1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 #include <linux/kernel.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/bpf.h> 17 #include <linux/bpf_verifier.h> 18 #include <linux/filter.h> 19 #include <net/netlink.h> 20 #include <linux/file.h> 21 #include <linux/vmalloc.h> 22 #include <linux/stringify.h> 23 24 /* bpf_check() is a static code analyzer that walks eBPF program 25 * instruction by instruction and updates register/stack state. 26 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 27 * 28 * The first pass is depth-first-search to check that the program is a DAG. 29 * It rejects the following programs: 30 * - larger than BPF_MAXINSNS insns 31 * - if loop is present (detected via back-edge) 32 * - unreachable insns exist (shouldn't be a forest. program = one function) 33 * - out of bounds or malformed jumps 34 * The second pass is all possible path descent from the 1st insn. 35 * Since it's analyzing all pathes through the program, the length of the 36 * analysis is limited to 64k insn, which may be hit even if total number of 37 * insn is less then 4K, but there are too many branches that change stack/regs. 38 * Number of 'branches to be analyzed' is limited to 1k 39 * 40 * On entry to each instruction, each register has a type, and the instruction 41 * changes the types of the registers depending on instruction semantics. 42 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 43 * copied to R1. 44 * 45 * All registers are 64-bit. 46 * R0 - return register 47 * R1-R5 argument passing registers 48 * R6-R9 callee saved registers 49 * R10 - frame pointer read-only 50 * 51 * At the start of BPF program the register R1 contains a pointer to bpf_context 52 * and has type PTR_TO_CTX. 53 * 54 * Verifier tracks arithmetic operations on pointers in case: 55 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 56 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 57 * 1st insn copies R10 (which has FRAME_PTR) type into R1 58 * and 2nd arithmetic instruction is pattern matched to recognize 59 * that it wants to construct a pointer to some element within stack. 60 * So after 2nd insn, the register R1 has type PTR_TO_STACK 61 * (and -20 constant is saved for further stack bounds checking). 62 * Meaning that this reg is a pointer to stack plus known immediate constant. 63 * 64 * Most of the time the registers have SCALAR_VALUE type, which 65 * means the register has some value, but it's not a valid pointer. 66 * (like pointer plus pointer becomes SCALAR_VALUE type) 67 * 68 * When verifier sees load or store instructions the type of base register 69 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer 70 * types recognized by check_mem_access() function. 71 * 72 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 73 * and the range of [ptr, ptr + map's value_size) is accessible. 74 * 75 * registers used to pass values to function calls are checked against 76 * function argument constraints. 77 * 78 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 79 * It means that the register type passed to this function must be 80 * PTR_TO_STACK and it will be used inside the function as 81 * 'pointer to map element key' 82 * 83 * For example the argument constraints for bpf_map_lookup_elem(): 84 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 85 * .arg1_type = ARG_CONST_MAP_PTR, 86 * .arg2_type = ARG_PTR_TO_MAP_KEY, 87 * 88 * ret_type says that this function returns 'pointer to map elem value or null' 89 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 90 * 2nd argument should be a pointer to stack, which will be used inside 91 * the helper function as a pointer to map element key. 92 * 93 * On the kernel side the helper function looks like: 94 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 95 * { 96 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 97 * void *key = (void *) (unsigned long) r2; 98 * void *value; 99 * 100 * here kernel can access 'key' and 'map' pointers safely, knowing that 101 * [key, key + map->key_size) bytes are valid and were initialized on 102 * the stack of eBPF program. 103 * } 104 * 105 * Corresponding eBPF program may look like: 106 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 107 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 108 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 109 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 110 * here verifier looks at prototype of map_lookup_elem() and sees: 111 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 112 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 113 * 114 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 115 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 116 * and were initialized prior to this call. 117 * If it's ok, then verifier allows this BPF_CALL insn and looks at 118 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 119 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 120 * returns ether pointer to map value or NULL. 121 * 122 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 123 * insn, the register holding that pointer in the true branch changes state to 124 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 125 * branch. See check_cond_jmp_op(). 126 * 127 * After the call R0 is set to return type of the function and registers R1-R5 128 * are set to NOT_INIT to indicate that they are no longer readable. 129 */ 130 131 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 132 struct bpf_verifier_stack_elem { 133 /* verifer state is 'st' 134 * before processing instruction 'insn_idx' 135 * and after processing instruction 'prev_insn_idx' 136 */ 137 struct bpf_verifier_state st; 138 int insn_idx; 139 int prev_insn_idx; 140 struct bpf_verifier_stack_elem *next; 141 }; 142 143 #define BPF_COMPLEXITY_LIMIT_INSNS 131072 144 #define BPF_COMPLEXITY_LIMIT_STACK 1024 145 146 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA) 147 148 struct bpf_call_arg_meta { 149 struct bpf_map *map_ptr; 150 bool raw_mode; 151 bool pkt_access; 152 int regno; 153 int access_size; 154 }; 155 156 /* verbose verifier prints what it's seeing 157 * bpf_check() is called under lock, so no race to access these global vars 158 */ 159 static u32 log_level, log_size, log_len; 160 static char *log_buf; 161 162 static DEFINE_MUTEX(bpf_verifier_lock); 163 164 /* log_level controls verbosity level of eBPF verifier. 165 * verbose() is used to dump the verification trace to the log, so the user 166 * can figure out what's wrong with the program 167 */ 168 static __printf(1, 2) void verbose(const char *fmt, ...) 169 { 170 va_list args; 171 172 if (log_level == 0 || log_len >= log_size - 1) 173 return; 174 175 va_start(args, fmt); 176 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args); 177 va_end(args); 178 } 179 180 /* string representation of 'enum bpf_reg_type' */ 181 static const char * const reg_type_str[] = { 182 [NOT_INIT] = "?", 183 [SCALAR_VALUE] = "inv", 184 [PTR_TO_CTX] = "ctx", 185 [CONST_PTR_TO_MAP] = "map_ptr", 186 [PTR_TO_MAP_VALUE] = "map_value", 187 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 188 [PTR_TO_STACK] = "fp", 189 [PTR_TO_PACKET] = "pkt", 190 [PTR_TO_PACKET_END] = "pkt_end", 191 }; 192 193 #define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x) 194 static const char * const func_id_str[] = { 195 __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN) 196 }; 197 #undef __BPF_FUNC_STR_FN 198 199 static const char *func_id_name(int id) 200 { 201 BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID); 202 203 if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id]) 204 return func_id_str[id]; 205 else 206 return "unknown"; 207 } 208 209 static void print_verifier_state(struct bpf_verifier_state *state) 210 { 211 struct bpf_reg_state *reg; 212 enum bpf_reg_type t; 213 int i; 214 215 for (i = 0; i < MAX_BPF_REG; i++) { 216 reg = &state->regs[i]; 217 t = reg->type; 218 if (t == NOT_INIT) 219 continue; 220 verbose(" R%d=%s", i, reg_type_str[t]); 221 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 222 tnum_is_const(reg->var_off)) { 223 /* reg->off should be 0 for SCALAR_VALUE */ 224 verbose("%lld", reg->var_off.value + reg->off); 225 } else { 226 verbose("(id=%d", reg->id); 227 if (t != SCALAR_VALUE) 228 verbose(",off=%d", reg->off); 229 if (t == PTR_TO_PACKET) 230 verbose(",r=%d", reg->range); 231 else if (t == CONST_PTR_TO_MAP || 232 t == PTR_TO_MAP_VALUE || 233 t == PTR_TO_MAP_VALUE_OR_NULL) 234 verbose(",ks=%d,vs=%d", 235 reg->map_ptr->key_size, 236 reg->map_ptr->value_size); 237 if (tnum_is_const(reg->var_off)) { 238 /* Typically an immediate SCALAR_VALUE, but 239 * could be a pointer whose offset is too big 240 * for reg->off 241 */ 242 verbose(",imm=%llx", reg->var_off.value); 243 } else { 244 if (reg->smin_value != reg->umin_value && 245 reg->smin_value != S64_MIN) 246 verbose(",smin_value=%lld", 247 (long long)reg->smin_value); 248 if (reg->smax_value != reg->umax_value && 249 reg->smax_value != S64_MAX) 250 verbose(",smax_value=%lld", 251 (long long)reg->smax_value); 252 if (reg->umin_value != 0) 253 verbose(",umin_value=%llu", 254 (unsigned long long)reg->umin_value); 255 if (reg->umax_value != U64_MAX) 256 verbose(",umax_value=%llu", 257 (unsigned long long)reg->umax_value); 258 if (!tnum_is_unknown(reg->var_off)) { 259 char tn_buf[48]; 260 261 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 262 verbose(",var_off=%s", tn_buf); 263 } 264 } 265 verbose(")"); 266 } 267 } 268 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { 269 if (state->stack_slot_type[i] == STACK_SPILL) 270 verbose(" fp%d=%s", -MAX_BPF_STACK + i, 271 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]); 272 } 273 verbose("\n"); 274 } 275 276 static const char *const bpf_class_string[] = { 277 [BPF_LD] = "ld", 278 [BPF_LDX] = "ldx", 279 [BPF_ST] = "st", 280 [BPF_STX] = "stx", 281 [BPF_ALU] = "alu", 282 [BPF_JMP] = "jmp", 283 [BPF_RET] = "BUG", 284 [BPF_ALU64] = "alu64", 285 }; 286 287 static const char *const bpf_alu_string[16] = { 288 [BPF_ADD >> 4] = "+=", 289 [BPF_SUB >> 4] = "-=", 290 [BPF_MUL >> 4] = "*=", 291 [BPF_DIV >> 4] = "/=", 292 [BPF_OR >> 4] = "|=", 293 [BPF_AND >> 4] = "&=", 294 [BPF_LSH >> 4] = "<<=", 295 [BPF_RSH >> 4] = ">>=", 296 [BPF_NEG >> 4] = "neg", 297 [BPF_MOD >> 4] = "%=", 298 [BPF_XOR >> 4] = "^=", 299 [BPF_MOV >> 4] = "=", 300 [BPF_ARSH >> 4] = "s>>=", 301 [BPF_END >> 4] = "endian", 302 }; 303 304 static const char *const bpf_ldst_string[] = { 305 [BPF_W >> 3] = "u32", 306 [BPF_H >> 3] = "u16", 307 [BPF_B >> 3] = "u8", 308 [BPF_DW >> 3] = "u64", 309 }; 310 311 static const char *const bpf_jmp_string[16] = { 312 [BPF_JA >> 4] = "jmp", 313 [BPF_JEQ >> 4] = "==", 314 [BPF_JGT >> 4] = ">", 315 [BPF_JLT >> 4] = "<", 316 [BPF_JGE >> 4] = ">=", 317 [BPF_JLE >> 4] = "<=", 318 [BPF_JSET >> 4] = "&", 319 [BPF_JNE >> 4] = "!=", 320 [BPF_JSGT >> 4] = "s>", 321 [BPF_JSLT >> 4] = "s<", 322 [BPF_JSGE >> 4] = "s>=", 323 [BPF_JSLE >> 4] = "s<=", 324 [BPF_CALL >> 4] = "call", 325 [BPF_EXIT >> 4] = "exit", 326 }; 327 328 static void print_bpf_insn(const struct bpf_verifier_env *env, 329 const struct bpf_insn *insn) 330 { 331 u8 class = BPF_CLASS(insn->code); 332 333 if (class == BPF_ALU || class == BPF_ALU64) { 334 if (BPF_SRC(insn->code) == BPF_X) 335 verbose("(%02x) %sr%d %s %sr%d\n", 336 insn->code, class == BPF_ALU ? "(u32) " : "", 337 insn->dst_reg, 338 bpf_alu_string[BPF_OP(insn->code) >> 4], 339 class == BPF_ALU ? "(u32) " : "", 340 insn->src_reg); 341 else 342 verbose("(%02x) %sr%d %s %s%d\n", 343 insn->code, class == BPF_ALU ? "(u32) " : "", 344 insn->dst_reg, 345 bpf_alu_string[BPF_OP(insn->code) >> 4], 346 class == BPF_ALU ? "(u32) " : "", 347 insn->imm); 348 } else if (class == BPF_STX) { 349 if (BPF_MODE(insn->code) == BPF_MEM) 350 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n", 351 insn->code, 352 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 353 insn->dst_reg, 354 insn->off, insn->src_reg); 355 else if (BPF_MODE(insn->code) == BPF_XADD) 356 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n", 357 insn->code, 358 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 359 insn->dst_reg, insn->off, 360 insn->src_reg); 361 else 362 verbose("BUG_%02x\n", insn->code); 363 } else if (class == BPF_ST) { 364 if (BPF_MODE(insn->code) != BPF_MEM) { 365 verbose("BUG_st_%02x\n", insn->code); 366 return; 367 } 368 verbose("(%02x) *(%s *)(r%d %+d) = %d\n", 369 insn->code, 370 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 371 insn->dst_reg, 372 insn->off, insn->imm); 373 } else if (class == BPF_LDX) { 374 if (BPF_MODE(insn->code) != BPF_MEM) { 375 verbose("BUG_ldx_%02x\n", insn->code); 376 return; 377 } 378 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n", 379 insn->code, insn->dst_reg, 380 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 381 insn->src_reg, insn->off); 382 } else if (class == BPF_LD) { 383 if (BPF_MODE(insn->code) == BPF_ABS) { 384 verbose("(%02x) r0 = *(%s *)skb[%d]\n", 385 insn->code, 386 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 387 insn->imm); 388 } else if (BPF_MODE(insn->code) == BPF_IND) { 389 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n", 390 insn->code, 391 bpf_ldst_string[BPF_SIZE(insn->code) >> 3], 392 insn->src_reg, insn->imm); 393 } else if (BPF_MODE(insn->code) == BPF_IMM && 394 BPF_SIZE(insn->code) == BPF_DW) { 395 /* At this point, we already made sure that the second 396 * part of the ldimm64 insn is accessible. 397 */ 398 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 399 bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD; 400 401 if (map_ptr && !env->allow_ptr_leaks) 402 imm = 0; 403 404 verbose("(%02x) r%d = 0x%llx\n", insn->code, 405 insn->dst_reg, (unsigned long long)imm); 406 } else { 407 verbose("BUG_ld_%02x\n", insn->code); 408 return; 409 } 410 } else if (class == BPF_JMP) { 411 u8 opcode = BPF_OP(insn->code); 412 413 if (opcode == BPF_CALL) { 414 verbose("(%02x) call %s#%d\n", insn->code, 415 func_id_name(insn->imm), insn->imm); 416 } else if (insn->code == (BPF_JMP | BPF_JA)) { 417 verbose("(%02x) goto pc%+d\n", 418 insn->code, insn->off); 419 } else if (insn->code == (BPF_JMP | BPF_EXIT)) { 420 verbose("(%02x) exit\n", insn->code); 421 } else if (BPF_SRC(insn->code) == BPF_X) { 422 verbose("(%02x) if r%d %s r%d goto pc%+d\n", 423 insn->code, insn->dst_reg, 424 bpf_jmp_string[BPF_OP(insn->code) >> 4], 425 insn->src_reg, insn->off); 426 } else { 427 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n", 428 insn->code, insn->dst_reg, 429 bpf_jmp_string[BPF_OP(insn->code) >> 4], 430 insn->imm, insn->off); 431 } 432 } else { 433 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]); 434 } 435 } 436 437 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx) 438 { 439 struct bpf_verifier_stack_elem *elem; 440 int insn_idx; 441 442 if (env->head == NULL) 443 return -1; 444 445 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state)); 446 insn_idx = env->head->insn_idx; 447 if (prev_insn_idx) 448 *prev_insn_idx = env->head->prev_insn_idx; 449 elem = env->head->next; 450 kfree(env->head); 451 env->head = elem; 452 env->stack_size--; 453 return insn_idx; 454 } 455 456 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 457 int insn_idx, int prev_insn_idx) 458 { 459 struct bpf_verifier_stack_elem *elem; 460 461 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 462 if (!elem) 463 goto err; 464 465 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state)); 466 elem->insn_idx = insn_idx; 467 elem->prev_insn_idx = prev_insn_idx; 468 elem->next = env->head; 469 env->head = elem; 470 env->stack_size++; 471 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 472 verbose("BPF program is too complex\n"); 473 goto err; 474 } 475 return &elem->st; 476 err: 477 /* pop all elements and return */ 478 while (pop_stack(env, NULL) >= 0); 479 return NULL; 480 } 481 482 #define CALLER_SAVED_REGS 6 483 static const int caller_saved[CALLER_SAVED_REGS] = { 484 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 485 }; 486 487 static void __mark_reg_not_init(struct bpf_reg_state *reg); 488 489 /* Mark the unknown part of a register (variable offset or scalar value) as 490 * known to have the value @imm. 491 */ 492 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 493 { 494 reg->id = 0; 495 reg->var_off = tnum_const(imm); 496 reg->smin_value = (s64)imm; 497 reg->smax_value = (s64)imm; 498 reg->umin_value = imm; 499 reg->umax_value = imm; 500 } 501 502 /* Mark the 'variable offset' part of a register as zero. This should be 503 * used only on registers holding a pointer type. 504 */ 505 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 506 { 507 __mark_reg_known(reg, 0); 508 } 509 510 static void mark_reg_known_zero(struct bpf_reg_state *regs, u32 regno) 511 { 512 if (WARN_ON(regno >= MAX_BPF_REG)) { 513 verbose("mark_reg_known_zero(regs, %u)\n", regno); 514 /* Something bad happened, let's kill all regs */ 515 for (regno = 0; regno < MAX_BPF_REG; regno++) 516 __mark_reg_not_init(regs + regno); 517 return; 518 } 519 __mark_reg_known_zero(regs + regno); 520 } 521 522 /* Attempts to improve min/max values based on var_off information */ 523 static void __update_reg_bounds(struct bpf_reg_state *reg) 524 { 525 /* min signed is max(sign bit) | min(other bits) */ 526 reg->smin_value = max_t(s64, reg->smin_value, 527 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 528 /* max signed is min(sign bit) | max(other bits) */ 529 reg->smax_value = min_t(s64, reg->smax_value, 530 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 531 reg->umin_value = max(reg->umin_value, reg->var_off.value); 532 reg->umax_value = min(reg->umax_value, 533 reg->var_off.value | reg->var_off.mask); 534 } 535 536 /* Uses signed min/max values to inform unsigned, and vice-versa */ 537 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 538 { 539 /* Learn sign from signed bounds. 540 * If we cannot cross the sign boundary, then signed and unsigned bounds 541 * are the same, so combine. This works even in the negative case, e.g. 542 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 543 */ 544 if (reg->smin_value >= 0 || reg->smax_value < 0) { 545 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 546 reg->umin_value); 547 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 548 reg->umax_value); 549 return; 550 } 551 /* Learn sign from unsigned bounds. Signed bounds cross the sign 552 * boundary, so we must be careful. 553 */ 554 if ((s64)reg->umax_value >= 0) { 555 /* Positive. We can't learn anything from the smin, but smax 556 * is positive, hence safe. 557 */ 558 reg->smin_value = reg->umin_value; 559 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 560 reg->umax_value); 561 } else if ((s64)reg->umin_value < 0) { 562 /* Negative. We can't learn anything from the smax, but smin 563 * is negative, hence safe. 564 */ 565 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 566 reg->umin_value); 567 reg->smax_value = reg->umax_value; 568 } 569 } 570 571 /* Attempts to improve var_off based on unsigned min/max information */ 572 static void __reg_bound_offset(struct bpf_reg_state *reg) 573 { 574 reg->var_off = tnum_intersect(reg->var_off, 575 tnum_range(reg->umin_value, 576 reg->umax_value)); 577 } 578 579 /* Reset the min/max bounds of a register */ 580 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 581 { 582 reg->smin_value = S64_MIN; 583 reg->smax_value = S64_MAX; 584 reg->umin_value = 0; 585 reg->umax_value = U64_MAX; 586 } 587 588 /* Mark a register as having a completely unknown (scalar) value. */ 589 static void __mark_reg_unknown(struct bpf_reg_state *reg) 590 { 591 reg->type = SCALAR_VALUE; 592 reg->id = 0; 593 reg->off = 0; 594 reg->var_off = tnum_unknown; 595 __mark_reg_unbounded(reg); 596 } 597 598 static void mark_reg_unknown(struct bpf_reg_state *regs, u32 regno) 599 { 600 if (WARN_ON(regno >= MAX_BPF_REG)) { 601 verbose("mark_reg_unknown(regs, %u)\n", regno); 602 /* Something bad happened, let's kill all regs */ 603 for (regno = 0; regno < MAX_BPF_REG; regno++) 604 __mark_reg_not_init(regs + regno); 605 return; 606 } 607 __mark_reg_unknown(regs + regno); 608 } 609 610 static void __mark_reg_not_init(struct bpf_reg_state *reg) 611 { 612 __mark_reg_unknown(reg); 613 reg->type = NOT_INIT; 614 } 615 616 static void mark_reg_not_init(struct bpf_reg_state *regs, u32 regno) 617 { 618 if (WARN_ON(regno >= MAX_BPF_REG)) { 619 verbose("mark_reg_not_init(regs, %u)\n", regno); 620 /* Something bad happened, let's kill all regs */ 621 for (regno = 0; regno < MAX_BPF_REG; regno++) 622 __mark_reg_not_init(regs + regno); 623 return; 624 } 625 __mark_reg_not_init(regs + regno); 626 } 627 628 static void init_reg_state(struct bpf_reg_state *regs) 629 { 630 int i; 631 632 for (i = 0; i < MAX_BPF_REG; i++) { 633 mark_reg_not_init(regs, i); 634 regs[i].live = REG_LIVE_NONE; 635 } 636 637 /* frame pointer */ 638 regs[BPF_REG_FP].type = PTR_TO_STACK; 639 mark_reg_known_zero(regs, BPF_REG_FP); 640 641 /* 1st arg to a function */ 642 regs[BPF_REG_1].type = PTR_TO_CTX; 643 mark_reg_known_zero(regs, BPF_REG_1); 644 } 645 646 enum reg_arg_type { 647 SRC_OP, /* register is used as source operand */ 648 DST_OP, /* register is used as destination operand */ 649 DST_OP_NO_MARK /* same as above, check only, don't mark */ 650 }; 651 652 static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno) 653 { 654 struct bpf_verifier_state *parent = state->parent; 655 656 if (regno == BPF_REG_FP) 657 /* We don't need to worry about FP liveness because it's read-only */ 658 return; 659 660 while (parent) { 661 /* if read wasn't screened by an earlier write ... */ 662 if (state->regs[regno].live & REG_LIVE_WRITTEN) 663 break; 664 /* ... then we depend on parent's value */ 665 parent->regs[regno].live |= REG_LIVE_READ; 666 state = parent; 667 parent = state->parent; 668 } 669 } 670 671 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 672 enum reg_arg_type t) 673 { 674 struct bpf_reg_state *regs = env->cur_state.regs; 675 676 if (regno >= MAX_BPF_REG) { 677 verbose("R%d is invalid\n", regno); 678 return -EINVAL; 679 } 680 681 if (t == SRC_OP) { 682 /* check whether register used as source operand can be read */ 683 if (regs[regno].type == NOT_INIT) { 684 verbose("R%d !read_ok\n", regno); 685 return -EACCES; 686 } 687 mark_reg_read(&env->cur_state, regno); 688 } else { 689 /* check whether register used as dest operand can be written to */ 690 if (regno == BPF_REG_FP) { 691 verbose("frame pointer is read only\n"); 692 return -EACCES; 693 } 694 regs[regno].live |= REG_LIVE_WRITTEN; 695 if (t == DST_OP) 696 mark_reg_unknown(regs, regno); 697 } 698 return 0; 699 } 700 701 static bool is_spillable_regtype(enum bpf_reg_type type) 702 { 703 switch (type) { 704 case PTR_TO_MAP_VALUE: 705 case PTR_TO_MAP_VALUE_OR_NULL: 706 case PTR_TO_STACK: 707 case PTR_TO_CTX: 708 case PTR_TO_PACKET: 709 case PTR_TO_PACKET_END: 710 case CONST_PTR_TO_MAP: 711 return true; 712 default: 713 return false; 714 } 715 } 716 717 /* check_stack_read/write functions track spill/fill of registers, 718 * stack boundary and alignment are checked in check_mem_access() 719 */ 720 static int check_stack_write(struct bpf_verifier_state *state, int off, 721 int size, int value_regno) 722 { 723 int i, spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE; 724 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 725 * so it's aligned access and [off, off + size) are within stack limits 726 */ 727 728 if (value_regno >= 0 && 729 is_spillable_regtype(state->regs[value_regno].type)) { 730 731 /* register containing pointer is being spilled into stack */ 732 if (size != BPF_REG_SIZE) { 733 verbose("invalid size of register spill\n"); 734 return -EACCES; 735 } 736 737 /* save register state */ 738 state->spilled_regs[spi] = state->regs[value_regno]; 739 state->spilled_regs[spi].live |= REG_LIVE_WRITTEN; 740 741 for (i = 0; i < BPF_REG_SIZE; i++) 742 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL; 743 } else { 744 /* regular write of data into stack */ 745 state->spilled_regs[spi] = (struct bpf_reg_state) {}; 746 747 for (i = 0; i < size; i++) 748 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC; 749 } 750 return 0; 751 } 752 753 static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot) 754 { 755 struct bpf_verifier_state *parent = state->parent; 756 757 while (parent) { 758 /* if read wasn't screened by an earlier write ... */ 759 if (state->spilled_regs[slot].live & REG_LIVE_WRITTEN) 760 break; 761 /* ... then we depend on parent's value */ 762 parent->spilled_regs[slot].live |= REG_LIVE_READ; 763 state = parent; 764 parent = state->parent; 765 } 766 } 767 768 static int check_stack_read(struct bpf_verifier_state *state, int off, int size, 769 int value_regno) 770 { 771 u8 *slot_type; 772 int i, spi; 773 774 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off]; 775 776 if (slot_type[0] == STACK_SPILL) { 777 if (size != BPF_REG_SIZE) { 778 verbose("invalid size of register spill\n"); 779 return -EACCES; 780 } 781 for (i = 1; i < BPF_REG_SIZE; i++) { 782 if (slot_type[i] != STACK_SPILL) { 783 verbose("corrupted spill memory\n"); 784 return -EACCES; 785 } 786 } 787 788 spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE; 789 790 if (value_regno >= 0) { 791 /* restore register state from stack */ 792 state->regs[value_regno] = state->spilled_regs[spi]; 793 mark_stack_slot_read(state, spi); 794 } 795 return 0; 796 } else { 797 for (i = 0; i < size; i++) { 798 if (slot_type[i] != STACK_MISC) { 799 verbose("invalid read from stack off %d+%d size %d\n", 800 off, i, size); 801 return -EACCES; 802 } 803 } 804 if (value_regno >= 0) 805 /* have read misc data from the stack */ 806 mark_reg_unknown(state->regs, value_regno); 807 return 0; 808 } 809 } 810 811 /* check read/write into map element returned by bpf_map_lookup_elem() */ 812 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 813 int size) 814 { 815 struct bpf_map *map = env->cur_state.regs[regno].map_ptr; 816 817 if (off < 0 || size <= 0 || off + size > map->value_size) { 818 verbose("invalid access to map value, value_size=%d off=%d size=%d\n", 819 map->value_size, off, size); 820 return -EACCES; 821 } 822 return 0; 823 } 824 825 /* check read/write into a map element with possible variable offset */ 826 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 827 int off, int size) 828 { 829 struct bpf_verifier_state *state = &env->cur_state; 830 struct bpf_reg_state *reg = &state->regs[regno]; 831 int err; 832 833 /* We may have adjusted the register to this map value, so we 834 * need to try adding each of min_value and max_value to off 835 * to make sure our theoretical access will be safe. 836 */ 837 if (log_level) 838 print_verifier_state(state); 839 /* The minimum value is only important with signed 840 * comparisons where we can't assume the floor of a 841 * value is 0. If we are using signed variables for our 842 * index'es we need to make sure that whatever we use 843 * will have a set floor within our range. 844 */ 845 if (reg->smin_value < 0) { 846 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 847 regno); 848 return -EACCES; 849 } 850 err = __check_map_access(env, regno, reg->smin_value + off, size); 851 if (err) { 852 verbose("R%d min value is outside of the array range\n", regno); 853 return err; 854 } 855 856 /* If we haven't set a max value then we need to bail since we can't be 857 * sure we won't do bad things. 858 * If reg->umax_value + off could overflow, treat that as unbounded too. 859 */ 860 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 861 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n", 862 regno); 863 return -EACCES; 864 } 865 err = __check_map_access(env, regno, reg->umax_value + off, size); 866 if (err) 867 verbose("R%d max value is outside of the array range\n", regno); 868 return err; 869 } 870 871 #define MAX_PACKET_OFF 0xffff 872 873 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 874 const struct bpf_call_arg_meta *meta, 875 enum bpf_access_type t) 876 { 877 switch (env->prog->type) { 878 case BPF_PROG_TYPE_LWT_IN: 879 case BPF_PROG_TYPE_LWT_OUT: 880 /* dst_input() and dst_output() can't write for now */ 881 if (t == BPF_WRITE) 882 return false; 883 /* fallthrough */ 884 case BPF_PROG_TYPE_SCHED_CLS: 885 case BPF_PROG_TYPE_SCHED_ACT: 886 case BPF_PROG_TYPE_XDP: 887 case BPF_PROG_TYPE_LWT_XMIT: 888 case BPF_PROG_TYPE_SK_SKB: 889 if (meta) 890 return meta->pkt_access; 891 892 env->seen_direct_write = true; 893 return true; 894 default: 895 return false; 896 } 897 } 898 899 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 900 int off, int size) 901 { 902 struct bpf_reg_state *regs = env->cur_state.regs; 903 struct bpf_reg_state *reg = ®s[regno]; 904 905 if (off < 0 || size <= 0 || (u64)off + size > reg->range) { 906 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 907 off, size, regno, reg->id, reg->off, reg->range); 908 return -EACCES; 909 } 910 return 0; 911 } 912 913 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 914 int size) 915 { 916 struct bpf_reg_state *regs = env->cur_state.regs; 917 struct bpf_reg_state *reg = ®s[regno]; 918 int err; 919 920 /* We may have added a variable offset to the packet pointer; but any 921 * reg->range we have comes after that. We are only checking the fixed 922 * offset. 923 */ 924 925 /* We don't allow negative numbers, because we aren't tracking enough 926 * detail to prove they're safe. 927 */ 928 if (reg->smin_value < 0) { 929 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 930 regno); 931 return -EACCES; 932 } 933 err = __check_packet_access(env, regno, off, size); 934 if (err) { 935 verbose("R%d offset is outside of the packet\n", regno); 936 return err; 937 } 938 return err; 939 } 940 941 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 942 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 943 enum bpf_access_type t, enum bpf_reg_type *reg_type) 944 { 945 struct bpf_insn_access_aux info = { 946 .reg_type = *reg_type, 947 }; 948 949 /* for analyzer ctx accesses are already validated and converted */ 950 if (env->analyzer_ops) 951 return 0; 952 953 if (env->prog->aux->ops->is_valid_access && 954 env->prog->aux->ops->is_valid_access(off, size, t, &info)) { 955 /* A non zero info.ctx_field_size indicates that this field is a 956 * candidate for later verifier transformation to load the whole 957 * field and then apply a mask when accessed with a narrower 958 * access than actual ctx access size. A zero info.ctx_field_size 959 * will only allow for whole field access and rejects any other 960 * type of narrower access. 961 */ 962 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 963 *reg_type = info.reg_type; 964 965 /* remember the offset of last byte accessed in ctx */ 966 if (env->prog->aux->max_ctx_offset < off + size) 967 env->prog->aux->max_ctx_offset = off + size; 968 return 0; 969 } 970 971 verbose("invalid bpf_context access off=%d size=%d\n", off, size); 972 return -EACCES; 973 } 974 975 static bool __is_pointer_value(bool allow_ptr_leaks, 976 const struct bpf_reg_state *reg) 977 { 978 if (allow_ptr_leaks) 979 return false; 980 981 return reg->type != SCALAR_VALUE; 982 } 983 984 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 985 { 986 return __is_pointer_value(env->allow_ptr_leaks, &env->cur_state.regs[regno]); 987 } 988 989 static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg, 990 int off, int size, bool strict) 991 { 992 struct tnum reg_off; 993 int ip_align; 994 995 /* Byte size accesses are always allowed. */ 996 if (!strict || size == 1) 997 return 0; 998 999 /* For platforms that do not have a Kconfig enabling 1000 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 1001 * NET_IP_ALIGN is universally set to '2'. And on platforms 1002 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 1003 * to this code only in strict mode where we want to emulate 1004 * the NET_IP_ALIGN==2 checking. Therefore use an 1005 * unconditional IP align value of '2'. 1006 */ 1007 ip_align = 2; 1008 1009 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1010 if (!tnum_is_aligned(reg_off, size)) { 1011 char tn_buf[48]; 1012 1013 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1014 verbose("misaligned packet access off %d+%s+%d+%d size %d\n", 1015 ip_align, tn_buf, reg->off, off, size); 1016 return -EACCES; 1017 } 1018 1019 return 0; 1020 } 1021 1022 static int check_generic_ptr_alignment(const struct bpf_reg_state *reg, 1023 const char *pointer_desc, 1024 int off, int size, bool strict) 1025 { 1026 struct tnum reg_off; 1027 1028 /* Byte size accesses are always allowed. */ 1029 if (!strict || size == 1) 1030 return 0; 1031 1032 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1033 if (!tnum_is_aligned(reg_off, size)) { 1034 char tn_buf[48]; 1035 1036 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1037 verbose("misaligned %saccess off %s+%d+%d size %d\n", 1038 pointer_desc, tn_buf, reg->off, off, size); 1039 return -EACCES; 1040 } 1041 1042 return 0; 1043 } 1044 1045 static int check_ptr_alignment(struct bpf_verifier_env *env, 1046 const struct bpf_reg_state *reg, 1047 int off, int size) 1048 { 1049 bool strict = env->strict_alignment; 1050 const char *pointer_desc = ""; 1051 1052 switch (reg->type) { 1053 case PTR_TO_PACKET: 1054 /* special case, because of NET_IP_ALIGN */ 1055 return check_pkt_ptr_alignment(reg, off, size, strict); 1056 case PTR_TO_MAP_VALUE: 1057 pointer_desc = "value "; 1058 break; 1059 case PTR_TO_CTX: 1060 pointer_desc = "context "; 1061 break; 1062 case PTR_TO_STACK: 1063 pointer_desc = "stack "; 1064 break; 1065 default: 1066 break; 1067 } 1068 return check_generic_ptr_alignment(reg, pointer_desc, off, size, strict); 1069 } 1070 1071 /* check whether memory at (regno + off) is accessible for t = (read | write) 1072 * if t==write, value_regno is a register which value is stored into memory 1073 * if t==read, value_regno is a register which will receive the value from memory 1074 * if t==write && value_regno==-1, some unknown value is stored into memory 1075 * if t==read && value_regno==-1, don't care what we read from memory 1076 */ 1077 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off, 1078 int bpf_size, enum bpf_access_type t, 1079 int value_regno) 1080 { 1081 struct bpf_verifier_state *state = &env->cur_state; 1082 struct bpf_reg_state *reg = &state->regs[regno]; 1083 int size, err = 0; 1084 1085 size = bpf_size_to_bytes(bpf_size); 1086 if (size < 0) 1087 return size; 1088 1089 /* alignment checks will add in reg->off themselves */ 1090 err = check_ptr_alignment(env, reg, off, size); 1091 if (err) 1092 return err; 1093 1094 /* for access checks, reg->off is just part of off */ 1095 off += reg->off; 1096 1097 if (reg->type == PTR_TO_MAP_VALUE) { 1098 if (t == BPF_WRITE && value_regno >= 0 && 1099 is_pointer_value(env, value_regno)) { 1100 verbose("R%d leaks addr into map\n", value_regno); 1101 return -EACCES; 1102 } 1103 1104 err = check_map_access(env, regno, off, size); 1105 if (!err && t == BPF_READ && value_regno >= 0) 1106 mark_reg_unknown(state->regs, value_regno); 1107 1108 } else if (reg->type == PTR_TO_CTX) { 1109 enum bpf_reg_type reg_type = SCALAR_VALUE; 1110 1111 if (t == BPF_WRITE && value_regno >= 0 && 1112 is_pointer_value(env, value_regno)) { 1113 verbose("R%d leaks addr into ctx\n", value_regno); 1114 return -EACCES; 1115 } 1116 /* ctx accesses must be at a fixed offset, so that we can 1117 * determine what type of data were returned. 1118 */ 1119 if (!tnum_is_const(reg->var_off)) { 1120 char tn_buf[48]; 1121 1122 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1123 verbose("variable ctx access var_off=%s off=%d size=%d", 1124 tn_buf, off, size); 1125 return -EACCES; 1126 } 1127 off += reg->var_off.value; 1128 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 1129 if (!err && t == BPF_READ && value_regno >= 0) { 1130 /* ctx access returns either a scalar, or a 1131 * PTR_TO_PACKET[_END]. In the latter case, we know 1132 * the offset is zero. 1133 */ 1134 if (reg_type == SCALAR_VALUE) 1135 mark_reg_unknown(state->regs, value_regno); 1136 else 1137 mark_reg_known_zero(state->regs, value_regno); 1138 state->regs[value_regno].id = 0; 1139 state->regs[value_regno].off = 0; 1140 state->regs[value_regno].range = 0; 1141 state->regs[value_regno].type = reg_type; 1142 } 1143 1144 } else if (reg->type == PTR_TO_STACK) { 1145 /* stack accesses must be at a fixed offset, so that we can 1146 * determine what type of data were returned. 1147 * See check_stack_read(). 1148 */ 1149 if (!tnum_is_const(reg->var_off)) { 1150 char tn_buf[48]; 1151 1152 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1153 verbose("variable stack access var_off=%s off=%d size=%d", 1154 tn_buf, off, size); 1155 return -EACCES; 1156 } 1157 off += reg->var_off.value; 1158 if (off >= 0 || off < -MAX_BPF_STACK) { 1159 verbose("invalid stack off=%d size=%d\n", off, size); 1160 return -EACCES; 1161 } 1162 1163 if (env->prog->aux->stack_depth < -off) 1164 env->prog->aux->stack_depth = -off; 1165 1166 if (t == BPF_WRITE) { 1167 if (!env->allow_ptr_leaks && 1168 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL && 1169 size != BPF_REG_SIZE) { 1170 verbose("attempt to corrupt spilled pointer on stack\n"); 1171 return -EACCES; 1172 } 1173 err = check_stack_write(state, off, size, value_regno); 1174 } else { 1175 err = check_stack_read(state, off, size, value_regno); 1176 } 1177 } else if (reg->type == PTR_TO_PACKET) { 1178 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 1179 verbose("cannot write into packet\n"); 1180 return -EACCES; 1181 } 1182 if (t == BPF_WRITE && value_regno >= 0 && 1183 is_pointer_value(env, value_regno)) { 1184 verbose("R%d leaks addr into packet\n", value_regno); 1185 return -EACCES; 1186 } 1187 err = check_packet_access(env, regno, off, size); 1188 if (!err && t == BPF_READ && value_regno >= 0) 1189 mark_reg_unknown(state->regs, value_regno); 1190 } else { 1191 verbose("R%d invalid mem access '%s'\n", 1192 regno, reg_type_str[reg->type]); 1193 return -EACCES; 1194 } 1195 1196 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 1197 state->regs[value_regno].type == SCALAR_VALUE) { 1198 /* b/h/w load zero-extends, mark upper bits as known 0 */ 1199 state->regs[value_regno].var_off = tnum_cast( 1200 state->regs[value_regno].var_off, size); 1201 __update_reg_bounds(&state->regs[value_regno]); 1202 } 1203 return err; 1204 } 1205 1206 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 1207 { 1208 int err; 1209 1210 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 1211 insn->imm != 0) { 1212 verbose("BPF_XADD uses reserved fields\n"); 1213 return -EINVAL; 1214 } 1215 1216 /* check src1 operand */ 1217 err = check_reg_arg(env, insn->src_reg, SRC_OP); 1218 if (err) 1219 return err; 1220 1221 /* check src2 operand */ 1222 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 1223 if (err) 1224 return err; 1225 1226 if (is_pointer_value(env, insn->src_reg)) { 1227 verbose("R%d leaks addr into mem\n", insn->src_reg); 1228 return -EACCES; 1229 } 1230 1231 /* check whether atomic_add can read the memory */ 1232 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1233 BPF_SIZE(insn->code), BPF_READ, -1); 1234 if (err) 1235 return err; 1236 1237 /* check whether atomic_add can write into the same memory */ 1238 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1239 BPF_SIZE(insn->code), BPF_WRITE, -1); 1240 } 1241 1242 /* Does this register contain a constant zero? */ 1243 static bool register_is_null(struct bpf_reg_state reg) 1244 { 1245 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0); 1246 } 1247 1248 /* when register 'regno' is passed into function that will read 'access_size' 1249 * bytes from that pointer, make sure that it's within stack boundary 1250 * and all elements of stack are initialized. 1251 * Unlike most pointer bounds-checking functions, this one doesn't take an 1252 * 'off' argument, so it has to add in reg->off itself. 1253 */ 1254 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 1255 int access_size, bool zero_size_allowed, 1256 struct bpf_call_arg_meta *meta) 1257 { 1258 struct bpf_verifier_state *state = &env->cur_state; 1259 struct bpf_reg_state *regs = state->regs; 1260 int off, i; 1261 1262 if (regs[regno].type != PTR_TO_STACK) { 1263 /* Allow zero-byte read from NULL, regardless of pointer type */ 1264 if (zero_size_allowed && access_size == 0 && 1265 register_is_null(regs[regno])) 1266 return 0; 1267 1268 verbose("R%d type=%s expected=%s\n", regno, 1269 reg_type_str[regs[regno].type], 1270 reg_type_str[PTR_TO_STACK]); 1271 return -EACCES; 1272 } 1273 1274 /* Only allow fixed-offset stack reads */ 1275 if (!tnum_is_const(regs[regno].var_off)) { 1276 char tn_buf[48]; 1277 1278 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off); 1279 verbose("invalid variable stack read R%d var_off=%s\n", 1280 regno, tn_buf); 1281 } 1282 off = regs[regno].off + regs[regno].var_off.value; 1283 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 1284 access_size <= 0) { 1285 verbose("invalid stack type R%d off=%d access_size=%d\n", 1286 regno, off, access_size); 1287 return -EACCES; 1288 } 1289 1290 if (env->prog->aux->stack_depth < -off) 1291 env->prog->aux->stack_depth = -off; 1292 1293 if (meta && meta->raw_mode) { 1294 meta->access_size = access_size; 1295 meta->regno = regno; 1296 return 0; 1297 } 1298 1299 for (i = 0; i < access_size; i++) { 1300 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) { 1301 verbose("invalid indirect read from stack off %d+%d size %d\n", 1302 off, i, access_size); 1303 return -EACCES; 1304 } 1305 } 1306 return 0; 1307 } 1308 1309 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 1310 int access_size, bool zero_size_allowed, 1311 struct bpf_call_arg_meta *meta) 1312 { 1313 struct bpf_reg_state *regs = env->cur_state.regs, *reg = ®s[regno]; 1314 1315 switch (reg->type) { 1316 case PTR_TO_PACKET: 1317 return check_packet_access(env, regno, reg->off, access_size); 1318 case PTR_TO_MAP_VALUE: 1319 return check_map_access(env, regno, reg->off, access_size); 1320 default: /* scalar_value|ptr_to_stack or invalid ptr */ 1321 return check_stack_boundary(env, regno, access_size, 1322 zero_size_allowed, meta); 1323 } 1324 } 1325 1326 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 1327 enum bpf_arg_type arg_type, 1328 struct bpf_call_arg_meta *meta) 1329 { 1330 struct bpf_reg_state *regs = env->cur_state.regs, *reg = ®s[regno]; 1331 enum bpf_reg_type expected_type, type = reg->type; 1332 int err = 0; 1333 1334 if (arg_type == ARG_DONTCARE) 1335 return 0; 1336 1337 err = check_reg_arg(env, regno, SRC_OP); 1338 if (err) 1339 return err; 1340 1341 if (arg_type == ARG_ANYTHING) { 1342 if (is_pointer_value(env, regno)) { 1343 verbose("R%d leaks addr into helper function\n", regno); 1344 return -EACCES; 1345 } 1346 return 0; 1347 } 1348 1349 if (type == PTR_TO_PACKET && 1350 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 1351 verbose("helper access to the packet is not allowed\n"); 1352 return -EACCES; 1353 } 1354 1355 if (arg_type == ARG_PTR_TO_MAP_KEY || 1356 arg_type == ARG_PTR_TO_MAP_VALUE) { 1357 expected_type = PTR_TO_STACK; 1358 if (type != PTR_TO_PACKET && type != expected_type) 1359 goto err_type; 1360 } else if (arg_type == ARG_CONST_SIZE || 1361 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1362 expected_type = SCALAR_VALUE; 1363 if (type != expected_type) 1364 goto err_type; 1365 } else if (arg_type == ARG_CONST_MAP_PTR) { 1366 expected_type = CONST_PTR_TO_MAP; 1367 if (type != expected_type) 1368 goto err_type; 1369 } else if (arg_type == ARG_PTR_TO_CTX) { 1370 expected_type = PTR_TO_CTX; 1371 if (type != expected_type) 1372 goto err_type; 1373 } else if (arg_type == ARG_PTR_TO_MEM || 1374 arg_type == ARG_PTR_TO_UNINIT_MEM) { 1375 expected_type = PTR_TO_STACK; 1376 /* One exception here. In case function allows for NULL to be 1377 * passed in as argument, it's a SCALAR_VALUE type. Final test 1378 * happens during stack boundary checking. 1379 */ 1380 if (register_is_null(*reg)) 1381 /* final test in check_stack_boundary() */; 1382 else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE && 1383 type != expected_type) 1384 goto err_type; 1385 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 1386 } else { 1387 verbose("unsupported arg_type %d\n", arg_type); 1388 return -EFAULT; 1389 } 1390 1391 if (arg_type == ARG_CONST_MAP_PTR) { 1392 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 1393 meta->map_ptr = reg->map_ptr; 1394 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 1395 /* bpf_map_xxx(..., map_ptr, ..., key) call: 1396 * check that [key, key + map->key_size) are within 1397 * stack limits and initialized 1398 */ 1399 if (!meta->map_ptr) { 1400 /* in function declaration map_ptr must come before 1401 * map_key, so that it's verified and known before 1402 * we have to check map_key here. Otherwise it means 1403 * that kernel subsystem misconfigured verifier 1404 */ 1405 verbose("invalid map_ptr to access map->key\n"); 1406 return -EACCES; 1407 } 1408 if (type == PTR_TO_PACKET) 1409 err = check_packet_access(env, regno, reg->off, 1410 meta->map_ptr->key_size); 1411 else 1412 err = check_stack_boundary(env, regno, 1413 meta->map_ptr->key_size, 1414 false, NULL); 1415 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) { 1416 /* bpf_map_xxx(..., map_ptr, ..., value) call: 1417 * check [value, value + map->value_size) validity 1418 */ 1419 if (!meta->map_ptr) { 1420 /* kernel subsystem misconfigured verifier */ 1421 verbose("invalid map_ptr to access map->value\n"); 1422 return -EACCES; 1423 } 1424 if (type == PTR_TO_PACKET) 1425 err = check_packet_access(env, regno, reg->off, 1426 meta->map_ptr->value_size); 1427 else 1428 err = check_stack_boundary(env, regno, 1429 meta->map_ptr->value_size, 1430 false, NULL); 1431 } else if (arg_type == ARG_CONST_SIZE || 1432 arg_type == ARG_CONST_SIZE_OR_ZERO) { 1433 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 1434 1435 /* bpf_xxx(..., buf, len) call will access 'len' bytes 1436 * from stack pointer 'buf'. Check it 1437 * note: regno == len, regno - 1 == buf 1438 */ 1439 if (regno == 0) { 1440 /* kernel subsystem misconfigured verifier */ 1441 verbose("ARG_CONST_SIZE cannot be first argument\n"); 1442 return -EACCES; 1443 } 1444 1445 /* The register is SCALAR_VALUE; the access check 1446 * happens using its boundaries. 1447 */ 1448 1449 if (!tnum_is_const(reg->var_off)) 1450 /* For unprivileged variable accesses, disable raw 1451 * mode so that the program is required to 1452 * initialize all the memory that the helper could 1453 * just partially fill up. 1454 */ 1455 meta = NULL; 1456 1457 if (reg->smin_value < 0) { 1458 verbose("R%d min value is negative, either use unsigned or 'var &= const'\n", 1459 regno); 1460 return -EACCES; 1461 } 1462 1463 if (reg->umin_value == 0) { 1464 err = check_helper_mem_access(env, regno - 1, 0, 1465 zero_size_allowed, 1466 meta); 1467 if (err) 1468 return err; 1469 } 1470 1471 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 1472 verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 1473 regno); 1474 return -EACCES; 1475 } 1476 err = check_helper_mem_access(env, regno - 1, 1477 reg->umax_value, 1478 zero_size_allowed, meta); 1479 } 1480 1481 return err; 1482 err_type: 1483 verbose("R%d type=%s expected=%s\n", regno, 1484 reg_type_str[type], reg_type_str[expected_type]); 1485 return -EACCES; 1486 } 1487 1488 static int check_map_func_compatibility(struct bpf_map *map, int func_id) 1489 { 1490 if (!map) 1491 return 0; 1492 1493 /* We need a two way check, first is from map perspective ... */ 1494 switch (map->map_type) { 1495 case BPF_MAP_TYPE_PROG_ARRAY: 1496 if (func_id != BPF_FUNC_tail_call) 1497 goto error; 1498 break; 1499 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 1500 if (func_id != BPF_FUNC_perf_event_read && 1501 func_id != BPF_FUNC_perf_event_output) 1502 goto error; 1503 break; 1504 case BPF_MAP_TYPE_STACK_TRACE: 1505 if (func_id != BPF_FUNC_get_stackid) 1506 goto error; 1507 break; 1508 case BPF_MAP_TYPE_CGROUP_ARRAY: 1509 if (func_id != BPF_FUNC_skb_under_cgroup && 1510 func_id != BPF_FUNC_current_task_under_cgroup) 1511 goto error; 1512 break; 1513 /* devmap returns a pointer to a live net_device ifindex that we cannot 1514 * allow to be modified from bpf side. So do not allow lookup elements 1515 * for now. 1516 */ 1517 case BPF_MAP_TYPE_DEVMAP: 1518 if (func_id != BPF_FUNC_redirect_map) 1519 goto error; 1520 break; 1521 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 1522 case BPF_MAP_TYPE_HASH_OF_MAPS: 1523 if (func_id != BPF_FUNC_map_lookup_elem) 1524 goto error; 1525 break; 1526 case BPF_MAP_TYPE_SOCKMAP: 1527 if (func_id != BPF_FUNC_sk_redirect_map && 1528 func_id != BPF_FUNC_sock_map_update && 1529 func_id != BPF_FUNC_map_delete_elem) 1530 goto error; 1531 break; 1532 default: 1533 break; 1534 } 1535 1536 /* ... and second from the function itself. */ 1537 switch (func_id) { 1538 case BPF_FUNC_tail_call: 1539 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 1540 goto error; 1541 break; 1542 case BPF_FUNC_perf_event_read: 1543 case BPF_FUNC_perf_event_output: 1544 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 1545 goto error; 1546 break; 1547 case BPF_FUNC_get_stackid: 1548 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 1549 goto error; 1550 break; 1551 case BPF_FUNC_current_task_under_cgroup: 1552 case BPF_FUNC_skb_under_cgroup: 1553 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 1554 goto error; 1555 break; 1556 case BPF_FUNC_redirect_map: 1557 if (map->map_type != BPF_MAP_TYPE_DEVMAP) 1558 goto error; 1559 break; 1560 case BPF_FUNC_sk_redirect_map: 1561 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 1562 goto error; 1563 break; 1564 case BPF_FUNC_sock_map_update: 1565 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 1566 goto error; 1567 break; 1568 default: 1569 break; 1570 } 1571 1572 return 0; 1573 error: 1574 verbose("cannot pass map_type %d into func %s#%d\n", 1575 map->map_type, func_id_name(func_id), func_id); 1576 return -EINVAL; 1577 } 1578 1579 static int check_raw_mode(const struct bpf_func_proto *fn) 1580 { 1581 int count = 0; 1582 1583 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 1584 count++; 1585 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 1586 count++; 1587 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 1588 count++; 1589 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 1590 count++; 1591 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 1592 count++; 1593 1594 return count > 1 ? -EINVAL : 0; 1595 } 1596 1597 /* Packet data might have moved, any old PTR_TO_PACKET[_END] are now invalid, 1598 * so turn them into unknown SCALAR_VALUE. 1599 */ 1600 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 1601 { 1602 struct bpf_verifier_state *state = &env->cur_state; 1603 struct bpf_reg_state *regs = state->regs, *reg; 1604 int i; 1605 1606 for (i = 0; i < MAX_BPF_REG; i++) 1607 if (regs[i].type == PTR_TO_PACKET || 1608 regs[i].type == PTR_TO_PACKET_END) 1609 mark_reg_unknown(regs, i); 1610 1611 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { 1612 if (state->stack_slot_type[i] != STACK_SPILL) 1613 continue; 1614 reg = &state->spilled_regs[i / BPF_REG_SIZE]; 1615 if (reg->type != PTR_TO_PACKET && 1616 reg->type != PTR_TO_PACKET_END) 1617 continue; 1618 __mark_reg_unknown(reg); 1619 } 1620 } 1621 1622 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 1623 { 1624 struct bpf_verifier_state *state = &env->cur_state; 1625 const struct bpf_func_proto *fn = NULL; 1626 struct bpf_reg_state *regs = state->regs; 1627 struct bpf_call_arg_meta meta; 1628 bool changes_data; 1629 int i, err; 1630 1631 /* find function prototype */ 1632 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 1633 verbose("invalid func %s#%d\n", func_id_name(func_id), func_id); 1634 return -EINVAL; 1635 } 1636 1637 if (env->prog->aux->ops->get_func_proto) 1638 fn = env->prog->aux->ops->get_func_proto(func_id); 1639 1640 if (!fn) { 1641 verbose("unknown func %s#%d\n", func_id_name(func_id), func_id); 1642 return -EINVAL; 1643 } 1644 1645 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 1646 if (!env->prog->gpl_compatible && fn->gpl_only) { 1647 verbose("cannot call GPL only function from proprietary program\n"); 1648 return -EINVAL; 1649 } 1650 1651 changes_data = bpf_helper_changes_pkt_data(fn->func); 1652 1653 memset(&meta, 0, sizeof(meta)); 1654 meta.pkt_access = fn->pkt_access; 1655 1656 /* We only support one arg being in raw mode at the moment, which 1657 * is sufficient for the helper functions we have right now. 1658 */ 1659 err = check_raw_mode(fn); 1660 if (err) { 1661 verbose("kernel subsystem misconfigured func %s#%d\n", 1662 func_id_name(func_id), func_id); 1663 return err; 1664 } 1665 1666 /* check args */ 1667 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 1668 if (err) 1669 return err; 1670 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 1671 if (err) 1672 return err; 1673 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 1674 if (err) 1675 return err; 1676 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 1677 if (err) 1678 return err; 1679 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 1680 if (err) 1681 return err; 1682 1683 /* Mark slots with STACK_MISC in case of raw mode, stack offset 1684 * is inferred from register state. 1685 */ 1686 for (i = 0; i < meta.access_size; i++) { 1687 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1); 1688 if (err) 1689 return err; 1690 } 1691 1692 /* reset caller saved regs */ 1693 for (i = 0; i < CALLER_SAVED_REGS; i++) { 1694 mark_reg_not_init(regs, caller_saved[i]); 1695 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 1696 } 1697 1698 /* update return register (already marked as written above) */ 1699 if (fn->ret_type == RET_INTEGER) { 1700 /* sets type to SCALAR_VALUE */ 1701 mark_reg_unknown(regs, BPF_REG_0); 1702 } else if (fn->ret_type == RET_VOID) { 1703 regs[BPF_REG_0].type = NOT_INIT; 1704 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) { 1705 struct bpf_insn_aux_data *insn_aux; 1706 1707 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 1708 /* There is no offset yet applied, variable or fixed */ 1709 mark_reg_known_zero(regs, BPF_REG_0); 1710 regs[BPF_REG_0].off = 0; 1711 /* remember map_ptr, so that check_map_access() 1712 * can check 'value_size' boundary of memory access 1713 * to map element returned from bpf_map_lookup_elem() 1714 */ 1715 if (meta.map_ptr == NULL) { 1716 verbose("kernel subsystem misconfigured verifier\n"); 1717 return -EINVAL; 1718 } 1719 regs[BPF_REG_0].map_ptr = meta.map_ptr; 1720 regs[BPF_REG_0].id = ++env->id_gen; 1721 insn_aux = &env->insn_aux_data[insn_idx]; 1722 if (!insn_aux->map_ptr) 1723 insn_aux->map_ptr = meta.map_ptr; 1724 else if (insn_aux->map_ptr != meta.map_ptr) 1725 insn_aux->map_ptr = BPF_MAP_PTR_POISON; 1726 } else { 1727 verbose("unknown return type %d of func %s#%d\n", 1728 fn->ret_type, func_id_name(func_id), func_id); 1729 return -EINVAL; 1730 } 1731 1732 err = check_map_func_compatibility(meta.map_ptr, func_id); 1733 if (err) 1734 return err; 1735 1736 if (changes_data) 1737 clear_all_pkt_pointers(env); 1738 return 0; 1739 } 1740 1741 static void coerce_reg_to_32(struct bpf_reg_state *reg) 1742 { 1743 /* clear high 32 bits */ 1744 reg->var_off = tnum_cast(reg->var_off, 4); 1745 /* Update bounds */ 1746 __update_reg_bounds(reg); 1747 } 1748 1749 static bool signed_add_overflows(s64 a, s64 b) 1750 { 1751 /* Do the add in u64, where overflow is well-defined */ 1752 s64 res = (s64)((u64)a + (u64)b); 1753 1754 if (b < 0) 1755 return res > a; 1756 return res < a; 1757 } 1758 1759 static bool signed_sub_overflows(s64 a, s64 b) 1760 { 1761 /* Do the sub in u64, where overflow is well-defined */ 1762 s64 res = (s64)((u64)a - (u64)b); 1763 1764 if (b < 0) 1765 return res < a; 1766 return res > a; 1767 } 1768 1769 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 1770 * Caller should also handle BPF_MOV case separately. 1771 * If we return -EACCES, caller may want to try again treating pointer as a 1772 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 1773 */ 1774 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 1775 struct bpf_insn *insn, 1776 const struct bpf_reg_state *ptr_reg, 1777 const struct bpf_reg_state *off_reg) 1778 { 1779 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg; 1780 bool known = tnum_is_const(off_reg->var_off); 1781 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 1782 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 1783 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 1784 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 1785 u8 opcode = BPF_OP(insn->code); 1786 u32 dst = insn->dst_reg; 1787 1788 dst_reg = ®s[dst]; 1789 1790 if (WARN_ON_ONCE(known && (smin_val != smax_val))) { 1791 print_verifier_state(&env->cur_state); 1792 verbose("verifier internal error: known but bad sbounds\n"); 1793 return -EINVAL; 1794 } 1795 if (WARN_ON_ONCE(known && (umin_val != umax_val))) { 1796 print_verifier_state(&env->cur_state); 1797 verbose("verifier internal error: known but bad ubounds\n"); 1798 return -EINVAL; 1799 } 1800 1801 if (BPF_CLASS(insn->code) != BPF_ALU64) { 1802 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 1803 if (!env->allow_ptr_leaks) 1804 verbose("R%d 32-bit pointer arithmetic prohibited\n", 1805 dst); 1806 return -EACCES; 1807 } 1808 1809 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 1810 if (!env->allow_ptr_leaks) 1811 verbose("R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n", 1812 dst); 1813 return -EACCES; 1814 } 1815 if (ptr_reg->type == CONST_PTR_TO_MAP) { 1816 if (!env->allow_ptr_leaks) 1817 verbose("R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n", 1818 dst); 1819 return -EACCES; 1820 } 1821 if (ptr_reg->type == PTR_TO_PACKET_END) { 1822 if (!env->allow_ptr_leaks) 1823 verbose("R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n", 1824 dst); 1825 return -EACCES; 1826 } 1827 1828 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 1829 * The id may be overwritten later if we create a new variable offset. 1830 */ 1831 dst_reg->type = ptr_reg->type; 1832 dst_reg->id = ptr_reg->id; 1833 1834 switch (opcode) { 1835 case BPF_ADD: 1836 /* We can take a fixed offset as long as it doesn't overflow 1837 * the s32 'off' field 1838 */ 1839 if (known && (ptr_reg->off + smin_val == 1840 (s64)(s32)(ptr_reg->off + smin_val))) { 1841 /* pointer += K. Accumulate it into fixed offset */ 1842 dst_reg->smin_value = smin_ptr; 1843 dst_reg->smax_value = smax_ptr; 1844 dst_reg->umin_value = umin_ptr; 1845 dst_reg->umax_value = umax_ptr; 1846 dst_reg->var_off = ptr_reg->var_off; 1847 dst_reg->off = ptr_reg->off + smin_val; 1848 dst_reg->range = ptr_reg->range; 1849 break; 1850 } 1851 /* A new variable offset is created. Note that off_reg->off 1852 * == 0, since it's a scalar. 1853 * dst_reg gets the pointer type and since some positive 1854 * integer value was added to the pointer, give it a new 'id' 1855 * if it's a PTR_TO_PACKET. 1856 * this creates a new 'base' pointer, off_reg (variable) gets 1857 * added into the variable offset, and we copy the fixed offset 1858 * from ptr_reg. 1859 */ 1860 if (signed_add_overflows(smin_ptr, smin_val) || 1861 signed_add_overflows(smax_ptr, smax_val)) { 1862 dst_reg->smin_value = S64_MIN; 1863 dst_reg->smax_value = S64_MAX; 1864 } else { 1865 dst_reg->smin_value = smin_ptr + smin_val; 1866 dst_reg->smax_value = smax_ptr + smax_val; 1867 } 1868 if (umin_ptr + umin_val < umin_ptr || 1869 umax_ptr + umax_val < umax_ptr) { 1870 dst_reg->umin_value = 0; 1871 dst_reg->umax_value = U64_MAX; 1872 } else { 1873 dst_reg->umin_value = umin_ptr + umin_val; 1874 dst_reg->umax_value = umax_ptr + umax_val; 1875 } 1876 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 1877 dst_reg->off = ptr_reg->off; 1878 if (ptr_reg->type == PTR_TO_PACKET) { 1879 dst_reg->id = ++env->id_gen; 1880 /* something was added to pkt_ptr, set range to zero */ 1881 dst_reg->range = 0; 1882 } 1883 break; 1884 case BPF_SUB: 1885 if (dst_reg == off_reg) { 1886 /* scalar -= pointer. Creates an unknown scalar */ 1887 if (!env->allow_ptr_leaks) 1888 verbose("R%d tried to subtract pointer from scalar\n", 1889 dst); 1890 return -EACCES; 1891 } 1892 /* We don't allow subtraction from FP, because (according to 1893 * test_verifier.c test "invalid fp arithmetic", JITs might not 1894 * be able to deal with it. 1895 */ 1896 if (ptr_reg->type == PTR_TO_STACK) { 1897 if (!env->allow_ptr_leaks) 1898 verbose("R%d subtraction from stack pointer prohibited\n", 1899 dst); 1900 return -EACCES; 1901 } 1902 if (known && (ptr_reg->off - smin_val == 1903 (s64)(s32)(ptr_reg->off - smin_val))) { 1904 /* pointer -= K. Subtract it from fixed offset */ 1905 dst_reg->smin_value = smin_ptr; 1906 dst_reg->smax_value = smax_ptr; 1907 dst_reg->umin_value = umin_ptr; 1908 dst_reg->umax_value = umax_ptr; 1909 dst_reg->var_off = ptr_reg->var_off; 1910 dst_reg->id = ptr_reg->id; 1911 dst_reg->off = ptr_reg->off - smin_val; 1912 dst_reg->range = ptr_reg->range; 1913 break; 1914 } 1915 /* A new variable offset is created. If the subtrahend is known 1916 * nonnegative, then any reg->range we had before is still good. 1917 */ 1918 if (signed_sub_overflows(smin_ptr, smax_val) || 1919 signed_sub_overflows(smax_ptr, smin_val)) { 1920 /* Overflow possible, we know nothing */ 1921 dst_reg->smin_value = S64_MIN; 1922 dst_reg->smax_value = S64_MAX; 1923 } else { 1924 dst_reg->smin_value = smin_ptr - smax_val; 1925 dst_reg->smax_value = smax_ptr - smin_val; 1926 } 1927 if (umin_ptr < umax_val) { 1928 /* Overflow possible, we know nothing */ 1929 dst_reg->umin_value = 0; 1930 dst_reg->umax_value = U64_MAX; 1931 } else { 1932 /* Cannot overflow (as long as bounds are consistent) */ 1933 dst_reg->umin_value = umin_ptr - umax_val; 1934 dst_reg->umax_value = umax_ptr - umin_val; 1935 } 1936 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 1937 dst_reg->off = ptr_reg->off; 1938 if (ptr_reg->type == PTR_TO_PACKET) { 1939 dst_reg->id = ++env->id_gen; 1940 /* something was added to pkt_ptr, set range to zero */ 1941 if (smin_val < 0) 1942 dst_reg->range = 0; 1943 } 1944 break; 1945 case BPF_AND: 1946 case BPF_OR: 1947 case BPF_XOR: 1948 /* bitwise ops on pointers are troublesome, prohibit for now. 1949 * (However, in principle we could allow some cases, e.g. 1950 * ptr &= ~3 which would reduce min_value by 3.) 1951 */ 1952 if (!env->allow_ptr_leaks) 1953 verbose("R%d bitwise operator %s on pointer prohibited\n", 1954 dst, bpf_alu_string[opcode >> 4]); 1955 return -EACCES; 1956 default: 1957 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 1958 if (!env->allow_ptr_leaks) 1959 verbose("R%d pointer arithmetic with %s operator prohibited\n", 1960 dst, bpf_alu_string[opcode >> 4]); 1961 return -EACCES; 1962 } 1963 1964 __update_reg_bounds(dst_reg); 1965 __reg_deduce_bounds(dst_reg); 1966 __reg_bound_offset(dst_reg); 1967 return 0; 1968 } 1969 1970 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 1971 struct bpf_insn *insn, 1972 struct bpf_reg_state *dst_reg, 1973 struct bpf_reg_state src_reg) 1974 { 1975 struct bpf_reg_state *regs = env->cur_state.regs; 1976 u8 opcode = BPF_OP(insn->code); 1977 bool src_known, dst_known; 1978 s64 smin_val, smax_val; 1979 u64 umin_val, umax_val; 1980 1981 if (BPF_CLASS(insn->code) != BPF_ALU64) { 1982 /* 32-bit ALU ops are (32,32)->64 */ 1983 coerce_reg_to_32(dst_reg); 1984 coerce_reg_to_32(&src_reg); 1985 } 1986 smin_val = src_reg.smin_value; 1987 smax_val = src_reg.smax_value; 1988 umin_val = src_reg.umin_value; 1989 umax_val = src_reg.umax_value; 1990 src_known = tnum_is_const(src_reg.var_off); 1991 dst_known = tnum_is_const(dst_reg->var_off); 1992 1993 switch (opcode) { 1994 case BPF_ADD: 1995 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 1996 signed_add_overflows(dst_reg->smax_value, smax_val)) { 1997 dst_reg->smin_value = S64_MIN; 1998 dst_reg->smax_value = S64_MAX; 1999 } else { 2000 dst_reg->smin_value += smin_val; 2001 dst_reg->smax_value += smax_val; 2002 } 2003 if (dst_reg->umin_value + umin_val < umin_val || 2004 dst_reg->umax_value + umax_val < umax_val) { 2005 dst_reg->umin_value = 0; 2006 dst_reg->umax_value = U64_MAX; 2007 } else { 2008 dst_reg->umin_value += umin_val; 2009 dst_reg->umax_value += umax_val; 2010 } 2011 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 2012 break; 2013 case BPF_SUB: 2014 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 2015 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 2016 /* Overflow possible, we know nothing */ 2017 dst_reg->smin_value = S64_MIN; 2018 dst_reg->smax_value = S64_MAX; 2019 } else { 2020 dst_reg->smin_value -= smax_val; 2021 dst_reg->smax_value -= smin_val; 2022 } 2023 if (dst_reg->umin_value < umax_val) { 2024 /* Overflow possible, we know nothing */ 2025 dst_reg->umin_value = 0; 2026 dst_reg->umax_value = U64_MAX; 2027 } else { 2028 /* Cannot overflow (as long as bounds are consistent) */ 2029 dst_reg->umin_value -= umax_val; 2030 dst_reg->umax_value -= umin_val; 2031 } 2032 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 2033 break; 2034 case BPF_MUL: 2035 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 2036 if (smin_val < 0 || dst_reg->smin_value < 0) { 2037 /* Ain't nobody got time to multiply that sign */ 2038 __mark_reg_unbounded(dst_reg); 2039 __update_reg_bounds(dst_reg); 2040 break; 2041 } 2042 /* Both values are positive, so we can work with unsigned and 2043 * copy the result to signed (unless it exceeds S64_MAX). 2044 */ 2045 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 2046 /* Potential overflow, we know nothing */ 2047 __mark_reg_unbounded(dst_reg); 2048 /* (except what we can learn from the var_off) */ 2049 __update_reg_bounds(dst_reg); 2050 break; 2051 } 2052 dst_reg->umin_value *= umin_val; 2053 dst_reg->umax_value *= umax_val; 2054 if (dst_reg->umax_value > S64_MAX) { 2055 /* Overflow possible, we know nothing */ 2056 dst_reg->smin_value = S64_MIN; 2057 dst_reg->smax_value = S64_MAX; 2058 } else { 2059 dst_reg->smin_value = dst_reg->umin_value; 2060 dst_reg->smax_value = dst_reg->umax_value; 2061 } 2062 break; 2063 case BPF_AND: 2064 if (src_known && dst_known) { 2065 __mark_reg_known(dst_reg, dst_reg->var_off.value & 2066 src_reg.var_off.value); 2067 break; 2068 } 2069 /* We get our minimum from the var_off, since that's inherently 2070 * bitwise. Our maximum is the minimum of the operands' maxima. 2071 */ 2072 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 2073 dst_reg->umin_value = dst_reg->var_off.value; 2074 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 2075 if (dst_reg->smin_value < 0 || smin_val < 0) { 2076 /* Lose signed bounds when ANDing negative numbers, 2077 * ain't nobody got time for that. 2078 */ 2079 dst_reg->smin_value = S64_MIN; 2080 dst_reg->smax_value = S64_MAX; 2081 } else { 2082 /* ANDing two positives gives a positive, so safe to 2083 * cast result into s64. 2084 */ 2085 dst_reg->smin_value = dst_reg->umin_value; 2086 dst_reg->smax_value = dst_reg->umax_value; 2087 } 2088 /* We may learn something more from the var_off */ 2089 __update_reg_bounds(dst_reg); 2090 break; 2091 case BPF_OR: 2092 if (src_known && dst_known) { 2093 __mark_reg_known(dst_reg, dst_reg->var_off.value | 2094 src_reg.var_off.value); 2095 break; 2096 } 2097 /* We get our maximum from the var_off, and our minimum is the 2098 * maximum of the operands' minima 2099 */ 2100 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 2101 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 2102 dst_reg->umax_value = dst_reg->var_off.value | 2103 dst_reg->var_off.mask; 2104 if (dst_reg->smin_value < 0 || smin_val < 0) { 2105 /* Lose signed bounds when ORing negative numbers, 2106 * ain't nobody got time for that. 2107 */ 2108 dst_reg->smin_value = S64_MIN; 2109 dst_reg->smax_value = S64_MAX; 2110 } else { 2111 /* ORing two positives gives a positive, so safe to 2112 * cast result into s64. 2113 */ 2114 dst_reg->smin_value = dst_reg->umin_value; 2115 dst_reg->smax_value = dst_reg->umax_value; 2116 } 2117 /* We may learn something more from the var_off */ 2118 __update_reg_bounds(dst_reg); 2119 break; 2120 case BPF_LSH: 2121 if (umax_val > 63) { 2122 /* Shifts greater than 63 are undefined. This includes 2123 * shifts by a negative number. 2124 */ 2125 mark_reg_unknown(regs, insn->dst_reg); 2126 break; 2127 } 2128 /* We lose all sign bit information (except what we can pick 2129 * up from var_off) 2130 */ 2131 dst_reg->smin_value = S64_MIN; 2132 dst_reg->smax_value = S64_MAX; 2133 /* If we might shift our top bit out, then we know nothing */ 2134 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 2135 dst_reg->umin_value = 0; 2136 dst_reg->umax_value = U64_MAX; 2137 } else { 2138 dst_reg->umin_value <<= umin_val; 2139 dst_reg->umax_value <<= umax_val; 2140 } 2141 if (src_known) 2142 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 2143 else 2144 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val); 2145 /* We may learn something more from the var_off */ 2146 __update_reg_bounds(dst_reg); 2147 break; 2148 case BPF_RSH: 2149 if (umax_val > 63) { 2150 /* Shifts greater than 63 are undefined. This includes 2151 * shifts by a negative number. 2152 */ 2153 mark_reg_unknown(regs, insn->dst_reg); 2154 break; 2155 } 2156 /* BPF_RSH is an unsigned shift, so make the appropriate casts */ 2157 if (dst_reg->smin_value < 0) { 2158 if (umin_val) { 2159 /* Sign bit will be cleared */ 2160 dst_reg->smin_value = 0; 2161 } else { 2162 /* Lost sign bit information */ 2163 dst_reg->smin_value = S64_MIN; 2164 dst_reg->smax_value = S64_MAX; 2165 } 2166 } else { 2167 dst_reg->smin_value = 2168 (u64)(dst_reg->smin_value) >> umax_val; 2169 } 2170 if (src_known) 2171 dst_reg->var_off = tnum_rshift(dst_reg->var_off, 2172 umin_val); 2173 else 2174 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val); 2175 dst_reg->umin_value >>= umax_val; 2176 dst_reg->umax_value >>= umin_val; 2177 /* We may learn something more from the var_off */ 2178 __update_reg_bounds(dst_reg); 2179 break; 2180 default: 2181 mark_reg_unknown(regs, insn->dst_reg); 2182 break; 2183 } 2184 2185 __reg_deduce_bounds(dst_reg); 2186 __reg_bound_offset(dst_reg); 2187 return 0; 2188 } 2189 2190 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 2191 * and var_off. 2192 */ 2193 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 2194 struct bpf_insn *insn) 2195 { 2196 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg, *src_reg; 2197 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 2198 u8 opcode = BPF_OP(insn->code); 2199 int rc; 2200 2201 dst_reg = ®s[insn->dst_reg]; 2202 src_reg = NULL; 2203 if (dst_reg->type != SCALAR_VALUE) 2204 ptr_reg = dst_reg; 2205 if (BPF_SRC(insn->code) == BPF_X) { 2206 src_reg = ®s[insn->src_reg]; 2207 if (src_reg->type != SCALAR_VALUE) { 2208 if (dst_reg->type != SCALAR_VALUE) { 2209 /* Combining two pointers by any ALU op yields 2210 * an arbitrary scalar. 2211 */ 2212 if (!env->allow_ptr_leaks) { 2213 verbose("R%d pointer %s pointer prohibited\n", 2214 insn->dst_reg, 2215 bpf_alu_string[opcode >> 4]); 2216 return -EACCES; 2217 } 2218 mark_reg_unknown(regs, insn->dst_reg); 2219 return 0; 2220 } else { 2221 /* scalar += pointer 2222 * This is legal, but we have to reverse our 2223 * src/dest handling in computing the range 2224 */ 2225 rc = adjust_ptr_min_max_vals(env, insn, 2226 src_reg, dst_reg); 2227 if (rc == -EACCES && env->allow_ptr_leaks) { 2228 /* scalar += unknown scalar */ 2229 __mark_reg_unknown(&off_reg); 2230 return adjust_scalar_min_max_vals( 2231 env, insn, 2232 dst_reg, off_reg); 2233 } 2234 return rc; 2235 } 2236 } else if (ptr_reg) { 2237 /* pointer += scalar */ 2238 rc = adjust_ptr_min_max_vals(env, insn, 2239 dst_reg, src_reg); 2240 if (rc == -EACCES && env->allow_ptr_leaks) { 2241 /* unknown scalar += scalar */ 2242 __mark_reg_unknown(dst_reg); 2243 return adjust_scalar_min_max_vals( 2244 env, insn, dst_reg, *src_reg); 2245 } 2246 return rc; 2247 } 2248 } else { 2249 /* Pretend the src is a reg with a known value, since we only 2250 * need to be able to read from this state. 2251 */ 2252 off_reg.type = SCALAR_VALUE; 2253 __mark_reg_known(&off_reg, insn->imm); 2254 src_reg = &off_reg; 2255 if (ptr_reg) { /* pointer += K */ 2256 rc = adjust_ptr_min_max_vals(env, insn, 2257 ptr_reg, src_reg); 2258 if (rc == -EACCES && env->allow_ptr_leaks) { 2259 /* unknown scalar += K */ 2260 __mark_reg_unknown(dst_reg); 2261 return adjust_scalar_min_max_vals( 2262 env, insn, dst_reg, off_reg); 2263 } 2264 return rc; 2265 } 2266 } 2267 2268 /* Got here implies adding two SCALAR_VALUEs */ 2269 if (WARN_ON_ONCE(ptr_reg)) { 2270 print_verifier_state(&env->cur_state); 2271 verbose("verifier internal error: unexpected ptr_reg\n"); 2272 return -EINVAL; 2273 } 2274 if (WARN_ON(!src_reg)) { 2275 print_verifier_state(&env->cur_state); 2276 verbose("verifier internal error: no src_reg\n"); 2277 return -EINVAL; 2278 } 2279 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 2280 } 2281 2282 /* check validity of 32-bit and 64-bit arithmetic operations */ 2283 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 2284 { 2285 struct bpf_reg_state *regs = env->cur_state.regs; 2286 u8 opcode = BPF_OP(insn->code); 2287 int err; 2288 2289 if (opcode == BPF_END || opcode == BPF_NEG) { 2290 if (opcode == BPF_NEG) { 2291 if (BPF_SRC(insn->code) != 0 || 2292 insn->src_reg != BPF_REG_0 || 2293 insn->off != 0 || insn->imm != 0) { 2294 verbose("BPF_NEG uses reserved fields\n"); 2295 return -EINVAL; 2296 } 2297 } else { 2298 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 2299 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 2300 BPF_CLASS(insn->code) == BPF_ALU64) { 2301 verbose("BPF_END uses reserved fields\n"); 2302 return -EINVAL; 2303 } 2304 } 2305 2306 /* check src operand */ 2307 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2308 if (err) 2309 return err; 2310 2311 if (is_pointer_value(env, insn->dst_reg)) { 2312 verbose("R%d pointer arithmetic prohibited\n", 2313 insn->dst_reg); 2314 return -EACCES; 2315 } 2316 2317 /* check dest operand */ 2318 err = check_reg_arg(env, insn->dst_reg, DST_OP); 2319 if (err) 2320 return err; 2321 2322 } else if (opcode == BPF_MOV) { 2323 2324 if (BPF_SRC(insn->code) == BPF_X) { 2325 if (insn->imm != 0 || insn->off != 0) { 2326 verbose("BPF_MOV uses reserved fields\n"); 2327 return -EINVAL; 2328 } 2329 2330 /* check src operand */ 2331 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2332 if (err) 2333 return err; 2334 } else { 2335 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 2336 verbose("BPF_MOV uses reserved fields\n"); 2337 return -EINVAL; 2338 } 2339 } 2340 2341 /* check dest operand */ 2342 err = check_reg_arg(env, insn->dst_reg, DST_OP); 2343 if (err) 2344 return err; 2345 2346 if (BPF_SRC(insn->code) == BPF_X) { 2347 if (BPF_CLASS(insn->code) == BPF_ALU64) { 2348 /* case: R1 = R2 2349 * copy register state to dest reg 2350 */ 2351 regs[insn->dst_reg] = regs[insn->src_reg]; 2352 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN; 2353 } else { 2354 /* R1 = (u32) R2 */ 2355 if (is_pointer_value(env, insn->src_reg)) { 2356 verbose("R%d partial copy of pointer\n", 2357 insn->src_reg); 2358 return -EACCES; 2359 } 2360 mark_reg_unknown(regs, insn->dst_reg); 2361 /* high 32 bits are known zero. */ 2362 regs[insn->dst_reg].var_off = tnum_cast( 2363 regs[insn->dst_reg].var_off, 4); 2364 __update_reg_bounds(®s[insn->dst_reg]); 2365 } 2366 } else { 2367 /* case: R = imm 2368 * remember the value we stored into this reg 2369 */ 2370 regs[insn->dst_reg].type = SCALAR_VALUE; 2371 __mark_reg_known(regs + insn->dst_reg, insn->imm); 2372 } 2373 2374 } else if (opcode > BPF_END) { 2375 verbose("invalid BPF_ALU opcode %x\n", opcode); 2376 return -EINVAL; 2377 2378 } else { /* all other ALU ops: and, sub, xor, add, ... */ 2379 2380 if (BPF_SRC(insn->code) == BPF_X) { 2381 if (insn->imm != 0 || insn->off != 0) { 2382 verbose("BPF_ALU uses reserved fields\n"); 2383 return -EINVAL; 2384 } 2385 /* check src1 operand */ 2386 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2387 if (err) 2388 return err; 2389 } else { 2390 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 2391 verbose("BPF_ALU uses reserved fields\n"); 2392 return -EINVAL; 2393 } 2394 } 2395 2396 /* check src2 operand */ 2397 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2398 if (err) 2399 return err; 2400 2401 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 2402 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 2403 verbose("div by zero\n"); 2404 return -EINVAL; 2405 } 2406 2407 if ((opcode == BPF_LSH || opcode == BPF_RSH || 2408 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 2409 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 2410 2411 if (insn->imm < 0 || insn->imm >= size) { 2412 verbose("invalid shift %d\n", insn->imm); 2413 return -EINVAL; 2414 } 2415 } 2416 2417 /* check dest operand */ 2418 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 2419 if (err) 2420 return err; 2421 2422 return adjust_reg_min_max_vals(env, insn); 2423 } 2424 2425 return 0; 2426 } 2427 2428 static void find_good_pkt_pointers(struct bpf_verifier_state *state, 2429 struct bpf_reg_state *dst_reg) 2430 { 2431 struct bpf_reg_state *regs = state->regs, *reg; 2432 int i; 2433 2434 if (dst_reg->off < 0) 2435 /* This doesn't give us any range */ 2436 return; 2437 2438 if (dst_reg->umax_value > MAX_PACKET_OFF || 2439 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 2440 /* Risk of overflow. For instance, ptr + (1<<63) may be less 2441 * than pkt_end, but that's because it's also less than pkt. 2442 */ 2443 return; 2444 2445 /* LLVM can generate four kind of checks: 2446 * 2447 * Type 1/2: 2448 * 2449 * r2 = r3; 2450 * r2 += 8; 2451 * if (r2 > pkt_end) goto <handle exception> 2452 * <access okay> 2453 * 2454 * r2 = r3; 2455 * r2 += 8; 2456 * if (r2 < pkt_end) goto <access okay> 2457 * <handle exception> 2458 * 2459 * Where: 2460 * r2 == dst_reg, pkt_end == src_reg 2461 * r2=pkt(id=n,off=8,r=0) 2462 * r3=pkt(id=n,off=0,r=0) 2463 * 2464 * Type 3/4: 2465 * 2466 * r2 = r3; 2467 * r2 += 8; 2468 * if (pkt_end >= r2) goto <access okay> 2469 * <handle exception> 2470 * 2471 * r2 = r3; 2472 * r2 += 8; 2473 * if (pkt_end <= r2) goto <handle exception> 2474 * <access okay> 2475 * 2476 * Where: 2477 * pkt_end == dst_reg, r2 == src_reg 2478 * r2=pkt(id=n,off=8,r=0) 2479 * r3=pkt(id=n,off=0,r=0) 2480 * 2481 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 2482 * so that range of bytes [r3, r3 + 8) is safe to access. 2483 */ 2484 2485 /* If our ids match, then we must have the same max_value. And we 2486 * don't care about the other reg's fixed offset, since if it's too big 2487 * the range won't allow anything. 2488 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 2489 */ 2490 for (i = 0; i < MAX_BPF_REG; i++) 2491 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id) 2492 /* keep the maximum range already checked */ 2493 regs[i].range = max_t(u16, regs[i].range, dst_reg->off); 2494 2495 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { 2496 if (state->stack_slot_type[i] != STACK_SPILL) 2497 continue; 2498 reg = &state->spilled_regs[i / BPF_REG_SIZE]; 2499 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id) 2500 reg->range = max_t(u16, reg->range, dst_reg->off); 2501 } 2502 } 2503 2504 /* Adjusts the register min/max values in the case that the dst_reg is the 2505 * variable register that we are working on, and src_reg is a constant or we're 2506 * simply doing a BPF_K check. 2507 * In JEQ/JNE cases we also adjust the var_off values. 2508 */ 2509 static void reg_set_min_max(struct bpf_reg_state *true_reg, 2510 struct bpf_reg_state *false_reg, u64 val, 2511 u8 opcode) 2512 { 2513 /* If the dst_reg is a pointer, we can't learn anything about its 2514 * variable offset from the compare (unless src_reg were a pointer into 2515 * the same object, but we don't bother with that. 2516 * Since false_reg and true_reg have the same type by construction, we 2517 * only need to check one of them for pointerness. 2518 */ 2519 if (__is_pointer_value(false, false_reg)) 2520 return; 2521 2522 switch (opcode) { 2523 case BPF_JEQ: 2524 /* If this is false then we know nothing Jon Snow, but if it is 2525 * true then we know for sure. 2526 */ 2527 __mark_reg_known(true_reg, val); 2528 break; 2529 case BPF_JNE: 2530 /* If this is true we know nothing Jon Snow, but if it is false 2531 * we know the value for sure; 2532 */ 2533 __mark_reg_known(false_reg, val); 2534 break; 2535 case BPF_JGT: 2536 false_reg->umax_value = min(false_reg->umax_value, val); 2537 true_reg->umin_value = max(true_reg->umin_value, val + 1); 2538 break; 2539 case BPF_JSGT: 2540 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 2541 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 2542 break; 2543 case BPF_JLT: 2544 false_reg->umin_value = max(false_reg->umin_value, val); 2545 true_reg->umax_value = min(true_reg->umax_value, val - 1); 2546 break; 2547 case BPF_JSLT: 2548 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 2549 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 2550 break; 2551 case BPF_JGE: 2552 false_reg->umax_value = min(false_reg->umax_value, val - 1); 2553 true_reg->umin_value = max(true_reg->umin_value, val); 2554 break; 2555 case BPF_JSGE: 2556 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 2557 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 2558 break; 2559 case BPF_JLE: 2560 false_reg->umin_value = max(false_reg->umin_value, val + 1); 2561 true_reg->umax_value = min(true_reg->umax_value, val); 2562 break; 2563 case BPF_JSLE: 2564 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 2565 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 2566 break; 2567 default: 2568 break; 2569 } 2570 2571 __reg_deduce_bounds(false_reg); 2572 __reg_deduce_bounds(true_reg); 2573 /* We might have learned some bits from the bounds. */ 2574 __reg_bound_offset(false_reg); 2575 __reg_bound_offset(true_reg); 2576 /* Intersecting with the old var_off might have improved our bounds 2577 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2578 * then new var_off is (0; 0x7f...fc) which improves our umax. 2579 */ 2580 __update_reg_bounds(false_reg); 2581 __update_reg_bounds(true_reg); 2582 } 2583 2584 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 2585 * the variable reg. 2586 */ 2587 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 2588 struct bpf_reg_state *false_reg, u64 val, 2589 u8 opcode) 2590 { 2591 if (__is_pointer_value(false, false_reg)) 2592 return; 2593 2594 switch (opcode) { 2595 case BPF_JEQ: 2596 /* If this is false then we know nothing Jon Snow, but if it is 2597 * true then we know for sure. 2598 */ 2599 __mark_reg_known(true_reg, val); 2600 break; 2601 case BPF_JNE: 2602 /* If this is true we know nothing Jon Snow, but if it is false 2603 * we know the value for sure; 2604 */ 2605 __mark_reg_known(false_reg, val); 2606 break; 2607 case BPF_JGT: 2608 true_reg->umax_value = min(true_reg->umax_value, val - 1); 2609 false_reg->umin_value = max(false_reg->umin_value, val); 2610 break; 2611 case BPF_JSGT: 2612 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 2613 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 2614 break; 2615 case BPF_JLT: 2616 true_reg->umin_value = max(true_reg->umin_value, val + 1); 2617 false_reg->umax_value = min(false_reg->umax_value, val); 2618 break; 2619 case BPF_JSLT: 2620 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 2621 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 2622 break; 2623 case BPF_JGE: 2624 true_reg->umax_value = min(true_reg->umax_value, val); 2625 false_reg->umin_value = max(false_reg->umin_value, val + 1); 2626 break; 2627 case BPF_JSGE: 2628 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 2629 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 2630 break; 2631 case BPF_JLE: 2632 true_reg->umin_value = max(true_reg->umin_value, val); 2633 false_reg->umax_value = min(false_reg->umax_value, val - 1); 2634 break; 2635 case BPF_JSLE: 2636 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 2637 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 2638 break; 2639 default: 2640 break; 2641 } 2642 2643 __reg_deduce_bounds(false_reg); 2644 __reg_deduce_bounds(true_reg); 2645 /* We might have learned some bits from the bounds. */ 2646 __reg_bound_offset(false_reg); 2647 __reg_bound_offset(true_reg); 2648 /* Intersecting with the old var_off might have improved our bounds 2649 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2650 * then new var_off is (0; 0x7f...fc) which improves our umax. 2651 */ 2652 __update_reg_bounds(false_reg); 2653 __update_reg_bounds(true_reg); 2654 } 2655 2656 /* Regs are known to be equal, so intersect their min/max/var_off */ 2657 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 2658 struct bpf_reg_state *dst_reg) 2659 { 2660 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 2661 dst_reg->umin_value); 2662 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 2663 dst_reg->umax_value); 2664 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 2665 dst_reg->smin_value); 2666 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 2667 dst_reg->smax_value); 2668 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 2669 dst_reg->var_off); 2670 /* We might have learned new bounds from the var_off. */ 2671 __update_reg_bounds(src_reg); 2672 __update_reg_bounds(dst_reg); 2673 /* We might have learned something about the sign bit. */ 2674 __reg_deduce_bounds(src_reg); 2675 __reg_deduce_bounds(dst_reg); 2676 /* We might have learned some bits from the bounds. */ 2677 __reg_bound_offset(src_reg); 2678 __reg_bound_offset(dst_reg); 2679 /* Intersecting with the old var_off might have improved our bounds 2680 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2681 * then new var_off is (0; 0x7f...fc) which improves our umax. 2682 */ 2683 __update_reg_bounds(src_reg); 2684 __update_reg_bounds(dst_reg); 2685 } 2686 2687 static void reg_combine_min_max(struct bpf_reg_state *true_src, 2688 struct bpf_reg_state *true_dst, 2689 struct bpf_reg_state *false_src, 2690 struct bpf_reg_state *false_dst, 2691 u8 opcode) 2692 { 2693 switch (opcode) { 2694 case BPF_JEQ: 2695 __reg_combine_min_max(true_src, true_dst); 2696 break; 2697 case BPF_JNE: 2698 __reg_combine_min_max(false_src, false_dst); 2699 break; 2700 } 2701 } 2702 2703 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id, 2704 bool is_null) 2705 { 2706 struct bpf_reg_state *reg = ®s[regno]; 2707 2708 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) { 2709 /* Old offset (both fixed and variable parts) should 2710 * have been known-zero, because we don't allow pointer 2711 * arithmetic on pointers that might be NULL. 2712 */ 2713 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 2714 !tnum_equals_const(reg->var_off, 0) || 2715 reg->off)) { 2716 __mark_reg_known_zero(reg); 2717 reg->off = 0; 2718 } 2719 if (is_null) { 2720 reg->type = SCALAR_VALUE; 2721 } else if (reg->map_ptr->inner_map_meta) { 2722 reg->type = CONST_PTR_TO_MAP; 2723 reg->map_ptr = reg->map_ptr->inner_map_meta; 2724 } else { 2725 reg->type = PTR_TO_MAP_VALUE; 2726 } 2727 /* We don't need id from this point onwards anymore, thus we 2728 * should better reset it, so that state pruning has chances 2729 * to take effect. 2730 */ 2731 reg->id = 0; 2732 } 2733 } 2734 2735 /* The logic is similar to find_good_pkt_pointers(), both could eventually 2736 * be folded together at some point. 2737 */ 2738 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno, 2739 bool is_null) 2740 { 2741 struct bpf_reg_state *regs = state->regs; 2742 u32 id = regs[regno].id; 2743 int i; 2744 2745 for (i = 0; i < MAX_BPF_REG; i++) 2746 mark_map_reg(regs, i, id, is_null); 2747 2748 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) { 2749 if (state->stack_slot_type[i] != STACK_SPILL) 2750 continue; 2751 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, is_null); 2752 } 2753 } 2754 2755 static int check_cond_jmp_op(struct bpf_verifier_env *env, 2756 struct bpf_insn *insn, int *insn_idx) 2757 { 2758 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state; 2759 struct bpf_reg_state *regs = this_branch->regs, *dst_reg; 2760 u8 opcode = BPF_OP(insn->code); 2761 int err; 2762 2763 if (opcode > BPF_JSLE) { 2764 verbose("invalid BPF_JMP opcode %x\n", opcode); 2765 return -EINVAL; 2766 } 2767 2768 if (BPF_SRC(insn->code) == BPF_X) { 2769 if (insn->imm != 0) { 2770 verbose("BPF_JMP uses reserved fields\n"); 2771 return -EINVAL; 2772 } 2773 2774 /* check src1 operand */ 2775 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2776 if (err) 2777 return err; 2778 2779 if (is_pointer_value(env, insn->src_reg)) { 2780 verbose("R%d pointer comparison prohibited\n", 2781 insn->src_reg); 2782 return -EACCES; 2783 } 2784 } else { 2785 if (insn->src_reg != BPF_REG_0) { 2786 verbose("BPF_JMP uses reserved fields\n"); 2787 return -EINVAL; 2788 } 2789 } 2790 2791 /* check src2 operand */ 2792 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2793 if (err) 2794 return err; 2795 2796 dst_reg = ®s[insn->dst_reg]; 2797 2798 /* detect if R == 0 where R was initialized to zero earlier */ 2799 if (BPF_SRC(insn->code) == BPF_K && 2800 (opcode == BPF_JEQ || opcode == BPF_JNE) && 2801 dst_reg->type == SCALAR_VALUE && 2802 tnum_equals_const(dst_reg->var_off, insn->imm)) { 2803 if (opcode == BPF_JEQ) { 2804 /* if (imm == imm) goto pc+off; 2805 * only follow the goto, ignore fall-through 2806 */ 2807 *insn_idx += insn->off; 2808 return 0; 2809 } else { 2810 /* if (imm != imm) goto pc+off; 2811 * only follow fall-through branch, since 2812 * that's where the program will go 2813 */ 2814 return 0; 2815 } 2816 } 2817 2818 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); 2819 if (!other_branch) 2820 return -EFAULT; 2821 2822 /* detect if we are comparing against a constant value so we can adjust 2823 * our min/max values for our dst register. 2824 * this is only legit if both are scalars (or pointers to the same 2825 * object, I suppose, but we don't support that right now), because 2826 * otherwise the different base pointers mean the offsets aren't 2827 * comparable. 2828 */ 2829 if (BPF_SRC(insn->code) == BPF_X) { 2830 if (dst_reg->type == SCALAR_VALUE && 2831 regs[insn->src_reg].type == SCALAR_VALUE) { 2832 if (tnum_is_const(regs[insn->src_reg].var_off)) 2833 reg_set_min_max(&other_branch->regs[insn->dst_reg], 2834 dst_reg, regs[insn->src_reg].var_off.value, 2835 opcode); 2836 else if (tnum_is_const(dst_reg->var_off)) 2837 reg_set_min_max_inv(&other_branch->regs[insn->src_reg], 2838 ®s[insn->src_reg], 2839 dst_reg->var_off.value, opcode); 2840 else if (opcode == BPF_JEQ || opcode == BPF_JNE) 2841 /* Comparing for equality, we can combine knowledge */ 2842 reg_combine_min_max(&other_branch->regs[insn->src_reg], 2843 &other_branch->regs[insn->dst_reg], 2844 ®s[insn->src_reg], 2845 ®s[insn->dst_reg], opcode); 2846 } 2847 } else if (dst_reg->type == SCALAR_VALUE) { 2848 reg_set_min_max(&other_branch->regs[insn->dst_reg], 2849 dst_reg, insn->imm, opcode); 2850 } 2851 2852 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */ 2853 if (BPF_SRC(insn->code) == BPF_K && 2854 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 2855 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 2856 /* Mark all identical map registers in each branch as either 2857 * safe or unknown depending R == 0 or R != 0 conditional. 2858 */ 2859 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE); 2860 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ); 2861 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT && 2862 dst_reg->type == PTR_TO_PACKET && 2863 regs[insn->src_reg].type == PTR_TO_PACKET_END) { 2864 find_good_pkt_pointers(this_branch, dst_reg); 2865 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT && 2866 dst_reg->type == PTR_TO_PACKET && 2867 regs[insn->src_reg].type == PTR_TO_PACKET_END) { 2868 find_good_pkt_pointers(other_branch, dst_reg); 2869 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE && 2870 dst_reg->type == PTR_TO_PACKET_END && 2871 regs[insn->src_reg].type == PTR_TO_PACKET) { 2872 find_good_pkt_pointers(other_branch, ®s[insn->src_reg]); 2873 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE && 2874 dst_reg->type == PTR_TO_PACKET_END && 2875 regs[insn->src_reg].type == PTR_TO_PACKET) { 2876 find_good_pkt_pointers(this_branch, ®s[insn->src_reg]); 2877 } else if (is_pointer_value(env, insn->dst_reg)) { 2878 verbose("R%d pointer comparison prohibited\n", insn->dst_reg); 2879 return -EACCES; 2880 } 2881 if (log_level) 2882 print_verifier_state(this_branch); 2883 return 0; 2884 } 2885 2886 /* return the map pointer stored inside BPF_LD_IMM64 instruction */ 2887 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 2888 { 2889 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 2890 2891 return (struct bpf_map *) (unsigned long) imm64; 2892 } 2893 2894 /* verify BPF_LD_IMM64 instruction */ 2895 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 2896 { 2897 struct bpf_reg_state *regs = env->cur_state.regs; 2898 int err; 2899 2900 if (BPF_SIZE(insn->code) != BPF_DW) { 2901 verbose("invalid BPF_LD_IMM insn\n"); 2902 return -EINVAL; 2903 } 2904 if (insn->off != 0) { 2905 verbose("BPF_LD_IMM64 uses reserved fields\n"); 2906 return -EINVAL; 2907 } 2908 2909 err = check_reg_arg(env, insn->dst_reg, DST_OP); 2910 if (err) 2911 return err; 2912 2913 if (insn->src_reg == 0) { 2914 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 2915 2916 regs[insn->dst_reg].type = SCALAR_VALUE; 2917 __mark_reg_known(®s[insn->dst_reg], imm); 2918 return 0; 2919 } 2920 2921 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ 2922 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); 2923 2924 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 2925 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); 2926 return 0; 2927 } 2928 2929 static bool may_access_skb(enum bpf_prog_type type) 2930 { 2931 switch (type) { 2932 case BPF_PROG_TYPE_SOCKET_FILTER: 2933 case BPF_PROG_TYPE_SCHED_CLS: 2934 case BPF_PROG_TYPE_SCHED_ACT: 2935 return true; 2936 default: 2937 return false; 2938 } 2939 } 2940 2941 /* verify safety of LD_ABS|LD_IND instructions: 2942 * - they can only appear in the programs where ctx == skb 2943 * - since they are wrappers of function calls, they scratch R1-R5 registers, 2944 * preserve R6-R9, and store return value into R0 2945 * 2946 * Implicit input: 2947 * ctx == skb == R6 == CTX 2948 * 2949 * Explicit input: 2950 * SRC == any register 2951 * IMM == 32-bit immediate 2952 * 2953 * Output: 2954 * R0 - 8/16/32-bit skb data converted to cpu endianness 2955 */ 2956 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 2957 { 2958 struct bpf_reg_state *regs = env->cur_state.regs; 2959 u8 mode = BPF_MODE(insn->code); 2960 int i, err; 2961 2962 if (!may_access_skb(env->prog->type)) { 2963 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 2964 return -EINVAL; 2965 } 2966 2967 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 2968 BPF_SIZE(insn->code) == BPF_DW || 2969 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 2970 verbose("BPF_LD_[ABS|IND] uses reserved fields\n"); 2971 return -EINVAL; 2972 } 2973 2974 /* check whether implicit source operand (register R6) is readable */ 2975 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 2976 if (err) 2977 return err; 2978 2979 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 2980 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 2981 return -EINVAL; 2982 } 2983 2984 if (mode == BPF_IND) { 2985 /* check explicit source operand */ 2986 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2987 if (err) 2988 return err; 2989 } 2990 2991 /* reset caller saved regs to unreadable */ 2992 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2993 mark_reg_not_init(regs, caller_saved[i]); 2994 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2995 } 2996 2997 /* mark destination R0 register as readable, since it contains 2998 * the value fetched from the packet. 2999 * Already marked as written above. 3000 */ 3001 mark_reg_unknown(regs, BPF_REG_0); 3002 return 0; 3003 } 3004 3005 /* non-recursive DFS pseudo code 3006 * 1 procedure DFS-iterative(G,v): 3007 * 2 label v as discovered 3008 * 3 let S be a stack 3009 * 4 S.push(v) 3010 * 5 while S is not empty 3011 * 6 t <- S.pop() 3012 * 7 if t is what we're looking for: 3013 * 8 return t 3014 * 9 for all edges e in G.adjacentEdges(t) do 3015 * 10 if edge e is already labelled 3016 * 11 continue with the next edge 3017 * 12 w <- G.adjacentVertex(t,e) 3018 * 13 if vertex w is not discovered and not explored 3019 * 14 label e as tree-edge 3020 * 15 label w as discovered 3021 * 16 S.push(w) 3022 * 17 continue at 5 3023 * 18 else if vertex w is discovered 3024 * 19 label e as back-edge 3025 * 20 else 3026 * 21 // vertex w is explored 3027 * 22 label e as forward- or cross-edge 3028 * 23 label t as explored 3029 * 24 S.pop() 3030 * 3031 * convention: 3032 * 0x10 - discovered 3033 * 0x11 - discovered and fall-through edge labelled 3034 * 0x12 - discovered and fall-through and branch edges labelled 3035 * 0x20 - explored 3036 */ 3037 3038 enum { 3039 DISCOVERED = 0x10, 3040 EXPLORED = 0x20, 3041 FALLTHROUGH = 1, 3042 BRANCH = 2, 3043 }; 3044 3045 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 3046 3047 static int *insn_stack; /* stack of insns to process */ 3048 static int cur_stack; /* current stack index */ 3049 static int *insn_state; 3050 3051 /* t, w, e - match pseudo-code above: 3052 * t - index of current instruction 3053 * w - next instruction 3054 * e - edge 3055 */ 3056 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 3057 { 3058 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 3059 return 0; 3060 3061 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 3062 return 0; 3063 3064 if (w < 0 || w >= env->prog->len) { 3065 verbose("jump out of range from insn %d to %d\n", t, w); 3066 return -EINVAL; 3067 } 3068 3069 if (e == BRANCH) 3070 /* mark branch target for state pruning */ 3071 env->explored_states[w] = STATE_LIST_MARK; 3072 3073 if (insn_state[w] == 0) { 3074 /* tree-edge */ 3075 insn_state[t] = DISCOVERED | e; 3076 insn_state[w] = DISCOVERED; 3077 if (cur_stack >= env->prog->len) 3078 return -E2BIG; 3079 insn_stack[cur_stack++] = w; 3080 return 1; 3081 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 3082 verbose("back-edge from insn %d to %d\n", t, w); 3083 return -EINVAL; 3084 } else if (insn_state[w] == EXPLORED) { 3085 /* forward- or cross-edge */ 3086 insn_state[t] = DISCOVERED | e; 3087 } else { 3088 verbose("insn state internal bug\n"); 3089 return -EFAULT; 3090 } 3091 return 0; 3092 } 3093 3094 /* non-recursive depth-first-search to detect loops in BPF program 3095 * loop == back-edge in directed graph 3096 */ 3097 static int check_cfg(struct bpf_verifier_env *env) 3098 { 3099 struct bpf_insn *insns = env->prog->insnsi; 3100 int insn_cnt = env->prog->len; 3101 int ret = 0; 3102 int i, t; 3103 3104 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 3105 if (!insn_state) 3106 return -ENOMEM; 3107 3108 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 3109 if (!insn_stack) { 3110 kfree(insn_state); 3111 return -ENOMEM; 3112 } 3113 3114 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 3115 insn_stack[0] = 0; /* 0 is the first instruction */ 3116 cur_stack = 1; 3117 3118 peek_stack: 3119 if (cur_stack == 0) 3120 goto check_state; 3121 t = insn_stack[cur_stack - 1]; 3122 3123 if (BPF_CLASS(insns[t].code) == BPF_JMP) { 3124 u8 opcode = BPF_OP(insns[t].code); 3125 3126 if (opcode == BPF_EXIT) { 3127 goto mark_explored; 3128 } else if (opcode == BPF_CALL) { 3129 ret = push_insn(t, t + 1, FALLTHROUGH, env); 3130 if (ret == 1) 3131 goto peek_stack; 3132 else if (ret < 0) 3133 goto err_free; 3134 if (t + 1 < insn_cnt) 3135 env->explored_states[t + 1] = STATE_LIST_MARK; 3136 } else if (opcode == BPF_JA) { 3137 if (BPF_SRC(insns[t].code) != BPF_K) { 3138 ret = -EINVAL; 3139 goto err_free; 3140 } 3141 /* unconditional jump with single edge */ 3142 ret = push_insn(t, t + insns[t].off + 1, 3143 FALLTHROUGH, env); 3144 if (ret == 1) 3145 goto peek_stack; 3146 else if (ret < 0) 3147 goto err_free; 3148 /* tell verifier to check for equivalent states 3149 * after every call and jump 3150 */ 3151 if (t + 1 < insn_cnt) 3152 env->explored_states[t + 1] = STATE_LIST_MARK; 3153 } else { 3154 /* conditional jump with two edges */ 3155 env->explored_states[t] = STATE_LIST_MARK; 3156 ret = push_insn(t, t + 1, FALLTHROUGH, env); 3157 if (ret == 1) 3158 goto peek_stack; 3159 else if (ret < 0) 3160 goto err_free; 3161 3162 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 3163 if (ret == 1) 3164 goto peek_stack; 3165 else if (ret < 0) 3166 goto err_free; 3167 } 3168 } else { 3169 /* all other non-branch instructions with single 3170 * fall-through edge 3171 */ 3172 ret = push_insn(t, t + 1, FALLTHROUGH, env); 3173 if (ret == 1) 3174 goto peek_stack; 3175 else if (ret < 0) 3176 goto err_free; 3177 } 3178 3179 mark_explored: 3180 insn_state[t] = EXPLORED; 3181 if (cur_stack-- <= 0) { 3182 verbose("pop stack internal bug\n"); 3183 ret = -EFAULT; 3184 goto err_free; 3185 } 3186 goto peek_stack; 3187 3188 check_state: 3189 for (i = 0; i < insn_cnt; i++) { 3190 if (insn_state[i] != EXPLORED) { 3191 verbose("unreachable insn %d\n", i); 3192 ret = -EINVAL; 3193 goto err_free; 3194 } 3195 } 3196 ret = 0; /* cfg looks good */ 3197 3198 err_free: 3199 kfree(insn_state); 3200 kfree(insn_stack); 3201 return ret; 3202 } 3203 3204 /* check %cur's range satisfies %old's */ 3205 static bool range_within(struct bpf_reg_state *old, 3206 struct bpf_reg_state *cur) 3207 { 3208 return old->umin_value <= cur->umin_value && 3209 old->umax_value >= cur->umax_value && 3210 old->smin_value <= cur->smin_value && 3211 old->smax_value >= cur->smax_value; 3212 } 3213 3214 /* Maximum number of register states that can exist at once */ 3215 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 3216 struct idpair { 3217 u32 old; 3218 u32 cur; 3219 }; 3220 3221 /* If in the old state two registers had the same id, then they need to have 3222 * the same id in the new state as well. But that id could be different from 3223 * the old state, so we need to track the mapping from old to new ids. 3224 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 3225 * regs with old id 5 must also have new id 9 for the new state to be safe. But 3226 * regs with a different old id could still have new id 9, we don't care about 3227 * that. 3228 * So we look through our idmap to see if this old id has been seen before. If 3229 * so, we require the new id to match; otherwise, we add the id pair to the map. 3230 */ 3231 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 3232 { 3233 unsigned int i; 3234 3235 for (i = 0; i < ID_MAP_SIZE; i++) { 3236 if (!idmap[i].old) { 3237 /* Reached an empty slot; haven't seen this id before */ 3238 idmap[i].old = old_id; 3239 idmap[i].cur = cur_id; 3240 return true; 3241 } 3242 if (idmap[i].old == old_id) 3243 return idmap[i].cur == cur_id; 3244 } 3245 /* We ran out of idmap slots, which should be impossible */ 3246 WARN_ON_ONCE(1); 3247 return false; 3248 } 3249 3250 /* Returns true if (rold safe implies rcur safe) */ 3251 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 3252 struct idpair *idmap) 3253 { 3254 if (!(rold->live & REG_LIVE_READ)) 3255 /* explored state didn't use this */ 3256 return true; 3257 3258 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0) 3259 return true; 3260 3261 if (rold->type == NOT_INIT) 3262 /* explored state can't have used this */ 3263 return true; 3264 if (rcur->type == NOT_INIT) 3265 return false; 3266 switch (rold->type) { 3267 case SCALAR_VALUE: 3268 if (rcur->type == SCALAR_VALUE) { 3269 /* new val must satisfy old val knowledge */ 3270 return range_within(rold, rcur) && 3271 tnum_in(rold->var_off, rcur->var_off); 3272 } else { 3273 /* if we knew anything about the old value, we're not 3274 * equal, because we can't know anything about the 3275 * scalar value of the pointer in the new value. 3276 */ 3277 return rold->umin_value == 0 && 3278 rold->umax_value == U64_MAX && 3279 rold->smin_value == S64_MIN && 3280 rold->smax_value == S64_MAX && 3281 tnum_is_unknown(rold->var_off); 3282 } 3283 case PTR_TO_MAP_VALUE: 3284 /* If the new min/max/var_off satisfy the old ones and 3285 * everything else matches, we are OK. 3286 * We don't care about the 'id' value, because nothing 3287 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL) 3288 */ 3289 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 3290 range_within(rold, rcur) && 3291 tnum_in(rold->var_off, rcur->var_off); 3292 case PTR_TO_MAP_VALUE_OR_NULL: 3293 /* a PTR_TO_MAP_VALUE could be safe to use as a 3294 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 3295 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 3296 * checked, doing so could have affected others with the same 3297 * id, and we can't check for that because we lost the id when 3298 * we converted to a PTR_TO_MAP_VALUE. 3299 */ 3300 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 3301 return false; 3302 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 3303 return false; 3304 /* Check our ids match any regs they're supposed to */ 3305 return check_ids(rold->id, rcur->id, idmap); 3306 case PTR_TO_PACKET: 3307 if (rcur->type != PTR_TO_PACKET) 3308 return false; 3309 /* We must have at least as much range as the old ptr 3310 * did, so that any accesses which were safe before are 3311 * still safe. This is true even if old range < old off, 3312 * since someone could have accessed through (ptr - k), or 3313 * even done ptr -= k in a register, to get a safe access. 3314 */ 3315 if (rold->range > rcur->range) 3316 return false; 3317 /* If the offsets don't match, we can't trust our alignment; 3318 * nor can we be sure that we won't fall out of range. 3319 */ 3320 if (rold->off != rcur->off) 3321 return false; 3322 /* id relations must be preserved */ 3323 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 3324 return false; 3325 /* new val must satisfy old val knowledge */ 3326 return range_within(rold, rcur) && 3327 tnum_in(rold->var_off, rcur->var_off); 3328 case PTR_TO_CTX: 3329 case CONST_PTR_TO_MAP: 3330 case PTR_TO_STACK: 3331 case PTR_TO_PACKET_END: 3332 /* Only valid matches are exact, which memcmp() above 3333 * would have accepted 3334 */ 3335 default: 3336 /* Don't know what's going on, just say it's not safe */ 3337 return false; 3338 } 3339 3340 /* Shouldn't get here; if we do, say it's not safe */ 3341 WARN_ON_ONCE(1); 3342 return false; 3343 } 3344 3345 /* compare two verifier states 3346 * 3347 * all states stored in state_list are known to be valid, since 3348 * verifier reached 'bpf_exit' instruction through them 3349 * 3350 * this function is called when verifier exploring different branches of 3351 * execution popped from the state stack. If it sees an old state that has 3352 * more strict register state and more strict stack state then this execution 3353 * branch doesn't need to be explored further, since verifier already 3354 * concluded that more strict state leads to valid finish. 3355 * 3356 * Therefore two states are equivalent if register state is more conservative 3357 * and explored stack state is more conservative than the current one. 3358 * Example: 3359 * explored current 3360 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 3361 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 3362 * 3363 * In other words if current stack state (one being explored) has more 3364 * valid slots than old one that already passed validation, it means 3365 * the verifier can stop exploring and conclude that current state is valid too 3366 * 3367 * Similarly with registers. If explored state has register type as invalid 3368 * whereas register type in current state is meaningful, it means that 3369 * the current state will reach 'bpf_exit' instruction safely 3370 */ 3371 static bool states_equal(struct bpf_verifier_env *env, 3372 struct bpf_verifier_state *old, 3373 struct bpf_verifier_state *cur) 3374 { 3375 struct idpair *idmap; 3376 bool ret = false; 3377 int i; 3378 3379 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 3380 /* If we failed to allocate the idmap, just say it's not safe */ 3381 if (!idmap) 3382 return false; 3383 3384 for (i = 0; i < MAX_BPF_REG; i++) { 3385 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 3386 goto out_free; 3387 } 3388 3389 for (i = 0; i < MAX_BPF_STACK; i++) { 3390 if (old->stack_slot_type[i] == STACK_INVALID) 3391 continue; 3392 if (old->stack_slot_type[i] != cur->stack_slot_type[i]) 3393 /* Ex: old explored (safe) state has STACK_SPILL in 3394 * this stack slot, but current has has STACK_MISC -> 3395 * this verifier states are not equivalent, 3396 * return false to continue verification of this path 3397 */ 3398 goto out_free; 3399 if (i % BPF_REG_SIZE) 3400 continue; 3401 if (old->stack_slot_type[i] != STACK_SPILL) 3402 continue; 3403 if (!regsafe(&old->spilled_regs[i / BPF_REG_SIZE], 3404 &cur->spilled_regs[i / BPF_REG_SIZE], 3405 idmap)) 3406 /* when explored and current stack slot are both storing 3407 * spilled registers, check that stored pointers types 3408 * are the same as well. 3409 * Ex: explored safe path could have stored 3410 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 3411 * but current path has stored: 3412 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 3413 * such verifier states are not equivalent. 3414 * return false to continue verification of this path 3415 */ 3416 goto out_free; 3417 else 3418 continue; 3419 } 3420 ret = true; 3421 out_free: 3422 kfree(idmap); 3423 return ret; 3424 } 3425 3426 /* A write screens off any subsequent reads; but write marks come from the 3427 * straight-line code between a state and its parent. When we arrive at a 3428 * jump target (in the first iteration of the propagate_liveness() loop), 3429 * we didn't arrive by the straight-line code, so read marks in state must 3430 * propagate to parent regardless of state's write marks. 3431 */ 3432 static bool do_propagate_liveness(const struct bpf_verifier_state *state, 3433 struct bpf_verifier_state *parent) 3434 { 3435 bool writes = parent == state->parent; /* Observe write marks */ 3436 bool touched = false; /* any changes made? */ 3437 int i; 3438 3439 if (!parent) 3440 return touched; 3441 /* Propagate read liveness of registers... */ 3442 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 3443 /* We don't need to worry about FP liveness because it's read-only */ 3444 for (i = 0; i < BPF_REG_FP; i++) { 3445 if (parent->regs[i].live & REG_LIVE_READ) 3446 continue; 3447 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN)) 3448 continue; 3449 if (state->regs[i].live & REG_LIVE_READ) { 3450 parent->regs[i].live |= REG_LIVE_READ; 3451 touched = true; 3452 } 3453 } 3454 /* ... and stack slots */ 3455 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) { 3456 if (parent->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL) 3457 continue; 3458 if (state->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL) 3459 continue; 3460 if (parent->spilled_regs[i].live & REG_LIVE_READ) 3461 continue; 3462 if (writes && (state->spilled_regs[i].live & REG_LIVE_WRITTEN)) 3463 continue; 3464 if (state->spilled_regs[i].live & REG_LIVE_READ) { 3465 parent->spilled_regs[i].live |= REG_LIVE_READ; 3466 touched = true; 3467 } 3468 } 3469 return touched; 3470 } 3471 3472 /* "parent" is "a state from which we reach the current state", but initially 3473 * it is not the state->parent (i.e. "the state whose straight-line code leads 3474 * to the current state"), instead it is the state that happened to arrive at 3475 * a (prunable) equivalent of the current state. See comment above 3476 * do_propagate_liveness() for consequences of this. 3477 * This function is just a more efficient way of calling mark_reg_read() or 3478 * mark_stack_slot_read() on each reg in "parent" that is read in "state", 3479 * though it requires that parent != state->parent in the call arguments. 3480 */ 3481 static void propagate_liveness(const struct bpf_verifier_state *state, 3482 struct bpf_verifier_state *parent) 3483 { 3484 while (do_propagate_liveness(state, parent)) { 3485 /* Something changed, so we need to feed those changes onward */ 3486 state = parent; 3487 parent = state->parent; 3488 } 3489 } 3490 3491 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 3492 { 3493 struct bpf_verifier_state_list *new_sl; 3494 struct bpf_verifier_state_list *sl; 3495 int i; 3496 3497 sl = env->explored_states[insn_idx]; 3498 if (!sl) 3499 /* this 'insn_idx' instruction wasn't marked, so we will not 3500 * be doing state search here 3501 */ 3502 return 0; 3503 3504 while (sl != STATE_LIST_MARK) { 3505 if (states_equal(env, &sl->state, &env->cur_state)) { 3506 /* reached equivalent register/stack state, 3507 * prune the search. 3508 * Registers read by the continuation are read by us. 3509 * If we have any write marks in env->cur_state, they 3510 * will prevent corresponding reads in the continuation 3511 * from reaching our parent (an explored_state). Our 3512 * own state will get the read marks recorded, but 3513 * they'll be immediately forgotten as we're pruning 3514 * this state and will pop a new one. 3515 */ 3516 propagate_liveness(&sl->state, &env->cur_state); 3517 return 1; 3518 } 3519 sl = sl->next; 3520 } 3521 3522 /* there were no equivalent states, remember current one. 3523 * technically the current state is not proven to be safe yet, 3524 * but it will either reach bpf_exit (which means it's safe) or 3525 * it will be rejected. Since there are no loops, we won't be 3526 * seeing this 'insn_idx' instruction again on the way to bpf_exit 3527 */ 3528 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER); 3529 if (!new_sl) 3530 return -ENOMEM; 3531 3532 /* add new state to the head of linked list */ 3533 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state)); 3534 new_sl->next = env->explored_states[insn_idx]; 3535 env->explored_states[insn_idx] = new_sl; 3536 /* connect new state to parentage chain */ 3537 env->cur_state.parent = &new_sl->state; 3538 /* clear write marks in current state: the writes we did are not writes 3539 * our child did, so they don't screen off its reads from us. 3540 * (There are no read marks in current state, because reads always mark 3541 * their parent and current state never has children yet. Only 3542 * explored_states can get read marks.) 3543 */ 3544 for (i = 0; i < BPF_REG_FP; i++) 3545 env->cur_state.regs[i].live = REG_LIVE_NONE; 3546 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) 3547 if (env->cur_state.stack_slot_type[i * BPF_REG_SIZE] == STACK_SPILL) 3548 env->cur_state.spilled_regs[i].live = REG_LIVE_NONE; 3549 return 0; 3550 } 3551 3552 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env, 3553 int insn_idx, int prev_insn_idx) 3554 { 3555 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook) 3556 return 0; 3557 3558 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx); 3559 } 3560 3561 static int do_check(struct bpf_verifier_env *env) 3562 { 3563 struct bpf_verifier_state *state = &env->cur_state; 3564 struct bpf_insn *insns = env->prog->insnsi; 3565 struct bpf_reg_state *regs = state->regs; 3566 int insn_cnt = env->prog->len; 3567 int insn_idx, prev_insn_idx = 0; 3568 int insn_processed = 0; 3569 bool do_print_state = false; 3570 3571 init_reg_state(regs); 3572 state->parent = NULL; 3573 insn_idx = 0; 3574 for (;;) { 3575 struct bpf_insn *insn; 3576 u8 class; 3577 int err; 3578 3579 if (insn_idx >= insn_cnt) { 3580 verbose("invalid insn idx %d insn_cnt %d\n", 3581 insn_idx, insn_cnt); 3582 return -EFAULT; 3583 } 3584 3585 insn = &insns[insn_idx]; 3586 class = BPF_CLASS(insn->code); 3587 3588 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 3589 verbose("BPF program is too large. Processed %d insn\n", 3590 insn_processed); 3591 return -E2BIG; 3592 } 3593 3594 err = is_state_visited(env, insn_idx); 3595 if (err < 0) 3596 return err; 3597 if (err == 1) { 3598 /* found equivalent state, can prune the search */ 3599 if (log_level) { 3600 if (do_print_state) 3601 verbose("\nfrom %d to %d: safe\n", 3602 prev_insn_idx, insn_idx); 3603 else 3604 verbose("%d: safe\n", insn_idx); 3605 } 3606 goto process_bpf_exit; 3607 } 3608 3609 if (need_resched()) 3610 cond_resched(); 3611 3612 if (log_level > 1 || (log_level && do_print_state)) { 3613 if (log_level > 1) 3614 verbose("%d:", insn_idx); 3615 else 3616 verbose("\nfrom %d to %d:", 3617 prev_insn_idx, insn_idx); 3618 print_verifier_state(&env->cur_state); 3619 do_print_state = false; 3620 } 3621 3622 if (log_level) { 3623 verbose("%d: ", insn_idx); 3624 print_bpf_insn(env, insn); 3625 } 3626 3627 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx); 3628 if (err) 3629 return err; 3630 3631 if (class == BPF_ALU || class == BPF_ALU64) { 3632 err = check_alu_op(env, insn); 3633 if (err) 3634 return err; 3635 3636 } else if (class == BPF_LDX) { 3637 enum bpf_reg_type *prev_src_type, src_reg_type; 3638 3639 /* check for reserved fields is already done */ 3640 3641 /* check src operand */ 3642 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3643 if (err) 3644 return err; 3645 3646 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3647 if (err) 3648 return err; 3649 3650 src_reg_type = regs[insn->src_reg].type; 3651 3652 /* check that memory (src_reg + off) is readable, 3653 * the state of dst_reg will be updated by this func 3654 */ 3655 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off, 3656 BPF_SIZE(insn->code), BPF_READ, 3657 insn->dst_reg); 3658 if (err) 3659 return err; 3660 3661 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type; 3662 3663 if (*prev_src_type == NOT_INIT) { 3664 /* saw a valid insn 3665 * dst_reg = *(u32 *)(src_reg + off) 3666 * save type to validate intersecting paths 3667 */ 3668 *prev_src_type = src_reg_type; 3669 3670 } else if (src_reg_type != *prev_src_type && 3671 (src_reg_type == PTR_TO_CTX || 3672 *prev_src_type == PTR_TO_CTX)) { 3673 /* ABuser program is trying to use the same insn 3674 * dst_reg = *(u32*) (src_reg + off) 3675 * with different pointer types: 3676 * src_reg == ctx in one branch and 3677 * src_reg == stack|map in some other branch. 3678 * Reject it. 3679 */ 3680 verbose("same insn cannot be used with different pointers\n"); 3681 return -EINVAL; 3682 } 3683 3684 } else if (class == BPF_STX) { 3685 enum bpf_reg_type *prev_dst_type, dst_reg_type; 3686 3687 if (BPF_MODE(insn->code) == BPF_XADD) { 3688 err = check_xadd(env, insn_idx, insn); 3689 if (err) 3690 return err; 3691 insn_idx++; 3692 continue; 3693 } 3694 3695 /* check src1 operand */ 3696 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3697 if (err) 3698 return err; 3699 /* check src2 operand */ 3700 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3701 if (err) 3702 return err; 3703 3704 dst_reg_type = regs[insn->dst_reg].type; 3705 3706 /* check that memory (dst_reg + off) is writeable */ 3707 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3708 BPF_SIZE(insn->code), BPF_WRITE, 3709 insn->src_reg); 3710 if (err) 3711 return err; 3712 3713 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type; 3714 3715 if (*prev_dst_type == NOT_INIT) { 3716 *prev_dst_type = dst_reg_type; 3717 } else if (dst_reg_type != *prev_dst_type && 3718 (dst_reg_type == PTR_TO_CTX || 3719 *prev_dst_type == PTR_TO_CTX)) { 3720 verbose("same insn cannot be used with different pointers\n"); 3721 return -EINVAL; 3722 } 3723 3724 } else if (class == BPF_ST) { 3725 if (BPF_MODE(insn->code) != BPF_MEM || 3726 insn->src_reg != BPF_REG_0) { 3727 verbose("BPF_ST uses reserved fields\n"); 3728 return -EINVAL; 3729 } 3730 /* check src operand */ 3731 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3732 if (err) 3733 return err; 3734 3735 /* check that memory (dst_reg + off) is writeable */ 3736 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3737 BPF_SIZE(insn->code), BPF_WRITE, 3738 -1); 3739 if (err) 3740 return err; 3741 3742 } else if (class == BPF_JMP) { 3743 u8 opcode = BPF_OP(insn->code); 3744 3745 if (opcode == BPF_CALL) { 3746 if (BPF_SRC(insn->code) != BPF_K || 3747 insn->off != 0 || 3748 insn->src_reg != BPF_REG_0 || 3749 insn->dst_reg != BPF_REG_0) { 3750 verbose("BPF_CALL uses reserved fields\n"); 3751 return -EINVAL; 3752 } 3753 3754 err = check_call(env, insn->imm, insn_idx); 3755 if (err) 3756 return err; 3757 3758 } else if (opcode == BPF_JA) { 3759 if (BPF_SRC(insn->code) != BPF_K || 3760 insn->imm != 0 || 3761 insn->src_reg != BPF_REG_0 || 3762 insn->dst_reg != BPF_REG_0) { 3763 verbose("BPF_JA uses reserved fields\n"); 3764 return -EINVAL; 3765 } 3766 3767 insn_idx += insn->off + 1; 3768 continue; 3769 3770 } else if (opcode == BPF_EXIT) { 3771 if (BPF_SRC(insn->code) != BPF_K || 3772 insn->imm != 0 || 3773 insn->src_reg != BPF_REG_0 || 3774 insn->dst_reg != BPF_REG_0) { 3775 verbose("BPF_EXIT uses reserved fields\n"); 3776 return -EINVAL; 3777 } 3778 3779 /* eBPF calling convetion is such that R0 is used 3780 * to return the value from eBPF program. 3781 * Make sure that it's readable at this time 3782 * of bpf_exit, which means that program wrote 3783 * something into it earlier 3784 */ 3785 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 3786 if (err) 3787 return err; 3788 3789 if (is_pointer_value(env, BPF_REG_0)) { 3790 verbose("R0 leaks addr as return value\n"); 3791 return -EACCES; 3792 } 3793 3794 process_bpf_exit: 3795 insn_idx = pop_stack(env, &prev_insn_idx); 3796 if (insn_idx < 0) { 3797 break; 3798 } else { 3799 do_print_state = true; 3800 continue; 3801 } 3802 } else { 3803 err = check_cond_jmp_op(env, insn, &insn_idx); 3804 if (err) 3805 return err; 3806 } 3807 } else if (class == BPF_LD) { 3808 u8 mode = BPF_MODE(insn->code); 3809 3810 if (mode == BPF_ABS || mode == BPF_IND) { 3811 err = check_ld_abs(env, insn); 3812 if (err) 3813 return err; 3814 3815 } else if (mode == BPF_IMM) { 3816 err = check_ld_imm(env, insn); 3817 if (err) 3818 return err; 3819 3820 insn_idx++; 3821 } else { 3822 verbose("invalid BPF_LD mode\n"); 3823 return -EINVAL; 3824 } 3825 } else { 3826 verbose("unknown insn class %d\n", class); 3827 return -EINVAL; 3828 } 3829 3830 insn_idx++; 3831 } 3832 3833 verbose("processed %d insns, stack depth %d\n", 3834 insn_processed, env->prog->aux->stack_depth); 3835 return 0; 3836 } 3837 3838 static int check_map_prealloc(struct bpf_map *map) 3839 { 3840 return (map->map_type != BPF_MAP_TYPE_HASH && 3841 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 3842 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 3843 !(map->map_flags & BPF_F_NO_PREALLOC); 3844 } 3845 3846 static int check_map_prog_compatibility(struct bpf_map *map, 3847 struct bpf_prog *prog) 3848 3849 { 3850 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 3851 * preallocated hash maps, since doing memory allocation 3852 * in overflow_handler can crash depending on where nmi got 3853 * triggered. 3854 */ 3855 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 3856 if (!check_map_prealloc(map)) { 3857 verbose("perf_event programs can only use preallocated hash map\n"); 3858 return -EINVAL; 3859 } 3860 if (map->inner_map_meta && 3861 !check_map_prealloc(map->inner_map_meta)) { 3862 verbose("perf_event programs can only use preallocated inner hash map\n"); 3863 return -EINVAL; 3864 } 3865 } 3866 return 0; 3867 } 3868 3869 /* look for pseudo eBPF instructions that access map FDs and 3870 * replace them with actual map pointers 3871 */ 3872 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 3873 { 3874 struct bpf_insn *insn = env->prog->insnsi; 3875 int insn_cnt = env->prog->len; 3876 int i, j, err; 3877 3878 err = bpf_prog_calc_tag(env->prog); 3879 if (err) 3880 return err; 3881 3882 for (i = 0; i < insn_cnt; i++, insn++) { 3883 if (BPF_CLASS(insn->code) == BPF_LDX && 3884 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 3885 verbose("BPF_LDX uses reserved fields\n"); 3886 return -EINVAL; 3887 } 3888 3889 if (BPF_CLASS(insn->code) == BPF_STX && 3890 ((BPF_MODE(insn->code) != BPF_MEM && 3891 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 3892 verbose("BPF_STX uses reserved fields\n"); 3893 return -EINVAL; 3894 } 3895 3896 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 3897 struct bpf_map *map; 3898 struct fd f; 3899 3900 if (i == insn_cnt - 1 || insn[1].code != 0 || 3901 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 3902 insn[1].off != 0) { 3903 verbose("invalid bpf_ld_imm64 insn\n"); 3904 return -EINVAL; 3905 } 3906 3907 if (insn->src_reg == 0) 3908 /* valid generic load 64-bit imm */ 3909 goto next_insn; 3910 3911 if (insn->src_reg != BPF_PSEUDO_MAP_FD) { 3912 verbose("unrecognized bpf_ld_imm64 insn\n"); 3913 return -EINVAL; 3914 } 3915 3916 f = fdget(insn->imm); 3917 map = __bpf_map_get(f); 3918 if (IS_ERR(map)) { 3919 verbose("fd %d is not pointing to valid bpf_map\n", 3920 insn->imm); 3921 return PTR_ERR(map); 3922 } 3923 3924 err = check_map_prog_compatibility(map, env->prog); 3925 if (err) { 3926 fdput(f); 3927 return err; 3928 } 3929 3930 /* store map pointer inside BPF_LD_IMM64 instruction */ 3931 insn[0].imm = (u32) (unsigned long) map; 3932 insn[1].imm = ((u64) (unsigned long) map) >> 32; 3933 3934 /* check whether we recorded this map already */ 3935 for (j = 0; j < env->used_map_cnt; j++) 3936 if (env->used_maps[j] == map) { 3937 fdput(f); 3938 goto next_insn; 3939 } 3940 3941 if (env->used_map_cnt >= MAX_USED_MAPS) { 3942 fdput(f); 3943 return -E2BIG; 3944 } 3945 3946 /* hold the map. If the program is rejected by verifier, 3947 * the map will be released by release_maps() or it 3948 * will be used by the valid program until it's unloaded 3949 * and all maps are released in free_bpf_prog_info() 3950 */ 3951 map = bpf_map_inc(map, false); 3952 if (IS_ERR(map)) { 3953 fdput(f); 3954 return PTR_ERR(map); 3955 } 3956 env->used_maps[env->used_map_cnt++] = map; 3957 3958 fdput(f); 3959 next_insn: 3960 insn++; 3961 i++; 3962 } 3963 } 3964 3965 /* now all pseudo BPF_LD_IMM64 instructions load valid 3966 * 'struct bpf_map *' into a register instead of user map_fd. 3967 * These pointers will be used later by verifier to validate map access. 3968 */ 3969 return 0; 3970 } 3971 3972 /* drop refcnt of maps used by the rejected program */ 3973 static void release_maps(struct bpf_verifier_env *env) 3974 { 3975 int i; 3976 3977 for (i = 0; i < env->used_map_cnt; i++) 3978 bpf_map_put(env->used_maps[i]); 3979 } 3980 3981 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 3982 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 3983 { 3984 struct bpf_insn *insn = env->prog->insnsi; 3985 int insn_cnt = env->prog->len; 3986 int i; 3987 3988 for (i = 0; i < insn_cnt; i++, insn++) 3989 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 3990 insn->src_reg = 0; 3991 } 3992 3993 /* single env->prog->insni[off] instruction was replaced with the range 3994 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 3995 * [0, off) and [off, end) to new locations, so the patched range stays zero 3996 */ 3997 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 3998 u32 off, u32 cnt) 3999 { 4000 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 4001 4002 if (cnt == 1) 4003 return 0; 4004 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len); 4005 if (!new_data) 4006 return -ENOMEM; 4007 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 4008 memcpy(new_data + off + cnt - 1, old_data + off, 4009 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 4010 env->insn_aux_data = new_data; 4011 vfree(old_data); 4012 return 0; 4013 } 4014 4015 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 4016 const struct bpf_insn *patch, u32 len) 4017 { 4018 struct bpf_prog *new_prog; 4019 4020 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 4021 if (!new_prog) 4022 return NULL; 4023 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 4024 return NULL; 4025 return new_prog; 4026 } 4027 4028 /* convert load instructions that access fields of 'struct __sk_buff' 4029 * into sequence of instructions that access fields of 'struct sk_buff' 4030 */ 4031 static int convert_ctx_accesses(struct bpf_verifier_env *env) 4032 { 4033 const struct bpf_verifier_ops *ops = env->prog->aux->ops; 4034 int i, cnt, size, ctx_field_size, delta = 0; 4035 const int insn_cnt = env->prog->len; 4036 struct bpf_insn insn_buf[16], *insn; 4037 struct bpf_prog *new_prog; 4038 enum bpf_access_type type; 4039 bool is_narrower_load; 4040 u32 target_size; 4041 4042 if (ops->gen_prologue) { 4043 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 4044 env->prog); 4045 if (cnt >= ARRAY_SIZE(insn_buf)) { 4046 verbose("bpf verifier is misconfigured\n"); 4047 return -EINVAL; 4048 } else if (cnt) { 4049 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 4050 if (!new_prog) 4051 return -ENOMEM; 4052 4053 env->prog = new_prog; 4054 delta += cnt - 1; 4055 } 4056 } 4057 4058 if (!ops->convert_ctx_access) 4059 return 0; 4060 4061 insn = env->prog->insnsi + delta; 4062 4063 for (i = 0; i < insn_cnt; i++, insn++) { 4064 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 4065 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 4066 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 4067 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 4068 type = BPF_READ; 4069 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 4070 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 4071 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 4072 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 4073 type = BPF_WRITE; 4074 else 4075 continue; 4076 4077 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX) 4078 continue; 4079 4080 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 4081 size = BPF_LDST_BYTES(insn); 4082 4083 /* If the read access is a narrower load of the field, 4084 * convert to a 4/8-byte load, to minimum program type specific 4085 * convert_ctx_access changes. If conversion is successful, 4086 * we will apply proper mask to the result. 4087 */ 4088 is_narrower_load = size < ctx_field_size; 4089 if (is_narrower_load) { 4090 u32 off = insn->off; 4091 u8 size_code; 4092 4093 if (type == BPF_WRITE) { 4094 verbose("bpf verifier narrow ctx access misconfigured\n"); 4095 return -EINVAL; 4096 } 4097 4098 size_code = BPF_H; 4099 if (ctx_field_size == 4) 4100 size_code = BPF_W; 4101 else if (ctx_field_size == 8) 4102 size_code = BPF_DW; 4103 4104 insn->off = off & ~(ctx_field_size - 1); 4105 insn->code = BPF_LDX | BPF_MEM | size_code; 4106 } 4107 4108 target_size = 0; 4109 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog, 4110 &target_size); 4111 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 4112 (ctx_field_size && !target_size)) { 4113 verbose("bpf verifier is misconfigured\n"); 4114 return -EINVAL; 4115 } 4116 4117 if (is_narrower_load && size < target_size) { 4118 if (ctx_field_size <= 4) 4119 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 4120 (1 << size * 8) - 1); 4121 else 4122 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 4123 (1 << size * 8) - 1); 4124 } 4125 4126 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 4127 if (!new_prog) 4128 return -ENOMEM; 4129 4130 delta += cnt - 1; 4131 4132 /* keep walking new program and skip insns we just inserted */ 4133 env->prog = new_prog; 4134 insn = new_prog->insnsi + i + delta; 4135 } 4136 4137 return 0; 4138 } 4139 4140 /* fixup insn->imm field of bpf_call instructions 4141 * and inline eligible helpers as explicit sequence of BPF instructions 4142 * 4143 * this function is called after eBPF program passed verification 4144 */ 4145 static int fixup_bpf_calls(struct bpf_verifier_env *env) 4146 { 4147 struct bpf_prog *prog = env->prog; 4148 struct bpf_insn *insn = prog->insnsi; 4149 const struct bpf_func_proto *fn; 4150 const int insn_cnt = prog->len; 4151 struct bpf_insn insn_buf[16]; 4152 struct bpf_prog *new_prog; 4153 struct bpf_map *map_ptr; 4154 int i, cnt, delta = 0; 4155 4156 for (i = 0; i < insn_cnt; i++, insn++) { 4157 if (insn->code != (BPF_JMP | BPF_CALL)) 4158 continue; 4159 4160 if (insn->imm == BPF_FUNC_get_route_realm) 4161 prog->dst_needed = 1; 4162 if (insn->imm == BPF_FUNC_get_prandom_u32) 4163 bpf_user_rnd_init_once(); 4164 if (insn->imm == BPF_FUNC_tail_call) { 4165 /* If we tail call into other programs, we 4166 * cannot make any assumptions since they can 4167 * be replaced dynamically during runtime in 4168 * the program array. 4169 */ 4170 prog->cb_access = 1; 4171 env->prog->aux->stack_depth = MAX_BPF_STACK; 4172 4173 /* mark bpf_tail_call as different opcode to avoid 4174 * conditional branch in the interpeter for every normal 4175 * call and to prevent accidental JITing by JIT compiler 4176 * that doesn't support bpf_tail_call yet 4177 */ 4178 insn->imm = 0; 4179 insn->code = BPF_JMP | BPF_TAIL_CALL; 4180 continue; 4181 } 4182 4183 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 4184 * handlers are currently limited to 64 bit only. 4185 */ 4186 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 && 4187 insn->imm == BPF_FUNC_map_lookup_elem) { 4188 map_ptr = env->insn_aux_data[i + delta].map_ptr; 4189 if (map_ptr == BPF_MAP_PTR_POISON || 4190 !map_ptr->ops->map_gen_lookup) 4191 goto patch_call_imm; 4192 4193 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf); 4194 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 4195 verbose("bpf verifier is misconfigured\n"); 4196 return -EINVAL; 4197 } 4198 4199 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 4200 cnt); 4201 if (!new_prog) 4202 return -ENOMEM; 4203 4204 delta += cnt - 1; 4205 4206 /* keep walking new program and skip insns we just inserted */ 4207 env->prog = prog = new_prog; 4208 insn = new_prog->insnsi + i + delta; 4209 continue; 4210 } 4211 4212 if (insn->imm == BPF_FUNC_redirect_map) { 4213 /* Note, we cannot use prog directly as imm as subsequent 4214 * rewrites would still change the prog pointer. The only 4215 * stable address we can use is aux, which also works with 4216 * prog clones during blinding. 4217 */ 4218 u64 addr = (unsigned long)prog->aux; 4219 struct bpf_insn r4_ld[] = { 4220 BPF_LD_IMM64(BPF_REG_4, addr), 4221 *insn, 4222 }; 4223 cnt = ARRAY_SIZE(r4_ld); 4224 4225 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt); 4226 if (!new_prog) 4227 return -ENOMEM; 4228 4229 delta += cnt - 1; 4230 env->prog = prog = new_prog; 4231 insn = new_prog->insnsi + i + delta; 4232 } 4233 patch_call_imm: 4234 fn = prog->aux->ops->get_func_proto(insn->imm); 4235 /* all functions that have prototype and verifier allowed 4236 * programs to call them, must be real in-kernel functions 4237 */ 4238 if (!fn->func) { 4239 verbose("kernel subsystem misconfigured func %s#%d\n", 4240 func_id_name(insn->imm), insn->imm); 4241 return -EFAULT; 4242 } 4243 insn->imm = fn->func - __bpf_call_base; 4244 } 4245 4246 return 0; 4247 } 4248 4249 static void free_states(struct bpf_verifier_env *env) 4250 { 4251 struct bpf_verifier_state_list *sl, *sln; 4252 int i; 4253 4254 if (!env->explored_states) 4255 return; 4256 4257 for (i = 0; i < env->prog->len; i++) { 4258 sl = env->explored_states[i]; 4259 4260 if (sl) 4261 while (sl != STATE_LIST_MARK) { 4262 sln = sl->next; 4263 kfree(sl); 4264 sl = sln; 4265 } 4266 } 4267 4268 kfree(env->explored_states); 4269 } 4270 4271 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr) 4272 { 4273 char __user *log_ubuf = NULL; 4274 struct bpf_verifier_env *env; 4275 int ret = -EINVAL; 4276 4277 /* 'struct bpf_verifier_env' can be global, but since it's not small, 4278 * allocate/free it every time bpf_check() is called 4279 */ 4280 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 4281 if (!env) 4282 return -ENOMEM; 4283 4284 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) * 4285 (*prog)->len); 4286 ret = -ENOMEM; 4287 if (!env->insn_aux_data) 4288 goto err_free_env; 4289 env->prog = *prog; 4290 4291 /* grab the mutex to protect few globals used by verifier */ 4292 mutex_lock(&bpf_verifier_lock); 4293 4294 if (attr->log_level || attr->log_buf || attr->log_size) { 4295 /* user requested verbose verifier output 4296 * and supplied buffer to store the verification trace 4297 */ 4298 log_level = attr->log_level; 4299 log_ubuf = (char __user *) (unsigned long) attr->log_buf; 4300 log_size = attr->log_size; 4301 log_len = 0; 4302 4303 ret = -EINVAL; 4304 /* log_* values have to be sane */ 4305 if (log_size < 128 || log_size > UINT_MAX >> 8 || 4306 log_level == 0 || log_ubuf == NULL) 4307 goto err_unlock; 4308 4309 ret = -ENOMEM; 4310 log_buf = vmalloc(log_size); 4311 if (!log_buf) 4312 goto err_unlock; 4313 } else { 4314 log_level = 0; 4315 } 4316 4317 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 4318 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 4319 env->strict_alignment = true; 4320 4321 ret = replace_map_fd_with_map_ptr(env); 4322 if (ret < 0) 4323 goto skip_full_check; 4324 4325 env->explored_states = kcalloc(env->prog->len, 4326 sizeof(struct bpf_verifier_state_list *), 4327 GFP_USER); 4328 ret = -ENOMEM; 4329 if (!env->explored_states) 4330 goto skip_full_check; 4331 4332 ret = check_cfg(env); 4333 if (ret < 0) 4334 goto skip_full_check; 4335 4336 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 4337 4338 ret = do_check(env); 4339 4340 skip_full_check: 4341 while (pop_stack(env, NULL) >= 0); 4342 free_states(env); 4343 4344 if (ret == 0) 4345 /* program is valid, convert *(u32*)(ctx + off) accesses */ 4346 ret = convert_ctx_accesses(env); 4347 4348 if (ret == 0) 4349 ret = fixup_bpf_calls(env); 4350 4351 if (log_level && log_len >= log_size - 1) { 4352 BUG_ON(log_len >= log_size); 4353 /* verifier log exceeded user supplied buffer */ 4354 ret = -ENOSPC; 4355 /* fall through to return what was recorded */ 4356 } 4357 4358 /* copy verifier log back to user space including trailing zero */ 4359 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) { 4360 ret = -EFAULT; 4361 goto free_log_buf; 4362 } 4363 4364 if (ret == 0 && env->used_map_cnt) { 4365 /* if program passed verifier, update used_maps in bpf_prog_info */ 4366 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 4367 sizeof(env->used_maps[0]), 4368 GFP_KERNEL); 4369 4370 if (!env->prog->aux->used_maps) { 4371 ret = -ENOMEM; 4372 goto free_log_buf; 4373 } 4374 4375 memcpy(env->prog->aux->used_maps, env->used_maps, 4376 sizeof(env->used_maps[0]) * env->used_map_cnt); 4377 env->prog->aux->used_map_cnt = env->used_map_cnt; 4378 4379 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 4380 * bpf_ld_imm64 instructions 4381 */ 4382 convert_pseudo_ld_imm64(env); 4383 } 4384 4385 free_log_buf: 4386 if (log_level) 4387 vfree(log_buf); 4388 if (!env->prog->aux->used_maps) 4389 /* if we didn't copy map pointers into bpf_prog_info, release 4390 * them now. Otherwise free_bpf_prog_info() will release them. 4391 */ 4392 release_maps(env); 4393 *prog = env->prog; 4394 err_unlock: 4395 mutex_unlock(&bpf_verifier_lock); 4396 vfree(env->insn_aux_data); 4397 err_free_env: 4398 kfree(env); 4399 return ret; 4400 } 4401 4402 int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops, 4403 void *priv) 4404 { 4405 struct bpf_verifier_env *env; 4406 int ret; 4407 4408 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 4409 if (!env) 4410 return -ENOMEM; 4411 4412 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) * 4413 prog->len); 4414 ret = -ENOMEM; 4415 if (!env->insn_aux_data) 4416 goto err_free_env; 4417 env->prog = prog; 4418 env->analyzer_ops = ops; 4419 env->analyzer_priv = priv; 4420 4421 /* grab the mutex to protect few globals used by verifier */ 4422 mutex_lock(&bpf_verifier_lock); 4423 4424 log_level = 0; 4425 4426 env->strict_alignment = false; 4427 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 4428 env->strict_alignment = true; 4429 4430 env->explored_states = kcalloc(env->prog->len, 4431 sizeof(struct bpf_verifier_state_list *), 4432 GFP_KERNEL); 4433 ret = -ENOMEM; 4434 if (!env->explored_states) 4435 goto skip_full_check; 4436 4437 ret = check_cfg(env); 4438 if (ret < 0) 4439 goto skip_full_check; 4440 4441 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 4442 4443 ret = do_check(env); 4444 4445 skip_full_check: 4446 while (pop_stack(env, NULL) >= 0); 4447 free_states(env); 4448 4449 mutex_unlock(&bpf_verifier_lock); 4450 vfree(env->insn_aux_data); 4451 err_free_env: 4452 kfree(env); 4453 return ret; 4454 } 4455 EXPORT_SYMBOL_GPL(bpf_analyzer); 4456