1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 28 #include "disasm.h" 29 30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 31 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 32 [_id] = & _name ## _verifier_ops, 33 #define BPF_MAP_TYPE(_id, _ops) 34 #define BPF_LINK_TYPE(_id, _name) 35 #include <linux/bpf_types.h> 36 #undef BPF_PROG_TYPE 37 #undef BPF_MAP_TYPE 38 #undef BPF_LINK_TYPE 39 }; 40 41 /* bpf_check() is a static code analyzer that walks eBPF program 42 * instruction by instruction and updates register/stack state. 43 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 44 * 45 * The first pass is depth-first-search to check that the program is a DAG. 46 * It rejects the following programs: 47 * - larger than BPF_MAXINSNS insns 48 * - if loop is present (detected via back-edge) 49 * - unreachable insns exist (shouldn't be a forest. program = one function) 50 * - out of bounds or malformed jumps 51 * The second pass is all possible path descent from the 1st insn. 52 * Since it's analyzing all paths through the program, the length of the 53 * analysis is limited to 64k insn, which may be hit even if total number of 54 * insn is less then 4K, but there are too many branches that change stack/regs. 55 * Number of 'branches to be analyzed' is limited to 1k 56 * 57 * On entry to each instruction, each register has a type, and the instruction 58 * changes the types of the registers depending on instruction semantics. 59 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 60 * copied to R1. 61 * 62 * All registers are 64-bit. 63 * R0 - return register 64 * R1-R5 argument passing registers 65 * R6-R9 callee saved registers 66 * R10 - frame pointer read-only 67 * 68 * At the start of BPF program the register R1 contains a pointer to bpf_context 69 * and has type PTR_TO_CTX. 70 * 71 * Verifier tracks arithmetic operations on pointers in case: 72 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 73 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 74 * 1st insn copies R10 (which has FRAME_PTR) type into R1 75 * and 2nd arithmetic instruction is pattern matched to recognize 76 * that it wants to construct a pointer to some element within stack. 77 * So after 2nd insn, the register R1 has type PTR_TO_STACK 78 * (and -20 constant is saved for further stack bounds checking). 79 * Meaning that this reg is a pointer to stack plus known immediate constant. 80 * 81 * Most of the time the registers have SCALAR_VALUE type, which 82 * means the register has some value, but it's not a valid pointer. 83 * (like pointer plus pointer becomes SCALAR_VALUE type) 84 * 85 * When verifier sees load or store instructions the type of base register 86 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 87 * four pointer types recognized by check_mem_access() function. 88 * 89 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 90 * and the range of [ptr, ptr + map's value_size) is accessible. 91 * 92 * registers used to pass values to function calls are checked against 93 * function argument constraints. 94 * 95 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 96 * It means that the register type passed to this function must be 97 * PTR_TO_STACK and it will be used inside the function as 98 * 'pointer to map element key' 99 * 100 * For example the argument constraints for bpf_map_lookup_elem(): 101 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 102 * .arg1_type = ARG_CONST_MAP_PTR, 103 * .arg2_type = ARG_PTR_TO_MAP_KEY, 104 * 105 * ret_type says that this function returns 'pointer to map elem value or null' 106 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 107 * 2nd argument should be a pointer to stack, which will be used inside 108 * the helper function as a pointer to map element key. 109 * 110 * On the kernel side the helper function looks like: 111 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 112 * { 113 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 114 * void *key = (void *) (unsigned long) r2; 115 * void *value; 116 * 117 * here kernel can access 'key' and 'map' pointers safely, knowing that 118 * [key, key + map->key_size) bytes are valid and were initialized on 119 * the stack of eBPF program. 120 * } 121 * 122 * Corresponding eBPF program may look like: 123 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 124 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 125 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 126 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 127 * here verifier looks at prototype of map_lookup_elem() and sees: 128 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 129 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 130 * 131 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 132 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 133 * and were initialized prior to this call. 134 * If it's ok, then verifier allows this BPF_CALL insn and looks at 135 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 136 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 137 * returns either pointer to map value or NULL. 138 * 139 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 140 * insn, the register holding that pointer in the true branch changes state to 141 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 142 * branch. See check_cond_jmp_op(). 143 * 144 * After the call R0 is set to return type of the function and registers R1-R5 145 * are set to NOT_INIT to indicate that they are no longer readable. 146 * 147 * The following reference types represent a potential reference to a kernel 148 * resource which, after first being allocated, must be checked and freed by 149 * the BPF program: 150 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 151 * 152 * When the verifier sees a helper call return a reference type, it allocates a 153 * pointer id for the reference and stores it in the current function state. 154 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 155 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 156 * passes through a NULL-check conditional. For the branch wherein the state is 157 * changed to CONST_IMM, the verifier releases the reference. 158 * 159 * For each helper function that allocates a reference, such as 160 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 161 * bpf_sk_release(). When a reference type passes into the release function, 162 * the verifier also releases the reference. If any unchecked or unreleased 163 * reference remains at the end of the program, the verifier rejects it. 164 */ 165 166 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 167 struct bpf_verifier_stack_elem { 168 /* verifer state is 'st' 169 * before processing instruction 'insn_idx' 170 * and after processing instruction 'prev_insn_idx' 171 */ 172 struct bpf_verifier_state st; 173 int insn_idx; 174 int prev_insn_idx; 175 struct bpf_verifier_stack_elem *next; 176 /* length of verifier log at the time this state was pushed on stack */ 177 u32 log_pos; 178 }; 179 180 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 181 #define BPF_COMPLEXITY_LIMIT_STATES 64 182 183 #define BPF_MAP_KEY_POISON (1ULL << 63) 184 #define BPF_MAP_KEY_SEEN (1ULL << 62) 185 186 #define BPF_MAP_PTR_UNPRIV 1UL 187 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 188 POISON_POINTER_DELTA)) 189 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 190 191 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 192 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 193 194 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 195 { 196 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 197 } 198 199 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 200 { 201 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 202 } 203 204 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 205 const struct bpf_map *map, bool unpriv) 206 { 207 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 208 unpriv |= bpf_map_ptr_unpriv(aux); 209 aux->map_ptr_state = (unsigned long)map | 210 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 211 } 212 213 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 214 { 215 return aux->map_key_state & BPF_MAP_KEY_POISON; 216 } 217 218 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 219 { 220 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 221 } 222 223 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 224 { 225 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 226 } 227 228 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 229 { 230 bool poisoned = bpf_map_key_poisoned(aux); 231 232 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 233 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 234 } 235 236 static bool bpf_pseudo_call(const struct bpf_insn *insn) 237 { 238 return insn->code == (BPF_JMP | BPF_CALL) && 239 insn->src_reg == BPF_PSEUDO_CALL; 240 } 241 242 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 243 { 244 return insn->code == (BPF_JMP | BPF_CALL) && 245 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 246 } 247 248 struct bpf_call_arg_meta { 249 struct bpf_map *map_ptr; 250 bool raw_mode; 251 bool pkt_access; 252 u8 release_regno; 253 int regno; 254 int access_size; 255 int mem_size; 256 u64 msize_max_value; 257 int ref_obj_id; 258 int map_uid; 259 int func_id; 260 struct btf *btf; 261 u32 btf_id; 262 struct btf *ret_btf; 263 u32 ret_btf_id; 264 u32 subprogno; 265 struct bpf_map_value_off_desc *kptr_off_desc; 266 u8 uninit_dynptr_regno; 267 }; 268 269 struct btf *btf_vmlinux; 270 271 static DEFINE_MUTEX(bpf_verifier_lock); 272 273 static const struct bpf_line_info * 274 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 275 { 276 const struct bpf_line_info *linfo; 277 const struct bpf_prog *prog; 278 u32 i, nr_linfo; 279 280 prog = env->prog; 281 nr_linfo = prog->aux->nr_linfo; 282 283 if (!nr_linfo || insn_off >= prog->len) 284 return NULL; 285 286 linfo = prog->aux->linfo; 287 for (i = 1; i < nr_linfo; i++) 288 if (insn_off < linfo[i].insn_off) 289 break; 290 291 return &linfo[i - 1]; 292 } 293 294 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 295 va_list args) 296 { 297 unsigned int n; 298 299 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 300 301 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 302 "verifier log line truncated - local buffer too short\n"); 303 304 if (log->level == BPF_LOG_KERNEL) { 305 bool newline = n > 0 && log->kbuf[n - 1] == '\n'; 306 307 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n"); 308 return; 309 } 310 311 n = min(log->len_total - log->len_used - 1, n); 312 log->kbuf[n] = '\0'; 313 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 314 log->len_used += n; 315 else 316 log->ubuf = NULL; 317 } 318 319 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 320 { 321 char zero = 0; 322 323 if (!bpf_verifier_log_needed(log)) 324 return; 325 326 log->len_used = new_pos; 327 if (put_user(zero, log->ubuf + new_pos)) 328 log->ubuf = NULL; 329 } 330 331 /* log_level controls verbosity level of eBPF verifier. 332 * bpf_verifier_log_write() is used to dump the verification trace to the log, 333 * so the user can figure out what's wrong with the program 334 */ 335 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 336 const char *fmt, ...) 337 { 338 va_list args; 339 340 if (!bpf_verifier_log_needed(&env->log)) 341 return; 342 343 va_start(args, fmt); 344 bpf_verifier_vlog(&env->log, fmt, args); 345 va_end(args); 346 } 347 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 348 349 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 350 { 351 struct bpf_verifier_env *env = private_data; 352 va_list args; 353 354 if (!bpf_verifier_log_needed(&env->log)) 355 return; 356 357 va_start(args, fmt); 358 bpf_verifier_vlog(&env->log, fmt, args); 359 va_end(args); 360 } 361 362 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 363 const char *fmt, ...) 364 { 365 va_list args; 366 367 if (!bpf_verifier_log_needed(log)) 368 return; 369 370 va_start(args, fmt); 371 bpf_verifier_vlog(log, fmt, args); 372 va_end(args); 373 } 374 EXPORT_SYMBOL_GPL(bpf_log); 375 376 static const char *ltrim(const char *s) 377 { 378 while (isspace(*s)) 379 s++; 380 381 return s; 382 } 383 384 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 385 u32 insn_off, 386 const char *prefix_fmt, ...) 387 { 388 const struct bpf_line_info *linfo; 389 390 if (!bpf_verifier_log_needed(&env->log)) 391 return; 392 393 linfo = find_linfo(env, insn_off); 394 if (!linfo || linfo == env->prev_linfo) 395 return; 396 397 if (prefix_fmt) { 398 va_list args; 399 400 va_start(args, prefix_fmt); 401 bpf_verifier_vlog(&env->log, prefix_fmt, args); 402 va_end(args); 403 } 404 405 verbose(env, "%s\n", 406 ltrim(btf_name_by_offset(env->prog->aux->btf, 407 linfo->line_off))); 408 409 env->prev_linfo = linfo; 410 } 411 412 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 413 struct bpf_reg_state *reg, 414 struct tnum *range, const char *ctx, 415 const char *reg_name) 416 { 417 char tn_buf[48]; 418 419 verbose(env, "At %s the register %s ", ctx, reg_name); 420 if (!tnum_is_unknown(reg->var_off)) { 421 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 422 verbose(env, "has value %s", tn_buf); 423 } else { 424 verbose(env, "has unknown scalar value"); 425 } 426 tnum_strn(tn_buf, sizeof(tn_buf), *range); 427 verbose(env, " should have been in %s\n", tn_buf); 428 } 429 430 static bool type_is_pkt_pointer(enum bpf_reg_type type) 431 { 432 type = base_type(type); 433 return type == PTR_TO_PACKET || 434 type == PTR_TO_PACKET_META; 435 } 436 437 static bool type_is_sk_pointer(enum bpf_reg_type type) 438 { 439 return type == PTR_TO_SOCKET || 440 type == PTR_TO_SOCK_COMMON || 441 type == PTR_TO_TCP_SOCK || 442 type == PTR_TO_XDP_SOCK; 443 } 444 445 static bool reg_type_not_null(enum bpf_reg_type type) 446 { 447 return type == PTR_TO_SOCKET || 448 type == PTR_TO_TCP_SOCK || 449 type == PTR_TO_MAP_VALUE || 450 type == PTR_TO_MAP_KEY || 451 type == PTR_TO_SOCK_COMMON; 452 } 453 454 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 455 { 456 return reg->type == PTR_TO_MAP_VALUE && 457 map_value_has_spin_lock(reg->map_ptr); 458 } 459 460 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 461 { 462 type = base_type(type); 463 return type == PTR_TO_SOCKET || type == PTR_TO_TCP_SOCK || 464 type == PTR_TO_MEM || type == PTR_TO_BTF_ID; 465 } 466 467 static bool type_is_rdonly_mem(u32 type) 468 { 469 return type & MEM_RDONLY; 470 } 471 472 static bool type_may_be_null(u32 type) 473 { 474 return type & PTR_MAYBE_NULL; 475 } 476 477 static bool is_acquire_function(enum bpf_func_id func_id, 478 const struct bpf_map *map) 479 { 480 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 481 482 if (func_id == BPF_FUNC_sk_lookup_tcp || 483 func_id == BPF_FUNC_sk_lookup_udp || 484 func_id == BPF_FUNC_skc_lookup_tcp || 485 func_id == BPF_FUNC_ringbuf_reserve || 486 func_id == BPF_FUNC_kptr_xchg) 487 return true; 488 489 if (func_id == BPF_FUNC_map_lookup_elem && 490 (map_type == BPF_MAP_TYPE_SOCKMAP || 491 map_type == BPF_MAP_TYPE_SOCKHASH)) 492 return true; 493 494 return false; 495 } 496 497 static bool is_ptr_cast_function(enum bpf_func_id func_id) 498 { 499 return func_id == BPF_FUNC_tcp_sock || 500 func_id == BPF_FUNC_sk_fullsock || 501 func_id == BPF_FUNC_skc_to_tcp_sock || 502 func_id == BPF_FUNC_skc_to_tcp6_sock || 503 func_id == BPF_FUNC_skc_to_udp6_sock || 504 func_id == BPF_FUNC_skc_to_mptcp_sock || 505 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 506 func_id == BPF_FUNC_skc_to_tcp_request_sock; 507 } 508 509 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 510 { 511 return func_id == BPF_FUNC_dynptr_data; 512 } 513 514 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 515 const struct bpf_map *map) 516 { 517 int ref_obj_uses = 0; 518 519 if (is_ptr_cast_function(func_id)) 520 ref_obj_uses++; 521 if (is_acquire_function(func_id, map)) 522 ref_obj_uses++; 523 if (is_dynptr_ref_function(func_id)) 524 ref_obj_uses++; 525 526 return ref_obj_uses > 1; 527 } 528 529 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 530 { 531 return BPF_CLASS(insn->code) == BPF_STX && 532 BPF_MODE(insn->code) == BPF_ATOMIC && 533 insn->imm == BPF_CMPXCHG; 534 } 535 536 /* string representation of 'enum bpf_reg_type' 537 * 538 * Note that reg_type_str() can not appear more than once in a single verbose() 539 * statement. 540 */ 541 static const char *reg_type_str(struct bpf_verifier_env *env, 542 enum bpf_reg_type type) 543 { 544 char postfix[16] = {0}, prefix[32] = {0}; 545 static const char * const str[] = { 546 [NOT_INIT] = "?", 547 [SCALAR_VALUE] = "scalar", 548 [PTR_TO_CTX] = "ctx", 549 [CONST_PTR_TO_MAP] = "map_ptr", 550 [PTR_TO_MAP_VALUE] = "map_value", 551 [PTR_TO_STACK] = "fp", 552 [PTR_TO_PACKET] = "pkt", 553 [PTR_TO_PACKET_META] = "pkt_meta", 554 [PTR_TO_PACKET_END] = "pkt_end", 555 [PTR_TO_FLOW_KEYS] = "flow_keys", 556 [PTR_TO_SOCKET] = "sock", 557 [PTR_TO_SOCK_COMMON] = "sock_common", 558 [PTR_TO_TCP_SOCK] = "tcp_sock", 559 [PTR_TO_TP_BUFFER] = "tp_buffer", 560 [PTR_TO_XDP_SOCK] = "xdp_sock", 561 [PTR_TO_BTF_ID] = "ptr_", 562 [PTR_TO_MEM] = "mem", 563 [PTR_TO_BUF] = "buf", 564 [PTR_TO_FUNC] = "func", 565 [PTR_TO_MAP_KEY] = "map_key", 566 [PTR_TO_DYNPTR] = "dynptr_ptr", 567 }; 568 569 if (type & PTR_MAYBE_NULL) { 570 if (base_type(type) == PTR_TO_BTF_ID) 571 strncpy(postfix, "or_null_", 16); 572 else 573 strncpy(postfix, "_or_null", 16); 574 } 575 576 if (type & MEM_RDONLY) 577 strncpy(prefix, "rdonly_", 32); 578 if (type & MEM_ALLOC) 579 strncpy(prefix, "alloc_", 32); 580 if (type & MEM_USER) 581 strncpy(prefix, "user_", 32); 582 if (type & MEM_PERCPU) 583 strncpy(prefix, "percpu_", 32); 584 if (type & PTR_UNTRUSTED) 585 strncpy(prefix, "untrusted_", 32); 586 587 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s", 588 prefix, str[base_type(type)], postfix); 589 return env->type_str_buf; 590 } 591 592 static char slot_type_char[] = { 593 [STACK_INVALID] = '?', 594 [STACK_SPILL] = 'r', 595 [STACK_MISC] = 'm', 596 [STACK_ZERO] = '0', 597 [STACK_DYNPTR] = 'd', 598 }; 599 600 static void print_liveness(struct bpf_verifier_env *env, 601 enum bpf_reg_liveness live) 602 { 603 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 604 verbose(env, "_"); 605 if (live & REG_LIVE_READ) 606 verbose(env, "r"); 607 if (live & REG_LIVE_WRITTEN) 608 verbose(env, "w"); 609 if (live & REG_LIVE_DONE) 610 verbose(env, "D"); 611 } 612 613 static int get_spi(s32 off) 614 { 615 return (-off - 1) / BPF_REG_SIZE; 616 } 617 618 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 619 { 620 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 621 622 /* We need to check that slots between [spi - nr_slots + 1, spi] are 623 * within [0, allocated_stack). 624 * 625 * Please note that the spi grows downwards. For example, a dynptr 626 * takes the size of two stack slots; the first slot will be at 627 * spi and the second slot will be at spi - 1. 628 */ 629 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 630 } 631 632 static struct bpf_func_state *func(struct bpf_verifier_env *env, 633 const struct bpf_reg_state *reg) 634 { 635 struct bpf_verifier_state *cur = env->cur_state; 636 637 return cur->frame[reg->frameno]; 638 } 639 640 static const char *kernel_type_name(const struct btf* btf, u32 id) 641 { 642 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 643 } 644 645 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 646 { 647 env->scratched_regs |= 1U << regno; 648 } 649 650 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 651 { 652 env->scratched_stack_slots |= 1ULL << spi; 653 } 654 655 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 656 { 657 return (env->scratched_regs >> regno) & 1; 658 } 659 660 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 661 { 662 return (env->scratched_stack_slots >> regno) & 1; 663 } 664 665 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 666 { 667 return env->scratched_regs || env->scratched_stack_slots; 668 } 669 670 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 671 { 672 env->scratched_regs = 0U; 673 env->scratched_stack_slots = 0ULL; 674 } 675 676 /* Used for printing the entire verifier state. */ 677 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 678 { 679 env->scratched_regs = ~0U; 680 env->scratched_stack_slots = ~0ULL; 681 } 682 683 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 684 { 685 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 686 case DYNPTR_TYPE_LOCAL: 687 return BPF_DYNPTR_TYPE_LOCAL; 688 case DYNPTR_TYPE_RINGBUF: 689 return BPF_DYNPTR_TYPE_RINGBUF; 690 default: 691 return BPF_DYNPTR_TYPE_INVALID; 692 } 693 } 694 695 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 696 { 697 return type == BPF_DYNPTR_TYPE_RINGBUF; 698 } 699 700 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 701 enum bpf_arg_type arg_type, int insn_idx) 702 { 703 struct bpf_func_state *state = func(env, reg); 704 enum bpf_dynptr_type type; 705 int spi, i, id; 706 707 spi = get_spi(reg->off); 708 709 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 710 return -EINVAL; 711 712 for (i = 0; i < BPF_REG_SIZE; i++) { 713 state->stack[spi].slot_type[i] = STACK_DYNPTR; 714 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 715 } 716 717 type = arg_to_dynptr_type(arg_type); 718 if (type == BPF_DYNPTR_TYPE_INVALID) 719 return -EINVAL; 720 721 state->stack[spi].spilled_ptr.dynptr.first_slot = true; 722 state->stack[spi].spilled_ptr.dynptr.type = type; 723 state->stack[spi - 1].spilled_ptr.dynptr.type = type; 724 725 if (dynptr_type_refcounted(type)) { 726 /* The id is used to track proper releasing */ 727 id = acquire_reference_state(env, insn_idx); 728 if (id < 0) 729 return id; 730 731 state->stack[spi].spilled_ptr.id = id; 732 state->stack[spi - 1].spilled_ptr.id = id; 733 } 734 735 return 0; 736 } 737 738 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 739 { 740 struct bpf_func_state *state = func(env, reg); 741 int spi, i; 742 743 spi = get_spi(reg->off); 744 745 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 746 return -EINVAL; 747 748 for (i = 0; i < BPF_REG_SIZE; i++) { 749 state->stack[spi].slot_type[i] = STACK_INVALID; 750 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 751 } 752 753 /* Invalidate any slices associated with this dynptr */ 754 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 755 release_reference(env, state->stack[spi].spilled_ptr.id); 756 state->stack[spi].spilled_ptr.id = 0; 757 state->stack[spi - 1].spilled_ptr.id = 0; 758 } 759 760 state->stack[spi].spilled_ptr.dynptr.first_slot = false; 761 state->stack[spi].spilled_ptr.dynptr.type = 0; 762 state->stack[spi - 1].spilled_ptr.dynptr.type = 0; 763 764 return 0; 765 } 766 767 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 768 { 769 struct bpf_func_state *state = func(env, reg); 770 int spi = get_spi(reg->off); 771 int i; 772 773 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 774 return true; 775 776 for (i = 0; i < BPF_REG_SIZE; i++) { 777 if (state->stack[spi].slot_type[i] == STACK_DYNPTR || 778 state->stack[spi - 1].slot_type[i] == STACK_DYNPTR) 779 return false; 780 } 781 782 return true; 783 } 784 785 bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, 786 struct bpf_reg_state *reg) 787 { 788 struct bpf_func_state *state = func(env, reg); 789 int spi = get_spi(reg->off); 790 int i; 791 792 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 793 !state->stack[spi].spilled_ptr.dynptr.first_slot) 794 return false; 795 796 for (i = 0; i < BPF_REG_SIZE; i++) { 797 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 798 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 799 return false; 800 } 801 802 return true; 803 } 804 805 bool is_dynptr_type_expected(struct bpf_verifier_env *env, 806 struct bpf_reg_state *reg, 807 enum bpf_arg_type arg_type) 808 { 809 struct bpf_func_state *state = func(env, reg); 810 enum bpf_dynptr_type dynptr_type; 811 int spi = get_spi(reg->off); 812 813 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 814 if (arg_type == ARG_PTR_TO_DYNPTR) 815 return true; 816 817 dynptr_type = arg_to_dynptr_type(arg_type); 818 819 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 820 } 821 822 /* The reg state of a pointer or a bounded scalar was saved when 823 * it was spilled to the stack. 824 */ 825 static bool is_spilled_reg(const struct bpf_stack_state *stack) 826 { 827 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 828 } 829 830 static void scrub_spilled_slot(u8 *stype) 831 { 832 if (*stype != STACK_INVALID) 833 *stype = STACK_MISC; 834 } 835 836 static void print_verifier_state(struct bpf_verifier_env *env, 837 const struct bpf_func_state *state, 838 bool print_all) 839 { 840 const struct bpf_reg_state *reg; 841 enum bpf_reg_type t; 842 int i; 843 844 if (state->frameno) 845 verbose(env, " frame%d:", state->frameno); 846 for (i = 0; i < MAX_BPF_REG; i++) { 847 reg = &state->regs[i]; 848 t = reg->type; 849 if (t == NOT_INIT) 850 continue; 851 if (!print_all && !reg_scratched(env, i)) 852 continue; 853 verbose(env, " R%d", i); 854 print_liveness(env, reg->live); 855 verbose(env, "="); 856 if (t == SCALAR_VALUE && reg->precise) 857 verbose(env, "P"); 858 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 859 tnum_is_const(reg->var_off)) { 860 /* reg->off should be 0 for SCALAR_VALUE */ 861 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 862 verbose(env, "%lld", reg->var_off.value + reg->off); 863 } else { 864 const char *sep = ""; 865 866 verbose(env, "%s", reg_type_str(env, t)); 867 if (base_type(t) == PTR_TO_BTF_ID) 868 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 869 verbose(env, "("); 870 /* 871 * _a stands for append, was shortened to avoid multiline statements below. 872 * This macro is used to output a comma separated list of attributes. 873 */ 874 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 875 876 if (reg->id) 877 verbose_a("id=%d", reg->id); 878 if (reg_type_may_be_refcounted_or_null(t) && reg->ref_obj_id) 879 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 880 if (t != SCALAR_VALUE) 881 verbose_a("off=%d", reg->off); 882 if (type_is_pkt_pointer(t)) 883 verbose_a("r=%d", reg->range); 884 else if (base_type(t) == CONST_PTR_TO_MAP || 885 base_type(t) == PTR_TO_MAP_KEY || 886 base_type(t) == PTR_TO_MAP_VALUE) 887 verbose_a("ks=%d,vs=%d", 888 reg->map_ptr->key_size, 889 reg->map_ptr->value_size); 890 if (tnum_is_const(reg->var_off)) { 891 /* Typically an immediate SCALAR_VALUE, but 892 * could be a pointer whose offset is too big 893 * for reg->off 894 */ 895 verbose_a("imm=%llx", reg->var_off.value); 896 } else { 897 if (reg->smin_value != reg->umin_value && 898 reg->smin_value != S64_MIN) 899 verbose_a("smin=%lld", (long long)reg->smin_value); 900 if (reg->smax_value != reg->umax_value && 901 reg->smax_value != S64_MAX) 902 verbose_a("smax=%lld", (long long)reg->smax_value); 903 if (reg->umin_value != 0) 904 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 905 if (reg->umax_value != U64_MAX) 906 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 907 if (!tnum_is_unknown(reg->var_off)) { 908 char tn_buf[48]; 909 910 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 911 verbose_a("var_off=%s", tn_buf); 912 } 913 if (reg->s32_min_value != reg->smin_value && 914 reg->s32_min_value != S32_MIN) 915 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 916 if (reg->s32_max_value != reg->smax_value && 917 reg->s32_max_value != S32_MAX) 918 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 919 if (reg->u32_min_value != reg->umin_value && 920 reg->u32_min_value != U32_MIN) 921 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 922 if (reg->u32_max_value != reg->umax_value && 923 reg->u32_max_value != U32_MAX) 924 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 925 } 926 #undef verbose_a 927 928 verbose(env, ")"); 929 } 930 } 931 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 932 char types_buf[BPF_REG_SIZE + 1]; 933 bool valid = false; 934 int j; 935 936 for (j = 0; j < BPF_REG_SIZE; j++) { 937 if (state->stack[i].slot_type[j] != STACK_INVALID) 938 valid = true; 939 types_buf[j] = slot_type_char[ 940 state->stack[i].slot_type[j]]; 941 } 942 types_buf[BPF_REG_SIZE] = 0; 943 if (!valid) 944 continue; 945 if (!print_all && !stack_slot_scratched(env, i)) 946 continue; 947 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 948 print_liveness(env, state->stack[i].spilled_ptr.live); 949 if (is_spilled_reg(&state->stack[i])) { 950 reg = &state->stack[i].spilled_ptr; 951 t = reg->type; 952 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 953 if (t == SCALAR_VALUE && reg->precise) 954 verbose(env, "P"); 955 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 956 verbose(env, "%lld", reg->var_off.value + reg->off); 957 } else { 958 verbose(env, "=%s", types_buf); 959 } 960 } 961 if (state->acquired_refs && state->refs[0].id) { 962 verbose(env, " refs=%d", state->refs[0].id); 963 for (i = 1; i < state->acquired_refs; i++) 964 if (state->refs[i].id) 965 verbose(env, ",%d", state->refs[i].id); 966 } 967 if (state->in_callback_fn) 968 verbose(env, " cb"); 969 if (state->in_async_callback_fn) 970 verbose(env, " async_cb"); 971 verbose(env, "\n"); 972 mark_verifier_state_clean(env); 973 } 974 975 static inline u32 vlog_alignment(u32 pos) 976 { 977 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 978 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 979 } 980 981 static void print_insn_state(struct bpf_verifier_env *env, 982 const struct bpf_func_state *state) 983 { 984 if (env->prev_log_len && env->prev_log_len == env->log.len_used) { 985 /* remove new line character */ 986 bpf_vlog_reset(&env->log, env->prev_log_len - 1); 987 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' '); 988 } else { 989 verbose(env, "%d:", env->insn_idx); 990 } 991 print_verifier_state(env, state, false); 992 } 993 994 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 995 * small to hold src. This is different from krealloc since we don't want to preserve 996 * the contents of dst. 997 * 998 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 999 * not be allocated. 1000 */ 1001 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1002 { 1003 size_t bytes; 1004 1005 if (ZERO_OR_NULL_PTR(src)) 1006 goto out; 1007 1008 if (unlikely(check_mul_overflow(n, size, &bytes))) 1009 return NULL; 1010 1011 if (ksize(dst) < bytes) { 1012 kfree(dst); 1013 dst = kmalloc_track_caller(bytes, flags); 1014 if (!dst) 1015 return NULL; 1016 } 1017 1018 memcpy(dst, src, bytes); 1019 out: 1020 return dst ? dst : ZERO_SIZE_PTR; 1021 } 1022 1023 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1024 * small to hold new_n items. new items are zeroed out if the array grows. 1025 * 1026 * Contrary to krealloc_array, does not free arr if new_n is zero. 1027 */ 1028 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1029 { 1030 if (!new_n || old_n == new_n) 1031 goto out; 1032 1033 arr = krealloc_array(arr, new_n, size, GFP_KERNEL); 1034 if (!arr) 1035 return NULL; 1036 1037 if (new_n > old_n) 1038 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1039 1040 out: 1041 return arr ? arr : ZERO_SIZE_PTR; 1042 } 1043 1044 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1045 { 1046 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1047 sizeof(struct bpf_reference_state), GFP_KERNEL); 1048 if (!dst->refs) 1049 return -ENOMEM; 1050 1051 dst->acquired_refs = src->acquired_refs; 1052 return 0; 1053 } 1054 1055 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1056 { 1057 size_t n = src->allocated_stack / BPF_REG_SIZE; 1058 1059 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1060 GFP_KERNEL); 1061 if (!dst->stack) 1062 return -ENOMEM; 1063 1064 dst->allocated_stack = src->allocated_stack; 1065 return 0; 1066 } 1067 1068 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1069 { 1070 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1071 sizeof(struct bpf_reference_state)); 1072 if (!state->refs) 1073 return -ENOMEM; 1074 1075 state->acquired_refs = n; 1076 return 0; 1077 } 1078 1079 static int grow_stack_state(struct bpf_func_state *state, int size) 1080 { 1081 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1082 1083 if (old_n >= n) 1084 return 0; 1085 1086 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1087 if (!state->stack) 1088 return -ENOMEM; 1089 1090 state->allocated_stack = size; 1091 return 0; 1092 } 1093 1094 /* Acquire a pointer id from the env and update the state->refs to include 1095 * this new pointer reference. 1096 * On success, returns a valid pointer id to associate with the register 1097 * On failure, returns a negative errno. 1098 */ 1099 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1100 { 1101 struct bpf_func_state *state = cur_func(env); 1102 int new_ofs = state->acquired_refs; 1103 int id, err; 1104 1105 err = resize_reference_state(state, state->acquired_refs + 1); 1106 if (err) 1107 return err; 1108 id = ++env->id_gen; 1109 state->refs[new_ofs].id = id; 1110 state->refs[new_ofs].insn_idx = insn_idx; 1111 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1112 1113 return id; 1114 } 1115 1116 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1117 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1118 { 1119 int i, last_idx; 1120 1121 last_idx = state->acquired_refs - 1; 1122 for (i = 0; i < state->acquired_refs; i++) { 1123 if (state->refs[i].id == ptr_id) { 1124 /* Cannot release caller references in callbacks */ 1125 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1126 return -EINVAL; 1127 if (last_idx && i != last_idx) 1128 memcpy(&state->refs[i], &state->refs[last_idx], 1129 sizeof(*state->refs)); 1130 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1131 state->acquired_refs--; 1132 return 0; 1133 } 1134 } 1135 return -EINVAL; 1136 } 1137 1138 static void free_func_state(struct bpf_func_state *state) 1139 { 1140 if (!state) 1141 return; 1142 kfree(state->refs); 1143 kfree(state->stack); 1144 kfree(state); 1145 } 1146 1147 static void clear_jmp_history(struct bpf_verifier_state *state) 1148 { 1149 kfree(state->jmp_history); 1150 state->jmp_history = NULL; 1151 state->jmp_history_cnt = 0; 1152 } 1153 1154 static void free_verifier_state(struct bpf_verifier_state *state, 1155 bool free_self) 1156 { 1157 int i; 1158 1159 for (i = 0; i <= state->curframe; i++) { 1160 free_func_state(state->frame[i]); 1161 state->frame[i] = NULL; 1162 } 1163 clear_jmp_history(state); 1164 if (free_self) 1165 kfree(state); 1166 } 1167 1168 /* copy verifier state from src to dst growing dst stack space 1169 * when necessary to accommodate larger src stack 1170 */ 1171 static int copy_func_state(struct bpf_func_state *dst, 1172 const struct bpf_func_state *src) 1173 { 1174 int err; 1175 1176 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1177 err = copy_reference_state(dst, src); 1178 if (err) 1179 return err; 1180 return copy_stack_state(dst, src); 1181 } 1182 1183 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1184 const struct bpf_verifier_state *src) 1185 { 1186 struct bpf_func_state *dst; 1187 int i, err; 1188 1189 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1190 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1191 GFP_USER); 1192 if (!dst_state->jmp_history) 1193 return -ENOMEM; 1194 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1195 1196 /* if dst has more stack frames then src frame, free them */ 1197 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1198 free_func_state(dst_state->frame[i]); 1199 dst_state->frame[i] = NULL; 1200 } 1201 dst_state->speculative = src->speculative; 1202 dst_state->curframe = src->curframe; 1203 dst_state->active_spin_lock = src->active_spin_lock; 1204 dst_state->branches = src->branches; 1205 dst_state->parent = src->parent; 1206 dst_state->first_insn_idx = src->first_insn_idx; 1207 dst_state->last_insn_idx = src->last_insn_idx; 1208 for (i = 0; i <= src->curframe; i++) { 1209 dst = dst_state->frame[i]; 1210 if (!dst) { 1211 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1212 if (!dst) 1213 return -ENOMEM; 1214 dst_state->frame[i] = dst; 1215 } 1216 err = copy_func_state(dst, src->frame[i]); 1217 if (err) 1218 return err; 1219 } 1220 return 0; 1221 } 1222 1223 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1224 { 1225 while (st) { 1226 u32 br = --st->branches; 1227 1228 /* WARN_ON(br > 1) technically makes sense here, 1229 * but see comment in push_stack(), hence: 1230 */ 1231 WARN_ONCE((int)br < 0, 1232 "BUG update_branch_counts:branches_to_explore=%d\n", 1233 br); 1234 if (br) 1235 break; 1236 st = st->parent; 1237 } 1238 } 1239 1240 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1241 int *insn_idx, bool pop_log) 1242 { 1243 struct bpf_verifier_state *cur = env->cur_state; 1244 struct bpf_verifier_stack_elem *elem, *head = env->head; 1245 int err; 1246 1247 if (env->head == NULL) 1248 return -ENOENT; 1249 1250 if (cur) { 1251 err = copy_verifier_state(cur, &head->st); 1252 if (err) 1253 return err; 1254 } 1255 if (pop_log) 1256 bpf_vlog_reset(&env->log, head->log_pos); 1257 if (insn_idx) 1258 *insn_idx = head->insn_idx; 1259 if (prev_insn_idx) 1260 *prev_insn_idx = head->prev_insn_idx; 1261 elem = head->next; 1262 free_verifier_state(&head->st, false); 1263 kfree(head); 1264 env->head = elem; 1265 env->stack_size--; 1266 return 0; 1267 } 1268 1269 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1270 int insn_idx, int prev_insn_idx, 1271 bool speculative) 1272 { 1273 struct bpf_verifier_state *cur = env->cur_state; 1274 struct bpf_verifier_stack_elem *elem; 1275 int err; 1276 1277 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1278 if (!elem) 1279 goto err; 1280 1281 elem->insn_idx = insn_idx; 1282 elem->prev_insn_idx = prev_insn_idx; 1283 elem->next = env->head; 1284 elem->log_pos = env->log.len_used; 1285 env->head = elem; 1286 env->stack_size++; 1287 err = copy_verifier_state(&elem->st, cur); 1288 if (err) 1289 goto err; 1290 elem->st.speculative |= speculative; 1291 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1292 verbose(env, "The sequence of %d jumps is too complex.\n", 1293 env->stack_size); 1294 goto err; 1295 } 1296 if (elem->st.parent) { 1297 ++elem->st.parent->branches; 1298 /* WARN_ON(branches > 2) technically makes sense here, 1299 * but 1300 * 1. speculative states will bump 'branches' for non-branch 1301 * instructions 1302 * 2. is_state_visited() heuristics may decide not to create 1303 * a new state for a sequence of branches and all such current 1304 * and cloned states will be pointing to a single parent state 1305 * which might have large 'branches' count. 1306 */ 1307 } 1308 return &elem->st; 1309 err: 1310 free_verifier_state(env->cur_state, true); 1311 env->cur_state = NULL; 1312 /* pop all elements and return */ 1313 while (!pop_stack(env, NULL, NULL, false)); 1314 return NULL; 1315 } 1316 1317 #define CALLER_SAVED_REGS 6 1318 static const int caller_saved[CALLER_SAVED_REGS] = { 1319 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1320 }; 1321 1322 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1323 struct bpf_reg_state *reg); 1324 1325 /* This helper doesn't clear reg->id */ 1326 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1327 { 1328 reg->var_off = tnum_const(imm); 1329 reg->smin_value = (s64)imm; 1330 reg->smax_value = (s64)imm; 1331 reg->umin_value = imm; 1332 reg->umax_value = imm; 1333 1334 reg->s32_min_value = (s32)imm; 1335 reg->s32_max_value = (s32)imm; 1336 reg->u32_min_value = (u32)imm; 1337 reg->u32_max_value = (u32)imm; 1338 } 1339 1340 /* Mark the unknown part of a register (variable offset or scalar value) as 1341 * known to have the value @imm. 1342 */ 1343 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1344 { 1345 /* Clear id, off, and union(map_ptr, range) */ 1346 memset(((u8 *)reg) + sizeof(reg->type), 0, 1347 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1348 ___mark_reg_known(reg, imm); 1349 } 1350 1351 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1352 { 1353 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1354 reg->s32_min_value = (s32)imm; 1355 reg->s32_max_value = (s32)imm; 1356 reg->u32_min_value = (u32)imm; 1357 reg->u32_max_value = (u32)imm; 1358 } 1359 1360 /* Mark the 'variable offset' part of a register as zero. This should be 1361 * used only on registers holding a pointer type. 1362 */ 1363 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1364 { 1365 __mark_reg_known(reg, 0); 1366 } 1367 1368 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1369 { 1370 __mark_reg_known(reg, 0); 1371 reg->type = SCALAR_VALUE; 1372 } 1373 1374 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1375 struct bpf_reg_state *regs, u32 regno) 1376 { 1377 if (WARN_ON(regno >= MAX_BPF_REG)) { 1378 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1379 /* Something bad happened, let's kill all regs */ 1380 for (regno = 0; regno < MAX_BPF_REG; regno++) 1381 __mark_reg_not_init(env, regs + regno); 1382 return; 1383 } 1384 __mark_reg_known_zero(regs + regno); 1385 } 1386 1387 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1388 { 1389 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1390 const struct bpf_map *map = reg->map_ptr; 1391 1392 if (map->inner_map_meta) { 1393 reg->type = CONST_PTR_TO_MAP; 1394 reg->map_ptr = map->inner_map_meta; 1395 /* transfer reg's id which is unique for every map_lookup_elem 1396 * as UID of the inner map. 1397 */ 1398 if (map_value_has_timer(map->inner_map_meta)) 1399 reg->map_uid = reg->id; 1400 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1401 reg->type = PTR_TO_XDP_SOCK; 1402 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1403 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1404 reg->type = PTR_TO_SOCKET; 1405 } else { 1406 reg->type = PTR_TO_MAP_VALUE; 1407 } 1408 return; 1409 } 1410 1411 reg->type &= ~PTR_MAYBE_NULL; 1412 } 1413 1414 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1415 { 1416 return type_is_pkt_pointer(reg->type); 1417 } 1418 1419 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1420 { 1421 return reg_is_pkt_pointer(reg) || 1422 reg->type == PTR_TO_PACKET_END; 1423 } 1424 1425 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1426 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1427 enum bpf_reg_type which) 1428 { 1429 /* The register can already have a range from prior markings. 1430 * This is fine as long as it hasn't been advanced from its 1431 * origin. 1432 */ 1433 return reg->type == which && 1434 reg->id == 0 && 1435 reg->off == 0 && 1436 tnum_equals_const(reg->var_off, 0); 1437 } 1438 1439 /* Reset the min/max bounds of a register */ 1440 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1441 { 1442 reg->smin_value = S64_MIN; 1443 reg->smax_value = S64_MAX; 1444 reg->umin_value = 0; 1445 reg->umax_value = U64_MAX; 1446 1447 reg->s32_min_value = S32_MIN; 1448 reg->s32_max_value = S32_MAX; 1449 reg->u32_min_value = 0; 1450 reg->u32_max_value = U32_MAX; 1451 } 1452 1453 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1454 { 1455 reg->smin_value = S64_MIN; 1456 reg->smax_value = S64_MAX; 1457 reg->umin_value = 0; 1458 reg->umax_value = U64_MAX; 1459 } 1460 1461 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1462 { 1463 reg->s32_min_value = S32_MIN; 1464 reg->s32_max_value = S32_MAX; 1465 reg->u32_min_value = 0; 1466 reg->u32_max_value = U32_MAX; 1467 } 1468 1469 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1470 { 1471 struct tnum var32_off = tnum_subreg(reg->var_off); 1472 1473 /* min signed is max(sign bit) | min(other bits) */ 1474 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1475 var32_off.value | (var32_off.mask & S32_MIN)); 1476 /* max signed is min(sign bit) | max(other bits) */ 1477 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1478 var32_off.value | (var32_off.mask & S32_MAX)); 1479 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1480 reg->u32_max_value = min(reg->u32_max_value, 1481 (u32)(var32_off.value | var32_off.mask)); 1482 } 1483 1484 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1485 { 1486 /* min signed is max(sign bit) | min(other bits) */ 1487 reg->smin_value = max_t(s64, reg->smin_value, 1488 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1489 /* max signed is min(sign bit) | max(other bits) */ 1490 reg->smax_value = min_t(s64, reg->smax_value, 1491 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1492 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1493 reg->umax_value = min(reg->umax_value, 1494 reg->var_off.value | reg->var_off.mask); 1495 } 1496 1497 static void __update_reg_bounds(struct bpf_reg_state *reg) 1498 { 1499 __update_reg32_bounds(reg); 1500 __update_reg64_bounds(reg); 1501 } 1502 1503 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1504 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1505 { 1506 /* Learn sign from signed bounds. 1507 * If we cannot cross the sign boundary, then signed and unsigned bounds 1508 * are the same, so combine. This works even in the negative case, e.g. 1509 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1510 */ 1511 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1512 reg->s32_min_value = reg->u32_min_value = 1513 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1514 reg->s32_max_value = reg->u32_max_value = 1515 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1516 return; 1517 } 1518 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1519 * boundary, so we must be careful. 1520 */ 1521 if ((s32)reg->u32_max_value >= 0) { 1522 /* Positive. We can't learn anything from the smin, but smax 1523 * is positive, hence safe. 1524 */ 1525 reg->s32_min_value = reg->u32_min_value; 1526 reg->s32_max_value = reg->u32_max_value = 1527 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1528 } else if ((s32)reg->u32_min_value < 0) { 1529 /* Negative. We can't learn anything from the smax, but smin 1530 * is negative, hence safe. 1531 */ 1532 reg->s32_min_value = reg->u32_min_value = 1533 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1534 reg->s32_max_value = reg->u32_max_value; 1535 } 1536 } 1537 1538 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1539 { 1540 /* Learn sign from signed bounds. 1541 * If we cannot cross the sign boundary, then signed and unsigned bounds 1542 * are the same, so combine. This works even in the negative case, e.g. 1543 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1544 */ 1545 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1546 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1547 reg->umin_value); 1548 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1549 reg->umax_value); 1550 return; 1551 } 1552 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1553 * boundary, so we must be careful. 1554 */ 1555 if ((s64)reg->umax_value >= 0) { 1556 /* Positive. We can't learn anything from the smin, but smax 1557 * is positive, hence safe. 1558 */ 1559 reg->smin_value = reg->umin_value; 1560 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1561 reg->umax_value); 1562 } else if ((s64)reg->umin_value < 0) { 1563 /* Negative. We can't learn anything from the smax, but smin 1564 * is negative, hence safe. 1565 */ 1566 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1567 reg->umin_value); 1568 reg->smax_value = reg->umax_value; 1569 } 1570 } 1571 1572 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1573 { 1574 __reg32_deduce_bounds(reg); 1575 __reg64_deduce_bounds(reg); 1576 } 1577 1578 /* Attempts to improve var_off based on unsigned min/max information */ 1579 static void __reg_bound_offset(struct bpf_reg_state *reg) 1580 { 1581 struct tnum var64_off = tnum_intersect(reg->var_off, 1582 tnum_range(reg->umin_value, 1583 reg->umax_value)); 1584 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1585 tnum_range(reg->u32_min_value, 1586 reg->u32_max_value)); 1587 1588 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1589 } 1590 1591 static void reg_bounds_sync(struct bpf_reg_state *reg) 1592 { 1593 /* We might have learned new bounds from the var_off. */ 1594 __update_reg_bounds(reg); 1595 /* We might have learned something about the sign bit. */ 1596 __reg_deduce_bounds(reg); 1597 /* We might have learned some bits from the bounds. */ 1598 __reg_bound_offset(reg); 1599 /* Intersecting with the old var_off might have improved our bounds 1600 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1601 * then new var_off is (0; 0x7f...fc) which improves our umax. 1602 */ 1603 __update_reg_bounds(reg); 1604 } 1605 1606 static bool __reg32_bound_s64(s32 a) 1607 { 1608 return a >= 0 && a <= S32_MAX; 1609 } 1610 1611 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1612 { 1613 reg->umin_value = reg->u32_min_value; 1614 reg->umax_value = reg->u32_max_value; 1615 1616 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 1617 * be positive otherwise set to worse case bounds and refine later 1618 * from tnum. 1619 */ 1620 if (__reg32_bound_s64(reg->s32_min_value) && 1621 __reg32_bound_s64(reg->s32_max_value)) { 1622 reg->smin_value = reg->s32_min_value; 1623 reg->smax_value = reg->s32_max_value; 1624 } else { 1625 reg->smin_value = 0; 1626 reg->smax_value = U32_MAX; 1627 } 1628 } 1629 1630 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1631 { 1632 /* special case when 64-bit register has upper 32-bit register 1633 * zeroed. Typically happens after zext or <<32, >>32 sequence 1634 * allowing us to use 32-bit bounds directly, 1635 */ 1636 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1637 __reg_assign_32_into_64(reg); 1638 } else { 1639 /* Otherwise the best we can do is push lower 32bit known and 1640 * unknown bits into register (var_off set from jmp logic) 1641 * then learn as much as possible from the 64-bit tnum 1642 * known and unknown bits. The previous smin/smax bounds are 1643 * invalid here because of jmp32 compare so mark them unknown 1644 * so they do not impact tnum bounds calculation. 1645 */ 1646 __mark_reg64_unbounded(reg); 1647 } 1648 reg_bounds_sync(reg); 1649 } 1650 1651 static bool __reg64_bound_s32(s64 a) 1652 { 1653 return a >= S32_MIN && a <= S32_MAX; 1654 } 1655 1656 static bool __reg64_bound_u32(u64 a) 1657 { 1658 return a >= U32_MIN && a <= U32_MAX; 1659 } 1660 1661 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1662 { 1663 __mark_reg32_unbounded(reg); 1664 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1665 reg->s32_min_value = (s32)reg->smin_value; 1666 reg->s32_max_value = (s32)reg->smax_value; 1667 } 1668 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1669 reg->u32_min_value = (u32)reg->umin_value; 1670 reg->u32_max_value = (u32)reg->umax_value; 1671 } 1672 reg_bounds_sync(reg); 1673 } 1674 1675 /* Mark a register as having a completely unknown (scalar) value. */ 1676 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1677 struct bpf_reg_state *reg) 1678 { 1679 /* 1680 * Clear type, id, off, and union(map_ptr, range) and 1681 * padding between 'type' and union 1682 */ 1683 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1684 reg->type = SCALAR_VALUE; 1685 reg->var_off = tnum_unknown; 1686 reg->frameno = 0; 1687 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1688 __mark_reg_unbounded(reg); 1689 } 1690 1691 static void mark_reg_unknown(struct bpf_verifier_env *env, 1692 struct bpf_reg_state *regs, u32 regno) 1693 { 1694 if (WARN_ON(regno >= MAX_BPF_REG)) { 1695 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1696 /* Something bad happened, let's kill all regs except FP */ 1697 for (regno = 0; regno < BPF_REG_FP; regno++) 1698 __mark_reg_not_init(env, regs + regno); 1699 return; 1700 } 1701 __mark_reg_unknown(env, regs + regno); 1702 } 1703 1704 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1705 struct bpf_reg_state *reg) 1706 { 1707 __mark_reg_unknown(env, reg); 1708 reg->type = NOT_INIT; 1709 } 1710 1711 static void mark_reg_not_init(struct bpf_verifier_env *env, 1712 struct bpf_reg_state *regs, u32 regno) 1713 { 1714 if (WARN_ON(regno >= MAX_BPF_REG)) { 1715 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1716 /* Something bad happened, let's kill all regs except FP */ 1717 for (regno = 0; regno < BPF_REG_FP; regno++) 1718 __mark_reg_not_init(env, regs + regno); 1719 return; 1720 } 1721 __mark_reg_not_init(env, regs + regno); 1722 } 1723 1724 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1725 struct bpf_reg_state *regs, u32 regno, 1726 enum bpf_reg_type reg_type, 1727 struct btf *btf, u32 btf_id, 1728 enum bpf_type_flag flag) 1729 { 1730 if (reg_type == SCALAR_VALUE) { 1731 mark_reg_unknown(env, regs, regno); 1732 return; 1733 } 1734 mark_reg_known_zero(env, regs, regno); 1735 regs[regno].type = PTR_TO_BTF_ID | flag; 1736 regs[regno].btf = btf; 1737 regs[regno].btf_id = btf_id; 1738 } 1739 1740 #define DEF_NOT_SUBREG (0) 1741 static void init_reg_state(struct bpf_verifier_env *env, 1742 struct bpf_func_state *state) 1743 { 1744 struct bpf_reg_state *regs = state->regs; 1745 int i; 1746 1747 for (i = 0; i < MAX_BPF_REG; i++) { 1748 mark_reg_not_init(env, regs, i); 1749 regs[i].live = REG_LIVE_NONE; 1750 regs[i].parent = NULL; 1751 regs[i].subreg_def = DEF_NOT_SUBREG; 1752 } 1753 1754 /* frame pointer */ 1755 regs[BPF_REG_FP].type = PTR_TO_STACK; 1756 mark_reg_known_zero(env, regs, BPF_REG_FP); 1757 regs[BPF_REG_FP].frameno = state->frameno; 1758 } 1759 1760 #define BPF_MAIN_FUNC (-1) 1761 static void init_func_state(struct bpf_verifier_env *env, 1762 struct bpf_func_state *state, 1763 int callsite, int frameno, int subprogno) 1764 { 1765 state->callsite = callsite; 1766 state->frameno = frameno; 1767 state->subprogno = subprogno; 1768 state->callback_ret_range = tnum_range(0, 0); 1769 init_reg_state(env, state); 1770 mark_verifier_state_scratched(env); 1771 } 1772 1773 /* Similar to push_stack(), but for async callbacks */ 1774 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 1775 int insn_idx, int prev_insn_idx, 1776 int subprog) 1777 { 1778 struct bpf_verifier_stack_elem *elem; 1779 struct bpf_func_state *frame; 1780 1781 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1782 if (!elem) 1783 goto err; 1784 1785 elem->insn_idx = insn_idx; 1786 elem->prev_insn_idx = prev_insn_idx; 1787 elem->next = env->head; 1788 elem->log_pos = env->log.len_used; 1789 env->head = elem; 1790 env->stack_size++; 1791 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1792 verbose(env, 1793 "The sequence of %d jumps is too complex for async cb.\n", 1794 env->stack_size); 1795 goto err; 1796 } 1797 /* Unlike push_stack() do not copy_verifier_state(). 1798 * The caller state doesn't matter. 1799 * This is async callback. It starts in a fresh stack. 1800 * Initialize it similar to do_check_common(). 1801 */ 1802 elem->st.branches = 1; 1803 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1804 if (!frame) 1805 goto err; 1806 init_func_state(env, frame, 1807 BPF_MAIN_FUNC /* callsite */, 1808 0 /* frameno within this callchain */, 1809 subprog /* subprog number within this prog */); 1810 elem->st.frame[0] = frame; 1811 return &elem->st; 1812 err: 1813 free_verifier_state(env->cur_state, true); 1814 env->cur_state = NULL; 1815 /* pop all elements and return */ 1816 while (!pop_stack(env, NULL, NULL, false)); 1817 return NULL; 1818 } 1819 1820 1821 enum reg_arg_type { 1822 SRC_OP, /* register is used as source operand */ 1823 DST_OP, /* register is used as destination operand */ 1824 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1825 }; 1826 1827 static int cmp_subprogs(const void *a, const void *b) 1828 { 1829 return ((struct bpf_subprog_info *)a)->start - 1830 ((struct bpf_subprog_info *)b)->start; 1831 } 1832 1833 static int find_subprog(struct bpf_verifier_env *env, int off) 1834 { 1835 struct bpf_subprog_info *p; 1836 1837 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1838 sizeof(env->subprog_info[0]), cmp_subprogs); 1839 if (!p) 1840 return -ENOENT; 1841 return p - env->subprog_info; 1842 1843 } 1844 1845 static int add_subprog(struct bpf_verifier_env *env, int off) 1846 { 1847 int insn_cnt = env->prog->len; 1848 int ret; 1849 1850 if (off >= insn_cnt || off < 0) { 1851 verbose(env, "call to invalid destination\n"); 1852 return -EINVAL; 1853 } 1854 ret = find_subprog(env, off); 1855 if (ret >= 0) 1856 return ret; 1857 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1858 verbose(env, "too many subprograms\n"); 1859 return -E2BIG; 1860 } 1861 /* determine subprog starts. The end is one before the next starts */ 1862 env->subprog_info[env->subprog_cnt++].start = off; 1863 sort(env->subprog_info, env->subprog_cnt, 1864 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1865 return env->subprog_cnt - 1; 1866 } 1867 1868 #define MAX_KFUNC_DESCS 256 1869 #define MAX_KFUNC_BTFS 256 1870 1871 struct bpf_kfunc_desc { 1872 struct btf_func_model func_model; 1873 u32 func_id; 1874 s32 imm; 1875 u16 offset; 1876 }; 1877 1878 struct bpf_kfunc_btf { 1879 struct btf *btf; 1880 struct module *module; 1881 u16 offset; 1882 }; 1883 1884 struct bpf_kfunc_desc_tab { 1885 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1886 u32 nr_descs; 1887 }; 1888 1889 struct bpf_kfunc_btf_tab { 1890 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 1891 u32 nr_descs; 1892 }; 1893 1894 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 1895 { 1896 const struct bpf_kfunc_desc *d0 = a; 1897 const struct bpf_kfunc_desc *d1 = b; 1898 1899 /* func_id is not greater than BTF_MAX_TYPE */ 1900 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 1901 } 1902 1903 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 1904 { 1905 const struct bpf_kfunc_btf *d0 = a; 1906 const struct bpf_kfunc_btf *d1 = b; 1907 1908 return d0->offset - d1->offset; 1909 } 1910 1911 static const struct bpf_kfunc_desc * 1912 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 1913 { 1914 struct bpf_kfunc_desc desc = { 1915 .func_id = func_id, 1916 .offset = offset, 1917 }; 1918 struct bpf_kfunc_desc_tab *tab; 1919 1920 tab = prog->aux->kfunc_tab; 1921 return bsearch(&desc, tab->descs, tab->nr_descs, 1922 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 1923 } 1924 1925 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 1926 s16 offset) 1927 { 1928 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 1929 struct bpf_kfunc_btf_tab *tab; 1930 struct bpf_kfunc_btf *b; 1931 struct module *mod; 1932 struct btf *btf; 1933 int btf_fd; 1934 1935 tab = env->prog->aux->kfunc_btf_tab; 1936 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 1937 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 1938 if (!b) { 1939 if (tab->nr_descs == MAX_KFUNC_BTFS) { 1940 verbose(env, "too many different module BTFs\n"); 1941 return ERR_PTR(-E2BIG); 1942 } 1943 1944 if (bpfptr_is_null(env->fd_array)) { 1945 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 1946 return ERR_PTR(-EPROTO); 1947 } 1948 1949 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 1950 offset * sizeof(btf_fd), 1951 sizeof(btf_fd))) 1952 return ERR_PTR(-EFAULT); 1953 1954 btf = btf_get_by_fd(btf_fd); 1955 if (IS_ERR(btf)) { 1956 verbose(env, "invalid module BTF fd specified\n"); 1957 return btf; 1958 } 1959 1960 if (!btf_is_module(btf)) { 1961 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 1962 btf_put(btf); 1963 return ERR_PTR(-EINVAL); 1964 } 1965 1966 mod = btf_try_get_module(btf); 1967 if (!mod) { 1968 btf_put(btf); 1969 return ERR_PTR(-ENXIO); 1970 } 1971 1972 b = &tab->descs[tab->nr_descs++]; 1973 b->btf = btf; 1974 b->module = mod; 1975 b->offset = offset; 1976 1977 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1978 kfunc_btf_cmp_by_off, NULL); 1979 } 1980 return b->btf; 1981 } 1982 1983 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 1984 { 1985 if (!tab) 1986 return; 1987 1988 while (tab->nr_descs--) { 1989 module_put(tab->descs[tab->nr_descs].module); 1990 btf_put(tab->descs[tab->nr_descs].btf); 1991 } 1992 kfree(tab); 1993 } 1994 1995 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 1996 { 1997 if (offset) { 1998 if (offset < 0) { 1999 /* In the future, this can be allowed to increase limit 2000 * of fd index into fd_array, interpreted as u16. 2001 */ 2002 verbose(env, "negative offset disallowed for kernel module function call\n"); 2003 return ERR_PTR(-EINVAL); 2004 } 2005 2006 return __find_kfunc_desc_btf(env, offset); 2007 } 2008 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2009 } 2010 2011 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2012 { 2013 const struct btf_type *func, *func_proto; 2014 struct bpf_kfunc_btf_tab *btf_tab; 2015 struct bpf_kfunc_desc_tab *tab; 2016 struct bpf_prog_aux *prog_aux; 2017 struct bpf_kfunc_desc *desc; 2018 const char *func_name; 2019 struct btf *desc_btf; 2020 unsigned long call_imm; 2021 unsigned long addr; 2022 int err; 2023 2024 prog_aux = env->prog->aux; 2025 tab = prog_aux->kfunc_tab; 2026 btf_tab = prog_aux->kfunc_btf_tab; 2027 if (!tab) { 2028 if (!btf_vmlinux) { 2029 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2030 return -ENOTSUPP; 2031 } 2032 2033 if (!env->prog->jit_requested) { 2034 verbose(env, "JIT is required for calling kernel function\n"); 2035 return -ENOTSUPP; 2036 } 2037 2038 if (!bpf_jit_supports_kfunc_call()) { 2039 verbose(env, "JIT does not support calling kernel function\n"); 2040 return -ENOTSUPP; 2041 } 2042 2043 if (!env->prog->gpl_compatible) { 2044 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2045 return -EINVAL; 2046 } 2047 2048 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2049 if (!tab) 2050 return -ENOMEM; 2051 prog_aux->kfunc_tab = tab; 2052 } 2053 2054 /* func_id == 0 is always invalid, but instead of returning an error, be 2055 * conservative and wait until the code elimination pass before returning 2056 * error, so that invalid calls that get pruned out can be in BPF programs 2057 * loaded from userspace. It is also required that offset be untouched 2058 * for such calls. 2059 */ 2060 if (!func_id && !offset) 2061 return 0; 2062 2063 if (!btf_tab && offset) { 2064 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2065 if (!btf_tab) 2066 return -ENOMEM; 2067 prog_aux->kfunc_btf_tab = btf_tab; 2068 } 2069 2070 desc_btf = find_kfunc_desc_btf(env, offset); 2071 if (IS_ERR(desc_btf)) { 2072 verbose(env, "failed to find BTF for kernel function\n"); 2073 return PTR_ERR(desc_btf); 2074 } 2075 2076 if (find_kfunc_desc(env->prog, func_id, offset)) 2077 return 0; 2078 2079 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2080 verbose(env, "too many different kernel function calls\n"); 2081 return -E2BIG; 2082 } 2083 2084 func = btf_type_by_id(desc_btf, func_id); 2085 if (!func || !btf_type_is_func(func)) { 2086 verbose(env, "kernel btf_id %u is not a function\n", 2087 func_id); 2088 return -EINVAL; 2089 } 2090 func_proto = btf_type_by_id(desc_btf, func->type); 2091 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2092 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2093 func_id); 2094 return -EINVAL; 2095 } 2096 2097 func_name = btf_name_by_offset(desc_btf, func->name_off); 2098 addr = kallsyms_lookup_name(func_name); 2099 if (!addr) { 2100 verbose(env, "cannot find address for kernel function %s\n", 2101 func_name); 2102 return -EINVAL; 2103 } 2104 2105 call_imm = BPF_CALL_IMM(addr); 2106 /* Check whether or not the relative offset overflows desc->imm */ 2107 if ((unsigned long)(s32)call_imm != call_imm) { 2108 verbose(env, "address of kernel function %s is out of range\n", 2109 func_name); 2110 return -EINVAL; 2111 } 2112 2113 desc = &tab->descs[tab->nr_descs++]; 2114 desc->func_id = func_id; 2115 desc->imm = call_imm; 2116 desc->offset = offset; 2117 err = btf_distill_func_proto(&env->log, desc_btf, 2118 func_proto, func_name, 2119 &desc->func_model); 2120 if (!err) 2121 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2122 kfunc_desc_cmp_by_id_off, NULL); 2123 return err; 2124 } 2125 2126 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 2127 { 2128 const struct bpf_kfunc_desc *d0 = a; 2129 const struct bpf_kfunc_desc *d1 = b; 2130 2131 if (d0->imm > d1->imm) 2132 return 1; 2133 else if (d0->imm < d1->imm) 2134 return -1; 2135 return 0; 2136 } 2137 2138 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 2139 { 2140 struct bpf_kfunc_desc_tab *tab; 2141 2142 tab = prog->aux->kfunc_tab; 2143 if (!tab) 2144 return; 2145 2146 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2147 kfunc_desc_cmp_by_imm, NULL); 2148 } 2149 2150 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2151 { 2152 return !!prog->aux->kfunc_tab; 2153 } 2154 2155 const struct btf_func_model * 2156 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2157 const struct bpf_insn *insn) 2158 { 2159 const struct bpf_kfunc_desc desc = { 2160 .imm = insn->imm, 2161 }; 2162 const struct bpf_kfunc_desc *res; 2163 struct bpf_kfunc_desc_tab *tab; 2164 2165 tab = prog->aux->kfunc_tab; 2166 res = bsearch(&desc, tab->descs, tab->nr_descs, 2167 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 2168 2169 return res ? &res->func_model : NULL; 2170 } 2171 2172 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2173 { 2174 struct bpf_subprog_info *subprog = env->subprog_info; 2175 struct bpf_insn *insn = env->prog->insnsi; 2176 int i, ret, insn_cnt = env->prog->len; 2177 2178 /* Add entry function. */ 2179 ret = add_subprog(env, 0); 2180 if (ret) 2181 return ret; 2182 2183 for (i = 0; i < insn_cnt; i++, insn++) { 2184 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2185 !bpf_pseudo_kfunc_call(insn)) 2186 continue; 2187 2188 if (!env->bpf_capable) { 2189 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2190 return -EPERM; 2191 } 2192 2193 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2194 ret = add_subprog(env, i + insn->imm + 1); 2195 else 2196 ret = add_kfunc_call(env, insn->imm, insn->off); 2197 2198 if (ret < 0) 2199 return ret; 2200 } 2201 2202 /* Add a fake 'exit' subprog which could simplify subprog iteration 2203 * logic. 'subprog_cnt' should not be increased. 2204 */ 2205 subprog[env->subprog_cnt].start = insn_cnt; 2206 2207 if (env->log.level & BPF_LOG_LEVEL2) 2208 for (i = 0; i < env->subprog_cnt; i++) 2209 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2210 2211 return 0; 2212 } 2213 2214 static int check_subprogs(struct bpf_verifier_env *env) 2215 { 2216 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2217 struct bpf_subprog_info *subprog = env->subprog_info; 2218 struct bpf_insn *insn = env->prog->insnsi; 2219 int insn_cnt = env->prog->len; 2220 2221 /* now check that all jumps are within the same subprog */ 2222 subprog_start = subprog[cur_subprog].start; 2223 subprog_end = subprog[cur_subprog + 1].start; 2224 for (i = 0; i < insn_cnt; i++) { 2225 u8 code = insn[i].code; 2226 2227 if (code == (BPF_JMP | BPF_CALL) && 2228 insn[i].imm == BPF_FUNC_tail_call && 2229 insn[i].src_reg != BPF_PSEUDO_CALL) 2230 subprog[cur_subprog].has_tail_call = true; 2231 if (BPF_CLASS(code) == BPF_LD && 2232 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2233 subprog[cur_subprog].has_ld_abs = true; 2234 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2235 goto next; 2236 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2237 goto next; 2238 off = i + insn[i].off + 1; 2239 if (off < subprog_start || off >= subprog_end) { 2240 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2241 return -EINVAL; 2242 } 2243 next: 2244 if (i == subprog_end - 1) { 2245 /* to avoid fall-through from one subprog into another 2246 * the last insn of the subprog should be either exit 2247 * or unconditional jump back 2248 */ 2249 if (code != (BPF_JMP | BPF_EXIT) && 2250 code != (BPF_JMP | BPF_JA)) { 2251 verbose(env, "last insn is not an exit or jmp\n"); 2252 return -EINVAL; 2253 } 2254 subprog_start = subprog_end; 2255 cur_subprog++; 2256 if (cur_subprog < env->subprog_cnt) 2257 subprog_end = subprog[cur_subprog + 1].start; 2258 } 2259 } 2260 return 0; 2261 } 2262 2263 /* Parentage chain of this register (or stack slot) should take care of all 2264 * issues like callee-saved registers, stack slot allocation time, etc. 2265 */ 2266 static int mark_reg_read(struct bpf_verifier_env *env, 2267 const struct bpf_reg_state *state, 2268 struct bpf_reg_state *parent, u8 flag) 2269 { 2270 bool writes = parent == state->parent; /* Observe write marks */ 2271 int cnt = 0; 2272 2273 while (parent) { 2274 /* if read wasn't screened by an earlier write ... */ 2275 if (writes && state->live & REG_LIVE_WRITTEN) 2276 break; 2277 if (parent->live & REG_LIVE_DONE) { 2278 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2279 reg_type_str(env, parent->type), 2280 parent->var_off.value, parent->off); 2281 return -EFAULT; 2282 } 2283 /* The first condition is more likely to be true than the 2284 * second, checked it first. 2285 */ 2286 if ((parent->live & REG_LIVE_READ) == flag || 2287 parent->live & REG_LIVE_READ64) 2288 /* The parentage chain never changes and 2289 * this parent was already marked as LIVE_READ. 2290 * There is no need to keep walking the chain again and 2291 * keep re-marking all parents as LIVE_READ. 2292 * This case happens when the same register is read 2293 * multiple times without writes into it in-between. 2294 * Also, if parent has the stronger REG_LIVE_READ64 set, 2295 * then no need to set the weak REG_LIVE_READ32. 2296 */ 2297 break; 2298 /* ... then we depend on parent's value */ 2299 parent->live |= flag; 2300 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2301 if (flag == REG_LIVE_READ64) 2302 parent->live &= ~REG_LIVE_READ32; 2303 state = parent; 2304 parent = state->parent; 2305 writes = true; 2306 cnt++; 2307 } 2308 2309 if (env->longest_mark_read_walk < cnt) 2310 env->longest_mark_read_walk = cnt; 2311 return 0; 2312 } 2313 2314 /* This function is supposed to be used by the following 32-bit optimization 2315 * code only. It returns TRUE if the source or destination register operates 2316 * on 64-bit, otherwise return FALSE. 2317 */ 2318 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2319 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2320 { 2321 u8 code, class, op; 2322 2323 code = insn->code; 2324 class = BPF_CLASS(code); 2325 op = BPF_OP(code); 2326 if (class == BPF_JMP) { 2327 /* BPF_EXIT for "main" will reach here. Return TRUE 2328 * conservatively. 2329 */ 2330 if (op == BPF_EXIT) 2331 return true; 2332 if (op == BPF_CALL) { 2333 /* BPF to BPF call will reach here because of marking 2334 * caller saved clobber with DST_OP_NO_MARK for which we 2335 * don't care the register def because they are anyway 2336 * marked as NOT_INIT already. 2337 */ 2338 if (insn->src_reg == BPF_PSEUDO_CALL) 2339 return false; 2340 /* Helper call will reach here because of arg type 2341 * check, conservatively return TRUE. 2342 */ 2343 if (t == SRC_OP) 2344 return true; 2345 2346 return false; 2347 } 2348 } 2349 2350 if (class == BPF_ALU64 || class == BPF_JMP || 2351 /* BPF_END always use BPF_ALU class. */ 2352 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 2353 return true; 2354 2355 if (class == BPF_ALU || class == BPF_JMP32) 2356 return false; 2357 2358 if (class == BPF_LDX) { 2359 if (t != SRC_OP) 2360 return BPF_SIZE(code) == BPF_DW; 2361 /* LDX source must be ptr. */ 2362 return true; 2363 } 2364 2365 if (class == BPF_STX) { 2366 /* BPF_STX (including atomic variants) has multiple source 2367 * operands, one of which is a ptr. Check whether the caller is 2368 * asking about it. 2369 */ 2370 if (t == SRC_OP && reg->type != SCALAR_VALUE) 2371 return true; 2372 return BPF_SIZE(code) == BPF_DW; 2373 } 2374 2375 if (class == BPF_LD) { 2376 u8 mode = BPF_MODE(code); 2377 2378 /* LD_IMM64 */ 2379 if (mode == BPF_IMM) 2380 return true; 2381 2382 /* Both LD_IND and LD_ABS return 32-bit data. */ 2383 if (t != SRC_OP) 2384 return false; 2385 2386 /* Implicit ctx ptr. */ 2387 if (regno == BPF_REG_6) 2388 return true; 2389 2390 /* Explicit source could be any width. */ 2391 return true; 2392 } 2393 2394 if (class == BPF_ST) 2395 /* The only source register for BPF_ST is a ptr. */ 2396 return true; 2397 2398 /* Conservatively return true at default. */ 2399 return true; 2400 } 2401 2402 /* Return the regno defined by the insn, or -1. */ 2403 static int insn_def_regno(const struct bpf_insn *insn) 2404 { 2405 switch (BPF_CLASS(insn->code)) { 2406 case BPF_JMP: 2407 case BPF_JMP32: 2408 case BPF_ST: 2409 return -1; 2410 case BPF_STX: 2411 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2412 (insn->imm & BPF_FETCH)) { 2413 if (insn->imm == BPF_CMPXCHG) 2414 return BPF_REG_0; 2415 else 2416 return insn->src_reg; 2417 } else { 2418 return -1; 2419 } 2420 default: 2421 return insn->dst_reg; 2422 } 2423 } 2424 2425 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2426 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2427 { 2428 int dst_reg = insn_def_regno(insn); 2429 2430 if (dst_reg == -1) 2431 return false; 2432 2433 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2434 } 2435 2436 static void mark_insn_zext(struct bpf_verifier_env *env, 2437 struct bpf_reg_state *reg) 2438 { 2439 s32 def_idx = reg->subreg_def; 2440 2441 if (def_idx == DEF_NOT_SUBREG) 2442 return; 2443 2444 env->insn_aux_data[def_idx - 1].zext_dst = true; 2445 /* The dst will be zero extended, so won't be sub-register anymore. */ 2446 reg->subreg_def = DEF_NOT_SUBREG; 2447 } 2448 2449 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2450 enum reg_arg_type t) 2451 { 2452 struct bpf_verifier_state *vstate = env->cur_state; 2453 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2454 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2455 struct bpf_reg_state *reg, *regs = state->regs; 2456 bool rw64; 2457 2458 if (regno >= MAX_BPF_REG) { 2459 verbose(env, "R%d is invalid\n", regno); 2460 return -EINVAL; 2461 } 2462 2463 mark_reg_scratched(env, regno); 2464 2465 reg = ®s[regno]; 2466 rw64 = is_reg64(env, insn, regno, reg, t); 2467 if (t == SRC_OP) { 2468 /* check whether register used as source operand can be read */ 2469 if (reg->type == NOT_INIT) { 2470 verbose(env, "R%d !read_ok\n", regno); 2471 return -EACCES; 2472 } 2473 /* We don't need to worry about FP liveness because it's read-only */ 2474 if (regno == BPF_REG_FP) 2475 return 0; 2476 2477 if (rw64) 2478 mark_insn_zext(env, reg); 2479 2480 return mark_reg_read(env, reg, reg->parent, 2481 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2482 } else { 2483 /* check whether register used as dest operand can be written to */ 2484 if (regno == BPF_REG_FP) { 2485 verbose(env, "frame pointer is read only\n"); 2486 return -EACCES; 2487 } 2488 reg->live |= REG_LIVE_WRITTEN; 2489 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2490 if (t == DST_OP) 2491 mark_reg_unknown(env, regs, regno); 2492 } 2493 return 0; 2494 } 2495 2496 /* for any branch, call, exit record the history of jmps in the given state */ 2497 static int push_jmp_history(struct bpf_verifier_env *env, 2498 struct bpf_verifier_state *cur) 2499 { 2500 u32 cnt = cur->jmp_history_cnt; 2501 struct bpf_idx_pair *p; 2502 2503 cnt++; 2504 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 2505 if (!p) 2506 return -ENOMEM; 2507 p[cnt - 1].idx = env->insn_idx; 2508 p[cnt - 1].prev_idx = env->prev_insn_idx; 2509 cur->jmp_history = p; 2510 cur->jmp_history_cnt = cnt; 2511 return 0; 2512 } 2513 2514 /* Backtrack one insn at a time. If idx is not at the top of recorded 2515 * history then previous instruction came from straight line execution. 2516 */ 2517 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2518 u32 *history) 2519 { 2520 u32 cnt = *history; 2521 2522 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2523 i = st->jmp_history[cnt - 1].prev_idx; 2524 (*history)--; 2525 } else { 2526 i--; 2527 } 2528 return i; 2529 } 2530 2531 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2532 { 2533 const struct btf_type *func; 2534 struct btf *desc_btf; 2535 2536 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2537 return NULL; 2538 2539 desc_btf = find_kfunc_desc_btf(data, insn->off); 2540 if (IS_ERR(desc_btf)) 2541 return "<error>"; 2542 2543 func = btf_type_by_id(desc_btf, insn->imm); 2544 return btf_name_by_offset(desc_btf, func->name_off); 2545 } 2546 2547 /* For given verifier state backtrack_insn() is called from the last insn to 2548 * the first insn. Its purpose is to compute a bitmask of registers and 2549 * stack slots that needs precision in the parent verifier state. 2550 */ 2551 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2552 u32 *reg_mask, u64 *stack_mask) 2553 { 2554 const struct bpf_insn_cbs cbs = { 2555 .cb_call = disasm_kfunc_name, 2556 .cb_print = verbose, 2557 .private_data = env, 2558 }; 2559 struct bpf_insn *insn = env->prog->insnsi + idx; 2560 u8 class = BPF_CLASS(insn->code); 2561 u8 opcode = BPF_OP(insn->code); 2562 u8 mode = BPF_MODE(insn->code); 2563 u32 dreg = 1u << insn->dst_reg; 2564 u32 sreg = 1u << insn->src_reg; 2565 u32 spi; 2566 2567 if (insn->code == 0) 2568 return 0; 2569 if (env->log.level & BPF_LOG_LEVEL2) { 2570 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2571 verbose(env, "%d: ", idx); 2572 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2573 } 2574 2575 if (class == BPF_ALU || class == BPF_ALU64) { 2576 if (!(*reg_mask & dreg)) 2577 return 0; 2578 if (opcode == BPF_MOV) { 2579 if (BPF_SRC(insn->code) == BPF_X) { 2580 /* dreg = sreg 2581 * dreg needs precision after this insn 2582 * sreg needs precision before this insn 2583 */ 2584 *reg_mask &= ~dreg; 2585 *reg_mask |= sreg; 2586 } else { 2587 /* dreg = K 2588 * dreg needs precision after this insn. 2589 * Corresponding register is already marked 2590 * as precise=true in this verifier state. 2591 * No further markings in parent are necessary 2592 */ 2593 *reg_mask &= ~dreg; 2594 } 2595 } else { 2596 if (BPF_SRC(insn->code) == BPF_X) { 2597 /* dreg += sreg 2598 * both dreg and sreg need precision 2599 * before this insn 2600 */ 2601 *reg_mask |= sreg; 2602 } /* else dreg += K 2603 * dreg still needs precision before this insn 2604 */ 2605 } 2606 } else if (class == BPF_LDX) { 2607 if (!(*reg_mask & dreg)) 2608 return 0; 2609 *reg_mask &= ~dreg; 2610 2611 /* scalars can only be spilled into stack w/o losing precision. 2612 * Load from any other memory can be zero extended. 2613 * The desire to keep that precision is already indicated 2614 * by 'precise' mark in corresponding register of this state. 2615 * No further tracking necessary. 2616 */ 2617 if (insn->src_reg != BPF_REG_FP) 2618 return 0; 2619 2620 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2621 * that [fp - off] slot contains scalar that needs to be 2622 * tracked with precision 2623 */ 2624 spi = (-insn->off - 1) / BPF_REG_SIZE; 2625 if (spi >= 64) { 2626 verbose(env, "BUG spi %d\n", spi); 2627 WARN_ONCE(1, "verifier backtracking bug"); 2628 return -EFAULT; 2629 } 2630 *stack_mask |= 1ull << spi; 2631 } else if (class == BPF_STX || class == BPF_ST) { 2632 if (*reg_mask & dreg) 2633 /* stx & st shouldn't be using _scalar_ dst_reg 2634 * to access memory. It means backtracking 2635 * encountered a case of pointer subtraction. 2636 */ 2637 return -ENOTSUPP; 2638 /* scalars can only be spilled into stack */ 2639 if (insn->dst_reg != BPF_REG_FP) 2640 return 0; 2641 spi = (-insn->off - 1) / BPF_REG_SIZE; 2642 if (spi >= 64) { 2643 verbose(env, "BUG spi %d\n", spi); 2644 WARN_ONCE(1, "verifier backtracking bug"); 2645 return -EFAULT; 2646 } 2647 if (!(*stack_mask & (1ull << spi))) 2648 return 0; 2649 *stack_mask &= ~(1ull << spi); 2650 if (class == BPF_STX) 2651 *reg_mask |= sreg; 2652 } else if (class == BPF_JMP || class == BPF_JMP32) { 2653 if (opcode == BPF_CALL) { 2654 if (insn->src_reg == BPF_PSEUDO_CALL) 2655 return -ENOTSUPP; 2656 /* regular helper call sets R0 */ 2657 *reg_mask &= ~1; 2658 if (*reg_mask & 0x3f) { 2659 /* if backtracing was looking for registers R1-R5 2660 * they should have been found already. 2661 */ 2662 verbose(env, "BUG regs %x\n", *reg_mask); 2663 WARN_ONCE(1, "verifier backtracking bug"); 2664 return -EFAULT; 2665 } 2666 } else if (opcode == BPF_EXIT) { 2667 return -ENOTSUPP; 2668 } 2669 } else if (class == BPF_LD) { 2670 if (!(*reg_mask & dreg)) 2671 return 0; 2672 *reg_mask &= ~dreg; 2673 /* It's ld_imm64 or ld_abs or ld_ind. 2674 * For ld_imm64 no further tracking of precision 2675 * into parent is necessary 2676 */ 2677 if (mode == BPF_IND || mode == BPF_ABS) 2678 /* to be analyzed */ 2679 return -ENOTSUPP; 2680 } 2681 return 0; 2682 } 2683 2684 /* the scalar precision tracking algorithm: 2685 * . at the start all registers have precise=false. 2686 * . scalar ranges are tracked as normal through alu and jmp insns. 2687 * . once precise value of the scalar register is used in: 2688 * . ptr + scalar alu 2689 * . if (scalar cond K|scalar) 2690 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2691 * backtrack through the verifier states and mark all registers and 2692 * stack slots with spilled constants that these scalar regisers 2693 * should be precise. 2694 * . during state pruning two registers (or spilled stack slots) 2695 * are equivalent if both are not precise. 2696 * 2697 * Note the verifier cannot simply walk register parentage chain, 2698 * since many different registers and stack slots could have been 2699 * used to compute single precise scalar. 2700 * 2701 * The approach of starting with precise=true for all registers and then 2702 * backtrack to mark a register as not precise when the verifier detects 2703 * that program doesn't care about specific value (e.g., when helper 2704 * takes register as ARG_ANYTHING parameter) is not safe. 2705 * 2706 * It's ok to walk single parentage chain of the verifier states. 2707 * It's possible that this backtracking will go all the way till 1st insn. 2708 * All other branches will be explored for needing precision later. 2709 * 2710 * The backtracking needs to deal with cases like: 2711 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2712 * r9 -= r8 2713 * r5 = r9 2714 * if r5 > 0x79f goto pc+7 2715 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2716 * r5 += 1 2717 * ... 2718 * call bpf_perf_event_output#25 2719 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2720 * 2721 * and this case: 2722 * r6 = 1 2723 * call foo // uses callee's r6 inside to compute r0 2724 * r0 += r6 2725 * if r0 == 0 goto 2726 * 2727 * to track above reg_mask/stack_mask needs to be independent for each frame. 2728 * 2729 * Also if parent's curframe > frame where backtracking started, 2730 * the verifier need to mark registers in both frames, otherwise callees 2731 * may incorrectly prune callers. This is similar to 2732 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2733 * 2734 * For now backtracking falls back into conservative marking. 2735 */ 2736 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2737 struct bpf_verifier_state *st) 2738 { 2739 struct bpf_func_state *func; 2740 struct bpf_reg_state *reg; 2741 int i, j; 2742 2743 /* big hammer: mark all scalars precise in this path. 2744 * pop_stack may still get !precise scalars. 2745 */ 2746 for (; st; st = st->parent) 2747 for (i = 0; i <= st->curframe; i++) { 2748 func = st->frame[i]; 2749 for (j = 0; j < BPF_REG_FP; j++) { 2750 reg = &func->regs[j]; 2751 if (reg->type != SCALAR_VALUE) 2752 continue; 2753 reg->precise = true; 2754 } 2755 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2756 if (!is_spilled_reg(&func->stack[j])) 2757 continue; 2758 reg = &func->stack[j].spilled_ptr; 2759 if (reg->type != SCALAR_VALUE) 2760 continue; 2761 reg->precise = true; 2762 } 2763 } 2764 } 2765 2766 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2767 int spi) 2768 { 2769 struct bpf_verifier_state *st = env->cur_state; 2770 int first_idx = st->first_insn_idx; 2771 int last_idx = env->insn_idx; 2772 struct bpf_func_state *func; 2773 struct bpf_reg_state *reg; 2774 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2775 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2776 bool skip_first = true; 2777 bool new_marks = false; 2778 int i, err; 2779 2780 if (!env->bpf_capable) 2781 return 0; 2782 2783 func = st->frame[st->curframe]; 2784 if (regno >= 0) { 2785 reg = &func->regs[regno]; 2786 if (reg->type != SCALAR_VALUE) { 2787 WARN_ONCE(1, "backtracing misuse"); 2788 return -EFAULT; 2789 } 2790 if (!reg->precise) 2791 new_marks = true; 2792 else 2793 reg_mask = 0; 2794 reg->precise = true; 2795 } 2796 2797 while (spi >= 0) { 2798 if (!is_spilled_reg(&func->stack[spi])) { 2799 stack_mask = 0; 2800 break; 2801 } 2802 reg = &func->stack[spi].spilled_ptr; 2803 if (reg->type != SCALAR_VALUE) { 2804 stack_mask = 0; 2805 break; 2806 } 2807 if (!reg->precise) 2808 new_marks = true; 2809 else 2810 stack_mask = 0; 2811 reg->precise = true; 2812 break; 2813 } 2814 2815 if (!new_marks) 2816 return 0; 2817 if (!reg_mask && !stack_mask) 2818 return 0; 2819 for (;;) { 2820 DECLARE_BITMAP(mask, 64); 2821 u32 history = st->jmp_history_cnt; 2822 2823 if (env->log.level & BPF_LOG_LEVEL2) 2824 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2825 for (i = last_idx;;) { 2826 if (skip_first) { 2827 err = 0; 2828 skip_first = false; 2829 } else { 2830 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2831 } 2832 if (err == -ENOTSUPP) { 2833 mark_all_scalars_precise(env, st); 2834 return 0; 2835 } else if (err) { 2836 return err; 2837 } 2838 if (!reg_mask && !stack_mask) 2839 /* Found assignment(s) into tracked register in this state. 2840 * Since this state is already marked, just return. 2841 * Nothing to be tracked further in the parent state. 2842 */ 2843 return 0; 2844 if (i == first_idx) 2845 break; 2846 i = get_prev_insn_idx(st, i, &history); 2847 if (i >= env->prog->len) { 2848 /* This can happen if backtracking reached insn 0 2849 * and there are still reg_mask or stack_mask 2850 * to backtrack. 2851 * It means the backtracking missed the spot where 2852 * particular register was initialized with a constant. 2853 */ 2854 verbose(env, "BUG backtracking idx %d\n", i); 2855 WARN_ONCE(1, "verifier backtracking bug"); 2856 return -EFAULT; 2857 } 2858 } 2859 st = st->parent; 2860 if (!st) 2861 break; 2862 2863 new_marks = false; 2864 func = st->frame[st->curframe]; 2865 bitmap_from_u64(mask, reg_mask); 2866 for_each_set_bit(i, mask, 32) { 2867 reg = &func->regs[i]; 2868 if (reg->type != SCALAR_VALUE) { 2869 reg_mask &= ~(1u << i); 2870 continue; 2871 } 2872 if (!reg->precise) 2873 new_marks = true; 2874 reg->precise = true; 2875 } 2876 2877 bitmap_from_u64(mask, stack_mask); 2878 for_each_set_bit(i, mask, 64) { 2879 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2880 /* the sequence of instructions: 2881 * 2: (bf) r3 = r10 2882 * 3: (7b) *(u64 *)(r3 -8) = r0 2883 * 4: (79) r4 = *(u64 *)(r10 -8) 2884 * doesn't contain jmps. It's backtracked 2885 * as a single block. 2886 * During backtracking insn 3 is not recognized as 2887 * stack access, so at the end of backtracking 2888 * stack slot fp-8 is still marked in stack_mask. 2889 * However the parent state may not have accessed 2890 * fp-8 and it's "unallocated" stack space. 2891 * In such case fallback to conservative. 2892 */ 2893 mark_all_scalars_precise(env, st); 2894 return 0; 2895 } 2896 2897 if (!is_spilled_reg(&func->stack[i])) { 2898 stack_mask &= ~(1ull << i); 2899 continue; 2900 } 2901 reg = &func->stack[i].spilled_ptr; 2902 if (reg->type != SCALAR_VALUE) { 2903 stack_mask &= ~(1ull << i); 2904 continue; 2905 } 2906 if (!reg->precise) 2907 new_marks = true; 2908 reg->precise = true; 2909 } 2910 if (env->log.level & BPF_LOG_LEVEL2) { 2911 verbose(env, "parent %s regs=%x stack=%llx marks:", 2912 new_marks ? "didn't have" : "already had", 2913 reg_mask, stack_mask); 2914 print_verifier_state(env, func, true); 2915 } 2916 2917 if (!reg_mask && !stack_mask) 2918 break; 2919 if (!new_marks) 2920 break; 2921 2922 last_idx = st->last_insn_idx; 2923 first_idx = st->first_insn_idx; 2924 } 2925 return 0; 2926 } 2927 2928 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2929 { 2930 return __mark_chain_precision(env, regno, -1); 2931 } 2932 2933 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2934 { 2935 return __mark_chain_precision(env, -1, spi); 2936 } 2937 2938 static bool is_spillable_regtype(enum bpf_reg_type type) 2939 { 2940 switch (base_type(type)) { 2941 case PTR_TO_MAP_VALUE: 2942 case PTR_TO_STACK: 2943 case PTR_TO_CTX: 2944 case PTR_TO_PACKET: 2945 case PTR_TO_PACKET_META: 2946 case PTR_TO_PACKET_END: 2947 case PTR_TO_FLOW_KEYS: 2948 case CONST_PTR_TO_MAP: 2949 case PTR_TO_SOCKET: 2950 case PTR_TO_SOCK_COMMON: 2951 case PTR_TO_TCP_SOCK: 2952 case PTR_TO_XDP_SOCK: 2953 case PTR_TO_BTF_ID: 2954 case PTR_TO_BUF: 2955 case PTR_TO_MEM: 2956 case PTR_TO_FUNC: 2957 case PTR_TO_MAP_KEY: 2958 return true; 2959 default: 2960 return false; 2961 } 2962 } 2963 2964 /* Does this register contain a constant zero? */ 2965 static bool register_is_null(struct bpf_reg_state *reg) 2966 { 2967 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2968 } 2969 2970 static bool register_is_const(struct bpf_reg_state *reg) 2971 { 2972 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2973 } 2974 2975 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2976 { 2977 return tnum_is_unknown(reg->var_off) && 2978 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2979 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2980 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2981 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2982 } 2983 2984 static bool register_is_bounded(struct bpf_reg_state *reg) 2985 { 2986 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2987 } 2988 2989 static bool __is_pointer_value(bool allow_ptr_leaks, 2990 const struct bpf_reg_state *reg) 2991 { 2992 if (allow_ptr_leaks) 2993 return false; 2994 2995 return reg->type != SCALAR_VALUE; 2996 } 2997 2998 static void save_register_state(struct bpf_func_state *state, 2999 int spi, struct bpf_reg_state *reg, 3000 int size) 3001 { 3002 int i; 3003 3004 state->stack[spi].spilled_ptr = *reg; 3005 if (size == BPF_REG_SIZE) 3006 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3007 3008 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 3009 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 3010 3011 /* size < 8 bytes spill */ 3012 for (; i; i--) 3013 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 3014 } 3015 3016 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 3017 * stack boundary and alignment are checked in check_mem_access() 3018 */ 3019 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 3020 /* stack frame we're writing to */ 3021 struct bpf_func_state *state, 3022 int off, int size, int value_regno, 3023 int insn_idx) 3024 { 3025 struct bpf_func_state *cur; /* state of the current function */ 3026 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 3027 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 3028 struct bpf_reg_state *reg = NULL; 3029 3030 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 3031 if (err) 3032 return err; 3033 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 3034 * so it's aligned access and [off, off + size) are within stack limits 3035 */ 3036 if (!env->allow_ptr_leaks && 3037 state->stack[spi].slot_type[0] == STACK_SPILL && 3038 size != BPF_REG_SIZE) { 3039 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 3040 return -EACCES; 3041 } 3042 3043 cur = env->cur_state->frame[env->cur_state->curframe]; 3044 if (value_regno >= 0) 3045 reg = &cur->regs[value_regno]; 3046 if (!env->bypass_spec_v4) { 3047 bool sanitize = reg && is_spillable_regtype(reg->type); 3048 3049 for (i = 0; i < size; i++) { 3050 if (state->stack[spi].slot_type[i] == STACK_INVALID) { 3051 sanitize = true; 3052 break; 3053 } 3054 } 3055 3056 if (sanitize) 3057 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 3058 } 3059 3060 mark_stack_slot_scratched(env, spi); 3061 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 3062 !register_is_null(reg) && env->bpf_capable) { 3063 if (dst_reg != BPF_REG_FP) { 3064 /* The backtracking logic can only recognize explicit 3065 * stack slot address like [fp - 8]. Other spill of 3066 * scalar via different register has to be conservative. 3067 * Backtrack from here and mark all registers as precise 3068 * that contributed into 'reg' being a constant. 3069 */ 3070 err = mark_chain_precision(env, value_regno); 3071 if (err) 3072 return err; 3073 } 3074 save_register_state(state, spi, reg, size); 3075 } else if (reg && is_spillable_regtype(reg->type)) { 3076 /* register containing pointer is being spilled into stack */ 3077 if (size != BPF_REG_SIZE) { 3078 verbose_linfo(env, insn_idx, "; "); 3079 verbose(env, "invalid size of register spill\n"); 3080 return -EACCES; 3081 } 3082 if (state != cur && reg->type == PTR_TO_STACK) { 3083 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 3084 return -EINVAL; 3085 } 3086 save_register_state(state, spi, reg, size); 3087 } else { 3088 u8 type = STACK_MISC; 3089 3090 /* regular write of data into stack destroys any spilled ptr */ 3091 state->stack[spi].spilled_ptr.type = NOT_INIT; 3092 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 3093 if (is_spilled_reg(&state->stack[spi])) 3094 for (i = 0; i < BPF_REG_SIZE; i++) 3095 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 3096 3097 /* only mark the slot as written if all 8 bytes were written 3098 * otherwise read propagation may incorrectly stop too soon 3099 * when stack slots are partially written. 3100 * This heuristic means that read propagation will be 3101 * conservative, since it will add reg_live_read marks 3102 * to stack slots all the way to first state when programs 3103 * writes+reads less than 8 bytes 3104 */ 3105 if (size == BPF_REG_SIZE) 3106 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3107 3108 /* when we zero initialize stack slots mark them as such */ 3109 if (reg && register_is_null(reg)) { 3110 /* backtracking doesn't work for STACK_ZERO yet. */ 3111 err = mark_chain_precision(env, value_regno); 3112 if (err) 3113 return err; 3114 type = STACK_ZERO; 3115 } 3116 3117 /* Mark slots affected by this stack write. */ 3118 for (i = 0; i < size; i++) 3119 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 3120 type; 3121 } 3122 return 0; 3123 } 3124 3125 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 3126 * known to contain a variable offset. 3127 * This function checks whether the write is permitted and conservatively 3128 * tracks the effects of the write, considering that each stack slot in the 3129 * dynamic range is potentially written to. 3130 * 3131 * 'off' includes 'regno->off'. 3132 * 'value_regno' can be -1, meaning that an unknown value is being written to 3133 * the stack. 3134 * 3135 * Spilled pointers in range are not marked as written because we don't know 3136 * what's going to be actually written. This means that read propagation for 3137 * future reads cannot be terminated by this write. 3138 * 3139 * For privileged programs, uninitialized stack slots are considered 3140 * initialized by this write (even though we don't know exactly what offsets 3141 * are going to be written to). The idea is that we don't want the verifier to 3142 * reject future reads that access slots written to through variable offsets. 3143 */ 3144 static int check_stack_write_var_off(struct bpf_verifier_env *env, 3145 /* func where register points to */ 3146 struct bpf_func_state *state, 3147 int ptr_regno, int off, int size, 3148 int value_regno, int insn_idx) 3149 { 3150 struct bpf_func_state *cur; /* state of the current function */ 3151 int min_off, max_off; 3152 int i, err; 3153 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 3154 bool writing_zero = false; 3155 /* set if the fact that we're writing a zero is used to let any 3156 * stack slots remain STACK_ZERO 3157 */ 3158 bool zero_used = false; 3159 3160 cur = env->cur_state->frame[env->cur_state->curframe]; 3161 ptr_reg = &cur->regs[ptr_regno]; 3162 min_off = ptr_reg->smin_value + off; 3163 max_off = ptr_reg->smax_value + off + size; 3164 if (value_regno >= 0) 3165 value_reg = &cur->regs[value_regno]; 3166 if (value_reg && register_is_null(value_reg)) 3167 writing_zero = true; 3168 3169 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 3170 if (err) 3171 return err; 3172 3173 3174 /* Variable offset writes destroy any spilled pointers in range. */ 3175 for (i = min_off; i < max_off; i++) { 3176 u8 new_type, *stype; 3177 int slot, spi; 3178 3179 slot = -i - 1; 3180 spi = slot / BPF_REG_SIZE; 3181 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3182 mark_stack_slot_scratched(env, spi); 3183 3184 if (!env->allow_ptr_leaks 3185 && *stype != NOT_INIT 3186 && *stype != SCALAR_VALUE) { 3187 /* Reject the write if there's are spilled pointers in 3188 * range. If we didn't reject here, the ptr status 3189 * would be erased below (even though not all slots are 3190 * actually overwritten), possibly opening the door to 3191 * leaks. 3192 */ 3193 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 3194 insn_idx, i); 3195 return -EINVAL; 3196 } 3197 3198 /* Erase all spilled pointers. */ 3199 state->stack[spi].spilled_ptr.type = NOT_INIT; 3200 3201 /* Update the slot type. */ 3202 new_type = STACK_MISC; 3203 if (writing_zero && *stype == STACK_ZERO) { 3204 new_type = STACK_ZERO; 3205 zero_used = true; 3206 } 3207 /* If the slot is STACK_INVALID, we check whether it's OK to 3208 * pretend that it will be initialized by this write. The slot 3209 * might not actually be written to, and so if we mark it as 3210 * initialized future reads might leak uninitialized memory. 3211 * For privileged programs, we will accept such reads to slots 3212 * that may or may not be written because, if we're reject 3213 * them, the error would be too confusing. 3214 */ 3215 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 3216 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 3217 insn_idx, i); 3218 return -EINVAL; 3219 } 3220 *stype = new_type; 3221 } 3222 if (zero_used) { 3223 /* backtracking doesn't work for STACK_ZERO yet. */ 3224 err = mark_chain_precision(env, value_regno); 3225 if (err) 3226 return err; 3227 } 3228 return 0; 3229 } 3230 3231 /* When register 'dst_regno' is assigned some values from stack[min_off, 3232 * max_off), we set the register's type according to the types of the 3233 * respective stack slots. If all the stack values are known to be zeros, then 3234 * so is the destination reg. Otherwise, the register is considered to be 3235 * SCALAR. This function does not deal with register filling; the caller must 3236 * ensure that all spilled registers in the stack range have been marked as 3237 * read. 3238 */ 3239 static void mark_reg_stack_read(struct bpf_verifier_env *env, 3240 /* func where src register points to */ 3241 struct bpf_func_state *ptr_state, 3242 int min_off, int max_off, int dst_regno) 3243 { 3244 struct bpf_verifier_state *vstate = env->cur_state; 3245 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3246 int i, slot, spi; 3247 u8 *stype; 3248 int zeros = 0; 3249 3250 for (i = min_off; i < max_off; i++) { 3251 slot = -i - 1; 3252 spi = slot / BPF_REG_SIZE; 3253 stype = ptr_state->stack[spi].slot_type; 3254 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 3255 break; 3256 zeros++; 3257 } 3258 if (zeros == max_off - min_off) { 3259 /* any access_size read into register is zero extended, 3260 * so the whole register == const_zero 3261 */ 3262 __mark_reg_const_zero(&state->regs[dst_regno]); 3263 /* backtracking doesn't support STACK_ZERO yet, 3264 * so mark it precise here, so that later 3265 * backtracking can stop here. 3266 * Backtracking may not need this if this register 3267 * doesn't participate in pointer adjustment. 3268 * Forward propagation of precise flag is not 3269 * necessary either. This mark is only to stop 3270 * backtracking. Any register that contributed 3271 * to const 0 was marked precise before spill. 3272 */ 3273 state->regs[dst_regno].precise = true; 3274 } else { 3275 /* have read misc data from the stack */ 3276 mark_reg_unknown(env, state->regs, dst_regno); 3277 } 3278 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3279 } 3280 3281 /* Read the stack at 'off' and put the results into the register indicated by 3282 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 3283 * spilled reg. 3284 * 3285 * 'dst_regno' can be -1, meaning that the read value is not going to a 3286 * register. 3287 * 3288 * The access is assumed to be within the current stack bounds. 3289 */ 3290 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 3291 /* func where src register points to */ 3292 struct bpf_func_state *reg_state, 3293 int off, int size, int dst_regno) 3294 { 3295 struct bpf_verifier_state *vstate = env->cur_state; 3296 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3297 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 3298 struct bpf_reg_state *reg; 3299 u8 *stype, type; 3300 3301 stype = reg_state->stack[spi].slot_type; 3302 reg = ®_state->stack[spi].spilled_ptr; 3303 3304 if (is_spilled_reg(®_state->stack[spi])) { 3305 u8 spill_size = 1; 3306 3307 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 3308 spill_size++; 3309 3310 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 3311 if (reg->type != SCALAR_VALUE) { 3312 verbose_linfo(env, env->insn_idx, "; "); 3313 verbose(env, "invalid size of register fill\n"); 3314 return -EACCES; 3315 } 3316 3317 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3318 if (dst_regno < 0) 3319 return 0; 3320 3321 if (!(off % BPF_REG_SIZE) && size == spill_size) { 3322 /* The earlier check_reg_arg() has decided the 3323 * subreg_def for this insn. Save it first. 3324 */ 3325 s32 subreg_def = state->regs[dst_regno].subreg_def; 3326 3327 state->regs[dst_regno] = *reg; 3328 state->regs[dst_regno].subreg_def = subreg_def; 3329 } else { 3330 for (i = 0; i < size; i++) { 3331 type = stype[(slot - i) % BPF_REG_SIZE]; 3332 if (type == STACK_SPILL) 3333 continue; 3334 if (type == STACK_MISC) 3335 continue; 3336 verbose(env, "invalid read from stack off %d+%d size %d\n", 3337 off, i, size); 3338 return -EACCES; 3339 } 3340 mark_reg_unknown(env, state->regs, dst_regno); 3341 } 3342 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3343 return 0; 3344 } 3345 3346 if (dst_regno >= 0) { 3347 /* restore register state from stack */ 3348 state->regs[dst_regno] = *reg; 3349 /* mark reg as written since spilled pointer state likely 3350 * has its liveness marks cleared by is_state_visited() 3351 * which resets stack/reg liveness for state transitions 3352 */ 3353 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3354 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 3355 /* If dst_regno==-1, the caller is asking us whether 3356 * it is acceptable to use this value as a SCALAR_VALUE 3357 * (e.g. for XADD). 3358 * We must not allow unprivileged callers to do that 3359 * with spilled pointers. 3360 */ 3361 verbose(env, "leaking pointer from stack off %d\n", 3362 off); 3363 return -EACCES; 3364 } 3365 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3366 } else { 3367 for (i = 0; i < size; i++) { 3368 type = stype[(slot - i) % BPF_REG_SIZE]; 3369 if (type == STACK_MISC) 3370 continue; 3371 if (type == STACK_ZERO) 3372 continue; 3373 verbose(env, "invalid read from stack off %d+%d size %d\n", 3374 off, i, size); 3375 return -EACCES; 3376 } 3377 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3378 if (dst_regno >= 0) 3379 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 3380 } 3381 return 0; 3382 } 3383 3384 enum bpf_access_src { 3385 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 3386 ACCESS_HELPER = 2, /* the access is performed by a helper */ 3387 }; 3388 3389 static int check_stack_range_initialized(struct bpf_verifier_env *env, 3390 int regno, int off, int access_size, 3391 bool zero_size_allowed, 3392 enum bpf_access_src type, 3393 struct bpf_call_arg_meta *meta); 3394 3395 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 3396 { 3397 return cur_regs(env) + regno; 3398 } 3399 3400 /* Read the stack at 'ptr_regno + off' and put the result into the register 3401 * 'dst_regno'. 3402 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 3403 * but not its variable offset. 3404 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 3405 * 3406 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 3407 * filling registers (i.e. reads of spilled register cannot be detected when 3408 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 3409 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 3410 * offset; for a fixed offset check_stack_read_fixed_off should be used 3411 * instead. 3412 */ 3413 static int check_stack_read_var_off(struct bpf_verifier_env *env, 3414 int ptr_regno, int off, int size, int dst_regno) 3415 { 3416 /* The state of the source register. */ 3417 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3418 struct bpf_func_state *ptr_state = func(env, reg); 3419 int err; 3420 int min_off, max_off; 3421 3422 /* Note that we pass a NULL meta, so raw access will not be permitted. 3423 */ 3424 err = check_stack_range_initialized(env, ptr_regno, off, size, 3425 false, ACCESS_DIRECT, NULL); 3426 if (err) 3427 return err; 3428 3429 min_off = reg->smin_value + off; 3430 max_off = reg->smax_value + off; 3431 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3432 return 0; 3433 } 3434 3435 /* check_stack_read dispatches to check_stack_read_fixed_off or 3436 * check_stack_read_var_off. 3437 * 3438 * The caller must ensure that the offset falls within the allocated stack 3439 * bounds. 3440 * 3441 * 'dst_regno' is a register which will receive the value from the stack. It 3442 * can be -1, meaning that the read value is not going to a register. 3443 */ 3444 static int check_stack_read(struct bpf_verifier_env *env, 3445 int ptr_regno, int off, int size, 3446 int dst_regno) 3447 { 3448 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3449 struct bpf_func_state *state = func(env, reg); 3450 int err; 3451 /* Some accesses are only permitted with a static offset. */ 3452 bool var_off = !tnum_is_const(reg->var_off); 3453 3454 /* The offset is required to be static when reads don't go to a 3455 * register, in order to not leak pointers (see 3456 * check_stack_read_fixed_off). 3457 */ 3458 if (dst_regno < 0 && var_off) { 3459 char tn_buf[48]; 3460 3461 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3462 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3463 tn_buf, off, size); 3464 return -EACCES; 3465 } 3466 /* Variable offset is prohibited for unprivileged mode for simplicity 3467 * since it requires corresponding support in Spectre masking for stack 3468 * ALU. See also retrieve_ptr_limit(). 3469 */ 3470 if (!env->bypass_spec_v1 && var_off) { 3471 char tn_buf[48]; 3472 3473 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3474 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3475 ptr_regno, tn_buf); 3476 return -EACCES; 3477 } 3478 3479 if (!var_off) { 3480 off += reg->var_off.value; 3481 err = check_stack_read_fixed_off(env, state, off, size, 3482 dst_regno); 3483 } else { 3484 /* Variable offset stack reads need more conservative handling 3485 * than fixed offset ones. Note that dst_regno >= 0 on this 3486 * branch. 3487 */ 3488 err = check_stack_read_var_off(env, ptr_regno, off, size, 3489 dst_regno); 3490 } 3491 return err; 3492 } 3493 3494 3495 /* check_stack_write dispatches to check_stack_write_fixed_off or 3496 * check_stack_write_var_off. 3497 * 3498 * 'ptr_regno' is the register used as a pointer into the stack. 3499 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3500 * 'value_regno' is the register whose value we're writing to the stack. It can 3501 * be -1, meaning that we're not writing from a register. 3502 * 3503 * The caller must ensure that the offset falls within the maximum stack size. 3504 */ 3505 static int check_stack_write(struct bpf_verifier_env *env, 3506 int ptr_regno, int off, int size, 3507 int value_regno, int insn_idx) 3508 { 3509 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3510 struct bpf_func_state *state = func(env, reg); 3511 int err; 3512 3513 if (tnum_is_const(reg->var_off)) { 3514 off += reg->var_off.value; 3515 err = check_stack_write_fixed_off(env, state, off, size, 3516 value_regno, insn_idx); 3517 } else { 3518 /* Variable offset stack reads need more conservative handling 3519 * than fixed offset ones. 3520 */ 3521 err = check_stack_write_var_off(env, state, 3522 ptr_regno, off, size, 3523 value_regno, insn_idx); 3524 } 3525 return err; 3526 } 3527 3528 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3529 int off, int size, enum bpf_access_type type) 3530 { 3531 struct bpf_reg_state *regs = cur_regs(env); 3532 struct bpf_map *map = regs[regno].map_ptr; 3533 u32 cap = bpf_map_flags_to_cap(map); 3534 3535 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3536 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3537 map->value_size, off, size); 3538 return -EACCES; 3539 } 3540 3541 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3542 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3543 map->value_size, off, size); 3544 return -EACCES; 3545 } 3546 3547 return 0; 3548 } 3549 3550 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3551 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3552 int off, int size, u32 mem_size, 3553 bool zero_size_allowed) 3554 { 3555 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3556 struct bpf_reg_state *reg; 3557 3558 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3559 return 0; 3560 3561 reg = &cur_regs(env)[regno]; 3562 switch (reg->type) { 3563 case PTR_TO_MAP_KEY: 3564 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3565 mem_size, off, size); 3566 break; 3567 case PTR_TO_MAP_VALUE: 3568 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3569 mem_size, off, size); 3570 break; 3571 case PTR_TO_PACKET: 3572 case PTR_TO_PACKET_META: 3573 case PTR_TO_PACKET_END: 3574 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3575 off, size, regno, reg->id, off, mem_size); 3576 break; 3577 case PTR_TO_MEM: 3578 default: 3579 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3580 mem_size, off, size); 3581 } 3582 3583 return -EACCES; 3584 } 3585 3586 /* check read/write into a memory region with possible variable offset */ 3587 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3588 int off, int size, u32 mem_size, 3589 bool zero_size_allowed) 3590 { 3591 struct bpf_verifier_state *vstate = env->cur_state; 3592 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3593 struct bpf_reg_state *reg = &state->regs[regno]; 3594 int err; 3595 3596 /* We may have adjusted the register pointing to memory region, so we 3597 * need to try adding each of min_value and max_value to off 3598 * to make sure our theoretical access will be safe. 3599 * 3600 * The minimum value is only important with signed 3601 * comparisons where we can't assume the floor of a 3602 * value is 0. If we are using signed variables for our 3603 * index'es we need to make sure that whatever we use 3604 * will have a set floor within our range. 3605 */ 3606 if (reg->smin_value < 0 && 3607 (reg->smin_value == S64_MIN || 3608 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3609 reg->smin_value + off < 0)) { 3610 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3611 regno); 3612 return -EACCES; 3613 } 3614 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3615 mem_size, zero_size_allowed); 3616 if (err) { 3617 verbose(env, "R%d min value is outside of the allowed memory range\n", 3618 regno); 3619 return err; 3620 } 3621 3622 /* If we haven't set a max value then we need to bail since we can't be 3623 * sure we won't do bad things. 3624 * If reg->umax_value + off could overflow, treat that as unbounded too. 3625 */ 3626 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3627 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3628 regno); 3629 return -EACCES; 3630 } 3631 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3632 mem_size, zero_size_allowed); 3633 if (err) { 3634 verbose(env, "R%d max value is outside of the allowed memory range\n", 3635 regno); 3636 return err; 3637 } 3638 3639 return 0; 3640 } 3641 3642 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 3643 const struct bpf_reg_state *reg, int regno, 3644 bool fixed_off_ok) 3645 { 3646 /* Access to this pointer-typed register or passing it to a helper 3647 * is only allowed in its original, unmodified form. 3648 */ 3649 3650 if (reg->off < 0) { 3651 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 3652 reg_type_str(env, reg->type), regno, reg->off); 3653 return -EACCES; 3654 } 3655 3656 if (!fixed_off_ok && reg->off) { 3657 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 3658 reg_type_str(env, reg->type), regno, reg->off); 3659 return -EACCES; 3660 } 3661 3662 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3663 char tn_buf[48]; 3664 3665 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3666 verbose(env, "variable %s access var_off=%s disallowed\n", 3667 reg_type_str(env, reg->type), tn_buf); 3668 return -EACCES; 3669 } 3670 3671 return 0; 3672 } 3673 3674 int check_ptr_off_reg(struct bpf_verifier_env *env, 3675 const struct bpf_reg_state *reg, int regno) 3676 { 3677 return __check_ptr_off_reg(env, reg, regno, false); 3678 } 3679 3680 static int map_kptr_match_type(struct bpf_verifier_env *env, 3681 struct bpf_map_value_off_desc *off_desc, 3682 struct bpf_reg_state *reg, u32 regno) 3683 { 3684 const char *targ_name = kernel_type_name(off_desc->kptr.btf, off_desc->kptr.btf_id); 3685 int perm_flags = PTR_MAYBE_NULL; 3686 const char *reg_name = ""; 3687 3688 /* Only unreferenced case accepts untrusted pointers */ 3689 if (off_desc->type == BPF_KPTR_UNREF) 3690 perm_flags |= PTR_UNTRUSTED; 3691 3692 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 3693 goto bad_type; 3694 3695 if (!btf_is_kernel(reg->btf)) { 3696 verbose(env, "R%d must point to kernel BTF\n", regno); 3697 return -EINVAL; 3698 } 3699 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 3700 reg_name = kernel_type_name(reg->btf, reg->btf_id); 3701 3702 /* For ref_ptr case, release function check should ensure we get one 3703 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 3704 * normal store of unreferenced kptr, we must ensure var_off is zero. 3705 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 3706 * reg->off and reg->ref_obj_id are not needed here. 3707 */ 3708 if (__check_ptr_off_reg(env, reg, regno, true)) 3709 return -EACCES; 3710 3711 /* A full type match is needed, as BTF can be vmlinux or module BTF, and 3712 * we also need to take into account the reg->off. 3713 * 3714 * We want to support cases like: 3715 * 3716 * struct foo { 3717 * struct bar br; 3718 * struct baz bz; 3719 * }; 3720 * 3721 * struct foo *v; 3722 * v = func(); // PTR_TO_BTF_ID 3723 * val->foo = v; // reg->off is zero, btf and btf_id match type 3724 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 3725 * // first member type of struct after comparison fails 3726 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 3727 * // to match type 3728 * 3729 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 3730 * is zero. We must also ensure that btf_struct_ids_match does not walk 3731 * the struct to match type against first member of struct, i.e. reject 3732 * second case from above. Hence, when type is BPF_KPTR_REF, we set 3733 * strict mode to true for type match. 3734 */ 3735 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 3736 off_desc->kptr.btf, off_desc->kptr.btf_id, 3737 off_desc->type == BPF_KPTR_REF)) 3738 goto bad_type; 3739 return 0; 3740 bad_type: 3741 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 3742 reg_type_str(env, reg->type), reg_name); 3743 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 3744 if (off_desc->type == BPF_KPTR_UNREF) 3745 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 3746 targ_name); 3747 else 3748 verbose(env, "\n"); 3749 return -EINVAL; 3750 } 3751 3752 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 3753 int value_regno, int insn_idx, 3754 struct bpf_map_value_off_desc *off_desc) 3755 { 3756 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 3757 int class = BPF_CLASS(insn->code); 3758 struct bpf_reg_state *val_reg; 3759 3760 /* Things we already checked for in check_map_access and caller: 3761 * - Reject cases where variable offset may touch kptr 3762 * - size of access (must be BPF_DW) 3763 * - tnum_is_const(reg->var_off) 3764 * - off_desc->offset == off + reg->var_off.value 3765 */ 3766 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 3767 if (BPF_MODE(insn->code) != BPF_MEM) { 3768 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 3769 return -EACCES; 3770 } 3771 3772 /* We only allow loading referenced kptr, since it will be marked as 3773 * untrusted, similar to unreferenced kptr. 3774 */ 3775 if (class != BPF_LDX && off_desc->type == BPF_KPTR_REF) { 3776 verbose(env, "store to referenced kptr disallowed\n"); 3777 return -EACCES; 3778 } 3779 3780 if (class == BPF_LDX) { 3781 val_reg = reg_state(env, value_regno); 3782 /* We can simply mark the value_regno receiving the pointer 3783 * value from map as PTR_TO_BTF_ID, with the correct type. 3784 */ 3785 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, off_desc->kptr.btf, 3786 off_desc->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED); 3787 /* For mark_ptr_or_null_reg */ 3788 val_reg->id = ++env->id_gen; 3789 } else if (class == BPF_STX) { 3790 val_reg = reg_state(env, value_regno); 3791 if (!register_is_null(val_reg) && 3792 map_kptr_match_type(env, off_desc, val_reg, value_regno)) 3793 return -EACCES; 3794 } else if (class == BPF_ST) { 3795 if (insn->imm) { 3796 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 3797 off_desc->offset); 3798 return -EACCES; 3799 } 3800 } else { 3801 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 3802 return -EACCES; 3803 } 3804 return 0; 3805 } 3806 3807 /* check read/write into a map element with possible variable offset */ 3808 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 3809 int off, int size, bool zero_size_allowed, 3810 enum bpf_access_src src) 3811 { 3812 struct bpf_verifier_state *vstate = env->cur_state; 3813 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3814 struct bpf_reg_state *reg = &state->regs[regno]; 3815 struct bpf_map *map = reg->map_ptr; 3816 int err; 3817 3818 err = check_mem_region_access(env, regno, off, size, map->value_size, 3819 zero_size_allowed); 3820 if (err) 3821 return err; 3822 3823 if (map_value_has_spin_lock(map)) { 3824 u32 lock = map->spin_lock_off; 3825 3826 /* if any part of struct bpf_spin_lock can be touched by 3827 * load/store reject this program. 3828 * To check that [x1, x2) overlaps with [y1, y2) 3829 * it is sufficient to check x1 < y2 && y1 < x2. 3830 */ 3831 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 3832 lock < reg->umax_value + off + size) { 3833 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 3834 return -EACCES; 3835 } 3836 } 3837 if (map_value_has_timer(map)) { 3838 u32 t = map->timer_off; 3839 3840 if (reg->smin_value + off < t + sizeof(struct bpf_timer) && 3841 t < reg->umax_value + off + size) { 3842 verbose(env, "bpf_timer cannot be accessed directly by load/store\n"); 3843 return -EACCES; 3844 } 3845 } 3846 if (map_value_has_kptrs(map)) { 3847 struct bpf_map_value_off *tab = map->kptr_off_tab; 3848 int i; 3849 3850 for (i = 0; i < tab->nr_off; i++) { 3851 u32 p = tab->off[i].offset; 3852 3853 if (reg->smin_value + off < p + sizeof(u64) && 3854 p < reg->umax_value + off + size) { 3855 if (src != ACCESS_DIRECT) { 3856 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 3857 return -EACCES; 3858 } 3859 if (!tnum_is_const(reg->var_off)) { 3860 verbose(env, "kptr access cannot have variable offset\n"); 3861 return -EACCES; 3862 } 3863 if (p != off + reg->var_off.value) { 3864 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 3865 p, off + reg->var_off.value); 3866 return -EACCES; 3867 } 3868 if (size != bpf_size_to_bytes(BPF_DW)) { 3869 verbose(env, "kptr access size must be BPF_DW\n"); 3870 return -EACCES; 3871 } 3872 break; 3873 } 3874 } 3875 } 3876 return err; 3877 } 3878 3879 #define MAX_PACKET_OFF 0xffff 3880 3881 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 3882 const struct bpf_call_arg_meta *meta, 3883 enum bpf_access_type t) 3884 { 3885 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 3886 3887 switch (prog_type) { 3888 /* Program types only with direct read access go here! */ 3889 case BPF_PROG_TYPE_LWT_IN: 3890 case BPF_PROG_TYPE_LWT_OUT: 3891 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 3892 case BPF_PROG_TYPE_SK_REUSEPORT: 3893 case BPF_PROG_TYPE_FLOW_DISSECTOR: 3894 case BPF_PROG_TYPE_CGROUP_SKB: 3895 if (t == BPF_WRITE) 3896 return false; 3897 fallthrough; 3898 3899 /* Program types with direct read + write access go here! */ 3900 case BPF_PROG_TYPE_SCHED_CLS: 3901 case BPF_PROG_TYPE_SCHED_ACT: 3902 case BPF_PROG_TYPE_XDP: 3903 case BPF_PROG_TYPE_LWT_XMIT: 3904 case BPF_PROG_TYPE_SK_SKB: 3905 case BPF_PROG_TYPE_SK_MSG: 3906 if (meta) 3907 return meta->pkt_access; 3908 3909 env->seen_direct_write = true; 3910 return true; 3911 3912 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 3913 if (t == BPF_WRITE) 3914 env->seen_direct_write = true; 3915 3916 return true; 3917 3918 default: 3919 return false; 3920 } 3921 } 3922 3923 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 3924 int size, bool zero_size_allowed) 3925 { 3926 struct bpf_reg_state *regs = cur_regs(env); 3927 struct bpf_reg_state *reg = ®s[regno]; 3928 int err; 3929 3930 /* We may have added a variable offset to the packet pointer; but any 3931 * reg->range we have comes after that. We are only checking the fixed 3932 * offset. 3933 */ 3934 3935 /* We don't allow negative numbers, because we aren't tracking enough 3936 * detail to prove they're safe. 3937 */ 3938 if (reg->smin_value < 0) { 3939 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3940 regno); 3941 return -EACCES; 3942 } 3943 3944 err = reg->range < 0 ? -EINVAL : 3945 __check_mem_access(env, regno, off, size, reg->range, 3946 zero_size_allowed); 3947 if (err) { 3948 verbose(env, "R%d offset is outside of the packet\n", regno); 3949 return err; 3950 } 3951 3952 /* __check_mem_access has made sure "off + size - 1" is within u16. 3953 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 3954 * otherwise find_good_pkt_pointers would have refused to set range info 3955 * that __check_mem_access would have rejected this pkt access. 3956 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 3957 */ 3958 env->prog->aux->max_pkt_offset = 3959 max_t(u32, env->prog->aux->max_pkt_offset, 3960 off + reg->umax_value + size - 1); 3961 3962 return err; 3963 } 3964 3965 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 3966 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 3967 enum bpf_access_type t, enum bpf_reg_type *reg_type, 3968 struct btf **btf, u32 *btf_id) 3969 { 3970 struct bpf_insn_access_aux info = { 3971 .reg_type = *reg_type, 3972 .log = &env->log, 3973 }; 3974 3975 if (env->ops->is_valid_access && 3976 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 3977 /* A non zero info.ctx_field_size indicates that this field is a 3978 * candidate for later verifier transformation to load the whole 3979 * field and then apply a mask when accessed with a narrower 3980 * access than actual ctx access size. A zero info.ctx_field_size 3981 * will only allow for whole field access and rejects any other 3982 * type of narrower access. 3983 */ 3984 *reg_type = info.reg_type; 3985 3986 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 3987 *btf = info.btf; 3988 *btf_id = info.btf_id; 3989 } else { 3990 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 3991 } 3992 /* remember the offset of last byte accessed in ctx */ 3993 if (env->prog->aux->max_ctx_offset < off + size) 3994 env->prog->aux->max_ctx_offset = off + size; 3995 return 0; 3996 } 3997 3998 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 3999 return -EACCES; 4000 } 4001 4002 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 4003 int size) 4004 { 4005 if (size < 0 || off < 0 || 4006 (u64)off + size > sizeof(struct bpf_flow_keys)) { 4007 verbose(env, "invalid access to flow keys off=%d size=%d\n", 4008 off, size); 4009 return -EACCES; 4010 } 4011 return 0; 4012 } 4013 4014 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 4015 u32 regno, int off, int size, 4016 enum bpf_access_type t) 4017 { 4018 struct bpf_reg_state *regs = cur_regs(env); 4019 struct bpf_reg_state *reg = ®s[regno]; 4020 struct bpf_insn_access_aux info = {}; 4021 bool valid; 4022 4023 if (reg->smin_value < 0) { 4024 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4025 regno); 4026 return -EACCES; 4027 } 4028 4029 switch (reg->type) { 4030 case PTR_TO_SOCK_COMMON: 4031 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 4032 break; 4033 case PTR_TO_SOCKET: 4034 valid = bpf_sock_is_valid_access(off, size, t, &info); 4035 break; 4036 case PTR_TO_TCP_SOCK: 4037 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 4038 break; 4039 case PTR_TO_XDP_SOCK: 4040 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 4041 break; 4042 default: 4043 valid = false; 4044 } 4045 4046 4047 if (valid) { 4048 env->insn_aux_data[insn_idx].ctx_field_size = 4049 info.ctx_field_size; 4050 return 0; 4051 } 4052 4053 verbose(env, "R%d invalid %s access off=%d size=%d\n", 4054 regno, reg_type_str(env, reg->type), off, size); 4055 4056 return -EACCES; 4057 } 4058 4059 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 4060 { 4061 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 4062 } 4063 4064 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 4065 { 4066 const struct bpf_reg_state *reg = reg_state(env, regno); 4067 4068 return reg->type == PTR_TO_CTX; 4069 } 4070 4071 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 4072 { 4073 const struct bpf_reg_state *reg = reg_state(env, regno); 4074 4075 return type_is_sk_pointer(reg->type); 4076 } 4077 4078 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 4079 { 4080 const struct bpf_reg_state *reg = reg_state(env, regno); 4081 4082 return type_is_pkt_pointer(reg->type); 4083 } 4084 4085 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 4086 { 4087 const struct bpf_reg_state *reg = reg_state(env, regno); 4088 4089 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 4090 return reg->type == PTR_TO_FLOW_KEYS; 4091 } 4092 4093 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 4094 const struct bpf_reg_state *reg, 4095 int off, int size, bool strict) 4096 { 4097 struct tnum reg_off; 4098 int ip_align; 4099 4100 /* Byte size accesses are always allowed. */ 4101 if (!strict || size == 1) 4102 return 0; 4103 4104 /* For platforms that do not have a Kconfig enabling 4105 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 4106 * NET_IP_ALIGN is universally set to '2'. And on platforms 4107 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 4108 * to this code only in strict mode where we want to emulate 4109 * the NET_IP_ALIGN==2 checking. Therefore use an 4110 * unconditional IP align value of '2'. 4111 */ 4112 ip_align = 2; 4113 4114 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 4115 if (!tnum_is_aligned(reg_off, size)) { 4116 char tn_buf[48]; 4117 4118 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4119 verbose(env, 4120 "misaligned packet access off %d+%s+%d+%d size %d\n", 4121 ip_align, tn_buf, reg->off, off, size); 4122 return -EACCES; 4123 } 4124 4125 return 0; 4126 } 4127 4128 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 4129 const struct bpf_reg_state *reg, 4130 const char *pointer_desc, 4131 int off, int size, bool strict) 4132 { 4133 struct tnum reg_off; 4134 4135 /* Byte size accesses are always allowed. */ 4136 if (!strict || size == 1) 4137 return 0; 4138 4139 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 4140 if (!tnum_is_aligned(reg_off, size)) { 4141 char tn_buf[48]; 4142 4143 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4144 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 4145 pointer_desc, tn_buf, reg->off, off, size); 4146 return -EACCES; 4147 } 4148 4149 return 0; 4150 } 4151 4152 static int check_ptr_alignment(struct bpf_verifier_env *env, 4153 const struct bpf_reg_state *reg, int off, 4154 int size, bool strict_alignment_once) 4155 { 4156 bool strict = env->strict_alignment || strict_alignment_once; 4157 const char *pointer_desc = ""; 4158 4159 switch (reg->type) { 4160 case PTR_TO_PACKET: 4161 case PTR_TO_PACKET_META: 4162 /* Special case, because of NET_IP_ALIGN. Given metadata sits 4163 * right in front, treat it the very same way. 4164 */ 4165 return check_pkt_ptr_alignment(env, reg, off, size, strict); 4166 case PTR_TO_FLOW_KEYS: 4167 pointer_desc = "flow keys "; 4168 break; 4169 case PTR_TO_MAP_KEY: 4170 pointer_desc = "key "; 4171 break; 4172 case PTR_TO_MAP_VALUE: 4173 pointer_desc = "value "; 4174 break; 4175 case PTR_TO_CTX: 4176 pointer_desc = "context "; 4177 break; 4178 case PTR_TO_STACK: 4179 pointer_desc = "stack "; 4180 /* The stack spill tracking logic in check_stack_write_fixed_off() 4181 * and check_stack_read_fixed_off() relies on stack accesses being 4182 * aligned. 4183 */ 4184 strict = true; 4185 break; 4186 case PTR_TO_SOCKET: 4187 pointer_desc = "sock "; 4188 break; 4189 case PTR_TO_SOCK_COMMON: 4190 pointer_desc = "sock_common "; 4191 break; 4192 case PTR_TO_TCP_SOCK: 4193 pointer_desc = "tcp_sock "; 4194 break; 4195 case PTR_TO_XDP_SOCK: 4196 pointer_desc = "xdp_sock "; 4197 break; 4198 default: 4199 break; 4200 } 4201 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 4202 strict); 4203 } 4204 4205 static int update_stack_depth(struct bpf_verifier_env *env, 4206 const struct bpf_func_state *func, 4207 int off) 4208 { 4209 u16 stack = env->subprog_info[func->subprogno].stack_depth; 4210 4211 if (stack >= -off) 4212 return 0; 4213 4214 /* update known max for given subprogram */ 4215 env->subprog_info[func->subprogno].stack_depth = -off; 4216 return 0; 4217 } 4218 4219 /* starting from main bpf function walk all instructions of the function 4220 * and recursively walk all callees that given function can call. 4221 * Ignore jump and exit insns. 4222 * Since recursion is prevented by check_cfg() this algorithm 4223 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 4224 */ 4225 static int check_max_stack_depth(struct bpf_verifier_env *env) 4226 { 4227 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 4228 struct bpf_subprog_info *subprog = env->subprog_info; 4229 struct bpf_insn *insn = env->prog->insnsi; 4230 bool tail_call_reachable = false; 4231 int ret_insn[MAX_CALL_FRAMES]; 4232 int ret_prog[MAX_CALL_FRAMES]; 4233 int j; 4234 4235 process_func: 4236 /* protect against potential stack overflow that might happen when 4237 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 4238 * depth for such case down to 256 so that the worst case scenario 4239 * would result in 8k stack size (32 which is tailcall limit * 256 = 4240 * 8k). 4241 * 4242 * To get the idea what might happen, see an example: 4243 * func1 -> sub rsp, 128 4244 * subfunc1 -> sub rsp, 256 4245 * tailcall1 -> add rsp, 256 4246 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 4247 * subfunc2 -> sub rsp, 64 4248 * subfunc22 -> sub rsp, 128 4249 * tailcall2 -> add rsp, 128 4250 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 4251 * 4252 * tailcall will unwind the current stack frame but it will not get rid 4253 * of caller's stack as shown on the example above. 4254 */ 4255 if (idx && subprog[idx].has_tail_call && depth >= 256) { 4256 verbose(env, 4257 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 4258 depth); 4259 return -EACCES; 4260 } 4261 /* round up to 32-bytes, since this is granularity 4262 * of interpreter stack size 4263 */ 4264 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4265 if (depth > MAX_BPF_STACK) { 4266 verbose(env, "combined stack size of %d calls is %d. Too large\n", 4267 frame + 1, depth); 4268 return -EACCES; 4269 } 4270 continue_func: 4271 subprog_end = subprog[idx + 1].start; 4272 for (; i < subprog_end; i++) { 4273 int next_insn; 4274 4275 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 4276 continue; 4277 /* remember insn and function to return to */ 4278 ret_insn[frame] = i + 1; 4279 ret_prog[frame] = idx; 4280 4281 /* find the callee */ 4282 next_insn = i + insn[i].imm + 1; 4283 idx = find_subprog(env, next_insn); 4284 if (idx < 0) { 4285 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4286 next_insn); 4287 return -EFAULT; 4288 } 4289 if (subprog[idx].is_async_cb) { 4290 if (subprog[idx].has_tail_call) { 4291 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 4292 return -EFAULT; 4293 } 4294 /* async callbacks don't increase bpf prog stack size */ 4295 continue; 4296 } 4297 i = next_insn; 4298 4299 if (subprog[idx].has_tail_call) 4300 tail_call_reachable = true; 4301 4302 frame++; 4303 if (frame >= MAX_CALL_FRAMES) { 4304 verbose(env, "the call stack of %d frames is too deep !\n", 4305 frame); 4306 return -E2BIG; 4307 } 4308 goto process_func; 4309 } 4310 /* if tail call got detected across bpf2bpf calls then mark each of the 4311 * currently present subprog frames as tail call reachable subprogs; 4312 * this info will be utilized by JIT so that we will be preserving the 4313 * tail call counter throughout bpf2bpf calls combined with tailcalls 4314 */ 4315 if (tail_call_reachable) 4316 for (j = 0; j < frame; j++) 4317 subprog[ret_prog[j]].tail_call_reachable = true; 4318 if (subprog[0].tail_call_reachable) 4319 env->prog->aux->tail_call_reachable = true; 4320 4321 /* end of for() loop means the last insn of the 'subprog' 4322 * was reached. Doesn't matter whether it was JA or EXIT 4323 */ 4324 if (frame == 0) 4325 return 0; 4326 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4327 frame--; 4328 i = ret_insn[frame]; 4329 idx = ret_prog[frame]; 4330 goto continue_func; 4331 } 4332 4333 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 4334 static int get_callee_stack_depth(struct bpf_verifier_env *env, 4335 const struct bpf_insn *insn, int idx) 4336 { 4337 int start = idx + insn->imm + 1, subprog; 4338 4339 subprog = find_subprog(env, start); 4340 if (subprog < 0) { 4341 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4342 start); 4343 return -EFAULT; 4344 } 4345 return env->subprog_info[subprog].stack_depth; 4346 } 4347 #endif 4348 4349 static int __check_buffer_access(struct bpf_verifier_env *env, 4350 const char *buf_info, 4351 const struct bpf_reg_state *reg, 4352 int regno, int off, int size) 4353 { 4354 if (off < 0) { 4355 verbose(env, 4356 "R%d invalid %s buffer access: off=%d, size=%d\n", 4357 regno, buf_info, off, size); 4358 return -EACCES; 4359 } 4360 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4361 char tn_buf[48]; 4362 4363 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4364 verbose(env, 4365 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 4366 regno, off, tn_buf); 4367 return -EACCES; 4368 } 4369 4370 return 0; 4371 } 4372 4373 static int check_tp_buffer_access(struct bpf_verifier_env *env, 4374 const struct bpf_reg_state *reg, 4375 int regno, int off, int size) 4376 { 4377 int err; 4378 4379 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 4380 if (err) 4381 return err; 4382 4383 if (off + size > env->prog->aux->max_tp_access) 4384 env->prog->aux->max_tp_access = off + size; 4385 4386 return 0; 4387 } 4388 4389 static int check_buffer_access(struct bpf_verifier_env *env, 4390 const struct bpf_reg_state *reg, 4391 int regno, int off, int size, 4392 bool zero_size_allowed, 4393 u32 *max_access) 4394 { 4395 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 4396 int err; 4397 4398 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 4399 if (err) 4400 return err; 4401 4402 if (off + size > *max_access) 4403 *max_access = off + size; 4404 4405 return 0; 4406 } 4407 4408 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 4409 static void zext_32_to_64(struct bpf_reg_state *reg) 4410 { 4411 reg->var_off = tnum_subreg(reg->var_off); 4412 __reg_assign_32_into_64(reg); 4413 } 4414 4415 /* truncate register to smaller size (in bytes) 4416 * must be called with size < BPF_REG_SIZE 4417 */ 4418 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 4419 { 4420 u64 mask; 4421 4422 /* clear high bits in bit representation */ 4423 reg->var_off = tnum_cast(reg->var_off, size); 4424 4425 /* fix arithmetic bounds */ 4426 mask = ((u64)1 << (size * 8)) - 1; 4427 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 4428 reg->umin_value &= mask; 4429 reg->umax_value &= mask; 4430 } else { 4431 reg->umin_value = 0; 4432 reg->umax_value = mask; 4433 } 4434 reg->smin_value = reg->umin_value; 4435 reg->smax_value = reg->umax_value; 4436 4437 /* If size is smaller than 32bit register the 32bit register 4438 * values are also truncated so we push 64-bit bounds into 4439 * 32-bit bounds. Above were truncated < 32-bits already. 4440 */ 4441 if (size >= 4) 4442 return; 4443 __reg_combine_64_into_32(reg); 4444 } 4445 4446 static bool bpf_map_is_rdonly(const struct bpf_map *map) 4447 { 4448 /* A map is considered read-only if the following condition are true: 4449 * 4450 * 1) BPF program side cannot change any of the map content. The 4451 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 4452 * and was set at map creation time. 4453 * 2) The map value(s) have been initialized from user space by a 4454 * loader and then "frozen", such that no new map update/delete 4455 * operations from syscall side are possible for the rest of 4456 * the map's lifetime from that point onwards. 4457 * 3) Any parallel/pending map update/delete operations from syscall 4458 * side have been completed. Only after that point, it's safe to 4459 * assume that map value(s) are immutable. 4460 */ 4461 return (map->map_flags & BPF_F_RDONLY_PROG) && 4462 READ_ONCE(map->frozen) && 4463 !bpf_map_write_active(map); 4464 } 4465 4466 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 4467 { 4468 void *ptr; 4469 u64 addr; 4470 int err; 4471 4472 err = map->ops->map_direct_value_addr(map, &addr, off); 4473 if (err) 4474 return err; 4475 ptr = (void *)(long)addr + off; 4476 4477 switch (size) { 4478 case sizeof(u8): 4479 *val = (u64)*(u8 *)ptr; 4480 break; 4481 case sizeof(u16): 4482 *val = (u64)*(u16 *)ptr; 4483 break; 4484 case sizeof(u32): 4485 *val = (u64)*(u32 *)ptr; 4486 break; 4487 case sizeof(u64): 4488 *val = *(u64 *)ptr; 4489 break; 4490 default: 4491 return -EINVAL; 4492 } 4493 return 0; 4494 } 4495 4496 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 4497 struct bpf_reg_state *regs, 4498 int regno, int off, int size, 4499 enum bpf_access_type atype, 4500 int value_regno) 4501 { 4502 struct bpf_reg_state *reg = regs + regno; 4503 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 4504 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 4505 enum bpf_type_flag flag = 0; 4506 u32 btf_id; 4507 int ret; 4508 4509 if (off < 0) { 4510 verbose(env, 4511 "R%d is ptr_%s invalid negative access: off=%d\n", 4512 regno, tname, off); 4513 return -EACCES; 4514 } 4515 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4516 char tn_buf[48]; 4517 4518 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4519 verbose(env, 4520 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 4521 regno, tname, off, tn_buf); 4522 return -EACCES; 4523 } 4524 4525 if (reg->type & MEM_USER) { 4526 verbose(env, 4527 "R%d is ptr_%s access user memory: off=%d\n", 4528 regno, tname, off); 4529 return -EACCES; 4530 } 4531 4532 if (reg->type & MEM_PERCPU) { 4533 verbose(env, 4534 "R%d is ptr_%s access percpu memory: off=%d\n", 4535 regno, tname, off); 4536 return -EACCES; 4537 } 4538 4539 if (env->ops->btf_struct_access) { 4540 ret = env->ops->btf_struct_access(&env->log, reg->btf, t, 4541 off, size, atype, &btf_id, &flag); 4542 } else { 4543 if (atype != BPF_READ) { 4544 verbose(env, "only read is supported\n"); 4545 return -EACCES; 4546 } 4547 4548 ret = btf_struct_access(&env->log, reg->btf, t, off, size, 4549 atype, &btf_id, &flag); 4550 } 4551 4552 if (ret < 0) 4553 return ret; 4554 4555 /* If this is an untrusted pointer, all pointers formed by walking it 4556 * also inherit the untrusted flag. 4557 */ 4558 if (type_flag(reg->type) & PTR_UNTRUSTED) 4559 flag |= PTR_UNTRUSTED; 4560 4561 if (atype == BPF_READ && value_regno >= 0) 4562 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 4563 4564 return 0; 4565 } 4566 4567 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 4568 struct bpf_reg_state *regs, 4569 int regno, int off, int size, 4570 enum bpf_access_type atype, 4571 int value_regno) 4572 { 4573 struct bpf_reg_state *reg = regs + regno; 4574 struct bpf_map *map = reg->map_ptr; 4575 enum bpf_type_flag flag = 0; 4576 const struct btf_type *t; 4577 const char *tname; 4578 u32 btf_id; 4579 int ret; 4580 4581 if (!btf_vmlinux) { 4582 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 4583 return -ENOTSUPP; 4584 } 4585 4586 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 4587 verbose(env, "map_ptr access not supported for map type %d\n", 4588 map->map_type); 4589 return -ENOTSUPP; 4590 } 4591 4592 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 4593 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 4594 4595 if (!env->allow_ptr_to_map_access) { 4596 verbose(env, 4597 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4598 tname); 4599 return -EPERM; 4600 } 4601 4602 if (off < 0) { 4603 verbose(env, "R%d is %s invalid negative access: off=%d\n", 4604 regno, tname, off); 4605 return -EACCES; 4606 } 4607 4608 if (atype != BPF_READ) { 4609 verbose(env, "only read from %s is supported\n", tname); 4610 return -EACCES; 4611 } 4612 4613 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id, &flag); 4614 if (ret < 0) 4615 return ret; 4616 4617 if (value_regno >= 0) 4618 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 4619 4620 return 0; 4621 } 4622 4623 /* Check that the stack access at the given offset is within bounds. The 4624 * maximum valid offset is -1. 4625 * 4626 * The minimum valid offset is -MAX_BPF_STACK for writes, and 4627 * -state->allocated_stack for reads. 4628 */ 4629 static int check_stack_slot_within_bounds(int off, 4630 struct bpf_func_state *state, 4631 enum bpf_access_type t) 4632 { 4633 int min_valid_off; 4634 4635 if (t == BPF_WRITE) 4636 min_valid_off = -MAX_BPF_STACK; 4637 else 4638 min_valid_off = -state->allocated_stack; 4639 4640 if (off < min_valid_off || off > -1) 4641 return -EACCES; 4642 return 0; 4643 } 4644 4645 /* Check that the stack access at 'regno + off' falls within the maximum stack 4646 * bounds. 4647 * 4648 * 'off' includes `regno->offset`, but not its dynamic part (if any). 4649 */ 4650 static int check_stack_access_within_bounds( 4651 struct bpf_verifier_env *env, 4652 int regno, int off, int access_size, 4653 enum bpf_access_src src, enum bpf_access_type type) 4654 { 4655 struct bpf_reg_state *regs = cur_regs(env); 4656 struct bpf_reg_state *reg = regs + regno; 4657 struct bpf_func_state *state = func(env, reg); 4658 int min_off, max_off; 4659 int err; 4660 char *err_extra; 4661 4662 if (src == ACCESS_HELPER) 4663 /* We don't know if helpers are reading or writing (or both). */ 4664 err_extra = " indirect access to"; 4665 else if (type == BPF_READ) 4666 err_extra = " read from"; 4667 else 4668 err_extra = " write to"; 4669 4670 if (tnum_is_const(reg->var_off)) { 4671 min_off = reg->var_off.value + off; 4672 if (access_size > 0) 4673 max_off = min_off + access_size - 1; 4674 else 4675 max_off = min_off; 4676 } else { 4677 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4678 reg->smin_value <= -BPF_MAX_VAR_OFF) { 4679 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 4680 err_extra, regno); 4681 return -EACCES; 4682 } 4683 min_off = reg->smin_value + off; 4684 if (access_size > 0) 4685 max_off = reg->smax_value + off + access_size - 1; 4686 else 4687 max_off = min_off; 4688 } 4689 4690 err = check_stack_slot_within_bounds(min_off, state, type); 4691 if (!err) 4692 err = check_stack_slot_within_bounds(max_off, state, type); 4693 4694 if (err) { 4695 if (tnum_is_const(reg->var_off)) { 4696 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 4697 err_extra, regno, off, access_size); 4698 } else { 4699 char tn_buf[48]; 4700 4701 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4702 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 4703 err_extra, regno, tn_buf, access_size); 4704 } 4705 } 4706 return err; 4707 } 4708 4709 /* check whether memory at (regno + off) is accessible for t = (read | write) 4710 * if t==write, value_regno is a register which value is stored into memory 4711 * if t==read, value_regno is a register which will receive the value from memory 4712 * if t==write && value_regno==-1, some unknown value is stored into memory 4713 * if t==read && value_regno==-1, don't care what we read from memory 4714 */ 4715 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 4716 int off, int bpf_size, enum bpf_access_type t, 4717 int value_regno, bool strict_alignment_once) 4718 { 4719 struct bpf_reg_state *regs = cur_regs(env); 4720 struct bpf_reg_state *reg = regs + regno; 4721 struct bpf_func_state *state; 4722 int size, err = 0; 4723 4724 size = bpf_size_to_bytes(bpf_size); 4725 if (size < 0) 4726 return size; 4727 4728 /* alignment checks will add in reg->off themselves */ 4729 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 4730 if (err) 4731 return err; 4732 4733 /* for access checks, reg->off is just part of off */ 4734 off += reg->off; 4735 4736 if (reg->type == PTR_TO_MAP_KEY) { 4737 if (t == BPF_WRITE) { 4738 verbose(env, "write to change key R%d not allowed\n", regno); 4739 return -EACCES; 4740 } 4741 4742 err = check_mem_region_access(env, regno, off, size, 4743 reg->map_ptr->key_size, false); 4744 if (err) 4745 return err; 4746 if (value_regno >= 0) 4747 mark_reg_unknown(env, regs, value_regno); 4748 } else if (reg->type == PTR_TO_MAP_VALUE) { 4749 struct bpf_map_value_off_desc *kptr_off_desc = NULL; 4750 4751 if (t == BPF_WRITE && value_regno >= 0 && 4752 is_pointer_value(env, value_regno)) { 4753 verbose(env, "R%d leaks addr into map\n", value_regno); 4754 return -EACCES; 4755 } 4756 err = check_map_access_type(env, regno, off, size, t); 4757 if (err) 4758 return err; 4759 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 4760 if (err) 4761 return err; 4762 if (tnum_is_const(reg->var_off)) 4763 kptr_off_desc = bpf_map_kptr_off_contains(reg->map_ptr, 4764 off + reg->var_off.value); 4765 if (kptr_off_desc) { 4766 err = check_map_kptr_access(env, regno, value_regno, insn_idx, 4767 kptr_off_desc); 4768 } else if (t == BPF_READ && value_regno >= 0) { 4769 struct bpf_map *map = reg->map_ptr; 4770 4771 /* if map is read-only, track its contents as scalars */ 4772 if (tnum_is_const(reg->var_off) && 4773 bpf_map_is_rdonly(map) && 4774 map->ops->map_direct_value_addr) { 4775 int map_off = off + reg->var_off.value; 4776 u64 val = 0; 4777 4778 err = bpf_map_direct_read(map, map_off, size, 4779 &val); 4780 if (err) 4781 return err; 4782 4783 regs[value_regno].type = SCALAR_VALUE; 4784 __mark_reg_known(®s[value_regno], val); 4785 } else { 4786 mark_reg_unknown(env, regs, value_regno); 4787 } 4788 } 4789 } else if (base_type(reg->type) == PTR_TO_MEM) { 4790 bool rdonly_mem = type_is_rdonly_mem(reg->type); 4791 4792 if (type_may_be_null(reg->type)) { 4793 verbose(env, "R%d invalid mem access '%s'\n", regno, 4794 reg_type_str(env, reg->type)); 4795 return -EACCES; 4796 } 4797 4798 if (t == BPF_WRITE && rdonly_mem) { 4799 verbose(env, "R%d cannot write into %s\n", 4800 regno, reg_type_str(env, reg->type)); 4801 return -EACCES; 4802 } 4803 4804 if (t == BPF_WRITE && value_regno >= 0 && 4805 is_pointer_value(env, value_regno)) { 4806 verbose(env, "R%d leaks addr into mem\n", value_regno); 4807 return -EACCES; 4808 } 4809 4810 err = check_mem_region_access(env, regno, off, size, 4811 reg->mem_size, false); 4812 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 4813 mark_reg_unknown(env, regs, value_regno); 4814 } else if (reg->type == PTR_TO_CTX) { 4815 enum bpf_reg_type reg_type = SCALAR_VALUE; 4816 struct btf *btf = NULL; 4817 u32 btf_id = 0; 4818 4819 if (t == BPF_WRITE && value_regno >= 0 && 4820 is_pointer_value(env, value_regno)) { 4821 verbose(env, "R%d leaks addr into ctx\n", value_regno); 4822 return -EACCES; 4823 } 4824 4825 err = check_ptr_off_reg(env, reg, regno); 4826 if (err < 0) 4827 return err; 4828 4829 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 4830 &btf_id); 4831 if (err) 4832 verbose_linfo(env, insn_idx, "; "); 4833 if (!err && t == BPF_READ && value_regno >= 0) { 4834 /* ctx access returns either a scalar, or a 4835 * PTR_TO_PACKET[_META,_END]. In the latter 4836 * case, we know the offset is zero. 4837 */ 4838 if (reg_type == SCALAR_VALUE) { 4839 mark_reg_unknown(env, regs, value_regno); 4840 } else { 4841 mark_reg_known_zero(env, regs, 4842 value_regno); 4843 if (type_may_be_null(reg_type)) 4844 regs[value_regno].id = ++env->id_gen; 4845 /* A load of ctx field could have different 4846 * actual load size with the one encoded in the 4847 * insn. When the dst is PTR, it is for sure not 4848 * a sub-register. 4849 */ 4850 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 4851 if (base_type(reg_type) == PTR_TO_BTF_ID) { 4852 regs[value_regno].btf = btf; 4853 regs[value_regno].btf_id = btf_id; 4854 } 4855 } 4856 regs[value_regno].type = reg_type; 4857 } 4858 4859 } else if (reg->type == PTR_TO_STACK) { 4860 /* Basic bounds checks. */ 4861 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 4862 if (err) 4863 return err; 4864 4865 state = func(env, reg); 4866 err = update_stack_depth(env, state, off); 4867 if (err) 4868 return err; 4869 4870 if (t == BPF_READ) 4871 err = check_stack_read(env, regno, off, size, 4872 value_regno); 4873 else 4874 err = check_stack_write(env, regno, off, size, 4875 value_regno, insn_idx); 4876 } else if (reg_is_pkt_pointer(reg)) { 4877 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 4878 verbose(env, "cannot write into packet\n"); 4879 return -EACCES; 4880 } 4881 if (t == BPF_WRITE && value_regno >= 0 && 4882 is_pointer_value(env, value_regno)) { 4883 verbose(env, "R%d leaks addr into packet\n", 4884 value_regno); 4885 return -EACCES; 4886 } 4887 err = check_packet_access(env, regno, off, size, false); 4888 if (!err && t == BPF_READ && value_regno >= 0) 4889 mark_reg_unknown(env, regs, value_regno); 4890 } else if (reg->type == PTR_TO_FLOW_KEYS) { 4891 if (t == BPF_WRITE && value_regno >= 0 && 4892 is_pointer_value(env, value_regno)) { 4893 verbose(env, "R%d leaks addr into flow keys\n", 4894 value_regno); 4895 return -EACCES; 4896 } 4897 4898 err = check_flow_keys_access(env, off, size); 4899 if (!err && t == BPF_READ && value_regno >= 0) 4900 mark_reg_unknown(env, regs, value_regno); 4901 } else if (type_is_sk_pointer(reg->type)) { 4902 if (t == BPF_WRITE) { 4903 verbose(env, "R%d cannot write into %s\n", 4904 regno, reg_type_str(env, reg->type)); 4905 return -EACCES; 4906 } 4907 err = check_sock_access(env, insn_idx, regno, off, size, t); 4908 if (!err && value_regno >= 0) 4909 mark_reg_unknown(env, regs, value_regno); 4910 } else if (reg->type == PTR_TO_TP_BUFFER) { 4911 err = check_tp_buffer_access(env, reg, regno, off, size); 4912 if (!err && t == BPF_READ && value_regno >= 0) 4913 mark_reg_unknown(env, regs, value_regno); 4914 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 4915 !type_may_be_null(reg->type)) { 4916 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 4917 value_regno); 4918 } else if (reg->type == CONST_PTR_TO_MAP) { 4919 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 4920 value_regno); 4921 } else if (base_type(reg->type) == PTR_TO_BUF) { 4922 bool rdonly_mem = type_is_rdonly_mem(reg->type); 4923 u32 *max_access; 4924 4925 if (rdonly_mem) { 4926 if (t == BPF_WRITE) { 4927 verbose(env, "R%d cannot write into %s\n", 4928 regno, reg_type_str(env, reg->type)); 4929 return -EACCES; 4930 } 4931 max_access = &env->prog->aux->max_rdonly_access; 4932 } else { 4933 max_access = &env->prog->aux->max_rdwr_access; 4934 } 4935 4936 err = check_buffer_access(env, reg, regno, off, size, false, 4937 max_access); 4938 4939 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 4940 mark_reg_unknown(env, regs, value_regno); 4941 } else { 4942 verbose(env, "R%d invalid mem access '%s'\n", regno, 4943 reg_type_str(env, reg->type)); 4944 return -EACCES; 4945 } 4946 4947 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 4948 regs[value_regno].type == SCALAR_VALUE) { 4949 /* b/h/w load zero-extends, mark upper bits as known 0 */ 4950 coerce_reg_to_size(®s[value_regno], size); 4951 } 4952 return err; 4953 } 4954 4955 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 4956 { 4957 int load_reg; 4958 int err; 4959 4960 switch (insn->imm) { 4961 case BPF_ADD: 4962 case BPF_ADD | BPF_FETCH: 4963 case BPF_AND: 4964 case BPF_AND | BPF_FETCH: 4965 case BPF_OR: 4966 case BPF_OR | BPF_FETCH: 4967 case BPF_XOR: 4968 case BPF_XOR | BPF_FETCH: 4969 case BPF_XCHG: 4970 case BPF_CMPXCHG: 4971 break; 4972 default: 4973 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 4974 return -EINVAL; 4975 } 4976 4977 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 4978 verbose(env, "invalid atomic operand size\n"); 4979 return -EINVAL; 4980 } 4981 4982 /* check src1 operand */ 4983 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4984 if (err) 4985 return err; 4986 4987 /* check src2 operand */ 4988 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4989 if (err) 4990 return err; 4991 4992 if (insn->imm == BPF_CMPXCHG) { 4993 /* Check comparison of R0 with memory location */ 4994 const u32 aux_reg = BPF_REG_0; 4995 4996 err = check_reg_arg(env, aux_reg, SRC_OP); 4997 if (err) 4998 return err; 4999 5000 if (is_pointer_value(env, aux_reg)) { 5001 verbose(env, "R%d leaks addr into mem\n", aux_reg); 5002 return -EACCES; 5003 } 5004 } 5005 5006 if (is_pointer_value(env, insn->src_reg)) { 5007 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 5008 return -EACCES; 5009 } 5010 5011 if (is_ctx_reg(env, insn->dst_reg) || 5012 is_pkt_reg(env, insn->dst_reg) || 5013 is_flow_key_reg(env, insn->dst_reg) || 5014 is_sk_reg(env, insn->dst_reg)) { 5015 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 5016 insn->dst_reg, 5017 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 5018 return -EACCES; 5019 } 5020 5021 if (insn->imm & BPF_FETCH) { 5022 if (insn->imm == BPF_CMPXCHG) 5023 load_reg = BPF_REG_0; 5024 else 5025 load_reg = insn->src_reg; 5026 5027 /* check and record load of old value */ 5028 err = check_reg_arg(env, load_reg, DST_OP); 5029 if (err) 5030 return err; 5031 } else { 5032 /* This instruction accesses a memory location but doesn't 5033 * actually load it into a register. 5034 */ 5035 load_reg = -1; 5036 } 5037 5038 /* Check whether we can read the memory, with second call for fetch 5039 * case to simulate the register fill. 5040 */ 5041 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5042 BPF_SIZE(insn->code), BPF_READ, -1, true); 5043 if (!err && load_reg >= 0) 5044 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5045 BPF_SIZE(insn->code), BPF_READ, load_reg, 5046 true); 5047 if (err) 5048 return err; 5049 5050 /* Check whether we can write into the same memory. */ 5051 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5052 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 5053 if (err) 5054 return err; 5055 5056 return 0; 5057 } 5058 5059 /* When register 'regno' is used to read the stack (either directly or through 5060 * a helper function) make sure that it's within stack boundary and, depending 5061 * on the access type, that all elements of the stack are initialized. 5062 * 5063 * 'off' includes 'regno->off', but not its dynamic part (if any). 5064 * 5065 * All registers that have been spilled on the stack in the slots within the 5066 * read offsets are marked as read. 5067 */ 5068 static int check_stack_range_initialized( 5069 struct bpf_verifier_env *env, int regno, int off, 5070 int access_size, bool zero_size_allowed, 5071 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 5072 { 5073 struct bpf_reg_state *reg = reg_state(env, regno); 5074 struct bpf_func_state *state = func(env, reg); 5075 int err, min_off, max_off, i, j, slot, spi; 5076 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 5077 enum bpf_access_type bounds_check_type; 5078 /* Some accesses can write anything into the stack, others are 5079 * read-only. 5080 */ 5081 bool clobber = false; 5082 5083 if (access_size == 0 && !zero_size_allowed) { 5084 verbose(env, "invalid zero-sized read\n"); 5085 return -EACCES; 5086 } 5087 5088 if (type == ACCESS_HELPER) { 5089 /* The bounds checks for writes are more permissive than for 5090 * reads. However, if raw_mode is not set, we'll do extra 5091 * checks below. 5092 */ 5093 bounds_check_type = BPF_WRITE; 5094 clobber = true; 5095 } else { 5096 bounds_check_type = BPF_READ; 5097 } 5098 err = check_stack_access_within_bounds(env, regno, off, access_size, 5099 type, bounds_check_type); 5100 if (err) 5101 return err; 5102 5103 5104 if (tnum_is_const(reg->var_off)) { 5105 min_off = max_off = reg->var_off.value + off; 5106 } else { 5107 /* Variable offset is prohibited for unprivileged mode for 5108 * simplicity since it requires corresponding support in 5109 * Spectre masking for stack ALU. 5110 * See also retrieve_ptr_limit(). 5111 */ 5112 if (!env->bypass_spec_v1) { 5113 char tn_buf[48]; 5114 5115 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5116 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 5117 regno, err_extra, tn_buf); 5118 return -EACCES; 5119 } 5120 /* Only initialized buffer on stack is allowed to be accessed 5121 * with variable offset. With uninitialized buffer it's hard to 5122 * guarantee that whole memory is marked as initialized on 5123 * helper return since specific bounds are unknown what may 5124 * cause uninitialized stack leaking. 5125 */ 5126 if (meta && meta->raw_mode) 5127 meta = NULL; 5128 5129 min_off = reg->smin_value + off; 5130 max_off = reg->smax_value + off; 5131 } 5132 5133 if (meta && meta->raw_mode) { 5134 meta->access_size = access_size; 5135 meta->regno = regno; 5136 return 0; 5137 } 5138 5139 for (i = min_off; i < max_off + access_size; i++) { 5140 u8 *stype; 5141 5142 slot = -i - 1; 5143 spi = slot / BPF_REG_SIZE; 5144 if (state->allocated_stack <= slot) 5145 goto err; 5146 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 5147 if (*stype == STACK_MISC) 5148 goto mark; 5149 if (*stype == STACK_ZERO) { 5150 if (clobber) { 5151 /* helper can write anything into the stack */ 5152 *stype = STACK_MISC; 5153 } 5154 goto mark; 5155 } 5156 5157 if (is_spilled_reg(&state->stack[spi]) && 5158 base_type(state->stack[spi].spilled_ptr.type) == PTR_TO_BTF_ID) 5159 goto mark; 5160 5161 if (is_spilled_reg(&state->stack[spi]) && 5162 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 5163 env->allow_ptr_leaks)) { 5164 if (clobber) { 5165 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 5166 for (j = 0; j < BPF_REG_SIZE; j++) 5167 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 5168 } 5169 goto mark; 5170 } 5171 5172 err: 5173 if (tnum_is_const(reg->var_off)) { 5174 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 5175 err_extra, regno, min_off, i - min_off, access_size); 5176 } else { 5177 char tn_buf[48]; 5178 5179 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5180 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 5181 err_extra, regno, tn_buf, i - min_off, access_size); 5182 } 5183 return -EACCES; 5184 mark: 5185 /* reading any byte out of 8-byte 'spill_slot' will cause 5186 * the whole slot to be marked as 'read' 5187 */ 5188 mark_reg_read(env, &state->stack[spi].spilled_ptr, 5189 state->stack[spi].spilled_ptr.parent, 5190 REG_LIVE_READ64); 5191 } 5192 return update_stack_depth(env, state, min_off); 5193 } 5194 5195 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 5196 int access_size, bool zero_size_allowed, 5197 struct bpf_call_arg_meta *meta) 5198 { 5199 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5200 u32 *max_access; 5201 5202 switch (base_type(reg->type)) { 5203 case PTR_TO_PACKET: 5204 case PTR_TO_PACKET_META: 5205 return check_packet_access(env, regno, reg->off, access_size, 5206 zero_size_allowed); 5207 case PTR_TO_MAP_KEY: 5208 if (meta && meta->raw_mode) { 5209 verbose(env, "R%d cannot write into %s\n", regno, 5210 reg_type_str(env, reg->type)); 5211 return -EACCES; 5212 } 5213 return check_mem_region_access(env, regno, reg->off, access_size, 5214 reg->map_ptr->key_size, false); 5215 case PTR_TO_MAP_VALUE: 5216 if (check_map_access_type(env, regno, reg->off, access_size, 5217 meta && meta->raw_mode ? BPF_WRITE : 5218 BPF_READ)) 5219 return -EACCES; 5220 return check_map_access(env, regno, reg->off, access_size, 5221 zero_size_allowed, ACCESS_HELPER); 5222 case PTR_TO_MEM: 5223 if (type_is_rdonly_mem(reg->type)) { 5224 if (meta && meta->raw_mode) { 5225 verbose(env, "R%d cannot write into %s\n", regno, 5226 reg_type_str(env, reg->type)); 5227 return -EACCES; 5228 } 5229 } 5230 return check_mem_region_access(env, regno, reg->off, 5231 access_size, reg->mem_size, 5232 zero_size_allowed); 5233 case PTR_TO_BUF: 5234 if (type_is_rdonly_mem(reg->type)) { 5235 if (meta && meta->raw_mode) { 5236 verbose(env, "R%d cannot write into %s\n", regno, 5237 reg_type_str(env, reg->type)); 5238 return -EACCES; 5239 } 5240 5241 max_access = &env->prog->aux->max_rdonly_access; 5242 } else { 5243 max_access = &env->prog->aux->max_rdwr_access; 5244 } 5245 return check_buffer_access(env, reg, regno, reg->off, 5246 access_size, zero_size_allowed, 5247 max_access); 5248 case PTR_TO_STACK: 5249 return check_stack_range_initialized( 5250 env, 5251 regno, reg->off, access_size, 5252 zero_size_allowed, ACCESS_HELPER, meta); 5253 case PTR_TO_CTX: 5254 /* in case the function doesn't know how to access the context, 5255 * (because we are in a program of type SYSCALL for example), we 5256 * can not statically check its size. 5257 * Dynamically check it now. 5258 */ 5259 if (!env->ops->convert_ctx_access) { 5260 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 5261 int offset = access_size - 1; 5262 5263 /* Allow zero-byte read from PTR_TO_CTX */ 5264 if (access_size == 0) 5265 return zero_size_allowed ? 0 : -EACCES; 5266 5267 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 5268 atype, -1, false); 5269 } 5270 5271 fallthrough; 5272 default: /* scalar_value or invalid ptr */ 5273 /* Allow zero-byte read from NULL, regardless of pointer type */ 5274 if (zero_size_allowed && access_size == 0 && 5275 register_is_null(reg)) 5276 return 0; 5277 5278 verbose(env, "R%d type=%s ", regno, 5279 reg_type_str(env, reg->type)); 5280 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 5281 return -EACCES; 5282 } 5283 } 5284 5285 static int check_mem_size_reg(struct bpf_verifier_env *env, 5286 struct bpf_reg_state *reg, u32 regno, 5287 bool zero_size_allowed, 5288 struct bpf_call_arg_meta *meta) 5289 { 5290 int err; 5291 5292 /* This is used to refine r0 return value bounds for helpers 5293 * that enforce this value as an upper bound on return values. 5294 * See do_refine_retval_range() for helpers that can refine 5295 * the return value. C type of helper is u32 so we pull register 5296 * bound from umax_value however, if negative verifier errors 5297 * out. Only upper bounds can be learned because retval is an 5298 * int type and negative retvals are allowed. 5299 */ 5300 meta->msize_max_value = reg->umax_value; 5301 5302 /* The register is SCALAR_VALUE; the access check 5303 * happens using its boundaries. 5304 */ 5305 if (!tnum_is_const(reg->var_off)) 5306 /* For unprivileged variable accesses, disable raw 5307 * mode so that the program is required to 5308 * initialize all the memory that the helper could 5309 * just partially fill up. 5310 */ 5311 meta = NULL; 5312 5313 if (reg->smin_value < 0) { 5314 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5315 regno); 5316 return -EACCES; 5317 } 5318 5319 if (reg->umin_value == 0) { 5320 err = check_helper_mem_access(env, regno - 1, 0, 5321 zero_size_allowed, 5322 meta); 5323 if (err) 5324 return err; 5325 } 5326 5327 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5328 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5329 regno); 5330 return -EACCES; 5331 } 5332 err = check_helper_mem_access(env, regno - 1, 5333 reg->umax_value, 5334 zero_size_allowed, meta); 5335 if (!err) 5336 err = mark_chain_precision(env, regno); 5337 return err; 5338 } 5339 5340 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5341 u32 regno, u32 mem_size) 5342 { 5343 bool may_be_null = type_may_be_null(reg->type); 5344 struct bpf_reg_state saved_reg; 5345 struct bpf_call_arg_meta meta; 5346 int err; 5347 5348 if (register_is_null(reg)) 5349 return 0; 5350 5351 memset(&meta, 0, sizeof(meta)); 5352 /* Assuming that the register contains a value check if the memory 5353 * access is safe. Temporarily save and restore the register's state as 5354 * the conversion shouldn't be visible to a caller. 5355 */ 5356 if (may_be_null) { 5357 saved_reg = *reg; 5358 mark_ptr_not_null_reg(reg); 5359 } 5360 5361 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 5362 /* Check access for BPF_WRITE */ 5363 meta.raw_mode = true; 5364 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 5365 5366 if (may_be_null) 5367 *reg = saved_reg; 5368 5369 return err; 5370 } 5371 5372 int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5373 u32 regno) 5374 { 5375 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 5376 bool may_be_null = type_may_be_null(mem_reg->type); 5377 struct bpf_reg_state saved_reg; 5378 struct bpf_call_arg_meta meta; 5379 int err; 5380 5381 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 5382 5383 memset(&meta, 0, sizeof(meta)); 5384 5385 if (may_be_null) { 5386 saved_reg = *mem_reg; 5387 mark_ptr_not_null_reg(mem_reg); 5388 } 5389 5390 err = check_mem_size_reg(env, reg, regno, true, &meta); 5391 /* Check access for BPF_WRITE */ 5392 meta.raw_mode = true; 5393 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 5394 5395 if (may_be_null) 5396 *mem_reg = saved_reg; 5397 return err; 5398 } 5399 5400 /* Implementation details: 5401 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 5402 * Two bpf_map_lookups (even with the same key) will have different reg->id. 5403 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 5404 * value_or_null->value transition, since the verifier only cares about 5405 * the range of access to valid map value pointer and doesn't care about actual 5406 * address of the map element. 5407 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 5408 * reg->id > 0 after value_or_null->value transition. By doing so 5409 * two bpf_map_lookups will be considered two different pointers that 5410 * point to different bpf_spin_locks. 5411 * The verifier allows taking only one bpf_spin_lock at a time to avoid 5412 * dead-locks. 5413 * Since only one bpf_spin_lock is allowed the checks are simpler than 5414 * reg_is_refcounted() logic. The verifier needs to remember only 5415 * one spin_lock instead of array of acquired_refs. 5416 * cur_state->active_spin_lock remembers which map value element got locked 5417 * and clears it after bpf_spin_unlock. 5418 */ 5419 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 5420 bool is_lock) 5421 { 5422 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5423 struct bpf_verifier_state *cur = env->cur_state; 5424 bool is_const = tnum_is_const(reg->var_off); 5425 struct bpf_map *map = reg->map_ptr; 5426 u64 val = reg->var_off.value; 5427 5428 if (!is_const) { 5429 verbose(env, 5430 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 5431 regno); 5432 return -EINVAL; 5433 } 5434 if (!map->btf) { 5435 verbose(env, 5436 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 5437 map->name); 5438 return -EINVAL; 5439 } 5440 if (!map_value_has_spin_lock(map)) { 5441 if (map->spin_lock_off == -E2BIG) 5442 verbose(env, 5443 "map '%s' has more than one 'struct bpf_spin_lock'\n", 5444 map->name); 5445 else if (map->spin_lock_off == -ENOENT) 5446 verbose(env, 5447 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 5448 map->name); 5449 else 5450 verbose(env, 5451 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 5452 map->name); 5453 return -EINVAL; 5454 } 5455 if (map->spin_lock_off != val + reg->off) { 5456 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 5457 val + reg->off); 5458 return -EINVAL; 5459 } 5460 if (is_lock) { 5461 if (cur->active_spin_lock) { 5462 verbose(env, 5463 "Locking two bpf_spin_locks are not allowed\n"); 5464 return -EINVAL; 5465 } 5466 cur->active_spin_lock = reg->id; 5467 } else { 5468 if (!cur->active_spin_lock) { 5469 verbose(env, "bpf_spin_unlock without taking a lock\n"); 5470 return -EINVAL; 5471 } 5472 if (cur->active_spin_lock != reg->id) { 5473 verbose(env, "bpf_spin_unlock of different lock\n"); 5474 return -EINVAL; 5475 } 5476 cur->active_spin_lock = 0; 5477 } 5478 return 0; 5479 } 5480 5481 static int process_timer_func(struct bpf_verifier_env *env, int regno, 5482 struct bpf_call_arg_meta *meta) 5483 { 5484 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5485 bool is_const = tnum_is_const(reg->var_off); 5486 struct bpf_map *map = reg->map_ptr; 5487 u64 val = reg->var_off.value; 5488 5489 if (!is_const) { 5490 verbose(env, 5491 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 5492 regno); 5493 return -EINVAL; 5494 } 5495 if (!map->btf) { 5496 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 5497 map->name); 5498 return -EINVAL; 5499 } 5500 if (!map_value_has_timer(map)) { 5501 if (map->timer_off == -E2BIG) 5502 verbose(env, 5503 "map '%s' has more than one 'struct bpf_timer'\n", 5504 map->name); 5505 else if (map->timer_off == -ENOENT) 5506 verbose(env, 5507 "map '%s' doesn't have 'struct bpf_timer'\n", 5508 map->name); 5509 else 5510 verbose(env, 5511 "map '%s' is not a struct type or bpf_timer is mangled\n", 5512 map->name); 5513 return -EINVAL; 5514 } 5515 if (map->timer_off != val + reg->off) { 5516 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 5517 val + reg->off, map->timer_off); 5518 return -EINVAL; 5519 } 5520 if (meta->map_ptr) { 5521 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 5522 return -EFAULT; 5523 } 5524 meta->map_uid = reg->map_uid; 5525 meta->map_ptr = map; 5526 return 0; 5527 } 5528 5529 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 5530 struct bpf_call_arg_meta *meta) 5531 { 5532 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5533 struct bpf_map_value_off_desc *off_desc; 5534 struct bpf_map *map_ptr = reg->map_ptr; 5535 u32 kptr_off; 5536 int ret; 5537 5538 if (!tnum_is_const(reg->var_off)) { 5539 verbose(env, 5540 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 5541 regno); 5542 return -EINVAL; 5543 } 5544 if (!map_ptr->btf) { 5545 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 5546 map_ptr->name); 5547 return -EINVAL; 5548 } 5549 if (!map_value_has_kptrs(map_ptr)) { 5550 ret = PTR_ERR_OR_ZERO(map_ptr->kptr_off_tab); 5551 if (ret == -E2BIG) 5552 verbose(env, "map '%s' has more than %d kptr\n", map_ptr->name, 5553 BPF_MAP_VALUE_OFF_MAX); 5554 else if (ret == -EEXIST) 5555 verbose(env, "map '%s' has repeating kptr BTF tags\n", map_ptr->name); 5556 else 5557 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 5558 return -EINVAL; 5559 } 5560 5561 meta->map_ptr = map_ptr; 5562 kptr_off = reg->off + reg->var_off.value; 5563 off_desc = bpf_map_kptr_off_contains(map_ptr, kptr_off); 5564 if (!off_desc) { 5565 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 5566 return -EACCES; 5567 } 5568 if (off_desc->type != BPF_KPTR_REF) { 5569 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 5570 return -EACCES; 5571 } 5572 meta->kptr_off_desc = off_desc; 5573 return 0; 5574 } 5575 5576 static bool arg_type_is_mem_size(enum bpf_arg_type type) 5577 { 5578 return type == ARG_CONST_SIZE || 5579 type == ARG_CONST_SIZE_OR_ZERO; 5580 } 5581 5582 static bool arg_type_is_release(enum bpf_arg_type type) 5583 { 5584 return type & OBJ_RELEASE; 5585 } 5586 5587 static bool arg_type_is_dynptr(enum bpf_arg_type type) 5588 { 5589 return base_type(type) == ARG_PTR_TO_DYNPTR; 5590 } 5591 5592 static int int_ptr_type_to_size(enum bpf_arg_type type) 5593 { 5594 if (type == ARG_PTR_TO_INT) 5595 return sizeof(u32); 5596 else if (type == ARG_PTR_TO_LONG) 5597 return sizeof(u64); 5598 5599 return -EINVAL; 5600 } 5601 5602 static int resolve_map_arg_type(struct bpf_verifier_env *env, 5603 const struct bpf_call_arg_meta *meta, 5604 enum bpf_arg_type *arg_type) 5605 { 5606 if (!meta->map_ptr) { 5607 /* kernel subsystem misconfigured verifier */ 5608 verbose(env, "invalid map_ptr to access map->type\n"); 5609 return -EACCES; 5610 } 5611 5612 switch (meta->map_ptr->map_type) { 5613 case BPF_MAP_TYPE_SOCKMAP: 5614 case BPF_MAP_TYPE_SOCKHASH: 5615 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 5616 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 5617 } else { 5618 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 5619 return -EINVAL; 5620 } 5621 break; 5622 case BPF_MAP_TYPE_BLOOM_FILTER: 5623 if (meta->func_id == BPF_FUNC_map_peek_elem) 5624 *arg_type = ARG_PTR_TO_MAP_VALUE; 5625 break; 5626 default: 5627 break; 5628 } 5629 return 0; 5630 } 5631 5632 struct bpf_reg_types { 5633 const enum bpf_reg_type types[10]; 5634 u32 *btf_id; 5635 }; 5636 5637 static const struct bpf_reg_types map_key_value_types = { 5638 .types = { 5639 PTR_TO_STACK, 5640 PTR_TO_PACKET, 5641 PTR_TO_PACKET_META, 5642 PTR_TO_MAP_KEY, 5643 PTR_TO_MAP_VALUE, 5644 }, 5645 }; 5646 5647 static const struct bpf_reg_types sock_types = { 5648 .types = { 5649 PTR_TO_SOCK_COMMON, 5650 PTR_TO_SOCKET, 5651 PTR_TO_TCP_SOCK, 5652 PTR_TO_XDP_SOCK, 5653 }, 5654 }; 5655 5656 #ifdef CONFIG_NET 5657 static const struct bpf_reg_types btf_id_sock_common_types = { 5658 .types = { 5659 PTR_TO_SOCK_COMMON, 5660 PTR_TO_SOCKET, 5661 PTR_TO_TCP_SOCK, 5662 PTR_TO_XDP_SOCK, 5663 PTR_TO_BTF_ID, 5664 }, 5665 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5666 }; 5667 #endif 5668 5669 static const struct bpf_reg_types mem_types = { 5670 .types = { 5671 PTR_TO_STACK, 5672 PTR_TO_PACKET, 5673 PTR_TO_PACKET_META, 5674 PTR_TO_MAP_KEY, 5675 PTR_TO_MAP_VALUE, 5676 PTR_TO_MEM, 5677 PTR_TO_MEM | MEM_ALLOC, 5678 PTR_TO_BUF, 5679 }, 5680 }; 5681 5682 static const struct bpf_reg_types int_ptr_types = { 5683 .types = { 5684 PTR_TO_STACK, 5685 PTR_TO_PACKET, 5686 PTR_TO_PACKET_META, 5687 PTR_TO_MAP_KEY, 5688 PTR_TO_MAP_VALUE, 5689 }, 5690 }; 5691 5692 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 5693 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 5694 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 5695 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM | MEM_ALLOC } }; 5696 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 5697 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 5698 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 5699 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_BTF_ID | MEM_PERCPU } }; 5700 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 5701 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 5702 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5703 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 5704 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5705 static const struct bpf_reg_types dynptr_types = { 5706 .types = { 5707 PTR_TO_STACK, 5708 PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL, 5709 } 5710 }; 5711 5712 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 5713 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 5714 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 5715 [ARG_CONST_SIZE] = &scalar_types, 5716 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 5717 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 5718 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 5719 [ARG_PTR_TO_CTX] = &context_types, 5720 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 5721 #ifdef CONFIG_NET 5722 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 5723 #endif 5724 [ARG_PTR_TO_SOCKET] = &fullsock_types, 5725 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 5726 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 5727 [ARG_PTR_TO_MEM] = &mem_types, 5728 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 5729 [ARG_PTR_TO_INT] = &int_ptr_types, 5730 [ARG_PTR_TO_LONG] = &int_ptr_types, 5731 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 5732 [ARG_PTR_TO_FUNC] = &func_ptr_types, 5733 [ARG_PTR_TO_STACK] = &stack_ptr_types, 5734 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 5735 [ARG_PTR_TO_TIMER] = &timer_types, 5736 [ARG_PTR_TO_KPTR] = &kptr_types, 5737 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 5738 }; 5739 5740 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 5741 enum bpf_arg_type arg_type, 5742 const u32 *arg_btf_id, 5743 struct bpf_call_arg_meta *meta) 5744 { 5745 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5746 enum bpf_reg_type expected, type = reg->type; 5747 const struct bpf_reg_types *compatible; 5748 int i, j; 5749 5750 compatible = compatible_reg_types[base_type(arg_type)]; 5751 if (!compatible) { 5752 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 5753 return -EFAULT; 5754 } 5755 5756 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 5757 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 5758 * 5759 * Same for MAYBE_NULL: 5760 * 5761 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 5762 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 5763 * 5764 * Therefore we fold these flags depending on the arg_type before comparison. 5765 */ 5766 if (arg_type & MEM_RDONLY) 5767 type &= ~MEM_RDONLY; 5768 if (arg_type & PTR_MAYBE_NULL) 5769 type &= ~PTR_MAYBE_NULL; 5770 5771 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 5772 expected = compatible->types[i]; 5773 if (expected == NOT_INIT) 5774 break; 5775 5776 if (type == expected) 5777 goto found; 5778 } 5779 5780 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 5781 for (j = 0; j + 1 < i; j++) 5782 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 5783 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 5784 return -EACCES; 5785 5786 found: 5787 if (reg->type == PTR_TO_BTF_ID) { 5788 /* For bpf_sk_release, it needs to match against first member 5789 * 'struct sock_common', hence make an exception for it. This 5790 * allows bpf_sk_release to work for multiple socket types. 5791 */ 5792 bool strict_type_match = arg_type_is_release(arg_type) && 5793 meta->func_id != BPF_FUNC_sk_release; 5794 5795 if (!arg_btf_id) { 5796 if (!compatible->btf_id) { 5797 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 5798 return -EFAULT; 5799 } 5800 arg_btf_id = compatible->btf_id; 5801 } 5802 5803 if (meta->func_id == BPF_FUNC_kptr_xchg) { 5804 if (map_kptr_match_type(env, meta->kptr_off_desc, reg, regno)) 5805 return -EACCES; 5806 } else { 5807 if (arg_btf_id == BPF_PTR_POISON) { 5808 verbose(env, "verifier internal error:"); 5809 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 5810 regno); 5811 return -EACCES; 5812 } 5813 5814 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5815 btf_vmlinux, *arg_btf_id, 5816 strict_type_match)) { 5817 verbose(env, "R%d is of type %s but %s is expected\n", 5818 regno, kernel_type_name(reg->btf, reg->btf_id), 5819 kernel_type_name(btf_vmlinux, *arg_btf_id)); 5820 return -EACCES; 5821 } 5822 } 5823 } 5824 5825 return 0; 5826 } 5827 5828 int check_func_arg_reg_off(struct bpf_verifier_env *env, 5829 const struct bpf_reg_state *reg, int regno, 5830 enum bpf_arg_type arg_type) 5831 { 5832 enum bpf_reg_type type = reg->type; 5833 bool fixed_off_ok = false; 5834 5835 switch ((u32)type) { 5836 /* Pointer types where reg offset is explicitly allowed: */ 5837 case PTR_TO_STACK: 5838 if (arg_type_is_dynptr(arg_type) && reg->off % BPF_REG_SIZE) { 5839 verbose(env, "cannot pass in dynptr at an offset\n"); 5840 return -EINVAL; 5841 } 5842 fallthrough; 5843 case PTR_TO_PACKET: 5844 case PTR_TO_PACKET_META: 5845 case PTR_TO_MAP_KEY: 5846 case PTR_TO_MAP_VALUE: 5847 case PTR_TO_MEM: 5848 case PTR_TO_MEM | MEM_RDONLY: 5849 case PTR_TO_MEM | MEM_ALLOC: 5850 case PTR_TO_BUF: 5851 case PTR_TO_BUF | MEM_RDONLY: 5852 case SCALAR_VALUE: 5853 /* Some of the argument types nevertheless require a 5854 * zero register offset. 5855 */ 5856 if (base_type(arg_type) != ARG_PTR_TO_ALLOC_MEM) 5857 return 0; 5858 break; 5859 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 5860 * fixed offset. 5861 */ 5862 case PTR_TO_BTF_ID: 5863 /* When referenced PTR_TO_BTF_ID is passed to release function, 5864 * it's fixed offset must be 0. In the other cases, fixed offset 5865 * can be non-zero. 5866 */ 5867 if (arg_type_is_release(arg_type) && reg->off) { 5868 verbose(env, "R%d must have zero offset when passed to release func\n", 5869 regno); 5870 return -EINVAL; 5871 } 5872 /* For arg is release pointer, fixed_off_ok must be false, but 5873 * we already checked and rejected reg->off != 0 above, so set 5874 * to true to allow fixed offset for all other cases. 5875 */ 5876 fixed_off_ok = true; 5877 break; 5878 default: 5879 break; 5880 } 5881 return __check_ptr_off_reg(env, reg, regno, fixed_off_ok); 5882 } 5883 5884 static u32 stack_slot_get_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 5885 { 5886 struct bpf_func_state *state = func(env, reg); 5887 int spi = get_spi(reg->off); 5888 5889 return state->stack[spi].spilled_ptr.id; 5890 } 5891 5892 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 5893 struct bpf_call_arg_meta *meta, 5894 const struct bpf_func_proto *fn) 5895 { 5896 u32 regno = BPF_REG_1 + arg; 5897 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5898 enum bpf_arg_type arg_type = fn->arg_type[arg]; 5899 enum bpf_reg_type type = reg->type; 5900 u32 *arg_btf_id = NULL; 5901 int err = 0; 5902 5903 if (arg_type == ARG_DONTCARE) 5904 return 0; 5905 5906 err = check_reg_arg(env, regno, SRC_OP); 5907 if (err) 5908 return err; 5909 5910 if (arg_type == ARG_ANYTHING) { 5911 if (is_pointer_value(env, regno)) { 5912 verbose(env, "R%d leaks addr into helper function\n", 5913 regno); 5914 return -EACCES; 5915 } 5916 return 0; 5917 } 5918 5919 if (type_is_pkt_pointer(type) && 5920 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 5921 verbose(env, "helper access to the packet is not allowed\n"); 5922 return -EACCES; 5923 } 5924 5925 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 5926 err = resolve_map_arg_type(env, meta, &arg_type); 5927 if (err) 5928 return err; 5929 } 5930 5931 if (register_is_null(reg) && type_may_be_null(arg_type)) 5932 /* A NULL register has a SCALAR_VALUE type, so skip 5933 * type checking. 5934 */ 5935 goto skip_type_check; 5936 5937 /* arg_btf_id and arg_size are in a union. */ 5938 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID) 5939 arg_btf_id = fn->arg_btf_id[arg]; 5940 5941 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 5942 if (err) 5943 return err; 5944 5945 err = check_func_arg_reg_off(env, reg, regno, arg_type); 5946 if (err) 5947 return err; 5948 5949 skip_type_check: 5950 if (arg_type_is_release(arg_type)) { 5951 if (arg_type_is_dynptr(arg_type)) { 5952 struct bpf_func_state *state = func(env, reg); 5953 int spi = get_spi(reg->off); 5954 5955 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 5956 !state->stack[spi].spilled_ptr.id) { 5957 verbose(env, "arg %d is an unacquired reference\n", regno); 5958 return -EINVAL; 5959 } 5960 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 5961 verbose(env, "R%d must be referenced when passed to release function\n", 5962 regno); 5963 return -EINVAL; 5964 } 5965 if (meta->release_regno) { 5966 verbose(env, "verifier internal error: more than one release argument\n"); 5967 return -EFAULT; 5968 } 5969 meta->release_regno = regno; 5970 } 5971 5972 if (reg->ref_obj_id) { 5973 if (meta->ref_obj_id) { 5974 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 5975 regno, reg->ref_obj_id, 5976 meta->ref_obj_id); 5977 return -EFAULT; 5978 } 5979 meta->ref_obj_id = reg->ref_obj_id; 5980 } 5981 5982 switch (base_type(arg_type)) { 5983 case ARG_CONST_MAP_PTR: 5984 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 5985 if (meta->map_ptr) { 5986 /* Use map_uid (which is unique id of inner map) to reject: 5987 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 5988 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 5989 * if (inner_map1 && inner_map2) { 5990 * timer = bpf_map_lookup_elem(inner_map1); 5991 * if (timer) 5992 * // mismatch would have been allowed 5993 * bpf_timer_init(timer, inner_map2); 5994 * } 5995 * 5996 * Comparing map_ptr is enough to distinguish normal and outer maps. 5997 */ 5998 if (meta->map_ptr != reg->map_ptr || 5999 meta->map_uid != reg->map_uid) { 6000 verbose(env, 6001 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 6002 meta->map_uid, reg->map_uid); 6003 return -EINVAL; 6004 } 6005 } 6006 meta->map_ptr = reg->map_ptr; 6007 meta->map_uid = reg->map_uid; 6008 break; 6009 case ARG_PTR_TO_MAP_KEY: 6010 /* bpf_map_xxx(..., map_ptr, ..., key) call: 6011 * check that [key, key + map->key_size) are within 6012 * stack limits and initialized 6013 */ 6014 if (!meta->map_ptr) { 6015 /* in function declaration map_ptr must come before 6016 * map_key, so that it's verified and known before 6017 * we have to check map_key here. Otherwise it means 6018 * that kernel subsystem misconfigured verifier 6019 */ 6020 verbose(env, "invalid map_ptr to access map->key\n"); 6021 return -EACCES; 6022 } 6023 err = check_helper_mem_access(env, regno, 6024 meta->map_ptr->key_size, false, 6025 NULL); 6026 break; 6027 case ARG_PTR_TO_MAP_VALUE: 6028 if (type_may_be_null(arg_type) && register_is_null(reg)) 6029 return 0; 6030 6031 /* bpf_map_xxx(..., map_ptr, ..., value) call: 6032 * check [value, value + map->value_size) validity 6033 */ 6034 if (!meta->map_ptr) { 6035 /* kernel subsystem misconfigured verifier */ 6036 verbose(env, "invalid map_ptr to access map->value\n"); 6037 return -EACCES; 6038 } 6039 meta->raw_mode = arg_type & MEM_UNINIT; 6040 err = check_helper_mem_access(env, regno, 6041 meta->map_ptr->value_size, false, 6042 meta); 6043 break; 6044 case ARG_PTR_TO_PERCPU_BTF_ID: 6045 if (!reg->btf_id) { 6046 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 6047 return -EACCES; 6048 } 6049 meta->ret_btf = reg->btf; 6050 meta->ret_btf_id = reg->btf_id; 6051 break; 6052 case ARG_PTR_TO_SPIN_LOCK: 6053 if (meta->func_id == BPF_FUNC_spin_lock) { 6054 if (process_spin_lock(env, regno, true)) 6055 return -EACCES; 6056 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 6057 if (process_spin_lock(env, regno, false)) 6058 return -EACCES; 6059 } else { 6060 verbose(env, "verifier internal error\n"); 6061 return -EFAULT; 6062 } 6063 break; 6064 case ARG_PTR_TO_TIMER: 6065 if (process_timer_func(env, regno, meta)) 6066 return -EACCES; 6067 break; 6068 case ARG_PTR_TO_FUNC: 6069 meta->subprogno = reg->subprogno; 6070 break; 6071 case ARG_PTR_TO_MEM: 6072 /* The access to this pointer is only checked when we hit the 6073 * next is_mem_size argument below. 6074 */ 6075 meta->raw_mode = arg_type & MEM_UNINIT; 6076 if (arg_type & MEM_FIXED_SIZE) { 6077 err = check_helper_mem_access(env, regno, 6078 fn->arg_size[arg], false, 6079 meta); 6080 } 6081 break; 6082 case ARG_CONST_SIZE: 6083 err = check_mem_size_reg(env, reg, regno, false, meta); 6084 break; 6085 case ARG_CONST_SIZE_OR_ZERO: 6086 err = check_mem_size_reg(env, reg, regno, true, meta); 6087 break; 6088 case ARG_PTR_TO_DYNPTR: 6089 /* We only need to check for initialized / uninitialized helper 6090 * dynptr args if the dynptr is not PTR_TO_DYNPTR, as the 6091 * assumption is that if it is, that a helper function 6092 * initialized the dynptr on behalf of the BPF program. 6093 */ 6094 if (base_type(reg->type) == PTR_TO_DYNPTR) 6095 break; 6096 if (arg_type & MEM_UNINIT) { 6097 if (!is_dynptr_reg_valid_uninit(env, reg)) { 6098 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 6099 return -EINVAL; 6100 } 6101 6102 /* We only support one dynptr being uninitialized at the moment, 6103 * which is sufficient for the helper functions we have right now. 6104 */ 6105 if (meta->uninit_dynptr_regno) { 6106 verbose(env, "verifier internal error: multiple uninitialized dynptr args\n"); 6107 return -EFAULT; 6108 } 6109 6110 meta->uninit_dynptr_regno = regno; 6111 } else if (!is_dynptr_reg_valid_init(env, reg)) { 6112 verbose(env, 6113 "Expected an initialized dynptr as arg #%d\n", 6114 arg + 1); 6115 return -EINVAL; 6116 } else if (!is_dynptr_type_expected(env, reg, arg_type)) { 6117 const char *err_extra = ""; 6118 6119 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 6120 case DYNPTR_TYPE_LOCAL: 6121 err_extra = "local"; 6122 break; 6123 case DYNPTR_TYPE_RINGBUF: 6124 err_extra = "ringbuf"; 6125 break; 6126 default: 6127 err_extra = "<unknown>"; 6128 break; 6129 } 6130 verbose(env, 6131 "Expected a dynptr of type %s as arg #%d\n", 6132 err_extra, arg + 1); 6133 return -EINVAL; 6134 } 6135 break; 6136 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 6137 if (!tnum_is_const(reg->var_off)) { 6138 verbose(env, "R%d is not a known constant'\n", 6139 regno); 6140 return -EACCES; 6141 } 6142 meta->mem_size = reg->var_off.value; 6143 err = mark_chain_precision(env, regno); 6144 if (err) 6145 return err; 6146 break; 6147 case ARG_PTR_TO_INT: 6148 case ARG_PTR_TO_LONG: 6149 { 6150 int size = int_ptr_type_to_size(arg_type); 6151 6152 err = check_helper_mem_access(env, regno, size, false, meta); 6153 if (err) 6154 return err; 6155 err = check_ptr_alignment(env, reg, 0, size, true); 6156 break; 6157 } 6158 case ARG_PTR_TO_CONST_STR: 6159 { 6160 struct bpf_map *map = reg->map_ptr; 6161 int map_off; 6162 u64 map_addr; 6163 char *str_ptr; 6164 6165 if (!bpf_map_is_rdonly(map)) { 6166 verbose(env, "R%d does not point to a readonly map'\n", regno); 6167 return -EACCES; 6168 } 6169 6170 if (!tnum_is_const(reg->var_off)) { 6171 verbose(env, "R%d is not a constant address'\n", regno); 6172 return -EACCES; 6173 } 6174 6175 if (!map->ops->map_direct_value_addr) { 6176 verbose(env, "no direct value access support for this map type\n"); 6177 return -EACCES; 6178 } 6179 6180 err = check_map_access(env, regno, reg->off, 6181 map->value_size - reg->off, false, 6182 ACCESS_HELPER); 6183 if (err) 6184 return err; 6185 6186 map_off = reg->off + reg->var_off.value; 6187 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 6188 if (err) { 6189 verbose(env, "direct value access on string failed\n"); 6190 return err; 6191 } 6192 6193 str_ptr = (char *)(long)(map_addr); 6194 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 6195 verbose(env, "string is not zero-terminated\n"); 6196 return -EINVAL; 6197 } 6198 break; 6199 } 6200 case ARG_PTR_TO_KPTR: 6201 if (process_kptr_func(env, regno, meta)) 6202 return -EACCES; 6203 break; 6204 } 6205 6206 return err; 6207 } 6208 6209 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 6210 { 6211 enum bpf_attach_type eatype = env->prog->expected_attach_type; 6212 enum bpf_prog_type type = resolve_prog_type(env->prog); 6213 6214 if (func_id != BPF_FUNC_map_update_elem) 6215 return false; 6216 6217 /* It's not possible to get access to a locked struct sock in these 6218 * contexts, so updating is safe. 6219 */ 6220 switch (type) { 6221 case BPF_PROG_TYPE_TRACING: 6222 if (eatype == BPF_TRACE_ITER) 6223 return true; 6224 break; 6225 case BPF_PROG_TYPE_SOCKET_FILTER: 6226 case BPF_PROG_TYPE_SCHED_CLS: 6227 case BPF_PROG_TYPE_SCHED_ACT: 6228 case BPF_PROG_TYPE_XDP: 6229 case BPF_PROG_TYPE_SK_REUSEPORT: 6230 case BPF_PROG_TYPE_FLOW_DISSECTOR: 6231 case BPF_PROG_TYPE_SK_LOOKUP: 6232 return true; 6233 default: 6234 break; 6235 } 6236 6237 verbose(env, "cannot update sockmap in this context\n"); 6238 return false; 6239 } 6240 6241 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 6242 { 6243 return env->prog->jit_requested && 6244 bpf_jit_supports_subprog_tailcalls(); 6245 } 6246 6247 static int check_map_func_compatibility(struct bpf_verifier_env *env, 6248 struct bpf_map *map, int func_id) 6249 { 6250 if (!map) 6251 return 0; 6252 6253 /* We need a two way check, first is from map perspective ... */ 6254 switch (map->map_type) { 6255 case BPF_MAP_TYPE_PROG_ARRAY: 6256 if (func_id != BPF_FUNC_tail_call) 6257 goto error; 6258 break; 6259 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 6260 if (func_id != BPF_FUNC_perf_event_read && 6261 func_id != BPF_FUNC_perf_event_output && 6262 func_id != BPF_FUNC_skb_output && 6263 func_id != BPF_FUNC_perf_event_read_value && 6264 func_id != BPF_FUNC_xdp_output) 6265 goto error; 6266 break; 6267 case BPF_MAP_TYPE_RINGBUF: 6268 if (func_id != BPF_FUNC_ringbuf_output && 6269 func_id != BPF_FUNC_ringbuf_reserve && 6270 func_id != BPF_FUNC_ringbuf_query && 6271 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 6272 func_id != BPF_FUNC_ringbuf_submit_dynptr && 6273 func_id != BPF_FUNC_ringbuf_discard_dynptr) 6274 goto error; 6275 break; 6276 case BPF_MAP_TYPE_USER_RINGBUF: 6277 if (func_id != BPF_FUNC_user_ringbuf_drain) 6278 goto error; 6279 break; 6280 case BPF_MAP_TYPE_STACK_TRACE: 6281 if (func_id != BPF_FUNC_get_stackid) 6282 goto error; 6283 break; 6284 case BPF_MAP_TYPE_CGROUP_ARRAY: 6285 if (func_id != BPF_FUNC_skb_under_cgroup && 6286 func_id != BPF_FUNC_current_task_under_cgroup) 6287 goto error; 6288 break; 6289 case BPF_MAP_TYPE_CGROUP_STORAGE: 6290 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 6291 if (func_id != BPF_FUNC_get_local_storage) 6292 goto error; 6293 break; 6294 case BPF_MAP_TYPE_DEVMAP: 6295 case BPF_MAP_TYPE_DEVMAP_HASH: 6296 if (func_id != BPF_FUNC_redirect_map && 6297 func_id != BPF_FUNC_map_lookup_elem) 6298 goto error; 6299 break; 6300 /* Restrict bpf side of cpumap and xskmap, open when use-cases 6301 * appear. 6302 */ 6303 case BPF_MAP_TYPE_CPUMAP: 6304 if (func_id != BPF_FUNC_redirect_map) 6305 goto error; 6306 break; 6307 case BPF_MAP_TYPE_XSKMAP: 6308 if (func_id != BPF_FUNC_redirect_map && 6309 func_id != BPF_FUNC_map_lookup_elem) 6310 goto error; 6311 break; 6312 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 6313 case BPF_MAP_TYPE_HASH_OF_MAPS: 6314 if (func_id != BPF_FUNC_map_lookup_elem) 6315 goto error; 6316 break; 6317 case BPF_MAP_TYPE_SOCKMAP: 6318 if (func_id != BPF_FUNC_sk_redirect_map && 6319 func_id != BPF_FUNC_sock_map_update && 6320 func_id != BPF_FUNC_map_delete_elem && 6321 func_id != BPF_FUNC_msg_redirect_map && 6322 func_id != BPF_FUNC_sk_select_reuseport && 6323 func_id != BPF_FUNC_map_lookup_elem && 6324 !may_update_sockmap(env, func_id)) 6325 goto error; 6326 break; 6327 case BPF_MAP_TYPE_SOCKHASH: 6328 if (func_id != BPF_FUNC_sk_redirect_hash && 6329 func_id != BPF_FUNC_sock_hash_update && 6330 func_id != BPF_FUNC_map_delete_elem && 6331 func_id != BPF_FUNC_msg_redirect_hash && 6332 func_id != BPF_FUNC_sk_select_reuseport && 6333 func_id != BPF_FUNC_map_lookup_elem && 6334 !may_update_sockmap(env, func_id)) 6335 goto error; 6336 break; 6337 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 6338 if (func_id != BPF_FUNC_sk_select_reuseport) 6339 goto error; 6340 break; 6341 case BPF_MAP_TYPE_QUEUE: 6342 case BPF_MAP_TYPE_STACK: 6343 if (func_id != BPF_FUNC_map_peek_elem && 6344 func_id != BPF_FUNC_map_pop_elem && 6345 func_id != BPF_FUNC_map_push_elem) 6346 goto error; 6347 break; 6348 case BPF_MAP_TYPE_SK_STORAGE: 6349 if (func_id != BPF_FUNC_sk_storage_get && 6350 func_id != BPF_FUNC_sk_storage_delete) 6351 goto error; 6352 break; 6353 case BPF_MAP_TYPE_INODE_STORAGE: 6354 if (func_id != BPF_FUNC_inode_storage_get && 6355 func_id != BPF_FUNC_inode_storage_delete) 6356 goto error; 6357 break; 6358 case BPF_MAP_TYPE_TASK_STORAGE: 6359 if (func_id != BPF_FUNC_task_storage_get && 6360 func_id != BPF_FUNC_task_storage_delete) 6361 goto error; 6362 break; 6363 case BPF_MAP_TYPE_BLOOM_FILTER: 6364 if (func_id != BPF_FUNC_map_peek_elem && 6365 func_id != BPF_FUNC_map_push_elem) 6366 goto error; 6367 break; 6368 default: 6369 break; 6370 } 6371 6372 /* ... and second from the function itself. */ 6373 switch (func_id) { 6374 case BPF_FUNC_tail_call: 6375 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 6376 goto error; 6377 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 6378 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 6379 return -EINVAL; 6380 } 6381 break; 6382 case BPF_FUNC_perf_event_read: 6383 case BPF_FUNC_perf_event_output: 6384 case BPF_FUNC_perf_event_read_value: 6385 case BPF_FUNC_skb_output: 6386 case BPF_FUNC_xdp_output: 6387 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 6388 goto error; 6389 break; 6390 case BPF_FUNC_ringbuf_output: 6391 case BPF_FUNC_ringbuf_reserve: 6392 case BPF_FUNC_ringbuf_query: 6393 case BPF_FUNC_ringbuf_reserve_dynptr: 6394 case BPF_FUNC_ringbuf_submit_dynptr: 6395 case BPF_FUNC_ringbuf_discard_dynptr: 6396 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 6397 goto error; 6398 break; 6399 case BPF_FUNC_user_ringbuf_drain: 6400 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 6401 goto error; 6402 break; 6403 case BPF_FUNC_get_stackid: 6404 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 6405 goto error; 6406 break; 6407 case BPF_FUNC_current_task_under_cgroup: 6408 case BPF_FUNC_skb_under_cgroup: 6409 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 6410 goto error; 6411 break; 6412 case BPF_FUNC_redirect_map: 6413 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 6414 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 6415 map->map_type != BPF_MAP_TYPE_CPUMAP && 6416 map->map_type != BPF_MAP_TYPE_XSKMAP) 6417 goto error; 6418 break; 6419 case BPF_FUNC_sk_redirect_map: 6420 case BPF_FUNC_msg_redirect_map: 6421 case BPF_FUNC_sock_map_update: 6422 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 6423 goto error; 6424 break; 6425 case BPF_FUNC_sk_redirect_hash: 6426 case BPF_FUNC_msg_redirect_hash: 6427 case BPF_FUNC_sock_hash_update: 6428 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 6429 goto error; 6430 break; 6431 case BPF_FUNC_get_local_storage: 6432 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 6433 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 6434 goto error; 6435 break; 6436 case BPF_FUNC_sk_select_reuseport: 6437 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 6438 map->map_type != BPF_MAP_TYPE_SOCKMAP && 6439 map->map_type != BPF_MAP_TYPE_SOCKHASH) 6440 goto error; 6441 break; 6442 case BPF_FUNC_map_pop_elem: 6443 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6444 map->map_type != BPF_MAP_TYPE_STACK) 6445 goto error; 6446 break; 6447 case BPF_FUNC_map_peek_elem: 6448 case BPF_FUNC_map_push_elem: 6449 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6450 map->map_type != BPF_MAP_TYPE_STACK && 6451 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 6452 goto error; 6453 break; 6454 case BPF_FUNC_map_lookup_percpu_elem: 6455 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 6456 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 6457 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 6458 goto error; 6459 break; 6460 case BPF_FUNC_sk_storage_get: 6461 case BPF_FUNC_sk_storage_delete: 6462 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 6463 goto error; 6464 break; 6465 case BPF_FUNC_inode_storage_get: 6466 case BPF_FUNC_inode_storage_delete: 6467 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 6468 goto error; 6469 break; 6470 case BPF_FUNC_task_storage_get: 6471 case BPF_FUNC_task_storage_delete: 6472 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 6473 goto error; 6474 break; 6475 default: 6476 break; 6477 } 6478 6479 return 0; 6480 error: 6481 verbose(env, "cannot pass map_type %d into func %s#%d\n", 6482 map->map_type, func_id_name(func_id), func_id); 6483 return -EINVAL; 6484 } 6485 6486 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 6487 { 6488 int count = 0; 6489 6490 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 6491 count++; 6492 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 6493 count++; 6494 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 6495 count++; 6496 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 6497 count++; 6498 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 6499 count++; 6500 6501 /* We only support one arg being in raw mode at the moment, 6502 * which is sufficient for the helper functions we have 6503 * right now. 6504 */ 6505 return count <= 1; 6506 } 6507 6508 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 6509 { 6510 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 6511 bool has_size = fn->arg_size[arg] != 0; 6512 bool is_next_size = false; 6513 6514 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 6515 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 6516 6517 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 6518 return is_next_size; 6519 6520 return has_size == is_next_size || is_next_size == is_fixed; 6521 } 6522 6523 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 6524 { 6525 /* bpf_xxx(..., buf, len) call will access 'len' 6526 * bytes from memory 'buf'. Both arg types need 6527 * to be paired, so make sure there's no buggy 6528 * helper function specification. 6529 */ 6530 if (arg_type_is_mem_size(fn->arg1_type) || 6531 check_args_pair_invalid(fn, 0) || 6532 check_args_pair_invalid(fn, 1) || 6533 check_args_pair_invalid(fn, 2) || 6534 check_args_pair_invalid(fn, 3) || 6535 check_args_pair_invalid(fn, 4)) 6536 return false; 6537 6538 return true; 6539 } 6540 6541 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 6542 { 6543 int i; 6544 6545 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 6546 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 6547 return false; 6548 6549 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 6550 /* arg_btf_id and arg_size are in a union. */ 6551 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 6552 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 6553 return false; 6554 } 6555 6556 return true; 6557 } 6558 6559 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 6560 { 6561 return check_raw_mode_ok(fn) && 6562 check_arg_pair_ok(fn) && 6563 check_btf_id_ok(fn) ? 0 : -EINVAL; 6564 } 6565 6566 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 6567 * are now invalid, so turn them into unknown SCALAR_VALUE. 6568 */ 6569 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 6570 { 6571 struct bpf_func_state *state; 6572 struct bpf_reg_state *reg; 6573 6574 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 6575 if (reg_is_pkt_pointer_any(reg)) 6576 __mark_reg_unknown(env, reg); 6577 })); 6578 } 6579 6580 enum { 6581 AT_PKT_END = -1, 6582 BEYOND_PKT_END = -2, 6583 }; 6584 6585 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 6586 { 6587 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6588 struct bpf_reg_state *reg = &state->regs[regn]; 6589 6590 if (reg->type != PTR_TO_PACKET) 6591 /* PTR_TO_PACKET_META is not supported yet */ 6592 return; 6593 6594 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 6595 * How far beyond pkt_end it goes is unknown. 6596 * if (!range_open) it's the case of pkt >= pkt_end 6597 * if (range_open) it's the case of pkt > pkt_end 6598 * hence this pointer is at least 1 byte bigger than pkt_end 6599 */ 6600 if (range_open) 6601 reg->range = BEYOND_PKT_END; 6602 else 6603 reg->range = AT_PKT_END; 6604 } 6605 6606 /* The pointer with the specified id has released its reference to kernel 6607 * resources. Identify all copies of the same pointer and clear the reference. 6608 */ 6609 static int release_reference(struct bpf_verifier_env *env, 6610 int ref_obj_id) 6611 { 6612 struct bpf_func_state *state; 6613 struct bpf_reg_state *reg; 6614 int err; 6615 6616 err = release_reference_state(cur_func(env), ref_obj_id); 6617 if (err) 6618 return err; 6619 6620 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 6621 if (reg->ref_obj_id == ref_obj_id) 6622 __mark_reg_unknown(env, reg); 6623 })); 6624 6625 return 0; 6626 } 6627 6628 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 6629 struct bpf_reg_state *regs) 6630 { 6631 int i; 6632 6633 /* after the call registers r0 - r5 were scratched */ 6634 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6635 mark_reg_not_init(env, regs, caller_saved[i]); 6636 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6637 } 6638 } 6639 6640 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 6641 struct bpf_func_state *caller, 6642 struct bpf_func_state *callee, 6643 int insn_idx); 6644 6645 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6646 int *insn_idx, int subprog, 6647 set_callee_state_fn set_callee_state_cb) 6648 { 6649 struct bpf_verifier_state *state = env->cur_state; 6650 struct bpf_func_info_aux *func_info_aux; 6651 struct bpf_func_state *caller, *callee; 6652 int err; 6653 bool is_global = false; 6654 6655 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 6656 verbose(env, "the call stack of %d frames is too deep\n", 6657 state->curframe + 2); 6658 return -E2BIG; 6659 } 6660 6661 caller = state->frame[state->curframe]; 6662 if (state->frame[state->curframe + 1]) { 6663 verbose(env, "verifier bug. Frame %d already allocated\n", 6664 state->curframe + 1); 6665 return -EFAULT; 6666 } 6667 6668 func_info_aux = env->prog->aux->func_info_aux; 6669 if (func_info_aux) 6670 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6671 err = btf_check_subprog_call(env, subprog, caller->regs); 6672 if (err == -EFAULT) 6673 return err; 6674 if (is_global) { 6675 if (err) { 6676 verbose(env, "Caller passes invalid args into func#%d\n", 6677 subprog); 6678 return err; 6679 } else { 6680 if (env->log.level & BPF_LOG_LEVEL) 6681 verbose(env, 6682 "Func#%d is global and valid. Skipping.\n", 6683 subprog); 6684 clear_caller_saved_regs(env, caller->regs); 6685 6686 /* All global functions return a 64-bit SCALAR_VALUE */ 6687 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6688 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6689 6690 /* continue with next insn after call */ 6691 return 0; 6692 } 6693 } 6694 6695 if (insn->code == (BPF_JMP | BPF_CALL) && 6696 insn->src_reg == 0 && 6697 insn->imm == BPF_FUNC_timer_set_callback) { 6698 struct bpf_verifier_state *async_cb; 6699 6700 /* there is no real recursion here. timer callbacks are async */ 6701 env->subprog_info[subprog].is_async_cb = true; 6702 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 6703 *insn_idx, subprog); 6704 if (!async_cb) 6705 return -EFAULT; 6706 callee = async_cb->frame[0]; 6707 callee->async_entry_cnt = caller->async_entry_cnt + 1; 6708 6709 /* Convert bpf_timer_set_callback() args into timer callback args */ 6710 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6711 if (err) 6712 return err; 6713 6714 clear_caller_saved_regs(env, caller->regs); 6715 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6716 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6717 /* continue with next insn after call */ 6718 return 0; 6719 } 6720 6721 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 6722 if (!callee) 6723 return -ENOMEM; 6724 state->frame[state->curframe + 1] = callee; 6725 6726 /* callee cannot access r0, r6 - r9 for reading and has to write 6727 * into its own stack before reading from it. 6728 * callee can read/write into caller's stack 6729 */ 6730 init_func_state(env, callee, 6731 /* remember the callsite, it will be used by bpf_exit */ 6732 *insn_idx /* callsite */, 6733 state->curframe + 1 /* frameno within this callchain */, 6734 subprog /* subprog number within this prog */); 6735 6736 /* Transfer references to the callee */ 6737 err = copy_reference_state(callee, caller); 6738 if (err) 6739 return err; 6740 6741 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6742 if (err) 6743 return err; 6744 6745 clear_caller_saved_regs(env, caller->regs); 6746 6747 /* only increment it after check_reg_arg() finished */ 6748 state->curframe++; 6749 6750 /* and go analyze first insn of the callee */ 6751 *insn_idx = env->subprog_info[subprog].start - 1; 6752 6753 if (env->log.level & BPF_LOG_LEVEL) { 6754 verbose(env, "caller:\n"); 6755 print_verifier_state(env, caller, true); 6756 verbose(env, "callee:\n"); 6757 print_verifier_state(env, callee, true); 6758 } 6759 return 0; 6760 } 6761 6762 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 6763 struct bpf_func_state *caller, 6764 struct bpf_func_state *callee) 6765 { 6766 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 6767 * void *callback_ctx, u64 flags); 6768 * callback_fn(struct bpf_map *map, void *key, void *value, 6769 * void *callback_ctx); 6770 */ 6771 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6772 6773 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6774 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6775 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6776 6777 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6778 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6779 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6780 6781 /* pointer to stack or null */ 6782 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 6783 6784 /* unused */ 6785 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6786 return 0; 6787 } 6788 6789 static int set_callee_state(struct bpf_verifier_env *env, 6790 struct bpf_func_state *caller, 6791 struct bpf_func_state *callee, int insn_idx) 6792 { 6793 int i; 6794 6795 /* copy r1 - r5 args that callee can access. The copy includes parent 6796 * pointers, which connects us up to the liveness chain 6797 */ 6798 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 6799 callee->regs[i] = caller->regs[i]; 6800 return 0; 6801 } 6802 6803 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6804 int *insn_idx) 6805 { 6806 int subprog, target_insn; 6807 6808 target_insn = *insn_idx + insn->imm + 1; 6809 subprog = find_subprog(env, target_insn); 6810 if (subprog < 0) { 6811 verbose(env, "verifier bug. No program starts at insn %d\n", 6812 target_insn); 6813 return -EFAULT; 6814 } 6815 6816 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 6817 } 6818 6819 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 6820 struct bpf_func_state *caller, 6821 struct bpf_func_state *callee, 6822 int insn_idx) 6823 { 6824 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 6825 struct bpf_map *map; 6826 int err; 6827 6828 if (bpf_map_ptr_poisoned(insn_aux)) { 6829 verbose(env, "tail_call abusing map_ptr\n"); 6830 return -EINVAL; 6831 } 6832 6833 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 6834 if (!map->ops->map_set_for_each_callback_args || 6835 !map->ops->map_for_each_callback) { 6836 verbose(env, "callback function not allowed for map\n"); 6837 return -ENOTSUPP; 6838 } 6839 6840 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 6841 if (err) 6842 return err; 6843 6844 callee->in_callback_fn = true; 6845 callee->callback_ret_range = tnum_range(0, 1); 6846 return 0; 6847 } 6848 6849 static int set_loop_callback_state(struct bpf_verifier_env *env, 6850 struct bpf_func_state *caller, 6851 struct bpf_func_state *callee, 6852 int insn_idx) 6853 { 6854 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 6855 * u64 flags); 6856 * callback_fn(u32 index, void *callback_ctx); 6857 */ 6858 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 6859 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 6860 6861 /* unused */ 6862 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 6863 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6864 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6865 6866 callee->in_callback_fn = true; 6867 callee->callback_ret_range = tnum_range(0, 1); 6868 return 0; 6869 } 6870 6871 static int set_timer_callback_state(struct bpf_verifier_env *env, 6872 struct bpf_func_state *caller, 6873 struct bpf_func_state *callee, 6874 int insn_idx) 6875 { 6876 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 6877 6878 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 6879 * callback_fn(struct bpf_map *map, void *key, void *value); 6880 */ 6881 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 6882 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 6883 callee->regs[BPF_REG_1].map_ptr = map_ptr; 6884 6885 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6886 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6887 callee->regs[BPF_REG_2].map_ptr = map_ptr; 6888 6889 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6890 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6891 callee->regs[BPF_REG_3].map_ptr = map_ptr; 6892 6893 /* unused */ 6894 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6895 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6896 callee->in_async_callback_fn = true; 6897 callee->callback_ret_range = tnum_range(0, 1); 6898 return 0; 6899 } 6900 6901 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 6902 struct bpf_func_state *caller, 6903 struct bpf_func_state *callee, 6904 int insn_idx) 6905 { 6906 /* bpf_find_vma(struct task_struct *task, u64 addr, 6907 * void *callback_fn, void *callback_ctx, u64 flags) 6908 * (callback_fn)(struct task_struct *task, 6909 * struct vm_area_struct *vma, void *callback_ctx); 6910 */ 6911 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6912 6913 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 6914 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6915 callee->regs[BPF_REG_2].btf = btf_vmlinux; 6916 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 6917 6918 /* pointer to stack or null */ 6919 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 6920 6921 /* unused */ 6922 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6923 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6924 callee->in_callback_fn = true; 6925 callee->callback_ret_range = tnum_range(0, 1); 6926 return 0; 6927 } 6928 6929 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 6930 struct bpf_func_state *caller, 6931 struct bpf_func_state *callee, 6932 int insn_idx) 6933 { 6934 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 6935 * callback_ctx, u64 flags); 6936 * callback_fn(struct bpf_dynptr_t* dynptr, void *callback_ctx); 6937 */ 6938 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 6939 callee->regs[BPF_REG_1].type = PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL; 6940 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 6941 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 6942 6943 /* unused */ 6944 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 6945 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6946 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6947 6948 callee->in_callback_fn = true; 6949 return 0; 6950 } 6951 6952 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 6953 { 6954 struct bpf_verifier_state *state = env->cur_state; 6955 struct bpf_func_state *caller, *callee; 6956 struct bpf_reg_state *r0; 6957 int err; 6958 6959 callee = state->frame[state->curframe]; 6960 r0 = &callee->regs[BPF_REG_0]; 6961 if (r0->type == PTR_TO_STACK) { 6962 /* technically it's ok to return caller's stack pointer 6963 * (or caller's caller's pointer) back to the caller, 6964 * since these pointers are valid. Only current stack 6965 * pointer will be invalid as soon as function exits, 6966 * but let's be conservative 6967 */ 6968 verbose(env, "cannot return stack pointer to the caller\n"); 6969 return -EINVAL; 6970 } 6971 6972 state->curframe--; 6973 caller = state->frame[state->curframe]; 6974 if (callee->in_callback_fn) { 6975 /* enforce R0 return value range [0, 1]. */ 6976 struct tnum range = callee->callback_ret_range; 6977 6978 if (r0->type != SCALAR_VALUE) { 6979 verbose(env, "R0 not a scalar value\n"); 6980 return -EACCES; 6981 } 6982 if (!tnum_in(range, r0->var_off)) { 6983 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 6984 return -EINVAL; 6985 } 6986 } else { 6987 /* return to the caller whatever r0 had in the callee */ 6988 caller->regs[BPF_REG_0] = *r0; 6989 } 6990 6991 /* callback_fn frame should have released its own additions to parent's 6992 * reference state at this point, or check_reference_leak would 6993 * complain, hence it must be the same as the caller. There is no need 6994 * to copy it back. 6995 */ 6996 if (!callee->in_callback_fn) { 6997 /* Transfer references to the caller */ 6998 err = copy_reference_state(caller, callee); 6999 if (err) 7000 return err; 7001 } 7002 7003 *insn_idx = callee->callsite + 1; 7004 if (env->log.level & BPF_LOG_LEVEL) { 7005 verbose(env, "returning from callee:\n"); 7006 print_verifier_state(env, callee, true); 7007 verbose(env, "to caller at %d:\n", *insn_idx); 7008 print_verifier_state(env, caller, true); 7009 } 7010 /* clear everything in the callee */ 7011 free_func_state(callee); 7012 state->frame[state->curframe + 1] = NULL; 7013 return 0; 7014 } 7015 7016 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 7017 int func_id, 7018 struct bpf_call_arg_meta *meta) 7019 { 7020 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 7021 7022 if (ret_type != RET_INTEGER || 7023 (func_id != BPF_FUNC_get_stack && 7024 func_id != BPF_FUNC_get_task_stack && 7025 func_id != BPF_FUNC_probe_read_str && 7026 func_id != BPF_FUNC_probe_read_kernel_str && 7027 func_id != BPF_FUNC_probe_read_user_str)) 7028 return; 7029 7030 ret_reg->smax_value = meta->msize_max_value; 7031 ret_reg->s32_max_value = meta->msize_max_value; 7032 ret_reg->smin_value = -MAX_ERRNO; 7033 ret_reg->s32_min_value = -MAX_ERRNO; 7034 reg_bounds_sync(ret_reg); 7035 } 7036 7037 static int 7038 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 7039 int func_id, int insn_idx) 7040 { 7041 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 7042 struct bpf_map *map = meta->map_ptr; 7043 7044 if (func_id != BPF_FUNC_tail_call && 7045 func_id != BPF_FUNC_map_lookup_elem && 7046 func_id != BPF_FUNC_map_update_elem && 7047 func_id != BPF_FUNC_map_delete_elem && 7048 func_id != BPF_FUNC_map_push_elem && 7049 func_id != BPF_FUNC_map_pop_elem && 7050 func_id != BPF_FUNC_map_peek_elem && 7051 func_id != BPF_FUNC_for_each_map_elem && 7052 func_id != BPF_FUNC_redirect_map && 7053 func_id != BPF_FUNC_map_lookup_percpu_elem) 7054 return 0; 7055 7056 if (map == NULL) { 7057 verbose(env, "kernel subsystem misconfigured verifier\n"); 7058 return -EINVAL; 7059 } 7060 7061 /* In case of read-only, some additional restrictions 7062 * need to be applied in order to prevent altering the 7063 * state of the map from program side. 7064 */ 7065 if ((map->map_flags & BPF_F_RDONLY_PROG) && 7066 (func_id == BPF_FUNC_map_delete_elem || 7067 func_id == BPF_FUNC_map_update_elem || 7068 func_id == BPF_FUNC_map_push_elem || 7069 func_id == BPF_FUNC_map_pop_elem)) { 7070 verbose(env, "write into map forbidden\n"); 7071 return -EACCES; 7072 } 7073 7074 if (!BPF_MAP_PTR(aux->map_ptr_state)) 7075 bpf_map_ptr_store(aux, meta->map_ptr, 7076 !meta->map_ptr->bypass_spec_v1); 7077 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 7078 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 7079 !meta->map_ptr->bypass_spec_v1); 7080 return 0; 7081 } 7082 7083 static int 7084 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 7085 int func_id, int insn_idx) 7086 { 7087 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 7088 struct bpf_reg_state *regs = cur_regs(env), *reg; 7089 struct bpf_map *map = meta->map_ptr; 7090 u64 val, max; 7091 int err; 7092 7093 if (func_id != BPF_FUNC_tail_call) 7094 return 0; 7095 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 7096 verbose(env, "kernel subsystem misconfigured verifier\n"); 7097 return -EINVAL; 7098 } 7099 7100 reg = ®s[BPF_REG_3]; 7101 val = reg->var_off.value; 7102 max = map->max_entries; 7103 7104 if (!(register_is_const(reg) && val < max)) { 7105 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7106 return 0; 7107 } 7108 7109 err = mark_chain_precision(env, BPF_REG_3); 7110 if (err) 7111 return err; 7112 if (bpf_map_key_unseen(aux)) 7113 bpf_map_key_store(aux, val); 7114 else if (!bpf_map_key_poisoned(aux) && 7115 bpf_map_key_immediate(aux) != val) 7116 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7117 return 0; 7118 } 7119 7120 static int check_reference_leak(struct bpf_verifier_env *env) 7121 { 7122 struct bpf_func_state *state = cur_func(env); 7123 bool refs_lingering = false; 7124 int i; 7125 7126 if (state->frameno && !state->in_callback_fn) 7127 return 0; 7128 7129 for (i = 0; i < state->acquired_refs; i++) { 7130 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 7131 continue; 7132 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 7133 state->refs[i].id, state->refs[i].insn_idx); 7134 refs_lingering = true; 7135 } 7136 return refs_lingering ? -EINVAL : 0; 7137 } 7138 7139 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 7140 struct bpf_reg_state *regs) 7141 { 7142 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 7143 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 7144 struct bpf_map *fmt_map = fmt_reg->map_ptr; 7145 int err, fmt_map_off, num_args; 7146 u64 fmt_addr; 7147 char *fmt; 7148 7149 /* data must be an array of u64 */ 7150 if (data_len_reg->var_off.value % 8) 7151 return -EINVAL; 7152 num_args = data_len_reg->var_off.value / 8; 7153 7154 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 7155 * and map_direct_value_addr is set. 7156 */ 7157 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 7158 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 7159 fmt_map_off); 7160 if (err) { 7161 verbose(env, "verifier bug\n"); 7162 return -EFAULT; 7163 } 7164 fmt = (char *)(long)fmt_addr + fmt_map_off; 7165 7166 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 7167 * can focus on validating the format specifiers. 7168 */ 7169 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args); 7170 if (err < 0) 7171 verbose(env, "Invalid format string\n"); 7172 7173 return err; 7174 } 7175 7176 static int check_get_func_ip(struct bpf_verifier_env *env) 7177 { 7178 enum bpf_prog_type type = resolve_prog_type(env->prog); 7179 int func_id = BPF_FUNC_get_func_ip; 7180 7181 if (type == BPF_PROG_TYPE_TRACING) { 7182 if (!bpf_prog_has_trampoline(env->prog)) { 7183 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 7184 func_id_name(func_id), func_id); 7185 return -ENOTSUPP; 7186 } 7187 return 0; 7188 } else if (type == BPF_PROG_TYPE_KPROBE) { 7189 return 0; 7190 } 7191 7192 verbose(env, "func %s#%d not supported for program type %d\n", 7193 func_id_name(func_id), func_id, type); 7194 return -ENOTSUPP; 7195 } 7196 7197 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 7198 { 7199 return &env->insn_aux_data[env->insn_idx]; 7200 } 7201 7202 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 7203 { 7204 struct bpf_reg_state *regs = cur_regs(env); 7205 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 7206 bool reg_is_null = register_is_null(reg); 7207 7208 if (reg_is_null) 7209 mark_chain_precision(env, BPF_REG_4); 7210 7211 return reg_is_null; 7212 } 7213 7214 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 7215 { 7216 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 7217 7218 if (!state->initialized) { 7219 state->initialized = 1; 7220 state->fit_for_inline = loop_flag_is_zero(env); 7221 state->callback_subprogno = subprogno; 7222 return; 7223 } 7224 7225 if (!state->fit_for_inline) 7226 return; 7227 7228 state->fit_for_inline = (loop_flag_is_zero(env) && 7229 state->callback_subprogno == subprogno); 7230 } 7231 7232 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7233 int *insn_idx_p) 7234 { 7235 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 7236 const struct bpf_func_proto *fn = NULL; 7237 enum bpf_return_type ret_type; 7238 enum bpf_type_flag ret_flag; 7239 struct bpf_reg_state *regs; 7240 struct bpf_call_arg_meta meta; 7241 int insn_idx = *insn_idx_p; 7242 bool changes_data; 7243 int i, err, func_id; 7244 7245 /* find function prototype */ 7246 func_id = insn->imm; 7247 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 7248 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 7249 func_id); 7250 return -EINVAL; 7251 } 7252 7253 if (env->ops->get_func_proto) 7254 fn = env->ops->get_func_proto(func_id, env->prog); 7255 if (!fn) { 7256 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 7257 func_id); 7258 return -EINVAL; 7259 } 7260 7261 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 7262 if (!env->prog->gpl_compatible && fn->gpl_only) { 7263 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 7264 return -EINVAL; 7265 } 7266 7267 if (fn->allowed && !fn->allowed(env->prog)) { 7268 verbose(env, "helper call is not allowed in probe\n"); 7269 return -EINVAL; 7270 } 7271 7272 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 7273 changes_data = bpf_helper_changes_pkt_data(fn->func); 7274 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 7275 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 7276 func_id_name(func_id), func_id); 7277 return -EINVAL; 7278 } 7279 7280 memset(&meta, 0, sizeof(meta)); 7281 meta.pkt_access = fn->pkt_access; 7282 7283 err = check_func_proto(fn, func_id); 7284 if (err) { 7285 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 7286 func_id_name(func_id), func_id); 7287 return err; 7288 } 7289 7290 meta.func_id = func_id; 7291 /* check args */ 7292 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7293 err = check_func_arg(env, i, &meta, fn); 7294 if (err) 7295 return err; 7296 } 7297 7298 err = record_func_map(env, &meta, func_id, insn_idx); 7299 if (err) 7300 return err; 7301 7302 err = record_func_key(env, &meta, func_id, insn_idx); 7303 if (err) 7304 return err; 7305 7306 /* Mark slots with STACK_MISC in case of raw mode, stack offset 7307 * is inferred from register state. 7308 */ 7309 for (i = 0; i < meta.access_size; i++) { 7310 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 7311 BPF_WRITE, -1, false); 7312 if (err) 7313 return err; 7314 } 7315 7316 regs = cur_regs(env); 7317 7318 if (meta.uninit_dynptr_regno) { 7319 /* we write BPF_DW bits (8 bytes) at a time */ 7320 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7321 err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno, 7322 i, BPF_DW, BPF_WRITE, -1, false); 7323 if (err) 7324 return err; 7325 } 7326 7327 err = mark_stack_slots_dynptr(env, ®s[meta.uninit_dynptr_regno], 7328 fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1], 7329 insn_idx); 7330 if (err) 7331 return err; 7332 } 7333 7334 if (meta.release_regno) { 7335 err = -EINVAL; 7336 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) 7337 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 7338 else if (meta.ref_obj_id) 7339 err = release_reference(env, meta.ref_obj_id); 7340 /* meta.ref_obj_id can only be 0 if register that is meant to be 7341 * released is NULL, which must be > R0. 7342 */ 7343 else if (register_is_null(®s[meta.release_regno])) 7344 err = 0; 7345 if (err) { 7346 verbose(env, "func %s#%d reference has not been acquired before\n", 7347 func_id_name(func_id), func_id); 7348 return err; 7349 } 7350 } 7351 7352 switch (func_id) { 7353 case BPF_FUNC_tail_call: 7354 err = check_reference_leak(env); 7355 if (err) { 7356 verbose(env, "tail_call would lead to reference leak\n"); 7357 return err; 7358 } 7359 break; 7360 case BPF_FUNC_get_local_storage: 7361 /* check that flags argument in get_local_storage(map, flags) is 0, 7362 * this is required because get_local_storage() can't return an error. 7363 */ 7364 if (!register_is_null(®s[BPF_REG_2])) { 7365 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 7366 return -EINVAL; 7367 } 7368 break; 7369 case BPF_FUNC_for_each_map_elem: 7370 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7371 set_map_elem_callback_state); 7372 break; 7373 case BPF_FUNC_timer_set_callback: 7374 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7375 set_timer_callback_state); 7376 break; 7377 case BPF_FUNC_find_vma: 7378 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7379 set_find_vma_callback_state); 7380 break; 7381 case BPF_FUNC_snprintf: 7382 err = check_bpf_snprintf_call(env, regs); 7383 break; 7384 case BPF_FUNC_loop: 7385 update_loop_inline_state(env, meta.subprogno); 7386 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7387 set_loop_callback_state); 7388 break; 7389 case BPF_FUNC_dynptr_from_mem: 7390 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 7391 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 7392 reg_type_str(env, regs[BPF_REG_1].type)); 7393 return -EACCES; 7394 } 7395 break; 7396 case BPF_FUNC_set_retval: 7397 if (prog_type == BPF_PROG_TYPE_LSM && 7398 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 7399 if (!env->prog->aux->attach_func_proto->type) { 7400 /* Make sure programs that attach to void 7401 * hooks don't try to modify return value. 7402 */ 7403 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 7404 return -EINVAL; 7405 } 7406 } 7407 break; 7408 case BPF_FUNC_dynptr_data: 7409 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7410 if (arg_type_is_dynptr(fn->arg_type[i])) { 7411 struct bpf_reg_state *reg = ®s[BPF_REG_1 + i]; 7412 7413 if (meta.ref_obj_id) { 7414 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 7415 return -EFAULT; 7416 } 7417 7418 if (base_type(reg->type) != PTR_TO_DYNPTR) 7419 /* Find the id of the dynptr we're 7420 * tracking the reference of 7421 */ 7422 meta.ref_obj_id = stack_slot_get_id(env, reg); 7423 break; 7424 } 7425 } 7426 if (i == MAX_BPF_FUNC_REG_ARGS) { 7427 verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n"); 7428 return -EFAULT; 7429 } 7430 break; 7431 case BPF_FUNC_user_ringbuf_drain: 7432 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7433 set_user_ringbuf_callback_state); 7434 break; 7435 } 7436 7437 if (err) 7438 return err; 7439 7440 /* reset caller saved regs */ 7441 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7442 mark_reg_not_init(env, regs, caller_saved[i]); 7443 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7444 } 7445 7446 /* helper call returns 64-bit value. */ 7447 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7448 7449 /* update return register (already marked as written above) */ 7450 ret_type = fn->ret_type; 7451 ret_flag = type_flag(ret_type); 7452 7453 switch (base_type(ret_type)) { 7454 case RET_INTEGER: 7455 /* sets type to SCALAR_VALUE */ 7456 mark_reg_unknown(env, regs, BPF_REG_0); 7457 break; 7458 case RET_VOID: 7459 regs[BPF_REG_0].type = NOT_INIT; 7460 break; 7461 case RET_PTR_TO_MAP_VALUE: 7462 /* There is no offset yet applied, variable or fixed */ 7463 mark_reg_known_zero(env, regs, BPF_REG_0); 7464 /* remember map_ptr, so that check_map_access() 7465 * can check 'value_size' boundary of memory access 7466 * to map element returned from bpf_map_lookup_elem() 7467 */ 7468 if (meta.map_ptr == NULL) { 7469 verbose(env, 7470 "kernel subsystem misconfigured verifier\n"); 7471 return -EINVAL; 7472 } 7473 regs[BPF_REG_0].map_ptr = meta.map_ptr; 7474 regs[BPF_REG_0].map_uid = meta.map_uid; 7475 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 7476 if (!type_may_be_null(ret_type) && 7477 map_value_has_spin_lock(meta.map_ptr)) { 7478 regs[BPF_REG_0].id = ++env->id_gen; 7479 } 7480 break; 7481 case RET_PTR_TO_SOCKET: 7482 mark_reg_known_zero(env, regs, BPF_REG_0); 7483 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 7484 break; 7485 case RET_PTR_TO_SOCK_COMMON: 7486 mark_reg_known_zero(env, regs, BPF_REG_0); 7487 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 7488 break; 7489 case RET_PTR_TO_TCP_SOCK: 7490 mark_reg_known_zero(env, regs, BPF_REG_0); 7491 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 7492 break; 7493 case RET_PTR_TO_ALLOC_MEM: 7494 mark_reg_known_zero(env, regs, BPF_REG_0); 7495 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 7496 regs[BPF_REG_0].mem_size = meta.mem_size; 7497 break; 7498 case RET_PTR_TO_MEM_OR_BTF_ID: 7499 { 7500 const struct btf_type *t; 7501 7502 mark_reg_known_zero(env, regs, BPF_REG_0); 7503 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 7504 if (!btf_type_is_struct(t)) { 7505 u32 tsize; 7506 const struct btf_type *ret; 7507 const char *tname; 7508 7509 /* resolve the type size of ksym. */ 7510 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 7511 if (IS_ERR(ret)) { 7512 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 7513 verbose(env, "unable to resolve the size of type '%s': %ld\n", 7514 tname, PTR_ERR(ret)); 7515 return -EINVAL; 7516 } 7517 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 7518 regs[BPF_REG_0].mem_size = tsize; 7519 } else { 7520 /* MEM_RDONLY may be carried from ret_flag, but it 7521 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 7522 * it will confuse the check of PTR_TO_BTF_ID in 7523 * check_mem_access(). 7524 */ 7525 ret_flag &= ~MEM_RDONLY; 7526 7527 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 7528 regs[BPF_REG_0].btf = meta.ret_btf; 7529 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 7530 } 7531 break; 7532 } 7533 case RET_PTR_TO_BTF_ID: 7534 { 7535 struct btf *ret_btf; 7536 int ret_btf_id; 7537 7538 mark_reg_known_zero(env, regs, BPF_REG_0); 7539 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 7540 if (func_id == BPF_FUNC_kptr_xchg) { 7541 ret_btf = meta.kptr_off_desc->kptr.btf; 7542 ret_btf_id = meta.kptr_off_desc->kptr.btf_id; 7543 } else { 7544 if (fn->ret_btf_id == BPF_PTR_POISON) { 7545 verbose(env, "verifier internal error:"); 7546 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 7547 func_id_name(func_id)); 7548 return -EINVAL; 7549 } 7550 ret_btf = btf_vmlinux; 7551 ret_btf_id = *fn->ret_btf_id; 7552 } 7553 if (ret_btf_id == 0) { 7554 verbose(env, "invalid return type %u of func %s#%d\n", 7555 base_type(ret_type), func_id_name(func_id), 7556 func_id); 7557 return -EINVAL; 7558 } 7559 regs[BPF_REG_0].btf = ret_btf; 7560 regs[BPF_REG_0].btf_id = ret_btf_id; 7561 break; 7562 } 7563 default: 7564 verbose(env, "unknown return type %u of func %s#%d\n", 7565 base_type(ret_type), func_id_name(func_id), func_id); 7566 return -EINVAL; 7567 } 7568 7569 if (type_may_be_null(regs[BPF_REG_0].type)) 7570 regs[BPF_REG_0].id = ++env->id_gen; 7571 7572 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 7573 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 7574 func_id_name(func_id), func_id); 7575 return -EFAULT; 7576 } 7577 7578 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 7579 /* For release_reference() */ 7580 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 7581 } else if (is_acquire_function(func_id, meta.map_ptr)) { 7582 int id = acquire_reference_state(env, insn_idx); 7583 7584 if (id < 0) 7585 return id; 7586 /* For mark_ptr_or_null_reg() */ 7587 regs[BPF_REG_0].id = id; 7588 /* For release_reference() */ 7589 regs[BPF_REG_0].ref_obj_id = id; 7590 } 7591 7592 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 7593 7594 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 7595 if (err) 7596 return err; 7597 7598 if ((func_id == BPF_FUNC_get_stack || 7599 func_id == BPF_FUNC_get_task_stack) && 7600 !env->prog->has_callchain_buf) { 7601 const char *err_str; 7602 7603 #ifdef CONFIG_PERF_EVENTS 7604 err = get_callchain_buffers(sysctl_perf_event_max_stack); 7605 err_str = "cannot get callchain buffer for func %s#%d\n"; 7606 #else 7607 err = -ENOTSUPP; 7608 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 7609 #endif 7610 if (err) { 7611 verbose(env, err_str, func_id_name(func_id), func_id); 7612 return err; 7613 } 7614 7615 env->prog->has_callchain_buf = true; 7616 } 7617 7618 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 7619 env->prog->call_get_stack = true; 7620 7621 if (func_id == BPF_FUNC_get_func_ip) { 7622 if (check_get_func_ip(env)) 7623 return -ENOTSUPP; 7624 env->prog->call_get_func_ip = true; 7625 } 7626 7627 if (changes_data) 7628 clear_all_pkt_pointers(env); 7629 return 0; 7630 } 7631 7632 /* mark_btf_func_reg_size() is used when the reg size is determined by 7633 * the BTF func_proto's return value size and argument. 7634 */ 7635 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 7636 size_t reg_size) 7637 { 7638 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 7639 7640 if (regno == BPF_REG_0) { 7641 /* Function return value */ 7642 reg->live |= REG_LIVE_WRITTEN; 7643 reg->subreg_def = reg_size == sizeof(u64) ? 7644 DEF_NOT_SUBREG : env->insn_idx + 1; 7645 } else { 7646 /* Function argument */ 7647 if (reg_size == sizeof(u64)) { 7648 mark_insn_zext(env, reg); 7649 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 7650 } else { 7651 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 7652 } 7653 } 7654 } 7655 7656 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7657 int *insn_idx_p) 7658 { 7659 const struct btf_type *t, *func, *func_proto, *ptr_type; 7660 struct bpf_reg_state *regs = cur_regs(env); 7661 struct bpf_kfunc_arg_meta meta = { 0 }; 7662 const char *func_name, *ptr_type_name; 7663 u32 i, nargs, func_id, ptr_type_id; 7664 int err, insn_idx = *insn_idx_p; 7665 const struct btf_param *args; 7666 struct btf *desc_btf; 7667 u32 *kfunc_flags; 7668 bool acq; 7669 7670 /* skip for now, but return error when we find this in fixup_kfunc_call */ 7671 if (!insn->imm) 7672 return 0; 7673 7674 desc_btf = find_kfunc_desc_btf(env, insn->off); 7675 if (IS_ERR(desc_btf)) 7676 return PTR_ERR(desc_btf); 7677 7678 func_id = insn->imm; 7679 func = btf_type_by_id(desc_btf, func_id); 7680 func_name = btf_name_by_offset(desc_btf, func->name_off); 7681 func_proto = btf_type_by_id(desc_btf, func->type); 7682 7683 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id); 7684 if (!kfunc_flags) { 7685 verbose(env, "calling kernel function %s is not allowed\n", 7686 func_name); 7687 return -EACCES; 7688 } 7689 if (*kfunc_flags & KF_DESTRUCTIVE && !capable(CAP_SYS_BOOT)) { 7690 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capabilities\n"); 7691 return -EACCES; 7692 } 7693 7694 acq = *kfunc_flags & KF_ACQUIRE; 7695 7696 meta.flags = *kfunc_flags; 7697 7698 /* Check the arguments */ 7699 err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs, &meta); 7700 if (err < 0) 7701 return err; 7702 /* In case of release function, we get register number of refcounted 7703 * PTR_TO_BTF_ID back from btf_check_kfunc_arg_match, do the release now 7704 */ 7705 if (err) { 7706 err = release_reference(env, regs[err].ref_obj_id); 7707 if (err) { 7708 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 7709 func_name, func_id); 7710 return err; 7711 } 7712 } 7713 7714 for (i = 0; i < CALLER_SAVED_REGS; i++) 7715 mark_reg_not_init(env, regs, caller_saved[i]); 7716 7717 /* Check return type */ 7718 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL); 7719 7720 if (acq && !btf_type_is_struct_ptr(desc_btf, t)) { 7721 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 7722 return -EINVAL; 7723 } 7724 7725 if (btf_type_is_scalar(t)) { 7726 mark_reg_unknown(env, regs, BPF_REG_0); 7727 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 7728 } else if (btf_type_is_ptr(t)) { 7729 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, 7730 &ptr_type_id); 7731 if (!btf_type_is_struct(ptr_type)) { 7732 if (!meta.r0_size) { 7733 ptr_type_name = btf_name_by_offset(desc_btf, 7734 ptr_type->name_off); 7735 verbose(env, 7736 "kernel function %s returns pointer type %s %s is not supported\n", 7737 func_name, 7738 btf_type_str(ptr_type), 7739 ptr_type_name); 7740 return -EINVAL; 7741 } 7742 7743 mark_reg_known_zero(env, regs, BPF_REG_0); 7744 regs[BPF_REG_0].type = PTR_TO_MEM; 7745 regs[BPF_REG_0].mem_size = meta.r0_size; 7746 7747 if (meta.r0_rdonly) 7748 regs[BPF_REG_0].type |= MEM_RDONLY; 7749 7750 /* Ensures we don't access the memory after a release_reference() */ 7751 if (meta.ref_obj_id) 7752 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 7753 } else { 7754 mark_reg_known_zero(env, regs, BPF_REG_0); 7755 regs[BPF_REG_0].btf = desc_btf; 7756 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 7757 regs[BPF_REG_0].btf_id = ptr_type_id; 7758 } 7759 if (*kfunc_flags & KF_RET_NULL) { 7760 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 7761 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 7762 regs[BPF_REG_0].id = ++env->id_gen; 7763 } 7764 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 7765 if (acq) { 7766 int id = acquire_reference_state(env, insn_idx); 7767 7768 if (id < 0) 7769 return id; 7770 regs[BPF_REG_0].id = id; 7771 regs[BPF_REG_0].ref_obj_id = id; 7772 } 7773 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 7774 7775 nargs = btf_type_vlen(func_proto); 7776 args = (const struct btf_param *)(func_proto + 1); 7777 for (i = 0; i < nargs; i++) { 7778 u32 regno = i + 1; 7779 7780 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 7781 if (btf_type_is_ptr(t)) 7782 mark_btf_func_reg_size(env, regno, sizeof(void *)); 7783 else 7784 /* scalar. ensured by btf_check_kfunc_arg_match() */ 7785 mark_btf_func_reg_size(env, regno, t->size); 7786 } 7787 7788 return 0; 7789 } 7790 7791 static bool signed_add_overflows(s64 a, s64 b) 7792 { 7793 /* Do the add in u64, where overflow is well-defined */ 7794 s64 res = (s64)((u64)a + (u64)b); 7795 7796 if (b < 0) 7797 return res > a; 7798 return res < a; 7799 } 7800 7801 static bool signed_add32_overflows(s32 a, s32 b) 7802 { 7803 /* Do the add in u32, where overflow is well-defined */ 7804 s32 res = (s32)((u32)a + (u32)b); 7805 7806 if (b < 0) 7807 return res > a; 7808 return res < a; 7809 } 7810 7811 static bool signed_sub_overflows(s64 a, s64 b) 7812 { 7813 /* Do the sub in u64, where overflow is well-defined */ 7814 s64 res = (s64)((u64)a - (u64)b); 7815 7816 if (b < 0) 7817 return res < a; 7818 return res > a; 7819 } 7820 7821 static bool signed_sub32_overflows(s32 a, s32 b) 7822 { 7823 /* Do the sub in u32, where overflow is well-defined */ 7824 s32 res = (s32)((u32)a - (u32)b); 7825 7826 if (b < 0) 7827 return res < a; 7828 return res > a; 7829 } 7830 7831 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 7832 const struct bpf_reg_state *reg, 7833 enum bpf_reg_type type) 7834 { 7835 bool known = tnum_is_const(reg->var_off); 7836 s64 val = reg->var_off.value; 7837 s64 smin = reg->smin_value; 7838 7839 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 7840 verbose(env, "math between %s pointer and %lld is not allowed\n", 7841 reg_type_str(env, type), val); 7842 return false; 7843 } 7844 7845 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 7846 verbose(env, "%s pointer offset %d is not allowed\n", 7847 reg_type_str(env, type), reg->off); 7848 return false; 7849 } 7850 7851 if (smin == S64_MIN) { 7852 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 7853 reg_type_str(env, type)); 7854 return false; 7855 } 7856 7857 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 7858 verbose(env, "value %lld makes %s pointer be out of bounds\n", 7859 smin, reg_type_str(env, type)); 7860 return false; 7861 } 7862 7863 return true; 7864 } 7865 7866 enum { 7867 REASON_BOUNDS = -1, 7868 REASON_TYPE = -2, 7869 REASON_PATHS = -3, 7870 REASON_LIMIT = -4, 7871 REASON_STACK = -5, 7872 }; 7873 7874 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 7875 u32 *alu_limit, bool mask_to_left) 7876 { 7877 u32 max = 0, ptr_limit = 0; 7878 7879 switch (ptr_reg->type) { 7880 case PTR_TO_STACK: 7881 /* Offset 0 is out-of-bounds, but acceptable start for the 7882 * left direction, see BPF_REG_FP. Also, unknown scalar 7883 * offset where we would need to deal with min/max bounds is 7884 * currently prohibited for unprivileged. 7885 */ 7886 max = MAX_BPF_STACK + mask_to_left; 7887 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 7888 break; 7889 case PTR_TO_MAP_VALUE: 7890 max = ptr_reg->map_ptr->value_size; 7891 ptr_limit = (mask_to_left ? 7892 ptr_reg->smin_value : 7893 ptr_reg->umax_value) + ptr_reg->off; 7894 break; 7895 default: 7896 return REASON_TYPE; 7897 } 7898 7899 if (ptr_limit >= max) 7900 return REASON_LIMIT; 7901 *alu_limit = ptr_limit; 7902 return 0; 7903 } 7904 7905 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 7906 const struct bpf_insn *insn) 7907 { 7908 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 7909 } 7910 7911 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 7912 u32 alu_state, u32 alu_limit) 7913 { 7914 /* If we arrived here from different branches with different 7915 * state or limits to sanitize, then this won't work. 7916 */ 7917 if (aux->alu_state && 7918 (aux->alu_state != alu_state || 7919 aux->alu_limit != alu_limit)) 7920 return REASON_PATHS; 7921 7922 /* Corresponding fixup done in do_misc_fixups(). */ 7923 aux->alu_state = alu_state; 7924 aux->alu_limit = alu_limit; 7925 return 0; 7926 } 7927 7928 static int sanitize_val_alu(struct bpf_verifier_env *env, 7929 struct bpf_insn *insn) 7930 { 7931 struct bpf_insn_aux_data *aux = cur_aux(env); 7932 7933 if (can_skip_alu_sanitation(env, insn)) 7934 return 0; 7935 7936 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 7937 } 7938 7939 static bool sanitize_needed(u8 opcode) 7940 { 7941 return opcode == BPF_ADD || opcode == BPF_SUB; 7942 } 7943 7944 struct bpf_sanitize_info { 7945 struct bpf_insn_aux_data aux; 7946 bool mask_to_left; 7947 }; 7948 7949 static struct bpf_verifier_state * 7950 sanitize_speculative_path(struct bpf_verifier_env *env, 7951 const struct bpf_insn *insn, 7952 u32 next_idx, u32 curr_idx) 7953 { 7954 struct bpf_verifier_state *branch; 7955 struct bpf_reg_state *regs; 7956 7957 branch = push_stack(env, next_idx, curr_idx, true); 7958 if (branch && insn) { 7959 regs = branch->frame[branch->curframe]->regs; 7960 if (BPF_SRC(insn->code) == BPF_K) { 7961 mark_reg_unknown(env, regs, insn->dst_reg); 7962 } else if (BPF_SRC(insn->code) == BPF_X) { 7963 mark_reg_unknown(env, regs, insn->dst_reg); 7964 mark_reg_unknown(env, regs, insn->src_reg); 7965 } 7966 } 7967 return branch; 7968 } 7969 7970 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 7971 struct bpf_insn *insn, 7972 const struct bpf_reg_state *ptr_reg, 7973 const struct bpf_reg_state *off_reg, 7974 struct bpf_reg_state *dst_reg, 7975 struct bpf_sanitize_info *info, 7976 const bool commit_window) 7977 { 7978 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 7979 struct bpf_verifier_state *vstate = env->cur_state; 7980 bool off_is_imm = tnum_is_const(off_reg->var_off); 7981 bool off_is_neg = off_reg->smin_value < 0; 7982 bool ptr_is_dst_reg = ptr_reg == dst_reg; 7983 u8 opcode = BPF_OP(insn->code); 7984 u32 alu_state, alu_limit; 7985 struct bpf_reg_state tmp; 7986 bool ret; 7987 int err; 7988 7989 if (can_skip_alu_sanitation(env, insn)) 7990 return 0; 7991 7992 /* We already marked aux for masking from non-speculative 7993 * paths, thus we got here in the first place. We only care 7994 * to explore bad access from here. 7995 */ 7996 if (vstate->speculative) 7997 goto do_sim; 7998 7999 if (!commit_window) { 8000 if (!tnum_is_const(off_reg->var_off) && 8001 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 8002 return REASON_BOUNDS; 8003 8004 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 8005 (opcode == BPF_SUB && !off_is_neg); 8006 } 8007 8008 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 8009 if (err < 0) 8010 return err; 8011 8012 if (commit_window) { 8013 /* In commit phase we narrow the masking window based on 8014 * the observed pointer move after the simulated operation. 8015 */ 8016 alu_state = info->aux.alu_state; 8017 alu_limit = abs(info->aux.alu_limit - alu_limit); 8018 } else { 8019 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 8020 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 8021 alu_state |= ptr_is_dst_reg ? 8022 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 8023 8024 /* Limit pruning on unknown scalars to enable deep search for 8025 * potential masking differences from other program paths. 8026 */ 8027 if (!off_is_imm) 8028 env->explore_alu_limits = true; 8029 } 8030 8031 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 8032 if (err < 0) 8033 return err; 8034 do_sim: 8035 /* If we're in commit phase, we're done here given we already 8036 * pushed the truncated dst_reg into the speculative verification 8037 * stack. 8038 * 8039 * Also, when register is a known constant, we rewrite register-based 8040 * operation to immediate-based, and thus do not need masking (and as 8041 * a consequence, do not need to simulate the zero-truncation either). 8042 */ 8043 if (commit_window || off_is_imm) 8044 return 0; 8045 8046 /* Simulate and find potential out-of-bounds access under 8047 * speculative execution from truncation as a result of 8048 * masking when off was not within expected range. If off 8049 * sits in dst, then we temporarily need to move ptr there 8050 * to simulate dst (== 0) +/-= ptr. Needed, for example, 8051 * for cases where we use K-based arithmetic in one direction 8052 * and truncated reg-based in the other in order to explore 8053 * bad access. 8054 */ 8055 if (!ptr_is_dst_reg) { 8056 tmp = *dst_reg; 8057 *dst_reg = *ptr_reg; 8058 } 8059 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 8060 env->insn_idx); 8061 if (!ptr_is_dst_reg && ret) 8062 *dst_reg = tmp; 8063 return !ret ? REASON_STACK : 0; 8064 } 8065 8066 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 8067 { 8068 struct bpf_verifier_state *vstate = env->cur_state; 8069 8070 /* If we simulate paths under speculation, we don't update the 8071 * insn as 'seen' such that when we verify unreachable paths in 8072 * the non-speculative domain, sanitize_dead_code() can still 8073 * rewrite/sanitize them. 8074 */ 8075 if (!vstate->speculative) 8076 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 8077 } 8078 8079 static int sanitize_err(struct bpf_verifier_env *env, 8080 const struct bpf_insn *insn, int reason, 8081 const struct bpf_reg_state *off_reg, 8082 const struct bpf_reg_state *dst_reg) 8083 { 8084 static const char *err = "pointer arithmetic with it prohibited for !root"; 8085 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 8086 u32 dst = insn->dst_reg, src = insn->src_reg; 8087 8088 switch (reason) { 8089 case REASON_BOUNDS: 8090 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 8091 off_reg == dst_reg ? dst : src, err); 8092 break; 8093 case REASON_TYPE: 8094 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 8095 off_reg == dst_reg ? src : dst, err); 8096 break; 8097 case REASON_PATHS: 8098 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 8099 dst, op, err); 8100 break; 8101 case REASON_LIMIT: 8102 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 8103 dst, op, err); 8104 break; 8105 case REASON_STACK: 8106 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 8107 dst, err); 8108 break; 8109 default: 8110 verbose(env, "verifier internal error: unknown reason (%d)\n", 8111 reason); 8112 break; 8113 } 8114 8115 return -EACCES; 8116 } 8117 8118 /* check that stack access falls within stack limits and that 'reg' doesn't 8119 * have a variable offset. 8120 * 8121 * Variable offset is prohibited for unprivileged mode for simplicity since it 8122 * requires corresponding support in Spectre masking for stack ALU. See also 8123 * retrieve_ptr_limit(). 8124 * 8125 * 8126 * 'off' includes 'reg->off'. 8127 */ 8128 static int check_stack_access_for_ptr_arithmetic( 8129 struct bpf_verifier_env *env, 8130 int regno, 8131 const struct bpf_reg_state *reg, 8132 int off) 8133 { 8134 if (!tnum_is_const(reg->var_off)) { 8135 char tn_buf[48]; 8136 8137 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 8138 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 8139 regno, tn_buf, off); 8140 return -EACCES; 8141 } 8142 8143 if (off >= 0 || off < -MAX_BPF_STACK) { 8144 verbose(env, "R%d stack pointer arithmetic goes out of range, " 8145 "prohibited for !root; off=%d\n", regno, off); 8146 return -EACCES; 8147 } 8148 8149 return 0; 8150 } 8151 8152 static int sanitize_check_bounds(struct bpf_verifier_env *env, 8153 const struct bpf_insn *insn, 8154 const struct bpf_reg_state *dst_reg) 8155 { 8156 u32 dst = insn->dst_reg; 8157 8158 /* For unprivileged we require that resulting offset must be in bounds 8159 * in order to be able to sanitize access later on. 8160 */ 8161 if (env->bypass_spec_v1) 8162 return 0; 8163 8164 switch (dst_reg->type) { 8165 case PTR_TO_STACK: 8166 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 8167 dst_reg->off + dst_reg->var_off.value)) 8168 return -EACCES; 8169 break; 8170 case PTR_TO_MAP_VALUE: 8171 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 8172 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 8173 "prohibited for !root\n", dst); 8174 return -EACCES; 8175 } 8176 break; 8177 default: 8178 break; 8179 } 8180 8181 return 0; 8182 } 8183 8184 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 8185 * Caller should also handle BPF_MOV case separately. 8186 * If we return -EACCES, caller may want to try again treating pointer as a 8187 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 8188 */ 8189 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 8190 struct bpf_insn *insn, 8191 const struct bpf_reg_state *ptr_reg, 8192 const struct bpf_reg_state *off_reg) 8193 { 8194 struct bpf_verifier_state *vstate = env->cur_state; 8195 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8196 struct bpf_reg_state *regs = state->regs, *dst_reg; 8197 bool known = tnum_is_const(off_reg->var_off); 8198 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 8199 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 8200 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 8201 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 8202 struct bpf_sanitize_info info = {}; 8203 u8 opcode = BPF_OP(insn->code); 8204 u32 dst = insn->dst_reg; 8205 int ret; 8206 8207 dst_reg = ®s[dst]; 8208 8209 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 8210 smin_val > smax_val || umin_val > umax_val) { 8211 /* Taint dst register if offset had invalid bounds derived from 8212 * e.g. dead branches. 8213 */ 8214 __mark_reg_unknown(env, dst_reg); 8215 return 0; 8216 } 8217 8218 if (BPF_CLASS(insn->code) != BPF_ALU64) { 8219 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 8220 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 8221 __mark_reg_unknown(env, dst_reg); 8222 return 0; 8223 } 8224 8225 verbose(env, 8226 "R%d 32-bit pointer arithmetic prohibited\n", 8227 dst); 8228 return -EACCES; 8229 } 8230 8231 if (ptr_reg->type & PTR_MAYBE_NULL) { 8232 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 8233 dst, reg_type_str(env, ptr_reg->type)); 8234 return -EACCES; 8235 } 8236 8237 switch (base_type(ptr_reg->type)) { 8238 case CONST_PTR_TO_MAP: 8239 /* smin_val represents the known value */ 8240 if (known && smin_val == 0 && opcode == BPF_ADD) 8241 break; 8242 fallthrough; 8243 case PTR_TO_PACKET_END: 8244 case PTR_TO_SOCKET: 8245 case PTR_TO_SOCK_COMMON: 8246 case PTR_TO_TCP_SOCK: 8247 case PTR_TO_XDP_SOCK: 8248 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 8249 dst, reg_type_str(env, ptr_reg->type)); 8250 return -EACCES; 8251 default: 8252 break; 8253 } 8254 8255 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 8256 * The id may be overwritten later if we create a new variable offset. 8257 */ 8258 dst_reg->type = ptr_reg->type; 8259 dst_reg->id = ptr_reg->id; 8260 8261 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 8262 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 8263 return -EINVAL; 8264 8265 /* pointer types do not carry 32-bit bounds at the moment. */ 8266 __mark_reg32_unbounded(dst_reg); 8267 8268 if (sanitize_needed(opcode)) { 8269 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 8270 &info, false); 8271 if (ret < 0) 8272 return sanitize_err(env, insn, ret, off_reg, dst_reg); 8273 } 8274 8275 switch (opcode) { 8276 case BPF_ADD: 8277 /* We can take a fixed offset as long as it doesn't overflow 8278 * the s32 'off' field 8279 */ 8280 if (known && (ptr_reg->off + smin_val == 8281 (s64)(s32)(ptr_reg->off + smin_val))) { 8282 /* pointer += K. Accumulate it into fixed offset */ 8283 dst_reg->smin_value = smin_ptr; 8284 dst_reg->smax_value = smax_ptr; 8285 dst_reg->umin_value = umin_ptr; 8286 dst_reg->umax_value = umax_ptr; 8287 dst_reg->var_off = ptr_reg->var_off; 8288 dst_reg->off = ptr_reg->off + smin_val; 8289 dst_reg->raw = ptr_reg->raw; 8290 break; 8291 } 8292 /* A new variable offset is created. Note that off_reg->off 8293 * == 0, since it's a scalar. 8294 * dst_reg gets the pointer type and since some positive 8295 * integer value was added to the pointer, give it a new 'id' 8296 * if it's a PTR_TO_PACKET. 8297 * this creates a new 'base' pointer, off_reg (variable) gets 8298 * added into the variable offset, and we copy the fixed offset 8299 * from ptr_reg. 8300 */ 8301 if (signed_add_overflows(smin_ptr, smin_val) || 8302 signed_add_overflows(smax_ptr, smax_val)) { 8303 dst_reg->smin_value = S64_MIN; 8304 dst_reg->smax_value = S64_MAX; 8305 } else { 8306 dst_reg->smin_value = smin_ptr + smin_val; 8307 dst_reg->smax_value = smax_ptr + smax_val; 8308 } 8309 if (umin_ptr + umin_val < umin_ptr || 8310 umax_ptr + umax_val < umax_ptr) { 8311 dst_reg->umin_value = 0; 8312 dst_reg->umax_value = U64_MAX; 8313 } else { 8314 dst_reg->umin_value = umin_ptr + umin_val; 8315 dst_reg->umax_value = umax_ptr + umax_val; 8316 } 8317 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 8318 dst_reg->off = ptr_reg->off; 8319 dst_reg->raw = ptr_reg->raw; 8320 if (reg_is_pkt_pointer(ptr_reg)) { 8321 dst_reg->id = ++env->id_gen; 8322 /* something was added to pkt_ptr, set range to zero */ 8323 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 8324 } 8325 break; 8326 case BPF_SUB: 8327 if (dst_reg == off_reg) { 8328 /* scalar -= pointer. Creates an unknown scalar */ 8329 verbose(env, "R%d tried to subtract pointer from scalar\n", 8330 dst); 8331 return -EACCES; 8332 } 8333 /* We don't allow subtraction from FP, because (according to 8334 * test_verifier.c test "invalid fp arithmetic", JITs might not 8335 * be able to deal with it. 8336 */ 8337 if (ptr_reg->type == PTR_TO_STACK) { 8338 verbose(env, "R%d subtraction from stack pointer prohibited\n", 8339 dst); 8340 return -EACCES; 8341 } 8342 if (known && (ptr_reg->off - smin_val == 8343 (s64)(s32)(ptr_reg->off - smin_val))) { 8344 /* pointer -= K. Subtract it from fixed offset */ 8345 dst_reg->smin_value = smin_ptr; 8346 dst_reg->smax_value = smax_ptr; 8347 dst_reg->umin_value = umin_ptr; 8348 dst_reg->umax_value = umax_ptr; 8349 dst_reg->var_off = ptr_reg->var_off; 8350 dst_reg->id = ptr_reg->id; 8351 dst_reg->off = ptr_reg->off - smin_val; 8352 dst_reg->raw = ptr_reg->raw; 8353 break; 8354 } 8355 /* A new variable offset is created. If the subtrahend is known 8356 * nonnegative, then any reg->range we had before is still good. 8357 */ 8358 if (signed_sub_overflows(smin_ptr, smax_val) || 8359 signed_sub_overflows(smax_ptr, smin_val)) { 8360 /* Overflow possible, we know nothing */ 8361 dst_reg->smin_value = S64_MIN; 8362 dst_reg->smax_value = S64_MAX; 8363 } else { 8364 dst_reg->smin_value = smin_ptr - smax_val; 8365 dst_reg->smax_value = smax_ptr - smin_val; 8366 } 8367 if (umin_ptr < umax_val) { 8368 /* Overflow possible, we know nothing */ 8369 dst_reg->umin_value = 0; 8370 dst_reg->umax_value = U64_MAX; 8371 } else { 8372 /* Cannot overflow (as long as bounds are consistent) */ 8373 dst_reg->umin_value = umin_ptr - umax_val; 8374 dst_reg->umax_value = umax_ptr - umin_val; 8375 } 8376 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 8377 dst_reg->off = ptr_reg->off; 8378 dst_reg->raw = ptr_reg->raw; 8379 if (reg_is_pkt_pointer(ptr_reg)) { 8380 dst_reg->id = ++env->id_gen; 8381 /* something was added to pkt_ptr, set range to zero */ 8382 if (smin_val < 0) 8383 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 8384 } 8385 break; 8386 case BPF_AND: 8387 case BPF_OR: 8388 case BPF_XOR: 8389 /* bitwise ops on pointers are troublesome, prohibit. */ 8390 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 8391 dst, bpf_alu_string[opcode >> 4]); 8392 return -EACCES; 8393 default: 8394 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 8395 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 8396 dst, bpf_alu_string[opcode >> 4]); 8397 return -EACCES; 8398 } 8399 8400 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 8401 return -EINVAL; 8402 reg_bounds_sync(dst_reg); 8403 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 8404 return -EACCES; 8405 if (sanitize_needed(opcode)) { 8406 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 8407 &info, true); 8408 if (ret < 0) 8409 return sanitize_err(env, insn, ret, off_reg, dst_reg); 8410 } 8411 8412 return 0; 8413 } 8414 8415 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 8416 struct bpf_reg_state *src_reg) 8417 { 8418 s32 smin_val = src_reg->s32_min_value; 8419 s32 smax_val = src_reg->s32_max_value; 8420 u32 umin_val = src_reg->u32_min_value; 8421 u32 umax_val = src_reg->u32_max_value; 8422 8423 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 8424 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 8425 dst_reg->s32_min_value = S32_MIN; 8426 dst_reg->s32_max_value = S32_MAX; 8427 } else { 8428 dst_reg->s32_min_value += smin_val; 8429 dst_reg->s32_max_value += smax_val; 8430 } 8431 if (dst_reg->u32_min_value + umin_val < umin_val || 8432 dst_reg->u32_max_value + umax_val < umax_val) { 8433 dst_reg->u32_min_value = 0; 8434 dst_reg->u32_max_value = U32_MAX; 8435 } else { 8436 dst_reg->u32_min_value += umin_val; 8437 dst_reg->u32_max_value += umax_val; 8438 } 8439 } 8440 8441 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 8442 struct bpf_reg_state *src_reg) 8443 { 8444 s64 smin_val = src_reg->smin_value; 8445 s64 smax_val = src_reg->smax_value; 8446 u64 umin_val = src_reg->umin_value; 8447 u64 umax_val = src_reg->umax_value; 8448 8449 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 8450 signed_add_overflows(dst_reg->smax_value, smax_val)) { 8451 dst_reg->smin_value = S64_MIN; 8452 dst_reg->smax_value = S64_MAX; 8453 } else { 8454 dst_reg->smin_value += smin_val; 8455 dst_reg->smax_value += smax_val; 8456 } 8457 if (dst_reg->umin_value + umin_val < umin_val || 8458 dst_reg->umax_value + umax_val < umax_val) { 8459 dst_reg->umin_value = 0; 8460 dst_reg->umax_value = U64_MAX; 8461 } else { 8462 dst_reg->umin_value += umin_val; 8463 dst_reg->umax_value += umax_val; 8464 } 8465 } 8466 8467 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 8468 struct bpf_reg_state *src_reg) 8469 { 8470 s32 smin_val = src_reg->s32_min_value; 8471 s32 smax_val = src_reg->s32_max_value; 8472 u32 umin_val = src_reg->u32_min_value; 8473 u32 umax_val = src_reg->u32_max_value; 8474 8475 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 8476 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 8477 /* Overflow possible, we know nothing */ 8478 dst_reg->s32_min_value = S32_MIN; 8479 dst_reg->s32_max_value = S32_MAX; 8480 } else { 8481 dst_reg->s32_min_value -= smax_val; 8482 dst_reg->s32_max_value -= smin_val; 8483 } 8484 if (dst_reg->u32_min_value < umax_val) { 8485 /* Overflow possible, we know nothing */ 8486 dst_reg->u32_min_value = 0; 8487 dst_reg->u32_max_value = U32_MAX; 8488 } else { 8489 /* Cannot overflow (as long as bounds are consistent) */ 8490 dst_reg->u32_min_value -= umax_val; 8491 dst_reg->u32_max_value -= umin_val; 8492 } 8493 } 8494 8495 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 8496 struct bpf_reg_state *src_reg) 8497 { 8498 s64 smin_val = src_reg->smin_value; 8499 s64 smax_val = src_reg->smax_value; 8500 u64 umin_val = src_reg->umin_value; 8501 u64 umax_val = src_reg->umax_value; 8502 8503 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 8504 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 8505 /* Overflow possible, we know nothing */ 8506 dst_reg->smin_value = S64_MIN; 8507 dst_reg->smax_value = S64_MAX; 8508 } else { 8509 dst_reg->smin_value -= smax_val; 8510 dst_reg->smax_value -= smin_val; 8511 } 8512 if (dst_reg->umin_value < umax_val) { 8513 /* Overflow possible, we know nothing */ 8514 dst_reg->umin_value = 0; 8515 dst_reg->umax_value = U64_MAX; 8516 } else { 8517 /* Cannot overflow (as long as bounds are consistent) */ 8518 dst_reg->umin_value -= umax_val; 8519 dst_reg->umax_value -= umin_val; 8520 } 8521 } 8522 8523 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 8524 struct bpf_reg_state *src_reg) 8525 { 8526 s32 smin_val = src_reg->s32_min_value; 8527 u32 umin_val = src_reg->u32_min_value; 8528 u32 umax_val = src_reg->u32_max_value; 8529 8530 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 8531 /* Ain't nobody got time to multiply that sign */ 8532 __mark_reg32_unbounded(dst_reg); 8533 return; 8534 } 8535 /* Both values are positive, so we can work with unsigned and 8536 * copy the result to signed (unless it exceeds S32_MAX). 8537 */ 8538 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 8539 /* Potential overflow, we know nothing */ 8540 __mark_reg32_unbounded(dst_reg); 8541 return; 8542 } 8543 dst_reg->u32_min_value *= umin_val; 8544 dst_reg->u32_max_value *= umax_val; 8545 if (dst_reg->u32_max_value > S32_MAX) { 8546 /* Overflow possible, we know nothing */ 8547 dst_reg->s32_min_value = S32_MIN; 8548 dst_reg->s32_max_value = S32_MAX; 8549 } else { 8550 dst_reg->s32_min_value = dst_reg->u32_min_value; 8551 dst_reg->s32_max_value = dst_reg->u32_max_value; 8552 } 8553 } 8554 8555 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 8556 struct bpf_reg_state *src_reg) 8557 { 8558 s64 smin_val = src_reg->smin_value; 8559 u64 umin_val = src_reg->umin_value; 8560 u64 umax_val = src_reg->umax_value; 8561 8562 if (smin_val < 0 || dst_reg->smin_value < 0) { 8563 /* Ain't nobody got time to multiply that sign */ 8564 __mark_reg64_unbounded(dst_reg); 8565 return; 8566 } 8567 /* Both values are positive, so we can work with unsigned and 8568 * copy the result to signed (unless it exceeds S64_MAX). 8569 */ 8570 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 8571 /* Potential overflow, we know nothing */ 8572 __mark_reg64_unbounded(dst_reg); 8573 return; 8574 } 8575 dst_reg->umin_value *= umin_val; 8576 dst_reg->umax_value *= umax_val; 8577 if (dst_reg->umax_value > S64_MAX) { 8578 /* Overflow possible, we know nothing */ 8579 dst_reg->smin_value = S64_MIN; 8580 dst_reg->smax_value = S64_MAX; 8581 } else { 8582 dst_reg->smin_value = dst_reg->umin_value; 8583 dst_reg->smax_value = dst_reg->umax_value; 8584 } 8585 } 8586 8587 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 8588 struct bpf_reg_state *src_reg) 8589 { 8590 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8591 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8592 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8593 s32 smin_val = src_reg->s32_min_value; 8594 u32 umax_val = src_reg->u32_max_value; 8595 8596 if (src_known && dst_known) { 8597 __mark_reg32_known(dst_reg, var32_off.value); 8598 return; 8599 } 8600 8601 /* We get our minimum from the var_off, since that's inherently 8602 * bitwise. Our maximum is the minimum of the operands' maxima. 8603 */ 8604 dst_reg->u32_min_value = var32_off.value; 8605 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 8606 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 8607 /* Lose signed bounds when ANDing negative numbers, 8608 * ain't nobody got time for that. 8609 */ 8610 dst_reg->s32_min_value = S32_MIN; 8611 dst_reg->s32_max_value = S32_MAX; 8612 } else { 8613 /* ANDing two positives gives a positive, so safe to 8614 * cast result into s64. 8615 */ 8616 dst_reg->s32_min_value = dst_reg->u32_min_value; 8617 dst_reg->s32_max_value = dst_reg->u32_max_value; 8618 } 8619 } 8620 8621 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 8622 struct bpf_reg_state *src_reg) 8623 { 8624 bool src_known = tnum_is_const(src_reg->var_off); 8625 bool dst_known = tnum_is_const(dst_reg->var_off); 8626 s64 smin_val = src_reg->smin_value; 8627 u64 umax_val = src_reg->umax_value; 8628 8629 if (src_known && dst_known) { 8630 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8631 return; 8632 } 8633 8634 /* We get our minimum from the var_off, since that's inherently 8635 * bitwise. Our maximum is the minimum of the operands' maxima. 8636 */ 8637 dst_reg->umin_value = dst_reg->var_off.value; 8638 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 8639 if (dst_reg->smin_value < 0 || smin_val < 0) { 8640 /* Lose signed bounds when ANDing negative numbers, 8641 * ain't nobody got time for that. 8642 */ 8643 dst_reg->smin_value = S64_MIN; 8644 dst_reg->smax_value = S64_MAX; 8645 } else { 8646 /* ANDing two positives gives a positive, so safe to 8647 * cast result into s64. 8648 */ 8649 dst_reg->smin_value = dst_reg->umin_value; 8650 dst_reg->smax_value = dst_reg->umax_value; 8651 } 8652 /* We may learn something more from the var_off */ 8653 __update_reg_bounds(dst_reg); 8654 } 8655 8656 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 8657 struct bpf_reg_state *src_reg) 8658 { 8659 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8660 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8661 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8662 s32 smin_val = src_reg->s32_min_value; 8663 u32 umin_val = src_reg->u32_min_value; 8664 8665 if (src_known && dst_known) { 8666 __mark_reg32_known(dst_reg, var32_off.value); 8667 return; 8668 } 8669 8670 /* We get our maximum from the var_off, and our minimum is the 8671 * maximum of the operands' minima 8672 */ 8673 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 8674 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 8675 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 8676 /* Lose signed bounds when ORing negative numbers, 8677 * ain't nobody got time for that. 8678 */ 8679 dst_reg->s32_min_value = S32_MIN; 8680 dst_reg->s32_max_value = S32_MAX; 8681 } else { 8682 /* ORing two positives gives a positive, so safe to 8683 * cast result into s64. 8684 */ 8685 dst_reg->s32_min_value = dst_reg->u32_min_value; 8686 dst_reg->s32_max_value = dst_reg->u32_max_value; 8687 } 8688 } 8689 8690 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 8691 struct bpf_reg_state *src_reg) 8692 { 8693 bool src_known = tnum_is_const(src_reg->var_off); 8694 bool dst_known = tnum_is_const(dst_reg->var_off); 8695 s64 smin_val = src_reg->smin_value; 8696 u64 umin_val = src_reg->umin_value; 8697 8698 if (src_known && dst_known) { 8699 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8700 return; 8701 } 8702 8703 /* We get our maximum from the var_off, and our minimum is the 8704 * maximum of the operands' minima 8705 */ 8706 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 8707 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 8708 if (dst_reg->smin_value < 0 || smin_val < 0) { 8709 /* Lose signed bounds when ORing negative numbers, 8710 * ain't nobody got time for that. 8711 */ 8712 dst_reg->smin_value = S64_MIN; 8713 dst_reg->smax_value = S64_MAX; 8714 } else { 8715 /* ORing two positives gives a positive, so safe to 8716 * cast result into s64. 8717 */ 8718 dst_reg->smin_value = dst_reg->umin_value; 8719 dst_reg->smax_value = dst_reg->umax_value; 8720 } 8721 /* We may learn something more from the var_off */ 8722 __update_reg_bounds(dst_reg); 8723 } 8724 8725 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 8726 struct bpf_reg_state *src_reg) 8727 { 8728 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8729 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8730 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8731 s32 smin_val = src_reg->s32_min_value; 8732 8733 if (src_known && dst_known) { 8734 __mark_reg32_known(dst_reg, var32_off.value); 8735 return; 8736 } 8737 8738 /* We get both minimum and maximum from the var32_off. */ 8739 dst_reg->u32_min_value = var32_off.value; 8740 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 8741 8742 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 8743 /* XORing two positive sign numbers gives a positive, 8744 * so safe to cast u32 result into s32. 8745 */ 8746 dst_reg->s32_min_value = dst_reg->u32_min_value; 8747 dst_reg->s32_max_value = dst_reg->u32_max_value; 8748 } else { 8749 dst_reg->s32_min_value = S32_MIN; 8750 dst_reg->s32_max_value = S32_MAX; 8751 } 8752 } 8753 8754 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 8755 struct bpf_reg_state *src_reg) 8756 { 8757 bool src_known = tnum_is_const(src_reg->var_off); 8758 bool dst_known = tnum_is_const(dst_reg->var_off); 8759 s64 smin_val = src_reg->smin_value; 8760 8761 if (src_known && dst_known) { 8762 /* dst_reg->var_off.value has been updated earlier */ 8763 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8764 return; 8765 } 8766 8767 /* We get both minimum and maximum from the var_off. */ 8768 dst_reg->umin_value = dst_reg->var_off.value; 8769 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 8770 8771 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 8772 /* XORing two positive sign numbers gives a positive, 8773 * so safe to cast u64 result into s64. 8774 */ 8775 dst_reg->smin_value = dst_reg->umin_value; 8776 dst_reg->smax_value = dst_reg->umax_value; 8777 } else { 8778 dst_reg->smin_value = S64_MIN; 8779 dst_reg->smax_value = S64_MAX; 8780 } 8781 8782 __update_reg_bounds(dst_reg); 8783 } 8784 8785 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 8786 u64 umin_val, u64 umax_val) 8787 { 8788 /* We lose all sign bit information (except what we can pick 8789 * up from var_off) 8790 */ 8791 dst_reg->s32_min_value = S32_MIN; 8792 dst_reg->s32_max_value = S32_MAX; 8793 /* If we might shift our top bit out, then we know nothing */ 8794 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 8795 dst_reg->u32_min_value = 0; 8796 dst_reg->u32_max_value = U32_MAX; 8797 } else { 8798 dst_reg->u32_min_value <<= umin_val; 8799 dst_reg->u32_max_value <<= umax_val; 8800 } 8801 } 8802 8803 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 8804 struct bpf_reg_state *src_reg) 8805 { 8806 u32 umax_val = src_reg->u32_max_value; 8807 u32 umin_val = src_reg->u32_min_value; 8808 /* u32 alu operation will zext upper bits */ 8809 struct tnum subreg = tnum_subreg(dst_reg->var_off); 8810 8811 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 8812 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 8813 /* Not required but being careful mark reg64 bounds as unknown so 8814 * that we are forced to pick them up from tnum and zext later and 8815 * if some path skips this step we are still safe. 8816 */ 8817 __mark_reg64_unbounded(dst_reg); 8818 __update_reg32_bounds(dst_reg); 8819 } 8820 8821 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 8822 u64 umin_val, u64 umax_val) 8823 { 8824 /* Special case <<32 because it is a common compiler pattern to sign 8825 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 8826 * positive we know this shift will also be positive so we can track 8827 * bounds correctly. Otherwise we lose all sign bit information except 8828 * what we can pick up from var_off. Perhaps we can generalize this 8829 * later to shifts of any length. 8830 */ 8831 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 8832 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 8833 else 8834 dst_reg->smax_value = S64_MAX; 8835 8836 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 8837 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 8838 else 8839 dst_reg->smin_value = S64_MIN; 8840 8841 /* If we might shift our top bit out, then we know nothing */ 8842 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 8843 dst_reg->umin_value = 0; 8844 dst_reg->umax_value = U64_MAX; 8845 } else { 8846 dst_reg->umin_value <<= umin_val; 8847 dst_reg->umax_value <<= umax_val; 8848 } 8849 } 8850 8851 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 8852 struct bpf_reg_state *src_reg) 8853 { 8854 u64 umax_val = src_reg->umax_value; 8855 u64 umin_val = src_reg->umin_value; 8856 8857 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 8858 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 8859 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 8860 8861 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 8862 /* We may learn something more from the var_off */ 8863 __update_reg_bounds(dst_reg); 8864 } 8865 8866 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 8867 struct bpf_reg_state *src_reg) 8868 { 8869 struct tnum subreg = tnum_subreg(dst_reg->var_off); 8870 u32 umax_val = src_reg->u32_max_value; 8871 u32 umin_val = src_reg->u32_min_value; 8872 8873 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 8874 * be negative, then either: 8875 * 1) src_reg might be zero, so the sign bit of the result is 8876 * unknown, so we lose our signed bounds 8877 * 2) it's known negative, thus the unsigned bounds capture the 8878 * signed bounds 8879 * 3) the signed bounds cross zero, so they tell us nothing 8880 * about the result 8881 * If the value in dst_reg is known nonnegative, then again the 8882 * unsigned bounds capture the signed bounds. 8883 * Thus, in all cases it suffices to blow away our signed bounds 8884 * and rely on inferring new ones from the unsigned bounds and 8885 * var_off of the result. 8886 */ 8887 dst_reg->s32_min_value = S32_MIN; 8888 dst_reg->s32_max_value = S32_MAX; 8889 8890 dst_reg->var_off = tnum_rshift(subreg, umin_val); 8891 dst_reg->u32_min_value >>= umax_val; 8892 dst_reg->u32_max_value >>= umin_val; 8893 8894 __mark_reg64_unbounded(dst_reg); 8895 __update_reg32_bounds(dst_reg); 8896 } 8897 8898 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 8899 struct bpf_reg_state *src_reg) 8900 { 8901 u64 umax_val = src_reg->umax_value; 8902 u64 umin_val = src_reg->umin_value; 8903 8904 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 8905 * be negative, then either: 8906 * 1) src_reg might be zero, so the sign bit of the result is 8907 * unknown, so we lose our signed bounds 8908 * 2) it's known negative, thus the unsigned bounds capture the 8909 * signed bounds 8910 * 3) the signed bounds cross zero, so they tell us nothing 8911 * about the result 8912 * If the value in dst_reg is known nonnegative, then again the 8913 * unsigned bounds capture the signed bounds. 8914 * Thus, in all cases it suffices to blow away our signed bounds 8915 * and rely on inferring new ones from the unsigned bounds and 8916 * var_off of the result. 8917 */ 8918 dst_reg->smin_value = S64_MIN; 8919 dst_reg->smax_value = S64_MAX; 8920 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 8921 dst_reg->umin_value >>= umax_val; 8922 dst_reg->umax_value >>= umin_val; 8923 8924 /* Its not easy to operate on alu32 bounds here because it depends 8925 * on bits being shifted in. Take easy way out and mark unbounded 8926 * so we can recalculate later from tnum. 8927 */ 8928 __mark_reg32_unbounded(dst_reg); 8929 __update_reg_bounds(dst_reg); 8930 } 8931 8932 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 8933 struct bpf_reg_state *src_reg) 8934 { 8935 u64 umin_val = src_reg->u32_min_value; 8936 8937 /* Upon reaching here, src_known is true and 8938 * umax_val is equal to umin_val. 8939 */ 8940 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 8941 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 8942 8943 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 8944 8945 /* blow away the dst_reg umin_value/umax_value and rely on 8946 * dst_reg var_off to refine the result. 8947 */ 8948 dst_reg->u32_min_value = 0; 8949 dst_reg->u32_max_value = U32_MAX; 8950 8951 __mark_reg64_unbounded(dst_reg); 8952 __update_reg32_bounds(dst_reg); 8953 } 8954 8955 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 8956 struct bpf_reg_state *src_reg) 8957 { 8958 u64 umin_val = src_reg->umin_value; 8959 8960 /* Upon reaching here, src_known is true and umax_val is equal 8961 * to umin_val. 8962 */ 8963 dst_reg->smin_value >>= umin_val; 8964 dst_reg->smax_value >>= umin_val; 8965 8966 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 8967 8968 /* blow away the dst_reg umin_value/umax_value and rely on 8969 * dst_reg var_off to refine the result. 8970 */ 8971 dst_reg->umin_value = 0; 8972 dst_reg->umax_value = U64_MAX; 8973 8974 /* Its not easy to operate on alu32 bounds here because it depends 8975 * on bits being shifted in from upper 32-bits. Take easy way out 8976 * and mark unbounded so we can recalculate later from tnum. 8977 */ 8978 __mark_reg32_unbounded(dst_reg); 8979 __update_reg_bounds(dst_reg); 8980 } 8981 8982 /* WARNING: This function does calculations on 64-bit values, but the actual 8983 * execution may occur on 32-bit values. Therefore, things like bitshifts 8984 * need extra checks in the 32-bit case. 8985 */ 8986 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 8987 struct bpf_insn *insn, 8988 struct bpf_reg_state *dst_reg, 8989 struct bpf_reg_state src_reg) 8990 { 8991 struct bpf_reg_state *regs = cur_regs(env); 8992 u8 opcode = BPF_OP(insn->code); 8993 bool src_known; 8994 s64 smin_val, smax_val; 8995 u64 umin_val, umax_val; 8996 s32 s32_min_val, s32_max_val; 8997 u32 u32_min_val, u32_max_val; 8998 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 8999 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 9000 int ret; 9001 9002 smin_val = src_reg.smin_value; 9003 smax_val = src_reg.smax_value; 9004 umin_val = src_reg.umin_value; 9005 umax_val = src_reg.umax_value; 9006 9007 s32_min_val = src_reg.s32_min_value; 9008 s32_max_val = src_reg.s32_max_value; 9009 u32_min_val = src_reg.u32_min_value; 9010 u32_max_val = src_reg.u32_max_value; 9011 9012 if (alu32) { 9013 src_known = tnum_subreg_is_const(src_reg.var_off); 9014 if ((src_known && 9015 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 9016 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 9017 /* Taint dst register if offset had invalid bounds 9018 * derived from e.g. dead branches. 9019 */ 9020 __mark_reg_unknown(env, dst_reg); 9021 return 0; 9022 } 9023 } else { 9024 src_known = tnum_is_const(src_reg.var_off); 9025 if ((src_known && 9026 (smin_val != smax_val || umin_val != umax_val)) || 9027 smin_val > smax_val || umin_val > umax_val) { 9028 /* Taint dst register if offset had invalid bounds 9029 * derived from e.g. dead branches. 9030 */ 9031 __mark_reg_unknown(env, dst_reg); 9032 return 0; 9033 } 9034 } 9035 9036 if (!src_known && 9037 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 9038 __mark_reg_unknown(env, dst_reg); 9039 return 0; 9040 } 9041 9042 if (sanitize_needed(opcode)) { 9043 ret = sanitize_val_alu(env, insn); 9044 if (ret < 0) 9045 return sanitize_err(env, insn, ret, NULL, NULL); 9046 } 9047 9048 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 9049 * There are two classes of instructions: The first class we track both 9050 * alu32 and alu64 sign/unsigned bounds independently this provides the 9051 * greatest amount of precision when alu operations are mixed with jmp32 9052 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 9053 * and BPF_OR. This is possible because these ops have fairly easy to 9054 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 9055 * See alu32 verifier tests for examples. The second class of 9056 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 9057 * with regards to tracking sign/unsigned bounds because the bits may 9058 * cross subreg boundaries in the alu64 case. When this happens we mark 9059 * the reg unbounded in the subreg bound space and use the resulting 9060 * tnum to calculate an approximation of the sign/unsigned bounds. 9061 */ 9062 switch (opcode) { 9063 case BPF_ADD: 9064 scalar32_min_max_add(dst_reg, &src_reg); 9065 scalar_min_max_add(dst_reg, &src_reg); 9066 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 9067 break; 9068 case BPF_SUB: 9069 scalar32_min_max_sub(dst_reg, &src_reg); 9070 scalar_min_max_sub(dst_reg, &src_reg); 9071 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 9072 break; 9073 case BPF_MUL: 9074 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 9075 scalar32_min_max_mul(dst_reg, &src_reg); 9076 scalar_min_max_mul(dst_reg, &src_reg); 9077 break; 9078 case BPF_AND: 9079 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 9080 scalar32_min_max_and(dst_reg, &src_reg); 9081 scalar_min_max_and(dst_reg, &src_reg); 9082 break; 9083 case BPF_OR: 9084 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 9085 scalar32_min_max_or(dst_reg, &src_reg); 9086 scalar_min_max_or(dst_reg, &src_reg); 9087 break; 9088 case BPF_XOR: 9089 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 9090 scalar32_min_max_xor(dst_reg, &src_reg); 9091 scalar_min_max_xor(dst_reg, &src_reg); 9092 break; 9093 case BPF_LSH: 9094 if (umax_val >= insn_bitness) { 9095 /* Shifts greater than 31 or 63 are undefined. 9096 * This includes shifts by a negative number. 9097 */ 9098 mark_reg_unknown(env, regs, insn->dst_reg); 9099 break; 9100 } 9101 if (alu32) 9102 scalar32_min_max_lsh(dst_reg, &src_reg); 9103 else 9104 scalar_min_max_lsh(dst_reg, &src_reg); 9105 break; 9106 case BPF_RSH: 9107 if (umax_val >= insn_bitness) { 9108 /* Shifts greater than 31 or 63 are undefined. 9109 * This includes shifts by a negative number. 9110 */ 9111 mark_reg_unknown(env, regs, insn->dst_reg); 9112 break; 9113 } 9114 if (alu32) 9115 scalar32_min_max_rsh(dst_reg, &src_reg); 9116 else 9117 scalar_min_max_rsh(dst_reg, &src_reg); 9118 break; 9119 case BPF_ARSH: 9120 if (umax_val >= insn_bitness) { 9121 /* Shifts greater than 31 or 63 are undefined. 9122 * This includes shifts by a negative number. 9123 */ 9124 mark_reg_unknown(env, regs, insn->dst_reg); 9125 break; 9126 } 9127 if (alu32) 9128 scalar32_min_max_arsh(dst_reg, &src_reg); 9129 else 9130 scalar_min_max_arsh(dst_reg, &src_reg); 9131 break; 9132 default: 9133 mark_reg_unknown(env, regs, insn->dst_reg); 9134 break; 9135 } 9136 9137 /* ALU32 ops are zero extended into 64bit register */ 9138 if (alu32) 9139 zext_32_to_64(dst_reg); 9140 reg_bounds_sync(dst_reg); 9141 return 0; 9142 } 9143 9144 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 9145 * and var_off. 9146 */ 9147 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 9148 struct bpf_insn *insn) 9149 { 9150 struct bpf_verifier_state *vstate = env->cur_state; 9151 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9152 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 9153 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 9154 u8 opcode = BPF_OP(insn->code); 9155 int err; 9156 9157 dst_reg = ®s[insn->dst_reg]; 9158 src_reg = NULL; 9159 if (dst_reg->type != SCALAR_VALUE) 9160 ptr_reg = dst_reg; 9161 else 9162 /* Make sure ID is cleared otherwise dst_reg min/max could be 9163 * incorrectly propagated into other registers by find_equal_scalars() 9164 */ 9165 dst_reg->id = 0; 9166 if (BPF_SRC(insn->code) == BPF_X) { 9167 src_reg = ®s[insn->src_reg]; 9168 if (src_reg->type != SCALAR_VALUE) { 9169 if (dst_reg->type != SCALAR_VALUE) { 9170 /* Combining two pointers by any ALU op yields 9171 * an arbitrary scalar. Disallow all math except 9172 * pointer subtraction 9173 */ 9174 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 9175 mark_reg_unknown(env, regs, insn->dst_reg); 9176 return 0; 9177 } 9178 verbose(env, "R%d pointer %s pointer prohibited\n", 9179 insn->dst_reg, 9180 bpf_alu_string[opcode >> 4]); 9181 return -EACCES; 9182 } else { 9183 /* scalar += pointer 9184 * This is legal, but we have to reverse our 9185 * src/dest handling in computing the range 9186 */ 9187 err = mark_chain_precision(env, insn->dst_reg); 9188 if (err) 9189 return err; 9190 return adjust_ptr_min_max_vals(env, insn, 9191 src_reg, dst_reg); 9192 } 9193 } else if (ptr_reg) { 9194 /* pointer += scalar */ 9195 err = mark_chain_precision(env, insn->src_reg); 9196 if (err) 9197 return err; 9198 return adjust_ptr_min_max_vals(env, insn, 9199 dst_reg, src_reg); 9200 } 9201 } else { 9202 /* Pretend the src is a reg with a known value, since we only 9203 * need to be able to read from this state. 9204 */ 9205 off_reg.type = SCALAR_VALUE; 9206 __mark_reg_known(&off_reg, insn->imm); 9207 src_reg = &off_reg; 9208 if (ptr_reg) /* pointer += K */ 9209 return adjust_ptr_min_max_vals(env, insn, 9210 ptr_reg, src_reg); 9211 } 9212 9213 /* Got here implies adding two SCALAR_VALUEs */ 9214 if (WARN_ON_ONCE(ptr_reg)) { 9215 print_verifier_state(env, state, true); 9216 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 9217 return -EINVAL; 9218 } 9219 if (WARN_ON(!src_reg)) { 9220 print_verifier_state(env, state, true); 9221 verbose(env, "verifier internal error: no src_reg\n"); 9222 return -EINVAL; 9223 } 9224 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 9225 } 9226 9227 /* check validity of 32-bit and 64-bit arithmetic operations */ 9228 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 9229 { 9230 struct bpf_reg_state *regs = cur_regs(env); 9231 u8 opcode = BPF_OP(insn->code); 9232 int err; 9233 9234 if (opcode == BPF_END || opcode == BPF_NEG) { 9235 if (opcode == BPF_NEG) { 9236 if (BPF_SRC(insn->code) != BPF_K || 9237 insn->src_reg != BPF_REG_0 || 9238 insn->off != 0 || insn->imm != 0) { 9239 verbose(env, "BPF_NEG uses reserved fields\n"); 9240 return -EINVAL; 9241 } 9242 } else { 9243 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 9244 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 9245 BPF_CLASS(insn->code) == BPF_ALU64) { 9246 verbose(env, "BPF_END uses reserved fields\n"); 9247 return -EINVAL; 9248 } 9249 } 9250 9251 /* check src operand */ 9252 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9253 if (err) 9254 return err; 9255 9256 if (is_pointer_value(env, insn->dst_reg)) { 9257 verbose(env, "R%d pointer arithmetic prohibited\n", 9258 insn->dst_reg); 9259 return -EACCES; 9260 } 9261 9262 /* check dest operand */ 9263 err = check_reg_arg(env, insn->dst_reg, DST_OP); 9264 if (err) 9265 return err; 9266 9267 } else if (opcode == BPF_MOV) { 9268 9269 if (BPF_SRC(insn->code) == BPF_X) { 9270 if (insn->imm != 0 || insn->off != 0) { 9271 verbose(env, "BPF_MOV uses reserved fields\n"); 9272 return -EINVAL; 9273 } 9274 9275 /* check src operand */ 9276 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9277 if (err) 9278 return err; 9279 } else { 9280 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 9281 verbose(env, "BPF_MOV uses reserved fields\n"); 9282 return -EINVAL; 9283 } 9284 } 9285 9286 /* check dest operand, mark as required later */ 9287 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 9288 if (err) 9289 return err; 9290 9291 if (BPF_SRC(insn->code) == BPF_X) { 9292 struct bpf_reg_state *src_reg = regs + insn->src_reg; 9293 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 9294 9295 if (BPF_CLASS(insn->code) == BPF_ALU64) { 9296 /* case: R1 = R2 9297 * copy register state to dest reg 9298 */ 9299 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 9300 /* Assign src and dst registers the same ID 9301 * that will be used by find_equal_scalars() 9302 * to propagate min/max range. 9303 */ 9304 src_reg->id = ++env->id_gen; 9305 *dst_reg = *src_reg; 9306 dst_reg->live |= REG_LIVE_WRITTEN; 9307 dst_reg->subreg_def = DEF_NOT_SUBREG; 9308 } else { 9309 /* R1 = (u32) R2 */ 9310 if (is_pointer_value(env, insn->src_reg)) { 9311 verbose(env, 9312 "R%d partial copy of pointer\n", 9313 insn->src_reg); 9314 return -EACCES; 9315 } else if (src_reg->type == SCALAR_VALUE) { 9316 *dst_reg = *src_reg; 9317 /* Make sure ID is cleared otherwise 9318 * dst_reg min/max could be incorrectly 9319 * propagated into src_reg by find_equal_scalars() 9320 */ 9321 dst_reg->id = 0; 9322 dst_reg->live |= REG_LIVE_WRITTEN; 9323 dst_reg->subreg_def = env->insn_idx + 1; 9324 } else { 9325 mark_reg_unknown(env, regs, 9326 insn->dst_reg); 9327 } 9328 zext_32_to_64(dst_reg); 9329 reg_bounds_sync(dst_reg); 9330 } 9331 } else { 9332 /* case: R = imm 9333 * remember the value we stored into this reg 9334 */ 9335 /* clear any state __mark_reg_known doesn't set */ 9336 mark_reg_unknown(env, regs, insn->dst_reg); 9337 regs[insn->dst_reg].type = SCALAR_VALUE; 9338 if (BPF_CLASS(insn->code) == BPF_ALU64) { 9339 __mark_reg_known(regs + insn->dst_reg, 9340 insn->imm); 9341 } else { 9342 __mark_reg_known(regs + insn->dst_reg, 9343 (u32)insn->imm); 9344 } 9345 } 9346 9347 } else if (opcode > BPF_END) { 9348 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 9349 return -EINVAL; 9350 9351 } else { /* all other ALU ops: and, sub, xor, add, ... */ 9352 9353 if (BPF_SRC(insn->code) == BPF_X) { 9354 if (insn->imm != 0 || insn->off != 0) { 9355 verbose(env, "BPF_ALU uses reserved fields\n"); 9356 return -EINVAL; 9357 } 9358 /* check src1 operand */ 9359 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9360 if (err) 9361 return err; 9362 } else { 9363 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 9364 verbose(env, "BPF_ALU uses reserved fields\n"); 9365 return -EINVAL; 9366 } 9367 } 9368 9369 /* check src2 operand */ 9370 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9371 if (err) 9372 return err; 9373 9374 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 9375 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 9376 verbose(env, "div by zero\n"); 9377 return -EINVAL; 9378 } 9379 9380 if ((opcode == BPF_LSH || opcode == BPF_RSH || 9381 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 9382 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 9383 9384 if (insn->imm < 0 || insn->imm >= size) { 9385 verbose(env, "invalid shift %d\n", insn->imm); 9386 return -EINVAL; 9387 } 9388 } 9389 9390 /* check dest operand */ 9391 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 9392 if (err) 9393 return err; 9394 9395 return adjust_reg_min_max_vals(env, insn); 9396 } 9397 9398 return 0; 9399 } 9400 9401 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 9402 struct bpf_reg_state *dst_reg, 9403 enum bpf_reg_type type, 9404 bool range_right_open) 9405 { 9406 struct bpf_func_state *state; 9407 struct bpf_reg_state *reg; 9408 int new_range; 9409 9410 if (dst_reg->off < 0 || 9411 (dst_reg->off == 0 && range_right_open)) 9412 /* This doesn't give us any range */ 9413 return; 9414 9415 if (dst_reg->umax_value > MAX_PACKET_OFF || 9416 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 9417 /* Risk of overflow. For instance, ptr + (1<<63) may be less 9418 * than pkt_end, but that's because it's also less than pkt. 9419 */ 9420 return; 9421 9422 new_range = dst_reg->off; 9423 if (range_right_open) 9424 new_range++; 9425 9426 /* Examples for register markings: 9427 * 9428 * pkt_data in dst register: 9429 * 9430 * r2 = r3; 9431 * r2 += 8; 9432 * if (r2 > pkt_end) goto <handle exception> 9433 * <access okay> 9434 * 9435 * r2 = r3; 9436 * r2 += 8; 9437 * if (r2 < pkt_end) goto <access okay> 9438 * <handle exception> 9439 * 9440 * Where: 9441 * r2 == dst_reg, pkt_end == src_reg 9442 * r2=pkt(id=n,off=8,r=0) 9443 * r3=pkt(id=n,off=0,r=0) 9444 * 9445 * pkt_data in src register: 9446 * 9447 * r2 = r3; 9448 * r2 += 8; 9449 * if (pkt_end >= r2) goto <access okay> 9450 * <handle exception> 9451 * 9452 * r2 = r3; 9453 * r2 += 8; 9454 * if (pkt_end <= r2) goto <handle exception> 9455 * <access okay> 9456 * 9457 * Where: 9458 * pkt_end == dst_reg, r2 == src_reg 9459 * r2=pkt(id=n,off=8,r=0) 9460 * r3=pkt(id=n,off=0,r=0) 9461 * 9462 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 9463 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 9464 * and [r3, r3 + 8-1) respectively is safe to access depending on 9465 * the check. 9466 */ 9467 9468 /* If our ids match, then we must have the same max_value. And we 9469 * don't care about the other reg's fixed offset, since if it's too big 9470 * the range won't allow anything. 9471 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 9472 */ 9473 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 9474 if (reg->type == type && reg->id == dst_reg->id) 9475 /* keep the maximum range already checked */ 9476 reg->range = max(reg->range, new_range); 9477 })); 9478 } 9479 9480 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 9481 { 9482 struct tnum subreg = tnum_subreg(reg->var_off); 9483 s32 sval = (s32)val; 9484 9485 switch (opcode) { 9486 case BPF_JEQ: 9487 if (tnum_is_const(subreg)) 9488 return !!tnum_equals_const(subreg, val); 9489 break; 9490 case BPF_JNE: 9491 if (tnum_is_const(subreg)) 9492 return !tnum_equals_const(subreg, val); 9493 break; 9494 case BPF_JSET: 9495 if ((~subreg.mask & subreg.value) & val) 9496 return 1; 9497 if (!((subreg.mask | subreg.value) & val)) 9498 return 0; 9499 break; 9500 case BPF_JGT: 9501 if (reg->u32_min_value > val) 9502 return 1; 9503 else if (reg->u32_max_value <= val) 9504 return 0; 9505 break; 9506 case BPF_JSGT: 9507 if (reg->s32_min_value > sval) 9508 return 1; 9509 else if (reg->s32_max_value <= sval) 9510 return 0; 9511 break; 9512 case BPF_JLT: 9513 if (reg->u32_max_value < val) 9514 return 1; 9515 else if (reg->u32_min_value >= val) 9516 return 0; 9517 break; 9518 case BPF_JSLT: 9519 if (reg->s32_max_value < sval) 9520 return 1; 9521 else if (reg->s32_min_value >= sval) 9522 return 0; 9523 break; 9524 case BPF_JGE: 9525 if (reg->u32_min_value >= val) 9526 return 1; 9527 else if (reg->u32_max_value < val) 9528 return 0; 9529 break; 9530 case BPF_JSGE: 9531 if (reg->s32_min_value >= sval) 9532 return 1; 9533 else if (reg->s32_max_value < sval) 9534 return 0; 9535 break; 9536 case BPF_JLE: 9537 if (reg->u32_max_value <= val) 9538 return 1; 9539 else if (reg->u32_min_value > val) 9540 return 0; 9541 break; 9542 case BPF_JSLE: 9543 if (reg->s32_max_value <= sval) 9544 return 1; 9545 else if (reg->s32_min_value > sval) 9546 return 0; 9547 break; 9548 } 9549 9550 return -1; 9551 } 9552 9553 9554 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 9555 { 9556 s64 sval = (s64)val; 9557 9558 switch (opcode) { 9559 case BPF_JEQ: 9560 if (tnum_is_const(reg->var_off)) 9561 return !!tnum_equals_const(reg->var_off, val); 9562 break; 9563 case BPF_JNE: 9564 if (tnum_is_const(reg->var_off)) 9565 return !tnum_equals_const(reg->var_off, val); 9566 break; 9567 case BPF_JSET: 9568 if ((~reg->var_off.mask & reg->var_off.value) & val) 9569 return 1; 9570 if (!((reg->var_off.mask | reg->var_off.value) & val)) 9571 return 0; 9572 break; 9573 case BPF_JGT: 9574 if (reg->umin_value > val) 9575 return 1; 9576 else if (reg->umax_value <= val) 9577 return 0; 9578 break; 9579 case BPF_JSGT: 9580 if (reg->smin_value > sval) 9581 return 1; 9582 else if (reg->smax_value <= sval) 9583 return 0; 9584 break; 9585 case BPF_JLT: 9586 if (reg->umax_value < val) 9587 return 1; 9588 else if (reg->umin_value >= val) 9589 return 0; 9590 break; 9591 case BPF_JSLT: 9592 if (reg->smax_value < sval) 9593 return 1; 9594 else if (reg->smin_value >= sval) 9595 return 0; 9596 break; 9597 case BPF_JGE: 9598 if (reg->umin_value >= val) 9599 return 1; 9600 else if (reg->umax_value < val) 9601 return 0; 9602 break; 9603 case BPF_JSGE: 9604 if (reg->smin_value >= sval) 9605 return 1; 9606 else if (reg->smax_value < sval) 9607 return 0; 9608 break; 9609 case BPF_JLE: 9610 if (reg->umax_value <= val) 9611 return 1; 9612 else if (reg->umin_value > val) 9613 return 0; 9614 break; 9615 case BPF_JSLE: 9616 if (reg->smax_value <= sval) 9617 return 1; 9618 else if (reg->smin_value > sval) 9619 return 0; 9620 break; 9621 } 9622 9623 return -1; 9624 } 9625 9626 /* compute branch direction of the expression "if (reg opcode val) goto target;" 9627 * and return: 9628 * 1 - branch will be taken and "goto target" will be executed 9629 * 0 - branch will not be taken and fall-through to next insn 9630 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 9631 * range [0,10] 9632 */ 9633 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 9634 bool is_jmp32) 9635 { 9636 if (__is_pointer_value(false, reg)) { 9637 if (!reg_type_not_null(reg->type)) 9638 return -1; 9639 9640 /* If pointer is valid tests against zero will fail so we can 9641 * use this to direct branch taken. 9642 */ 9643 if (val != 0) 9644 return -1; 9645 9646 switch (opcode) { 9647 case BPF_JEQ: 9648 return 0; 9649 case BPF_JNE: 9650 return 1; 9651 default: 9652 return -1; 9653 } 9654 } 9655 9656 if (is_jmp32) 9657 return is_branch32_taken(reg, val, opcode); 9658 return is_branch64_taken(reg, val, opcode); 9659 } 9660 9661 static int flip_opcode(u32 opcode) 9662 { 9663 /* How can we transform "a <op> b" into "b <op> a"? */ 9664 static const u8 opcode_flip[16] = { 9665 /* these stay the same */ 9666 [BPF_JEQ >> 4] = BPF_JEQ, 9667 [BPF_JNE >> 4] = BPF_JNE, 9668 [BPF_JSET >> 4] = BPF_JSET, 9669 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 9670 [BPF_JGE >> 4] = BPF_JLE, 9671 [BPF_JGT >> 4] = BPF_JLT, 9672 [BPF_JLE >> 4] = BPF_JGE, 9673 [BPF_JLT >> 4] = BPF_JGT, 9674 [BPF_JSGE >> 4] = BPF_JSLE, 9675 [BPF_JSGT >> 4] = BPF_JSLT, 9676 [BPF_JSLE >> 4] = BPF_JSGE, 9677 [BPF_JSLT >> 4] = BPF_JSGT 9678 }; 9679 return opcode_flip[opcode >> 4]; 9680 } 9681 9682 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 9683 struct bpf_reg_state *src_reg, 9684 u8 opcode) 9685 { 9686 struct bpf_reg_state *pkt; 9687 9688 if (src_reg->type == PTR_TO_PACKET_END) { 9689 pkt = dst_reg; 9690 } else if (dst_reg->type == PTR_TO_PACKET_END) { 9691 pkt = src_reg; 9692 opcode = flip_opcode(opcode); 9693 } else { 9694 return -1; 9695 } 9696 9697 if (pkt->range >= 0) 9698 return -1; 9699 9700 switch (opcode) { 9701 case BPF_JLE: 9702 /* pkt <= pkt_end */ 9703 fallthrough; 9704 case BPF_JGT: 9705 /* pkt > pkt_end */ 9706 if (pkt->range == BEYOND_PKT_END) 9707 /* pkt has at last one extra byte beyond pkt_end */ 9708 return opcode == BPF_JGT; 9709 break; 9710 case BPF_JLT: 9711 /* pkt < pkt_end */ 9712 fallthrough; 9713 case BPF_JGE: 9714 /* pkt >= pkt_end */ 9715 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 9716 return opcode == BPF_JGE; 9717 break; 9718 } 9719 return -1; 9720 } 9721 9722 /* Adjusts the register min/max values in the case that the dst_reg is the 9723 * variable register that we are working on, and src_reg is a constant or we're 9724 * simply doing a BPF_K check. 9725 * In JEQ/JNE cases we also adjust the var_off values. 9726 */ 9727 static void reg_set_min_max(struct bpf_reg_state *true_reg, 9728 struct bpf_reg_state *false_reg, 9729 u64 val, u32 val32, 9730 u8 opcode, bool is_jmp32) 9731 { 9732 struct tnum false_32off = tnum_subreg(false_reg->var_off); 9733 struct tnum false_64off = false_reg->var_off; 9734 struct tnum true_32off = tnum_subreg(true_reg->var_off); 9735 struct tnum true_64off = true_reg->var_off; 9736 s64 sval = (s64)val; 9737 s32 sval32 = (s32)val32; 9738 9739 /* If the dst_reg is a pointer, we can't learn anything about its 9740 * variable offset from the compare (unless src_reg were a pointer into 9741 * the same object, but we don't bother with that. 9742 * Since false_reg and true_reg have the same type by construction, we 9743 * only need to check one of them for pointerness. 9744 */ 9745 if (__is_pointer_value(false, false_reg)) 9746 return; 9747 9748 switch (opcode) { 9749 /* JEQ/JNE comparison doesn't change the register equivalence. 9750 * 9751 * r1 = r2; 9752 * if (r1 == 42) goto label; 9753 * ... 9754 * label: // here both r1 and r2 are known to be 42. 9755 * 9756 * Hence when marking register as known preserve it's ID. 9757 */ 9758 case BPF_JEQ: 9759 if (is_jmp32) { 9760 __mark_reg32_known(true_reg, val32); 9761 true_32off = tnum_subreg(true_reg->var_off); 9762 } else { 9763 ___mark_reg_known(true_reg, val); 9764 true_64off = true_reg->var_off; 9765 } 9766 break; 9767 case BPF_JNE: 9768 if (is_jmp32) { 9769 __mark_reg32_known(false_reg, val32); 9770 false_32off = tnum_subreg(false_reg->var_off); 9771 } else { 9772 ___mark_reg_known(false_reg, val); 9773 false_64off = false_reg->var_off; 9774 } 9775 break; 9776 case BPF_JSET: 9777 if (is_jmp32) { 9778 false_32off = tnum_and(false_32off, tnum_const(~val32)); 9779 if (is_power_of_2(val32)) 9780 true_32off = tnum_or(true_32off, 9781 tnum_const(val32)); 9782 } else { 9783 false_64off = tnum_and(false_64off, tnum_const(~val)); 9784 if (is_power_of_2(val)) 9785 true_64off = tnum_or(true_64off, 9786 tnum_const(val)); 9787 } 9788 break; 9789 case BPF_JGE: 9790 case BPF_JGT: 9791 { 9792 if (is_jmp32) { 9793 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 9794 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 9795 9796 false_reg->u32_max_value = min(false_reg->u32_max_value, 9797 false_umax); 9798 true_reg->u32_min_value = max(true_reg->u32_min_value, 9799 true_umin); 9800 } else { 9801 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 9802 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 9803 9804 false_reg->umax_value = min(false_reg->umax_value, false_umax); 9805 true_reg->umin_value = max(true_reg->umin_value, true_umin); 9806 } 9807 break; 9808 } 9809 case BPF_JSGE: 9810 case BPF_JSGT: 9811 { 9812 if (is_jmp32) { 9813 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 9814 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 9815 9816 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 9817 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 9818 } else { 9819 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 9820 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 9821 9822 false_reg->smax_value = min(false_reg->smax_value, false_smax); 9823 true_reg->smin_value = max(true_reg->smin_value, true_smin); 9824 } 9825 break; 9826 } 9827 case BPF_JLE: 9828 case BPF_JLT: 9829 { 9830 if (is_jmp32) { 9831 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 9832 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 9833 9834 false_reg->u32_min_value = max(false_reg->u32_min_value, 9835 false_umin); 9836 true_reg->u32_max_value = min(true_reg->u32_max_value, 9837 true_umax); 9838 } else { 9839 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 9840 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 9841 9842 false_reg->umin_value = max(false_reg->umin_value, false_umin); 9843 true_reg->umax_value = min(true_reg->umax_value, true_umax); 9844 } 9845 break; 9846 } 9847 case BPF_JSLE: 9848 case BPF_JSLT: 9849 { 9850 if (is_jmp32) { 9851 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 9852 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 9853 9854 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 9855 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 9856 } else { 9857 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 9858 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 9859 9860 false_reg->smin_value = max(false_reg->smin_value, false_smin); 9861 true_reg->smax_value = min(true_reg->smax_value, true_smax); 9862 } 9863 break; 9864 } 9865 default: 9866 return; 9867 } 9868 9869 if (is_jmp32) { 9870 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 9871 tnum_subreg(false_32off)); 9872 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 9873 tnum_subreg(true_32off)); 9874 __reg_combine_32_into_64(false_reg); 9875 __reg_combine_32_into_64(true_reg); 9876 } else { 9877 false_reg->var_off = false_64off; 9878 true_reg->var_off = true_64off; 9879 __reg_combine_64_into_32(false_reg); 9880 __reg_combine_64_into_32(true_reg); 9881 } 9882 } 9883 9884 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 9885 * the variable reg. 9886 */ 9887 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 9888 struct bpf_reg_state *false_reg, 9889 u64 val, u32 val32, 9890 u8 opcode, bool is_jmp32) 9891 { 9892 opcode = flip_opcode(opcode); 9893 /* This uses zero as "not present in table"; luckily the zero opcode, 9894 * BPF_JA, can't get here. 9895 */ 9896 if (opcode) 9897 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 9898 } 9899 9900 /* Regs are known to be equal, so intersect their min/max/var_off */ 9901 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 9902 struct bpf_reg_state *dst_reg) 9903 { 9904 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 9905 dst_reg->umin_value); 9906 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 9907 dst_reg->umax_value); 9908 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 9909 dst_reg->smin_value); 9910 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 9911 dst_reg->smax_value); 9912 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 9913 dst_reg->var_off); 9914 reg_bounds_sync(src_reg); 9915 reg_bounds_sync(dst_reg); 9916 } 9917 9918 static void reg_combine_min_max(struct bpf_reg_state *true_src, 9919 struct bpf_reg_state *true_dst, 9920 struct bpf_reg_state *false_src, 9921 struct bpf_reg_state *false_dst, 9922 u8 opcode) 9923 { 9924 switch (opcode) { 9925 case BPF_JEQ: 9926 __reg_combine_min_max(true_src, true_dst); 9927 break; 9928 case BPF_JNE: 9929 __reg_combine_min_max(false_src, false_dst); 9930 break; 9931 } 9932 } 9933 9934 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 9935 struct bpf_reg_state *reg, u32 id, 9936 bool is_null) 9937 { 9938 if (type_may_be_null(reg->type) && reg->id == id && 9939 !WARN_ON_ONCE(!reg->id)) { 9940 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 9941 !tnum_equals_const(reg->var_off, 0) || 9942 reg->off)) { 9943 /* Old offset (both fixed and variable parts) should 9944 * have been known-zero, because we don't allow pointer 9945 * arithmetic on pointers that might be NULL. If we 9946 * see this happening, don't convert the register. 9947 */ 9948 return; 9949 } 9950 if (is_null) { 9951 reg->type = SCALAR_VALUE; 9952 /* We don't need id and ref_obj_id from this point 9953 * onwards anymore, thus we should better reset it, 9954 * so that state pruning has chances to take effect. 9955 */ 9956 reg->id = 0; 9957 reg->ref_obj_id = 0; 9958 9959 return; 9960 } 9961 9962 mark_ptr_not_null_reg(reg); 9963 9964 if (!reg_may_point_to_spin_lock(reg)) { 9965 /* For not-NULL ptr, reg->ref_obj_id will be reset 9966 * in release_reference(). 9967 * 9968 * reg->id is still used by spin_lock ptr. Other 9969 * than spin_lock ptr type, reg->id can be reset. 9970 */ 9971 reg->id = 0; 9972 } 9973 } 9974 } 9975 9976 /* The logic is similar to find_good_pkt_pointers(), both could eventually 9977 * be folded together at some point. 9978 */ 9979 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 9980 bool is_null) 9981 { 9982 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9983 struct bpf_reg_state *regs = state->regs, *reg; 9984 u32 ref_obj_id = regs[regno].ref_obj_id; 9985 u32 id = regs[regno].id; 9986 9987 if (ref_obj_id && ref_obj_id == id && is_null) 9988 /* regs[regno] is in the " == NULL" branch. 9989 * No one could have freed the reference state before 9990 * doing the NULL check. 9991 */ 9992 WARN_ON_ONCE(release_reference_state(state, id)); 9993 9994 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 9995 mark_ptr_or_null_reg(state, reg, id, is_null); 9996 })); 9997 } 9998 9999 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 10000 struct bpf_reg_state *dst_reg, 10001 struct bpf_reg_state *src_reg, 10002 struct bpf_verifier_state *this_branch, 10003 struct bpf_verifier_state *other_branch) 10004 { 10005 if (BPF_SRC(insn->code) != BPF_X) 10006 return false; 10007 10008 /* Pointers are always 64-bit. */ 10009 if (BPF_CLASS(insn->code) == BPF_JMP32) 10010 return false; 10011 10012 switch (BPF_OP(insn->code)) { 10013 case BPF_JGT: 10014 if ((dst_reg->type == PTR_TO_PACKET && 10015 src_reg->type == PTR_TO_PACKET_END) || 10016 (dst_reg->type == PTR_TO_PACKET_META && 10017 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 10018 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 10019 find_good_pkt_pointers(this_branch, dst_reg, 10020 dst_reg->type, false); 10021 mark_pkt_end(other_branch, insn->dst_reg, true); 10022 } else if ((dst_reg->type == PTR_TO_PACKET_END && 10023 src_reg->type == PTR_TO_PACKET) || 10024 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 10025 src_reg->type == PTR_TO_PACKET_META)) { 10026 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 10027 find_good_pkt_pointers(other_branch, src_reg, 10028 src_reg->type, true); 10029 mark_pkt_end(this_branch, insn->src_reg, false); 10030 } else { 10031 return false; 10032 } 10033 break; 10034 case BPF_JLT: 10035 if ((dst_reg->type == PTR_TO_PACKET && 10036 src_reg->type == PTR_TO_PACKET_END) || 10037 (dst_reg->type == PTR_TO_PACKET_META && 10038 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 10039 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 10040 find_good_pkt_pointers(other_branch, dst_reg, 10041 dst_reg->type, true); 10042 mark_pkt_end(this_branch, insn->dst_reg, false); 10043 } else if ((dst_reg->type == PTR_TO_PACKET_END && 10044 src_reg->type == PTR_TO_PACKET) || 10045 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 10046 src_reg->type == PTR_TO_PACKET_META)) { 10047 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 10048 find_good_pkt_pointers(this_branch, src_reg, 10049 src_reg->type, false); 10050 mark_pkt_end(other_branch, insn->src_reg, true); 10051 } else { 10052 return false; 10053 } 10054 break; 10055 case BPF_JGE: 10056 if ((dst_reg->type == PTR_TO_PACKET && 10057 src_reg->type == PTR_TO_PACKET_END) || 10058 (dst_reg->type == PTR_TO_PACKET_META && 10059 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 10060 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 10061 find_good_pkt_pointers(this_branch, dst_reg, 10062 dst_reg->type, true); 10063 mark_pkt_end(other_branch, insn->dst_reg, false); 10064 } else if ((dst_reg->type == PTR_TO_PACKET_END && 10065 src_reg->type == PTR_TO_PACKET) || 10066 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 10067 src_reg->type == PTR_TO_PACKET_META)) { 10068 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 10069 find_good_pkt_pointers(other_branch, src_reg, 10070 src_reg->type, false); 10071 mark_pkt_end(this_branch, insn->src_reg, true); 10072 } else { 10073 return false; 10074 } 10075 break; 10076 case BPF_JLE: 10077 if ((dst_reg->type == PTR_TO_PACKET && 10078 src_reg->type == PTR_TO_PACKET_END) || 10079 (dst_reg->type == PTR_TO_PACKET_META && 10080 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 10081 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 10082 find_good_pkt_pointers(other_branch, dst_reg, 10083 dst_reg->type, false); 10084 mark_pkt_end(this_branch, insn->dst_reg, true); 10085 } else if ((dst_reg->type == PTR_TO_PACKET_END && 10086 src_reg->type == PTR_TO_PACKET) || 10087 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 10088 src_reg->type == PTR_TO_PACKET_META)) { 10089 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 10090 find_good_pkt_pointers(this_branch, src_reg, 10091 src_reg->type, true); 10092 mark_pkt_end(other_branch, insn->src_reg, false); 10093 } else { 10094 return false; 10095 } 10096 break; 10097 default: 10098 return false; 10099 } 10100 10101 return true; 10102 } 10103 10104 static void find_equal_scalars(struct bpf_verifier_state *vstate, 10105 struct bpf_reg_state *known_reg) 10106 { 10107 struct bpf_func_state *state; 10108 struct bpf_reg_state *reg; 10109 10110 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 10111 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 10112 *reg = *known_reg; 10113 })); 10114 } 10115 10116 static int check_cond_jmp_op(struct bpf_verifier_env *env, 10117 struct bpf_insn *insn, int *insn_idx) 10118 { 10119 struct bpf_verifier_state *this_branch = env->cur_state; 10120 struct bpf_verifier_state *other_branch; 10121 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 10122 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 10123 u8 opcode = BPF_OP(insn->code); 10124 bool is_jmp32; 10125 int pred = -1; 10126 int err; 10127 10128 /* Only conditional jumps are expected to reach here. */ 10129 if (opcode == BPF_JA || opcode > BPF_JSLE) { 10130 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 10131 return -EINVAL; 10132 } 10133 10134 if (BPF_SRC(insn->code) == BPF_X) { 10135 if (insn->imm != 0) { 10136 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 10137 return -EINVAL; 10138 } 10139 10140 /* check src1 operand */ 10141 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10142 if (err) 10143 return err; 10144 10145 if (is_pointer_value(env, insn->src_reg)) { 10146 verbose(env, "R%d pointer comparison prohibited\n", 10147 insn->src_reg); 10148 return -EACCES; 10149 } 10150 src_reg = ®s[insn->src_reg]; 10151 } else { 10152 if (insn->src_reg != BPF_REG_0) { 10153 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 10154 return -EINVAL; 10155 } 10156 } 10157 10158 /* check src2 operand */ 10159 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10160 if (err) 10161 return err; 10162 10163 dst_reg = ®s[insn->dst_reg]; 10164 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 10165 10166 if (BPF_SRC(insn->code) == BPF_K) { 10167 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 10168 } else if (src_reg->type == SCALAR_VALUE && 10169 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 10170 pred = is_branch_taken(dst_reg, 10171 tnum_subreg(src_reg->var_off).value, 10172 opcode, 10173 is_jmp32); 10174 } else if (src_reg->type == SCALAR_VALUE && 10175 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 10176 pred = is_branch_taken(dst_reg, 10177 src_reg->var_off.value, 10178 opcode, 10179 is_jmp32); 10180 } else if (reg_is_pkt_pointer_any(dst_reg) && 10181 reg_is_pkt_pointer_any(src_reg) && 10182 !is_jmp32) { 10183 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 10184 } 10185 10186 if (pred >= 0) { 10187 /* If we get here with a dst_reg pointer type it is because 10188 * above is_branch_taken() special cased the 0 comparison. 10189 */ 10190 if (!__is_pointer_value(false, dst_reg)) 10191 err = mark_chain_precision(env, insn->dst_reg); 10192 if (BPF_SRC(insn->code) == BPF_X && !err && 10193 !__is_pointer_value(false, src_reg)) 10194 err = mark_chain_precision(env, insn->src_reg); 10195 if (err) 10196 return err; 10197 } 10198 10199 if (pred == 1) { 10200 /* Only follow the goto, ignore fall-through. If needed, push 10201 * the fall-through branch for simulation under speculative 10202 * execution. 10203 */ 10204 if (!env->bypass_spec_v1 && 10205 !sanitize_speculative_path(env, insn, *insn_idx + 1, 10206 *insn_idx)) 10207 return -EFAULT; 10208 *insn_idx += insn->off; 10209 return 0; 10210 } else if (pred == 0) { 10211 /* Only follow the fall-through branch, since that's where the 10212 * program will go. If needed, push the goto branch for 10213 * simulation under speculative execution. 10214 */ 10215 if (!env->bypass_spec_v1 && 10216 !sanitize_speculative_path(env, insn, 10217 *insn_idx + insn->off + 1, 10218 *insn_idx)) 10219 return -EFAULT; 10220 return 0; 10221 } 10222 10223 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 10224 false); 10225 if (!other_branch) 10226 return -EFAULT; 10227 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 10228 10229 /* detect if we are comparing against a constant value so we can adjust 10230 * our min/max values for our dst register. 10231 * this is only legit if both are scalars (or pointers to the same 10232 * object, I suppose, but we don't support that right now), because 10233 * otherwise the different base pointers mean the offsets aren't 10234 * comparable. 10235 */ 10236 if (BPF_SRC(insn->code) == BPF_X) { 10237 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 10238 10239 if (dst_reg->type == SCALAR_VALUE && 10240 src_reg->type == SCALAR_VALUE) { 10241 if (tnum_is_const(src_reg->var_off) || 10242 (is_jmp32 && 10243 tnum_is_const(tnum_subreg(src_reg->var_off)))) 10244 reg_set_min_max(&other_branch_regs[insn->dst_reg], 10245 dst_reg, 10246 src_reg->var_off.value, 10247 tnum_subreg(src_reg->var_off).value, 10248 opcode, is_jmp32); 10249 else if (tnum_is_const(dst_reg->var_off) || 10250 (is_jmp32 && 10251 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 10252 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 10253 src_reg, 10254 dst_reg->var_off.value, 10255 tnum_subreg(dst_reg->var_off).value, 10256 opcode, is_jmp32); 10257 else if (!is_jmp32 && 10258 (opcode == BPF_JEQ || opcode == BPF_JNE)) 10259 /* Comparing for equality, we can combine knowledge */ 10260 reg_combine_min_max(&other_branch_regs[insn->src_reg], 10261 &other_branch_regs[insn->dst_reg], 10262 src_reg, dst_reg, opcode); 10263 if (src_reg->id && 10264 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 10265 find_equal_scalars(this_branch, src_reg); 10266 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 10267 } 10268 10269 } 10270 } else if (dst_reg->type == SCALAR_VALUE) { 10271 reg_set_min_max(&other_branch_regs[insn->dst_reg], 10272 dst_reg, insn->imm, (u32)insn->imm, 10273 opcode, is_jmp32); 10274 } 10275 10276 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 10277 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 10278 find_equal_scalars(this_branch, dst_reg); 10279 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 10280 } 10281 10282 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 10283 * NOTE: these optimizations below are related with pointer comparison 10284 * which will never be JMP32. 10285 */ 10286 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 10287 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 10288 type_may_be_null(dst_reg->type)) { 10289 /* Mark all identical registers in each branch as either 10290 * safe or unknown depending R == 0 or R != 0 conditional. 10291 */ 10292 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 10293 opcode == BPF_JNE); 10294 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 10295 opcode == BPF_JEQ); 10296 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 10297 this_branch, other_branch) && 10298 is_pointer_value(env, insn->dst_reg)) { 10299 verbose(env, "R%d pointer comparison prohibited\n", 10300 insn->dst_reg); 10301 return -EACCES; 10302 } 10303 if (env->log.level & BPF_LOG_LEVEL) 10304 print_insn_state(env, this_branch->frame[this_branch->curframe]); 10305 return 0; 10306 } 10307 10308 /* verify BPF_LD_IMM64 instruction */ 10309 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 10310 { 10311 struct bpf_insn_aux_data *aux = cur_aux(env); 10312 struct bpf_reg_state *regs = cur_regs(env); 10313 struct bpf_reg_state *dst_reg; 10314 struct bpf_map *map; 10315 int err; 10316 10317 if (BPF_SIZE(insn->code) != BPF_DW) { 10318 verbose(env, "invalid BPF_LD_IMM insn\n"); 10319 return -EINVAL; 10320 } 10321 if (insn->off != 0) { 10322 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 10323 return -EINVAL; 10324 } 10325 10326 err = check_reg_arg(env, insn->dst_reg, DST_OP); 10327 if (err) 10328 return err; 10329 10330 dst_reg = ®s[insn->dst_reg]; 10331 if (insn->src_reg == 0) { 10332 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 10333 10334 dst_reg->type = SCALAR_VALUE; 10335 __mark_reg_known(®s[insn->dst_reg], imm); 10336 return 0; 10337 } 10338 10339 /* All special src_reg cases are listed below. From this point onwards 10340 * we either succeed and assign a corresponding dst_reg->type after 10341 * zeroing the offset, or fail and reject the program. 10342 */ 10343 mark_reg_known_zero(env, regs, insn->dst_reg); 10344 10345 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 10346 dst_reg->type = aux->btf_var.reg_type; 10347 switch (base_type(dst_reg->type)) { 10348 case PTR_TO_MEM: 10349 dst_reg->mem_size = aux->btf_var.mem_size; 10350 break; 10351 case PTR_TO_BTF_ID: 10352 dst_reg->btf = aux->btf_var.btf; 10353 dst_reg->btf_id = aux->btf_var.btf_id; 10354 break; 10355 default: 10356 verbose(env, "bpf verifier is misconfigured\n"); 10357 return -EFAULT; 10358 } 10359 return 0; 10360 } 10361 10362 if (insn->src_reg == BPF_PSEUDO_FUNC) { 10363 struct bpf_prog_aux *aux = env->prog->aux; 10364 u32 subprogno = find_subprog(env, 10365 env->insn_idx + insn->imm + 1); 10366 10367 if (!aux->func_info) { 10368 verbose(env, "missing btf func_info\n"); 10369 return -EINVAL; 10370 } 10371 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 10372 verbose(env, "callback function not static\n"); 10373 return -EINVAL; 10374 } 10375 10376 dst_reg->type = PTR_TO_FUNC; 10377 dst_reg->subprogno = subprogno; 10378 return 0; 10379 } 10380 10381 map = env->used_maps[aux->map_index]; 10382 dst_reg->map_ptr = map; 10383 10384 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 10385 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 10386 dst_reg->type = PTR_TO_MAP_VALUE; 10387 dst_reg->off = aux->map_off; 10388 if (map_value_has_spin_lock(map)) 10389 dst_reg->id = ++env->id_gen; 10390 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 10391 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 10392 dst_reg->type = CONST_PTR_TO_MAP; 10393 } else { 10394 verbose(env, "bpf verifier is misconfigured\n"); 10395 return -EINVAL; 10396 } 10397 10398 return 0; 10399 } 10400 10401 static bool may_access_skb(enum bpf_prog_type type) 10402 { 10403 switch (type) { 10404 case BPF_PROG_TYPE_SOCKET_FILTER: 10405 case BPF_PROG_TYPE_SCHED_CLS: 10406 case BPF_PROG_TYPE_SCHED_ACT: 10407 return true; 10408 default: 10409 return false; 10410 } 10411 } 10412 10413 /* verify safety of LD_ABS|LD_IND instructions: 10414 * - they can only appear in the programs where ctx == skb 10415 * - since they are wrappers of function calls, they scratch R1-R5 registers, 10416 * preserve R6-R9, and store return value into R0 10417 * 10418 * Implicit input: 10419 * ctx == skb == R6 == CTX 10420 * 10421 * Explicit input: 10422 * SRC == any register 10423 * IMM == 32-bit immediate 10424 * 10425 * Output: 10426 * R0 - 8/16/32-bit skb data converted to cpu endianness 10427 */ 10428 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 10429 { 10430 struct bpf_reg_state *regs = cur_regs(env); 10431 static const int ctx_reg = BPF_REG_6; 10432 u8 mode = BPF_MODE(insn->code); 10433 int i, err; 10434 10435 if (!may_access_skb(resolve_prog_type(env->prog))) { 10436 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 10437 return -EINVAL; 10438 } 10439 10440 if (!env->ops->gen_ld_abs) { 10441 verbose(env, "bpf verifier is misconfigured\n"); 10442 return -EINVAL; 10443 } 10444 10445 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 10446 BPF_SIZE(insn->code) == BPF_DW || 10447 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 10448 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 10449 return -EINVAL; 10450 } 10451 10452 /* check whether implicit source operand (register R6) is readable */ 10453 err = check_reg_arg(env, ctx_reg, SRC_OP); 10454 if (err) 10455 return err; 10456 10457 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 10458 * gen_ld_abs() may terminate the program at runtime, leading to 10459 * reference leak. 10460 */ 10461 err = check_reference_leak(env); 10462 if (err) { 10463 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 10464 return err; 10465 } 10466 10467 if (env->cur_state->active_spin_lock) { 10468 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 10469 return -EINVAL; 10470 } 10471 10472 if (regs[ctx_reg].type != PTR_TO_CTX) { 10473 verbose(env, 10474 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 10475 return -EINVAL; 10476 } 10477 10478 if (mode == BPF_IND) { 10479 /* check explicit source operand */ 10480 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10481 if (err) 10482 return err; 10483 } 10484 10485 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 10486 if (err < 0) 10487 return err; 10488 10489 /* reset caller saved regs to unreadable */ 10490 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10491 mark_reg_not_init(env, regs, caller_saved[i]); 10492 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 10493 } 10494 10495 /* mark destination R0 register as readable, since it contains 10496 * the value fetched from the packet. 10497 * Already marked as written above. 10498 */ 10499 mark_reg_unknown(env, regs, BPF_REG_0); 10500 /* ld_abs load up to 32-bit skb data. */ 10501 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 10502 return 0; 10503 } 10504 10505 static int check_return_code(struct bpf_verifier_env *env) 10506 { 10507 struct tnum enforce_attach_type_range = tnum_unknown; 10508 const struct bpf_prog *prog = env->prog; 10509 struct bpf_reg_state *reg; 10510 struct tnum range = tnum_range(0, 1); 10511 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 10512 int err; 10513 struct bpf_func_state *frame = env->cur_state->frame[0]; 10514 const bool is_subprog = frame->subprogno; 10515 10516 /* LSM and struct_ops func-ptr's return type could be "void" */ 10517 if (!is_subprog) { 10518 switch (prog_type) { 10519 case BPF_PROG_TYPE_LSM: 10520 if (prog->expected_attach_type == BPF_LSM_CGROUP) 10521 /* See below, can be 0 or 0-1 depending on hook. */ 10522 break; 10523 fallthrough; 10524 case BPF_PROG_TYPE_STRUCT_OPS: 10525 if (!prog->aux->attach_func_proto->type) 10526 return 0; 10527 break; 10528 default: 10529 break; 10530 } 10531 } 10532 10533 /* eBPF calling convention is such that R0 is used 10534 * to return the value from eBPF program. 10535 * Make sure that it's readable at this time 10536 * of bpf_exit, which means that program wrote 10537 * something into it earlier 10538 */ 10539 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 10540 if (err) 10541 return err; 10542 10543 if (is_pointer_value(env, BPF_REG_0)) { 10544 verbose(env, "R0 leaks addr as return value\n"); 10545 return -EACCES; 10546 } 10547 10548 reg = cur_regs(env) + BPF_REG_0; 10549 10550 if (frame->in_async_callback_fn) { 10551 /* enforce return zero from async callbacks like timer */ 10552 if (reg->type != SCALAR_VALUE) { 10553 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 10554 reg_type_str(env, reg->type)); 10555 return -EINVAL; 10556 } 10557 10558 if (!tnum_in(tnum_const(0), reg->var_off)) { 10559 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 10560 return -EINVAL; 10561 } 10562 return 0; 10563 } 10564 10565 if (is_subprog) { 10566 if (reg->type != SCALAR_VALUE) { 10567 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 10568 reg_type_str(env, reg->type)); 10569 return -EINVAL; 10570 } 10571 return 0; 10572 } 10573 10574 switch (prog_type) { 10575 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 10576 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 10577 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 10578 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 10579 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 10580 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 10581 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 10582 range = tnum_range(1, 1); 10583 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 10584 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 10585 range = tnum_range(0, 3); 10586 break; 10587 case BPF_PROG_TYPE_CGROUP_SKB: 10588 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 10589 range = tnum_range(0, 3); 10590 enforce_attach_type_range = tnum_range(2, 3); 10591 } 10592 break; 10593 case BPF_PROG_TYPE_CGROUP_SOCK: 10594 case BPF_PROG_TYPE_SOCK_OPS: 10595 case BPF_PROG_TYPE_CGROUP_DEVICE: 10596 case BPF_PROG_TYPE_CGROUP_SYSCTL: 10597 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 10598 break; 10599 case BPF_PROG_TYPE_RAW_TRACEPOINT: 10600 if (!env->prog->aux->attach_btf_id) 10601 return 0; 10602 range = tnum_const(0); 10603 break; 10604 case BPF_PROG_TYPE_TRACING: 10605 switch (env->prog->expected_attach_type) { 10606 case BPF_TRACE_FENTRY: 10607 case BPF_TRACE_FEXIT: 10608 range = tnum_const(0); 10609 break; 10610 case BPF_TRACE_RAW_TP: 10611 case BPF_MODIFY_RETURN: 10612 return 0; 10613 case BPF_TRACE_ITER: 10614 break; 10615 default: 10616 return -ENOTSUPP; 10617 } 10618 break; 10619 case BPF_PROG_TYPE_SK_LOOKUP: 10620 range = tnum_range(SK_DROP, SK_PASS); 10621 break; 10622 10623 case BPF_PROG_TYPE_LSM: 10624 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 10625 /* Regular BPF_PROG_TYPE_LSM programs can return 10626 * any value. 10627 */ 10628 return 0; 10629 } 10630 if (!env->prog->aux->attach_func_proto->type) { 10631 /* Make sure programs that attach to void 10632 * hooks don't try to modify return value. 10633 */ 10634 range = tnum_range(1, 1); 10635 } 10636 break; 10637 10638 case BPF_PROG_TYPE_EXT: 10639 /* freplace program can return anything as its return value 10640 * depends on the to-be-replaced kernel func or bpf program. 10641 */ 10642 default: 10643 return 0; 10644 } 10645 10646 if (reg->type != SCALAR_VALUE) { 10647 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 10648 reg_type_str(env, reg->type)); 10649 return -EINVAL; 10650 } 10651 10652 if (!tnum_in(range, reg->var_off)) { 10653 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 10654 if (prog->expected_attach_type == BPF_LSM_CGROUP && 10655 prog_type == BPF_PROG_TYPE_LSM && 10656 !prog->aux->attach_func_proto->type) 10657 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 10658 return -EINVAL; 10659 } 10660 10661 if (!tnum_is_unknown(enforce_attach_type_range) && 10662 tnum_in(enforce_attach_type_range, reg->var_off)) 10663 env->prog->enforce_expected_attach_type = 1; 10664 return 0; 10665 } 10666 10667 /* non-recursive DFS pseudo code 10668 * 1 procedure DFS-iterative(G,v): 10669 * 2 label v as discovered 10670 * 3 let S be a stack 10671 * 4 S.push(v) 10672 * 5 while S is not empty 10673 * 6 t <- S.pop() 10674 * 7 if t is what we're looking for: 10675 * 8 return t 10676 * 9 for all edges e in G.adjacentEdges(t) do 10677 * 10 if edge e is already labelled 10678 * 11 continue with the next edge 10679 * 12 w <- G.adjacentVertex(t,e) 10680 * 13 if vertex w is not discovered and not explored 10681 * 14 label e as tree-edge 10682 * 15 label w as discovered 10683 * 16 S.push(w) 10684 * 17 continue at 5 10685 * 18 else if vertex w is discovered 10686 * 19 label e as back-edge 10687 * 20 else 10688 * 21 // vertex w is explored 10689 * 22 label e as forward- or cross-edge 10690 * 23 label t as explored 10691 * 24 S.pop() 10692 * 10693 * convention: 10694 * 0x10 - discovered 10695 * 0x11 - discovered and fall-through edge labelled 10696 * 0x12 - discovered and fall-through and branch edges labelled 10697 * 0x20 - explored 10698 */ 10699 10700 enum { 10701 DISCOVERED = 0x10, 10702 EXPLORED = 0x20, 10703 FALLTHROUGH = 1, 10704 BRANCH = 2, 10705 }; 10706 10707 static u32 state_htab_size(struct bpf_verifier_env *env) 10708 { 10709 return env->prog->len; 10710 } 10711 10712 static struct bpf_verifier_state_list **explored_state( 10713 struct bpf_verifier_env *env, 10714 int idx) 10715 { 10716 struct bpf_verifier_state *cur = env->cur_state; 10717 struct bpf_func_state *state = cur->frame[cur->curframe]; 10718 10719 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 10720 } 10721 10722 static void init_explored_state(struct bpf_verifier_env *env, int idx) 10723 { 10724 env->insn_aux_data[idx].prune_point = true; 10725 } 10726 10727 enum { 10728 DONE_EXPLORING = 0, 10729 KEEP_EXPLORING = 1, 10730 }; 10731 10732 /* t, w, e - match pseudo-code above: 10733 * t - index of current instruction 10734 * w - next instruction 10735 * e - edge 10736 */ 10737 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 10738 bool loop_ok) 10739 { 10740 int *insn_stack = env->cfg.insn_stack; 10741 int *insn_state = env->cfg.insn_state; 10742 10743 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 10744 return DONE_EXPLORING; 10745 10746 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 10747 return DONE_EXPLORING; 10748 10749 if (w < 0 || w >= env->prog->len) { 10750 verbose_linfo(env, t, "%d: ", t); 10751 verbose(env, "jump out of range from insn %d to %d\n", t, w); 10752 return -EINVAL; 10753 } 10754 10755 if (e == BRANCH) 10756 /* mark branch target for state pruning */ 10757 init_explored_state(env, w); 10758 10759 if (insn_state[w] == 0) { 10760 /* tree-edge */ 10761 insn_state[t] = DISCOVERED | e; 10762 insn_state[w] = DISCOVERED; 10763 if (env->cfg.cur_stack >= env->prog->len) 10764 return -E2BIG; 10765 insn_stack[env->cfg.cur_stack++] = w; 10766 return KEEP_EXPLORING; 10767 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 10768 if (loop_ok && env->bpf_capable) 10769 return DONE_EXPLORING; 10770 verbose_linfo(env, t, "%d: ", t); 10771 verbose_linfo(env, w, "%d: ", w); 10772 verbose(env, "back-edge from insn %d to %d\n", t, w); 10773 return -EINVAL; 10774 } else if (insn_state[w] == EXPLORED) { 10775 /* forward- or cross-edge */ 10776 insn_state[t] = DISCOVERED | e; 10777 } else { 10778 verbose(env, "insn state internal bug\n"); 10779 return -EFAULT; 10780 } 10781 return DONE_EXPLORING; 10782 } 10783 10784 static int visit_func_call_insn(int t, int insn_cnt, 10785 struct bpf_insn *insns, 10786 struct bpf_verifier_env *env, 10787 bool visit_callee) 10788 { 10789 int ret; 10790 10791 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 10792 if (ret) 10793 return ret; 10794 10795 if (t + 1 < insn_cnt) 10796 init_explored_state(env, t + 1); 10797 if (visit_callee) { 10798 init_explored_state(env, t); 10799 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 10800 /* It's ok to allow recursion from CFG point of 10801 * view. __check_func_call() will do the actual 10802 * check. 10803 */ 10804 bpf_pseudo_func(insns + t)); 10805 } 10806 return ret; 10807 } 10808 10809 /* Visits the instruction at index t and returns one of the following: 10810 * < 0 - an error occurred 10811 * DONE_EXPLORING - the instruction was fully explored 10812 * KEEP_EXPLORING - there is still work to be done before it is fully explored 10813 */ 10814 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) 10815 { 10816 struct bpf_insn *insns = env->prog->insnsi; 10817 int ret; 10818 10819 if (bpf_pseudo_func(insns + t)) 10820 return visit_func_call_insn(t, insn_cnt, insns, env, true); 10821 10822 /* All non-branch instructions have a single fall-through edge. */ 10823 if (BPF_CLASS(insns[t].code) != BPF_JMP && 10824 BPF_CLASS(insns[t].code) != BPF_JMP32) 10825 return push_insn(t, t + 1, FALLTHROUGH, env, false); 10826 10827 switch (BPF_OP(insns[t].code)) { 10828 case BPF_EXIT: 10829 return DONE_EXPLORING; 10830 10831 case BPF_CALL: 10832 if (insns[t].imm == BPF_FUNC_timer_set_callback) 10833 /* Mark this call insn to trigger is_state_visited() check 10834 * before call itself is processed by __check_func_call(). 10835 * Otherwise new async state will be pushed for further 10836 * exploration. 10837 */ 10838 init_explored_state(env, t); 10839 return visit_func_call_insn(t, insn_cnt, insns, env, 10840 insns[t].src_reg == BPF_PSEUDO_CALL); 10841 10842 case BPF_JA: 10843 if (BPF_SRC(insns[t].code) != BPF_K) 10844 return -EINVAL; 10845 10846 /* unconditional jump with single edge */ 10847 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 10848 true); 10849 if (ret) 10850 return ret; 10851 10852 /* unconditional jmp is not a good pruning point, 10853 * but it's marked, since backtracking needs 10854 * to record jmp history in is_state_visited(). 10855 */ 10856 init_explored_state(env, t + insns[t].off + 1); 10857 /* tell verifier to check for equivalent states 10858 * after every call and jump 10859 */ 10860 if (t + 1 < insn_cnt) 10861 init_explored_state(env, t + 1); 10862 10863 return ret; 10864 10865 default: 10866 /* conditional jump with two edges */ 10867 init_explored_state(env, t); 10868 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 10869 if (ret) 10870 return ret; 10871 10872 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 10873 } 10874 } 10875 10876 /* non-recursive depth-first-search to detect loops in BPF program 10877 * loop == back-edge in directed graph 10878 */ 10879 static int check_cfg(struct bpf_verifier_env *env) 10880 { 10881 int insn_cnt = env->prog->len; 10882 int *insn_stack, *insn_state; 10883 int ret = 0; 10884 int i; 10885 10886 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 10887 if (!insn_state) 10888 return -ENOMEM; 10889 10890 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 10891 if (!insn_stack) { 10892 kvfree(insn_state); 10893 return -ENOMEM; 10894 } 10895 10896 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 10897 insn_stack[0] = 0; /* 0 is the first instruction */ 10898 env->cfg.cur_stack = 1; 10899 10900 while (env->cfg.cur_stack > 0) { 10901 int t = insn_stack[env->cfg.cur_stack - 1]; 10902 10903 ret = visit_insn(t, insn_cnt, env); 10904 switch (ret) { 10905 case DONE_EXPLORING: 10906 insn_state[t] = EXPLORED; 10907 env->cfg.cur_stack--; 10908 break; 10909 case KEEP_EXPLORING: 10910 break; 10911 default: 10912 if (ret > 0) { 10913 verbose(env, "visit_insn internal bug\n"); 10914 ret = -EFAULT; 10915 } 10916 goto err_free; 10917 } 10918 } 10919 10920 if (env->cfg.cur_stack < 0) { 10921 verbose(env, "pop stack internal bug\n"); 10922 ret = -EFAULT; 10923 goto err_free; 10924 } 10925 10926 for (i = 0; i < insn_cnt; i++) { 10927 if (insn_state[i] != EXPLORED) { 10928 verbose(env, "unreachable insn %d\n", i); 10929 ret = -EINVAL; 10930 goto err_free; 10931 } 10932 } 10933 ret = 0; /* cfg looks good */ 10934 10935 err_free: 10936 kvfree(insn_state); 10937 kvfree(insn_stack); 10938 env->cfg.insn_state = env->cfg.insn_stack = NULL; 10939 return ret; 10940 } 10941 10942 static int check_abnormal_return(struct bpf_verifier_env *env) 10943 { 10944 int i; 10945 10946 for (i = 1; i < env->subprog_cnt; i++) { 10947 if (env->subprog_info[i].has_ld_abs) { 10948 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 10949 return -EINVAL; 10950 } 10951 if (env->subprog_info[i].has_tail_call) { 10952 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 10953 return -EINVAL; 10954 } 10955 } 10956 return 0; 10957 } 10958 10959 /* The minimum supported BTF func info size */ 10960 #define MIN_BPF_FUNCINFO_SIZE 8 10961 #define MAX_FUNCINFO_REC_SIZE 252 10962 10963 static int check_btf_func(struct bpf_verifier_env *env, 10964 const union bpf_attr *attr, 10965 bpfptr_t uattr) 10966 { 10967 const struct btf_type *type, *func_proto, *ret_type; 10968 u32 i, nfuncs, urec_size, min_size; 10969 u32 krec_size = sizeof(struct bpf_func_info); 10970 struct bpf_func_info *krecord; 10971 struct bpf_func_info_aux *info_aux = NULL; 10972 struct bpf_prog *prog; 10973 const struct btf *btf; 10974 bpfptr_t urecord; 10975 u32 prev_offset = 0; 10976 bool scalar_return; 10977 int ret = -ENOMEM; 10978 10979 nfuncs = attr->func_info_cnt; 10980 if (!nfuncs) { 10981 if (check_abnormal_return(env)) 10982 return -EINVAL; 10983 return 0; 10984 } 10985 10986 if (nfuncs != env->subprog_cnt) { 10987 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 10988 return -EINVAL; 10989 } 10990 10991 urec_size = attr->func_info_rec_size; 10992 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 10993 urec_size > MAX_FUNCINFO_REC_SIZE || 10994 urec_size % sizeof(u32)) { 10995 verbose(env, "invalid func info rec size %u\n", urec_size); 10996 return -EINVAL; 10997 } 10998 10999 prog = env->prog; 11000 btf = prog->aux->btf; 11001 11002 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 11003 min_size = min_t(u32, krec_size, urec_size); 11004 11005 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 11006 if (!krecord) 11007 return -ENOMEM; 11008 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 11009 if (!info_aux) 11010 goto err_free; 11011 11012 for (i = 0; i < nfuncs; i++) { 11013 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 11014 if (ret) { 11015 if (ret == -E2BIG) { 11016 verbose(env, "nonzero tailing record in func info"); 11017 /* set the size kernel expects so loader can zero 11018 * out the rest of the record. 11019 */ 11020 if (copy_to_bpfptr_offset(uattr, 11021 offsetof(union bpf_attr, func_info_rec_size), 11022 &min_size, sizeof(min_size))) 11023 ret = -EFAULT; 11024 } 11025 goto err_free; 11026 } 11027 11028 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 11029 ret = -EFAULT; 11030 goto err_free; 11031 } 11032 11033 /* check insn_off */ 11034 ret = -EINVAL; 11035 if (i == 0) { 11036 if (krecord[i].insn_off) { 11037 verbose(env, 11038 "nonzero insn_off %u for the first func info record", 11039 krecord[i].insn_off); 11040 goto err_free; 11041 } 11042 } else if (krecord[i].insn_off <= prev_offset) { 11043 verbose(env, 11044 "same or smaller insn offset (%u) than previous func info record (%u)", 11045 krecord[i].insn_off, prev_offset); 11046 goto err_free; 11047 } 11048 11049 if (env->subprog_info[i].start != krecord[i].insn_off) { 11050 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 11051 goto err_free; 11052 } 11053 11054 /* check type_id */ 11055 type = btf_type_by_id(btf, krecord[i].type_id); 11056 if (!type || !btf_type_is_func(type)) { 11057 verbose(env, "invalid type id %d in func info", 11058 krecord[i].type_id); 11059 goto err_free; 11060 } 11061 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 11062 11063 func_proto = btf_type_by_id(btf, type->type); 11064 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 11065 /* btf_func_check() already verified it during BTF load */ 11066 goto err_free; 11067 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 11068 scalar_return = 11069 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 11070 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 11071 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 11072 goto err_free; 11073 } 11074 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 11075 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 11076 goto err_free; 11077 } 11078 11079 prev_offset = krecord[i].insn_off; 11080 bpfptr_add(&urecord, urec_size); 11081 } 11082 11083 prog->aux->func_info = krecord; 11084 prog->aux->func_info_cnt = nfuncs; 11085 prog->aux->func_info_aux = info_aux; 11086 return 0; 11087 11088 err_free: 11089 kvfree(krecord); 11090 kfree(info_aux); 11091 return ret; 11092 } 11093 11094 static void adjust_btf_func(struct bpf_verifier_env *env) 11095 { 11096 struct bpf_prog_aux *aux = env->prog->aux; 11097 int i; 11098 11099 if (!aux->func_info) 11100 return; 11101 11102 for (i = 0; i < env->subprog_cnt; i++) 11103 aux->func_info[i].insn_off = env->subprog_info[i].start; 11104 } 11105 11106 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 11107 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 11108 11109 static int check_btf_line(struct bpf_verifier_env *env, 11110 const union bpf_attr *attr, 11111 bpfptr_t uattr) 11112 { 11113 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 11114 struct bpf_subprog_info *sub; 11115 struct bpf_line_info *linfo; 11116 struct bpf_prog *prog; 11117 const struct btf *btf; 11118 bpfptr_t ulinfo; 11119 int err; 11120 11121 nr_linfo = attr->line_info_cnt; 11122 if (!nr_linfo) 11123 return 0; 11124 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 11125 return -EINVAL; 11126 11127 rec_size = attr->line_info_rec_size; 11128 if (rec_size < MIN_BPF_LINEINFO_SIZE || 11129 rec_size > MAX_LINEINFO_REC_SIZE || 11130 rec_size & (sizeof(u32) - 1)) 11131 return -EINVAL; 11132 11133 /* Need to zero it in case the userspace may 11134 * pass in a smaller bpf_line_info object. 11135 */ 11136 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 11137 GFP_KERNEL | __GFP_NOWARN); 11138 if (!linfo) 11139 return -ENOMEM; 11140 11141 prog = env->prog; 11142 btf = prog->aux->btf; 11143 11144 s = 0; 11145 sub = env->subprog_info; 11146 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 11147 expected_size = sizeof(struct bpf_line_info); 11148 ncopy = min_t(u32, expected_size, rec_size); 11149 for (i = 0; i < nr_linfo; i++) { 11150 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 11151 if (err) { 11152 if (err == -E2BIG) { 11153 verbose(env, "nonzero tailing record in line_info"); 11154 if (copy_to_bpfptr_offset(uattr, 11155 offsetof(union bpf_attr, line_info_rec_size), 11156 &expected_size, sizeof(expected_size))) 11157 err = -EFAULT; 11158 } 11159 goto err_free; 11160 } 11161 11162 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 11163 err = -EFAULT; 11164 goto err_free; 11165 } 11166 11167 /* 11168 * Check insn_off to ensure 11169 * 1) strictly increasing AND 11170 * 2) bounded by prog->len 11171 * 11172 * The linfo[0].insn_off == 0 check logically falls into 11173 * the later "missing bpf_line_info for func..." case 11174 * because the first linfo[0].insn_off must be the 11175 * first sub also and the first sub must have 11176 * subprog_info[0].start == 0. 11177 */ 11178 if ((i && linfo[i].insn_off <= prev_offset) || 11179 linfo[i].insn_off >= prog->len) { 11180 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 11181 i, linfo[i].insn_off, prev_offset, 11182 prog->len); 11183 err = -EINVAL; 11184 goto err_free; 11185 } 11186 11187 if (!prog->insnsi[linfo[i].insn_off].code) { 11188 verbose(env, 11189 "Invalid insn code at line_info[%u].insn_off\n", 11190 i); 11191 err = -EINVAL; 11192 goto err_free; 11193 } 11194 11195 if (!btf_name_by_offset(btf, linfo[i].line_off) || 11196 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 11197 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 11198 err = -EINVAL; 11199 goto err_free; 11200 } 11201 11202 if (s != env->subprog_cnt) { 11203 if (linfo[i].insn_off == sub[s].start) { 11204 sub[s].linfo_idx = i; 11205 s++; 11206 } else if (sub[s].start < linfo[i].insn_off) { 11207 verbose(env, "missing bpf_line_info for func#%u\n", s); 11208 err = -EINVAL; 11209 goto err_free; 11210 } 11211 } 11212 11213 prev_offset = linfo[i].insn_off; 11214 bpfptr_add(&ulinfo, rec_size); 11215 } 11216 11217 if (s != env->subprog_cnt) { 11218 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 11219 env->subprog_cnt - s, s); 11220 err = -EINVAL; 11221 goto err_free; 11222 } 11223 11224 prog->aux->linfo = linfo; 11225 prog->aux->nr_linfo = nr_linfo; 11226 11227 return 0; 11228 11229 err_free: 11230 kvfree(linfo); 11231 return err; 11232 } 11233 11234 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 11235 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 11236 11237 static int check_core_relo(struct bpf_verifier_env *env, 11238 const union bpf_attr *attr, 11239 bpfptr_t uattr) 11240 { 11241 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 11242 struct bpf_core_relo core_relo = {}; 11243 struct bpf_prog *prog = env->prog; 11244 const struct btf *btf = prog->aux->btf; 11245 struct bpf_core_ctx ctx = { 11246 .log = &env->log, 11247 .btf = btf, 11248 }; 11249 bpfptr_t u_core_relo; 11250 int err; 11251 11252 nr_core_relo = attr->core_relo_cnt; 11253 if (!nr_core_relo) 11254 return 0; 11255 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 11256 return -EINVAL; 11257 11258 rec_size = attr->core_relo_rec_size; 11259 if (rec_size < MIN_CORE_RELO_SIZE || 11260 rec_size > MAX_CORE_RELO_SIZE || 11261 rec_size % sizeof(u32)) 11262 return -EINVAL; 11263 11264 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 11265 expected_size = sizeof(struct bpf_core_relo); 11266 ncopy = min_t(u32, expected_size, rec_size); 11267 11268 /* Unlike func_info and line_info, copy and apply each CO-RE 11269 * relocation record one at a time. 11270 */ 11271 for (i = 0; i < nr_core_relo; i++) { 11272 /* future proofing when sizeof(bpf_core_relo) changes */ 11273 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 11274 if (err) { 11275 if (err == -E2BIG) { 11276 verbose(env, "nonzero tailing record in core_relo"); 11277 if (copy_to_bpfptr_offset(uattr, 11278 offsetof(union bpf_attr, core_relo_rec_size), 11279 &expected_size, sizeof(expected_size))) 11280 err = -EFAULT; 11281 } 11282 break; 11283 } 11284 11285 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 11286 err = -EFAULT; 11287 break; 11288 } 11289 11290 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 11291 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 11292 i, core_relo.insn_off, prog->len); 11293 err = -EINVAL; 11294 break; 11295 } 11296 11297 err = bpf_core_apply(&ctx, &core_relo, i, 11298 &prog->insnsi[core_relo.insn_off / 8]); 11299 if (err) 11300 break; 11301 bpfptr_add(&u_core_relo, rec_size); 11302 } 11303 return err; 11304 } 11305 11306 static int check_btf_info(struct bpf_verifier_env *env, 11307 const union bpf_attr *attr, 11308 bpfptr_t uattr) 11309 { 11310 struct btf *btf; 11311 int err; 11312 11313 if (!attr->func_info_cnt && !attr->line_info_cnt) { 11314 if (check_abnormal_return(env)) 11315 return -EINVAL; 11316 return 0; 11317 } 11318 11319 btf = btf_get_by_fd(attr->prog_btf_fd); 11320 if (IS_ERR(btf)) 11321 return PTR_ERR(btf); 11322 if (btf_is_kernel(btf)) { 11323 btf_put(btf); 11324 return -EACCES; 11325 } 11326 env->prog->aux->btf = btf; 11327 11328 err = check_btf_func(env, attr, uattr); 11329 if (err) 11330 return err; 11331 11332 err = check_btf_line(env, attr, uattr); 11333 if (err) 11334 return err; 11335 11336 err = check_core_relo(env, attr, uattr); 11337 if (err) 11338 return err; 11339 11340 return 0; 11341 } 11342 11343 /* check %cur's range satisfies %old's */ 11344 static bool range_within(struct bpf_reg_state *old, 11345 struct bpf_reg_state *cur) 11346 { 11347 return old->umin_value <= cur->umin_value && 11348 old->umax_value >= cur->umax_value && 11349 old->smin_value <= cur->smin_value && 11350 old->smax_value >= cur->smax_value && 11351 old->u32_min_value <= cur->u32_min_value && 11352 old->u32_max_value >= cur->u32_max_value && 11353 old->s32_min_value <= cur->s32_min_value && 11354 old->s32_max_value >= cur->s32_max_value; 11355 } 11356 11357 /* If in the old state two registers had the same id, then they need to have 11358 * the same id in the new state as well. But that id could be different from 11359 * the old state, so we need to track the mapping from old to new ids. 11360 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 11361 * regs with old id 5 must also have new id 9 for the new state to be safe. But 11362 * regs with a different old id could still have new id 9, we don't care about 11363 * that. 11364 * So we look through our idmap to see if this old id has been seen before. If 11365 * so, we require the new id to match; otherwise, we add the id pair to the map. 11366 */ 11367 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 11368 { 11369 unsigned int i; 11370 11371 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 11372 if (!idmap[i].old) { 11373 /* Reached an empty slot; haven't seen this id before */ 11374 idmap[i].old = old_id; 11375 idmap[i].cur = cur_id; 11376 return true; 11377 } 11378 if (idmap[i].old == old_id) 11379 return idmap[i].cur == cur_id; 11380 } 11381 /* We ran out of idmap slots, which should be impossible */ 11382 WARN_ON_ONCE(1); 11383 return false; 11384 } 11385 11386 static void clean_func_state(struct bpf_verifier_env *env, 11387 struct bpf_func_state *st) 11388 { 11389 enum bpf_reg_liveness live; 11390 int i, j; 11391 11392 for (i = 0; i < BPF_REG_FP; i++) { 11393 live = st->regs[i].live; 11394 /* liveness must not touch this register anymore */ 11395 st->regs[i].live |= REG_LIVE_DONE; 11396 if (!(live & REG_LIVE_READ)) 11397 /* since the register is unused, clear its state 11398 * to make further comparison simpler 11399 */ 11400 __mark_reg_not_init(env, &st->regs[i]); 11401 } 11402 11403 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 11404 live = st->stack[i].spilled_ptr.live; 11405 /* liveness must not touch this stack slot anymore */ 11406 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 11407 if (!(live & REG_LIVE_READ)) { 11408 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 11409 for (j = 0; j < BPF_REG_SIZE; j++) 11410 st->stack[i].slot_type[j] = STACK_INVALID; 11411 } 11412 } 11413 } 11414 11415 static void clean_verifier_state(struct bpf_verifier_env *env, 11416 struct bpf_verifier_state *st) 11417 { 11418 int i; 11419 11420 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 11421 /* all regs in this state in all frames were already marked */ 11422 return; 11423 11424 for (i = 0; i <= st->curframe; i++) 11425 clean_func_state(env, st->frame[i]); 11426 } 11427 11428 /* the parentage chains form a tree. 11429 * the verifier states are added to state lists at given insn and 11430 * pushed into state stack for future exploration. 11431 * when the verifier reaches bpf_exit insn some of the verifer states 11432 * stored in the state lists have their final liveness state already, 11433 * but a lot of states will get revised from liveness point of view when 11434 * the verifier explores other branches. 11435 * Example: 11436 * 1: r0 = 1 11437 * 2: if r1 == 100 goto pc+1 11438 * 3: r0 = 2 11439 * 4: exit 11440 * when the verifier reaches exit insn the register r0 in the state list of 11441 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 11442 * of insn 2 and goes exploring further. At the insn 4 it will walk the 11443 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 11444 * 11445 * Since the verifier pushes the branch states as it sees them while exploring 11446 * the program the condition of walking the branch instruction for the second 11447 * time means that all states below this branch were already explored and 11448 * their final liveness marks are already propagated. 11449 * Hence when the verifier completes the search of state list in is_state_visited() 11450 * we can call this clean_live_states() function to mark all liveness states 11451 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 11452 * will not be used. 11453 * This function also clears the registers and stack for states that !READ 11454 * to simplify state merging. 11455 * 11456 * Important note here that walking the same branch instruction in the callee 11457 * doesn't meant that the states are DONE. The verifier has to compare 11458 * the callsites 11459 */ 11460 static void clean_live_states(struct bpf_verifier_env *env, int insn, 11461 struct bpf_verifier_state *cur) 11462 { 11463 struct bpf_verifier_state_list *sl; 11464 int i; 11465 11466 sl = *explored_state(env, insn); 11467 while (sl) { 11468 if (sl->state.branches) 11469 goto next; 11470 if (sl->state.insn_idx != insn || 11471 sl->state.curframe != cur->curframe) 11472 goto next; 11473 for (i = 0; i <= cur->curframe; i++) 11474 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 11475 goto next; 11476 clean_verifier_state(env, &sl->state); 11477 next: 11478 sl = sl->next; 11479 } 11480 } 11481 11482 /* Returns true if (rold safe implies rcur safe) */ 11483 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 11484 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 11485 { 11486 bool equal; 11487 11488 if (!(rold->live & REG_LIVE_READ)) 11489 /* explored state didn't use this */ 11490 return true; 11491 11492 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 11493 11494 if (rold->type == PTR_TO_STACK) 11495 /* two stack pointers are equal only if they're pointing to 11496 * the same stack frame, since fp-8 in foo != fp-8 in bar 11497 */ 11498 return equal && rold->frameno == rcur->frameno; 11499 11500 if (equal) 11501 return true; 11502 11503 if (rold->type == NOT_INIT) 11504 /* explored state can't have used this */ 11505 return true; 11506 if (rcur->type == NOT_INIT) 11507 return false; 11508 switch (base_type(rold->type)) { 11509 case SCALAR_VALUE: 11510 if (env->explore_alu_limits) 11511 return false; 11512 if (rcur->type == SCALAR_VALUE) { 11513 if (!rold->precise && !rcur->precise) 11514 return true; 11515 /* new val must satisfy old val knowledge */ 11516 return range_within(rold, rcur) && 11517 tnum_in(rold->var_off, rcur->var_off); 11518 } else { 11519 /* We're trying to use a pointer in place of a scalar. 11520 * Even if the scalar was unbounded, this could lead to 11521 * pointer leaks because scalars are allowed to leak 11522 * while pointers are not. We could make this safe in 11523 * special cases if root is calling us, but it's 11524 * probably not worth the hassle. 11525 */ 11526 return false; 11527 } 11528 case PTR_TO_MAP_KEY: 11529 case PTR_TO_MAP_VALUE: 11530 /* a PTR_TO_MAP_VALUE could be safe to use as a 11531 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 11532 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 11533 * checked, doing so could have affected others with the same 11534 * id, and we can't check for that because we lost the id when 11535 * we converted to a PTR_TO_MAP_VALUE. 11536 */ 11537 if (type_may_be_null(rold->type)) { 11538 if (!type_may_be_null(rcur->type)) 11539 return false; 11540 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 11541 return false; 11542 /* Check our ids match any regs they're supposed to */ 11543 return check_ids(rold->id, rcur->id, idmap); 11544 } 11545 11546 /* If the new min/max/var_off satisfy the old ones and 11547 * everything else matches, we are OK. 11548 * 'id' is not compared, since it's only used for maps with 11549 * bpf_spin_lock inside map element and in such cases if 11550 * the rest of the prog is valid for one map element then 11551 * it's valid for all map elements regardless of the key 11552 * used in bpf_map_lookup() 11553 */ 11554 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 11555 range_within(rold, rcur) && 11556 tnum_in(rold->var_off, rcur->var_off); 11557 case PTR_TO_PACKET_META: 11558 case PTR_TO_PACKET: 11559 if (rcur->type != rold->type) 11560 return false; 11561 /* We must have at least as much range as the old ptr 11562 * did, so that any accesses which were safe before are 11563 * still safe. This is true even if old range < old off, 11564 * since someone could have accessed through (ptr - k), or 11565 * even done ptr -= k in a register, to get a safe access. 11566 */ 11567 if (rold->range > rcur->range) 11568 return false; 11569 /* If the offsets don't match, we can't trust our alignment; 11570 * nor can we be sure that we won't fall out of range. 11571 */ 11572 if (rold->off != rcur->off) 11573 return false; 11574 /* id relations must be preserved */ 11575 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 11576 return false; 11577 /* new val must satisfy old val knowledge */ 11578 return range_within(rold, rcur) && 11579 tnum_in(rold->var_off, rcur->var_off); 11580 case PTR_TO_CTX: 11581 case CONST_PTR_TO_MAP: 11582 case PTR_TO_PACKET_END: 11583 case PTR_TO_FLOW_KEYS: 11584 case PTR_TO_SOCKET: 11585 case PTR_TO_SOCK_COMMON: 11586 case PTR_TO_TCP_SOCK: 11587 case PTR_TO_XDP_SOCK: 11588 /* Only valid matches are exact, which memcmp() above 11589 * would have accepted 11590 */ 11591 default: 11592 /* Don't know what's going on, just say it's not safe */ 11593 return false; 11594 } 11595 11596 /* Shouldn't get here; if we do, say it's not safe */ 11597 WARN_ON_ONCE(1); 11598 return false; 11599 } 11600 11601 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 11602 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 11603 { 11604 int i, spi; 11605 11606 /* walk slots of the explored stack and ignore any additional 11607 * slots in the current stack, since explored(safe) state 11608 * didn't use them 11609 */ 11610 for (i = 0; i < old->allocated_stack; i++) { 11611 spi = i / BPF_REG_SIZE; 11612 11613 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 11614 i += BPF_REG_SIZE - 1; 11615 /* explored state didn't use this */ 11616 continue; 11617 } 11618 11619 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 11620 continue; 11621 11622 /* explored stack has more populated slots than current stack 11623 * and these slots were used 11624 */ 11625 if (i >= cur->allocated_stack) 11626 return false; 11627 11628 /* if old state was safe with misc data in the stack 11629 * it will be safe with zero-initialized stack. 11630 * The opposite is not true 11631 */ 11632 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 11633 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 11634 continue; 11635 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 11636 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 11637 /* Ex: old explored (safe) state has STACK_SPILL in 11638 * this stack slot, but current has STACK_MISC -> 11639 * this verifier states are not equivalent, 11640 * return false to continue verification of this path 11641 */ 11642 return false; 11643 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 11644 continue; 11645 if (!is_spilled_reg(&old->stack[spi])) 11646 continue; 11647 if (!regsafe(env, &old->stack[spi].spilled_ptr, 11648 &cur->stack[spi].spilled_ptr, idmap)) 11649 /* when explored and current stack slot are both storing 11650 * spilled registers, check that stored pointers types 11651 * are the same as well. 11652 * Ex: explored safe path could have stored 11653 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 11654 * but current path has stored: 11655 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 11656 * such verifier states are not equivalent. 11657 * return false to continue verification of this path 11658 */ 11659 return false; 11660 } 11661 return true; 11662 } 11663 11664 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 11665 { 11666 if (old->acquired_refs != cur->acquired_refs) 11667 return false; 11668 return !memcmp(old->refs, cur->refs, 11669 sizeof(*old->refs) * old->acquired_refs); 11670 } 11671 11672 /* compare two verifier states 11673 * 11674 * all states stored in state_list are known to be valid, since 11675 * verifier reached 'bpf_exit' instruction through them 11676 * 11677 * this function is called when verifier exploring different branches of 11678 * execution popped from the state stack. If it sees an old state that has 11679 * more strict register state and more strict stack state then this execution 11680 * branch doesn't need to be explored further, since verifier already 11681 * concluded that more strict state leads to valid finish. 11682 * 11683 * Therefore two states are equivalent if register state is more conservative 11684 * and explored stack state is more conservative than the current one. 11685 * Example: 11686 * explored current 11687 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 11688 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 11689 * 11690 * In other words if current stack state (one being explored) has more 11691 * valid slots than old one that already passed validation, it means 11692 * the verifier can stop exploring and conclude that current state is valid too 11693 * 11694 * Similarly with registers. If explored state has register type as invalid 11695 * whereas register type in current state is meaningful, it means that 11696 * the current state will reach 'bpf_exit' instruction safely 11697 */ 11698 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 11699 struct bpf_func_state *cur) 11700 { 11701 int i; 11702 11703 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 11704 for (i = 0; i < MAX_BPF_REG; i++) 11705 if (!regsafe(env, &old->regs[i], &cur->regs[i], 11706 env->idmap_scratch)) 11707 return false; 11708 11709 if (!stacksafe(env, old, cur, env->idmap_scratch)) 11710 return false; 11711 11712 if (!refsafe(old, cur)) 11713 return false; 11714 11715 return true; 11716 } 11717 11718 static bool states_equal(struct bpf_verifier_env *env, 11719 struct bpf_verifier_state *old, 11720 struct bpf_verifier_state *cur) 11721 { 11722 int i; 11723 11724 if (old->curframe != cur->curframe) 11725 return false; 11726 11727 /* Verification state from speculative execution simulation 11728 * must never prune a non-speculative execution one. 11729 */ 11730 if (old->speculative && !cur->speculative) 11731 return false; 11732 11733 if (old->active_spin_lock != cur->active_spin_lock) 11734 return false; 11735 11736 /* for states to be equal callsites have to be the same 11737 * and all frame states need to be equivalent 11738 */ 11739 for (i = 0; i <= old->curframe; i++) { 11740 if (old->frame[i]->callsite != cur->frame[i]->callsite) 11741 return false; 11742 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 11743 return false; 11744 } 11745 return true; 11746 } 11747 11748 /* Return 0 if no propagation happened. Return negative error code if error 11749 * happened. Otherwise, return the propagated bit. 11750 */ 11751 static int propagate_liveness_reg(struct bpf_verifier_env *env, 11752 struct bpf_reg_state *reg, 11753 struct bpf_reg_state *parent_reg) 11754 { 11755 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 11756 u8 flag = reg->live & REG_LIVE_READ; 11757 int err; 11758 11759 /* When comes here, read flags of PARENT_REG or REG could be any of 11760 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 11761 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 11762 */ 11763 if (parent_flag == REG_LIVE_READ64 || 11764 /* Or if there is no read flag from REG. */ 11765 !flag || 11766 /* Or if the read flag from REG is the same as PARENT_REG. */ 11767 parent_flag == flag) 11768 return 0; 11769 11770 err = mark_reg_read(env, reg, parent_reg, flag); 11771 if (err) 11772 return err; 11773 11774 return flag; 11775 } 11776 11777 /* A write screens off any subsequent reads; but write marks come from the 11778 * straight-line code between a state and its parent. When we arrive at an 11779 * equivalent state (jump target or such) we didn't arrive by the straight-line 11780 * code, so read marks in the state must propagate to the parent regardless 11781 * of the state's write marks. That's what 'parent == state->parent' comparison 11782 * in mark_reg_read() is for. 11783 */ 11784 static int propagate_liveness(struct bpf_verifier_env *env, 11785 const struct bpf_verifier_state *vstate, 11786 struct bpf_verifier_state *vparent) 11787 { 11788 struct bpf_reg_state *state_reg, *parent_reg; 11789 struct bpf_func_state *state, *parent; 11790 int i, frame, err = 0; 11791 11792 if (vparent->curframe != vstate->curframe) { 11793 WARN(1, "propagate_live: parent frame %d current frame %d\n", 11794 vparent->curframe, vstate->curframe); 11795 return -EFAULT; 11796 } 11797 /* Propagate read liveness of registers... */ 11798 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 11799 for (frame = 0; frame <= vstate->curframe; frame++) { 11800 parent = vparent->frame[frame]; 11801 state = vstate->frame[frame]; 11802 parent_reg = parent->regs; 11803 state_reg = state->regs; 11804 /* We don't need to worry about FP liveness, it's read-only */ 11805 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 11806 err = propagate_liveness_reg(env, &state_reg[i], 11807 &parent_reg[i]); 11808 if (err < 0) 11809 return err; 11810 if (err == REG_LIVE_READ64) 11811 mark_insn_zext(env, &parent_reg[i]); 11812 } 11813 11814 /* Propagate stack slots. */ 11815 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 11816 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 11817 parent_reg = &parent->stack[i].spilled_ptr; 11818 state_reg = &state->stack[i].spilled_ptr; 11819 err = propagate_liveness_reg(env, state_reg, 11820 parent_reg); 11821 if (err < 0) 11822 return err; 11823 } 11824 } 11825 return 0; 11826 } 11827 11828 /* find precise scalars in the previous equivalent state and 11829 * propagate them into the current state 11830 */ 11831 static int propagate_precision(struct bpf_verifier_env *env, 11832 const struct bpf_verifier_state *old) 11833 { 11834 struct bpf_reg_state *state_reg; 11835 struct bpf_func_state *state; 11836 int i, err = 0; 11837 11838 state = old->frame[old->curframe]; 11839 state_reg = state->regs; 11840 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 11841 if (state_reg->type != SCALAR_VALUE || 11842 !state_reg->precise) 11843 continue; 11844 if (env->log.level & BPF_LOG_LEVEL2) 11845 verbose(env, "propagating r%d\n", i); 11846 err = mark_chain_precision(env, i); 11847 if (err < 0) 11848 return err; 11849 } 11850 11851 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 11852 if (!is_spilled_reg(&state->stack[i])) 11853 continue; 11854 state_reg = &state->stack[i].spilled_ptr; 11855 if (state_reg->type != SCALAR_VALUE || 11856 !state_reg->precise) 11857 continue; 11858 if (env->log.level & BPF_LOG_LEVEL2) 11859 verbose(env, "propagating fp%d\n", 11860 (-i - 1) * BPF_REG_SIZE); 11861 err = mark_chain_precision_stack(env, i); 11862 if (err < 0) 11863 return err; 11864 } 11865 return 0; 11866 } 11867 11868 static bool states_maybe_looping(struct bpf_verifier_state *old, 11869 struct bpf_verifier_state *cur) 11870 { 11871 struct bpf_func_state *fold, *fcur; 11872 int i, fr = cur->curframe; 11873 11874 if (old->curframe != fr) 11875 return false; 11876 11877 fold = old->frame[fr]; 11878 fcur = cur->frame[fr]; 11879 for (i = 0; i < MAX_BPF_REG; i++) 11880 if (memcmp(&fold->regs[i], &fcur->regs[i], 11881 offsetof(struct bpf_reg_state, parent))) 11882 return false; 11883 return true; 11884 } 11885 11886 11887 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 11888 { 11889 struct bpf_verifier_state_list *new_sl; 11890 struct bpf_verifier_state_list *sl, **pprev; 11891 struct bpf_verifier_state *cur = env->cur_state, *new; 11892 int i, j, err, states_cnt = 0; 11893 bool add_new_state = env->test_state_freq ? true : false; 11894 11895 cur->last_insn_idx = env->prev_insn_idx; 11896 if (!env->insn_aux_data[insn_idx].prune_point) 11897 /* this 'insn_idx' instruction wasn't marked, so we will not 11898 * be doing state search here 11899 */ 11900 return 0; 11901 11902 /* bpf progs typically have pruning point every 4 instructions 11903 * http://vger.kernel.org/bpfconf2019.html#session-1 11904 * Do not add new state for future pruning if the verifier hasn't seen 11905 * at least 2 jumps and at least 8 instructions. 11906 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 11907 * In tests that amounts to up to 50% reduction into total verifier 11908 * memory consumption and 20% verifier time speedup. 11909 */ 11910 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 11911 env->insn_processed - env->prev_insn_processed >= 8) 11912 add_new_state = true; 11913 11914 pprev = explored_state(env, insn_idx); 11915 sl = *pprev; 11916 11917 clean_live_states(env, insn_idx, cur); 11918 11919 while (sl) { 11920 states_cnt++; 11921 if (sl->state.insn_idx != insn_idx) 11922 goto next; 11923 11924 if (sl->state.branches) { 11925 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 11926 11927 if (frame->in_async_callback_fn && 11928 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 11929 /* Different async_entry_cnt means that the verifier is 11930 * processing another entry into async callback. 11931 * Seeing the same state is not an indication of infinite 11932 * loop or infinite recursion. 11933 * But finding the same state doesn't mean that it's safe 11934 * to stop processing the current state. The previous state 11935 * hasn't yet reached bpf_exit, since state.branches > 0. 11936 * Checking in_async_callback_fn alone is not enough either. 11937 * Since the verifier still needs to catch infinite loops 11938 * inside async callbacks. 11939 */ 11940 } else if (states_maybe_looping(&sl->state, cur) && 11941 states_equal(env, &sl->state, cur)) { 11942 verbose_linfo(env, insn_idx, "; "); 11943 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 11944 return -EINVAL; 11945 } 11946 /* if the verifier is processing a loop, avoid adding new state 11947 * too often, since different loop iterations have distinct 11948 * states and may not help future pruning. 11949 * This threshold shouldn't be too low to make sure that 11950 * a loop with large bound will be rejected quickly. 11951 * The most abusive loop will be: 11952 * r1 += 1 11953 * if r1 < 1000000 goto pc-2 11954 * 1M insn_procssed limit / 100 == 10k peak states. 11955 * This threshold shouldn't be too high either, since states 11956 * at the end of the loop are likely to be useful in pruning. 11957 */ 11958 if (env->jmps_processed - env->prev_jmps_processed < 20 && 11959 env->insn_processed - env->prev_insn_processed < 100) 11960 add_new_state = false; 11961 goto miss; 11962 } 11963 if (states_equal(env, &sl->state, cur)) { 11964 sl->hit_cnt++; 11965 /* reached equivalent register/stack state, 11966 * prune the search. 11967 * Registers read by the continuation are read by us. 11968 * If we have any write marks in env->cur_state, they 11969 * will prevent corresponding reads in the continuation 11970 * from reaching our parent (an explored_state). Our 11971 * own state will get the read marks recorded, but 11972 * they'll be immediately forgotten as we're pruning 11973 * this state and will pop a new one. 11974 */ 11975 err = propagate_liveness(env, &sl->state, cur); 11976 11977 /* if previous state reached the exit with precision and 11978 * current state is equivalent to it (except precsion marks) 11979 * the precision needs to be propagated back in 11980 * the current state. 11981 */ 11982 err = err ? : push_jmp_history(env, cur); 11983 err = err ? : propagate_precision(env, &sl->state); 11984 if (err) 11985 return err; 11986 return 1; 11987 } 11988 miss: 11989 /* when new state is not going to be added do not increase miss count. 11990 * Otherwise several loop iterations will remove the state 11991 * recorded earlier. The goal of these heuristics is to have 11992 * states from some iterations of the loop (some in the beginning 11993 * and some at the end) to help pruning. 11994 */ 11995 if (add_new_state) 11996 sl->miss_cnt++; 11997 /* heuristic to determine whether this state is beneficial 11998 * to keep checking from state equivalence point of view. 11999 * Higher numbers increase max_states_per_insn and verification time, 12000 * but do not meaningfully decrease insn_processed. 12001 */ 12002 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 12003 /* the state is unlikely to be useful. Remove it to 12004 * speed up verification 12005 */ 12006 *pprev = sl->next; 12007 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 12008 u32 br = sl->state.branches; 12009 12010 WARN_ONCE(br, 12011 "BUG live_done but branches_to_explore %d\n", 12012 br); 12013 free_verifier_state(&sl->state, false); 12014 kfree(sl); 12015 env->peak_states--; 12016 } else { 12017 /* cannot free this state, since parentage chain may 12018 * walk it later. Add it for free_list instead to 12019 * be freed at the end of verification 12020 */ 12021 sl->next = env->free_list; 12022 env->free_list = sl; 12023 } 12024 sl = *pprev; 12025 continue; 12026 } 12027 next: 12028 pprev = &sl->next; 12029 sl = *pprev; 12030 } 12031 12032 if (env->max_states_per_insn < states_cnt) 12033 env->max_states_per_insn = states_cnt; 12034 12035 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 12036 return push_jmp_history(env, cur); 12037 12038 if (!add_new_state) 12039 return push_jmp_history(env, cur); 12040 12041 /* There were no equivalent states, remember the current one. 12042 * Technically the current state is not proven to be safe yet, 12043 * but it will either reach outer most bpf_exit (which means it's safe) 12044 * or it will be rejected. When there are no loops the verifier won't be 12045 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 12046 * again on the way to bpf_exit. 12047 * When looping the sl->state.branches will be > 0 and this state 12048 * will not be considered for equivalence until branches == 0. 12049 */ 12050 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 12051 if (!new_sl) 12052 return -ENOMEM; 12053 env->total_states++; 12054 env->peak_states++; 12055 env->prev_jmps_processed = env->jmps_processed; 12056 env->prev_insn_processed = env->insn_processed; 12057 12058 /* add new state to the head of linked list */ 12059 new = &new_sl->state; 12060 err = copy_verifier_state(new, cur); 12061 if (err) { 12062 free_verifier_state(new, false); 12063 kfree(new_sl); 12064 return err; 12065 } 12066 new->insn_idx = insn_idx; 12067 WARN_ONCE(new->branches != 1, 12068 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 12069 12070 cur->parent = new; 12071 cur->first_insn_idx = insn_idx; 12072 clear_jmp_history(cur); 12073 new_sl->next = *explored_state(env, insn_idx); 12074 *explored_state(env, insn_idx) = new_sl; 12075 /* connect new state to parentage chain. Current frame needs all 12076 * registers connected. Only r6 - r9 of the callers are alive (pushed 12077 * to the stack implicitly by JITs) so in callers' frames connect just 12078 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 12079 * the state of the call instruction (with WRITTEN set), and r0 comes 12080 * from callee with its full parentage chain, anyway. 12081 */ 12082 /* clear write marks in current state: the writes we did are not writes 12083 * our child did, so they don't screen off its reads from us. 12084 * (There are no read marks in current state, because reads always mark 12085 * their parent and current state never has children yet. Only 12086 * explored_states can get read marks.) 12087 */ 12088 for (j = 0; j <= cur->curframe; j++) { 12089 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 12090 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 12091 for (i = 0; i < BPF_REG_FP; i++) 12092 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 12093 } 12094 12095 /* all stack frames are accessible from callee, clear them all */ 12096 for (j = 0; j <= cur->curframe; j++) { 12097 struct bpf_func_state *frame = cur->frame[j]; 12098 struct bpf_func_state *newframe = new->frame[j]; 12099 12100 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 12101 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 12102 frame->stack[i].spilled_ptr.parent = 12103 &newframe->stack[i].spilled_ptr; 12104 } 12105 } 12106 return 0; 12107 } 12108 12109 /* Return true if it's OK to have the same insn return a different type. */ 12110 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 12111 { 12112 switch (base_type(type)) { 12113 case PTR_TO_CTX: 12114 case PTR_TO_SOCKET: 12115 case PTR_TO_SOCK_COMMON: 12116 case PTR_TO_TCP_SOCK: 12117 case PTR_TO_XDP_SOCK: 12118 case PTR_TO_BTF_ID: 12119 return false; 12120 default: 12121 return true; 12122 } 12123 } 12124 12125 /* If an instruction was previously used with particular pointer types, then we 12126 * need to be careful to avoid cases such as the below, where it may be ok 12127 * for one branch accessing the pointer, but not ok for the other branch: 12128 * 12129 * R1 = sock_ptr 12130 * goto X; 12131 * ... 12132 * R1 = some_other_valid_ptr; 12133 * goto X; 12134 * ... 12135 * R2 = *(u32 *)(R1 + 0); 12136 */ 12137 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 12138 { 12139 return src != prev && (!reg_type_mismatch_ok(src) || 12140 !reg_type_mismatch_ok(prev)); 12141 } 12142 12143 static int do_check(struct bpf_verifier_env *env) 12144 { 12145 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 12146 struct bpf_verifier_state *state = env->cur_state; 12147 struct bpf_insn *insns = env->prog->insnsi; 12148 struct bpf_reg_state *regs; 12149 int insn_cnt = env->prog->len; 12150 bool do_print_state = false; 12151 int prev_insn_idx = -1; 12152 12153 for (;;) { 12154 struct bpf_insn *insn; 12155 u8 class; 12156 int err; 12157 12158 env->prev_insn_idx = prev_insn_idx; 12159 if (env->insn_idx >= insn_cnt) { 12160 verbose(env, "invalid insn idx %d insn_cnt %d\n", 12161 env->insn_idx, insn_cnt); 12162 return -EFAULT; 12163 } 12164 12165 insn = &insns[env->insn_idx]; 12166 class = BPF_CLASS(insn->code); 12167 12168 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 12169 verbose(env, 12170 "BPF program is too large. Processed %d insn\n", 12171 env->insn_processed); 12172 return -E2BIG; 12173 } 12174 12175 err = is_state_visited(env, env->insn_idx); 12176 if (err < 0) 12177 return err; 12178 if (err == 1) { 12179 /* found equivalent state, can prune the search */ 12180 if (env->log.level & BPF_LOG_LEVEL) { 12181 if (do_print_state) 12182 verbose(env, "\nfrom %d to %d%s: safe\n", 12183 env->prev_insn_idx, env->insn_idx, 12184 env->cur_state->speculative ? 12185 " (speculative execution)" : ""); 12186 else 12187 verbose(env, "%d: safe\n", env->insn_idx); 12188 } 12189 goto process_bpf_exit; 12190 } 12191 12192 if (signal_pending(current)) 12193 return -EAGAIN; 12194 12195 if (need_resched()) 12196 cond_resched(); 12197 12198 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 12199 verbose(env, "\nfrom %d to %d%s:", 12200 env->prev_insn_idx, env->insn_idx, 12201 env->cur_state->speculative ? 12202 " (speculative execution)" : ""); 12203 print_verifier_state(env, state->frame[state->curframe], true); 12204 do_print_state = false; 12205 } 12206 12207 if (env->log.level & BPF_LOG_LEVEL) { 12208 const struct bpf_insn_cbs cbs = { 12209 .cb_call = disasm_kfunc_name, 12210 .cb_print = verbose, 12211 .private_data = env, 12212 }; 12213 12214 if (verifier_state_scratched(env)) 12215 print_insn_state(env, state->frame[state->curframe]); 12216 12217 verbose_linfo(env, env->insn_idx, "; "); 12218 env->prev_log_len = env->log.len_used; 12219 verbose(env, "%d: ", env->insn_idx); 12220 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 12221 env->prev_insn_print_len = env->log.len_used - env->prev_log_len; 12222 env->prev_log_len = env->log.len_used; 12223 } 12224 12225 if (bpf_prog_is_dev_bound(env->prog->aux)) { 12226 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 12227 env->prev_insn_idx); 12228 if (err) 12229 return err; 12230 } 12231 12232 regs = cur_regs(env); 12233 sanitize_mark_insn_seen(env); 12234 prev_insn_idx = env->insn_idx; 12235 12236 if (class == BPF_ALU || class == BPF_ALU64) { 12237 err = check_alu_op(env, insn); 12238 if (err) 12239 return err; 12240 12241 } else if (class == BPF_LDX) { 12242 enum bpf_reg_type *prev_src_type, src_reg_type; 12243 12244 /* check for reserved fields is already done */ 12245 12246 /* check src operand */ 12247 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12248 if (err) 12249 return err; 12250 12251 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 12252 if (err) 12253 return err; 12254 12255 src_reg_type = regs[insn->src_reg].type; 12256 12257 /* check that memory (src_reg + off) is readable, 12258 * the state of dst_reg will be updated by this func 12259 */ 12260 err = check_mem_access(env, env->insn_idx, insn->src_reg, 12261 insn->off, BPF_SIZE(insn->code), 12262 BPF_READ, insn->dst_reg, false); 12263 if (err) 12264 return err; 12265 12266 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 12267 12268 if (*prev_src_type == NOT_INIT) { 12269 /* saw a valid insn 12270 * dst_reg = *(u32 *)(src_reg + off) 12271 * save type to validate intersecting paths 12272 */ 12273 *prev_src_type = src_reg_type; 12274 12275 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 12276 /* ABuser program is trying to use the same insn 12277 * dst_reg = *(u32*) (src_reg + off) 12278 * with different pointer types: 12279 * src_reg == ctx in one branch and 12280 * src_reg == stack|map in some other branch. 12281 * Reject it. 12282 */ 12283 verbose(env, "same insn cannot be used with different pointers\n"); 12284 return -EINVAL; 12285 } 12286 12287 } else if (class == BPF_STX) { 12288 enum bpf_reg_type *prev_dst_type, dst_reg_type; 12289 12290 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 12291 err = check_atomic(env, env->insn_idx, insn); 12292 if (err) 12293 return err; 12294 env->insn_idx++; 12295 continue; 12296 } 12297 12298 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 12299 verbose(env, "BPF_STX uses reserved fields\n"); 12300 return -EINVAL; 12301 } 12302 12303 /* check src1 operand */ 12304 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12305 if (err) 12306 return err; 12307 /* check src2 operand */ 12308 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12309 if (err) 12310 return err; 12311 12312 dst_reg_type = regs[insn->dst_reg].type; 12313 12314 /* check that memory (dst_reg + off) is writeable */ 12315 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 12316 insn->off, BPF_SIZE(insn->code), 12317 BPF_WRITE, insn->src_reg, false); 12318 if (err) 12319 return err; 12320 12321 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 12322 12323 if (*prev_dst_type == NOT_INIT) { 12324 *prev_dst_type = dst_reg_type; 12325 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 12326 verbose(env, "same insn cannot be used with different pointers\n"); 12327 return -EINVAL; 12328 } 12329 12330 } else if (class == BPF_ST) { 12331 if (BPF_MODE(insn->code) != BPF_MEM || 12332 insn->src_reg != BPF_REG_0) { 12333 verbose(env, "BPF_ST uses reserved fields\n"); 12334 return -EINVAL; 12335 } 12336 /* check src operand */ 12337 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12338 if (err) 12339 return err; 12340 12341 if (is_ctx_reg(env, insn->dst_reg)) { 12342 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 12343 insn->dst_reg, 12344 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 12345 return -EACCES; 12346 } 12347 12348 /* check that memory (dst_reg + off) is writeable */ 12349 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 12350 insn->off, BPF_SIZE(insn->code), 12351 BPF_WRITE, -1, false); 12352 if (err) 12353 return err; 12354 12355 } else if (class == BPF_JMP || class == BPF_JMP32) { 12356 u8 opcode = BPF_OP(insn->code); 12357 12358 env->jmps_processed++; 12359 if (opcode == BPF_CALL) { 12360 if (BPF_SRC(insn->code) != BPF_K || 12361 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 12362 && insn->off != 0) || 12363 (insn->src_reg != BPF_REG_0 && 12364 insn->src_reg != BPF_PSEUDO_CALL && 12365 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 12366 insn->dst_reg != BPF_REG_0 || 12367 class == BPF_JMP32) { 12368 verbose(env, "BPF_CALL uses reserved fields\n"); 12369 return -EINVAL; 12370 } 12371 12372 if (env->cur_state->active_spin_lock && 12373 (insn->src_reg == BPF_PSEUDO_CALL || 12374 insn->imm != BPF_FUNC_spin_unlock)) { 12375 verbose(env, "function calls are not allowed while holding a lock\n"); 12376 return -EINVAL; 12377 } 12378 if (insn->src_reg == BPF_PSEUDO_CALL) 12379 err = check_func_call(env, insn, &env->insn_idx); 12380 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 12381 err = check_kfunc_call(env, insn, &env->insn_idx); 12382 else 12383 err = check_helper_call(env, insn, &env->insn_idx); 12384 if (err) 12385 return err; 12386 } else if (opcode == BPF_JA) { 12387 if (BPF_SRC(insn->code) != BPF_K || 12388 insn->imm != 0 || 12389 insn->src_reg != BPF_REG_0 || 12390 insn->dst_reg != BPF_REG_0 || 12391 class == BPF_JMP32) { 12392 verbose(env, "BPF_JA uses reserved fields\n"); 12393 return -EINVAL; 12394 } 12395 12396 env->insn_idx += insn->off + 1; 12397 continue; 12398 12399 } else if (opcode == BPF_EXIT) { 12400 if (BPF_SRC(insn->code) != BPF_K || 12401 insn->imm != 0 || 12402 insn->src_reg != BPF_REG_0 || 12403 insn->dst_reg != BPF_REG_0 || 12404 class == BPF_JMP32) { 12405 verbose(env, "BPF_EXIT uses reserved fields\n"); 12406 return -EINVAL; 12407 } 12408 12409 if (env->cur_state->active_spin_lock) { 12410 verbose(env, "bpf_spin_unlock is missing\n"); 12411 return -EINVAL; 12412 } 12413 12414 /* We must do check_reference_leak here before 12415 * prepare_func_exit to handle the case when 12416 * state->curframe > 0, it may be a callback 12417 * function, for which reference_state must 12418 * match caller reference state when it exits. 12419 */ 12420 err = check_reference_leak(env); 12421 if (err) 12422 return err; 12423 12424 if (state->curframe) { 12425 /* exit from nested function */ 12426 err = prepare_func_exit(env, &env->insn_idx); 12427 if (err) 12428 return err; 12429 do_print_state = true; 12430 continue; 12431 } 12432 12433 err = check_return_code(env); 12434 if (err) 12435 return err; 12436 process_bpf_exit: 12437 mark_verifier_state_scratched(env); 12438 update_branch_counts(env, env->cur_state); 12439 err = pop_stack(env, &prev_insn_idx, 12440 &env->insn_idx, pop_log); 12441 if (err < 0) { 12442 if (err != -ENOENT) 12443 return err; 12444 break; 12445 } else { 12446 do_print_state = true; 12447 continue; 12448 } 12449 } else { 12450 err = check_cond_jmp_op(env, insn, &env->insn_idx); 12451 if (err) 12452 return err; 12453 } 12454 } else if (class == BPF_LD) { 12455 u8 mode = BPF_MODE(insn->code); 12456 12457 if (mode == BPF_ABS || mode == BPF_IND) { 12458 err = check_ld_abs(env, insn); 12459 if (err) 12460 return err; 12461 12462 } else if (mode == BPF_IMM) { 12463 err = check_ld_imm(env, insn); 12464 if (err) 12465 return err; 12466 12467 env->insn_idx++; 12468 sanitize_mark_insn_seen(env); 12469 } else { 12470 verbose(env, "invalid BPF_LD mode\n"); 12471 return -EINVAL; 12472 } 12473 } else { 12474 verbose(env, "unknown insn class %d\n", class); 12475 return -EINVAL; 12476 } 12477 12478 env->insn_idx++; 12479 } 12480 12481 return 0; 12482 } 12483 12484 static int find_btf_percpu_datasec(struct btf *btf) 12485 { 12486 const struct btf_type *t; 12487 const char *tname; 12488 int i, n; 12489 12490 /* 12491 * Both vmlinux and module each have their own ".data..percpu" 12492 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 12493 * types to look at only module's own BTF types. 12494 */ 12495 n = btf_nr_types(btf); 12496 if (btf_is_module(btf)) 12497 i = btf_nr_types(btf_vmlinux); 12498 else 12499 i = 1; 12500 12501 for(; i < n; i++) { 12502 t = btf_type_by_id(btf, i); 12503 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 12504 continue; 12505 12506 tname = btf_name_by_offset(btf, t->name_off); 12507 if (!strcmp(tname, ".data..percpu")) 12508 return i; 12509 } 12510 12511 return -ENOENT; 12512 } 12513 12514 /* replace pseudo btf_id with kernel symbol address */ 12515 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 12516 struct bpf_insn *insn, 12517 struct bpf_insn_aux_data *aux) 12518 { 12519 const struct btf_var_secinfo *vsi; 12520 const struct btf_type *datasec; 12521 struct btf_mod_pair *btf_mod; 12522 const struct btf_type *t; 12523 const char *sym_name; 12524 bool percpu = false; 12525 u32 type, id = insn->imm; 12526 struct btf *btf; 12527 s32 datasec_id; 12528 u64 addr; 12529 int i, btf_fd, err; 12530 12531 btf_fd = insn[1].imm; 12532 if (btf_fd) { 12533 btf = btf_get_by_fd(btf_fd); 12534 if (IS_ERR(btf)) { 12535 verbose(env, "invalid module BTF object FD specified.\n"); 12536 return -EINVAL; 12537 } 12538 } else { 12539 if (!btf_vmlinux) { 12540 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 12541 return -EINVAL; 12542 } 12543 btf = btf_vmlinux; 12544 btf_get(btf); 12545 } 12546 12547 t = btf_type_by_id(btf, id); 12548 if (!t) { 12549 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 12550 err = -ENOENT; 12551 goto err_put; 12552 } 12553 12554 if (!btf_type_is_var(t)) { 12555 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 12556 err = -EINVAL; 12557 goto err_put; 12558 } 12559 12560 sym_name = btf_name_by_offset(btf, t->name_off); 12561 addr = kallsyms_lookup_name(sym_name); 12562 if (!addr) { 12563 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 12564 sym_name); 12565 err = -ENOENT; 12566 goto err_put; 12567 } 12568 12569 datasec_id = find_btf_percpu_datasec(btf); 12570 if (datasec_id > 0) { 12571 datasec = btf_type_by_id(btf, datasec_id); 12572 for_each_vsi(i, datasec, vsi) { 12573 if (vsi->type == id) { 12574 percpu = true; 12575 break; 12576 } 12577 } 12578 } 12579 12580 insn[0].imm = (u32)addr; 12581 insn[1].imm = addr >> 32; 12582 12583 type = t->type; 12584 t = btf_type_skip_modifiers(btf, type, NULL); 12585 if (percpu) { 12586 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 12587 aux->btf_var.btf = btf; 12588 aux->btf_var.btf_id = type; 12589 } else if (!btf_type_is_struct(t)) { 12590 const struct btf_type *ret; 12591 const char *tname; 12592 u32 tsize; 12593 12594 /* resolve the type size of ksym. */ 12595 ret = btf_resolve_size(btf, t, &tsize); 12596 if (IS_ERR(ret)) { 12597 tname = btf_name_by_offset(btf, t->name_off); 12598 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 12599 tname, PTR_ERR(ret)); 12600 err = -EINVAL; 12601 goto err_put; 12602 } 12603 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 12604 aux->btf_var.mem_size = tsize; 12605 } else { 12606 aux->btf_var.reg_type = PTR_TO_BTF_ID; 12607 aux->btf_var.btf = btf; 12608 aux->btf_var.btf_id = type; 12609 } 12610 12611 /* check whether we recorded this BTF (and maybe module) already */ 12612 for (i = 0; i < env->used_btf_cnt; i++) { 12613 if (env->used_btfs[i].btf == btf) { 12614 btf_put(btf); 12615 return 0; 12616 } 12617 } 12618 12619 if (env->used_btf_cnt >= MAX_USED_BTFS) { 12620 err = -E2BIG; 12621 goto err_put; 12622 } 12623 12624 btf_mod = &env->used_btfs[env->used_btf_cnt]; 12625 btf_mod->btf = btf; 12626 btf_mod->module = NULL; 12627 12628 /* if we reference variables from kernel module, bump its refcount */ 12629 if (btf_is_module(btf)) { 12630 btf_mod->module = btf_try_get_module(btf); 12631 if (!btf_mod->module) { 12632 err = -ENXIO; 12633 goto err_put; 12634 } 12635 } 12636 12637 env->used_btf_cnt++; 12638 12639 return 0; 12640 err_put: 12641 btf_put(btf); 12642 return err; 12643 } 12644 12645 static bool is_tracing_prog_type(enum bpf_prog_type type) 12646 { 12647 switch (type) { 12648 case BPF_PROG_TYPE_KPROBE: 12649 case BPF_PROG_TYPE_TRACEPOINT: 12650 case BPF_PROG_TYPE_PERF_EVENT: 12651 case BPF_PROG_TYPE_RAW_TRACEPOINT: 12652 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 12653 return true; 12654 default: 12655 return false; 12656 } 12657 } 12658 12659 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 12660 struct bpf_map *map, 12661 struct bpf_prog *prog) 12662 12663 { 12664 enum bpf_prog_type prog_type = resolve_prog_type(prog); 12665 12666 if (map_value_has_spin_lock(map)) { 12667 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 12668 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 12669 return -EINVAL; 12670 } 12671 12672 if (is_tracing_prog_type(prog_type)) { 12673 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 12674 return -EINVAL; 12675 } 12676 12677 if (prog->aux->sleepable) { 12678 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 12679 return -EINVAL; 12680 } 12681 } 12682 12683 if (map_value_has_timer(map)) { 12684 if (is_tracing_prog_type(prog_type)) { 12685 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 12686 return -EINVAL; 12687 } 12688 } 12689 12690 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 12691 !bpf_offload_prog_map_match(prog, map)) { 12692 verbose(env, "offload device mismatch between prog and map\n"); 12693 return -EINVAL; 12694 } 12695 12696 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 12697 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 12698 return -EINVAL; 12699 } 12700 12701 if (prog->aux->sleepable) 12702 switch (map->map_type) { 12703 case BPF_MAP_TYPE_HASH: 12704 case BPF_MAP_TYPE_LRU_HASH: 12705 case BPF_MAP_TYPE_ARRAY: 12706 case BPF_MAP_TYPE_PERCPU_HASH: 12707 case BPF_MAP_TYPE_PERCPU_ARRAY: 12708 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 12709 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 12710 case BPF_MAP_TYPE_HASH_OF_MAPS: 12711 case BPF_MAP_TYPE_RINGBUF: 12712 case BPF_MAP_TYPE_USER_RINGBUF: 12713 case BPF_MAP_TYPE_INODE_STORAGE: 12714 case BPF_MAP_TYPE_SK_STORAGE: 12715 case BPF_MAP_TYPE_TASK_STORAGE: 12716 break; 12717 default: 12718 verbose(env, 12719 "Sleepable programs can only use array, hash, and ringbuf maps\n"); 12720 return -EINVAL; 12721 } 12722 12723 return 0; 12724 } 12725 12726 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 12727 { 12728 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 12729 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 12730 } 12731 12732 /* find and rewrite pseudo imm in ld_imm64 instructions: 12733 * 12734 * 1. if it accesses map FD, replace it with actual map pointer. 12735 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 12736 * 12737 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 12738 */ 12739 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 12740 { 12741 struct bpf_insn *insn = env->prog->insnsi; 12742 int insn_cnt = env->prog->len; 12743 int i, j, err; 12744 12745 err = bpf_prog_calc_tag(env->prog); 12746 if (err) 12747 return err; 12748 12749 for (i = 0; i < insn_cnt; i++, insn++) { 12750 if (BPF_CLASS(insn->code) == BPF_LDX && 12751 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 12752 verbose(env, "BPF_LDX uses reserved fields\n"); 12753 return -EINVAL; 12754 } 12755 12756 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 12757 struct bpf_insn_aux_data *aux; 12758 struct bpf_map *map; 12759 struct fd f; 12760 u64 addr; 12761 u32 fd; 12762 12763 if (i == insn_cnt - 1 || insn[1].code != 0 || 12764 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 12765 insn[1].off != 0) { 12766 verbose(env, "invalid bpf_ld_imm64 insn\n"); 12767 return -EINVAL; 12768 } 12769 12770 if (insn[0].src_reg == 0) 12771 /* valid generic load 64-bit imm */ 12772 goto next_insn; 12773 12774 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 12775 aux = &env->insn_aux_data[i]; 12776 err = check_pseudo_btf_id(env, insn, aux); 12777 if (err) 12778 return err; 12779 goto next_insn; 12780 } 12781 12782 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 12783 aux = &env->insn_aux_data[i]; 12784 aux->ptr_type = PTR_TO_FUNC; 12785 goto next_insn; 12786 } 12787 12788 /* In final convert_pseudo_ld_imm64() step, this is 12789 * converted into regular 64-bit imm load insn. 12790 */ 12791 switch (insn[0].src_reg) { 12792 case BPF_PSEUDO_MAP_VALUE: 12793 case BPF_PSEUDO_MAP_IDX_VALUE: 12794 break; 12795 case BPF_PSEUDO_MAP_FD: 12796 case BPF_PSEUDO_MAP_IDX: 12797 if (insn[1].imm == 0) 12798 break; 12799 fallthrough; 12800 default: 12801 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 12802 return -EINVAL; 12803 } 12804 12805 switch (insn[0].src_reg) { 12806 case BPF_PSEUDO_MAP_IDX_VALUE: 12807 case BPF_PSEUDO_MAP_IDX: 12808 if (bpfptr_is_null(env->fd_array)) { 12809 verbose(env, "fd_idx without fd_array is invalid\n"); 12810 return -EPROTO; 12811 } 12812 if (copy_from_bpfptr_offset(&fd, env->fd_array, 12813 insn[0].imm * sizeof(fd), 12814 sizeof(fd))) 12815 return -EFAULT; 12816 break; 12817 default: 12818 fd = insn[0].imm; 12819 break; 12820 } 12821 12822 f = fdget(fd); 12823 map = __bpf_map_get(f); 12824 if (IS_ERR(map)) { 12825 verbose(env, "fd %d is not pointing to valid bpf_map\n", 12826 insn[0].imm); 12827 return PTR_ERR(map); 12828 } 12829 12830 err = check_map_prog_compatibility(env, map, env->prog); 12831 if (err) { 12832 fdput(f); 12833 return err; 12834 } 12835 12836 aux = &env->insn_aux_data[i]; 12837 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 12838 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 12839 addr = (unsigned long)map; 12840 } else { 12841 u32 off = insn[1].imm; 12842 12843 if (off >= BPF_MAX_VAR_OFF) { 12844 verbose(env, "direct value offset of %u is not allowed\n", off); 12845 fdput(f); 12846 return -EINVAL; 12847 } 12848 12849 if (!map->ops->map_direct_value_addr) { 12850 verbose(env, "no direct value access support for this map type\n"); 12851 fdput(f); 12852 return -EINVAL; 12853 } 12854 12855 err = map->ops->map_direct_value_addr(map, &addr, off); 12856 if (err) { 12857 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 12858 map->value_size, off); 12859 fdput(f); 12860 return err; 12861 } 12862 12863 aux->map_off = off; 12864 addr += off; 12865 } 12866 12867 insn[0].imm = (u32)addr; 12868 insn[1].imm = addr >> 32; 12869 12870 /* check whether we recorded this map already */ 12871 for (j = 0; j < env->used_map_cnt; j++) { 12872 if (env->used_maps[j] == map) { 12873 aux->map_index = j; 12874 fdput(f); 12875 goto next_insn; 12876 } 12877 } 12878 12879 if (env->used_map_cnt >= MAX_USED_MAPS) { 12880 fdput(f); 12881 return -E2BIG; 12882 } 12883 12884 /* hold the map. If the program is rejected by verifier, 12885 * the map will be released by release_maps() or it 12886 * will be used by the valid program until it's unloaded 12887 * and all maps are released in free_used_maps() 12888 */ 12889 bpf_map_inc(map); 12890 12891 aux->map_index = env->used_map_cnt; 12892 env->used_maps[env->used_map_cnt++] = map; 12893 12894 if (bpf_map_is_cgroup_storage(map) && 12895 bpf_cgroup_storage_assign(env->prog->aux, map)) { 12896 verbose(env, "only one cgroup storage of each type is allowed\n"); 12897 fdput(f); 12898 return -EBUSY; 12899 } 12900 12901 fdput(f); 12902 next_insn: 12903 insn++; 12904 i++; 12905 continue; 12906 } 12907 12908 /* Basic sanity check before we invest more work here. */ 12909 if (!bpf_opcode_in_insntable(insn->code)) { 12910 verbose(env, "unknown opcode %02x\n", insn->code); 12911 return -EINVAL; 12912 } 12913 } 12914 12915 /* now all pseudo BPF_LD_IMM64 instructions load valid 12916 * 'struct bpf_map *' into a register instead of user map_fd. 12917 * These pointers will be used later by verifier to validate map access. 12918 */ 12919 return 0; 12920 } 12921 12922 /* drop refcnt of maps used by the rejected program */ 12923 static void release_maps(struct bpf_verifier_env *env) 12924 { 12925 __bpf_free_used_maps(env->prog->aux, env->used_maps, 12926 env->used_map_cnt); 12927 } 12928 12929 /* drop refcnt of maps used by the rejected program */ 12930 static void release_btfs(struct bpf_verifier_env *env) 12931 { 12932 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 12933 env->used_btf_cnt); 12934 } 12935 12936 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 12937 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 12938 { 12939 struct bpf_insn *insn = env->prog->insnsi; 12940 int insn_cnt = env->prog->len; 12941 int i; 12942 12943 for (i = 0; i < insn_cnt; i++, insn++) { 12944 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 12945 continue; 12946 if (insn->src_reg == BPF_PSEUDO_FUNC) 12947 continue; 12948 insn->src_reg = 0; 12949 } 12950 } 12951 12952 /* single env->prog->insni[off] instruction was replaced with the range 12953 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 12954 * [0, off) and [off, end) to new locations, so the patched range stays zero 12955 */ 12956 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 12957 struct bpf_insn_aux_data *new_data, 12958 struct bpf_prog *new_prog, u32 off, u32 cnt) 12959 { 12960 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 12961 struct bpf_insn *insn = new_prog->insnsi; 12962 u32 old_seen = old_data[off].seen; 12963 u32 prog_len; 12964 int i; 12965 12966 /* aux info at OFF always needs adjustment, no matter fast path 12967 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 12968 * original insn at old prog. 12969 */ 12970 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 12971 12972 if (cnt == 1) 12973 return; 12974 prog_len = new_prog->len; 12975 12976 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 12977 memcpy(new_data + off + cnt - 1, old_data + off, 12978 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 12979 for (i = off; i < off + cnt - 1; i++) { 12980 /* Expand insni[off]'s seen count to the patched range. */ 12981 new_data[i].seen = old_seen; 12982 new_data[i].zext_dst = insn_has_def32(env, insn + i); 12983 } 12984 env->insn_aux_data = new_data; 12985 vfree(old_data); 12986 } 12987 12988 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 12989 { 12990 int i; 12991 12992 if (len == 1) 12993 return; 12994 /* NOTE: fake 'exit' subprog should be updated as well. */ 12995 for (i = 0; i <= env->subprog_cnt; i++) { 12996 if (env->subprog_info[i].start <= off) 12997 continue; 12998 env->subprog_info[i].start += len - 1; 12999 } 13000 } 13001 13002 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 13003 { 13004 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 13005 int i, sz = prog->aux->size_poke_tab; 13006 struct bpf_jit_poke_descriptor *desc; 13007 13008 for (i = 0; i < sz; i++) { 13009 desc = &tab[i]; 13010 if (desc->insn_idx <= off) 13011 continue; 13012 desc->insn_idx += len - 1; 13013 } 13014 } 13015 13016 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 13017 const struct bpf_insn *patch, u32 len) 13018 { 13019 struct bpf_prog *new_prog; 13020 struct bpf_insn_aux_data *new_data = NULL; 13021 13022 if (len > 1) { 13023 new_data = vzalloc(array_size(env->prog->len + len - 1, 13024 sizeof(struct bpf_insn_aux_data))); 13025 if (!new_data) 13026 return NULL; 13027 } 13028 13029 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 13030 if (IS_ERR(new_prog)) { 13031 if (PTR_ERR(new_prog) == -ERANGE) 13032 verbose(env, 13033 "insn %d cannot be patched due to 16-bit range\n", 13034 env->insn_aux_data[off].orig_idx); 13035 vfree(new_data); 13036 return NULL; 13037 } 13038 adjust_insn_aux_data(env, new_data, new_prog, off, len); 13039 adjust_subprog_starts(env, off, len); 13040 adjust_poke_descs(new_prog, off, len); 13041 return new_prog; 13042 } 13043 13044 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 13045 u32 off, u32 cnt) 13046 { 13047 int i, j; 13048 13049 /* find first prog starting at or after off (first to remove) */ 13050 for (i = 0; i < env->subprog_cnt; i++) 13051 if (env->subprog_info[i].start >= off) 13052 break; 13053 /* find first prog starting at or after off + cnt (first to stay) */ 13054 for (j = i; j < env->subprog_cnt; j++) 13055 if (env->subprog_info[j].start >= off + cnt) 13056 break; 13057 /* if j doesn't start exactly at off + cnt, we are just removing 13058 * the front of previous prog 13059 */ 13060 if (env->subprog_info[j].start != off + cnt) 13061 j--; 13062 13063 if (j > i) { 13064 struct bpf_prog_aux *aux = env->prog->aux; 13065 int move; 13066 13067 /* move fake 'exit' subprog as well */ 13068 move = env->subprog_cnt + 1 - j; 13069 13070 memmove(env->subprog_info + i, 13071 env->subprog_info + j, 13072 sizeof(*env->subprog_info) * move); 13073 env->subprog_cnt -= j - i; 13074 13075 /* remove func_info */ 13076 if (aux->func_info) { 13077 move = aux->func_info_cnt - j; 13078 13079 memmove(aux->func_info + i, 13080 aux->func_info + j, 13081 sizeof(*aux->func_info) * move); 13082 aux->func_info_cnt -= j - i; 13083 /* func_info->insn_off is set after all code rewrites, 13084 * in adjust_btf_func() - no need to adjust 13085 */ 13086 } 13087 } else { 13088 /* convert i from "first prog to remove" to "first to adjust" */ 13089 if (env->subprog_info[i].start == off) 13090 i++; 13091 } 13092 13093 /* update fake 'exit' subprog as well */ 13094 for (; i <= env->subprog_cnt; i++) 13095 env->subprog_info[i].start -= cnt; 13096 13097 return 0; 13098 } 13099 13100 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 13101 u32 cnt) 13102 { 13103 struct bpf_prog *prog = env->prog; 13104 u32 i, l_off, l_cnt, nr_linfo; 13105 struct bpf_line_info *linfo; 13106 13107 nr_linfo = prog->aux->nr_linfo; 13108 if (!nr_linfo) 13109 return 0; 13110 13111 linfo = prog->aux->linfo; 13112 13113 /* find first line info to remove, count lines to be removed */ 13114 for (i = 0; i < nr_linfo; i++) 13115 if (linfo[i].insn_off >= off) 13116 break; 13117 13118 l_off = i; 13119 l_cnt = 0; 13120 for (; i < nr_linfo; i++) 13121 if (linfo[i].insn_off < off + cnt) 13122 l_cnt++; 13123 else 13124 break; 13125 13126 /* First live insn doesn't match first live linfo, it needs to "inherit" 13127 * last removed linfo. prog is already modified, so prog->len == off 13128 * means no live instructions after (tail of the program was removed). 13129 */ 13130 if (prog->len != off && l_cnt && 13131 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 13132 l_cnt--; 13133 linfo[--i].insn_off = off + cnt; 13134 } 13135 13136 /* remove the line info which refer to the removed instructions */ 13137 if (l_cnt) { 13138 memmove(linfo + l_off, linfo + i, 13139 sizeof(*linfo) * (nr_linfo - i)); 13140 13141 prog->aux->nr_linfo -= l_cnt; 13142 nr_linfo = prog->aux->nr_linfo; 13143 } 13144 13145 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 13146 for (i = l_off; i < nr_linfo; i++) 13147 linfo[i].insn_off -= cnt; 13148 13149 /* fix up all subprogs (incl. 'exit') which start >= off */ 13150 for (i = 0; i <= env->subprog_cnt; i++) 13151 if (env->subprog_info[i].linfo_idx > l_off) { 13152 /* program may have started in the removed region but 13153 * may not be fully removed 13154 */ 13155 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 13156 env->subprog_info[i].linfo_idx -= l_cnt; 13157 else 13158 env->subprog_info[i].linfo_idx = l_off; 13159 } 13160 13161 return 0; 13162 } 13163 13164 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 13165 { 13166 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13167 unsigned int orig_prog_len = env->prog->len; 13168 int err; 13169 13170 if (bpf_prog_is_dev_bound(env->prog->aux)) 13171 bpf_prog_offload_remove_insns(env, off, cnt); 13172 13173 err = bpf_remove_insns(env->prog, off, cnt); 13174 if (err) 13175 return err; 13176 13177 err = adjust_subprog_starts_after_remove(env, off, cnt); 13178 if (err) 13179 return err; 13180 13181 err = bpf_adj_linfo_after_remove(env, off, cnt); 13182 if (err) 13183 return err; 13184 13185 memmove(aux_data + off, aux_data + off + cnt, 13186 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 13187 13188 return 0; 13189 } 13190 13191 /* The verifier does more data flow analysis than llvm and will not 13192 * explore branches that are dead at run time. Malicious programs can 13193 * have dead code too. Therefore replace all dead at-run-time code 13194 * with 'ja -1'. 13195 * 13196 * Just nops are not optimal, e.g. if they would sit at the end of the 13197 * program and through another bug we would manage to jump there, then 13198 * we'd execute beyond program memory otherwise. Returning exception 13199 * code also wouldn't work since we can have subprogs where the dead 13200 * code could be located. 13201 */ 13202 static void sanitize_dead_code(struct bpf_verifier_env *env) 13203 { 13204 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13205 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 13206 struct bpf_insn *insn = env->prog->insnsi; 13207 const int insn_cnt = env->prog->len; 13208 int i; 13209 13210 for (i = 0; i < insn_cnt; i++) { 13211 if (aux_data[i].seen) 13212 continue; 13213 memcpy(insn + i, &trap, sizeof(trap)); 13214 aux_data[i].zext_dst = false; 13215 } 13216 } 13217 13218 static bool insn_is_cond_jump(u8 code) 13219 { 13220 u8 op; 13221 13222 if (BPF_CLASS(code) == BPF_JMP32) 13223 return true; 13224 13225 if (BPF_CLASS(code) != BPF_JMP) 13226 return false; 13227 13228 op = BPF_OP(code); 13229 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 13230 } 13231 13232 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 13233 { 13234 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13235 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 13236 struct bpf_insn *insn = env->prog->insnsi; 13237 const int insn_cnt = env->prog->len; 13238 int i; 13239 13240 for (i = 0; i < insn_cnt; i++, insn++) { 13241 if (!insn_is_cond_jump(insn->code)) 13242 continue; 13243 13244 if (!aux_data[i + 1].seen) 13245 ja.off = insn->off; 13246 else if (!aux_data[i + 1 + insn->off].seen) 13247 ja.off = 0; 13248 else 13249 continue; 13250 13251 if (bpf_prog_is_dev_bound(env->prog->aux)) 13252 bpf_prog_offload_replace_insn(env, i, &ja); 13253 13254 memcpy(insn, &ja, sizeof(ja)); 13255 } 13256 } 13257 13258 static int opt_remove_dead_code(struct bpf_verifier_env *env) 13259 { 13260 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13261 int insn_cnt = env->prog->len; 13262 int i, err; 13263 13264 for (i = 0; i < insn_cnt; i++) { 13265 int j; 13266 13267 j = 0; 13268 while (i + j < insn_cnt && !aux_data[i + j].seen) 13269 j++; 13270 if (!j) 13271 continue; 13272 13273 err = verifier_remove_insns(env, i, j); 13274 if (err) 13275 return err; 13276 insn_cnt = env->prog->len; 13277 } 13278 13279 return 0; 13280 } 13281 13282 static int opt_remove_nops(struct bpf_verifier_env *env) 13283 { 13284 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 13285 struct bpf_insn *insn = env->prog->insnsi; 13286 int insn_cnt = env->prog->len; 13287 int i, err; 13288 13289 for (i = 0; i < insn_cnt; i++) { 13290 if (memcmp(&insn[i], &ja, sizeof(ja))) 13291 continue; 13292 13293 err = verifier_remove_insns(env, i, 1); 13294 if (err) 13295 return err; 13296 insn_cnt--; 13297 i--; 13298 } 13299 13300 return 0; 13301 } 13302 13303 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 13304 const union bpf_attr *attr) 13305 { 13306 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 13307 struct bpf_insn_aux_data *aux = env->insn_aux_data; 13308 int i, patch_len, delta = 0, len = env->prog->len; 13309 struct bpf_insn *insns = env->prog->insnsi; 13310 struct bpf_prog *new_prog; 13311 bool rnd_hi32; 13312 13313 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 13314 zext_patch[1] = BPF_ZEXT_REG(0); 13315 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 13316 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 13317 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 13318 for (i = 0; i < len; i++) { 13319 int adj_idx = i + delta; 13320 struct bpf_insn insn; 13321 int load_reg; 13322 13323 insn = insns[adj_idx]; 13324 load_reg = insn_def_regno(&insn); 13325 if (!aux[adj_idx].zext_dst) { 13326 u8 code, class; 13327 u32 imm_rnd; 13328 13329 if (!rnd_hi32) 13330 continue; 13331 13332 code = insn.code; 13333 class = BPF_CLASS(code); 13334 if (load_reg == -1) 13335 continue; 13336 13337 /* NOTE: arg "reg" (the fourth one) is only used for 13338 * BPF_STX + SRC_OP, so it is safe to pass NULL 13339 * here. 13340 */ 13341 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 13342 if (class == BPF_LD && 13343 BPF_MODE(code) == BPF_IMM) 13344 i++; 13345 continue; 13346 } 13347 13348 /* ctx load could be transformed into wider load. */ 13349 if (class == BPF_LDX && 13350 aux[adj_idx].ptr_type == PTR_TO_CTX) 13351 continue; 13352 13353 imm_rnd = get_random_u32(); 13354 rnd_hi32_patch[0] = insn; 13355 rnd_hi32_patch[1].imm = imm_rnd; 13356 rnd_hi32_patch[3].dst_reg = load_reg; 13357 patch = rnd_hi32_patch; 13358 patch_len = 4; 13359 goto apply_patch_buffer; 13360 } 13361 13362 /* Add in an zero-extend instruction if a) the JIT has requested 13363 * it or b) it's a CMPXCHG. 13364 * 13365 * The latter is because: BPF_CMPXCHG always loads a value into 13366 * R0, therefore always zero-extends. However some archs' 13367 * equivalent instruction only does this load when the 13368 * comparison is successful. This detail of CMPXCHG is 13369 * orthogonal to the general zero-extension behaviour of the 13370 * CPU, so it's treated independently of bpf_jit_needs_zext. 13371 */ 13372 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 13373 continue; 13374 13375 if (WARN_ON(load_reg == -1)) { 13376 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 13377 return -EFAULT; 13378 } 13379 13380 zext_patch[0] = insn; 13381 zext_patch[1].dst_reg = load_reg; 13382 zext_patch[1].src_reg = load_reg; 13383 patch = zext_patch; 13384 patch_len = 2; 13385 apply_patch_buffer: 13386 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 13387 if (!new_prog) 13388 return -ENOMEM; 13389 env->prog = new_prog; 13390 insns = new_prog->insnsi; 13391 aux = env->insn_aux_data; 13392 delta += patch_len - 1; 13393 } 13394 13395 return 0; 13396 } 13397 13398 /* convert load instructions that access fields of a context type into a 13399 * sequence of instructions that access fields of the underlying structure: 13400 * struct __sk_buff -> struct sk_buff 13401 * struct bpf_sock_ops -> struct sock 13402 */ 13403 static int convert_ctx_accesses(struct bpf_verifier_env *env) 13404 { 13405 const struct bpf_verifier_ops *ops = env->ops; 13406 int i, cnt, size, ctx_field_size, delta = 0; 13407 const int insn_cnt = env->prog->len; 13408 struct bpf_insn insn_buf[16], *insn; 13409 u32 target_size, size_default, off; 13410 struct bpf_prog *new_prog; 13411 enum bpf_access_type type; 13412 bool is_narrower_load; 13413 13414 if (ops->gen_prologue || env->seen_direct_write) { 13415 if (!ops->gen_prologue) { 13416 verbose(env, "bpf verifier is misconfigured\n"); 13417 return -EINVAL; 13418 } 13419 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 13420 env->prog); 13421 if (cnt >= ARRAY_SIZE(insn_buf)) { 13422 verbose(env, "bpf verifier is misconfigured\n"); 13423 return -EINVAL; 13424 } else if (cnt) { 13425 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 13426 if (!new_prog) 13427 return -ENOMEM; 13428 13429 env->prog = new_prog; 13430 delta += cnt - 1; 13431 } 13432 } 13433 13434 if (bpf_prog_is_dev_bound(env->prog->aux)) 13435 return 0; 13436 13437 insn = env->prog->insnsi + delta; 13438 13439 for (i = 0; i < insn_cnt; i++, insn++) { 13440 bpf_convert_ctx_access_t convert_ctx_access; 13441 bool ctx_access; 13442 13443 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 13444 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 13445 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 13446 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 13447 type = BPF_READ; 13448 ctx_access = true; 13449 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 13450 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 13451 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 13452 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 13453 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 13454 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 13455 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 13456 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 13457 type = BPF_WRITE; 13458 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 13459 } else { 13460 continue; 13461 } 13462 13463 if (type == BPF_WRITE && 13464 env->insn_aux_data[i + delta].sanitize_stack_spill) { 13465 struct bpf_insn patch[] = { 13466 *insn, 13467 BPF_ST_NOSPEC(), 13468 }; 13469 13470 cnt = ARRAY_SIZE(patch); 13471 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 13472 if (!new_prog) 13473 return -ENOMEM; 13474 13475 delta += cnt - 1; 13476 env->prog = new_prog; 13477 insn = new_prog->insnsi + i + delta; 13478 continue; 13479 } 13480 13481 if (!ctx_access) 13482 continue; 13483 13484 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 13485 case PTR_TO_CTX: 13486 if (!ops->convert_ctx_access) 13487 continue; 13488 convert_ctx_access = ops->convert_ctx_access; 13489 break; 13490 case PTR_TO_SOCKET: 13491 case PTR_TO_SOCK_COMMON: 13492 convert_ctx_access = bpf_sock_convert_ctx_access; 13493 break; 13494 case PTR_TO_TCP_SOCK: 13495 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 13496 break; 13497 case PTR_TO_XDP_SOCK: 13498 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 13499 break; 13500 case PTR_TO_BTF_ID: 13501 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 13502 if (type == BPF_READ) { 13503 insn->code = BPF_LDX | BPF_PROBE_MEM | 13504 BPF_SIZE((insn)->code); 13505 env->prog->aux->num_exentries++; 13506 } 13507 continue; 13508 default: 13509 continue; 13510 } 13511 13512 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 13513 size = BPF_LDST_BYTES(insn); 13514 13515 /* If the read access is a narrower load of the field, 13516 * convert to a 4/8-byte load, to minimum program type specific 13517 * convert_ctx_access changes. If conversion is successful, 13518 * we will apply proper mask to the result. 13519 */ 13520 is_narrower_load = size < ctx_field_size; 13521 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 13522 off = insn->off; 13523 if (is_narrower_load) { 13524 u8 size_code; 13525 13526 if (type == BPF_WRITE) { 13527 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 13528 return -EINVAL; 13529 } 13530 13531 size_code = BPF_H; 13532 if (ctx_field_size == 4) 13533 size_code = BPF_W; 13534 else if (ctx_field_size == 8) 13535 size_code = BPF_DW; 13536 13537 insn->off = off & ~(size_default - 1); 13538 insn->code = BPF_LDX | BPF_MEM | size_code; 13539 } 13540 13541 target_size = 0; 13542 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 13543 &target_size); 13544 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 13545 (ctx_field_size && !target_size)) { 13546 verbose(env, "bpf verifier is misconfigured\n"); 13547 return -EINVAL; 13548 } 13549 13550 if (is_narrower_load && size < target_size) { 13551 u8 shift = bpf_ctx_narrow_access_offset( 13552 off, size, size_default) * 8; 13553 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 13554 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 13555 return -EINVAL; 13556 } 13557 if (ctx_field_size <= 4) { 13558 if (shift) 13559 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 13560 insn->dst_reg, 13561 shift); 13562 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 13563 (1 << size * 8) - 1); 13564 } else { 13565 if (shift) 13566 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 13567 insn->dst_reg, 13568 shift); 13569 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 13570 (1ULL << size * 8) - 1); 13571 } 13572 } 13573 13574 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13575 if (!new_prog) 13576 return -ENOMEM; 13577 13578 delta += cnt - 1; 13579 13580 /* keep walking new program and skip insns we just inserted */ 13581 env->prog = new_prog; 13582 insn = new_prog->insnsi + i + delta; 13583 } 13584 13585 return 0; 13586 } 13587 13588 static int jit_subprogs(struct bpf_verifier_env *env) 13589 { 13590 struct bpf_prog *prog = env->prog, **func, *tmp; 13591 int i, j, subprog_start, subprog_end = 0, len, subprog; 13592 struct bpf_map *map_ptr; 13593 struct bpf_insn *insn; 13594 void *old_bpf_func; 13595 int err, num_exentries; 13596 13597 if (env->subprog_cnt <= 1) 13598 return 0; 13599 13600 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13601 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 13602 continue; 13603 13604 /* Upon error here we cannot fall back to interpreter but 13605 * need a hard reject of the program. Thus -EFAULT is 13606 * propagated in any case. 13607 */ 13608 subprog = find_subprog(env, i + insn->imm + 1); 13609 if (subprog < 0) { 13610 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 13611 i + insn->imm + 1); 13612 return -EFAULT; 13613 } 13614 /* temporarily remember subprog id inside insn instead of 13615 * aux_data, since next loop will split up all insns into funcs 13616 */ 13617 insn->off = subprog; 13618 /* remember original imm in case JIT fails and fallback 13619 * to interpreter will be needed 13620 */ 13621 env->insn_aux_data[i].call_imm = insn->imm; 13622 /* point imm to __bpf_call_base+1 from JITs point of view */ 13623 insn->imm = 1; 13624 if (bpf_pseudo_func(insn)) 13625 /* jit (e.g. x86_64) may emit fewer instructions 13626 * if it learns a u32 imm is the same as a u64 imm. 13627 * Force a non zero here. 13628 */ 13629 insn[1].imm = 1; 13630 } 13631 13632 err = bpf_prog_alloc_jited_linfo(prog); 13633 if (err) 13634 goto out_undo_insn; 13635 13636 err = -ENOMEM; 13637 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 13638 if (!func) 13639 goto out_undo_insn; 13640 13641 for (i = 0; i < env->subprog_cnt; i++) { 13642 subprog_start = subprog_end; 13643 subprog_end = env->subprog_info[i + 1].start; 13644 13645 len = subprog_end - subprog_start; 13646 /* bpf_prog_run() doesn't call subprogs directly, 13647 * hence main prog stats include the runtime of subprogs. 13648 * subprogs don't have IDs and not reachable via prog_get_next_id 13649 * func[i]->stats will never be accessed and stays NULL 13650 */ 13651 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 13652 if (!func[i]) 13653 goto out_free; 13654 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 13655 len * sizeof(struct bpf_insn)); 13656 func[i]->type = prog->type; 13657 func[i]->len = len; 13658 if (bpf_prog_calc_tag(func[i])) 13659 goto out_free; 13660 func[i]->is_func = 1; 13661 func[i]->aux->func_idx = i; 13662 /* Below members will be freed only at prog->aux */ 13663 func[i]->aux->btf = prog->aux->btf; 13664 func[i]->aux->func_info = prog->aux->func_info; 13665 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 13666 func[i]->aux->poke_tab = prog->aux->poke_tab; 13667 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 13668 13669 for (j = 0; j < prog->aux->size_poke_tab; j++) { 13670 struct bpf_jit_poke_descriptor *poke; 13671 13672 poke = &prog->aux->poke_tab[j]; 13673 if (poke->insn_idx < subprog_end && 13674 poke->insn_idx >= subprog_start) 13675 poke->aux = func[i]->aux; 13676 } 13677 13678 func[i]->aux->name[0] = 'F'; 13679 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 13680 func[i]->jit_requested = 1; 13681 func[i]->blinding_requested = prog->blinding_requested; 13682 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 13683 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 13684 func[i]->aux->linfo = prog->aux->linfo; 13685 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 13686 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 13687 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 13688 num_exentries = 0; 13689 insn = func[i]->insnsi; 13690 for (j = 0; j < func[i]->len; j++, insn++) { 13691 if (BPF_CLASS(insn->code) == BPF_LDX && 13692 BPF_MODE(insn->code) == BPF_PROBE_MEM) 13693 num_exentries++; 13694 } 13695 func[i]->aux->num_exentries = num_exentries; 13696 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 13697 func[i] = bpf_int_jit_compile(func[i]); 13698 if (!func[i]->jited) { 13699 err = -ENOTSUPP; 13700 goto out_free; 13701 } 13702 cond_resched(); 13703 } 13704 13705 /* at this point all bpf functions were successfully JITed 13706 * now populate all bpf_calls with correct addresses and 13707 * run last pass of JIT 13708 */ 13709 for (i = 0; i < env->subprog_cnt; i++) { 13710 insn = func[i]->insnsi; 13711 for (j = 0; j < func[i]->len; j++, insn++) { 13712 if (bpf_pseudo_func(insn)) { 13713 subprog = insn->off; 13714 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 13715 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 13716 continue; 13717 } 13718 if (!bpf_pseudo_call(insn)) 13719 continue; 13720 subprog = insn->off; 13721 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 13722 } 13723 13724 /* we use the aux data to keep a list of the start addresses 13725 * of the JITed images for each function in the program 13726 * 13727 * for some architectures, such as powerpc64, the imm field 13728 * might not be large enough to hold the offset of the start 13729 * address of the callee's JITed image from __bpf_call_base 13730 * 13731 * in such cases, we can lookup the start address of a callee 13732 * by using its subprog id, available from the off field of 13733 * the call instruction, as an index for this list 13734 */ 13735 func[i]->aux->func = func; 13736 func[i]->aux->func_cnt = env->subprog_cnt; 13737 } 13738 for (i = 0; i < env->subprog_cnt; i++) { 13739 old_bpf_func = func[i]->bpf_func; 13740 tmp = bpf_int_jit_compile(func[i]); 13741 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 13742 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 13743 err = -ENOTSUPP; 13744 goto out_free; 13745 } 13746 cond_resched(); 13747 } 13748 13749 /* finally lock prog and jit images for all functions and 13750 * populate kallsysm 13751 */ 13752 for (i = 0; i < env->subprog_cnt; i++) { 13753 bpf_prog_lock_ro(func[i]); 13754 bpf_prog_kallsyms_add(func[i]); 13755 } 13756 13757 /* Last step: make now unused interpreter insns from main 13758 * prog consistent for later dump requests, so they can 13759 * later look the same as if they were interpreted only. 13760 */ 13761 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13762 if (bpf_pseudo_func(insn)) { 13763 insn[0].imm = env->insn_aux_data[i].call_imm; 13764 insn[1].imm = insn->off; 13765 insn->off = 0; 13766 continue; 13767 } 13768 if (!bpf_pseudo_call(insn)) 13769 continue; 13770 insn->off = env->insn_aux_data[i].call_imm; 13771 subprog = find_subprog(env, i + insn->off + 1); 13772 insn->imm = subprog; 13773 } 13774 13775 prog->jited = 1; 13776 prog->bpf_func = func[0]->bpf_func; 13777 prog->jited_len = func[0]->jited_len; 13778 prog->aux->func = func; 13779 prog->aux->func_cnt = env->subprog_cnt; 13780 bpf_prog_jit_attempt_done(prog); 13781 return 0; 13782 out_free: 13783 /* We failed JIT'ing, so at this point we need to unregister poke 13784 * descriptors from subprogs, so that kernel is not attempting to 13785 * patch it anymore as we're freeing the subprog JIT memory. 13786 */ 13787 for (i = 0; i < prog->aux->size_poke_tab; i++) { 13788 map_ptr = prog->aux->poke_tab[i].tail_call.map; 13789 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 13790 } 13791 /* At this point we're guaranteed that poke descriptors are not 13792 * live anymore. We can just unlink its descriptor table as it's 13793 * released with the main prog. 13794 */ 13795 for (i = 0; i < env->subprog_cnt; i++) { 13796 if (!func[i]) 13797 continue; 13798 func[i]->aux->poke_tab = NULL; 13799 bpf_jit_free(func[i]); 13800 } 13801 kfree(func); 13802 out_undo_insn: 13803 /* cleanup main prog to be interpreted */ 13804 prog->jit_requested = 0; 13805 prog->blinding_requested = 0; 13806 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13807 if (!bpf_pseudo_call(insn)) 13808 continue; 13809 insn->off = 0; 13810 insn->imm = env->insn_aux_data[i].call_imm; 13811 } 13812 bpf_prog_jit_attempt_done(prog); 13813 return err; 13814 } 13815 13816 static int fixup_call_args(struct bpf_verifier_env *env) 13817 { 13818 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 13819 struct bpf_prog *prog = env->prog; 13820 struct bpf_insn *insn = prog->insnsi; 13821 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 13822 int i, depth; 13823 #endif 13824 int err = 0; 13825 13826 if (env->prog->jit_requested && 13827 !bpf_prog_is_dev_bound(env->prog->aux)) { 13828 err = jit_subprogs(env); 13829 if (err == 0) 13830 return 0; 13831 if (err == -EFAULT) 13832 return err; 13833 } 13834 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 13835 if (has_kfunc_call) { 13836 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 13837 return -EINVAL; 13838 } 13839 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 13840 /* When JIT fails the progs with bpf2bpf calls and tail_calls 13841 * have to be rejected, since interpreter doesn't support them yet. 13842 */ 13843 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 13844 return -EINVAL; 13845 } 13846 for (i = 0; i < prog->len; i++, insn++) { 13847 if (bpf_pseudo_func(insn)) { 13848 /* When JIT fails the progs with callback calls 13849 * have to be rejected, since interpreter doesn't support them yet. 13850 */ 13851 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 13852 return -EINVAL; 13853 } 13854 13855 if (!bpf_pseudo_call(insn)) 13856 continue; 13857 depth = get_callee_stack_depth(env, insn, i); 13858 if (depth < 0) 13859 return depth; 13860 bpf_patch_call_args(insn, depth); 13861 } 13862 err = 0; 13863 #endif 13864 return err; 13865 } 13866 13867 static int fixup_kfunc_call(struct bpf_verifier_env *env, 13868 struct bpf_insn *insn) 13869 { 13870 const struct bpf_kfunc_desc *desc; 13871 13872 if (!insn->imm) { 13873 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 13874 return -EINVAL; 13875 } 13876 13877 /* insn->imm has the btf func_id. Replace it with 13878 * an address (relative to __bpf_base_call). 13879 */ 13880 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 13881 if (!desc) { 13882 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 13883 insn->imm); 13884 return -EFAULT; 13885 } 13886 13887 insn->imm = desc->imm; 13888 13889 return 0; 13890 } 13891 13892 /* Do various post-verification rewrites in a single program pass. 13893 * These rewrites simplify JIT and interpreter implementations. 13894 */ 13895 static int do_misc_fixups(struct bpf_verifier_env *env) 13896 { 13897 struct bpf_prog *prog = env->prog; 13898 enum bpf_attach_type eatype = prog->expected_attach_type; 13899 enum bpf_prog_type prog_type = resolve_prog_type(prog); 13900 struct bpf_insn *insn = prog->insnsi; 13901 const struct bpf_func_proto *fn; 13902 const int insn_cnt = prog->len; 13903 const struct bpf_map_ops *ops; 13904 struct bpf_insn_aux_data *aux; 13905 struct bpf_insn insn_buf[16]; 13906 struct bpf_prog *new_prog; 13907 struct bpf_map *map_ptr; 13908 int i, ret, cnt, delta = 0; 13909 13910 for (i = 0; i < insn_cnt; i++, insn++) { 13911 /* Make divide-by-zero exceptions impossible. */ 13912 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 13913 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 13914 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 13915 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 13916 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 13917 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 13918 struct bpf_insn *patchlet; 13919 struct bpf_insn chk_and_div[] = { 13920 /* [R,W]x div 0 -> 0 */ 13921 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 13922 BPF_JNE | BPF_K, insn->src_reg, 13923 0, 2, 0), 13924 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 13925 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 13926 *insn, 13927 }; 13928 struct bpf_insn chk_and_mod[] = { 13929 /* [R,W]x mod 0 -> [R,W]x */ 13930 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 13931 BPF_JEQ | BPF_K, insn->src_reg, 13932 0, 1 + (is64 ? 0 : 1), 0), 13933 *insn, 13934 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 13935 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 13936 }; 13937 13938 patchlet = isdiv ? chk_and_div : chk_and_mod; 13939 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 13940 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 13941 13942 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 13943 if (!new_prog) 13944 return -ENOMEM; 13945 13946 delta += cnt - 1; 13947 env->prog = prog = new_prog; 13948 insn = new_prog->insnsi + i + delta; 13949 continue; 13950 } 13951 13952 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 13953 if (BPF_CLASS(insn->code) == BPF_LD && 13954 (BPF_MODE(insn->code) == BPF_ABS || 13955 BPF_MODE(insn->code) == BPF_IND)) { 13956 cnt = env->ops->gen_ld_abs(insn, insn_buf); 13957 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 13958 verbose(env, "bpf verifier is misconfigured\n"); 13959 return -EINVAL; 13960 } 13961 13962 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13963 if (!new_prog) 13964 return -ENOMEM; 13965 13966 delta += cnt - 1; 13967 env->prog = prog = new_prog; 13968 insn = new_prog->insnsi + i + delta; 13969 continue; 13970 } 13971 13972 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 13973 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 13974 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 13975 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 13976 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 13977 struct bpf_insn *patch = &insn_buf[0]; 13978 bool issrc, isneg, isimm; 13979 u32 off_reg; 13980 13981 aux = &env->insn_aux_data[i + delta]; 13982 if (!aux->alu_state || 13983 aux->alu_state == BPF_ALU_NON_POINTER) 13984 continue; 13985 13986 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 13987 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 13988 BPF_ALU_SANITIZE_SRC; 13989 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 13990 13991 off_reg = issrc ? insn->src_reg : insn->dst_reg; 13992 if (isimm) { 13993 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 13994 } else { 13995 if (isneg) 13996 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 13997 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 13998 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 13999 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 14000 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 14001 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 14002 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 14003 } 14004 if (!issrc) 14005 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 14006 insn->src_reg = BPF_REG_AX; 14007 if (isneg) 14008 insn->code = insn->code == code_add ? 14009 code_sub : code_add; 14010 *patch++ = *insn; 14011 if (issrc && isneg && !isimm) 14012 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 14013 cnt = patch - insn_buf; 14014 14015 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14016 if (!new_prog) 14017 return -ENOMEM; 14018 14019 delta += cnt - 1; 14020 env->prog = prog = new_prog; 14021 insn = new_prog->insnsi + i + delta; 14022 continue; 14023 } 14024 14025 if (insn->code != (BPF_JMP | BPF_CALL)) 14026 continue; 14027 if (insn->src_reg == BPF_PSEUDO_CALL) 14028 continue; 14029 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 14030 ret = fixup_kfunc_call(env, insn); 14031 if (ret) 14032 return ret; 14033 continue; 14034 } 14035 14036 if (insn->imm == BPF_FUNC_get_route_realm) 14037 prog->dst_needed = 1; 14038 if (insn->imm == BPF_FUNC_get_prandom_u32) 14039 bpf_user_rnd_init_once(); 14040 if (insn->imm == BPF_FUNC_override_return) 14041 prog->kprobe_override = 1; 14042 if (insn->imm == BPF_FUNC_tail_call) { 14043 /* If we tail call into other programs, we 14044 * cannot make any assumptions since they can 14045 * be replaced dynamically during runtime in 14046 * the program array. 14047 */ 14048 prog->cb_access = 1; 14049 if (!allow_tail_call_in_subprogs(env)) 14050 prog->aux->stack_depth = MAX_BPF_STACK; 14051 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 14052 14053 /* mark bpf_tail_call as different opcode to avoid 14054 * conditional branch in the interpreter for every normal 14055 * call and to prevent accidental JITing by JIT compiler 14056 * that doesn't support bpf_tail_call yet 14057 */ 14058 insn->imm = 0; 14059 insn->code = BPF_JMP | BPF_TAIL_CALL; 14060 14061 aux = &env->insn_aux_data[i + delta]; 14062 if (env->bpf_capable && !prog->blinding_requested && 14063 prog->jit_requested && 14064 !bpf_map_key_poisoned(aux) && 14065 !bpf_map_ptr_poisoned(aux) && 14066 !bpf_map_ptr_unpriv(aux)) { 14067 struct bpf_jit_poke_descriptor desc = { 14068 .reason = BPF_POKE_REASON_TAIL_CALL, 14069 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 14070 .tail_call.key = bpf_map_key_immediate(aux), 14071 .insn_idx = i + delta, 14072 }; 14073 14074 ret = bpf_jit_add_poke_descriptor(prog, &desc); 14075 if (ret < 0) { 14076 verbose(env, "adding tail call poke descriptor failed\n"); 14077 return ret; 14078 } 14079 14080 insn->imm = ret + 1; 14081 continue; 14082 } 14083 14084 if (!bpf_map_ptr_unpriv(aux)) 14085 continue; 14086 14087 /* instead of changing every JIT dealing with tail_call 14088 * emit two extra insns: 14089 * if (index >= max_entries) goto out; 14090 * index &= array->index_mask; 14091 * to avoid out-of-bounds cpu speculation 14092 */ 14093 if (bpf_map_ptr_poisoned(aux)) { 14094 verbose(env, "tail_call abusing map_ptr\n"); 14095 return -EINVAL; 14096 } 14097 14098 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 14099 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 14100 map_ptr->max_entries, 2); 14101 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 14102 container_of(map_ptr, 14103 struct bpf_array, 14104 map)->index_mask); 14105 insn_buf[2] = *insn; 14106 cnt = 3; 14107 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14108 if (!new_prog) 14109 return -ENOMEM; 14110 14111 delta += cnt - 1; 14112 env->prog = prog = new_prog; 14113 insn = new_prog->insnsi + i + delta; 14114 continue; 14115 } 14116 14117 if (insn->imm == BPF_FUNC_timer_set_callback) { 14118 /* The verifier will process callback_fn as many times as necessary 14119 * with different maps and the register states prepared by 14120 * set_timer_callback_state will be accurate. 14121 * 14122 * The following use case is valid: 14123 * map1 is shared by prog1, prog2, prog3. 14124 * prog1 calls bpf_timer_init for some map1 elements 14125 * prog2 calls bpf_timer_set_callback for some map1 elements. 14126 * Those that were not bpf_timer_init-ed will return -EINVAL. 14127 * prog3 calls bpf_timer_start for some map1 elements. 14128 * Those that were not both bpf_timer_init-ed and 14129 * bpf_timer_set_callback-ed will return -EINVAL. 14130 */ 14131 struct bpf_insn ld_addrs[2] = { 14132 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 14133 }; 14134 14135 insn_buf[0] = ld_addrs[0]; 14136 insn_buf[1] = ld_addrs[1]; 14137 insn_buf[2] = *insn; 14138 cnt = 3; 14139 14140 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14141 if (!new_prog) 14142 return -ENOMEM; 14143 14144 delta += cnt - 1; 14145 env->prog = prog = new_prog; 14146 insn = new_prog->insnsi + i + delta; 14147 goto patch_call_imm; 14148 } 14149 14150 if (insn->imm == BPF_FUNC_task_storage_get || 14151 insn->imm == BPF_FUNC_sk_storage_get || 14152 insn->imm == BPF_FUNC_inode_storage_get) { 14153 if (env->prog->aux->sleepable) 14154 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 14155 else 14156 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 14157 insn_buf[1] = *insn; 14158 cnt = 2; 14159 14160 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14161 if (!new_prog) 14162 return -ENOMEM; 14163 14164 delta += cnt - 1; 14165 env->prog = prog = new_prog; 14166 insn = new_prog->insnsi + i + delta; 14167 goto patch_call_imm; 14168 } 14169 14170 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 14171 * and other inlining handlers are currently limited to 64 bit 14172 * only. 14173 */ 14174 if (prog->jit_requested && BITS_PER_LONG == 64 && 14175 (insn->imm == BPF_FUNC_map_lookup_elem || 14176 insn->imm == BPF_FUNC_map_update_elem || 14177 insn->imm == BPF_FUNC_map_delete_elem || 14178 insn->imm == BPF_FUNC_map_push_elem || 14179 insn->imm == BPF_FUNC_map_pop_elem || 14180 insn->imm == BPF_FUNC_map_peek_elem || 14181 insn->imm == BPF_FUNC_redirect_map || 14182 insn->imm == BPF_FUNC_for_each_map_elem || 14183 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 14184 aux = &env->insn_aux_data[i + delta]; 14185 if (bpf_map_ptr_poisoned(aux)) 14186 goto patch_call_imm; 14187 14188 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 14189 ops = map_ptr->ops; 14190 if (insn->imm == BPF_FUNC_map_lookup_elem && 14191 ops->map_gen_lookup) { 14192 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 14193 if (cnt == -EOPNOTSUPP) 14194 goto patch_map_ops_generic; 14195 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 14196 verbose(env, "bpf verifier is misconfigured\n"); 14197 return -EINVAL; 14198 } 14199 14200 new_prog = bpf_patch_insn_data(env, i + delta, 14201 insn_buf, cnt); 14202 if (!new_prog) 14203 return -ENOMEM; 14204 14205 delta += cnt - 1; 14206 env->prog = prog = new_prog; 14207 insn = new_prog->insnsi + i + delta; 14208 continue; 14209 } 14210 14211 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 14212 (void *(*)(struct bpf_map *map, void *key))NULL)); 14213 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 14214 (int (*)(struct bpf_map *map, void *key))NULL)); 14215 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 14216 (int (*)(struct bpf_map *map, void *key, void *value, 14217 u64 flags))NULL)); 14218 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 14219 (int (*)(struct bpf_map *map, void *value, 14220 u64 flags))NULL)); 14221 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 14222 (int (*)(struct bpf_map *map, void *value))NULL)); 14223 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 14224 (int (*)(struct bpf_map *map, void *value))NULL)); 14225 BUILD_BUG_ON(!__same_type(ops->map_redirect, 14226 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL)); 14227 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 14228 (int (*)(struct bpf_map *map, 14229 bpf_callback_t callback_fn, 14230 void *callback_ctx, 14231 u64 flags))NULL)); 14232 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 14233 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 14234 14235 patch_map_ops_generic: 14236 switch (insn->imm) { 14237 case BPF_FUNC_map_lookup_elem: 14238 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 14239 continue; 14240 case BPF_FUNC_map_update_elem: 14241 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 14242 continue; 14243 case BPF_FUNC_map_delete_elem: 14244 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 14245 continue; 14246 case BPF_FUNC_map_push_elem: 14247 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 14248 continue; 14249 case BPF_FUNC_map_pop_elem: 14250 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 14251 continue; 14252 case BPF_FUNC_map_peek_elem: 14253 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 14254 continue; 14255 case BPF_FUNC_redirect_map: 14256 insn->imm = BPF_CALL_IMM(ops->map_redirect); 14257 continue; 14258 case BPF_FUNC_for_each_map_elem: 14259 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 14260 continue; 14261 case BPF_FUNC_map_lookup_percpu_elem: 14262 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 14263 continue; 14264 } 14265 14266 goto patch_call_imm; 14267 } 14268 14269 /* Implement bpf_jiffies64 inline. */ 14270 if (prog->jit_requested && BITS_PER_LONG == 64 && 14271 insn->imm == BPF_FUNC_jiffies64) { 14272 struct bpf_insn ld_jiffies_addr[2] = { 14273 BPF_LD_IMM64(BPF_REG_0, 14274 (unsigned long)&jiffies), 14275 }; 14276 14277 insn_buf[0] = ld_jiffies_addr[0]; 14278 insn_buf[1] = ld_jiffies_addr[1]; 14279 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 14280 BPF_REG_0, 0); 14281 cnt = 3; 14282 14283 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 14284 cnt); 14285 if (!new_prog) 14286 return -ENOMEM; 14287 14288 delta += cnt - 1; 14289 env->prog = prog = new_prog; 14290 insn = new_prog->insnsi + i + delta; 14291 continue; 14292 } 14293 14294 /* Implement bpf_get_func_arg inline. */ 14295 if (prog_type == BPF_PROG_TYPE_TRACING && 14296 insn->imm == BPF_FUNC_get_func_arg) { 14297 /* Load nr_args from ctx - 8 */ 14298 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14299 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 14300 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 14301 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 14302 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 14303 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 14304 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 14305 insn_buf[7] = BPF_JMP_A(1); 14306 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 14307 cnt = 9; 14308 14309 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14310 if (!new_prog) 14311 return -ENOMEM; 14312 14313 delta += cnt - 1; 14314 env->prog = prog = new_prog; 14315 insn = new_prog->insnsi + i + delta; 14316 continue; 14317 } 14318 14319 /* Implement bpf_get_func_ret inline. */ 14320 if (prog_type == BPF_PROG_TYPE_TRACING && 14321 insn->imm == BPF_FUNC_get_func_ret) { 14322 if (eatype == BPF_TRACE_FEXIT || 14323 eatype == BPF_MODIFY_RETURN) { 14324 /* Load nr_args from ctx - 8 */ 14325 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14326 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 14327 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 14328 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 14329 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 14330 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 14331 cnt = 6; 14332 } else { 14333 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 14334 cnt = 1; 14335 } 14336 14337 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14338 if (!new_prog) 14339 return -ENOMEM; 14340 14341 delta += cnt - 1; 14342 env->prog = prog = new_prog; 14343 insn = new_prog->insnsi + i + delta; 14344 continue; 14345 } 14346 14347 /* Implement get_func_arg_cnt inline. */ 14348 if (prog_type == BPF_PROG_TYPE_TRACING && 14349 insn->imm == BPF_FUNC_get_func_arg_cnt) { 14350 /* Load nr_args from ctx - 8 */ 14351 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14352 14353 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 14354 if (!new_prog) 14355 return -ENOMEM; 14356 14357 env->prog = prog = new_prog; 14358 insn = new_prog->insnsi + i + delta; 14359 continue; 14360 } 14361 14362 /* Implement bpf_get_func_ip inline. */ 14363 if (prog_type == BPF_PROG_TYPE_TRACING && 14364 insn->imm == BPF_FUNC_get_func_ip) { 14365 /* Load IP address from ctx - 16 */ 14366 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 14367 14368 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 14369 if (!new_prog) 14370 return -ENOMEM; 14371 14372 env->prog = prog = new_prog; 14373 insn = new_prog->insnsi + i + delta; 14374 continue; 14375 } 14376 14377 patch_call_imm: 14378 fn = env->ops->get_func_proto(insn->imm, env->prog); 14379 /* all functions that have prototype and verifier allowed 14380 * programs to call them, must be real in-kernel functions 14381 */ 14382 if (!fn->func) { 14383 verbose(env, 14384 "kernel subsystem misconfigured func %s#%d\n", 14385 func_id_name(insn->imm), insn->imm); 14386 return -EFAULT; 14387 } 14388 insn->imm = fn->func - __bpf_call_base; 14389 } 14390 14391 /* Since poke tab is now finalized, publish aux to tracker. */ 14392 for (i = 0; i < prog->aux->size_poke_tab; i++) { 14393 map_ptr = prog->aux->poke_tab[i].tail_call.map; 14394 if (!map_ptr->ops->map_poke_track || 14395 !map_ptr->ops->map_poke_untrack || 14396 !map_ptr->ops->map_poke_run) { 14397 verbose(env, "bpf verifier is misconfigured\n"); 14398 return -EINVAL; 14399 } 14400 14401 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 14402 if (ret < 0) { 14403 verbose(env, "tracking tail call prog failed\n"); 14404 return ret; 14405 } 14406 } 14407 14408 sort_kfunc_descs_by_imm(env->prog); 14409 14410 return 0; 14411 } 14412 14413 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 14414 int position, 14415 s32 stack_base, 14416 u32 callback_subprogno, 14417 u32 *cnt) 14418 { 14419 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 14420 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 14421 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 14422 int reg_loop_max = BPF_REG_6; 14423 int reg_loop_cnt = BPF_REG_7; 14424 int reg_loop_ctx = BPF_REG_8; 14425 14426 struct bpf_prog *new_prog; 14427 u32 callback_start; 14428 u32 call_insn_offset; 14429 s32 callback_offset; 14430 14431 /* This represents an inlined version of bpf_iter.c:bpf_loop, 14432 * be careful to modify this code in sync. 14433 */ 14434 struct bpf_insn insn_buf[] = { 14435 /* Return error and jump to the end of the patch if 14436 * expected number of iterations is too big. 14437 */ 14438 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 14439 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 14440 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 14441 /* spill R6, R7, R8 to use these as loop vars */ 14442 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 14443 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 14444 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 14445 /* initialize loop vars */ 14446 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 14447 BPF_MOV32_IMM(reg_loop_cnt, 0), 14448 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 14449 /* loop header, 14450 * if reg_loop_cnt >= reg_loop_max skip the loop body 14451 */ 14452 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 14453 /* callback call, 14454 * correct callback offset would be set after patching 14455 */ 14456 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 14457 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 14458 BPF_CALL_REL(0), 14459 /* increment loop counter */ 14460 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 14461 /* jump to loop header if callback returned 0 */ 14462 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 14463 /* return value of bpf_loop, 14464 * set R0 to the number of iterations 14465 */ 14466 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 14467 /* restore original values of R6, R7, R8 */ 14468 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 14469 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 14470 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 14471 }; 14472 14473 *cnt = ARRAY_SIZE(insn_buf); 14474 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 14475 if (!new_prog) 14476 return new_prog; 14477 14478 /* callback start is known only after patching */ 14479 callback_start = env->subprog_info[callback_subprogno].start; 14480 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 14481 call_insn_offset = position + 12; 14482 callback_offset = callback_start - call_insn_offset - 1; 14483 new_prog->insnsi[call_insn_offset].imm = callback_offset; 14484 14485 return new_prog; 14486 } 14487 14488 static bool is_bpf_loop_call(struct bpf_insn *insn) 14489 { 14490 return insn->code == (BPF_JMP | BPF_CALL) && 14491 insn->src_reg == 0 && 14492 insn->imm == BPF_FUNC_loop; 14493 } 14494 14495 /* For all sub-programs in the program (including main) check 14496 * insn_aux_data to see if there are bpf_loop calls that require 14497 * inlining. If such calls are found the calls are replaced with a 14498 * sequence of instructions produced by `inline_bpf_loop` function and 14499 * subprog stack_depth is increased by the size of 3 registers. 14500 * This stack space is used to spill values of the R6, R7, R8. These 14501 * registers are used to store the loop bound, counter and context 14502 * variables. 14503 */ 14504 static int optimize_bpf_loop(struct bpf_verifier_env *env) 14505 { 14506 struct bpf_subprog_info *subprogs = env->subprog_info; 14507 int i, cur_subprog = 0, cnt, delta = 0; 14508 struct bpf_insn *insn = env->prog->insnsi; 14509 int insn_cnt = env->prog->len; 14510 u16 stack_depth = subprogs[cur_subprog].stack_depth; 14511 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 14512 u16 stack_depth_extra = 0; 14513 14514 for (i = 0; i < insn_cnt; i++, insn++) { 14515 struct bpf_loop_inline_state *inline_state = 14516 &env->insn_aux_data[i + delta].loop_inline_state; 14517 14518 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 14519 struct bpf_prog *new_prog; 14520 14521 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 14522 new_prog = inline_bpf_loop(env, 14523 i + delta, 14524 -(stack_depth + stack_depth_extra), 14525 inline_state->callback_subprogno, 14526 &cnt); 14527 if (!new_prog) 14528 return -ENOMEM; 14529 14530 delta += cnt - 1; 14531 env->prog = new_prog; 14532 insn = new_prog->insnsi + i + delta; 14533 } 14534 14535 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 14536 subprogs[cur_subprog].stack_depth += stack_depth_extra; 14537 cur_subprog++; 14538 stack_depth = subprogs[cur_subprog].stack_depth; 14539 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 14540 stack_depth_extra = 0; 14541 } 14542 } 14543 14544 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 14545 14546 return 0; 14547 } 14548 14549 static void free_states(struct bpf_verifier_env *env) 14550 { 14551 struct bpf_verifier_state_list *sl, *sln; 14552 int i; 14553 14554 sl = env->free_list; 14555 while (sl) { 14556 sln = sl->next; 14557 free_verifier_state(&sl->state, false); 14558 kfree(sl); 14559 sl = sln; 14560 } 14561 env->free_list = NULL; 14562 14563 if (!env->explored_states) 14564 return; 14565 14566 for (i = 0; i < state_htab_size(env); i++) { 14567 sl = env->explored_states[i]; 14568 14569 while (sl) { 14570 sln = sl->next; 14571 free_verifier_state(&sl->state, false); 14572 kfree(sl); 14573 sl = sln; 14574 } 14575 env->explored_states[i] = NULL; 14576 } 14577 } 14578 14579 static int do_check_common(struct bpf_verifier_env *env, int subprog) 14580 { 14581 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 14582 struct bpf_verifier_state *state; 14583 struct bpf_reg_state *regs; 14584 int ret, i; 14585 14586 env->prev_linfo = NULL; 14587 env->pass_cnt++; 14588 14589 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 14590 if (!state) 14591 return -ENOMEM; 14592 state->curframe = 0; 14593 state->speculative = false; 14594 state->branches = 1; 14595 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 14596 if (!state->frame[0]) { 14597 kfree(state); 14598 return -ENOMEM; 14599 } 14600 env->cur_state = state; 14601 init_func_state(env, state->frame[0], 14602 BPF_MAIN_FUNC /* callsite */, 14603 0 /* frameno */, 14604 subprog); 14605 14606 regs = state->frame[state->curframe]->regs; 14607 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 14608 ret = btf_prepare_func_args(env, subprog, regs); 14609 if (ret) 14610 goto out; 14611 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 14612 if (regs[i].type == PTR_TO_CTX) 14613 mark_reg_known_zero(env, regs, i); 14614 else if (regs[i].type == SCALAR_VALUE) 14615 mark_reg_unknown(env, regs, i); 14616 else if (base_type(regs[i].type) == PTR_TO_MEM) { 14617 const u32 mem_size = regs[i].mem_size; 14618 14619 mark_reg_known_zero(env, regs, i); 14620 regs[i].mem_size = mem_size; 14621 regs[i].id = ++env->id_gen; 14622 } 14623 } 14624 } else { 14625 /* 1st arg to a function */ 14626 regs[BPF_REG_1].type = PTR_TO_CTX; 14627 mark_reg_known_zero(env, regs, BPF_REG_1); 14628 ret = btf_check_subprog_arg_match(env, subprog, regs); 14629 if (ret == -EFAULT) 14630 /* unlikely verifier bug. abort. 14631 * ret == 0 and ret < 0 are sadly acceptable for 14632 * main() function due to backward compatibility. 14633 * Like socket filter program may be written as: 14634 * int bpf_prog(struct pt_regs *ctx) 14635 * and never dereference that ctx in the program. 14636 * 'struct pt_regs' is a type mismatch for socket 14637 * filter that should be using 'struct __sk_buff'. 14638 */ 14639 goto out; 14640 } 14641 14642 ret = do_check(env); 14643 out: 14644 /* check for NULL is necessary, since cur_state can be freed inside 14645 * do_check() under memory pressure. 14646 */ 14647 if (env->cur_state) { 14648 free_verifier_state(env->cur_state, true); 14649 env->cur_state = NULL; 14650 } 14651 while (!pop_stack(env, NULL, NULL, false)); 14652 if (!ret && pop_log) 14653 bpf_vlog_reset(&env->log, 0); 14654 free_states(env); 14655 return ret; 14656 } 14657 14658 /* Verify all global functions in a BPF program one by one based on their BTF. 14659 * All global functions must pass verification. Otherwise the whole program is rejected. 14660 * Consider: 14661 * int bar(int); 14662 * int foo(int f) 14663 * { 14664 * return bar(f); 14665 * } 14666 * int bar(int b) 14667 * { 14668 * ... 14669 * } 14670 * foo() will be verified first for R1=any_scalar_value. During verification it 14671 * will be assumed that bar() already verified successfully and call to bar() 14672 * from foo() will be checked for type match only. Later bar() will be verified 14673 * independently to check that it's safe for R1=any_scalar_value. 14674 */ 14675 static int do_check_subprogs(struct bpf_verifier_env *env) 14676 { 14677 struct bpf_prog_aux *aux = env->prog->aux; 14678 int i, ret; 14679 14680 if (!aux->func_info) 14681 return 0; 14682 14683 for (i = 1; i < env->subprog_cnt; i++) { 14684 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 14685 continue; 14686 env->insn_idx = env->subprog_info[i].start; 14687 WARN_ON_ONCE(env->insn_idx == 0); 14688 ret = do_check_common(env, i); 14689 if (ret) { 14690 return ret; 14691 } else if (env->log.level & BPF_LOG_LEVEL) { 14692 verbose(env, 14693 "Func#%d is safe for any args that match its prototype\n", 14694 i); 14695 } 14696 } 14697 return 0; 14698 } 14699 14700 static int do_check_main(struct bpf_verifier_env *env) 14701 { 14702 int ret; 14703 14704 env->insn_idx = 0; 14705 ret = do_check_common(env, 0); 14706 if (!ret) 14707 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 14708 return ret; 14709 } 14710 14711 14712 static void print_verification_stats(struct bpf_verifier_env *env) 14713 { 14714 int i; 14715 14716 if (env->log.level & BPF_LOG_STATS) { 14717 verbose(env, "verification time %lld usec\n", 14718 div_u64(env->verification_time, 1000)); 14719 verbose(env, "stack depth "); 14720 for (i = 0; i < env->subprog_cnt; i++) { 14721 u32 depth = env->subprog_info[i].stack_depth; 14722 14723 verbose(env, "%d", depth); 14724 if (i + 1 < env->subprog_cnt) 14725 verbose(env, "+"); 14726 } 14727 verbose(env, "\n"); 14728 } 14729 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 14730 "total_states %d peak_states %d mark_read %d\n", 14731 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 14732 env->max_states_per_insn, env->total_states, 14733 env->peak_states, env->longest_mark_read_walk); 14734 } 14735 14736 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 14737 { 14738 const struct btf_type *t, *func_proto; 14739 const struct bpf_struct_ops *st_ops; 14740 const struct btf_member *member; 14741 struct bpf_prog *prog = env->prog; 14742 u32 btf_id, member_idx; 14743 const char *mname; 14744 14745 if (!prog->gpl_compatible) { 14746 verbose(env, "struct ops programs must have a GPL compatible license\n"); 14747 return -EINVAL; 14748 } 14749 14750 btf_id = prog->aux->attach_btf_id; 14751 st_ops = bpf_struct_ops_find(btf_id); 14752 if (!st_ops) { 14753 verbose(env, "attach_btf_id %u is not a supported struct\n", 14754 btf_id); 14755 return -ENOTSUPP; 14756 } 14757 14758 t = st_ops->type; 14759 member_idx = prog->expected_attach_type; 14760 if (member_idx >= btf_type_vlen(t)) { 14761 verbose(env, "attach to invalid member idx %u of struct %s\n", 14762 member_idx, st_ops->name); 14763 return -EINVAL; 14764 } 14765 14766 member = &btf_type_member(t)[member_idx]; 14767 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 14768 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 14769 NULL); 14770 if (!func_proto) { 14771 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 14772 mname, member_idx, st_ops->name); 14773 return -EINVAL; 14774 } 14775 14776 if (st_ops->check_member) { 14777 int err = st_ops->check_member(t, member); 14778 14779 if (err) { 14780 verbose(env, "attach to unsupported member %s of struct %s\n", 14781 mname, st_ops->name); 14782 return err; 14783 } 14784 } 14785 14786 prog->aux->attach_func_proto = func_proto; 14787 prog->aux->attach_func_name = mname; 14788 env->ops = st_ops->verifier_ops; 14789 14790 return 0; 14791 } 14792 #define SECURITY_PREFIX "security_" 14793 14794 static int check_attach_modify_return(unsigned long addr, const char *func_name) 14795 { 14796 if (within_error_injection_list(addr) || 14797 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 14798 return 0; 14799 14800 return -EINVAL; 14801 } 14802 14803 /* list of non-sleepable functions that are otherwise on 14804 * ALLOW_ERROR_INJECTION list 14805 */ 14806 BTF_SET_START(btf_non_sleepable_error_inject) 14807 /* Three functions below can be called from sleepable and non-sleepable context. 14808 * Assume non-sleepable from bpf safety point of view. 14809 */ 14810 BTF_ID(func, __filemap_add_folio) 14811 BTF_ID(func, should_fail_alloc_page) 14812 BTF_ID(func, should_failslab) 14813 BTF_SET_END(btf_non_sleepable_error_inject) 14814 14815 static int check_non_sleepable_error_inject(u32 btf_id) 14816 { 14817 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 14818 } 14819 14820 int bpf_check_attach_target(struct bpf_verifier_log *log, 14821 const struct bpf_prog *prog, 14822 const struct bpf_prog *tgt_prog, 14823 u32 btf_id, 14824 struct bpf_attach_target_info *tgt_info) 14825 { 14826 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 14827 const char prefix[] = "btf_trace_"; 14828 int ret = 0, subprog = -1, i; 14829 const struct btf_type *t; 14830 bool conservative = true; 14831 const char *tname; 14832 struct btf *btf; 14833 long addr = 0; 14834 14835 if (!btf_id) { 14836 bpf_log(log, "Tracing programs must provide btf_id\n"); 14837 return -EINVAL; 14838 } 14839 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 14840 if (!btf) { 14841 bpf_log(log, 14842 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 14843 return -EINVAL; 14844 } 14845 t = btf_type_by_id(btf, btf_id); 14846 if (!t) { 14847 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 14848 return -EINVAL; 14849 } 14850 tname = btf_name_by_offset(btf, t->name_off); 14851 if (!tname) { 14852 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 14853 return -EINVAL; 14854 } 14855 if (tgt_prog) { 14856 struct bpf_prog_aux *aux = tgt_prog->aux; 14857 14858 for (i = 0; i < aux->func_info_cnt; i++) 14859 if (aux->func_info[i].type_id == btf_id) { 14860 subprog = i; 14861 break; 14862 } 14863 if (subprog == -1) { 14864 bpf_log(log, "Subprog %s doesn't exist\n", tname); 14865 return -EINVAL; 14866 } 14867 conservative = aux->func_info_aux[subprog].unreliable; 14868 if (prog_extension) { 14869 if (conservative) { 14870 bpf_log(log, 14871 "Cannot replace static functions\n"); 14872 return -EINVAL; 14873 } 14874 if (!prog->jit_requested) { 14875 bpf_log(log, 14876 "Extension programs should be JITed\n"); 14877 return -EINVAL; 14878 } 14879 } 14880 if (!tgt_prog->jited) { 14881 bpf_log(log, "Can attach to only JITed progs\n"); 14882 return -EINVAL; 14883 } 14884 if (tgt_prog->type == prog->type) { 14885 /* Cannot fentry/fexit another fentry/fexit program. 14886 * Cannot attach program extension to another extension. 14887 * It's ok to attach fentry/fexit to extension program. 14888 */ 14889 bpf_log(log, "Cannot recursively attach\n"); 14890 return -EINVAL; 14891 } 14892 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 14893 prog_extension && 14894 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 14895 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 14896 /* Program extensions can extend all program types 14897 * except fentry/fexit. The reason is the following. 14898 * The fentry/fexit programs are used for performance 14899 * analysis, stats and can be attached to any program 14900 * type except themselves. When extension program is 14901 * replacing XDP function it is necessary to allow 14902 * performance analysis of all functions. Both original 14903 * XDP program and its program extension. Hence 14904 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 14905 * allowed. If extending of fentry/fexit was allowed it 14906 * would be possible to create long call chain 14907 * fentry->extension->fentry->extension beyond 14908 * reasonable stack size. Hence extending fentry is not 14909 * allowed. 14910 */ 14911 bpf_log(log, "Cannot extend fentry/fexit\n"); 14912 return -EINVAL; 14913 } 14914 } else { 14915 if (prog_extension) { 14916 bpf_log(log, "Cannot replace kernel functions\n"); 14917 return -EINVAL; 14918 } 14919 } 14920 14921 switch (prog->expected_attach_type) { 14922 case BPF_TRACE_RAW_TP: 14923 if (tgt_prog) { 14924 bpf_log(log, 14925 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 14926 return -EINVAL; 14927 } 14928 if (!btf_type_is_typedef(t)) { 14929 bpf_log(log, "attach_btf_id %u is not a typedef\n", 14930 btf_id); 14931 return -EINVAL; 14932 } 14933 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 14934 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 14935 btf_id, tname); 14936 return -EINVAL; 14937 } 14938 tname += sizeof(prefix) - 1; 14939 t = btf_type_by_id(btf, t->type); 14940 if (!btf_type_is_ptr(t)) 14941 /* should never happen in valid vmlinux build */ 14942 return -EINVAL; 14943 t = btf_type_by_id(btf, t->type); 14944 if (!btf_type_is_func_proto(t)) 14945 /* should never happen in valid vmlinux build */ 14946 return -EINVAL; 14947 14948 break; 14949 case BPF_TRACE_ITER: 14950 if (!btf_type_is_func(t)) { 14951 bpf_log(log, "attach_btf_id %u is not a function\n", 14952 btf_id); 14953 return -EINVAL; 14954 } 14955 t = btf_type_by_id(btf, t->type); 14956 if (!btf_type_is_func_proto(t)) 14957 return -EINVAL; 14958 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 14959 if (ret) 14960 return ret; 14961 break; 14962 default: 14963 if (!prog_extension) 14964 return -EINVAL; 14965 fallthrough; 14966 case BPF_MODIFY_RETURN: 14967 case BPF_LSM_MAC: 14968 case BPF_LSM_CGROUP: 14969 case BPF_TRACE_FENTRY: 14970 case BPF_TRACE_FEXIT: 14971 if (!btf_type_is_func(t)) { 14972 bpf_log(log, "attach_btf_id %u is not a function\n", 14973 btf_id); 14974 return -EINVAL; 14975 } 14976 if (prog_extension && 14977 btf_check_type_match(log, prog, btf, t)) 14978 return -EINVAL; 14979 t = btf_type_by_id(btf, t->type); 14980 if (!btf_type_is_func_proto(t)) 14981 return -EINVAL; 14982 14983 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 14984 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 14985 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 14986 return -EINVAL; 14987 14988 if (tgt_prog && conservative) 14989 t = NULL; 14990 14991 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 14992 if (ret < 0) 14993 return ret; 14994 14995 if (tgt_prog) { 14996 if (subprog == 0) 14997 addr = (long) tgt_prog->bpf_func; 14998 else 14999 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 15000 } else { 15001 addr = kallsyms_lookup_name(tname); 15002 if (!addr) { 15003 bpf_log(log, 15004 "The address of function %s cannot be found\n", 15005 tname); 15006 return -ENOENT; 15007 } 15008 } 15009 15010 if (prog->aux->sleepable) { 15011 ret = -EINVAL; 15012 switch (prog->type) { 15013 case BPF_PROG_TYPE_TRACING: 15014 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 15015 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 15016 */ 15017 if (!check_non_sleepable_error_inject(btf_id) && 15018 within_error_injection_list(addr)) 15019 ret = 0; 15020 break; 15021 case BPF_PROG_TYPE_LSM: 15022 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 15023 * Only some of them are sleepable. 15024 */ 15025 if (bpf_lsm_is_sleepable_hook(btf_id)) 15026 ret = 0; 15027 break; 15028 default: 15029 break; 15030 } 15031 if (ret) { 15032 bpf_log(log, "%s is not sleepable\n", tname); 15033 return ret; 15034 } 15035 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 15036 if (tgt_prog) { 15037 bpf_log(log, "can't modify return codes of BPF programs\n"); 15038 return -EINVAL; 15039 } 15040 ret = check_attach_modify_return(addr, tname); 15041 if (ret) { 15042 bpf_log(log, "%s() is not modifiable\n", tname); 15043 return ret; 15044 } 15045 } 15046 15047 break; 15048 } 15049 tgt_info->tgt_addr = addr; 15050 tgt_info->tgt_name = tname; 15051 tgt_info->tgt_type = t; 15052 return 0; 15053 } 15054 15055 BTF_SET_START(btf_id_deny) 15056 BTF_ID_UNUSED 15057 #ifdef CONFIG_SMP 15058 BTF_ID(func, migrate_disable) 15059 BTF_ID(func, migrate_enable) 15060 #endif 15061 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 15062 BTF_ID(func, rcu_read_unlock_strict) 15063 #endif 15064 BTF_SET_END(btf_id_deny) 15065 15066 static int check_attach_btf_id(struct bpf_verifier_env *env) 15067 { 15068 struct bpf_prog *prog = env->prog; 15069 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 15070 struct bpf_attach_target_info tgt_info = {}; 15071 u32 btf_id = prog->aux->attach_btf_id; 15072 struct bpf_trampoline *tr; 15073 int ret; 15074 u64 key; 15075 15076 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 15077 if (prog->aux->sleepable) 15078 /* attach_btf_id checked to be zero already */ 15079 return 0; 15080 verbose(env, "Syscall programs can only be sleepable\n"); 15081 return -EINVAL; 15082 } 15083 15084 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 15085 prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) { 15086 verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n"); 15087 return -EINVAL; 15088 } 15089 15090 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 15091 return check_struct_ops_btf_id(env); 15092 15093 if (prog->type != BPF_PROG_TYPE_TRACING && 15094 prog->type != BPF_PROG_TYPE_LSM && 15095 prog->type != BPF_PROG_TYPE_EXT) 15096 return 0; 15097 15098 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 15099 if (ret) 15100 return ret; 15101 15102 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 15103 /* to make freplace equivalent to their targets, they need to 15104 * inherit env->ops and expected_attach_type for the rest of the 15105 * verification 15106 */ 15107 env->ops = bpf_verifier_ops[tgt_prog->type]; 15108 prog->expected_attach_type = tgt_prog->expected_attach_type; 15109 } 15110 15111 /* store info about the attachment target that will be used later */ 15112 prog->aux->attach_func_proto = tgt_info.tgt_type; 15113 prog->aux->attach_func_name = tgt_info.tgt_name; 15114 15115 if (tgt_prog) { 15116 prog->aux->saved_dst_prog_type = tgt_prog->type; 15117 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 15118 } 15119 15120 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 15121 prog->aux->attach_btf_trace = true; 15122 return 0; 15123 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 15124 if (!bpf_iter_prog_supported(prog)) 15125 return -EINVAL; 15126 return 0; 15127 } 15128 15129 if (prog->type == BPF_PROG_TYPE_LSM) { 15130 ret = bpf_lsm_verify_prog(&env->log, prog); 15131 if (ret < 0) 15132 return ret; 15133 } else if (prog->type == BPF_PROG_TYPE_TRACING && 15134 btf_id_set_contains(&btf_id_deny, btf_id)) { 15135 return -EINVAL; 15136 } 15137 15138 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 15139 tr = bpf_trampoline_get(key, &tgt_info); 15140 if (!tr) 15141 return -ENOMEM; 15142 15143 prog->aux->dst_trampoline = tr; 15144 return 0; 15145 } 15146 15147 struct btf *bpf_get_btf_vmlinux(void) 15148 { 15149 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 15150 mutex_lock(&bpf_verifier_lock); 15151 if (!btf_vmlinux) 15152 btf_vmlinux = btf_parse_vmlinux(); 15153 mutex_unlock(&bpf_verifier_lock); 15154 } 15155 return btf_vmlinux; 15156 } 15157 15158 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 15159 { 15160 u64 start_time = ktime_get_ns(); 15161 struct bpf_verifier_env *env; 15162 struct bpf_verifier_log *log; 15163 int i, len, ret = -EINVAL; 15164 bool is_priv; 15165 15166 /* no program is valid */ 15167 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 15168 return -EINVAL; 15169 15170 /* 'struct bpf_verifier_env' can be global, but since it's not small, 15171 * allocate/free it every time bpf_check() is called 15172 */ 15173 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 15174 if (!env) 15175 return -ENOMEM; 15176 log = &env->log; 15177 15178 len = (*prog)->len; 15179 env->insn_aux_data = 15180 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 15181 ret = -ENOMEM; 15182 if (!env->insn_aux_data) 15183 goto err_free_env; 15184 for (i = 0; i < len; i++) 15185 env->insn_aux_data[i].orig_idx = i; 15186 env->prog = *prog; 15187 env->ops = bpf_verifier_ops[env->prog->type]; 15188 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 15189 is_priv = bpf_capable(); 15190 15191 bpf_get_btf_vmlinux(); 15192 15193 /* grab the mutex to protect few globals used by verifier */ 15194 if (!is_priv) 15195 mutex_lock(&bpf_verifier_lock); 15196 15197 if (attr->log_level || attr->log_buf || attr->log_size) { 15198 /* user requested verbose verifier output 15199 * and supplied buffer to store the verification trace 15200 */ 15201 log->level = attr->log_level; 15202 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 15203 log->len_total = attr->log_size; 15204 15205 /* log attributes have to be sane */ 15206 if (!bpf_verifier_log_attr_valid(log)) { 15207 ret = -EINVAL; 15208 goto err_unlock; 15209 } 15210 } 15211 15212 mark_verifier_state_clean(env); 15213 15214 if (IS_ERR(btf_vmlinux)) { 15215 /* Either gcc or pahole or kernel are broken. */ 15216 verbose(env, "in-kernel BTF is malformed\n"); 15217 ret = PTR_ERR(btf_vmlinux); 15218 goto skip_full_check; 15219 } 15220 15221 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 15222 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 15223 env->strict_alignment = true; 15224 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 15225 env->strict_alignment = false; 15226 15227 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 15228 env->allow_uninit_stack = bpf_allow_uninit_stack(); 15229 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 15230 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 15231 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 15232 env->bpf_capable = bpf_capable(); 15233 15234 if (is_priv) 15235 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 15236 15237 env->explored_states = kvcalloc(state_htab_size(env), 15238 sizeof(struct bpf_verifier_state_list *), 15239 GFP_USER); 15240 ret = -ENOMEM; 15241 if (!env->explored_states) 15242 goto skip_full_check; 15243 15244 ret = add_subprog_and_kfunc(env); 15245 if (ret < 0) 15246 goto skip_full_check; 15247 15248 ret = check_subprogs(env); 15249 if (ret < 0) 15250 goto skip_full_check; 15251 15252 ret = check_btf_info(env, attr, uattr); 15253 if (ret < 0) 15254 goto skip_full_check; 15255 15256 ret = check_attach_btf_id(env); 15257 if (ret) 15258 goto skip_full_check; 15259 15260 ret = resolve_pseudo_ldimm64(env); 15261 if (ret < 0) 15262 goto skip_full_check; 15263 15264 if (bpf_prog_is_dev_bound(env->prog->aux)) { 15265 ret = bpf_prog_offload_verifier_prep(env->prog); 15266 if (ret) 15267 goto skip_full_check; 15268 } 15269 15270 ret = check_cfg(env); 15271 if (ret < 0) 15272 goto skip_full_check; 15273 15274 ret = do_check_subprogs(env); 15275 ret = ret ?: do_check_main(env); 15276 15277 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 15278 ret = bpf_prog_offload_finalize(env); 15279 15280 skip_full_check: 15281 kvfree(env->explored_states); 15282 15283 if (ret == 0) 15284 ret = check_max_stack_depth(env); 15285 15286 /* instruction rewrites happen after this point */ 15287 if (ret == 0) 15288 ret = optimize_bpf_loop(env); 15289 15290 if (is_priv) { 15291 if (ret == 0) 15292 opt_hard_wire_dead_code_branches(env); 15293 if (ret == 0) 15294 ret = opt_remove_dead_code(env); 15295 if (ret == 0) 15296 ret = opt_remove_nops(env); 15297 } else { 15298 if (ret == 0) 15299 sanitize_dead_code(env); 15300 } 15301 15302 if (ret == 0) 15303 /* program is valid, convert *(u32*)(ctx + off) accesses */ 15304 ret = convert_ctx_accesses(env); 15305 15306 if (ret == 0) 15307 ret = do_misc_fixups(env); 15308 15309 /* do 32-bit optimization after insn patching has done so those patched 15310 * insns could be handled correctly. 15311 */ 15312 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 15313 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 15314 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 15315 : false; 15316 } 15317 15318 if (ret == 0) 15319 ret = fixup_call_args(env); 15320 15321 env->verification_time = ktime_get_ns() - start_time; 15322 print_verification_stats(env); 15323 env->prog->aux->verified_insns = env->insn_processed; 15324 15325 if (log->level && bpf_verifier_log_full(log)) 15326 ret = -ENOSPC; 15327 if (log->level && !log->ubuf) { 15328 ret = -EFAULT; 15329 goto err_release_maps; 15330 } 15331 15332 if (ret) 15333 goto err_release_maps; 15334 15335 if (env->used_map_cnt) { 15336 /* if program passed verifier, update used_maps in bpf_prog_info */ 15337 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 15338 sizeof(env->used_maps[0]), 15339 GFP_KERNEL); 15340 15341 if (!env->prog->aux->used_maps) { 15342 ret = -ENOMEM; 15343 goto err_release_maps; 15344 } 15345 15346 memcpy(env->prog->aux->used_maps, env->used_maps, 15347 sizeof(env->used_maps[0]) * env->used_map_cnt); 15348 env->prog->aux->used_map_cnt = env->used_map_cnt; 15349 } 15350 if (env->used_btf_cnt) { 15351 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 15352 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 15353 sizeof(env->used_btfs[0]), 15354 GFP_KERNEL); 15355 if (!env->prog->aux->used_btfs) { 15356 ret = -ENOMEM; 15357 goto err_release_maps; 15358 } 15359 15360 memcpy(env->prog->aux->used_btfs, env->used_btfs, 15361 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 15362 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 15363 } 15364 if (env->used_map_cnt || env->used_btf_cnt) { 15365 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 15366 * bpf_ld_imm64 instructions 15367 */ 15368 convert_pseudo_ld_imm64(env); 15369 } 15370 15371 adjust_btf_func(env); 15372 15373 err_release_maps: 15374 if (!env->prog->aux->used_maps) 15375 /* if we didn't copy map pointers into bpf_prog_info, release 15376 * them now. Otherwise free_used_maps() will release them. 15377 */ 15378 release_maps(env); 15379 if (!env->prog->aux->used_btfs) 15380 release_btfs(env); 15381 15382 /* extension progs temporarily inherit the attach_type of their targets 15383 for verification purposes, so set it back to zero before returning 15384 */ 15385 if (env->prog->type == BPF_PROG_TYPE_EXT) 15386 env->prog->expected_attach_type = 0; 15387 15388 *prog = env->prog; 15389 err_unlock: 15390 if (!is_priv) 15391 mutex_unlock(&bpf_verifier_lock); 15392 vfree(env->insn_aux_data); 15393 err_free_env: 15394 kfree(env); 15395 return ret; 15396 } 15397