xref: /openbmc/linux/kernel/bpf/verifier.c (revision 59b4412f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 
25 #include "disasm.h"
26 
27 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
28 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
29 	[_id] = & _name ## _verifier_ops,
30 #define BPF_MAP_TYPE(_id, _ops)
31 #define BPF_LINK_TYPE(_id, _name)
32 #include <linux/bpf_types.h>
33 #undef BPF_PROG_TYPE
34 #undef BPF_MAP_TYPE
35 #undef BPF_LINK_TYPE
36 };
37 
38 /* bpf_check() is a static code analyzer that walks eBPF program
39  * instruction by instruction and updates register/stack state.
40  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
41  *
42  * The first pass is depth-first-search to check that the program is a DAG.
43  * It rejects the following programs:
44  * - larger than BPF_MAXINSNS insns
45  * - if loop is present (detected via back-edge)
46  * - unreachable insns exist (shouldn't be a forest. program = one function)
47  * - out of bounds or malformed jumps
48  * The second pass is all possible path descent from the 1st insn.
49  * Since it's analyzing all pathes through the program, the length of the
50  * analysis is limited to 64k insn, which may be hit even if total number of
51  * insn is less then 4K, but there are too many branches that change stack/regs.
52  * Number of 'branches to be analyzed' is limited to 1k
53  *
54  * On entry to each instruction, each register has a type, and the instruction
55  * changes the types of the registers depending on instruction semantics.
56  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
57  * copied to R1.
58  *
59  * All registers are 64-bit.
60  * R0 - return register
61  * R1-R5 argument passing registers
62  * R6-R9 callee saved registers
63  * R10 - frame pointer read-only
64  *
65  * At the start of BPF program the register R1 contains a pointer to bpf_context
66  * and has type PTR_TO_CTX.
67  *
68  * Verifier tracks arithmetic operations on pointers in case:
69  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
70  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
71  * 1st insn copies R10 (which has FRAME_PTR) type into R1
72  * and 2nd arithmetic instruction is pattern matched to recognize
73  * that it wants to construct a pointer to some element within stack.
74  * So after 2nd insn, the register R1 has type PTR_TO_STACK
75  * (and -20 constant is saved for further stack bounds checking).
76  * Meaning that this reg is a pointer to stack plus known immediate constant.
77  *
78  * Most of the time the registers have SCALAR_VALUE type, which
79  * means the register has some value, but it's not a valid pointer.
80  * (like pointer plus pointer becomes SCALAR_VALUE type)
81  *
82  * When verifier sees load or store instructions the type of base register
83  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
84  * four pointer types recognized by check_mem_access() function.
85  *
86  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
87  * and the range of [ptr, ptr + map's value_size) is accessible.
88  *
89  * registers used to pass values to function calls are checked against
90  * function argument constraints.
91  *
92  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
93  * It means that the register type passed to this function must be
94  * PTR_TO_STACK and it will be used inside the function as
95  * 'pointer to map element key'
96  *
97  * For example the argument constraints for bpf_map_lookup_elem():
98  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
99  *   .arg1_type = ARG_CONST_MAP_PTR,
100  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
101  *
102  * ret_type says that this function returns 'pointer to map elem value or null'
103  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
104  * 2nd argument should be a pointer to stack, which will be used inside
105  * the helper function as a pointer to map element key.
106  *
107  * On the kernel side the helper function looks like:
108  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
109  * {
110  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
111  *    void *key = (void *) (unsigned long) r2;
112  *    void *value;
113  *
114  *    here kernel can access 'key' and 'map' pointers safely, knowing that
115  *    [key, key + map->key_size) bytes are valid and were initialized on
116  *    the stack of eBPF program.
117  * }
118  *
119  * Corresponding eBPF program may look like:
120  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
121  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
122  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
123  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
124  * here verifier looks at prototype of map_lookup_elem() and sees:
125  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
126  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
127  *
128  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
129  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
130  * and were initialized prior to this call.
131  * If it's ok, then verifier allows this BPF_CALL insn and looks at
132  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
133  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
134  * returns ether pointer to map value or NULL.
135  *
136  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
137  * insn, the register holding that pointer in the true branch changes state to
138  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
139  * branch. See check_cond_jmp_op().
140  *
141  * After the call R0 is set to return type of the function and registers R1-R5
142  * are set to NOT_INIT to indicate that they are no longer readable.
143  *
144  * The following reference types represent a potential reference to a kernel
145  * resource which, after first being allocated, must be checked and freed by
146  * the BPF program:
147  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
148  *
149  * When the verifier sees a helper call return a reference type, it allocates a
150  * pointer id for the reference and stores it in the current function state.
151  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
152  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
153  * passes through a NULL-check conditional. For the branch wherein the state is
154  * changed to CONST_IMM, the verifier releases the reference.
155  *
156  * For each helper function that allocates a reference, such as
157  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
158  * bpf_sk_release(). When a reference type passes into the release function,
159  * the verifier also releases the reference. If any unchecked or unreleased
160  * reference remains at the end of the program, the verifier rejects it.
161  */
162 
163 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
164 struct bpf_verifier_stack_elem {
165 	/* verifer state is 'st'
166 	 * before processing instruction 'insn_idx'
167 	 * and after processing instruction 'prev_insn_idx'
168 	 */
169 	struct bpf_verifier_state st;
170 	int insn_idx;
171 	int prev_insn_idx;
172 	struct bpf_verifier_stack_elem *next;
173 	/* length of verifier log at the time this state was pushed on stack */
174 	u32 log_pos;
175 };
176 
177 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
178 #define BPF_COMPLEXITY_LIMIT_STATES	64
179 
180 #define BPF_MAP_KEY_POISON	(1ULL << 63)
181 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
182 
183 #define BPF_MAP_PTR_UNPRIV	1UL
184 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
185 					  POISON_POINTER_DELTA))
186 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
187 
188 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
189 {
190 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
191 }
192 
193 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
194 {
195 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
196 }
197 
198 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
199 			      const struct bpf_map *map, bool unpriv)
200 {
201 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
202 	unpriv |= bpf_map_ptr_unpriv(aux);
203 	aux->map_ptr_state = (unsigned long)map |
204 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
205 }
206 
207 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
208 {
209 	return aux->map_key_state & BPF_MAP_KEY_POISON;
210 }
211 
212 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
213 {
214 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
215 }
216 
217 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
218 {
219 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
220 }
221 
222 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
223 {
224 	bool poisoned = bpf_map_key_poisoned(aux);
225 
226 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
227 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
228 }
229 
230 struct bpf_call_arg_meta {
231 	struct bpf_map *map_ptr;
232 	bool raw_mode;
233 	bool pkt_access;
234 	int regno;
235 	int access_size;
236 	int mem_size;
237 	u64 msize_max_value;
238 	int ref_obj_id;
239 	int func_id;
240 	u32 btf_id;
241 };
242 
243 struct btf *btf_vmlinux;
244 
245 static DEFINE_MUTEX(bpf_verifier_lock);
246 
247 static const struct bpf_line_info *
248 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
249 {
250 	const struct bpf_line_info *linfo;
251 	const struct bpf_prog *prog;
252 	u32 i, nr_linfo;
253 
254 	prog = env->prog;
255 	nr_linfo = prog->aux->nr_linfo;
256 
257 	if (!nr_linfo || insn_off >= prog->len)
258 		return NULL;
259 
260 	linfo = prog->aux->linfo;
261 	for (i = 1; i < nr_linfo; i++)
262 		if (insn_off < linfo[i].insn_off)
263 			break;
264 
265 	return &linfo[i - 1];
266 }
267 
268 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
269 		       va_list args)
270 {
271 	unsigned int n;
272 
273 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
274 
275 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
276 		  "verifier log line truncated - local buffer too short\n");
277 
278 	n = min(log->len_total - log->len_used - 1, n);
279 	log->kbuf[n] = '\0';
280 
281 	if (log->level == BPF_LOG_KERNEL) {
282 		pr_err("BPF:%s\n", log->kbuf);
283 		return;
284 	}
285 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
286 		log->len_used += n;
287 	else
288 		log->ubuf = NULL;
289 }
290 
291 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
292 {
293 	char zero = 0;
294 
295 	if (!bpf_verifier_log_needed(log))
296 		return;
297 
298 	log->len_used = new_pos;
299 	if (put_user(zero, log->ubuf + new_pos))
300 		log->ubuf = NULL;
301 }
302 
303 /* log_level controls verbosity level of eBPF verifier.
304  * bpf_verifier_log_write() is used to dump the verification trace to the log,
305  * so the user can figure out what's wrong with the program
306  */
307 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
308 					   const char *fmt, ...)
309 {
310 	va_list args;
311 
312 	if (!bpf_verifier_log_needed(&env->log))
313 		return;
314 
315 	va_start(args, fmt);
316 	bpf_verifier_vlog(&env->log, fmt, args);
317 	va_end(args);
318 }
319 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
320 
321 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
322 {
323 	struct bpf_verifier_env *env = private_data;
324 	va_list args;
325 
326 	if (!bpf_verifier_log_needed(&env->log))
327 		return;
328 
329 	va_start(args, fmt);
330 	bpf_verifier_vlog(&env->log, fmt, args);
331 	va_end(args);
332 }
333 
334 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
335 			    const char *fmt, ...)
336 {
337 	va_list args;
338 
339 	if (!bpf_verifier_log_needed(log))
340 		return;
341 
342 	va_start(args, fmt);
343 	bpf_verifier_vlog(log, fmt, args);
344 	va_end(args);
345 }
346 
347 static const char *ltrim(const char *s)
348 {
349 	while (isspace(*s))
350 		s++;
351 
352 	return s;
353 }
354 
355 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
356 					 u32 insn_off,
357 					 const char *prefix_fmt, ...)
358 {
359 	const struct bpf_line_info *linfo;
360 
361 	if (!bpf_verifier_log_needed(&env->log))
362 		return;
363 
364 	linfo = find_linfo(env, insn_off);
365 	if (!linfo || linfo == env->prev_linfo)
366 		return;
367 
368 	if (prefix_fmt) {
369 		va_list args;
370 
371 		va_start(args, prefix_fmt);
372 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
373 		va_end(args);
374 	}
375 
376 	verbose(env, "%s\n",
377 		ltrim(btf_name_by_offset(env->prog->aux->btf,
378 					 linfo->line_off)));
379 
380 	env->prev_linfo = linfo;
381 }
382 
383 static bool type_is_pkt_pointer(enum bpf_reg_type type)
384 {
385 	return type == PTR_TO_PACKET ||
386 	       type == PTR_TO_PACKET_META;
387 }
388 
389 static bool type_is_sk_pointer(enum bpf_reg_type type)
390 {
391 	return type == PTR_TO_SOCKET ||
392 		type == PTR_TO_SOCK_COMMON ||
393 		type == PTR_TO_TCP_SOCK ||
394 		type == PTR_TO_XDP_SOCK;
395 }
396 
397 static bool reg_type_not_null(enum bpf_reg_type type)
398 {
399 	return type == PTR_TO_SOCKET ||
400 		type == PTR_TO_TCP_SOCK ||
401 		type == PTR_TO_MAP_VALUE ||
402 		type == PTR_TO_SOCK_COMMON ||
403 	        type == PTR_TO_BTF_ID;
404 }
405 
406 static bool reg_type_may_be_null(enum bpf_reg_type type)
407 {
408 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
409 	       type == PTR_TO_SOCKET_OR_NULL ||
410 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
411 	       type == PTR_TO_TCP_SOCK_OR_NULL ||
412 	       type == PTR_TO_BTF_ID_OR_NULL ||
413 	       type == PTR_TO_MEM_OR_NULL;
414 }
415 
416 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
417 {
418 	return reg->type == PTR_TO_MAP_VALUE &&
419 		map_value_has_spin_lock(reg->map_ptr);
420 }
421 
422 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
423 {
424 	return type == PTR_TO_SOCKET ||
425 		type == PTR_TO_SOCKET_OR_NULL ||
426 		type == PTR_TO_TCP_SOCK ||
427 		type == PTR_TO_TCP_SOCK_OR_NULL ||
428 		type == PTR_TO_MEM ||
429 		type == PTR_TO_MEM_OR_NULL;
430 }
431 
432 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
433 {
434 	return type == ARG_PTR_TO_SOCK_COMMON;
435 }
436 
437 /* Determine whether the function releases some resources allocated by another
438  * function call. The first reference type argument will be assumed to be
439  * released by release_reference().
440  */
441 static bool is_release_function(enum bpf_func_id func_id)
442 {
443 	return func_id == BPF_FUNC_sk_release ||
444 	       func_id == BPF_FUNC_ringbuf_submit ||
445 	       func_id == BPF_FUNC_ringbuf_discard;
446 }
447 
448 static bool may_be_acquire_function(enum bpf_func_id func_id)
449 {
450 	return func_id == BPF_FUNC_sk_lookup_tcp ||
451 		func_id == BPF_FUNC_sk_lookup_udp ||
452 		func_id == BPF_FUNC_skc_lookup_tcp ||
453 		func_id == BPF_FUNC_map_lookup_elem ||
454 	        func_id == BPF_FUNC_ringbuf_reserve;
455 }
456 
457 static bool is_acquire_function(enum bpf_func_id func_id,
458 				const struct bpf_map *map)
459 {
460 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
461 
462 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
463 	    func_id == BPF_FUNC_sk_lookup_udp ||
464 	    func_id == BPF_FUNC_skc_lookup_tcp ||
465 	    func_id == BPF_FUNC_ringbuf_reserve)
466 		return true;
467 
468 	if (func_id == BPF_FUNC_map_lookup_elem &&
469 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
470 	     map_type == BPF_MAP_TYPE_SOCKHASH))
471 		return true;
472 
473 	return false;
474 }
475 
476 static bool is_ptr_cast_function(enum bpf_func_id func_id)
477 {
478 	return func_id == BPF_FUNC_tcp_sock ||
479 		func_id == BPF_FUNC_sk_fullsock;
480 }
481 
482 /* string representation of 'enum bpf_reg_type' */
483 static const char * const reg_type_str[] = {
484 	[NOT_INIT]		= "?",
485 	[SCALAR_VALUE]		= "inv",
486 	[PTR_TO_CTX]		= "ctx",
487 	[CONST_PTR_TO_MAP]	= "map_ptr",
488 	[PTR_TO_MAP_VALUE]	= "map_value",
489 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
490 	[PTR_TO_STACK]		= "fp",
491 	[PTR_TO_PACKET]		= "pkt",
492 	[PTR_TO_PACKET_META]	= "pkt_meta",
493 	[PTR_TO_PACKET_END]	= "pkt_end",
494 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
495 	[PTR_TO_SOCKET]		= "sock",
496 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
497 	[PTR_TO_SOCK_COMMON]	= "sock_common",
498 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
499 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
500 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
501 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
502 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
503 	[PTR_TO_BTF_ID]		= "ptr_",
504 	[PTR_TO_BTF_ID_OR_NULL]	= "ptr_or_null_",
505 	[PTR_TO_MEM]		= "mem",
506 	[PTR_TO_MEM_OR_NULL]	= "mem_or_null",
507 };
508 
509 static char slot_type_char[] = {
510 	[STACK_INVALID]	= '?',
511 	[STACK_SPILL]	= 'r',
512 	[STACK_MISC]	= 'm',
513 	[STACK_ZERO]	= '0',
514 };
515 
516 static void print_liveness(struct bpf_verifier_env *env,
517 			   enum bpf_reg_liveness live)
518 {
519 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
520 	    verbose(env, "_");
521 	if (live & REG_LIVE_READ)
522 		verbose(env, "r");
523 	if (live & REG_LIVE_WRITTEN)
524 		verbose(env, "w");
525 	if (live & REG_LIVE_DONE)
526 		verbose(env, "D");
527 }
528 
529 static struct bpf_func_state *func(struct bpf_verifier_env *env,
530 				   const struct bpf_reg_state *reg)
531 {
532 	struct bpf_verifier_state *cur = env->cur_state;
533 
534 	return cur->frame[reg->frameno];
535 }
536 
537 const char *kernel_type_name(u32 id)
538 {
539 	return btf_name_by_offset(btf_vmlinux,
540 				  btf_type_by_id(btf_vmlinux, id)->name_off);
541 }
542 
543 static void print_verifier_state(struct bpf_verifier_env *env,
544 				 const struct bpf_func_state *state)
545 {
546 	const struct bpf_reg_state *reg;
547 	enum bpf_reg_type t;
548 	int i;
549 
550 	if (state->frameno)
551 		verbose(env, " frame%d:", state->frameno);
552 	for (i = 0; i < MAX_BPF_REG; i++) {
553 		reg = &state->regs[i];
554 		t = reg->type;
555 		if (t == NOT_INIT)
556 			continue;
557 		verbose(env, " R%d", i);
558 		print_liveness(env, reg->live);
559 		verbose(env, "=%s", reg_type_str[t]);
560 		if (t == SCALAR_VALUE && reg->precise)
561 			verbose(env, "P");
562 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
563 		    tnum_is_const(reg->var_off)) {
564 			/* reg->off should be 0 for SCALAR_VALUE */
565 			verbose(env, "%lld", reg->var_off.value + reg->off);
566 		} else {
567 			if (t == PTR_TO_BTF_ID || t == PTR_TO_BTF_ID_OR_NULL)
568 				verbose(env, "%s", kernel_type_name(reg->btf_id));
569 			verbose(env, "(id=%d", reg->id);
570 			if (reg_type_may_be_refcounted_or_null(t))
571 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
572 			if (t != SCALAR_VALUE)
573 				verbose(env, ",off=%d", reg->off);
574 			if (type_is_pkt_pointer(t))
575 				verbose(env, ",r=%d", reg->range);
576 			else if (t == CONST_PTR_TO_MAP ||
577 				 t == PTR_TO_MAP_VALUE ||
578 				 t == PTR_TO_MAP_VALUE_OR_NULL)
579 				verbose(env, ",ks=%d,vs=%d",
580 					reg->map_ptr->key_size,
581 					reg->map_ptr->value_size);
582 			if (tnum_is_const(reg->var_off)) {
583 				/* Typically an immediate SCALAR_VALUE, but
584 				 * could be a pointer whose offset is too big
585 				 * for reg->off
586 				 */
587 				verbose(env, ",imm=%llx", reg->var_off.value);
588 			} else {
589 				if (reg->smin_value != reg->umin_value &&
590 				    reg->smin_value != S64_MIN)
591 					verbose(env, ",smin_value=%lld",
592 						(long long)reg->smin_value);
593 				if (reg->smax_value != reg->umax_value &&
594 				    reg->smax_value != S64_MAX)
595 					verbose(env, ",smax_value=%lld",
596 						(long long)reg->smax_value);
597 				if (reg->umin_value != 0)
598 					verbose(env, ",umin_value=%llu",
599 						(unsigned long long)reg->umin_value);
600 				if (reg->umax_value != U64_MAX)
601 					verbose(env, ",umax_value=%llu",
602 						(unsigned long long)reg->umax_value);
603 				if (!tnum_is_unknown(reg->var_off)) {
604 					char tn_buf[48];
605 
606 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
607 					verbose(env, ",var_off=%s", tn_buf);
608 				}
609 				if (reg->s32_min_value != reg->smin_value &&
610 				    reg->s32_min_value != S32_MIN)
611 					verbose(env, ",s32_min_value=%d",
612 						(int)(reg->s32_min_value));
613 				if (reg->s32_max_value != reg->smax_value &&
614 				    reg->s32_max_value != S32_MAX)
615 					verbose(env, ",s32_max_value=%d",
616 						(int)(reg->s32_max_value));
617 				if (reg->u32_min_value != reg->umin_value &&
618 				    reg->u32_min_value != U32_MIN)
619 					verbose(env, ",u32_min_value=%d",
620 						(int)(reg->u32_min_value));
621 				if (reg->u32_max_value != reg->umax_value &&
622 				    reg->u32_max_value != U32_MAX)
623 					verbose(env, ",u32_max_value=%d",
624 						(int)(reg->u32_max_value));
625 			}
626 			verbose(env, ")");
627 		}
628 	}
629 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
630 		char types_buf[BPF_REG_SIZE + 1];
631 		bool valid = false;
632 		int j;
633 
634 		for (j = 0; j < BPF_REG_SIZE; j++) {
635 			if (state->stack[i].slot_type[j] != STACK_INVALID)
636 				valid = true;
637 			types_buf[j] = slot_type_char[
638 					state->stack[i].slot_type[j]];
639 		}
640 		types_buf[BPF_REG_SIZE] = 0;
641 		if (!valid)
642 			continue;
643 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
644 		print_liveness(env, state->stack[i].spilled_ptr.live);
645 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
646 			reg = &state->stack[i].spilled_ptr;
647 			t = reg->type;
648 			verbose(env, "=%s", reg_type_str[t]);
649 			if (t == SCALAR_VALUE && reg->precise)
650 				verbose(env, "P");
651 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
652 				verbose(env, "%lld", reg->var_off.value + reg->off);
653 		} else {
654 			verbose(env, "=%s", types_buf);
655 		}
656 	}
657 	if (state->acquired_refs && state->refs[0].id) {
658 		verbose(env, " refs=%d", state->refs[0].id);
659 		for (i = 1; i < state->acquired_refs; i++)
660 			if (state->refs[i].id)
661 				verbose(env, ",%d", state->refs[i].id);
662 	}
663 	verbose(env, "\n");
664 }
665 
666 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
667 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
668 			       const struct bpf_func_state *src)	\
669 {									\
670 	if (!src->FIELD)						\
671 		return 0;						\
672 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
673 		/* internal bug, make state invalid to reject the program */ \
674 		memset(dst, 0, sizeof(*dst));				\
675 		return -EFAULT;						\
676 	}								\
677 	memcpy(dst->FIELD, src->FIELD,					\
678 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
679 	return 0;							\
680 }
681 /* copy_reference_state() */
682 COPY_STATE_FN(reference, acquired_refs, refs, 1)
683 /* copy_stack_state() */
684 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
685 #undef COPY_STATE_FN
686 
687 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
688 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
689 				  bool copy_old)			\
690 {									\
691 	u32 old_size = state->COUNT;					\
692 	struct bpf_##NAME##_state *new_##FIELD;				\
693 	int slot = size / SIZE;						\
694 									\
695 	if (size <= old_size || !size) {				\
696 		if (copy_old)						\
697 			return 0;					\
698 		state->COUNT = slot * SIZE;				\
699 		if (!size && old_size) {				\
700 			kfree(state->FIELD);				\
701 			state->FIELD = NULL;				\
702 		}							\
703 		return 0;						\
704 	}								\
705 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
706 				    GFP_KERNEL);			\
707 	if (!new_##FIELD)						\
708 		return -ENOMEM;						\
709 	if (copy_old) {							\
710 		if (state->FIELD)					\
711 			memcpy(new_##FIELD, state->FIELD,		\
712 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
713 		memset(new_##FIELD + old_size / SIZE, 0,		\
714 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
715 	}								\
716 	state->COUNT = slot * SIZE;					\
717 	kfree(state->FIELD);						\
718 	state->FIELD = new_##FIELD;					\
719 	return 0;							\
720 }
721 /* realloc_reference_state() */
722 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
723 /* realloc_stack_state() */
724 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
725 #undef REALLOC_STATE_FN
726 
727 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
728  * make it consume minimal amount of memory. check_stack_write() access from
729  * the program calls into realloc_func_state() to grow the stack size.
730  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
731  * which realloc_stack_state() copies over. It points to previous
732  * bpf_verifier_state which is never reallocated.
733  */
734 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
735 			      int refs_size, bool copy_old)
736 {
737 	int err = realloc_reference_state(state, refs_size, copy_old);
738 	if (err)
739 		return err;
740 	return realloc_stack_state(state, stack_size, copy_old);
741 }
742 
743 /* Acquire a pointer id from the env and update the state->refs to include
744  * this new pointer reference.
745  * On success, returns a valid pointer id to associate with the register
746  * On failure, returns a negative errno.
747  */
748 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
749 {
750 	struct bpf_func_state *state = cur_func(env);
751 	int new_ofs = state->acquired_refs;
752 	int id, err;
753 
754 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
755 	if (err)
756 		return err;
757 	id = ++env->id_gen;
758 	state->refs[new_ofs].id = id;
759 	state->refs[new_ofs].insn_idx = insn_idx;
760 
761 	return id;
762 }
763 
764 /* release function corresponding to acquire_reference_state(). Idempotent. */
765 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
766 {
767 	int i, last_idx;
768 
769 	last_idx = state->acquired_refs - 1;
770 	for (i = 0; i < state->acquired_refs; i++) {
771 		if (state->refs[i].id == ptr_id) {
772 			if (last_idx && i != last_idx)
773 				memcpy(&state->refs[i], &state->refs[last_idx],
774 				       sizeof(*state->refs));
775 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
776 			state->acquired_refs--;
777 			return 0;
778 		}
779 	}
780 	return -EINVAL;
781 }
782 
783 static int transfer_reference_state(struct bpf_func_state *dst,
784 				    struct bpf_func_state *src)
785 {
786 	int err = realloc_reference_state(dst, src->acquired_refs, false);
787 	if (err)
788 		return err;
789 	err = copy_reference_state(dst, src);
790 	if (err)
791 		return err;
792 	return 0;
793 }
794 
795 static void free_func_state(struct bpf_func_state *state)
796 {
797 	if (!state)
798 		return;
799 	kfree(state->refs);
800 	kfree(state->stack);
801 	kfree(state);
802 }
803 
804 static void clear_jmp_history(struct bpf_verifier_state *state)
805 {
806 	kfree(state->jmp_history);
807 	state->jmp_history = NULL;
808 	state->jmp_history_cnt = 0;
809 }
810 
811 static void free_verifier_state(struct bpf_verifier_state *state,
812 				bool free_self)
813 {
814 	int i;
815 
816 	for (i = 0; i <= state->curframe; i++) {
817 		free_func_state(state->frame[i]);
818 		state->frame[i] = NULL;
819 	}
820 	clear_jmp_history(state);
821 	if (free_self)
822 		kfree(state);
823 }
824 
825 /* copy verifier state from src to dst growing dst stack space
826  * when necessary to accommodate larger src stack
827  */
828 static int copy_func_state(struct bpf_func_state *dst,
829 			   const struct bpf_func_state *src)
830 {
831 	int err;
832 
833 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
834 				 false);
835 	if (err)
836 		return err;
837 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
838 	err = copy_reference_state(dst, src);
839 	if (err)
840 		return err;
841 	return copy_stack_state(dst, src);
842 }
843 
844 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
845 			       const struct bpf_verifier_state *src)
846 {
847 	struct bpf_func_state *dst;
848 	u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
849 	int i, err;
850 
851 	if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
852 		kfree(dst_state->jmp_history);
853 		dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
854 		if (!dst_state->jmp_history)
855 			return -ENOMEM;
856 	}
857 	memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
858 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
859 
860 	/* if dst has more stack frames then src frame, free them */
861 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
862 		free_func_state(dst_state->frame[i]);
863 		dst_state->frame[i] = NULL;
864 	}
865 	dst_state->speculative = src->speculative;
866 	dst_state->curframe = src->curframe;
867 	dst_state->active_spin_lock = src->active_spin_lock;
868 	dst_state->branches = src->branches;
869 	dst_state->parent = src->parent;
870 	dst_state->first_insn_idx = src->first_insn_idx;
871 	dst_state->last_insn_idx = src->last_insn_idx;
872 	for (i = 0; i <= src->curframe; i++) {
873 		dst = dst_state->frame[i];
874 		if (!dst) {
875 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
876 			if (!dst)
877 				return -ENOMEM;
878 			dst_state->frame[i] = dst;
879 		}
880 		err = copy_func_state(dst, src->frame[i]);
881 		if (err)
882 			return err;
883 	}
884 	return 0;
885 }
886 
887 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
888 {
889 	while (st) {
890 		u32 br = --st->branches;
891 
892 		/* WARN_ON(br > 1) technically makes sense here,
893 		 * but see comment in push_stack(), hence:
894 		 */
895 		WARN_ONCE((int)br < 0,
896 			  "BUG update_branch_counts:branches_to_explore=%d\n",
897 			  br);
898 		if (br)
899 			break;
900 		st = st->parent;
901 	}
902 }
903 
904 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
905 		     int *insn_idx, bool pop_log)
906 {
907 	struct bpf_verifier_state *cur = env->cur_state;
908 	struct bpf_verifier_stack_elem *elem, *head = env->head;
909 	int err;
910 
911 	if (env->head == NULL)
912 		return -ENOENT;
913 
914 	if (cur) {
915 		err = copy_verifier_state(cur, &head->st);
916 		if (err)
917 			return err;
918 	}
919 	if (pop_log)
920 		bpf_vlog_reset(&env->log, head->log_pos);
921 	if (insn_idx)
922 		*insn_idx = head->insn_idx;
923 	if (prev_insn_idx)
924 		*prev_insn_idx = head->prev_insn_idx;
925 	elem = head->next;
926 	free_verifier_state(&head->st, false);
927 	kfree(head);
928 	env->head = elem;
929 	env->stack_size--;
930 	return 0;
931 }
932 
933 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
934 					     int insn_idx, int prev_insn_idx,
935 					     bool speculative)
936 {
937 	struct bpf_verifier_state *cur = env->cur_state;
938 	struct bpf_verifier_stack_elem *elem;
939 	int err;
940 
941 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
942 	if (!elem)
943 		goto err;
944 
945 	elem->insn_idx = insn_idx;
946 	elem->prev_insn_idx = prev_insn_idx;
947 	elem->next = env->head;
948 	elem->log_pos = env->log.len_used;
949 	env->head = elem;
950 	env->stack_size++;
951 	err = copy_verifier_state(&elem->st, cur);
952 	if (err)
953 		goto err;
954 	elem->st.speculative |= speculative;
955 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
956 		verbose(env, "The sequence of %d jumps is too complex.\n",
957 			env->stack_size);
958 		goto err;
959 	}
960 	if (elem->st.parent) {
961 		++elem->st.parent->branches;
962 		/* WARN_ON(branches > 2) technically makes sense here,
963 		 * but
964 		 * 1. speculative states will bump 'branches' for non-branch
965 		 * instructions
966 		 * 2. is_state_visited() heuristics may decide not to create
967 		 * a new state for a sequence of branches and all such current
968 		 * and cloned states will be pointing to a single parent state
969 		 * which might have large 'branches' count.
970 		 */
971 	}
972 	return &elem->st;
973 err:
974 	free_verifier_state(env->cur_state, true);
975 	env->cur_state = NULL;
976 	/* pop all elements and return */
977 	while (!pop_stack(env, NULL, NULL, false));
978 	return NULL;
979 }
980 
981 #define CALLER_SAVED_REGS 6
982 static const int caller_saved[CALLER_SAVED_REGS] = {
983 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
984 };
985 
986 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
987 				struct bpf_reg_state *reg);
988 
989 /* Mark the unknown part of a register (variable offset or scalar value) as
990  * known to have the value @imm.
991  */
992 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
993 {
994 	/* Clear id, off, and union(map_ptr, range) */
995 	memset(((u8 *)reg) + sizeof(reg->type), 0,
996 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
997 	reg->var_off = tnum_const(imm);
998 	reg->smin_value = (s64)imm;
999 	reg->smax_value = (s64)imm;
1000 	reg->umin_value = imm;
1001 	reg->umax_value = imm;
1002 
1003 	reg->s32_min_value = (s32)imm;
1004 	reg->s32_max_value = (s32)imm;
1005 	reg->u32_min_value = (u32)imm;
1006 	reg->u32_max_value = (u32)imm;
1007 }
1008 
1009 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1010 {
1011 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1012 	reg->s32_min_value = (s32)imm;
1013 	reg->s32_max_value = (s32)imm;
1014 	reg->u32_min_value = (u32)imm;
1015 	reg->u32_max_value = (u32)imm;
1016 }
1017 
1018 /* Mark the 'variable offset' part of a register as zero.  This should be
1019  * used only on registers holding a pointer type.
1020  */
1021 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1022 {
1023 	__mark_reg_known(reg, 0);
1024 }
1025 
1026 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1027 {
1028 	__mark_reg_known(reg, 0);
1029 	reg->type = SCALAR_VALUE;
1030 }
1031 
1032 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1033 				struct bpf_reg_state *regs, u32 regno)
1034 {
1035 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1036 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1037 		/* Something bad happened, let's kill all regs */
1038 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1039 			__mark_reg_not_init(env, regs + regno);
1040 		return;
1041 	}
1042 	__mark_reg_known_zero(regs + regno);
1043 }
1044 
1045 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1046 {
1047 	return type_is_pkt_pointer(reg->type);
1048 }
1049 
1050 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1051 {
1052 	return reg_is_pkt_pointer(reg) ||
1053 	       reg->type == PTR_TO_PACKET_END;
1054 }
1055 
1056 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1057 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1058 				    enum bpf_reg_type which)
1059 {
1060 	/* The register can already have a range from prior markings.
1061 	 * This is fine as long as it hasn't been advanced from its
1062 	 * origin.
1063 	 */
1064 	return reg->type == which &&
1065 	       reg->id == 0 &&
1066 	       reg->off == 0 &&
1067 	       tnum_equals_const(reg->var_off, 0);
1068 }
1069 
1070 /* Reset the min/max bounds of a register */
1071 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1072 {
1073 	reg->smin_value = S64_MIN;
1074 	reg->smax_value = S64_MAX;
1075 	reg->umin_value = 0;
1076 	reg->umax_value = U64_MAX;
1077 
1078 	reg->s32_min_value = S32_MIN;
1079 	reg->s32_max_value = S32_MAX;
1080 	reg->u32_min_value = 0;
1081 	reg->u32_max_value = U32_MAX;
1082 }
1083 
1084 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1085 {
1086 	reg->smin_value = S64_MIN;
1087 	reg->smax_value = S64_MAX;
1088 	reg->umin_value = 0;
1089 	reg->umax_value = U64_MAX;
1090 }
1091 
1092 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1093 {
1094 	reg->s32_min_value = S32_MIN;
1095 	reg->s32_max_value = S32_MAX;
1096 	reg->u32_min_value = 0;
1097 	reg->u32_max_value = U32_MAX;
1098 }
1099 
1100 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1101 {
1102 	struct tnum var32_off = tnum_subreg(reg->var_off);
1103 
1104 	/* min signed is max(sign bit) | min(other bits) */
1105 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1106 			var32_off.value | (var32_off.mask & S32_MIN));
1107 	/* max signed is min(sign bit) | max(other bits) */
1108 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1109 			var32_off.value | (var32_off.mask & S32_MAX));
1110 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1111 	reg->u32_max_value = min(reg->u32_max_value,
1112 				 (u32)(var32_off.value | var32_off.mask));
1113 }
1114 
1115 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1116 {
1117 	/* min signed is max(sign bit) | min(other bits) */
1118 	reg->smin_value = max_t(s64, reg->smin_value,
1119 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1120 	/* max signed is min(sign bit) | max(other bits) */
1121 	reg->smax_value = min_t(s64, reg->smax_value,
1122 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1123 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1124 	reg->umax_value = min(reg->umax_value,
1125 			      reg->var_off.value | reg->var_off.mask);
1126 }
1127 
1128 static void __update_reg_bounds(struct bpf_reg_state *reg)
1129 {
1130 	__update_reg32_bounds(reg);
1131 	__update_reg64_bounds(reg);
1132 }
1133 
1134 /* Uses signed min/max values to inform unsigned, and vice-versa */
1135 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1136 {
1137 	/* Learn sign from signed bounds.
1138 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1139 	 * are the same, so combine.  This works even in the negative case, e.g.
1140 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1141 	 */
1142 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1143 		reg->s32_min_value = reg->u32_min_value =
1144 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1145 		reg->s32_max_value = reg->u32_max_value =
1146 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1147 		return;
1148 	}
1149 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1150 	 * boundary, so we must be careful.
1151 	 */
1152 	if ((s32)reg->u32_max_value >= 0) {
1153 		/* Positive.  We can't learn anything from the smin, but smax
1154 		 * is positive, hence safe.
1155 		 */
1156 		reg->s32_min_value = reg->u32_min_value;
1157 		reg->s32_max_value = reg->u32_max_value =
1158 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1159 	} else if ((s32)reg->u32_min_value < 0) {
1160 		/* Negative.  We can't learn anything from the smax, but smin
1161 		 * is negative, hence safe.
1162 		 */
1163 		reg->s32_min_value = reg->u32_min_value =
1164 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1165 		reg->s32_max_value = reg->u32_max_value;
1166 	}
1167 }
1168 
1169 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1170 {
1171 	/* Learn sign from signed bounds.
1172 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1173 	 * are the same, so combine.  This works even in the negative case, e.g.
1174 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1175 	 */
1176 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1177 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1178 							  reg->umin_value);
1179 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1180 							  reg->umax_value);
1181 		return;
1182 	}
1183 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1184 	 * boundary, so we must be careful.
1185 	 */
1186 	if ((s64)reg->umax_value >= 0) {
1187 		/* Positive.  We can't learn anything from the smin, but smax
1188 		 * is positive, hence safe.
1189 		 */
1190 		reg->smin_value = reg->umin_value;
1191 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1192 							  reg->umax_value);
1193 	} else if ((s64)reg->umin_value < 0) {
1194 		/* Negative.  We can't learn anything from the smax, but smin
1195 		 * is negative, hence safe.
1196 		 */
1197 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1198 							  reg->umin_value);
1199 		reg->smax_value = reg->umax_value;
1200 	}
1201 }
1202 
1203 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1204 {
1205 	__reg32_deduce_bounds(reg);
1206 	__reg64_deduce_bounds(reg);
1207 }
1208 
1209 /* Attempts to improve var_off based on unsigned min/max information */
1210 static void __reg_bound_offset(struct bpf_reg_state *reg)
1211 {
1212 	struct tnum var64_off = tnum_intersect(reg->var_off,
1213 					       tnum_range(reg->umin_value,
1214 							  reg->umax_value));
1215 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1216 						tnum_range(reg->u32_min_value,
1217 							   reg->u32_max_value));
1218 
1219 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1220 }
1221 
1222 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1223 {
1224 	reg->umin_value = reg->u32_min_value;
1225 	reg->umax_value = reg->u32_max_value;
1226 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1227 	 * but must be positive otherwise set to worse case bounds
1228 	 * and refine later from tnum.
1229 	 */
1230 	if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1231 		reg->smax_value = reg->s32_max_value;
1232 	else
1233 		reg->smax_value = U32_MAX;
1234 	if (reg->s32_min_value >= 0)
1235 		reg->smin_value = reg->s32_min_value;
1236 	else
1237 		reg->smin_value = 0;
1238 }
1239 
1240 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1241 {
1242 	/* special case when 64-bit register has upper 32-bit register
1243 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1244 	 * allowing us to use 32-bit bounds directly,
1245 	 */
1246 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1247 		__reg_assign_32_into_64(reg);
1248 	} else {
1249 		/* Otherwise the best we can do is push lower 32bit known and
1250 		 * unknown bits into register (var_off set from jmp logic)
1251 		 * then learn as much as possible from the 64-bit tnum
1252 		 * known and unknown bits. The previous smin/smax bounds are
1253 		 * invalid here because of jmp32 compare so mark them unknown
1254 		 * so they do not impact tnum bounds calculation.
1255 		 */
1256 		__mark_reg64_unbounded(reg);
1257 		__update_reg_bounds(reg);
1258 	}
1259 
1260 	/* Intersecting with the old var_off might have improved our bounds
1261 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1262 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1263 	 */
1264 	__reg_deduce_bounds(reg);
1265 	__reg_bound_offset(reg);
1266 	__update_reg_bounds(reg);
1267 }
1268 
1269 static bool __reg64_bound_s32(s64 a)
1270 {
1271 	if (a > S32_MIN && a < S32_MAX)
1272 		return true;
1273 	return false;
1274 }
1275 
1276 static bool __reg64_bound_u32(u64 a)
1277 {
1278 	if (a > U32_MIN && a < U32_MAX)
1279 		return true;
1280 	return false;
1281 }
1282 
1283 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1284 {
1285 	__mark_reg32_unbounded(reg);
1286 
1287 	if (__reg64_bound_s32(reg->smin_value))
1288 		reg->s32_min_value = (s32)reg->smin_value;
1289 	if (__reg64_bound_s32(reg->smax_value))
1290 		reg->s32_max_value = (s32)reg->smax_value;
1291 	if (__reg64_bound_u32(reg->umin_value))
1292 		reg->u32_min_value = (u32)reg->umin_value;
1293 	if (__reg64_bound_u32(reg->umax_value))
1294 		reg->u32_max_value = (u32)reg->umax_value;
1295 
1296 	/* Intersecting with the old var_off might have improved our bounds
1297 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1298 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1299 	 */
1300 	__reg_deduce_bounds(reg);
1301 	__reg_bound_offset(reg);
1302 	__update_reg_bounds(reg);
1303 }
1304 
1305 /* Mark a register as having a completely unknown (scalar) value. */
1306 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1307 			       struct bpf_reg_state *reg)
1308 {
1309 	/*
1310 	 * Clear type, id, off, and union(map_ptr, range) and
1311 	 * padding between 'type' and union
1312 	 */
1313 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1314 	reg->type = SCALAR_VALUE;
1315 	reg->var_off = tnum_unknown;
1316 	reg->frameno = 0;
1317 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1318 	__mark_reg_unbounded(reg);
1319 }
1320 
1321 static void mark_reg_unknown(struct bpf_verifier_env *env,
1322 			     struct bpf_reg_state *regs, u32 regno)
1323 {
1324 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1325 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1326 		/* Something bad happened, let's kill all regs except FP */
1327 		for (regno = 0; regno < BPF_REG_FP; regno++)
1328 			__mark_reg_not_init(env, regs + regno);
1329 		return;
1330 	}
1331 	__mark_reg_unknown(env, regs + regno);
1332 }
1333 
1334 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1335 				struct bpf_reg_state *reg)
1336 {
1337 	__mark_reg_unknown(env, reg);
1338 	reg->type = NOT_INIT;
1339 }
1340 
1341 static void mark_reg_not_init(struct bpf_verifier_env *env,
1342 			      struct bpf_reg_state *regs, u32 regno)
1343 {
1344 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1345 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1346 		/* Something bad happened, let's kill all regs except FP */
1347 		for (regno = 0; regno < BPF_REG_FP; regno++)
1348 			__mark_reg_not_init(env, regs + regno);
1349 		return;
1350 	}
1351 	__mark_reg_not_init(env, regs + regno);
1352 }
1353 
1354 #define DEF_NOT_SUBREG	(0)
1355 static void init_reg_state(struct bpf_verifier_env *env,
1356 			   struct bpf_func_state *state)
1357 {
1358 	struct bpf_reg_state *regs = state->regs;
1359 	int i;
1360 
1361 	for (i = 0; i < MAX_BPF_REG; i++) {
1362 		mark_reg_not_init(env, regs, i);
1363 		regs[i].live = REG_LIVE_NONE;
1364 		regs[i].parent = NULL;
1365 		regs[i].subreg_def = DEF_NOT_SUBREG;
1366 	}
1367 
1368 	/* frame pointer */
1369 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1370 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1371 	regs[BPF_REG_FP].frameno = state->frameno;
1372 }
1373 
1374 #define BPF_MAIN_FUNC (-1)
1375 static void init_func_state(struct bpf_verifier_env *env,
1376 			    struct bpf_func_state *state,
1377 			    int callsite, int frameno, int subprogno)
1378 {
1379 	state->callsite = callsite;
1380 	state->frameno = frameno;
1381 	state->subprogno = subprogno;
1382 	init_reg_state(env, state);
1383 }
1384 
1385 enum reg_arg_type {
1386 	SRC_OP,		/* register is used as source operand */
1387 	DST_OP,		/* register is used as destination operand */
1388 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1389 };
1390 
1391 static int cmp_subprogs(const void *a, const void *b)
1392 {
1393 	return ((struct bpf_subprog_info *)a)->start -
1394 	       ((struct bpf_subprog_info *)b)->start;
1395 }
1396 
1397 static int find_subprog(struct bpf_verifier_env *env, int off)
1398 {
1399 	struct bpf_subprog_info *p;
1400 
1401 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1402 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1403 	if (!p)
1404 		return -ENOENT;
1405 	return p - env->subprog_info;
1406 
1407 }
1408 
1409 static int add_subprog(struct bpf_verifier_env *env, int off)
1410 {
1411 	int insn_cnt = env->prog->len;
1412 	int ret;
1413 
1414 	if (off >= insn_cnt || off < 0) {
1415 		verbose(env, "call to invalid destination\n");
1416 		return -EINVAL;
1417 	}
1418 	ret = find_subprog(env, off);
1419 	if (ret >= 0)
1420 		return 0;
1421 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1422 		verbose(env, "too many subprograms\n");
1423 		return -E2BIG;
1424 	}
1425 	env->subprog_info[env->subprog_cnt++].start = off;
1426 	sort(env->subprog_info, env->subprog_cnt,
1427 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1428 	return 0;
1429 }
1430 
1431 static int check_subprogs(struct bpf_verifier_env *env)
1432 {
1433 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1434 	struct bpf_subprog_info *subprog = env->subprog_info;
1435 	struct bpf_insn *insn = env->prog->insnsi;
1436 	int insn_cnt = env->prog->len;
1437 
1438 	/* Add entry function. */
1439 	ret = add_subprog(env, 0);
1440 	if (ret < 0)
1441 		return ret;
1442 
1443 	/* determine subprog starts. The end is one before the next starts */
1444 	for (i = 0; i < insn_cnt; i++) {
1445 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1446 			continue;
1447 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1448 			continue;
1449 		if (!env->bpf_capable) {
1450 			verbose(env,
1451 				"function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1452 			return -EPERM;
1453 		}
1454 		ret = add_subprog(env, i + insn[i].imm + 1);
1455 		if (ret < 0)
1456 			return ret;
1457 	}
1458 
1459 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1460 	 * logic. 'subprog_cnt' should not be increased.
1461 	 */
1462 	subprog[env->subprog_cnt].start = insn_cnt;
1463 
1464 	if (env->log.level & BPF_LOG_LEVEL2)
1465 		for (i = 0; i < env->subprog_cnt; i++)
1466 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1467 
1468 	/* now check that all jumps are within the same subprog */
1469 	subprog_start = subprog[cur_subprog].start;
1470 	subprog_end = subprog[cur_subprog + 1].start;
1471 	for (i = 0; i < insn_cnt; i++) {
1472 		u8 code = insn[i].code;
1473 
1474 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1475 			goto next;
1476 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1477 			goto next;
1478 		off = i + insn[i].off + 1;
1479 		if (off < subprog_start || off >= subprog_end) {
1480 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1481 			return -EINVAL;
1482 		}
1483 next:
1484 		if (i == subprog_end - 1) {
1485 			/* to avoid fall-through from one subprog into another
1486 			 * the last insn of the subprog should be either exit
1487 			 * or unconditional jump back
1488 			 */
1489 			if (code != (BPF_JMP | BPF_EXIT) &&
1490 			    code != (BPF_JMP | BPF_JA)) {
1491 				verbose(env, "last insn is not an exit or jmp\n");
1492 				return -EINVAL;
1493 			}
1494 			subprog_start = subprog_end;
1495 			cur_subprog++;
1496 			if (cur_subprog < env->subprog_cnt)
1497 				subprog_end = subprog[cur_subprog + 1].start;
1498 		}
1499 	}
1500 	return 0;
1501 }
1502 
1503 /* Parentage chain of this register (or stack slot) should take care of all
1504  * issues like callee-saved registers, stack slot allocation time, etc.
1505  */
1506 static int mark_reg_read(struct bpf_verifier_env *env,
1507 			 const struct bpf_reg_state *state,
1508 			 struct bpf_reg_state *parent, u8 flag)
1509 {
1510 	bool writes = parent == state->parent; /* Observe write marks */
1511 	int cnt = 0;
1512 
1513 	while (parent) {
1514 		/* if read wasn't screened by an earlier write ... */
1515 		if (writes && state->live & REG_LIVE_WRITTEN)
1516 			break;
1517 		if (parent->live & REG_LIVE_DONE) {
1518 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1519 				reg_type_str[parent->type],
1520 				parent->var_off.value, parent->off);
1521 			return -EFAULT;
1522 		}
1523 		/* The first condition is more likely to be true than the
1524 		 * second, checked it first.
1525 		 */
1526 		if ((parent->live & REG_LIVE_READ) == flag ||
1527 		    parent->live & REG_LIVE_READ64)
1528 			/* The parentage chain never changes and
1529 			 * this parent was already marked as LIVE_READ.
1530 			 * There is no need to keep walking the chain again and
1531 			 * keep re-marking all parents as LIVE_READ.
1532 			 * This case happens when the same register is read
1533 			 * multiple times without writes into it in-between.
1534 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1535 			 * then no need to set the weak REG_LIVE_READ32.
1536 			 */
1537 			break;
1538 		/* ... then we depend on parent's value */
1539 		parent->live |= flag;
1540 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1541 		if (flag == REG_LIVE_READ64)
1542 			parent->live &= ~REG_LIVE_READ32;
1543 		state = parent;
1544 		parent = state->parent;
1545 		writes = true;
1546 		cnt++;
1547 	}
1548 
1549 	if (env->longest_mark_read_walk < cnt)
1550 		env->longest_mark_read_walk = cnt;
1551 	return 0;
1552 }
1553 
1554 /* This function is supposed to be used by the following 32-bit optimization
1555  * code only. It returns TRUE if the source or destination register operates
1556  * on 64-bit, otherwise return FALSE.
1557  */
1558 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1559 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1560 {
1561 	u8 code, class, op;
1562 
1563 	code = insn->code;
1564 	class = BPF_CLASS(code);
1565 	op = BPF_OP(code);
1566 	if (class == BPF_JMP) {
1567 		/* BPF_EXIT for "main" will reach here. Return TRUE
1568 		 * conservatively.
1569 		 */
1570 		if (op == BPF_EXIT)
1571 			return true;
1572 		if (op == BPF_CALL) {
1573 			/* BPF to BPF call will reach here because of marking
1574 			 * caller saved clobber with DST_OP_NO_MARK for which we
1575 			 * don't care the register def because they are anyway
1576 			 * marked as NOT_INIT already.
1577 			 */
1578 			if (insn->src_reg == BPF_PSEUDO_CALL)
1579 				return false;
1580 			/* Helper call will reach here because of arg type
1581 			 * check, conservatively return TRUE.
1582 			 */
1583 			if (t == SRC_OP)
1584 				return true;
1585 
1586 			return false;
1587 		}
1588 	}
1589 
1590 	if (class == BPF_ALU64 || class == BPF_JMP ||
1591 	    /* BPF_END always use BPF_ALU class. */
1592 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1593 		return true;
1594 
1595 	if (class == BPF_ALU || class == BPF_JMP32)
1596 		return false;
1597 
1598 	if (class == BPF_LDX) {
1599 		if (t != SRC_OP)
1600 			return BPF_SIZE(code) == BPF_DW;
1601 		/* LDX source must be ptr. */
1602 		return true;
1603 	}
1604 
1605 	if (class == BPF_STX) {
1606 		if (reg->type != SCALAR_VALUE)
1607 			return true;
1608 		return BPF_SIZE(code) == BPF_DW;
1609 	}
1610 
1611 	if (class == BPF_LD) {
1612 		u8 mode = BPF_MODE(code);
1613 
1614 		/* LD_IMM64 */
1615 		if (mode == BPF_IMM)
1616 			return true;
1617 
1618 		/* Both LD_IND and LD_ABS return 32-bit data. */
1619 		if (t != SRC_OP)
1620 			return  false;
1621 
1622 		/* Implicit ctx ptr. */
1623 		if (regno == BPF_REG_6)
1624 			return true;
1625 
1626 		/* Explicit source could be any width. */
1627 		return true;
1628 	}
1629 
1630 	if (class == BPF_ST)
1631 		/* The only source register for BPF_ST is a ptr. */
1632 		return true;
1633 
1634 	/* Conservatively return true at default. */
1635 	return true;
1636 }
1637 
1638 /* Return TRUE if INSN doesn't have explicit value define. */
1639 static bool insn_no_def(struct bpf_insn *insn)
1640 {
1641 	u8 class = BPF_CLASS(insn->code);
1642 
1643 	return (class == BPF_JMP || class == BPF_JMP32 ||
1644 		class == BPF_STX || class == BPF_ST);
1645 }
1646 
1647 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1648 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1649 {
1650 	if (insn_no_def(insn))
1651 		return false;
1652 
1653 	return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1654 }
1655 
1656 static void mark_insn_zext(struct bpf_verifier_env *env,
1657 			   struct bpf_reg_state *reg)
1658 {
1659 	s32 def_idx = reg->subreg_def;
1660 
1661 	if (def_idx == DEF_NOT_SUBREG)
1662 		return;
1663 
1664 	env->insn_aux_data[def_idx - 1].zext_dst = true;
1665 	/* The dst will be zero extended, so won't be sub-register anymore. */
1666 	reg->subreg_def = DEF_NOT_SUBREG;
1667 }
1668 
1669 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1670 			 enum reg_arg_type t)
1671 {
1672 	struct bpf_verifier_state *vstate = env->cur_state;
1673 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1674 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1675 	struct bpf_reg_state *reg, *regs = state->regs;
1676 	bool rw64;
1677 
1678 	if (regno >= MAX_BPF_REG) {
1679 		verbose(env, "R%d is invalid\n", regno);
1680 		return -EINVAL;
1681 	}
1682 
1683 	reg = &regs[regno];
1684 	rw64 = is_reg64(env, insn, regno, reg, t);
1685 	if (t == SRC_OP) {
1686 		/* check whether register used as source operand can be read */
1687 		if (reg->type == NOT_INIT) {
1688 			verbose(env, "R%d !read_ok\n", regno);
1689 			return -EACCES;
1690 		}
1691 		/* We don't need to worry about FP liveness because it's read-only */
1692 		if (regno == BPF_REG_FP)
1693 			return 0;
1694 
1695 		if (rw64)
1696 			mark_insn_zext(env, reg);
1697 
1698 		return mark_reg_read(env, reg, reg->parent,
1699 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1700 	} else {
1701 		/* check whether register used as dest operand can be written to */
1702 		if (regno == BPF_REG_FP) {
1703 			verbose(env, "frame pointer is read only\n");
1704 			return -EACCES;
1705 		}
1706 		reg->live |= REG_LIVE_WRITTEN;
1707 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1708 		if (t == DST_OP)
1709 			mark_reg_unknown(env, regs, regno);
1710 	}
1711 	return 0;
1712 }
1713 
1714 /* for any branch, call, exit record the history of jmps in the given state */
1715 static int push_jmp_history(struct bpf_verifier_env *env,
1716 			    struct bpf_verifier_state *cur)
1717 {
1718 	u32 cnt = cur->jmp_history_cnt;
1719 	struct bpf_idx_pair *p;
1720 
1721 	cnt++;
1722 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1723 	if (!p)
1724 		return -ENOMEM;
1725 	p[cnt - 1].idx = env->insn_idx;
1726 	p[cnt - 1].prev_idx = env->prev_insn_idx;
1727 	cur->jmp_history = p;
1728 	cur->jmp_history_cnt = cnt;
1729 	return 0;
1730 }
1731 
1732 /* Backtrack one insn at a time. If idx is not at the top of recorded
1733  * history then previous instruction came from straight line execution.
1734  */
1735 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1736 			     u32 *history)
1737 {
1738 	u32 cnt = *history;
1739 
1740 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
1741 		i = st->jmp_history[cnt - 1].prev_idx;
1742 		(*history)--;
1743 	} else {
1744 		i--;
1745 	}
1746 	return i;
1747 }
1748 
1749 /* For given verifier state backtrack_insn() is called from the last insn to
1750  * the first insn. Its purpose is to compute a bitmask of registers and
1751  * stack slots that needs precision in the parent verifier state.
1752  */
1753 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1754 			  u32 *reg_mask, u64 *stack_mask)
1755 {
1756 	const struct bpf_insn_cbs cbs = {
1757 		.cb_print	= verbose,
1758 		.private_data	= env,
1759 	};
1760 	struct bpf_insn *insn = env->prog->insnsi + idx;
1761 	u8 class = BPF_CLASS(insn->code);
1762 	u8 opcode = BPF_OP(insn->code);
1763 	u8 mode = BPF_MODE(insn->code);
1764 	u32 dreg = 1u << insn->dst_reg;
1765 	u32 sreg = 1u << insn->src_reg;
1766 	u32 spi;
1767 
1768 	if (insn->code == 0)
1769 		return 0;
1770 	if (env->log.level & BPF_LOG_LEVEL) {
1771 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1772 		verbose(env, "%d: ", idx);
1773 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1774 	}
1775 
1776 	if (class == BPF_ALU || class == BPF_ALU64) {
1777 		if (!(*reg_mask & dreg))
1778 			return 0;
1779 		if (opcode == BPF_MOV) {
1780 			if (BPF_SRC(insn->code) == BPF_X) {
1781 				/* dreg = sreg
1782 				 * dreg needs precision after this insn
1783 				 * sreg needs precision before this insn
1784 				 */
1785 				*reg_mask &= ~dreg;
1786 				*reg_mask |= sreg;
1787 			} else {
1788 				/* dreg = K
1789 				 * dreg needs precision after this insn.
1790 				 * Corresponding register is already marked
1791 				 * as precise=true in this verifier state.
1792 				 * No further markings in parent are necessary
1793 				 */
1794 				*reg_mask &= ~dreg;
1795 			}
1796 		} else {
1797 			if (BPF_SRC(insn->code) == BPF_X) {
1798 				/* dreg += sreg
1799 				 * both dreg and sreg need precision
1800 				 * before this insn
1801 				 */
1802 				*reg_mask |= sreg;
1803 			} /* else dreg += K
1804 			   * dreg still needs precision before this insn
1805 			   */
1806 		}
1807 	} else if (class == BPF_LDX) {
1808 		if (!(*reg_mask & dreg))
1809 			return 0;
1810 		*reg_mask &= ~dreg;
1811 
1812 		/* scalars can only be spilled into stack w/o losing precision.
1813 		 * Load from any other memory can be zero extended.
1814 		 * The desire to keep that precision is already indicated
1815 		 * by 'precise' mark in corresponding register of this state.
1816 		 * No further tracking necessary.
1817 		 */
1818 		if (insn->src_reg != BPF_REG_FP)
1819 			return 0;
1820 		if (BPF_SIZE(insn->code) != BPF_DW)
1821 			return 0;
1822 
1823 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
1824 		 * that [fp - off] slot contains scalar that needs to be
1825 		 * tracked with precision
1826 		 */
1827 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1828 		if (spi >= 64) {
1829 			verbose(env, "BUG spi %d\n", spi);
1830 			WARN_ONCE(1, "verifier backtracking bug");
1831 			return -EFAULT;
1832 		}
1833 		*stack_mask |= 1ull << spi;
1834 	} else if (class == BPF_STX || class == BPF_ST) {
1835 		if (*reg_mask & dreg)
1836 			/* stx & st shouldn't be using _scalar_ dst_reg
1837 			 * to access memory. It means backtracking
1838 			 * encountered a case of pointer subtraction.
1839 			 */
1840 			return -ENOTSUPP;
1841 		/* scalars can only be spilled into stack */
1842 		if (insn->dst_reg != BPF_REG_FP)
1843 			return 0;
1844 		if (BPF_SIZE(insn->code) != BPF_DW)
1845 			return 0;
1846 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1847 		if (spi >= 64) {
1848 			verbose(env, "BUG spi %d\n", spi);
1849 			WARN_ONCE(1, "verifier backtracking bug");
1850 			return -EFAULT;
1851 		}
1852 		if (!(*stack_mask & (1ull << spi)))
1853 			return 0;
1854 		*stack_mask &= ~(1ull << spi);
1855 		if (class == BPF_STX)
1856 			*reg_mask |= sreg;
1857 	} else if (class == BPF_JMP || class == BPF_JMP32) {
1858 		if (opcode == BPF_CALL) {
1859 			if (insn->src_reg == BPF_PSEUDO_CALL)
1860 				return -ENOTSUPP;
1861 			/* regular helper call sets R0 */
1862 			*reg_mask &= ~1;
1863 			if (*reg_mask & 0x3f) {
1864 				/* if backtracing was looking for registers R1-R5
1865 				 * they should have been found already.
1866 				 */
1867 				verbose(env, "BUG regs %x\n", *reg_mask);
1868 				WARN_ONCE(1, "verifier backtracking bug");
1869 				return -EFAULT;
1870 			}
1871 		} else if (opcode == BPF_EXIT) {
1872 			return -ENOTSUPP;
1873 		}
1874 	} else if (class == BPF_LD) {
1875 		if (!(*reg_mask & dreg))
1876 			return 0;
1877 		*reg_mask &= ~dreg;
1878 		/* It's ld_imm64 or ld_abs or ld_ind.
1879 		 * For ld_imm64 no further tracking of precision
1880 		 * into parent is necessary
1881 		 */
1882 		if (mode == BPF_IND || mode == BPF_ABS)
1883 			/* to be analyzed */
1884 			return -ENOTSUPP;
1885 	}
1886 	return 0;
1887 }
1888 
1889 /* the scalar precision tracking algorithm:
1890  * . at the start all registers have precise=false.
1891  * . scalar ranges are tracked as normal through alu and jmp insns.
1892  * . once precise value of the scalar register is used in:
1893  *   .  ptr + scalar alu
1894  *   . if (scalar cond K|scalar)
1895  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
1896  *   backtrack through the verifier states and mark all registers and
1897  *   stack slots with spilled constants that these scalar regisers
1898  *   should be precise.
1899  * . during state pruning two registers (or spilled stack slots)
1900  *   are equivalent if both are not precise.
1901  *
1902  * Note the verifier cannot simply walk register parentage chain,
1903  * since many different registers and stack slots could have been
1904  * used to compute single precise scalar.
1905  *
1906  * The approach of starting with precise=true for all registers and then
1907  * backtrack to mark a register as not precise when the verifier detects
1908  * that program doesn't care about specific value (e.g., when helper
1909  * takes register as ARG_ANYTHING parameter) is not safe.
1910  *
1911  * It's ok to walk single parentage chain of the verifier states.
1912  * It's possible that this backtracking will go all the way till 1st insn.
1913  * All other branches will be explored for needing precision later.
1914  *
1915  * The backtracking needs to deal with cases like:
1916  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1917  * r9 -= r8
1918  * r5 = r9
1919  * if r5 > 0x79f goto pc+7
1920  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1921  * r5 += 1
1922  * ...
1923  * call bpf_perf_event_output#25
1924  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1925  *
1926  * and this case:
1927  * r6 = 1
1928  * call foo // uses callee's r6 inside to compute r0
1929  * r0 += r6
1930  * if r0 == 0 goto
1931  *
1932  * to track above reg_mask/stack_mask needs to be independent for each frame.
1933  *
1934  * Also if parent's curframe > frame where backtracking started,
1935  * the verifier need to mark registers in both frames, otherwise callees
1936  * may incorrectly prune callers. This is similar to
1937  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1938  *
1939  * For now backtracking falls back into conservative marking.
1940  */
1941 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1942 				     struct bpf_verifier_state *st)
1943 {
1944 	struct bpf_func_state *func;
1945 	struct bpf_reg_state *reg;
1946 	int i, j;
1947 
1948 	/* big hammer: mark all scalars precise in this path.
1949 	 * pop_stack may still get !precise scalars.
1950 	 */
1951 	for (; st; st = st->parent)
1952 		for (i = 0; i <= st->curframe; i++) {
1953 			func = st->frame[i];
1954 			for (j = 0; j < BPF_REG_FP; j++) {
1955 				reg = &func->regs[j];
1956 				if (reg->type != SCALAR_VALUE)
1957 					continue;
1958 				reg->precise = true;
1959 			}
1960 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1961 				if (func->stack[j].slot_type[0] != STACK_SPILL)
1962 					continue;
1963 				reg = &func->stack[j].spilled_ptr;
1964 				if (reg->type != SCALAR_VALUE)
1965 					continue;
1966 				reg->precise = true;
1967 			}
1968 		}
1969 }
1970 
1971 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
1972 				  int spi)
1973 {
1974 	struct bpf_verifier_state *st = env->cur_state;
1975 	int first_idx = st->first_insn_idx;
1976 	int last_idx = env->insn_idx;
1977 	struct bpf_func_state *func;
1978 	struct bpf_reg_state *reg;
1979 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
1980 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
1981 	bool skip_first = true;
1982 	bool new_marks = false;
1983 	int i, err;
1984 
1985 	if (!env->bpf_capable)
1986 		return 0;
1987 
1988 	func = st->frame[st->curframe];
1989 	if (regno >= 0) {
1990 		reg = &func->regs[regno];
1991 		if (reg->type != SCALAR_VALUE) {
1992 			WARN_ONCE(1, "backtracing misuse");
1993 			return -EFAULT;
1994 		}
1995 		if (!reg->precise)
1996 			new_marks = true;
1997 		else
1998 			reg_mask = 0;
1999 		reg->precise = true;
2000 	}
2001 
2002 	while (spi >= 0) {
2003 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2004 			stack_mask = 0;
2005 			break;
2006 		}
2007 		reg = &func->stack[spi].spilled_ptr;
2008 		if (reg->type != SCALAR_VALUE) {
2009 			stack_mask = 0;
2010 			break;
2011 		}
2012 		if (!reg->precise)
2013 			new_marks = true;
2014 		else
2015 			stack_mask = 0;
2016 		reg->precise = true;
2017 		break;
2018 	}
2019 
2020 	if (!new_marks)
2021 		return 0;
2022 	if (!reg_mask && !stack_mask)
2023 		return 0;
2024 	for (;;) {
2025 		DECLARE_BITMAP(mask, 64);
2026 		u32 history = st->jmp_history_cnt;
2027 
2028 		if (env->log.level & BPF_LOG_LEVEL)
2029 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2030 		for (i = last_idx;;) {
2031 			if (skip_first) {
2032 				err = 0;
2033 				skip_first = false;
2034 			} else {
2035 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2036 			}
2037 			if (err == -ENOTSUPP) {
2038 				mark_all_scalars_precise(env, st);
2039 				return 0;
2040 			} else if (err) {
2041 				return err;
2042 			}
2043 			if (!reg_mask && !stack_mask)
2044 				/* Found assignment(s) into tracked register in this state.
2045 				 * Since this state is already marked, just return.
2046 				 * Nothing to be tracked further in the parent state.
2047 				 */
2048 				return 0;
2049 			if (i == first_idx)
2050 				break;
2051 			i = get_prev_insn_idx(st, i, &history);
2052 			if (i >= env->prog->len) {
2053 				/* This can happen if backtracking reached insn 0
2054 				 * and there are still reg_mask or stack_mask
2055 				 * to backtrack.
2056 				 * It means the backtracking missed the spot where
2057 				 * particular register was initialized with a constant.
2058 				 */
2059 				verbose(env, "BUG backtracking idx %d\n", i);
2060 				WARN_ONCE(1, "verifier backtracking bug");
2061 				return -EFAULT;
2062 			}
2063 		}
2064 		st = st->parent;
2065 		if (!st)
2066 			break;
2067 
2068 		new_marks = false;
2069 		func = st->frame[st->curframe];
2070 		bitmap_from_u64(mask, reg_mask);
2071 		for_each_set_bit(i, mask, 32) {
2072 			reg = &func->regs[i];
2073 			if (reg->type != SCALAR_VALUE) {
2074 				reg_mask &= ~(1u << i);
2075 				continue;
2076 			}
2077 			if (!reg->precise)
2078 				new_marks = true;
2079 			reg->precise = true;
2080 		}
2081 
2082 		bitmap_from_u64(mask, stack_mask);
2083 		for_each_set_bit(i, mask, 64) {
2084 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2085 				/* the sequence of instructions:
2086 				 * 2: (bf) r3 = r10
2087 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2088 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2089 				 * doesn't contain jmps. It's backtracked
2090 				 * as a single block.
2091 				 * During backtracking insn 3 is not recognized as
2092 				 * stack access, so at the end of backtracking
2093 				 * stack slot fp-8 is still marked in stack_mask.
2094 				 * However the parent state may not have accessed
2095 				 * fp-8 and it's "unallocated" stack space.
2096 				 * In such case fallback to conservative.
2097 				 */
2098 				mark_all_scalars_precise(env, st);
2099 				return 0;
2100 			}
2101 
2102 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
2103 				stack_mask &= ~(1ull << i);
2104 				continue;
2105 			}
2106 			reg = &func->stack[i].spilled_ptr;
2107 			if (reg->type != SCALAR_VALUE) {
2108 				stack_mask &= ~(1ull << i);
2109 				continue;
2110 			}
2111 			if (!reg->precise)
2112 				new_marks = true;
2113 			reg->precise = true;
2114 		}
2115 		if (env->log.level & BPF_LOG_LEVEL) {
2116 			print_verifier_state(env, func);
2117 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2118 				new_marks ? "didn't have" : "already had",
2119 				reg_mask, stack_mask);
2120 		}
2121 
2122 		if (!reg_mask && !stack_mask)
2123 			break;
2124 		if (!new_marks)
2125 			break;
2126 
2127 		last_idx = st->last_insn_idx;
2128 		first_idx = st->first_insn_idx;
2129 	}
2130 	return 0;
2131 }
2132 
2133 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2134 {
2135 	return __mark_chain_precision(env, regno, -1);
2136 }
2137 
2138 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2139 {
2140 	return __mark_chain_precision(env, -1, spi);
2141 }
2142 
2143 static bool is_spillable_regtype(enum bpf_reg_type type)
2144 {
2145 	switch (type) {
2146 	case PTR_TO_MAP_VALUE:
2147 	case PTR_TO_MAP_VALUE_OR_NULL:
2148 	case PTR_TO_STACK:
2149 	case PTR_TO_CTX:
2150 	case PTR_TO_PACKET:
2151 	case PTR_TO_PACKET_META:
2152 	case PTR_TO_PACKET_END:
2153 	case PTR_TO_FLOW_KEYS:
2154 	case CONST_PTR_TO_MAP:
2155 	case PTR_TO_SOCKET:
2156 	case PTR_TO_SOCKET_OR_NULL:
2157 	case PTR_TO_SOCK_COMMON:
2158 	case PTR_TO_SOCK_COMMON_OR_NULL:
2159 	case PTR_TO_TCP_SOCK:
2160 	case PTR_TO_TCP_SOCK_OR_NULL:
2161 	case PTR_TO_XDP_SOCK:
2162 	case PTR_TO_BTF_ID:
2163 	case PTR_TO_BTF_ID_OR_NULL:
2164 		return true;
2165 	default:
2166 		return false;
2167 	}
2168 }
2169 
2170 /* Does this register contain a constant zero? */
2171 static bool register_is_null(struct bpf_reg_state *reg)
2172 {
2173 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2174 }
2175 
2176 static bool register_is_const(struct bpf_reg_state *reg)
2177 {
2178 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2179 }
2180 
2181 static bool __is_pointer_value(bool allow_ptr_leaks,
2182 			       const struct bpf_reg_state *reg)
2183 {
2184 	if (allow_ptr_leaks)
2185 		return false;
2186 
2187 	return reg->type != SCALAR_VALUE;
2188 }
2189 
2190 static void save_register_state(struct bpf_func_state *state,
2191 				int spi, struct bpf_reg_state *reg)
2192 {
2193 	int i;
2194 
2195 	state->stack[spi].spilled_ptr = *reg;
2196 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2197 
2198 	for (i = 0; i < BPF_REG_SIZE; i++)
2199 		state->stack[spi].slot_type[i] = STACK_SPILL;
2200 }
2201 
2202 /* check_stack_read/write functions track spill/fill of registers,
2203  * stack boundary and alignment are checked in check_mem_access()
2204  */
2205 static int check_stack_write(struct bpf_verifier_env *env,
2206 			     struct bpf_func_state *state, /* func where register points to */
2207 			     int off, int size, int value_regno, int insn_idx)
2208 {
2209 	struct bpf_func_state *cur; /* state of the current function */
2210 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2211 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2212 	struct bpf_reg_state *reg = NULL;
2213 
2214 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2215 				 state->acquired_refs, true);
2216 	if (err)
2217 		return err;
2218 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2219 	 * so it's aligned access and [off, off + size) are within stack limits
2220 	 */
2221 	if (!env->allow_ptr_leaks &&
2222 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2223 	    size != BPF_REG_SIZE) {
2224 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2225 		return -EACCES;
2226 	}
2227 
2228 	cur = env->cur_state->frame[env->cur_state->curframe];
2229 	if (value_regno >= 0)
2230 		reg = &cur->regs[value_regno];
2231 
2232 	if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
2233 	    !register_is_null(reg) && env->bpf_capable) {
2234 		if (dst_reg != BPF_REG_FP) {
2235 			/* The backtracking logic can only recognize explicit
2236 			 * stack slot address like [fp - 8]. Other spill of
2237 			 * scalar via different register has to be conervative.
2238 			 * Backtrack from here and mark all registers as precise
2239 			 * that contributed into 'reg' being a constant.
2240 			 */
2241 			err = mark_chain_precision(env, value_regno);
2242 			if (err)
2243 				return err;
2244 		}
2245 		save_register_state(state, spi, reg);
2246 	} else if (reg && is_spillable_regtype(reg->type)) {
2247 		/* register containing pointer is being spilled into stack */
2248 		if (size != BPF_REG_SIZE) {
2249 			verbose_linfo(env, insn_idx, "; ");
2250 			verbose(env, "invalid size of register spill\n");
2251 			return -EACCES;
2252 		}
2253 
2254 		if (state != cur && reg->type == PTR_TO_STACK) {
2255 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2256 			return -EINVAL;
2257 		}
2258 
2259 		if (!env->bypass_spec_v4) {
2260 			bool sanitize = false;
2261 
2262 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2263 			    register_is_const(&state->stack[spi].spilled_ptr))
2264 				sanitize = true;
2265 			for (i = 0; i < BPF_REG_SIZE; i++)
2266 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
2267 					sanitize = true;
2268 					break;
2269 				}
2270 			if (sanitize) {
2271 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2272 				int soff = (-spi - 1) * BPF_REG_SIZE;
2273 
2274 				/* detected reuse of integer stack slot with a pointer
2275 				 * which means either llvm is reusing stack slot or
2276 				 * an attacker is trying to exploit CVE-2018-3639
2277 				 * (speculative store bypass)
2278 				 * Have to sanitize that slot with preemptive
2279 				 * store of zero.
2280 				 */
2281 				if (*poff && *poff != soff) {
2282 					/* disallow programs where single insn stores
2283 					 * into two different stack slots, since verifier
2284 					 * cannot sanitize them
2285 					 */
2286 					verbose(env,
2287 						"insn %d cannot access two stack slots fp%d and fp%d",
2288 						insn_idx, *poff, soff);
2289 					return -EINVAL;
2290 				}
2291 				*poff = soff;
2292 			}
2293 		}
2294 		save_register_state(state, spi, reg);
2295 	} else {
2296 		u8 type = STACK_MISC;
2297 
2298 		/* regular write of data into stack destroys any spilled ptr */
2299 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2300 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2301 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2302 			for (i = 0; i < BPF_REG_SIZE; i++)
2303 				state->stack[spi].slot_type[i] = STACK_MISC;
2304 
2305 		/* only mark the slot as written if all 8 bytes were written
2306 		 * otherwise read propagation may incorrectly stop too soon
2307 		 * when stack slots are partially written.
2308 		 * This heuristic means that read propagation will be
2309 		 * conservative, since it will add reg_live_read marks
2310 		 * to stack slots all the way to first state when programs
2311 		 * writes+reads less than 8 bytes
2312 		 */
2313 		if (size == BPF_REG_SIZE)
2314 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2315 
2316 		/* when we zero initialize stack slots mark them as such */
2317 		if (reg && register_is_null(reg)) {
2318 			/* backtracking doesn't work for STACK_ZERO yet. */
2319 			err = mark_chain_precision(env, value_regno);
2320 			if (err)
2321 				return err;
2322 			type = STACK_ZERO;
2323 		}
2324 
2325 		/* Mark slots affected by this stack write. */
2326 		for (i = 0; i < size; i++)
2327 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2328 				type;
2329 	}
2330 	return 0;
2331 }
2332 
2333 static int check_stack_read(struct bpf_verifier_env *env,
2334 			    struct bpf_func_state *reg_state /* func where register points to */,
2335 			    int off, int size, int value_regno)
2336 {
2337 	struct bpf_verifier_state *vstate = env->cur_state;
2338 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2339 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2340 	struct bpf_reg_state *reg;
2341 	u8 *stype;
2342 
2343 	if (reg_state->allocated_stack <= slot) {
2344 		verbose(env, "invalid read from stack off %d+0 size %d\n",
2345 			off, size);
2346 		return -EACCES;
2347 	}
2348 	stype = reg_state->stack[spi].slot_type;
2349 	reg = &reg_state->stack[spi].spilled_ptr;
2350 
2351 	if (stype[0] == STACK_SPILL) {
2352 		if (size != BPF_REG_SIZE) {
2353 			if (reg->type != SCALAR_VALUE) {
2354 				verbose_linfo(env, env->insn_idx, "; ");
2355 				verbose(env, "invalid size of register fill\n");
2356 				return -EACCES;
2357 			}
2358 			if (value_regno >= 0) {
2359 				mark_reg_unknown(env, state->regs, value_regno);
2360 				state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2361 			}
2362 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2363 			return 0;
2364 		}
2365 		for (i = 1; i < BPF_REG_SIZE; i++) {
2366 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2367 				verbose(env, "corrupted spill memory\n");
2368 				return -EACCES;
2369 			}
2370 		}
2371 
2372 		if (value_regno >= 0) {
2373 			/* restore register state from stack */
2374 			state->regs[value_regno] = *reg;
2375 			/* mark reg as written since spilled pointer state likely
2376 			 * has its liveness marks cleared by is_state_visited()
2377 			 * which resets stack/reg liveness for state transitions
2378 			 */
2379 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2380 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2381 			/* If value_regno==-1, the caller is asking us whether
2382 			 * it is acceptable to use this value as a SCALAR_VALUE
2383 			 * (e.g. for XADD).
2384 			 * We must not allow unprivileged callers to do that
2385 			 * with spilled pointers.
2386 			 */
2387 			verbose(env, "leaking pointer from stack off %d\n",
2388 				off);
2389 			return -EACCES;
2390 		}
2391 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2392 	} else {
2393 		int zeros = 0;
2394 
2395 		for (i = 0; i < size; i++) {
2396 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2397 				continue;
2398 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2399 				zeros++;
2400 				continue;
2401 			}
2402 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2403 				off, i, size);
2404 			return -EACCES;
2405 		}
2406 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2407 		if (value_regno >= 0) {
2408 			if (zeros == size) {
2409 				/* any size read into register is zero extended,
2410 				 * so the whole register == const_zero
2411 				 */
2412 				__mark_reg_const_zero(&state->regs[value_regno]);
2413 				/* backtracking doesn't support STACK_ZERO yet,
2414 				 * so mark it precise here, so that later
2415 				 * backtracking can stop here.
2416 				 * Backtracking may not need this if this register
2417 				 * doesn't participate in pointer adjustment.
2418 				 * Forward propagation of precise flag is not
2419 				 * necessary either. This mark is only to stop
2420 				 * backtracking. Any register that contributed
2421 				 * to const 0 was marked precise before spill.
2422 				 */
2423 				state->regs[value_regno].precise = true;
2424 			} else {
2425 				/* have read misc data from the stack */
2426 				mark_reg_unknown(env, state->regs, value_regno);
2427 			}
2428 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2429 		}
2430 	}
2431 	return 0;
2432 }
2433 
2434 static int check_stack_access(struct bpf_verifier_env *env,
2435 			      const struct bpf_reg_state *reg,
2436 			      int off, int size)
2437 {
2438 	/* Stack accesses must be at a fixed offset, so that we
2439 	 * can determine what type of data were returned. See
2440 	 * check_stack_read().
2441 	 */
2442 	if (!tnum_is_const(reg->var_off)) {
2443 		char tn_buf[48];
2444 
2445 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2446 		verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
2447 			tn_buf, off, size);
2448 		return -EACCES;
2449 	}
2450 
2451 	if (off >= 0 || off < -MAX_BPF_STACK) {
2452 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
2453 		return -EACCES;
2454 	}
2455 
2456 	return 0;
2457 }
2458 
2459 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2460 				 int off, int size, enum bpf_access_type type)
2461 {
2462 	struct bpf_reg_state *regs = cur_regs(env);
2463 	struct bpf_map *map = regs[regno].map_ptr;
2464 	u32 cap = bpf_map_flags_to_cap(map);
2465 
2466 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2467 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2468 			map->value_size, off, size);
2469 		return -EACCES;
2470 	}
2471 
2472 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2473 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2474 			map->value_size, off, size);
2475 		return -EACCES;
2476 	}
2477 
2478 	return 0;
2479 }
2480 
2481 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
2482 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2483 			      int off, int size, u32 mem_size,
2484 			      bool zero_size_allowed)
2485 {
2486 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2487 	struct bpf_reg_state *reg;
2488 
2489 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2490 		return 0;
2491 
2492 	reg = &cur_regs(env)[regno];
2493 	switch (reg->type) {
2494 	case PTR_TO_MAP_VALUE:
2495 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2496 			mem_size, off, size);
2497 		break;
2498 	case PTR_TO_PACKET:
2499 	case PTR_TO_PACKET_META:
2500 	case PTR_TO_PACKET_END:
2501 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2502 			off, size, regno, reg->id, off, mem_size);
2503 		break;
2504 	case PTR_TO_MEM:
2505 	default:
2506 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2507 			mem_size, off, size);
2508 	}
2509 
2510 	return -EACCES;
2511 }
2512 
2513 /* check read/write into a memory region with possible variable offset */
2514 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2515 				   int off, int size, u32 mem_size,
2516 				   bool zero_size_allowed)
2517 {
2518 	struct bpf_verifier_state *vstate = env->cur_state;
2519 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2520 	struct bpf_reg_state *reg = &state->regs[regno];
2521 	int err;
2522 
2523 	/* We may have adjusted the register pointing to memory region, so we
2524 	 * need to try adding each of min_value and max_value to off
2525 	 * to make sure our theoretical access will be safe.
2526 	 */
2527 	if (env->log.level & BPF_LOG_LEVEL)
2528 		print_verifier_state(env, state);
2529 
2530 	/* The minimum value is only important with signed
2531 	 * comparisons where we can't assume the floor of a
2532 	 * value is 0.  If we are using signed variables for our
2533 	 * index'es we need to make sure that whatever we use
2534 	 * will have a set floor within our range.
2535 	 */
2536 	if (reg->smin_value < 0 &&
2537 	    (reg->smin_value == S64_MIN ||
2538 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2539 	      reg->smin_value + off < 0)) {
2540 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2541 			regno);
2542 		return -EACCES;
2543 	}
2544 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
2545 				 mem_size, zero_size_allowed);
2546 	if (err) {
2547 		verbose(env, "R%d min value is outside of the allowed memory range\n",
2548 			regno);
2549 		return err;
2550 	}
2551 
2552 	/* If we haven't set a max value then we need to bail since we can't be
2553 	 * sure we won't do bad things.
2554 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
2555 	 */
2556 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2557 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
2558 			regno);
2559 		return -EACCES;
2560 	}
2561 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
2562 				 mem_size, zero_size_allowed);
2563 	if (err) {
2564 		verbose(env, "R%d max value is outside of the allowed memory range\n",
2565 			regno);
2566 		return err;
2567 	}
2568 
2569 	return 0;
2570 }
2571 
2572 /* check read/write into a map element with possible variable offset */
2573 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2574 			    int off, int size, bool zero_size_allowed)
2575 {
2576 	struct bpf_verifier_state *vstate = env->cur_state;
2577 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2578 	struct bpf_reg_state *reg = &state->regs[regno];
2579 	struct bpf_map *map = reg->map_ptr;
2580 	int err;
2581 
2582 	err = check_mem_region_access(env, regno, off, size, map->value_size,
2583 				      zero_size_allowed);
2584 	if (err)
2585 		return err;
2586 
2587 	if (map_value_has_spin_lock(map)) {
2588 		u32 lock = map->spin_lock_off;
2589 
2590 		/* if any part of struct bpf_spin_lock can be touched by
2591 		 * load/store reject this program.
2592 		 * To check that [x1, x2) overlaps with [y1, y2)
2593 		 * it is sufficient to check x1 < y2 && y1 < x2.
2594 		 */
2595 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2596 		     lock < reg->umax_value + off + size) {
2597 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2598 			return -EACCES;
2599 		}
2600 	}
2601 	return err;
2602 }
2603 
2604 #define MAX_PACKET_OFF 0xffff
2605 
2606 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2607 				       const struct bpf_call_arg_meta *meta,
2608 				       enum bpf_access_type t)
2609 {
2610 	switch (env->prog->type) {
2611 	/* Program types only with direct read access go here! */
2612 	case BPF_PROG_TYPE_LWT_IN:
2613 	case BPF_PROG_TYPE_LWT_OUT:
2614 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2615 	case BPF_PROG_TYPE_SK_REUSEPORT:
2616 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
2617 	case BPF_PROG_TYPE_CGROUP_SKB:
2618 		if (t == BPF_WRITE)
2619 			return false;
2620 		/* fallthrough */
2621 
2622 	/* Program types with direct read + write access go here! */
2623 	case BPF_PROG_TYPE_SCHED_CLS:
2624 	case BPF_PROG_TYPE_SCHED_ACT:
2625 	case BPF_PROG_TYPE_XDP:
2626 	case BPF_PROG_TYPE_LWT_XMIT:
2627 	case BPF_PROG_TYPE_SK_SKB:
2628 	case BPF_PROG_TYPE_SK_MSG:
2629 		if (meta)
2630 			return meta->pkt_access;
2631 
2632 		env->seen_direct_write = true;
2633 		return true;
2634 
2635 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2636 		if (t == BPF_WRITE)
2637 			env->seen_direct_write = true;
2638 
2639 		return true;
2640 
2641 	default:
2642 		return false;
2643 	}
2644 }
2645 
2646 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2647 			       int size, bool zero_size_allowed)
2648 {
2649 	struct bpf_reg_state *regs = cur_regs(env);
2650 	struct bpf_reg_state *reg = &regs[regno];
2651 	int err;
2652 
2653 	/* We may have added a variable offset to the packet pointer; but any
2654 	 * reg->range we have comes after that.  We are only checking the fixed
2655 	 * offset.
2656 	 */
2657 
2658 	/* We don't allow negative numbers, because we aren't tracking enough
2659 	 * detail to prove they're safe.
2660 	 */
2661 	if (reg->smin_value < 0) {
2662 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2663 			regno);
2664 		return -EACCES;
2665 	}
2666 	err = __check_mem_access(env, regno, off, size, reg->range,
2667 				 zero_size_allowed);
2668 	if (err) {
2669 		verbose(env, "R%d offset is outside of the packet\n", regno);
2670 		return err;
2671 	}
2672 
2673 	/* __check_mem_access has made sure "off + size - 1" is within u16.
2674 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2675 	 * otherwise find_good_pkt_pointers would have refused to set range info
2676 	 * that __check_mem_access would have rejected this pkt access.
2677 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2678 	 */
2679 	env->prog->aux->max_pkt_offset =
2680 		max_t(u32, env->prog->aux->max_pkt_offset,
2681 		      off + reg->umax_value + size - 1);
2682 
2683 	return err;
2684 }
2685 
2686 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
2687 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
2688 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
2689 			    u32 *btf_id)
2690 {
2691 	struct bpf_insn_access_aux info = {
2692 		.reg_type = *reg_type,
2693 		.log = &env->log,
2694 	};
2695 
2696 	if (env->ops->is_valid_access &&
2697 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
2698 		/* A non zero info.ctx_field_size indicates that this field is a
2699 		 * candidate for later verifier transformation to load the whole
2700 		 * field and then apply a mask when accessed with a narrower
2701 		 * access than actual ctx access size. A zero info.ctx_field_size
2702 		 * will only allow for whole field access and rejects any other
2703 		 * type of narrower access.
2704 		 */
2705 		*reg_type = info.reg_type;
2706 
2707 		if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL)
2708 			*btf_id = info.btf_id;
2709 		else
2710 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
2711 		/* remember the offset of last byte accessed in ctx */
2712 		if (env->prog->aux->max_ctx_offset < off + size)
2713 			env->prog->aux->max_ctx_offset = off + size;
2714 		return 0;
2715 	}
2716 
2717 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
2718 	return -EACCES;
2719 }
2720 
2721 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2722 				  int size)
2723 {
2724 	if (size < 0 || off < 0 ||
2725 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
2726 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
2727 			off, size);
2728 		return -EACCES;
2729 	}
2730 	return 0;
2731 }
2732 
2733 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2734 			     u32 regno, int off, int size,
2735 			     enum bpf_access_type t)
2736 {
2737 	struct bpf_reg_state *regs = cur_regs(env);
2738 	struct bpf_reg_state *reg = &regs[regno];
2739 	struct bpf_insn_access_aux info = {};
2740 	bool valid;
2741 
2742 	if (reg->smin_value < 0) {
2743 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2744 			regno);
2745 		return -EACCES;
2746 	}
2747 
2748 	switch (reg->type) {
2749 	case PTR_TO_SOCK_COMMON:
2750 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2751 		break;
2752 	case PTR_TO_SOCKET:
2753 		valid = bpf_sock_is_valid_access(off, size, t, &info);
2754 		break;
2755 	case PTR_TO_TCP_SOCK:
2756 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2757 		break;
2758 	case PTR_TO_XDP_SOCK:
2759 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2760 		break;
2761 	default:
2762 		valid = false;
2763 	}
2764 
2765 
2766 	if (valid) {
2767 		env->insn_aux_data[insn_idx].ctx_field_size =
2768 			info.ctx_field_size;
2769 		return 0;
2770 	}
2771 
2772 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
2773 		regno, reg_type_str[reg->type], off, size);
2774 
2775 	return -EACCES;
2776 }
2777 
2778 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2779 {
2780 	return cur_regs(env) + regno;
2781 }
2782 
2783 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2784 {
2785 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
2786 }
2787 
2788 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2789 {
2790 	const struct bpf_reg_state *reg = reg_state(env, regno);
2791 
2792 	return reg->type == PTR_TO_CTX;
2793 }
2794 
2795 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2796 {
2797 	const struct bpf_reg_state *reg = reg_state(env, regno);
2798 
2799 	return type_is_sk_pointer(reg->type);
2800 }
2801 
2802 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2803 {
2804 	const struct bpf_reg_state *reg = reg_state(env, regno);
2805 
2806 	return type_is_pkt_pointer(reg->type);
2807 }
2808 
2809 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2810 {
2811 	const struct bpf_reg_state *reg = reg_state(env, regno);
2812 
2813 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2814 	return reg->type == PTR_TO_FLOW_KEYS;
2815 }
2816 
2817 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2818 				   const struct bpf_reg_state *reg,
2819 				   int off, int size, bool strict)
2820 {
2821 	struct tnum reg_off;
2822 	int ip_align;
2823 
2824 	/* Byte size accesses are always allowed. */
2825 	if (!strict || size == 1)
2826 		return 0;
2827 
2828 	/* For platforms that do not have a Kconfig enabling
2829 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2830 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
2831 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2832 	 * to this code only in strict mode where we want to emulate
2833 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
2834 	 * unconditional IP align value of '2'.
2835 	 */
2836 	ip_align = 2;
2837 
2838 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2839 	if (!tnum_is_aligned(reg_off, size)) {
2840 		char tn_buf[48];
2841 
2842 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2843 		verbose(env,
2844 			"misaligned packet access off %d+%s+%d+%d size %d\n",
2845 			ip_align, tn_buf, reg->off, off, size);
2846 		return -EACCES;
2847 	}
2848 
2849 	return 0;
2850 }
2851 
2852 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2853 				       const struct bpf_reg_state *reg,
2854 				       const char *pointer_desc,
2855 				       int off, int size, bool strict)
2856 {
2857 	struct tnum reg_off;
2858 
2859 	/* Byte size accesses are always allowed. */
2860 	if (!strict || size == 1)
2861 		return 0;
2862 
2863 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2864 	if (!tnum_is_aligned(reg_off, size)) {
2865 		char tn_buf[48];
2866 
2867 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2868 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
2869 			pointer_desc, tn_buf, reg->off, off, size);
2870 		return -EACCES;
2871 	}
2872 
2873 	return 0;
2874 }
2875 
2876 static int check_ptr_alignment(struct bpf_verifier_env *env,
2877 			       const struct bpf_reg_state *reg, int off,
2878 			       int size, bool strict_alignment_once)
2879 {
2880 	bool strict = env->strict_alignment || strict_alignment_once;
2881 	const char *pointer_desc = "";
2882 
2883 	switch (reg->type) {
2884 	case PTR_TO_PACKET:
2885 	case PTR_TO_PACKET_META:
2886 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
2887 		 * right in front, treat it the very same way.
2888 		 */
2889 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
2890 	case PTR_TO_FLOW_KEYS:
2891 		pointer_desc = "flow keys ";
2892 		break;
2893 	case PTR_TO_MAP_VALUE:
2894 		pointer_desc = "value ";
2895 		break;
2896 	case PTR_TO_CTX:
2897 		pointer_desc = "context ";
2898 		break;
2899 	case PTR_TO_STACK:
2900 		pointer_desc = "stack ";
2901 		/* The stack spill tracking logic in check_stack_write()
2902 		 * and check_stack_read() relies on stack accesses being
2903 		 * aligned.
2904 		 */
2905 		strict = true;
2906 		break;
2907 	case PTR_TO_SOCKET:
2908 		pointer_desc = "sock ";
2909 		break;
2910 	case PTR_TO_SOCK_COMMON:
2911 		pointer_desc = "sock_common ";
2912 		break;
2913 	case PTR_TO_TCP_SOCK:
2914 		pointer_desc = "tcp_sock ";
2915 		break;
2916 	case PTR_TO_XDP_SOCK:
2917 		pointer_desc = "xdp_sock ";
2918 		break;
2919 	default:
2920 		break;
2921 	}
2922 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2923 					   strict);
2924 }
2925 
2926 static int update_stack_depth(struct bpf_verifier_env *env,
2927 			      const struct bpf_func_state *func,
2928 			      int off)
2929 {
2930 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
2931 
2932 	if (stack >= -off)
2933 		return 0;
2934 
2935 	/* update known max for given subprogram */
2936 	env->subprog_info[func->subprogno].stack_depth = -off;
2937 	return 0;
2938 }
2939 
2940 /* starting from main bpf function walk all instructions of the function
2941  * and recursively walk all callees that given function can call.
2942  * Ignore jump and exit insns.
2943  * Since recursion is prevented by check_cfg() this algorithm
2944  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2945  */
2946 static int check_max_stack_depth(struct bpf_verifier_env *env)
2947 {
2948 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2949 	struct bpf_subprog_info *subprog = env->subprog_info;
2950 	struct bpf_insn *insn = env->prog->insnsi;
2951 	int ret_insn[MAX_CALL_FRAMES];
2952 	int ret_prog[MAX_CALL_FRAMES];
2953 
2954 process_func:
2955 	/* round up to 32-bytes, since this is granularity
2956 	 * of interpreter stack size
2957 	 */
2958 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2959 	if (depth > MAX_BPF_STACK) {
2960 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
2961 			frame + 1, depth);
2962 		return -EACCES;
2963 	}
2964 continue_func:
2965 	subprog_end = subprog[idx + 1].start;
2966 	for (; i < subprog_end; i++) {
2967 		if (insn[i].code != (BPF_JMP | BPF_CALL))
2968 			continue;
2969 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
2970 			continue;
2971 		/* remember insn and function to return to */
2972 		ret_insn[frame] = i + 1;
2973 		ret_prog[frame] = idx;
2974 
2975 		/* find the callee */
2976 		i = i + insn[i].imm + 1;
2977 		idx = find_subprog(env, i);
2978 		if (idx < 0) {
2979 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2980 				  i);
2981 			return -EFAULT;
2982 		}
2983 		frame++;
2984 		if (frame >= MAX_CALL_FRAMES) {
2985 			verbose(env, "the call stack of %d frames is too deep !\n",
2986 				frame);
2987 			return -E2BIG;
2988 		}
2989 		goto process_func;
2990 	}
2991 	/* end of for() loop means the last insn of the 'subprog'
2992 	 * was reached. Doesn't matter whether it was JA or EXIT
2993 	 */
2994 	if (frame == 0)
2995 		return 0;
2996 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2997 	frame--;
2998 	i = ret_insn[frame];
2999 	idx = ret_prog[frame];
3000 	goto continue_func;
3001 }
3002 
3003 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3004 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3005 				  const struct bpf_insn *insn, int idx)
3006 {
3007 	int start = idx + insn->imm + 1, subprog;
3008 
3009 	subprog = find_subprog(env, start);
3010 	if (subprog < 0) {
3011 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3012 			  start);
3013 		return -EFAULT;
3014 	}
3015 	return env->subprog_info[subprog].stack_depth;
3016 }
3017 #endif
3018 
3019 int check_ctx_reg(struct bpf_verifier_env *env,
3020 		  const struct bpf_reg_state *reg, int regno)
3021 {
3022 	/* Access to ctx or passing it to a helper is only allowed in
3023 	 * its original, unmodified form.
3024 	 */
3025 
3026 	if (reg->off) {
3027 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3028 			regno, reg->off);
3029 		return -EACCES;
3030 	}
3031 
3032 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3033 		char tn_buf[48];
3034 
3035 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3036 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3037 		return -EACCES;
3038 	}
3039 
3040 	return 0;
3041 }
3042 
3043 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3044 				  const struct bpf_reg_state *reg,
3045 				  int regno, int off, int size)
3046 {
3047 	if (off < 0) {
3048 		verbose(env,
3049 			"R%d invalid tracepoint buffer access: off=%d, size=%d",
3050 			regno, off, size);
3051 		return -EACCES;
3052 	}
3053 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3054 		char tn_buf[48];
3055 
3056 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3057 		verbose(env,
3058 			"R%d invalid variable buffer offset: off=%d, var_off=%s",
3059 			regno, off, tn_buf);
3060 		return -EACCES;
3061 	}
3062 	if (off + size > env->prog->aux->max_tp_access)
3063 		env->prog->aux->max_tp_access = off + size;
3064 
3065 	return 0;
3066 }
3067 
3068 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
3069 static void zext_32_to_64(struct bpf_reg_state *reg)
3070 {
3071 	reg->var_off = tnum_subreg(reg->var_off);
3072 	__reg_assign_32_into_64(reg);
3073 }
3074 
3075 /* truncate register to smaller size (in bytes)
3076  * must be called with size < BPF_REG_SIZE
3077  */
3078 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3079 {
3080 	u64 mask;
3081 
3082 	/* clear high bits in bit representation */
3083 	reg->var_off = tnum_cast(reg->var_off, size);
3084 
3085 	/* fix arithmetic bounds */
3086 	mask = ((u64)1 << (size * 8)) - 1;
3087 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3088 		reg->umin_value &= mask;
3089 		reg->umax_value &= mask;
3090 	} else {
3091 		reg->umin_value = 0;
3092 		reg->umax_value = mask;
3093 	}
3094 	reg->smin_value = reg->umin_value;
3095 	reg->smax_value = reg->umax_value;
3096 
3097 	/* If size is smaller than 32bit register the 32bit register
3098 	 * values are also truncated so we push 64-bit bounds into
3099 	 * 32-bit bounds. Above were truncated < 32-bits already.
3100 	 */
3101 	if (size >= 4)
3102 		return;
3103 	__reg_combine_64_into_32(reg);
3104 }
3105 
3106 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3107 {
3108 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3109 }
3110 
3111 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3112 {
3113 	void *ptr;
3114 	u64 addr;
3115 	int err;
3116 
3117 	err = map->ops->map_direct_value_addr(map, &addr, off);
3118 	if (err)
3119 		return err;
3120 	ptr = (void *)(long)addr + off;
3121 
3122 	switch (size) {
3123 	case sizeof(u8):
3124 		*val = (u64)*(u8 *)ptr;
3125 		break;
3126 	case sizeof(u16):
3127 		*val = (u64)*(u16 *)ptr;
3128 		break;
3129 	case sizeof(u32):
3130 		*val = (u64)*(u32 *)ptr;
3131 		break;
3132 	case sizeof(u64):
3133 		*val = *(u64 *)ptr;
3134 		break;
3135 	default:
3136 		return -EINVAL;
3137 	}
3138 	return 0;
3139 }
3140 
3141 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3142 				   struct bpf_reg_state *regs,
3143 				   int regno, int off, int size,
3144 				   enum bpf_access_type atype,
3145 				   int value_regno)
3146 {
3147 	struct bpf_reg_state *reg = regs + regno;
3148 	const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
3149 	const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3150 	u32 btf_id;
3151 	int ret;
3152 
3153 	if (off < 0) {
3154 		verbose(env,
3155 			"R%d is ptr_%s invalid negative access: off=%d\n",
3156 			regno, tname, off);
3157 		return -EACCES;
3158 	}
3159 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3160 		char tn_buf[48];
3161 
3162 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3163 		verbose(env,
3164 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3165 			regno, tname, off, tn_buf);
3166 		return -EACCES;
3167 	}
3168 
3169 	if (env->ops->btf_struct_access) {
3170 		ret = env->ops->btf_struct_access(&env->log, t, off, size,
3171 						  atype, &btf_id);
3172 	} else {
3173 		if (atype != BPF_READ) {
3174 			verbose(env, "only read is supported\n");
3175 			return -EACCES;
3176 		}
3177 
3178 		ret = btf_struct_access(&env->log, t, off, size, atype,
3179 					&btf_id);
3180 	}
3181 
3182 	if (ret < 0)
3183 		return ret;
3184 
3185 	if (atype == BPF_READ && value_regno >= 0) {
3186 		if (ret == SCALAR_VALUE) {
3187 			mark_reg_unknown(env, regs, value_regno);
3188 			return 0;
3189 		}
3190 		mark_reg_known_zero(env, regs, value_regno);
3191 		regs[value_regno].type = PTR_TO_BTF_ID;
3192 		regs[value_regno].btf_id = btf_id;
3193 	}
3194 
3195 	return 0;
3196 }
3197 
3198 /* check whether memory at (regno + off) is accessible for t = (read | write)
3199  * if t==write, value_regno is a register which value is stored into memory
3200  * if t==read, value_regno is a register which will receive the value from memory
3201  * if t==write && value_regno==-1, some unknown value is stored into memory
3202  * if t==read && value_regno==-1, don't care what we read from memory
3203  */
3204 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3205 			    int off, int bpf_size, enum bpf_access_type t,
3206 			    int value_regno, bool strict_alignment_once)
3207 {
3208 	struct bpf_reg_state *regs = cur_regs(env);
3209 	struct bpf_reg_state *reg = regs + regno;
3210 	struct bpf_func_state *state;
3211 	int size, err = 0;
3212 
3213 	size = bpf_size_to_bytes(bpf_size);
3214 	if (size < 0)
3215 		return size;
3216 
3217 	/* alignment checks will add in reg->off themselves */
3218 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3219 	if (err)
3220 		return err;
3221 
3222 	/* for access checks, reg->off is just part of off */
3223 	off += reg->off;
3224 
3225 	if (reg->type == PTR_TO_MAP_VALUE) {
3226 		if (t == BPF_WRITE && value_regno >= 0 &&
3227 		    is_pointer_value(env, value_regno)) {
3228 			verbose(env, "R%d leaks addr into map\n", value_regno);
3229 			return -EACCES;
3230 		}
3231 		err = check_map_access_type(env, regno, off, size, t);
3232 		if (err)
3233 			return err;
3234 		err = check_map_access(env, regno, off, size, false);
3235 		if (!err && t == BPF_READ && value_regno >= 0) {
3236 			struct bpf_map *map = reg->map_ptr;
3237 
3238 			/* if map is read-only, track its contents as scalars */
3239 			if (tnum_is_const(reg->var_off) &&
3240 			    bpf_map_is_rdonly(map) &&
3241 			    map->ops->map_direct_value_addr) {
3242 				int map_off = off + reg->var_off.value;
3243 				u64 val = 0;
3244 
3245 				err = bpf_map_direct_read(map, map_off, size,
3246 							  &val);
3247 				if (err)
3248 					return err;
3249 
3250 				regs[value_regno].type = SCALAR_VALUE;
3251 				__mark_reg_known(&regs[value_regno], val);
3252 			} else {
3253 				mark_reg_unknown(env, regs, value_regno);
3254 			}
3255 		}
3256 	} else if (reg->type == PTR_TO_MEM) {
3257 		if (t == BPF_WRITE && value_regno >= 0 &&
3258 		    is_pointer_value(env, value_regno)) {
3259 			verbose(env, "R%d leaks addr into mem\n", value_regno);
3260 			return -EACCES;
3261 		}
3262 		err = check_mem_region_access(env, regno, off, size,
3263 					      reg->mem_size, false);
3264 		if (!err && t == BPF_READ && value_regno >= 0)
3265 			mark_reg_unknown(env, regs, value_regno);
3266 	} else if (reg->type == PTR_TO_CTX) {
3267 		enum bpf_reg_type reg_type = SCALAR_VALUE;
3268 		u32 btf_id = 0;
3269 
3270 		if (t == BPF_WRITE && value_regno >= 0 &&
3271 		    is_pointer_value(env, value_regno)) {
3272 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
3273 			return -EACCES;
3274 		}
3275 
3276 		err = check_ctx_reg(env, reg, regno);
3277 		if (err < 0)
3278 			return err;
3279 
3280 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf_id);
3281 		if (err)
3282 			verbose_linfo(env, insn_idx, "; ");
3283 		if (!err && t == BPF_READ && value_regno >= 0) {
3284 			/* ctx access returns either a scalar, or a
3285 			 * PTR_TO_PACKET[_META,_END]. In the latter
3286 			 * case, we know the offset is zero.
3287 			 */
3288 			if (reg_type == SCALAR_VALUE) {
3289 				mark_reg_unknown(env, regs, value_regno);
3290 			} else {
3291 				mark_reg_known_zero(env, regs,
3292 						    value_regno);
3293 				if (reg_type_may_be_null(reg_type))
3294 					regs[value_regno].id = ++env->id_gen;
3295 				/* A load of ctx field could have different
3296 				 * actual load size with the one encoded in the
3297 				 * insn. When the dst is PTR, it is for sure not
3298 				 * a sub-register.
3299 				 */
3300 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
3301 				if (reg_type == PTR_TO_BTF_ID ||
3302 				    reg_type == PTR_TO_BTF_ID_OR_NULL)
3303 					regs[value_regno].btf_id = btf_id;
3304 			}
3305 			regs[value_regno].type = reg_type;
3306 		}
3307 
3308 	} else if (reg->type == PTR_TO_STACK) {
3309 		off += reg->var_off.value;
3310 		err = check_stack_access(env, reg, off, size);
3311 		if (err)
3312 			return err;
3313 
3314 		state = func(env, reg);
3315 		err = update_stack_depth(env, state, off);
3316 		if (err)
3317 			return err;
3318 
3319 		if (t == BPF_WRITE)
3320 			err = check_stack_write(env, state, off, size,
3321 						value_regno, insn_idx);
3322 		else
3323 			err = check_stack_read(env, state, off, size,
3324 					       value_regno);
3325 	} else if (reg_is_pkt_pointer(reg)) {
3326 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3327 			verbose(env, "cannot write into packet\n");
3328 			return -EACCES;
3329 		}
3330 		if (t == BPF_WRITE && value_regno >= 0 &&
3331 		    is_pointer_value(env, value_regno)) {
3332 			verbose(env, "R%d leaks addr into packet\n",
3333 				value_regno);
3334 			return -EACCES;
3335 		}
3336 		err = check_packet_access(env, regno, off, size, false);
3337 		if (!err && t == BPF_READ && value_regno >= 0)
3338 			mark_reg_unknown(env, regs, value_regno);
3339 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
3340 		if (t == BPF_WRITE && value_regno >= 0 &&
3341 		    is_pointer_value(env, value_regno)) {
3342 			verbose(env, "R%d leaks addr into flow keys\n",
3343 				value_regno);
3344 			return -EACCES;
3345 		}
3346 
3347 		err = check_flow_keys_access(env, off, size);
3348 		if (!err && t == BPF_READ && value_regno >= 0)
3349 			mark_reg_unknown(env, regs, value_regno);
3350 	} else if (type_is_sk_pointer(reg->type)) {
3351 		if (t == BPF_WRITE) {
3352 			verbose(env, "R%d cannot write into %s\n",
3353 				regno, reg_type_str[reg->type]);
3354 			return -EACCES;
3355 		}
3356 		err = check_sock_access(env, insn_idx, regno, off, size, t);
3357 		if (!err && value_regno >= 0)
3358 			mark_reg_unknown(env, regs, value_regno);
3359 	} else if (reg->type == PTR_TO_TP_BUFFER) {
3360 		err = check_tp_buffer_access(env, reg, regno, off, size);
3361 		if (!err && t == BPF_READ && value_regno >= 0)
3362 			mark_reg_unknown(env, regs, value_regno);
3363 	} else if (reg->type == PTR_TO_BTF_ID) {
3364 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3365 					      value_regno);
3366 	} else {
3367 		verbose(env, "R%d invalid mem access '%s'\n", regno,
3368 			reg_type_str[reg->type]);
3369 		return -EACCES;
3370 	}
3371 
3372 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
3373 	    regs[value_regno].type == SCALAR_VALUE) {
3374 		/* b/h/w load zero-extends, mark upper bits as known 0 */
3375 		coerce_reg_to_size(&regs[value_regno], size);
3376 	}
3377 	return err;
3378 }
3379 
3380 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
3381 {
3382 	int err;
3383 
3384 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3385 	    insn->imm != 0) {
3386 		verbose(env, "BPF_XADD uses reserved fields\n");
3387 		return -EINVAL;
3388 	}
3389 
3390 	/* check src1 operand */
3391 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
3392 	if (err)
3393 		return err;
3394 
3395 	/* check src2 operand */
3396 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3397 	if (err)
3398 		return err;
3399 
3400 	if (is_pointer_value(env, insn->src_reg)) {
3401 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
3402 		return -EACCES;
3403 	}
3404 
3405 	if (is_ctx_reg(env, insn->dst_reg) ||
3406 	    is_pkt_reg(env, insn->dst_reg) ||
3407 	    is_flow_key_reg(env, insn->dst_reg) ||
3408 	    is_sk_reg(env, insn->dst_reg)) {
3409 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
3410 			insn->dst_reg,
3411 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
3412 		return -EACCES;
3413 	}
3414 
3415 	/* check whether atomic_add can read the memory */
3416 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3417 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
3418 	if (err)
3419 		return err;
3420 
3421 	/* check whether atomic_add can write into the same memory */
3422 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3423 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
3424 }
3425 
3426 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3427 				  int off, int access_size,
3428 				  bool zero_size_allowed)
3429 {
3430 	struct bpf_reg_state *reg = reg_state(env, regno);
3431 
3432 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3433 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3434 		if (tnum_is_const(reg->var_off)) {
3435 			verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3436 				regno, off, access_size);
3437 		} else {
3438 			char tn_buf[48];
3439 
3440 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3441 			verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3442 				regno, tn_buf, access_size);
3443 		}
3444 		return -EACCES;
3445 	}
3446 	return 0;
3447 }
3448 
3449 /* when register 'regno' is passed into function that will read 'access_size'
3450  * bytes from that pointer, make sure that it's within stack boundary
3451  * and all elements of stack are initialized.
3452  * Unlike most pointer bounds-checking functions, this one doesn't take an
3453  * 'off' argument, so it has to add in reg->off itself.
3454  */
3455 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
3456 				int access_size, bool zero_size_allowed,
3457 				struct bpf_call_arg_meta *meta)
3458 {
3459 	struct bpf_reg_state *reg = reg_state(env, regno);
3460 	struct bpf_func_state *state = func(env, reg);
3461 	int err, min_off, max_off, i, j, slot, spi;
3462 
3463 	if (reg->type != PTR_TO_STACK) {
3464 		/* Allow zero-byte read from NULL, regardless of pointer type */
3465 		if (zero_size_allowed && access_size == 0 &&
3466 		    register_is_null(reg))
3467 			return 0;
3468 
3469 		verbose(env, "R%d type=%s expected=%s\n", regno,
3470 			reg_type_str[reg->type],
3471 			reg_type_str[PTR_TO_STACK]);
3472 		return -EACCES;
3473 	}
3474 
3475 	if (tnum_is_const(reg->var_off)) {
3476 		min_off = max_off = reg->var_off.value + reg->off;
3477 		err = __check_stack_boundary(env, regno, min_off, access_size,
3478 					     zero_size_allowed);
3479 		if (err)
3480 			return err;
3481 	} else {
3482 		/* Variable offset is prohibited for unprivileged mode for
3483 		 * simplicity since it requires corresponding support in
3484 		 * Spectre masking for stack ALU.
3485 		 * See also retrieve_ptr_limit().
3486 		 */
3487 		if (!env->bypass_spec_v1) {
3488 			char tn_buf[48];
3489 
3490 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3491 			verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3492 				regno, tn_buf);
3493 			return -EACCES;
3494 		}
3495 		/* Only initialized buffer on stack is allowed to be accessed
3496 		 * with variable offset. With uninitialized buffer it's hard to
3497 		 * guarantee that whole memory is marked as initialized on
3498 		 * helper return since specific bounds are unknown what may
3499 		 * cause uninitialized stack leaking.
3500 		 */
3501 		if (meta && meta->raw_mode)
3502 			meta = NULL;
3503 
3504 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3505 		    reg->smax_value <= -BPF_MAX_VAR_OFF) {
3506 			verbose(env, "R%d unbounded indirect variable offset stack access\n",
3507 				regno);
3508 			return -EACCES;
3509 		}
3510 		min_off = reg->smin_value + reg->off;
3511 		max_off = reg->smax_value + reg->off;
3512 		err = __check_stack_boundary(env, regno, min_off, access_size,
3513 					     zero_size_allowed);
3514 		if (err) {
3515 			verbose(env, "R%d min value is outside of stack bound\n",
3516 				regno);
3517 			return err;
3518 		}
3519 		err = __check_stack_boundary(env, regno, max_off, access_size,
3520 					     zero_size_allowed);
3521 		if (err) {
3522 			verbose(env, "R%d max value is outside of stack bound\n",
3523 				regno);
3524 			return err;
3525 		}
3526 	}
3527 
3528 	if (meta && meta->raw_mode) {
3529 		meta->access_size = access_size;
3530 		meta->regno = regno;
3531 		return 0;
3532 	}
3533 
3534 	for (i = min_off; i < max_off + access_size; i++) {
3535 		u8 *stype;
3536 
3537 		slot = -i - 1;
3538 		spi = slot / BPF_REG_SIZE;
3539 		if (state->allocated_stack <= slot)
3540 			goto err;
3541 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3542 		if (*stype == STACK_MISC)
3543 			goto mark;
3544 		if (*stype == STACK_ZERO) {
3545 			/* helper can write anything into the stack */
3546 			*stype = STACK_MISC;
3547 			goto mark;
3548 		}
3549 
3550 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3551 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
3552 			goto mark;
3553 
3554 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3555 		    state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
3556 			__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
3557 			for (j = 0; j < BPF_REG_SIZE; j++)
3558 				state->stack[spi].slot_type[j] = STACK_MISC;
3559 			goto mark;
3560 		}
3561 
3562 err:
3563 		if (tnum_is_const(reg->var_off)) {
3564 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3565 				min_off, i - min_off, access_size);
3566 		} else {
3567 			char tn_buf[48];
3568 
3569 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3570 			verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3571 				tn_buf, i - min_off, access_size);
3572 		}
3573 		return -EACCES;
3574 mark:
3575 		/* reading any byte out of 8-byte 'spill_slot' will cause
3576 		 * the whole slot to be marked as 'read'
3577 		 */
3578 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
3579 			      state->stack[spi].spilled_ptr.parent,
3580 			      REG_LIVE_READ64);
3581 	}
3582 	return update_stack_depth(env, state, min_off);
3583 }
3584 
3585 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3586 				   int access_size, bool zero_size_allowed,
3587 				   struct bpf_call_arg_meta *meta)
3588 {
3589 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3590 
3591 	switch (reg->type) {
3592 	case PTR_TO_PACKET:
3593 	case PTR_TO_PACKET_META:
3594 		return check_packet_access(env, regno, reg->off, access_size,
3595 					   zero_size_allowed);
3596 	case PTR_TO_MAP_VALUE:
3597 		if (check_map_access_type(env, regno, reg->off, access_size,
3598 					  meta && meta->raw_mode ? BPF_WRITE :
3599 					  BPF_READ))
3600 			return -EACCES;
3601 		return check_map_access(env, regno, reg->off, access_size,
3602 					zero_size_allowed);
3603 	case PTR_TO_MEM:
3604 		return check_mem_region_access(env, regno, reg->off,
3605 					       access_size, reg->mem_size,
3606 					       zero_size_allowed);
3607 	default: /* scalar_value|ptr_to_stack or invalid ptr */
3608 		return check_stack_boundary(env, regno, access_size,
3609 					    zero_size_allowed, meta);
3610 	}
3611 }
3612 
3613 /* Implementation details:
3614  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3615  * Two bpf_map_lookups (even with the same key) will have different reg->id.
3616  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3617  * value_or_null->value transition, since the verifier only cares about
3618  * the range of access to valid map value pointer and doesn't care about actual
3619  * address of the map element.
3620  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3621  * reg->id > 0 after value_or_null->value transition. By doing so
3622  * two bpf_map_lookups will be considered two different pointers that
3623  * point to different bpf_spin_locks.
3624  * The verifier allows taking only one bpf_spin_lock at a time to avoid
3625  * dead-locks.
3626  * Since only one bpf_spin_lock is allowed the checks are simpler than
3627  * reg_is_refcounted() logic. The verifier needs to remember only
3628  * one spin_lock instead of array of acquired_refs.
3629  * cur_state->active_spin_lock remembers which map value element got locked
3630  * and clears it after bpf_spin_unlock.
3631  */
3632 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3633 			     bool is_lock)
3634 {
3635 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3636 	struct bpf_verifier_state *cur = env->cur_state;
3637 	bool is_const = tnum_is_const(reg->var_off);
3638 	struct bpf_map *map = reg->map_ptr;
3639 	u64 val = reg->var_off.value;
3640 
3641 	if (reg->type != PTR_TO_MAP_VALUE) {
3642 		verbose(env, "R%d is not a pointer to map_value\n", regno);
3643 		return -EINVAL;
3644 	}
3645 	if (!is_const) {
3646 		verbose(env,
3647 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3648 			regno);
3649 		return -EINVAL;
3650 	}
3651 	if (!map->btf) {
3652 		verbose(env,
3653 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
3654 			map->name);
3655 		return -EINVAL;
3656 	}
3657 	if (!map_value_has_spin_lock(map)) {
3658 		if (map->spin_lock_off == -E2BIG)
3659 			verbose(env,
3660 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
3661 				map->name);
3662 		else if (map->spin_lock_off == -ENOENT)
3663 			verbose(env,
3664 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
3665 				map->name);
3666 		else
3667 			verbose(env,
3668 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3669 				map->name);
3670 		return -EINVAL;
3671 	}
3672 	if (map->spin_lock_off != val + reg->off) {
3673 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3674 			val + reg->off);
3675 		return -EINVAL;
3676 	}
3677 	if (is_lock) {
3678 		if (cur->active_spin_lock) {
3679 			verbose(env,
3680 				"Locking two bpf_spin_locks are not allowed\n");
3681 			return -EINVAL;
3682 		}
3683 		cur->active_spin_lock = reg->id;
3684 	} else {
3685 		if (!cur->active_spin_lock) {
3686 			verbose(env, "bpf_spin_unlock without taking a lock\n");
3687 			return -EINVAL;
3688 		}
3689 		if (cur->active_spin_lock != reg->id) {
3690 			verbose(env, "bpf_spin_unlock of different lock\n");
3691 			return -EINVAL;
3692 		}
3693 		cur->active_spin_lock = 0;
3694 	}
3695 	return 0;
3696 }
3697 
3698 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3699 {
3700 	return type == ARG_PTR_TO_MEM ||
3701 	       type == ARG_PTR_TO_MEM_OR_NULL ||
3702 	       type == ARG_PTR_TO_UNINIT_MEM;
3703 }
3704 
3705 static bool arg_type_is_mem_size(enum bpf_arg_type type)
3706 {
3707 	return type == ARG_CONST_SIZE ||
3708 	       type == ARG_CONST_SIZE_OR_ZERO;
3709 }
3710 
3711 static bool arg_type_is_alloc_mem_ptr(enum bpf_arg_type type)
3712 {
3713 	return type == ARG_PTR_TO_ALLOC_MEM ||
3714 	       type == ARG_PTR_TO_ALLOC_MEM_OR_NULL;
3715 }
3716 
3717 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
3718 {
3719 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
3720 }
3721 
3722 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3723 {
3724 	return type == ARG_PTR_TO_INT ||
3725 	       type == ARG_PTR_TO_LONG;
3726 }
3727 
3728 static int int_ptr_type_to_size(enum bpf_arg_type type)
3729 {
3730 	if (type == ARG_PTR_TO_INT)
3731 		return sizeof(u32);
3732 	else if (type == ARG_PTR_TO_LONG)
3733 		return sizeof(u64);
3734 
3735 	return -EINVAL;
3736 }
3737 
3738 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
3739 			  enum bpf_arg_type arg_type,
3740 			  struct bpf_call_arg_meta *meta)
3741 {
3742 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3743 	enum bpf_reg_type expected_type, type = reg->type;
3744 	int err = 0;
3745 
3746 	if (arg_type == ARG_DONTCARE)
3747 		return 0;
3748 
3749 	err = check_reg_arg(env, regno, SRC_OP);
3750 	if (err)
3751 		return err;
3752 
3753 	if (arg_type == ARG_ANYTHING) {
3754 		if (is_pointer_value(env, regno)) {
3755 			verbose(env, "R%d leaks addr into helper function\n",
3756 				regno);
3757 			return -EACCES;
3758 		}
3759 		return 0;
3760 	}
3761 
3762 	if (type_is_pkt_pointer(type) &&
3763 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
3764 		verbose(env, "helper access to the packet is not allowed\n");
3765 		return -EACCES;
3766 	}
3767 
3768 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
3769 	    arg_type == ARG_PTR_TO_MAP_VALUE ||
3770 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3771 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
3772 		expected_type = PTR_TO_STACK;
3773 		if (register_is_null(reg) &&
3774 		    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
3775 			/* final test in check_stack_boundary() */;
3776 		else if (!type_is_pkt_pointer(type) &&
3777 			 type != PTR_TO_MAP_VALUE &&
3778 			 type != expected_type)
3779 			goto err_type;
3780 	} else if (arg_type == ARG_CONST_SIZE ||
3781 		   arg_type == ARG_CONST_SIZE_OR_ZERO ||
3782 		   arg_type == ARG_CONST_ALLOC_SIZE_OR_ZERO) {
3783 		expected_type = SCALAR_VALUE;
3784 		if (type != expected_type)
3785 			goto err_type;
3786 	} else if (arg_type == ARG_CONST_MAP_PTR) {
3787 		expected_type = CONST_PTR_TO_MAP;
3788 		if (type != expected_type)
3789 			goto err_type;
3790 	} else if (arg_type == ARG_PTR_TO_CTX ||
3791 		   arg_type == ARG_PTR_TO_CTX_OR_NULL) {
3792 		expected_type = PTR_TO_CTX;
3793 		if (!(register_is_null(reg) &&
3794 		      arg_type == ARG_PTR_TO_CTX_OR_NULL)) {
3795 			if (type != expected_type)
3796 				goto err_type;
3797 			err = check_ctx_reg(env, reg, regno);
3798 			if (err < 0)
3799 				return err;
3800 		}
3801 	} else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
3802 		expected_type = PTR_TO_SOCK_COMMON;
3803 		/* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3804 		if (!type_is_sk_pointer(type))
3805 			goto err_type;
3806 		if (reg->ref_obj_id) {
3807 			if (meta->ref_obj_id) {
3808 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3809 					regno, reg->ref_obj_id,
3810 					meta->ref_obj_id);
3811 				return -EFAULT;
3812 			}
3813 			meta->ref_obj_id = reg->ref_obj_id;
3814 		}
3815 	} else if (arg_type == ARG_PTR_TO_SOCKET) {
3816 		expected_type = PTR_TO_SOCKET;
3817 		if (type != expected_type)
3818 			goto err_type;
3819 	} else if (arg_type == ARG_PTR_TO_BTF_ID) {
3820 		expected_type = PTR_TO_BTF_ID;
3821 		if (type != expected_type)
3822 			goto err_type;
3823 		if (reg->btf_id != meta->btf_id) {
3824 			verbose(env, "Helper has type %s got %s in R%d\n",
3825 				kernel_type_name(meta->btf_id),
3826 				kernel_type_name(reg->btf_id), regno);
3827 
3828 			return -EACCES;
3829 		}
3830 		if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) {
3831 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
3832 				regno);
3833 			return -EACCES;
3834 		}
3835 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
3836 		if (meta->func_id == BPF_FUNC_spin_lock) {
3837 			if (process_spin_lock(env, regno, true))
3838 				return -EACCES;
3839 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
3840 			if (process_spin_lock(env, regno, false))
3841 				return -EACCES;
3842 		} else {
3843 			verbose(env, "verifier internal error\n");
3844 			return -EFAULT;
3845 		}
3846 	} else if (arg_type_is_mem_ptr(arg_type)) {
3847 		expected_type = PTR_TO_STACK;
3848 		/* One exception here. In case function allows for NULL to be
3849 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
3850 		 * happens during stack boundary checking.
3851 		 */
3852 		if (register_is_null(reg) &&
3853 		    (arg_type == ARG_PTR_TO_MEM_OR_NULL ||
3854 		     arg_type == ARG_PTR_TO_ALLOC_MEM_OR_NULL))
3855 			/* final test in check_stack_boundary() */;
3856 		else if (!type_is_pkt_pointer(type) &&
3857 			 type != PTR_TO_MAP_VALUE &&
3858 			 type != PTR_TO_MEM &&
3859 			 type != expected_type)
3860 			goto err_type;
3861 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
3862 	} else if (arg_type_is_alloc_mem_ptr(arg_type)) {
3863 		expected_type = PTR_TO_MEM;
3864 		if (register_is_null(reg) &&
3865 		    arg_type == ARG_PTR_TO_ALLOC_MEM_OR_NULL)
3866 			/* final test in check_stack_boundary() */;
3867 		else if (type != expected_type)
3868 			goto err_type;
3869 		if (meta->ref_obj_id) {
3870 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3871 				regno, reg->ref_obj_id,
3872 				meta->ref_obj_id);
3873 			return -EFAULT;
3874 		}
3875 		meta->ref_obj_id = reg->ref_obj_id;
3876 	} else if (arg_type_is_int_ptr(arg_type)) {
3877 		expected_type = PTR_TO_STACK;
3878 		if (!type_is_pkt_pointer(type) &&
3879 		    type != PTR_TO_MAP_VALUE &&
3880 		    type != expected_type)
3881 			goto err_type;
3882 	} else {
3883 		verbose(env, "unsupported arg_type %d\n", arg_type);
3884 		return -EFAULT;
3885 	}
3886 
3887 	if (arg_type == ARG_CONST_MAP_PTR) {
3888 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3889 		meta->map_ptr = reg->map_ptr;
3890 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
3891 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
3892 		 * check that [key, key + map->key_size) are within
3893 		 * stack limits and initialized
3894 		 */
3895 		if (!meta->map_ptr) {
3896 			/* in function declaration map_ptr must come before
3897 			 * map_key, so that it's verified and known before
3898 			 * we have to check map_key here. Otherwise it means
3899 			 * that kernel subsystem misconfigured verifier
3900 			 */
3901 			verbose(env, "invalid map_ptr to access map->key\n");
3902 			return -EACCES;
3903 		}
3904 		err = check_helper_mem_access(env, regno,
3905 					      meta->map_ptr->key_size, false,
3906 					      NULL);
3907 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
3908 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
3909 		    !register_is_null(reg)) ||
3910 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
3911 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
3912 		 * check [value, value + map->value_size) validity
3913 		 */
3914 		if (!meta->map_ptr) {
3915 			/* kernel subsystem misconfigured verifier */
3916 			verbose(env, "invalid map_ptr to access map->value\n");
3917 			return -EACCES;
3918 		}
3919 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
3920 		err = check_helper_mem_access(env, regno,
3921 					      meta->map_ptr->value_size, false,
3922 					      meta);
3923 	} else if (arg_type_is_mem_size(arg_type)) {
3924 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
3925 
3926 		/* This is used to refine r0 return value bounds for helpers
3927 		 * that enforce this value as an upper bound on return values.
3928 		 * See do_refine_retval_range() for helpers that can refine
3929 		 * the return value. C type of helper is u32 so we pull register
3930 		 * bound from umax_value however, if negative verifier errors
3931 		 * out. Only upper bounds can be learned because retval is an
3932 		 * int type and negative retvals are allowed.
3933 		 */
3934 		meta->msize_max_value = reg->umax_value;
3935 
3936 		/* The register is SCALAR_VALUE; the access check
3937 		 * happens using its boundaries.
3938 		 */
3939 		if (!tnum_is_const(reg->var_off))
3940 			/* For unprivileged variable accesses, disable raw
3941 			 * mode so that the program is required to
3942 			 * initialize all the memory that the helper could
3943 			 * just partially fill up.
3944 			 */
3945 			meta = NULL;
3946 
3947 		if (reg->smin_value < 0) {
3948 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
3949 				regno);
3950 			return -EACCES;
3951 		}
3952 
3953 		if (reg->umin_value == 0) {
3954 			err = check_helper_mem_access(env, regno - 1, 0,
3955 						      zero_size_allowed,
3956 						      meta);
3957 			if (err)
3958 				return err;
3959 		}
3960 
3961 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
3962 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
3963 				regno);
3964 			return -EACCES;
3965 		}
3966 		err = check_helper_mem_access(env, regno - 1,
3967 					      reg->umax_value,
3968 					      zero_size_allowed, meta);
3969 		if (!err)
3970 			err = mark_chain_precision(env, regno);
3971 	} else if (arg_type_is_alloc_size(arg_type)) {
3972 		if (!tnum_is_const(reg->var_off)) {
3973 			verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n",
3974 				regno);
3975 			return -EACCES;
3976 		}
3977 		meta->mem_size = reg->var_off.value;
3978 	} else if (arg_type_is_int_ptr(arg_type)) {
3979 		int size = int_ptr_type_to_size(arg_type);
3980 
3981 		err = check_helper_mem_access(env, regno, size, false, meta);
3982 		if (err)
3983 			return err;
3984 		err = check_ptr_alignment(env, reg, 0, size, true);
3985 	}
3986 
3987 	return err;
3988 err_type:
3989 	verbose(env, "R%d type=%s expected=%s\n", regno,
3990 		reg_type_str[type], reg_type_str[expected_type]);
3991 	return -EACCES;
3992 }
3993 
3994 static int check_map_func_compatibility(struct bpf_verifier_env *env,
3995 					struct bpf_map *map, int func_id)
3996 {
3997 	if (!map)
3998 		return 0;
3999 
4000 	/* We need a two way check, first is from map perspective ... */
4001 	switch (map->map_type) {
4002 	case BPF_MAP_TYPE_PROG_ARRAY:
4003 		if (func_id != BPF_FUNC_tail_call)
4004 			goto error;
4005 		break;
4006 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4007 		if (func_id != BPF_FUNC_perf_event_read &&
4008 		    func_id != BPF_FUNC_perf_event_output &&
4009 		    func_id != BPF_FUNC_skb_output &&
4010 		    func_id != BPF_FUNC_perf_event_read_value &&
4011 		    func_id != BPF_FUNC_xdp_output)
4012 			goto error;
4013 		break;
4014 	case BPF_MAP_TYPE_RINGBUF:
4015 		if (func_id != BPF_FUNC_ringbuf_output &&
4016 		    func_id != BPF_FUNC_ringbuf_reserve &&
4017 		    func_id != BPF_FUNC_ringbuf_submit &&
4018 		    func_id != BPF_FUNC_ringbuf_discard &&
4019 		    func_id != BPF_FUNC_ringbuf_query)
4020 			goto error;
4021 		break;
4022 	case BPF_MAP_TYPE_STACK_TRACE:
4023 		if (func_id != BPF_FUNC_get_stackid)
4024 			goto error;
4025 		break;
4026 	case BPF_MAP_TYPE_CGROUP_ARRAY:
4027 		if (func_id != BPF_FUNC_skb_under_cgroup &&
4028 		    func_id != BPF_FUNC_current_task_under_cgroup)
4029 			goto error;
4030 		break;
4031 	case BPF_MAP_TYPE_CGROUP_STORAGE:
4032 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
4033 		if (func_id != BPF_FUNC_get_local_storage)
4034 			goto error;
4035 		break;
4036 	case BPF_MAP_TYPE_DEVMAP:
4037 	case BPF_MAP_TYPE_DEVMAP_HASH:
4038 		if (func_id != BPF_FUNC_redirect_map &&
4039 		    func_id != BPF_FUNC_map_lookup_elem)
4040 			goto error;
4041 		break;
4042 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
4043 	 * appear.
4044 	 */
4045 	case BPF_MAP_TYPE_CPUMAP:
4046 		if (func_id != BPF_FUNC_redirect_map)
4047 			goto error;
4048 		break;
4049 	case BPF_MAP_TYPE_XSKMAP:
4050 		if (func_id != BPF_FUNC_redirect_map &&
4051 		    func_id != BPF_FUNC_map_lookup_elem)
4052 			goto error;
4053 		break;
4054 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4055 	case BPF_MAP_TYPE_HASH_OF_MAPS:
4056 		if (func_id != BPF_FUNC_map_lookup_elem)
4057 			goto error;
4058 		break;
4059 	case BPF_MAP_TYPE_SOCKMAP:
4060 		if (func_id != BPF_FUNC_sk_redirect_map &&
4061 		    func_id != BPF_FUNC_sock_map_update &&
4062 		    func_id != BPF_FUNC_map_delete_elem &&
4063 		    func_id != BPF_FUNC_msg_redirect_map &&
4064 		    func_id != BPF_FUNC_sk_select_reuseport &&
4065 		    func_id != BPF_FUNC_map_lookup_elem)
4066 			goto error;
4067 		break;
4068 	case BPF_MAP_TYPE_SOCKHASH:
4069 		if (func_id != BPF_FUNC_sk_redirect_hash &&
4070 		    func_id != BPF_FUNC_sock_hash_update &&
4071 		    func_id != BPF_FUNC_map_delete_elem &&
4072 		    func_id != BPF_FUNC_msg_redirect_hash &&
4073 		    func_id != BPF_FUNC_sk_select_reuseport &&
4074 		    func_id != BPF_FUNC_map_lookup_elem)
4075 			goto error;
4076 		break;
4077 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4078 		if (func_id != BPF_FUNC_sk_select_reuseport)
4079 			goto error;
4080 		break;
4081 	case BPF_MAP_TYPE_QUEUE:
4082 	case BPF_MAP_TYPE_STACK:
4083 		if (func_id != BPF_FUNC_map_peek_elem &&
4084 		    func_id != BPF_FUNC_map_pop_elem &&
4085 		    func_id != BPF_FUNC_map_push_elem)
4086 			goto error;
4087 		break;
4088 	case BPF_MAP_TYPE_SK_STORAGE:
4089 		if (func_id != BPF_FUNC_sk_storage_get &&
4090 		    func_id != BPF_FUNC_sk_storage_delete)
4091 			goto error;
4092 		break;
4093 	default:
4094 		break;
4095 	}
4096 
4097 	/* ... and second from the function itself. */
4098 	switch (func_id) {
4099 	case BPF_FUNC_tail_call:
4100 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4101 			goto error;
4102 		if (env->subprog_cnt > 1) {
4103 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
4104 			return -EINVAL;
4105 		}
4106 		break;
4107 	case BPF_FUNC_perf_event_read:
4108 	case BPF_FUNC_perf_event_output:
4109 	case BPF_FUNC_perf_event_read_value:
4110 	case BPF_FUNC_skb_output:
4111 	case BPF_FUNC_xdp_output:
4112 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4113 			goto error;
4114 		break;
4115 	case BPF_FUNC_get_stackid:
4116 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4117 			goto error;
4118 		break;
4119 	case BPF_FUNC_current_task_under_cgroup:
4120 	case BPF_FUNC_skb_under_cgroup:
4121 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4122 			goto error;
4123 		break;
4124 	case BPF_FUNC_redirect_map:
4125 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
4126 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
4127 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
4128 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
4129 			goto error;
4130 		break;
4131 	case BPF_FUNC_sk_redirect_map:
4132 	case BPF_FUNC_msg_redirect_map:
4133 	case BPF_FUNC_sock_map_update:
4134 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
4135 			goto error;
4136 		break;
4137 	case BPF_FUNC_sk_redirect_hash:
4138 	case BPF_FUNC_msg_redirect_hash:
4139 	case BPF_FUNC_sock_hash_update:
4140 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
4141 			goto error;
4142 		break;
4143 	case BPF_FUNC_get_local_storage:
4144 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
4145 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
4146 			goto error;
4147 		break;
4148 	case BPF_FUNC_sk_select_reuseport:
4149 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
4150 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
4151 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
4152 			goto error;
4153 		break;
4154 	case BPF_FUNC_map_peek_elem:
4155 	case BPF_FUNC_map_pop_elem:
4156 	case BPF_FUNC_map_push_elem:
4157 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4158 		    map->map_type != BPF_MAP_TYPE_STACK)
4159 			goto error;
4160 		break;
4161 	case BPF_FUNC_sk_storage_get:
4162 	case BPF_FUNC_sk_storage_delete:
4163 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4164 			goto error;
4165 		break;
4166 	default:
4167 		break;
4168 	}
4169 
4170 	return 0;
4171 error:
4172 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
4173 		map->map_type, func_id_name(func_id), func_id);
4174 	return -EINVAL;
4175 }
4176 
4177 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
4178 {
4179 	int count = 0;
4180 
4181 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
4182 		count++;
4183 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
4184 		count++;
4185 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
4186 		count++;
4187 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
4188 		count++;
4189 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
4190 		count++;
4191 
4192 	/* We only support one arg being in raw mode at the moment,
4193 	 * which is sufficient for the helper functions we have
4194 	 * right now.
4195 	 */
4196 	return count <= 1;
4197 }
4198 
4199 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4200 				    enum bpf_arg_type arg_next)
4201 {
4202 	return (arg_type_is_mem_ptr(arg_curr) &&
4203 	        !arg_type_is_mem_size(arg_next)) ||
4204 	       (!arg_type_is_mem_ptr(arg_curr) &&
4205 		arg_type_is_mem_size(arg_next));
4206 }
4207 
4208 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
4209 {
4210 	/* bpf_xxx(..., buf, len) call will access 'len'
4211 	 * bytes from memory 'buf'. Both arg types need
4212 	 * to be paired, so make sure there's no buggy
4213 	 * helper function specification.
4214 	 */
4215 	if (arg_type_is_mem_size(fn->arg1_type) ||
4216 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
4217 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
4218 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
4219 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
4220 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
4221 		return false;
4222 
4223 	return true;
4224 }
4225 
4226 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
4227 {
4228 	int count = 0;
4229 
4230 	if (arg_type_may_be_refcounted(fn->arg1_type))
4231 		count++;
4232 	if (arg_type_may_be_refcounted(fn->arg2_type))
4233 		count++;
4234 	if (arg_type_may_be_refcounted(fn->arg3_type))
4235 		count++;
4236 	if (arg_type_may_be_refcounted(fn->arg4_type))
4237 		count++;
4238 	if (arg_type_may_be_refcounted(fn->arg5_type))
4239 		count++;
4240 
4241 	/* A reference acquiring function cannot acquire
4242 	 * another refcounted ptr.
4243 	 */
4244 	if (may_be_acquire_function(func_id) && count)
4245 		return false;
4246 
4247 	/* We only support one arg being unreferenced at the moment,
4248 	 * which is sufficient for the helper functions we have right now.
4249 	 */
4250 	return count <= 1;
4251 }
4252 
4253 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
4254 {
4255 	return check_raw_mode_ok(fn) &&
4256 	       check_arg_pair_ok(fn) &&
4257 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
4258 }
4259 
4260 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
4261  * are now invalid, so turn them into unknown SCALAR_VALUE.
4262  */
4263 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
4264 				     struct bpf_func_state *state)
4265 {
4266 	struct bpf_reg_state *regs = state->regs, *reg;
4267 	int i;
4268 
4269 	for (i = 0; i < MAX_BPF_REG; i++)
4270 		if (reg_is_pkt_pointer_any(&regs[i]))
4271 			mark_reg_unknown(env, regs, i);
4272 
4273 	bpf_for_each_spilled_reg(i, state, reg) {
4274 		if (!reg)
4275 			continue;
4276 		if (reg_is_pkt_pointer_any(reg))
4277 			__mark_reg_unknown(env, reg);
4278 	}
4279 }
4280 
4281 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
4282 {
4283 	struct bpf_verifier_state *vstate = env->cur_state;
4284 	int i;
4285 
4286 	for (i = 0; i <= vstate->curframe; i++)
4287 		__clear_all_pkt_pointers(env, vstate->frame[i]);
4288 }
4289 
4290 static void release_reg_references(struct bpf_verifier_env *env,
4291 				   struct bpf_func_state *state,
4292 				   int ref_obj_id)
4293 {
4294 	struct bpf_reg_state *regs = state->regs, *reg;
4295 	int i;
4296 
4297 	for (i = 0; i < MAX_BPF_REG; i++)
4298 		if (regs[i].ref_obj_id == ref_obj_id)
4299 			mark_reg_unknown(env, regs, i);
4300 
4301 	bpf_for_each_spilled_reg(i, state, reg) {
4302 		if (!reg)
4303 			continue;
4304 		if (reg->ref_obj_id == ref_obj_id)
4305 			__mark_reg_unknown(env, reg);
4306 	}
4307 }
4308 
4309 /* The pointer with the specified id has released its reference to kernel
4310  * resources. Identify all copies of the same pointer and clear the reference.
4311  */
4312 static int release_reference(struct bpf_verifier_env *env,
4313 			     int ref_obj_id)
4314 {
4315 	struct bpf_verifier_state *vstate = env->cur_state;
4316 	int err;
4317 	int i;
4318 
4319 	err = release_reference_state(cur_func(env), ref_obj_id);
4320 	if (err)
4321 		return err;
4322 
4323 	for (i = 0; i <= vstate->curframe; i++)
4324 		release_reg_references(env, vstate->frame[i], ref_obj_id);
4325 
4326 	return 0;
4327 }
4328 
4329 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
4330 				    struct bpf_reg_state *regs)
4331 {
4332 	int i;
4333 
4334 	/* after the call registers r0 - r5 were scratched */
4335 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4336 		mark_reg_not_init(env, regs, caller_saved[i]);
4337 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4338 	}
4339 }
4340 
4341 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
4342 			   int *insn_idx)
4343 {
4344 	struct bpf_verifier_state *state = env->cur_state;
4345 	struct bpf_func_info_aux *func_info_aux;
4346 	struct bpf_func_state *caller, *callee;
4347 	int i, err, subprog, target_insn;
4348 	bool is_global = false;
4349 
4350 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
4351 		verbose(env, "the call stack of %d frames is too deep\n",
4352 			state->curframe + 2);
4353 		return -E2BIG;
4354 	}
4355 
4356 	target_insn = *insn_idx + insn->imm;
4357 	subprog = find_subprog(env, target_insn + 1);
4358 	if (subprog < 0) {
4359 		verbose(env, "verifier bug. No program starts at insn %d\n",
4360 			target_insn + 1);
4361 		return -EFAULT;
4362 	}
4363 
4364 	caller = state->frame[state->curframe];
4365 	if (state->frame[state->curframe + 1]) {
4366 		verbose(env, "verifier bug. Frame %d already allocated\n",
4367 			state->curframe + 1);
4368 		return -EFAULT;
4369 	}
4370 
4371 	func_info_aux = env->prog->aux->func_info_aux;
4372 	if (func_info_aux)
4373 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
4374 	err = btf_check_func_arg_match(env, subprog, caller->regs);
4375 	if (err == -EFAULT)
4376 		return err;
4377 	if (is_global) {
4378 		if (err) {
4379 			verbose(env, "Caller passes invalid args into func#%d\n",
4380 				subprog);
4381 			return err;
4382 		} else {
4383 			if (env->log.level & BPF_LOG_LEVEL)
4384 				verbose(env,
4385 					"Func#%d is global and valid. Skipping.\n",
4386 					subprog);
4387 			clear_caller_saved_regs(env, caller->regs);
4388 
4389 			/* All global functions return SCALAR_VALUE */
4390 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
4391 
4392 			/* continue with next insn after call */
4393 			return 0;
4394 		}
4395 	}
4396 
4397 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
4398 	if (!callee)
4399 		return -ENOMEM;
4400 	state->frame[state->curframe + 1] = callee;
4401 
4402 	/* callee cannot access r0, r6 - r9 for reading and has to write
4403 	 * into its own stack before reading from it.
4404 	 * callee can read/write into caller's stack
4405 	 */
4406 	init_func_state(env, callee,
4407 			/* remember the callsite, it will be used by bpf_exit */
4408 			*insn_idx /* callsite */,
4409 			state->curframe + 1 /* frameno within this callchain */,
4410 			subprog /* subprog number within this prog */);
4411 
4412 	/* Transfer references to the callee */
4413 	err = transfer_reference_state(callee, caller);
4414 	if (err)
4415 		return err;
4416 
4417 	/* copy r1 - r5 args that callee can access.  The copy includes parent
4418 	 * pointers, which connects us up to the liveness chain
4419 	 */
4420 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4421 		callee->regs[i] = caller->regs[i];
4422 
4423 	clear_caller_saved_regs(env, caller->regs);
4424 
4425 	/* only increment it after check_reg_arg() finished */
4426 	state->curframe++;
4427 
4428 	/* and go analyze first insn of the callee */
4429 	*insn_idx = target_insn;
4430 
4431 	if (env->log.level & BPF_LOG_LEVEL) {
4432 		verbose(env, "caller:\n");
4433 		print_verifier_state(env, caller);
4434 		verbose(env, "callee:\n");
4435 		print_verifier_state(env, callee);
4436 	}
4437 	return 0;
4438 }
4439 
4440 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4441 {
4442 	struct bpf_verifier_state *state = env->cur_state;
4443 	struct bpf_func_state *caller, *callee;
4444 	struct bpf_reg_state *r0;
4445 	int err;
4446 
4447 	callee = state->frame[state->curframe];
4448 	r0 = &callee->regs[BPF_REG_0];
4449 	if (r0->type == PTR_TO_STACK) {
4450 		/* technically it's ok to return caller's stack pointer
4451 		 * (or caller's caller's pointer) back to the caller,
4452 		 * since these pointers are valid. Only current stack
4453 		 * pointer will be invalid as soon as function exits,
4454 		 * but let's be conservative
4455 		 */
4456 		verbose(env, "cannot return stack pointer to the caller\n");
4457 		return -EINVAL;
4458 	}
4459 
4460 	state->curframe--;
4461 	caller = state->frame[state->curframe];
4462 	/* return to the caller whatever r0 had in the callee */
4463 	caller->regs[BPF_REG_0] = *r0;
4464 
4465 	/* Transfer references to the caller */
4466 	err = transfer_reference_state(caller, callee);
4467 	if (err)
4468 		return err;
4469 
4470 	*insn_idx = callee->callsite + 1;
4471 	if (env->log.level & BPF_LOG_LEVEL) {
4472 		verbose(env, "returning from callee:\n");
4473 		print_verifier_state(env, callee);
4474 		verbose(env, "to caller at %d:\n", *insn_idx);
4475 		print_verifier_state(env, caller);
4476 	}
4477 	/* clear everything in the callee */
4478 	free_func_state(callee);
4479 	state->frame[state->curframe + 1] = NULL;
4480 	return 0;
4481 }
4482 
4483 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4484 				   int func_id,
4485 				   struct bpf_call_arg_meta *meta)
4486 {
4487 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4488 
4489 	if (ret_type != RET_INTEGER ||
4490 	    (func_id != BPF_FUNC_get_stack &&
4491 	     func_id != BPF_FUNC_probe_read_str &&
4492 	     func_id != BPF_FUNC_probe_read_kernel_str &&
4493 	     func_id != BPF_FUNC_probe_read_user_str))
4494 		return;
4495 
4496 	ret_reg->smax_value = meta->msize_max_value;
4497 	ret_reg->s32_max_value = meta->msize_max_value;
4498 	__reg_deduce_bounds(ret_reg);
4499 	__reg_bound_offset(ret_reg);
4500 	__update_reg_bounds(ret_reg);
4501 }
4502 
4503 static int
4504 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4505 		int func_id, int insn_idx)
4506 {
4507 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4508 	struct bpf_map *map = meta->map_ptr;
4509 
4510 	if (func_id != BPF_FUNC_tail_call &&
4511 	    func_id != BPF_FUNC_map_lookup_elem &&
4512 	    func_id != BPF_FUNC_map_update_elem &&
4513 	    func_id != BPF_FUNC_map_delete_elem &&
4514 	    func_id != BPF_FUNC_map_push_elem &&
4515 	    func_id != BPF_FUNC_map_pop_elem &&
4516 	    func_id != BPF_FUNC_map_peek_elem)
4517 		return 0;
4518 
4519 	if (map == NULL) {
4520 		verbose(env, "kernel subsystem misconfigured verifier\n");
4521 		return -EINVAL;
4522 	}
4523 
4524 	/* In case of read-only, some additional restrictions
4525 	 * need to be applied in order to prevent altering the
4526 	 * state of the map from program side.
4527 	 */
4528 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4529 	    (func_id == BPF_FUNC_map_delete_elem ||
4530 	     func_id == BPF_FUNC_map_update_elem ||
4531 	     func_id == BPF_FUNC_map_push_elem ||
4532 	     func_id == BPF_FUNC_map_pop_elem)) {
4533 		verbose(env, "write into map forbidden\n");
4534 		return -EACCES;
4535 	}
4536 
4537 	if (!BPF_MAP_PTR(aux->map_ptr_state))
4538 		bpf_map_ptr_store(aux, meta->map_ptr,
4539 				  !meta->map_ptr->bypass_spec_v1);
4540 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
4541 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
4542 				  !meta->map_ptr->bypass_spec_v1);
4543 	return 0;
4544 }
4545 
4546 static int
4547 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4548 		int func_id, int insn_idx)
4549 {
4550 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4551 	struct bpf_reg_state *regs = cur_regs(env), *reg;
4552 	struct bpf_map *map = meta->map_ptr;
4553 	struct tnum range;
4554 	u64 val;
4555 	int err;
4556 
4557 	if (func_id != BPF_FUNC_tail_call)
4558 		return 0;
4559 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
4560 		verbose(env, "kernel subsystem misconfigured verifier\n");
4561 		return -EINVAL;
4562 	}
4563 
4564 	range = tnum_range(0, map->max_entries - 1);
4565 	reg = &regs[BPF_REG_3];
4566 
4567 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
4568 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4569 		return 0;
4570 	}
4571 
4572 	err = mark_chain_precision(env, BPF_REG_3);
4573 	if (err)
4574 		return err;
4575 
4576 	val = reg->var_off.value;
4577 	if (bpf_map_key_unseen(aux))
4578 		bpf_map_key_store(aux, val);
4579 	else if (!bpf_map_key_poisoned(aux) &&
4580 		  bpf_map_key_immediate(aux) != val)
4581 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4582 	return 0;
4583 }
4584 
4585 static int check_reference_leak(struct bpf_verifier_env *env)
4586 {
4587 	struct bpf_func_state *state = cur_func(env);
4588 	int i;
4589 
4590 	for (i = 0; i < state->acquired_refs; i++) {
4591 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
4592 			state->refs[i].id, state->refs[i].insn_idx);
4593 	}
4594 	return state->acquired_refs ? -EINVAL : 0;
4595 }
4596 
4597 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
4598 {
4599 	const struct bpf_func_proto *fn = NULL;
4600 	struct bpf_reg_state *regs;
4601 	struct bpf_call_arg_meta meta;
4602 	bool changes_data;
4603 	int i, err;
4604 
4605 	/* find function prototype */
4606 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
4607 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
4608 			func_id);
4609 		return -EINVAL;
4610 	}
4611 
4612 	if (env->ops->get_func_proto)
4613 		fn = env->ops->get_func_proto(func_id, env->prog);
4614 	if (!fn) {
4615 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
4616 			func_id);
4617 		return -EINVAL;
4618 	}
4619 
4620 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
4621 	if (!env->prog->gpl_compatible && fn->gpl_only) {
4622 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
4623 		return -EINVAL;
4624 	}
4625 
4626 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
4627 	changes_data = bpf_helper_changes_pkt_data(fn->func);
4628 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
4629 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
4630 			func_id_name(func_id), func_id);
4631 		return -EINVAL;
4632 	}
4633 
4634 	memset(&meta, 0, sizeof(meta));
4635 	meta.pkt_access = fn->pkt_access;
4636 
4637 	err = check_func_proto(fn, func_id);
4638 	if (err) {
4639 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
4640 			func_id_name(func_id), func_id);
4641 		return err;
4642 	}
4643 
4644 	meta.func_id = func_id;
4645 	/* check args */
4646 	for (i = 0; i < 5; i++) {
4647 		err = btf_resolve_helper_id(&env->log, fn, i);
4648 		if (err > 0)
4649 			meta.btf_id = err;
4650 		err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta);
4651 		if (err)
4652 			return err;
4653 	}
4654 
4655 	err = record_func_map(env, &meta, func_id, insn_idx);
4656 	if (err)
4657 		return err;
4658 
4659 	err = record_func_key(env, &meta, func_id, insn_idx);
4660 	if (err)
4661 		return err;
4662 
4663 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
4664 	 * is inferred from register state.
4665 	 */
4666 	for (i = 0; i < meta.access_size; i++) {
4667 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
4668 				       BPF_WRITE, -1, false);
4669 		if (err)
4670 			return err;
4671 	}
4672 
4673 	if (func_id == BPF_FUNC_tail_call) {
4674 		err = check_reference_leak(env);
4675 		if (err) {
4676 			verbose(env, "tail_call would lead to reference leak\n");
4677 			return err;
4678 		}
4679 	} else if (is_release_function(func_id)) {
4680 		err = release_reference(env, meta.ref_obj_id);
4681 		if (err) {
4682 			verbose(env, "func %s#%d reference has not been acquired before\n",
4683 				func_id_name(func_id), func_id);
4684 			return err;
4685 		}
4686 	}
4687 
4688 	regs = cur_regs(env);
4689 
4690 	/* check that flags argument in get_local_storage(map, flags) is 0,
4691 	 * this is required because get_local_storage() can't return an error.
4692 	 */
4693 	if (func_id == BPF_FUNC_get_local_storage &&
4694 	    !register_is_null(&regs[BPF_REG_2])) {
4695 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
4696 		return -EINVAL;
4697 	}
4698 
4699 	/* reset caller saved regs */
4700 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4701 		mark_reg_not_init(env, regs, caller_saved[i]);
4702 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4703 	}
4704 
4705 	/* helper call returns 64-bit value. */
4706 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
4707 
4708 	/* update return register (already marked as written above) */
4709 	if (fn->ret_type == RET_INTEGER) {
4710 		/* sets type to SCALAR_VALUE */
4711 		mark_reg_unknown(env, regs, BPF_REG_0);
4712 	} else if (fn->ret_type == RET_VOID) {
4713 		regs[BPF_REG_0].type = NOT_INIT;
4714 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
4715 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4716 		/* There is no offset yet applied, variable or fixed */
4717 		mark_reg_known_zero(env, regs, BPF_REG_0);
4718 		/* remember map_ptr, so that check_map_access()
4719 		 * can check 'value_size' boundary of memory access
4720 		 * to map element returned from bpf_map_lookup_elem()
4721 		 */
4722 		if (meta.map_ptr == NULL) {
4723 			verbose(env,
4724 				"kernel subsystem misconfigured verifier\n");
4725 			return -EINVAL;
4726 		}
4727 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
4728 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4729 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
4730 			if (map_value_has_spin_lock(meta.map_ptr))
4731 				regs[BPF_REG_0].id = ++env->id_gen;
4732 		} else {
4733 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4734 			regs[BPF_REG_0].id = ++env->id_gen;
4735 		}
4736 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
4737 		mark_reg_known_zero(env, regs, BPF_REG_0);
4738 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
4739 		regs[BPF_REG_0].id = ++env->id_gen;
4740 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
4741 		mark_reg_known_zero(env, regs, BPF_REG_0);
4742 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
4743 		regs[BPF_REG_0].id = ++env->id_gen;
4744 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
4745 		mark_reg_known_zero(env, regs, BPF_REG_0);
4746 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
4747 		regs[BPF_REG_0].id = ++env->id_gen;
4748 	} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
4749 		mark_reg_known_zero(env, regs, BPF_REG_0);
4750 		regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
4751 		regs[BPF_REG_0].id = ++env->id_gen;
4752 		regs[BPF_REG_0].mem_size = meta.mem_size;
4753 	} else {
4754 		verbose(env, "unknown return type %d of func %s#%d\n",
4755 			fn->ret_type, func_id_name(func_id), func_id);
4756 		return -EINVAL;
4757 	}
4758 
4759 	if (is_ptr_cast_function(func_id)) {
4760 		/* For release_reference() */
4761 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
4762 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
4763 		int id = acquire_reference_state(env, insn_idx);
4764 
4765 		if (id < 0)
4766 			return id;
4767 		/* For mark_ptr_or_null_reg() */
4768 		regs[BPF_REG_0].id = id;
4769 		/* For release_reference() */
4770 		regs[BPF_REG_0].ref_obj_id = id;
4771 	}
4772 
4773 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
4774 
4775 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
4776 	if (err)
4777 		return err;
4778 
4779 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
4780 		const char *err_str;
4781 
4782 #ifdef CONFIG_PERF_EVENTS
4783 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
4784 		err_str = "cannot get callchain buffer for func %s#%d\n";
4785 #else
4786 		err = -ENOTSUPP;
4787 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
4788 #endif
4789 		if (err) {
4790 			verbose(env, err_str, func_id_name(func_id), func_id);
4791 			return err;
4792 		}
4793 
4794 		env->prog->has_callchain_buf = true;
4795 	}
4796 
4797 	if (changes_data)
4798 		clear_all_pkt_pointers(env);
4799 	return 0;
4800 }
4801 
4802 static bool signed_add_overflows(s64 a, s64 b)
4803 {
4804 	/* Do the add in u64, where overflow is well-defined */
4805 	s64 res = (s64)((u64)a + (u64)b);
4806 
4807 	if (b < 0)
4808 		return res > a;
4809 	return res < a;
4810 }
4811 
4812 static bool signed_add32_overflows(s64 a, s64 b)
4813 {
4814 	/* Do the add in u32, where overflow is well-defined */
4815 	s32 res = (s32)((u32)a + (u32)b);
4816 
4817 	if (b < 0)
4818 		return res > a;
4819 	return res < a;
4820 }
4821 
4822 static bool signed_sub_overflows(s32 a, s32 b)
4823 {
4824 	/* Do the sub in u64, where overflow is well-defined */
4825 	s64 res = (s64)((u64)a - (u64)b);
4826 
4827 	if (b < 0)
4828 		return res < a;
4829 	return res > a;
4830 }
4831 
4832 static bool signed_sub32_overflows(s32 a, s32 b)
4833 {
4834 	/* Do the sub in u64, where overflow is well-defined */
4835 	s32 res = (s32)((u32)a - (u32)b);
4836 
4837 	if (b < 0)
4838 		return res < a;
4839 	return res > a;
4840 }
4841 
4842 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
4843 				  const struct bpf_reg_state *reg,
4844 				  enum bpf_reg_type type)
4845 {
4846 	bool known = tnum_is_const(reg->var_off);
4847 	s64 val = reg->var_off.value;
4848 	s64 smin = reg->smin_value;
4849 
4850 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
4851 		verbose(env, "math between %s pointer and %lld is not allowed\n",
4852 			reg_type_str[type], val);
4853 		return false;
4854 	}
4855 
4856 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
4857 		verbose(env, "%s pointer offset %d is not allowed\n",
4858 			reg_type_str[type], reg->off);
4859 		return false;
4860 	}
4861 
4862 	if (smin == S64_MIN) {
4863 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
4864 			reg_type_str[type]);
4865 		return false;
4866 	}
4867 
4868 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
4869 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
4870 			smin, reg_type_str[type]);
4871 		return false;
4872 	}
4873 
4874 	return true;
4875 }
4876 
4877 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
4878 {
4879 	return &env->insn_aux_data[env->insn_idx];
4880 }
4881 
4882 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
4883 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
4884 {
4885 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
4886 			    (opcode == BPF_SUB && !off_is_neg);
4887 	u32 off;
4888 
4889 	switch (ptr_reg->type) {
4890 	case PTR_TO_STACK:
4891 		/* Indirect variable offset stack access is prohibited in
4892 		 * unprivileged mode so it's not handled here.
4893 		 */
4894 		off = ptr_reg->off + ptr_reg->var_off.value;
4895 		if (mask_to_left)
4896 			*ptr_limit = MAX_BPF_STACK + off;
4897 		else
4898 			*ptr_limit = -off;
4899 		return 0;
4900 	case PTR_TO_MAP_VALUE:
4901 		if (mask_to_left) {
4902 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
4903 		} else {
4904 			off = ptr_reg->smin_value + ptr_reg->off;
4905 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
4906 		}
4907 		return 0;
4908 	default:
4909 		return -EINVAL;
4910 	}
4911 }
4912 
4913 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
4914 				    const struct bpf_insn *insn)
4915 {
4916 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
4917 }
4918 
4919 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
4920 				       u32 alu_state, u32 alu_limit)
4921 {
4922 	/* If we arrived here from different branches with different
4923 	 * state or limits to sanitize, then this won't work.
4924 	 */
4925 	if (aux->alu_state &&
4926 	    (aux->alu_state != alu_state ||
4927 	     aux->alu_limit != alu_limit))
4928 		return -EACCES;
4929 
4930 	/* Corresponding fixup done in fixup_bpf_calls(). */
4931 	aux->alu_state = alu_state;
4932 	aux->alu_limit = alu_limit;
4933 	return 0;
4934 }
4935 
4936 static int sanitize_val_alu(struct bpf_verifier_env *env,
4937 			    struct bpf_insn *insn)
4938 {
4939 	struct bpf_insn_aux_data *aux = cur_aux(env);
4940 
4941 	if (can_skip_alu_sanitation(env, insn))
4942 		return 0;
4943 
4944 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
4945 }
4946 
4947 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
4948 			    struct bpf_insn *insn,
4949 			    const struct bpf_reg_state *ptr_reg,
4950 			    struct bpf_reg_state *dst_reg,
4951 			    bool off_is_neg)
4952 {
4953 	struct bpf_verifier_state *vstate = env->cur_state;
4954 	struct bpf_insn_aux_data *aux = cur_aux(env);
4955 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
4956 	u8 opcode = BPF_OP(insn->code);
4957 	u32 alu_state, alu_limit;
4958 	struct bpf_reg_state tmp;
4959 	bool ret;
4960 
4961 	if (can_skip_alu_sanitation(env, insn))
4962 		return 0;
4963 
4964 	/* We already marked aux for masking from non-speculative
4965 	 * paths, thus we got here in the first place. We only care
4966 	 * to explore bad access from here.
4967 	 */
4968 	if (vstate->speculative)
4969 		goto do_sim;
4970 
4971 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
4972 	alu_state |= ptr_is_dst_reg ?
4973 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
4974 
4975 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
4976 		return 0;
4977 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
4978 		return -EACCES;
4979 do_sim:
4980 	/* Simulate and find potential out-of-bounds access under
4981 	 * speculative execution from truncation as a result of
4982 	 * masking when off was not within expected range. If off
4983 	 * sits in dst, then we temporarily need to move ptr there
4984 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
4985 	 * for cases where we use K-based arithmetic in one direction
4986 	 * and truncated reg-based in the other in order to explore
4987 	 * bad access.
4988 	 */
4989 	if (!ptr_is_dst_reg) {
4990 		tmp = *dst_reg;
4991 		*dst_reg = *ptr_reg;
4992 	}
4993 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
4994 	if (!ptr_is_dst_reg && ret)
4995 		*dst_reg = tmp;
4996 	return !ret ? -EFAULT : 0;
4997 }
4998 
4999 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
5000  * Caller should also handle BPF_MOV case separately.
5001  * If we return -EACCES, caller may want to try again treating pointer as a
5002  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
5003  */
5004 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
5005 				   struct bpf_insn *insn,
5006 				   const struct bpf_reg_state *ptr_reg,
5007 				   const struct bpf_reg_state *off_reg)
5008 {
5009 	struct bpf_verifier_state *vstate = env->cur_state;
5010 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5011 	struct bpf_reg_state *regs = state->regs, *dst_reg;
5012 	bool known = tnum_is_const(off_reg->var_off);
5013 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
5014 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
5015 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
5016 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
5017 	u32 dst = insn->dst_reg, src = insn->src_reg;
5018 	u8 opcode = BPF_OP(insn->code);
5019 	int ret;
5020 
5021 	dst_reg = &regs[dst];
5022 
5023 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
5024 	    smin_val > smax_val || umin_val > umax_val) {
5025 		/* Taint dst register if offset had invalid bounds derived from
5026 		 * e.g. dead branches.
5027 		 */
5028 		__mark_reg_unknown(env, dst_reg);
5029 		return 0;
5030 	}
5031 
5032 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
5033 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
5034 		verbose(env,
5035 			"R%d 32-bit pointer arithmetic prohibited\n",
5036 			dst);
5037 		return -EACCES;
5038 	}
5039 
5040 	switch (ptr_reg->type) {
5041 	case PTR_TO_MAP_VALUE_OR_NULL:
5042 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
5043 			dst, reg_type_str[ptr_reg->type]);
5044 		return -EACCES;
5045 	case CONST_PTR_TO_MAP:
5046 	case PTR_TO_PACKET_END:
5047 	case PTR_TO_SOCKET:
5048 	case PTR_TO_SOCKET_OR_NULL:
5049 	case PTR_TO_SOCK_COMMON:
5050 	case PTR_TO_SOCK_COMMON_OR_NULL:
5051 	case PTR_TO_TCP_SOCK:
5052 	case PTR_TO_TCP_SOCK_OR_NULL:
5053 	case PTR_TO_XDP_SOCK:
5054 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
5055 			dst, reg_type_str[ptr_reg->type]);
5056 		return -EACCES;
5057 	case PTR_TO_MAP_VALUE:
5058 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
5059 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
5060 				off_reg == dst_reg ? dst : src);
5061 			return -EACCES;
5062 		}
5063 		/* fall-through */
5064 	default:
5065 		break;
5066 	}
5067 
5068 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
5069 	 * The id may be overwritten later if we create a new variable offset.
5070 	 */
5071 	dst_reg->type = ptr_reg->type;
5072 	dst_reg->id = ptr_reg->id;
5073 
5074 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
5075 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
5076 		return -EINVAL;
5077 
5078 	/* pointer types do not carry 32-bit bounds at the moment. */
5079 	__mark_reg32_unbounded(dst_reg);
5080 
5081 	switch (opcode) {
5082 	case BPF_ADD:
5083 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5084 		if (ret < 0) {
5085 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
5086 			return ret;
5087 		}
5088 		/* We can take a fixed offset as long as it doesn't overflow
5089 		 * the s32 'off' field
5090 		 */
5091 		if (known && (ptr_reg->off + smin_val ==
5092 			      (s64)(s32)(ptr_reg->off + smin_val))) {
5093 			/* pointer += K.  Accumulate it into fixed offset */
5094 			dst_reg->smin_value = smin_ptr;
5095 			dst_reg->smax_value = smax_ptr;
5096 			dst_reg->umin_value = umin_ptr;
5097 			dst_reg->umax_value = umax_ptr;
5098 			dst_reg->var_off = ptr_reg->var_off;
5099 			dst_reg->off = ptr_reg->off + smin_val;
5100 			dst_reg->raw = ptr_reg->raw;
5101 			break;
5102 		}
5103 		/* A new variable offset is created.  Note that off_reg->off
5104 		 * == 0, since it's a scalar.
5105 		 * dst_reg gets the pointer type and since some positive
5106 		 * integer value was added to the pointer, give it a new 'id'
5107 		 * if it's a PTR_TO_PACKET.
5108 		 * this creates a new 'base' pointer, off_reg (variable) gets
5109 		 * added into the variable offset, and we copy the fixed offset
5110 		 * from ptr_reg.
5111 		 */
5112 		if (signed_add_overflows(smin_ptr, smin_val) ||
5113 		    signed_add_overflows(smax_ptr, smax_val)) {
5114 			dst_reg->smin_value = S64_MIN;
5115 			dst_reg->smax_value = S64_MAX;
5116 		} else {
5117 			dst_reg->smin_value = smin_ptr + smin_val;
5118 			dst_reg->smax_value = smax_ptr + smax_val;
5119 		}
5120 		if (umin_ptr + umin_val < umin_ptr ||
5121 		    umax_ptr + umax_val < umax_ptr) {
5122 			dst_reg->umin_value = 0;
5123 			dst_reg->umax_value = U64_MAX;
5124 		} else {
5125 			dst_reg->umin_value = umin_ptr + umin_val;
5126 			dst_reg->umax_value = umax_ptr + umax_val;
5127 		}
5128 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
5129 		dst_reg->off = ptr_reg->off;
5130 		dst_reg->raw = ptr_reg->raw;
5131 		if (reg_is_pkt_pointer(ptr_reg)) {
5132 			dst_reg->id = ++env->id_gen;
5133 			/* something was added to pkt_ptr, set range to zero */
5134 			dst_reg->raw = 0;
5135 		}
5136 		break;
5137 	case BPF_SUB:
5138 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5139 		if (ret < 0) {
5140 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
5141 			return ret;
5142 		}
5143 		if (dst_reg == off_reg) {
5144 			/* scalar -= pointer.  Creates an unknown scalar */
5145 			verbose(env, "R%d tried to subtract pointer from scalar\n",
5146 				dst);
5147 			return -EACCES;
5148 		}
5149 		/* We don't allow subtraction from FP, because (according to
5150 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
5151 		 * be able to deal with it.
5152 		 */
5153 		if (ptr_reg->type == PTR_TO_STACK) {
5154 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
5155 				dst);
5156 			return -EACCES;
5157 		}
5158 		if (known && (ptr_reg->off - smin_val ==
5159 			      (s64)(s32)(ptr_reg->off - smin_val))) {
5160 			/* pointer -= K.  Subtract it from fixed offset */
5161 			dst_reg->smin_value = smin_ptr;
5162 			dst_reg->smax_value = smax_ptr;
5163 			dst_reg->umin_value = umin_ptr;
5164 			dst_reg->umax_value = umax_ptr;
5165 			dst_reg->var_off = ptr_reg->var_off;
5166 			dst_reg->id = ptr_reg->id;
5167 			dst_reg->off = ptr_reg->off - smin_val;
5168 			dst_reg->raw = ptr_reg->raw;
5169 			break;
5170 		}
5171 		/* A new variable offset is created.  If the subtrahend is known
5172 		 * nonnegative, then any reg->range we had before is still good.
5173 		 */
5174 		if (signed_sub_overflows(smin_ptr, smax_val) ||
5175 		    signed_sub_overflows(smax_ptr, smin_val)) {
5176 			/* Overflow possible, we know nothing */
5177 			dst_reg->smin_value = S64_MIN;
5178 			dst_reg->smax_value = S64_MAX;
5179 		} else {
5180 			dst_reg->smin_value = smin_ptr - smax_val;
5181 			dst_reg->smax_value = smax_ptr - smin_val;
5182 		}
5183 		if (umin_ptr < umax_val) {
5184 			/* Overflow possible, we know nothing */
5185 			dst_reg->umin_value = 0;
5186 			dst_reg->umax_value = U64_MAX;
5187 		} else {
5188 			/* Cannot overflow (as long as bounds are consistent) */
5189 			dst_reg->umin_value = umin_ptr - umax_val;
5190 			dst_reg->umax_value = umax_ptr - umin_val;
5191 		}
5192 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
5193 		dst_reg->off = ptr_reg->off;
5194 		dst_reg->raw = ptr_reg->raw;
5195 		if (reg_is_pkt_pointer(ptr_reg)) {
5196 			dst_reg->id = ++env->id_gen;
5197 			/* something was added to pkt_ptr, set range to zero */
5198 			if (smin_val < 0)
5199 				dst_reg->raw = 0;
5200 		}
5201 		break;
5202 	case BPF_AND:
5203 	case BPF_OR:
5204 	case BPF_XOR:
5205 		/* bitwise ops on pointers are troublesome, prohibit. */
5206 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
5207 			dst, bpf_alu_string[opcode >> 4]);
5208 		return -EACCES;
5209 	default:
5210 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
5211 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
5212 			dst, bpf_alu_string[opcode >> 4]);
5213 		return -EACCES;
5214 	}
5215 
5216 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
5217 		return -EINVAL;
5218 
5219 	__update_reg_bounds(dst_reg);
5220 	__reg_deduce_bounds(dst_reg);
5221 	__reg_bound_offset(dst_reg);
5222 
5223 	/* For unprivileged we require that resulting offset must be in bounds
5224 	 * in order to be able to sanitize access later on.
5225 	 */
5226 	if (!env->bypass_spec_v1) {
5227 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
5228 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
5229 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
5230 				"prohibited for !root\n", dst);
5231 			return -EACCES;
5232 		} else if (dst_reg->type == PTR_TO_STACK &&
5233 			   check_stack_access(env, dst_reg, dst_reg->off +
5234 					      dst_reg->var_off.value, 1)) {
5235 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
5236 				"prohibited for !root\n", dst);
5237 			return -EACCES;
5238 		}
5239 	}
5240 
5241 	return 0;
5242 }
5243 
5244 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
5245 				 struct bpf_reg_state *src_reg)
5246 {
5247 	s32 smin_val = src_reg->s32_min_value;
5248 	s32 smax_val = src_reg->s32_max_value;
5249 	u32 umin_val = src_reg->u32_min_value;
5250 	u32 umax_val = src_reg->u32_max_value;
5251 
5252 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
5253 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
5254 		dst_reg->s32_min_value = S32_MIN;
5255 		dst_reg->s32_max_value = S32_MAX;
5256 	} else {
5257 		dst_reg->s32_min_value += smin_val;
5258 		dst_reg->s32_max_value += smax_val;
5259 	}
5260 	if (dst_reg->u32_min_value + umin_val < umin_val ||
5261 	    dst_reg->u32_max_value + umax_val < umax_val) {
5262 		dst_reg->u32_min_value = 0;
5263 		dst_reg->u32_max_value = U32_MAX;
5264 	} else {
5265 		dst_reg->u32_min_value += umin_val;
5266 		dst_reg->u32_max_value += umax_val;
5267 	}
5268 }
5269 
5270 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
5271 			       struct bpf_reg_state *src_reg)
5272 {
5273 	s64 smin_val = src_reg->smin_value;
5274 	s64 smax_val = src_reg->smax_value;
5275 	u64 umin_val = src_reg->umin_value;
5276 	u64 umax_val = src_reg->umax_value;
5277 
5278 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
5279 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
5280 		dst_reg->smin_value = S64_MIN;
5281 		dst_reg->smax_value = S64_MAX;
5282 	} else {
5283 		dst_reg->smin_value += smin_val;
5284 		dst_reg->smax_value += smax_val;
5285 	}
5286 	if (dst_reg->umin_value + umin_val < umin_val ||
5287 	    dst_reg->umax_value + umax_val < umax_val) {
5288 		dst_reg->umin_value = 0;
5289 		dst_reg->umax_value = U64_MAX;
5290 	} else {
5291 		dst_reg->umin_value += umin_val;
5292 		dst_reg->umax_value += umax_val;
5293 	}
5294 }
5295 
5296 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
5297 				 struct bpf_reg_state *src_reg)
5298 {
5299 	s32 smin_val = src_reg->s32_min_value;
5300 	s32 smax_val = src_reg->s32_max_value;
5301 	u32 umin_val = src_reg->u32_min_value;
5302 	u32 umax_val = src_reg->u32_max_value;
5303 
5304 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
5305 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
5306 		/* Overflow possible, we know nothing */
5307 		dst_reg->s32_min_value = S32_MIN;
5308 		dst_reg->s32_max_value = S32_MAX;
5309 	} else {
5310 		dst_reg->s32_min_value -= smax_val;
5311 		dst_reg->s32_max_value -= smin_val;
5312 	}
5313 	if (dst_reg->u32_min_value < umax_val) {
5314 		/* Overflow possible, we know nothing */
5315 		dst_reg->u32_min_value = 0;
5316 		dst_reg->u32_max_value = U32_MAX;
5317 	} else {
5318 		/* Cannot overflow (as long as bounds are consistent) */
5319 		dst_reg->u32_min_value -= umax_val;
5320 		dst_reg->u32_max_value -= umin_val;
5321 	}
5322 }
5323 
5324 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
5325 			       struct bpf_reg_state *src_reg)
5326 {
5327 	s64 smin_val = src_reg->smin_value;
5328 	s64 smax_val = src_reg->smax_value;
5329 	u64 umin_val = src_reg->umin_value;
5330 	u64 umax_val = src_reg->umax_value;
5331 
5332 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
5333 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
5334 		/* Overflow possible, we know nothing */
5335 		dst_reg->smin_value = S64_MIN;
5336 		dst_reg->smax_value = S64_MAX;
5337 	} else {
5338 		dst_reg->smin_value -= smax_val;
5339 		dst_reg->smax_value -= smin_val;
5340 	}
5341 	if (dst_reg->umin_value < umax_val) {
5342 		/* Overflow possible, we know nothing */
5343 		dst_reg->umin_value = 0;
5344 		dst_reg->umax_value = U64_MAX;
5345 	} else {
5346 		/* Cannot overflow (as long as bounds are consistent) */
5347 		dst_reg->umin_value -= umax_val;
5348 		dst_reg->umax_value -= umin_val;
5349 	}
5350 }
5351 
5352 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
5353 				 struct bpf_reg_state *src_reg)
5354 {
5355 	s32 smin_val = src_reg->s32_min_value;
5356 	u32 umin_val = src_reg->u32_min_value;
5357 	u32 umax_val = src_reg->u32_max_value;
5358 
5359 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
5360 		/* Ain't nobody got time to multiply that sign */
5361 		__mark_reg32_unbounded(dst_reg);
5362 		return;
5363 	}
5364 	/* Both values are positive, so we can work with unsigned and
5365 	 * copy the result to signed (unless it exceeds S32_MAX).
5366 	 */
5367 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
5368 		/* Potential overflow, we know nothing */
5369 		__mark_reg32_unbounded(dst_reg);
5370 		return;
5371 	}
5372 	dst_reg->u32_min_value *= umin_val;
5373 	dst_reg->u32_max_value *= umax_val;
5374 	if (dst_reg->u32_max_value > S32_MAX) {
5375 		/* Overflow possible, we know nothing */
5376 		dst_reg->s32_min_value = S32_MIN;
5377 		dst_reg->s32_max_value = S32_MAX;
5378 	} else {
5379 		dst_reg->s32_min_value = dst_reg->u32_min_value;
5380 		dst_reg->s32_max_value = dst_reg->u32_max_value;
5381 	}
5382 }
5383 
5384 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
5385 			       struct bpf_reg_state *src_reg)
5386 {
5387 	s64 smin_val = src_reg->smin_value;
5388 	u64 umin_val = src_reg->umin_value;
5389 	u64 umax_val = src_reg->umax_value;
5390 
5391 	if (smin_val < 0 || dst_reg->smin_value < 0) {
5392 		/* Ain't nobody got time to multiply that sign */
5393 		__mark_reg64_unbounded(dst_reg);
5394 		return;
5395 	}
5396 	/* Both values are positive, so we can work with unsigned and
5397 	 * copy the result to signed (unless it exceeds S64_MAX).
5398 	 */
5399 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
5400 		/* Potential overflow, we know nothing */
5401 		__mark_reg64_unbounded(dst_reg);
5402 		return;
5403 	}
5404 	dst_reg->umin_value *= umin_val;
5405 	dst_reg->umax_value *= umax_val;
5406 	if (dst_reg->umax_value > S64_MAX) {
5407 		/* Overflow possible, we know nothing */
5408 		dst_reg->smin_value = S64_MIN;
5409 		dst_reg->smax_value = S64_MAX;
5410 	} else {
5411 		dst_reg->smin_value = dst_reg->umin_value;
5412 		dst_reg->smax_value = dst_reg->umax_value;
5413 	}
5414 }
5415 
5416 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
5417 				 struct bpf_reg_state *src_reg)
5418 {
5419 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
5420 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5421 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5422 	s32 smin_val = src_reg->s32_min_value;
5423 	u32 umax_val = src_reg->u32_max_value;
5424 
5425 	/* Assuming scalar64_min_max_and will be called so its safe
5426 	 * to skip updating register for known 32-bit case.
5427 	 */
5428 	if (src_known && dst_known)
5429 		return;
5430 
5431 	/* We get our minimum from the var_off, since that's inherently
5432 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
5433 	 */
5434 	dst_reg->u32_min_value = var32_off.value;
5435 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
5436 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5437 		/* Lose signed bounds when ANDing negative numbers,
5438 		 * ain't nobody got time for that.
5439 		 */
5440 		dst_reg->s32_min_value = S32_MIN;
5441 		dst_reg->s32_max_value = S32_MAX;
5442 	} else {
5443 		/* ANDing two positives gives a positive, so safe to
5444 		 * cast result into s64.
5445 		 */
5446 		dst_reg->s32_min_value = dst_reg->u32_min_value;
5447 		dst_reg->s32_max_value = dst_reg->u32_max_value;
5448 	}
5449 
5450 }
5451 
5452 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
5453 			       struct bpf_reg_state *src_reg)
5454 {
5455 	bool src_known = tnum_is_const(src_reg->var_off);
5456 	bool dst_known = tnum_is_const(dst_reg->var_off);
5457 	s64 smin_val = src_reg->smin_value;
5458 	u64 umax_val = src_reg->umax_value;
5459 
5460 	if (src_known && dst_known) {
5461 		__mark_reg_known(dst_reg, dst_reg->var_off.value &
5462 					  src_reg->var_off.value);
5463 		return;
5464 	}
5465 
5466 	/* We get our minimum from the var_off, since that's inherently
5467 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
5468 	 */
5469 	dst_reg->umin_value = dst_reg->var_off.value;
5470 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
5471 	if (dst_reg->smin_value < 0 || smin_val < 0) {
5472 		/* Lose signed bounds when ANDing negative numbers,
5473 		 * ain't nobody got time for that.
5474 		 */
5475 		dst_reg->smin_value = S64_MIN;
5476 		dst_reg->smax_value = S64_MAX;
5477 	} else {
5478 		/* ANDing two positives gives a positive, so safe to
5479 		 * cast result into s64.
5480 		 */
5481 		dst_reg->smin_value = dst_reg->umin_value;
5482 		dst_reg->smax_value = dst_reg->umax_value;
5483 	}
5484 	/* We may learn something more from the var_off */
5485 	__update_reg_bounds(dst_reg);
5486 }
5487 
5488 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
5489 				struct bpf_reg_state *src_reg)
5490 {
5491 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
5492 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5493 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5494 	s32 smin_val = src_reg->smin_value;
5495 	u32 umin_val = src_reg->umin_value;
5496 
5497 	/* Assuming scalar64_min_max_or will be called so it is safe
5498 	 * to skip updating register for known case.
5499 	 */
5500 	if (src_known && dst_known)
5501 		return;
5502 
5503 	/* We get our maximum from the var_off, and our minimum is the
5504 	 * maximum of the operands' minima
5505 	 */
5506 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
5507 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
5508 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5509 		/* Lose signed bounds when ORing negative numbers,
5510 		 * ain't nobody got time for that.
5511 		 */
5512 		dst_reg->s32_min_value = S32_MIN;
5513 		dst_reg->s32_max_value = S32_MAX;
5514 	} else {
5515 		/* ORing two positives gives a positive, so safe to
5516 		 * cast result into s64.
5517 		 */
5518 		dst_reg->s32_min_value = dst_reg->umin_value;
5519 		dst_reg->s32_max_value = dst_reg->umax_value;
5520 	}
5521 }
5522 
5523 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
5524 			      struct bpf_reg_state *src_reg)
5525 {
5526 	bool src_known = tnum_is_const(src_reg->var_off);
5527 	bool dst_known = tnum_is_const(dst_reg->var_off);
5528 	s64 smin_val = src_reg->smin_value;
5529 	u64 umin_val = src_reg->umin_value;
5530 
5531 	if (src_known && dst_known) {
5532 		__mark_reg_known(dst_reg, dst_reg->var_off.value |
5533 					  src_reg->var_off.value);
5534 		return;
5535 	}
5536 
5537 	/* We get our maximum from the var_off, and our minimum is the
5538 	 * maximum of the operands' minima
5539 	 */
5540 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
5541 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
5542 	if (dst_reg->smin_value < 0 || smin_val < 0) {
5543 		/* Lose signed bounds when ORing negative numbers,
5544 		 * ain't nobody got time for that.
5545 		 */
5546 		dst_reg->smin_value = S64_MIN;
5547 		dst_reg->smax_value = S64_MAX;
5548 	} else {
5549 		/* ORing two positives gives a positive, so safe to
5550 		 * cast result into s64.
5551 		 */
5552 		dst_reg->smin_value = dst_reg->umin_value;
5553 		dst_reg->smax_value = dst_reg->umax_value;
5554 	}
5555 	/* We may learn something more from the var_off */
5556 	__update_reg_bounds(dst_reg);
5557 }
5558 
5559 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
5560 				   u64 umin_val, u64 umax_val)
5561 {
5562 	/* We lose all sign bit information (except what we can pick
5563 	 * up from var_off)
5564 	 */
5565 	dst_reg->s32_min_value = S32_MIN;
5566 	dst_reg->s32_max_value = S32_MAX;
5567 	/* If we might shift our top bit out, then we know nothing */
5568 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
5569 		dst_reg->u32_min_value = 0;
5570 		dst_reg->u32_max_value = U32_MAX;
5571 	} else {
5572 		dst_reg->u32_min_value <<= umin_val;
5573 		dst_reg->u32_max_value <<= umax_val;
5574 	}
5575 }
5576 
5577 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
5578 				 struct bpf_reg_state *src_reg)
5579 {
5580 	u32 umax_val = src_reg->u32_max_value;
5581 	u32 umin_val = src_reg->u32_min_value;
5582 	/* u32 alu operation will zext upper bits */
5583 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
5584 
5585 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
5586 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
5587 	/* Not required but being careful mark reg64 bounds as unknown so
5588 	 * that we are forced to pick them up from tnum and zext later and
5589 	 * if some path skips this step we are still safe.
5590 	 */
5591 	__mark_reg64_unbounded(dst_reg);
5592 	__update_reg32_bounds(dst_reg);
5593 }
5594 
5595 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
5596 				   u64 umin_val, u64 umax_val)
5597 {
5598 	/* Special case <<32 because it is a common compiler pattern to sign
5599 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
5600 	 * positive we know this shift will also be positive so we can track
5601 	 * bounds correctly. Otherwise we lose all sign bit information except
5602 	 * what we can pick up from var_off. Perhaps we can generalize this
5603 	 * later to shifts of any length.
5604 	 */
5605 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
5606 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
5607 	else
5608 		dst_reg->smax_value = S64_MAX;
5609 
5610 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
5611 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
5612 	else
5613 		dst_reg->smin_value = S64_MIN;
5614 
5615 	/* If we might shift our top bit out, then we know nothing */
5616 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
5617 		dst_reg->umin_value = 0;
5618 		dst_reg->umax_value = U64_MAX;
5619 	} else {
5620 		dst_reg->umin_value <<= umin_val;
5621 		dst_reg->umax_value <<= umax_val;
5622 	}
5623 }
5624 
5625 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
5626 			       struct bpf_reg_state *src_reg)
5627 {
5628 	u64 umax_val = src_reg->umax_value;
5629 	u64 umin_val = src_reg->umin_value;
5630 
5631 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
5632 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
5633 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
5634 
5635 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
5636 	/* We may learn something more from the var_off */
5637 	__update_reg_bounds(dst_reg);
5638 }
5639 
5640 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
5641 				 struct bpf_reg_state *src_reg)
5642 {
5643 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
5644 	u32 umax_val = src_reg->u32_max_value;
5645 	u32 umin_val = src_reg->u32_min_value;
5646 
5647 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
5648 	 * be negative, then either:
5649 	 * 1) src_reg might be zero, so the sign bit of the result is
5650 	 *    unknown, so we lose our signed bounds
5651 	 * 2) it's known negative, thus the unsigned bounds capture the
5652 	 *    signed bounds
5653 	 * 3) the signed bounds cross zero, so they tell us nothing
5654 	 *    about the result
5655 	 * If the value in dst_reg is known nonnegative, then again the
5656 	 * unsigned bounts capture the signed bounds.
5657 	 * Thus, in all cases it suffices to blow away our signed bounds
5658 	 * and rely on inferring new ones from the unsigned bounds and
5659 	 * var_off of the result.
5660 	 */
5661 	dst_reg->s32_min_value = S32_MIN;
5662 	dst_reg->s32_max_value = S32_MAX;
5663 
5664 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
5665 	dst_reg->u32_min_value >>= umax_val;
5666 	dst_reg->u32_max_value >>= umin_val;
5667 
5668 	__mark_reg64_unbounded(dst_reg);
5669 	__update_reg32_bounds(dst_reg);
5670 }
5671 
5672 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
5673 			       struct bpf_reg_state *src_reg)
5674 {
5675 	u64 umax_val = src_reg->umax_value;
5676 	u64 umin_val = src_reg->umin_value;
5677 
5678 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
5679 	 * be negative, then either:
5680 	 * 1) src_reg might be zero, so the sign bit of the result is
5681 	 *    unknown, so we lose our signed bounds
5682 	 * 2) it's known negative, thus the unsigned bounds capture the
5683 	 *    signed bounds
5684 	 * 3) the signed bounds cross zero, so they tell us nothing
5685 	 *    about the result
5686 	 * If the value in dst_reg is known nonnegative, then again the
5687 	 * unsigned bounts capture the signed bounds.
5688 	 * Thus, in all cases it suffices to blow away our signed bounds
5689 	 * and rely on inferring new ones from the unsigned bounds and
5690 	 * var_off of the result.
5691 	 */
5692 	dst_reg->smin_value = S64_MIN;
5693 	dst_reg->smax_value = S64_MAX;
5694 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
5695 	dst_reg->umin_value >>= umax_val;
5696 	dst_reg->umax_value >>= umin_val;
5697 
5698 	/* Its not easy to operate on alu32 bounds here because it depends
5699 	 * on bits being shifted in. Take easy way out and mark unbounded
5700 	 * so we can recalculate later from tnum.
5701 	 */
5702 	__mark_reg32_unbounded(dst_reg);
5703 	__update_reg_bounds(dst_reg);
5704 }
5705 
5706 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
5707 				  struct bpf_reg_state *src_reg)
5708 {
5709 	u64 umin_val = src_reg->u32_min_value;
5710 
5711 	/* Upon reaching here, src_known is true and
5712 	 * umax_val is equal to umin_val.
5713 	 */
5714 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
5715 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
5716 
5717 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
5718 
5719 	/* blow away the dst_reg umin_value/umax_value and rely on
5720 	 * dst_reg var_off to refine the result.
5721 	 */
5722 	dst_reg->u32_min_value = 0;
5723 	dst_reg->u32_max_value = U32_MAX;
5724 
5725 	__mark_reg64_unbounded(dst_reg);
5726 	__update_reg32_bounds(dst_reg);
5727 }
5728 
5729 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
5730 				struct bpf_reg_state *src_reg)
5731 {
5732 	u64 umin_val = src_reg->umin_value;
5733 
5734 	/* Upon reaching here, src_known is true and umax_val is equal
5735 	 * to umin_val.
5736 	 */
5737 	dst_reg->smin_value >>= umin_val;
5738 	dst_reg->smax_value >>= umin_val;
5739 
5740 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
5741 
5742 	/* blow away the dst_reg umin_value/umax_value and rely on
5743 	 * dst_reg var_off to refine the result.
5744 	 */
5745 	dst_reg->umin_value = 0;
5746 	dst_reg->umax_value = U64_MAX;
5747 
5748 	/* Its not easy to operate on alu32 bounds here because it depends
5749 	 * on bits being shifted in from upper 32-bits. Take easy way out
5750 	 * and mark unbounded so we can recalculate later from tnum.
5751 	 */
5752 	__mark_reg32_unbounded(dst_reg);
5753 	__update_reg_bounds(dst_reg);
5754 }
5755 
5756 /* WARNING: This function does calculations on 64-bit values, but the actual
5757  * execution may occur on 32-bit values. Therefore, things like bitshifts
5758  * need extra checks in the 32-bit case.
5759  */
5760 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
5761 				      struct bpf_insn *insn,
5762 				      struct bpf_reg_state *dst_reg,
5763 				      struct bpf_reg_state src_reg)
5764 {
5765 	struct bpf_reg_state *regs = cur_regs(env);
5766 	u8 opcode = BPF_OP(insn->code);
5767 	bool src_known;
5768 	s64 smin_val, smax_val;
5769 	u64 umin_val, umax_val;
5770 	s32 s32_min_val, s32_max_val;
5771 	u32 u32_min_val, u32_max_val;
5772 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
5773 	u32 dst = insn->dst_reg;
5774 	int ret;
5775 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
5776 
5777 	smin_val = src_reg.smin_value;
5778 	smax_val = src_reg.smax_value;
5779 	umin_val = src_reg.umin_value;
5780 	umax_val = src_reg.umax_value;
5781 
5782 	s32_min_val = src_reg.s32_min_value;
5783 	s32_max_val = src_reg.s32_max_value;
5784 	u32_min_val = src_reg.u32_min_value;
5785 	u32_max_val = src_reg.u32_max_value;
5786 
5787 	if (alu32) {
5788 		src_known = tnum_subreg_is_const(src_reg.var_off);
5789 		if ((src_known &&
5790 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
5791 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
5792 			/* Taint dst register if offset had invalid bounds
5793 			 * derived from e.g. dead branches.
5794 			 */
5795 			__mark_reg_unknown(env, dst_reg);
5796 			return 0;
5797 		}
5798 	} else {
5799 		src_known = tnum_is_const(src_reg.var_off);
5800 		if ((src_known &&
5801 		     (smin_val != smax_val || umin_val != umax_val)) ||
5802 		    smin_val > smax_val || umin_val > umax_val) {
5803 			/* Taint dst register if offset had invalid bounds
5804 			 * derived from e.g. dead branches.
5805 			 */
5806 			__mark_reg_unknown(env, dst_reg);
5807 			return 0;
5808 		}
5809 	}
5810 
5811 	if (!src_known &&
5812 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
5813 		__mark_reg_unknown(env, dst_reg);
5814 		return 0;
5815 	}
5816 
5817 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
5818 	 * There are two classes of instructions: The first class we track both
5819 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
5820 	 * greatest amount of precision when alu operations are mixed with jmp32
5821 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
5822 	 * and BPF_OR. This is possible because these ops have fairly easy to
5823 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
5824 	 * See alu32 verifier tests for examples. The second class of
5825 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
5826 	 * with regards to tracking sign/unsigned bounds because the bits may
5827 	 * cross subreg boundaries in the alu64 case. When this happens we mark
5828 	 * the reg unbounded in the subreg bound space and use the resulting
5829 	 * tnum to calculate an approximation of the sign/unsigned bounds.
5830 	 */
5831 	switch (opcode) {
5832 	case BPF_ADD:
5833 		ret = sanitize_val_alu(env, insn);
5834 		if (ret < 0) {
5835 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
5836 			return ret;
5837 		}
5838 		scalar32_min_max_add(dst_reg, &src_reg);
5839 		scalar_min_max_add(dst_reg, &src_reg);
5840 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
5841 		break;
5842 	case BPF_SUB:
5843 		ret = sanitize_val_alu(env, insn);
5844 		if (ret < 0) {
5845 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
5846 			return ret;
5847 		}
5848 		scalar32_min_max_sub(dst_reg, &src_reg);
5849 		scalar_min_max_sub(dst_reg, &src_reg);
5850 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
5851 		break;
5852 	case BPF_MUL:
5853 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
5854 		scalar32_min_max_mul(dst_reg, &src_reg);
5855 		scalar_min_max_mul(dst_reg, &src_reg);
5856 		break;
5857 	case BPF_AND:
5858 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
5859 		scalar32_min_max_and(dst_reg, &src_reg);
5860 		scalar_min_max_and(dst_reg, &src_reg);
5861 		break;
5862 	case BPF_OR:
5863 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
5864 		scalar32_min_max_or(dst_reg, &src_reg);
5865 		scalar_min_max_or(dst_reg, &src_reg);
5866 		break;
5867 	case BPF_LSH:
5868 		if (umax_val >= insn_bitness) {
5869 			/* Shifts greater than 31 or 63 are undefined.
5870 			 * This includes shifts by a negative number.
5871 			 */
5872 			mark_reg_unknown(env, regs, insn->dst_reg);
5873 			break;
5874 		}
5875 		if (alu32)
5876 			scalar32_min_max_lsh(dst_reg, &src_reg);
5877 		else
5878 			scalar_min_max_lsh(dst_reg, &src_reg);
5879 		break;
5880 	case BPF_RSH:
5881 		if (umax_val >= insn_bitness) {
5882 			/* Shifts greater than 31 or 63 are undefined.
5883 			 * This includes shifts by a negative number.
5884 			 */
5885 			mark_reg_unknown(env, regs, insn->dst_reg);
5886 			break;
5887 		}
5888 		if (alu32)
5889 			scalar32_min_max_rsh(dst_reg, &src_reg);
5890 		else
5891 			scalar_min_max_rsh(dst_reg, &src_reg);
5892 		break;
5893 	case BPF_ARSH:
5894 		if (umax_val >= insn_bitness) {
5895 			/* Shifts greater than 31 or 63 are undefined.
5896 			 * This includes shifts by a negative number.
5897 			 */
5898 			mark_reg_unknown(env, regs, insn->dst_reg);
5899 			break;
5900 		}
5901 		if (alu32)
5902 			scalar32_min_max_arsh(dst_reg, &src_reg);
5903 		else
5904 			scalar_min_max_arsh(dst_reg, &src_reg);
5905 		break;
5906 	default:
5907 		mark_reg_unknown(env, regs, insn->dst_reg);
5908 		break;
5909 	}
5910 
5911 	/* ALU32 ops are zero extended into 64bit register */
5912 	if (alu32)
5913 		zext_32_to_64(dst_reg);
5914 
5915 	__update_reg_bounds(dst_reg);
5916 	__reg_deduce_bounds(dst_reg);
5917 	__reg_bound_offset(dst_reg);
5918 	return 0;
5919 }
5920 
5921 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
5922  * and var_off.
5923  */
5924 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
5925 				   struct bpf_insn *insn)
5926 {
5927 	struct bpf_verifier_state *vstate = env->cur_state;
5928 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5929 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
5930 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
5931 	u8 opcode = BPF_OP(insn->code);
5932 	int err;
5933 
5934 	dst_reg = &regs[insn->dst_reg];
5935 	src_reg = NULL;
5936 	if (dst_reg->type != SCALAR_VALUE)
5937 		ptr_reg = dst_reg;
5938 	if (BPF_SRC(insn->code) == BPF_X) {
5939 		src_reg = &regs[insn->src_reg];
5940 		if (src_reg->type != SCALAR_VALUE) {
5941 			if (dst_reg->type != SCALAR_VALUE) {
5942 				/* Combining two pointers by any ALU op yields
5943 				 * an arbitrary scalar. Disallow all math except
5944 				 * pointer subtraction
5945 				 */
5946 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5947 					mark_reg_unknown(env, regs, insn->dst_reg);
5948 					return 0;
5949 				}
5950 				verbose(env, "R%d pointer %s pointer prohibited\n",
5951 					insn->dst_reg,
5952 					bpf_alu_string[opcode >> 4]);
5953 				return -EACCES;
5954 			} else {
5955 				/* scalar += pointer
5956 				 * This is legal, but we have to reverse our
5957 				 * src/dest handling in computing the range
5958 				 */
5959 				err = mark_chain_precision(env, insn->dst_reg);
5960 				if (err)
5961 					return err;
5962 				return adjust_ptr_min_max_vals(env, insn,
5963 							       src_reg, dst_reg);
5964 			}
5965 		} else if (ptr_reg) {
5966 			/* pointer += scalar */
5967 			err = mark_chain_precision(env, insn->src_reg);
5968 			if (err)
5969 				return err;
5970 			return adjust_ptr_min_max_vals(env, insn,
5971 						       dst_reg, src_reg);
5972 		}
5973 	} else {
5974 		/* Pretend the src is a reg with a known value, since we only
5975 		 * need to be able to read from this state.
5976 		 */
5977 		off_reg.type = SCALAR_VALUE;
5978 		__mark_reg_known(&off_reg, insn->imm);
5979 		src_reg = &off_reg;
5980 		if (ptr_reg) /* pointer += K */
5981 			return adjust_ptr_min_max_vals(env, insn,
5982 						       ptr_reg, src_reg);
5983 	}
5984 
5985 	/* Got here implies adding two SCALAR_VALUEs */
5986 	if (WARN_ON_ONCE(ptr_reg)) {
5987 		print_verifier_state(env, state);
5988 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
5989 		return -EINVAL;
5990 	}
5991 	if (WARN_ON(!src_reg)) {
5992 		print_verifier_state(env, state);
5993 		verbose(env, "verifier internal error: no src_reg\n");
5994 		return -EINVAL;
5995 	}
5996 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
5997 }
5998 
5999 /* check validity of 32-bit and 64-bit arithmetic operations */
6000 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
6001 {
6002 	struct bpf_reg_state *regs = cur_regs(env);
6003 	u8 opcode = BPF_OP(insn->code);
6004 	int err;
6005 
6006 	if (opcode == BPF_END || opcode == BPF_NEG) {
6007 		if (opcode == BPF_NEG) {
6008 			if (BPF_SRC(insn->code) != 0 ||
6009 			    insn->src_reg != BPF_REG_0 ||
6010 			    insn->off != 0 || insn->imm != 0) {
6011 				verbose(env, "BPF_NEG uses reserved fields\n");
6012 				return -EINVAL;
6013 			}
6014 		} else {
6015 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
6016 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
6017 			    BPF_CLASS(insn->code) == BPF_ALU64) {
6018 				verbose(env, "BPF_END uses reserved fields\n");
6019 				return -EINVAL;
6020 			}
6021 		}
6022 
6023 		/* check src operand */
6024 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6025 		if (err)
6026 			return err;
6027 
6028 		if (is_pointer_value(env, insn->dst_reg)) {
6029 			verbose(env, "R%d pointer arithmetic prohibited\n",
6030 				insn->dst_reg);
6031 			return -EACCES;
6032 		}
6033 
6034 		/* check dest operand */
6035 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
6036 		if (err)
6037 			return err;
6038 
6039 	} else if (opcode == BPF_MOV) {
6040 
6041 		if (BPF_SRC(insn->code) == BPF_X) {
6042 			if (insn->imm != 0 || insn->off != 0) {
6043 				verbose(env, "BPF_MOV uses reserved fields\n");
6044 				return -EINVAL;
6045 			}
6046 
6047 			/* check src operand */
6048 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6049 			if (err)
6050 				return err;
6051 		} else {
6052 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
6053 				verbose(env, "BPF_MOV uses reserved fields\n");
6054 				return -EINVAL;
6055 			}
6056 		}
6057 
6058 		/* check dest operand, mark as required later */
6059 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6060 		if (err)
6061 			return err;
6062 
6063 		if (BPF_SRC(insn->code) == BPF_X) {
6064 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
6065 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
6066 
6067 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
6068 				/* case: R1 = R2
6069 				 * copy register state to dest reg
6070 				 */
6071 				*dst_reg = *src_reg;
6072 				dst_reg->live |= REG_LIVE_WRITTEN;
6073 				dst_reg->subreg_def = DEF_NOT_SUBREG;
6074 			} else {
6075 				/* R1 = (u32) R2 */
6076 				if (is_pointer_value(env, insn->src_reg)) {
6077 					verbose(env,
6078 						"R%d partial copy of pointer\n",
6079 						insn->src_reg);
6080 					return -EACCES;
6081 				} else if (src_reg->type == SCALAR_VALUE) {
6082 					*dst_reg = *src_reg;
6083 					dst_reg->live |= REG_LIVE_WRITTEN;
6084 					dst_reg->subreg_def = env->insn_idx + 1;
6085 				} else {
6086 					mark_reg_unknown(env, regs,
6087 							 insn->dst_reg);
6088 				}
6089 				zext_32_to_64(dst_reg);
6090 			}
6091 		} else {
6092 			/* case: R = imm
6093 			 * remember the value we stored into this reg
6094 			 */
6095 			/* clear any state __mark_reg_known doesn't set */
6096 			mark_reg_unknown(env, regs, insn->dst_reg);
6097 			regs[insn->dst_reg].type = SCALAR_VALUE;
6098 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
6099 				__mark_reg_known(regs + insn->dst_reg,
6100 						 insn->imm);
6101 			} else {
6102 				__mark_reg_known(regs + insn->dst_reg,
6103 						 (u32)insn->imm);
6104 			}
6105 		}
6106 
6107 	} else if (opcode > BPF_END) {
6108 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
6109 		return -EINVAL;
6110 
6111 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
6112 
6113 		if (BPF_SRC(insn->code) == BPF_X) {
6114 			if (insn->imm != 0 || insn->off != 0) {
6115 				verbose(env, "BPF_ALU uses reserved fields\n");
6116 				return -EINVAL;
6117 			}
6118 			/* check src1 operand */
6119 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6120 			if (err)
6121 				return err;
6122 		} else {
6123 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
6124 				verbose(env, "BPF_ALU uses reserved fields\n");
6125 				return -EINVAL;
6126 			}
6127 		}
6128 
6129 		/* check src2 operand */
6130 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6131 		if (err)
6132 			return err;
6133 
6134 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
6135 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
6136 			verbose(env, "div by zero\n");
6137 			return -EINVAL;
6138 		}
6139 
6140 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
6141 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
6142 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
6143 
6144 			if (insn->imm < 0 || insn->imm >= size) {
6145 				verbose(env, "invalid shift %d\n", insn->imm);
6146 				return -EINVAL;
6147 			}
6148 		}
6149 
6150 		/* check dest operand */
6151 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6152 		if (err)
6153 			return err;
6154 
6155 		return adjust_reg_min_max_vals(env, insn);
6156 	}
6157 
6158 	return 0;
6159 }
6160 
6161 static void __find_good_pkt_pointers(struct bpf_func_state *state,
6162 				     struct bpf_reg_state *dst_reg,
6163 				     enum bpf_reg_type type, u16 new_range)
6164 {
6165 	struct bpf_reg_state *reg;
6166 	int i;
6167 
6168 	for (i = 0; i < MAX_BPF_REG; i++) {
6169 		reg = &state->regs[i];
6170 		if (reg->type == type && reg->id == dst_reg->id)
6171 			/* keep the maximum range already checked */
6172 			reg->range = max(reg->range, new_range);
6173 	}
6174 
6175 	bpf_for_each_spilled_reg(i, state, reg) {
6176 		if (!reg)
6177 			continue;
6178 		if (reg->type == type && reg->id == dst_reg->id)
6179 			reg->range = max(reg->range, new_range);
6180 	}
6181 }
6182 
6183 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
6184 				   struct bpf_reg_state *dst_reg,
6185 				   enum bpf_reg_type type,
6186 				   bool range_right_open)
6187 {
6188 	u16 new_range;
6189 	int i;
6190 
6191 	if (dst_reg->off < 0 ||
6192 	    (dst_reg->off == 0 && range_right_open))
6193 		/* This doesn't give us any range */
6194 		return;
6195 
6196 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
6197 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
6198 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
6199 		 * than pkt_end, but that's because it's also less than pkt.
6200 		 */
6201 		return;
6202 
6203 	new_range = dst_reg->off;
6204 	if (range_right_open)
6205 		new_range--;
6206 
6207 	/* Examples for register markings:
6208 	 *
6209 	 * pkt_data in dst register:
6210 	 *
6211 	 *   r2 = r3;
6212 	 *   r2 += 8;
6213 	 *   if (r2 > pkt_end) goto <handle exception>
6214 	 *   <access okay>
6215 	 *
6216 	 *   r2 = r3;
6217 	 *   r2 += 8;
6218 	 *   if (r2 < pkt_end) goto <access okay>
6219 	 *   <handle exception>
6220 	 *
6221 	 *   Where:
6222 	 *     r2 == dst_reg, pkt_end == src_reg
6223 	 *     r2=pkt(id=n,off=8,r=0)
6224 	 *     r3=pkt(id=n,off=0,r=0)
6225 	 *
6226 	 * pkt_data in src register:
6227 	 *
6228 	 *   r2 = r3;
6229 	 *   r2 += 8;
6230 	 *   if (pkt_end >= r2) goto <access okay>
6231 	 *   <handle exception>
6232 	 *
6233 	 *   r2 = r3;
6234 	 *   r2 += 8;
6235 	 *   if (pkt_end <= r2) goto <handle exception>
6236 	 *   <access okay>
6237 	 *
6238 	 *   Where:
6239 	 *     pkt_end == dst_reg, r2 == src_reg
6240 	 *     r2=pkt(id=n,off=8,r=0)
6241 	 *     r3=pkt(id=n,off=0,r=0)
6242 	 *
6243 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
6244 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
6245 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
6246 	 * the check.
6247 	 */
6248 
6249 	/* If our ids match, then we must have the same max_value.  And we
6250 	 * don't care about the other reg's fixed offset, since if it's too big
6251 	 * the range won't allow anything.
6252 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
6253 	 */
6254 	for (i = 0; i <= vstate->curframe; i++)
6255 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
6256 					 new_range);
6257 }
6258 
6259 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
6260 {
6261 	struct tnum subreg = tnum_subreg(reg->var_off);
6262 	s32 sval = (s32)val;
6263 
6264 	switch (opcode) {
6265 	case BPF_JEQ:
6266 		if (tnum_is_const(subreg))
6267 			return !!tnum_equals_const(subreg, val);
6268 		break;
6269 	case BPF_JNE:
6270 		if (tnum_is_const(subreg))
6271 			return !tnum_equals_const(subreg, val);
6272 		break;
6273 	case BPF_JSET:
6274 		if ((~subreg.mask & subreg.value) & val)
6275 			return 1;
6276 		if (!((subreg.mask | subreg.value) & val))
6277 			return 0;
6278 		break;
6279 	case BPF_JGT:
6280 		if (reg->u32_min_value > val)
6281 			return 1;
6282 		else if (reg->u32_max_value <= val)
6283 			return 0;
6284 		break;
6285 	case BPF_JSGT:
6286 		if (reg->s32_min_value > sval)
6287 			return 1;
6288 		else if (reg->s32_max_value < sval)
6289 			return 0;
6290 		break;
6291 	case BPF_JLT:
6292 		if (reg->u32_max_value < val)
6293 			return 1;
6294 		else if (reg->u32_min_value >= val)
6295 			return 0;
6296 		break;
6297 	case BPF_JSLT:
6298 		if (reg->s32_max_value < sval)
6299 			return 1;
6300 		else if (reg->s32_min_value >= sval)
6301 			return 0;
6302 		break;
6303 	case BPF_JGE:
6304 		if (reg->u32_min_value >= val)
6305 			return 1;
6306 		else if (reg->u32_max_value < val)
6307 			return 0;
6308 		break;
6309 	case BPF_JSGE:
6310 		if (reg->s32_min_value >= sval)
6311 			return 1;
6312 		else if (reg->s32_max_value < sval)
6313 			return 0;
6314 		break;
6315 	case BPF_JLE:
6316 		if (reg->u32_max_value <= val)
6317 			return 1;
6318 		else if (reg->u32_min_value > val)
6319 			return 0;
6320 		break;
6321 	case BPF_JSLE:
6322 		if (reg->s32_max_value <= sval)
6323 			return 1;
6324 		else if (reg->s32_min_value > sval)
6325 			return 0;
6326 		break;
6327 	}
6328 
6329 	return -1;
6330 }
6331 
6332 
6333 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
6334 {
6335 	s64 sval = (s64)val;
6336 
6337 	switch (opcode) {
6338 	case BPF_JEQ:
6339 		if (tnum_is_const(reg->var_off))
6340 			return !!tnum_equals_const(reg->var_off, val);
6341 		break;
6342 	case BPF_JNE:
6343 		if (tnum_is_const(reg->var_off))
6344 			return !tnum_equals_const(reg->var_off, val);
6345 		break;
6346 	case BPF_JSET:
6347 		if ((~reg->var_off.mask & reg->var_off.value) & val)
6348 			return 1;
6349 		if (!((reg->var_off.mask | reg->var_off.value) & val))
6350 			return 0;
6351 		break;
6352 	case BPF_JGT:
6353 		if (reg->umin_value > val)
6354 			return 1;
6355 		else if (reg->umax_value <= val)
6356 			return 0;
6357 		break;
6358 	case BPF_JSGT:
6359 		if (reg->smin_value > sval)
6360 			return 1;
6361 		else if (reg->smax_value < sval)
6362 			return 0;
6363 		break;
6364 	case BPF_JLT:
6365 		if (reg->umax_value < val)
6366 			return 1;
6367 		else if (reg->umin_value >= val)
6368 			return 0;
6369 		break;
6370 	case BPF_JSLT:
6371 		if (reg->smax_value < sval)
6372 			return 1;
6373 		else if (reg->smin_value >= sval)
6374 			return 0;
6375 		break;
6376 	case BPF_JGE:
6377 		if (reg->umin_value >= val)
6378 			return 1;
6379 		else if (reg->umax_value < val)
6380 			return 0;
6381 		break;
6382 	case BPF_JSGE:
6383 		if (reg->smin_value >= sval)
6384 			return 1;
6385 		else if (reg->smax_value < sval)
6386 			return 0;
6387 		break;
6388 	case BPF_JLE:
6389 		if (reg->umax_value <= val)
6390 			return 1;
6391 		else if (reg->umin_value > val)
6392 			return 0;
6393 		break;
6394 	case BPF_JSLE:
6395 		if (reg->smax_value <= sval)
6396 			return 1;
6397 		else if (reg->smin_value > sval)
6398 			return 0;
6399 		break;
6400 	}
6401 
6402 	return -1;
6403 }
6404 
6405 /* compute branch direction of the expression "if (reg opcode val) goto target;"
6406  * and return:
6407  *  1 - branch will be taken and "goto target" will be executed
6408  *  0 - branch will not be taken and fall-through to next insn
6409  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
6410  *      range [0,10]
6411  */
6412 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
6413 			   bool is_jmp32)
6414 {
6415 	if (__is_pointer_value(false, reg)) {
6416 		if (!reg_type_not_null(reg->type))
6417 			return -1;
6418 
6419 		/* If pointer is valid tests against zero will fail so we can
6420 		 * use this to direct branch taken.
6421 		 */
6422 		if (val != 0)
6423 			return -1;
6424 
6425 		switch (opcode) {
6426 		case BPF_JEQ:
6427 			return 0;
6428 		case BPF_JNE:
6429 			return 1;
6430 		default:
6431 			return -1;
6432 		}
6433 	}
6434 
6435 	if (is_jmp32)
6436 		return is_branch32_taken(reg, val, opcode);
6437 	return is_branch64_taken(reg, val, opcode);
6438 }
6439 
6440 /* Adjusts the register min/max values in the case that the dst_reg is the
6441  * variable register that we are working on, and src_reg is a constant or we're
6442  * simply doing a BPF_K check.
6443  * In JEQ/JNE cases we also adjust the var_off values.
6444  */
6445 static void reg_set_min_max(struct bpf_reg_state *true_reg,
6446 			    struct bpf_reg_state *false_reg,
6447 			    u64 val, u32 val32,
6448 			    u8 opcode, bool is_jmp32)
6449 {
6450 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
6451 	struct tnum false_64off = false_reg->var_off;
6452 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
6453 	struct tnum true_64off = true_reg->var_off;
6454 	s64 sval = (s64)val;
6455 	s32 sval32 = (s32)val32;
6456 
6457 	/* If the dst_reg is a pointer, we can't learn anything about its
6458 	 * variable offset from the compare (unless src_reg were a pointer into
6459 	 * the same object, but we don't bother with that.
6460 	 * Since false_reg and true_reg have the same type by construction, we
6461 	 * only need to check one of them for pointerness.
6462 	 */
6463 	if (__is_pointer_value(false, false_reg))
6464 		return;
6465 
6466 	switch (opcode) {
6467 	case BPF_JEQ:
6468 	case BPF_JNE:
6469 	{
6470 		struct bpf_reg_state *reg =
6471 			opcode == BPF_JEQ ? true_reg : false_reg;
6472 
6473 		/* For BPF_JEQ, if this is false we know nothing Jon Snow, but
6474 		 * if it is true we know the value for sure. Likewise for
6475 		 * BPF_JNE.
6476 		 */
6477 		if (is_jmp32)
6478 			__mark_reg32_known(reg, val32);
6479 		else
6480 			__mark_reg_known(reg, val);
6481 		break;
6482 	}
6483 	case BPF_JSET:
6484 		if (is_jmp32) {
6485 			false_32off = tnum_and(false_32off, tnum_const(~val32));
6486 			if (is_power_of_2(val32))
6487 				true_32off = tnum_or(true_32off,
6488 						     tnum_const(val32));
6489 		} else {
6490 			false_64off = tnum_and(false_64off, tnum_const(~val));
6491 			if (is_power_of_2(val))
6492 				true_64off = tnum_or(true_64off,
6493 						     tnum_const(val));
6494 		}
6495 		break;
6496 	case BPF_JGE:
6497 	case BPF_JGT:
6498 	{
6499 		if (is_jmp32) {
6500 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
6501 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
6502 
6503 			false_reg->u32_max_value = min(false_reg->u32_max_value,
6504 						       false_umax);
6505 			true_reg->u32_min_value = max(true_reg->u32_min_value,
6506 						      true_umin);
6507 		} else {
6508 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
6509 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
6510 
6511 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
6512 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
6513 		}
6514 		break;
6515 	}
6516 	case BPF_JSGE:
6517 	case BPF_JSGT:
6518 	{
6519 		if (is_jmp32) {
6520 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
6521 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
6522 
6523 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
6524 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
6525 		} else {
6526 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
6527 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
6528 
6529 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
6530 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
6531 		}
6532 		break;
6533 	}
6534 	case BPF_JLE:
6535 	case BPF_JLT:
6536 	{
6537 		if (is_jmp32) {
6538 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
6539 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
6540 
6541 			false_reg->u32_min_value = max(false_reg->u32_min_value,
6542 						       false_umin);
6543 			true_reg->u32_max_value = min(true_reg->u32_max_value,
6544 						      true_umax);
6545 		} else {
6546 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
6547 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
6548 
6549 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
6550 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
6551 		}
6552 		break;
6553 	}
6554 	case BPF_JSLE:
6555 	case BPF_JSLT:
6556 	{
6557 		if (is_jmp32) {
6558 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
6559 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
6560 
6561 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
6562 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
6563 		} else {
6564 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
6565 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
6566 
6567 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
6568 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
6569 		}
6570 		break;
6571 	}
6572 	default:
6573 		return;
6574 	}
6575 
6576 	if (is_jmp32) {
6577 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
6578 					     tnum_subreg(false_32off));
6579 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
6580 					    tnum_subreg(true_32off));
6581 		__reg_combine_32_into_64(false_reg);
6582 		__reg_combine_32_into_64(true_reg);
6583 	} else {
6584 		false_reg->var_off = false_64off;
6585 		true_reg->var_off = true_64off;
6586 		__reg_combine_64_into_32(false_reg);
6587 		__reg_combine_64_into_32(true_reg);
6588 	}
6589 }
6590 
6591 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
6592  * the variable reg.
6593  */
6594 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
6595 				struct bpf_reg_state *false_reg,
6596 				u64 val, u32 val32,
6597 				u8 opcode, bool is_jmp32)
6598 {
6599 	/* How can we transform "a <op> b" into "b <op> a"? */
6600 	static const u8 opcode_flip[16] = {
6601 		/* these stay the same */
6602 		[BPF_JEQ  >> 4] = BPF_JEQ,
6603 		[BPF_JNE  >> 4] = BPF_JNE,
6604 		[BPF_JSET >> 4] = BPF_JSET,
6605 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
6606 		[BPF_JGE  >> 4] = BPF_JLE,
6607 		[BPF_JGT  >> 4] = BPF_JLT,
6608 		[BPF_JLE  >> 4] = BPF_JGE,
6609 		[BPF_JLT  >> 4] = BPF_JGT,
6610 		[BPF_JSGE >> 4] = BPF_JSLE,
6611 		[BPF_JSGT >> 4] = BPF_JSLT,
6612 		[BPF_JSLE >> 4] = BPF_JSGE,
6613 		[BPF_JSLT >> 4] = BPF_JSGT
6614 	};
6615 	opcode = opcode_flip[opcode >> 4];
6616 	/* This uses zero as "not present in table"; luckily the zero opcode,
6617 	 * BPF_JA, can't get here.
6618 	 */
6619 	if (opcode)
6620 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
6621 }
6622 
6623 /* Regs are known to be equal, so intersect their min/max/var_off */
6624 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
6625 				  struct bpf_reg_state *dst_reg)
6626 {
6627 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
6628 							dst_reg->umin_value);
6629 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
6630 							dst_reg->umax_value);
6631 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
6632 							dst_reg->smin_value);
6633 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
6634 							dst_reg->smax_value);
6635 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
6636 							     dst_reg->var_off);
6637 	/* We might have learned new bounds from the var_off. */
6638 	__update_reg_bounds(src_reg);
6639 	__update_reg_bounds(dst_reg);
6640 	/* We might have learned something about the sign bit. */
6641 	__reg_deduce_bounds(src_reg);
6642 	__reg_deduce_bounds(dst_reg);
6643 	/* We might have learned some bits from the bounds. */
6644 	__reg_bound_offset(src_reg);
6645 	__reg_bound_offset(dst_reg);
6646 	/* Intersecting with the old var_off might have improved our bounds
6647 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
6648 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
6649 	 */
6650 	__update_reg_bounds(src_reg);
6651 	__update_reg_bounds(dst_reg);
6652 }
6653 
6654 static void reg_combine_min_max(struct bpf_reg_state *true_src,
6655 				struct bpf_reg_state *true_dst,
6656 				struct bpf_reg_state *false_src,
6657 				struct bpf_reg_state *false_dst,
6658 				u8 opcode)
6659 {
6660 	switch (opcode) {
6661 	case BPF_JEQ:
6662 		__reg_combine_min_max(true_src, true_dst);
6663 		break;
6664 	case BPF_JNE:
6665 		__reg_combine_min_max(false_src, false_dst);
6666 		break;
6667 	}
6668 }
6669 
6670 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
6671 				 struct bpf_reg_state *reg, u32 id,
6672 				 bool is_null)
6673 {
6674 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
6675 		/* Old offset (both fixed and variable parts) should
6676 		 * have been known-zero, because we don't allow pointer
6677 		 * arithmetic on pointers that might be NULL.
6678 		 */
6679 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
6680 				 !tnum_equals_const(reg->var_off, 0) ||
6681 				 reg->off)) {
6682 			__mark_reg_known_zero(reg);
6683 			reg->off = 0;
6684 		}
6685 		if (is_null) {
6686 			reg->type = SCALAR_VALUE;
6687 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
6688 			const struct bpf_map *map = reg->map_ptr;
6689 
6690 			if (map->inner_map_meta) {
6691 				reg->type = CONST_PTR_TO_MAP;
6692 				reg->map_ptr = map->inner_map_meta;
6693 			} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
6694 				reg->type = PTR_TO_XDP_SOCK;
6695 			} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
6696 				   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
6697 				reg->type = PTR_TO_SOCKET;
6698 			} else {
6699 				reg->type = PTR_TO_MAP_VALUE;
6700 			}
6701 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
6702 			reg->type = PTR_TO_SOCKET;
6703 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
6704 			reg->type = PTR_TO_SOCK_COMMON;
6705 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
6706 			reg->type = PTR_TO_TCP_SOCK;
6707 		} else if (reg->type == PTR_TO_BTF_ID_OR_NULL) {
6708 			reg->type = PTR_TO_BTF_ID;
6709 		} else if (reg->type == PTR_TO_MEM_OR_NULL) {
6710 			reg->type = PTR_TO_MEM;
6711 		}
6712 		if (is_null) {
6713 			/* We don't need id and ref_obj_id from this point
6714 			 * onwards anymore, thus we should better reset it,
6715 			 * so that state pruning has chances to take effect.
6716 			 */
6717 			reg->id = 0;
6718 			reg->ref_obj_id = 0;
6719 		} else if (!reg_may_point_to_spin_lock(reg)) {
6720 			/* For not-NULL ptr, reg->ref_obj_id will be reset
6721 			 * in release_reg_references().
6722 			 *
6723 			 * reg->id is still used by spin_lock ptr. Other
6724 			 * than spin_lock ptr type, reg->id can be reset.
6725 			 */
6726 			reg->id = 0;
6727 		}
6728 	}
6729 }
6730 
6731 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
6732 				    bool is_null)
6733 {
6734 	struct bpf_reg_state *reg;
6735 	int i;
6736 
6737 	for (i = 0; i < MAX_BPF_REG; i++)
6738 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
6739 
6740 	bpf_for_each_spilled_reg(i, state, reg) {
6741 		if (!reg)
6742 			continue;
6743 		mark_ptr_or_null_reg(state, reg, id, is_null);
6744 	}
6745 }
6746 
6747 /* The logic is similar to find_good_pkt_pointers(), both could eventually
6748  * be folded together at some point.
6749  */
6750 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
6751 				  bool is_null)
6752 {
6753 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6754 	struct bpf_reg_state *regs = state->regs;
6755 	u32 ref_obj_id = regs[regno].ref_obj_id;
6756 	u32 id = regs[regno].id;
6757 	int i;
6758 
6759 	if (ref_obj_id && ref_obj_id == id && is_null)
6760 		/* regs[regno] is in the " == NULL" branch.
6761 		 * No one could have freed the reference state before
6762 		 * doing the NULL check.
6763 		 */
6764 		WARN_ON_ONCE(release_reference_state(state, id));
6765 
6766 	for (i = 0; i <= vstate->curframe; i++)
6767 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
6768 }
6769 
6770 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
6771 				   struct bpf_reg_state *dst_reg,
6772 				   struct bpf_reg_state *src_reg,
6773 				   struct bpf_verifier_state *this_branch,
6774 				   struct bpf_verifier_state *other_branch)
6775 {
6776 	if (BPF_SRC(insn->code) != BPF_X)
6777 		return false;
6778 
6779 	/* Pointers are always 64-bit. */
6780 	if (BPF_CLASS(insn->code) == BPF_JMP32)
6781 		return false;
6782 
6783 	switch (BPF_OP(insn->code)) {
6784 	case BPF_JGT:
6785 		if ((dst_reg->type == PTR_TO_PACKET &&
6786 		     src_reg->type == PTR_TO_PACKET_END) ||
6787 		    (dst_reg->type == PTR_TO_PACKET_META &&
6788 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6789 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
6790 			find_good_pkt_pointers(this_branch, dst_reg,
6791 					       dst_reg->type, false);
6792 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6793 			    src_reg->type == PTR_TO_PACKET) ||
6794 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6795 			    src_reg->type == PTR_TO_PACKET_META)) {
6796 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
6797 			find_good_pkt_pointers(other_branch, src_reg,
6798 					       src_reg->type, true);
6799 		} else {
6800 			return false;
6801 		}
6802 		break;
6803 	case BPF_JLT:
6804 		if ((dst_reg->type == PTR_TO_PACKET &&
6805 		     src_reg->type == PTR_TO_PACKET_END) ||
6806 		    (dst_reg->type == PTR_TO_PACKET_META &&
6807 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6808 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
6809 			find_good_pkt_pointers(other_branch, dst_reg,
6810 					       dst_reg->type, true);
6811 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6812 			    src_reg->type == PTR_TO_PACKET) ||
6813 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6814 			    src_reg->type == PTR_TO_PACKET_META)) {
6815 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
6816 			find_good_pkt_pointers(this_branch, src_reg,
6817 					       src_reg->type, false);
6818 		} else {
6819 			return false;
6820 		}
6821 		break;
6822 	case BPF_JGE:
6823 		if ((dst_reg->type == PTR_TO_PACKET &&
6824 		     src_reg->type == PTR_TO_PACKET_END) ||
6825 		    (dst_reg->type == PTR_TO_PACKET_META &&
6826 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6827 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
6828 			find_good_pkt_pointers(this_branch, dst_reg,
6829 					       dst_reg->type, true);
6830 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6831 			    src_reg->type == PTR_TO_PACKET) ||
6832 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6833 			    src_reg->type == PTR_TO_PACKET_META)) {
6834 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
6835 			find_good_pkt_pointers(other_branch, src_reg,
6836 					       src_reg->type, false);
6837 		} else {
6838 			return false;
6839 		}
6840 		break;
6841 	case BPF_JLE:
6842 		if ((dst_reg->type == PTR_TO_PACKET &&
6843 		     src_reg->type == PTR_TO_PACKET_END) ||
6844 		    (dst_reg->type == PTR_TO_PACKET_META &&
6845 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6846 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
6847 			find_good_pkt_pointers(other_branch, dst_reg,
6848 					       dst_reg->type, false);
6849 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6850 			    src_reg->type == PTR_TO_PACKET) ||
6851 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6852 			    src_reg->type == PTR_TO_PACKET_META)) {
6853 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
6854 			find_good_pkt_pointers(this_branch, src_reg,
6855 					       src_reg->type, true);
6856 		} else {
6857 			return false;
6858 		}
6859 		break;
6860 	default:
6861 		return false;
6862 	}
6863 
6864 	return true;
6865 }
6866 
6867 static int check_cond_jmp_op(struct bpf_verifier_env *env,
6868 			     struct bpf_insn *insn, int *insn_idx)
6869 {
6870 	struct bpf_verifier_state *this_branch = env->cur_state;
6871 	struct bpf_verifier_state *other_branch;
6872 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
6873 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
6874 	u8 opcode = BPF_OP(insn->code);
6875 	bool is_jmp32;
6876 	int pred = -1;
6877 	int err;
6878 
6879 	/* Only conditional jumps are expected to reach here. */
6880 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
6881 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
6882 		return -EINVAL;
6883 	}
6884 
6885 	if (BPF_SRC(insn->code) == BPF_X) {
6886 		if (insn->imm != 0) {
6887 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
6888 			return -EINVAL;
6889 		}
6890 
6891 		/* check src1 operand */
6892 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
6893 		if (err)
6894 			return err;
6895 
6896 		if (is_pointer_value(env, insn->src_reg)) {
6897 			verbose(env, "R%d pointer comparison prohibited\n",
6898 				insn->src_reg);
6899 			return -EACCES;
6900 		}
6901 		src_reg = &regs[insn->src_reg];
6902 	} else {
6903 		if (insn->src_reg != BPF_REG_0) {
6904 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
6905 			return -EINVAL;
6906 		}
6907 	}
6908 
6909 	/* check src2 operand */
6910 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6911 	if (err)
6912 		return err;
6913 
6914 	dst_reg = &regs[insn->dst_reg];
6915 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
6916 
6917 	if (BPF_SRC(insn->code) == BPF_K) {
6918 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
6919 	} else if (src_reg->type == SCALAR_VALUE &&
6920 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
6921 		pred = is_branch_taken(dst_reg,
6922 				       tnum_subreg(src_reg->var_off).value,
6923 				       opcode,
6924 				       is_jmp32);
6925 	} else if (src_reg->type == SCALAR_VALUE &&
6926 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
6927 		pred = is_branch_taken(dst_reg,
6928 				       src_reg->var_off.value,
6929 				       opcode,
6930 				       is_jmp32);
6931 	}
6932 
6933 	if (pred >= 0) {
6934 		/* If we get here with a dst_reg pointer type it is because
6935 		 * above is_branch_taken() special cased the 0 comparison.
6936 		 */
6937 		if (!__is_pointer_value(false, dst_reg))
6938 			err = mark_chain_precision(env, insn->dst_reg);
6939 		if (BPF_SRC(insn->code) == BPF_X && !err)
6940 			err = mark_chain_precision(env, insn->src_reg);
6941 		if (err)
6942 			return err;
6943 	}
6944 	if (pred == 1) {
6945 		/* only follow the goto, ignore fall-through */
6946 		*insn_idx += insn->off;
6947 		return 0;
6948 	} else if (pred == 0) {
6949 		/* only follow fall-through branch, since
6950 		 * that's where the program will go
6951 		 */
6952 		return 0;
6953 	}
6954 
6955 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
6956 				  false);
6957 	if (!other_branch)
6958 		return -EFAULT;
6959 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
6960 
6961 	/* detect if we are comparing against a constant value so we can adjust
6962 	 * our min/max values for our dst register.
6963 	 * this is only legit if both are scalars (or pointers to the same
6964 	 * object, I suppose, but we don't support that right now), because
6965 	 * otherwise the different base pointers mean the offsets aren't
6966 	 * comparable.
6967 	 */
6968 	if (BPF_SRC(insn->code) == BPF_X) {
6969 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
6970 
6971 		if (dst_reg->type == SCALAR_VALUE &&
6972 		    src_reg->type == SCALAR_VALUE) {
6973 			if (tnum_is_const(src_reg->var_off) ||
6974 			    (is_jmp32 &&
6975 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
6976 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
6977 						dst_reg,
6978 						src_reg->var_off.value,
6979 						tnum_subreg(src_reg->var_off).value,
6980 						opcode, is_jmp32);
6981 			else if (tnum_is_const(dst_reg->var_off) ||
6982 				 (is_jmp32 &&
6983 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
6984 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
6985 						    src_reg,
6986 						    dst_reg->var_off.value,
6987 						    tnum_subreg(dst_reg->var_off).value,
6988 						    opcode, is_jmp32);
6989 			else if (!is_jmp32 &&
6990 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
6991 				/* Comparing for equality, we can combine knowledge */
6992 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
6993 						    &other_branch_regs[insn->dst_reg],
6994 						    src_reg, dst_reg, opcode);
6995 		}
6996 	} else if (dst_reg->type == SCALAR_VALUE) {
6997 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
6998 					dst_reg, insn->imm, (u32)insn->imm,
6999 					opcode, is_jmp32);
7000 	}
7001 
7002 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
7003 	 * NOTE: these optimizations below are related with pointer comparison
7004 	 *       which will never be JMP32.
7005 	 */
7006 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
7007 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
7008 	    reg_type_may_be_null(dst_reg->type)) {
7009 		/* Mark all identical registers in each branch as either
7010 		 * safe or unknown depending R == 0 or R != 0 conditional.
7011 		 */
7012 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
7013 				      opcode == BPF_JNE);
7014 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
7015 				      opcode == BPF_JEQ);
7016 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
7017 					   this_branch, other_branch) &&
7018 		   is_pointer_value(env, insn->dst_reg)) {
7019 		verbose(env, "R%d pointer comparison prohibited\n",
7020 			insn->dst_reg);
7021 		return -EACCES;
7022 	}
7023 	if (env->log.level & BPF_LOG_LEVEL)
7024 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
7025 	return 0;
7026 }
7027 
7028 /* verify BPF_LD_IMM64 instruction */
7029 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
7030 {
7031 	struct bpf_insn_aux_data *aux = cur_aux(env);
7032 	struct bpf_reg_state *regs = cur_regs(env);
7033 	struct bpf_map *map;
7034 	int err;
7035 
7036 	if (BPF_SIZE(insn->code) != BPF_DW) {
7037 		verbose(env, "invalid BPF_LD_IMM insn\n");
7038 		return -EINVAL;
7039 	}
7040 	if (insn->off != 0) {
7041 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
7042 		return -EINVAL;
7043 	}
7044 
7045 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
7046 	if (err)
7047 		return err;
7048 
7049 	if (insn->src_reg == 0) {
7050 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
7051 
7052 		regs[insn->dst_reg].type = SCALAR_VALUE;
7053 		__mark_reg_known(&regs[insn->dst_reg], imm);
7054 		return 0;
7055 	}
7056 
7057 	map = env->used_maps[aux->map_index];
7058 	mark_reg_known_zero(env, regs, insn->dst_reg);
7059 	regs[insn->dst_reg].map_ptr = map;
7060 
7061 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
7062 		regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
7063 		regs[insn->dst_reg].off = aux->map_off;
7064 		if (map_value_has_spin_lock(map))
7065 			regs[insn->dst_reg].id = ++env->id_gen;
7066 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7067 		regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
7068 	} else {
7069 		verbose(env, "bpf verifier is misconfigured\n");
7070 		return -EINVAL;
7071 	}
7072 
7073 	return 0;
7074 }
7075 
7076 static bool may_access_skb(enum bpf_prog_type type)
7077 {
7078 	switch (type) {
7079 	case BPF_PROG_TYPE_SOCKET_FILTER:
7080 	case BPF_PROG_TYPE_SCHED_CLS:
7081 	case BPF_PROG_TYPE_SCHED_ACT:
7082 		return true;
7083 	default:
7084 		return false;
7085 	}
7086 }
7087 
7088 /* verify safety of LD_ABS|LD_IND instructions:
7089  * - they can only appear in the programs where ctx == skb
7090  * - since they are wrappers of function calls, they scratch R1-R5 registers,
7091  *   preserve R6-R9, and store return value into R0
7092  *
7093  * Implicit input:
7094  *   ctx == skb == R6 == CTX
7095  *
7096  * Explicit input:
7097  *   SRC == any register
7098  *   IMM == 32-bit immediate
7099  *
7100  * Output:
7101  *   R0 - 8/16/32-bit skb data converted to cpu endianness
7102  */
7103 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
7104 {
7105 	struct bpf_reg_state *regs = cur_regs(env);
7106 	static const int ctx_reg = BPF_REG_6;
7107 	u8 mode = BPF_MODE(insn->code);
7108 	int i, err;
7109 
7110 	if (!may_access_skb(env->prog->type)) {
7111 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
7112 		return -EINVAL;
7113 	}
7114 
7115 	if (!env->ops->gen_ld_abs) {
7116 		verbose(env, "bpf verifier is misconfigured\n");
7117 		return -EINVAL;
7118 	}
7119 
7120 	if (env->subprog_cnt > 1) {
7121 		/* when program has LD_ABS insn JITs and interpreter assume
7122 		 * that r1 == ctx == skb which is not the case for callees
7123 		 * that can have arbitrary arguments. It's problematic
7124 		 * for main prog as well since JITs would need to analyze
7125 		 * all functions in order to make proper register save/restore
7126 		 * decisions in the main prog. Hence disallow LD_ABS with calls
7127 		 */
7128 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
7129 		return -EINVAL;
7130 	}
7131 
7132 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
7133 	    BPF_SIZE(insn->code) == BPF_DW ||
7134 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
7135 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
7136 		return -EINVAL;
7137 	}
7138 
7139 	/* check whether implicit source operand (register R6) is readable */
7140 	err = check_reg_arg(env, ctx_reg, SRC_OP);
7141 	if (err)
7142 		return err;
7143 
7144 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
7145 	 * gen_ld_abs() may terminate the program at runtime, leading to
7146 	 * reference leak.
7147 	 */
7148 	err = check_reference_leak(env);
7149 	if (err) {
7150 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
7151 		return err;
7152 	}
7153 
7154 	if (env->cur_state->active_spin_lock) {
7155 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
7156 		return -EINVAL;
7157 	}
7158 
7159 	if (regs[ctx_reg].type != PTR_TO_CTX) {
7160 		verbose(env,
7161 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
7162 		return -EINVAL;
7163 	}
7164 
7165 	if (mode == BPF_IND) {
7166 		/* check explicit source operand */
7167 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
7168 		if (err)
7169 			return err;
7170 	}
7171 
7172 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
7173 	if (err < 0)
7174 		return err;
7175 
7176 	/* reset caller saved regs to unreadable */
7177 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
7178 		mark_reg_not_init(env, regs, caller_saved[i]);
7179 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7180 	}
7181 
7182 	/* mark destination R0 register as readable, since it contains
7183 	 * the value fetched from the packet.
7184 	 * Already marked as written above.
7185 	 */
7186 	mark_reg_unknown(env, regs, BPF_REG_0);
7187 	/* ld_abs load up to 32-bit skb data. */
7188 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
7189 	return 0;
7190 }
7191 
7192 static int check_return_code(struct bpf_verifier_env *env)
7193 {
7194 	struct tnum enforce_attach_type_range = tnum_unknown;
7195 	const struct bpf_prog *prog = env->prog;
7196 	struct bpf_reg_state *reg;
7197 	struct tnum range = tnum_range(0, 1);
7198 	int err;
7199 
7200 	/* LSM and struct_ops func-ptr's return type could be "void" */
7201 	if ((env->prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
7202 	     env->prog->type == BPF_PROG_TYPE_LSM) &&
7203 	    !prog->aux->attach_func_proto->type)
7204 		return 0;
7205 
7206 	/* eBPF calling convetion is such that R0 is used
7207 	 * to return the value from eBPF program.
7208 	 * Make sure that it's readable at this time
7209 	 * of bpf_exit, which means that program wrote
7210 	 * something into it earlier
7211 	 */
7212 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7213 	if (err)
7214 		return err;
7215 
7216 	if (is_pointer_value(env, BPF_REG_0)) {
7217 		verbose(env, "R0 leaks addr as return value\n");
7218 		return -EACCES;
7219 	}
7220 
7221 	switch (env->prog->type) {
7222 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7223 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
7224 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
7225 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
7226 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
7227 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
7228 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
7229 			range = tnum_range(1, 1);
7230 		break;
7231 	case BPF_PROG_TYPE_CGROUP_SKB:
7232 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
7233 			range = tnum_range(0, 3);
7234 			enforce_attach_type_range = tnum_range(2, 3);
7235 		}
7236 		break;
7237 	case BPF_PROG_TYPE_CGROUP_SOCK:
7238 	case BPF_PROG_TYPE_SOCK_OPS:
7239 	case BPF_PROG_TYPE_CGROUP_DEVICE:
7240 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
7241 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
7242 		break;
7243 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
7244 		if (!env->prog->aux->attach_btf_id)
7245 			return 0;
7246 		range = tnum_const(0);
7247 		break;
7248 	case BPF_PROG_TYPE_TRACING:
7249 		switch (env->prog->expected_attach_type) {
7250 		case BPF_TRACE_FENTRY:
7251 		case BPF_TRACE_FEXIT:
7252 			range = tnum_const(0);
7253 			break;
7254 		case BPF_TRACE_RAW_TP:
7255 		case BPF_MODIFY_RETURN:
7256 			return 0;
7257 		case BPF_TRACE_ITER:
7258 			break;
7259 		default:
7260 			return -ENOTSUPP;
7261 		}
7262 		break;
7263 	case BPF_PROG_TYPE_EXT:
7264 		/* freplace program can return anything as its return value
7265 		 * depends on the to-be-replaced kernel func or bpf program.
7266 		 */
7267 	default:
7268 		return 0;
7269 	}
7270 
7271 	reg = cur_regs(env) + BPF_REG_0;
7272 	if (reg->type != SCALAR_VALUE) {
7273 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
7274 			reg_type_str[reg->type]);
7275 		return -EINVAL;
7276 	}
7277 
7278 	if (!tnum_in(range, reg->var_off)) {
7279 		char tn_buf[48];
7280 
7281 		verbose(env, "At program exit the register R0 ");
7282 		if (!tnum_is_unknown(reg->var_off)) {
7283 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7284 			verbose(env, "has value %s", tn_buf);
7285 		} else {
7286 			verbose(env, "has unknown scalar value");
7287 		}
7288 		tnum_strn(tn_buf, sizeof(tn_buf), range);
7289 		verbose(env, " should have been in %s\n", tn_buf);
7290 		return -EINVAL;
7291 	}
7292 
7293 	if (!tnum_is_unknown(enforce_attach_type_range) &&
7294 	    tnum_in(enforce_attach_type_range, reg->var_off))
7295 		env->prog->enforce_expected_attach_type = 1;
7296 	return 0;
7297 }
7298 
7299 /* non-recursive DFS pseudo code
7300  * 1  procedure DFS-iterative(G,v):
7301  * 2      label v as discovered
7302  * 3      let S be a stack
7303  * 4      S.push(v)
7304  * 5      while S is not empty
7305  * 6            t <- S.pop()
7306  * 7            if t is what we're looking for:
7307  * 8                return t
7308  * 9            for all edges e in G.adjacentEdges(t) do
7309  * 10               if edge e is already labelled
7310  * 11                   continue with the next edge
7311  * 12               w <- G.adjacentVertex(t,e)
7312  * 13               if vertex w is not discovered and not explored
7313  * 14                   label e as tree-edge
7314  * 15                   label w as discovered
7315  * 16                   S.push(w)
7316  * 17                   continue at 5
7317  * 18               else if vertex w is discovered
7318  * 19                   label e as back-edge
7319  * 20               else
7320  * 21                   // vertex w is explored
7321  * 22                   label e as forward- or cross-edge
7322  * 23           label t as explored
7323  * 24           S.pop()
7324  *
7325  * convention:
7326  * 0x10 - discovered
7327  * 0x11 - discovered and fall-through edge labelled
7328  * 0x12 - discovered and fall-through and branch edges labelled
7329  * 0x20 - explored
7330  */
7331 
7332 enum {
7333 	DISCOVERED = 0x10,
7334 	EXPLORED = 0x20,
7335 	FALLTHROUGH = 1,
7336 	BRANCH = 2,
7337 };
7338 
7339 static u32 state_htab_size(struct bpf_verifier_env *env)
7340 {
7341 	return env->prog->len;
7342 }
7343 
7344 static struct bpf_verifier_state_list **explored_state(
7345 					struct bpf_verifier_env *env,
7346 					int idx)
7347 {
7348 	struct bpf_verifier_state *cur = env->cur_state;
7349 	struct bpf_func_state *state = cur->frame[cur->curframe];
7350 
7351 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
7352 }
7353 
7354 static void init_explored_state(struct bpf_verifier_env *env, int idx)
7355 {
7356 	env->insn_aux_data[idx].prune_point = true;
7357 }
7358 
7359 /* t, w, e - match pseudo-code above:
7360  * t - index of current instruction
7361  * w - next instruction
7362  * e - edge
7363  */
7364 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
7365 		     bool loop_ok)
7366 {
7367 	int *insn_stack = env->cfg.insn_stack;
7368 	int *insn_state = env->cfg.insn_state;
7369 
7370 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
7371 		return 0;
7372 
7373 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
7374 		return 0;
7375 
7376 	if (w < 0 || w >= env->prog->len) {
7377 		verbose_linfo(env, t, "%d: ", t);
7378 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
7379 		return -EINVAL;
7380 	}
7381 
7382 	if (e == BRANCH)
7383 		/* mark branch target for state pruning */
7384 		init_explored_state(env, w);
7385 
7386 	if (insn_state[w] == 0) {
7387 		/* tree-edge */
7388 		insn_state[t] = DISCOVERED | e;
7389 		insn_state[w] = DISCOVERED;
7390 		if (env->cfg.cur_stack >= env->prog->len)
7391 			return -E2BIG;
7392 		insn_stack[env->cfg.cur_stack++] = w;
7393 		return 1;
7394 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
7395 		if (loop_ok && env->bpf_capable)
7396 			return 0;
7397 		verbose_linfo(env, t, "%d: ", t);
7398 		verbose_linfo(env, w, "%d: ", w);
7399 		verbose(env, "back-edge from insn %d to %d\n", t, w);
7400 		return -EINVAL;
7401 	} else if (insn_state[w] == EXPLORED) {
7402 		/* forward- or cross-edge */
7403 		insn_state[t] = DISCOVERED | e;
7404 	} else {
7405 		verbose(env, "insn state internal bug\n");
7406 		return -EFAULT;
7407 	}
7408 	return 0;
7409 }
7410 
7411 /* non-recursive depth-first-search to detect loops in BPF program
7412  * loop == back-edge in directed graph
7413  */
7414 static int check_cfg(struct bpf_verifier_env *env)
7415 {
7416 	struct bpf_insn *insns = env->prog->insnsi;
7417 	int insn_cnt = env->prog->len;
7418 	int *insn_stack, *insn_state;
7419 	int ret = 0;
7420 	int i, t;
7421 
7422 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
7423 	if (!insn_state)
7424 		return -ENOMEM;
7425 
7426 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
7427 	if (!insn_stack) {
7428 		kvfree(insn_state);
7429 		return -ENOMEM;
7430 	}
7431 
7432 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
7433 	insn_stack[0] = 0; /* 0 is the first instruction */
7434 	env->cfg.cur_stack = 1;
7435 
7436 peek_stack:
7437 	if (env->cfg.cur_stack == 0)
7438 		goto check_state;
7439 	t = insn_stack[env->cfg.cur_stack - 1];
7440 
7441 	if (BPF_CLASS(insns[t].code) == BPF_JMP ||
7442 	    BPF_CLASS(insns[t].code) == BPF_JMP32) {
7443 		u8 opcode = BPF_OP(insns[t].code);
7444 
7445 		if (opcode == BPF_EXIT) {
7446 			goto mark_explored;
7447 		} else if (opcode == BPF_CALL) {
7448 			ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
7449 			if (ret == 1)
7450 				goto peek_stack;
7451 			else if (ret < 0)
7452 				goto err_free;
7453 			if (t + 1 < insn_cnt)
7454 				init_explored_state(env, t + 1);
7455 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
7456 				init_explored_state(env, t);
7457 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
7458 						env, false);
7459 				if (ret == 1)
7460 					goto peek_stack;
7461 				else if (ret < 0)
7462 					goto err_free;
7463 			}
7464 		} else if (opcode == BPF_JA) {
7465 			if (BPF_SRC(insns[t].code) != BPF_K) {
7466 				ret = -EINVAL;
7467 				goto err_free;
7468 			}
7469 			/* unconditional jump with single edge */
7470 			ret = push_insn(t, t + insns[t].off + 1,
7471 					FALLTHROUGH, env, true);
7472 			if (ret == 1)
7473 				goto peek_stack;
7474 			else if (ret < 0)
7475 				goto err_free;
7476 			/* unconditional jmp is not a good pruning point,
7477 			 * but it's marked, since backtracking needs
7478 			 * to record jmp history in is_state_visited().
7479 			 */
7480 			init_explored_state(env, t + insns[t].off + 1);
7481 			/* tell verifier to check for equivalent states
7482 			 * after every call and jump
7483 			 */
7484 			if (t + 1 < insn_cnt)
7485 				init_explored_state(env, t + 1);
7486 		} else {
7487 			/* conditional jump with two edges */
7488 			init_explored_state(env, t);
7489 			ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
7490 			if (ret == 1)
7491 				goto peek_stack;
7492 			else if (ret < 0)
7493 				goto err_free;
7494 
7495 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
7496 			if (ret == 1)
7497 				goto peek_stack;
7498 			else if (ret < 0)
7499 				goto err_free;
7500 		}
7501 	} else {
7502 		/* all other non-branch instructions with single
7503 		 * fall-through edge
7504 		 */
7505 		ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
7506 		if (ret == 1)
7507 			goto peek_stack;
7508 		else if (ret < 0)
7509 			goto err_free;
7510 	}
7511 
7512 mark_explored:
7513 	insn_state[t] = EXPLORED;
7514 	if (env->cfg.cur_stack-- <= 0) {
7515 		verbose(env, "pop stack internal bug\n");
7516 		ret = -EFAULT;
7517 		goto err_free;
7518 	}
7519 	goto peek_stack;
7520 
7521 check_state:
7522 	for (i = 0; i < insn_cnt; i++) {
7523 		if (insn_state[i] != EXPLORED) {
7524 			verbose(env, "unreachable insn %d\n", i);
7525 			ret = -EINVAL;
7526 			goto err_free;
7527 		}
7528 	}
7529 	ret = 0; /* cfg looks good */
7530 
7531 err_free:
7532 	kvfree(insn_state);
7533 	kvfree(insn_stack);
7534 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
7535 	return ret;
7536 }
7537 
7538 /* The minimum supported BTF func info size */
7539 #define MIN_BPF_FUNCINFO_SIZE	8
7540 #define MAX_FUNCINFO_REC_SIZE	252
7541 
7542 static int check_btf_func(struct bpf_verifier_env *env,
7543 			  const union bpf_attr *attr,
7544 			  union bpf_attr __user *uattr)
7545 {
7546 	u32 i, nfuncs, urec_size, min_size;
7547 	u32 krec_size = sizeof(struct bpf_func_info);
7548 	struct bpf_func_info *krecord;
7549 	struct bpf_func_info_aux *info_aux = NULL;
7550 	const struct btf_type *type;
7551 	struct bpf_prog *prog;
7552 	const struct btf *btf;
7553 	void __user *urecord;
7554 	u32 prev_offset = 0;
7555 	int ret = -ENOMEM;
7556 
7557 	nfuncs = attr->func_info_cnt;
7558 	if (!nfuncs)
7559 		return 0;
7560 
7561 	if (nfuncs != env->subprog_cnt) {
7562 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
7563 		return -EINVAL;
7564 	}
7565 
7566 	urec_size = attr->func_info_rec_size;
7567 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
7568 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
7569 	    urec_size % sizeof(u32)) {
7570 		verbose(env, "invalid func info rec size %u\n", urec_size);
7571 		return -EINVAL;
7572 	}
7573 
7574 	prog = env->prog;
7575 	btf = prog->aux->btf;
7576 
7577 	urecord = u64_to_user_ptr(attr->func_info);
7578 	min_size = min_t(u32, krec_size, urec_size);
7579 
7580 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
7581 	if (!krecord)
7582 		return -ENOMEM;
7583 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
7584 	if (!info_aux)
7585 		goto err_free;
7586 
7587 	for (i = 0; i < nfuncs; i++) {
7588 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
7589 		if (ret) {
7590 			if (ret == -E2BIG) {
7591 				verbose(env, "nonzero tailing record in func info");
7592 				/* set the size kernel expects so loader can zero
7593 				 * out the rest of the record.
7594 				 */
7595 				if (put_user(min_size, &uattr->func_info_rec_size))
7596 					ret = -EFAULT;
7597 			}
7598 			goto err_free;
7599 		}
7600 
7601 		if (copy_from_user(&krecord[i], urecord, min_size)) {
7602 			ret = -EFAULT;
7603 			goto err_free;
7604 		}
7605 
7606 		/* check insn_off */
7607 		if (i == 0) {
7608 			if (krecord[i].insn_off) {
7609 				verbose(env,
7610 					"nonzero insn_off %u for the first func info record",
7611 					krecord[i].insn_off);
7612 				ret = -EINVAL;
7613 				goto err_free;
7614 			}
7615 		} else if (krecord[i].insn_off <= prev_offset) {
7616 			verbose(env,
7617 				"same or smaller insn offset (%u) than previous func info record (%u)",
7618 				krecord[i].insn_off, prev_offset);
7619 			ret = -EINVAL;
7620 			goto err_free;
7621 		}
7622 
7623 		if (env->subprog_info[i].start != krecord[i].insn_off) {
7624 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
7625 			ret = -EINVAL;
7626 			goto err_free;
7627 		}
7628 
7629 		/* check type_id */
7630 		type = btf_type_by_id(btf, krecord[i].type_id);
7631 		if (!type || !btf_type_is_func(type)) {
7632 			verbose(env, "invalid type id %d in func info",
7633 				krecord[i].type_id);
7634 			ret = -EINVAL;
7635 			goto err_free;
7636 		}
7637 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
7638 		prev_offset = krecord[i].insn_off;
7639 		urecord += urec_size;
7640 	}
7641 
7642 	prog->aux->func_info = krecord;
7643 	prog->aux->func_info_cnt = nfuncs;
7644 	prog->aux->func_info_aux = info_aux;
7645 	return 0;
7646 
7647 err_free:
7648 	kvfree(krecord);
7649 	kfree(info_aux);
7650 	return ret;
7651 }
7652 
7653 static void adjust_btf_func(struct bpf_verifier_env *env)
7654 {
7655 	struct bpf_prog_aux *aux = env->prog->aux;
7656 	int i;
7657 
7658 	if (!aux->func_info)
7659 		return;
7660 
7661 	for (i = 0; i < env->subprog_cnt; i++)
7662 		aux->func_info[i].insn_off = env->subprog_info[i].start;
7663 }
7664 
7665 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
7666 		sizeof(((struct bpf_line_info *)(0))->line_col))
7667 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
7668 
7669 static int check_btf_line(struct bpf_verifier_env *env,
7670 			  const union bpf_attr *attr,
7671 			  union bpf_attr __user *uattr)
7672 {
7673 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
7674 	struct bpf_subprog_info *sub;
7675 	struct bpf_line_info *linfo;
7676 	struct bpf_prog *prog;
7677 	const struct btf *btf;
7678 	void __user *ulinfo;
7679 	int err;
7680 
7681 	nr_linfo = attr->line_info_cnt;
7682 	if (!nr_linfo)
7683 		return 0;
7684 
7685 	rec_size = attr->line_info_rec_size;
7686 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
7687 	    rec_size > MAX_LINEINFO_REC_SIZE ||
7688 	    rec_size & (sizeof(u32) - 1))
7689 		return -EINVAL;
7690 
7691 	/* Need to zero it in case the userspace may
7692 	 * pass in a smaller bpf_line_info object.
7693 	 */
7694 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
7695 			 GFP_KERNEL | __GFP_NOWARN);
7696 	if (!linfo)
7697 		return -ENOMEM;
7698 
7699 	prog = env->prog;
7700 	btf = prog->aux->btf;
7701 
7702 	s = 0;
7703 	sub = env->subprog_info;
7704 	ulinfo = u64_to_user_ptr(attr->line_info);
7705 	expected_size = sizeof(struct bpf_line_info);
7706 	ncopy = min_t(u32, expected_size, rec_size);
7707 	for (i = 0; i < nr_linfo; i++) {
7708 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
7709 		if (err) {
7710 			if (err == -E2BIG) {
7711 				verbose(env, "nonzero tailing record in line_info");
7712 				if (put_user(expected_size,
7713 					     &uattr->line_info_rec_size))
7714 					err = -EFAULT;
7715 			}
7716 			goto err_free;
7717 		}
7718 
7719 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
7720 			err = -EFAULT;
7721 			goto err_free;
7722 		}
7723 
7724 		/*
7725 		 * Check insn_off to ensure
7726 		 * 1) strictly increasing AND
7727 		 * 2) bounded by prog->len
7728 		 *
7729 		 * The linfo[0].insn_off == 0 check logically falls into
7730 		 * the later "missing bpf_line_info for func..." case
7731 		 * because the first linfo[0].insn_off must be the
7732 		 * first sub also and the first sub must have
7733 		 * subprog_info[0].start == 0.
7734 		 */
7735 		if ((i && linfo[i].insn_off <= prev_offset) ||
7736 		    linfo[i].insn_off >= prog->len) {
7737 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
7738 				i, linfo[i].insn_off, prev_offset,
7739 				prog->len);
7740 			err = -EINVAL;
7741 			goto err_free;
7742 		}
7743 
7744 		if (!prog->insnsi[linfo[i].insn_off].code) {
7745 			verbose(env,
7746 				"Invalid insn code at line_info[%u].insn_off\n",
7747 				i);
7748 			err = -EINVAL;
7749 			goto err_free;
7750 		}
7751 
7752 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
7753 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
7754 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
7755 			err = -EINVAL;
7756 			goto err_free;
7757 		}
7758 
7759 		if (s != env->subprog_cnt) {
7760 			if (linfo[i].insn_off == sub[s].start) {
7761 				sub[s].linfo_idx = i;
7762 				s++;
7763 			} else if (sub[s].start < linfo[i].insn_off) {
7764 				verbose(env, "missing bpf_line_info for func#%u\n", s);
7765 				err = -EINVAL;
7766 				goto err_free;
7767 			}
7768 		}
7769 
7770 		prev_offset = linfo[i].insn_off;
7771 		ulinfo += rec_size;
7772 	}
7773 
7774 	if (s != env->subprog_cnt) {
7775 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
7776 			env->subprog_cnt - s, s);
7777 		err = -EINVAL;
7778 		goto err_free;
7779 	}
7780 
7781 	prog->aux->linfo = linfo;
7782 	prog->aux->nr_linfo = nr_linfo;
7783 
7784 	return 0;
7785 
7786 err_free:
7787 	kvfree(linfo);
7788 	return err;
7789 }
7790 
7791 static int check_btf_info(struct bpf_verifier_env *env,
7792 			  const union bpf_attr *attr,
7793 			  union bpf_attr __user *uattr)
7794 {
7795 	struct btf *btf;
7796 	int err;
7797 
7798 	if (!attr->func_info_cnt && !attr->line_info_cnt)
7799 		return 0;
7800 
7801 	btf = btf_get_by_fd(attr->prog_btf_fd);
7802 	if (IS_ERR(btf))
7803 		return PTR_ERR(btf);
7804 	env->prog->aux->btf = btf;
7805 
7806 	err = check_btf_func(env, attr, uattr);
7807 	if (err)
7808 		return err;
7809 
7810 	err = check_btf_line(env, attr, uattr);
7811 	if (err)
7812 		return err;
7813 
7814 	return 0;
7815 }
7816 
7817 /* check %cur's range satisfies %old's */
7818 static bool range_within(struct bpf_reg_state *old,
7819 			 struct bpf_reg_state *cur)
7820 {
7821 	return old->umin_value <= cur->umin_value &&
7822 	       old->umax_value >= cur->umax_value &&
7823 	       old->smin_value <= cur->smin_value &&
7824 	       old->smax_value >= cur->smax_value;
7825 }
7826 
7827 /* Maximum number of register states that can exist at once */
7828 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
7829 struct idpair {
7830 	u32 old;
7831 	u32 cur;
7832 };
7833 
7834 /* If in the old state two registers had the same id, then they need to have
7835  * the same id in the new state as well.  But that id could be different from
7836  * the old state, so we need to track the mapping from old to new ids.
7837  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
7838  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
7839  * regs with a different old id could still have new id 9, we don't care about
7840  * that.
7841  * So we look through our idmap to see if this old id has been seen before.  If
7842  * so, we require the new id to match; otherwise, we add the id pair to the map.
7843  */
7844 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
7845 {
7846 	unsigned int i;
7847 
7848 	for (i = 0; i < ID_MAP_SIZE; i++) {
7849 		if (!idmap[i].old) {
7850 			/* Reached an empty slot; haven't seen this id before */
7851 			idmap[i].old = old_id;
7852 			idmap[i].cur = cur_id;
7853 			return true;
7854 		}
7855 		if (idmap[i].old == old_id)
7856 			return idmap[i].cur == cur_id;
7857 	}
7858 	/* We ran out of idmap slots, which should be impossible */
7859 	WARN_ON_ONCE(1);
7860 	return false;
7861 }
7862 
7863 static void clean_func_state(struct bpf_verifier_env *env,
7864 			     struct bpf_func_state *st)
7865 {
7866 	enum bpf_reg_liveness live;
7867 	int i, j;
7868 
7869 	for (i = 0; i < BPF_REG_FP; i++) {
7870 		live = st->regs[i].live;
7871 		/* liveness must not touch this register anymore */
7872 		st->regs[i].live |= REG_LIVE_DONE;
7873 		if (!(live & REG_LIVE_READ))
7874 			/* since the register is unused, clear its state
7875 			 * to make further comparison simpler
7876 			 */
7877 			__mark_reg_not_init(env, &st->regs[i]);
7878 	}
7879 
7880 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
7881 		live = st->stack[i].spilled_ptr.live;
7882 		/* liveness must not touch this stack slot anymore */
7883 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
7884 		if (!(live & REG_LIVE_READ)) {
7885 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
7886 			for (j = 0; j < BPF_REG_SIZE; j++)
7887 				st->stack[i].slot_type[j] = STACK_INVALID;
7888 		}
7889 	}
7890 }
7891 
7892 static void clean_verifier_state(struct bpf_verifier_env *env,
7893 				 struct bpf_verifier_state *st)
7894 {
7895 	int i;
7896 
7897 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
7898 		/* all regs in this state in all frames were already marked */
7899 		return;
7900 
7901 	for (i = 0; i <= st->curframe; i++)
7902 		clean_func_state(env, st->frame[i]);
7903 }
7904 
7905 /* the parentage chains form a tree.
7906  * the verifier states are added to state lists at given insn and
7907  * pushed into state stack for future exploration.
7908  * when the verifier reaches bpf_exit insn some of the verifer states
7909  * stored in the state lists have their final liveness state already,
7910  * but a lot of states will get revised from liveness point of view when
7911  * the verifier explores other branches.
7912  * Example:
7913  * 1: r0 = 1
7914  * 2: if r1 == 100 goto pc+1
7915  * 3: r0 = 2
7916  * 4: exit
7917  * when the verifier reaches exit insn the register r0 in the state list of
7918  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
7919  * of insn 2 and goes exploring further. At the insn 4 it will walk the
7920  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
7921  *
7922  * Since the verifier pushes the branch states as it sees them while exploring
7923  * the program the condition of walking the branch instruction for the second
7924  * time means that all states below this branch were already explored and
7925  * their final liveness markes are already propagated.
7926  * Hence when the verifier completes the search of state list in is_state_visited()
7927  * we can call this clean_live_states() function to mark all liveness states
7928  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
7929  * will not be used.
7930  * This function also clears the registers and stack for states that !READ
7931  * to simplify state merging.
7932  *
7933  * Important note here that walking the same branch instruction in the callee
7934  * doesn't meant that the states are DONE. The verifier has to compare
7935  * the callsites
7936  */
7937 static void clean_live_states(struct bpf_verifier_env *env, int insn,
7938 			      struct bpf_verifier_state *cur)
7939 {
7940 	struct bpf_verifier_state_list *sl;
7941 	int i;
7942 
7943 	sl = *explored_state(env, insn);
7944 	while (sl) {
7945 		if (sl->state.branches)
7946 			goto next;
7947 		if (sl->state.insn_idx != insn ||
7948 		    sl->state.curframe != cur->curframe)
7949 			goto next;
7950 		for (i = 0; i <= cur->curframe; i++)
7951 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
7952 				goto next;
7953 		clean_verifier_state(env, &sl->state);
7954 next:
7955 		sl = sl->next;
7956 	}
7957 }
7958 
7959 /* Returns true if (rold safe implies rcur safe) */
7960 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7961 		    struct idpair *idmap)
7962 {
7963 	bool equal;
7964 
7965 	if (!(rold->live & REG_LIVE_READ))
7966 		/* explored state didn't use this */
7967 		return true;
7968 
7969 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
7970 
7971 	if (rold->type == PTR_TO_STACK)
7972 		/* two stack pointers are equal only if they're pointing to
7973 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
7974 		 */
7975 		return equal && rold->frameno == rcur->frameno;
7976 
7977 	if (equal)
7978 		return true;
7979 
7980 	if (rold->type == NOT_INIT)
7981 		/* explored state can't have used this */
7982 		return true;
7983 	if (rcur->type == NOT_INIT)
7984 		return false;
7985 	switch (rold->type) {
7986 	case SCALAR_VALUE:
7987 		if (rcur->type == SCALAR_VALUE) {
7988 			if (!rold->precise && !rcur->precise)
7989 				return true;
7990 			/* new val must satisfy old val knowledge */
7991 			return range_within(rold, rcur) &&
7992 			       tnum_in(rold->var_off, rcur->var_off);
7993 		} else {
7994 			/* We're trying to use a pointer in place of a scalar.
7995 			 * Even if the scalar was unbounded, this could lead to
7996 			 * pointer leaks because scalars are allowed to leak
7997 			 * while pointers are not. We could make this safe in
7998 			 * special cases if root is calling us, but it's
7999 			 * probably not worth the hassle.
8000 			 */
8001 			return false;
8002 		}
8003 	case PTR_TO_MAP_VALUE:
8004 		/* If the new min/max/var_off satisfy the old ones and
8005 		 * everything else matches, we are OK.
8006 		 * 'id' is not compared, since it's only used for maps with
8007 		 * bpf_spin_lock inside map element and in such cases if
8008 		 * the rest of the prog is valid for one map element then
8009 		 * it's valid for all map elements regardless of the key
8010 		 * used in bpf_map_lookup()
8011 		 */
8012 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
8013 		       range_within(rold, rcur) &&
8014 		       tnum_in(rold->var_off, rcur->var_off);
8015 	case PTR_TO_MAP_VALUE_OR_NULL:
8016 		/* a PTR_TO_MAP_VALUE could be safe to use as a
8017 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
8018 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
8019 		 * checked, doing so could have affected others with the same
8020 		 * id, and we can't check for that because we lost the id when
8021 		 * we converted to a PTR_TO_MAP_VALUE.
8022 		 */
8023 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
8024 			return false;
8025 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
8026 			return false;
8027 		/* Check our ids match any regs they're supposed to */
8028 		return check_ids(rold->id, rcur->id, idmap);
8029 	case PTR_TO_PACKET_META:
8030 	case PTR_TO_PACKET:
8031 		if (rcur->type != rold->type)
8032 			return false;
8033 		/* We must have at least as much range as the old ptr
8034 		 * did, so that any accesses which were safe before are
8035 		 * still safe.  This is true even if old range < old off,
8036 		 * since someone could have accessed through (ptr - k), or
8037 		 * even done ptr -= k in a register, to get a safe access.
8038 		 */
8039 		if (rold->range > rcur->range)
8040 			return false;
8041 		/* If the offsets don't match, we can't trust our alignment;
8042 		 * nor can we be sure that we won't fall out of range.
8043 		 */
8044 		if (rold->off != rcur->off)
8045 			return false;
8046 		/* id relations must be preserved */
8047 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
8048 			return false;
8049 		/* new val must satisfy old val knowledge */
8050 		return range_within(rold, rcur) &&
8051 		       tnum_in(rold->var_off, rcur->var_off);
8052 	case PTR_TO_CTX:
8053 	case CONST_PTR_TO_MAP:
8054 	case PTR_TO_PACKET_END:
8055 	case PTR_TO_FLOW_KEYS:
8056 	case PTR_TO_SOCKET:
8057 	case PTR_TO_SOCKET_OR_NULL:
8058 	case PTR_TO_SOCK_COMMON:
8059 	case PTR_TO_SOCK_COMMON_OR_NULL:
8060 	case PTR_TO_TCP_SOCK:
8061 	case PTR_TO_TCP_SOCK_OR_NULL:
8062 	case PTR_TO_XDP_SOCK:
8063 		/* Only valid matches are exact, which memcmp() above
8064 		 * would have accepted
8065 		 */
8066 	default:
8067 		/* Don't know what's going on, just say it's not safe */
8068 		return false;
8069 	}
8070 
8071 	/* Shouldn't get here; if we do, say it's not safe */
8072 	WARN_ON_ONCE(1);
8073 	return false;
8074 }
8075 
8076 static bool stacksafe(struct bpf_func_state *old,
8077 		      struct bpf_func_state *cur,
8078 		      struct idpair *idmap)
8079 {
8080 	int i, spi;
8081 
8082 	/* walk slots of the explored stack and ignore any additional
8083 	 * slots in the current stack, since explored(safe) state
8084 	 * didn't use them
8085 	 */
8086 	for (i = 0; i < old->allocated_stack; i++) {
8087 		spi = i / BPF_REG_SIZE;
8088 
8089 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
8090 			i += BPF_REG_SIZE - 1;
8091 			/* explored state didn't use this */
8092 			continue;
8093 		}
8094 
8095 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
8096 			continue;
8097 
8098 		/* explored stack has more populated slots than current stack
8099 		 * and these slots were used
8100 		 */
8101 		if (i >= cur->allocated_stack)
8102 			return false;
8103 
8104 		/* if old state was safe with misc data in the stack
8105 		 * it will be safe with zero-initialized stack.
8106 		 * The opposite is not true
8107 		 */
8108 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
8109 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
8110 			continue;
8111 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
8112 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
8113 			/* Ex: old explored (safe) state has STACK_SPILL in
8114 			 * this stack slot, but current has has STACK_MISC ->
8115 			 * this verifier states are not equivalent,
8116 			 * return false to continue verification of this path
8117 			 */
8118 			return false;
8119 		if (i % BPF_REG_SIZE)
8120 			continue;
8121 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
8122 			continue;
8123 		if (!regsafe(&old->stack[spi].spilled_ptr,
8124 			     &cur->stack[spi].spilled_ptr,
8125 			     idmap))
8126 			/* when explored and current stack slot are both storing
8127 			 * spilled registers, check that stored pointers types
8128 			 * are the same as well.
8129 			 * Ex: explored safe path could have stored
8130 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
8131 			 * but current path has stored:
8132 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
8133 			 * such verifier states are not equivalent.
8134 			 * return false to continue verification of this path
8135 			 */
8136 			return false;
8137 	}
8138 	return true;
8139 }
8140 
8141 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
8142 {
8143 	if (old->acquired_refs != cur->acquired_refs)
8144 		return false;
8145 	return !memcmp(old->refs, cur->refs,
8146 		       sizeof(*old->refs) * old->acquired_refs);
8147 }
8148 
8149 /* compare two verifier states
8150  *
8151  * all states stored in state_list are known to be valid, since
8152  * verifier reached 'bpf_exit' instruction through them
8153  *
8154  * this function is called when verifier exploring different branches of
8155  * execution popped from the state stack. If it sees an old state that has
8156  * more strict register state and more strict stack state then this execution
8157  * branch doesn't need to be explored further, since verifier already
8158  * concluded that more strict state leads to valid finish.
8159  *
8160  * Therefore two states are equivalent if register state is more conservative
8161  * and explored stack state is more conservative than the current one.
8162  * Example:
8163  *       explored                   current
8164  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
8165  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
8166  *
8167  * In other words if current stack state (one being explored) has more
8168  * valid slots than old one that already passed validation, it means
8169  * the verifier can stop exploring and conclude that current state is valid too
8170  *
8171  * Similarly with registers. If explored state has register type as invalid
8172  * whereas register type in current state is meaningful, it means that
8173  * the current state will reach 'bpf_exit' instruction safely
8174  */
8175 static bool func_states_equal(struct bpf_func_state *old,
8176 			      struct bpf_func_state *cur)
8177 {
8178 	struct idpair *idmap;
8179 	bool ret = false;
8180 	int i;
8181 
8182 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
8183 	/* If we failed to allocate the idmap, just say it's not safe */
8184 	if (!idmap)
8185 		return false;
8186 
8187 	for (i = 0; i < MAX_BPF_REG; i++) {
8188 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
8189 			goto out_free;
8190 	}
8191 
8192 	if (!stacksafe(old, cur, idmap))
8193 		goto out_free;
8194 
8195 	if (!refsafe(old, cur))
8196 		goto out_free;
8197 	ret = true;
8198 out_free:
8199 	kfree(idmap);
8200 	return ret;
8201 }
8202 
8203 static bool states_equal(struct bpf_verifier_env *env,
8204 			 struct bpf_verifier_state *old,
8205 			 struct bpf_verifier_state *cur)
8206 {
8207 	int i;
8208 
8209 	if (old->curframe != cur->curframe)
8210 		return false;
8211 
8212 	/* Verification state from speculative execution simulation
8213 	 * must never prune a non-speculative execution one.
8214 	 */
8215 	if (old->speculative && !cur->speculative)
8216 		return false;
8217 
8218 	if (old->active_spin_lock != cur->active_spin_lock)
8219 		return false;
8220 
8221 	/* for states to be equal callsites have to be the same
8222 	 * and all frame states need to be equivalent
8223 	 */
8224 	for (i = 0; i <= old->curframe; i++) {
8225 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
8226 			return false;
8227 		if (!func_states_equal(old->frame[i], cur->frame[i]))
8228 			return false;
8229 	}
8230 	return true;
8231 }
8232 
8233 /* Return 0 if no propagation happened. Return negative error code if error
8234  * happened. Otherwise, return the propagated bit.
8235  */
8236 static int propagate_liveness_reg(struct bpf_verifier_env *env,
8237 				  struct bpf_reg_state *reg,
8238 				  struct bpf_reg_state *parent_reg)
8239 {
8240 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
8241 	u8 flag = reg->live & REG_LIVE_READ;
8242 	int err;
8243 
8244 	/* When comes here, read flags of PARENT_REG or REG could be any of
8245 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
8246 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
8247 	 */
8248 	if (parent_flag == REG_LIVE_READ64 ||
8249 	    /* Or if there is no read flag from REG. */
8250 	    !flag ||
8251 	    /* Or if the read flag from REG is the same as PARENT_REG. */
8252 	    parent_flag == flag)
8253 		return 0;
8254 
8255 	err = mark_reg_read(env, reg, parent_reg, flag);
8256 	if (err)
8257 		return err;
8258 
8259 	return flag;
8260 }
8261 
8262 /* A write screens off any subsequent reads; but write marks come from the
8263  * straight-line code between a state and its parent.  When we arrive at an
8264  * equivalent state (jump target or such) we didn't arrive by the straight-line
8265  * code, so read marks in the state must propagate to the parent regardless
8266  * of the state's write marks. That's what 'parent == state->parent' comparison
8267  * in mark_reg_read() is for.
8268  */
8269 static int propagate_liveness(struct bpf_verifier_env *env,
8270 			      const struct bpf_verifier_state *vstate,
8271 			      struct bpf_verifier_state *vparent)
8272 {
8273 	struct bpf_reg_state *state_reg, *parent_reg;
8274 	struct bpf_func_state *state, *parent;
8275 	int i, frame, err = 0;
8276 
8277 	if (vparent->curframe != vstate->curframe) {
8278 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
8279 		     vparent->curframe, vstate->curframe);
8280 		return -EFAULT;
8281 	}
8282 	/* Propagate read liveness of registers... */
8283 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
8284 	for (frame = 0; frame <= vstate->curframe; frame++) {
8285 		parent = vparent->frame[frame];
8286 		state = vstate->frame[frame];
8287 		parent_reg = parent->regs;
8288 		state_reg = state->regs;
8289 		/* We don't need to worry about FP liveness, it's read-only */
8290 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
8291 			err = propagate_liveness_reg(env, &state_reg[i],
8292 						     &parent_reg[i]);
8293 			if (err < 0)
8294 				return err;
8295 			if (err == REG_LIVE_READ64)
8296 				mark_insn_zext(env, &parent_reg[i]);
8297 		}
8298 
8299 		/* Propagate stack slots. */
8300 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
8301 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
8302 			parent_reg = &parent->stack[i].spilled_ptr;
8303 			state_reg = &state->stack[i].spilled_ptr;
8304 			err = propagate_liveness_reg(env, state_reg,
8305 						     parent_reg);
8306 			if (err < 0)
8307 				return err;
8308 		}
8309 	}
8310 	return 0;
8311 }
8312 
8313 /* find precise scalars in the previous equivalent state and
8314  * propagate them into the current state
8315  */
8316 static int propagate_precision(struct bpf_verifier_env *env,
8317 			       const struct bpf_verifier_state *old)
8318 {
8319 	struct bpf_reg_state *state_reg;
8320 	struct bpf_func_state *state;
8321 	int i, err = 0;
8322 
8323 	state = old->frame[old->curframe];
8324 	state_reg = state->regs;
8325 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
8326 		if (state_reg->type != SCALAR_VALUE ||
8327 		    !state_reg->precise)
8328 			continue;
8329 		if (env->log.level & BPF_LOG_LEVEL2)
8330 			verbose(env, "propagating r%d\n", i);
8331 		err = mark_chain_precision(env, i);
8332 		if (err < 0)
8333 			return err;
8334 	}
8335 
8336 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8337 		if (state->stack[i].slot_type[0] != STACK_SPILL)
8338 			continue;
8339 		state_reg = &state->stack[i].spilled_ptr;
8340 		if (state_reg->type != SCALAR_VALUE ||
8341 		    !state_reg->precise)
8342 			continue;
8343 		if (env->log.level & BPF_LOG_LEVEL2)
8344 			verbose(env, "propagating fp%d\n",
8345 				(-i - 1) * BPF_REG_SIZE);
8346 		err = mark_chain_precision_stack(env, i);
8347 		if (err < 0)
8348 			return err;
8349 	}
8350 	return 0;
8351 }
8352 
8353 static bool states_maybe_looping(struct bpf_verifier_state *old,
8354 				 struct bpf_verifier_state *cur)
8355 {
8356 	struct bpf_func_state *fold, *fcur;
8357 	int i, fr = cur->curframe;
8358 
8359 	if (old->curframe != fr)
8360 		return false;
8361 
8362 	fold = old->frame[fr];
8363 	fcur = cur->frame[fr];
8364 	for (i = 0; i < MAX_BPF_REG; i++)
8365 		if (memcmp(&fold->regs[i], &fcur->regs[i],
8366 			   offsetof(struct bpf_reg_state, parent)))
8367 			return false;
8368 	return true;
8369 }
8370 
8371 
8372 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
8373 {
8374 	struct bpf_verifier_state_list *new_sl;
8375 	struct bpf_verifier_state_list *sl, **pprev;
8376 	struct bpf_verifier_state *cur = env->cur_state, *new;
8377 	int i, j, err, states_cnt = 0;
8378 	bool add_new_state = env->test_state_freq ? true : false;
8379 
8380 	cur->last_insn_idx = env->prev_insn_idx;
8381 	if (!env->insn_aux_data[insn_idx].prune_point)
8382 		/* this 'insn_idx' instruction wasn't marked, so we will not
8383 		 * be doing state search here
8384 		 */
8385 		return 0;
8386 
8387 	/* bpf progs typically have pruning point every 4 instructions
8388 	 * http://vger.kernel.org/bpfconf2019.html#session-1
8389 	 * Do not add new state for future pruning if the verifier hasn't seen
8390 	 * at least 2 jumps and at least 8 instructions.
8391 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
8392 	 * In tests that amounts to up to 50% reduction into total verifier
8393 	 * memory consumption and 20% verifier time speedup.
8394 	 */
8395 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
8396 	    env->insn_processed - env->prev_insn_processed >= 8)
8397 		add_new_state = true;
8398 
8399 	pprev = explored_state(env, insn_idx);
8400 	sl = *pprev;
8401 
8402 	clean_live_states(env, insn_idx, cur);
8403 
8404 	while (sl) {
8405 		states_cnt++;
8406 		if (sl->state.insn_idx != insn_idx)
8407 			goto next;
8408 		if (sl->state.branches) {
8409 			if (states_maybe_looping(&sl->state, cur) &&
8410 			    states_equal(env, &sl->state, cur)) {
8411 				verbose_linfo(env, insn_idx, "; ");
8412 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
8413 				return -EINVAL;
8414 			}
8415 			/* if the verifier is processing a loop, avoid adding new state
8416 			 * too often, since different loop iterations have distinct
8417 			 * states and may not help future pruning.
8418 			 * This threshold shouldn't be too low to make sure that
8419 			 * a loop with large bound will be rejected quickly.
8420 			 * The most abusive loop will be:
8421 			 * r1 += 1
8422 			 * if r1 < 1000000 goto pc-2
8423 			 * 1M insn_procssed limit / 100 == 10k peak states.
8424 			 * This threshold shouldn't be too high either, since states
8425 			 * at the end of the loop are likely to be useful in pruning.
8426 			 */
8427 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
8428 			    env->insn_processed - env->prev_insn_processed < 100)
8429 				add_new_state = false;
8430 			goto miss;
8431 		}
8432 		if (states_equal(env, &sl->state, cur)) {
8433 			sl->hit_cnt++;
8434 			/* reached equivalent register/stack state,
8435 			 * prune the search.
8436 			 * Registers read by the continuation are read by us.
8437 			 * If we have any write marks in env->cur_state, they
8438 			 * will prevent corresponding reads in the continuation
8439 			 * from reaching our parent (an explored_state).  Our
8440 			 * own state will get the read marks recorded, but
8441 			 * they'll be immediately forgotten as we're pruning
8442 			 * this state and will pop a new one.
8443 			 */
8444 			err = propagate_liveness(env, &sl->state, cur);
8445 
8446 			/* if previous state reached the exit with precision and
8447 			 * current state is equivalent to it (except precsion marks)
8448 			 * the precision needs to be propagated back in
8449 			 * the current state.
8450 			 */
8451 			err = err ? : push_jmp_history(env, cur);
8452 			err = err ? : propagate_precision(env, &sl->state);
8453 			if (err)
8454 				return err;
8455 			return 1;
8456 		}
8457 miss:
8458 		/* when new state is not going to be added do not increase miss count.
8459 		 * Otherwise several loop iterations will remove the state
8460 		 * recorded earlier. The goal of these heuristics is to have
8461 		 * states from some iterations of the loop (some in the beginning
8462 		 * and some at the end) to help pruning.
8463 		 */
8464 		if (add_new_state)
8465 			sl->miss_cnt++;
8466 		/* heuristic to determine whether this state is beneficial
8467 		 * to keep checking from state equivalence point of view.
8468 		 * Higher numbers increase max_states_per_insn and verification time,
8469 		 * but do not meaningfully decrease insn_processed.
8470 		 */
8471 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
8472 			/* the state is unlikely to be useful. Remove it to
8473 			 * speed up verification
8474 			 */
8475 			*pprev = sl->next;
8476 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
8477 				u32 br = sl->state.branches;
8478 
8479 				WARN_ONCE(br,
8480 					  "BUG live_done but branches_to_explore %d\n",
8481 					  br);
8482 				free_verifier_state(&sl->state, false);
8483 				kfree(sl);
8484 				env->peak_states--;
8485 			} else {
8486 				/* cannot free this state, since parentage chain may
8487 				 * walk it later. Add it for free_list instead to
8488 				 * be freed at the end of verification
8489 				 */
8490 				sl->next = env->free_list;
8491 				env->free_list = sl;
8492 			}
8493 			sl = *pprev;
8494 			continue;
8495 		}
8496 next:
8497 		pprev = &sl->next;
8498 		sl = *pprev;
8499 	}
8500 
8501 	if (env->max_states_per_insn < states_cnt)
8502 		env->max_states_per_insn = states_cnt;
8503 
8504 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
8505 		return push_jmp_history(env, cur);
8506 
8507 	if (!add_new_state)
8508 		return push_jmp_history(env, cur);
8509 
8510 	/* There were no equivalent states, remember the current one.
8511 	 * Technically the current state is not proven to be safe yet,
8512 	 * but it will either reach outer most bpf_exit (which means it's safe)
8513 	 * or it will be rejected. When there are no loops the verifier won't be
8514 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
8515 	 * again on the way to bpf_exit.
8516 	 * When looping the sl->state.branches will be > 0 and this state
8517 	 * will not be considered for equivalence until branches == 0.
8518 	 */
8519 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
8520 	if (!new_sl)
8521 		return -ENOMEM;
8522 	env->total_states++;
8523 	env->peak_states++;
8524 	env->prev_jmps_processed = env->jmps_processed;
8525 	env->prev_insn_processed = env->insn_processed;
8526 
8527 	/* add new state to the head of linked list */
8528 	new = &new_sl->state;
8529 	err = copy_verifier_state(new, cur);
8530 	if (err) {
8531 		free_verifier_state(new, false);
8532 		kfree(new_sl);
8533 		return err;
8534 	}
8535 	new->insn_idx = insn_idx;
8536 	WARN_ONCE(new->branches != 1,
8537 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
8538 
8539 	cur->parent = new;
8540 	cur->first_insn_idx = insn_idx;
8541 	clear_jmp_history(cur);
8542 	new_sl->next = *explored_state(env, insn_idx);
8543 	*explored_state(env, insn_idx) = new_sl;
8544 	/* connect new state to parentage chain. Current frame needs all
8545 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
8546 	 * to the stack implicitly by JITs) so in callers' frames connect just
8547 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
8548 	 * the state of the call instruction (with WRITTEN set), and r0 comes
8549 	 * from callee with its full parentage chain, anyway.
8550 	 */
8551 	/* clear write marks in current state: the writes we did are not writes
8552 	 * our child did, so they don't screen off its reads from us.
8553 	 * (There are no read marks in current state, because reads always mark
8554 	 * their parent and current state never has children yet.  Only
8555 	 * explored_states can get read marks.)
8556 	 */
8557 	for (j = 0; j <= cur->curframe; j++) {
8558 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
8559 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
8560 		for (i = 0; i < BPF_REG_FP; i++)
8561 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
8562 	}
8563 
8564 	/* all stack frames are accessible from callee, clear them all */
8565 	for (j = 0; j <= cur->curframe; j++) {
8566 		struct bpf_func_state *frame = cur->frame[j];
8567 		struct bpf_func_state *newframe = new->frame[j];
8568 
8569 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
8570 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
8571 			frame->stack[i].spilled_ptr.parent =
8572 						&newframe->stack[i].spilled_ptr;
8573 		}
8574 	}
8575 	return 0;
8576 }
8577 
8578 /* Return true if it's OK to have the same insn return a different type. */
8579 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
8580 {
8581 	switch (type) {
8582 	case PTR_TO_CTX:
8583 	case PTR_TO_SOCKET:
8584 	case PTR_TO_SOCKET_OR_NULL:
8585 	case PTR_TO_SOCK_COMMON:
8586 	case PTR_TO_SOCK_COMMON_OR_NULL:
8587 	case PTR_TO_TCP_SOCK:
8588 	case PTR_TO_TCP_SOCK_OR_NULL:
8589 	case PTR_TO_XDP_SOCK:
8590 	case PTR_TO_BTF_ID:
8591 	case PTR_TO_BTF_ID_OR_NULL:
8592 		return false;
8593 	default:
8594 		return true;
8595 	}
8596 }
8597 
8598 /* If an instruction was previously used with particular pointer types, then we
8599  * need to be careful to avoid cases such as the below, where it may be ok
8600  * for one branch accessing the pointer, but not ok for the other branch:
8601  *
8602  * R1 = sock_ptr
8603  * goto X;
8604  * ...
8605  * R1 = some_other_valid_ptr;
8606  * goto X;
8607  * ...
8608  * R2 = *(u32 *)(R1 + 0);
8609  */
8610 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
8611 {
8612 	return src != prev && (!reg_type_mismatch_ok(src) ||
8613 			       !reg_type_mismatch_ok(prev));
8614 }
8615 
8616 static int do_check(struct bpf_verifier_env *env)
8617 {
8618 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
8619 	struct bpf_verifier_state *state = env->cur_state;
8620 	struct bpf_insn *insns = env->prog->insnsi;
8621 	struct bpf_reg_state *regs;
8622 	int insn_cnt = env->prog->len;
8623 	bool do_print_state = false;
8624 	int prev_insn_idx = -1;
8625 
8626 	for (;;) {
8627 		struct bpf_insn *insn;
8628 		u8 class;
8629 		int err;
8630 
8631 		env->prev_insn_idx = prev_insn_idx;
8632 		if (env->insn_idx >= insn_cnt) {
8633 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
8634 				env->insn_idx, insn_cnt);
8635 			return -EFAULT;
8636 		}
8637 
8638 		insn = &insns[env->insn_idx];
8639 		class = BPF_CLASS(insn->code);
8640 
8641 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
8642 			verbose(env,
8643 				"BPF program is too large. Processed %d insn\n",
8644 				env->insn_processed);
8645 			return -E2BIG;
8646 		}
8647 
8648 		err = is_state_visited(env, env->insn_idx);
8649 		if (err < 0)
8650 			return err;
8651 		if (err == 1) {
8652 			/* found equivalent state, can prune the search */
8653 			if (env->log.level & BPF_LOG_LEVEL) {
8654 				if (do_print_state)
8655 					verbose(env, "\nfrom %d to %d%s: safe\n",
8656 						env->prev_insn_idx, env->insn_idx,
8657 						env->cur_state->speculative ?
8658 						" (speculative execution)" : "");
8659 				else
8660 					verbose(env, "%d: safe\n", env->insn_idx);
8661 			}
8662 			goto process_bpf_exit;
8663 		}
8664 
8665 		if (signal_pending(current))
8666 			return -EAGAIN;
8667 
8668 		if (need_resched())
8669 			cond_resched();
8670 
8671 		if (env->log.level & BPF_LOG_LEVEL2 ||
8672 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
8673 			if (env->log.level & BPF_LOG_LEVEL2)
8674 				verbose(env, "%d:", env->insn_idx);
8675 			else
8676 				verbose(env, "\nfrom %d to %d%s:",
8677 					env->prev_insn_idx, env->insn_idx,
8678 					env->cur_state->speculative ?
8679 					" (speculative execution)" : "");
8680 			print_verifier_state(env, state->frame[state->curframe]);
8681 			do_print_state = false;
8682 		}
8683 
8684 		if (env->log.level & BPF_LOG_LEVEL) {
8685 			const struct bpf_insn_cbs cbs = {
8686 				.cb_print	= verbose,
8687 				.private_data	= env,
8688 			};
8689 
8690 			verbose_linfo(env, env->insn_idx, "; ");
8691 			verbose(env, "%d: ", env->insn_idx);
8692 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
8693 		}
8694 
8695 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
8696 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
8697 							   env->prev_insn_idx);
8698 			if (err)
8699 				return err;
8700 		}
8701 
8702 		regs = cur_regs(env);
8703 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
8704 		prev_insn_idx = env->insn_idx;
8705 
8706 		if (class == BPF_ALU || class == BPF_ALU64) {
8707 			err = check_alu_op(env, insn);
8708 			if (err)
8709 				return err;
8710 
8711 		} else if (class == BPF_LDX) {
8712 			enum bpf_reg_type *prev_src_type, src_reg_type;
8713 
8714 			/* check for reserved fields is already done */
8715 
8716 			/* check src operand */
8717 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8718 			if (err)
8719 				return err;
8720 
8721 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8722 			if (err)
8723 				return err;
8724 
8725 			src_reg_type = regs[insn->src_reg].type;
8726 
8727 			/* check that memory (src_reg + off) is readable,
8728 			 * the state of dst_reg will be updated by this func
8729 			 */
8730 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
8731 					       insn->off, BPF_SIZE(insn->code),
8732 					       BPF_READ, insn->dst_reg, false);
8733 			if (err)
8734 				return err;
8735 
8736 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
8737 
8738 			if (*prev_src_type == NOT_INIT) {
8739 				/* saw a valid insn
8740 				 * dst_reg = *(u32 *)(src_reg + off)
8741 				 * save type to validate intersecting paths
8742 				 */
8743 				*prev_src_type = src_reg_type;
8744 
8745 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
8746 				/* ABuser program is trying to use the same insn
8747 				 * dst_reg = *(u32*) (src_reg + off)
8748 				 * with different pointer types:
8749 				 * src_reg == ctx in one branch and
8750 				 * src_reg == stack|map in some other branch.
8751 				 * Reject it.
8752 				 */
8753 				verbose(env, "same insn cannot be used with different pointers\n");
8754 				return -EINVAL;
8755 			}
8756 
8757 		} else if (class == BPF_STX) {
8758 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
8759 
8760 			if (BPF_MODE(insn->code) == BPF_XADD) {
8761 				err = check_xadd(env, env->insn_idx, insn);
8762 				if (err)
8763 					return err;
8764 				env->insn_idx++;
8765 				continue;
8766 			}
8767 
8768 			/* check src1 operand */
8769 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8770 			if (err)
8771 				return err;
8772 			/* check src2 operand */
8773 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8774 			if (err)
8775 				return err;
8776 
8777 			dst_reg_type = regs[insn->dst_reg].type;
8778 
8779 			/* check that memory (dst_reg + off) is writeable */
8780 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
8781 					       insn->off, BPF_SIZE(insn->code),
8782 					       BPF_WRITE, insn->src_reg, false);
8783 			if (err)
8784 				return err;
8785 
8786 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
8787 
8788 			if (*prev_dst_type == NOT_INIT) {
8789 				*prev_dst_type = dst_reg_type;
8790 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
8791 				verbose(env, "same insn cannot be used with different pointers\n");
8792 				return -EINVAL;
8793 			}
8794 
8795 		} else if (class == BPF_ST) {
8796 			if (BPF_MODE(insn->code) != BPF_MEM ||
8797 			    insn->src_reg != BPF_REG_0) {
8798 				verbose(env, "BPF_ST uses reserved fields\n");
8799 				return -EINVAL;
8800 			}
8801 			/* check src operand */
8802 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8803 			if (err)
8804 				return err;
8805 
8806 			if (is_ctx_reg(env, insn->dst_reg)) {
8807 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
8808 					insn->dst_reg,
8809 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
8810 				return -EACCES;
8811 			}
8812 
8813 			/* check that memory (dst_reg + off) is writeable */
8814 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
8815 					       insn->off, BPF_SIZE(insn->code),
8816 					       BPF_WRITE, -1, false);
8817 			if (err)
8818 				return err;
8819 
8820 		} else if (class == BPF_JMP || class == BPF_JMP32) {
8821 			u8 opcode = BPF_OP(insn->code);
8822 
8823 			env->jmps_processed++;
8824 			if (opcode == BPF_CALL) {
8825 				if (BPF_SRC(insn->code) != BPF_K ||
8826 				    insn->off != 0 ||
8827 				    (insn->src_reg != BPF_REG_0 &&
8828 				     insn->src_reg != BPF_PSEUDO_CALL) ||
8829 				    insn->dst_reg != BPF_REG_0 ||
8830 				    class == BPF_JMP32) {
8831 					verbose(env, "BPF_CALL uses reserved fields\n");
8832 					return -EINVAL;
8833 				}
8834 
8835 				if (env->cur_state->active_spin_lock &&
8836 				    (insn->src_reg == BPF_PSEUDO_CALL ||
8837 				     insn->imm != BPF_FUNC_spin_unlock)) {
8838 					verbose(env, "function calls are not allowed while holding a lock\n");
8839 					return -EINVAL;
8840 				}
8841 				if (insn->src_reg == BPF_PSEUDO_CALL)
8842 					err = check_func_call(env, insn, &env->insn_idx);
8843 				else
8844 					err = check_helper_call(env, insn->imm, env->insn_idx);
8845 				if (err)
8846 					return err;
8847 
8848 			} else if (opcode == BPF_JA) {
8849 				if (BPF_SRC(insn->code) != BPF_K ||
8850 				    insn->imm != 0 ||
8851 				    insn->src_reg != BPF_REG_0 ||
8852 				    insn->dst_reg != BPF_REG_0 ||
8853 				    class == BPF_JMP32) {
8854 					verbose(env, "BPF_JA uses reserved fields\n");
8855 					return -EINVAL;
8856 				}
8857 
8858 				env->insn_idx += insn->off + 1;
8859 				continue;
8860 
8861 			} else if (opcode == BPF_EXIT) {
8862 				if (BPF_SRC(insn->code) != BPF_K ||
8863 				    insn->imm != 0 ||
8864 				    insn->src_reg != BPF_REG_0 ||
8865 				    insn->dst_reg != BPF_REG_0 ||
8866 				    class == BPF_JMP32) {
8867 					verbose(env, "BPF_EXIT uses reserved fields\n");
8868 					return -EINVAL;
8869 				}
8870 
8871 				if (env->cur_state->active_spin_lock) {
8872 					verbose(env, "bpf_spin_unlock is missing\n");
8873 					return -EINVAL;
8874 				}
8875 
8876 				if (state->curframe) {
8877 					/* exit from nested function */
8878 					err = prepare_func_exit(env, &env->insn_idx);
8879 					if (err)
8880 						return err;
8881 					do_print_state = true;
8882 					continue;
8883 				}
8884 
8885 				err = check_reference_leak(env);
8886 				if (err)
8887 					return err;
8888 
8889 				err = check_return_code(env);
8890 				if (err)
8891 					return err;
8892 process_bpf_exit:
8893 				update_branch_counts(env, env->cur_state);
8894 				err = pop_stack(env, &prev_insn_idx,
8895 						&env->insn_idx, pop_log);
8896 				if (err < 0) {
8897 					if (err != -ENOENT)
8898 						return err;
8899 					break;
8900 				} else {
8901 					do_print_state = true;
8902 					continue;
8903 				}
8904 			} else {
8905 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
8906 				if (err)
8907 					return err;
8908 			}
8909 		} else if (class == BPF_LD) {
8910 			u8 mode = BPF_MODE(insn->code);
8911 
8912 			if (mode == BPF_ABS || mode == BPF_IND) {
8913 				err = check_ld_abs(env, insn);
8914 				if (err)
8915 					return err;
8916 
8917 			} else if (mode == BPF_IMM) {
8918 				err = check_ld_imm(env, insn);
8919 				if (err)
8920 					return err;
8921 
8922 				env->insn_idx++;
8923 				env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
8924 			} else {
8925 				verbose(env, "invalid BPF_LD mode\n");
8926 				return -EINVAL;
8927 			}
8928 		} else {
8929 			verbose(env, "unknown insn class %d\n", class);
8930 			return -EINVAL;
8931 		}
8932 
8933 		env->insn_idx++;
8934 	}
8935 
8936 	return 0;
8937 }
8938 
8939 static int check_map_prealloc(struct bpf_map *map)
8940 {
8941 	return (map->map_type != BPF_MAP_TYPE_HASH &&
8942 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8943 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
8944 		!(map->map_flags & BPF_F_NO_PREALLOC);
8945 }
8946 
8947 static bool is_tracing_prog_type(enum bpf_prog_type type)
8948 {
8949 	switch (type) {
8950 	case BPF_PROG_TYPE_KPROBE:
8951 	case BPF_PROG_TYPE_TRACEPOINT:
8952 	case BPF_PROG_TYPE_PERF_EVENT:
8953 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
8954 		return true;
8955 	default:
8956 		return false;
8957 	}
8958 }
8959 
8960 static bool is_preallocated_map(struct bpf_map *map)
8961 {
8962 	if (!check_map_prealloc(map))
8963 		return false;
8964 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
8965 		return false;
8966 	return true;
8967 }
8968 
8969 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
8970 					struct bpf_map *map,
8971 					struct bpf_prog *prog)
8972 
8973 {
8974 	/*
8975 	 * Validate that trace type programs use preallocated hash maps.
8976 	 *
8977 	 * For programs attached to PERF events this is mandatory as the
8978 	 * perf NMI can hit any arbitrary code sequence.
8979 	 *
8980 	 * All other trace types using preallocated hash maps are unsafe as
8981 	 * well because tracepoint or kprobes can be inside locked regions
8982 	 * of the memory allocator or at a place where a recursion into the
8983 	 * memory allocator would see inconsistent state.
8984 	 *
8985 	 * On RT enabled kernels run-time allocation of all trace type
8986 	 * programs is strictly prohibited due to lock type constraints. On
8987 	 * !RT kernels it is allowed for backwards compatibility reasons for
8988 	 * now, but warnings are emitted so developers are made aware of
8989 	 * the unsafety and can fix their programs before this is enforced.
8990 	 */
8991 	if (is_tracing_prog_type(prog->type) && !is_preallocated_map(map)) {
8992 		if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
8993 			verbose(env, "perf_event programs can only use preallocated hash map\n");
8994 			return -EINVAL;
8995 		}
8996 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
8997 			verbose(env, "trace type programs can only use preallocated hash map\n");
8998 			return -EINVAL;
8999 		}
9000 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
9001 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
9002 	}
9003 
9004 	if ((is_tracing_prog_type(prog->type) ||
9005 	     prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
9006 	    map_value_has_spin_lock(map)) {
9007 		verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
9008 		return -EINVAL;
9009 	}
9010 
9011 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
9012 	    !bpf_offload_prog_map_match(prog, map)) {
9013 		verbose(env, "offload device mismatch between prog and map\n");
9014 		return -EINVAL;
9015 	}
9016 
9017 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
9018 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
9019 		return -EINVAL;
9020 	}
9021 
9022 	return 0;
9023 }
9024 
9025 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
9026 {
9027 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
9028 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
9029 }
9030 
9031 /* look for pseudo eBPF instructions that access map FDs and
9032  * replace them with actual map pointers
9033  */
9034 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
9035 {
9036 	struct bpf_insn *insn = env->prog->insnsi;
9037 	int insn_cnt = env->prog->len;
9038 	int i, j, err;
9039 
9040 	err = bpf_prog_calc_tag(env->prog);
9041 	if (err)
9042 		return err;
9043 
9044 	for (i = 0; i < insn_cnt; i++, insn++) {
9045 		if (BPF_CLASS(insn->code) == BPF_LDX &&
9046 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9047 			verbose(env, "BPF_LDX uses reserved fields\n");
9048 			return -EINVAL;
9049 		}
9050 
9051 		if (BPF_CLASS(insn->code) == BPF_STX &&
9052 		    ((BPF_MODE(insn->code) != BPF_MEM &&
9053 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
9054 			verbose(env, "BPF_STX uses reserved fields\n");
9055 			return -EINVAL;
9056 		}
9057 
9058 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
9059 			struct bpf_insn_aux_data *aux;
9060 			struct bpf_map *map;
9061 			struct fd f;
9062 			u64 addr;
9063 
9064 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
9065 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
9066 			    insn[1].off != 0) {
9067 				verbose(env, "invalid bpf_ld_imm64 insn\n");
9068 				return -EINVAL;
9069 			}
9070 
9071 			if (insn[0].src_reg == 0)
9072 				/* valid generic load 64-bit imm */
9073 				goto next_insn;
9074 
9075 			/* In final convert_pseudo_ld_imm64() step, this is
9076 			 * converted into regular 64-bit imm load insn.
9077 			 */
9078 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
9079 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
9080 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
9081 			     insn[1].imm != 0)) {
9082 				verbose(env,
9083 					"unrecognized bpf_ld_imm64 insn\n");
9084 				return -EINVAL;
9085 			}
9086 
9087 			f = fdget(insn[0].imm);
9088 			map = __bpf_map_get(f);
9089 			if (IS_ERR(map)) {
9090 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
9091 					insn[0].imm);
9092 				return PTR_ERR(map);
9093 			}
9094 
9095 			err = check_map_prog_compatibility(env, map, env->prog);
9096 			if (err) {
9097 				fdput(f);
9098 				return err;
9099 			}
9100 
9101 			aux = &env->insn_aux_data[i];
9102 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
9103 				addr = (unsigned long)map;
9104 			} else {
9105 				u32 off = insn[1].imm;
9106 
9107 				if (off >= BPF_MAX_VAR_OFF) {
9108 					verbose(env, "direct value offset of %u is not allowed\n", off);
9109 					fdput(f);
9110 					return -EINVAL;
9111 				}
9112 
9113 				if (!map->ops->map_direct_value_addr) {
9114 					verbose(env, "no direct value access support for this map type\n");
9115 					fdput(f);
9116 					return -EINVAL;
9117 				}
9118 
9119 				err = map->ops->map_direct_value_addr(map, &addr, off);
9120 				if (err) {
9121 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
9122 						map->value_size, off);
9123 					fdput(f);
9124 					return err;
9125 				}
9126 
9127 				aux->map_off = off;
9128 				addr += off;
9129 			}
9130 
9131 			insn[0].imm = (u32)addr;
9132 			insn[1].imm = addr >> 32;
9133 
9134 			/* check whether we recorded this map already */
9135 			for (j = 0; j < env->used_map_cnt; j++) {
9136 				if (env->used_maps[j] == map) {
9137 					aux->map_index = j;
9138 					fdput(f);
9139 					goto next_insn;
9140 				}
9141 			}
9142 
9143 			if (env->used_map_cnt >= MAX_USED_MAPS) {
9144 				fdput(f);
9145 				return -E2BIG;
9146 			}
9147 
9148 			/* hold the map. If the program is rejected by verifier,
9149 			 * the map will be released by release_maps() or it
9150 			 * will be used by the valid program until it's unloaded
9151 			 * and all maps are released in free_used_maps()
9152 			 */
9153 			bpf_map_inc(map);
9154 
9155 			aux->map_index = env->used_map_cnt;
9156 			env->used_maps[env->used_map_cnt++] = map;
9157 
9158 			if (bpf_map_is_cgroup_storage(map) &&
9159 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
9160 				verbose(env, "only one cgroup storage of each type is allowed\n");
9161 				fdput(f);
9162 				return -EBUSY;
9163 			}
9164 
9165 			fdput(f);
9166 next_insn:
9167 			insn++;
9168 			i++;
9169 			continue;
9170 		}
9171 
9172 		/* Basic sanity check before we invest more work here. */
9173 		if (!bpf_opcode_in_insntable(insn->code)) {
9174 			verbose(env, "unknown opcode %02x\n", insn->code);
9175 			return -EINVAL;
9176 		}
9177 	}
9178 
9179 	/* now all pseudo BPF_LD_IMM64 instructions load valid
9180 	 * 'struct bpf_map *' into a register instead of user map_fd.
9181 	 * These pointers will be used later by verifier to validate map access.
9182 	 */
9183 	return 0;
9184 }
9185 
9186 /* drop refcnt of maps used by the rejected program */
9187 static void release_maps(struct bpf_verifier_env *env)
9188 {
9189 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
9190 			     env->used_map_cnt);
9191 }
9192 
9193 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
9194 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
9195 {
9196 	struct bpf_insn *insn = env->prog->insnsi;
9197 	int insn_cnt = env->prog->len;
9198 	int i;
9199 
9200 	for (i = 0; i < insn_cnt; i++, insn++)
9201 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
9202 			insn->src_reg = 0;
9203 }
9204 
9205 /* single env->prog->insni[off] instruction was replaced with the range
9206  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
9207  * [0, off) and [off, end) to new locations, so the patched range stays zero
9208  */
9209 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
9210 				struct bpf_prog *new_prog, u32 off, u32 cnt)
9211 {
9212 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
9213 	struct bpf_insn *insn = new_prog->insnsi;
9214 	u32 prog_len;
9215 	int i;
9216 
9217 	/* aux info at OFF always needs adjustment, no matter fast path
9218 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
9219 	 * original insn at old prog.
9220 	 */
9221 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
9222 
9223 	if (cnt == 1)
9224 		return 0;
9225 	prog_len = new_prog->len;
9226 	new_data = vzalloc(array_size(prog_len,
9227 				      sizeof(struct bpf_insn_aux_data)));
9228 	if (!new_data)
9229 		return -ENOMEM;
9230 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
9231 	memcpy(new_data + off + cnt - 1, old_data + off,
9232 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
9233 	for (i = off; i < off + cnt - 1; i++) {
9234 		new_data[i].seen = env->pass_cnt;
9235 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
9236 	}
9237 	env->insn_aux_data = new_data;
9238 	vfree(old_data);
9239 	return 0;
9240 }
9241 
9242 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
9243 {
9244 	int i;
9245 
9246 	if (len == 1)
9247 		return;
9248 	/* NOTE: fake 'exit' subprog should be updated as well. */
9249 	for (i = 0; i <= env->subprog_cnt; i++) {
9250 		if (env->subprog_info[i].start <= off)
9251 			continue;
9252 		env->subprog_info[i].start += len - 1;
9253 	}
9254 }
9255 
9256 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
9257 					    const struct bpf_insn *patch, u32 len)
9258 {
9259 	struct bpf_prog *new_prog;
9260 
9261 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
9262 	if (IS_ERR(new_prog)) {
9263 		if (PTR_ERR(new_prog) == -ERANGE)
9264 			verbose(env,
9265 				"insn %d cannot be patched due to 16-bit range\n",
9266 				env->insn_aux_data[off].orig_idx);
9267 		return NULL;
9268 	}
9269 	if (adjust_insn_aux_data(env, new_prog, off, len))
9270 		return NULL;
9271 	adjust_subprog_starts(env, off, len);
9272 	return new_prog;
9273 }
9274 
9275 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
9276 					      u32 off, u32 cnt)
9277 {
9278 	int i, j;
9279 
9280 	/* find first prog starting at or after off (first to remove) */
9281 	for (i = 0; i < env->subprog_cnt; i++)
9282 		if (env->subprog_info[i].start >= off)
9283 			break;
9284 	/* find first prog starting at or after off + cnt (first to stay) */
9285 	for (j = i; j < env->subprog_cnt; j++)
9286 		if (env->subprog_info[j].start >= off + cnt)
9287 			break;
9288 	/* if j doesn't start exactly at off + cnt, we are just removing
9289 	 * the front of previous prog
9290 	 */
9291 	if (env->subprog_info[j].start != off + cnt)
9292 		j--;
9293 
9294 	if (j > i) {
9295 		struct bpf_prog_aux *aux = env->prog->aux;
9296 		int move;
9297 
9298 		/* move fake 'exit' subprog as well */
9299 		move = env->subprog_cnt + 1 - j;
9300 
9301 		memmove(env->subprog_info + i,
9302 			env->subprog_info + j,
9303 			sizeof(*env->subprog_info) * move);
9304 		env->subprog_cnt -= j - i;
9305 
9306 		/* remove func_info */
9307 		if (aux->func_info) {
9308 			move = aux->func_info_cnt - j;
9309 
9310 			memmove(aux->func_info + i,
9311 				aux->func_info + j,
9312 				sizeof(*aux->func_info) * move);
9313 			aux->func_info_cnt -= j - i;
9314 			/* func_info->insn_off is set after all code rewrites,
9315 			 * in adjust_btf_func() - no need to adjust
9316 			 */
9317 		}
9318 	} else {
9319 		/* convert i from "first prog to remove" to "first to adjust" */
9320 		if (env->subprog_info[i].start == off)
9321 			i++;
9322 	}
9323 
9324 	/* update fake 'exit' subprog as well */
9325 	for (; i <= env->subprog_cnt; i++)
9326 		env->subprog_info[i].start -= cnt;
9327 
9328 	return 0;
9329 }
9330 
9331 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
9332 				      u32 cnt)
9333 {
9334 	struct bpf_prog *prog = env->prog;
9335 	u32 i, l_off, l_cnt, nr_linfo;
9336 	struct bpf_line_info *linfo;
9337 
9338 	nr_linfo = prog->aux->nr_linfo;
9339 	if (!nr_linfo)
9340 		return 0;
9341 
9342 	linfo = prog->aux->linfo;
9343 
9344 	/* find first line info to remove, count lines to be removed */
9345 	for (i = 0; i < nr_linfo; i++)
9346 		if (linfo[i].insn_off >= off)
9347 			break;
9348 
9349 	l_off = i;
9350 	l_cnt = 0;
9351 	for (; i < nr_linfo; i++)
9352 		if (linfo[i].insn_off < off + cnt)
9353 			l_cnt++;
9354 		else
9355 			break;
9356 
9357 	/* First live insn doesn't match first live linfo, it needs to "inherit"
9358 	 * last removed linfo.  prog is already modified, so prog->len == off
9359 	 * means no live instructions after (tail of the program was removed).
9360 	 */
9361 	if (prog->len != off && l_cnt &&
9362 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
9363 		l_cnt--;
9364 		linfo[--i].insn_off = off + cnt;
9365 	}
9366 
9367 	/* remove the line info which refer to the removed instructions */
9368 	if (l_cnt) {
9369 		memmove(linfo + l_off, linfo + i,
9370 			sizeof(*linfo) * (nr_linfo - i));
9371 
9372 		prog->aux->nr_linfo -= l_cnt;
9373 		nr_linfo = prog->aux->nr_linfo;
9374 	}
9375 
9376 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
9377 	for (i = l_off; i < nr_linfo; i++)
9378 		linfo[i].insn_off -= cnt;
9379 
9380 	/* fix up all subprogs (incl. 'exit') which start >= off */
9381 	for (i = 0; i <= env->subprog_cnt; i++)
9382 		if (env->subprog_info[i].linfo_idx > l_off) {
9383 			/* program may have started in the removed region but
9384 			 * may not be fully removed
9385 			 */
9386 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
9387 				env->subprog_info[i].linfo_idx -= l_cnt;
9388 			else
9389 				env->subprog_info[i].linfo_idx = l_off;
9390 		}
9391 
9392 	return 0;
9393 }
9394 
9395 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
9396 {
9397 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9398 	unsigned int orig_prog_len = env->prog->len;
9399 	int err;
9400 
9401 	if (bpf_prog_is_dev_bound(env->prog->aux))
9402 		bpf_prog_offload_remove_insns(env, off, cnt);
9403 
9404 	err = bpf_remove_insns(env->prog, off, cnt);
9405 	if (err)
9406 		return err;
9407 
9408 	err = adjust_subprog_starts_after_remove(env, off, cnt);
9409 	if (err)
9410 		return err;
9411 
9412 	err = bpf_adj_linfo_after_remove(env, off, cnt);
9413 	if (err)
9414 		return err;
9415 
9416 	memmove(aux_data + off,	aux_data + off + cnt,
9417 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
9418 
9419 	return 0;
9420 }
9421 
9422 /* The verifier does more data flow analysis than llvm and will not
9423  * explore branches that are dead at run time. Malicious programs can
9424  * have dead code too. Therefore replace all dead at-run-time code
9425  * with 'ja -1'.
9426  *
9427  * Just nops are not optimal, e.g. if they would sit at the end of the
9428  * program and through another bug we would manage to jump there, then
9429  * we'd execute beyond program memory otherwise. Returning exception
9430  * code also wouldn't work since we can have subprogs where the dead
9431  * code could be located.
9432  */
9433 static void sanitize_dead_code(struct bpf_verifier_env *env)
9434 {
9435 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9436 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
9437 	struct bpf_insn *insn = env->prog->insnsi;
9438 	const int insn_cnt = env->prog->len;
9439 	int i;
9440 
9441 	for (i = 0; i < insn_cnt; i++) {
9442 		if (aux_data[i].seen)
9443 			continue;
9444 		memcpy(insn + i, &trap, sizeof(trap));
9445 	}
9446 }
9447 
9448 static bool insn_is_cond_jump(u8 code)
9449 {
9450 	u8 op;
9451 
9452 	if (BPF_CLASS(code) == BPF_JMP32)
9453 		return true;
9454 
9455 	if (BPF_CLASS(code) != BPF_JMP)
9456 		return false;
9457 
9458 	op = BPF_OP(code);
9459 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
9460 }
9461 
9462 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
9463 {
9464 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9465 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
9466 	struct bpf_insn *insn = env->prog->insnsi;
9467 	const int insn_cnt = env->prog->len;
9468 	int i;
9469 
9470 	for (i = 0; i < insn_cnt; i++, insn++) {
9471 		if (!insn_is_cond_jump(insn->code))
9472 			continue;
9473 
9474 		if (!aux_data[i + 1].seen)
9475 			ja.off = insn->off;
9476 		else if (!aux_data[i + 1 + insn->off].seen)
9477 			ja.off = 0;
9478 		else
9479 			continue;
9480 
9481 		if (bpf_prog_is_dev_bound(env->prog->aux))
9482 			bpf_prog_offload_replace_insn(env, i, &ja);
9483 
9484 		memcpy(insn, &ja, sizeof(ja));
9485 	}
9486 }
9487 
9488 static int opt_remove_dead_code(struct bpf_verifier_env *env)
9489 {
9490 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9491 	int insn_cnt = env->prog->len;
9492 	int i, err;
9493 
9494 	for (i = 0; i < insn_cnt; i++) {
9495 		int j;
9496 
9497 		j = 0;
9498 		while (i + j < insn_cnt && !aux_data[i + j].seen)
9499 			j++;
9500 		if (!j)
9501 			continue;
9502 
9503 		err = verifier_remove_insns(env, i, j);
9504 		if (err)
9505 			return err;
9506 		insn_cnt = env->prog->len;
9507 	}
9508 
9509 	return 0;
9510 }
9511 
9512 static int opt_remove_nops(struct bpf_verifier_env *env)
9513 {
9514 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
9515 	struct bpf_insn *insn = env->prog->insnsi;
9516 	int insn_cnt = env->prog->len;
9517 	int i, err;
9518 
9519 	for (i = 0; i < insn_cnt; i++) {
9520 		if (memcmp(&insn[i], &ja, sizeof(ja)))
9521 			continue;
9522 
9523 		err = verifier_remove_insns(env, i, 1);
9524 		if (err)
9525 			return err;
9526 		insn_cnt--;
9527 		i--;
9528 	}
9529 
9530 	return 0;
9531 }
9532 
9533 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
9534 					 const union bpf_attr *attr)
9535 {
9536 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
9537 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
9538 	int i, patch_len, delta = 0, len = env->prog->len;
9539 	struct bpf_insn *insns = env->prog->insnsi;
9540 	struct bpf_prog *new_prog;
9541 	bool rnd_hi32;
9542 
9543 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
9544 	zext_patch[1] = BPF_ZEXT_REG(0);
9545 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
9546 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
9547 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
9548 	for (i = 0; i < len; i++) {
9549 		int adj_idx = i + delta;
9550 		struct bpf_insn insn;
9551 
9552 		insn = insns[adj_idx];
9553 		if (!aux[adj_idx].zext_dst) {
9554 			u8 code, class;
9555 			u32 imm_rnd;
9556 
9557 			if (!rnd_hi32)
9558 				continue;
9559 
9560 			code = insn.code;
9561 			class = BPF_CLASS(code);
9562 			if (insn_no_def(&insn))
9563 				continue;
9564 
9565 			/* NOTE: arg "reg" (the fourth one) is only used for
9566 			 *       BPF_STX which has been ruled out in above
9567 			 *       check, it is safe to pass NULL here.
9568 			 */
9569 			if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
9570 				if (class == BPF_LD &&
9571 				    BPF_MODE(code) == BPF_IMM)
9572 					i++;
9573 				continue;
9574 			}
9575 
9576 			/* ctx load could be transformed into wider load. */
9577 			if (class == BPF_LDX &&
9578 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
9579 				continue;
9580 
9581 			imm_rnd = get_random_int();
9582 			rnd_hi32_patch[0] = insn;
9583 			rnd_hi32_patch[1].imm = imm_rnd;
9584 			rnd_hi32_patch[3].dst_reg = insn.dst_reg;
9585 			patch = rnd_hi32_patch;
9586 			patch_len = 4;
9587 			goto apply_patch_buffer;
9588 		}
9589 
9590 		if (!bpf_jit_needs_zext())
9591 			continue;
9592 
9593 		zext_patch[0] = insn;
9594 		zext_patch[1].dst_reg = insn.dst_reg;
9595 		zext_patch[1].src_reg = insn.dst_reg;
9596 		patch = zext_patch;
9597 		patch_len = 2;
9598 apply_patch_buffer:
9599 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
9600 		if (!new_prog)
9601 			return -ENOMEM;
9602 		env->prog = new_prog;
9603 		insns = new_prog->insnsi;
9604 		aux = env->insn_aux_data;
9605 		delta += patch_len - 1;
9606 	}
9607 
9608 	return 0;
9609 }
9610 
9611 /* convert load instructions that access fields of a context type into a
9612  * sequence of instructions that access fields of the underlying structure:
9613  *     struct __sk_buff    -> struct sk_buff
9614  *     struct bpf_sock_ops -> struct sock
9615  */
9616 static int convert_ctx_accesses(struct bpf_verifier_env *env)
9617 {
9618 	const struct bpf_verifier_ops *ops = env->ops;
9619 	int i, cnt, size, ctx_field_size, delta = 0;
9620 	const int insn_cnt = env->prog->len;
9621 	struct bpf_insn insn_buf[16], *insn;
9622 	u32 target_size, size_default, off;
9623 	struct bpf_prog *new_prog;
9624 	enum bpf_access_type type;
9625 	bool is_narrower_load;
9626 
9627 	if (ops->gen_prologue || env->seen_direct_write) {
9628 		if (!ops->gen_prologue) {
9629 			verbose(env, "bpf verifier is misconfigured\n");
9630 			return -EINVAL;
9631 		}
9632 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
9633 					env->prog);
9634 		if (cnt >= ARRAY_SIZE(insn_buf)) {
9635 			verbose(env, "bpf verifier is misconfigured\n");
9636 			return -EINVAL;
9637 		} else if (cnt) {
9638 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
9639 			if (!new_prog)
9640 				return -ENOMEM;
9641 
9642 			env->prog = new_prog;
9643 			delta += cnt - 1;
9644 		}
9645 	}
9646 
9647 	if (bpf_prog_is_dev_bound(env->prog->aux))
9648 		return 0;
9649 
9650 	insn = env->prog->insnsi + delta;
9651 
9652 	for (i = 0; i < insn_cnt; i++, insn++) {
9653 		bpf_convert_ctx_access_t convert_ctx_access;
9654 
9655 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
9656 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
9657 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
9658 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
9659 			type = BPF_READ;
9660 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
9661 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
9662 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
9663 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
9664 			type = BPF_WRITE;
9665 		else
9666 			continue;
9667 
9668 		if (type == BPF_WRITE &&
9669 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
9670 			struct bpf_insn patch[] = {
9671 				/* Sanitize suspicious stack slot with zero.
9672 				 * There are no memory dependencies for this store,
9673 				 * since it's only using frame pointer and immediate
9674 				 * constant of zero
9675 				 */
9676 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
9677 					   env->insn_aux_data[i + delta].sanitize_stack_off,
9678 					   0),
9679 				/* the original STX instruction will immediately
9680 				 * overwrite the same stack slot with appropriate value
9681 				 */
9682 				*insn,
9683 			};
9684 
9685 			cnt = ARRAY_SIZE(patch);
9686 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
9687 			if (!new_prog)
9688 				return -ENOMEM;
9689 
9690 			delta    += cnt - 1;
9691 			env->prog = new_prog;
9692 			insn      = new_prog->insnsi + i + delta;
9693 			continue;
9694 		}
9695 
9696 		switch (env->insn_aux_data[i + delta].ptr_type) {
9697 		case PTR_TO_CTX:
9698 			if (!ops->convert_ctx_access)
9699 				continue;
9700 			convert_ctx_access = ops->convert_ctx_access;
9701 			break;
9702 		case PTR_TO_SOCKET:
9703 		case PTR_TO_SOCK_COMMON:
9704 			convert_ctx_access = bpf_sock_convert_ctx_access;
9705 			break;
9706 		case PTR_TO_TCP_SOCK:
9707 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
9708 			break;
9709 		case PTR_TO_XDP_SOCK:
9710 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
9711 			break;
9712 		case PTR_TO_BTF_ID:
9713 			if (type == BPF_READ) {
9714 				insn->code = BPF_LDX | BPF_PROBE_MEM |
9715 					BPF_SIZE((insn)->code);
9716 				env->prog->aux->num_exentries++;
9717 			} else if (env->prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9718 				verbose(env, "Writes through BTF pointers are not allowed\n");
9719 				return -EINVAL;
9720 			}
9721 			continue;
9722 		default:
9723 			continue;
9724 		}
9725 
9726 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
9727 		size = BPF_LDST_BYTES(insn);
9728 
9729 		/* If the read access is a narrower load of the field,
9730 		 * convert to a 4/8-byte load, to minimum program type specific
9731 		 * convert_ctx_access changes. If conversion is successful,
9732 		 * we will apply proper mask to the result.
9733 		 */
9734 		is_narrower_load = size < ctx_field_size;
9735 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
9736 		off = insn->off;
9737 		if (is_narrower_load) {
9738 			u8 size_code;
9739 
9740 			if (type == BPF_WRITE) {
9741 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
9742 				return -EINVAL;
9743 			}
9744 
9745 			size_code = BPF_H;
9746 			if (ctx_field_size == 4)
9747 				size_code = BPF_W;
9748 			else if (ctx_field_size == 8)
9749 				size_code = BPF_DW;
9750 
9751 			insn->off = off & ~(size_default - 1);
9752 			insn->code = BPF_LDX | BPF_MEM | size_code;
9753 		}
9754 
9755 		target_size = 0;
9756 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
9757 					 &target_size);
9758 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
9759 		    (ctx_field_size && !target_size)) {
9760 			verbose(env, "bpf verifier is misconfigured\n");
9761 			return -EINVAL;
9762 		}
9763 
9764 		if (is_narrower_load && size < target_size) {
9765 			u8 shift = bpf_ctx_narrow_access_offset(
9766 				off, size, size_default) * 8;
9767 			if (ctx_field_size <= 4) {
9768 				if (shift)
9769 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
9770 									insn->dst_reg,
9771 									shift);
9772 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
9773 								(1 << size * 8) - 1);
9774 			} else {
9775 				if (shift)
9776 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
9777 									insn->dst_reg,
9778 									shift);
9779 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
9780 								(1ULL << size * 8) - 1);
9781 			}
9782 		}
9783 
9784 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9785 		if (!new_prog)
9786 			return -ENOMEM;
9787 
9788 		delta += cnt - 1;
9789 
9790 		/* keep walking new program and skip insns we just inserted */
9791 		env->prog = new_prog;
9792 		insn      = new_prog->insnsi + i + delta;
9793 	}
9794 
9795 	return 0;
9796 }
9797 
9798 static int jit_subprogs(struct bpf_verifier_env *env)
9799 {
9800 	struct bpf_prog *prog = env->prog, **func, *tmp;
9801 	int i, j, subprog_start, subprog_end = 0, len, subprog;
9802 	struct bpf_insn *insn;
9803 	void *old_bpf_func;
9804 	int err;
9805 
9806 	if (env->subprog_cnt <= 1)
9807 		return 0;
9808 
9809 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9810 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9811 		    insn->src_reg != BPF_PSEUDO_CALL)
9812 			continue;
9813 		/* Upon error here we cannot fall back to interpreter but
9814 		 * need a hard reject of the program. Thus -EFAULT is
9815 		 * propagated in any case.
9816 		 */
9817 		subprog = find_subprog(env, i + insn->imm + 1);
9818 		if (subprog < 0) {
9819 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
9820 				  i + insn->imm + 1);
9821 			return -EFAULT;
9822 		}
9823 		/* temporarily remember subprog id inside insn instead of
9824 		 * aux_data, since next loop will split up all insns into funcs
9825 		 */
9826 		insn->off = subprog;
9827 		/* remember original imm in case JIT fails and fallback
9828 		 * to interpreter will be needed
9829 		 */
9830 		env->insn_aux_data[i].call_imm = insn->imm;
9831 		/* point imm to __bpf_call_base+1 from JITs point of view */
9832 		insn->imm = 1;
9833 	}
9834 
9835 	err = bpf_prog_alloc_jited_linfo(prog);
9836 	if (err)
9837 		goto out_undo_insn;
9838 
9839 	err = -ENOMEM;
9840 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
9841 	if (!func)
9842 		goto out_undo_insn;
9843 
9844 	for (i = 0; i < env->subprog_cnt; i++) {
9845 		subprog_start = subprog_end;
9846 		subprog_end = env->subprog_info[i + 1].start;
9847 
9848 		len = subprog_end - subprog_start;
9849 		/* BPF_PROG_RUN doesn't call subprogs directly,
9850 		 * hence main prog stats include the runtime of subprogs.
9851 		 * subprogs don't have IDs and not reachable via prog_get_next_id
9852 		 * func[i]->aux->stats will never be accessed and stays NULL
9853 		 */
9854 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
9855 		if (!func[i])
9856 			goto out_free;
9857 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
9858 		       len * sizeof(struct bpf_insn));
9859 		func[i]->type = prog->type;
9860 		func[i]->len = len;
9861 		if (bpf_prog_calc_tag(func[i]))
9862 			goto out_free;
9863 		func[i]->is_func = 1;
9864 		func[i]->aux->func_idx = i;
9865 		/* the btf and func_info will be freed only at prog->aux */
9866 		func[i]->aux->btf = prog->aux->btf;
9867 		func[i]->aux->func_info = prog->aux->func_info;
9868 
9869 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
9870 		 * Long term would need debug info to populate names
9871 		 */
9872 		func[i]->aux->name[0] = 'F';
9873 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
9874 		func[i]->jit_requested = 1;
9875 		func[i]->aux->linfo = prog->aux->linfo;
9876 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
9877 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
9878 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
9879 		func[i] = bpf_int_jit_compile(func[i]);
9880 		if (!func[i]->jited) {
9881 			err = -ENOTSUPP;
9882 			goto out_free;
9883 		}
9884 		cond_resched();
9885 	}
9886 	/* at this point all bpf functions were successfully JITed
9887 	 * now populate all bpf_calls with correct addresses and
9888 	 * run last pass of JIT
9889 	 */
9890 	for (i = 0; i < env->subprog_cnt; i++) {
9891 		insn = func[i]->insnsi;
9892 		for (j = 0; j < func[i]->len; j++, insn++) {
9893 			if (insn->code != (BPF_JMP | BPF_CALL) ||
9894 			    insn->src_reg != BPF_PSEUDO_CALL)
9895 				continue;
9896 			subprog = insn->off;
9897 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
9898 				    __bpf_call_base;
9899 		}
9900 
9901 		/* we use the aux data to keep a list of the start addresses
9902 		 * of the JITed images for each function in the program
9903 		 *
9904 		 * for some architectures, such as powerpc64, the imm field
9905 		 * might not be large enough to hold the offset of the start
9906 		 * address of the callee's JITed image from __bpf_call_base
9907 		 *
9908 		 * in such cases, we can lookup the start address of a callee
9909 		 * by using its subprog id, available from the off field of
9910 		 * the call instruction, as an index for this list
9911 		 */
9912 		func[i]->aux->func = func;
9913 		func[i]->aux->func_cnt = env->subprog_cnt;
9914 	}
9915 	for (i = 0; i < env->subprog_cnt; i++) {
9916 		old_bpf_func = func[i]->bpf_func;
9917 		tmp = bpf_int_jit_compile(func[i]);
9918 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
9919 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
9920 			err = -ENOTSUPP;
9921 			goto out_free;
9922 		}
9923 		cond_resched();
9924 	}
9925 
9926 	/* finally lock prog and jit images for all functions and
9927 	 * populate kallsysm
9928 	 */
9929 	for (i = 0; i < env->subprog_cnt; i++) {
9930 		bpf_prog_lock_ro(func[i]);
9931 		bpf_prog_kallsyms_add(func[i]);
9932 	}
9933 
9934 	/* Last step: make now unused interpreter insns from main
9935 	 * prog consistent for later dump requests, so they can
9936 	 * later look the same as if they were interpreted only.
9937 	 */
9938 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9939 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9940 		    insn->src_reg != BPF_PSEUDO_CALL)
9941 			continue;
9942 		insn->off = env->insn_aux_data[i].call_imm;
9943 		subprog = find_subprog(env, i + insn->off + 1);
9944 		insn->imm = subprog;
9945 	}
9946 
9947 	prog->jited = 1;
9948 	prog->bpf_func = func[0]->bpf_func;
9949 	prog->aux->func = func;
9950 	prog->aux->func_cnt = env->subprog_cnt;
9951 	bpf_prog_free_unused_jited_linfo(prog);
9952 	return 0;
9953 out_free:
9954 	for (i = 0; i < env->subprog_cnt; i++)
9955 		if (func[i])
9956 			bpf_jit_free(func[i]);
9957 	kfree(func);
9958 out_undo_insn:
9959 	/* cleanup main prog to be interpreted */
9960 	prog->jit_requested = 0;
9961 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9962 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9963 		    insn->src_reg != BPF_PSEUDO_CALL)
9964 			continue;
9965 		insn->off = 0;
9966 		insn->imm = env->insn_aux_data[i].call_imm;
9967 	}
9968 	bpf_prog_free_jited_linfo(prog);
9969 	return err;
9970 }
9971 
9972 static int fixup_call_args(struct bpf_verifier_env *env)
9973 {
9974 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
9975 	struct bpf_prog *prog = env->prog;
9976 	struct bpf_insn *insn = prog->insnsi;
9977 	int i, depth;
9978 #endif
9979 	int err = 0;
9980 
9981 	if (env->prog->jit_requested &&
9982 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
9983 		err = jit_subprogs(env);
9984 		if (err == 0)
9985 			return 0;
9986 		if (err == -EFAULT)
9987 			return err;
9988 	}
9989 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
9990 	for (i = 0; i < prog->len; i++, insn++) {
9991 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9992 		    insn->src_reg != BPF_PSEUDO_CALL)
9993 			continue;
9994 		depth = get_callee_stack_depth(env, insn, i);
9995 		if (depth < 0)
9996 			return depth;
9997 		bpf_patch_call_args(insn, depth);
9998 	}
9999 	err = 0;
10000 #endif
10001 	return err;
10002 }
10003 
10004 /* fixup insn->imm field of bpf_call instructions
10005  * and inline eligible helpers as explicit sequence of BPF instructions
10006  *
10007  * this function is called after eBPF program passed verification
10008  */
10009 static int fixup_bpf_calls(struct bpf_verifier_env *env)
10010 {
10011 	struct bpf_prog *prog = env->prog;
10012 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
10013 	struct bpf_insn *insn = prog->insnsi;
10014 	const struct bpf_func_proto *fn;
10015 	const int insn_cnt = prog->len;
10016 	const struct bpf_map_ops *ops;
10017 	struct bpf_insn_aux_data *aux;
10018 	struct bpf_insn insn_buf[16];
10019 	struct bpf_prog *new_prog;
10020 	struct bpf_map *map_ptr;
10021 	int i, ret, cnt, delta = 0;
10022 
10023 	for (i = 0; i < insn_cnt; i++, insn++) {
10024 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
10025 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
10026 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
10027 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
10028 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
10029 			struct bpf_insn mask_and_div[] = {
10030 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
10031 				/* Rx div 0 -> 0 */
10032 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
10033 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
10034 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
10035 				*insn,
10036 			};
10037 			struct bpf_insn mask_and_mod[] = {
10038 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
10039 				/* Rx mod 0 -> Rx */
10040 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
10041 				*insn,
10042 			};
10043 			struct bpf_insn *patchlet;
10044 
10045 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
10046 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
10047 				patchlet = mask_and_div + (is64 ? 1 : 0);
10048 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
10049 			} else {
10050 				patchlet = mask_and_mod + (is64 ? 1 : 0);
10051 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
10052 			}
10053 
10054 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
10055 			if (!new_prog)
10056 				return -ENOMEM;
10057 
10058 			delta    += cnt - 1;
10059 			env->prog = prog = new_prog;
10060 			insn      = new_prog->insnsi + i + delta;
10061 			continue;
10062 		}
10063 
10064 		if (BPF_CLASS(insn->code) == BPF_LD &&
10065 		    (BPF_MODE(insn->code) == BPF_ABS ||
10066 		     BPF_MODE(insn->code) == BPF_IND)) {
10067 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
10068 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
10069 				verbose(env, "bpf verifier is misconfigured\n");
10070 				return -EINVAL;
10071 			}
10072 
10073 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10074 			if (!new_prog)
10075 				return -ENOMEM;
10076 
10077 			delta    += cnt - 1;
10078 			env->prog = prog = new_prog;
10079 			insn      = new_prog->insnsi + i + delta;
10080 			continue;
10081 		}
10082 
10083 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
10084 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
10085 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
10086 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
10087 			struct bpf_insn insn_buf[16];
10088 			struct bpf_insn *patch = &insn_buf[0];
10089 			bool issrc, isneg;
10090 			u32 off_reg;
10091 
10092 			aux = &env->insn_aux_data[i + delta];
10093 			if (!aux->alu_state ||
10094 			    aux->alu_state == BPF_ALU_NON_POINTER)
10095 				continue;
10096 
10097 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
10098 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
10099 				BPF_ALU_SANITIZE_SRC;
10100 
10101 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
10102 			if (isneg)
10103 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
10104 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
10105 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
10106 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
10107 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
10108 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
10109 			if (issrc) {
10110 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
10111 							 off_reg);
10112 				insn->src_reg = BPF_REG_AX;
10113 			} else {
10114 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
10115 							 BPF_REG_AX);
10116 			}
10117 			if (isneg)
10118 				insn->code = insn->code == code_add ?
10119 					     code_sub : code_add;
10120 			*patch++ = *insn;
10121 			if (issrc && isneg)
10122 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
10123 			cnt = patch - insn_buf;
10124 
10125 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10126 			if (!new_prog)
10127 				return -ENOMEM;
10128 
10129 			delta    += cnt - 1;
10130 			env->prog = prog = new_prog;
10131 			insn      = new_prog->insnsi + i + delta;
10132 			continue;
10133 		}
10134 
10135 		if (insn->code != (BPF_JMP | BPF_CALL))
10136 			continue;
10137 		if (insn->src_reg == BPF_PSEUDO_CALL)
10138 			continue;
10139 
10140 		if (insn->imm == BPF_FUNC_get_route_realm)
10141 			prog->dst_needed = 1;
10142 		if (insn->imm == BPF_FUNC_get_prandom_u32)
10143 			bpf_user_rnd_init_once();
10144 		if (insn->imm == BPF_FUNC_override_return)
10145 			prog->kprobe_override = 1;
10146 		if (insn->imm == BPF_FUNC_tail_call) {
10147 			/* If we tail call into other programs, we
10148 			 * cannot make any assumptions since they can
10149 			 * be replaced dynamically during runtime in
10150 			 * the program array.
10151 			 */
10152 			prog->cb_access = 1;
10153 			env->prog->aux->stack_depth = MAX_BPF_STACK;
10154 			env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
10155 
10156 			/* mark bpf_tail_call as different opcode to avoid
10157 			 * conditional branch in the interpeter for every normal
10158 			 * call and to prevent accidental JITing by JIT compiler
10159 			 * that doesn't support bpf_tail_call yet
10160 			 */
10161 			insn->imm = 0;
10162 			insn->code = BPF_JMP | BPF_TAIL_CALL;
10163 
10164 			aux = &env->insn_aux_data[i + delta];
10165 			if (env->bpf_capable && !expect_blinding &&
10166 			    prog->jit_requested &&
10167 			    !bpf_map_key_poisoned(aux) &&
10168 			    !bpf_map_ptr_poisoned(aux) &&
10169 			    !bpf_map_ptr_unpriv(aux)) {
10170 				struct bpf_jit_poke_descriptor desc = {
10171 					.reason = BPF_POKE_REASON_TAIL_CALL,
10172 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
10173 					.tail_call.key = bpf_map_key_immediate(aux),
10174 				};
10175 
10176 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
10177 				if (ret < 0) {
10178 					verbose(env, "adding tail call poke descriptor failed\n");
10179 					return ret;
10180 				}
10181 
10182 				insn->imm = ret + 1;
10183 				continue;
10184 			}
10185 
10186 			if (!bpf_map_ptr_unpriv(aux))
10187 				continue;
10188 
10189 			/* instead of changing every JIT dealing with tail_call
10190 			 * emit two extra insns:
10191 			 * if (index >= max_entries) goto out;
10192 			 * index &= array->index_mask;
10193 			 * to avoid out-of-bounds cpu speculation
10194 			 */
10195 			if (bpf_map_ptr_poisoned(aux)) {
10196 				verbose(env, "tail_call abusing map_ptr\n");
10197 				return -EINVAL;
10198 			}
10199 
10200 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
10201 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
10202 						  map_ptr->max_entries, 2);
10203 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
10204 						    container_of(map_ptr,
10205 								 struct bpf_array,
10206 								 map)->index_mask);
10207 			insn_buf[2] = *insn;
10208 			cnt = 3;
10209 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10210 			if (!new_prog)
10211 				return -ENOMEM;
10212 
10213 			delta    += cnt - 1;
10214 			env->prog = prog = new_prog;
10215 			insn      = new_prog->insnsi + i + delta;
10216 			continue;
10217 		}
10218 
10219 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
10220 		 * and other inlining handlers are currently limited to 64 bit
10221 		 * only.
10222 		 */
10223 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
10224 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
10225 		     insn->imm == BPF_FUNC_map_update_elem ||
10226 		     insn->imm == BPF_FUNC_map_delete_elem ||
10227 		     insn->imm == BPF_FUNC_map_push_elem   ||
10228 		     insn->imm == BPF_FUNC_map_pop_elem    ||
10229 		     insn->imm == BPF_FUNC_map_peek_elem)) {
10230 			aux = &env->insn_aux_data[i + delta];
10231 			if (bpf_map_ptr_poisoned(aux))
10232 				goto patch_call_imm;
10233 
10234 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
10235 			ops = map_ptr->ops;
10236 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
10237 			    ops->map_gen_lookup) {
10238 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
10239 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
10240 					verbose(env, "bpf verifier is misconfigured\n");
10241 					return -EINVAL;
10242 				}
10243 
10244 				new_prog = bpf_patch_insn_data(env, i + delta,
10245 							       insn_buf, cnt);
10246 				if (!new_prog)
10247 					return -ENOMEM;
10248 
10249 				delta    += cnt - 1;
10250 				env->prog = prog = new_prog;
10251 				insn      = new_prog->insnsi + i + delta;
10252 				continue;
10253 			}
10254 
10255 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
10256 				     (void *(*)(struct bpf_map *map, void *key))NULL));
10257 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
10258 				     (int (*)(struct bpf_map *map, void *key))NULL));
10259 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
10260 				     (int (*)(struct bpf_map *map, void *key, void *value,
10261 					      u64 flags))NULL));
10262 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
10263 				     (int (*)(struct bpf_map *map, void *value,
10264 					      u64 flags))NULL));
10265 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
10266 				     (int (*)(struct bpf_map *map, void *value))NULL));
10267 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
10268 				     (int (*)(struct bpf_map *map, void *value))NULL));
10269 
10270 			switch (insn->imm) {
10271 			case BPF_FUNC_map_lookup_elem:
10272 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
10273 					    __bpf_call_base;
10274 				continue;
10275 			case BPF_FUNC_map_update_elem:
10276 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
10277 					    __bpf_call_base;
10278 				continue;
10279 			case BPF_FUNC_map_delete_elem:
10280 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
10281 					    __bpf_call_base;
10282 				continue;
10283 			case BPF_FUNC_map_push_elem:
10284 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
10285 					    __bpf_call_base;
10286 				continue;
10287 			case BPF_FUNC_map_pop_elem:
10288 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
10289 					    __bpf_call_base;
10290 				continue;
10291 			case BPF_FUNC_map_peek_elem:
10292 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
10293 					    __bpf_call_base;
10294 				continue;
10295 			}
10296 
10297 			goto patch_call_imm;
10298 		}
10299 
10300 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
10301 		    insn->imm == BPF_FUNC_jiffies64) {
10302 			struct bpf_insn ld_jiffies_addr[2] = {
10303 				BPF_LD_IMM64(BPF_REG_0,
10304 					     (unsigned long)&jiffies),
10305 			};
10306 
10307 			insn_buf[0] = ld_jiffies_addr[0];
10308 			insn_buf[1] = ld_jiffies_addr[1];
10309 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
10310 						  BPF_REG_0, 0);
10311 			cnt = 3;
10312 
10313 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
10314 						       cnt);
10315 			if (!new_prog)
10316 				return -ENOMEM;
10317 
10318 			delta    += cnt - 1;
10319 			env->prog = prog = new_prog;
10320 			insn      = new_prog->insnsi + i + delta;
10321 			continue;
10322 		}
10323 
10324 patch_call_imm:
10325 		fn = env->ops->get_func_proto(insn->imm, env->prog);
10326 		/* all functions that have prototype and verifier allowed
10327 		 * programs to call them, must be real in-kernel functions
10328 		 */
10329 		if (!fn->func) {
10330 			verbose(env,
10331 				"kernel subsystem misconfigured func %s#%d\n",
10332 				func_id_name(insn->imm), insn->imm);
10333 			return -EFAULT;
10334 		}
10335 		insn->imm = fn->func - __bpf_call_base;
10336 	}
10337 
10338 	/* Since poke tab is now finalized, publish aux to tracker. */
10339 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
10340 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
10341 		if (!map_ptr->ops->map_poke_track ||
10342 		    !map_ptr->ops->map_poke_untrack ||
10343 		    !map_ptr->ops->map_poke_run) {
10344 			verbose(env, "bpf verifier is misconfigured\n");
10345 			return -EINVAL;
10346 		}
10347 
10348 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
10349 		if (ret < 0) {
10350 			verbose(env, "tracking tail call prog failed\n");
10351 			return ret;
10352 		}
10353 	}
10354 
10355 	return 0;
10356 }
10357 
10358 static void free_states(struct bpf_verifier_env *env)
10359 {
10360 	struct bpf_verifier_state_list *sl, *sln;
10361 	int i;
10362 
10363 	sl = env->free_list;
10364 	while (sl) {
10365 		sln = sl->next;
10366 		free_verifier_state(&sl->state, false);
10367 		kfree(sl);
10368 		sl = sln;
10369 	}
10370 	env->free_list = NULL;
10371 
10372 	if (!env->explored_states)
10373 		return;
10374 
10375 	for (i = 0; i < state_htab_size(env); i++) {
10376 		sl = env->explored_states[i];
10377 
10378 		while (sl) {
10379 			sln = sl->next;
10380 			free_verifier_state(&sl->state, false);
10381 			kfree(sl);
10382 			sl = sln;
10383 		}
10384 		env->explored_states[i] = NULL;
10385 	}
10386 }
10387 
10388 /* The verifier is using insn_aux_data[] to store temporary data during
10389  * verification and to store information for passes that run after the
10390  * verification like dead code sanitization. do_check_common() for subprogram N
10391  * may analyze many other subprograms. sanitize_insn_aux_data() clears all
10392  * temporary data after do_check_common() finds that subprogram N cannot be
10393  * verified independently. pass_cnt counts the number of times
10394  * do_check_common() was run and insn->aux->seen tells the pass number
10395  * insn_aux_data was touched. These variables are compared to clear temporary
10396  * data from failed pass. For testing and experiments do_check_common() can be
10397  * run multiple times even when prior attempt to verify is unsuccessful.
10398  */
10399 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
10400 {
10401 	struct bpf_insn *insn = env->prog->insnsi;
10402 	struct bpf_insn_aux_data *aux;
10403 	int i, class;
10404 
10405 	for (i = 0; i < env->prog->len; i++) {
10406 		class = BPF_CLASS(insn[i].code);
10407 		if (class != BPF_LDX && class != BPF_STX)
10408 			continue;
10409 		aux = &env->insn_aux_data[i];
10410 		if (aux->seen != env->pass_cnt)
10411 			continue;
10412 		memset(aux, 0, offsetof(typeof(*aux), orig_idx));
10413 	}
10414 }
10415 
10416 static int do_check_common(struct bpf_verifier_env *env, int subprog)
10417 {
10418 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
10419 	struct bpf_verifier_state *state;
10420 	struct bpf_reg_state *regs;
10421 	int ret, i;
10422 
10423 	env->prev_linfo = NULL;
10424 	env->pass_cnt++;
10425 
10426 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
10427 	if (!state)
10428 		return -ENOMEM;
10429 	state->curframe = 0;
10430 	state->speculative = false;
10431 	state->branches = 1;
10432 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
10433 	if (!state->frame[0]) {
10434 		kfree(state);
10435 		return -ENOMEM;
10436 	}
10437 	env->cur_state = state;
10438 	init_func_state(env, state->frame[0],
10439 			BPF_MAIN_FUNC /* callsite */,
10440 			0 /* frameno */,
10441 			subprog);
10442 
10443 	regs = state->frame[state->curframe]->regs;
10444 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
10445 		ret = btf_prepare_func_args(env, subprog, regs);
10446 		if (ret)
10447 			goto out;
10448 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
10449 			if (regs[i].type == PTR_TO_CTX)
10450 				mark_reg_known_zero(env, regs, i);
10451 			else if (regs[i].type == SCALAR_VALUE)
10452 				mark_reg_unknown(env, regs, i);
10453 		}
10454 	} else {
10455 		/* 1st arg to a function */
10456 		regs[BPF_REG_1].type = PTR_TO_CTX;
10457 		mark_reg_known_zero(env, regs, BPF_REG_1);
10458 		ret = btf_check_func_arg_match(env, subprog, regs);
10459 		if (ret == -EFAULT)
10460 			/* unlikely verifier bug. abort.
10461 			 * ret == 0 and ret < 0 are sadly acceptable for
10462 			 * main() function due to backward compatibility.
10463 			 * Like socket filter program may be written as:
10464 			 * int bpf_prog(struct pt_regs *ctx)
10465 			 * and never dereference that ctx in the program.
10466 			 * 'struct pt_regs' is a type mismatch for socket
10467 			 * filter that should be using 'struct __sk_buff'.
10468 			 */
10469 			goto out;
10470 	}
10471 
10472 	ret = do_check(env);
10473 out:
10474 	/* check for NULL is necessary, since cur_state can be freed inside
10475 	 * do_check() under memory pressure.
10476 	 */
10477 	if (env->cur_state) {
10478 		free_verifier_state(env->cur_state, true);
10479 		env->cur_state = NULL;
10480 	}
10481 	while (!pop_stack(env, NULL, NULL, false));
10482 	if (!ret && pop_log)
10483 		bpf_vlog_reset(&env->log, 0);
10484 	free_states(env);
10485 	if (ret)
10486 		/* clean aux data in case subprog was rejected */
10487 		sanitize_insn_aux_data(env);
10488 	return ret;
10489 }
10490 
10491 /* Verify all global functions in a BPF program one by one based on their BTF.
10492  * All global functions must pass verification. Otherwise the whole program is rejected.
10493  * Consider:
10494  * int bar(int);
10495  * int foo(int f)
10496  * {
10497  *    return bar(f);
10498  * }
10499  * int bar(int b)
10500  * {
10501  *    ...
10502  * }
10503  * foo() will be verified first for R1=any_scalar_value. During verification it
10504  * will be assumed that bar() already verified successfully and call to bar()
10505  * from foo() will be checked for type match only. Later bar() will be verified
10506  * independently to check that it's safe for R1=any_scalar_value.
10507  */
10508 static int do_check_subprogs(struct bpf_verifier_env *env)
10509 {
10510 	struct bpf_prog_aux *aux = env->prog->aux;
10511 	int i, ret;
10512 
10513 	if (!aux->func_info)
10514 		return 0;
10515 
10516 	for (i = 1; i < env->subprog_cnt; i++) {
10517 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
10518 			continue;
10519 		env->insn_idx = env->subprog_info[i].start;
10520 		WARN_ON_ONCE(env->insn_idx == 0);
10521 		ret = do_check_common(env, i);
10522 		if (ret) {
10523 			return ret;
10524 		} else if (env->log.level & BPF_LOG_LEVEL) {
10525 			verbose(env,
10526 				"Func#%d is safe for any args that match its prototype\n",
10527 				i);
10528 		}
10529 	}
10530 	return 0;
10531 }
10532 
10533 static int do_check_main(struct bpf_verifier_env *env)
10534 {
10535 	int ret;
10536 
10537 	env->insn_idx = 0;
10538 	ret = do_check_common(env, 0);
10539 	if (!ret)
10540 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
10541 	return ret;
10542 }
10543 
10544 
10545 static void print_verification_stats(struct bpf_verifier_env *env)
10546 {
10547 	int i;
10548 
10549 	if (env->log.level & BPF_LOG_STATS) {
10550 		verbose(env, "verification time %lld usec\n",
10551 			div_u64(env->verification_time, 1000));
10552 		verbose(env, "stack depth ");
10553 		for (i = 0; i < env->subprog_cnt; i++) {
10554 			u32 depth = env->subprog_info[i].stack_depth;
10555 
10556 			verbose(env, "%d", depth);
10557 			if (i + 1 < env->subprog_cnt)
10558 				verbose(env, "+");
10559 		}
10560 		verbose(env, "\n");
10561 	}
10562 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
10563 		"total_states %d peak_states %d mark_read %d\n",
10564 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
10565 		env->max_states_per_insn, env->total_states,
10566 		env->peak_states, env->longest_mark_read_walk);
10567 }
10568 
10569 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
10570 {
10571 	const struct btf_type *t, *func_proto;
10572 	const struct bpf_struct_ops *st_ops;
10573 	const struct btf_member *member;
10574 	struct bpf_prog *prog = env->prog;
10575 	u32 btf_id, member_idx;
10576 	const char *mname;
10577 
10578 	btf_id = prog->aux->attach_btf_id;
10579 	st_ops = bpf_struct_ops_find(btf_id);
10580 	if (!st_ops) {
10581 		verbose(env, "attach_btf_id %u is not a supported struct\n",
10582 			btf_id);
10583 		return -ENOTSUPP;
10584 	}
10585 
10586 	t = st_ops->type;
10587 	member_idx = prog->expected_attach_type;
10588 	if (member_idx >= btf_type_vlen(t)) {
10589 		verbose(env, "attach to invalid member idx %u of struct %s\n",
10590 			member_idx, st_ops->name);
10591 		return -EINVAL;
10592 	}
10593 
10594 	member = &btf_type_member(t)[member_idx];
10595 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
10596 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
10597 					       NULL);
10598 	if (!func_proto) {
10599 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
10600 			mname, member_idx, st_ops->name);
10601 		return -EINVAL;
10602 	}
10603 
10604 	if (st_ops->check_member) {
10605 		int err = st_ops->check_member(t, member);
10606 
10607 		if (err) {
10608 			verbose(env, "attach to unsupported member %s of struct %s\n",
10609 				mname, st_ops->name);
10610 			return err;
10611 		}
10612 	}
10613 
10614 	prog->aux->attach_func_proto = func_proto;
10615 	prog->aux->attach_func_name = mname;
10616 	env->ops = st_ops->verifier_ops;
10617 
10618 	return 0;
10619 }
10620 #define SECURITY_PREFIX "security_"
10621 
10622 static int check_attach_modify_return(struct bpf_prog *prog, unsigned long addr)
10623 {
10624 	if (within_error_injection_list(addr) ||
10625 	    !strncmp(SECURITY_PREFIX, prog->aux->attach_func_name,
10626 		     sizeof(SECURITY_PREFIX) - 1))
10627 		return 0;
10628 
10629 	return -EINVAL;
10630 }
10631 
10632 static int check_attach_btf_id(struct bpf_verifier_env *env)
10633 {
10634 	struct bpf_prog *prog = env->prog;
10635 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
10636 	struct bpf_prog *tgt_prog = prog->aux->linked_prog;
10637 	u32 btf_id = prog->aux->attach_btf_id;
10638 	const char prefix[] = "btf_trace_";
10639 	struct btf_func_model fmodel;
10640 	int ret = 0, subprog = -1, i;
10641 	struct bpf_trampoline *tr;
10642 	const struct btf_type *t;
10643 	bool conservative = true;
10644 	const char *tname;
10645 	struct btf *btf;
10646 	long addr;
10647 	u64 key;
10648 
10649 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
10650 		return check_struct_ops_btf_id(env);
10651 
10652 	if (prog->type != BPF_PROG_TYPE_TRACING &&
10653 	    prog->type != BPF_PROG_TYPE_LSM &&
10654 	    !prog_extension)
10655 		return 0;
10656 
10657 	if (!btf_id) {
10658 		verbose(env, "Tracing programs must provide btf_id\n");
10659 		return -EINVAL;
10660 	}
10661 	btf = bpf_prog_get_target_btf(prog);
10662 	if (!btf) {
10663 		verbose(env,
10664 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
10665 		return -EINVAL;
10666 	}
10667 	t = btf_type_by_id(btf, btf_id);
10668 	if (!t) {
10669 		verbose(env, "attach_btf_id %u is invalid\n", btf_id);
10670 		return -EINVAL;
10671 	}
10672 	tname = btf_name_by_offset(btf, t->name_off);
10673 	if (!tname) {
10674 		verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id);
10675 		return -EINVAL;
10676 	}
10677 	if (tgt_prog) {
10678 		struct bpf_prog_aux *aux = tgt_prog->aux;
10679 
10680 		for (i = 0; i < aux->func_info_cnt; i++)
10681 			if (aux->func_info[i].type_id == btf_id) {
10682 				subprog = i;
10683 				break;
10684 			}
10685 		if (subprog == -1) {
10686 			verbose(env, "Subprog %s doesn't exist\n", tname);
10687 			return -EINVAL;
10688 		}
10689 		conservative = aux->func_info_aux[subprog].unreliable;
10690 		if (prog_extension) {
10691 			if (conservative) {
10692 				verbose(env,
10693 					"Cannot replace static functions\n");
10694 				return -EINVAL;
10695 			}
10696 			if (!prog->jit_requested) {
10697 				verbose(env,
10698 					"Extension programs should be JITed\n");
10699 				return -EINVAL;
10700 			}
10701 			env->ops = bpf_verifier_ops[tgt_prog->type];
10702 			prog->expected_attach_type = tgt_prog->expected_attach_type;
10703 		}
10704 		if (!tgt_prog->jited) {
10705 			verbose(env, "Can attach to only JITed progs\n");
10706 			return -EINVAL;
10707 		}
10708 		if (tgt_prog->type == prog->type) {
10709 			/* Cannot fentry/fexit another fentry/fexit program.
10710 			 * Cannot attach program extension to another extension.
10711 			 * It's ok to attach fentry/fexit to extension program.
10712 			 */
10713 			verbose(env, "Cannot recursively attach\n");
10714 			return -EINVAL;
10715 		}
10716 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
10717 		    prog_extension &&
10718 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
10719 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
10720 			/* Program extensions can extend all program types
10721 			 * except fentry/fexit. The reason is the following.
10722 			 * The fentry/fexit programs are used for performance
10723 			 * analysis, stats and can be attached to any program
10724 			 * type except themselves. When extension program is
10725 			 * replacing XDP function it is necessary to allow
10726 			 * performance analysis of all functions. Both original
10727 			 * XDP program and its program extension. Hence
10728 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
10729 			 * allowed. If extending of fentry/fexit was allowed it
10730 			 * would be possible to create long call chain
10731 			 * fentry->extension->fentry->extension beyond
10732 			 * reasonable stack size. Hence extending fentry is not
10733 			 * allowed.
10734 			 */
10735 			verbose(env, "Cannot extend fentry/fexit\n");
10736 			return -EINVAL;
10737 		}
10738 		key = ((u64)aux->id) << 32 | btf_id;
10739 	} else {
10740 		if (prog_extension) {
10741 			verbose(env, "Cannot replace kernel functions\n");
10742 			return -EINVAL;
10743 		}
10744 		key = btf_id;
10745 	}
10746 
10747 	switch (prog->expected_attach_type) {
10748 	case BPF_TRACE_RAW_TP:
10749 		if (tgt_prog) {
10750 			verbose(env,
10751 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
10752 			return -EINVAL;
10753 		}
10754 		if (!btf_type_is_typedef(t)) {
10755 			verbose(env, "attach_btf_id %u is not a typedef\n",
10756 				btf_id);
10757 			return -EINVAL;
10758 		}
10759 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
10760 			verbose(env, "attach_btf_id %u points to wrong type name %s\n",
10761 				btf_id, tname);
10762 			return -EINVAL;
10763 		}
10764 		tname += sizeof(prefix) - 1;
10765 		t = btf_type_by_id(btf, t->type);
10766 		if (!btf_type_is_ptr(t))
10767 			/* should never happen in valid vmlinux build */
10768 			return -EINVAL;
10769 		t = btf_type_by_id(btf, t->type);
10770 		if (!btf_type_is_func_proto(t))
10771 			/* should never happen in valid vmlinux build */
10772 			return -EINVAL;
10773 
10774 		/* remember two read only pointers that are valid for
10775 		 * the life time of the kernel
10776 		 */
10777 		prog->aux->attach_func_name = tname;
10778 		prog->aux->attach_func_proto = t;
10779 		prog->aux->attach_btf_trace = true;
10780 		return 0;
10781 	case BPF_TRACE_ITER:
10782 		if (!btf_type_is_func(t)) {
10783 			verbose(env, "attach_btf_id %u is not a function\n",
10784 				btf_id);
10785 			return -EINVAL;
10786 		}
10787 		t = btf_type_by_id(btf, t->type);
10788 		if (!btf_type_is_func_proto(t))
10789 			return -EINVAL;
10790 		prog->aux->attach_func_name = tname;
10791 		prog->aux->attach_func_proto = t;
10792 		if (!bpf_iter_prog_supported(prog))
10793 			return -EINVAL;
10794 		ret = btf_distill_func_proto(&env->log, btf, t,
10795 					     tname, &fmodel);
10796 		return ret;
10797 	default:
10798 		if (!prog_extension)
10799 			return -EINVAL;
10800 		/* fallthrough */
10801 	case BPF_MODIFY_RETURN:
10802 	case BPF_LSM_MAC:
10803 	case BPF_TRACE_FENTRY:
10804 	case BPF_TRACE_FEXIT:
10805 		prog->aux->attach_func_name = tname;
10806 		if (prog->type == BPF_PROG_TYPE_LSM) {
10807 			ret = bpf_lsm_verify_prog(&env->log, prog);
10808 			if (ret < 0)
10809 				return ret;
10810 		}
10811 
10812 		if (!btf_type_is_func(t)) {
10813 			verbose(env, "attach_btf_id %u is not a function\n",
10814 				btf_id);
10815 			return -EINVAL;
10816 		}
10817 		if (prog_extension &&
10818 		    btf_check_type_match(env, prog, btf, t))
10819 			return -EINVAL;
10820 		t = btf_type_by_id(btf, t->type);
10821 		if (!btf_type_is_func_proto(t))
10822 			return -EINVAL;
10823 		tr = bpf_trampoline_lookup(key);
10824 		if (!tr)
10825 			return -ENOMEM;
10826 		/* t is either vmlinux type or another program's type */
10827 		prog->aux->attach_func_proto = t;
10828 		mutex_lock(&tr->mutex);
10829 		if (tr->func.addr) {
10830 			prog->aux->trampoline = tr;
10831 			goto out;
10832 		}
10833 		if (tgt_prog && conservative) {
10834 			prog->aux->attach_func_proto = NULL;
10835 			t = NULL;
10836 		}
10837 		ret = btf_distill_func_proto(&env->log, btf, t,
10838 					     tname, &tr->func.model);
10839 		if (ret < 0)
10840 			goto out;
10841 		if (tgt_prog) {
10842 			if (subprog == 0)
10843 				addr = (long) tgt_prog->bpf_func;
10844 			else
10845 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
10846 		} else {
10847 			addr = kallsyms_lookup_name(tname);
10848 			if (!addr) {
10849 				verbose(env,
10850 					"The address of function %s cannot be found\n",
10851 					tname);
10852 				ret = -ENOENT;
10853 				goto out;
10854 			}
10855 		}
10856 
10857 		if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
10858 			ret = check_attach_modify_return(prog, addr);
10859 			if (ret)
10860 				verbose(env, "%s() is not modifiable\n",
10861 					prog->aux->attach_func_name);
10862 		}
10863 
10864 		if (ret)
10865 			goto out;
10866 		tr->func.addr = (void *)addr;
10867 		prog->aux->trampoline = tr;
10868 out:
10869 		mutex_unlock(&tr->mutex);
10870 		if (ret)
10871 			bpf_trampoline_put(tr);
10872 		return ret;
10873 	}
10874 }
10875 
10876 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
10877 	      union bpf_attr __user *uattr)
10878 {
10879 	u64 start_time = ktime_get_ns();
10880 	struct bpf_verifier_env *env;
10881 	struct bpf_verifier_log *log;
10882 	int i, len, ret = -EINVAL;
10883 	bool is_priv;
10884 
10885 	/* no program is valid */
10886 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
10887 		return -EINVAL;
10888 
10889 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
10890 	 * allocate/free it every time bpf_check() is called
10891 	 */
10892 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
10893 	if (!env)
10894 		return -ENOMEM;
10895 	log = &env->log;
10896 
10897 	len = (*prog)->len;
10898 	env->insn_aux_data =
10899 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
10900 	ret = -ENOMEM;
10901 	if (!env->insn_aux_data)
10902 		goto err_free_env;
10903 	for (i = 0; i < len; i++)
10904 		env->insn_aux_data[i].orig_idx = i;
10905 	env->prog = *prog;
10906 	env->ops = bpf_verifier_ops[env->prog->type];
10907 	is_priv = bpf_capable();
10908 
10909 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
10910 		mutex_lock(&bpf_verifier_lock);
10911 		if (!btf_vmlinux)
10912 			btf_vmlinux = btf_parse_vmlinux();
10913 		mutex_unlock(&bpf_verifier_lock);
10914 	}
10915 
10916 	/* grab the mutex to protect few globals used by verifier */
10917 	if (!is_priv)
10918 		mutex_lock(&bpf_verifier_lock);
10919 
10920 	if (attr->log_level || attr->log_buf || attr->log_size) {
10921 		/* user requested verbose verifier output
10922 		 * and supplied buffer to store the verification trace
10923 		 */
10924 		log->level = attr->log_level;
10925 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
10926 		log->len_total = attr->log_size;
10927 
10928 		ret = -EINVAL;
10929 		/* log attributes have to be sane */
10930 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
10931 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
10932 			goto err_unlock;
10933 	}
10934 
10935 	if (IS_ERR(btf_vmlinux)) {
10936 		/* Either gcc or pahole or kernel are broken. */
10937 		verbose(env, "in-kernel BTF is malformed\n");
10938 		ret = PTR_ERR(btf_vmlinux);
10939 		goto skip_full_check;
10940 	}
10941 
10942 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
10943 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
10944 		env->strict_alignment = true;
10945 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
10946 		env->strict_alignment = false;
10947 
10948 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
10949 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
10950 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
10951 	env->bpf_capable = bpf_capable();
10952 
10953 	if (is_priv)
10954 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
10955 
10956 	ret = replace_map_fd_with_map_ptr(env);
10957 	if (ret < 0)
10958 		goto skip_full_check;
10959 
10960 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
10961 		ret = bpf_prog_offload_verifier_prep(env->prog);
10962 		if (ret)
10963 			goto skip_full_check;
10964 	}
10965 
10966 	env->explored_states = kvcalloc(state_htab_size(env),
10967 				       sizeof(struct bpf_verifier_state_list *),
10968 				       GFP_USER);
10969 	ret = -ENOMEM;
10970 	if (!env->explored_states)
10971 		goto skip_full_check;
10972 
10973 	ret = check_subprogs(env);
10974 	if (ret < 0)
10975 		goto skip_full_check;
10976 
10977 	ret = check_btf_info(env, attr, uattr);
10978 	if (ret < 0)
10979 		goto skip_full_check;
10980 
10981 	ret = check_attach_btf_id(env);
10982 	if (ret)
10983 		goto skip_full_check;
10984 
10985 	ret = check_cfg(env);
10986 	if (ret < 0)
10987 		goto skip_full_check;
10988 
10989 	ret = do_check_subprogs(env);
10990 	ret = ret ?: do_check_main(env);
10991 
10992 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
10993 		ret = bpf_prog_offload_finalize(env);
10994 
10995 skip_full_check:
10996 	kvfree(env->explored_states);
10997 
10998 	if (ret == 0)
10999 		ret = check_max_stack_depth(env);
11000 
11001 	/* instruction rewrites happen after this point */
11002 	if (is_priv) {
11003 		if (ret == 0)
11004 			opt_hard_wire_dead_code_branches(env);
11005 		if (ret == 0)
11006 			ret = opt_remove_dead_code(env);
11007 		if (ret == 0)
11008 			ret = opt_remove_nops(env);
11009 	} else {
11010 		if (ret == 0)
11011 			sanitize_dead_code(env);
11012 	}
11013 
11014 	if (ret == 0)
11015 		/* program is valid, convert *(u32*)(ctx + off) accesses */
11016 		ret = convert_ctx_accesses(env);
11017 
11018 	if (ret == 0)
11019 		ret = fixup_bpf_calls(env);
11020 
11021 	/* do 32-bit optimization after insn patching has done so those patched
11022 	 * insns could be handled correctly.
11023 	 */
11024 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
11025 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
11026 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
11027 								     : false;
11028 	}
11029 
11030 	if (ret == 0)
11031 		ret = fixup_call_args(env);
11032 
11033 	env->verification_time = ktime_get_ns() - start_time;
11034 	print_verification_stats(env);
11035 
11036 	if (log->level && bpf_verifier_log_full(log))
11037 		ret = -ENOSPC;
11038 	if (log->level && !log->ubuf) {
11039 		ret = -EFAULT;
11040 		goto err_release_maps;
11041 	}
11042 
11043 	if (ret == 0 && env->used_map_cnt) {
11044 		/* if program passed verifier, update used_maps in bpf_prog_info */
11045 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
11046 							  sizeof(env->used_maps[0]),
11047 							  GFP_KERNEL);
11048 
11049 		if (!env->prog->aux->used_maps) {
11050 			ret = -ENOMEM;
11051 			goto err_release_maps;
11052 		}
11053 
11054 		memcpy(env->prog->aux->used_maps, env->used_maps,
11055 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
11056 		env->prog->aux->used_map_cnt = env->used_map_cnt;
11057 
11058 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
11059 		 * bpf_ld_imm64 instructions
11060 		 */
11061 		convert_pseudo_ld_imm64(env);
11062 	}
11063 
11064 	if (ret == 0)
11065 		adjust_btf_func(env);
11066 
11067 err_release_maps:
11068 	if (!env->prog->aux->used_maps)
11069 		/* if we didn't copy map pointers into bpf_prog_info, release
11070 		 * them now. Otherwise free_used_maps() will release them.
11071 		 */
11072 		release_maps(env);
11073 
11074 	/* extension progs temporarily inherit the attach_type of their targets
11075 	   for verification purposes, so set it back to zero before returning
11076 	 */
11077 	if (env->prog->type == BPF_PROG_TYPE_EXT)
11078 		env->prog->expected_attach_type = 0;
11079 
11080 	*prog = env->prog;
11081 err_unlock:
11082 	if (!is_priv)
11083 		mutex_unlock(&bpf_verifier_lock);
11084 	vfree(env->insn_aux_data);
11085 err_free_env:
11086 	kfree(env);
11087 	return ret;
11088 }
11089