xref: /openbmc/linux/kernel/bpf/verifier.c (revision 5a244f48)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 
24 /* bpf_check() is a static code analyzer that walks eBPF program
25  * instruction by instruction and updates register/stack state.
26  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27  *
28  * The first pass is depth-first-search to check that the program is a DAG.
29  * It rejects the following programs:
30  * - larger than BPF_MAXINSNS insns
31  * - if loop is present (detected via back-edge)
32  * - unreachable insns exist (shouldn't be a forest. program = one function)
33  * - out of bounds or malformed jumps
34  * The second pass is all possible path descent from the 1st insn.
35  * Since it's analyzing all pathes through the program, the length of the
36  * analysis is limited to 64k insn, which may be hit even if total number of
37  * insn is less then 4K, but there are too many branches that change stack/regs.
38  * Number of 'branches to be analyzed' is limited to 1k
39  *
40  * On entry to each instruction, each register has a type, and the instruction
41  * changes the types of the registers depending on instruction semantics.
42  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43  * copied to R1.
44  *
45  * All registers are 64-bit.
46  * R0 - return register
47  * R1-R5 argument passing registers
48  * R6-R9 callee saved registers
49  * R10 - frame pointer read-only
50  *
51  * At the start of BPF program the register R1 contains a pointer to bpf_context
52  * and has type PTR_TO_CTX.
53  *
54  * Verifier tracks arithmetic operations on pointers in case:
55  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57  * 1st insn copies R10 (which has FRAME_PTR) type into R1
58  * and 2nd arithmetic instruction is pattern matched to recognize
59  * that it wants to construct a pointer to some element within stack.
60  * So after 2nd insn, the register R1 has type PTR_TO_STACK
61  * (and -20 constant is saved for further stack bounds checking).
62  * Meaning that this reg is a pointer to stack plus known immediate constant.
63  *
64  * Most of the time the registers have SCALAR_VALUE type, which
65  * means the register has some value, but it's not a valid pointer.
66  * (like pointer plus pointer becomes SCALAR_VALUE type)
67  *
68  * When verifier sees load or store instructions the type of base register
69  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
70  * types recognized by check_mem_access() function.
71  *
72  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73  * and the range of [ptr, ptr + map's value_size) is accessible.
74  *
75  * registers used to pass values to function calls are checked against
76  * function argument constraints.
77  *
78  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79  * It means that the register type passed to this function must be
80  * PTR_TO_STACK and it will be used inside the function as
81  * 'pointer to map element key'
82  *
83  * For example the argument constraints for bpf_map_lookup_elem():
84  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85  *   .arg1_type = ARG_CONST_MAP_PTR,
86  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
87  *
88  * ret_type says that this function returns 'pointer to map elem value or null'
89  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90  * 2nd argument should be a pointer to stack, which will be used inside
91  * the helper function as a pointer to map element key.
92  *
93  * On the kernel side the helper function looks like:
94  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95  * {
96  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97  *    void *key = (void *) (unsigned long) r2;
98  *    void *value;
99  *
100  *    here kernel can access 'key' and 'map' pointers safely, knowing that
101  *    [key, key + map->key_size) bytes are valid and were initialized on
102  *    the stack of eBPF program.
103  * }
104  *
105  * Corresponding eBPF program may look like:
106  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
107  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
109  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110  * here verifier looks at prototype of map_lookup_elem() and sees:
111  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113  *
114  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116  * and were initialized prior to this call.
117  * If it's ok, then verifier allows this BPF_CALL insn and looks at
118  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120  * returns ether pointer to map value or NULL.
121  *
122  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123  * insn, the register holding that pointer in the true branch changes state to
124  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125  * branch. See check_cond_jmp_op().
126  *
127  * After the call R0 is set to return type of the function and registers R1-R5
128  * are set to NOT_INIT to indicate that they are no longer readable.
129  */
130 
131 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
132 struct bpf_verifier_stack_elem {
133 	/* verifer state is 'st'
134 	 * before processing instruction 'insn_idx'
135 	 * and after processing instruction 'prev_insn_idx'
136 	 */
137 	struct bpf_verifier_state st;
138 	int insn_idx;
139 	int prev_insn_idx;
140 	struct bpf_verifier_stack_elem *next;
141 };
142 
143 #define BPF_COMPLEXITY_LIMIT_INSNS	131072
144 #define BPF_COMPLEXITY_LIMIT_STACK	1024
145 
146 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
147 
148 struct bpf_call_arg_meta {
149 	struct bpf_map *map_ptr;
150 	bool raw_mode;
151 	bool pkt_access;
152 	int regno;
153 	int access_size;
154 };
155 
156 /* verbose verifier prints what it's seeing
157  * bpf_check() is called under lock, so no race to access these global vars
158  */
159 static u32 log_level, log_size, log_len;
160 static char *log_buf;
161 
162 static DEFINE_MUTEX(bpf_verifier_lock);
163 
164 /* log_level controls verbosity level of eBPF verifier.
165  * verbose() is used to dump the verification trace to the log, so the user
166  * can figure out what's wrong with the program
167  */
168 static __printf(1, 2) void verbose(const char *fmt, ...)
169 {
170 	va_list args;
171 
172 	if (log_level == 0 || log_len >= log_size - 1)
173 		return;
174 
175 	va_start(args, fmt);
176 	log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
177 	va_end(args);
178 }
179 
180 /* string representation of 'enum bpf_reg_type' */
181 static const char * const reg_type_str[] = {
182 	[NOT_INIT]		= "?",
183 	[SCALAR_VALUE]		= "inv",
184 	[PTR_TO_CTX]		= "ctx",
185 	[CONST_PTR_TO_MAP]	= "map_ptr",
186 	[PTR_TO_MAP_VALUE]	= "map_value",
187 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
188 	[PTR_TO_STACK]		= "fp",
189 	[PTR_TO_PACKET]		= "pkt",
190 	[PTR_TO_PACKET_END]	= "pkt_end",
191 };
192 
193 #define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
194 static const char * const func_id_str[] = {
195 	__BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
196 };
197 #undef __BPF_FUNC_STR_FN
198 
199 static const char *func_id_name(int id)
200 {
201 	BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
202 
203 	if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
204 		return func_id_str[id];
205 	else
206 		return "unknown";
207 }
208 
209 static void print_verifier_state(struct bpf_verifier_state *state)
210 {
211 	struct bpf_reg_state *reg;
212 	enum bpf_reg_type t;
213 	int i;
214 
215 	for (i = 0; i < MAX_BPF_REG; i++) {
216 		reg = &state->regs[i];
217 		t = reg->type;
218 		if (t == NOT_INIT)
219 			continue;
220 		verbose(" R%d=%s", i, reg_type_str[t]);
221 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
222 		    tnum_is_const(reg->var_off)) {
223 			/* reg->off should be 0 for SCALAR_VALUE */
224 			verbose("%lld", reg->var_off.value + reg->off);
225 		} else {
226 			verbose("(id=%d", reg->id);
227 			if (t != SCALAR_VALUE)
228 				verbose(",off=%d", reg->off);
229 			if (t == PTR_TO_PACKET)
230 				verbose(",r=%d", reg->range);
231 			else if (t == CONST_PTR_TO_MAP ||
232 				 t == PTR_TO_MAP_VALUE ||
233 				 t == PTR_TO_MAP_VALUE_OR_NULL)
234 				verbose(",ks=%d,vs=%d",
235 					reg->map_ptr->key_size,
236 					reg->map_ptr->value_size);
237 			if (tnum_is_const(reg->var_off)) {
238 				/* Typically an immediate SCALAR_VALUE, but
239 				 * could be a pointer whose offset is too big
240 				 * for reg->off
241 				 */
242 				verbose(",imm=%llx", reg->var_off.value);
243 			} else {
244 				if (reg->smin_value != reg->umin_value &&
245 				    reg->smin_value != S64_MIN)
246 					verbose(",smin_value=%lld",
247 						(long long)reg->smin_value);
248 				if (reg->smax_value != reg->umax_value &&
249 				    reg->smax_value != S64_MAX)
250 					verbose(",smax_value=%lld",
251 						(long long)reg->smax_value);
252 				if (reg->umin_value != 0)
253 					verbose(",umin_value=%llu",
254 						(unsigned long long)reg->umin_value);
255 				if (reg->umax_value != U64_MAX)
256 					verbose(",umax_value=%llu",
257 						(unsigned long long)reg->umax_value);
258 				if (!tnum_is_unknown(reg->var_off)) {
259 					char tn_buf[48];
260 
261 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
262 					verbose(",var_off=%s", tn_buf);
263 				}
264 			}
265 			verbose(")");
266 		}
267 	}
268 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
269 		if (state->stack_slot_type[i] == STACK_SPILL)
270 			verbose(" fp%d=%s", -MAX_BPF_STACK + i,
271 				reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
272 	}
273 	verbose("\n");
274 }
275 
276 static const char *const bpf_class_string[] = {
277 	[BPF_LD]    = "ld",
278 	[BPF_LDX]   = "ldx",
279 	[BPF_ST]    = "st",
280 	[BPF_STX]   = "stx",
281 	[BPF_ALU]   = "alu",
282 	[BPF_JMP]   = "jmp",
283 	[BPF_RET]   = "BUG",
284 	[BPF_ALU64] = "alu64",
285 };
286 
287 static const char *const bpf_alu_string[16] = {
288 	[BPF_ADD >> 4]  = "+=",
289 	[BPF_SUB >> 4]  = "-=",
290 	[BPF_MUL >> 4]  = "*=",
291 	[BPF_DIV >> 4]  = "/=",
292 	[BPF_OR  >> 4]  = "|=",
293 	[BPF_AND >> 4]  = "&=",
294 	[BPF_LSH >> 4]  = "<<=",
295 	[BPF_RSH >> 4]  = ">>=",
296 	[BPF_NEG >> 4]  = "neg",
297 	[BPF_MOD >> 4]  = "%=",
298 	[BPF_XOR >> 4]  = "^=",
299 	[BPF_MOV >> 4]  = "=",
300 	[BPF_ARSH >> 4] = "s>>=",
301 	[BPF_END >> 4]  = "endian",
302 };
303 
304 static const char *const bpf_ldst_string[] = {
305 	[BPF_W >> 3]  = "u32",
306 	[BPF_H >> 3]  = "u16",
307 	[BPF_B >> 3]  = "u8",
308 	[BPF_DW >> 3] = "u64",
309 };
310 
311 static const char *const bpf_jmp_string[16] = {
312 	[BPF_JA >> 4]   = "jmp",
313 	[BPF_JEQ >> 4]  = "==",
314 	[BPF_JGT >> 4]  = ">",
315 	[BPF_JLT >> 4]  = "<",
316 	[BPF_JGE >> 4]  = ">=",
317 	[BPF_JLE >> 4]  = "<=",
318 	[BPF_JSET >> 4] = "&",
319 	[BPF_JNE >> 4]  = "!=",
320 	[BPF_JSGT >> 4] = "s>",
321 	[BPF_JSLT >> 4] = "s<",
322 	[BPF_JSGE >> 4] = "s>=",
323 	[BPF_JSLE >> 4] = "s<=",
324 	[BPF_CALL >> 4] = "call",
325 	[BPF_EXIT >> 4] = "exit",
326 };
327 
328 static void print_bpf_insn(const struct bpf_verifier_env *env,
329 			   const struct bpf_insn *insn)
330 {
331 	u8 class = BPF_CLASS(insn->code);
332 
333 	if (class == BPF_ALU || class == BPF_ALU64) {
334 		if (BPF_SRC(insn->code) == BPF_X)
335 			verbose("(%02x) %sr%d %s %sr%d\n",
336 				insn->code, class == BPF_ALU ? "(u32) " : "",
337 				insn->dst_reg,
338 				bpf_alu_string[BPF_OP(insn->code) >> 4],
339 				class == BPF_ALU ? "(u32) " : "",
340 				insn->src_reg);
341 		else
342 			verbose("(%02x) %sr%d %s %s%d\n",
343 				insn->code, class == BPF_ALU ? "(u32) " : "",
344 				insn->dst_reg,
345 				bpf_alu_string[BPF_OP(insn->code) >> 4],
346 				class == BPF_ALU ? "(u32) " : "",
347 				insn->imm);
348 	} else if (class == BPF_STX) {
349 		if (BPF_MODE(insn->code) == BPF_MEM)
350 			verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
351 				insn->code,
352 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
353 				insn->dst_reg,
354 				insn->off, insn->src_reg);
355 		else if (BPF_MODE(insn->code) == BPF_XADD)
356 			verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
357 				insn->code,
358 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
359 				insn->dst_reg, insn->off,
360 				insn->src_reg);
361 		else
362 			verbose("BUG_%02x\n", insn->code);
363 	} else if (class == BPF_ST) {
364 		if (BPF_MODE(insn->code) != BPF_MEM) {
365 			verbose("BUG_st_%02x\n", insn->code);
366 			return;
367 		}
368 		verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
369 			insn->code,
370 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
371 			insn->dst_reg,
372 			insn->off, insn->imm);
373 	} else if (class == BPF_LDX) {
374 		if (BPF_MODE(insn->code) != BPF_MEM) {
375 			verbose("BUG_ldx_%02x\n", insn->code);
376 			return;
377 		}
378 		verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
379 			insn->code, insn->dst_reg,
380 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
381 			insn->src_reg, insn->off);
382 	} else if (class == BPF_LD) {
383 		if (BPF_MODE(insn->code) == BPF_ABS) {
384 			verbose("(%02x) r0 = *(%s *)skb[%d]\n",
385 				insn->code,
386 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
387 				insn->imm);
388 		} else if (BPF_MODE(insn->code) == BPF_IND) {
389 			verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
390 				insn->code,
391 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
392 				insn->src_reg, insn->imm);
393 		} else if (BPF_MODE(insn->code) == BPF_IMM &&
394 			   BPF_SIZE(insn->code) == BPF_DW) {
395 			/* At this point, we already made sure that the second
396 			 * part of the ldimm64 insn is accessible.
397 			 */
398 			u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
399 			bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;
400 
401 			if (map_ptr && !env->allow_ptr_leaks)
402 				imm = 0;
403 
404 			verbose("(%02x) r%d = 0x%llx\n", insn->code,
405 				insn->dst_reg, (unsigned long long)imm);
406 		} else {
407 			verbose("BUG_ld_%02x\n", insn->code);
408 			return;
409 		}
410 	} else if (class == BPF_JMP) {
411 		u8 opcode = BPF_OP(insn->code);
412 
413 		if (opcode == BPF_CALL) {
414 			verbose("(%02x) call %s#%d\n", insn->code,
415 				func_id_name(insn->imm), insn->imm);
416 		} else if (insn->code == (BPF_JMP | BPF_JA)) {
417 			verbose("(%02x) goto pc%+d\n",
418 				insn->code, insn->off);
419 		} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
420 			verbose("(%02x) exit\n", insn->code);
421 		} else if (BPF_SRC(insn->code) == BPF_X) {
422 			verbose("(%02x) if r%d %s r%d goto pc%+d\n",
423 				insn->code, insn->dst_reg,
424 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
425 				insn->src_reg, insn->off);
426 		} else {
427 			verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
428 				insn->code, insn->dst_reg,
429 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
430 				insn->imm, insn->off);
431 		}
432 	} else {
433 		verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
434 	}
435 }
436 
437 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
438 {
439 	struct bpf_verifier_stack_elem *elem;
440 	int insn_idx;
441 
442 	if (env->head == NULL)
443 		return -1;
444 
445 	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
446 	insn_idx = env->head->insn_idx;
447 	if (prev_insn_idx)
448 		*prev_insn_idx = env->head->prev_insn_idx;
449 	elem = env->head->next;
450 	kfree(env->head);
451 	env->head = elem;
452 	env->stack_size--;
453 	return insn_idx;
454 }
455 
456 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
457 					     int insn_idx, int prev_insn_idx)
458 {
459 	struct bpf_verifier_stack_elem *elem;
460 
461 	elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
462 	if (!elem)
463 		goto err;
464 
465 	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
466 	elem->insn_idx = insn_idx;
467 	elem->prev_insn_idx = prev_insn_idx;
468 	elem->next = env->head;
469 	env->head = elem;
470 	env->stack_size++;
471 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
472 		verbose("BPF program is too complex\n");
473 		goto err;
474 	}
475 	return &elem->st;
476 err:
477 	/* pop all elements and return */
478 	while (pop_stack(env, NULL) >= 0);
479 	return NULL;
480 }
481 
482 #define CALLER_SAVED_REGS 6
483 static const int caller_saved[CALLER_SAVED_REGS] = {
484 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
485 };
486 
487 static void __mark_reg_not_init(struct bpf_reg_state *reg);
488 
489 /* Mark the unknown part of a register (variable offset or scalar value) as
490  * known to have the value @imm.
491  */
492 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
493 {
494 	reg->id = 0;
495 	reg->var_off = tnum_const(imm);
496 	reg->smin_value = (s64)imm;
497 	reg->smax_value = (s64)imm;
498 	reg->umin_value = imm;
499 	reg->umax_value = imm;
500 }
501 
502 /* Mark the 'variable offset' part of a register as zero.  This should be
503  * used only on registers holding a pointer type.
504  */
505 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
506 {
507 	__mark_reg_known(reg, 0);
508 }
509 
510 static void mark_reg_known_zero(struct bpf_reg_state *regs, u32 regno)
511 {
512 	if (WARN_ON(regno >= MAX_BPF_REG)) {
513 		verbose("mark_reg_known_zero(regs, %u)\n", regno);
514 		/* Something bad happened, let's kill all regs */
515 		for (regno = 0; regno < MAX_BPF_REG; regno++)
516 			__mark_reg_not_init(regs + regno);
517 		return;
518 	}
519 	__mark_reg_known_zero(regs + regno);
520 }
521 
522 /* Attempts to improve min/max values based on var_off information */
523 static void __update_reg_bounds(struct bpf_reg_state *reg)
524 {
525 	/* min signed is max(sign bit) | min(other bits) */
526 	reg->smin_value = max_t(s64, reg->smin_value,
527 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
528 	/* max signed is min(sign bit) | max(other bits) */
529 	reg->smax_value = min_t(s64, reg->smax_value,
530 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
531 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
532 	reg->umax_value = min(reg->umax_value,
533 			      reg->var_off.value | reg->var_off.mask);
534 }
535 
536 /* Uses signed min/max values to inform unsigned, and vice-versa */
537 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
538 {
539 	/* Learn sign from signed bounds.
540 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
541 	 * are the same, so combine.  This works even in the negative case, e.g.
542 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
543 	 */
544 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
545 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
546 							  reg->umin_value);
547 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
548 							  reg->umax_value);
549 		return;
550 	}
551 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
552 	 * boundary, so we must be careful.
553 	 */
554 	if ((s64)reg->umax_value >= 0) {
555 		/* Positive.  We can't learn anything from the smin, but smax
556 		 * is positive, hence safe.
557 		 */
558 		reg->smin_value = reg->umin_value;
559 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
560 							  reg->umax_value);
561 	} else if ((s64)reg->umin_value < 0) {
562 		/* Negative.  We can't learn anything from the smax, but smin
563 		 * is negative, hence safe.
564 		 */
565 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
566 							  reg->umin_value);
567 		reg->smax_value = reg->umax_value;
568 	}
569 }
570 
571 /* Attempts to improve var_off based on unsigned min/max information */
572 static void __reg_bound_offset(struct bpf_reg_state *reg)
573 {
574 	reg->var_off = tnum_intersect(reg->var_off,
575 				      tnum_range(reg->umin_value,
576 						 reg->umax_value));
577 }
578 
579 /* Reset the min/max bounds of a register */
580 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
581 {
582 	reg->smin_value = S64_MIN;
583 	reg->smax_value = S64_MAX;
584 	reg->umin_value = 0;
585 	reg->umax_value = U64_MAX;
586 }
587 
588 /* Mark a register as having a completely unknown (scalar) value. */
589 static void __mark_reg_unknown(struct bpf_reg_state *reg)
590 {
591 	reg->type = SCALAR_VALUE;
592 	reg->id = 0;
593 	reg->off = 0;
594 	reg->var_off = tnum_unknown;
595 	__mark_reg_unbounded(reg);
596 }
597 
598 static void mark_reg_unknown(struct bpf_reg_state *regs, u32 regno)
599 {
600 	if (WARN_ON(regno >= MAX_BPF_REG)) {
601 		verbose("mark_reg_unknown(regs, %u)\n", regno);
602 		/* Something bad happened, let's kill all regs */
603 		for (regno = 0; regno < MAX_BPF_REG; regno++)
604 			__mark_reg_not_init(regs + regno);
605 		return;
606 	}
607 	__mark_reg_unknown(regs + regno);
608 }
609 
610 static void __mark_reg_not_init(struct bpf_reg_state *reg)
611 {
612 	__mark_reg_unknown(reg);
613 	reg->type = NOT_INIT;
614 }
615 
616 static void mark_reg_not_init(struct bpf_reg_state *regs, u32 regno)
617 {
618 	if (WARN_ON(regno >= MAX_BPF_REG)) {
619 		verbose("mark_reg_not_init(regs, %u)\n", regno);
620 		/* Something bad happened, let's kill all regs */
621 		for (regno = 0; regno < MAX_BPF_REG; regno++)
622 			__mark_reg_not_init(regs + regno);
623 		return;
624 	}
625 	__mark_reg_not_init(regs + regno);
626 }
627 
628 static void init_reg_state(struct bpf_reg_state *regs)
629 {
630 	int i;
631 
632 	for (i = 0; i < MAX_BPF_REG; i++) {
633 		mark_reg_not_init(regs, i);
634 		regs[i].live = REG_LIVE_NONE;
635 	}
636 
637 	/* frame pointer */
638 	regs[BPF_REG_FP].type = PTR_TO_STACK;
639 	mark_reg_known_zero(regs, BPF_REG_FP);
640 
641 	/* 1st arg to a function */
642 	regs[BPF_REG_1].type = PTR_TO_CTX;
643 	mark_reg_known_zero(regs, BPF_REG_1);
644 }
645 
646 enum reg_arg_type {
647 	SRC_OP,		/* register is used as source operand */
648 	DST_OP,		/* register is used as destination operand */
649 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
650 };
651 
652 static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
653 {
654 	struct bpf_verifier_state *parent = state->parent;
655 
656 	if (regno == BPF_REG_FP)
657 		/* We don't need to worry about FP liveness because it's read-only */
658 		return;
659 
660 	while (parent) {
661 		/* if read wasn't screened by an earlier write ... */
662 		if (state->regs[regno].live & REG_LIVE_WRITTEN)
663 			break;
664 		/* ... then we depend on parent's value */
665 		parent->regs[regno].live |= REG_LIVE_READ;
666 		state = parent;
667 		parent = state->parent;
668 	}
669 }
670 
671 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
672 			 enum reg_arg_type t)
673 {
674 	struct bpf_reg_state *regs = env->cur_state.regs;
675 
676 	if (regno >= MAX_BPF_REG) {
677 		verbose("R%d is invalid\n", regno);
678 		return -EINVAL;
679 	}
680 
681 	if (t == SRC_OP) {
682 		/* check whether register used as source operand can be read */
683 		if (regs[regno].type == NOT_INIT) {
684 			verbose("R%d !read_ok\n", regno);
685 			return -EACCES;
686 		}
687 		mark_reg_read(&env->cur_state, regno);
688 	} else {
689 		/* check whether register used as dest operand can be written to */
690 		if (regno == BPF_REG_FP) {
691 			verbose("frame pointer is read only\n");
692 			return -EACCES;
693 		}
694 		regs[regno].live |= REG_LIVE_WRITTEN;
695 		if (t == DST_OP)
696 			mark_reg_unknown(regs, regno);
697 	}
698 	return 0;
699 }
700 
701 static bool is_spillable_regtype(enum bpf_reg_type type)
702 {
703 	switch (type) {
704 	case PTR_TO_MAP_VALUE:
705 	case PTR_TO_MAP_VALUE_OR_NULL:
706 	case PTR_TO_STACK:
707 	case PTR_TO_CTX:
708 	case PTR_TO_PACKET:
709 	case PTR_TO_PACKET_END:
710 	case CONST_PTR_TO_MAP:
711 		return true;
712 	default:
713 		return false;
714 	}
715 }
716 
717 /* check_stack_read/write functions track spill/fill of registers,
718  * stack boundary and alignment are checked in check_mem_access()
719  */
720 static int check_stack_write(struct bpf_verifier_state *state, int off,
721 			     int size, int value_regno)
722 {
723 	int i, spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
724 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
725 	 * so it's aligned access and [off, off + size) are within stack limits
726 	 */
727 
728 	if (value_regno >= 0 &&
729 	    is_spillable_regtype(state->regs[value_regno].type)) {
730 
731 		/* register containing pointer is being spilled into stack */
732 		if (size != BPF_REG_SIZE) {
733 			verbose("invalid size of register spill\n");
734 			return -EACCES;
735 		}
736 
737 		/* save register state */
738 		state->spilled_regs[spi] = state->regs[value_regno];
739 		state->spilled_regs[spi].live |= REG_LIVE_WRITTEN;
740 
741 		for (i = 0; i < BPF_REG_SIZE; i++)
742 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
743 	} else {
744 		/* regular write of data into stack */
745 		state->spilled_regs[spi] = (struct bpf_reg_state) {};
746 
747 		for (i = 0; i < size; i++)
748 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
749 	}
750 	return 0;
751 }
752 
753 static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
754 {
755 	struct bpf_verifier_state *parent = state->parent;
756 
757 	while (parent) {
758 		/* if read wasn't screened by an earlier write ... */
759 		if (state->spilled_regs[slot].live & REG_LIVE_WRITTEN)
760 			break;
761 		/* ... then we depend on parent's value */
762 		parent->spilled_regs[slot].live |= REG_LIVE_READ;
763 		state = parent;
764 		parent = state->parent;
765 	}
766 }
767 
768 static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
769 			    int value_regno)
770 {
771 	u8 *slot_type;
772 	int i, spi;
773 
774 	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
775 
776 	if (slot_type[0] == STACK_SPILL) {
777 		if (size != BPF_REG_SIZE) {
778 			verbose("invalid size of register spill\n");
779 			return -EACCES;
780 		}
781 		for (i = 1; i < BPF_REG_SIZE; i++) {
782 			if (slot_type[i] != STACK_SPILL) {
783 				verbose("corrupted spill memory\n");
784 				return -EACCES;
785 			}
786 		}
787 
788 		spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
789 
790 		if (value_regno >= 0) {
791 			/* restore register state from stack */
792 			state->regs[value_regno] = state->spilled_regs[spi];
793 			mark_stack_slot_read(state, spi);
794 		}
795 		return 0;
796 	} else {
797 		for (i = 0; i < size; i++) {
798 			if (slot_type[i] != STACK_MISC) {
799 				verbose("invalid read from stack off %d+%d size %d\n",
800 					off, i, size);
801 				return -EACCES;
802 			}
803 		}
804 		if (value_regno >= 0)
805 			/* have read misc data from the stack */
806 			mark_reg_unknown(state->regs, value_regno);
807 		return 0;
808 	}
809 }
810 
811 /* check read/write into map element returned by bpf_map_lookup_elem() */
812 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
813 			    int size)
814 {
815 	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
816 
817 	if (off < 0 || size <= 0 || off + size > map->value_size) {
818 		verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
819 			map->value_size, off, size);
820 		return -EACCES;
821 	}
822 	return 0;
823 }
824 
825 /* check read/write into a map element with possible variable offset */
826 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
827 				int off, int size)
828 {
829 	struct bpf_verifier_state *state = &env->cur_state;
830 	struct bpf_reg_state *reg = &state->regs[regno];
831 	int err;
832 
833 	/* We may have adjusted the register to this map value, so we
834 	 * need to try adding each of min_value and max_value to off
835 	 * to make sure our theoretical access will be safe.
836 	 */
837 	if (log_level)
838 		print_verifier_state(state);
839 	/* The minimum value is only important with signed
840 	 * comparisons where we can't assume the floor of a
841 	 * value is 0.  If we are using signed variables for our
842 	 * index'es we need to make sure that whatever we use
843 	 * will have a set floor within our range.
844 	 */
845 	if (reg->smin_value < 0) {
846 		verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
847 			regno);
848 		return -EACCES;
849 	}
850 	err = __check_map_access(env, regno, reg->smin_value + off, size);
851 	if (err) {
852 		verbose("R%d min value is outside of the array range\n", regno);
853 		return err;
854 	}
855 
856 	/* If we haven't set a max value then we need to bail since we can't be
857 	 * sure we won't do bad things.
858 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
859 	 */
860 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
861 		verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
862 			regno);
863 		return -EACCES;
864 	}
865 	err = __check_map_access(env, regno, reg->umax_value + off, size);
866 	if (err)
867 		verbose("R%d max value is outside of the array range\n", regno);
868 	return err;
869 }
870 
871 #define MAX_PACKET_OFF 0xffff
872 
873 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
874 				       const struct bpf_call_arg_meta *meta,
875 				       enum bpf_access_type t)
876 {
877 	switch (env->prog->type) {
878 	case BPF_PROG_TYPE_LWT_IN:
879 	case BPF_PROG_TYPE_LWT_OUT:
880 		/* dst_input() and dst_output() can't write for now */
881 		if (t == BPF_WRITE)
882 			return false;
883 		/* fallthrough */
884 	case BPF_PROG_TYPE_SCHED_CLS:
885 	case BPF_PROG_TYPE_SCHED_ACT:
886 	case BPF_PROG_TYPE_XDP:
887 	case BPF_PROG_TYPE_LWT_XMIT:
888 	case BPF_PROG_TYPE_SK_SKB:
889 		if (meta)
890 			return meta->pkt_access;
891 
892 		env->seen_direct_write = true;
893 		return true;
894 	default:
895 		return false;
896 	}
897 }
898 
899 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
900 				 int off, int size)
901 {
902 	struct bpf_reg_state *regs = env->cur_state.regs;
903 	struct bpf_reg_state *reg = &regs[regno];
904 
905 	if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
906 		verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
907 			off, size, regno, reg->id, reg->off, reg->range);
908 		return -EACCES;
909 	}
910 	return 0;
911 }
912 
913 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
914 			       int size)
915 {
916 	struct bpf_reg_state *regs = env->cur_state.regs;
917 	struct bpf_reg_state *reg = &regs[regno];
918 	int err;
919 
920 	/* We may have added a variable offset to the packet pointer; but any
921 	 * reg->range we have comes after that.  We are only checking the fixed
922 	 * offset.
923 	 */
924 
925 	/* We don't allow negative numbers, because we aren't tracking enough
926 	 * detail to prove they're safe.
927 	 */
928 	if (reg->smin_value < 0) {
929 		verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
930 			regno);
931 		return -EACCES;
932 	}
933 	err = __check_packet_access(env, regno, off, size);
934 	if (err) {
935 		verbose("R%d offset is outside of the packet\n", regno);
936 		return err;
937 	}
938 	return err;
939 }
940 
941 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
942 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
943 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
944 {
945 	struct bpf_insn_access_aux info = {
946 		.reg_type = *reg_type,
947 	};
948 
949 	/* for analyzer ctx accesses are already validated and converted */
950 	if (env->analyzer_ops)
951 		return 0;
952 
953 	if (env->prog->aux->ops->is_valid_access &&
954 	    env->prog->aux->ops->is_valid_access(off, size, t, &info)) {
955 		/* A non zero info.ctx_field_size indicates that this field is a
956 		 * candidate for later verifier transformation to load the whole
957 		 * field and then apply a mask when accessed with a narrower
958 		 * access than actual ctx access size. A zero info.ctx_field_size
959 		 * will only allow for whole field access and rejects any other
960 		 * type of narrower access.
961 		 */
962 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
963 		*reg_type = info.reg_type;
964 
965 		/* remember the offset of last byte accessed in ctx */
966 		if (env->prog->aux->max_ctx_offset < off + size)
967 			env->prog->aux->max_ctx_offset = off + size;
968 		return 0;
969 	}
970 
971 	verbose("invalid bpf_context access off=%d size=%d\n", off, size);
972 	return -EACCES;
973 }
974 
975 static bool __is_pointer_value(bool allow_ptr_leaks,
976 			       const struct bpf_reg_state *reg)
977 {
978 	if (allow_ptr_leaks)
979 		return false;
980 
981 	return reg->type != SCALAR_VALUE;
982 }
983 
984 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
985 {
986 	return __is_pointer_value(env->allow_ptr_leaks, &env->cur_state.regs[regno]);
987 }
988 
989 static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
990 				   int off, int size, bool strict)
991 {
992 	struct tnum reg_off;
993 	int ip_align;
994 
995 	/* Byte size accesses are always allowed. */
996 	if (!strict || size == 1)
997 		return 0;
998 
999 	/* For platforms that do not have a Kconfig enabling
1000 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1001 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
1002 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1003 	 * to this code only in strict mode where we want to emulate
1004 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
1005 	 * unconditional IP align value of '2'.
1006 	 */
1007 	ip_align = 2;
1008 
1009 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1010 	if (!tnum_is_aligned(reg_off, size)) {
1011 		char tn_buf[48];
1012 
1013 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1014 		verbose("misaligned packet access off %d+%s+%d+%d size %d\n",
1015 			ip_align, tn_buf, reg->off, off, size);
1016 		return -EACCES;
1017 	}
1018 
1019 	return 0;
1020 }
1021 
1022 static int check_generic_ptr_alignment(const struct bpf_reg_state *reg,
1023 				       const char *pointer_desc,
1024 				       int off, int size, bool strict)
1025 {
1026 	struct tnum reg_off;
1027 
1028 	/* Byte size accesses are always allowed. */
1029 	if (!strict || size == 1)
1030 		return 0;
1031 
1032 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1033 	if (!tnum_is_aligned(reg_off, size)) {
1034 		char tn_buf[48];
1035 
1036 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1037 		verbose("misaligned %saccess off %s+%d+%d size %d\n",
1038 			pointer_desc, tn_buf, reg->off, off, size);
1039 		return -EACCES;
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 static int check_ptr_alignment(struct bpf_verifier_env *env,
1046 			       const struct bpf_reg_state *reg,
1047 			       int off, int size)
1048 {
1049 	bool strict = env->strict_alignment;
1050 	const char *pointer_desc = "";
1051 
1052 	switch (reg->type) {
1053 	case PTR_TO_PACKET:
1054 		/* special case, because of NET_IP_ALIGN */
1055 		return check_pkt_ptr_alignment(reg, off, size, strict);
1056 	case PTR_TO_MAP_VALUE:
1057 		pointer_desc = "value ";
1058 		break;
1059 	case PTR_TO_CTX:
1060 		pointer_desc = "context ";
1061 		break;
1062 	case PTR_TO_STACK:
1063 		pointer_desc = "stack ";
1064 		break;
1065 	default:
1066 		break;
1067 	}
1068 	return check_generic_ptr_alignment(reg, pointer_desc, off, size, strict);
1069 }
1070 
1071 /* check whether memory at (regno + off) is accessible for t = (read | write)
1072  * if t==write, value_regno is a register which value is stored into memory
1073  * if t==read, value_regno is a register which will receive the value from memory
1074  * if t==write && value_regno==-1, some unknown value is stored into memory
1075  * if t==read && value_regno==-1, don't care what we read from memory
1076  */
1077 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
1078 			    int bpf_size, enum bpf_access_type t,
1079 			    int value_regno)
1080 {
1081 	struct bpf_verifier_state *state = &env->cur_state;
1082 	struct bpf_reg_state *reg = &state->regs[regno];
1083 	int size, err = 0;
1084 
1085 	size = bpf_size_to_bytes(bpf_size);
1086 	if (size < 0)
1087 		return size;
1088 
1089 	/* alignment checks will add in reg->off themselves */
1090 	err = check_ptr_alignment(env, reg, off, size);
1091 	if (err)
1092 		return err;
1093 
1094 	/* for access checks, reg->off is just part of off */
1095 	off += reg->off;
1096 
1097 	if (reg->type == PTR_TO_MAP_VALUE) {
1098 		if (t == BPF_WRITE && value_regno >= 0 &&
1099 		    is_pointer_value(env, value_regno)) {
1100 			verbose("R%d leaks addr into map\n", value_regno);
1101 			return -EACCES;
1102 		}
1103 
1104 		err = check_map_access(env, regno, off, size);
1105 		if (!err && t == BPF_READ && value_regno >= 0)
1106 			mark_reg_unknown(state->regs, value_regno);
1107 
1108 	} else if (reg->type == PTR_TO_CTX) {
1109 		enum bpf_reg_type reg_type = SCALAR_VALUE;
1110 
1111 		if (t == BPF_WRITE && value_regno >= 0 &&
1112 		    is_pointer_value(env, value_regno)) {
1113 			verbose("R%d leaks addr into ctx\n", value_regno);
1114 			return -EACCES;
1115 		}
1116 		/* ctx accesses must be at a fixed offset, so that we can
1117 		 * determine what type of data were returned.
1118 		 */
1119 		if (!tnum_is_const(reg->var_off)) {
1120 			char tn_buf[48];
1121 
1122 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1123 			verbose("variable ctx access var_off=%s off=%d size=%d",
1124 				tn_buf, off, size);
1125 			return -EACCES;
1126 		}
1127 		off += reg->var_off.value;
1128 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1129 		if (!err && t == BPF_READ && value_regno >= 0) {
1130 			/* ctx access returns either a scalar, or a
1131 			 * PTR_TO_PACKET[_END].  In the latter case, we know
1132 			 * the offset is zero.
1133 			 */
1134 			if (reg_type == SCALAR_VALUE)
1135 				mark_reg_unknown(state->regs, value_regno);
1136 			else
1137 				mark_reg_known_zero(state->regs, value_regno);
1138 			state->regs[value_regno].id = 0;
1139 			state->regs[value_regno].off = 0;
1140 			state->regs[value_regno].range = 0;
1141 			state->regs[value_regno].type = reg_type;
1142 		}
1143 
1144 	} else if (reg->type == PTR_TO_STACK) {
1145 		/* stack accesses must be at a fixed offset, so that we can
1146 		 * determine what type of data were returned.
1147 		 * See check_stack_read().
1148 		 */
1149 		if (!tnum_is_const(reg->var_off)) {
1150 			char tn_buf[48];
1151 
1152 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1153 			verbose("variable stack access var_off=%s off=%d size=%d",
1154 				tn_buf, off, size);
1155 			return -EACCES;
1156 		}
1157 		off += reg->var_off.value;
1158 		if (off >= 0 || off < -MAX_BPF_STACK) {
1159 			verbose("invalid stack off=%d size=%d\n", off, size);
1160 			return -EACCES;
1161 		}
1162 
1163 		if (env->prog->aux->stack_depth < -off)
1164 			env->prog->aux->stack_depth = -off;
1165 
1166 		if (t == BPF_WRITE) {
1167 			if (!env->allow_ptr_leaks &&
1168 			    state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
1169 			    size != BPF_REG_SIZE) {
1170 				verbose("attempt to corrupt spilled pointer on stack\n");
1171 				return -EACCES;
1172 			}
1173 			err = check_stack_write(state, off, size, value_regno);
1174 		} else {
1175 			err = check_stack_read(state, off, size, value_regno);
1176 		}
1177 	} else if (reg->type == PTR_TO_PACKET) {
1178 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1179 			verbose("cannot write into packet\n");
1180 			return -EACCES;
1181 		}
1182 		if (t == BPF_WRITE && value_regno >= 0 &&
1183 		    is_pointer_value(env, value_regno)) {
1184 			verbose("R%d leaks addr into packet\n", value_regno);
1185 			return -EACCES;
1186 		}
1187 		err = check_packet_access(env, regno, off, size);
1188 		if (!err && t == BPF_READ && value_regno >= 0)
1189 			mark_reg_unknown(state->regs, value_regno);
1190 	} else {
1191 		verbose("R%d invalid mem access '%s'\n",
1192 			regno, reg_type_str[reg->type]);
1193 		return -EACCES;
1194 	}
1195 
1196 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1197 	    state->regs[value_regno].type == SCALAR_VALUE) {
1198 		/* b/h/w load zero-extends, mark upper bits as known 0 */
1199 		state->regs[value_regno].var_off = tnum_cast(
1200 					state->regs[value_regno].var_off, size);
1201 		__update_reg_bounds(&state->regs[value_regno]);
1202 	}
1203 	return err;
1204 }
1205 
1206 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1207 {
1208 	int err;
1209 
1210 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1211 	    insn->imm != 0) {
1212 		verbose("BPF_XADD uses reserved fields\n");
1213 		return -EINVAL;
1214 	}
1215 
1216 	/* check src1 operand */
1217 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1218 	if (err)
1219 		return err;
1220 
1221 	/* check src2 operand */
1222 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1223 	if (err)
1224 		return err;
1225 
1226 	if (is_pointer_value(env, insn->src_reg)) {
1227 		verbose("R%d leaks addr into mem\n", insn->src_reg);
1228 		return -EACCES;
1229 	}
1230 
1231 	/* check whether atomic_add can read the memory */
1232 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1233 			       BPF_SIZE(insn->code), BPF_READ, -1);
1234 	if (err)
1235 		return err;
1236 
1237 	/* check whether atomic_add can write into the same memory */
1238 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1239 				BPF_SIZE(insn->code), BPF_WRITE, -1);
1240 }
1241 
1242 /* Does this register contain a constant zero? */
1243 static bool register_is_null(struct bpf_reg_state reg)
1244 {
1245 	return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1246 }
1247 
1248 /* when register 'regno' is passed into function that will read 'access_size'
1249  * bytes from that pointer, make sure that it's within stack boundary
1250  * and all elements of stack are initialized.
1251  * Unlike most pointer bounds-checking functions, this one doesn't take an
1252  * 'off' argument, so it has to add in reg->off itself.
1253  */
1254 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1255 				int access_size, bool zero_size_allowed,
1256 				struct bpf_call_arg_meta *meta)
1257 {
1258 	struct bpf_verifier_state *state = &env->cur_state;
1259 	struct bpf_reg_state *regs = state->regs;
1260 	int off, i;
1261 
1262 	if (regs[regno].type != PTR_TO_STACK) {
1263 		/* Allow zero-byte read from NULL, regardless of pointer type */
1264 		if (zero_size_allowed && access_size == 0 &&
1265 		    register_is_null(regs[regno]))
1266 			return 0;
1267 
1268 		verbose("R%d type=%s expected=%s\n", regno,
1269 			reg_type_str[regs[regno].type],
1270 			reg_type_str[PTR_TO_STACK]);
1271 		return -EACCES;
1272 	}
1273 
1274 	/* Only allow fixed-offset stack reads */
1275 	if (!tnum_is_const(regs[regno].var_off)) {
1276 		char tn_buf[48];
1277 
1278 		tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1279 		verbose("invalid variable stack read R%d var_off=%s\n",
1280 			regno, tn_buf);
1281 	}
1282 	off = regs[regno].off + regs[regno].var_off.value;
1283 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1284 	    access_size <= 0) {
1285 		verbose("invalid stack type R%d off=%d access_size=%d\n",
1286 			regno, off, access_size);
1287 		return -EACCES;
1288 	}
1289 
1290 	if (env->prog->aux->stack_depth < -off)
1291 		env->prog->aux->stack_depth = -off;
1292 
1293 	if (meta && meta->raw_mode) {
1294 		meta->access_size = access_size;
1295 		meta->regno = regno;
1296 		return 0;
1297 	}
1298 
1299 	for (i = 0; i < access_size; i++) {
1300 		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
1301 			verbose("invalid indirect read from stack off %d+%d size %d\n",
1302 				off, i, access_size);
1303 			return -EACCES;
1304 		}
1305 	}
1306 	return 0;
1307 }
1308 
1309 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1310 				   int access_size, bool zero_size_allowed,
1311 				   struct bpf_call_arg_meta *meta)
1312 {
1313 	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1314 
1315 	switch (reg->type) {
1316 	case PTR_TO_PACKET:
1317 		return check_packet_access(env, regno, reg->off, access_size);
1318 	case PTR_TO_MAP_VALUE:
1319 		return check_map_access(env, regno, reg->off, access_size);
1320 	default: /* scalar_value|ptr_to_stack or invalid ptr */
1321 		return check_stack_boundary(env, regno, access_size,
1322 					    zero_size_allowed, meta);
1323 	}
1324 }
1325 
1326 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1327 			  enum bpf_arg_type arg_type,
1328 			  struct bpf_call_arg_meta *meta)
1329 {
1330 	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1331 	enum bpf_reg_type expected_type, type = reg->type;
1332 	int err = 0;
1333 
1334 	if (arg_type == ARG_DONTCARE)
1335 		return 0;
1336 
1337 	err = check_reg_arg(env, regno, SRC_OP);
1338 	if (err)
1339 		return err;
1340 
1341 	if (arg_type == ARG_ANYTHING) {
1342 		if (is_pointer_value(env, regno)) {
1343 			verbose("R%d leaks addr into helper function\n", regno);
1344 			return -EACCES;
1345 		}
1346 		return 0;
1347 	}
1348 
1349 	if (type == PTR_TO_PACKET &&
1350 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1351 		verbose("helper access to the packet is not allowed\n");
1352 		return -EACCES;
1353 	}
1354 
1355 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1356 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
1357 		expected_type = PTR_TO_STACK;
1358 		if (type != PTR_TO_PACKET && type != expected_type)
1359 			goto err_type;
1360 	} else if (arg_type == ARG_CONST_SIZE ||
1361 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1362 		expected_type = SCALAR_VALUE;
1363 		if (type != expected_type)
1364 			goto err_type;
1365 	} else if (arg_type == ARG_CONST_MAP_PTR) {
1366 		expected_type = CONST_PTR_TO_MAP;
1367 		if (type != expected_type)
1368 			goto err_type;
1369 	} else if (arg_type == ARG_PTR_TO_CTX) {
1370 		expected_type = PTR_TO_CTX;
1371 		if (type != expected_type)
1372 			goto err_type;
1373 	} else if (arg_type == ARG_PTR_TO_MEM ||
1374 		   arg_type == ARG_PTR_TO_UNINIT_MEM) {
1375 		expected_type = PTR_TO_STACK;
1376 		/* One exception here. In case function allows for NULL to be
1377 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1378 		 * happens during stack boundary checking.
1379 		 */
1380 		if (register_is_null(*reg))
1381 			/* final test in check_stack_boundary() */;
1382 		else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
1383 			 type != expected_type)
1384 			goto err_type;
1385 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1386 	} else {
1387 		verbose("unsupported arg_type %d\n", arg_type);
1388 		return -EFAULT;
1389 	}
1390 
1391 	if (arg_type == ARG_CONST_MAP_PTR) {
1392 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1393 		meta->map_ptr = reg->map_ptr;
1394 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1395 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
1396 		 * check that [key, key + map->key_size) are within
1397 		 * stack limits and initialized
1398 		 */
1399 		if (!meta->map_ptr) {
1400 			/* in function declaration map_ptr must come before
1401 			 * map_key, so that it's verified and known before
1402 			 * we have to check map_key here. Otherwise it means
1403 			 * that kernel subsystem misconfigured verifier
1404 			 */
1405 			verbose("invalid map_ptr to access map->key\n");
1406 			return -EACCES;
1407 		}
1408 		if (type == PTR_TO_PACKET)
1409 			err = check_packet_access(env, regno, reg->off,
1410 						  meta->map_ptr->key_size);
1411 		else
1412 			err = check_stack_boundary(env, regno,
1413 						   meta->map_ptr->key_size,
1414 						   false, NULL);
1415 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1416 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
1417 		 * check [value, value + map->value_size) validity
1418 		 */
1419 		if (!meta->map_ptr) {
1420 			/* kernel subsystem misconfigured verifier */
1421 			verbose("invalid map_ptr to access map->value\n");
1422 			return -EACCES;
1423 		}
1424 		if (type == PTR_TO_PACKET)
1425 			err = check_packet_access(env, regno, reg->off,
1426 						  meta->map_ptr->value_size);
1427 		else
1428 			err = check_stack_boundary(env, regno,
1429 						   meta->map_ptr->value_size,
1430 						   false, NULL);
1431 	} else if (arg_type == ARG_CONST_SIZE ||
1432 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1433 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1434 
1435 		/* bpf_xxx(..., buf, len) call will access 'len' bytes
1436 		 * from stack pointer 'buf'. Check it
1437 		 * note: regno == len, regno - 1 == buf
1438 		 */
1439 		if (regno == 0) {
1440 			/* kernel subsystem misconfigured verifier */
1441 			verbose("ARG_CONST_SIZE cannot be first argument\n");
1442 			return -EACCES;
1443 		}
1444 
1445 		/* The register is SCALAR_VALUE; the access check
1446 		 * happens using its boundaries.
1447 		 */
1448 
1449 		if (!tnum_is_const(reg->var_off))
1450 			/* For unprivileged variable accesses, disable raw
1451 			 * mode so that the program is required to
1452 			 * initialize all the memory that the helper could
1453 			 * just partially fill up.
1454 			 */
1455 			meta = NULL;
1456 
1457 		if (reg->smin_value < 0) {
1458 			verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
1459 				regno);
1460 			return -EACCES;
1461 		}
1462 
1463 		if (reg->umin_value == 0) {
1464 			err = check_helper_mem_access(env, regno - 1, 0,
1465 						      zero_size_allowed,
1466 						      meta);
1467 			if (err)
1468 				return err;
1469 		}
1470 
1471 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1472 			verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1473 				regno);
1474 			return -EACCES;
1475 		}
1476 		err = check_helper_mem_access(env, regno - 1,
1477 					      reg->umax_value,
1478 					      zero_size_allowed, meta);
1479 	}
1480 
1481 	return err;
1482 err_type:
1483 	verbose("R%d type=%s expected=%s\n", regno,
1484 		reg_type_str[type], reg_type_str[expected_type]);
1485 	return -EACCES;
1486 }
1487 
1488 static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1489 {
1490 	if (!map)
1491 		return 0;
1492 
1493 	/* We need a two way check, first is from map perspective ... */
1494 	switch (map->map_type) {
1495 	case BPF_MAP_TYPE_PROG_ARRAY:
1496 		if (func_id != BPF_FUNC_tail_call)
1497 			goto error;
1498 		break;
1499 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1500 		if (func_id != BPF_FUNC_perf_event_read &&
1501 		    func_id != BPF_FUNC_perf_event_output)
1502 			goto error;
1503 		break;
1504 	case BPF_MAP_TYPE_STACK_TRACE:
1505 		if (func_id != BPF_FUNC_get_stackid)
1506 			goto error;
1507 		break;
1508 	case BPF_MAP_TYPE_CGROUP_ARRAY:
1509 		if (func_id != BPF_FUNC_skb_under_cgroup &&
1510 		    func_id != BPF_FUNC_current_task_under_cgroup)
1511 			goto error;
1512 		break;
1513 	/* devmap returns a pointer to a live net_device ifindex that we cannot
1514 	 * allow to be modified from bpf side. So do not allow lookup elements
1515 	 * for now.
1516 	 */
1517 	case BPF_MAP_TYPE_DEVMAP:
1518 		if (func_id != BPF_FUNC_redirect_map)
1519 			goto error;
1520 		break;
1521 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
1522 	case BPF_MAP_TYPE_HASH_OF_MAPS:
1523 		if (func_id != BPF_FUNC_map_lookup_elem)
1524 			goto error;
1525 		break;
1526 	case BPF_MAP_TYPE_SOCKMAP:
1527 		if (func_id != BPF_FUNC_sk_redirect_map &&
1528 		    func_id != BPF_FUNC_sock_map_update &&
1529 		    func_id != BPF_FUNC_map_delete_elem)
1530 			goto error;
1531 		break;
1532 	default:
1533 		break;
1534 	}
1535 
1536 	/* ... and second from the function itself. */
1537 	switch (func_id) {
1538 	case BPF_FUNC_tail_call:
1539 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1540 			goto error;
1541 		break;
1542 	case BPF_FUNC_perf_event_read:
1543 	case BPF_FUNC_perf_event_output:
1544 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1545 			goto error;
1546 		break;
1547 	case BPF_FUNC_get_stackid:
1548 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1549 			goto error;
1550 		break;
1551 	case BPF_FUNC_current_task_under_cgroup:
1552 	case BPF_FUNC_skb_under_cgroup:
1553 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1554 			goto error;
1555 		break;
1556 	case BPF_FUNC_redirect_map:
1557 		if (map->map_type != BPF_MAP_TYPE_DEVMAP)
1558 			goto error;
1559 		break;
1560 	case BPF_FUNC_sk_redirect_map:
1561 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1562 			goto error;
1563 		break;
1564 	case BPF_FUNC_sock_map_update:
1565 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1566 			goto error;
1567 		break;
1568 	default:
1569 		break;
1570 	}
1571 
1572 	return 0;
1573 error:
1574 	verbose("cannot pass map_type %d into func %s#%d\n",
1575 		map->map_type, func_id_name(func_id), func_id);
1576 	return -EINVAL;
1577 }
1578 
1579 static int check_raw_mode(const struct bpf_func_proto *fn)
1580 {
1581 	int count = 0;
1582 
1583 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1584 		count++;
1585 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1586 		count++;
1587 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1588 		count++;
1589 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1590 		count++;
1591 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1592 		count++;
1593 
1594 	return count > 1 ? -EINVAL : 0;
1595 }
1596 
1597 /* Packet data might have moved, any old PTR_TO_PACKET[_END] are now invalid,
1598  * so turn them into unknown SCALAR_VALUE.
1599  */
1600 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1601 {
1602 	struct bpf_verifier_state *state = &env->cur_state;
1603 	struct bpf_reg_state *regs = state->regs, *reg;
1604 	int i;
1605 
1606 	for (i = 0; i < MAX_BPF_REG; i++)
1607 		if (regs[i].type == PTR_TO_PACKET ||
1608 		    regs[i].type == PTR_TO_PACKET_END)
1609 			mark_reg_unknown(regs, i);
1610 
1611 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1612 		if (state->stack_slot_type[i] != STACK_SPILL)
1613 			continue;
1614 		reg = &state->spilled_regs[i / BPF_REG_SIZE];
1615 		if (reg->type != PTR_TO_PACKET &&
1616 		    reg->type != PTR_TO_PACKET_END)
1617 			continue;
1618 		__mark_reg_unknown(reg);
1619 	}
1620 }
1621 
1622 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1623 {
1624 	struct bpf_verifier_state *state = &env->cur_state;
1625 	const struct bpf_func_proto *fn = NULL;
1626 	struct bpf_reg_state *regs = state->regs;
1627 	struct bpf_call_arg_meta meta;
1628 	bool changes_data;
1629 	int i, err;
1630 
1631 	/* find function prototype */
1632 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1633 		verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
1634 		return -EINVAL;
1635 	}
1636 
1637 	if (env->prog->aux->ops->get_func_proto)
1638 		fn = env->prog->aux->ops->get_func_proto(func_id);
1639 
1640 	if (!fn) {
1641 		verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
1642 		return -EINVAL;
1643 	}
1644 
1645 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1646 	if (!env->prog->gpl_compatible && fn->gpl_only) {
1647 		verbose("cannot call GPL only function from proprietary program\n");
1648 		return -EINVAL;
1649 	}
1650 
1651 	changes_data = bpf_helper_changes_pkt_data(fn->func);
1652 
1653 	memset(&meta, 0, sizeof(meta));
1654 	meta.pkt_access = fn->pkt_access;
1655 
1656 	/* We only support one arg being in raw mode at the moment, which
1657 	 * is sufficient for the helper functions we have right now.
1658 	 */
1659 	err = check_raw_mode(fn);
1660 	if (err) {
1661 		verbose("kernel subsystem misconfigured func %s#%d\n",
1662 			func_id_name(func_id), func_id);
1663 		return err;
1664 	}
1665 
1666 	/* check args */
1667 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1668 	if (err)
1669 		return err;
1670 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1671 	if (err)
1672 		return err;
1673 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1674 	if (err)
1675 		return err;
1676 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1677 	if (err)
1678 		return err;
1679 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1680 	if (err)
1681 		return err;
1682 
1683 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
1684 	 * is inferred from register state.
1685 	 */
1686 	for (i = 0; i < meta.access_size; i++) {
1687 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
1688 		if (err)
1689 			return err;
1690 	}
1691 
1692 	/* reset caller saved regs */
1693 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1694 		mark_reg_not_init(regs, caller_saved[i]);
1695 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1696 	}
1697 
1698 	/* update return register (already marked as written above) */
1699 	if (fn->ret_type == RET_INTEGER) {
1700 		/* sets type to SCALAR_VALUE */
1701 		mark_reg_unknown(regs, BPF_REG_0);
1702 	} else if (fn->ret_type == RET_VOID) {
1703 		regs[BPF_REG_0].type = NOT_INIT;
1704 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1705 		struct bpf_insn_aux_data *insn_aux;
1706 
1707 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1708 		/* There is no offset yet applied, variable or fixed */
1709 		mark_reg_known_zero(regs, BPF_REG_0);
1710 		regs[BPF_REG_0].off = 0;
1711 		/* remember map_ptr, so that check_map_access()
1712 		 * can check 'value_size' boundary of memory access
1713 		 * to map element returned from bpf_map_lookup_elem()
1714 		 */
1715 		if (meta.map_ptr == NULL) {
1716 			verbose("kernel subsystem misconfigured verifier\n");
1717 			return -EINVAL;
1718 		}
1719 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1720 		regs[BPF_REG_0].id = ++env->id_gen;
1721 		insn_aux = &env->insn_aux_data[insn_idx];
1722 		if (!insn_aux->map_ptr)
1723 			insn_aux->map_ptr = meta.map_ptr;
1724 		else if (insn_aux->map_ptr != meta.map_ptr)
1725 			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1726 	} else {
1727 		verbose("unknown return type %d of func %s#%d\n",
1728 			fn->ret_type, func_id_name(func_id), func_id);
1729 		return -EINVAL;
1730 	}
1731 
1732 	err = check_map_func_compatibility(meta.map_ptr, func_id);
1733 	if (err)
1734 		return err;
1735 
1736 	if (changes_data)
1737 		clear_all_pkt_pointers(env);
1738 	return 0;
1739 }
1740 
1741 static void coerce_reg_to_32(struct bpf_reg_state *reg)
1742 {
1743 	/* clear high 32 bits */
1744 	reg->var_off = tnum_cast(reg->var_off, 4);
1745 	/* Update bounds */
1746 	__update_reg_bounds(reg);
1747 }
1748 
1749 static bool signed_add_overflows(s64 a, s64 b)
1750 {
1751 	/* Do the add in u64, where overflow is well-defined */
1752 	s64 res = (s64)((u64)a + (u64)b);
1753 
1754 	if (b < 0)
1755 		return res > a;
1756 	return res < a;
1757 }
1758 
1759 static bool signed_sub_overflows(s64 a, s64 b)
1760 {
1761 	/* Do the sub in u64, where overflow is well-defined */
1762 	s64 res = (s64)((u64)a - (u64)b);
1763 
1764 	if (b < 0)
1765 		return res < a;
1766 	return res > a;
1767 }
1768 
1769 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
1770  * Caller should also handle BPF_MOV case separately.
1771  * If we return -EACCES, caller may want to try again treating pointer as a
1772  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
1773  */
1774 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1775 				   struct bpf_insn *insn,
1776 				   const struct bpf_reg_state *ptr_reg,
1777 				   const struct bpf_reg_state *off_reg)
1778 {
1779 	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1780 	bool known = tnum_is_const(off_reg->var_off);
1781 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1782 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1783 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1784 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
1785 	u8 opcode = BPF_OP(insn->code);
1786 	u32 dst = insn->dst_reg;
1787 
1788 	dst_reg = &regs[dst];
1789 
1790 	if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
1791 		print_verifier_state(&env->cur_state);
1792 		verbose("verifier internal error: known but bad sbounds\n");
1793 		return -EINVAL;
1794 	}
1795 	if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
1796 		print_verifier_state(&env->cur_state);
1797 		verbose("verifier internal error: known but bad ubounds\n");
1798 		return -EINVAL;
1799 	}
1800 
1801 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
1802 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
1803 		if (!env->allow_ptr_leaks)
1804 			verbose("R%d 32-bit pointer arithmetic prohibited\n",
1805 				dst);
1806 		return -EACCES;
1807 	}
1808 
1809 	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1810 		if (!env->allow_ptr_leaks)
1811 			verbose("R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1812 				dst);
1813 		return -EACCES;
1814 	}
1815 	if (ptr_reg->type == CONST_PTR_TO_MAP) {
1816 		if (!env->allow_ptr_leaks)
1817 			verbose("R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1818 				dst);
1819 		return -EACCES;
1820 	}
1821 	if (ptr_reg->type == PTR_TO_PACKET_END) {
1822 		if (!env->allow_ptr_leaks)
1823 			verbose("R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1824 				dst);
1825 		return -EACCES;
1826 	}
1827 
1828 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1829 	 * The id may be overwritten later if we create a new variable offset.
1830 	 */
1831 	dst_reg->type = ptr_reg->type;
1832 	dst_reg->id = ptr_reg->id;
1833 
1834 	switch (opcode) {
1835 	case BPF_ADD:
1836 		/* We can take a fixed offset as long as it doesn't overflow
1837 		 * the s32 'off' field
1838 		 */
1839 		if (known && (ptr_reg->off + smin_val ==
1840 			      (s64)(s32)(ptr_reg->off + smin_val))) {
1841 			/* pointer += K.  Accumulate it into fixed offset */
1842 			dst_reg->smin_value = smin_ptr;
1843 			dst_reg->smax_value = smax_ptr;
1844 			dst_reg->umin_value = umin_ptr;
1845 			dst_reg->umax_value = umax_ptr;
1846 			dst_reg->var_off = ptr_reg->var_off;
1847 			dst_reg->off = ptr_reg->off + smin_val;
1848 			dst_reg->range = ptr_reg->range;
1849 			break;
1850 		}
1851 		/* A new variable offset is created.  Note that off_reg->off
1852 		 * == 0, since it's a scalar.
1853 		 * dst_reg gets the pointer type and since some positive
1854 		 * integer value was added to the pointer, give it a new 'id'
1855 		 * if it's a PTR_TO_PACKET.
1856 		 * this creates a new 'base' pointer, off_reg (variable) gets
1857 		 * added into the variable offset, and we copy the fixed offset
1858 		 * from ptr_reg.
1859 		 */
1860 		if (signed_add_overflows(smin_ptr, smin_val) ||
1861 		    signed_add_overflows(smax_ptr, smax_val)) {
1862 			dst_reg->smin_value = S64_MIN;
1863 			dst_reg->smax_value = S64_MAX;
1864 		} else {
1865 			dst_reg->smin_value = smin_ptr + smin_val;
1866 			dst_reg->smax_value = smax_ptr + smax_val;
1867 		}
1868 		if (umin_ptr + umin_val < umin_ptr ||
1869 		    umax_ptr + umax_val < umax_ptr) {
1870 			dst_reg->umin_value = 0;
1871 			dst_reg->umax_value = U64_MAX;
1872 		} else {
1873 			dst_reg->umin_value = umin_ptr + umin_val;
1874 			dst_reg->umax_value = umax_ptr + umax_val;
1875 		}
1876 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1877 		dst_reg->off = ptr_reg->off;
1878 		if (ptr_reg->type == PTR_TO_PACKET) {
1879 			dst_reg->id = ++env->id_gen;
1880 			/* something was added to pkt_ptr, set range to zero */
1881 			dst_reg->range = 0;
1882 		}
1883 		break;
1884 	case BPF_SUB:
1885 		if (dst_reg == off_reg) {
1886 			/* scalar -= pointer.  Creates an unknown scalar */
1887 			if (!env->allow_ptr_leaks)
1888 				verbose("R%d tried to subtract pointer from scalar\n",
1889 					dst);
1890 			return -EACCES;
1891 		}
1892 		/* We don't allow subtraction from FP, because (according to
1893 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
1894 		 * be able to deal with it.
1895 		 */
1896 		if (ptr_reg->type == PTR_TO_STACK) {
1897 			if (!env->allow_ptr_leaks)
1898 				verbose("R%d subtraction from stack pointer prohibited\n",
1899 					dst);
1900 			return -EACCES;
1901 		}
1902 		if (known && (ptr_reg->off - smin_val ==
1903 			      (s64)(s32)(ptr_reg->off - smin_val))) {
1904 			/* pointer -= K.  Subtract it from fixed offset */
1905 			dst_reg->smin_value = smin_ptr;
1906 			dst_reg->smax_value = smax_ptr;
1907 			dst_reg->umin_value = umin_ptr;
1908 			dst_reg->umax_value = umax_ptr;
1909 			dst_reg->var_off = ptr_reg->var_off;
1910 			dst_reg->id = ptr_reg->id;
1911 			dst_reg->off = ptr_reg->off - smin_val;
1912 			dst_reg->range = ptr_reg->range;
1913 			break;
1914 		}
1915 		/* A new variable offset is created.  If the subtrahend is known
1916 		 * nonnegative, then any reg->range we had before is still good.
1917 		 */
1918 		if (signed_sub_overflows(smin_ptr, smax_val) ||
1919 		    signed_sub_overflows(smax_ptr, smin_val)) {
1920 			/* Overflow possible, we know nothing */
1921 			dst_reg->smin_value = S64_MIN;
1922 			dst_reg->smax_value = S64_MAX;
1923 		} else {
1924 			dst_reg->smin_value = smin_ptr - smax_val;
1925 			dst_reg->smax_value = smax_ptr - smin_val;
1926 		}
1927 		if (umin_ptr < umax_val) {
1928 			/* Overflow possible, we know nothing */
1929 			dst_reg->umin_value = 0;
1930 			dst_reg->umax_value = U64_MAX;
1931 		} else {
1932 			/* Cannot overflow (as long as bounds are consistent) */
1933 			dst_reg->umin_value = umin_ptr - umax_val;
1934 			dst_reg->umax_value = umax_ptr - umin_val;
1935 		}
1936 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
1937 		dst_reg->off = ptr_reg->off;
1938 		if (ptr_reg->type == PTR_TO_PACKET) {
1939 			dst_reg->id = ++env->id_gen;
1940 			/* something was added to pkt_ptr, set range to zero */
1941 			if (smin_val < 0)
1942 				dst_reg->range = 0;
1943 		}
1944 		break;
1945 	case BPF_AND:
1946 	case BPF_OR:
1947 	case BPF_XOR:
1948 		/* bitwise ops on pointers are troublesome, prohibit for now.
1949 		 * (However, in principle we could allow some cases, e.g.
1950 		 * ptr &= ~3 which would reduce min_value by 3.)
1951 		 */
1952 		if (!env->allow_ptr_leaks)
1953 			verbose("R%d bitwise operator %s on pointer prohibited\n",
1954 				dst, bpf_alu_string[opcode >> 4]);
1955 		return -EACCES;
1956 	default:
1957 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
1958 		if (!env->allow_ptr_leaks)
1959 			verbose("R%d pointer arithmetic with %s operator prohibited\n",
1960 				dst, bpf_alu_string[opcode >> 4]);
1961 		return -EACCES;
1962 	}
1963 
1964 	__update_reg_bounds(dst_reg);
1965 	__reg_deduce_bounds(dst_reg);
1966 	__reg_bound_offset(dst_reg);
1967 	return 0;
1968 }
1969 
1970 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
1971 				      struct bpf_insn *insn,
1972 				      struct bpf_reg_state *dst_reg,
1973 				      struct bpf_reg_state src_reg)
1974 {
1975 	struct bpf_reg_state *regs = env->cur_state.regs;
1976 	u8 opcode = BPF_OP(insn->code);
1977 	bool src_known, dst_known;
1978 	s64 smin_val, smax_val;
1979 	u64 umin_val, umax_val;
1980 
1981 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
1982 		/* 32-bit ALU ops are (32,32)->64 */
1983 		coerce_reg_to_32(dst_reg);
1984 		coerce_reg_to_32(&src_reg);
1985 	}
1986 	smin_val = src_reg.smin_value;
1987 	smax_val = src_reg.smax_value;
1988 	umin_val = src_reg.umin_value;
1989 	umax_val = src_reg.umax_value;
1990 	src_known = tnum_is_const(src_reg.var_off);
1991 	dst_known = tnum_is_const(dst_reg->var_off);
1992 
1993 	switch (opcode) {
1994 	case BPF_ADD:
1995 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
1996 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
1997 			dst_reg->smin_value = S64_MIN;
1998 			dst_reg->smax_value = S64_MAX;
1999 		} else {
2000 			dst_reg->smin_value += smin_val;
2001 			dst_reg->smax_value += smax_val;
2002 		}
2003 		if (dst_reg->umin_value + umin_val < umin_val ||
2004 		    dst_reg->umax_value + umax_val < umax_val) {
2005 			dst_reg->umin_value = 0;
2006 			dst_reg->umax_value = U64_MAX;
2007 		} else {
2008 			dst_reg->umin_value += umin_val;
2009 			dst_reg->umax_value += umax_val;
2010 		}
2011 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2012 		break;
2013 	case BPF_SUB:
2014 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2015 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2016 			/* Overflow possible, we know nothing */
2017 			dst_reg->smin_value = S64_MIN;
2018 			dst_reg->smax_value = S64_MAX;
2019 		} else {
2020 			dst_reg->smin_value -= smax_val;
2021 			dst_reg->smax_value -= smin_val;
2022 		}
2023 		if (dst_reg->umin_value < umax_val) {
2024 			/* Overflow possible, we know nothing */
2025 			dst_reg->umin_value = 0;
2026 			dst_reg->umax_value = U64_MAX;
2027 		} else {
2028 			/* Cannot overflow (as long as bounds are consistent) */
2029 			dst_reg->umin_value -= umax_val;
2030 			dst_reg->umax_value -= umin_val;
2031 		}
2032 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2033 		break;
2034 	case BPF_MUL:
2035 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2036 		if (smin_val < 0 || dst_reg->smin_value < 0) {
2037 			/* Ain't nobody got time to multiply that sign */
2038 			__mark_reg_unbounded(dst_reg);
2039 			__update_reg_bounds(dst_reg);
2040 			break;
2041 		}
2042 		/* Both values are positive, so we can work with unsigned and
2043 		 * copy the result to signed (unless it exceeds S64_MAX).
2044 		 */
2045 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2046 			/* Potential overflow, we know nothing */
2047 			__mark_reg_unbounded(dst_reg);
2048 			/* (except what we can learn from the var_off) */
2049 			__update_reg_bounds(dst_reg);
2050 			break;
2051 		}
2052 		dst_reg->umin_value *= umin_val;
2053 		dst_reg->umax_value *= umax_val;
2054 		if (dst_reg->umax_value > S64_MAX) {
2055 			/* Overflow possible, we know nothing */
2056 			dst_reg->smin_value = S64_MIN;
2057 			dst_reg->smax_value = S64_MAX;
2058 		} else {
2059 			dst_reg->smin_value = dst_reg->umin_value;
2060 			dst_reg->smax_value = dst_reg->umax_value;
2061 		}
2062 		break;
2063 	case BPF_AND:
2064 		if (src_known && dst_known) {
2065 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
2066 						  src_reg.var_off.value);
2067 			break;
2068 		}
2069 		/* We get our minimum from the var_off, since that's inherently
2070 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2071 		 */
2072 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2073 		dst_reg->umin_value = dst_reg->var_off.value;
2074 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2075 		if (dst_reg->smin_value < 0 || smin_val < 0) {
2076 			/* Lose signed bounds when ANDing negative numbers,
2077 			 * ain't nobody got time for that.
2078 			 */
2079 			dst_reg->smin_value = S64_MIN;
2080 			dst_reg->smax_value = S64_MAX;
2081 		} else {
2082 			/* ANDing two positives gives a positive, so safe to
2083 			 * cast result into s64.
2084 			 */
2085 			dst_reg->smin_value = dst_reg->umin_value;
2086 			dst_reg->smax_value = dst_reg->umax_value;
2087 		}
2088 		/* We may learn something more from the var_off */
2089 		__update_reg_bounds(dst_reg);
2090 		break;
2091 	case BPF_OR:
2092 		if (src_known && dst_known) {
2093 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
2094 						  src_reg.var_off.value);
2095 			break;
2096 		}
2097 		/* We get our maximum from the var_off, and our minimum is the
2098 		 * maximum of the operands' minima
2099 		 */
2100 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2101 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2102 		dst_reg->umax_value = dst_reg->var_off.value |
2103 				      dst_reg->var_off.mask;
2104 		if (dst_reg->smin_value < 0 || smin_val < 0) {
2105 			/* Lose signed bounds when ORing negative numbers,
2106 			 * ain't nobody got time for that.
2107 			 */
2108 			dst_reg->smin_value = S64_MIN;
2109 			dst_reg->smax_value = S64_MAX;
2110 		} else {
2111 			/* ORing two positives gives a positive, so safe to
2112 			 * cast result into s64.
2113 			 */
2114 			dst_reg->smin_value = dst_reg->umin_value;
2115 			dst_reg->smax_value = dst_reg->umax_value;
2116 		}
2117 		/* We may learn something more from the var_off */
2118 		__update_reg_bounds(dst_reg);
2119 		break;
2120 	case BPF_LSH:
2121 		if (umax_val > 63) {
2122 			/* Shifts greater than 63 are undefined.  This includes
2123 			 * shifts by a negative number.
2124 			 */
2125 			mark_reg_unknown(regs, insn->dst_reg);
2126 			break;
2127 		}
2128 		/* We lose all sign bit information (except what we can pick
2129 		 * up from var_off)
2130 		 */
2131 		dst_reg->smin_value = S64_MIN;
2132 		dst_reg->smax_value = S64_MAX;
2133 		/* If we might shift our top bit out, then we know nothing */
2134 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2135 			dst_reg->umin_value = 0;
2136 			dst_reg->umax_value = U64_MAX;
2137 		} else {
2138 			dst_reg->umin_value <<= umin_val;
2139 			dst_reg->umax_value <<= umax_val;
2140 		}
2141 		if (src_known)
2142 			dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2143 		else
2144 			dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2145 		/* We may learn something more from the var_off */
2146 		__update_reg_bounds(dst_reg);
2147 		break;
2148 	case BPF_RSH:
2149 		if (umax_val > 63) {
2150 			/* Shifts greater than 63 are undefined.  This includes
2151 			 * shifts by a negative number.
2152 			 */
2153 			mark_reg_unknown(regs, insn->dst_reg);
2154 			break;
2155 		}
2156 		/* BPF_RSH is an unsigned shift, so make the appropriate casts */
2157 		if (dst_reg->smin_value < 0) {
2158 			if (umin_val) {
2159 				/* Sign bit will be cleared */
2160 				dst_reg->smin_value = 0;
2161 			} else {
2162 				/* Lost sign bit information */
2163 				dst_reg->smin_value = S64_MIN;
2164 				dst_reg->smax_value = S64_MAX;
2165 			}
2166 		} else {
2167 			dst_reg->smin_value =
2168 				(u64)(dst_reg->smin_value) >> umax_val;
2169 		}
2170 		if (src_known)
2171 			dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2172 						       umin_val);
2173 		else
2174 			dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2175 		dst_reg->umin_value >>= umax_val;
2176 		dst_reg->umax_value >>= umin_val;
2177 		/* We may learn something more from the var_off */
2178 		__update_reg_bounds(dst_reg);
2179 		break;
2180 	default:
2181 		mark_reg_unknown(regs, insn->dst_reg);
2182 		break;
2183 	}
2184 
2185 	__reg_deduce_bounds(dst_reg);
2186 	__reg_bound_offset(dst_reg);
2187 	return 0;
2188 }
2189 
2190 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2191  * and var_off.
2192  */
2193 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2194 				   struct bpf_insn *insn)
2195 {
2196 	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg, *src_reg;
2197 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2198 	u8 opcode = BPF_OP(insn->code);
2199 	int rc;
2200 
2201 	dst_reg = &regs[insn->dst_reg];
2202 	src_reg = NULL;
2203 	if (dst_reg->type != SCALAR_VALUE)
2204 		ptr_reg = dst_reg;
2205 	if (BPF_SRC(insn->code) == BPF_X) {
2206 		src_reg = &regs[insn->src_reg];
2207 		if (src_reg->type != SCALAR_VALUE) {
2208 			if (dst_reg->type != SCALAR_VALUE) {
2209 				/* Combining two pointers by any ALU op yields
2210 				 * an arbitrary scalar.
2211 				 */
2212 				if (!env->allow_ptr_leaks) {
2213 					verbose("R%d pointer %s pointer prohibited\n",
2214 						insn->dst_reg,
2215 						bpf_alu_string[opcode >> 4]);
2216 					return -EACCES;
2217 				}
2218 				mark_reg_unknown(regs, insn->dst_reg);
2219 				return 0;
2220 			} else {
2221 				/* scalar += pointer
2222 				 * This is legal, but we have to reverse our
2223 				 * src/dest handling in computing the range
2224 				 */
2225 				rc = adjust_ptr_min_max_vals(env, insn,
2226 							     src_reg, dst_reg);
2227 				if (rc == -EACCES && env->allow_ptr_leaks) {
2228 					/* scalar += unknown scalar */
2229 					__mark_reg_unknown(&off_reg);
2230 					return adjust_scalar_min_max_vals(
2231 							env, insn,
2232 							dst_reg, off_reg);
2233 				}
2234 				return rc;
2235 			}
2236 		} else if (ptr_reg) {
2237 			/* pointer += scalar */
2238 			rc = adjust_ptr_min_max_vals(env, insn,
2239 						     dst_reg, src_reg);
2240 			if (rc == -EACCES && env->allow_ptr_leaks) {
2241 				/* unknown scalar += scalar */
2242 				__mark_reg_unknown(dst_reg);
2243 				return adjust_scalar_min_max_vals(
2244 						env, insn, dst_reg, *src_reg);
2245 			}
2246 			return rc;
2247 		}
2248 	} else {
2249 		/* Pretend the src is a reg with a known value, since we only
2250 		 * need to be able to read from this state.
2251 		 */
2252 		off_reg.type = SCALAR_VALUE;
2253 		__mark_reg_known(&off_reg, insn->imm);
2254 		src_reg = &off_reg;
2255 		if (ptr_reg) { /* pointer += K */
2256 			rc = adjust_ptr_min_max_vals(env, insn,
2257 						     ptr_reg, src_reg);
2258 			if (rc == -EACCES && env->allow_ptr_leaks) {
2259 				/* unknown scalar += K */
2260 				__mark_reg_unknown(dst_reg);
2261 				return adjust_scalar_min_max_vals(
2262 						env, insn, dst_reg, off_reg);
2263 			}
2264 			return rc;
2265 		}
2266 	}
2267 
2268 	/* Got here implies adding two SCALAR_VALUEs */
2269 	if (WARN_ON_ONCE(ptr_reg)) {
2270 		print_verifier_state(&env->cur_state);
2271 		verbose("verifier internal error: unexpected ptr_reg\n");
2272 		return -EINVAL;
2273 	}
2274 	if (WARN_ON(!src_reg)) {
2275 		print_verifier_state(&env->cur_state);
2276 		verbose("verifier internal error: no src_reg\n");
2277 		return -EINVAL;
2278 	}
2279 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2280 }
2281 
2282 /* check validity of 32-bit and 64-bit arithmetic operations */
2283 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2284 {
2285 	struct bpf_reg_state *regs = env->cur_state.regs;
2286 	u8 opcode = BPF_OP(insn->code);
2287 	int err;
2288 
2289 	if (opcode == BPF_END || opcode == BPF_NEG) {
2290 		if (opcode == BPF_NEG) {
2291 			if (BPF_SRC(insn->code) != 0 ||
2292 			    insn->src_reg != BPF_REG_0 ||
2293 			    insn->off != 0 || insn->imm != 0) {
2294 				verbose("BPF_NEG uses reserved fields\n");
2295 				return -EINVAL;
2296 			}
2297 		} else {
2298 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2299 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2300 			    BPF_CLASS(insn->code) == BPF_ALU64) {
2301 				verbose("BPF_END uses reserved fields\n");
2302 				return -EINVAL;
2303 			}
2304 		}
2305 
2306 		/* check src operand */
2307 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2308 		if (err)
2309 			return err;
2310 
2311 		if (is_pointer_value(env, insn->dst_reg)) {
2312 			verbose("R%d pointer arithmetic prohibited\n",
2313 				insn->dst_reg);
2314 			return -EACCES;
2315 		}
2316 
2317 		/* check dest operand */
2318 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2319 		if (err)
2320 			return err;
2321 
2322 	} else if (opcode == BPF_MOV) {
2323 
2324 		if (BPF_SRC(insn->code) == BPF_X) {
2325 			if (insn->imm != 0 || insn->off != 0) {
2326 				verbose("BPF_MOV uses reserved fields\n");
2327 				return -EINVAL;
2328 			}
2329 
2330 			/* check src operand */
2331 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2332 			if (err)
2333 				return err;
2334 		} else {
2335 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2336 				verbose("BPF_MOV uses reserved fields\n");
2337 				return -EINVAL;
2338 			}
2339 		}
2340 
2341 		/* check dest operand */
2342 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2343 		if (err)
2344 			return err;
2345 
2346 		if (BPF_SRC(insn->code) == BPF_X) {
2347 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
2348 				/* case: R1 = R2
2349 				 * copy register state to dest reg
2350 				 */
2351 				regs[insn->dst_reg] = regs[insn->src_reg];
2352 				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
2353 			} else {
2354 				/* R1 = (u32) R2 */
2355 				if (is_pointer_value(env, insn->src_reg)) {
2356 					verbose("R%d partial copy of pointer\n",
2357 						insn->src_reg);
2358 					return -EACCES;
2359 				}
2360 				mark_reg_unknown(regs, insn->dst_reg);
2361 				/* high 32 bits are known zero. */
2362 				regs[insn->dst_reg].var_off = tnum_cast(
2363 						regs[insn->dst_reg].var_off, 4);
2364 				__update_reg_bounds(&regs[insn->dst_reg]);
2365 			}
2366 		} else {
2367 			/* case: R = imm
2368 			 * remember the value we stored into this reg
2369 			 */
2370 			regs[insn->dst_reg].type = SCALAR_VALUE;
2371 			__mark_reg_known(regs + insn->dst_reg, insn->imm);
2372 		}
2373 
2374 	} else if (opcode > BPF_END) {
2375 		verbose("invalid BPF_ALU opcode %x\n", opcode);
2376 		return -EINVAL;
2377 
2378 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
2379 
2380 		if (BPF_SRC(insn->code) == BPF_X) {
2381 			if (insn->imm != 0 || insn->off != 0) {
2382 				verbose("BPF_ALU uses reserved fields\n");
2383 				return -EINVAL;
2384 			}
2385 			/* check src1 operand */
2386 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2387 			if (err)
2388 				return err;
2389 		} else {
2390 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2391 				verbose("BPF_ALU uses reserved fields\n");
2392 				return -EINVAL;
2393 			}
2394 		}
2395 
2396 		/* check src2 operand */
2397 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2398 		if (err)
2399 			return err;
2400 
2401 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2402 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2403 			verbose("div by zero\n");
2404 			return -EINVAL;
2405 		}
2406 
2407 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2408 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2409 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2410 
2411 			if (insn->imm < 0 || insn->imm >= size) {
2412 				verbose("invalid shift %d\n", insn->imm);
2413 				return -EINVAL;
2414 			}
2415 		}
2416 
2417 		/* check dest operand */
2418 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
2419 		if (err)
2420 			return err;
2421 
2422 		return adjust_reg_min_max_vals(env, insn);
2423 	}
2424 
2425 	return 0;
2426 }
2427 
2428 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2429 				   struct bpf_reg_state *dst_reg)
2430 {
2431 	struct bpf_reg_state *regs = state->regs, *reg;
2432 	int i;
2433 
2434 	if (dst_reg->off < 0)
2435 		/* This doesn't give us any range */
2436 		return;
2437 
2438 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
2439 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2440 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
2441 		 * than pkt_end, but that's because it's also less than pkt.
2442 		 */
2443 		return;
2444 
2445 	/* LLVM can generate four kind of checks:
2446 	 *
2447 	 * Type 1/2:
2448 	 *
2449 	 *   r2 = r3;
2450 	 *   r2 += 8;
2451 	 *   if (r2 > pkt_end) goto <handle exception>
2452 	 *   <access okay>
2453 	 *
2454 	 *   r2 = r3;
2455 	 *   r2 += 8;
2456 	 *   if (r2 < pkt_end) goto <access okay>
2457 	 *   <handle exception>
2458 	 *
2459 	 *   Where:
2460 	 *     r2 == dst_reg, pkt_end == src_reg
2461 	 *     r2=pkt(id=n,off=8,r=0)
2462 	 *     r3=pkt(id=n,off=0,r=0)
2463 	 *
2464 	 * Type 3/4:
2465 	 *
2466 	 *   r2 = r3;
2467 	 *   r2 += 8;
2468 	 *   if (pkt_end >= r2) goto <access okay>
2469 	 *   <handle exception>
2470 	 *
2471 	 *   r2 = r3;
2472 	 *   r2 += 8;
2473 	 *   if (pkt_end <= r2) goto <handle exception>
2474 	 *   <access okay>
2475 	 *
2476 	 *   Where:
2477 	 *     pkt_end == dst_reg, r2 == src_reg
2478 	 *     r2=pkt(id=n,off=8,r=0)
2479 	 *     r3=pkt(id=n,off=0,r=0)
2480 	 *
2481 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2482 	 * so that range of bytes [r3, r3 + 8) is safe to access.
2483 	 */
2484 
2485 	/* If our ids match, then we must have the same max_value.  And we
2486 	 * don't care about the other reg's fixed offset, since if it's too big
2487 	 * the range won't allow anything.
2488 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2489 	 */
2490 	for (i = 0; i < MAX_BPF_REG; i++)
2491 		if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
2492 			/* keep the maximum range already checked */
2493 			regs[i].range = max_t(u16, regs[i].range, dst_reg->off);
2494 
2495 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2496 		if (state->stack_slot_type[i] != STACK_SPILL)
2497 			continue;
2498 		reg = &state->spilled_regs[i / BPF_REG_SIZE];
2499 		if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
2500 			reg->range = max_t(u16, reg->range, dst_reg->off);
2501 	}
2502 }
2503 
2504 /* Adjusts the register min/max values in the case that the dst_reg is the
2505  * variable register that we are working on, and src_reg is a constant or we're
2506  * simply doing a BPF_K check.
2507  * In JEQ/JNE cases we also adjust the var_off values.
2508  */
2509 static void reg_set_min_max(struct bpf_reg_state *true_reg,
2510 			    struct bpf_reg_state *false_reg, u64 val,
2511 			    u8 opcode)
2512 {
2513 	/* If the dst_reg is a pointer, we can't learn anything about its
2514 	 * variable offset from the compare (unless src_reg were a pointer into
2515 	 * the same object, but we don't bother with that.
2516 	 * Since false_reg and true_reg have the same type by construction, we
2517 	 * only need to check one of them for pointerness.
2518 	 */
2519 	if (__is_pointer_value(false, false_reg))
2520 		return;
2521 
2522 	switch (opcode) {
2523 	case BPF_JEQ:
2524 		/* If this is false then we know nothing Jon Snow, but if it is
2525 		 * true then we know for sure.
2526 		 */
2527 		__mark_reg_known(true_reg, val);
2528 		break;
2529 	case BPF_JNE:
2530 		/* If this is true we know nothing Jon Snow, but if it is false
2531 		 * we know the value for sure;
2532 		 */
2533 		__mark_reg_known(false_reg, val);
2534 		break;
2535 	case BPF_JGT:
2536 		false_reg->umax_value = min(false_reg->umax_value, val);
2537 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
2538 		break;
2539 	case BPF_JSGT:
2540 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2541 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2542 		break;
2543 	case BPF_JLT:
2544 		false_reg->umin_value = max(false_reg->umin_value, val);
2545 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
2546 		break;
2547 	case BPF_JSLT:
2548 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2549 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2550 		break;
2551 	case BPF_JGE:
2552 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
2553 		true_reg->umin_value = max(true_reg->umin_value, val);
2554 		break;
2555 	case BPF_JSGE:
2556 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2557 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2558 		break;
2559 	case BPF_JLE:
2560 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
2561 		true_reg->umax_value = min(true_reg->umax_value, val);
2562 		break;
2563 	case BPF_JSLE:
2564 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2565 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2566 		break;
2567 	default:
2568 		break;
2569 	}
2570 
2571 	__reg_deduce_bounds(false_reg);
2572 	__reg_deduce_bounds(true_reg);
2573 	/* We might have learned some bits from the bounds. */
2574 	__reg_bound_offset(false_reg);
2575 	__reg_bound_offset(true_reg);
2576 	/* Intersecting with the old var_off might have improved our bounds
2577 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2578 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2579 	 */
2580 	__update_reg_bounds(false_reg);
2581 	__update_reg_bounds(true_reg);
2582 }
2583 
2584 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
2585  * the variable reg.
2586  */
2587 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2588 				struct bpf_reg_state *false_reg, u64 val,
2589 				u8 opcode)
2590 {
2591 	if (__is_pointer_value(false, false_reg))
2592 		return;
2593 
2594 	switch (opcode) {
2595 	case BPF_JEQ:
2596 		/* If this is false then we know nothing Jon Snow, but if it is
2597 		 * true then we know for sure.
2598 		 */
2599 		__mark_reg_known(true_reg, val);
2600 		break;
2601 	case BPF_JNE:
2602 		/* If this is true we know nothing Jon Snow, but if it is false
2603 		 * we know the value for sure;
2604 		 */
2605 		__mark_reg_known(false_reg, val);
2606 		break;
2607 	case BPF_JGT:
2608 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
2609 		false_reg->umin_value = max(false_reg->umin_value, val);
2610 		break;
2611 	case BPF_JSGT:
2612 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2613 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2614 		break;
2615 	case BPF_JLT:
2616 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
2617 		false_reg->umax_value = min(false_reg->umax_value, val);
2618 		break;
2619 	case BPF_JSLT:
2620 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2621 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2622 		break;
2623 	case BPF_JGE:
2624 		true_reg->umax_value = min(true_reg->umax_value, val);
2625 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
2626 		break;
2627 	case BPF_JSGE:
2628 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2629 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2630 		break;
2631 	case BPF_JLE:
2632 		true_reg->umin_value = max(true_reg->umin_value, val);
2633 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
2634 		break;
2635 	case BPF_JSLE:
2636 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2637 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2638 		break;
2639 	default:
2640 		break;
2641 	}
2642 
2643 	__reg_deduce_bounds(false_reg);
2644 	__reg_deduce_bounds(true_reg);
2645 	/* We might have learned some bits from the bounds. */
2646 	__reg_bound_offset(false_reg);
2647 	__reg_bound_offset(true_reg);
2648 	/* Intersecting with the old var_off might have improved our bounds
2649 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2650 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2651 	 */
2652 	__update_reg_bounds(false_reg);
2653 	__update_reg_bounds(true_reg);
2654 }
2655 
2656 /* Regs are known to be equal, so intersect their min/max/var_off */
2657 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2658 				  struct bpf_reg_state *dst_reg)
2659 {
2660 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2661 							dst_reg->umin_value);
2662 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2663 							dst_reg->umax_value);
2664 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2665 							dst_reg->smin_value);
2666 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2667 							dst_reg->smax_value);
2668 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2669 							     dst_reg->var_off);
2670 	/* We might have learned new bounds from the var_off. */
2671 	__update_reg_bounds(src_reg);
2672 	__update_reg_bounds(dst_reg);
2673 	/* We might have learned something about the sign bit. */
2674 	__reg_deduce_bounds(src_reg);
2675 	__reg_deduce_bounds(dst_reg);
2676 	/* We might have learned some bits from the bounds. */
2677 	__reg_bound_offset(src_reg);
2678 	__reg_bound_offset(dst_reg);
2679 	/* Intersecting with the old var_off might have improved our bounds
2680 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2681 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2682 	 */
2683 	__update_reg_bounds(src_reg);
2684 	__update_reg_bounds(dst_reg);
2685 }
2686 
2687 static void reg_combine_min_max(struct bpf_reg_state *true_src,
2688 				struct bpf_reg_state *true_dst,
2689 				struct bpf_reg_state *false_src,
2690 				struct bpf_reg_state *false_dst,
2691 				u8 opcode)
2692 {
2693 	switch (opcode) {
2694 	case BPF_JEQ:
2695 		__reg_combine_min_max(true_src, true_dst);
2696 		break;
2697 	case BPF_JNE:
2698 		__reg_combine_min_max(false_src, false_dst);
2699 		break;
2700 	}
2701 }
2702 
2703 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2704 			 bool is_null)
2705 {
2706 	struct bpf_reg_state *reg = &regs[regno];
2707 
2708 	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2709 		/* Old offset (both fixed and variable parts) should
2710 		 * have been known-zero, because we don't allow pointer
2711 		 * arithmetic on pointers that might be NULL.
2712 		 */
2713 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2714 				 !tnum_equals_const(reg->var_off, 0) ||
2715 				 reg->off)) {
2716 			__mark_reg_known_zero(reg);
2717 			reg->off = 0;
2718 		}
2719 		if (is_null) {
2720 			reg->type = SCALAR_VALUE;
2721 		} else if (reg->map_ptr->inner_map_meta) {
2722 			reg->type = CONST_PTR_TO_MAP;
2723 			reg->map_ptr = reg->map_ptr->inner_map_meta;
2724 		} else {
2725 			reg->type = PTR_TO_MAP_VALUE;
2726 		}
2727 		/* We don't need id from this point onwards anymore, thus we
2728 		 * should better reset it, so that state pruning has chances
2729 		 * to take effect.
2730 		 */
2731 		reg->id = 0;
2732 	}
2733 }
2734 
2735 /* The logic is similar to find_good_pkt_pointers(), both could eventually
2736  * be folded together at some point.
2737  */
2738 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2739 			  bool is_null)
2740 {
2741 	struct bpf_reg_state *regs = state->regs;
2742 	u32 id = regs[regno].id;
2743 	int i;
2744 
2745 	for (i = 0; i < MAX_BPF_REG; i++)
2746 		mark_map_reg(regs, i, id, is_null);
2747 
2748 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2749 		if (state->stack_slot_type[i] != STACK_SPILL)
2750 			continue;
2751 		mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, is_null);
2752 	}
2753 }
2754 
2755 static int check_cond_jmp_op(struct bpf_verifier_env *env,
2756 			     struct bpf_insn *insn, int *insn_idx)
2757 {
2758 	struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2759 	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2760 	u8 opcode = BPF_OP(insn->code);
2761 	int err;
2762 
2763 	if (opcode > BPF_JSLE) {
2764 		verbose("invalid BPF_JMP opcode %x\n", opcode);
2765 		return -EINVAL;
2766 	}
2767 
2768 	if (BPF_SRC(insn->code) == BPF_X) {
2769 		if (insn->imm != 0) {
2770 			verbose("BPF_JMP uses reserved fields\n");
2771 			return -EINVAL;
2772 		}
2773 
2774 		/* check src1 operand */
2775 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
2776 		if (err)
2777 			return err;
2778 
2779 		if (is_pointer_value(env, insn->src_reg)) {
2780 			verbose("R%d pointer comparison prohibited\n",
2781 				insn->src_reg);
2782 			return -EACCES;
2783 		}
2784 	} else {
2785 		if (insn->src_reg != BPF_REG_0) {
2786 			verbose("BPF_JMP uses reserved fields\n");
2787 			return -EINVAL;
2788 		}
2789 	}
2790 
2791 	/* check src2 operand */
2792 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2793 	if (err)
2794 		return err;
2795 
2796 	dst_reg = &regs[insn->dst_reg];
2797 
2798 	/* detect if R == 0 where R was initialized to zero earlier */
2799 	if (BPF_SRC(insn->code) == BPF_K &&
2800 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2801 	    dst_reg->type == SCALAR_VALUE &&
2802 	    tnum_equals_const(dst_reg->var_off, insn->imm)) {
2803 		if (opcode == BPF_JEQ) {
2804 			/* if (imm == imm) goto pc+off;
2805 			 * only follow the goto, ignore fall-through
2806 			 */
2807 			*insn_idx += insn->off;
2808 			return 0;
2809 		} else {
2810 			/* if (imm != imm) goto pc+off;
2811 			 * only follow fall-through branch, since
2812 			 * that's where the program will go
2813 			 */
2814 			return 0;
2815 		}
2816 	}
2817 
2818 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2819 	if (!other_branch)
2820 		return -EFAULT;
2821 
2822 	/* detect if we are comparing against a constant value so we can adjust
2823 	 * our min/max values for our dst register.
2824 	 * this is only legit if both are scalars (or pointers to the same
2825 	 * object, I suppose, but we don't support that right now), because
2826 	 * otherwise the different base pointers mean the offsets aren't
2827 	 * comparable.
2828 	 */
2829 	if (BPF_SRC(insn->code) == BPF_X) {
2830 		if (dst_reg->type == SCALAR_VALUE &&
2831 		    regs[insn->src_reg].type == SCALAR_VALUE) {
2832 			if (tnum_is_const(regs[insn->src_reg].var_off))
2833 				reg_set_min_max(&other_branch->regs[insn->dst_reg],
2834 						dst_reg, regs[insn->src_reg].var_off.value,
2835 						opcode);
2836 			else if (tnum_is_const(dst_reg->var_off))
2837 				reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2838 						    &regs[insn->src_reg],
2839 						    dst_reg->var_off.value, opcode);
2840 			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
2841 				/* Comparing for equality, we can combine knowledge */
2842 				reg_combine_min_max(&other_branch->regs[insn->src_reg],
2843 						    &other_branch->regs[insn->dst_reg],
2844 						    &regs[insn->src_reg],
2845 						    &regs[insn->dst_reg], opcode);
2846 		}
2847 	} else if (dst_reg->type == SCALAR_VALUE) {
2848 		reg_set_min_max(&other_branch->regs[insn->dst_reg],
2849 					dst_reg, insn->imm, opcode);
2850 	}
2851 
2852 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2853 	if (BPF_SRC(insn->code) == BPF_K &&
2854 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2855 	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2856 		/* Mark all identical map registers in each branch as either
2857 		 * safe or unknown depending R == 0 or R != 0 conditional.
2858 		 */
2859 		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
2860 		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
2861 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2862 		   dst_reg->type == PTR_TO_PACKET &&
2863 		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2864 		find_good_pkt_pointers(this_branch, dst_reg);
2865 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2866 		   dst_reg->type == PTR_TO_PACKET &&
2867 		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2868 		find_good_pkt_pointers(other_branch, dst_reg);
2869 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2870 		   dst_reg->type == PTR_TO_PACKET_END &&
2871 		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2872 		find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
2873 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
2874 		   dst_reg->type == PTR_TO_PACKET_END &&
2875 		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2876 		find_good_pkt_pointers(this_branch, &regs[insn->src_reg]);
2877 	} else if (is_pointer_value(env, insn->dst_reg)) {
2878 		verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2879 		return -EACCES;
2880 	}
2881 	if (log_level)
2882 		print_verifier_state(this_branch);
2883 	return 0;
2884 }
2885 
2886 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
2887 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2888 {
2889 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2890 
2891 	return (struct bpf_map *) (unsigned long) imm64;
2892 }
2893 
2894 /* verify BPF_LD_IMM64 instruction */
2895 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2896 {
2897 	struct bpf_reg_state *regs = env->cur_state.regs;
2898 	int err;
2899 
2900 	if (BPF_SIZE(insn->code) != BPF_DW) {
2901 		verbose("invalid BPF_LD_IMM insn\n");
2902 		return -EINVAL;
2903 	}
2904 	if (insn->off != 0) {
2905 		verbose("BPF_LD_IMM64 uses reserved fields\n");
2906 		return -EINVAL;
2907 	}
2908 
2909 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
2910 	if (err)
2911 		return err;
2912 
2913 	if (insn->src_reg == 0) {
2914 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2915 
2916 		regs[insn->dst_reg].type = SCALAR_VALUE;
2917 		__mark_reg_known(&regs[insn->dst_reg], imm);
2918 		return 0;
2919 	}
2920 
2921 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2922 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2923 
2924 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2925 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2926 	return 0;
2927 }
2928 
2929 static bool may_access_skb(enum bpf_prog_type type)
2930 {
2931 	switch (type) {
2932 	case BPF_PROG_TYPE_SOCKET_FILTER:
2933 	case BPF_PROG_TYPE_SCHED_CLS:
2934 	case BPF_PROG_TYPE_SCHED_ACT:
2935 		return true;
2936 	default:
2937 		return false;
2938 	}
2939 }
2940 
2941 /* verify safety of LD_ABS|LD_IND instructions:
2942  * - they can only appear in the programs where ctx == skb
2943  * - since they are wrappers of function calls, they scratch R1-R5 registers,
2944  *   preserve R6-R9, and store return value into R0
2945  *
2946  * Implicit input:
2947  *   ctx == skb == R6 == CTX
2948  *
2949  * Explicit input:
2950  *   SRC == any register
2951  *   IMM == 32-bit immediate
2952  *
2953  * Output:
2954  *   R0 - 8/16/32-bit skb data converted to cpu endianness
2955  */
2956 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
2957 {
2958 	struct bpf_reg_state *regs = env->cur_state.regs;
2959 	u8 mode = BPF_MODE(insn->code);
2960 	int i, err;
2961 
2962 	if (!may_access_skb(env->prog->type)) {
2963 		verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
2964 		return -EINVAL;
2965 	}
2966 
2967 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
2968 	    BPF_SIZE(insn->code) == BPF_DW ||
2969 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
2970 		verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
2971 		return -EINVAL;
2972 	}
2973 
2974 	/* check whether implicit source operand (register R6) is readable */
2975 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
2976 	if (err)
2977 		return err;
2978 
2979 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2980 		verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2981 		return -EINVAL;
2982 	}
2983 
2984 	if (mode == BPF_IND) {
2985 		/* check explicit source operand */
2986 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
2987 		if (err)
2988 			return err;
2989 	}
2990 
2991 	/* reset caller saved regs to unreadable */
2992 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2993 		mark_reg_not_init(regs, caller_saved[i]);
2994 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2995 	}
2996 
2997 	/* mark destination R0 register as readable, since it contains
2998 	 * the value fetched from the packet.
2999 	 * Already marked as written above.
3000 	 */
3001 	mark_reg_unknown(regs, BPF_REG_0);
3002 	return 0;
3003 }
3004 
3005 /* non-recursive DFS pseudo code
3006  * 1  procedure DFS-iterative(G,v):
3007  * 2      label v as discovered
3008  * 3      let S be a stack
3009  * 4      S.push(v)
3010  * 5      while S is not empty
3011  * 6            t <- S.pop()
3012  * 7            if t is what we're looking for:
3013  * 8                return t
3014  * 9            for all edges e in G.adjacentEdges(t) do
3015  * 10               if edge e is already labelled
3016  * 11                   continue with the next edge
3017  * 12               w <- G.adjacentVertex(t,e)
3018  * 13               if vertex w is not discovered and not explored
3019  * 14                   label e as tree-edge
3020  * 15                   label w as discovered
3021  * 16                   S.push(w)
3022  * 17                   continue at 5
3023  * 18               else if vertex w is discovered
3024  * 19                   label e as back-edge
3025  * 20               else
3026  * 21                   // vertex w is explored
3027  * 22                   label e as forward- or cross-edge
3028  * 23           label t as explored
3029  * 24           S.pop()
3030  *
3031  * convention:
3032  * 0x10 - discovered
3033  * 0x11 - discovered and fall-through edge labelled
3034  * 0x12 - discovered and fall-through and branch edges labelled
3035  * 0x20 - explored
3036  */
3037 
3038 enum {
3039 	DISCOVERED = 0x10,
3040 	EXPLORED = 0x20,
3041 	FALLTHROUGH = 1,
3042 	BRANCH = 2,
3043 };
3044 
3045 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3046 
3047 static int *insn_stack;	/* stack of insns to process */
3048 static int cur_stack;	/* current stack index */
3049 static int *insn_state;
3050 
3051 /* t, w, e - match pseudo-code above:
3052  * t - index of current instruction
3053  * w - next instruction
3054  * e - edge
3055  */
3056 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3057 {
3058 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3059 		return 0;
3060 
3061 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3062 		return 0;
3063 
3064 	if (w < 0 || w >= env->prog->len) {
3065 		verbose("jump out of range from insn %d to %d\n", t, w);
3066 		return -EINVAL;
3067 	}
3068 
3069 	if (e == BRANCH)
3070 		/* mark branch target for state pruning */
3071 		env->explored_states[w] = STATE_LIST_MARK;
3072 
3073 	if (insn_state[w] == 0) {
3074 		/* tree-edge */
3075 		insn_state[t] = DISCOVERED | e;
3076 		insn_state[w] = DISCOVERED;
3077 		if (cur_stack >= env->prog->len)
3078 			return -E2BIG;
3079 		insn_stack[cur_stack++] = w;
3080 		return 1;
3081 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3082 		verbose("back-edge from insn %d to %d\n", t, w);
3083 		return -EINVAL;
3084 	} else if (insn_state[w] == EXPLORED) {
3085 		/* forward- or cross-edge */
3086 		insn_state[t] = DISCOVERED | e;
3087 	} else {
3088 		verbose("insn state internal bug\n");
3089 		return -EFAULT;
3090 	}
3091 	return 0;
3092 }
3093 
3094 /* non-recursive depth-first-search to detect loops in BPF program
3095  * loop == back-edge in directed graph
3096  */
3097 static int check_cfg(struct bpf_verifier_env *env)
3098 {
3099 	struct bpf_insn *insns = env->prog->insnsi;
3100 	int insn_cnt = env->prog->len;
3101 	int ret = 0;
3102 	int i, t;
3103 
3104 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3105 	if (!insn_state)
3106 		return -ENOMEM;
3107 
3108 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3109 	if (!insn_stack) {
3110 		kfree(insn_state);
3111 		return -ENOMEM;
3112 	}
3113 
3114 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3115 	insn_stack[0] = 0; /* 0 is the first instruction */
3116 	cur_stack = 1;
3117 
3118 peek_stack:
3119 	if (cur_stack == 0)
3120 		goto check_state;
3121 	t = insn_stack[cur_stack - 1];
3122 
3123 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3124 		u8 opcode = BPF_OP(insns[t].code);
3125 
3126 		if (opcode == BPF_EXIT) {
3127 			goto mark_explored;
3128 		} else if (opcode == BPF_CALL) {
3129 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
3130 			if (ret == 1)
3131 				goto peek_stack;
3132 			else if (ret < 0)
3133 				goto err_free;
3134 			if (t + 1 < insn_cnt)
3135 				env->explored_states[t + 1] = STATE_LIST_MARK;
3136 		} else if (opcode == BPF_JA) {
3137 			if (BPF_SRC(insns[t].code) != BPF_K) {
3138 				ret = -EINVAL;
3139 				goto err_free;
3140 			}
3141 			/* unconditional jump with single edge */
3142 			ret = push_insn(t, t + insns[t].off + 1,
3143 					FALLTHROUGH, env);
3144 			if (ret == 1)
3145 				goto peek_stack;
3146 			else if (ret < 0)
3147 				goto err_free;
3148 			/* tell verifier to check for equivalent states
3149 			 * after every call and jump
3150 			 */
3151 			if (t + 1 < insn_cnt)
3152 				env->explored_states[t + 1] = STATE_LIST_MARK;
3153 		} else {
3154 			/* conditional jump with two edges */
3155 			env->explored_states[t] = STATE_LIST_MARK;
3156 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
3157 			if (ret == 1)
3158 				goto peek_stack;
3159 			else if (ret < 0)
3160 				goto err_free;
3161 
3162 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3163 			if (ret == 1)
3164 				goto peek_stack;
3165 			else if (ret < 0)
3166 				goto err_free;
3167 		}
3168 	} else {
3169 		/* all other non-branch instructions with single
3170 		 * fall-through edge
3171 		 */
3172 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
3173 		if (ret == 1)
3174 			goto peek_stack;
3175 		else if (ret < 0)
3176 			goto err_free;
3177 	}
3178 
3179 mark_explored:
3180 	insn_state[t] = EXPLORED;
3181 	if (cur_stack-- <= 0) {
3182 		verbose("pop stack internal bug\n");
3183 		ret = -EFAULT;
3184 		goto err_free;
3185 	}
3186 	goto peek_stack;
3187 
3188 check_state:
3189 	for (i = 0; i < insn_cnt; i++) {
3190 		if (insn_state[i] != EXPLORED) {
3191 			verbose("unreachable insn %d\n", i);
3192 			ret = -EINVAL;
3193 			goto err_free;
3194 		}
3195 	}
3196 	ret = 0; /* cfg looks good */
3197 
3198 err_free:
3199 	kfree(insn_state);
3200 	kfree(insn_stack);
3201 	return ret;
3202 }
3203 
3204 /* check %cur's range satisfies %old's */
3205 static bool range_within(struct bpf_reg_state *old,
3206 			 struct bpf_reg_state *cur)
3207 {
3208 	return old->umin_value <= cur->umin_value &&
3209 	       old->umax_value >= cur->umax_value &&
3210 	       old->smin_value <= cur->smin_value &&
3211 	       old->smax_value >= cur->smax_value;
3212 }
3213 
3214 /* Maximum number of register states that can exist at once */
3215 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3216 struct idpair {
3217 	u32 old;
3218 	u32 cur;
3219 };
3220 
3221 /* If in the old state two registers had the same id, then they need to have
3222  * the same id in the new state as well.  But that id could be different from
3223  * the old state, so we need to track the mapping from old to new ids.
3224  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3225  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
3226  * regs with a different old id could still have new id 9, we don't care about
3227  * that.
3228  * So we look through our idmap to see if this old id has been seen before.  If
3229  * so, we require the new id to match; otherwise, we add the id pair to the map.
3230  */
3231 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
3232 {
3233 	unsigned int i;
3234 
3235 	for (i = 0; i < ID_MAP_SIZE; i++) {
3236 		if (!idmap[i].old) {
3237 			/* Reached an empty slot; haven't seen this id before */
3238 			idmap[i].old = old_id;
3239 			idmap[i].cur = cur_id;
3240 			return true;
3241 		}
3242 		if (idmap[i].old == old_id)
3243 			return idmap[i].cur == cur_id;
3244 	}
3245 	/* We ran out of idmap slots, which should be impossible */
3246 	WARN_ON_ONCE(1);
3247 	return false;
3248 }
3249 
3250 /* Returns true if (rold safe implies rcur safe) */
3251 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3252 		    struct idpair *idmap)
3253 {
3254 	if (!(rold->live & REG_LIVE_READ))
3255 		/* explored state didn't use this */
3256 		return true;
3257 
3258 	if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
3259 		return true;
3260 
3261 	if (rold->type == NOT_INIT)
3262 		/* explored state can't have used this */
3263 		return true;
3264 	if (rcur->type == NOT_INIT)
3265 		return false;
3266 	switch (rold->type) {
3267 	case SCALAR_VALUE:
3268 		if (rcur->type == SCALAR_VALUE) {
3269 			/* new val must satisfy old val knowledge */
3270 			return range_within(rold, rcur) &&
3271 			       tnum_in(rold->var_off, rcur->var_off);
3272 		} else {
3273 			/* if we knew anything about the old value, we're not
3274 			 * equal, because we can't know anything about the
3275 			 * scalar value of the pointer in the new value.
3276 			 */
3277 			return rold->umin_value == 0 &&
3278 			       rold->umax_value == U64_MAX &&
3279 			       rold->smin_value == S64_MIN &&
3280 			       rold->smax_value == S64_MAX &&
3281 			       tnum_is_unknown(rold->var_off);
3282 		}
3283 	case PTR_TO_MAP_VALUE:
3284 		/* If the new min/max/var_off satisfy the old ones and
3285 		 * everything else matches, we are OK.
3286 		 * We don't care about the 'id' value, because nothing
3287 		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3288 		 */
3289 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3290 		       range_within(rold, rcur) &&
3291 		       tnum_in(rold->var_off, rcur->var_off);
3292 	case PTR_TO_MAP_VALUE_OR_NULL:
3293 		/* a PTR_TO_MAP_VALUE could be safe to use as a
3294 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3295 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3296 		 * checked, doing so could have affected others with the same
3297 		 * id, and we can't check for that because we lost the id when
3298 		 * we converted to a PTR_TO_MAP_VALUE.
3299 		 */
3300 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3301 			return false;
3302 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3303 			return false;
3304 		/* Check our ids match any regs they're supposed to */
3305 		return check_ids(rold->id, rcur->id, idmap);
3306 	case PTR_TO_PACKET:
3307 		if (rcur->type != PTR_TO_PACKET)
3308 			return false;
3309 		/* We must have at least as much range as the old ptr
3310 		 * did, so that any accesses which were safe before are
3311 		 * still safe.  This is true even if old range < old off,
3312 		 * since someone could have accessed through (ptr - k), or
3313 		 * even done ptr -= k in a register, to get a safe access.
3314 		 */
3315 		if (rold->range > rcur->range)
3316 			return false;
3317 		/* If the offsets don't match, we can't trust our alignment;
3318 		 * nor can we be sure that we won't fall out of range.
3319 		 */
3320 		if (rold->off != rcur->off)
3321 			return false;
3322 		/* id relations must be preserved */
3323 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3324 			return false;
3325 		/* new val must satisfy old val knowledge */
3326 		return range_within(rold, rcur) &&
3327 		       tnum_in(rold->var_off, rcur->var_off);
3328 	case PTR_TO_CTX:
3329 	case CONST_PTR_TO_MAP:
3330 	case PTR_TO_STACK:
3331 	case PTR_TO_PACKET_END:
3332 		/* Only valid matches are exact, which memcmp() above
3333 		 * would have accepted
3334 		 */
3335 	default:
3336 		/* Don't know what's going on, just say it's not safe */
3337 		return false;
3338 	}
3339 
3340 	/* Shouldn't get here; if we do, say it's not safe */
3341 	WARN_ON_ONCE(1);
3342 	return false;
3343 }
3344 
3345 /* compare two verifier states
3346  *
3347  * all states stored in state_list are known to be valid, since
3348  * verifier reached 'bpf_exit' instruction through them
3349  *
3350  * this function is called when verifier exploring different branches of
3351  * execution popped from the state stack. If it sees an old state that has
3352  * more strict register state and more strict stack state then this execution
3353  * branch doesn't need to be explored further, since verifier already
3354  * concluded that more strict state leads to valid finish.
3355  *
3356  * Therefore two states are equivalent if register state is more conservative
3357  * and explored stack state is more conservative than the current one.
3358  * Example:
3359  *       explored                   current
3360  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3361  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3362  *
3363  * In other words if current stack state (one being explored) has more
3364  * valid slots than old one that already passed validation, it means
3365  * the verifier can stop exploring and conclude that current state is valid too
3366  *
3367  * Similarly with registers. If explored state has register type as invalid
3368  * whereas register type in current state is meaningful, it means that
3369  * the current state will reach 'bpf_exit' instruction safely
3370  */
3371 static bool states_equal(struct bpf_verifier_env *env,
3372 			 struct bpf_verifier_state *old,
3373 			 struct bpf_verifier_state *cur)
3374 {
3375 	struct idpair *idmap;
3376 	bool ret = false;
3377 	int i;
3378 
3379 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3380 	/* If we failed to allocate the idmap, just say it's not safe */
3381 	if (!idmap)
3382 		return false;
3383 
3384 	for (i = 0; i < MAX_BPF_REG; i++) {
3385 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
3386 			goto out_free;
3387 	}
3388 
3389 	for (i = 0; i < MAX_BPF_STACK; i++) {
3390 		if (old->stack_slot_type[i] == STACK_INVALID)
3391 			continue;
3392 		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
3393 			/* Ex: old explored (safe) state has STACK_SPILL in
3394 			 * this stack slot, but current has has STACK_MISC ->
3395 			 * this verifier states are not equivalent,
3396 			 * return false to continue verification of this path
3397 			 */
3398 			goto out_free;
3399 		if (i % BPF_REG_SIZE)
3400 			continue;
3401 		if (old->stack_slot_type[i] != STACK_SPILL)
3402 			continue;
3403 		if (!regsafe(&old->spilled_regs[i / BPF_REG_SIZE],
3404 			     &cur->spilled_regs[i / BPF_REG_SIZE],
3405 			     idmap))
3406 			/* when explored and current stack slot are both storing
3407 			 * spilled registers, check that stored pointers types
3408 			 * are the same as well.
3409 			 * Ex: explored safe path could have stored
3410 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3411 			 * but current path has stored:
3412 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3413 			 * such verifier states are not equivalent.
3414 			 * return false to continue verification of this path
3415 			 */
3416 			goto out_free;
3417 		else
3418 			continue;
3419 	}
3420 	ret = true;
3421 out_free:
3422 	kfree(idmap);
3423 	return ret;
3424 }
3425 
3426 /* A write screens off any subsequent reads; but write marks come from the
3427  * straight-line code between a state and its parent.  When we arrive at a
3428  * jump target (in the first iteration of the propagate_liveness() loop),
3429  * we didn't arrive by the straight-line code, so read marks in state must
3430  * propagate to parent regardless of state's write marks.
3431  */
3432 static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3433 				  struct bpf_verifier_state *parent)
3434 {
3435 	bool writes = parent == state->parent; /* Observe write marks */
3436 	bool touched = false; /* any changes made? */
3437 	int i;
3438 
3439 	if (!parent)
3440 		return touched;
3441 	/* Propagate read liveness of registers... */
3442 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3443 	/* We don't need to worry about FP liveness because it's read-only */
3444 	for (i = 0; i < BPF_REG_FP; i++) {
3445 		if (parent->regs[i].live & REG_LIVE_READ)
3446 			continue;
3447 		if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3448 			continue;
3449 		if (state->regs[i].live & REG_LIVE_READ) {
3450 			parent->regs[i].live |= REG_LIVE_READ;
3451 			touched = true;
3452 		}
3453 	}
3454 	/* ... and stack slots */
3455 	for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) {
3456 		if (parent->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3457 			continue;
3458 		if (state->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3459 			continue;
3460 		if (parent->spilled_regs[i].live & REG_LIVE_READ)
3461 			continue;
3462 		if (writes && (state->spilled_regs[i].live & REG_LIVE_WRITTEN))
3463 			continue;
3464 		if (state->spilled_regs[i].live & REG_LIVE_READ) {
3465 			parent->spilled_regs[i].live |= REG_LIVE_READ;
3466 			touched = true;
3467 		}
3468 	}
3469 	return touched;
3470 }
3471 
3472 /* "parent" is "a state from which we reach the current state", but initially
3473  * it is not the state->parent (i.e. "the state whose straight-line code leads
3474  * to the current state"), instead it is the state that happened to arrive at
3475  * a (prunable) equivalent of the current state.  See comment above
3476  * do_propagate_liveness() for consequences of this.
3477  * This function is just a more efficient way of calling mark_reg_read() or
3478  * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3479  * though it requires that parent != state->parent in the call arguments.
3480  */
3481 static void propagate_liveness(const struct bpf_verifier_state *state,
3482 			       struct bpf_verifier_state *parent)
3483 {
3484 	while (do_propagate_liveness(state, parent)) {
3485 		/* Something changed, so we need to feed those changes onward */
3486 		state = parent;
3487 		parent = state->parent;
3488 	}
3489 }
3490 
3491 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
3492 {
3493 	struct bpf_verifier_state_list *new_sl;
3494 	struct bpf_verifier_state_list *sl;
3495 	int i;
3496 
3497 	sl = env->explored_states[insn_idx];
3498 	if (!sl)
3499 		/* this 'insn_idx' instruction wasn't marked, so we will not
3500 		 * be doing state search here
3501 		 */
3502 		return 0;
3503 
3504 	while (sl != STATE_LIST_MARK) {
3505 		if (states_equal(env, &sl->state, &env->cur_state)) {
3506 			/* reached equivalent register/stack state,
3507 			 * prune the search.
3508 			 * Registers read by the continuation are read by us.
3509 			 * If we have any write marks in env->cur_state, they
3510 			 * will prevent corresponding reads in the continuation
3511 			 * from reaching our parent (an explored_state).  Our
3512 			 * own state will get the read marks recorded, but
3513 			 * they'll be immediately forgotten as we're pruning
3514 			 * this state and will pop a new one.
3515 			 */
3516 			propagate_liveness(&sl->state, &env->cur_state);
3517 			return 1;
3518 		}
3519 		sl = sl->next;
3520 	}
3521 
3522 	/* there were no equivalent states, remember current one.
3523 	 * technically the current state is not proven to be safe yet,
3524 	 * but it will either reach bpf_exit (which means it's safe) or
3525 	 * it will be rejected. Since there are no loops, we won't be
3526 	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3527 	 */
3528 	new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
3529 	if (!new_sl)
3530 		return -ENOMEM;
3531 
3532 	/* add new state to the head of linked list */
3533 	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
3534 	new_sl->next = env->explored_states[insn_idx];
3535 	env->explored_states[insn_idx] = new_sl;
3536 	/* connect new state to parentage chain */
3537 	env->cur_state.parent = &new_sl->state;
3538 	/* clear write marks in current state: the writes we did are not writes
3539 	 * our child did, so they don't screen off its reads from us.
3540 	 * (There are no read marks in current state, because reads always mark
3541 	 * their parent and current state never has children yet.  Only
3542 	 * explored_states can get read marks.)
3543 	 */
3544 	for (i = 0; i < BPF_REG_FP; i++)
3545 		env->cur_state.regs[i].live = REG_LIVE_NONE;
3546 	for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++)
3547 		if (env->cur_state.stack_slot_type[i * BPF_REG_SIZE] == STACK_SPILL)
3548 			env->cur_state.spilled_regs[i].live = REG_LIVE_NONE;
3549 	return 0;
3550 }
3551 
3552 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3553 				  int insn_idx, int prev_insn_idx)
3554 {
3555 	if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
3556 		return 0;
3557 
3558 	return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
3559 }
3560 
3561 static int do_check(struct bpf_verifier_env *env)
3562 {
3563 	struct bpf_verifier_state *state = &env->cur_state;
3564 	struct bpf_insn *insns = env->prog->insnsi;
3565 	struct bpf_reg_state *regs = state->regs;
3566 	int insn_cnt = env->prog->len;
3567 	int insn_idx, prev_insn_idx = 0;
3568 	int insn_processed = 0;
3569 	bool do_print_state = false;
3570 
3571 	init_reg_state(regs);
3572 	state->parent = NULL;
3573 	insn_idx = 0;
3574 	for (;;) {
3575 		struct bpf_insn *insn;
3576 		u8 class;
3577 		int err;
3578 
3579 		if (insn_idx >= insn_cnt) {
3580 			verbose("invalid insn idx %d insn_cnt %d\n",
3581 				insn_idx, insn_cnt);
3582 			return -EFAULT;
3583 		}
3584 
3585 		insn = &insns[insn_idx];
3586 		class = BPF_CLASS(insn->code);
3587 
3588 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
3589 			verbose("BPF program is too large. Processed %d insn\n",
3590 				insn_processed);
3591 			return -E2BIG;
3592 		}
3593 
3594 		err = is_state_visited(env, insn_idx);
3595 		if (err < 0)
3596 			return err;
3597 		if (err == 1) {
3598 			/* found equivalent state, can prune the search */
3599 			if (log_level) {
3600 				if (do_print_state)
3601 					verbose("\nfrom %d to %d: safe\n",
3602 						prev_insn_idx, insn_idx);
3603 				else
3604 					verbose("%d: safe\n", insn_idx);
3605 			}
3606 			goto process_bpf_exit;
3607 		}
3608 
3609 		if (need_resched())
3610 			cond_resched();
3611 
3612 		if (log_level > 1 || (log_level && do_print_state)) {
3613 			if (log_level > 1)
3614 				verbose("%d:", insn_idx);
3615 			else
3616 				verbose("\nfrom %d to %d:",
3617 					prev_insn_idx, insn_idx);
3618 			print_verifier_state(&env->cur_state);
3619 			do_print_state = false;
3620 		}
3621 
3622 		if (log_level) {
3623 			verbose("%d: ", insn_idx);
3624 			print_bpf_insn(env, insn);
3625 		}
3626 
3627 		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3628 		if (err)
3629 			return err;
3630 
3631 		if (class == BPF_ALU || class == BPF_ALU64) {
3632 			err = check_alu_op(env, insn);
3633 			if (err)
3634 				return err;
3635 
3636 		} else if (class == BPF_LDX) {
3637 			enum bpf_reg_type *prev_src_type, src_reg_type;
3638 
3639 			/* check for reserved fields is already done */
3640 
3641 			/* check src operand */
3642 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3643 			if (err)
3644 				return err;
3645 
3646 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3647 			if (err)
3648 				return err;
3649 
3650 			src_reg_type = regs[insn->src_reg].type;
3651 
3652 			/* check that memory (src_reg + off) is readable,
3653 			 * the state of dst_reg will be updated by this func
3654 			 */
3655 			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
3656 					       BPF_SIZE(insn->code), BPF_READ,
3657 					       insn->dst_reg);
3658 			if (err)
3659 				return err;
3660 
3661 			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3662 
3663 			if (*prev_src_type == NOT_INIT) {
3664 				/* saw a valid insn
3665 				 * dst_reg = *(u32 *)(src_reg + off)
3666 				 * save type to validate intersecting paths
3667 				 */
3668 				*prev_src_type = src_reg_type;
3669 
3670 			} else if (src_reg_type != *prev_src_type &&
3671 				   (src_reg_type == PTR_TO_CTX ||
3672 				    *prev_src_type == PTR_TO_CTX)) {
3673 				/* ABuser program is trying to use the same insn
3674 				 * dst_reg = *(u32*) (src_reg + off)
3675 				 * with different pointer types:
3676 				 * src_reg == ctx in one branch and
3677 				 * src_reg == stack|map in some other branch.
3678 				 * Reject it.
3679 				 */
3680 				verbose("same insn cannot be used with different pointers\n");
3681 				return -EINVAL;
3682 			}
3683 
3684 		} else if (class == BPF_STX) {
3685 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
3686 
3687 			if (BPF_MODE(insn->code) == BPF_XADD) {
3688 				err = check_xadd(env, insn_idx, insn);
3689 				if (err)
3690 					return err;
3691 				insn_idx++;
3692 				continue;
3693 			}
3694 
3695 			/* check src1 operand */
3696 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3697 			if (err)
3698 				return err;
3699 			/* check src2 operand */
3700 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3701 			if (err)
3702 				return err;
3703 
3704 			dst_reg_type = regs[insn->dst_reg].type;
3705 
3706 			/* check that memory (dst_reg + off) is writeable */
3707 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3708 					       BPF_SIZE(insn->code), BPF_WRITE,
3709 					       insn->src_reg);
3710 			if (err)
3711 				return err;
3712 
3713 			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3714 
3715 			if (*prev_dst_type == NOT_INIT) {
3716 				*prev_dst_type = dst_reg_type;
3717 			} else if (dst_reg_type != *prev_dst_type &&
3718 				   (dst_reg_type == PTR_TO_CTX ||
3719 				    *prev_dst_type == PTR_TO_CTX)) {
3720 				verbose("same insn cannot be used with different pointers\n");
3721 				return -EINVAL;
3722 			}
3723 
3724 		} else if (class == BPF_ST) {
3725 			if (BPF_MODE(insn->code) != BPF_MEM ||
3726 			    insn->src_reg != BPF_REG_0) {
3727 				verbose("BPF_ST uses reserved fields\n");
3728 				return -EINVAL;
3729 			}
3730 			/* check src operand */
3731 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3732 			if (err)
3733 				return err;
3734 
3735 			/* check that memory (dst_reg + off) is writeable */
3736 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3737 					       BPF_SIZE(insn->code), BPF_WRITE,
3738 					       -1);
3739 			if (err)
3740 				return err;
3741 
3742 		} else if (class == BPF_JMP) {
3743 			u8 opcode = BPF_OP(insn->code);
3744 
3745 			if (opcode == BPF_CALL) {
3746 				if (BPF_SRC(insn->code) != BPF_K ||
3747 				    insn->off != 0 ||
3748 				    insn->src_reg != BPF_REG_0 ||
3749 				    insn->dst_reg != BPF_REG_0) {
3750 					verbose("BPF_CALL uses reserved fields\n");
3751 					return -EINVAL;
3752 				}
3753 
3754 				err = check_call(env, insn->imm, insn_idx);
3755 				if (err)
3756 					return err;
3757 
3758 			} else if (opcode == BPF_JA) {
3759 				if (BPF_SRC(insn->code) != BPF_K ||
3760 				    insn->imm != 0 ||
3761 				    insn->src_reg != BPF_REG_0 ||
3762 				    insn->dst_reg != BPF_REG_0) {
3763 					verbose("BPF_JA uses reserved fields\n");
3764 					return -EINVAL;
3765 				}
3766 
3767 				insn_idx += insn->off + 1;
3768 				continue;
3769 
3770 			} else if (opcode == BPF_EXIT) {
3771 				if (BPF_SRC(insn->code) != BPF_K ||
3772 				    insn->imm != 0 ||
3773 				    insn->src_reg != BPF_REG_0 ||
3774 				    insn->dst_reg != BPF_REG_0) {
3775 					verbose("BPF_EXIT uses reserved fields\n");
3776 					return -EINVAL;
3777 				}
3778 
3779 				/* eBPF calling convetion is such that R0 is used
3780 				 * to return the value from eBPF program.
3781 				 * Make sure that it's readable at this time
3782 				 * of bpf_exit, which means that program wrote
3783 				 * something into it earlier
3784 				 */
3785 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
3786 				if (err)
3787 					return err;
3788 
3789 				if (is_pointer_value(env, BPF_REG_0)) {
3790 					verbose("R0 leaks addr as return value\n");
3791 					return -EACCES;
3792 				}
3793 
3794 process_bpf_exit:
3795 				insn_idx = pop_stack(env, &prev_insn_idx);
3796 				if (insn_idx < 0) {
3797 					break;
3798 				} else {
3799 					do_print_state = true;
3800 					continue;
3801 				}
3802 			} else {
3803 				err = check_cond_jmp_op(env, insn, &insn_idx);
3804 				if (err)
3805 					return err;
3806 			}
3807 		} else if (class == BPF_LD) {
3808 			u8 mode = BPF_MODE(insn->code);
3809 
3810 			if (mode == BPF_ABS || mode == BPF_IND) {
3811 				err = check_ld_abs(env, insn);
3812 				if (err)
3813 					return err;
3814 
3815 			} else if (mode == BPF_IMM) {
3816 				err = check_ld_imm(env, insn);
3817 				if (err)
3818 					return err;
3819 
3820 				insn_idx++;
3821 			} else {
3822 				verbose("invalid BPF_LD mode\n");
3823 				return -EINVAL;
3824 			}
3825 		} else {
3826 			verbose("unknown insn class %d\n", class);
3827 			return -EINVAL;
3828 		}
3829 
3830 		insn_idx++;
3831 	}
3832 
3833 	verbose("processed %d insns, stack depth %d\n",
3834 		insn_processed, env->prog->aux->stack_depth);
3835 	return 0;
3836 }
3837 
3838 static int check_map_prealloc(struct bpf_map *map)
3839 {
3840 	return (map->map_type != BPF_MAP_TYPE_HASH &&
3841 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
3842 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
3843 		!(map->map_flags & BPF_F_NO_PREALLOC);
3844 }
3845 
3846 static int check_map_prog_compatibility(struct bpf_map *map,
3847 					struct bpf_prog *prog)
3848 
3849 {
3850 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
3851 	 * preallocated hash maps, since doing memory allocation
3852 	 * in overflow_handler can crash depending on where nmi got
3853 	 * triggered.
3854 	 */
3855 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
3856 		if (!check_map_prealloc(map)) {
3857 			verbose("perf_event programs can only use preallocated hash map\n");
3858 			return -EINVAL;
3859 		}
3860 		if (map->inner_map_meta &&
3861 		    !check_map_prealloc(map->inner_map_meta)) {
3862 			verbose("perf_event programs can only use preallocated inner hash map\n");
3863 			return -EINVAL;
3864 		}
3865 	}
3866 	return 0;
3867 }
3868 
3869 /* look for pseudo eBPF instructions that access map FDs and
3870  * replace them with actual map pointers
3871  */
3872 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
3873 {
3874 	struct bpf_insn *insn = env->prog->insnsi;
3875 	int insn_cnt = env->prog->len;
3876 	int i, j, err;
3877 
3878 	err = bpf_prog_calc_tag(env->prog);
3879 	if (err)
3880 		return err;
3881 
3882 	for (i = 0; i < insn_cnt; i++, insn++) {
3883 		if (BPF_CLASS(insn->code) == BPF_LDX &&
3884 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
3885 			verbose("BPF_LDX uses reserved fields\n");
3886 			return -EINVAL;
3887 		}
3888 
3889 		if (BPF_CLASS(insn->code) == BPF_STX &&
3890 		    ((BPF_MODE(insn->code) != BPF_MEM &&
3891 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3892 			verbose("BPF_STX uses reserved fields\n");
3893 			return -EINVAL;
3894 		}
3895 
3896 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3897 			struct bpf_map *map;
3898 			struct fd f;
3899 
3900 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
3901 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3902 			    insn[1].off != 0) {
3903 				verbose("invalid bpf_ld_imm64 insn\n");
3904 				return -EINVAL;
3905 			}
3906 
3907 			if (insn->src_reg == 0)
3908 				/* valid generic load 64-bit imm */
3909 				goto next_insn;
3910 
3911 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3912 				verbose("unrecognized bpf_ld_imm64 insn\n");
3913 				return -EINVAL;
3914 			}
3915 
3916 			f = fdget(insn->imm);
3917 			map = __bpf_map_get(f);
3918 			if (IS_ERR(map)) {
3919 				verbose("fd %d is not pointing to valid bpf_map\n",
3920 					insn->imm);
3921 				return PTR_ERR(map);
3922 			}
3923 
3924 			err = check_map_prog_compatibility(map, env->prog);
3925 			if (err) {
3926 				fdput(f);
3927 				return err;
3928 			}
3929 
3930 			/* store map pointer inside BPF_LD_IMM64 instruction */
3931 			insn[0].imm = (u32) (unsigned long) map;
3932 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
3933 
3934 			/* check whether we recorded this map already */
3935 			for (j = 0; j < env->used_map_cnt; j++)
3936 				if (env->used_maps[j] == map) {
3937 					fdput(f);
3938 					goto next_insn;
3939 				}
3940 
3941 			if (env->used_map_cnt >= MAX_USED_MAPS) {
3942 				fdput(f);
3943 				return -E2BIG;
3944 			}
3945 
3946 			/* hold the map. If the program is rejected by verifier,
3947 			 * the map will be released by release_maps() or it
3948 			 * will be used by the valid program until it's unloaded
3949 			 * and all maps are released in free_bpf_prog_info()
3950 			 */
3951 			map = bpf_map_inc(map, false);
3952 			if (IS_ERR(map)) {
3953 				fdput(f);
3954 				return PTR_ERR(map);
3955 			}
3956 			env->used_maps[env->used_map_cnt++] = map;
3957 
3958 			fdput(f);
3959 next_insn:
3960 			insn++;
3961 			i++;
3962 		}
3963 	}
3964 
3965 	/* now all pseudo BPF_LD_IMM64 instructions load valid
3966 	 * 'struct bpf_map *' into a register instead of user map_fd.
3967 	 * These pointers will be used later by verifier to validate map access.
3968 	 */
3969 	return 0;
3970 }
3971 
3972 /* drop refcnt of maps used by the rejected program */
3973 static void release_maps(struct bpf_verifier_env *env)
3974 {
3975 	int i;
3976 
3977 	for (i = 0; i < env->used_map_cnt; i++)
3978 		bpf_map_put(env->used_maps[i]);
3979 }
3980 
3981 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
3982 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
3983 {
3984 	struct bpf_insn *insn = env->prog->insnsi;
3985 	int insn_cnt = env->prog->len;
3986 	int i;
3987 
3988 	for (i = 0; i < insn_cnt; i++, insn++)
3989 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3990 			insn->src_reg = 0;
3991 }
3992 
3993 /* single env->prog->insni[off] instruction was replaced with the range
3994  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
3995  * [0, off) and [off, end) to new locations, so the patched range stays zero
3996  */
3997 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
3998 				u32 off, u32 cnt)
3999 {
4000 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
4001 
4002 	if (cnt == 1)
4003 		return 0;
4004 	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4005 	if (!new_data)
4006 		return -ENOMEM;
4007 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4008 	memcpy(new_data + off + cnt - 1, old_data + off,
4009 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
4010 	env->insn_aux_data = new_data;
4011 	vfree(old_data);
4012 	return 0;
4013 }
4014 
4015 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4016 					    const struct bpf_insn *patch, u32 len)
4017 {
4018 	struct bpf_prog *new_prog;
4019 
4020 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4021 	if (!new_prog)
4022 		return NULL;
4023 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
4024 		return NULL;
4025 	return new_prog;
4026 }
4027 
4028 /* convert load instructions that access fields of 'struct __sk_buff'
4029  * into sequence of instructions that access fields of 'struct sk_buff'
4030  */
4031 static int convert_ctx_accesses(struct bpf_verifier_env *env)
4032 {
4033 	const struct bpf_verifier_ops *ops = env->prog->aux->ops;
4034 	int i, cnt, size, ctx_field_size, delta = 0;
4035 	const int insn_cnt = env->prog->len;
4036 	struct bpf_insn insn_buf[16], *insn;
4037 	struct bpf_prog *new_prog;
4038 	enum bpf_access_type type;
4039 	bool is_narrower_load;
4040 	u32 target_size;
4041 
4042 	if (ops->gen_prologue) {
4043 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4044 					env->prog);
4045 		if (cnt >= ARRAY_SIZE(insn_buf)) {
4046 			verbose("bpf verifier is misconfigured\n");
4047 			return -EINVAL;
4048 		} else if (cnt) {
4049 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4050 			if (!new_prog)
4051 				return -ENOMEM;
4052 
4053 			env->prog = new_prog;
4054 			delta += cnt - 1;
4055 		}
4056 	}
4057 
4058 	if (!ops->convert_ctx_access)
4059 		return 0;
4060 
4061 	insn = env->prog->insnsi + delta;
4062 
4063 	for (i = 0; i < insn_cnt; i++, insn++) {
4064 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4065 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4066 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4067 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4068 			type = BPF_READ;
4069 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4070 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4071 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4072 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4073 			type = BPF_WRITE;
4074 		else
4075 			continue;
4076 
4077 		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4078 			continue;
4079 
4080 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4081 		size = BPF_LDST_BYTES(insn);
4082 
4083 		/* If the read access is a narrower load of the field,
4084 		 * convert to a 4/8-byte load, to minimum program type specific
4085 		 * convert_ctx_access changes. If conversion is successful,
4086 		 * we will apply proper mask to the result.
4087 		 */
4088 		is_narrower_load = size < ctx_field_size;
4089 		if (is_narrower_load) {
4090 			u32 off = insn->off;
4091 			u8 size_code;
4092 
4093 			if (type == BPF_WRITE) {
4094 				verbose("bpf verifier narrow ctx access misconfigured\n");
4095 				return -EINVAL;
4096 			}
4097 
4098 			size_code = BPF_H;
4099 			if (ctx_field_size == 4)
4100 				size_code = BPF_W;
4101 			else if (ctx_field_size == 8)
4102 				size_code = BPF_DW;
4103 
4104 			insn->off = off & ~(ctx_field_size - 1);
4105 			insn->code = BPF_LDX | BPF_MEM | size_code;
4106 		}
4107 
4108 		target_size = 0;
4109 		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4110 					      &target_size);
4111 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4112 		    (ctx_field_size && !target_size)) {
4113 			verbose("bpf verifier is misconfigured\n");
4114 			return -EINVAL;
4115 		}
4116 
4117 		if (is_narrower_load && size < target_size) {
4118 			if (ctx_field_size <= 4)
4119 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4120 								(1 << size * 8) - 1);
4121 			else
4122 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4123 								(1 << size * 8) - 1);
4124 		}
4125 
4126 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4127 		if (!new_prog)
4128 			return -ENOMEM;
4129 
4130 		delta += cnt - 1;
4131 
4132 		/* keep walking new program and skip insns we just inserted */
4133 		env->prog = new_prog;
4134 		insn      = new_prog->insnsi + i + delta;
4135 	}
4136 
4137 	return 0;
4138 }
4139 
4140 /* fixup insn->imm field of bpf_call instructions
4141  * and inline eligible helpers as explicit sequence of BPF instructions
4142  *
4143  * this function is called after eBPF program passed verification
4144  */
4145 static int fixup_bpf_calls(struct bpf_verifier_env *env)
4146 {
4147 	struct bpf_prog *prog = env->prog;
4148 	struct bpf_insn *insn = prog->insnsi;
4149 	const struct bpf_func_proto *fn;
4150 	const int insn_cnt = prog->len;
4151 	struct bpf_insn insn_buf[16];
4152 	struct bpf_prog *new_prog;
4153 	struct bpf_map *map_ptr;
4154 	int i, cnt, delta = 0;
4155 
4156 	for (i = 0; i < insn_cnt; i++, insn++) {
4157 		if (insn->code != (BPF_JMP | BPF_CALL))
4158 			continue;
4159 
4160 		if (insn->imm == BPF_FUNC_get_route_realm)
4161 			prog->dst_needed = 1;
4162 		if (insn->imm == BPF_FUNC_get_prandom_u32)
4163 			bpf_user_rnd_init_once();
4164 		if (insn->imm == BPF_FUNC_tail_call) {
4165 			/* If we tail call into other programs, we
4166 			 * cannot make any assumptions since they can
4167 			 * be replaced dynamically during runtime in
4168 			 * the program array.
4169 			 */
4170 			prog->cb_access = 1;
4171 			env->prog->aux->stack_depth = MAX_BPF_STACK;
4172 
4173 			/* mark bpf_tail_call as different opcode to avoid
4174 			 * conditional branch in the interpeter for every normal
4175 			 * call and to prevent accidental JITing by JIT compiler
4176 			 * that doesn't support bpf_tail_call yet
4177 			 */
4178 			insn->imm = 0;
4179 			insn->code = BPF_JMP | BPF_TAIL_CALL;
4180 			continue;
4181 		}
4182 
4183 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4184 		 * handlers are currently limited to 64 bit only.
4185 		 */
4186 		if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4187 		    insn->imm == BPF_FUNC_map_lookup_elem) {
4188 			map_ptr = env->insn_aux_data[i + delta].map_ptr;
4189 			if (map_ptr == BPF_MAP_PTR_POISON ||
4190 			    !map_ptr->ops->map_gen_lookup)
4191 				goto patch_call_imm;
4192 
4193 			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4194 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4195 				verbose("bpf verifier is misconfigured\n");
4196 				return -EINVAL;
4197 			}
4198 
4199 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4200 						       cnt);
4201 			if (!new_prog)
4202 				return -ENOMEM;
4203 
4204 			delta += cnt - 1;
4205 
4206 			/* keep walking new program and skip insns we just inserted */
4207 			env->prog = prog = new_prog;
4208 			insn      = new_prog->insnsi + i + delta;
4209 			continue;
4210 		}
4211 
4212 		if (insn->imm == BPF_FUNC_redirect_map) {
4213 			/* Note, we cannot use prog directly as imm as subsequent
4214 			 * rewrites would still change the prog pointer. The only
4215 			 * stable address we can use is aux, which also works with
4216 			 * prog clones during blinding.
4217 			 */
4218 			u64 addr = (unsigned long)prog->aux;
4219 			struct bpf_insn r4_ld[] = {
4220 				BPF_LD_IMM64(BPF_REG_4, addr),
4221 				*insn,
4222 			};
4223 			cnt = ARRAY_SIZE(r4_ld);
4224 
4225 			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4226 			if (!new_prog)
4227 				return -ENOMEM;
4228 
4229 			delta    += cnt - 1;
4230 			env->prog = prog = new_prog;
4231 			insn      = new_prog->insnsi + i + delta;
4232 		}
4233 patch_call_imm:
4234 		fn = prog->aux->ops->get_func_proto(insn->imm);
4235 		/* all functions that have prototype and verifier allowed
4236 		 * programs to call them, must be real in-kernel functions
4237 		 */
4238 		if (!fn->func) {
4239 			verbose("kernel subsystem misconfigured func %s#%d\n",
4240 				func_id_name(insn->imm), insn->imm);
4241 			return -EFAULT;
4242 		}
4243 		insn->imm = fn->func - __bpf_call_base;
4244 	}
4245 
4246 	return 0;
4247 }
4248 
4249 static void free_states(struct bpf_verifier_env *env)
4250 {
4251 	struct bpf_verifier_state_list *sl, *sln;
4252 	int i;
4253 
4254 	if (!env->explored_states)
4255 		return;
4256 
4257 	for (i = 0; i < env->prog->len; i++) {
4258 		sl = env->explored_states[i];
4259 
4260 		if (sl)
4261 			while (sl != STATE_LIST_MARK) {
4262 				sln = sl->next;
4263 				kfree(sl);
4264 				sl = sln;
4265 			}
4266 	}
4267 
4268 	kfree(env->explored_states);
4269 }
4270 
4271 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
4272 {
4273 	char __user *log_ubuf = NULL;
4274 	struct bpf_verifier_env *env;
4275 	int ret = -EINVAL;
4276 
4277 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
4278 	 * allocate/free it every time bpf_check() is called
4279 	 */
4280 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4281 	if (!env)
4282 		return -ENOMEM;
4283 
4284 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4285 				     (*prog)->len);
4286 	ret = -ENOMEM;
4287 	if (!env->insn_aux_data)
4288 		goto err_free_env;
4289 	env->prog = *prog;
4290 
4291 	/* grab the mutex to protect few globals used by verifier */
4292 	mutex_lock(&bpf_verifier_lock);
4293 
4294 	if (attr->log_level || attr->log_buf || attr->log_size) {
4295 		/* user requested verbose verifier output
4296 		 * and supplied buffer to store the verification trace
4297 		 */
4298 		log_level = attr->log_level;
4299 		log_ubuf = (char __user *) (unsigned long) attr->log_buf;
4300 		log_size = attr->log_size;
4301 		log_len = 0;
4302 
4303 		ret = -EINVAL;
4304 		/* log_* values have to be sane */
4305 		if (log_size < 128 || log_size > UINT_MAX >> 8 ||
4306 		    log_level == 0 || log_ubuf == NULL)
4307 			goto err_unlock;
4308 
4309 		ret = -ENOMEM;
4310 		log_buf = vmalloc(log_size);
4311 		if (!log_buf)
4312 			goto err_unlock;
4313 	} else {
4314 		log_level = 0;
4315 	}
4316 
4317 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4318 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4319 		env->strict_alignment = true;
4320 
4321 	ret = replace_map_fd_with_map_ptr(env);
4322 	if (ret < 0)
4323 		goto skip_full_check;
4324 
4325 	env->explored_states = kcalloc(env->prog->len,
4326 				       sizeof(struct bpf_verifier_state_list *),
4327 				       GFP_USER);
4328 	ret = -ENOMEM;
4329 	if (!env->explored_states)
4330 		goto skip_full_check;
4331 
4332 	ret = check_cfg(env);
4333 	if (ret < 0)
4334 		goto skip_full_check;
4335 
4336 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4337 
4338 	ret = do_check(env);
4339 
4340 skip_full_check:
4341 	while (pop_stack(env, NULL) >= 0);
4342 	free_states(env);
4343 
4344 	if (ret == 0)
4345 		/* program is valid, convert *(u32*)(ctx + off) accesses */
4346 		ret = convert_ctx_accesses(env);
4347 
4348 	if (ret == 0)
4349 		ret = fixup_bpf_calls(env);
4350 
4351 	if (log_level && log_len >= log_size - 1) {
4352 		BUG_ON(log_len >= log_size);
4353 		/* verifier log exceeded user supplied buffer */
4354 		ret = -ENOSPC;
4355 		/* fall through to return what was recorded */
4356 	}
4357 
4358 	/* copy verifier log back to user space including trailing zero */
4359 	if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
4360 		ret = -EFAULT;
4361 		goto free_log_buf;
4362 	}
4363 
4364 	if (ret == 0 && env->used_map_cnt) {
4365 		/* if program passed verifier, update used_maps in bpf_prog_info */
4366 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4367 							  sizeof(env->used_maps[0]),
4368 							  GFP_KERNEL);
4369 
4370 		if (!env->prog->aux->used_maps) {
4371 			ret = -ENOMEM;
4372 			goto free_log_buf;
4373 		}
4374 
4375 		memcpy(env->prog->aux->used_maps, env->used_maps,
4376 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
4377 		env->prog->aux->used_map_cnt = env->used_map_cnt;
4378 
4379 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
4380 		 * bpf_ld_imm64 instructions
4381 		 */
4382 		convert_pseudo_ld_imm64(env);
4383 	}
4384 
4385 free_log_buf:
4386 	if (log_level)
4387 		vfree(log_buf);
4388 	if (!env->prog->aux->used_maps)
4389 		/* if we didn't copy map pointers into bpf_prog_info, release
4390 		 * them now. Otherwise free_bpf_prog_info() will release them.
4391 		 */
4392 		release_maps(env);
4393 	*prog = env->prog;
4394 err_unlock:
4395 	mutex_unlock(&bpf_verifier_lock);
4396 	vfree(env->insn_aux_data);
4397 err_free_env:
4398 	kfree(env);
4399 	return ret;
4400 }
4401 
4402 int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
4403 		 void *priv)
4404 {
4405 	struct bpf_verifier_env *env;
4406 	int ret;
4407 
4408 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4409 	if (!env)
4410 		return -ENOMEM;
4411 
4412 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4413 				     prog->len);
4414 	ret = -ENOMEM;
4415 	if (!env->insn_aux_data)
4416 		goto err_free_env;
4417 	env->prog = prog;
4418 	env->analyzer_ops = ops;
4419 	env->analyzer_priv = priv;
4420 
4421 	/* grab the mutex to protect few globals used by verifier */
4422 	mutex_lock(&bpf_verifier_lock);
4423 
4424 	log_level = 0;
4425 
4426 	env->strict_alignment = false;
4427 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4428 		env->strict_alignment = true;
4429 
4430 	env->explored_states = kcalloc(env->prog->len,
4431 				       sizeof(struct bpf_verifier_state_list *),
4432 				       GFP_KERNEL);
4433 	ret = -ENOMEM;
4434 	if (!env->explored_states)
4435 		goto skip_full_check;
4436 
4437 	ret = check_cfg(env);
4438 	if (ret < 0)
4439 		goto skip_full_check;
4440 
4441 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4442 
4443 	ret = do_check(env);
4444 
4445 skip_full_check:
4446 	while (pop_stack(env, NULL) >= 0);
4447 	free_states(env);
4448 
4449 	mutex_unlock(&bpf_verifier_lock);
4450 	vfree(env->insn_aux_data);
4451 err_free_env:
4452 	kfree(env);
4453 	return ret;
4454 }
4455 EXPORT_SYMBOL_GPL(bpf_analyzer);
4456