1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <net/xdp.h> 30 31 #include "disasm.h" 32 33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 35 [_id] = & _name ## _verifier_ops, 36 #define BPF_MAP_TYPE(_id, _ops) 37 #define BPF_LINK_TYPE(_id, _name) 38 #include <linux/bpf_types.h> 39 #undef BPF_PROG_TYPE 40 #undef BPF_MAP_TYPE 41 #undef BPF_LINK_TYPE 42 }; 43 44 /* bpf_check() is a static code analyzer that walks eBPF program 45 * instruction by instruction and updates register/stack state. 46 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 47 * 48 * The first pass is depth-first-search to check that the program is a DAG. 49 * It rejects the following programs: 50 * - larger than BPF_MAXINSNS insns 51 * - if loop is present (detected via back-edge) 52 * - unreachable insns exist (shouldn't be a forest. program = one function) 53 * - out of bounds or malformed jumps 54 * The second pass is all possible path descent from the 1st insn. 55 * Since it's analyzing all paths through the program, the length of the 56 * analysis is limited to 64k insn, which may be hit even if total number of 57 * insn is less then 4K, but there are too many branches that change stack/regs. 58 * Number of 'branches to be analyzed' is limited to 1k 59 * 60 * On entry to each instruction, each register has a type, and the instruction 61 * changes the types of the registers depending on instruction semantics. 62 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 63 * copied to R1. 64 * 65 * All registers are 64-bit. 66 * R0 - return register 67 * R1-R5 argument passing registers 68 * R6-R9 callee saved registers 69 * R10 - frame pointer read-only 70 * 71 * At the start of BPF program the register R1 contains a pointer to bpf_context 72 * and has type PTR_TO_CTX. 73 * 74 * Verifier tracks arithmetic operations on pointers in case: 75 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 76 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 77 * 1st insn copies R10 (which has FRAME_PTR) type into R1 78 * and 2nd arithmetic instruction is pattern matched to recognize 79 * that it wants to construct a pointer to some element within stack. 80 * So after 2nd insn, the register R1 has type PTR_TO_STACK 81 * (and -20 constant is saved for further stack bounds checking). 82 * Meaning that this reg is a pointer to stack plus known immediate constant. 83 * 84 * Most of the time the registers have SCALAR_VALUE type, which 85 * means the register has some value, but it's not a valid pointer. 86 * (like pointer plus pointer becomes SCALAR_VALUE type) 87 * 88 * When verifier sees load or store instructions the type of base register 89 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 90 * four pointer types recognized by check_mem_access() function. 91 * 92 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 93 * and the range of [ptr, ptr + map's value_size) is accessible. 94 * 95 * registers used to pass values to function calls are checked against 96 * function argument constraints. 97 * 98 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 99 * It means that the register type passed to this function must be 100 * PTR_TO_STACK and it will be used inside the function as 101 * 'pointer to map element key' 102 * 103 * For example the argument constraints for bpf_map_lookup_elem(): 104 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 105 * .arg1_type = ARG_CONST_MAP_PTR, 106 * .arg2_type = ARG_PTR_TO_MAP_KEY, 107 * 108 * ret_type says that this function returns 'pointer to map elem value or null' 109 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 110 * 2nd argument should be a pointer to stack, which will be used inside 111 * the helper function as a pointer to map element key. 112 * 113 * On the kernel side the helper function looks like: 114 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 115 * { 116 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 117 * void *key = (void *) (unsigned long) r2; 118 * void *value; 119 * 120 * here kernel can access 'key' and 'map' pointers safely, knowing that 121 * [key, key + map->key_size) bytes are valid and were initialized on 122 * the stack of eBPF program. 123 * } 124 * 125 * Corresponding eBPF program may look like: 126 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 127 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 128 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 129 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 130 * here verifier looks at prototype of map_lookup_elem() and sees: 131 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 132 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 133 * 134 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 135 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 136 * and were initialized prior to this call. 137 * If it's ok, then verifier allows this BPF_CALL insn and looks at 138 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 139 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 140 * returns either pointer to map value or NULL. 141 * 142 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 143 * insn, the register holding that pointer in the true branch changes state to 144 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 145 * branch. See check_cond_jmp_op(). 146 * 147 * After the call R0 is set to return type of the function and registers R1-R5 148 * are set to NOT_INIT to indicate that they are no longer readable. 149 * 150 * The following reference types represent a potential reference to a kernel 151 * resource which, after first being allocated, must be checked and freed by 152 * the BPF program: 153 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 154 * 155 * When the verifier sees a helper call return a reference type, it allocates a 156 * pointer id for the reference and stores it in the current function state. 157 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 158 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 159 * passes through a NULL-check conditional. For the branch wherein the state is 160 * changed to CONST_IMM, the verifier releases the reference. 161 * 162 * For each helper function that allocates a reference, such as 163 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 164 * bpf_sk_release(). When a reference type passes into the release function, 165 * the verifier also releases the reference. If any unchecked or unreleased 166 * reference remains at the end of the program, the verifier rejects it. 167 */ 168 169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 170 struct bpf_verifier_stack_elem { 171 /* verifer state is 'st' 172 * before processing instruction 'insn_idx' 173 * and after processing instruction 'prev_insn_idx' 174 */ 175 struct bpf_verifier_state st; 176 int insn_idx; 177 int prev_insn_idx; 178 struct bpf_verifier_stack_elem *next; 179 /* length of verifier log at the time this state was pushed on stack */ 180 u32 log_pos; 181 }; 182 183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 184 #define BPF_COMPLEXITY_LIMIT_STATES 64 185 186 #define BPF_MAP_KEY_POISON (1ULL << 63) 187 #define BPF_MAP_KEY_SEEN (1ULL << 62) 188 189 #define BPF_MAP_PTR_UNPRIV 1UL 190 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 191 POISON_POINTER_DELTA)) 192 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 193 194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 198 static int ref_set_non_owning(struct bpf_verifier_env *env, 199 struct bpf_reg_state *reg); 200 static void specialize_kfunc(struct bpf_verifier_env *env, 201 u32 func_id, u16 offset, unsigned long *addr); 202 static bool is_trusted_reg(const struct bpf_reg_state *reg); 203 204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 205 { 206 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 207 } 208 209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 210 { 211 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 212 } 213 214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 215 const struct bpf_map *map, bool unpriv) 216 { 217 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 218 unpriv |= bpf_map_ptr_unpriv(aux); 219 aux->map_ptr_state = (unsigned long)map | 220 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 221 } 222 223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 224 { 225 return aux->map_key_state & BPF_MAP_KEY_POISON; 226 } 227 228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 229 { 230 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 231 } 232 233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 234 { 235 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 236 } 237 238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 239 { 240 bool poisoned = bpf_map_key_poisoned(aux); 241 242 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 243 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 244 } 245 246 static bool bpf_helper_call(const struct bpf_insn *insn) 247 { 248 return insn->code == (BPF_JMP | BPF_CALL) && 249 insn->src_reg == 0; 250 } 251 252 static bool bpf_pseudo_call(const struct bpf_insn *insn) 253 { 254 return insn->code == (BPF_JMP | BPF_CALL) && 255 insn->src_reg == BPF_PSEUDO_CALL; 256 } 257 258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 259 { 260 return insn->code == (BPF_JMP | BPF_CALL) && 261 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 262 } 263 264 struct bpf_call_arg_meta { 265 struct bpf_map *map_ptr; 266 bool raw_mode; 267 bool pkt_access; 268 u8 release_regno; 269 int regno; 270 int access_size; 271 int mem_size; 272 u64 msize_max_value; 273 int ref_obj_id; 274 int dynptr_id; 275 int map_uid; 276 int func_id; 277 struct btf *btf; 278 u32 btf_id; 279 struct btf *ret_btf; 280 u32 ret_btf_id; 281 u32 subprogno; 282 struct btf_field *kptr_field; 283 }; 284 285 struct bpf_kfunc_call_arg_meta { 286 /* In parameters */ 287 struct btf *btf; 288 u32 func_id; 289 u32 kfunc_flags; 290 const struct btf_type *func_proto; 291 const char *func_name; 292 /* Out parameters */ 293 u32 ref_obj_id; 294 u8 release_regno; 295 bool r0_rdonly; 296 u32 ret_btf_id; 297 u64 r0_size; 298 u32 subprogno; 299 struct { 300 u64 value; 301 bool found; 302 } arg_constant; 303 304 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 305 * generally to pass info about user-defined local kptr types to later 306 * verification logic 307 * bpf_obj_drop 308 * Record the local kptr type to be drop'd 309 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 310 * Record the local kptr type to be refcount_incr'd and use 311 * arg_owning_ref to determine whether refcount_acquire should be 312 * fallible 313 */ 314 struct btf *arg_btf; 315 u32 arg_btf_id; 316 bool arg_owning_ref; 317 318 struct { 319 struct btf_field *field; 320 } arg_list_head; 321 struct { 322 struct btf_field *field; 323 } arg_rbtree_root; 324 struct { 325 enum bpf_dynptr_type type; 326 u32 id; 327 u32 ref_obj_id; 328 } initialized_dynptr; 329 struct { 330 u8 spi; 331 u8 frameno; 332 } iter; 333 u64 mem_size; 334 }; 335 336 struct btf *btf_vmlinux; 337 338 static DEFINE_MUTEX(bpf_verifier_lock); 339 340 static const struct bpf_line_info * 341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 342 { 343 const struct bpf_line_info *linfo; 344 const struct bpf_prog *prog; 345 u32 i, nr_linfo; 346 347 prog = env->prog; 348 nr_linfo = prog->aux->nr_linfo; 349 350 if (!nr_linfo || insn_off >= prog->len) 351 return NULL; 352 353 linfo = prog->aux->linfo; 354 for (i = 1; i < nr_linfo; i++) 355 if (insn_off < linfo[i].insn_off) 356 break; 357 358 return &linfo[i - 1]; 359 } 360 361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 362 { 363 struct bpf_verifier_env *env = private_data; 364 va_list args; 365 366 if (!bpf_verifier_log_needed(&env->log)) 367 return; 368 369 va_start(args, fmt); 370 bpf_verifier_vlog(&env->log, fmt, args); 371 va_end(args); 372 } 373 374 static const char *ltrim(const char *s) 375 { 376 while (isspace(*s)) 377 s++; 378 379 return s; 380 } 381 382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 383 u32 insn_off, 384 const char *prefix_fmt, ...) 385 { 386 const struct bpf_line_info *linfo; 387 388 if (!bpf_verifier_log_needed(&env->log)) 389 return; 390 391 linfo = find_linfo(env, insn_off); 392 if (!linfo || linfo == env->prev_linfo) 393 return; 394 395 if (prefix_fmt) { 396 va_list args; 397 398 va_start(args, prefix_fmt); 399 bpf_verifier_vlog(&env->log, prefix_fmt, args); 400 va_end(args); 401 } 402 403 verbose(env, "%s\n", 404 ltrim(btf_name_by_offset(env->prog->aux->btf, 405 linfo->line_off))); 406 407 env->prev_linfo = linfo; 408 } 409 410 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 411 struct bpf_reg_state *reg, 412 struct tnum *range, const char *ctx, 413 const char *reg_name) 414 { 415 char tn_buf[48]; 416 417 verbose(env, "At %s the register %s ", ctx, reg_name); 418 if (!tnum_is_unknown(reg->var_off)) { 419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 420 verbose(env, "has value %s", tn_buf); 421 } else { 422 verbose(env, "has unknown scalar value"); 423 } 424 tnum_strn(tn_buf, sizeof(tn_buf), *range); 425 verbose(env, " should have been in %s\n", tn_buf); 426 } 427 428 static bool type_is_pkt_pointer(enum bpf_reg_type type) 429 { 430 type = base_type(type); 431 return type == PTR_TO_PACKET || 432 type == PTR_TO_PACKET_META; 433 } 434 435 static bool type_is_sk_pointer(enum bpf_reg_type type) 436 { 437 return type == PTR_TO_SOCKET || 438 type == PTR_TO_SOCK_COMMON || 439 type == PTR_TO_TCP_SOCK || 440 type == PTR_TO_XDP_SOCK; 441 } 442 443 static bool type_may_be_null(u32 type) 444 { 445 return type & PTR_MAYBE_NULL; 446 } 447 448 static bool reg_not_null(const struct bpf_reg_state *reg) 449 { 450 enum bpf_reg_type type; 451 452 type = reg->type; 453 if (type_may_be_null(type)) 454 return false; 455 456 type = base_type(type); 457 return type == PTR_TO_SOCKET || 458 type == PTR_TO_TCP_SOCK || 459 type == PTR_TO_MAP_VALUE || 460 type == PTR_TO_MAP_KEY || 461 type == PTR_TO_SOCK_COMMON || 462 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 463 type == PTR_TO_MEM; 464 } 465 466 static bool type_is_ptr_alloc_obj(u32 type) 467 { 468 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 469 } 470 471 static bool type_is_non_owning_ref(u32 type) 472 { 473 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 474 } 475 476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 477 { 478 struct btf_record *rec = NULL; 479 struct btf_struct_meta *meta; 480 481 if (reg->type == PTR_TO_MAP_VALUE) { 482 rec = reg->map_ptr->record; 483 } else if (type_is_ptr_alloc_obj(reg->type)) { 484 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 485 if (meta) 486 rec = meta->record; 487 } 488 return rec; 489 } 490 491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 492 { 493 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 494 495 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 496 } 497 498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 499 { 500 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 501 } 502 503 static bool type_is_rdonly_mem(u32 type) 504 { 505 return type & MEM_RDONLY; 506 } 507 508 static bool is_acquire_function(enum bpf_func_id func_id, 509 const struct bpf_map *map) 510 { 511 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 512 513 if (func_id == BPF_FUNC_sk_lookup_tcp || 514 func_id == BPF_FUNC_sk_lookup_udp || 515 func_id == BPF_FUNC_skc_lookup_tcp || 516 func_id == BPF_FUNC_ringbuf_reserve || 517 func_id == BPF_FUNC_kptr_xchg) 518 return true; 519 520 if (func_id == BPF_FUNC_map_lookup_elem && 521 (map_type == BPF_MAP_TYPE_SOCKMAP || 522 map_type == BPF_MAP_TYPE_SOCKHASH)) 523 return true; 524 525 return false; 526 } 527 528 static bool is_ptr_cast_function(enum bpf_func_id func_id) 529 { 530 return func_id == BPF_FUNC_tcp_sock || 531 func_id == BPF_FUNC_sk_fullsock || 532 func_id == BPF_FUNC_skc_to_tcp_sock || 533 func_id == BPF_FUNC_skc_to_tcp6_sock || 534 func_id == BPF_FUNC_skc_to_udp6_sock || 535 func_id == BPF_FUNC_skc_to_mptcp_sock || 536 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 537 func_id == BPF_FUNC_skc_to_tcp_request_sock; 538 } 539 540 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 541 { 542 return func_id == BPF_FUNC_dynptr_data; 543 } 544 545 static bool is_sync_callback_calling_kfunc(u32 btf_id); 546 547 static bool is_sync_callback_calling_function(enum bpf_func_id func_id) 548 { 549 return func_id == BPF_FUNC_for_each_map_elem || 550 func_id == BPF_FUNC_find_vma || 551 func_id == BPF_FUNC_loop || 552 func_id == BPF_FUNC_user_ringbuf_drain; 553 } 554 555 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 556 { 557 return func_id == BPF_FUNC_timer_set_callback; 558 } 559 560 static bool is_callback_calling_function(enum bpf_func_id func_id) 561 { 562 return is_sync_callback_calling_function(func_id) || 563 is_async_callback_calling_function(func_id); 564 } 565 566 static bool is_sync_callback_calling_insn(struct bpf_insn *insn) 567 { 568 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || 569 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); 570 } 571 572 static bool is_storage_get_function(enum bpf_func_id func_id) 573 { 574 return func_id == BPF_FUNC_sk_storage_get || 575 func_id == BPF_FUNC_inode_storage_get || 576 func_id == BPF_FUNC_task_storage_get || 577 func_id == BPF_FUNC_cgrp_storage_get; 578 } 579 580 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 581 const struct bpf_map *map) 582 { 583 int ref_obj_uses = 0; 584 585 if (is_ptr_cast_function(func_id)) 586 ref_obj_uses++; 587 if (is_acquire_function(func_id, map)) 588 ref_obj_uses++; 589 if (is_dynptr_ref_function(func_id)) 590 ref_obj_uses++; 591 592 return ref_obj_uses > 1; 593 } 594 595 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 596 { 597 return BPF_CLASS(insn->code) == BPF_STX && 598 BPF_MODE(insn->code) == BPF_ATOMIC && 599 insn->imm == BPF_CMPXCHG; 600 } 601 602 /* string representation of 'enum bpf_reg_type' 603 * 604 * Note that reg_type_str() can not appear more than once in a single verbose() 605 * statement. 606 */ 607 static const char *reg_type_str(struct bpf_verifier_env *env, 608 enum bpf_reg_type type) 609 { 610 char postfix[16] = {0}, prefix[64] = {0}; 611 static const char * const str[] = { 612 [NOT_INIT] = "?", 613 [SCALAR_VALUE] = "scalar", 614 [PTR_TO_CTX] = "ctx", 615 [CONST_PTR_TO_MAP] = "map_ptr", 616 [PTR_TO_MAP_VALUE] = "map_value", 617 [PTR_TO_STACK] = "fp", 618 [PTR_TO_PACKET] = "pkt", 619 [PTR_TO_PACKET_META] = "pkt_meta", 620 [PTR_TO_PACKET_END] = "pkt_end", 621 [PTR_TO_FLOW_KEYS] = "flow_keys", 622 [PTR_TO_SOCKET] = "sock", 623 [PTR_TO_SOCK_COMMON] = "sock_common", 624 [PTR_TO_TCP_SOCK] = "tcp_sock", 625 [PTR_TO_TP_BUFFER] = "tp_buffer", 626 [PTR_TO_XDP_SOCK] = "xdp_sock", 627 [PTR_TO_BTF_ID] = "ptr_", 628 [PTR_TO_MEM] = "mem", 629 [PTR_TO_BUF] = "buf", 630 [PTR_TO_FUNC] = "func", 631 [PTR_TO_MAP_KEY] = "map_key", 632 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", 633 }; 634 635 if (type & PTR_MAYBE_NULL) { 636 if (base_type(type) == PTR_TO_BTF_ID) 637 strncpy(postfix, "or_null_", 16); 638 else 639 strncpy(postfix, "_or_null", 16); 640 } 641 642 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", 643 type & MEM_RDONLY ? "rdonly_" : "", 644 type & MEM_RINGBUF ? "ringbuf_" : "", 645 type & MEM_USER ? "user_" : "", 646 type & MEM_PERCPU ? "percpu_" : "", 647 type & MEM_RCU ? "rcu_" : "", 648 type & PTR_UNTRUSTED ? "untrusted_" : "", 649 type & PTR_TRUSTED ? "trusted_" : "" 650 ); 651 652 snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s", 653 prefix, str[base_type(type)], postfix); 654 return env->tmp_str_buf; 655 } 656 657 static char slot_type_char[] = { 658 [STACK_INVALID] = '?', 659 [STACK_SPILL] = 'r', 660 [STACK_MISC] = 'm', 661 [STACK_ZERO] = '0', 662 [STACK_DYNPTR] = 'd', 663 [STACK_ITER] = 'i', 664 }; 665 666 static void print_liveness(struct bpf_verifier_env *env, 667 enum bpf_reg_liveness live) 668 { 669 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 670 verbose(env, "_"); 671 if (live & REG_LIVE_READ) 672 verbose(env, "r"); 673 if (live & REG_LIVE_WRITTEN) 674 verbose(env, "w"); 675 if (live & REG_LIVE_DONE) 676 verbose(env, "D"); 677 } 678 679 static int __get_spi(s32 off) 680 { 681 return (-off - 1) / BPF_REG_SIZE; 682 } 683 684 static struct bpf_func_state *func(struct bpf_verifier_env *env, 685 const struct bpf_reg_state *reg) 686 { 687 struct bpf_verifier_state *cur = env->cur_state; 688 689 return cur->frame[reg->frameno]; 690 } 691 692 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 693 { 694 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 695 696 /* We need to check that slots between [spi - nr_slots + 1, spi] are 697 * within [0, allocated_stack). 698 * 699 * Please note that the spi grows downwards. For example, a dynptr 700 * takes the size of two stack slots; the first slot will be at 701 * spi and the second slot will be at spi - 1. 702 */ 703 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 704 } 705 706 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 707 const char *obj_kind, int nr_slots) 708 { 709 int off, spi; 710 711 if (!tnum_is_const(reg->var_off)) { 712 verbose(env, "%s has to be at a constant offset\n", obj_kind); 713 return -EINVAL; 714 } 715 716 off = reg->off + reg->var_off.value; 717 if (off % BPF_REG_SIZE) { 718 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 719 return -EINVAL; 720 } 721 722 spi = __get_spi(off); 723 if (spi + 1 < nr_slots) { 724 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 725 return -EINVAL; 726 } 727 728 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 729 return -ERANGE; 730 return spi; 731 } 732 733 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 734 { 735 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 736 } 737 738 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 739 { 740 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 741 } 742 743 static const char *btf_type_name(const struct btf *btf, u32 id) 744 { 745 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 746 } 747 748 static const char *dynptr_type_str(enum bpf_dynptr_type type) 749 { 750 switch (type) { 751 case BPF_DYNPTR_TYPE_LOCAL: 752 return "local"; 753 case BPF_DYNPTR_TYPE_RINGBUF: 754 return "ringbuf"; 755 case BPF_DYNPTR_TYPE_SKB: 756 return "skb"; 757 case BPF_DYNPTR_TYPE_XDP: 758 return "xdp"; 759 case BPF_DYNPTR_TYPE_INVALID: 760 return "<invalid>"; 761 default: 762 WARN_ONCE(1, "unknown dynptr type %d\n", type); 763 return "<unknown>"; 764 } 765 } 766 767 static const char *iter_type_str(const struct btf *btf, u32 btf_id) 768 { 769 if (!btf || btf_id == 0) 770 return "<invalid>"; 771 772 /* we already validated that type is valid and has conforming name */ 773 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1; 774 } 775 776 static const char *iter_state_str(enum bpf_iter_state state) 777 { 778 switch (state) { 779 case BPF_ITER_STATE_ACTIVE: 780 return "active"; 781 case BPF_ITER_STATE_DRAINED: 782 return "drained"; 783 case BPF_ITER_STATE_INVALID: 784 return "<invalid>"; 785 default: 786 WARN_ONCE(1, "unknown iter state %d\n", state); 787 return "<unknown>"; 788 } 789 } 790 791 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 792 { 793 env->scratched_regs |= 1U << regno; 794 } 795 796 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 797 { 798 env->scratched_stack_slots |= 1ULL << spi; 799 } 800 801 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 802 { 803 return (env->scratched_regs >> regno) & 1; 804 } 805 806 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 807 { 808 return (env->scratched_stack_slots >> regno) & 1; 809 } 810 811 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 812 { 813 return env->scratched_regs || env->scratched_stack_slots; 814 } 815 816 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 817 { 818 env->scratched_regs = 0U; 819 env->scratched_stack_slots = 0ULL; 820 } 821 822 /* Used for printing the entire verifier state. */ 823 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 824 { 825 env->scratched_regs = ~0U; 826 env->scratched_stack_slots = ~0ULL; 827 } 828 829 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 830 { 831 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 832 case DYNPTR_TYPE_LOCAL: 833 return BPF_DYNPTR_TYPE_LOCAL; 834 case DYNPTR_TYPE_RINGBUF: 835 return BPF_DYNPTR_TYPE_RINGBUF; 836 case DYNPTR_TYPE_SKB: 837 return BPF_DYNPTR_TYPE_SKB; 838 case DYNPTR_TYPE_XDP: 839 return BPF_DYNPTR_TYPE_XDP; 840 default: 841 return BPF_DYNPTR_TYPE_INVALID; 842 } 843 } 844 845 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 846 { 847 switch (type) { 848 case BPF_DYNPTR_TYPE_LOCAL: 849 return DYNPTR_TYPE_LOCAL; 850 case BPF_DYNPTR_TYPE_RINGBUF: 851 return DYNPTR_TYPE_RINGBUF; 852 case BPF_DYNPTR_TYPE_SKB: 853 return DYNPTR_TYPE_SKB; 854 case BPF_DYNPTR_TYPE_XDP: 855 return DYNPTR_TYPE_XDP; 856 default: 857 return 0; 858 } 859 } 860 861 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 862 { 863 return type == BPF_DYNPTR_TYPE_RINGBUF; 864 } 865 866 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 867 enum bpf_dynptr_type type, 868 bool first_slot, int dynptr_id); 869 870 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 871 struct bpf_reg_state *reg); 872 873 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 874 struct bpf_reg_state *sreg1, 875 struct bpf_reg_state *sreg2, 876 enum bpf_dynptr_type type) 877 { 878 int id = ++env->id_gen; 879 880 __mark_dynptr_reg(sreg1, type, true, id); 881 __mark_dynptr_reg(sreg2, type, false, id); 882 } 883 884 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 885 struct bpf_reg_state *reg, 886 enum bpf_dynptr_type type) 887 { 888 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 889 } 890 891 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 892 struct bpf_func_state *state, int spi); 893 894 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 895 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 896 { 897 struct bpf_func_state *state = func(env, reg); 898 enum bpf_dynptr_type type; 899 int spi, i, err; 900 901 spi = dynptr_get_spi(env, reg); 902 if (spi < 0) 903 return spi; 904 905 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 906 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 907 * to ensure that for the following example: 908 * [d1][d1][d2][d2] 909 * spi 3 2 1 0 910 * So marking spi = 2 should lead to destruction of both d1 and d2. In 911 * case they do belong to same dynptr, second call won't see slot_type 912 * as STACK_DYNPTR and will simply skip destruction. 913 */ 914 err = destroy_if_dynptr_stack_slot(env, state, spi); 915 if (err) 916 return err; 917 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 918 if (err) 919 return err; 920 921 for (i = 0; i < BPF_REG_SIZE; i++) { 922 state->stack[spi].slot_type[i] = STACK_DYNPTR; 923 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 924 } 925 926 type = arg_to_dynptr_type(arg_type); 927 if (type == BPF_DYNPTR_TYPE_INVALID) 928 return -EINVAL; 929 930 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 931 &state->stack[spi - 1].spilled_ptr, type); 932 933 if (dynptr_type_refcounted(type)) { 934 /* The id is used to track proper releasing */ 935 int id; 936 937 if (clone_ref_obj_id) 938 id = clone_ref_obj_id; 939 else 940 id = acquire_reference_state(env, insn_idx); 941 942 if (id < 0) 943 return id; 944 945 state->stack[spi].spilled_ptr.ref_obj_id = id; 946 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 947 } 948 949 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 950 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 951 952 return 0; 953 } 954 955 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 956 { 957 int i; 958 959 for (i = 0; i < BPF_REG_SIZE; i++) { 960 state->stack[spi].slot_type[i] = STACK_INVALID; 961 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 962 } 963 964 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 965 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 966 967 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 968 * 969 * While we don't allow reading STACK_INVALID, it is still possible to 970 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 971 * helpers or insns can do partial read of that part without failing, 972 * but check_stack_range_initialized, check_stack_read_var_off, and 973 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 974 * the slot conservatively. Hence we need to prevent those liveness 975 * marking walks. 976 * 977 * This was not a problem before because STACK_INVALID is only set by 978 * default (where the default reg state has its reg->parent as NULL), or 979 * in clean_live_states after REG_LIVE_DONE (at which point 980 * mark_reg_read won't walk reg->parent chain), but not randomly during 981 * verifier state exploration (like we did above). Hence, for our case 982 * parentage chain will still be live (i.e. reg->parent may be 983 * non-NULL), while earlier reg->parent was NULL, so we need 984 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 985 * done later on reads or by mark_dynptr_read as well to unnecessary 986 * mark registers in verifier state. 987 */ 988 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 989 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 990 } 991 992 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 993 { 994 struct bpf_func_state *state = func(env, reg); 995 int spi, ref_obj_id, i; 996 997 spi = dynptr_get_spi(env, reg); 998 if (spi < 0) 999 return spi; 1000 1001 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 1002 invalidate_dynptr(env, state, spi); 1003 return 0; 1004 } 1005 1006 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 1007 1008 /* If the dynptr has a ref_obj_id, then we need to invalidate 1009 * two things: 1010 * 1011 * 1) Any dynptrs with a matching ref_obj_id (clones) 1012 * 2) Any slices derived from this dynptr. 1013 */ 1014 1015 /* Invalidate any slices associated with this dynptr */ 1016 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 1017 1018 /* Invalidate any dynptr clones */ 1019 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1020 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 1021 continue; 1022 1023 /* it should always be the case that if the ref obj id 1024 * matches then the stack slot also belongs to a 1025 * dynptr 1026 */ 1027 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 1028 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 1029 return -EFAULT; 1030 } 1031 if (state->stack[i].spilled_ptr.dynptr.first_slot) 1032 invalidate_dynptr(env, state, i); 1033 } 1034 1035 return 0; 1036 } 1037 1038 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1039 struct bpf_reg_state *reg); 1040 1041 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1042 { 1043 if (!env->allow_ptr_leaks) 1044 __mark_reg_not_init(env, reg); 1045 else 1046 __mark_reg_unknown(env, reg); 1047 } 1048 1049 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 1050 struct bpf_func_state *state, int spi) 1051 { 1052 struct bpf_func_state *fstate; 1053 struct bpf_reg_state *dreg; 1054 int i, dynptr_id; 1055 1056 /* We always ensure that STACK_DYNPTR is never set partially, 1057 * hence just checking for slot_type[0] is enough. This is 1058 * different for STACK_SPILL, where it may be only set for 1059 * 1 byte, so code has to use is_spilled_reg. 1060 */ 1061 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 1062 return 0; 1063 1064 /* Reposition spi to first slot */ 1065 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1066 spi = spi + 1; 1067 1068 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 1069 verbose(env, "cannot overwrite referenced dynptr\n"); 1070 return -EINVAL; 1071 } 1072 1073 mark_stack_slot_scratched(env, spi); 1074 mark_stack_slot_scratched(env, spi - 1); 1075 1076 /* Writing partially to one dynptr stack slot destroys both. */ 1077 for (i = 0; i < BPF_REG_SIZE; i++) { 1078 state->stack[spi].slot_type[i] = STACK_INVALID; 1079 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 1080 } 1081 1082 dynptr_id = state->stack[spi].spilled_ptr.id; 1083 /* Invalidate any slices associated with this dynptr */ 1084 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 1085 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 1086 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 1087 continue; 1088 if (dreg->dynptr_id == dynptr_id) 1089 mark_reg_invalid(env, dreg); 1090 })); 1091 1092 /* Do not release reference state, we are destroying dynptr on stack, 1093 * not using some helper to release it. Just reset register. 1094 */ 1095 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 1096 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 1097 1098 /* Same reason as unmark_stack_slots_dynptr above */ 1099 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1100 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 1101 1102 return 0; 1103 } 1104 1105 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1106 { 1107 int spi; 1108 1109 if (reg->type == CONST_PTR_TO_DYNPTR) 1110 return false; 1111 1112 spi = dynptr_get_spi(env, reg); 1113 1114 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 1115 * error because this just means the stack state hasn't been updated yet. 1116 * We will do check_mem_access to check and update stack bounds later. 1117 */ 1118 if (spi < 0 && spi != -ERANGE) 1119 return false; 1120 1121 /* We don't need to check if the stack slots are marked by previous 1122 * dynptr initializations because we allow overwriting existing unreferenced 1123 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 1124 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 1125 * touching are completely destructed before we reinitialize them for a new 1126 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 1127 * instead of delaying it until the end where the user will get "Unreleased 1128 * reference" error. 1129 */ 1130 return true; 1131 } 1132 1133 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1134 { 1135 struct bpf_func_state *state = func(env, reg); 1136 int i, spi; 1137 1138 /* This already represents first slot of initialized bpf_dynptr. 1139 * 1140 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 1141 * check_func_arg_reg_off's logic, so we don't need to check its 1142 * offset and alignment. 1143 */ 1144 if (reg->type == CONST_PTR_TO_DYNPTR) 1145 return true; 1146 1147 spi = dynptr_get_spi(env, reg); 1148 if (spi < 0) 1149 return false; 1150 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1151 return false; 1152 1153 for (i = 0; i < BPF_REG_SIZE; i++) { 1154 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 1155 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 1156 return false; 1157 } 1158 1159 return true; 1160 } 1161 1162 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1163 enum bpf_arg_type arg_type) 1164 { 1165 struct bpf_func_state *state = func(env, reg); 1166 enum bpf_dynptr_type dynptr_type; 1167 int spi; 1168 1169 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1170 if (arg_type == ARG_PTR_TO_DYNPTR) 1171 return true; 1172 1173 dynptr_type = arg_to_dynptr_type(arg_type); 1174 if (reg->type == CONST_PTR_TO_DYNPTR) { 1175 return reg->dynptr.type == dynptr_type; 1176 } else { 1177 spi = dynptr_get_spi(env, reg); 1178 if (spi < 0) 1179 return false; 1180 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1181 } 1182 } 1183 1184 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1185 1186 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1187 struct bpf_reg_state *reg, int insn_idx, 1188 struct btf *btf, u32 btf_id, int nr_slots) 1189 { 1190 struct bpf_func_state *state = func(env, reg); 1191 int spi, i, j, id; 1192 1193 spi = iter_get_spi(env, reg, nr_slots); 1194 if (spi < 0) 1195 return spi; 1196 1197 id = acquire_reference_state(env, insn_idx); 1198 if (id < 0) 1199 return id; 1200 1201 for (i = 0; i < nr_slots; i++) { 1202 struct bpf_stack_state *slot = &state->stack[spi - i]; 1203 struct bpf_reg_state *st = &slot->spilled_ptr; 1204 1205 __mark_reg_known_zero(st); 1206 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1207 st->live |= REG_LIVE_WRITTEN; 1208 st->ref_obj_id = i == 0 ? id : 0; 1209 st->iter.btf = btf; 1210 st->iter.btf_id = btf_id; 1211 st->iter.state = BPF_ITER_STATE_ACTIVE; 1212 st->iter.depth = 0; 1213 1214 for (j = 0; j < BPF_REG_SIZE; j++) 1215 slot->slot_type[j] = STACK_ITER; 1216 1217 mark_stack_slot_scratched(env, spi - i); 1218 } 1219 1220 return 0; 1221 } 1222 1223 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1224 struct bpf_reg_state *reg, int nr_slots) 1225 { 1226 struct bpf_func_state *state = func(env, reg); 1227 int spi, i, j; 1228 1229 spi = iter_get_spi(env, reg, nr_slots); 1230 if (spi < 0) 1231 return spi; 1232 1233 for (i = 0; i < nr_slots; i++) { 1234 struct bpf_stack_state *slot = &state->stack[spi - i]; 1235 struct bpf_reg_state *st = &slot->spilled_ptr; 1236 1237 if (i == 0) 1238 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1239 1240 __mark_reg_not_init(env, st); 1241 1242 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1243 st->live |= REG_LIVE_WRITTEN; 1244 1245 for (j = 0; j < BPF_REG_SIZE; j++) 1246 slot->slot_type[j] = STACK_INVALID; 1247 1248 mark_stack_slot_scratched(env, spi - i); 1249 } 1250 1251 return 0; 1252 } 1253 1254 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1255 struct bpf_reg_state *reg, int nr_slots) 1256 { 1257 struct bpf_func_state *state = func(env, reg); 1258 int spi, i, j; 1259 1260 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1261 * will do check_mem_access to check and update stack bounds later, so 1262 * return true for that case. 1263 */ 1264 spi = iter_get_spi(env, reg, nr_slots); 1265 if (spi == -ERANGE) 1266 return true; 1267 if (spi < 0) 1268 return false; 1269 1270 for (i = 0; i < nr_slots; i++) { 1271 struct bpf_stack_state *slot = &state->stack[spi - i]; 1272 1273 for (j = 0; j < BPF_REG_SIZE; j++) 1274 if (slot->slot_type[j] == STACK_ITER) 1275 return false; 1276 } 1277 1278 return true; 1279 } 1280 1281 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1282 struct btf *btf, u32 btf_id, int nr_slots) 1283 { 1284 struct bpf_func_state *state = func(env, reg); 1285 int spi, i, j; 1286 1287 spi = iter_get_spi(env, reg, nr_slots); 1288 if (spi < 0) 1289 return false; 1290 1291 for (i = 0; i < nr_slots; i++) { 1292 struct bpf_stack_state *slot = &state->stack[spi - i]; 1293 struct bpf_reg_state *st = &slot->spilled_ptr; 1294 1295 /* only main (first) slot has ref_obj_id set */ 1296 if (i == 0 && !st->ref_obj_id) 1297 return false; 1298 if (i != 0 && st->ref_obj_id) 1299 return false; 1300 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1301 return false; 1302 1303 for (j = 0; j < BPF_REG_SIZE; j++) 1304 if (slot->slot_type[j] != STACK_ITER) 1305 return false; 1306 } 1307 1308 return true; 1309 } 1310 1311 /* Check if given stack slot is "special": 1312 * - spilled register state (STACK_SPILL); 1313 * - dynptr state (STACK_DYNPTR); 1314 * - iter state (STACK_ITER). 1315 */ 1316 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1317 { 1318 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1319 1320 switch (type) { 1321 case STACK_SPILL: 1322 case STACK_DYNPTR: 1323 case STACK_ITER: 1324 return true; 1325 case STACK_INVALID: 1326 case STACK_MISC: 1327 case STACK_ZERO: 1328 return false; 1329 default: 1330 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1331 return true; 1332 } 1333 } 1334 1335 /* The reg state of a pointer or a bounded scalar was saved when 1336 * it was spilled to the stack. 1337 */ 1338 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1339 { 1340 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1341 } 1342 1343 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1344 { 1345 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1346 stack->spilled_ptr.type == SCALAR_VALUE; 1347 } 1348 1349 static void scrub_spilled_slot(u8 *stype) 1350 { 1351 if (*stype != STACK_INVALID) 1352 *stype = STACK_MISC; 1353 } 1354 1355 static void print_verifier_state(struct bpf_verifier_env *env, 1356 const struct bpf_func_state *state, 1357 bool print_all) 1358 { 1359 const struct bpf_reg_state *reg; 1360 enum bpf_reg_type t; 1361 int i; 1362 1363 if (state->frameno) 1364 verbose(env, " frame%d:", state->frameno); 1365 for (i = 0; i < MAX_BPF_REG; i++) { 1366 reg = &state->regs[i]; 1367 t = reg->type; 1368 if (t == NOT_INIT) 1369 continue; 1370 if (!print_all && !reg_scratched(env, i)) 1371 continue; 1372 verbose(env, " R%d", i); 1373 print_liveness(env, reg->live); 1374 verbose(env, "="); 1375 if (t == SCALAR_VALUE && reg->precise) 1376 verbose(env, "P"); 1377 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 1378 tnum_is_const(reg->var_off)) { 1379 /* reg->off should be 0 for SCALAR_VALUE */ 1380 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1381 verbose(env, "%lld", reg->var_off.value + reg->off); 1382 } else { 1383 const char *sep = ""; 1384 1385 verbose(env, "%s", reg_type_str(env, t)); 1386 if (base_type(t) == PTR_TO_BTF_ID) 1387 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id)); 1388 verbose(env, "("); 1389 /* 1390 * _a stands for append, was shortened to avoid multiline statements below. 1391 * This macro is used to output a comma separated list of attributes. 1392 */ 1393 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 1394 1395 if (reg->id) 1396 verbose_a("id=%d", reg->id); 1397 if (reg->ref_obj_id) 1398 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 1399 if (type_is_non_owning_ref(reg->type)) 1400 verbose_a("%s", "non_own_ref"); 1401 if (t != SCALAR_VALUE) 1402 verbose_a("off=%d", reg->off); 1403 if (type_is_pkt_pointer(t)) 1404 verbose_a("r=%d", reg->range); 1405 else if (base_type(t) == CONST_PTR_TO_MAP || 1406 base_type(t) == PTR_TO_MAP_KEY || 1407 base_type(t) == PTR_TO_MAP_VALUE) 1408 verbose_a("ks=%d,vs=%d", 1409 reg->map_ptr->key_size, 1410 reg->map_ptr->value_size); 1411 if (tnum_is_const(reg->var_off)) { 1412 /* Typically an immediate SCALAR_VALUE, but 1413 * could be a pointer whose offset is too big 1414 * for reg->off 1415 */ 1416 verbose_a("imm=%llx", reg->var_off.value); 1417 } else { 1418 if (reg->smin_value != reg->umin_value && 1419 reg->smin_value != S64_MIN) 1420 verbose_a("smin=%lld", (long long)reg->smin_value); 1421 if (reg->smax_value != reg->umax_value && 1422 reg->smax_value != S64_MAX) 1423 verbose_a("smax=%lld", (long long)reg->smax_value); 1424 if (reg->umin_value != 0) 1425 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 1426 if (reg->umax_value != U64_MAX) 1427 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 1428 if (!tnum_is_unknown(reg->var_off)) { 1429 char tn_buf[48]; 1430 1431 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1432 verbose_a("var_off=%s", tn_buf); 1433 } 1434 if (reg->s32_min_value != reg->smin_value && 1435 reg->s32_min_value != S32_MIN) 1436 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 1437 if (reg->s32_max_value != reg->smax_value && 1438 reg->s32_max_value != S32_MAX) 1439 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 1440 if (reg->u32_min_value != reg->umin_value && 1441 reg->u32_min_value != U32_MIN) 1442 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 1443 if (reg->u32_max_value != reg->umax_value && 1444 reg->u32_max_value != U32_MAX) 1445 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 1446 } 1447 #undef verbose_a 1448 1449 verbose(env, ")"); 1450 } 1451 } 1452 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1453 char types_buf[BPF_REG_SIZE + 1]; 1454 bool valid = false; 1455 int j; 1456 1457 for (j = 0; j < BPF_REG_SIZE; j++) { 1458 if (state->stack[i].slot_type[j] != STACK_INVALID) 1459 valid = true; 1460 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1461 } 1462 types_buf[BPF_REG_SIZE] = 0; 1463 if (!valid) 1464 continue; 1465 if (!print_all && !stack_slot_scratched(env, i)) 1466 continue; 1467 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) { 1468 case STACK_SPILL: 1469 reg = &state->stack[i].spilled_ptr; 1470 t = reg->type; 1471 1472 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1473 print_liveness(env, reg->live); 1474 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1475 if (t == SCALAR_VALUE && reg->precise) 1476 verbose(env, "P"); 1477 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 1478 verbose(env, "%lld", reg->var_off.value + reg->off); 1479 break; 1480 case STACK_DYNPTR: 1481 i += BPF_DYNPTR_NR_SLOTS - 1; 1482 reg = &state->stack[i].spilled_ptr; 1483 1484 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1485 print_liveness(env, reg->live); 1486 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type)); 1487 if (reg->ref_obj_id) 1488 verbose(env, "(ref_id=%d)", reg->ref_obj_id); 1489 break; 1490 case STACK_ITER: 1491 /* only main slot has ref_obj_id set; skip others */ 1492 reg = &state->stack[i].spilled_ptr; 1493 if (!reg->ref_obj_id) 1494 continue; 1495 1496 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1497 print_liveness(env, reg->live); 1498 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)", 1499 iter_type_str(reg->iter.btf, reg->iter.btf_id), 1500 reg->ref_obj_id, iter_state_str(reg->iter.state), 1501 reg->iter.depth); 1502 break; 1503 case STACK_MISC: 1504 case STACK_ZERO: 1505 default: 1506 reg = &state->stack[i].spilled_ptr; 1507 1508 for (j = 0; j < BPF_REG_SIZE; j++) 1509 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1510 types_buf[BPF_REG_SIZE] = 0; 1511 1512 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1513 print_liveness(env, reg->live); 1514 verbose(env, "=%s", types_buf); 1515 break; 1516 } 1517 } 1518 if (state->acquired_refs && state->refs[0].id) { 1519 verbose(env, " refs=%d", state->refs[0].id); 1520 for (i = 1; i < state->acquired_refs; i++) 1521 if (state->refs[i].id) 1522 verbose(env, ",%d", state->refs[i].id); 1523 } 1524 if (state->in_callback_fn) 1525 verbose(env, " cb"); 1526 if (state->in_async_callback_fn) 1527 verbose(env, " async_cb"); 1528 verbose(env, "\n"); 1529 if (!print_all) 1530 mark_verifier_state_clean(env); 1531 } 1532 1533 static inline u32 vlog_alignment(u32 pos) 1534 { 1535 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 1536 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 1537 } 1538 1539 static void print_insn_state(struct bpf_verifier_env *env, 1540 const struct bpf_func_state *state) 1541 { 1542 if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) { 1543 /* remove new line character */ 1544 bpf_vlog_reset(&env->log, env->prev_log_pos - 1); 1545 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' '); 1546 } else { 1547 verbose(env, "%d:", env->insn_idx); 1548 } 1549 print_verifier_state(env, state, false); 1550 } 1551 1552 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1553 * small to hold src. This is different from krealloc since we don't want to preserve 1554 * the contents of dst. 1555 * 1556 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1557 * not be allocated. 1558 */ 1559 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1560 { 1561 size_t alloc_bytes; 1562 void *orig = dst; 1563 size_t bytes; 1564 1565 if (ZERO_OR_NULL_PTR(src)) 1566 goto out; 1567 1568 if (unlikely(check_mul_overflow(n, size, &bytes))) 1569 return NULL; 1570 1571 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1572 dst = krealloc(orig, alloc_bytes, flags); 1573 if (!dst) { 1574 kfree(orig); 1575 return NULL; 1576 } 1577 1578 memcpy(dst, src, bytes); 1579 out: 1580 return dst ? dst : ZERO_SIZE_PTR; 1581 } 1582 1583 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1584 * small to hold new_n items. new items are zeroed out if the array grows. 1585 * 1586 * Contrary to krealloc_array, does not free arr if new_n is zero. 1587 */ 1588 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1589 { 1590 size_t alloc_size; 1591 void *new_arr; 1592 1593 if (!new_n || old_n == new_n) 1594 goto out; 1595 1596 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1597 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1598 if (!new_arr) { 1599 kfree(arr); 1600 return NULL; 1601 } 1602 arr = new_arr; 1603 1604 if (new_n > old_n) 1605 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1606 1607 out: 1608 return arr ? arr : ZERO_SIZE_PTR; 1609 } 1610 1611 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1612 { 1613 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1614 sizeof(struct bpf_reference_state), GFP_KERNEL); 1615 if (!dst->refs) 1616 return -ENOMEM; 1617 1618 dst->acquired_refs = src->acquired_refs; 1619 return 0; 1620 } 1621 1622 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1623 { 1624 size_t n = src->allocated_stack / BPF_REG_SIZE; 1625 1626 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1627 GFP_KERNEL); 1628 if (!dst->stack) 1629 return -ENOMEM; 1630 1631 dst->allocated_stack = src->allocated_stack; 1632 return 0; 1633 } 1634 1635 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1636 { 1637 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1638 sizeof(struct bpf_reference_state)); 1639 if (!state->refs) 1640 return -ENOMEM; 1641 1642 state->acquired_refs = n; 1643 return 0; 1644 } 1645 1646 /* Possibly update state->allocated_stack to be at least size bytes. Also 1647 * possibly update the function's high-water mark in its bpf_subprog_info. 1648 */ 1649 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size) 1650 { 1651 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1652 1653 if (old_n >= n) 1654 return 0; 1655 1656 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1657 if (!state->stack) 1658 return -ENOMEM; 1659 1660 state->allocated_stack = size; 1661 1662 /* update known max for given subprogram */ 1663 if (env->subprog_info[state->subprogno].stack_depth < size) 1664 env->subprog_info[state->subprogno].stack_depth = size; 1665 1666 return 0; 1667 } 1668 1669 /* Acquire a pointer id from the env and update the state->refs to include 1670 * this new pointer reference. 1671 * On success, returns a valid pointer id to associate with the register 1672 * On failure, returns a negative errno. 1673 */ 1674 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1675 { 1676 struct bpf_func_state *state = cur_func(env); 1677 int new_ofs = state->acquired_refs; 1678 int id, err; 1679 1680 err = resize_reference_state(state, state->acquired_refs + 1); 1681 if (err) 1682 return err; 1683 id = ++env->id_gen; 1684 state->refs[new_ofs].id = id; 1685 state->refs[new_ofs].insn_idx = insn_idx; 1686 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1687 1688 return id; 1689 } 1690 1691 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1692 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1693 { 1694 int i, last_idx; 1695 1696 last_idx = state->acquired_refs - 1; 1697 for (i = 0; i < state->acquired_refs; i++) { 1698 if (state->refs[i].id == ptr_id) { 1699 /* Cannot release caller references in callbacks */ 1700 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1701 return -EINVAL; 1702 if (last_idx && i != last_idx) 1703 memcpy(&state->refs[i], &state->refs[last_idx], 1704 sizeof(*state->refs)); 1705 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1706 state->acquired_refs--; 1707 return 0; 1708 } 1709 } 1710 return -EINVAL; 1711 } 1712 1713 static void free_func_state(struct bpf_func_state *state) 1714 { 1715 if (!state) 1716 return; 1717 kfree(state->refs); 1718 kfree(state->stack); 1719 kfree(state); 1720 } 1721 1722 static void clear_jmp_history(struct bpf_verifier_state *state) 1723 { 1724 kfree(state->jmp_history); 1725 state->jmp_history = NULL; 1726 state->jmp_history_cnt = 0; 1727 } 1728 1729 static void free_verifier_state(struct bpf_verifier_state *state, 1730 bool free_self) 1731 { 1732 int i; 1733 1734 for (i = 0; i <= state->curframe; i++) { 1735 free_func_state(state->frame[i]); 1736 state->frame[i] = NULL; 1737 } 1738 clear_jmp_history(state); 1739 if (free_self) 1740 kfree(state); 1741 } 1742 1743 /* copy verifier state from src to dst growing dst stack space 1744 * when necessary to accommodate larger src stack 1745 */ 1746 static int copy_func_state(struct bpf_func_state *dst, 1747 const struct bpf_func_state *src) 1748 { 1749 int err; 1750 1751 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1752 err = copy_reference_state(dst, src); 1753 if (err) 1754 return err; 1755 return copy_stack_state(dst, src); 1756 } 1757 1758 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1759 const struct bpf_verifier_state *src) 1760 { 1761 struct bpf_func_state *dst; 1762 int i, err; 1763 1764 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1765 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1766 GFP_USER); 1767 if (!dst_state->jmp_history) 1768 return -ENOMEM; 1769 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1770 1771 /* if dst has more stack frames then src frame, free them */ 1772 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1773 free_func_state(dst_state->frame[i]); 1774 dst_state->frame[i] = NULL; 1775 } 1776 dst_state->speculative = src->speculative; 1777 dst_state->active_rcu_lock = src->active_rcu_lock; 1778 dst_state->curframe = src->curframe; 1779 dst_state->active_lock.ptr = src->active_lock.ptr; 1780 dst_state->active_lock.id = src->active_lock.id; 1781 dst_state->branches = src->branches; 1782 dst_state->parent = src->parent; 1783 dst_state->first_insn_idx = src->first_insn_idx; 1784 dst_state->last_insn_idx = src->last_insn_idx; 1785 dst_state->dfs_depth = src->dfs_depth; 1786 dst_state->callback_unroll_depth = src->callback_unroll_depth; 1787 dst_state->used_as_loop_entry = src->used_as_loop_entry; 1788 for (i = 0; i <= src->curframe; i++) { 1789 dst = dst_state->frame[i]; 1790 if (!dst) { 1791 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1792 if (!dst) 1793 return -ENOMEM; 1794 dst_state->frame[i] = dst; 1795 } 1796 err = copy_func_state(dst, src->frame[i]); 1797 if (err) 1798 return err; 1799 } 1800 return 0; 1801 } 1802 1803 static u32 state_htab_size(struct bpf_verifier_env *env) 1804 { 1805 return env->prog->len; 1806 } 1807 1808 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx) 1809 { 1810 struct bpf_verifier_state *cur = env->cur_state; 1811 struct bpf_func_state *state = cur->frame[cur->curframe]; 1812 1813 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 1814 } 1815 1816 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) 1817 { 1818 int fr; 1819 1820 if (a->curframe != b->curframe) 1821 return false; 1822 1823 for (fr = a->curframe; fr >= 0; fr--) 1824 if (a->frame[fr]->callsite != b->frame[fr]->callsite) 1825 return false; 1826 1827 return true; 1828 } 1829 1830 /* Open coded iterators allow back-edges in the state graph in order to 1831 * check unbounded loops that iterators. 1832 * 1833 * In is_state_visited() it is necessary to know if explored states are 1834 * part of some loops in order to decide whether non-exact states 1835 * comparison could be used: 1836 * - non-exact states comparison establishes sub-state relation and uses 1837 * read and precision marks to do so, these marks are propagated from 1838 * children states and thus are not guaranteed to be final in a loop; 1839 * - exact states comparison just checks if current and explored states 1840 * are identical (and thus form a back-edge). 1841 * 1842 * Paper "A New Algorithm for Identifying Loops in Decompilation" 1843 * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient 1844 * algorithm for loop structure detection and gives an overview of 1845 * relevant terminology. It also has helpful illustrations. 1846 * 1847 * [1] https://api.semanticscholar.org/CorpusID:15784067 1848 * 1849 * We use a similar algorithm but because loop nested structure is 1850 * irrelevant for verifier ours is significantly simpler and resembles 1851 * strongly connected components algorithm from Sedgewick's textbook. 1852 * 1853 * Define topmost loop entry as a first node of the loop traversed in a 1854 * depth first search starting from initial state. The goal of the loop 1855 * tracking algorithm is to associate topmost loop entries with states 1856 * derived from these entries. 1857 * 1858 * For each step in the DFS states traversal algorithm needs to identify 1859 * the following situations: 1860 * 1861 * initial initial initial 1862 * | | | 1863 * V V V 1864 * ... ... .---------> hdr 1865 * | | | | 1866 * V V | V 1867 * cur .-> succ | .------... 1868 * | | | | | | 1869 * V | V | V V 1870 * succ '-- cur | ... ... 1871 * | | | 1872 * | V V 1873 * | succ <- cur 1874 * | | 1875 * | V 1876 * | ... 1877 * | | 1878 * '----' 1879 * 1880 * (A) successor state of cur (B) successor state of cur or it's entry 1881 * not yet traversed are in current DFS path, thus cur and succ 1882 * are members of the same outermost loop 1883 * 1884 * initial initial 1885 * | | 1886 * V V 1887 * ... ... 1888 * | | 1889 * V V 1890 * .------... .------... 1891 * | | | | 1892 * V V V V 1893 * .-> hdr ... ... ... 1894 * | | | | | 1895 * | V V V V 1896 * | succ <- cur succ <- cur 1897 * | | | 1898 * | V V 1899 * | ... ... 1900 * | | | 1901 * '----' exit 1902 * 1903 * (C) successor state of cur is a part of some loop but this loop 1904 * does not include cur or successor state is not in a loop at all. 1905 * 1906 * Algorithm could be described as the following python code: 1907 * 1908 * traversed = set() # Set of traversed nodes 1909 * entries = {} # Mapping from node to loop entry 1910 * depths = {} # Depth level assigned to graph node 1911 * path = set() # Current DFS path 1912 * 1913 * # Find outermost loop entry known for n 1914 * def get_loop_entry(n): 1915 * h = entries.get(n, None) 1916 * while h in entries and entries[h] != h: 1917 * h = entries[h] 1918 * return h 1919 * 1920 * # Update n's loop entry if h's outermost entry comes 1921 * # before n's outermost entry in current DFS path. 1922 * def update_loop_entry(n, h): 1923 * n1 = get_loop_entry(n) or n 1924 * h1 = get_loop_entry(h) or h 1925 * if h1 in path and depths[h1] <= depths[n1]: 1926 * entries[n] = h1 1927 * 1928 * def dfs(n, depth): 1929 * traversed.add(n) 1930 * path.add(n) 1931 * depths[n] = depth 1932 * for succ in G.successors(n): 1933 * if succ not in traversed: 1934 * # Case A: explore succ and update cur's loop entry 1935 * # only if succ's entry is in current DFS path. 1936 * dfs(succ, depth + 1) 1937 * h = get_loop_entry(succ) 1938 * update_loop_entry(n, h) 1939 * else: 1940 * # Case B or C depending on `h1 in path` check in update_loop_entry(). 1941 * update_loop_entry(n, succ) 1942 * path.remove(n) 1943 * 1944 * To adapt this algorithm for use with verifier: 1945 * - use st->branch == 0 as a signal that DFS of succ had been finished 1946 * and cur's loop entry has to be updated (case A), handle this in 1947 * update_branch_counts(); 1948 * - use st->branch > 0 as a signal that st is in the current DFS path; 1949 * - handle cases B and C in is_state_visited(); 1950 * - update topmost loop entry for intermediate states in get_loop_entry(). 1951 */ 1952 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st) 1953 { 1954 struct bpf_verifier_state *topmost = st->loop_entry, *old; 1955 1956 while (topmost && topmost->loop_entry && topmost != topmost->loop_entry) 1957 topmost = topmost->loop_entry; 1958 /* Update loop entries for intermediate states to avoid this 1959 * traversal in future get_loop_entry() calls. 1960 */ 1961 while (st && st->loop_entry != topmost) { 1962 old = st->loop_entry; 1963 st->loop_entry = topmost; 1964 st = old; 1965 } 1966 return topmost; 1967 } 1968 1969 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr) 1970 { 1971 struct bpf_verifier_state *cur1, *hdr1; 1972 1973 cur1 = get_loop_entry(cur) ?: cur; 1974 hdr1 = get_loop_entry(hdr) ?: hdr; 1975 /* The head1->branches check decides between cases B and C in 1976 * comment for get_loop_entry(). If hdr1->branches == 0 then 1977 * head's topmost loop entry is not in current DFS path, 1978 * hence 'cur' and 'hdr' are not in the same loop and there is 1979 * no need to update cur->loop_entry. 1980 */ 1981 if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) { 1982 cur->loop_entry = hdr; 1983 hdr->used_as_loop_entry = true; 1984 } 1985 } 1986 1987 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1988 { 1989 while (st) { 1990 u32 br = --st->branches; 1991 1992 /* br == 0 signals that DFS exploration for 'st' is finished, 1993 * thus it is necessary to update parent's loop entry if it 1994 * turned out that st is a part of some loop. 1995 * This is a part of 'case A' in get_loop_entry() comment. 1996 */ 1997 if (br == 0 && st->parent && st->loop_entry) 1998 update_loop_entry(st->parent, st->loop_entry); 1999 2000 /* WARN_ON(br > 1) technically makes sense here, 2001 * but see comment in push_stack(), hence: 2002 */ 2003 WARN_ONCE((int)br < 0, 2004 "BUG update_branch_counts:branches_to_explore=%d\n", 2005 br); 2006 if (br) 2007 break; 2008 st = st->parent; 2009 } 2010 } 2011 2012 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 2013 int *insn_idx, bool pop_log) 2014 { 2015 struct bpf_verifier_state *cur = env->cur_state; 2016 struct bpf_verifier_stack_elem *elem, *head = env->head; 2017 int err; 2018 2019 if (env->head == NULL) 2020 return -ENOENT; 2021 2022 if (cur) { 2023 err = copy_verifier_state(cur, &head->st); 2024 if (err) 2025 return err; 2026 } 2027 if (pop_log) 2028 bpf_vlog_reset(&env->log, head->log_pos); 2029 if (insn_idx) 2030 *insn_idx = head->insn_idx; 2031 if (prev_insn_idx) 2032 *prev_insn_idx = head->prev_insn_idx; 2033 elem = head->next; 2034 free_verifier_state(&head->st, false); 2035 kfree(head); 2036 env->head = elem; 2037 env->stack_size--; 2038 return 0; 2039 } 2040 2041 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 2042 int insn_idx, int prev_insn_idx, 2043 bool speculative) 2044 { 2045 struct bpf_verifier_state *cur = env->cur_state; 2046 struct bpf_verifier_stack_elem *elem; 2047 int err; 2048 2049 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2050 if (!elem) 2051 goto err; 2052 2053 elem->insn_idx = insn_idx; 2054 elem->prev_insn_idx = prev_insn_idx; 2055 elem->next = env->head; 2056 elem->log_pos = env->log.end_pos; 2057 env->head = elem; 2058 env->stack_size++; 2059 err = copy_verifier_state(&elem->st, cur); 2060 if (err) 2061 goto err; 2062 elem->st.speculative |= speculative; 2063 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2064 verbose(env, "The sequence of %d jumps is too complex.\n", 2065 env->stack_size); 2066 goto err; 2067 } 2068 if (elem->st.parent) { 2069 ++elem->st.parent->branches; 2070 /* WARN_ON(branches > 2) technically makes sense here, 2071 * but 2072 * 1. speculative states will bump 'branches' for non-branch 2073 * instructions 2074 * 2. is_state_visited() heuristics may decide not to create 2075 * a new state for a sequence of branches and all such current 2076 * and cloned states will be pointing to a single parent state 2077 * which might have large 'branches' count. 2078 */ 2079 } 2080 return &elem->st; 2081 err: 2082 free_verifier_state(env->cur_state, true); 2083 env->cur_state = NULL; 2084 /* pop all elements and return */ 2085 while (!pop_stack(env, NULL, NULL, false)); 2086 return NULL; 2087 } 2088 2089 #define CALLER_SAVED_REGS 6 2090 static const int caller_saved[CALLER_SAVED_REGS] = { 2091 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 2092 }; 2093 2094 /* This helper doesn't clear reg->id */ 2095 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2096 { 2097 reg->var_off = tnum_const(imm); 2098 reg->smin_value = (s64)imm; 2099 reg->smax_value = (s64)imm; 2100 reg->umin_value = imm; 2101 reg->umax_value = imm; 2102 2103 reg->s32_min_value = (s32)imm; 2104 reg->s32_max_value = (s32)imm; 2105 reg->u32_min_value = (u32)imm; 2106 reg->u32_max_value = (u32)imm; 2107 } 2108 2109 /* Mark the unknown part of a register (variable offset or scalar value) as 2110 * known to have the value @imm. 2111 */ 2112 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2113 { 2114 /* Clear off and union(map_ptr, range) */ 2115 memset(((u8 *)reg) + sizeof(reg->type), 0, 2116 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 2117 reg->id = 0; 2118 reg->ref_obj_id = 0; 2119 ___mark_reg_known(reg, imm); 2120 } 2121 2122 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 2123 { 2124 reg->var_off = tnum_const_subreg(reg->var_off, imm); 2125 reg->s32_min_value = (s32)imm; 2126 reg->s32_max_value = (s32)imm; 2127 reg->u32_min_value = (u32)imm; 2128 reg->u32_max_value = (u32)imm; 2129 } 2130 2131 /* Mark the 'variable offset' part of a register as zero. This should be 2132 * used only on registers holding a pointer type. 2133 */ 2134 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 2135 { 2136 __mark_reg_known(reg, 0); 2137 } 2138 2139 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 2140 { 2141 __mark_reg_known(reg, 0); 2142 reg->type = SCALAR_VALUE; 2143 } 2144 2145 static void mark_reg_known_zero(struct bpf_verifier_env *env, 2146 struct bpf_reg_state *regs, u32 regno) 2147 { 2148 if (WARN_ON(regno >= MAX_BPF_REG)) { 2149 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 2150 /* Something bad happened, let's kill all regs */ 2151 for (regno = 0; regno < MAX_BPF_REG; regno++) 2152 __mark_reg_not_init(env, regs + regno); 2153 return; 2154 } 2155 __mark_reg_known_zero(regs + regno); 2156 } 2157 2158 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 2159 bool first_slot, int dynptr_id) 2160 { 2161 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 2162 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 2163 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 2164 */ 2165 __mark_reg_known_zero(reg); 2166 reg->type = CONST_PTR_TO_DYNPTR; 2167 /* Give each dynptr a unique id to uniquely associate slices to it. */ 2168 reg->id = dynptr_id; 2169 reg->dynptr.type = type; 2170 reg->dynptr.first_slot = first_slot; 2171 } 2172 2173 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 2174 { 2175 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 2176 const struct bpf_map *map = reg->map_ptr; 2177 2178 if (map->inner_map_meta) { 2179 reg->type = CONST_PTR_TO_MAP; 2180 reg->map_ptr = map->inner_map_meta; 2181 /* transfer reg's id which is unique for every map_lookup_elem 2182 * as UID of the inner map. 2183 */ 2184 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 2185 reg->map_uid = reg->id; 2186 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 2187 reg->type = PTR_TO_XDP_SOCK; 2188 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 2189 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 2190 reg->type = PTR_TO_SOCKET; 2191 } else { 2192 reg->type = PTR_TO_MAP_VALUE; 2193 } 2194 return; 2195 } 2196 2197 reg->type &= ~PTR_MAYBE_NULL; 2198 } 2199 2200 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 2201 struct btf_field_graph_root *ds_head) 2202 { 2203 __mark_reg_known_zero(®s[regno]); 2204 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 2205 regs[regno].btf = ds_head->btf; 2206 regs[regno].btf_id = ds_head->value_btf_id; 2207 regs[regno].off = ds_head->node_offset; 2208 } 2209 2210 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 2211 { 2212 return type_is_pkt_pointer(reg->type); 2213 } 2214 2215 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 2216 { 2217 return reg_is_pkt_pointer(reg) || 2218 reg->type == PTR_TO_PACKET_END; 2219 } 2220 2221 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 2222 { 2223 return base_type(reg->type) == PTR_TO_MEM && 2224 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 2225 } 2226 2227 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 2228 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 2229 enum bpf_reg_type which) 2230 { 2231 /* The register can already have a range from prior markings. 2232 * This is fine as long as it hasn't been advanced from its 2233 * origin. 2234 */ 2235 return reg->type == which && 2236 reg->id == 0 && 2237 reg->off == 0 && 2238 tnum_equals_const(reg->var_off, 0); 2239 } 2240 2241 /* Reset the min/max bounds of a register */ 2242 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 2243 { 2244 reg->smin_value = S64_MIN; 2245 reg->smax_value = S64_MAX; 2246 reg->umin_value = 0; 2247 reg->umax_value = U64_MAX; 2248 2249 reg->s32_min_value = S32_MIN; 2250 reg->s32_max_value = S32_MAX; 2251 reg->u32_min_value = 0; 2252 reg->u32_max_value = U32_MAX; 2253 } 2254 2255 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 2256 { 2257 reg->smin_value = S64_MIN; 2258 reg->smax_value = S64_MAX; 2259 reg->umin_value = 0; 2260 reg->umax_value = U64_MAX; 2261 } 2262 2263 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 2264 { 2265 reg->s32_min_value = S32_MIN; 2266 reg->s32_max_value = S32_MAX; 2267 reg->u32_min_value = 0; 2268 reg->u32_max_value = U32_MAX; 2269 } 2270 2271 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2272 { 2273 struct tnum var32_off = tnum_subreg(reg->var_off); 2274 2275 /* min signed is max(sign bit) | min(other bits) */ 2276 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2277 var32_off.value | (var32_off.mask & S32_MIN)); 2278 /* max signed is min(sign bit) | max(other bits) */ 2279 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2280 var32_off.value | (var32_off.mask & S32_MAX)); 2281 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2282 reg->u32_max_value = min(reg->u32_max_value, 2283 (u32)(var32_off.value | var32_off.mask)); 2284 } 2285 2286 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2287 { 2288 /* min signed is max(sign bit) | min(other bits) */ 2289 reg->smin_value = max_t(s64, reg->smin_value, 2290 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2291 /* max signed is min(sign bit) | max(other bits) */ 2292 reg->smax_value = min_t(s64, reg->smax_value, 2293 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2294 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2295 reg->umax_value = min(reg->umax_value, 2296 reg->var_off.value | reg->var_off.mask); 2297 } 2298 2299 static void __update_reg_bounds(struct bpf_reg_state *reg) 2300 { 2301 __update_reg32_bounds(reg); 2302 __update_reg64_bounds(reg); 2303 } 2304 2305 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2306 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2307 { 2308 /* Learn sign from signed bounds. 2309 * If we cannot cross the sign boundary, then signed and unsigned bounds 2310 * are the same, so combine. This works even in the negative case, e.g. 2311 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2312 */ 2313 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 2314 reg->s32_min_value = reg->u32_min_value = 2315 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2316 reg->s32_max_value = reg->u32_max_value = 2317 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2318 return; 2319 } 2320 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2321 * boundary, so we must be careful. 2322 */ 2323 if ((s32)reg->u32_max_value >= 0) { 2324 /* Positive. We can't learn anything from the smin, but smax 2325 * is positive, hence safe. 2326 */ 2327 reg->s32_min_value = reg->u32_min_value; 2328 reg->s32_max_value = reg->u32_max_value = 2329 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2330 } else if ((s32)reg->u32_min_value < 0) { 2331 /* Negative. We can't learn anything from the smax, but smin 2332 * is negative, hence safe. 2333 */ 2334 reg->s32_min_value = reg->u32_min_value = 2335 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2336 reg->s32_max_value = reg->u32_max_value; 2337 } 2338 } 2339 2340 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2341 { 2342 /* Learn sign from signed bounds. 2343 * If we cannot cross the sign boundary, then signed and unsigned bounds 2344 * are the same, so combine. This works even in the negative case, e.g. 2345 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2346 */ 2347 if (reg->smin_value >= 0 || reg->smax_value < 0) { 2348 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2349 reg->umin_value); 2350 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2351 reg->umax_value); 2352 return; 2353 } 2354 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2355 * boundary, so we must be careful. 2356 */ 2357 if ((s64)reg->umax_value >= 0) { 2358 /* Positive. We can't learn anything from the smin, but smax 2359 * is positive, hence safe. 2360 */ 2361 reg->smin_value = reg->umin_value; 2362 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2363 reg->umax_value); 2364 } else if ((s64)reg->umin_value < 0) { 2365 /* Negative. We can't learn anything from the smax, but smin 2366 * is negative, hence safe. 2367 */ 2368 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2369 reg->umin_value); 2370 reg->smax_value = reg->umax_value; 2371 } 2372 } 2373 2374 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2375 { 2376 __reg32_deduce_bounds(reg); 2377 __reg64_deduce_bounds(reg); 2378 } 2379 2380 /* Attempts to improve var_off based on unsigned min/max information */ 2381 static void __reg_bound_offset(struct bpf_reg_state *reg) 2382 { 2383 struct tnum var64_off = tnum_intersect(reg->var_off, 2384 tnum_range(reg->umin_value, 2385 reg->umax_value)); 2386 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2387 tnum_range(reg->u32_min_value, 2388 reg->u32_max_value)); 2389 2390 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2391 } 2392 2393 static void reg_bounds_sync(struct bpf_reg_state *reg) 2394 { 2395 /* We might have learned new bounds from the var_off. */ 2396 __update_reg_bounds(reg); 2397 /* We might have learned something about the sign bit. */ 2398 __reg_deduce_bounds(reg); 2399 /* We might have learned some bits from the bounds. */ 2400 __reg_bound_offset(reg); 2401 /* Intersecting with the old var_off might have improved our bounds 2402 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2403 * then new var_off is (0; 0x7f...fc) which improves our umax. 2404 */ 2405 __update_reg_bounds(reg); 2406 } 2407 2408 static bool __reg32_bound_s64(s32 a) 2409 { 2410 return a >= 0 && a <= S32_MAX; 2411 } 2412 2413 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2414 { 2415 reg->umin_value = reg->u32_min_value; 2416 reg->umax_value = reg->u32_max_value; 2417 2418 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2419 * be positive otherwise set to worse case bounds and refine later 2420 * from tnum. 2421 */ 2422 if (__reg32_bound_s64(reg->s32_min_value) && 2423 __reg32_bound_s64(reg->s32_max_value)) { 2424 reg->smin_value = reg->s32_min_value; 2425 reg->smax_value = reg->s32_max_value; 2426 } else { 2427 reg->smin_value = 0; 2428 reg->smax_value = U32_MAX; 2429 } 2430 } 2431 2432 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 2433 { 2434 /* special case when 64-bit register has upper 32-bit register 2435 * zeroed. Typically happens after zext or <<32, >>32 sequence 2436 * allowing us to use 32-bit bounds directly, 2437 */ 2438 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 2439 __reg_assign_32_into_64(reg); 2440 } else { 2441 /* Otherwise the best we can do is push lower 32bit known and 2442 * unknown bits into register (var_off set from jmp logic) 2443 * then learn as much as possible from the 64-bit tnum 2444 * known and unknown bits. The previous smin/smax bounds are 2445 * invalid here because of jmp32 compare so mark them unknown 2446 * so they do not impact tnum bounds calculation. 2447 */ 2448 __mark_reg64_unbounded(reg); 2449 } 2450 reg_bounds_sync(reg); 2451 } 2452 2453 static bool __reg64_bound_s32(s64 a) 2454 { 2455 return a >= S32_MIN && a <= S32_MAX; 2456 } 2457 2458 static bool __reg64_bound_u32(u64 a) 2459 { 2460 return a >= U32_MIN && a <= U32_MAX; 2461 } 2462 2463 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 2464 { 2465 __mark_reg32_unbounded(reg); 2466 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 2467 reg->s32_min_value = (s32)reg->smin_value; 2468 reg->s32_max_value = (s32)reg->smax_value; 2469 } 2470 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 2471 reg->u32_min_value = (u32)reg->umin_value; 2472 reg->u32_max_value = (u32)reg->umax_value; 2473 } 2474 reg_bounds_sync(reg); 2475 } 2476 2477 /* Mark a register as having a completely unknown (scalar) value. */ 2478 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2479 struct bpf_reg_state *reg) 2480 { 2481 /* 2482 * Clear type, off, and union(map_ptr, range) and 2483 * padding between 'type' and union 2484 */ 2485 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2486 reg->type = SCALAR_VALUE; 2487 reg->id = 0; 2488 reg->ref_obj_id = 0; 2489 reg->var_off = tnum_unknown; 2490 reg->frameno = 0; 2491 reg->precise = !env->bpf_capable; 2492 __mark_reg_unbounded(reg); 2493 } 2494 2495 static void mark_reg_unknown(struct bpf_verifier_env *env, 2496 struct bpf_reg_state *regs, u32 regno) 2497 { 2498 if (WARN_ON(regno >= MAX_BPF_REG)) { 2499 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2500 /* Something bad happened, let's kill all regs except FP */ 2501 for (regno = 0; regno < BPF_REG_FP; regno++) 2502 __mark_reg_not_init(env, regs + regno); 2503 return; 2504 } 2505 __mark_reg_unknown(env, regs + regno); 2506 } 2507 2508 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2509 struct bpf_reg_state *reg) 2510 { 2511 __mark_reg_unknown(env, reg); 2512 reg->type = NOT_INIT; 2513 } 2514 2515 static void mark_reg_not_init(struct bpf_verifier_env *env, 2516 struct bpf_reg_state *regs, u32 regno) 2517 { 2518 if (WARN_ON(regno >= MAX_BPF_REG)) { 2519 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2520 /* Something bad happened, let's kill all regs except FP */ 2521 for (regno = 0; regno < BPF_REG_FP; regno++) 2522 __mark_reg_not_init(env, regs + regno); 2523 return; 2524 } 2525 __mark_reg_not_init(env, regs + regno); 2526 } 2527 2528 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2529 struct bpf_reg_state *regs, u32 regno, 2530 enum bpf_reg_type reg_type, 2531 struct btf *btf, u32 btf_id, 2532 enum bpf_type_flag flag) 2533 { 2534 if (reg_type == SCALAR_VALUE) { 2535 mark_reg_unknown(env, regs, regno); 2536 return; 2537 } 2538 mark_reg_known_zero(env, regs, regno); 2539 regs[regno].type = PTR_TO_BTF_ID | flag; 2540 regs[regno].btf = btf; 2541 regs[regno].btf_id = btf_id; 2542 if (type_may_be_null(flag)) 2543 regs[regno].id = ++env->id_gen; 2544 } 2545 2546 #define DEF_NOT_SUBREG (0) 2547 static void init_reg_state(struct bpf_verifier_env *env, 2548 struct bpf_func_state *state) 2549 { 2550 struct bpf_reg_state *regs = state->regs; 2551 int i; 2552 2553 for (i = 0; i < MAX_BPF_REG; i++) { 2554 mark_reg_not_init(env, regs, i); 2555 regs[i].live = REG_LIVE_NONE; 2556 regs[i].parent = NULL; 2557 regs[i].subreg_def = DEF_NOT_SUBREG; 2558 } 2559 2560 /* frame pointer */ 2561 regs[BPF_REG_FP].type = PTR_TO_STACK; 2562 mark_reg_known_zero(env, regs, BPF_REG_FP); 2563 regs[BPF_REG_FP].frameno = state->frameno; 2564 } 2565 2566 #define BPF_MAIN_FUNC (-1) 2567 static void init_func_state(struct bpf_verifier_env *env, 2568 struct bpf_func_state *state, 2569 int callsite, int frameno, int subprogno) 2570 { 2571 state->callsite = callsite; 2572 state->frameno = frameno; 2573 state->subprogno = subprogno; 2574 state->callback_ret_range = tnum_range(0, 0); 2575 init_reg_state(env, state); 2576 mark_verifier_state_scratched(env); 2577 } 2578 2579 /* Similar to push_stack(), but for async callbacks */ 2580 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2581 int insn_idx, int prev_insn_idx, 2582 int subprog) 2583 { 2584 struct bpf_verifier_stack_elem *elem; 2585 struct bpf_func_state *frame; 2586 2587 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2588 if (!elem) 2589 goto err; 2590 2591 elem->insn_idx = insn_idx; 2592 elem->prev_insn_idx = prev_insn_idx; 2593 elem->next = env->head; 2594 elem->log_pos = env->log.end_pos; 2595 env->head = elem; 2596 env->stack_size++; 2597 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2598 verbose(env, 2599 "The sequence of %d jumps is too complex for async cb.\n", 2600 env->stack_size); 2601 goto err; 2602 } 2603 /* Unlike push_stack() do not copy_verifier_state(). 2604 * The caller state doesn't matter. 2605 * This is async callback. It starts in a fresh stack. 2606 * Initialize it similar to do_check_common(). 2607 */ 2608 elem->st.branches = 1; 2609 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2610 if (!frame) 2611 goto err; 2612 init_func_state(env, frame, 2613 BPF_MAIN_FUNC /* callsite */, 2614 0 /* frameno within this callchain */, 2615 subprog /* subprog number within this prog */); 2616 elem->st.frame[0] = frame; 2617 return &elem->st; 2618 err: 2619 free_verifier_state(env->cur_state, true); 2620 env->cur_state = NULL; 2621 /* pop all elements and return */ 2622 while (!pop_stack(env, NULL, NULL, false)); 2623 return NULL; 2624 } 2625 2626 2627 enum reg_arg_type { 2628 SRC_OP, /* register is used as source operand */ 2629 DST_OP, /* register is used as destination operand */ 2630 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2631 }; 2632 2633 static int cmp_subprogs(const void *a, const void *b) 2634 { 2635 return ((struct bpf_subprog_info *)a)->start - 2636 ((struct bpf_subprog_info *)b)->start; 2637 } 2638 2639 static int find_subprog(struct bpf_verifier_env *env, int off) 2640 { 2641 struct bpf_subprog_info *p; 2642 2643 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2644 sizeof(env->subprog_info[0]), cmp_subprogs); 2645 if (!p) 2646 return -ENOENT; 2647 return p - env->subprog_info; 2648 2649 } 2650 2651 static int add_subprog(struct bpf_verifier_env *env, int off) 2652 { 2653 int insn_cnt = env->prog->len; 2654 int ret; 2655 2656 if (off >= insn_cnt || off < 0) { 2657 verbose(env, "call to invalid destination\n"); 2658 return -EINVAL; 2659 } 2660 ret = find_subprog(env, off); 2661 if (ret >= 0) 2662 return ret; 2663 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2664 verbose(env, "too many subprograms\n"); 2665 return -E2BIG; 2666 } 2667 /* determine subprog starts. The end is one before the next starts */ 2668 env->subprog_info[env->subprog_cnt++].start = off; 2669 sort(env->subprog_info, env->subprog_cnt, 2670 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2671 return env->subprog_cnt - 1; 2672 } 2673 2674 #define MAX_KFUNC_DESCS 256 2675 #define MAX_KFUNC_BTFS 256 2676 2677 struct bpf_kfunc_desc { 2678 struct btf_func_model func_model; 2679 u32 func_id; 2680 s32 imm; 2681 u16 offset; 2682 unsigned long addr; 2683 }; 2684 2685 struct bpf_kfunc_btf { 2686 struct btf *btf; 2687 struct module *module; 2688 u16 offset; 2689 }; 2690 2691 struct bpf_kfunc_desc_tab { 2692 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2693 * verification. JITs do lookups by bpf_insn, where func_id may not be 2694 * available, therefore at the end of verification do_misc_fixups() 2695 * sorts this by imm and offset. 2696 */ 2697 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2698 u32 nr_descs; 2699 }; 2700 2701 struct bpf_kfunc_btf_tab { 2702 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2703 u32 nr_descs; 2704 }; 2705 2706 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2707 { 2708 const struct bpf_kfunc_desc *d0 = a; 2709 const struct bpf_kfunc_desc *d1 = b; 2710 2711 /* func_id is not greater than BTF_MAX_TYPE */ 2712 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2713 } 2714 2715 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2716 { 2717 const struct bpf_kfunc_btf *d0 = a; 2718 const struct bpf_kfunc_btf *d1 = b; 2719 2720 return d0->offset - d1->offset; 2721 } 2722 2723 static const struct bpf_kfunc_desc * 2724 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2725 { 2726 struct bpf_kfunc_desc desc = { 2727 .func_id = func_id, 2728 .offset = offset, 2729 }; 2730 struct bpf_kfunc_desc_tab *tab; 2731 2732 tab = prog->aux->kfunc_tab; 2733 return bsearch(&desc, tab->descs, tab->nr_descs, 2734 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2735 } 2736 2737 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2738 u16 btf_fd_idx, u8 **func_addr) 2739 { 2740 const struct bpf_kfunc_desc *desc; 2741 2742 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2743 if (!desc) 2744 return -EFAULT; 2745 2746 *func_addr = (u8 *)desc->addr; 2747 return 0; 2748 } 2749 2750 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2751 s16 offset) 2752 { 2753 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2754 struct bpf_kfunc_btf_tab *tab; 2755 struct bpf_kfunc_btf *b; 2756 struct module *mod; 2757 struct btf *btf; 2758 int btf_fd; 2759 2760 tab = env->prog->aux->kfunc_btf_tab; 2761 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2762 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2763 if (!b) { 2764 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2765 verbose(env, "too many different module BTFs\n"); 2766 return ERR_PTR(-E2BIG); 2767 } 2768 2769 if (bpfptr_is_null(env->fd_array)) { 2770 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2771 return ERR_PTR(-EPROTO); 2772 } 2773 2774 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2775 offset * sizeof(btf_fd), 2776 sizeof(btf_fd))) 2777 return ERR_PTR(-EFAULT); 2778 2779 btf = btf_get_by_fd(btf_fd); 2780 if (IS_ERR(btf)) { 2781 verbose(env, "invalid module BTF fd specified\n"); 2782 return btf; 2783 } 2784 2785 if (!btf_is_module(btf)) { 2786 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2787 btf_put(btf); 2788 return ERR_PTR(-EINVAL); 2789 } 2790 2791 mod = btf_try_get_module(btf); 2792 if (!mod) { 2793 btf_put(btf); 2794 return ERR_PTR(-ENXIO); 2795 } 2796 2797 b = &tab->descs[tab->nr_descs++]; 2798 b->btf = btf; 2799 b->module = mod; 2800 b->offset = offset; 2801 2802 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2803 kfunc_btf_cmp_by_off, NULL); 2804 } 2805 return b->btf; 2806 } 2807 2808 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2809 { 2810 if (!tab) 2811 return; 2812 2813 while (tab->nr_descs--) { 2814 module_put(tab->descs[tab->nr_descs].module); 2815 btf_put(tab->descs[tab->nr_descs].btf); 2816 } 2817 kfree(tab); 2818 } 2819 2820 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2821 { 2822 if (offset) { 2823 if (offset < 0) { 2824 /* In the future, this can be allowed to increase limit 2825 * of fd index into fd_array, interpreted as u16. 2826 */ 2827 verbose(env, "negative offset disallowed for kernel module function call\n"); 2828 return ERR_PTR(-EINVAL); 2829 } 2830 2831 return __find_kfunc_desc_btf(env, offset); 2832 } 2833 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2834 } 2835 2836 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2837 { 2838 const struct btf_type *func, *func_proto; 2839 struct bpf_kfunc_btf_tab *btf_tab; 2840 struct bpf_kfunc_desc_tab *tab; 2841 struct bpf_prog_aux *prog_aux; 2842 struct bpf_kfunc_desc *desc; 2843 const char *func_name; 2844 struct btf *desc_btf; 2845 unsigned long call_imm; 2846 unsigned long addr; 2847 int err; 2848 2849 prog_aux = env->prog->aux; 2850 tab = prog_aux->kfunc_tab; 2851 btf_tab = prog_aux->kfunc_btf_tab; 2852 if (!tab) { 2853 if (!btf_vmlinux) { 2854 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2855 return -ENOTSUPP; 2856 } 2857 2858 if (!env->prog->jit_requested) { 2859 verbose(env, "JIT is required for calling kernel function\n"); 2860 return -ENOTSUPP; 2861 } 2862 2863 if (!bpf_jit_supports_kfunc_call()) { 2864 verbose(env, "JIT does not support calling kernel function\n"); 2865 return -ENOTSUPP; 2866 } 2867 2868 if (!env->prog->gpl_compatible) { 2869 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2870 return -EINVAL; 2871 } 2872 2873 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2874 if (!tab) 2875 return -ENOMEM; 2876 prog_aux->kfunc_tab = tab; 2877 } 2878 2879 /* func_id == 0 is always invalid, but instead of returning an error, be 2880 * conservative and wait until the code elimination pass before returning 2881 * error, so that invalid calls that get pruned out can be in BPF programs 2882 * loaded from userspace. It is also required that offset be untouched 2883 * for such calls. 2884 */ 2885 if (!func_id && !offset) 2886 return 0; 2887 2888 if (!btf_tab && offset) { 2889 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2890 if (!btf_tab) 2891 return -ENOMEM; 2892 prog_aux->kfunc_btf_tab = btf_tab; 2893 } 2894 2895 desc_btf = find_kfunc_desc_btf(env, offset); 2896 if (IS_ERR(desc_btf)) { 2897 verbose(env, "failed to find BTF for kernel function\n"); 2898 return PTR_ERR(desc_btf); 2899 } 2900 2901 if (find_kfunc_desc(env->prog, func_id, offset)) 2902 return 0; 2903 2904 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2905 verbose(env, "too many different kernel function calls\n"); 2906 return -E2BIG; 2907 } 2908 2909 func = btf_type_by_id(desc_btf, func_id); 2910 if (!func || !btf_type_is_func(func)) { 2911 verbose(env, "kernel btf_id %u is not a function\n", 2912 func_id); 2913 return -EINVAL; 2914 } 2915 func_proto = btf_type_by_id(desc_btf, func->type); 2916 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2917 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2918 func_id); 2919 return -EINVAL; 2920 } 2921 2922 func_name = btf_name_by_offset(desc_btf, func->name_off); 2923 addr = kallsyms_lookup_name(func_name); 2924 if (!addr) { 2925 verbose(env, "cannot find address for kernel function %s\n", 2926 func_name); 2927 return -EINVAL; 2928 } 2929 specialize_kfunc(env, func_id, offset, &addr); 2930 2931 if (bpf_jit_supports_far_kfunc_call()) { 2932 call_imm = func_id; 2933 } else { 2934 call_imm = BPF_CALL_IMM(addr); 2935 /* Check whether the relative offset overflows desc->imm */ 2936 if ((unsigned long)(s32)call_imm != call_imm) { 2937 verbose(env, "address of kernel function %s is out of range\n", 2938 func_name); 2939 return -EINVAL; 2940 } 2941 } 2942 2943 if (bpf_dev_bound_kfunc_id(func_id)) { 2944 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2945 if (err) 2946 return err; 2947 } 2948 2949 desc = &tab->descs[tab->nr_descs++]; 2950 desc->func_id = func_id; 2951 desc->imm = call_imm; 2952 desc->offset = offset; 2953 desc->addr = addr; 2954 err = btf_distill_func_proto(&env->log, desc_btf, 2955 func_proto, func_name, 2956 &desc->func_model); 2957 if (!err) 2958 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2959 kfunc_desc_cmp_by_id_off, NULL); 2960 return err; 2961 } 2962 2963 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 2964 { 2965 const struct bpf_kfunc_desc *d0 = a; 2966 const struct bpf_kfunc_desc *d1 = b; 2967 2968 if (d0->imm != d1->imm) 2969 return d0->imm < d1->imm ? -1 : 1; 2970 if (d0->offset != d1->offset) 2971 return d0->offset < d1->offset ? -1 : 1; 2972 return 0; 2973 } 2974 2975 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 2976 { 2977 struct bpf_kfunc_desc_tab *tab; 2978 2979 tab = prog->aux->kfunc_tab; 2980 if (!tab) 2981 return; 2982 2983 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2984 kfunc_desc_cmp_by_imm_off, NULL); 2985 } 2986 2987 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2988 { 2989 return !!prog->aux->kfunc_tab; 2990 } 2991 2992 const struct btf_func_model * 2993 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2994 const struct bpf_insn *insn) 2995 { 2996 const struct bpf_kfunc_desc desc = { 2997 .imm = insn->imm, 2998 .offset = insn->off, 2999 }; 3000 const struct bpf_kfunc_desc *res; 3001 struct bpf_kfunc_desc_tab *tab; 3002 3003 tab = prog->aux->kfunc_tab; 3004 res = bsearch(&desc, tab->descs, tab->nr_descs, 3005 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 3006 3007 return res ? &res->func_model : NULL; 3008 } 3009 3010 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 3011 { 3012 struct bpf_subprog_info *subprog = env->subprog_info; 3013 struct bpf_insn *insn = env->prog->insnsi; 3014 int i, ret, insn_cnt = env->prog->len; 3015 3016 /* Add entry function. */ 3017 ret = add_subprog(env, 0); 3018 if (ret) 3019 return ret; 3020 3021 for (i = 0; i < insn_cnt; i++, insn++) { 3022 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 3023 !bpf_pseudo_kfunc_call(insn)) 3024 continue; 3025 3026 if (!env->bpf_capable) { 3027 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 3028 return -EPERM; 3029 } 3030 3031 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 3032 ret = add_subprog(env, i + insn->imm + 1); 3033 else 3034 ret = add_kfunc_call(env, insn->imm, insn->off); 3035 3036 if (ret < 0) 3037 return ret; 3038 } 3039 3040 /* Add a fake 'exit' subprog which could simplify subprog iteration 3041 * logic. 'subprog_cnt' should not be increased. 3042 */ 3043 subprog[env->subprog_cnt].start = insn_cnt; 3044 3045 if (env->log.level & BPF_LOG_LEVEL2) 3046 for (i = 0; i < env->subprog_cnt; i++) 3047 verbose(env, "func#%d @%d\n", i, subprog[i].start); 3048 3049 return 0; 3050 } 3051 3052 static int check_subprogs(struct bpf_verifier_env *env) 3053 { 3054 int i, subprog_start, subprog_end, off, cur_subprog = 0; 3055 struct bpf_subprog_info *subprog = env->subprog_info; 3056 struct bpf_insn *insn = env->prog->insnsi; 3057 int insn_cnt = env->prog->len; 3058 3059 /* now check that all jumps are within the same subprog */ 3060 subprog_start = subprog[cur_subprog].start; 3061 subprog_end = subprog[cur_subprog + 1].start; 3062 for (i = 0; i < insn_cnt; i++) { 3063 u8 code = insn[i].code; 3064 3065 if (code == (BPF_JMP | BPF_CALL) && 3066 insn[i].src_reg == 0 && 3067 insn[i].imm == BPF_FUNC_tail_call) 3068 subprog[cur_subprog].has_tail_call = true; 3069 if (BPF_CLASS(code) == BPF_LD && 3070 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 3071 subprog[cur_subprog].has_ld_abs = true; 3072 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 3073 goto next; 3074 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 3075 goto next; 3076 if (code == (BPF_JMP32 | BPF_JA)) 3077 off = i + insn[i].imm + 1; 3078 else 3079 off = i + insn[i].off + 1; 3080 if (off < subprog_start || off >= subprog_end) { 3081 verbose(env, "jump out of range from insn %d to %d\n", i, off); 3082 return -EINVAL; 3083 } 3084 next: 3085 if (i == subprog_end - 1) { 3086 /* to avoid fall-through from one subprog into another 3087 * the last insn of the subprog should be either exit 3088 * or unconditional jump back 3089 */ 3090 if (code != (BPF_JMP | BPF_EXIT) && 3091 code != (BPF_JMP32 | BPF_JA) && 3092 code != (BPF_JMP | BPF_JA)) { 3093 verbose(env, "last insn is not an exit or jmp\n"); 3094 return -EINVAL; 3095 } 3096 subprog_start = subprog_end; 3097 cur_subprog++; 3098 if (cur_subprog < env->subprog_cnt) 3099 subprog_end = subprog[cur_subprog + 1].start; 3100 } 3101 } 3102 return 0; 3103 } 3104 3105 /* Parentage chain of this register (or stack slot) should take care of all 3106 * issues like callee-saved registers, stack slot allocation time, etc. 3107 */ 3108 static int mark_reg_read(struct bpf_verifier_env *env, 3109 const struct bpf_reg_state *state, 3110 struct bpf_reg_state *parent, u8 flag) 3111 { 3112 bool writes = parent == state->parent; /* Observe write marks */ 3113 int cnt = 0; 3114 3115 while (parent) { 3116 /* if read wasn't screened by an earlier write ... */ 3117 if (writes && state->live & REG_LIVE_WRITTEN) 3118 break; 3119 if (parent->live & REG_LIVE_DONE) { 3120 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 3121 reg_type_str(env, parent->type), 3122 parent->var_off.value, parent->off); 3123 return -EFAULT; 3124 } 3125 /* The first condition is more likely to be true than the 3126 * second, checked it first. 3127 */ 3128 if ((parent->live & REG_LIVE_READ) == flag || 3129 parent->live & REG_LIVE_READ64) 3130 /* The parentage chain never changes and 3131 * this parent was already marked as LIVE_READ. 3132 * There is no need to keep walking the chain again and 3133 * keep re-marking all parents as LIVE_READ. 3134 * This case happens when the same register is read 3135 * multiple times without writes into it in-between. 3136 * Also, if parent has the stronger REG_LIVE_READ64 set, 3137 * then no need to set the weak REG_LIVE_READ32. 3138 */ 3139 break; 3140 /* ... then we depend on parent's value */ 3141 parent->live |= flag; 3142 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 3143 if (flag == REG_LIVE_READ64) 3144 parent->live &= ~REG_LIVE_READ32; 3145 state = parent; 3146 parent = state->parent; 3147 writes = true; 3148 cnt++; 3149 } 3150 3151 if (env->longest_mark_read_walk < cnt) 3152 env->longest_mark_read_walk = cnt; 3153 return 0; 3154 } 3155 3156 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3157 { 3158 struct bpf_func_state *state = func(env, reg); 3159 int spi, ret; 3160 3161 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 3162 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 3163 * check_kfunc_call. 3164 */ 3165 if (reg->type == CONST_PTR_TO_DYNPTR) 3166 return 0; 3167 spi = dynptr_get_spi(env, reg); 3168 if (spi < 0) 3169 return spi; 3170 /* Caller ensures dynptr is valid and initialized, which means spi is in 3171 * bounds and spi is the first dynptr slot. Simply mark stack slot as 3172 * read. 3173 */ 3174 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 3175 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 3176 if (ret) 3177 return ret; 3178 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 3179 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 3180 } 3181 3182 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3183 int spi, int nr_slots) 3184 { 3185 struct bpf_func_state *state = func(env, reg); 3186 int err, i; 3187 3188 for (i = 0; i < nr_slots; i++) { 3189 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 3190 3191 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 3192 if (err) 3193 return err; 3194 3195 mark_stack_slot_scratched(env, spi - i); 3196 } 3197 3198 return 0; 3199 } 3200 3201 /* This function is supposed to be used by the following 32-bit optimization 3202 * code only. It returns TRUE if the source or destination register operates 3203 * on 64-bit, otherwise return FALSE. 3204 */ 3205 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 3206 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 3207 { 3208 u8 code, class, op; 3209 3210 code = insn->code; 3211 class = BPF_CLASS(code); 3212 op = BPF_OP(code); 3213 if (class == BPF_JMP) { 3214 /* BPF_EXIT for "main" will reach here. Return TRUE 3215 * conservatively. 3216 */ 3217 if (op == BPF_EXIT) 3218 return true; 3219 if (op == BPF_CALL) { 3220 /* BPF to BPF call will reach here because of marking 3221 * caller saved clobber with DST_OP_NO_MARK for which we 3222 * don't care the register def because they are anyway 3223 * marked as NOT_INIT already. 3224 */ 3225 if (insn->src_reg == BPF_PSEUDO_CALL) 3226 return false; 3227 /* Helper call will reach here because of arg type 3228 * check, conservatively return TRUE. 3229 */ 3230 if (t == SRC_OP) 3231 return true; 3232 3233 return false; 3234 } 3235 } 3236 3237 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3238 return false; 3239 3240 if (class == BPF_ALU64 || class == BPF_JMP || 3241 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3242 return true; 3243 3244 if (class == BPF_ALU || class == BPF_JMP32) 3245 return false; 3246 3247 if (class == BPF_LDX) { 3248 if (t != SRC_OP) 3249 return BPF_SIZE(code) == BPF_DW; 3250 /* LDX source must be ptr. */ 3251 return true; 3252 } 3253 3254 if (class == BPF_STX) { 3255 /* BPF_STX (including atomic variants) has multiple source 3256 * operands, one of which is a ptr. Check whether the caller is 3257 * asking about it. 3258 */ 3259 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3260 return true; 3261 return BPF_SIZE(code) == BPF_DW; 3262 } 3263 3264 if (class == BPF_LD) { 3265 u8 mode = BPF_MODE(code); 3266 3267 /* LD_IMM64 */ 3268 if (mode == BPF_IMM) 3269 return true; 3270 3271 /* Both LD_IND and LD_ABS return 32-bit data. */ 3272 if (t != SRC_OP) 3273 return false; 3274 3275 /* Implicit ctx ptr. */ 3276 if (regno == BPF_REG_6) 3277 return true; 3278 3279 /* Explicit source could be any width. */ 3280 return true; 3281 } 3282 3283 if (class == BPF_ST) 3284 /* The only source register for BPF_ST is a ptr. */ 3285 return true; 3286 3287 /* Conservatively return true at default. */ 3288 return true; 3289 } 3290 3291 /* Return the regno defined by the insn, or -1. */ 3292 static int insn_def_regno(const struct bpf_insn *insn) 3293 { 3294 switch (BPF_CLASS(insn->code)) { 3295 case BPF_JMP: 3296 case BPF_JMP32: 3297 case BPF_ST: 3298 return -1; 3299 case BPF_STX: 3300 if (BPF_MODE(insn->code) == BPF_ATOMIC && 3301 (insn->imm & BPF_FETCH)) { 3302 if (insn->imm == BPF_CMPXCHG) 3303 return BPF_REG_0; 3304 else 3305 return insn->src_reg; 3306 } else { 3307 return -1; 3308 } 3309 default: 3310 return insn->dst_reg; 3311 } 3312 } 3313 3314 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3315 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3316 { 3317 int dst_reg = insn_def_regno(insn); 3318 3319 if (dst_reg == -1) 3320 return false; 3321 3322 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3323 } 3324 3325 static void mark_insn_zext(struct bpf_verifier_env *env, 3326 struct bpf_reg_state *reg) 3327 { 3328 s32 def_idx = reg->subreg_def; 3329 3330 if (def_idx == DEF_NOT_SUBREG) 3331 return; 3332 3333 env->insn_aux_data[def_idx - 1].zext_dst = true; 3334 /* The dst will be zero extended, so won't be sub-register anymore. */ 3335 reg->subreg_def = DEF_NOT_SUBREG; 3336 } 3337 3338 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, 3339 enum reg_arg_type t) 3340 { 3341 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3342 struct bpf_reg_state *reg; 3343 bool rw64; 3344 3345 if (regno >= MAX_BPF_REG) { 3346 verbose(env, "R%d is invalid\n", regno); 3347 return -EINVAL; 3348 } 3349 3350 mark_reg_scratched(env, regno); 3351 3352 reg = ®s[regno]; 3353 rw64 = is_reg64(env, insn, regno, reg, t); 3354 if (t == SRC_OP) { 3355 /* check whether register used as source operand can be read */ 3356 if (reg->type == NOT_INIT) { 3357 verbose(env, "R%d !read_ok\n", regno); 3358 return -EACCES; 3359 } 3360 /* We don't need to worry about FP liveness because it's read-only */ 3361 if (regno == BPF_REG_FP) 3362 return 0; 3363 3364 if (rw64) 3365 mark_insn_zext(env, reg); 3366 3367 return mark_reg_read(env, reg, reg->parent, 3368 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3369 } else { 3370 /* check whether register used as dest operand can be written to */ 3371 if (regno == BPF_REG_FP) { 3372 verbose(env, "frame pointer is read only\n"); 3373 return -EACCES; 3374 } 3375 reg->live |= REG_LIVE_WRITTEN; 3376 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3377 if (t == DST_OP) 3378 mark_reg_unknown(env, regs, regno); 3379 } 3380 return 0; 3381 } 3382 3383 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3384 enum reg_arg_type t) 3385 { 3386 struct bpf_verifier_state *vstate = env->cur_state; 3387 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3388 3389 return __check_reg_arg(env, state->regs, regno, t); 3390 } 3391 3392 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3393 { 3394 env->insn_aux_data[idx].jmp_point = true; 3395 } 3396 3397 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3398 { 3399 return env->insn_aux_data[insn_idx].jmp_point; 3400 } 3401 3402 /* for any branch, call, exit record the history of jmps in the given state */ 3403 static int push_jmp_history(struct bpf_verifier_env *env, 3404 struct bpf_verifier_state *cur) 3405 { 3406 u32 cnt = cur->jmp_history_cnt; 3407 struct bpf_idx_pair *p; 3408 size_t alloc_size; 3409 3410 if (!is_jmp_point(env, env->insn_idx)) 3411 return 0; 3412 3413 cnt++; 3414 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3415 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 3416 if (!p) 3417 return -ENOMEM; 3418 p[cnt - 1].idx = env->insn_idx; 3419 p[cnt - 1].prev_idx = env->prev_insn_idx; 3420 cur->jmp_history = p; 3421 cur->jmp_history_cnt = cnt; 3422 return 0; 3423 } 3424 3425 /* Backtrack one insn at a time. If idx is not at the top of recorded 3426 * history then previous instruction came from straight line execution. 3427 * Return -ENOENT if we exhausted all instructions within given state. 3428 * 3429 * It's legal to have a bit of a looping with the same starting and ending 3430 * insn index within the same state, e.g.: 3->4->5->3, so just because current 3431 * instruction index is the same as state's first_idx doesn't mean we are 3432 * done. If there is still some jump history left, we should keep going. We 3433 * need to take into account that we might have a jump history between given 3434 * state's parent and itself, due to checkpointing. In this case, we'll have 3435 * history entry recording a jump from last instruction of parent state and 3436 * first instruction of given state. 3437 */ 3438 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3439 u32 *history) 3440 { 3441 u32 cnt = *history; 3442 3443 if (i == st->first_insn_idx) { 3444 if (cnt == 0) 3445 return -ENOENT; 3446 if (cnt == 1 && st->jmp_history[0].idx == i) 3447 return -ENOENT; 3448 } 3449 3450 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3451 i = st->jmp_history[cnt - 1].prev_idx; 3452 (*history)--; 3453 } else { 3454 i--; 3455 } 3456 return i; 3457 } 3458 3459 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3460 { 3461 const struct btf_type *func; 3462 struct btf *desc_btf; 3463 3464 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3465 return NULL; 3466 3467 desc_btf = find_kfunc_desc_btf(data, insn->off); 3468 if (IS_ERR(desc_btf)) 3469 return "<error>"; 3470 3471 func = btf_type_by_id(desc_btf, insn->imm); 3472 return btf_name_by_offset(desc_btf, func->name_off); 3473 } 3474 3475 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3476 { 3477 bt->frame = frame; 3478 } 3479 3480 static inline void bt_reset(struct backtrack_state *bt) 3481 { 3482 struct bpf_verifier_env *env = bt->env; 3483 3484 memset(bt, 0, sizeof(*bt)); 3485 bt->env = env; 3486 } 3487 3488 static inline u32 bt_empty(struct backtrack_state *bt) 3489 { 3490 u64 mask = 0; 3491 int i; 3492 3493 for (i = 0; i <= bt->frame; i++) 3494 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3495 3496 return mask == 0; 3497 } 3498 3499 static inline int bt_subprog_enter(struct backtrack_state *bt) 3500 { 3501 if (bt->frame == MAX_CALL_FRAMES - 1) { 3502 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3503 WARN_ONCE(1, "verifier backtracking bug"); 3504 return -EFAULT; 3505 } 3506 bt->frame++; 3507 return 0; 3508 } 3509 3510 static inline int bt_subprog_exit(struct backtrack_state *bt) 3511 { 3512 if (bt->frame == 0) { 3513 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3514 WARN_ONCE(1, "verifier backtracking bug"); 3515 return -EFAULT; 3516 } 3517 bt->frame--; 3518 return 0; 3519 } 3520 3521 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3522 { 3523 bt->reg_masks[frame] |= 1 << reg; 3524 } 3525 3526 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3527 { 3528 bt->reg_masks[frame] &= ~(1 << reg); 3529 } 3530 3531 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3532 { 3533 bt_set_frame_reg(bt, bt->frame, reg); 3534 } 3535 3536 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3537 { 3538 bt_clear_frame_reg(bt, bt->frame, reg); 3539 } 3540 3541 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3542 { 3543 bt->stack_masks[frame] |= 1ull << slot; 3544 } 3545 3546 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3547 { 3548 bt->stack_masks[frame] &= ~(1ull << slot); 3549 } 3550 3551 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot) 3552 { 3553 bt_set_frame_slot(bt, bt->frame, slot); 3554 } 3555 3556 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot) 3557 { 3558 bt_clear_frame_slot(bt, bt->frame, slot); 3559 } 3560 3561 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3562 { 3563 return bt->reg_masks[frame]; 3564 } 3565 3566 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3567 { 3568 return bt->reg_masks[bt->frame]; 3569 } 3570 3571 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3572 { 3573 return bt->stack_masks[frame]; 3574 } 3575 3576 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3577 { 3578 return bt->stack_masks[bt->frame]; 3579 } 3580 3581 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3582 { 3583 return bt->reg_masks[bt->frame] & (1 << reg); 3584 } 3585 3586 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot) 3587 { 3588 return bt->stack_masks[bt->frame] & (1ull << slot); 3589 } 3590 3591 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3592 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3593 { 3594 DECLARE_BITMAP(mask, 64); 3595 bool first = true; 3596 int i, n; 3597 3598 buf[0] = '\0'; 3599 3600 bitmap_from_u64(mask, reg_mask); 3601 for_each_set_bit(i, mask, 32) { 3602 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3603 first = false; 3604 buf += n; 3605 buf_sz -= n; 3606 if (buf_sz < 0) 3607 break; 3608 } 3609 } 3610 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3611 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3612 { 3613 DECLARE_BITMAP(mask, 64); 3614 bool first = true; 3615 int i, n; 3616 3617 buf[0] = '\0'; 3618 3619 bitmap_from_u64(mask, stack_mask); 3620 for_each_set_bit(i, mask, 64) { 3621 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3622 first = false; 3623 buf += n; 3624 buf_sz -= n; 3625 if (buf_sz < 0) 3626 break; 3627 } 3628 } 3629 3630 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx); 3631 3632 /* For given verifier state backtrack_insn() is called from the last insn to 3633 * the first insn. Its purpose is to compute a bitmask of registers and 3634 * stack slots that needs precision in the parent verifier state. 3635 * 3636 * @idx is an index of the instruction we are currently processing; 3637 * @subseq_idx is an index of the subsequent instruction that: 3638 * - *would be* executed next, if jump history is viewed in forward order; 3639 * - *was* processed previously during backtracking. 3640 */ 3641 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 3642 struct backtrack_state *bt) 3643 { 3644 const struct bpf_insn_cbs cbs = { 3645 .cb_call = disasm_kfunc_name, 3646 .cb_print = verbose, 3647 .private_data = env, 3648 }; 3649 struct bpf_insn *insn = env->prog->insnsi + idx; 3650 u8 class = BPF_CLASS(insn->code); 3651 u8 opcode = BPF_OP(insn->code); 3652 u8 mode = BPF_MODE(insn->code); 3653 u32 dreg = insn->dst_reg; 3654 u32 sreg = insn->src_reg; 3655 u32 spi, i; 3656 3657 if (insn->code == 0) 3658 return 0; 3659 if (env->log.level & BPF_LOG_LEVEL2) { 3660 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3661 verbose(env, "mark_precise: frame%d: regs=%s ", 3662 bt->frame, env->tmp_str_buf); 3663 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3664 verbose(env, "stack=%s before ", env->tmp_str_buf); 3665 verbose(env, "%d: ", idx); 3666 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3667 } 3668 3669 if (class == BPF_ALU || class == BPF_ALU64) { 3670 if (!bt_is_reg_set(bt, dreg)) 3671 return 0; 3672 if (opcode == BPF_END || opcode == BPF_NEG) { 3673 /* sreg is reserved and unused 3674 * dreg still need precision before this insn 3675 */ 3676 return 0; 3677 } else if (opcode == BPF_MOV) { 3678 if (BPF_SRC(insn->code) == BPF_X) { 3679 /* dreg = sreg or dreg = (s8, s16, s32)sreg 3680 * dreg needs precision after this insn 3681 * sreg needs precision before this insn 3682 */ 3683 bt_clear_reg(bt, dreg); 3684 if (sreg != BPF_REG_FP) 3685 bt_set_reg(bt, sreg); 3686 } else { 3687 /* dreg = K 3688 * dreg needs precision after this insn. 3689 * Corresponding register is already marked 3690 * as precise=true in this verifier state. 3691 * No further markings in parent are necessary 3692 */ 3693 bt_clear_reg(bt, dreg); 3694 } 3695 } else { 3696 if (BPF_SRC(insn->code) == BPF_X) { 3697 /* dreg += sreg 3698 * both dreg and sreg need precision 3699 * before this insn 3700 */ 3701 if (sreg != BPF_REG_FP) 3702 bt_set_reg(bt, sreg); 3703 } /* else dreg += K 3704 * dreg still needs precision before this insn 3705 */ 3706 } 3707 } else if (class == BPF_LDX) { 3708 if (!bt_is_reg_set(bt, dreg)) 3709 return 0; 3710 bt_clear_reg(bt, dreg); 3711 3712 /* scalars can only be spilled into stack w/o losing precision. 3713 * Load from any other memory can be zero extended. 3714 * The desire to keep that precision is already indicated 3715 * by 'precise' mark in corresponding register of this state. 3716 * No further tracking necessary. 3717 */ 3718 if (insn->src_reg != BPF_REG_FP) 3719 return 0; 3720 3721 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3722 * that [fp - off] slot contains scalar that needs to be 3723 * tracked with precision 3724 */ 3725 spi = (-insn->off - 1) / BPF_REG_SIZE; 3726 if (spi >= 64) { 3727 verbose(env, "BUG spi %d\n", spi); 3728 WARN_ONCE(1, "verifier backtracking bug"); 3729 return -EFAULT; 3730 } 3731 bt_set_slot(bt, spi); 3732 } else if (class == BPF_STX || class == BPF_ST) { 3733 if (bt_is_reg_set(bt, dreg)) 3734 /* stx & st shouldn't be using _scalar_ dst_reg 3735 * to access memory. It means backtracking 3736 * encountered a case of pointer subtraction. 3737 */ 3738 return -ENOTSUPP; 3739 /* scalars can only be spilled into stack */ 3740 if (insn->dst_reg != BPF_REG_FP) 3741 return 0; 3742 spi = (-insn->off - 1) / BPF_REG_SIZE; 3743 if (spi >= 64) { 3744 verbose(env, "BUG spi %d\n", spi); 3745 WARN_ONCE(1, "verifier backtracking bug"); 3746 return -EFAULT; 3747 } 3748 if (!bt_is_slot_set(bt, spi)) 3749 return 0; 3750 bt_clear_slot(bt, spi); 3751 if (class == BPF_STX) 3752 bt_set_reg(bt, sreg); 3753 } else if (class == BPF_JMP || class == BPF_JMP32) { 3754 if (bpf_pseudo_call(insn)) { 3755 int subprog_insn_idx, subprog; 3756 3757 subprog_insn_idx = idx + insn->imm + 1; 3758 subprog = find_subprog(env, subprog_insn_idx); 3759 if (subprog < 0) 3760 return -EFAULT; 3761 3762 if (subprog_is_global(env, subprog)) { 3763 /* check that jump history doesn't have any 3764 * extra instructions from subprog; the next 3765 * instruction after call to global subprog 3766 * should be literally next instruction in 3767 * caller program 3768 */ 3769 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 3770 /* r1-r5 are invalidated after subprog call, 3771 * so for global func call it shouldn't be set 3772 * anymore 3773 */ 3774 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3775 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3776 WARN_ONCE(1, "verifier backtracking bug"); 3777 return -EFAULT; 3778 } 3779 /* global subprog always sets R0 */ 3780 bt_clear_reg(bt, BPF_REG_0); 3781 return 0; 3782 } else { 3783 /* static subprog call instruction, which 3784 * means that we are exiting current subprog, 3785 * so only r1-r5 could be still requested as 3786 * precise, r0 and r6-r10 or any stack slot in 3787 * the current frame should be zero by now 3788 */ 3789 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3790 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3791 WARN_ONCE(1, "verifier backtracking bug"); 3792 return -EFAULT; 3793 } 3794 /* we don't track register spills perfectly, 3795 * so fallback to force-precise instead of failing */ 3796 if (bt_stack_mask(bt) != 0) 3797 return -ENOTSUPP; 3798 /* propagate r1-r5 to the caller */ 3799 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 3800 if (bt_is_reg_set(bt, i)) { 3801 bt_clear_reg(bt, i); 3802 bt_set_frame_reg(bt, bt->frame - 1, i); 3803 } 3804 } 3805 if (bt_subprog_exit(bt)) 3806 return -EFAULT; 3807 return 0; 3808 } 3809 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { 3810 /* exit from callback subprog to callback-calling helper or 3811 * kfunc call. Use idx/subseq_idx check to discern it from 3812 * straight line code backtracking. 3813 * Unlike the subprog call handling above, we shouldn't 3814 * propagate precision of r1-r5 (if any requested), as they are 3815 * not actually arguments passed directly to callback subprogs 3816 */ 3817 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3818 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3819 WARN_ONCE(1, "verifier backtracking bug"); 3820 return -EFAULT; 3821 } 3822 if (bt_stack_mask(bt) != 0) 3823 return -ENOTSUPP; 3824 /* clear r1-r5 in callback subprog's mask */ 3825 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3826 bt_clear_reg(bt, i); 3827 if (bt_subprog_exit(bt)) 3828 return -EFAULT; 3829 return 0; 3830 } else if (opcode == BPF_CALL) { 3831 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 3832 * catch this error later. Make backtracking conservative 3833 * with ENOTSUPP. 3834 */ 3835 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 3836 return -ENOTSUPP; 3837 /* regular helper call sets R0 */ 3838 bt_clear_reg(bt, BPF_REG_0); 3839 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3840 /* if backtracing was looking for registers R1-R5 3841 * they should have been found already. 3842 */ 3843 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3844 WARN_ONCE(1, "verifier backtracking bug"); 3845 return -EFAULT; 3846 } 3847 } else if (opcode == BPF_EXIT) { 3848 bool r0_precise; 3849 3850 /* Backtracking to a nested function call, 'idx' is a part of 3851 * the inner frame 'subseq_idx' is a part of the outer frame. 3852 * In case of a regular function call, instructions giving 3853 * precision to registers R1-R5 should have been found already. 3854 * In case of a callback, it is ok to have R1-R5 marked for 3855 * backtracking, as these registers are set by the function 3856 * invoking callback. 3857 */ 3858 if (subseq_idx >= 0 && calls_callback(env, subseq_idx)) 3859 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3860 bt_clear_reg(bt, i); 3861 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3862 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3863 WARN_ONCE(1, "verifier backtracking bug"); 3864 return -EFAULT; 3865 } 3866 3867 /* BPF_EXIT in subprog or callback always returns 3868 * right after the call instruction, so by checking 3869 * whether the instruction at subseq_idx-1 is subprog 3870 * call or not we can distinguish actual exit from 3871 * *subprog* from exit from *callback*. In the former 3872 * case, we need to propagate r0 precision, if 3873 * necessary. In the former we never do that. 3874 */ 3875 r0_precise = subseq_idx - 1 >= 0 && 3876 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 3877 bt_is_reg_set(bt, BPF_REG_0); 3878 3879 bt_clear_reg(bt, BPF_REG_0); 3880 if (bt_subprog_enter(bt)) 3881 return -EFAULT; 3882 3883 if (r0_precise) 3884 bt_set_reg(bt, BPF_REG_0); 3885 /* r6-r9 and stack slots will stay set in caller frame 3886 * bitmasks until we return back from callee(s) 3887 */ 3888 return 0; 3889 } else if (BPF_SRC(insn->code) == BPF_X) { 3890 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 3891 return 0; 3892 /* dreg <cond> sreg 3893 * Both dreg and sreg need precision before 3894 * this insn. If only sreg was marked precise 3895 * before it would be equally necessary to 3896 * propagate it to dreg. 3897 */ 3898 bt_set_reg(bt, dreg); 3899 bt_set_reg(bt, sreg); 3900 /* else dreg <cond> K 3901 * Only dreg still needs precision before 3902 * this insn, so for the K-based conditional 3903 * there is nothing new to be marked. 3904 */ 3905 } 3906 } else if (class == BPF_LD) { 3907 if (!bt_is_reg_set(bt, dreg)) 3908 return 0; 3909 bt_clear_reg(bt, dreg); 3910 /* It's ld_imm64 or ld_abs or ld_ind. 3911 * For ld_imm64 no further tracking of precision 3912 * into parent is necessary 3913 */ 3914 if (mode == BPF_IND || mode == BPF_ABS) 3915 /* to be analyzed */ 3916 return -ENOTSUPP; 3917 } 3918 return 0; 3919 } 3920 3921 /* the scalar precision tracking algorithm: 3922 * . at the start all registers have precise=false. 3923 * . scalar ranges are tracked as normal through alu and jmp insns. 3924 * . once precise value of the scalar register is used in: 3925 * . ptr + scalar alu 3926 * . if (scalar cond K|scalar) 3927 * . helper_call(.., scalar, ...) where ARG_CONST is expected 3928 * backtrack through the verifier states and mark all registers and 3929 * stack slots with spilled constants that these scalar regisers 3930 * should be precise. 3931 * . during state pruning two registers (or spilled stack slots) 3932 * are equivalent if both are not precise. 3933 * 3934 * Note the verifier cannot simply walk register parentage chain, 3935 * since many different registers and stack slots could have been 3936 * used to compute single precise scalar. 3937 * 3938 * The approach of starting with precise=true for all registers and then 3939 * backtrack to mark a register as not precise when the verifier detects 3940 * that program doesn't care about specific value (e.g., when helper 3941 * takes register as ARG_ANYTHING parameter) is not safe. 3942 * 3943 * It's ok to walk single parentage chain of the verifier states. 3944 * It's possible that this backtracking will go all the way till 1st insn. 3945 * All other branches will be explored for needing precision later. 3946 * 3947 * The backtracking needs to deal with cases like: 3948 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 3949 * r9 -= r8 3950 * r5 = r9 3951 * if r5 > 0x79f goto pc+7 3952 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 3953 * r5 += 1 3954 * ... 3955 * call bpf_perf_event_output#25 3956 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 3957 * 3958 * and this case: 3959 * r6 = 1 3960 * call foo // uses callee's r6 inside to compute r0 3961 * r0 += r6 3962 * if r0 == 0 goto 3963 * 3964 * to track above reg_mask/stack_mask needs to be independent for each frame. 3965 * 3966 * Also if parent's curframe > frame where backtracking started, 3967 * the verifier need to mark registers in both frames, otherwise callees 3968 * may incorrectly prune callers. This is similar to 3969 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 3970 * 3971 * For now backtracking falls back into conservative marking. 3972 */ 3973 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 3974 struct bpf_verifier_state *st) 3975 { 3976 struct bpf_func_state *func; 3977 struct bpf_reg_state *reg; 3978 int i, j; 3979 3980 if (env->log.level & BPF_LOG_LEVEL2) { 3981 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 3982 st->curframe); 3983 } 3984 3985 /* big hammer: mark all scalars precise in this path. 3986 * pop_stack may still get !precise scalars. 3987 * We also skip current state and go straight to first parent state, 3988 * because precision markings in current non-checkpointed state are 3989 * not needed. See why in the comment in __mark_chain_precision below. 3990 */ 3991 for (st = st->parent; st; st = st->parent) { 3992 for (i = 0; i <= st->curframe; i++) { 3993 func = st->frame[i]; 3994 for (j = 0; j < BPF_REG_FP; j++) { 3995 reg = &func->regs[j]; 3996 if (reg->type != SCALAR_VALUE || reg->precise) 3997 continue; 3998 reg->precise = true; 3999 if (env->log.level & BPF_LOG_LEVEL2) { 4000 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 4001 i, j); 4002 } 4003 } 4004 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4005 if (!is_spilled_reg(&func->stack[j])) 4006 continue; 4007 reg = &func->stack[j].spilled_ptr; 4008 if (reg->type != SCALAR_VALUE || reg->precise) 4009 continue; 4010 reg->precise = true; 4011 if (env->log.level & BPF_LOG_LEVEL2) { 4012 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 4013 i, -(j + 1) * 8); 4014 } 4015 } 4016 } 4017 } 4018 } 4019 4020 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4021 { 4022 struct bpf_func_state *func; 4023 struct bpf_reg_state *reg; 4024 int i, j; 4025 4026 for (i = 0; i <= st->curframe; i++) { 4027 func = st->frame[i]; 4028 for (j = 0; j < BPF_REG_FP; j++) { 4029 reg = &func->regs[j]; 4030 if (reg->type != SCALAR_VALUE) 4031 continue; 4032 reg->precise = false; 4033 } 4034 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4035 if (!is_spilled_reg(&func->stack[j])) 4036 continue; 4037 reg = &func->stack[j].spilled_ptr; 4038 if (reg->type != SCALAR_VALUE) 4039 continue; 4040 reg->precise = false; 4041 } 4042 } 4043 } 4044 4045 static bool idset_contains(struct bpf_idset *s, u32 id) 4046 { 4047 u32 i; 4048 4049 for (i = 0; i < s->count; ++i) 4050 if (s->ids[i] == id) 4051 return true; 4052 4053 return false; 4054 } 4055 4056 static int idset_push(struct bpf_idset *s, u32 id) 4057 { 4058 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids))) 4059 return -EFAULT; 4060 s->ids[s->count++] = id; 4061 return 0; 4062 } 4063 4064 static void idset_reset(struct bpf_idset *s) 4065 { 4066 s->count = 0; 4067 } 4068 4069 /* Collect a set of IDs for all registers currently marked as precise in env->bt. 4070 * Mark all registers with these IDs as precise. 4071 */ 4072 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4073 { 4074 struct bpf_idset *precise_ids = &env->idset_scratch; 4075 struct backtrack_state *bt = &env->bt; 4076 struct bpf_func_state *func; 4077 struct bpf_reg_state *reg; 4078 DECLARE_BITMAP(mask, 64); 4079 int i, fr; 4080 4081 idset_reset(precise_ids); 4082 4083 for (fr = bt->frame; fr >= 0; fr--) { 4084 func = st->frame[fr]; 4085 4086 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4087 for_each_set_bit(i, mask, 32) { 4088 reg = &func->regs[i]; 4089 if (!reg->id || reg->type != SCALAR_VALUE) 4090 continue; 4091 if (idset_push(precise_ids, reg->id)) 4092 return -EFAULT; 4093 } 4094 4095 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4096 for_each_set_bit(i, mask, 64) { 4097 if (i >= func->allocated_stack / BPF_REG_SIZE) 4098 break; 4099 if (!is_spilled_scalar_reg(&func->stack[i])) 4100 continue; 4101 reg = &func->stack[i].spilled_ptr; 4102 if (!reg->id) 4103 continue; 4104 if (idset_push(precise_ids, reg->id)) 4105 return -EFAULT; 4106 } 4107 } 4108 4109 for (fr = 0; fr <= st->curframe; ++fr) { 4110 func = st->frame[fr]; 4111 4112 for (i = BPF_REG_0; i < BPF_REG_10; ++i) { 4113 reg = &func->regs[i]; 4114 if (!reg->id) 4115 continue; 4116 if (!idset_contains(precise_ids, reg->id)) 4117 continue; 4118 bt_set_frame_reg(bt, fr, i); 4119 } 4120 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) { 4121 if (!is_spilled_scalar_reg(&func->stack[i])) 4122 continue; 4123 reg = &func->stack[i].spilled_ptr; 4124 if (!reg->id) 4125 continue; 4126 if (!idset_contains(precise_ids, reg->id)) 4127 continue; 4128 bt_set_frame_slot(bt, fr, i); 4129 } 4130 } 4131 4132 return 0; 4133 } 4134 4135 /* 4136 * __mark_chain_precision() backtracks BPF program instruction sequence and 4137 * chain of verifier states making sure that register *regno* (if regno >= 0) 4138 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 4139 * SCALARS, as well as any other registers and slots that contribute to 4140 * a tracked state of given registers/stack slots, depending on specific BPF 4141 * assembly instructions (see backtrack_insns() for exact instruction handling 4142 * logic). This backtracking relies on recorded jmp_history and is able to 4143 * traverse entire chain of parent states. This process ends only when all the 4144 * necessary registers/slots and their transitive dependencies are marked as 4145 * precise. 4146 * 4147 * One important and subtle aspect is that precise marks *do not matter* in 4148 * the currently verified state (current state). It is important to understand 4149 * why this is the case. 4150 * 4151 * First, note that current state is the state that is not yet "checkpointed", 4152 * i.e., it is not yet put into env->explored_states, and it has no children 4153 * states as well. It's ephemeral, and can end up either a) being discarded if 4154 * compatible explored state is found at some point or BPF_EXIT instruction is 4155 * reached or b) checkpointed and put into env->explored_states, branching out 4156 * into one or more children states. 4157 * 4158 * In the former case, precise markings in current state are completely 4159 * ignored by state comparison code (see regsafe() for details). Only 4160 * checkpointed ("old") state precise markings are important, and if old 4161 * state's register/slot is precise, regsafe() assumes current state's 4162 * register/slot as precise and checks value ranges exactly and precisely. If 4163 * states turn out to be compatible, current state's necessary precise 4164 * markings and any required parent states' precise markings are enforced 4165 * after the fact with propagate_precision() logic, after the fact. But it's 4166 * important to realize that in this case, even after marking current state 4167 * registers/slots as precise, we immediately discard current state. So what 4168 * actually matters is any of the precise markings propagated into current 4169 * state's parent states, which are always checkpointed (due to b) case above). 4170 * As such, for scenario a) it doesn't matter if current state has precise 4171 * markings set or not. 4172 * 4173 * Now, for the scenario b), checkpointing and forking into child(ren) 4174 * state(s). Note that before current state gets to checkpointing step, any 4175 * processed instruction always assumes precise SCALAR register/slot 4176 * knowledge: if precise value or range is useful to prune jump branch, BPF 4177 * verifier takes this opportunity enthusiastically. Similarly, when 4178 * register's value is used to calculate offset or memory address, exact 4179 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 4180 * what we mentioned above about state comparison ignoring precise markings 4181 * during state comparison, BPF verifier ignores and also assumes precise 4182 * markings *at will* during instruction verification process. But as verifier 4183 * assumes precision, it also propagates any precision dependencies across 4184 * parent states, which are not yet finalized, so can be further restricted 4185 * based on new knowledge gained from restrictions enforced by their children 4186 * states. This is so that once those parent states are finalized, i.e., when 4187 * they have no more active children state, state comparison logic in 4188 * is_state_visited() would enforce strict and precise SCALAR ranges, if 4189 * required for correctness. 4190 * 4191 * To build a bit more intuition, note also that once a state is checkpointed, 4192 * the path we took to get to that state is not important. This is crucial 4193 * property for state pruning. When state is checkpointed and finalized at 4194 * some instruction index, it can be correctly and safely used to "short 4195 * circuit" any *compatible* state that reaches exactly the same instruction 4196 * index. I.e., if we jumped to that instruction from a completely different 4197 * code path than original finalized state was derived from, it doesn't 4198 * matter, current state can be discarded because from that instruction 4199 * forward having a compatible state will ensure we will safely reach the 4200 * exit. States describe preconditions for further exploration, but completely 4201 * forget the history of how we got here. 4202 * 4203 * This also means that even if we needed precise SCALAR range to get to 4204 * finalized state, but from that point forward *that same* SCALAR register is 4205 * never used in a precise context (i.e., it's precise value is not needed for 4206 * correctness), it's correct and safe to mark such register as "imprecise" 4207 * (i.e., precise marking set to false). This is what we rely on when we do 4208 * not set precise marking in current state. If no child state requires 4209 * precision for any given SCALAR register, it's safe to dictate that it can 4210 * be imprecise. If any child state does require this register to be precise, 4211 * we'll mark it precise later retroactively during precise markings 4212 * propagation from child state to parent states. 4213 * 4214 * Skipping precise marking setting in current state is a mild version of 4215 * relying on the above observation. But we can utilize this property even 4216 * more aggressively by proactively forgetting any precise marking in the 4217 * current state (which we inherited from the parent state), right before we 4218 * checkpoint it and branch off into new child state. This is done by 4219 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 4220 * finalized states which help in short circuiting more future states. 4221 */ 4222 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 4223 { 4224 struct backtrack_state *bt = &env->bt; 4225 struct bpf_verifier_state *st = env->cur_state; 4226 int first_idx = st->first_insn_idx; 4227 int last_idx = env->insn_idx; 4228 int subseq_idx = -1; 4229 struct bpf_func_state *func; 4230 struct bpf_reg_state *reg; 4231 bool skip_first = true; 4232 int i, fr, err; 4233 4234 if (!env->bpf_capable) 4235 return 0; 4236 4237 /* set frame number from which we are starting to backtrack */ 4238 bt_init(bt, env->cur_state->curframe); 4239 4240 /* Do sanity checks against current state of register and/or stack 4241 * slot, but don't set precise flag in current state, as precision 4242 * tracking in the current state is unnecessary. 4243 */ 4244 func = st->frame[bt->frame]; 4245 if (regno >= 0) { 4246 reg = &func->regs[regno]; 4247 if (reg->type != SCALAR_VALUE) { 4248 WARN_ONCE(1, "backtracing misuse"); 4249 return -EFAULT; 4250 } 4251 bt_set_reg(bt, regno); 4252 } 4253 4254 if (bt_empty(bt)) 4255 return 0; 4256 4257 for (;;) { 4258 DECLARE_BITMAP(mask, 64); 4259 u32 history = st->jmp_history_cnt; 4260 4261 if (env->log.level & BPF_LOG_LEVEL2) { 4262 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4263 bt->frame, last_idx, first_idx, subseq_idx); 4264 } 4265 4266 /* If some register with scalar ID is marked as precise, 4267 * make sure that all registers sharing this ID are also precise. 4268 * This is needed to estimate effect of find_equal_scalars(). 4269 * Do this at the last instruction of each state, 4270 * bpf_reg_state::id fields are valid for these instructions. 4271 * 4272 * Allows to track precision in situation like below: 4273 * 4274 * r2 = unknown value 4275 * ... 4276 * --- state #0 --- 4277 * ... 4278 * r1 = r2 // r1 and r2 now share the same ID 4279 * ... 4280 * --- state #1 {r1.id = A, r2.id = A} --- 4281 * ... 4282 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1 4283 * ... 4284 * --- state #2 {r1.id = A, r2.id = A} --- 4285 * r3 = r10 4286 * r3 += r1 // need to mark both r1 and r2 4287 */ 4288 if (mark_precise_scalar_ids(env, st)) 4289 return -EFAULT; 4290 4291 if (last_idx < 0) { 4292 /* we are at the entry into subprog, which 4293 * is expected for global funcs, but only if 4294 * requested precise registers are R1-R5 4295 * (which are global func's input arguments) 4296 */ 4297 if (st->curframe == 0 && 4298 st->frame[0]->subprogno > 0 && 4299 st->frame[0]->callsite == BPF_MAIN_FUNC && 4300 bt_stack_mask(bt) == 0 && 4301 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4302 bitmap_from_u64(mask, bt_reg_mask(bt)); 4303 for_each_set_bit(i, mask, 32) { 4304 reg = &st->frame[0]->regs[i]; 4305 bt_clear_reg(bt, i); 4306 if (reg->type == SCALAR_VALUE) 4307 reg->precise = true; 4308 } 4309 return 0; 4310 } 4311 4312 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 4313 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4314 WARN_ONCE(1, "verifier backtracking bug"); 4315 return -EFAULT; 4316 } 4317 4318 for (i = last_idx;;) { 4319 if (skip_first) { 4320 err = 0; 4321 skip_first = false; 4322 } else { 4323 err = backtrack_insn(env, i, subseq_idx, bt); 4324 } 4325 if (err == -ENOTSUPP) { 4326 mark_all_scalars_precise(env, env->cur_state); 4327 bt_reset(bt); 4328 return 0; 4329 } else if (err) { 4330 return err; 4331 } 4332 if (bt_empty(bt)) 4333 /* Found assignment(s) into tracked register in this state. 4334 * Since this state is already marked, just return. 4335 * Nothing to be tracked further in the parent state. 4336 */ 4337 return 0; 4338 subseq_idx = i; 4339 i = get_prev_insn_idx(st, i, &history); 4340 if (i == -ENOENT) 4341 break; 4342 if (i >= env->prog->len) { 4343 /* This can happen if backtracking reached insn 0 4344 * and there are still reg_mask or stack_mask 4345 * to backtrack. 4346 * It means the backtracking missed the spot where 4347 * particular register was initialized with a constant. 4348 */ 4349 verbose(env, "BUG backtracking idx %d\n", i); 4350 WARN_ONCE(1, "verifier backtracking bug"); 4351 return -EFAULT; 4352 } 4353 } 4354 st = st->parent; 4355 if (!st) 4356 break; 4357 4358 for (fr = bt->frame; fr >= 0; fr--) { 4359 func = st->frame[fr]; 4360 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4361 for_each_set_bit(i, mask, 32) { 4362 reg = &func->regs[i]; 4363 if (reg->type != SCALAR_VALUE) { 4364 bt_clear_frame_reg(bt, fr, i); 4365 continue; 4366 } 4367 if (reg->precise) 4368 bt_clear_frame_reg(bt, fr, i); 4369 else 4370 reg->precise = true; 4371 } 4372 4373 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4374 for_each_set_bit(i, mask, 64) { 4375 if (i >= func->allocated_stack / BPF_REG_SIZE) { 4376 /* the sequence of instructions: 4377 * 2: (bf) r3 = r10 4378 * 3: (7b) *(u64 *)(r3 -8) = r0 4379 * 4: (79) r4 = *(u64 *)(r10 -8) 4380 * doesn't contain jmps. It's backtracked 4381 * as a single block. 4382 * During backtracking insn 3 is not recognized as 4383 * stack access, so at the end of backtracking 4384 * stack slot fp-8 is still marked in stack_mask. 4385 * However the parent state may not have accessed 4386 * fp-8 and it's "unallocated" stack space. 4387 * In such case fallback to conservative. 4388 */ 4389 mark_all_scalars_precise(env, env->cur_state); 4390 bt_reset(bt); 4391 return 0; 4392 } 4393 4394 if (!is_spilled_scalar_reg(&func->stack[i])) { 4395 bt_clear_frame_slot(bt, fr, i); 4396 continue; 4397 } 4398 reg = &func->stack[i].spilled_ptr; 4399 if (reg->precise) 4400 bt_clear_frame_slot(bt, fr, i); 4401 else 4402 reg->precise = true; 4403 } 4404 if (env->log.level & BPF_LOG_LEVEL2) { 4405 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4406 bt_frame_reg_mask(bt, fr)); 4407 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4408 fr, env->tmp_str_buf); 4409 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4410 bt_frame_stack_mask(bt, fr)); 4411 verbose(env, "stack=%s: ", env->tmp_str_buf); 4412 print_verifier_state(env, func, true); 4413 } 4414 } 4415 4416 if (bt_empty(bt)) 4417 return 0; 4418 4419 subseq_idx = first_idx; 4420 last_idx = st->last_insn_idx; 4421 first_idx = st->first_insn_idx; 4422 } 4423 4424 /* if we still have requested precise regs or slots, we missed 4425 * something (e.g., stack access through non-r10 register), so 4426 * fallback to marking all precise 4427 */ 4428 if (!bt_empty(bt)) { 4429 mark_all_scalars_precise(env, env->cur_state); 4430 bt_reset(bt); 4431 } 4432 4433 return 0; 4434 } 4435 4436 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4437 { 4438 return __mark_chain_precision(env, regno); 4439 } 4440 4441 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4442 * desired reg and stack masks across all relevant frames 4443 */ 4444 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4445 { 4446 return __mark_chain_precision(env, -1); 4447 } 4448 4449 static bool is_spillable_regtype(enum bpf_reg_type type) 4450 { 4451 switch (base_type(type)) { 4452 case PTR_TO_MAP_VALUE: 4453 case PTR_TO_STACK: 4454 case PTR_TO_CTX: 4455 case PTR_TO_PACKET: 4456 case PTR_TO_PACKET_META: 4457 case PTR_TO_PACKET_END: 4458 case PTR_TO_FLOW_KEYS: 4459 case CONST_PTR_TO_MAP: 4460 case PTR_TO_SOCKET: 4461 case PTR_TO_SOCK_COMMON: 4462 case PTR_TO_TCP_SOCK: 4463 case PTR_TO_XDP_SOCK: 4464 case PTR_TO_BTF_ID: 4465 case PTR_TO_BUF: 4466 case PTR_TO_MEM: 4467 case PTR_TO_FUNC: 4468 case PTR_TO_MAP_KEY: 4469 return true; 4470 default: 4471 return false; 4472 } 4473 } 4474 4475 /* Does this register contain a constant zero? */ 4476 static bool register_is_null(struct bpf_reg_state *reg) 4477 { 4478 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4479 } 4480 4481 static bool register_is_const(struct bpf_reg_state *reg) 4482 { 4483 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 4484 } 4485 4486 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 4487 { 4488 return tnum_is_unknown(reg->var_off) && 4489 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 4490 reg->umin_value == 0 && reg->umax_value == U64_MAX && 4491 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 4492 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 4493 } 4494 4495 static bool register_is_bounded(struct bpf_reg_state *reg) 4496 { 4497 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 4498 } 4499 4500 static bool __is_pointer_value(bool allow_ptr_leaks, 4501 const struct bpf_reg_state *reg) 4502 { 4503 if (allow_ptr_leaks) 4504 return false; 4505 4506 return reg->type != SCALAR_VALUE; 4507 } 4508 4509 /* Copy src state preserving dst->parent and dst->live fields */ 4510 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4511 { 4512 struct bpf_reg_state *parent = dst->parent; 4513 enum bpf_reg_liveness live = dst->live; 4514 4515 *dst = *src; 4516 dst->parent = parent; 4517 dst->live = live; 4518 } 4519 4520 static void save_register_state(struct bpf_func_state *state, 4521 int spi, struct bpf_reg_state *reg, 4522 int size) 4523 { 4524 int i; 4525 4526 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4527 if (size == BPF_REG_SIZE) 4528 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4529 4530 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4531 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4532 4533 /* size < 8 bytes spill */ 4534 for (; i; i--) 4535 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 4536 } 4537 4538 static bool is_bpf_st_mem(struct bpf_insn *insn) 4539 { 4540 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4541 } 4542 4543 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4544 * stack boundary and alignment are checked in check_mem_access() 4545 */ 4546 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4547 /* stack frame we're writing to */ 4548 struct bpf_func_state *state, 4549 int off, int size, int value_regno, 4550 int insn_idx) 4551 { 4552 struct bpf_func_state *cur; /* state of the current function */ 4553 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4554 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4555 struct bpf_reg_state *reg = NULL; 4556 u32 dst_reg = insn->dst_reg; 4557 4558 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4559 * so it's aligned access and [off, off + size) are within stack limits 4560 */ 4561 if (!env->allow_ptr_leaks && 4562 is_spilled_reg(&state->stack[spi]) && 4563 size != BPF_REG_SIZE) { 4564 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4565 return -EACCES; 4566 } 4567 4568 cur = env->cur_state->frame[env->cur_state->curframe]; 4569 if (value_regno >= 0) 4570 reg = &cur->regs[value_regno]; 4571 if (!env->bypass_spec_v4) { 4572 bool sanitize = reg && is_spillable_regtype(reg->type); 4573 4574 for (i = 0; i < size; i++) { 4575 u8 type = state->stack[spi].slot_type[i]; 4576 4577 if (type != STACK_MISC && type != STACK_ZERO) { 4578 sanitize = true; 4579 break; 4580 } 4581 } 4582 4583 if (sanitize) 4584 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4585 } 4586 4587 err = destroy_if_dynptr_stack_slot(env, state, spi); 4588 if (err) 4589 return err; 4590 4591 mark_stack_slot_scratched(env, spi); 4592 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 4593 !register_is_null(reg) && env->bpf_capable) { 4594 if (dst_reg != BPF_REG_FP) { 4595 /* The backtracking logic can only recognize explicit 4596 * stack slot address like [fp - 8]. Other spill of 4597 * scalar via different register has to be conservative. 4598 * Backtrack from here and mark all registers as precise 4599 * that contributed into 'reg' being a constant. 4600 */ 4601 err = mark_chain_precision(env, value_regno); 4602 if (err) 4603 return err; 4604 } 4605 save_register_state(state, spi, reg, size); 4606 /* Break the relation on a narrowing spill. */ 4607 if (fls64(reg->umax_value) > BITS_PER_BYTE * size) 4608 state->stack[spi].spilled_ptr.id = 0; 4609 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4610 insn->imm != 0 && env->bpf_capable) { 4611 struct bpf_reg_state fake_reg = {}; 4612 4613 __mark_reg_known(&fake_reg, insn->imm); 4614 fake_reg.type = SCALAR_VALUE; 4615 save_register_state(state, spi, &fake_reg, size); 4616 } else if (reg && is_spillable_regtype(reg->type)) { 4617 /* register containing pointer is being spilled into stack */ 4618 if (size != BPF_REG_SIZE) { 4619 verbose_linfo(env, insn_idx, "; "); 4620 verbose(env, "invalid size of register spill\n"); 4621 return -EACCES; 4622 } 4623 if (state != cur && reg->type == PTR_TO_STACK) { 4624 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4625 return -EINVAL; 4626 } 4627 save_register_state(state, spi, reg, size); 4628 } else { 4629 u8 type = STACK_MISC; 4630 4631 /* regular write of data into stack destroys any spilled ptr */ 4632 state->stack[spi].spilled_ptr.type = NOT_INIT; 4633 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4634 if (is_stack_slot_special(&state->stack[spi])) 4635 for (i = 0; i < BPF_REG_SIZE; i++) 4636 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4637 4638 /* only mark the slot as written if all 8 bytes were written 4639 * otherwise read propagation may incorrectly stop too soon 4640 * when stack slots are partially written. 4641 * This heuristic means that read propagation will be 4642 * conservative, since it will add reg_live_read marks 4643 * to stack slots all the way to first state when programs 4644 * writes+reads less than 8 bytes 4645 */ 4646 if (size == BPF_REG_SIZE) 4647 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4648 4649 /* when we zero initialize stack slots mark them as such */ 4650 if ((reg && register_is_null(reg)) || 4651 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4652 /* backtracking doesn't work for STACK_ZERO yet. */ 4653 err = mark_chain_precision(env, value_regno); 4654 if (err) 4655 return err; 4656 type = STACK_ZERO; 4657 } 4658 4659 /* Mark slots affected by this stack write. */ 4660 for (i = 0; i < size; i++) 4661 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 4662 type; 4663 } 4664 return 0; 4665 } 4666 4667 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4668 * known to contain a variable offset. 4669 * This function checks whether the write is permitted and conservatively 4670 * tracks the effects of the write, considering that each stack slot in the 4671 * dynamic range is potentially written to. 4672 * 4673 * 'off' includes 'regno->off'. 4674 * 'value_regno' can be -1, meaning that an unknown value is being written to 4675 * the stack. 4676 * 4677 * Spilled pointers in range are not marked as written because we don't know 4678 * what's going to be actually written. This means that read propagation for 4679 * future reads cannot be terminated by this write. 4680 * 4681 * For privileged programs, uninitialized stack slots are considered 4682 * initialized by this write (even though we don't know exactly what offsets 4683 * are going to be written to). The idea is that we don't want the verifier to 4684 * reject future reads that access slots written to through variable offsets. 4685 */ 4686 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4687 /* func where register points to */ 4688 struct bpf_func_state *state, 4689 int ptr_regno, int off, int size, 4690 int value_regno, int insn_idx) 4691 { 4692 struct bpf_func_state *cur; /* state of the current function */ 4693 int min_off, max_off; 4694 int i, err; 4695 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4696 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4697 bool writing_zero = false; 4698 /* set if the fact that we're writing a zero is used to let any 4699 * stack slots remain STACK_ZERO 4700 */ 4701 bool zero_used = false; 4702 4703 cur = env->cur_state->frame[env->cur_state->curframe]; 4704 ptr_reg = &cur->regs[ptr_regno]; 4705 min_off = ptr_reg->smin_value + off; 4706 max_off = ptr_reg->smax_value + off + size; 4707 if (value_regno >= 0) 4708 value_reg = &cur->regs[value_regno]; 4709 if ((value_reg && register_is_null(value_reg)) || 4710 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4711 writing_zero = true; 4712 4713 for (i = min_off; i < max_off; i++) { 4714 int spi; 4715 4716 spi = __get_spi(i); 4717 err = destroy_if_dynptr_stack_slot(env, state, spi); 4718 if (err) 4719 return err; 4720 } 4721 4722 /* Variable offset writes destroy any spilled pointers in range. */ 4723 for (i = min_off; i < max_off; i++) { 4724 u8 new_type, *stype; 4725 int slot, spi; 4726 4727 slot = -i - 1; 4728 spi = slot / BPF_REG_SIZE; 4729 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4730 mark_stack_slot_scratched(env, spi); 4731 4732 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4733 /* Reject the write if range we may write to has not 4734 * been initialized beforehand. If we didn't reject 4735 * here, the ptr status would be erased below (even 4736 * though not all slots are actually overwritten), 4737 * possibly opening the door to leaks. 4738 * 4739 * We do however catch STACK_INVALID case below, and 4740 * only allow reading possibly uninitialized memory 4741 * later for CAP_PERFMON, as the write may not happen to 4742 * that slot. 4743 */ 4744 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4745 insn_idx, i); 4746 return -EINVAL; 4747 } 4748 4749 /* Erase all spilled pointers. */ 4750 state->stack[spi].spilled_ptr.type = NOT_INIT; 4751 4752 /* Update the slot type. */ 4753 new_type = STACK_MISC; 4754 if (writing_zero && *stype == STACK_ZERO) { 4755 new_type = STACK_ZERO; 4756 zero_used = true; 4757 } 4758 /* If the slot is STACK_INVALID, we check whether it's OK to 4759 * pretend that it will be initialized by this write. The slot 4760 * might not actually be written to, and so if we mark it as 4761 * initialized future reads might leak uninitialized memory. 4762 * For privileged programs, we will accept such reads to slots 4763 * that may or may not be written because, if we're reject 4764 * them, the error would be too confusing. 4765 */ 4766 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4767 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4768 insn_idx, i); 4769 return -EINVAL; 4770 } 4771 *stype = new_type; 4772 } 4773 if (zero_used) { 4774 /* backtracking doesn't work for STACK_ZERO yet. */ 4775 err = mark_chain_precision(env, value_regno); 4776 if (err) 4777 return err; 4778 } 4779 return 0; 4780 } 4781 4782 /* When register 'dst_regno' is assigned some values from stack[min_off, 4783 * max_off), we set the register's type according to the types of the 4784 * respective stack slots. If all the stack values are known to be zeros, then 4785 * so is the destination reg. Otherwise, the register is considered to be 4786 * SCALAR. This function does not deal with register filling; the caller must 4787 * ensure that all spilled registers in the stack range have been marked as 4788 * read. 4789 */ 4790 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4791 /* func where src register points to */ 4792 struct bpf_func_state *ptr_state, 4793 int min_off, int max_off, int dst_regno) 4794 { 4795 struct bpf_verifier_state *vstate = env->cur_state; 4796 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4797 int i, slot, spi; 4798 u8 *stype; 4799 int zeros = 0; 4800 4801 for (i = min_off; i < max_off; i++) { 4802 slot = -i - 1; 4803 spi = slot / BPF_REG_SIZE; 4804 mark_stack_slot_scratched(env, spi); 4805 stype = ptr_state->stack[spi].slot_type; 4806 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4807 break; 4808 zeros++; 4809 } 4810 if (zeros == max_off - min_off) { 4811 /* any access_size read into register is zero extended, 4812 * so the whole register == const_zero 4813 */ 4814 __mark_reg_const_zero(&state->regs[dst_regno]); 4815 /* backtracking doesn't support STACK_ZERO yet, 4816 * so mark it precise here, so that later 4817 * backtracking can stop here. 4818 * Backtracking may not need this if this register 4819 * doesn't participate in pointer adjustment. 4820 * Forward propagation of precise flag is not 4821 * necessary either. This mark is only to stop 4822 * backtracking. Any register that contributed 4823 * to const 0 was marked precise before spill. 4824 */ 4825 state->regs[dst_regno].precise = true; 4826 } else { 4827 /* have read misc data from the stack */ 4828 mark_reg_unknown(env, state->regs, dst_regno); 4829 } 4830 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4831 } 4832 4833 /* Read the stack at 'off' and put the results into the register indicated by 4834 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4835 * spilled reg. 4836 * 4837 * 'dst_regno' can be -1, meaning that the read value is not going to a 4838 * register. 4839 * 4840 * The access is assumed to be within the current stack bounds. 4841 */ 4842 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4843 /* func where src register points to */ 4844 struct bpf_func_state *reg_state, 4845 int off, int size, int dst_regno) 4846 { 4847 struct bpf_verifier_state *vstate = env->cur_state; 4848 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4849 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 4850 struct bpf_reg_state *reg; 4851 u8 *stype, type; 4852 4853 stype = reg_state->stack[spi].slot_type; 4854 reg = ®_state->stack[spi].spilled_ptr; 4855 4856 mark_stack_slot_scratched(env, spi); 4857 4858 if (is_spilled_reg(®_state->stack[spi])) { 4859 u8 spill_size = 1; 4860 4861 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 4862 spill_size++; 4863 4864 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 4865 if (reg->type != SCALAR_VALUE) { 4866 verbose_linfo(env, env->insn_idx, "; "); 4867 verbose(env, "invalid size of register fill\n"); 4868 return -EACCES; 4869 } 4870 4871 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4872 if (dst_regno < 0) 4873 return 0; 4874 4875 if (!(off % BPF_REG_SIZE) && size == spill_size) { 4876 /* The earlier check_reg_arg() has decided the 4877 * subreg_def for this insn. Save it first. 4878 */ 4879 s32 subreg_def = state->regs[dst_regno].subreg_def; 4880 4881 copy_register_state(&state->regs[dst_regno], reg); 4882 state->regs[dst_regno].subreg_def = subreg_def; 4883 } else { 4884 for (i = 0; i < size; i++) { 4885 type = stype[(slot - i) % BPF_REG_SIZE]; 4886 if (type == STACK_SPILL) 4887 continue; 4888 if (type == STACK_MISC) 4889 continue; 4890 if (type == STACK_INVALID && env->allow_uninit_stack) 4891 continue; 4892 verbose(env, "invalid read from stack off %d+%d size %d\n", 4893 off, i, size); 4894 return -EACCES; 4895 } 4896 mark_reg_unknown(env, state->regs, dst_regno); 4897 } 4898 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4899 return 0; 4900 } 4901 4902 if (dst_regno >= 0) { 4903 /* restore register state from stack */ 4904 copy_register_state(&state->regs[dst_regno], reg); 4905 /* mark reg as written since spilled pointer state likely 4906 * has its liveness marks cleared by is_state_visited() 4907 * which resets stack/reg liveness for state transitions 4908 */ 4909 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4910 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 4911 /* If dst_regno==-1, the caller is asking us whether 4912 * it is acceptable to use this value as a SCALAR_VALUE 4913 * (e.g. for XADD). 4914 * We must not allow unprivileged callers to do that 4915 * with spilled pointers. 4916 */ 4917 verbose(env, "leaking pointer from stack off %d\n", 4918 off); 4919 return -EACCES; 4920 } 4921 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4922 } else { 4923 for (i = 0; i < size; i++) { 4924 type = stype[(slot - i) % BPF_REG_SIZE]; 4925 if (type == STACK_MISC) 4926 continue; 4927 if (type == STACK_ZERO) 4928 continue; 4929 if (type == STACK_INVALID && env->allow_uninit_stack) 4930 continue; 4931 verbose(env, "invalid read from stack off %d+%d size %d\n", 4932 off, i, size); 4933 return -EACCES; 4934 } 4935 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4936 if (dst_regno >= 0) 4937 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 4938 } 4939 return 0; 4940 } 4941 4942 enum bpf_access_src { 4943 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 4944 ACCESS_HELPER = 2, /* the access is performed by a helper */ 4945 }; 4946 4947 static int check_stack_range_initialized(struct bpf_verifier_env *env, 4948 int regno, int off, int access_size, 4949 bool zero_size_allowed, 4950 enum bpf_access_src type, 4951 struct bpf_call_arg_meta *meta); 4952 4953 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 4954 { 4955 return cur_regs(env) + regno; 4956 } 4957 4958 /* Read the stack at 'ptr_regno + off' and put the result into the register 4959 * 'dst_regno'. 4960 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 4961 * but not its variable offset. 4962 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 4963 * 4964 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 4965 * filling registers (i.e. reads of spilled register cannot be detected when 4966 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 4967 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 4968 * offset; for a fixed offset check_stack_read_fixed_off should be used 4969 * instead. 4970 */ 4971 static int check_stack_read_var_off(struct bpf_verifier_env *env, 4972 int ptr_regno, int off, int size, int dst_regno) 4973 { 4974 /* The state of the source register. */ 4975 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4976 struct bpf_func_state *ptr_state = func(env, reg); 4977 int err; 4978 int min_off, max_off; 4979 4980 /* Note that we pass a NULL meta, so raw access will not be permitted. 4981 */ 4982 err = check_stack_range_initialized(env, ptr_regno, off, size, 4983 false, ACCESS_DIRECT, NULL); 4984 if (err) 4985 return err; 4986 4987 min_off = reg->smin_value + off; 4988 max_off = reg->smax_value + off; 4989 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 4990 return 0; 4991 } 4992 4993 /* check_stack_read dispatches to check_stack_read_fixed_off or 4994 * check_stack_read_var_off. 4995 * 4996 * The caller must ensure that the offset falls within the allocated stack 4997 * bounds. 4998 * 4999 * 'dst_regno' is a register which will receive the value from the stack. It 5000 * can be -1, meaning that the read value is not going to a register. 5001 */ 5002 static int check_stack_read(struct bpf_verifier_env *env, 5003 int ptr_regno, int off, int size, 5004 int dst_regno) 5005 { 5006 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5007 struct bpf_func_state *state = func(env, reg); 5008 int err; 5009 /* Some accesses are only permitted with a static offset. */ 5010 bool var_off = !tnum_is_const(reg->var_off); 5011 5012 /* The offset is required to be static when reads don't go to a 5013 * register, in order to not leak pointers (see 5014 * check_stack_read_fixed_off). 5015 */ 5016 if (dst_regno < 0 && var_off) { 5017 char tn_buf[48]; 5018 5019 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5020 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 5021 tn_buf, off, size); 5022 return -EACCES; 5023 } 5024 /* Variable offset is prohibited for unprivileged mode for simplicity 5025 * since it requires corresponding support in Spectre masking for stack 5026 * ALU. See also retrieve_ptr_limit(). The check in 5027 * check_stack_access_for_ptr_arithmetic() called by 5028 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 5029 * with variable offsets, therefore no check is required here. Further, 5030 * just checking it here would be insufficient as speculative stack 5031 * writes could still lead to unsafe speculative behaviour. 5032 */ 5033 if (!var_off) { 5034 off += reg->var_off.value; 5035 err = check_stack_read_fixed_off(env, state, off, size, 5036 dst_regno); 5037 } else { 5038 /* Variable offset stack reads need more conservative handling 5039 * than fixed offset ones. Note that dst_regno >= 0 on this 5040 * branch. 5041 */ 5042 err = check_stack_read_var_off(env, ptr_regno, off, size, 5043 dst_regno); 5044 } 5045 return err; 5046 } 5047 5048 5049 /* check_stack_write dispatches to check_stack_write_fixed_off or 5050 * check_stack_write_var_off. 5051 * 5052 * 'ptr_regno' is the register used as a pointer into the stack. 5053 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 5054 * 'value_regno' is the register whose value we're writing to the stack. It can 5055 * be -1, meaning that we're not writing from a register. 5056 * 5057 * The caller must ensure that the offset falls within the maximum stack size. 5058 */ 5059 static int check_stack_write(struct bpf_verifier_env *env, 5060 int ptr_regno, int off, int size, 5061 int value_regno, int insn_idx) 5062 { 5063 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5064 struct bpf_func_state *state = func(env, reg); 5065 int err; 5066 5067 if (tnum_is_const(reg->var_off)) { 5068 off += reg->var_off.value; 5069 err = check_stack_write_fixed_off(env, state, off, size, 5070 value_regno, insn_idx); 5071 } else { 5072 /* Variable offset stack reads need more conservative handling 5073 * than fixed offset ones. 5074 */ 5075 err = check_stack_write_var_off(env, state, 5076 ptr_regno, off, size, 5077 value_regno, insn_idx); 5078 } 5079 return err; 5080 } 5081 5082 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 5083 int off, int size, enum bpf_access_type type) 5084 { 5085 struct bpf_reg_state *regs = cur_regs(env); 5086 struct bpf_map *map = regs[regno].map_ptr; 5087 u32 cap = bpf_map_flags_to_cap(map); 5088 5089 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 5090 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 5091 map->value_size, off, size); 5092 return -EACCES; 5093 } 5094 5095 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 5096 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 5097 map->value_size, off, size); 5098 return -EACCES; 5099 } 5100 5101 return 0; 5102 } 5103 5104 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 5105 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 5106 int off, int size, u32 mem_size, 5107 bool zero_size_allowed) 5108 { 5109 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 5110 struct bpf_reg_state *reg; 5111 5112 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 5113 return 0; 5114 5115 reg = &cur_regs(env)[regno]; 5116 switch (reg->type) { 5117 case PTR_TO_MAP_KEY: 5118 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 5119 mem_size, off, size); 5120 break; 5121 case PTR_TO_MAP_VALUE: 5122 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 5123 mem_size, off, size); 5124 break; 5125 case PTR_TO_PACKET: 5126 case PTR_TO_PACKET_META: 5127 case PTR_TO_PACKET_END: 5128 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 5129 off, size, regno, reg->id, off, mem_size); 5130 break; 5131 case PTR_TO_MEM: 5132 default: 5133 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 5134 mem_size, off, size); 5135 } 5136 5137 return -EACCES; 5138 } 5139 5140 /* check read/write into a memory region with possible variable offset */ 5141 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 5142 int off, int size, u32 mem_size, 5143 bool zero_size_allowed) 5144 { 5145 struct bpf_verifier_state *vstate = env->cur_state; 5146 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5147 struct bpf_reg_state *reg = &state->regs[regno]; 5148 int err; 5149 5150 /* We may have adjusted the register pointing to memory region, so we 5151 * need to try adding each of min_value and max_value to off 5152 * to make sure our theoretical access will be safe. 5153 * 5154 * The minimum value is only important with signed 5155 * comparisons where we can't assume the floor of a 5156 * value is 0. If we are using signed variables for our 5157 * index'es we need to make sure that whatever we use 5158 * will have a set floor within our range. 5159 */ 5160 if (reg->smin_value < 0 && 5161 (reg->smin_value == S64_MIN || 5162 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 5163 reg->smin_value + off < 0)) { 5164 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5165 regno); 5166 return -EACCES; 5167 } 5168 err = __check_mem_access(env, regno, reg->smin_value + off, size, 5169 mem_size, zero_size_allowed); 5170 if (err) { 5171 verbose(env, "R%d min value is outside of the allowed memory range\n", 5172 regno); 5173 return err; 5174 } 5175 5176 /* If we haven't set a max value then we need to bail since we can't be 5177 * sure we won't do bad things. 5178 * If reg->umax_value + off could overflow, treat that as unbounded too. 5179 */ 5180 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 5181 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 5182 regno); 5183 return -EACCES; 5184 } 5185 err = __check_mem_access(env, regno, reg->umax_value + off, size, 5186 mem_size, zero_size_allowed); 5187 if (err) { 5188 verbose(env, "R%d max value is outside of the allowed memory range\n", 5189 regno); 5190 return err; 5191 } 5192 5193 return 0; 5194 } 5195 5196 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 5197 const struct bpf_reg_state *reg, int regno, 5198 bool fixed_off_ok) 5199 { 5200 /* Access to this pointer-typed register or passing it to a helper 5201 * is only allowed in its original, unmodified form. 5202 */ 5203 5204 if (reg->off < 0) { 5205 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 5206 reg_type_str(env, reg->type), regno, reg->off); 5207 return -EACCES; 5208 } 5209 5210 if (!fixed_off_ok && reg->off) { 5211 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 5212 reg_type_str(env, reg->type), regno, reg->off); 5213 return -EACCES; 5214 } 5215 5216 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5217 char tn_buf[48]; 5218 5219 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5220 verbose(env, "variable %s access var_off=%s disallowed\n", 5221 reg_type_str(env, reg->type), tn_buf); 5222 return -EACCES; 5223 } 5224 5225 return 0; 5226 } 5227 5228 int check_ptr_off_reg(struct bpf_verifier_env *env, 5229 const struct bpf_reg_state *reg, int regno) 5230 { 5231 return __check_ptr_off_reg(env, reg, regno, false); 5232 } 5233 5234 static int map_kptr_match_type(struct bpf_verifier_env *env, 5235 struct btf_field *kptr_field, 5236 struct bpf_reg_state *reg, u32 regno) 5237 { 5238 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 5239 int perm_flags; 5240 const char *reg_name = ""; 5241 5242 if (btf_is_kernel(reg->btf)) { 5243 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 5244 5245 /* Only unreferenced case accepts untrusted pointers */ 5246 if (kptr_field->type == BPF_KPTR_UNREF) 5247 perm_flags |= PTR_UNTRUSTED; 5248 } else { 5249 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5250 } 5251 5252 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5253 goto bad_type; 5254 5255 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5256 reg_name = btf_type_name(reg->btf, reg->btf_id); 5257 5258 /* For ref_ptr case, release function check should ensure we get one 5259 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5260 * normal store of unreferenced kptr, we must ensure var_off is zero. 5261 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5262 * reg->off and reg->ref_obj_id are not needed here. 5263 */ 5264 if (__check_ptr_off_reg(env, reg, regno, true)) 5265 return -EACCES; 5266 5267 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5268 * we also need to take into account the reg->off. 5269 * 5270 * We want to support cases like: 5271 * 5272 * struct foo { 5273 * struct bar br; 5274 * struct baz bz; 5275 * }; 5276 * 5277 * struct foo *v; 5278 * v = func(); // PTR_TO_BTF_ID 5279 * val->foo = v; // reg->off is zero, btf and btf_id match type 5280 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5281 * // first member type of struct after comparison fails 5282 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5283 * // to match type 5284 * 5285 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5286 * is zero. We must also ensure that btf_struct_ids_match does not walk 5287 * the struct to match type against first member of struct, i.e. reject 5288 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5289 * strict mode to true for type match. 5290 */ 5291 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5292 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5293 kptr_field->type == BPF_KPTR_REF)) 5294 goto bad_type; 5295 return 0; 5296 bad_type: 5297 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5298 reg_type_str(env, reg->type), reg_name); 5299 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5300 if (kptr_field->type == BPF_KPTR_UNREF) 5301 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5302 targ_name); 5303 else 5304 verbose(env, "\n"); 5305 return -EINVAL; 5306 } 5307 5308 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5309 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5310 */ 5311 static bool in_rcu_cs(struct bpf_verifier_env *env) 5312 { 5313 return env->cur_state->active_rcu_lock || 5314 env->cur_state->active_lock.ptr || 5315 !env->prog->aux->sleepable; 5316 } 5317 5318 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5319 BTF_SET_START(rcu_protected_types) 5320 BTF_ID(struct, prog_test_ref_kfunc) 5321 BTF_ID(struct, cgroup) 5322 BTF_ID(struct, bpf_cpumask) 5323 BTF_ID(struct, task_struct) 5324 BTF_SET_END(rcu_protected_types) 5325 5326 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5327 { 5328 if (!btf_is_kernel(btf)) 5329 return false; 5330 return btf_id_set_contains(&rcu_protected_types, btf_id); 5331 } 5332 5333 static bool rcu_safe_kptr(const struct btf_field *field) 5334 { 5335 const struct btf_field_kptr *kptr = &field->kptr; 5336 5337 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id); 5338 } 5339 5340 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5341 int value_regno, int insn_idx, 5342 struct btf_field *kptr_field) 5343 { 5344 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5345 int class = BPF_CLASS(insn->code); 5346 struct bpf_reg_state *val_reg; 5347 5348 /* Things we already checked for in check_map_access and caller: 5349 * - Reject cases where variable offset may touch kptr 5350 * - size of access (must be BPF_DW) 5351 * - tnum_is_const(reg->var_off) 5352 * - kptr_field->offset == off + reg->var_off.value 5353 */ 5354 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5355 if (BPF_MODE(insn->code) != BPF_MEM) { 5356 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5357 return -EACCES; 5358 } 5359 5360 /* We only allow loading referenced kptr, since it will be marked as 5361 * untrusted, similar to unreferenced kptr. 5362 */ 5363 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) { 5364 verbose(env, "store to referenced kptr disallowed\n"); 5365 return -EACCES; 5366 } 5367 5368 if (class == BPF_LDX) { 5369 val_reg = reg_state(env, value_regno); 5370 /* We can simply mark the value_regno receiving the pointer 5371 * value from map as PTR_TO_BTF_ID, with the correct type. 5372 */ 5373 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5374 kptr_field->kptr.btf_id, 5375 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ? 5376 PTR_MAYBE_NULL | MEM_RCU : 5377 PTR_MAYBE_NULL | PTR_UNTRUSTED); 5378 } else if (class == BPF_STX) { 5379 val_reg = reg_state(env, value_regno); 5380 if (!register_is_null(val_reg) && 5381 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5382 return -EACCES; 5383 } else if (class == BPF_ST) { 5384 if (insn->imm) { 5385 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5386 kptr_field->offset); 5387 return -EACCES; 5388 } 5389 } else { 5390 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5391 return -EACCES; 5392 } 5393 return 0; 5394 } 5395 5396 /* check read/write into a map element with possible variable offset */ 5397 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5398 int off, int size, bool zero_size_allowed, 5399 enum bpf_access_src src) 5400 { 5401 struct bpf_verifier_state *vstate = env->cur_state; 5402 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5403 struct bpf_reg_state *reg = &state->regs[regno]; 5404 struct bpf_map *map = reg->map_ptr; 5405 struct btf_record *rec; 5406 int err, i; 5407 5408 err = check_mem_region_access(env, regno, off, size, map->value_size, 5409 zero_size_allowed); 5410 if (err) 5411 return err; 5412 5413 if (IS_ERR_OR_NULL(map->record)) 5414 return 0; 5415 rec = map->record; 5416 for (i = 0; i < rec->cnt; i++) { 5417 struct btf_field *field = &rec->fields[i]; 5418 u32 p = field->offset; 5419 5420 /* If any part of a field can be touched by load/store, reject 5421 * this program. To check that [x1, x2) overlaps with [y1, y2), 5422 * it is sufficient to check x1 < y2 && y1 < x2. 5423 */ 5424 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 5425 p < reg->umax_value + off + size) { 5426 switch (field->type) { 5427 case BPF_KPTR_UNREF: 5428 case BPF_KPTR_REF: 5429 if (src != ACCESS_DIRECT) { 5430 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 5431 return -EACCES; 5432 } 5433 if (!tnum_is_const(reg->var_off)) { 5434 verbose(env, "kptr access cannot have variable offset\n"); 5435 return -EACCES; 5436 } 5437 if (p != off + reg->var_off.value) { 5438 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 5439 p, off + reg->var_off.value); 5440 return -EACCES; 5441 } 5442 if (size != bpf_size_to_bytes(BPF_DW)) { 5443 verbose(env, "kptr access size must be BPF_DW\n"); 5444 return -EACCES; 5445 } 5446 break; 5447 default: 5448 verbose(env, "%s cannot be accessed directly by load/store\n", 5449 btf_field_type_name(field->type)); 5450 return -EACCES; 5451 } 5452 } 5453 } 5454 return 0; 5455 } 5456 5457 #define MAX_PACKET_OFF 0xffff 5458 5459 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5460 const struct bpf_call_arg_meta *meta, 5461 enum bpf_access_type t) 5462 { 5463 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5464 5465 switch (prog_type) { 5466 /* Program types only with direct read access go here! */ 5467 case BPF_PROG_TYPE_LWT_IN: 5468 case BPF_PROG_TYPE_LWT_OUT: 5469 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5470 case BPF_PROG_TYPE_SK_REUSEPORT: 5471 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5472 case BPF_PROG_TYPE_CGROUP_SKB: 5473 if (t == BPF_WRITE) 5474 return false; 5475 fallthrough; 5476 5477 /* Program types with direct read + write access go here! */ 5478 case BPF_PROG_TYPE_SCHED_CLS: 5479 case BPF_PROG_TYPE_SCHED_ACT: 5480 case BPF_PROG_TYPE_XDP: 5481 case BPF_PROG_TYPE_LWT_XMIT: 5482 case BPF_PROG_TYPE_SK_SKB: 5483 case BPF_PROG_TYPE_SK_MSG: 5484 if (meta) 5485 return meta->pkt_access; 5486 5487 env->seen_direct_write = true; 5488 return true; 5489 5490 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5491 if (t == BPF_WRITE) 5492 env->seen_direct_write = true; 5493 5494 return true; 5495 5496 default: 5497 return false; 5498 } 5499 } 5500 5501 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5502 int size, bool zero_size_allowed) 5503 { 5504 struct bpf_reg_state *regs = cur_regs(env); 5505 struct bpf_reg_state *reg = ®s[regno]; 5506 int err; 5507 5508 /* We may have added a variable offset to the packet pointer; but any 5509 * reg->range we have comes after that. We are only checking the fixed 5510 * offset. 5511 */ 5512 5513 /* We don't allow negative numbers, because we aren't tracking enough 5514 * detail to prove they're safe. 5515 */ 5516 if (reg->smin_value < 0) { 5517 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5518 regno); 5519 return -EACCES; 5520 } 5521 5522 err = reg->range < 0 ? -EINVAL : 5523 __check_mem_access(env, regno, off, size, reg->range, 5524 zero_size_allowed); 5525 if (err) { 5526 verbose(env, "R%d offset is outside of the packet\n", regno); 5527 return err; 5528 } 5529 5530 /* __check_mem_access has made sure "off + size - 1" is within u16. 5531 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5532 * otherwise find_good_pkt_pointers would have refused to set range info 5533 * that __check_mem_access would have rejected this pkt access. 5534 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5535 */ 5536 env->prog->aux->max_pkt_offset = 5537 max_t(u32, env->prog->aux->max_pkt_offset, 5538 off + reg->umax_value + size - 1); 5539 5540 return err; 5541 } 5542 5543 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5544 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5545 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5546 struct btf **btf, u32 *btf_id) 5547 { 5548 struct bpf_insn_access_aux info = { 5549 .reg_type = *reg_type, 5550 .log = &env->log, 5551 }; 5552 5553 if (env->ops->is_valid_access && 5554 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5555 /* A non zero info.ctx_field_size indicates that this field is a 5556 * candidate for later verifier transformation to load the whole 5557 * field and then apply a mask when accessed with a narrower 5558 * access than actual ctx access size. A zero info.ctx_field_size 5559 * will only allow for whole field access and rejects any other 5560 * type of narrower access. 5561 */ 5562 *reg_type = info.reg_type; 5563 5564 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5565 *btf = info.btf; 5566 *btf_id = info.btf_id; 5567 } else { 5568 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5569 } 5570 /* remember the offset of last byte accessed in ctx */ 5571 if (env->prog->aux->max_ctx_offset < off + size) 5572 env->prog->aux->max_ctx_offset = off + size; 5573 return 0; 5574 } 5575 5576 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5577 return -EACCES; 5578 } 5579 5580 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5581 int size) 5582 { 5583 if (size < 0 || off < 0 || 5584 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5585 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5586 off, size); 5587 return -EACCES; 5588 } 5589 return 0; 5590 } 5591 5592 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5593 u32 regno, int off, int size, 5594 enum bpf_access_type t) 5595 { 5596 struct bpf_reg_state *regs = cur_regs(env); 5597 struct bpf_reg_state *reg = ®s[regno]; 5598 struct bpf_insn_access_aux info = {}; 5599 bool valid; 5600 5601 if (reg->smin_value < 0) { 5602 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5603 regno); 5604 return -EACCES; 5605 } 5606 5607 switch (reg->type) { 5608 case PTR_TO_SOCK_COMMON: 5609 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5610 break; 5611 case PTR_TO_SOCKET: 5612 valid = bpf_sock_is_valid_access(off, size, t, &info); 5613 break; 5614 case PTR_TO_TCP_SOCK: 5615 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5616 break; 5617 case PTR_TO_XDP_SOCK: 5618 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5619 break; 5620 default: 5621 valid = false; 5622 } 5623 5624 5625 if (valid) { 5626 env->insn_aux_data[insn_idx].ctx_field_size = 5627 info.ctx_field_size; 5628 return 0; 5629 } 5630 5631 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5632 regno, reg_type_str(env, reg->type), off, size); 5633 5634 return -EACCES; 5635 } 5636 5637 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5638 { 5639 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5640 } 5641 5642 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5643 { 5644 const struct bpf_reg_state *reg = reg_state(env, regno); 5645 5646 return reg->type == PTR_TO_CTX; 5647 } 5648 5649 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5650 { 5651 const struct bpf_reg_state *reg = reg_state(env, regno); 5652 5653 return type_is_sk_pointer(reg->type); 5654 } 5655 5656 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5657 { 5658 const struct bpf_reg_state *reg = reg_state(env, regno); 5659 5660 return type_is_pkt_pointer(reg->type); 5661 } 5662 5663 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5664 { 5665 const struct bpf_reg_state *reg = reg_state(env, regno); 5666 5667 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5668 return reg->type == PTR_TO_FLOW_KEYS; 5669 } 5670 5671 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5672 #ifdef CONFIG_NET 5673 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5674 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5675 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5676 #endif 5677 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 5678 }; 5679 5680 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5681 { 5682 /* A referenced register is always trusted. */ 5683 if (reg->ref_obj_id) 5684 return true; 5685 5686 /* Types listed in the reg2btf_ids are always trusted */ 5687 if (reg2btf_ids[base_type(reg->type)] && 5688 !bpf_type_has_unsafe_modifiers(reg->type)) 5689 return true; 5690 5691 /* If a register is not referenced, it is trusted if it has the 5692 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5693 * other type modifiers may be safe, but we elect to take an opt-in 5694 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5695 * not. 5696 * 5697 * Eventually, we should make PTR_TRUSTED the single source of truth 5698 * for whether a register is trusted. 5699 */ 5700 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5701 !bpf_type_has_unsafe_modifiers(reg->type); 5702 } 5703 5704 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5705 { 5706 return reg->type & MEM_RCU; 5707 } 5708 5709 static void clear_trusted_flags(enum bpf_type_flag *flag) 5710 { 5711 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5712 } 5713 5714 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5715 const struct bpf_reg_state *reg, 5716 int off, int size, bool strict) 5717 { 5718 struct tnum reg_off; 5719 int ip_align; 5720 5721 /* Byte size accesses are always allowed. */ 5722 if (!strict || size == 1) 5723 return 0; 5724 5725 /* For platforms that do not have a Kconfig enabling 5726 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5727 * NET_IP_ALIGN is universally set to '2'. And on platforms 5728 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5729 * to this code only in strict mode where we want to emulate 5730 * the NET_IP_ALIGN==2 checking. Therefore use an 5731 * unconditional IP align value of '2'. 5732 */ 5733 ip_align = 2; 5734 5735 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 5736 if (!tnum_is_aligned(reg_off, size)) { 5737 char tn_buf[48]; 5738 5739 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5740 verbose(env, 5741 "misaligned packet access off %d+%s+%d+%d size %d\n", 5742 ip_align, tn_buf, reg->off, off, size); 5743 return -EACCES; 5744 } 5745 5746 return 0; 5747 } 5748 5749 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 5750 const struct bpf_reg_state *reg, 5751 const char *pointer_desc, 5752 int off, int size, bool strict) 5753 { 5754 struct tnum reg_off; 5755 5756 /* Byte size accesses are always allowed. */ 5757 if (!strict || size == 1) 5758 return 0; 5759 5760 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 5761 if (!tnum_is_aligned(reg_off, size)) { 5762 char tn_buf[48]; 5763 5764 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5765 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 5766 pointer_desc, tn_buf, reg->off, off, size); 5767 return -EACCES; 5768 } 5769 5770 return 0; 5771 } 5772 5773 static int check_ptr_alignment(struct bpf_verifier_env *env, 5774 const struct bpf_reg_state *reg, int off, 5775 int size, bool strict_alignment_once) 5776 { 5777 bool strict = env->strict_alignment || strict_alignment_once; 5778 const char *pointer_desc = ""; 5779 5780 switch (reg->type) { 5781 case PTR_TO_PACKET: 5782 case PTR_TO_PACKET_META: 5783 /* Special case, because of NET_IP_ALIGN. Given metadata sits 5784 * right in front, treat it the very same way. 5785 */ 5786 return check_pkt_ptr_alignment(env, reg, off, size, strict); 5787 case PTR_TO_FLOW_KEYS: 5788 pointer_desc = "flow keys "; 5789 break; 5790 case PTR_TO_MAP_KEY: 5791 pointer_desc = "key "; 5792 break; 5793 case PTR_TO_MAP_VALUE: 5794 pointer_desc = "value "; 5795 break; 5796 case PTR_TO_CTX: 5797 pointer_desc = "context "; 5798 break; 5799 case PTR_TO_STACK: 5800 pointer_desc = "stack "; 5801 /* The stack spill tracking logic in check_stack_write_fixed_off() 5802 * and check_stack_read_fixed_off() relies on stack accesses being 5803 * aligned. 5804 */ 5805 strict = true; 5806 break; 5807 case PTR_TO_SOCKET: 5808 pointer_desc = "sock "; 5809 break; 5810 case PTR_TO_SOCK_COMMON: 5811 pointer_desc = "sock_common "; 5812 break; 5813 case PTR_TO_TCP_SOCK: 5814 pointer_desc = "tcp_sock "; 5815 break; 5816 case PTR_TO_XDP_SOCK: 5817 pointer_desc = "xdp_sock "; 5818 break; 5819 default: 5820 break; 5821 } 5822 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 5823 strict); 5824 } 5825 5826 /* starting from main bpf function walk all instructions of the function 5827 * and recursively walk all callees that given function can call. 5828 * Ignore jump and exit insns. 5829 * Since recursion is prevented by check_cfg() this algorithm 5830 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 5831 */ 5832 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx) 5833 { 5834 struct bpf_subprog_info *subprog = env->subprog_info; 5835 struct bpf_insn *insn = env->prog->insnsi; 5836 int depth = 0, frame = 0, i, subprog_end; 5837 bool tail_call_reachable = false; 5838 int ret_insn[MAX_CALL_FRAMES]; 5839 int ret_prog[MAX_CALL_FRAMES]; 5840 int j; 5841 5842 i = subprog[idx].start; 5843 process_func: 5844 /* protect against potential stack overflow that might happen when 5845 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 5846 * depth for such case down to 256 so that the worst case scenario 5847 * would result in 8k stack size (32 which is tailcall limit * 256 = 5848 * 8k). 5849 * 5850 * To get the idea what might happen, see an example: 5851 * func1 -> sub rsp, 128 5852 * subfunc1 -> sub rsp, 256 5853 * tailcall1 -> add rsp, 256 5854 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 5855 * subfunc2 -> sub rsp, 64 5856 * subfunc22 -> sub rsp, 128 5857 * tailcall2 -> add rsp, 128 5858 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 5859 * 5860 * tailcall will unwind the current stack frame but it will not get rid 5861 * of caller's stack as shown on the example above. 5862 */ 5863 if (idx && subprog[idx].has_tail_call && depth >= 256) { 5864 verbose(env, 5865 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 5866 depth); 5867 return -EACCES; 5868 } 5869 /* round up to 32-bytes, since this is granularity 5870 * of interpreter stack size 5871 */ 5872 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5873 if (depth > MAX_BPF_STACK) { 5874 verbose(env, "combined stack size of %d calls is %d. Too large\n", 5875 frame + 1, depth); 5876 return -EACCES; 5877 } 5878 continue_func: 5879 subprog_end = subprog[idx + 1].start; 5880 for (; i < subprog_end; i++) { 5881 int next_insn, sidx; 5882 5883 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 5884 continue; 5885 /* remember insn and function to return to */ 5886 ret_insn[frame] = i + 1; 5887 ret_prog[frame] = idx; 5888 5889 /* find the callee */ 5890 next_insn = i + insn[i].imm + 1; 5891 sidx = find_subprog(env, next_insn); 5892 if (sidx < 0) { 5893 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5894 next_insn); 5895 return -EFAULT; 5896 } 5897 if (subprog[sidx].is_async_cb) { 5898 if (subprog[sidx].has_tail_call) { 5899 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 5900 return -EFAULT; 5901 } 5902 /* async callbacks don't increase bpf prog stack size unless called directly */ 5903 if (!bpf_pseudo_call(insn + i)) 5904 continue; 5905 } 5906 i = next_insn; 5907 idx = sidx; 5908 5909 if (subprog[idx].has_tail_call) 5910 tail_call_reachable = true; 5911 5912 frame++; 5913 if (frame >= MAX_CALL_FRAMES) { 5914 verbose(env, "the call stack of %d frames is too deep !\n", 5915 frame); 5916 return -E2BIG; 5917 } 5918 goto process_func; 5919 } 5920 /* if tail call got detected across bpf2bpf calls then mark each of the 5921 * currently present subprog frames as tail call reachable subprogs; 5922 * this info will be utilized by JIT so that we will be preserving the 5923 * tail call counter throughout bpf2bpf calls combined with tailcalls 5924 */ 5925 if (tail_call_reachable) 5926 for (j = 0; j < frame; j++) 5927 subprog[ret_prog[j]].tail_call_reachable = true; 5928 if (subprog[0].tail_call_reachable) 5929 env->prog->aux->tail_call_reachable = true; 5930 5931 /* end of for() loop means the last insn of the 'subprog' 5932 * was reached. Doesn't matter whether it was JA or EXIT 5933 */ 5934 if (frame == 0) 5935 return 0; 5936 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5937 frame--; 5938 i = ret_insn[frame]; 5939 idx = ret_prog[frame]; 5940 goto continue_func; 5941 } 5942 5943 static int check_max_stack_depth(struct bpf_verifier_env *env) 5944 { 5945 struct bpf_subprog_info *si = env->subprog_info; 5946 int ret; 5947 5948 for (int i = 0; i < env->subprog_cnt; i++) { 5949 if (!i || si[i].is_async_cb) { 5950 ret = check_max_stack_depth_subprog(env, i); 5951 if (ret < 0) 5952 return ret; 5953 } 5954 continue; 5955 } 5956 return 0; 5957 } 5958 5959 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5960 static int get_callee_stack_depth(struct bpf_verifier_env *env, 5961 const struct bpf_insn *insn, int idx) 5962 { 5963 int start = idx + insn->imm + 1, subprog; 5964 5965 subprog = find_subprog(env, start); 5966 if (subprog < 0) { 5967 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5968 start); 5969 return -EFAULT; 5970 } 5971 return env->subprog_info[subprog].stack_depth; 5972 } 5973 #endif 5974 5975 static int __check_buffer_access(struct bpf_verifier_env *env, 5976 const char *buf_info, 5977 const struct bpf_reg_state *reg, 5978 int regno, int off, int size) 5979 { 5980 if (off < 0) { 5981 verbose(env, 5982 "R%d invalid %s buffer access: off=%d, size=%d\n", 5983 regno, buf_info, off, size); 5984 return -EACCES; 5985 } 5986 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5987 char tn_buf[48]; 5988 5989 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5990 verbose(env, 5991 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 5992 regno, off, tn_buf); 5993 return -EACCES; 5994 } 5995 5996 return 0; 5997 } 5998 5999 static int check_tp_buffer_access(struct bpf_verifier_env *env, 6000 const struct bpf_reg_state *reg, 6001 int regno, int off, int size) 6002 { 6003 int err; 6004 6005 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 6006 if (err) 6007 return err; 6008 6009 if (off + size > env->prog->aux->max_tp_access) 6010 env->prog->aux->max_tp_access = off + size; 6011 6012 return 0; 6013 } 6014 6015 static int check_buffer_access(struct bpf_verifier_env *env, 6016 const struct bpf_reg_state *reg, 6017 int regno, int off, int size, 6018 bool zero_size_allowed, 6019 u32 *max_access) 6020 { 6021 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 6022 int err; 6023 6024 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 6025 if (err) 6026 return err; 6027 6028 if (off + size > *max_access) 6029 *max_access = off + size; 6030 6031 return 0; 6032 } 6033 6034 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 6035 static void zext_32_to_64(struct bpf_reg_state *reg) 6036 { 6037 reg->var_off = tnum_subreg(reg->var_off); 6038 __reg_assign_32_into_64(reg); 6039 } 6040 6041 /* truncate register to smaller size (in bytes) 6042 * must be called with size < BPF_REG_SIZE 6043 */ 6044 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 6045 { 6046 u64 mask; 6047 6048 /* clear high bits in bit representation */ 6049 reg->var_off = tnum_cast(reg->var_off, size); 6050 6051 /* fix arithmetic bounds */ 6052 mask = ((u64)1 << (size * 8)) - 1; 6053 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 6054 reg->umin_value &= mask; 6055 reg->umax_value &= mask; 6056 } else { 6057 reg->umin_value = 0; 6058 reg->umax_value = mask; 6059 } 6060 reg->smin_value = reg->umin_value; 6061 reg->smax_value = reg->umax_value; 6062 6063 /* If size is smaller than 32bit register the 32bit register 6064 * values are also truncated so we push 64-bit bounds into 6065 * 32-bit bounds. Above were truncated < 32-bits already. 6066 */ 6067 if (size >= 4) 6068 return; 6069 __reg_combine_64_into_32(reg); 6070 } 6071 6072 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 6073 { 6074 if (size == 1) { 6075 reg->smin_value = reg->s32_min_value = S8_MIN; 6076 reg->smax_value = reg->s32_max_value = S8_MAX; 6077 } else if (size == 2) { 6078 reg->smin_value = reg->s32_min_value = S16_MIN; 6079 reg->smax_value = reg->s32_max_value = S16_MAX; 6080 } else { 6081 /* size == 4 */ 6082 reg->smin_value = reg->s32_min_value = S32_MIN; 6083 reg->smax_value = reg->s32_max_value = S32_MAX; 6084 } 6085 reg->umin_value = reg->u32_min_value = 0; 6086 reg->umax_value = U64_MAX; 6087 reg->u32_max_value = U32_MAX; 6088 reg->var_off = tnum_unknown; 6089 } 6090 6091 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 6092 { 6093 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 6094 u64 top_smax_value, top_smin_value; 6095 u64 num_bits = size * 8; 6096 6097 if (tnum_is_const(reg->var_off)) { 6098 u64_cval = reg->var_off.value; 6099 if (size == 1) 6100 reg->var_off = tnum_const((s8)u64_cval); 6101 else if (size == 2) 6102 reg->var_off = tnum_const((s16)u64_cval); 6103 else 6104 /* size == 4 */ 6105 reg->var_off = tnum_const((s32)u64_cval); 6106 6107 u64_cval = reg->var_off.value; 6108 reg->smax_value = reg->smin_value = u64_cval; 6109 reg->umax_value = reg->umin_value = u64_cval; 6110 reg->s32_max_value = reg->s32_min_value = u64_cval; 6111 reg->u32_max_value = reg->u32_min_value = u64_cval; 6112 return; 6113 } 6114 6115 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 6116 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 6117 6118 if (top_smax_value != top_smin_value) 6119 goto out; 6120 6121 /* find the s64_min and s64_min after sign extension */ 6122 if (size == 1) { 6123 init_s64_max = (s8)reg->smax_value; 6124 init_s64_min = (s8)reg->smin_value; 6125 } else if (size == 2) { 6126 init_s64_max = (s16)reg->smax_value; 6127 init_s64_min = (s16)reg->smin_value; 6128 } else { 6129 init_s64_max = (s32)reg->smax_value; 6130 init_s64_min = (s32)reg->smin_value; 6131 } 6132 6133 s64_max = max(init_s64_max, init_s64_min); 6134 s64_min = min(init_s64_max, init_s64_min); 6135 6136 /* both of s64_max/s64_min positive or negative */ 6137 if ((s64_max >= 0) == (s64_min >= 0)) { 6138 reg->smin_value = reg->s32_min_value = s64_min; 6139 reg->smax_value = reg->s32_max_value = s64_max; 6140 reg->umin_value = reg->u32_min_value = s64_min; 6141 reg->umax_value = reg->u32_max_value = s64_max; 6142 reg->var_off = tnum_range(s64_min, s64_max); 6143 return; 6144 } 6145 6146 out: 6147 set_sext64_default_val(reg, size); 6148 } 6149 6150 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 6151 { 6152 if (size == 1) { 6153 reg->s32_min_value = S8_MIN; 6154 reg->s32_max_value = S8_MAX; 6155 } else { 6156 /* size == 2 */ 6157 reg->s32_min_value = S16_MIN; 6158 reg->s32_max_value = S16_MAX; 6159 } 6160 reg->u32_min_value = 0; 6161 reg->u32_max_value = U32_MAX; 6162 reg->var_off = tnum_subreg(tnum_unknown); 6163 } 6164 6165 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 6166 { 6167 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 6168 u32 top_smax_value, top_smin_value; 6169 u32 num_bits = size * 8; 6170 6171 if (tnum_is_const(reg->var_off)) { 6172 u32_val = reg->var_off.value; 6173 if (size == 1) 6174 reg->var_off = tnum_const((s8)u32_val); 6175 else 6176 reg->var_off = tnum_const((s16)u32_val); 6177 6178 u32_val = reg->var_off.value; 6179 reg->s32_min_value = reg->s32_max_value = u32_val; 6180 reg->u32_min_value = reg->u32_max_value = u32_val; 6181 return; 6182 } 6183 6184 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 6185 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 6186 6187 if (top_smax_value != top_smin_value) 6188 goto out; 6189 6190 /* find the s32_min and s32_min after sign extension */ 6191 if (size == 1) { 6192 init_s32_max = (s8)reg->s32_max_value; 6193 init_s32_min = (s8)reg->s32_min_value; 6194 } else { 6195 /* size == 2 */ 6196 init_s32_max = (s16)reg->s32_max_value; 6197 init_s32_min = (s16)reg->s32_min_value; 6198 } 6199 s32_max = max(init_s32_max, init_s32_min); 6200 s32_min = min(init_s32_max, init_s32_min); 6201 6202 if ((s32_min >= 0) == (s32_max >= 0)) { 6203 reg->s32_min_value = s32_min; 6204 reg->s32_max_value = s32_max; 6205 reg->u32_min_value = (u32)s32_min; 6206 reg->u32_max_value = (u32)s32_max; 6207 reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max)); 6208 return; 6209 } 6210 6211 out: 6212 set_sext32_default_val(reg, size); 6213 } 6214 6215 static bool bpf_map_is_rdonly(const struct bpf_map *map) 6216 { 6217 /* A map is considered read-only if the following condition are true: 6218 * 6219 * 1) BPF program side cannot change any of the map content. The 6220 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 6221 * and was set at map creation time. 6222 * 2) The map value(s) have been initialized from user space by a 6223 * loader and then "frozen", such that no new map update/delete 6224 * operations from syscall side are possible for the rest of 6225 * the map's lifetime from that point onwards. 6226 * 3) Any parallel/pending map update/delete operations from syscall 6227 * side have been completed. Only after that point, it's safe to 6228 * assume that map value(s) are immutable. 6229 */ 6230 return (map->map_flags & BPF_F_RDONLY_PROG) && 6231 READ_ONCE(map->frozen) && 6232 !bpf_map_write_active(map); 6233 } 6234 6235 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 6236 bool is_ldsx) 6237 { 6238 void *ptr; 6239 u64 addr; 6240 int err; 6241 6242 err = map->ops->map_direct_value_addr(map, &addr, off); 6243 if (err) 6244 return err; 6245 ptr = (void *)(long)addr + off; 6246 6247 switch (size) { 6248 case sizeof(u8): 6249 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6250 break; 6251 case sizeof(u16): 6252 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6253 break; 6254 case sizeof(u32): 6255 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6256 break; 6257 case sizeof(u64): 6258 *val = *(u64 *)ptr; 6259 break; 6260 default: 6261 return -EINVAL; 6262 } 6263 return 0; 6264 } 6265 6266 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 6267 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 6268 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 6269 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type) __PASTE(__type, __safe_trusted_or_null) 6270 6271 /* 6272 * Allow list few fields as RCU trusted or full trusted. 6273 * This logic doesn't allow mix tagging and will be removed once GCC supports 6274 * btf_type_tag. 6275 */ 6276 6277 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 6278 BTF_TYPE_SAFE_RCU(struct task_struct) { 6279 const cpumask_t *cpus_ptr; 6280 struct css_set __rcu *cgroups; 6281 struct task_struct __rcu *real_parent; 6282 struct task_struct *group_leader; 6283 }; 6284 6285 BTF_TYPE_SAFE_RCU(struct cgroup) { 6286 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 6287 struct kernfs_node *kn; 6288 }; 6289 6290 BTF_TYPE_SAFE_RCU(struct css_set) { 6291 struct cgroup *dfl_cgrp; 6292 }; 6293 6294 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 6295 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 6296 struct file __rcu *exe_file; 6297 }; 6298 6299 /* skb->sk, req->sk are not RCU protected, but we mark them as such 6300 * because bpf prog accessible sockets are SOCK_RCU_FREE. 6301 */ 6302 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 6303 struct sock *sk; 6304 }; 6305 6306 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 6307 struct sock *sk; 6308 }; 6309 6310 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 6311 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 6312 struct seq_file *seq; 6313 }; 6314 6315 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 6316 struct bpf_iter_meta *meta; 6317 struct task_struct *task; 6318 }; 6319 6320 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 6321 struct file *file; 6322 }; 6323 6324 BTF_TYPE_SAFE_TRUSTED(struct file) { 6325 struct inode *f_inode; 6326 }; 6327 6328 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 6329 /* no negative dentry-s in places where bpf can see it */ 6330 struct inode *d_inode; 6331 }; 6332 6333 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) { 6334 struct sock *sk; 6335 }; 6336 6337 static bool type_is_rcu(struct bpf_verifier_env *env, 6338 struct bpf_reg_state *reg, 6339 const char *field_name, u32 btf_id) 6340 { 6341 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 6342 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 6343 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 6344 6345 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 6346 } 6347 6348 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 6349 struct bpf_reg_state *reg, 6350 const char *field_name, u32 btf_id) 6351 { 6352 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 6353 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 6354 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 6355 6356 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 6357 } 6358 6359 static bool type_is_trusted(struct bpf_verifier_env *env, 6360 struct bpf_reg_state *reg, 6361 const char *field_name, u32 btf_id) 6362 { 6363 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 6364 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 6365 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 6366 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 6367 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 6368 6369 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 6370 } 6371 6372 static bool type_is_trusted_or_null(struct bpf_verifier_env *env, 6373 struct bpf_reg_state *reg, 6374 const char *field_name, u32 btf_id) 6375 { 6376 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)); 6377 6378 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, 6379 "__safe_trusted_or_null"); 6380 } 6381 6382 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 6383 struct bpf_reg_state *regs, 6384 int regno, int off, int size, 6385 enum bpf_access_type atype, 6386 int value_regno) 6387 { 6388 struct bpf_reg_state *reg = regs + regno; 6389 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 6390 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 6391 const char *field_name = NULL; 6392 enum bpf_type_flag flag = 0; 6393 u32 btf_id = 0; 6394 int ret; 6395 6396 if (!env->allow_ptr_leaks) { 6397 verbose(env, 6398 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6399 tname); 6400 return -EPERM; 6401 } 6402 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 6403 verbose(env, 6404 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 6405 tname); 6406 return -EINVAL; 6407 } 6408 if (off < 0) { 6409 verbose(env, 6410 "R%d is ptr_%s invalid negative access: off=%d\n", 6411 regno, tname, off); 6412 return -EACCES; 6413 } 6414 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6415 char tn_buf[48]; 6416 6417 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6418 verbose(env, 6419 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 6420 regno, tname, off, tn_buf); 6421 return -EACCES; 6422 } 6423 6424 if (reg->type & MEM_USER) { 6425 verbose(env, 6426 "R%d is ptr_%s access user memory: off=%d\n", 6427 regno, tname, off); 6428 return -EACCES; 6429 } 6430 6431 if (reg->type & MEM_PERCPU) { 6432 verbose(env, 6433 "R%d is ptr_%s access percpu memory: off=%d\n", 6434 regno, tname, off); 6435 return -EACCES; 6436 } 6437 6438 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 6439 if (!btf_is_kernel(reg->btf)) { 6440 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 6441 return -EFAULT; 6442 } 6443 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 6444 } else { 6445 /* Writes are permitted with default btf_struct_access for 6446 * program allocated objects (which always have ref_obj_id > 0), 6447 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 6448 */ 6449 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 6450 verbose(env, "only read is supported\n"); 6451 return -EACCES; 6452 } 6453 6454 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 6455 !reg->ref_obj_id) { 6456 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 6457 return -EFAULT; 6458 } 6459 6460 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 6461 } 6462 6463 if (ret < 0) 6464 return ret; 6465 6466 if (ret != PTR_TO_BTF_ID) { 6467 /* just mark; */ 6468 6469 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 6470 /* If this is an untrusted pointer, all pointers formed by walking it 6471 * also inherit the untrusted flag. 6472 */ 6473 flag = PTR_UNTRUSTED; 6474 6475 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 6476 /* By default any pointer obtained from walking a trusted pointer is no 6477 * longer trusted, unless the field being accessed has explicitly been 6478 * marked as inheriting its parent's state of trust (either full or RCU). 6479 * For example: 6480 * 'cgroups' pointer is untrusted if task->cgroups dereference 6481 * happened in a sleepable program outside of bpf_rcu_read_lock() 6482 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 6483 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 6484 * 6485 * A regular RCU-protected pointer with __rcu tag can also be deemed 6486 * trusted if we are in an RCU CS. Such pointer can be NULL. 6487 */ 6488 if (type_is_trusted(env, reg, field_name, btf_id)) { 6489 flag |= PTR_TRUSTED; 6490 } else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) { 6491 flag |= PTR_TRUSTED | PTR_MAYBE_NULL; 6492 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 6493 if (type_is_rcu(env, reg, field_name, btf_id)) { 6494 /* ignore __rcu tag and mark it MEM_RCU */ 6495 flag |= MEM_RCU; 6496 } else if (flag & MEM_RCU || 6497 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 6498 /* __rcu tagged pointers can be NULL */ 6499 flag |= MEM_RCU | PTR_MAYBE_NULL; 6500 6501 /* We always trust them */ 6502 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 6503 flag & PTR_UNTRUSTED) 6504 flag &= ~PTR_UNTRUSTED; 6505 } else if (flag & (MEM_PERCPU | MEM_USER)) { 6506 /* keep as-is */ 6507 } else { 6508 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 6509 clear_trusted_flags(&flag); 6510 } 6511 } else { 6512 /* 6513 * If not in RCU CS or MEM_RCU pointer can be NULL then 6514 * aggressively mark as untrusted otherwise such 6515 * pointers will be plain PTR_TO_BTF_ID without flags 6516 * and will be allowed to be passed into helpers for 6517 * compat reasons. 6518 */ 6519 flag = PTR_UNTRUSTED; 6520 } 6521 } else { 6522 /* Old compat. Deprecated */ 6523 clear_trusted_flags(&flag); 6524 } 6525 6526 if (atype == BPF_READ && value_regno >= 0) 6527 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 6528 6529 return 0; 6530 } 6531 6532 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 6533 struct bpf_reg_state *regs, 6534 int regno, int off, int size, 6535 enum bpf_access_type atype, 6536 int value_regno) 6537 { 6538 struct bpf_reg_state *reg = regs + regno; 6539 struct bpf_map *map = reg->map_ptr; 6540 struct bpf_reg_state map_reg; 6541 enum bpf_type_flag flag = 0; 6542 const struct btf_type *t; 6543 const char *tname; 6544 u32 btf_id; 6545 int ret; 6546 6547 if (!btf_vmlinux) { 6548 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 6549 return -ENOTSUPP; 6550 } 6551 6552 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 6553 verbose(env, "map_ptr access not supported for map type %d\n", 6554 map->map_type); 6555 return -ENOTSUPP; 6556 } 6557 6558 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 6559 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 6560 6561 if (!env->allow_ptr_leaks) { 6562 verbose(env, 6563 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6564 tname); 6565 return -EPERM; 6566 } 6567 6568 if (off < 0) { 6569 verbose(env, "R%d is %s invalid negative access: off=%d\n", 6570 regno, tname, off); 6571 return -EACCES; 6572 } 6573 6574 if (atype != BPF_READ) { 6575 verbose(env, "only read from %s is supported\n", tname); 6576 return -EACCES; 6577 } 6578 6579 /* Simulate access to a PTR_TO_BTF_ID */ 6580 memset(&map_reg, 0, sizeof(map_reg)); 6581 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 6582 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 6583 if (ret < 0) 6584 return ret; 6585 6586 if (value_regno >= 0) 6587 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 6588 6589 return 0; 6590 } 6591 6592 /* Check that the stack access at the given offset is within bounds. The 6593 * maximum valid offset is -1. 6594 * 6595 * The minimum valid offset is -MAX_BPF_STACK for writes, and 6596 * -state->allocated_stack for reads. 6597 */ 6598 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env, 6599 s64 off, 6600 struct bpf_func_state *state, 6601 enum bpf_access_type t) 6602 { 6603 int min_valid_off; 6604 6605 if (t == BPF_WRITE || env->allow_uninit_stack) 6606 min_valid_off = -MAX_BPF_STACK; 6607 else 6608 min_valid_off = -state->allocated_stack; 6609 6610 if (off < min_valid_off || off > -1) 6611 return -EACCES; 6612 return 0; 6613 } 6614 6615 /* Check that the stack access at 'regno + off' falls within the maximum stack 6616 * bounds. 6617 * 6618 * 'off' includes `regno->offset`, but not its dynamic part (if any). 6619 */ 6620 static int check_stack_access_within_bounds( 6621 struct bpf_verifier_env *env, 6622 int regno, int off, int access_size, 6623 enum bpf_access_src src, enum bpf_access_type type) 6624 { 6625 struct bpf_reg_state *regs = cur_regs(env); 6626 struct bpf_reg_state *reg = regs + regno; 6627 struct bpf_func_state *state = func(env, reg); 6628 s64 min_off, max_off; 6629 int err; 6630 char *err_extra; 6631 6632 if (src == ACCESS_HELPER) 6633 /* We don't know if helpers are reading or writing (or both). */ 6634 err_extra = " indirect access to"; 6635 else if (type == BPF_READ) 6636 err_extra = " read from"; 6637 else 6638 err_extra = " write to"; 6639 6640 if (tnum_is_const(reg->var_off)) { 6641 min_off = (s64)reg->var_off.value + off; 6642 max_off = min_off + access_size; 6643 } else { 6644 if (reg->smax_value >= BPF_MAX_VAR_OFF || 6645 reg->smin_value <= -BPF_MAX_VAR_OFF) { 6646 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 6647 err_extra, regno); 6648 return -EACCES; 6649 } 6650 min_off = reg->smin_value + off; 6651 max_off = reg->smax_value + off + access_size; 6652 } 6653 6654 err = check_stack_slot_within_bounds(env, min_off, state, type); 6655 if (!err && max_off > 0) 6656 err = -EINVAL; /* out of stack access into non-negative offsets */ 6657 if (!err && access_size < 0) 6658 /* access_size should not be negative (or overflow an int); others checks 6659 * along the way should have prevented such an access. 6660 */ 6661 err = -EFAULT; /* invalid negative access size; integer overflow? */ 6662 6663 if (err) { 6664 if (tnum_is_const(reg->var_off)) { 6665 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 6666 err_extra, regno, off, access_size); 6667 } else { 6668 char tn_buf[48]; 6669 6670 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6671 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 6672 err_extra, regno, tn_buf, access_size); 6673 } 6674 return err; 6675 } 6676 6677 return grow_stack_state(env, state, round_up(-min_off, BPF_REG_SIZE)); 6678 } 6679 6680 /* check whether memory at (regno + off) is accessible for t = (read | write) 6681 * if t==write, value_regno is a register which value is stored into memory 6682 * if t==read, value_regno is a register which will receive the value from memory 6683 * if t==write && value_regno==-1, some unknown value is stored into memory 6684 * if t==read && value_regno==-1, don't care what we read from memory 6685 */ 6686 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 6687 int off, int bpf_size, enum bpf_access_type t, 6688 int value_regno, bool strict_alignment_once, bool is_ldsx) 6689 { 6690 struct bpf_reg_state *regs = cur_regs(env); 6691 struct bpf_reg_state *reg = regs + regno; 6692 int size, err = 0; 6693 6694 size = bpf_size_to_bytes(bpf_size); 6695 if (size < 0) 6696 return size; 6697 6698 /* alignment checks will add in reg->off themselves */ 6699 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 6700 if (err) 6701 return err; 6702 6703 /* for access checks, reg->off is just part of off */ 6704 off += reg->off; 6705 6706 if (reg->type == PTR_TO_MAP_KEY) { 6707 if (t == BPF_WRITE) { 6708 verbose(env, "write to change key R%d not allowed\n", regno); 6709 return -EACCES; 6710 } 6711 6712 err = check_mem_region_access(env, regno, off, size, 6713 reg->map_ptr->key_size, false); 6714 if (err) 6715 return err; 6716 if (value_regno >= 0) 6717 mark_reg_unknown(env, regs, value_regno); 6718 } else if (reg->type == PTR_TO_MAP_VALUE) { 6719 struct btf_field *kptr_field = NULL; 6720 6721 if (t == BPF_WRITE && value_regno >= 0 && 6722 is_pointer_value(env, value_regno)) { 6723 verbose(env, "R%d leaks addr into map\n", value_regno); 6724 return -EACCES; 6725 } 6726 err = check_map_access_type(env, regno, off, size, t); 6727 if (err) 6728 return err; 6729 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 6730 if (err) 6731 return err; 6732 if (tnum_is_const(reg->var_off)) 6733 kptr_field = btf_record_find(reg->map_ptr->record, 6734 off + reg->var_off.value, BPF_KPTR); 6735 if (kptr_field) { 6736 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 6737 } else if (t == BPF_READ && value_regno >= 0) { 6738 struct bpf_map *map = reg->map_ptr; 6739 6740 /* if map is read-only, track its contents as scalars */ 6741 if (tnum_is_const(reg->var_off) && 6742 bpf_map_is_rdonly(map) && 6743 map->ops->map_direct_value_addr) { 6744 int map_off = off + reg->var_off.value; 6745 u64 val = 0; 6746 6747 err = bpf_map_direct_read(map, map_off, size, 6748 &val, is_ldsx); 6749 if (err) 6750 return err; 6751 6752 regs[value_regno].type = SCALAR_VALUE; 6753 __mark_reg_known(®s[value_regno], val); 6754 } else { 6755 mark_reg_unknown(env, regs, value_regno); 6756 } 6757 } 6758 } else if (base_type(reg->type) == PTR_TO_MEM) { 6759 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6760 6761 if (type_may_be_null(reg->type)) { 6762 verbose(env, "R%d invalid mem access '%s'\n", regno, 6763 reg_type_str(env, reg->type)); 6764 return -EACCES; 6765 } 6766 6767 if (t == BPF_WRITE && rdonly_mem) { 6768 verbose(env, "R%d cannot write into %s\n", 6769 regno, reg_type_str(env, reg->type)); 6770 return -EACCES; 6771 } 6772 6773 if (t == BPF_WRITE && value_regno >= 0 && 6774 is_pointer_value(env, value_regno)) { 6775 verbose(env, "R%d leaks addr into mem\n", value_regno); 6776 return -EACCES; 6777 } 6778 6779 err = check_mem_region_access(env, regno, off, size, 6780 reg->mem_size, false); 6781 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 6782 mark_reg_unknown(env, regs, value_regno); 6783 } else if (reg->type == PTR_TO_CTX) { 6784 enum bpf_reg_type reg_type = SCALAR_VALUE; 6785 struct btf *btf = NULL; 6786 u32 btf_id = 0; 6787 6788 if (t == BPF_WRITE && value_regno >= 0 && 6789 is_pointer_value(env, value_regno)) { 6790 verbose(env, "R%d leaks addr into ctx\n", value_regno); 6791 return -EACCES; 6792 } 6793 6794 err = check_ptr_off_reg(env, reg, regno); 6795 if (err < 0) 6796 return err; 6797 6798 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 6799 &btf_id); 6800 if (err) 6801 verbose_linfo(env, insn_idx, "; "); 6802 if (!err && t == BPF_READ && value_regno >= 0) { 6803 /* ctx access returns either a scalar, or a 6804 * PTR_TO_PACKET[_META,_END]. In the latter 6805 * case, we know the offset is zero. 6806 */ 6807 if (reg_type == SCALAR_VALUE) { 6808 mark_reg_unknown(env, regs, value_regno); 6809 } else { 6810 mark_reg_known_zero(env, regs, 6811 value_regno); 6812 if (type_may_be_null(reg_type)) 6813 regs[value_regno].id = ++env->id_gen; 6814 /* A load of ctx field could have different 6815 * actual load size with the one encoded in the 6816 * insn. When the dst is PTR, it is for sure not 6817 * a sub-register. 6818 */ 6819 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 6820 if (base_type(reg_type) == PTR_TO_BTF_ID) { 6821 regs[value_regno].btf = btf; 6822 regs[value_regno].btf_id = btf_id; 6823 } 6824 } 6825 regs[value_regno].type = reg_type; 6826 } 6827 6828 } else if (reg->type == PTR_TO_STACK) { 6829 /* Basic bounds checks. */ 6830 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 6831 if (err) 6832 return err; 6833 6834 if (t == BPF_READ) 6835 err = check_stack_read(env, regno, off, size, 6836 value_regno); 6837 else 6838 err = check_stack_write(env, regno, off, size, 6839 value_regno, insn_idx); 6840 } else if (reg_is_pkt_pointer(reg)) { 6841 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 6842 verbose(env, "cannot write into packet\n"); 6843 return -EACCES; 6844 } 6845 if (t == BPF_WRITE && value_regno >= 0 && 6846 is_pointer_value(env, value_regno)) { 6847 verbose(env, "R%d leaks addr into packet\n", 6848 value_regno); 6849 return -EACCES; 6850 } 6851 err = check_packet_access(env, regno, off, size, false); 6852 if (!err && t == BPF_READ && value_regno >= 0) 6853 mark_reg_unknown(env, regs, value_regno); 6854 } else if (reg->type == PTR_TO_FLOW_KEYS) { 6855 if (t == BPF_WRITE && value_regno >= 0 && 6856 is_pointer_value(env, value_regno)) { 6857 verbose(env, "R%d leaks addr into flow keys\n", 6858 value_regno); 6859 return -EACCES; 6860 } 6861 6862 err = check_flow_keys_access(env, off, size); 6863 if (!err && t == BPF_READ && value_regno >= 0) 6864 mark_reg_unknown(env, regs, value_regno); 6865 } else if (type_is_sk_pointer(reg->type)) { 6866 if (t == BPF_WRITE) { 6867 verbose(env, "R%d cannot write into %s\n", 6868 regno, reg_type_str(env, reg->type)); 6869 return -EACCES; 6870 } 6871 err = check_sock_access(env, insn_idx, regno, off, size, t); 6872 if (!err && value_regno >= 0) 6873 mark_reg_unknown(env, regs, value_regno); 6874 } else if (reg->type == PTR_TO_TP_BUFFER) { 6875 err = check_tp_buffer_access(env, reg, regno, off, size); 6876 if (!err && t == BPF_READ && value_regno >= 0) 6877 mark_reg_unknown(env, regs, value_regno); 6878 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 6879 !type_may_be_null(reg->type)) { 6880 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 6881 value_regno); 6882 } else if (reg->type == CONST_PTR_TO_MAP) { 6883 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 6884 value_regno); 6885 } else if (base_type(reg->type) == PTR_TO_BUF) { 6886 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6887 u32 *max_access; 6888 6889 if (rdonly_mem) { 6890 if (t == BPF_WRITE) { 6891 verbose(env, "R%d cannot write into %s\n", 6892 regno, reg_type_str(env, reg->type)); 6893 return -EACCES; 6894 } 6895 max_access = &env->prog->aux->max_rdonly_access; 6896 } else { 6897 max_access = &env->prog->aux->max_rdwr_access; 6898 } 6899 6900 err = check_buffer_access(env, reg, regno, off, size, false, 6901 max_access); 6902 6903 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 6904 mark_reg_unknown(env, regs, value_regno); 6905 } else { 6906 verbose(env, "R%d invalid mem access '%s'\n", regno, 6907 reg_type_str(env, reg->type)); 6908 return -EACCES; 6909 } 6910 6911 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 6912 regs[value_regno].type == SCALAR_VALUE) { 6913 if (!is_ldsx) 6914 /* b/h/w load zero-extends, mark upper bits as known 0 */ 6915 coerce_reg_to_size(®s[value_regno], size); 6916 else 6917 coerce_reg_to_size_sx(®s[value_regno], size); 6918 } 6919 return err; 6920 } 6921 6922 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 6923 { 6924 int load_reg; 6925 int err; 6926 6927 switch (insn->imm) { 6928 case BPF_ADD: 6929 case BPF_ADD | BPF_FETCH: 6930 case BPF_AND: 6931 case BPF_AND | BPF_FETCH: 6932 case BPF_OR: 6933 case BPF_OR | BPF_FETCH: 6934 case BPF_XOR: 6935 case BPF_XOR | BPF_FETCH: 6936 case BPF_XCHG: 6937 case BPF_CMPXCHG: 6938 break; 6939 default: 6940 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 6941 return -EINVAL; 6942 } 6943 6944 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 6945 verbose(env, "invalid atomic operand size\n"); 6946 return -EINVAL; 6947 } 6948 6949 /* check src1 operand */ 6950 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6951 if (err) 6952 return err; 6953 6954 /* check src2 operand */ 6955 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6956 if (err) 6957 return err; 6958 6959 if (insn->imm == BPF_CMPXCHG) { 6960 /* Check comparison of R0 with memory location */ 6961 const u32 aux_reg = BPF_REG_0; 6962 6963 err = check_reg_arg(env, aux_reg, SRC_OP); 6964 if (err) 6965 return err; 6966 6967 if (is_pointer_value(env, aux_reg)) { 6968 verbose(env, "R%d leaks addr into mem\n", aux_reg); 6969 return -EACCES; 6970 } 6971 } 6972 6973 if (is_pointer_value(env, insn->src_reg)) { 6974 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 6975 return -EACCES; 6976 } 6977 6978 if (is_ctx_reg(env, insn->dst_reg) || 6979 is_pkt_reg(env, insn->dst_reg) || 6980 is_flow_key_reg(env, insn->dst_reg) || 6981 is_sk_reg(env, insn->dst_reg)) { 6982 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 6983 insn->dst_reg, 6984 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 6985 return -EACCES; 6986 } 6987 6988 if (insn->imm & BPF_FETCH) { 6989 if (insn->imm == BPF_CMPXCHG) 6990 load_reg = BPF_REG_0; 6991 else 6992 load_reg = insn->src_reg; 6993 6994 /* check and record load of old value */ 6995 err = check_reg_arg(env, load_reg, DST_OP); 6996 if (err) 6997 return err; 6998 } else { 6999 /* This instruction accesses a memory location but doesn't 7000 * actually load it into a register. 7001 */ 7002 load_reg = -1; 7003 } 7004 7005 /* Check whether we can read the memory, with second call for fetch 7006 * case to simulate the register fill. 7007 */ 7008 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7009 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 7010 if (!err && load_reg >= 0) 7011 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7012 BPF_SIZE(insn->code), BPF_READ, load_reg, 7013 true, false); 7014 if (err) 7015 return err; 7016 7017 /* Check whether we can write into the same memory. */ 7018 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7019 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 7020 if (err) 7021 return err; 7022 7023 return 0; 7024 } 7025 7026 /* When register 'regno' is used to read the stack (either directly or through 7027 * a helper function) make sure that it's within stack boundary and, depending 7028 * on the access type and privileges, that all elements of the stack are 7029 * initialized. 7030 * 7031 * 'off' includes 'regno->off', but not its dynamic part (if any). 7032 * 7033 * All registers that have been spilled on the stack in the slots within the 7034 * read offsets are marked as read. 7035 */ 7036 static int check_stack_range_initialized( 7037 struct bpf_verifier_env *env, int regno, int off, 7038 int access_size, bool zero_size_allowed, 7039 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 7040 { 7041 struct bpf_reg_state *reg = reg_state(env, regno); 7042 struct bpf_func_state *state = func(env, reg); 7043 int err, min_off, max_off, i, j, slot, spi; 7044 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 7045 enum bpf_access_type bounds_check_type; 7046 /* Some accesses can write anything into the stack, others are 7047 * read-only. 7048 */ 7049 bool clobber = false; 7050 7051 if (access_size == 0 && !zero_size_allowed) { 7052 verbose(env, "invalid zero-sized read\n"); 7053 return -EACCES; 7054 } 7055 7056 if (type == ACCESS_HELPER) { 7057 /* The bounds checks for writes are more permissive than for 7058 * reads. However, if raw_mode is not set, we'll do extra 7059 * checks below. 7060 */ 7061 bounds_check_type = BPF_WRITE; 7062 clobber = true; 7063 } else { 7064 bounds_check_type = BPF_READ; 7065 } 7066 err = check_stack_access_within_bounds(env, regno, off, access_size, 7067 type, bounds_check_type); 7068 if (err) 7069 return err; 7070 7071 7072 if (tnum_is_const(reg->var_off)) { 7073 min_off = max_off = reg->var_off.value + off; 7074 } else { 7075 /* Variable offset is prohibited for unprivileged mode for 7076 * simplicity since it requires corresponding support in 7077 * Spectre masking for stack ALU. 7078 * See also retrieve_ptr_limit(). 7079 */ 7080 if (!env->bypass_spec_v1) { 7081 char tn_buf[48]; 7082 7083 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7084 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 7085 regno, err_extra, tn_buf); 7086 return -EACCES; 7087 } 7088 /* Only initialized buffer on stack is allowed to be accessed 7089 * with variable offset. With uninitialized buffer it's hard to 7090 * guarantee that whole memory is marked as initialized on 7091 * helper return since specific bounds are unknown what may 7092 * cause uninitialized stack leaking. 7093 */ 7094 if (meta && meta->raw_mode) 7095 meta = NULL; 7096 7097 min_off = reg->smin_value + off; 7098 max_off = reg->smax_value + off; 7099 } 7100 7101 if (meta && meta->raw_mode) { 7102 /* Ensure we won't be overwriting dynptrs when simulating byte 7103 * by byte access in check_helper_call using meta.access_size. 7104 * This would be a problem if we have a helper in the future 7105 * which takes: 7106 * 7107 * helper(uninit_mem, len, dynptr) 7108 * 7109 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 7110 * may end up writing to dynptr itself when touching memory from 7111 * arg 1. This can be relaxed on a case by case basis for known 7112 * safe cases, but reject due to the possibilitiy of aliasing by 7113 * default. 7114 */ 7115 for (i = min_off; i < max_off + access_size; i++) { 7116 int stack_off = -i - 1; 7117 7118 spi = __get_spi(i); 7119 /* raw_mode may write past allocated_stack */ 7120 if (state->allocated_stack <= stack_off) 7121 continue; 7122 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 7123 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 7124 return -EACCES; 7125 } 7126 } 7127 meta->access_size = access_size; 7128 meta->regno = regno; 7129 return 0; 7130 } 7131 7132 for (i = min_off; i < max_off + access_size; i++) { 7133 u8 *stype; 7134 7135 slot = -i - 1; 7136 spi = slot / BPF_REG_SIZE; 7137 if (state->allocated_stack <= slot) { 7138 verbose(env, "verifier bug: allocated_stack too small"); 7139 return -EFAULT; 7140 } 7141 7142 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 7143 if (*stype == STACK_MISC) 7144 goto mark; 7145 if ((*stype == STACK_ZERO) || 7146 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 7147 if (clobber) { 7148 /* helper can write anything into the stack */ 7149 *stype = STACK_MISC; 7150 } 7151 goto mark; 7152 } 7153 7154 if (is_spilled_reg(&state->stack[spi]) && 7155 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 7156 env->allow_ptr_leaks)) { 7157 if (clobber) { 7158 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 7159 for (j = 0; j < BPF_REG_SIZE; j++) 7160 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 7161 } 7162 goto mark; 7163 } 7164 7165 if (tnum_is_const(reg->var_off)) { 7166 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 7167 err_extra, regno, min_off, i - min_off, access_size); 7168 } else { 7169 char tn_buf[48]; 7170 7171 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7172 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 7173 err_extra, regno, tn_buf, i - min_off, access_size); 7174 } 7175 return -EACCES; 7176 mark: 7177 /* reading any byte out of 8-byte 'spill_slot' will cause 7178 * the whole slot to be marked as 'read' 7179 */ 7180 mark_reg_read(env, &state->stack[spi].spilled_ptr, 7181 state->stack[spi].spilled_ptr.parent, 7182 REG_LIVE_READ64); 7183 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 7184 * be sure that whether stack slot is written to or not. Hence, 7185 * we must still conservatively propagate reads upwards even if 7186 * helper may write to the entire memory range. 7187 */ 7188 } 7189 return 0; 7190 } 7191 7192 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 7193 int access_size, bool zero_size_allowed, 7194 struct bpf_call_arg_meta *meta) 7195 { 7196 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7197 u32 *max_access; 7198 7199 switch (base_type(reg->type)) { 7200 case PTR_TO_PACKET: 7201 case PTR_TO_PACKET_META: 7202 return check_packet_access(env, regno, reg->off, access_size, 7203 zero_size_allowed); 7204 case PTR_TO_MAP_KEY: 7205 if (meta && meta->raw_mode) { 7206 verbose(env, "R%d cannot write into %s\n", regno, 7207 reg_type_str(env, reg->type)); 7208 return -EACCES; 7209 } 7210 return check_mem_region_access(env, regno, reg->off, access_size, 7211 reg->map_ptr->key_size, false); 7212 case PTR_TO_MAP_VALUE: 7213 if (check_map_access_type(env, regno, reg->off, access_size, 7214 meta && meta->raw_mode ? BPF_WRITE : 7215 BPF_READ)) 7216 return -EACCES; 7217 return check_map_access(env, regno, reg->off, access_size, 7218 zero_size_allowed, ACCESS_HELPER); 7219 case PTR_TO_MEM: 7220 if (type_is_rdonly_mem(reg->type)) { 7221 if (meta && meta->raw_mode) { 7222 verbose(env, "R%d cannot write into %s\n", regno, 7223 reg_type_str(env, reg->type)); 7224 return -EACCES; 7225 } 7226 } 7227 return check_mem_region_access(env, regno, reg->off, 7228 access_size, reg->mem_size, 7229 zero_size_allowed); 7230 case PTR_TO_BUF: 7231 if (type_is_rdonly_mem(reg->type)) { 7232 if (meta && meta->raw_mode) { 7233 verbose(env, "R%d cannot write into %s\n", regno, 7234 reg_type_str(env, reg->type)); 7235 return -EACCES; 7236 } 7237 7238 max_access = &env->prog->aux->max_rdonly_access; 7239 } else { 7240 max_access = &env->prog->aux->max_rdwr_access; 7241 } 7242 return check_buffer_access(env, reg, regno, reg->off, 7243 access_size, zero_size_allowed, 7244 max_access); 7245 case PTR_TO_STACK: 7246 return check_stack_range_initialized( 7247 env, 7248 regno, reg->off, access_size, 7249 zero_size_allowed, ACCESS_HELPER, meta); 7250 case PTR_TO_BTF_ID: 7251 return check_ptr_to_btf_access(env, regs, regno, reg->off, 7252 access_size, BPF_READ, -1); 7253 case PTR_TO_CTX: 7254 /* in case the function doesn't know how to access the context, 7255 * (because we are in a program of type SYSCALL for example), we 7256 * can not statically check its size. 7257 * Dynamically check it now. 7258 */ 7259 if (!env->ops->convert_ctx_access) { 7260 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 7261 int offset = access_size - 1; 7262 7263 /* Allow zero-byte read from PTR_TO_CTX */ 7264 if (access_size == 0) 7265 return zero_size_allowed ? 0 : -EACCES; 7266 7267 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 7268 atype, -1, false, false); 7269 } 7270 7271 fallthrough; 7272 default: /* scalar_value or invalid ptr */ 7273 /* Allow zero-byte read from NULL, regardless of pointer type */ 7274 if (zero_size_allowed && access_size == 0 && 7275 register_is_null(reg)) 7276 return 0; 7277 7278 verbose(env, "R%d type=%s ", regno, 7279 reg_type_str(env, reg->type)); 7280 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 7281 return -EACCES; 7282 } 7283 } 7284 7285 static int check_mem_size_reg(struct bpf_verifier_env *env, 7286 struct bpf_reg_state *reg, u32 regno, 7287 bool zero_size_allowed, 7288 struct bpf_call_arg_meta *meta) 7289 { 7290 int err; 7291 7292 /* This is used to refine r0 return value bounds for helpers 7293 * that enforce this value as an upper bound on return values. 7294 * See do_refine_retval_range() for helpers that can refine 7295 * the return value. C type of helper is u32 so we pull register 7296 * bound from umax_value however, if negative verifier errors 7297 * out. Only upper bounds can be learned because retval is an 7298 * int type and negative retvals are allowed. 7299 */ 7300 meta->msize_max_value = reg->umax_value; 7301 7302 /* The register is SCALAR_VALUE; the access check 7303 * happens using its boundaries. 7304 */ 7305 if (!tnum_is_const(reg->var_off)) 7306 /* For unprivileged variable accesses, disable raw 7307 * mode so that the program is required to 7308 * initialize all the memory that the helper could 7309 * just partially fill up. 7310 */ 7311 meta = NULL; 7312 7313 if (reg->smin_value < 0) { 7314 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 7315 regno); 7316 return -EACCES; 7317 } 7318 7319 if (reg->umin_value == 0) { 7320 err = check_helper_mem_access(env, regno - 1, 0, 7321 zero_size_allowed, 7322 meta); 7323 if (err) 7324 return err; 7325 } 7326 7327 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 7328 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 7329 regno); 7330 return -EACCES; 7331 } 7332 err = check_helper_mem_access(env, regno - 1, 7333 reg->umax_value, 7334 zero_size_allowed, meta); 7335 if (!err) 7336 err = mark_chain_precision(env, regno); 7337 return err; 7338 } 7339 7340 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7341 u32 regno, u32 mem_size) 7342 { 7343 bool may_be_null = type_may_be_null(reg->type); 7344 struct bpf_reg_state saved_reg; 7345 struct bpf_call_arg_meta meta; 7346 int err; 7347 7348 if (register_is_null(reg)) 7349 return 0; 7350 7351 memset(&meta, 0, sizeof(meta)); 7352 /* Assuming that the register contains a value check if the memory 7353 * access is safe. Temporarily save and restore the register's state as 7354 * the conversion shouldn't be visible to a caller. 7355 */ 7356 if (may_be_null) { 7357 saved_reg = *reg; 7358 mark_ptr_not_null_reg(reg); 7359 } 7360 7361 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 7362 /* Check access for BPF_WRITE */ 7363 meta.raw_mode = true; 7364 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 7365 7366 if (may_be_null) 7367 *reg = saved_reg; 7368 7369 return err; 7370 } 7371 7372 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7373 u32 regno) 7374 { 7375 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 7376 bool may_be_null = type_may_be_null(mem_reg->type); 7377 struct bpf_reg_state saved_reg; 7378 struct bpf_call_arg_meta meta; 7379 int err; 7380 7381 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 7382 7383 memset(&meta, 0, sizeof(meta)); 7384 7385 if (may_be_null) { 7386 saved_reg = *mem_reg; 7387 mark_ptr_not_null_reg(mem_reg); 7388 } 7389 7390 err = check_mem_size_reg(env, reg, regno, true, &meta); 7391 /* Check access for BPF_WRITE */ 7392 meta.raw_mode = true; 7393 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 7394 7395 if (may_be_null) 7396 *mem_reg = saved_reg; 7397 return err; 7398 } 7399 7400 /* Implementation details: 7401 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 7402 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 7403 * Two bpf_map_lookups (even with the same key) will have different reg->id. 7404 * Two separate bpf_obj_new will also have different reg->id. 7405 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 7406 * clears reg->id after value_or_null->value transition, since the verifier only 7407 * cares about the range of access to valid map value pointer and doesn't care 7408 * about actual address of the map element. 7409 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 7410 * reg->id > 0 after value_or_null->value transition. By doing so 7411 * two bpf_map_lookups will be considered two different pointers that 7412 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 7413 * returned from bpf_obj_new. 7414 * The verifier allows taking only one bpf_spin_lock at a time to avoid 7415 * dead-locks. 7416 * Since only one bpf_spin_lock is allowed the checks are simpler than 7417 * reg_is_refcounted() logic. The verifier needs to remember only 7418 * one spin_lock instead of array of acquired_refs. 7419 * cur_state->active_lock remembers which map value element or allocated 7420 * object got locked and clears it after bpf_spin_unlock. 7421 */ 7422 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 7423 bool is_lock) 7424 { 7425 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7426 struct bpf_verifier_state *cur = env->cur_state; 7427 bool is_const = tnum_is_const(reg->var_off); 7428 u64 val = reg->var_off.value; 7429 struct bpf_map *map = NULL; 7430 struct btf *btf = NULL; 7431 struct btf_record *rec; 7432 7433 if (!is_const) { 7434 verbose(env, 7435 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 7436 regno); 7437 return -EINVAL; 7438 } 7439 if (reg->type == PTR_TO_MAP_VALUE) { 7440 map = reg->map_ptr; 7441 if (!map->btf) { 7442 verbose(env, 7443 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 7444 map->name); 7445 return -EINVAL; 7446 } 7447 } else { 7448 btf = reg->btf; 7449 } 7450 7451 rec = reg_btf_record(reg); 7452 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 7453 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 7454 map ? map->name : "kptr"); 7455 return -EINVAL; 7456 } 7457 if (rec->spin_lock_off != val + reg->off) { 7458 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 7459 val + reg->off, rec->spin_lock_off); 7460 return -EINVAL; 7461 } 7462 if (is_lock) { 7463 if (cur->active_lock.ptr) { 7464 verbose(env, 7465 "Locking two bpf_spin_locks are not allowed\n"); 7466 return -EINVAL; 7467 } 7468 if (map) 7469 cur->active_lock.ptr = map; 7470 else 7471 cur->active_lock.ptr = btf; 7472 cur->active_lock.id = reg->id; 7473 } else { 7474 void *ptr; 7475 7476 if (map) 7477 ptr = map; 7478 else 7479 ptr = btf; 7480 7481 if (!cur->active_lock.ptr) { 7482 verbose(env, "bpf_spin_unlock without taking a lock\n"); 7483 return -EINVAL; 7484 } 7485 if (cur->active_lock.ptr != ptr || 7486 cur->active_lock.id != reg->id) { 7487 verbose(env, "bpf_spin_unlock of different lock\n"); 7488 return -EINVAL; 7489 } 7490 7491 invalidate_non_owning_refs(env); 7492 7493 cur->active_lock.ptr = NULL; 7494 cur->active_lock.id = 0; 7495 } 7496 return 0; 7497 } 7498 7499 static int process_timer_func(struct bpf_verifier_env *env, int regno, 7500 struct bpf_call_arg_meta *meta) 7501 { 7502 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7503 bool is_const = tnum_is_const(reg->var_off); 7504 struct bpf_map *map = reg->map_ptr; 7505 u64 val = reg->var_off.value; 7506 7507 if (!is_const) { 7508 verbose(env, 7509 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 7510 regno); 7511 return -EINVAL; 7512 } 7513 if (!map->btf) { 7514 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 7515 map->name); 7516 return -EINVAL; 7517 } 7518 if (!btf_record_has_field(map->record, BPF_TIMER)) { 7519 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 7520 return -EINVAL; 7521 } 7522 if (map->record->timer_off != val + reg->off) { 7523 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 7524 val + reg->off, map->record->timer_off); 7525 return -EINVAL; 7526 } 7527 if (meta->map_ptr) { 7528 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 7529 return -EFAULT; 7530 } 7531 meta->map_uid = reg->map_uid; 7532 meta->map_ptr = map; 7533 return 0; 7534 } 7535 7536 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 7537 struct bpf_call_arg_meta *meta) 7538 { 7539 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7540 struct bpf_map *map_ptr = reg->map_ptr; 7541 struct btf_field *kptr_field; 7542 u32 kptr_off; 7543 7544 if (!tnum_is_const(reg->var_off)) { 7545 verbose(env, 7546 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 7547 regno); 7548 return -EINVAL; 7549 } 7550 if (!map_ptr->btf) { 7551 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 7552 map_ptr->name); 7553 return -EINVAL; 7554 } 7555 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 7556 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 7557 return -EINVAL; 7558 } 7559 7560 meta->map_ptr = map_ptr; 7561 kptr_off = reg->off + reg->var_off.value; 7562 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 7563 if (!kptr_field) { 7564 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 7565 return -EACCES; 7566 } 7567 if (kptr_field->type != BPF_KPTR_REF) { 7568 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 7569 return -EACCES; 7570 } 7571 meta->kptr_field = kptr_field; 7572 return 0; 7573 } 7574 7575 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 7576 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 7577 * 7578 * In both cases we deal with the first 8 bytes, but need to mark the next 8 7579 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 7580 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 7581 * 7582 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 7583 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 7584 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 7585 * mutate the view of the dynptr and also possibly destroy it. In the latter 7586 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 7587 * memory that dynptr points to. 7588 * 7589 * The verifier will keep track both levels of mutation (bpf_dynptr's in 7590 * reg->type and the memory's in reg->dynptr.type), but there is no support for 7591 * readonly dynptr view yet, hence only the first case is tracked and checked. 7592 * 7593 * This is consistent with how C applies the const modifier to a struct object, 7594 * where the pointer itself inside bpf_dynptr becomes const but not what it 7595 * points to. 7596 * 7597 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 7598 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 7599 */ 7600 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 7601 enum bpf_arg_type arg_type, int clone_ref_obj_id) 7602 { 7603 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7604 int err; 7605 7606 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 7607 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 7608 */ 7609 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 7610 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 7611 return -EFAULT; 7612 } 7613 7614 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 7615 * constructing a mutable bpf_dynptr object. 7616 * 7617 * Currently, this is only possible with PTR_TO_STACK 7618 * pointing to a region of at least 16 bytes which doesn't 7619 * contain an existing bpf_dynptr. 7620 * 7621 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 7622 * mutated or destroyed. However, the memory it points to 7623 * may be mutated. 7624 * 7625 * None - Points to a initialized dynptr that can be mutated and 7626 * destroyed, including mutation of the memory it points 7627 * to. 7628 */ 7629 if (arg_type & MEM_UNINIT) { 7630 int i; 7631 7632 if (!is_dynptr_reg_valid_uninit(env, reg)) { 7633 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 7634 return -EINVAL; 7635 } 7636 7637 /* we write BPF_DW bits (8 bytes) at a time */ 7638 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7639 err = check_mem_access(env, insn_idx, regno, 7640 i, BPF_DW, BPF_WRITE, -1, false, false); 7641 if (err) 7642 return err; 7643 } 7644 7645 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 7646 } else /* MEM_RDONLY and None case from above */ { 7647 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 7648 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 7649 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 7650 return -EINVAL; 7651 } 7652 7653 if (!is_dynptr_reg_valid_init(env, reg)) { 7654 verbose(env, 7655 "Expected an initialized dynptr as arg #%d\n", 7656 regno); 7657 return -EINVAL; 7658 } 7659 7660 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 7661 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 7662 verbose(env, 7663 "Expected a dynptr of type %s as arg #%d\n", 7664 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 7665 return -EINVAL; 7666 } 7667 7668 err = mark_dynptr_read(env, reg); 7669 } 7670 return err; 7671 } 7672 7673 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 7674 { 7675 struct bpf_func_state *state = func(env, reg); 7676 7677 return state->stack[spi].spilled_ptr.ref_obj_id; 7678 } 7679 7680 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7681 { 7682 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7683 } 7684 7685 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7686 { 7687 return meta->kfunc_flags & KF_ITER_NEW; 7688 } 7689 7690 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7691 { 7692 return meta->kfunc_flags & KF_ITER_NEXT; 7693 } 7694 7695 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7696 { 7697 return meta->kfunc_flags & KF_ITER_DESTROY; 7698 } 7699 7700 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg) 7701 { 7702 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 7703 * kfunc is iter state pointer 7704 */ 7705 return arg == 0 && is_iter_kfunc(meta); 7706 } 7707 7708 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 7709 struct bpf_kfunc_call_arg_meta *meta) 7710 { 7711 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7712 const struct btf_type *t; 7713 const struct btf_param *arg; 7714 int spi, err, i, nr_slots; 7715 u32 btf_id; 7716 7717 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */ 7718 arg = &btf_params(meta->func_proto)[0]; 7719 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */ 7720 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */ 7721 nr_slots = t->size / BPF_REG_SIZE; 7722 7723 if (is_iter_new_kfunc(meta)) { 7724 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 7725 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 7726 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 7727 iter_type_str(meta->btf, btf_id), regno); 7728 return -EINVAL; 7729 } 7730 7731 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 7732 err = check_mem_access(env, insn_idx, regno, 7733 i, BPF_DW, BPF_WRITE, -1, false, false); 7734 if (err) 7735 return err; 7736 } 7737 7738 err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots); 7739 if (err) 7740 return err; 7741 } else { 7742 /* iter_next() or iter_destroy() expect initialized iter state*/ 7743 if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) { 7744 verbose(env, "expected an initialized iter_%s as arg #%d\n", 7745 iter_type_str(meta->btf, btf_id), regno); 7746 return -EINVAL; 7747 } 7748 7749 spi = iter_get_spi(env, reg, nr_slots); 7750 if (spi < 0) 7751 return spi; 7752 7753 err = mark_iter_read(env, reg, spi, nr_slots); 7754 if (err) 7755 return err; 7756 7757 /* remember meta->iter info for process_iter_next_call() */ 7758 meta->iter.spi = spi; 7759 meta->iter.frameno = reg->frameno; 7760 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 7761 7762 if (is_iter_destroy_kfunc(meta)) { 7763 err = unmark_stack_slots_iter(env, reg, nr_slots); 7764 if (err) 7765 return err; 7766 } 7767 } 7768 7769 return 0; 7770 } 7771 7772 /* Look for a previous loop entry at insn_idx: nearest parent state 7773 * stopped at insn_idx with callsites matching those in cur->frame. 7774 */ 7775 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, 7776 struct bpf_verifier_state *cur, 7777 int insn_idx) 7778 { 7779 struct bpf_verifier_state_list *sl; 7780 struct bpf_verifier_state *st; 7781 7782 /* Explored states are pushed in stack order, most recent states come first */ 7783 sl = *explored_state(env, insn_idx); 7784 for (; sl; sl = sl->next) { 7785 /* If st->branches != 0 state is a part of current DFS verification path, 7786 * hence cur & st for a loop. 7787 */ 7788 st = &sl->state; 7789 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && 7790 st->dfs_depth < cur->dfs_depth) 7791 return st; 7792 } 7793 7794 return NULL; 7795 } 7796 7797 static void reset_idmap_scratch(struct bpf_verifier_env *env); 7798 static bool regs_exact(const struct bpf_reg_state *rold, 7799 const struct bpf_reg_state *rcur, 7800 struct bpf_idmap *idmap); 7801 7802 static void maybe_widen_reg(struct bpf_verifier_env *env, 7803 struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 7804 struct bpf_idmap *idmap) 7805 { 7806 if (rold->type != SCALAR_VALUE) 7807 return; 7808 if (rold->type != rcur->type) 7809 return; 7810 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) 7811 return; 7812 __mark_reg_unknown(env, rcur); 7813 } 7814 7815 static int widen_imprecise_scalars(struct bpf_verifier_env *env, 7816 struct bpf_verifier_state *old, 7817 struct bpf_verifier_state *cur) 7818 { 7819 struct bpf_func_state *fold, *fcur; 7820 int i, fr; 7821 7822 reset_idmap_scratch(env); 7823 for (fr = old->curframe; fr >= 0; fr--) { 7824 fold = old->frame[fr]; 7825 fcur = cur->frame[fr]; 7826 7827 for (i = 0; i < MAX_BPF_REG; i++) 7828 maybe_widen_reg(env, 7829 &fold->regs[i], 7830 &fcur->regs[i], 7831 &env->idmap_scratch); 7832 7833 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) { 7834 if (!is_spilled_reg(&fold->stack[i]) || 7835 !is_spilled_reg(&fcur->stack[i])) 7836 continue; 7837 7838 maybe_widen_reg(env, 7839 &fold->stack[i].spilled_ptr, 7840 &fcur->stack[i].spilled_ptr, 7841 &env->idmap_scratch); 7842 } 7843 } 7844 return 0; 7845 } 7846 7847 /* process_iter_next_call() is called when verifier gets to iterator's next 7848 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 7849 * to it as just "iter_next()" in comments below. 7850 * 7851 * BPF verifier relies on a crucial contract for any iter_next() 7852 * implementation: it should *eventually* return NULL, and once that happens 7853 * it should keep returning NULL. That is, once iterator exhausts elements to 7854 * iterate, it should never reset or spuriously return new elements. 7855 * 7856 * With the assumption of such contract, process_iter_next_call() simulates 7857 * a fork in the verifier state to validate loop logic correctness and safety 7858 * without having to simulate infinite amount of iterations. 7859 * 7860 * In current state, we first assume that iter_next() returned NULL and 7861 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 7862 * conditions we should not form an infinite loop and should eventually reach 7863 * exit. 7864 * 7865 * Besides that, we also fork current state and enqueue it for later 7866 * verification. In a forked state we keep iterator state as ACTIVE 7867 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 7868 * also bump iteration depth to prevent erroneous infinite loop detection 7869 * later on (see iter_active_depths_differ() comment for details). In this 7870 * state we assume that we'll eventually loop back to another iter_next() 7871 * calls (it could be in exactly same location or in some other instruction, 7872 * it doesn't matter, we don't make any unnecessary assumptions about this, 7873 * everything revolves around iterator state in a stack slot, not which 7874 * instruction is calling iter_next()). When that happens, we either will come 7875 * to iter_next() with equivalent state and can conclude that next iteration 7876 * will proceed in exactly the same way as we just verified, so it's safe to 7877 * assume that loop converges. If not, we'll go on another iteration 7878 * simulation with a different input state, until all possible starting states 7879 * are validated or we reach maximum number of instructions limit. 7880 * 7881 * This way, we will either exhaustively discover all possible input states 7882 * that iterator loop can start with and eventually will converge, or we'll 7883 * effectively regress into bounded loop simulation logic and either reach 7884 * maximum number of instructions if loop is not provably convergent, or there 7885 * is some statically known limit on number of iterations (e.g., if there is 7886 * an explicit `if n > 100 then break;` statement somewhere in the loop). 7887 * 7888 * Iteration convergence logic in is_state_visited() relies on exact 7889 * states comparison, which ignores read and precision marks. 7890 * This is necessary because read and precision marks are not finalized 7891 * while in the loop. Exact comparison might preclude convergence for 7892 * simple programs like below: 7893 * 7894 * i = 0; 7895 * while(iter_next(&it)) 7896 * i++; 7897 * 7898 * At each iteration step i++ would produce a new distinct state and 7899 * eventually instruction processing limit would be reached. 7900 * 7901 * To avoid such behavior speculatively forget (widen) range for 7902 * imprecise scalar registers, if those registers were not precise at the 7903 * end of the previous iteration and do not match exactly. 7904 * 7905 * This is a conservative heuristic that allows to verify wide range of programs, 7906 * however it precludes verification of programs that conjure an 7907 * imprecise value on the first loop iteration and use it as precise on a second. 7908 * For example, the following safe program would fail to verify: 7909 * 7910 * struct bpf_num_iter it; 7911 * int arr[10]; 7912 * int i = 0, a = 0; 7913 * bpf_iter_num_new(&it, 0, 10); 7914 * while (bpf_iter_num_next(&it)) { 7915 * if (a == 0) { 7916 * a = 1; 7917 * i = 7; // Because i changed verifier would forget 7918 * // it's range on second loop entry. 7919 * } else { 7920 * arr[i] = 42; // This would fail to verify. 7921 * } 7922 * } 7923 * bpf_iter_num_destroy(&it); 7924 */ 7925 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 7926 struct bpf_kfunc_call_arg_meta *meta) 7927 { 7928 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 7929 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 7930 struct bpf_reg_state *cur_iter, *queued_iter; 7931 int iter_frameno = meta->iter.frameno; 7932 int iter_spi = meta->iter.spi; 7933 7934 BTF_TYPE_EMIT(struct bpf_iter); 7935 7936 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7937 7938 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 7939 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 7940 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 7941 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 7942 return -EFAULT; 7943 } 7944 7945 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 7946 /* Because iter_next() call is a checkpoint is_state_visitied() 7947 * should guarantee parent state with same call sites and insn_idx. 7948 */ 7949 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || 7950 !same_callsites(cur_st->parent, cur_st)) { 7951 verbose(env, "bug: bad parent state for iter next call"); 7952 return -EFAULT; 7953 } 7954 /* Note cur_st->parent in the call below, it is necessary to skip 7955 * checkpoint created for cur_st by is_state_visited() 7956 * right at this instruction. 7957 */ 7958 prev_st = find_prev_entry(env, cur_st->parent, insn_idx); 7959 /* branch out active iter state */ 7960 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 7961 if (!queued_st) 7962 return -ENOMEM; 7963 7964 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7965 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 7966 queued_iter->iter.depth++; 7967 if (prev_st) 7968 widen_imprecise_scalars(env, prev_st, queued_st); 7969 7970 queued_fr = queued_st->frame[queued_st->curframe]; 7971 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 7972 } 7973 7974 /* switch to DRAINED state, but keep the depth unchanged */ 7975 /* mark current iter state as drained and assume returned NULL */ 7976 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 7977 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]); 7978 7979 return 0; 7980 } 7981 7982 static bool arg_type_is_mem_size(enum bpf_arg_type type) 7983 { 7984 return type == ARG_CONST_SIZE || 7985 type == ARG_CONST_SIZE_OR_ZERO; 7986 } 7987 7988 static bool arg_type_is_release(enum bpf_arg_type type) 7989 { 7990 return type & OBJ_RELEASE; 7991 } 7992 7993 static bool arg_type_is_dynptr(enum bpf_arg_type type) 7994 { 7995 return base_type(type) == ARG_PTR_TO_DYNPTR; 7996 } 7997 7998 static int int_ptr_type_to_size(enum bpf_arg_type type) 7999 { 8000 if (type == ARG_PTR_TO_INT) 8001 return sizeof(u32); 8002 else if (type == ARG_PTR_TO_LONG) 8003 return sizeof(u64); 8004 8005 return -EINVAL; 8006 } 8007 8008 static int resolve_map_arg_type(struct bpf_verifier_env *env, 8009 const struct bpf_call_arg_meta *meta, 8010 enum bpf_arg_type *arg_type) 8011 { 8012 if (!meta->map_ptr) { 8013 /* kernel subsystem misconfigured verifier */ 8014 verbose(env, "invalid map_ptr to access map->type\n"); 8015 return -EACCES; 8016 } 8017 8018 switch (meta->map_ptr->map_type) { 8019 case BPF_MAP_TYPE_SOCKMAP: 8020 case BPF_MAP_TYPE_SOCKHASH: 8021 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 8022 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 8023 } else { 8024 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 8025 return -EINVAL; 8026 } 8027 break; 8028 case BPF_MAP_TYPE_BLOOM_FILTER: 8029 if (meta->func_id == BPF_FUNC_map_peek_elem) 8030 *arg_type = ARG_PTR_TO_MAP_VALUE; 8031 break; 8032 default: 8033 break; 8034 } 8035 return 0; 8036 } 8037 8038 struct bpf_reg_types { 8039 const enum bpf_reg_type types[10]; 8040 u32 *btf_id; 8041 }; 8042 8043 static const struct bpf_reg_types sock_types = { 8044 .types = { 8045 PTR_TO_SOCK_COMMON, 8046 PTR_TO_SOCKET, 8047 PTR_TO_TCP_SOCK, 8048 PTR_TO_XDP_SOCK, 8049 }, 8050 }; 8051 8052 #ifdef CONFIG_NET 8053 static const struct bpf_reg_types btf_id_sock_common_types = { 8054 .types = { 8055 PTR_TO_SOCK_COMMON, 8056 PTR_TO_SOCKET, 8057 PTR_TO_TCP_SOCK, 8058 PTR_TO_XDP_SOCK, 8059 PTR_TO_BTF_ID, 8060 PTR_TO_BTF_ID | PTR_TRUSTED, 8061 }, 8062 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 8063 }; 8064 #endif 8065 8066 static const struct bpf_reg_types mem_types = { 8067 .types = { 8068 PTR_TO_STACK, 8069 PTR_TO_PACKET, 8070 PTR_TO_PACKET_META, 8071 PTR_TO_MAP_KEY, 8072 PTR_TO_MAP_VALUE, 8073 PTR_TO_MEM, 8074 PTR_TO_MEM | MEM_RINGBUF, 8075 PTR_TO_BUF, 8076 PTR_TO_BTF_ID | PTR_TRUSTED, 8077 }, 8078 }; 8079 8080 static const struct bpf_reg_types int_ptr_types = { 8081 .types = { 8082 PTR_TO_STACK, 8083 PTR_TO_PACKET, 8084 PTR_TO_PACKET_META, 8085 PTR_TO_MAP_KEY, 8086 PTR_TO_MAP_VALUE, 8087 }, 8088 }; 8089 8090 static const struct bpf_reg_types spin_lock_types = { 8091 .types = { 8092 PTR_TO_MAP_VALUE, 8093 PTR_TO_BTF_ID | MEM_ALLOC, 8094 } 8095 }; 8096 8097 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 8098 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 8099 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 8100 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 8101 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 8102 static const struct bpf_reg_types btf_ptr_types = { 8103 .types = { 8104 PTR_TO_BTF_ID, 8105 PTR_TO_BTF_ID | PTR_TRUSTED, 8106 PTR_TO_BTF_ID | MEM_RCU, 8107 }, 8108 }; 8109 static const struct bpf_reg_types percpu_btf_ptr_types = { 8110 .types = { 8111 PTR_TO_BTF_ID | MEM_PERCPU, 8112 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 8113 } 8114 }; 8115 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 8116 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 8117 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8118 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 8119 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8120 static const struct bpf_reg_types dynptr_types = { 8121 .types = { 8122 PTR_TO_STACK, 8123 CONST_PTR_TO_DYNPTR, 8124 } 8125 }; 8126 8127 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 8128 [ARG_PTR_TO_MAP_KEY] = &mem_types, 8129 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 8130 [ARG_CONST_SIZE] = &scalar_types, 8131 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 8132 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 8133 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 8134 [ARG_PTR_TO_CTX] = &context_types, 8135 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 8136 #ifdef CONFIG_NET 8137 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 8138 #endif 8139 [ARG_PTR_TO_SOCKET] = &fullsock_types, 8140 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 8141 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 8142 [ARG_PTR_TO_MEM] = &mem_types, 8143 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 8144 [ARG_PTR_TO_INT] = &int_ptr_types, 8145 [ARG_PTR_TO_LONG] = &int_ptr_types, 8146 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 8147 [ARG_PTR_TO_FUNC] = &func_ptr_types, 8148 [ARG_PTR_TO_STACK] = &stack_ptr_types, 8149 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 8150 [ARG_PTR_TO_TIMER] = &timer_types, 8151 [ARG_PTR_TO_KPTR] = &kptr_types, 8152 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 8153 }; 8154 8155 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 8156 enum bpf_arg_type arg_type, 8157 const u32 *arg_btf_id, 8158 struct bpf_call_arg_meta *meta) 8159 { 8160 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8161 enum bpf_reg_type expected, type = reg->type; 8162 const struct bpf_reg_types *compatible; 8163 int i, j; 8164 8165 compatible = compatible_reg_types[base_type(arg_type)]; 8166 if (!compatible) { 8167 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 8168 return -EFAULT; 8169 } 8170 8171 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 8172 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 8173 * 8174 * Same for MAYBE_NULL: 8175 * 8176 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 8177 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 8178 * 8179 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 8180 * 8181 * Therefore we fold these flags depending on the arg_type before comparison. 8182 */ 8183 if (arg_type & MEM_RDONLY) 8184 type &= ~MEM_RDONLY; 8185 if (arg_type & PTR_MAYBE_NULL) 8186 type &= ~PTR_MAYBE_NULL; 8187 if (base_type(arg_type) == ARG_PTR_TO_MEM) 8188 type &= ~DYNPTR_TYPE_FLAG_MASK; 8189 8190 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) 8191 type &= ~MEM_ALLOC; 8192 8193 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 8194 expected = compatible->types[i]; 8195 if (expected == NOT_INIT) 8196 break; 8197 8198 if (type == expected) 8199 goto found; 8200 } 8201 8202 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 8203 for (j = 0; j + 1 < i; j++) 8204 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 8205 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 8206 return -EACCES; 8207 8208 found: 8209 if (base_type(reg->type) != PTR_TO_BTF_ID) 8210 return 0; 8211 8212 if (compatible == &mem_types) { 8213 if (!(arg_type & MEM_RDONLY)) { 8214 verbose(env, 8215 "%s() may write into memory pointed by R%d type=%s\n", 8216 func_id_name(meta->func_id), 8217 regno, reg_type_str(env, reg->type)); 8218 return -EACCES; 8219 } 8220 return 0; 8221 } 8222 8223 switch ((int)reg->type) { 8224 case PTR_TO_BTF_ID: 8225 case PTR_TO_BTF_ID | PTR_TRUSTED: 8226 case PTR_TO_BTF_ID | MEM_RCU: 8227 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 8228 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 8229 { 8230 /* For bpf_sk_release, it needs to match against first member 8231 * 'struct sock_common', hence make an exception for it. This 8232 * allows bpf_sk_release to work for multiple socket types. 8233 */ 8234 bool strict_type_match = arg_type_is_release(arg_type) && 8235 meta->func_id != BPF_FUNC_sk_release; 8236 8237 if (type_may_be_null(reg->type) && 8238 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 8239 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 8240 return -EACCES; 8241 } 8242 8243 if (!arg_btf_id) { 8244 if (!compatible->btf_id) { 8245 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 8246 return -EFAULT; 8247 } 8248 arg_btf_id = compatible->btf_id; 8249 } 8250 8251 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8252 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8253 return -EACCES; 8254 } else { 8255 if (arg_btf_id == BPF_PTR_POISON) { 8256 verbose(env, "verifier internal error:"); 8257 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 8258 regno); 8259 return -EACCES; 8260 } 8261 8262 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 8263 btf_vmlinux, *arg_btf_id, 8264 strict_type_match)) { 8265 verbose(env, "R%d is of type %s but %s is expected\n", 8266 regno, btf_type_name(reg->btf, reg->btf_id), 8267 btf_type_name(btf_vmlinux, *arg_btf_id)); 8268 return -EACCES; 8269 } 8270 } 8271 break; 8272 } 8273 case PTR_TO_BTF_ID | MEM_ALLOC: 8274 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 8275 meta->func_id != BPF_FUNC_kptr_xchg) { 8276 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 8277 return -EFAULT; 8278 } 8279 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8280 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8281 return -EACCES; 8282 } 8283 break; 8284 case PTR_TO_BTF_ID | MEM_PERCPU: 8285 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 8286 /* Handled by helper specific checks */ 8287 break; 8288 default: 8289 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 8290 return -EFAULT; 8291 } 8292 return 0; 8293 } 8294 8295 static struct btf_field * 8296 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 8297 { 8298 struct btf_field *field; 8299 struct btf_record *rec; 8300 8301 rec = reg_btf_record(reg); 8302 if (!rec) 8303 return NULL; 8304 8305 field = btf_record_find(rec, off, fields); 8306 if (!field) 8307 return NULL; 8308 8309 return field; 8310 } 8311 8312 int check_func_arg_reg_off(struct bpf_verifier_env *env, 8313 const struct bpf_reg_state *reg, int regno, 8314 enum bpf_arg_type arg_type) 8315 { 8316 u32 type = reg->type; 8317 8318 /* When referenced register is passed to release function, its fixed 8319 * offset must be 0. 8320 * 8321 * We will check arg_type_is_release reg has ref_obj_id when storing 8322 * meta->release_regno. 8323 */ 8324 if (arg_type_is_release(arg_type)) { 8325 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 8326 * may not directly point to the object being released, but to 8327 * dynptr pointing to such object, which might be at some offset 8328 * on the stack. In that case, we simply to fallback to the 8329 * default handling. 8330 */ 8331 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 8332 return 0; 8333 8334 /* Doing check_ptr_off_reg check for the offset will catch this 8335 * because fixed_off_ok is false, but checking here allows us 8336 * to give the user a better error message. 8337 */ 8338 if (reg->off) { 8339 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 8340 regno); 8341 return -EINVAL; 8342 } 8343 return __check_ptr_off_reg(env, reg, regno, false); 8344 } 8345 8346 switch (type) { 8347 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 8348 case PTR_TO_STACK: 8349 case PTR_TO_PACKET: 8350 case PTR_TO_PACKET_META: 8351 case PTR_TO_MAP_KEY: 8352 case PTR_TO_MAP_VALUE: 8353 case PTR_TO_MEM: 8354 case PTR_TO_MEM | MEM_RDONLY: 8355 case PTR_TO_MEM | MEM_RINGBUF: 8356 case PTR_TO_BUF: 8357 case PTR_TO_BUF | MEM_RDONLY: 8358 case SCALAR_VALUE: 8359 return 0; 8360 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 8361 * fixed offset. 8362 */ 8363 case PTR_TO_BTF_ID: 8364 case PTR_TO_BTF_ID | MEM_ALLOC: 8365 case PTR_TO_BTF_ID | PTR_TRUSTED: 8366 case PTR_TO_BTF_ID | MEM_RCU: 8367 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 8368 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 8369 /* When referenced PTR_TO_BTF_ID is passed to release function, 8370 * its fixed offset must be 0. In the other cases, fixed offset 8371 * can be non-zero. This was already checked above. So pass 8372 * fixed_off_ok as true to allow fixed offset for all other 8373 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 8374 * still need to do checks instead of returning. 8375 */ 8376 return __check_ptr_off_reg(env, reg, regno, true); 8377 default: 8378 return __check_ptr_off_reg(env, reg, regno, false); 8379 } 8380 } 8381 8382 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 8383 const struct bpf_func_proto *fn, 8384 struct bpf_reg_state *regs) 8385 { 8386 struct bpf_reg_state *state = NULL; 8387 int i; 8388 8389 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 8390 if (arg_type_is_dynptr(fn->arg_type[i])) { 8391 if (state) { 8392 verbose(env, "verifier internal error: multiple dynptr args\n"); 8393 return NULL; 8394 } 8395 state = ®s[BPF_REG_1 + i]; 8396 } 8397 8398 if (!state) 8399 verbose(env, "verifier internal error: no dynptr arg found\n"); 8400 8401 return state; 8402 } 8403 8404 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8405 { 8406 struct bpf_func_state *state = func(env, reg); 8407 int spi; 8408 8409 if (reg->type == CONST_PTR_TO_DYNPTR) 8410 return reg->id; 8411 spi = dynptr_get_spi(env, reg); 8412 if (spi < 0) 8413 return spi; 8414 return state->stack[spi].spilled_ptr.id; 8415 } 8416 8417 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8418 { 8419 struct bpf_func_state *state = func(env, reg); 8420 int spi; 8421 8422 if (reg->type == CONST_PTR_TO_DYNPTR) 8423 return reg->ref_obj_id; 8424 spi = dynptr_get_spi(env, reg); 8425 if (spi < 0) 8426 return spi; 8427 return state->stack[spi].spilled_ptr.ref_obj_id; 8428 } 8429 8430 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 8431 struct bpf_reg_state *reg) 8432 { 8433 struct bpf_func_state *state = func(env, reg); 8434 int spi; 8435 8436 if (reg->type == CONST_PTR_TO_DYNPTR) 8437 return reg->dynptr.type; 8438 8439 spi = __get_spi(reg->off); 8440 if (spi < 0) { 8441 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 8442 return BPF_DYNPTR_TYPE_INVALID; 8443 } 8444 8445 return state->stack[spi].spilled_ptr.dynptr.type; 8446 } 8447 8448 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 8449 struct bpf_call_arg_meta *meta, 8450 const struct bpf_func_proto *fn, 8451 int insn_idx) 8452 { 8453 u32 regno = BPF_REG_1 + arg; 8454 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8455 enum bpf_arg_type arg_type = fn->arg_type[arg]; 8456 enum bpf_reg_type type = reg->type; 8457 u32 *arg_btf_id = NULL; 8458 int err = 0; 8459 8460 if (arg_type == ARG_DONTCARE) 8461 return 0; 8462 8463 err = check_reg_arg(env, regno, SRC_OP); 8464 if (err) 8465 return err; 8466 8467 if (arg_type == ARG_ANYTHING) { 8468 if (is_pointer_value(env, regno)) { 8469 verbose(env, "R%d leaks addr into helper function\n", 8470 regno); 8471 return -EACCES; 8472 } 8473 return 0; 8474 } 8475 8476 if (type_is_pkt_pointer(type) && 8477 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 8478 verbose(env, "helper access to the packet is not allowed\n"); 8479 return -EACCES; 8480 } 8481 8482 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 8483 err = resolve_map_arg_type(env, meta, &arg_type); 8484 if (err) 8485 return err; 8486 } 8487 8488 if (register_is_null(reg) && type_may_be_null(arg_type)) 8489 /* A NULL register has a SCALAR_VALUE type, so skip 8490 * type checking. 8491 */ 8492 goto skip_type_check; 8493 8494 /* arg_btf_id and arg_size are in a union. */ 8495 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 8496 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 8497 arg_btf_id = fn->arg_btf_id[arg]; 8498 8499 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 8500 if (err) 8501 return err; 8502 8503 err = check_func_arg_reg_off(env, reg, regno, arg_type); 8504 if (err) 8505 return err; 8506 8507 skip_type_check: 8508 if (arg_type_is_release(arg_type)) { 8509 if (arg_type_is_dynptr(arg_type)) { 8510 struct bpf_func_state *state = func(env, reg); 8511 int spi; 8512 8513 /* Only dynptr created on stack can be released, thus 8514 * the get_spi and stack state checks for spilled_ptr 8515 * should only be done before process_dynptr_func for 8516 * PTR_TO_STACK. 8517 */ 8518 if (reg->type == PTR_TO_STACK) { 8519 spi = dynptr_get_spi(env, reg); 8520 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 8521 verbose(env, "arg %d is an unacquired reference\n", regno); 8522 return -EINVAL; 8523 } 8524 } else { 8525 verbose(env, "cannot release unowned const bpf_dynptr\n"); 8526 return -EINVAL; 8527 } 8528 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 8529 verbose(env, "R%d must be referenced when passed to release function\n", 8530 regno); 8531 return -EINVAL; 8532 } 8533 if (meta->release_regno) { 8534 verbose(env, "verifier internal error: more than one release argument\n"); 8535 return -EFAULT; 8536 } 8537 meta->release_regno = regno; 8538 } 8539 8540 if (reg->ref_obj_id) { 8541 if (meta->ref_obj_id) { 8542 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8543 regno, reg->ref_obj_id, 8544 meta->ref_obj_id); 8545 return -EFAULT; 8546 } 8547 meta->ref_obj_id = reg->ref_obj_id; 8548 } 8549 8550 switch (base_type(arg_type)) { 8551 case ARG_CONST_MAP_PTR: 8552 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 8553 if (meta->map_ptr) { 8554 /* Use map_uid (which is unique id of inner map) to reject: 8555 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 8556 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 8557 * if (inner_map1 && inner_map2) { 8558 * timer = bpf_map_lookup_elem(inner_map1); 8559 * if (timer) 8560 * // mismatch would have been allowed 8561 * bpf_timer_init(timer, inner_map2); 8562 * } 8563 * 8564 * Comparing map_ptr is enough to distinguish normal and outer maps. 8565 */ 8566 if (meta->map_ptr != reg->map_ptr || 8567 meta->map_uid != reg->map_uid) { 8568 verbose(env, 8569 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 8570 meta->map_uid, reg->map_uid); 8571 return -EINVAL; 8572 } 8573 } 8574 meta->map_ptr = reg->map_ptr; 8575 meta->map_uid = reg->map_uid; 8576 break; 8577 case ARG_PTR_TO_MAP_KEY: 8578 /* bpf_map_xxx(..., map_ptr, ..., key) call: 8579 * check that [key, key + map->key_size) are within 8580 * stack limits and initialized 8581 */ 8582 if (!meta->map_ptr) { 8583 /* in function declaration map_ptr must come before 8584 * map_key, so that it's verified and known before 8585 * we have to check map_key here. Otherwise it means 8586 * that kernel subsystem misconfigured verifier 8587 */ 8588 verbose(env, "invalid map_ptr to access map->key\n"); 8589 return -EACCES; 8590 } 8591 err = check_helper_mem_access(env, regno, 8592 meta->map_ptr->key_size, false, 8593 NULL); 8594 break; 8595 case ARG_PTR_TO_MAP_VALUE: 8596 if (type_may_be_null(arg_type) && register_is_null(reg)) 8597 return 0; 8598 8599 /* bpf_map_xxx(..., map_ptr, ..., value) call: 8600 * check [value, value + map->value_size) validity 8601 */ 8602 if (!meta->map_ptr) { 8603 /* kernel subsystem misconfigured verifier */ 8604 verbose(env, "invalid map_ptr to access map->value\n"); 8605 return -EACCES; 8606 } 8607 meta->raw_mode = arg_type & MEM_UNINIT; 8608 err = check_helper_mem_access(env, regno, 8609 meta->map_ptr->value_size, false, 8610 meta); 8611 break; 8612 case ARG_PTR_TO_PERCPU_BTF_ID: 8613 if (!reg->btf_id) { 8614 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 8615 return -EACCES; 8616 } 8617 meta->ret_btf = reg->btf; 8618 meta->ret_btf_id = reg->btf_id; 8619 break; 8620 case ARG_PTR_TO_SPIN_LOCK: 8621 if (in_rbtree_lock_required_cb(env)) { 8622 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 8623 return -EACCES; 8624 } 8625 if (meta->func_id == BPF_FUNC_spin_lock) { 8626 err = process_spin_lock(env, regno, true); 8627 if (err) 8628 return err; 8629 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 8630 err = process_spin_lock(env, regno, false); 8631 if (err) 8632 return err; 8633 } else { 8634 verbose(env, "verifier internal error\n"); 8635 return -EFAULT; 8636 } 8637 break; 8638 case ARG_PTR_TO_TIMER: 8639 err = process_timer_func(env, regno, meta); 8640 if (err) 8641 return err; 8642 break; 8643 case ARG_PTR_TO_FUNC: 8644 meta->subprogno = reg->subprogno; 8645 break; 8646 case ARG_PTR_TO_MEM: 8647 /* The access to this pointer is only checked when we hit the 8648 * next is_mem_size argument below. 8649 */ 8650 meta->raw_mode = arg_type & MEM_UNINIT; 8651 if (arg_type & MEM_FIXED_SIZE) { 8652 err = check_helper_mem_access(env, regno, 8653 fn->arg_size[arg], false, 8654 meta); 8655 } 8656 break; 8657 case ARG_CONST_SIZE: 8658 err = check_mem_size_reg(env, reg, regno, false, meta); 8659 break; 8660 case ARG_CONST_SIZE_OR_ZERO: 8661 err = check_mem_size_reg(env, reg, regno, true, meta); 8662 break; 8663 case ARG_PTR_TO_DYNPTR: 8664 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 8665 if (err) 8666 return err; 8667 break; 8668 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 8669 if (!tnum_is_const(reg->var_off)) { 8670 verbose(env, "R%d is not a known constant'\n", 8671 regno); 8672 return -EACCES; 8673 } 8674 meta->mem_size = reg->var_off.value; 8675 err = mark_chain_precision(env, regno); 8676 if (err) 8677 return err; 8678 break; 8679 case ARG_PTR_TO_INT: 8680 case ARG_PTR_TO_LONG: 8681 { 8682 int size = int_ptr_type_to_size(arg_type); 8683 8684 err = check_helper_mem_access(env, regno, size, false, meta); 8685 if (err) 8686 return err; 8687 err = check_ptr_alignment(env, reg, 0, size, true); 8688 break; 8689 } 8690 case ARG_PTR_TO_CONST_STR: 8691 { 8692 struct bpf_map *map = reg->map_ptr; 8693 int map_off; 8694 u64 map_addr; 8695 char *str_ptr; 8696 8697 if (!bpf_map_is_rdonly(map)) { 8698 verbose(env, "R%d does not point to a readonly map'\n", regno); 8699 return -EACCES; 8700 } 8701 8702 if (!tnum_is_const(reg->var_off)) { 8703 verbose(env, "R%d is not a constant address'\n", regno); 8704 return -EACCES; 8705 } 8706 8707 if (!map->ops->map_direct_value_addr) { 8708 verbose(env, "no direct value access support for this map type\n"); 8709 return -EACCES; 8710 } 8711 8712 err = check_map_access(env, regno, reg->off, 8713 map->value_size - reg->off, false, 8714 ACCESS_HELPER); 8715 if (err) 8716 return err; 8717 8718 map_off = reg->off + reg->var_off.value; 8719 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 8720 if (err) { 8721 verbose(env, "direct value access on string failed\n"); 8722 return err; 8723 } 8724 8725 str_ptr = (char *)(long)(map_addr); 8726 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 8727 verbose(env, "string is not zero-terminated\n"); 8728 return -EINVAL; 8729 } 8730 break; 8731 } 8732 case ARG_PTR_TO_KPTR: 8733 err = process_kptr_func(env, regno, meta); 8734 if (err) 8735 return err; 8736 break; 8737 } 8738 8739 return err; 8740 } 8741 8742 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 8743 { 8744 enum bpf_attach_type eatype = env->prog->expected_attach_type; 8745 enum bpf_prog_type type = resolve_prog_type(env->prog); 8746 8747 if (func_id != BPF_FUNC_map_update_elem && 8748 func_id != BPF_FUNC_map_delete_elem) 8749 return false; 8750 8751 /* It's not possible to get access to a locked struct sock in these 8752 * contexts, so updating is safe. 8753 */ 8754 switch (type) { 8755 case BPF_PROG_TYPE_TRACING: 8756 if (eatype == BPF_TRACE_ITER) 8757 return true; 8758 break; 8759 case BPF_PROG_TYPE_SOCK_OPS: 8760 /* map_update allowed only via dedicated helpers with event type checks */ 8761 if (func_id == BPF_FUNC_map_delete_elem) 8762 return true; 8763 break; 8764 case BPF_PROG_TYPE_SOCKET_FILTER: 8765 case BPF_PROG_TYPE_SCHED_CLS: 8766 case BPF_PROG_TYPE_SCHED_ACT: 8767 case BPF_PROG_TYPE_XDP: 8768 case BPF_PROG_TYPE_SK_REUSEPORT: 8769 case BPF_PROG_TYPE_FLOW_DISSECTOR: 8770 case BPF_PROG_TYPE_SK_LOOKUP: 8771 return true; 8772 default: 8773 break; 8774 } 8775 8776 verbose(env, "cannot update sockmap in this context\n"); 8777 return false; 8778 } 8779 8780 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 8781 { 8782 return env->prog->jit_requested && 8783 bpf_jit_supports_subprog_tailcalls(); 8784 } 8785 8786 static int check_map_func_compatibility(struct bpf_verifier_env *env, 8787 struct bpf_map *map, int func_id) 8788 { 8789 if (!map) 8790 return 0; 8791 8792 /* We need a two way check, first is from map perspective ... */ 8793 switch (map->map_type) { 8794 case BPF_MAP_TYPE_PROG_ARRAY: 8795 if (func_id != BPF_FUNC_tail_call) 8796 goto error; 8797 break; 8798 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 8799 if (func_id != BPF_FUNC_perf_event_read && 8800 func_id != BPF_FUNC_perf_event_output && 8801 func_id != BPF_FUNC_skb_output && 8802 func_id != BPF_FUNC_perf_event_read_value && 8803 func_id != BPF_FUNC_xdp_output) 8804 goto error; 8805 break; 8806 case BPF_MAP_TYPE_RINGBUF: 8807 if (func_id != BPF_FUNC_ringbuf_output && 8808 func_id != BPF_FUNC_ringbuf_reserve && 8809 func_id != BPF_FUNC_ringbuf_query && 8810 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 8811 func_id != BPF_FUNC_ringbuf_submit_dynptr && 8812 func_id != BPF_FUNC_ringbuf_discard_dynptr) 8813 goto error; 8814 break; 8815 case BPF_MAP_TYPE_USER_RINGBUF: 8816 if (func_id != BPF_FUNC_user_ringbuf_drain) 8817 goto error; 8818 break; 8819 case BPF_MAP_TYPE_STACK_TRACE: 8820 if (func_id != BPF_FUNC_get_stackid) 8821 goto error; 8822 break; 8823 case BPF_MAP_TYPE_CGROUP_ARRAY: 8824 if (func_id != BPF_FUNC_skb_under_cgroup && 8825 func_id != BPF_FUNC_current_task_under_cgroup) 8826 goto error; 8827 break; 8828 case BPF_MAP_TYPE_CGROUP_STORAGE: 8829 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 8830 if (func_id != BPF_FUNC_get_local_storage) 8831 goto error; 8832 break; 8833 case BPF_MAP_TYPE_DEVMAP: 8834 case BPF_MAP_TYPE_DEVMAP_HASH: 8835 if (func_id != BPF_FUNC_redirect_map && 8836 func_id != BPF_FUNC_map_lookup_elem) 8837 goto error; 8838 break; 8839 /* Restrict bpf side of cpumap and xskmap, open when use-cases 8840 * appear. 8841 */ 8842 case BPF_MAP_TYPE_CPUMAP: 8843 if (func_id != BPF_FUNC_redirect_map) 8844 goto error; 8845 break; 8846 case BPF_MAP_TYPE_XSKMAP: 8847 if (func_id != BPF_FUNC_redirect_map && 8848 func_id != BPF_FUNC_map_lookup_elem) 8849 goto error; 8850 break; 8851 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 8852 case BPF_MAP_TYPE_HASH_OF_MAPS: 8853 if (func_id != BPF_FUNC_map_lookup_elem) 8854 goto error; 8855 break; 8856 case BPF_MAP_TYPE_SOCKMAP: 8857 if (func_id != BPF_FUNC_sk_redirect_map && 8858 func_id != BPF_FUNC_sock_map_update && 8859 func_id != BPF_FUNC_msg_redirect_map && 8860 func_id != BPF_FUNC_sk_select_reuseport && 8861 func_id != BPF_FUNC_map_lookup_elem && 8862 !may_update_sockmap(env, func_id)) 8863 goto error; 8864 break; 8865 case BPF_MAP_TYPE_SOCKHASH: 8866 if (func_id != BPF_FUNC_sk_redirect_hash && 8867 func_id != BPF_FUNC_sock_hash_update && 8868 func_id != BPF_FUNC_msg_redirect_hash && 8869 func_id != BPF_FUNC_sk_select_reuseport && 8870 func_id != BPF_FUNC_map_lookup_elem && 8871 !may_update_sockmap(env, func_id)) 8872 goto error; 8873 break; 8874 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 8875 if (func_id != BPF_FUNC_sk_select_reuseport) 8876 goto error; 8877 break; 8878 case BPF_MAP_TYPE_QUEUE: 8879 case BPF_MAP_TYPE_STACK: 8880 if (func_id != BPF_FUNC_map_peek_elem && 8881 func_id != BPF_FUNC_map_pop_elem && 8882 func_id != BPF_FUNC_map_push_elem) 8883 goto error; 8884 break; 8885 case BPF_MAP_TYPE_SK_STORAGE: 8886 if (func_id != BPF_FUNC_sk_storage_get && 8887 func_id != BPF_FUNC_sk_storage_delete && 8888 func_id != BPF_FUNC_kptr_xchg) 8889 goto error; 8890 break; 8891 case BPF_MAP_TYPE_INODE_STORAGE: 8892 if (func_id != BPF_FUNC_inode_storage_get && 8893 func_id != BPF_FUNC_inode_storage_delete && 8894 func_id != BPF_FUNC_kptr_xchg) 8895 goto error; 8896 break; 8897 case BPF_MAP_TYPE_TASK_STORAGE: 8898 if (func_id != BPF_FUNC_task_storage_get && 8899 func_id != BPF_FUNC_task_storage_delete && 8900 func_id != BPF_FUNC_kptr_xchg) 8901 goto error; 8902 break; 8903 case BPF_MAP_TYPE_CGRP_STORAGE: 8904 if (func_id != BPF_FUNC_cgrp_storage_get && 8905 func_id != BPF_FUNC_cgrp_storage_delete && 8906 func_id != BPF_FUNC_kptr_xchg) 8907 goto error; 8908 break; 8909 case BPF_MAP_TYPE_BLOOM_FILTER: 8910 if (func_id != BPF_FUNC_map_peek_elem && 8911 func_id != BPF_FUNC_map_push_elem) 8912 goto error; 8913 break; 8914 default: 8915 break; 8916 } 8917 8918 /* ... and second from the function itself. */ 8919 switch (func_id) { 8920 case BPF_FUNC_tail_call: 8921 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 8922 goto error; 8923 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 8924 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 8925 return -EINVAL; 8926 } 8927 break; 8928 case BPF_FUNC_perf_event_read: 8929 case BPF_FUNC_perf_event_output: 8930 case BPF_FUNC_perf_event_read_value: 8931 case BPF_FUNC_skb_output: 8932 case BPF_FUNC_xdp_output: 8933 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 8934 goto error; 8935 break; 8936 case BPF_FUNC_ringbuf_output: 8937 case BPF_FUNC_ringbuf_reserve: 8938 case BPF_FUNC_ringbuf_query: 8939 case BPF_FUNC_ringbuf_reserve_dynptr: 8940 case BPF_FUNC_ringbuf_submit_dynptr: 8941 case BPF_FUNC_ringbuf_discard_dynptr: 8942 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 8943 goto error; 8944 break; 8945 case BPF_FUNC_user_ringbuf_drain: 8946 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 8947 goto error; 8948 break; 8949 case BPF_FUNC_get_stackid: 8950 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 8951 goto error; 8952 break; 8953 case BPF_FUNC_current_task_under_cgroup: 8954 case BPF_FUNC_skb_under_cgroup: 8955 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 8956 goto error; 8957 break; 8958 case BPF_FUNC_redirect_map: 8959 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 8960 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 8961 map->map_type != BPF_MAP_TYPE_CPUMAP && 8962 map->map_type != BPF_MAP_TYPE_XSKMAP) 8963 goto error; 8964 break; 8965 case BPF_FUNC_sk_redirect_map: 8966 case BPF_FUNC_msg_redirect_map: 8967 case BPF_FUNC_sock_map_update: 8968 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 8969 goto error; 8970 break; 8971 case BPF_FUNC_sk_redirect_hash: 8972 case BPF_FUNC_msg_redirect_hash: 8973 case BPF_FUNC_sock_hash_update: 8974 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 8975 goto error; 8976 break; 8977 case BPF_FUNC_get_local_storage: 8978 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 8979 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 8980 goto error; 8981 break; 8982 case BPF_FUNC_sk_select_reuseport: 8983 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 8984 map->map_type != BPF_MAP_TYPE_SOCKMAP && 8985 map->map_type != BPF_MAP_TYPE_SOCKHASH) 8986 goto error; 8987 break; 8988 case BPF_FUNC_map_pop_elem: 8989 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8990 map->map_type != BPF_MAP_TYPE_STACK) 8991 goto error; 8992 break; 8993 case BPF_FUNC_map_peek_elem: 8994 case BPF_FUNC_map_push_elem: 8995 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8996 map->map_type != BPF_MAP_TYPE_STACK && 8997 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 8998 goto error; 8999 break; 9000 case BPF_FUNC_map_lookup_percpu_elem: 9001 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 9002 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 9003 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 9004 goto error; 9005 break; 9006 case BPF_FUNC_sk_storage_get: 9007 case BPF_FUNC_sk_storage_delete: 9008 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 9009 goto error; 9010 break; 9011 case BPF_FUNC_inode_storage_get: 9012 case BPF_FUNC_inode_storage_delete: 9013 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 9014 goto error; 9015 break; 9016 case BPF_FUNC_task_storage_get: 9017 case BPF_FUNC_task_storage_delete: 9018 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 9019 goto error; 9020 break; 9021 case BPF_FUNC_cgrp_storage_get: 9022 case BPF_FUNC_cgrp_storage_delete: 9023 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 9024 goto error; 9025 break; 9026 default: 9027 break; 9028 } 9029 9030 return 0; 9031 error: 9032 verbose(env, "cannot pass map_type %d into func %s#%d\n", 9033 map->map_type, func_id_name(func_id), func_id); 9034 return -EINVAL; 9035 } 9036 9037 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 9038 { 9039 int count = 0; 9040 9041 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 9042 count++; 9043 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 9044 count++; 9045 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 9046 count++; 9047 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 9048 count++; 9049 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 9050 count++; 9051 9052 /* We only support one arg being in raw mode at the moment, 9053 * which is sufficient for the helper functions we have 9054 * right now. 9055 */ 9056 return count <= 1; 9057 } 9058 9059 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 9060 { 9061 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 9062 bool has_size = fn->arg_size[arg] != 0; 9063 bool is_next_size = false; 9064 9065 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 9066 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 9067 9068 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 9069 return is_next_size; 9070 9071 return has_size == is_next_size || is_next_size == is_fixed; 9072 } 9073 9074 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 9075 { 9076 /* bpf_xxx(..., buf, len) call will access 'len' 9077 * bytes from memory 'buf'. Both arg types need 9078 * to be paired, so make sure there's no buggy 9079 * helper function specification. 9080 */ 9081 if (arg_type_is_mem_size(fn->arg1_type) || 9082 check_args_pair_invalid(fn, 0) || 9083 check_args_pair_invalid(fn, 1) || 9084 check_args_pair_invalid(fn, 2) || 9085 check_args_pair_invalid(fn, 3) || 9086 check_args_pair_invalid(fn, 4)) 9087 return false; 9088 9089 return true; 9090 } 9091 9092 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 9093 { 9094 int i; 9095 9096 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 9097 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 9098 return !!fn->arg_btf_id[i]; 9099 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 9100 return fn->arg_btf_id[i] == BPF_PTR_POISON; 9101 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 9102 /* arg_btf_id and arg_size are in a union. */ 9103 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 9104 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 9105 return false; 9106 } 9107 9108 return true; 9109 } 9110 9111 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 9112 { 9113 return check_raw_mode_ok(fn) && 9114 check_arg_pair_ok(fn) && 9115 check_btf_id_ok(fn) ? 0 : -EINVAL; 9116 } 9117 9118 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 9119 * are now invalid, so turn them into unknown SCALAR_VALUE. 9120 * 9121 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 9122 * since these slices point to packet data. 9123 */ 9124 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 9125 { 9126 struct bpf_func_state *state; 9127 struct bpf_reg_state *reg; 9128 9129 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9130 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 9131 mark_reg_invalid(env, reg); 9132 })); 9133 } 9134 9135 enum { 9136 AT_PKT_END = -1, 9137 BEYOND_PKT_END = -2, 9138 }; 9139 9140 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 9141 { 9142 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9143 struct bpf_reg_state *reg = &state->regs[regn]; 9144 9145 if (reg->type != PTR_TO_PACKET) 9146 /* PTR_TO_PACKET_META is not supported yet */ 9147 return; 9148 9149 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 9150 * How far beyond pkt_end it goes is unknown. 9151 * if (!range_open) it's the case of pkt >= pkt_end 9152 * if (range_open) it's the case of pkt > pkt_end 9153 * hence this pointer is at least 1 byte bigger than pkt_end 9154 */ 9155 if (range_open) 9156 reg->range = BEYOND_PKT_END; 9157 else 9158 reg->range = AT_PKT_END; 9159 } 9160 9161 /* The pointer with the specified id has released its reference to kernel 9162 * resources. Identify all copies of the same pointer and clear the reference. 9163 */ 9164 static int release_reference(struct bpf_verifier_env *env, 9165 int ref_obj_id) 9166 { 9167 struct bpf_func_state *state; 9168 struct bpf_reg_state *reg; 9169 int err; 9170 9171 err = release_reference_state(cur_func(env), ref_obj_id); 9172 if (err) 9173 return err; 9174 9175 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9176 if (reg->ref_obj_id == ref_obj_id) 9177 mark_reg_invalid(env, reg); 9178 })); 9179 9180 return 0; 9181 } 9182 9183 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 9184 { 9185 struct bpf_func_state *unused; 9186 struct bpf_reg_state *reg; 9187 9188 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 9189 if (type_is_non_owning_ref(reg->type)) 9190 mark_reg_invalid(env, reg); 9191 })); 9192 } 9193 9194 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 9195 struct bpf_reg_state *regs) 9196 { 9197 int i; 9198 9199 /* after the call registers r0 - r5 were scratched */ 9200 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9201 mark_reg_not_init(env, regs, caller_saved[i]); 9202 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); 9203 } 9204 } 9205 9206 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 9207 struct bpf_func_state *caller, 9208 struct bpf_func_state *callee, 9209 int insn_idx); 9210 9211 static int set_callee_state(struct bpf_verifier_env *env, 9212 struct bpf_func_state *caller, 9213 struct bpf_func_state *callee, int insn_idx); 9214 9215 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, 9216 set_callee_state_fn set_callee_state_cb, 9217 struct bpf_verifier_state *state) 9218 { 9219 struct bpf_func_state *caller, *callee; 9220 int err; 9221 9222 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 9223 verbose(env, "the call stack of %d frames is too deep\n", 9224 state->curframe + 2); 9225 return -E2BIG; 9226 } 9227 9228 if (state->frame[state->curframe + 1]) { 9229 verbose(env, "verifier bug. Frame %d already allocated\n", 9230 state->curframe + 1); 9231 return -EFAULT; 9232 } 9233 9234 caller = state->frame[state->curframe]; 9235 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 9236 if (!callee) 9237 return -ENOMEM; 9238 state->frame[state->curframe + 1] = callee; 9239 9240 /* callee cannot access r0, r6 - r9 for reading and has to write 9241 * into its own stack before reading from it. 9242 * callee can read/write into caller's stack 9243 */ 9244 init_func_state(env, callee, 9245 /* remember the callsite, it will be used by bpf_exit */ 9246 callsite, 9247 state->curframe + 1 /* frameno within this callchain */, 9248 subprog /* subprog number within this prog */); 9249 /* Transfer references to the callee */ 9250 err = copy_reference_state(callee, caller); 9251 err = err ?: set_callee_state_cb(env, caller, callee, callsite); 9252 if (err) 9253 goto err_out; 9254 9255 /* only increment it after check_reg_arg() finished */ 9256 state->curframe++; 9257 9258 return 0; 9259 9260 err_out: 9261 free_func_state(callee); 9262 state->frame[state->curframe + 1] = NULL; 9263 return err; 9264 } 9265 9266 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9267 int insn_idx, int subprog, 9268 set_callee_state_fn set_callee_state_cb) 9269 { 9270 struct bpf_verifier_state *state = env->cur_state, *callback_state; 9271 struct bpf_func_state *caller, *callee; 9272 int err; 9273 9274 caller = state->frame[state->curframe]; 9275 err = btf_check_subprog_call(env, subprog, caller->regs); 9276 if (err == -EFAULT) 9277 return err; 9278 9279 /* set_callee_state is used for direct subprog calls, but we are 9280 * interested in validating only BPF helpers that can call subprogs as 9281 * callbacks 9282 */ 9283 if (bpf_pseudo_kfunc_call(insn) && 9284 !is_sync_callback_calling_kfunc(insn->imm)) { 9285 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 9286 func_id_name(insn->imm), insn->imm); 9287 return -EFAULT; 9288 } else if (!bpf_pseudo_kfunc_call(insn) && 9289 !is_callback_calling_function(insn->imm)) { /* helper */ 9290 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 9291 func_id_name(insn->imm), insn->imm); 9292 return -EFAULT; 9293 } 9294 9295 if (insn->code == (BPF_JMP | BPF_CALL) && 9296 insn->src_reg == 0 && 9297 insn->imm == BPF_FUNC_timer_set_callback) { 9298 struct bpf_verifier_state *async_cb; 9299 9300 /* there is no real recursion here. timer callbacks are async */ 9301 env->subprog_info[subprog].is_async_cb = true; 9302 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 9303 insn_idx, subprog); 9304 if (!async_cb) 9305 return -EFAULT; 9306 callee = async_cb->frame[0]; 9307 callee->async_entry_cnt = caller->async_entry_cnt + 1; 9308 9309 /* Convert bpf_timer_set_callback() args into timer callback args */ 9310 err = set_callee_state_cb(env, caller, callee, insn_idx); 9311 if (err) 9312 return err; 9313 9314 return 0; 9315 } 9316 9317 /* for callback functions enqueue entry to callback and 9318 * proceed with next instruction within current frame. 9319 */ 9320 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); 9321 if (!callback_state) 9322 return -ENOMEM; 9323 9324 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, 9325 callback_state); 9326 if (err) 9327 return err; 9328 9329 callback_state->callback_unroll_depth++; 9330 callback_state->frame[callback_state->curframe - 1]->callback_depth++; 9331 caller->callback_depth = 0; 9332 return 0; 9333 } 9334 9335 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9336 int *insn_idx) 9337 { 9338 struct bpf_verifier_state *state = env->cur_state; 9339 struct bpf_func_state *caller; 9340 int err, subprog, target_insn; 9341 9342 target_insn = *insn_idx + insn->imm + 1; 9343 subprog = find_subprog(env, target_insn); 9344 if (subprog < 0) { 9345 verbose(env, "verifier bug. No program starts at insn %d\n", target_insn); 9346 return -EFAULT; 9347 } 9348 9349 caller = state->frame[state->curframe]; 9350 err = btf_check_subprog_call(env, subprog, caller->regs); 9351 if (err == -EFAULT) 9352 return err; 9353 if (subprog_is_global(env, subprog)) { 9354 if (err) { 9355 verbose(env, "Caller passes invalid args into func#%d\n", subprog); 9356 return err; 9357 } 9358 9359 if (env->log.level & BPF_LOG_LEVEL) 9360 verbose(env, "Func#%d is global and valid. Skipping.\n", subprog); 9361 clear_caller_saved_regs(env, caller->regs); 9362 9363 /* All global functions return a 64-bit SCALAR_VALUE */ 9364 mark_reg_unknown(env, caller->regs, BPF_REG_0); 9365 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 9366 9367 /* continue with next insn after call */ 9368 return 0; 9369 } 9370 9371 /* for regular function entry setup new frame and continue 9372 * from that frame. 9373 */ 9374 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); 9375 if (err) 9376 return err; 9377 9378 clear_caller_saved_regs(env, caller->regs); 9379 9380 /* and go analyze first insn of the callee */ 9381 *insn_idx = env->subprog_info[subprog].start - 1; 9382 9383 if (env->log.level & BPF_LOG_LEVEL) { 9384 verbose(env, "caller:\n"); 9385 print_verifier_state(env, caller, true); 9386 verbose(env, "callee:\n"); 9387 print_verifier_state(env, state->frame[state->curframe], true); 9388 } 9389 9390 return 0; 9391 } 9392 9393 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 9394 struct bpf_func_state *caller, 9395 struct bpf_func_state *callee) 9396 { 9397 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 9398 * void *callback_ctx, u64 flags); 9399 * callback_fn(struct bpf_map *map, void *key, void *value, 9400 * void *callback_ctx); 9401 */ 9402 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9403 9404 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9405 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9406 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9407 9408 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9409 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9410 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9411 9412 /* pointer to stack or null */ 9413 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 9414 9415 /* unused */ 9416 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9417 return 0; 9418 } 9419 9420 static int set_callee_state(struct bpf_verifier_env *env, 9421 struct bpf_func_state *caller, 9422 struct bpf_func_state *callee, int insn_idx) 9423 { 9424 int i; 9425 9426 /* copy r1 - r5 args that callee can access. The copy includes parent 9427 * pointers, which connects us up to the liveness chain 9428 */ 9429 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 9430 callee->regs[i] = caller->regs[i]; 9431 return 0; 9432 } 9433 9434 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 9435 struct bpf_func_state *caller, 9436 struct bpf_func_state *callee, 9437 int insn_idx) 9438 { 9439 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 9440 struct bpf_map *map; 9441 int err; 9442 9443 if (bpf_map_ptr_poisoned(insn_aux)) { 9444 verbose(env, "tail_call abusing map_ptr\n"); 9445 return -EINVAL; 9446 } 9447 9448 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 9449 if (!map->ops->map_set_for_each_callback_args || 9450 !map->ops->map_for_each_callback) { 9451 verbose(env, "callback function not allowed for map\n"); 9452 return -ENOTSUPP; 9453 } 9454 9455 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 9456 if (err) 9457 return err; 9458 9459 callee->in_callback_fn = true; 9460 callee->callback_ret_range = tnum_range(0, 1); 9461 return 0; 9462 } 9463 9464 static int set_loop_callback_state(struct bpf_verifier_env *env, 9465 struct bpf_func_state *caller, 9466 struct bpf_func_state *callee, 9467 int insn_idx) 9468 { 9469 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 9470 * u64 flags); 9471 * callback_fn(u32 index, void *callback_ctx); 9472 */ 9473 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 9474 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9475 9476 /* unused */ 9477 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9478 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9479 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9480 9481 callee->in_callback_fn = true; 9482 callee->callback_ret_range = tnum_range(0, 1); 9483 return 0; 9484 } 9485 9486 static int set_timer_callback_state(struct bpf_verifier_env *env, 9487 struct bpf_func_state *caller, 9488 struct bpf_func_state *callee, 9489 int insn_idx) 9490 { 9491 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 9492 9493 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 9494 * callback_fn(struct bpf_map *map, void *key, void *value); 9495 */ 9496 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 9497 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 9498 callee->regs[BPF_REG_1].map_ptr = map_ptr; 9499 9500 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9501 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9502 callee->regs[BPF_REG_2].map_ptr = map_ptr; 9503 9504 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9505 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9506 callee->regs[BPF_REG_3].map_ptr = map_ptr; 9507 9508 /* unused */ 9509 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9510 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9511 callee->in_async_callback_fn = true; 9512 callee->callback_ret_range = tnum_range(0, 1); 9513 return 0; 9514 } 9515 9516 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 9517 struct bpf_func_state *caller, 9518 struct bpf_func_state *callee, 9519 int insn_idx) 9520 { 9521 /* bpf_find_vma(struct task_struct *task, u64 addr, 9522 * void *callback_fn, void *callback_ctx, u64 flags) 9523 * (callback_fn)(struct task_struct *task, 9524 * struct vm_area_struct *vma, void *callback_ctx); 9525 */ 9526 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9527 9528 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 9529 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9530 callee->regs[BPF_REG_2].btf = btf_vmlinux; 9531 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 9532 9533 /* pointer to stack or null */ 9534 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 9535 9536 /* unused */ 9537 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9538 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9539 callee->in_callback_fn = true; 9540 callee->callback_ret_range = tnum_range(0, 1); 9541 return 0; 9542 } 9543 9544 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 9545 struct bpf_func_state *caller, 9546 struct bpf_func_state *callee, 9547 int insn_idx) 9548 { 9549 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 9550 * callback_ctx, u64 flags); 9551 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 9552 */ 9553 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 9554 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 9555 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9556 9557 /* unused */ 9558 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9559 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9560 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9561 9562 callee->in_callback_fn = true; 9563 callee->callback_ret_range = tnum_range(0, 1); 9564 return 0; 9565 } 9566 9567 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 9568 struct bpf_func_state *caller, 9569 struct bpf_func_state *callee, 9570 int insn_idx) 9571 { 9572 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 9573 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 9574 * 9575 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 9576 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 9577 * by this point, so look at 'root' 9578 */ 9579 struct btf_field *field; 9580 9581 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 9582 BPF_RB_ROOT); 9583 if (!field || !field->graph_root.value_btf_id) 9584 return -EFAULT; 9585 9586 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 9587 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 9588 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 9589 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 9590 9591 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9592 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9593 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9594 callee->in_callback_fn = true; 9595 callee->callback_ret_range = tnum_range(0, 1); 9596 return 0; 9597 } 9598 9599 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 9600 9601 /* Are we currently verifying the callback for a rbtree helper that must 9602 * be called with lock held? If so, no need to complain about unreleased 9603 * lock 9604 */ 9605 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 9606 { 9607 struct bpf_verifier_state *state = env->cur_state; 9608 struct bpf_insn *insn = env->prog->insnsi; 9609 struct bpf_func_state *callee; 9610 int kfunc_btf_id; 9611 9612 if (!state->curframe) 9613 return false; 9614 9615 callee = state->frame[state->curframe]; 9616 9617 if (!callee->in_callback_fn) 9618 return false; 9619 9620 kfunc_btf_id = insn[callee->callsite].imm; 9621 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 9622 } 9623 9624 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 9625 { 9626 struct bpf_verifier_state *state = env->cur_state, *prev_st; 9627 struct bpf_func_state *caller, *callee; 9628 struct bpf_reg_state *r0; 9629 bool in_callback_fn; 9630 int err; 9631 9632 callee = state->frame[state->curframe]; 9633 r0 = &callee->regs[BPF_REG_0]; 9634 if (r0->type == PTR_TO_STACK) { 9635 /* technically it's ok to return caller's stack pointer 9636 * (or caller's caller's pointer) back to the caller, 9637 * since these pointers are valid. Only current stack 9638 * pointer will be invalid as soon as function exits, 9639 * but let's be conservative 9640 */ 9641 verbose(env, "cannot return stack pointer to the caller\n"); 9642 return -EINVAL; 9643 } 9644 9645 caller = state->frame[state->curframe - 1]; 9646 if (callee->in_callback_fn) { 9647 /* enforce R0 return value range [0, 1]. */ 9648 struct tnum range = callee->callback_ret_range; 9649 9650 if (r0->type != SCALAR_VALUE) { 9651 verbose(env, "R0 not a scalar value\n"); 9652 return -EACCES; 9653 } 9654 9655 /* we are going to rely on register's precise value */ 9656 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64); 9657 err = err ?: mark_chain_precision(env, BPF_REG_0); 9658 if (err) 9659 return err; 9660 9661 if (!tnum_in(range, r0->var_off)) { 9662 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 9663 return -EINVAL; 9664 } 9665 if (!calls_callback(env, callee->callsite)) { 9666 verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n", 9667 *insn_idx, callee->callsite); 9668 return -EFAULT; 9669 } 9670 } else { 9671 /* return to the caller whatever r0 had in the callee */ 9672 caller->regs[BPF_REG_0] = *r0; 9673 } 9674 9675 /* callback_fn frame should have released its own additions to parent's 9676 * reference state at this point, or check_reference_leak would 9677 * complain, hence it must be the same as the caller. There is no need 9678 * to copy it back. 9679 */ 9680 if (!callee->in_callback_fn) { 9681 /* Transfer references to the caller */ 9682 err = copy_reference_state(caller, callee); 9683 if (err) 9684 return err; 9685 } 9686 9687 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, 9688 * there function call logic would reschedule callback visit. If iteration 9689 * converges is_state_visited() would prune that visit eventually. 9690 */ 9691 in_callback_fn = callee->in_callback_fn; 9692 if (in_callback_fn) 9693 *insn_idx = callee->callsite; 9694 else 9695 *insn_idx = callee->callsite + 1; 9696 9697 if (env->log.level & BPF_LOG_LEVEL) { 9698 verbose(env, "returning from callee:\n"); 9699 print_verifier_state(env, callee, true); 9700 verbose(env, "to caller at %d:\n", *insn_idx); 9701 print_verifier_state(env, caller, true); 9702 } 9703 /* clear everything in the callee */ 9704 free_func_state(callee); 9705 state->frame[state->curframe--] = NULL; 9706 9707 /* for callbacks widen imprecise scalars to make programs like below verify: 9708 * 9709 * struct ctx { int i; } 9710 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } 9711 * ... 9712 * struct ctx = { .i = 0; } 9713 * bpf_loop(100, cb, &ctx, 0); 9714 * 9715 * This is similar to what is done in process_iter_next_call() for open 9716 * coded iterators. 9717 */ 9718 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; 9719 if (prev_st) { 9720 err = widen_imprecise_scalars(env, prev_st, state); 9721 if (err) 9722 return err; 9723 } 9724 return 0; 9725 } 9726 9727 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 9728 int func_id, 9729 struct bpf_call_arg_meta *meta) 9730 { 9731 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 9732 9733 if (ret_type != RET_INTEGER) 9734 return; 9735 9736 switch (func_id) { 9737 case BPF_FUNC_get_stack: 9738 case BPF_FUNC_get_task_stack: 9739 case BPF_FUNC_probe_read_str: 9740 case BPF_FUNC_probe_read_kernel_str: 9741 case BPF_FUNC_probe_read_user_str: 9742 ret_reg->smax_value = meta->msize_max_value; 9743 ret_reg->s32_max_value = meta->msize_max_value; 9744 ret_reg->smin_value = -MAX_ERRNO; 9745 ret_reg->s32_min_value = -MAX_ERRNO; 9746 reg_bounds_sync(ret_reg); 9747 break; 9748 case BPF_FUNC_get_smp_processor_id: 9749 ret_reg->umax_value = nr_cpu_ids - 1; 9750 ret_reg->u32_max_value = nr_cpu_ids - 1; 9751 ret_reg->smax_value = nr_cpu_ids - 1; 9752 ret_reg->s32_max_value = nr_cpu_ids - 1; 9753 ret_reg->umin_value = 0; 9754 ret_reg->u32_min_value = 0; 9755 ret_reg->smin_value = 0; 9756 ret_reg->s32_min_value = 0; 9757 reg_bounds_sync(ret_reg); 9758 break; 9759 } 9760 } 9761 9762 static int 9763 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9764 int func_id, int insn_idx) 9765 { 9766 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9767 struct bpf_map *map = meta->map_ptr; 9768 9769 if (func_id != BPF_FUNC_tail_call && 9770 func_id != BPF_FUNC_map_lookup_elem && 9771 func_id != BPF_FUNC_map_update_elem && 9772 func_id != BPF_FUNC_map_delete_elem && 9773 func_id != BPF_FUNC_map_push_elem && 9774 func_id != BPF_FUNC_map_pop_elem && 9775 func_id != BPF_FUNC_map_peek_elem && 9776 func_id != BPF_FUNC_for_each_map_elem && 9777 func_id != BPF_FUNC_redirect_map && 9778 func_id != BPF_FUNC_map_lookup_percpu_elem) 9779 return 0; 9780 9781 if (map == NULL) { 9782 verbose(env, "kernel subsystem misconfigured verifier\n"); 9783 return -EINVAL; 9784 } 9785 9786 /* In case of read-only, some additional restrictions 9787 * need to be applied in order to prevent altering the 9788 * state of the map from program side. 9789 */ 9790 if ((map->map_flags & BPF_F_RDONLY_PROG) && 9791 (func_id == BPF_FUNC_map_delete_elem || 9792 func_id == BPF_FUNC_map_update_elem || 9793 func_id == BPF_FUNC_map_push_elem || 9794 func_id == BPF_FUNC_map_pop_elem)) { 9795 verbose(env, "write into map forbidden\n"); 9796 return -EACCES; 9797 } 9798 9799 if (!BPF_MAP_PTR(aux->map_ptr_state)) 9800 bpf_map_ptr_store(aux, meta->map_ptr, 9801 !meta->map_ptr->bypass_spec_v1); 9802 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 9803 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 9804 !meta->map_ptr->bypass_spec_v1); 9805 return 0; 9806 } 9807 9808 static int 9809 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9810 int func_id, int insn_idx) 9811 { 9812 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9813 struct bpf_reg_state *regs = cur_regs(env), *reg; 9814 struct bpf_map *map = meta->map_ptr; 9815 u64 val, max; 9816 int err; 9817 9818 if (func_id != BPF_FUNC_tail_call) 9819 return 0; 9820 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 9821 verbose(env, "kernel subsystem misconfigured verifier\n"); 9822 return -EINVAL; 9823 } 9824 9825 reg = ®s[BPF_REG_3]; 9826 val = reg->var_off.value; 9827 max = map->max_entries; 9828 9829 if (!(register_is_const(reg) && val < max)) { 9830 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9831 return 0; 9832 } 9833 9834 err = mark_chain_precision(env, BPF_REG_3); 9835 if (err) 9836 return err; 9837 if (bpf_map_key_unseen(aux)) 9838 bpf_map_key_store(aux, val); 9839 else if (!bpf_map_key_poisoned(aux) && 9840 bpf_map_key_immediate(aux) != val) 9841 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9842 return 0; 9843 } 9844 9845 static int check_reference_leak(struct bpf_verifier_env *env) 9846 { 9847 struct bpf_func_state *state = cur_func(env); 9848 bool refs_lingering = false; 9849 int i; 9850 9851 if (state->frameno && !state->in_callback_fn) 9852 return 0; 9853 9854 for (i = 0; i < state->acquired_refs; i++) { 9855 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 9856 continue; 9857 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 9858 state->refs[i].id, state->refs[i].insn_idx); 9859 refs_lingering = true; 9860 } 9861 return refs_lingering ? -EINVAL : 0; 9862 } 9863 9864 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 9865 struct bpf_reg_state *regs) 9866 { 9867 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 9868 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 9869 struct bpf_map *fmt_map = fmt_reg->map_ptr; 9870 struct bpf_bprintf_data data = {}; 9871 int err, fmt_map_off, num_args; 9872 u64 fmt_addr; 9873 char *fmt; 9874 9875 /* data must be an array of u64 */ 9876 if (data_len_reg->var_off.value % 8) 9877 return -EINVAL; 9878 num_args = data_len_reg->var_off.value / 8; 9879 9880 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 9881 * and map_direct_value_addr is set. 9882 */ 9883 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 9884 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 9885 fmt_map_off); 9886 if (err) { 9887 verbose(env, "verifier bug\n"); 9888 return -EFAULT; 9889 } 9890 fmt = (char *)(long)fmt_addr + fmt_map_off; 9891 9892 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 9893 * can focus on validating the format specifiers. 9894 */ 9895 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 9896 if (err < 0) 9897 verbose(env, "Invalid format string\n"); 9898 9899 return err; 9900 } 9901 9902 static int check_get_func_ip(struct bpf_verifier_env *env) 9903 { 9904 enum bpf_prog_type type = resolve_prog_type(env->prog); 9905 int func_id = BPF_FUNC_get_func_ip; 9906 9907 if (type == BPF_PROG_TYPE_TRACING) { 9908 if (!bpf_prog_has_trampoline(env->prog)) { 9909 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 9910 func_id_name(func_id), func_id); 9911 return -ENOTSUPP; 9912 } 9913 return 0; 9914 } else if (type == BPF_PROG_TYPE_KPROBE) { 9915 return 0; 9916 } 9917 9918 verbose(env, "func %s#%d not supported for program type %d\n", 9919 func_id_name(func_id), func_id, type); 9920 return -ENOTSUPP; 9921 } 9922 9923 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 9924 { 9925 return &env->insn_aux_data[env->insn_idx]; 9926 } 9927 9928 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 9929 { 9930 struct bpf_reg_state *regs = cur_regs(env); 9931 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 9932 bool reg_is_null = register_is_null(reg); 9933 9934 if (reg_is_null) 9935 mark_chain_precision(env, BPF_REG_4); 9936 9937 return reg_is_null; 9938 } 9939 9940 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 9941 { 9942 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 9943 9944 if (!state->initialized) { 9945 state->initialized = 1; 9946 state->fit_for_inline = loop_flag_is_zero(env); 9947 state->callback_subprogno = subprogno; 9948 return; 9949 } 9950 9951 if (!state->fit_for_inline) 9952 return; 9953 9954 state->fit_for_inline = (loop_flag_is_zero(env) && 9955 state->callback_subprogno == subprogno); 9956 } 9957 9958 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9959 int *insn_idx_p) 9960 { 9961 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9962 const struct bpf_func_proto *fn = NULL; 9963 enum bpf_return_type ret_type; 9964 enum bpf_type_flag ret_flag; 9965 struct bpf_reg_state *regs; 9966 struct bpf_call_arg_meta meta; 9967 int insn_idx = *insn_idx_p; 9968 bool changes_data; 9969 int i, err, func_id; 9970 9971 /* find function prototype */ 9972 func_id = insn->imm; 9973 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 9974 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 9975 func_id); 9976 return -EINVAL; 9977 } 9978 9979 if (env->ops->get_func_proto) 9980 fn = env->ops->get_func_proto(func_id, env->prog); 9981 if (!fn) { 9982 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 9983 func_id); 9984 return -EINVAL; 9985 } 9986 9987 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 9988 if (!env->prog->gpl_compatible && fn->gpl_only) { 9989 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 9990 return -EINVAL; 9991 } 9992 9993 if (fn->allowed && !fn->allowed(env->prog)) { 9994 verbose(env, "helper call is not allowed in probe\n"); 9995 return -EINVAL; 9996 } 9997 9998 if (!env->prog->aux->sleepable && fn->might_sleep) { 9999 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 10000 return -EINVAL; 10001 } 10002 10003 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 10004 changes_data = bpf_helper_changes_pkt_data(fn->func); 10005 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 10006 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 10007 func_id_name(func_id), func_id); 10008 return -EINVAL; 10009 } 10010 10011 memset(&meta, 0, sizeof(meta)); 10012 meta.pkt_access = fn->pkt_access; 10013 10014 err = check_func_proto(fn, func_id); 10015 if (err) { 10016 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 10017 func_id_name(func_id), func_id); 10018 return err; 10019 } 10020 10021 if (env->cur_state->active_rcu_lock) { 10022 if (fn->might_sleep) { 10023 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 10024 func_id_name(func_id), func_id); 10025 return -EINVAL; 10026 } 10027 10028 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 10029 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 10030 } 10031 10032 meta.func_id = func_id; 10033 /* check args */ 10034 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 10035 err = check_func_arg(env, i, &meta, fn, insn_idx); 10036 if (err) 10037 return err; 10038 } 10039 10040 err = record_func_map(env, &meta, func_id, insn_idx); 10041 if (err) 10042 return err; 10043 10044 err = record_func_key(env, &meta, func_id, insn_idx); 10045 if (err) 10046 return err; 10047 10048 /* Mark slots with STACK_MISC in case of raw mode, stack offset 10049 * is inferred from register state. 10050 */ 10051 for (i = 0; i < meta.access_size; i++) { 10052 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 10053 BPF_WRITE, -1, false, false); 10054 if (err) 10055 return err; 10056 } 10057 10058 regs = cur_regs(env); 10059 10060 if (meta.release_regno) { 10061 err = -EINVAL; 10062 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 10063 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 10064 * is safe to do directly. 10065 */ 10066 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 10067 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 10068 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 10069 return -EFAULT; 10070 } 10071 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 10072 } else if (meta.ref_obj_id) { 10073 err = release_reference(env, meta.ref_obj_id); 10074 } else if (register_is_null(®s[meta.release_regno])) { 10075 /* meta.ref_obj_id can only be 0 if register that is meant to be 10076 * released is NULL, which must be > R0. 10077 */ 10078 err = 0; 10079 } 10080 if (err) { 10081 verbose(env, "func %s#%d reference has not been acquired before\n", 10082 func_id_name(func_id), func_id); 10083 return err; 10084 } 10085 } 10086 10087 switch (func_id) { 10088 case BPF_FUNC_tail_call: 10089 err = check_reference_leak(env); 10090 if (err) { 10091 verbose(env, "tail_call would lead to reference leak\n"); 10092 return err; 10093 } 10094 break; 10095 case BPF_FUNC_get_local_storage: 10096 /* check that flags argument in get_local_storage(map, flags) is 0, 10097 * this is required because get_local_storage() can't return an error. 10098 */ 10099 if (!register_is_null(®s[BPF_REG_2])) { 10100 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 10101 return -EINVAL; 10102 } 10103 break; 10104 case BPF_FUNC_for_each_map_elem: 10105 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10106 set_map_elem_callback_state); 10107 break; 10108 case BPF_FUNC_timer_set_callback: 10109 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10110 set_timer_callback_state); 10111 break; 10112 case BPF_FUNC_find_vma: 10113 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10114 set_find_vma_callback_state); 10115 break; 10116 case BPF_FUNC_snprintf: 10117 err = check_bpf_snprintf_call(env, regs); 10118 break; 10119 case BPF_FUNC_loop: 10120 update_loop_inline_state(env, meta.subprogno); 10121 /* Verifier relies on R1 value to determine if bpf_loop() iteration 10122 * is finished, thus mark it precise. 10123 */ 10124 err = mark_chain_precision(env, BPF_REG_1); 10125 if (err) 10126 return err; 10127 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { 10128 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10129 set_loop_callback_state); 10130 } else { 10131 cur_func(env)->callback_depth = 0; 10132 if (env->log.level & BPF_LOG_LEVEL2) 10133 verbose(env, "frame%d bpf_loop iteration limit reached\n", 10134 env->cur_state->curframe); 10135 } 10136 break; 10137 case BPF_FUNC_dynptr_from_mem: 10138 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 10139 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 10140 reg_type_str(env, regs[BPF_REG_1].type)); 10141 return -EACCES; 10142 } 10143 break; 10144 case BPF_FUNC_set_retval: 10145 if (prog_type == BPF_PROG_TYPE_LSM && 10146 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 10147 if (!env->prog->aux->attach_func_proto->type) { 10148 /* Make sure programs that attach to void 10149 * hooks don't try to modify return value. 10150 */ 10151 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 10152 return -EINVAL; 10153 } 10154 } 10155 break; 10156 case BPF_FUNC_dynptr_data: 10157 { 10158 struct bpf_reg_state *reg; 10159 int id, ref_obj_id; 10160 10161 reg = get_dynptr_arg_reg(env, fn, regs); 10162 if (!reg) 10163 return -EFAULT; 10164 10165 10166 if (meta.dynptr_id) { 10167 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 10168 return -EFAULT; 10169 } 10170 if (meta.ref_obj_id) { 10171 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 10172 return -EFAULT; 10173 } 10174 10175 id = dynptr_id(env, reg); 10176 if (id < 0) { 10177 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 10178 return id; 10179 } 10180 10181 ref_obj_id = dynptr_ref_obj_id(env, reg); 10182 if (ref_obj_id < 0) { 10183 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 10184 return ref_obj_id; 10185 } 10186 10187 meta.dynptr_id = id; 10188 meta.ref_obj_id = ref_obj_id; 10189 10190 break; 10191 } 10192 case BPF_FUNC_dynptr_write: 10193 { 10194 enum bpf_dynptr_type dynptr_type; 10195 struct bpf_reg_state *reg; 10196 10197 reg = get_dynptr_arg_reg(env, fn, regs); 10198 if (!reg) 10199 return -EFAULT; 10200 10201 dynptr_type = dynptr_get_type(env, reg); 10202 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 10203 return -EFAULT; 10204 10205 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 10206 /* this will trigger clear_all_pkt_pointers(), which will 10207 * invalidate all dynptr slices associated with the skb 10208 */ 10209 changes_data = true; 10210 10211 break; 10212 } 10213 case BPF_FUNC_user_ringbuf_drain: 10214 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10215 set_user_ringbuf_callback_state); 10216 break; 10217 } 10218 10219 if (err) 10220 return err; 10221 10222 /* reset caller saved regs */ 10223 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10224 mark_reg_not_init(env, regs, caller_saved[i]); 10225 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 10226 } 10227 10228 /* helper call returns 64-bit value. */ 10229 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 10230 10231 /* update return register (already marked as written above) */ 10232 ret_type = fn->ret_type; 10233 ret_flag = type_flag(ret_type); 10234 10235 switch (base_type(ret_type)) { 10236 case RET_INTEGER: 10237 /* sets type to SCALAR_VALUE */ 10238 mark_reg_unknown(env, regs, BPF_REG_0); 10239 break; 10240 case RET_VOID: 10241 regs[BPF_REG_0].type = NOT_INIT; 10242 break; 10243 case RET_PTR_TO_MAP_VALUE: 10244 /* There is no offset yet applied, variable or fixed */ 10245 mark_reg_known_zero(env, regs, BPF_REG_0); 10246 /* remember map_ptr, so that check_map_access() 10247 * can check 'value_size' boundary of memory access 10248 * to map element returned from bpf_map_lookup_elem() 10249 */ 10250 if (meta.map_ptr == NULL) { 10251 verbose(env, 10252 "kernel subsystem misconfigured verifier\n"); 10253 return -EINVAL; 10254 } 10255 regs[BPF_REG_0].map_ptr = meta.map_ptr; 10256 regs[BPF_REG_0].map_uid = meta.map_uid; 10257 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 10258 if (!type_may_be_null(ret_type) && 10259 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 10260 regs[BPF_REG_0].id = ++env->id_gen; 10261 } 10262 break; 10263 case RET_PTR_TO_SOCKET: 10264 mark_reg_known_zero(env, regs, BPF_REG_0); 10265 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 10266 break; 10267 case RET_PTR_TO_SOCK_COMMON: 10268 mark_reg_known_zero(env, regs, BPF_REG_0); 10269 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 10270 break; 10271 case RET_PTR_TO_TCP_SOCK: 10272 mark_reg_known_zero(env, regs, BPF_REG_0); 10273 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 10274 break; 10275 case RET_PTR_TO_MEM: 10276 mark_reg_known_zero(env, regs, BPF_REG_0); 10277 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10278 regs[BPF_REG_0].mem_size = meta.mem_size; 10279 break; 10280 case RET_PTR_TO_MEM_OR_BTF_ID: 10281 { 10282 const struct btf_type *t; 10283 10284 mark_reg_known_zero(env, regs, BPF_REG_0); 10285 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 10286 if (!btf_type_is_struct(t)) { 10287 u32 tsize; 10288 const struct btf_type *ret; 10289 const char *tname; 10290 10291 /* resolve the type size of ksym. */ 10292 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 10293 if (IS_ERR(ret)) { 10294 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 10295 verbose(env, "unable to resolve the size of type '%s': %ld\n", 10296 tname, PTR_ERR(ret)); 10297 return -EINVAL; 10298 } 10299 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10300 regs[BPF_REG_0].mem_size = tsize; 10301 } else { 10302 /* MEM_RDONLY may be carried from ret_flag, but it 10303 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 10304 * it will confuse the check of PTR_TO_BTF_ID in 10305 * check_mem_access(). 10306 */ 10307 ret_flag &= ~MEM_RDONLY; 10308 10309 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10310 regs[BPF_REG_0].btf = meta.ret_btf; 10311 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 10312 } 10313 break; 10314 } 10315 case RET_PTR_TO_BTF_ID: 10316 { 10317 struct btf *ret_btf; 10318 int ret_btf_id; 10319 10320 mark_reg_known_zero(env, regs, BPF_REG_0); 10321 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10322 if (func_id == BPF_FUNC_kptr_xchg) { 10323 ret_btf = meta.kptr_field->kptr.btf; 10324 ret_btf_id = meta.kptr_field->kptr.btf_id; 10325 if (!btf_is_kernel(ret_btf)) 10326 regs[BPF_REG_0].type |= MEM_ALLOC; 10327 } else { 10328 if (fn->ret_btf_id == BPF_PTR_POISON) { 10329 verbose(env, "verifier internal error:"); 10330 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 10331 func_id_name(func_id)); 10332 return -EINVAL; 10333 } 10334 ret_btf = btf_vmlinux; 10335 ret_btf_id = *fn->ret_btf_id; 10336 } 10337 if (ret_btf_id == 0) { 10338 verbose(env, "invalid return type %u of func %s#%d\n", 10339 base_type(ret_type), func_id_name(func_id), 10340 func_id); 10341 return -EINVAL; 10342 } 10343 regs[BPF_REG_0].btf = ret_btf; 10344 regs[BPF_REG_0].btf_id = ret_btf_id; 10345 break; 10346 } 10347 default: 10348 verbose(env, "unknown return type %u of func %s#%d\n", 10349 base_type(ret_type), func_id_name(func_id), func_id); 10350 return -EINVAL; 10351 } 10352 10353 if (type_may_be_null(regs[BPF_REG_0].type)) 10354 regs[BPF_REG_0].id = ++env->id_gen; 10355 10356 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 10357 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 10358 func_id_name(func_id), func_id); 10359 return -EFAULT; 10360 } 10361 10362 if (is_dynptr_ref_function(func_id)) 10363 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 10364 10365 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 10366 /* For release_reference() */ 10367 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 10368 } else if (is_acquire_function(func_id, meta.map_ptr)) { 10369 int id = acquire_reference_state(env, insn_idx); 10370 10371 if (id < 0) 10372 return id; 10373 /* For mark_ptr_or_null_reg() */ 10374 regs[BPF_REG_0].id = id; 10375 /* For release_reference() */ 10376 regs[BPF_REG_0].ref_obj_id = id; 10377 } 10378 10379 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 10380 10381 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 10382 if (err) 10383 return err; 10384 10385 if ((func_id == BPF_FUNC_get_stack || 10386 func_id == BPF_FUNC_get_task_stack) && 10387 !env->prog->has_callchain_buf) { 10388 const char *err_str; 10389 10390 #ifdef CONFIG_PERF_EVENTS 10391 err = get_callchain_buffers(sysctl_perf_event_max_stack); 10392 err_str = "cannot get callchain buffer for func %s#%d\n"; 10393 #else 10394 err = -ENOTSUPP; 10395 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 10396 #endif 10397 if (err) { 10398 verbose(env, err_str, func_id_name(func_id), func_id); 10399 return err; 10400 } 10401 10402 env->prog->has_callchain_buf = true; 10403 } 10404 10405 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 10406 env->prog->call_get_stack = true; 10407 10408 if (func_id == BPF_FUNC_get_func_ip) { 10409 if (check_get_func_ip(env)) 10410 return -ENOTSUPP; 10411 env->prog->call_get_func_ip = true; 10412 } 10413 10414 if (changes_data) 10415 clear_all_pkt_pointers(env); 10416 return 0; 10417 } 10418 10419 /* mark_btf_func_reg_size() is used when the reg size is determined by 10420 * the BTF func_proto's return value size and argument. 10421 */ 10422 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 10423 size_t reg_size) 10424 { 10425 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 10426 10427 if (regno == BPF_REG_0) { 10428 /* Function return value */ 10429 reg->live |= REG_LIVE_WRITTEN; 10430 reg->subreg_def = reg_size == sizeof(u64) ? 10431 DEF_NOT_SUBREG : env->insn_idx + 1; 10432 } else { 10433 /* Function argument */ 10434 if (reg_size == sizeof(u64)) { 10435 mark_insn_zext(env, reg); 10436 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 10437 } else { 10438 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 10439 } 10440 } 10441 } 10442 10443 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 10444 { 10445 return meta->kfunc_flags & KF_ACQUIRE; 10446 } 10447 10448 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 10449 { 10450 return meta->kfunc_flags & KF_RELEASE; 10451 } 10452 10453 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 10454 { 10455 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 10456 } 10457 10458 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 10459 { 10460 return meta->kfunc_flags & KF_SLEEPABLE; 10461 } 10462 10463 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 10464 { 10465 return meta->kfunc_flags & KF_DESTRUCTIVE; 10466 } 10467 10468 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 10469 { 10470 return meta->kfunc_flags & KF_RCU; 10471 } 10472 10473 static bool __kfunc_param_match_suffix(const struct btf *btf, 10474 const struct btf_param *arg, 10475 const char *suffix) 10476 { 10477 int suffix_len = strlen(suffix), len; 10478 const char *param_name; 10479 10480 /* In the future, this can be ported to use BTF tagging */ 10481 param_name = btf_name_by_offset(btf, arg->name_off); 10482 if (str_is_empty(param_name)) 10483 return false; 10484 len = strlen(param_name); 10485 if (len < suffix_len) 10486 return false; 10487 param_name += len - suffix_len; 10488 return !strncmp(param_name, suffix, suffix_len); 10489 } 10490 10491 static bool is_kfunc_arg_mem_size(const struct btf *btf, 10492 const struct btf_param *arg, 10493 const struct bpf_reg_state *reg) 10494 { 10495 const struct btf_type *t; 10496 10497 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10498 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10499 return false; 10500 10501 return __kfunc_param_match_suffix(btf, arg, "__sz"); 10502 } 10503 10504 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 10505 const struct btf_param *arg, 10506 const struct bpf_reg_state *reg) 10507 { 10508 const struct btf_type *t; 10509 10510 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10511 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10512 return false; 10513 10514 return __kfunc_param_match_suffix(btf, arg, "__szk"); 10515 } 10516 10517 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 10518 { 10519 return __kfunc_param_match_suffix(btf, arg, "__opt"); 10520 } 10521 10522 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 10523 { 10524 return __kfunc_param_match_suffix(btf, arg, "__k"); 10525 } 10526 10527 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 10528 { 10529 return __kfunc_param_match_suffix(btf, arg, "__ign"); 10530 } 10531 10532 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 10533 { 10534 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 10535 } 10536 10537 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 10538 { 10539 return __kfunc_param_match_suffix(btf, arg, "__uninit"); 10540 } 10541 10542 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 10543 { 10544 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr"); 10545 } 10546 10547 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 10548 const struct btf_param *arg, 10549 const char *name) 10550 { 10551 int len, target_len = strlen(name); 10552 const char *param_name; 10553 10554 param_name = btf_name_by_offset(btf, arg->name_off); 10555 if (str_is_empty(param_name)) 10556 return false; 10557 len = strlen(param_name); 10558 if (len != target_len) 10559 return false; 10560 if (strcmp(param_name, name)) 10561 return false; 10562 10563 return true; 10564 } 10565 10566 enum { 10567 KF_ARG_DYNPTR_ID, 10568 KF_ARG_LIST_HEAD_ID, 10569 KF_ARG_LIST_NODE_ID, 10570 KF_ARG_RB_ROOT_ID, 10571 KF_ARG_RB_NODE_ID, 10572 }; 10573 10574 BTF_ID_LIST(kf_arg_btf_ids) 10575 BTF_ID(struct, bpf_dynptr_kern) 10576 BTF_ID(struct, bpf_list_head) 10577 BTF_ID(struct, bpf_list_node) 10578 BTF_ID(struct, bpf_rb_root) 10579 BTF_ID(struct, bpf_rb_node) 10580 10581 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 10582 const struct btf_param *arg, int type) 10583 { 10584 const struct btf_type *t; 10585 u32 res_id; 10586 10587 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10588 if (!t) 10589 return false; 10590 if (!btf_type_is_ptr(t)) 10591 return false; 10592 t = btf_type_skip_modifiers(btf, t->type, &res_id); 10593 if (!t) 10594 return false; 10595 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 10596 } 10597 10598 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 10599 { 10600 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 10601 } 10602 10603 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 10604 { 10605 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 10606 } 10607 10608 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 10609 { 10610 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 10611 } 10612 10613 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 10614 { 10615 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 10616 } 10617 10618 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 10619 { 10620 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 10621 } 10622 10623 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 10624 const struct btf_param *arg) 10625 { 10626 const struct btf_type *t; 10627 10628 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 10629 if (!t) 10630 return false; 10631 10632 return true; 10633 } 10634 10635 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 10636 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 10637 const struct btf *btf, 10638 const struct btf_type *t, int rec) 10639 { 10640 const struct btf_type *member_type; 10641 const struct btf_member *member; 10642 u32 i; 10643 10644 if (!btf_type_is_struct(t)) 10645 return false; 10646 10647 for_each_member(i, t, member) { 10648 const struct btf_array *array; 10649 10650 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 10651 if (btf_type_is_struct(member_type)) { 10652 if (rec >= 3) { 10653 verbose(env, "max struct nesting depth exceeded\n"); 10654 return false; 10655 } 10656 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 10657 return false; 10658 continue; 10659 } 10660 if (btf_type_is_array(member_type)) { 10661 array = btf_array(member_type); 10662 if (!array->nelems) 10663 return false; 10664 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 10665 if (!btf_type_is_scalar(member_type)) 10666 return false; 10667 continue; 10668 } 10669 if (!btf_type_is_scalar(member_type)) 10670 return false; 10671 } 10672 return true; 10673 } 10674 10675 enum kfunc_ptr_arg_type { 10676 KF_ARG_PTR_TO_CTX, 10677 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 10678 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 10679 KF_ARG_PTR_TO_DYNPTR, 10680 KF_ARG_PTR_TO_ITER, 10681 KF_ARG_PTR_TO_LIST_HEAD, 10682 KF_ARG_PTR_TO_LIST_NODE, 10683 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 10684 KF_ARG_PTR_TO_MEM, 10685 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 10686 KF_ARG_PTR_TO_CALLBACK, 10687 KF_ARG_PTR_TO_RB_ROOT, 10688 KF_ARG_PTR_TO_RB_NODE, 10689 }; 10690 10691 enum special_kfunc_type { 10692 KF_bpf_obj_new_impl, 10693 KF_bpf_obj_drop_impl, 10694 KF_bpf_refcount_acquire_impl, 10695 KF_bpf_list_push_front_impl, 10696 KF_bpf_list_push_back_impl, 10697 KF_bpf_list_pop_front, 10698 KF_bpf_list_pop_back, 10699 KF_bpf_cast_to_kern_ctx, 10700 KF_bpf_rdonly_cast, 10701 KF_bpf_rcu_read_lock, 10702 KF_bpf_rcu_read_unlock, 10703 KF_bpf_rbtree_remove, 10704 KF_bpf_rbtree_add_impl, 10705 KF_bpf_rbtree_first, 10706 KF_bpf_dynptr_from_skb, 10707 KF_bpf_dynptr_from_xdp, 10708 KF_bpf_dynptr_slice, 10709 KF_bpf_dynptr_slice_rdwr, 10710 KF_bpf_dynptr_clone, 10711 }; 10712 10713 BTF_SET_START(special_kfunc_set) 10714 BTF_ID(func, bpf_obj_new_impl) 10715 BTF_ID(func, bpf_obj_drop_impl) 10716 BTF_ID(func, bpf_refcount_acquire_impl) 10717 BTF_ID(func, bpf_list_push_front_impl) 10718 BTF_ID(func, bpf_list_push_back_impl) 10719 BTF_ID(func, bpf_list_pop_front) 10720 BTF_ID(func, bpf_list_pop_back) 10721 BTF_ID(func, bpf_cast_to_kern_ctx) 10722 BTF_ID(func, bpf_rdonly_cast) 10723 BTF_ID(func, bpf_rbtree_remove) 10724 BTF_ID(func, bpf_rbtree_add_impl) 10725 BTF_ID(func, bpf_rbtree_first) 10726 BTF_ID(func, bpf_dynptr_from_skb) 10727 BTF_ID(func, bpf_dynptr_from_xdp) 10728 BTF_ID(func, bpf_dynptr_slice) 10729 BTF_ID(func, bpf_dynptr_slice_rdwr) 10730 BTF_ID(func, bpf_dynptr_clone) 10731 BTF_SET_END(special_kfunc_set) 10732 10733 BTF_ID_LIST(special_kfunc_list) 10734 BTF_ID(func, bpf_obj_new_impl) 10735 BTF_ID(func, bpf_obj_drop_impl) 10736 BTF_ID(func, bpf_refcount_acquire_impl) 10737 BTF_ID(func, bpf_list_push_front_impl) 10738 BTF_ID(func, bpf_list_push_back_impl) 10739 BTF_ID(func, bpf_list_pop_front) 10740 BTF_ID(func, bpf_list_pop_back) 10741 BTF_ID(func, bpf_cast_to_kern_ctx) 10742 BTF_ID(func, bpf_rdonly_cast) 10743 BTF_ID(func, bpf_rcu_read_lock) 10744 BTF_ID(func, bpf_rcu_read_unlock) 10745 BTF_ID(func, bpf_rbtree_remove) 10746 BTF_ID(func, bpf_rbtree_add_impl) 10747 BTF_ID(func, bpf_rbtree_first) 10748 BTF_ID(func, bpf_dynptr_from_skb) 10749 BTF_ID(func, bpf_dynptr_from_xdp) 10750 BTF_ID(func, bpf_dynptr_slice) 10751 BTF_ID(func, bpf_dynptr_slice_rdwr) 10752 BTF_ID(func, bpf_dynptr_clone) 10753 10754 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 10755 { 10756 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 10757 meta->arg_owning_ref) { 10758 return false; 10759 } 10760 10761 return meta->kfunc_flags & KF_RET_NULL; 10762 } 10763 10764 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 10765 { 10766 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 10767 } 10768 10769 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 10770 { 10771 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 10772 } 10773 10774 static enum kfunc_ptr_arg_type 10775 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 10776 struct bpf_kfunc_call_arg_meta *meta, 10777 const struct btf_type *t, const struct btf_type *ref_t, 10778 const char *ref_tname, const struct btf_param *args, 10779 int argno, int nargs) 10780 { 10781 u32 regno = argno + 1; 10782 struct bpf_reg_state *regs = cur_regs(env); 10783 struct bpf_reg_state *reg = ®s[regno]; 10784 bool arg_mem_size = false; 10785 10786 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 10787 return KF_ARG_PTR_TO_CTX; 10788 10789 /* In this function, we verify the kfunc's BTF as per the argument type, 10790 * leaving the rest of the verification with respect to the register 10791 * type to our caller. When a set of conditions hold in the BTF type of 10792 * arguments, we resolve it to a known kfunc_ptr_arg_type. 10793 */ 10794 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 10795 return KF_ARG_PTR_TO_CTX; 10796 10797 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 10798 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 10799 10800 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 10801 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 10802 10803 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 10804 return KF_ARG_PTR_TO_DYNPTR; 10805 10806 if (is_kfunc_arg_iter(meta, argno)) 10807 return KF_ARG_PTR_TO_ITER; 10808 10809 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 10810 return KF_ARG_PTR_TO_LIST_HEAD; 10811 10812 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 10813 return KF_ARG_PTR_TO_LIST_NODE; 10814 10815 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 10816 return KF_ARG_PTR_TO_RB_ROOT; 10817 10818 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 10819 return KF_ARG_PTR_TO_RB_NODE; 10820 10821 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 10822 if (!btf_type_is_struct(ref_t)) { 10823 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 10824 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 10825 return -EINVAL; 10826 } 10827 return KF_ARG_PTR_TO_BTF_ID; 10828 } 10829 10830 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 10831 return KF_ARG_PTR_TO_CALLBACK; 10832 10833 10834 if (argno + 1 < nargs && 10835 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 10836 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 10837 arg_mem_size = true; 10838 10839 /* This is the catch all argument type of register types supported by 10840 * check_helper_mem_access. However, we only allow when argument type is 10841 * pointer to scalar, or struct composed (recursively) of scalars. When 10842 * arg_mem_size is true, the pointer can be void *. 10843 */ 10844 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 10845 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 10846 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 10847 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 10848 return -EINVAL; 10849 } 10850 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 10851 } 10852 10853 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 10854 struct bpf_reg_state *reg, 10855 const struct btf_type *ref_t, 10856 const char *ref_tname, u32 ref_id, 10857 struct bpf_kfunc_call_arg_meta *meta, 10858 int argno) 10859 { 10860 const struct btf_type *reg_ref_t; 10861 bool strict_type_match = false; 10862 const struct btf *reg_btf; 10863 const char *reg_ref_tname; 10864 u32 reg_ref_id; 10865 10866 if (base_type(reg->type) == PTR_TO_BTF_ID) { 10867 reg_btf = reg->btf; 10868 reg_ref_id = reg->btf_id; 10869 } else { 10870 reg_btf = btf_vmlinux; 10871 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 10872 } 10873 10874 /* Enforce strict type matching for calls to kfuncs that are acquiring 10875 * or releasing a reference, or are no-cast aliases. We do _not_ 10876 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 10877 * as we want to enable BPF programs to pass types that are bitwise 10878 * equivalent without forcing them to explicitly cast with something 10879 * like bpf_cast_to_kern_ctx(). 10880 * 10881 * For example, say we had a type like the following: 10882 * 10883 * struct bpf_cpumask { 10884 * cpumask_t cpumask; 10885 * refcount_t usage; 10886 * }; 10887 * 10888 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 10889 * to a struct cpumask, so it would be safe to pass a struct 10890 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 10891 * 10892 * The philosophy here is similar to how we allow scalars of different 10893 * types to be passed to kfuncs as long as the size is the same. The 10894 * only difference here is that we're simply allowing 10895 * btf_struct_ids_match() to walk the struct at the 0th offset, and 10896 * resolve types. 10897 */ 10898 if (is_kfunc_acquire(meta) || 10899 (is_kfunc_release(meta) && reg->ref_obj_id) || 10900 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 10901 strict_type_match = true; 10902 10903 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 10904 10905 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 10906 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 10907 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 10908 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 10909 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 10910 btf_type_str(reg_ref_t), reg_ref_tname); 10911 return -EINVAL; 10912 } 10913 return 0; 10914 } 10915 10916 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10917 { 10918 struct bpf_verifier_state *state = env->cur_state; 10919 struct btf_record *rec = reg_btf_record(reg); 10920 10921 if (!state->active_lock.ptr) { 10922 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 10923 return -EFAULT; 10924 } 10925 10926 if (type_flag(reg->type) & NON_OWN_REF) { 10927 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 10928 return -EFAULT; 10929 } 10930 10931 reg->type |= NON_OWN_REF; 10932 if (rec->refcount_off >= 0) 10933 reg->type |= MEM_RCU; 10934 10935 return 0; 10936 } 10937 10938 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 10939 { 10940 struct bpf_func_state *state, *unused; 10941 struct bpf_reg_state *reg; 10942 int i; 10943 10944 state = cur_func(env); 10945 10946 if (!ref_obj_id) { 10947 verbose(env, "verifier internal error: ref_obj_id is zero for " 10948 "owning -> non-owning conversion\n"); 10949 return -EFAULT; 10950 } 10951 10952 for (i = 0; i < state->acquired_refs; i++) { 10953 if (state->refs[i].id != ref_obj_id) 10954 continue; 10955 10956 /* Clear ref_obj_id here so release_reference doesn't clobber 10957 * the whole reg 10958 */ 10959 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 10960 if (reg->ref_obj_id == ref_obj_id) { 10961 reg->ref_obj_id = 0; 10962 ref_set_non_owning(env, reg); 10963 } 10964 })); 10965 return 0; 10966 } 10967 10968 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 10969 return -EFAULT; 10970 } 10971 10972 /* Implementation details: 10973 * 10974 * Each register points to some region of memory, which we define as an 10975 * allocation. Each allocation may embed a bpf_spin_lock which protects any 10976 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 10977 * allocation. The lock and the data it protects are colocated in the same 10978 * memory region. 10979 * 10980 * Hence, everytime a register holds a pointer value pointing to such 10981 * allocation, the verifier preserves a unique reg->id for it. 10982 * 10983 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 10984 * bpf_spin_lock is called. 10985 * 10986 * To enable this, lock state in the verifier captures two values: 10987 * active_lock.ptr = Register's type specific pointer 10988 * active_lock.id = A unique ID for each register pointer value 10989 * 10990 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 10991 * supported register types. 10992 * 10993 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 10994 * allocated objects is the reg->btf pointer. 10995 * 10996 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 10997 * can establish the provenance of the map value statically for each distinct 10998 * lookup into such maps. They always contain a single map value hence unique 10999 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 11000 * 11001 * So, in case of global variables, they use array maps with max_entries = 1, 11002 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 11003 * into the same map value as max_entries is 1, as described above). 11004 * 11005 * In case of inner map lookups, the inner map pointer has same map_ptr as the 11006 * outer map pointer (in verifier context), but each lookup into an inner map 11007 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 11008 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 11009 * will get different reg->id assigned to each lookup, hence different 11010 * active_lock.id. 11011 * 11012 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 11013 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 11014 * returned from bpf_obj_new. Each allocation receives a new reg->id. 11015 */ 11016 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 11017 { 11018 void *ptr; 11019 u32 id; 11020 11021 switch ((int)reg->type) { 11022 case PTR_TO_MAP_VALUE: 11023 ptr = reg->map_ptr; 11024 break; 11025 case PTR_TO_BTF_ID | MEM_ALLOC: 11026 ptr = reg->btf; 11027 break; 11028 default: 11029 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 11030 return -EFAULT; 11031 } 11032 id = reg->id; 11033 11034 if (!env->cur_state->active_lock.ptr) 11035 return -EINVAL; 11036 if (env->cur_state->active_lock.ptr != ptr || 11037 env->cur_state->active_lock.id != id) { 11038 verbose(env, "held lock and object are not in the same allocation\n"); 11039 return -EINVAL; 11040 } 11041 return 0; 11042 } 11043 11044 static bool is_bpf_list_api_kfunc(u32 btf_id) 11045 { 11046 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11047 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11048 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 11049 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 11050 } 11051 11052 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 11053 { 11054 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 11055 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11056 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 11057 } 11058 11059 static bool is_bpf_graph_api_kfunc(u32 btf_id) 11060 { 11061 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 11062 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 11063 } 11064 11065 static bool is_sync_callback_calling_kfunc(u32 btf_id) 11066 { 11067 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 11068 } 11069 11070 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 11071 { 11072 return is_bpf_rbtree_api_kfunc(btf_id); 11073 } 11074 11075 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 11076 enum btf_field_type head_field_type, 11077 u32 kfunc_btf_id) 11078 { 11079 bool ret; 11080 11081 switch (head_field_type) { 11082 case BPF_LIST_HEAD: 11083 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 11084 break; 11085 case BPF_RB_ROOT: 11086 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 11087 break; 11088 default: 11089 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 11090 btf_field_type_name(head_field_type)); 11091 return false; 11092 } 11093 11094 if (!ret) 11095 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 11096 btf_field_type_name(head_field_type)); 11097 return ret; 11098 } 11099 11100 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 11101 enum btf_field_type node_field_type, 11102 u32 kfunc_btf_id) 11103 { 11104 bool ret; 11105 11106 switch (node_field_type) { 11107 case BPF_LIST_NODE: 11108 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11109 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 11110 break; 11111 case BPF_RB_NODE: 11112 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11113 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 11114 break; 11115 default: 11116 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 11117 btf_field_type_name(node_field_type)); 11118 return false; 11119 } 11120 11121 if (!ret) 11122 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 11123 btf_field_type_name(node_field_type)); 11124 return ret; 11125 } 11126 11127 static int 11128 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 11129 struct bpf_reg_state *reg, u32 regno, 11130 struct bpf_kfunc_call_arg_meta *meta, 11131 enum btf_field_type head_field_type, 11132 struct btf_field **head_field) 11133 { 11134 const char *head_type_name; 11135 struct btf_field *field; 11136 struct btf_record *rec; 11137 u32 head_off; 11138 11139 if (meta->btf != btf_vmlinux) { 11140 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11141 return -EFAULT; 11142 } 11143 11144 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 11145 return -EFAULT; 11146 11147 head_type_name = btf_field_type_name(head_field_type); 11148 if (!tnum_is_const(reg->var_off)) { 11149 verbose(env, 11150 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11151 regno, head_type_name); 11152 return -EINVAL; 11153 } 11154 11155 rec = reg_btf_record(reg); 11156 head_off = reg->off + reg->var_off.value; 11157 field = btf_record_find(rec, head_off, head_field_type); 11158 if (!field) { 11159 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 11160 return -EINVAL; 11161 } 11162 11163 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 11164 if (check_reg_allocation_locked(env, reg)) { 11165 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 11166 rec->spin_lock_off, head_type_name); 11167 return -EINVAL; 11168 } 11169 11170 if (*head_field) { 11171 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 11172 return -EFAULT; 11173 } 11174 *head_field = field; 11175 return 0; 11176 } 11177 11178 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 11179 struct bpf_reg_state *reg, u32 regno, 11180 struct bpf_kfunc_call_arg_meta *meta) 11181 { 11182 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 11183 &meta->arg_list_head.field); 11184 } 11185 11186 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 11187 struct bpf_reg_state *reg, u32 regno, 11188 struct bpf_kfunc_call_arg_meta *meta) 11189 { 11190 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 11191 &meta->arg_rbtree_root.field); 11192 } 11193 11194 static int 11195 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 11196 struct bpf_reg_state *reg, u32 regno, 11197 struct bpf_kfunc_call_arg_meta *meta, 11198 enum btf_field_type head_field_type, 11199 enum btf_field_type node_field_type, 11200 struct btf_field **node_field) 11201 { 11202 const char *node_type_name; 11203 const struct btf_type *et, *t; 11204 struct btf_field *field; 11205 u32 node_off; 11206 11207 if (meta->btf != btf_vmlinux) { 11208 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11209 return -EFAULT; 11210 } 11211 11212 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 11213 return -EFAULT; 11214 11215 node_type_name = btf_field_type_name(node_field_type); 11216 if (!tnum_is_const(reg->var_off)) { 11217 verbose(env, 11218 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11219 regno, node_type_name); 11220 return -EINVAL; 11221 } 11222 11223 node_off = reg->off + reg->var_off.value; 11224 field = reg_find_field_offset(reg, node_off, node_field_type); 11225 if (!field || field->offset != node_off) { 11226 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 11227 return -EINVAL; 11228 } 11229 11230 field = *node_field; 11231 11232 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 11233 t = btf_type_by_id(reg->btf, reg->btf_id); 11234 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 11235 field->graph_root.value_btf_id, true)) { 11236 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 11237 "in struct %s, but arg is at offset=%d in struct %s\n", 11238 btf_field_type_name(head_field_type), 11239 btf_field_type_name(node_field_type), 11240 field->graph_root.node_offset, 11241 btf_name_by_offset(field->graph_root.btf, et->name_off), 11242 node_off, btf_name_by_offset(reg->btf, t->name_off)); 11243 return -EINVAL; 11244 } 11245 meta->arg_btf = reg->btf; 11246 meta->arg_btf_id = reg->btf_id; 11247 11248 if (node_off != field->graph_root.node_offset) { 11249 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 11250 node_off, btf_field_type_name(node_field_type), 11251 field->graph_root.node_offset, 11252 btf_name_by_offset(field->graph_root.btf, et->name_off)); 11253 return -EINVAL; 11254 } 11255 11256 return 0; 11257 } 11258 11259 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 11260 struct bpf_reg_state *reg, u32 regno, 11261 struct bpf_kfunc_call_arg_meta *meta) 11262 { 11263 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11264 BPF_LIST_HEAD, BPF_LIST_NODE, 11265 &meta->arg_list_head.field); 11266 } 11267 11268 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 11269 struct bpf_reg_state *reg, u32 regno, 11270 struct bpf_kfunc_call_arg_meta *meta) 11271 { 11272 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11273 BPF_RB_ROOT, BPF_RB_NODE, 11274 &meta->arg_rbtree_root.field); 11275 } 11276 11277 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 11278 int insn_idx) 11279 { 11280 const char *func_name = meta->func_name, *ref_tname; 11281 const struct btf *btf = meta->btf; 11282 const struct btf_param *args; 11283 struct btf_record *rec; 11284 u32 i, nargs; 11285 int ret; 11286 11287 args = (const struct btf_param *)(meta->func_proto + 1); 11288 nargs = btf_type_vlen(meta->func_proto); 11289 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 11290 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 11291 MAX_BPF_FUNC_REG_ARGS); 11292 return -EINVAL; 11293 } 11294 11295 /* Check that BTF function arguments match actual types that the 11296 * verifier sees. 11297 */ 11298 for (i = 0; i < nargs; i++) { 11299 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 11300 const struct btf_type *t, *ref_t, *resolve_ret; 11301 enum bpf_arg_type arg_type = ARG_DONTCARE; 11302 u32 regno = i + 1, ref_id, type_size; 11303 bool is_ret_buf_sz = false; 11304 int kf_arg_type; 11305 11306 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 11307 11308 if (is_kfunc_arg_ignore(btf, &args[i])) 11309 continue; 11310 11311 if (btf_type_is_scalar(t)) { 11312 if (reg->type != SCALAR_VALUE) { 11313 verbose(env, "R%d is not a scalar\n", regno); 11314 return -EINVAL; 11315 } 11316 11317 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 11318 if (meta->arg_constant.found) { 11319 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11320 return -EFAULT; 11321 } 11322 if (!tnum_is_const(reg->var_off)) { 11323 verbose(env, "R%d must be a known constant\n", regno); 11324 return -EINVAL; 11325 } 11326 ret = mark_chain_precision(env, regno); 11327 if (ret < 0) 11328 return ret; 11329 meta->arg_constant.found = true; 11330 meta->arg_constant.value = reg->var_off.value; 11331 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 11332 meta->r0_rdonly = true; 11333 is_ret_buf_sz = true; 11334 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 11335 is_ret_buf_sz = true; 11336 } 11337 11338 if (is_ret_buf_sz) { 11339 if (meta->r0_size) { 11340 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 11341 return -EINVAL; 11342 } 11343 11344 if (!tnum_is_const(reg->var_off)) { 11345 verbose(env, "R%d is not a const\n", regno); 11346 return -EINVAL; 11347 } 11348 11349 meta->r0_size = reg->var_off.value; 11350 ret = mark_chain_precision(env, regno); 11351 if (ret) 11352 return ret; 11353 } 11354 continue; 11355 } 11356 11357 if (!btf_type_is_ptr(t)) { 11358 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 11359 return -EINVAL; 11360 } 11361 11362 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 11363 (register_is_null(reg) || type_may_be_null(reg->type))) { 11364 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 11365 return -EACCES; 11366 } 11367 11368 if (reg->ref_obj_id) { 11369 if (is_kfunc_release(meta) && meta->ref_obj_id) { 11370 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 11371 regno, reg->ref_obj_id, 11372 meta->ref_obj_id); 11373 return -EFAULT; 11374 } 11375 meta->ref_obj_id = reg->ref_obj_id; 11376 if (is_kfunc_release(meta)) 11377 meta->release_regno = regno; 11378 } 11379 11380 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 11381 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 11382 11383 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 11384 if (kf_arg_type < 0) 11385 return kf_arg_type; 11386 11387 switch (kf_arg_type) { 11388 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11389 case KF_ARG_PTR_TO_BTF_ID: 11390 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 11391 break; 11392 11393 if (!is_trusted_reg(reg)) { 11394 if (!is_kfunc_rcu(meta)) { 11395 verbose(env, "R%d must be referenced or trusted\n", regno); 11396 return -EINVAL; 11397 } 11398 if (!is_rcu_reg(reg)) { 11399 verbose(env, "R%d must be a rcu pointer\n", regno); 11400 return -EINVAL; 11401 } 11402 } 11403 11404 fallthrough; 11405 case KF_ARG_PTR_TO_CTX: 11406 /* Trusted arguments have the same offset checks as release arguments */ 11407 arg_type |= OBJ_RELEASE; 11408 break; 11409 case KF_ARG_PTR_TO_DYNPTR: 11410 case KF_ARG_PTR_TO_ITER: 11411 case KF_ARG_PTR_TO_LIST_HEAD: 11412 case KF_ARG_PTR_TO_LIST_NODE: 11413 case KF_ARG_PTR_TO_RB_ROOT: 11414 case KF_ARG_PTR_TO_RB_NODE: 11415 case KF_ARG_PTR_TO_MEM: 11416 case KF_ARG_PTR_TO_MEM_SIZE: 11417 case KF_ARG_PTR_TO_CALLBACK: 11418 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11419 /* Trusted by default */ 11420 break; 11421 default: 11422 WARN_ON_ONCE(1); 11423 return -EFAULT; 11424 } 11425 11426 if (is_kfunc_release(meta) && reg->ref_obj_id) 11427 arg_type |= OBJ_RELEASE; 11428 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 11429 if (ret < 0) 11430 return ret; 11431 11432 switch (kf_arg_type) { 11433 case KF_ARG_PTR_TO_CTX: 11434 if (reg->type != PTR_TO_CTX) { 11435 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 11436 return -EINVAL; 11437 } 11438 11439 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11440 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 11441 if (ret < 0) 11442 return -EINVAL; 11443 meta->ret_btf_id = ret; 11444 } 11445 break; 11446 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11447 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11448 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11449 return -EINVAL; 11450 } 11451 if (!reg->ref_obj_id) { 11452 verbose(env, "allocated object must be referenced\n"); 11453 return -EINVAL; 11454 } 11455 if (meta->btf == btf_vmlinux && 11456 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 11457 meta->arg_btf = reg->btf; 11458 meta->arg_btf_id = reg->btf_id; 11459 } 11460 break; 11461 case KF_ARG_PTR_TO_DYNPTR: 11462 { 11463 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 11464 int clone_ref_obj_id = 0; 11465 11466 if (reg->type != PTR_TO_STACK && 11467 reg->type != CONST_PTR_TO_DYNPTR) { 11468 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 11469 return -EINVAL; 11470 } 11471 11472 if (reg->type == CONST_PTR_TO_DYNPTR) 11473 dynptr_arg_type |= MEM_RDONLY; 11474 11475 if (is_kfunc_arg_uninit(btf, &args[i])) 11476 dynptr_arg_type |= MEM_UNINIT; 11477 11478 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 11479 dynptr_arg_type |= DYNPTR_TYPE_SKB; 11480 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 11481 dynptr_arg_type |= DYNPTR_TYPE_XDP; 11482 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 11483 (dynptr_arg_type & MEM_UNINIT)) { 11484 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 11485 11486 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 11487 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 11488 return -EFAULT; 11489 } 11490 11491 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 11492 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 11493 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 11494 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 11495 return -EFAULT; 11496 } 11497 } 11498 11499 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 11500 if (ret < 0) 11501 return ret; 11502 11503 if (!(dynptr_arg_type & MEM_UNINIT)) { 11504 int id = dynptr_id(env, reg); 11505 11506 if (id < 0) { 11507 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 11508 return id; 11509 } 11510 meta->initialized_dynptr.id = id; 11511 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 11512 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 11513 } 11514 11515 break; 11516 } 11517 case KF_ARG_PTR_TO_ITER: 11518 ret = process_iter_arg(env, regno, insn_idx, meta); 11519 if (ret < 0) 11520 return ret; 11521 break; 11522 case KF_ARG_PTR_TO_LIST_HEAD: 11523 if (reg->type != PTR_TO_MAP_VALUE && 11524 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11525 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11526 return -EINVAL; 11527 } 11528 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11529 verbose(env, "allocated object must be referenced\n"); 11530 return -EINVAL; 11531 } 11532 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 11533 if (ret < 0) 11534 return ret; 11535 break; 11536 case KF_ARG_PTR_TO_RB_ROOT: 11537 if (reg->type != PTR_TO_MAP_VALUE && 11538 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11539 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11540 return -EINVAL; 11541 } 11542 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11543 verbose(env, "allocated object must be referenced\n"); 11544 return -EINVAL; 11545 } 11546 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 11547 if (ret < 0) 11548 return ret; 11549 break; 11550 case KF_ARG_PTR_TO_LIST_NODE: 11551 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11552 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11553 return -EINVAL; 11554 } 11555 if (!reg->ref_obj_id) { 11556 verbose(env, "allocated object must be referenced\n"); 11557 return -EINVAL; 11558 } 11559 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 11560 if (ret < 0) 11561 return ret; 11562 break; 11563 case KF_ARG_PTR_TO_RB_NODE: 11564 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 11565 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 11566 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 11567 return -EINVAL; 11568 } 11569 if (in_rbtree_lock_required_cb(env)) { 11570 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 11571 return -EINVAL; 11572 } 11573 } else { 11574 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11575 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11576 return -EINVAL; 11577 } 11578 if (!reg->ref_obj_id) { 11579 verbose(env, "allocated object must be referenced\n"); 11580 return -EINVAL; 11581 } 11582 } 11583 11584 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 11585 if (ret < 0) 11586 return ret; 11587 break; 11588 case KF_ARG_PTR_TO_BTF_ID: 11589 /* Only base_type is checked, further checks are done here */ 11590 if ((base_type(reg->type) != PTR_TO_BTF_ID || 11591 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 11592 !reg2btf_ids[base_type(reg->type)]) { 11593 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 11594 verbose(env, "expected %s or socket\n", 11595 reg_type_str(env, base_type(reg->type) | 11596 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 11597 return -EINVAL; 11598 } 11599 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 11600 if (ret < 0) 11601 return ret; 11602 break; 11603 case KF_ARG_PTR_TO_MEM: 11604 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 11605 if (IS_ERR(resolve_ret)) { 11606 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 11607 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 11608 return -EINVAL; 11609 } 11610 ret = check_mem_reg(env, reg, regno, type_size); 11611 if (ret < 0) 11612 return ret; 11613 break; 11614 case KF_ARG_PTR_TO_MEM_SIZE: 11615 { 11616 struct bpf_reg_state *buff_reg = ®s[regno]; 11617 const struct btf_param *buff_arg = &args[i]; 11618 struct bpf_reg_state *size_reg = ®s[regno + 1]; 11619 const struct btf_param *size_arg = &args[i + 1]; 11620 11621 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 11622 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 11623 if (ret < 0) { 11624 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 11625 return ret; 11626 } 11627 } 11628 11629 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 11630 if (meta->arg_constant.found) { 11631 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11632 return -EFAULT; 11633 } 11634 if (!tnum_is_const(size_reg->var_off)) { 11635 verbose(env, "R%d must be a known constant\n", regno + 1); 11636 return -EINVAL; 11637 } 11638 meta->arg_constant.found = true; 11639 meta->arg_constant.value = size_reg->var_off.value; 11640 } 11641 11642 /* Skip next '__sz' or '__szk' argument */ 11643 i++; 11644 break; 11645 } 11646 case KF_ARG_PTR_TO_CALLBACK: 11647 if (reg->type != PTR_TO_FUNC) { 11648 verbose(env, "arg%d expected pointer to func\n", i); 11649 return -EINVAL; 11650 } 11651 meta->subprogno = reg->subprogno; 11652 break; 11653 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11654 if (!type_is_ptr_alloc_obj(reg->type)) { 11655 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 11656 return -EINVAL; 11657 } 11658 if (!type_is_non_owning_ref(reg->type)) 11659 meta->arg_owning_ref = true; 11660 11661 rec = reg_btf_record(reg); 11662 if (!rec) { 11663 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 11664 return -EFAULT; 11665 } 11666 11667 if (rec->refcount_off < 0) { 11668 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 11669 return -EINVAL; 11670 } 11671 11672 meta->arg_btf = reg->btf; 11673 meta->arg_btf_id = reg->btf_id; 11674 break; 11675 } 11676 } 11677 11678 if (is_kfunc_release(meta) && !meta->release_regno) { 11679 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 11680 func_name); 11681 return -EINVAL; 11682 } 11683 11684 return 0; 11685 } 11686 11687 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 11688 struct bpf_insn *insn, 11689 struct bpf_kfunc_call_arg_meta *meta, 11690 const char **kfunc_name) 11691 { 11692 const struct btf_type *func, *func_proto; 11693 u32 func_id, *kfunc_flags; 11694 const char *func_name; 11695 struct btf *desc_btf; 11696 11697 if (kfunc_name) 11698 *kfunc_name = NULL; 11699 11700 if (!insn->imm) 11701 return -EINVAL; 11702 11703 desc_btf = find_kfunc_desc_btf(env, insn->off); 11704 if (IS_ERR(desc_btf)) 11705 return PTR_ERR(desc_btf); 11706 11707 func_id = insn->imm; 11708 func = btf_type_by_id(desc_btf, func_id); 11709 func_name = btf_name_by_offset(desc_btf, func->name_off); 11710 if (kfunc_name) 11711 *kfunc_name = func_name; 11712 func_proto = btf_type_by_id(desc_btf, func->type); 11713 11714 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 11715 if (!kfunc_flags) { 11716 return -EACCES; 11717 } 11718 11719 memset(meta, 0, sizeof(*meta)); 11720 meta->btf = desc_btf; 11721 meta->func_id = func_id; 11722 meta->kfunc_flags = *kfunc_flags; 11723 meta->func_proto = func_proto; 11724 meta->func_name = func_name; 11725 11726 return 0; 11727 } 11728 11729 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 11730 int *insn_idx_p) 11731 { 11732 const struct btf_type *t, *ptr_type; 11733 u32 i, nargs, ptr_type_id, release_ref_obj_id; 11734 struct bpf_reg_state *regs = cur_regs(env); 11735 const char *func_name, *ptr_type_name; 11736 bool sleepable, rcu_lock, rcu_unlock; 11737 struct bpf_kfunc_call_arg_meta meta; 11738 struct bpf_insn_aux_data *insn_aux; 11739 int err, insn_idx = *insn_idx_p; 11740 const struct btf_param *args; 11741 const struct btf_type *ret_t; 11742 struct btf *desc_btf; 11743 11744 /* skip for now, but return error when we find this in fixup_kfunc_call */ 11745 if (!insn->imm) 11746 return 0; 11747 11748 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 11749 if (err == -EACCES && func_name) 11750 verbose(env, "calling kernel function %s is not allowed\n", func_name); 11751 if (err) 11752 return err; 11753 desc_btf = meta.btf; 11754 insn_aux = &env->insn_aux_data[insn_idx]; 11755 11756 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 11757 11758 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 11759 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 11760 return -EACCES; 11761 } 11762 11763 sleepable = is_kfunc_sleepable(&meta); 11764 if (sleepable && !env->prog->aux->sleepable) { 11765 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 11766 return -EACCES; 11767 } 11768 11769 /* Check the arguments */ 11770 err = check_kfunc_args(env, &meta, insn_idx); 11771 if (err < 0) 11772 return err; 11773 11774 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11775 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11776 set_rbtree_add_callback_state); 11777 if (err) { 11778 verbose(env, "kfunc %s#%d failed callback verification\n", 11779 func_name, meta.func_id); 11780 return err; 11781 } 11782 } 11783 11784 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 11785 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 11786 11787 if (env->cur_state->active_rcu_lock) { 11788 struct bpf_func_state *state; 11789 struct bpf_reg_state *reg; 11790 11791 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 11792 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 11793 return -EACCES; 11794 } 11795 11796 if (rcu_lock) { 11797 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 11798 return -EINVAL; 11799 } else if (rcu_unlock) { 11800 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 11801 if (reg->type & MEM_RCU) { 11802 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 11803 reg->type |= PTR_UNTRUSTED; 11804 } 11805 })); 11806 env->cur_state->active_rcu_lock = false; 11807 } else if (sleepable) { 11808 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 11809 return -EACCES; 11810 } 11811 } else if (rcu_lock) { 11812 env->cur_state->active_rcu_lock = true; 11813 } else if (rcu_unlock) { 11814 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 11815 return -EINVAL; 11816 } 11817 11818 /* In case of release function, we get register number of refcounted 11819 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 11820 */ 11821 if (meta.release_regno) { 11822 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 11823 if (err) { 11824 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11825 func_name, meta.func_id); 11826 return err; 11827 } 11828 } 11829 11830 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11831 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11832 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11833 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 11834 insn_aux->insert_off = regs[BPF_REG_2].off; 11835 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 11836 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 11837 if (err) { 11838 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 11839 func_name, meta.func_id); 11840 return err; 11841 } 11842 11843 err = release_reference(env, release_ref_obj_id); 11844 if (err) { 11845 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11846 func_name, meta.func_id); 11847 return err; 11848 } 11849 } 11850 11851 for (i = 0; i < CALLER_SAVED_REGS; i++) 11852 mark_reg_not_init(env, regs, caller_saved[i]); 11853 11854 /* Check return type */ 11855 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 11856 11857 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 11858 /* Only exception is bpf_obj_new_impl */ 11859 if (meta.btf != btf_vmlinux || 11860 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 11861 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 11862 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 11863 return -EINVAL; 11864 } 11865 } 11866 11867 if (btf_type_is_scalar(t)) { 11868 mark_reg_unknown(env, regs, BPF_REG_0); 11869 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 11870 } else if (btf_type_is_ptr(t)) { 11871 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 11872 11873 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11874 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 11875 struct btf *ret_btf; 11876 u32 ret_btf_id; 11877 11878 if (unlikely(!bpf_global_ma_set)) 11879 return -ENOMEM; 11880 11881 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 11882 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 11883 return -EINVAL; 11884 } 11885 11886 ret_btf = env->prog->aux->btf; 11887 ret_btf_id = meta.arg_constant.value; 11888 11889 /* This may be NULL due to user not supplying a BTF */ 11890 if (!ret_btf) { 11891 verbose(env, "bpf_obj_new requires prog BTF\n"); 11892 return -EINVAL; 11893 } 11894 11895 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 11896 if (!ret_t || !__btf_type_is_struct(ret_t)) { 11897 verbose(env, "bpf_obj_new type ID argument must be of a struct\n"); 11898 return -EINVAL; 11899 } 11900 11901 mark_reg_known_zero(env, regs, BPF_REG_0); 11902 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11903 regs[BPF_REG_0].btf = ret_btf; 11904 regs[BPF_REG_0].btf_id = ret_btf_id; 11905 11906 insn_aux->obj_new_size = ret_t->size; 11907 insn_aux->kptr_struct_meta = 11908 btf_find_struct_meta(ret_btf, ret_btf_id); 11909 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 11910 mark_reg_known_zero(env, regs, BPF_REG_0); 11911 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11912 regs[BPF_REG_0].btf = meta.arg_btf; 11913 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 11914 11915 insn_aux->kptr_struct_meta = 11916 btf_find_struct_meta(meta.arg_btf, 11917 meta.arg_btf_id); 11918 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 11919 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 11920 struct btf_field *field = meta.arg_list_head.field; 11921 11922 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11923 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11924 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11925 struct btf_field *field = meta.arg_rbtree_root.field; 11926 11927 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11928 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11929 mark_reg_known_zero(env, regs, BPF_REG_0); 11930 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 11931 regs[BPF_REG_0].btf = desc_btf; 11932 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11933 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 11934 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 11935 if (!ret_t || !btf_type_is_struct(ret_t)) { 11936 verbose(env, 11937 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 11938 return -EINVAL; 11939 } 11940 11941 mark_reg_known_zero(env, regs, BPF_REG_0); 11942 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 11943 regs[BPF_REG_0].btf = desc_btf; 11944 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 11945 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 11946 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 11947 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 11948 11949 mark_reg_known_zero(env, regs, BPF_REG_0); 11950 11951 if (!meta.arg_constant.found) { 11952 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 11953 return -EFAULT; 11954 } 11955 11956 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 11957 11958 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 11959 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 11960 11961 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 11962 regs[BPF_REG_0].type |= MEM_RDONLY; 11963 } else { 11964 /* this will set env->seen_direct_write to true */ 11965 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 11966 verbose(env, "the prog does not allow writes to packet data\n"); 11967 return -EINVAL; 11968 } 11969 } 11970 11971 if (!meta.initialized_dynptr.id) { 11972 verbose(env, "verifier internal error: no dynptr id\n"); 11973 return -EFAULT; 11974 } 11975 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 11976 11977 /* we don't need to set BPF_REG_0's ref obj id 11978 * because packet slices are not refcounted (see 11979 * dynptr_type_refcounted) 11980 */ 11981 } else { 11982 verbose(env, "kernel function %s unhandled dynamic return type\n", 11983 meta.func_name); 11984 return -EFAULT; 11985 } 11986 } else if (!__btf_type_is_struct(ptr_type)) { 11987 if (!meta.r0_size) { 11988 __u32 sz; 11989 11990 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 11991 meta.r0_size = sz; 11992 meta.r0_rdonly = true; 11993 } 11994 } 11995 if (!meta.r0_size) { 11996 ptr_type_name = btf_name_by_offset(desc_btf, 11997 ptr_type->name_off); 11998 verbose(env, 11999 "kernel function %s returns pointer type %s %s is not supported\n", 12000 func_name, 12001 btf_type_str(ptr_type), 12002 ptr_type_name); 12003 return -EINVAL; 12004 } 12005 12006 mark_reg_known_zero(env, regs, BPF_REG_0); 12007 regs[BPF_REG_0].type = PTR_TO_MEM; 12008 regs[BPF_REG_0].mem_size = meta.r0_size; 12009 12010 if (meta.r0_rdonly) 12011 regs[BPF_REG_0].type |= MEM_RDONLY; 12012 12013 /* Ensures we don't access the memory after a release_reference() */ 12014 if (meta.ref_obj_id) 12015 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 12016 } else { 12017 mark_reg_known_zero(env, regs, BPF_REG_0); 12018 regs[BPF_REG_0].btf = desc_btf; 12019 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 12020 regs[BPF_REG_0].btf_id = ptr_type_id; 12021 } 12022 12023 if (is_kfunc_ret_null(&meta)) { 12024 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 12025 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 12026 regs[BPF_REG_0].id = ++env->id_gen; 12027 } 12028 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 12029 if (is_kfunc_acquire(&meta)) { 12030 int id = acquire_reference_state(env, insn_idx); 12031 12032 if (id < 0) 12033 return id; 12034 if (is_kfunc_ret_null(&meta)) 12035 regs[BPF_REG_0].id = id; 12036 regs[BPF_REG_0].ref_obj_id = id; 12037 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 12038 ref_set_non_owning(env, ®s[BPF_REG_0]); 12039 } 12040 12041 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 12042 regs[BPF_REG_0].id = ++env->id_gen; 12043 } else if (btf_type_is_void(t)) { 12044 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 12045 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 12046 insn_aux->kptr_struct_meta = 12047 btf_find_struct_meta(meta.arg_btf, 12048 meta.arg_btf_id); 12049 } 12050 } 12051 } 12052 12053 nargs = btf_type_vlen(meta.func_proto); 12054 args = (const struct btf_param *)(meta.func_proto + 1); 12055 for (i = 0; i < nargs; i++) { 12056 u32 regno = i + 1; 12057 12058 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 12059 if (btf_type_is_ptr(t)) 12060 mark_btf_func_reg_size(env, regno, sizeof(void *)); 12061 else 12062 /* scalar. ensured by btf_check_kfunc_arg_match() */ 12063 mark_btf_func_reg_size(env, regno, t->size); 12064 } 12065 12066 if (is_iter_next_kfunc(&meta)) { 12067 err = process_iter_next_call(env, insn_idx, &meta); 12068 if (err) 12069 return err; 12070 } 12071 12072 return 0; 12073 } 12074 12075 static bool signed_add_overflows(s64 a, s64 b) 12076 { 12077 /* Do the add in u64, where overflow is well-defined */ 12078 s64 res = (s64)((u64)a + (u64)b); 12079 12080 if (b < 0) 12081 return res > a; 12082 return res < a; 12083 } 12084 12085 static bool signed_add32_overflows(s32 a, s32 b) 12086 { 12087 /* Do the add in u32, where overflow is well-defined */ 12088 s32 res = (s32)((u32)a + (u32)b); 12089 12090 if (b < 0) 12091 return res > a; 12092 return res < a; 12093 } 12094 12095 static bool signed_sub_overflows(s64 a, s64 b) 12096 { 12097 /* Do the sub in u64, where overflow is well-defined */ 12098 s64 res = (s64)((u64)a - (u64)b); 12099 12100 if (b < 0) 12101 return res < a; 12102 return res > a; 12103 } 12104 12105 static bool signed_sub32_overflows(s32 a, s32 b) 12106 { 12107 /* Do the sub in u32, where overflow is well-defined */ 12108 s32 res = (s32)((u32)a - (u32)b); 12109 12110 if (b < 0) 12111 return res < a; 12112 return res > a; 12113 } 12114 12115 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 12116 const struct bpf_reg_state *reg, 12117 enum bpf_reg_type type) 12118 { 12119 bool known = tnum_is_const(reg->var_off); 12120 s64 val = reg->var_off.value; 12121 s64 smin = reg->smin_value; 12122 12123 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 12124 verbose(env, "math between %s pointer and %lld is not allowed\n", 12125 reg_type_str(env, type), val); 12126 return false; 12127 } 12128 12129 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 12130 verbose(env, "%s pointer offset %d is not allowed\n", 12131 reg_type_str(env, type), reg->off); 12132 return false; 12133 } 12134 12135 if (smin == S64_MIN) { 12136 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 12137 reg_type_str(env, type)); 12138 return false; 12139 } 12140 12141 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 12142 verbose(env, "value %lld makes %s pointer be out of bounds\n", 12143 smin, reg_type_str(env, type)); 12144 return false; 12145 } 12146 12147 return true; 12148 } 12149 12150 enum { 12151 REASON_BOUNDS = -1, 12152 REASON_TYPE = -2, 12153 REASON_PATHS = -3, 12154 REASON_LIMIT = -4, 12155 REASON_STACK = -5, 12156 }; 12157 12158 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 12159 u32 *alu_limit, bool mask_to_left) 12160 { 12161 u32 max = 0, ptr_limit = 0; 12162 12163 switch (ptr_reg->type) { 12164 case PTR_TO_STACK: 12165 /* Offset 0 is out-of-bounds, but acceptable start for the 12166 * left direction, see BPF_REG_FP. Also, unknown scalar 12167 * offset where we would need to deal with min/max bounds is 12168 * currently prohibited for unprivileged. 12169 */ 12170 max = MAX_BPF_STACK + mask_to_left; 12171 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 12172 break; 12173 case PTR_TO_MAP_VALUE: 12174 max = ptr_reg->map_ptr->value_size; 12175 ptr_limit = (mask_to_left ? 12176 ptr_reg->smin_value : 12177 ptr_reg->umax_value) + ptr_reg->off; 12178 break; 12179 default: 12180 return REASON_TYPE; 12181 } 12182 12183 if (ptr_limit >= max) 12184 return REASON_LIMIT; 12185 *alu_limit = ptr_limit; 12186 return 0; 12187 } 12188 12189 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 12190 const struct bpf_insn *insn) 12191 { 12192 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 12193 } 12194 12195 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 12196 u32 alu_state, u32 alu_limit) 12197 { 12198 /* If we arrived here from different branches with different 12199 * state or limits to sanitize, then this won't work. 12200 */ 12201 if (aux->alu_state && 12202 (aux->alu_state != alu_state || 12203 aux->alu_limit != alu_limit)) 12204 return REASON_PATHS; 12205 12206 /* Corresponding fixup done in do_misc_fixups(). */ 12207 aux->alu_state = alu_state; 12208 aux->alu_limit = alu_limit; 12209 return 0; 12210 } 12211 12212 static int sanitize_val_alu(struct bpf_verifier_env *env, 12213 struct bpf_insn *insn) 12214 { 12215 struct bpf_insn_aux_data *aux = cur_aux(env); 12216 12217 if (can_skip_alu_sanitation(env, insn)) 12218 return 0; 12219 12220 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 12221 } 12222 12223 static bool sanitize_needed(u8 opcode) 12224 { 12225 return opcode == BPF_ADD || opcode == BPF_SUB; 12226 } 12227 12228 struct bpf_sanitize_info { 12229 struct bpf_insn_aux_data aux; 12230 bool mask_to_left; 12231 }; 12232 12233 static struct bpf_verifier_state * 12234 sanitize_speculative_path(struct bpf_verifier_env *env, 12235 const struct bpf_insn *insn, 12236 u32 next_idx, u32 curr_idx) 12237 { 12238 struct bpf_verifier_state *branch; 12239 struct bpf_reg_state *regs; 12240 12241 branch = push_stack(env, next_idx, curr_idx, true); 12242 if (branch && insn) { 12243 regs = branch->frame[branch->curframe]->regs; 12244 if (BPF_SRC(insn->code) == BPF_K) { 12245 mark_reg_unknown(env, regs, insn->dst_reg); 12246 } else if (BPF_SRC(insn->code) == BPF_X) { 12247 mark_reg_unknown(env, regs, insn->dst_reg); 12248 mark_reg_unknown(env, regs, insn->src_reg); 12249 } 12250 } 12251 return branch; 12252 } 12253 12254 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 12255 struct bpf_insn *insn, 12256 const struct bpf_reg_state *ptr_reg, 12257 const struct bpf_reg_state *off_reg, 12258 struct bpf_reg_state *dst_reg, 12259 struct bpf_sanitize_info *info, 12260 const bool commit_window) 12261 { 12262 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 12263 struct bpf_verifier_state *vstate = env->cur_state; 12264 bool off_is_imm = tnum_is_const(off_reg->var_off); 12265 bool off_is_neg = off_reg->smin_value < 0; 12266 bool ptr_is_dst_reg = ptr_reg == dst_reg; 12267 u8 opcode = BPF_OP(insn->code); 12268 u32 alu_state, alu_limit; 12269 struct bpf_reg_state tmp; 12270 bool ret; 12271 int err; 12272 12273 if (can_skip_alu_sanitation(env, insn)) 12274 return 0; 12275 12276 /* We already marked aux for masking from non-speculative 12277 * paths, thus we got here in the first place. We only care 12278 * to explore bad access from here. 12279 */ 12280 if (vstate->speculative) 12281 goto do_sim; 12282 12283 if (!commit_window) { 12284 if (!tnum_is_const(off_reg->var_off) && 12285 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 12286 return REASON_BOUNDS; 12287 12288 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 12289 (opcode == BPF_SUB && !off_is_neg); 12290 } 12291 12292 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 12293 if (err < 0) 12294 return err; 12295 12296 if (commit_window) { 12297 /* In commit phase we narrow the masking window based on 12298 * the observed pointer move after the simulated operation. 12299 */ 12300 alu_state = info->aux.alu_state; 12301 alu_limit = abs(info->aux.alu_limit - alu_limit); 12302 } else { 12303 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 12304 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 12305 alu_state |= ptr_is_dst_reg ? 12306 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 12307 12308 /* Limit pruning on unknown scalars to enable deep search for 12309 * potential masking differences from other program paths. 12310 */ 12311 if (!off_is_imm) 12312 env->explore_alu_limits = true; 12313 } 12314 12315 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 12316 if (err < 0) 12317 return err; 12318 do_sim: 12319 /* If we're in commit phase, we're done here given we already 12320 * pushed the truncated dst_reg into the speculative verification 12321 * stack. 12322 * 12323 * Also, when register is a known constant, we rewrite register-based 12324 * operation to immediate-based, and thus do not need masking (and as 12325 * a consequence, do not need to simulate the zero-truncation either). 12326 */ 12327 if (commit_window || off_is_imm) 12328 return 0; 12329 12330 /* Simulate and find potential out-of-bounds access under 12331 * speculative execution from truncation as a result of 12332 * masking when off was not within expected range. If off 12333 * sits in dst, then we temporarily need to move ptr there 12334 * to simulate dst (== 0) +/-= ptr. Needed, for example, 12335 * for cases where we use K-based arithmetic in one direction 12336 * and truncated reg-based in the other in order to explore 12337 * bad access. 12338 */ 12339 if (!ptr_is_dst_reg) { 12340 tmp = *dst_reg; 12341 copy_register_state(dst_reg, ptr_reg); 12342 } 12343 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 12344 env->insn_idx); 12345 if (!ptr_is_dst_reg && ret) 12346 *dst_reg = tmp; 12347 return !ret ? REASON_STACK : 0; 12348 } 12349 12350 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 12351 { 12352 struct bpf_verifier_state *vstate = env->cur_state; 12353 12354 /* If we simulate paths under speculation, we don't update the 12355 * insn as 'seen' such that when we verify unreachable paths in 12356 * the non-speculative domain, sanitize_dead_code() can still 12357 * rewrite/sanitize them. 12358 */ 12359 if (!vstate->speculative) 12360 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 12361 } 12362 12363 static int sanitize_err(struct bpf_verifier_env *env, 12364 const struct bpf_insn *insn, int reason, 12365 const struct bpf_reg_state *off_reg, 12366 const struct bpf_reg_state *dst_reg) 12367 { 12368 static const char *err = "pointer arithmetic with it prohibited for !root"; 12369 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 12370 u32 dst = insn->dst_reg, src = insn->src_reg; 12371 12372 switch (reason) { 12373 case REASON_BOUNDS: 12374 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 12375 off_reg == dst_reg ? dst : src, err); 12376 break; 12377 case REASON_TYPE: 12378 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 12379 off_reg == dst_reg ? src : dst, err); 12380 break; 12381 case REASON_PATHS: 12382 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 12383 dst, op, err); 12384 break; 12385 case REASON_LIMIT: 12386 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 12387 dst, op, err); 12388 break; 12389 case REASON_STACK: 12390 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 12391 dst, err); 12392 break; 12393 default: 12394 verbose(env, "verifier internal error: unknown reason (%d)\n", 12395 reason); 12396 break; 12397 } 12398 12399 return -EACCES; 12400 } 12401 12402 /* check that stack access falls within stack limits and that 'reg' doesn't 12403 * have a variable offset. 12404 * 12405 * Variable offset is prohibited for unprivileged mode for simplicity since it 12406 * requires corresponding support in Spectre masking for stack ALU. See also 12407 * retrieve_ptr_limit(). 12408 * 12409 * 12410 * 'off' includes 'reg->off'. 12411 */ 12412 static int check_stack_access_for_ptr_arithmetic( 12413 struct bpf_verifier_env *env, 12414 int regno, 12415 const struct bpf_reg_state *reg, 12416 int off) 12417 { 12418 if (!tnum_is_const(reg->var_off)) { 12419 char tn_buf[48]; 12420 12421 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 12422 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 12423 regno, tn_buf, off); 12424 return -EACCES; 12425 } 12426 12427 if (off >= 0 || off < -MAX_BPF_STACK) { 12428 verbose(env, "R%d stack pointer arithmetic goes out of range, " 12429 "prohibited for !root; off=%d\n", regno, off); 12430 return -EACCES; 12431 } 12432 12433 return 0; 12434 } 12435 12436 static int sanitize_check_bounds(struct bpf_verifier_env *env, 12437 const struct bpf_insn *insn, 12438 const struct bpf_reg_state *dst_reg) 12439 { 12440 u32 dst = insn->dst_reg; 12441 12442 /* For unprivileged we require that resulting offset must be in bounds 12443 * in order to be able to sanitize access later on. 12444 */ 12445 if (env->bypass_spec_v1) 12446 return 0; 12447 12448 switch (dst_reg->type) { 12449 case PTR_TO_STACK: 12450 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 12451 dst_reg->off + dst_reg->var_off.value)) 12452 return -EACCES; 12453 break; 12454 case PTR_TO_MAP_VALUE: 12455 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 12456 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 12457 "prohibited for !root\n", dst); 12458 return -EACCES; 12459 } 12460 break; 12461 default: 12462 break; 12463 } 12464 12465 return 0; 12466 } 12467 12468 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 12469 * Caller should also handle BPF_MOV case separately. 12470 * If we return -EACCES, caller may want to try again treating pointer as a 12471 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 12472 */ 12473 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 12474 struct bpf_insn *insn, 12475 const struct bpf_reg_state *ptr_reg, 12476 const struct bpf_reg_state *off_reg) 12477 { 12478 struct bpf_verifier_state *vstate = env->cur_state; 12479 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12480 struct bpf_reg_state *regs = state->regs, *dst_reg; 12481 bool known = tnum_is_const(off_reg->var_off); 12482 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 12483 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 12484 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 12485 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 12486 struct bpf_sanitize_info info = {}; 12487 u8 opcode = BPF_OP(insn->code); 12488 u32 dst = insn->dst_reg; 12489 int ret; 12490 12491 dst_reg = ®s[dst]; 12492 12493 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 12494 smin_val > smax_val || umin_val > umax_val) { 12495 /* Taint dst register if offset had invalid bounds derived from 12496 * e.g. dead branches. 12497 */ 12498 __mark_reg_unknown(env, dst_reg); 12499 return 0; 12500 } 12501 12502 if (BPF_CLASS(insn->code) != BPF_ALU64) { 12503 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 12504 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 12505 __mark_reg_unknown(env, dst_reg); 12506 return 0; 12507 } 12508 12509 verbose(env, 12510 "R%d 32-bit pointer arithmetic prohibited\n", 12511 dst); 12512 return -EACCES; 12513 } 12514 12515 if (ptr_reg->type & PTR_MAYBE_NULL) { 12516 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 12517 dst, reg_type_str(env, ptr_reg->type)); 12518 return -EACCES; 12519 } 12520 12521 switch (base_type(ptr_reg->type)) { 12522 case PTR_TO_FLOW_KEYS: 12523 if (known) 12524 break; 12525 fallthrough; 12526 case CONST_PTR_TO_MAP: 12527 /* smin_val represents the known value */ 12528 if (known && smin_val == 0 && opcode == BPF_ADD) 12529 break; 12530 fallthrough; 12531 case PTR_TO_PACKET_END: 12532 case PTR_TO_SOCKET: 12533 case PTR_TO_SOCK_COMMON: 12534 case PTR_TO_TCP_SOCK: 12535 case PTR_TO_XDP_SOCK: 12536 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 12537 dst, reg_type_str(env, ptr_reg->type)); 12538 return -EACCES; 12539 default: 12540 break; 12541 } 12542 12543 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 12544 * The id may be overwritten later if we create a new variable offset. 12545 */ 12546 dst_reg->type = ptr_reg->type; 12547 dst_reg->id = ptr_reg->id; 12548 12549 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 12550 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 12551 return -EINVAL; 12552 12553 /* pointer types do not carry 32-bit bounds at the moment. */ 12554 __mark_reg32_unbounded(dst_reg); 12555 12556 if (sanitize_needed(opcode)) { 12557 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 12558 &info, false); 12559 if (ret < 0) 12560 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12561 } 12562 12563 switch (opcode) { 12564 case BPF_ADD: 12565 /* We can take a fixed offset as long as it doesn't overflow 12566 * the s32 'off' field 12567 */ 12568 if (known && (ptr_reg->off + smin_val == 12569 (s64)(s32)(ptr_reg->off + smin_val))) { 12570 /* pointer += K. Accumulate it into fixed offset */ 12571 dst_reg->smin_value = smin_ptr; 12572 dst_reg->smax_value = smax_ptr; 12573 dst_reg->umin_value = umin_ptr; 12574 dst_reg->umax_value = umax_ptr; 12575 dst_reg->var_off = ptr_reg->var_off; 12576 dst_reg->off = ptr_reg->off + smin_val; 12577 dst_reg->raw = ptr_reg->raw; 12578 break; 12579 } 12580 /* A new variable offset is created. Note that off_reg->off 12581 * == 0, since it's a scalar. 12582 * dst_reg gets the pointer type and since some positive 12583 * integer value was added to the pointer, give it a new 'id' 12584 * if it's a PTR_TO_PACKET. 12585 * this creates a new 'base' pointer, off_reg (variable) gets 12586 * added into the variable offset, and we copy the fixed offset 12587 * from ptr_reg. 12588 */ 12589 if (signed_add_overflows(smin_ptr, smin_val) || 12590 signed_add_overflows(smax_ptr, smax_val)) { 12591 dst_reg->smin_value = S64_MIN; 12592 dst_reg->smax_value = S64_MAX; 12593 } else { 12594 dst_reg->smin_value = smin_ptr + smin_val; 12595 dst_reg->smax_value = smax_ptr + smax_val; 12596 } 12597 if (umin_ptr + umin_val < umin_ptr || 12598 umax_ptr + umax_val < umax_ptr) { 12599 dst_reg->umin_value = 0; 12600 dst_reg->umax_value = U64_MAX; 12601 } else { 12602 dst_reg->umin_value = umin_ptr + umin_val; 12603 dst_reg->umax_value = umax_ptr + umax_val; 12604 } 12605 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 12606 dst_reg->off = ptr_reg->off; 12607 dst_reg->raw = ptr_reg->raw; 12608 if (reg_is_pkt_pointer(ptr_reg)) { 12609 dst_reg->id = ++env->id_gen; 12610 /* something was added to pkt_ptr, set range to zero */ 12611 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12612 } 12613 break; 12614 case BPF_SUB: 12615 if (dst_reg == off_reg) { 12616 /* scalar -= pointer. Creates an unknown scalar */ 12617 verbose(env, "R%d tried to subtract pointer from scalar\n", 12618 dst); 12619 return -EACCES; 12620 } 12621 /* We don't allow subtraction from FP, because (according to 12622 * test_verifier.c test "invalid fp arithmetic", JITs might not 12623 * be able to deal with it. 12624 */ 12625 if (ptr_reg->type == PTR_TO_STACK) { 12626 verbose(env, "R%d subtraction from stack pointer prohibited\n", 12627 dst); 12628 return -EACCES; 12629 } 12630 if (known && (ptr_reg->off - smin_val == 12631 (s64)(s32)(ptr_reg->off - smin_val))) { 12632 /* pointer -= K. Subtract it from fixed offset */ 12633 dst_reg->smin_value = smin_ptr; 12634 dst_reg->smax_value = smax_ptr; 12635 dst_reg->umin_value = umin_ptr; 12636 dst_reg->umax_value = umax_ptr; 12637 dst_reg->var_off = ptr_reg->var_off; 12638 dst_reg->id = ptr_reg->id; 12639 dst_reg->off = ptr_reg->off - smin_val; 12640 dst_reg->raw = ptr_reg->raw; 12641 break; 12642 } 12643 /* A new variable offset is created. If the subtrahend is known 12644 * nonnegative, then any reg->range we had before is still good. 12645 */ 12646 if (signed_sub_overflows(smin_ptr, smax_val) || 12647 signed_sub_overflows(smax_ptr, smin_val)) { 12648 /* Overflow possible, we know nothing */ 12649 dst_reg->smin_value = S64_MIN; 12650 dst_reg->smax_value = S64_MAX; 12651 } else { 12652 dst_reg->smin_value = smin_ptr - smax_val; 12653 dst_reg->smax_value = smax_ptr - smin_val; 12654 } 12655 if (umin_ptr < umax_val) { 12656 /* Overflow possible, we know nothing */ 12657 dst_reg->umin_value = 0; 12658 dst_reg->umax_value = U64_MAX; 12659 } else { 12660 /* Cannot overflow (as long as bounds are consistent) */ 12661 dst_reg->umin_value = umin_ptr - umax_val; 12662 dst_reg->umax_value = umax_ptr - umin_val; 12663 } 12664 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 12665 dst_reg->off = ptr_reg->off; 12666 dst_reg->raw = ptr_reg->raw; 12667 if (reg_is_pkt_pointer(ptr_reg)) { 12668 dst_reg->id = ++env->id_gen; 12669 /* something was added to pkt_ptr, set range to zero */ 12670 if (smin_val < 0) 12671 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12672 } 12673 break; 12674 case BPF_AND: 12675 case BPF_OR: 12676 case BPF_XOR: 12677 /* bitwise ops on pointers are troublesome, prohibit. */ 12678 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 12679 dst, bpf_alu_string[opcode >> 4]); 12680 return -EACCES; 12681 default: 12682 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 12683 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 12684 dst, bpf_alu_string[opcode >> 4]); 12685 return -EACCES; 12686 } 12687 12688 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 12689 return -EINVAL; 12690 reg_bounds_sync(dst_reg); 12691 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 12692 return -EACCES; 12693 if (sanitize_needed(opcode)) { 12694 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 12695 &info, true); 12696 if (ret < 0) 12697 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12698 } 12699 12700 return 0; 12701 } 12702 12703 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 12704 struct bpf_reg_state *src_reg) 12705 { 12706 s32 smin_val = src_reg->s32_min_value; 12707 s32 smax_val = src_reg->s32_max_value; 12708 u32 umin_val = src_reg->u32_min_value; 12709 u32 umax_val = src_reg->u32_max_value; 12710 12711 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 12712 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 12713 dst_reg->s32_min_value = S32_MIN; 12714 dst_reg->s32_max_value = S32_MAX; 12715 } else { 12716 dst_reg->s32_min_value += smin_val; 12717 dst_reg->s32_max_value += smax_val; 12718 } 12719 if (dst_reg->u32_min_value + umin_val < umin_val || 12720 dst_reg->u32_max_value + umax_val < umax_val) { 12721 dst_reg->u32_min_value = 0; 12722 dst_reg->u32_max_value = U32_MAX; 12723 } else { 12724 dst_reg->u32_min_value += umin_val; 12725 dst_reg->u32_max_value += umax_val; 12726 } 12727 } 12728 12729 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 12730 struct bpf_reg_state *src_reg) 12731 { 12732 s64 smin_val = src_reg->smin_value; 12733 s64 smax_val = src_reg->smax_value; 12734 u64 umin_val = src_reg->umin_value; 12735 u64 umax_val = src_reg->umax_value; 12736 12737 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 12738 signed_add_overflows(dst_reg->smax_value, smax_val)) { 12739 dst_reg->smin_value = S64_MIN; 12740 dst_reg->smax_value = S64_MAX; 12741 } else { 12742 dst_reg->smin_value += smin_val; 12743 dst_reg->smax_value += smax_val; 12744 } 12745 if (dst_reg->umin_value + umin_val < umin_val || 12746 dst_reg->umax_value + umax_val < umax_val) { 12747 dst_reg->umin_value = 0; 12748 dst_reg->umax_value = U64_MAX; 12749 } else { 12750 dst_reg->umin_value += umin_val; 12751 dst_reg->umax_value += umax_val; 12752 } 12753 } 12754 12755 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 12756 struct bpf_reg_state *src_reg) 12757 { 12758 s32 smin_val = src_reg->s32_min_value; 12759 s32 smax_val = src_reg->s32_max_value; 12760 u32 umin_val = src_reg->u32_min_value; 12761 u32 umax_val = src_reg->u32_max_value; 12762 12763 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 12764 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 12765 /* Overflow possible, we know nothing */ 12766 dst_reg->s32_min_value = S32_MIN; 12767 dst_reg->s32_max_value = S32_MAX; 12768 } else { 12769 dst_reg->s32_min_value -= smax_val; 12770 dst_reg->s32_max_value -= smin_val; 12771 } 12772 if (dst_reg->u32_min_value < umax_val) { 12773 /* Overflow possible, we know nothing */ 12774 dst_reg->u32_min_value = 0; 12775 dst_reg->u32_max_value = U32_MAX; 12776 } else { 12777 /* Cannot overflow (as long as bounds are consistent) */ 12778 dst_reg->u32_min_value -= umax_val; 12779 dst_reg->u32_max_value -= umin_val; 12780 } 12781 } 12782 12783 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 12784 struct bpf_reg_state *src_reg) 12785 { 12786 s64 smin_val = src_reg->smin_value; 12787 s64 smax_val = src_reg->smax_value; 12788 u64 umin_val = src_reg->umin_value; 12789 u64 umax_val = src_reg->umax_value; 12790 12791 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 12792 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 12793 /* Overflow possible, we know nothing */ 12794 dst_reg->smin_value = S64_MIN; 12795 dst_reg->smax_value = S64_MAX; 12796 } else { 12797 dst_reg->smin_value -= smax_val; 12798 dst_reg->smax_value -= smin_val; 12799 } 12800 if (dst_reg->umin_value < umax_val) { 12801 /* Overflow possible, we know nothing */ 12802 dst_reg->umin_value = 0; 12803 dst_reg->umax_value = U64_MAX; 12804 } else { 12805 /* Cannot overflow (as long as bounds are consistent) */ 12806 dst_reg->umin_value -= umax_val; 12807 dst_reg->umax_value -= umin_val; 12808 } 12809 } 12810 12811 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 12812 struct bpf_reg_state *src_reg) 12813 { 12814 s32 smin_val = src_reg->s32_min_value; 12815 u32 umin_val = src_reg->u32_min_value; 12816 u32 umax_val = src_reg->u32_max_value; 12817 12818 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 12819 /* Ain't nobody got time to multiply that sign */ 12820 __mark_reg32_unbounded(dst_reg); 12821 return; 12822 } 12823 /* Both values are positive, so we can work with unsigned and 12824 * copy the result to signed (unless it exceeds S32_MAX). 12825 */ 12826 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 12827 /* Potential overflow, we know nothing */ 12828 __mark_reg32_unbounded(dst_reg); 12829 return; 12830 } 12831 dst_reg->u32_min_value *= umin_val; 12832 dst_reg->u32_max_value *= umax_val; 12833 if (dst_reg->u32_max_value > S32_MAX) { 12834 /* Overflow possible, we know nothing */ 12835 dst_reg->s32_min_value = S32_MIN; 12836 dst_reg->s32_max_value = S32_MAX; 12837 } else { 12838 dst_reg->s32_min_value = dst_reg->u32_min_value; 12839 dst_reg->s32_max_value = dst_reg->u32_max_value; 12840 } 12841 } 12842 12843 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 12844 struct bpf_reg_state *src_reg) 12845 { 12846 s64 smin_val = src_reg->smin_value; 12847 u64 umin_val = src_reg->umin_value; 12848 u64 umax_val = src_reg->umax_value; 12849 12850 if (smin_val < 0 || dst_reg->smin_value < 0) { 12851 /* Ain't nobody got time to multiply that sign */ 12852 __mark_reg64_unbounded(dst_reg); 12853 return; 12854 } 12855 /* Both values are positive, so we can work with unsigned and 12856 * copy the result to signed (unless it exceeds S64_MAX). 12857 */ 12858 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 12859 /* Potential overflow, we know nothing */ 12860 __mark_reg64_unbounded(dst_reg); 12861 return; 12862 } 12863 dst_reg->umin_value *= umin_val; 12864 dst_reg->umax_value *= umax_val; 12865 if (dst_reg->umax_value > S64_MAX) { 12866 /* Overflow possible, we know nothing */ 12867 dst_reg->smin_value = S64_MIN; 12868 dst_reg->smax_value = S64_MAX; 12869 } else { 12870 dst_reg->smin_value = dst_reg->umin_value; 12871 dst_reg->smax_value = dst_reg->umax_value; 12872 } 12873 } 12874 12875 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 12876 struct bpf_reg_state *src_reg) 12877 { 12878 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12879 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12880 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12881 s32 smin_val = src_reg->s32_min_value; 12882 u32 umax_val = src_reg->u32_max_value; 12883 12884 if (src_known && dst_known) { 12885 __mark_reg32_known(dst_reg, var32_off.value); 12886 return; 12887 } 12888 12889 /* We get our minimum from the var_off, since that's inherently 12890 * bitwise. Our maximum is the minimum of the operands' maxima. 12891 */ 12892 dst_reg->u32_min_value = var32_off.value; 12893 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 12894 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12895 /* Lose signed bounds when ANDing negative numbers, 12896 * ain't nobody got time for that. 12897 */ 12898 dst_reg->s32_min_value = S32_MIN; 12899 dst_reg->s32_max_value = S32_MAX; 12900 } else { 12901 /* ANDing two positives gives a positive, so safe to 12902 * cast result into s64. 12903 */ 12904 dst_reg->s32_min_value = dst_reg->u32_min_value; 12905 dst_reg->s32_max_value = dst_reg->u32_max_value; 12906 } 12907 } 12908 12909 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 12910 struct bpf_reg_state *src_reg) 12911 { 12912 bool src_known = tnum_is_const(src_reg->var_off); 12913 bool dst_known = tnum_is_const(dst_reg->var_off); 12914 s64 smin_val = src_reg->smin_value; 12915 u64 umax_val = src_reg->umax_value; 12916 12917 if (src_known && dst_known) { 12918 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12919 return; 12920 } 12921 12922 /* We get our minimum from the var_off, since that's inherently 12923 * bitwise. Our maximum is the minimum of the operands' maxima. 12924 */ 12925 dst_reg->umin_value = dst_reg->var_off.value; 12926 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 12927 if (dst_reg->smin_value < 0 || smin_val < 0) { 12928 /* Lose signed bounds when ANDing negative numbers, 12929 * ain't nobody got time for that. 12930 */ 12931 dst_reg->smin_value = S64_MIN; 12932 dst_reg->smax_value = S64_MAX; 12933 } else { 12934 /* ANDing two positives gives a positive, so safe to 12935 * cast result into s64. 12936 */ 12937 dst_reg->smin_value = dst_reg->umin_value; 12938 dst_reg->smax_value = dst_reg->umax_value; 12939 } 12940 /* We may learn something more from the var_off */ 12941 __update_reg_bounds(dst_reg); 12942 } 12943 12944 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 12945 struct bpf_reg_state *src_reg) 12946 { 12947 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12948 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12949 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12950 s32 smin_val = src_reg->s32_min_value; 12951 u32 umin_val = src_reg->u32_min_value; 12952 12953 if (src_known && dst_known) { 12954 __mark_reg32_known(dst_reg, var32_off.value); 12955 return; 12956 } 12957 12958 /* We get our maximum from the var_off, and our minimum is the 12959 * maximum of the operands' minima 12960 */ 12961 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 12962 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12963 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12964 /* Lose signed bounds when ORing negative numbers, 12965 * ain't nobody got time for that. 12966 */ 12967 dst_reg->s32_min_value = S32_MIN; 12968 dst_reg->s32_max_value = S32_MAX; 12969 } else { 12970 /* ORing two positives gives a positive, so safe to 12971 * cast result into s64. 12972 */ 12973 dst_reg->s32_min_value = dst_reg->u32_min_value; 12974 dst_reg->s32_max_value = dst_reg->u32_max_value; 12975 } 12976 } 12977 12978 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 12979 struct bpf_reg_state *src_reg) 12980 { 12981 bool src_known = tnum_is_const(src_reg->var_off); 12982 bool dst_known = tnum_is_const(dst_reg->var_off); 12983 s64 smin_val = src_reg->smin_value; 12984 u64 umin_val = src_reg->umin_value; 12985 12986 if (src_known && dst_known) { 12987 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12988 return; 12989 } 12990 12991 /* We get our maximum from the var_off, and our minimum is the 12992 * maximum of the operands' minima 12993 */ 12994 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 12995 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12996 if (dst_reg->smin_value < 0 || smin_val < 0) { 12997 /* Lose signed bounds when ORing negative numbers, 12998 * ain't nobody got time for that. 12999 */ 13000 dst_reg->smin_value = S64_MIN; 13001 dst_reg->smax_value = S64_MAX; 13002 } else { 13003 /* ORing two positives gives a positive, so safe to 13004 * cast result into s64. 13005 */ 13006 dst_reg->smin_value = dst_reg->umin_value; 13007 dst_reg->smax_value = dst_reg->umax_value; 13008 } 13009 /* We may learn something more from the var_off */ 13010 __update_reg_bounds(dst_reg); 13011 } 13012 13013 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 13014 struct bpf_reg_state *src_reg) 13015 { 13016 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13017 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13018 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13019 s32 smin_val = src_reg->s32_min_value; 13020 13021 if (src_known && dst_known) { 13022 __mark_reg32_known(dst_reg, var32_off.value); 13023 return; 13024 } 13025 13026 /* We get both minimum and maximum from the var32_off. */ 13027 dst_reg->u32_min_value = var32_off.value; 13028 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 13029 13030 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 13031 /* XORing two positive sign numbers gives a positive, 13032 * so safe to cast u32 result into s32. 13033 */ 13034 dst_reg->s32_min_value = dst_reg->u32_min_value; 13035 dst_reg->s32_max_value = dst_reg->u32_max_value; 13036 } else { 13037 dst_reg->s32_min_value = S32_MIN; 13038 dst_reg->s32_max_value = S32_MAX; 13039 } 13040 } 13041 13042 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 13043 struct bpf_reg_state *src_reg) 13044 { 13045 bool src_known = tnum_is_const(src_reg->var_off); 13046 bool dst_known = tnum_is_const(dst_reg->var_off); 13047 s64 smin_val = src_reg->smin_value; 13048 13049 if (src_known && dst_known) { 13050 /* dst_reg->var_off.value has been updated earlier */ 13051 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13052 return; 13053 } 13054 13055 /* We get both minimum and maximum from the var_off. */ 13056 dst_reg->umin_value = dst_reg->var_off.value; 13057 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 13058 13059 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 13060 /* XORing two positive sign numbers gives a positive, 13061 * so safe to cast u64 result into s64. 13062 */ 13063 dst_reg->smin_value = dst_reg->umin_value; 13064 dst_reg->smax_value = dst_reg->umax_value; 13065 } else { 13066 dst_reg->smin_value = S64_MIN; 13067 dst_reg->smax_value = S64_MAX; 13068 } 13069 13070 __update_reg_bounds(dst_reg); 13071 } 13072 13073 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13074 u64 umin_val, u64 umax_val) 13075 { 13076 /* We lose all sign bit information (except what we can pick 13077 * up from var_off) 13078 */ 13079 dst_reg->s32_min_value = S32_MIN; 13080 dst_reg->s32_max_value = S32_MAX; 13081 /* If we might shift our top bit out, then we know nothing */ 13082 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 13083 dst_reg->u32_min_value = 0; 13084 dst_reg->u32_max_value = U32_MAX; 13085 } else { 13086 dst_reg->u32_min_value <<= umin_val; 13087 dst_reg->u32_max_value <<= umax_val; 13088 } 13089 } 13090 13091 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13092 struct bpf_reg_state *src_reg) 13093 { 13094 u32 umax_val = src_reg->u32_max_value; 13095 u32 umin_val = src_reg->u32_min_value; 13096 /* u32 alu operation will zext upper bits */ 13097 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13098 13099 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13100 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 13101 /* Not required but being careful mark reg64 bounds as unknown so 13102 * that we are forced to pick them up from tnum and zext later and 13103 * if some path skips this step we are still safe. 13104 */ 13105 __mark_reg64_unbounded(dst_reg); 13106 __update_reg32_bounds(dst_reg); 13107 } 13108 13109 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 13110 u64 umin_val, u64 umax_val) 13111 { 13112 /* Special case <<32 because it is a common compiler pattern to sign 13113 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 13114 * positive we know this shift will also be positive so we can track 13115 * bounds correctly. Otherwise we lose all sign bit information except 13116 * what we can pick up from var_off. Perhaps we can generalize this 13117 * later to shifts of any length. 13118 */ 13119 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 13120 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 13121 else 13122 dst_reg->smax_value = S64_MAX; 13123 13124 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 13125 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 13126 else 13127 dst_reg->smin_value = S64_MIN; 13128 13129 /* If we might shift our top bit out, then we know nothing */ 13130 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 13131 dst_reg->umin_value = 0; 13132 dst_reg->umax_value = U64_MAX; 13133 } else { 13134 dst_reg->umin_value <<= umin_val; 13135 dst_reg->umax_value <<= umax_val; 13136 } 13137 } 13138 13139 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 13140 struct bpf_reg_state *src_reg) 13141 { 13142 u64 umax_val = src_reg->umax_value; 13143 u64 umin_val = src_reg->umin_value; 13144 13145 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 13146 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 13147 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13148 13149 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 13150 /* We may learn something more from the var_off */ 13151 __update_reg_bounds(dst_reg); 13152 } 13153 13154 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 13155 struct bpf_reg_state *src_reg) 13156 { 13157 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13158 u32 umax_val = src_reg->u32_max_value; 13159 u32 umin_val = src_reg->u32_min_value; 13160 13161 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13162 * be negative, then either: 13163 * 1) src_reg might be zero, so the sign bit of the result is 13164 * unknown, so we lose our signed bounds 13165 * 2) it's known negative, thus the unsigned bounds capture the 13166 * signed bounds 13167 * 3) the signed bounds cross zero, so they tell us nothing 13168 * about the result 13169 * If the value in dst_reg is known nonnegative, then again the 13170 * unsigned bounds capture the signed bounds. 13171 * Thus, in all cases it suffices to blow away our signed bounds 13172 * and rely on inferring new ones from the unsigned bounds and 13173 * var_off of the result. 13174 */ 13175 dst_reg->s32_min_value = S32_MIN; 13176 dst_reg->s32_max_value = S32_MAX; 13177 13178 dst_reg->var_off = tnum_rshift(subreg, umin_val); 13179 dst_reg->u32_min_value >>= umax_val; 13180 dst_reg->u32_max_value >>= umin_val; 13181 13182 __mark_reg64_unbounded(dst_reg); 13183 __update_reg32_bounds(dst_reg); 13184 } 13185 13186 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 13187 struct bpf_reg_state *src_reg) 13188 { 13189 u64 umax_val = src_reg->umax_value; 13190 u64 umin_val = src_reg->umin_value; 13191 13192 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13193 * be negative, then either: 13194 * 1) src_reg might be zero, so the sign bit of the result is 13195 * unknown, so we lose our signed bounds 13196 * 2) it's known negative, thus the unsigned bounds capture the 13197 * signed bounds 13198 * 3) the signed bounds cross zero, so they tell us nothing 13199 * about the result 13200 * If the value in dst_reg is known nonnegative, then again the 13201 * unsigned bounds capture the signed bounds. 13202 * Thus, in all cases it suffices to blow away our signed bounds 13203 * and rely on inferring new ones from the unsigned bounds and 13204 * var_off of the result. 13205 */ 13206 dst_reg->smin_value = S64_MIN; 13207 dst_reg->smax_value = S64_MAX; 13208 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 13209 dst_reg->umin_value >>= umax_val; 13210 dst_reg->umax_value >>= umin_val; 13211 13212 /* Its not easy to operate on alu32 bounds here because it depends 13213 * on bits being shifted in. Take easy way out and mark unbounded 13214 * so we can recalculate later from tnum. 13215 */ 13216 __mark_reg32_unbounded(dst_reg); 13217 __update_reg_bounds(dst_reg); 13218 } 13219 13220 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 13221 struct bpf_reg_state *src_reg) 13222 { 13223 u64 umin_val = src_reg->u32_min_value; 13224 13225 /* Upon reaching here, src_known is true and 13226 * umax_val is equal to umin_val. 13227 */ 13228 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 13229 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 13230 13231 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 13232 13233 /* blow away the dst_reg umin_value/umax_value and rely on 13234 * dst_reg var_off to refine the result. 13235 */ 13236 dst_reg->u32_min_value = 0; 13237 dst_reg->u32_max_value = U32_MAX; 13238 13239 __mark_reg64_unbounded(dst_reg); 13240 __update_reg32_bounds(dst_reg); 13241 } 13242 13243 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 13244 struct bpf_reg_state *src_reg) 13245 { 13246 u64 umin_val = src_reg->umin_value; 13247 13248 /* Upon reaching here, src_known is true and umax_val is equal 13249 * to umin_val. 13250 */ 13251 dst_reg->smin_value >>= umin_val; 13252 dst_reg->smax_value >>= umin_val; 13253 13254 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 13255 13256 /* blow away the dst_reg umin_value/umax_value and rely on 13257 * dst_reg var_off to refine the result. 13258 */ 13259 dst_reg->umin_value = 0; 13260 dst_reg->umax_value = U64_MAX; 13261 13262 /* Its not easy to operate on alu32 bounds here because it depends 13263 * on bits being shifted in from upper 32-bits. Take easy way out 13264 * and mark unbounded so we can recalculate later from tnum. 13265 */ 13266 __mark_reg32_unbounded(dst_reg); 13267 __update_reg_bounds(dst_reg); 13268 } 13269 13270 /* WARNING: This function does calculations on 64-bit values, but the actual 13271 * execution may occur on 32-bit values. Therefore, things like bitshifts 13272 * need extra checks in the 32-bit case. 13273 */ 13274 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 13275 struct bpf_insn *insn, 13276 struct bpf_reg_state *dst_reg, 13277 struct bpf_reg_state src_reg) 13278 { 13279 struct bpf_reg_state *regs = cur_regs(env); 13280 u8 opcode = BPF_OP(insn->code); 13281 bool src_known; 13282 s64 smin_val, smax_val; 13283 u64 umin_val, umax_val; 13284 s32 s32_min_val, s32_max_val; 13285 u32 u32_min_val, u32_max_val; 13286 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 13287 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 13288 int ret; 13289 13290 smin_val = src_reg.smin_value; 13291 smax_val = src_reg.smax_value; 13292 umin_val = src_reg.umin_value; 13293 umax_val = src_reg.umax_value; 13294 13295 s32_min_val = src_reg.s32_min_value; 13296 s32_max_val = src_reg.s32_max_value; 13297 u32_min_val = src_reg.u32_min_value; 13298 u32_max_val = src_reg.u32_max_value; 13299 13300 if (alu32) { 13301 src_known = tnum_subreg_is_const(src_reg.var_off); 13302 if ((src_known && 13303 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 13304 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 13305 /* Taint dst register if offset had invalid bounds 13306 * derived from e.g. dead branches. 13307 */ 13308 __mark_reg_unknown(env, dst_reg); 13309 return 0; 13310 } 13311 } else { 13312 src_known = tnum_is_const(src_reg.var_off); 13313 if ((src_known && 13314 (smin_val != smax_val || umin_val != umax_val)) || 13315 smin_val > smax_val || umin_val > umax_val) { 13316 /* Taint dst register if offset had invalid bounds 13317 * derived from e.g. dead branches. 13318 */ 13319 __mark_reg_unknown(env, dst_reg); 13320 return 0; 13321 } 13322 } 13323 13324 if (!src_known && 13325 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 13326 __mark_reg_unknown(env, dst_reg); 13327 return 0; 13328 } 13329 13330 if (sanitize_needed(opcode)) { 13331 ret = sanitize_val_alu(env, insn); 13332 if (ret < 0) 13333 return sanitize_err(env, insn, ret, NULL, NULL); 13334 } 13335 13336 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 13337 * There are two classes of instructions: The first class we track both 13338 * alu32 and alu64 sign/unsigned bounds independently this provides the 13339 * greatest amount of precision when alu operations are mixed with jmp32 13340 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 13341 * and BPF_OR. This is possible because these ops have fairly easy to 13342 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 13343 * See alu32 verifier tests for examples. The second class of 13344 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 13345 * with regards to tracking sign/unsigned bounds because the bits may 13346 * cross subreg boundaries in the alu64 case. When this happens we mark 13347 * the reg unbounded in the subreg bound space and use the resulting 13348 * tnum to calculate an approximation of the sign/unsigned bounds. 13349 */ 13350 switch (opcode) { 13351 case BPF_ADD: 13352 scalar32_min_max_add(dst_reg, &src_reg); 13353 scalar_min_max_add(dst_reg, &src_reg); 13354 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 13355 break; 13356 case BPF_SUB: 13357 scalar32_min_max_sub(dst_reg, &src_reg); 13358 scalar_min_max_sub(dst_reg, &src_reg); 13359 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 13360 break; 13361 case BPF_MUL: 13362 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 13363 scalar32_min_max_mul(dst_reg, &src_reg); 13364 scalar_min_max_mul(dst_reg, &src_reg); 13365 break; 13366 case BPF_AND: 13367 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 13368 scalar32_min_max_and(dst_reg, &src_reg); 13369 scalar_min_max_and(dst_reg, &src_reg); 13370 break; 13371 case BPF_OR: 13372 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 13373 scalar32_min_max_or(dst_reg, &src_reg); 13374 scalar_min_max_or(dst_reg, &src_reg); 13375 break; 13376 case BPF_XOR: 13377 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 13378 scalar32_min_max_xor(dst_reg, &src_reg); 13379 scalar_min_max_xor(dst_reg, &src_reg); 13380 break; 13381 case BPF_LSH: 13382 if (umax_val >= insn_bitness) { 13383 /* Shifts greater than 31 or 63 are undefined. 13384 * This includes shifts by a negative number. 13385 */ 13386 mark_reg_unknown(env, regs, insn->dst_reg); 13387 break; 13388 } 13389 if (alu32) 13390 scalar32_min_max_lsh(dst_reg, &src_reg); 13391 else 13392 scalar_min_max_lsh(dst_reg, &src_reg); 13393 break; 13394 case BPF_RSH: 13395 if (umax_val >= insn_bitness) { 13396 /* Shifts greater than 31 or 63 are undefined. 13397 * This includes shifts by a negative number. 13398 */ 13399 mark_reg_unknown(env, regs, insn->dst_reg); 13400 break; 13401 } 13402 if (alu32) 13403 scalar32_min_max_rsh(dst_reg, &src_reg); 13404 else 13405 scalar_min_max_rsh(dst_reg, &src_reg); 13406 break; 13407 case BPF_ARSH: 13408 if (umax_val >= insn_bitness) { 13409 /* Shifts greater than 31 or 63 are undefined. 13410 * This includes shifts by a negative number. 13411 */ 13412 mark_reg_unknown(env, regs, insn->dst_reg); 13413 break; 13414 } 13415 if (alu32) 13416 scalar32_min_max_arsh(dst_reg, &src_reg); 13417 else 13418 scalar_min_max_arsh(dst_reg, &src_reg); 13419 break; 13420 default: 13421 mark_reg_unknown(env, regs, insn->dst_reg); 13422 break; 13423 } 13424 13425 /* ALU32 ops are zero extended into 64bit register */ 13426 if (alu32) 13427 zext_32_to_64(dst_reg); 13428 reg_bounds_sync(dst_reg); 13429 return 0; 13430 } 13431 13432 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 13433 * and var_off. 13434 */ 13435 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 13436 struct bpf_insn *insn) 13437 { 13438 struct bpf_verifier_state *vstate = env->cur_state; 13439 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13440 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 13441 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 13442 u8 opcode = BPF_OP(insn->code); 13443 int err; 13444 13445 dst_reg = ®s[insn->dst_reg]; 13446 src_reg = NULL; 13447 if (dst_reg->type != SCALAR_VALUE) 13448 ptr_reg = dst_reg; 13449 else 13450 /* Make sure ID is cleared otherwise dst_reg min/max could be 13451 * incorrectly propagated into other registers by find_equal_scalars() 13452 */ 13453 dst_reg->id = 0; 13454 if (BPF_SRC(insn->code) == BPF_X) { 13455 src_reg = ®s[insn->src_reg]; 13456 if (src_reg->type != SCALAR_VALUE) { 13457 if (dst_reg->type != SCALAR_VALUE) { 13458 /* Combining two pointers by any ALU op yields 13459 * an arbitrary scalar. Disallow all math except 13460 * pointer subtraction 13461 */ 13462 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 13463 mark_reg_unknown(env, regs, insn->dst_reg); 13464 return 0; 13465 } 13466 verbose(env, "R%d pointer %s pointer prohibited\n", 13467 insn->dst_reg, 13468 bpf_alu_string[opcode >> 4]); 13469 return -EACCES; 13470 } else { 13471 /* scalar += pointer 13472 * This is legal, but we have to reverse our 13473 * src/dest handling in computing the range 13474 */ 13475 err = mark_chain_precision(env, insn->dst_reg); 13476 if (err) 13477 return err; 13478 return adjust_ptr_min_max_vals(env, insn, 13479 src_reg, dst_reg); 13480 } 13481 } else if (ptr_reg) { 13482 /* pointer += scalar */ 13483 err = mark_chain_precision(env, insn->src_reg); 13484 if (err) 13485 return err; 13486 return adjust_ptr_min_max_vals(env, insn, 13487 dst_reg, src_reg); 13488 } else if (dst_reg->precise) { 13489 /* if dst_reg is precise, src_reg should be precise as well */ 13490 err = mark_chain_precision(env, insn->src_reg); 13491 if (err) 13492 return err; 13493 } 13494 } else { 13495 /* Pretend the src is a reg with a known value, since we only 13496 * need to be able to read from this state. 13497 */ 13498 off_reg.type = SCALAR_VALUE; 13499 __mark_reg_known(&off_reg, insn->imm); 13500 src_reg = &off_reg; 13501 if (ptr_reg) /* pointer += K */ 13502 return adjust_ptr_min_max_vals(env, insn, 13503 ptr_reg, src_reg); 13504 } 13505 13506 /* Got here implies adding two SCALAR_VALUEs */ 13507 if (WARN_ON_ONCE(ptr_reg)) { 13508 print_verifier_state(env, state, true); 13509 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 13510 return -EINVAL; 13511 } 13512 if (WARN_ON(!src_reg)) { 13513 print_verifier_state(env, state, true); 13514 verbose(env, "verifier internal error: no src_reg\n"); 13515 return -EINVAL; 13516 } 13517 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 13518 } 13519 13520 /* check validity of 32-bit and 64-bit arithmetic operations */ 13521 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 13522 { 13523 struct bpf_reg_state *regs = cur_regs(env); 13524 u8 opcode = BPF_OP(insn->code); 13525 int err; 13526 13527 if (opcode == BPF_END || opcode == BPF_NEG) { 13528 if (opcode == BPF_NEG) { 13529 if (BPF_SRC(insn->code) != BPF_K || 13530 insn->src_reg != BPF_REG_0 || 13531 insn->off != 0 || insn->imm != 0) { 13532 verbose(env, "BPF_NEG uses reserved fields\n"); 13533 return -EINVAL; 13534 } 13535 } else { 13536 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 13537 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 13538 (BPF_CLASS(insn->code) == BPF_ALU64 && 13539 BPF_SRC(insn->code) != BPF_TO_LE)) { 13540 verbose(env, "BPF_END uses reserved fields\n"); 13541 return -EINVAL; 13542 } 13543 } 13544 13545 /* check src operand */ 13546 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13547 if (err) 13548 return err; 13549 13550 if (is_pointer_value(env, insn->dst_reg)) { 13551 verbose(env, "R%d pointer arithmetic prohibited\n", 13552 insn->dst_reg); 13553 return -EACCES; 13554 } 13555 13556 /* check dest operand */ 13557 err = check_reg_arg(env, insn->dst_reg, DST_OP); 13558 if (err) 13559 return err; 13560 13561 } else if (opcode == BPF_MOV) { 13562 13563 if (BPF_SRC(insn->code) == BPF_X) { 13564 if (insn->imm != 0) { 13565 verbose(env, "BPF_MOV uses reserved fields\n"); 13566 return -EINVAL; 13567 } 13568 13569 if (BPF_CLASS(insn->code) == BPF_ALU) { 13570 if (insn->off != 0 && insn->off != 8 && insn->off != 16) { 13571 verbose(env, "BPF_MOV uses reserved fields\n"); 13572 return -EINVAL; 13573 } 13574 } else { 13575 if (insn->off != 0 && insn->off != 8 && insn->off != 16 && 13576 insn->off != 32) { 13577 verbose(env, "BPF_MOV uses reserved fields\n"); 13578 return -EINVAL; 13579 } 13580 } 13581 13582 /* check src operand */ 13583 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13584 if (err) 13585 return err; 13586 } else { 13587 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 13588 verbose(env, "BPF_MOV uses reserved fields\n"); 13589 return -EINVAL; 13590 } 13591 } 13592 13593 /* check dest operand, mark as required later */ 13594 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13595 if (err) 13596 return err; 13597 13598 if (BPF_SRC(insn->code) == BPF_X) { 13599 struct bpf_reg_state *src_reg = regs + insn->src_reg; 13600 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 13601 bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id && 13602 !tnum_is_const(src_reg->var_off); 13603 13604 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13605 if (insn->off == 0) { 13606 /* case: R1 = R2 13607 * copy register state to dest reg 13608 */ 13609 if (need_id) 13610 /* Assign src and dst registers the same ID 13611 * that will be used by find_equal_scalars() 13612 * to propagate min/max range. 13613 */ 13614 src_reg->id = ++env->id_gen; 13615 copy_register_state(dst_reg, src_reg); 13616 dst_reg->live |= REG_LIVE_WRITTEN; 13617 dst_reg->subreg_def = DEF_NOT_SUBREG; 13618 } else { 13619 /* case: R1 = (s8, s16 s32)R2 */ 13620 if (is_pointer_value(env, insn->src_reg)) { 13621 verbose(env, 13622 "R%d sign-extension part of pointer\n", 13623 insn->src_reg); 13624 return -EACCES; 13625 } else if (src_reg->type == SCALAR_VALUE) { 13626 bool no_sext; 13627 13628 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13629 if (no_sext && need_id) 13630 src_reg->id = ++env->id_gen; 13631 copy_register_state(dst_reg, src_reg); 13632 if (!no_sext) 13633 dst_reg->id = 0; 13634 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 13635 dst_reg->live |= REG_LIVE_WRITTEN; 13636 dst_reg->subreg_def = DEF_NOT_SUBREG; 13637 } else { 13638 mark_reg_unknown(env, regs, insn->dst_reg); 13639 } 13640 } 13641 } else { 13642 /* R1 = (u32) R2 */ 13643 if (is_pointer_value(env, insn->src_reg)) { 13644 verbose(env, 13645 "R%d partial copy of pointer\n", 13646 insn->src_reg); 13647 return -EACCES; 13648 } else if (src_reg->type == SCALAR_VALUE) { 13649 if (insn->off == 0) { 13650 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX; 13651 13652 if (is_src_reg_u32 && need_id) 13653 src_reg->id = ++env->id_gen; 13654 copy_register_state(dst_reg, src_reg); 13655 /* Make sure ID is cleared if src_reg is not in u32 13656 * range otherwise dst_reg min/max could be incorrectly 13657 * propagated into src_reg by find_equal_scalars() 13658 */ 13659 if (!is_src_reg_u32) 13660 dst_reg->id = 0; 13661 dst_reg->live |= REG_LIVE_WRITTEN; 13662 dst_reg->subreg_def = env->insn_idx + 1; 13663 } else { 13664 /* case: W1 = (s8, s16)W2 */ 13665 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13666 13667 if (no_sext && need_id) 13668 src_reg->id = ++env->id_gen; 13669 copy_register_state(dst_reg, src_reg); 13670 if (!no_sext) 13671 dst_reg->id = 0; 13672 dst_reg->live |= REG_LIVE_WRITTEN; 13673 dst_reg->subreg_def = env->insn_idx + 1; 13674 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 13675 } 13676 } else { 13677 mark_reg_unknown(env, regs, 13678 insn->dst_reg); 13679 } 13680 zext_32_to_64(dst_reg); 13681 reg_bounds_sync(dst_reg); 13682 } 13683 } else { 13684 /* case: R = imm 13685 * remember the value we stored into this reg 13686 */ 13687 /* clear any state __mark_reg_known doesn't set */ 13688 mark_reg_unknown(env, regs, insn->dst_reg); 13689 regs[insn->dst_reg].type = SCALAR_VALUE; 13690 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13691 __mark_reg_known(regs + insn->dst_reg, 13692 insn->imm); 13693 } else { 13694 __mark_reg_known(regs + insn->dst_reg, 13695 (u32)insn->imm); 13696 } 13697 } 13698 13699 } else if (opcode > BPF_END) { 13700 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 13701 return -EINVAL; 13702 13703 } else { /* all other ALU ops: and, sub, xor, add, ... */ 13704 13705 if (BPF_SRC(insn->code) == BPF_X) { 13706 if (insn->imm != 0 || insn->off > 1 || 13707 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 13708 verbose(env, "BPF_ALU uses reserved fields\n"); 13709 return -EINVAL; 13710 } 13711 /* check src1 operand */ 13712 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13713 if (err) 13714 return err; 13715 } else { 13716 if (insn->src_reg != BPF_REG_0 || insn->off > 1 || 13717 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 13718 verbose(env, "BPF_ALU uses reserved fields\n"); 13719 return -EINVAL; 13720 } 13721 } 13722 13723 /* check src2 operand */ 13724 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13725 if (err) 13726 return err; 13727 13728 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 13729 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 13730 verbose(env, "div by zero\n"); 13731 return -EINVAL; 13732 } 13733 13734 if ((opcode == BPF_LSH || opcode == BPF_RSH || 13735 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 13736 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 13737 13738 if (insn->imm < 0 || insn->imm >= size) { 13739 verbose(env, "invalid shift %d\n", insn->imm); 13740 return -EINVAL; 13741 } 13742 } 13743 13744 /* check dest operand */ 13745 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13746 if (err) 13747 return err; 13748 13749 return adjust_reg_min_max_vals(env, insn); 13750 } 13751 13752 return 0; 13753 } 13754 13755 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 13756 struct bpf_reg_state *dst_reg, 13757 enum bpf_reg_type type, 13758 bool range_right_open) 13759 { 13760 struct bpf_func_state *state; 13761 struct bpf_reg_state *reg; 13762 int new_range; 13763 13764 if (dst_reg->off < 0 || 13765 (dst_reg->off == 0 && range_right_open)) 13766 /* This doesn't give us any range */ 13767 return; 13768 13769 if (dst_reg->umax_value > MAX_PACKET_OFF || 13770 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 13771 /* Risk of overflow. For instance, ptr + (1<<63) may be less 13772 * than pkt_end, but that's because it's also less than pkt. 13773 */ 13774 return; 13775 13776 new_range = dst_reg->off; 13777 if (range_right_open) 13778 new_range++; 13779 13780 /* Examples for register markings: 13781 * 13782 * pkt_data in dst register: 13783 * 13784 * r2 = r3; 13785 * r2 += 8; 13786 * if (r2 > pkt_end) goto <handle exception> 13787 * <access okay> 13788 * 13789 * r2 = r3; 13790 * r2 += 8; 13791 * if (r2 < pkt_end) goto <access okay> 13792 * <handle exception> 13793 * 13794 * Where: 13795 * r2 == dst_reg, pkt_end == src_reg 13796 * r2=pkt(id=n,off=8,r=0) 13797 * r3=pkt(id=n,off=0,r=0) 13798 * 13799 * pkt_data in src register: 13800 * 13801 * r2 = r3; 13802 * r2 += 8; 13803 * if (pkt_end >= r2) goto <access okay> 13804 * <handle exception> 13805 * 13806 * r2 = r3; 13807 * r2 += 8; 13808 * if (pkt_end <= r2) goto <handle exception> 13809 * <access okay> 13810 * 13811 * Where: 13812 * pkt_end == dst_reg, r2 == src_reg 13813 * r2=pkt(id=n,off=8,r=0) 13814 * r3=pkt(id=n,off=0,r=0) 13815 * 13816 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 13817 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 13818 * and [r3, r3 + 8-1) respectively is safe to access depending on 13819 * the check. 13820 */ 13821 13822 /* If our ids match, then we must have the same max_value. And we 13823 * don't care about the other reg's fixed offset, since if it's too big 13824 * the range won't allow anything. 13825 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 13826 */ 13827 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13828 if (reg->type == type && reg->id == dst_reg->id) 13829 /* keep the maximum range already checked */ 13830 reg->range = max(reg->range, new_range); 13831 })); 13832 } 13833 13834 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 13835 { 13836 struct tnum subreg = tnum_subreg(reg->var_off); 13837 s32 sval = (s32)val; 13838 13839 switch (opcode) { 13840 case BPF_JEQ: 13841 if (tnum_is_const(subreg)) 13842 return !!tnum_equals_const(subreg, val); 13843 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13844 return 0; 13845 break; 13846 case BPF_JNE: 13847 if (tnum_is_const(subreg)) 13848 return !tnum_equals_const(subreg, val); 13849 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13850 return 1; 13851 break; 13852 case BPF_JSET: 13853 if ((~subreg.mask & subreg.value) & val) 13854 return 1; 13855 if (!((subreg.mask | subreg.value) & val)) 13856 return 0; 13857 break; 13858 case BPF_JGT: 13859 if (reg->u32_min_value > val) 13860 return 1; 13861 else if (reg->u32_max_value <= val) 13862 return 0; 13863 break; 13864 case BPF_JSGT: 13865 if (reg->s32_min_value > sval) 13866 return 1; 13867 else if (reg->s32_max_value <= sval) 13868 return 0; 13869 break; 13870 case BPF_JLT: 13871 if (reg->u32_max_value < val) 13872 return 1; 13873 else if (reg->u32_min_value >= val) 13874 return 0; 13875 break; 13876 case BPF_JSLT: 13877 if (reg->s32_max_value < sval) 13878 return 1; 13879 else if (reg->s32_min_value >= sval) 13880 return 0; 13881 break; 13882 case BPF_JGE: 13883 if (reg->u32_min_value >= val) 13884 return 1; 13885 else if (reg->u32_max_value < val) 13886 return 0; 13887 break; 13888 case BPF_JSGE: 13889 if (reg->s32_min_value >= sval) 13890 return 1; 13891 else if (reg->s32_max_value < sval) 13892 return 0; 13893 break; 13894 case BPF_JLE: 13895 if (reg->u32_max_value <= val) 13896 return 1; 13897 else if (reg->u32_min_value > val) 13898 return 0; 13899 break; 13900 case BPF_JSLE: 13901 if (reg->s32_max_value <= sval) 13902 return 1; 13903 else if (reg->s32_min_value > sval) 13904 return 0; 13905 break; 13906 } 13907 13908 return -1; 13909 } 13910 13911 13912 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 13913 { 13914 s64 sval = (s64)val; 13915 13916 switch (opcode) { 13917 case BPF_JEQ: 13918 if (tnum_is_const(reg->var_off)) 13919 return !!tnum_equals_const(reg->var_off, val); 13920 else if (val < reg->umin_value || val > reg->umax_value) 13921 return 0; 13922 break; 13923 case BPF_JNE: 13924 if (tnum_is_const(reg->var_off)) 13925 return !tnum_equals_const(reg->var_off, val); 13926 else if (val < reg->umin_value || val > reg->umax_value) 13927 return 1; 13928 break; 13929 case BPF_JSET: 13930 if ((~reg->var_off.mask & reg->var_off.value) & val) 13931 return 1; 13932 if (!((reg->var_off.mask | reg->var_off.value) & val)) 13933 return 0; 13934 break; 13935 case BPF_JGT: 13936 if (reg->umin_value > val) 13937 return 1; 13938 else if (reg->umax_value <= val) 13939 return 0; 13940 break; 13941 case BPF_JSGT: 13942 if (reg->smin_value > sval) 13943 return 1; 13944 else if (reg->smax_value <= sval) 13945 return 0; 13946 break; 13947 case BPF_JLT: 13948 if (reg->umax_value < val) 13949 return 1; 13950 else if (reg->umin_value >= val) 13951 return 0; 13952 break; 13953 case BPF_JSLT: 13954 if (reg->smax_value < sval) 13955 return 1; 13956 else if (reg->smin_value >= sval) 13957 return 0; 13958 break; 13959 case BPF_JGE: 13960 if (reg->umin_value >= val) 13961 return 1; 13962 else if (reg->umax_value < val) 13963 return 0; 13964 break; 13965 case BPF_JSGE: 13966 if (reg->smin_value >= sval) 13967 return 1; 13968 else if (reg->smax_value < sval) 13969 return 0; 13970 break; 13971 case BPF_JLE: 13972 if (reg->umax_value <= val) 13973 return 1; 13974 else if (reg->umin_value > val) 13975 return 0; 13976 break; 13977 case BPF_JSLE: 13978 if (reg->smax_value <= sval) 13979 return 1; 13980 else if (reg->smin_value > sval) 13981 return 0; 13982 break; 13983 } 13984 13985 return -1; 13986 } 13987 13988 /* compute branch direction of the expression "if (reg opcode val) goto target;" 13989 * and return: 13990 * 1 - branch will be taken and "goto target" will be executed 13991 * 0 - branch will not be taken and fall-through to next insn 13992 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 13993 * range [0,10] 13994 */ 13995 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 13996 bool is_jmp32) 13997 { 13998 if (__is_pointer_value(false, reg)) { 13999 if (!reg_not_null(reg)) 14000 return -1; 14001 14002 /* If pointer is valid tests against zero will fail so we can 14003 * use this to direct branch taken. 14004 */ 14005 if (val != 0) 14006 return -1; 14007 14008 switch (opcode) { 14009 case BPF_JEQ: 14010 return 0; 14011 case BPF_JNE: 14012 return 1; 14013 default: 14014 return -1; 14015 } 14016 } 14017 14018 if (is_jmp32) 14019 return is_branch32_taken(reg, val, opcode); 14020 return is_branch64_taken(reg, val, opcode); 14021 } 14022 14023 static int flip_opcode(u32 opcode) 14024 { 14025 /* How can we transform "a <op> b" into "b <op> a"? */ 14026 static const u8 opcode_flip[16] = { 14027 /* these stay the same */ 14028 [BPF_JEQ >> 4] = BPF_JEQ, 14029 [BPF_JNE >> 4] = BPF_JNE, 14030 [BPF_JSET >> 4] = BPF_JSET, 14031 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 14032 [BPF_JGE >> 4] = BPF_JLE, 14033 [BPF_JGT >> 4] = BPF_JLT, 14034 [BPF_JLE >> 4] = BPF_JGE, 14035 [BPF_JLT >> 4] = BPF_JGT, 14036 [BPF_JSGE >> 4] = BPF_JSLE, 14037 [BPF_JSGT >> 4] = BPF_JSLT, 14038 [BPF_JSLE >> 4] = BPF_JSGE, 14039 [BPF_JSLT >> 4] = BPF_JSGT 14040 }; 14041 return opcode_flip[opcode >> 4]; 14042 } 14043 14044 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 14045 struct bpf_reg_state *src_reg, 14046 u8 opcode) 14047 { 14048 struct bpf_reg_state *pkt; 14049 14050 if (src_reg->type == PTR_TO_PACKET_END) { 14051 pkt = dst_reg; 14052 } else if (dst_reg->type == PTR_TO_PACKET_END) { 14053 pkt = src_reg; 14054 opcode = flip_opcode(opcode); 14055 } else { 14056 return -1; 14057 } 14058 14059 if (pkt->range >= 0) 14060 return -1; 14061 14062 switch (opcode) { 14063 case BPF_JLE: 14064 /* pkt <= pkt_end */ 14065 fallthrough; 14066 case BPF_JGT: 14067 /* pkt > pkt_end */ 14068 if (pkt->range == BEYOND_PKT_END) 14069 /* pkt has at last one extra byte beyond pkt_end */ 14070 return opcode == BPF_JGT; 14071 break; 14072 case BPF_JLT: 14073 /* pkt < pkt_end */ 14074 fallthrough; 14075 case BPF_JGE: 14076 /* pkt >= pkt_end */ 14077 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 14078 return opcode == BPF_JGE; 14079 break; 14080 } 14081 return -1; 14082 } 14083 14084 /* Adjusts the register min/max values in the case that the dst_reg is the 14085 * variable register that we are working on, and src_reg is a constant or we're 14086 * simply doing a BPF_K check. 14087 * In JEQ/JNE cases we also adjust the var_off values. 14088 */ 14089 static void reg_set_min_max(struct bpf_reg_state *true_reg, 14090 struct bpf_reg_state *false_reg, 14091 u64 val, u32 val32, 14092 u8 opcode, bool is_jmp32) 14093 { 14094 struct tnum false_32off = tnum_subreg(false_reg->var_off); 14095 struct tnum false_64off = false_reg->var_off; 14096 struct tnum true_32off = tnum_subreg(true_reg->var_off); 14097 struct tnum true_64off = true_reg->var_off; 14098 s64 sval = (s64)val; 14099 s32 sval32 = (s32)val32; 14100 14101 /* If the dst_reg is a pointer, we can't learn anything about its 14102 * variable offset from the compare (unless src_reg were a pointer into 14103 * the same object, but we don't bother with that. 14104 * Since false_reg and true_reg have the same type by construction, we 14105 * only need to check one of them for pointerness. 14106 */ 14107 if (__is_pointer_value(false, false_reg)) 14108 return; 14109 14110 switch (opcode) { 14111 /* JEQ/JNE comparison doesn't change the register equivalence. 14112 * 14113 * r1 = r2; 14114 * if (r1 == 42) goto label; 14115 * ... 14116 * label: // here both r1 and r2 are known to be 42. 14117 * 14118 * Hence when marking register as known preserve it's ID. 14119 */ 14120 case BPF_JEQ: 14121 if (is_jmp32) { 14122 __mark_reg32_known(true_reg, val32); 14123 true_32off = tnum_subreg(true_reg->var_off); 14124 } else { 14125 ___mark_reg_known(true_reg, val); 14126 true_64off = true_reg->var_off; 14127 } 14128 break; 14129 case BPF_JNE: 14130 if (is_jmp32) { 14131 __mark_reg32_known(false_reg, val32); 14132 false_32off = tnum_subreg(false_reg->var_off); 14133 } else { 14134 ___mark_reg_known(false_reg, val); 14135 false_64off = false_reg->var_off; 14136 } 14137 break; 14138 case BPF_JSET: 14139 if (is_jmp32) { 14140 false_32off = tnum_and(false_32off, tnum_const(~val32)); 14141 if (is_power_of_2(val32)) 14142 true_32off = tnum_or(true_32off, 14143 tnum_const(val32)); 14144 } else { 14145 false_64off = tnum_and(false_64off, tnum_const(~val)); 14146 if (is_power_of_2(val)) 14147 true_64off = tnum_or(true_64off, 14148 tnum_const(val)); 14149 } 14150 break; 14151 case BPF_JGE: 14152 case BPF_JGT: 14153 { 14154 if (is_jmp32) { 14155 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 14156 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 14157 14158 false_reg->u32_max_value = min(false_reg->u32_max_value, 14159 false_umax); 14160 true_reg->u32_min_value = max(true_reg->u32_min_value, 14161 true_umin); 14162 } else { 14163 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 14164 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 14165 14166 false_reg->umax_value = min(false_reg->umax_value, false_umax); 14167 true_reg->umin_value = max(true_reg->umin_value, true_umin); 14168 } 14169 break; 14170 } 14171 case BPF_JSGE: 14172 case BPF_JSGT: 14173 { 14174 if (is_jmp32) { 14175 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 14176 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 14177 14178 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 14179 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 14180 } else { 14181 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 14182 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 14183 14184 false_reg->smax_value = min(false_reg->smax_value, false_smax); 14185 true_reg->smin_value = max(true_reg->smin_value, true_smin); 14186 } 14187 break; 14188 } 14189 case BPF_JLE: 14190 case BPF_JLT: 14191 { 14192 if (is_jmp32) { 14193 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 14194 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 14195 14196 false_reg->u32_min_value = max(false_reg->u32_min_value, 14197 false_umin); 14198 true_reg->u32_max_value = min(true_reg->u32_max_value, 14199 true_umax); 14200 } else { 14201 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 14202 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 14203 14204 false_reg->umin_value = max(false_reg->umin_value, false_umin); 14205 true_reg->umax_value = min(true_reg->umax_value, true_umax); 14206 } 14207 break; 14208 } 14209 case BPF_JSLE: 14210 case BPF_JSLT: 14211 { 14212 if (is_jmp32) { 14213 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 14214 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 14215 14216 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 14217 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 14218 } else { 14219 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 14220 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 14221 14222 false_reg->smin_value = max(false_reg->smin_value, false_smin); 14223 true_reg->smax_value = min(true_reg->smax_value, true_smax); 14224 } 14225 break; 14226 } 14227 default: 14228 return; 14229 } 14230 14231 if (is_jmp32) { 14232 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 14233 tnum_subreg(false_32off)); 14234 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 14235 tnum_subreg(true_32off)); 14236 __reg_combine_32_into_64(false_reg); 14237 __reg_combine_32_into_64(true_reg); 14238 } else { 14239 false_reg->var_off = false_64off; 14240 true_reg->var_off = true_64off; 14241 __reg_combine_64_into_32(false_reg); 14242 __reg_combine_64_into_32(true_reg); 14243 } 14244 } 14245 14246 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 14247 * the variable reg. 14248 */ 14249 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 14250 struct bpf_reg_state *false_reg, 14251 u64 val, u32 val32, 14252 u8 opcode, bool is_jmp32) 14253 { 14254 opcode = flip_opcode(opcode); 14255 /* This uses zero as "not present in table"; luckily the zero opcode, 14256 * BPF_JA, can't get here. 14257 */ 14258 if (opcode) 14259 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 14260 } 14261 14262 /* Regs are known to be equal, so intersect their min/max/var_off */ 14263 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 14264 struct bpf_reg_state *dst_reg) 14265 { 14266 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 14267 dst_reg->umin_value); 14268 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 14269 dst_reg->umax_value); 14270 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 14271 dst_reg->smin_value); 14272 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 14273 dst_reg->smax_value); 14274 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 14275 dst_reg->var_off); 14276 reg_bounds_sync(src_reg); 14277 reg_bounds_sync(dst_reg); 14278 } 14279 14280 static void reg_combine_min_max(struct bpf_reg_state *true_src, 14281 struct bpf_reg_state *true_dst, 14282 struct bpf_reg_state *false_src, 14283 struct bpf_reg_state *false_dst, 14284 u8 opcode) 14285 { 14286 switch (opcode) { 14287 case BPF_JEQ: 14288 __reg_combine_min_max(true_src, true_dst); 14289 break; 14290 case BPF_JNE: 14291 __reg_combine_min_max(false_src, false_dst); 14292 break; 14293 } 14294 } 14295 14296 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 14297 struct bpf_reg_state *reg, u32 id, 14298 bool is_null) 14299 { 14300 if (type_may_be_null(reg->type) && reg->id == id && 14301 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 14302 /* Old offset (both fixed and variable parts) should have been 14303 * known-zero, because we don't allow pointer arithmetic on 14304 * pointers that might be NULL. If we see this happening, don't 14305 * convert the register. 14306 * 14307 * But in some cases, some helpers that return local kptrs 14308 * advance offset for the returned pointer. In those cases, it 14309 * is fine to expect to see reg->off. 14310 */ 14311 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 14312 return; 14313 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 14314 WARN_ON_ONCE(reg->off)) 14315 return; 14316 14317 if (is_null) { 14318 reg->type = SCALAR_VALUE; 14319 /* We don't need id and ref_obj_id from this point 14320 * onwards anymore, thus we should better reset it, 14321 * so that state pruning has chances to take effect. 14322 */ 14323 reg->id = 0; 14324 reg->ref_obj_id = 0; 14325 14326 return; 14327 } 14328 14329 mark_ptr_not_null_reg(reg); 14330 14331 if (!reg_may_point_to_spin_lock(reg)) { 14332 /* For not-NULL ptr, reg->ref_obj_id will be reset 14333 * in release_reference(). 14334 * 14335 * reg->id is still used by spin_lock ptr. Other 14336 * than spin_lock ptr type, reg->id can be reset. 14337 */ 14338 reg->id = 0; 14339 } 14340 } 14341 } 14342 14343 /* The logic is similar to find_good_pkt_pointers(), both could eventually 14344 * be folded together at some point. 14345 */ 14346 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 14347 bool is_null) 14348 { 14349 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 14350 struct bpf_reg_state *regs = state->regs, *reg; 14351 u32 ref_obj_id = regs[regno].ref_obj_id; 14352 u32 id = regs[regno].id; 14353 14354 if (ref_obj_id && ref_obj_id == id && is_null) 14355 /* regs[regno] is in the " == NULL" branch. 14356 * No one could have freed the reference state before 14357 * doing the NULL check. 14358 */ 14359 WARN_ON_ONCE(release_reference_state(state, id)); 14360 14361 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14362 mark_ptr_or_null_reg(state, reg, id, is_null); 14363 })); 14364 } 14365 14366 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 14367 struct bpf_reg_state *dst_reg, 14368 struct bpf_reg_state *src_reg, 14369 struct bpf_verifier_state *this_branch, 14370 struct bpf_verifier_state *other_branch) 14371 { 14372 if (BPF_SRC(insn->code) != BPF_X) 14373 return false; 14374 14375 /* Pointers are always 64-bit. */ 14376 if (BPF_CLASS(insn->code) == BPF_JMP32) 14377 return false; 14378 14379 switch (BPF_OP(insn->code)) { 14380 case BPF_JGT: 14381 if ((dst_reg->type == PTR_TO_PACKET && 14382 src_reg->type == PTR_TO_PACKET_END) || 14383 (dst_reg->type == PTR_TO_PACKET_META && 14384 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14385 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 14386 find_good_pkt_pointers(this_branch, dst_reg, 14387 dst_reg->type, false); 14388 mark_pkt_end(other_branch, insn->dst_reg, true); 14389 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14390 src_reg->type == PTR_TO_PACKET) || 14391 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14392 src_reg->type == PTR_TO_PACKET_META)) { 14393 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 14394 find_good_pkt_pointers(other_branch, src_reg, 14395 src_reg->type, true); 14396 mark_pkt_end(this_branch, insn->src_reg, false); 14397 } else { 14398 return false; 14399 } 14400 break; 14401 case BPF_JLT: 14402 if ((dst_reg->type == PTR_TO_PACKET && 14403 src_reg->type == PTR_TO_PACKET_END) || 14404 (dst_reg->type == PTR_TO_PACKET_META && 14405 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14406 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 14407 find_good_pkt_pointers(other_branch, dst_reg, 14408 dst_reg->type, true); 14409 mark_pkt_end(this_branch, insn->dst_reg, false); 14410 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14411 src_reg->type == PTR_TO_PACKET) || 14412 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14413 src_reg->type == PTR_TO_PACKET_META)) { 14414 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 14415 find_good_pkt_pointers(this_branch, src_reg, 14416 src_reg->type, false); 14417 mark_pkt_end(other_branch, insn->src_reg, true); 14418 } else { 14419 return false; 14420 } 14421 break; 14422 case BPF_JGE: 14423 if ((dst_reg->type == PTR_TO_PACKET && 14424 src_reg->type == PTR_TO_PACKET_END) || 14425 (dst_reg->type == PTR_TO_PACKET_META && 14426 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14427 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 14428 find_good_pkt_pointers(this_branch, dst_reg, 14429 dst_reg->type, true); 14430 mark_pkt_end(other_branch, insn->dst_reg, false); 14431 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14432 src_reg->type == PTR_TO_PACKET) || 14433 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14434 src_reg->type == PTR_TO_PACKET_META)) { 14435 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 14436 find_good_pkt_pointers(other_branch, src_reg, 14437 src_reg->type, false); 14438 mark_pkt_end(this_branch, insn->src_reg, true); 14439 } else { 14440 return false; 14441 } 14442 break; 14443 case BPF_JLE: 14444 if ((dst_reg->type == PTR_TO_PACKET && 14445 src_reg->type == PTR_TO_PACKET_END) || 14446 (dst_reg->type == PTR_TO_PACKET_META && 14447 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14448 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 14449 find_good_pkt_pointers(other_branch, dst_reg, 14450 dst_reg->type, false); 14451 mark_pkt_end(this_branch, insn->dst_reg, true); 14452 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14453 src_reg->type == PTR_TO_PACKET) || 14454 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14455 src_reg->type == PTR_TO_PACKET_META)) { 14456 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 14457 find_good_pkt_pointers(this_branch, src_reg, 14458 src_reg->type, true); 14459 mark_pkt_end(other_branch, insn->src_reg, false); 14460 } else { 14461 return false; 14462 } 14463 break; 14464 default: 14465 return false; 14466 } 14467 14468 return true; 14469 } 14470 14471 static void find_equal_scalars(struct bpf_verifier_state *vstate, 14472 struct bpf_reg_state *known_reg) 14473 { 14474 struct bpf_func_state *state; 14475 struct bpf_reg_state *reg; 14476 14477 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14478 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 14479 copy_register_state(reg, known_reg); 14480 })); 14481 } 14482 14483 static int check_cond_jmp_op(struct bpf_verifier_env *env, 14484 struct bpf_insn *insn, int *insn_idx) 14485 { 14486 struct bpf_verifier_state *this_branch = env->cur_state; 14487 struct bpf_verifier_state *other_branch; 14488 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 14489 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 14490 struct bpf_reg_state *eq_branch_regs; 14491 u8 opcode = BPF_OP(insn->code); 14492 bool is_jmp32; 14493 int pred = -1; 14494 int err; 14495 14496 /* Only conditional jumps are expected to reach here. */ 14497 if (opcode == BPF_JA || opcode > BPF_JSLE) { 14498 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 14499 return -EINVAL; 14500 } 14501 14502 /* check src2 operand */ 14503 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14504 if (err) 14505 return err; 14506 14507 dst_reg = ®s[insn->dst_reg]; 14508 if (BPF_SRC(insn->code) == BPF_X) { 14509 if (insn->imm != 0) { 14510 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14511 return -EINVAL; 14512 } 14513 14514 /* check src1 operand */ 14515 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14516 if (err) 14517 return err; 14518 14519 src_reg = ®s[insn->src_reg]; 14520 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 14521 is_pointer_value(env, insn->src_reg)) { 14522 verbose(env, "R%d pointer comparison prohibited\n", 14523 insn->src_reg); 14524 return -EACCES; 14525 } 14526 } else { 14527 if (insn->src_reg != BPF_REG_0) { 14528 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14529 return -EINVAL; 14530 } 14531 } 14532 14533 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 14534 14535 if (BPF_SRC(insn->code) == BPF_K) { 14536 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 14537 } else if (src_reg->type == SCALAR_VALUE && 14538 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 14539 pred = is_branch_taken(dst_reg, 14540 tnum_subreg(src_reg->var_off).value, 14541 opcode, 14542 is_jmp32); 14543 } else if (src_reg->type == SCALAR_VALUE && 14544 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 14545 pred = is_branch_taken(dst_reg, 14546 src_reg->var_off.value, 14547 opcode, 14548 is_jmp32); 14549 } else if (dst_reg->type == SCALAR_VALUE && 14550 is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) { 14551 pred = is_branch_taken(src_reg, 14552 tnum_subreg(dst_reg->var_off).value, 14553 flip_opcode(opcode), 14554 is_jmp32); 14555 } else if (dst_reg->type == SCALAR_VALUE && 14556 !is_jmp32 && tnum_is_const(dst_reg->var_off)) { 14557 pred = is_branch_taken(src_reg, 14558 dst_reg->var_off.value, 14559 flip_opcode(opcode), 14560 is_jmp32); 14561 } else if (reg_is_pkt_pointer_any(dst_reg) && 14562 reg_is_pkt_pointer_any(src_reg) && 14563 !is_jmp32) { 14564 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 14565 } 14566 14567 if (pred >= 0) { 14568 /* If we get here with a dst_reg pointer type it is because 14569 * above is_branch_taken() special cased the 0 comparison. 14570 */ 14571 if (!__is_pointer_value(false, dst_reg)) 14572 err = mark_chain_precision(env, insn->dst_reg); 14573 if (BPF_SRC(insn->code) == BPF_X && !err && 14574 !__is_pointer_value(false, src_reg)) 14575 err = mark_chain_precision(env, insn->src_reg); 14576 if (err) 14577 return err; 14578 } 14579 14580 if (pred == 1) { 14581 /* Only follow the goto, ignore fall-through. If needed, push 14582 * the fall-through branch for simulation under speculative 14583 * execution. 14584 */ 14585 if (!env->bypass_spec_v1 && 14586 !sanitize_speculative_path(env, insn, *insn_idx + 1, 14587 *insn_idx)) 14588 return -EFAULT; 14589 if (env->log.level & BPF_LOG_LEVEL) 14590 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14591 *insn_idx += insn->off; 14592 return 0; 14593 } else if (pred == 0) { 14594 /* Only follow the fall-through branch, since that's where the 14595 * program will go. If needed, push the goto branch for 14596 * simulation under speculative execution. 14597 */ 14598 if (!env->bypass_spec_v1 && 14599 !sanitize_speculative_path(env, insn, 14600 *insn_idx + insn->off + 1, 14601 *insn_idx)) 14602 return -EFAULT; 14603 if (env->log.level & BPF_LOG_LEVEL) 14604 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14605 return 0; 14606 } 14607 14608 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 14609 false); 14610 if (!other_branch) 14611 return -EFAULT; 14612 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 14613 14614 /* detect if we are comparing against a constant value so we can adjust 14615 * our min/max values for our dst register. 14616 * this is only legit if both are scalars (or pointers to the same 14617 * object, I suppose, see the PTR_MAYBE_NULL related if block below), 14618 * because otherwise the different base pointers mean the offsets aren't 14619 * comparable. 14620 */ 14621 if (BPF_SRC(insn->code) == BPF_X) { 14622 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 14623 14624 if (dst_reg->type == SCALAR_VALUE && 14625 src_reg->type == SCALAR_VALUE) { 14626 if (tnum_is_const(src_reg->var_off) || 14627 (is_jmp32 && 14628 tnum_is_const(tnum_subreg(src_reg->var_off)))) 14629 reg_set_min_max(&other_branch_regs[insn->dst_reg], 14630 dst_reg, 14631 src_reg->var_off.value, 14632 tnum_subreg(src_reg->var_off).value, 14633 opcode, is_jmp32); 14634 else if (tnum_is_const(dst_reg->var_off) || 14635 (is_jmp32 && 14636 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 14637 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 14638 src_reg, 14639 dst_reg->var_off.value, 14640 tnum_subreg(dst_reg->var_off).value, 14641 opcode, is_jmp32); 14642 else if (!is_jmp32 && 14643 (opcode == BPF_JEQ || opcode == BPF_JNE)) 14644 /* Comparing for equality, we can combine knowledge */ 14645 reg_combine_min_max(&other_branch_regs[insn->src_reg], 14646 &other_branch_regs[insn->dst_reg], 14647 src_reg, dst_reg, opcode); 14648 if (src_reg->id && 14649 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 14650 find_equal_scalars(this_branch, src_reg); 14651 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 14652 } 14653 14654 } 14655 } else if (dst_reg->type == SCALAR_VALUE) { 14656 reg_set_min_max(&other_branch_regs[insn->dst_reg], 14657 dst_reg, insn->imm, (u32)insn->imm, 14658 opcode, is_jmp32); 14659 } 14660 14661 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 14662 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 14663 find_equal_scalars(this_branch, dst_reg); 14664 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 14665 } 14666 14667 /* if one pointer register is compared to another pointer 14668 * register check if PTR_MAYBE_NULL could be lifted. 14669 * E.g. register A - maybe null 14670 * register B - not null 14671 * for JNE A, B, ... - A is not null in the false branch; 14672 * for JEQ A, B, ... - A is not null in the true branch. 14673 * 14674 * Since PTR_TO_BTF_ID points to a kernel struct that does 14675 * not need to be null checked by the BPF program, i.e., 14676 * could be null even without PTR_MAYBE_NULL marking, so 14677 * only propagate nullness when neither reg is that type. 14678 */ 14679 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 14680 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 14681 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 14682 base_type(src_reg->type) != PTR_TO_BTF_ID && 14683 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 14684 eq_branch_regs = NULL; 14685 switch (opcode) { 14686 case BPF_JEQ: 14687 eq_branch_regs = other_branch_regs; 14688 break; 14689 case BPF_JNE: 14690 eq_branch_regs = regs; 14691 break; 14692 default: 14693 /* do nothing */ 14694 break; 14695 } 14696 if (eq_branch_regs) { 14697 if (type_may_be_null(src_reg->type)) 14698 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 14699 else 14700 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 14701 } 14702 } 14703 14704 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 14705 * NOTE: these optimizations below are related with pointer comparison 14706 * which will never be JMP32. 14707 */ 14708 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 14709 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 14710 type_may_be_null(dst_reg->type)) { 14711 /* Mark all identical registers in each branch as either 14712 * safe or unknown depending R == 0 or R != 0 conditional. 14713 */ 14714 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 14715 opcode == BPF_JNE); 14716 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 14717 opcode == BPF_JEQ); 14718 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 14719 this_branch, other_branch) && 14720 is_pointer_value(env, insn->dst_reg)) { 14721 verbose(env, "R%d pointer comparison prohibited\n", 14722 insn->dst_reg); 14723 return -EACCES; 14724 } 14725 if (env->log.level & BPF_LOG_LEVEL) 14726 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14727 return 0; 14728 } 14729 14730 /* verify BPF_LD_IMM64 instruction */ 14731 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 14732 { 14733 struct bpf_insn_aux_data *aux = cur_aux(env); 14734 struct bpf_reg_state *regs = cur_regs(env); 14735 struct bpf_reg_state *dst_reg; 14736 struct bpf_map *map; 14737 int err; 14738 14739 if (BPF_SIZE(insn->code) != BPF_DW) { 14740 verbose(env, "invalid BPF_LD_IMM insn\n"); 14741 return -EINVAL; 14742 } 14743 if (insn->off != 0) { 14744 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 14745 return -EINVAL; 14746 } 14747 14748 err = check_reg_arg(env, insn->dst_reg, DST_OP); 14749 if (err) 14750 return err; 14751 14752 dst_reg = ®s[insn->dst_reg]; 14753 if (insn->src_reg == 0) { 14754 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 14755 14756 dst_reg->type = SCALAR_VALUE; 14757 __mark_reg_known(®s[insn->dst_reg], imm); 14758 return 0; 14759 } 14760 14761 /* All special src_reg cases are listed below. From this point onwards 14762 * we either succeed and assign a corresponding dst_reg->type after 14763 * zeroing the offset, or fail and reject the program. 14764 */ 14765 mark_reg_known_zero(env, regs, insn->dst_reg); 14766 14767 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 14768 dst_reg->type = aux->btf_var.reg_type; 14769 switch (base_type(dst_reg->type)) { 14770 case PTR_TO_MEM: 14771 dst_reg->mem_size = aux->btf_var.mem_size; 14772 break; 14773 case PTR_TO_BTF_ID: 14774 dst_reg->btf = aux->btf_var.btf; 14775 dst_reg->btf_id = aux->btf_var.btf_id; 14776 break; 14777 default: 14778 verbose(env, "bpf verifier is misconfigured\n"); 14779 return -EFAULT; 14780 } 14781 return 0; 14782 } 14783 14784 if (insn->src_reg == BPF_PSEUDO_FUNC) { 14785 struct bpf_prog_aux *aux = env->prog->aux; 14786 u32 subprogno = find_subprog(env, 14787 env->insn_idx + insn->imm + 1); 14788 14789 if (!aux->func_info) { 14790 verbose(env, "missing btf func_info\n"); 14791 return -EINVAL; 14792 } 14793 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 14794 verbose(env, "callback function not static\n"); 14795 return -EINVAL; 14796 } 14797 14798 dst_reg->type = PTR_TO_FUNC; 14799 dst_reg->subprogno = subprogno; 14800 return 0; 14801 } 14802 14803 map = env->used_maps[aux->map_index]; 14804 dst_reg->map_ptr = map; 14805 14806 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 14807 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 14808 dst_reg->type = PTR_TO_MAP_VALUE; 14809 dst_reg->off = aux->map_off; 14810 WARN_ON_ONCE(map->max_entries != 1); 14811 /* We want reg->id to be same (0) as map_value is not distinct */ 14812 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 14813 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 14814 dst_reg->type = CONST_PTR_TO_MAP; 14815 } else { 14816 verbose(env, "bpf verifier is misconfigured\n"); 14817 return -EINVAL; 14818 } 14819 14820 return 0; 14821 } 14822 14823 static bool may_access_skb(enum bpf_prog_type type) 14824 { 14825 switch (type) { 14826 case BPF_PROG_TYPE_SOCKET_FILTER: 14827 case BPF_PROG_TYPE_SCHED_CLS: 14828 case BPF_PROG_TYPE_SCHED_ACT: 14829 return true; 14830 default: 14831 return false; 14832 } 14833 } 14834 14835 /* verify safety of LD_ABS|LD_IND instructions: 14836 * - they can only appear in the programs where ctx == skb 14837 * - since they are wrappers of function calls, they scratch R1-R5 registers, 14838 * preserve R6-R9, and store return value into R0 14839 * 14840 * Implicit input: 14841 * ctx == skb == R6 == CTX 14842 * 14843 * Explicit input: 14844 * SRC == any register 14845 * IMM == 32-bit immediate 14846 * 14847 * Output: 14848 * R0 - 8/16/32-bit skb data converted to cpu endianness 14849 */ 14850 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 14851 { 14852 struct bpf_reg_state *regs = cur_regs(env); 14853 static const int ctx_reg = BPF_REG_6; 14854 u8 mode = BPF_MODE(insn->code); 14855 int i, err; 14856 14857 if (!may_access_skb(resolve_prog_type(env->prog))) { 14858 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 14859 return -EINVAL; 14860 } 14861 14862 if (!env->ops->gen_ld_abs) { 14863 verbose(env, "bpf verifier is misconfigured\n"); 14864 return -EINVAL; 14865 } 14866 14867 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 14868 BPF_SIZE(insn->code) == BPF_DW || 14869 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 14870 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 14871 return -EINVAL; 14872 } 14873 14874 /* check whether implicit source operand (register R6) is readable */ 14875 err = check_reg_arg(env, ctx_reg, SRC_OP); 14876 if (err) 14877 return err; 14878 14879 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 14880 * gen_ld_abs() may terminate the program at runtime, leading to 14881 * reference leak. 14882 */ 14883 err = check_reference_leak(env); 14884 if (err) { 14885 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 14886 return err; 14887 } 14888 14889 if (env->cur_state->active_lock.ptr) { 14890 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 14891 return -EINVAL; 14892 } 14893 14894 if (env->cur_state->active_rcu_lock) { 14895 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 14896 return -EINVAL; 14897 } 14898 14899 if (regs[ctx_reg].type != PTR_TO_CTX) { 14900 verbose(env, 14901 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 14902 return -EINVAL; 14903 } 14904 14905 if (mode == BPF_IND) { 14906 /* check explicit source operand */ 14907 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14908 if (err) 14909 return err; 14910 } 14911 14912 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 14913 if (err < 0) 14914 return err; 14915 14916 /* reset caller saved regs to unreadable */ 14917 for (i = 0; i < CALLER_SAVED_REGS; i++) { 14918 mark_reg_not_init(env, regs, caller_saved[i]); 14919 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 14920 } 14921 14922 /* mark destination R0 register as readable, since it contains 14923 * the value fetched from the packet. 14924 * Already marked as written above. 14925 */ 14926 mark_reg_unknown(env, regs, BPF_REG_0); 14927 /* ld_abs load up to 32-bit skb data. */ 14928 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 14929 return 0; 14930 } 14931 14932 static int check_return_code(struct bpf_verifier_env *env) 14933 { 14934 struct tnum enforce_attach_type_range = tnum_unknown; 14935 const struct bpf_prog *prog = env->prog; 14936 struct bpf_reg_state *reg; 14937 struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0); 14938 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 14939 int err; 14940 struct bpf_func_state *frame = env->cur_state->frame[0]; 14941 const bool is_subprog = frame->subprogno; 14942 14943 /* LSM and struct_ops func-ptr's return type could be "void" */ 14944 if (!is_subprog) { 14945 switch (prog_type) { 14946 case BPF_PROG_TYPE_LSM: 14947 if (prog->expected_attach_type == BPF_LSM_CGROUP) 14948 /* See below, can be 0 or 0-1 depending on hook. */ 14949 break; 14950 fallthrough; 14951 case BPF_PROG_TYPE_STRUCT_OPS: 14952 if (!prog->aux->attach_func_proto->type) 14953 return 0; 14954 break; 14955 default: 14956 break; 14957 } 14958 } 14959 14960 /* eBPF calling convention is such that R0 is used 14961 * to return the value from eBPF program. 14962 * Make sure that it's readable at this time 14963 * of bpf_exit, which means that program wrote 14964 * something into it earlier 14965 */ 14966 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 14967 if (err) 14968 return err; 14969 14970 if (is_pointer_value(env, BPF_REG_0)) { 14971 verbose(env, "R0 leaks addr as return value\n"); 14972 return -EACCES; 14973 } 14974 14975 reg = cur_regs(env) + BPF_REG_0; 14976 14977 if (frame->in_async_callback_fn) { 14978 /* enforce return zero from async callbacks like timer */ 14979 if (reg->type != SCALAR_VALUE) { 14980 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 14981 reg_type_str(env, reg->type)); 14982 return -EINVAL; 14983 } 14984 14985 if (!tnum_in(const_0, reg->var_off)) { 14986 verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0"); 14987 return -EINVAL; 14988 } 14989 return 0; 14990 } 14991 14992 if (is_subprog) { 14993 if (reg->type != SCALAR_VALUE) { 14994 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 14995 reg_type_str(env, reg->type)); 14996 return -EINVAL; 14997 } 14998 return 0; 14999 } 15000 15001 switch (prog_type) { 15002 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 15003 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 15004 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 15005 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 15006 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 15007 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 15008 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 15009 range = tnum_range(1, 1); 15010 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 15011 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 15012 range = tnum_range(0, 3); 15013 break; 15014 case BPF_PROG_TYPE_CGROUP_SKB: 15015 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 15016 range = tnum_range(0, 3); 15017 enforce_attach_type_range = tnum_range(2, 3); 15018 } 15019 break; 15020 case BPF_PROG_TYPE_CGROUP_SOCK: 15021 case BPF_PROG_TYPE_SOCK_OPS: 15022 case BPF_PROG_TYPE_CGROUP_DEVICE: 15023 case BPF_PROG_TYPE_CGROUP_SYSCTL: 15024 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 15025 break; 15026 case BPF_PROG_TYPE_RAW_TRACEPOINT: 15027 if (!env->prog->aux->attach_btf_id) 15028 return 0; 15029 range = tnum_const(0); 15030 break; 15031 case BPF_PROG_TYPE_TRACING: 15032 switch (env->prog->expected_attach_type) { 15033 case BPF_TRACE_FENTRY: 15034 case BPF_TRACE_FEXIT: 15035 range = tnum_const(0); 15036 break; 15037 case BPF_TRACE_RAW_TP: 15038 case BPF_MODIFY_RETURN: 15039 return 0; 15040 case BPF_TRACE_ITER: 15041 break; 15042 default: 15043 return -ENOTSUPP; 15044 } 15045 break; 15046 case BPF_PROG_TYPE_SK_LOOKUP: 15047 range = tnum_range(SK_DROP, SK_PASS); 15048 break; 15049 15050 case BPF_PROG_TYPE_LSM: 15051 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 15052 /* Regular BPF_PROG_TYPE_LSM programs can return 15053 * any value. 15054 */ 15055 return 0; 15056 } 15057 if (!env->prog->aux->attach_func_proto->type) { 15058 /* Make sure programs that attach to void 15059 * hooks don't try to modify return value. 15060 */ 15061 range = tnum_range(1, 1); 15062 } 15063 break; 15064 15065 case BPF_PROG_TYPE_NETFILTER: 15066 range = tnum_range(NF_DROP, NF_ACCEPT); 15067 break; 15068 case BPF_PROG_TYPE_EXT: 15069 /* freplace program can return anything as its return value 15070 * depends on the to-be-replaced kernel func or bpf program. 15071 */ 15072 default: 15073 return 0; 15074 } 15075 15076 if (reg->type != SCALAR_VALUE) { 15077 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 15078 reg_type_str(env, reg->type)); 15079 return -EINVAL; 15080 } 15081 15082 if (!tnum_in(range, reg->var_off)) { 15083 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 15084 if (prog->expected_attach_type == BPF_LSM_CGROUP && 15085 prog_type == BPF_PROG_TYPE_LSM && 15086 !prog->aux->attach_func_proto->type) 15087 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 15088 return -EINVAL; 15089 } 15090 15091 if (!tnum_is_unknown(enforce_attach_type_range) && 15092 tnum_in(enforce_attach_type_range, reg->var_off)) 15093 env->prog->enforce_expected_attach_type = 1; 15094 return 0; 15095 } 15096 15097 /* non-recursive DFS pseudo code 15098 * 1 procedure DFS-iterative(G,v): 15099 * 2 label v as discovered 15100 * 3 let S be a stack 15101 * 4 S.push(v) 15102 * 5 while S is not empty 15103 * 6 t <- S.peek() 15104 * 7 if t is what we're looking for: 15105 * 8 return t 15106 * 9 for all edges e in G.adjacentEdges(t) do 15107 * 10 if edge e is already labelled 15108 * 11 continue with the next edge 15109 * 12 w <- G.adjacentVertex(t,e) 15110 * 13 if vertex w is not discovered and not explored 15111 * 14 label e as tree-edge 15112 * 15 label w as discovered 15113 * 16 S.push(w) 15114 * 17 continue at 5 15115 * 18 else if vertex w is discovered 15116 * 19 label e as back-edge 15117 * 20 else 15118 * 21 // vertex w is explored 15119 * 22 label e as forward- or cross-edge 15120 * 23 label t as explored 15121 * 24 S.pop() 15122 * 15123 * convention: 15124 * 0x10 - discovered 15125 * 0x11 - discovered and fall-through edge labelled 15126 * 0x12 - discovered and fall-through and branch edges labelled 15127 * 0x20 - explored 15128 */ 15129 15130 enum { 15131 DISCOVERED = 0x10, 15132 EXPLORED = 0x20, 15133 FALLTHROUGH = 1, 15134 BRANCH = 2, 15135 }; 15136 15137 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 15138 { 15139 env->insn_aux_data[idx].prune_point = true; 15140 } 15141 15142 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 15143 { 15144 return env->insn_aux_data[insn_idx].prune_point; 15145 } 15146 15147 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 15148 { 15149 env->insn_aux_data[idx].force_checkpoint = true; 15150 } 15151 15152 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 15153 { 15154 return env->insn_aux_data[insn_idx].force_checkpoint; 15155 } 15156 15157 static void mark_calls_callback(struct bpf_verifier_env *env, int idx) 15158 { 15159 env->insn_aux_data[idx].calls_callback = true; 15160 } 15161 15162 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx) 15163 { 15164 return env->insn_aux_data[insn_idx].calls_callback; 15165 } 15166 15167 enum { 15168 DONE_EXPLORING = 0, 15169 KEEP_EXPLORING = 1, 15170 }; 15171 15172 /* t, w, e - match pseudo-code above: 15173 * t - index of current instruction 15174 * w - next instruction 15175 * e - edge 15176 */ 15177 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 15178 { 15179 int *insn_stack = env->cfg.insn_stack; 15180 int *insn_state = env->cfg.insn_state; 15181 15182 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 15183 return DONE_EXPLORING; 15184 15185 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 15186 return DONE_EXPLORING; 15187 15188 if (w < 0 || w >= env->prog->len) { 15189 verbose_linfo(env, t, "%d: ", t); 15190 verbose(env, "jump out of range from insn %d to %d\n", t, w); 15191 return -EINVAL; 15192 } 15193 15194 if (e == BRANCH) { 15195 /* mark branch target for state pruning */ 15196 mark_prune_point(env, w); 15197 mark_jmp_point(env, w); 15198 } 15199 15200 if (insn_state[w] == 0) { 15201 /* tree-edge */ 15202 insn_state[t] = DISCOVERED | e; 15203 insn_state[w] = DISCOVERED; 15204 if (env->cfg.cur_stack >= env->prog->len) 15205 return -E2BIG; 15206 insn_stack[env->cfg.cur_stack++] = w; 15207 return KEEP_EXPLORING; 15208 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 15209 if (env->bpf_capable) 15210 return DONE_EXPLORING; 15211 verbose_linfo(env, t, "%d: ", t); 15212 verbose_linfo(env, w, "%d: ", w); 15213 verbose(env, "back-edge from insn %d to %d\n", t, w); 15214 return -EINVAL; 15215 } else if (insn_state[w] == EXPLORED) { 15216 /* forward- or cross-edge */ 15217 insn_state[t] = DISCOVERED | e; 15218 } else { 15219 verbose(env, "insn state internal bug\n"); 15220 return -EFAULT; 15221 } 15222 return DONE_EXPLORING; 15223 } 15224 15225 static int visit_func_call_insn(int t, struct bpf_insn *insns, 15226 struct bpf_verifier_env *env, 15227 bool visit_callee) 15228 { 15229 int ret, insn_sz; 15230 15231 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; 15232 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); 15233 if (ret) 15234 return ret; 15235 15236 mark_prune_point(env, t + insn_sz); 15237 /* when we exit from subprog, we need to record non-linear history */ 15238 mark_jmp_point(env, t + insn_sz); 15239 15240 if (visit_callee) { 15241 mark_prune_point(env, t); 15242 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 15243 } 15244 return ret; 15245 } 15246 15247 /* Visits the instruction at index t and returns one of the following: 15248 * < 0 - an error occurred 15249 * DONE_EXPLORING - the instruction was fully explored 15250 * KEEP_EXPLORING - there is still work to be done before it is fully explored 15251 */ 15252 static int visit_insn(int t, struct bpf_verifier_env *env) 15253 { 15254 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 15255 int ret, off, insn_sz; 15256 15257 if (bpf_pseudo_func(insn)) 15258 return visit_func_call_insn(t, insns, env, true); 15259 15260 /* All non-branch instructions have a single fall-through edge. */ 15261 if (BPF_CLASS(insn->code) != BPF_JMP && 15262 BPF_CLASS(insn->code) != BPF_JMP32) { 15263 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 15264 return push_insn(t, t + insn_sz, FALLTHROUGH, env); 15265 } 15266 15267 switch (BPF_OP(insn->code)) { 15268 case BPF_EXIT: 15269 return DONE_EXPLORING; 15270 15271 case BPF_CALL: 15272 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback) 15273 /* Mark this call insn as a prune point to trigger 15274 * is_state_visited() check before call itself is 15275 * processed by __check_func_call(). Otherwise new 15276 * async state will be pushed for further exploration. 15277 */ 15278 mark_prune_point(env, t); 15279 /* For functions that invoke callbacks it is not known how many times 15280 * callback would be called. Verifier models callback calling functions 15281 * by repeatedly visiting callback bodies and returning to origin call 15282 * instruction. 15283 * In order to stop such iteration verifier needs to identify when a 15284 * state identical some state from a previous iteration is reached. 15285 * Check below forces creation of checkpoint before callback calling 15286 * instruction to allow search for such identical states. 15287 */ 15288 if (is_sync_callback_calling_insn(insn)) { 15289 mark_calls_callback(env, t); 15290 mark_force_checkpoint(env, t); 15291 mark_prune_point(env, t); 15292 mark_jmp_point(env, t); 15293 } 15294 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 15295 struct bpf_kfunc_call_arg_meta meta; 15296 15297 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 15298 if (ret == 0 && is_iter_next_kfunc(&meta)) { 15299 mark_prune_point(env, t); 15300 /* Checking and saving state checkpoints at iter_next() call 15301 * is crucial for fast convergence of open-coded iterator loop 15302 * logic, so we need to force it. If we don't do that, 15303 * is_state_visited() might skip saving a checkpoint, causing 15304 * unnecessarily long sequence of not checkpointed 15305 * instructions and jumps, leading to exhaustion of jump 15306 * history buffer, and potentially other undesired outcomes. 15307 * It is expected that with correct open-coded iterators 15308 * convergence will happen quickly, so we don't run a risk of 15309 * exhausting memory. 15310 */ 15311 mark_force_checkpoint(env, t); 15312 } 15313 } 15314 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 15315 15316 case BPF_JA: 15317 if (BPF_SRC(insn->code) != BPF_K) 15318 return -EINVAL; 15319 15320 if (BPF_CLASS(insn->code) == BPF_JMP) 15321 off = insn->off; 15322 else 15323 off = insn->imm; 15324 15325 /* unconditional jump with single edge */ 15326 ret = push_insn(t, t + off + 1, FALLTHROUGH, env); 15327 if (ret) 15328 return ret; 15329 15330 mark_prune_point(env, t + off + 1); 15331 mark_jmp_point(env, t + off + 1); 15332 15333 return ret; 15334 15335 default: 15336 /* conditional jump with two edges */ 15337 mark_prune_point(env, t); 15338 15339 ret = push_insn(t, t + 1, FALLTHROUGH, env); 15340 if (ret) 15341 return ret; 15342 15343 return push_insn(t, t + insn->off + 1, BRANCH, env); 15344 } 15345 } 15346 15347 /* non-recursive depth-first-search to detect loops in BPF program 15348 * loop == back-edge in directed graph 15349 */ 15350 static int check_cfg(struct bpf_verifier_env *env) 15351 { 15352 int insn_cnt = env->prog->len; 15353 int *insn_stack, *insn_state; 15354 int ret = 0; 15355 int i; 15356 15357 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 15358 if (!insn_state) 15359 return -ENOMEM; 15360 15361 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 15362 if (!insn_stack) { 15363 kvfree(insn_state); 15364 return -ENOMEM; 15365 } 15366 15367 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 15368 insn_stack[0] = 0; /* 0 is the first instruction */ 15369 env->cfg.cur_stack = 1; 15370 15371 while (env->cfg.cur_stack > 0) { 15372 int t = insn_stack[env->cfg.cur_stack - 1]; 15373 15374 ret = visit_insn(t, env); 15375 switch (ret) { 15376 case DONE_EXPLORING: 15377 insn_state[t] = EXPLORED; 15378 env->cfg.cur_stack--; 15379 break; 15380 case KEEP_EXPLORING: 15381 break; 15382 default: 15383 if (ret > 0) { 15384 verbose(env, "visit_insn internal bug\n"); 15385 ret = -EFAULT; 15386 } 15387 goto err_free; 15388 } 15389 } 15390 15391 if (env->cfg.cur_stack < 0) { 15392 verbose(env, "pop stack internal bug\n"); 15393 ret = -EFAULT; 15394 goto err_free; 15395 } 15396 15397 for (i = 0; i < insn_cnt; i++) { 15398 struct bpf_insn *insn = &env->prog->insnsi[i]; 15399 15400 if (insn_state[i] != EXPLORED) { 15401 verbose(env, "unreachable insn %d\n", i); 15402 ret = -EINVAL; 15403 goto err_free; 15404 } 15405 if (bpf_is_ldimm64(insn)) { 15406 if (insn_state[i + 1] != 0) { 15407 verbose(env, "jump into the middle of ldimm64 insn %d\n", i); 15408 ret = -EINVAL; 15409 goto err_free; 15410 } 15411 i++; /* skip second half of ldimm64 */ 15412 } 15413 } 15414 ret = 0; /* cfg looks good */ 15415 15416 err_free: 15417 kvfree(insn_state); 15418 kvfree(insn_stack); 15419 env->cfg.insn_state = env->cfg.insn_stack = NULL; 15420 return ret; 15421 } 15422 15423 static int check_abnormal_return(struct bpf_verifier_env *env) 15424 { 15425 int i; 15426 15427 for (i = 1; i < env->subprog_cnt; i++) { 15428 if (env->subprog_info[i].has_ld_abs) { 15429 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 15430 return -EINVAL; 15431 } 15432 if (env->subprog_info[i].has_tail_call) { 15433 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 15434 return -EINVAL; 15435 } 15436 } 15437 return 0; 15438 } 15439 15440 /* The minimum supported BTF func info size */ 15441 #define MIN_BPF_FUNCINFO_SIZE 8 15442 #define MAX_FUNCINFO_REC_SIZE 252 15443 15444 static int check_btf_func(struct bpf_verifier_env *env, 15445 const union bpf_attr *attr, 15446 bpfptr_t uattr) 15447 { 15448 const struct btf_type *type, *func_proto, *ret_type; 15449 u32 i, nfuncs, urec_size, min_size; 15450 u32 krec_size = sizeof(struct bpf_func_info); 15451 struct bpf_func_info *krecord; 15452 struct bpf_func_info_aux *info_aux = NULL; 15453 struct bpf_prog *prog; 15454 const struct btf *btf; 15455 bpfptr_t urecord; 15456 u32 prev_offset = 0; 15457 bool scalar_return; 15458 int ret = -ENOMEM; 15459 15460 nfuncs = attr->func_info_cnt; 15461 if (!nfuncs) { 15462 if (check_abnormal_return(env)) 15463 return -EINVAL; 15464 return 0; 15465 } 15466 15467 if (nfuncs != env->subprog_cnt) { 15468 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 15469 return -EINVAL; 15470 } 15471 15472 urec_size = attr->func_info_rec_size; 15473 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 15474 urec_size > MAX_FUNCINFO_REC_SIZE || 15475 urec_size % sizeof(u32)) { 15476 verbose(env, "invalid func info rec size %u\n", urec_size); 15477 return -EINVAL; 15478 } 15479 15480 prog = env->prog; 15481 btf = prog->aux->btf; 15482 15483 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 15484 min_size = min_t(u32, krec_size, urec_size); 15485 15486 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 15487 if (!krecord) 15488 return -ENOMEM; 15489 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 15490 if (!info_aux) 15491 goto err_free; 15492 15493 for (i = 0; i < nfuncs; i++) { 15494 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 15495 if (ret) { 15496 if (ret == -E2BIG) { 15497 verbose(env, "nonzero tailing record in func info"); 15498 /* set the size kernel expects so loader can zero 15499 * out the rest of the record. 15500 */ 15501 if (copy_to_bpfptr_offset(uattr, 15502 offsetof(union bpf_attr, func_info_rec_size), 15503 &min_size, sizeof(min_size))) 15504 ret = -EFAULT; 15505 } 15506 goto err_free; 15507 } 15508 15509 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 15510 ret = -EFAULT; 15511 goto err_free; 15512 } 15513 15514 /* check insn_off */ 15515 ret = -EINVAL; 15516 if (i == 0) { 15517 if (krecord[i].insn_off) { 15518 verbose(env, 15519 "nonzero insn_off %u for the first func info record", 15520 krecord[i].insn_off); 15521 goto err_free; 15522 } 15523 } else if (krecord[i].insn_off <= prev_offset) { 15524 verbose(env, 15525 "same or smaller insn offset (%u) than previous func info record (%u)", 15526 krecord[i].insn_off, prev_offset); 15527 goto err_free; 15528 } 15529 15530 if (env->subprog_info[i].start != krecord[i].insn_off) { 15531 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 15532 goto err_free; 15533 } 15534 15535 /* check type_id */ 15536 type = btf_type_by_id(btf, krecord[i].type_id); 15537 if (!type || !btf_type_is_func(type)) { 15538 verbose(env, "invalid type id %d in func info", 15539 krecord[i].type_id); 15540 goto err_free; 15541 } 15542 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 15543 15544 func_proto = btf_type_by_id(btf, type->type); 15545 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 15546 /* btf_func_check() already verified it during BTF load */ 15547 goto err_free; 15548 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 15549 scalar_return = 15550 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 15551 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 15552 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 15553 goto err_free; 15554 } 15555 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 15556 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 15557 goto err_free; 15558 } 15559 15560 prev_offset = krecord[i].insn_off; 15561 bpfptr_add(&urecord, urec_size); 15562 } 15563 15564 prog->aux->func_info = krecord; 15565 prog->aux->func_info_cnt = nfuncs; 15566 prog->aux->func_info_aux = info_aux; 15567 return 0; 15568 15569 err_free: 15570 kvfree(krecord); 15571 kfree(info_aux); 15572 return ret; 15573 } 15574 15575 static void adjust_btf_func(struct bpf_verifier_env *env) 15576 { 15577 struct bpf_prog_aux *aux = env->prog->aux; 15578 int i; 15579 15580 if (!aux->func_info) 15581 return; 15582 15583 for (i = 0; i < env->subprog_cnt; i++) 15584 aux->func_info[i].insn_off = env->subprog_info[i].start; 15585 } 15586 15587 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 15588 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 15589 15590 static int check_btf_line(struct bpf_verifier_env *env, 15591 const union bpf_attr *attr, 15592 bpfptr_t uattr) 15593 { 15594 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 15595 struct bpf_subprog_info *sub; 15596 struct bpf_line_info *linfo; 15597 struct bpf_prog *prog; 15598 const struct btf *btf; 15599 bpfptr_t ulinfo; 15600 int err; 15601 15602 nr_linfo = attr->line_info_cnt; 15603 if (!nr_linfo) 15604 return 0; 15605 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 15606 return -EINVAL; 15607 15608 rec_size = attr->line_info_rec_size; 15609 if (rec_size < MIN_BPF_LINEINFO_SIZE || 15610 rec_size > MAX_LINEINFO_REC_SIZE || 15611 rec_size & (sizeof(u32) - 1)) 15612 return -EINVAL; 15613 15614 /* Need to zero it in case the userspace may 15615 * pass in a smaller bpf_line_info object. 15616 */ 15617 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 15618 GFP_KERNEL | __GFP_NOWARN); 15619 if (!linfo) 15620 return -ENOMEM; 15621 15622 prog = env->prog; 15623 btf = prog->aux->btf; 15624 15625 s = 0; 15626 sub = env->subprog_info; 15627 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 15628 expected_size = sizeof(struct bpf_line_info); 15629 ncopy = min_t(u32, expected_size, rec_size); 15630 for (i = 0; i < nr_linfo; i++) { 15631 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 15632 if (err) { 15633 if (err == -E2BIG) { 15634 verbose(env, "nonzero tailing record in line_info"); 15635 if (copy_to_bpfptr_offset(uattr, 15636 offsetof(union bpf_attr, line_info_rec_size), 15637 &expected_size, sizeof(expected_size))) 15638 err = -EFAULT; 15639 } 15640 goto err_free; 15641 } 15642 15643 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 15644 err = -EFAULT; 15645 goto err_free; 15646 } 15647 15648 /* 15649 * Check insn_off to ensure 15650 * 1) strictly increasing AND 15651 * 2) bounded by prog->len 15652 * 15653 * The linfo[0].insn_off == 0 check logically falls into 15654 * the later "missing bpf_line_info for func..." case 15655 * because the first linfo[0].insn_off must be the 15656 * first sub also and the first sub must have 15657 * subprog_info[0].start == 0. 15658 */ 15659 if ((i && linfo[i].insn_off <= prev_offset) || 15660 linfo[i].insn_off >= prog->len) { 15661 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 15662 i, linfo[i].insn_off, prev_offset, 15663 prog->len); 15664 err = -EINVAL; 15665 goto err_free; 15666 } 15667 15668 if (!prog->insnsi[linfo[i].insn_off].code) { 15669 verbose(env, 15670 "Invalid insn code at line_info[%u].insn_off\n", 15671 i); 15672 err = -EINVAL; 15673 goto err_free; 15674 } 15675 15676 if (!btf_name_by_offset(btf, linfo[i].line_off) || 15677 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 15678 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 15679 err = -EINVAL; 15680 goto err_free; 15681 } 15682 15683 if (s != env->subprog_cnt) { 15684 if (linfo[i].insn_off == sub[s].start) { 15685 sub[s].linfo_idx = i; 15686 s++; 15687 } else if (sub[s].start < linfo[i].insn_off) { 15688 verbose(env, "missing bpf_line_info for func#%u\n", s); 15689 err = -EINVAL; 15690 goto err_free; 15691 } 15692 } 15693 15694 prev_offset = linfo[i].insn_off; 15695 bpfptr_add(&ulinfo, rec_size); 15696 } 15697 15698 if (s != env->subprog_cnt) { 15699 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 15700 env->subprog_cnt - s, s); 15701 err = -EINVAL; 15702 goto err_free; 15703 } 15704 15705 prog->aux->linfo = linfo; 15706 prog->aux->nr_linfo = nr_linfo; 15707 15708 return 0; 15709 15710 err_free: 15711 kvfree(linfo); 15712 return err; 15713 } 15714 15715 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 15716 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 15717 15718 static int check_core_relo(struct bpf_verifier_env *env, 15719 const union bpf_attr *attr, 15720 bpfptr_t uattr) 15721 { 15722 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 15723 struct bpf_core_relo core_relo = {}; 15724 struct bpf_prog *prog = env->prog; 15725 const struct btf *btf = prog->aux->btf; 15726 struct bpf_core_ctx ctx = { 15727 .log = &env->log, 15728 .btf = btf, 15729 }; 15730 bpfptr_t u_core_relo; 15731 int err; 15732 15733 nr_core_relo = attr->core_relo_cnt; 15734 if (!nr_core_relo) 15735 return 0; 15736 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 15737 return -EINVAL; 15738 15739 rec_size = attr->core_relo_rec_size; 15740 if (rec_size < MIN_CORE_RELO_SIZE || 15741 rec_size > MAX_CORE_RELO_SIZE || 15742 rec_size % sizeof(u32)) 15743 return -EINVAL; 15744 15745 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 15746 expected_size = sizeof(struct bpf_core_relo); 15747 ncopy = min_t(u32, expected_size, rec_size); 15748 15749 /* Unlike func_info and line_info, copy and apply each CO-RE 15750 * relocation record one at a time. 15751 */ 15752 for (i = 0; i < nr_core_relo; i++) { 15753 /* future proofing when sizeof(bpf_core_relo) changes */ 15754 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 15755 if (err) { 15756 if (err == -E2BIG) { 15757 verbose(env, "nonzero tailing record in core_relo"); 15758 if (copy_to_bpfptr_offset(uattr, 15759 offsetof(union bpf_attr, core_relo_rec_size), 15760 &expected_size, sizeof(expected_size))) 15761 err = -EFAULT; 15762 } 15763 break; 15764 } 15765 15766 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 15767 err = -EFAULT; 15768 break; 15769 } 15770 15771 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 15772 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 15773 i, core_relo.insn_off, prog->len); 15774 err = -EINVAL; 15775 break; 15776 } 15777 15778 err = bpf_core_apply(&ctx, &core_relo, i, 15779 &prog->insnsi[core_relo.insn_off / 8]); 15780 if (err) 15781 break; 15782 bpfptr_add(&u_core_relo, rec_size); 15783 } 15784 return err; 15785 } 15786 15787 static int check_btf_info(struct bpf_verifier_env *env, 15788 const union bpf_attr *attr, 15789 bpfptr_t uattr) 15790 { 15791 struct btf *btf; 15792 int err; 15793 15794 if (!attr->func_info_cnt && !attr->line_info_cnt) { 15795 if (check_abnormal_return(env)) 15796 return -EINVAL; 15797 return 0; 15798 } 15799 15800 btf = btf_get_by_fd(attr->prog_btf_fd); 15801 if (IS_ERR(btf)) 15802 return PTR_ERR(btf); 15803 if (btf_is_kernel(btf)) { 15804 btf_put(btf); 15805 return -EACCES; 15806 } 15807 env->prog->aux->btf = btf; 15808 15809 err = check_btf_func(env, attr, uattr); 15810 if (err) 15811 return err; 15812 15813 err = check_btf_line(env, attr, uattr); 15814 if (err) 15815 return err; 15816 15817 err = check_core_relo(env, attr, uattr); 15818 if (err) 15819 return err; 15820 15821 return 0; 15822 } 15823 15824 /* check %cur's range satisfies %old's */ 15825 static bool range_within(struct bpf_reg_state *old, 15826 struct bpf_reg_state *cur) 15827 { 15828 return old->umin_value <= cur->umin_value && 15829 old->umax_value >= cur->umax_value && 15830 old->smin_value <= cur->smin_value && 15831 old->smax_value >= cur->smax_value && 15832 old->u32_min_value <= cur->u32_min_value && 15833 old->u32_max_value >= cur->u32_max_value && 15834 old->s32_min_value <= cur->s32_min_value && 15835 old->s32_max_value >= cur->s32_max_value; 15836 } 15837 15838 /* If in the old state two registers had the same id, then they need to have 15839 * the same id in the new state as well. But that id could be different from 15840 * the old state, so we need to track the mapping from old to new ids. 15841 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 15842 * regs with old id 5 must also have new id 9 for the new state to be safe. But 15843 * regs with a different old id could still have new id 9, we don't care about 15844 * that. 15845 * So we look through our idmap to see if this old id has been seen before. If 15846 * so, we require the new id to match; otherwise, we add the id pair to the map. 15847 */ 15848 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15849 { 15850 struct bpf_id_pair *map = idmap->map; 15851 unsigned int i; 15852 15853 /* either both IDs should be set or both should be zero */ 15854 if (!!old_id != !!cur_id) 15855 return false; 15856 15857 if (old_id == 0) /* cur_id == 0 as well */ 15858 return true; 15859 15860 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 15861 if (!map[i].old) { 15862 /* Reached an empty slot; haven't seen this id before */ 15863 map[i].old = old_id; 15864 map[i].cur = cur_id; 15865 return true; 15866 } 15867 if (map[i].old == old_id) 15868 return map[i].cur == cur_id; 15869 if (map[i].cur == cur_id) 15870 return false; 15871 } 15872 /* We ran out of idmap slots, which should be impossible */ 15873 WARN_ON_ONCE(1); 15874 return false; 15875 } 15876 15877 /* Similar to check_ids(), but allocate a unique temporary ID 15878 * for 'old_id' or 'cur_id' of zero. 15879 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 15880 */ 15881 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15882 { 15883 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 15884 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 15885 15886 return check_ids(old_id, cur_id, idmap); 15887 } 15888 15889 static void clean_func_state(struct bpf_verifier_env *env, 15890 struct bpf_func_state *st) 15891 { 15892 enum bpf_reg_liveness live; 15893 int i, j; 15894 15895 for (i = 0; i < BPF_REG_FP; i++) { 15896 live = st->regs[i].live; 15897 /* liveness must not touch this register anymore */ 15898 st->regs[i].live |= REG_LIVE_DONE; 15899 if (!(live & REG_LIVE_READ)) 15900 /* since the register is unused, clear its state 15901 * to make further comparison simpler 15902 */ 15903 __mark_reg_not_init(env, &st->regs[i]); 15904 } 15905 15906 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 15907 live = st->stack[i].spilled_ptr.live; 15908 /* liveness must not touch this stack slot anymore */ 15909 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 15910 if (!(live & REG_LIVE_READ)) { 15911 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 15912 for (j = 0; j < BPF_REG_SIZE; j++) 15913 st->stack[i].slot_type[j] = STACK_INVALID; 15914 } 15915 } 15916 } 15917 15918 static void clean_verifier_state(struct bpf_verifier_env *env, 15919 struct bpf_verifier_state *st) 15920 { 15921 int i; 15922 15923 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 15924 /* all regs in this state in all frames were already marked */ 15925 return; 15926 15927 for (i = 0; i <= st->curframe; i++) 15928 clean_func_state(env, st->frame[i]); 15929 } 15930 15931 /* the parentage chains form a tree. 15932 * the verifier states are added to state lists at given insn and 15933 * pushed into state stack for future exploration. 15934 * when the verifier reaches bpf_exit insn some of the verifer states 15935 * stored in the state lists have their final liveness state already, 15936 * but a lot of states will get revised from liveness point of view when 15937 * the verifier explores other branches. 15938 * Example: 15939 * 1: r0 = 1 15940 * 2: if r1 == 100 goto pc+1 15941 * 3: r0 = 2 15942 * 4: exit 15943 * when the verifier reaches exit insn the register r0 in the state list of 15944 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 15945 * of insn 2 and goes exploring further. At the insn 4 it will walk the 15946 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 15947 * 15948 * Since the verifier pushes the branch states as it sees them while exploring 15949 * the program the condition of walking the branch instruction for the second 15950 * time means that all states below this branch were already explored and 15951 * their final liveness marks are already propagated. 15952 * Hence when the verifier completes the search of state list in is_state_visited() 15953 * we can call this clean_live_states() function to mark all liveness states 15954 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 15955 * will not be used. 15956 * This function also clears the registers and stack for states that !READ 15957 * to simplify state merging. 15958 * 15959 * Important note here that walking the same branch instruction in the callee 15960 * doesn't meant that the states are DONE. The verifier has to compare 15961 * the callsites 15962 */ 15963 static void clean_live_states(struct bpf_verifier_env *env, int insn, 15964 struct bpf_verifier_state *cur) 15965 { 15966 struct bpf_verifier_state_list *sl; 15967 15968 sl = *explored_state(env, insn); 15969 while (sl) { 15970 if (sl->state.branches) 15971 goto next; 15972 if (sl->state.insn_idx != insn || 15973 !same_callsites(&sl->state, cur)) 15974 goto next; 15975 clean_verifier_state(env, &sl->state); 15976 next: 15977 sl = sl->next; 15978 } 15979 } 15980 15981 static bool regs_exact(const struct bpf_reg_state *rold, 15982 const struct bpf_reg_state *rcur, 15983 struct bpf_idmap *idmap) 15984 { 15985 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 15986 check_ids(rold->id, rcur->id, idmap) && 15987 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15988 } 15989 15990 /* Returns true if (rold safe implies rcur safe) */ 15991 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 15992 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact) 15993 { 15994 if (exact) 15995 return regs_exact(rold, rcur, idmap); 15996 15997 if (!(rold->live & REG_LIVE_READ)) 15998 /* explored state didn't use this */ 15999 return true; 16000 if (rold->type == NOT_INIT) 16001 /* explored state can't have used this */ 16002 return true; 16003 if (rcur->type == NOT_INIT) 16004 return false; 16005 16006 /* Enforce that register types have to match exactly, including their 16007 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 16008 * rule. 16009 * 16010 * One can make a point that using a pointer register as unbounded 16011 * SCALAR would be technically acceptable, but this could lead to 16012 * pointer leaks because scalars are allowed to leak while pointers 16013 * are not. We could make this safe in special cases if root is 16014 * calling us, but it's probably not worth the hassle. 16015 * 16016 * Also, register types that are *not* MAYBE_NULL could technically be 16017 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 16018 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 16019 * to the same map). 16020 * However, if the old MAYBE_NULL register then got NULL checked, 16021 * doing so could have affected others with the same id, and we can't 16022 * check for that because we lost the id when we converted to 16023 * a non-MAYBE_NULL variant. 16024 * So, as a general rule we don't allow mixing MAYBE_NULL and 16025 * non-MAYBE_NULL registers as well. 16026 */ 16027 if (rold->type != rcur->type) 16028 return false; 16029 16030 switch (base_type(rold->type)) { 16031 case SCALAR_VALUE: 16032 if (env->explore_alu_limits) { 16033 /* explore_alu_limits disables tnum_in() and range_within() 16034 * logic and requires everything to be strict 16035 */ 16036 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 16037 check_scalar_ids(rold->id, rcur->id, idmap); 16038 } 16039 if (!rold->precise) 16040 return true; 16041 /* Why check_ids() for scalar registers? 16042 * 16043 * Consider the following BPF code: 16044 * 1: r6 = ... unbound scalar, ID=a ... 16045 * 2: r7 = ... unbound scalar, ID=b ... 16046 * 3: if (r6 > r7) goto +1 16047 * 4: r6 = r7 16048 * 5: if (r6 > X) goto ... 16049 * 6: ... memory operation using r7 ... 16050 * 16051 * First verification path is [1-6]: 16052 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 16053 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark 16054 * r7 <= X, because r6 and r7 share same id. 16055 * Next verification path is [1-4, 6]. 16056 * 16057 * Instruction (6) would be reached in two states: 16058 * I. r6{.id=b}, r7{.id=b} via path 1-6; 16059 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 16060 * 16061 * Use check_ids() to distinguish these states. 16062 * --- 16063 * Also verify that new value satisfies old value range knowledge. 16064 */ 16065 return range_within(rold, rcur) && 16066 tnum_in(rold->var_off, rcur->var_off) && 16067 check_scalar_ids(rold->id, rcur->id, idmap); 16068 case PTR_TO_MAP_KEY: 16069 case PTR_TO_MAP_VALUE: 16070 case PTR_TO_MEM: 16071 case PTR_TO_BUF: 16072 case PTR_TO_TP_BUFFER: 16073 /* If the new min/max/var_off satisfy the old ones and 16074 * everything else matches, we are OK. 16075 */ 16076 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 16077 range_within(rold, rcur) && 16078 tnum_in(rold->var_off, rcur->var_off) && 16079 check_ids(rold->id, rcur->id, idmap) && 16080 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 16081 case PTR_TO_PACKET_META: 16082 case PTR_TO_PACKET: 16083 /* We must have at least as much range as the old ptr 16084 * did, so that any accesses which were safe before are 16085 * still safe. This is true even if old range < old off, 16086 * since someone could have accessed through (ptr - k), or 16087 * even done ptr -= k in a register, to get a safe access. 16088 */ 16089 if (rold->range > rcur->range) 16090 return false; 16091 /* If the offsets don't match, we can't trust our alignment; 16092 * nor can we be sure that we won't fall out of range. 16093 */ 16094 if (rold->off != rcur->off) 16095 return false; 16096 /* id relations must be preserved */ 16097 if (!check_ids(rold->id, rcur->id, idmap)) 16098 return false; 16099 /* new val must satisfy old val knowledge */ 16100 return range_within(rold, rcur) && 16101 tnum_in(rold->var_off, rcur->var_off); 16102 case PTR_TO_STACK: 16103 /* two stack pointers are equal only if they're pointing to 16104 * the same stack frame, since fp-8 in foo != fp-8 in bar 16105 */ 16106 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 16107 default: 16108 return regs_exact(rold, rcur, idmap); 16109 } 16110 } 16111 16112 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 16113 struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact) 16114 { 16115 int i, spi; 16116 16117 /* walk slots of the explored stack and ignore any additional 16118 * slots in the current stack, since explored(safe) state 16119 * didn't use them 16120 */ 16121 for (i = 0; i < old->allocated_stack; i++) { 16122 struct bpf_reg_state *old_reg, *cur_reg; 16123 16124 spi = i / BPF_REG_SIZE; 16125 16126 if (exact && 16127 old->stack[spi].slot_type[i % BPF_REG_SIZE] != 16128 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 16129 return false; 16130 16131 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) { 16132 i += BPF_REG_SIZE - 1; 16133 /* explored state didn't use this */ 16134 continue; 16135 } 16136 16137 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 16138 continue; 16139 16140 if (env->allow_uninit_stack && 16141 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 16142 continue; 16143 16144 /* explored stack has more populated slots than current stack 16145 * and these slots were used 16146 */ 16147 if (i >= cur->allocated_stack) 16148 return false; 16149 16150 /* if old state was safe with misc data in the stack 16151 * it will be safe with zero-initialized stack. 16152 * The opposite is not true 16153 */ 16154 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 16155 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 16156 continue; 16157 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 16158 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 16159 /* Ex: old explored (safe) state has STACK_SPILL in 16160 * this stack slot, but current has STACK_MISC -> 16161 * this verifier states are not equivalent, 16162 * return false to continue verification of this path 16163 */ 16164 return false; 16165 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 16166 continue; 16167 /* Both old and cur are having same slot_type */ 16168 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 16169 case STACK_SPILL: 16170 /* when explored and current stack slot are both storing 16171 * spilled registers, check that stored pointers types 16172 * are the same as well. 16173 * Ex: explored safe path could have stored 16174 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 16175 * but current path has stored: 16176 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 16177 * such verifier states are not equivalent. 16178 * return false to continue verification of this path 16179 */ 16180 if (!regsafe(env, &old->stack[spi].spilled_ptr, 16181 &cur->stack[spi].spilled_ptr, idmap, exact)) 16182 return false; 16183 break; 16184 case STACK_DYNPTR: 16185 old_reg = &old->stack[spi].spilled_ptr; 16186 cur_reg = &cur->stack[spi].spilled_ptr; 16187 if (old_reg->dynptr.type != cur_reg->dynptr.type || 16188 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 16189 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 16190 return false; 16191 break; 16192 case STACK_ITER: 16193 old_reg = &old->stack[spi].spilled_ptr; 16194 cur_reg = &cur->stack[spi].spilled_ptr; 16195 /* iter.depth is not compared between states as it 16196 * doesn't matter for correctness and would otherwise 16197 * prevent convergence; we maintain it only to prevent 16198 * infinite loop check triggering, see 16199 * iter_active_depths_differ() 16200 */ 16201 if (old_reg->iter.btf != cur_reg->iter.btf || 16202 old_reg->iter.btf_id != cur_reg->iter.btf_id || 16203 old_reg->iter.state != cur_reg->iter.state || 16204 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 16205 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 16206 return false; 16207 break; 16208 case STACK_MISC: 16209 case STACK_ZERO: 16210 case STACK_INVALID: 16211 continue; 16212 /* Ensure that new unhandled slot types return false by default */ 16213 default: 16214 return false; 16215 } 16216 } 16217 return true; 16218 } 16219 16220 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 16221 struct bpf_idmap *idmap) 16222 { 16223 int i; 16224 16225 if (old->acquired_refs != cur->acquired_refs) 16226 return false; 16227 16228 for (i = 0; i < old->acquired_refs; i++) { 16229 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 16230 return false; 16231 } 16232 16233 return true; 16234 } 16235 16236 /* compare two verifier states 16237 * 16238 * all states stored in state_list are known to be valid, since 16239 * verifier reached 'bpf_exit' instruction through them 16240 * 16241 * this function is called when verifier exploring different branches of 16242 * execution popped from the state stack. If it sees an old state that has 16243 * more strict register state and more strict stack state then this execution 16244 * branch doesn't need to be explored further, since verifier already 16245 * concluded that more strict state leads to valid finish. 16246 * 16247 * Therefore two states are equivalent if register state is more conservative 16248 * and explored stack state is more conservative than the current one. 16249 * Example: 16250 * explored current 16251 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 16252 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 16253 * 16254 * In other words if current stack state (one being explored) has more 16255 * valid slots than old one that already passed validation, it means 16256 * the verifier can stop exploring and conclude that current state is valid too 16257 * 16258 * Similarly with registers. If explored state has register type as invalid 16259 * whereas register type in current state is meaningful, it means that 16260 * the current state will reach 'bpf_exit' instruction safely 16261 */ 16262 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 16263 struct bpf_func_state *cur, bool exact) 16264 { 16265 int i; 16266 16267 if (old->callback_depth > cur->callback_depth) 16268 return false; 16269 16270 for (i = 0; i < MAX_BPF_REG; i++) 16271 if (!regsafe(env, &old->regs[i], &cur->regs[i], 16272 &env->idmap_scratch, exact)) 16273 return false; 16274 16275 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) 16276 return false; 16277 16278 if (!refsafe(old, cur, &env->idmap_scratch)) 16279 return false; 16280 16281 return true; 16282 } 16283 16284 static void reset_idmap_scratch(struct bpf_verifier_env *env) 16285 { 16286 env->idmap_scratch.tmp_id_gen = env->id_gen; 16287 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 16288 } 16289 16290 static bool states_equal(struct bpf_verifier_env *env, 16291 struct bpf_verifier_state *old, 16292 struct bpf_verifier_state *cur, 16293 bool exact) 16294 { 16295 int i; 16296 16297 if (old->curframe != cur->curframe) 16298 return false; 16299 16300 reset_idmap_scratch(env); 16301 16302 /* Verification state from speculative execution simulation 16303 * must never prune a non-speculative execution one. 16304 */ 16305 if (old->speculative && !cur->speculative) 16306 return false; 16307 16308 if (old->active_lock.ptr != cur->active_lock.ptr) 16309 return false; 16310 16311 /* Old and cur active_lock's have to be either both present 16312 * or both absent. 16313 */ 16314 if (!!old->active_lock.id != !!cur->active_lock.id) 16315 return false; 16316 16317 if (old->active_lock.id && 16318 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch)) 16319 return false; 16320 16321 if (old->active_rcu_lock != cur->active_rcu_lock) 16322 return false; 16323 16324 /* for states to be equal callsites have to be the same 16325 * and all frame states need to be equivalent 16326 */ 16327 for (i = 0; i <= old->curframe; i++) { 16328 if (old->frame[i]->callsite != cur->frame[i]->callsite) 16329 return false; 16330 if (!func_states_equal(env, old->frame[i], cur->frame[i], exact)) 16331 return false; 16332 } 16333 return true; 16334 } 16335 16336 /* Return 0 if no propagation happened. Return negative error code if error 16337 * happened. Otherwise, return the propagated bit. 16338 */ 16339 static int propagate_liveness_reg(struct bpf_verifier_env *env, 16340 struct bpf_reg_state *reg, 16341 struct bpf_reg_state *parent_reg) 16342 { 16343 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 16344 u8 flag = reg->live & REG_LIVE_READ; 16345 int err; 16346 16347 /* When comes here, read flags of PARENT_REG or REG could be any of 16348 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 16349 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 16350 */ 16351 if (parent_flag == REG_LIVE_READ64 || 16352 /* Or if there is no read flag from REG. */ 16353 !flag || 16354 /* Or if the read flag from REG is the same as PARENT_REG. */ 16355 parent_flag == flag) 16356 return 0; 16357 16358 err = mark_reg_read(env, reg, parent_reg, flag); 16359 if (err) 16360 return err; 16361 16362 return flag; 16363 } 16364 16365 /* A write screens off any subsequent reads; but write marks come from the 16366 * straight-line code between a state and its parent. When we arrive at an 16367 * equivalent state (jump target or such) we didn't arrive by the straight-line 16368 * code, so read marks in the state must propagate to the parent regardless 16369 * of the state's write marks. That's what 'parent == state->parent' comparison 16370 * in mark_reg_read() is for. 16371 */ 16372 static int propagate_liveness(struct bpf_verifier_env *env, 16373 const struct bpf_verifier_state *vstate, 16374 struct bpf_verifier_state *vparent) 16375 { 16376 struct bpf_reg_state *state_reg, *parent_reg; 16377 struct bpf_func_state *state, *parent; 16378 int i, frame, err = 0; 16379 16380 if (vparent->curframe != vstate->curframe) { 16381 WARN(1, "propagate_live: parent frame %d current frame %d\n", 16382 vparent->curframe, vstate->curframe); 16383 return -EFAULT; 16384 } 16385 /* Propagate read liveness of registers... */ 16386 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 16387 for (frame = 0; frame <= vstate->curframe; frame++) { 16388 parent = vparent->frame[frame]; 16389 state = vstate->frame[frame]; 16390 parent_reg = parent->regs; 16391 state_reg = state->regs; 16392 /* We don't need to worry about FP liveness, it's read-only */ 16393 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 16394 err = propagate_liveness_reg(env, &state_reg[i], 16395 &parent_reg[i]); 16396 if (err < 0) 16397 return err; 16398 if (err == REG_LIVE_READ64) 16399 mark_insn_zext(env, &parent_reg[i]); 16400 } 16401 16402 /* Propagate stack slots. */ 16403 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 16404 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 16405 parent_reg = &parent->stack[i].spilled_ptr; 16406 state_reg = &state->stack[i].spilled_ptr; 16407 err = propagate_liveness_reg(env, state_reg, 16408 parent_reg); 16409 if (err < 0) 16410 return err; 16411 } 16412 } 16413 return 0; 16414 } 16415 16416 /* find precise scalars in the previous equivalent state and 16417 * propagate them into the current state 16418 */ 16419 static int propagate_precision(struct bpf_verifier_env *env, 16420 const struct bpf_verifier_state *old) 16421 { 16422 struct bpf_reg_state *state_reg; 16423 struct bpf_func_state *state; 16424 int i, err = 0, fr; 16425 bool first; 16426 16427 for (fr = old->curframe; fr >= 0; fr--) { 16428 state = old->frame[fr]; 16429 state_reg = state->regs; 16430 first = true; 16431 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 16432 if (state_reg->type != SCALAR_VALUE || 16433 !state_reg->precise || 16434 !(state_reg->live & REG_LIVE_READ)) 16435 continue; 16436 if (env->log.level & BPF_LOG_LEVEL2) { 16437 if (first) 16438 verbose(env, "frame %d: propagating r%d", fr, i); 16439 else 16440 verbose(env, ",r%d", i); 16441 } 16442 bt_set_frame_reg(&env->bt, fr, i); 16443 first = false; 16444 } 16445 16446 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 16447 if (!is_spilled_reg(&state->stack[i])) 16448 continue; 16449 state_reg = &state->stack[i].spilled_ptr; 16450 if (state_reg->type != SCALAR_VALUE || 16451 !state_reg->precise || 16452 !(state_reg->live & REG_LIVE_READ)) 16453 continue; 16454 if (env->log.level & BPF_LOG_LEVEL2) { 16455 if (first) 16456 verbose(env, "frame %d: propagating fp%d", 16457 fr, (-i - 1) * BPF_REG_SIZE); 16458 else 16459 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 16460 } 16461 bt_set_frame_slot(&env->bt, fr, i); 16462 first = false; 16463 } 16464 if (!first) 16465 verbose(env, "\n"); 16466 } 16467 16468 err = mark_chain_precision_batch(env); 16469 if (err < 0) 16470 return err; 16471 16472 return 0; 16473 } 16474 16475 static bool states_maybe_looping(struct bpf_verifier_state *old, 16476 struct bpf_verifier_state *cur) 16477 { 16478 struct bpf_func_state *fold, *fcur; 16479 int i, fr = cur->curframe; 16480 16481 if (old->curframe != fr) 16482 return false; 16483 16484 fold = old->frame[fr]; 16485 fcur = cur->frame[fr]; 16486 for (i = 0; i < MAX_BPF_REG; i++) 16487 if (memcmp(&fold->regs[i], &fcur->regs[i], 16488 offsetof(struct bpf_reg_state, parent))) 16489 return false; 16490 return true; 16491 } 16492 16493 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 16494 { 16495 return env->insn_aux_data[insn_idx].is_iter_next; 16496 } 16497 16498 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 16499 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 16500 * states to match, which otherwise would look like an infinite loop. So while 16501 * iter_next() calls are taken care of, we still need to be careful and 16502 * prevent erroneous and too eager declaration of "ininite loop", when 16503 * iterators are involved. 16504 * 16505 * Here's a situation in pseudo-BPF assembly form: 16506 * 16507 * 0: again: ; set up iter_next() call args 16508 * 1: r1 = &it ; <CHECKPOINT HERE> 16509 * 2: call bpf_iter_num_next ; this is iter_next() call 16510 * 3: if r0 == 0 goto done 16511 * 4: ... something useful here ... 16512 * 5: goto again ; another iteration 16513 * 6: done: 16514 * 7: r1 = &it 16515 * 8: call bpf_iter_num_destroy ; clean up iter state 16516 * 9: exit 16517 * 16518 * This is a typical loop. Let's assume that we have a prune point at 1:, 16519 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 16520 * again`, assuming other heuristics don't get in a way). 16521 * 16522 * When we first time come to 1:, let's say we have some state X. We proceed 16523 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 16524 * Now we come back to validate that forked ACTIVE state. We proceed through 16525 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 16526 * are converging. But the problem is that we don't know that yet, as this 16527 * convergence has to happen at iter_next() call site only. So if nothing is 16528 * done, at 1: verifier will use bounded loop logic and declare infinite 16529 * looping (and would be *technically* correct, if not for iterator's 16530 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 16531 * don't want that. So what we do in process_iter_next_call() when we go on 16532 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 16533 * a different iteration. So when we suspect an infinite loop, we additionally 16534 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 16535 * pretend we are not looping and wait for next iter_next() call. 16536 * 16537 * This only applies to ACTIVE state. In DRAINED state we don't expect to 16538 * loop, because that would actually mean infinite loop, as DRAINED state is 16539 * "sticky", and so we'll keep returning into the same instruction with the 16540 * same state (at least in one of possible code paths). 16541 * 16542 * This approach allows to keep infinite loop heuristic even in the face of 16543 * active iterator. E.g., C snippet below is and will be detected as 16544 * inifintely looping: 16545 * 16546 * struct bpf_iter_num it; 16547 * int *p, x; 16548 * 16549 * bpf_iter_num_new(&it, 0, 10); 16550 * while ((p = bpf_iter_num_next(&t))) { 16551 * x = p; 16552 * while (x--) {} // <<-- infinite loop here 16553 * } 16554 * 16555 */ 16556 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 16557 { 16558 struct bpf_reg_state *slot, *cur_slot; 16559 struct bpf_func_state *state; 16560 int i, fr; 16561 16562 for (fr = old->curframe; fr >= 0; fr--) { 16563 state = old->frame[fr]; 16564 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 16565 if (state->stack[i].slot_type[0] != STACK_ITER) 16566 continue; 16567 16568 slot = &state->stack[i].spilled_ptr; 16569 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 16570 continue; 16571 16572 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 16573 if (cur_slot->iter.depth != slot->iter.depth) 16574 return true; 16575 } 16576 } 16577 return false; 16578 } 16579 16580 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 16581 { 16582 struct bpf_verifier_state_list *new_sl; 16583 struct bpf_verifier_state_list *sl, **pprev; 16584 struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry; 16585 int i, j, n, err, states_cnt = 0; 16586 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); 16587 bool add_new_state = force_new_state; 16588 bool force_exact; 16589 16590 /* bpf progs typically have pruning point every 4 instructions 16591 * http://vger.kernel.org/bpfconf2019.html#session-1 16592 * Do not add new state for future pruning if the verifier hasn't seen 16593 * at least 2 jumps and at least 8 instructions. 16594 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 16595 * In tests that amounts to up to 50% reduction into total verifier 16596 * memory consumption and 20% verifier time speedup. 16597 */ 16598 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 16599 env->insn_processed - env->prev_insn_processed >= 8) 16600 add_new_state = true; 16601 16602 pprev = explored_state(env, insn_idx); 16603 sl = *pprev; 16604 16605 clean_live_states(env, insn_idx, cur); 16606 16607 while (sl) { 16608 states_cnt++; 16609 if (sl->state.insn_idx != insn_idx) 16610 goto next; 16611 16612 if (sl->state.branches) { 16613 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 16614 16615 if (frame->in_async_callback_fn && 16616 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 16617 /* Different async_entry_cnt means that the verifier is 16618 * processing another entry into async callback. 16619 * Seeing the same state is not an indication of infinite 16620 * loop or infinite recursion. 16621 * But finding the same state doesn't mean that it's safe 16622 * to stop processing the current state. The previous state 16623 * hasn't yet reached bpf_exit, since state.branches > 0. 16624 * Checking in_async_callback_fn alone is not enough either. 16625 * Since the verifier still needs to catch infinite loops 16626 * inside async callbacks. 16627 */ 16628 goto skip_inf_loop_check; 16629 } 16630 /* BPF open-coded iterators loop detection is special. 16631 * states_maybe_looping() logic is too simplistic in detecting 16632 * states that *might* be equivalent, because it doesn't know 16633 * about ID remapping, so don't even perform it. 16634 * See process_iter_next_call() and iter_active_depths_differ() 16635 * for overview of the logic. When current and one of parent 16636 * states are detected as equivalent, it's a good thing: we prove 16637 * convergence and can stop simulating further iterations. 16638 * It's safe to assume that iterator loop will finish, taking into 16639 * account iter_next() contract of eventually returning 16640 * sticky NULL result. 16641 * 16642 * Note, that states have to be compared exactly in this case because 16643 * read and precision marks might not be finalized inside the loop. 16644 * E.g. as in the program below: 16645 * 16646 * 1. r7 = -16 16647 * 2. r6 = bpf_get_prandom_u32() 16648 * 3. while (bpf_iter_num_next(&fp[-8])) { 16649 * 4. if (r6 != 42) { 16650 * 5. r7 = -32 16651 * 6. r6 = bpf_get_prandom_u32() 16652 * 7. continue 16653 * 8. } 16654 * 9. r0 = r10 16655 * 10. r0 += r7 16656 * 11. r8 = *(u64 *)(r0 + 0) 16657 * 12. r6 = bpf_get_prandom_u32() 16658 * 13. } 16659 * 16660 * Here verifier would first visit path 1-3, create a checkpoint at 3 16661 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does 16662 * not have read or precision mark for r7 yet, thus inexact states 16663 * comparison would discard current state with r7=-32 16664 * => unsafe memory access at 11 would not be caught. 16665 */ 16666 if (is_iter_next_insn(env, insn_idx)) { 16667 if (states_equal(env, &sl->state, cur, true)) { 16668 struct bpf_func_state *cur_frame; 16669 struct bpf_reg_state *iter_state, *iter_reg; 16670 int spi; 16671 16672 cur_frame = cur->frame[cur->curframe]; 16673 /* btf_check_iter_kfuncs() enforces that 16674 * iter state pointer is always the first arg 16675 */ 16676 iter_reg = &cur_frame->regs[BPF_REG_1]; 16677 /* current state is valid due to states_equal(), 16678 * so we can assume valid iter and reg state, 16679 * no need for extra (re-)validations 16680 */ 16681 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 16682 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 16683 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { 16684 update_loop_entry(cur, &sl->state); 16685 goto hit; 16686 } 16687 } 16688 goto skip_inf_loop_check; 16689 } 16690 if (calls_callback(env, insn_idx)) { 16691 if (states_equal(env, &sl->state, cur, true)) 16692 goto hit; 16693 goto skip_inf_loop_check; 16694 } 16695 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 16696 if (states_maybe_looping(&sl->state, cur) && 16697 states_equal(env, &sl->state, cur, false) && 16698 !iter_active_depths_differ(&sl->state, cur) && 16699 sl->state.callback_unroll_depth == cur->callback_unroll_depth) { 16700 verbose_linfo(env, insn_idx, "; "); 16701 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 16702 verbose(env, "cur state:"); 16703 print_verifier_state(env, cur->frame[cur->curframe], true); 16704 verbose(env, "old state:"); 16705 print_verifier_state(env, sl->state.frame[cur->curframe], true); 16706 return -EINVAL; 16707 } 16708 /* if the verifier is processing a loop, avoid adding new state 16709 * too often, since different loop iterations have distinct 16710 * states and may not help future pruning. 16711 * This threshold shouldn't be too low to make sure that 16712 * a loop with large bound will be rejected quickly. 16713 * The most abusive loop will be: 16714 * r1 += 1 16715 * if r1 < 1000000 goto pc-2 16716 * 1M insn_procssed limit / 100 == 10k peak states. 16717 * This threshold shouldn't be too high either, since states 16718 * at the end of the loop are likely to be useful in pruning. 16719 */ 16720 skip_inf_loop_check: 16721 if (!force_new_state && 16722 env->jmps_processed - env->prev_jmps_processed < 20 && 16723 env->insn_processed - env->prev_insn_processed < 100) 16724 add_new_state = false; 16725 goto miss; 16726 } 16727 /* If sl->state is a part of a loop and this loop's entry is a part of 16728 * current verification path then states have to be compared exactly. 16729 * 'force_exact' is needed to catch the following case: 16730 * 16731 * initial Here state 'succ' was processed first, 16732 * | it was eventually tracked to produce a 16733 * V state identical to 'hdr'. 16734 * .---------> hdr All branches from 'succ' had been explored 16735 * | | and thus 'succ' has its .branches == 0. 16736 * | V 16737 * | .------... Suppose states 'cur' and 'succ' correspond 16738 * | | | to the same instruction + callsites. 16739 * | V V In such case it is necessary to check 16740 * | ... ... if 'succ' and 'cur' are states_equal(). 16741 * | | | If 'succ' and 'cur' are a part of the 16742 * | V V same loop exact flag has to be set. 16743 * | succ <- cur To check if that is the case, verify 16744 * | | if loop entry of 'succ' is in current 16745 * | V DFS path. 16746 * | ... 16747 * | | 16748 * '----' 16749 * 16750 * Additional details are in the comment before get_loop_entry(). 16751 */ 16752 loop_entry = get_loop_entry(&sl->state); 16753 force_exact = loop_entry && loop_entry->branches > 0; 16754 if (states_equal(env, &sl->state, cur, force_exact)) { 16755 if (force_exact) 16756 update_loop_entry(cur, loop_entry); 16757 hit: 16758 sl->hit_cnt++; 16759 /* reached equivalent register/stack state, 16760 * prune the search. 16761 * Registers read by the continuation are read by us. 16762 * If we have any write marks in env->cur_state, they 16763 * will prevent corresponding reads in the continuation 16764 * from reaching our parent (an explored_state). Our 16765 * own state will get the read marks recorded, but 16766 * they'll be immediately forgotten as we're pruning 16767 * this state and will pop a new one. 16768 */ 16769 err = propagate_liveness(env, &sl->state, cur); 16770 16771 /* if previous state reached the exit with precision and 16772 * current state is equivalent to it (except precsion marks) 16773 * the precision needs to be propagated back in 16774 * the current state. 16775 */ 16776 err = err ? : push_jmp_history(env, cur); 16777 err = err ? : propagate_precision(env, &sl->state); 16778 if (err) 16779 return err; 16780 return 1; 16781 } 16782 miss: 16783 /* when new state is not going to be added do not increase miss count. 16784 * Otherwise several loop iterations will remove the state 16785 * recorded earlier. The goal of these heuristics is to have 16786 * states from some iterations of the loop (some in the beginning 16787 * and some at the end) to help pruning. 16788 */ 16789 if (add_new_state) 16790 sl->miss_cnt++; 16791 /* heuristic to determine whether this state is beneficial 16792 * to keep checking from state equivalence point of view. 16793 * Higher numbers increase max_states_per_insn and verification time, 16794 * but do not meaningfully decrease insn_processed. 16795 * 'n' controls how many times state could miss before eviction. 16796 * Use bigger 'n' for checkpoints because evicting checkpoint states 16797 * too early would hinder iterator convergence. 16798 */ 16799 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; 16800 if (sl->miss_cnt > sl->hit_cnt * n + n) { 16801 /* the state is unlikely to be useful. Remove it to 16802 * speed up verification 16803 */ 16804 *pprev = sl->next; 16805 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE && 16806 !sl->state.used_as_loop_entry) { 16807 u32 br = sl->state.branches; 16808 16809 WARN_ONCE(br, 16810 "BUG live_done but branches_to_explore %d\n", 16811 br); 16812 free_verifier_state(&sl->state, false); 16813 kfree(sl); 16814 env->peak_states--; 16815 } else { 16816 /* cannot free this state, since parentage chain may 16817 * walk it later. Add it for free_list instead to 16818 * be freed at the end of verification 16819 */ 16820 sl->next = env->free_list; 16821 env->free_list = sl; 16822 } 16823 sl = *pprev; 16824 continue; 16825 } 16826 next: 16827 pprev = &sl->next; 16828 sl = *pprev; 16829 } 16830 16831 if (env->max_states_per_insn < states_cnt) 16832 env->max_states_per_insn = states_cnt; 16833 16834 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 16835 return 0; 16836 16837 if (!add_new_state) 16838 return 0; 16839 16840 /* There were no equivalent states, remember the current one. 16841 * Technically the current state is not proven to be safe yet, 16842 * but it will either reach outer most bpf_exit (which means it's safe) 16843 * or it will be rejected. When there are no loops the verifier won't be 16844 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 16845 * again on the way to bpf_exit. 16846 * When looping the sl->state.branches will be > 0 and this state 16847 * will not be considered for equivalence until branches == 0. 16848 */ 16849 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 16850 if (!new_sl) 16851 return -ENOMEM; 16852 env->total_states++; 16853 env->peak_states++; 16854 env->prev_jmps_processed = env->jmps_processed; 16855 env->prev_insn_processed = env->insn_processed; 16856 16857 /* forget precise markings we inherited, see __mark_chain_precision */ 16858 if (env->bpf_capable) 16859 mark_all_scalars_imprecise(env, cur); 16860 16861 /* add new state to the head of linked list */ 16862 new = &new_sl->state; 16863 err = copy_verifier_state(new, cur); 16864 if (err) { 16865 free_verifier_state(new, false); 16866 kfree(new_sl); 16867 return err; 16868 } 16869 new->insn_idx = insn_idx; 16870 WARN_ONCE(new->branches != 1, 16871 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 16872 16873 cur->parent = new; 16874 cur->first_insn_idx = insn_idx; 16875 cur->dfs_depth = new->dfs_depth + 1; 16876 clear_jmp_history(cur); 16877 new_sl->next = *explored_state(env, insn_idx); 16878 *explored_state(env, insn_idx) = new_sl; 16879 /* connect new state to parentage chain. Current frame needs all 16880 * registers connected. Only r6 - r9 of the callers are alive (pushed 16881 * to the stack implicitly by JITs) so in callers' frames connect just 16882 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 16883 * the state of the call instruction (with WRITTEN set), and r0 comes 16884 * from callee with its full parentage chain, anyway. 16885 */ 16886 /* clear write marks in current state: the writes we did are not writes 16887 * our child did, so they don't screen off its reads from us. 16888 * (There are no read marks in current state, because reads always mark 16889 * their parent and current state never has children yet. Only 16890 * explored_states can get read marks.) 16891 */ 16892 for (j = 0; j <= cur->curframe; j++) { 16893 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 16894 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 16895 for (i = 0; i < BPF_REG_FP; i++) 16896 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 16897 } 16898 16899 /* all stack frames are accessible from callee, clear them all */ 16900 for (j = 0; j <= cur->curframe; j++) { 16901 struct bpf_func_state *frame = cur->frame[j]; 16902 struct bpf_func_state *newframe = new->frame[j]; 16903 16904 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 16905 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 16906 frame->stack[i].spilled_ptr.parent = 16907 &newframe->stack[i].spilled_ptr; 16908 } 16909 } 16910 return 0; 16911 } 16912 16913 /* Return true if it's OK to have the same insn return a different type. */ 16914 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 16915 { 16916 switch (base_type(type)) { 16917 case PTR_TO_CTX: 16918 case PTR_TO_SOCKET: 16919 case PTR_TO_SOCK_COMMON: 16920 case PTR_TO_TCP_SOCK: 16921 case PTR_TO_XDP_SOCK: 16922 case PTR_TO_BTF_ID: 16923 return false; 16924 default: 16925 return true; 16926 } 16927 } 16928 16929 /* If an instruction was previously used with particular pointer types, then we 16930 * need to be careful to avoid cases such as the below, where it may be ok 16931 * for one branch accessing the pointer, but not ok for the other branch: 16932 * 16933 * R1 = sock_ptr 16934 * goto X; 16935 * ... 16936 * R1 = some_other_valid_ptr; 16937 * goto X; 16938 * ... 16939 * R2 = *(u32 *)(R1 + 0); 16940 */ 16941 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 16942 { 16943 return src != prev && (!reg_type_mismatch_ok(src) || 16944 !reg_type_mismatch_ok(prev)); 16945 } 16946 16947 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 16948 bool allow_trust_missmatch) 16949 { 16950 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 16951 16952 if (*prev_type == NOT_INIT) { 16953 /* Saw a valid insn 16954 * dst_reg = *(u32 *)(src_reg + off) 16955 * save type to validate intersecting paths 16956 */ 16957 *prev_type = type; 16958 } else if (reg_type_mismatch(type, *prev_type)) { 16959 /* Abuser program is trying to use the same insn 16960 * dst_reg = *(u32*) (src_reg + off) 16961 * with different pointer types: 16962 * src_reg == ctx in one branch and 16963 * src_reg == stack|map in some other branch. 16964 * Reject it. 16965 */ 16966 if (allow_trust_missmatch && 16967 base_type(type) == PTR_TO_BTF_ID && 16968 base_type(*prev_type) == PTR_TO_BTF_ID) { 16969 /* 16970 * Have to support a use case when one path through 16971 * the program yields TRUSTED pointer while another 16972 * is UNTRUSTED. Fallback to UNTRUSTED to generate 16973 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 16974 */ 16975 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 16976 } else { 16977 verbose(env, "same insn cannot be used with different pointers\n"); 16978 return -EINVAL; 16979 } 16980 } 16981 16982 return 0; 16983 } 16984 16985 static int do_check(struct bpf_verifier_env *env) 16986 { 16987 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 16988 struct bpf_verifier_state *state = env->cur_state; 16989 struct bpf_insn *insns = env->prog->insnsi; 16990 struct bpf_reg_state *regs; 16991 int insn_cnt = env->prog->len; 16992 bool do_print_state = false; 16993 int prev_insn_idx = -1; 16994 16995 for (;;) { 16996 struct bpf_insn *insn; 16997 u8 class; 16998 int err; 16999 17000 env->prev_insn_idx = prev_insn_idx; 17001 if (env->insn_idx >= insn_cnt) { 17002 verbose(env, "invalid insn idx %d insn_cnt %d\n", 17003 env->insn_idx, insn_cnt); 17004 return -EFAULT; 17005 } 17006 17007 insn = &insns[env->insn_idx]; 17008 class = BPF_CLASS(insn->code); 17009 17010 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 17011 verbose(env, 17012 "BPF program is too large. Processed %d insn\n", 17013 env->insn_processed); 17014 return -E2BIG; 17015 } 17016 17017 state->last_insn_idx = env->prev_insn_idx; 17018 17019 if (is_prune_point(env, env->insn_idx)) { 17020 err = is_state_visited(env, env->insn_idx); 17021 if (err < 0) 17022 return err; 17023 if (err == 1) { 17024 /* found equivalent state, can prune the search */ 17025 if (env->log.level & BPF_LOG_LEVEL) { 17026 if (do_print_state) 17027 verbose(env, "\nfrom %d to %d%s: safe\n", 17028 env->prev_insn_idx, env->insn_idx, 17029 env->cur_state->speculative ? 17030 " (speculative execution)" : ""); 17031 else 17032 verbose(env, "%d: safe\n", env->insn_idx); 17033 } 17034 goto process_bpf_exit; 17035 } 17036 } 17037 17038 if (is_jmp_point(env, env->insn_idx)) { 17039 err = push_jmp_history(env, state); 17040 if (err) 17041 return err; 17042 } 17043 17044 if (signal_pending(current)) 17045 return -EAGAIN; 17046 17047 if (need_resched()) 17048 cond_resched(); 17049 17050 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 17051 verbose(env, "\nfrom %d to %d%s:", 17052 env->prev_insn_idx, env->insn_idx, 17053 env->cur_state->speculative ? 17054 " (speculative execution)" : ""); 17055 print_verifier_state(env, state->frame[state->curframe], true); 17056 do_print_state = false; 17057 } 17058 17059 if (env->log.level & BPF_LOG_LEVEL) { 17060 const struct bpf_insn_cbs cbs = { 17061 .cb_call = disasm_kfunc_name, 17062 .cb_print = verbose, 17063 .private_data = env, 17064 }; 17065 17066 if (verifier_state_scratched(env)) 17067 print_insn_state(env, state->frame[state->curframe]); 17068 17069 verbose_linfo(env, env->insn_idx, "; "); 17070 env->prev_log_pos = env->log.end_pos; 17071 verbose(env, "%d: ", env->insn_idx); 17072 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 17073 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 17074 env->prev_log_pos = env->log.end_pos; 17075 } 17076 17077 if (bpf_prog_is_offloaded(env->prog->aux)) { 17078 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 17079 env->prev_insn_idx); 17080 if (err) 17081 return err; 17082 } 17083 17084 regs = cur_regs(env); 17085 sanitize_mark_insn_seen(env); 17086 prev_insn_idx = env->insn_idx; 17087 17088 if (class == BPF_ALU || class == BPF_ALU64) { 17089 err = check_alu_op(env, insn); 17090 if (err) 17091 return err; 17092 17093 } else if (class == BPF_LDX) { 17094 enum bpf_reg_type src_reg_type; 17095 17096 /* check for reserved fields is already done */ 17097 17098 /* check src operand */ 17099 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17100 if (err) 17101 return err; 17102 17103 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 17104 if (err) 17105 return err; 17106 17107 src_reg_type = regs[insn->src_reg].type; 17108 17109 /* check that memory (src_reg + off) is readable, 17110 * the state of dst_reg will be updated by this func 17111 */ 17112 err = check_mem_access(env, env->insn_idx, insn->src_reg, 17113 insn->off, BPF_SIZE(insn->code), 17114 BPF_READ, insn->dst_reg, false, 17115 BPF_MODE(insn->code) == BPF_MEMSX); 17116 if (err) 17117 return err; 17118 17119 err = save_aux_ptr_type(env, src_reg_type, true); 17120 if (err) 17121 return err; 17122 } else if (class == BPF_STX) { 17123 enum bpf_reg_type dst_reg_type; 17124 17125 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 17126 err = check_atomic(env, env->insn_idx, insn); 17127 if (err) 17128 return err; 17129 env->insn_idx++; 17130 continue; 17131 } 17132 17133 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 17134 verbose(env, "BPF_STX uses reserved fields\n"); 17135 return -EINVAL; 17136 } 17137 17138 /* check src1 operand */ 17139 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17140 if (err) 17141 return err; 17142 /* check src2 operand */ 17143 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 17144 if (err) 17145 return err; 17146 17147 dst_reg_type = regs[insn->dst_reg].type; 17148 17149 /* check that memory (dst_reg + off) is writeable */ 17150 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 17151 insn->off, BPF_SIZE(insn->code), 17152 BPF_WRITE, insn->src_reg, false, false); 17153 if (err) 17154 return err; 17155 17156 err = save_aux_ptr_type(env, dst_reg_type, false); 17157 if (err) 17158 return err; 17159 } else if (class == BPF_ST) { 17160 enum bpf_reg_type dst_reg_type; 17161 17162 if (BPF_MODE(insn->code) != BPF_MEM || 17163 insn->src_reg != BPF_REG_0) { 17164 verbose(env, "BPF_ST uses reserved fields\n"); 17165 return -EINVAL; 17166 } 17167 /* check src operand */ 17168 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 17169 if (err) 17170 return err; 17171 17172 dst_reg_type = regs[insn->dst_reg].type; 17173 17174 /* check that memory (dst_reg + off) is writeable */ 17175 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 17176 insn->off, BPF_SIZE(insn->code), 17177 BPF_WRITE, -1, false, false); 17178 if (err) 17179 return err; 17180 17181 err = save_aux_ptr_type(env, dst_reg_type, false); 17182 if (err) 17183 return err; 17184 } else if (class == BPF_JMP || class == BPF_JMP32) { 17185 u8 opcode = BPF_OP(insn->code); 17186 17187 env->jmps_processed++; 17188 if (opcode == BPF_CALL) { 17189 if (BPF_SRC(insn->code) != BPF_K || 17190 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 17191 && insn->off != 0) || 17192 (insn->src_reg != BPF_REG_0 && 17193 insn->src_reg != BPF_PSEUDO_CALL && 17194 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 17195 insn->dst_reg != BPF_REG_0 || 17196 class == BPF_JMP32) { 17197 verbose(env, "BPF_CALL uses reserved fields\n"); 17198 return -EINVAL; 17199 } 17200 17201 if (env->cur_state->active_lock.ptr) { 17202 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 17203 (insn->src_reg == BPF_PSEUDO_CALL) || 17204 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 17205 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 17206 verbose(env, "function calls are not allowed while holding a lock\n"); 17207 return -EINVAL; 17208 } 17209 } 17210 if (insn->src_reg == BPF_PSEUDO_CALL) 17211 err = check_func_call(env, insn, &env->insn_idx); 17212 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 17213 err = check_kfunc_call(env, insn, &env->insn_idx); 17214 else 17215 err = check_helper_call(env, insn, &env->insn_idx); 17216 if (err) 17217 return err; 17218 17219 mark_reg_scratched(env, BPF_REG_0); 17220 } else if (opcode == BPF_JA) { 17221 if (BPF_SRC(insn->code) != BPF_K || 17222 insn->src_reg != BPF_REG_0 || 17223 insn->dst_reg != BPF_REG_0 || 17224 (class == BPF_JMP && insn->imm != 0) || 17225 (class == BPF_JMP32 && insn->off != 0)) { 17226 verbose(env, "BPF_JA uses reserved fields\n"); 17227 return -EINVAL; 17228 } 17229 17230 if (class == BPF_JMP) 17231 env->insn_idx += insn->off + 1; 17232 else 17233 env->insn_idx += insn->imm + 1; 17234 continue; 17235 17236 } else if (opcode == BPF_EXIT) { 17237 if (BPF_SRC(insn->code) != BPF_K || 17238 insn->imm != 0 || 17239 insn->src_reg != BPF_REG_0 || 17240 insn->dst_reg != BPF_REG_0 || 17241 class == BPF_JMP32) { 17242 verbose(env, "BPF_EXIT uses reserved fields\n"); 17243 return -EINVAL; 17244 } 17245 17246 if (env->cur_state->active_lock.ptr && 17247 !in_rbtree_lock_required_cb(env)) { 17248 verbose(env, "bpf_spin_unlock is missing\n"); 17249 return -EINVAL; 17250 } 17251 17252 if (env->cur_state->active_rcu_lock && 17253 !in_rbtree_lock_required_cb(env)) { 17254 verbose(env, "bpf_rcu_read_unlock is missing\n"); 17255 return -EINVAL; 17256 } 17257 17258 /* We must do check_reference_leak here before 17259 * prepare_func_exit to handle the case when 17260 * state->curframe > 0, it may be a callback 17261 * function, for which reference_state must 17262 * match caller reference state when it exits. 17263 */ 17264 err = check_reference_leak(env); 17265 if (err) 17266 return err; 17267 17268 if (state->curframe) { 17269 /* exit from nested function */ 17270 err = prepare_func_exit(env, &env->insn_idx); 17271 if (err) 17272 return err; 17273 do_print_state = true; 17274 continue; 17275 } 17276 17277 err = check_return_code(env); 17278 if (err) 17279 return err; 17280 process_bpf_exit: 17281 mark_verifier_state_scratched(env); 17282 update_branch_counts(env, env->cur_state); 17283 err = pop_stack(env, &prev_insn_idx, 17284 &env->insn_idx, pop_log); 17285 if (err < 0) { 17286 if (err != -ENOENT) 17287 return err; 17288 break; 17289 } else { 17290 do_print_state = true; 17291 continue; 17292 } 17293 } else { 17294 err = check_cond_jmp_op(env, insn, &env->insn_idx); 17295 if (err) 17296 return err; 17297 } 17298 } else if (class == BPF_LD) { 17299 u8 mode = BPF_MODE(insn->code); 17300 17301 if (mode == BPF_ABS || mode == BPF_IND) { 17302 err = check_ld_abs(env, insn); 17303 if (err) 17304 return err; 17305 17306 } else if (mode == BPF_IMM) { 17307 err = check_ld_imm(env, insn); 17308 if (err) 17309 return err; 17310 17311 env->insn_idx++; 17312 sanitize_mark_insn_seen(env); 17313 } else { 17314 verbose(env, "invalid BPF_LD mode\n"); 17315 return -EINVAL; 17316 } 17317 } else { 17318 verbose(env, "unknown insn class %d\n", class); 17319 return -EINVAL; 17320 } 17321 17322 env->insn_idx++; 17323 } 17324 17325 return 0; 17326 } 17327 17328 static int find_btf_percpu_datasec(struct btf *btf) 17329 { 17330 const struct btf_type *t; 17331 const char *tname; 17332 int i, n; 17333 17334 /* 17335 * Both vmlinux and module each have their own ".data..percpu" 17336 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 17337 * types to look at only module's own BTF types. 17338 */ 17339 n = btf_nr_types(btf); 17340 if (btf_is_module(btf)) 17341 i = btf_nr_types(btf_vmlinux); 17342 else 17343 i = 1; 17344 17345 for(; i < n; i++) { 17346 t = btf_type_by_id(btf, i); 17347 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 17348 continue; 17349 17350 tname = btf_name_by_offset(btf, t->name_off); 17351 if (!strcmp(tname, ".data..percpu")) 17352 return i; 17353 } 17354 17355 return -ENOENT; 17356 } 17357 17358 /* replace pseudo btf_id with kernel symbol address */ 17359 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 17360 struct bpf_insn *insn, 17361 struct bpf_insn_aux_data *aux) 17362 { 17363 const struct btf_var_secinfo *vsi; 17364 const struct btf_type *datasec; 17365 struct btf_mod_pair *btf_mod; 17366 const struct btf_type *t; 17367 const char *sym_name; 17368 bool percpu = false; 17369 u32 type, id = insn->imm; 17370 struct btf *btf; 17371 s32 datasec_id; 17372 u64 addr; 17373 int i, btf_fd, err; 17374 17375 btf_fd = insn[1].imm; 17376 if (btf_fd) { 17377 btf = btf_get_by_fd(btf_fd); 17378 if (IS_ERR(btf)) { 17379 verbose(env, "invalid module BTF object FD specified.\n"); 17380 return -EINVAL; 17381 } 17382 } else { 17383 if (!btf_vmlinux) { 17384 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 17385 return -EINVAL; 17386 } 17387 btf = btf_vmlinux; 17388 btf_get(btf); 17389 } 17390 17391 t = btf_type_by_id(btf, id); 17392 if (!t) { 17393 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 17394 err = -ENOENT; 17395 goto err_put; 17396 } 17397 17398 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 17399 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 17400 err = -EINVAL; 17401 goto err_put; 17402 } 17403 17404 sym_name = btf_name_by_offset(btf, t->name_off); 17405 addr = kallsyms_lookup_name(sym_name); 17406 if (!addr) { 17407 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 17408 sym_name); 17409 err = -ENOENT; 17410 goto err_put; 17411 } 17412 insn[0].imm = (u32)addr; 17413 insn[1].imm = addr >> 32; 17414 17415 if (btf_type_is_func(t)) { 17416 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 17417 aux->btf_var.mem_size = 0; 17418 goto check_btf; 17419 } 17420 17421 datasec_id = find_btf_percpu_datasec(btf); 17422 if (datasec_id > 0) { 17423 datasec = btf_type_by_id(btf, datasec_id); 17424 for_each_vsi(i, datasec, vsi) { 17425 if (vsi->type == id) { 17426 percpu = true; 17427 break; 17428 } 17429 } 17430 } 17431 17432 type = t->type; 17433 t = btf_type_skip_modifiers(btf, type, NULL); 17434 if (percpu) { 17435 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 17436 aux->btf_var.btf = btf; 17437 aux->btf_var.btf_id = type; 17438 } else if (!btf_type_is_struct(t)) { 17439 const struct btf_type *ret; 17440 const char *tname; 17441 u32 tsize; 17442 17443 /* resolve the type size of ksym. */ 17444 ret = btf_resolve_size(btf, t, &tsize); 17445 if (IS_ERR(ret)) { 17446 tname = btf_name_by_offset(btf, t->name_off); 17447 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 17448 tname, PTR_ERR(ret)); 17449 err = -EINVAL; 17450 goto err_put; 17451 } 17452 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 17453 aux->btf_var.mem_size = tsize; 17454 } else { 17455 aux->btf_var.reg_type = PTR_TO_BTF_ID; 17456 aux->btf_var.btf = btf; 17457 aux->btf_var.btf_id = type; 17458 } 17459 check_btf: 17460 /* check whether we recorded this BTF (and maybe module) already */ 17461 for (i = 0; i < env->used_btf_cnt; i++) { 17462 if (env->used_btfs[i].btf == btf) { 17463 btf_put(btf); 17464 return 0; 17465 } 17466 } 17467 17468 if (env->used_btf_cnt >= MAX_USED_BTFS) { 17469 err = -E2BIG; 17470 goto err_put; 17471 } 17472 17473 btf_mod = &env->used_btfs[env->used_btf_cnt]; 17474 btf_mod->btf = btf; 17475 btf_mod->module = NULL; 17476 17477 /* if we reference variables from kernel module, bump its refcount */ 17478 if (btf_is_module(btf)) { 17479 btf_mod->module = btf_try_get_module(btf); 17480 if (!btf_mod->module) { 17481 err = -ENXIO; 17482 goto err_put; 17483 } 17484 } 17485 17486 env->used_btf_cnt++; 17487 17488 return 0; 17489 err_put: 17490 btf_put(btf); 17491 return err; 17492 } 17493 17494 static bool is_tracing_prog_type(enum bpf_prog_type type) 17495 { 17496 switch (type) { 17497 case BPF_PROG_TYPE_KPROBE: 17498 case BPF_PROG_TYPE_TRACEPOINT: 17499 case BPF_PROG_TYPE_PERF_EVENT: 17500 case BPF_PROG_TYPE_RAW_TRACEPOINT: 17501 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 17502 return true; 17503 default: 17504 return false; 17505 } 17506 } 17507 17508 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 17509 struct bpf_map *map, 17510 struct bpf_prog *prog) 17511 17512 { 17513 enum bpf_prog_type prog_type = resolve_prog_type(prog); 17514 17515 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 17516 btf_record_has_field(map->record, BPF_RB_ROOT)) { 17517 if (is_tracing_prog_type(prog_type)) { 17518 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 17519 return -EINVAL; 17520 } 17521 } 17522 17523 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 17524 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 17525 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 17526 return -EINVAL; 17527 } 17528 17529 if (is_tracing_prog_type(prog_type)) { 17530 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 17531 return -EINVAL; 17532 } 17533 } 17534 17535 if (btf_record_has_field(map->record, BPF_TIMER)) { 17536 if (is_tracing_prog_type(prog_type)) { 17537 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 17538 return -EINVAL; 17539 } 17540 } 17541 17542 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 17543 !bpf_offload_prog_map_match(prog, map)) { 17544 verbose(env, "offload device mismatch between prog and map\n"); 17545 return -EINVAL; 17546 } 17547 17548 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 17549 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 17550 return -EINVAL; 17551 } 17552 17553 if (prog->aux->sleepable) 17554 switch (map->map_type) { 17555 case BPF_MAP_TYPE_HASH: 17556 case BPF_MAP_TYPE_LRU_HASH: 17557 case BPF_MAP_TYPE_ARRAY: 17558 case BPF_MAP_TYPE_PERCPU_HASH: 17559 case BPF_MAP_TYPE_PERCPU_ARRAY: 17560 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 17561 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 17562 case BPF_MAP_TYPE_HASH_OF_MAPS: 17563 case BPF_MAP_TYPE_RINGBUF: 17564 case BPF_MAP_TYPE_USER_RINGBUF: 17565 case BPF_MAP_TYPE_INODE_STORAGE: 17566 case BPF_MAP_TYPE_SK_STORAGE: 17567 case BPF_MAP_TYPE_TASK_STORAGE: 17568 case BPF_MAP_TYPE_CGRP_STORAGE: 17569 break; 17570 default: 17571 verbose(env, 17572 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 17573 return -EINVAL; 17574 } 17575 17576 return 0; 17577 } 17578 17579 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 17580 { 17581 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 17582 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 17583 } 17584 17585 /* find and rewrite pseudo imm in ld_imm64 instructions: 17586 * 17587 * 1. if it accesses map FD, replace it with actual map pointer. 17588 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 17589 * 17590 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 17591 */ 17592 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 17593 { 17594 struct bpf_insn *insn = env->prog->insnsi; 17595 int insn_cnt = env->prog->len; 17596 int i, j, err; 17597 17598 err = bpf_prog_calc_tag(env->prog); 17599 if (err) 17600 return err; 17601 17602 for (i = 0; i < insn_cnt; i++, insn++) { 17603 if (BPF_CLASS(insn->code) == BPF_LDX && 17604 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 17605 insn->imm != 0)) { 17606 verbose(env, "BPF_LDX uses reserved fields\n"); 17607 return -EINVAL; 17608 } 17609 17610 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 17611 struct bpf_insn_aux_data *aux; 17612 struct bpf_map *map; 17613 struct fd f; 17614 u64 addr; 17615 u32 fd; 17616 17617 if (i == insn_cnt - 1 || insn[1].code != 0 || 17618 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 17619 insn[1].off != 0) { 17620 verbose(env, "invalid bpf_ld_imm64 insn\n"); 17621 return -EINVAL; 17622 } 17623 17624 if (insn[0].src_reg == 0) 17625 /* valid generic load 64-bit imm */ 17626 goto next_insn; 17627 17628 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 17629 aux = &env->insn_aux_data[i]; 17630 err = check_pseudo_btf_id(env, insn, aux); 17631 if (err) 17632 return err; 17633 goto next_insn; 17634 } 17635 17636 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 17637 aux = &env->insn_aux_data[i]; 17638 aux->ptr_type = PTR_TO_FUNC; 17639 goto next_insn; 17640 } 17641 17642 /* In final convert_pseudo_ld_imm64() step, this is 17643 * converted into regular 64-bit imm load insn. 17644 */ 17645 switch (insn[0].src_reg) { 17646 case BPF_PSEUDO_MAP_VALUE: 17647 case BPF_PSEUDO_MAP_IDX_VALUE: 17648 break; 17649 case BPF_PSEUDO_MAP_FD: 17650 case BPF_PSEUDO_MAP_IDX: 17651 if (insn[1].imm == 0) 17652 break; 17653 fallthrough; 17654 default: 17655 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 17656 return -EINVAL; 17657 } 17658 17659 switch (insn[0].src_reg) { 17660 case BPF_PSEUDO_MAP_IDX_VALUE: 17661 case BPF_PSEUDO_MAP_IDX: 17662 if (bpfptr_is_null(env->fd_array)) { 17663 verbose(env, "fd_idx without fd_array is invalid\n"); 17664 return -EPROTO; 17665 } 17666 if (copy_from_bpfptr_offset(&fd, env->fd_array, 17667 insn[0].imm * sizeof(fd), 17668 sizeof(fd))) 17669 return -EFAULT; 17670 break; 17671 default: 17672 fd = insn[0].imm; 17673 break; 17674 } 17675 17676 f = fdget(fd); 17677 map = __bpf_map_get(f); 17678 if (IS_ERR(map)) { 17679 verbose(env, "fd %d is not pointing to valid bpf_map\n", fd); 17680 return PTR_ERR(map); 17681 } 17682 17683 err = check_map_prog_compatibility(env, map, env->prog); 17684 if (err) { 17685 fdput(f); 17686 return err; 17687 } 17688 17689 aux = &env->insn_aux_data[i]; 17690 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 17691 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 17692 addr = (unsigned long)map; 17693 } else { 17694 u32 off = insn[1].imm; 17695 17696 if (off >= BPF_MAX_VAR_OFF) { 17697 verbose(env, "direct value offset of %u is not allowed\n", off); 17698 fdput(f); 17699 return -EINVAL; 17700 } 17701 17702 if (!map->ops->map_direct_value_addr) { 17703 verbose(env, "no direct value access support for this map type\n"); 17704 fdput(f); 17705 return -EINVAL; 17706 } 17707 17708 err = map->ops->map_direct_value_addr(map, &addr, off); 17709 if (err) { 17710 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 17711 map->value_size, off); 17712 fdput(f); 17713 return err; 17714 } 17715 17716 aux->map_off = off; 17717 addr += off; 17718 } 17719 17720 insn[0].imm = (u32)addr; 17721 insn[1].imm = addr >> 32; 17722 17723 /* check whether we recorded this map already */ 17724 for (j = 0; j < env->used_map_cnt; j++) { 17725 if (env->used_maps[j] == map) { 17726 aux->map_index = j; 17727 fdput(f); 17728 goto next_insn; 17729 } 17730 } 17731 17732 if (env->used_map_cnt >= MAX_USED_MAPS) { 17733 fdput(f); 17734 return -E2BIG; 17735 } 17736 17737 if (env->prog->aux->sleepable) 17738 atomic64_inc(&map->sleepable_refcnt); 17739 /* hold the map. If the program is rejected by verifier, 17740 * the map will be released by release_maps() or it 17741 * will be used by the valid program until it's unloaded 17742 * and all maps are released in bpf_free_used_maps() 17743 */ 17744 bpf_map_inc(map); 17745 17746 aux->map_index = env->used_map_cnt; 17747 env->used_maps[env->used_map_cnt++] = map; 17748 17749 if (bpf_map_is_cgroup_storage(map) && 17750 bpf_cgroup_storage_assign(env->prog->aux, map)) { 17751 verbose(env, "only one cgroup storage of each type is allowed\n"); 17752 fdput(f); 17753 return -EBUSY; 17754 } 17755 17756 fdput(f); 17757 next_insn: 17758 insn++; 17759 i++; 17760 continue; 17761 } 17762 17763 /* Basic sanity check before we invest more work here. */ 17764 if (!bpf_opcode_in_insntable(insn->code)) { 17765 verbose(env, "unknown opcode %02x\n", insn->code); 17766 return -EINVAL; 17767 } 17768 } 17769 17770 /* now all pseudo BPF_LD_IMM64 instructions load valid 17771 * 'struct bpf_map *' into a register instead of user map_fd. 17772 * These pointers will be used later by verifier to validate map access. 17773 */ 17774 return 0; 17775 } 17776 17777 /* drop refcnt of maps used by the rejected program */ 17778 static void release_maps(struct bpf_verifier_env *env) 17779 { 17780 __bpf_free_used_maps(env->prog->aux, env->used_maps, 17781 env->used_map_cnt); 17782 } 17783 17784 /* drop refcnt of maps used by the rejected program */ 17785 static void release_btfs(struct bpf_verifier_env *env) 17786 { 17787 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 17788 env->used_btf_cnt); 17789 } 17790 17791 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 17792 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 17793 { 17794 struct bpf_insn *insn = env->prog->insnsi; 17795 int insn_cnt = env->prog->len; 17796 int i; 17797 17798 for (i = 0; i < insn_cnt; i++, insn++) { 17799 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 17800 continue; 17801 if (insn->src_reg == BPF_PSEUDO_FUNC) 17802 continue; 17803 insn->src_reg = 0; 17804 } 17805 } 17806 17807 /* single env->prog->insni[off] instruction was replaced with the range 17808 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 17809 * [0, off) and [off, end) to new locations, so the patched range stays zero 17810 */ 17811 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 17812 struct bpf_insn_aux_data *new_data, 17813 struct bpf_prog *new_prog, u32 off, u32 cnt) 17814 { 17815 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 17816 struct bpf_insn *insn = new_prog->insnsi; 17817 u32 old_seen = old_data[off].seen; 17818 u32 prog_len; 17819 int i; 17820 17821 /* aux info at OFF always needs adjustment, no matter fast path 17822 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 17823 * original insn at old prog. 17824 */ 17825 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 17826 17827 if (cnt == 1) 17828 return; 17829 prog_len = new_prog->len; 17830 17831 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 17832 memcpy(new_data + off + cnt - 1, old_data + off, 17833 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 17834 for (i = off; i < off + cnt - 1; i++) { 17835 /* Expand insni[off]'s seen count to the patched range. */ 17836 new_data[i].seen = old_seen; 17837 new_data[i].zext_dst = insn_has_def32(env, insn + i); 17838 } 17839 env->insn_aux_data = new_data; 17840 vfree(old_data); 17841 } 17842 17843 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 17844 { 17845 int i; 17846 17847 if (len == 1) 17848 return; 17849 /* NOTE: fake 'exit' subprog should be updated as well. */ 17850 for (i = 0; i <= env->subprog_cnt; i++) { 17851 if (env->subprog_info[i].start <= off) 17852 continue; 17853 env->subprog_info[i].start += len - 1; 17854 } 17855 } 17856 17857 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 17858 { 17859 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 17860 int i, sz = prog->aux->size_poke_tab; 17861 struct bpf_jit_poke_descriptor *desc; 17862 17863 for (i = 0; i < sz; i++) { 17864 desc = &tab[i]; 17865 if (desc->insn_idx <= off) 17866 continue; 17867 desc->insn_idx += len - 1; 17868 } 17869 } 17870 17871 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 17872 const struct bpf_insn *patch, u32 len) 17873 { 17874 struct bpf_prog *new_prog; 17875 struct bpf_insn_aux_data *new_data = NULL; 17876 17877 if (len > 1) { 17878 new_data = vzalloc(array_size(env->prog->len + len - 1, 17879 sizeof(struct bpf_insn_aux_data))); 17880 if (!new_data) 17881 return NULL; 17882 } 17883 17884 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 17885 if (IS_ERR(new_prog)) { 17886 if (PTR_ERR(new_prog) == -ERANGE) 17887 verbose(env, 17888 "insn %d cannot be patched due to 16-bit range\n", 17889 env->insn_aux_data[off].orig_idx); 17890 vfree(new_data); 17891 return NULL; 17892 } 17893 adjust_insn_aux_data(env, new_data, new_prog, off, len); 17894 adjust_subprog_starts(env, off, len); 17895 adjust_poke_descs(new_prog, off, len); 17896 return new_prog; 17897 } 17898 17899 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 17900 u32 off, u32 cnt) 17901 { 17902 int i, j; 17903 17904 /* find first prog starting at or after off (first to remove) */ 17905 for (i = 0; i < env->subprog_cnt; i++) 17906 if (env->subprog_info[i].start >= off) 17907 break; 17908 /* find first prog starting at or after off + cnt (first to stay) */ 17909 for (j = i; j < env->subprog_cnt; j++) 17910 if (env->subprog_info[j].start >= off + cnt) 17911 break; 17912 /* if j doesn't start exactly at off + cnt, we are just removing 17913 * the front of previous prog 17914 */ 17915 if (env->subprog_info[j].start != off + cnt) 17916 j--; 17917 17918 if (j > i) { 17919 struct bpf_prog_aux *aux = env->prog->aux; 17920 int move; 17921 17922 /* move fake 'exit' subprog as well */ 17923 move = env->subprog_cnt + 1 - j; 17924 17925 memmove(env->subprog_info + i, 17926 env->subprog_info + j, 17927 sizeof(*env->subprog_info) * move); 17928 env->subprog_cnt -= j - i; 17929 17930 /* remove func_info */ 17931 if (aux->func_info) { 17932 move = aux->func_info_cnt - j; 17933 17934 memmove(aux->func_info + i, 17935 aux->func_info + j, 17936 sizeof(*aux->func_info) * move); 17937 aux->func_info_cnt -= j - i; 17938 /* func_info->insn_off is set after all code rewrites, 17939 * in adjust_btf_func() - no need to adjust 17940 */ 17941 } 17942 } else { 17943 /* convert i from "first prog to remove" to "first to adjust" */ 17944 if (env->subprog_info[i].start == off) 17945 i++; 17946 } 17947 17948 /* update fake 'exit' subprog as well */ 17949 for (; i <= env->subprog_cnt; i++) 17950 env->subprog_info[i].start -= cnt; 17951 17952 return 0; 17953 } 17954 17955 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 17956 u32 cnt) 17957 { 17958 struct bpf_prog *prog = env->prog; 17959 u32 i, l_off, l_cnt, nr_linfo; 17960 struct bpf_line_info *linfo; 17961 17962 nr_linfo = prog->aux->nr_linfo; 17963 if (!nr_linfo) 17964 return 0; 17965 17966 linfo = prog->aux->linfo; 17967 17968 /* find first line info to remove, count lines to be removed */ 17969 for (i = 0; i < nr_linfo; i++) 17970 if (linfo[i].insn_off >= off) 17971 break; 17972 17973 l_off = i; 17974 l_cnt = 0; 17975 for (; i < nr_linfo; i++) 17976 if (linfo[i].insn_off < off + cnt) 17977 l_cnt++; 17978 else 17979 break; 17980 17981 /* First live insn doesn't match first live linfo, it needs to "inherit" 17982 * last removed linfo. prog is already modified, so prog->len == off 17983 * means no live instructions after (tail of the program was removed). 17984 */ 17985 if (prog->len != off && l_cnt && 17986 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 17987 l_cnt--; 17988 linfo[--i].insn_off = off + cnt; 17989 } 17990 17991 /* remove the line info which refer to the removed instructions */ 17992 if (l_cnt) { 17993 memmove(linfo + l_off, linfo + i, 17994 sizeof(*linfo) * (nr_linfo - i)); 17995 17996 prog->aux->nr_linfo -= l_cnt; 17997 nr_linfo = prog->aux->nr_linfo; 17998 } 17999 18000 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 18001 for (i = l_off; i < nr_linfo; i++) 18002 linfo[i].insn_off -= cnt; 18003 18004 /* fix up all subprogs (incl. 'exit') which start >= off */ 18005 for (i = 0; i <= env->subprog_cnt; i++) 18006 if (env->subprog_info[i].linfo_idx > l_off) { 18007 /* program may have started in the removed region but 18008 * may not be fully removed 18009 */ 18010 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 18011 env->subprog_info[i].linfo_idx -= l_cnt; 18012 else 18013 env->subprog_info[i].linfo_idx = l_off; 18014 } 18015 18016 return 0; 18017 } 18018 18019 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 18020 { 18021 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18022 unsigned int orig_prog_len = env->prog->len; 18023 int err; 18024 18025 if (bpf_prog_is_offloaded(env->prog->aux)) 18026 bpf_prog_offload_remove_insns(env, off, cnt); 18027 18028 err = bpf_remove_insns(env->prog, off, cnt); 18029 if (err) 18030 return err; 18031 18032 err = adjust_subprog_starts_after_remove(env, off, cnt); 18033 if (err) 18034 return err; 18035 18036 err = bpf_adj_linfo_after_remove(env, off, cnt); 18037 if (err) 18038 return err; 18039 18040 memmove(aux_data + off, aux_data + off + cnt, 18041 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 18042 18043 return 0; 18044 } 18045 18046 /* The verifier does more data flow analysis than llvm and will not 18047 * explore branches that are dead at run time. Malicious programs can 18048 * have dead code too. Therefore replace all dead at-run-time code 18049 * with 'ja -1'. 18050 * 18051 * Just nops are not optimal, e.g. if they would sit at the end of the 18052 * program and through another bug we would manage to jump there, then 18053 * we'd execute beyond program memory otherwise. Returning exception 18054 * code also wouldn't work since we can have subprogs where the dead 18055 * code could be located. 18056 */ 18057 static void sanitize_dead_code(struct bpf_verifier_env *env) 18058 { 18059 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18060 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 18061 struct bpf_insn *insn = env->prog->insnsi; 18062 const int insn_cnt = env->prog->len; 18063 int i; 18064 18065 for (i = 0; i < insn_cnt; i++) { 18066 if (aux_data[i].seen) 18067 continue; 18068 memcpy(insn + i, &trap, sizeof(trap)); 18069 aux_data[i].zext_dst = false; 18070 } 18071 } 18072 18073 static bool insn_is_cond_jump(u8 code) 18074 { 18075 u8 op; 18076 18077 op = BPF_OP(code); 18078 if (BPF_CLASS(code) == BPF_JMP32) 18079 return op != BPF_JA; 18080 18081 if (BPF_CLASS(code) != BPF_JMP) 18082 return false; 18083 18084 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 18085 } 18086 18087 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 18088 { 18089 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18090 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 18091 struct bpf_insn *insn = env->prog->insnsi; 18092 const int insn_cnt = env->prog->len; 18093 int i; 18094 18095 for (i = 0; i < insn_cnt; i++, insn++) { 18096 if (!insn_is_cond_jump(insn->code)) 18097 continue; 18098 18099 if (!aux_data[i + 1].seen) 18100 ja.off = insn->off; 18101 else if (!aux_data[i + 1 + insn->off].seen) 18102 ja.off = 0; 18103 else 18104 continue; 18105 18106 if (bpf_prog_is_offloaded(env->prog->aux)) 18107 bpf_prog_offload_replace_insn(env, i, &ja); 18108 18109 memcpy(insn, &ja, sizeof(ja)); 18110 } 18111 } 18112 18113 static int opt_remove_dead_code(struct bpf_verifier_env *env) 18114 { 18115 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18116 int insn_cnt = env->prog->len; 18117 int i, err; 18118 18119 for (i = 0; i < insn_cnt; i++) { 18120 int j; 18121 18122 j = 0; 18123 while (i + j < insn_cnt && !aux_data[i + j].seen) 18124 j++; 18125 if (!j) 18126 continue; 18127 18128 err = verifier_remove_insns(env, i, j); 18129 if (err) 18130 return err; 18131 insn_cnt = env->prog->len; 18132 } 18133 18134 return 0; 18135 } 18136 18137 static int opt_remove_nops(struct bpf_verifier_env *env) 18138 { 18139 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 18140 struct bpf_insn *insn = env->prog->insnsi; 18141 int insn_cnt = env->prog->len; 18142 int i, err; 18143 18144 for (i = 0; i < insn_cnt; i++) { 18145 if (memcmp(&insn[i], &ja, sizeof(ja))) 18146 continue; 18147 18148 err = verifier_remove_insns(env, i, 1); 18149 if (err) 18150 return err; 18151 insn_cnt--; 18152 i--; 18153 } 18154 18155 return 0; 18156 } 18157 18158 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 18159 const union bpf_attr *attr) 18160 { 18161 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 18162 struct bpf_insn_aux_data *aux = env->insn_aux_data; 18163 int i, patch_len, delta = 0, len = env->prog->len; 18164 struct bpf_insn *insns = env->prog->insnsi; 18165 struct bpf_prog *new_prog; 18166 bool rnd_hi32; 18167 18168 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 18169 zext_patch[1] = BPF_ZEXT_REG(0); 18170 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 18171 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 18172 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 18173 for (i = 0; i < len; i++) { 18174 int adj_idx = i + delta; 18175 struct bpf_insn insn; 18176 int load_reg; 18177 18178 insn = insns[adj_idx]; 18179 load_reg = insn_def_regno(&insn); 18180 if (!aux[adj_idx].zext_dst) { 18181 u8 code, class; 18182 u32 imm_rnd; 18183 18184 if (!rnd_hi32) 18185 continue; 18186 18187 code = insn.code; 18188 class = BPF_CLASS(code); 18189 if (load_reg == -1) 18190 continue; 18191 18192 /* NOTE: arg "reg" (the fourth one) is only used for 18193 * BPF_STX + SRC_OP, so it is safe to pass NULL 18194 * here. 18195 */ 18196 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 18197 if (class == BPF_LD && 18198 BPF_MODE(code) == BPF_IMM) 18199 i++; 18200 continue; 18201 } 18202 18203 /* ctx load could be transformed into wider load. */ 18204 if (class == BPF_LDX && 18205 aux[adj_idx].ptr_type == PTR_TO_CTX) 18206 continue; 18207 18208 imm_rnd = get_random_u32(); 18209 rnd_hi32_patch[0] = insn; 18210 rnd_hi32_patch[1].imm = imm_rnd; 18211 rnd_hi32_patch[3].dst_reg = load_reg; 18212 patch = rnd_hi32_patch; 18213 patch_len = 4; 18214 goto apply_patch_buffer; 18215 } 18216 18217 /* Add in an zero-extend instruction if a) the JIT has requested 18218 * it or b) it's a CMPXCHG. 18219 * 18220 * The latter is because: BPF_CMPXCHG always loads a value into 18221 * R0, therefore always zero-extends. However some archs' 18222 * equivalent instruction only does this load when the 18223 * comparison is successful. This detail of CMPXCHG is 18224 * orthogonal to the general zero-extension behaviour of the 18225 * CPU, so it's treated independently of bpf_jit_needs_zext. 18226 */ 18227 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 18228 continue; 18229 18230 /* Zero-extension is done by the caller. */ 18231 if (bpf_pseudo_kfunc_call(&insn)) 18232 continue; 18233 18234 if (WARN_ON(load_reg == -1)) { 18235 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 18236 return -EFAULT; 18237 } 18238 18239 zext_patch[0] = insn; 18240 zext_patch[1].dst_reg = load_reg; 18241 zext_patch[1].src_reg = load_reg; 18242 patch = zext_patch; 18243 patch_len = 2; 18244 apply_patch_buffer: 18245 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 18246 if (!new_prog) 18247 return -ENOMEM; 18248 env->prog = new_prog; 18249 insns = new_prog->insnsi; 18250 aux = env->insn_aux_data; 18251 delta += patch_len - 1; 18252 } 18253 18254 return 0; 18255 } 18256 18257 /* convert load instructions that access fields of a context type into a 18258 * sequence of instructions that access fields of the underlying structure: 18259 * struct __sk_buff -> struct sk_buff 18260 * struct bpf_sock_ops -> struct sock 18261 */ 18262 static int convert_ctx_accesses(struct bpf_verifier_env *env) 18263 { 18264 const struct bpf_verifier_ops *ops = env->ops; 18265 int i, cnt, size, ctx_field_size, delta = 0; 18266 const int insn_cnt = env->prog->len; 18267 struct bpf_insn insn_buf[16], *insn; 18268 u32 target_size, size_default, off; 18269 struct bpf_prog *new_prog; 18270 enum bpf_access_type type; 18271 bool is_narrower_load; 18272 18273 if (ops->gen_prologue || env->seen_direct_write) { 18274 if (!ops->gen_prologue) { 18275 verbose(env, "bpf verifier is misconfigured\n"); 18276 return -EINVAL; 18277 } 18278 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 18279 env->prog); 18280 if (cnt >= ARRAY_SIZE(insn_buf)) { 18281 verbose(env, "bpf verifier is misconfigured\n"); 18282 return -EINVAL; 18283 } else if (cnt) { 18284 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 18285 if (!new_prog) 18286 return -ENOMEM; 18287 18288 env->prog = new_prog; 18289 delta += cnt - 1; 18290 } 18291 } 18292 18293 if (bpf_prog_is_offloaded(env->prog->aux)) 18294 return 0; 18295 18296 insn = env->prog->insnsi + delta; 18297 18298 for (i = 0; i < insn_cnt; i++, insn++) { 18299 bpf_convert_ctx_access_t convert_ctx_access; 18300 u8 mode; 18301 18302 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 18303 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 18304 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 18305 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 18306 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 18307 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 18308 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 18309 type = BPF_READ; 18310 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 18311 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 18312 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 18313 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 18314 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 18315 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 18316 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 18317 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 18318 type = BPF_WRITE; 18319 } else { 18320 continue; 18321 } 18322 18323 if (type == BPF_WRITE && 18324 env->insn_aux_data[i + delta].sanitize_stack_spill) { 18325 struct bpf_insn patch[] = { 18326 *insn, 18327 BPF_ST_NOSPEC(), 18328 }; 18329 18330 cnt = ARRAY_SIZE(patch); 18331 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 18332 if (!new_prog) 18333 return -ENOMEM; 18334 18335 delta += cnt - 1; 18336 env->prog = new_prog; 18337 insn = new_prog->insnsi + i + delta; 18338 continue; 18339 } 18340 18341 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 18342 case PTR_TO_CTX: 18343 if (!ops->convert_ctx_access) 18344 continue; 18345 convert_ctx_access = ops->convert_ctx_access; 18346 break; 18347 case PTR_TO_SOCKET: 18348 case PTR_TO_SOCK_COMMON: 18349 convert_ctx_access = bpf_sock_convert_ctx_access; 18350 break; 18351 case PTR_TO_TCP_SOCK: 18352 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 18353 break; 18354 case PTR_TO_XDP_SOCK: 18355 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 18356 break; 18357 case PTR_TO_BTF_ID: 18358 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 18359 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 18360 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 18361 * be said once it is marked PTR_UNTRUSTED, hence we must handle 18362 * any faults for loads into such types. BPF_WRITE is disallowed 18363 * for this case. 18364 */ 18365 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 18366 if (type == BPF_READ) { 18367 if (BPF_MODE(insn->code) == BPF_MEM) 18368 insn->code = BPF_LDX | BPF_PROBE_MEM | 18369 BPF_SIZE((insn)->code); 18370 else 18371 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 18372 BPF_SIZE((insn)->code); 18373 env->prog->aux->num_exentries++; 18374 } 18375 continue; 18376 default: 18377 continue; 18378 } 18379 18380 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 18381 size = BPF_LDST_BYTES(insn); 18382 mode = BPF_MODE(insn->code); 18383 18384 /* If the read access is a narrower load of the field, 18385 * convert to a 4/8-byte load, to minimum program type specific 18386 * convert_ctx_access changes. If conversion is successful, 18387 * we will apply proper mask to the result. 18388 */ 18389 is_narrower_load = size < ctx_field_size; 18390 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 18391 off = insn->off; 18392 if (is_narrower_load) { 18393 u8 size_code; 18394 18395 if (type == BPF_WRITE) { 18396 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 18397 return -EINVAL; 18398 } 18399 18400 size_code = BPF_H; 18401 if (ctx_field_size == 4) 18402 size_code = BPF_W; 18403 else if (ctx_field_size == 8) 18404 size_code = BPF_DW; 18405 18406 insn->off = off & ~(size_default - 1); 18407 insn->code = BPF_LDX | BPF_MEM | size_code; 18408 } 18409 18410 target_size = 0; 18411 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 18412 &target_size); 18413 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 18414 (ctx_field_size && !target_size)) { 18415 verbose(env, "bpf verifier is misconfigured\n"); 18416 return -EINVAL; 18417 } 18418 18419 if (is_narrower_load && size < target_size) { 18420 u8 shift = bpf_ctx_narrow_access_offset( 18421 off, size, size_default) * 8; 18422 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 18423 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 18424 return -EINVAL; 18425 } 18426 if (ctx_field_size <= 4) { 18427 if (shift) 18428 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 18429 insn->dst_reg, 18430 shift); 18431 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 18432 (1 << size * 8) - 1); 18433 } else { 18434 if (shift) 18435 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 18436 insn->dst_reg, 18437 shift); 18438 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 18439 (1ULL << size * 8) - 1); 18440 } 18441 } 18442 if (mode == BPF_MEMSX) 18443 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 18444 insn->dst_reg, insn->dst_reg, 18445 size * 8, 0); 18446 18447 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18448 if (!new_prog) 18449 return -ENOMEM; 18450 18451 delta += cnt - 1; 18452 18453 /* keep walking new program and skip insns we just inserted */ 18454 env->prog = new_prog; 18455 insn = new_prog->insnsi + i + delta; 18456 } 18457 18458 return 0; 18459 } 18460 18461 static int jit_subprogs(struct bpf_verifier_env *env) 18462 { 18463 struct bpf_prog *prog = env->prog, **func, *tmp; 18464 int i, j, subprog_start, subprog_end = 0, len, subprog; 18465 struct bpf_map *map_ptr; 18466 struct bpf_insn *insn; 18467 void *old_bpf_func; 18468 int err, num_exentries; 18469 18470 if (env->subprog_cnt <= 1) 18471 return 0; 18472 18473 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18474 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 18475 continue; 18476 18477 /* Upon error here we cannot fall back to interpreter but 18478 * need a hard reject of the program. Thus -EFAULT is 18479 * propagated in any case. 18480 */ 18481 subprog = find_subprog(env, i + insn->imm + 1); 18482 if (subprog < 0) { 18483 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 18484 i + insn->imm + 1); 18485 return -EFAULT; 18486 } 18487 /* temporarily remember subprog id inside insn instead of 18488 * aux_data, since next loop will split up all insns into funcs 18489 */ 18490 insn->off = subprog; 18491 /* remember original imm in case JIT fails and fallback 18492 * to interpreter will be needed 18493 */ 18494 env->insn_aux_data[i].call_imm = insn->imm; 18495 /* point imm to __bpf_call_base+1 from JITs point of view */ 18496 insn->imm = 1; 18497 if (bpf_pseudo_func(insn)) 18498 /* jit (e.g. x86_64) may emit fewer instructions 18499 * if it learns a u32 imm is the same as a u64 imm. 18500 * Force a non zero here. 18501 */ 18502 insn[1].imm = 1; 18503 } 18504 18505 err = bpf_prog_alloc_jited_linfo(prog); 18506 if (err) 18507 goto out_undo_insn; 18508 18509 err = -ENOMEM; 18510 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 18511 if (!func) 18512 goto out_undo_insn; 18513 18514 for (i = 0; i < env->subprog_cnt; i++) { 18515 subprog_start = subprog_end; 18516 subprog_end = env->subprog_info[i + 1].start; 18517 18518 len = subprog_end - subprog_start; 18519 /* bpf_prog_run() doesn't call subprogs directly, 18520 * hence main prog stats include the runtime of subprogs. 18521 * subprogs don't have IDs and not reachable via prog_get_next_id 18522 * func[i]->stats will never be accessed and stays NULL 18523 */ 18524 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 18525 if (!func[i]) 18526 goto out_free; 18527 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 18528 len * sizeof(struct bpf_insn)); 18529 func[i]->type = prog->type; 18530 func[i]->len = len; 18531 if (bpf_prog_calc_tag(func[i])) 18532 goto out_free; 18533 func[i]->is_func = 1; 18534 func[i]->aux->func_idx = i; 18535 /* Below members will be freed only at prog->aux */ 18536 func[i]->aux->btf = prog->aux->btf; 18537 func[i]->aux->func_info = prog->aux->func_info; 18538 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 18539 func[i]->aux->poke_tab = prog->aux->poke_tab; 18540 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 18541 18542 for (j = 0; j < prog->aux->size_poke_tab; j++) { 18543 struct bpf_jit_poke_descriptor *poke; 18544 18545 poke = &prog->aux->poke_tab[j]; 18546 if (poke->insn_idx < subprog_end && 18547 poke->insn_idx >= subprog_start) 18548 poke->aux = func[i]->aux; 18549 } 18550 18551 func[i]->aux->name[0] = 'F'; 18552 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 18553 func[i]->jit_requested = 1; 18554 func[i]->blinding_requested = prog->blinding_requested; 18555 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 18556 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 18557 func[i]->aux->linfo = prog->aux->linfo; 18558 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 18559 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 18560 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 18561 num_exentries = 0; 18562 insn = func[i]->insnsi; 18563 for (j = 0; j < func[i]->len; j++, insn++) { 18564 if (BPF_CLASS(insn->code) == BPF_LDX && 18565 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 18566 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 18567 num_exentries++; 18568 } 18569 func[i]->aux->num_exentries = num_exentries; 18570 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 18571 func[i] = bpf_int_jit_compile(func[i]); 18572 if (!func[i]->jited) { 18573 err = -ENOTSUPP; 18574 goto out_free; 18575 } 18576 cond_resched(); 18577 } 18578 18579 /* at this point all bpf functions were successfully JITed 18580 * now populate all bpf_calls with correct addresses and 18581 * run last pass of JIT 18582 */ 18583 for (i = 0; i < env->subprog_cnt; i++) { 18584 insn = func[i]->insnsi; 18585 for (j = 0; j < func[i]->len; j++, insn++) { 18586 if (bpf_pseudo_func(insn)) { 18587 subprog = insn->off; 18588 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 18589 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 18590 continue; 18591 } 18592 if (!bpf_pseudo_call(insn)) 18593 continue; 18594 subprog = insn->off; 18595 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 18596 } 18597 18598 /* we use the aux data to keep a list of the start addresses 18599 * of the JITed images for each function in the program 18600 * 18601 * for some architectures, such as powerpc64, the imm field 18602 * might not be large enough to hold the offset of the start 18603 * address of the callee's JITed image from __bpf_call_base 18604 * 18605 * in such cases, we can lookup the start address of a callee 18606 * by using its subprog id, available from the off field of 18607 * the call instruction, as an index for this list 18608 */ 18609 func[i]->aux->func = func; 18610 func[i]->aux->func_cnt = env->subprog_cnt; 18611 } 18612 for (i = 0; i < env->subprog_cnt; i++) { 18613 old_bpf_func = func[i]->bpf_func; 18614 tmp = bpf_int_jit_compile(func[i]); 18615 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 18616 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 18617 err = -ENOTSUPP; 18618 goto out_free; 18619 } 18620 cond_resched(); 18621 } 18622 18623 /* finally lock prog and jit images for all functions and 18624 * populate kallsysm. Begin at the first subprogram, since 18625 * bpf_prog_load will add the kallsyms for the main program. 18626 */ 18627 for (i = 1; i < env->subprog_cnt; i++) { 18628 bpf_prog_lock_ro(func[i]); 18629 bpf_prog_kallsyms_add(func[i]); 18630 } 18631 18632 /* Last step: make now unused interpreter insns from main 18633 * prog consistent for later dump requests, so they can 18634 * later look the same as if they were interpreted only. 18635 */ 18636 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18637 if (bpf_pseudo_func(insn)) { 18638 insn[0].imm = env->insn_aux_data[i].call_imm; 18639 insn[1].imm = insn->off; 18640 insn->off = 0; 18641 continue; 18642 } 18643 if (!bpf_pseudo_call(insn)) 18644 continue; 18645 insn->off = env->insn_aux_data[i].call_imm; 18646 subprog = find_subprog(env, i + insn->off + 1); 18647 insn->imm = subprog; 18648 } 18649 18650 prog->jited = 1; 18651 prog->bpf_func = func[0]->bpf_func; 18652 prog->jited_len = func[0]->jited_len; 18653 prog->aux->extable = func[0]->aux->extable; 18654 prog->aux->num_exentries = func[0]->aux->num_exentries; 18655 prog->aux->func = func; 18656 prog->aux->func_cnt = env->subprog_cnt; 18657 bpf_prog_jit_attempt_done(prog); 18658 return 0; 18659 out_free: 18660 /* We failed JIT'ing, so at this point we need to unregister poke 18661 * descriptors from subprogs, so that kernel is not attempting to 18662 * patch it anymore as we're freeing the subprog JIT memory. 18663 */ 18664 for (i = 0; i < prog->aux->size_poke_tab; i++) { 18665 map_ptr = prog->aux->poke_tab[i].tail_call.map; 18666 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 18667 } 18668 /* At this point we're guaranteed that poke descriptors are not 18669 * live anymore. We can just unlink its descriptor table as it's 18670 * released with the main prog. 18671 */ 18672 for (i = 0; i < env->subprog_cnt; i++) { 18673 if (!func[i]) 18674 continue; 18675 func[i]->aux->poke_tab = NULL; 18676 bpf_jit_free(func[i]); 18677 } 18678 kfree(func); 18679 out_undo_insn: 18680 /* cleanup main prog to be interpreted */ 18681 prog->jit_requested = 0; 18682 prog->blinding_requested = 0; 18683 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18684 if (!bpf_pseudo_call(insn)) 18685 continue; 18686 insn->off = 0; 18687 insn->imm = env->insn_aux_data[i].call_imm; 18688 } 18689 bpf_prog_jit_attempt_done(prog); 18690 return err; 18691 } 18692 18693 static int fixup_call_args(struct bpf_verifier_env *env) 18694 { 18695 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 18696 struct bpf_prog *prog = env->prog; 18697 struct bpf_insn *insn = prog->insnsi; 18698 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 18699 int i, depth; 18700 #endif 18701 int err = 0; 18702 18703 if (env->prog->jit_requested && 18704 !bpf_prog_is_offloaded(env->prog->aux)) { 18705 err = jit_subprogs(env); 18706 if (err == 0) 18707 return 0; 18708 if (err == -EFAULT) 18709 return err; 18710 } 18711 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 18712 if (has_kfunc_call) { 18713 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 18714 return -EINVAL; 18715 } 18716 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 18717 /* When JIT fails the progs with bpf2bpf calls and tail_calls 18718 * have to be rejected, since interpreter doesn't support them yet. 18719 */ 18720 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 18721 return -EINVAL; 18722 } 18723 for (i = 0; i < prog->len; i++, insn++) { 18724 if (bpf_pseudo_func(insn)) { 18725 /* When JIT fails the progs with callback calls 18726 * have to be rejected, since interpreter doesn't support them yet. 18727 */ 18728 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 18729 return -EINVAL; 18730 } 18731 18732 if (!bpf_pseudo_call(insn)) 18733 continue; 18734 depth = get_callee_stack_depth(env, insn, i); 18735 if (depth < 0) 18736 return depth; 18737 bpf_patch_call_args(insn, depth); 18738 } 18739 err = 0; 18740 #endif 18741 return err; 18742 } 18743 18744 /* replace a generic kfunc with a specialized version if necessary */ 18745 static void specialize_kfunc(struct bpf_verifier_env *env, 18746 u32 func_id, u16 offset, unsigned long *addr) 18747 { 18748 struct bpf_prog *prog = env->prog; 18749 bool seen_direct_write; 18750 void *xdp_kfunc; 18751 bool is_rdonly; 18752 18753 if (bpf_dev_bound_kfunc_id(func_id)) { 18754 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 18755 if (xdp_kfunc) { 18756 *addr = (unsigned long)xdp_kfunc; 18757 return; 18758 } 18759 /* fallback to default kfunc when not supported by netdev */ 18760 } 18761 18762 if (offset) 18763 return; 18764 18765 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 18766 seen_direct_write = env->seen_direct_write; 18767 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 18768 18769 if (is_rdonly) 18770 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 18771 18772 /* restore env->seen_direct_write to its original value, since 18773 * may_access_direct_pkt_data mutates it 18774 */ 18775 env->seen_direct_write = seen_direct_write; 18776 } 18777 } 18778 18779 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 18780 u16 struct_meta_reg, 18781 u16 node_offset_reg, 18782 struct bpf_insn *insn, 18783 struct bpf_insn *insn_buf, 18784 int *cnt) 18785 { 18786 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 18787 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 18788 18789 insn_buf[0] = addr[0]; 18790 insn_buf[1] = addr[1]; 18791 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 18792 insn_buf[3] = *insn; 18793 *cnt = 4; 18794 } 18795 18796 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 18797 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 18798 { 18799 const struct bpf_kfunc_desc *desc; 18800 18801 if (!insn->imm) { 18802 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 18803 return -EINVAL; 18804 } 18805 18806 *cnt = 0; 18807 18808 /* insn->imm has the btf func_id. Replace it with an offset relative to 18809 * __bpf_call_base, unless the JIT needs to call functions that are 18810 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 18811 */ 18812 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 18813 if (!desc) { 18814 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 18815 insn->imm); 18816 return -EFAULT; 18817 } 18818 18819 if (!bpf_jit_supports_far_kfunc_call()) 18820 insn->imm = BPF_CALL_IMM(desc->addr); 18821 if (insn->off) 18822 return 0; 18823 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 18824 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18825 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18826 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 18827 18828 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 18829 insn_buf[1] = addr[0]; 18830 insn_buf[2] = addr[1]; 18831 insn_buf[3] = *insn; 18832 *cnt = 4; 18833 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 18834 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 18835 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18836 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18837 18838 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 18839 !kptr_struct_meta) { 18840 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 18841 insn_idx); 18842 return -EFAULT; 18843 } 18844 18845 insn_buf[0] = addr[0]; 18846 insn_buf[1] = addr[1]; 18847 insn_buf[2] = *insn; 18848 *cnt = 3; 18849 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 18850 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 18851 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18852 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18853 int struct_meta_reg = BPF_REG_3; 18854 int node_offset_reg = BPF_REG_4; 18855 18856 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 18857 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18858 struct_meta_reg = BPF_REG_4; 18859 node_offset_reg = BPF_REG_5; 18860 } 18861 18862 if (!kptr_struct_meta) { 18863 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 18864 insn_idx); 18865 return -EFAULT; 18866 } 18867 18868 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 18869 node_offset_reg, insn, insn_buf, cnt); 18870 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 18871 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 18872 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 18873 *cnt = 1; 18874 } 18875 return 0; 18876 } 18877 18878 /* Do various post-verification rewrites in a single program pass. 18879 * These rewrites simplify JIT and interpreter implementations. 18880 */ 18881 static int do_misc_fixups(struct bpf_verifier_env *env) 18882 { 18883 struct bpf_prog *prog = env->prog; 18884 enum bpf_attach_type eatype = prog->expected_attach_type; 18885 enum bpf_prog_type prog_type = resolve_prog_type(prog); 18886 struct bpf_insn *insn = prog->insnsi; 18887 const struct bpf_func_proto *fn; 18888 const int insn_cnt = prog->len; 18889 const struct bpf_map_ops *ops; 18890 struct bpf_insn_aux_data *aux; 18891 struct bpf_insn insn_buf[16]; 18892 struct bpf_prog *new_prog; 18893 struct bpf_map *map_ptr; 18894 int i, ret, cnt, delta = 0; 18895 18896 for (i = 0; i < insn_cnt; i++, insn++) { 18897 /* Make divide-by-zero exceptions impossible. */ 18898 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 18899 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 18900 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 18901 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 18902 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 18903 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 18904 struct bpf_insn *patchlet; 18905 struct bpf_insn chk_and_div[] = { 18906 /* [R,W]x div 0 -> 0 */ 18907 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18908 BPF_JNE | BPF_K, insn->src_reg, 18909 0, 2, 0), 18910 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 18911 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18912 *insn, 18913 }; 18914 struct bpf_insn chk_and_mod[] = { 18915 /* [R,W]x mod 0 -> [R,W]x */ 18916 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18917 BPF_JEQ | BPF_K, insn->src_reg, 18918 0, 1 + (is64 ? 0 : 1), 0), 18919 *insn, 18920 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18921 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 18922 }; 18923 18924 patchlet = isdiv ? chk_and_div : chk_and_mod; 18925 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 18926 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 18927 18928 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 18929 if (!new_prog) 18930 return -ENOMEM; 18931 18932 delta += cnt - 1; 18933 env->prog = prog = new_prog; 18934 insn = new_prog->insnsi + i + delta; 18935 continue; 18936 } 18937 18938 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 18939 if (BPF_CLASS(insn->code) == BPF_LD && 18940 (BPF_MODE(insn->code) == BPF_ABS || 18941 BPF_MODE(insn->code) == BPF_IND)) { 18942 cnt = env->ops->gen_ld_abs(insn, insn_buf); 18943 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 18944 verbose(env, "bpf verifier is misconfigured\n"); 18945 return -EINVAL; 18946 } 18947 18948 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18949 if (!new_prog) 18950 return -ENOMEM; 18951 18952 delta += cnt - 1; 18953 env->prog = prog = new_prog; 18954 insn = new_prog->insnsi + i + delta; 18955 continue; 18956 } 18957 18958 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 18959 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 18960 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 18961 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 18962 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 18963 struct bpf_insn *patch = &insn_buf[0]; 18964 bool issrc, isneg, isimm; 18965 u32 off_reg; 18966 18967 aux = &env->insn_aux_data[i + delta]; 18968 if (!aux->alu_state || 18969 aux->alu_state == BPF_ALU_NON_POINTER) 18970 continue; 18971 18972 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 18973 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 18974 BPF_ALU_SANITIZE_SRC; 18975 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 18976 18977 off_reg = issrc ? insn->src_reg : insn->dst_reg; 18978 if (isimm) { 18979 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18980 } else { 18981 if (isneg) 18982 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18983 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18984 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 18985 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 18986 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 18987 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 18988 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 18989 } 18990 if (!issrc) 18991 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 18992 insn->src_reg = BPF_REG_AX; 18993 if (isneg) 18994 insn->code = insn->code == code_add ? 18995 code_sub : code_add; 18996 *patch++ = *insn; 18997 if (issrc && isneg && !isimm) 18998 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18999 cnt = patch - insn_buf; 19000 19001 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19002 if (!new_prog) 19003 return -ENOMEM; 19004 19005 delta += cnt - 1; 19006 env->prog = prog = new_prog; 19007 insn = new_prog->insnsi + i + delta; 19008 continue; 19009 } 19010 19011 if (insn->code != (BPF_JMP | BPF_CALL)) 19012 continue; 19013 if (insn->src_reg == BPF_PSEUDO_CALL) 19014 continue; 19015 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 19016 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 19017 if (ret) 19018 return ret; 19019 if (cnt == 0) 19020 continue; 19021 19022 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19023 if (!new_prog) 19024 return -ENOMEM; 19025 19026 delta += cnt - 1; 19027 env->prog = prog = new_prog; 19028 insn = new_prog->insnsi + i + delta; 19029 continue; 19030 } 19031 19032 if (insn->imm == BPF_FUNC_get_route_realm) 19033 prog->dst_needed = 1; 19034 if (insn->imm == BPF_FUNC_get_prandom_u32) 19035 bpf_user_rnd_init_once(); 19036 if (insn->imm == BPF_FUNC_override_return) 19037 prog->kprobe_override = 1; 19038 if (insn->imm == BPF_FUNC_tail_call) { 19039 /* If we tail call into other programs, we 19040 * cannot make any assumptions since they can 19041 * be replaced dynamically during runtime in 19042 * the program array. 19043 */ 19044 prog->cb_access = 1; 19045 if (!allow_tail_call_in_subprogs(env)) 19046 prog->aux->stack_depth = MAX_BPF_STACK; 19047 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 19048 19049 /* mark bpf_tail_call as different opcode to avoid 19050 * conditional branch in the interpreter for every normal 19051 * call and to prevent accidental JITing by JIT compiler 19052 * that doesn't support bpf_tail_call yet 19053 */ 19054 insn->imm = 0; 19055 insn->code = BPF_JMP | BPF_TAIL_CALL; 19056 19057 aux = &env->insn_aux_data[i + delta]; 19058 if (env->bpf_capable && !prog->blinding_requested && 19059 prog->jit_requested && 19060 !bpf_map_key_poisoned(aux) && 19061 !bpf_map_ptr_poisoned(aux) && 19062 !bpf_map_ptr_unpriv(aux)) { 19063 struct bpf_jit_poke_descriptor desc = { 19064 .reason = BPF_POKE_REASON_TAIL_CALL, 19065 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 19066 .tail_call.key = bpf_map_key_immediate(aux), 19067 .insn_idx = i + delta, 19068 }; 19069 19070 ret = bpf_jit_add_poke_descriptor(prog, &desc); 19071 if (ret < 0) { 19072 verbose(env, "adding tail call poke descriptor failed\n"); 19073 return ret; 19074 } 19075 19076 insn->imm = ret + 1; 19077 continue; 19078 } 19079 19080 if (!bpf_map_ptr_unpriv(aux)) 19081 continue; 19082 19083 /* instead of changing every JIT dealing with tail_call 19084 * emit two extra insns: 19085 * if (index >= max_entries) goto out; 19086 * index &= array->index_mask; 19087 * to avoid out-of-bounds cpu speculation 19088 */ 19089 if (bpf_map_ptr_poisoned(aux)) { 19090 verbose(env, "tail_call abusing map_ptr\n"); 19091 return -EINVAL; 19092 } 19093 19094 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 19095 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 19096 map_ptr->max_entries, 2); 19097 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 19098 container_of(map_ptr, 19099 struct bpf_array, 19100 map)->index_mask); 19101 insn_buf[2] = *insn; 19102 cnt = 3; 19103 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19104 if (!new_prog) 19105 return -ENOMEM; 19106 19107 delta += cnt - 1; 19108 env->prog = prog = new_prog; 19109 insn = new_prog->insnsi + i + delta; 19110 continue; 19111 } 19112 19113 if (insn->imm == BPF_FUNC_timer_set_callback) { 19114 /* The verifier will process callback_fn as many times as necessary 19115 * with different maps and the register states prepared by 19116 * set_timer_callback_state will be accurate. 19117 * 19118 * The following use case is valid: 19119 * map1 is shared by prog1, prog2, prog3. 19120 * prog1 calls bpf_timer_init for some map1 elements 19121 * prog2 calls bpf_timer_set_callback for some map1 elements. 19122 * Those that were not bpf_timer_init-ed will return -EINVAL. 19123 * prog3 calls bpf_timer_start for some map1 elements. 19124 * Those that were not both bpf_timer_init-ed and 19125 * bpf_timer_set_callback-ed will return -EINVAL. 19126 */ 19127 struct bpf_insn ld_addrs[2] = { 19128 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 19129 }; 19130 19131 insn_buf[0] = ld_addrs[0]; 19132 insn_buf[1] = ld_addrs[1]; 19133 insn_buf[2] = *insn; 19134 cnt = 3; 19135 19136 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19137 if (!new_prog) 19138 return -ENOMEM; 19139 19140 delta += cnt - 1; 19141 env->prog = prog = new_prog; 19142 insn = new_prog->insnsi + i + delta; 19143 goto patch_call_imm; 19144 } 19145 19146 if (is_storage_get_function(insn->imm)) { 19147 if (!env->prog->aux->sleepable || 19148 env->insn_aux_data[i + delta].storage_get_func_atomic) 19149 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 19150 else 19151 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 19152 insn_buf[1] = *insn; 19153 cnt = 2; 19154 19155 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19156 if (!new_prog) 19157 return -ENOMEM; 19158 19159 delta += cnt - 1; 19160 env->prog = prog = new_prog; 19161 insn = new_prog->insnsi + i + delta; 19162 goto patch_call_imm; 19163 } 19164 19165 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 19166 * and other inlining handlers are currently limited to 64 bit 19167 * only. 19168 */ 19169 if (prog->jit_requested && BITS_PER_LONG == 64 && 19170 (insn->imm == BPF_FUNC_map_lookup_elem || 19171 insn->imm == BPF_FUNC_map_update_elem || 19172 insn->imm == BPF_FUNC_map_delete_elem || 19173 insn->imm == BPF_FUNC_map_push_elem || 19174 insn->imm == BPF_FUNC_map_pop_elem || 19175 insn->imm == BPF_FUNC_map_peek_elem || 19176 insn->imm == BPF_FUNC_redirect_map || 19177 insn->imm == BPF_FUNC_for_each_map_elem || 19178 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 19179 aux = &env->insn_aux_data[i + delta]; 19180 if (bpf_map_ptr_poisoned(aux)) 19181 goto patch_call_imm; 19182 19183 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 19184 ops = map_ptr->ops; 19185 if (insn->imm == BPF_FUNC_map_lookup_elem && 19186 ops->map_gen_lookup) { 19187 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 19188 if (cnt == -EOPNOTSUPP) 19189 goto patch_map_ops_generic; 19190 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 19191 verbose(env, "bpf verifier is misconfigured\n"); 19192 return -EINVAL; 19193 } 19194 19195 new_prog = bpf_patch_insn_data(env, i + delta, 19196 insn_buf, cnt); 19197 if (!new_prog) 19198 return -ENOMEM; 19199 19200 delta += cnt - 1; 19201 env->prog = prog = new_prog; 19202 insn = new_prog->insnsi + i + delta; 19203 continue; 19204 } 19205 19206 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 19207 (void *(*)(struct bpf_map *map, void *key))NULL)); 19208 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 19209 (long (*)(struct bpf_map *map, void *key))NULL)); 19210 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 19211 (long (*)(struct bpf_map *map, void *key, void *value, 19212 u64 flags))NULL)); 19213 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 19214 (long (*)(struct bpf_map *map, void *value, 19215 u64 flags))NULL)); 19216 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 19217 (long (*)(struct bpf_map *map, void *value))NULL)); 19218 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 19219 (long (*)(struct bpf_map *map, void *value))NULL)); 19220 BUILD_BUG_ON(!__same_type(ops->map_redirect, 19221 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 19222 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 19223 (long (*)(struct bpf_map *map, 19224 bpf_callback_t callback_fn, 19225 void *callback_ctx, 19226 u64 flags))NULL)); 19227 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 19228 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 19229 19230 patch_map_ops_generic: 19231 switch (insn->imm) { 19232 case BPF_FUNC_map_lookup_elem: 19233 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 19234 continue; 19235 case BPF_FUNC_map_update_elem: 19236 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 19237 continue; 19238 case BPF_FUNC_map_delete_elem: 19239 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 19240 continue; 19241 case BPF_FUNC_map_push_elem: 19242 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 19243 continue; 19244 case BPF_FUNC_map_pop_elem: 19245 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 19246 continue; 19247 case BPF_FUNC_map_peek_elem: 19248 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 19249 continue; 19250 case BPF_FUNC_redirect_map: 19251 insn->imm = BPF_CALL_IMM(ops->map_redirect); 19252 continue; 19253 case BPF_FUNC_for_each_map_elem: 19254 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 19255 continue; 19256 case BPF_FUNC_map_lookup_percpu_elem: 19257 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 19258 continue; 19259 } 19260 19261 goto patch_call_imm; 19262 } 19263 19264 /* Implement bpf_jiffies64 inline. */ 19265 if (prog->jit_requested && BITS_PER_LONG == 64 && 19266 insn->imm == BPF_FUNC_jiffies64) { 19267 struct bpf_insn ld_jiffies_addr[2] = { 19268 BPF_LD_IMM64(BPF_REG_0, 19269 (unsigned long)&jiffies), 19270 }; 19271 19272 insn_buf[0] = ld_jiffies_addr[0]; 19273 insn_buf[1] = ld_jiffies_addr[1]; 19274 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 19275 BPF_REG_0, 0); 19276 cnt = 3; 19277 19278 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 19279 cnt); 19280 if (!new_prog) 19281 return -ENOMEM; 19282 19283 delta += cnt - 1; 19284 env->prog = prog = new_prog; 19285 insn = new_prog->insnsi + i + delta; 19286 continue; 19287 } 19288 19289 /* Implement bpf_get_func_arg inline. */ 19290 if (prog_type == BPF_PROG_TYPE_TRACING && 19291 insn->imm == BPF_FUNC_get_func_arg) { 19292 /* Load nr_args from ctx - 8 */ 19293 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19294 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 19295 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 19296 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 19297 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 19298 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 19299 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 19300 insn_buf[7] = BPF_JMP_A(1); 19301 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 19302 cnt = 9; 19303 19304 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19305 if (!new_prog) 19306 return -ENOMEM; 19307 19308 delta += cnt - 1; 19309 env->prog = prog = new_prog; 19310 insn = new_prog->insnsi + i + delta; 19311 continue; 19312 } 19313 19314 /* Implement bpf_get_func_ret inline. */ 19315 if (prog_type == BPF_PROG_TYPE_TRACING && 19316 insn->imm == BPF_FUNC_get_func_ret) { 19317 if (eatype == BPF_TRACE_FEXIT || 19318 eatype == BPF_MODIFY_RETURN) { 19319 /* Load nr_args from ctx - 8 */ 19320 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19321 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 19322 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 19323 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 19324 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 19325 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 19326 cnt = 6; 19327 } else { 19328 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 19329 cnt = 1; 19330 } 19331 19332 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19333 if (!new_prog) 19334 return -ENOMEM; 19335 19336 delta += cnt - 1; 19337 env->prog = prog = new_prog; 19338 insn = new_prog->insnsi + i + delta; 19339 continue; 19340 } 19341 19342 /* Implement get_func_arg_cnt inline. */ 19343 if (prog_type == BPF_PROG_TYPE_TRACING && 19344 insn->imm == BPF_FUNC_get_func_arg_cnt) { 19345 /* Load nr_args from ctx - 8 */ 19346 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19347 19348 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 19349 if (!new_prog) 19350 return -ENOMEM; 19351 19352 env->prog = prog = new_prog; 19353 insn = new_prog->insnsi + i + delta; 19354 continue; 19355 } 19356 19357 /* Implement bpf_get_func_ip inline. */ 19358 if (prog_type == BPF_PROG_TYPE_TRACING && 19359 insn->imm == BPF_FUNC_get_func_ip) { 19360 /* Load IP address from ctx - 16 */ 19361 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 19362 19363 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 19364 if (!new_prog) 19365 return -ENOMEM; 19366 19367 env->prog = prog = new_prog; 19368 insn = new_prog->insnsi + i + delta; 19369 continue; 19370 } 19371 19372 patch_call_imm: 19373 fn = env->ops->get_func_proto(insn->imm, env->prog); 19374 /* all functions that have prototype and verifier allowed 19375 * programs to call them, must be real in-kernel functions 19376 */ 19377 if (!fn->func) { 19378 verbose(env, 19379 "kernel subsystem misconfigured func %s#%d\n", 19380 func_id_name(insn->imm), insn->imm); 19381 return -EFAULT; 19382 } 19383 insn->imm = fn->func - __bpf_call_base; 19384 } 19385 19386 /* Since poke tab is now finalized, publish aux to tracker. */ 19387 for (i = 0; i < prog->aux->size_poke_tab; i++) { 19388 map_ptr = prog->aux->poke_tab[i].tail_call.map; 19389 if (!map_ptr->ops->map_poke_track || 19390 !map_ptr->ops->map_poke_untrack || 19391 !map_ptr->ops->map_poke_run) { 19392 verbose(env, "bpf verifier is misconfigured\n"); 19393 return -EINVAL; 19394 } 19395 19396 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 19397 if (ret < 0) { 19398 verbose(env, "tracking tail call prog failed\n"); 19399 return ret; 19400 } 19401 } 19402 19403 sort_kfunc_descs_by_imm_off(env->prog); 19404 19405 return 0; 19406 } 19407 19408 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 19409 int position, 19410 s32 stack_base, 19411 u32 callback_subprogno, 19412 u32 *cnt) 19413 { 19414 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 19415 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 19416 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 19417 int reg_loop_max = BPF_REG_6; 19418 int reg_loop_cnt = BPF_REG_7; 19419 int reg_loop_ctx = BPF_REG_8; 19420 19421 struct bpf_prog *new_prog; 19422 u32 callback_start; 19423 u32 call_insn_offset; 19424 s32 callback_offset; 19425 19426 /* This represents an inlined version of bpf_iter.c:bpf_loop, 19427 * be careful to modify this code in sync. 19428 */ 19429 struct bpf_insn insn_buf[] = { 19430 /* Return error and jump to the end of the patch if 19431 * expected number of iterations is too big. 19432 */ 19433 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 19434 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 19435 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 19436 /* spill R6, R7, R8 to use these as loop vars */ 19437 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 19438 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 19439 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 19440 /* initialize loop vars */ 19441 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 19442 BPF_MOV32_IMM(reg_loop_cnt, 0), 19443 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 19444 /* loop header, 19445 * if reg_loop_cnt >= reg_loop_max skip the loop body 19446 */ 19447 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 19448 /* callback call, 19449 * correct callback offset would be set after patching 19450 */ 19451 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 19452 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 19453 BPF_CALL_REL(0), 19454 /* increment loop counter */ 19455 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 19456 /* jump to loop header if callback returned 0 */ 19457 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 19458 /* return value of bpf_loop, 19459 * set R0 to the number of iterations 19460 */ 19461 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 19462 /* restore original values of R6, R7, R8 */ 19463 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 19464 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 19465 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 19466 }; 19467 19468 *cnt = ARRAY_SIZE(insn_buf); 19469 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 19470 if (!new_prog) 19471 return new_prog; 19472 19473 /* callback start is known only after patching */ 19474 callback_start = env->subprog_info[callback_subprogno].start; 19475 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 19476 call_insn_offset = position + 12; 19477 callback_offset = callback_start - call_insn_offset - 1; 19478 new_prog->insnsi[call_insn_offset].imm = callback_offset; 19479 19480 return new_prog; 19481 } 19482 19483 static bool is_bpf_loop_call(struct bpf_insn *insn) 19484 { 19485 return insn->code == (BPF_JMP | BPF_CALL) && 19486 insn->src_reg == 0 && 19487 insn->imm == BPF_FUNC_loop; 19488 } 19489 19490 /* For all sub-programs in the program (including main) check 19491 * insn_aux_data to see if there are bpf_loop calls that require 19492 * inlining. If such calls are found the calls are replaced with a 19493 * sequence of instructions produced by `inline_bpf_loop` function and 19494 * subprog stack_depth is increased by the size of 3 registers. 19495 * This stack space is used to spill values of the R6, R7, R8. These 19496 * registers are used to store the loop bound, counter and context 19497 * variables. 19498 */ 19499 static int optimize_bpf_loop(struct bpf_verifier_env *env) 19500 { 19501 struct bpf_subprog_info *subprogs = env->subprog_info; 19502 int i, cur_subprog = 0, cnt, delta = 0; 19503 struct bpf_insn *insn = env->prog->insnsi; 19504 int insn_cnt = env->prog->len; 19505 u16 stack_depth = subprogs[cur_subprog].stack_depth; 19506 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 19507 u16 stack_depth_extra = 0; 19508 19509 for (i = 0; i < insn_cnt; i++, insn++) { 19510 struct bpf_loop_inline_state *inline_state = 19511 &env->insn_aux_data[i + delta].loop_inline_state; 19512 19513 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 19514 struct bpf_prog *new_prog; 19515 19516 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 19517 new_prog = inline_bpf_loop(env, 19518 i + delta, 19519 -(stack_depth + stack_depth_extra), 19520 inline_state->callback_subprogno, 19521 &cnt); 19522 if (!new_prog) 19523 return -ENOMEM; 19524 19525 delta += cnt - 1; 19526 env->prog = new_prog; 19527 insn = new_prog->insnsi + i + delta; 19528 } 19529 19530 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 19531 subprogs[cur_subprog].stack_depth += stack_depth_extra; 19532 cur_subprog++; 19533 stack_depth = subprogs[cur_subprog].stack_depth; 19534 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 19535 stack_depth_extra = 0; 19536 } 19537 } 19538 19539 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 19540 19541 return 0; 19542 } 19543 19544 static void free_states(struct bpf_verifier_env *env) 19545 { 19546 struct bpf_verifier_state_list *sl, *sln; 19547 int i; 19548 19549 sl = env->free_list; 19550 while (sl) { 19551 sln = sl->next; 19552 free_verifier_state(&sl->state, false); 19553 kfree(sl); 19554 sl = sln; 19555 } 19556 env->free_list = NULL; 19557 19558 if (!env->explored_states) 19559 return; 19560 19561 for (i = 0; i < state_htab_size(env); i++) { 19562 sl = env->explored_states[i]; 19563 19564 while (sl) { 19565 sln = sl->next; 19566 free_verifier_state(&sl->state, false); 19567 kfree(sl); 19568 sl = sln; 19569 } 19570 env->explored_states[i] = NULL; 19571 } 19572 } 19573 19574 static int do_check_common(struct bpf_verifier_env *env, int subprog) 19575 { 19576 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 19577 struct bpf_verifier_state *state; 19578 struct bpf_reg_state *regs; 19579 int ret, i; 19580 19581 env->prev_linfo = NULL; 19582 env->pass_cnt++; 19583 19584 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 19585 if (!state) 19586 return -ENOMEM; 19587 state->curframe = 0; 19588 state->speculative = false; 19589 state->branches = 1; 19590 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 19591 if (!state->frame[0]) { 19592 kfree(state); 19593 return -ENOMEM; 19594 } 19595 env->cur_state = state; 19596 init_func_state(env, state->frame[0], 19597 BPF_MAIN_FUNC /* callsite */, 19598 0 /* frameno */, 19599 subprog); 19600 state->first_insn_idx = env->subprog_info[subprog].start; 19601 state->last_insn_idx = -1; 19602 19603 regs = state->frame[state->curframe]->regs; 19604 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 19605 ret = btf_prepare_func_args(env, subprog, regs); 19606 if (ret) 19607 goto out; 19608 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 19609 if (regs[i].type == PTR_TO_CTX) 19610 mark_reg_known_zero(env, regs, i); 19611 else if (regs[i].type == SCALAR_VALUE) 19612 mark_reg_unknown(env, regs, i); 19613 else if (base_type(regs[i].type) == PTR_TO_MEM) { 19614 const u32 mem_size = regs[i].mem_size; 19615 19616 mark_reg_known_zero(env, regs, i); 19617 regs[i].mem_size = mem_size; 19618 regs[i].id = ++env->id_gen; 19619 } 19620 } 19621 } else { 19622 /* 1st arg to a function */ 19623 regs[BPF_REG_1].type = PTR_TO_CTX; 19624 mark_reg_known_zero(env, regs, BPF_REG_1); 19625 ret = btf_check_subprog_arg_match(env, subprog, regs); 19626 if (ret == -EFAULT) 19627 /* unlikely verifier bug. abort. 19628 * ret == 0 and ret < 0 are sadly acceptable for 19629 * main() function due to backward compatibility. 19630 * Like socket filter program may be written as: 19631 * int bpf_prog(struct pt_regs *ctx) 19632 * and never dereference that ctx in the program. 19633 * 'struct pt_regs' is a type mismatch for socket 19634 * filter that should be using 'struct __sk_buff'. 19635 */ 19636 goto out; 19637 } 19638 19639 ret = do_check(env); 19640 out: 19641 /* check for NULL is necessary, since cur_state can be freed inside 19642 * do_check() under memory pressure. 19643 */ 19644 if (env->cur_state) { 19645 free_verifier_state(env->cur_state, true); 19646 env->cur_state = NULL; 19647 } 19648 while (!pop_stack(env, NULL, NULL, false)); 19649 if (!ret && pop_log) 19650 bpf_vlog_reset(&env->log, 0); 19651 free_states(env); 19652 return ret; 19653 } 19654 19655 /* Verify all global functions in a BPF program one by one based on their BTF. 19656 * All global functions must pass verification. Otherwise the whole program is rejected. 19657 * Consider: 19658 * int bar(int); 19659 * int foo(int f) 19660 * { 19661 * return bar(f); 19662 * } 19663 * int bar(int b) 19664 * { 19665 * ... 19666 * } 19667 * foo() will be verified first for R1=any_scalar_value. During verification it 19668 * will be assumed that bar() already verified successfully and call to bar() 19669 * from foo() will be checked for type match only. Later bar() will be verified 19670 * independently to check that it's safe for R1=any_scalar_value. 19671 */ 19672 static int do_check_subprogs(struct bpf_verifier_env *env) 19673 { 19674 struct bpf_prog_aux *aux = env->prog->aux; 19675 int i, ret; 19676 19677 if (!aux->func_info) 19678 return 0; 19679 19680 for (i = 1; i < env->subprog_cnt; i++) { 19681 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 19682 continue; 19683 env->insn_idx = env->subprog_info[i].start; 19684 WARN_ON_ONCE(env->insn_idx == 0); 19685 ret = do_check_common(env, i); 19686 if (ret) { 19687 return ret; 19688 } else if (env->log.level & BPF_LOG_LEVEL) { 19689 verbose(env, 19690 "Func#%d is safe for any args that match its prototype\n", 19691 i); 19692 } 19693 } 19694 return 0; 19695 } 19696 19697 static int do_check_main(struct bpf_verifier_env *env) 19698 { 19699 int ret; 19700 19701 env->insn_idx = 0; 19702 ret = do_check_common(env, 0); 19703 if (!ret) 19704 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 19705 return ret; 19706 } 19707 19708 19709 static void print_verification_stats(struct bpf_verifier_env *env) 19710 { 19711 int i; 19712 19713 if (env->log.level & BPF_LOG_STATS) { 19714 verbose(env, "verification time %lld usec\n", 19715 div_u64(env->verification_time, 1000)); 19716 verbose(env, "stack depth "); 19717 for (i = 0; i < env->subprog_cnt; i++) { 19718 u32 depth = env->subprog_info[i].stack_depth; 19719 19720 verbose(env, "%d", depth); 19721 if (i + 1 < env->subprog_cnt) 19722 verbose(env, "+"); 19723 } 19724 verbose(env, "\n"); 19725 } 19726 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 19727 "total_states %d peak_states %d mark_read %d\n", 19728 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 19729 env->max_states_per_insn, env->total_states, 19730 env->peak_states, env->longest_mark_read_walk); 19731 } 19732 19733 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 19734 { 19735 const struct btf_type *t, *func_proto; 19736 const struct bpf_struct_ops *st_ops; 19737 const struct btf_member *member; 19738 struct bpf_prog *prog = env->prog; 19739 u32 btf_id, member_idx; 19740 const char *mname; 19741 19742 if (!prog->gpl_compatible) { 19743 verbose(env, "struct ops programs must have a GPL compatible license\n"); 19744 return -EINVAL; 19745 } 19746 19747 btf_id = prog->aux->attach_btf_id; 19748 st_ops = bpf_struct_ops_find(btf_id); 19749 if (!st_ops) { 19750 verbose(env, "attach_btf_id %u is not a supported struct\n", 19751 btf_id); 19752 return -ENOTSUPP; 19753 } 19754 19755 t = st_ops->type; 19756 member_idx = prog->expected_attach_type; 19757 if (member_idx >= btf_type_vlen(t)) { 19758 verbose(env, "attach to invalid member idx %u of struct %s\n", 19759 member_idx, st_ops->name); 19760 return -EINVAL; 19761 } 19762 19763 member = &btf_type_member(t)[member_idx]; 19764 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 19765 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 19766 NULL); 19767 if (!func_proto) { 19768 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 19769 mname, member_idx, st_ops->name); 19770 return -EINVAL; 19771 } 19772 19773 if (st_ops->check_member) { 19774 int err = st_ops->check_member(t, member, prog); 19775 19776 if (err) { 19777 verbose(env, "attach to unsupported member %s of struct %s\n", 19778 mname, st_ops->name); 19779 return err; 19780 } 19781 } 19782 19783 prog->aux->attach_func_proto = func_proto; 19784 prog->aux->attach_func_name = mname; 19785 env->ops = st_ops->verifier_ops; 19786 19787 return 0; 19788 } 19789 #define SECURITY_PREFIX "security_" 19790 19791 static int check_attach_modify_return(unsigned long addr, const char *func_name) 19792 { 19793 if (within_error_injection_list(addr) || 19794 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 19795 return 0; 19796 19797 return -EINVAL; 19798 } 19799 19800 /* list of non-sleepable functions that are otherwise on 19801 * ALLOW_ERROR_INJECTION list 19802 */ 19803 BTF_SET_START(btf_non_sleepable_error_inject) 19804 /* Three functions below can be called from sleepable and non-sleepable context. 19805 * Assume non-sleepable from bpf safety point of view. 19806 */ 19807 BTF_ID(func, __filemap_add_folio) 19808 BTF_ID(func, should_fail_alloc_page) 19809 BTF_ID(func, should_failslab) 19810 BTF_SET_END(btf_non_sleepable_error_inject) 19811 19812 static int check_non_sleepable_error_inject(u32 btf_id) 19813 { 19814 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 19815 } 19816 19817 int bpf_check_attach_target(struct bpf_verifier_log *log, 19818 const struct bpf_prog *prog, 19819 const struct bpf_prog *tgt_prog, 19820 u32 btf_id, 19821 struct bpf_attach_target_info *tgt_info) 19822 { 19823 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 19824 const char prefix[] = "btf_trace_"; 19825 int ret = 0, subprog = -1, i; 19826 const struct btf_type *t; 19827 bool conservative = true; 19828 const char *tname; 19829 struct btf *btf; 19830 long addr = 0; 19831 struct module *mod = NULL; 19832 19833 if (!btf_id) { 19834 bpf_log(log, "Tracing programs must provide btf_id\n"); 19835 return -EINVAL; 19836 } 19837 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 19838 if (!btf) { 19839 bpf_log(log, 19840 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 19841 return -EINVAL; 19842 } 19843 t = btf_type_by_id(btf, btf_id); 19844 if (!t) { 19845 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 19846 return -EINVAL; 19847 } 19848 tname = btf_name_by_offset(btf, t->name_off); 19849 if (!tname) { 19850 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 19851 return -EINVAL; 19852 } 19853 if (tgt_prog) { 19854 struct bpf_prog_aux *aux = tgt_prog->aux; 19855 19856 if (bpf_prog_is_dev_bound(prog->aux) && 19857 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 19858 bpf_log(log, "Target program bound device mismatch"); 19859 return -EINVAL; 19860 } 19861 19862 for (i = 0; i < aux->func_info_cnt; i++) 19863 if (aux->func_info[i].type_id == btf_id) { 19864 subprog = i; 19865 break; 19866 } 19867 if (subprog == -1) { 19868 bpf_log(log, "Subprog %s doesn't exist\n", tname); 19869 return -EINVAL; 19870 } 19871 conservative = aux->func_info_aux[subprog].unreliable; 19872 if (prog_extension) { 19873 if (conservative) { 19874 bpf_log(log, 19875 "Cannot replace static functions\n"); 19876 return -EINVAL; 19877 } 19878 if (!prog->jit_requested) { 19879 bpf_log(log, 19880 "Extension programs should be JITed\n"); 19881 return -EINVAL; 19882 } 19883 } 19884 if (!tgt_prog->jited) { 19885 bpf_log(log, "Can attach to only JITed progs\n"); 19886 return -EINVAL; 19887 } 19888 if (tgt_prog->type == prog->type) { 19889 /* Cannot fentry/fexit another fentry/fexit program. 19890 * Cannot attach program extension to another extension. 19891 * It's ok to attach fentry/fexit to extension program. 19892 */ 19893 bpf_log(log, "Cannot recursively attach\n"); 19894 return -EINVAL; 19895 } 19896 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 19897 prog_extension && 19898 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 19899 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 19900 /* Program extensions can extend all program types 19901 * except fentry/fexit. The reason is the following. 19902 * The fentry/fexit programs are used for performance 19903 * analysis, stats and can be attached to any program 19904 * type except themselves. When extension program is 19905 * replacing XDP function it is necessary to allow 19906 * performance analysis of all functions. Both original 19907 * XDP program and its program extension. Hence 19908 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 19909 * allowed. If extending of fentry/fexit was allowed it 19910 * would be possible to create long call chain 19911 * fentry->extension->fentry->extension beyond 19912 * reasonable stack size. Hence extending fentry is not 19913 * allowed. 19914 */ 19915 bpf_log(log, "Cannot extend fentry/fexit\n"); 19916 return -EINVAL; 19917 } 19918 } else { 19919 if (prog_extension) { 19920 bpf_log(log, "Cannot replace kernel functions\n"); 19921 return -EINVAL; 19922 } 19923 } 19924 19925 switch (prog->expected_attach_type) { 19926 case BPF_TRACE_RAW_TP: 19927 if (tgt_prog) { 19928 bpf_log(log, 19929 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 19930 return -EINVAL; 19931 } 19932 if (!btf_type_is_typedef(t)) { 19933 bpf_log(log, "attach_btf_id %u is not a typedef\n", 19934 btf_id); 19935 return -EINVAL; 19936 } 19937 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 19938 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 19939 btf_id, tname); 19940 return -EINVAL; 19941 } 19942 tname += sizeof(prefix) - 1; 19943 t = btf_type_by_id(btf, t->type); 19944 if (!btf_type_is_ptr(t)) 19945 /* should never happen in valid vmlinux build */ 19946 return -EINVAL; 19947 t = btf_type_by_id(btf, t->type); 19948 if (!btf_type_is_func_proto(t)) 19949 /* should never happen in valid vmlinux build */ 19950 return -EINVAL; 19951 19952 break; 19953 case BPF_TRACE_ITER: 19954 if (!btf_type_is_func(t)) { 19955 bpf_log(log, "attach_btf_id %u is not a function\n", 19956 btf_id); 19957 return -EINVAL; 19958 } 19959 t = btf_type_by_id(btf, t->type); 19960 if (!btf_type_is_func_proto(t)) 19961 return -EINVAL; 19962 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19963 if (ret) 19964 return ret; 19965 break; 19966 default: 19967 if (!prog_extension) 19968 return -EINVAL; 19969 fallthrough; 19970 case BPF_MODIFY_RETURN: 19971 case BPF_LSM_MAC: 19972 case BPF_LSM_CGROUP: 19973 case BPF_TRACE_FENTRY: 19974 case BPF_TRACE_FEXIT: 19975 if (!btf_type_is_func(t)) { 19976 bpf_log(log, "attach_btf_id %u is not a function\n", 19977 btf_id); 19978 return -EINVAL; 19979 } 19980 if (prog_extension && 19981 btf_check_type_match(log, prog, btf, t)) 19982 return -EINVAL; 19983 t = btf_type_by_id(btf, t->type); 19984 if (!btf_type_is_func_proto(t)) 19985 return -EINVAL; 19986 19987 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 19988 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 19989 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 19990 return -EINVAL; 19991 19992 if (tgt_prog && conservative) 19993 t = NULL; 19994 19995 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19996 if (ret < 0) 19997 return ret; 19998 19999 if (tgt_prog) { 20000 if (subprog == 0) 20001 addr = (long) tgt_prog->bpf_func; 20002 else 20003 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 20004 } else { 20005 if (btf_is_module(btf)) { 20006 mod = btf_try_get_module(btf); 20007 if (mod) 20008 addr = find_kallsyms_symbol_value(mod, tname); 20009 else 20010 addr = 0; 20011 } else { 20012 addr = kallsyms_lookup_name(tname); 20013 } 20014 if (!addr) { 20015 module_put(mod); 20016 bpf_log(log, 20017 "The address of function %s cannot be found\n", 20018 tname); 20019 return -ENOENT; 20020 } 20021 } 20022 20023 if (prog->aux->sleepable) { 20024 ret = -EINVAL; 20025 switch (prog->type) { 20026 case BPF_PROG_TYPE_TRACING: 20027 20028 /* fentry/fexit/fmod_ret progs can be sleepable if they are 20029 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 20030 */ 20031 if (!check_non_sleepable_error_inject(btf_id) && 20032 within_error_injection_list(addr)) 20033 ret = 0; 20034 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 20035 * in the fmodret id set with the KF_SLEEPABLE flag. 20036 */ 20037 else { 20038 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 20039 prog); 20040 20041 if (flags && (*flags & KF_SLEEPABLE)) 20042 ret = 0; 20043 } 20044 break; 20045 case BPF_PROG_TYPE_LSM: 20046 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 20047 * Only some of them are sleepable. 20048 */ 20049 if (bpf_lsm_is_sleepable_hook(btf_id)) 20050 ret = 0; 20051 break; 20052 default: 20053 break; 20054 } 20055 if (ret) { 20056 module_put(mod); 20057 bpf_log(log, "%s is not sleepable\n", tname); 20058 return ret; 20059 } 20060 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 20061 if (tgt_prog) { 20062 module_put(mod); 20063 bpf_log(log, "can't modify return codes of BPF programs\n"); 20064 return -EINVAL; 20065 } 20066 ret = -EINVAL; 20067 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 20068 !check_attach_modify_return(addr, tname)) 20069 ret = 0; 20070 if (ret) { 20071 module_put(mod); 20072 bpf_log(log, "%s() is not modifiable\n", tname); 20073 return ret; 20074 } 20075 } 20076 20077 break; 20078 } 20079 tgt_info->tgt_addr = addr; 20080 tgt_info->tgt_name = tname; 20081 tgt_info->tgt_type = t; 20082 tgt_info->tgt_mod = mod; 20083 return 0; 20084 } 20085 20086 BTF_SET_START(btf_id_deny) 20087 BTF_ID_UNUSED 20088 #ifdef CONFIG_SMP 20089 BTF_ID(func, migrate_disable) 20090 BTF_ID(func, migrate_enable) 20091 #endif 20092 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 20093 BTF_ID(func, rcu_read_unlock_strict) 20094 #endif 20095 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 20096 BTF_ID(func, preempt_count_add) 20097 BTF_ID(func, preempt_count_sub) 20098 #endif 20099 #ifdef CONFIG_PREEMPT_RCU 20100 BTF_ID(func, __rcu_read_lock) 20101 BTF_ID(func, __rcu_read_unlock) 20102 #endif 20103 BTF_SET_END(btf_id_deny) 20104 20105 static bool can_be_sleepable(struct bpf_prog *prog) 20106 { 20107 if (prog->type == BPF_PROG_TYPE_TRACING) { 20108 switch (prog->expected_attach_type) { 20109 case BPF_TRACE_FENTRY: 20110 case BPF_TRACE_FEXIT: 20111 case BPF_MODIFY_RETURN: 20112 case BPF_TRACE_ITER: 20113 return true; 20114 default: 20115 return false; 20116 } 20117 } 20118 return prog->type == BPF_PROG_TYPE_LSM || 20119 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 20120 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 20121 } 20122 20123 static int check_attach_btf_id(struct bpf_verifier_env *env) 20124 { 20125 struct bpf_prog *prog = env->prog; 20126 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 20127 struct bpf_attach_target_info tgt_info = {}; 20128 u32 btf_id = prog->aux->attach_btf_id; 20129 struct bpf_trampoline *tr; 20130 int ret; 20131 u64 key; 20132 20133 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 20134 if (prog->aux->sleepable) 20135 /* attach_btf_id checked to be zero already */ 20136 return 0; 20137 verbose(env, "Syscall programs can only be sleepable\n"); 20138 return -EINVAL; 20139 } 20140 20141 if (prog->aux->sleepable && !can_be_sleepable(prog)) { 20142 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 20143 return -EINVAL; 20144 } 20145 20146 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 20147 return check_struct_ops_btf_id(env); 20148 20149 if (prog->type != BPF_PROG_TYPE_TRACING && 20150 prog->type != BPF_PROG_TYPE_LSM && 20151 prog->type != BPF_PROG_TYPE_EXT) 20152 return 0; 20153 20154 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 20155 if (ret) 20156 return ret; 20157 20158 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 20159 /* to make freplace equivalent to their targets, they need to 20160 * inherit env->ops and expected_attach_type for the rest of the 20161 * verification 20162 */ 20163 env->ops = bpf_verifier_ops[tgt_prog->type]; 20164 prog->expected_attach_type = tgt_prog->expected_attach_type; 20165 } 20166 20167 /* store info about the attachment target that will be used later */ 20168 prog->aux->attach_func_proto = tgt_info.tgt_type; 20169 prog->aux->attach_func_name = tgt_info.tgt_name; 20170 prog->aux->mod = tgt_info.tgt_mod; 20171 20172 if (tgt_prog) { 20173 prog->aux->saved_dst_prog_type = tgt_prog->type; 20174 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 20175 } 20176 20177 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 20178 prog->aux->attach_btf_trace = true; 20179 return 0; 20180 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 20181 if (!bpf_iter_prog_supported(prog)) 20182 return -EINVAL; 20183 return 0; 20184 } 20185 20186 if (prog->type == BPF_PROG_TYPE_LSM) { 20187 ret = bpf_lsm_verify_prog(&env->log, prog); 20188 if (ret < 0) 20189 return ret; 20190 } else if (prog->type == BPF_PROG_TYPE_TRACING && 20191 btf_id_set_contains(&btf_id_deny, btf_id)) { 20192 return -EINVAL; 20193 } 20194 20195 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 20196 tr = bpf_trampoline_get(key, &tgt_info); 20197 if (!tr) 20198 return -ENOMEM; 20199 20200 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 20201 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 20202 20203 prog->aux->dst_trampoline = tr; 20204 return 0; 20205 } 20206 20207 struct btf *bpf_get_btf_vmlinux(void) 20208 { 20209 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 20210 mutex_lock(&bpf_verifier_lock); 20211 if (!btf_vmlinux) 20212 btf_vmlinux = btf_parse_vmlinux(); 20213 mutex_unlock(&bpf_verifier_lock); 20214 } 20215 return btf_vmlinux; 20216 } 20217 20218 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 20219 { 20220 u64 start_time = ktime_get_ns(); 20221 struct bpf_verifier_env *env; 20222 int i, len, ret = -EINVAL, err; 20223 u32 log_true_size; 20224 bool is_priv; 20225 20226 /* no program is valid */ 20227 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 20228 return -EINVAL; 20229 20230 /* 'struct bpf_verifier_env' can be global, but since it's not small, 20231 * allocate/free it every time bpf_check() is called 20232 */ 20233 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 20234 if (!env) 20235 return -ENOMEM; 20236 20237 env->bt.env = env; 20238 20239 len = (*prog)->len; 20240 env->insn_aux_data = 20241 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 20242 ret = -ENOMEM; 20243 if (!env->insn_aux_data) 20244 goto err_free_env; 20245 for (i = 0; i < len; i++) 20246 env->insn_aux_data[i].orig_idx = i; 20247 env->prog = *prog; 20248 env->ops = bpf_verifier_ops[env->prog->type]; 20249 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 20250 is_priv = bpf_capable(); 20251 20252 bpf_get_btf_vmlinux(); 20253 20254 /* grab the mutex to protect few globals used by verifier */ 20255 if (!is_priv) 20256 mutex_lock(&bpf_verifier_lock); 20257 20258 /* user could have requested verbose verifier output 20259 * and supplied buffer to store the verification trace 20260 */ 20261 ret = bpf_vlog_init(&env->log, attr->log_level, 20262 (char __user *) (unsigned long) attr->log_buf, 20263 attr->log_size); 20264 if (ret) 20265 goto err_unlock; 20266 20267 mark_verifier_state_clean(env); 20268 20269 if (IS_ERR(btf_vmlinux)) { 20270 /* Either gcc or pahole or kernel are broken. */ 20271 verbose(env, "in-kernel BTF is malformed\n"); 20272 ret = PTR_ERR(btf_vmlinux); 20273 goto skip_full_check; 20274 } 20275 20276 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 20277 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 20278 env->strict_alignment = true; 20279 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 20280 env->strict_alignment = false; 20281 20282 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 20283 env->allow_uninit_stack = bpf_allow_uninit_stack(); 20284 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 20285 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 20286 env->bpf_capable = bpf_capable(); 20287 20288 if (is_priv) 20289 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 20290 20291 env->explored_states = kvcalloc(state_htab_size(env), 20292 sizeof(struct bpf_verifier_state_list *), 20293 GFP_USER); 20294 ret = -ENOMEM; 20295 if (!env->explored_states) 20296 goto skip_full_check; 20297 20298 ret = add_subprog_and_kfunc(env); 20299 if (ret < 0) 20300 goto skip_full_check; 20301 20302 ret = check_subprogs(env); 20303 if (ret < 0) 20304 goto skip_full_check; 20305 20306 ret = check_btf_info(env, attr, uattr); 20307 if (ret < 0) 20308 goto skip_full_check; 20309 20310 ret = check_attach_btf_id(env); 20311 if (ret) 20312 goto skip_full_check; 20313 20314 ret = resolve_pseudo_ldimm64(env); 20315 if (ret < 0) 20316 goto skip_full_check; 20317 20318 if (bpf_prog_is_offloaded(env->prog->aux)) { 20319 ret = bpf_prog_offload_verifier_prep(env->prog); 20320 if (ret) 20321 goto skip_full_check; 20322 } 20323 20324 ret = check_cfg(env); 20325 if (ret < 0) 20326 goto skip_full_check; 20327 20328 ret = do_check_subprogs(env); 20329 ret = ret ?: do_check_main(env); 20330 20331 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 20332 ret = bpf_prog_offload_finalize(env); 20333 20334 skip_full_check: 20335 kvfree(env->explored_states); 20336 20337 if (ret == 0) 20338 ret = check_max_stack_depth(env); 20339 20340 /* instruction rewrites happen after this point */ 20341 if (ret == 0) 20342 ret = optimize_bpf_loop(env); 20343 20344 if (is_priv) { 20345 if (ret == 0) 20346 opt_hard_wire_dead_code_branches(env); 20347 if (ret == 0) 20348 ret = opt_remove_dead_code(env); 20349 if (ret == 0) 20350 ret = opt_remove_nops(env); 20351 } else { 20352 if (ret == 0) 20353 sanitize_dead_code(env); 20354 } 20355 20356 if (ret == 0) 20357 /* program is valid, convert *(u32*)(ctx + off) accesses */ 20358 ret = convert_ctx_accesses(env); 20359 20360 if (ret == 0) 20361 ret = do_misc_fixups(env); 20362 20363 /* do 32-bit optimization after insn patching has done so those patched 20364 * insns could be handled correctly. 20365 */ 20366 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 20367 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 20368 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 20369 : false; 20370 } 20371 20372 if (ret == 0) 20373 ret = fixup_call_args(env); 20374 20375 env->verification_time = ktime_get_ns() - start_time; 20376 print_verification_stats(env); 20377 env->prog->aux->verified_insns = env->insn_processed; 20378 20379 /* preserve original error even if log finalization is successful */ 20380 err = bpf_vlog_finalize(&env->log, &log_true_size); 20381 if (err) 20382 ret = err; 20383 20384 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 20385 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 20386 &log_true_size, sizeof(log_true_size))) { 20387 ret = -EFAULT; 20388 goto err_release_maps; 20389 } 20390 20391 if (ret) 20392 goto err_release_maps; 20393 20394 if (env->used_map_cnt) { 20395 /* if program passed verifier, update used_maps in bpf_prog_info */ 20396 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 20397 sizeof(env->used_maps[0]), 20398 GFP_KERNEL); 20399 20400 if (!env->prog->aux->used_maps) { 20401 ret = -ENOMEM; 20402 goto err_release_maps; 20403 } 20404 20405 memcpy(env->prog->aux->used_maps, env->used_maps, 20406 sizeof(env->used_maps[0]) * env->used_map_cnt); 20407 env->prog->aux->used_map_cnt = env->used_map_cnt; 20408 } 20409 if (env->used_btf_cnt) { 20410 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 20411 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 20412 sizeof(env->used_btfs[0]), 20413 GFP_KERNEL); 20414 if (!env->prog->aux->used_btfs) { 20415 ret = -ENOMEM; 20416 goto err_release_maps; 20417 } 20418 20419 memcpy(env->prog->aux->used_btfs, env->used_btfs, 20420 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 20421 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 20422 } 20423 if (env->used_map_cnt || env->used_btf_cnt) { 20424 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 20425 * bpf_ld_imm64 instructions 20426 */ 20427 convert_pseudo_ld_imm64(env); 20428 } 20429 20430 adjust_btf_func(env); 20431 20432 err_release_maps: 20433 if (!env->prog->aux->used_maps) 20434 /* if we didn't copy map pointers into bpf_prog_info, release 20435 * them now. Otherwise free_used_maps() will release them. 20436 */ 20437 release_maps(env); 20438 if (!env->prog->aux->used_btfs) 20439 release_btfs(env); 20440 20441 /* extension progs temporarily inherit the attach_type of their targets 20442 for verification purposes, so set it back to zero before returning 20443 */ 20444 if (env->prog->type == BPF_PROG_TYPE_EXT) 20445 env->prog->expected_attach_type = 0; 20446 20447 *prog = env->prog; 20448 err_unlock: 20449 if (!is_priv) 20450 mutex_unlock(&bpf_verifier_lock); 20451 vfree(env->insn_aux_data); 20452 err_free_env: 20453 kfree(env); 20454 return ret; 20455 } 20456