42 * instruction by instruction and updates register/stack state. 43 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 44 * 45 * The first pass is depth-first-search to check that the program is a DAG. 46 * It rejects the following programs: 47 * - larger than BPF_MAXINSNS insns 48 * - if loop is present (detected via back-edge) 49 * - unreachable insns exist (shouldn't be a forest. program = one function) 50 * - out of bounds or malformed jumps 51 * The second pass is all possible path descent from the 1st insn. 52 * Since it's analyzing all paths through the program, the length of the 53 * analysis is limited to 64k insn, which may be hit even if total number of 54 * insn is less then 4K, but there are too many branches that change stack/regs. 55 * Number of 'branches to be analyzed' is limited to 1k 56 * 57 * On entry to each instruction, each register has a type, and the instruction 58 * changes the types of the registers depending on instruction semantics. 59 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 60 * copied to R1. 61 * 62 * All registers are 64-bit. 63 * R0 - return register 64 * R1-R5 argument passing registers 65 * R6-R9 callee saved registers 66 * R10 - frame pointer read-only 67 * 68 * At the start of BPF program the register R1 contains a pointer to bpf_context 69 * and has type PTR_TO_CTX. 70 * 71 * Verifier tracks arithmetic operations on pointers in case: 72 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 73 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 74 * 1st insn copies R10 (which has FRAME_PTR) type into R1 75 * and 2nd arithmetic instruction is pattern matched to recognize 76 * that it wants to construct a pointer to some element within stack. 77 * So after 2nd insn, the register R1 has type PTR_TO_STACK 78 * (and -20 constant is saved for further stack bounds checking). 79 * Meaning that this reg is a pointer to stack plus known immediate constant. 80 * 81 * Most of the time the registers have SCALAR_VALUE type, which 82 * means the register has some value, but it's not a valid pointer. 83 * (like pointer plus pointer becomes SCALAR_VALUE type) 84 * 85 * When verifier sees load or store instructions the type of base register 86 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 87 * four pointer types recognized by check_mem_access() function. 88 * 89 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 90 * and the range of [ptr, ptr + map's value_size) is accessible. 91 * 92 * registers used to pass values to function calls are checked against 93 * function argument constraints. 94 * 95 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 96 * It means that the register type passed to this function must be 97 * PTR_TO_STACK and it will be used inside the function as 98 * 'pointer to map element key' 99 * 100 * For example the argument constraints for bpf_map_lookup_elem(): 101 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 102 * .arg1_type = ARG_CONST_MAP_PTR, 103 * .arg2_type = ARG_PTR_TO_MAP_KEY, 104 * 105 * ret_type says that this function returns 'pointer to map elem value or null' 106 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 107 * 2nd argument should be a pointer to stack, which will be used inside 108 * the helper function as a pointer to map element key. 109 * 110 * On the kernel side the helper function looks like: 111 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 112 * { 113 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 114 * void *key = (void *) (unsigned long) r2; 115 * void *value; 116 * 117 * here kernel can access 'key' and 'map' pointers safely, knowing that 118 * [key, key + map->key_size) bytes are valid and were initialized on 119 * the stack of eBPF program. 120 * } 121 * 122 * Corresponding eBPF program may look like: 123 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 124 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 125 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 126 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 127 * here verifier looks at prototype of map_lookup_elem() and sees: 128 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 129 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 130 * 131 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 132 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 133 * and were initialized prior to this call. 134 * If it's ok, then verifier allows this BPF_CALL insn and looks at 135 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 136 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 137 * returns either pointer to map value or NULL. 138 * 139 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 140 * insn, the register holding that pointer in the true branch changes state to 141 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 142 * branch. See check_cond_jmp_op(). 143 * 144 * After the call R0 is set to return type of the function and registers R1-R5 145 * are set to NOT_INIT to indicate that they are no longer readable. 146 * 147 * The following reference types represent a potential reference to a kernel 148 * resource which, after first being allocated, must be checked and freed by 149 * the BPF program: 150 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 151 * 152 * When the verifier sees a helper call return a reference type, it allocates a 153 * pointer id for the reference and stores it in the current function state. 154 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 155 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 156 * passes through a NULL-check conditional. For the branch wherein the state is 157 * changed to CONST_IMM, the verifier releases the reference. 158 * 159 * For each helper function that allocates a reference, such as 160 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 161 * bpf_sk_release(). When a reference type passes into the release function, 162 * the verifier also releases the reference. If any unchecked or unreleased 163 * reference remains at the end of the program, the verifier rejects it. 164 */ 165 166 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 167 struct bpf_verifier_stack_elem { 168 /* verifer state is 'st' 169 * before processing instruction 'insn_idx' 170 * and after processing instruction 'prev_insn_idx' 171 */ 172 struct bpf_verifier_state st; 173 int insn_idx; 174 int prev_insn_idx; 175 struct bpf_verifier_stack_elem *next; 176 /* length of verifier log at the time this state was pushed on stack */ 177 u32 log_pos; 178 }; 179 180 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 181 #define BPF_COMPLEXITY_LIMIT_STATES 64 182 183 #define BPF_MAP_KEY_POISON (1ULL << 63) 184 #define BPF_MAP_KEY_SEEN (1ULL << 62) 185 186 #define BPF_MAP_PTR_UNPRIV 1UL 187 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 188 POISON_POINTER_DELTA)) 189 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 190 191 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 192 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 193 194 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 195 { 196 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 197 } 198 199 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 200 { 201 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 202 } 203 204 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 205 const struct bpf_map *map, bool unpriv) 206 { 207 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 208 unpriv |= bpf_map_ptr_unpriv(aux); 209 aux->map_ptr_state = (unsigned long)map | 210 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 211 } 212 213 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 214 { 215 return aux->map_key_state & BPF_MAP_KEY_POISON; 216 } 217 218 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 219 { 220 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 221 } 222 223 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 224 { 225 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 226 } 227 228 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 229 { 230 bool poisoned = bpf_map_key_poisoned(aux); 231 232 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 233 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 234 } 235 236 static bool bpf_pseudo_call(const struct bpf_insn *insn) 237 { 238 return insn->code == (BPF_JMP | BPF_CALL) && 239 insn->src_reg == BPF_PSEUDO_CALL; 240 } 241 242 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 243 { 244 return insn->code == (BPF_JMP | BPF_CALL) && 245 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 246 } 247 248 struct bpf_call_arg_meta { 249 struct bpf_map *map_ptr; 250 bool raw_mode; 251 bool pkt_access; 252 u8 release_regno; 253 int regno; 254 int access_size; 255 int mem_size; 256 u64 msize_max_value; 257 int ref_obj_id; 258 int map_uid; 259 int func_id; 260 struct btf *btf; 261 u32 btf_id; 262 struct btf *ret_btf; 263 u32 ret_btf_id; 264 u32 subprogno; 265 struct btf_field *kptr_field; 266 u8 uninit_dynptr_regno; 267 }; 268 269 struct btf *btf_vmlinux; 270 271 static DEFINE_MUTEX(bpf_verifier_lock); 272 273 static const struct bpf_line_info * 274 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 275 { 276 const struct bpf_line_info *linfo; 277 const struct bpf_prog *prog; 278 u32 i, nr_linfo; 279 280 prog = env->prog; 281 nr_linfo = prog->aux->nr_linfo; 282 283 if (!nr_linfo || insn_off >= prog->len) 284 return NULL; 285 286 linfo = prog->aux->linfo; 287 for (i = 1; i < nr_linfo; i++) 288 if (insn_off < linfo[i].insn_off) 289 break; 290 291 return &linfo[i - 1]; 292 } 293 294 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 295 va_list args) 296 { 297 unsigned int n; 298 299 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 300 301 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 302 "verifier log line truncated - local buffer too short\n"); 303 304 if (log->level == BPF_LOG_KERNEL) { 305 bool newline = n > 0 && log->kbuf[n - 1] == '\n'; 306 307 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n"); 308 return; 309 } 310 311 n = min(log->len_total - log->len_used - 1, n); 312 log->kbuf[n] = '\0'; 313 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 314 log->len_used += n; 315 else 316 log->ubuf = NULL; 317 } 318 319 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 320 { 321 char zero = 0; 322 323 if (!bpf_verifier_log_needed(log)) 324 return; 325 326 log->len_used = new_pos; 327 if (put_user(zero, log->ubuf + new_pos)) 328 log->ubuf = NULL; 329 } 330 331 /* log_level controls verbosity level of eBPF verifier. 332 * bpf_verifier_log_write() is used to dump the verification trace to the log, 333 * so the user can figure out what's wrong with the program 334 */ 335 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 336 const char *fmt, ...) 337 { 338 va_list args; 339 340 if (!bpf_verifier_log_needed(&env->log)) 341 return; 342 343 va_start(args, fmt); 344 bpf_verifier_vlog(&env->log, fmt, args); 345 va_end(args); 346 } 347 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 348 349 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 350 { 351 struct bpf_verifier_env *env = private_data; 352 va_list args; 353 354 if (!bpf_verifier_log_needed(&env->log)) 355 return; 356 357 va_start(args, fmt); 358 bpf_verifier_vlog(&env->log, fmt, args); 359 va_end(args); 360 } 361 362 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 363 const char *fmt, ...) 364 { 365 va_list args; 366 367 if (!bpf_verifier_log_needed(log)) 368 return; 369 370 va_start(args, fmt); 371 bpf_verifier_vlog(log, fmt, args); 372 va_end(args); 373 } 374 EXPORT_SYMBOL_GPL(bpf_log); 375 376 static const char *ltrim(const char *s) 377 { 378 while (isspace(*s)) 379 s++; 380 381 return s; 382 } 383 384 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 385 u32 insn_off, 386 const char *prefix_fmt, ...) 387 { 388 const struct bpf_line_info *linfo; 389 390 if (!bpf_verifier_log_needed(&env->log)) 391 return; 392 393 linfo = find_linfo(env, insn_off); 394 if (!linfo || linfo == env->prev_linfo) 395 return; 396 397 if (prefix_fmt) { 398 va_list args; 399 400 va_start(args, prefix_fmt); 401 bpf_verifier_vlog(&env->log, prefix_fmt, args); 402 va_end(args); 403 } 404 405 verbose(env, "%s\n", 406 ltrim(btf_name_by_offset(env->prog->aux->btf, 407 linfo->line_off))); 408 409 env->prev_linfo = linfo; 410 } 411 412 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 413 struct bpf_reg_state *reg, 414 struct tnum *range, const char *ctx, 415 const char *reg_name) 416 { 417 char tn_buf[48]; 418 419 verbose(env, "At %s the register %s ", ctx, reg_name); 420 if (!tnum_is_unknown(reg->var_off)) { 421 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 422 verbose(env, "has value %s", tn_buf); 423 } else { 424 verbose(env, "has unknown scalar value"); 425 } 426 tnum_strn(tn_buf, sizeof(tn_buf), *range); 427 verbose(env, " should have been in %s\n", tn_buf); 428 } 429 430 static bool type_is_pkt_pointer(enum bpf_reg_type type) 431 { 432 type = base_type(type); 433 return type == PTR_TO_PACKET || 434 type == PTR_TO_PACKET_META; 435 } 436 437 static bool type_is_sk_pointer(enum bpf_reg_type type) 438 { 439 return type == PTR_TO_SOCKET || 440 type == PTR_TO_SOCK_COMMON || 441 type == PTR_TO_TCP_SOCK || 442 type == PTR_TO_XDP_SOCK; 443 } 444 445 static bool reg_type_not_null(enum bpf_reg_type type) 446 { 447 return type == PTR_TO_SOCKET || 448 type == PTR_TO_TCP_SOCK || 449 type == PTR_TO_MAP_VALUE || 450 type == PTR_TO_MAP_KEY || 451 type == PTR_TO_SOCK_COMMON; 452 } 453 454 static bool type_is_ptr_alloc_obj(u32 type) 455 { 456 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 457 } 458 459 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 460 { 461 struct btf_record *rec = NULL; 462 struct btf_struct_meta *meta; 463 464 if (reg->type == PTR_TO_MAP_VALUE) { 465 rec = reg->map_ptr->record; 466 } else if (type_is_ptr_alloc_obj(reg->type)) { 467 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 468 if (meta) 469 rec = meta->record; 470 } 471 return rec; 472 } 473 474 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 475 { 476 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 477 } 478 479 static bool type_is_rdonly_mem(u32 type) 480 { 481 return type & MEM_RDONLY; 482 } 483 484 static bool type_may_be_null(u32 type) 485 { 486 return type & PTR_MAYBE_NULL; 487 } 488 489 static bool is_acquire_function(enum bpf_func_id func_id, 490 const struct bpf_map *map) 491 { 492 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 493 494 if (func_id == BPF_FUNC_sk_lookup_tcp || 495 func_id == BPF_FUNC_sk_lookup_udp || 496 func_id == BPF_FUNC_skc_lookup_tcp || 497 func_id == BPF_FUNC_ringbuf_reserve || 498 func_id == BPF_FUNC_kptr_xchg) 499 return true; 500 501 if (func_id == BPF_FUNC_map_lookup_elem && 502 (map_type == BPF_MAP_TYPE_SOCKMAP || 503 map_type == BPF_MAP_TYPE_SOCKHASH)) 504 return true; 505 506 return false; 507 } 508 509 static bool is_ptr_cast_function(enum bpf_func_id func_id) 510 { 511 return func_id == BPF_FUNC_tcp_sock || 512 func_id == BPF_FUNC_sk_fullsock || 513 func_id == BPF_FUNC_skc_to_tcp_sock || 514 func_id == BPF_FUNC_skc_to_tcp6_sock || 515 func_id == BPF_FUNC_skc_to_udp6_sock || 516 func_id == BPF_FUNC_skc_to_mptcp_sock || 517 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 518 func_id == BPF_FUNC_skc_to_tcp_request_sock; 519 } 520 521 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 522 { 523 return func_id == BPF_FUNC_dynptr_data; 524 } 525 526 static bool is_callback_calling_function(enum bpf_func_id func_id) 527 { 528 return func_id == BPF_FUNC_for_each_map_elem || 529 func_id == BPF_FUNC_timer_set_callback || 530 func_id == BPF_FUNC_find_vma || 531 func_id == BPF_FUNC_loop || 532 func_id == BPF_FUNC_user_ringbuf_drain; 533 } 534 535 static bool is_storage_get_function(enum bpf_func_id func_id) 536 { 537 return func_id == BPF_FUNC_sk_storage_get || 538 func_id == BPF_FUNC_inode_storage_get || 539 func_id == BPF_FUNC_task_storage_get || 540 func_id == BPF_FUNC_cgrp_storage_get; 541 } 542 543 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 544 const struct bpf_map *map) 545 { 546 int ref_obj_uses = 0; 547 548 if (is_ptr_cast_function(func_id)) 549 ref_obj_uses++; 550 if (is_acquire_function(func_id, map)) 551 ref_obj_uses++; 552 if (is_dynptr_ref_function(func_id)) 553 ref_obj_uses++; 554 555 return ref_obj_uses > 1; 556 } 557 558 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 559 { 560 return BPF_CLASS(insn->code) == BPF_STX && 561 BPF_MODE(insn->code) == BPF_ATOMIC && 562 insn->imm == BPF_CMPXCHG; 563 } 564 565 /* string representation of 'enum bpf_reg_type' 566 * 567 * Note that reg_type_str() can not appear more than once in a single verbose() 568 * statement. 569 */ 570 static const char *reg_type_str(struct bpf_verifier_env *env, 571 enum bpf_reg_type type) 572 { 573 char postfix[16] = {0}, prefix[64] = {0}; 574 static const char * const str[] = { 575 [NOT_INIT] = "?", 576 [SCALAR_VALUE] = "scalar", 577 [PTR_TO_CTX] = "ctx", 578 [CONST_PTR_TO_MAP] = "map_ptr", 579 [PTR_TO_MAP_VALUE] = "map_value", 580 [PTR_TO_STACK] = "fp", 581 [PTR_TO_PACKET] = "pkt", 582 [PTR_TO_PACKET_META] = "pkt_meta", 583 [PTR_TO_PACKET_END] = "pkt_end", 584 [PTR_TO_FLOW_KEYS] = "flow_keys", 585 [PTR_TO_SOCKET] = "sock", 586 [PTR_TO_SOCK_COMMON] = "sock_common", 587 [PTR_TO_TCP_SOCK] = "tcp_sock", 588 [PTR_TO_TP_BUFFER] = "tp_buffer", 589 [PTR_TO_XDP_SOCK] = "xdp_sock", 590 [PTR_TO_BTF_ID] = "ptr_", 591 [PTR_TO_MEM] = "mem", 592 [PTR_TO_BUF] = "buf", 593 [PTR_TO_FUNC] = "func", 594 [PTR_TO_MAP_KEY] = "map_key", 595 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", 596 }; 597 598 if (type & PTR_MAYBE_NULL) { 599 if (base_type(type) == PTR_TO_BTF_ID) 600 strncpy(postfix, "or_null_", 16); 601 else 602 strncpy(postfix, "_or_null", 16); 603 } 604 605 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", 606 type & MEM_RDONLY ? "rdonly_" : "", 607 type & MEM_RINGBUF ? "ringbuf_" : "", 608 type & MEM_USER ? "user_" : "", 609 type & MEM_PERCPU ? "percpu_" : "", 610 type & MEM_RCU ? "rcu_" : "", 611 type & PTR_UNTRUSTED ? "untrusted_" : "", 612 type & PTR_TRUSTED ? "trusted_" : "" 613 ); 614 615 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s", 616 prefix, str[base_type(type)], postfix); 617 return env->type_str_buf; 618 } 619 620 static char slot_type_char[] = { 621 [STACK_INVALID] = '?', 622 [STACK_SPILL] = 'r', 623 [STACK_MISC] = 'm', 624 [STACK_ZERO] = '0', 625 [STACK_DYNPTR] = 'd', 626 }; 627 628 static void print_liveness(struct bpf_verifier_env *env, 629 enum bpf_reg_liveness live) 630 { 631 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 632 verbose(env, "_"); 633 if (live & REG_LIVE_READ) 634 verbose(env, "r"); 635 if (live & REG_LIVE_WRITTEN) 636 verbose(env, "w"); 637 if (live & REG_LIVE_DONE) 638 verbose(env, "D"); 639 } 640 641 static int get_spi(s32 off) 642 { 643 return (-off - 1) / BPF_REG_SIZE; 644 } 645 646 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 647 { 648 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 649 650 /* We need to check that slots between [spi - nr_slots + 1, spi] are 651 * within [0, allocated_stack). 652 * 653 * Please note that the spi grows downwards. For example, a dynptr 654 * takes the size of two stack slots; the first slot will be at 655 * spi and the second slot will be at spi - 1. 656 */ 657 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 658 } 659 660 static struct bpf_func_state *func(struct bpf_verifier_env *env, 661 const struct bpf_reg_state *reg) 662 { 663 struct bpf_verifier_state *cur = env->cur_state; 664 665 return cur->frame[reg->frameno]; 666 } 667 668 static const char *kernel_type_name(const struct btf* btf, u32 id) 669 { 670 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 671 } 672 673 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 674 { 675 env->scratched_regs |= 1U << regno; 676 } 677 678 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 679 { 680 env->scratched_stack_slots |= 1ULL << spi; 681 } 682 683 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 684 { 685 return (env->scratched_regs >> regno) & 1; 686 } 687 688 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 689 { 690 return (env->scratched_stack_slots >> regno) & 1; 691 } 692 693 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 694 { 695 return env->scratched_regs || env->scratched_stack_slots; 696 } 697 698 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 699 { 700 env->scratched_regs = 0U; 701 env->scratched_stack_slots = 0ULL; 702 } 703 704 /* Used for printing the entire verifier state. */ 705 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 706 { 707 env->scratched_regs = ~0U; 708 env->scratched_stack_slots = ~0ULL; 709 } 710 711 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 712 { 713 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 714 case DYNPTR_TYPE_LOCAL: 715 return BPF_DYNPTR_TYPE_LOCAL; 716 case DYNPTR_TYPE_RINGBUF: 717 return BPF_DYNPTR_TYPE_RINGBUF; 718 default: 719 return BPF_DYNPTR_TYPE_INVALID; 720 } 721 } 722 723 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 724 { 725 return type == BPF_DYNPTR_TYPE_RINGBUF; 726 } 727 728 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 729 enum bpf_dynptr_type type, 730 bool first_slot); 731 732 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 733 struct bpf_reg_state *reg); 734 735 static void mark_dynptr_stack_regs(struct bpf_reg_state *sreg1, 736 struct bpf_reg_state *sreg2, 737 enum bpf_dynptr_type type) 738 { 739 __mark_dynptr_reg(sreg1, type, true); 740 __mark_dynptr_reg(sreg2, type, false); 741 } 742 743 static void mark_dynptr_cb_reg(struct bpf_reg_state *reg, 744 enum bpf_dynptr_type type) 745 { 746 __mark_dynptr_reg(reg, type, true); 747 } 748 749 750 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 751 enum bpf_arg_type arg_type, int insn_idx) 752 { 753 struct bpf_func_state *state = func(env, reg); 754 enum bpf_dynptr_type type; 755 int spi, i, id; 756 757 spi = get_spi(reg->off); 758 759 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 760 return -EINVAL; 761 762 for (i = 0; i < BPF_REG_SIZE; i++) { 763 state->stack[spi].slot_type[i] = STACK_DYNPTR; 764 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 765 } 766 767 type = arg_to_dynptr_type(arg_type); 768 if (type == BPF_DYNPTR_TYPE_INVALID) 769 return -EINVAL; 770 771 mark_dynptr_stack_regs(&state->stack[spi].spilled_ptr, 772 &state->stack[spi - 1].spilled_ptr, type); 773 774 if (dynptr_type_refcounted(type)) { 775 /* The id is used to track proper releasing */ 776 id = acquire_reference_state(env, insn_idx); 777 if (id < 0) 778 return id; 779 780 state->stack[spi].spilled_ptr.ref_obj_id = id; 781 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 782 } 783 784 return 0; 785 } 786 787 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 788 { 789 struct bpf_func_state *state = func(env, reg); 790 int spi, i; 791 792 spi = get_spi(reg->off); 793 794 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 795 return -EINVAL; 796 797 for (i = 0; i < BPF_REG_SIZE; i++) { 798 state->stack[spi].slot_type[i] = STACK_INVALID; 799 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 800 } 801 802 /* Invalidate any slices associated with this dynptr */ 803 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) 804 WARN_ON_ONCE(release_reference(env, state->stack[spi].spilled_ptr.ref_obj_id)); 805 806 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 807 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 808 return 0; 809 } 810 811 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 812 { 813 struct bpf_func_state *state = func(env, reg); 814 int spi, i; 815 816 if (reg->type == CONST_PTR_TO_DYNPTR) 817 return false; 818 819 spi = get_spi(reg->off); 820 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 821 return true; 822 823 for (i = 0; i < BPF_REG_SIZE; i++) { 824 if (state->stack[spi].slot_type[i] == STACK_DYNPTR || 825 state->stack[spi - 1].slot_type[i] == STACK_DYNPTR) 826 return false; 827 } 828 829 return true; 830 } 831 832 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 833 { 834 struct bpf_func_state *state = func(env, reg); 835 int spi; 836 int i; 837 838 /* This already represents first slot of initialized bpf_dynptr */ 839 if (reg->type == CONST_PTR_TO_DYNPTR) 840 return true; 841 842 spi = get_spi(reg->off); 843 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 844 !state->stack[spi].spilled_ptr.dynptr.first_slot) 845 return false; 846 847 for (i = 0; i < BPF_REG_SIZE; i++) { 848 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 849 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 850 return false; 851 } 852 853 return true; 854 } 855 856 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 857 enum bpf_arg_type arg_type) 858 { 859 struct bpf_func_state *state = func(env, reg); 860 enum bpf_dynptr_type dynptr_type; 861 int spi; 862 863 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 864 if (arg_type == ARG_PTR_TO_DYNPTR) 865 return true; 866 867 dynptr_type = arg_to_dynptr_type(arg_type); 868 if (reg->type == CONST_PTR_TO_DYNPTR) { 869 return reg->dynptr.type == dynptr_type; 870 } else { 871 spi = get_spi(reg->off); 872 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 873 } 874 } 875 876 /* The reg state of a pointer or a bounded scalar was saved when 877 * it was spilled to the stack. 878 */ 879 static bool is_spilled_reg(const struct bpf_stack_state *stack) 880 { 881 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 882 } 883 884 static void scrub_spilled_slot(u8 *stype) 885 { 886 if (*stype != STACK_INVALID) 887 *stype = STACK_MISC; 888 } 889 890 static void print_verifier_state(struct bpf_verifier_env *env, 891 const struct bpf_func_state *state, 892 bool print_all) 893 { 894 const struct bpf_reg_state *reg; 895 enum bpf_reg_type t; 896 int i; 897 898 if (state->frameno) 899 verbose(env, " frame%d:", state->frameno); 900 for (i = 0; i < MAX_BPF_REG; i++) { 901 reg = &state->regs[i]; 902 t = reg->type; 903 if (t == NOT_INIT) 904 continue; 905 if (!print_all && !reg_scratched(env, i)) 906 continue; 907 verbose(env, " R%d", i); 908 print_liveness(env, reg->live); 909 verbose(env, "="); 910 if (t == SCALAR_VALUE && reg->precise) 911 verbose(env, "P"); 912 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 913 tnum_is_const(reg->var_off)) { 914 /* reg->off should be 0 for SCALAR_VALUE */ 915 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 916 verbose(env, "%lld", reg->var_off.value + reg->off); 917 } else { 918 const char *sep = ""; 919 920 verbose(env, "%s", reg_type_str(env, t)); 921 if (base_type(t) == PTR_TO_BTF_ID) 922 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 923 verbose(env, "("); 924 /* 925 * _a stands for append, was shortened to avoid multiline statements below. 926 * This macro is used to output a comma separated list of attributes. 927 */ 928 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 929 930 if (reg->id) 931 verbose_a("id=%d", reg->id); 932 if (reg->ref_obj_id) 933 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 934 if (t != SCALAR_VALUE) 935 verbose_a("off=%d", reg->off); 936 if (type_is_pkt_pointer(t)) 937 verbose_a("r=%d", reg->range); 938 else if (base_type(t) == CONST_PTR_TO_MAP || 939 base_type(t) == PTR_TO_MAP_KEY || 940 base_type(t) == PTR_TO_MAP_VALUE) 941 verbose_a("ks=%d,vs=%d", 942 reg->map_ptr->key_size, 943 reg->map_ptr->value_size); 944 if (tnum_is_const(reg->var_off)) { 945 /* Typically an immediate SCALAR_VALUE, but 946 * could be a pointer whose offset is too big 947 * for reg->off 948 */ 949 verbose_a("imm=%llx", reg->var_off.value); 950 } else { 951 if (reg->smin_value != reg->umin_value && 952 reg->smin_value != S64_MIN) 953 verbose_a("smin=%lld", (long long)reg->smin_value); 954 if (reg->smax_value != reg->umax_value && 955 reg->smax_value != S64_MAX) 956 verbose_a("smax=%lld", (long long)reg->smax_value); 957 if (reg->umin_value != 0) 958 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 959 if (reg->umax_value != U64_MAX) 960 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 961 if (!tnum_is_unknown(reg->var_off)) { 962 char tn_buf[48]; 963 964 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 965 verbose_a("var_off=%s", tn_buf); 966 } 967 if (reg->s32_min_value != reg->smin_value && 968 reg->s32_min_value != S32_MIN) 969 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 970 if (reg->s32_max_value != reg->smax_value && 971 reg->s32_max_value != S32_MAX) 972 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 973 if (reg->u32_min_value != reg->umin_value && 974 reg->u32_min_value != U32_MIN) 975 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 976 if (reg->u32_max_value != reg->umax_value && 977 reg->u32_max_value != U32_MAX) 978 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 979 } 980 #undef verbose_a 981 982 verbose(env, ")"); 983 } 984 } 985 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 986 char types_buf[BPF_REG_SIZE + 1]; 987 bool valid = false; 988 int j; 989 990 for (j = 0; j < BPF_REG_SIZE; j++) { 991 if (state->stack[i].slot_type[j] != STACK_INVALID) 992 valid = true; 993 types_buf[j] = slot_type_char[ 994 state->stack[i].slot_type[j]]; 995 } 996 types_buf[BPF_REG_SIZE] = 0; 997 if (!valid) 998 continue; 999 if (!print_all && !stack_slot_scratched(env, i)) 1000 continue; 1001 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1002 print_liveness(env, state->stack[i].spilled_ptr.live); 1003 if (is_spilled_reg(&state->stack[i])) { 1004 reg = &state->stack[i].spilled_ptr; 1005 t = reg->type; 1006 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1007 if (t == SCALAR_VALUE && reg->precise) 1008 verbose(env, "P"); 1009 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 1010 verbose(env, "%lld", reg->var_off.value + reg->off); 1011 } else { 1012 verbose(env, "=%s", types_buf); 1013 } 1014 } 1015 if (state->acquired_refs && state->refs[0].id) { 1016 verbose(env, " refs=%d", state->refs[0].id); 1017 for (i = 1; i < state->acquired_refs; i++) 1018 if (state->refs[i].id) 1019 verbose(env, ",%d", state->refs[i].id); 1020 } 1021 if (state->in_callback_fn) 1022 verbose(env, " cb"); 1023 if (state->in_async_callback_fn) 1024 verbose(env, " async_cb"); 1025 verbose(env, "\n"); 1026 mark_verifier_state_clean(env); 1027 } 1028 1029 static inline u32 vlog_alignment(u32 pos) 1030 { 1031 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 1032 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 1033 } 1034 1035 static void print_insn_state(struct bpf_verifier_env *env, 1036 const struct bpf_func_state *state) 1037 { 1038 if (env->prev_log_len && env->prev_log_len == env->log.len_used) { 1039 /* remove new line character */ 1040 bpf_vlog_reset(&env->log, env->prev_log_len - 1); 1041 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' '); 1042 } else { 1043 verbose(env, "%d:", env->insn_idx); 1044 } 1045 print_verifier_state(env, state, false); 1046 } 1047 1048 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1049 * small to hold src. This is different from krealloc since we don't want to preserve 1050 * the contents of dst. 1051 * 1052 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1053 * not be allocated. 1054 */ 1055 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1056 { 1057 size_t alloc_bytes; 1058 void *orig = dst; 1059 size_t bytes; 1060 1061 if (ZERO_OR_NULL_PTR(src)) 1062 goto out; 1063 1064 if (unlikely(check_mul_overflow(n, size, &bytes))) 1065 return NULL; 1066 1067 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1068 dst = krealloc(orig, alloc_bytes, flags); 1069 if (!dst) { 1070 kfree(orig); 1071 return NULL; 1072 } 1073 1074 memcpy(dst, src, bytes); 1075 out: 1076 return dst ? dst : ZERO_SIZE_PTR; 1077 } 1078 1079 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1080 * small to hold new_n items. new items are zeroed out if the array grows. 1081 * 1082 * Contrary to krealloc_array, does not free arr if new_n is zero. 1083 */ 1084 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1085 { 1086 size_t alloc_size; 1087 void *new_arr; 1088 1089 if (!new_n || old_n == new_n) 1090 goto out; 1091 1092 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1093 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1094 if (!new_arr) { 1095 kfree(arr); 1096 return NULL; 1097 } 1098 arr = new_arr; 1099 1100 if (new_n > old_n) 1101 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1102 1103 out: 1104 return arr ? arr : ZERO_SIZE_PTR; 1105 } 1106 1107 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1108 { 1109 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1110 sizeof(struct bpf_reference_state), GFP_KERNEL); 1111 if (!dst->refs) 1112 return -ENOMEM; 1113 1114 dst->acquired_refs = src->acquired_refs; 1115 return 0; 1116 } 1117 1118 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1119 { 1120 size_t n = src->allocated_stack / BPF_REG_SIZE; 1121 1122 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1123 GFP_KERNEL); 1124 if (!dst->stack) 1125 return -ENOMEM; 1126 1127 dst->allocated_stack = src->allocated_stack; 1128 return 0; 1129 } 1130 1131 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1132 { 1133 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1134 sizeof(struct bpf_reference_state)); 1135 if (!state->refs) 1136 return -ENOMEM; 1137 1138 state->acquired_refs = n; 1139 return 0; 1140 } 1141 1142 static int grow_stack_state(struct bpf_func_state *state, int size) 1143 { 1144 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1145 1146 if (old_n >= n) 1147 return 0; 1148 1149 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1150 if (!state->stack) 1151 return -ENOMEM; 1152 1153 state->allocated_stack = size; 1154 return 0; 1155 } 1156 1157 /* Acquire a pointer id from the env and update the state->refs to include 1158 * this new pointer reference. 1159 * On success, returns a valid pointer id to associate with the register 1160 * On failure, returns a negative errno. 1161 */ 1162 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1163 { 1164 struct bpf_func_state *state = cur_func(env); 1165 int new_ofs = state->acquired_refs; 1166 int id, err; 1167 1168 err = resize_reference_state(state, state->acquired_refs + 1); 1169 if (err) 1170 return err; 1171 id = ++env->id_gen; 1172 state->refs[new_ofs].id = id; 1173 state->refs[new_ofs].insn_idx = insn_idx; 1174 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1175 1176 return id; 1177 } 1178 1179 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1180 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1181 { 1182 int i, last_idx; 1183 1184 last_idx = state->acquired_refs - 1; 1185 for (i = 0; i < state->acquired_refs; i++) { 1186 if (state->refs[i].id == ptr_id) { 1187 /* Cannot release caller references in callbacks */ 1188 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1189 return -EINVAL; 1190 if (last_idx && i != last_idx) 1191 memcpy(&state->refs[i], &state->refs[last_idx], 1192 sizeof(*state->refs)); 1193 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1194 state->acquired_refs--; 1195 return 0; 1196 } 1197 } 1198 return -EINVAL; 1199 } 1200 1201 static void free_func_state(struct bpf_func_state *state) 1202 { 1203 if (!state) 1204 return; 1205 kfree(state->refs); 1206 kfree(state->stack); 1207 kfree(state); 1208 } 1209 1210 static void clear_jmp_history(struct bpf_verifier_state *state) 1211 { 1212 kfree(state->jmp_history); 1213 state->jmp_history = NULL; 1214 state->jmp_history_cnt = 0; 1215 } 1216 1217 static void free_verifier_state(struct bpf_verifier_state *state, 1218 bool free_self) 1219 { 1220 int i; 1221 1222 for (i = 0; i <= state->curframe; i++) { 1223 free_func_state(state->frame[i]); 1224 state->frame[i] = NULL; 1225 } 1226 clear_jmp_history(state); 1227 if (free_self) 1228 kfree(state); 1229 } 1230 1231 /* copy verifier state from src to dst growing dst stack space 1232 * when necessary to accommodate larger src stack 1233 */ 1234 static int copy_func_state(struct bpf_func_state *dst, 1235 const struct bpf_func_state *src) 1236 { 1237 int err; 1238 1239 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1240 err = copy_reference_state(dst, src); 1241 if (err) 1242 return err; 1243 return copy_stack_state(dst, src); 1244 } 1245 1246 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1247 const struct bpf_verifier_state *src) 1248 { 1249 struct bpf_func_state *dst; 1250 int i, err; 1251 1252 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1253 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1254 GFP_USER); 1255 if (!dst_state->jmp_history) 1256 return -ENOMEM; 1257 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1258 1259 /* if dst has more stack frames then src frame, free them */ 1260 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1261 free_func_state(dst_state->frame[i]); 1262 dst_state->frame[i] = NULL; 1263 } 1264 dst_state->speculative = src->speculative; 1265 dst_state->active_rcu_lock = src->active_rcu_lock; 1266 dst_state->curframe = src->curframe; 1267 dst_state->active_lock.ptr = src->active_lock.ptr; 1268 dst_state->active_lock.id = src->active_lock.id; 1269 dst_state->branches = src->branches; 1270 dst_state->parent = src->parent; 1271 dst_state->first_insn_idx = src->first_insn_idx; 1272 dst_state->last_insn_idx = src->last_insn_idx; 1273 for (i = 0; i <= src->curframe; i++) { 1274 dst = dst_state->frame[i]; 1275 if (!dst) { 1276 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1277 if (!dst) 1278 return -ENOMEM; 1279 dst_state->frame[i] = dst; 1280 } 1281 err = copy_func_state(dst, src->frame[i]); 1282 if (err) 1283 return err; 1284 } 1285 return 0; 1286 } 1287 1288 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1289 { 1290 while (st) { 1291 u32 br = --st->branches; 1292 1293 /* WARN_ON(br > 1) technically makes sense here, 1294 * but see comment in push_stack(), hence: 1295 */ 1296 WARN_ONCE((int)br < 0, 1297 "BUG update_branch_counts:branches_to_explore=%d\n", 1298 br); 1299 if (br) 1300 break; 1301 st = st->parent; 1302 } 1303 } 1304 1305 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1306 int *insn_idx, bool pop_log) 1307 { 1308 struct bpf_verifier_state *cur = env->cur_state; 1309 struct bpf_verifier_stack_elem *elem, *head = env->head; 1310 int err; 1311 1312 if (env->head == NULL) 1313 return -ENOENT; 1314 1315 if (cur) { 1316 err = copy_verifier_state(cur, &head->st); 1317 if (err) 1318 return err; 1319 } 1320 if (pop_log) 1321 bpf_vlog_reset(&env->log, head->log_pos); 1322 if (insn_idx) 1323 *insn_idx = head->insn_idx; 1324 if (prev_insn_idx) 1325 *prev_insn_idx = head->prev_insn_idx; 1326 elem = head->next; 1327 free_verifier_state(&head->st, false); 1328 kfree(head); 1329 env->head = elem; 1330 env->stack_size--; 1331 return 0; 1332 } 1333 1334 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1335 int insn_idx, int prev_insn_idx, 1336 bool speculative) 1337 { 1338 struct bpf_verifier_state *cur = env->cur_state; 1339 struct bpf_verifier_stack_elem *elem; 1340 int err; 1341 1342 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1343 if (!elem) 1344 goto err; 1345 1346 elem->insn_idx = insn_idx; 1347 elem->prev_insn_idx = prev_insn_idx; 1348 elem->next = env->head; 1349 elem->log_pos = env->log.len_used; 1350 env->head = elem; 1351 env->stack_size++; 1352 err = copy_verifier_state(&elem->st, cur); 1353 if (err) 1354 goto err; 1355 elem->st.speculative |= speculative; 1356 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1357 verbose(env, "The sequence of %d jumps is too complex.\n", 1358 env->stack_size); 1359 goto err; 1360 } 1361 if (elem->st.parent) { 1362 ++elem->st.parent->branches; 1363 /* WARN_ON(branches > 2) technically makes sense here, 1364 * but 1365 * 1. speculative states will bump 'branches' for non-branch 1366 * instructions 1367 * 2. is_state_visited() heuristics may decide not to create 1368 * a new state for a sequence of branches and all such current 1369 * and cloned states will be pointing to a single parent state 1370 * which might have large 'branches' count. 1371 */ 1372 } 1373 return &elem->st; 1374 err: 1375 free_verifier_state(env->cur_state, true); 1376 env->cur_state = NULL; 1377 /* pop all elements and return */ 1378 while (!pop_stack(env, NULL, NULL, false)); 1379 return NULL; 1380 } 1381 1382 #define CALLER_SAVED_REGS 6 1383 static const int caller_saved[CALLER_SAVED_REGS] = { 1384 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1385 }; 1386 1387 /* This helper doesn't clear reg->id */ 1388 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1389 { 1390 reg->var_off = tnum_const(imm); 1391 reg->smin_value = (s64)imm; 1392 reg->smax_value = (s64)imm; 1393 reg->umin_value = imm; 1394 reg->umax_value = imm; 1395 1396 reg->s32_min_value = (s32)imm; 1397 reg->s32_max_value = (s32)imm; 1398 reg->u32_min_value = (u32)imm; 1399 reg->u32_max_value = (u32)imm; 1400 } 1401 1402 /* Mark the unknown part of a register (variable offset or scalar value) as 1403 * known to have the value @imm. 1404 */ 1405 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1406 { 1407 /* Clear id, off, and union(map_ptr, range) */ 1408 memset(((u8 *)reg) + sizeof(reg->type), 0, 1409 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1410 ___mark_reg_known(reg, imm); 1411 } 1412 1413 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1414 { 1415 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1416 reg->s32_min_value = (s32)imm; 1417 reg->s32_max_value = (s32)imm; 1418 reg->u32_min_value = (u32)imm; 1419 reg->u32_max_value = (u32)imm; 1420 } 1421 1422 /* Mark the 'variable offset' part of a register as zero. This should be 1423 * used only on registers holding a pointer type. 1424 */ 1425 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1426 { 1427 __mark_reg_known(reg, 0); 1428 } 1429 1430 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1431 { 1432 __mark_reg_known(reg, 0); 1433 reg->type = SCALAR_VALUE; 1434 } 1435 1436 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1437 struct bpf_reg_state *regs, u32 regno) 1438 { 1439 if (WARN_ON(regno >= MAX_BPF_REG)) { 1440 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1441 /* Something bad happened, let's kill all regs */ 1442 for (regno = 0; regno < MAX_BPF_REG; regno++) 1443 __mark_reg_not_init(env, regs + regno); 1444 return; 1445 } 1446 __mark_reg_known_zero(regs + regno); 1447 } 1448 1449 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1450 bool first_slot) 1451 { 1452 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1453 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1454 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1455 */ 1456 __mark_reg_known_zero(reg); 1457 reg->type = CONST_PTR_TO_DYNPTR; 1458 reg->dynptr.type = type; 1459 reg->dynptr.first_slot = first_slot; 1460 } 1461 1462 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1463 { 1464 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1465 const struct bpf_map *map = reg->map_ptr; 1466 1467 if (map->inner_map_meta) { 1468 reg->type = CONST_PTR_TO_MAP; 1469 reg->map_ptr = map->inner_map_meta; 1470 /* transfer reg's id which is unique for every map_lookup_elem 1471 * as UID of the inner map. 1472 */ 1473 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1474 reg->map_uid = reg->id; 1475 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1476 reg->type = PTR_TO_XDP_SOCK; 1477 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1478 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1479 reg->type = PTR_TO_SOCKET; 1480 } else { 1481 reg->type = PTR_TO_MAP_VALUE; 1482 } 1483 return; 1484 } 1485 1486 reg->type &= ~PTR_MAYBE_NULL; 1487 } 1488 1489 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1490 { 1491 return type_is_pkt_pointer(reg->type); 1492 } 1493 1494 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1495 { 1496 return reg_is_pkt_pointer(reg) || 1497 reg->type == PTR_TO_PACKET_END; 1498 } 1499 1500 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1501 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1502 enum bpf_reg_type which) 1503 { 1504 /* The register can already have a range from prior markings. 1505 * This is fine as long as it hasn't been advanced from its 1506 * origin. 1507 */ 1508 return reg->type == which && 1509 reg->id == 0 && 1510 reg->off == 0 && 1511 tnum_equals_const(reg->var_off, 0); 1512 } 1513 1514 /* Reset the min/max bounds of a register */ 1515 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1516 { 1517 reg->smin_value = S64_MIN; 1518 reg->smax_value = S64_MAX; 1519 reg->umin_value = 0; 1520 reg->umax_value = U64_MAX; 1521 1522 reg->s32_min_value = S32_MIN; 1523 reg->s32_max_value = S32_MAX; 1524 reg->u32_min_value = 0; 1525 reg->u32_max_value = U32_MAX; 1526 } 1527 1528 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1529 { 1530 reg->smin_value = S64_MIN; 1531 reg->smax_value = S64_MAX; 1532 reg->umin_value = 0; 1533 reg->umax_value = U64_MAX; 1534 } 1535 1536 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1537 { 1538 reg->s32_min_value = S32_MIN; 1539 reg->s32_max_value = S32_MAX; 1540 reg->u32_min_value = 0; 1541 reg->u32_max_value = U32_MAX; 1542 } 1543 1544 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1545 { 1546 struct tnum var32_off = tnum_subreg(reg->var_off); 1547 1548 /* min signed is max(sign bit) | min(other bits) */ 1549 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1550 var32_off.value | (var32_off.mask & S32_MIN)); 1551 /* max signed is min(sign bit) | max(other bits) */ 1552 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1553 var32_off.value | (var32_off.mask & S32_MAX)); 1554 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1555 reg->u32_max_value = min(reg->u32_max_value, 1556 (u32)(var32_off.value | var32_off.mask)); 1557 } 1558 1559 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1560 { 1561 /* min signed is max(sign bit) | min(other bits) */ 1562 reg->smin_value = max_t(s64, reg->smin_value, 1563 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1564 /* max signed is min(sign bit) | max(other bits) */ 1565 reg->smax_value = min_t(s64, reg->smax_value, 1566 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1567 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1568 reg->umax_value = min(reg->umax_value, 1569 reg->var_off.value | reg->var_off.mask); 1570 } 1571 1572 static void __update_reg_bounds(struct bpf_reg_state *reg) 1573 { 1574 __update_reg32_bounds(reg); 1575 __update_reg64_bounds(reg); 1576 } 1577 1578 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1579 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1580 { 1581 /* Learn sign from signed bounds. 1582 * If we cannot cross the sign boundary, then signed and unsigned bounds 1583 * are the same, so combine. This works even in the negative case, e.g. 1584 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1585 */ 1586 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1587 reg->s32_min_value = reg->u32_min_value = 1588 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1589 reg->s32_max_value = reg->u32_max_value = 1590 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1591 return; 1592 } 1593 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1594 * boundary, so we must be careful. 1595 */ 1596 if ((s32)reg->u32_max_value >= 0) { 1597 /* Positive. We can't learn anything from the smin, but smax 1598 * is positive, hence safe. 1599 */ 1600 reg->s32_min_value = reg->u32_min_value; 1601 reg->s32_max_value = reg->u32_max_value = 1602 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1603 } else if ((s32)reg->u32_min_value < 0) { 1604 /* Negative. We can't learn anything from the smax, but smin 1605 * is negative, hence safe. 1606 */ 1607 reg->s32_min_value = reg->u32_min_value = 1608 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1609 reg->s32_max_value = reg->u32_max_value; 1610 } 1611 } 1612 1613 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1614 { 1615 /* Learn sign from signed bounds. 1616 * If we cannot cross the sign boundary, then signed and unsigned bounds 1617 * are the same, so combine. This works even in the negative case, e.g. 1618 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1619 */ 1620 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1621 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1622 reg->umin_value); 1623 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1624 reg->umax_value); 1625 return; 1626 } 1627 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1628 * boundary, so we must be careful. 1629 */ 1630 if ((s64)reg->umax_value >= 0) { 1631 /* Positive. We can't learn anything from the smin, but smax 1632 * is positive, hence safe. 1633 */ 1634 reg->smin_value = reg->umin_value; 1635 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1636 reg->umax_value); 1637 } else if ((s64)reg->umin_value < 0) { 1638 /* Negative. We can't learn anything from the smax, but smin 1639 * is negative, hence safe. 1640 */ 1641 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1642 reg->umin_value); 1643 reg->smax_value = reg->umax_value; 1644 } 1645 } 1646 1647 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1648 { 1649 __reg32_deduce_bounds(reg); 1650 __reg64_deduce_bounds(reg); 1651 } 1652 1653 /* Attempts to improve var_off based on unsigned min/max information */ 1654 static void __reg_bound_offset(struct bpf_reg_state *reg) 1655 { 1656 struct tnum var64_off = tnum_intersect(reg->var_off, 1657 tnum_range(reg->umin_value, 1658 reg->umax_value)); 1659 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1660 tnum_range(reg->u32_min_value, 1661 reg->u32_max_value)); 1662 1663 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1664 } 1665 1666 static void reg_bounds_sync(struct bpf_reg_state *reg) 1667 { 1668 /* We might have learned new bounds from the var_off. */ 1669 __update_reg_bounds(reg); 1670 /* We might have learned something about the sign bit. */ 1671 __reg_deduce_bounds(reg); 1672 /* We might have learned some bits from the bounds. */ 1673 __reg_bound_offset(reg); 1674 /* Intersecting with the old var_off might have improved our bounds 1675 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1676 * then new var_off is (0; 0x7f...fc) which improves our umax. 1677 */ 1678 __update_reg_bounds(reg); 1679 } 1680 1681 static bool __reg32_bound_s64(s32 a) 1682 { 1683 return a >= 0 && a <= S32_MAX; 1684 } 1685 1686 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1687 { 1688 reg->umin_value = reg->u32_min_value; 1689 reg->umax_value = reg->u32_max_value; 1690 1691 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 1692 * be positive otherwise set to worse case bounds and refine later 1693 * from tnum. 1694 */ 1695 if (__reg32_bound_s64(reg->s32_min_value) && 1696 __reg32_bound_s64(reg->s32_max_value)) { 1697 reg->smin_value = reg->s32_min_value; 1698 reg->smax_value = reg->s32_max_value; 1699 } else { 1700 reg->smin_value = 0; 1701 reg->smax_value = U32_MAX; 1702 } 1703 } 1704 1705 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1706 { 1707 /* special case when 64-bit register has upper 32-bit register 1708 * zeroed. Typically happens after zext or <<32, >>32 sequence 1709 * allowing us to use 32-bit bounds directly, 1710 */ 1711 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1712 __reg_assign_32_into_64(reg); 1713 } else { 1714 /* Otherwise the best we can do is push lower 32bit known and 1715 * unknown bits into register (var_off set from jmp logic) 1716 * then learn as much as possible from the 64-bit tnum 1717 * known and unknown bits. The previous smin/smax bounds are 1718 * invalid here because of jmp32 compare so mark them unknown 1719 * so they do not impact tnum bounds calculation. 1720 */ 1721 __mark_reg64_unbounded(reg); 1722 } 1723 reg_bounds_sync(reg); 1724 } 1725 1726 static bool __reg64_bound_s32(s64 a) 1727 { 1728 return a >= S32_MIN && a <= S32_MAX; 1729 } 1730 1731 static bool __reg64_bound_u32(u64 a) 1732 { 1733 return a >= U32_MIN && a <= U32_MAX; 1734 } 1735 1736 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1737 { 1738 __mark_reg32_unbounded(reg); 1739 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1740 reg->s32_min_value = (s32)reg->smin_value; 1741 reg->s32_max_value = (s32)reg->smax_value; 1742 } 1743 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1744 reg->u32_min_value = (u32)reg->umin_value; 1745 reg->u32_max_value = (u32)reg->umax_value; 1746 } 1747 reg_bounds_sync(reg); 1748 } 1749 1750 /* Mark a register as having a completely unknown (scalar) value. */ 1751 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1752 struct bpf_reg_state *reg) 1753 { 1754 /* 1755 * Clear type, id, off, and union(map_ptr, range) and 1756 * padding between 'type' and union 1757 */ 1758 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1759 reg->type = SCALAR_VALUE; 1760 reg->var_off = tnum_unknown; 1761 reg->frameno = 0; 1762 reg->precise = !env->bpf_capable; 1763 __mark_reg_unbounded(reg); 1764 } 1765 1766 static void mark_reg_unknown(struct bpf_verifier_env *env, 1767 struct bpf_reg_state *regs, u32 regno) 1768 { 1769 if (WARN_ON(regno >= MAX_BPF_REG)) { 1770 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1771 /* Something bad happened, let's kill all regs except FP */ 1772 for (regno = 0; regno < BPF_REG_FP; regno++) 1773 __mark_reg_not_init(env, regs + regno); 1774 return; 1775 } 1776 __mark_reg_unknown(env, regs + regno); 1777 } 1778 1779 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1780 struct bpf_reg_state *reg) 1781 { 1782 __mark_reg_unknown(env, reg); 1783 reg->type = NOT_INIT; 1784 } 1785 1786 static void mark_reg_not_init(struct bpf_verifier_env *env, 1787 struct bpf_reg_state *regs, u32 regno) 1788 { 1789 if (WARN_ON(regno >= MAX_BPF_REG)) { 1790 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1791 /* Something bad happened, let's kill all regs except FP */ 1792 for (regno = 0; regno < BPF_REG_FP; regno++) 1793 __mark_reg_not_init(env, regs + regno); 1794 return; 1795 } 1796 __mark_reg_not_init(env, regs + regno); 1797 } 1798 1799 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1800 struct bpf_reg_state *regs, u32 regno, 1801 enum bpf_reg_type reg_type, 1802 struct btf *btf, u32 btf_id, 1803 enum bpf_type_flag flag) 1804 { 1805 if (reg_type == SCALAR_VALUE) { 1806 mark_reg_unknown(env, regs, regno); 1807 return; 1808 } 1809 mark_reg_known_zero(env, regs, regno); 1810 regs[regno].type = PTR_TO_BTF_ID | flag; 1811 regs[regno].btf = btf; 1812 regs[regno].btf_id = btf_id; 1813 } 1814 1815 #define DEF_NOT_SUBREG (0) 1816 static void init_reg_state(struct bpf_verifier_env *env, 1817 struct bpf_func_state *state) 1818 { 1819 struct bpf_reg_state *regs = state->regs; 1820 int i; 1821 1822 for (i = 0; i < MAX_BPF_REG; i++) { 1823 mark_reg_not_init(env, regs, i); 1824 regs[i].live = REG_LIVE_NONE; 1825 regs[i].parent = NULL; 1826 regs[i].subreg_def = DEF_NOT_SUBREG; 1827 } 1828 1829 /* frame pointer */ 1830 regs[BPF_REG_FP].type = PTR_TO_STACK; 1831 mark_reg_known_zero(env, regs, BPF_REG_FP); 1832 regs[BPF_REG_FP].frameno = state->frameno; 1833 } 1834 1835 #define BPF_MAIN_FUNC (-1) 1836 static void init_func_state(struct bpf_verifier_env *env, 1837 struct bpf_func_state *state, 1838 int callsite, int frameno, int subprogno) 1839 { 1840 state->callsite = callsite; 1841 state->frameno = frameno; 1842 state->subprogno = subprogno; 1843 state->callback_ret_range = tnum_range(0, 0); 1844 init_reg_state(env, state); 1845 mark_verifier_state_scratched(env); 1846 } 1847 1848 /* Similar to push_stack(), but for async callbacks */ 1849 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 1850 int insn_idx, int prev_insn_idx, 1851 int subprog) 1852 { 1853 struct bpf_verifier_stack_elem *elem; 1854 struct bpf_func_state *frame; 1855 1856 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1857 if (!elem) 1858 goto err; 1859 1860 elem->insn_idx = insn_idx; 1861 elem->prev_insn_idx = prev_insn_idx; 1862 elem->next = env->head; 1863 elem->log_pos = env->log.len_used; 1864 env->head = elem; 1865 env->stack_size++; 1866 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1867 verbose(env, 1868 "The sequence of %d jumps is too complex for async cb.\n", 1869 env->stack_size); 1870 goto err; 1871 } 1872 /* Unlike push_stack() do not copy_verifier_state(). 1873 * The caller state doesn't matter. 1874 * This is async callback. It starts in a fresh stack. 1875 * Initialize it similar to do_check_common(). 1876 */ 1877 elem->st.branches = 1; 1878 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1879 if (!frame) 1880 goto err; 1881 init_func_state(env, frame, 1882 BPF_MAIN_FUNC /* callsite */, 1883 0 /* frameno within this callchain */, 1884 subprog /* subprog number within this prog */); 1885 elem->st.frame[0] = frame; 1886 return &elem->st; 1887 err: 1888 free_verifier_state(env->cur_state, true); 1889 env->cur_state = NULL; 1890 /* pop all elements and return */ 1891 while (!pop_stack(env, NULL, NULL, false)); 1892 return NULL; 1893 } 1894 1895 1896 enum reg_arg_type { 1897 SRC_OP, /* register is used as source operand */ 1898 DST_OP, /* register is used as destination operand */ 1899 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1900 }; 1901 1902 static int cmp_subprogs(const void *a, const void *b) 1903 { 1904 return ((struct bpf_subprog_info *)a)->start - 1905 ((struct bpf_subprog_info *)b)->start; 1906 } 1907 1908 static int find_subprog(struct bpf_verifier_env *env, int off) 1909 { 1910 struct bpf_subprog_info *p; 1911 1912 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1913 sizeof(env->subprog_info[0]), cmp_subprogs); 1914 if (!p) 1915 return -ENOENT; 1916 return p - env->subprog_info; 1917 1918 } 1919 1920 static int add_subprog(struct bpf_verifier_env *env, int off) 1921 { 1922 int insn_cnt = env->prog->len; 1923 int ret; 1924 1925 if (off >= insn_cnt || off < 0) { 1926 verbose(env, "call to invalid destination\n"); 1927 return -EINVAL; 1928 } 1929 ret = find_subprog(env, off); 1930 if (ret >= 0) 1931 return ret; 1932 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1933 verbose(env, "too many subprograms\n"); 1934 return -E2BIG; 1935 } 1936 /* determine subprog starts. The end is one before the next starts */ 1937 env->subprog_info[env->subprog_cnt++].start = off; 1938 sort(env->subprog_info, env->subprog_cnt, 1939 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1940 return env->subprog_cnt - 1; 1941 } 1942 1943 #define MAX_KFUNC_DESCS 256 1944 #define MAX_KFUNC_BTFS 256 1945 1946 struct bpf_kfunc_desc { 1947 struct btf_func_model func_model; 1948 u32 func_id; 1949 s32 imm; 1950 u16 offset; 1951 }; 1952 1953 struct bpf_kfunc_btf { 1954 struct btf *btf; 1955 struct module *module; 1956 u16 offset; 1957 }; 1958 1959 struct bpf_kfunc_desc_tab { 1960 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1961 u32 nr_descs; 1962 }; 1963 1964 struct bpf_kfunc_btf_tab { 1965 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 1966 u32 nr_descs; 1967 }; 1968 1969 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 1970 { 1971 const struct bpf_kfunc_desc *d0 = a; 1972 const struct bpf_kfunc_desc *d1 = b; 1973 1974 /* func_id is not greater than BTF_MAX_TYPE */ 1975 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 1976 } 1977 1978 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 1979 { 1980 const struct bpf_kfunc_btf *d0 = a; 1981 const struct bpf_kfunc_btf *d1 = b; 1982 1983 return d0->offset - d1->offset; 1984 } 1985 1986 static const struct bpf_kfunc_desc * 1987 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 1988 { 1989 struct bpf_kfunc_desc desc = { 1990 .func_id = func_id, 1991 .offset = offset, 1992 }; 1993 struct bpf_kfunc_desc_tab *tab; 1994 1995 tab = prog->aux->kfunc_tab; 1996 return bsearch(&desc, tab->descs, tab->nr_descs, 1997 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 1998 } 1999 2000 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2001 s16 offset) 2002 { 2003 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2004 struct bpf_kfunc_btf_tab *tab; 2005 struct bpf_kfunc_btf *b; 2006 struct module *mod; 2007 struct btf *btf; 2008 int btf_fd; 2009 2010 tab = env->prog->aux->kfunc_btf_tab; 2011 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2012 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2013 if (!b) { 2014 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2015 verbose(env, "too many different module BTFs\n"); 2016 return ERR_PTR(-E2BIG); 2017 } 2018 2019 if (bpfptr_is_null(env->fd_array)) { 2020 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2021 return ERR_PTR(-EPROTO); 2022 } 2023 2024 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2025 offset * sizeof(btf_fd), 2026 sizeof(btf_fd))) 2027 return ERR_PTR(-EFAULT); 2028 2029 btf = btf_get_by_fd(btf_fd); 2030 if (IS_ERR(btf)) { 2031 verbose(env, "invalid module BTF fd specified\n"); 2032 return btf; 2033 } 2034 2035 if (!btf_is_module(btf)) { 2036 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2037 btf_put(btf); 2038 return ERR_PTR(-EINVAL); 2039 } 2040 2041 mod = btf_try_get_module(btf); 2042 if (!mod) { 2043 btf_put(btf); 2044 return ERR_PTR(-ENXIO); 2045 } 2046 2047 b = &tab->descs[tab->nr_descs++]; 2048 b->btf = btf; 2049 b->module = mod; 2050 b->offset = offset; 2051 2052 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2053 kfunc_btf_cmp_by_off, NULL); 2054 } 2055 return b->btf; 2056 } 2057 2058 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2059 { 2060 if (!tab) 2061 return; 2062 2063 while (tab->nr_descs--) { 2064 module_put(tab->descs[tab->nr_descs].module); 2065 btf_put(tab->descs[tab->nr_descs].btf); 2066 } 2067 kfree(tab); 2068 } 2069 2070 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2071 { 2072 if (offset) { 2073 if (offset < 0) { 2074 /* In the future, this can be allowed to increase limit 2075 * of fd index into fd_array, interpreted as u16. 2076 */ 2077 verbose(env, "negative offset disallowed for kernel module function call\n"); 2078 return ERR_PTR(-EINVAL); 2079 } 2080 2081 return __find_kfunc_desc_btf(env, offset); 2082 } 2083 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2084 } 2085 2086 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2087 { 2088 const struct btf_type *func, *func_proto; 2089 struct bpf_kfunc_btf_tab *btf_tab; 2090 struct bpf_kfunc_desc_tab *tab; 2091 struct bpf_prog_aux *prog_aux; 2092 struct bpf_kfunc_desc *desc; 2093 const char *func_name; 2094 struct btf *desc_btf; 2095 unsigned long call_imm; 2096 unsigned long addr; 2097 int err; 2098 2099 prog_aux = env->prog->aux; 2100 tab = prog_aux->kfunc_tab; 2101 btf_tab = prog_aux->kfunc_btf_tab; 2102 if (!tab) { 2103 if (!btf_vmlinux) { 2104 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2105 return -ENOTSUPP; 2106 } 2107 2108 if (!env->prog->jit_requested) { 2109 verbose(env, "JIT is required for calling kernel function\n"); 2110 return -ENOTSUPP; 2111 } 2112 2113 if (!bpf_jit_supports_kfunc_call()) { 2114 verbose(env, "JIT does not support calling kernel function\n"); 2115 return -ENOTSUPP; 2116 } 2117 2118 if (!env->prog->gpl_compatible) { 2119 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2120 return -EINVAL; 2121 } 2122 2123 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2124 if (!tab) 2125 return -ENOMEM; 2126 prog_aux->kfunc_tab = tab; 2127 } 2128 2129 /* func_id == 0 is always invalid, but instead of returning an error, be 2130 * conservative and wait until the code elimination pass before returning 2131 * error, so that invalid calls that get pruned out can be in BPF programs 2132 * loaded from userspace. It is also required that offset be untouched 2133 * for such calls. 2134 */ 2135 if (!func_id && !offset) 2136 return 0; 2137 2138 if (!btf_tab && offset) { 2139 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2140 if (!btf_tab) 2141 return -ENOMEM; 2142 prog_aux->kfunc_btf_tab = btf_tab; 2143 } 2144 2145 desc_btf = find_kfunc_desc_btf(env, offset); 2146 if (IS_ERR(desc_btf)) { 2147 verbose(env, "failed to find BTF for kernel function\n"); 2148 return PTR_ERR(desc_btf); 2149 } 2150 2151 if (find_kfunc_desc(env->prog, func_id, offset)) 2152 return 0; 2153 2154 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2155 verbose(env, "too many different kernel function calls\n"); 2156 return -E2BIG; 2157 } 2158 2159 func = btf_type_by_id(desc_btf, func_id); 2160 if (!func || !btf_type_is_func(func)) { 2161 verbose(env, "kernel btf_id %u is not a function\n", 2162 func_id); 2163 return -EINVAL; 2164 } 2165 func_proto = btf_type_by_id(desc_btf, func->type); 2166 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2167 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2168 func_id); 2169 return -EINVAL; 2170 } 2171 2172 func_name = btf_name_by_offset(desc_btf, func->name_off); 2173 addr = kallsyms_lookup_name(func_name); 2174 if (!addr) { 2175 verbose(env, "cannot find address for kernel function %s\n", 2176 func_name); 2177 return -EINVAL; 2178 } 2179 2180 call_imm = BPF_CALL_IMM(addr); 2181 /* Check whether or not the relative offset overflows desc->imm */ 2182 if ((unsigned long)(s32)call_imm != call_imm) { 2183 verbose(env, "address of kernel function %s is out of range\n", 2184 func_name); 2185 return -EINVAL; 2186 } 2187 2188 desc = &tab->descs[tab->nr_descs++]; 2189 desc->func_id = func_id; 2190 desc->imm = call_imm; 2191 desc->offset = offset; 2192 err = btf_distill_func_proto(&env->log, desc_btf, 2193 func_proto, func_name, 2194 &desc->func_model); 2195 if (!err) 2196 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2197 kfunc_desc_cmp_by_id_off, NULL); 2198 return err; 2199 } 2200 2201 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 2202 { 2203 const struct bpf_kfunc_desc *d0 = a; 2204 const struct bpf_kfunc_desc *d1 = b; 2205 2206 if (d0->imm > d1->imm) 2207 return 1; 2208 else if (d0->imm < d1->imm) 2209 return -1; 2210 return 0; 2211 } 2212 2213 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 2214 { 2215 struct bpf_kfunc_desc_tab *tab; 2216 2217 tab = prog->aux->kfunc_tab; 2218 if (!tab) 2219 return; 2220 2221 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2222 kfunc_desc_cmp_by_imm, NULL); 2223 } 2224 2225 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2226 { 2227 return !!prog->aux->kfunc_tab; 2228 } 2229 2230 const struct btf_func_model * 2231 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2232 const struct bpf_insn *insn) 2233 { 2234 const struct bpf_kfunc_desc desc = { 2235 .imm = insn->imm, 2236 }; 2237 const struct bpf_kfunc_desc *res; 2238 struct bpf_kfunc_desc_tab *tab; 2239 2240 tab = prog->aux->kfunc_tab; 2241 res = bsearch(&desc, tab->descs, tab->nr_descs, 2242 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 2243 2244 return res ? &res->func_model : NULL; 2245 } 2246 2247 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2248 { 2249 struct bpf_subprog_info *subprog = env->subprog_info; 2250 struct bpf_insn *insn = env->prog->insnsi; 2251 int i, ret, insn_cnt = env->prog->len; 2252 2253 /* Add entry function. */ 2254 ret = add_subprog(env, 0); 2255 if (ret) 2256 return ret; 2257 2258 for (i = 0; i < insn_cnt; i++, insn++) { 2259 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2260 !bpf_pseudo_kfunc_call(insn)) 2261 continue; 2262 2263 if (!env->bpf_capable) { 2264 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2265 return -EPERM; 2266 } 2267 2268 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2269 ret = add_subprog(env, i + insn->imm + 1); 2270 else 2271 ret = add_kfunc_call(env, insn->imm, insn->off); 2272 2273 if (ret < 0) 2274 return ret; 2275 } 2276 2277 /* Add a fake 'exit' subprog which could simplify subprog iteration 2278 * logic. 'subprog_cnt' should not be increased. 2279 */ 2280 subprog[env->subprog_cnt].start = insn_cnt; 2281 2282 if (env->log.level & BPF_LOG_LEVEL2) 2283 for (i = 0; i < env->subprog_cnt; i++) 2284 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2285 2286 return 0; 2287 } 2288 2289 static int check_subprogs(struct bpf_verifier_env *env) 2290 { 2291 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2292 struct bpf_subprog_info *subprog = env->subprog_info; 2293 struct bpf_insn *insn = env->prog->insnsi; 2294 int insn_cnt = env->prog->len; 2295 2296 /* now check that all jumps are within the same subprog */ 2297 subprog_start = subprog[cur_subprog].start; 2298 subprog_end = subprog[cur_subprog + 1].start; 2299 for (i = 0; i < insn_cnt; i++) { 2300 u8 code = insn[i].code; 2301 2302 if (code == (BPF_JMP | BPF_CALL) && 2303 insn[i].imm == BPF_FUNC_tail_call && 2304 insn[i].src_reg != BPF_PSEUDO_CALL) 2305 subprog[cur_subprog].has_tail_call = true; 2306 if (BPF_CLASS(code) == BPF_LD && 2307 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2308 subprog[cur_subprog].has_ld_abs = true; 2309 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2310 goto next; 2311 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2312 goto next; 2313 off = i + insn[i].off + 1; 2314 if (off < subprog_start || off >= subprog_end) { 2315 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2316 return -EINVAL; 2317 } 2318 next: 2319 if (i == subprog_end - 1) { 2320 /* to avoid fall-through from one subprog into another 2321 * the last insn of the subprog should be either exit 2322 * or unconditional jump back 2323 */ 2324 if (code != (BPF_JMP | BPF_EXIT) && 2325 code != (BPF_JMP | BPF_JA)) { 2326 verbose(env, "last insn is not an exit or jmp\n"); 2327 return -EINVAL; 2328 } 2329 subprog_start = subprog_end; 2330 cur_subprog++; 2331 if (cur_subprog < env->subprog_cnt) 2332 subprog_end = subprog[cur_subprog + 1].start; 2333 } 2334 } 2335 return 0; 2336 } 2337 2338 /* Parentage chain of this register (or stack slot) should take care of all 2339 * issues like callee-saved registers, stack slot allocation time, etc. 2340 */ 2341 static int mark_reg_read(struct bpf_verifier_env *env, 2342 const struct bpf_reg_state *state, 2343 struct bpf_reg_state *parent, u8 flag) 2344 { 2345 bool writes = parent == state->parent; /* Observe write marks */ 2346 int cnt = 0; 2347 2348 while (parent) { 2349 /* if read wasn't screened by an earlier write ... */ 2350 if (writes && state->live & REG_LIVE_WRITTEN) 2351 break; 2352 if (parent->live & REG_LIVE_DONE) { 2353 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2354 reg_type_str(env, parent->type), 2355 parent->var_off.value, parent->off); 2356 return -EFAULT; 2357 } 2358 /* The first condition is more likely to be true than the 2359 * second, checked it first. 2360 */ 2361 if ((parent->live & REG_LIVE_READ) == flag || 2362 parent->live & REG_LIVE_READ64) 2363 /* The parentage chain never changes and 2364 * this parent was already marked as LIVE_READ. 2365 * There is no need to keep walking the chain again and 2366 * keep re-marking all parents as LIVE_READ. 2367 * This case happens when the same register is read 2368 * multiple times without writes into it in-between. 2369 * Also, if parent has the stronger REG_LIVE_READ64 set, 2370 * then no need to set the weak REG_LIVE_READ32. 2371 */ 2372 break; 2373 /* ... then we depend on parent's value */ 2374 parent->live |= flag; 2375 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2376 if (flag == REG_LIVE_READ64) 2377 parent->live &= ~REG_LIVE_READ32; 2378 state = parent; 2379 parent = state->parent; 2380 writes = true; 2381 cnt++; 2382 } 2383 2384 if (env->longest_mark_read_walk < cnt) 2385 env->longest_mark_read_walk = cnt; 2386 return 0; 2387 } 2388 2389 /* This function is supposed to be used by the following 32-bit optimization 2390 * code only. It returns TRUE if the source or destination register operates 2391 * on 64-bit, otherwise return FALSE. 2392 */ 2393 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2394 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2395 { 2396 u8 code, class, op; 2397 2398 code = insn->code; 2399 class = BPF_CLASS(code); 2400 op = BPF_OP(code); 2401 if (class == BPF_JMP) { 2402 /* BPF_EXIT for "main" will reach here. Return TRUE 2403 * conservatively. 2404 */ 2405 if (op == BPF_EXIT) 2406 return true; 2407 if (op == BPF_CALL) { 2408 /* BPF to BPF call will reach here because of marking 2409 * caller saved clobber with DST_OP_NO_MARK for which we 2410 * don't care the register def because they are anyway 2411 * marked as NOT_INIT already. 2412 */ 2413 if (insn->src_reg == BPF_PSEUDO_CALL) 2414 return false; 2415 /* Helper call will reach here because of arg type 2416 * check, conservatively return TRUE. 2417 */ 2418 if (t == SRC_OP) 2419 return true; 2420 2421 return false; 2422 } 2423 } 2424 2425 if (class == BPF_ALU64 || class == BPF_JMP || 2426 /* BPF_END always use BPF_ALU class. */ 2427 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 2428 return true; 2429 2430 if (class == BPF_ALU || class == BPF_JMP32) 2431 return false; 2432 2433 if (class == BPF_LDX) { 2434 if (t != SRC_OP) 2435 return BPF_SIZE(code) == BPF_DW; 2436 /* LDX source must be ptr. */ 2437 return true; 2438 } 2439 2440 if (class == BPF_STX) { 2441 /* BPF_STX (including atomic variants) has multiple source 2442 * operands, one of which is a ptr. Check whether the caller is 2443 * asking about it. 2444 */ 2445 if (t == SRC_OP && reg->type != SCALAR_VALUE) 2446 return true; 2447 return BPF_SIZE(code) == BPF_DW; 2448 } 2449 2450 if (class == BPF_LD) { 2451 u8 mode = BPF_MODE(code); 2452 2453 /* LD_IMM64 */ 2454 if (mode == BPF_IMM) 2455 return true; 2456 2457 /* Both LD_IND and LD_ABS return 32-bit data. */ 2458 if (t != SRC_OP) 2459 return false; 2460 2461 /* Implicit ctx ptr. */ 2462 if (regno == BPF_REG_6) 2463 return true; 2464 2465 /* Explicit source could be any width. */ 2466 return true; 2467 } 2468 2469 if (class == BPF_ST) 2470 /* The only source register for BPF_ST is a ptr. */ 2471 return true; 2472 2473 /* Conservatively return true at default. */ 2474 return true; 2475 } 2476 2477 /* Return the regno defined by the insn, or -1. */ 2478 static int insn_def_regno(const struct bpf_insn *insn) 2479 { 2480 switch (BPF_CLASS(insn->code)) { 2481 case BPF_JMP: 2482 case BPF_JMP32: 2483 case BPF_ST: 2484 return -1; 2485 case BPF_STX: 2486 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2487 (insn->imm & BPF_FETCH)) { 2488 if (insn->imm == BPF_CMPXCHG) 2489 return BPF_REG_0; 2490 else 2491 return insn->src_reg; 2492 } else { 2493 return -1; 2494 } 2495 default: 2496 return insn->dst_reg; 2497 } 2498 } 2499 2500 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2501 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2502 { 2503 int dst_reg = insn_def_regno(insn); 2504 2505 if (dst_reg == -1) 2506 return false; 2507 2508 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2509 } 2510 2511 static void mark_insn_zext(struct bpf_verifier_env *env, 2512 struct bpf_reg_state *reg) 2513 { 2514 s32 def_idx = reg->subreg_def; 2515 2516 if (def_idx == DEF_NOT_SUBREG) 2517 return; 2518 2519 env->insn_aux_data[def_idx - 1].zext_dst = true; 2520 /* The dst will be zero extended, so won't be sub-register anymore. */ 2521 reg->subreg_def = DEF_NOT_SUBREG; 2522 } 2523 2524 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2525 enum reg_arg_type t) 2526 { 2527 struct bpf_verifier_state *vstate = env->cur_state; 2528 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2529 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2530 struct bpf_reg_state *reg, *regs = state->regs; 2531 bool rw64; 2532 2533 if (regno >= MAX_BPF_REG) { 2534 verbose(env, "R%d is invalid\n", regno); 2535 return -EINVAL; 2536 } 2537 2538 mark_reg_scratched(env, regno); 2539 2540 reg = ®s[regno]; 2541 rw64 = is_reg64(env, insn, regno, reg, t); 2542 if (t == SRC_OP) { 2543 /* check whether register used as source operand can be read */ 2544 if (reg->type == NOT_INIT) { 2545 verbose(env, "R%d !read_ok\n", regno); 2546 return -EACCES; 2547 } 2548 /* We don't need to worry about FP liveness because it's read-only */ 2549 if (regno == BPF_REG_FP) 2550 return 0; 2551 2552 if (rw64) 2553 mark_insn_zext(env, reg); 2554 2555 return mark_reg_read(env, reg, reg->parent, 2556 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2557 } else { 2558 /* check whether register used as dest operand can be written to */ 2559 if (regno == BPF_REG_FP) { 2560 verbose(env, "frame pointer is read only\n"); 2561 return -EACCES; 2562 } 2563 reg->live |= REG_LIVE_WRITTEN; 2564 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2565 if (t == DST_OP) 2566 mark_reg_unknown(env, regs, regno); 2567 } 2568 return 0; 2569 } 2570 2571 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 2572 { 2573 env->insn_aux_data[idx].jmp_point = true; 2574 } 2575 2576 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 2577 { 2578 return env->insn_aux_data[insn_idx].jmp_point; 2579 } 2580 2581 /* for any branch, call, exit record the history of jmps in the given state */ 2582 static int push_jmp_history(struct bpf_verifier_env *env, 2583 struct bpf_verifier_state *cur) 2584 { 2585 u32 cnt = cur->jmp_history_cnt; 2586 struct bpf_idx_pair *p; 2587 size_t alloc_size; 2588 2589 if (!is_jmp_point(env, env->insn_idx)) 2590 return 0; 2591 2592 cnt++; 2593 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 2594 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 2595 if (!p) 2596 return -ENOMEM; 2597 p[cnt - 1].idx = env->insn_idx; 2598 p[cnt - 1].prev_idx = env->prev_insn_idx; 2599 cur->jmp_history = p; 2600 cur->jmp_history_cnt = cnt; 2601 return 0; 2602 } 2603 2604 /* Backtrack one insn at a time. If idx is not at the top of recorded 2605 * history then previous instruction came from straight line execution. 2606 */ 2607 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2608 u32 *history) 2609 { 2610 u32 cnt = *history; 2611 2612 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2613 i = st->jmp_history[cnt - 1].prev_idx; 2614 (*history)--; 2615 } else { 2616 i--; 2617 } 2618 return i; 2619 } 2620 2621 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2622 { 2623 const struct btf_type *func; 2624 struct btf *desc_btf; 2625 2626 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2627 return NULL; 2628 2629 desc_btf = find_kfunc_desc_btf(data, insn->off); 2630 if (IS_ERR(desc_btf)) 2631 return "<error>"; 2632 2633 func = btf_type_by_id(desc_btf, insn->imm); 2634 return btf_name_by_offset(desc_btf, func->name_off); 2635 } 2636 2637 /* For given verifier state backtrack_insn() is called from the last insn to 2638 * the first insn. Its purpose is to compute a bitmask of registers and 2639 * stack slots that needs precision in the parent verifier state. 2640 */ 2641 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2642 u32 *reg_mask, u64 *stack_mask) 2643 { 2644 const struct bpf_insn_cbs cbs = { 2645 .cb_call = disasm_kfunc_name, 2646 .cb_print = verbose, 2647 .private_data = env, 2648 }; 2649 struct bpf_insn *insn = env->prog->insnsi + idx; 2650 u8 class = BPF_CLASS(insn->code); 2651 u8 opcode = BPF_OP(insn->code); 2652 u8 mode = BPF_MODE(insn->code); 2653 u32 dreg = 1u << insn->dst_reg; 2654 u32 sreg = 1u << insn->src_reg; 2655 u32 spi; 2656 2657 if (insn->code == 0) 2658 return 0; 2659 if (env->log.level & BPF_LOG_LEVEL2) { 2660 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2661 verbose(env, "%d: ", idx); 2662 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2663 } 2664 2665 if (class == BPF_ALU || class == BPF_ALU64) { 2666 if (!(*reg_mask & dreg)) 2667 return 0; 2668 if (opcode == BPF_MOV) { 2669 if (BPF_SRC(insn->code) == BPF_X) { 2670 /* dreg = sreg 2671 * dreg needs precision after this insn 2672 * sreg needs precision before this insn 2673 */ 2674 *reg_mask &= ~dreg; 2675 *reg_mask |= sreg; 2676 } else { 2677 /* dreg = K 2678 * dreg needs precision after this insn. 2679 * Corresponding register is already marked 2680 * as precise=true in this verifier state. 2681 * No further markings in parent are necessary 2682 */ 2683 *reg_mask &= ~dreg; 2684 } 2685 } else { 2686 if (BPF_SRC(insn->code) == BPF_X) { 2687 /* dreg += sreg 2688 * both dreg and sreg need precision 2689 * before this insn 2690 */ 2691 *reg_mask |= sreg; 2692 } /* else dreg += K 2693 * dreg still needs precision before this insn 2694 */ 2695 } 2696 } else if (class == BPF_LDX) { 2697 if (!(*reg_mask & dreg)) 2698 return 0; 2699 *reg_mask &= ~dreg; 2700 2701 /* scalars can only be spilled into stack w/o losing precision. 2702 * Load from any other memory can be zero extended. 2703 * The desire to keep that precision is already indicated 2704 * by 'precise' mark in corresponding register of this state. 2705 * No further tracking necessary. 2706 */ 2707 if (insn->src_reg != BPF_REG_FP) 2708 return 0; 2709 2710 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2711 * that [fp - off] slot contains scalar that needs to be 2712 * tracked with precision 2713 */ 2714 spi = (-insn->off - 1) / BPF_REG_SIZE; 2715 if (spi >= 64) { 2716 verbose(env, "BUG spi %d\n", spi); 2717 WARN_ONCE(1, "verifier backtracking bug"); 2718 return -EFAULT; 2719 } 2720 *stack_mask |= 1ull << spi; 2721 } else if (class == BPF_STX || class == BPF_ST) { 2722 if (*reg_mask & dreg) 2723 /* stx & st shouldn't be using _scalar_ dst_reg 2724 * to access memory. It means backtracking 2725 * encountered a case of pointer subtraction. 2726 */ 2727 return -ENOTSUPP; 2728 /* scalars can only be spilled into stack */ 2729 if (insn->dst_reg != BPF_REG_FP) 2730 return 0; 2731 spi = (-insn->off - 1) / BPF_REG_SIZE; 2732 if (spi >= 64) { 2733 verbose(env, "BUG spi %d\n", spi); 2734 WARN_ONCE(1, "verifier backtracking bug"); 2735 return -EFAULT; 2736 } 2737 if (!(*stack_mask & (1ull << spi))) 2738 return 0; 2739 *stack_mask &= ~(1ull << spi); 2740 if (class == BPF_STX) 2741 *reg_mask |= sreg; 2742 } else if (class == BPF_JMP || class == BPF_JMP32) { 2743 if (opcode == BPF_CALL) { 2744 if (insn->src_reg == BPF_PSEUDO_CALL) 2745 return -ENOTSUPP; 2746 /* BPF helpers that invoke callback subprogs are 2747 * equivalent to BPF_PSEUDO_CALL above 2748 */ 2749 if (insn->src_reg == 0 && is_callback_calling_function(insn->imm)) 2750 return -ENOTSUPP; 2751 /* regular helper call sets R0 */ 2752 *reg_mask &= ~1; 2753 if (*reg_mask & 0x3f) { 2754 /* if backtracing was looking for registers R1-R5 2755 * they should have been found already. 2756 */ 2757 verbose(env, "BUG regs %x\n", *reg_mask); 2758 WARN_ONCE(1, "verifier backtracking bug"); 2759 return -EFAULT; 2760 } 2761 } else if (opcode == BPF_EXIT) { 2762 return -ENOTSUPP; 2763 } 2764 } else if (class == BPF_LD) { 2765 if (!(*reg_mask & dreg)) 2766 return 0; 2767 *reg_mask &= ~dreg; 2768 /* It's ld_imm64 or ld_abs or ld_ind. 2769 * For ld_imm64 no further tracking of precision 2770 * into parent is necessary 2771 */ 2772 if (mode == BPF_IND || mode == BPF_ABS) 2773 /* to be analyzed */ 2774 return -ENOTSUPP; 2775 } 2776 return 0; 2777 } 2778 2779 /* the scalar precision tracking algorithm: 2780 * . at the start all registers have precise=false. 2781 * . scalar ranges are tracked as normal through alu and jmp insns. 2782 * . once precise value of the scalar register is used in: 2783 * . ptr + scalar alu 2784 * . if (scalar cond K|scalar) 2785 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2786 * backtrack through the verifier states and mark all registers and 2787 * stack slots with spilled constants that these scalar regisers 2788 * should be precise. 2789 * . during state pruning two registers (or spilled stack slots) 2790 * are equivalent if both are not precise. 2791 * 2792 * Note the verifier cannot simply walk register parentage chain, 2793 * since many different registers and stack slots could have been 2794 * used to compute single precise scalar. 2795 * 2796 * The approach of starting with precise=true for all registers and then 2797 * backtrack to mark a register as not precise when the verifier detects 2798 * that program doesn't care about specific value (e.g., when helper 2799 * takes register as ARG_ANYTHING parameter) is not safe. 2800 * 2801 * It's ok to walk single parentage chain of the verifier states. 2802 * It's possible that this backtracking will go all the way till 1st insn. 2803 * All other branches will be explored for needing precision later. 2804 * 2805 * The backtracking needs to deal with cases like: 2806 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2807 * r9 -= r8 2808 * r5 = r9 2809 * if r5 > 0x79f goto pc+7 2810 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2811 * r5 += 1 2812 * ... 2813 * call bpf_perf_event_output#25 2814 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2815 * 2816 * and this case: 2817 * r6 = 1 2818 * call foo // uses callee's r6 inside to compute r0 2819 * r0 += r6 2820 * if r0 == 0 goto 2821 * 2822 * to track above reg_mask/stack_mask needs to be independent for each frame. 2823 * 2824 * Also if parent's curframe > frame where backtracking started, 2825 * the verifier need to mark registers in both frames, otherwise callees 2826 * may incorrectly prune callers. This is similar to 2827 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2828 * 2829 * For now backtracking falls back into conservative marking. 2830 */ 2831 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2832 struct bpf_verifier_state *st) 2833 { 2834 struct bpf_func_state *func; 2835 struct bpf_reg_state *reg; 2836 int i, j; 2837 2838 /* big hammer: mark all scalars precise in this path. 2839 * pop_stack may still get !precise scalars. 2840 * We also skip current state and go straight to first parent state, 2841 * because precision markings in current non-checkpointed state are 2842 * not needed. See why in the comment in __mark_chain_precision below. 2843 */ 2844 for (st = st->parent; st; st = st->parent) { 2845 for (i = 0; i <= st->curframe; i++) { 2846 func = st->frame[i]; 2847 for (j = 0; j < BPF_REG_FP; j++) { 2848 reg = &func->regs[j]; 2849 if (reg->type != SCALAR_VALUE) 2850 continue; 2851 reg->precise = true; 2852 } 2853 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2854 if (!is_spilled_reg(&func->stack[j])) 2855 continue; 2856 reg = &func->stack[j].spilled_ptr; 2857 if (reg->type != SCALAR_VALUE) 2858 continue; 2859 reg->precise = true; 2860 } 2861 } 2862 } 2863 } 2864 2865 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 2866 { 2867 struct bpf_func_state *func; 2868 struct bpf_reg_state *reg; 2869 int i, j; 2870 2871 for (i = 0; i <= st->curframe; i++) { 2872 func = st->frame[i]; 2873 for (j = 0; j < BPF_REG_FP; j++) { 2874 reg = &func->regs[j]; 2875 if (reg->type != SCALAR_VALUE) 2876 continue; 2877 reg->precise = false; 2878 } 2879 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2880 if (!is_spilled_reg(&func->stack[j])) 2881 continue; 2882 reg = &func->stack[j].spilled_ptr; 2883 if (reg->type != SCALAR_VALUE) 2884 continue; 2885 reg->precise = false; 2886 } 2887 } 2888 } 2889 2890 /* 2891 * __mark_chain_precision() backtracks BPF program instruction sequence and 2892 * chain of verifier states making sure that register *regno* (if regno >= 0) 2893 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 2894 * SCALARS, as well as any other registers and slots that contribute to 2895 * a tracked state of given registers/stack slots, depending on specific BPF 2896 * assembly instructions (see backtrack_insns() for exact instruction handling 2897 * logic). This backtracking relies on recorded jmp_history and is able to 2898 * traverse entire chain of parent states. This process ends only when all the 2899 * necessary registers/slots and their transitive dependencies are marked as 2900 * precise. 2901 * 2902 * One important and subtle aspect is that precise marks *do not matter* in 2903 * the currently verified state (current state). It is important to understand 2904 * why this is the case. 2905 * 2906 * First, note that current state is the state that is not yet "checkpointed", 2907 * i.e., it is not yet put into env->explored_states, and it has no children 2908 * states as well. It's ephemeral, and can end up either a) being discarded if 2909 * compatible explored state is found at some point or BPF_EXIT instruction is 2910 * reached or b) checkpointed and put into env->explored_states, branching out 2911 * into one or more children states. 2912 * 2913 * In the former case, precise markings in current state are completely 2914 * ignored by state comparison code (see regsafe() for details). Only 2915 * checkpointed ("old") state precise markings are important, and if old 2916 * state's register/slot is precise, regsafe() assumes current state's 2917 * register/slot as precise and checks value ranges exactly and precisely. If 2918 * states turn out to be compatible, current state's necessary precise 2919 * markings and any required parent states' precise markings are enforced 2920 * after the fact with propagate_precision() logic, after the fact. But it's 2921 * important to realize that in this case, even after marking current state 2922 * registers/slots as precise, we immediately discard current state. So what 2923 * actually matters is any of the precise markings propagated into current 2924 * state's parent states, which are always checkpointed (due to b) case above). 2925 * As such, for scenario a) it doesn't matter if current state has precise 2926 * markings set or not. 2927 * 2928 * Now, for the scenario b), checkpointing and forking into child(ren) 2929 * state(s). Note that before current state gets to checkpointing step, any 2930 * processed instruction always assumes precise SCALAR register/slot 2931 * knowledge: if precise value or range is useful to prune jump branch, BPF 2932 * verifier takes this opportunity enthusiastically. Similarly, when 2933 * register's value is used to calculate offset or memory address, exact 2934 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 2935 * what we mentioned above about state comparison ignoring precise markings 2936 * during state comparison, BPF verifier ignores and also assumes precise 2937 * markings *at will* during instruction verification process. But as verifier 2938 * assumes precision, it also propagates any precision dependencies across 2939 * parent states, which are not yet finalized, so can be further restricted 2940 * based on new knowledge gained from restrictions enforced by their children 2941 * states. This is so that once those parent states are finalized, i.e., when 2942 * they have no more active children state, state comparison logic in 2943 * is_state_visited() would enforce strict and precise SCALAR ranges, if 2944 * required for correctness. 2945 * 2946 * To build a bit more intuition, note also that once a state is checkpointed, 2947 * the path we took to get to that state is not important. This is crucial 2948 * property for state pruning. When state is checkpointed and finalized at 2949 * some instruction index, it can be correctly and safely used to "short 2950 * circuit" any *compatible* state that reaches exactly the same instruction 2951 * index. I.e., if we jumped to that instruction from a completely different 2952 * code path than original finalized state was derived from, it doesn't 2953 * matter, current state can be discarded because from that instruction 2954 * forward having a compatible state will ensure we will safely reach the 2955 * exit. States describe preconditions for further exploration, but completely 2956 * forget the history of how we got here. 2957 * 2958 * This also means that even if we needed precise SCALAR range to get to 2959 * finalized state, but from that point forward *that same* SCALAR register is 2960 * never used in a precise context (i.e., it's precise value is not needed for 2961 * correctness), it's correct and safe to mark such register as "imprecise" 2962 * (i.e., precise marking set to false). This is what we rely on when we do 2963 * not set precise marking in current state. If no child state requires 2964 * precision for any given SCALAR register, it's safe to dictate that it can 2965 * be imprecise. If any child state does require this register to be precise, 2966 * we'll mark it precise later retroactively during precise markings 2967 * propagation from child state to parent states. 2968 * 2969 * Skipping precise marking setting in current state is a mild version of 2970 * relying on the above observation. But we can utilize this property even 2971 * more aggressively by proactively forgetting any precise marking in the 2972 * current state (which we inherited from the parent state), right before we 2973 * checkpoint it and branch off into new child state. This is done by 2974 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 2975 * finalized states which help in short circuiting more future states. 2976 */ 2977 static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno, 2978 int spi) 2979 { 2980 struct bpf_verifier_state *st = env->cur_state; 2981 int first_idx = st->first_insn_idx; 2982 int last_idx = env->insn_idx; 2983 struct bpf_func_state *func; 2984 struct bpf_reg_state *reg; 2985 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2986 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2987 bool skip_first = true; 2988 bool new_marks = false; 2989 int i, err; 2990 2991 if (!env->bpf_capable) 2992 return 0; 2993 2994 /* Do sanity checks against current state of register and/or stack 2995 * slot, but don't set precise flag in current state, as precision 2996 * tracking in the current state is unnecessary. 2997 */ 2998 func = st->frame[frame]; 2999 if (regno >= 0) { 3000 reg = &func->regs[regno]; 3001 if (reg->type != SCALAR_VALUE) { 3002 WARN_ONCE(1, "backtracing misuse"); 3003 return -EFAULT; 3004 } 3005 new_marks = true; 3006 } 3007 3008 while (spi >= 0) { 3009 if (!is_spilled_reg(&func->stack[spi])) { 3010 stack_mask = 0; 3011 break; 3012 } 3013 reg = &func->stack[spi].spilled_ptr; 3014 if (reg->type != SCALAR_VALUE) { 3015 stack_mask = 0; 3016 break; 3017 } 3018 new_marks = true; 3019 break; 3020 } 3021 3022 if (!new_marks) 3023 return 0; 3024 if (!reg_mask && !stack_mask) 3025 return 0; 3026 3027 for (;;) { 3028 DECLARE_BITMAP(mask, 64); 3029 u32 history = st->jmp_history_cnt; 3030 3031 if (env->log.level & BPF_LOG_LEVEL2) 3032 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 3033 3034 if (last_idx < 0) { 3035 /* we are at the entry into subprog, which 3036 * is expected for global funcs, but only if 3037 * requested precise registers are R1-R5 3038 * (which are global func's input arguments) 3039 */ 3040 if (st->curframe == 0 && 3041 st->frame[0]->subprogno > 0 && 3042 st->frame[0]->callsite == BPF_MAIN_FUNC && 3043 stack_mask == 0 && (reg_mask & ~0x3e) == 0) { 3044 bitmap_from_u64(mask, reg_mask); 3045 for_each_set_bit(i, mask, 32) { 3046 reg = &st->frame[0]->regs[i]; 3047 if (reg->type != SCALAR_VALUE) { 3048 reg_mask &= ~(1u << i); 3049 continue; 3050 } 3051 reg->precise = true; 3052 } 3053 return 0; 3054 } 3055 3056 verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n", 3057 st->frame[0]->subprogno, reg_mask, stack_mask); 3058 WARN_ONCE(1, "verifier backtracking bug"); 3059 return -EFAULT; 3060 } 3061 3062 for (i = last_idx;;) { 3063 if (skip_first) { 3064 err = 0; 3065 skip_first = false; 3066 } else { 3067 err = backtrack_insn(env, i, ®_mask, &stack_mask); 3068 } 3069 if (err == -ENOTSUPP) { 3070 mark_all_scalars_precise(env, st); 3071 return 0; 3072 } else if (err) { 3073 return err; 3074 } 3075 if (!reg_mask && !stack_mask) 3076 /* Found assignment(s) into tracked register in this state. 3077 * Since this state is already marked, just return. 3078 * Nothing to be tracked further in the parent state. 3079 */ 3080 return 0; 3081 if (i == first_idx) 3082 break; 3083 i = get_prev_insn_idx(st, i, &history); 3084 if (i >= env->prog->len) { 3085 /* This can happen if backtracking reached insn 0 3086 * and there are still reg_mask or stack_mask 3087 * to backtrack. 3088 * It means the backtracking missed the spot where 3089 * particular register was initialized with a constant. 3090 */ 3091 verbose(env, "BUG backtracking idx %d\n", i); 3092 WARN_ONCE(1, "verifier backtracking bug"); 3093 return -EFAULT; 3094 } 3095 } 3096 st = st->parent; 3097 if (!st) 3098 break; 3099 3100 new_marks = false; 3101 func = st->frame[frame]; 3102 bitmap_from_u64(mask, reg_mask); 3103 for_each_set_bit(i, mask, 32) { 3104 reg = &func->regs[i]; 3105 if (reg->type != SCALAR_VALUE) { 3106 reg_mask &= ~(1u << i); 3107 continue; 3108 } 3109 if (!reg->precise) 3110 new_marks = true; 3111 reg->precise = true; 3112 } 3113 3114 bitmap_from_u64(mask, stack_mask); 3115 for_each_set_bit(i, mask, 64) { 3116 if (i >= func->allocated_stack / BPF_REG_SIZE) { 3117 /* the sequence of instructions: 3118 * 2: (bf) r3 = r10 3119 * 3: (7b) *(u64 *)(r3 -8) = r0 3120 * 4: (79) r4 = *(u64 *)(r10 -8) 3121 * doesn't contain jmps. It's backtracked 3122 * as a single block. 3123 * During backtracking insn 3 is not recognized as 3124 * stack access, so at the end of backtracking 3125 * stack slot fp-8 is still marked in stack_mask. 3126 * However the parent state may not have accessed 3127 * fp-8 and it's "unallocated" stack space. 3128 * In such case fallback to conservative. 3129 */ 3130 mark_all_scalars_precise(env, st); 3131 return 0; 3132 } 3133 3134 if (!is_spilled_reg(&func->stack[i])) { 3135 stack_mask &= ~(1ull << i); 3136 continue; 3137 } 3138 reg = &func->stack[i].spilled_ptr; 3139 if (reg->type != SCALAR_VALUE) { 3140 stack_mask &= ~(1ull << i); 3141 continue; 3142 } 3143 if (!reg->precise) 3144 new_marks = true; 3145 reg->precise = true; 3146 } 3147 if (env->log.level & BPF_LOG_LEVEL2) { 3148 verbose(env, "parent %s regs=%x stack=%llx marks:", 3149 new_marks ? "didn't have" : "already had", 3150 reg_mask, stack_mask); 3151 print_verifier_state(env, func, true); 3152 } 3153 3154 if (!reg_mask && !stack_mask) 3155 break; 3156 if (!new_marks) 3157 break; 3158 3159 last_idx = st->last_insn_idx; 3160 first_idx = st->first_insn_idx; 3161 } 3162 return 0; 3163 } 3164 3165 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 3166 { 3167 return __mark_chain_precision(env, env->cur_state->curframe, regno, -1); 3168 } 3169 3170 static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno) 3171 { 3172 return __mark_chain_precision(env, frame, regno, -1); 3173 } 3174 3175 static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi) 3176 { 3177 return __mark_chain_precision(env, frame, -1, spi); 3178 } 3179 3180 static bool is_spillable_regtype(enum bpf_reg_type type) 3181 { 3182 switch (base_type(type)) { 3183 case PTR_TO_MAP_VALUE: 3184 case PTR_TO_STACK: 3185 case PTR_TO_CTX: 3186 case PTR_TO_PACKET: 3187 case PTR_TO_PACKET_META: 3188 case PTR_TO_PACKET_END: 3189 case PTR_TO_FLOW_KEYS: 3190 case CONST_PTR_TO_MAP: 3191 case PTR_TO_SOCKET: 3192 case PTR_TO_SOCK_COMMON: 3193 case PTR_TO_TCP_SOCK: 3194 case PTR_TO_XDP_SOCK: 3195 case PTR_TO_BTF_ID: 3196 case PTR_TO_BUF: 3197 case PTR_TO_MEM: 3198 case PTR_TO_FUNC: 3199 case PTR_TO_MAP_KEY: 3200 return true; 3201 default: 3202 return false; 3203 } 3204 } 3205 3206 /* Does this register contain a constant zero? */ 3207 static bool register_is_null(struct bpf_reg_state *reg) 3208 { 3209 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 3210 } 3211 3212 static bool register_is_const(struct bpf_reg_state *reg) 3213 { 3214 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 3215 } 3216 3217 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 3218 { 3219 return tnum_is_unknown(reg->var_off) && 3220 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 3221 reg->umin_value == 0 && reg->umax_value == U64_MAX && 3222 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 3223 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 3224 } 3225 3226 static bool register_is_bounded(struct bpf_reg_state *reg) 3227 { 3228 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 3229 } 3230 3231 static bool __is_pointer_value(bool allow_ptr_leaks, 3232 const struct bpf_reg_state *reg) 3233 { 3234 if (allow_ptr_leaks) 3235 return false; 3236 3237 return reg->type != SCALAR_VALUE; 3238 } 3239 3240 static void save_register_state(struct bpf_func_state *state, 3241 int spi, struct bpf_reg_state *reg, 3242 int size) 3243 { 3244 int i; 3245 3246 state->stack[spi].spilled_ptr = *reg; 3247 if (size == BPF_REG_SIZE) 3248 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3249 3250 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 3251 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 3252 3253 /* size < 8 bytes spill */ 3254 for (; i; i--) 3255 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 3256 } 3257 3258 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 3259 * stack boundary and alignment are checked in check_mem_access() 3260 */ 3261 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 3262 /* stack frame we're writing to */ 3263 struct bpf_func_state *state, 3264 int off, int size, int value_regno, 3265 int insn_idx) 3266 { 3267 struct bpf_func_state *cur; /* state of the current function */ 3268 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 3269 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 3270 struct bpf_reg_state *reg = NULL; 3271 3272 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 3273 if (err) 3274 return err; 3275 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 3276 * so it's aligned access and [off, off + size) are within stack limits 3277 */ 3278 if (!env->allow_ptr_leaks && 3279 state->stack[spi].slot_type[0] == STACK_SPILL && 3280 size != BPF_REG_SIZE) { 3281 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 3282 return -EACCES; 3283 } 3284 3285 cur = env->cur_state->frame[env->cur_state->curframe]; 3286 if (value_regno >= 0) 3287 reg = &cur->regs[value_regno]; 3288 if (!env->bypass_spec_v4) { 3289 bool sanitize = reg && is_spillable_regtype(reg->type); 3290 3291 for (i = 0; i < size; i++) { 3292 if (state->stack[spi].slot_type[i] == STACK_INVALID) { 3293 sanitize = true; 3294 break; 3295 } 3296 } 3297 3298 if (sanitize) 3299 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 3300 } 3301 3302 mark_stack_slot_scratched(env, spi); 3303 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 3304 !register_is_null(reg) && env->bpf_capable) { 3305 if (dst_reg != BPF_REG_FP) { 3306 /* The backtracking logic can only recognize explicit 3307 * stack slot address like [fp - 8]. Other spill of 3308 * scalar via different register has to be conservative. 3309 * Backtrack from here and mark all registers as precise 3310 * that contributed into 'reg' being a constant. 3311 */ 3312 err = mark_chain_precision(env, value_regno); 3313 if (err) 3314 return err; 3315 } 3316 save_register_state(state, spi, reg, size); 3317 } else if (reg && is_spillable_regtype(reg->type)) { 3318 /* register containing pointer is being spilled into stack */ 3319 if (size != BPF_REG_SIZE) { 3320 verbose_linfo(env, insn_idx, "; "); 3321 verbose(env, "invalid size of register spill\n"); 3322 return -EACCES; 3323 } 3324 if (state != cur && reg->type == PTR_TO_STACK) { 3325 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 3326 return -EINVAL; 3327 } 3328 save_register_state(state, spi, reg, size); 3329 } else { 3330 u8 type = STACK_MISC; 3331 3332 /* regular write of data into stack destroys any spilled ptr */ 3333 state->stack[spi].spilled_ptr.type = NOT_INIT; 3334 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 3335 if (is_spilled_reg(&state->stack[spi])) 3336 for (i = 0; i < BPF_REG_SIZE; i++) 3337 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 3338 3339 /* only mark the slot as written if all 8 bytes were written 3340 * otherwise read propagation may incorrectly stop too soon 3341 * when stack slots are partially written. 3342 * This heuristic means that read propagation will be 3343 * conservative, since it will add reg_live_read marks 3344 * to stack slots all the way to first state when programs 3345 * writes+reads less than 8 bytes 3346 */ 3347 if (size == BPF_REG_SIZE) 3348 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3349 3350 /* when we zero initialize stack slots mark them as such */ 3351 if (reg && register_is_null(reg)) { 3352 /* backtracking doesn't work for STACK_ZERO yet. */ 3353 err = mark_chain_precision(env, value_regno); 3354 if (err) 3355 return err; 3356 type = STACK_ZERO; 3357 } 3358 3359 /* Mark slots affected by this stack write. */ 3360 for (i = 0; i < size; i++) 3361 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 3362 type; 3363 } 3364 return 0; 3365 } 3366 3367 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 3368 * known to contain a variable offset. 3369 * This function checks whether the write is permitted and conservatively 3370 * tracks the effects of the write, considering that each stack slot in the 3371 * dynamic range is potentially written to. 3372 * 3373 * 'off' includes 'regno->off'. 3374 * 'value_regno' can be -1, meaning that an unknown value is being written to 3375 * the stack. 3376 * 3377 * Spilled pointers in range are not marked as written because we don't know 3378 * what's going to be actually written. This means that read propagation for 3379 * future reads cannot be terminated by this write. 3380 * 3381 * For privileged programs, uninitialized stack slots are considered 3382 * initialized by this write (even though we don't know exactly what offsets 3383 * are going to be written to). The idea is that we don't want the verifier to 3384 * reject future reads that access slots written to through variable offsets. 3385 */ 3386 static int check_stack_write_var_off(struct bpf_verifier_env *env, 3387 /* func where register points to */ 3388 struct bpf_func_state *state, 3389 int ptr_regno, int off, int size, 3390 int value_regno, int insn_idx) 3391 { 3392 struct bpf_func_state *cur; /* state of the current function */ 3393 int min_off, max_off; 3394 int i, err; 3395 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 3396 bool writing_zero = false; 3397 /* set if the fact that we're writing a zero is used to let any 3398 * stack slots remain STACK_ZERO 3399 */ 3400 bool zero_used = false; 3401 3402 cur = env->cur_state->frame[env->cur_state->curframe]; 3403 ptr_reg = &cur->regs[ptr_regno]; 3404 min_off = ptr_reg->smin_value + off; 3405 max_off = ptr_reg->smax_value + off + size; 3406 if (value_regno >= 0) 3407 value_reg = &cur->regs[value_regno]; 3408 if (value_reg && register_is_null(value_reg)) 3409 writing_zero = true; 3410 3411 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 3412 if (err) 3413 return err; 3414 3415 3416 /* Variable offset writes destroy any spilled pointers in range. */ 3417 for (i = min_off; i < max_off; i++) { 3418 u8 new_type, *stype; 3419 int slot, spi; 3420 3421 slot = -i - 1; 3422 spi = slot / BPF_REG_SIZE; 3423 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3424 mark_stack_slot_scratched(env, spi); 3425 3426 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 3427 /* Reject the write if range we may write to has not 3428 * been initialized beforehand. If we didn't reject 3429 * here, the ptr status would be erased below (even 3430 * though not all slots are actually overwritten), 3431 * possibly opening the door to leaks. 3432 * 3433 * We do however catch STACK_INVALID case below, and 3434 * only allow reading possibly uninitialized memory 3435 * later for CAP_PERFMON, as the write may not happen to 3436 * that slot. 3437 */ 3438 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 3439 insn_idx, i); 3440 return -EINVAL; 3441 } 3442 3443 /* Erase all spilled pointers. */ 3444 state->stack[spi].spilled_ptr.type = NOT_INIT; 3445 3446 /* Update the slot type. */ 3447 new_type = STACK_MISC; 3448 if (writing_zero && *stype == STACK_ZERO) { 3449 new_type = STACK_ZERO; 3450 zero_used = true; 3451 } 3452 /* If the slot is STACK_INVALID, we check whether it's OK to 3453 * pretend that it will be initialized by this write. The slot 3454 * might not actually be written to, and so if we mark it as 3455 * initialized future reads might leak uninitialized memory. 3456 * For privileged programs, we will accept such reads to slots 3457 * that may or may not be written because, if we're reject 3458 * them, the error would be too confusing. 3459 */ 3460 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 3461 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 3462 insn_idx, i); 3463 return -EINVAL; 3464 } 3465 *stype = new_type; 3466 } 3467 if (zero_used) { 3468 /* backtracking doesn't work for STACK_ZERO yet. */ 3469 err = mark_chain_precision(env, value_regno); 3470 if (err) 3471 return err; 3472 } 3473 return 0; 3474 } 3475 3476 /* When register 'dst_regno' is assigned some values from stack[min_off, 3477 * max_off), we set the register's type according to the types of the 3478 * respective stack slots. If all the stack values are known to be zeros, then 3479 * so is the destination reg. Otherwise, the register is considered to be 3480 * SCALAR. This function does not deal with register filling; the caller must 3481 * ensure that all spilled registers in the stack range have been marked as 3482 * read. 3483 */ 3484 static void mark_reg_stack_read(struct bpf_verifier_env *env, 3485 /* func where src register points to */ 3486 struct bpf_func_state *ptr_state, 3487 int min_off, int max_off, int dst_regno) 3488 { 3489 struct bpf_verifier_state *vstate = env->cur_state; 3490 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3491 int i, slot, spi; 3492 u8 *stype; 3493 int zeros = 0; 3494 3495 for (i = min_off; i < max_off; i++) { 3496 slot = -i - 1; 3497 spi = slot / BPF_REG_SIZE; 3498 stype = ptr_state->stack[spi].slot_type; 3499 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 3500 break; 3501 zeros++; 3502 } 3503 if (zeros == max_off - min_off) { 3504 /* any access_size read into register is zero extended, 3505 * so the whole register == const_zero 3506 */ 3507 __mark_reg_const_zero(&state->regs[dst_regno]); 3508 /* backtracking doesn't support STACK_ZERO yet, 3509 * so mark it precise here, so that later 3510 * backtracking can stop here. 3511 * Backtracking may not need this if this register 3512 * doesn't participate in pointer adjustment. 3513 * Forward propagation of precise flag is not 3514 * necessary either. This mark is only to stop 3515 * backtracking. Any register that contributed 3516 * to const 0 was marked precise before spill. 3517 */ 3518 state->regs[dst_regno].precise = true; 3519 } else { 3520 /* have read misc data from the stack */ 3521 mark_reg_unknown(env, state->regs, dst_regno); 3522 } 3523 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3524 } 3525 3526 /* Read the stack at 'off' and put the results into the register indicated by 3527 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 3528 * spilled reg. 3529 * 3530 * 'dst_regno' can be -1, meaning that the read value is not going to a 3531 * register. 3532 * 3533 * The access is assumed to be within the current stack bounds. 3534 */ 3535 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 3536 /* func where src register points to */ 3537 struct bpf_func_state *reg_state, 3538 int off, int size, int dst_regno) 3539 { 3540 struct bpf_verifier_state *vstate = env->cur_state; 3541 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3542 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 3543 struct bpf_reg_state *reg; 3544 u8 *stype, type; 3545 3546 stype = reg_state->stack[spi].slot_type; 3547 reg = ®_state->stack[spi].spilled_ptr; 3548 3549 if (is_spilled_reg(®_state->stack[spi])) { 3550 u8 spill_size = 1; 3551 3552 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 3553 spill_size++; 3554 3555 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 3556 if (reg->type != SCALAR_VALUE) { 3557 verbose_linfo(env, env->insn_idx, "; "); 3558 verbose(env, "invalid size of register fill\n"); 3559 return -EACCES; 3560 } 3561 3562 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3563 if (dst_regno < 0) 3564 return 0; 3565 3566 if (!(off % BPF_REG_SIZE) && size == spill_size) { 3567 /* The earlier check_reg_arg() has decided the 3568 * subreg_def for this insn. Save it first. 3569 */ 3570 s32 subreg_def = state->regs[dst_regno].subreg_def; 3571 3572 state->regs[dst_regno] = *reg; 3573 state->regs[dst_regno].subreg_def = subreg_def; 3574 } else { 3575 for (i = 0; i < size; i++) { 3576 type = stype[(slot - i) % BPF_REG_SIZE]; 3577 if (type == STACK_SPILL) 3578 continue; 3579 if (type == STACK_MISC) 3580 continue; 3581 verbose(env, "invalid read from stack off %d+%d size %d\n", 3582 off, i, size); 3583 return -EACCES; 3584 } 3585 mark_reg_unknown(env, state->regs, dst_regno); 3586 } 3587 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3588 return 0; 3589 } 3590 3591 if (dst_regno >= 0) { 3592 /* restore register state from stack */ 3593 state->regs[dst_regno] = *reg; 3594 /* mark reg as written since spilled pointer state likely 3595 * has its liveness marks cleared by is_state_visited() 3596 * which resets stack/reg liveness for state transitions 3597 */ 3598 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3599 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 3600 /* If dst_regno==-1, the caller is asking us whether 3601 * it is acceptable to use this value as a SCALAR_VALUE 3602 * (e.g. for XADD). 3603 * We must not allow unprivileged callers to do that 3604 * with spilled pointers. 3605 */ 3606 verbose(env, "leaking pointer from stack off %d\n", 3607 off); 3608 return -EACCES; 3609 } 3610 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3611 } else { 3612 for (i = 0; i < size; i++) { 3613 type = stype[(slot - i) % BPF_REG_SIZE]; 3614 if (type == STACK_MISC) 3615 continue; 3616 if (type == STACK_ZERO) 3617 continue; 3618 verbose(env, "invalid read from stack off %d+%d size %d\n", 3619 off, i, size); 3620 return -EACCES; 3621 } 3622 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3623 if (dst_regno >= 0) 3624 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 3625 } 3626 return 0; 3627 } 3628 3629 enum bpf_access_src { 3630 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 3631 ACCESS_HELPER = 2, /* the access is performed by a helper */ 3632 }; 3633 3634 static int check_stack_range_initialized(struct bpf_verifier_env *env, 3635 int regno, int off, int access_size, 3636 bool zero_size_allowed, 3637 enum bpf_access_src type, 3638 struct bpf_call_arg_meta *meta); 3639 3640 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 3641 { 3642 return cur_regs(env) + regno; 3643 } 3644 3645 /* Read the stack at 'ptr_regno + off' and put the result into the register 3646 * 'dst_regno'. 3647 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 3648 * but not its variable offset. 3649 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 3650 * 3651 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 3652 * filling registers (i.e. reads of spilled register cannot be detected when 3653 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 3654 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 3655 * offset; for a fixed offset check_stack_read_fixed_off should be used 3656 * instead. 3657 */ 3658 static int check_stack_read_var_off(struct bpf_verifier_env *env, 3659 int ptr_regno, int off, int size, int dst_regno) 3660 { 3661 /* The state of the source register. */ 3662 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3663 struct bpf_func_state *ptr_state = func(env, reg); 3664 int err; 3665 int min_off, max_off; 3666 3667 /* Note that we pass a NULL meta, so raw access will not be permitted. 3668 */ 3669 err = check_stack_range_initialized(env, ptr_regno, off, size, 3670 false, ACCESS_DIRECT, NULL); 3671 if (err) 3672 return err; 3673 3674 min_off = reg->smin_value + off; 3675 max_off = reg->smax_value + off; 3676 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3677 return 0; 3678 } 3679 3680 /* check_stack_read dispatches to check_stack_read_fixed_off or 3681 * check_stack_read_var_off. 3682 * 3683 * The caller must ensure that the offset falls within the allocated stack 3684 * bounds. 3685 * 3686 * 'dst_regno' is a register which will receive the value from the stack. It 3687 * can be -1, meaning that the read value is not going to a register. 3688 */ 3689 static int check_stack_read(struct bpf_verifier_env *env, 3690 int ptr_regno, int off, int size, 3691 int dst_regno) 3692 { 3693 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3694 struct bpf_func_state *state = func(env, reg); 3695 int err; 3696 /* Some accesses are only permitted with a static offset. */ 3697 bool var_off = !tnum_is_const(reg->var_off); 3698 3699 /* The offset is required to be static when reads don't go to a 3700 * register, in order to not leak pointers (see 3701 * check_stack_read_fixed_off). 3702 */ 3703 if (dst_regno < 0 && var_off) { 3704 char tn_buf[48]; 3705 3706 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3707 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3708 tn_buf, off, size); 3709 return -EACCES; 3710 } 3711 /* Variable offset is prohibited for unprivileged mode for simplicity 3712 * since it requires corresponding support in Spectre masking for stack 3713 * ALU. See also retrieve_ptr_limit(). 3714 */ 3715 if (!env->bypass_spec_v1 && var_off) { 3716 char tn_buf[48]; 3717 3718 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3719 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3720 ptr_regno, tn_buf); 3721 return -EACCES; 3722 } 3723 3724 if (!var_off) { 3725 off += reg->var_off.value; 3726 err = check_stack_read_fixed_off(env, state, off, size, 3727 dst_regno); 3728 } else { 3729 /* Variable offset stack reads need more conservative handling 3730 * than fixed offset ones. Note that dst_regno >= 0 on this 3731 * branch. 3732 */ 3733 err = check_stack_read_var_off(env, ptr_regno, off, size, 3734 dst_regno); 3735 } 3736 return err; 3737 } 3738 3739 3740 /* check_stack_write dispatches to check_stack_write_fixed_off or 3741 * check_stack_write_var_off. 3742 * 3743 * 'ptr_regno' is the register used as a pointer into the stack. 3744 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3745 * 'value_regno' is the register whose value we're writing to the stack. It can 3746 * be -1, meaning that we're not writing from a register. 3747 * 3748 * The caller must ensure that the offset falls within the maximum stack size. 3749 */ 3750 static int check_stack_write(struct bpf_verifier_env *env, 3751 int ptr_regno, int off, int size, 3752 int value_regno, int insn_idx) 3753 { 3754 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3755 struct bpf_func_state *state = func(env, reg); 3756 int err; 3757 3758 if (tnum_is_const(reg->var_off)) { 3759 off += reg->var_off.value; 3760 err = check_stack_write_fixed_off(env, state, off, size, 3761 value_regno, insn_idx); 3762 } else { 3763 /* Variable offset stack reads need more conservative handling 3764 * than fixed offset ones. 3765 */ 3766 err = check_stack_write_var_off(env, state, 3767 ptr_regno, off, size, 3768 value_regno, insn_idx); 3769 } 3770 return err; 3771 } 3772 3773 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3774 int off, int size, enum bpf_access_type type) 3775 { 3776 struct bpf_reg_state *regs = cur_regs(env); 3777 struct bpf_map *map = regs[regno].map_ptr; 3778 u32 cap = bpf_map_flags_to_cap(map); 3779 3780 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3781 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3782 map->value_size, off, size); 3783 return -EACCES; 3784 } 3785 3786 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3787 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3788 map->value_size, off, size); 3789 return -EACCES; 3790 } 3791 3792 return 0; 3793 } 3794 3795 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3796 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3797 int off, int size, u32 mem_size, 3798 bool zero_size_allowed) 3799 { 3800 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3801 struct bpf_reg_state *reg; 3802 3803 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3804 return 0; 3805 3806 reg = &cur_regs(env)[regno]; 3807 switch (reg->type) { 3808 case PTR_TO_MAP_KEY: 3809 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3810 mem_size, off, size); 3811 break; 3812 case PTR_TO_MAP_VALUE: 3813 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3814 mem_size, off, size); 3815 break; 3816 case PTR_TO_PACKET: 3817 case PTR_TO_PACKET_META: 3818 case PTR_TO_PACKET_END: 3819 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3820 off, size, regno, reg->id, off, mem_size); 3821 break; 3822 case PTR_TO_MEM: 3823 default: 3824 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3825 mem_size, off, size); 3826 } 3827 3828 return -EACCES; 3829 } 3830 3831 /* check read/write into a memory region with possible variable offset */ 3832 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3833 int off, int size, u32 mem_size, 3834 bool zero_size_allowed) 3835 { 3836 struct bpf_verifier_state *vstate = env->cur_state; 3837 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3838 struct bpf_reg_state *reg = &state->regs[regno]; 3839 int err; 3840 3841 /* We may have adjusted the register pointing to memory region, so we 3842 * need to try adding each of min_value and max_value to off 3843 * to make sure our theoretical access will be safe. 3844 * 3845 * The minimum value is only important with signed 3846 * comparisons where we can't assume the floor of a 3847 * value is 0. If we are using signed variables for our 3848 * index'es we need to make sure that whatever we use 3849 * will have a set floor within our range. 3850 */ 3851 if (reg->smin_value < 0 && 3852 (reg->smin_value == S64_MIN || 3853 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3854 reg->smin_value + off < 0)) { 3855 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3856 regno); 3857 return -EACCES; 3858 } 3859 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3860 mem_size, zero_size_allowed); 3861 if (err) { 3862 verbose(env, "R%d min value is outside of the allowed memory range\n", 3863 regno); 3864 return err; 3865 } 3866 3867 /* If we haven't set a max value then we need to bail since we can't be 3868 * sure we won't do bad things. 3869 * If reg->umax_value + off could overflow, treat that as unbounded too. 3870 */ 3871 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3872 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3873 regno); 3874 return -EACCES; 3875 } 3876 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3877 mem_size, zero_size_allowed); 3878 if (err) { 3879 verbose(env, "R%d max value is outside of the allowed memory range\n", 3880 regno); 3881 return err; 3882 } 3883 3884 return 0; 3885 } 3886 3887 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 3888 const struct bpf_reg_state *reg, int regno, 3889 bool fixed_off_ok) 3890 { 3891 /* Access to this pointer-typed register or passing it to a helper 3892 * is only allowed in its original, unmodified form. 3893 */ 3894 3895 if (reg->off < 0) { 3896 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 3897 reg_type_str(env, reg->type), regno, reg->off); 3898 return -EACCES; 3899 } 3900 3901 if (!fixed_off_ok && reg->off) { 3902 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 3903 reg_type_str(env, reg->type), regno, reg->off); 3904 return -EACCES; 3905 } 3906 3907 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3908 char tn_buf[48]; 3909 3910 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3911 verbose(env, "variable %s access var_off=%s disallowed\n", 3912 reg_type_str(env, reg->type), tn_buf); 3913 return -EACCES; 3914 } 3915 3916 return 0; 3917 } 3918 3919 int check_ptr_off_reg(struct bpf_verifier_env *env, 3920 const struct bpf_reg_state *reg, int regno) 3921 { 3922 return __check_ptr_off_reg(env, reg, regno, false); 3923 } 3924 3925 static int map_kptr_match_type(struct bpf_verifier_env *env, 3926 struct btf_field *kptr_field, 3927 struct bpf_reg_state *reg, u32 regno) 3928 { 3929 const char *targ_name = kernel_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 3930 int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED; 3931 const char *reg_name = ""; 3932 3933 /* Only unreferenced case accepts untrusted pointers */ 3934 if (kptr_field->type == BPF_KPTR_UNREF) 3935 perm_flags |= PTR_UNTRUSTED; 3936 3937 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 3938 goto bad_type; 3939 3940 if (!btf_is_kernel(reg->btf)) { 3941 verbose(env, "R%d must point to kernel BTF\n", regno); 3942 return -EINVAL; 3943 } 3944 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 3945 reg_name = kernel_type_name(reg->btf, reg->btf_id); 3946 3947 /* For ref_ptr case, release function check should ensure we get one 3948 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 3949 * normal store of unreferenced kptr, we must ensure var_off is zero. 3950 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 3951 * reg->off and reg->ref_obj_id are not needed here. 3952 */ 3953 if (__check_ptr_off_reg(env, reg, regno, true)) 3954 return -EACCES; 3955 3956 /* A full type match is needed, as BTF can be vmlinux or module BTF, and 3957 * we also need to take into account the reg->off. 3958 * 3959 * We want to support cases like: 3960 * 3961 * struct foo { 3962 * struct bar br; 3963 * struct baz bz; 3964 * }; 3965 * 3966 * struct foo *v; 3967 * v = func(); // PTR_TO_BTF_ID 3968 * val->foo = v; // reg->off is zero, btf and btf_id match type 3969 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 3970 * // first member type of struct after comparison fails 3971 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 3972 * // to match type 3973 * 3974 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 3975 * is zero. We must also ensure that btf_struct_ids_match does not walk 3976 * the struct to match type against first member of struct, i.e. reject 3977 * second case from above. Hence, when type is BPF_KPTR_REF, we set 3978 * strict mode to true for type match. 3979 */ 3980 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 3981 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 3982 kptr_field->type == BPF_KPTR_REF)) 3983 goto bad_type; 3984 return 0; 3985 bad_type: 3986 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 3987 reg_type_str(env, reg->type), reg_name); 3988 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 3989 if (kptr_field->type == BPF_KPTR_UNREF) 3990 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 3991 targ_name); 3992 else 3993 verbose(env, "\n"); 3994 return -EINVAL; 3995 } 3996 3997 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 3998 int value_regno, int insn_idx, 3999 struct btf_field *kptr_field) 4000 { 4001 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4002 int class = BPF_CLASS(insn->code); 4003 struct bpf_reg_state *val_reg; 4004 4005 /* Things we already checked for in check_map_access and caller: 4006 * - Reject cases where variable offset may touch kptr 4007 * - size of access (must be BPF_DW) 4008 * - tnum_is_const(reg->var_off) 4009 * - kptr_field->offset == off + reg->var_off.value 4010 */ 4011 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 4012 if (BPF_MODE(insn->code) != BPF_MEM) { 4013 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 4014 return -EACCES; 4015 } 4016 4017 /* We only allow loading referenced kptr, since it will be marked as 4018 * untrusted, similar to unreferenced kptr. 4019 */ 4020 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) { 4021 verbose(env, "store to referenced kptr disallowed\n"); 4022 return -EACCES; 4023 } 4024 4025 if (class == BPF_LDX) { 4026 val_reg = reg_state(env, value_regno); 4027 /* We can simply mark the value_regno receiving the pointer 4028 * value from map as PTR_TO_BTF_ID, with the correct type. 4029 */ 4030 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 4031 kptr_field->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED); 4032 /* For mark_ptr_or_null_reg */ 4033 val_reg->id = ++env->id_gen; 4034 } else if (class == BPF_STX) { 4035 val_reg = reg_state(env, value_regno); 4036 if (!register_is_null(val_reg) && 4037 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 4038 return -EACCES; 4039 } else if (class == BPF_ST) { 4040 if (insn->imm) { 4041 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 4042 kptr_field->offset); 4043 return -EACCES; 4044 } 4045 } else { 4046 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 4047 return -EACCES; 4048 } 4049 return 0; 4050 } 4051 4052 /* check read/write into a map element with possible variable offset */ 4053 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 4054 int off, int size, bool zero_size_allowed, 4055 enum bpf_access_src src) 4056 { 4057 struct bpf_verifier_state *vstate = env->cur_state; 4058 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4059 struct bpf_reg_state *reg = &state->regs[regno]; 4060 struct bpf_map *map = reg->map_ptr; 4061 struct btf_record *rec; 4062 int err, i; 4063 4064 err = check_mem_region_access(env, regno, off, size, map->value_size, 4065 zero_size_allowed); 4066 if (err) 4067 return err; 4068 4069 if (IS_ERR_OR_NULL(map->record)) 4070 return 0; 4071 rec = map->record; 4072 for (i = 0; i < rec->cnt; i++) { 4073 struct btf_field *field = &rec->fields[i]; 4074 u32 p = field->offset; 4075 4076 /* If any part of a field can be touched by load/store, reject 4077 * this program. To check that [x1, x2) overlaps with [y1, y2), 4078 * it is sufficient to check x1 < y2 && y1 < x2. 4079 */ 4080 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 4081 p < reg->umax_value + off + size) { 4082 switch (field->type) { 4083 case BPF_KPTR_UNREF: 4084 case BPF_KPTR_REF: 4085 if (src != ACCESS_DIRECT) { 4086 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 4087 return -EACCES; 4088 } 4089 if (!tnum_is_const(reg->var_off)) { 4090 verbose(env, "kptr access cannot have variable offset\n"); 4091 return -EACCES; 4092 } 4093 if (p != off + reg->var_off.value) { 4094 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 4095 p, off + reg->var_off.value); 4096 return -EACCES; 4097 } 4098 if (size != bpf_size_to_bytes(BPF_DW)) { 4099 verbose(env, "kptr access size must be BPF_DW\n"); 4100 return -EACCES; 4101 } 4102 break; 4103 default: 4104 verbose(env, "%s cannot be accessed directly by load/store\n", 4105 btf_field_type_name(field->type)); 4106 return -EACCES; 4107 } 4108 } 4109 } 4110 return 0; 4111 } 4112 4113 #define MAX_PACKET_OFF 0xffff 4114 4115 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 4116 const struct bpf_call_arg_meta *meta, 4117 enum bpf_access_type t) 4118 { 4119 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 4120 4121 switch (prog_type) { 4122 /* Program types only with direct read access go here! */ 4123 case BPF_PROG_TYPE_LWT_IN: 4124 case BPF_PROG_TYPE_LWT_OUT: 4125 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 4126 case BPF_PROG_TYPE_SK_REUSEPORT: 4127 case BPF_PROG_TYPE_FLOW_DISSECTOR: 4128 case BPF_PROG_TYPE_CGROUP_SKB: 4129 if (t == BPF_WRITE) 4130 return false; 4131 fallthrough; 4132 4133 /* Program types with direct read + write access go here! */ 4134 case BPF_PROG_TYPE_SCHED_CLS: 4135 case BPF_PROG_TYPE_SCHED_ACT: 4136 case BPF_PROG_TYPE_XDP: 4137 case BPF_PROG_TYPE_LWT_XMIT: 4138 case BPF_PROG_TYPE_SK_SKB: 4139 case BPF_PROG_TYPE_SK_MSG: 4140 if (meta) 4141 return meta->pkt_access; 4142 4143 env->seen_direct_write = true; 4144 return true; 4145 4146 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 4147 if (t == BPF_WRITE) 4148 env->seen_direct_write = true; 4149 4150 return true; 4151 4152 default: 4153 return false; 4154 } 4155 } 4156 4157 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 4158 int size, bool zero_size_allowed) 4159 { 4160 struct bpf_reg_state *regs = cur_regs(env); 4161 struct bpf_reg_state *reg = ®s[regno]; 4162 int err; 4163 4164 /* We may have added a variable offset to the packet pointer; but any 4165 * reg->range we have comes after that. We are only checking the fixed 4166 * offset. 4167 */ 4168 4169 /* We don't allow negative numbers, because we aren't tracking enough 4170 * detail to prove they're safe. 4171 */ 4172 if (reg->smin_value < 0) { 4173 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4174 regno); 4175 return -EACCES; 4176 } 4177 4178 err = reg->range < 0 ? -EINVAL : 4179 __check_mem_access(env, regno, off, size, reg->range, 4180 zero_size_allowed); 4181 if (err) { 4182 verbose(env, "R%d offset is outside of the packet\n", regno); 4183 return err; 4184 } 4185 4186 /* __check_mem_access has made sure "off + size - 1" is within u16. 4187 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 4188 * otherwise find_good_pkt_pointers would have refused to set range info 4189 * that __check_mem_access would have rejected this pkt access. 4190 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 4191 */ 4192 env->prog->aux->max_pkt_offset = 4193 max_t(u32, env->prog->aux->max_pkt_offset, 4194 off + reg->umax_value + size - 1); 4195 4196 return err; 4197 } 4198 4199 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 4200 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 4201 enum bpf_access_type t, enum bpf_reg_type *reg_type, 4202 struct btf **btf, u32 *btf_id) 4203 { 4204 struct bpf_insn_access_aux info = { 4205 .reg_type = *reg_type, 4206 .log = &env->log, 4207 }; 4208 4209 if (env->ops->is_valid_access && 4210 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 4211 /* A non zero info.ctx_field_size indicates that this field is a 4212 * candidate for later verifier transformation to load the whole 4213 * field and then apply a mask when accessed with a narrower 4214 * access than actual ctx access size. A zero info.ctx_field_size 4215 * will only allow for whole field access and rejects any other 4216 * type of narrower access. 4217 */ 4218 *reg_type = info.reg_type; 4219 4220 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 4221 *btf = info.btf; 4222 *btf_id = info.btf_id; 4223 } else { 4224 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 4225 } 4226 /* remember the offset of last byte accessed in ctx */ 4227 if (env->prog->aux->max_ctx_offset < off + size) 4228 env->prog->aux->max_ctx_offset = off + size; 4229 return 0; 4230 } 4231 4232 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 4233 return -EACCES; 4234 } 4235 4236 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 4237 int size) 4238 { 4239 if (size < 0 || off < 0 || 4240 (u64)off + size > sizeof(struct bpf_flow_keys)) { 4241 verbose(env, "invalid access to flow keys off=%d size=%d\n", 4242 off, size); 4243 return -EACCES; 4244 } 4245 return 0; 4246 } 4247 4248 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 4249 u32 regno, int off, int size, 4250 enum bpf_access_type t) 4251 { 4252 struct bpf_reg_state *regs = cur_regs(env); 4253 struct bpf_reg_state *reg = ®s[regno]; 4254 struct bpf_insn_access_aux info = {}; 4255 bool valid; 4256 4257 if (reg->smin_value < 0) { 4258 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4259 regno); 4260 return -EACCES; 4261 } 4262 4263 switch (reg->type) { 4264 case PTR_TO_SOCK_COMMON: 4265 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 4266 break; 4267 case PTR_TO_SOCKET: 4268 valid = bpf_sock_is_valid_access(off, size, t, &info); 4269 break; 4270 case PTR_TO_TCP_SOCK: 4271 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 4272 break; 4273 case PTR_TO_XDP_SOCK: 4274 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 4275 break; 4276 default: 4277 valid = false; 4278 } 4279 4280 4281 if (valid) { 4282 env->insn_aux_data[insn_idx].ctx_field_size = 4283 info.ctx_field_size; 4284 return 0; 4285 } 4286 4287 verbose(env, "R%d invalid %s access off=%d size=%d\n", 4288 regno, reg_type_str(env, reg->type), off, size); 4289 4290 return -EACCES; 4291 } 4292 4293 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 4294 { 4295 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 4296 } 4297 4298 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 4299 { 4300 const struct bpf_reg_state *reg = reg_state(env, regno); 4301 4302 return reg->type == PTR_TO_CTX; 4303 } 4304 4305 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 4306 { 4307 const struct bpf_reg_state *reg = reg_state(env, regno); 4308 4309 return type_is_sk_pointer(reg->type); 4310 } 4311 4312 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 4313 { 4314 const struct bpf_reg_state *reg = reg_state(env, regno); 4315 4316 return type_is_pkt_pointer(reg->type); 4317 } 4318 4319 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 4320 { 4321 const struct bpf_reg_state *reg = reg_state(env, regno); 4322 4323 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 4324 return reg->type == PTR_TO_FLOW_KEYS; 4325 } 4326 4327 static bool is_trusted_reg(const struct bpf_reg_state *reg) 4328 { 4329 /* A referenced register is always trusted. */ 4330 if (reg->ref_obj_id) 4331 return true; 4332 4333 /* If a register is not referenced, it is trusted if it has the 4334 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 4335 * other type modifiers may be safe, but we elect to take an opt-in 4336 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 4337 * not. 4338 * 4339 * Eventually, we should make PTR_TRUSTED the single source of truth 4340 * for whether a register is trusted. 4341 */ 4342 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 4343 !bpf_type_has_unsafe_modifiers(reg->type); 4344 } 4345 4346 static bool is_rcu_reg(const struct bpf_reg_state *reg) 4347 { 4348 return reg->type & MEM_RCU; 4349 } 4350 4351 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 4352 const struct bpf_reg_state *reg, 4353 int off, int size, bool strict) 4354 { 4355 struct tnum reg_off; 4356 int ip_align; 4357 4358 /* Byte size accesses are always allowed. */ 4359 if (!strict || size == 1) 4360 return 0; 4361 4362 /* For platforms that do not have a Kconfig enabling 4363 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 4364 * NET_IP_ALIGN is universally set to '2'. And on platforms 4365 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 4366 * to this code only in strict mode where we want to emulate 4367 * the NET_IP_ALIGN==2 checking. Therefore use an 4368 * unconditional IP align value of '2'. 4369 */ 4370 ip_align = 2; 4371 4372 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 4373 if (!tnum_is_aligned(reg_off, size)) { 4374 char tn_buf[48]; 4375 4376 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4377 verbose(env, 4378 "misaligned packet access off %d+%s+%d+%d size %d\n", 4379 ip_align, tn_buf, reg->off, off, size); 4380 return -EACCES; 4381 } 4382 4383 return 0; 4384 } 4385 4386 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 4387 const struct bpf_reg_state *reg, 4388 const char *pointer_desc, 4389 int off, int size, bool strict) 4390 { 4391 struct tnum reg_off; 4392 4393 /* Byte size accesses are always allowed. */ 4394 if (!strict || size == 1) 4395 return 0; 4396 4397 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 4398 if (!tnum_is_aligned(reg_off, size)) { 4399 char tn_buf[48]; 4400 4401 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4402 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 4403 pointer_desc, tn_buf, reg->off, off, size); 4404 return -EACCES; 4405 } 4406 4407 return 0; 4408 } 4409 4410 static int check_ptr_alignment(struct bpf_verifier_env *env, 4411 const struct bpf_reg_state *reg, int off, 4412 int size, bool strict_alignment_once) 4413 { 4414 bool strict = env->strict_alignment || strict_alignment_once; 4415 const char *pointer_desc = ""; 4416 4417 switch (reg->type) { 4418 case PTR_TO_PACKET: 4419 case PTR_TO_PACKET_META: 4420 /* Special case, because of NET_IP_ALIGN. Given metadata sits 4421 * right in front, treat it the very same way. 4422 */ 4423 return check_pkt_ptr_alignment(env, reg, off, size, strict); 4424 case PTR_TO_FLOW_KEYS: 4425 pointer_desc = "flow keys "; 4426 break; 4427 case PTR_TO_MAP_KEY: 4428 pointer_desc = "key "; 4429 break; 4430 case PTR_TO_MAP_VALUE: 4431 pointer_desc = "value "; 4432 break; 4433 case PTR_TO_CTX: 4434 pointer_desc = "context "; 4435 break; 4436 case PTR_TO_STACK: 4437 pointer_desc = "stack "; 4438 /* The stack spill tracking logic in check_stack_write_fixed_off() 4439 * and check_stack_read_fixed_off() relies on stack accesses being 4440 * aligned. 4441 */ 4442 strict = true; 4443 break; 4444 case PTR_TO_SOCKET: 4445 pointer_desc = "sock "; 4446 break; 4447 case PTR_TO_SOCK_COMMON: 4448 pointer_desc = "sock_common "; 4449 break; 4450 case PTR_TO_TCP_SOCK: 4451 pointer_desc = "tcp_sock "; 4452 break; 4453 case PTR_TO_XDP_SOCK: 4454 pointer_desc = "xdp_sock "; 4455 break; 4456 default: 4457 break; 4458 } 4459 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 4460 strict); 4461 } 4462 4463 static int update_stack_depth(struct bpf_verifier_env *env, 4464 const struct bpf_func_state *func, 4465 int off) 4466 { 4467 u16 stack = env->subprog_info[func->subprogno].stack_depth; 4468 4469 if (stack >= -off) 4470 return 0; 4471 4472 /* update known max for given subprogram */ 4473 env->subprog_info[func->subprogno].stack_depth = -off; 4474 return 0; 4475 } 4476 4477 /* starting from main bpf function walk all instructions of the function 4478 * and recursively walk all callees that given function can call. 4479 * Ignore jump and exit insns. 4480 * Since recursion is prevented by check_cfg() this algorithm 4481 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 4482 */ 4483 static int check_max_stack_depth(struct bpf_verifier_env *env) 4484 { 4485 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 4486 struct bpf_subprog_info *subprog = env->subprog_info; 4487 struct bpf_insn *insn = env->prog->insnsi; 4488 bool tail_call_reachable = false; 4489 int ret_insn[MAX_CALL_FRAMES]; 4490 int ret_prog[MAX_CALL_FRAMES]; 4491 int j; 4492 4493 process_func: 4494 /* protect against potential stack overflow that might happen when 4495 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 4496 * depth for such case down to 256 so that the worst case scenario 4497 * would result in 8k stack size (32 which is tailcall limit * 256 = 4498 * 8k). 4499 * 4500 * To get the idea what might happen, see an example: 4501 * func1 -> sub rsp, 128 4502 * subfunc1 -> sub rsp, 256 4503 * tailcall1 -> add rsp, 256 4504 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 4505 * subfunc2 -> sub rsp, 64 4506 * subfunc22 -> sub rsp, 128 4507 * tailcall2 -> add rsp, 128 4508 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 4509 * 4510 * tailcall will unwind the current stack frame but it will not get rid 4511 * of caller's stack as shown on the example above. 4512 */ 4513 if (idx && subprog[idx].has_tail_call && depth >= 256) { 4514 verbose(env, 4515 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 4516 depth); 4517 return -EACCES; 4518 } 4519 /* round up to 32-bytes, since this is granularity 4520 * of interpreter stack size 4521 */ 4522 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4523 if (depth > MAX_BPF_STACK) { 4524 verbose(env, "combined stack size of %d calls is %d. Too large\n", 4525 frame + 1, depth); 4526 return -EACCES; 4527 } 4528 continue_func: 4529 subprog_end = subprog[idx + 1].start; 4530 for (; i < subprog_end; i++) { 4531 int next_insn; 4532 4533 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 4534 continue; 4535 /* remember insn and function to return to */ 4536 ret_insn[frame] = i + 1; 4537 ret_prog[frame] = idx; 4538 4539 /* find the callee */ 4540 next_insn = i + insn[i].imm + 1; 4541 idx = find_subprog(env, next_insn); 4542 if (idx < 0) { 4543 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4544 next_insn); 4545 return -EFAULT; 4546 } 4547 if (subprog[idx].is_async_cb) { 4548 if (subprog[idx].has_tail_call) { 4549 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 4550 return -EFAULT; 4551 } 4552 /* async callbacks don't increase bpf prog stack size */ 4553 continue; 4554 } 4555 i = next_insn; 4556 4557 if (subprog[idx].has_tail_call) 4558 tail_call_reachable = true; 4559 4560 frame++; 4561 if (frame >= MAX_CALL_FRAMES) { 4562 verbose(env, "the call stack of %d frames is too deep !\n", 4563 frame); 4564 return -E2BIG; 4565 } 4566 goto process_func; 4567 } 4568 /* if tail call got detected across bpf2bpf calls then mark each of the 4569 * currently present subprog frames as tail call reachable subprogs; 4570 * this info will be utilized by JIT so that we will be preserving the 4571 * tail call counter throughout bpf2bpf calls combined with tailcalls 4572 */ 4573 if (tail_call_reachable) 4574 for (j = 0; j < frame; j++) 4575 subprog[ret_prog[j]].tail_call_reachable = true; 4576 if (subprog[0].tail_call_reachable) 4577 env->prog->aux->tail_call_reachable = true; 4578 4579 /* end of for() loop means the last insn of the 'subprog' 4580 * was reached. Doesn't matter whether it was JA or EXIT 4581 */ 4582 if (frame == 0) 4583 return 0; 4584 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4585 frame--; 4586 i = ret_insn[frame]; 4587 idx = ret_prog[frame]; 4588 goto continue_func; 4589 } 4590 4591 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 4592 static int get_callee_stack_depth(struct bpf_verifier_env *env, 4593 const struct bpf_insn *insn, int idx) 4594 { 4595 int start = idx + insn->imm + 1, subprog; 4596 4597 subprog = find_subprog(env, start); 4598 if (subprog < 0) { 4599 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4600 start); 4601 return -EFAULT; 4602 } 4603 return env->subprog_info[subprog].stack_depth; 4604 } 4605 #endif 4606 4607 static int __check_buffer_access(struct bpf_verifier_env *env, 4608 const char *buf_info, 4609 const struct bpf_reg_state *reg, 4610 int regno, int off, int size) 4611 { 4612 if (off < 0) { 4613 verbose(env, 4614 "R%d invalid %s buffer access: off=%d, size=%d\n", 4615 regno, buf_info, off, size); 4616 return -EACCES; 4617 } 4618 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4619 char tn_buf[48]; 4620 4621 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4622 verbose(env, 4623 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 4624 regno, off, tn_buf); 4625 return -EACCES; 4626 } 4627 4628 return 0; 4629 } 4630 4631 static int check_tp_buffer_access(struct bpf_verifier_env *env, 4632 const struct bpf_reg_state *reg, 4633 int regno, int off, int size) 4634 { 4635 int err; 4636 4637 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 4638 if (err) 4639 return err; 4640 4641 if (off + size > env->prog->aux->max_tp_access) 4642 env->prog->aux->max_tp_access = off + size; 4643 4644 return 0; 4645 } 4646 4647 static int check_buffer_access(struct bpf_verifier_env *env, 4648 const struct bpf_reg_state *reg, 4649 int regno, int off, int size, 4650 bool zero_size_allowed, 4651 u32 *max_access) 4652 { 4653 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 4654 int err; 4655 4656 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 4657 if (err) 4658 return err; 4659 4660 if (off + size > *max_access) 4661 *max_access = off + size; 4662 4663 return 0; 4664 } 4665 4666 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 4667 static void zext_32_to_64(struct bpf_reg_state *reg) 4668 { 4669 reg->var_off = tnum_subreg(reg->var_off); 4670 __reg_assign_32_into_64(reg); 4671 } 4672 4673 /* truncate register to smaller size (in bytes) 4674 * must be called with size < BPF_REG_SIZE 4675 */ 4676 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 4677 { 4678 u64 mask; 4679 4680 /* clear high bits in bit representation */ 4681 reg->var_off = tnum_cast(reg->var_off, size); 4682 4683 /* fix arithmetic bounds */ 4684 mask = ((u64)1 << (size * 8)) - 1; 4685 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 4686 reg->umin_value &= mask; 4687 reg->umax_value &= mask; 4688 } else { 4689 reg->umin_value = 0; 4690 reg->umax_value = mask; 4691 } 4692 reg->smin_value = reg->umin_value; 4693 reg->smax_value = reg->umax_value; 4694 4695 /* If size is smaller than 32bit register the 32bit register 4696 * values are also truncated so we push 64-bit bounds into 4697 * 32-bit bounds. Above were truncated < 32-bits already. 4698 */ 4699 if (size >= 4) 4700 return; 4701 __reg_combine_64_into_32(reg); 4702 } 4703 4704 static bool bpf_map_is_rdonly(const struct bpf_map *map) 4705 { 4706 /* A map is considered read-only if the following condition are true: 4707 * 4708 * 1) BPF program side cannot change any of the map content. The 4709 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 4710 * and was set at map creation time. 4711 * 2) The map value(s) have been initialized from user space by a 4712 * loader and then "frozen", such that no new map update/delete 4713 * operations from syscall side are possible for the rest of 4714 * the map's lifetime from that point onwards. 4715 * 3) Any parallel/pending map update/delete operations from syscall 4716 * side have been completed. Only after that point, it's safe to 4717 * assume that map value(s) are immutable. 4718 */ 4719 return (map->map_flags & BPF_F_RDONLY_PROG) && 4720 READ_ONCE(map->frozen) && 4721 !bpf_map_write_active(map); 4722 } 4723 4724 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 4725 { 4726 void *ptr; 4727 u64 addr; 4728 int err; 4729 4730 err = map->ops->map_direct_value_addr(map, &addr, off); 4731 if (err) 4732 return err; 4733 ptr = (void *)(long)addr + off; 4734 4735 switch (size) { 4736 case sizeof(u8): 4737 *val = (u64)*(u8 *)ptr; 4738 break; 4739 case sizeof(u16): 4740 *val = (u64)*(u16 *)ptr; 4741 break; 4742 case sizeof(u32): 4743 *val = (u64)*(u32 *)ptr; 4744 break; 4745 case sizeof(u64): 4746 *val = *(u64 *)ptr; 4747 break; 4748 default: 4749 return -EINVAL; 4750 } 4751 return 0; 4752 } 4753 4754 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 4755 struct bpf_reg_state *regs, 4756 int regno, int off, int size, 4757 enum bpf_access_type atype, 4758 int value_regno) 4759 { 4760 struct bpf_reg_state *reg = regs + regno; 4761 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 4762 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 4763 enum bpf_type_flag flag = 0; 4764 u32 btf_id; 4765 int ret; 4766 4767 if (!env->allow_ptr_leaks) { 4768 verbose(env, 4769 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4770 tname); 4771 return -EPERM; 4772 } 4773 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 4774 verbose(env, 4775 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 4776 tname); 4777 return -EINVAL; 4778 } 4779 if (off < 0) { 4780 verbose(env, 4781 "R%d is ptr_%s invalid negative access: off=%d\n", 4782 regno, tname, off); 4783 return -EACCES; 4784 } 4785 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4786 char tn_buf[48]; 4787 4788 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4789 verbose(env, 4790 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 4791 regno, tname, off, tn_buf); 4792 return -EACCES; 4793 } 4794 4795 if (reg->type & MEM_USER) { 4796 verbose(env, 4797 "R%d is ptr_%s access user memory: off=%d\n", 4798 regno, tname, off); 4799 return -EACCES; 4800 } 4801 4802 if (reg->type & MEM_PERCPU) { 4803 verbose(env, 4804 "R%d is ptr_%s access percpu memory: off=%d\n", 4805 regno, tname, off); 4806 return -EACCES; 4807 } 4808 4809 if (env->ops->btf_struct_access && !type_is_alloc(reg->type)) { 4810 if (!btf_is_kernel(reg->btf)) { 4811 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 4812 return -EFAULT; 4813 } 4814 ret = env->ops->btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag); 4815 } else { 4816 /* Writes are permitted with default btf_struct_access for 4817 * program allocated objects (which always have ref_obj_id > 0), 4818 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 4819 */ 4820 if (atype != BPF_READ && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 4821 verbose(env, "only read is supported\n"); 4822 return -EACCES; 4823 } 4824 4825 if (type_is_alloc(reg->type) && !reg->ref_obj_id) { 4826 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 4827 return -EFAULT; 4828 } 4829 4830 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag); 4831 } 4832 4833 if (ret < 0) 4834 return ret; 4835 4836 /* If this is an untrusted pointer, all pointers formed by walking it 4837 * also inherit the untrusted flag. 4838 */ 4839 if (type_flag(reg->type) & PTR_UNTRUSTED) 4840 flag |= PTR_UNTRUSTED; 4841 4842 /* By default any pointer obtained from walking a trusted pointer is 4843 * no longer trusted except the rcu case below. 4844 */ 4845 flag &= ~PTR_TRUSTED; 4846 4847 if (flag & MEM_RCU) { 4848 /* Mark value register as MEM_RCU only if it is protected by 4849 * bpf_rcu_read_lock() and the ptr reg is rcu or trusted. MEM_RCU 4850 * itself can already indicate trustedness inside the rcu 4851 * read lock region. Also mark rcu pointer as PTR_MAYBE_NULL since 4852 * it could be null in some cases. 4853 */ 4854 if (!env->cur_state->active_rcu_lock || 4855 !(is_trusted_reg(reg) || is_rcu_reg(reg))) 4856 flag &= ~MEM_RCU; 4857 else 4858 flag |= PTR_MAYBE_NULL; 4859 } else if (reg->type & MEM_RCU) { 4860 /* ptr (reg) is marked as MEM_RCU, but the struct field is not tagged 4861 * with __rcu. Mark the flag as PTR_UNTRUSTED conservatively. 4862 */ 4863 flag |= PTR_UNTRUSTED; 4864 } 4865 4866 if (atype == BPF_READ && value_regno >= 0) 4867 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 4868 4869 return 0; 4870 } 4871 4872 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 4873 struct bpf_reg_state *regs, 4874 int regno, int off, int size, 4875 enum bpf_access_type atype, 4876 int value_regno) 4877 { 4878 struct bpf_reg_state *reg = regs + regno; 4879 struct bpf_map *map = reg->map_ptr; 4880 struct bpf_reg_state map_reg; 4881 enum bpf_type_flag flag = 0; 4882 const struct btf_type *t; 4883 const char *tname; 4884 u32 btf_id; 4885 int ret; 4886 4887 if (!btf_vmlinux) { 4888 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 4889 return -ENOTSUPP; 4890 } 4891 4892 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 4893 verbose(env, "map_ptr access not supported for map type %d\n", 4894 map->map_type); 4895 return -ENOTSUPP; 4896 } 4897 4898 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 4899 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 4900 4901 if (!env->allow_ptr_leaks) { 4902 verbose(env, 4903 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4904 tname); 4905 return -EPERM; 4906 } 4907 4908 if (off < 0) { 4909 verbose(env, "R%d is %s invalid negative access: off=%d\n", 4910 regno, tname, off); 4911 return -EACCES; 4912 } 4913 4914 if (atype != BPF_READ) { 4915 verbose(env, "only read from %s is supported\n", tname); 4916 return -EACCES; 4917 } 4918 4919 /* Simulate access to a PTR_TO_BTF_ID */ 4920 memset(&map_reg, 0, sizeof(map_reg)); 4921 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 4922 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag); 4923 if (ret < 0) 4924 return ret; 4925 4926 if (value_regno >= 0) 4927 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 4928 4929 return 0; 4930 } 4931 4932 /* Check that the stack access at the given offset is within bounds. The 4933 * maximum valid offset is -1. 4934 * 4935 * The minimum valid offset is -MAX_BPF_STACK for writes, and 4936 * -state->allocated_stack for reads. 4937 */ 4938 static int check_stack_slot_within_bounds(int off, 4939 struct bpf_func_state *state, 4940 enum bpf_access_type t) 4941 { 4942 int min_valid_off; 4943 4944 if (t == BPF_WRITE) 4945 min_valid_off = -MAX_BPF_STACK; 4946 else 4947 min_valid_off = -state->allocated_stack; 4948 4949 if (off < min_valid_off || off > -1) 4950 return -EACCES; 4951 return 0; 4952 } 4953 4954 /* Check that the stack access at 'regno + off' falls within the maximum stack 4955 * bounds. 4956 * 4957 * 'off' includes `regno->offset`, but not its dynamic part (if any). 4958 */ 4959 static int check_stack_access_within_bounds( 4960 struct bpf_verifier_env *env, 4961 int regno, int off, int access_size, 4962 enum bpf_access_src src, enum bpf_access_type type) 4963 { 4964 struct bpf_reg_state *regs = cur_regs(env); 4965 struct bpf_reg_state *reg = regs + regno; 4966 struct bpf_func_state *state = func(env, reg); 4967 int min_off, max_off; 4968 int err; 4969 char *err_extra; 4970 4971 if (src == ACCESS_HELPER) 4972 /* We don't know if helpers are reading or writing (or both). */ 4973 err_extra = " indirect access to"; 4974 else if (type == BPF_READ) 4975 err_extra = " read from"; 4976 else 4977 err_extra = " write to"; 4978 4979 if (tnum_is_const(reg->var_off)) { 4980 min_off = reg->var_off.value + off; 4981 if (access_size > 0) 4982 max_off = min_off + access_size - 1; 4983 else 4984 max_off = min_off; 4985 } else { 4986 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4987 reg->smin_value <= -BPF_MAX_VAR_OFF) { 4988 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 4989 err_extra, regno); 4990 return -EACCES; 4991 } 4992 min_off = reg->smin_value + off; 4993 if (access_size > 0) 4994 max_off = reg->smax_value + off + access_size - 1; 4995 else 4996 max_off = min_off; 4997 } 4998 4999 err = check_stack_slot_within_bounds(min_off, state, type); 5000 if (!err) 5001 err = check_stack_slot_within_bounds(max_off, state, type); 5002 5003 if (err) { 5004 if (tnum_is_const(reg->var_off)) { 5005 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 5006 err_extra, regno, off, access_size); 5007 } else { 5008 char tn_buf[48]; 5009 5010 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5011 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 5012 err_extra, regno, tn_buf, access_size); 5013 } 5014 } 5015 return err; 5016 } 5017 5018 /* check whether memory at (regno + off) is accessible for t = (read | write) 5019 * if t==write, value_regno is a register which value is stored into memory 5020 * if t==read, value_regno is a register which will receive the value from memory 5021 * if t==write && value_regno==-1, some unknown value is stored into memory 5022 * if t==read && value_regno==-1, don't care what we read from memory 5023 */ 5024 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 5025 int off, int bpf_size, enum bpf_access_type t, 5026 int value_regno, bool strict_alignment_once) 5027 { 5028 struct bpf_reg_state *regs = cur_regs(env); 5029 struct bpf_reg_state *reg = regs + regno; 5030 struct bpf_func_state *state; 5031 int size, err = 0; 5032 5033 size = bpf_size_to_bytes(bpf_size); 5034 if (size < 0) 5035 return size; 5036 5037 /* alignment checks will add in reg->off themselves */ 5038 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 5039 if (err) 5040 return err; 5041 5042 /* for access checks, reg->off is just part of off */ 5043 off += reg->off; 5044 5045 if (reg->type == PTR_TO_MAP_KEY) { 5046 if (t == BPF_WRITE) { 5047 verbose(env, "write to change key R%d not allowed\n", regno); 5048 return -EACCES; 5049 } 5050 5051 err = check_mem_region_access(env, regno, off, size, 5052 reg->map_ptr->key_size, false); 5053 if (err) 5054 return err; 5055 if (value_regno >= 0) 5056 mark_reg_unknown(env, regs, value_regno); 5057 } else if (reg->type == PTR_TO_MAP_VALUE) { 5058 struct btf_field *kptr_field = NULL; 5059 5060 if (t == BPF_WRITE && value_regno >= 0 && 5061 is_pointer_value(env, value_regno)) { 5062 verbose(env, "R%d leaks addr into map\n", value_regno); 5063 return -EACCES; 5064 } 5065 err = check_map_access_type(env, regno, off, size, t); 5066 if (err) 5067 return err; 5068 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 5069 if (err) 5070 return err; 5071 if (tnum_is_const(reg->var_off)) 5072 kptr_field = btf_record_find(reg->map_ptr->record, 5073 off + reg->var_off.value, BPF_KPTR); 5074 if (kptr_field) { 5075 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 5076 } else if (t == BPF_READ && value_regno >= 0) { 5077 struct bpf_map *map = reg->map_ptr; 5078 5079 /* if map is read-only, track its contents as scalars */ 5080 if (tnum_is_const(reg->var_off) && 5081 bpf_map_is_rdonly(map) && 5082 map->ops->map_direct_value_addr) { 5083 int map_off = off + reg->var_off.value; 5084 u64 val = 0; 5085 5086 err = bpf_map_direct_read(map, map_off, size, 5087 &val); 5088 if (err) 5089 return err; 5090 5091 regs[value_regno].type = SCALAR_VALUE; 5092 __mark_reg_known(®s[value_regno], val); 5093 } else { 5094 mark_reg_unknown(env, regs, value_regno); 5095 } 5096 } 5097 } else if (base_type(reg->type) == PTR_TO_MEM) { 5098 bool rdonly_mem = type_is_rdonly_mem(reg->type); 5099 5100 if (type_may_be_null(reg->type)) { 5101 verbose(env, "R%d invalid mem access '%s'\n", regno, 5102 reg_type_str(env, reg->type)); 5103 return -EACCES; 5104 } 5105 5106 if (t == BPF_WRITE && rdonly_mem) { 5107 verbose(env, "R%d cannot write into %s\n", 5108 regno, reg_type_str(env, reg->type)); 5109 return -EACCES; 5110 } 5111 5112 if (t == BPF_WRITE && value_regno >= 0 && 5113 is_pointer_value(env, value_regno)) { 5114 verbose(env, "R%d leaks addr into mem\n", value_regno); 5115 return -EACCES; 5116 } 5117 5118 err = check_mem_region_access(env, regno, off, size, 5119 reg->mem_size, false); 5120 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 5121 mark_reg_unknown(env, regs, value_regno); 5122 } else if (reg->type == PTR_TO_CTX) { 5123 enum bpf_reg_type reg_type = SCALAR_VALUE; 5124 struct btf *btf = NULL; 5125 u32 btf_id = 0; 5126 5127 if (t == BPF_WRITE && value_regno >= 0 && 5128 is_pointer_value(env, value_regno)) { 5129 verbose(env, "R%d leaks addr into ctx\n", value_regno); 5130 return -EACCES; 5131 } 5132 5133 err = check_ptr_off_reg(env, reg, regno); 5134 if (err < 0) 5135 return err; 5136 5137 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 5138 &btf_id); 5139 if (err) 5140 verbose_linfo(env, insn_idx, "; "); 5141 if (!err && t == BPF_READ && value_regno >= 0) { 5142 /* ctx access returns either a scalar, or a 5143 * PTR_TO_PACKET[_META,_END]. In the latter 5144 * case, we know the offset is zero. 5145 */ 5146 if (reg_type == SCALAR_VALUE) { 5147 mark_reg_unknown(env, regs, value_regno); 5148 } else { 5149 mark_reg_known_zero(env, regs, 5150 value_regno); 5151 if (type_may_be_null(reg_type)) 5152 regs[value_regno].id = ++env->id_gen; 5153 /* A load of ctx field could have different 5154 * actual load size with the one encoded in the 5155 * insn. When the dst is PTR, it is for sure not 5156 * a sub-register. 5157 */ 5158 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 5159 if (base_type(reg_type) == PTR_TO_BTF_ID) { 5160 regs[value_regno].btf = btf; 5161 regs[value_regno].btf_id = btf_id; 5162 } 5163 } 5164 regs[value_regno].type = reg_type; 5165 } 5166 5167 } else if (reg->type == PTR_TO_STACK) { 5168 /* Basic bounds checks. */ 5169 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 5170 if (err) 5171 return err; 5172 5173 state = func(env, reg); 5174 err = update_stack_depth(env, state, off); 5175 if (err) 5176 return err; 5177 5178 if (t == BPF_READ) 5179 err = check_stack_read(env, regno, off, size, 5180 value_regno); 5181 else 5182 err = check_stack_write(env, regno, off, size, 5183 value_regno, insn_idx); 5184 } else if (reg_is_pkt_pointer(reg)) { 5185 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 5186 verbose(env, "cannot write into packet\n"); 5187 return -EACCES; 5188 } 5189 if (t == BPF_WRITE && value_regno >= 0 && 5190 is_pointer_value(env, value_regno)) { 5191 verbose(env, "R%d leaks addr into packet\n", 5192 value_regno); 5193 return -EACCES; 5194 } 5195 err = check_packet_access(env, regno, off, size, false); 5196 if (!err && t == BPF_READ && value_regno >= 0) 5197 mark_reg_unknown(env, regs, value_regno); 5198 } else if (reg->type == PTR_TO_FLOW_KEYS) { 5199 if (t == BPF_WRITE && value_regno >= 0 && 5200 is_pointer_value(env, value_regno)) { 5201 verbose(env, "R%d leaks addr into flow keys\n", 5202 value_regno); 5203 return -EACCES; 5204 } 5205 5206 err = check_flow_keys_access(env, off, size); 5207 if (!err && t == BPF_READ && value_regno >= 0) 5208 mark_reg_unknown(env, regs, value_regno); 5209 } else if (type_is_sk_pointer(reg->type)) { 5210 if (t == BPF_WRITE) { 5211 verbose(env, "R%d cannot write into %s\n", 5212 regno, reg_type_str(env, reg->type)); 5213 return -EACCES; 5214 } 5215 err = check_sock_access(env, insn_idx, regno, off, size, t); 5216 if (!err && value_regno >= 0) 5217 mark_reg_unknown(env, regs, value_regno); 5218 } else if (reg->type == PTR_TO_TP_BUFFER) { 5219 err = check_tp_buffer_access(env, reg, regno, off, size); 5220 if (!err && t == BPF_READ && value_regno >= 0) 5221 mark_reg_unknown(env, regs, value_regno); 5222 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 5223 !type_may_be_null(reg->type)) { 5224 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 5225 value_regno); 5226 } else if (reg->type == CONST_PTR_TO_MAP) { 5227 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 5228 value_regno); 5229 } else if (base_type(reg->type) == PTR_TO_BUF) { 5230 bool rdonly_mem = type_is_rdonly_mem(reg->type); 5231 u32 *max_access; 5232 5233 if (rdonly_mem) { 5234 if (t == BPF_WRITE) { 5235 verbose(env, "R%d cannot write into %s\n", 5236 regno, reg_type_str(env, reg->type)); 5237 return -EACCES; 5238 } 5239 max_access = &env->prog->aux->max_rdonly_access; 5240 } else { 5241 max_access = &env->prog->aux->max_rdwr_access; 5242 } 5243 5244 err = check_buffer_access(env, reg, regno, off, size, false, 5245 max_access); 5246 5247 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 5248 mark_reg_unknown(env, regs, value_regno); 5249 } else { 5250 verbose(env, "R%d invalid mem access '%s'\n", regno, 5251 reg_type_str(env, reg->type)); 5252 return -EACCES; 5253 } 5254 5255 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 5256 regs[value_regno].type == SCALAR_VALUE) { 5257 /* b/h/w load zero-extends, mark upper bits as known 0 */ 5258 coerce_reg_to_size(®s[value_regno], size); 5259 } 5260 return err; 5261 } 5262 5263 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 5264 { 5265 int load_reg; 5266 int err; 5267 5268 switch (insn->imm) { 5269 case BPF_ADD: 5270 case BPF_ADD | BPF_FETCH: 5271 case BPF_AND: 5272 case BPF_AND | BPF_FETCH: 5273 case BPF_OR: 5274 case BPF_OR | BPF_FETCH: 5275 case BPF_XOR: 5276 case BPF_XOR | BPF_FETCH: 5277 case BPF_XCHG: 5278 case BPF_CMPXCHG: 5279 break; 5280 default: 5281 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 5282 return -EINVAL; 5283 } 5284 5285 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 5286 verbose(env, "invalid atomic operand size\n"); 5287 return -EINVAL; 5288 } 5289 5290 /* check src1 operand */ 5291 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5292 if (err) 5293 return err; 5294 5295 /* check src2 operand */ 5296 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5297 if (err) 5298 return err; 5299 5300 if (insn->imm == BPF_CMPXCHG) { 5301 /* Check comparison of R0 with memory location */ 5302 const u32 aux_reg = BPF_REG_0; 5303 5304 err = check_reg_arg(env, aux_reg, SRC_OP); 5305 if (err) 5306 return err; 5307 5308 if (is_pointer_value(env, aux_reg)) { 5309 verbose(env, "R%d leaks addr into mem\n", aux_reg); 5310 return -EACCES; 5311 } 5312 } 5313 5314 if (is_pointer_value(env, insn->src_reg)) { 5315 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 5316 return -EACCES; 5317 } 5318 5319 if (is_ctx_reg(env, insn->dst_reg) || 5320 is_pkt_reg(env, insn->dst_reg) || 5321 is_flow_key_reg(env, insn->dst_reg) || 5322 is_sk_reg(env, insn->dst_reg)) { 5323 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 5324 insn->dst_reg, 5325 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 5326 return -EACCES; 5327 } 5328 5329 if (insn->imm & BPF_FETCH) { 5330 if (insn->imm == BPF_CMPXCHG) 5331 load_reg = BPF_REG_0; 5332 else 5333 load_reg = insn->src_reg; 5334 5335 /* check and record load of old value */ 5336 err = check_reg_arg(env, load_reg, DST_OP); 5337 if (err) 5338 return err; 5339 } else { 5340 /* This instruction accesses a memory location but doesn't 5341 * actually load it into a register. 5342 */ 5343 load_reg = -1; 5344 } 5345 5346 /* Check whether we can read the memory, with second call for fetch 5347 * case to simulate the register fill. 5348 */ 5349 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5350 BPF_SIZE(insn->code), BPF_READ, -1, true); 5351 if (!err && load_reg >= 0) 5352 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5353 BPF_SIZE(insn->code), BPF_READ, load_reg, 5354 true); 5355 if (err) 5356 return err; 5357 5358 /* Check whether we can write into the same memory. */ 5359 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5360 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 5361 if (err) 5362 return err; 5363 5364 return 0; 5365 } 5366 5367 /* When register 'regno' is used to read the stack (either directly or through 5368 * a helper function) make sure that it's within stack boundary and, depending 5369 * on the access type, that all elements of the stack are initialized. 5370 * 5371 * 'off' includes 'regno->off', but not its dynamic part (if any). 5372 * 5373 * All registers that have been spilled on the stack in the slots within the 5374 * read offsets are marked as read. 5375 */ 5376 static int check_stack_range_initialized( 5377 struct bpf_verifier_env *env, int regno, int off, 5378 int access_size, bool zero_size_allowed, 5379 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 5380 { 5381 struct bpf_reg_state *reg = reg_state(env, regno); 5382 struct bpf_func_state *state = func(env, reg); 5383 int err, min_off, max_off, i, j, slot, spi; 5384 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 5385 enum bpf_access_type bounds_check_type; 5386 /* Some accesses can write anything into the stack, others are 5387 * read-only. 5388 */ 5389 bool clobber = false; 5390 5391 if (access_size == 0 && !zero_size_allowed) { 5392 verbose(env, "invalid zero-sized read\n"); 5393 return -EACCES; 5394 } 5395 5396 if (type == ACCESS_HELPER) { 5397 /* The bounds checks for writes are more permissive than for 5398 * reads. However, if raw_mode is not set, we'll do extra 5399 * checks below. 5400 */ 5401 bounds_check_type = BPF_WRITE; 5402 clobber = true; 5403 } else { 5404 bounds_check_type = BPF_READ; 5405 } 5406 err = check_stack_access_within_bounds(env, regno, off, access_size, 5407 type, bounds_check_type); 5408 if (err) 5409 return err; 5410 5411 5412 if (tnum_is_const(reg->var_off)) { 5413 min_off = max_off = reg->var_off.value + off; 5414 } else { 5415 /* Variable offset is prohibited for unprivileged mode for 5416 * simplicity since it requires corresponding support in 5417 * Spectre masking for stack ALU. 5418 * See also retrieve_ptr_limit(). 5419 */ 5420 if (!env->bypass_spec_v1) { 5421 char tn_buf[48]; 5422 5423 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5424 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 5425 regno, err_extra, tn_buf); 5426 return -EACCES; 5427 } 5428 /* Only initialized buffer on stack is allowed to be accessed 5429 * with variable offset. With uninitialized buffer it's hard to 5430 * guarantee that whole memory is marked as initialized on 5431 * helper return since specific bounds are unknown what may 5432 * cause uninitialized stack leaking. 5433 */ 5434 if (meta && meta->raw_mode) 5435 meta = NULL; 5436 5437 min_off = reg->smin_value + off; 5438 max_off = reg->smax_value + off; 5439 } 5440 5441 if (meta && meta->raw_mode) { 5442 meta->access_size = access_size; 5443 meta->regno = regno; 5444 return 0; 5445 } 5446 5447 for (i = min_off; i < max_off + access_size; i++) { 5448 u8 *stype; 5449 5450 slot = -i - 1; 5451 spi = slot / BPF_REG_SIZE; 5452 if (state->allocated_stack <= slot) 5453 goto err; 5454 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 5455 if (*stype == STACK_MISC) 5456 goto mark; 5457 if (*stype == STACK_ZERO) { 5458 if (clobber) { 5459 /* helper can write anything into the stack */ 5460 *stype = STACK_MISC; 5461 } 5462 goto mark; 5463 } 5464 5465 if (is_spilled_reg(&state->stack[spi]) && 5466 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 5467 env->allow_ptr_leaks)) { 5468 if (clobber) { 5469 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 5470 for (j = 0; j < BPF_REG_SIZE; j++) 5471 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 5472 } 5473 goto mark; 5474 } 5475 5476 err: 5477 if (tnum_is_const(reg->var_off)) { 5478 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 5479 err_extra, regno, min_off, i - min_off, access_size); 5480 } else { 5481 char tn_buf[48]; 5482 5483 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5484 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 5485 err_extra, regno, tn_buf, i - min_off, access_size); 5486 } 5487 return -EACCES; 5488 mark: 5489 /* reading any byte out of 8-byte 'spill_slot' will cause 5490 * the whole slot to be marked as 'read' 5491 */ 5492 mark_reg_read(env, &state->stack[spi].spilled_ptr, 5493 state->stack[spi].spilled_ptr.parent, 5494 REG_LIVE_READ64); 5495 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 5496 * be sure that whether stack slot is written to or not. Hence, 5497 * we must still conservatively propagate reads upwards even if 5498 * helper may write to the entire memory range. 5499 */ 5500 } 5501 return update_stack_depth(env, state, min_off); 5502 } 5503 5504 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 5505 int access_size, bool zero_size_allowed, 5506 struct bpf_call_arg_meta *meta) 5507 { 5508 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5509 u32 *max_access; 5510 5511 switch (base_type(reg->type)) { 5512 case PTR_TO_PACKET: 5513 case PTR_TO_PACKET_META: 5514 return check_packet_access(env, regno, reg->off, access_size, 5515 zero_size_allowed); 5516 case PTR_TO_MAP_KEY: 5517 if (meta && meta->raw_mode) { 5518 verbose(env, "R%d cannot write into %s\n", regno, 5519 reg_type_str(env, reg->type)); 5520 return -EACCES; 5521 } 5522 return check_mem_region_access(env, regno, reg->off, access_size, 5523 reg->map_ptr->key_size, false); 5524 case PTR_TO_MAP_VALUE: 5525 if (check_map_access_type(env, regno, reg->off, access_size, 5526 meta && meta->raw_mode ? BPF_WRITE : 5527 BPF_READ)) 5528 return -EACCES; 5529 return check_map_access(env, regno, reg->off, access_size, 5530 zero_size_allowed, ACCESS_HELPER); 5531 case PTR_TO_MEM: 5532 if (type_is_rdonly_mem(reg->type)) { 5533 if (meta && meta->raw_mode) { 5534 verbose(env, "R%d cannot write into %s\n", regno, 5535 reg_type_str(env, reg->type)); 5536 return -EACCES; 5537 } 5538 } 5539 return check_mem_region_access(env, regno, reg->off, 5540 access_size, reg->mem_size, 5541 zero_size_allowed); 5542 case PTR_TO_BUF: 5543 if (type_is_rdonly_mem(reg->type)) { 5544 if (meta && meta->raw_mode) { 5545 verbose(env, "R%d cannot write into %s\n", regno, 5546 reg_type_str(env, reg->type)); 5547 return -EACCES; 5548 } 5549 5550 max_access = &env->prog->aux->max_rdonly_access; 5551 } else { 5552 max_access = &env->prog->aux->max_rdwr_access; 5553 } 5554 return check_buffer_access(env, reg, regno, reg->off, 5555 access_size, zero_size_allowed, 5556 max_access); 5557 case PTR_TO_STACK: 5558 return check_stack_range_initialized( 5559 env, 5560 regno, reg->off, access_size, 5561 zero_size_allowed, ACCESS_HELPER, meta); 5562 case PTR_TO_CTX: 5563 /* in case the function doesn't know how to access the context, 5564 * (because we are in a program of type SYSCALL for example), we 5565 * can not statically check its size. 5566 * Dynamically check it now. 5567 */ 5568 if (!env->ops->convert_ctx_access) { 5569 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 5570 int offset = access_size - 1; 5571 5572 /* Allow zero-byte read from PTR_TO_CTX */ 5573 if (access_size == 0) 5574 return zero_size_allowed ? 0 : -EACCES; 5575 5576 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 5577 atype, -1, false); 5578 } 5579 5580 fallthrough; 5581 default: /* scalar_value or invalid ptr */ 5582 /* Allow zero-byte read from NULL, regardless of pointer type */ 5583 if (zero_size_allowed && access_size == 0 && 5584 register_is_null(reg)) 5585 return 0; 5586 5587 verbose(env, "R%d type=%s ", regno, 5588 reg_type_str(env, reg->type)); 5589 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 5590 return -EACCES; 5591 } 5592 } 5593 5594 static int check_mem_size_reg(struct bpf_verifier_env *env, 5595 struct bpf_reg_state *reg, u32 regno, 5596 bool zero_size_allowed, 5597 struct bpf_call_arg_meta *meta) 5598 { 5599 int err; 5600 5601 /* This is used to refine r0 return value bounds for helpers 5602 * that enforce this value as an upper bound on return values. 5603 * See do_refine_retval_range() for helpers that can refine 5604 * the return value. C type of helper is u32 so we pull register 5605 * bound from umax_value however, if negative verifier errors 5606 * out. Only upper bounds can be learned because retval is an 5607 * int type and negative retvals are allowed. 5608 */ 5609 meta->msize_max_value = reg->umax_value; 5610 5611 /* The register is SCALAR_VALUE; the access check 5612 * happens using its boundaries. 5613 */ 5614 if (!tnum_is_const(reg->var_off)) 5615 /* For unprivileged variable accesses, disable raw 5616 * mode so that the program is required to 5617 * initialize all the memory that the helper could 5618 * just partially fill up. 5619 */ 5620 meta = NULL; 5621 5622 if (reg->smin_value < 0) { 5623 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5624 regno); 5625 return -EACCES; 5626 } 5627 5628 if (reg->umin_value == 0) { 5629 err = check_helper_mem_access(env, regno - 1, 0, 5630 zero_size_allowed, 5631 meta); 5632 if (err) 5633 return err; 5634 } 5635 5636 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5637 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5638 regno); 5639 return -EACCES; 5640 } 5641 err = check_helper_mem_access(env, regno - 1, 5642 reg->umax_value, 5643 zero_size_allowed, meta); 5644 if (!err) 5645 err = mark_chain_precision(env, regno); 5646 return err; 5647 } 5648 5649 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5650 u32 regno, u32 mem_size) 5651 { 5652 bool may_be_null = type_may_be_null(reg->type); 5653 struct bpf_reg_state saved_reg; 5654 struct bpf_call_arg_meta meta; 5655 int err; 5656 5657 if (register_is_null(reg)) 5658 return 0; 5659 5660 memset(&meta, 0, sizeof(meta)); 5661 /* Assuming that the register contains a value check if the memory 5662 * access is safe. Temporarily save and restore the register's state as 5663 * the conversion shouldn't be visible to a caller. 5664 */ 5665 if (may_be_null) { 5666 saved_reg = *reg; 5667 mark_ptr_not_null_reg(reg); 5668 } 5669 5670 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 5671 /* Check access for BPF_WRITE */ 5672 meta.raw_mode = true; 5673 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 5674 5675 if (may_be_null) 5676 *reg = saved_reg; 5677 5678 return err; 5679 } 5680 5681 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5682 u32 regno) 5683 { 5684 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 5685 bool may_be_null = type_may_be_null(mem_reg->type); 5686 struct bpf_reg_state saved_reg; 5687 struct bpf_call_arg_meta meta; 5688 int err; 5689 5690 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 5691 5692 memset(&meta, 0, sizeof(meta)); 5693 5694 if (may_be_null) { 5695 saved_reg = *mem_reg; 5696 mark_ptr_not_null_reg(mem_reg); 5697 } 5698 5699 err = check_mem_size_reg(env, reg, regno, true, &meta); 5700 /* Check access for BPF_WRITE */ 5701 meta.raw_mode = true; 5702 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 5703 5704 if (may_be_null) 5705 *mem_reg = saved_reg; 5706 return err; 5707 } 5708 5709 /* Implementation details: 5710 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 5711 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 5712 * Two bpf_map_lookups (even with the same key) will have different reg->id. 5713 * Two separate bpf_obj_new will also have different reg->id. 5714 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 5715 * clears reg->id after value_or_null->value transition, since the verifier only 5716 * cares about the range of access to valid map value pointer and doesn't care 5717 * about actual address of the map element. 5718 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 5719 * reg->id > 0 after value_or_null->value transition. By doing so 5720 * two bpf_map_lookups will be considered two different pointers that 5721 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 5722 * returned from bpf_obj_new. 5723 * The verifier allows taking only one bpf_spin_lock at a time to avoid 5724 * dead-locks. 5725 * Since only one bpf_spin_lock is allowed the checks are simpler than 5726 * reg_is_refcounted() logic. The verifier needs to remember only 5727 * one spin_lock instead of array of acquired_refs. 5728 * cur_state->active_lock remembers which map value element or allocated 5729 * object got locked and clears it after bpf_spin_unlock. 5730 */ 5731 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 5732 bool is_lock) 5733 { 5734 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5735 struct bpf_verifier_state *cur = env->cur_state; 5736 bool is_const = tnum_is_const(reg->var_off); 5737 u64 val = reg->var_off.value; 5738 struct bpf_map *map = NULL; 5739 struct btf *btf = NULL; 5740 struct btf_record *rec; 5741 5742 if (!is_const) { 5743 verbose(env, 5744 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 5745 regno); 5746 return -EINVAL; 5747 } 5748 if (reg->type == PTR_TO_MAP_VALUE) { 5749 map = reg->map_ptr; 5750 if (!map->btf) { 5751 verbose(env, 5752 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 5753 map->name); 5754 return -EINVAL; 5755 } 5756 } else { 5757 btf = reg->btf; 5758 } 5759 5760 rec = reg_btf_record(reg); 5761 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 5762 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 5763 map ? map->name : "kptr"); 5764 return -EINVAL; 5765 } 5766 if (rec->spin_lock_off != val + reg->off) { 5767 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 5768 val + reg->off, rec->spin_lock_off); 5769 return -EINVAL; 5770 } 5771 if (is_lock) { 5772 if (cur->active_lock.ptr) { 5773 verbose(env, 5774 "Locking two bpf_spin_locks are not allowed\n"); 5775 return -EINVAL; 5776 } 5777 if (map) 5778 cur->active_lock.ptr = map; 5779 else 5780 cur->active_lock.ptr = btf; 5781 cur->active_lock.id = reg->id; 5782 } else { 5783 struct bpf_func_state *fstate = cur_func(env); 5784 void *ptr; 5785 int i; 5786 5787 if (map) 5788 ptr = map; 5789 else 5790 ptr = btf; 5791 5792 if (!cur->active_lock.ptr) { 5793 verbose(env, "bpf_spin_unlock without taking a lock\n"); 5794 return -EINVAL; 5795 } 5796 if (cur->active_lock.ptr != ptr || 5797 cur->active_lock.id != reg->id) { 5798 verbose(env, "bpf_spin_unlock of different lock\n"); 5799 return -EINVAL; 5800 } 5801 cur->active_lock.ptr = NULL; 5802 cur->active_lock.id = 0; 5803 5804 for (i = fstate->acquired_refs - 1; i >= 0; i--) { 5805 int err; 5806 5807 /* Complain on error because this reference state cannot 5808 * be freed before this point, as bpf_spin_lock critical 5809 * section does not allow functions that release the 5810 * allocated object immediately. 5811 */ 5812 if (!fstate->refs[i].release_on_unlock) 5813 continue; 5814 err = release_reference(env, fstate->refs[i].id); 5815 if (err) { 5816 verbose(env, "failed to release release_on_unlock reference"); 5817 return err; 5818 } 5819 } 5820 } 5821 return 0; 5822 } 5823 5824 static int process_timer_func(struct bpf_verifier_env *env, int regno, 5825 struct bpf_call_arg_meta *meta) 5826 { 5827 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5828 bool is_const = tnum_is_const(reg->var_off); 5829 struct bpf_map *map = reg->map_ptr; 5830 u64 val = reg->var_off.value; 5831 5832 if (!is_const) { 5833 verbose(env, 5834 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 5835 regno); 5836 return -EINVAL; 5837 } 5838 if (!map->btf) { 5839 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 5840 map->name); 5841 return -EINVAL; 5842 } 5843 if (!btf_record_has_field(map->record, BPF_TIMER)) { 5844 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 5845 return -EINVAL; 5846 } 5847 if (map->record->timer_off != val + reg->off) { 5848 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 5849 val + reg->off, map->record->timer_off); 5850 return -EINVAL; 5851 } 5852 if (meta->map_ptr) { 5853 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 5854 return -EFAULT; 5855 } 5856 meta->map_uid = reg->map_uid; 5857 meta->map_ptr = map; 5858 return 0; 5859 } 5860 5861 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 5862 struct bpf_call_arg_meta *meta) 5863 { 5864 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5865 struct bpf_map *map_ptr = reg->map_ptr; 5866 struct btf_field *kptr_field; 5867 u32 kptr_off; 5868 5869 if (!tnum_is_const(reg->var_off)) { 5870 verbose(env, 5871 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 5872 regno); 5873 return -EINVAL; 5874 } 5875 if (!map_ptr->btf) { 5876 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 5877 map_ptr->name); 5878 return -EINVAL; 5879 } 5880 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 5881 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 5882 return -EINVAL; 5883 } 5884 5885 meta->map_ptr = map_ptr; 5886 kptr_off = reg->off + reg->var_off.value; 5887 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 5888 if (!kptr_field) { 5889 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 5890 return -EACCES; 5891 } 5892 if (kptr_field->type != BPF_KPTR_REF) { 5893 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 5894 return -EACCES; 5895 } 5896 meta->kptr_field = kptr_field; 5897 return 0; 5898 } 5899 5900 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 5901 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 5902 * 5903 * In both cases we deal with the first 8 bytes, but need to mark the next 8 5904 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 5905 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 5906 * 5907 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 5908 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 5909 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 5910 * mutate the view of the dynptr and also possibly destroy it. In the latter 5911 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 5912 * memory that dynptr points to. 5913 * 5914 * The verifier will keep track both levels of mutation (bpf_dynptr's in 5915 * reg->type and the memory's in reg->dynptr.type), but there is no support for 5916 * readonly dynptr view yet, hence only the first case is tracked and checked. 5917 * 5918 * This is consistent with how C applies the const modifier to a struct object, 5919 * where the pointer itself inside bpf_dynptr becomes const but not what it 5920 * points to. 5921 * 5922 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 5923 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 5924 */ 5925 int process_dynptr_func(struct bpf_verifier_env *env, int regno, 5926 enum bpf_arg_type arg_type, struct bpf_call_arg_meta *meta) 5927 { 5928 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5929 5930 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 5931 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 5932 */ 5933 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 5934 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 5935 return -EFAULT; 5936 } 5937 /* CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 5938 * check_func_arg_reg_off's logic. We only need to check offset 5939 * alignment for PTR_TO_STACK. 5940 */ 5941 if (reg->type == PTR_TO_STACK && (reg->off % BPF_REG_SIZE)) { 5942 verbose(env, "cannot pass in dynptr at an offset=%d\n", reg->off); 5943 return -EINVAL; 5944 } 5945 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 5946 * constructing a mutable bpf_dynptr object. 5947 * 5948 * Currently, this is only possible with PTR_TO_STACK 5949 * pointing to a region of at least 16 bytes which doesn't 5950 * contain an existing bpf_dynptr. 5951 * 5952 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 5953 * mutated or destroyed. However, the memory it points to 5954 * may be mutated. 5955 * 5956 * None - Points to a initialized dynptr that can be mutated and 5957 * destroyed, including mutation of the memory it points 5958 * to. 5959 */ 5960 if (arg_type & MEM_UNINIT) { 5961 if (!is_dynptr_reg_valid_uninit(env, reg)) { 5962 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 5963 return -EINVAL; 5964 } 5965 5966 /* We only support one dynptr being uninitialized at the moment, 5967 * which is sufficient for the helper functions we have right now. 5968 */ 5969 if (meta->uninit_dynptr_regno) { 5970 verbose(env, "verifier internal error: multiple uninitialized dynptr args\n"); 5971 return -EFAULT; 5972 } 5973 5974 meta->uninit_dynptr_regno = regno; 5975 } else /* MEM_RDONLY and None case from above */ { 5976 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 5977 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 5978 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 5979 return -EINVAL; 5980 } 5981 5982 if (!is_dynptr_reg_valid_init(env, reg)) { 5983 verbose(env, 5984 "Expected an initialized dynptr as arg #%d\n", 5985 regno); 5986 return -EINVAL; 5987 } 5988 5989 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 5990 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 5991 const char *err_extra = ""; 5992 5993 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 5994 case DYNPTR_TYPE_LOCAL: 5995 err_extra = "local"; 5996 break; 5997 case DYNPTR_TYPE_RINGBUF: 5998 err_extra = "ringbuf"; 5999 break; 6000 default: 6001 err_extra = "<unknown>"; 6002 break; 6003 } 6004 verbose(env, 6005 "Expected a dynptr of type %s as arg #%d\n", 6006 err_extra, regno); 6007 return -EINVAL; 6008 } 6009 } 6010 return 0; 6011 } 6012 6013 static bool arg_type_is_mem_size(enum bpf_arg_type type) 6014 { 6015 return type == ARG_CONST_SIZE || 6016 type == ARG_CONST_SIZE_OR_ZERO; 6017 } 6018 6019 static bool arg_type_is_release(enum bpf_arg_type type) 6020 { 6021 return type & OBJ_RELEASE; 6022 } 6023 6024 static bool arg_type_is_dynptr(enum bpf_arg_type type) 6025 { 6026 return base_type(type) == ARG_PTR_TO_DYNPTR; 6027 } 6028 6029 static int int_ptr_type_to_size(enum bpf_arg_type type) 6030 { 6031 if (type == ARG_PTR_TO_INT) 6032 return sizeof(u32); 6033 else if (type == ARG_PTR_TO_LONG) 6034 return sizeof(u64); 6035 6036 return -EINVAL; 6037 } 6038 6039 static int resolve_map_arg_type(struct bpf_verifier_env *env, 6040 const struct bpf_call_arg_meta *meta, 6041 enum bpf_arg_type *arg_type) 6042 { 6043 if (!meta->map_ptr) { 6044 /* kernel subsystem misconfigured verifier */ 6045 verbose(env, "invalid map_ptr to access map->type\n"); 6046 return -EACCES; 6047 } 6048 6049 switch (meta->map_ptr->map_type) { 6050 case BPF_MAP_TYPE_SOCKMAP: 6051 case BPF_MAP_TYPE_SOCKHASH: 6052 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 6053 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 6054 } else { 6055 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 6056 return -EINVAL; 6057 } 6058 break; 6059 case BPF_MAP_TYPE_BLOOM_FILTER: 6060 if (meta->func_id == BPF_FUNC_map_peek_elem) 6061 *arg_type = ARG_PTR_TO_MAP_VALUE; 6062 break; 6063 default: 6064 break; 6065 } 6066 return 0; 6067 } 6068 6069 struct bpf_reg_types { 6070 const enum bpf_reg_type types[10]; 6071 u32 *btf_id; 6072 }; 6073 6074 static const struct bpf_reg_types sock_types = { 6075 .types = { 6076 PTR_TO_SOCK_COMMON, 6077 PTR_TO_SOCKET, 6078 PTR_TO_TCP_SOCK, 6079 PTR_TO_XDP_SOCK, 6080 }, 6081 }; 6082 6083 #ifdef CONFIG_NET 6084 static const struct bpf_reg_types btf_id_sock_common_types = { 6085 .types = { 6086 PTR_TO_SOCK_COMMON, 6087 PTR_TO_SOCKET, 6088 PTR_TO_TCP_SOCK, 6089 PTR_TO_XDP_SOCK, 6090 PTR_TO_BTF_ID, 6091 PTR_TO_BTF_ID | PTR_TRUSTED, 6092 }, 6093 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 6094 }; 6095 #endif 6096 6097 static const struct bpf_reg_types mem_types = { 6098 .types = { 6099 PTR_TO_STACK, 6100 PTR_TO_PACKET, 6101 PTR_TO_PACKET_META, 6102 PTR_TO_MAP_KEY, 6103 PTR_TO_MAP_VALUE, 6104 PTR_TO_MEM, 6105 PTR_TO_MEM | MEM_RINGBUF, 6106 PTR_TO_BUF, 6107 }, 6108 }; 6109 6110 static const struct bpf_reg_types int_ptr_types = { 6111 .types = { 6112 PTR_TO_STACK, 6113 PTR_TO_PACKET, 6114 PTR_TO_PACKET_META, 6115 PTR_TO_MAP_KEY, 6116 PTR_TO_MAP_VALUE, 6117 }, 6118 }; 6119 6120 static const struct bpf_reg_types spin_lock_types = { 6121 .types = { 6122 PTR_TO_MAP_VALUE, 6123 PTR_TO_BTF_ID | MEM_ALLOC, 6124 } 6125 }; 6126 6127 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 6128 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 6129 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 6130 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 6131 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 6132 static const struct bpf_reg_types btf_ptr_types = { 6133 .types = { 6134 PTR_TO_BTF_ID, 6135 PTR_TO_BTF_ID | PTR_TRUSTED, 6136 PTR_TO_BTF_ID | MEM_RCU, 6137 }, 6138 }; 6139 static const struct bpf_reg_types percpu_btf_ptr_types = { 6140 .types = { 6141 PTR_TO_BTF_ID | MEM_PERCPU, 6142 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 6143 } 6144 }; 6145 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 6146 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 6147 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 6148 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 6149 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 6150 static const struct bpf_reg_types dynptr_types = { 6151 .types = { 6152 PTR_TO_STACK, 6153 CONST_PTR_TO_DYNPTR, 6154 } 6155 }; 6156 6157 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 6158 [ARG_PTR_TO_MAP_KEY] = &mem_types, 6159 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 6160 [ARG_CONST_SIZE] = &scalar_types, 6161 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 6162 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 6163 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 6164 [ARG_PTR_TO_CTX] = &context_types, 6165 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 6166 #ifdef CONFIG_NET 6167 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 6168 #endif 6169 [ARG_PTR_TO_SOCKET] = &fullsock_types, 6170 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 6171 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 6172 [ARG_PTR_TO_MEM] = &mem_types, 6173 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 6174 [ARG_PTR_TO_INT] = &int_ptr_types, 6175 [ARG_PTR_TO_LONG] = &int_ptr_types, 6176 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 6177 [ARG_PTR_TO_FUNC] = &func_ptr_types, 6178 [ARG_PTR_TO_STACK] = &stack_ptr_types, 6179 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 6180 [ARG_PTR_TO_TIMER] = &timer_types, 6181 [ARG_PTR_TO_KPTR] = &kptr_types, 6182 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 6183 }; 6184 6185 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 6186 enum bpf_arg_type arg_type, 6187 const u32 *arg_btf_id, 6188 struct bpf_call_arg_meta *meta) 6189 { 6190 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6191 enum bpf_reg_type expected, type = reg->type; 6192 const struct bpf_reg_types *compatible; 6193 int i, j; 6194 6195 compatible = compatible_reg_types[base_type(arg_type)]; 6196 if (!compatible) { 6197 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 6198 return -EFAULT; 6199 } 6200 6201 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 6202 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 6203 * 6204 * Same for MAYBE_NULL: 6205 * 6206 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 6207 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 6208 * 6209 * Therefore we fold these flags depending on the arg_type before comparison. 6210 */ 6211 if (arg_type & MEM_RDONLY) 6212 type &= ~MEM_RDONLY; 6213 if (arg_type & PTR_MAYBE_NULL) 6214 type &= ~PTR_MAYBE_NULL; 6215 6216 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 6217 expected = compatible->types[i]; 6218 if (expected == NOT_INIT) 6219 break; 6220 6221 if (type == expected) 6222 goto found; 6223 } 6224 6225 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 6226 for (j = 0; j + 1 < i; j++) 6227 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 6228 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 6229 return -EACCES; 6230 6231 found: 6232 if (reg->type == PTR_TO_BTF_ID || reg->type & PTR_TRUSTED) { 6233 /* For bpf_sk_release, it needs to match against first member 6234 * 'struct sock_common', hence make an exception for it. This 6235 * allows bpf_sk_release to work for multiple socket types. 6236 */ 6237 bool strict_type_match = arg_type_is_release(arg_type) && 6238 meta->func_id != BPF_FUNC_sk_release; 6239 6240 if (!arg_btf_id) { 6241 if (!compatible->btf_id) { 6242 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 6243 return -EFAULT; 6244 } 6245 arg_btf_id = compatible->btf_id; 6246 } 6247 6248 if (meta->func_id == BPF_FUNC_kptr_xchg) { 6249 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 6250 return -EACCES; 6251 } else { 6252 if (arg_btf_id == BPF_PTR_POISON) { 6253 verbose(env, "verifier internal error:"); 6254 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 6255 regno); 6256 return -EACCES; 6257 } 6258 6259 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 6260 btf_vmlinux, *arg_btf_id, 6261 strict_type_match)) { 6262 verbose(env, "R%d is of type %s but %s is expected\n", 6263 regno, kernel_type_name(reg->btf, reg->btf_id), 6264 kernel_type_name(btf_vmlinux, *arg_btf_id)); 6265 return -EACCES; 6266 } 6267 } 6268 } else if (type_is_alloc(reg->type)) { 6269 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock) { 6270 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 6271 return -EFAULT; 6272 } 6273 } 6274 6275 return 0; 6276 } 6277 6278 int check_func_arg_reg_off(struct bpf_verifier_env *env, 6279 const struct bpf_reg_state *reg, int regno, 6280 enum bpf_arg_type arg_type) 6281 { 6282 u32 type = reg->type; 6283 6284 /* When referenced register is passed to release function, its fixed 6285 * offset must be 0. 6286 * 6287 * We will check arg_type_is_release reg has ref_obj_id when storing 6288 * meta->release_regno. 6289 */ 6290 if (arg_type_is_release(arg_type)) { 6291 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 6292 * may not directly point to the object being released, but to 6293 * dynptr pointing to such object, which might be at some offset 6294 * on the stack. In that case, we simply to fallback to the 6295 * default handling. 6296 */ 6297 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 6298 return 0; 6299 /* Doing check_ptr_off_reg check for the offset will catch this 6300 * because fixed_off_ok is false, but checking here allows us 6301 * to give the user a better error message. 6302 */ 6303 if (reg->off) { 6304 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 6305 regno); 6306 return -EINVAL; 6307 } 6308 return __check_ptr_off_reg(env, reg, regno, false); 6309 } 6310 6311 switch (type) { 6312 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 6313 case PTR_TO_STACK: 6314 case PTR_TO_PACKET: 6315 case PTR_TO_PACKET_META: 6316 case PTR_TO_MAP_KEY: 6317 case PTR_TO_MAP_VALUE: 6318 case PTR_TO_MEM: 6319 case PTR_TO_MEM | MEM_RDONLY: 6320 case PTR_TO_MEM | MEM_RINGBUF: 6321 case PTR_TO_BUF: 6322 case PTR_TO_BUF | MEM_RDONLY: 6323 case SCALAR_VALUE: 6324 return 0; 6325 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 6326 * fixed offset. 6327 */ 6328 case PTR_TO_BTF_ID: 6329 case PTR_TO_BTF_ID | MEM_ALLOC: 6330 case PTR_TO_BTF_ID | PTR_TRUSTED: 6331 case PTR_TO_BTF_ID | MEM_RCU: 6332 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED: 6333 /* When referenced PTR_TO_BTF_ID is passed to release function, 6334 * its fixed offset must be 0. In the other cases, fixed offset 6335 * can be non-zero. This was already checked above. So pass 6336 * fixed_off_ok as true to allow fixed offset for all other 6337 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 6338 * still need to do checks instead of returning. 6339 */ 6340 return __check_ptr_off_reg(env, reg, regno, true); 6341 default: 6342 return __check_ptr_off_reg(env, reg, regno, false); 6343 } 6344 } 6345 6346 static u32 dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 6347 { 6348 struct bpf_func_state *state = func(env, reg); 6349 int spi; 6350 6351 if (reg->type == CONST_PTR_TO_DYNPTR) 6352 return reg->ref_obj_id; 6353 6354 spi = get_spi(reg->off); 6355 return state->stack[spi].spilled_ptr.ref_obj_id; 6356 } 6357 6358 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 6359 struct bpf_call_arg_meta *meta, 6360 const struct bpf_func_proto *fn) 6361 { 6362 u32 regno = BPF_REG_1 + arg; 6363 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6364 enum bpf_arg_type arg_type = fn->arg_type[arg]; 6365 enum bpf_reg_type type = reg->type; 6366 u32 *arg_btf_id = NULL; 6367 int err = 0; 6368 6369 if (arg_type == ARG_DONTCARE) 6370 return 0; 6371 6372 err = check_reg_arg(env, regno, SRC_OP); 6373 if (err) 6374 return err; 6375 6376 if (arg_type == ARG_ANYTHING) { 6377 if (is_pointer_value(env, regno)) { 6378 verbose(env, "R%d leaks addr into helper function\n", 6379 regno); 6380 return -EACCES; 6381 } 6382 return 0; 6383 } 6384 6385 if (type_is_pkt_pointer(type) && 6386 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 6387 verbose(env, "helper access to the packet is not allowed\n"); 6388 return -EACCES; 6389 } 6390 6391 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 6392 err = resolve_map_arg_type(env, meta, &arg_type); 6393 if (err) 6394 return err; 6395 } 6396 6397 if (register_is_null(reg) && type_may_be_null(arg_type)) 6398 /* A NULL register has a SCALAR_VALUE type, so skip 6399 * type checking. 6400 */ 6401 goto skip_type_check; 6402 6403 /* arg_btf_id and arg_size are in a union. */ 6404 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 6405 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 6406 arg_btf_id = fn->arg_btf_id[arg]; 6407 6408 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 6409 if (err) 6410 return err; 6411 6412 err = check_func_arg_reg_off(env, reg, regno, arg_type); 6413 if (err) 6414 return err; 6415 6416 skip_type_check: 6417 if (arg_type_is_release(arg_type)) { 6418 if (arg_type_is_dynptr(arg_type)) { 6419 struct bpf_func_state *state = func(env, reg); 6420 int spi; 6421 6422 /* Only dynptr created on stack can be released, thus 6423 * the get_spi and stack state checks for spilled_ptr 6424 * should only be done before process_dynptr_func for 6425 * PTR_TO_STACK. 6426 */ 6427 if (reg->type == PTR_TO_STACK) { 6428 spi = get_spi(reg->off); 6429 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 6430 !state->stack[spi].spilled_ptr.ref_obj_id) { 6431 verbose(env, "arg %d is an unacquired reference\n", regno); 6432 return -EINVAL; 6433 } 6434 } else { 6435 verbose(env, "cannot release unowned const bpf_dynptr\n"); 6436 return -EINVAL; 6437 } 6438 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 6439 verbose(env, "R%d must be referenced when passed to release function\n", 6440 regno); 6441 return -EINVAL; 6442 } 6443 if (meta->release_regno) { 6444 verbose(env, "verifier internal error: more than one release argument\n"); 6445 return -EFAULT; 6446 } 6447 meta->release_regno = regno; 6448 } 6449 6450 if (reg->ref_obj_id) { 6451 if (meta->ref_obj_id) { 6452 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 6453 regno, reg->ref_obj_id, 6454 meta->ref_obj_id); 6455 return -EFAULT; 6456 } 6457 meta->ref_obj_id = reg->ref_obj_id; 6458 } 6459 6460 switch (base_type(arg_type)) { 6461 case ARG_CONST_MAP_PTR: 6462 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 6463 if (meta->map_ptr) { 6464 /* Use map_uid (which is unique id of inner map) to reject: 6465 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 6466 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 6467 * if (inner_map1 && inner_map2) { 6468 * timer = bpf_map_lookup_elem(inner_map1); 6469 * if (timer) 6470 * // mismatch would have been allowed 6471 * bpf_timer_init(timer, inner_map2); 6472 * } 6473 * 6474 * Comparing map_ptr is enough to distinguish normal and outer maps. 6475 */ 6476 if (meta->map_ptr != reg->map_ptr || 6477 meta->map_uid != reg->map_uid) { 6478 verbose(env, 6479 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 6480 meta->map_uid, reg->map_uid); 6481 return -EINVAL; 6482 } 6483 } 6484 meta->map_ptr = reg->map_ptr; 6485 meta->map_uid = reg->map_uid; 6486 break; 6487 case ARG_PTR_TO_MAP_KEY: 6488 /* bpf_map_xxx(..., map_ptr, ..., key) call: 6489 * check that [key, key + map->key_size) are within 6490 * stack limits and initialized 6491 */ 6492 if (!meta->map_ptr) { 6493 /* in function declaration map_ptr must come before 6494 * map_key, so that it's verified and known before 6495 * we have to check map_key here. Otherwise it means 6496 * that kernel subsystem misconfigured verifier 6497 */ 6498 verbose(env, "invalid map_ptr to access map->key\n"); 6499 return -EACCES; 6500 } 6501 err = check_helper_mem_access(env, regno, 6502 meta->map_ptr->key_size, false, 6503 NULL); 6504 break; 6505 case ARG_PTR_TO_MAP_VALUE: 6506 if (type_may_be_null(arg_type) && register_is_null(reg)) 6507 return 0; 6508 6509 /* bpf_map_xxx(..., map_ptr, ..., value) call: 6510 * check [value, value + map->value_size) validity 6511 */ 6512 if (!meta->map_ptr) { 6513 /* kernel subsystem misconfigured verifier */ 6514 verbose(env, "invalid map_ptr to access map->value\n"); 6515 return -EACCES; 6516 } 6517 meta->raw_mode = arg_type & MEM_UNINIT; 6518 err = check_helper_mem_access(env, regno, 6519 meta->map_ptr->value_size, false, 6520 meta); 6521 break; 6522 case ARG_PTR_TO_PERCPU_BTF_ID: 6523 if (!reg->btf_id) { 6524 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 6525 return -EACCES; 6526 } 6527 meta->ret_btf = reg->btf; 6528 meta->ret_btf_id = reg->btf_id; 6529 break; 6530 case ARG_PTR_TO_SPIN_LOCK: 6531 if (meta->func_id == BPF_FUNC_spin_lock) { 6532 err = process_spin_lock(env, regno, true); 6533 if (err) 6534 return err; 6535 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 6536 err = process_spin_lock(env, regno, false); 6537 if (err) 6538 return err; 6539 } else { 6540 verbose(env, "verifier internal error\n"); 6541 return -EFAULT; 6542 } 6543 break; 6544 case ARG_PTR_TO_TIMER: 6545 err = process_timer_func(env, regno, meta); 6546 if (err) 6547 return err; 6548 break; 6549 case ARG_PTR_TO_FUNC: 6550 meta->subprogno = reg->subprogno; 6551 break; 6552 case ARG_PTR_TO_MEM: 6553 /* The access to this pointer is only checked when we hit the 6554 * next is_mem_size argument below. 6555 */ 6556 meta->raw_mode = arg_type & MEM_UNINIT; 6557 if (arg_type & MEM_FIXED_SIZE) { 6558 err = check_helper_mem_access(env, regno, 6559 fn->arg_size[arg], false, 6560 meta); 6561 } 6562 break; 6563 case ARG_CONST_SIZE: 6564 err = check_mem_size_reg(env, reg, regno, false, meta); 6565 break; 6566 case ARG_CONST_SIZE_OR_ZERO: 6567 err = check_mem_size_reg(env, reg, regno, true, meta); 6568 break; 6569 case ARG_PTR_TO_DYNPTR: 6570 err = process_dynptr_func(env, regno, arg_type, meta); 6571 if (err) 6572 return err; 6573 break; 6574 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 6575 if (!tnum_is_const(reg->var_off)) { 6576 verbose(env, "R%d is not a known constant'\n", 6577 regno); 6578 return -EACCES; 6579 } 6580 meta->mem_size = reg->var_off.value; 6581 err = mark_chain_precision(env, regno); 6582 if (err) 6583 return err; 6584 break; 6585 case ARG_PTR_TO_INT: 6586 case ARG_PTR_TO_LONG: 6587 { 6588 int size = int_ptr_type_to_size(arg_type); 6589 6590 err = check_helper_mem_access(env, regno, size, false, meta); 6591 if (err) 6592 return err; 6593 err = check_ptr_alignment(env, reg, 0, size, true); 6594 break; 6595 } 6596 case ARG_PTR_TO_CONST_STR: 6597 { 6598 struct bpf_map *map = reg->map_ptr; 6599 int map_off; 6600 u64 map_addr; 6601 char *str_ptr; 6602 6603 if (!bpf_map_is_rdonly(map)) { 6604 verbose(env, "R%d does not point to a readonly map'\n", regno); 6605 return -EACCES; 6606 } 6607 6608 if (!tnum_is_const(reg->var_off)) { 6609 verbose(env, "R%d is not a constant address'\n", regno); 6610 return -EACCES; 6611 } 6612 6613 if (!map->ops->map_direct_value_addr) { 6614 verbose(env, "no direct value access support for this map type\n"); 6615 return -EACCES; 6616 } 6617 6618 err = check_map_access(env, regno, reg->off, 6619 map->value_size - reg->off, false, 6620 ACCESS_HELPER); 6621 if (err) 6622 return err; 6623 6624 map_off = reg->off + reg->var_off.value; 6625 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 6626 if (err) { 6627 verbose(env, "direct value access on string failed\n"); 6628 return err; 6629 } 6630 6631 str_ptr = (char *)(long)(map_addr); 6632 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 6633 verbose(env, "string is not zero-terminated\n"); 6634 return -EINVAL; 6635 } 6636 break; 6637 } 6638 case ARG_PTR_TO_KPTR: 6639 err = process_kptr_func(env, regno, meta); 6640 if (err) 6641 return err; 6642 break; 6643 } 6644 6645 return err; 6646 } 6647 6648 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 6649 { 6650 enum bpf_attach_type eatype = env->prog->expected_attach_type; 6651 enum bpf_prog_type type = resolve_prog_type(env->prog); 6652 6653 if (func_id != BPF_FUNC_map_update_elem) 6654 return false; 6655 6656 /* It's not possible to get access to a locked struct sock in these 6657 * contexts, so updating is safe. 6658 */ 6659 switch (type) { 6660 case BPF_PROG_TYPE_TRACING: 6661 if (eatype == BPF_TRACE_ITER) 6662 return true; 6663 break; 6664 case BPF_PROG_TYPE_SOCKET_FILTER: 6665 case BPF_PROG_TYPE_SCHED_CLS: 6666 case BPF_PROG_TYPE_SCHED_ACT: 6667 case BPF_PROG_TYPE_XDP: 6668 case BPF_PROG_TYPE_SK_REUSEPORT: 6669 case BPF_PROG_TYPE_FLOW_DISSECTOR: 6670 case BPF_PROG_TYPE_SK_LOOKUP: 6671 return true; 6672 default: 6673 break; 6674 } 6675 6676 verbose(env, "cannot update sockmap in this context\n"); 6677 return false; 6678 } 6679 6680 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 6681 { 6682 return env->prog->jit_requested && 6683 bpf_jit_supports_subprog_tailcalls(); 6684 } 6685 6686 static int check_map_func_compatibility(struct bpf_verifier_env *env, 6687 struct bpf_map *map, int func_id) 6688 { 6689 if (!map) 6690 return 0; 6691 6692 /* We need a two way check, first is from map perspective ... */ 6693 switch (map->map_type) { 6694 case BPF_MAP_TYPE_PROG_ARRAY: 6695 if (func_id != BPF_FUNC_tail_call) 6696 goto error; 6697 break; 6698 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 6699 if (func_id != BPF_FUNC_perf_event_read && 6700 func_id != BPF_FUNC_perf_event_output && 6701 func_id != BPF_FUNC_skb_output && 6702 func_id != BPF_FUNC_perf_event_read_value && 6703 func_id != BPF_FUNC_xdp_output) 6704 goto error; 6705 break; 6706 case BPF_MAP_TYPE_RINGBUF: 6707 if (func_id != BPF_FUNC_ringbuf_output && 6708 func_id != BPF_FUNC_ringbuf_reserve && 6709 func_id != BPF_FUNC_ringbuf_query && 6710 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 6711 func_id != BPF_FUNC_ringbuf_submit_dynptr && 6712 func_id != BPF_FUNC_ringbuf_discard_dynptr) 6713 goto error; 6714 break; 6715 case BPF_MAP_TYPE_USER_RINGBUF: 6716 if (func_id != BPF_FUNC_user_ringbuf_drain) 6717 goto error; 6718 break; 6719 case BPF_MAP_TYPE_STACK_TRACE: 6720 if (func_id != BPF_FUNC_get_stackid) 6721 goto error; 6722 break; 6723 case BPF_MAP_TYPE_CGROUP_ARRAY: 6724 if (func_id != BPF_FUNC_skb_under_cgroup && 6725 func_id != BPF_FUNC_current_task_under_cgroup) 6726 goto error; 6727 break; 6728 case BPF_MAP_TYPE_CGROUP_STORAGE: 6729 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 6730 if (func_id != BPF_FUNC_get_local_storage) 6731 goto error; 6732 break; 6733 case BPF_MAP_TYPE_DEVMAP: 6734 case BPF_MAP_TYPE_DEVMAP_HASH: 6735 if (func_id != BPF_FUNC_redirect_map && 6736 func_id != BPF_FUNC_map_lookup_elem) 6737 goto error; 6738 break; 6739 /* Restrict bpf side of cpumap and xskmap, open when use-cases 6740 * appear. 6741 */ 6742 case BPF_MAP_TYPE_CPUMAP: 6743 if (func_id != BPF_FUNC_redirect_map) 6744 goto error; 6745 break; 6746 case BPF_MAP_TYPE_XSKMAP: 6747 if (func_id != BPF_FUNC_redirect_map && 6748 func_id != BPF_FUNC_map_lookup_elem) 6749 goto error; 6750 break; 6751 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 6752 case BPF_MAP_TYPE_HASH_OF_MAPS: 6753 if (func_id != BPF_FUNC_map_lookup_elem) 6754 goto error; 6755 break; 6756 case BPF_MAP_TYPE_SOCKMAP: 6757 if (func_id != BPF_FUNC_sk_redirect_map && 6758 func_id != BPF_FUNC_sock_map_update && 6759 func_id != BPF_FUNC_map_delete_elem && 6760 func_id != BPF_FUNC_msg_redirect_map && 6761 func_id != BPF_FUNC_sk_select_reuseport && 6762 func_id != BPF_FUNC_map_lookup_elem && 6763 !may_update_sockmap(env, func_id)) 6764 goto error; 6765 break; 6766 case BPF_MAP_TYPE_SOCKHASH: 6767 if (func_id != BPF_FUNC_sk_redirect_hash && 6768 func_id != BPF_FUNC_sock_hash_update && 6769 func_id != BPF_FUNC_map_delete_elem && 6770 func_id != BPF_FUNC_msg_redirect_hash && 6771 func_id != BPF_FUNC_sk_select_reuseport && 6772 func_id != BPF_FUNC_map_lookup_elem && 6773 !may_update_sockmap(env, func_id)) 6774 goto error; 6775 break; 6776 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 6777 if (func_id != BPF_FUNC_sk_select_reuseport) 6778 goto error; 6779 break; 6780 case BPF_MAP_TYPE_QUEUE: 6781 case BPF_MAP_TYPE_STACK: 6782 if (func_id != BPF_FUNC_map_peek_elem && 6783 func_id != BPF_FUNC_map_pop_elem && 6784 func_id != BPF_FUNC_map_push_elem) 6785 goto error; 6786 break; 6787 case BPF_MAP_TYPE_SK_STORAGE: 6788 if (func_id != BPF_FUNC_sk_storage_get && 6789 func_id != BPF_FUNC_sk_storage_delete) 6790 goto error; 6791 break; 6792 case BPF_MAP_TYPE_INODE_STORAGE: 6793 if (func_id != BPF_FUNC_inode_storage_get && 6794 func_id != BPF_FUNC_inode_storage_delete) 6795 goto error; 6796 break; 6797 case BPF_MAP_TYPE_TASK_STORAGE: 6798 if (func_id != BPF_FUNC_task_storage_get && 6799 func_id != BPF_FUNC_task_storage_delete) 6800 goto error; 6801 break; 6802 case BPF_MAP_TYPE_CGRP_STORAGE: 6803 if (func_id != BPF_FUNC_cgrp_storage_get && 6804 func_id != BPF_FUNC_cgrp_storage_delete) 6805 goto error; 6806 break; 6807 case BPF_MAP_TYPE_BLOOM_FILTER: 6808 if (func_id != BPF_FUNC_map_peek_elem && 6809 func_id != BPF_FUNC_map_push_elem) 6810 goto error; 6811 break; 6812 default: 6813 break; 6814 } 6815 6816 /* ... and second from the function itself. */ 6817 switch (func_id) { 6818 case BPF_FUNC_tail_call: 6819 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 6820 goto error; 6821 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 6822 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 6823 return -EINVAL; 6824 } 6825 break; 6826 case BPF_FUNC_perf_event_read: 6827 case BPF_FUNC_perf_event_output: 6828 case BPF_FUNC_perf_event_read_value: 6829 case BPF_FUNC_skb_output: 6830 case BPF_FUNC_xdp_output: 6831 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 6832 goto error; 6833 break; 6834 case BPF_FUNC_ringbuf_output: 6835 case BPF_FUNC_ringbuf_reserve: 6836 case BPF_FUNC_ringbuf_query: 6837 case BPF_FUNC_ringbuf_reserve_dynptr: 6838 case BPF_FUNC_ringbuf_submit_dynptr: 6839 case BPF_FUNC_ringbuf_discard_dynptr: 6840 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 6841 goto error; 6842 break; 6843 case BPF_FUNC_user_ringbuf_drain: 6844 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 6845 goto error; 6846 break; 6847 case BPF_FUNC_get_stackid: 6848 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 6849 goto error; 6850 break; 6851 case BPF_FUNC_current_task_under_cgroup: 6852 case BPF_FUNC_skb_under_cgroup: 6853 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 6854 goto error; 6855 break; 6856 case BPF_FUNC_redirect_map: 6857 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 6858 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 6859 map->map_type != BPF_MAP_TYPE_CPUMAP && 6860 map->map_type != BPF_MAP_TYPE_XSKMAP) 6861 goto error; 6862 break; 6863 case BPF_FUNC_sk_redirect_map: 6864 case BPF_FUNC_msg_redirect_map: 6865 case BPF_FUNC_sock_map_update: 6866 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 6867 goto error; 6868 break; 6869 case BPF_FUNC_sk_redirect_hash: 6870 case BPF_FUNC_msg_redirect_hash: 6871 case BPF_FUNC_sock_hash_update: 6872 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 6873 goto error; 6874 break; 6875 case BPF_FUNC_get_local_storage: 6876 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 6877 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 6878 goto error; 6879 break; 6880 case BPF_FUNC_sk_select_reuseport: 6881 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 6882 map->map_type != BPF_MAP_TYPE_SOCKMAP && 6883 map->map_type != BPF_MAP_TYPE_SOCKHASH) 6884 goto error; 6885 break; 6886 case BPF_FUNC_map_pop_elem: 6887 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6888 map->map_type != BPF_MAP_TYPE_STACK) 6889 goto error; 6890 break; 6891 case BPF_FUNC_map_peek_elem: 6892 case BPF_FUNC_map_push_elem: 6893 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6894 map->map_type != BPF_MAP_TYPE_STACK && 6895 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 6896 goto error; 6897 break; 6898 case BPF_FUNC_map_lookup_percpu_elem: 6899 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 6900 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 6901 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 6902 goto error; 6903 break; 6904 case BPF_FUNC_sk_storage_get: 6905 case BPF_FUNC_sk_storage_delete: 6906 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 6907 goto error; 6908 break; 6909 case BPF_FUNC_inode_storage_get: 6910 case BPF_FUNC_inode_storage_delete: 6911 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 6912 goto error; 6913 break; 6914 case BPF_FUNC_task_storage_get: 6915 case BPF_FUNC_task_storage_delete: 6916 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 6917 goto error; 6918 break; 6919 case BPF_FUNC_cgrp_storage_get: 6920 case BPF_FUNC_cgrp_storage_delete: 6921 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 6922 goto error; 6923 break; 6924 default: 6925 break; 6926 } 6927 6928 return 0; 6929 error: 6930 verbose(env, "cannot pass map_type %d into func %s#%d\n", 6931 map->map_type, func_id_name(func_id), func_id); 6932 return -EINVAL; 6933 } 6934 6935 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 6936 { 6937 int count = 0; 6938 6939 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 6940 count++; 6941 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 6942 count++; 6943 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 6944 count++; 6945 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 6946 count++; 6947 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 6948 count++; 6949 6950 /* We only support one arg being in raw mode at the moment, 6951 * which is sufficient for the helper functions we have 6952 * right now. 6953 */ 6954 return count <= 1; 6955 } 6956 6957 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 6958 { 6959 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 6960 bool has_size = fn->arg_size[arg] != 0; 6961 bool is_next_size = false; 6962 6963 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 6964 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 6965 6966 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 6967 return is_next_size; 6968 6969 return has_size == is_next_size || is_next_size == is_fixed; 6970 } 6971 6972 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 6973 { 6974 /* bpf_xxx(..., buf, len) call will access 'len' 6975 * bytes from memory 'buf'. Both arg types need 6976 * to be paired, so make sure there's no buggy 6977 * helper function specification. 6978 */ 6979 if (arg_type_is_mem_size(fn->arg1_type) || 6980 check_args_pair_invalid(fn, 0) || 6981 check_args_pair_invalid(fn, 1) || 6982 check_args_pair_invalid(fn, 2) || 6983 check_args_pair_invalid(fn, 3) || 6984 check_args_pair_invalid(fn, 4)) 6985 return false; 6986 6987 return true; 6988 } 6989 6990 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 6991 { 6992 int i; 6993 6994 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 6995 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 6996 return !!fn->arg_btf_id[i]; 6997 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 6998 return fn->arg_btf_id[i] == BPF_PTR_POISON; 6999 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 7000 /* arg_btf_id and arg_size are in a union. */ 7001 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 7002 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 7003 return false; 7004 } 7005 7006 return true; 7007 } 7008 7009 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 7010 { 7011 return check_raw_mode_ok(fn) && 7012 check_arg_pair_ok(fn) && 7013 check_btf_id_ok(fn) ? 0 : -EINVAL; 7014 } 7015 7016 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 7017 * are now invalid, so turn them into unknown SCALAR_VALUE. 7018 */ 7019 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 7020 { 7021 struct bpf_func_state *state; 7022 struct bpf_reg_state *reg; 7023 7024 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 7025 if (reg_is_pkt_pointer_any(reg)) 7026 __mark_reg_unknown(env, reg); 7027 })); 7028 } 7029 7030 enum { 7031 AT_PKT_END = -1, 7032 BEYOND_PKT_END = -2, 7033 }; 7034 7035 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 7036 { 7037 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7038 struct bpf_reg_state *reg = &state->regs[regn]; 7039 7040 if (reg->type != PTR_TO_PACKET) 7041 /* PTR_TO_PACKET_META is not supported yet */ 7042 return; 7043 7044 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 7045 * How far beyond pkt_end it goes is unknown. 7046 * if (!range_open) it's the case of pkt >= pkt_end 7047 * if (range_open) it's the case of pkt > pkt_end 7048 * hence this pointer is at least 1 byte bigger than pkt_end 7049 */ 7050 if (range_open) 7051 reg->range = BEYOND_PKT_END; 7052 else 7053 reg->range = AT_PKT_END; 7054 } 7055 7056 /* The pointer with the specified id has released its reference to kernel 7057 * resources. Identify all copies of the same pointer and clear the reference. 7058 */ 7059 static int release_reference(struct bpf_verifier_env *env, 7060 int ref_obj_id) 7061 { 7062 struct bpf_func_state *state; 7063 struct bpf_reg_state *reg; 7064 int err; 7065 7066 err = release_reference_state(cur_func(env), ref_obj_id); 7067 if (err) 7068 return err; 7069 7070 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 7071 if (reg->ref_obj_id == ref_obj_id) { 7072 if (!env->allow_ptr_leaks) 7073 __mark_reg_not_init(env, reg); 7074 else 7075 __mark_reg_unknown(env, reg); 7076 } 7077 })); 7078 7079 return 0; 7080 } 7081 7082 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 7083 struct bpf_reg_state *regs) 7084 { 7085 int i; 7086 7087 /* after the call registers r0 - r5 were scratched */ 7088 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7089 mark_reg_not_init(env, regs, caller_saved[i]); 7090 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7091 } 7092 } 7093 7094 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 7095 struct bpf_func_state *caller, 7096 struct bpf_func_state *callee, 7097 int insn_idx); 7098 7099 static int set_callee_state(struct bpf_verifier_env *env, 7100 struct bpf_func_state *caller, 7101 struct bpf_func_state *callee, int insn_idx); 7102 7103 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7104 int *insn_idx, int subprog, 7105 set_callee_state_fn set_callee_state_cb) 7106 { 7107 struct bpf_verifier_state *state = env->cur_state; 7108 struct bpf_func_info_aux *func_info_aux; 7109 struct bpf_func_state *caller, *callee; 7110 int err; 7111 bool is_global = false; 7112 7113 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 7114 verbose(env, "the call stack of %d frames is too deep\n", 7115 state->curframe + 2); 7116 return -E2BIG; 7117 } 7118 7119 caller = state->frame[state->curframe]; 7120 if (state->frame[state->curframe + 1]) { 7121 verbose(env, "verifier bug. Frame %d already allocated\n", 7122 state->curframe + 1); 7123 return -EFAULT; 7124 } 7125 7126 func_info_aux = env->prog->aux->func_info_aux; 7127 if (func_info_aux) 7128 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 7129 err = btf_check_subprog_call(env, subprog, caller->regs); 7130 if (err == -EFAULT) 7131 return err; 7132 if (is_global) { 7133 if (err) { 7134 verbose(env, "Caller passes invalid args into func#%d\n", 7135 subprog); 7136 return err; 7137 } else { 7138 if (env->log.level & BPF_LOG_LEVEL) 7139 verbose(env, 7140 "Func#%d is global and valid. Skipping.\n", 7141 subprog); 7142 clear_caller_saved_regs(env, caller->regs); 7143 7144 /* All global functions return a 64-bit SCALAR_VALUE */ 7145 mark_reg_unknown(env, caller->regs, BPF_REG_0); 7146 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7147 7148 /* continue with next insn after call */ 7149 return 0; 7150 } 7151 } 7152 7153 /* set_callee_state is used for direct subprog calls, but we are 7154 * interested in validating only BPF helpers that can call subprogs as 7155 * callbacks 7156 */ 7157 if (set_callee_state_cb != set_callee_state && !is_callback_calling_function(insn->imm)) { 7158 verbose(env, "verifier bug: helper %s#%d is not marked as callback-calling\n", 7159 func_id_name(insn->imm), insn->imm); 7160 return -EFAULT; 7161 } 7162 7163 if (insn->code == (BPF_JMP | BPF_CALL) && 7164 insn->src_reg == 0 && 7165 insn->imm == BPF_FUNC_timer_set_callback) { 7166 struct bpf_verifier_state *async_cb; 7167 7168 /* there is no real recursion here. timer callbacks are async */ 7169 env->subprog_info[subprog].is_async_cb = true; 7170 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 7171 *insn_idx, subprog); 7172 if (!async_cb) 7173 return -EFAULT; 7174 callee = async_cb->frame[0]; 7175 callee->async_entry_cnt = caller->async_entry_cnt + 1; 7176 7177 /* Convert bpf_timer_set_callback() args into timer callback args */ 7178 err = set_callee_state_cb(env, caller, callee, *insn_idx); 7179 if (err) 7180 return err; 7181 7182 clear_caller_saved_regs(env, caller->regs); 7183 mark_reg_unknown(env, caller->regs, BPF_REG_0); 7184 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7185 /* continue with next insn after call */ 7186 return 0; 7187 } 7188 7189 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 7190 if (!callee) 7191 return -ENOMEM; 7192 state->frame[state->curframe + 1] = callee; 7193 7194 /* callee cannot access r0, r6 - r9 for reading and has to write 7195 * into its own stack before reading from it. 7196 * callee can read/write into caller's stack 7197 */ 7198 init_func_state(env, callee, 7199 /* remember the callsite, it will be used by bpf_exit */ 7200 *insn_idx /* callsite */, 7201 state->curframe + 1 /* frameno within this callchain */, 7202 subprog /* subprog number within this prog */); 7203 7204 /* Transfer references to the callee */ 7205 err = copy_reference_state(callee, caller); 7206 if (err) 7207 goto err_out; 7208 7209 err = set_callee_state_cb(env, caller, callee, *insn_idx); 7210 if (err) 7211 goto err_out; 7212 7213 clear_caller_saved_regs(env, caller->regs); 7214 7215 /* only increment it after check_reg_arg() finished */ 7216 state->curframe++; 7217 7218 /* and go analyze first insn of the callee */ 7219 *insn_idx = env->subprog_info[subprog].start - 1; 7220 7221 if (env->log.level & BPF_LOG_LEVEL) { 7222 verbose(env, "caller:\n"); 7223 print_verifier_state(env, caller, true); 7224 verbose(env, "callee:\n"); 7225 print_verifier_state(env, callee, true); 7226 } 7227 return 0; 7228 7229 err_out: 7230 free_func_state(callee); 7231 state->frame[state->curframe + 1] = NULL; 7232 return err; 7233 } 7234 7235 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 7236 struct bpf_func_state *caller, 7237 struct bpf_func_state *callee) 7238 { 7239 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 7240 * void *callback_ctx, u64 flags); 7241 * callback_fn(struct bpf_map *map, void *key, void *value, 7242 * void *callback_ctx); 7243 */ 7244 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 7245 7246 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 7247 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 7248 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 7249 7250 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 7251 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 7252 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 7253 7254 /* pointer to stack or null */ 7255 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 7256 7257 /* unused */ 7258 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7259 return 0; 7260 } 7261 7262 static int set_callee_state(struct bpf_verifier_env *env, 7263 struct bpf_func_state *caller, 7264 struct bpf_func_state *callee, int insn_idx) 7265 { 7266 int i; 7267 7268 /* copy r1 - r5 args that callee can access. The copy includes parent 7269 * pointers, which connects us up to the liveness chain 7270 */ 7271 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 7272 callee->regs[i] = caller->regs[i]; 7273 return 0; 7274 } 7275 7276 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7277 int *insn_idx) 7278 { 7279 int subprog, target_insn; 7280 7281 target_insn = *insn_idx + insn->imm + 1; 7282 subprog = find_subprog(env, target_insn); 7283 if (subprog < 0) { 7284 verbose(env, "verifier bug. No program starts at insn %d\n", 7285 target_insn); 7286 return -EFAULT; 7287 } 7288 7289 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 7290 } 7291 7292 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 7293 struct bpf_func_state *caller, 7294 struct bpf_func_state *callee, 7295 int insn_idx) 7296 { 7297 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 7298 struct bpf_map *map; 7299 int err; 7300 7301 if (bpf_map_ptr_poisoned(insn_aux)) { 7302 verbose(env, "tail_call abusing map_ptr\n"); 7303 return -EINVAL; 7304 } 7305 7306 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 7307 if (!map->ops->map_set_for_each_callback_args || 7308 !map->ops->map_for_each_callback) { 7309 verbose(env, "callback function not allowed for map\n"); 7310 return -ENOTSUPP; 7311 } 7312 7313 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 7314 if (err) 7315 return err; 7316 7317 callee->in_callback_fn = true; 7318 callee->callback_ret_range = tnum_range(0, 1); 7319 return 0; 7320 } 7321 7322 static int set_loop_callback_state(struct bpf_verifier_env *env, 7323 struct bpf_func_state *caller, 7324 struct bpf_func_state *callee, 7325 int insn_idx) 7326 { 7327 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 7328 * u64 flags); 7329 * callback_fn(u32 index, void *callback_ctx); 7330 */ 7331 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 7332 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 7333 7334 /* unused */ 7335 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 7336 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7337 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7338 7339 callee->in_callback_fn = true; 7340 callee->callback_ret_range = tnum_range(0, 1); 7341 return 0; 7342 } 7343 7344 static int set_timer_callback_state(struct bpf_verifier_env *env, 7345 struct bpf_func_state *caller, 7346 struct bpf_func_state *callee, 7347 int insn_idx) 7348 { 7349 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 7350 7351 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 7352 * callback_fn(struct bpf_map *map, void *key, void *value); 7353 */ 7354 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 7355 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 7356 callee->regs[BPF_REG_1].map_ptr = map_ptr; 7357 7358 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 7359 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 7360 callee->regs[BPF_REG_2].map_ptr = map_ptr; 7361 7362 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 7363 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 7364 callee->regs[BPF_REG_3].map_ptr = map_ptr; 7365 7366 /* unused */ 7367 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7368 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7369 callee->in_async_callback_fn = true; 7370 callee->callback_ret_range = tnum_range(0, 1); 7371 return 0; 7372 } 7373 7374 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 7375 struct bpf_func_state *caller, 7376 struct bpf_func_state *callee, 7377 int insn_idx) 7378 { 7379 /* bpf_find_vma(struct task_struct *task, u64 addr, 7380 * void *callback_fn, void *callback_ctx, u64 flags) 7381 * (callback_fn)(struct task_struct *task, 7382 * struct vm_area_struct *vma, void *callback_ctx); 7383 */ 7384 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 7385 7386 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 7387 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 7388 callee->regs[BPF_REG_2].btf = btf_vmlinux; 7389 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 7390 7391 /* pointer to stack or null */ 7392 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 7393 7394 /* unused */ 7395 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7396 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7397 callee->in_callback_fn = true; 7398 callee->callback_ret_range = tnum_range(0, 1); 7399 return 0; 7400 } 7401 7402 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 7403 struct bpf_func_state *caller, 7404 struct bpf_func_state *callee, 7405 int insn_idx) 7406 { 7407 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 7408 * callback_ctx, u64 flags); 7409 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 7410 */ 7411 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 7412 mark_dynptr_cb_reg(&callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 7413 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 7414 7415 /* unused */ 7416 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 7417 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7418 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7419 7420 callee->in_callback_fn = true; 7421 callee->callback_ret_range = tnum_range(0, 1); 7422 return 0; 7423 } 7424 7425 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 7426 { 7427 struct bpf_verifier_state *state = env->cur_state; 7428 struct bpf_func_state *caller, *callee; 7429 struct bpf_reg_state *r0; 7430 int err; 7431 7432 callee = state->frame[state->curframe]; 7433 r0 = &callee->regs[BPF_REG_0]; 7434 if (r0->type == PTR_TO_STACK) { 7435 /* technically it's ok to return caller's stack pointer 7436 * (or caller's caller's pointer) back to the caller, 7437 * since these pointers are valid. Only current stack 7438 * pointer will be invalid as soon as function exits, 7439 * but let's be conservative 7440 */ 7441 verbose(env, "cannot return stack pointer to the caller\n"); 7442 return -EINVAL; 7443 } 7444 7445 caller = state->frame[state->curframe - 1]; 7446 if (callee->in_callback_fn) { 7447 /* enforce R0 return value range [0, 1]. */ 7448 struct tnum range = callee->callback_ret_range; 7449 7450 if (r0->type != SCALAR_VALUE) { 7451 verbose(env, "R0 not a scalar value\n"); 7452 return -EACCES; 7453 } 7454 if (!tnum_in(range, r0->var_off)) { 7455 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 7456 return -EINVAL; 7457 } 7458 } else { 7459 /* return to the caller whatever r0 had in the callee */ 7460 caller->regs[BPF_REG_0] = *r0; 7461 } 7462 7463 /* callback_fn frame should have released its own additions to parent's 7464 * reference state at this point, or check_reference_leak would 7465 * complain, hence it must be the same as the caller. There is no need 7466 * to copy it back. 7467 */ 7468 if (!callee->in_callback_fn) { 7469 /* Transfer references to the caller */ 7470 err = copy_reference_state(caller, callee); 7471 if (err) 7472 return err; 7473 } 7474 7475 *insn_idx = callee->callsite + 1; 7476 if (env->log.level & BPF_LOG_LEVEL) { 7477 verbose(env, "returning from callee:\n"); 7478 print_verifier_state(env, callee, true); 7479 verbose(env, "to caller at %d:\n", *insn_idx); 7480 print_verifier_state(env, caller, true); 7481 } 7482 /* clear everything in the callee */ 7483 free_func_state(callee); 7484 state->frame[state->curframe--] = NULL; 7485 return 0; 7486 } 7487 7488 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 7489 int func_id, 7490 struct bpf_call_arg_meta *meta) 7491 { 7492 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 7493 7494 if (ret_type != RET_INTEGER || 7495 (func_id != BPF_FUNC_get_stack && 7496 func_id != BPF_FUNC_get_task_stack && 7497 func_id != BPF_FUNC_probe_read_str && 7498 func_id != BPF_FUNC_probe_read_kernel_str && 7499 func_id != BPF_FUNC_probe_read_user_str)) 7500 return; 7501 7502 ret_reg->smax_value = meta->msize_max_value; 7503 ret_reg->s32_max_value = meta->msize_max_value; 7504 ret_reg->smin_value = -MAX_ERRNO; 7505 ret_reg->s32_min_value = -MAX_ERRNO; 7506 reg_bounds_sync(ret_reg); 7507 } 7508 7509 static int 7510 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 7511 int func_id, int insn_idx) 7512 { 7513 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 7514 struct bpf_map *map = meta->map_ptr; 7515 7516 if (func_id != BPF_FUNC_tail_call && 7517 func_id != BPF_FUNC_map_lookup_elem && 7518 func_id != BPF_FUNC_map_update_elem && 7519 func_id != BPF_FUNC_map_delete_elem && 7520 func_id != BPF_FUNC_map_push_elem && 7521 func_id != BPF_FUNC_map_pop_elem && 7522 func_id != BPF_FUNC_map_peek_elem && 7523 func_id != BPF_FUNC_for_each_map_elem && 7524 func_id != BPF_FUNC_redirect_map && 7525 func_id != BPF_FUNC_map_lookup_percpu_elem) 7526 return 0; 7527 7528 if (map == NULL) { 7529 verbose(env, "kernel subsystem misconfigured verifier\n"); 7530 return -EINVAL; 7531 } 7532 7533 /* In case of read-only, some additional restrictions 7534 * need to be applied in order to prevent altering the 7535 * state of the map from program side. 7536 */ 7537 if ((map->map_flags & BPF_F_RDONLY_PROG) && 7538 (func_id == BPF_FUNC_map_delete_elem || 7539 func_id == BPF_FUNC_map_update_elem || 7540 func_id == BPF_FUNC_map_push_elem || 7541 func_id == BPF_FUNC_map_pop_elem)) { 7542 verbose(env, "write into map forbidden\n"); 7543 return -EACCES; 7544 } 7545 7546 if (!BPF_MAP_PTR(aux->map_ptr_state)) 7547 bpf_map_ptr_store(aux, meta->map_ptr, 7548 !meta->map_ptr->bypass_spec_v1); 7549 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 7550 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 7551 !meta->map_ptr->bypass_spec_v1); 7552 return 0; 7553 } 7554 7555 static int 7556 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 7557 int func_id, int insn_idx) 7558 { 7559 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 7560 struct bpf_reg_state *regs = cur_regs(env), *reg; 7561 struct bpf_map *map = meta->map_ptr; 7562 u64 val, max; 7563 int err; 7564 7565 if (func_id != BPF_FUNC_tail_call) 7566 return 0; 7567 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 7568 verbose(env, "kernel subsystem misconfigured verifier\n"); 7569 return -EINVAL; 7570 } 7571 7572 reg = ®s[BPF_REG_3]; 7573 val = reg->var_off.value; 7574 max = map->max_entries; 7575 7576 if (!(register_is_const(reg) && val < max)) { 7577 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7578 return 0; 7579 } 7580 7581 err = mark_chain_precision(env, BPF_REG_3); 7582 if (err) 7583 return err; 7584 if (bpf_map_key_unseen(aux)) 7585 bpf_map_key_store(aux, val); 7586 else if (!bpf_map_key_poisoned(aux) && 7587 bpf_map_key_immediate(aux) != val) 7588 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7589 return 0; 7590 } 7591 7592 static int check_reference_leak(struct bpf_verifier_env *env) 7593 { 7594 struct bpf_func_state *state = cur_func(env); 7595 bool refs_lingering = false; 7596 int i; 7597 7598 if (state->frameno && !state->in_callback_fn) 7599 return 0; 7600 7601 for (i = 0; i < state->acquired_refs; i++) { 7602 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 7603 continue; 7604 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 7605 state->refs[i].id, state->refs[i].insn_idx); 7606 refs_lingering = true; 7607 } 7608 return refs_lingering ? -EINVAL : 0; 7609 } 7610 7611 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 7612 struct bpf_reg_state *regs) 7613 { 7614 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 7615 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 7616 struct bpf_map *fmt_map = fmt_reg->map_ptr; 7617 int err, fmt_map_off, num_args; 7618 u64 fmt_addr; 7619 char *fmt; 7620 7621 /* data must be an array of u64 */ 7622 if (data_len_reg->var_off.value % 8) 7623 return -EINVAL; 7624 num_args = data_len_reg->var_off.value / 8; 7625 7626 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 7627 * and map_direct_value_addr is set. 7628 */ 7629 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 7630 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 7631 fmt_map_off); 7632 if (err) { 7633 verbose(env, "verifier bug\n"); 7634 return -EFAULT; 7635 } 7636 fmt = (char *)(long)fmt_addr + fmt_map_off; 7637 7638 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 7639 * can focus on validating the format specifiers. 7640 */ 7641 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args); 7642 if (err < 0) 7643 verbose(env, "Invalid format string\n"); 7644 7645 return err; 7646 } 7647 7648 static int check_get_func_ip(struct bpf_verifier_env *env) 7649 { 7650 enum bpf_prog_type type = resolve_prog_type(env->prog); 7651 int func_id = BPF_FUNC_get_func_ip; 7652 7653 if (type == BPF_PROG_TYPE_TRACING) { 7654 if (!bpf_prog_has_trampoline(env->prog)) { 7655 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 7656 func_id_name(func_id), func_id); 7657 return -ENOTSUPP; 7658 } 7659 return 0; 7660 } else if (type == BPF_PROG_TYPE_KPROBE) { 7661 return 0; 7662 } 7663 7664 verbose(env, "func %s#%d not supported for program type %d\n", 7665 func_id_name(func_id), func_id, type); 7666 return -ENOTSUPP; 7667 } 7668 7669 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 7670 { 7671 return &env->insn_aux_data[env->insn_idx]; 7672 } 7673 7674 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 7675 { 7676 struct bpf_reg_state *regs = cur_regs(env); 7677 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 7678 bool reg_is_null = register_is_null(reg); 7679 7680 if (reg_is_null) 7681 mark_chain_precision(env, BPF_REG_4); 7682 7683 return reg_is_null; 7684 } 7685 7686 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 7687 { 7688 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 7689 7690 if (!state->initialized) { 7691 state->initialized = 1; 7692 state->fit_for_inline = loop_flag_is_zero(env); 7693 state->callback_subprogno = subprogno; 7694 return; 7695 } 7696 7697 if (!state->fit_for_inline) 7698 return; 7699 7700 state->fit_for_inline = (loop_flag_is_zero(env) && 7701 state->callback_subprogno == subprogno); 7702 } 7703 7704 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7705 int *insn_idx_p) 7706 { 7707 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 7708 const struct bpf_func_proto *fn = NULL; 7709 enum bpf_return_type ret_type; 7710 enum bpf_type_flag ret_flag; 7711 struct bpf_reg_state *regs; 7712 struct bpf_call_arg_meta meta; 7713 int insn_idx = *insn_idx_p; 7714 bool changes_data; 7715 int i, err, func_id; 7716 7717 /* find function prototype */ 7718 func_id = insn->imm; 7719 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 7720 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 7721 func_id); 7722 return -EINVAL; 7723 } 7724 7725 if (env->ops->get_func_proto) 7726 fn = env->ops->get_func_proto(func_id, env->prog); 7727 if (!fn) { 7728 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 7729 func_id); 7730 return -EINVAL; 7731 } 7732 7733 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 7734 if (!env->prog->gpl_compatible && fn->gpl_only) { 7735 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 7736 return -EINVAL; 7737 } 7738 7739 if (fn->allowed && !fn->allowed(env->prog)) { 7740 verbose(env, "helper call is not allowed in probe\n"); 7741 return -EINVAL; 7742 } 7743 7744 if (!env->prog->aux->sleepable && fn->might_sleep) { 7745 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 7746 return -EINVAL; 7747 } 7748 7749 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 7750 changes_data = bpf_helper_changes_pkt_data(fn->func); 7751 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 7752 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 7753 func_id_name(func_id), func_id); 7754 return -EINVAL; 7755 } 7756 7757 memset(&meta, 0, sizeof(meta)); 7758 meta.pkt_access = fn->pkt_access; 7759 7760 err = check_func_proto(fn, func_id); 7761 if (err) { 7762 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 7763 func_id_name(func_id), func_id); 7764 return err; 7765 } 7766 7767 if (env->cur_state->active_rcu_lock) { 7768 if (fn->might_sleep) { 7769 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 7770 func_id_name(func_id), func_id); 7771 return -EINVAL; 7772 } 7773 7774 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 7775 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 7776 } 7777 7778 meta.func_id = func_id; 7779 /* check args */ 7780 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7781 err = check_func_arg(env, i, &meta, fn); 7782 if (err) 7783 return err; 7784 } 7785 7786 err = record_func_map(env, &meta, func_id, insn_idx); 7787 if (err) 7788 return err; 7789 7790 err = record_func_key(env, &meta, func_id, insn_idx); 7791 if (err) 7792 return err; 7793 7794 /* Mark slots with STACK_MISC in case of raw mode, stack offset 7795 * is inferred from register state. 7796 */ 7797 for (i = 0; i < meta.access_size; i++) { 7798 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 7799 BPF_WRITE, -1, false); 7800 if (err) 7801 return err; 7802 } 7803 7804 regs = cur_regs(env); 7805 7806 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 7807 * be reinitialized by any dynptr helper. Hence, mark_stack_slots_dynptr 7808 * is safe to do directly. 7809 */ 7810 if (meta.uninit_dynptr_regno) { 7811 if (regs[meta.uninit_dynptr_regno].type == CONST_PTR_TO_DYNPTR) { 7812 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be initialized\n"); 7813 return -EFAULT; 7814 } 7815 /* we write BPF_DW bits (8 bytes) at a time */ 7816 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7817 err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno, 7818 i, BPF_DW, BPF_WRITE, -1, false); 7819 if (err) 7820 return err; 7821 } 7822 7823 err = mark_stack_slots_dynptr(env, ®s[meta.uninit_dynptr_regno], 7824 fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1], 7825 insn_idx); 7826 if (err) 7827 return err; 7828 } 7829 7830 if (meta.release_regno) { 7831 err = -EINVAL; 7832 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 7833 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 7834 * is safe to do directly. 7835 */ 7836 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 7837 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 7838 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 7839 return -EFAULT; 7840 } 7841 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 7842 } else if (meta.ref_obj_id) { 7843 err = release_reference(env, meta.ref_obj_id); 7844 } else if (register_is_null(®s[meta.release_regno])) { 7845 /* meta.ref_obj_id can only be 0 if register that is meant to be 7846 * released is NULL, which must be > R0. 7847 */ 7848 err = 0; 7849 } 7850 if (err) { 7851 verbose(env, "func %s#%d reference has not been acquired before\n", 7852 func_id_name(func_id), func_id); 7853 return err; 7854 } 7855 } 7856 7857 switch (func_id) { 7858 case BPF_FUNC_tail_call: 7859 err = check_reference_leak(env); 7860 if (err) { 7861 verbose(env, "tail_call would lead to reference leak\n"); 7862 return err; 7863 } 7864 break; 7865 case BPF_FUNC_get_local_storage: 7866 /* check that flags argument in get_local_storage(map, flags) is 0, 7867 * this is required because get_local_storage() can't return an error. 7868 */ 7869 if (!register_is_null(®s[BPF_REG_2])) { 7870 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 7871 return -EINVAL; 7872 } 7873 break; 7874 case BPF_FUNC_for_each_map_elem: 7875 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7876 set_map_elem_callback_state); 7877 break; 7878 case BPF_FUNC_timer_set_callback: 7879 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7880 set_timer_callback_state); 7881 break; 7882 case BPF_FUNC_find_vma: 7883 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7884 set_find_vma_callback_state); 7885 break; 7886 case BPF_FUNC_snprintf: 7887 err = check_bpf_snprintf_call(env, regs); 7888 break; 7889 case BPF_FUNC_loop: 7890 update_loop_inline_state(env, meta.subprogno); 7891 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7892 set_loop_callback_state); 7893 break; 7894 case BPF_FUNC_dynptr_from_mem: 7895 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 7896 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 7897 reg_type_str(env, regs[BPF_REG_1].type)); 7898 return -EACCES; 7899 } 7900 break; 7901 case BPF_FUNC_set_retval: 7902 if (prog_type == BPF_PROG_TYPE_LSM && 7903 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 7904 if (!env->prog->aux->attach_func_proto->type) { 7905 /* Make sure programs that attach to void 7906 * hooks don't try to modify return value. 7907 */ 7908 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 7909 return -EINVAL; 7910 } 7911 } 7912 break; 7913 case BPF_FUNC_dynptr_data: 7914 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7915 if (arg_type_is_dynptr(fn->arg_type[i])) { 7916 struct bpf_reg_state *reg = ®s[BPF_REG_1 + i]; 7917 7918 if (meta.ref_obj_id) { 7919 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 7920 return -EFAULT; 7921 } 7922 7923 meta.ref_obj_id = dynptr_ref_obj_id(env, reg); 7924 break; 7925 } 7926 } 7927 if (i == MAX_BPF_FUNC_REG_ARGS) { 7928 verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n"); 7929 return -EFAULT; 7930 } 7931 break; 7932 case BPF_FUNC_user_ringbuf_drain: 7933 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7934 set_user_ringbuf_callback_state); 7935 break; 7936 } 7937 7938 if (err) 7939 return err; 7940 7941 /* reset caller saved regs */ 7942 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7943 mark_reg_not_init(env, regs, caller_saved[i]); 7944 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7945 } 7946 7947 /* helper call returns 64-bit value. */ 7948 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7949 7950 /* update return register (already marked as written above) */ 7951 ret_type = fn->ret_type; 7952 ret_flag = type_flag(ret_type); 7953 7954 switch (base_type(ret_type)) { 7955 case RET_INTEGER: 7956 /* sets type to SCALAR_VALUE */ 7957 mark_reg_unknown(env, regs, BPF_REG_0); 7958 break; 7959 case RET_VOID: 7960 regs[BPF_REG_0].type = NOT_INIT; 7961 break; 7962 case RET_PTR_TO_MAP_VALUE: 7963 /* There is no offset yet applied, variable or fixed */ 7964 mark_reg_known_zero(env, regs, BPF_REG_0); 7965 /* remember map_ptr, so that check_map_access() 7966 * can check 'value_size' boundary of memory access 7967 * to map element returned from bpf_map_lookup_elem() 7968 */ 7969 if (meta.map_ptr == NULL) { 7970 verbose(env, 7971 "kernel subsystem misconfigured verifier\n"); 7972 return -EINVAL; 7973 } 7974 regs[BPF_REG_0].map_ptr = meta.map_ptr; 7975 regs[BPF_REG_0].map_uid = meta.map_uid; 7976 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 7977 if (!type_may_be_null(ret_type) && 7978 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 7979 regs[BPF_REG_0].id = ++env->id_gen; 7980 } 7981 break; 7982 case RET_PTR_TO_SOCKET: 7983 mark_reg_known_zero(env, regs, BPF_REG_0); 7984 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 7985 break; 7986 case RET_PTR_TO_SOCK_COMMON: 7987 mark_reg_known_zero(env, regs, BPF_REG_0); 7988 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 7989 break; 7990 case RET_PTR_TO_TCP_SOCK: 7991 mark_reg_known_zero(env, regs, BPF_REG_0); 7992 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 7993 break; 7994 case RET_PTR_TO_MEM: 7995 mark_reg_known_zero(env, regs, BPF_REG_0); 7996 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 7997 regs[BPF_REG_0].mem_size = meta.mem_size; 7998 break; 7999 case RET_PTR_TO_MEM_OR_BTF_ID: 8000 { 8001 const struct btf_type *t; 8002 8003 mark_reg_known_zero(env, regs, BPF_REG_0); 8004 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 8005 if (!btf_type_is_struct(t)) { 8006 u32 tsize; 8007 const struct btf_type *ret; 8008 const char *tname; 8009 8010 /* resolve the type size of ksym. */ 8011 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 8012 if (IS_ERR(ret)) { 8013 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 8014 verbose(env, "unable to resolve the size of type '%s': %ld\n", 8015 tname, PTR_ERR(ret)); 8016 return -EINVAL; 8017 } 8018 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 8019 regs[BPF_REG_0].mem_size = tsize; 8020 } else { 8021 /* MEM_RDONLY may be carried from ret_flag, but it 8022 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 8023 * it will confuse the check of PTR_TO_BTF_ID in 8024 * check_mem_access(). 8025 */ 8026 ret_flag &= ~MEM_RDONLY; 8027 8028 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 8029 regs[BPF_REG_0].btf = meta.ret_btf; 8030 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 8031 } 8032 break; 8033 } 8034 case RET_PTR_TO_BTF_ID: 8035 { 8036 struct btf *ret_btf; 8037 int ret_btf_id; 8038 8039 mark_reg_known_zero(env, regs, BPF_REG_0); 8040 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 8041 if (func_id == BPF_FUNC_kptr_xchg) { 8042 ret_btf = meta.kptr_field->kptr.btf; 8043 ret_btf_id = meta.kptr_field->kptr.btf_id; 8044 } else { 8045 if (fn->ret_btf_id == BPF_PTR_POISON) { 8046 verbose(env, "verifier internal error:"); 8047 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 8048 func_id_name(func_id)); 8049 return -EINVAL; 8050 } 8051 ret_btf = btf_vmlinux; 8052 ret_btf_id = *fn->ret_btf_id; 8053 } 8054 if (ret_btf_id == 0) { 8055 verbose(env, "invalid return type %u of func %s#%d\n", 8056 base_type(ret_type), func_id_name(func_id), 8057 func_id); 8058 return -EINVAL; 8059 } 8060 regs[BPF_REG_0].btf = ret_btf; 8061 regs[BPF_REG_0].btf_id = ret_btf_id; 8062 break; 8063 } 8064 default: 8065 verbose(env, "unknown return type %u of func %s#%d\n", 8066 base_type(ret_type), func_id_name(func_id), func_id); 8067 return -EINVAL; 8068 } 8069 8070 if (type_may_be_null(regs[BPF_REG_0].type)) 8071 regs[BPF_REG_0].id = ++env->id_gen; 8072 8073 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 8074 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 8075 func_id_name(func_id), func_id); 8076 return -EFAULT; 8077 } 8078 8079 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 8080 /* For release_reference() */ 8081 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 8082 } else if (is_acquire_function(func_id, meta.map_ptr)) { 8083 int id = acquire_reference_state(env, insn_idx); 8084 8085 if (id < 0) 8086 return id; 8087 /* For mark_ptr_or_null_reg() */ 8088 regs[BPF_REG_0].id = id; 8089 /* For release_reference() */ 8090 regs[BPF_REG_0].ref_obj_id = id; 8091 } 8092 8093 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 8094 8095 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 8096 if (err) 8097 return err; 8098 8099 if ((func_id == BPF_FUNC_get_stack || 8100 func_id == BPF_FUNC_get_task_stack) && 8101 !env->prog->has_callchain_buf) { 8102 const char *err_str; 8103 8104 #ifdef CONFIG_PERF_EVENTS 8105 err = get_callchain_buffers(sysctl_perf_event_max_stack); 8106 err_str = "cannot get callchain buffer for func %s#%d\n"; 8107 #else 8108 err = -ENOTSUPP; 8109 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 8110 #endif 8111 if (err) { 8112 verbose(env, err_str, func_id_name(func_id), func_id); 8113 return err; 8114 } 8115 8116 env->prog->has_callchain_buf = true; 8117 } 8118 8119 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 8120 env->prog->call_get_stack = true; 8121 8122 if (func_id == BPF_FUNC_get_func_ip) { 8123 if (check_get_func_ip(env)) 8124 return -ENOTSUPP; 8125 env->prog->call_get_func_ip = true; 8126 } 8127 8128 if (changes_data) 8129 clear_all_pkt_pointers(env); 8130 return 0; 8131 } 8132 8133 /* mark_btf_func_reg_size() is used when the reg size is determined by 8134 * the BTF func_proto's return value size and argument. 8135 */ 8136 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 8137 size_t reg_size) 8138 { 8139 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 8140 8141 if (regno == BPF_REG_0) { 8142 /* Function return value */ 8143 reg->live |= REG_LIVE_WRITTEN; 8144 reg->subreg_def = reg_size == sizeof(u64) ? 8145 DEF_NOT_SUBREG : env->insn_idx + 1; 8146 } else { 8147 /* Function argument */ 8148 if (reg_size == sizeof(u64)) { 8149 mark_insn_zext(env, reg); 8150 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 8151 } else { 8152 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 8153 } 8154 } 8155 } 8156 8157 struct bpf_kfunc_call_arg_meta { 8158 /* In parameters */ 8159 struct btf *btf; 8160 u32 func_id; 8161 u32 kfunc_flags; 8162 const struct btf_type *func_proto; 8163 const char *func_name; 8164 /* Out parameters */ 8165 u32 ref_obj_id; 8166 u8 release_regno; 8167 bool r0_rdonly; 8168 u32 ret_btf_id; 8169 u64 r0_size; 8170 struct { 8171 u64 value; 8172 bool found; 8173 } arg_constant; 8174 struct { 8175 struct btf *btf; 8176 u32 btf_id; 8177 } arg_obj_drop; 8178 struct { 8179 struct btf_field *field; 8180 } arg_list_head; 8181 }; 8182 8183 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 8184 { 8185 return meta->kfunc_flags & KF_ACQUIRE; 8186 } 8187 8188 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 8189 { 8190 return meta->kfunc_flags & KF_RET_NULL; 8191 } 8192 8193 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 8194 { 8195 return meta->kfunc_flags & KF_RELEASE; 8196 } 8197 8198 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 8199 { 8200 return meta->kfunc_flags & KF_TRUSTED_ARGS; 8201 } 8202 8203 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 8204 { 8205 return meta->kfunc_flags & KF_SLEEPABLE; 8206 } 8207 8208 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 8209 { 8210 return meta->kfunc_flags & KF_DESTRUCTIVE; 8211 } 8212 8213 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 8214 { 8215 return meta->kfunc_flags & KF_RCU; 8216 } 8217 8218 static bool is_kfunc_arg_kptr_get(struct bpf_kfunc_call_arg_meta *meta, int arg) 8219 { 8220 return arg == 0 && (meta->kfunc_flags & KF_KPTR_GET); 8221 } 8222 8223 static bool __kfunc_param_match_suffix(const struct btf *btf, 8224 const struct btf_param *arg, 8225 const char *suffix) 8226 { 8227 int suffix_len = strlen(suffix), len; 8228 const char *param_name; 8229 8230 /* In the future, this can be ported to use BTF tagging */ 8231 param_name = btf_name_by_offset(btf, arg->name_off); 8232 if (str_is_empty(param_name)) 8233 return false; 8234 len = strlen(param_name); 8235 if (len < suffix_len) 8236 return false; 8237 param_name += len - suffix_len; 8238 return !strncmp(param_name, suffix, suffix_len); 8239 } 8240 8241 static bool is_kfunc_arg_mem_size(const struct btf *btf, 8242 const struct btf_param *arg, 8243 const struct bpf_reg_state *reg) 8244 { 8245 const struct btf_type *t; 8246 8247 t = btf_type_skip_modifiers(btf, arg->type, NULL); 8248 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 8249 return false; 8250 8251 return __kfunc_param_match_suffix(btf, arg, "__sz"); 8252 } 8253 8254 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 8255 { 8256 return __kfunc_param_match_suffix(btf, arg, "__k"); 8257 } 8258 8259 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 8260 { 8261 return __kfunc_param_match_suffix(btf, arg, "__ign"); 8262 } 8263 8264 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 8265 { 8266 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 8267 } 8268 8269 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 8270 const struct btf_param *arg, 8271 const char *name) 8272 { 8273 int len, target_len = strlen(name); 8274 const char *param_name; 8275 8276 param_name = btf_name_by_offset(btf, arg->name_off); 8277 if (str_is_empty(param_name)) 8278 return false; 8279 len = strlen(param_name); 8280 if (len != target_len) 8281 return false; 8282 if (strcmp(param_name, name)) 8283 return false; 8284 8285 return true; 8286 } 8287 8288 enum { 8289 KF_ARG_DYNPTR_ID, 8290 KF_ARG_LIST_HEAD_ID, 8291 KF_ARG_LIST_NODE_ID, 8292 }; 8293 8294 BTF_ID_LIST(kf_arg_btf_ids) 8295 BTF_ID(struct, bpf_dynptr_kern) 8296 BTF_ID(struct, bpf_list_head) 8297 BTF_ID(struct, bpf_list_node) 8298 8299 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 8300 const struct btf_param *arg, int type) 8301 { 8302 const struct btf_type *t; 8303 u32 res_id; 8304 8305 t = btf_type_skip_modifiers(btf, arg->type, NULL); 8306 if (!t) 8307 return false; 8308 if (!btf_type_is_ptr(t)) 8309 return false; 8310 t = btf_type_skip_modifiers(btf, t->type, &res_id); 8311 if (!t) 8312 return false; 8313 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 8314 } 8315 8316 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 8317 { 8318 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 8319 } 8320 8321 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 8322 { 8323 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 8324 } 8325 8326 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 8327 { 8328 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 8329 } 8330 8331 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 8332 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 8333 const struct btf *btf, 8334 const struct btf_type *t, int rec) 8335 { 8336 const struct btf_type *member_type; 8337 const struct btf_member *member; 8338 u32 i; 8339 8340 if (!btf_type_is_struct(t)) 8341 return false; 8342 8343 for_each_member(i, t, member) { 8344 const struct btf_array *array; 8345 8346 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 8347 if (btf_type_is_struct(member_type)) { 8348 if (rec >= 3) { 8349 verbose(env, "max struct nesting depth exceeded\n"); 8350 return false; 8351 } 8352 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 8353 return false; 8354 continue; 8355 } 8356 if (btf_type_is_array(member_type)) { 8357 array = btf_array(member_type); 8358 if (!array->nelems) 8359 return false; 8360 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 8361 if (!btf_type_is_scalar(member_type)) 8362 return false; 8363 continue; 8364 } 8365 if (!btf_type_is_scalar(member_type)) 8366 return false; 8367 } 8368 return true; 8369 } 8370 8371 8372 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 8373 #ifdef CONFIG_NET 8374 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 8375 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 8376 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 8377 #endif 8378 }; 8379 8380 enum kfunc_ptr_arg_type { 8381 KF_ARG_PTR_TO_CTX, 8382 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 8383 KF_ARG_PTR_TO_KPTR, /* PTR_TO_KPTR but type specific */ 8384 KF_ARG_PTR_TO_DYNPTR, 8385 KF_ARG_PTR_TO_LIST_HEAD, 8386 KF_ARG_PTR_TO_LIST_NODE, 8387 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 8388 KF_ARG_PTR_TO_MEM, 8389 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 8390 }; 8391 8392 enum special_kfunc_type { 8393 KF_bpf_obj_new_impl, 8394 KF_bpf_obj_drop_impl, 8395 KF_bpf_list_push_front, 8396 KF_bpf_list_push_back, 8397 KF_bpf_list_pop_front, 8398 KF_bpf_list_pop_back, 8399 KF_bpf_cast_to_kern_ctx, 8400 KF_bpf_rdonly_cast, 8401 KF_bpf_rcu_read_lock, 8402 KF_bpf_rcu_read_unlock, 8403 }; 8404 8405 BTF_SET_START(special_kfunc_set) 8406 BTF_ID(func, bpf_obj_new_impl) 8407 BTF_ID(func, bpf_obj_drop_impl) 8408 BTF_ID(func, bpf_list_push_front) 8409 BTF_ID(func, bpf_list_push_back) 8410 BTF_ID(func, bpf_list_pop_front) 8411 BTF_ID(func, bpf_list_pop_back) 8412 BTF_ID(func, bpf_cast_to_kern_ctx) 8413 BTF_ID(func, bpf_rdonly_cast) 8414 BTF_SET_END(special_kfunc_set) 8415 8416 BTF_ID_LIST(special_kfunc_list) 8417 BTF_ID(func, bpf_obj_new_impl) 8418 BTF_ID(func, bpf_obj_drop_impl) 8419 BTF_ID(func, bpf_list_push_front) 8420 BTF_ID(func, bpf_list_push_back) 8421 BTF_ID(func, bpf_list_pop_front) 8422 BTF_ID(func, bpf_list_pop_back) 8423 BTF_ID(func, bpf_cast_to_kern_ctx) 8424 BTF_ID(func, bpf_rdonly_cast) 8425 BTF_ID(func, bpf_rcu_read_lock) 8426 BTF_ID(func, bpf_rcu_read_unlock) 8427 8428 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 8429 { 8430 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 8431 } 8432 8433 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 8434 { 8435 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 8436 } 8437 8438 static enum kfunc_ptr_arg_type 8439 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 8440 struct bpf_kfunc_call_arg_meta *meta, 8441 const struct btf_type *t, const struct btf_type *ref_t, 8442 const char *ref_tname, const struct btf_param *args, 8443 int argno, int nargs) 8444 { 8445 u32 regno = argno + 1; 8446 struct bpf_reg_state *regs = cur_regs(env); 8447 struct bpf_reg_state *reg = ®s[regno]; 8448 bool arg_mem_size = false; 8449 8450 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 8451 return KF_ARG_PTR_TO_CTX; 8452 8453 /* In this function, we verify the kfunc's BTF as per the argument type, 8454 * leaving the rest of the verification with respect to the register 8455 * type to our caller. When a set of conditions hold in the BTF type of 8456 * arguments, we resolve it to a known kfunc_ptr_arg_type. 8457 */ 8458 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 8459 return KF_ARG_PTR_TO_CTX; 8460 8461 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 8462 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 8463 8464 if (is_kfunc_arg_kptr_get(meta, argno)) { 8465 if (!btf_type_is_ptr(ref_t)) { 8466 verbose(env, "arg#0 BTF type must be a double pointer for kptr_get kfunc\n"); 8467 return -EINVAL; 8468 } 8469 ref_t = btf_type_by_id(meta->btf, ref_t->type); 8470 ref_tname = btf_name_by_offset(meta->btf, ref_t->name_off); 8471 if (!btf_type_is_struct(ref_t)) { 8472 verbose(env, "kernel function %s args#0 pointer type %s %s is not supported\n", 8473 meta->func_name, btf_type_str(ref_t), ref_tname); 8474 return -EINVAL; 8475 } 8476 return KF_ARG_PTR_TO_KPTR; 8477 } 8478 8479 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 8480 return KF_ARG_PTR_TO_DYNPTR; 8481 8482 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 8483 return KF_ARG_PTR_TO_LIST_HEAD; 8484 8485 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 8486 return KF_ARG_PTR_TO_LIST_NODE; 8487 8488 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 8489 if (!btf_type_is_struct(ref_t)) { 8490 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 8491 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 8492 return -EINVAL; 8493 } 8494 return KF_ARG_PTR_TO_BTF_ID; 8495 } 8496 8497 if (argno + 1 < nargs && is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1])) 8498 arg_mem_size = true; 8499 8500 /* This is the catch all argument type of register types supported by 8501 * check_helper_mem_access. However, we only allow when argument type is 8502 * pointer to scalar, or struct composed (recursively) of scalars. When 8503 * arg_mem_size is true, the pointer can be void *. 8504 */ 8505 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 8506 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 8507 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 8508 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 8509 return -EINVAL; 8510 } 8511 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 8512 } 8513 8514 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 8515 struct bpf_reg_state *reg, 8516 const struct btf_type *ref_t, 8517 const char *ref_tname, u32 ref_id, 8518 struct bpf_kfunc_call_arg_meta *meta, 8519 int argno) 8520 { 8521 const struct btf_type *reg_ref_t; 8522 bool strict_type_match = false; 8523 const struct btf *reg_btf; 8524 const char *reg_ref_tname; 8525 u32 reg_ref_id; 8526 8527 if (base_type(reg->type) == PTR_TO_BTF_ID) { 8528 reg_btf = reg->btf; 8529 reg_ref_id = reg->btf_id; 8530 } else { 8531 reg_btf = btf_vmlinux; 8532 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 8533 } 8534 8535 if (is_kfunc_trusted_args(meta) || (is_kfunc_release(meta) && reg->ref_obj_id)) 8536 strict_type_match = true; 8537 8538 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 8539 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 8540 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 8541 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 8542 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 8543 btf_type_str(reg_ref_t), reg_ref_tname); 8544 return -EINVAL; 8545 } 8546 return 0; 8547 } 8548 8549 static int process_kf_arg_ptr_to_kptr(struct bpf_verifier_env *env, 8550 struct bpf_reg_state *reg, 8551 const struct btf_type *ref_t, 8552 const char *ref_tname, 8553 struct bpf_kfunc_call_arg_meta *meta, 8554 int argno) 8555 { 8556 struct btf_field *kptr_field; 8557 8558 /* check_func_arg_reg_off allows var_off for 8559 * PTR_TO_MAP_VALUE, but we need fixed offset to find 8560 * off_desc. 8561 */ 8562 if (!tnum_is_const(reg->var_off)) { 8563 verbose(env, "arg#0 must have constant offset\n"); 8564 return -EINVAL; 8565 } 8566 8567 kptr_field = btf_record_find(reg->map_ptr->record, reg->off + reg->var_off.value, BPF_KPTR); 8568 if (!kptr_field || kptr_field->type != BPF_KPTR_REF) { 8569 verbose(env, "arg#0 no referenced kptr at map value offset=%llu\n", 8570 reg->off + reg->var_off.value); 8571 return -EINVAL; 8572 } 8573 8574 if (!btf_struct_ids_match(&env->log, meta->btf, ref_t->type, 0, kptr_field->kptr.btf, 8575 kptr_field->kptr.btf_id, true)) { 8576 verbose(env, "kernel function %s args#%d expected pointer to %s %s\n", 8577 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 8578 return -EINVAL; 8579 } 8580 return 0; 8581 } 8582 8583 static int ref_set_release_on_unlock(struct bpf_verifier_env *env, u32 ref_obj_id) 8584 { 8585 struct bpf_func_state *state = cur_func(env); 8586 struct bpf_reg_state *reg; 8587 int i; 8588 8589 /* bpf_spin_lock only allows calling list_push and list_pop, no BPF 8590 * subprogs, no global functions. This means that the references would 8591 * not be released inside the critical section but they may be added to 8592 * the reference state, and the acquired_refs are never copied out for a 8593 * different frame as BPF to BPF calls don't work in bpf_spin_lock 8594 * critical sections. 8595 */ 8596 if (!ref_obj_id) { 8597 verbose(env, "verifier internal error: ref_obj_id is zero for release_on_unlock\n"); 8598 return -EFAULT; 8599 } 8600 for (i = 0; i < state->acquired_refs; i++) { 8601 if (state->refs[i].id == ref_obj_id) { 8602 if (state->refs[i].release_on_unlock) { 8603 verbose(env, "verifier internal error: expected false release_on_unlock"); 8604 return -EFAULT; 8605 } 8606 state->refs[i].release_on_unlock = true; 8607 /* Now mark everyone sharing same ref_obj_id as untrusted */ 8608 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 8609 if (reg->ref_obj_id == ref_obj_id) 8610 reg->type |= PTR_UNTRUSTED; 8611 })); 8612 return 0; 8613 } 8614 } 8615 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 8616 return -EFAULT; 8617 } 8618 8619 /* Implementation details: 8620 * 8621 * Each register points to some region of memory, which we define as an 8622 * allocation. Each allocation may embed a bpf_spin_lock which protects any 8623 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 8624 * allocation. The lock and the data it protects are colocated in the same 8625 * memory region. 8626 * 8627 * Hence, everytime a register holds a pointer value pointing to such 8628 * allocation, the verifier preserves a unique reg->id for it. 8629 * 8630 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 8631 * bpf_spin_lock is called. 8632 * 8633 * To enable this, lock state in the verifier captures two values: 8634 * active_lock.ptr = Register's type specific pointer 8635 * active_lock.id = A unique ID for each register pointer value 8636 * 8637 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 8638 * supported register types. 8639 * 8640 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 8641 * allocated objects is the reg->btf pointer. 8642 * 8643 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 8644 * can establish the provenance of the map value statically for each distinct 8645 * lookup into such maps. They always contain a single map value hence unique 8646 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 8647 * 8648 * So, in case of global variables, they use array maps with max_entries = 1, 8649 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 8650 * into the same map value as max_entries is 1, as described above). 8651 * 8652 * In case of inner map lookups, the inner map pointer has same map_ptr as the 8653 * outer map pointer (in verifier context), but each lookup into an inner map 8654 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 8655 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 8656 * will get different reg->id assigned to each lookup, hence different 8657 * active_lock.id. 8658 * 8659 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 8660 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 8661 * returned from bpf_obj_new. Each allocation receives a new reg->id. 8662 */ 8663 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8664 { 8665 void *ptr; 8666 u32 id; 8667 8668 switch ((int)reg->type) { 8669 case PTR_TO_MAP_VALUE: 8670 ptr = reg->map_ptr; 8671 break; 8672 case PTR_TO_BTF_ID | MEM_ALLOC: 8673 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED: 8674 ptr = reg->btf; 8675 break; 8676 default: 8677 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 8678 return -EFAULT; 8679 } 8680 id = reg->id; 8681 8682 if (!env->cur_state->active_lock.ptr) 8683 return -EINVAL; 8684 if (env->cur_state->active_lock.ptr != ptr || 8685 env->cur_state->active_lock.id != id) { 8686 verbose(env, "held lock and object are not in the same allocation\n"); 8687 return -EINVAL; 8688 } 8689 return 0; 8690 } 8691 8692 static bool is_bpf_list_api_kfunc(u32 btf_id) 8693 { 8694 return btf_id == special_kfunc_list[KF_bpf_list_push_front] || 8695 btf_id == special_kfunc_list[KF_bpf_list_push_back] || 8696 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 8697 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 8698 } 8699 8700 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 8701 struct bpf_reg_state *reg, u32 regno, 8702 struct bpf_kfunc_call_arg_meta *meta) 8703 { 8704 struct btf_field *field; 8705 struct btf_record *rec; 8706 u32 list_head_off; 8707 8708 if (meta->btf != btf_vmlinux || !is_bpf_list_api_kfunc(meta->func_id)) { 8709 verbose(env, "verifier internal error: bpf_list_head argument for unknown kfunc\n"); 8710 return -EFAULT; 8711 } 8712 8713 if (!tnum_is_const(reg->var_off)) { 8714 verbose(env, 8715 "R%d doesn't have constant offset. bpf_list_head has to be at the constant offset\n", 8716 regno); 8717 return -EINVAL; 8718 } 8719 8720 rec = reg_btf_record(reg); 8721 list_head_off = reg->off + reg->var_off.value; 8722 field = btf_record_find(rec, list_head_off, BPF_LIST_HEAD); 8723 if (!field) { 8724 verbose(env, "bpf_list_head not found at offset=%u\n", list_head_off); 8725 return -EINVAL; 8726 } 8727 8728 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 8729 if (check_reg_allocation_locked(env, reg)) { 8730 verbose(env, "bpf_spin_lock at off=%d must be held for bpf_list_head\n", 8731 rec->spin_lock_off); 8732 return -EINVAL; 8733 } 8734 8735 if (meta->arg_list_head.field) { 8736 verbose(env, "verifier internal error: repeating bpf_list_head arg\n"); 8737 return -EFAULT; 8738 } 8739 meta->arg_list_head.field = field; 8740 return 0; 8741 } 8742 8743 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 8744 struct bpf_reg_state *reg, u32 regno, 8745 struct bpf_kfunc_call_arg_meta *meta) 8746 { 8747 const struct btf_type *et, *t; 8748 struct btf_field *field; 8749 struct btf_record *rec; 8750 u32 list_node_off; 8751 8752 if (meta->btf != btf_vmlinux || 8753 (meta->func_id != special_kfunc_list[KF_bpf_list_push_front] && 8754 meta->func_id != special_kfunc_list[KF_bpf_list_push_back])) { 8755 verbose(env, "verifier internal error: bpf_list_node argument for unknown kfunc\n"); 8756 return -EFAULT; 8757 } 8758 8759 if (!tnum_is_const(reg->var_off)) { 8760 verbose(env, 8761 "R%d doesn't have constant offset. bpf_list_node has to be at the constant offset\n", 8762 regno); 8763 return -EINVAL; 8764 } 8765 8766 rec = reg_btf_record(reg); 8767 list_node_off = reg->off + reg->var_off.value; 8768 field = btf_record_find(rec, list_node_off, BPF_LIST_NODE); 8769 if (!field || field->offset != list_node_off) { 8770 verbose(env, "bpf_list_node not found at offset=%u\n", list_node_off); 8771 return -EINVAL; 8772 } 8773 8774 field = meta->arg_list_head.field; 8775 8776 et = btf_type_by_id(field->list_head.btf, field->list_head.value_btf_id); 8777 t = btf_type_by_id(reg->btf, reg->btf_id); 8778 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->list_head.btf, 8779 field->list_head.value_btf_id, true)) { 8780 verbose(env, "operation on bpf_list_head expects arg#1 bpf_list_node at offset=%d " 8781 "in struct %s, but arg is at offset=%d in struct %s\n", 8782 field->list_head.node_offset, btf_name_by_offset(field->list_head.btf, et->name_off), 8783 list_node_off, btf_name_by_offset(reg->btf, t->name_off)); 8784 return -EINVAL; 8785 } 8786 8787 if (list_node_off != field->list_head.node_offset) { 8788 verbose(env, "arg#1 offset=%d, but expected bpf_list_node at offset=%d in struct %s\n", 8789 list_node_off, field->list_head.node_offset, 8790 btf_name_by_offset(field->list_head.btf, et->name_off)); 8791 return -EINVAL; 8792 } 8793 /* Set arg#1 for expiration after unlock */ 8794 return ref_set_release_on_unlock(env, reg->ref_obj_id); 8795 } 8796 8797 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta) 8798 { 8799 const char *func_name = meta->func_name, *ref_tname; 8800 const struct btf *btf = meta->btf; 8801 const struct btf_param *args; 8802 u32 i, nargs; 8803 int ret; 8804 8805 args = (const struct btf_param *)(meta->func_proto + 1); 8806 nargs = btf_type_vlen(meta->func_proto); 8807 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 8808 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 8809 MAX_BPF_FUNC_REG_ARGS); 8810 return -EINVAL; 8811 } 8812 8813 /* Check that BTF function arguments match actual types that the 8814 * verifier sees. 8815 */ 8816 for (i = 0; i < nargs; i++) { 8817 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 8818 const struct btf_type *t, *ref_t, *resolve_ret; 8819 enum bpf_arg_type arg_type = ARG_DONTCARE; 8820 u32 regno = i + 1, ref_id, type_size; 8821 bool is_ret_buf_sz = false; 8822 int kf_arg_type; 8823 8824 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 8825 8826 if (is_kfunc_arg_ignore(btf, &args[i])) 8827 continue; 8828 8829 if (btf_type_is_scalar(t)) { 8830 if (reg->type != SCALAR_VALUE) { 8831 verbose(env, "R%d is not a scalar\n", regno); 8832 return -EINVAL; 8833 } 8834 8835 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 8836 if (meta->arg_constant.found) { 8837 verbose(env, "verifier internal error: only one constant argument permitted\n"); 8838 return -EFAULT; 8839 } 8840 if (!tnum_is_const(reg->var_off)) { 8841 verbose(env, "R%d must be a known constant\n", regno); 8842 return -EINVAL; 8843 } 8844 ret = mark_chain_precision(env, regno); 8845 if (ret < 0) 8846 return ret; 8847 meta->arg_constant.found = true; 8848 meta->arg_constant.value = reg->var_off.value; 8849 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 8850 meta->r0_rdonly = true; 8851 is_ret_buf_sz = true; 8852 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 8853 is_ret_buf_sz = true; 8854 } 8855 8856 if (is_ret_buf_sz) { 8857 if (meta->r0_size) { 8858 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 8859 return -EINVAL; 8860 } 8861 8862 if (!tnum_is_const(reg->var_off)) { 8863 verbose(env, "R%d is not a const\n", regno); 8864 return -EINVAL; 8865 } 8866 8867 meta->r0_size = reg->var_off.value; 8868 ret = mark_chain_precision(env, regno); 8869 if (ret) 8870 return ret; 8871 } 8872 continue; 8873 } 8874 8875 if (!btf_type_is_ptr(t)) { 8876 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 8877 return -EINVAL; 8878 } 8879 8880 if (reg->ref_obj_id) { 8881 if (is_kfunc_release(meta) && meta->ref_obj_id) { 8882 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8883 regno, reg->ref_obj_id, 8884 meta->ref_obj_id); 8885 return -EFAULT; 8886 } 8887 meta->ref_obj_id = reg->ref_obj_id; 8888 if (is_kfunc_release(meta)) 8889 meta->release_regno = regno; 8890 } 8891 8892 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 8893 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 8894 8895 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 8896 if (kf_arg_type < 0) 8897 return kf_arg_type; 8898 8899 switch (kf_arg_type) { 8900 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 8901 case KF_ARG_PTR_TO_BTF_ID: 8902 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 8903 break; 8904 8905 if (!is_trusted_reg(reg)) { 8906 if (!is_kfunc_rcu(meta)) { 8907 verbose(env, "R%d must be referenced or trusted\n", regno); 8908 return -EINVAL; 8909 } 8910 if (!is_rcu_reg(reg)) { 8911 verbose(env, "R%d must be a rcu pointer\n", regno); 8912 return -EINVAL; 8913 } 8914 } 8915 8916 fallthrough; 8917 case KF_ARG_PTR_TO_CTX: 8918 /* Trusted arguments have the same offset checks as release arguments */ 8919 arg_type |= OBJ_RELEASE; 8920 break; 8921 case KF_ARG_PTR_TO_KPTR: 8922 case KF_ARG_PTR_TO_DYNPTR: 8923 case KF_ARG_PTR_TO_LIST_HEAD: 8924 case KF_ARG_PTR_TO_LIST_NODE: 8925 case KF_ARG_PTR_TO_MEM: 8926 case KF_ARG_PTR_TO_MEM_SIZE: 8927 /* Trusted by default */ 8928 break; 8929 default: 8930 WARN_ON_ONCE(1); 8931 return -EFAULT; 8932 } 8933 8934 if (is_kfunc_release(meta) && reg->ref_obj_id) 8935 arg_type |= OBJ_RELEASE; 8936 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 8937 if (ret < 0) 8938 return ret; 8939 8940 switch (kf_arg_type) { 8941 case KF_ARG_PTR_TO_CTX: 8942 if (reg->type != PTR_TO_CTX) { 8943 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 8944 return -EINVAL; 8945 } 8946 8947 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 8948 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 8949 if (ret < 0) 8950 return -EINVAL; 8951 meta->ret_btf_id = ret; 8952 } 8953 break; 8954 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 8955 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 8956 verbose(env, "arg#%d expected pointer to allocated object\n", i); 8957 return -EINVAL; 8958 } 8959 if (!reg->ref_obj_id) { 8960 verbose(env, "allocated object must be referenced\n"); 8961 return -EINVAL; 8962 } 8963 if (meta->btf == btf_vmlinux && 8964 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 8965 meta->arg_obj_drop.btf = reg->btf; 8966 meta->arg_obj_drop.btf_id = reg->btf_id; 8967 } 8968 break; 8969 case KF_ARG_PTR_TO_KPTR: 8970 if (reg->type != PTR_TO_MAP_VALUE) { 8971 verbose(env, "arg#0 expected pointer to map value\n"); 8972 return -EINVAL; 8973 } 8974 ret = process_kf_arg_ptr_to_kptr(env, reg, ref_t, ref_tname, meta, i); 8975 if (ret < 0) 8976 return ret; 8977 break; 8978 case KF_ARG_PTR_TO_DYNPTR: 8979 if (reg->type != PTR_TO_STACK && 8980 reg->type != CONST_PTR_TO_DYNPTR) { 8981 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 8982 return -EINVAL; 8983 } 8984 8985 ret = process_dynptr_func(env, regno, ARG_PTR_TO_DYNPTR | MEM_RDONLY, NULL); 8986 if (ret < 0) 8987 return ret; 8988 break; 8989 case KF_ARG_PTR_TO_LIST_HEAD: 8990 if (reg->type != PTR_TO_MAP_VALUE && 8991 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 8992 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 8993 return -EINVAL; 8994 } 8995 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 8996 verbose(env, "allocated object must be referenced\n"); 8997 return -EINVAL; 8998 } 8999 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 9000 if (ret < 0) 9001 return ret; 9002 break; 9003 case KF_ARG_PTR_TO_LIST_NODE: 9004 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 9005 verbose(env, "arg#%d expected pointer to allocated object\n", i); 9006 return -EINVAL; 9007 } 9008 if (!reg->ref_obj_id) { 9009 verbose(env, "allocated object must be referenced\n"); 9010 return -EINVAL; 9011 } 9012 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 9013 if (ret < 0) 9014 return ret; 9015 break; 9016 case KF_ARG_PTR_TO_BTF_ID: 9017 /* Only base_type is checked, further checks are done here */ 9018 if ((base_type(reg->type) != PTR_TO_BTF_ID || 9019 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 9020 !reg2btf_ids[base_type(reg->type)]) { 9021 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 9022 verbose(env, "expected %s or socket\n", 9023 reg_type_str(env, base_type(reg->type) | 9024 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 9025 return -EINVAL; 9026 } 9027 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 9028 if (ret < 0) 9029 return ret; 9030 break; 9031 case KF_ARG_PTR_TO_MEM: 9032 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 9033 if (IS_ERR(resolve_ret)) { 9034 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 9035 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 9036 return -EINVAL; 9037 } 9038 ret = check_mem_reg(env, reg, regno, type_size); 9039 if (ret < 0) 9040 return ret; 9041 break; 9042 case KF_ARG_PTR_TO_MEM_SIZE: 9043 ret = check_kfunc_mem_size_reg(env, ®s[regno + 1], regno + 1); 9044 if (ret < 0) { 9045 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 9046 return ret; 9047 } 9048 /* Skip next '__sz' argument */ 9049 i++; 9050 break; 9051 } 9052 } 9053 9054 if (is_kfunc_release(meta) && !meta->release_regno) { 9055 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 9056 func_name); 9057 return -EINVAL; 9058 } 9059 9060 return 0; 9061 } 9062 9063 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9064 int *insn_idx_p) 9065 { 9066 const struct btf_type *t, *func, *func_proto, *ptr_type; 9067 struct bpf_reg_state *regs = cur_regs(env); 9068 const char *func_name, *ptr_type_name; 9069 bool sleepable, rcu_lock, rcu_unlock; 9070 struct bpf_kfunc_call_arg_meta meta; 9071 u32 i, nargs, func_id, ptr_type_id; 9072 int err, insn_idx = *insn_idx_p; 9073 const struct btf_param *args; 9074 const struct btf_type *ret_t; 9075 struct btf *desc_btf; 9076 u32 *kfunc_flags; 9077 9078 /* skip for now, but return error when we find this in fixup_kfunc_call */ 9079 if (!insn->imm) 9080 return 0; 9081 9082 desc_btf = find_kfunc_desc_btf(env, insn->off); 9083 if (IS_ERR(desc_btf)) 9084 return PTR_ERR(desc_btf); 9085 9086 func_id = insn->imm; 9087 func = btf_type_by_id(desc_btf, func_id); 9088 func_name = btf_name_by_offset(desc_btf, func->name_off); 9089 func_proto = btf_type_by_id(desc_btf, func->type); 9090 9091 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id); 9092 if (!kfunc_flags) { 9093 verbose(env, "calling kernel function %s is not allowed\n", 9094 func_name); 9095 return -EACCES; 9096 } 9097 9098 /* Prepare kfunc call metadata */ 9099 memset(&meta, 0, sizeof(meta)); 9100 meta.btf = desc_btf; 9101 meta.func_id = func_id; 9102 meta.kfunc_flags = *kfunc_flags; 9103 meta.func_proto = func_proto; 9104 meta.func_name = func_name; 9105 9106 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 9107 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 9108 return -EACCES; 9109 } 9110 9111 sleepable = is_kfunc_sleepable(&meta); 9112 if (sleepable && !env->prog->aux->sleepable) { 9113 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 9114 return -EACCES; 9115 } 9116 9117 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 9118 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 9119 if ((rcu_lock || rcu_unlock) && !env->rcu_tag_supported) { 9120 verbose(env, "no vmlinux btf rcu tag support for kfunc %s\n", func_name); 9121 return -EACCES; 9122 } 9123 9124 if (env->cur_state->active_rcu_lock) { 9125 struct bpf_func_state *state; 9126 struct bpf_reg_state *reg; 9127 9128 if (rcu_lock) { 9129 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 9130 return -EINVAL; 9131 } else if (rcu_unlock) { 9132 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9133 if (reg->type & MEM_RCU) { 9134 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 9135 reg->type |= PTR_UNTRUSTED; 9136 } 9137 })); 9138 env->cur_state->active_rcu_lock = false; 9139 } else if (sleepable) { 9140 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 9141 return -EACCES; 9142 } 9143 } else if (rcu_lock) { 9144 env->cur_state->active_rcu_lock = true; 9145 } else if (rcu_unlock) { 9146 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 9147 return -EINVAL; 9148 } 9149 9150 /* Check the arguments */ 9151 err = check_kfunc_args(env, &meta); 9152 if (err < 0) 9153 return err; 9154 /* In case of release function, we get register number of refcounted 9155 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 9156 */ 9157 if (meta.release_regno) { 9158 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 9159 if (err) { 9160 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 9161 func_name, func_id); 9162 return err; 9163 } 9164 } 9165 9166 for (i = 0; i < CALLER_SAVED_REGS; i++) 9167 mark_reg_not_init(env, regs, caller_saved[i]); 9168 9169 /* Check return type */ 9170 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL); 9171 9172 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 9173 /* Only exception is bpf_obj_new_impl */ 9174 if (meta.btf != btf_vmlinux || meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl]) { 9175 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 9176 return -EINVAL; 9177 } 9178 } 9179 9180 if (btf_type_is_scalar(t)) { 9181 mark_reg_unknown(env, regs, BPF_REG_0); 9182 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 9183 } else if (btf_type_is_ptr(t)) { 9184 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 9185 9186 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 9187 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 9188 struct btf *ret_btf; 9189 u32 ret_btf_id; 9190 9191 if (unlikely(!bpf_global_ma_set)) 9192 return -ENOMEM; 9193 9194 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 9195 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 9196 return -EINVAL; 9197 } 9198 9199 ret_btf = env->prog->aux->btf; 9200 ret_btf_id = meta.arg_constant.value; 9201 9202 /* This may be NULL due to user not supplying a BTF */ 9203 if (!ret_btf) { 9204 verbose(env, "bpf_obj_new requires prog BTF\n"); 9205 return -EINVAL; 9206 } 9207 9208 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 9209 if (!ret_t || !__btf_type_is_struct(ret_t)) { 9210 verbose(env, "bpf_obj_new type ID argument must be of a struct\n"); 9211 return -EINVAL; 9212 } 9213 9214 mark_reg_known_zero(env, regs, BPF_REG_0); 9215 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 9216 regs[BPF_REG_0].btf = ret_btf; 9217 regs[BPF_REG_0].btf_id = ret_btf_id; 9218 9219 env->insn_aux_data[insn_idx].obj_new_size = ret_t->size; 9220 env->insn_aux_data[insn_idx].kptr_struct_meta = 9221 btf_find_struct_meta(ret_btf, ret_btf_id); 9222 } else if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 9223 env->insn_aux_data[insn_idx].kptr_struct_meta = 9224 btf_find_struct_meta(meta.arg_obj_drop.btf, 9225 meta.arg_obj_drop.btf_id); 9226 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 9227 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 9228 struct btf_field *field = meta.arg_list_head.field; 9229 9230 mark_reg_known_zero(env, regs, BPF_REG_0); 9231 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 9232 regs[BPF_REG_0].btf = field->list_head.btf; 9233 regs[BPF_REG_0].btf_id = field->list_head.value_btf_id; 9234 regs[BPF_REG_0].off = field->list_head.node_offset; 9235 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 9236 mark_reg_known_zero(env, regs, BPF_REG_0); 9237 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 9238 regs[BPF_REG_0].btf = desc_btf; 9239 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 9240 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 9241 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 9242 if (!ret_t || !btf_type_is_struct(ret_t)) { 9243 verbose(env, 9244 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 9245 return -EINVAL; 9246 } 9247 9248 mark_reg_known_zero(env, regs, BPF_REG_0); 9249 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 9250 regs[BPF_REG_0].btf = desc_btf; 9251 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 9252 } else { 9253 verbose(env, "kernel function %s unhandled dynamic return type\n", 9254 meta.func_name); 9255 return -EFAULT; 9256 } 9257 } else if (!__btf_type_is_struct(ptr_type)) { 9258 if (!meta.r0_size) { 9259 ptr_type_name = btf_name_by_offset(desc_btf, 9260 ptr_type->name_off); 9261 verbose(env, 9262 "kernel function %s returns pointer type %s %s is not supported\n", 9263 func_name, 9264 btf_type_str(ptr_type), 9265 ptr_type_name); 9266 return -EINVAL; 9267 } 9268 9269 mark_reg_known_zero(env, regs, BPF_REG_0); 9270 regs[BPF_REG_0].type = PTR_TO_MEM; 9271 regs[BPF_REG_0].mem_size = meta.r0_size; 9272 9273 if (meta.r0_rdonly) 9274 regs[BPF_REG_0].type |= MEM_RDONLY; 9275 9276 /* Ensures we don't access the memory after a release_reference() */ 9277 if (meta.ref_obj_id) 9278 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 9279 } else { 9280 mark_reg_known_zero(env, regs, BPF_REG_0); 9281 regs[BPF_REG_0].btf = desc_btf; 9282 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 9283 regs[BPF_REG_0].btf_id = ptr_type_id; 9284 } 9285 9286 if (is_kfunc_ret_null(&meta)) { 9287 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 9288 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 9289 regs[BPF_REG_0].id = ++env->id_gen; 9290 } 9291 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 9292 if (is_kfunc_acquire(&meta)) { 9293 int id = acquire_reference_state(env, insn_idx); 9294 9295 if (id < 0) 9296 return id; 9297 if (is_kfunc_ret_null(&meta)) 9298 regs[BPF_REG_0].id = id; 9299 regs[BPF_REG_0].ref_obj_id = id; 9300 } 9301 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 9302 regs[BPF_REG_0].id = ++env->id_gen; 9303 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 9304 9305 nargs = btf_type_vlen(func_proto); 9306 args = (const struct btf_param *)(func_proto + 1); 9307 for (i = 0; i < nargs; i++) { 9308 u32 regno = i + 1; 9309 9310 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 9311 if (btf_type_is_ptr(t)) 9312 mark_btf_func_reg_size(env, regno, sizeof(void *)); 9313 else 9314 /* scalar. ensured by btf_check_kfunc_arg_match() */ 9315 mark_btf_func_reg_size(env, regno, t->size); 9316 } 9317 9318 return 0; 9319 } 9320 9321 static bool signed_add_overflows(s64 a, s64 b) 9322 { 9323 /* Do the add in u64, where overflow is well-defined */ 9324 s64 res = (s64)((u64)a + (u64)b); 9325 9326 if (b < 0) 9327 return res > a; 9328 return res < a; 9329 } 9330 9331 static bool signed_add32_overflows(s32 a, s32 b) 9332 { 9333 /* Do the add in u32, where overflow is well-defined */ 9334 s32 res = (s32)((u32)a + (u32)b); 9335 9336 if (b < 0) 9337 return res > a; 9338 return res < a; 9339 } 9340 9341 static bool signed_sub_overflows(s64 a, s64 b) 9342 { 9343 /* Do the sub in u64, where overflow is well-defined */ 9344 s64 res = (s64)((u64)a - (u64)b); 9345 9346 if (b < 0) 9347 return res < a; 9348 return res > a; 9349 } 9350 9351 static bool signed_sub32_overflows(s32 a, s32 b) 9352 { 9353 /* Do the sub in u32, where overflow is well-defined */ 9354 s32 res = (s32)((u32)a - (u32)b); 9355 9356 if (b < 0) 9357 return res < a; 9358 return res > a; 9359 } 9360 9361 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 9362 const struct bpf_reg_state *reg, 9363 enum bpf_reg_type type) 9364 { 9365 bool known = tnum_is_const(reg->var_off); 9366 s64 val = reg->var_off.value; 9367 s64 smin = reg->smin_value; 9368 9369 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 9370 verbose(env, "math between %s pointer and %lld is not allowed\n", 9371 reg_type_str(env, type), val); 9372 return false; 9373 } 9374 9375 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 9376 verbose(env, "%s pointer offset %d is not allowed\n", 9377 reg_type_str(env, type), reg->off); 9378 return false; 9379 } 9380 9381 if (smin == S64_MIN) { 9382 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 9383 reg_type_str(env, type)); 9384 return false; 9385 } 9386 9387 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 9388 verbose(env, "value %lld makes %s pointer be out of bounds\n", 9389 smin, reg_type_str(env, type)); 9390 return false; 9391 } 9392 9393 return true; 9394 } 9395 9396 enum { 9397 REASON_BOUNDS = -1, 9398 REASON_TYPE = -2, 9399 REASON_PATHS = -3, 9400 REASON_LIMIT = -4, 9401 REASON_STACK = -5, 9402 }; 9403 9404 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 9405 u32 *alu_limit, bool mask_to_left) 9406 { 9407 u32 max = 0, ptr_limit = 0; 9408 9409 switch (ptr_reg->type) { 9410 case PTR_TO_STACK: 9411 /* Offset 0 is out-of-bounds, but acceptable start for the 9412 * left direction, see BPF_REG_FP. Also, unknown scalar 9413 * offset where we would need to deal with min/max bounds is 9414 * currently prohibited for unprivileged. 9415 */ 9416 max = MAX_BPF_STACK + mask_to_left; 9417 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 9418 break; 9419 case PTR_TO_MAP_VALUE: 9420 max = ptr_reg->map_ptr->value_size; 9421 ptr_limit = (mask_to_left ? 9422 ptr_reg->smin_value : 9423 ptr_reg->umax_value) + ptr_reg->off; 9424 break; 9425 default: 9426 return REASON_TYPE; 9427 } 9428 9429 if (ptr_limit >= max) 9430 return REASON_LIMIT; 9431 *alu_limit = ptr_limit; 9432 return 0; 9433 } 9434 9435 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 9436 const struct bpf_insn *insn) 9437 { 9438 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 9439 } 9440 9441 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 9442 u32 alu_state, u32 alu_limit) 9443 { 9444 /* If we arrived here from different branches with different 9445 * state or limits to sanitize, then this won't work. 9446 */ 9447 if (aux->alu_state && 9448 (aux->alu_state != alu_state || 9449 aux->alu_limit != alu_limit)) 9450 return REASON_PATHS; 9451 9452 /* Corresponding fixup done in do_misc_fixups(). */ 9453 aux->alu_state = alu_state; 9454 aux->alu_limit = alu_limit; 9455 return 0; 9456 } 9457 9458 static int sanitize_val_alu(struct bpf_verifier_env *env, 9459 struct bpf_insn *insn) 9460 { 9461 struct bpf_insn_aux_data *aux = cur_aux(env); 9462 9463 if (can_skip_alu_sanitation(env, insn)) 9464 return 0; 9465 9466 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 9467 } 9468 9469 static bool sanitize_needed(u8 opcode) 9470 { 9471 return opcode == BPF_ADD || opcode == BPF_SUB; 9472 } 9473 9474 struct bpf_sanitize_info { 9475 struct bpf_insn_aux_data aux; 9476 bool mask_to_left; 9477 }; 9478 9479 static struct bpf_verifier_state * 9480 sanitize_speculative_path(struct bpf_verifier_env *env, 9481 const struct bpf_insn *insn, 9482 u32 next_idx, u32 curr_idx) 9483 { 9484 struct bpf_verifier_state *branch; 9485 struct bpf_reg_state *regs; 9486 9487 branch = push_stack(env, next_idx, curr_idx, true); 9488 if (branch && insn) { 9489 regs = branch->frame[branch->curframe]->regs; 9490 if (BPF_SRC(insn->code) == BPF_K) { 9491 mark_reg_unknown(env, regs, insn->dst_reg); 9492 } else if (BPF_SRC(insn->code) == BPF_X) { 9493 mark_reg_unknown(env, regs, insn->dst_reg); 9494 mark_reg_unknown(env, regs, insn->src_reg); 9495 } 9496 } 9497 return branch; 9498 } 9499 9500 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 9501 struct bpf_insn *insn, 9502 const struct bpf_reg_state *ptr_reg, 9503 const struct bpf_reg_state *off_reg, 9504 struct bpf_reg_state *dst_reg, 9505 struct bpf_sanitize_info *info, 9506 const bool commit_window) 9507 { 9508 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 9509 struct bpf_verifier_state *vstate = env->cur_state; 9510 bool off_is_imm = tnum_is_const(off_reg->var_off); 9511 bool off_is_neg = off_reg->smin_value < 0; 9512 bool ptr_is_dst_reg = ptr_reg == dst_reg; 9513 u8 opcode = BPF_OP(insn->code); 9514 u32 alu_state, alu_limit; 9515 struct bpf_reg_state tmp; 9516 bool ret; 9517 int err; 9518 9519 if (can_skip_alu_sanitation(env, insn)) 9520 return 0; 9521 9522 /* We already marked aux for masking from non-speculative 9523 * paths, thus we got here in the first place. We only care 9524 * to explore bad access from here. 9525 */ 9526 if (vstate->speculative) 9527 goto do_sim; 9528 9529 if (!commit_window) { 9530 if (!tnum_is_const(off_reg->var_off) && 9531 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 9532 return REASON_BOUNDS; 9533 9534 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 9535 (opcode == BPF_SUB && !off_is_neg); 9536 } 9537 9538 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 9539 if (err < 0) 9540 return err; 9541 9542 if (commit_window) { 9543 /* In commit phase we narrow the masking window based on 9544 * the observed pointer move after the simulated operation. 9545 */ 9546 alu_state = info->aux.alu_state; 9547 alu_limit = abs(info->aux.alu_limit - alu_limit); 9548 } else { 9549 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 9550 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 9551 alu_state |= ptr_is_dst_reg ? 9552 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 9553 9554 /* Limit pruning on unknown scalars to enable deep search for 9555 * potential masking differences from other program paths. 9556 */ 9557 if (!off_is_imm) 9558 env->explore_alu_limits = true; 9559 } 9560 9561 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 9562 if (err < 0) 9563 return err; 9564 do_sim: 9565 /* If we're in commit phase, we're done here given we already 9566 * pushed the truncated dst_reg into the speculative verification 9567 * stack. 9568 * 9569 * Also, when register is a known constant, we rewrite register-based 9570 * operation to immediate-based, and thus do not need masking (and as 9571 * a consequence, do not need to simulate the zero-truncation either). 9572 */ 9573 if (commit_window || off_is_imm) 9574 return 0; 9575 9576 /* Simulate and find potential out-of-bounds access under 9577 * speculative execution from truncation as a result of 9578 * masking when off was not within expected range. If off 9579 * sits in dst, then we temporarily need to move ptr there 9580 * to simulate dst (== 0) +/-= ptr. Needed, for example, 9581 * for cases where we use K-based arithmetic in one direction 9582 * and truncated reg-based in the other in order to explore 9583 * bad access. 9584 */ 9585 if (!ptr_is_dst_reg) { 9586 tmp = *dst_reg; 9587 *dst_reg = *ptr_reg; 9588 } 9589 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 9590 env->insn_idx); 9591 if (!ptr_is_dst_reg && ret) 9592 *dst_reg = tmp; 9593 return !ret ? REASON_STACK : 0; 9594 } 9595 9596 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 9597 { 9598 struct bpf_verifier_state *vstate = env->cur_state; 9599 9600 /* If we simulate paths under speculation, we don't update the 9601 * insn as 'seen' such that when we verify unreachable paths in 9602 * the non-speculative domain, sanitize_dead_code() can still 9603 * rewrite/sanitize them. 9604 */ 9605 if (!vstate->speculative) 9606 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 9607 } 9608 9609 static int sanitize_err(struct bpf_verifier_env *env, 9610 const struct bpf_insn *insn, int reason, 9611 const struct bpf_reg_state *off_reg, 9612 const struct bpf_reg_state *dst_reg) 9613 { 9614 static const char *err = "pointer arithmetic with it prohibited for !root"; 9615 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 9616 u32 dst = insn->dst_reg, src = insn->src_reg; 9617 9618 switch (reason) { 9619 case REASON_BOUNDS: 9620 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 9621 off_reg == dst_reg ? dst : src, err); 9622 break; 9623 case REASON_TYPE: 9624 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 9625 off_reg == dst_reg ? src : dst, err); 9626 break; 9627 case REASON_PATHS: 9628 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 9629 dst, op, err); 9630 break; 9631 case REASON_LIMIT: 9632 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 9633 dst, op, err); 9634 break; 9635 case REASON_STACK: 9636 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 9637 dst, err); 9638 break; 9639 default: 9640 verbose(env, "verifier internal error: unknown reason (%d)\n", 9641 reason); 9642 break; 9643 } 9644 9645 return -EACCES; 9646 } 9647 9648 /* check that stack access falls within stack limits and that 'reg' doesn't 9649 * have a variable offset. 9650 * 9651 * Variable offset is prohibited for unprivileged mode for simplicity since it 9652 * requires corresponding support in Spectre masking for stack ALU. See also 9653 * retrieve_ptr_limit(). 9654 * 9655 * 9656 * 'off' includes 'reg->off'. 9657 */ 9658 static int check_stack_access_for_ptr_arithmetic( 9659 struct bpf_verifier_env *env, 9660 int regno, 9661 const struct bpf_reg_state *reg, 9662 int off) 9663 { 9664 if (!tnum_is_const(reg->var_off)) { 9665 char tn_buf[48]; 9666 9667 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 9668 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 9669 regno, tn_buf, off); 9670 return -EACCES; 9671 } 9672 9673 if (off >= 0 || off < -MAX_BPF_STACK) { 9674 verbose(env, "R%d stack pointer arithmetic goes out of range, " 9675 "prohibited for !root; off=%d\n", regno, off); 9676 return -EACCES; 9677 } 9678 9679 return 0; 9680 } 9681 9682 static int sanitize_check_bounds(struct bpf_verifier_env *env, 9683 const struct bpf_insn *insn, 9684 const struct bpf_reg_state *dst_reg) 9685 { 9686 u32 dst = insn->dst_reg; 9687 9688 /* For unprivileged we require that resulting offset must be in bounds 9689 * in order to be able to sanitize access later on. 9690 */ 9691 if (env->bypass_spec_v1) 9692 return 0; 9693 9694 switch (dst_reg->type) { 9695 case PTR_TO_STACK: 9696 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 9697 dst_reg->off + dst_reg->var_off.value)) 9698 return -EACCES; 9699 break; 9700 case PTR_TO_MAP_VALUE: 9701 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 9702 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 9703 "prohibited for !root\n", dst); 9704 return -EACCES; 9705 } 9706 break; 9707 default: 9708 break; 9709 } 9710 9711 return 0; 9712 } 9713 9714 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 9715 * Caller should also handle BPF_MOV case separately. 9716 * If we return -EACCES, caller may want to try again treating pointer as a 9717 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 9718 */ 9719 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 9720 struct bpf_insn *insn, 9721 const struct bpf_reg_state *ptr_reg, 9722 const struct bpf_reg_state *off_reg) 9723 { 9724 struct bpf_verifier_state *vstate = env->cur_state; 9725 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9726 struct bpf_reg_state *regs = state->regs, *dst_reg; 9727 bool known = tnum_is_const(off_reg->var_off); 9728 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 9729 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 9730 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 9731 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 9732 struct bpf_sanitize_info info = {}; 9733 u8 opcode = BPF_OP(insn->code); 9734 u32 dst = insn->dst_reg; 9735 int ret; 9736 9737 dst_reg = ®s[dst]; 9738 9739 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 9740 smin_val > smax_val || umin_val > umax_val) { 9741 /* Taint dst register if offset had invalid bounds derived from 9742 * e.g. dead branches. 9743 */ 9744 __mark_reg_unknown(env, dst_reg); 9745 return 0; 9746 } 9747 9748 if (BPF_CLASS(insn->code) != BPF_ALU64) { 9749 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 9750 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 9751 __mark_reg_unknown(env, dst_reg); 9752 return 0; 9753 } 9754 9755 verbose(env, 9756 "R%d 32-bit pointer arithmetic prohibited\n", 9757 dst); 9758 return -EACCES; 9759 } 9760 9761 if (ptr_reg->type & PTR_MAYBE_NULL) { 9762 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 9763 dst, reg_type_str(env, ptr_reg->type)); 9764 return -EACCES; 9765 } 9766 9767 switch (base_type(ptr_reg->type)) { 9768 case CONST_PTR_TO_MAP: 9769 /* smin_val represents the known value */ 9770 if (known && smin_val == 0 && opcode == BPF_ADD) 9771 break; 9772 fallthrough; 9773 case PTR_TO_PACKET_END: 9774 case PTR_TO_SOCKET: 9775 case PTR_TO_SOCK_COMMON: 9776 case PTR_TO_TCP_SOCK: 9777 case PTR_TO_XDP_SOCK: 9778 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 9779 dst, reg_type_str(env, ptr_reg->type)); 9780 return -EACCES; 9781 default: 9782 break; 9783 } 9784 9785 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 9786 * The id may be overwritten later if we create a new variable offset. 9787 */ 9788 dst_reg->type = ptr_reg->type; 9789 dst_reg->id = ptr_reg->id; 9790 9791 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 9792 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 9793 return -EINVAL; 9794 9795 /* pointer types do not carry 32-bit bounds at the moment. */ 9796 __mark_reg32_unbounded(dst_reg); 9797 9798 if (sanitize_needed(opcode)) { 9799 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 9800 &info, false); 9801 if (ret < 0) 9802 return sanitize_err(env, insn, ret, off_reg, dst_reg); 9803 } 9804 9805 switch (opcode) { 9806 case BPF_ADD: 9807 /* We can take a fixed offset as long as it doesn't overflow 9808 * the s32 'off' field 9809 */ 9810 if (known && (ptr_reg->off + smin_val == 9811 (s64)(s32)(ptr_reg->off + smin_val))) { 9812 /* pointer += K. Accumulate it into fixed offset */ 9813 dst_reg->smin_value = smin_ptr; 9814 dst_reg->smax_value = smax_ptr; 9815 dst_reg->umin_value = umin_ptr; 9816 dst_reg->umax_value = umax_ptr; 9817 dst_reg->var_off = ptr_reg->var_off; 9818 dst_reg->off = ptr_reg->off + smin_val; 9819 dst_reg->raw = ptr_reg->raw; 9820 break; 9821 } 9822 /* A new variable offset is created. Note that off_reg->off 9823 * == 0, since it's a scalar. 9824 * dst_reg gets the pointer type and since some positive 9825 * integer value was added to the pointer, give it a new 'id' 9826 * if it's a PTR_TO_PACKET. 9827 * this creates a new 'base' pointer, off_reg (variable) gets 9828 * added into the variable offset, and we copy the fixed offset 9829 * from ptr_reg. 9830 */ 9831 if (signed_add_overflows(smin_ptr, smin_val) || 9832 signed_add_overflows(smax_ptr, smax_val)) { 9833 dst_reg->smin_value = S64_MIN; 9834 dst_reg->smax_value = S64_MAX; 9835 } else { 9836 dst_reg->smin_value = smin_ptr + smin_val; 9837 dst_reg->smax_value = smax_ptr + smax_val; 9838 } 9839 if (umin_ptr + umin_val < umin_ptr || 9840 umax_ptr + umax_val < umax_ptr) { 9841 dst_reg->umin_value = 0; 9842 dst_reg->umax_value = U64_MAX; 9843 } else { 9844 dst_reg->umin_value = umin_ptr + umin_val; 9845 dst_reg->umax_value = umax_ptr + umax_val; 9846 } 9847 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 9848 dst_reg->off = ptr_reg->off; 9849 dst_reg->raw = ptr_reg->raw; 9850 if (reg_is_pkt_pointer(ptr_reg)) { 9851 dst_reg->id = ++env->id_gen; 9852 /* something was added to pkt_ptr, set range to zero */ 9853 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 9854 } 9855 break; 9856 case BPF_SUB: 9857 if (dst_reg == off_reg) { 9858 /* scalar -= pointer. Creates an unknown scalar */ 9859 verbose(env, "R%d tried to subtract pointer from scalar\n", 9860 dst); 9861 return -EACCES; 9862 } 9863 /* We don't allow subtraction from FP, because (according to 9864 * test_verifier.c test "invalid fp arithmetic", JITs might not 9865 * be able to deal with it. 9866 */ 9867 if (ptr_reg->type == PTR_TO_STACK) { 9868 verbose(env, "R%d subtraction from stack pointer prohibited\n", 9869 dst); 9870 return -EACCES; 9871 } 9872 if (known && (ptr_reg->off - smin_val == 9873 (s64)(s32)(ptr_reg->off - smin_val))) { 9874 /* pointer -= K. Subtract it from fixed offset */ 9875 dst_reg->smin_value = smin_ptr; 9876 dst_reg->smax_value = smax_ptr; 9877 dst_reg->umin_value = umin_ptr; 9878 dst_reg->umax_value = umax_ptr; 9879 dst_reg->var_off = ptr_reg->var_off; 9880 dst_reg->id = ptr_reg->id; 9881 dst_reg->off = ptr_reg->off - smin_val; 9882 dst_reg->raw = ptr_reg->raw; 9883 break; 9884 } 9885 /* A new variable offset is created. If the subtrahend is known 9886 * nonnegative, then any reg->range we had before is still good. 9887 */ 9888 if (signed_sub_overflows(smin_ptr, smax_val) || 9889 signed_sub_overflows(smax_ptr, smin_val)) { 9890 /* Overflow possible, we know nothing */ 9891 dst_reg->smin_value = S64_MIN; 9892 dst_reg->smax_value = S64_MAX; 9893 } else { 9894 dst_reg->smin_value = smin_ptr - smax_val; 9895 dst_reg->smax_value = smax_ptr - smin_val; 9896 } 9897 if (umin_ptr < umax_val) { 9898 /* Overflow possible, we know nothing */ 9899 dst_reg->umin_value = 0; 9900 dst_reg->umax_value = U64_MAX; 9901 } else { 9902 /* Cannot overflow (as long as bounds are consistent) */ 9903 dst_reg->umin_value = umin_ptr - umax_val; 9904 dst_reg->umax_value = umax_ptr - umin_val; 9905 } 9906 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 9907 dst_reg->off = ptr_reg->off; 9908 dst_reg->raw = ptr_reg->raw; 9909 if (reg_is_pkt_pointer(ptr_reg)) { 9910 dst_reg->id = ++env->id_gen; 9911 /* something was added to pkt_ptr, set range to zero */ 9912 if (smin_val < 0) 9913 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 9914 } 9915 break; 9916 case BPF_AND: 9917 case BPF_OR: 9918 case BPF_XOR: 9919 /* bitwise ops on pointers are troublesome, prohibit. */ 9920 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 9921 dst, bpf_alu_string[opcode >> 4]); 9922 return -EACCES; 9923 default: 9924 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 9925 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 9926 dst, bpf_alu_string[opcode >> 4]); 9927 return -EACCES; 9928 } 9929 9930 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 9931 return -EINVAL; 9932 reg_bounds_sync(dst_reg); 9933 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 9934 return -EACCES; 9935 if (sanitize_needed(opcode)) { 9936 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 9937 &info, true); 9938 if (ret < 0) 9939 return sanitize_err(env, insn, ret, off_reg, dst_reg); 9940 } 9941 9942 return 0; 9943 } 9944 9945 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 9946 struct bpf_reg_state *src_reg) 9947 { 9948 s32 smin_val = src_reg->s32_min_value; 9949 s32 smax_val = src_reg->s32_max_value; 9950 u32 umin_val = src_reg->u32_min_value; 9951 u32 umax_val = src_reg->u32_max_value; 9952 9953 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 9954 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 9955 dst_reg->s32_min_value = S32_MIN; 9956 dst_reg->s32_max_value = S32_MAX; 9957 } else { 9958 dst_reg->s32_min_value += smin_val; 9959 dst_reg->s32_max_value += smax_val; 9960 } 9961 if (dst_reg->u32_min_value + umin_val < umin_val || 9962 dst_reg->u32_max_value + umax_val < umax_val) { 9963 dst_reg->u32_min_value = 0; 9964 dst_reg->u32_max_value = U32_MAX; 9965 } else { 9966 dst_reg->u32_min_value += umin_val; 9967 dst_reg->u32_max_value += umax_val; 9968 } 9969 } 9970 9971 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 9972 struct bpf_reg_state *src_reg) 9973 { 9974 s64 smin_val = src_reg->smin_value; 9975 s64 smax_val = src_reg->smax_value; 9976 u64 umin_val = src_reg->umin_value; 9977 u64 umax_val = src_reg->umax_value; 9978 9979 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 9980 signed_add_overflows(dst_reg->smax_value, smax_val)) { 9981 dst_reg->smin_value = S64_MIN; 9982 dst_reg->smax_value = S64_MAX; 9983 } else { 9984 dst_reg->smin_value += smin_val; 9985 dst_reg->smax_value += smax_val; 9986 } 9987 if (dst_reg->umin_value + umin_val < umin_val || 9988 dst_reg->umax_value + umax_val < umax_val) { 9989 dst_reg->umin_value = 0; 9990 dst_reg->umax_value = U64_MAX; 9991 } else { 9992 dst_reg->umin_value += umin_val; 9993 dst_reg->umax_value += umax_val; 9994 } 9995 } 9996 9997 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 9998 struct bpf_reg_state *src_reg) 9999 { 10000 s32 smin_val = src_reg->s32_min_value; 10001 s32 smax_val = src_reg->s32_max_value; 10002 u32 umin_val = src_reg->u32_min_value; 10003 u32 umax_val = src_reg->u32_max_value; 10004 10005 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 10006 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 10007 /* Overflow possible, we know nothing */ 10008 dst_reg->s32_min_value = S32_MIN; 10009 dst_reg->s32_max_value = S32_MAX; 10010 } else { 10011 dst_reg->s32_min_value -= smax_val; 10012 dst_reg->s32_max_value -= smin_val; 10013 } 10014 if (dst_reg->u32_min_value < umax_val) { 10015 /* Overflow possible, we know nothing */ 10016 dst_reg->u32_min_value = 0; 10017 dst_reg->u32_max_value = U32_MAX; 10018 } else { 10019 /* Cannot overflow (as long as bounds are consistent) */ 10020 dst_reg->u32_min_value -= umax_val; 10021 dst_reg->u32_max_value -= umin_val; 10022 } 10023 } 10024 10025 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 10026 struct bpf_reg_state *src_reg) 10027 { 10028 s64 smin_val = src_reg->smin_value; 10029 s64 smax_val = src_reg->smax_value; 10030 u64 umin_val = src_reg->umin_value; 10031 u64 umax_val = src_reg->umax_value; 10032 10033 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 10034 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 10035 /* Overflow possible, we know nothing */ 10036 dst_reg->smin_value = S64_MIN; 10037 dst_reg->smax_value = S64_MAX; 10038 } else { 10039 dst_reg->smin_value -= smax_val; 10040 dst_reg->smax_value -= smin_val; 10041 } 10042 if (dst_reg->umin_value < umax_val) { 10043 /* Overflow possible, we know nothing */ 10044 dst_reg->umin_value = 0; 10045 dst_reg->umax_value = U64_MAX; 10046 } else { 10047 /* Cannot overflow (as long as bounds are consistent) */ 10048 dst_reg->umin_value -= umax_val; 10049 dst_reg->umax_value -= umin_val; 10050 } 10051 } 10052 10053 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 10054 struct bpf_reg_state *src_reg) 10055 { 10056 s32 smin_val = src_reg->s32_min_value; 10057 u32 umin_val = src_reg->u32_min_value; 10058 u32 umax_val = src_reg->u32_max_value; 10059 10060 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 10061 /* Ain't nobody got time to multiply that sign */ 10062 __mark_reg32_unbounded(dst_reg); 10063 return; 10064 } 10065 /* Both values are positive, so we can work with unsigned and 10066 * copy the result to signed (unless it exceeds S32_MAX). 10067 */ 10068 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 10069 /* Potential overflow, we know nothing */ 10070 __mark_reg32_unbounded(dst_reg); 10071 return; 10072 } 10073 dst_reg->u32_min_value *= umin_val; 10074 dst_reg->u32_max_value *= umax_val; 10075 if (dst_reg->u32_max_value > S32_MAX) { 10076 /* Overflow possible, we know nothing */ 10077 dst_reg->s32_min_value = S32_MIN; 10078 dst_reg->s32_max_value = S32_MAX; 10079 } else { 10080 dst_reg->s32_min_value = dst_reg->u32_min_value; 10081 dst_reg->s32_max_value = dst_reg->u32_max_value; 10082 } 10083 } 10084 10085 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 10086 struct bpf_reg_state *src_reg) 10087 { 10088 s64 smin_val = src_reg->smin_value; 10089 u64 umin_val = src_reg->umin_value; 10090 u64 umax_val = src_reg->umax_value; 10091 10092 if (smin_val < 0 || dst_reg->smin_value < 0) { 10093 /* Ain't nobody got time to multiply that sign */ 10094 __mark_reg64_unbounded(dst_reg); 10095 return; 10096 } 10097 /* Both values are positive, so we can work with unsigned and 10098 * copy the result to signed (unless it exceeds S64_MAX). 10099 */ 10100 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 10101 /* Potential overflow, we know nothing */ 10102 __mark_reg64_unbounded(dst_reg); 10103 return; 10104 } 10105 dst_reg->umin_value *= umin_val; 10106 dst_reg->umax_value *= umax_val; 10107 if (dst_reg->umax_value > S64_MAX) { 10108 /* Overflow possible, we know nothing */ 10109 dst_reg->smin_value = S64_MIN; 10110 dst_reg->smax_value = S64_MAX; 10111 } else { 10112 dst_reg->smin_value = dst_reg->umin_value; 10113 dst_reg->smax_value = dst_reg->umax_value; 10114 } 10115 } 10116 10117 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 10118 struct bpf_reg_state *src_reg) 10119 { 10120 bool src_known = tnum_subreg_is_const(src_reg->var_off); 10121 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 10122 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 10123 s32 smin_val = src_reg->s32_min_value; 10124 u32 umax_val = src_reg->u32_max_value; 10125 10126 if (src_known && dst_known) { 10127 __mark_reg32_known(dst_reg, var32_off.value); 10128 return; 10129 } 10130 10131 /* We get our minimum from the var_off, since that's inherently 10132 * bitwise. Our maximum is the minimum of the operands' maxima. 10133 */ 10134 dst_reg->u32_min_value = var32_off.value; 10135 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 10136 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 10137 /* Lose signed bounds when ANDing negative numbers, 10138 * ain't nobody got time for that. 10139 */ 10140 dst_reg->s32_min_value = S32_MIN; 10141 dst_reg->s32_max_value = S32_MAX; 10142 } else { 10143 /* ANDing two positives gives a positive, so safe to 10144 * cast result into s64. 10145 */ 10146 dst_reg->s32_min_value = dst_reg->u32_min_value; 10147 dst_reg->s32_max_value = dst_reg->u32_max_value; 10148 } 10149 } 10150 10151 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 10152 struct bpf_reg_state *src_reg) 10153 { 10154 bool src_known = tnum_is_const(src_reg->var_off); 10155 bool dst_known = tnum_is_const(dst_reg->var_off); 10156 s64 smin_val = src_reg->smin_value; 10157 u64 umax_val = src_reg->umax_value; 10158 10159 if (src_known && dst_known) { 10160 __mark_reg_known(dst_reg, dst_reg->var_off.value); 10161 return; 10162 } 10163 10164 /* We get our minimum from the var_off, since that's inherently 10165 * bitwise. Our maximum is the minimum of the operands' maxima. 10166 */ 10167 dst_reg->umin_value = dst_reg->var_off.value; 10168 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 10169 if (dst_reg->smin_value < 0 || smin_val < 0) { 10170 /* Lose signed bounds when ANDing negative numbers, 10171 * ain't nobody got time for that. 10172 */ 10173 dst_reg->smin_value = S64_MIN; 10174 dst_reg->smax_value = S64_MAX; 10175 } else { 10176 /* ANDing two positives gives a positive, so safe to 10177 * cast result into s64. 10178 */ 10179 dst_reg->smin_value = dst_reg->umin_value; 10180 dst_reg->smax_value = dst_reg->umax_value; 10181 } 10182 /* We may learn something more from the var_off */ 10183 __update_reg_bounds(dst_reg); 10184 } 10185 10186 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 10187 struct bpf_reg_state *src_reg) 10188 { 10189 bool src_known = tnum_subreg_is_const(src_reg->var_off); 10190 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 10191 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 10192 s32 smin_val = src_reg->s32_min_value; 10193 u32 umin_val = src_reg->u32_min_value; 10194 10195 if (src_known && dst_known) { 10196 __mark_reg32_known(dst_reg, var32_off.value); 10197 return; 10198 } 10199 10200 /* We get our maximum from the var_off, and our minimum is the 10201 * maximum of the operands' minima 10202 */ 10203 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 10204 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 10205 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 10206 /* Lose signed bounds when ORing negative numbers, 10207 * ain't nobody got time for that. 10208 */ 10209 dst_reg->s32_min_value = S32_MIN; 10210 dst_reg->s32_max_value = S32_MAX; 10211 } else { 10212 /* ORing two positives gives a positive, so safe to 10213 * cast result into s64. 10214 */ 10215 dst_reg->s32_min_value = dst_reg->u32_min_value; 10216 dst_reg->s32_max_value = dst_reg->u32_max_value; 10217 } 10218 } 10219 10220 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 10221 struct bpf_reg_state *src_reg) 10222 { 10223 bool src_known = tnum_is_const(src_reg->var_off); 10224 bool dst_known = tnum_is_const(dst_reg->var_off); 10225 s64 smin_val = src_reg->smin_value; 10226 u64 umin_val = src_reg->umin_value; 10227 10228 if (src_known && dst_known) { 10229 __mark_reg_known(dst_reg, dst_reg->var_off.value); 10230 return; 10231 } 10232 10233 /* We get our maximum from the var_off, and our minimum is the 10234 * maximum of the operands' minima 10235 */ 10236 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 10237 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 10238 if (dst_reg->smin_value < 0 || smin_val < 0) { 10239 /* Lose signed bounds when ORing negative numbers, 10240 * ain't nobody got time for that. 10241 */ 10242 dst_reg->smin_value = S64_MIN; 10243 dst_reg->smax_value = S64_MAX; 10244 } else { 10245 /* ORing two positives gives a positive, so safe to 10246 * cast result into s64. 10247 */ 10248 dst_reg->smin_value = dst_reg->umin_value; 10249 dst_reg->smax_value = dst_reg->umax_value; 10250 } 10251 /* We may learn something more from the var_off */ 10252 __update_reg_bounds(dst_reg); 10253 } 10254 10255 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 10256 struct bpf_reg_state *src_reg) 10257 { 10258 bool src_known = tnum_subreg_is_const(src_reg->var_off); 10259 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 10260 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 10261 s32 smin_val = src_reg->s32_min_value; 10262 10263 if (src_known && dst_known) { 10264 __mark_reg32_known(dst_reg, var32_off.value); 10265 return; 10266 } 10267 10268 /* We get both minimum and maximum from the var32_off. */ 10269 dst_reg->u32_min_value = var32_off.value; 10270 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 10271 10272 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 10273 /* XORing two positive sign numbers gives a positive, 10274 * so safe to cast u32 result into s32. 10275 */ 10276 dst_reg->s32_min_value = dst_reg->u32_min_value; 10277 dst_reg->s32_max_value = dst_reg->u32_max_value; 10278 } else { 10279 dst_reg->s32_min_value = S32_MIN; 10280 dst_reg->s32_max_value = S32_MAX; 10281 } 10282 } 10283 10284 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 10285 struct bpf_reg_state *src_reg) 10286 { 10287 bool src_known = tnum_is_const(src_reg->var_off); 10288 bool dst_known = tnum_is_const(dst_reg->var_off); 10289 s64 smin_val = src_reg->smin_value; 10290 10291 if (src_known && dst_known) { 10292 /* dst_reg->var_off.value has been updated earlier */ 10293 __mark_reg_known(dst_reg, dst_reg->var_off.value); 10294 return; 10295 } 10296 10297 /* We get both minimum and maximum from the var_off. */ 10298 dst_reg->umin_value = dst_reg->var_off.value; 10299 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 10300 10301 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 10302 /* XORing two positive sign numbers gives a positive, 10303 * so safe to cast u64 result into s64. 10304 */ 10305 dst_reg->smin_value = dst_reg->umin_value; 10306 dst_reg->smax_value = dst_reg->umax_value; 10307 } else { 10308 dst_reg->smin_value = S64_MIN; 10309 dst_reg->smax_value = S64_MAX; 10310 } 10311 10312 __update_reg_bounds(dst_reg); 10313 } 10314 10315 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 10316 u64 umin_val, u64 umax_val) 10317 { 10318 /* We lose all sign bit information (except what we can pick 10319 * up from var_off) 10320 */ 10321 dst_reg->s32_min_value = S32_MIN; 10322 dst_reg->s32_max_value = S32_MAX; 10323 /* If we might shift our top bit out, then we know nothing */ 10324 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 10325 dst_reg->u32_min_value = 0; 10326 dst_reg->u32_max_value = U32_MAX; 10327 } else { 10328 dst_reg->u32_min_value <<= umin_val; 10329 dst_reg->u32_max_value <<= umax_val; 10330 } 10331 } 10332 10333 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 10334 struct bpf_reg_state *src_reg) 10335 { 10336 u32 umax_val = src_reg->u32_max_value; 10337 u32 umin_val = src_reg->u32_min_value; 10338 /* u32 alu operation will zext upper bits */ 10339 struct tnum subreg = tnum_subreg(dst_reg->var_off); 10340 10341 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 10342 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 10343 /* Not required but being careful mark reg64 bounds as unknown so 10344 * that we are forced to pick them up from tnum and zext later and 10345 * if some path skips this step we are still safe. 10346 */ 10347 __mark_reg64_unbounded(dst_reg); 10348 __update_reg32_bounds(dst_reg); 10349 } 10350 10351 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 10352 u64 umin_val, u64 umax_val) 10353 { 10354 /* Special case <<32 because it is a common compiler pattern to sign 10355 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 10356 * positive we know this shift will also be positive so we can track 10357 * bounds correctly. Otherwise we lose all sign bit information except 10358 * what we can pick up from var_off. Perhaps we can generalize this 10359 * later to shifts of any length. 10360 */ 10361 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 10362 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 10363 else 10364 dst_reg->smax_value = S64_MAX; 10365 10366 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 10367 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 10368 else 10369 dst_reg->smin_value = S64_MIN; 10370 10371 /* If we might shift our top bit out, then we know nothing */ 10372 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 10373 dst_reg->umin_value = 0; 10374 dst_reg->umax_value = U64_MAX; 10375 } else { 10376 dst_reg->umin_value <<= umin_val; 10377 dst_reg->umax_value <<= umax_val; 10378 } 10379 } 10380 10381 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 10382 struct bpf_reg_state *src_reg) 10383 { 10384 u64 umax_val = src_reg->umax_value; 10385 u64 umin_val = src_reg->umin_value; 10386 10387 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 10388 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 10389 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 10390 10391 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 10392 /* We may learn something more from the var_off */ 10393 __update_reg_bounds(dst_reg); 10394 } 10395 10396 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 10397 struct bpf_reg_state *src_reg) 10398 { 10399 struct tnum subreg = tnum_subreg(dst_reg->var_off); 10400 u32 umax_val = src_reg->u32_max_value; 10401 u32 umin_val = src_reg->u32_min_value; 10402 10403 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 10404 * be negative, then either: 10405 * 1) src_reg might be zero, so the sign bit of the result is 10406 * unknown, so we lose our signed bounds 10407 * 2) it's known negative, thus the unsigned bounds capture the 10408 * signed bounds 10409 * 3) the signed bounds cross zero, so they tell us nothing 10410 * about the result 10411 * If the value in dst_reg is known nonnegative, then again the 10412 * unsigned bounds capture the signed bounds. 10413 * Thus, in all cases it suffices to blow away our signed bounds 10414 * and rely on inferring new ones from the unsigned bounds and 10415 * var_off of the result. 10416 */ 10417 dst_reg->s32_min_value = S32_MIN; 10418 dst_reg->s32_max_value = S32_MAX; 10419 10420 dst_reg->var_off = tnum_rshift(subreg, umin_val); 10421 dst_reg->u32_min_value >>= umax_val; 10422 dst_reg->u32_max_value >>= umin_val; 10423 10424 __mark_reg64_unbounded(dst_reg); 10425 __update_reg32_bounds(dst_reg); 10426 } 10427 10428 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 10429 struct bpf_reg_state *src_reg) 10430 { 10431 u64 umax_val = src_reg->umax_value; 10432 u64 umin_val = src_reg->umin_value; 10433 10434 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 10435 * be negative, then either: 10436 * 1) src_reg might be zero, so the sign bit of the result is 10437 * unknown, so we lose our signed bounds 10438 * 2) it's known negative, thus the unsigned bounds capture the 10439 * signed bounds 10440 * 3) the signed bounds cross zero, so they tell us nothing 10441 * about the result 10442 * If the value in dst_reg is known nonnegative, then again the 10443 * unsigned bounds capture the signed bounds. 10444 * Thus, in all cases it suffices to blow away our signed bounds 10445 * and rely on inferring new ones from the unsigned bounds and 10446 * var_off of the result. 10447 */ 10448 dst_reg->smin_value = S64_MIN; 10449 dst_reg->smax_value = S64_MAX; 10450 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 10451 dst_reg->umin_value >>= umax_val; 10452 dst_reg->umax_value >>= umin_val; 10453 10454 /* Its not easy to operate on alu32 bounds here because it depends 10455 * on bits being shifted in. Take easy way out and mark unbounded 10456 * so we can recalculate later from tnum. 10457 */ 10458 __mark_reg32_unbounded(dst_reg); 10459 __update_reg_bounds(dst_reg); 10460 } 10461 10462 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 10463 struct bpf_reg_state *src_reg) 10464 { 10465 u64 umin_val = src_reg->u32_min_value; 10466 10467 /* Upon reaching here, src_known is true and 10468 * umax_val is equal to umin_val. 10469 */ 10470 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 10471 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 10472 10473 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 10474 10475 /* blow away the dst_reg umin_value/umax_value and rely on 10476 * dst_reg var_off to refine the result. 10477 */ 10478 dst_reg->u32_min_value = 0; 10479 dst_reg->u32_max_value = U32_MAX; 10480 10481 __mark_reg64_unbounded(dst_reg); 10482 __update_reg32_bounds(dst_reg); 10483 } 10484 10485 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 10486 struct bpf_reg_state *src_reg) 10487 { 10488 u64 umin_val = src_reg->umin_value; 10489 10490 /* Upon reaching here, src_known is true and umax_val is equal 10491 * to umin_val. 10492 */ 10493 dst_reg->smin_value >>= umin_val; 10494 dst_reg->smax_value >>= umin_val; 10495 10496 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 10497 10498 /* blow away the dst_reg umin_value/umax_value and rely on 10499 * dst_reg var_off to refine the result. 10500 */ 10501 dst_reg->umin_value = 0; 10502 dst_reg->umax_value = U64_MAX; 10503 10504 /* Its not easy to operate on alu32 bounds here because it depends 10505 * on bits being shifted in from upper 32-bits. Take easy way out 10506 * and mark unbounded so we can recalculate later from tnum. 10507 */ 10508 __mark_reg32_unbounded(dst_reg); 10509 __update_reg_bounds(dst_reg); 10510 } 10511 10512 /* WARNING: This function does calculations on 64-bit values, but the actual 10513 * execution may occur on 32-bit values. Therefore, things like bitshifts 10514 * need extra checks in the 32-bit case. 10515 */ 10516 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 10517 struct bpf_insn *insn, 10518 struct bpf_reg_state *dst_reg, 10519 struct bpf_reg_state src_reg) 10520 { 10521 struct bpf_reg_state *regs = cur_regs(env); 10522 u8 opcode = BPF_OP(insn->code); 10523 bool src_known; 10524 s64 smin_val, smax_val; 10525 u64 umin_val, umax_val; 10526 s32 s32_min_val, s32_max_val; 10527 u32 u32_min_val, u32_max_val; 10528 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 10529 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 10530 int ret; 10531 10532 smin_val = src_reg.smin_value; 10533 smax_val = src_reg.smax_value; 10534 umin_val = src_reg.umin_value; 10535 umax_val = src_reg.umax_value; 10536 10537 s32_min_val = src_reg.s32_min_value; 10538 s32_max_val = src_reg.s32_max_value; 10539 u32_min_val = src_reg.u32_min_value; 10540 u32_max_val = src_reg.u32_max_value; 10541 10542 if (alu32) { 10543 src_known = tnum_subreg_is_const(src_reg.var_off); 10544 if ((src_known && 10545 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 10546 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 10547 /* Taint dst register if offset had invalid bounds 10548 * derived from e.g. dead branches. 10549 */ 10550 __mark_reg_unknown(env, dst_reg); 10551 return 0; 10552 } 10553 } else { 10554 src_known = tnum_is_const(src_reg.var_off); 10555 if ((src_known && 10556 (smin_val != smax_val || umin_val != umax_val)) || 10557 smin_val > smax_val || umin_val > umax_val) { 10558 /* Taint dst register if offset had invalid bounds 10559 * derived from e.g. dead branches. 10560 */ 10561 __mark_reg_unknown(env, dst_reg); 10562 return 0; 10563 } 10564 } 10565 10566 if (!src_known && 10567 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 10568 __mark_reg_unknown(env, dst_reg); 10569 return 0; 10570 } 10571 10572 if (sanitize_needed(opcode)) { 10573 ret = sanitize_val_alu(env, insn); 10574 if (ret < 0) 10575 return sanitize_err(env, insn, ret, NULL, NULL); 10576 } 10577 10578 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 10579 * There are two classes of instructions: The first class we track both 10580 * alu32 and alu64 sign/unsigned bounds independently this provides the 10581 * greatest amount of precision when alu operations are mixed with jmp32 10582 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 10583 * and BPF_OR. This is possible because these ops have fairly easy to 10584 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 10585 * See alu32 verifier tests for examples. The second class of 10586 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 10587 * with regards to tracking sign/unsigned bounds because the bits may 10588 * cross subreg boundaries in the alu64 case. When this happens we mark 10589 * the reg unbounded in the subreg bound space and use the resulting 10590 * tnum to calculate an approximation of the sign/unsigned bounds. 10591 */ 10592 switch (opcode) { 10593 case BPF_ADD: 10594 scalar32_min_max_add(dst_reg, &src_reg); 10595 scalar_min_max_add(dst_reg, &src_reg); 10596 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 10597 break; 10598 case BPF_SUB: 10599 scalar32_min_max_sub(dst_reg, &src_reg); 10600 scalar_min_max_sub(dst_reg, &src_reg); 10601 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 10602 break; 10603 case BPF_MUL: 10604 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 10605 scalar32_min_max_mul(dst_reg, &src_reg); 10606 scalar_min_max_mul(dst_reg, &src_reg); 10607 break; 10608 case BPF_AND: 10609 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 10610 scalar32_min_max_and(dst_reg, &src_reg); 10611 scalar_min_max_and(dst_reg, &src_reg); 10612 break; 10613 case BPF_OR: 10614 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 10615 scalar32_min_max_or(dst_reg, &src_reg); 10616 scalar_min_max_or(dst_reg, &src_reg); 10617 break; 10618 case BPF_XOR: 10619 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 10620 scalar32_min_max_xor(dst_reg, &src_reg); 10621 scalar_min_max_xor(dst_reg, &src_reg); 10622 break; 10623 case BPF_LSH: 10624 if (umax_val >= insn_bitness) { 10625 /* Shifts greater than 31 or 63 are undefined. 10626 * This includes shifts by a negative number. 10627 */ 10628 mark_reg_unknown(env, regs, insn->dst_reg); 10629 break; 10630 } 10631 if (alu32) 10632 scalar32_min_max_lsh(dst_reg, &src_reg); 10633 else 10634 scalar_min_max_lsh(dst_reg, &src_reg); 10635 break; 10636 case BPF_RSH: 10637 if (umax_val >= insn_bitness) { 10638 /* Shifts greater than 31 or 63 are undefined. 10639 * This includes shifts by a negative number. 10640 */ 10641 mark_reg_unknown(env, regs, insn->dst_reg); 10642 break; 10643 } 10644 if (alu32) 10645 scalar32_min_max_rsh(dst_reg, &src_reg); 10646 else 10647 scalar_min_max_rsh(dst_reg, &src_reg); 10648 break; 10649 case BPF_ARSH: 10650 if (umax_val >= insn_bitness) { 10651 /* Shifts greater than 31 or 63 are undefined. 10652 * This includes shifts by a negative number. 10653 */ 10654 mark_reg_unknown(env, regs, insn->dst_reg); 10655 break; 10656 } 10657 if (alu32) 10658 scalar32_min_max_arsh(dst_reg, &src_reg); 10659 else 10660 scalar_min_max_arsh(dst_reg, &src_reg); 10661 break; 10662 default: 10663 mark_reg_unknown(env, regs, insn->dst_reg); 10664 break; 10665 } 10666 10667 /* ALU32 ops are zero extended into 64bit register */ 10668 if (alu32) 10669 zext_32_to_64(dst_reg); 10670 reg_bounds_sync(dst_reg); 10671 return 0; 10672 } 10673 10674 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 10675 * and var_off. 10676 */ 10677 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 10678 struct bpf_insn *insn) 10679 { 10680 struct bpf_verifier_state *vstate = env->cur_state; 10681 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 10682 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 10683 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 10684 u8 opcode = BPF_OP(insn->code); 10685 int err; 10686 10687 dst_reg = ®s[insn->dst_reg]; 10688 src_reg = NULL; 10689 if (dst_reg->type != SCALAR_VALUE) 10690 ptr_reg = dst_reg; 10691 else 10692 /* Make sure ID is cleared otherwise dst_reg min/max could be 10693 * incorrectly propagated into other registers by find_equal_scalars() 10694 */ 10695 dst_reg->id = 0; 10696 if (BPF_SRC(insn->code) == BPF_X) { 10697 src_reg = ®s[insn->src_reg]; 10698 if (src_reg->type != SCALAR_VALUE) { 10699 if (dst_reg->type != SCALAR_VALUE) { 10700 /* Combining two pointers by any ALU op yields 10701 * an arbitrary scalar. Disallow all math except 10702 * pointer subtraction 10703 */ 10704 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 10705 mark_reg_unknown(env, regs, insn->dst_reg); 10706 return 0; 10707 } 10708 verbose(env, "R%d pointer %s pointer prohibited\n", 10709 insn->dst_reg, 10710 bpf_alu_string[opcode >> 4]); 10711 return -EACCES; 10712 } else { 10713 /* scalar += pointer 10714 * This is legal, but we have to reverse our 10715 * src/dest handling in computing the range 10716 */ 10717 err = mark_chain_precision(env, insn->dst_reg); 10718 if (err) 10719 return err; 10720 return adjust_ptr_min_max_vals(env, insn, 10721 src_reg, dst_reg); 10722 } 10723 } else if (ptr_reg) { 10724 /* pointer += scalar */ 10725 err = mark_chain_precision(env, insn->src_reg); 10726 if (err) 10727 return err; 10728 return adjust_ptr_min_max_vals(env, insn, 10729 dst_reg, src_reg); 10730 } else if (dst_reg->precise) { 10731 /* if dst_reg is precise, src_reg should be precise as well */ 10732 err = mark_chain_precision(env, insn->src_reg); 10733 if (err) 10734 return err; 10735 } 10736 } else { 10737 /* Pretend the src is a reg with a known value, since we only 10738 * need to be able to read from this state. 10739 */ 10740 off_reg.type = SCALAR_VALUE; 10741 __mark_reg_known(&off_reg, insn->imm); 10742 src_reg = &off_reg; 10743 if (ptr_reg) /* pointer += K */ 10744 return adjust_ptr_min_max_vals(env, insn, 10745 ptr_reg, src_reg); 10746 } 10747 10748 /* Got here implies adding two SCALAR_VALUEs */ 10749 if (WARN_ON_ONCE(ptr_reg)) { 10750 print_verifier_state(env, state, true); 10751 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 10752 return -EINVAL; 10753 } 10754 if (WARN_ON(!src_reg)) { 10755 print_verifier_state(env, state, true); 10756 verbose(env, "verifier internal error: no src_reg\n"); 10757 return -EINVAL; 10758 } 10759 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 10760 } 10761 10762 /* check validity of 32-bit and 64-bit arithmetic operations */ 10763 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 10764 { 10765 struct bpf_reg_state *regs = cur_regs(env); 10766 u8 opcode = BPF_OP(insn->code); 10767 int err; 10768 10769 if (opcode == BPF_END || opcode == BPF_NEG) { 10770 if (opcode == BPF_NEG) { 10771 if (BPF_SRC(insn->code) != BPF_K || 10772 insn->src_reg != BPF_REG_0 || 10773 insn->off != 0 || insn->imm != 0) { 10774 verbose(env, "BPF_NEG uses reserved fields\n"); 10775 return -EINVAL; 10776 } 10777 } else { 10778 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 10779 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 10780 BPF_CLASS(insn->code) == BPF_ALU64) { 10781 verbose(env, "BPF_END uses reserved fields\n"); 10782 return -EINVAL; 10783 } 10784 } 10785 10786 /* check src operand */ 10787 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10788 if (err) 10789 return err; 10790 10791 if (is_pointer_value(env, insn->dst_reg)) { 10792 verbose(env, "R%d pointer arithmetic prohibited\n", 10793 insn->dst_reg); 10794 return -EACCES; 10795 } 10796 10797 /* check dest operand */ 10798 err = check_reg_arg(env, insn->dst_reg, DST_OP); 10799 if (err) 10800 return err; 10801 10802 } else if (opcode == BPF_MOV) { 10803 10804 if (BPF_SRC(insn->code) == BPF_X) { 10805 if (insn->imm != 0 || insn->off != 0) { 10806 verbose(env, "BPF_MOV uses reserved fields\n"); 10807 return -EINVAL; 10808 } 10809 10810 /* check src operand */ 10811 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10812 if (err) 10813 return err; 10814 } else { 10815 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 10816 verbose(env, "BPF_MOV uses reserved fields\n"); 10817 return -EINVAL; 10818 } 10819 } 10820 10821 /* check dest operand, mark as required later */ 10822 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 10823 if (err) 10824 return err; 10825 10826 if (BPF_SRC(insn->code) == BPF_X) { 10827 struct bpf_reg_state *src_reg = regs + insn->src_reg; 10828 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 10829 10830 if (BPF_CLASS(insn->code) == BPF_ALU64) { 10831 /* case: R1 = R2 10832 * copy register state to dest reg 10833 */ 10834 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 10835 /* Assign src and dst registers the same ID 10836 * that will be used by find_equal_scalars() 10837 * to propagate min/max range. 10838 */ 10839 src_reg->id = ++env->id_gen; 10840 *dst_reg = *src_reg; 10841 dst_reg->live |= REG_LIVE_WRITTEN; 10842 dst_reg->subreg_def = DEF_NOT_SUBREG; 10843 } else { 10844 /* R1 = (u32) R2 */ 10845 if (is_pointer_value(env, insn->src_reg)) { 10846 verbose(env, 10847 "R%d partial copy of pointer\n", 10848 insn->src_reg); 10849 return -EACCES; 10850 } else if (src_reg->type == SCALAR_VALUE) { 10851 *dst_reg = *src_reg; 10852 /* Make sure ID is cleared otherwise 10853 * dst_reg min/max could be incorrectly 10854 * propagated into src_reg by find_equal_scalars() 10855 */ 10856 dst_reg->id = 0; 10857 dst_reg->live |= REG_LIVE_WRITTEN; 10858 dst_reg->subreg_def = env->insn_idx + 1; 10859 } else { 10860 mark_reg_unknown(env, regs, 10861 insn->dst_reg); 10862 } 10863 zext_32_to_64(dst_reg); 10864 reg_bounds_sync(dst_reg); 10865 } 10866 } else { 10867 /* case: R = imm 10868 * remember the value we stored into this reg 10869 */ 10870 /* clear any state __mark_reg_known doesn't set */ 10871 mark_reg_unknown(env, regs, insn->dst_reg); 10872 regs[insn->dst_reg].type = SCALAR_VALUE; 10873 if (BPF_CLASS(insn->code) == BPF_ALU64) { 10874 __mark_reg_known(regs + insn->dst_reg, 10875 insn->imm); 10876 } else { 10877 __mark_reg_known(regs + insn->dst_reg, 10878 (u32)insn->imm); 10879 } 10880 } 10881 10882 } else if (opcode > BPF_END) { 10883 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 10884 return -EINVAL; 10885 10886 } else { /* all other ALU ops: and, sub, xor, add, ... */ 10887 10888 if (BPF_SRC(insn->code) == BPF_X) { 10889 if (insn->imm != 0 || insn->off != 0) { 10890 verbose(env, "BPF_ALU uses reserved fields\n"); 10891 return -EINVAL; 10892 } 10893 /* check src1 operand */ 10894 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10895 if (err) 10896 return err; 10897 } else { 10898 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 10899 verbose(env, "BPF_ALU uses reserved fields\n"); 10900 return -EINVAL; 10901 } 10902 } 10903 10904 /* check src2 operand */ 10905 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10906 if (err) 10907 return err; 10908 10909 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 10910 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 10911 verbose(env, "div by zero\n"); 10912 return -EINVAL; 10913 } 10914 10915 if ((opcode == BPF_LSH || opcode == BPF_RSH || 10916 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 10917 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 10918 10919 if (insn->imm < 0 || insn->imm >= size) { 10920 verbose(env, "invalid shift %d\n", insn->imm); 10921 return -EINVAL; 10922 } 10923 } 10924 10925 /* check dest operand */ 10926 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 10927 if (err) 10928 return err; 10929 10930 return adjust_reg_min_max_vals(env, insn); 10931 } 10932 10933 return 0; 10934 } 10935 10936 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 10937 struct bpf_reg_state *dst_reg, 10938 enum bpf_reg_type type, 10939 bool range_right_open) 10940 { 10941 struct bpf_func_state *state; 10942 struct bpf_reg_state *reg; 10943 int new_range; 10944 10945 if (dst_reg->off < 0 || 10946 (dst_reg->off == 0 && range_right_open)) 10947 /* This doesn't give us any range */ 10948 return; 10949 10950 if (dst_reg->umax_value > MAX_PACKET_OFF || 10951 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 10952 /* Risk of overflow. For instance, ptr + (1<<63) may be less 10953 * than pkt_end, but that's because it's also less than pkt. 10954 */ 10955 return; 10956 10957 new_range = dst_reg->off; 10958 if (range_right_open) 10959 new_range++; 10960 10961 /* Examples for register markings: 10962 * 10963 * pkt_data in dst register: 10964 * 10965 * r2 = r3; 10966 * r2 += 8; 10967 * if (r2 > pkt_end) goto <handle exception> 10968 * <access okay> 10969 * 10970 * r2 = r3; 10971 * r2 += 8; 10972 * if (r2 < pkt_end) goto <access okay> 10973 * <handle exception> 10974 * 10975 * Where: 10976 * r2 == dst_reg, pkt_end == src_reg 10977 * r2=pkt(id=n,off=8,r=0) 10978 * r3=pkt(id=n,off=0,r=0) 10979 * 10980 * pkt_data in src register: 10981 * 10982 * r2 = r3; 10983 * r2 += 8; 10984 * if (pkt_end >= r2) goto <access okay> 10985 * <handle exception> 10986 * 10987 * r2 = r3; 10988 * r2 += 8; 10989 * if (pkt_end <= r2) goto <handle exception> 10990 * <access okay> 10991 * 10992 * Where: 10993 * pkt_end == dst_reg, r2 == src_reg 10994 * r2=pkt(id=n,off=8,r=0) 10995 * r3=pkt(id=n,off=0,r=0) 10996 * 10997 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 10998 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 10999 * and [r3, r3 + 8-1) respectively is safe to access depending on 11000 * the check. 11001 */ 11002 11003 /* If our ids match, then we must have the same max_value. And we 11004 * don't care about the other reg's fixed offset, since if it's too big 11005 * the range won't allow anything. 11006 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 11007 */ 11008 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 11009 if (reg->type == type && reg->id == dst_reg->id) 11010 /* keep the maximum range already checked */ 11011 reg->range = max(reg->range, new_range); 11012 })); 11013 } 11014 11015 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 11016 { 11017 struct tnum subreg = tnum_subreg(reg->var_off); 11018 s32 sval = (s32)val; 11019 11020 switch (opcode) { 11021 case BPF_JEQ: 11022 if (tnum_is_const(subreg)) 11023 return !!tnum_equals_const(subreg, val); 11024 break; 11025 case BPF_JNE: 11026 if (tnum_is_const(subreg)) 11027 return !tnum_equals_const(subreg, val); 11028 break; 11029 case BPF_JSET: 11030 if ((~subreg.mask & subreg.value) & val) 11031 return 1; 11032 if (!((subreg.mask | subreg.value) & val)) 11033 return 0; 11034 break; 11035 case BPF_JGT: 11036 if (reg->u32_min_value > val) 11037 return 1; 11038 else if (reg->u32_max_value <= val) 11039 return 0; 11040 break; 11041 case BPF_JSGT: 11042 if (reg->s32_min_value > sval) 11043 return 1; 11044 else if (reg->s32_max_value <= sval) 11045 return 0; 11046 break; 11047 case BPF_JLT: 11048 if (reg->u32_max_value < val) 11049 return 1; 11050 else if (reg->u32_min_value >= val) 11051 return 0; 11052 break; 11053 case BPF_JSLT: 11054 if (reg->s32_max_value < sval) 11055 return 1; 11056 else if (reg->s32_min_value >= sval) 11057 return 0; 11058 break; 11059 case BPF_JGE: 11060 if (reg->u32_min_value >= val) 11061 return 1; 11062 else if (reg->u32_max_value < val) 11063 return 0; 11064 break; 11065 case BPF_JSGE: 11066 if (reg->s32_min_value >= sval) 11067 return 1; 11068 else if (reg->s32_max_value < sval) 11069 return 0; 11070 break; 11071 case BPF_JLE: 11072 if (reg->u32_max_value <= val) 11073 return 1; 11074 else if (reg->u32_min_value > val) 11075 return 0; 11076 break; 11077 case BPF_JSLE: 11078 if (reg->s32_max_value <= sval) 11079 return 1; 11080 else if (reg->s32_min_value > sval) 11081 return 0; 11082 break; 11083 } 11084 11085 return -1; 11086 } 11087 11088 11089 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 11090 { 11091 s64 sval = (s64)val; 11092 11093 switch (opcode) { 11094 case BPF_JEQ: 11095 if (tnum_is_const(reg->var_off)) 11096 return !!tnum_equals_const(reg->var_off, val); 11097 break; 11098 case BPF_JNE: 11099 if (tnum_is_const(reg->var_off)) 11100 return !tnum_equals_const(reg->var_off, val); 11101 break; 11102 case BPF_JSET: 11103 if ((~reg->var_off.mask & reg->var_off.value) & val) 11104 return 1; 11105 if (!((reg->var_off.mask | reg->var_off.value) & val)) 11106 return 0; 11107 break; 11108 case BPF_JGT: 11109 if (reg->umin_value > val) 11110 return 1; 11111 else if (reg->umax_value <= val) 11112 return 0; 11113 break; 11114 case BPF_JSGT: 11115 if (reg->smin_value > sval) 11116 return 1; 11117 else if (reg->smax_value <= sval) 11118 return 0; 11119 break; 11120 case BPF_JLT: 11121 if (reg->umax_value < val) 11122 return 1; 11123 else if (reg->umin_value >= val) 11124 return 0; 11125 break; 11126 case BPF_JSLT: 11127 if (reg->smax_value < sval) 11128 return 1; 11129 else if (reg->smin_value >= sval) 11130 return 0; 11131 break; 11132 case BPF_JGE: 11133 if (reg->umin_value >= val) 11134 return 1; 11135 else if (reg->umax_value < val) 11136 return 0; 11137 break; 11138 case BPF_JSGE: 11139 if (reg->smin_value >= sval) 11140 return 1; 11141 else if (reg->smax_value < sval) 11142 return 0; 11143 break; 11144 case BPF_JLE: 11145 if (reg->umax_value <= val) 11146 return 1; 11147 else if (reg->umin_value > val) 11148 return 0; 11149 break; 11150 case BPF_JSLE: 11151 if (reg->smax_value <= sval) 11152 return 1; 11153 else if (reg->smin_value > sval) 11154 return 0; 11155 break; 11156 } 11157 11158 return -1; 11159 } 11160 11161 /* compute branch direction of the expression "if (reg opcode val) goto target;" 11162 * and return: 11163 * 1 - branch will be taken and "goto target" will be executed 11164 * 0 - branch will not be taken and fall-through to next insn 11165 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 11166 * range [0,10] 11167 */ 11168 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 11169 bool is_jmp32) 11170 { 11171 if (__is_pointer_value(false, reg)) { 11172 if (!reg_type_not_null(reg->type)) 11173 return -1; 11174 11175 /* If pointer is valid tests against zero will fail so we can 11176 * use this to direct branch taken. 11177 */ 11178 if (val != 0) 11179 return -1; 11180 11181 switch (opcode) { 11182 case BPF_JEQ: 11183 return 0; 11184 case BPF_JNE: 11185 return 1; 11186 default: 11187 return -1; 11188 } 11189 } 11190 11191 if (is_jmp32) 11192 return is_branch32_taken(reg, val, opcode); 11193 return is_branch64_taken(reg, val, opcode); 11194 } 11195 11196 static int flip_opcode(u32 opcode) 11197 { 11198 /* How can we transform "a <op> b" into "b <op> a"? */ 11199 static const u8 opcode_flip[16] = { 11200 /* these stay the same */ 11201 [BPF_JEQ >> 4] = BPF_JEQ, 11202 [BPF_JNE >> 4] = BPF_JNE, 11203 [BPF_JSET >> 4] = BPF_JSET, 11204 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 11205 [BPF_JGE >> 4] = BPF_JLE, 11206 [BPF_JGT >> 4] = BPF_JLT, 11207 [BPF_JLE >> 4] = BPF_JGE, 11208 [BPF_JLT >> 4] = BPF_JGT, 11209 [BPF_JSGE >> 4] = BPF_JSLE, 11210 [BPF_JSGT >> 4] = BPF_JSLT, 11211 [BPF_JSLE >> 4] = BPF_JSGE, 11212 [BPF_JSLT >> 4] = BPF_JSGT 11213 }; 11214 return opcode_flip[opcode >> 4]; 11215 } 11216 11217 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 11218 struct bpf_reg_state *src_reg, 11219 u8 opcode) 11220 { 11221 struct bpf_reg_state *pkt; 11222 11223 if (src_reg->type == PTR_TO_PACKET_END) { 11224 pkt = dst_reg; 11225 } else if (dst_reg->type == PTR_TO_PACKET_END) { 11226 pkt = src_reg; 11227 opcode = flip_opcode(opcode); 11228 } else { 11229 return -1; 11230 } 11231 11232 if (pkt->range >= 0) 11233 return -1; 11234 11235 switch (opcode) { 11236 case BPF_JLE: 11237 /* pkt <= pkt_end */ 11238 fallthrough; 11239 case BPF_JGT: 11240 /* pkt > pkt_end */ 11241 if (pkt->range == BEYOND_PKT_END) 11242 /* pkt has at last one extra byte beyond pkt_end */ 11243 return opcode == BPF_JGT; 11244 break; 11245 case BPF_JLT: 11246 /* pkt < pkt_end */ 11247 fallthrough; 11248 case BPF_JGE: 11249 /* pkt >= pkt_end */ 11250 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 11251 return opcode == BPF_JGE; 11252 break; 11253 } 11254 return -1; 11255 } 11256 11257 /* Adjusts the register min/max values in the case that the dst_reg is the 11258 * variable register that we are working on, and src_reg is a constant or we're 11259 * simply doing a BPF_K check. 11260 * In JEQ/JNE cases we also adjust the var_off values. 11261 */ 11262 static void reg_set_min_max(struct bpf_reg_state *true_reg, 11263 struct bpf_reg_state *false_reg, 11264 u64 val, u32 val32, 11265 u8 opcode, bool is_jmp32) 11266 { 11267 struct tnum false_32off = tnum_subreg(false_reg->var_off); 11268 struct tnum false_64off = false_reg->var_off; 11269 struct tnum true_32off = tnum_subreg(true_reg->var_off); 11270 struct tnum true_64off = true_reg->var_off; 11271 s64 sval = (s64)val; 11272 s32 sval32 = (s32)val32; 11273 11274 /* If the dst_reg is a pointer, we can't learn anything about its 11275 * variable offset from the compare (unless src_reg were a pointer into 11276 * the same object, but we don't bother with that. 11277 * Since false_reg and true_reg have the same type by construction, we 11278 * only need to check one of them for pointerness. 11279 */ 11280 if (__is_pointer_value(false, false_reg)) 11281 return; 11282 11283 switch (opcode) { 11284 /* JEQ/JNE comparison doesn't change the register equivalence. 11285 * 11286 * r1 = r2; 11287 * if (r1 == 42) goto label; 11288 * ... 11289 * label: // here both r1 and r2 are known to be 42. 11290 * 11291 * Hence when marking register as known preserve it's ID. 11292 */ 11293 case BPF_JEQ: 11294 if (is_jmp32) { 11295 __mark_reg32_known(true_reg, val32); 11296 true_32off = tnum_subreg(true_reg->var_off); 11297 } else { 11298 ___mark_reg_known(true_reg, val); 11299 true_64off = true_reg->var_off; 11300 } 11301 break; 11302 case BPF_JNE: 11303 if (is_jmp32) { 11304 __mark_reg32_known(false_reg, val32); 11305 false_32off = tnum_subreg(false_reg->var_off); 11306 } else { 11307 ___mark_reg_known(false_reg, val); 11308 false_64off = false_reg->var_off; 11309 } 11310 break; 11311 case BPF_JSET: 11312 if (is_jmp32) { 11313 false_32off = tnum_and(false_32off, tnum_const(~val32)); 11314 if (is_power_of_2(val32)) 11315 true_32off = tnum_or(true_32off, 11316 tnum_const(val32)); 11317 } else { 11318 false_64off = tnum_and(false_64off, tnum_const(~val)); 11319 if (is_power_of_2(val)) 11320 true_64off = tnum_or(true_64off, 11321 tnum_const(val)); 11322 } 11323 break; 11324 case BPF_JGE: 11325 case BPF_JGT: 11326 { 11327 if (is_jmp32) { 11328 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 11329 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 11330 11331 false_reg->u32_max_value = min(false_reg->u32_max_value, 11332 false_umax); 11333 true_reg->u32_min_value = max(true_reg->u32_min_value, 11334 true_umin); 11335 } else { 11336 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 11337 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 11338 11339 false_reg->umax_value = min(false_reg->umax_value, false_umax); 11340 true_reg->umin_value = max(true_reg->umin_value, true_umin); 11341 } 11342 break; 11343 } 11344 case BPF_JSGE: 11345 case BPF_JSGT: 11346 { 11347 if (is_jmp32) { 11348 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 11349 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 11350 11351 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 11352 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 11353 } else { 11354 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 11355 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 11356 11357 false_reg->smax_value = min(false_reg->smax_value, false_smax); 11358 true_reg->smin_value = max(true_reg->smin_value, true_smin); 11359 } 11360 break; 11361 } 11362 case BPF_JLE: 11363 case BPF_JLT: 11364 { 11365 if (is_jmp32) { 11366 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 11367 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 11368 11369 false_reg->u32_min_value = max(false_reg->u32_min_value, 11370 false_umin); 11371 true_reg->u32_max_value = min(true_reg->u32_max_value, 11372 true_umax); 11373 } else { 11374 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 11375 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 11376 11377 false_reg->umin_value = max(false_reg->umin_value, false_umin); 11378 true_reg->umax_value = min(true_reg->umax_value, true_umax); 11379 } 11380 break; 11381 } 11382 case BPF_JSLE: 11383 case BPF_JSLT: 11384 { 11385 if (is_jmp32) { 11386 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 11387 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 11388 11389 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 11390 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 11391 } else { 11392 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 11393 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 11394 11395 false_reg->smin_value = max(false_reg->smin_value, false_smin); 11396 true_reg->smax_value = min(true_reg->smax_value, true_smax); 11397 } 11398 break; 11399 } 11400 default: 11401 return; 11402 } 11403 11404 if (is_jmp32) { 11405 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 11406 tnum_subreg(false_32off)); 11407 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 11408 tnum_subreg(true_32off)); 11409 __reg_combine_32_into_64(false_reg); 11410 __reg_combine_32_into_64(true_reg); 11411 } else { 11412 false_reg->var_off = false_64off; 11413 true_reg->var_off = true_64off; 11414 __reg_combine_64_into_32(false_reg); 11415 __reg_combine_64_into_32(true_reg); 11416 } 11417 } 11418 11419 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 11420 * the variable reg. 11421 */ 11422 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 11423 struct bpf_reg_state *false_reg, 11424 u64 val, u32 val32, 11425 u8 opcode, bool is_jmp32) 11426 { 11427 opcode = flip_opcode(opcode); 11428 /* This uses zero as "not present in table"; luckily the zero opcode, 11429 * BPF_JA, can't get here. 11430 */ 11431 if (opcode) 11432 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 11433 } 11434 11435 /* Regs are known to be equal, so intersect their min/max/var_off */ 11436 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 11437 struct bpf_reg_state *dst_reg) 11438 { 11439 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 11440 dst_reg->umin_value); 11441 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 11442 dst_reg->umax_value); 11443 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 11444 dst_reg->smin_value); 11445 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 11446 dst_reg->smax_value); 11447 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 11448 dst_reg->var_off); 11449 reg_bounds_sync(src_reg); 11450 reg_bounds_sync(dst_reg); 11451 } 11452 11453 static void reg_combine_min_max(struct bpf_reg_state *true_src, 11454 struct bpf_reg_state *true_dst, 11455 struct bpf_reg_state *false_src, 11456 struct bpf_reg_state *false_dst, 11457 u8 opcode) 11458 { 11459 switch (opcode) { 11460 case BPF_JEQ: 11461 __reg_combine_min_max(true_src, true_dst); 11462 break; 11463 case BPF_JNE: 11464 __reg_combine_min_max(false_src, false_dst); 11465 break; 11466 } 11467 } 11468 11469 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 11470 struct bpf_reg_state *reg, u32 id, 11471 bool is_null) 11472 { 11473 if (type_may_be_null(reg->type) && reg->id == id && 11474 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 11475 /* Old offset (both fixed and variable parts) should have been 11476 * known-zero, because we don't allow pointer arithmetic on 11477 * pointers that might be NULL. If we see this happening, don't 11478 * convert the register. 11479 * 11480 * But in some cases, some helpers that return local kptrs 11481 * advance offset for the returned pointer. In those cases, it 11482 * is fine to expect to see reg->off. 11483 */ 11484 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 11485 return; 11486 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL) && WARN_ON_ONCE(reg->off)) 11487 return; 11488 if (is_null) { 11489 reg->type = SCALAR_VALUE; 11490 /* We don't need id and ref_obj_id from this point 11491 * onwards anymore, thus we should better reset it, 11492 * so that state pruning has chances to take effect. 11493 */ 11494 reg->id = 0; 11495 reg->ref_obj_id = 0; 11496 11497 return; 11498 } 11499 11500 mark_ptr_not_null_reg(reg); 11501 11502 if (!reg_may_point_to_spin_lock(reg)) { 11503 /* For not-NULL ptr, reg->ref_obj_id will be reset 11504 * in release_reference(). 11505 * 11506 * reg->id is still used by spin_lock ptr. Other 11507 * than spin_lock ptr type, reg->id can be reset. 11508 */ 11509 reg->id = 0; 11510 } 11511 } 11512 } 11513 11514 /* The logic is similar to find_good_pkt_pointers(), both could eventually 11515 * be folded together at some point. 11516 */ 11517 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 11518 bool is_null) 11519 { 11520 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 11521 struct bpf_reg_state *regs = state->regs, *reg; 11522 u32 ref_obj_id = regs[regno].ref_obj_id; 11523 u32 id = regs[regno].id; 11524 11525 if (ref_obj_id && ref_obj_id == id && is_null) 11526 /* regs[regno] is in the " == NULL" branch. 11527 * No one could have freed the reference state before 11528 * doing the NULL check. 11529 */ 11530 WARN_ON_ONCE(release_reference_state(state, id)); 11531 11532 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 11533 mark_ptr_or_null_reg(state, reg, id, is_null); 11534 })); 11535 } 11536 11537 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 11538 struct bpf_reg_state *dst_reg, 11539 struct bpf_reg_state *src_reg, 11540 struct bpf_verifier_state *this_branch, 11541 struct bpf_verifier_state *other_branch) 11542 { 11543 if (BPF_SRC(insn->code) != BPF_X) 11544 return false; 11545 11546 /* Pointers are always 64-bit. */ 11547 if (BPF_CLASS(insn->code) == BPF_JMP32) 11548 return false; 11549 11550 switch (BPF_OP(insn->code)) { 11551 case BPF_JGT: 11552 if ((dst_reg->type == PTR_TO_PACKET && 11553 src_reg->type == PTR_TO_PACKET_END) || 11554 (dst_reg->type == PTR_TO_PACKET_META && 11555 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 11556 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 11557 find_good_pkt_pointers(this_branch, dst_reg, 11558 dst_reg->type, false); 11559 mark_pkt_end(other_branch, insn->dst_reg, true); 11560 } else if ((dst_reg->type == PTR_TO_PACKET_END && 11561 src_reg->type == PTR_TO_PACKET) || 11562 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 11563 src_reg->type == PTR_TO_PACKET_META)) { 11564 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 11565 find_good_pkt_pointers(other_branch, src_reg, 11566 src_reg->type, true); 11567 mark_pkt_end(this_branch, insn->src_reg, false); 11568 } else { 11569 return false; 11570 } 11571 break; 11572 case BPF_JLT: 11573 if ((dst_reg->type == PTR_TO_PACKET && 11574 src_reg->type == PTR_TO_PACKET_END) || 11575 (dst_reg->type == PTR_TO_PACKET_META && 11576 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 11577 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 11578 find_good_pkt_pointers(other_branch, dst_reg, 11579 dst_reg->type, true); 11580 mark_pkt_end(this_branch, insn->dst_reg, false); 11581 } else if ((dst_reg->type == PTR_TO_PACKET_END && 11582 src_reg->type == PTR_TO_PACKET) || 11583 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 11584 src_reg->type == PTR_TO_PACKET_META)) { 11585 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 11586 find_good_pkt_pointers(this_branch, src_reg, 11587 src_reg->type, false); 11588 mark_pkt_end(other_branch, insn->src_reg, true); 11589 } else { 11590 return false; 11591 } 11592 break; 11593 case BPF_JGE: 11594 if ((dst_reg->type == PTR_TO_PACKET && 11595 src_reg->type == PTR_TO_PACKET_END) || 11596 (dst_reg->type == PTR_TO_PACKET_META && 11597 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 11598 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 11599 find_good_pkt_pointers(this_branch, dst_reg, 11600 dst_reg->type, true); 11601 mark_pkt_end(other_branch, insn->dst_reg, false); 11602 } else if ((dst_reg->type == PTR_TO_PACKET_END && 11603 src_reg->type == PTR_TO_PACKET) || 11604 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 11605 src_reg->type == PTR_TO_PACKET_META)) { 11606 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 11607 find_good_pkt_pointers(other_branch, src_reg, 11608 src_reg->type, false); 11609 mark_pkt_end(this_branch, insn->src_reg, true); 11610 } else { 11611 return false; 11612 } 11613 break; 11614 case BPF_JLE: 11615 if ((dst_reg->type == PTR_TO_PACKET && 11616 src_reg->type == PTR_TO_PACKET_END) || 11617 (dst_reg->type == PTR_TO_PACKET_META && 11618 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 11619 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 11620 find_good_pkt_pointers(other_branch, dst_reg, 11621 dst_reg->type, false); 11622 mark_pkt_end(this_branch, insn->dst_reg, true); 11623 } else if ((dst_reg->type == PTR_TO_PACKET_END && 11624 src_reg->type == PTR_TO_PACKET) || 11625 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 11626 src_reg->type == PTR_TO_PACKET_META)) { 11627 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 11628 find_good_pkt_pointers(this_branch, src_reg, 11629 src_reg->type, true); 11630 mark_pkt_end(other_branch, insn->src_reg, false); 11631 } else { 11632 return false; 11633 } 11634 break; 11635 default: 11636 return false; 11637 } 11638 11639 return true; 11640 } 11641 11642 static void find_equal_scalars(struct bpf_verifier_state *vstate, 11643 struct bpf_reg_state *known_reg) 11644 { 11645 struct bpf_func_state *state; 11646 struct bpf_reg_state *reg; 11647 11648 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 11649 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 11650 *reg = *known_reg; 11651 })); 11652 } 11653 11654 static int check_cond_jmp_op(struct bpf_verifier_env *env, 11655 struct bpf_insn *insn, int *insn_idx) 11656 { 11657 struct bpf_verifier_state *this_branch = env->cur_state; 11658 struct bpf_verifier_state *other_branch; 11659 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 11660 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 11661 struct bpf_reg_state *eq_branch_regs; 11662 u8 opcode = BPF_OP(insn->code); 11663 bool is_jmp32; 11664 int pred = -1; 11665 int err; 11666 11667 /* Only conditional jumps are expected to reach here. */ 11668 if (opcode == BPF_JA || opcode > BPF_JSLE) { 11669 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 11670 return -EINVAL; 11671 } 11672 11673 if (BPF_SRC(insn->code) == BPF_X) { 11674 if (insn->imm != 0) { 11675 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 11676 return -EINVAL; 11677 } 11678 11679 /* check src1 operand */ 11680 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11681 if (err) 11682 return err; 11683 11684 if (is_pointer_value(env, insn->src_reg)) { 11685 verbose(env, "R%d pointer comparison prohibited\n", 11686 insn->src_reg); 11687 return -EACCES; 11688 } 11689 src_reg = ®s[insn->src_reg]; 11690 } else { 11691 if (insn->src_reg != BPF_REG_0) { 11692 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 11693 return -EINVAL; 11694 } 11695 } 11696 11697 /* check src2 operand */ 11698 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11699 if (err) 11700 return err; 11701 11702 dst_reg = ®s[insn->dst_reg]; 11703 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 11704 11705 if (BPF_SRC(insn->code) == BPF_K) { 11706 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 11707 } else if (src_reg->type == SCALAR_VALUE && 11708 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 11709 pred = is_branch_taken(dst_reg, 11710 tnum_subreg(src_reg->var_off).value, 11711 opcode, 11712 is_jmp32); 11713 } else if (src_reg->type == SCALAR_VALUE && 11714 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 11715 pred = is_branch_taken(dst_reg, 11716 src_reg->var_off.value, 11717 opcode, 11718 is_jmp32); 11719 } else if (reg_is_pkt_pointer_any(dst_reg) && 11720 reg_is_pkt_pointer_any(src_reg) && 11721 !is_jmp32) { 11722 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 11723 } 11724 11725 if (pred >= 0) { 11726 /* If we get here with a dst_reg pointer type it is because 11727 * above is_branch_taken() special cased the 0 comparison. 11728 */ 11729 if (!__is_pointer_value(false, dst_reg)) 11730 err = mark_chain_precision(env, insn->dst_reg); 11731 if (BPF_SRC(insn->code) == BPF_X && !err && 11732 !__is_pointer_value(false, src_reg)) 11733 err = mark_chain_precision(env, insn->src_reg); 11734 if (err) 11735 return err; 11736 } 11737 11738 if (pred == 1) { 11739 /* Only follow the goto, ignore fall-through. If needed, push 11740 * the fall-through branch for simulation under speculative 11741 * execution. 11742 */ 11743 if (!env->bypass_spec_v1 && 11744 !sanitize_speculative_path(env, insn, *insn_idx + 1, 11745 *insn_idx)) 11746 return -EFAULT; 11747 *insn_idx += insn->off; 11748 return 0; 11749 } else if (pred == 0) { 11750 /* Only follow the fall-through branch, since that's where the 11751 * program will go. If needed, push the goto branch for 11752 * simulation under speculative execution. 11753 */ 11754 if (!env->bypass_spec_v1 && 11755 !sanitize_speculative_path(env, insn, 11756 *insn_idx + insn->off + 1, 11757 *insn_idx)) 11758 return -EFAULT; 11759 return 0; 11760 } 11761 11762 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 11763 false); 11764 if (!other_branch) 11765 return -EFAULT; 11766 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 11767 11768 /* detect if we are comparing against a constant value so we can adjust 11769 * our min/max values for our dst register. 11770 * this is only legit if both are scalars (or pointers to the same 11771 * object, I suppose, see the PTR_MAYBE_NULL related if block below), 11772 * because otherwise the different base pointers mean the offsets aren't 11773 * comparable. 11774 */ 11775 if (BPF_SRC(insn->code) == BPF_X) { 11776 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 11777 11778 if (dst_reg->type == SCALAR_VALUE && 11779 src_reg->type == SCALAR_VALUE) { 11780 if (tnum_is_const(src_reg->var_off) || 11781 (is_jmp32 && 11782 tnum_is_const(tnum_subreg(src_reg->var_off)))) 11783 reg_set_min_max(&other_branch_regs[insn->dst_reg], 11784 dst_reg, 11785 src_reg->var_off.value, 11786 tnum_subreg(src_reg->var_off).value, 11787 opcode, is_jmp32); 11788 else if (tnum_is_const(dst_reg->var_off) || 11789 (is_jmp32 && 11790 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 11791 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 11792 src_reg, 11793 dst_reg->var_off.value, 11794 tnum_subreg(dst_reg->var_off).value, 11795 opcode, is_jmp32); 11796 else if (!is_jmp32 && 11797 (opcode == BPF_JEQ || opcode == BPF_JNE)) 11798 /* Comparing for equality, we can combine knowledge */ 11799 reg_combine_min_max(&other_branch_regs[insn->src_reg], 11800 &other_branch_regs[insn->dst_reg], 11801 src_reg, dst_reg, opcode); 11802 if (src_reg->id && 11803 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 11804 find_equal_scalars(this_branch, src_reg); 11805 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 11806 } 11807 11808 } 11809 } else if (dst_reg->type == SCALAR_VALUE) { 11810 reg_set_min_max(&other_branch_regs[insn->dst_reg], 11811 dst_reg, insn->imm, (u32)insn->imm, 11812 opcode, is_jmp32); 11813 } 11814 11815 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 11816 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 11817 find_equal_scalars(this_branch, dst_reg); 11818 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 11819 } 11820 11821 /* if one pointer register is compared to another pointer 11822 * register check if PTR_MAYBE_NULL could be lifted. 11823 * E.g. register A - maybe null 11824 * register B - not null 11825 * for JNE A, B, ... - A is not null in the false branch; 11826 * for JEQ A, B, ... - A is not null in the true branch. 11827 * 11828 * Since PTR_TO_BTF_ID points to a kernel struct that does 11829 * not need to be null checked by the BPF program, i.e., 11830 * could be null even without PTR_MAYBE_NULL marking, so 11831 * only propagate nullness when neither reg is that type. 11832 */ 11833 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 11834 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 11835 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 11836 base_type(src_reg->type) != PTR_TO_BTF_ID && 11837 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 11838 eq_branch_regs = NULL; 11839 switch (opcode) { 11840 case BPF_JEQ: 11841 eq_branch_regs = other_branch_regs; 11842 break; 11843 case BPF_JNE: 11844 eq_branch_regs = regs; 11845 break; 11846 default: 11847 /* do nothing */ 11848 break; 11849 } 11850 if (eq_branch_regs) { 11851 if (type_may_be_null(src_reg->type)) 11852 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 11853 else 11854 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 11855 } 11856 } 11857 11858 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 11859 * NOTE: these optimizations below are related with pointer comparison 11860 * which will never be JMP32. 11861 */ 11862 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 11863 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 11864 type_may_be_null(dst_reg->type)) { 11865 /* Mark all identical registers in each branch as either 11866 * safe or unknown depending R == 0 or R != 0 conditional. 11867 */ 11868 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 11869 opcode == BPF_JNE); 11870 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 11871 opcode == BPF_JEQ); 11872 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 11873 this_branch, other_branch) && 11874 is_pointer_value(env, insn->dst_reg)) { 11875 verbose(env, "R%d pointer comparison prohibited\n", 11876 insn->dst_reg); 11877 return -EACCES; 11878 } 11879 if (env->log.level & BPF_LOG_LEVEL) 11880 print_insn_state(env, this_branch->frame[this_branch->curframe]); 11881 return 0; 11882 } 11883 11884 /* verify BPF_LD_IMM64 instruction */ 11885 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 11886 { 11887 struct bpf_insn_aux_data *aux = cur_aux(env); 11888 struct bpf_reg_state *regs = cur_regs(env); 11889 struct bpf_reg_state *dst_reg; 11890 struct bpf_map *map; 11891 int err; 11892 11893 if (BPF_SIZE(insn->code) != BPF_DW) { 11894 verbose(env, "invalid BPF_LD_IMM insn\n"); 11895 return -EINVAL; 11896 } 11897 if (insn->off != 0) { 11898 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 11899 return -EINVAL; 11900 } 11901 11902 err = check_reg_arg(env, insn->dst_reg, DST_OP); 11903 if (err) 11904 return err; 11905 11906 dst_reg = ®s[insn->dst_reg]; 11907 if (insn->src_reg == 0) { 11908 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 11909 11910 dst_reg->type = SCALAR_VALUE; 11911 __mark_reg_known(®s[insn->dst_reg], imm); 11912 return 0; 11913 } 11914 11915 /* All special src_reg cases are listed below. From this point onwards 11916 * we either succeed and assign a corresponding dst_reg->type after 11917 * zeroing the offset, or fail and reject the program. 11918 */ 11919 mark_reg_known_zero(env, regs, insn->dst_reg); 11920 11921 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 11922 dst_reg->type = aux->btf_var.reg_type; 11923 switch (base_type(dst_reg->type)) { 11924 case PTR_TO_MEM: 11925 dst_reg->mem_size = aux->btf_var.mem_size; 11926 break; 11927 case PTR_TO_BTF_ID: 11928 dst_reg->btf = aux->btf_var.btf; 11929 dst_reg->btf_id = aux->btf_var.btf_id; 11930 break; 11931 default: 11932 verbose(env, "bpf verifier is misconfigured\n"); 11933 return -EFAULT; 11934 } 11935 return 0; 11936 } 11937 11938 if (insn->src_reg == BPF_PSEUDO_FUNC) { 11939 struct bpf_prog_aux *aux = env->prog->aux; 11940 u32 subprogno = find_subprog(env, 11941 env->insn_idx + insn->imm + 1); 11942 11943 if (!aux->func_info) { 11944 verbose(env, "missing btf func_info\n"); 11945 return -EINVAL; 11946 } 11947 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 11948 verbose(env, "callback function not static\n"); 11949 return -EINVAL; 11950 } 11951 11952 dst_reg->type = PTR_TO_FUNC; 11953 dst_reg->subprogno = subprogno; 11954 return 0; 11955 } 11956 11957 map = env->used_maps[aux->map_index]; 11958 dst_reg->map_ptr = map; 11959 11960 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 11961 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 11962 dst_reg->type = PTR_TO_MAP_VALUE; 11963 dst_reg->off = aux->map_off; 11964 WARN_ON_ONCE(map->max_entries != 1); 11965 /* We want reg->id to be same (0) as map_value is not distinct */ 11966 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 11967 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 11968 dst_reg->type = CONST_PTR_TO_MAP; 11969 } else { 11970 verbose(env, "bpf verifier is misconfigured\n"); 11971 return -EINVAL; 11972 } 11973 11974 return 0; 11975 } 11976 11977 static bool may_access_skb(enum bpf_prog_type type) 11978 { 11979 switch (type) { 11980 case BPF_PROG_TYPE_SOCKET_FILTER: 11981 case BPF_PROG_TYPE_SCHED_CLS: 11982 case BPF_PROG_TYPE_SCHED_ACT: 11983 return true; 11984 default: 11985 return false; 11986 } 11987 } 11988 11989 /* verify safety of LD_ABS|LD_IND instructions: 11990 * - they can only appear in the programs where ctx == skb 11991 * - since they are wrappers of function calls, they scratch R1-R5 registers, 11992 * preserve R6-R9, and store return value into R0 11993 * 11994 * Implicit input: 11995 * ctx == skb == R6 == CTX 11996 * 11997 * Explicit input: 11998 * SRC == any register 11999 * IMM == 32-bit immediate 12000 * 12001 * Output: 12002 * R0 - 8/16/32-bit skb data converted to cpu endianness 12003 */ 12004 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 12005 { 12006 struct bpf_reg_state *regs = cur_regs(env); 12007 static const int ctx_reg = BPF_REG_6; 12008 u8 mode = BPF_MODE(insn->code); 12009 int i, err; 12010 12011 if (!may_access_skb(resolve_prog_type(env->prog))) { 12012 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 12013 return -EINVAL; 12014 } 12015 12016 if (!env->ops->gen_ld_abs) { 12017 verbose(env, "bpf verifier is misconfigured\n"); 12018 return -EINVAL; 12019 } 12020 12021 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 12022 BPF_SIZE(insn->code) == BPF_DW || 12023 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 12024 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 12025 return -EINVAL; 12026 } 12027 12028 /* check whether implicit source operand (register R6) is readable */ 12029 err = check_reg_arg(env, ctx_reg, SRC_OP); 12030 if (err) 12031 return err; 12032 12033 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 12034 * gen_ld_abs() may terminate the program at runtime, leading to 12035 * reference leak. 12036 */ 12037 err = check_reference_leak(env); 12038 if (err) { 12039 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 12040 return err; 12041 } 12042 12043 if (env->cur_state->active_lock.ptr) { 12044 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 12045 return -EINVAL; 12046 } 12047 12048 if (env->cur_state->active_rcu_lock) { 12049 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 12050 return -EINVAL; 12051 } 12052 12053 if (regs[ctx_reg].type != PTR_TO_CTX) { 12054 verbose(env, 12055 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 12056 return -EINVAL; 12057 } 12058 12059 if (mode == BPF_IND) { 12060 /* check explicit source operand */ 12061 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12062 if (err) 12063 return err; 12064 } 12065 12066 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 12067 if (err < 0) 12068 return err; 12069 12070 /* reset caller saved regs to unreadable */ 12071 for (i = 0; i < CALLER_SAVED_REGS; i++) { 12072 mark_reg_not_init(env, regs, caller_saved[i]); 12073 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 12074 } 12075 12076 /* mark destination R0 register as readable, since it contains 12077 * the value fetched from the packet. 12078 * Already marked as written above. 12079 */ 12080 mark_reg_unknown(env, regs, BPF_REG_0); 12081 /* ld_abs load up to 32-bit skb data. */ 12082 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 12083 return 0; 12084 } 12085 12086 static int check_return_code(struct bpf_verifier_env *env) 12087 { 12088 struct tnum enforce_attach_type_range = tnum_unknown; 12089 const struct bpf_prog *prog = env->prog; 12090 struct bpf_reg_state *reg; 12091 struct tnum range = tnum_range(0, 1); 12092 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 12093 int err; 12094 struct bpf_func_state *frame = env->cur_state->frame[0]; 12095 const bool is_subprog = frame->subprogno; 12096 12097 /* LSM and struct_ops func-ptr's return type could be "void" */ 12098 if (!is_subprog) { 12099 switch (prog_type) { 12100 case BPF_PROG_TYPE_LSM: 12101 if (prog->expected_attach_type == BPF_LSM_CGROUP) 12102 /* See below, can be 0 or 0-1 depending on hook. */ 12103 break; 12104 fallthrough; 12105 case BPF_PROG_TYPE_STRUCT_OPS: 12106 if (!prog->aux->attach_func_proto->type) 12107 return 0; 12108 break; 12109 default: 12110 break; 12111 } 12112 } 12113 12114 /* eBPF calling convention is such that R0 is used 12115 * to return the value from eBPF program. 12116 * Make sure that it's readable at this time 12117 * of bpf_exit, which means that program wrote 12118 * something into it earlier 12119 */ 12120 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 12121 if (err) 12122 return err; 12123 12124 if (is_pointer_value(env, BPF_REG_0)) { 12125 verbose(env, "R0 leaks addr as return value\n"); 12126 return -EACCES; 12127 } 12128 12129 reg = cur_regs(env) + BPF_REG_0; 12130 12131 if (frame->in_async_callback_fn) { 12132 /* enforce return zero from async callbacks like timer */ 12133 if (reg->type != SCALAR_VALUE) { 12134 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 12135 reg_type_str(env, reg->type)); 12136 return -EINVAL; 12137 } 12138 12139 if (!tnum_in(tnum_const(0), reg->var_off)) { 12140 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 12141 return -EINVAL; 12142 } 12143 return 0; 12144 } 12145 12146 if (is_subprog) { 12147 if (reg->type != SCALAR_VALUE) { 12148 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 12149 reg_type_str(env, reg->type)); 12150 return -EINVAL; 12151 } 12152 return 0; 12153 } 12154 12155 switch (prog_type) { 12156 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 12157 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 12158 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 12159 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 12160 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 12161 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 12162 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 12163 range = tnum_range(1, 1); 12164 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 12165 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 12166 range = tnum_range(0, 3); 12167 break; 12168 case BPF_PROG_TYPE_CGROUP_SKB: 12169 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 12170 range = tnum_range(0, 3); 12171 enforce_attach_type_range = tnum_range(2, 3); 12172 } 12173 break; 12174 case BPF_PROG_TYPE_CGROUP_SOCK: 12175 case BPF_PROG_TYPE_SOCK_OPS: 12176 case BPF_PROG_TYPE_CGROUP_DEVICE: 12177 case BPF_PROG_TYPE_CGROUP_SYSCTL: 12178 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 12179 break; 12180 case BPF_PROG_TYPE_RAW_TRACEPOINT: 12181 if (!env->prog->aux->attach_btf_id) 12182 return 0; 12183 range = tnum_const(0); 12184 break; 12185 case BPF_PROG_TYPE_TRACING: 12186 switch (env->prog->expected_attach_type) { 12187 case BPF_TRACE_FENTRY: 12188 case BPF_TRACE_FEXIT: 12189 range = tnum_const(0); 12190 break; 12191 case BPF_TRACE_RAW_TP: 12192 case BPF_MODIFY_RETURN: 12193 return 0; 12194 case BPF_TRACE_ITER: 12195 break; 12196 default: 12197 return -ENOTSUPP; 12198 } 12199 break; 12200 case BPF_PROG_TYPE_SK_LOOKUP: 12201 range = tnum_range(SK_DROP, SK_PASS); 12202 break; 12203 12204 case BPF_PROG_TYPE_LSM: 12205 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 12206 /* Regular BPF_PROG_TYPE_LSM programs can return 12207 * any value. 12208 */ 12209 return 0; 12210 } 12211 if (!env->prog->aux->attach_func_proto->type) { 12212 /* Make sure programs that attach to void 12213 * hooks don't try to modify return value. 12214 */ 12215 range = tnum_range(1, 1); 12216 } 12217 break; 12218 12219 case BPF_PROG_TYPE_EXT: 12220 /* freplace program can return anything as its return value 12221 * depends on the to-be-replaced kernel func or bpf program. 12222 */ 12223 default: 12224 return 0; 12225 } 12226 12227 if (reg->type != SCALAR_VALUE) { 12228 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 12229 reg_type_str(env, reg->type)); 12230 return -EINVAL; 12231 } 12232 12233 if (!tnum_in(range, reg->var_off)) { 12234 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 12235 if (prog->expected_attach_type == BPF_LSM_CGROUP && 12236 prog_type == BPF_PROG_TYPE_LSM && 12237 !prog->aux->attach_func_proto->type) 12238 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 12239 return -EINVAL; 12240 } 12241 12242 if (!tnum_is_unknown(enforce_attach_type_range) && 12243 tnum_in(enforce_attach_type_range, reg->var_off)) 12244 env->prog->enforce_expected_attach_type = 1; 12245 return 0; 12246 } 12247 12248 /* non-recursive DFS pseudo code 12249 * 1 procedure DFS-iterative(G,v): 12250 * 2 label v as discovered 12251 * 3 let S be a stack 12252 * 4 S.push(v) 12253 * 5 while S is not empty 12254 * 6 t <- S.peek() 12255 * 7 if t is what we're looking for: 12256 * 8 return t 12257 * 9 for all edges e in G.adjacentEdges(t) do 12258 * 10 if edge e is already labelled 12259 * 11 continue with the next edge 12260 * 12 w <- G.adjacentVertex(t,e) 12261 * 13 if vertex w is not discovered and not explored 12262 * 14 label e as tree-edge 12263 * 15 label w as discovered 12264 * 16 S.push(w) 12265 * 17 continue at 5 12266 * 18 else if vertex w is discovered 12267 * 19 label e as back-edge 12268 * 20 else 12269 * 21 // vertex w is explored 12270 * 22 label e as forward- or cross-edge 12271 * 23 label t as explored 12272 * 24 S.pop() 12273 * 12274 * convention: 12275 * 0x10 - discovered 12276 * 0x11 - discovered and fall-through edge labelled 12277 * 0x12 - discovered and fall-through and branch edges labelled 12278 * 0x20 - explored 12279 */ 12280 12281 enum { 12282 DISCOVERED = 0x10, 12283 EXPLORED = 0x20, 12284 FALLTHROUGH = 1, 12285 BRANCH = 2, 12286 }; 12287 12288 static u32 state_htab_size(struct bpf_verifier_env *env) 12289 { 12290 return env->prog->len; 12291 } 12292 12293 static struct bpf_verifier_state_list **explored_state( 12294 struct bpf_verifier_env *env, 12295 int idx) 12296 { 12297 struct bpf_verifier_state *cur = env->cur_state; 12298 struct bpf_func_state *state = cur->frame[cur->curframe]; 12299 12300 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 12301 } 12302 12303 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 12304 { 12305 env->insn_aux_data[idx].prune_point = true; 12306 } 12307 12308 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 12309 { 12310 return env->insn_aux_data[insn_idx].prune_point; 12311 } 12312 12313 enum { 12314 DONE_EXPLORING = 0, 12315 KEEP_EXPLORING = 1, 12316 }; 12317 12318 /* t, w, e - match pseudo-code above: 12319 * t - index of current instruction 12320 * w - next instruction 12321 * e - edge 12322 */ 12323 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 12324 bool loop_ok) 12325 { 12326 int *insn_stack = env->cfg.insn_stack; 12327 int *insn_state = env->cfg.insn_state; 12328 12329 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 12330 return DONE_EXPLORING; 12331 12332 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 12333 return DONE_EXPLORING; 12334 12335 if (w < 0 || w >= env->prog->len) { 12336 verbose_linfo(env, t, "%d: ", t); 12337 verbose(env, "jump out of range from insn %d to %d\n", t, w); 12338 return -EINVAL; 12339 } 12340 12341 if (e == BRANCH) { 12342 /* mark branch target for state pruning */ 12343 mark_prune_point(env, w); 12344 mark_jmp_point(env, w); 12345 } 12346 12347 if (insn_state[w] == 0) { 12348 /* tree-edge */ 12349 insn_state[t] = DISCOVERED | e; 12350 insn_state[w] = DISCOVERED; 12351 if (env->cfg.cur_stack >= env->prog->len) 12352 return -E2BIG; 12353 insn_stack[env->cfg.cur_stack++] = w; 12354 return KEEP_EXPLORING; 12355 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 12356 if (loop_ok && env->bpf_capable) 12357 return DONE_EXPLORING; 12358 verbose_linfo(env, t, "%d: ", t); 12359 verbose_linfo(env, w, "%d: ", w); 12360 verbose(env, "back-edge from insn %d to %d\n", t, w); 12361 return -EINVAL; 12362 } else if (insn_state[w] == EXPLORED) { 12363 /* forward- or cross-edge */ 12364 insn_state[t] = DISCOVERED | e; 12365 } else { 12366 verbose(env, "insn state internal bug\n"); 12367 return -EFAULT; 12368 } 12369 return DONE_EXPLORING; 12370 } 12371 12372 static int visit_func_call_insn(int t, struct bpf_insn *insns, 12373 struct bpf_verifier_env *env, 12374 bool visit_callee) 12375 { 12376 int ret; 12377 12378 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 12379 if (ret) 12380 return ret; 12381 12382 mark_prune_point(env, t + 1); 12383 /* when we exit from subprog, we need to record non-linear history */ 12384 mark_jmp_point(env, t + 1); 12385 12386 if (visit_callee) { 12387 mark_prune_point(env, t); 12388 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 12389 /* It's ok to allow recursion from CFG point of 12390 * view. __check_func_call() will do the actual 12391 * check. 12392 */ 12393 bpf_pseudo_func(insns + t)); 12394 } 12395 return ret; 12396 } 12397 12398 /* Visits the instruction at index t and returns one of the following: 12399 * < 0 - an error occurred 12400 * DONE_EXPLORING - the instruction was fully explored 12401 * KEEP_EXPLORING - there is still work to be done before it is fully explored 12402 */ 12403 static int visit_insn(int t, struct bpf_verifier_env *env) 12404 { 12405 struct bpf_insn *insns = env->prog->insnsi; 12406 int ret; 12407 12408 if (bpf_pseudo_func(insns + t)) 12409 return visit_func_call_insn(t, insns, env, true); 12410 12411 /* All non-branch instructions have a single fall-through edge. */ 12412 if (BPF_CLASS(insns[t].code) != BPF_JMP && 12413 BPF_CLASS(insns[t].code) != BPF_JMP32) 12414 return push_insn(t, t + 1, FALLTHROUGH, env, false); 12415 12416 switch (BPF_OP(insns[t].code)) { 12417 case BPF_EXIT: 12418 return DONE_EXPLORING; 12419 12420 case BPF_CALL: 12421 if (insns[t].imm == BPF_FUNC_timer_set_callback) 12422 /* Mark this call insn as a prune point to trigger 12423 * is_state_visited() check before call itself is 12424 * processed by __check_func_call(). Otherwise new 12425 * async state will be pushed for further exploration. 12426 */ 12427 mark_prune_point(env, t); 12428 return visit_func_call_insn(t, insns, env, 12429 insns[t].src_reg == BPF_PSEUDO_CALL); 12430 12431 case BPF_JA: 12432 if (BPF_SRC(insns[t].code) != BPF_K) 12433 return -EINVAL; 12434 12435 /* unconditional jump with single edge */ 12436 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 12437 true); 12438 if (ret) 12439 return ret; 12440 12441 mark_prune_point(env, t + insns[t].off + 1); 12442 mark_jmp_point(env, t + insns[t].off + 1); 12443 12444 return ret; 12445 12446 default: 12447 /* conditional jump with two edges */ 12448 mark_prune_point(env, t); 12449 12450 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 12451 if (ret) 12452 return ret; 12453 12454 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 12455 } 12456 } 12457 12458 /* non-recursive depth-first-search to detect loops in BPF program 12459 * loop == back-edge in directed graph 12460 */ 12461 static int check_cfg(struct bpf_verifier_env *env) 12462 { 12463 int insn_cnt = env->prog->len; 12464 int *insn_stack, *insn_state; 12465 int ret = 0; 12466 int i; 12467 12468 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 12469 if (!insn_state) 12470 return -ENOMEM; 12471 12472 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 12473 if (!insn_stack) { 12474 kvfree(insn_state); 12475 return -ENOMEM; 12476 } 12477 12478 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 12479 insn_stack[0] = 0; /* 0 is the first instruction */ 12480 env->cfg.cur_stack = 1; 12481 12482 while (env->cfg.cur_stack > 0) { 12483 int t = insn_stack[env->cfg.cur_stack - 1]; 12484 12485 ret = visit_insn(t, env); 12486 switch (ret) { 12487 case DONE_EXPLORING: 12488 insn_state[t] = EXPLORED; 12489 env->cfg.cur_stack--; 12490 break; 12491 case KEEP_EXPLORING: 12492 break; 12493 default: 12494 if (ret > 0) { 12495 verbose(env, "visit_insn internal bug\n"); 12496 ret = -EFAULT; 12497 } 12498 goto err_free; 12499 } 12500 } 12501 12502 if (env->cfg.cur_stack < 0) { 12503 verbose(env, "pop stack internal bug\n"); 12504 ret = -EFAULT; 12505 goto err_free; 12506 } 12507 12508 for (i = 0; i < insn_cnt; i++) { 12509 if (insn_state[i] != EXPLORED) { 12510 verbose(env, "unreachable insn %d\n", i); 12511 ret = -EINVAL; 12512 goto err_free; 12513 } 12514 } 12515 ret = 0; /* cfg looks good */ 12516 12517 err_free: 12518 kvfree(insn_state); 12519 kvfree(insn_stack); 12520 env->cfg.insn_state = env->cfg.insn_stack = NULL; 12521 return ret; 12522 } 12523 12524 static int check_abnormal_return(struct bpf_verifier_env *env) 12525 { 12526 int i; 12527 12528 for (i = 1; i < env->subprog_cnt; i++) { 12529 if (env->subprog_info[i].has_ld_abs) { 12530 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 12531 return -EINVAL; 12532 } 12533 if (env->subprog_info[i].has_tail_call) { 12534 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 12535 return -EINVAL; 12536 } 12537 } 12538 return 0; 12539 } 12540 12541 /* The minimum supported BTF func info size */ 12542 #define MIN_BPF_FUNCINFO_SIZE 8 12543 #define MAX_FUNCINFO_REC_SIZE 252 12544 12545 static int check_btf_func(struct bpf_verifier_env *env, 12546 const union bpf_attr *attr, 12547 bpfptr_t uattr) 12548 { 12549 const struct btf_type *type, *func_proto, *ret_type; 12550 u32 i, nfuncs, urec_size, min_size; 12551 u32 krec_size = sizeof(struct bpf_func_info); 12552 struct bpf_func_info *krecord; 12553 struct bpf_func_info_aux *info_aux = NULL; 12554 struct bpf_prog *prog; 12555 const struct btf *btf; 12556 bpfptr_t urecord; 12557 u32 prev_offset = 0; 12558 bool scalar_return; 12559 int ret = -ENOMEM; 12560 12561 nfuncs = attr->func_info_cnt; 12562 if (!nfuncs) { 12563 if (check_abnormal_return(env)) 12564 return -EINVAL; 12565 return 0; 12566 } 12567 12568 if (nfuncs != env->subprog_cnt) { 12569 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 12570 return -EINVAL; 12571 } 12572 12573 urec_size = attr->func_info_rec_size; 12574 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 12575 urec_size > MAX_FUNCINFO_REC_SIZE || 12576 urec_size % sizeof(u32)) { 12577 verbose(env, "invalid func info rec size %u\n", urec_size); 12578 return -EINVAL; 12579 } 12580 12581 prog = env->prog; 12582 btf = prog->aux->btf; 12583 12584 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 12585 min_size = min_t(u32, krec_size, urec_size); 12586 12587 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 12588 if (!krecord) 12589 return -ENOMEM; 12590 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 12591 if (!info_aux) 12592 goto err_free; 12593 12594 for (i = 0; i < nfuncs; i++) { 12595 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 12596 if (ret) { 12597 if (ret == -E2BIG) { 12598 verbose(env, "nonzero tailing record in func info"); 12599 /* set the size kernel expects so loader can zero 12600 * out the rest of the record. 12601 */ 12602 if (copy_to_bpfptr_offset(uattr, 12603 offsetof(union bpf_attr, func_info_rec_size), 12604 &min_size, sizeof(min_size))) 12605 ret = -EFAULT; 12606 } 12607 goto err_free; 12608 } 12609 12610 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 12611 ret = -EFAULT; 12612 goto err_free; 12613 } 12614 12615 /* check insn_off */ 12616 ret = -EINVAL; 12617 if (i == 0) { 12618 if (krecord[i].insn_off) { 12619 verbose(env, 12620 "nonzero insn_off %u for the first func info record", 12621 krecord[i].insn_off); 12622 goto err_free; 12623 } 12624 } else if (krecord[i].insn_off <= prev_offset) { 12625 verbose(env, 12626 "same or smaller insn offset (%u) than previous func info record (%u)", 12627 krecord[i].insn_off, prev_offset); 12628 goto err_free; 12629 } 12630 12631 if (env->subprog_info[i].start != krecord[i].insn_off) { 12632 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 12633 goto err_free; 12634 } 12635 12636 /* check type_id */ 12637 type = btf_type_by_id(btf, krecord[i].type_id); 12638 if (!type || !btf_type_is_func(type)) { 12639 verbose(env, "invalid type id %d in func info", 12640 krecord[i].type_id); 12641 goto err_free; 12642 } 12643 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 12644 12645 func_proto = btf_type_by_id(btf, type->type); 12646 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 12647 /* btf_func_check() already verified it during BTF load */ 12648 goto err_free; 12649 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 12650 scalar_return = 12651 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 12652 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 12653 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 12654 goto err_free; 12655 } 12656 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 12657 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 12658 goto err_free; 12659 } 12660 12661 prev_offset = krecord[i].insn_off; 12662 bpfptr_add(&urecord, urec_size); 12663 } 12664 12665 prog->aux->func_info = krecord; 12666 prog->aux->func_info_cnt = nfuncs; 12667 prog->aux->func_info_aux = info_aux; 12668 return 0; 12669 12670 err_free: 12671 kvfree(krecord); 12672 kfree(info_aux); 12673 return ret; 12674 } 12675 12676 static void adjust_btf_func(struct bpf_verifier_env *env) 12677 { 12678 struct bpf_prog_aux *aux = env->prog->aux; 12679 int i; 12680 12681 if (!aux->func_info) 12682 return; 12683 12684 for (i = 0; i < env->subprog_cnt; i++) 12685 aux->func_info[i].insn_off = env->subprog_info[i].start; 12686 } 12687 12688 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 12689 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 12690 12691 static int check_btf_line(struct bpf_verifier_env *env, 12692 const union bpf_attr *attr, 12693 bpfptr_t uattr) 12694 { 12695 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 12696 struct bpf_subprog_info *sub; 12697 struct bpf_line_info *linfo; 12698 struct bpf_prog *prog; 12699 const struct btf *btf; 12700 bpfptr_t ulinfo; 12701 int err; 12702 12703 nr_linfo = attr->line_info_cnt; 12704 if (!nr_linfo) 12705 return 0; 12706 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 12707 return -EINVAL; 12708 12709 rec_size = attr->line_info_rec_size; 12710 if (rec_size < MIN_BPF_LINEINFO_SIZE || 12711 rec_size > MAX_LINEINFO_REC_SIZE || 12712 rec_size & (sizeof(u32) - 1)) 12713 return -EINVAL; 12714 12715 /* Need to zero it in case the userspace may 12716 * pass in a smaller bpf_line_info object. 12717 */ 12718 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 12719 GFP_KERNEL | __GFP_NOWARN); 12720 if (!linfo) 12721 return -ENOMEM; 12722 12723 prog = env->prog; 12724 btf = prog->aux->btf; 12725 12726 s = 0; 12727 sub = env->subprog_info; 12728 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 12729 expected_size = sizeof(struct bpf_line_info); 12730 ncopy = min_t(u32, expected_size, rec_size); 12731 for (i = 0; i < nr_linfo; i++) { 12732 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 12733 if (err) { 12734 if (err == -E2BIG) { 12735 verbose(env, "nonzero tailing record in line_info"); 12736 if (copy_to_bpfptr_offset(uattr, 12737 offsetof(union bpf_attr, line_info_rec_size), 12738 &expected_size, sizeof(expected_size))) 12739 err = -EFAULT; 12740 } 12741 goto err_free; 12742 } 12743 12744 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 12745 err = -EFAULT; 12746 goto err_free; 12747 } 12748 12749 /* 12750 * Check insn_off to ensure 12751 * 1) strictly increasing AND 12752 * 2) bounded by prog->len 12753 * 12754 * The linfo[0].insn_off == 0 check logically falls into 12755 * the later "missing bpf_line_info for func..." case 12756 * because the first linfo[0].insn_off must be the 12757 * first sub also and the first sub must have 12758 * subprog_info[0].start == 0. 12759 */ 12760 if ((i && linfo[i].insn_off <= prev_offset) || 12761 linfo[i].insn_off >= prog->len) { 12762 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 12763 i, linfo[i].insn_off, prev_offset, 12764 prog->len); 12765 err = -EINVAL; 12766 goto err_free; 12767 } 12768 12769 if (!prog->insnsi[linfo[i].insn_off].code) { 12770 verbose(env, 12771 "Invalid insn code at line_info[%u].insn_off\n", 12772 i); 12773 err = -EINVAL; 12774 goto err_free; 12775 } 12776 12777 if (!btf_name_by_offset(btf, linfo[i].line_off) || 12778 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 12779 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 12780 err = -EINVAL; 12781 goto err_free; 12782 } 12783 12784 if (s != env->subprog_cnt) { 12785 if (linfo[i].insn_off == sub[s].start) { 12786 sub[s].linfo_idx = i; 12787 s++; 12788 } else if (sub[s].start < linfo[i].insn_off) { 12789 verbose(env, "missing bpf_line_info for func#%u\n", s); 12790 err = -EINVAL; 12791 goto err_free; 12792 } 12793 } 12794 12795 prev_offset = linfo[i].insn_off; 12796 bpfptr_add(&ulinfo, rec_size); 12797 } 12798 12799 if (s != env->subprog_cnt) { 12800 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 12801 env->subprog_cnt - s, s); 12802 err = -EINVAL; 12803 goto err_free; 12804 } 12805 12806 prog->aux->linfo = linfo; 12807 prog->aux->nr_linfo = nr_linfo; 12808 12809 return 0; 12810 12811 err_free: 12812 kvfree(linfo); 12813 return err; 12814 } 12815 12816 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 12817 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 12818 12819 static int check_core_relo(struct bpf_verifier_env *env, 12820 const union bpf_attr *attr, 12821 bpfptr_t uattr) 12822 { 12823 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 12824 struct bpf_core_relo core_relo = {}; 12825 struct bpf_prog *prog = env->prog; 12826 const struct btf *btf = prog->aux->btf; 12827 struct bpf_core_ctx ctx = { 12828 .log = &env->log, 12829 .btf = btf, 12830 }; 12831 bpfptr_t u_core_relo; 12832 int err; 12833 12834 nr_core_relo = attr->core_relo_cnt; 12835 if (!nr_core_relo) 12836 return 0; 12837 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 12838 return -EINVAL; 12839 12840 rec_size = attr->core_relo_rec_size; 12841 if (rec_size < MIN_CORE_RELO_SIZE || 12842 rec_size > MAX_CORE_RELO_SIZE || 12843 rec_size % sizeof(u32)) 12844 return -EINVAL; 12845 12846 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 12847 expected_size = sizeof(struct bpf_core_relo); 12848 ncopy = min_t(u32, expected_size, rec_size); 12849 12850 /* Unlike func_info and line_info, copy and apply each CO-RE 12851 * relocation record one at a time. 12852 */ 12853 for (i = 0; i < nr_core_relo; i++) { 12854 /* future proofing when sizeof(bpf_core_relo) changes */ 12855 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 12856 if (err) { 12857 if (err == -E2BIG) { 12858 verbose(env, "nonzero tailing record in core_relo"); 12859 if (copy_to_bpfptr_offset(uattr, 12860 offsetof(union bpf_attr, core_relo_rec_size), 12861 &expected_size, sizeof(expected_size))) 12862 err = -EFAULT; 12863 } 12864 break; 12865 } 12866 12867 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 12868 err = -EFAULT; 12869 break; 12870 } 12871 12872 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 12873 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 12874 i, core_relo.insn_off, prog->len); 12875 err = -EINVAL; 12876 break; 12877 } 12878 12879 err = bpf_core_apply(&ctx, &core_relo, i, 12880 &prog->insnsi[core_relo.insn_off / 8]); 12881 if (err) 12882 break; 12883 bpfptr_add(&u_core_relo, rec_size); 12884 } 12885 return err; 12886 } 12887 12888 static int check_btf_info(struct bpf_verifier_env *env, 12889 const union bpf_attr *attr, 12890 bpfptr_t uattr) 12891 { 12892 struct btf *btf; 12893 int err; 12894 12895 if (!attr->func_info_cnt && !attr->line_info_cnt) { 12896 if (check_abnormal_return(env)) 12897 return -EINVAL; 12898 return 0; 12899 } 12900 12901 btf = btf_get_by_fd(attr->prog_btf_fd); 12902 if (IS_ERR(btf)) 12903 return PTR_ERR(btf); 12904 if (btf_is_kernel(btf)) { 12905 btf_put(btf); 12906 return -EACCES; 12907 } 12908 env->prog->aux->btf = btf; 12909 12910 err = check_btf_func(env, attr, uattr); 12911 if (err) 12912 return err; 12913 12914 err = check_btf_line(env, attr, uattr); 12915 if (err) 12916 return err; 12917 12918 err = check_core_relo(env, attr, uattr); 12919 if (err) 12920 return err; 12921 12922 return 0; 12923 } 12924 12925 /* check %cur's range satisfies %old's */ 12926 static bool range_within(struct bpf_reg_state *old, 12927 struct bpf_reg_state *cur) 12928 { 12929 return old->umin_value <= cur->umin_value && 12930 old->umax_value >= cur->umax_value && 12931 old->smin_value <= cur->smin_value && 12932 old->smax_value >= cur->smax_value && 12933 old->u32_min_value <= cur->u32_min_value && 12934 old->u32_max_value >= cur->u32_max_value && 12935 old->s32_min_value <= cur->s32_min_value && 12936 old->s32_max_value >= cur->s32_max_value; 12937 } 12938 12939 /* If in the old state two registers had the same id, then they need to have 12940 * the same id in the new state as well. But that id could be different from 12941 * the old state, so we need to track the mapping from old to new ids. 12942 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 12943 * regs with old id 5 must also have new id 9 for the new state to be safe. But 12944 * regs with a different old id could still have new id 9, we don't care about 12945 * that. 12946 * So we look through our idmap to see if this old id has been seen before. If 12947 * so, we require the new id to match; otherwise, we add the id pair to the map. 12948 */ 12949 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 12950 { 12951 unsigned int i; 12952 12953 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 12954 if (!idmap[i].old) { 12955 /* Reached an empty slot; haven't seen this id before */ 12956 idmap[i].old = old_id; 12957 idmap[i].cur = cur_id; 12958 return true; 12959 } 12960 if (idmap[i].old == old_id) 12961 return idmap[i].cur == cur_id; 12962 } 12963 /* We ran out of idmap slots, which should be impossible */ 12964 WARN_ON_ONCE(1); 12965 return false; 12966 } 12967 12968 static void clean_func_state(struct bpf_verifier_env *env, 12969 struct bpf_func_state *st) 12970 { 12971 enum bpf_reg_liveness live; 12972 int i, j; 12973 12974 for (i = 0; i < BPF_REG_FP; i++) { 12975 live = st->regs[i].live; 12976 /* liveness must not touch this register anymore */ 12977 st->regs[i].live |= REG_LIVE_DONE; 12978 if (!(live & REG_LIVE_READ)) 12979 /* since the register is unused, clear its state 12980 * to make further comparison simpler 12981 */ 12982 __mark_reg_not_init(env, &st->regs[i]); 12983 } 12984 12985 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 12986 live = st->stack[i].spilled_ptr.live; 12987 /* liveness must not touch this stack slot anymore */ 12988 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 12989 if (!(live & REG_LIVE_READ)) { 12990 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 12991 for (j = 0; j < BPF_REG_SIZE; j++) 12992 st->stack[i].slot_type[j] = STACK_INVALID; 12993 } 12994 } 12995 } 12996 12997 static void clean_verifier_state(struct bpf_verifier_env *env, 12998 struct bpf_verifier_state *st) 12999 { 13000 int i; 13001 13002 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 13003 /* all regs in this state in all frames were already marked */ 13004 return; 13005 13006 for (i = 0; i <= st->curframe; i++) 13007 clean_func_state(env, st->frame[i]); 13008 } 13009 13010 /* the parentage chains form a tree. 13011 * the verifier states are added to state lists at given insn and 13012 * pushed into state stack for future exploration. 13013 * when the verifier reaches bpf_exit insn some of the verifer states 13014 * stored in the state lists have their final liveness state already, 13015 * but a lot of states will get revised from liveness point of view when 13016 * the verifier explores other branches. 13017 * Example: 13018 * 1: r0 = 1 13019 * 2: if r1 == 100 goto pc+1 13020 * 3: r0 = 2 13021 * 4: exit 13022 * when the verifier reaches exit insn the register r0 in the state list of 13023 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 13024 * of insn 2 and goes exploring further. At the insn 4 it will walk the 13025 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 13026 * 13027 * Since the verifier pushes the branch states as it sees them while exploring 13028 * the program the condition of walking the branch instruction for the second 13029 * time means that all states below this branch were already explored and 13030 * their final liveness marks are already propagated. 13031 * Hence when the verifier completes the search of state list in is_state_visited() 13032 * we can call this clean_live_states() function to mark all liveness states 13033 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 13034 * will not be used. 13035 * This function also clears the registers and stack for states that !READ 13036 * to simplify state merging. 13037 * 13038 * Important note here that walking the same branch instruction in the callee 13039 * doesn't meant that the states are DONE. The verifier has to compare 13040 * the callsites 13041 */ 13042 static void clean_live_states(struct bpf_verifier_env *env, int insn, 13043 struct bpf_verifier_state *cur) 13044 { 13045 struct bpf_verifier_state_list *sl; 13046 int i; 13047 13048 sl = *explored_state(env, insn); 13049 while (sl) { 13050 if (sl->state.branches) 13051 goto next; 13052 if (sl->state.insn_idx != insn || 13053 sl->state.curframe != cur->curframe) 13054 goto next; 13055 for (i = 0; i <= cur->curframe; i++) 13056 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 13057 goto next; 13058 clean_verifier_state(env, &sl->state); 13059 next: 13060 sl = sl->next; 13061 } 13062 } 13063 13064 /* Returns true if (rold safe implies rcur safe) */ 13065 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 13066 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 13067 { 13068 bool equal; 13069 13070 if (!(rold->live & REG_LIVE_READ)) 13071 /* explored state didn't use this */ 13072 return true; 13073 13074 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 13075 13076 if (rold->type == NOT_INIT) 13077 /* explored state can't have used this */ 13078 return true; 13079 if (rcur->type == NOT_INIT) 13080 return false; 13081 switch (base_type(rold->type)) { 13082 case SCALAR_VALUE: 13083 if (equal) 13084 return true; 13085 if (env->explore_alu_limits) 13086 return false; 13087 if (rcur->type == SCALAR_VALUE) { 13088 if (!rold->precise) 13089 return true; 13090 /* new val must satisfy old val knowledge */ 13091 return range_within(rold, rcur) && 13092 tnum_in(rold->var_off, rcur->var_off); 13093 } else { 13094 /* We're trying to use a pointer in place of a scalar. 13095 * Even if the scalar was unbounded, this could lead to 13096 * pointer leaks because scalars are allowed to leak 13097 * while pointers are not. We could make this safe in 13098 * special cases if root is calling us, but it's 13099 * probably not worth the hassle. 13100 */ 13101 return false; 13102 } 13103 case PTR_TO_MAP_KEY: 13104 case PTR_TO_MAP_VALUE: 13105 /* a PTR_TO_MAP_VALUE could be safe to use as a 13106 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 13107 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 13108 * checked, doing so could have affected others with the same 13109 * id, and we can't check for that because we lost the id when 13110 * we converted to a PTR_TO_MAP_VALUE. 13111 */ 13112 if (type_may_be_null(rold->type)) { 13113 if (!type_may_be_null(rcur->type)) 13114 return false; 13115 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 13116 return false; 13117 /* Check our ids match any regs they're supposed to */ 13118 return check_ids(rold->id, rcur->id, idmap); 13119 } 13120 13121 /* If the new min/max/var_off satisfy the old ones and 13122 * everything else matches, we are OK. 13123 * 'id' is not compared, since it's only used for maps with 13124 * bpf_spin_lock inside map element and in such cases if 13125 * the rest of the prog is valid for one map element then 13126 * it's valid for all map elements regardless of the key 13127 * used in bpf_map_lookup() 13128 */ 13129 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 13130 range_within(rold, rcur) && 13131 tnum_in(rold->var_off, rcur->var_off) && 13132 check_ids(rold->id, rcur->id, idmap); 13133 case PTR_TO_PACKET_META: 13134 case PTR_TO_PACKET: 13135 if (rcur->type != rold->type) 13136 return false; 13137 /* We must have at least as much range as the old ptr 13138 * did, so that any accesses which were safe before are 13139 * still safe. This is true even if old range < old off, 13140 * since someone could have accessed through (ptr - k), or 13141 * even done ptr -= k in a register, to get a safe access. 13142 */ 13143 if (rold->range > rcur->range) 13144 return false; 13145 /* If the offsets don't match, we can't trust our alignment; 13146 * nor can we be sure that we won't fall out of range. 13147 */ 13148 if (rold->off != rcur->off) 13149 return false; 13150 /* id relations must be preserved */ 13151 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 13152 return false; 13153 /* new val must satisfy old val knowledge */ 13154 return range_within(rold, rcur) && 13155 tnum_in(rold->var_off, rcur->var_off); 13156 case PTR_TO_STACK: 13157 /* two stack pointers are equal only if they're pointing to 13158 * the same stack frame, since fp-8 in foo != fp-8 in bar 13159 */ 13160 return equal && rold->frameno == rcur->frameno; 13161 default: 13162 /* Only valid matches are exact, which memcmp() */ 13163 return equal; 13164 } 13165 13166 /* Shouldn't get here; if we do, say it's not safe */ 13167 WARN_ON_ONCE(1); 13168 return false; 13169 } 13170 13171 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 13172 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 13173 { 13174 int i, spi; 13175 13176 /* walk slots of the explored stack and ignore any additional 13177 * slots in the current stack, since explored(safe) state 13178 * didn't use them 13179 */ 13180 for (i = 0; i < old->allocated_stack; i++) { 13181 spi = i / BPF_REG_SIZE; 13182 13183 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 13184 i += BPF_REG_SIZE - 1; 13185 /* explored state didn't use this */ 13186 continue; 13187 } 13188 13189 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 13190 continue; 13191 13192 /* explored stack has more populated slots than current stack 13193 * and these slots were used 13194 */ 13195 if (i >= cur->allocated_stack) 13196 return false; 13197 13198 /* if old state was safe with misc data in the stack 13199 * it will be safe with zero-initialized stack. 13200 * The opposite is not true 13201 */ 13202 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 13203 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 13204 continue; 13205 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 13206 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 13207 /* Ex: old explored (safe) state has STACK_SPILL in 13208 * this stack slot, but current has STACK_MISC -> 13209 * this verifier states are not equivalent, 13210 * return false to continue verification of this path 13211 */ 13212 return false; 13213 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 13214 continue; 13215 if (!is_spilled_reg(&old->stack[spi])) 13216 continue; 13217 if (!regsafe(env, &old->stack[spi].spilled_ptr, 13218 &cur->stack[spi].spilled_ptr, idmap)) 13219 /* when explored and current stack slot are both storing 13220 * spilled registers, check that stored pointers types 13221 * are the same as well. 13222 * Ex: explored safe path could have stored 13223 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 13224 * but current path has stored: 13225 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 13226 * such verifier states are not equivalent. 13227 * return false to continue verification of this path 13228 */ 13229 return false; 13230 } 13231 return true; 13232 } 13233 13234 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 13235 { 13236 if (old->acquired_refs != cur->acquired_refs) 13237 return false; 13238 return !memcmp(old->refs, cur->refs, 13239 sizeof(*old->refs) * old->acquired_refs); 13240 } 13241 13242 /* compare two verifier states 13243 * 13244 * all states stored in state_list are known to be valid, since 13245 * verifier reached 'bpf_exit' instruction through them 13246 * 13247 * this function is called when verifier exploring different branches of 13248 * execution popped from the state stack. If it sees an old state that has 13249 * more strict register state and more strict stack state then this execution 13250 * branch doesn't need to be explored further, since verifier already 13251 * concluded that more strict state leads to valid finish. 13252 * 13253 * Therefore two states are equivalent if register state is more conservative 13254 * and explored stack state is more conservative than the current one. 13255 * Example: 13256 * explored current 13257 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 13258 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 13259 * 13260 * In other words if current stack state (one being explored) has more 13261 * valid slots than old one that already passed validation, it means 13262 * the verifier can stop exploring and conclude that current state is valid too 13263 * 13264 * Similarly with registers. If explored state has register type as invalid 13265 * whereas register type in current state is meaningful, it means that 13266 * the current state will reach 'bpf_exit' instruction safely 13267 */ 13268 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 13269 struct bpf_func_state *cur) 13270 { 13271 int i; 13272 13273 for (i = 0; i < MAX_BPF_REG; i++) 13274 if (!regsafe(env, &old->regs[i], &cur->regs[i], 13275 env->idmap_scratch)) 13276 return false; 13277 13278 if (!stacksafe(env, old, cur, env->idmap_scratch)) 13279 return false; 13280 13281 if (!refsafe(old, cur)) 13282 return false; 13283 13284 return true; 13285 } 13286 13287 static bool states_equal(struct bpf_verifier_env *env, 13288 struct bpf_verifier_state *old, 13289 struct bpf_verifier_state *cur) 13290 { 13291 int i; 13292 13293 if (old->curframe != cur->curframe) 13294 return false; 13295 13296 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 13297 13298 /* Verification state from speculative execution simulation 13299 * must never prune a non-speculative execution one. 13300 */ 13301 if (old->speculative && !cur->speculative) 13302 return false; 13303 13304 if (old->active_lock.ptr != cur->active_lock.ptr) 13305 return false; 13306 13307 /* Old and cur active_lock's have to be either both present 13308 * or both absent. 13309 */ 13310 if (!!old->active_lock.id != !!cur->active_lock.id) 13311 return false; 13312 13313 if (old->active_lock.id && 13314 !check_ids(old->active_lock.id, cur->active_lock.id, env->idmap_scratch)) 13315 return false; 13316 13317 if (old->active_rcu_lock != cur->active_rcu_lock) 13318 return false; 13319 13320 /* for states to be equal callsites have to be the same 13321 * and all frame states need to be equivalent 13322 */ 13323 for (i = 0; i <= old->curframe; i++) { 13324 if (old->frame[i]->callsite != cur->frame[i]->callsite) 13325 return false; 13326 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 13327 return false; 13328 } 13329 return true; 13330 } 13331 13332 /* Return 0 if no propagation happened. Return negative error code if error 13333 * happened. Otherwise, return the propagated bit. 13334 */ 13335 static int propagate_liveness_reg(struct bpf_verifier_env *env, 13336 struct bpf_reg_state *reg, 13337 struct bpf_reg_state *parent_reg) 13338 { 13339 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 13340 u8 flag = reg->live & REG_LIVE_READ; 13341 int err; 13342 13343 /* When comes here, read flags of PARENT_REG or REG could be any of 13344 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 13345 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 13346 */ 13347 if (parent_flag == REG_LIVE_READ64 || 13348 /* Or if there is no read flag from REG. */ 13349 !flag || 13350 /* Or if the read flag from REG is the same as PARENT_REG. */ 13351 parent_flag == flag) 13352 return 0; 13353 13354 err = mark_reg_read(env, reg, parent_reg, flag); 13355 if (err) 13356 return err; 13357 13358 return flag; 13359 } 13360 13361 /* A write screens off any subsequent reads; but write marks come from the 13362 * straight-line code between a state and its parent. When we arrive at an 13363 * equivalent state (jump target or such) we didn't arrive by the straight-line 13364 * code, so read marks in the state must propagate to the parent regardless 13365 * of the state's write marks. That's what 'parent == state->parent' comparison 13366 * in mark_reg_read() is for. 13367 */ 13368 static int propagate_liveness(struct bpf_verifier_env *env, 13369 const struct bpf_verifier_state *vstate, 13370 struct bpf_verifier_state *vparent) 13371 { 13372 struct bpf_reg_state *state_reg, *parent_reg; 13373 struct bpf_func_state *state, *parent; 13374 int i, frame, err = 0; 13375 13376 if (vparent->curframe != vstate->curframe) { 13377 WARN(1, "propagate_live: parent frame %d current frame %d\n", 13378 vparent->curframe, vstate->curframe); 13379 return -EFAULT; 13380 } 13381 /* Propagate read liveness of registers... */ 13382 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 13383 for (frame = 0; frame <= vstate->curframe; frame++) { 13384 parent = vparent->frame[frame]; 13385 state = vstate->frame[frame]; 13386 parent_reg = parent->regs; 13387 state_reg = state->regs; 13388 /* We don't need to worry about FP liveness, it's read-only */ 13389 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 13390 err = propagate_liveness_reg(env, &state_reg[i], 13391 &parent_reg[i]); 13392 if (err < 0) 13393 return err; 13394 if (err == REG_LIVE_READ64) 13395 mark_insn_zext(env, &parent_reg[i]); 13396 } 13397 13398 /* Propagate stack slots. */ 13399 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 13400 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 13401 parent_reg = &parent->stack[i].spilled_ptr; 13402 state_reg = &state->stack[i].spilled_ptr; 13403 err = propagate_liveness_reg(env, state_reg, 13404 parent_reg); 13405 if (err < 0) 13406 return err; 13407 } 13408 } 13409 return 0; 13410 } 13411 13412 /* find precise scalars in the previous equivalent state and 13413 * propagate them into the current state 13414 */ 13415 static int propagate_precision(struct bpf_verifier_env *env, 13416 const struct bpf_verifier_state *old) 13417 { 13418 struct bpf_reg_state *state_reg; 13419 struct bpf_func_state *state; 13420 int i, err = 0, fr; 13421 13422 for (fr = old->curframe; fr >= 0; fr--) { 13423 state = old->frame[fr]; 13424 state_reg = state->regs; 13425 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 13426 if (state_reg->type != SCALAR_VALUE || 13427 !state_reg->precise) 13428 continue; 13429 if (env->log.level & BPF_LOG_LEVEL2) 13430 verbose(env, "frame %d: propagating r%d\n", i, fr); 13431 err = mark_chain_precision_frame(env, fr, i); 13432 if (err < 0) 13433 return err; 13434 } 13435 13436 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 13437 if (!is_spilled_reg(&state->stack[i])) 13438 continue; 13439 state_reg = &state->stack[i].spilled_ptr; 13440 if (state_reg->type != SCALAR_VALUE || 13441 !state_reg->precise) 13442 continue; 13443 if (env->log.level & BPF_LOG_LEVEL2) 13444 verbose(env, "frame %d: propagating fp%d\n", 13445 (-i - 1) * BPF_REG_SIZE, fr); 13446 err = mark_chain_precision_stack_frame(env, fr, i); 13447 if (err < 0) 13448 return err; 13449 } 13450 } 13451 return 0; 13452 } 13453 13454 static bool states_maybe_looping(struct bpf_verifier_state *old, 13455 struct bpf_verifier_state *cur) 13456 { 13457 struct bpf_func_state *fold, *fcur; 13458 int i, fr = cur->curframe; 13459 13460 if (old->curframe != fr) 13461 return false; 13462 13463 fold = old->frame[fr]; 13464 fcur = cur->frame[fr]; 13465 for (i = 0; i < MAX_BPF_REG; i++) 13466 if (memcmp(&fold->regs[i], &fcur->regs[i], 13467 offsetof(struct bpf_reg_state, parent))) 13468 return false; 13469 return true; 13470 } 13471 13472 13473 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 13474 { 13475 struct bpf_verifier_state_list *new_sl; 13476 struct bpf_verifier_state_list *sl, **pprev; 13477 struct bpf_verifier_state *cur = env->cur_state, *new; 13478 int i, j, err, states_cnt = 0; 13479 bool add_new_state = env->test_state_freq ? true : false; 13480 13481 /* bpf progs typically have pruning point every 4 instructions 13482 * http://vger.kernel.org/bpfconf2019.html#session-1 13483 * Do not add new state for future pruning if the verifier hasn't seen 13484 * at least 2 jumps and at least 8 instructions. 13485 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 13486 * In tests that amounts to up to 50% reduction into total verifier 13487 * memory consumption and 20% verifier time speedup. 13488 */ 13489 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 13490 env->insn_processed - env->prev_insn_processed >= 8) 13491 add_new_state = true; 13492 13493 pprev = explored_state(env, insn_idx); 13494 sl = *pprev; 13495 13496 clean_live_states(env, insn_idx, cur); 13497 13498 while (sl) { 13499 states_cnt++; 13500 if (sl->state.insn_idx != insn_idx) 13501 goto next; 13502 13503 if (sl->state.branches) { 13504 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 13505 13506 if (frame->in_async_callback_fn && 13507 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 13508 /* Different async_entry_cnt means that the verifier is 13509 * processing another entry into async callback. 13510 * Seeing the same state is not an indication of infinite 13511 * loop or infinite recursion. 13512 * But finding the same state doesn't mean that it's safe 13513 * to stop processing the current state. The previous state 13514 * hasn't yet reached bpf_exit, since state.branches > 0. 13515 * Checking in_async_callback_fn alone is not enough either. 13516 * Since the verifier still needs to catch infinite loops 13517 * inside async callbacks. 13518 */ 13519 } else if (states_maybe_looping(&sl->state, cur) && 13520 states_equal(env, &sl->state, cur)) { 13521 verbose_linfo(env, insn_idx, "; "); 13522 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 13523 return -EINVAL; 13524 } 13525 /* if the verifier is processing a loop, avoid adding new state 13526 * too often, since different loop iterations have distinct 13527 * states and may not help future pruning. 13528 * This threshold shouldn't be too low to make sure that 13529 * a loop with large bound will be rejected quickly. 13530 * The most abusive loop will be: 13531 * r1 += 1 13532 * if r1 < 1000000 goto pc-2 13533 * 1M insn_procssed limit / 100 == 10k peak states. 13534 * This threshold shouldn't be too high either, since states 13535 * at the end of the loop are likely to be useful in pruning. 13536 */ 13537 if (env->jmps_processed - env->prev_jmps_processed < 20 && 13538 env->insn_processed - env->prev_insn_processed < 100) 13539 add_new_state = false; 13540 goto miss; 13541 } 13542 if (states_equal(env, &sl->state, cur)) { 13543 sl->hit_cnt++; 13544 /* reached equivalent register/stack state, 13545 * prune the search. 13546 * Registers read by the continuation are read by us. 13547 * If we have any write marks in env->cur_state, they 13548 * will prevent corresponding reads in the continuation 13549 * from reaching our parent (an explored_state). Our 13550 * own state will get the read marks recorded, but 13551 * they'll be immediately forgotten as we're pruning 13552 * this state and will pop a new one. 13553 */ 13554 err = propagate_liveness(env, &sl->state, cur); 13555 13556 /* if previous state reached the exit with precision and 13557 * current state is equivalent to it (except precsion marks) 13558 * the precision needs to be propagated back in 13559 * the current state. 13560 */ 13561 err = err ? : push_jmp_history(env, cur); 13562 err = err ? : propagate_precision(env, &sl->state); 13563 if (err) 13564 return err; 13565 return 1; 13566 } 13567 miss: 13568 /* when new state is not going to be added do not increase miss count. 13569 * Otherwise several loop iterations will remove the state 13570 * recorded earlier. The goal of these heuristics is to have 13571 * states from some iterations of the loop (some in the beginning 13572 * and some at the end) to help pruning. 13573 */ 13574 if (add_new_state) 13575 sl->miss_cnt++; 13576 /* heuristic to determine whether this state is beneficial 13577 * to keep checking from state equivalence point of view. 13578 * Higher numbers increase max_states_per_insn and verification time, 13579 * but do not meaningfully decrease insn_processed. 13580 */ 13581 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 13582 /* the state is unlikely to be useful. Remove it to 13583 * speed up verification 13584 */ 13585 *pprev = sl->next; 13586 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 13587 u32 br = sl->state.branches; 13588 13589 WARN_ONCE(br, 13590 "BUG live_done but branches_to_explore %d\n", 13591 br); 13592 free_verifier_state(&sl->state, false); 13593 kfree(sl); 13594 env->peak_states--; 13595 } else { 13596 /* cannot free this state, since parentage chain may 13597 * walk it later. Add it for free_list instead to 13598 * be freed at the end of verification 13599 */ 13600 sl->next = env->free_list; 13601 env->free_list = sl; 13602 } 13603 sl = *pprev; 13604 continue; 13605 } 13606 next: 13607 pprev = &sl->next; 13608 sl = *pprev; 13609 } 13610 13611 if (env->max_states_per_insn < states_cnt) 13612 env->max_states_per_insn = states_cnt; 13613 13614 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 13615 return 0; 13616 13617 if (!add_new_state) 13618 return 0; 13619 13620 /* There were no equivalent states, remember the current one. 13621 * Technically the current state is not proven to be safe yet, 13622 * but it will either reach outer most bpf_exit (which means it's safe) 13623 * or it will be rejected. When there are no loops the verifier won't be 13624 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 13625 * again on the way to bpf_exit. 13626 * When looping the sl->state.branches will be > 0 and this state 13627 * will not be considered for equivalence until branches == 0. 13628 */ 13629 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 13630 if (!new_sl) 13631 return -ENOMEM; 13632 env->total_states++; 13633 env->peak_states++; 13634 env->prev_jmps_processed = env->jmps_processed; 13635 env->prev_insn_processed = env->insn_processed; 13636 13637 /* forget precise markings we inherited, see __mark_chain_precision */ 13638 if (env->bpf_capable) 13639 mark_all_scalars_imprecise(env, cur); 13640 13641 /* add new state to the head of linked list */ 13642 new = &new_sl->state; 13643 err = copy_verifier_state(new, cur); 13644 if (err) { 13645 free_verifier_state(new, false); 13646 kfree(new_sl); 13647 return err; 13648 } 13649 new->insn_idx = insn_idx; 13650 WARN_ONCE(new->branches != 1, 13651 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 13652 13653 cur->parent = new; 13654 cur->first_insn_idx = insn_idx; 13655 clear_jmp_history(cur); 13656 new_sl->next = *explored_state(env, insn_idx); 13657 *explored_state(env, insn_idx) = new_sl; 13658 /* connect new state to parentage chain. Current frame needs all 13659 * registers connected. Only r6 - r9 of the callers are alive (pushed 13660 * to the stack implicitly by JITs) so in callers' frames connect just 13661 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 13662 * the state of the call instruction (with WRITTEN set), and r0 comes 13663 * from callee with its full parentage chain, anyway. 13664 */ 13665 /* clear write marks in current state: the writes we did are not writes 13666 * our child did, so they don't screen off its reads from us. 13667 * (There are no read marks in current state, because reads always mark 13668 * their parent and current state never has children yet. Only 13669 * explored_states can get read marks.) 13670 */ 13671 for (j = 0; j <= cur->curframe; j++) { 13672 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 13673 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 13674 for (i = 0; i < BPF_REG_FP; i++) 13675 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 13676 } 13677 13678 /* all stack frames are accessible from callee, clear them all */ 13679 for (j = 0; j <= cur->curframe; j++) { 13680 struct bpf_func_state *frame = cur->frame[j]; 13681 struct bpf_func_state *newframe = new->frame[j]; 13682 13683 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 13684 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 13685 frame->stack[i].spilled_ptr.parent = 13686 &newframe->stack[i].spilled_ptr; 13687 } 13688 } 13689 return 0; 13690 } 13691 13692 /* Return true if it's OK to have the same insn return a different type. */ 13693 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 13694 { 13695 switch (base_type(type)) { 13696 case PTR_TO_CTX: 13697 case PTR_TO_SOCKET: 13698 case PTR_TO_SOCK_COMMON: 13699 case PTR_TO_TCP_SOCK: 13700 case PTR_TO_XDP_SOCK: 13701 case PTR_TO_BTF_ID: 13702 return false; 13703 default: 13704 return true; 13705 } 13706 } 13707 13708 /* If an instruction was previously used with particular pointer types, then we 13709 * need to be careful to avoid cases such as the below, where it may be ok 13710 * for one branch accessing the pointer, but not ok for the other branch: 13711 * 13712 * R1 = sock_ptr 13713 * goto X; 13714 * ... 13715 * R1 = some_other_valid_ptr; 13716 * goto X; 13717 * ... 13718 * R2 = *(u32 *)(R1 + 0); 13719 */ 13720 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 13721 { 13722 return src != prev && (!reg_type_mismatch_ok(src) || 13723 !reg_type_mismatch_ok(prev)); 13724 } 13725 13726 static int do_check(struct bpf_verifier_env *env) 13727 { 13728 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 13729 struct bpf_verifier_state *state = env->cur_state; 13730 struct bpf_insn *insns = env->prog->insnsi; 13731 struct bpf_reg_state *regs; 13732 int insn_cnt = env->prog->len; 13733 bool do_print_state = false; 13734 int prev_insn_idx = -1; 13735 13736 for (;;) { 13737 struct bpf_insn *insn; 13738 u8 class; 13739 int err; 13740 13741 env->prev_insn_idx = prev_insn_idx; 13742 if (env->insn_idx >= insn_cnt) { 13743 verbose(env, "invalid insn idx %d insn_cnt %d\n", 13744 env->insn_idx, insn_cnt); 13745 return -EFAULT; 13746 } 13747 13748 insn = &insns[env->insn_idx]; 13749 class = BPF_CLASS(insn->code); 13750 13751 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 13752 verbose(env, 13753 "BPF program is too large. Processed %d insn\n", 13754 env->insn_processed); 13755 return -E2BIG; 13756 } 13757 13758 state->last_insn_idx = env->prev_insn_idx; 13759 13760 if (is_prune_point(env, env->insn_idx)) { 13761 err = is_state_visited(env, env->insn_idx); 13762 if (err < 0) 13763 return err; 13764 if (err == 1) { 13765 /* found equivalent state, can prune the search */ 13766 if (env->log.level & BPF_LOG_LEVEL) { 13767 if (do_print_state) 13768 verbose(env, "\nfrom %d to %d%s: safe\n", 13769 env->prev_insn_idx, env->insn_idx, 13770 env->cur_state->speculative ? 13771 " (speculative execution)" : ""); 13772 else 13773 verbose(env, "%d: safe\n", env->insn_idx); 13774 } 13775 goto process_bpf_exit; 13776 } 13777 } 13778 13779 if (is_jmp_point(env, env->insn_idx)) { 13780 err = push_jmp_history(env, state); 13781 if (err) 13782 return err; 13783 } 13784 13785 if (signal_pending(current)) 13786 return -EAGAIN; 13787 13788 if (need_resched()) 13789 cond_resched(); 13790 13791 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 13792 verbose(env, "\nfrom %d to %d%s:", 13793 env->prev_insn_idx, env->insn_idx, 13794 env->cur_state->speculative ? 13795 " (speculative execution)" : ""); 13796 print_verifier_state(env, state->frame[state->curframe], true); 13797 do_print_state = false; 13798 } 13799 13800 if (env->log.level & BPF_LOG_LEVEL) { 13801 const struct bpf_insn_cbs cbs = { 13802 .cb_call = disasm_kfunc_name, 13803 .cb_print = verbose, 13804 .private_data = env, 13805 }; 13806 13807 if (verifier_state_scratched(env)) 13808 print_insn_state(env, state->frame[state->curframe]); 13809 13810 verbose_linfo(env, env->insn_idx, "; "); 13811 env->prev_log_len = env->log.len_used; 13812 verbose(env, "%d: ", env->insn_idx); 13813 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 13814 env->prev_insn_print_len = env->log.len_used - env->prev_log_len; 13815 env->prev_log_len = env->log.len_used; 13816 } 13817 13818 if (bpf_prog_is_dev_bound(env->prog->aux)) { 13819 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 13820 env->prev_insn_idx); 13821 if (err) 13822 return err; 13823 } 13824 13825 regs = cur_regs(env); 13826 sanitize_mark_insn_seen(env); 13827 prev_insn_idx = env->insn_idx; 13828 13829 if (class == BPF_ALU || class == BPF_ALU64) { 13830 err = check_alu_op(env, insn); 13831 if (err) 13832 return err; 13833 13834 } else if (class == BPF_LDX) { 13835 enum bpf_reg_type *prev_src_type, src_reg_type; 13836 13837 /* check for reserved fields is already done */ 13838 13839 /* check src operand */ 13840 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13841 if (err) 13842 return err; 13843 13844 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13845 if (err) 13846 return err; 13847 13848 src_reg_type = regs[insn->src_reg].type; 13849 13850 /* check that memory (src_reg + off) is readable, 13851 * the state of dst_reg will be updated by this func 13852 */ 13853 err = check_mem_access(env, env->insn_idx, insn->src_reg, 13854 insn->off, BPF_SIZE(insn->code), 13855 BPF_READ, insn->dst_reg, false); 13856 if (err) 13857 return err; 13858 13859 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 13860 13861 if (*prev_src_type == NOT_INIT) { 13862 /* saw a valid insn 13863 * dst_reg = *(u32 *)(src_reg + off) 13864 * save type to validate intersecting paths 13865 */ 13866 *prev_src_type = src_reg_type; 13867 13868 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 13869 /* ABuser program is trying to use the same insn 13870 * dst_reg = *(u32*) (src_reg + off) 13871 * with different pointer types: 13872 * src_reg == ctx in one branch and 13873 * src_reg == stack|map in some other branch. 13874 * Reject it. 13875 */ 13876 verbose(env, "same insn cannot be used with different pointers\n"); 13877 return -EINVAL; 13878 } 13879 13880 } else if (class == BPF_STX) { 13881 enum bpf_reg_type *prev_dst_type, dst_reg_type; 13882 13883 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 13884 err = check_atomic(env, env->insn_idx, insn); 13885 if (err) 13886 return err; 13887 env->insn_idx++; 13888 continue; 13889 } 13890 13891 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 13892 verbose(env, "BPF_STX uses reserved fields\n"); 13893 return -EINVAL; 13894 } 13895 13896 /* check src1 operand */ 13897 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13898 if (err) 13899 return err; 13900 /* check src2 operand */ 13901 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13902 if (err) 13903 return err; 13904 13905 dst_reg_type = regs[insn->dst_reg].type; 13906 13907 /* check that memory (dst_reg + off) is writeable */ 13908 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 13909 insn->off, BPF_SIZE(insn->code), 13910 BPF_WRITE, insn->src_reg, false); 13911 if (err) 13912 return err; 13913 13914 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 13915 13916 if (*prev_dst_type == NOT_INIT) { 13917 *prev_dst_type = dst_reg_type; 13918 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 13919 verbose(env, "same insn cannot be used with different pointers\n"); 13920 return -EINVAL; 13921 } 13922 13923 } else if (class == BPF_ST) { 13924 if (BPF_MODE(insn->code) != BPF_MEM || 13925 insn->src_reg != BPF_REG_0) { 13926 verbose(env, "BPF_ST uses reserved fields\n"); 13927 return -EINVAL; 13928 } 13929 /* check src operand */ 13930 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13931 if (err) 13932 return err; 13933 13934 if (is_ctx_reg(env, insn->dst_reg)) { 13935 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 13936 insn->dst_reg, 13937 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 13938 return -EACCES; 13939 } 13940 13941 /* check that memory (dst_reg + off) is writeable */ 13942 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 13943 insn->off, BPF_SIZE(insn->code), 13944 BPF_WRITE, -1, false); 13945 if (err) 13946 return err; 13947 13948 } else if (class == BPF_JMP || class == BPF_JMP32) { 13949 u8 opcode = BPF_OP(insn->code); 13950 13951 env->jmps_processed++; 13952 if (opcode == BPF_CALL) { 13953 if (BPF_SRC(insn->code) != BPF_K || 13954 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 13955 && insn->off != 0) || 13956 (insn->src_reg != BPF_REG_0 && 13957 insn->src_reg != BPF_PSEUDO_CALL && 13958 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 13959 insn->dst_reg != BPF_REG_0 || 13960 class == BPF_JMP32) { 13961 verbose(env, "BPF_CALL uses reserved fields\n"); 13962 return -EINVAL; 13963 } 13964 13965 if (env->cur_state->active_lock.ptr) { 13966 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 13967 (insn->src_reg == BPF_PSEUDO_CALL) || 13968 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 13969 (insn->off != 0 || !is_bpf_list_api_kfunc(insn->imm)))) { 13970 verbose(env, "function calls are not allowed while holding a lock\n"); 13971 return -EINVAL; 13972 } 13973 } 13974 if (insn->src_reg == BPF_PSEUDO_CALL) 13975 err = check_func_call(env, insn, &env->insn_idx); 13976 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 13977 err = check_kfunc_call(env, insn, &env->insn_idx); 13978 else 13979 err = check_helper_call(env, insn, &env->insn_idx); 13980 if (err) 13981 return err; 13982 } else if (opcode == BPF_JA) { 13983 if (BPF_SRC(insn->code) != BPF_K || 13984 insn->imm != 0 || 13985 insn->src_reg != BPF_REG_0 || 13986 insn->dst_reg != BPF_REG_0 || 13987 class == BPF_JMP32) { 13988 verbose(env, "BPF_JA uses reserved fields\n"); 13989 return -EINVAL; 13990 } 13991 13992 env->insn_idx += insn->off + 1; 13993 continue; 13994 13995 } else if (opcode == BPF_EXIT) { 13996 if (BPF_SRC(insn->code) != BPF_K || 13997 insn->imm != 0 || 13998 insn->src_reg != BPF_REG_0 || 13999 insn->dst_reg != BPF_REG_0 || 14000 class == BPF_JMP32) { 14001 verbose(env, "BPF_EXIT uses reserved fields\n"); 14002 return -EINVAL; 14003 } 14004 14005 if (env->cur_state->active_lock.ptr) { 14006 verbose(env, "bpf_spin_unlock is missing\n"); 14007 return -EINVAL; 14008 } 14009 14010 if (env->cur_state->active_rcu_lock) { 14011 verbose(env, "bpf_rcu_read_unlock is missing\n"); 14012 return -EINVAL; 14013 } 14014 14015 /* We must do check_reference_leak here before 14016 * prepare_func_exit to handle the case when 14017 * state->curframe > 0, it may be a callback 14018 * function, for which reference_state must 14019 * match caller reference state when it exits. 14020 */ 14021 err = check_reference_leak(env); 14022 if (err) 14023 return err; 14024 14025 if (state->curframe) { 14026 /* exit from nested function */ 14027 err = prepare_func_exit(env, &env->insn_idx); 14028 if (err) 14029 return err; 14030 do_print_state = true; 14031 continue; 14032 } 14033 14034 err = check_return_code(env); 14035 if (err) 14036 return err; 14037 process_bpf_exit: 14038 mark_verifier_state_scratched(env); 14039 update_branch_counts(env, env->cur_state); 14040 err = pop_stack(env, &prev_insn_idx, 14041 &env->insn_idx, pop_log); 14042 if (err < 0) { 14043 if (err != -ENOENT) 14044 return err; 14045 break; 14046 } else { 14047 do_print_state = true; 14048 continue; 14049 } 14050 } else { 14051 err = check_cond_jmp_op(env, insn, &env->insn_idx); 14052 if (err) 14053 return err; 14054 } 14055 } else if (class == BPF_LD) { 14056 u8 mode = BPF_MODE(insn->code); 14057 14058 if (mode == BPF_ABS || mode == BPF_IND) { 14059 err = check_ld_abs(env, insn); 14060 if (err) 14061 return err; 14062 14063 } else if (mode == BPF_IMM) { 14064 err = check_ld_imm(env, insn); 14065 if (err) 14066 return err; 14067 14068 env->insn_idx++; 14069 sanitize_mark_insn_seen(env); 14070 } else { 14071 verbose(env, "invalid BPF_LD mode\n"); 14072 return -EINVAL; 14073 } 14074 } else { 14075 verbose(env, "unknown insn class %d\n", class); 14076 return -EINVAL; 14077 } 14078 14079 env->insn_idx++; 14080 } 14081 14082 return 0; 14083 } 14084 14085 static int find_btf_percpu_datasec(struct btf *btf) 14086 { 14087 const struct btf_type *t; 14088 const char *tname; 14089 int i, n; 14090 14091 /* 14092 * Both vmlinux and module each have their own ".data..percpu" 14093 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 14094 * types to look at only module's own BTF types. 14095 */ 14096 n = btf_nr_types(btf); 14097 if (btf_is_module(btf)) 14098 i = btf_nr_types(btf_vmlinux); 14099 else 14100 i = 1; 14101 14102 for(; i < n; i++) { 14103 t = btf_type_by_id(btf, i); 14104 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 14105 continue; 14106 14107 tname = btf_name_by_offset(btf, t->name_off); 14108 if (!strcmp(tname, ".data..percpu")) 14109 return i; 14110 } 14111 14112 return -ENOENT; 14113 } 14114 14115 /* replace pseudo btf_id with kernel symbol address */ 14116 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 14117 struct bpf_insn *insn, 14118 struct bpf_insn_aux_data *aux) 14119 { 14120 const struct btf_var_secinfo *vsi; 14121 const struct btf_type *datasec; 14122 struct btf_mod_pair *btf_mod; 14123 const struct btf_type *t; 14124 const char *sym_name; 14125 bool percpu = false; 14126 u32 type, id = insn->imm; 14127 struct btf *btf; 14128 s32 datasec_id; 14129 u64 addr; 14130 int i, btf_fd, err; 14131 14132 btf_fd = insn[1].imm; 14133 if (btf_fd) { 14134 btf = btf_get_by_fd(btf_fd); 14135 if (IS_ERR(btf)) { 14136 verbose(env, "invalid module BTF object FD specified.\n"); 14137 return -EINVAL; 14138 } 14139 } else { 14140 if (!btf_vmlinux) { 14141 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 14142 return -EINVAL; 14143 } 14144 btf = btf_vmlinux; 14145 btf_get(btf); 14146 } 14147 14148 t = btf_type_by_id(btf, id); 14149 if (!t) { 14150 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 14151 err = -ENOENT; 14152 goto err_put; 14153 } 14154 14155 if (!btf_type_is_var(t)) { 14156 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 14157 err = -EINVAL; 14158 goto err_put; 14159 } 14160 14161 sym_name = btf_name_by_offset(btf, t->name_off); 14162 addr = kallsyms_lookup_name(sym_name); 14163 if (!addr) { 14164 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 14165 sym_name); 14166 err = -ENOENT; 14167 goto err_put; 14168 } 14169 14170 datasec_id = find_btf_percpu_datasec(btf); 14171 if (datasec_id > 0) { 14172 datasec = btf_type_by_id(btf, datasec_id); 14173 for_each_vsi(i, datasec, vsi) { 14174 if (vsi->type == id) { 14175 percpu = true; 14176 break; 14177 } 14178 } 14179 } 14180 14181 insn[0].imm = (u32)addr; 14182 insn[1].imm = addr >> 32; 14183 14184 type = t->type; 14185 t = btf_type_skip_modifiers(btf, type, NULL); 14186 if (percpu) { 14187 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 14188 aux->btf_var.btf = btf; 14189 aux->btf_var.btf_id = type; 14190 } else if (!btf_type_is_struct(t)) { 14191 const struct btf_type *ret; 14192 const char *tname; 14193 u32 tsize; 14194 14195 /* resolve the type size of ksym. */ 14196 ret = btf_resolve_size(btf, t, &tsize); 14197 if (IS_ERR(ret)) { 14198 tname = btf_name_by_offset(btf, t->name_off); 14199 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 14200 tname, PTR_ERR(ret)); 14201 err = -EINVAL; 14202 goto err_put; 14203 } 14204 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 14205 aux->btf_var.mem_size = tsize; 14206 } else { 14207 aux->btf_var.reg_type = PTR_TO_BTF_ID; 14208 aux->btf_var.btf = btf; 14209 aux->btf_var.btf_id = type; 14210 } 14211 14212 /* check whether we recorded this BTF (and maybe module) already */ 14213 for (i = 0; i < env->used_btf_cnt; i++) { 14214 if (env->used_btfs[i].btf == btf) { 14215 btf_put(btf); 14216 return 0; 14217 } 14218 } 14219 14220 if (env->used_btf_cnt >= MAX_USED_BTFS) { 14221 err = -E2BIG; 14222 goto err_put; 14223 } 14224 14225 btf_mod = &env->used_btfs[env->used_btf_cnt]; 14226 btf_mod->btf = btf; 14227 btf_mod->module = NULL; 14228 14229 /* if we reference variables from kernel module, bump its refcount */ 14230 if (btf_is_module(btf)) { 14231 btf_mod->module = btf_try_get_module(btf); 14232 if (!btf_mod->module) { 14233 err = -ENXIO; 14234 goto err_put; 14235 } 14236 } 14237 14238 env->used_btf_cnt++; 14239 14240 return 0; 14241 err_put: 14242 btf_put(btf); 14243 return err; 14244 } 14245 14246 static bool is_tracing_prog_type(enum bpf_prog_type type) 14247 { 14248 switch (type) { 14249 case BPF_PROG_TYPE_KPROBE: 14250 case BPF_PROG_TYPE_TRACEPOINT: 14251 case BPF_PROG_TYPE_PERF_EVENT: 14252 case BPF_PROG_TYPE_RAW_TRACEPOINT: 14253 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 14254 return true; 14255 default: 14256 return false; 14257 } 14258 } 14259 14260 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 14261 struct bpf_map *map, 14262 struct bpf_prog *prog) 14263 14264 { 14265 enum bpf_prog_type prog_type = resolve_prog_type(prog); 14266 14267 if (btf_record_has_field(map->record, BPF_LIST_HEAD)) { 14268 if (is_tracing_prog_type(prog_type)) { 14269 verbose(env, "tracing progs cannot use bpf_list_head yet\n"); 14270 return -EINVAL; 14271 } 14272 } 14273 14274 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 14275 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 14276 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 14277 return -EINVAL; 14278 } 14279 14280 if (is_tracing_prog_type(prog_type)) { 14281 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 14282 return -EINVAL; 14283 } 14284 14285 if (prog->aux->sleepable) { 14286 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 14287 return -EINVAL; 14288 } 14289 } 14290 14291 if (btf_record_has_field(map->record, BPF_TIMER)) { 14292 if (is_tracing_prog_type(prog_type)) { 14293 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 14294 return -EINVAL; 14295 } 14296 } 14297 14298 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 14299 !bpf_offload_prog_map_match(prog, map)) { 14300 verbose(env, "offload device mismatch between prog and map\n"); 14301 return -EINVAL; 14302 } 14303 14304 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 14305 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 14306 return -EINVAL; 14307 } 14308 14309 if (prog->aux->sleepable) 14310 switch (map->map_type) { 14311 case BPF_MAP_TYPE_HASH: 14312 case BPF_MAP_TYPE_LRU_HASH: 14313 case BPF_MAP_TYPE_ARRAY: 14314 case BPF_MAP_TYPE_PERCPU_HASH: 14315 case BPF_MAP_TYPE_PERCPU_ARRAY: 14316 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 14317 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 14318 case BPF_MAP_TYPE_HASH_OF_MAPS: 14319 case BPF_MAP_TYPE_RINGBUF: 14320 case BPF_MAP_TYPE_USER_RINGBUF: 14321 case BPF_MAP_TYPE_INODE_STORAGE: 14322 case BPF_MAP_TYPE_SK_STORAGE: 14323 case BPF_MAP_TYPE_TASK_STORAGE: 14324 case BPF_MAP_TYPE_CGRP_STORAGE: 14325 break; 14326 default: 14327 verbose(env, 14328 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 14329 return -EINVAL; 14330 } 14331 14332 return 0; 14333 } 14334 14335 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 14336 { 14337 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 14338 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 14339 } 14340 14341 /* find and rewrite pseudo imm in ld_imm64 instructions: 14342 * 14343 * 1. if it accesses map FD, replace it with actual map pointer. 14344 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 14345 * 14346 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 14347 */ 14348 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 14349 { 14350 struct bpf_insn *insn = env->prog->insnsi; 14351 int insn_cnt = env->prog->len; 14352 int i, j, err; 14353 14354 err = bpf_prog_calc_tag(env->prog); 14355 if (err) 14356 return err; 14357 14358 for (i = 0; i < insn_cnt; i++, insn++) { 14359 if (BPF_CLASS(insn->code) == BPF_LDX && 14360 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 14361 verbose(env, "BPF_LDX uses reserved fields\n"); 14362 return -EINVAL; 14363 } 14364 14365 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 14366 struct bpf_insn_aux_data *aux; 14367 struct bpf_map *map; 14368 struct fd f; 14369 u64 addr; 14370 u32 fd; 14371 14372 if (i == insn_cnt - 1 || insn[1].code != 0 || 14373 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 14374 insn[1].off != 0) { 14375 verbose(env, "invalid bpf_ld_imm64 insn\n"); 14376 return -EINVAL; 14377 } 14378 14379 if (insn[0].src_reg == 0) 14380 /* valid generic load 64-bit imm */ 14381 goto next_insn; 14382 14383 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 14384 aux = &env->insn_aux_data[i]; 14385 err = check_pseudo_btf_id(env, insn, aux); 14386 if (err) 14387 return err; 14388 goto next_insn; 14389 } 14390 14391 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 14392 aux = &env->insn_aux_data[i]; 14393 aux->ptr_type = PTR_TO_FUNC; 14394 goto next_insn; 14395 } 14396 14397 /* In final convert_pseudo_ld_imm64() step, this is 14398 * converted into regular 64-bit imm load insn. 14399 */ 14400 switch (insn[0].src_reg) { 14401 case BPF_PSEUDO_MAP_VALUE: 14402 case BPF_PSEUDO_MAP_IDX_VALUE: 14403 break; 14404 case BPF_PSEUDO_MAP_FD: 14405 case BPF_PSEUDO_MAP_IDX: 14406 if (insn[1].imm == 0) 14407 break; 14408 fallthrough; 14409 default: 14410 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 14411 return -EINVAL; 14412 } 14413 14414 switch (insn[0].src_reg) { 14415 case BPF_PSEUDO_MAP_IDX_VALUE: 14416 case BPF_PSEUDO_MAP_IDX: 14417 if (bpfptr_is_null(env->fd_array)) { 14418 verbose(env, "fd_idx without fd_array is invalid\n"); 14419 return -EPROTO; 14420 } 14421 if (copy_from_bpfptr_offset(&fd, env->fd_array, 14422 insn[0].imm * sizeof(fd), 14423 sizeof(fd))) 14424 return -EFAULT; 14425 break; 14426 default: 14427 fd = insn[0].imm; 14428 break; 14429 } 14430 14431 f = fdget(fd); 14432 map = __bpf_map_get(f); 14433 if (IS_ERR(map)) { 14434 verbose(env, "fd %d is not pointing to valid bpf_map\n", 14435 insn[0].imm); 14436 return PTR_ERR(map); 14437 } 14438 14439 err = check_map_prog_compatibility(env, map, env->prog); 14440 if (err) { 14441 fdput(f); 14442 return err; 14443 } 14444 14445 aux = &env->insn_aux_data[i]; 14446 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 14447 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 14448 addr = (unsigned long)map; 14449 } else { 14450 u32 off = insn[1].imm; 14451 14452 if (off >= BPF_MAX_VAR_OFF) { 14453 verbose(env, "direct value offset of %u is not allowed\n", off); 14454 fdput(f); 14455 return -EINVAL; 14456 } 14457 14458 if (!map->ops->map_direct_value_addr) { 14459 verbose(env, "no direct value access support for this map type\n"); 14460 fdput(f); 14461 return -EINVAL; 14462 } 14463 14464 err = map->ops->map_direct_value_addr(map, &addr, off); 14465 if (err) { 14466 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 14467 map->value_size, off); 14468 fdput(f); 14469 return err; 14470 } 14471 14472 aux->map_off = off; 14473 addr += off; 14474 } 14475 14476 insn[0].imm = (u32)addr; 14477 insn[1].imm = addr >> 32; 14478 14479 /* check whether we recorded this map already */ 14480 for (j = 0; j < env->used_map_cnt; j++) { 14481 if (env->used_maps[j] == map) { 14482 aux->map_index = j; 14483 fdput(f); 14484 goto next_insn; 14485 } 14486 } 14487 14488 if (env->used_map_cnt >= MAX_USED_MAPS) { 14489 fdput(f); 14490 return -E2BIG; 14491 } 14492 14493 /* hold the map. If the program is rejected by verifier, 14494 * the map will be released by release_maps() or it 14495 * will be used by the valid program until it's unloaded 14496 * and all maps are released in free_used_maps() 14497 */ 14498 bpf_map_inc(map); 14499 14500 aux->map_index = env->used_map_cnt; 14501 env->used_maps[env->used_map_cnt++] = map; 14502 14503 if (bpf_map_is_cgroup_storage(map) && 14504 bpf_cgroup_storage_assign(env->prog->aux, map)) { 14505 verbose(env, "only one cgroup storage of each type is allowed\n"); 14506 fdput(f); 14507 return -EBUSY; 14508 } 14509 14510 fdput(f); 14511 next_insn: 14512 insn++; 14513 i++; 14514 continue; 14515 } 14516 14517 /* Basic sanity check before we invest more work here. */ 14518 if (!bpf_opcode_in_insntable(insn->code)) { 14519 verbose(env, "unknown opcode %02x\n", insn->code); 14520 return -EINVAL; 14521 } 14522 } 14523 14524 /* now all pseudo BPF_LD_IMM64 instructions load valid 14525 * 'struct bpf_map *' into a register instead of user map_fd. 14526 * These pointers will be used later by verifier to validate map access. 14527 */ 14528 return 0; 14529 } 14530 14531 /* drop refcnt of maps used by the rejected program */ 14532 static void release_maps(struct bpf_verifier_env *env) 14533 { 14534 __bpf_free_used_maps(env->prog->aux, env->used_maps, 14535 env->used_map_cnt); 14536 } 14537 14538 /* drop refcnt of maps used by the rejected program */ 14539 static void release_btfs(struct bpf_verifier_env *env) 14540 { 14541 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 14542 env->used_btf_cnt); 14543 } 14544 14545 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 14546 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 14547 { 14548 struct bpf_insn *insn = env->prog->insnsi; 14549 int insn_cnt = env->prog->len; 14550 int i; 14551 14552 for (i = 0; i < insn_cnt; i++, insn++) { 14553 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 14554 continue; 14555 if (insn->src_reg == BPF_PSEUDO_FUNC) 14556 continue; 14557 insn->src_reg = 0; 14558 } 14559 } 14560 14561 /* single env->prog->insni[off] instruction was replaced with the range 14562 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 14563 * [0, off) and [off, end) to new locations, so the patched range stays zero 14564 */ 14565 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 14566 struct bpf_insn_aux_data *new_data, 14567 struct bpf_prog *new_prog, u32 off, u32 cnt) 14568 { 14569 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 14570 struct bpf_insn *insn = new_prog->insnsi; 14571 u32 old_seen = old_data[off].seen; 14572 u32 prog_len; 14573 int i; 14574 14575 /* aux info at OFF always needs adjustment, no matter fast path 14576 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 14577 * original insn at old prog. 14578 */ 14579 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 14580 14581 if (cnt == 1) 14582 return; 14583 prog_len = new_prog->len; 14584 14585 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 14586 memcpy(new_data + off + cnt - 1, old_data + off, 14587 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 14588 for (i = off; i < off + cnt - 1; i++) { 14589 /* Expand insni[off]'s seen count to the patched range. */ 14590 new_data[i].seen = old_seen; 14591 new_data[i].zext_dst = insn_has_def32(env, insn + i); 14592 } 14593 env->insn_aux_data = new_data; 14594 vfree(old_data); 14595 } 14596 14597 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 14598 { 14599 int i; 14600 14601 if (len == 1) 14602 return; 14603 /* NOTE: fake 'exit' subprog should be updated as well. */ 14604 for (i = 0; i <= env->subprog_cnt; i++) { 14605 if (env->subprog_info[i].start <= off) 14606 continue; 14607 env->subprog_info[i].start += len - 1; 14608 } 14609 } 14610 14611 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 14612 { 14613 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 14614 int i, sz = prog->aux->size_poke_tab; 14615 struct bpf_jit_poke_descriptor *desc; 14616 14617 for (i = 0; i < sz; i++) { 14618 desc = &tab[i]; 14619 if (desc->insn_idx <= off) 14620 continue; 14621 desc->insn_idx += len - 1; 14622 } 14623 } 14624 14625 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 14626 const struct bpf_insn *patch, u32 len) 14627 { 14628 struct bpf_prog *new_prog; 14629 struct bpf_insn_aux_data *new_data = NULL; 14630 14631 if (len > 1) { 14632 new_data = vzalloc(array_size(env->prog->len + len - 1, 14633 sizeof(struct bpf_insn_aux_data))); 14634 if (!new_data) 14635 return NULL; 14636 } 14637 14638 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 14639 if (IS_ERR(new_prog)) { 14640 if (PTR_ERR(new_prog) == -ERANGE) 14641 verbose(env, 14642 "insn %d cannot be patched due to 16-bit range\n", 14643 env->insn_aux_data[off].orig_idx); 14644 vfree(new_data); 14645 return NULL; 14646 } 14647 adjust_insn_aux_data(env, new_data, new_prog, off, len); 14648 adjust_subprog_starts(env, off, len); 14649 adjust_poke_descs(new_prog, off, len); 14650 return new_prog; 14651 } 14652 14653 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 14654 u32 off, u32 cnt) 14655 { 14656 int i, j; 14657 14658 /* find first prog starting at or after off (first to remove) */ 14659 for (i = 0; i < env->subprog_cnt; i++) 14660 if (env->subprog_info[i].start >= off) 14661 break; 14662 /* find first prog starting at or after off + cnt (first to stay) */ 14663 for (j = i; j < env->subprog_cnt; j++) 14664 if (env->subprog_info[j].start >= off + cnt) 14665 break; 14666 /* if j doesn't start exactly at off + cnt, we are just removing 14667 * the front of previous prog 14668 */ 14669 if (env->subprog_info[j].start != off + cnt) 14670 j--; 14671 14672 if (j > i) { 14673 struct bpf_prog_aux *aux = env->prog->aux; 14674 int move; 14675 14676 /* move fake 'exit' subprog as well */ 14677 move = env->subprog_cnt + 1 - j; 14678 14679 memmove(env->subprog_info + i, 14680 env->subprog_info + j, 14681 sizeof(*env->subprog_info) * move); 14682 env->subprog_cnt -= j - i; 14683 14684 /* remove func_info */ 14685 if (aux->func_info) { 14686 move = aux->func_info_cnt - j; 14687 14688 memmove(aux->func_info + i, 14689 aux->func_info + j, 14690 sizeof(*aux->func_info) * move); 14691 aux->func_info_cnt -= j - i; 14692 /* func_info->insn_off is set after all code rewrites, 14693 * in adjust_btf_func() - no need to adjust 14694 */ 14695 } 14696 } else { 14697 /* convert i from "first prog to remove" to "first to adjust" */ 14698 if (env->subprog_info[i].start == off) 14699 i++; 14700 } 14701 14702 /* update fake 'exit' subprog as well */ 14703 for (; i <= env->subprog_cnt; i++) 14704 env->subprog_info[i].start -= cnt; 14705 14706 return 0; 14707 } 14708 14709 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 14710 u32 cnt) 14711 { 14712 struct bpf_prog *prog = env->prog; 14713 u32 i, l_off, l_cnt, nr_linfo; 14714 struct bpf_line_info *linfo; 14715 14716 nr_linfo = prog->aux->nr_linfo; 14717 if (!nr_linfo) 14718 return 0; 14719 14720 linfo = prog->aux->linfo; 14721 14722 /* find first line info to remove, count lines to be removed */ 14723 for (i = 0; i < nr_linfo; i++) 14724 if (linfo[i].insn_off >= off) 14725 break; 14726 14727 l_off = i; 14728 l_cnt = 0; 14729 for (; i < nr_linfo; i++) 14730 if (linfo[i].insn_off < off + cnt) 14731 l_cnt++; 14732 else 14733 break; 14734 14735 /* First live insn doesn't match first live linfo, it needs to "inherit" 14736 * last removed linfo. prog is already modified, so prog->len == off 14737 * means no live instructions after (tail of the program was removed). 14738 */ 14739 if (prog->len != off && l_cnt && 14740 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 14741 l_cnt--; 14742 linfo[--i].insn_off = off + cnt; 14743 } 14744 14745 /* remove the line info which refer to the removed instructions */ 14746 if (l_cnt) { 14747 memmove(linfo + l_off, linfo + i, 14748 sizeof(*linfo) * (nr_linfo - i)); 14749 14750 prog->aux->nr_linfo -= l_cnt; 14751 nr_linfo = prog->aux->nr_linfo; 14752 } 14753 14754 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 14755 for (i = l_off; i < nr_linfo; i++) 14756 linfo[i].insn_off -= cnt; 14757 14758 /* fix up all subprogs (incl. 'exit') which start >= off */ 14759 for (i = 0; i <= env->subprog_cnt; i++) 14760 if (env->subprog_info[i].linfo_idx > l_off) { 14761 /* program may have started in the removed region but 14762 * may not be fully removed 14763 */ 14764 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 14765 env->subprog_info[i].linfo_idx -= l_cnt; 14766 else 14767 env->subprog_info[i].linfo_idx = l_off; 14768 } 14769 14770 return 0; 14771 } 14772 14773 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 14774 { 14775 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 14776 unsigned int orig_prog_len = env->prog->len; 14777 int err; 14778 14779 if (bpf_prog_is_dev_bound(env->prog->aux)) 14780 bpf_prog_offload_remove_insns(env, off, cnt); 14781 14782 err = bpf_remove_insns(env->prog, off, cnt); 14783 if (err) 14784 return err; 14785 14786 err = adjust_subprog_starts_after_remove(env, off, cnt); 14787 if (err) 14788 return err; 14789 14790 err = bpf_adj_linfo_after_remove(env, off, cnt); 14791 if (err) 14792 return err; 14793 14794 memmove(aux_data + off, aux_data + off + cnt, 14795 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 14796 14797 return 0; 14798 } 14799 14800 /* The verifier does more data flow analysis than llvm and will not 14801 * explore branches that are dead at run time. Malicious programs can 14802 * have dead code too. Therefore replace all dead at-run-time code 14803 * with 'ja -1'. 14804 * 14805 * Just nops are not optimal, e.g. if they would sit at the end of the 14806 * program and through another bug we would manage to jump there, then 14807 * we'd execute beyond program memory otherwise. Returning exception 14808 * code also wouldn't work since we can have subprogs where the dead 14809 * code could be located. 14810 */ 14811 static void sanitize_dead_code(struct bpf_verifier_env *env) 14812 { 14813 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 14814 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 14815 struct bpf_insn *insn = env->prog->insnsi; 14816 const int insn_cnt = env->prog->len; 14817 int i; 14818 14819 for (i = 0; i < insn_cnt; i++) { 14820 if (aux_data[i].seen) 14821 continue; 14822 memcpy(insn + i, &trap, sizeof(trap)); 14823 aux_data[i].zext_dst = false; 14824 } 14825 } 14826 14827 static bool insn_is_cond_jump(u8 code) 14828 { 14829 u8 op; 14830 14831 if (BPF_CLASS(code) == BPF_JMP32) 14832 return true; 14833 14834 if (BPF_CLASS(code) != BPF_JMP) 14835 return false; 14836 14837 op = BPF_OP(code); 14838 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 14839 } 14840 14841 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 14842 { 14843 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 14844 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 14845 struct bpf_insn *insn = env->prog->insnsi; 14846 const int insn_cnt = env->prog->len; 14847 int i; 14848 14849 for (i = 0; i < insn_cnt; i++, insn++) { 14850 if (!insn_is_cond_jump(insn->code)) 14851 continue; 14852 14853 if (!aux_data[i + 1].seen) 14854 ja.off = insn->off; 14855 else if (!aux_data[i + 1 + insn->off].seen) 14856 ja.off = 0; 14857 else 14858 continue; 14859 14860 if (bpf_prog_is_dev_bound(env->prog->aux)) 14861 bpf_prog_offload_replace_insn(env, i, &ja); 14862 14863 memcpy(insn, &ja, sizeof(ja)); 14864 } 14865 } 14866 14867 static int opt_remove_dead_code(struct bpf_verifier_env *env) 14868 { 14869 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 14870 int insn_cnt = env->prog->len; 14871 int i, err; 14872 14873 for (i = 0; i < insn_cnt; i++) { 14874 int j; 14875 14876 j = 0; 14877 while (i + j < insn_cnt && !aux_data[i + j].seen) 14878 j++; 14879 if (!j) 14880 continue; 14881 14882 err = verifier_remove_insns(env, i, j); 14883 if (err) 14884 return err; 14885 insn_cnt = env->prog->len; 14886 } 14887 14888 return 0; 14889 } 14890 14891 static int opt_remove_nops(struct bpf_verifier_env *env) 14892 { 14893 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 14894 struct bpf_insn *insn = env->prog->insnsi; 14895 int insn_cnt = env->prog->len; 14896 int i, err; 14897 14898 for (i = 0; i < insn_cnt; i++) { 14899 if (memcmp(&insn[i], &ja, sizeof(ja))) 14900 continue; 14901 14902 err = verifier_remove_insns(env, i, 1); 14903 if (err) 14904 return err; 14905 insn_cnt--; 14906 i--; 14907 } 14908 14909 return 0; 14910 } 14911 14912 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 14913 const union bpf_attr *attr) 14914 { 14915 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 14916 struct bpf_insn_aux_data *aux = env->insn_aux_data; 14917 int i, patch_len, delta = 0, len = env->prog->len; 14918 struct bpf_insn *insns = env->prog->insnsi; 14919 struct bpf_prog *new_prog; 14920 bool rnd_hi32; 14921 14922 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 14923 zext_patch[1] = BPF_ZEXT_REG(0); 14924 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 14925 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 14926 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 14927 for (i = 0; i < len; i++) { 14928 int adj_idx = i + delta; 14929 struct bpf_insn insn; 14930 int load_reg; 14931 14932 insn = insns[adj_idx]; 14933 load_reg = insn_def_regno(&insn); 14934 if (!aux[adj_idx].zext_dst) { 14935 u8 code, class; 14936 u32 imm_rnd; 14937 14938 if (!rnd_hi32) 14939 continue; 14940 14941 code = insn.code; 14942 class = BPF_CLASS(code); 14943 if (load_reg == -1) 14944 continue; 14945 14946 /* NOTE: arg "reg" (the fourth one) is only used for 14947 * BPF_STX + SRC_OP, so it is safe to pass NULL 14948 * here. 14949 */ 14950 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 14951 if (class == BPF_LD && 14952 BPF_MODE(code) == BPF_IMM) 14953 i++; 14954 continue; 14955 } 14956 14957 /* ctx load could be transformed into wider load. */ 14958 if (class == BPF_LDX && 14959 aux[adj_idx].ptr_type == PTR_TO_CTX) 14960 continue; 14961 14962 imm_rnd = get_random_u32(); 14963 rnd_hi32_patch[0] = insn; 14964 rnd_hi32_patch[1].imm = imm_rnd; 14965 rnd_hi32_patch[3].dst_reg = load_reg; 14966 patch = rnd_hi32_patch; 14967 patch_len = 4; 14968 goto apply_patch_buffer; 14969 } 14970 14971 /* Add in an zero-extend instruction if a) the JIT has requested 14972 * it or b) it's a CMPXCHG. 14973 * 14974 * The latter is because: BPF_CMPXCHG always loads a value into 14975 * R0, therefore always zero-extends. However some archs' 14976 * equivalent instruction only does this load when the 14977 * comparison is successful. This detail of CMPXCHG is 14978 * orthogonal to the general zero-extension behaviour of the 14979 * CPU, so it's treated independently of bpf_jit_needs_zext. 14980 */ 14981 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 14982 continue; 14983 14984 /* Zero-extension is done by the caller. */ 14985 if (bpf_pseudo_kfunc_call(&insn)) 14986 continue; 14987 14988 if (WARN_ON(load_reg == -1)) { 14989 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 14990 return -EFAULT; 14991 } 14992 14993 zext_patch[0] = insn; 14994 zext_patch[1].dst_reg = load_reg; 14995 zext_patch[1].src_reg = load_reg; 14996 patch = zext_patch; 14997 patch_len = 2; 14998 apply_patch_buffer: 14999 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 15000 if (!new_prog) 15001 return -ENOMEM; 15002 env->prog = new_prog; 15003 insns = new_prog->insnsi; 15004 aux = env->insn_aux_data; 15005 delta += patch_len - 1; 15006 } 15007 15008 return 0; 15009 } 15010 15011 /* convert load instructions that access fields of a context type into a 15012 * sequence of instructions that access fields of the underlying structure: 15013 * struct __sk_buff -> struct sk_buff 15014 * struct bpf_sock_ops -> struct sock 15015 */ 15016 static int convert_ctx_accesses(struct bpf_verifier_env *env) 15017 { 15018 const struct bpf_verifier_ops *ops = env->ops; 15019 int i, cnt, size, ctx_field_size, delta = 0; 15020 const int insn_cnt = env->prog->len; 15021 struct bpf_insn insn_buf[16], *insn; 15022 u32 target_size, size_default, off; 15023 struct bpf_prog *new_prog; 15024 enum bpf_access_type type; 15025 bool is_narrower_load; 15026 15027 if (ops->gen_prologue || env->seen_direct_write) { 15028 if (!ops->gen_prologue) { 15029 verbose(env, "bpf verifier is misconfigured\n"); 15030 return -EINVAL; 15031 } 15032 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 15033 env->prog); 15034 if (cnt >= ARRAY_SIZE(insn_buf)) { 15035 verbose(env, "bpf verifier is misconfigured\n"); 15036 return -EINVAL; 15037 } else if (cnt) { 15038 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 15039 if (!new_prog) 15040 return -ENOMEM; 15041 15042 env->prog = new_prog; 15043 delta += cnt - 1; 15044 } 15045 } 15046 15047 if (bpf_prog_is_dev_bound(env->prog->aux)) 15048 return 0; 15049 15050 insn = env->prog->insnsi + delta; 15051 15052 for (i = 0; i < insn_cnt; i++, insn++) { 15053 bpf_convert_ctx_access_t convert_ctx_access; 15054 bool ctx_access; 15055 15056 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 15057 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 15058 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 15059 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 15060 type = BPF_READ; 15061 ctx_access = true; 15062 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 15063 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 15064 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 15065 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 15066 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 15067 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 15068 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 15069 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 15070 type = BPF_WRITE; 15071 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 15072 } else { 15073 continue; 15074 } 15075 15076 if (type == BPF_WRITE && 15077 env->insn_aux_data[i + delta].sanitize_stack_spill) { 15078 struct bpf_insn patch[] = { 15079 *insn, 15080 BPF_ST_NOSPEC(), 15081 }; 15082 15083 cnt = ARRAY_SIZE(patch); 15084 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 15085 if (!new_prog) 15086 return -ENOMEM; 15087 15088 delta += cnt - 1; 15089 env->prog = new_prog; 15090 insn = new_prog->insnsi + i + delta; 15091 continue; 15092 } 15093 15094 if (!ctx_access) 15095 continue; 15096 15097 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 15098 case PTR_TO_CTX: 15099 if (!ops->convert_ctx_access) 15100 continue; 15101 convert_ctx_access = ops->convert_ctx_access; 15102 break; 15103 case PTR_TO_SOCKET: 15104 case PTR_TO_SOCK_COMMON: 15105 convert_ctx_access = bpf_sock_convert_ctx_access; 15106 break; 15107 case PTR_TO_TCP_SOCK: 15108 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 15109 break; 15110 case PTR_TO_XDP_SOCK: 15111 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 15112 break; 15113 case PTR_TO_BTF_ID: 15114 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 15115 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 15116 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 15117 * be said once it is marked PTR_UNTRUSTED, hence we must handle 15118 * any faults for loads into such types. BPF_WRITE is disallowed 15119 * for this case. 15120 */ 15121 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 15122 if (type == BPF_READ) { 15123 insn->code = BPF_LDX | BPF_PROBE_MEM | 15124 BPF_SIZE((insn)->code); 15125 env->prog->aux->num_exentries++; 15126 } 15127 continue; 15128 default: 15129 continue; 15130 } 15131 15132 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 15133 size = BPF_LDST_BYTES(insn); 15134 15135 /* If the read access is a narrower load of the field, 15136 * convert to a 4/8-byte load, to minimum program type specific 15137 * convert_ctx_access changes. If conversion is successful, 15138 * we will apply proper mask to the result. 15139 */ 15140 is_narrower_load = size < ctx_field_size; 15141 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 15142 off = insn->off; 15143 if (is_narrower_load) { 15144 u8 size_code; 15145 15146 if (type == BPF_WRITE) { 15147 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 15148 return -EINVAL; 15149 } 15150 15151 size_code = BPF_H; 15152 if (ctx_field_size == 4) 15153 size_code = BPF_W; 15154 else if (ctx_field_size == 8) 15155 size_code = BPF_DW; 15156 15157 insn->off = off & ~(size_default - 1); 15158 insn->code = BPF_LDX | BPF_MEM | size_code; 15159 } 15160 15161 target_size = 0; 15162 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 15163 &target_size); 15164 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 15165 (ctx_field_size && !target_size)) { 15166 verbose(env, "bpf verifier is misconfigured\n"); 15167 return -EINVAL; 15168 } 15169 15170 if (is_narrower_load && size < target_size) { 15171 u8 shift = bpf_ctx_narrow_access_offset( 15172 off, size, size_default) * 8; 15173 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 15174 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 15175 return -EINVAL; 15176 } 15177 if (ctx_field_size <= 4) { 15178 if (shift) 15179 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 15180 insn->dst_reg, 15181 shift); 15182 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 15183 (1 << size * 8) - 1); 15184 } else { 15185 if (shift) 15186 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 15187 insn->dst_reg, 15188 shift); 15189 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 15190 (1ULL << size * 8) - 1); 15191 } 15192 } 15193 15194 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15195 if (!new_prog) 15196 return -ENOMEM; 15197 15198 delta += cnt - 1; 15199 15200 /* keep walking new program and skip insns we just inserted */ 15201 env->prog = new_prog; 15202 insn = new_prog->insnsi + i + delta; 15203 } 15204 15205 return 0; 15206 } 15207 15208 static int jit_subprogs(struct bpf_verifier_env *env) 15209 { 15210 struct bpf_prog *prog = env->prog, **func, *tmp; 15211 int i, j, subprog_start, subprog_end = 0, len, subprog; 15212 struct bpf_map *map_ptr; 15213 struct bpf_insn *insn; 15214 void *old_bpf_func; 15215 int err, num_exentries; 15216 15217 if (env->subprog_cnt <= 1) 15218 return 0; 15219 15220 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 15221 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 15222 continue; 15223 15224 /* Upon error here we cannot fall back to interpreter but 15225 * need a hard reject of the program. Thus -EFAULT is 15226 * propagated in any case. 15227 */ 15228 subprog = find_subprog(env, i + insn->imm + 1); 15229 if (subprog < 0) { 15230 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 15231 i + insn->imm + 1); 15232 return -EFAULT; 15233 } 15234 /* temporarily remember subprog id inside insn instead of 15235 * aux_data, since next loop will split up all insns into funcs 15236 */ 15237 insn->off = subprog; 15238 /* remember original imm in case JIT fails and fallback 15239 * to interpreter will be needed 15240 */ 15241 env->insn_aux_data[i].call_imm = insn->imm; 15242 /* point imm to __bpf_call_base+1 from JITs point of view */ 15243 insn->imm = 1; 15244 if (bpf_pseudo_func(insn)) 15245 /* jit (e.g. x86_64) may emit fewer instructions 15246 * if it learns a u32 imm is the same as a u64 imm. 15247 * Force a non zero here. 15248 */ 15249 insn[1].imm = 1; 15250 } 15251 15252 err = bpf_prog_alloc_jited_linfo(prog); 15253 if (err) 15254 goto out_undo_insn; 15255 15256 err = -ENOMEM; 15257 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 15258 if (!func) 15259 goto out_undo_insn; 15260 15261 for (i = 0; i < env->subprog_cnt; i++) { 15262 subprog_start = subprog_end; 15263 subprog_end = env->subprog_info[i + 1].start; 15264 15265 len = subprog_end - subprog_start; 15266 /* bpf_prog_run() doesn't call subprogs directly, 15267 * hence main prog stats include the runtime of subprogs. 15268 * subprogs don't have IDs and not reachable via prog_get_next_id 15269 * func[i]->stats will never be accessed and stays NULL 15270 */ 15271 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 15272 if (!func[i]) 15273 goto out_free; 15274 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 15275 len * sizeof(struct bpf_insn)); 15276 func[i]->type = prog->type; 15277 func[i]->len = len; 15278 if (bpf_prog_calc_tag(func[i])) 15279 goto out_free; 15280 func[i]->is_func = 1; 15281 func[i]->aux->func_idx = i; 15282 /* Below members will be freed only at prog->aux */ 15283 func[i]->aux->btf = prog->aux->btf; 15284 func[i]->aux->func_info = prog->aux->func_info; 15285 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 15286 func[i]->aux->poke_tab = prog->aux->poke_tab; 15287 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 15288 15289 for (j = 0; j < prog->aux->size_poke_tab; j++) { 15290 struct bpf_jit_poke_descriptor *poke; 15291 15292 poke = &prog->aux->poke_tab[j]; 15293 if (poke->insn_idx < subprog_end && 15294 poke->insn_idx >= subprog_start) 15295 poke->aux = func[i]->aux; 15296 } 15297 15298 func[i]->aux->name[0] = 'F'; 15299 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 15300 func[i]->jit_requested = 1; 15301 func[i]->blinding_requested = prog->blinding_requested; 15302 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 15303 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 15304 func[i]->aux->linfo = prog->aux->linfo; 15305 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 15306 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 15307 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 15308 num_exentries = 0; 15309 insn = func[i]->insnsi; 15310 for (j = 0; j < func[i]->len; j++, insn++) { 15311 if (BPF_CLASS(insn->code) == BPF_LDX && 15312 BPF_MODE(insn->code) == BPF_PROBE_MEM) 15313 num_exentries++; 15314 } 15315 func[i]->aux->num_exentries = num_exentries; 15316 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 15317 func[i] = bpf_int_jit_compile(func[i]); 15318 if (!func[i]->jited) { 15319 err = -ENOTSUPP; 15320 goto out_free; 15321 } 15322 cond_resched(); 15323 } 15324 15325 /* at this point all bpf functions were successfully JITed 15326 * now populate all bpf_calls with correct addresses and 15327 * run last pass of JIT 15328 */ 15329 for (i = 0; i < env->subprog_cnt; i++) { 15330 insn = func[i]->insnsi; 15331 for (j = 0; j < func[i]->len; j++, insn++) { 15332 if (bpf_pseudo_func(insn)) { 15333 subprog = insn->off; 15334 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 15335 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 15336 continue; 15337 } 15338 if (!bpf_pseudo_call(insn)) 15339 continue; 15340 subprog = insn->off; 15341 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 15342 } 15343 15344 /* we use the aux data to keep a list of the start addresses 15345 * of the JITed images for each function in the program 15346 * 15347 * for some architectures, such as powerpc64, the imm field 15348 * might not be large enough to hold the offset of the start 15349 * address of the callee's JITed image from __bpf_call_base 15350 * 15351 * in such cases, we can lookup the start address of a callee 15352 * by using its subprog id, available from the off field of 15353 * the call instruction, as an index for this list 15354 */ 15355 func[i]->aux->func = func; 15356 func[i]->aux->func_cnt = env->subprog_cnt; 15357 } 15358 for (i = 0; i < env->subprog_cnt; i++) { 15359 old_bpf_func = func[i]->bpf_func; 15360 tmp = bpf_int_jit_compile(func[i]); 15361 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 15362 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 15363 err = -ENOTSUPP; 15364 goto out_free; 15365 } 15366 cond_resched(); 15367 } 15368 15369 /* finally lock prog and jit images for all functions and 15370 * populate kallsysm 15371 */ 15372 for (i = 0; i < env->subprog_cnt; i++) { 15373 bpf_prog_lock_ro(func[i]); 15374 bpf_prog_kallsyms_add(func[i]); 15375 } 15376 15377 /* Last step: make now unused interpreter insns from main 15378 * prog consistent for later dump requests, so they can 15379 * later look the same as if they were interpreted only. 15380 */ 15381 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 15382 if (bpf_pseudo_func(insn)) { 15383 insn[0].imm = env->insn_aux_data[i].call_imm; 15384 insn[1].imm = insn->off; 15385 insn->off = 0; 15386 continue; 15387 } 15388 if (!bpf_pseudo_call(insn)) 15389 continue; 15390 insn->off = env->insn_aux_data[i].call_imm; 15391 subprog = find_subprog(env, i + insn->off + 1); 15392 insn->imm = subprog; 15393 } 15394 15395 prog->jited = 1; 15396 prog->bpf_func = func[0]->bpf_func; 15397 prog->jited_len = func[0]->jited_len; 15398 prog->aux->func = func; 15399 prog->aux->func_cnt = env->subprog_cnt; 15400 bpf_prog_jit_attempt_done(prog); 15401 return 0; 15402 out_free: 15403 /* We failed JIT'ing, so at this point we need to unregister poke 15404 * descriptors from subprogs, so that kernel is not attempting to 15405 * patch it anymore as we're freeing the subprog JIT memory. 15406 */ 15407 for (i = 0; i < prog->aux->size_poke_tab; i++) { 15408 map_ptr = prog->aux->poke_tab[i].tail_call.map; 15409 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 15410 } 15411 /* At this point we're guaranteed that poke descriptors are not 15412 * live anymore. We can just unlink its descriptor table as it's 15413 * released with the main prog. 15414 */ 15415 for (i = 0; i < env->subprog_cnt; i++) { 15416 if (!func[i]) 15417 continue; 15418 func[i]->aux->poke_tab = NULL; 15419 bpf_jit_free(func[i]); 15420 } 15421 kfree(func); 15422 out_undo_insn: 15423 /* cleanup main prog to be interpreted */ 15424 prog->jit_requested = 0; 15425 prog->blinding_requested = 0; 15426 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 15427 if (!bpf_pseudo_call(insn)) 15428 continue; 15429 insn->off = 0; 15430 insn->imm = env->insn_aux_data[i].call_imm; 15431 } 15432 bpf_prog_jit_attempt_done(prog); 15433 return err; 15434 } 15435 15436 static int fixup_call_args(struct bpf_verifier_env *env) 15437 { 15438 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 15439 struct bpf_prog *prog = env->prog; 15440 struct bpf_insn *insn = prog->insnsi; 15441 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 15442 int i, depth; 15443 #endif 15444 int err = 0; 15445 15446 if (env->prog->jit_requested && 15447 !bpf_prog_is_dev_bound(env->prog->aux)) { 15448 err = jit_subprogs(env); 15449 if (err == 0) 15450 return 0; 15451 if (err == -EFAULT) 15452 return err; 15453 } 15454 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 15455 if (has_kfunc_call) { 15456 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 15457 return -EINVAL; 15458 } 15459 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 15460 /* When JIT fails the progs with bpf2bpf calls and tail_calls 15461 * have to be rejected, since interpreter doesn't support them yet. 15462 */ 15463 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 15464 return -EINVAL; 15465 } 15466 for (i = 0; i < prog->len; i++, insn++) { 15467 if (bpf_pseudo_func(insn)) { 15468 /* When JIT fails the progs with callback calls 15469 * have to be rejected, since interpreter doesn't support them yet. 15470 */ 15471 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 15472 return -EINVAL; 15473 } 15474 15475 if (!bpf_pseudo_call(insn)) 15476 continue; 15477 depth = get_callee_stack_depth(env, insn, i); 15478 if (depth < 0) 15479 return depth; 15480 bpf_patch_call_args(insn, depth); 15481 } 15482 err = 0; 15483 #endif 15484 return err; 15485 } 15486 15487 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 15488 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 15489 { 15490 const struct bpf_kfunc_desc *desc; 15491 15492 if (!insn->imm) { 15493 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 15494 return -EINVAL; 15495 } 15496 15497 /* insn->imm has the btf func_id. Replace it with 15498 * an address (relative to __bpf_call_base). 15499 */ 15500 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 15501 if (!desc) { 15502 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 15503 insn->imm); 15504 return -EFAULT; 15505 } 15506 15507 *cnt = 0; 15508 insn->imm = desc->imm; 15509 if (insn->off) 15510 return 0; 15511 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 15512 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 15513 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 15514 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 15515 15516 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 15517 insn_buf[1] = addr[0]; 15518 insn_buf[2] = addr[1]; 15519 insn_buf[3] = *insn; 15520 *cnt = 4; 15521 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 15522 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 15523 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 15524 15525 insn_buf[0] = addr[0]; 15526 insn_buf[1] = addr[1]; 15527 insn_buf[2] = *insn; 15528 *cnt = 3; 15529 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 15530 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 15531 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 15532 *cnt = 1; 15533 } 15534 return 0; 15535 } 15536 15537 /* Do various post-verification rewrites in a single program pass. 15538 * These rewrites simplify JIT and interpreter implementations. 15539 */ 15540 static int do_misc_fixups(struct bpf_verifier_env *env) 15541 { 15542 struct bpf_prog *prog = env->prog; 15543 enum bpf_attach_type eatype = prog->expected_attach_type; 15544 enum bpf_prog_type prog_type = resolve_prog_type(prog); 15545 struct bpf_insn *insn = prog->insnsi; 15546 const struct bpf_func_proto *fn; 15547 const int insn_cnt = prog->len; 15548 const struct bpf_map_ops *ops; 15549 struct bpf_insn_aux_data *aux; 15550 struct bpf_insn insn_buf[16]; 15551 struct bpf_prog *new_prog; 15552 struct bpf_map *map_ptr; 15553 int i, ret, cnt, delta = 0; 15554 15555 for (i = 0; i < insn_cnt; i++, insn++) { 15556 /* Make divide-by-zero exceptions impossible. */ 15557 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 15558 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 15559 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 15560 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 15561 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 15562 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 15563 struct bpf_insn *patchlet; 15564 struct bpf_insn chk_and_div[] = { 15565 /* [R,W]x div 0 -> 0 */ 15566 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 15567 BPF_JNE | BPF_K, insn->src_reg, 15568 0, 2, 0), 15569 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 15570 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 15571 *insn, 15572 }; 15573 struct bpf_insn chk_and_mod[] = { 15574 /* [R,W]x mod 0 -> [R,W]x */ 15575 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 15576 BPF_JEQ | BPF_K, insn->src_reg, 15577 0, 1 + (is64 ? 0 : 1), 0), 15578 *insn, 15579 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 15580 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 15581 }; 15582 15583 patchlet = isdiv ? chk_and_div : chk_and_mod; 15584 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 15585 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 15586 15587 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 15588 if (!new_prog) 15589 return -ENOMEM; 15590 15591 delta += cnt - 1; 15592 env->prog = prog = new_prog; 15593 insn = new_prog->insnsi + i + delta; 15594 continue; 15595 } 15596 15597 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 15598 if (BPF_CLASS(insn->code) == BPF_LD && 15599 (BPF_MODE(insn->code) == BPF_ABS || 15600 BPF_MODE(insn->code) == BPF_IND)) { 15601 cnt = env->ops->gen_ld_abs(insn, insn_buf); 15602 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 15603 verbose(env, "bpf verifier is misconfigured\n"); 15604 return -EINVAL; 15605 } 15606 15607 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15608 if (!new_prog) 15609 return -ENOMEM; 15610 15611 delta += cnt - 1; 15612 env->prog = prog = new_prog; 15613 insn = new_prog->insnsi + i + delta; 15614 continue; 15615 } 15616 15617 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 15618 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 15619 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 15620 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 15621 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 15622 struct bpf_insn *patch = &insn_buf[0]; 15623 bool issrc, isneg, isimm; 15624 u32 off_reg; 15625 15626 aux = &env->insn_aux_data[i + delta]; 15627 if (!aux->alu_state || 15628 aux->alu_state == BPF_ALU_NON_POINTER) 15629 continue; 15630 15631 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 15632 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 15633 BPF_ALU_SANITIZE_SRC; 15634 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 15635 15636 off_reg = issrc ? insn->src_reg : insn->dst_reg; 15637 if (isimm) { 15638 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 15639 } else { 15640 if (isneg) 15641 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 15642 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 15643 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 15644 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 15645 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 15646 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 15647 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 15648 } 15649 if (!issrc) 15650 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 15651 insn->src_reg = BPF_REG_AX; 15652 if (isneg) 15653 insn->code = insn->code == code_add ? 15654 code_sub : code_add; 15655 *patch++ = *insn; 15656 if (issrc && isneg && !isimm) 15657 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 15658 cnt = patch - insn_buf; 15659 15660 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15661 if (!new_prog) 15662 return -ENOMEM; 15663 15664 delta += cnt - 1; 15665 env->prog = prog = new_prog; 15666 insn = new_prog->insnsi + i + delta; 15667 continue; 15668 } 15669 15670 if (insn->code != (BPF_JMP | BPF_CALL)) 15671 continue; 15672 if (insn->src_reg == BPF_PSEUDO_CALL) 15673 continue; 15674 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 15675 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 15676 if (ret) 15677 return ret; 15678 if (cnt == 0) 15679 continue; 15680 15681 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15682 if (!new_prog) 15683 return -ENOMEM; 15684 15685 delta += cnt - 1; 15686 env->prog = prog = new_prog; 15687 insn = new_prog->insnsi + i + delta; 15688 continue; 15689 } 15690 15691 if (insn->imm == BPF_FUNC_get_route_realm) 15692 prog->dst_needed = 1; 15693 if (insn->imm == BPF_FUNC_get_prandom_u32) 15694 bpf_user_rnd_init_once(); 15695 if (insn->imm == BPF_FUNC_override_return) 15696 prog->kprobe_override = 1; 15697 if (insn->imm == BPF_FUNC_tail_call) { 15698 /* If we tail call into other programs, we 15699 * cannot make any assumptions since they can 15700 * be replaced dynamically during runtime in 15701 * the program array. 15702 */ 15703 prog->cb_access = 1; 15704 if (!allow_tail_call_in_subprogs(env)) 15705 prog->aux->stack_depth = MAX_BPF_STACK; 15706 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 15707 15708 /* mark bpf_tail_call as different opcode to avoid 15709 * conditional branch in the interpreter for every normal 15710 * call and to prevent accidental JITing by JIT compiler 15711 * that doesn't support bpf_tail_call yet 15712 */ 15713 insn->imm = 0; 15714 insn->code = BPF_JMP | BPF_TAIL_CALL; 15715 15716 aux = &env->insn_aux_data[i + delta]; 15717 if (env->bpf_capable && !prog->blinding_requested && 15718 prog->jit_requested && 15719 !bpf_map_key_poisoned(aux) && 15720 !bpf_map_ptr_poisoned(aux) && 15721 !bpf_map_ptr_unpriv(aux)) { 15722 struct bpf_jit_poke_descriptor desc = { 15723 .reason = BPF_POKE_REASON_TAIL_CALL, 15724 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 15725 .tail_call.key = bpf_map_key_immediate(aux), 15726 .insn_idx = i + delta, 15727 }; 15728 15729 ret = bpf_jit_add_poke_descriptor(prog, &desc); 15730 if (ret < 0) { 15731 verbose(env, "adding tail call poke descriptor failed\n"); 15732 return ret; 15733 } 15734 15735 insn->imm = ret + 1; 15736 continue; 15737 } 15738 15739 if (!bpf_map_ptr_unpriv(aux)) 15740 continue; 15741 15742 /* instead of changing every JIT dealing with tail_call 15743 * emit two extra insns: 15744 * if (index >= max_entries) goto out; 15745 * index &= array->index_mask; 15746 * to avoid out-of-bounds cpu speculation 15747 */ 15748 if (bpf_map_ptr_poisoned(aux)) { 15749 verbose(env, "tail_call abusing map_ptr\n"); 15750 return -EINVAL; 15751 } 15752 15753 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 15754 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 15755 map_ptr->max_entries, 2); 15756 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 15757 container_of(map_ptr, 15758 struct bpf_array, 15759 map)->index_mask); 15760 insn_buf[2] = *insn; 15761 cnt = 3; 15762 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15763 if (!new_prog) 15764 return -ENOMEM; 15765 15766 delta += cnt - 1; 15767 env->prog = prog = new_prog; 15768 insn = new_prog->insnsi + i + delta; 15769 continue; 15770 } 15771 15772 if (insn->imm == BPF_FUNC_timer_set_callback) { 15773 /* The verifier will process callback_fn as many times as necessary 15774 * with different maps and the register states prepared by 15775 * set_timer_callback_state will be accurate. 15776 * 15777 * The following use case is valid: 15778 * map1 is shared by prog1, prog2, prog3. 15779 * prog1 calls bpf_timer_init for some map1 elements 15780 * prog2 calls bpf_timer_set_callback for some map1 elements. 15781 * Those that were not bpf_timer_init-ed will return -EINVAL. 15782 * prog3 calls bpf_timer_start for some map1 elements. 15783 * Those that were not both bpf_timer_init-ed and 15784 * bpf_timer_set_callback-ed will return -EINVAL. 15785 */ 15786 struct bpf_insn ld_addrs[2] = { 15787 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 15788 }; 15789 15790 insn_buf[0] = ld_addrs[0]; 15791 insn_buf[1] = ld_addrs[1]; 15792 insn_buf[2] = *insn; 15793 cnt = 3; 15794 15795 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15796 if (!new_prog) 15797 return -ENOMEM; 15798 15799 delta += cnt - 1; 15800 env->prog = prog = new_prog; 15801 insn = new_prog->insnsi + i + delta; 15802 goto patch_call_imm; 15803 } 15804 15805 if (is_storage_get_function(insn->imm)) { 15806 if (!env->prog->aux->sleepable || 15807 env->insn_aux_data[i + delta].storage_get_func_atomic) 15808 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 15809 else 15810 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 15811 insn_buf[1] = *insn; 15812 cnt = 2; 15813 15814 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15815 if (!new_prog) 15816 return -ENOMEM; 15817 15818 delta += cnt - 1; 15819 env->prog = prog = new_prog; 15820 insn = new_prog->insnsi + i + delta; 15821 goto patch_call_imm; 15822 } 15823 15824 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 15825 * and other inlining handlers are currently limited to 64 bit 15826 * only. 15827 */ 15828 if (prog->jit_requested && BITS_PER_LONG == 64 && 15829 (insn->imm == BPF_FUNC_map_lookup_elem || 15830 insn->imm == BPF_FUNC_map_update_elem || 15831 insn->imm == BPF_FUNC_map_delete_elem || 15832 insn->imm == BPF_FUNC_map_push_elem || 15833 insn->imm == BPF_FUNC_map_pop_elem || 15834 insn->imm == BPF_FUNC_map_peek_elem || 15835 insn->imm == BPF_FUNC_redirect_map || 15836 insn->imm == BPF_FUNC_for_each_map_elem || 15837 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 15838 aux = &env->insn_aux_data[i + delta]; 15839 if (bpf_map_ptr_poisoned(aux)) 15840 goto patch_call_imm; 15841 15842 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 15843 ops = map_ptr->ops; 15844 if (insn->imm == BPF_FUNC_map_lookup_elem && 15845 ops->map_gen_lookup) { 15846 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 15847 if (cnt == -EOPNOTSUPP) 15848 goto patch_map_ops_generic; 15849 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 15850 verbose(env, "bpf verifier is misconfigured\n"); 15851 return -EINVAL; 15852 } 15853 15854 new_prog = bpf_patch_insn_data(env, i + delta, 15855 insn_buf, cnt); 15856 if (!new_prog) 15857 return -ENOMEM; 15858 15859 delta += cnt - 1; 15860 env->prog = prog = new_prog; 15861 insn = new_prog->insnsi + i + delta; 15862 continue; 15863 } 15864 15865 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 15866 (void *(*)(struct bpf_map *map, void *key))NULL)); 15867 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 15868 (int (*)(struct bpf_map *map, void *key))NULL)); 15869 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 15870 (int (*)(struct bpf_map *map, void *key, void *value, 15871 u64 flags))NULL)); 15872 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 15873 (int (*)(struct bpf_map *map, void *value, 15874 u64 flags))NULL)); 15875 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 15876 (int (*)(struct bpf_map *map, void *value))NULL)); 15877 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 15878 (int (*)(struct bpf_map *map, void *value))NULL)); 15879 BUILD_BUG_ON(!__same_type(ops->map_redirect, 15880 (int (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 15881 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 15882 (int (*)(struct bpf_map *map, 15883 bpf_callback_t callback_fn, 15884 void *callback_ctx, 15885 u64 flags))NULL)); 15886 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 15887 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 15888 15889 patch_map_ops_generic: 15890 switch (insn->imm) { 15891 case BPF_FUNC_map_lookup_elem: 15892 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 15893 continue; 15894 case BPF_FUNC_map_update_elem: 15895 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 15896 continue; 15897 case BPF_FUNC_map_delete_elem: 15898 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 15899 continue; 15900 case BPF_FUNC_map_push_elem: 15901 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 15902 continue; 15903 case BPF_FUNC_map_pop_elem: 15904 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 15905 continue; 15906 case BPF_FUNC_map_peek_elem: 15907 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 15908 continue; 15909 case BPF_FUNC_redirect_map: 15910 insn->imm = BPF_CALL_IMM(ops->map_redirect); 15911 continue; 15912 case BPF_FUNC_for_each_map_elem: 15913 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 15914 continue; 15915 case BPF_FUNC_map_lookup_percpu_elem: 15916 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 15917 continue; 15918 } 15919 15920 goto patch_call_imm; 15921 } 15922 15923 /* Implement bpf_jiffies64 inline. */ 15924 if (prog->jit_requested && BITS_PER_LONG == 64 && 15925 insn->imm == BPF_FUNC_jiffies64) { 15926 struct bpf_insn ld_jiffies_addr[2] = { 15927 BPF_LD_IMM64(BPF_REG_0, 15928 (unsigned long)&jiffies), 15929 }; 15930 15931 insn_buf[0] = ld_jiffies_addr[0]; 15932 insn_buf[1] = ld_jiffies_addr[1]; 15933 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 15934 BPF_REG_0, 0); 15935 cnt = 3; 15936 15937 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 15938 cnt); 15939 if (!new_prog) 15940 return -ENOMEM; 15941 15942 delta += cnt - 1; 15943 env->prog = prog = new_prog; 15944 insn = new_prog->insnsi + i + delta; 15945 continue; 15946 } 15947 15948 /* Implement bpf_get_func_arg inline. */ 15949 if (prog_type == BPF_PROG_TYPE_TRACING && 15950 insn->imm == BPF_FUNC_get_func_arg) { 15951 /* Load nr_args from ctx - 8 */ 15952 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 15953 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 15954 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 15955 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 15956 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 15957 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 15958 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 15959 insn_buf[7] = BPF_JMP_A(1); 15960 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 15961 cnt = 9; 15962 15963 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15964 if (!new_prog) 15965 return -ENOMEM; 15966 15967 delta += cnt - 1; 15968 env->prog = prog = new_prog; 15969 insn = new_prog->insnsi + i + delta; 15970 continue; 15971 } 15972 15973 /* Implement bpf_get_func_ret inline. */ 15974 if (prog_type == BPF_PROG_TYPE_TRACING && 15975 insn->imm == BPF_FUNC_get_func_ret) { 15976 if (eatype == BPF_TRACE_FEXIT || 15977 eatype == BPF_MODIFY_RETURN) { 15978 /* Load nr_args from ctx - 8 */ 15979 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 15980 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 15981 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 15982 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 15983 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 15984 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 15985 cnt = 6; 15986 } else { 15987 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 15988 cnt = 1; 15989 } 15990 15991 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15992 if (!new_prog) 15993 return -ENOMEM; 15994 15995 delta += cnt - 1; 15996 env->prog = prog = new_prog; 15997 insn = new_prog->insnsi + i + delta; 15998 continue; 15999 } 16000 16001 /* Implement get_func_arg_cnt inline. */ 16002 if (prog_type == BPF_PROG_TYPE_TRACING && 16003 insn->imm == BPF_FUNC_get_func_arg_cnt) { 16004 /* Load nr_args from ctx - 8 */ 16005 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 16006 16007 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 16008 if (!new_prog) 16009 return -ENOMEM; 16010 16011 env->prog = prog = new_prog; 16012 insn = new_prog->insnsi + i + delta; 16013 continue; 16014 } 16015 16016 /* Implement bpf_get_func_ip inline. */ 16017 if (prog_type == BPF_PROG_TYPE_TRACING && 16018 insn->imm == BPF_FUNC_get_func_ip) { 16019 /* Load IP address from ctx - 16 */ 16020 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 16021 16022 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 16023 if (!new_prog) 16024 return -ENOMEM; 16025 16026 env->prog = prog = new_prog; 16027 insn = new_prog->insnsi + i + delta; 16028 continue; 16029 } 16030 16031 patch_call_imm: 16032 fn = env->ops->get_func_proto(insn->imm, env->prog); 16033 /* all functions that have prototype and verifier allowed 16034 * programs to call them, must be real in-kernel functions 16035 */ 16036 if (!fn->func) { 16037 verbose(env, 16038 "kernel subsystem misconfigured func %s#%d\n", 16039 func_id_name(insn->imm), insn->imm); 16040 return -EFAULT; 16041 } 16042 insn->imm = fn->func - __bpf_call_base; 16043 } 16044 16045 /* Since poke tab is now finalized, publish aux to tracker. */ 16046 for (i = 0; i < prog->aux->size_poke_tab; i++) { 16047 map_ptr = prog->aux->poke_tab[i].tail_call.map; 16048 if (!map_ptr->ops->map_poke_track || 16049 !map_ptr->ops->map_poke_untrack || 16050 !map_ptr->ops->map_poke_run) { 16051 verbose(env, "bpf verifier is misconfigured\n"); 16052 return -EINVAL; 16053 } 16054 16055 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 16056 if (ret < 0) { 16057 verbose(env, "tracking tail call prog failed\n"); 16058 return ret; 16059 } 16060 } 16061 16062 sort_kfunc_descs_by_imm(env->prog); 16063 16064 return 0; 16065 } 16066 16067 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 16068 int position, 16069 s32 stack_base, 16070 u32 callback_subprogno, 16071 u32 *cnt) 16072 { 16073 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 16074 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 16075 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 16076 int reg_loop_max = BPF_REG_6; 16077 int reg_loop_cnt = BPF_REG_7; 16078 int reg_loop_ctx = BPF_REG_8; 16079 16080 struct bpf_prog *new_prog; 16081 u32 callback_start; 16082 u32 call_insn_offset; 16083 s32 callback_offset; 16084 16085 /* This represents an inlined version of bpf_iter.c:bpf_loop, 16086 * be careful to modify this code in sync. 16087 */ 16088 struct bpf_insn insn_buf[] = { 16089 /* Return error and jump to the end of the patch if 16090 * expected number of iterations is too big. 16091 */ 16092 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 16093 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 16094 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 16095 /* spill R6, R7, R8 to use these as loop vars */ 16096 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 16097 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 16098 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 16099 /* initialize loop vars */ 16100 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 16101 BPF_MOV32_IMM(reg_loop_cnt, 0), 16102 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 16103 /* loop header, 16104 * if reg_loop_cnt >= reg_loop_max skip the loop body 16105 */ 16106 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 16107 /* callback call, 16108 * correct callback offset would be set after patching 16109 */ 16110 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 16111 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 16112 BPF_CALL_REL(0), 16113 /* increment loop counter */ 16114 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 16115 /* jump to loop header if callback returned 0 */ 16116 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 16117 /* return value of bpf_loop, 16118 * set R0 to the number of iterations 16119 */ 16120 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 16121 /* restore original values of R6, R7, R8 */ 16122 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 16123 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 16124 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 16125 }; 16126 16127 *cnt = ARRAY_SIZE(insn_buf); 16128 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 16129 if (!new_prog) 16130 return new_prog; 16131 16132 /* callback start is known only after patching */ 16133 callback_start = env->subprog_info[callback_subprogno].start; 16134 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 16135 call_insn_offset = position + 12; 16136 callback_offset = callback_start - call_insn_offset - 1; 16137 new_prog->insnsi[call_insn_offset].imm = callback_offset; 16138 16139 return new_prog; 16140 } 16141 16142 static bool is_bpf_loop_call(struct bpf_insn *insn) 16143 { 16144 return insn->code == (BPF_JMP | BPF_CALL) && 16145 insn->src_reg == 0 && 16146 insn->imm == BPF_FUNC_loop; 16147 } 16148 16149 /* For all sub-programs in the program (including main) check 16150 * insn_aux_data to see if there are bpf_loop calls that require 16151 * inlining. If such calls are found the calls are replaced with a 16152 * sequence of instructions produced by `inline_bpf_loop` function and 16153 * subprog stack_depth is increased by the size of 3 registers. 16154 * This stack space is used to spill values of the R6, R7, R8. These 16155 * registers are used to store the loop bound, counter and context 16156 * variables. 16157 */ 16158 static int optimize_bpf_loop(struct bpf_verifier_env *env) 16159 { 16160 struct bpf_subprog_info *subprogs = env->subprog_info; 16161 int i, cur_subprog = 0, cnt, delta = 0; 16162 struct bpf_insn *insn = env->prog->insnsi; 16163 int insn_cnt = env->prog->len; 16164 u16 stack_depth = subprogs[cur_subprog].stack_depth; 16165 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 16166 u16 stack_depth_extra = 0; 16167 16168 for (i = 0; i < insn_cnt; i++, insn++) { 16169 struct bpf_loop_inline_state *inline_state = 16170 &env->insn_aux_data[i + delta].loop_inline_state; 16171 16172 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 16173 struct bpf_prog *new_prog; 16174 16175 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 16176 new_prog = inline_bpf_loop(env, 16177 i + delta, 16178 -(stack_depth + stack_depth_extra), 16179 inline_state->callback_subprogno, 16180 &cnt); 16181 if (!new_prog) 16182 return -ENOMEM; 16183 16184 delta += cnt - 1; 16185 env->prog = new_prog; 16186 insn = new_prog->insnsi + i + delta; 16187 } 16188 16189 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 16190 subprogs[cur_subprog].stack_depth += stack_depth_extra; 16191 cur_subprog++; 16192 stack_depth = subprogs[cur_subprog].stack_depth; 16193 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 16194 stack_depth_extra = 0; 16195 } 16196 } 16197 16198 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 16199 16200 return 0; 16201 } 16202 16203 static void free_states(struct bpf_verifier_env *env) 16204 { 16205 struct bpf_verifier_state_list *sl, *sln; 16206 int i; 16207 16208 sl = env->free_list; 16209 while (sl) { 16210 sln = sl->next; 16211 free_verifier_state(&sl->state, false); 16212 kfree(sl); 16213 sl = sln; 16214 } 16215 env->free_list = NULL; 16216 16217 if (!env->explored_states) 16218 return; 16219 16220 for (i = 0; i < state_htab_size(env); i++) { 16221 sl = env->explored_states[i]; 16222 16223 while (sl) { 16224 sln = sl->next; 16225 free_verifier_state(&sl->state, false); 16226 kfree(sl); 16227 sl = sln; 16228 } 16229 env->explored_states[i] = NULL; 16230 } 16231 } 16232 16233 static int do_check_common(struct bpf_verifier_env *env, int subprog) 16234 { 16235 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 16236 struct bpf_verifier_state *state; 16237 struct bpf_reg_state *regs; 16238 int ret, i; 16239 16240 env->prev_linfo = NULL; 16241 env->pass_cnt++; 16242 16243 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 16244 if (!state) 16245 return -ENOMEM; 16246 state->curframe = 0; 16247 state->speculative = false; 16248 state->branches = 1; 16249 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 16250 if (!state->frame[0]) { 16251 kfree(state); 16252 return -ENOMEM; 16253 } 16254 env->cur_state = state; 16255 init_func_state(env, state->frame[0], 16256 BPF_MAIN_FUNC /* callsite */, 16257 0 /* frameno */, 16258 subprog); 16259 state->first_insn_idx = env->subprog_info[subprog].start; 16260 state->last_insn_idx = -1; 16261 16262 regs = state->frame[state->curframe]->regs; 16263 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 16264 ret = btf_prepare_func_args(env, subprog, regs); 16265 if (ret) 16266 goto out; 16267 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 16268 if (regs[i].type == PTR_TO_CTX) 16269 mark_reg_known_zero(env, regs, i); 16270 else if (regs[i].type == SCALAR_VALUE) 16271 mark_reg_unknown(env, regs, i); 16272 else if (base_type(regs[i].type) == PTR_TO_MEM) { 16273 const u32 mem_size = regs[i].mem_size; 16274 16275 mark_reg_known_zero(env, regs, i); 16276 regs[i].mem_size = mem_size; 16277 regs[i].id = ++env->id_gen; 16278 } 16279 } 16280 } else { 16281 /* 1st arg to a function */ 16282 regs[BPF_REG_1].type = PTR_TO_CTX; 16283 mark_reg_known_zero(env, regs, BPF_REG_1); 16284 ret = btf_check_subprog_arg_match(env, subprog, regs); 16285 if (ret == -EFAULT) 16286 /* unlikely verifier bug. abort. 16287 * ret == 0 and ret < 0 are sadly acceptable for 16288 * main() function due to backward compatibility. 16289 * Like socket filter program may be written as: 16290 * int bpf_prog(struct pt_regs *ctx) 16291 * and never dereference that ctx in the program. 16292 * 'struct pt_regs' is a type mismatch for socket 16293 * filter that should be using 'struct __sk_buff'. 16294 */ 16295 goto out; 16296 } 16297 16298 ret = do_check(env); 16299 out: 16300 /* check for NULL is necessary, since cur_state can be freed inside 16301 * do_check() under memory pressure. 16302 */ 16303 if (env->cur_state) { 16304 free_verifier_state(env->cur_state, true); 16305 env->cur_state = NULL; 16306 } 16307 while (!pop_stack(env, NULL, NULL, false)); 16308 if (!ret && pop_log) 16309 bpf_vlog_reset(&env->log, 0); 16310 free_states(env); 16311 return ret; 16312 } 16313 16314 /* Verify all global functions in a BPF program one by one based on their BTF. 16315 * All global functions must pass verification. Otherwise the whole program is rejected. 16316 * Consider: 16317 * int bar(int); 16318 * int foo(int f) 16319 * { 16320 * return bar(f); 16321 * } 16322 * int bar(int b) 16323 * { 16324 * ... 16325 * } 16326 * foo() will be verified first for R1=any_scalar_value. During verification it 16327 * will be assumed that bar() already verified successfully and call to bar() 16328 * from foo() will be checked for type match only. Later bar() will be verified 16329 * independently to check that it's safe for R1=any_scalar_value. 16330 */ 16331 static int do_check_subprogs(struct bpf_verifier_env *env) 16332 { 16333 struct bpf_prog_aux *aux = env->prog->aux; 16334 int i, ret; 16335 16336 if (!aux->func_info) 16337 return 0; 16338 16339 for (i = 1; i < env->subprog_cnt; i++) { 16340 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 16341 continue; 16342 env->insn_idx = env->subprog_info[i].start; 16343 WARN_ON_ONCE(env->insn_idx == 0); 16344 ret = do_check_common(env, i); 16345 if (ret) { 16346 return ret; 16347 } else if (env->log.level & BPF_LOG_LEVEL) { 16348 verbose(env, 16349 "Func#%d is safe for any args that match its prototype\n", 16350 i); 16351 } 16352 } 16353 return 0; 16354 } 16355 16356 static int do_check_main(struct bpf_verifier_env *env) 16357 { 16358 int ret; 16359 16360 env->insn_idx = 0; 16361 ret = do_check_common(env, 0); 16362 if (!ret) 16363 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 16364 return ret; 16365 } 16366 16367 16368 static void print_verification_stats(struct bpf_verifier_env *env) 16369 { 16370 int i; 16371 16372 if (env->log.level & BPF_LOG_STATS) { 16373 verbose(env, "verification time %lld usec\n", 16374 div_u64(env->verification_time, 1000)); 16375 verbose(env, "stack depth "); 16376 for (i = 0; i < env->subprog_cnt; i++) { 16377 u32 depth = env->subprog_info[i].stack_depth; 16378 16379 verbose(env, "%d", depth); 16380 if (i + 1 < env->subprog_cnt) 16381 verbose(env, "+"); 16382 } 16383 verbose(env, "\n"); 16384 } 16385 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 16386 "total_states %d peak_states %d mark_read %d\n", 16387 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 16388 env->max_states_per_insn, env->total_states, 16389 env->peak_states, env->longest_mark_read_walk); 16390 } 16391 16392 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 16393 { 16394 const struct btf_type *t, *func_proto; 16395 const struct bpf_struct_ops *st_ops; 16396 const struct btf_member *member; 16397 struct bpf_prog *prog = env->prog; 16398 u32 btf_id, member_idx; 16399 const char *mname; 16400 16401 if (!prog->gpl_compatible) { 16402 verbose(env, "struct ops programs must have a GPL compatible license\n"); 16403 return -EINVAL; 16404 } 16405 16406 btf_id = prog->aux->attach_btf_id; 16407 st_ops = bpf_struct_ops_find(btf_id); 16408 if (!st_ops) { 16409 verbose(env, "attach_btf_id %u is not a supported struct\n", 16410 btf_id); 16411 return -ENOTSUPP; 16412 } 16413 16414 t = st_ops->type; 16415 member_idx = prog->expected_attach_type; 16416 if (member_idx >= btf_type_vlen(t)) { 16417 verbose(env, "attach to invalid member idx %u of struct %s\n", 16418 member_idx, st_ops->name); 16419 return -EINVAL; 16420 } 16421 16422 member = &btf_type_member(t)[member_idx]; 16423 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 16424 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 16425 NULL); 16426 if (!func_proto) { 16427 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 16428 mname, member_idx, st_ops->name); 16429 return -EINVAL; 16430 } 16431 16432 if (st_ops->check_member) { 16433 int err = st_ops->check_member(t, member); 16434 16435 if (err) { 16436 verbose(env, "attach to unsupported member %s of struct %s\n", 16437 mname, st_ops->name); 16438 return err; 16439 } 16440 } 16441 16442 prog->aux->attach_func_proto = func_proto; 16443 prog->aux->attach_func_name = mname; 16444 env->ops = st_ops->verifier_ops; 16445 16446 return 0; 16447 } 16448 #define SECURITY_PREFIX "security_" 16449 16450 static int check_attach_modify_return(unsigned long addr, const char *func_name) 16451 { 16452 if (within_error_injection_list(addr) || 16453 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 16454 return 0; 16455 16456 return -EINVAL; 16457 } 16458 16459 /* list of non-sleepable functions that are otherwise on 16460 * ALLOW_ERROR_INJECTION list 16461 */ 16462 BTF_SET_START(btf_non_sleepable_error_inject) 16463 /* Three functions below can be called from sleepable and non-sleepable context. 16464 * Assume non-sleepable from bpf safety point of view. 16465 */ 16466 BTF_ID(func, __filemap_add_folio) 16467 BTF_ID(func, should_fail_alloc_page) 16468 BTF_ID(func, should_failslab) 16469 BTF_SET_END(btf_non_sleepable_error_inject) 16470 16471 static int check_non_sleepable_error_inject(u32 btf_id) 16472 { 16473 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 16474 } 16475 16476 int bpf_check_attach_target(struct bpf_verifier_log *log, 16477 const struct bpf_prog *prog, 16478 const struct bpf_prog *tgt_prog, 16479 u32 btf_id, 16480 struct bpf_attach_target_info *tgt_info) 16481 { 16482 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 16483 const char prefix[] = "btf_trace_"; 16484 int ret = 0, subprog = -1, i; 16485 const struct btf_type *t; 16486 bool conservative = true; 16487 const char *tname; 16488 struct btf *btf; 16489 long addr = 0; 16490 16491 if (!btf_id) { 16492 bpf_log(log, "Tracing programs must provide btf_id\n"); 16493 return -EINVAL; 16494 } 16495 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 16496 if (!btf) { 16497 bpf_log(log, 16498 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 16499 return -EINVAL; 16500 } 16501 t = btf_type_by_id(btf, btf_id); 16502 if (!t) { 16503 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 16504 return -EINVAL; 16505 } 16506 tname = btf_name_by_offset(btf, t->name_off); 16507 if (!tname) { 16508 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 16509 return -EINVAL; 16510 } 16511 if (tgt_prog) { 16512 struct bpf_prog_aux *aux = tgt_prog->aux; 16513 16514 for (i = 0; i < aux->func_info_cnt; i++) 16515 if (aux->func_info[i].type_id == btf_id) { 16516 subprog = i; 16517 break; 16518 } 16519 if (subprog == -1) { 16520 bpf_log(log, "Subprog %s doesn't exist\n", tname); 16521 return -EINVAL; 16522 } 16523 conservative = aux->func_info_aux[subprog].unreliable; 16524 if (prog_extension) { 16525 if (conservative) { 16526 bpf_log(log, 16527 "Cannot replace static functions\n"); 16528 return -EINVAL; 16529 } 16530 if (!prog->jit_requested) { 16531 bpf_log(log, 16532 "Extension programs should be JITed\n"); 16533 return -EINVAL; 16534 } 16535 } 16536 if (!tgt_prog->jited) { 16537 bpf_log(log, "Can attach to only JITed progs\n"); 16538 return -EINVAL; 16539 } 16540 if (tgt_prog->type == prog->type) { 16541 /* Cannot fentry/fexit another fentry/fexit program. 16542 * Cannot attach program extension to another extension. 16543 * It's ok to attach fentry/fexit to extension program. 16544 */ 16545 bpf_log(log, "Cannot recursively attach\n"); 16546 return -EINVAL; 16547 } 16548 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 16549 prog_extension && 16550 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 16551 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 16552 /* Program extensions can extend all program types 16553 * except fentry/fexit. The reason is the following. 16554 * The fentry/fexit programs are used for performance 16555 * analysis, stats and can be attached to any program 16556 * type except themselves. When extension program is 16557 * replacing XDP function it is necessary to allow 16558 * performance analysis of all functions. Both original 16559 * XDP program and its program extension. Hence 16560 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 16561 * allowed. If extending of fentry/fexit was allowed it 16562 * would be possible to create long call chain 16563 * fentry->extension->fentry->extension beyond 16564 * reasonable stack size. Hence extending fentry is not 16565 * allowed. 16566 */ 16567 bpf_log(log, "Cannot extend fentry/fexit\n"); 16568 return -EINVAL; 16569 } 16570 } else { 16571 if (prog_extension) { 16572 bpf_log(log, "Cannot replace kernel functions\n"); 16573 return -EINVAL; 16574 } 16575 } 16576 16577 switch (prog->expected_attach_type) { 16578 case BPF_TRACE_RAW_TP: 16579 if (tgt_prog) { 16580 bpf_log(log, 16581 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 16582 return -EINVAL; 16583 } 16584 if (!btf_type_is_typedef(t)) { 16585 bpf_log(log, "attach_btf_id %u is not a typedef\n", 16586 btf_id); 16587 return -EINVAL; 16588 } 16589 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 16590 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 16591 btf_id, tname); 16592 return -EINVAL; 16593 } 16594 tname += sizeof(prefix) - 1; 16595 t = btf_type_by_id(btf, t->type); 16596 if (!btf_type_is_ptr(t)) 16597 /* should never happen in valid vmlinux build */ 16598 return -EINVAL; 16599 t = btf_type_by_id(btf, t->type); 16600 if (!btf_type_is_func_proto(t)) 16601 /* should never happen in valid vmlinux build */ 16602 return -EINVAL; 16603 16604 break; 16605 case BPF_TRACE_ITER: 16606 if (!btf_type_is_func(t)) { 16607 bpf_log(log, "attach_btf_id %u is not a function\n", 16608 btf_id); 16609 return -EINVAL; 16610 } 16611 t = btf_type_by_id(btf, t->type); 16612 if (!btf_type_is_func_proto(t)) 16613 return -EINVAL; 16614 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 16615 if (ret) 16616 return ret; 16617 break; 16618 default: 16619 if (!prog_extension) 16620 return -EINVAL; 16621 fallthrough; 16622 case BPF_MODIFY_RETURN: 16623 case BPF_LSM_MAC: 16624 case BPF_LSM_CGROUP: 16625 case BPF_TRACE_FENTRY: 16626 case BPF_TRACE_FEXIT: 16627 if (!btf_type_is_func(t)) { 16628 bpf_log(log, "attach_btf_id %u is not a function\n", 16629 btf_id); 16630 return -EINVAL; 16631 } 16632 if (prog_extension && 16633 btf_check_type_match(log, prog, btf, t)) 16634 return -EINVAL; 16635 t = btf_type_by_id(btf, t->type); 16636 if (!btf_type_is_func_proto(t)) 16637 return -EINVAL; 16638 16639 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 16640 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 16641 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 16642 return -EINVAL; 16643 16644 if (tgt_prog && conservative) 16645 t = NULL; 16646 16647 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 16648 if (ret < 0) 16649 return ret; 16650 16651 if (tgt_prog) { 16652 if (subprog == 0) 16653 addr = (long) tgt_prog->bpf_func; 16654 else 16655 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 16656 } else { 16657 addr = kallsyms_lookup_name(tname); 16658 if (!addr) { 16659 bpf_log(log, 16660 "The address of function %s cannot be found\n", 16661 tname); 16662 return -ENOENT; 16663 } 16664 } 16665 16666 if (prog->aux->sleepable) { 16667 ret = -EINVAL; 16668 switch (prog->type) { 16669 case BPF_PROG_TYPE_TRACING: 16670 16671 /* fentry/fexit/fmod_ret progs can be sleepable if they are 16672 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 16673 */ 16674 if (!check_non_sleepable_error_inject(btf_id) && 16675 within_error_injection_list(addr)) 16676 ret = 0; 16677 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 16678 * in the fmodret id set with the KF_SLEEPABLE flag. 16679 */ 16680 else { 16681 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id); 16682 16683 if (flags && (*flags & KF_SLEEPABLE)) 16684 ret = 0; 16685 } 16686 break; 16687 case BPF_PROG_TYPE_LSM: 16688 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 16689 * Only some of them are sleepable. 16690 */ 16691 if (bpf_lsm_is_sleepable_hook(btf_id)) 16692 ret = 0; 16693 break; 16694 default: 16695 break; 16696 } 16697 if (ret) { 16698 bpf_log(log, "%s is not sleepable\n", tname); 16699 return ret; 16700 } 16701 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 16702 if (tgt_prog) { 16703 bpf_log(log, "can't modify return codes of BPF programs\n"); 16704 return -EINVAL; 16705 } 16706 ret = -EINVAL; 16707 if (btf_kfunc_is_modify_return(btf, btf_id) || 16708 !check_attach_modify_return(addr, tname)) 16709 ret = 0; 16710 if (ret) { 16711 bpf_log(log, "%s() is not modifiable\n", tname); 16712 return ret; 16713 } 16714 } 16715 16716 break; 16717 } 16718 tgt_info->tgt_addr = addr; 16719 tgt_info->tgt_name = tname; 16720 tgt_info->tgt_type = t; 16721 return 0; 16722 } 16723 16724 BTF_SET_START(btf_id_deny) 16725 BTF_ID_UNUSED 16726 #ifdef CONFIG_SMP 16727 BTF_ID(func, migrate_disable) 16728 BTF_ID(func, migrate_enable) 16729 #endif 16730 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 16731 BTF_ID(func, rcu_read_unlock_strict) 16732 #endif 16733 BTF_SET_END(btf_id_deny) 16734 16735 static int check_attach_btf_id(struct bpf_verifier_env *env) 16736 { 16737 struct bpf_prog *prog = env->prog; 16738 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 16739 struct bpf_attach_target_info tgt_info = {}; 16740 u32 btf_id = prog->aux->attach_btf_id; 16741 struct bpf_trampoline *tr; 16742 int ret; 16743 u64 key; 16744 16745 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 16746 if (prog->aux->sleepable) 16747 /* attach_btf_id checked to be zero already */ 16748 return 0; 16749 verbose(env, "Syscall programs can only be sleepable\n"); 16750 return -EINVAL; 16751 } 16752 16753 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 16754 prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) { 16755 verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n"); 16756 return -EINVAL; 16757 } 16758 16759 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 16760 return check_struct_ops_btf_id(env); 16761 16762 if (prog->type != BPF_PROG_TYPE_TRACING && 16763 prog->type != BPF_PROG_TYPE_LSM && 16764 prog->type != BPF_PROG_TYPE_EXT) 16765 return 0; 16766 16767 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 16768 if (ret) 16769 return ret; 16770 16771 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 16772 /* to make freplace equivalent to their targets, they need to 16773 * inherit env->ops and expected_attach_type for the rest of the 16774 * verification 16775 */ 16776 env->ops = bpf_verifier_ops[tgt_prog->type]; 16777 prog->expected_attach_type = tgt_prog->expected_attach_type; 16778 } 16779 16780 /* store info about the attachment target that will be used later */ 16781 prog->aux->attach_func_proto = tgt_info.tgt_type; 16782 prog->aux->attach_func_name = tgt_info.tgt_name; 16783 16784 if (tgt_prog) { 16785 prog->aux->saved_dst_prog_type = tgt_prog->type; 16786 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 16787 } 16788 16789 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 16790 prog->aux->attach_btf_trace = true; 16791 return 0; 16792 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 16793 if (!bpf_iter_prog_supported(prog)) 16794 return -EINVAL; 16795 return 0; 16796 } 16797 16798 if (prog->type == BPF_PROG_TYPE_LSM) { 16799 ret = bpf_lsm_verify_prog(&env->log, prog); 16800 if (ret < 0) 16801 return ret; 16802 } else if (prog->type == BPF_PROG_TYPE_TRACING && 16803 btf_id_set_contains(&btf_id_deny, btf_id)) { 16804 return -EINVAL; 16805 } 16806 16807 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 16808 tr = bpf_trampoline_get(key, &tgt_info); 16809 if (!tr) 16810 return -ENOMEM; 16811 16812 prog->aux->dst_trampoline = tr; 16813 return 0; 16814 } 16815 16816 struct btf *bpf_get_btf_vmlinux(void) 16817 { 16818 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 16819 mutex_lock(&bpf_verifier_lock); 16820 if (!btf_vmlinux) 16821 btf_vmlinux = btf_parse_vmlinux(); 16822 mutex_unlock(&bpf_verifier_lock); 16823 } 16824 return btf_vmlinux; 16825 } 16826 16827 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 16828 { 16829 u64 start_time = ktime_get_ns(); 16830 struct bpf_verifier_env *env; 16831 struct bpf_verifier_log *log; 16832 int i, len, ret = -EINVAL; 16833 bool is_priv; 16834 16835 /* no program is valid */ 16836 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 16837 return -EINVAL; 16838 16839 /* 'struct bpf_verifier_env' can be global, but since it's not small, 16840 * allocate/free it every time bpf_check() is called 16841 */ 16842 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 16843 if (!env) 16844 return -ENOMEM; 16845 log = &env->log; 16846 16847 len = (*prog)->len; 16848 env->insn_aux_data = 16849 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 16850 ret = -ENOMEM; 16851 if (!env->insn_aux_data) 16852 goto err_free_env; 16853 for (i = 0; i < len; i++) 16854 env->insn_aux_data[i].orig_idx = i; 16855 env->prog = *prog; 16856 env->ops = bpf_verifier_ops[env->prog->type]; 16857 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 16858 is_priv = bpf_capable(); 16859 16860 bpf_get_btf_vmlinux(); 16861 16862 /* grab the mutex to protect few globals used by verifier */ 16863 if (!is_priv) 16864 mutex_lock(&bpf_verifier_lock); 16865 16866 if (attr->log_level || attr->log_buf || attr->log_size) { 16867 /* user requested verbose verifier output 16868 * and supplied buffer to store the verification trace 16869 */ 16870 log->level = attr->log_level; 16871 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 16872 log->len_total = attr->log_size; 16873 16874 /* log attributes have to be sane */ 16875 if (!bpf_verifier_log_attr_valid(log)) { 16876 ret = -EINVAL; 16877 goto err_unlock; 16878 } 16879 } 16880 16881 mark_verifier_state_clean(env); 16882 16883 if (IS_ERR(btf_vmlinux)) { 16884 /* Either gcc or pahole or kernel are broken. */ 16885 verbose(env, "in-kernel BTF is malformed\n"); 16886 ret = PTR_ERR(btf_vmlinux); 16887 goto skip_full_check; 16888 } 16889 16890 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 16891 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 16892 env->strict_alignment = true; 16893 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 16894 env->strict_alignment = false; 16895 16896 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 16897 env->allow_uninit_stack = bpf_allow_uninit_stack(); 16898 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 16899 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 16900 env->bpf_capable = bpf_capable(); 16901 env->rcu_tag_supported = btf_vmlinux && 16902 btf_find_by_name_kind(btf_vmlinux, "rcu", BTF_KIND_TYPE_TAG) > 0; 16903 16904 if (is_priv) 16905 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 16906 16907 env->explored_states = kvcalloc(state_htab_size(env), 16908 sizeof(struct bpf_verifier_state_list *), 16909 GFP_USER); 16910 ret = -ENOMEM; 16911 if (!env->explored_states) 16912 goto skip_full_check; 16913 16914 ret = add_subprog_and_kfunc(env); 16915 if (ret < 0) 16916 goto skip_full_check; 16917 16918 ret = check_subprogs(env); 16919 if (ret < 0) 16920 goto skip_full_check; 16921 16922 ret = check_btf_info(env, attr, uattr); 16923 if (ret < 0) 16924 goto skip_full_check; 16925 16926 ret = check_attach_btf_id(env); 16927 if (ret) 16928 goto skip_full_check; 16929 16930 ret = resolve_pseudo_ldimm64(env); 16931 if (ret < 0) 16932 goto skip_full_check; 16933 16934 if (bpf_prog_is_dev_bound(env->prog->aux)) { 16935 ret = bpf_prog_offload_verifier_prep(env->prog); 16936 if (ret) 16937 goto skip_full_check; 16938 } 16939 16940 ret = check_cfg(env); 16941 if (ret < 0) 16942 goto skip_full_check; 16943 16944 ret = do_check_subprogs(env); 16945 ret = ret ?: do_check_main(env); 16946 16947 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 16948 ret = bpf_prog_offload_finalize(env); 16949 16950 skip_full_check: 16951 kvfree(env->explored_states); 16952 16953 if (ret == 0) 16954 ret = check_max_stack_depth(env); 16955 16956 /* instruction rewrites happen after this point */ 16957 if (ret == 0) 16958 ret = optimize_bpf_loop(env); 16959 16960 if (is_priv) { 16961 if (ret == 0) 16962 opt_hard_wire_dead_code_branches(env); 16963 if (ret == 0) 16964 ret = opt_remove_dead_code(env); 16965 if (ret == 0) 16966 ret = opt_remove_nops(env); 16967 } else { 16968 if (ret == 0) 16969 sanitize_dead_code(env); 16970 } 16971 16972 if (ret == 0) 16973 /* program is valid, convert *(u32*)(ctx + off) accesses */ 16974 ret = convert_ctx_accesses(env); 16975 16976 if (ret == 0) 16977 ret = do_misc_fixups(env); 16978 16979 /* do 32-bit optimization after insn patching has done so those patched 16980 * insns could be handled correctly. 16981 */ 16982 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 16983 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 16984 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 16985 : false; 16986 } 16987 16988 if (ret == 0) 16989 ret = fixup_call_args(env); 16990 16991 env->verification_time = ktime_get_ns() - start_time; 16992 print_verification_stats(env); 16993 env->prog->aux->verified_insns = env->insn_processed; 16994 16995 if (log->level && bpf_verifier_log_full(log)) 16996 ret = -ENOSPC; 16997 if (log->level && !log->ubuf) { 16998 ret = -EFAULT; 16999 goto err_release_maps; 17000 } 17001 17002 if (ret) 17003 goto err_release_maps; 17004 17005 if (env->used_map_cnt) { 17006 /* if program passed verifier, update used_maps in bpf_prog_info */ 17007 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 17008 sizeof(env->used_maps[0]), 17009 GFP_KERNEL); 17010 17011 if (!env->prog->aux->used_maps) { 17012 ret = -ENOMEM; 17013 goto err_release_maps; 17014 } 17015 17016 memcpy(env->prog->aux->used_maps, env->used_maps, 17017 sizeof(env->used_maps[0]) * env->used_map_cnt); 17018 env->prog->aux->used_map_cnt = env->used_map_cnt; 17019 } 17020 if (env->used_btf_cnt) { 17021 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 17022 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 17023 sizeof(env->used_btfs[0]), 17024 GFP_KERNEL); 17025 if (!env->prog->aux->used_btfs) { 17026 ret = -ENOMEM; 17027 goto err_release_maps; 17028 } 17029 17030 memcpy(env->prog->aux->used_btfs, env->used_btfs, 17031 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 17032 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 17033 } 17034 if (env->used_map_cnt || env->used_btf_cnt) { 17035 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 17036 * bpf_ld_imm64 instructions 17037 */ 17038 convert_pseudo_ld_imm64(env); 17039 } 17040 17041 adjust_btf_func(env); 17042 17043 err_release_maps: 17044 if (!env->prog->aux->used_maps) 17045 /* if we didn't copy map pointers into bpf_prog_info, release 17046 * them now. Otherwise free_used_maps() will release them. 17047 */ 17048 release_maps(env); 17049 if (!env->prog->aux->used_btfs) 17050 release_btfs(env); 17051 17052 /* extension progs temporarily inherit the attach_type of their targets 17053 for verification purposes, so set it back to zero before returning 17054 */ 17055 if (env->prog->type == BPF_PROG_TYPE_EXT) 17056 env->prog->expected_attach_type = 0; 17057 17058 *prog = env->prog; 17059 err_unlock: 17060 if (!is_priv) 17061 mutex_unlock(&bpf_verifier_lock); 17062 vfree(env->insn_aux_data); 17063 err_free_env: 17064 kfree(env); 17065 return ret; 17066 } 17067